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Basic Info 

This is an advanced undergraduate course on thermodynamics and statistical physics. Topics 
include basics of temperature, heat, and work; state-counting, probability, entropy, and the second 
law; partition functions and the Boltzmann distribution; applications to engines, refrigerators, and 
computation; phase transitions; basic quantum statistical mechanics and some advanced topics. 
The course will use Schroeder’s An Introduction to Thermal Physics as a textbook. We will follow 

the book fairly closely, though there will also be some extra supplemental material on information 
theory, theoretical limits of computation, and other more advanced topics. If you’re not planning 
to go on to graduate school and become a physicist, my best guess is that the subject matter and 
style of thinking in this course may be the most important/useful in the physics major, as it has 
significant applications in other fields, such as economics and computer science. 
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1 What Are We Studying? 

This won’t all make sense yet, but it gives you an outline of central ideas in this course. 
We’re interested in the approximate or coarse-grained properties of very large systems. You may 

have heard that chemists define NA = 6.02 × 1023 as a mole, which is the number of atoms in a 
small amount of stuff (ie 12 grams of Carbon-12). Compare this to all the grains of sand on all of 
the world’s beaches ∼ 1018 , the number of stars in our galaxy ∼ 1011 , or the number of stars in the 
visible universe ∼ 1022 . Atoms are small and numerous, and we’ll be taking advantage of that fact! 
Here are some examples of systems we’ll study: 

• We’ll talk a lot about gases. Why? Because gases have a large number of degrees of freedom, 
so statistics applies to them, but they’re simple enough that we can deduce their properties by 
looking at one particle at a time. They also have some historical importance. But that’s it. 

• Magnetization – are magnetic dipoles in a substance aligned, anti-aligned, random? Once 
again, if they don’t interact, its easy, and that’s part of why we study them! 

• Metals. Why and how are metals all roughly the same (answer: they’re basically just gases of 
electrons, but note that quantum mechanics matters a lot for their behavior). 

• Phase Transitions, eg gas/liquid/solid. This is obviously a coarse-grained concept that 
requires many constituents to even make sense (how could you have a liquid consisting of only 
one molecule?). More interesting examples include metal/superconductor, fluid/superfluid, 
gas/plasma, aligned/random magnetization, confined quarks/free quarks, Higgs/UnHiggsed, 
and a huge number of other examples studied by physicists. 

• Chemical reactions – when, how, how fast do they occur, and why? 

Another important idea is universality – in many cases, systems with very different underlying 
physics behave the same way, because statistically, ie on average, they end up being very similar. 
For example, magnetization and the critical point of water both have the same physical description! 
Related ideas have been incredibly important in contemporary physics, as the same tools are used 
by condensed matter and high-energy theorists; eg superconductivity and the Higgs mechanism are 
essentially the same thing. 
Historically physicists figured out a lot about thermodynamics without understanding statistical 

mechanics. Note that 

• Thermodynamics deals with Temperature, Heat, Work, Entropy, Energy, etc as rather abstract 
macroscopic concepts obeying certain rules or ‘laws’. It works, but it’s hard to explain why 
without appealing to... 

• Statistical Mechanics gets into the details of the physics of specific systems and makes statistical 
predictions about what will happen. If the system isn’t too complicated, you can directly 
derive thermo from stat mech. So statistical mechanics provides a much more complete 
picture, and is easier to understand, but at the same time the analysis involved in stat mech is 
more complicated. It was discovered by Maxwell, Boltzmann, Gibbs, and many others, who 
provided a great deal of evidence for the existence of atoms themselves along the way. 
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A Very Brief Introduction 

So what principles do we use to develop stat mech? 

• Systems tend to be in typical states, ie they tend to be in and evolve towards the most likely 
states. This is the second law of thermodynamics (from a stat mech viewpoint). Note 

S ≡ kB log N (1.0.1) 

is the definition of entropy, where N is the number of accessible states, and kB is a pointless 
constant included for historical reasons. (You should really think of entropy as a pure number, 
simply the log of the number of accessible states.) 

For example, say I’m a bank robber, and I’m looking for a challenge, so instead of stealing $100 
bills I hijack a huge truck full of quarters. But I end up crashing it on the freeway, and 106 quarters 
fly everywhere, and come to rest on the pavement. How many do you expect will be heads vs tails? 
The kind of reasoning you just (intuitively) employed is exactly the sort of thinking we use in stat 
mech. You should learn basic statistical intuition well, as its very useful both in physics, and in the 
rest of science, engineering, and economics. It’s very likely the most universally important thing you 
can learn well as a physics undergraduate. 
Is there any more to stat mech than entropy? Not much! Only that 

• The laws of physics have to be maintained. Mostly this means that energy is conserved. 

This course will largely be an exploration of the consequences of basic statistics + physics, which 
will largely mean counting + energy conservation. 

Say I have 200 coins, and I restrict myself to coin configurations with the same number of heads 
and tails. Now I start with the heads in one pile and the tails in the other (100 each). I play a game 
where I start randomly flipping a head and a tail over simultaneously. After a while, will the two 
100-coin piles still be mostly heads and mostly tails? Or will each pile have roughly half heads and 
half tails? This is a pretty good toy model for heat transfer and entropy growth. 

Connections with Other Fields 

The methods of this course are useful in a broad range of fields in and outside of physics: 

• In stat mech we learn how to sum or average over distributions of states. We do something 
quite similar in Quantum Mechanics. In fact, there are deep and precise connections between 
the partition function in stat mech and the path integral in quantum mechanics. 

• Information Theory concerns how much information we can store, encode, and transmit, and 
is also built on the idea of entropy (often called Shannon Entropy in that context). 

• Because gases are easy, engines use them, and they were important to the development of 
thermo and stat mech, we’ll talk somewhat about how thermodynamics places fundamental 
limitations on the efficiency of engines. There are similar constraints on the efficiency of 
computation, which are just as easy to understand (though a bit less pessimistic). 
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• Machine Learning systems are largely built on the same conceptual foundations. In particular, 
‘learning’ in ML is essentially just statistical regression, and differences between ML models 
are often measured with a version of entropy. More importantly, even when ML systems are 
deterministic algorithms, they are so complicated and have so many parameters that we use 
statistical reasoning to understand them – this is identical to the situation in stat mech, where 
we describe deterministic underlying processes using probability and statistics. (It’s also what 
we do when we talk about probability in forecasting, eg when we say there’s a 30% probability 
someone will win an election.) 

2 Energy in Thermal Physics 

2.1 Temperature and Energy 

Temperature 

Temperature is an intrinsic property of both of two systems that are in equilibrium, ie that are in 
contact much longer than a relaxation time. 

• Contact can be physical, or it can be established through radiation, or via mutual conduct 
with some other substance/fluid. But heat must be exchanged for temperature... 

• Other kinds of equilibrium might be energy = thermal, volume = mechanical, particles 
= diffusive. 

• Objects that give up energy are at a higher temperature. 

So more specifically, objects at higher temperature spontaneously give up heat energy to objects at 
lower temperature. From the point of view of Mechanics or E&M, this is weird! Nothing like this is 
true of momentum, charge, force, ie they aren’t spontaneously emitted and absorbed!? 

• Operationally, use a thermometer. These are usually made of substances that expand when 
hotter. 

• Scale is basically arbitrary for now. Just mark some points and see how much expansion 
happens for a single material! Celsius from boiling water vs freezing. 

• Different materials (eg mercury vs metal) expand a bit differently, so precise measurements 
require care and more thought. But in many cases expansion is linear in temperature, so we 
get same approximate results. 

Hmm, are any materials more interesting than others for this purpose? 
What if we use a gas to measure temperature? 

• Operationally, a gas can keep on shrinking. In fact, at some temperature its volume or pressure 
will go to zero! 

• This temperature is called absolute zero, and defines the zero point of the absolute tempera-
ture scale. 
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Ideal Gas and the Energy-Temperature Relation 

Gases are the harmonic oscillator of thermodynamics – the reason is that we want to study a large 
number of very simple (approximately independent!) degrees of freedom in a fairly intuitive context. 
Everyone breathes and has played with a balloon. 
Low-density gases are nearly ideal, and turn out to satisfy (eg experiments demonstrate this) 

PV = NkT (2.1.1) 

where k is Boltzmann’s constant (which is sort of arbitrary and meaningless, as we’ll see, but we 
have to keep it around for historical reasons). 

• Note that Chemists use Avogadro’s number NA = 6.02 × 1023 and nR = Nk where n is molar 
density. This is also totally arbitrary, but it hints at something very important – there are 
very big numbers floating around! 

• Of course the ideal gas law is an approximation, but it’s a good approximation that’s important 
to understand. 

Why are we talking about this? Because the relationship between temperature and energy 
is simple for an ideal gas. Given 

• the ideal gas law 

• the relationship between pressure and energy 

we can derive the relationship between temperature and energy. 
Consider a molecule of gas and piston with area A controlling a volume V = LA. Let’s imagine 

its only a single molecule, as that’s equivalent to many totally non-interacting molecules. The 
average pressure is � � 

¯ ¯ mFx,onpiston Fx,onmolecule 
Δvx 

P̄ = = − = − Δt (2.1.2)
A A A 

Its natural to use the double-round-trip time 

L 
δt = 2 (2.1.3) 

vx 

Note that 

Δvx = −2vx (2.1.4) 

So we find that 

m (−2vx) mv2 

P̄ = − = x (2.1.5)
A 2L/vx V 
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The two factors of vx come from the momentum transfer and from the time between collisions. 
If we have N molecules, the total pressure is the sum, so we can write 

P̄ V = Nmv ̄2 
x (2.1.6) 

So far we haven’t made any assumptions. But if we assume the ideal gas law, we learn that 

1 1 
2̄ 
xkT (2.1.7)= mv 

2 2 

or the average total kinetic energy is 

3 1 � � 
2 
x 
¯ 2̄2 + zv ̄  

ykT (2.1.8)+= m v v 
2 2 

Cool! We have related energy to temperature, by assuming the (empirical for now) ideal gas law. 
We can also get the RMS speed of the molecules as 

3kT 
v̄ = 

m 
2 (2.1.9) 

Is the sum or average of the squares of numbers equal to the sum squared? So this isn’t the average 
speed, but it’s pretty close. (What does it being close tell us about the shape of the distribution of 
speeds?) 
Our result is true for ideal gases. The derivation breaks down at very low temperatures, when 

the molecules get very close together, though actually the result is still true (just not our argument). 
We’ll discuss this later in the course. 

Equipartition of Energy 

The equipartition theorem, which we’ll prove later in the course, says that all ‘quadratic’ degrees of 
freedom have average energy = 1 

2
kT . This means kinetic energies and harmonic oscillator potential 

energies: 

• Atoms in molecules can rotate, and their bonds can vibrate. 

• Solids have 3 DoF per molecular motion and 3 DoF for the potential energy in bonds. 

• Due to QM, some motions can be frozen out, so that they don’t contribute. 

This is all useful for understanding how much heat energy various substances can absorb. 

2.2 Heat and Work 

Book says that we can’t define energy... actually, we can define it as the conserved quantity associated 
with time translation symmetry, for those who know about Noether’s theorem. 
Recall that temperature is a measure of an object’s tendency to spontaneously give up 

energy... temperature often increases with energy, but not always, and it’s important not to confuse 
temperature with energy or heat. 
In thermodynamics we usually discuss energy in the form of heat or work. 
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• Heat is the spontaneous flow of energy due to temperature differences. 

• Work is any other transfer of energy... you do work by pushing a piston, stirring a cup, running 
current through a resistor or electric motor. In these cases the internal energy of these systems 
will increase, and they will usually ‘get hotter’, but we don’t call this heat. 

• Note that these are both descriptions of energy transfers, not total energies in a system. 

These aren’t the everyday usages of these terms. 
If I consider shining a flashlight with an incandescent bulb on something, I’m honestly not clear 

if that’s heat or work – it’s work since it’s intentional (and the electrical ‘heating’ of the filament is 
definitely work), but when the flashlight emits light, it’s actually ‘spontaneous’ thermal radiations, 
so the classification is unclear. 
The change in the internal energy of a system is 

ΔU = Q + W (2.2.1) 

and this is just energy conservation, sometimes called the first law of thermodynamics. 

• Note these are the amounts of heat and work entering the system. 

• Note that we often want to talk about infinitessimals, but note that ‘dQ’ and ‘dW ’ aren’t the 
change in anything, since heat and work flow in or out, they aren’t properties of the system 
itself. 

Processes of heat transfer are often categorized as 

• Conduction is by molecular contact 

• Radiation is by emission of electromagnetic waves 

• Convection is the bulk motion of a gas or liquid 

Compression Work 

For compression work we have 

~ ~W = F · dx → F Δx (2.2.2) 

for a simple piston. If compression happens slowly, so the gas stays in equilibrium, then I can replace 

W = PAΔx = −P ΔV (2.2.3) 

This is called quasistatic compression. To leave this regime you need to move the piston at a speed 
of order the speed of sound or more (than you can make shock waves). 
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That was for infinitesimal changes, but for larger changes we have Z Vf 

W = − P (V )dV (2.2.4) 
Vi 

as long as the entire process is quasistatic. 
Now let’s consider two types of compressions/expansions of an ideal gas, where we hold different 

quantities constant. These are 

• isothermal – holds temperature constant 

• adiabatic – no heat flow 

• Which do you think is slower?? 

