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INTRODUCTION

IT	SO	HAPPENS	THAT	ONE	OF
THE	GREATEST	MATHEMATICAL
DISCOVERIES	OF	ALL	TIMES
WAS	GUIDED	BY	PHYSICAL
INTUITION.

—GEORGE	POLYA,	ON
ARCHIMEDES’	DISCOVERY	OF

INTEGRAL	CALCULUS

1.1	Math	versus	Physics

Back	in	the	Soviet	Union	in	the	early	1970s,	our	undergraduate	class—about	forty	mathematics
and	physics	sophomores—was	drafted	for	a	summer	job	in	the	countryside.	Our	job	included
mixing	concrete	and	constructing	silos	on	one	of	the	collective	farms.	My	friend	Anatole	and	I
were	detailed	to	shovel	gravel.	The	finals	were	just	behind	us	and	we	felt	free	(as	free	as	one
could	feel	in	the	circumstances).	Anatole’s	major	was	physics;	mine	was	mathematics.	Like	the
fans	 of	 two	 rival	 teams,	 each	 of	 us	 tried	 to	 convince	 the	 other	 that	 his	 field	 was	 superior.
Anatole	said	bluntly	that	mathematics	is	a	servant	of	physics.	I	countered	that	mathematics	can
exist	 without	 physics	 and	 not	 the	 other	 way	 around.	 Theorems,	 I	 added,	 are	 permanent.
Physical	 theories	come	and	go.	Although	 I	did	not	volunteer	 this	 information	 to	Anatole,	my
own	reason	for	majoring	in	mathematics	was	to	learn	the	main	tool	of	physics—the	field	which
I	had	planned	to	eventually	pursue.	In	fact,	the	summer	between	high	school	and	college	I	had
bumped	 into	 my	 high	 school	 physics	 teacher,	 who	 asked	 me	 about	 my	 plans	 for	 the	 Fall.
“Starting	on	my	math	major,”	I	said.	“What?	Mathematics?	You	are	nuts!”	was	his	reply.	I	took
it	as	a	compliment	(perhaps	proving	his	point).

1.2	What	This	Book	Is	About

This	is	not	“one	of	those	big,	fat	paperbacks,	intended	to	while	away	a	monsoon	or	two,	which,
if	thrown	with	a	good	overarm	action,	will	bring	a	water	buffalo	to	its	knees”	(Nancy	Banks-
Smith,	a	British	television	critic).	With	its	small	weight	this	book	will	not	bring	people	to	their
knees,	at	least	not	by	its	physical	 impact.	However,	 the	book	does	exact	revenge—or	maybe
just	administers	a	pinprick—against	the	view	that	mathematics	is	a	servant	of	physics.	In	this



book	 physics	 is	 put	 to	 work	 for	 mathematics,	 proving	 to	 be	 a	 very	 efficient	 servant	 (with
apologies	 to	physicists).	Physical	 ideas	can	be	real	eye-openers	and	can	suggest	a	strikingly
simplified	solution	to	a	mathematical	problem.	The	two	subjects	are	so	intimately	intertwined
that	 both	 suffer	 if	 separated.	An	 occasional	 role	 reversal	 can	 be	 very	 fruitful,	 as	 this	 book
illustrates.	It	may	be	argued	that	the	separation	of	the	two	subjects	is	artificial.1

Some	history.	The	Physical	approach	to	mathematics	goes	back	at	least	to	Archimedes	(c.	287
BC	 –	 c.	 212	BC),	who	 proved	 his	 famous	 integral	 calculus	 theorem	 on	 the	 volumes	 of	 the
cylinder,	a	sphere,	and	a	cone	using	an	imagined	balancing	scale.	The	sketch	of	 this	 theorem
was	engraved	on	his	tombstone.	Archimedes’	approach	can	be	found	in	[P].	For	Newton,	the
two	 subjects	 were	 one.	 The	 books	 [U]	 and	 [BB]	 present	 very	 nice	 physical	 solutions	 of
mathematical	problems.	Many	of	 fundamental	mathematical	discoveries	 (Hamilton,	Riemann,
Lagrange,	Jacobi,	Möbius,	Grassmann,	Poincaré)	were	guided	by	physical	considerations.

Is	 there	 a	 general	 recipe	 to	 the	 physical	 approach?	 As	 with	 any	 tool—physical2	 or
intellectual—this	one	sometimes	works	and	sometimes	does	not.	The	main	difficulty	is	to	come
up	 with	 a	 physical	 incarnation	 of	 the	 problem.3	 Some	 problems	 are	 well	 suited	 for	 this
treatment,	 and	 some	 are	 not	 (naturally,	 this	 book	 includes	 only	 the	 former	 kind).	 Finding	 a
physical	interpretation	of	a	particular	problem	is	sometimes	easy,	and	sometimes	not;	readers
can	form	their	own	opinions	by	skimming	through	these	pages.

One	 lesson	 a	 student	 can	 take	 from	 this	 book	 is	 that	 looking	 for	 a	 physical	 meaning	 in
mathematics	can	pay	off.

Mathematical	 rigor.	 Our	 physical	 arguments	 are	 not	 rigorous,	 as	 they	 stand.	 Rather,	 these
arguments	 are	 sketches	 of	 rigorous	 proofs,	 expressed	 in	 physical	 terms.	 I	 translated	 these
physical	 “proofs”	 into	 mathematical	 proofs	 only	 for	 a	 few	 selected	 problems.	 Doing	 so
systematically	would	have	turned	this	book	into	a	“big,	fat	.	.	.	”.	I	hope	that	the	reader	will	see
the	pattern	and,	if	 interested,	will	be	able	to	treat	the	cases	I	did	not	treat.	Having	made	this
disclaimer	I	feel	less	guilty	about	using	the	word	“proof”	throughout	the	text	without	quotation
marks.

The	main	point	here	is	that	the	physical	argument	can	be	a	tool	of	discovery	and	of	intuitive
insight—the	 two	 steps	preceding	 rigor.	As	Archimedes	wrote,	 “For	of	 course	 it	 is	 easier	 to
establish	a	proof	if	one	has	in	this	way	previously	obtained	a	conception	of	the	question,	than
for	him	to	seek	it	without	such	a	preliminary	notion”	([ARC],	p.	8).

An	axiomatic	approach.	Instead	of	translating	each	physical	“proof”	into	a	rigorous	proof,	an
interesting	project	would	entail	systematically	developing	“physical	axioms”—a	set	of	axioms
equivalent	 to	 Euclidean	 geometry/calculus—and	 then	 repeating	 the	 proofs	 given	 here	 in	 the
new	setting.

One	can	imagine	an	extraterrestrial	civilization	that	first	developed	mechanics	as	a	rigorous
and	pure	axiomatic	subject.	In	this	dual	world,	someone	would	have	written	a	book	on	using
geometry	to	prove	mechanical	theorems.

Perhaps	the	real	lesson	is	that	one	should	not	focus	solely	on	one	or	the	other	approach,	but



rather	 look	 at	 both	 sides	of	 the	 coin.	This	 book	 is	 a	 reaction	 to	 the	prevalent	 neglect	 of	 the
physical	aspect	of	mathematics.

Some	 psychology.	 Physical	 solutions	 from	 this	 book	 can	 be	 translated	 into	 mathematical
language.	However,	something	would	be	lost	in	this	translation.	Mechanical	intuition	is	a	basic
attribute	of	our	intellect,	as	basic	as	our	geometrical	imagination,	and	not	to	use	it	is	to	neglect
a	powerful	tool	we	possess.	Mechanics	is	geometry	with	the	emphasis	on	motion	and	touch.	In
the	 latter	 two	 respects,	mechanics	 gives	 us	 an	 extra	 dimension	 of	 perception.	 It	 is	 this	 that
allows	us	to	view	mathematics	from	a	different	angle,	as	described	in	this	book.

There	is	a	sad	Darwinian	principle	at	work.	Physical	 reasoning	was	responsible	 for	some
fundamental	mathematical	discoveries,	 from	Archimedes,	 to	Riemann,	 to	Poincaré,	and	up	 to
the	present	day.	As	a	subject	develops,	however,	 this	heuristic	 reasoning	becomes	 forgotten.
As	a	result,	students	are	often	unaware	of	the	intuitive	foundations	of	subjects	they	study.

The	intended	audience.	If	you	are	interested	in	mathematics	and	physics	you	will,	I	hope,	not
toss	this	book	away.

This	book	may	interest	anyone	who	thinks	it	is	fascinating	that

•	The	Pythagorean	theorem	can	be	explained	by	the	law	of	conservation	of	energy.
•	Flipping	a	switch	in	a	simple	circuit	proves	the	inequality	 	 .
•	Some	difficult	calculus	problems	can	be	solved	easily	with	no	calculus.
•	Examining	the	motion	of	a	bike	wheel	proves	the	Gauss-Bonnet	formula	(no	prior	exposure
is	assumed;	all	the	background	is	provided).

•	Both	 the	Riemann	integral	 formula	and	 the	Riemann	mapping	 theorem	(both	explained	 in
the	appropriate	section)	become	intuitively	obvious	by	observing	fluid	motion.

This	book	should	appeal	 to	anyone	curious	about	geometry	or	mechanics,	or	 to	many	people
who	are	not	interested	in	mathematics	because	they	find	it	dry	or	boring.

Uses	 in	courses.	Besides	 its	 entertainment	 value,	 this	 book	 can	be	 used	 as	 a	 supplement	 in
courses	 in	calculus,	geometry,	and	 teacher	education.	Professors	of	mathematics	and	physics
may	find	some	problems	and	observations	to	be	useful	in	their	teaching.

Required	background.	Most	of	 the	book	(chapters	2–5)	 requires	only	precalculus	and	some
basic	geometry,	and	the	level	of	difficulty	stays	roughly	flat	throughout	those	chapters,	with	a
few	crests	and	valleys.	Chapters	6	and	7	require	only	an	acquaintance	with	the	derivative	and
the	 integral.	At	 the	end	of	 chapter	7	 I	mention	 the	divergence,	but	 in	 a	way	 that	 requires	no
prior	exposure.	This	chapter	should	be	accessible	to	anyone	familiar	with	precalculus.

The	second	part	(chapters	6–11)	uses	on	rare	occasions	a	few	concepts	from	multivariable
calculus,	but	I	tried	to	avoid	the	jargon	as	much	as	possible,	hoping	that	intuition	will	help	the
reader	jump	over	some	technical	gaps.



Everything	 one	 needs	 from	physics	 is	 described	 in	 the	 appendix;	 no	 prior	 background	 is
assumed.

This	book	can	be	read	one	section	or	problem	at	a	time;	if	you	get	stuck,	it	only	takes	turning
a	page	to	gain	traction.	A	few	exceptions	to	this	topic-per-page	structure	occur,	mostly	in	the
later	chapters.

Sources.	Many,	but	but	not	all	solutions	 in	 this	book	are,	 to	my	knowledge,	original.	These
include	 solutions	 to	 problems	2.6,	 2.9,	 2.10,	 2.11,	 2.13,	 3.3,	 3.7,	 3.8,	 3.9,	 3.10,	 3.11,	 3.12,
3.17,	3.18,	3.19,	3.20,	3.21,	5.2,	5.3,	6.1,	6.2,	6.3,	6.4,	6.5,	7.1,	and	7.2.	The	interpretations	in
chapter	8	and	in	sections	9.3,	9.8	and	11.8	appear	to	be	new.

There	 is	 not	 much	 literature	 on	 the	 topic	 of	 this	 book.	 When	 I	 was	 in	 high	 school,	 an
example	from	Uspenski’s	book	[U]	struck	me	so	much	that	 the	 topic	became	a	hobby.4	More
problems	 of	 the	 kind	 described	 here	 are	 in	 the	 small	 book	 by	 Kogan	 [K]	 and	 Balk	 and
Boltyanskii	[BB],	and	in	chapter	9	of	Polya’s	book	[P].	And	the	main	source	of	such	problems
and	solutions	is	the	24-centuries-old	work	by	Archimedes	[ARC].

Figure	1.1.	If	X	minimizes	total	distance	XA	+	XB	+	XC,	then	the	angles	at	X	are	120°.

1.3	A	Physical	versus	a	Mathematical	Solution:	An	Example

Problem.	Given	three	points	A,	B,	and	C	in	the	plane,	find	the	point	X	for	which	the	sum	of
distances	XA	+	XB	+	XC	is	minimal.

Physical	approach.	We	start	by	drilling	three	holes	at	A,	B,	and	C	in	a	tabletop	(this	is	cheaper
to	 do	 as	 a	 thought	 experiment	 or	 at	 a	 friend’s	 home).	Having	 tied	 the	 three	 strings	 together,
calling	the	common	point	X,	I	slip	each	string	through	a	different	hole	and	hang	equal	weights
under	the	table,	as	shown	in	figure	1.1.	Let	us	make	each	weight	equal	to	1;	the	potential	energy
of	the	first	string	is	then	AX:	indeed,	to	drag	X	from	the	hole	A	to	its	current	position	X	we	have
to	raise	the	unit	weight	by	distance	AX.	We	endowed	the	sum	of	distances	XA	+	XB	+	XC	with
the	physical	meaning	of	potential	energy.	Now,	if	this	length/energy	is	minimal,	then	the	system
is	in	equilibrium.	The	three	forces	of	tension	acting	on	X	 then	add	up	to	zero	and	hence	they
form	a	triangle	(rather	than	an	open	path)	if	placed	head-to-tail,	as	shown	in	figure	1.1(b).	This
triangle	 is	 equilateral	 since	 the	 weights	 are	 equal,	 and	 hence	 the	 angle	 between	 positive
directions	of	these	vectors	is	120°.	We	showed	that	 AXB	=	 BXC	=	 CXA	=	120°.



Mathematical	solution.	Let	a,	b,	c,	and	x	denote	the	position	vectors	of	the	points	A,	B,	C,	and
X	respectively.	We	have	to	minimize	the	sum	of	lengths	S(x)	=	|x	−	a|	+	|x	−	a|	+	|x	−	a|.	To	that
end,	we	set	partial	derivatives	of	S	to	zero:	 ,	where	x	=	(x,	y),	or,	expressing
the	 same	 condition	 more	 compactly	 and	 geometrically,	 we	 set	 the	 gradient	

.	 We	 now	 compute	 S.	 We	 have	

	

,	 and	 similarly	

.	 Thus	 	 is	 a	 unit	 vector,
pointing	 from	A	 to	X.	We	will	 denote	 this	 vector	 by	 ea.	 This	 result	 came	 from	 an	 explicit
calculation,	but	its	physical	meaning,	borrowed	from	the	physical	approach,	is	simply	the	force
with	which	X	pulls	the	string.	Differentiating	the	remaining	two	terms	|x	−	b|	and	|x	−	c|	in	S	we
obtain	 S	=	ea	+	eb	+	ec,	where	eb	and	ec	are	defined	similarly	to	ea.	We	conclude	 that	 the
optimal	position	X	corresponds	to	 S	=	ea	+	eb	+	ec	=	0.	Thus	the	unit	vectors	ea,	eb,	ec	form
an	equilateral	 triangle,	 and	any	exterior	 angle	of	 that	 triangle,	 that	 is,	 the	angle	between	any
pair	of	our	unit	vectors,	is	120°.

It	is	fascinating	to	observe	how	the	difficulty	changes	shape	in	passing	from	one	approach	to
the	 other.	 In	 the	 mathematical	 solution,	 the	 work	 goes	 into	 a	 formal	 manipulation.	 In	 the
physical	approach,	the	work	goes	into	inventing	the	right	physical	model.	This	pattern	is	shared
by	many	problems	in	this	book.

Relative	advantages	of	the	two	approaches.

Physical	approach Mathematical	approach
Less	or	no	computation Universal	applicability
Answer	is	often	conceptual Rigor
Can	lead	to	new	discoveries 	
Less	background	is	required 	
Accessible	to	precalc	students 	

The	 physical	 approach	 suits	 some	 subjects	 more	 than	 others.	 The	 subject	 of	 complex
variables	 is	 one	 example	where	 physical	 intuition	 is	 very	 fruitful.	 Some	 of	 the	 fundamental
ideas	of	the	subject,	such	as	the	Cauchy-Goursat	theorem,	the	Cauchy	integral	formula,	and	the
Riemann	 mapping	 theorem,	 can	 be	 made	 intuitively	 obvious	 in	 a	 short	 time,	 with	 minimal
physical	background.	With	these	ideas	Euler’s	formula



acquires	a	nice	interpretation,	saying	that,	for	a	special	incompressible	fluid	flow	in	the	plane,
the	fluid	injected	at	the	origin	at	the	rate	of	 	gallons	per	second	is	absorbed	entirely	by	sinks
located	 at	 integer	points	 (the	details	 are	given	 in	 section	11.8	on	 complex	variables).	Many
such	examples	can	be	found	in	other	fields	of	mathematics,	and	I	hope	more	will	be	written	on
this	in	the	future.
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2

THE	PYTHAGOREAN	THEOREM

2.1	Introduction

Here	 is	 a	 fact	 seemingly	 not	 worth	 mentioning	 for	 its	 triviality:	 Still	 water	 in	 a	 resting
container,	with	no	disturbances,	shall	remain	at	rest.	I	think	it	is	remarkable	that	this	fact	has
the	Pythagorean	theorem	as	a	corollary	(p.	17).	In	addition,	this	seeming	triviality	implies	the
law	 of	 sines	 (p.	 18),	 the	 Archimedian	 buoyancy	 law,	 and	 the	 3D	 area	 version	 of	 the
Pythagorean	theorem	(p.	19).

The	proof	of	the	Pythagorean	theorem,	described	in	section	2.2,	suggested	a	kinematic	proof
of	the	Pythagorean	theorem,	described	in	section	2.6.	The	motion-based	approach	makes	some
other	topics	very	transparent,	including

•	The	fundamental	theorem	of	calculus.
•	The	computational	formula	for	the	determinant.
•	The	expansion	of	the	determinant	in	a	row.

All	these	are	described	in	this	chapter.
Several	more	physical	proofs	of	the	Pythagorean	theorem	are	given	here,	one	using	springs,

and	the	other	using	kinetic	energy.
The	unifying	theme	of	this	chapter	is	the	Pythagorean	theorem,	although	we	do	go	off	on	a

few	short	tangents.

2.2	The	“Fish	Tank”	Proof	of	the	Pythagorean	Theorem

Let	 us	 build	 a	 prism-shaped	 “fish	 tank”	with	 our	 right	 triangle	 as	 the	 base	 (figure	 2.1).	We
mount	 the	 tank	 so	 that	 it	 can	 rotate	 freely	 around	 the	 vertical	 axis	 through	 one	 end	 of	 the
hypotenuse.	Now	let	us	fill	our	fish	tank	with	water.



Figure	2.1.	The	water-filled	fish	tank,	free	to	rotate	around	a	vertical	edge,	has	no	desire	to.

Figure	2.2.	The	Pythagorean	theorem	is	equivalent	to	the	vanishing	of	the	combined	torque	upon	the	tank	around	P.

The	water	pushes	on	the	walls	in	three	competing	directions	as	figure	2.2	shows,	each	force
trying	to	rotate	the	tank	around	P.	Of	course,	the	competition	is	a	draw:	the	tank	has	zero	desire
to	rotate.	Otherwise	we	would	have	had	an	engine	which	uses	no	fuel—a	so-called	perpetual
motion	machine,	forbidden	by	the	law	of	conservation	of	energy.

In	this	case	the	“desire”	is	the	sum	of	the	three	torques	of	the	pressure	forces.	We	note	here1
that	 the	 torque	of	 the	 force	around	a	pivot	point	P	 is	 simply	 the	 force’s	magnitude	 times	 the
distance	from	the	line	of	force	to	the	pivot	point.	The	torque	measures	the	intensity	with	which
the	force	tries	to	rotate	the	object	it’s	applied	to	around	P.

For	convenience,	 let	us	assume	 the	 force	of	pressure	 to	be	1	pound	per	unit	 length	of	 the



wall—we	can	always	achieve	it	by	adjusting	water	depth.	The	three	forces	are	then	a,	b,	and	c;
the	corresponding	levers	are	a/2,	b/2,	and	c/2,	and	the	zero	torque	condition	reads

or	a2	+	b2	=	c2,	giving	us	the	Pythagorean	theorem!

Still	water.	Note	that	we	didn’t	have	to	build	the	fish	tank,	not	even	in	the	thought	experiment;
rather,	 we	 can	 imagine	 the	 prism	 of	 water	 embedded	 in	 a	 larger	 body	 of	 water.	 The
Pythagorean	 theorem	 follows	 as	 before	 from	 the	 fact	 that	 the	 prism	will	 not	 spontaneously
rotate	under	 the	pressure	of	 the	 surrounding	 fluid	on	 its	vertical	 faces.	We	conclude	 that	 the
Pythagorean	theorem	is	a	consequence	of	the	fact	that	still	water	remains	still.

Exercise.	From	a	point	A	outside	a	circle	draw	a	tangent	line	AT	and	a	secant	line	APQ	as
shown	in	figure	2.3.	Prove	that

Hint:	 Consider	 the	 shaded	 curvilinear	 triangle	 APT	 in	 figure	 2.3,	 thought	 of	 as	 a	 rigid
container	filled	with	gas	and	allowed	to	pivot	around	O.

As	explained	 in	section	2.3	 in	a	different	context,	 (2.2)	expresses	 the	fact	 that	 the	shaded
area	 remains	 unchanged	 under	 rotations	 around	 O.	 Similarly,	 the	 Pythagorean	 theorem
expresses	the	fact	that	the	area	of	a	right	triangle	remains	unchanged	as	the	triangle	is	rotated
around	one	of	the	ends	of	the	hypotenuse.

Figure	2.3.	Proving	AP	·	AQ	=	AT2.



2.3	Converting	a	Physical	Argument	into	a	Rigorous	Proof

The	pivotal2	point	of	the	“fish	tank”	proof	of	the	Pythagorean	theorem	was	the	vanishing	of	the
net	 torque	 around	 P	 (figure	 2.1).	 How	 can	 we	 restate	 this	 zero-torque	 idea	 in	 purely
mathematical	terms,	without	appealing	to	physical	concepts?	Here	is	the	answer.

The	physical	 statement	 (2.1)	 of	 zero	 net	 torque	 around	P	 translates	 into	 the	 geometrical
statement	that	the	area	of	the	triangle	does	not	change	when	the	triangle	is	rotated	around	P.3
Here	is	the	proof	of	this	equivalence.

Let	A(θ)	be	 the	area	of	 the	 triangle	 rotated	around	P	 through	 the	angle	θ.	This	area	 is,	of
course,	independent	of	θ:

A′(θ)	=	0,

and	we	claim	that	it	is	this	constancy	of	the	area	that	is	equivalent	to	the	zero-torque	condition
(2.1).	To	show	this	equivalence	it	suffices	to	show	that

Figure	2.4.	The	area	swept	by	the	two	legs	equals	the	area	swept	by	the	hypotenuse.

To	demonstrate	(2.3)	we	rotate	the	triangle	through	a	small	angle	Δθ	around	P.	The	side	a
sweeps	a	sector	of	area	 a2Δθ,	with	a	similar	expression	for	c.	In	fact,	the	area	swept	by	b	is
given	 by	 the	 same	 expression:	 b2Δθ.	 Indeed,	 b	 executes	 two	 motions	 simultaneously:	 (i)
sliding	in	 its	own	direction,	contributing	nothing	to	 the	rate	of	sweeping	of	 the	area,	and	(ii)
rotation	around	its	leading	end.	We	conclude	that	the	area	swept	is	 b2Δθ.	The	total	area	swept
by	all	three	sides	is



Here	the	minus	sign	is	due	to	the	fact	that	the	area	is	“lost”	through	the	hypotenuse.	Dividing	by
Δθ	and	taking	the	limit	as	Δθ	→	0,	we	obtain	(2.3).

Here	are	a	few	other	applications	of	the	idea	of	sweeping:

1.	A	“ring”	proof	of	the	Pythagorean	theorem	described	in	section	2.6.
2.	A	remark	on	the	area	between	the	tracks	of	two	wheels	of	a	bike	(section	6.1).
3.	A	visual	proof	that	the	determinant	 	=	ad	−	bc	equals	 the	area	of	a	parallelogram
generated	by	the	vectors	 a,	c 	and	 b,	d 	(section	2.5).

4.	A	visual	proof	of	the	formula	for	the	row	decomposition	of	a	determinant	(section	2.5).

Figure	2.5.	The	fundamental	theorem	of	calculus:	the	area	changes	at	the	rate	equal	to	the	length	f(x)	of	the	moving	boundary
times	its	speed	(1).

2.4	The	Fundamental	Theorem	of	Calculus

The	 idea	 of	 considering	 the	 areas	 swept	 by	 a	 moving	 segment	 is	 very	 fruitful.	 In	 fact,	 the
fundamental	theorem	of	calculus

is	 an	 example;	 the	 theorem	 says	 that	 a	 segment	 moving	 with	 unit	 speed	 in	 the	 direction
perpendicular	to	itself	sweeps	the	area	at	the	rate	equal	to	the	segment’s	length	(f(x))	times
its	speed	(1).

The	 same	 idea	 applies	 to	 the	 integral	 with	 both	 ends	 variable,	 even	 with	 compound
dependence.	For	example,	we	can	immediately	see	that



by	repeating	the	preceding	italicized	sentence:	the	rate	of	change	of	the	area	equals	the	product
of	the	length	f(g(t))	of	the	moving	front	and	its	velocity	−g′(t).	The	minus	sign	is	due	to	the	fact
that	the	boundary	moves	inward:	the	positive	direction	moves	outward.

We	 could	 allow	 the	 upper	 end	 to	 depend	 on	 time	 as	well,	 leaving	 the	 justification	 as	 an
exercise:

Figure	2.6.	The	segment	moves	while	remaining	parallel	to	itself.	The	area	swept	does	not	depend	on	the	path	of	the	segment.

2.5	The	Determinant	by	Sweeping

The	determinant	 	is,	by	defnition,	the	area	of	the	parallelogram	generated	by	the	vectors	

a,	b 	and	 c,	d .	This	definition	leads	to	the	computational	formula,4	giving	the	value	ad	−	bc.
Here	is	a	kinematic	explanation	of	this	formula,	due	to	Nana	Wang,	using	again	the	fruitful	idea
of	sweeping.

The	area	in	question	is	swept	by	the	vector	 a,	b 	as	it	moves	along	the	other	vector	 c,	d .



Let	us,	 instead,	move	 a,	b 	 in	 two	simpler	motions,	as	 shown	 in	 figure	2.6.	The	area	 swept
during	the	first	move	is	ad,	and	during	the	second	move	−bc;	the	minus	sign	is	due	to	the	fact
that	 the	 segment	 moves	 “backwards.”	 The	 total	 area	 swept	 is	 thus	 ad	 −	 bc.	 It	 remains	 to
observe	that	the	area	swept	does	not	depend	on	the	path	of	the	moving	vector	 a,	b ,	as	long	as
it	moves	parallel	to	itself.	Indeed,	the	rate	of	change	of	the	area	swept	equals	the	length	of	the
segment	times	the	speed	in	the	perpendicular	direction.	Thus	the	area	swept	is	the	length	times
the	 displacement	 in	 the	 perpendicular	 direction.	 In	 particular,	 how	 this	 displacement	 was
achieved	does	not	matter.

Figure	2.7.	The	proof	of	Pythagorean	theorem	by	sweeping.

Problem.	 Give	 a	 similar	 “sweeping”	 explanation	 of	 the	 formula	 of	 expansion	 of	 the
determinant	in	a	row:

Hint:	Move	the	parallelogram	Π	formed	by	the	last	two	row	vectors	in	the	direction	of	the	x
axis	by	a11,	 then	 in	 the	y	direction	by	a12,	and	finally	 in	 the	z	direction	by	a13.	Compare	 the
volume	swept	with	the	volume	swept	by	Π	under	the	“diagonal”	translation	by	 a11,	a12a13 .

2.6	The	Pythagorean	Theorem	by	Rotation

Figure	2.7	shows	a	right	triangle	executing	one	full	turn	around	an	endpoint	of	its	hypotenuse.
The	 hypotenuse	 and	 the	 leg	 adjacent	 to	 the	 pivot	 sweep	 out	 disks,	 while	 the	 remaining	 leg



sweeps	out	a	ring.

We	have

πa2	+	(area	of	the	ring)	=	πc2.

Proving	the	Pythagorean	theorem	amounts	to	showing	that	the	area	of	the	ring	is	πb2.	How
do	we	prove	this	directly,	without	appealing	to	the	theorem?

Here	 is	 a	 heuristic	 argument.	 The	 ring	 is	 swept	 by	 a	moving	 segment	 of	 length	b	 as	 the
segment	 executes	 two	 simultaneous	 motions:	 sliding	 (in	 the	 direction	 of	 the	 segment)	 and
rotating	 around	 the	 trailing	 point	T	 of	 the	 segment.	 The	 key	 observation	 is	 this:	 the	 sliding
motion	does	not	 affect	 the	 rate	 at	which	 the	 segment	 sweeps	 the	area.	 In	 other	words,	 by
subtracting	the	sliding	velocity,	and	thus	making	the	segment	rotate	in	place	around	its	trailing
point,	we	do	not	affect	the	rate	at	which	the	segment	sweeps	area.	This	explains	why	the	area
of	the	ring	equals	the	area	of	the	disk	in	figure	2.7.

2.7	Still	Water	Runs	Deep

A	deceptively	shallow	statement	can	have	deeper	consequences.	Here	is	an	example	of	such	a
statement:	“Barring	external	disturbance,	still	water	in	a	container	will	remain	still.”5	Actually,
the	obvious	statement	implies	the	following	less	obvious	facts:

1.	The	Pythagorean	theorem
2.	Archimedes’	law	of	buoyancy
3.	The	law	of	sines

The	first	of	these	is	essentially	explained	by	the	previous	“fish	tank”	argument;	instead	of	the
fish	tank	we	could	imagine	a	prism	of	water	hanging	in	a	large	body	of	still	water,	as	in	figure
2.8.	 Since	 the	 prism	 is	 in	 equilibrium,	 the	 sum	of	 torques	 (around	 any	 vertical	 edge)	 of	 the
inward	pressures	on	the	vertical	faces	is	zero.	This	zero	torque	condition	is	the	same	as	(2.1),
up	to	a	sign,	that	is,	it	is	the	same	as	the	Pythagorean	theorem.

Figure	2.8.	The	sum	of	torques	on	the	imaginary	prism	of	water	is	zero.



Achimedes’	law.	This	can	be	proven	in	one	stroke,	as	follows.	The	law	states:	the	buoyancy
force	acting	on	a	submerged	body	(say	a	rock)	equals	the	weight	of	the	water	displaced	by
the	body.

Proof.	Imagine	replacing	the	submerged	rock	with	the	identically	shaped	blob	of	water.	This
blob	of	water	will	hover	in	equilibrium,	as	mentioned	above.	The	buoyancy	on	the	water	blob
therefore	 equals	 the	 blob’s	weight.	 But	 the	 rock	 “feels”	 the	 same	 buoyancy	 since	 it	 has	 the
same	shape	as	the	blob.

The	 law	of	sines.	This	 law,	we	 recall,	 states	 that	 for	any	 triangle	 the	 length	of	each	side	 is
proportional	to	the	sine	of	the	opposite	angle:

Proof.	To	prove	this	law	using	hydrostatics,	imagine	a	thin	endless	tube	in	the	form	of	triangle
ΔABC,	 filled	with	water,	 placed	 in	 a	 vertical	 plane	 (figure	 2.9).	Alternatively,	we	 can	 just
imagine	the	triangular	tube	of	water	suspended	in	a	surrounding	body	of	water.

Let	us	position	the	side	AB	horizontally;	the	pressures	at	A	and	B	are	then	equal,	and	pA	−	pC
=	pB	−	pC.	But	the	pressure	differences	are	proportional	to	the	difference	in	depths:	pA	−	pC	=
kb	sin	α	and	pB	−	pC	=	ka	sin	β	where	k	is	the	coefficient	of	proportionality.	We	conclude	that
b	sin	α	=	a	sin	β.	A	similar	argument	shows	that	c	sin	β	=	b	sin	γ.	The	law	of	sines	follows.

Figure	2.9.	A	thin	water-filled	tube	of	triangular	shape	used	in	the	proof	of	the	law	of	sines.



2.8	A	Three-Dimensional	Pythagorean	Theorem

Theorem.	For	any	tetrahedron	bounded	by	three	mutually	orthogonal	planes	and	the	fourth
plane	not	parallel	to	any	of	the	other	three,	one	has

where	a,	b,	and	c	are	the	areas	of	the	faces	on	the	mutually	orthogonal	planes,	and	d	is	the
area	of	the	remaining	face.

A	 physical	 proof.	 Fill	 our	 tetrahedron	 with	 compressed	 gas.	 The	 sum	 of	 all	 the	 internal
pressure	forces	upon	the	pyramid	is	zero:

since	otherwise	our	container	would	accelerate	spontaneously	in	the	direction	of	the	resultant
force,	giving	us	a	free	source	of	energy	in	violation	of	 the	law	of	conservation	of	energy—a
law	which,	to	our	knowledge,	has	so	far	been	enforced	with	100%	compliance.

Since	(Fa	+	Fb)	 	Fc,	the	Pythagorean	theorem	yields

Figure	2.10.	Three-dimensional	version	of	the	Pythagorean	theorem:	the	areas	satisfy	(2.4).

Similarly,

We	conclude



Now	|Fa|	=	pressure	·	area	=	pa;	similarly,	|Fb|	=	pb,	|Fc|	=	pc,	and	|Fd|	=	pd.	Substituting	 into
(2.6)	and	canceling	p2	gives	(2.4).

To	summarize:	the	area	theorem	(2.4)	amounts	to	saying	that	the	pressurized	container	of	the
shape	shown	in	figure	2.10	provides	zero	 thrust!	A	simple	physical	observation	gives	a	neat
mathematical	theorem.

A	mathematical	“cleanup.”	A	skeptic	may	complain	about	the	lack	of	mathematical	rigor	in
getting	to	(2.5).	Indeed,	we	had	appealed	to	the	law	of	conservation	of	energy,	which	had	not
been	given	a	precise	mathematical	formulation.	To	answer	this	complaint,	we	observe:	(2.5)	is
equivalent	to	the	invariance	of	the	volume	of	the	pyramid	under	translations.

Indeed,	(2.5)	is	equivalent	to	saying	that	for	any	vector	r

Fa	·	r	+	Fb	·	r	+	Fc	·	r	=	−Fd	·	r.

But	the	term	Fa	·	r	gives	the	volume	swept	by	the	face	OBC	as	it	is	translated	by	the	vector	r,
with	a	similar	statement	for	the	other	faces.	In	short,	the	last	equation	expresses	the	fact	as	the
pyramid	is	translated	by	r,	the	volume	gained	by	the	faces	a,	b,	c	equals	the	volume	lost	by	the
face	d.

Putting	it	differently,	let	V	=	V(r)	=	V(x,	y,	z)	be	the	volume	of	the	pyramid	translated	by	r	=	
x,	y,	z .	Of	course,	V	is	independent	of	r,	that	is,	partial	derivatives	with	respect	to	each	of	the
three	variables	vanish:

Physically,	the	gradient	vector	 V(r)—the	vector	of	partial	derivatives—is	the	resultant	force
of	internal	pressures	of	gas	at	pressure	p	=	1	on	the	container’s	walls.

2.9	A	Surprising	Equilibrium

Why	does	 the	Pythagorean	 theorem	have	 so	many	different	proofs?	Perhaps	because	 it	 is	 so
basic.	Even	when	we	limit	ourselves	to	physical,	or	physics-inspired	proofs,	there	are	several;
one	 such	proof	was	 given	 in	 section	2.2,	with	 two	more	 to	 come.	 In	 preparation	 for	 one	of
these	proofs	we	 consider	 first	 a	 simple	mechanism	of	 independent	 interest.	 In	 the	 following
section	we	will	use	this	mechanism	to	prove	the	Pythagorean	theorem	(again!).

Problem.6	A	small	ring	C	slides	without	friction	on	a	rigid	semi-circle.	Two	identical	zero-
length	springs7	 CA	 and	CB	 connect	 the	 ring	 to	 the	 diameter’s	 ends.	 Prove:	 the	 ring	 is	 in
equilibrium	in	any	position	on	the	semicircle.



Figure	2.11.	Proof	by	springs.

Proof.	The	ring	is	in	equilibrium	if	the	tangential	components	of	all	forces	acting	on	the	ring
cancel	each	other.	Three	forces	act	on	the	ring:	the	normal	reaction	force	from	the	circle	and
the	two	tension	forces	 	and	 	(we	chose	Hooke’s	constant	k	=	1),	seen	in	figure	2.11.
Only	the	last	two	forces	have	nonzero	tangential	components,	and	we	have	to	show	that	these
two	components	cancel	each	other.	To	that	end	we	just	note	that	the	projections	of	the	two	radii
onto	MN	satisfy

and,	since	OC	 	MN,	these	radii	have	the	same	projections	as	the	two	forces:

The	 projections	 of	 the	 two	 forces	CA	 and	CB	 cancel	 and	 the	 ring	 is	 in	 equilibrium	 (in	 any
position).

2.10	Pythagorean	Theorem	by	Springs

Having	 just	 shown	 that	 the	 ring	 in	 figure	 2.11	 is	 in	 equilibrium,	 we	 thereby	 proved	 the
Pythagorean	 theorem.	 Indeed,	 since	 the	 ring	 is	 in	equilibrium	at	any	point	C	 on	 the	circle,	 it
takes	 zero	 force,	 and	 thus	 zero	work,	 to	 slide	 the	 ring	C	 to	A.	 This	means	 that	 the	 potential
energy	did	not	change	during	sliding,	so	that	the	initial	energy	equals	the	final	energy:



Figure	2.12.	(a)(a)	a2	+	b2	is	independent	of	the	angle	θ;	(b)	the	torques	balance,	since	the	components	of	the	forces	normal	to
AB	are	equal	and	so	are	the	levers.

We	used	the	fact	that	the	potential	energy	of	a	zero-length	spring	of	length	x	is	 x2,	where	k	is	a
constant,	(see	section	A.1).	We	conclude	that	a2	+	b2	=	c2.

2.11	More	Geometry	with	Springs

The	ring-on-the-circle	problem	(section	2.9)	can	be	reinterpreted	in	the	following	way,	equally
surprising,	I	think.	The	device	in	figure	2.12	is	suggested	by	the	sliding	ring	on	a	wire	shown	in
figure	2.11.	The	difference	in	the	present	figure	is	that	I	put	C	in	a	fixed	position	in	the	plane,
while	allowing	the	segment	AB	to	pivot	on	its	midpoint	O.	In	addition,	the	distance	from	C	to	O
is	now	arbitrary.	Two	identical	zero-length	springs	AC	and	BC	compete,	trying	to	rotate	AB	in
opposite	directions.

Problem	A.	Prove	that	in	the	mechanism	described	above,	the	rod	is	in	equilibrium	in	any
orientation.

Problem	B.	Prove	that	for	any	triangle	ΔABC

a2	+	b2	=	2(d2	+	r2),

where	r	=	OA	=	OB	is	half	the	length	of	the	side	AB	and	where	d	=	OC	(see	figure	2.12).

Solutions.	Problem	A:	Let	us	choose	Hooke’s	constant	k	=	1	 for	our	 two	springs.	Then	
and	 	are	the	forces	upon	the	ends	A	and	B	in	figure	2.12.	The	torques8	of	these	two	forces
relative	to	the	pivot	O	have	equal	magnitudes:	indeed,	the	levers	are	equal,	OA	=	OB,	as	are
the	two	forces’	normal	components,	AA′	=	BB′,	in	figure	2.12.	These	torques	are	opposing,	so



that	the	rod	is	in	equilibrium.
Problem	B:	Since	the	rod	is	in	neutral	equilibrium9	zero	work	is	needed	to	aim	the	rod	directly
at	the	point	C.	This	means	that	the	potential	energy	of	the	rod	in	any	position	is	the	same	as	in
this	special	one:

or

a2	+	b2	=	2(d2	+	r2).

2.12	A	Kinetic	Energy	Proof:	Pythagoras	on	Ice

Imagine	 standing	 in	 the	 corner	 of	 a	 perfectly	 frictionless	 “skating	 rink”	 (figure	 2.13).	 Your
shoes	are	perfectly	frictionless.	Pushing	off	of	the	x	axis,	you	start	sliding	with	speed	a	along
the	y	axis.	Your	kinetic	energy	is	ma2/2.	Now	push	off	of	the	y	axis,	acquiring	speed	b	in	the	x
direction,	thus	gaining	extra	kinetic	energy	mb2/2	(during	the	push,	the	friction	with	the	y	axis	is
assumed	to	be	zero).	Your	kinetic	energy	after	these	two	pushes	is10	 .	On	the	other
hand,	your	final	speed	is	the	hypotenuse	c	of	 the	velocity	triangle,	and	your	kinetic	energy	is
therefore	given	by	 .	Thus

or	a2	+	b2	=	c2.



Figure	2.13.	Kinetic	energy	after	two	consecutive	pushes:	

Figure	2.14.	Cutting	the	string	adds	horizontal	speed	b.	Kinetic	energy	mc2	is	acquired	in	two	portions,	first	ma2	and	then	mb2.

2.13	Pythagoras	and	Einstein?

Here	is	a	“cutting	the	string”	proof	of	the	Pythagorean	theorem.	It	is	essentially	the	same	proof
as	the	preceding	one,	just	recast	into	a	different	form.

Let	us	compress	a	spring	between	two	equal	masses	so	that	if	released,	the	masses	will	fly
apart	each	with	speed	b.	We	then	tie	the	two	masses	together	with	a	string	to	keep	the	spring
compressed,	as	shown	in	figure	2.14.

Let	us	throw	the	“loaded”	system	with	speed	a	as	shown	in	figure	2.14,11	and	then,	once	the
system	is	flying,	we	snip	the	rope,	thus	releasing	the	compressed	spring.	The	resulting	speed	c
of	 each	mass	 is	 the	hypotenuse	of	 the	velocity	 triangle	with	 legs	a,	b.	On	 the	 one	 hand,	 the
kinetic	energy	of	both	masses	is	now	 .	But	this	energy	was	acquired	in	two

portions:	first,	 	from	the	initial	push,	and	second,	 	from	the
spring.	Thus

mc2	=	ma2	+	mb2.

Cancellation	of	m	gives	the	Pythagorean	theorem.12

1See	section	A.5	for	full	background.
2This	pun	was	not	originally	intended.



3Here	is	an	example	where	a	trivial-sounding	fact	(the	area	of	the	triangle	doesn’t	change	under	rotations)	hides	something
less	trivial	(the	Pythagorean	theorem.)
4Some	unfortunates,	including	the	author,	have	been	taught	the	latter	formula	as	the	definition	but	not	its	geometrical	meaning.
5This	 is	 again	 a	 special	 case	 of	 the	 law	 of	 conservation	 of	 energy,	 stating	 that	 the	 energy	 cannot	 be	 created.	 The	more

general	the	statement,	the	simpler	it	sounds.
6I	had	stumbled	upon	this	observation	when	thinking	of	the	motion	of	a	large	artificial	satellite.
7By	 the	 definition,	 the	 tension	 of	 a	 zero-length	 spring	 varies	 in	 direct	 proportion	 to	 its	 length.	 In	 particular,	 zero	 tension

corresponds	to	zero	length.	The	potential	energy	of	such	a	spring	is	proportional	to	the	square	of	its	length	(see	section	A.1).
8For	the	background	on	torque	see	section	A.5.
9We	say	that	an	equilibrium	is	neutral	if	any	position	is	an	equilibrium.
10Kinetic	energy	is	a	scalar	and	thus	adds	arithmetically.
11We	assume	no	gravity.
12Our	facetious	reference	to	Einstein	is	due	to	the	fact	that	the	system	has	the	energy	E	=	mc2.



3

MINIMA	AND	MAXIMA

Max/min	 problems	 tend	 to	 be	well	 suited	 for	 the	 physical	 approach.	 The	 reason	 for	 this	 is
perhaps	the	fact	many	physical	systems	find	maxima	or	minima	automatically:	a	pendulum	finds
the	minimum	of	potential	energy;	the	light	from	a	pebble	on	the	bottom	of	the	pool	to	my	retina
chooses	 the	 path	 of	 least	 time;	 a	 soap	 bubble	 chooses	 the	 shape	 of	 least	 volume;	 a	 chain
hanging	by	two	ends	chooses	the	shape	of	lowest	center	of	mass,	and	so	on—the	list	is	endless.

Here	is	a	common	pattern	in	finding	a	physical	solution.	Let	us	say	we	have	to	minimize	a
function.	The	main	step	is	 to	invent	a	mechanical	system	whose	potential	energy	is	 the	given
function.	 The	minimum	 of	 the	 function	 corresponds	 to	 the	minimum	 of	 the	 potential	 energy,
which	in	turn	corresponds	to	the	equilibrium.	The	equilibrium	condition,	when	written	down,
often	already	is	in	the	form	of	a	nice	answer.	In	effect,	we	are	inventing	a	mechanical	“analog
computer”	which	solves	the	problem	by	itself—we	just	need	to	read	off	the	answer.

Here	is	a	schematic	representation	of	the	correspondence	between	calculus	and	mechanics,
for	the	case	of	a	function	of	one	variable	x:

Calculus Physical	interpretation
The	function	f	(x) Potential	energy	P(x)
The	derivative	f′(x) The	force	F(x)	=	−P′(x)
f	(x)	minimal	 	f′(x)	=	0 P(x)	is	minimal	 	F(x)	=	0	(equilibrium)

A	note	on	 the	background.	Precalculus	and	some	very	basic	geometry	 should	be	enough	 to
understand	this	chapter.	Nevertheless,	the	physical	approach	lets	us	solve	quite	a	few	calculus
problems,	even	some	from	multivariable	calculus!

The	 physical	 background	 used	 in	 this	 chapter	 is	 described	 in	 the	 appendix.	 We	 use
mechanical	models	of	mathematical	objects.	These	models	consist	of	idealized	elastic	springs,
ropes,	sliding	rings,	compressed	gas,	and	vacuum.	All	these	imaginary	objects	are	described	in
the	short	appendix,	where	the	concepts	of	equilibrium,	torque,	and	the	centroid	are	explained
as	well.

The	lunch	is	not	quite	free.	Some	of	 the	problems	here	become	one-liners	when	physics	is
employed,	 instead	 of	 being	 one-pagers	 when	 calculus	 is	 used.	 However,	 by	 the	 law	 of
conservation	of	difficulty,	 this	does	not	come	free.	The	difficulty	 is	shifted	from	making	dull
algebraic	manipulations	to	that	of	inventing	the	right	mechanical	system.



Some	highlights.	The	topics	of	this	chapter	include

1.	An	optical	property	of	ellipses.
2.	The	line	of	best	fit	using	springs.
3.	Pyramids	of	least	volume	and	centroids.
4.	Maximal	and	minimal	area	problems.
5.	Minimal	surface	area	problems.
6.	The	inscribed	angle	theorem	using	mechanics.
7.	Saving	a	drowning	victim	using	weights.

Many	if	not	all	of	these	are	calculus	problems,	but	we	solve	them	here	without	calculus.

3.1	The	Optical	Property	of	Ellipses

The	ellipse	is	a	kind	of	a	“circle	with	two	centers”:	one	ties	a	string	between	two	nails	(F1	and
F2)	and	moves	the	pencil	to	keep	the	string	taut;	the	pencil	will	trace	an	ellipse.	To	be	precise,
the	ellipse	consists	of	all	points	 for	each	of	which	 the	 sum	of	distances	 to	 two	given	points
(called	the	foci)	is	a	given	constant.

Figure	3.1.	The	definition	of	the	ellipse:	PF1	+	PF2	=	constant.

An	ellipse	has	 this	 remarkable	property:	a	 ray	of	 light	emitted	 from	one	 focus	will,	upon
reflection	from	the	ellipse,	pass	 through	 the	other	 focus—this	 is	 true	for	any	direction	of	 the
emitted	ray.	Playing	laser	tag	in	an	elliptical	room	with	reflecting	wall	would	be	a	lot	of	fun.

Alternatively,	 imagine	playing	 squash	 in	 an	 elliptical	 room;	 standing	 at	 one	 focus	F1	 and



throwing	the	ball,	I	will	hit	the	person	standing	at	the	other	focus	F2	no	matter	how	bad	my	aim
is	(assuming	the	ball	bounces	so	that	the	incidence	and	reflection	angles	are	equal).	Of	course,
if	the	person	at	F2	ducks,	then	the	ball	will	pass	F2	and	will	hit	me	after	one	more	bounce	off
the	wall.

What	 is	 the	 explanation	 of	 this	 remarkable	 property?	 Here	 is	 a	 precise	 geometrical
statement	of	the	problem,	followed	by	the	answer.

Problem.	Let	P	be	a	point	on	an	ellipse	with	the	foci	F1	and	F2,	and	let	MN	be	the	tangent	at
P,	figure	3.2a.	Prove	that

Solution.	How	might	we	prove	this	property?	A	brute	force	solution	is	to	(i)	write	the	equation
of	an	ellipse,	(ii)	compute	the	two	angles	in	question,	and	(iii)	verify	that	the	expressions	are
equal.	This	approach	can	lead	to	a	finger-breaking	calculation	and,	to	add	insult	to	injury,	little
understanding	would	 be	 gained.	 Instead,	 a	 direct	 approach	 shown	 here	 is	much	 shorter	 and
shows	“what’s	going	on.”

Figure	3.2.	(a)	The	optical	property;	(b)	a	mechanical	proof.

Let	 us	 hang	 a	 string	 from	 two	 nails	F1,	F2	 driven	 into	 a	 board	 (figure	 3.2(b)),	 letting	 a
weighted	pulley	roll	on	the	string	as	shown.	If	we	move	the	pulley	left	or	right,	while	keeping
the	string	taut,	the	pulley	will	trace	out	an	ellipse.	By	orienting	the	board	appropriately,	we	can
arrange	for	an	arbitrary	point	P	on	the	ellipse	to	be	the	lowest	point	on	the	ellipse,	as	in	figure
3.2(b),	so	that	the	tangent	line	becomes	MN	horizontal.	But	the	string	forms	equal	angles	with
the	horizontal.	Indeed,	the	three	forces	acting	on	the	pulley	(the	two	tensions	and	the	weight)
are	in	balance;	in	particular,	the	net	horizontal	force	is	zero:

T1	cos	α1	−	T2	cos	α2	=	0,

where	T1,	T2	are	the	tensions	in	the	two	straight	parts	of	the	string.	But	T1	=	T2	since	the	pulley



is	frictionless,1	and	we	get	α1	=	α2.

Heron’s	principle.	Heron’s	principle	states	that	light	takes	the	shortest	path.	By	the	definition
of	the	ellipse,	every	path	F1PF2	has	the	same	length;	it	sounds	silly	but	is	true	that	every	such
path	is	a	shortest	way	from	F1	to	the	ellipse	to	F2.	Thus	F1PF2	 is	a	path	of	some	ray.	On	the
other	 hand,	we	 showed	 that	 F1	PM	 =	 F2	PM.	 In	 other	words,	we	 showed	 that	Heron’s
principle	is	consistent	with	the	equality	of	the	angles	of	incidence	and	reflection.

Figure	3.3.	The	ring	is	in	equilibrium,	hence	the	angles	are	equal.

3.2	More	about	the	Optical	Property

Here	 is	a	 slightly	different	mechanical	proof	of	 the	optical	property.	Consider	a	 ring	sliding
frictionlessly	along	the	ellipse,	and	use	two	constant	tension	T	=	1	springs2	to	attach	the	ring	to
each	of	 the	foci.	The	potential	energy	of	our	mechanical	system	equals	 the	total	 length	of	 the
springs,	which,	by	the	definition	of	the	ellipse,	is	constant.	The	ring	is	therefore	in	equilibrium
at	 any	 location,	 and	 the	 tangential	 components	 of	 the	 forces	 upon	 the	 ring	 are	 therefore	 in
balance:	T	cos	α1	=	T	cos	α2,	implying	α1	=	α2.

3.3	Linear	Regression	(The	Best	Fit)	via	Springs

Imagine	a	collection	of	data	points	(xi,	yi)	in	the	plane.	We	are	asked	to	find	the	straight	line	y	=
ax	+	b	 that	best	fits	 this	set	of	data.	What	does	“best”	mean?	To	answer	this,	for	each	xi	we
think	of	y	=	axi	+	b	as	 the	predicted	value,	while	yi	 is	 the	observed	or	measured	value.	The
mismatch	between	these	two	values	is	yi	−	(axi	+	b),	called	the	error	(figure	3.4).	“Best	line”
here	 means	 the	 line	 for	 which	 the	 sum	 of	 squares	 of	 the	 errors	 is	 minimal.	 The	 precise



formulation	of	the	problem	of	best	fit,	also	called	the	problem	of	linear	regression,	follows.

Figure	3.4.	Which	line	minimizes	the	sum	of	errors	(3.1)?

Problem.	Given	N	data	points	(xk,	yk)	in	the	plane,	find	the	straight	line	y	=	ax	+	b	which
fits	these	data	best	in	the	sense	of	minimizing	the	sum	of	squares	of	errors

The	unknowns	in	this	problem	are	the	slope	a	and	the	intercept	b	of	the	“best”	straight	line.
The	standard	method	to	find	the	minimum	of	(3.1)	is	to	set	the	partial	derivatives	with	respect
to	a	and	b	to	zero.	Here	is	a	mechanical	shortcut	to	the	answer.

Solution.	The	unknown	straight	line	is	to	be	imagined	as	a	rigid	rod	(figure	3.5).	Let	us	pass
the	rod	through	frictionless	sleeves	constrained	to	vertical	lines	x	=	xi	by	frictionless	guides.
Each	sleeve	is	connected	to	a	nail	(hammered	into	a	data	point)	by	a	zero-length	spring.3	Let	us
take	 Hooke’s	 constant	 to	 equal	 2,	 so	 that	 the	 potential	 energy	 of	 each	 spring	 is	 simply	 the
square	of	its	length.	The	sum	(3.1)	has	now	acquired	a	physical	meaning	of	potential	energy!



Figure	3.5.	Sum	of	 squares	=	potential	energy	 (3.1)	 is	minimized	when	 the	equilibrium	conditions	 (3.2)	on	 forces	and	 torques
hold.

If	 the	 sum	 of	 squares	 is	 minimal,	 then	 the	 potential	 energy	 of	 our	 mechanical	 system	 is
minimal,	and	consequently	 the	 rod	 is	 in	equilibrium.	The	only	 forces	 the	 rod	“feels”	are	 the
normal	reactions	Fi	from	the	sleeves;	the	sum	of	these	forces	vanishes,	as	does	the	sum	of	their
torques4	relative	to	the	point	of	intercept	A:

where	di	is	the	distance	from	the	intercept	to	the	sleeve.	Note	that	di	cos	α	=	xi.	Now	to	get	an
expression	 for	Fi,	 consider	 the	 balance	 of	 forces	 upon	 the	 sleeve.	 The	 sleeve	 feels	 (i)	 the
reaction	force	−Fi	from	the	rod,	(ii)	the	pull	of	the	spring,	yi	−	(axi	+	b),	and	(iii)	the	reaction
from	the	guide	in	the	x	direction.	Only	two	of	these	forces	have	nonzero	y	components,	and	they
are	 in	balance:	Fi	cos	α	=	yi	 −	 (axi	 +	b).	Using	 these	 expressions	 for	di	 and	Fi	 in	 (3.2)	we
obtain

This	is	a	system	of	two	equations	with	two	unknowns	a	and	b	which,	when	solved,	produces
the	“best”	slope	and	intercept.

Note	that	the	same	result	(3.3)	can	be	obtained	directly	by	setting	partial	derivatives	of	the
error	in	(3.1)	to	zero:



and

Now	we	have	a	physical	interpretation	of	these	conditions:	the	first	expresses	the	vanishing	of
the	net	force	on	the	rod,	while	the	second	expresses	the	vanishing	of	the	torque	relative	to	the
point	of	intercept	A.

3.4	The	Polygon	of	Least	Area

The	 following	 is	 a	good	example	where	 a	physical	 approach	works	very	well,	 leading	 to	 a
very	quick	solution.	This	problem	represents	a	whole	class	of	similar	problems.

Theorem.	Consider	 an	 n-sided	 polygon	 P	 of	 least	 possible	 area	 circumscribed	 around	 a
given	closed	convex	curve5	K.	Each	tangency	point	of	K	with	a	side	of	P	is	the	midpoint	of
that	side.

Proof.	The	figure	shows	three	straight	 lines	enclosing	the	curve	K,	with	a	vacuum	inside	the
triangle	and	with	gas	of	pressure	p	=	1	outside	pressing	on	the	lines	(impenetrable	by	the	gas).
The	 obstacle	 K	 prevents	 the	 triangle	 from	 collapsing	 to	 a	 point.	 Speaking	 intuitively,	 the
triangle	 tries	 to	 do	 the	 “next	 best	 thing”	 to	 collapsing:	 it	 tries	 to	 minimize	 its	 area.	 More
precisely,	let	the	rods	form	a	triangle	of	least	area	A;	the	rods	are	not	connected	at	the	vertices.
I	claim	that	each	rod	is	then	in	equilibrium.	Indeed,	the	potential	energy	of	our	system	equals6
the	area	of	the	vacuum	times	the	pressure	p,	so	that

Figure	3.6.	The	three	rods	enclosing	a	vacuum	bubble	are	pressed	inward	against	the	curve	K	by	the	outside	gas.



Figure	3.7.	If	a	force	uniformly	distributed	over	a	segment	is	balanced	by	a	force	applied	at	a	segment’s	point,	then	that	point	is
the	midpoint.

minimal	area	≡	minimal	potential	energy	≡	equilibrium.

Since	 each	 rod	 is	 in	 equilibrium,	 the	 outward	 pressure	 on	 the	 rod	 at	 the	 point	 of	 contact
balances	the	inward	pressure	of	the	gas.	This	implies	(see	figure	3.7)	that	the	point	pressure	is
applied	at	the	midpoint;	otherwise	the	torque	of	all	the	forces	upon	the	rod	around	the	tangency
point	will	be	nonzero.	Simply	speaking,	the	rod	would	have	rotated	if	the	contact	point	were
not	the	midpoint.

Figure	3.8.	If	the	tangent	plane	minimizes	the	volume	of	the	pyramid,	then	the	point	of	tangency	is	the	centroid	of	ΔABC.

3.5	The	Pyramid	of	Least	Volume

Problem.	Of	all	planes	tangent	to	the	ellipsoid	x2/a2	+	y2/b2	+	z2/c2	=	1,	one	of	them	cuts	the



pyramid	of	least	possible	volume	from	the	first	octant	x	≥	0,	y	≥	0,	z	≥	0.	Show	that	the	point
of	tangency	of	that	plane	is	the	centroid7	of	the	face	ABC	(figure	3.8).

Solution	by	physics.	Let	us	imagine	the	tangent	plane	separating	the	vacuum	inside	the	pyramid
from	the	air	outside	in	the	first	octant.	The	air	presses	only	on	that	part	of	the	plane	which	is	in
the	 first	 octant.	 The	 plane	 passes	 the	 coordinate	 planes	 without	 resistance,	 in	 our	 thought
experiment.	The	air	pushes	the	plane	against	the	rigid	ellipsoid,	trying	to	“mash”	the	volume	of
the	 pyramid	 to	 a	 minimum.	 With	 the	 minimal	 volume	 the	 plane	 will	 be	 in	 equilibrium—
intuitively,	 any	 motion	 which	 expands	 the	 vacuum	 “bubble”	 would	 require	 effort.	 More
precisely,	 the	 potential	 energy	 of	 the	 system	 is	 proportional	 to	 the	 volume	 of	 the	 vacuum
(section	 A.4),	 so	 that	 minimal	 volume	 implies	 minimal	 energy,	 which	 in	 turn	 implies	 an
equilibrium	for	the	rolling	plane.	But	this	is	the	balance	between	the	uniformly	distributed	air
pressure	on	ΔABC	from	the	outside	and	a	point	pressure	from	the	ellipsoid	on	the	other.	By	the
definition,	 this	 means	 that	 the	 contact	 point	 is	 the	 centroid	 of	 the	 triangle	 ΔABC.	 The
centroid	of	a	triangle	is	the	point	of	intersection	of	its	medians,	as	explained	in	section	3.15.

Just	for	comparison,	here	is	a	conventional	solution.

Solution	by	calculus	(not	necessarily	to	be	read,	but	for	the	length	comparison).	We	start
by	 expressing	 the	 volume	 of	 the	 pyramid	 in	 terms	 of	 the	 point	 of	 tangency	 (x0,	 y0,	 z0).	 The
normal	vector	to	the	ellipsoid	at	this	point	is

and	the	equation	of	the	tangent	plane	is

(r	−	r0)	·	N	=	0,

where	r0	=	 x0,	y0,	z0 ,	or

With,	 ,	the	equation	of	the	tangent	plane	simplifies	to

We	compute	the	x	intercept	X	by	setting	y	=	z	=	0,	and	similarly	for	the	other	two	intercepts:



The	volume	of	the	pyramid	is	now	expressed	in	terms	of	the	point	of	tangency:

We	have	to	minimize	V,	that	is,	to	maximize	x0y0z0	≡	f(x0,	y0,	z0)	subject	to	the	constraint

For	 the	minimality	 of	 f	we	must	 have	 f	 =	λ g,	 where	 λ	 is	 the	 Lagrange	multiplier;	more
explicitly,	this	gives

Multiplying	the	first	equation	by	x0,	 the	second	by	y0,	and	the	third	by	z0	we	make	all	 the
left-hand	sides	equal	to	each	other.	The	resulting	right-hand	sides	are	therefore	equal	as	well:

Finally,	from	g(x0,	y0,	z0)	=	1	we	conclude	that



and

Figure	 3.9.	 If	 the	 volume	 of	 a	 pyramid	 circumscribed	 around	 a	 convex	 body	 is	 minimal,	 then	 the	 face’s	 centroids	 are	 the
tangency	points.

We	observe	that	x0	=	 	X;	similarly,	y0	=	 	Y	and	z0	=	 	Z.	In	other	words,

that	is,	the	tangency	point	is	indeed	the	centroid	of	the	triangle	ABC.

3.6	A	Theorem	on	Centroids

This	result	has	been	known	for	some	time	(see	[D]).	This	problem	is	a	generalization	of	 the
preceding	one.	I	am	stating	it	here	because	this	generalization	is	so	elegant	it	deserves	its	own
space.

Theorem.	Let	K	be	a	convex	body	in	 3,	and	let	ABCD	be	a	tetrahedron	(i.e.,	a	triangular
pyramid)	of	 least	 possible	 volume	 containing	K.	 Then	 the	 point	 of	 tangency	 of	 each	 face
with	K	is	that	face’s	centroid.

Proof.	We	imagine	four	planes	enclosing	K	and	bounding	a	pyramid-shaped	bubble	of	vacuum.
The	planes	can	pass	through	each	other	without	interaction,	but	they	cannot	penetrate	K.	The	air
pressure	outside	the	bubble	of	vacuum	forces	the	planes	to	press	against	K.	The	volume	of	the



vacuum	 pyramid	 is	 in	 direct	 proportion	 to	 the	 potential	 energy.8	 Hence	 if	 the	 pyramid	 has
minimal	 volume,	 then	 the	 potential	 energy	will	 be	minimal,	 and	 hence	 all	 planes	will	 be	 in
equilibrium.	Thus	the	outward	point	pressure	on	each	face	at	 the	tangency	point	balances	the
uniformly	distributed	 inward	pressure.	This	 implies	 that	 the	 tangency	point	 is	 the	centroid	of
the	 face.	 Indeed,	 we	 can	 think	 of	 the	 inward	 pressure	 as	 gravitational	 force,	 uniformly
distributed	over	the	triangle,	and	then	the	tangency	point	is	the	point	of	balance—the	centroid!

3.7	An	Isoperimetric	Problem

Here	is	a	nonstandard	solution	of	a	standard	calculus	problem.	As	a	side	benefit,	this	solution
actually	answers	many	more	questions	than	just	this	one,	as	shown	in	the	following	section.

Problem.	Find	 the	dimensions	of	a	 circle	and	a	 square	of	given	combined	perimeter	with
smallest	combined	area.

Answer.	x	=	d:	the	circle	is	inscribable	in	the	square.

Solution.	 Our	 mechanical	 system	 consists	 of	 a	 rope	 forming	 a	 loop;	 part	 of	 this	 loop	 is
wrapped	around	a	square	and	part	around	a	circle,	with	a	neck	passing	through	a	tube	as	shown
in	figure	3.11.

On	one	side	of	the	tube,	the	rope	is	kept	in	a	square	shape	by	a	constraining	mechanism	as
shown	in	figure	3.11.

Imagine	now	gas	enclosed	by	the	loop	as	shown	in	figure	3.11.	The	gas	tries	to	expand	but
cannot	do	so	indefinitely	because	the	rope	is	inextensible.	The	potential	energy	of	the	gas	is	a
decreasing	function	of	the	area.9	The	minimal	area	therefore	corresponds	to	maximal	potential
energy	and	thus	to	an	equilibrium10	of	the	system.

Figure	3.10.	Minimize	the	area	given	the	combined	perimeter	L.



Figure	3.11.	The	two	containers	try	to	expand	against	the	rope’s	tension.

Therefore	 (and	 this	 is	 the	key	point),	 the	 tension	of	 the	rope	 is	 the	same	everywhere	 in	 the
rope;	in	particular	in	the	square	and	in	the	circular	parts:

In	the	next	paragraph	I	will	show	that	2T1	=	px	and	2T2	=	pd,	and	thus	x	=	d:	the	square’s	side
equals	the	circle’s	diameter,	as	claimed.

The	 tension	 of	 the	 rope.	 First	 consider	 a	 square	 container	 enclosing	 compressed	 two-
dimensional	gas	with	pressure	p.	Let	T1	denote	the	tension	of	the	side	of	the	square.11	Figure
3.12	 shows	 the	 force	 px	 of	 the	 gas	 pushing	 a	 side	 of	 the	 square	 outward,	 balancing	 the
combined	force	2T1	of	the	tension	of	the	rope.

Figure	3.12.	(a)	The	gas	pushes	the	right	side	of	the	square	outward	to	the	right	(px);	the	neighboring	sides	pull	that	side	with
the	combined	force	2T1	to	the	left.	(b)	The	right	semidisk	feels	pressure	on	its	diameter,	and	the	opposing	pull	by	the	tension	of
the	rope.

	
The	force	balance	gives



Similarly	for	the	circle,	we	consider	the	force	balance	on	a	semidisk:	the	diameter	is	pushed	to
the	right,	and	the	rope	is	pulled	left;	the	balance	yields

Using	T1	=	T2	we	conclude:

x	=	d;

this	solves	the	problem.	A	very	compact	answer!
Just	for	comparison	with	a	physical	solution,	here	is	a	conventional	one.

A	conventional	solution.	The	combined	perimeter	is	fixed:

4x	+	πd	=	L,

so	that

The	combined	area	is	therefore

Differentiating	by	x,	we	get

From	A′(x)	=	0	we	obtain

or



Substituting	into	(3.9)	and	simplifying	we	obtain

In	particular,	x	=	d.
The	mechanical	approach	gives	a	direct	physical	meaning	to	A′(x)	=	0—namely,	the	tension

of	the	rope	is	the	same	throughout.	Moreover,	a	curious	feature	of	the	physical	approach	is	that
we	never	had	to	write	the	expression	for	A(x)	(the	very	quantity	we	are	minimizing),	and	never
had	to	differentiate	(although	one	could	argue	that	by	writing	the	condition	T1	=	T2	we	actually
differentiated,	just	in	different	terms).	With	the	physical	approach	we	go	almost	directly	to	the
answer,	once	the	mechanical	model	has	been	set	up!

The	next	three	examples	show	how	easy	it	is	to	solve	related	problems	once	the	mechanical
model	has	been	invented.

Problem.	 Find	 the	 dimensions	 of	 a	 rectangle	 and	 an	 equilateral	 triangle	 of	 a	 given
combined	perimeter	and	of	smallest	combined	area.

Problem.	Find	the	dimensions	of	a	regular	n-gon	and	a	regular	m-gon	of	a	given	combined
perimeter	and	of	smallest	combined	area.

Problem.	 A	 circle,	 a	 square,	 and	 an	 equilateral	 triangle	 have	 a	 prescribed	 combined
perimeter.	Find	the	relative	dimensions	of	the	three	figures	which	minimize	the	total	area.

Solution.	We	give	a	quick	solution	to	the	third	problem.	Reasoning	just	as	above,	we	conclude
that	 the	minimal	area	condition,	 that	 is,	 the	equilibrium	condition,	 requires	 the	 tension	of	 the
boundary	rope	to	be	the	same	at	each	of	the	shapes:

By	picking	 the	gas	pressure	p	 =	1,	we	obtain	 the	 following	 tensions	 from	 the	 force	balance
equations:

where	x	is	the	diameter	of	the	circle,	y	is	the	side	of	the	square,	and	z	is	the	side	of	the	triangle.
The	derivation	for	the	triangle	is	shown	in	figure	3.13;	for	the	circle	and	the	square	it	was	done
on	page	41.	Equality	of	tensions	(3.10)	gives	two	equations



which	specify	the	desired	proportions	of	the	three	sizes.
To	 solve	 this	 problem	by	 calculus,	we	would	have	 to	minimize	 the	 area	 as	 a	 function	of

three	variables	with	a	constraint—a	subject	usually	covered	in	multivariable	calculus.

3.8	The	Cheapest	Can

Every	 calculus	 student	 is	 exposed	 to	 a	 set	 of	 dreaded	 “can”	 problems	 in	 which	 the
manufacturer	 wants	 to	 save	 money	 by	 producing	 cans	 of	 most	 efficient	 proportions.	 In	 this
section	I	describe	a	physical	solution	of	such	a	problem;	in	 the	next	section	I	show	how	this
solution	can	be	adapted	to	a	wider	class	of	problems.

Figure	3.13.	Balancing	the	forces	on	the	corner	bracket	gives	2T	cos	30°	=	2(pz/2)	cos	60°,	or	 	if	p	=	1.

Problem.	What	 are	 the	 proportions	 of	 a	 cylindrical	 can	 of	 minimal	 total	 surface	 area
containing	a	given	volume?



Solution.	Let	us	imagine	a	cylindrical	can	constructed	so	that	it	can	telescope	freely	so	as	to
change	both	 its	height	 and	 its	 radius.	One	 should	 imagine	a	mechanism	built	 as	 suggested	 in
figure	 3.11	 in	 the	 previous	 problem.	 Let	 us	 now	 fill	 the	 can	 with	 water	 of	 volume	V,	 and
enclose	it	in	a	film	of	constant	surface	tension12	σ.	One	can	imagine	soap	film	that	doesn’t	burst
and	that	slides	without	friction	along	anything	it	touches.

Figure	3.14.	The	balance	between	the	surface	tension	and	the	pressure:	(a)	the	top	of	the	cylinder	and	(b)	the	half-cylinder.

The	potential	energy	E	of	the	film	whose	surface	tension	is	a	constant	σ	 is	proportional	to
the	 area:	E	 =	 σ	 A	 (see	 section	 A.2).	 Thus,	 the	minimal-area	 shape	 is	 also	 the	 least-energy
shape,	 and	 hence	 an	 equilibrium	 shape.	 In	 particular,	 the	 downward	 pull	 on	 the	 can’s	 top
(figure	3.14),	acting	along	the	circle,	balances	the	upward	pressure	of	the	enclosed	water	upon
the	top:

Moreover,	 the	 half-cylinder	 (the	 skin	 +	 the	water)	 shown	 in	 figure	3.14	 is	 pulled	 by	 the
surface	tension	by	the	adjacent	film	and	is	pushed	by	the	fluid	upon	the	rectangular	face:

σ	·	(4r	+	2h)	=	p	·	2rh.

Dividing	this	equation	by	(3.11)	and	simplifying,	we	obtain

h	=	2r.

In	other	words,	the	“best”	cylinder	is	the	one	whose	axial	cross	section	is	a	square.



3.9	The	Cheapest	Pot

Can	mechanics	handle	a	generalization	of	the	“cheapest	can”	problem,	where	the	costs	of	the
can’s	top,	sides,	and	bottom	differ	from	each	other?	For	instance,	what	are	the	dimensions	of
the	cheapest	 topless	can?	With	 the	addition	of	 just	one	sentence,	 the	solution	of	 the	previous
problem	carries	over	almost	verbatim.	Here	are	the	details.

Problem.	The	top,	the	sides,	and	the	bottom	of	a	cylindrical	can	are	to	be	made	of	different
materials	with	respective	costs	of	a,	b,	and	c	cents	per	unit	area.	Find	the	proportions	of	the
cheapest	can	of	fixed	volume.

Solution.

The	 mechanical	 device.	 Just	 as	 in	 the	 preceding	 problem,	 we	 start	 with	 a	 telescoping
cylinder-shaped	shell	whose	radius	and	height	can	be	changed	freely.	Let	us	fill	this	cylinder
with	water.	Now,	however,	we	will	use	three	different	films13	with	surface	tensions	a,	b,	and	c
equal	 to	 the	 respective	 costs.	We	 stretch	 a	 patch	of	 film	with	 surface	 tension	a	 and	 glue	 its
edges	to	the	top	circle	of	the	cylinder,	so	that	the	film	lies	along	the	top	disk.	We	next	wrap	a
film	of	constant	tension	b	around	the	wall	of	the	can,	gluing	it	to	the	top	and	the	bottom	circles.
The	 film	will	 try	 to	 squeeze	 the	 side	 of	 the	 cylinder	 and	will	 also	 pull	 the	 top	 and	 the	 the
bottom	circles	toward	each	other.	Finally,	we	repeat	for	the	bottom	disk	what	we	did	for	the
top,	using	the	film	c.

Finishing	up.	The	three	films	try	to	squeeze	the	can.	The	total	cost	is	the	weighted	sum	of	the
areas	of	the	top,	side,	and	bottom:	πr2	·	a	+	2πrh	·	b	+	πr2	·	c,	which	is	precisely	the	potential
energy	of	our	mechanical	system;14	the	cheapest	can	therefore	is	in	equilibrium.	In	particular,
the	top	of	 the	can	is	pulled	down	by	the	film	hugging	the	side,	and	pushed	up	by	the	internal
pressure	of	the	water	(figure	3.15);	these	two	forces	are	in	balance:



Figure	3.15.	Minimizing	cost	with	different	materials	for	the	top,	sides,	and	bottom.

b	·	2πr	=	p	·	πr2.