For an isotherm of an ideal gas we have 

NkT 
P = (2.2.5)

V 

with T fixed, and so it’s easy to compute Z Vf NkT Vi
W = − dV = NkT log (2.2.6)

V VfVi 

as the work done on the gas. If it contracts the work done on the gas is positive, if it expands the 
work done on the gas is negative, or in other words it does work on the environment (ie on the 
piston). How much heat flows? We just have 

Q = ΔU − W = −W (2.2.7) 

so heat is equal to work. 
What if no heat is exchanged? By equipartition we have 

f 
U = NkT (2.2.8)

2 

where f is the number of degrees of freedom per molecule. If f is constant then 

f 
dU = NkdT 

2 
(2.2.9) 

so that we have 

f 
NkdT 
2 

= −P dV (2.2.10) 

which along with ideal gas gives 

f dT dV 
2 T 

= − 
V 

(2.2.11) 
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so that 

V T f/2 = constant (2.2.12) 

or 

V γ P = constant (2.2.13) 

where γ = 1 + 
f 
2 is the adiabatic exponent. 

Heat Capacities 

Heat capacity is the amount of heat needed to raise its temperature. The specific heat capacity 
is the heat capacity per unit mass. 
As stated, specific heat capacity is ambiguous because Q isn’t a state function. That is 

Q ΔU − W 
C = = (2.2.14)

ΔT ΔT 

It’s possible that U only depends on T (but likely not!), but W definitely depends on the process. 

• Most obvious choice is W = 0, which usually means heat capacity at constant volume � � 
∂U 

CV = (2.2.15)
∂T V 

This could also be called the ‘energy capacity’. 

• Objects tend to expand when heated, and so its easier to use constant pressure� � � � � � 
ΔU + P ΔV ∂U ∂V 

CP = 
ΔT 

= 
P ∂T 

+ P 
P ∂T P 

(2.2.16) 

For gases this distinction is important. 

Interesting and fun to try to compute CV and CP theoretically. 
When the equipartition theorem applies and f is constant, we find � � 

∂U ∂ f f 
CV = 

∂T 
= 

∂T 
NkT 
2 

= Nk 
2 

(2.2.17) 

For a monatomic gas have f = 3, while gases with rotational and vibrational DoF have (strictly) 
larger f . So CV allows us to measure f . 
Constant pressure? For an ideal gas the only difference is the addition of � � 

∂V ∂ NkT Nk 
= = (2.2.18)

∂T ∂T P PP 

so that 

CP = CV + Nk (2.2.19) 

Interestingly CP is independent of P , because for larger P the gas just expands less. 
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Phase Transitions and Latent Heat 

Sometimes you can put heat in without increasing the temperature at all! This is the situation 
where there’s Latent Heat, and usually occurs near a first order phase transition. We say that the 

Q
L ≡ (2.2.20) 

m 

is the latent heat per mass needed to accomplish the transformation. Conventionally this is at 
constant pressure, as its otherwise ambiguous. Note it takes 80 cal/g to melt water and 540 cal/g to 
boil it (note it takes 100 cal/g to heat water from freezing to boiling). 

Enthalpy 

Since we often work at constant pressure, it’d be convenient if we could avoid constantly having to 
include compression-expansion work. We can do this be defining the enthalpy 

H = U + PV (2.2.21) 

This is the total energy we’d need to create the system out of nothing at constant 
pressure. Or if you annihilate the system, you could get H back having the atmosphere contract! 
It’s useful because 

ΔH = ΔU + P ΔV 

= Q + Wother (2.2.22) 

where Wother is non-compression work. If no other form of work, ΔH = Q. Means � � 
∂H 

CP = (2.2.23)
∂T P 

Could all CP the “enthalpy capacity” while CV is “energy capacity”. No need for any heat at all, 
since could just be ‘other’ work (eg a microwave oven). 
For example, boiling a mole of water at 1 atmosphere takes 40, 660 J, but via ideal gas 

PV = RT ≈ 3100 J (2.2.24) 

at room temperature, so this means 8% of the energy put in went into pushing the atmosphere away. 

3 Entropy and the 2nd Law 

3.1 State Counting and Probability 

Why do irreversible processes seem to occur, given that the laws of physics are reversible? The 
answer is that irreversible processes are overwhelmingly probable. 
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Two-State Systems, Microstates, and Macrostates 

Let’s go back to our bank robber scenario, taking it slow. 
If I have a penny, a nickel, and a dime and a flip them, there are 8 possible outcomes. If the coins 

are fair, each has 1/8 probability. Note that there are 3 ways of getting 2 heads and a tail, so the 
probability of that outcome (2 heads and a tail) is 3/8. But if I care about whether the tail comes 
from the penny, nickel, or dime, then I might want to discriminate among those three outcomes. 
This sort of choice of what to discriminate, what to care about, or what I can actually distinguish 
plays an important role in stat mech. Note that 

• A microstate is one of these 8 different outcomes. 

• A macrostate ignores or ‘coarse-grains’ some of the information. So for example just giving 
information about how many heads there were, and ignoring which coin gave which H/T 
outcome, defines a macrostate. 

• The number of microstates in a macrostate is called the multiplicity of the macrostate. We 
often use the symbol Ω for the multiplicity. 

If we label macrostates by the number of heads n, then for n = 0, 1, 2, 3 we find 

Ω(n) 1 3 3 1 
p(n) = = , , , (3.1.1)

Ω(all) 8 8 8 8 

How many total microstates are there if we have N coins? It’s 2N , as each can be H or T. What are 
the multiplicities of the macrostates with n heads with N = 100? Well note that 

100 × 99 100 × 99 × 98 
Ω(0) = 1, Ω(1) = 100, Ω(2) = , Ω(3) = (3.1.2)

2 3 × 2 

In general we have 

N ! 
Ω(n) = (3.1.3) 

n!(N − n)! 

which is N choose n. So this gives us a direct way to compute the probability of finding a given 
number of heads, even in our bank robbery scenario where N = 106 . 
We can immediately make this relevant to physics by studying the simplest conceivable magnetic 

system, a two-state paramagnet. Here each individual magnetic dipole has only two states 
(because of QM), so it can only point up or down, and furthermore each dipole behaves as though 
its magnetic moment is independent of the others (they interact very weakly... in fact, in our 
approximation, they don’t interact at all). Now H/T just becomes ↑ / ↓, so a microstate is 

· · · ↑↑↑↓↑↓↓↑↓↓↑ · · · (3.1.4) 

while a macrostate is specified by the total magnetization, which is just N↑ − N↓ = 2N↑ − N , and 
multiplicity 

N ! 
Ω(N↑) = (3.1.5)

N↑!N↓! 
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This really becomes physics if we apply an external magnetic field, so that the system has an 
energy corresponding with how many little dipoles are aligned or anti-aligned with the external field. 

Silly Comments on Large Numbers 

We saw that NA = 6.02 × 1023 . But if we have that many spins, and each can be up or down, then... 
we get really large numbers! Let’s note what’s worth keeping track of here, eg consider 

1023 + 50 (3.1.6) 

or 

8973497 × 1010
23 

(3.1.7) 

With very very large numbers, units don’t even matter! Be very careful though, because in many 
calculations the very very large, or just very large numbers cancel out, and so you really do have to 
carefully keep track of pre-factors. 

Important Math 

Now we will derive the special case of a very universal result, which provides information about the 
aggregate distribution of many independent random events. 
Since N is large, N ! is really large. How big? One way to approximate it is to note that 

PNlog N ! n=1 log nN ! = e = e (3.1.8) 

Now we can approximate 

N ZX N 

log n ≈ dx log x = N(log N − 1) (3.1.9) 
0n=1 

which says that 

N ! ∼ NN −N e (3.1.10) 

This is the most basic part of Stirling’s Approximation to the factorial. The full result is 
√ 

N ! ≈ NN e −N 2πN (3.1.11) 

You can derive this more precise result by taking the large N limit of the exact formula Z ∞ 

N ! = x N e −xdx (3.1.12) 
0 
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That was a warm-up to considering the distribution of H/T, or spins in a paramagnet. 

N ! 
Ω(n) = 

n!(N − n)! 

NN e−N 

≈ (3.1.13) 
nne−n(N − n)N−nen−N 

Now if we write n = xN then this becomes 

NN 

Ω(n) ≈ 
xN NxN (1 − x)N(1−x)NN(1−x)x � �N

1 ≈ 
xx(1 − x)(1−x) 

N(−x log x−(1−x) log(1−x))≈ e (3.1.14) 

The prefactor of N in the exponent means that this is very, very sharply peaked at its maximum, 
which is at x = 

2
1 . Writing x = 

2
1 + y we have 

−x log x − (1 − x) log(1 − x) = log 2 − 2y 2 − 
4 
y 4 + · · · (3.1.15)
3 

so that � � 
1 + y −2Ny2 

2NΩ n = N ≈ e 
2 

(2n−N)2 

2N −2 
N≈ e (3.1.16) 

This is a special case of the central limit theorem, which is arguably the most important result 
in probability and statistics. The distribution we have found is the Gaussian Distribution, or 
the ‘bell curve’. Its key feature is its variance, which says intuitively that 

√N 
n − . few × N (3.1.17)

2 

√ 
where here N is the standard deviation. Thus we expect that 2n

N 
−N . √1 

N 
� 1. 

This means that if we flip a million fair coins, we expect the difference between the number of 
heads and the number of tails to be of order 1000, and not of order 10, 000. And if the difference 
was only, say, 3, then we might be suspicious that the numbers are being faked. 

Paramagnets and Random Walks 

More relevantly for physics, this tells us that if we have ∼ 1023 dipoles in a paramagnet (recall 
Avogadro’s number), with their dipole moments randomly arranged, then the total contribution √ 
to the magnetic moment we should expect is of order ∼ 1023 ≈ 3 × 1011 . That seems like a big 
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number, but it’s a very small fraction of the total, namely ∼ 10−11 fraction. Thus the difference 
between up and down spins is minute. 
We have also largely solved the problem of a (1-dimensional) random walk. Note that ‘heads’ 

and ‘tails’ can be viewed as steps to the right or left. Then the total nH − nT is just the number 
of steps taken to the right. This means that if we take N random steps, we should expect to be a√ 
distance of order N from our starting point. This is also an important, classic result. 

3.2 Two Coupled Paramagnets 

With two coupled paramagnets, we can study heat flow and irreversible processes. 
But to have a notion of energy, we need to introduce a background magnetic field, so that ↑ has 

energy µ and ↓ has energy −µ. Then if we have 100 magnetic moments in a Paramagnet, the energy 
of the system can range from 

−100µ, −98µ, −96µ, · · · , 0, · · · 98µ, 100µ (3.2.1) 

Note that there’s a unique configuration with minimum and maximum energy, whereas there are 
100! configurations with energy 0.
50!50! 
So let’s assume that we have two paramagnets, which can exchange energy between them by 

flipping some of the dipoles. 

• We will treat the two paramagnets as weakly coupled, so that energy flows between them 
slowly and smoothly, ie energy exchange within each paramagnet is much faster than between 
the two. We’ll call these energies UA and UB. 

• Utotal = UA + UB is fixed, and we refer to the macrostate just via UA and UB. Note that the 
number of spins in each paramagnet NA and NB are fixed. 

The total number of states is just 

Ωtot = ΩAΩB = Ω(NA, UA)Ω(NB , UB) (3.2.2) 

Now we will introduce the key assumption of statistical mechanics: 

• In an isolated system in thermal equilibrium, all accessible (ie possible) microstates are equally 
probable. 

A microstate might be inaccessible because it has the wrong energy, or the wrong values of conserved 
charges. Otherwise it’s accessible. 
Microscopically, if we can go from X → Y , we expect we can also transition from Y → X (this 

is the principle of detailed balance). Really there are so many microstates that we can’t possible 
‘visit’ all of them, so the real assumption is that the microstates we do see are a representative 
sample of all the microstates. Sometimes this is called the ‘ergodic hypothesis’ – averaging over 
time is the same as averaging over all accessible states. This isn’t obvious, but should seem plausible 
– we’re assuming the transitions are ‘sufficiently random’. 
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For simplicity, let’s imagine that the total energy is UA + UB = 0, and the two paramagnets 
have NA = NB = N dipoles each. How many configurations are there with all spins up in one 
paramagnet, and all spins down in the other? Just one! But with n up spins in the first paramagnet 
and N − n up spins in the second, there are 

(2N)! (N)!
Ωtot = Ω(N, (N − n)µ)Ω(N, (n − N)µ) = × 

n!(N − n)! n!(N − n)!� �2
(N)! 

= (3.2.3) 
n!(N − n)! 