The	half-cylinder	in	figure	3.15	is	pulled	by	the	surface	tension	in	one	direction	and	is	pushed
by	the	pressure	p	applied	over	the	rectangular	cross	section	2r	×	h	 in	the	opposite	direction;
these	forces	are	in	balance	as	well:

a	·	2r	+	b	·	2h	+	c	·	2r	=	p	·	(2rh).

Dividing	this	equation	by	the	preceding	one	and	canceling	terms	we	obtain	the	answer:

For	a	topless	can	made	of	uniform	material	where	a	=	0,	b	=	c,	this	gives	h	=	r.	For	the	case	a
=	b	=	c	the	above	formula	gives	h	=	2r,	in	agreement	with	the	result	of	the	preceding	problem.

3.10	The	Best	Spot	in	a	Drive-In	Theater

Problem.	From	where	 can	one	 see	 the	movie	 screen	at	 the	 largest	angle?	More	precisely,
given	a	vertical	segment	AB	(the	screen)	and	a	horizontal	line	MN	not	intersecting	AB,	find
the	point	P	on	MN	such	that	 APB	is	maximal.

Figure	3.16.	The	hinge	P	slides	freely	along	MN.	The	rays	PA	and	PB	slide	freely	 through	the	sleeves	at	A	and	B.	When	 the
angle	is	maximal	the	system	is	in	equilibrium.	Hence	the	three	forces	acting	upon	the	“jaw”	APB	are	concurrent.



The	 mechanical	 “computer.”	 Consider	 a	 “jaw”—two	 rods	 connected	 by	 a	 hinge	 with	 a
spring	which	tries	to	spread	the	rods	apart.	The	rods	are	passed	through	the	sleeves	A	and	B
(one	at	the	top	and	the	other	at	the	bottom	of	the	screen)	so	that	they	can	slide	through	without
friction.	The	jaw’s	apex	P	is	welded	to	a	small	ring	slipped	around	MN	and	sliding	along	MN
without	friction.

Solution.

An	 implicit	 answer.	 The	 longer	 the	 spring—that	 is,	 the	 larger	 the	 angle	APB—the	 less	 the
potential	energy	is.	The	maximal	angle	therefore	corresponds	to	the	minimal	potential	energy,
that	is,	to	the	equilibrium	of	our	system.	But	the	jaw	APB	feels	precisely	three	forces:	FP,	FA,
and	FB;	each	force	is	perpendicular	to	the	corresponding	line,	as	shown	in	figure	3.16,	since
all	 contacts	 are	 frictionless.	 Since	 these	 forces	 have	 zero	 torque,	 their	 lines	 are	 concurrent,
according	 to	 the	 lemma	 on	 concurrent	 forces	 in	 section	A.6.	Consequently,	 for	 the	 largest
possible	angle	APB	the	three	perpendiculars	to	the	lines	MN,	PA,	and	PB	at	the	points	P,	A,
and	B	are	concurrent.	We	found	a	characteristic	property	of	the	desired	configuration	and	thus
have	solved	the	problem,	at	least	implicitly.

Figure	3.17.	The	optimal	distance	 .

A	constructive	answer.	To	make	the	solution	more	explicit,	note	that	PA	 	AC	and	PB	 	BC
imply	that	A	and	B	 lie	on	 the	circle	with	 the	diameter	PC.	This	circle	 is	also	 tangent	 to	MN
since	PC	 	MN.	Thus	the	optimal	point	P	is	the	tangency	point	between	the	line	MN	and	a
circle	 passing	 through	 A	 and	 B.	 There	 is	 precisely	 one	 such	 circle.	 The	 circle	 is	 easy	 to
construct	explicitly:	 its	center	 is	at	 the	 intersection	of	 the	perpendicular	bisector	of	AB	 with



vertical	line	through	P.
The	best	distance	is	the	geometric	mean	of	the	heights,	 ,	where	a	and	b	are	the

heights	of	A	and	B.	Indeed,	referring	to	figure	3.17,	we	have

where

and

Substituting	the	last	two	expressions	into	the	first,	we	obtain

The	best	spot	at	a	drive-in	is	given	by	the	geometric	mean	of	the	top	and	the	bottom	heights	of
the	screen!

3.11	The	Inscribed	Angle

Theorem.	An	inscribed	angle	in	a	circle	depends	only	on	the	subtended	arc	and	not	on	the
location	of	the	angle’s	vertex.

Proof.

The	mechanical	device.	For	the	proof,	let	us	use	the	“jaw”	(used	in	section	3.10)	formed	by
two	 rods	 joined	by	a	hinge	P	with	 a	 compressed	 spring	 trying	 to	 spread	 the	 rods	 apart.	We
constrain	the	hinge	P	to	the	circle,	free	to	slide	without	friction.	Each	rod	is	slipped	through	a
frictionless	 freely	rotating	sleeve	attached	at	 the	ends	A	and	B	of	 the	given	arc,	as	 shown	 in
figure	3.18.
I	claim	that	 the	system	is	 in	equilibrium	for	any	 location	of	P	on	 the	circle.	To	 that	end

consider	 first	 the	 force	 on	 one	 rod	 (say,	 PB)	when	 P	 is	 held	 fixed	 artificially.	 The	 rod	 is
subject	to	the	torque	T	around	P	and	to	the	torque	FB	 ·	PB	due	to	the	reaction	force	FB	at	the



sleeve.	The	balance	of	torques	around	P	gives	T	=	FB	·	PB,	which	determines	the	value	FB	=
T/PB.	 Now	 let	 F	 be	 the	 tangential	 component	 of	 the	 force	 at	 P	 applied	 to	 the	 rod.	 This
component	balances	the	parallel	to	it	component	of	the	force	at	B	(see	figure	3.18(b)):

Figure	3.18.	(a)	The	“analog	computer.”	(b)	Computing	the	force	F	necessary	to	keep	P	fixed.

We	found	that	the	tangent	force	F	on	the	rod	does	not	depend	on	the	position	of	the	rod.	This
means	 that	 the	 two	 rods	push	at	 the	hinge	at	P	 in	opposite	directions	with	 equal	 forces.	We
conclude	that	the	hinge	P	is	in	equilibrium,	as	claimed.

3.12	Fermat’s	Principle	and	Snell’s	Law

A	 quick	 summary.	 Fermat’s	 principle	 states	 that	 the	 light	 traveling	 between	 two	 points
“chooses”	 the	 path	 of	 least	 time—at	 least,	 if	 the	 two	 points	 are	 sufficiently	 close	 to	 each
other.	To	be	more	precise,	any	ray	of	light	has	the	following	time-minimizing	property:	for	any
two	sufficiently	close	points	A	and	B	on	 the	ray,	 the	ray’s	arc	AB	gives	 the	shortest	possible
travel	time	from	A	to	B.15



Figure	3.19.	The	arc	AmB	 is	 the	 least-time	path;	 the	 light	 from	A	 does	not	 focus	on	 this	 arc.	By	contrast,	 the	arc	AnB	 is	 of
extremal,	but	not	shortest	time;	this	property	goes	together	with	the	existence	of	a	focusing	point	on	this	arc.

Observing	Fermat’s	principle	in	action.	Fermat’s	principle	predicts,	among	other	things,	the
bending	of	rays	in	lenses	as	shown	in	figure	3.20.	To	minimize	time,	the	light	avoids	the	thicker
part	of	the	lens	since	traveling	through	glass	takes	longer.16	This	explains	why	the	concave	lens
defocuses,	while	the	convex	lens	focuses.

Another	example	in	figure	3.21	shows	a	ray	from	the	bottom	of	a	pool	to	the	eye.	The	path
shown	in	the	figure	is	quicker	than	the	straight	path,	since	it	“pays”	to	shorten	the	“expensive”
underwater	part	where	light	is	slower.

How	does	light	“know”	which	path	is	quickest?	Light’s	ability	to	choose	the	quickest	path
seems	magical.	 Doesn’t	 picking	 the	 quickest	 path	 require	 information	 on	 other	 paths?	As	 it
actually	turns	out,	light	does	know	about	other	paths.17	In	fact,	light	travels	along	all	possible
paths,	but,	loosely	speaking,	the	contributions	of	those	cancel	each	other	except	for	the	shortest
path	and	its	near	neighbors,	whose	contributions	arrive	“in	sync.”

Figure	3.20.	Light	travels	slower	in	glass;	hence	the	ray	avoids	the	thicker	part	of	the	lens.



Figure	3.21.	(a)	Snell’s	law;	(b)	for	the	diver,	the	world	above	the	water	is	“compressed”	into	a	cone.

A	(very)	brief	history.	This	minimality	property	of	light	was	observed	by	Heron	of	Alexandria
(c.	AD	60),	who	stated	that	the	ray	traveling	in	the	air	between	two	points	and	reflecting	off
flat	 mirrors	 between	 the	 points	 is	 shorter	 than	 any	 nearby	 path.	 The	 general	 form	 of	 the
principle,	applicable	to	general	media,	was	stated	by	Fermat	in	1662.	Perhaps	understandably,
some	people	objected:	the	principle,	they	said,	ascribes	foreknowledge	to	nature.	The	skeptics
should	not	have	worried.	Fermat’s	principle	can	be	explained	via	classical	electrodynamics,
by	appealing	to	the	wave	nature	of	light.	The	current	explanation,	outlined	in	Feynman’s	book
mentioned	earlier,	is	provided	by	quantum	electrodynamics,	where	the	wave	is	replaced	by	the
probability	wave	function.

Fermat’s	 principle	 determines	 how	 the	 rays	 bend	 in	 crossing	 a	 boundary	 between	 two
media.	A	more	explicit	consequence	of	this	principle	is	known	as	Snell’s	law.

Snell’s	law	of	refraction.18	For	a	ray	of	light	crossing	the	interface	between	two	media	(see
figure	3.21),	the	sines	of	the	respective	angles	α1,	α2	between	the	ray	and	the	normal	to	the
interface	are	proportional	to	the	speeds	c1	and	c2	of	light	in	the	respective	media:

In	other	words:	the	quantity	 	remains	unchanged	in	crossing	the	media	interface.
This	law	is	restated	as	the	“lifeguard	problem”	in	section	3.13.
We	literally	see	the	world	through	Snell’s	law:	each	ray	hitting	a	“pixel”	on	our	retina	gets

there	while	obeying	(3.12).

Problem.	What	is	the	physical	meaning,	if	any,	of	 ?

Solution.	sin	α/c	 is	the	speed	of	the	point	where	the	wavefront	intersects	the	media	interface
(figure	3.22).	The	 explanation	 is	 provided	by	 figure	3.23,	 as	 follows.	 The	 figure	 shows	 the
wavefront	in	the	air	at	two	instants	one	second	apart.	Since	the	rays	are	perpendicular	to	the
wavefront,19	ΔPP′	Q	 is	 a	 right	 triangle,	where	 the	meaning	of	Q	 is	 explained	 by	 the	 figure.



Since	QP′	 =	c1,	we	 have	PP′	 =	c1/sin	α1.	 This	 is	 the	 displacement	 of	P	 in	 one	 second	 and
therefore	is	the	speed	in	question.

The	critical	angle.	Figure	3.21	explains	 an	 interesting	phenomenon	observed	by	divers	 and
snorkelers.	 As	 you	 look	 at	 the	 surface	 of	 the	 water	 from	 below,	 everything	 above	 water
appears	 to	 be	 confined	 to	 a	 cone.	Outside	 a	 circle	 on	 the	 surface	 of	 the	water,	with	 center
above	the	eye	of	the	observer,	transmitted	light	does	not	reach	the	eye;	only	light	reflected	from
below	reaches	the	eye.	Here	is	why.	A	nearly	horizontal	ray	in	the	air	forms	an	angle	αair	=	π/2
with	 the	 vertical	 before	 hitting	 the	 water;	 once	 in	 the	 water,	 the	 angle	 with	 the	 vertical	 is	

,	according	to	Snell’s	law.	For	divers	looking	up,	this	is	the	maximal
angle	with	the	vertical	at	which	they	see	the	world	above.

Figure	3.22.	The	break	in	the	front	has	speed	v	=	c1/	sin	α1	=	c2/	sin	α2.

Figure	3.23.	Computing	the	speed	of	the	break	point	in	the	front.



Figure	3.24.	How	to	place	C	to	get	from	A	to	B	in	shortest	time?

3.13	Saving	a	Drowning	Victim	by	Fermat’s	Principle

Problem.	A	lifeguard	at	A	wants	 to	save	a	swimmer	at	B.	The	 lifeguard	runs	with	speed	u
and	swims	with	speed	v.	What	point	C	in	figure	3.24	gives	shortest	possible	time?	Assume
that	the	swimmer’s	speed	is	zero.20

This	problem	is	 identical	 to	 the	preceding	problem	of	finding	the	time-minimizing	path	of
the	refracting	ray	of	light.	Just	like	the	ray	of	light,	our	lifeguard	follows	Fermat’s	principle	of
least	 time,	which	 implies	 that	 the	 angles	 in	 figure	3.24	 satisfy	 Snell’s	 law.	 The	 problem,	 in
other	words,	is	asking	to	explain	how	Snell’s	law	follows	from	Fermat’s	principle.

The	standard	textbook	proof	is	to	write	the	time	as	a	function	of	the	unknown	position	x	of
C,	 and	 to	 find	 the	 minimizing	 x	 by	 differentiation.	 The	 solution	 given	 here	 involves	 no
calculation	and	no	calculus.



Figure	3.25.	Tensions	can	be	created	either	by	constant	tension	springs	or	by	weights.

Solution.	 Figure	 3.25	 shows	 a	 ring	 sliding	 along	 the	 line	 (the	 “shoreline”);	 the	 ring	 is
connected	to	the	point	A	by	a	constant	tension	spring21	whose	tension	we	choose	to	be	1/u,	the
reciprocal	of	the	running	speed.	Similarly,	we	connect	the	ring	to	the	point	B	by	another	spring
of	constant	tension	1/v,	the	reciprocal	of	the	swimming	speed.

Since	the	potential	energy	of	a	constant	tension	spring	equals	its	length	times	its	tension,	the
potential	energy	of	our	mechanical	system	is

But	this	expression	coincides	with	the	time	of	travel	from	A	to	B!	We	thus	endowed	the	time
with	the	mechanical	meaning	of	the	potential	energy.

If	 the	 travel	 time	 is	 minimal,	 then	 the	 energy	 is	 minimal	 and	 hence	 the	 system	 is	 in
equilibrium;	thus,	in	particular,	the	forces	on	the	ring	along	the	line	are	in	balance:

We	 have	 thus	 reproduced	 Snell’s	 law.	 Along	 the	 way	 we	 also	 discovered	 a	 mechanical
interpretation	of	Snell’s	law:	the	forces	on	the	the	ring	in	the	direction	of	the	interface	are	in
balance.

The	 lesson	 for	 the	 lifeguard	 is	 to	 run	 so	 that	 the	 angles	 α	 and	 β	 with	 the	 normal	 to	 the
shoreline	satisfy	Snell’s	relation.

Here	is	an	amusing	interpretation	of	the	solution	to	the	lifeguard	problem	(this	interpretation
is	a	restatement	of	 the	observation	 in	 the	problem	on	page	55).	 Imagine	 the	guard	carrying	a
long	pole	always	held	perpendicular	to	the	direction	of	his	motion,	whether	he	runs	or	swims.
This	 pole	 is	 the	 analog	 of	 the	 wavefront.	 (Alternatively	 we	 can	 think	 of	 a	 row	 of	 people
running/swimming	side	by	side,	all	having	exactly	the	same	athletic	ability.)	Consider	the	point
of	intersection	of	the	pole	with	the	shoreline.	This	point	moves	with	constant	speed	while	the
lifeguard	runs	and,	generally	speaking,	with	another	speed	as	he	swims.	Now	the	best	strategy
is	distinguished	by	the	property	that	the	two	speeds	are	the	same.

3.14	The	Least	Sum	of	Squares	to	a	Point

Problem.	Given	three	points	A,	B,	and	C	in	the	plane,	find	the	point	M	for	which	the	sum	of
squares

is	minimal.



Solution.	The	sum	of	squares	(3.14)	can	be	interpreted	as	the	potential	energy	of	 three	zero-
length	springs22	connecting	M	to	the	points	A,	B,	and	C,	with	Hooke’s	constant	k	=	2	for	each
spring	(see	figure	3.26).	Now	if	this	energy	(3.14)	is	minimal,	then	the	sum	of	forces	upon	M	is
zero:

where	we	divided	by	 the	common	 factor	k	=	2.	This	 amounts	 to	 the	 statement	 that	M	 is	 the
center	 of	mass	 of	 A,	 B	 and	C.	Thus	M	 is	 the	 intersection	 of	 the	medians	 of	 ΔABC	 (for	 an
explanation	see	the	next	problem).

Figure	3.26.	Center	of	mass	of	three	points	minimizes	(3.14).

An	alternative	solution.	We	observe	that	(3.14)	is	the	moment	of	inertia23	with	respect	to	M	of
three	masses	m1	=	m2	=	m3	=	1	located	at	A,	B,	C.	But	the	moment	of	inertia	is	minimal	when
taken	with	respect	to	the	center	of	mass	(see	discussion	in	section	A.9).

3.15	Why	Does	a	Triangle	Balance	on	the	Point	of	Intersection	of	the
Medians?

Problem.	Why	does	the	center	of	mass	of	a	triangular	piece	of	a	cardboard	coincide	with	the
point	of	intersection	of	its	medians?

Solution.	The	key	is	to	explain	why	the	triangle	balances	on	each	of	its	medians,	say	AA′,	when
placed	on	a	horizontal	knife	edge	as	shown	in	figure	3.27.	Imagine	slicing	our	triangle	into	thin
strips	parallel	to	the	side	BC;	one	such	strip	is	shown	in	figure	3.27.	The	median	AA′	bisects
each	segment	of	the	strip	parallel	to	the	side	BC,	and	therefore	each	strip	will	balance	on	the
knife	edge24.	Hence	the	triangle	balances	on	AA′.	Now	the	point	of	balance	(M)	must	lie	on	the
line	of	balance,	that	is,	on	AA′.	Since	this	applies	to	all	medians,	the	point	of	balance	lies	on
their	intersection.



Figure	3.27.	The	triangle	balances	on	a	median	since	each	thin	strip	is	bisected	by	the	median.

Remark.	Concentrating	the	mass	of	the	cardboard	triangle	in	the	vertices	in	equal	amounts
per	 vertex	 will	 leave	 the	 center	 of	 mass	 unchanged.	 Indeed,	 the	 triangle	 with	 the
redistributed	mass	still	balances	on	AA′	since	B	balances	C	(A′	is	the	midpoint	of	BC)	while
A	lies	on	AA′	and	thus	does	not	affect	the	balance	of	the	other	two	masses.

3.16	The	Least	Sum	of	Distances	to	Four	Points	in	Space

Problem.	Given	four	points	A,	B,	C,	and	D	in	space,	consider	the	sum	of	distances	AX	+	BX
+	CX	+	DX	to	a	point	X.	What	point	X	minimizes	this	sum?

Solution.	Using	mechanics	we	will	show	that

AXB	=	 CXD

and	that,	moreover,	these	two	angles	are	bisected	by	the	same	line.	Since	the	points	A,	B,	C,
and	D	have	equal	rights,	the	same	result	will	then	hold	for	any	different	pairing	of	these	points.
For	 instance,	 we	 will	 then	 know	 that	 AXC	 =	 BXD	 and	 these	 angles	 share	 a	 common
bisector.



Figure	3.28.	If	X	minimizes	AX	+	BX	+	CX	+	DX,	then	the	marked	angles	share	a	bisector	and	are	equal.

Here	is	the	proof.	Let	us	take	four	identical	constant	tension	springs25	of	tension	T	=	1	and
connect	them	as	shown	in	figure	3.28.	The	length	of	each	spring	is	equal	to	its	potential	energy,
and	the	combined	length	is	equal	the	potential	energy	of	the	system.	Hence	the	minimal-length
configuration	corresponds	to	an	equilibrium,	and	hence	to	the	vanishing	of	the	sum	of	forces	a,
b,	c,	and	d	acting	upon	the	common	point	X:

Our	springs	have	identical	constant	tensions:	|a|	=	|b|;	hence	the	vector	a	+	b	lies	on	the	bisector
of	the	angle	AXB;	similarly,	c	+	d	 lies	along	 the	bisector	of	 the	angle	CXD.	By	(3.15),	 these
bisectors	lie	on	the	same	line;	we	proved	that	the	bisector	is	shared	by	the	two	angles.

To	show	that	the	angles	AXB	and	CXD	are	equal,	we	note	that	|a|	=	|b|	=	1	implies	|a	+	b|	=	2
cos	 AXB.	Similarly,	|c	+	d|	=	2	cos	 CXD.	From	(3.15),	we	conclude	that	 AXB	=	 CXD.

Figure	3.29.	If	the	sum	PA	+	PB	is	minimal	when	α	=	β.

3.17	Shortest	Distance	to	the	Sides	of	an	Angle



Problem.	A	circle	 lies	 inside	an	acute	angle.	From	which	point	on	the	circle	 is	 the	sum	of
distances	to	the	sides	of	the	angle	minimal?

Solution.	Figure	3.29	shows	 the	angle	and	 the	circular	hoop	 lying	 in	 the	horizontal	plane.	A
string	is	looped	through	the	hoop,	with	the	ends	of	the	string	thrown	over	the	angle’s	sides	and
holding	two	equal	weights.	The	string	is	perfectly	frictionless,	so	that	it	is	perpendicular	to	the
angle’s	sides	at	A	and	B.	Thus	PA	and	PB	measure	the	distances	from	P	to	the	angle’s	sides.

The	 length	AP	 +	PB	 is	 proportional	 to	 the	 potential	 energy	 of	 our	mechanical	 system—
indeed,	 the	 larger	AP	 +	PB,	 the	 larger	 the	 sum	 of	 elevations	 of	 the	 two	 weights.	 Thus	 the
minimum	of	AP	+	PB	corresponds	to	an	equilibrium,	and	thus	to	the	balancing	of	the	tensions	at
P:	T	cos	α	=	T	cos	β,	that	is,

α	=	β.

This	relation	characterizes	the	“best”	point	P	and	solves	the	problem.
An	explicit	answer.	The	condition	α	=	β	says	that	the	tangent	line	at	P	is	perpendicular	to	the
angle’s	bisector	m,	as	seen	from	figure	3.29(b).	This,	in	turn,	amounts	to	OP	being	parallel	to
m.	This	is	more	explicit:	the	“best”	P	is	the	tip	of	the	radius	that	is	parallel	to	 the	angle’s
bisector	 and	 that	 points	 toward	 the	 vertex	 of	 the	 angle.	 The	 “worst”	 point—the	 one
maximizing	AP	+	PB—is	on	the	radius	parallel	to	m	pointing	outward.

Figure	3.30.	For	the	shortest	segment	through	P	the	three	dashed	perpendiculars	meet	at	one	point.

3.18	The	Shortest	Segment	through	a	Point

Problem.	Let	MN	be	 the	shortest	of	all	segments	 lying	 inside	a	given	angle	AOB	 (with	M
lying	on	OA	and	N	lying	on	OB)	and	passing	through	a	given	point	P	inside	the	angle.	Prove
that	 the	 three	 perpendiculars	 at	 the	 points	 P,	 M,	 and	 N,	 as	 shown	 in	 figure	 3.30,	 are



concurrent.

Solution.	Consider	a	device	in	figure	3.30(b)—essentially	a	rod	which	tries	to	shorten,	with	a
ring	at	 each	end.	We	 install	 the	device	as	 shown	 in	part	 (c):	 the	 rod	 slides	 freely	 through	 a
sleeve	at	P	which	can	rotate,	and	the	rings	can	slide	without	friction	along	the	angle’s	sides.

If	the	segment	MN	has	minimal	length,	then	the	mechanical	system	has	the	minimal	potential
energy	and	then	the	rod	with	its	rings	is	in	equilibrium.	Thus	all	three	normal	reaction	forces
shown	in	figure	3.30	acting	upon	rod	and	rings	add	up	 to	zero,	and	so	do	 their	 torques.	The
lemma	on	concurrent	forces	(section	A.6)	states	that	if	the	sum	of	three	forces	is	zero	and	the
sum	of	the	torques	of	these	forces	is	zero,	then	the	lines	of	the	three	forces	are	concurrent.

Figure	3.31.	What	is	the	largest	length	of	a	pole	that	can	be	carried	around	the	corner?

3.19	Maneuvering	a	Ladder

Problem.	Two	 hallways	 of	 respective	 widths	 a	 and	 b	 meet	 at	 a	 right	 angle.	 What	 is	 the
largest	length	pole	that	can	be	passed	around	the	corner	from	one	hallway	to	the	other?

Solution.	The	problem	is	to	find	the	segment	ACB	of	minimal	length,	passing	through	the	corner
C,	with	the	ends	lying	on	the	outer	walls.	For	example,	imagine	carrying	a	telescoping	ladder
around	the	corner	and	shortening	it	if	it	doesn’t	fit;	once	the	ladder	clears	the	corner,	its	length
will	be	the	minimal	length	mentioned	above.

A	mechanical	“analog	computer”	shown	 in	 figure	3.32	solves	 the	problem.	A	 telescoping
rod	(a	vacuum-filled	cylinder	with	a	piston,	as	shown	in	figure	3.30)	has	two	rings	(A	and	B)
welded	at	the	two	ends.	The	rings	are	slipped	over	the	lines	MN	and	NP	as	shown.	The	rod
can	slide	through	a	freely	pivoting	sleeve	at	C.



Figure	3.32.	A	solution	using	two	rings	A	and	B,	a	rod	pivoting	on	C,	and	a	spring.

The	potential	energy	of	our	mechanical	system	is	a	monotone	function	of	the	length	AB,	and
thus	 the	position	of	minimal	 length	corresponds	 to	 the	equilibrium.	Now	the	 rod/piston/rings
system	is	subject	to	three	forces	shown	in	figure	3.32.	In	equilibrium,	the	sum	of	forces	and	of
their	torques	of	the	three	forces	is	zero,	and	hence	the	lines	of	the	forces	are	concurrent.26	This
solves	the	problem:	for	the	minimal	length	segment	the	three	normals27	to	the	walls	at	A	and
B	and	to	the	line	AB	at	C	are	concurrent.

Our	 geometric	 solution	 yields	 an	 analytic	 expression	 for	 the	 angle	 α	 =	 NAC	 at	 once.
Indeed,	from	ΔOCA	and	ΔOCB	we	have

OC	=	AC	cot	α	=	CB	tan	α.

Substituting	AC	 =	a/	 sin	α	 and	CB	 =	b/	 cos	α	 into	 the	 previous	 expression	 and	 simplifying
yields

Again,	this	solution	is	much	quicker	than	the	traditional	calculus	solution.



Figure	3.33.	What	angle	α	will	maximize	the	volume	of	a	cup?

Figure	3.34.	The	sum	of	torques	upon	the	shaded	sector	is	zero.

3.20	The	Most	Capacious	Paper	Cup

Problem.	 I	 want	 to	 make	 a	 conical	 paper	 cup	 from	 a	 sector	 of	 a	 paper	 disk,	 by	 gluing
together	the	edges	of	the	cut	shown	in	figure	3.33.	The	radius	R	of	the	disk	is	fixed.	For	the
cone	of	largest	possible	volume,	what	is	 the	angle	β	between	the	cone’s	generator	and	the
axis?

Solution.	The	problem	is	to	find	the	shape	of	the	cone	of	largest	possible	volume,	from	among
all	cones	with	the	given	length	of	the	generator.

The	mechanical	 “analog	 computer”	 consists	 of	 a	 bouquet	 of	 segments	 of	 length	R—these
will	 form	 the	generators	of	 the	cone;	all	generators	are	 tied	 together	at	one	point	O	 fixed	 in
space;	the	other	ends	of	these	generators	are	constrained	to	a	plane	(the	base	of	the	cone)	by	a
frictionless	constraint.28	The	plane	is	free	to	change	its	distance	to	O.	The	resulting	cone	 is
filled	with	 compressed	 gas.	 The	 plane,	 no	 longer	 free,	 is	 pushed	 away	 from	O	 by	 gas	 and
pulled	 toward	O	 by	 the	 segments.	 The	 volume	 of	 the	 cone	 is	 a	 decreasing	 function	 of	 the
potential	energy.	Hence	the	maximal	volume	corresponds	to	the	minimal	potential	energy	and
thus	to	an	equilibrium.	In	particular,	an	infinitesimal	sliver	of	generators	(figure	3.34)	will	be
in	 equilibrium.	 The	 torque	 of	 the	 forces	 upon	 the	 sliver	 around	O	 is	 therefore	 zero,	 which
solves	the	problem;	it	remains	only	to	decipher	this	zero-torque	statement.	We	will	not	need	to
know	 the	 forces	 upon	 the	 sliver	 at	O;	 there	 are	 exactly	 two	 remaining	 forces	 acting	 on	 this
sliver,	as	seen	in	figure	3.34(b):	(i)	the	force	of	outward	pressure	(the	subscript	s	stands	for	the
“side”)

where	As	is	the	area	of	the	sliver,	and	(ii)	the	force	of	constraint	from	the	plane	(the	subscript	b



stands	for	the	base)

where	Ab	is	the	area	of	the	sector	in	the	base.	Note	that	the	generators	do	not	interact	with	each
other	directly.

Now,	 the	opposing	 torques	of	 these	 two	 forces	 relative	 to	O	 are	 in	 balance,	 as	 in	 figure
3.34(c):

Fs	·	OA	=	(Fb	sin	β)	·	R.

Substituting	(3.16)	and	(3.17),	we	get

But	OA	=	 R,	since	the	centroid	of	any	triangle	is	two-thirds	of	the	way	from	the	vertex	to	the
base.	In	addition,	Ab/As	=	r/R	=	sin	β	 since	 the	ratio	of	 the	areas	of	 the	 two	 triangles	with	a
common	base	(ds)	equals	the	ratio	of	their	heights.	Substituting	this	into	(3.18)	we	obtain

which	solves	the	problem.

3.21	Minimal-Perimeter	Triangles

A	mechanical	argument	suggested	this	theorem,	only	a	few	years	old.29

Theorem.	 Let	 K	 be	 an	 arbitrary	 closed	 convex	 planar	 curve	 containing	 no	 straight
segments.	Let	ΔABC	have	minimal30	perimeter	among	all	triangles	containing	K.	Then:

1.	 The	 three	 segments	 connecting	 a	 vertex	 of	 ΔABC	 with	 the	 tangency	 point	 on	 the
opposite	side	of	ΔABC	are	concurrent,	that	is,	they	meet	at	one	point;	equivalently,	by
Ceva’s	theorem31

abc	=	a′b′c′,

where	a,	a′,	b,	b′,	c,	c′	are	the	lengths	shown	in	figure	3.35(a)
2.	The	three	perpendiculars	 to	 the	sides	of	ΔABC	at	 the	 tangency	points	are	concurrent



(figure	3.35(b)).

Proof.	A	proof	by	mechanics	goes	as	follows.

A	mechanical	system.	Consider	three	(infinite)	rods	forming	a	triangle	ABC,	with	each	pair	of
rods	slipped	through	a	small	ring,	as	shown	in	figure	3.36.	The	rods	are	in	frictionless	contact
with	the	rings,	and	thus	can	form	a	triangle	of	any	shape,	except	for	the	constraint	we	impose:
ΔABC	must	contain	the	curve	K	in	its	interior,	that	is,	K	is	an	obstacle	impenetrable	to	the	rods.
Now	let	us	connect	each	pair	of	rings	by	a	constant-tension	spring	as	shown	in	the	figure.	The
springs	are	trying	to	collapse	ΔABC,	but	the	obstacle	K	prevents	such	a	collapse.	Recall	that
our	springs	have	tension	T	=	1,	so	that	the	potential	energy	of	a	spring	equals	its	length;32	we
thus	 endowed	 the	 perimeter	 with	 the	 physical	 meaning	 of	 potential	 energy.	 If	 ΔABC	 has
minimal	perimeter,	then	the	mechanical	system	is	in	equilibrium.

Figure	3.35.	Minimality	of	the	perimeter	of	ΔABC	implies	the	concurrency	of	(a)	the	Cevians	and	(b)	the	normals.

Figure	3.36.	The	rods-rings-springs	mechanical	computer.

CONCURRENCY	OF	THE	PERPENDICULARS	(FIGURE	3.35(b))	IS	NOW	IMMEDIATE.	The	assembly
of	 the	 three	 rods,	 rings,	 and	 springs,	 considered	as	one	 system,	 is	 subject	 to	precisely	 three
reaction	 forces	Fk	 from	 the	obstacle	K.	 In	 equilibrium,	 the	 sum	of	 these	 forces	 vanishes,	 as
does	the	sum	of	their	torques.	But	the	lemma	on	concurrent	forces	(section	A.6)	states	that	in
that	 case	 the	 lines	 of	 the	 three	 forces	 are	 concurrent.	 This	 proves	 the	 second	 part	 of	 the



theorem.

Figure	3.37.	Force	balance	on	the	ring	(a)	and	torque	balance	on	the	rod	(b).

PROOF	OF	abc	=	a′b′c′.	For	a	minimal	perimeter	ΔABC	each	rod	is	subject	to	the	three	normal
reaction	forces	shown	in	figure	3.37:	one	force	from	K	and	one	from	each	of	the	two	rings	that
are	in	contact	with	the	rod.	For	each	rod,	the	sum	of	the	torques	of	the	three	forces	relative	to
the	 point	 of	 tangency	 is	 zero;	 this	 will	 lead	 to	 (3.19)–(3.20)	 below,	 as	 we	 will	 show
momentarily;	multiplying	these	equations	together	will	give	abc	=	a′b′c′.	All	we	need	to	do	is
find	the	reaction	force	from	each	ring	upon	the	rod.	To	be	specific,	let	us	pick	the	ring	A	and
the	rod	AB.	The	ring	is	subject	to	four	forces:	two	from	the	springs	and	two	from	the	rods,	as	in
figure	3.37(a).

Projecting	these	four	forces	first	onto	the	bisector	of	angle	A	and	then	onto	the	perpendicular
to	the	bisector	we	obtain	from	the	force	balance

R1	cos	α′	+	R2	cos	α′	=	2	cos	α,	R1	sin	α′	−	R2	sin	α′	=	0,

where	 .	From	the	second	equation	R1	=	R2	(an	interesting	fact	in	itself!),	and	from
the	first,	using	cos	α′	=	sin	α	we	obtain

R1	=	cot	α.

This	is	the	reaction	force	from	the	rod	AB	upon	the	ring	A.	By	Newton’s	third	law,	the	rod	AB
feels	the	same	force	back	from	the	ring.	We	recall	that	the	force	is	normal	to	the	rod,	since	the
ring	is	frictionless.	Figure	3.37(b)	summarizes	all	the	forces	acting	on	the	rod	AB.	The	torque
balance	of	these	forces	relative	to	the	tangency	point	gives



Figure	3.38.	The	distance	from	the	center	of	the	ellipse	to	the	origin	is	constant.

Similarly,	we	have

Multiplying	the	three	equations	together,	as	mentioned	earlier,	and	canceling,	we	obtain	abc	=
a′b′c′.	This	relation,	in	turn,	implies	the	concurrency	of	the	Cevians	by	Ceva’s	theorem.33

3.22	An	Ellipse	in	the	Corner

This	problem	comes	from	a	Putnam	competition.

Problem.	Consider	an	ellipse	lying	in	the	first	quadrant	of	the	(x,	y)	plane	and	 tangent	 to
the	 coordinate	 axes.	 Prove	 that	 the	 distance	 from	 the	 center	 of	 the	 ellipse	 to	 the	 origin
depends	only	on	the	semiaxes	of	the	ellipse	and	not	on	its	orientation.

Figure	3.39.	The	ellipse	is	in	neutral	equilibrium	if	the	two	rectangles	are	similar.

As	a	consequence	of	this	result,	if	we	rotate	the	ellipse	while	keeping	it	tangent	to	the	axes,



its	center	would	trace	an	arc	of	a	circle.	In	the	easier	degenerate	case	when	the	ellipse	is	a	line
segment,	the	arc	is	a	quarter	circle.

Solution.	Here	is	a	solution	of	this	problem	using	mechanics.

A	mechanical	system.	Think	of	the	ellipse	as	a	rigid	object	sliding	without	friction	along	the
coordinate	axes.	A	stretched	spring	ties	the	center	of	the	ellipse	to	the	origin	(figure	3.39).	The
potential	energy	of	the	spring	is	an	increasing	function	of	its	length,34	and	hence	minimality	of
the	length	is	equivalent	to	minimality	of	the	potential	energy,	that	is,	to	the	equilibrium.	To
summarize:	it	suffices	to	prove	that	the	ellipse	is	in	equilibrium	in	any	orientation.

AN	 EQUILIBRIUM	CONDITION.	 To	 prove	 that	 the	 ellipse	 is	 in	 equilibrium	 in	 any	 position,	 it
suffices	to	show	that	the	two	rectangles	shown	in	figure	3.39	are	similar.

Indeed,	three	forces	act	upon	the	ellipse	(two	reactions	and	one	spring),	and	for	the	sum	of
torques	of	these	forces	to	vanish	it	is	necessary	and	sufficient	that	the	lines	of	the	forces	pass
through	a	single	point,	according	to	the	lemma	on	concurrent	forces	in	section	A.6.	The	latter
condition	is	equivalent	to	the	similarity	of	the	two	rectangles.	Our	problem	has	been	reduced	to
proving	the	similarity	of	the	two	rectangles,	an	interesting	property	in	its	own	right,	but	how	to
prove	it?

FINISHING	 THE	 PROOF.	 I	 do	 not	 want	 to	 assume	 that	 the	 reader	 is	 familiar	 with	 linear
transformations,	so	this	discussion	does	not	use	them.	Instead,	imagine	drawing	figure	3.39	on
a	sheet	of	Plexiglas	and	tilting	the	sheet	under	the	sun	so	that	the	shadow	of	the	ellipse	on	the
flat	ground	is	a	circle.	Since	parallel	lines	cast	parallel	shadows,	our	two	rectangles	become
parallelograms.	In	fact,	 these	parallelograms	are	rhombi,	as	we	will	show	shortly,	and	since
these	 rhombi	 share	an	angle,	 they	are	 similar	 to	 each	other.	The	original	 rectangles	 are	 then
similar	as	well,	since	projection	preserves	similarity.	It	remains	to	explain	why	the	rectangles
turn	into	rhombi.	The	parallelogram	O′x′C′y′	 is	a	rhombus	since	its	diagonal	O′C′	bisects	 the
angle,	which	follows	from	the	facts	that	C′	is	the	center	of	the	circle	and	that	OX′	and	O′Y′	are
tangent	 to	 the	circle.	The	parallelogram	O′X′D′Y′	 is	 a	 rhombus	since	O′X′	=	O′Y′,	 as	 the	 two
tangent	segments	to	a	circle.

3.23	Problems

The	challenge	is	to	find	physical	solutions	to	the	following	problems.

1.	Of	all	the	rectangles	with	the	given	area	S	find	the	one	with	the	largest	possible	perimeter.
2.	Of	all	rectangular	solids	of	given	volume,	find	the	one	with	least	surface	area.
3.	Find	the	right	triangle	of	maximal	area	with	the	given	sum	of	the	lengths	of	one	leg	and	a
hypotenuse.

4.	Find	the	rectangle	of	largest	area	given	that	two	vertices	of	the	rectangle	lie	on	a	chord	of



a	given	circle,	and	the	other	two	vertices	lie	on	the	circle,	on	the	smaller	of	the	two	arcs.
5.	Inscribe	the	rectangle	of	largest	perimeter	into	a	triangle	of	base	b	and	the	altitude	h.
6.	Find	the	dimensions	b	and	h	of	the	rectangle	inscribed	in	a	circle	with	the	maximal	value
of	bh2.	(Note:	This	is	the	problem	of	cutting	the	stiffest	joist	out	of	a	given	log;	bending
stiffness	of	a	joist	is	proportional	to	bh2.)

7.	Inscribe	a	rectangular	solid	of	largest	volume	into	the	hemisphere	of	a	given	radius.
8.	Inscribe	the	cylinder	of	largest	volume	into	a	sphere	of	the	given	radius.
9.	Circumscribe	a	cone	of	least	volume	around	a	sphere	of	the	given	radius	R.
10.	Find	the	cylinder	of	greatest	surface	area	inscribed	in	the	cone	whose	axial	section	has

angle	2α	at	the	vertex	and	whose	base	has	radius	R.
11.	Find	the	tangent	line	to	the	ellipse	x2/a2	+	y2/b2	=	1	which	cuts	the	triangle	of	least	area

off	of	the	first	quadrant.
12.	A	solid	consists	of	a	cylinder	with	a	hemisphere	on	top.	What	proportions	of	 this	solid

will	minimize	its	area	for	a	given	volume?
13.	Find	the	relative	sizes	of	a	sphere	and	a	cube	with	a	given	combined	volume	and	of	most

surface	area.
14.	A	transversal	section	of	a	channel	is	in	the	form	of	an	isosceles	trapezoid.	What	slope	of

the	 sides	 will	 minimize	 the	 “wet	 perimeter”	 of	 the	 section,	 given	 the	 area	 S	 of	 the
trapezoid	and	the	depth	h?

15.	A	railroad	track	passes	through	a	warehouse	B,	and	lies	at	a	distance	a	from	a	town	A.	A
straight	road	must	be	built	from	the	track	to	the	town.	What	angle	should	this	road	form
with	 the	 track	 to	 minimize	 the	 cost	 of	 deliveries,	 given	 that	 the	 cost	 of	 transportation
along	the	road	is	n	times	more	than	along	the	railroad	(n	>	1)?

16.	Consider	a	 triangle	of	maximal	perimeter	 inscribed	in	a	convex	curve	K.	Show	that	 the
two	adjacent	sides	form	equal	angles	with	the	tangent	to	K	at	the	common	vertex.	Show
that	 the	 same	 property	 holds	 for	 any	 inscribed	 n-gon	 of	maximal	 (or	 even	 of	 critical)
perimeter.

17.	 (An	open	problem.)	Consider	a	 tetrahedron	of	 least	area	circumscribed	around	a	given
convex	body	K.	Give	a	geometrical	characterization	of	such	a	tetrahedron.

1Indeed,	any	difference	in	tensions	would	cause	angular	acceleration	of	the	pulley	in	the	direction	of	the	greater	tension.
2For	the	description	of	these,	see	section	A.1.
3The	background	on	zero-length	springs	is	in	section	A.1.	For	our	purposes	here	it	suffices	to	recall	that	the	potential	energy

of	a	zero-length	spring	of	Hooke’s	constant	k 	is	 x2.

4For	the	background	see	sections	A.5	and	A.6.
5K	is	not	given	by	a	formula—all	we	know	is	that	it	is	convex.
6For	justification	see	section	A.4.
7The	centroid,	or	the	balance	point	of	a	triangle,	is	the	intersection	of	its	medians.
8This	is	plausible	intuitively;	the	proof	is	given	in	the	appendix	(see	section	A.4).
9Indeed,	if	we	let	the	gas	expand,	it	will	do	positive	work	and	thus	lose	that	same	amount	of	its	potential	energy.



10An	unstable	one,	since	the	energy	is	maximal,	but	so	what?
11To	avoid	misunderstandings,	by	tension	I	mean	the	force	that	needs	to	be	applied	to	keep	each	of	the	two	ends	of	the	rope

from	separating	if	the	rope	is	cut.
12See	section	A.2	for	a	quick	explanation	of	the	concept	of	surface	tension	with	all	the	necessary	background.
13We	again	refer	to	the	background	on	films,	section	A.2.
14Since	(potential	energy	of	the	film)	=	(surface	tension	times)	×	(area);	see	section	A.2	for	details.
15What	really	matters	is	not	that	A	and	B	are	close,	but	that	a	narrow	fan	of	rays	emanating	from	A	does	not	focus	before

reaching	B.	The	simplest	illustration	of	this	condition	is	offered	by	rays	propagating	on	the	sphere	(figure	3.19).	The	points	A	and
B	are	connected	by	two	possible	rays,	AmB	and	AnB,	the	first	of	which	is	minimal;	accordingly,	the	fan	of	rays	from	A	does	not
focus	on	the	least-time	arc	AmB.	By	contrast,	the	ray	AnB	is	not	the	quickest	way	from	A	to	B;	this	arc	contains	the	focal	point
A′	of	the	fan	of	rays	from	A.	For	the	general	theory	associated	with	this	problem	I	refer	the	reader	to	Milnor’s	book	[M].
16The	ratio	n	of	the	speed	of	light	in	the	vacuum	to	that	in	the	glass	is	called	the	index	of	refraction.	The	greater	n,	the	less

thick	a	lens	is	needed	to	do	the	same	job.	Air	is	almost	like	the	vacuum:	n	=	1.00029.	Polyurethane	lenses	used	in	eyeglasses
have	an	index	of	refraction	as	high	as	n	=	1.66.	The	glass	used	in	lenses	has	an	index	of	1.52.	Diamond’s	n	=	2.4;	such	lenses
would	be	scratchproof	and	very	thin,	but	not	cheap.
17We	refer	the	reader	to	the	beautiful	book	QED	by	Richard	Feynman	[Fe],	where	this	remarkable	puzzle	is	explained.
18See	problem	3.13	for	a	mechanical	proof	of	the	fact	that	Snell’s	law	follows	from	Fermat’s	principle.
19This	 intuitively	very	plausible	statement	can	be	 justified	via	Huygens’s	principle;	 the	details	can	be	found	 in	[ARN].	The

fact	depends	on	the	medium	being	isotropic.	For	anisotropic	media	the	rays	need	not	be	perpendicular	to	the	front,	at	least	not	in
the	sense	of	Euclidean	orthogonality.
20Including,	especially,	his	speed	in	the	vertical	direction.
21Such	springs	are	described	in	section	A.1.
22For	background,	see	section	A.1.	We	need	only	two	facts	here:	first,	that	the	tension	of	a	zero-length	spring	is	k 	·	L,	where

L	is	the	length	of	the	spring	and	where	k 	is	Hooke’s	constant,	and	second,	the	potential	energy	of	the	spring	is	 kL2.

23The	concept,	along	with	everything	used	here,	is	explained	in	section	A.9.
24We	are	 ignoring	 a	 possible	 error	 near	 the	 ends	of	 the	 strips,	 but	 the	 relative	 size	 of	 the	 error	 approaches	 zero	with	 the

thickness	of	the	strip.
25Such	springs	are	described	in	section	A.1.
26See	the	lemma	on	concurrent	forces,	section	A.6.
27Note	that	the	forces	are	indeed	perpendicular	to	the	corresponding	lines	since	there	is	no	friction.
28One	can	imagine	the	tips	of	the	generators	to	be	magnetically	stuck	to	the	plane	but	able	to	slide	without	friction.
29For	a	rigorous	proof,	see	[L1]).
30“Minimal”	can	be	replaced	by	“critical.”
31For	the	statement	and	a	proof	by	mechanics	see	problem	5.6.
32For	a	one-line	explanation	see	section	A.1.
33We	prove	this	theorem	using	centers	of	mass	in	section	5.6.	A	very	nice	geometrical	treatment	of	Ceva’s	theorem	can	be

found	in	[CG].
34The	particular	nature	of	the	spring	does	not	matter	in	this	solution.



4

INEQUALITIES	BY	ELECTRIC	SHORTING

4.1	Introduction

The	following	short	outline	of	the	necessary	background	should	suffice	for	the	reading	of	this
chapter.	More	on	the	concepts	described	below	is	in	the	appendix.

Electrical	current.	The	current	 in	a	copper	wire	 is	 the	flow	of	 the	“gas”	of	electrons	 in	 the
ionic	 lattice	of	 copper,	 analogous	 to	 the	 flow	of	water	 in	 a	pipe.	 Just	 like	 the	 flux	of	water
through	the	pipe	is	measured	in	gallons	per	second,	the	electric	current	is	measured	in	units	of
charge	per	second,	passing	through	a	cross	section	of	the	wire.	The	current	is	denoted	by	I	and
is	expressed	in	coulombs	per	second,	or	amperes.

Voltage.	Let	us	consider	a	steady	flow	of	water	 in	a	 long	pipe.	Because	of	 the	 friction	with
walls,	the	water	wants	to	slow	down.	Since	the	flow	is	assumed	steady,	the	pressure	is	higher
upstream;	it	is	this	pressure	gradient	that	pumps	the	water	at	a	steady	rate.	In	the	same	way,	a
steady	current	 through	a	wire	 requires	 constant	 application	of	 electrical	pressure,	 called	 the
voltage.	The	difference	in	voltage	propels	the	electrons	along	the	wire.

Resistance.	To	simplify	things,	imagine	water	flowing	steadily	though	a	pipe	with	no	friction,
but	 now	 the	 pipe	 has	 a	 porous	 obstruction.	 The	 pressure	 difference	 across	 the	 obstruction
keeps	the	flow	steady.	Note	also	that	 the	more	water	we	pump	per	second,	 the	greater	 is	 the
pressure	difference.	Similarly,	consider	a	wire	with	a	resistor	such	as	a	filament	of	a	light	bulb
—an	 analog	 of	 an	 imperfect	 clog	 in	 a	 pipe.	Assume	 a	 steady	 current	 I	 through	 the	wire.	 In
complete	analogy	with	water,	 there	 is	a	voltage	difference	V	across	 the	resistor,	and,	 just	as
with	water,	the	greater	the	current,	the	greater	is	this	voltage.	In	fact,	experiments	show	a	linear
relationship	V	=	RI	(Ohm’s	law),	where	R	is	a	constant.	This	constant	is	called	the	resistance
—a	very	 reasonable	 name,	 since	 a	 large	R	 signifies	 a	 large	V	 (‘pressure	 difference’)	 for	 a
given	I	(flux).



Figure	4.1.	Resistors	in	series	add;	conductivities	in	parallel	add.

Resistors	 in	 series	 and	 in	 parallel.	 For	 two	 resistors	R1	 and	R2	 connected	 in	 series	 (see
figure	4.1),	the	resistance	of	the	resulting	combination	is	the	sum:

For	two	resistors	connected	in	parallel,	the	resulting	resistance	R	satisfies

A	short	proof	of	this	is	given	in	the	appendix;	here	I	only	mention	that	both	rules	make	intuitive
sense.	The	second	of	these	perhaps	requires	an	explanation.	When	two	resistors	are	connected
in	parallel,	 the	resulting	circuit	conducts	better,	since	it	creates	 two	channels	for	 the	current.
One	could	guess	that	the	conductivity	is	the	sum	of	conductivities	of	each	channel.	In	fact,	this
is	precisely	what	the	rule	(4.2)	states,	if	we	define	the	conductivity	to	be	the	reciprocal	of	the
resistance.

Kirchhoff’s	second	law.	The	sum	of	currents	entering	a	node	where	several	wires	join	equals
the	sum	of	currents	exiting	the	node.

Figure	4.2.	Kirchhoff’s	second	law.

Figure	4.3.	Shorting	P	with	Q	decreases	resistance,	explaining	(4.3).

For	the	example	in	figure	4.2,	the	law	gives	I1	+	I2	+	I3	=	I4	+	I5.	This	law	expresses	the	fact
that	 the	charge	cannot	accumulate	 in	a	node,	 just	as	water	cannot	accumulate	at	a	 junction	of
several	pipes.



4.2	The	Arithmetic	Mean	Is	Greater	than	the	Geometric	Mean	by
Throwing	a	Switch

The	circuit	shown	in	figure	4.3	is	made	of	resistances	a	and	b.	Starting	with	the	switch	open	as
shown,	each	of	the	two	parallel	paths	has	resistance	a	+	b.	Since	these	paths	are	in	parallel,	the
total	resistance	between	A	and	B	is	 ,	according	to	(4.2).	Let	us	now	close	the	switch.	The
resistance	of	the	circuit	with	a	short	is	the	same	as	or	less	than	before.1

What	 is	 this	 new,	 smaller	 resistance?	We	 now	 have	 two	 resistors	 in	 sequence,	 each	 of
strength	 	Thus

Figure	4.4.	Arithmetic,	geometric,	and	harmonic	means:	PO	=	(a	+	b)/2,	PK	=	 ,	PQ	=	((a−1	+	b−1)/2)−1.

This	implies	the	inequality	between	the	arithmetic	and	the	geometric	means	stated	in	the	title	of
the	section.

Remark	 1.	 Equation	 (4.3)	 implies	 not	 only	 the	 inequality	 between	 the	 arithmetic	 and
geometric,	but	also	with	the	harmonic	mean	((a−1	+	b−1)/2)−1	=	2ab/(a	+	b):

Indeed,	if	A	≥	B	>	0,	then	 	≥	 ;	multiplying	this	inequality	first	by	 	and	 then	by	
	we	obtain	A	≥	 	≥	B.	Now	treating	the	two	sides	in	(4.3)	as	A	and	B	and	applying

the	last	inequality	gives	(4.4).

Remark	2.	(A	geometrical	interpretation	of	the	inequality	(4.4).)	Let	a	and	b	be	the	lengths	of



two	 abutting	 segments,	 and	 consider	 a	 semicircle	whose	 diameter	 is	 the	 union	 of	 these	 two
segments.	Construct	the	perpendicular	from	the	point	K	where	the	two	segments	abut,	and	let	P
be	a	point	of	intersection	of	this	perpendicular	with	the	semicircle.	Let	O	be	the	center	of	the
semicircle	and	let	Q	be	the	foot	of	the	perpendicular	from	K	onto	the	radius	OP.	One	can	show
that

This	gives	a	geometrical	interpretation/proof	of	the	inequality	(4.4).

Figure	4.5.	Closing	all	switches	decreases	the	resistance	between	A	and	B.

4.3	Arithmetic	Mean	≥	Harmonic	Mean	for	n	Numbers

Recall	 the	definition	of	 the	harmonic	mean:	 each	number	 is	 inverted;	 the	 arithmetic	mean	of
these	 inverses	 is	 found	and	 then	 the	 result	 is	 inverted	again.	Loosely	speaking,	 the	harmonic
mean	is	the	arithmetic	mean	through	the	lens	of	inversion.

Here	is	an	electric	proof	of	the	fact	that	the	arithmetic	mean	is	the	greater	of	the	two	means:

Each	row	in	figure	4.3	consists	of	 the	 same	 resistances.	Note	 that	 each	 subsequent	 row	 is	 a
cyclic	permutation	of	the	one	before;	thanks	to	this	fact,	each	column	also	consists	of	the	same
resistances.

We	start	with	all	switches	open;	by	throwing	them	all	at	 the	same	time	we	will	prove	the
above	inequality.	Here	are	the	details.

All	switches	open.	All	rows	have	the	same	resistance	 ;	the	n	identical	resistances	in
parallel	give	the	effective	resistance	between	A	and	B:



All	 switches	 closed.	 Each	 column	 consists	 of	 n	 parallel	 resistors,	 and	 thus	 has	 resistance	
,	as	proven	in	the	appendix	in	section	A.14.	With	n	such	columns	in	series,	the

resistance	between	A	and	B	is	n	times	greater:

Figure	4.6.	The	voltages	on	vertices	minimize	the	dissipated	power	(4.6).

This	proves	the	claim	(4.5).

4.4	Does	Any	Short	Decrease	Resistance?

We	are	considering	a	network	of	resistors;	an	example	is	shown	in	figure	4.6.	Such	a	collection
of	dots	connected	by	lines	is	called	a	graph.	The	dots	are	called	the	vertices,	and	the	lines	are
called	the	edges	of	the	graph.	In	our	picture	the	edges	are	the	resistors	connecting	the	vertices.
Any	two	vertices	i	and	j	are	connected	by	a	resistor	Rij.	We	allow	Rij	=	∞,	meaning	that	not	all
pairs	 of	 vertices	 need	 be	 electrically	 connected.	 The	 value	 Rij	 =	 0	 corresponds	 to	 short
between	the	vertices	i	and	j.

Rayleigh’s	monotonicity	law.	Let	us	fix	two	vertices	in	the	graph	and	consider	the	effective
resistance	R	between	 them,	as	seen	 in	 figure	4.6;	R	 is	 a	 function	of	Rij.	 It	 is	 intuitively	very



plausible	 that	 if	 any	 Rij	 increases,	 then	 the	 overall	 resistance	 R	 increases	 as	 well.	 This
statement	is	known	as	Rayleigh’s	monotonicity	law.2	In	the	preceding	two	sections	we	used	a
special	case	of	this	principle:	by	creating	a	short,	we	changed	some	resistances	from	∞	to	0,
thus	decreasing	the	overall	resistance.

Here	is	the	proof	of	Rayleigh’s	monotonicity	law.	To	fix	notations,	let	our	graph	consist	of
N	+	2	vertices	v0,	v1,	.	.	.	,	vN,	vN+1	(figure	4.6),	and	let	us	consider	the	resistance	R	between	v0
and	vN+1.	To	fix	 things,	we	 impose	a	voltage	V	between	v0	and	vN+1.	We	can	choose	V0	 =	 0
(i.e.,	we	can	ground	the	vertex	v0),	and	thus	we	have	VN+1	=	V.

If	V	is	the	voltage	across	a	resistor	R,	then	the	power	dissipated	on	the	resistor	is	V2/R	(this
is	 explained	 in	 a	 short	 paragraph	 in	 the	 appendix	 in	 section	 A.16.)	 Thus	 if	 we	 somehow
maintained	voltages	 	on	the	vertices	vk,	then	the	power	dissipated	in	the	network	would	be

where	 .
In	reality,	we	are	controlling	only	the	voltage	VN+1	=	V,	letting	the	other	“free”	voltages	Vk,

1	≤	k	≤	N	“decide	for	themselves”	what	to	be.
Here	is	a	beautiful	fact:	The	actual	power	P	dissipated	on	 the	network	 is	 least	possible

with	the	given	imposed	voltage	V	(4.6):

I	 explain	 this	 in	 the	 next	 paragraph,	 but	 let	 us	 first	 use	 this	 fact	 to	 complete	 the	 proof	 of
Rayleigh’s	principle.	Since	Rij	are	in	the	denominators,	P	is	a	decreasing	function	of	each	Rij.
But	since	P	=	V2/R,	that	is,	R	=	V2/P,	we	conclude	that	R	is	an	increasing	function	of	each	Rij.
This	proves	Rayleigh’s	principle,	except	that	we	have	to	verify	(4.7).

Let	(V1,	.	.	.	,	VN)	be	the	actual	voltages	on	the	vertices	v1,	.	.	.	,	vN.	We	have

(The	background	on	Ohm’s	and	Kirchhoff’s	laws	is	presented	in	sections	A.12	and	A.13.)	But
P( 1,	.	.	.	,	 N)	is	a	positive	quadratic	function,	and	thus	has	only	one	critical	point	which	is	a
minimum.	We	showed	 that	 the	actual	 voltages	Vk	minimize	 the	power	 function.	The	power



dissipated	on	the	network	is	indeed	given	by	the	minimum	of	the	power	function,	which	proves
(4.7).

4.5	Problems

1.	Prove	that	the	inequality

holds	 for	 any	 positive	 numbers	a,	 b,	 c,	 d.	Hint:	Consider	 the	 circuit	 in	 figure	 4.3,	 and
change	some	resistances.	(For	more	references	on	this	approach,	see	[DS].)

2.	Give	a	mechanical	interpretation	of	the	expression	(4.6)	involving	springs.
3.	 Find	 a	mechanical	 analog	 of	 the	 voltage,	 the	 current,	 the	 resistance,	Kirkhoff’s	 second
law,	and	Ohm’s	law.	Hint:	Use	springs	with	Hooke’s	constants	kij	=	1/Rij.

4.	Give	a	mechanical	interpretation	of	power-minimization	principle.
5.	Find	a	mechanical	analog	of	(4.1)	and	(4.2)	involving	springs.

1This	 intuitively	obvious	statement	should	be	proven	rigorously.	We	will	give	such	a	proof	 to	satisfy	skeptics,	but	our	focus
here	is	on	establishing	connections	(algebra	and	circuits	in	the	present	problem)	rather	than	a	proof.
2We	refer	to	a	very	nice	book	[DS]	for	further	details	and	references.



5

CENTER	OF	MASS:	PROOFS	AND	SOLUTIONS

5.1	Introduction

The	concept	of	the	center	of	mass	was	used	by	Archimedes	more	than	2,400	years	ago.1	Much
later	Euler	introduced	another	mass-related	concept,	that	of	the	moment	of	inertia	(see	section
A.9),	which	in	turn	suggested	some	very	nice	solutions	of	mathematical	problems	[BB].	Here	I
solve	several	other	mathematical	problems	using	the	center	of	mass.

Recall	that	the	center	of	mass	of	a	body	is	the	body’s	point	of	balance;	the	body	suspended
on	 that	 point	 is	 in	 equilibrium	 in	 any	 orientation.	 Full	 details	 can	 be	 found	 in	 the	 appendix
(section	A.8).

As	an	interesting	aside,	we	take	it	for	granted,	from	childhood,	that	such	a	unique	point	of
balance	exists.	That	is,	we	assume	that	the	point	of	balance	does	not	depend	on	the	orientation
of	the	body.	This	assumption	is	true,	but	only	if	the	gravitational	field	is	constant.	In	variable
gravitational	fields,	the	point	of	balance	becomes	dependent	on	the	body’s	orientation;	here	is
an	example.	In	the	uniform	field,	a	rod	would	balance	on	its	geometrical	center.	Although	the
gravitational	field	varies	even	within	the	confines	of	a	room,	this	tiny	variation	is	drowned	out
by	vastly	stronger	forces	of	buoyancy	in	the	air,	 friction	at	 the	pivot,	and	so	on.	If,	however,
these	 annoying	 imperfections	 were	 somehow	 eliminated,	 we	 would	 observe	 a	 surprising
effect:	the	rod	would	balance	on	its	center	only	in	special	orientations:	vertical	and	horizontal.
To	 achieve	 the	 balance	 at	 another	 angle	 we	 must	 suspend	 the	 rod	 off-center,	 at	 a	 point
dependent	 on	 the	 angle.	 This	 effect,	 tiny	 on	 Earth,	 is	 clearly	 observable	 in	 the	 motion	 of
satellites.	An	elongated	satellite	prefers	to	point	along	the	radial	direction.

5.2	Center	of	Mass	of	a	Semicircle	by	Conservation	of	Energy

Problem.	Find	the	center	of	mass	of	a	semicircular	wire	with	constant	linear	density.2

The	 center	 of	 mass	 of	 an	 object	 with	 a	 constant	 density	 is	 a	 purely	 geometrical	 object,
referred	to	as	the	centroid.

This	 is	 a	 standard	 calculus	 exercise	 in	 using	 integrals—but	 a	 mechanical	 trick	 lets	 me
bypass	integration.	I	will	rely	only	on	the	fact	that

.



which	can	be	proved	using	l’Hopital’s	rule	or	Taylor’s	expansion.3

Solution.	 Let	 us	 suspend	 our	 semicircular	 wire	 on	 its	 center,	 as	 shown	 in	 figure	 5.1:	 just
imagine	gluing	the	wire	to	a	weightless	board	and	allowing	the	board	to	pivot	in	the	vertical
plane	on	a	nail	driven	through	the	center	of	the	semicircle.	Now,	let	us	tip	the	wire	through	a
small	angle	θ,	as	shown	in	figure	5.1,	and	compute	the	work	done	in	two	different	ways.

On	the	one	hand,	we	have	raised	the	center	of	mass	by	height	H	=	x	−	x	cos	θ	=	x(1	−	cos	θ);
we	thus	did	work	W	=	mgH,

Figure	5.1.	Moving	the	arc	θ	R	 from	left	 to	right	takes	the	same	work	as	raising	the	center	of	mass	by	x(1	−	cos	θ),	 yielding
(5.3).

that	is,

But,	on	the	other	hand,	the	effect	of	turning	was	same	as	elevating	the	arc	θ	R	(figure	5.1)	by
the	height	h	=	θ	R	+	ε,	where	ε	is	small	compared	to	θ	in	the	sense	that	ε/θ	→	0	as	θ	→	0.	It
takes	work	W	=	µgh,	where	µ	is	the	mass	of	the	arc	θ	R.	Now	µ	=	 	m,	since	the	mass	of	an
arc	is	proportional	to	its	angular	size.	Substituting	the	expressions	for	h	and	µ	into	W	=	µgh	we
obtain

where	 ε	 is	 an	 error	 small	 compared	 to	 θ,	 in	 the	 sense	 mentioned	 before.	 Equating	 this
expression	for	W	with	(5.2)	yields,	after	canceling	mg:



Then,	by	dividing	 the	 last	 relation	by	θ2	 and	 setting	θ	→	0,	we	get	x/2	=	 	 (using
(5.1)),	or

The	same	method	works	for	circular	arcs	of	any	angle,	as	well	as	for	“pizza	slices”	(disk
sectors.)	The	case	of	a	“half-pizza”	is	treated	next.	The	case	of	a	sector	of	an	arbitrary	angle
can	be	treated	similarly	(see	problems	at	the	end	of	this	chapter).

Figure	5.2.	The	rise	of	the	center	of	mass	of	the	sector	is	2/3h,	where	h	is	the	rise	of	the	arc.

5.3	Center	of	Mass	of	a	Half-Disk	(Half-Pizza)

The	 previous	 solution	 gives	 us,	with	 almost	 no	 extra	work,	 the	 center	 of	mass	 of	 the	 solid
semidisk.	Indeed,	let	us	repeat	the	argument	of	the	preceding	problem	verbatim,	with	only	one
difference:	instead	of	cutting	off	an	arc,	we	cut	off	a	thin	sector	from	the	left	and	place	it	on	the
right,	as	shown	in	figure	5.2.

Since	our	sliver	of	a	sector	approximates	a	triangle,	we	can	take	its	centroid	to	be	 	R	away
from	the	center	of	the	circle.4	Consequently,	this	centroid	will	rise	by	 h,	where	h	=	θ	R	+	ε	is
the	rise	of	the	arc,	as	in	the	preceding	problem.	Thus	all	we	have	to	do	is	to	replace	h	in	the
preceding	problem	with	 h;	the	main	equation	(5.3)	acquires	the	extra	factor	 :



Figure	5.3.	Which	center	of	mass	is	higher?

where	y	is	the	unknown	distance	to	the	center	(figure	5.2).	Dividing	by	θ2,	letting	θ	→	0,	and
using	(5.1)	we	obtain

The	centroids	of	the	semicircle	and	of	the	semidisk	are	related	via	y	=	 x.

5.4	Center	of	Mass	of	a	Hanging	Chain

Problem.	A	chain	hangs	on	 two	nails	A	and	B,	on	 the	same	 level.	 I	grab	 the	chain	by	 the
lowest	point	and	pull	it	down.	Does	the	center	of	mass	of	the	chain	move	up	or	down?

Solution.	Of	all	possible	shapes	with	A	and	B	 fixed,	 the	hanging	chain	assumes	 the	shape	of
least	potential	energy.5	Any	change	of	shape	of	the	chain	will	raise	its	center	of	mass.



Figure	5.4.	Volume	of	the	solid.

5.5	Pappus’s	Centroid	Theorems

Draw	a	line	l	and	a	region	D	in	the	plane,	disjoint	from	each	other	(figure	5.4),	and	consider	a
“donut”	formed	by	spinning	D	around	l.	What	is	the	donut’s	volume?	What	is	its	surface	area?
Both	questions	are	answered	below.

Pappus’s	 volume	 theorem.	 In	 the	 setting	 just	 described,	 the	 volume	 of	 the	 donut	 of
revolution	of	a	region	D	around	a	line	l	is	given	by

V	=	2π	RA,

where	A	is	the	area	of	D	and	where	R	(figure	5.4)	is	the	distance	from	l	to	the	centroid	of	D.

Pappus’s	area	theorem.	The	area	of	the	donut’s	surface	is	given	by

S	=	2πrL,

where	L	is	the	length	of	the	curve	C	bounding	D,	and	where	r	is	the	distance	from	l	to	the
centroid	of	C.	Note	that	in	this	theorem	we	use	the	centroid	of	the	one-dimensional	object:
the	curve,	rather	than	the	region.

The	 standard	 calculus	 proof	 of	 Pappus’s	 theorem,	 found	 in	 most	 calculus	 books,	 uses
integrals	and	their	properties,	and	requires	some	simple	manipulation	with	integrals.	The	proof
given	here	shows	the	intuitive	essence	of	the	result	in	its	barest	form.



Figure	5.5.	The	cross	section	of	the	donut-shaped	tube	sealed	at	one	end	is	D.	A	piston	in	the	shape	of	D	 is	dragged	around,
creating	the	vacuum	behind	it.

Proof.

The	mechanical	system.	Consider	a	 tube	bent	 in	 the	shape	of	a	donut,	as	 in	 figure	5.5.	 The
cross	section	of	the	donut	tube	is	not	circular	but	is	exactly	of	the	shape	of	D.	Consider	 two
pistons	shaped	as	D	inside	the	tube,	as	shown	in	figure	5.5.	One	piston	is	welded,	becoming	a
wall,	while	the	other	can	slide	around	the	tube	without	friction.	We	also	leave	an	air	outlet	as
shown	in	figure	5.5.	This	bent	cylinder–piston	system	is	our	mechanical	analog	computer	that
will	solve	the	problem.

PROOF	OF	PAPPUS’S	VOLUME	THEOREM.	Starting	with	the	piston	touching	the	wall,	I	grab	the
piston	by	its	centroid	and	drag	it	all	 the	way	around	the	donut,	creating	a	vacuum	behind	the
piston.	 By	 computing	 the	work	 done	 in	 two	 different	ways	we	will	 obtain	 the	 statement	 of
Pappus’s	theorem.

We	make	the	following	observations:

1.	Holding	the	piston	by	the	centroid	guarantees	that	it	will	not	want	to	pivot,	which	means
that	we	need	apply	no	torque,	only	the	force	F,	to	move	the	cylinder.	Therefore	only	the
force	F	does	work.



Figure	5.6.	The	potential	energy	of	a	bubble	of	vacuum	equals	pA.

2.	The	 force	F	 required	 to	 pull	 the	 piston	 against	 the	 atmospheric	 pressure	p	 is	F	 =	pA,
where	A	is	the	piston’s	area.	Indeed,	the	pressure	p	is	the	force	per	unit	area,	and	the	area
of	the	piston’s	face	is	A	such	units.

3.	To	create	a	volume	V	of	vacuum	against	the	pressure	p,	work	W	=	pV	is	required.	Indeed,
for	a	straight	cylinder,	the	work	is	W	=	F	·	L	=	pAL	=	pV.	The	result	follows	by	breaking	a
general	shape	into	many	thin	parallel	cylinders.

With	these	remarks	our	proof	is	nearly	finished.	On	the	one	hand,	the	work	to	pull	the	piston
all	the	way	around	is	force	times	the	distance	traveled	by	the	point	of	application:

W	=	F	·	2π	R	=	pA	·	2π	R,

where	R	is	as	in	the	statement	of	the	theorem.	But	on	the	other	hand,	by	remark	(3)	above,	work
is	given	by	the	volume	times	the	pressure:

W	=	pV.

Equating	the	two	expressions	yields	pV	=	pA2π	R,	so

V	=	2π	RA.

This	proves	Pappus’s	volume	theorem.
THE	VOLUME	THEOREM	 	THE	AREA	THEOREM.	Imagine	covering	the	surface	in	question	by
a	thin	layer	of	paint	of	thickness	ε,	as	in	figure	5.7.

Figure	5.7.	The	area	theorem	follows	from	the	volume	theorem	applied	to	the	volume	of	a	thin	skin.

By	Pappus’s	volume	theorem,	the	volume	of	the	paint	is

Vε	=	2π	Rε	Aε,



where	Rε	is	the	distance	of	the	centroid	of	the	ε-thin	ring	to	l,	and	where	Aε	is	the	ring’s	area.
But	the	paint’s	volume	Vε	is	approximately	the	area	times	thickness:

the	small	error	denoted	by	·	·	·	is	due	to	the	fact	that	the	surface	is	not	flat.	On	the	other	hand,
the	centroid	of	the	ε-ring	approximates	the	centroid	of	the	curve	itself:	Rε	=	r	+	 ·	 ·	 ·,	and	the
ring’s	area	Aε	=	Lε	+	·	·	·.	Substituting	all	this	into	(5.4),	dividing	by	ε,	and	letting	ε	approach
zero	results	in	S	=	2πrL,	as	claimed.

5.6	Ceva’s	Theorem

Ceva’s	theorem	and	its	converse.	Consider	a	triangle	ABC	with	three	points	A1,	B1,	and	C1
on	 the	 sides	 opposite	 the	 corresponding	 vertices	 (figure	 5.8).	Let	 a,	 a′	 b,	 b′,	 c,	 c′	 be	 the
lengths	as	shown	in	figure	5.8.	Ceva’s	theorem	states	that	the	three	segments	AA1,	BB1,	and
CC1	are	concurrent6	if	and	only	if

Figure	5.8.	Ceva’s	theorem:	the	three	Cevians	AA1,	BB1,	CC1	are	concurrent	if	abc	=	a′b′c′.

Proof.	First,	suppose	that	the	three	segments	AA1,	BB1,	and	CC1	share	a	common	point	P.	Let
us	place	point	masses	mA,	mB,	and	mC	onto	 the	vertices	of	ΔABC,	choosing	 these	masses	so
that	 their	center	of	mass	 lies	at	P.	To	make	such	a	choice,	we	can	 take	mB	=	a′	and	mc	=	a,
thereby	placing	the	center	of	mass	of	(B,	C)	at	A1.	Then	we	pick	mA	 so	as	 to	ensure	 that	 the



center	of	mass	of	(A,	A1)	is	at	P;	to	that	end	we	make	mA	satisfy	the	balance	condition	mA	P	A	=
(mB	+	mC)	P	A1.	Our	triangle,	thus	weighted,	will	balance	on	a	needle	point	placed	at	P.	It	will
then	certainly	balance	on	any	line	in	the	triangle’s	plane	passing	through	P,	and	on	the	line	AP
A1	in	particular,	as	figure	5.9	shows.

But	since	mA	lies	on	that	line,	mC	and	mB	are	in	balance,	that	is,

Figure	5.9.	The	triangle	balances	on	the	center	of	mass	P,	and	hence	it	balances	on	any	line	through	P—in	particular,	on	AA1.

Similarly,

mCb	=	mAb′,	mAc	=	mBc′.