Thus the number of states is vastly larger when n = N . In fact, we can directly apply our analysis 
of combinatorics to conclude that the number of states has an approximately Gaussian distribution√ 
with width N . 
Note that this is mathematically identical to the coin flipping example from the first lecture. 

3.3 Another Example: ‘Einstein Solid’ 

The book likes to use a simple toy model where a ‘solid’ is represented as a system of N identical 
but separate harmonic oscillators. They are treated as quantum oscillators, which means that they 
have energy � � 

1 
E = + n ~ω (3.3.1)

2 

for some non-negative integer n. And actually we’ll drop the 1/2, as only energy differences are 
relevant. Also, since all energies are multiples of ~ω, we’ll just refer to this as an ‘energy unit’ and 
not keep track of it. 
This wasn’t Einstein’s greatest achievement by any means, and it does not describe real solids. 

But it’s an easy toy example to play with, as we’ll see. More realistic models would require fancier 
combinatorics. 
If the total ES has E units of energy and N oscillators, then the number of states is 

(E + N − 1)!
Ω(N, E) = (3.3.2)

E!(N − 1)! 

Let’s briefly check this for N = 3, then we have 

Ω(3, 0) = 1, Ω(3, 1) = 3, Ω(3, 2) = 6, Ω(3, 3) = 10, · · · (3.3.3) 

We can prove our general formula by writing a configuration as 

•| • •|| • • • •| • | • •||| • • (3.3.4) 

where • denote units of energy and | denote transitions between oscillators. So this expression has 
E = 12 and N = 9. Thus we just have a string with N − 1 of the | and E of the •, we can put the |
and • anywhere, and they’re indistinguishable. 
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If this reasoning isn’t obvious, first consider how to count a string of N digits, say N = 7. A 
configuration might be 

4561327 (3.3.5) 

and so it’s clear that there are 

7 × 6 × 5 × 4 × 3 × 2 × 1 = 7! (3.3.6) 

configurations. But in the case of the • and |, there are only two symbols, so we divide to avoid 
over-counting identical configurations. 

Two Coupled Einstein Solids 

The formula for counting configurations for an Einstein solid is very (mathematically) similar to 
that for counting states of a paramagnet. But it’s slightly different in its dependence on energy and 
number of oscillators. 
If we fix E = EA + EB for the two ESs, then the number of configurations is 

(EA + NA − 1)! (EB + NB − 1)!
Ωtot = × 

EA!(NA − 1)! EB!(NB − 1)!� � 
1 (EA + NA − 1)!(E − EA + NB − 1)! 

= (3.3.7)
(NA − 1)!(NB − 1)! EA!(E − EA)! 

so we can study how many configurations there are as a function of EA, where we fix the total 
energy E and the number of oscillators in each ES. 
It’s not so easy to get intuition about this formula directly, so let’s approximate it. First we 

will just study Ω(E, N) itself. An interesting approximation is the high-temperature and (mostly) 
classical limit, where E � N , so that each oscillator will tend to have a lot of energy (that is E/N 
is large). 
(If we view the ‘pool’ of total energy as very large, then we could assign each oscillator to have 

energy randomly chosen between 0 and 2E/N , so that overall the total energy works out. This 
would give us (2E/N)N configurations, which is very close to the right answer.) 
We already did the relevant math. But once again, using Stirling’s formula 

(E + N)!
log ≈ (E + N) log(E + N) − E − N − E log E + E − N log N + N 

E!N ! 
≈ (E + N) log(E + N) − E log E − N log N (3.3.8) 

In the large E/N limit, we have � � 
N 

log(E + N) = log E + log 1 + 
E 

N ≈ log E + (3.3.9)
E 
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This then gives that 

E 
log Ω ≈ N log + N (3.3.10)

N 

which means that � �N
E 

Ω(N, E) ≈ e N (3.3.11)
N 

We can make sense of this by noting that this is roughly equal to the number of excited energy 
levels per oscillator, E/N , raised to a power equal to the number of oscillators. 
Thus using this approximation, we see that � �NA 

� �NBEA E − EA
Ωtot ≈ (3.3.12)

NA NB 

This is maximized as a function of EA when 

NA
EA = E (3.3.13)

NA + NB 

which is when the two ESs have energies proportional to the number of oscillators in each. 
Repeating the math we used previously, we can parameterize 

NA
EA = E + x 

NA + NB 
(3.3.14) 

and we find that � 
E x 

�NA 
� 
E x 

�NB 

Ωtot ≈ + 
N NA� � N 

− 
NB� � �� 

E x E x ≈ exp NA log 
N" � �N

E 

+ 
NA 

N 

+ NB log #� �2
Nx 

N 
− 

NB 

≈ 
N 

exp − 
2NANB E 

(3.3.15) 

Thus we see that we have another Gaussian distribution in x/ρ, where ρ = E/N is the energyq 
x NANBdensity. The exponent becomes large whenever 
ρ > 

N . This means that (assuming NA ∼ NB) 

x/ρ is much much larger than 1, but much much smaller than N . 
The punchline is that configurations that maximize Ω are vastly more numerous than those 

that do not, and that macroscopic fluctuations in the energy are therefore (beyond) astronomically 
unlikely. Specifically, since N & 1023 in macroscopic systems, we would need to measure energies to 
11 sig figs to see these effects. 

The limit where systems grow to infinite size and these approximations become arbitrarily good 
is called the thermodynamic limit. 
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3.4 Ideal Gases 

All large systems – ie systems with many accessible states or degrees of freedom – have the property 
that only a tiny fraction of macrostates have reasonably large probabilities. Let us now apply this 
reasoning to the ideal gas. What is the multiplicity of states for an ideal gas? 
In fact, in the ideal limit the atoms don’t interact, so... what is the multiplicity of states for a 

single atom in a box with volume V ? 
If you know QM then you can compute this exactly. Without QM it would seem that there are an 

infinite number of possible states, since the atom could be anywhere (it’s location isn’t quantized!). 
But we can get the right answer without almost any QM. 

• First note that the number of states must be proportional to the volume V . 

• But we can’t specify a particle’s state without also specifying its momentum. Thus the number 
of states must be proportional to the volume in momentum space, Vp. 

Note that the momentum space volume is constrained by the total energy ~p2 = 2mU . 
We also need a constant of proportionality, but in fact that’s (essentially) why Planck’s constant 

~ exists! You may have heard that δxδp > h/2, ie this is the uncertainty principle. So we can write 

V Vp
Ω1 = (3.4.1)

h3 

by dimensional analysis. You can confirm this more precisely if you’re familiar with QM for a free 
particle in a box. 
If we have two particles, then there are two added complications 

• We must decide if the particles are distinguishable or not. For distinguishable particles we’d 
have Ω21, while for indistinguishable particles we’d have 1

2 Ω1
2 . 

• We need to account for momentum conservation as p~2 p2 = 2mU . With more particles we 1 + ~ 2 

have a sum over all of their momenta. 

For N indistinguishable particles we have 

1 V N 

ΩN = × (momentum hypersphere area) (3.4.2)
h3NN ! 

where the momentum hypersphere is the volume in momentum space, constrained by momentum 
conservation. 
The surface area of a D-dimensional sphere is 

2πD/2 

RD−1A = (3.4.3)
(D 
2 − 1)! 
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√ 
We know that R = 2mU , where U is the total energy of the gas, and that D = 3N . Plugging this 
in gives 

V N 2π3N/21 3N −1 
ΩN = (2mU) 2 

N ! h3N (3
2 
N − 1)! 

π3N/2 
3N1 V N 
2≈ (2mU) (3.4.4)

N ! (3
2 
N )! h3N 

where we threw away some 2s and −1s because they are totally insignificant. This eliminates the 
distinction between ‘area’ and ‘volume’ in momentum space, because momentum space has the 
enormous dimension 3N . With numbers this big, units don’t really matter! 
Note that we can write this formula as 

= f(N)V N U3N/2ΩN (3.4.5) 

so the dependence on Volume and Energy are quite simple. 

Interacting Ideal Gases 

Let’s imagine that we have two ideal gases in a single box with a partition. Then we just multiply 
multiplicities: 

= f(N)2(VAVB)
N (UAUB)

3N/2Ωtot (3.4.6) 

Since UA + UB = Utot, we see that multiplicity is maximized very sharply by UA = UB = Utot/2. And 
the peaks are very, very sharp as a functions of UA – we once again have a Gaussian distribution for 
fluctuations about this equilibrium. Though the exact result is the simpler function 

(x(1 − x))P (3.4.7) 

for very, very large P = 3N/2. It should be fairly intuitive that this function is very sharply 
maximized at x = 1/2. 
If the partition can move, then it will shift around so that 

VA = VB = Vtot/2 (3.4.8) 

as well. This will happen ‘automatically’, ie the pressures on both sides will adjust to push the 
partition into this configuration. Once again, the peak is extremely sharp. 
Finally, we could imagine NA 6= NB to start, but we could poke a hole in the partition to see 

how the molecules move. Here the analysis is a bit more complicated – it requires using Stirling’s 
formula again – but once again there’s a very, very sharply peaked distribution. 
Note that as a special case, putting all the molecules on one side is 2−N less likely than having 

them roughly equally distributed. This case exactly like flipping N coins! 
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3.5 Entropy 

We have now seen in many cases that the highest multiplicities macrostates are vastly, vastly more 
numerous than low-multiplicity microstates, and that as a result systems tend to evolve towards 
these most likely states. Multiplicity tends to increase. 
For a variety of reasons, it’s useful to replace the multiplicity with a smaller number, its logarithm, 

which is the entropy 

S ≡ log Ω (3.5.1) 

For historical reasons, in physics we actually define 

S ≡ k log Ω (3.5.2) 

where k is the largely meaningless but historically necessary Boltzmann constant. 
Notice that because logarithms turn multiplication into addition, we have 

Stot = SA + SB (3.5.3) 

when Ωtot = ΩA × ΩB . This is quite convenient for a variety of reasons. For one thing, the entropy is 
a much smoother function of other thermodynamic variables (ie it doesn’t have an extremely sharp 
peak). 
Since the logarithm is a monotonic function, the tendency of multiplicity to increase is the same 

thing as saying that entropy tends to increase: 

δS ≥ 0 (3.5.4) 

That’s the 2nd law of thermodynamics! 
Note that the 2nd law picks an arrow of time. That’s a big deal. This arrow of time really 

comes from the fact that initial conditions in the universe had low entropy. (If you start with a low 
entropy final condition and run physics backwards, entropy would increase as time went backward, 
not forward.) 
Can you oppose the 2nd law and decrease entropy through intelligence and will? No. You can 

work hard to decrease the entropy in one system, but always at the cost of far more entropy creation 
elsewhere. Maxwell discussed this idea as ‘Maxwell’s Demon’. 
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Entropy of an Ideal Gas 

We can compute the entropy of an ideal gas from the multiplicity formula " # 
π3N/2 

3N1 V N 
2S = log (2mU)

N ! (3N )! h3N � 2 � � � 
3 3 3N V 

= Nk (1 − log N) + π + 1 − log + log + log 2mU 
2 2 2 h3 " � �3/2 

!# 
5 V 4πmU 

= Nk + log 
2 N 3Nh2 " � �3/2 

!# 
5 1 4πmu 

= Nk + log (3.5.5)
2 n 3h2 

where u = U/N and n = N/V are the energy density and number density, respectively. Apparently 
this is called the Sackur-Tetrode equation, but I didn’t remember that. 
What would this result have looked like if we had used distinguishable particles??? The problem 

associated with this is called the Gibbs paradox. We’ll talk about extensive vs intensive quantities 
more thoroughly later. 
Entropy dependence on volume (with fixed U and N) is simplest, ie just 

Vf
ΔS = Nk log (3.5.6)

Vi 

Note that this makes sense in terms of doubling the volume and gas particles being in either the left 
or right half of the new container. 
This formula applies both to expansion that does work, eg against a piston (where the gas 

does work, and heat flows in to replace the lost internal energy) and to free expansion of a gas. 
These are quite different scenarios, but result in the same change in entropy. 
What about increasing the energy U while fixing V and N? Where did the exponent of 3/2 

come from, and why does it take that value? 

Entropy of Mixing 

Another way to create entropy is to mix two different substances together. There are many more 
states where they’re all mixed up than when they are separated, so mixing creates entropy. 
One way to think about it is if we have gas A in one side of a partition, and gas B on the other 

side, then when they mix they each double in volume, so we end up with 

ΔS = (NA + NB)k log 2 (3.5.7) 

in extra entropy. It’s important to note that this only occurs if the two gases are different 
(distinguishable). 
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Note that doubling the number of molecules of the same type of gas in a fixed volume does not 
double the entropy. This is because while out front N → 2N , we also have the log 

n 
1 → log 

2
1 
n , and 

so the change in the entropy is strictly less than a factor of 2. 
(Now you may wonder if the entropy ever goes down; it doesn’t, because for N(X − log N) to be 

a decreasing function of N , we must have S < 0, which means a multiplicity less than 1!) 
In fact, the very definition of entropy strongly suggests that S ≥ 0 always. 