Multiplying	the	last	three	equations	yields	abc	=	a′b′c′.
The	 converse	 (that	 (5.5)	 implies	 concurrency)	 is	 easily	 proved	 by	 contradiction,	 as

follows.7	Suppose	that	abc	=	a′b′c′,	and	assume	the	contrary:	one	of	the	pertinent	segments,	say
CC1,	does	not	pass	through	the	intersection	of	the	other	two.	A	different	segment	 	with	

on	 AB	 but	 	 does	 pass	 through	 the	 intersection,	 and	 the	 last	 identity	 applies:	
.	 But	 this	 is	 in	 contradiction	with	 (5.5),	 since	 .	 The	 proof	 is

complete.

5.7	Three	Applications	of	Ceva’s	Theorem



The	converse	of	Ceva’s	theorem	gives	an	immediate	proof	of	the	following	three	theorems.

Theorem	1.	In	any	triangle	the	medians	are	concurrent.

Figure	5.10.	Proof	of	concurrency	of	the	medians.

Figure	5.11.	Proof	of	concurrency	of	the	altitudes.

Proof.	Ceva’s	relation	(5.5)	holds	for	the	medians	since	a	=	a′,	b	=	b′,	c	=	c′,	and	hence	 the
medians	are	concurrent	by	the	converse	of	Ceva’s	theorem.

Theorem	2.	The	altitudes	in	any	triangle	are	concurrent.

Proof.	In	the	notations	of	figure	5.11	we	have	hC	=	c	tan	α	=	c′	tan	β;	similarly,	a	tan	β	=	a′	tan
γ	and	b	tan	γ	=	b′	tan	α.	Multiplication	of	the	last	three	equations	and	cancellation	gives	abc	=
a′b′c′.	By	the	converse	to	Ceva’s	theorem	the	altitudes	are	concurrent.



Figure	5.12.	Cevians	corresponding	to	the	incircle	are	concurrent.

Theorem	3.	The	three	segments	 (in	 figure	5.12),	each	connecting	a	vertex	of	a	 triangle	 to
the	tangency	point	of	the	inscribed	circle	with	the	opposite	side,	are	concurrent.

Proof.	Note	that	b′	=	c,	c′	=	a,	a′	=	b,	 since	 the	 lengths	of	 the	 tangent	segments	 from	a	point
outside	a	circle	to	the	circle	are	the	same	for	both	tangents.	Multiplication	gives	abc	=	a′b′c′.

5.8	Problems

Find	 the	 center	 of	 mass	 of	 a	 semicircular	 wire	 by	 solving	 two	 subproblems,	 both	 of
independent	interest.

1.	Find	the	 tension	of	a	circular	rope	of	given	mass	and	radius,	spinning	around	its	center
with	a	given	angular	velocity	(figure	5.13(a)),	by	thinking	instead	of	a	semicircular	tube
(figure	5.13(b))	with	water	entering	at	one	end	and	exiting	at	the	other.

2.	Use	the	tension	just	found	to	determine	the	center	of	mass	of	the	semicircle.

Solution.	 Part	 1.	 This	 is	 a	 standard	 problem	 in	 mechanics,	 but	 the	 following	 solution
seems	 to	be	original.	Let	us	 look	at	all	 times	only	at	 the	 right	 semicircle	of	 the	 rope—
imagine	closing	the	left	half	with	a	screen	so	that	we	do	not	have	to	look	at	it.	Now	the
rope	is	“injected”	on	top	and	exits	on	the	bottom.	This	is	the	same	as	water	entering	and
exiting	a	 tube,	as	 shown	 in	 figure	5.13(b).	The	 tube	has	 to	be	held	with	 some	 force	2T
(where	T	 is	 the	 tension	 force	we	 are	 seeking).	 This	 force	 causes	 the	water	 to	 reverse
direction,	changing	speed	by	v	−	(−v)	=	2v.	During	a	time	Δt,	a	column	of	water	of	length
ΔL	=	vΔt	will	enter	on	top,	and	the	same	length	will	exit	on	the	bottom.	The	net	result	is
that	 the	 length	ΔL	of	water	changes	speed	by	2v.	The	mass	of	 this	water	 is	m	=	ρΔL	 =
ρvΔt,	where	ρ	is	the	linear	density,	that	is,	mass	per	unit	length.	By	Newton’s	second	law
FΔt	=	mΔv	we	have



Figure	5.13.	(a)	A	spinning	flexible	rope	is	under	tension.	(b)	A	way	to	find	this	tension	by	imagining	water	injected	and	ejected
from	a	semicircular	tube.	(c)Using	the	tension	to	find	the	center	of	mass.

2T	·	Δt	=	m	·	2v.

After	solving	for	T	and	substituting	the	expression	for	m,	Δt	cancels,	and	we	obtain

T	=	ρv2	=	ρω2	R2,

where	T	is	the	tension	and	ω	is	the	angular	velocity.
Part	2.	Let	us	focus	attention	on	a	material	semicirclular	arc	of	the	rope.	The	arc	stays	in
orbit	due	to	two	tension	forces	T	(see	figure	5.13(a)).	The	centripetal	force	2T	causes	the
centripetal	acceleration	of	 the	center	of	mass:	Mω2x	=	2T,	where	M	 is	 the	mass	 of	 the
semicircle	and	thus	M	=	ρπ	R.	Substituting	into	the	last	equation	we	get	ρπ	Rω2x	=	2ρω2

R2,	so	that	x	=	2R/π.

3.	Prove	that	four	segments,	each	connecting	a	vertex	of	a	tetrahedron	to	the	centroid	of	the
opposite	face,	are	concurrent.	The	tetrahedron	is	not	assumed	be	be	regular.

1It	 is	 striking	 to	 read	 Archimedes’	 work,	 available	 via	 Google	 Books	 at	 http://books.google.com/books?
id=suYGAAAAYAAJ.	Archimedes’	remarkable	application	of	the	concept	of	center	of	mass	to	integral	calculus	is	described	in
the	book	by	Polya	[P].
2Linear	density	of	a	wire	is	defined	as	the	mass	per	unit	of	the	wire’s	length.
3It	can	also	be	explained	by	a	physical	(kinematic)	argument	by	considering	the	acceleration	of	a	point	moving	on	a	circle,

treating	θ	as	time.	I	leave	this	explanation	to	the	reader	as	a	challenge.
4We	 are	 using	 the	 fact	 that	 the	 centroid	 is	 at	 the	 intersection	 of	 the	 medians	 and	 that	 the	 medians	 are	 divided	 by	 their

common	point	in	the	ratio	of	1	:	2.	Thus	the	centroid	lies	on	the	median	two-thirds	of	the	way	from	the	vertex	of	the	triangle	to
its	side.
5Indeed,	 if	I	change	the	shape	of	 the	chain	in	any	way,	I	have	to	apply	force,	which	the	chain	will	resist.	That	 is,	 I	will	do

positive	work	on	the	chain,	thereby	increasing	the	chain’s	potential	energy	and	therefore	elevating	the	chain’s	center	of	mass.
Here	I	used	the	fact	that	the	potential	energy	of	an	object	is	mgh,	where	m	is	the	mass	and	h	is	the	elevation	of	the	center	of
mass.
6That	is,	all	intersect	at	one	point.
7See,	e.g.,	[CG].
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6

GEOMETRY	AND	MOTION

Most	of	the	problems	in	this	section	rely	on	the	idea	of	motion.	The	idea	of	motion	was	already
used	in	the	section	on	Pythagorean	theorem.	In	section	2.4	we	pointed	out	that	the	fundamental
theorem	of	calculus	can	be	thought	of	in	kinematic	terms.	In	this	section	I	collected	a	few	other
problems,	 of	which	 I	 like	 the	 bike	 problem	 the	 best.	 A	 beautiful	 application	 of	 the	 idea	 of
motion,	which	allows	to	find	the	area	under	the	tractrix	with	no	formulas,	due	to	R.	Foote	[Fo],
is	 stated	 in	section	6.6	as	a	problem.	Another	problem	at	 the	end	of	 the	chapter	describes	a
way	of	measuring	areas	in	the	plane	using	a	shopping	cart.	More	on	the	kinematic	approach	can
be	found	in	the	book	[LS].

6.1	Area	between	the	Tracks	of	a	Bike

Problem.	Imagine	riding	a	bike	so	that	both	wheels	execute	closed	paths	 (figure	6.1).	The
front	wheel	never	rides	over	the	rear	track,	so	that	the	distorted	ring	is	not	pinched.	Show
that	the	area	of	this	ring	does	not	depend	on	the	bike’s	path(!).

The	area	is	the	same	whether	you	ride	around	your	dining	table1	or	around	a	block.
We	assume	an	 idealized	bike:	 the	distance	b	 between	 the	points	 of	 contact	 of	 the	wheels

with	the	ground	is	constant.2	We	will	refer	to	b	as	the	base.	The	problem’s	claim	implies	that
the	ring	has	area	πb2.	This	is	the	same	area	we	would	get	by	keeping	the	rear	wheel	fixed	and
pivoting	the	front	wheel	in	a	circle.



Figure	6.1.	The	area	between	the	two	tracks	is	always	the	same:	πb2,	where	b	is	the	bike’s	base.

Solution.	The	bike’s	frame	is	tangent	to	the	rear	track	at	all	times,	as	figure	6.1	illustrates.	The
area	in	question	is	therefore	swept	by	a	tangent	segment	to	the	rear	curve	as	this	segment
slides	all	the	way	around	the	curve.	This	segment	has	constant	length	b	throughout	its	trip.

Why	 is	 the	area	swept	always	 the	same?	Here	 is	 the	heuristic	explanation.3	Note	 that	 the
rate	of	sweeping	of	area	does	not	depend	on	the	velocity	of	the	segment	in	its	own	direction.
Whether	or	not	the	segment	has	any	“sliding”	motion	is	irrelevant.	But	if	we	subtract	the	sliding
velocity,	the	segment	will	simply	rotate	around	its	rear	point	R,	sweeping	out	a	circle!	Hence
the	area	of	the	ring	is	the	same	as	that	of	the	circle	of	radius	b	=	|RF|	equal	to	the	base	of	the
bike.



Figure	6.2.	The	petal	sliding	along	the	circle	sweeps	the	same	volume	as	the	petal	pivoting	on	its	point.

6.2	An	Equal-Volumes	Theorem

This	 is	a	Pappus-like	 theorem	which	 I	 stumbled	upon	when	 thinking	of	 the	bicycle	problem.
The	intuition	behind	this	problem	is	a	straightforward	generalization	of	the	intuition	behind	the
bike	problem.	Once	we	know	the	fact,	proving	it	using	calculus	is	not	hard.	However,	I	would
not	have	discovered	this	fact	with	formulas.

Theorem.	A	donut-shaped	 solid	 is	 obtained	 in	 the	usual	way	by	 rotating	a	 closed	 convex
curve	around	an	axis	 lying	 the	plane	of	 the	curve	 (the	 axis	 does	not	 intersect	 the	 curve).
Now	cut	the	donut	with	a	plane	parallel	to	the	axis	and	tangent	to	the	innermost	parallel	of
the	donut,	resulting	in	a	“figure	eight”	section,	as	in	figure	6.2.
Let	 us	 spin	 this	 figure	 eight	 around	 the	 line	 passing	 through	 the	 pinching	 point	 and

parallel	to	the	axis	of	the	donut.	We	obtain	a	new	solid:	a	differently	shaped	donut	with	a
pinched	hole	(figure	6.2).	The	volume	of	this	solid	equals	the	volume	of	the	original	solid.



Figure	6.3.	The	relationship	between	the	centroids	and	the	areas	of	the	two	sections	of	a	donut.

Proof.	Consider	one	“petal”	of	the	figure	eight.	As	the	petal	slides	along	as	shown	by	arrow	on
the	 left	 side	 of	 figure	 6.2,	 it	 sweeps	 our	 given	 donut.	 In	 doing	 so,	 the	 petal	 executes	 two
motions	simultaneously:	 (i)	 sliding	 in	 its	own	plane	and	 (ii)	 rotating	around	 the	 line	passing
through	 the	 petal’s	 pinching	 point	 as	 described	 in	 the	 theorem.	 If	 we	 subtract	 the	 sliding
motion,	we	do	not	affect	the	volume	swept.	The	resulting	new	solid	has	the	same	volume	as	the
first.

Corollary.	Let	A	be	area	of	the	disk	formed	by	intersecting	the	donut	with	the	plane	through	its
axis,	 and	 let	 R	 be	 the	 distance	 from	 the	 centroid	 of	 this	 disk	 to	 the	 symmetry	 axis,	 as	 in
Pappus’s	theorem.	Similarly,	let	Ap	be	the	area	of	a	petal	(half	of	the	figure	eight),	and	let	Rp	be
the	distance	from	the	centroid	of	the	petal	to	the	axis	as	in	a	figure	eight,	(figure	6.3).	Then

6.3	How	Much	Gold	Is	in	a	Wedding	Ring?

The	following	fact	may	be	hard	to	believe	at	first.	Having	been	told	of	it	before,	I	could	not
explain	why	 is	 it	 true—a	 formal	 calculation	did	not	 seem	satisfying—until	 the	“bike	 tracks”
problem	(problem	6.1)	suggested	the	answer.



Figure	6.4.	The	volume	of	the	ring	depends	only	on	its	height	H!

Theorem.	 Figure	 6.4	 shows	 a	 ring	 whose	 inner	 surface	 is	 cylindrical	 and	 whose	 outer
rounded	surface	is	spherical;	 the	center	of	 the	sphere	lies	on	the	axis	of	 the	cylinder.	The
volume	of	such	ring	depends	only	on	its	height	H,	and	is	equal	to	 	H3.

In	particular,	the	ring	around	the	Earth-sized	sphere	has	the	same	volume	as	a	wedding	ring,
provided	the	two	rings	have	the	same	height	(assuming	both	the	globe	and	the	outer	surface	of
the	wedding	ring	are	perfect	spheres).

Proof.	 One	 can	 prove	 this	 theorem	 by	 an	 explicit	 calculation.	 The	 following	 “kinematic”
argument	avoids	formulas	and	makes	the	fact	obvious.	The	figure	tells	most	of	the	story.

Here	are	the	details.	Figure	6.4(a)	shows	a	plane	 tangent	 to	 the	 inner	cylinder.	The	plane
cuts	 the	 sphere	 in	 a	 circular	 disk.	 The	 disk’s	 diameter	 lies	 on	 a	 generator	 of	 the	 cylinder.
Consider	 a	 half-disk	 as	 shown	 in	 figure	 6.4(b).	 Now	 let	 us	 slide	 this	 semidisk	 along	 the
cylindrical	surface,	as	shown	by	the	arrow,	keeping	the	semidisk	tangent	to	the	cylinder.	The
moving	semidisk	sweeps	the	entire	volume	of	the	ring.	But	the	motion	of	the	semidisk	consists
of	pure	“sliding”	in	its	own	plane—this	contributes	nothing	to	sweeping	of	the	volume—and	of
rotation	 around	 the	 diameter.	 Therefore,	 if	 we	 subtract	 the	 “sliding”	 motion,	 we	 will	 not
change	 the	 volume	 swept.	But	 the	modified	motion	 of	 the	 semidisk,	 shown	 in	 figure	 6.4(c),
sweeps	a	ball	of	diameter	H.	The	volume	of	the	ring	is	therefore	the	same	as	that	of	a	ball	of
diameter	H:



Figure	6.5.	The	optimal	Q	must	lie	between	Q+	and	Q−.

6.4	The	Fastest	Descent

Problem.	A	circle	C	and	a	point	P	in	the	vertical	plane	are	given.	Let	Q	be	a	point	on	C,	and
consider	 a	 bead	 sliding	 along	 the	 segment	 PQ	 under	 the	 influence	 of	 gravity.	 The	 bead
starts	at	P	with	zero	speed.	For	which	point	Q	will	the	travel	time	be	minimal?

Some	remarks.	Could	Q+,	the	point	closest	to	P,	be	the	answer?	No.	Indeed,	let	us	move	the
point	Q	 clockwise	and	keep	 track	of	 the	 sliding	 time	 tPQ	 as	a	 function	of	Q.	At	 the	moment
when	Q	 passes	Q+,	PQ	 changes	with	 zero	 speed	 (because	 it	 just	 stopped	 shortening	 and	 is
about	to	begin	lengthening).	On	the	other	hand,	the	slope	of	PQ	steepens	with	a	positive	speed.
In	 short,	 at	 the	 moment	 when	 Q	 =	 Q+,	 the	 length	 changes	 with	 zero	 speed,	 while	 the
acceleration	down	PQ	increases.	This	means	that	the	sliding	time	shortens.	Thus	it	is	better	to
put	Q	below	Q+.	Similarly,	at	the	moment	when	Q	passes	Q−	(the	point	of	tangency	in	figure
6.5)	 in	 its	 clockwise	 travel,	 the	 distance	PQ	 lengthens	with	 infinite	 speed,	while	 the	 slope
changes	with	finite	speed.	It	then	clearly	pays	to	put	Q	above	Q−.	This	localizes	the	best	point
Q	somewhat,	but	where	exactly	is	it?



Figure	6.6.	At	any	time	t	>	0	the	beads	form	a	circle,	if	they	started	at	P	with	zero	initial	speed.

Solution.	Consider	a	“fan”	of	lines	through	P,	with	a	bead	on	each	line	placed	at	P.	At	t	=	0
we	release	all	the	beads	with	zero	initial	speed,	and	they	begin	to	race.	At	time	t	>	0	the	beads
form	some	curve	shown	in	figure	6.6.	We	denote	this	curve	by	F	=	Ft	(the	letter	F	stands	for	the
“front,”	like	the	front	of	a	propagating	wave).	As	t	increases,	the	expanding	front	will	touch	the
circle	at	some	point	Q.	This	point	of	first	contact	gives	the	shortest	descent	time.	Indeed,	Q	is
the	first	point	on	C	to	be	reached	by	any	bead.

Remarkably,	the	front	Ft	turns	out	to	be	a	circle,	for	each	time	t,	as	shown	in	figure	6.6!	This
circle	passes	through	P	with	its	tangent	at	P	horizontal;	the	diameter	of	the	circle	is	gt2/2.	We
can	now	pick	a	circle	Ft	tangent	to	C;	the	“best”	point	Q	is	the	point	of	tangency	between	the
two	 circles.	This	 answer	 is	 a	 bit	 implicit,	 but	 it	 is	 not	 hard	 to	 show	 that	Q	 lies	 on	 the	 line
connecting	P	with	the	lowest	point	Q′	of	the	circle	C.

Proving	that	the	beads	form	a	circle.	First,	recall	a	basic	geometrical	fact.	Let	PP′	=	D	be	the
diameter	of	a	circle	(figure	6.7),	and	let	PS	be	any	chord,	with	θ	=	 SPP′.	Then

Figure	6.7.	If	PS	=	D	cos	θ,	then	S	lies	on	the	circle	with	the	diameter	D	=	PP′.

This	 follows	from	the	fact	 that	 PSP′	=	90˚.	The	converse	also	holds:	 the	 locus	of	points	S
satisfying	(6.1)	is	a	circle.

Now	let	us	return	to	the	sliding	beads.	Fix	some	t	>	0	and	consider	a	typical	bead	S	at	this
instant.	The	acceleration	of	this	bead	is

as	figure	6.7(b)	illustrates.	The	distance	this	bead	will	travel	in	time	t	is	therefore



where	D	=	gt2/2	is	the	distance	of	free	fall.	We	showed	that	at	time	 t,	every	bead	S	 satisfies
(6.1).	According	to	the	preceding	geometrical	remark,	all	beads	S	lie	on	the	circle	of	diameter
D	=	gt2/2	with	the	top	point	at	P,	as	claimed.

6.5	Finding	 	sin	t	and	 	cos	t	by	Rotation

Consider	a	point	P	moving	on	a	unit	circle	with	unit	speed	in	the	counterclockwise	direction,
starting	at	the	point	P0	on	the	x	axis	at	t	=	0.	The	arc	P0P	therefore	has	length	t,	that	is,	 P0OP
=	t.	By	the	definition	of	sine	and	cosine,	the	position	vector

Figure	6.8.	s	=	sin	t,	c	=	cos	t.

The	velocity	is	given	by	the	derivative	of	the	position:



On	the	other	hand,	since	|v|	=	1	(by	assumption),	the	shaded	right	triangles	in	figure	6.8	have
congruent	hypotenuses	(of	length	1).	Moreover,	since	v	 	 ,	all	the	corresponding	sides	of
the	 two	 triangles	 are	 perpendicular	 and	 hence	 the	 corresponding	 angles	 are	 congruent.	 The
shaded	triangles	are	therefore	congruent,	and	thus

Comparing	with	the	previous	equation	we	conclude	 	 .

Figure	6.9.	What	is	the	area	under	the	tractrix?

6.6	Problems

1.	 (Foote	 [Fo])	The	 tractrix	 is,	by	definition,	 the	curve	 formed	by	 the	 rear	 track	of	a	bike
when	the	front	track	moves	in	a	straight	line.	More	precisely,	a	curve	is	called	a	tractrix	if
there	 exists	 a	 length	 b	 and	 a	 straight	 line	 such	 that	 the	 segment	 of	 any	 tangent	 lying
between	 the	 curve	 and	 the	 line	 has	 length	 b.	 In	 figure	 6.9	 the	 semi-infinite	 tractrix	 is
sketched.	What	is	the	area	of	the	shaded	infinite	figure?
Answer:	 .

2.	While	waiting	in	a	long	checkout	line	in	a	supermarket,	I	am	tracing	the	outline	of	a	floor
tile	with	a	front	wheel	of	my	shopping	cart.	After	one	round	trip	of	 the	front	wheel,	 the
rear	wheels	end	up	in	a	new	place.	That	 is,	 the	cart	has	pivoted	around	the	front	wheel
through	some	angle	θ.	What	is	the	approximate	value	of	θ,	given	any	desired	information
(short	of	the	answer)?	The	area	of	the	tile	is	A,	the	distance	between	the	front	and	the	rear
wheel	 is	b.	Assume	 that	b	 is	much	 longer	 than	 the	 side	 of	 the	 tile.	 To	 further	 simplify
things,	assume	that	the	rear	wheel	aims	exactly	at	the	front	wheel	(in	an	actual	cart	this	is
not	so;	the	wheels	form	a	trapezoid).
Answer:	 θ	 ≈	 A/b2.	 For	 much	 more	 on	 this	 problem,	 see	 [Fo],	 [LW],	 and	 references
therein.



1Bad	advice	involving	a	table	was	also	given	in	section	1.3,	where	I	suggested	drilling	some	holes.
2Strictly	speaking,	for	this	to	be	true	the	front	fork	has	to	be	vertical.
3This	is	the	same	explanation	as	in	the	“sweeping”	proof	of	the	Pythagorean	theorem	in	section	2.6.
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COMPUTING	INTEGRALS	USING	MECHANICS

The	first	two	problems	in	this	section	are	easy	to	do	with	calculus	and	without	mechanics.	The
point	 here	 is	 to	 illustrate	 how	 the	 “thinking”	 that	 the	 calculus	 machinery	 does	 for	 us	 can
sometimes	be	done	by	a	mechanical	“analog	computer.”

7.1	Computing	 	by	Lifting	a	Weight

A	weight	P	 =	 1,	mounted	on	 a	 frictionless	 vertical	 track,	 hangs	on	 a	 string	of	 length	1.	The
string	 is	 vertical	 initially.	As	 the	 top	 end	of	 the	 string	 is	moved	horizontally	 from	 its	 initial
position,	the	weight	slides	upward	along	the	vertical	line.	In	changing	the	displacement	x	of	the
top	end	of	the	string	from	x	=	0	to	x	=	1,	we	do	work	 ,	where	F(x)	is	the
force	required	to	hold	the	end	of	the	string	at	x,	as	in	figure	7.1.1

On	the	other	hand	the	same	work	goes	into	raising	the	weight	P	by	height	1,	so	that	W	=	P	·	1
=	 1,	 and	we	 conclude	 .	 Now	 I	 claim	 that	 .	 Let	O	 be	 the
point	of	intersection	of	two	perpendiculars,	as	shown	in	figure	7.2.

The	sum	of	torques	upon	the	string	AB	relative	to	O	vanishes,	which	gives



Figure	7.1.	The	work	done	by	raising	the	weight	is	 .

Figure	7.2.	The	normal	reaction	forces	−F	and	−P	have	zero	torque	relative	to	O.



Figure	7.3.	The	work	required	to	pull	the	weight	from	the	bottom	to	angle	x	is	 .

and	since	 	and	P	=	1,	we	obtain	F(x)	=	 ,	as	claimed.	We
showed	that

7.2	Computing	 	sin	tdt	with	a	Pendulum

Consider	a	pendulum:	a	point	mass	of	weight	P	=	1	on	a	stick	of	length	1,	pivoting	on	a	hinge
O.	Force	sin	t	is	needed	to	hold	the	pendulum	at	an	angle	t	to	the	vertical,	as	seen	in	figure	7.3.
Since	the	radius	of	the	rod	is	1,	the	angle	t	measures	the	length	along	the	circle.	Therefore,	the
work	required	to	move	the	bob	from	t	to	d	+	dt	is	sin	t	dt,	and	the	total	work	needed	to	pull	the
bob	from	the	bottom	t	=	0	to	t	=	x	is	 .	On	the	other	hand,	the	change	in	potential
energy	is	(weight)	 ·	(height)	=	1	−	cos	x	(figure	7.4).	Equating	 two	expressions	for	 the	same
energy	gives



Figure	7.4.	Potential	energy	for	the	deflection	angle	x	is	1	−	cos	x.	The	weight	is	1.

7.3	A	Fluid	Proof	of	Green’s	Theorem

This	short	discussion	makes	the	concept	of	divergence	and	Green’s	formula

seem	almost	trivial.	This	heuristic	discussion	uses	the	concepts	of	the	dot	product	and	the	line
integral.

We	 are	 given	 (i)	 a	 planar	 vector	 field	F	 =	F(x,	y)	 and	 (ii)	 a	 curve	C	 bounding	 a	 planar
region	D.	The	key	is	to	think	of	F	as	the	velocity	field	of	an	imaginary	planar	gas,	and	to	let	the
domain	D	flow	according	to	the	velocity	field	F,	obtaining	a	new	domain	D(t)	at	time	 t	with
D(0)	=	D.	Let	A(t)	=	area(D(t)).

Dividing	the	domain	D	into	a	large	number	N	of	small	pieces	Dn,	1	≤	n	≤	N,	we	split	up	its
area:

Differentiating	by	t	at	t	=	0,	we	get	(using	the	notation	=	d/dt):

But	 the	 rate	 of	 change	 	 of	 the	 area	 of	 each	 small	 piece	 should	 be	 approximately
proportional	to	its	area:



Figure	7.5.	The	initial	domain	is	carried	by	the	flow	F.

where	ε	is	a	small	error:	ε/An(0)	→	0	if	An(0)	→	0.	The	coefficient	of	proportionality	k,	 in
the	limit	of	the	area	shrinking	to	a	point,	is	called	the	divergence	of	F	at	that	point.	That	is,
one	defines

where	the	limit	is	taken	as	the	domain	shrinks	toward	the	point	(x,	y).	The	coefficient	k	tells	us
how	fast	the	area	expands	(or	contracts)	per	unit	area	at	a	point.2	Thus	k	is	indeed	a	measure	of
the	divergence	of	the	gas	particles.

Now	substituting	(7.3)	into	(7.2)	we	obtain

where	(xn,	yn)	is	a	point	inside	the	nth	“cell.”	In	the	limit	of	infinitely	fine	partition	we	obtain

Now	the	rate	of	change	of	area	of	a	moving	region	is	the	integral	of	the	normal	component	of



the	speed	of	 its	boundary:	 	 	 (here	n	 is	 the	outward	unit	normal	 to	C).
This	completes	the	sketch	of	the	proof	of	Green’s	theorem	(7.1).

1The	value	x	=	1	is	not	reachable,	since	it	requires	infinite	force;	we	are	dealing	with	an	improper	integral.
2It	is	a	simple	matter	to	obtain	the	formula	 	from	this	definition.
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THE	EULER-LAGRANGE	EQUATION	VIA
STRETCHED	SPRINGS

8.1	Some	Background	on	the	Euler-Lagrange	Equation

This	short	chapter	contains	a	purely	mechanical	interpretation	of	the	Euler-Lagrange	functional
as	 the	 potential	 energy	 of	 an	 imaginary	 spring.	 This	 interpretation	 makes	 for	 an	 almost
immediate	derivation	of	the	Euler-Lagrange	equations	and	gives	a	very	transparent	mechanical
explanation	 of	 the	 conservation	 of	 energy.	 Moreover,	 each	 individual	 term	 in	 the	 Euler-
Lagrange	equation	acquires	a	concrete	mechanical	meaning.

Here	is	some	motivation	for	the	reader	not	familiar	with	the	Euler-Lagrange	equations.
A	basic	problem	of	the	calculus	of	variations	is	to	find	a	function	x(t)	which	minimizes	an

integral	involving	x	and	its	derivative	 :

where	L	is	a	given	function	of	two	arguments,	and	where	the	boundary	values	of	x	are	given:
x(0)	=	x0,	x(1)	=	x1.

To	give	the	flavor	of	the	rest	of	the	chapter,	let	us	look	at	an	example:	minimize

subject	to	x(0)	=	0,	x(1)	=	a.	How	to	do	it?	Instead	of	using	the	standard	theory,	I	will	illustrate
in	this	particular	example	how	mechanics	solves	this	problem.	The	same	approach	applies	in
general,	as	shown	later.

I	want	 to	 interpret	 the	 integral	 (8.2)	as	 the	potential	energy	of	a	spring.	To	do	 this,	 let	us
imagine	 a	 spring	 laid	 along	 the	x	 axis.	We	 interpret	x(t)	 as	 the	 position	 of	 a	 particle	 of	 the
spring,	where	t	 is	 the	parameter	 labeling	 the	particles	of	 the	spring.	We	hold	 the	ends	of	 the
spring	at	x	=	0	and	at	x	=	a:	x(0)	=	0,	x(1)	=	a.	We	also	assume	that	the	spring	is	elastic,	in	the
sense	that	the	tension	force	of	the	spring	is	given	by	Hooke’s	law:	T(x)	=	dx/dt	=	 .	Note	that	I
can	stretch	the	spring	by	different	amounts	in	different	places,	so	that	T(x(t))	=	 (t)	can	vary
with	t.	I	claim	that	(8.2)	is	precisely	the	potential	energy	of	such	a	spring	(where	each	particle



t	 is	 held	 at	x	 =	x(t),	 perhaps	 by	 force).	 Postponing	 the	 proof	 to	 the	 next	 paragraph,	we	 are
done:	 if	 a	 particular	 function	 x(·)	 delivers	 a	 minimum	 of	 (8.2),	 then	 the	 corresponding
configuration	 of	 the	 spring	 is	 in	 equilibrium,	 and	 thus	 the	 tension	 throughout	 the	 spring	 is
constant:1	 	=	0,	or	 	=	0,	so	that	x	is	a	linear	function;	the	boundary	conditions	yield	x	=	at	as
the	solution.

It	 remains	 to	 explain	why	 (8.2)	 is	 the	 potential	 energy.	 Consider	 a	 small	 element	 of	 the
spring	corresponding	to	the	interval	(t,	t	+	dt).	Let	us	start	with	 the	element	unstretched,	and
then	stretch	it	from	its	zero	length	to	the	final	length	x(t	+	dt)	−	x(t).	As	we	stretch	it,	the	force
changes	from	0	to	 (t)	linearly	with	the	distance,	so	that	the	average	force	we	apply	is	 .	On
the	 other	 hand,	we	 cover	 the	 distance	x(t	 +	dt)	−	x(t)	=	 dt,	 for	 the	 total	work	 ,	 as
claimed!

Although	Archimedes	 could	 have	 discovered	 the	 approach	 outlined	 above,	 and	 no	 doubt
could	 have	 generalized	 it,	 the	 problem	was	 not	 posed	 to	 him.	 Instead,	 Euler	 and	 Lagrange
solved	the	problem	by	different	methods.	They	found	that	if	a	function	x	=	x(t)	gives	a	minimum
to	the	integral	(8.1),	then	it	must	satisfy	the	condition

the	 subscripts	 here	 denote	 partial	 derivatives.	 Note	 that	 our	 simple	 case	 follows	 from	 this
result.	 Indeed,	 if	 ,	 then	 ,	 Lx	 =	 0,	 and	 (8.3)	 becomes	 	 =	 0,	 as	 we
discovered	 by	 a	 naive	 mechanical	 argument.	 The	 same	 argument	 turns	 out	 to	 extend	 to	 the
general	case,	leading	to	(8.3)	and	to	its	mechanical	interpretation.

Figure	8.1.	The	potential	force	balances	the	tensions:	this	is	a	mechanical	interpretation	of	the	Euler-Lagrange	equation	(8.3).

Since	 the	 time	 of	 Euler	 and	 Lagrange,	 the	 standard	 way	 to	 derive	 (8.3)	 is	 to	 use
infinitesimal	variations	[GF].	Our	goal	here	is	 to	point	out	 that	an	approach	that	Archimedes
could	 have	 used	 gives	 an	 alternative	 derivation,	 and,	 what	 is	 more,	 provides	 a	 concrete
mechanical	 interpretation	 to	 the	 individual	 terms	 in	 the	 equation.	 In	 a	 nutshell,	 (8.3)	 can	 be
viewed	as	the	condition	that	a	hanging	“slinky”	is	in	equilibrium.

I	should	point	out	that	the	arguments	here	are	not	rigorous;	the	goal	is	rather	to	show	that	the
theory	has	a	palpable	mechanical	interpretation.

8.2	A	Mechanical	Interpretation	of	the	Euler-Lagrange	Equation



Let	us	imagine	an	idealized	spring,	like	a	heavy	rubber	band	or	a	slinky,	treated	as	an	infinitely
thin	line,	laid	along	an	x	axis.	The	particles	of	our	spring	are	labeled	by	a	parameter	t	 	[0,	1],
so	that	x(t)	is	the	coordinate	of	the	corresponding	particle.

Let	t	measure	 the	mass	of	 the	slinky,	so	 that	 the	segment	[x(t),	x(t	+	dt)]	has	mass	dt.	We
now	endow	the	Euler-Lagrange	integral	(8.1)	with	the	meaning	of	total	potential	energy	of	the
string.

1.	L(x,	 0)	 is	 the	 potential	 on	 the	 line;	 in	 other	words,	 a	 point	mass	dm	 located	 at	 x	 has
potential	 energy	L(x,	0)dm.	By	 the	 definition	 of	 the	 potential	 energy,	 the	 corresponding
force	upon	this	mass	is

2.	The	slinky	satisfies	an	analog	of	Hooke’s	law:	the	tension	is	 .	For
example,	in	the	most	important	case	of	 	we	have	T	=	m ,	the	linear
Hooke’s	law.	But	in	general	the	tension	depends	not	only	on	the	stretching	 	but	also	on
the	location	x.

	L(x,	 )	dt	=	slinky’s	total	energy.	Indeed,	consider	a	short	segment	[x(t),	x(t	+	dt)]	of	the
slinky,	of	mass	dt.	The	potential	energy	consists	of	 two	parts:	 first,	 the	potential	energy	of	a
point	mass	dt,	given	by	L(x(t),	0)dt,	and	second,	the	work	required	to	stretch	this	point	mass	dt
to	become	our	segment;	this	work	is	given	by

where	 	=	s.	The	segment’s	total	energy,	potential	+	stretching,	is	then	L(x,	 )dt.	The	total
energy	of	the	slinky	is	then	the	Euler-Lagrange	integral	(8.3),	as	claimed.

8.3	A	Derivation	of	the	Euler-Lagrange	Equation

If	 a	 function	 x(t)	minimizes	 the	 Euler-Lagrange	 integral,	 then	 the	 corresponding	 slinky	 is	 in
equilibrium.	The	difference	 in	 tensions	at	 the	 two	ends	of	an	 infinitesimal	segment	 is	 then	 in
balance	with	the	potential	force



Dividing	both	sides	by	dt	and	taking	the	limit	as	dt	→	0	leads	to	the	Euler-Lagrange	equation.
To	 summarize,	 we	 have	 endowed	 each	 term	 in	 the	 Euler-Lagrange	 equation	 with	 a

mechanical	 interpretation:	 	 is	 the	 tension,	 	 	 is	 the	 resultant	 of	 tensions	 per	 unit
mass,	and	Lx	is	the	potential	force	per	unit	mass.

8.4	Energy	Conservation	by	Sliding	a	Spring

The	Euler-Lagrange	equation	(8.3)	has	a	property	hidden	to	a	naked	eye.	It	turns	out	that

for	any	solution	x	=	x(t)	of	the	Euler-Lagrange	equation.	What	is	the	meaning	of	this	quantity2
in	our	“slinky”	model?	The	answer	is	hidden	in	this	obvious	observation:	Since	the	slinky	is
uniform,	that	is,	its	energy	density	L(x,	 )	doesn’t	depend	on	t	explicitly,	we	know	that

where	c	is	a	constant.	Let	us	now	translate	the	obvious	(8.5)	into	the	nonobvious	(8.4).	Let	us
slide	the	slinky	to	the	right	with	c	=	dt,	by	letting	the	mass	dt	slide	into	[a,	b]	at	x	=	a	and	by
pulling	the	same	mass	out	at	x	=	b.	The	change	of	energy	inside	[a,	b]	is	zero	by	(8.5)	on	the
one	hand.	On	the	other	hand,	this	change	is	composed	of	the	energy	of	added	mass	minus	the
energy	 of	 removed	mass	and	 of	 the	work	 done	 by	 the	 tension	 forces	 on	 the	 two	 ends.	 The
added/removed	energy	is

while	the	work	done	by	tension	forces	at	each	end	is

Setting	the	sum	of	these	two	energies	to	zero	and	dividing	by	dt	gives

proving	the	constancy	of	the	energy	(8.4)!