A Simple Criterion for Reversible Processes 

Reversible processes must have 

ΔS = 0 (3.5.8) 

because otherwise they’d violate the second law of thermodynamics! Conversely, processes that 
create entropy ΔS > 0 must be irreversible. 

• Free expansion, or processes requiring heat exchange will increase entropy. We’ll see soon that 
reversible changes in volume must be quasistatic with W = −P ΔV , and no heat flow. 

• From a quantum point of view, these quasistatic processes slowly change the energy levels of 
atoms in a gas, but they do not change the occupancy of any energy levels. This is what keeps 
multiplicity constant. 

• We saw earlier that heat ‘wants’ to flow precisely because heat flow increases entropy 
(multiplicity). The only way for heat to flow without a change in entropy is if it flows 
extremely slowly, so that we can take a limit where multiplicity almost isn’t changing. 

To see what we mean by the last point, consider the entropy of two gases separated by a partition. 
As a function of the internal energies, the total entropy is 

3 
Stot = Nk log ((Utot − δU)(Utot + δU)) (3.5.9)

2 

So we see that as a function of δU , the multiplicity does not change when δU � Utot. More precisely 

∂Stot 
= 0 (3.5.10)

∂δU 

at δU = 0. So if we keep δU infinitesimal, we can cause heat to move energy across the partition 
without any change in entropy or multiplicity. In fact, this idea will turn out to be important... 

4 Interactions and Temperature 

4.1 What is Temperature? 

Early in the course we tentatively defined temperature as a quantity that’s equal when two substances 
are in thermal equilibrium. And we know it has something to do with energy. But what is it really? 
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The only important ideas here are entropy/multiplicity tend to increase until we reach 
equilibrium, so they stop increasing when we’re in equilibrium, and energy can be shared, but 
total energy is conserved. 
If we divide our total system into sub-systems A and B, then we have UA + UB = Utot is fixed, 

and total entropy Stot = SA + SB is maximized. This means that 

∂Stot 
= 0 (4.1.1)

∂UA equilibrium 

But 

∂Stot ∂SA ∂SB 
= + 

∂UA ∂UA ∂UA 

∂SA ∂SB 
= − (4.1.2)

∂UA ∂UB 

where to get the second line we used energy conservation, dUA = −dUB . Thus we see that at 
equilibrium 

∂SA ∂SB 
= (4.1.3)

∂UA ∂UB 

So the derivative of the entropy with respect to energy is the thing that’s the same between 
substances in thermal equilibrium. 
If we look at units, we note that the energy is in the denominator, so it turns out that temperature 

is really defined to be � � 
1 ∂S ≡ (4.1.4)
T ∂U N,V 

where the subscript means that we’re holding other quantities like the number of particles and the 
volume fixed. 
Let’s check something basic – does heat flow from larger temperatures to smaller temperatures? 

The infinitessimal change in the entropy is � � 
1 1 1 1 

δS = δUA + δUB = − δUA (4.1.5)
TA TB TA TB 

So we see that to increase the total entropy (as required by the 2nd law of thermodynamics), if 
TA < TB then we need to have δUA > 0 – that is, the energy of the low-temperature sub-system 
increases, as expected. 
What if we hadn’t known about entropy, but were just using multiplicity? Then we would have 

found that 

∂Ωtot ∂ΩA ∂ΩB 
= ΩB + ΩA

∂UA ∂UA ∂UA� � 
1 ∂ΩA 1 ∂ΩB 

= ΩAΩB − (4.1.6)
ΩA ∂UA ΩB ∂UB 
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and we would have learned through this computation that entropy was the more natural quantity, 
rather than multiplicity. I emphasize this to make it clear that entropy isn’t arbitrary, but is 
actually a natural quantity in this context. 
Note that we now have a crank to turn – whenever there’s a quantity X that’s conserved, 

we can consider what happens when two systems are brought into contact, and find the equilibrium 
configuration where S(XA, XB) is maximized subject to the constraint that XA + XB is constant. 
We can do this for X = Volume, Number of Particles, and other quantities. 

Examples 

For an Einstein Solid, we computed S(U) a while ago and found 

u U 
S = Nk log = Nk log + Nk (4.1.7)

� N� 

where � is some energy unit in the oscillators. So the temperature is 

U 
T = (4.1.8)

Nk 

This is what the equipartition theorem would predict, since a harmonic oscillator has a kinetic 
energy and a potential. 
More interestingly, for an monatomic ideal gas we found 

3 
S = Nk log V + Nk log U + log f(N) (4.1.9)

2 

Thus we find that 

3 
U = NkT (4.1.10)

2 

which once again agrees with equipartition. 

4.2 Entropy and Heat Capacity 

We can use our newfound knowledge of temperature to define and understand the heat capacity. It’s 
important to know what we’re holding constant; at constant volume we define � � 

∂U 
CV ≡ (4.2.1)

∂T N,V 

which you might also think of as the energy capacity. 
For a monatomic ideal gas this is 

∂ 3 3 
CV = NkT = Nk (4.2.2)

∂T 2 2 

which can be experimentally verified, though many systems have more exotic CV . 
In general, if you want to compute CV you need to 
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1. Compute S in terms of U and other quantities. 

2. Compute T from the derivative of S 

3. Solve for U(T ), and then differentiate it. 

We’ll learn a quite different and often more efficient route in a few lectures. 

Measuring Entropy via CV 

We can measure entropy, or at least entropy differences, using heat. As long as work W = 0, we 
have that 

dU Q
dS = = (4.2.3)

T T 

So if we can measure T and Q then we know how much the entropy changed! 

• If T stays constant than this works even for finite changes in S. 

• If the volume is changing, but the process is quasistatic, then this rule also applies. 

A related statement is that 

CV dT 
dS = (4.2.4)

T 

If the temperature does change, then we can just use CV (T ), by thinking of the changes as tiny 
steps. So Z Tf CV

ΔS = dT (4.2.5)
TTi 

In some examples CV is approximately constant. For instance if we heat a cup of water from room 
temperature to boiling, we have Z 373 1 373 

ΔS ≈ (840 J/K) dT = (840 J/K) log ≈ 200J/K ≈ 1.5 × 1025 (4.2.6)
T 293293 

In fundamental units this is an increase of 1.5 × 1025 , so that the multiplicity increases by a factor 
of eΔS , which is a truly large number. This is about 2 per molecule. 
If we knew CV all the way down to zero, then we could compute Z Tf CV

Sf − S(0) = dT (4.2.7)
T0 

So what is S(0)? Intuitively, it should be S(0) = 0, so that Ω = 1, the unique lowest energy state. 
Unless there isn’t a unique ground state. 
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In practice many systems have residual entropy at (effective) T ≈ 0, due to eg re-arrangements 
of molecules in a crystal that cost very, very little energy. There can also be residual entropy from 
isotope mixing. (Interestingly Helium actually re-arranges its isotopes at T = 0, as it remains a 
liquid.) 
Note that to avoid a divergence in our definitions, it would seem that 

CV → 0 as T → 0 (4.2.8) 

This, and the statement that S(0) = 0, are both sometimes called the third law of thermodynamics. 
Apparently ideal gas formulas for heat capacities must be wrong as T → 0, as we have already 
observed. 

Historic View of Entropy 

Historically dS = Q/T was the definition of entropy used in thermodynamics. It was an important 
and useful quantity, even though no one knew what it was! Nevertheless, they got quite far using 
ΔS ≥ 0 as the 2nd law of thermodynamics. 

4.3 Paramagnets – Everything You Know Is Wrong 

Now we will solve the two-state paramagnet model. This is almost identical to the toy model with 
coin flipping from the very first day of class! However, we’ll see some features that you may find 
very surprising. 
The paramagnet is ideal in that it just consists of non-interacting dipoles. Also, we will invoke 

quantum mechanics to study quantized dipoles that can only point up or down: 

· · · ↑↑↑↓↑↓↓↑↓↓↑ · · · (4.3.1) 

We’ve already counted the states in this system. So what we need to do is add energy (and energy 
conservation). The dipoles don’t interact, so the only energy comes from assuming there’s an external 
magnetic field, so that 

U = µB(N↓ − N↑) = µB(N − 2N↑) (4.3.2) 

The magnetization is just 

U 
M = − 

B 
(4.3.3) 

so it’s proportional to the energy. Recall the multiplicity of states is 

N ! 
Ω(N↑) = (4.3.4)

N↑!N↓! 

Note that we can solve for N↑ in terms of U via 

N U 
N↑ = − (4.3.5)

2 2µB 
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which means that N↑ = N/2 for U = 0. Where is multiplicity maximized? 
We see that as a function of energy U , multiplicity is maximized at U = 0, and it goes down when 

we increase or decrease U ! This is very different from most other systems, as typically multiplicity 
increases with energy, but not here. 
Let’s draw the plot of S(U). In the minimum energy state the graph is very steep, so the system 

wants to absorb energy, as is typical for systems at very low energy. But at U = 0 the slope goes to 
zero, so in fact that system stops wanting to absorb more energy. And then for U > 0 the slope 
becomes negative, so the paramagnet wants to spontaneously give up energy! 
But remember that � �−1

∂S 
T ≡ (4.3.6)

∂U 

Thus when S0(U) = 0, we have T = ∞. And when S 0(U) < 0, we have that T is negative. 
Note that negative temperatures are larger than positive temperature, insofar as systems at 

negative temperature give up energy more freely that systems at any positive temperature. When 
|T | small and T < 0, temperature is at its effective maximum. 
It’s possible to actually do experiments on systems at negative temperature using nuclear 

paramagnets by simply flipping the external magnetic field. Nuclear dipoles are useful because they 
don’t equilibrate with the rest of the system, so they can be studied in isolation. 
Negative temperature can only occur in equilibrium for systems with bounded total energy and 

finite number of degrees of freedom. 
Aside from simply demonstrating a new phenomenon, this example is useful for emphasizing 

that entropy is more fundamental than temperature. 

Explicit Formulae 

It’s straightforward to apply Stirling’s approximation to get an analytic solution for large N . 
The entropy is 

S ≈ N log N − N↑ log N↑ − (N − N↑) log(N − N↑) (4.3.7) 

To get the temperature we just have � � 
1 ∂S ∂N↑ ∂S 1 ∂S 
= = = − (4.3.8)

T ∂U N,B ∂U ∂N↑ 2µB ∂N↑ 

Then the last derivative can be evaluated giving 

1 k N − U/µB 
= log (4.3.9)

T 2µB N + U/µB 

where T and U have opposite signs, as expected. Solving for U gives 

µB µB
U = −NµB tanh , M = Nµ tanh (4.3.10)

kT kT 
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Then the heat capacity at constant magnetic field is � � � �2
∂U µB 1 

CB = = Nk �
µB � (4.3.11)

∂T kT N,B cosh2 
kT 

This goes to zero very fast at both low and high temperature, and is maximized at T →∞ (with 
either sign). 
All this work wasn’t for nothing. For physical magnets at room temperature, kT ≈ 0.025eV , while 

if µ = µB ≈ 5.8 × 10−5eV/T is the Bohr magneton (the value for an electron), then µB ∼ 10−5eV 
even for strong magnets. Thus µB/(kT ) � 1. In that limit 

tanh x ≈ x (4.3.12) 

and so we see that the magnetization is � � 
µB

M ≈ Nµ (4.3.13)
kT 

which is called Curie’s law, as it was discovered experimentally by Pierre Curie. At high temperature 
this works for all paramagnets, even those with a fundamenatlly more complicated description (eg 
with more than two states, and some interactions). 

4.4 Mechanical Equilibrium and Pressure 

Next we would like to consider systems whose volumes can change through interaction. The idea 
is that exchange of volumes should be related to pressure through the entropy. We’re 
turning the crank! 
So let’s imagine two gases separated by a movable partition. The gases can exchange both energy 

and volume, but total energy and volume are fixed. 
Total entropy should be maximized, so we expect that 

∂Stotal 
= 0 (4.4.1)

∂VA 

By the same analysis that led to temperature, we can re-write this as 

∂SA ∂SB− = 0 (4.4.2)
∂VA ∂VB 

since VA + VB = Vtotal is fixed, and the entropy of the full system is the sum of the individual 
entropies. Thus we conclude that 

∂SA ∂SB 
= (4.4.3)

∂VA ∂VB 

at equilibrium, and so we should expect this to have a simple relationship with the pressure! Note 
this is at fixed energy and fixed number of particles, and we are assuming that we are also in thermal 
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equilibrium. If the partition were to move without this assumption, energies would not be fixed, and 
things would be more complicated. 
Since TA = TB and T × S has units of energy, we can identify the pressure by � � 

∂S 
P = T (4.4.4)

∂V U,N 

where we are free to multiply by T since we are in thermal equilibrium. 
Let’s check this in an example. For an ideal gas we have that 

S = Nk log V + · · · (4.4.5) 

where the ellipsis denotes functions of U and N that are independent of V . So we find that 

∂ NkT 
P = T (Nk log V ) = (4.4.6)

∂V V 

So we have derived the ideal gas law! Or alternatively, we have verified our expression for the 
pressure in a familiar example. 

Thermodynamic Identity 

We can summarize the relation between entropy, energy, and volume by a thermodynamic identity. 
Let’s consider how S changes if we change U and V a little. This will be � � � � 

∂S ∂S 
dS = dU + dV (4.4.7)

∂U ∂V V U 

where we fix volume when we vary U , and fix U when we vary the volume. We can recognize these 
quantities and write 

1 P 
dS = dU + dV (4.4.8)

T T 

This is most often written as 

dU = T dS − P dV (4.4.9) 

This is true for any system where T and P make sense, and nothing else is changing (eg number of 
particles). This formula reminds us how to compute everything via partial derivatives. 

Heat and Entropy 

The thermodynamic identity looks a lot like energy conservation, ie 

dU = Q + W (4.4.10) 
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where we interpret Q ∼ T dS and W ∼ −P dV . Can we make this precise? 
Not always. This is true if the volume changes quasistatically, if there’s no other work done, and 

if no other relevant variables are changing. Then we know that W = −P dV , so that 

Q = T dS (quasistatic) (4.4.11) 

This means that ΔS = Q/T , even if there’s work being done. If the temperature changes, we can 
still compute Z 

CP
(ΔS)P = dT (4.4.12)

T 

if the process is quasistatic. 
Also, if Q = 0, then the entropy doesn’t change. In other words 

quasistatic + adiabatic = isentropic (4.4.13) 

We’ll note later that isentropic processes are interesting. 
What about exceptions, which abound? Say we hit a piston really hard. Then the work done on 

the gas is 

W > −P dV (4.4.14) 

because we hit the molecules harder than in a quasistatic process. However, we can choose to only 
move the piston infinitesimally, so that the 

dU P Q
dS = + dV > (4.4.15)

T T T 

This is really just a way of saying that we’re doing work on the gas while keeping V constant, and so 
U , T , and S will increase. It looks like compression work but it’s ‘other’ work. 
A more interesting example is free expansion of the gas into a vacuum. No work is done and 

no heat flows, but S increases. 
It’s easy to create more entropy, with or without work and heat. But we can’t ever decrease it. 

4.5 Diffusive Equilibrium and Chemical Potential 

We’re turning the crank again, this time using conservation of particle number! 
Let’s consider two systems that can share particle number. The usual logic tells us that 

∂SA ∂SB 
= 

∂NA ∂NB 
(4.5.1) 

in equilibrium, where the partial derivatives are at fixed energy and volume. 
We can multiply by −T to get the conventional object chemical potential � � 

∂S 
µ ≡ −T 

∂N U,V 

(4.5.2) 
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This is the quantity that’s the same for two systems in equilibrium. It’s the potential for sharing 
particles. 
Since we added a minus sign, if two systems aren’t in equilibrium the one with smaller µ gains 

particles. This is like temperature. Particles flow towards low chemical potential. 
We can generalize the thermodynamic identity as 

1 P µ
dS = dU + dV − dN (4.5.3)

T V T 

where the minus sign comes from the definition. Thus 

dU = T dS − P dV + µdN (4.5.4) 

Sometimes we refer to µdN as the ‘chemical work’. 
The general thermodynamic identity is useful for remembering the relations between various 

thermodynamic quantities. For example note that 

dU = µdN (4.5.5) 

which provides another way to think about µ as � � 
∂U 

µ = (4.5.6)
∂N S,V 

This is how much energy changes when we add a particle and keep S, V fixed. 
Usually to add particles without changing S, you need to remove energy. But if you need to give 

the particle potential energy to add it, this contributes to µ. 
Let’s compute µ for an ideal gas. We take � �3/2 

! ! 
S = Nk log V 

4πmU − log N5/2 (4.5.7)
3h2 

Thus we have 

µ = −T k log 

! !� �3/2
4πmU 5 

V − log N5/2 + T Nk 
3h2 2N " 

V 
#� �3/2

4πmU 
= −kT log 

N 3Nh2 " 
V 

#� �3/2
2πmkT 

= −kT log 
N h2 

(4.5.8) 

3where at the end we used U = NkT .
2 
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For gas at room temperature and atmospheric pressure, V/N ≈ 4 × 10−26m3 , whereas the other 
factor is, for helium, about 10−31m3 and so the logarithm is 12.7, and µ = −0.32 eV for helium at 
300 K, 105 N/m. 
Increasing the density of particles increases the chemical potential, as particles don’t ‘want’ to 

be there. 
So far we used only one particle type, but with many types we have a chemical potential for 

each. If two systems are in diffusive equilibrium all the chemical potentials must be the same. 
So we see that through the idea of maximizing entropy/multiplicity, we have been led to define 

T , P , and µ, and the relation 

dU = T dS − P dV + µdN (4.5.9) 

for classical thermodynamics. 

4.6 Extensive and Intensive Quantities 

There’s an important distinction that we’ve alluded to but haven’t discussed directly, between 
extensive and intensive quantities. The distinction is whether the quantity doubles when we 
double the amount of stuff, or if it stays the same. So extensive quantities are 

V, N, S, U, H, mass (4.6.1) 

while intensive quantities are 

T, P, µ, density (4.6.2) 

If you multiply note that 

extensive × intensive = extensive (4.6.3) 

for example volume × density = mass. Conversely, if the ratios of extensive quantities will be 
intensive. 
Note that you should never add an intensive and an extensive quantity – this is often wrong by 

dimensional analysis, but in cases where it’s not, it also doesn’t make sense conceptually. 
So intensive/extensive is like a new kind of dimensional analysis that you can use to check what 

you’re calculating. 

5 Engines and Refrigerators 

A heat engine absorbs heat energy and turns it into work. Note that this doesn’t include electric 
motors, which turn electricity and mechanical work. Internal combustion engines in cars 
officially don’t absorb heat, rather they produce it from combustion, but we can treat them as 
though the heat was coming from outside. 
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Engines can’t convert heat into work perfectly. As we’ll see, the reason is that absorbing heat 
increases the entropy of the engine, and if its operating on a cycle, then it must somehow get rid 
of that entropy before it can cycle again. This leads to inefficiency. Specifically, the engine must 
dump waste heat into the environment, and so only some of the heat it initially absorbed can be 
converted into work. 
We can actually say a lot about this without knowing anything specific about how the engine 

works. We can just represent it with a hot reservoir, the engine itself, and a cold reservoir. 
Energy conservation says that 

Qh = W + Qc (5.0.1) 

and that the efficiency is 

W Qc 
e = = 1 − (5.0.2)

Qh Qh 

This already says that efficiency is at most 1. We can get a stronger bound using the 2nd law of 
thermodynamics. 
Note that the entropy extracted from the hot reservoir is 

Qh
Sh = (5.0.3)

Th 

while the entropy absorbed by the cold reservoir is 

Qc
Sc = 

Tc 
(5.0.4) 

Thus we must have Sc − Sh ≥ 0 or 

Qc 

Tc 
≥ 

Qh 

Th 
(5.0.5) 

but this implies 

Qc 

Qh 
≥ 

Tc 

Th 
(5.0.6) 

This then tells us that 

e = 1 − 
Qc 

Qh 
≤ 1 − 

Tc 

Th 
(5.0.7) 

This is the famous Carnot bound on the efficiency of heat engines. 
Most engines are significantly less efficient than this, because they produce excess entropy, often 

through the heat transfer processes themselves. Note that to be maximally efficient, the engine has 
to be at Th and Tc during each transfer! 
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Carnot Cycle 

The arguments above also suggest how to build a maximally efficient engine – at least in theory. 
Let’s see how it would work. 
The basic point is that we don’t want to produce excess entropy. This means that 

• heat transfers must happen exactly at Th and Tc 

• there shouldn’t be any other heat transfers 

This basically fixes the behavior the engine, as pointed out by Sadi Carnot in 1824. 
To have heat transfers exactly at Th and Tc, we must expand or contract the gas isothermally. 

To otherwise not produce any entropy, we should have adiabatic expansion and contraction for the 
other parts of the cycle, ie with Q = 0. That’s how we get the gas from Th to Tc and back. 
You should do problem 4.5 to check that this all works out, but based on our understanding of 

energy conservation and the 2nd law of thermodynamics, it should actually be ‘obvious’ that this is 
a maximally efficient engine. 
Note that Carnot engines are extremely impractical, because they must operate extremely slowly 

to avoid producing excess entropy. 
It’s easier to draw the Carnot cycle in T and S space rather than P and V space. 

5.1 Refrigerators 

Theoretically, a refrigerator is just a heat engine run in reverse. 
We define the coefficient of performance of a refrigerator as 

Qc Qc 1 
COP = = = 

Qh 
(5.1.1)

W Qh − Qc − 1
Qc 

We cannot just use the inequality from our discussion of engines, because heat flows in the opposite 
direction. 
Instead, the entropy dumped into the hot reservoir must be at least as large as that drawn from 

the cold reservoir, which means that 

Qh 

Th 
≥ 

Qc 

Tc 
(5.1.2) 

so that 

Qh 

Qc 
≥ 

Th 

Tc 
(5.1.3) 

This then tells us that 

COP ≤ 
Th 
Tc 

1 

− 1 
= 

Tc 

Th − Tc 
(5.1.4) 
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So in theory we can refrigerate very, very well when Tc ≈ Tc. This should be intuitive, because in 
this limit we need not transfer almost any entropy while transferring heat. 
Conversely, if Tc � Th then the performance is very poor. It takes an immense amount of work 

to cool something towards absolute zero. 
It should also be clear from the way we derived it that the maximally efficient refrigerator would 

be a Carnot cycle run in reverse. 

Brief Timeline 

Carnot came up with ingenius arguments that engines couldn’t be more efficient than the Carnot 
cycle, and that they must always produce waste heat. But he didn’t distinguish very clearly between 
entropy and heat. Clausius defined entropy (and coined the term) clearly as Q/T , but he didn’t 
know what it really was. Boltzmann mostly figured this out by 1877. 

5.2 Real Heat Engines 

Let’s discuss some real heat engines. 
Internal combustion engines fill a chamber with fuel and air, then combust it, expanding the 

gas and pushing the piston; then the material vents and is replaced with lower temperature/pressure 
gas, the piston compresses, and the cycle starts again. This is called the Otto cycle. Notice there’s 
no hot reservoir, but combustion behaves the same way. 
We can idealize this with fixed volume changes in pressure and adiabatic compression and 

expansion operations. 
Let’s compute the efficiency, recalling that V γ P = constant where γ is the adiabatic exponent, 

where γ = 1 + 
f 
2 . On the adiabats, no heat is exchanged, so all heat exchanges occur at constant 

volume. This means that when the heat is exchanged, no work is done, and so the heat is equal to 
the change in internal energy of the gas. Thus we have that 

f 
Qh = Nk(T3 − T2)

2 
(5.2.1) 

and 

f 
Qc = Nk(T4 − T1)

2 
(5.2.2) 

so that the efficiency is 

e = 
T3 − T4 − T2 + T1 

T3 − T2 
= 1 − 

T4 − T1 

T3 − T2 
(5.2.3) 

It turns out that this simplifies nicely, using the fact that on adiabats 

γ−1T3V2 
γ−1 = T4V1 (5.2.4) 

and 

T1V γ−1 
1 = T2V γ−1 

2 (5.2.5) 
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This leads to 

rT3 − rT2 
e = 1 − = 1 − r (5.2.6)

T3 − T2 � �γ−1 
where r = V

V 
2

1 
. So in other words, the overall efficiency is � �γ−1

V2 
e = 1 − (5.2.7)

V1 

For air γ = 7/5 and we might have V2/V1 = 8, so that the efficiency is around 56%. 
Recall that TV γ−1 is fixed on an adiabat, so to compare this efficiency with Carnot we can solve 

for V ratios in terms of T ratios, and we find 

T1 T4 
e = 1 − = 1 − (5.2.8)

T2 T3 

which doesn’t involve the extreme temperatures, so it less efficient than Carnot. In practice real 
gasoline engines are 20-30% efficient. 
You can get greater efficiency with higher compression ratio, but the fuel will pre-ignite once 

it gets too hot. We can take advantage of this using diesel engines, which simply use heat from 
compression to ignite the mixture. They spray the fuel/air mixture as the piston starts to move 
outward, meaning that (to some approximation) they have a constant volume and a constant pressure 
piece in their cycles, which means computing their efficiency is more complicated. They ultimately 
have higher efficiency (around 40%) using very high compression ratios, which are limited by not 
melting the engine. 