1Since	no	other	forces	act	on	a	spring.
2In	 the	special	case	when	L	 is	 the	difference	of	 the	potential	and	 the	kinetic	energies,	L	−	 L 	 turns	out	 to	be	 the	 total

energy,	i.e.,	the	sum	of	the	two	energies.



9

LENSES,	TELESCOPES,	AND	HAMILTONIAN
MECHANICS

The	central	point	of	this	chapter	is	a	very	simple	hand-waving	(in	a	literal	sense)	argument	in
mechanics	 in	 section	 9.3.	 This	 simple	 mechanical	 argument	 has	 rather	 unexpected
consequences	in	mathematics	and	in	optics.1	Thanks	to	the	mechanical	interpretation,	some	of
these	 consequences,	 usually	 discussed	 only	 in	 graduate	 courses,	 become	 much	 more
accessible.

Here	 is	 the	plan	of	 the	chapter.	Section	9.1	contains	 the	background;	sections	9.3	and	9.2
describe	the	mechanical	system	and	give	a	mechanical	proof	of	a	geometrical	theorem	on	area
preservation.	 Section	 9.7	 connects	 the	mechanical/geometrical	 problem	with	 an	 optical	 one,
and	the	last	section	(9.8)	explains	the	functioning	of	telescopes	and	other	optical	devices	via
the	“uncertainty	principle,”	which	in	turn	came	from	mechanics.

Here	are	the	chapter’s	highlights:

1.	Area-preserving	mappings	arise	naturally	in	mechanics	(sections	9.2	and	9.3).
2.	A	table	of	analogies	between	mechanics	and	area-preserving	maps	(section	9.5).
3.	The	uncertainty	principle—a	classical	counterpart	(section	9.6).
4.	 The	working	 of	 telescopes,	 binoculars,	 and	 other	 optical	 devices	 is	 explained	 via	 the
“uncertainty	principle”	(section	9.8).

Figure	9.1.	Examples	of	area-preserving	mappings.

9.1	Area-Preserving	Mappings	of	the	Plane:	Examples



A	mapping	of	the	plane	is,	by	the	definition,	a	function	which	to	every	point	z	=	(x,	y)	 in	 the
plane	assigns	a	new	point

A	mapping	is	said	to	be	area	preserving	if	the	area	of	any	set	equals	the	area	of	its	image
under	the	mapping.	Simplest	examples	of	the	area	preserving	mappings	include

1.	A	rotation:	to	every	point	(x,	y)	the	map	assigns	the	point	rotated	through	a	given	angle	θ.
This	point	is	given	by	x	cos	θ	−	y	sin	θ,	x	sin	θ	+	y	cos	θ),	as	in	figure	9.1(a).

2.	A	hyperbolic	rotation:	stretching	by	a	constant	factor	λ	in	one	direction	and	contraction	by
the	same	factor	in	another;	for	instance,	(x,	y)	 	(λx,	λ−1	y),	as	in	figure	9.1(b).

3.	A	parabolic	rotation	(x,	y)	 	(x	+	ay,	y),	or	a	shear	map,	as	in	figure	9.1(c).
4.	A	parabolic	shear:	(x,	y)	 	(x	+	y2,	y),	as	in	figure	9.1(d).

9.2	Mechanics	and	Maps

A	remarkable	connection	between	geometry	and	mechanics	is	a	recurring	pattern	in	this	book.	I
will	 describe	 one	 aspect	 of	 this	 connection	 in	 a	 maximally	 simple	 form,	 stripped	 of	 most
terminology	and	of	all	technicalities.	Using	mechanics,	we	will	obtain	an	explanation	of	why
telescopes,	microscopes,	and	binoculars	magnify	objects.

Figure	9.2.	Mechanics	leading	to	geometry:	The	mechanical	system	gives	rise	to	a	mapping	ψ	from	the	(position,	force)	pair	(x,
f)	on	the	left	to	a	similar	pair	(X,	F)	on	the	right.

Figure	9.3.	The	potential	energy	of	a	zero-length	spring	is	a	generating	function	the	shear	map.

Here	 is	 this	 geometry-mechanics	 connection	 in	 a	 nutshell.	 Consider	 a	 simple	mechanical
system,	such	as	the	one	in	figure	9.2.2	Each	of	the	two	rings	can	slide	frictionlessly	along	its



line.	Imagine	me	holding	the	two	rings,	with	everything	at	rest.	The	position	x	of	the	left	ring
and	the	force	f	with	which	it	pulls	my	left	hand	determine3	the	position	X	of	the	right	ring	and
the	force	F	with	which	it	tries	to	move.	We	thus	have	a	mapping

Here	comes	the	remarkable	part:	the	mapping	is	area	preserving,	no	matter	how	complicated
the	 mechanical	 arrangement	 between	 the	 two	 rings	 might	 be.	 We	 can	 change	 ψ	 by	 adding
springs,	pulleys,	more	weights,	but	we	cannot	change	 its	property	of	area	preservation.	 (For
other	examples,	see	figures	9.3	and	9.7.)

The	explanation	is	very	simple	and	is	given	in	the	next	section.

9.3	A	(Literally!)	Hand-Waving	“Proof”	of	Area	Preservation

Here	 is	 the	 proof	 that	 the	map	ψ	 :	 (x,	 f)	 	 (X,	 F)	 preserves	 area.	 Referring	 to	 figure	 9.2,
imagine	me	holding	the	two	rings	so	that	the	assembly	is	stationary.	To	keep	everything	still	I
have	to	apply	the	force	(−	f)	with	my	left	hand	and	the	force	(−	F)	with	my	right	hand.

Now	here	comes	the	hand-waving	part:	very	slowly	(so	as	not	to	excite	any	oscillations)	I
move	my	hands	 in	some	arbitrary	but	cyclic	fashion,	bringing	the	rings	back	to	 their	original
position.	I	end	up	doing	zero	work:	 ,	or

where	the	first	term	is	the	work	done	by	my	left	hand	and	the	second	term	is	the	work	done	by
my	right	hand.	Thus	far	this	is	a	completely	obvious	mechanical	statement.	But	let	us	translate
it	into	a	geometrical	one.	When	I	move	my	hands,	the	points	(x,	f)	and	(X,	F)	describe	closed
paths	c	and	C	respectively.	Moreover,	the	second	curve	is	the	image	of	the	first:	C	=	ψ(c).	But
note	that	the	two	terms	in	(9.2)	are	precisely	the	areas	of	c	and	C!	The	work	done	by	each	of
my	two	hands	has	a	geometrical	meaning	of	 the	area!	The	sum	of	 two	areas	 is	zero;	 in	other
words,	 up	 to	 the	 change	 in	 sign,	 the	mapping	ψ	 preserves	 the	 area.	 This	 change	 of	 the	 sign
means	the	change	in	orientation:	the	image	of	the	left	glove	will	look	like	a	right	glove.

A	cosmetic	touch-up.	To	avoid	dealing	with	negative	areas,	and	for	historical	reasons,	let	us
introduce	Y	=	−F;	for	the	sake	of	uniformity	in	notation	let	us	also	rename	f	=	y	(no	sign	change
here).	Then	(9.2)	turns	into



which	means	that	the	mapping	φ	=	(x,	y)	 	(X,	Y)	preserves	area,	this	time	including	the	sign.
This	property	(and	its	higher	dimensional	analogs)	comes	up	in	different	guises	and	it	has

profound	consequences	 in	dynamics	and	optics.	 In	 fact,	 this	observation	 led	 to	a	very	active
area	of	current	research	in	symplectic	topology	[HZ].

9.4	The	Generating	Function

The	“proof”	of	area	preservation	was	not	mathematically	rigorous,	since	I	didn’t	even	define
the	 mapping	 φ	 precisely,	 saying	 only	 that	 it	 is	 defined	 by	 a	 vaguely	 described	 mechanical
system.	 Here	 is	 a	 way	 to	 make	 all	 this	 precise.	 All	 we	 really	 need	 from	 figure	 9.2	 is	 the
potential	energy	P	=	P(x,	X)	of	the	system.	By	the	definition	of	the	potential	energy,4	we	have
the	forces

This	 is	 the	 precise	 definition	 of	 the	map	ψ.	 The	map	 is	 defined	 by	 specifying	 a	 function	P,
called	the	generating	function.	The	cosmetically	changed	map	φ	=	(x,	y)	 	(X,	Y)	is	given	by
changing	the	sign	of	F,	as	mentioned	before,	and	by	renaming	f	into	y:

Example.	Consider	a	simple	quadratic	function	P(x,	X)	=	 (X	−	x)2.	It	can	be	interpreted	as
the	potential	 energy	of	 the	 zero-length	 spring	whose	 ends	 are	 held	 at	 the	points	x,	X	 (figure
9.3),	with	Hooke’s	constant	k.	Equations	(9.5)	give	X	=	x	+	ky,	Y	=	y;	this	is	exactly	the	shear
map	defined	 in	section	9.2,	with	a	=	k!	 Interestingly,	 the	 strength	of	 the	 shear,	 a	geometrical
property,	is	interpreted	as	Hooke’s	constant,	a	mechanical	attribute.	Note	also	that	X	−	x	=	ky	is
just	Hooke’s	law	for	the	zero-length	spring,	while	Y	=	y	means	that	we	pull	the	two	ends	of	the
spring	with	equal	forces!

9.5	A	Table	of	Analogies	between	Mechanics	and	Analysis



Mechanics Analysis

The	potential	energy	P(x,	X) The	generating	function	P(x,	X)

The	 forces	 ,	 The	 momenta	 ,	

The	work	done	by	the	left(right)	hand: The	area	of	the	preimage	(the	image):

Zero	net	work	done: Area	is	preserved:

Higher	dimension.	The	area-preservation	property	 (9.3)	 can	be	generalized	 to	mappings	 in
higher	dimensions	by	allowing	both	x	and	y	to	be	in	the	n-dimensional	space	(n	≥	1):	x	 	 n,
y	 	 n,	so	that	(x,	y)	 	 2n.	Then	y	dx	in	(9.3)	must	be	understood	as	the	dot	product:	y	dx	=
Σyk	dxk.	The	mapping	φ(x,	y)	→	(X,	Y)	of	 2n	 satisfying	 the	property	(9.3)	 is	 referred	 to	as
symplectic.

The	 mechanical	 interpretation	 of	 figure	 9.2	 becomes	 only	 simpler	 in	 the	 case	 of	 higher
dimension	n	=	3:	I	no	longer	have	to	restrict	 the	rings	 to	 lines,	so	 that	now	x,	 f,	X,	F	 	 3.
Now	 (x,	 f)	 lies	 in	 6	 and	we	 have	 a	mapping	φ:	 6	→	 6.	 This	 mapping	 assigns	 to	 the
(position,	force)	pair	of	my	left	hand	the	(position,	force)	pair	of	my	right	hand.	The	mapping	is
automatically	 symplectic	 (after	 a	 sign	 change	 as	 described	 in	 the	 last	 theorem).	When	 two
children	are	holding	a	skipping	rope	by	its	ends,	they	are	dealing	with	a	symplectic	map	of	 6

(assuming	the	rope	is	still).
How	general	 is	 the	mechanical	 interpretation?	One	can	show	 that,	 in	 fact,	 any	symplectic

map,	 reasonably	 nondegenerate,	 is	 a	 composition	of	maps	 realizable	 by	mechanical	 systems
similar	to	the	ones	just	described.

9.6	“The	Uncertainty	Principle”

The	quantum	mechanical	uncertainty	principle	 states,	 roughly	 speaking,	 that	 the	more	 certain
we	are	about	the	position	of	a	particle,	the	less	certain	we	can	be	about	its	velocity.

The	 area-preservation	 property	 can	 be	 viewed	 as	 a	 classical	 mechanical	 analog	 of	 the
uncertainty	principle.	Figure	9.4	shows	an	area-preserving	map	which	squeezes	the	width	of	a
region	 in	 the	 x	 direction	 from	 1	 to	 ε	 	 1.	 We	 can	 think	 of	 this	 squeezing	 as	 the	 gain	 of
information	 about	 x,	 since	 the	 range	 of	 possible	 x	 values	 gets	 narrowed.	 But	 to	 be	 area
preserving,	 the	map	must	stretch	 in	 the	y	direction.	This	 stretching	means	 that	 the	 range	of	Y
values	 is	 large,	 so	 that	we	 lost	 information	 about	Y.	 In	 summary,	 having	 gained	 information



about	X	we	lost	information	about	Y;	these	variables	can	be	viewed	as	analogs	of	the	quantum
mechanical	 position	 and	 momentum,	 and	 in	 fact	 they	 often	 arise	 in	 classical	 mechanics	 as
position	and	momentum.

Problem.	Assume	 that	mapping	 in	 figure	9.4	 squeezes	 the	 region	as	 illustrated.	Show	 that
the	range	of	Y	values	in	the	image	of	the	region	of	area	A	is	at	least	A/ε.

Telescopes	magnify	objects	 thanks	 to	 this	uncertainty	principle,	as	I	explain	 later	 (section
9.8).

9.7	Area	Preservation	in	Optics

Consider	 a	 ray	 passing	 through	 an	 optical	 device—a	 scope,	 a	 telescope,	 a	 binocular,	 or	 a
microscope—as	in	figure	9.5.

Let	x	and	X	denote	the	coordinates	of	 the	intersection	of	 the	ray	with	two	parallel	axes,	x
and	X.	The	 time	of	 travel	between	 these	 lines	 is	denoted	by	T(x,	X).	Let	L(x,	X)	=	cT(x,	X),
where	c	=	constant	is	the	speed	of	light	in	the	air.5	Let	y	=	sin	θ,	where	θ	is	the	angle	between
the	ray	and	the	horizontal	axis	perpendicular	to	the	x	axis	in	figure	9.5(a).	Similarly,	we	define
Y	=	sin	Θ.	We	will	show	that	the	entry	data	(x,	y)	for	the	ray	are	related	to	the	exit	data	(X,	Y)
via

Figure	9.4.	Squeezing	the	x	range	expands	the	y	range,	according	to	area	preservation.



Figure	9.5.	(a)	The	travel	time	T(x,	X)	defines	the	mapping	from	(x,	θ)	to	(X,	Θ)	via	(9.6).	(b)	Proof	of	(9.6).

This	is	exactly	the	same	relationship	as	(9.5)	in	our	example	from	mechanics,	figure	9.2!	We
proved	by	a	mechanical	“hand-waving”	argument	(section	9.3)	that	the	mapping	(x,	y)	 	 (X,
Y)	is	area	preserving.	This	is	a	fundamental	property	of	any	optical	device.	We	(literally)	see
the	effects	of	this	area	preservation	when	the	light	travels	from,	say,	a	TV	screen,	through	the
eyeglasses,	through	cornea,	and	onto	the	retina.	I	will	describe	one	fascinating	manifestation	of
this	area	preservation	in	the	next	section.

A	mechanical	analogy.	The	table	of	analogies	(section	9.5)	extends	from	mechanics	to	optics:
the	 potential	 P(x,	 X)	 corresponds	 to	 the	 length	 L(x,	 X)	 =	 cT	 (x,	 X);	 the	 force	

	corresponds	to	sin	Θ.

Proof	of	(9.6).	Figure	9.5	shows	a	wavefront	of	rays	starting	at	A.	By	definition,	all	the	points
on	a	wavefront	are	equidistant	from	A	in	the	sense	that	all	take	the	same	time	to	get	to	from	A
—“isochronous”	would	be	a	better	word.6

1.	It	turns	out	that	the	wavefront	is	always	perpendicular	to	the	ray,	provided	the	medium	is
isotropic,7	as	we	assume	all	 the	 lenses	 in	our	optical	device	 to	be.	One	can	derive	 this
orthogonality	 from	 Huygens’s	 principle;	 because	 of	 the	 isotropy	 the	 infinitesimal	 sets
reachable	 in	 time	dt	 from	 a	 point	 (these	 sets	 are	 called	 the	 indicatrices)	 are	 spherical
rather	than	elliptical.	Further	details	can	be	found	in	[ARN].	In	Euclidean	geometry,	the
radii	 are	 perpendicular	 to	 their	 circles;	 in	 the	 same	way,	 and	 for	 essentially	 the	 same
reason,	 our	 rays	 are	 perpendicular	 to	 their	 wavefronts—recall	 that	 the	 wavefronts	 are



defined	as	circles	with	the	time	playing	the	role	of	distance.8
2.	Consider	two	consecutive	positions	of	the	wavefront,	a	short	time	dT	apart	(figure	9.5).
The	front	displaces	by	cdT,	and	the	intersection	with	the	X	axis	moves	by	dX	=	cdT/	 sin
Θ.	Thus	cdT/dX	=	dL/dX	=	sin	Θ	=	Y.

Figure	9.6.	 If	 the	beam	narrows,	 then	 the	angle	between	 two	beams	widens.	This	 is	perceived	as	magnification.	 If	 the	beam
narrows,	say,	four	times,	then	the	device	magnifies	by	the	factor	of	4.

Remark.	Formula	(9.6)	depends	on	the	fact	that	the	angles	θ,	Θ	are	measured	in	the	air.

9.8	Telescopes	and	Area	Preservation

Consider	 an	 optical	 instrument,	 such	 as	 a	 telescope	 or	 a	 binocular	 (the	 latter	 is	 shown
schematically	in	figure	9.6).	For	us	the	instrument	is	a	black	box:	we	don’t	know	or	care	what
lenses	or	mirrors	are	inside,	or	how	many	of	them.	All	we	are	given	is	this:

A	parallel	beam	of	rays	is	converted	into	a	narrower	parallel	beam.

Just	this	fact	alone	implies	that	the	optical	device	magnifies	objects!	Why?	Here	is	a	sketch
of	the	answer,	with	details	to	follow.	In	the	preceding	section	we	considered	the	mapping	(x,	y
=	sin	θ)	 	(X,	Y	=	sin	Θ),	which	assigns	the	entry	data	of	the	ray	to	the	exit	data.	We	showed
that	the	mapping	is	area	preserving.	Now,	the	narrowing	of	the	beam	implies	that	the	mapping
squeezes	 a	 thin	 rectangle	 abcd	 in	 the	 x	 direction.	 The	 area	 preservation	 then	 forces	 a
compensatory	stretching	in	the	y	direction.	But	the	stretching	in	the	y	direction	manifests	itself
as	the	image	magnification.

We	will	show,	 in	 fact,	 that	 the	magnification	factor	equals	 the	ratio	of	 the	beams’	widths,
assuming	that	the	angles	with	the	optical	axis(i.e.,	the	axial	line	of	symmetry)	are	small.

Here	 is	 a	more	detailed	explanation	of	 the	above.	 In	 the	discussion	 that	 follows	we	will
deal	with	small	angles,	which	will	allow	us	to	approximate	y	=	sin	θ	by	θ	and	Y	=	sin	Θ	by	Θ.

1.	Each	ray—say,	cC	in	figure	9.6—is	specified	by	the	point	(x,	y)	in	the	plane,	where	x	 is
the	coordinate	of	 the	 entry	and	y	 is	 approximately	 the	 angle	 of	 the	 ray	with	 the	optical



axis.
2.	The	magnification	factor	of	the	binocular	is	the	ratio	θ2/θ1,	where	θ1	is	the	angle	between
two	parallel	beams	entering	the	binocular,	and	θ2	is	the	angle	between	the	exiting	beams
(figure	9.6).	First,	note	that	a	parallel	beam	is	perceived	by	our	eye	as	a	point,	since	all
parallel	rays	focus	on	one	“pixel”	of	our	retina	(assuming	we	focus	our	eyes	on	infinity
and	have	perfect	vision).	Now,	imagine	we	are	looking	at	a	distant	ship,	with	one	parallel
beam	ab	(figure	9.6)	coming	from	a	point9	on	the	stern	and	with	another	beam	dc	coming
from	a	point	on	the	bow.	To	a	naked	eye	the	stern	and	the	bow	appear	very	close	because
the	beams	come	 in	at	a	small	angle;	 I	barely	need	 to	 rotate	my	eye	 to	 look	from	one	 to
another.	But	the	converted	beams	AB	and	CD	form	a	much	larger	angle,	so	that	the	stern
and	the	bow	will	appear	much	farther	apart—in	fact,	precisely	θ2/θ1	times	farther.

3.	The	incoming	ab	beam	in	figure	9.6(a)	corresponds	to	the	segment	ab	in	the	same	figure
(b);	 the	 slanted	 incoming	beam	 in	 (a)	corresponds	 to	 the	 segment	cd	 in	 (b).	The	beams
whose	 angles	 and	 positions	 are	 between	 these	 two	 extremes	 form	 the	 interior	 of	 the
rectangle	abcd.	The	horizontal	 segment	ab	maps	 to	 a	 shorter	 segment	AB	 by	 the	 beam-
narrowing	property.	The	length	of	a	horizontal	segment	is	the	width	of	the	corresponding
parallel	 beam.	 Hence	 the	 ratio	 of	 the	 lengths	 ab/AB	 =	 λ,	 the	 same	 as	 the	 ratio	 of	 the
beams’	widths.	By	 linearity,	 every	horizontal	 segment	 in	abcd	 (i)	 shortens	 by	 the	 same
factor	 λ	 and	 (ii)	 remains	 horizontal.	 The	 height	 of	 abcd	 is	 sin	 θ1,	 while	 the	 height	 of
ABCD	is	sin	θ2.	The	areas	of	abcd	and	ABCD	are	equal:

replacing	sin	θ	by	θ	and	using	ab/AB	=	λ,	we	obtain	the	magnification	factor	as	the	ratio
of	the	beams’	widths:

9.9	Problems

1.	Verify	that	if	the	mixed	partial	derivative	 ,	then	equations	(9.5)	define
X,	Y	as	functions	of	x,	y.

Solution.	According	to	the	condition,	 	is	a	monotone	function	of	X.	Thus	X	is
determined	uniquely	by	x,	y.	Thus	the	second	equation	in	(9.4)	defines	Y	in	terms	of	x,	y.

2.	What	mapping	 corresponds	 to	 the	generating	 function	P	 =	 (X	−	x)2?	How	 can	 such	 a
mapping	be	realized	using	mechanics?	Hint:	See	figure	9.3.

3.	Find	the	generating	function	P(x,	X)	which	produces	each	of	the	maps	in	figure	9.1.
4.	 Given	 a	 linear	 mapping	 with	 determinant	 1,	 find	 a	 generating	 function	 producing	 this
mapping.



5.	Consider	 a	 system	with	 springs	 shown	 in	 figure	9.7.	Which	maps	 in	 figure	 9.1	 can	 be
realized	by	an	appropriate	choice	of	Hooke’s	constants	k1,	k2,	k3?

Figure	9.7.	A	(more)	general	area-preserving	mapping	realized	via	springs.

6.	 Which	 choices	 of	 Hooke’s	 constants	 in	 figure	 9.7	 correspond	 to	 the	 scope	 in	 figure
9.6(a)?

7.	(In	this	problem	I	assume	familiarity	with	the	lens	formula.)	Find	a	mechanical	analog	of
the	 lens	 formula	 .	Hint:	The	 lens	 formula	 expresses	 the	 fact	 that	 the	 rays
emitted	from	a	point	refocus	at	another	point.	All	such	rays	take	the	same	time	between
the	two	points.	For	a	corresponding	mechanical	system,	potential	energy	is	the	same	for
different	configurations,	and	a	certain	sum	of	forces	is	therefore	zero.

8.	Given	any	symmetric	2	×	2	matrix	A,	find	a	mechanical	system	whose	potential	energy	is
the	quadratic	form	 ,	and	thus	the	potential	force	at	x	is	Ax.

9.	Using	 the	mechanical	 realization	of	 a	 symmetric	matrix	A	 from	 the	 preceding	 problem,
prove	that	the	eigenvalues	of	A	are	real.	Hint:	If	 the	eigenvalues	are	not	real,	 then	there
exists	a	perpetual	motion	machine.	Namely,	then	the	work	done	by	the	force	Ax	around	the
unit	circle	is	nonzero	(no	calculation	is	required	for	the	proof).

10.	Show	that	the	orthogonality	of	the	eigenvectors	of	a	symmetric	matrix	A	is	a	consequence
of	the	non-existence	of	perpetual	motion	machine.	Hint:	Interpret	Ax	as	the	force	exerted
by	an	appropriate	mechanical	device.

1This	is	not	the	first	time	that	we	see	something	trivial	with	nontrivial	consequences.
2More	examples	are	given	in	problems	in	section	9.9.
3Under	some	technical	assumptions	which	are	described	later.
4Recall	that	if	P(x)	is	the	potential	energy,	then	the	force	is	−P′(x).
5Thus	L	has	 the	dimension	of	 the	distance;	note	that	L	 is	greater	 than	the	actual	 length	of	 the	ray	since	part	of	 the	 time	is

spent	in	the	glass	where	the	light	is	slower,	so	that	T	is	greater	than	the	time	the	same	path	would	take	in	the	air.	Actually	we
can	choose	the	units	so	that	c	=	1,	in	which	case	we	would	have	T	=	L.
6Since	the	time	is	referred	to	as	the	optical	length,	we	can	say	that	the	front	originating	at	A	 is	an	optically	equidistant	set,

i.e.,	a	circle	in	the	sense	of	optical	length.
7This	means	that	the	the	speed	of	light	at	each	point	does	not	depend	on	the	direction.
8All	this	is	a	subject	of	differential	geometry;	a	good	discussion	can	be	found	in,	e.g.,	[DO].
9The	rays	radiating	from	a	point	are	not	strictly	speaking	parallel,	but	the	ship	is	far	away	and	we	can	treat	them	as	parallel.



10

A	BICYCLE	WHEEL	AND	THE	GAUSS-BONNET
THEOREM

10.1	Introduction

This	chapter	 tells	an	 interesting	story	on	how	playing	with	a	bicycle	wheel	can	connect	 to	a
fundamental	theorem	from	differential	geometry.	The	internal	angles	in	a	planar	triangle	add	up
to	180°.	This	fact	can	be	restated	in	a	more	general	and	yet	more	basic	way:	if	I	walk	around	a
closed	curve	in	the	plane,	then	my	nose,	treated	as	a	vector,	will	rotate	by	2π	(provided	that	I
always	look	straight	ahead).1

Does	the	same	hold	for	an	inhabitant	of	a	curved	surface?	Figure	10.1	shows	a	 triangular
path	on	the	sphere.	Two	of	the	sides	lie	on	meridians	and	one	lies	the	equator.	To	a	resident	of
the	 sphere	 the	 sides	 of	 the	 triangle	 appear	 to	 be	 straight	 lines.2	 A	 plane	 flying	 around	 this
triangle	will	make	three	left	π/2	turns	between	the	“straight”	paths,	thus	turning	by	3π/2	<	2π
during	its	round	trip.	In	fact,	for	any	closed	path	on	a	sphere	of	radius	1	the	“turning	angle”	is,
as	we	show	later,	given	by

where	A	is	the	area	enclosed	by	the	path.	For	the	equatorial	path,	for	example,	we	have	A	=	2π
(the	area	of	the	hemisphere),	and	thus	θ	=	2π	−	2π	=	0,	in	agreement	with	intuition.

Expression	 (10.1)	 is	 a	 special	 case	 of	 the	Gauss-Bonnet	 theorem.	The	 theorem	gives	 the
“turning	 angle”	 θ	 for	 a	 closed	 path	 on	 any	 smooth	 surface,	 not	 necessarily	 a	 sphere.	 The
background	necessary	for	the	theorem	is	described	in	section	10.3.



Figure	10.1.	The	sum	of	angles	in	a	spherical	triangle	is	π	−	A/R2.

Here	 is	 the	plan	of	 the	chapter.	The	gist	of	 the	Gauss-Bonnet	 theorem	resides	 in	a	simply
stated	theorem	about	cones	 in	section	10.2;	 this	 theorem	is	 the	backbone	of	 the	chapter.	This
theorem	was	literally	suggested	to	me	by	my	bike	wheel	when	I	was	changing	a	punctured	bike
tire,	via	the	motivation	described	in	section	10.5.	Not	only	was	the	cones	theorem	motivated
by	mechanics,	but	the	proof	is	also	given	by	mechanics	(p.	136).3	All	 the	remaining	sections
are	applications	of	the	theorem	on	cones.	These	include

1.	How	to	measure	the	area	of	a	country	using	an	inertial	wheel.
2.	How	the	precession	of	the	wheel’s	axis	causes	rotation.
3.	 Background	 for	 the	 Gauss-Bonnet	 theorem	 (the	 geodesic	 curvature	 and	 the	 Gaussian
curvature).

4.	Gauss-Bonnet	theorem	as	a	restatement	of	the	dual-cones	theorem.

Once	 the	 statement	of	 the	dual-cones	 theorem	 is	understood,	 the	 sections	can	be	 read	 in	any
order,	with	one	obvious	exception:	the	Gauss-Bonnet	section	relies	on	the	background	section
preceding	it.



Figure	10.2.	Definition	of	the	dual	cone.

10.2	The	Dual-Cones	Theorem

The	definition	of	dual	cones..	Let	C	be	a	convex	cone,	as	in	figure	10.2.	The	rays	making	up
the	 cone	 are	 called	 the	 generators.	 To	 define	 the	 dual	 cone,	 imagine	 the	 family	 of	 planes
normal	to	the	generators	of	C.	All	these	planes	are	tangent	to	some	invisible	cone,	as	in	figure
10.2.	That	latter	cone	is	called	the	dual	of	C,	denoted	by	C*.

The	duality	turns	out	to	be	reflexive:	the	dual	to	C*	is	C,	that	is,	(C*)*	=	C.	This	is	because
the	definition	of	C*	is	equivalent	to	the	following	two	facts:

1.	The	generators	of	C	and	C*	come	in	orthogonal	pairs,	as	illustrated	in	figure	10.2.
2.	The	tangents	to	the	two	curves	c	and	c*	at	the	corresponding	points	are	parallel,	where	c
and	c*	are	the	curves	of	intersection	of	C	and	C*	with	the	unit	sphere.

But	 these	 two	properties	 are	 completely	 symmetric:	 neither	 cone	 is	 treated	with	preference,
and	thus	each	is	the	dual	of	the	other.	A	detailed	proof	can	be	found	in	[L2].

It	 is	 intuitively	 clear	 that	 the	 sharper	 the	 cone,	 the	 “duller”	 the	 dual.	 The	 precise
relationship	 is	 captured	 by	 the	 following	 simple	 theorem.	 Although	 simple,	 this	 theorem
amounts	in	effect	to	the	Gauss-Bonnet	formula	(as	is	shown	in	section	10.4).



Figure	10.3.	Some	cones	and	their	duals.	A(c)	+	L(c*)	=	2π.

The	dual-cones	theorem.	If	C	is	a	convex	cone	and	C*	is	its	dual,	then

where	A(C)	is	the	solid	angle	of	C,	that	is,	the	area	on	the	unit	sphere	 2	enclosed	by	C	and
where	L(C*)	is	the	length	of	the	curve	C*	∩	 2	on	the	unit	sphere.	Note	that	the	cones	are	not
necessarily	circular.

This	purely	geometrical	theorem	was	suggested	to	me	by	mechanics,	as	was	the	proof	given
next.

Proof	by	mechanics.

The	mechanical	system.	The	generators	of	the	cones	C	and	C*	come	in	orthogonal	pairs.	Let
us	represent	each	generator	by	its	unit	vector,	with	the	tail	at	 the	vertex	of	 the	cone.	We	thus
have	 a	 bouquet	 of	 right-angle	 brackets	 held	 together	 at	 the	 origin	 (figure	10.4).	We	 think	 of
these	 brackets	 as	 rigid	 objects	which	 can	 pivot	 freely	 around	 the	 origin.	 The	 ends	 of	 these
brackets	form	the	two	curves	c	and	c*	on	the	unit	sphere	 2.	We	now	imagine	that	the	sphere
carries	a	two-dimensional	gas	of	pressure	p	=	1,	but	the	spherical	cap	enclosed	by	c	contains	a
vacuum.	The	pressure	tries	to	collapse	the	curve	c.	To	compensate,	we	imagine	the	curve	c*	to
be	a	constant-tension	spring,	of	tension	T	=	1,	glued	to	the	“lower”	ends	of	the	brackets.	This
creates	a	competition:	each	curve	wants	to	collapse—one	from	the	pressure,	the	other	from	the
tension.4	The	rigidity	of	the	brackets	prevents	simultaneous	collapse.

Figure	10.4.	The	pressure	upon	ds	(top)	balances	the	resultant	of	tensions	upon	ds*	(bottom).

The	equilibrium.	Remarkably,	the	mechanical	system	just	described	is	in	neutral	equilibrium
regardless	of	 the	 shape	of	 the	cone	C.	 Postponing	 the	proof	 for	 a	moment,	we	note	 that	 this



implies	the	claim	(10.2).	Indeed,	the	potential	energy	then	is	independent	of	the	shape	of	C.	But
the	 potential	 energy	 of	 a	 vacuum	 bubble	 is	 A(C),	 while	 the	 potential	 energy	 of	 a	 constant
tension	spring	is	its	length	L(C*)	(see	sections	A.4	and	A.1).	Hence

By	 collapsing	C	 to	 a	 point	 we	 thus	 expand	C*	 to	 a	 great	 circle,	 and	 thus	 the	 constant	 is
identified	as	2π,	thus	proving	(10.2).

It	remains	to	prove	that	the	two	cones	are	in	equilibrium.	Consider	two	small	corresponding
sectors	on	C	and	on	C*.	Let	ds	and	ds*	be	 the	 lengths	of	 the	corresponding	arcs	of	c	and	c*
(figure	10.4).	The	pressure	force	upon	ds	is	given,	to	the	leading	term	in	ds,	by	p	·	ds	=	ds	and
thus	the	torque	around	the	direction	OA	parallel	to	the	tangent	at	a	point	on	the	arc	equals	ds	+
ε,	where	ε	 is	small	compared	 to	ds:	ε/ds	→	0	as	ds	→	0.	On	 the	other	hand,	 the	arc	ds*	 is
subject	to	two	unit	forces	of	tension;	the	angle	between	these	two	forces	is	given	by	the	angle
between	the	two	planes	tangent	to	the	cone	C*	along	 the	 two	generators	bounding	 the	sector.
But	the	angle	between	these	two	planes	equals	to	the	angle	between	their	normals,	that	is,	to
ds.	We	conclude	that	the	resultant	force	upon	the	arc	ds*	is	2T	sin(ds/2)	=	ds	+	ε.	The	torque
upon	ds*	has	magnitude	ds	+	ε.	The	competing	torques	upon	ds	and	ds*	therefore	have	the	same
magnitude,	 to	 the	 leading	 order.	 Moreover,	 the	 directions	 of	 these	 torques	 are	 directly
opposite,	since	the	tangents	at	the	corresponding	points	at	c	and	c*	are	parallel.

Figure	10.5.	Planar	curvature	and	its	integral.	During	one	circumnavigation	of	the	curve	the	tangent	turns	by	the	angle	2π	if	 the
curve	has	no	self-intersections.

In	the	rest	of	this	section	we	explore	several	consequences	of	the	dual-cones	theorem.

10.3	The	Gauss-Bonnet	Formula	Formulation	and	Background

In	this	section	I	give	a	statement	of	the	Gauss-Bonnet	theorem;	the	next	section	shows	how	this
theorem	follows	from	the	theorem	on	dual	cones.

Planar	curvature.	The	curvature	of	a	planar	curve	is	defined	as



(figure	 10.5),	 where	 s	 is	 the	 arclength	 and	 θ	 is	 the	 angle	 between	 the	 tangent	 and	 a	 fixed
direction	in	the	plane.

Figure	10.6.	The	geodesic	curvature	is	the	curvature	of	the	curve	projected	on	the	tangent	plane.

Physically,	k	is	the	angular	velocity	of	the	tangent	line	as	the	point	of	tangency	travels	along
the	curve	with	unit	 speed.	 Indeed,	 if	 the	 speed	 is	1,	 then	s	 is	 the	 time,	and	 	 is	 the	 rate	 of
change	of	the	angle	with	time,	that	is,	the	angular	velocity.

It	 is	 intuitively	clear	 that	 if	 I	walk	around	a	planar	closed	path	without	self-intersections,
looking	straight	ahead	all	the	time,	then	my	nose	will	rotate	by	2π:

formally,	by	the	definition	of	k	and	by	the	fundamental	theorem	of	calculus:

where	the	last	equality	expresses	the	fact	that	the	tangent	to	a	closed	curve	turns	by	2π	 if	 the
curve	does	not	intersect	itself.	This	fact	is	not	as	obvious	as	it	may	seem:	for	a	“messy”	curve
as	in	figure	10.5	it	may	not	be	all	that	clear.	A	rigorous	proof	can	be	found	in	[CL].

The	geodesic	curvature.	Instead	of	a	plane	we	now	consider	a	surface	(figure	10.6).	Imagine
an	ant	traveling	along	a	path	γ	on	a	surface.	The	tiny	ant	thinks	that	the	surface	is	flat,	and	for
him	the	curvature	of	γ	at	a	point	is	simply	the	(planar)	curvature	of	the	projection	of	γ	onto	the
tangent	plane	at	 the	point.	This	 “projected”	curvature	 is	 called	 the	geodesic	curvature	 of	 γ.