Steam Engines 

See the tables and diagrams in the book. 
These use a Rankine cycle, and go outside the ideal gas regime, as the steam condenses! 
Here water gets pumped in, heats into steam and pushes a turbine (as it cools and decreases in 

pressure), then is condensed back into water. 
We can’t compute the efficiency from first principles. But under constant pressure conditions, 

the heat absorbed is equal to the change in enthalpy H. So t we can write the efficiency as 

Qc H4 − H1 H4 − H1 
e = 1 − = 1 − ≈ 1 − (5.2.9)

Qh H3 − H2 H3 − H1 

where the last approximation is good because the pump adds very little energy to the water, and 
the PV term is small for liquids. 
There are tables called ‘steam tables’ that simply list the enthalpies and entropies of steam, water, 

and water-steam mixtures in various conditions. We need the entropies because for the steam+water 
mixture, we only get H by using the fact that 3 → 4 is an adiabat, so S3 = S4, allowing us to use 
the S values of the tables to get H. 
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5.3 Real Refrigerators 

Real refrigerators follow a cycle much like the inverse of the Rankine cycle. The working substance 
changes back and forth between a liquid and a gas. That liquid-gas transition (boiling point) must 
be much lower in a refrigerator though, because we want to get to lower temperatures. 
A variety of fluids have been used, including carbon dioxide, ammonia (dangerous), Freon, and 

now HFC-134a. 
The PV diagram involves first from 1 the gas is compressed adiabatically, raising P and T . Then 

from 2 to 3 it gives up heat and liquefies in the condenser. Then from 3 to 4 it passes through 
a throttling valve – a narrow opening – emerging on the other side at much lower pressure and 
temperature. Finally it absorbs heat and turns back into a gas in the evaporator. 
We can write the COP using enthalpies 

Qc H1 − H4
COP = = (5.3.1)

Qh − Qc H2 − H3 − H1 + H4 

Enthalpies at 1, 2, 3 can be looked up, with point 2 we can assume S is constant during compression. 
We can understand point 4 by thinking more about throttling. 

Throttling 

Throttling, or the Joule-Thomson process involves pushing a fluid through a tiny hole or plug from 
a region with pressure Pi to one with pressure Pf . Initial and final volumes are Vi and Vf . There is 
no heat flow, so 

Uf − Ui = Q + W = 0 + Wleft + Wright (5.3.2) 

which gives 

Uf − Ui = PiVi − Pf Vf (5.3.3) 

or 

Uf + Pf Vf = Ui + PiVi (5.3.4) 

or just conservation of enthalpy. 
The purpose is to cool the fluid below the cold reservoir temperature, so it can absorb heat. This 

f+2wouldn’t work if the fluid were an ideal gas, since H = 
2 NkT . 

But in a dense gas or liquid, the energy contains a potential term which decreases (due to 
attractive forces) when the molecules get close together. So 

H = Upot + Ukin + PV (5.3.5) 

and so as the gas molecules get further apart, Upot increases, and the kinetic energy and temperature 
tend to decrease. 
If we use H3 = H4 in refrigeration, then we have 

H1 − H3
COP = (5.3.6)

H2 − H1 

and so we just need to look up the enthalpies. 
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Cooling MORE 

See the book for some fun reading. 

• You can make dry ice by liquifying CO2 at higher pressure, then when you throttle you get 
dry ice frost residue. 

• Making liquid Nitrogen is more difficult. You can just throttle for a while, but you need to 
start at higher pressure. 

• Then you need to do it more efficiently, so you can use a heat exchanger to cool one gas as 
another is throttled. 

However, throttling isn’t good enough for hydrogen or helium, as these gases become hotter 
when throttled. This is because attractive interactions between gas molecules are very weak, so 
interactions are dominated by positive potential energies (repulsion). Hydrogen and Helium were 
first liquified in 1898 and 1908 respectively. 
One can use further evaporative cooling to get from 4.2 K (boiling point of helium at 1 atm) to 

about 1 K. To go even further need 

• A helium dilution refrigerator, where 3He evaporates into a liquid bath with 4He. We use the 
3He to take heat from the 4He. This can get us from 1K to a few milliK. 

• Magnetic cooling using 

µB
M = Nµ tanh (5.3.7)

kT 

where we start with mostly up spins, and then smoothly decrease B, so that T also decreases 
as the population of up and down spins stays the same. This is analogous to cooling of an 
ideal gas by adiabatic expansion, following isothermal compression. We can’t get to 0K this 
way due to dipole-dipole interactions, ie an imperfect paramagnet. 

• There’s also laser cooling. 

6 Thermodynamic Potentials 

Forces push us towards minima of energies. Probability pushes us towards maximization of entropy. 
Are there thermodynamic potentials mixing U and S that combine to tell us how a system will 
tend to change? 
And a related question – we have seen that enthalpy H is useful when we are in an environment 

with constant pressure. What if instead we’re connected to a reservoir at constant T ? Perhaps 
there’s a natural way to account for heat transfer to and from this reservoir, just as H automatically 
accounts for work due to the ambient pressure? 
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Let’s assume the environment acts as a reservoir of energy, so that it can absorb or release 
unlimited energy without any change in its temperature. If SR is the reservoir entropy, then 

dStotal = dS + dSR ≥ 0 (6.0.1) 

by the 2nd law. 
We would like to eliminate the reservoir. For this, let’s use the thermodynamic identity for the 

reservoir 

1 P µ
dSR = dUR + dVR − dNR (6.0.2)

T T T 

and let’s hold VR and NR fixed, so only energy can be exchanged. Then we can write 

1 
dStotal = dS + dUR (6.0.3)

T 

since TR = T . But energy is conserved, so we have that 

1 1 1 
dStotal = dS − dU = − (dU − T dS) = − dF (6.0.4)

T T T 

where we define the Helmholtz free energy as 

F = U − TS (6.0.5) 

We have defined it with a minus sign because now we have that 

dF ≤ 0 (6.0.6) 

which means that F can only decrease. So it’s a kind of ‘potential’ such that we can only move to 
lower and lower values of F at fixed T, V, N . 
And now we can just ignore the reservoir and account for the 2nd law using F . The system will 

just try to minimize F . 
We can play the same game letting the volume of the system change, and working at constant 

pressure, so that 

1 P 1 1 
dStotal = dS − dU − dV = − (dU − T dS + P dV ) = − dG (6.0.7)

T T T T 

where 

G = U − TS + PV (6.0.8) 

and we work at constant T and constant P . Thus in this case its the Gibbs free energy that must 
decrease. 
We can summarize this as 
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• At constant U and V , S increases. 

• At constant T and V , F tends to decrease. 

• At constant T and P , G tends to decrease. 

All three assume no particles enter or leave, though one can also make even more potentials if we 
consider diffusion of particles. 
We can think about this directly by just noting that in 

F ≡ U − TS (6.0.9) 

S ‘wants’ to increase, and (one may think that) U ‘wants’ to decrease. The latter is only because it 
can give energy to the environment, and thereby increase the total entropy of the universe. 
Wait what? Here what’s happening is that if U decreases without S increasing, then this means 

that the entropy of the system isn’t changing – but the entropy of the environment will definitely 
change by dU . So the fact that objects ‘want’ to roll down hills (and then not roll back up again!)

T 
ultimately comes from the 2nd law of thermodynamics. 
Note also that the desire to give away energy isn’t very great if T is large, since then the system 

may not want to do this and risk ‘losing valuable entropy’. This is one way of seeing that at high 
temperature, our system will have a lot of energy. 
Reasoning for the Gibbs free energy 

G ≡ U + PV − TS (6.0.10) 

is similar, except that the environment can also ‘take’ volume from the system. 

Why Free Energy? 

We can also interpret F and G as analogues to H – these are the amount of energy needed to create 
a system, minus the heat-energy that we can get for free from the environment. So for example in 

F = U − TS (6.0.11) 

we see that we can get heat Q = T ΔS = TS from the environment for free when we make the 
system. 
Conversely, F is the amount of energy that comes out as work if we annihilate the system, 

because we have to dump some heat Q = TS into the environment just to get rid of the systems 
entropy. So the available or ‘free’ energy is F . 
Above we meant all work, but if we’re in a constant pressure environment then we get some work 

for free, and so in that context we can (combining H and F , in some sense) define 

G = U − TS + PV (6.0.12) 

which is the systems energy, minus the heat term, plus the work the constant P atmosphere will 
automatically do. 
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We call U, H, F, G thermodynamic potentials, which differ by adding PV or −TS. They are all 
useful for considering changes in the system, and changes in the relevant potential. Note that 

ΔF = ΔU − T ΔS = Q + W − T ΔS (6.0.13) 

If no new entropy is created then Q = T ΔS, otherwise Q < T ΔS, and so we have 

ΔF ≤ W (6.0.14) 

at constant T . This includes all work done on the system. Similarly, we find that 

ΔG ≤ Wother (6.0.15) 

at constant T, P , where Wother includes work done other than by pressure. 
Changes in H, F, G are very useful to know, and so are tabulated by chemists and engineers. We 

rarely talk about their absolute values, since that would include all of the energy (even E = mc2 

energy), so instead these quantities are usually viewed as changes from a convenient reference point. 

More Thermodynamic Identities and Legendre Transforms 

We learned the identity 

dU = T dS − P dV + µdN (6.0.16) 

In this sense we are automatically thinking about U as a function of S, V, N , since its these quantities 
that we’re directly varying. 
We can use this plus the definitions of H, F, G to write down a ton of other thermodynamic 

identities. The math that we use is the ‘Legendre transform’. Given a convex function f(y), it 
makes it possible to effectively ‘switch variables’ and treat f 0(y) = x as the independent variable. 
See 0806.1147 for a nice discussion. 
Say we have a function so that its differential is 

df = xdy (6.0.17) 

Then if we consider a new function 

g = xy − f (6.0.18) 

then we have 

dg = ydx + xdy − df = ydx (6.0.19) 

So now we can instead use our new function g(x) in place of f(y). 
For example, perhaps instead of using the entropy S(E) as a function of E, we would instead 

∂S 1like to make 
∂E = 

T , ie the temperature, the independent variable. That way we can use T as our 
‘knob’ instead of E, perhaps because we can control T but not E. 
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Although it may seem a bit mysterious – and the number of possibilities is rather mystifying – 
we can apply these ideas very directly. For example since 

H = U + PV (6.0.20) 

we have 

dH = dU + P dV + V dP (6.0.21) 

and so we can write 

dH = T dS − P dV + µdN + P dV + V dP 

= T dS + µdN + V dP (6.0.22) 

so we can think of the enthalpy as a function of S, N, P . We traded V for P and switched from 
energy U to enthalpy H. 
We can really go to town and do this for all the thermodynamic potentials. For example, for F 

we find 

dF = −SdT − P dV + µdN (6.0.23) 

and this tells us how F changes as we change T, V, N , and also that F is naturally dependent on 
those variables. We also have 

dG = −SdT + V dP + µdN (6.0.24) 

and we get other identities from it. 

Gibbs Free Energy and Chemical Potential 

Combining the previous results with the idea of intensive/extensive variables, we can derive a cute 
fact about G. 
Recall that � � 

∂G 
µ = (6.0.25)

∂N T,P 

This says that adding particles at fixed T, P simply increases G by µ. 
You might think that µ changes as you change N , but this can’t happen with T, P fixed, because 

G is an extensive quantity that must grow proportionally to µ. Thus we see that 

G = Nµ (6.0.26) 

an amazingly simple relation, which provides a new interpretation for G and µ. 
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Our argument was subtle – why doesn’t it apply to � � 
∂F 

µ = (6.0.27)
∂N T,V 

The reason is that with fixed V , as you change N the system becomes more and more dense. So an 
intensive quantity is changing as you change N , namely the density N/V . It was crucial in the case 
of G that all fixed quantities were intensive. P 
With more types of particles, we just have G = i Niµi. Note though that µi for a mixture are 

not equal to µi for a pure substance. 
We can use this to get a formula for µ for an ideal gas. Using the fact that � � 

∂G 
V = (6.0.28)

∂P T,N 

we see that 

∂µ 1 ∂G V 
= = (6.0.29)

∂P N ∂P N 

But by the ideal gas law this is kT/P . So we can integrate to get � � 
P 

µ(T, P ) − µ(T, P0) = kT log (6.0.30)
P0 

for any reference P0, usually atmospheric pressure. 
This formula also applies to each species independently in a mixture, if P is the partial pressure 

of that species. This works because ideal gases are non-interacting – that’s essentially what makes 
them ideal. 