Integral	 	has	the	meaning	of	the	angle	by	which	he	rotates	in	one	traversal	of	γ.	Any
curve	whose	geodesic	curvature	is	zero	will	appear	to	the	ant	as	a	straight	line.	Such	a	curve	is
called	a	geodesic.

Figure	10.7.	The	Gaussian	curvature.

Here	is	a	physical	interpretation:	the	geodesic	curvature	of	a	curve	γ	on	a	surface	is	the
angular	velocity	around	 the	normal	 to	 the	surface	of	 the	 tangent	vector	whose	base	point
moves	along	γ	with	unit	speed.

The	Gaussian	curvature.	To	define	the	Gaussian	curvature	at	a	point	p,	we	surround	p	by	a
patch	of	small	area	ΔS	(figure	10.7).

Consider	the	“porcupine”	of	unit	normal	vectors	at	the	patch.	Let	us	drag	each	of	these	unit
vectors	over,	placing	their	tails	at	a	common	point.	The	mapping	thus	defined	assigns	a	point
on	 the	unit	sphere	 to	a	point	on	 the	surface.	This	map	 is	called	 the	Gauss	map,	 although	 the
mouse	map	(or	a	maus	map)	would	have	been	more	descriptive.	Let	ΔA	be	the	solid	angle	of
the	resulting	cone.	Gaussian	curvature	at	a	point	p	is	defined	as

where	the	limit	is	taken	over	the	patches	including	p	with	diameters	approaching	zero.	In	other
words,	K	is	the	Jacobian	of	the	Gauss	map.	Gaussian	curvature	measures	the	“bulging”	of	the
surface.	The	area	ΔA	 is	taken	with	a	sign;	for	convex	surfaces,	such	as	an	egg,	it	 is	positive,
and	thus	K	>	0	(we	assume	a	nondegenerate	case).	For	a	saddle	surface,	K	<	0.	The	cylinder,
although	curved,	is	not	bulged	and,	in	fact,	has	K	=	0.	Indeed,	for	the	cylinder	the	image	of	a
patch	under	a	Gauss	map	collapses	to	a	circular	arc,	whose	area	ΔA	=	0.



Figure	10.8.	A	region	D	of	a	surface,	bounded	by	a	curve	γ.

The	 Gauss-Bonnet	 formula.	 Consider	 a	 region	D	 on	 a	 surface	 bounded	 by	 a	 curve	 γ,	 as
shown	 in	 figure	10.8.	The	 reader	 can	 think	of	 γ	 as	 a	 latitude	 line	 on	 a	 sphere;	 however,	 no
roundness	is	assumed:	it	could	be	some	path	on	the	surface	of	an	irregularly	shaped	asteroid.
The	Gauss-Bonnet	formula	states	that

where	k	is	the	geodesic	curvature	of	the	curve	γ,	K	is	the	Gaussian	curvature	of	the	surface,	and
dS	is	the	element	of	the	surface	area.

An	interpretation	of	the	Gauss-Bonnet	formula.	Let	us	rewrite	(10.4)	as

The	 left-hand	 side	 can	 be	 interpreted	 as	 the	 turning	 angle—the	 angle	 by	 which	 a	 plane’s
heading	rotates	as	the	plane	travels	once	around	the	curve	γ	on	the	surface.	The	theorem	states
that	the	turning	angle	is	reduced	from	2π	by	the	amount	of	“bulging”	 .

We	interpreted	(10.4),	but	does	it	have	a	simple	explanation?	In	the	next	section	I	show	that
(10.4)	comes	from	the	dual-cones	theorem.	And	the	dual-cones	theorem	boils	down	to	the	fact
that	 the	 angle	 between	 two	 planes	 is	 equal	 to	 the	 angle	 between	 their	 normals.	 The	 same
therefore	 can	 be	 said	 about	 the	 Gauss-Bonnet	 formula.	 Again,	 as	 in	 many	 other	 examples,
something	surprising	and	interesting	(Gauss-Bonnet	theorem)	reduces	to	something	surprisingly
simple.



Figure	10.9.	The	proof	of	the	Gauss-Bonnet	theorem.

10.4	The	Gauss-Bonnet	Formula	by	Mechanics

The	dual-cones	theorem,	which	we	“proved”	by	a	simple	mechanical	argument,	can	be	restated
to	become	the	Gauss-Bonnet	theorem.	In	the	final	analysis	this	provides	a	mechanical	proof	of
the	latter	theorem.

Proof.	We	start	with	the	setting	of	the	Gauss-Bonnet	formula:	a	disk	D	on	a	convex	surface	in	
3,	 bounded	 by	 a	 closed	 curve	 γ	 (figure	 10.9).	 Consider	 the	 cone	C	 generated	 by	 normal

vectors	n	to	D	along	γ,	together	with	the	dual	cone	C*.	By	the	dual-cones	theorem

By	the	definition	of	the	Gaussian	curvature	given	previously,	K	=	dA/dS,	we	have

It	remains	to	show	that	the	second	term	in	(10.5)	is	the	integral	of	the	geodesic	curvature.	Let
us	drag	a	unit	vector	n*	 	c*	in	figure	10.9(b)	to	the	corresponding	point	on	γ	(figure	10.9(a)).
Note	 that	 ,	 where	ω(n*)	 is	 the	 angular	 velocity	 of	 the	 vector	 n*
around	the	normal	direction	n,	as	the	point	P	travels	around	γ	with	unit	speed.	Since	the	angle	ϕ
=	 (n*,	T)	is	a	periodic	function	in	s,	we	have

This	is	essentially	saying	that	if	I	walk	once	around	γ,	looking	straight	ahead	at	all	times,	then



my	nose	will	rotate	by	the	same	amount	as	if	I	kept	turning	my	head	during	the	trip,	provided
that	I	face	in	the	same	direction	at	the	beginning	and	at	the	end	of	the	trip.	But	ω(T)	=	k	by	the
definition	of	 the	geodesic	curvature.	This	shows	that	 	and	concludes	 the
proof	of	the	Gauss-Bonnet	formula.

10.5	A	Bicycle	Wheel	and	the	Dual	Cones

The	idea	of	dual	cones	was	suggested	by	a	bike	wheel.	As	I	was	fixing	a	punctured	bike	tube,
the	following	question	came	up:	“Can	one	turn	a	bike	wheel	around	its	axle,	holding	the	wheel
only	 by	 the	 axle?”	The	wheel	 is	 initially	 at	 rest,	 the	 bearings	 are	 perfect,	 and	 the	wheel	 is
balanced,	so	that	the	wheel	does	not	spin	around	its	axis.

An	example	in	figure	10.10	shows	that	the	answer	is	yes.	In	fact,	the	wheel	rotates	through
the	angle	given	by	the	solid	angle	of	the	cone	traced	out	by	the	axle,	as	we	will	show.5

One	 can	 simulate	 the	motion	 in	 figure	10.10	with	 one’s	 arm,	 as	 follows.	 Straighten	 your
right	arm	in	front	of	you,	making	the	hand	into	a	fist	and	holding	the	thumb	up.	The	arm	is	the
axle	of	an	imaginary	wheel,	and	the	thumb	is	a	marked	spoke	on	that	wheel,	perpendicular	to
the	arm/axle.	Now	do	the	following	three	motions:

Figure	10.10.	The	axle	traces	out	a	cone	of	solid	angle	π/2;	the	wheel	turns	by	π/2.



1.	 Raise	 the	 arm	 above	 your	 head;	 the	 thumb	 will	 point	 backward.	 At	 no	 time	 are	 you
allowed	to	twist	your	hand	(as	if	you	were	turning	a	screwdriver);	this	is	like	the	wheel
not	rotating	around	the	axle.

2.	 Lower	 the	 arm	 to	 a	 horizontal	 position	 on	 your	 right.	 The	 thumb	 is	 still	 pointing
backward.

3.	Bring	 the	 arm	 forward	 in	 the	horizontal	 plane	 to	 its	 initial	 position.	The	 thumb	 is	 now
pointing	right.	But	it	started	up,	and	you	didn’t	twist	your	arm!

Our	discussion	is	based	on	using	the	inertia	of	the	wheel	to	accomplish	parallel	transport.
To	accomplish	parallel	transport	of	a	vector	along	a	curve	on	the	surface,	imagine	the	vector	as
a	marked	 spoke	 of	 a	wheel.	As	 the	wheel	 is	 carried	 along	 the	 curve,	with	 the	 plane	 of	 the
wheel	kept	tangent	to	the	surface,	the	spoke	undergoes	parallel	transport.

Figure	10.11.	The	wheel	rolling	on	the	cone	C*	rotates	by	2π	−	L(c*).

Here	is	how	the	idea	of	the	dual	cone	came	from	contemplating	a	bike	wheel.	Imagine	the
wheel	as	its	axle	sweeps	a	cone	C	(figure	10.11).	The	wheel	executes	a	wobbling	motion.	The
disk	of	 the	wheel	 is	 tangent	at	all	 times	 to	an	 imaginary	cone	 in	space.	This	 is	precisely	 the
dual	cone	C*.

By	 how	much	 does	 the	wheel	 turn	 after	 its	 axle	 executes	 a	 conical	motion?	 The	 answer
comes	from	the	following	observation.

Theorem.	The	plane	of	the	wheel	rolls	on	C*	without	sliding;	the	spoke	of	contact	with	C*	is
the	instantaneous	axis	of	the	wheel’s	rotation.

Proof.	Consider	the	spoke	which	is	in	contact	with	C*	at	a	certain	instant.	This	spoke	has	zero
velocity:	indeed,	its	velocity	in	the	normal	direction	to	the	plane	is	zero,	since	the	stationary
cone	C*	is	tangent	to	the	plane	at	that	point.	Furthermore,	the	velocity	within	the	plane	is	zero
since	the	wheel	is	not	rotating	around	the	axle	thanks	to	perfect	bearings	and	to	the	fact	that	the
wheel	started	at	rest.

Corollary.	After	the	axle	describes	a	cone	C,	the	wheel	rotates	through	the	angle	α	=	2π	−



L(C*).

Proof.	Indeed,	imagine	covering	C*	with	wet	paint.	After	the	wheel	executes	one	roll	around
C*,	a	sector	of	the	wheel	will	pick	up	the	paint	from	C*.	Since	there	is	no	sliding,	the	sector’s
arc	has	the	same	length	as	the	“skirt”	of	the	cone	C*,	as	shown	in	figure	10.11.	The	unpainted
arc’s	angle	is	2π	−	L(c*);	it	is	the	angle	by	which	the	wheel	has	rotated.

Figure	10.12.	The	spherimeter.	The	area	A	=	αr2.

By	the	dual-cones	theorem	we	conclude

This	 means	 that	 the	 wheel	 turns	 through	 the	 angle	 equal	 to	 the	 solid	 angle	 of	 the	 cone
described	by	its	axle.

10.6	The	Area	of	a	Country

According	to	(10.6),	if	the	axle	of	an	initially	resting	wheel	describes	a	cone	C,	then	the	wheel
will	turn	by	the	angle	equal	to	the	solid	angle	A(C)	of	the	cone.	Here	is	an	application	of	this
observation.

The	spherimeter.	Imagine	a	Plexiglas	globe,	with	a	needle	pivoting	on	the	globe’s	center;	the
needle	can	be	pointed	at	any	point	on	the	globe.	The	needle	also	serves	as	the	axle	of	a	wheel,
with	perfect	bearings.

Measuring	the	area	inside	a	closed	curve	γ	on	the	sphere.	We	point	the	needle	at	a	starting
point	on	γ;	with	the	wheel	fixed,	we	mark	a	spoke	on	the	wheel	and	remember	its	position.	We



then	guide	the	tip	of	the	needle	around	γ,	bringing	it	back	to	the	starting	point.	By	measuring	the
angle	α	through	which	the	wheel	has	turned,	we	obtain	the	area	A	inside	γ	:

where	R	is	the	radius	of	the	sphere.
To	be	precise,	the	angle	α	is	defined	up	to	a	multiple	of	2π,	and	we	have	to	be	a	bit	more

careful.	However,	if	γ	is	confined	to	a	hemisphere,	we	can	choose	0	<	α	<	2π.

1A	precise	mathematical	meaning	of	this	statement	is	given	in	section	10.3.
2Such	“straight”	lines	are	called	the	geodesics	and	defined	in	section	10.3.
3The	purely	mathematical	counterpart	of	this	proof	can	found	in	[L2].
4Pressure	and	tension	can	have	the	same	effect	on	people.
5This	 rotation	 of	 the	 wheel	 is	 a	 manifestation	 of	 the	 so-called	 holonomy	 associated	 with	 parallel	 transport	 ([L2]).	 A

mechanical	interpretation	of	parallel	 transport	 is	 the	following.	Given	a	tangent	vector,	 imagine	that	this	vector	is	a	spoke	of	a
wheel	whose	disk	 is	 tangent	 to	 the	surface.	At	no	 time	 is	 the	wheel	 rotating	around	 its	axis.	As	 the	wheel	 is	carried	along	a
given	 curve	 on	 the	 surface,	 the	 spoke	 is	 moved	 in	 a	 way	 that	 is	 dictated	 by	 the	 preceding	 sentence.	 This	 is	 a	mechanical
interpretation	of	parallel	transport.	For	a	rigorous	definition,	see	[ARN].



11

COMPLEX	VARIABLES	MADE	SIMPLE(R)

11.1	Introduction

In	 this	 section	 I	present	 some	 theory	of	complex	variables,	with	physical	 insight	but	without
rigorous	proofs.	No	prior	exposure	to	the	theory	of	complex	variables	is	assumed.	One	idea,
used	in	about	half	of	the	chapter,	links	any	complex	function	with	an	idealized	fluid	flow	in	the
plane	(the	details	are	 in	section	11.3).	With	 this	compact	 idea	some	of	 the	basic	 facts	of	 the
theory	become	intuitively	obvious.

The	 first	 section	 on	 complex	 numbers	 requires	 little	 background.	 The	 rest	 of	 the	 chapter
should	be	 accessible	 to	 anyone	who	 saw	 line	 integrals.	The	 concepts	of	 the	divergence	 and
curl	are	explained	to	the	degree	they	are	used.

Here	are	some	of	the	highlights.

1.	 The	 Cauchy	 integral	 formula,	 a	 fundamental	 result,	 is	 shown	 to	 really	 be	 another
conservation	of	mass	kind	of	statement:	if	some	mass	of	incompressible	fluid	is	produced
at	a	point	inside	a	region,	then	the	same	mass	must	exit	through	the	boundary	of	the	region
(section	11.5).

2.	 The	Riemann	mapping	 theorem,	 one	 of	 the	most	 important	 facts	 of	 the	 theory,	 is	made
almost	obvious	by	a	physical	interpretation.	For	quite	a	few	years	after	I	had	learned	the
theorem,	 and	 could	 produce	 the	 proof	 upon	 request,	 I	 could	 not	 really	 explain	why	 the
theorem	 is	 true.	 The	 physical	 interpretation	 in	 section	 11.7	 makes	 the	 theorem	 very
believable	and	can	be	converted	into	a	proof.1

Figure	11.1.	 (i	·	i)	=	 (i)	+	 (i)	=	π/2	+	π/2	=	π,	so	that	i2	is	a	negative	number.



3.	It	is	a	striking	fact	that	the	famous	formula	1	+	1/22	+	1/32	+	·	·	·	=	π2/6	of	Euler	amounts
to	the	statement	that,	for	a	certain	incompressible	flow	of	fluid	in	the	plane	with	sources
and	 a	 sink,	 the	 mass	 generated	 at	 the	 sources	 equals	 the	 mass	 absorbed	 by	 the	 sink
(section	11.8).

11.2	How	a	Complex	Number	Could	Have	Been	Invented

Multiplication	revisited.	When	 first	 told	 that	 (−1)	 ·	 (−1)	=	1,	 some	of	my	classmates	 and	 I
were	puzzled,	thinking:	“If	negative	is	bad,	how	can	multiplying	two	‘bads’	be	good?”	Much
later	 I	 realized	 that	 the	 fact	makes	 perfect	 geomeric	 sense.	A	negative	 number,	 viewed	 as	 a
vector	on	the	line,	forms	the	angle	π	with	the	positive	x	axis:	 (−1)	=	π,	(figure	11.1);	 for	a
positive	number	this	angle	is	zero:	 (1)	=	0,	or,	we	could	also	say,	an	integer	multiple	of	2π.

The	multiplication	rule,	expressed	geometrically,	states:	“In	multiplication,	the	angles	add,
while	the	magnitudes	multiply.”

This	sheds	light	on	the	seemingly	strange	rule	stated	earlier.	Indeed,

so	that	(−1)	·	(−1)	lies	along	the	positive	x	axis,	that	is,	it	is	a	positive	number.

Introducing	i.	Then	what	is	a	reasonable	definition	of	the	“number”	i	such	that	i2	=	i	·	i	=	−1?
The	 multiplication	 rule	 stated	 above	 suggests	 the	 answer:	 since	 the	 angles	 add	 under
multiplication,	and	since	 (−1)	=	π,	we	expect	 (i)	=	π/2!	This	leads	us	to	define	i	as	shown
in	 figure	 11.1,	 simply	 as	 the	 point	 (0,	 1)	 in	 the	 plane.2	 We	 have	 thus	 defined	 the	 simplest
complex	number,	i.	A	general	complex	number	is,	by	the	definition,	a	point	(x,	y)	in	the	plane,
written	 for	 the	 reasons	 of	 tradition,	 convenience,	 and	 common	 sense	 as	 z	 =	 x	 +	 iy;	 the
multiplication	 of	 complex	 numbers	 is	 defined	 by	 the	 rule	 stated	 above:	 the	 angles	 (or
arguments)	add,	and	 the	 lengths	 (the	distances	 to	 the	origin)	multiply.	Further	details	can	be
found	in	any	book	on	complex	variables,	for	instance,	[NP],	[Sp].

11.3	Functions	as	Ideal	Fluid	Flows

The	 following	 simple	 but	 not-so-obvious	 idea	 forms	 a	 bridge	 (one	 of	 a	 few)	 from	 complex
variables	to	physics:

Treat	a	function	f	(z)	as	a	vector	field	in	the	plane,	by	assigning,	to	each	point	z,	the
vector	 ,	the	complex	conjugate3	of	f	(z).

Why	 use	 the	 complex	 conjugate?	 It	 turns	 out	 that	 the	 vector	 field	 	 has	 the	 following
remarkable	property:



If	 f(z)	 is	 a	 differentiable	 function	 of	 a	 complex	 variable	 z,	 then	 its	 conjugate	 ,
viewed	 as	 a	 vector	 field,	 has	 zero	 divergence4	 and	 zero	 curl	 (defined	 in	 the	 next
paragraph).

The	curl	(the	two-dimensional	case).	The	curl	of	the	vector	field	V	=	 P(x,	y),	Q(x,	y) 	at	a
point	z	 can	be	defined	as	 follows.	 Imagine	marking	 the	 fluid	with	 two	perpendicular	dashes
crossing	at	a	point	z.	Then	curl	V(z)	is	the	sum	of	the	angular	velocities	of	these	two	dashes	as
they	are	carried	along	by	the	flow	V.	Thus	the	curl	is	(twice)	the	averaged	angular	velocity	of
the	fluid	at	a	point.	The	angular	velocity	of	 the	horizontal	dash	 is	easily	seen	 to	be	 	 (this
makes	perfect	sense,	since	this	derivative	measures	the	“shear,”	that	is,	the	dependence	of	the
vertical	velocity	Q	on	x);	similarly,	the	angular	velocity	of	the	vertical	dash	is	 .	Thus	curl

.

In	intuitive	terms,	any	two-dimensional	fluid	flowing	in	the	plane	with	velocity	V(z)	=	
at	z	has	these	two	properties:	(i)	as	an	arbitrary	blob	of	fluid	is	carried	along,	the	blob’s	area
remains	constant,	and	(ii)	the	“angular	velocity”	of	the	fluid	is	zero	at	every	point.	Such	fluid
flows	are	called	ideal.

It	is	a	striking	fact	that	all	the	functions5	we	studied	in	high	school	and	in	calculus	have	this
fluid	 interpretation!	Differentiability	 is	 loaded	with	more	physical	significance	 than	one	may
have	 expected.	Why	 is	 it	 that	 curl	 	 =	 div	 (z)	 =	 0?	 This	 property	 of	 vanishing
divergence	and	curl	of	 	is	commonly	known	as	the	Cauchy–Riemann	system	of	equations
and	its	derivation	can	be	found	in	any	book	on	complex	variables.6	Instead	of	a	proof,	here	is	a
geometrical	explanation	(convertible	to	a	rigorous	proof	for	a	small	extra	fee).	Since	we	can
move	the	origin	to	any	point,	it	suffices	to	deal	with	z	=	0.	Since	f	is	differentiable,	we	have	f
(z)	=	cz	 +	 ε,	where	 ε	 denotes	 higher	 order	 terms	 in	 z	 in	 the	 sense	 that	 ε/z	→	 0	 as	 z	→	 0.
Therefore,	we	lose	no	generality	in	assuming	that	f	is	linear:	f	(z)	=	cz	=	az	+	ibz,	where	a	and
b	are	real.	The	question	has	boiled	down	to	showing	that	both	 	and	i 	have	zero	divergence
and	zero	curl.	Figure	11.2	makes	it	rather	clear	that	this	is	indeed	the	case.	For	instance,	div	
=	0	is	seen	from	the	fact	that	the	contraction	of	a	square	centered	at	the	origin	in	the	y	direction
exactly	cancels	its	expansion	in	the	x	direction.

Problem.	 In	 the	 vortex	 flow	corresponding	 to	 f	 =	 i/z	 (figure	 11.2),	 every	 particle	 of	 fluid
rotates	around	the	origin	in	a	circle.	How	is	it	then	possible	that	the	curl,	which	measures
the	fluid’s	local	angular	velocity,	is	zero?



Figure	11.2.	Each	function	f	(z)	gives	rise	 to	a	vector	field	 .	If	f′	 exists,	 then	 the	corresponding	 flow	 is	 irrotational	and
incompressible.	An	empty	circle	at	the	origin	indicates	zero	speed;	a	black	dot	indicates	a	singularity	with	the	flow	speed	nearby
approaching	infinity.

Answer.	A	small	dash	tangent	to	the	circle	indeed	rotates	clockwise.	However,	one	should	not
overlook	 the	 fact	 that	 the	 perpendicular	 dash	 rotates	 counterclockwise	 because	 the	 speed
decreases	away	from	the	origin.	The	sum	of	the	two	angular	velocities	(the	curl)	turns	out	to	be
zero,	as	we	know	from	the	general	principle,	or	can	verify	by	a	direct	computation.

11.4	A	Physical	Meaning	of	the	Complex	Integral

The	 integral	 	 of	 a	 complex	 function	 f	 along	 a	 closed	 curve7	 C	 has	 a	 nice
interpretation,	encoding	two	physical	concepts	in	one	short	notation:



Here	 the	 circulation	 of	 a	 vector	 field	 over	 C	 is	 defined	 as	 the	 integral	 of	 the	 tangential
component	over	C,	and	the	flux	is	defined	as	the	integral	of	the	outward	normal	component	of
V:

where	T	and	N	are	the	unit	tangent	and	unit	normal	vectors	to	C,	and	·	denotes	the	dot	product.
Here	 is	 a	 quick	 proof	 of	 identity	 (11.1).	 Let	 f	 =	u	 +	 iv,	dz	 =	 dx	 +	 idy.	 Skipping	 some

algebra,	we	get

(as	before,	·	denotes	the	dot	product	of	two	vectors),	or

Integration	yields	(11.1).
The	Cauchy-Goursat	theorem.	No	differentiability	assumptions	on	f	were	imposed	yet.	If	we
now	break	down	and	let	f	be	differentiable,	 then	V	=	 	becomes	divergence-	and	curl-free.8
We	then	conclude	that	CirculationC	V	=	FluxC	V	=	0	(Green’s	theorem,	section	7.3),	and	(11.1)
results	in	the	Cauchy-Goursat	theorem:

If	f	is	analytic	on	and	inside	C,	then	 .

As	a	fluid	illustration	of	the	theorem,	the	circulation	and	the	flux	of	any	of	the	fluid	flows	in
figure	11.2	vanish,	provided	the	contour	C	does	not	enclose	the	singularity	(the	point	where	f
is	not	analytic,	which	is	z	=	0	in	the	last	four	examples).

11.5	The	Cauchy	Integral	Formula	via	Fluid	Flow

The	Cauchy	integral	formula	expresses	the	value	of	an	analytic	function	f	at	any	point	z0	inside
a	closed	curve	C	in	terms	of	the	values	of	f	on	C:



Why	this	should	be	 true	 is	not	 immediately	obvious	(to	most	of	us).	However,	 the	following
equivalent	physical	statement	is	much	more	intuitive.

Physical	 meaning	 of	 the	 Cauchy	 integral	 formula.	 Consider	 an	 ideal	 fluid	 flow	 in	 the
plane	with	a	source–vortex	combination9	at	z	=	z0	(figure	11.3).	Then	(i)	the	amount	of	fluid
produced	 per	 second	 at	 the	 source	 equals	 the	 amount	 of	 fluid	 per	 second	 crossing	 the
boundary	C	and	(ii)	the	circulation	around	an	infinitesimal	circle	surrounding	z0	equals	the
circulation	around	C.

Figure	11.3.	A	sketch	of	the	flow	 	corresponding	to	the	integrand	of	(11.2).

	
	
A	physical	significance	of	the	right-hand	side	in	(11.2).	By	(11.1),

where	the	circulation	and	the	flux	correspond	to	the	vector	field	given	by	the	conjugate	of	the
integrand.	Let	us	form	an	idea	of	the	nature	of	that	flow.	By	Taylor’s	formula,	f	(z)	=	f	(z0)	+	(z
−	z0)g(z),	and	the	integrand	becomes

where	 A	 +	 iB	 =	 f(z0).	 We	 discovered	 that	 the	 flow	 corresponding	 to	 this	 function	 is	 a



superposition	of	a	source	 ,	a	vortex	 ,	and	a	nice	incompressible	flow	
.	The	combination	is	sketched	in	figure	11.3.

Only	 the	 source	 term	 contributes	 to	 the	 flux,	 2π	A,	 and	 only	 the	 vortex	 contributes	 to	 the
circulation,	 −2π	 B,	 as	 figure	 11.2	 explains.	 Since	 	 is	 irrotational	 and	 incompressible
throughout	the	domain,	it	contributes	to	neither.	Thus	(11.3)	turns	into

Figure	11.4.	Constructing	an	analytic	function	f	=	u	+	iv	from	a	temperature	distribution.

This	completes	the	interpretation	of	the	Cauchy	integral	formula.

11.6	Heat	Flow	and	Analytic	Functions

Another	remarkable	physical	interpretation	of	an	analytic	function,	besides	the	one	I	described
before,	is	the	following.	Some	familiarity	with	gradients	would	be	helpful	in	understanding	this
section.

The	 real	part	u	 of	 any	analytic	 function	 f	 (z)	=	u(x,	y)	+	 iv(x,	y)	 can	 be	 interpreted	 as	 a
stationary	temperature	of	a	plate,	such	as	a	thin	metal	sheet,	while	the	imaginary	part	v	can	be
interpreted	as	the	corresponding	heat	flux	through	a	curve	connecting	a	chosen	point	O	to	(x,	y).
Here	are	the	details.

Consider	a	planar	heat-conducting	negligibly	 thin	plate	D	 (figure	11.4)	 such	as	a	 thin	 flat
copper	sheet.	The	top	and	bottom	surfaces	of	the	plate	are	insulated,	and	the	heat	can	enter	or
leave	only	through	the	boundary.	By	fixing	boundary	temperature	and	waiting	an	infinitely	long
time,	we	obtain	a	stationary	 temperature	distribution;	 let	u(x,	y)	be	 the	 temperature	at	 (x,	y).
The	figure	shows	the	lines	of	constant	temperature	(isotherms)	u	=	const,	along	with	a	path	of
“heat	particles”—or,	more	precisely,	a	line	normal	to	each	isotherm.

We	postulate	 that	 the	heat	 flux	 is	− u.	This	 amounts	 to	 assuming	 that	 the	 amount	 of	 heat
crossing	 an	 infinitesimal	 line	 segment	ds	 with	 the	 normal	 vector	N	 is	 − u	 ·	Nds.	 In	 other
words,	we	are	assuming	the	plate’s	heat	conductivity	to	be	isotropic	and	have	magnitude	1.



The	 law	 of	 conservation	 of	 energy	 imposes	 a	 special	 property	 upon	 u.	 Indeed,	 the	 net
amount	of	heat	entering	any	subregion	is	zero:

where	N	is	the	unit	normal	to	γ,	for	any	closed	curve	γ.
To	define	v(x,	y),	 let	us	connect	an	arbitrary	point	z	=	x	+	 iy	with	a	chosen	point	O	by	a

curve	C,	and	let	v	be	the	heat	flux	through	C:

The	integral	does	not	depend	on	the	curve	C	by	property	(11.4).
We	now	claim	that	f	=	u	+	iv	is	an	analytic	function.

A	 sketch	 of	 the	 proof.	 Differentiating	 (11.5)	 by	 each	 of	 the	 variables	 and	 using	 the	 path
independence	of	that	integral	one	obtains	vx	=	uy,	vy	=	−ux.	This	is	equivalent	to	the	statement
that	div	 	=	curl	 	=	0,	which	 is	 the	characteristic	property	of	an	analytic	 function	 (section
11.3).

Problem.	Explain	by	a	direct	heuristic	argument	why	the	relations	vx	=	uy,	vy	=	−ux	hold.

11.7	Riemann	Mapping	by	Heat	Flow

This	discussion	is	not	intended	as	a	rigorous	proof,	but	rather	as	a	heuristic	outline,	meant	to
make	the	theorem	intuitively	obvious.	Rigorous	details	omitted	here	can	be	found	in	[NP].

The	background	required	for	the	discussion	that	follows	is	some	familiarity	with	gradients.

Figure	11.5.	The	heat	enters	through	the	boundary	of	D	and	disappears	in	the	sink	at	the	rate	2π	cal/sec.

The	Riemann	mapping	 theorem.10	Let	D	be	 the	open	 region	bounded	by	a	 simple	 closed



curve	C	in	the	complex	plane,	and	let	z0	be	a	point	in	D.	There	exists	an	analytic	function	f
that	maps	D	onto	the	unit	disk	Δ	=	{z	:	|z|	<	1}	in	a	one-to-one	fashion,	with	f	(z0)	=	0	and	f′
(z0)	>	0.

The	physical	setup.	Consider	a	uniform	heat-conducting	plate	D	as	described	in	section	11.6.
We	keep	the	boundary	at	temperature	u	=	0,	and	keep	an	infinitesimal	disk	at	the	origin	so	cold
that	2π	 calories	per	 second	cross	any	closed	curve	 surrounding	 the	disk.	The	 temperature	 is
assumed	to	have	stabilized	and	to	be	time	independent.

The	 isothermal	 coordinates.	 To	 each	 point	 z	 in	 D	 we	 now	 assign	 two	 numbers:	 its
temperature	u,	and	the	heat	flux	through	a	curve	from	A	to	z	(figure	11.5),	where	A	 is	a	point
chosen	and	fixed.	This	heat	flux	v(z)	is	defined	via	(11.5).	However,	the	curve	Az	could	have
several	loops	around	the	origin,	and	thus	v(z)	is	defined	only	modulo	2π,	since	each	extra	loop
would	pick	up	flux	2π.	The	multiple-valued	function	v(z)	can	be	treated	of	as	a	kind	of	angular
variable.	Now,	the	desired	Riemann	mapping	is	simply

Indeed,

1.	f	is	single-valued	despite	the	fact	that	v	is	defined	only	up	to	2π,	since	e2πi	=	1.
2.	For	z	on	the	boundary	of	D	we	have	|	f	(z)|	=	|e0+iv|	=	1.
3.	f	(0)	=	e−∞+iv	=	0.

To	 achieve	 f′(0)	 >	 0	we	 choose	 the	 point	A	 (figure	11.5)	whose	 trajectory	 v	 =	 0	 enters	 the
origin	tangentially	to	the	x	axis.

Missing	rigor.	Some	rigorous	“details”	were	swept	under	the	rug;	the	biggest	of	these	is	the
existence	of	the	temperature	distribution	u.	The	existence	of	such	u,	called	the	Green’s	function
of	the	domain,	is	equivalent	to	the	existence	of	a	solution	of	the	so-called	Dirichlet	problem—
a	problem	which	 is	 discussed	 in	virtually	 all	 texts	on	partial	 differential	 equations;	 see,	 for
instance,	[CH].

11.8	Euler’s	Sum	via	Fluid	Flow

My	goal	 in	 this	 section	 is	 to	 show	 the	picture	behind	Euler’s	 formula.	No	proofs	 are	given;
these	can	be	found	in	most	texts	on	complex	variables,	for	example	in	[Sp].

By	playing	with	different	functions	f	(z)	we	can	explore	the	resulting	velocity	fields	 .
One	such	field,	corresponding	to	the	function



is	shown	in	figure	11.6.
At	 the	 origin,	 the	 fluid	 is	 ejected	 in	 the	 x	 direction	 and	 absorbed	 in	 the	 y	 direction.11	 A

calculation	 (using	 the	Taylor	series)	which	we	omit	shows	 that	 the	absorption	wins	by	π2/3.
This	means	 that	 the	 flux	 through	a	 small	 circle	 surrounding	 the	origin	 is	−π2/3.	On	 the	other
hand,	each	integer	point	z	=	n	=	±1,	±2,	.	.	.	,	is	a	source	of	strength	 .	As	the	picture	suggests,
all	the	fluid	coming	out	of	the	sources	flows	into	the	origin,	and	therefore

Figure	11.6.	The	fluid	flow	defined	by	(11.6).	Each	integer	point	n	produces	 	units	of	fluid	per	second.	The	origin	absorbs	π2/3
units	of	fluid	per	second.

where	the	factor	2	comes	from	the	fact	that	the	sources	come	in	symmetric	pairs	±n.	Dividing
by	2	we	arrive	at	Euler’s	formula:

1The	details	of	which	can	be	found	in	the	excellent	book	by	Nevanlinna	and	Paatero	[NP].
2With	equal	justification	we	could	have	said	i	=	(0,	−1).	This	 is	not	done	because	of	our	psychological	aversion	to	negative

signs.
3The	reason	for	using	a	conjugate	value	is	explained	shortly.
4Divergence	is	defined	in	section	7.3.
5With	the	rare	exceptions,	such	as	y	=	|x|.



6For	example,	[NP],	[Sp].
7We	do	not	give	precise	conditions	that	C	must	satisfy.	For	our	purposes	it	suffices	to	think	of	C	as	a	smooth	closed	curve

without	self-intersections.
8According	to	the	key	observation	on	page	150.
9Intuitively,	one	can	think	of	a	thin	layer	of	water	spiraling	down	the	drain	in	a	sink	(our	picture	shows	the	motion	in	reverse).

Of	course,	the	sink	is	not	a	very	good	example	since	there	is	friction	with	the	bottom,	the	thickness	of	the	water	varies,	etc.
10This	version	of	the	theorem	is	weaker	than	the	most	general	statement,	which	requires	only	the	simple	connectedness	of	D

(see	 [NP]).	 The	map	 f	 in	 the	 theorem	 is	 unique,	 as	 the	 Schwarz	 lemma	 implies,	 but	 we	 are	 concerned	 here	 only	 with	 its
existence.
11The	speed	goes	to	infinity	near	the	origin.	The	flow	pattern	shown	there	is	called	the	quadrupole.



APPENDIX

PHYSICAL	BACKGROUND

This	short	appendix	contains	the	physical	toolbox	used	throughout	the	book.

A.1	Springs

The	 toolbox	 for	 our	 thought	 experiments	 includes	 two	 types	 of	 springs:	 linear	 springs	 and
constant	tension	springs.

Zero-length	springs.	A	zero-length	spring	is	the	one	whose	tension	is	directly	proportional	to
its	 length:	 stretching	 such	 a	 string	 to	 a	 length	 x	 requires	 the	 force	 kx.	 Here	 k	 is	 a	 constant
(called	 the	 Hooke’s	 constant)	 that	 characterizes	 a	 particular	 spring.	 A	 small	 k	 means	 a	 lax
spring,	while	a	large	k	means	a	stiff	spring.	Note	that	the	unstretched	length	of	such	a	spring	is
zero.

POTENTIAL	 ENERGY	 OF	 A	 ZERO-LENGTH	 SPRING.	 By	 the	 definition,	 the	 potential	 energy	 of	 a
spring	is	the	work	required	to	stretch	the	spring	from	its	unstretched	length	(here,	zero)	to	the
length	x.	This	work	can	be	computed	as	 (the	average	pulling	force	applied	by	my	hand)·(the
distance	x	traveled	by	my	hand).	The	average	force	is	given	by	 ,	and	thus
the	potential	energy	is

Alternatively,	 one	 can	 compute	 this	 work	 as	 the	 integral	 of	 force	 against	 the	 distance:	
.