Example Application of G – Electrolysis & Batteries 

Let’s consider the electrolysis process 

1 
H2O → H2 + O2 (6.0.31)

2 

We’ll assume we start with a mole of water. 
Reference tables say that ΔH = 286 kJ for this reaction. It turns out P ΔV = 4 kJ to push the 

atmosphere away, the remaining 282 kJ remains in the system. But do we have to supply all of the 
286 kJ as work, or can some enter as heat? 
For this we need to look at the entropies for a mole of each species 

SH2O = 70J/K, SH2 = 131J/K, SO2 = 205J/K (6.0.32) 

So during the reaction we have an entropy change of 

1 
SH2 + SO2 − SH2O (6.0.33)

2 
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and so the maximum amount of heat that can enter the system is 

T ΔS = (298K)(163J/k) = 49kJ (6.0.34) 

So the electrical work we need to do is 237 kJ. Thi sis the ΔG of the Gibbs free energy: 

ΔG = ΔH − T ΔS (6.0.35) 

Standard tables include this information. If you perform the reaction in reverse, you can get ΔG of 
energy out. 
The same reasoning applies to batteries. For example lead-acid cells in car batteries run the 

reaction 

Pb + P bO2 + 4H
+ + 2SO4

2− → 2P bSO4 + 2H2O (6.0.36) 

Tables say ΔG = −390 kJ/mol in standard conditions, so per mole of metallic lead we get 390 kJ 
from the battery. 
Note that ΔH = −312 kJ/mol for this reaction, so we actually get extra energy from heat 

absorbed from the environment! When we charge the battery and run the reaction in reverse, we 
have to put the extra 78 kJ of heat back into the environment. 
You can also compute the battery voltage if you know how many electrons get pushed around 

per reaction. For this reaction 2 electrons get pushed through the circuit, so the electrical work per 
electron is 

390kJ 
= 3.24 × 10−19J = 2.02eV (6.0.37)

2 × NA 

A volt is the voltage needed to give an electron 1 eV, so the voltage is 2.02 V. Car batteries have six 
cells to get to 12 V. 

7 Partition Functions and Boltzmann Statistics 

Now we will develop some more powerful tools for studying general systems. 
Specifically, we will obtain a formula for the probability of a finding any system in a given 

microstate, assuming that the system is in equilibrium with a reservoir of temperature T . 

7.1 Boltzmann Factors 

We’ll consider an analysis that applies to any system. But since Hydrogen atoms tend to be familiar, 
we can phrase the analysis in terms of a single electron in some hydrogen atom orbital. 
A central point is that we are not considering a truly isolated system, but one that it’s contact 

with a ‘thermal bath’, ie some other system with a great deal of energy and entropy, and fixed 
temperature T . 
Let’s simplify by considering the ratio of probabilities to be in two specific microstates of interest, 

s1 and s2, with energies E(s1), E(s2) and probabilities P (s1), P (s2). How can we find the ratio? 
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We know that for an isolated system, all accessible microstates are equally probable. Our atom 
isn’t isolated, but the atom + reservoir system is isolated. We expect that we’re equally likely to 
find this combined system in any microstate. 
The reservoir will have ΩR(s1) available microstates when the atom is in s1, and ΩR(s2) microstates 

when the atom is in s2. These will be different because the reservoir has more or less energy, and 
thus it has access to more or less states. Since all states in total are equally likely, the ratio of 
probabilities must be 

P (s2) ΩR(s2) 
= (7.1.1)

P (s1) ΩR(s1) 

So we just need to write the right-side in a more convenient form that doesn’t make reference to the 
reservoir. 
Note that something a bit surprising happened – because multiplicity depends so strongly on 

states and energies, changing our single atom’s state just a bit actually had a significant effect on 
the multiplicity of a giant reservoir of energy. This contrasts with most questions in physics, where 
the state of a single atom has almost no relevance to the behavior of a large reservoir. 
But that’s easy by noting that 

P (s2) 
P (s1) 

= 
SR(s2)e
SR(s1)e

SR(s2)−SR(s1)= e (7.1.2) 

Now we can use the thermodynamic identity 

1 
dSR = 

T 
(dUR + P dVR − µdNR) (7.1.3) 

We can write all of these changes in terms of properties of the atom! 
We know dNR really is zero here, because reservoir particle number isn’t changing. We will set 

dVR = 0, even though in principle it may change, because the change in it is very tiny (eg a million 
times smaller than the term we’ll keep). 
This then leads to 

1 1 
SR(s2) − SR(s1) = [UR(s2) − UR(s1)] = − [E(s2) − E(s1)] (7.1.4)

T T 

Notice this is another situation where defining the natural quantity as β = 1/T might have been 
more convenient. Anyway, we find that 

E(s2) 
kT P (s2) e− 

= (7.1.5)
E(s1)P (s1) − 
kT e 

So the ratio strongly suggests that we can simply define a universal Boltzmann factor of 

−E(s)/kT e (7.1.6) 

as the proportionality factor for any given state s with energy E(s). 
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Note that probabilities aren’t equal to this factor because they also have to add up to 1! And so 
we need to divide by the sum of all Boltzmann factors, including all states. We call that sum over 
these factors X E(s) 

kT Z = e − (7.1.7) 
s 

the partition function. The true probabilities are 

1 E(s) 
kT P (s) = e − (7.1.8)

Z 

This is perhaps the most important fact or formula in statistical mechanics. 
The partition function Z itself is extremely useful. Notice that while it doesn’t depend on any one 

state (since it depends on all states and energies), it does depend on the temperature. It essentially 
counts the effective number of states that are accessible; for that interpretation we just set E = 0 
for the ground state. 
Notice that when we think about statistical mechanics using Boltzmann factors, Temperature 

plays a more fundamental role. 

Example - Hydrogen in the Sun 

The sun’s atmosphere has a temperature around 5800 K. The relative probability of finding an atom 
in a its first excited state as compared to the ground state is 

−(E2−E1)/kT e (7.1.9) 

with δE = 10.2 eV, and we have kT = 0.5 eV (note that an eV is about 10, 000 K). So the ratio of 
probabilities is about e−20.4 ≈ 1.4 × 10−9 . Since there are four excited states, the portion in the first 
excited state is about about 5 × 10−9 . 
Atoms in the atmosphere of the sun can be absorbed if they can induce a transition between 

states. A hydrogen atom in the first excited state can transition up in energy to give the Balmer 
series, which give missing wavelengths in sunlight. Some other lines are also missing due to other 
kinds of atoms, but these transition from their ground state. So there must be way more hydrogen 
than other atoms in the sun’s atmosphere! 

7.2 Average or Expectation Values 

We saw that the probability to be in a given state is 

−βE(s)e 
P (s) = (7.2.1)

Z 
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Given the probability to be in any given state, we can easily (in principle) compute the average or 
expectation value for any quantity f(s). Formally this means that X 

f̄ = P (s)f(s) 

= 

s 

1 
Z 

X 
−βE(s)f(s)e 

= 

sP −βE(s)f(s)esP 
e−βE(s) s 

(7.2.2) 

For example, the simplest thing we might want to know about is the average energy itself, ie 
f(s) = E(s). Thus we have that P −βE(s)E(s)e sĒ = P (7.2.3)−βE(s)e s 

for the average energy. 
The average energy is actually easier to compute because 

Ē = − 
1 ∂Z 

(7.2.4)
Z ∂β 

as we can easily check by explicit computation. That’s why I wrote the partition function in the 
way I did. 
Note that expectation values are additive, so the average total energy of two objects is the 

sum of their individual average energies. So if you have a collection of identical particles 

U = NĒ (7.2.5) 

This means that in many cases, working atom-by-atom is no different than studying the whole 
system (if we only care about averages). 

7.2.1 Paramagnets 

For paramagnets, there’s just up and down dipole moment, so 

−β(−µB) −β(+µB) β(µB) −β(µB)Z = e + e = e + e 

= 2 cosh(βµB) (7.2.6) 

and so we can easily compute the up and down probabilities. The average energy is 

1 ∂Z 
Ē = − = −µB tanh(βµB) (7.2.7)

Z ∂β 

which is what we found before. We also get the Magnetization right. 
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7.2.2 Rotation 

A more interesting example is the rotational motion of a diatomic molecule. 
In QM, rotations are quantized with total angular momentum j~. The energy levels are 

E(j) = j(j + 1)� (7.2.8) 

for some fixed energy � inversely proportional to the molecules moment of inertia. The number of 
energy levels at angular momentum j is 2j + 1. (Here we are assuming the two ends of the molecule 
are non-identical.) 
Given this structure, we can immediately write the partition function 

∞X 
−E(j)/kT Z = (2j + 1)e 

j=0 

∞X 
�−j(j+1) 

kT = (2j + 1)e (7.2.9) 
j=0 

Unfortunately we can’t do the sum in closed form, but we can approximate it. 
Note that for a CO molecule, � = 0.00024 eV, so that �/k = 2.8 K. Usually we’re interested in 

much larger temperatures, so that �/kT � 1. This is the classical limit, where the quantum spacing 
doesn’t matter much. Then we have Z ∞ kT −j(j+1) � 

Z ≈ (2j + 1)e kT dj = (7.2.10)
�0 

when kT � �. As one might expect, the partition function increases with temperature. Now we find 

∂ log Z
Ē = − = kT (7.2.11)

∂β 

Differentiating with respect to T gives the contribution to the heat capacity per molecule 

∂Ē 
CV ⊃ = k (7.2.12)

∂T 

as expected for 2 rotational DoF. Note that this only holds for kT � �; actually the heat capacity 
goes to zero at small T . 
If the molecules are made of indistinguishable atoms like H2 or O2, then turning it around gives 

back the same molecule, and there are half as many rotatational degrees of freedom. Thus we have 

kT 
Z = (7.2.13)

2� 

The extra 1/2 cancels out when we compute the average energy, so it has no effect on heat capacity. 
At low temperatures we need to more carefully consider QM to get the right answer. 
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7.2.3 Very Quantum System 

What if we have a very quantum system, so that energy level splittings are much larger than kT ? 
Then we have 

Z ≈ 1 + e −βE1 (7.2.14) 

where E1 is the lowest excited state, and we are assuming En > E1 � kT . Note that the expectation 
of the energy is 

¯ −βE1 −βE1E = 0 + E1e = E1e (7.2.15) 

where we have set the energy of the ground state to 0 as our normalization. 
We also have that 

kT ∂Ē E1e
− E1 

= (7.2.16)
∂T kT 2 

It may appear that as T → 0 this blows up, but actually it goes to zero very rapidly, because 
exponentials dominate power-laws. For comparison note that xne−x → 0 as x →∞, this is just the 
x → 1/x version of that statement. 

7.2.4 This is Powerful 

Anytime we know the energy levels of a system, we can do statistical mechanics. This is usually 
much more efficient than using combinatorics to count states, then determine S(E), and then figure 
out T -dependence from there. 

7.3 Equipartition 

We have discussed the equipartition theorem... now let’s derive it. 
Recall that it doesn’t apply to all systems, but just to quadratic degrees of freedom with energies 

like 

E = kq2 (7.3.1) 

where q = x as in a harmonic oscillator, or q = p as in the kinetic energy term. We’ll just treat q as 
the thing that parameterizes states, so that different q corresponds to a different independent state. 
This leads to 

Z = 
X X 

−βE(q) −βkq2 
e = e 

qZ ∞ 
q 

≈ −βkq2 
e dq (7.3.2) 

−∞ 
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Really the latter should be the definition in the classical limit, but we might also imagine starting 
with a QM description with discrete q and smearing it out. Anyway, we can evaluate the integral by √ 
a change of variables to x = βkq so that Z ∞1 

Z ≈ √ e −x
2 
dx (7.3.3)

βk −∞ 

The integral is just some number, so we’re free to write 

C 
Z = √ (7.3.4)

β p
for some new number C. Note that C = π

k Δ
1 
q where Δq indicates the possible QM discreteness of 

q. 
Now the average energy is 

∂ log Z 1 
Ē = − = kT (7.3.5)

∂β 2 

which is the equipartition theorem. Notice that k and Δq drop out. But that only works because 
we assumed Δq was very small, in particular so that 

kqΔq, kΔq 2 � kT (7.3.6) 

This is just the statement that we can take the classical limit, because energy level spacings are 
small. 

7.4 Maxwell Speed Distribution 

As another application of Boltzmann factors, we can determine the distributions of speeds in a gas. 
From equipartition we already know that r 

3kT 
vrms = (7.4.1) 

m 

but that’s only an average (or more precisely, a moment of the distribution). With Boltzmann 
factors we can just write down the distribution itself. 
Here we are really computing a probability density, which gives a probability P (~v)d3~v or P (s)ds 

for speed. So the integral gives the probability that v lies in some interval. Here P (~v) or P (s) 
is a probability distribution function. Note that its only P (s)ds that has the right units for 
probability. 
By the way, the moments of the distribution would be Z ∞ 

ds snP (s) (7.4.2) 
0 
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where this is the nth moment. The vrms is the square root of the 2nd moment. 
The Boltzmann factor for a gas molecule is the simple 

2 
− m~v 
2kT e (7.4.3) 

using the usual formula for kinetic energy. But if we want to compute the probability distribution 
for speed P (s), we need to account for the dimensionality of space. This means that we have Z 

2 2 
− m~v − m~v 

2kT P (s) ∝ d2 ~ve 2kT = 4πs2 e (7.4.4) 
|v|=s 

We used proportional to because we need to normalize. For that we need to compute the constant 
N such that Z ∞ 2 

− m~v 
2kT N = ds 4πs2 e 

0 � �3/2 Z ∞2kT 
= 4π x 2 e −x

2 
dx (7.4.5) 

m 0 

Thus we have that 

21 − m~v 
P (v) = 4πs2 e 2kT 

N� m �3/2 
− m~v 2 

= 4πs2 e 2kT (7.4.6)
2πkT 

This is the Maxwell distribution for the speeds of molecules. It may look complicated, but its just a 
Boltzmann factor times a geometric factor. 
Note that this distribution is very asymmetric, insofar as it’s parabolic at small v, where its 

geometry-dominated, but exponential (Gaussian) at large v, where it falls off exponentially fast. 
Note that the most common, mean, and average speeds are all different. We have r 

2kT 
vmax = (7.4.7) 

m 

The mean speed (1st moment) is rZ ∞ 8kT 
v̄ = ds sP (s) = (7.4.8)

πm 0 

So we have vmax < v̄ < vrms. 