Constant	tension	springs.	A	spring	whose	tension	is	independent	of	its	elongation	is	called	a
constant	 tension	 spring.	 Such	 a	 strange	 spring	 can	 be	 constructed	 out	 of	 a	 piston	 sliding
without	friction	in	a	cylinder	enclosed	at	one	end,	with	vacuum	inside,	as	shown	in	figure	A.1.
Another	realization,	shown	in	figure	A.1,	consists	of	a	weight	c	with	a	pulley.



Figure	A.1.	Two	realizations	of	a	constant	tension	spring.

POTENTIAL	ENERGY	OF	A	CONSTANT	TENSION	SPRING.	By	definition,	the	potential	energy	is	the
work	 required	 to	 stretch	 the	 spring	 from	 a	 reference	 length,	which	we	 take	 to	 be	 zero,	 to	 a
given	length.	This	work	equals	the	force	c	times	the	distance	x:

E	=	cx.

A.2	Soap	Films

Soap	films	are	 two-dimensional	analogs	of	constant	 tension	springs.	A	soap	film	such	as	 the
wall	of	a	soap	bubble	has	an	interesting	property:	in	our	idealized	world,	its	surface	tension
does	not	change	as	we	let	our	idealized	film	stretch	or	shrink.	As	we	inflate	a	soap	bubble	its
surface	tension	remains	unchanged.

The	surface	tension,	by	definition,	is	the	force	required	to	hold	together	a	slit	of	unit	length.
If	we	imagine	stitching	up	the	slit,	this	holding-together	force	is	the	sum	of	tensions	of	all	the
strings	 in	 the	 stitching.	 For	 soap	 films,	 the	 surface	 tension	 is	 isotropic.	 This	means	 that	 the
orientation	of	the	slit	has	no	effect	on	the	surface	tension.	Anisotropic	tensions	occur	in	most
surfaces	 such	 as	 skin,	 latex	 rubber	 films,	 walls	 of	 pressurized	 pipes,	 tires,	 and	 clothing
materials.

The	potential	energy	E	of	a	soap	film	is	in	direct	linear	proportion	to	the	film’s	area	A:

where	 σ	 is	 the	 surface	 tension.	 This	 relationship	 makes	 soap	 films	 useful	 in	 solving	 area-
minimization	problems.	To	prove	the	relationship	(A.1),	consider	a	frame	in	figure	A.2;	the	rod
slides	along	the	frame,	pulling	the	soap	film	behind.	If	L	is	the	length	of	the	rod	in	contact	with
the	film,	then	the	force	required	to	move	it	is	F	=	σ	L



Figure	A.2.	Potential	energy	of	a	soap	film	with	constant	surface	tension	σ	is	σ	A.

(Equivalently,	one	can	think	of	a	cylinder	with	a	piston	in	two	dimensions,	with	a	vacuum
inside	and	with	the	pressure	σ	outside.)	By	the	definition,	the	energy	of	a	configuration	equals
the	work	required	to	pull	the	rod	from	a	reference	position,	which	we	take	to	be	the	zero-area
position.	To	pull	the	rod	(or	a	piston)	a	distance	D	takes	work

E	=	σ	L	·	D	=	σ	A,

proving	the	claim.

Problem.	Frozen	pipes	always	burst	lengthwise.	Why?

Answer.	 Longitudinal	 tension	 in	 a	 pressurized	 cylinder	 turns	 out	 to	 be	 twice	 the	 equatorial
tension,	as	we	now	show.	Let	us	compare	 the	forces	required	to	hold	 together	a	 longitudinal
slit	versus	a	transversal	slit	(figure	A.3).

Let	p	be	the	pressure	inside	the	pipe;	we	assume	it	 to	be	isotropic.	(So,	 to	be	completely
honest,	we	are	really	explaining	why	a	pipe	with	compressed	fluid,	rather	than	ice,	will	burst
lengthwise.)	If	we	slice	the	pipe	along	the	equator	(figure	A.3)	it	will	take	force	p	·	πr2	to	hold
the	cut	together	against	the	pressure	p	over	the	area	πr2.	This	force	is	held	by	the	length	2πr	of
the	cut,	so	that	the	force	per	unit	length	is

Figure	A.3.	Force	balance	along	the	pipe	and	across	the	pipe.

If	we	slice	the	pipe	along	two	generators	each	of	length	L	(figure	A.3),	a	force	of	p	·	(L	 ·	2r)
will	be	required	to	hold	the	slit	together	against	the	pressure	over	the	area	of	the	rectangular
section	L	·	2r.	Per	unit	length	of	the	slit	this	gives



We	found	that	σlongitudinal	=	2σtransversal.	The	pipes	burst	lengthwise	because	the	tension	along	the
cylinder’s	generators	is	twice	the	tension	along	its	equators.

A.3	Compressed	Gas

For	our	purposes	in	this	book	we	consider	a	simplified	model	of	gas	whose	pressure	p	does
not	change	as	the	container	changes	its	size:	p	=	constant.	In	that	sense	the	fictitious	gas	is	an
exact	analog	of	soap	film,	except	that	the	tension	σ	 is	negative,	 the	opposite	of	pressure:	p	=
−σ,	σ	<	0.

Potential	 energy	 of	 compressed	 gas.	 Consider	 a	 planar	 region	 D	 filled	 with	 a	 two-
dimensional	gas.	Recall	that	the	pressure	is	assumed	to	remain	constant	as	the	region	changes
its	area.	The	potential	energy	of	this	system	is	−	pA.	The	proof	is	a	verbatim	repetition	of	the
corresponding	argument	for	the	surface	tension.

Similarly,	the	potential	energy	of	a	three-dimensional	region	of	volume	V,	filled	with	gas	at
pressure	p,	is	−	pV.

A.4	Vacuum

Imagine	 a	 region	 in	 the	 plane,	 with	 vacuum	 inside	 and	 with	 compressed	 gas	 of	 pressure	 p
outside.	Work	pA	is	needed	to	open	such	a	bubble	of	vacuum,	where	A	is	the	area	of	the	region.
Indeed,	consider	a	piston	of	length	L	in	a	cylinder,	as	suggested	by	figure	A.2.	Force	F	=	pL	is
needed	to	move	the	piston;	to	move	this	piston	a	distance	D	it	takes	work	FD	=	pLD	=	pA.	This
proves	that	the	kinetic	energy	of	the	bubble	is

E	=	pA,

at	least	for	a	rectangular	bubble.	Any	other	shape	can	be	approximated	with	any	precision	by
small	rectangles,	and	the	above	result	still	holds.

A	 two-dimensional	 bubble	 embedded	 in	 the	 ambient	 pressure	 p	 is	 a	 mathematical
equivalent	of	a	soap	film	with	surface	tension	σ	=	p.

The	same	arguments	apply	in	three	dimensions,	with	a	similar	result:	the	potential	energy	of
a	bubble	of	vacuum	of	volume	V	in	the	ambient	pressure	p,	that	is,	the	work	required	to	open
such	a	bubble	from	zero,	is	in	direct	proportion	to	the	volume:



A.5	Torque

Definition.	Consider	a	 force	F	applied	at	a	point	A,	and	 let	O	be	a	chosen	point,	called	 the
pivot	point.	The	torque	of	the	force	F	with	respect	to	the	pivot	O	is	the	cross	product	T	=	L	×
F,	where	 	 is	 the	 position	 of	A	 relative	 to	O,	 called	 the	 lever.	 The	 torque	 is	 also
referred	to	as	the	moment	of	the	force	F	with	respect	to	the	pivot	point	O.

Figure	A.4.	Magnitude	of	torque	=	(F	sin	α)L	=	F(L	sin	α)	=	 ||F	×	L||.	The	direction	of	 torque	is	out	of	 the	paper	toward	the
reader.	It	is	the	direction	of	the	motion	of	the	nut	along	the	bolt	with	a	right-handed	thread.

This	 definition	 fits	 perfectly	 with	 our	 common	 sense	 of	 the	 “turning	 intensity.”1	 Imagine
trying	to	turn	a	stuck	nut	with	a	wrench.	Only	the	component	of	F	perpendicular	to	the	handle	L
is	useful.	The	magnitude	of	this	component	is	F	sin	α.	Not	only	the	force,	however,	but	length	L
as	well	affects	the	intensity	of	turning.	In	fact,	what	really	matters	for	getting	the	nut	unstuck	is
the	product	(F	sin	α)L.	This	explains	the	reasonableness	of	the	definition	of	the	magnitude	of
the	 torque	as	T	=	 ||L	×	F||	=	L(F	 sin	α).	But	 there	 is	 also	 a	natural	 axis—that	 of	 the	bolt	 on
which	the	nut	sits,	perpendicular	to	both	L	and	F.	There	is	also	a	natural	direction	along	this
axis:	 the	 direction	 in	 which	 the	 nut	 will	 move	 if	 it	 gets	 unstuck;	 the	 thread	 on	 the	 bolt	 is
assumed	to	be	right-handed	by	accepted	convention.

A.6	The	Equilibrium	of	a	Rigid	Body

For	 the	 purposes	 of	 our	 discussion,	 a	 rigid	 body	 is	 a	 collection	 of	 a	 finite	 number	 of	 point
masses	mk	with	fixed	distances	from	each	other.

Applying	Newton’s	first	law	to	a	rigid	body	yields	the	following:	Theorem	1.	If	a	body	is
in	equilibrium,	then	the	sum	of	all	forces	and	the	sum	of	all	torques	(relative	to	some	pivot)
acting	upon	the	body	is	zero.

The	 choice	 of	 pivot	 is	 immaterial	 if	 the	 sum	of	 forces	 is	 ΣFk	 =	0	 since	 then	 the	 sum	 of
torques	does	not	depend	on	the	choice	of	the	pivot.	Indeed,	let	rk	be	the	positions	of	the	point
masses	 relative	 to	 the	origin,	 and	 let	a	 be	 the	 position	vector	 of	 the	 pivot.	Then	 the	 sum	of
torques	relative	to	a	is	the	same	as	the	sum	of	torques	relative	to	the	origin:



as	 claimed.	 The	 following	 simple	 remark	will	 be	 used	 in	 several	 geometrical	 problems	 on
minima.

Lemma	on	 three	 concurrent	 forces.	 If	 the	 body	 under	 the	 influence	 of	 three	 forces	 is	 in
equilibrium,	then	the	lines	of	these	forces	are	concurrent	(that	is,	the	lines	share	a	common
point).

Proof.	The	sum	of	torques	is	zero	relative	to	any	pivot	point,	according	to	the	above	remark.
Let	us	choose	for	a	pivot	the	point	of	intersection2	P	of	the	lines	of	F1	and	F2	(figure	A.5).	With
this	choice,	the	torques	of	F1	and	F2	relative	to	P	vanish.	Since	the	sum	of	all	torques	is	zero,
the	 torque	 of	F3	 relative	 to	P	 vanishes	 as	 well.	 But	 this	 implies	 that	 the	 line	 of	F3	 passes
through	P,	proving	that	the	three	lines	are	concurrent.

A.7	Angular	Momentum

Angular	momentum	is	the	rotational	analog	of	the	linear	momentum.	For	a	point	mass	m	moving
with	speed	v	in	a	circle	of	radius	r	in	the	plane,	the	angular	momentum	is	defined	as	mv	·	r.	But
what	if	the	mass	travels	in	some	other	way,	say	in	a	straight	line?	In	that	case,	the	definition	is
the	 same,	 except	 that	 instead	 of	 v	 one	 takes	 the	 component	 of	 velocity	 perpendicular	 to	 the
particle’s	position	vector.	Here	is	a	precise	definition.

Figure	A.5.	The	net	torque	relative	to	P	is	nonzero	if	the	lines	of	forces	are	not	concurrent.

Definition.	Let	r	=	r(t)	be	the	position	vector	of	a	point	P	of	mass	m	relative	to	a	point	O	 in
space.	The	angular	momentum	L	of	P	with	respect	to	O	is	defined	as	the	cross	product	of	the
vectors	of	position	and	the	linear	momentum:



where	 	stands	for	dr/dt.	By	differentiating,	we	obtain	the	rotational	analog	of	Newton’s	law	F
=	ma:

According	to	Newton,	 	is	the	resultant	force	acting	on	the	mass.	The	right-hand	side
r	×	F	=	T	is	the	torque	of	that	force	upon	the	mass	relative	to	O.	Equation	(A.3)	then	becomes

the	 rotational	 analog	 of	 Newton’s	 second	 law	 ,	 where	 p	 =	 mv	 is	 the	 linear
momentum.

For	 a	 collection	 of	 masses,	 the	 angular	 momentum	 is	 defined	 as	 the	 sum	 of	 the	 angular
momenta	of	the	constituent	parts.

Conservation	of	angular	momentum.	If	the	sum	of	all	exernal	torques	upon	any	system	of
masses	is	zero,	then	the	angular	momentum	of	the	system	is	constant.

This	is	a	consequence	of	(A.4)	combined	with	Newton’s	third	law.

A.8	The	Center	of	Mass

The	 center	 of	mass	 of	 a	 rigid	 body	 is,	 by	 the	 definition,	 the	 point	 on	which	 the	 body	 is	 in
equilibrium	in	any	orientation	relative	to	a	constant	gravitational	field.	As	mentioned	before,
we	 treat	 rigid	 bodies	 as	 collections	 of	 point	 masses	 with	 mutual	 distances	 fixed.	 The
discussion	 that	 follows	carries	almost	verbatim	for	continuous	mass	distributions	except	 that
the	sums	Σ	akmk	have	to	be	replaced	by	integrals	 .

Theorem	2.	The	center	of	mass	 	of	a	system	of	point	masses	mk	with	position	vectors	rk	is
given	by	the	weighted	average	of	these	positions:

Note	 that	µk	 is	 the	proportion	of	 the	mass	mk	 to	 the	 total	mass,	 so	 indeed	 the	 average	 is
weighted	according	to	the	mass	of	each	point.



Proof.	By	the	definition	of	the	balance	point	 ,	the	sum	of	torques	of	gravitational	forces	upon
each	mass	with	respect	to	this	point	is	zero:

where	g	is	the	direction	of	gravitational	acceleration.	This	equation	must	hold	for	any	vector	g,
reflecting	the	fact	that	the	body	must	balance	in	any	orientation;	rather	than	turning	around	the
body,	we	 imagine	 turning	 the	direction	of	 gravity.	That	 is,	we	 choose	 the	 coordinate	 system
attached	to	the	masses.	Multiplying	out	in	the	last	equation	and	factoring	g	out	of	the	sum,	we
obtain

Since	g	is	an	arbitrary	vector,	we	must	have	 ,	which	gives	(A.5).

A.9	The	Moment	of	Inertia

For	our	purposes,	we	need	to	discuss	only	the	two-dimensional	case	of	planar	bodies	rotating
within	their	plane.	The	moment	of	inertia	is	a	measure	of	rotational	inertia	just	like	the	mass	is
the	measure	 of	 translational	 inertia.	 For	 a	 point	 mass	m	 at	 the	 distance	 r	 to	 a	 point	O	 the
moment	of	inertia	relative	to	O	is	defined	to	be	mr2	for	the	reason	to	be	explained	shortly.	For
a	 collection	 of	masses,	 the	moment	 of	 inertia	 relative	 to	O	 is	 defined	 to	 be	 the	 sum	 (or	 an
integral	 if	 the	mass	distribution	 is	continuous)	of	moments	of	 inertia	of	 the	constituent	parts.
The	above	definition	must	be	explained	for	it	to	be	of	any	use.	We	start	with	a	point	mass	m	at
a	distance	r	from	a	point	O.	Think	of	m	as	attached	by	a	massless	stick	of	length	r	to	the	origin,
around	which	it	can	pivot.	Let	us	apply	a	force	F	 to	 the	point,	 in	 the	direction	normal	 to	 the
stick,	to	give	it	angular	acceleration	around	O.	We	want	to	quantify	the	rotational	inertia	of	our
mass	on	the	stick.

The	 translational	 inertia	 is	 quantified	 by	 the	 mass	 ,	 the	 ratio	 of	 the	 force	 to
acceleration.	 Guided	 by	 this	 analogy,	 we	 define	 the	moment	 of	 inertia	 I	 as	 the	 ratio	 of	 the
“angular	force,”	that	is,	the	torque,	to	the	angular	acceleration:

After	 substituting	 	 into	 the	 last	 expression,	 the	 term	 	 cancels	 and	 we
obtain



I	=	mr2.

Figure	A.6.	The	moment	of	inertia	of	a	point	mass:	torque/angular	acceleration	=	mr2.

This	 explains	 why	 the	 definition	 is	 useful.	 The	 generalization	 to	 n	 point	 masses	 is
straightforward:	 let	rk	 be	distance	 from	 the	point	O	 to	 the	kth	mass	mk,	k	=	1,	 .	 .	 .	 ,	n.	 The
moment	of	inertia	with	respect	to	the	point	O	of	the	collection	of	the	masses	is	defined	as

Theorem	3.	(parallel	axes	theorem)	Let	C	be	the	center	of	mass	of	the	collection	of	masses
mk,	and	let	O	be	an	arbitrary	point.	Then

IO	=	IC	+	m|OC|2,

where	IC	and	IO	are	the	moments	of	inertia	relative	to	the	points	C	and	O.	In	particular,	IO	≥
IC.	That	is,	the	moment	of	inertia	around	the	center	of	mass	is	minimal.

Proof.	Let	rk	be	the	vector	from	O	to	the	mass	mk.	Let	 	be	the	vector	from	O	to	the
center	of	mass	C;	we	have	c	=	Σ	µkrk.	Now

The	sum	of	the	middle	terms	vanishes	by	the	definition	of	c,	leaving	the	remaining	terms	IC	and
m|OC|2.



A.10	Current

Consider	 an	 elecric	 current,	 that	 is,	 the	 “gas”	of	 electrons	 flowing	 through	a	wire.	Pick	 any
transversal	cross	section	of	the	wire.	Consider	the	amount	of	charge	q(t)	crossing	this	section
from	some	initial	moment	up	to	time	t.	Then

gives	us	the	instantaneous	rate	at	which	charge	passes	through	the	section	per	second.	This	rate
is	called	the	current,	or	the	amperage.	The	current	 is	 the	same	for	every	cross	section	of	a
wire,	since	(i)	the	number	of	electrons	between	two	fixed	sections	is	approximately	equal	to
the	constant	number	of	ions	in	the	metal	 to	maintain	zero	net	charge	of	the	wire,	and	(ii)	 the
electrons	do	not	leave	through	the	walls	of	the	wire.

The	electric	current	is	the	exact	analog	of	the	flux	of	water	through	the	pipe.	This	flux	can
be	measured	 in	 gallons	 per	 second,	 just	 like	 the	 current	 is	measured	 in	 coulombs	 (units	 of
charge)	per	second.

A.11	Voltage

Consider	 an	 electrostatic	 field	 created	 by	 one	 or	more	 charges.	 Fix	 a	 reference	 point	O	 in
space,	 and	 let	 A	 be	 any	 other	 point.	 Define	 the	 voltage	 V(A)	 at	A	 as	 the	 potential	 energy,
relative	to	O,	of	the	unit	charge	at	A.	In	other	words,	V(A)	is	defined	as	the	work	required	to
bring	the	unit	charge	from	O	to	A:

Here	E	is	the	electrostatic	force	acting	upon	a	unit	charge	and	T	is	the	unit	tangent	vector	to	the
path3	OA.	Note	 that	 the	minus	sign	 is	due	 to	 the	 fact	 that	we	have	 to	apply	 the	compensating
force	−E	to	move	the	charge	against	the	electrostatic	field.

Taking	the	gradient	of	both	sides	in	the	last	equation,	we	obtain	the	force	E	acting	upon	the
unit	charge	via	the	gradient	of	V	:

E	=	− V.

One	can	take	this	relationship	as	the	(implicit)	definition	of	V,	equivalent	to	the	one	we	gave
above.	 It	would	be	shorter,	but	 less	clear.	Note	 that	not	every	vector	 field	 is	a	gradient	of	a
scalar	function.4	The	field	given	by	a	gradient	of	a	function	V	is	called	a	potential	field,	and	the
function	V	is	called	the	potential.



This	is	disussed	in	more	detail	in	most	vector	calculus	texts,	for	example,	[St].

A.12	Kirchhoff’s	Laws

Kirchhoff’s	 laws	 apply	 to	 any	 electric	 circuit,	 which	 consists	 of	 capacitors,	 resistors,
inductances,	batteries,	diodes,	and	so	on.

Kirchhoff’s	first	law	is	a	restatement,	for	a	special	case,	of	the	fact	that	in	an	electrostatic
field,	zero	work	is	done	in	carrying	a	charge	around	a	closed	path.

Kirchhoff’s	first	law.	The	sum	of	voltage	drops	along	any	closed	path	of	a	circuit	is	zero.

Kirchhoff’s	second	law.	The	sum	of	currents	entering	a	node	equals	the	sum	of	currents	exiting
a	node.

The	second	law	is	a	consequence	of	the	conservation	of	electric	charge:	whatever	enters	the
node	must	leave	it.

A.13	Resistance	and	Ohm’s	Law

Consider	again	a	steady	current	running	through	a	piece	AB	of	a	wire.	The	wire	is	not	a	perfect
conductor—the	electrons	bounce	into	ions	on	their	way,	losing	their	energy	in	collisions;	they
regain	energy	from	the	pull	of	the	electric	field	applied	along	the	wire.	This	is	like	sand	falling
through	 a	 series	 of	 horizontal	 meshes.	 The	 grains	 bump	 against	 the	 mesh,	 slow	 down,	 fall
through,	accelerate	due	to	gravity,	hit	the	next	mesh,	and	so	on.	It	is	natural	to	expect	that	if	the
gravity	 is	 increased,	 the	 flux	 of	 sand	 would	 increase.	 The	 same	 happens	 with	 the	 electric
current.	The	more	voltage	we	apply,	 the	stronger	 the	current	 I	 becomes;	 in	 fact,	 experiments
show	that	the	relationship	is	linear.	This	is	Ohm’s	law:5

The	coefficient	R	 is	 called	 the	resistance.	This	 term	 is	 in	 agreement	with	 common	 sense:	 a
large	resistance	indicates	that	a	large	voltage	is	needed	to	achieve	the	same	current.	According
to	equation	(A.6),	R	is	the	voltage	required	to	produce	one	unit	of	current.

A.14	Resistors	in	Parallel

What	is	the	resistance	R	of	two	resistors	R1	and	R2	connected	in	parallel,	as	shown	in	figure
A.7?	The	answer	is	very	simple:



This	makes	perfect	intuitive	sense:	indeed,	in	connecting	the	resistors	in	parallel	we	enhance
the	conductive	ability	by	giving	the	current	more	paths	to	travel.	The	formula	says	that,	in	fact,
the	conductances—the	reciprocals	of	the	resistances—add.	Here	is	the	proof.

Figure	A.7.	For	parallel	 connections,	 the	current	 splits	between	 the	 two	 resistors,	while	 the	voltage	drop	 is	 common.	For	 the
series	connection,	the	current	is	common,	while	the	total	voltage	drop	is	split	between	the	two	resistors.

The	first	thing	to	observe	is	that	the	current	splits,	according	to	Kirchhoff’s	law:

Also,	the	voltage	drop	V	across	both	resistors	is	obviously	the	same,	and	Ohm’s	law	gives

I	=	V/R,	I1	=	V/R1,	I2	=	V/R2.

Substituting	the	last	line	into	(A.7)	proves	the	parallel	resistors	formula.
The	resistance	of	n	≥	2	parallel	resistances	R1,	.	.	.	,	Rn	is	given	by	the	same	rule	as	above:	

.

A.15	Resistors	in	Series

When	two	resistors	are	connected	in	series	(figure	A.7),	their	resistances	add:



Indeed,	 the	 voltage	 drop	 across	 the	 combination	 is	 the	 sum	of	 voltage	 drops	 on	 each	 of	 the
resistors:

Now	the	currents	through	both	resistors	are	the	same	by	Kirchhoff’s	law.	Ohm’s	law	gives

V	=	IR,	V1	=	IR1,	V2	=	IR2,

which,	when	substituted	into	(A.9),	results	in	(A.8).

A.16	Power	Dissipated	in	a	Resistor

The	current	I	passing	through	a	resistor	causes	energy	to	be	lost	in	the	resistor,	in	the	form	of
heat.	The	power	dissipated	on	the	resistor,	that	is,	the	amount	of	heat	per	unit	of	time,	is	given
by

P	=	IV,

where	 V	 is	 the	 voltage	 drop	 across	 the	 resistor.	 The	 proof	 of	 this	 fact	 is	 essentially	 a
restatement	of	 the	definition	of	V	and	I.	Here	are	 the	details.	Consider	first	 just	one	electron
traveling	from	one	end	of	the	resistor	to	the	other.	Like	a	pinball,	the	electron	“falls”	under	the
pull	of	the	electric	field,	bumping	into	ions	and	giving	them	part	of	its	kinetic	energy,	making
them	vibrate	and	thus	producing	heat.	On	average,	the	electrons	exit	the	resistor	no	faster	than
they	 entered.	 Therefore,	 the	 electrons	 give	 up	 all	 of	 the	 kinetic	 energy	 they	 gain	 from	 the
electric	“pull”	as	heat.	By	the	definition	of	the	voltage,	this	energy	equals	(Δq)V,	where	Δq	is
the	charge	of	the	electrons	passing	through	the	resistor.	Per	unit	time,	we	have

.

A.17	Capacitors	and	Capacitance

A	capacitor	is	a	device	consisting	of	two	conducting	plates	separated	by	a	thin	insulating	layer.
Let	 us	 connect	 a	 battery	 to	 the	 two	 plates	 of	 the	 capacitor.	 The	 battery	would	 “suck”	 some
electrons	 out	 of	 one	 plate	 and	 pump	 them	 into	 the	 other.	 The	 combined	 charge	 q	 of	 these
transferred	electrons	is	proportional	to	the	voltage	V	of	the	battery:



The	coefficient	C	is	called	the	capacity.	It	can	be	thought	of	as	the	amount	of	charge	that	the
capacitor	 can	 absorb	 while	 increasing	 its	 voltage	 by	 1;	 the	 term	 “capacity”	 is	 therefore
justified.

The	 thinner	 the	 insulating	 layer,	 the	 higher	 the	 capacity	 turns	 out	 to	 be.	Here	 is	 a	 simple
explanation.	One	of	the	plates	has	an	excess	of	electrons,	which	repel	each	other	and	try	to	rush
back	out	through	the	wire,	through	the	battery,	and	into	the	other	plate,	just	like	a	compressed
gas	in	a	vessel;	the	battery,	like	a	pump,	keeps	them	in.	How	does	proximity	of	another	plate
affect	this	desire	to	escape?	The	other	plate	has	a	shortage	of	electrons,	which	is	to	say	it	 is
charged	 positively.	 This	 attracts	 the	 electrons,	 the	more	 so	 the	 closer	 the	 plates	 are.	 If	 the
plates	 are	 very	 close	 together,	 then	 less	 of	 a	 voltage	 is	 required	 to	 keep	 the	 electrons	 from
escaping.	That	is,	the	capacity	is	then	greater.

The	capacitor	is	an	electric	analog	of	the	spring,	and	(A.10)	is	the	analog	of	Hooke’s	law	F
=	kx	for	a	zero-length	spring.	The	two	laws	V	=	C−1	q	to	F	=	kx	are	analogous	term-by-term.	In
particular,	C−1	is	the	“stiffness”	of	the	capacitor,	and	is	analogous	to	Hooke’s	constant	k,	which
measures	the	stiffness	of	the	spring.	It	would	be	reasonable	to	refer	to	 	as	the	capacitance	of	a
spring.

A.18	The	Inductance:	Inertia	of	the	Current

“Inductance”	 in	 water	 flow.	 Consider	 water	 flowing	 in	 a	 straight	 pipe.	 We	 consider	 an
idealized	world	with	no	viscosity	or	turbulence.	Let	p	be	the	pressure	difference	between	two
transversal	sections	A	and	B	of	the	pipe,	and	let	f	be	the	flux,	that	is,	the	mass	of	fluid	per	unit
time	crossing	a	transversal	section	of	the	pipe.6	Newton’s	second	law	(F	=	ma)	applied	to	the
body	of	fluid	that	is	between	A	and	B	at	some	instant	gives

where	µ	characterizes	 inertia	 in	 reacting	 to	 the	pressure	difference.	The	 last	equation	comes
from	Newton’s	law	as	follows.	The	force	upon	the	fluid	cylinder	between	the	sections	A	and	B
is	 given	 by	F	 =	pS,	 where	 S	 is	 the	 cross-sectional	 area	 of	 the	 pipe.	Newton’s	 second	 law
applied	to	this	fluid	cylinder	gives

where	v	is	the	speed	of	the	fluid	and	h	is	the	distance	between	A	and	B.	But	Sv	=	f	 is	the	flux



(volume	per	 second),	and	 (A.12)	becomes	 .	Dividing	by	S	we	obtain	 (A.11)
with	µ	=	ρh/S.

Electrical	inductance.	Electric	current	has	inertia	as	well.	The	mechanical	inertia	of	moving
charges	plays,	of	course,	a	negligible	role;	the	effect	is	rather	electromagnetic	and,	as	it	turns
out,	 explained	by	special	 relativity.	We	only	 state	 the	mathematical	 fact	and	do	not	describe
what	happens	physically	when	the	current	changes.

Any	change	of	current	through	a	coil	requires	a	voltage	difference	between	the	ends	of	the
coil;	 this	 is	 the	 manifestation	 of	 inductance.	 It	 turns	 out	 that	 the	 relationship	 between	 the
voltage	and	the	rate	of	change	of	the	current	is	linear:

The	coefficient	L	 is	called	the	 inductance.	According	to	 the	formula,	 the	 inductance	L	 is	 the
voltage	required	to	increase	the	current	by	1	amp	per	second.

A	 shocking	 example.	 Inductance	 can	 be	 used	 to	 get	 a	 painful	 electric	 shock	 from	 a	 small
battery	such	as	a	1.5-V	AA	 type.	Consider	 the	circuit	 in	 figure	A.8.	With	 the	 switch	closed,
most	 of	 the	 current	 goes	 through	 the	 switch,	 and	 only	 a	 tiny	 imperceptible	 amount	 trickles
through	me.	Now	what	happens	when	the	switch	is	opened?	The	current	has	inertia	and	does
not	 like	 to	stop	suddenly;	 it	will	continue	 flowing	by	“inertia”	 for	a	 (short)	 time	 through	 the
only	available	path:	me.7	To	put	it	differently,	opening	the	switch	causes	a	large	İ	which,	via
(A.13),	causes	a	large	and	painful	voltage	V.

Figure	A.8.	As	the	switch	is	opened,	the	current	must	continue	by	“inertia”	and	is	thus	driven	through	the	body.

Like	most	 electrical	 phenomena,	 this	 one	 has	 a	mechanical	 analog,	 also	 painful—that	 of
stopping	 a	 hammer	 aimed	 at	 a	 nail	with	 a	 fingernail.	A	 large	 deceleration	 	 causes	 a
large	force	 ,	which	in	turn	causes	pain.

Some	electrical	erector	sets	use	a	ringing	bell	for	the	switch.	As	the	oscillating	hammer	hits
the	 bell,	 a	 switch	 repeately	 opens	 and	 closes	 and	 the	 user	 receives	what	 feels	 a	 continuous
shock.

This	completes	our	painful	lesson	on	inertia.



A.19	An	Electrical-Plumbing	Analogy

All	of	the	above	concepts—V,	I,	q,	R,	C,	and	L—have	a	simple	analog	in	plumbing	(such	as	a
house	plumbing!).	Figure	A.9	summarizes	the	analogy.

Figure	A.9.	The	electrical-plumbing	analogy.

A.20	Problems

1.	Consider	a	point	charge	q	placed	at	the	origin.	Using	the	definition	of	voltage	in	section
A.11,	find	the	voltage	at	any	point	in	space.

The	 following	 three	 problems	 require	 no	 knowledge	 beyond	 the	 understanding	 of	 the
definition	of	voltage.



2.	Using	the	definition	of	voltage	in	section	A.11,	find	the	speed	of	the	electrons	hitting	the
screen	in	a	TV	monitor,	given	the	voltage	difference	V	between	the	cathode	(from	which
the	elecrons	emanate	into	the	vacuum	inside	the	tube)	and	the	screen,	the	mass	m,	and	the
charge	q	of	an	electron.	Hint:	The	potential	energy	of	the	electrons	at	the	beginning	of	the
flight	is	converted	to	the	kinetic	energy	at	the	end.	V	is	the	potential	energy	difference	for
a	unit	charge.

3.	A	capacitor	of	 capacitance	C	 is	 charged	 to	 voltage	V.	 Find	 the	 potential	 energy	 of	 the
capacitor.

Solution.	 This	 problem	 can	 be	 done	 with	 integrals,	 but	 here	 is	 a	 way	 to	 avoid	 them.
Imagine	 that	 we	 charge	 the	 capacitor	 from	 zero	 voltage	 to	 V	 by	 pumping	 a	 constant
current.	The	average	voltage	during	 this	process	 is	 V	 (since	 the	 charge,	 and	hence	 the
voltage,	 grows	 linearly	 with	 time).	We	 can	 thus	 pretend	 that	 even	 as	 we	 carry	 charge
piece-by-piece	from	one	plate	 to	 the	other,	 the	voltage	remains	 the	same:	V/2.	Thus	 the
total	work	to	charge	the	capacitor	is	W	=	q	·	V/2	=	CV	·	V/2	=	CV2/2.

4.	The	following	statement	came	from	an	online	tutorial:	“From	the	definition	of	voltage	as
the	energy	per	unit	charge,	one	might	expect	that	the	energy	stored	on	this	ideal	capacitor
would	be	just	qV.	That	is,	all	the	work	done	on	the	charge	in	moving	it	from	one	plate	to
the	other	would	appear	as	energy	stored.	But	in	fact,	the	expression	above	(qV/2)	shows
that	just	half	of	that	work	appears	as	energy	stored	in	the	capacitor.	For	a	finite	resistance,
one	 can	 show	 that	 half	 of	 the	 energy	 supplied	 by	 the	 battery	 for	 the	 charging	 of	 the
capacitor	is	dissipated	as	heat	in	the	resistor,	regardless	of	the	size	of	the	resistor.”
			Can	you	prove	or	disprove	this	statement?

5.	Find	the	power	required	to	run	a	light	bulb	with	voltage	V	and	resistance	R.

Solution.	 The	 voltage	 difference	 between	 the	 two	 ends	 of	 a	 bulb	 filament	 is	 V.	 This
means,	 by	 the	 definition	 of	 voltage,	 that	 the	 charge	 q	 of	 electrons	 loses	 energy	 qV	 in
passage	through	the	filament.8	The	power	expended	is	the	energy	per	unit	time:	P	=	qV/t	=
IV,	where	I	=	q/t	is	the	current	(by	the	definition	of	the	current).	By	Ohm’s	law	I	=	V/R,
and

This	formula	explains	why	one	gets	an	explosion	when	shorting	an	outlet:	a	small	R	makes
for	a	large	P.

1We	avoid	the	term	“turning	force”	because	what	matters	is	not	the	force	but	rather	the	product	of	the	force	and	the	lever.
Even	a	tiny	force	can	turn	a	tough	nut	with	a	large	enough	lever.
2It	 can	 happen	 that	 the	 two	 lines	 are	 parallel,	 in	which	 case	P	 is	 at	 infinity.	The	 proof	 still	 goes	 through	 if	we	 adjust	 our

language,	by	referring	to	three	parallel	lines	as	concurrent	(at	infinity).



3This	 integral	 does	 not	 depend	 on	 the	 choice	 of	 the	 path	 from	 O	 to	 A.	 This	 independence	 follows	 from	 the	 law	 of
conservation	of	energy.	 Indeed,	had	 the	 integral	along	 two	paths	with	 the	same	ends	been	different,	 the	 integral	over	a	cycle
obtained	by	concatenating	the	two	paths	would	be	nonzero.	That	is,	we	would	then	have	the	field	do	nonzero	work	in	moving	a
charge	along	a	closed	path,	contradicting	the	conservation	of	energy.
4The	 velocity	 field	 of	 a	 rotating	 disk	 is	 an	 example	 of	 a	 vector	 field	which	 is	 not	 a	 gradient	 of	 any	 function.	 Shear	wind

velocity	field	above	the	land	or	sea	is	another:	such	velocity	V	is	horizontal,	with	speed	increasing	with	height.	Albatrosses	use
the	nongradient	nature	of	this	field,	that	is,	the	nonvanishing	of	 ,	 to	extract	energy	from	the	wind.	These	birds	can
soar	indefinitely,	just	steering	but	not	flapping,	without	updrafts!
5This	law	is	true	only	approximately,	but	with	good	enough	precision	for	most	conductors	at	room	temperature.	Nature	does

not	strictly	enforce	this	law.
6The	section	doesn’t	matter—f	is	the	same	for	them	all	since	water	is	incompressible.
7It	is	interesting	to	note	that	as	the	switch	breaks	the	contact,	the	current	can	still	continue	to	flow	through	the	air	as	a	spark.

A	related	effect	called	the	water	hammer	is	familiar	to	some	homeowners	who	hear	banging	pipes	when	the	washer	shuts	off:
the	water	flow	is	stopped	by	a	valve	that	shuts	very	quickly,	causing	a	great	spike	in	pressure	from	the	water,	which	wants	to
keep	flowing.
8The	electrons	“fall”	down	the	electrostatic	potential	along	the	filament.	The	energy	they	lose	in	collisions	with	ions	goes	into

agitating	the	ions	in	the	filament	and	becomes	heat	and	light.
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