7.5 Partition Function and Free Energy 

We began the course focused on the multiplicity Ω and S = log Ω, which tends to increase. These 
are the fundamental quantities for an isolated system. 
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For a system at temperature T (in contact with a reservoir), the partition function Z(T ) is 
the fundamental quantity. We know that Z(T ) is proportional to the number of accessible states. 
Since Z(T ) should (thus) tend to increase, its logarithm will tend to increase too. This suggests a 
relationship with −F , where F is the Helmholtz free energy. In fact 

−F/kT F = −kT log Z, Z = e (7.5.1) 

One could even take this as the definition of F . Instead, we’ll derive it from our other definition 

F = U − TS (7.5.2) 

To derive the relationship with Z, note that � � 
∂F F − U 

= −S = (7.5.3)
∂T TV,N 

This is a differential equation for F . Let’s show that −kT log Z satisfies this differential equation, 
and with the same initial condition. 
Letting F̃ = −kT log Z, we have that 

∂F̃  ∂ 
= −k log Z − kT log Z (7.5.4)

∂T ∂T 

but 

∂ U 
log Z = (7.5.5)

∂T kT 2 

˜This then tells us that F obeys the correct differential equation. 
They also agree at T = 0, since both F and F̃  will be 1, as the system will just be in its ground 

state. So they are the same thing. 
One reason why this formula is so useful is that 

∂F ∂F ∂F 
S = − 

∂T 
, P = − 

∂V 
, µ = 

∂N 
(7.5.6) 

where we fix the T, V, N we aren’t differentiating with respect to. So from Z we can get all of these 
quantities. 

7.6 From Laplace Transforms to Legendre Transforms 

Let’s consider another derivation/explanation of the relationship between F and Z. 
Note that eS(E) is the multiplicity of states at energy E. Thus X 

−E(s)/kT Z = e Zs 
∞ 

S(E)− E 
kT = dE e (7.6.1) 

0 
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From this perspective, the statement that 

F = −kT log Z (7.6.2) 

is equivalent to the statement that we can just view Z ∞ 
S(E)− E 

kT Z = dE e 
0 

S(U)− U 
kT ≈ e (7.6.3) 

That is, somehow we have simply forgotten about the integral! What’s going on? Have we made a 
mistake? 
The reason why this is alright is that the function 

S(E)− E 
kT e (7.6.4) 

¯will be very, very sharply peaked at the energy U = E. Its so sharply peaked that its integral is 
simply dominated by the value at the peak. This ‘sharply peaked’ behavior is exactly what we 
spent the first couple of weeks of class going on and on about. So 

F = −kT log Z = U − TS (7.6.5) 

is actually true because we are taking averages in the thermodynamic limit. 
This provides a new perspective on thermodynamic potentials. That is, if we work in the 

microcanonical ensemble, that is the ensemble of states with fixed energy U , then its natural to 
study the multiplicity 

S(U)Ω(U) = e (7.6.6) 

and expect that systems in equilibrium will maximize this quantity. But we can introduce a 
temperature by ‘averaging over states’ weighted by a Boltzmann factor. This puts us in the 
canonical ensemble, the ensemble of states of all energies with fixed average energy. And it’s 
simply given by taking the Laplace transform with respect to energyZ ∞ 

−βE S(E)Z(β) = dE e e (7.6.7) 
0 

where β = 1/kT as usual. Notice that we have traded a function of energy U for a function of 
temperature T , just as in the Legendre transform discussion. This isn’t a coincidence! 
The statement that this is dominated by its maximum also implies that the canonical and 

microcanonical ensembles are the same thing in the thermodynamic limit. Further, it tells us 
that since 

−kT log Z = U − TS(U) (7.6.8) 

we learn that the Legendre transform is just the thermodynamic limit of the Laplace 
transform. This is a useful way to think about Legendre transforms in thermodynamics. 
We can obtain all the other thermodynamic potentials, and all of the other Legendre transforms, 

in exactly this way. 
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8 Entropy and Information 

8.1 Entropy in Information Theory 

We have been thinking of entropy as simply 

S = log Ω (8.1.1) 

But for a variety of reasons, it’s more useful to think of entropy as a function of the probability 
distribution rather than as depending on a number of states. 
If we have Ω states available, and we believe the probability of being in any of those states is 

uniform, then this probability will be 

1 
pi = (8.1.2)

Ω 

for any of the states i = 1, · · · , Ω. So we see that 

S = − log p (8.1.3) 

for a uniform distribution with all pi = p = 1/Ω. But notice that this can also be viewed as X 
S ≡ − pi log pi (8.1.4) 

i 

since all pi are equal, and their sum is 1 (since probabilities are normalized). We have not yet 
demonstrated it for distributions that are not uniform, but this will turn out to be the most useful 
general notion of entropy. It can also be applied for continuous probability distributions, where Z 

S ≡ − dx p(x) log p(x) (8.1.5) 

Note that 0 log 0 = 0 (this is what we find from a limit). 
This arises in information theory as follows. Say we have a long sequence of 0s and 1s, ie 

· · · 011100101000011 · · · (8.1.6) 

If this is truly a fully random sequence, then the number of possibilities is 2N if it has length N , 
and the entropy is just the log of this quantity. This also means that the entropy per bit is 

Sbit = 
1 
log 2N = log 2 (8.1.7)

N 

But what if we know that in fact 0s occur with probability p, and 1s with probability 1 − p? For 
a long sequence, we’ll have roughly pN of the 0s, so this means that the number of such messages 
will be 

N ! NN 

≈ 
(pN)!((1 − p)N)! (pN)pN (N − pN)N−pN � �N

1 NSbit= = e (8.1.8) 
pp(1 − p)1−p 
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where we see that 

Sbit = −p log p − (1 − p) log(1 − p) (8.1.9) 

So the entropy S that we’ve studied in statistical mechanics, ie the log of the number of possible 
sequences, naturally turns into the definition in terms of probability distributions discussed above. 
This has to do with information theory because NS quantifies the amount of information 

we actually gain by observing the sequence. Notice that as Warren Weaver wrote in an initial 
popularization of Shannon’s ideas: 

• “The word information in communication theory is not related to what you do say, but to 
what you could say. That is, information is a measure of one’s freedom of choice when one 
selects a message.” 

8.2 Choice, Uncertainty, and Entropy 

Shannon showed in his original paper that entropy has a certain nice property. It characterizes how 
much ‘choice’ or ‘uncertainty’ or ‘possibility’ there is in a certain random process. This should seem 
sensible given that we just showed that entropy counts the amount of information that a sequence 
can carry. 
Let’s imagine that there are a set of possible events that can occur with probabilities p1, · · · , pn. 

We want a quantity that measures how much ‘possibility’ there is in these events. For example, if 
p1 = 1 and the others are 0, then we’d expect there’s no ‘possibility’. While if n � 1 and the pi are 
uniform, then ‘almost anything can happen’. We want a quantitate measure of this idea. 
We will show that entropy is the unique quantity H(pi) with the following natural properties: 

1. H is continuous in the pi. 

2. If all pi are equal, so that all pi = 1/n, then H should increase with n. That is, having more 
equally likely options increases the amount of ‘possibility’ or ‘choice’. 

3. If the probabilities can be broken down into a series of events, then H must be a weighted 
sum of the individual values of H. For example, the probabilities for events A, B, C � � 

1 1 1 {A, B, C} = , , (8.2.1)
2 3 6 

can be rewritten as the process � � � � 
1 1 2 1 {A, B or C} = ,
2 2 

then {B, C} = ,
3 3 

(8.2.2) 

We are requiring that such a situation follows the rule � � � � � � 
1 1 1 1 1 1 2 1 

H , , = H , + H , (8.2.3)
2 3 6 2 2 2 3 3 
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We will show that up to a positive constant factor, the entropy S is the only quantity with these 
properties. 
Before we try to give a formal argument, let’s see why the logarithm shows up. Consider � � � � � � 

1 1 1 1 1 1 1 1 1 
H ,

4
,
4

,
4 4 

= H ,
2� 2 + 2 H 

2� ,
2 2 

1 1 
= 2H ,

2 2 
(8.2.4) 

Similarly � � � � 
1 1 1 1 

H , · · · 
8

, 
8 

= 3H ,
2 2 

(8.2.5) 

and so this is the origin of the logarithm. To really prove it, we will take two fractions, and note 
that 1 ≈ 1 for sufficiently large n and m. The only other point we then need is that we can 

sn tm 

approximate any other numbers using long, large trees. 
Here is the formal proof. Let � � 

1 1 
A(n) ≡ H , · · · , (8.2.6) 

n n 

for n equally likely possibilities. By using an exponential tree we can decompose a choice of sm 

equally likely possibilities into a series of m choices among s possibilities. So 

A(s m) = mA(s) (8.2.7) 

We have the same relation for some t and n, ie 

A(tn) = nA(t) (8.2.8) 

m m+1By taking arbitrarily large n we can find an n, m with s ≤ tn < s , and so by taking the 
logarithm and re-arranging we can write 

m log t m 1 ≤ ≤ + (8.2.9) 
n log s n n 

which means that we can make 

m log t − < � (8.2.10) 
n log s 

Using monotonicity we have that 

mA(s) ≤ nA(t) < (m + 1)A(s) (8.2.11) 
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So we also find that 

m A(t)− < � (8.2.12) 
n A(s) 

and so we conclude via these relations that 

A(t) = K log t (8.2.13) 

for some positive constant K, since we can make � arbitrarily small. 
But now by continuity we are essentially done, because we can approximate any set of probabilities 

pi arbitrarily well by using a very fine tree of equal probabilities. 
Notice that the logarithm was picked out by our assumption 3 about the way that H applies to 

the tree decomposition of a sequence of events. 

8.3 Other Properties of Entropy 

These properties all make sense in the context of information theory, where S counts the uncertainty 
or possibility. 

1. S = 0 only if there’s a single outcome. 

2. S is maximized by the uniform distribution. 

3. Suppose there are two events, x and y, where at each event n and m possibilities can occur, 
respectively. The full joint entropy is X 

S(x, y) = p(i, j) log p(i, j) (8.3.1) 
i,j 

whereas there are partial entropies X X 
S(x) = p(i, j) log p(i, j) 

i,jX jX 
S(y) = p(i, j) log p(i, j) (8.3.2) 

i,j i 

Then we have the inequality 

S(x, y) ≤ S(x) + S(y) (8.3.3) 

with equality only if the two events are independent, so that p(i, j) = p(i)p(j). 

4. Any change in the probabilities that makes them more uniform increases the entropy. More 
quantitatively, if we perform an operation 

p 0 i = aij pj (8.3.4) P P 
where i aij = j aij = 1 and aij > 0, then S increases. This means that if x and y are 
correlated, the total entropy is always less than or equal to the sum of the entropies from x 
and y individually. 
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8.4 A More Sophisticated Derivation of Boltzmann Factors 

Boltzmann factors can be derived in another simple and principled way – they are the probabilities 
that maximize the entropy given the constraint that the average energy is held fixed. 
We can formalize this with some Lagrange multipliers, as follows. 
We want to fix the expectation value of the energy and the total probability while maximizing 

the entropy. We can write this maximization problem using a function (Lagrangian) ! !X X X 
L = − pi log pi + β hEi − piEi + ν pi − 1 (8.4.1) 

i i i 

where we are maximizing/extremizing L with respect to the pi and β, ν; the latter are Lagrange 
multipliers. 
Varying gives the two constraints along with 

− log pi − 1 − βEi + ν = 0 (8.4.2) 

which implies that 

ν−1−βEipi = e (8.4.3) 

Now ν just sets the total sum of the pi while β is determined by the average energy itself. So we have 
re-derived Boltzmann factors in a different way. This derivation also makes it clear what abstract 
assumptions are important in arriving at e−βE . 

8.5 Limits on Computation 

In practice, computation has a number of inefficiencies. Despite decades of progress, my impression 
is that most of the waste is still due to electrical resistance and heat dissipation. We’ll perform a 
relevant estimate in a moment. But what are the ultimate limits on computation? 
We have seen several times that irreversible processes are those that create entropy. Conversely, 

for a process to be reversible, it must not create any entropy. 
However, computers tend to create entropy, and thus waste, for what may be a surprising reason 

– they erase information. For example, say we add two numbers, eg 

58 + 23 = 81 (8.5.1) 

We started out with information representing both 58 and 23. Typically this would be stored as an 
integer, and for example a 16 bit integer has information, or entropy, 16 log 2. But at the end of the 
computation, we don’t remember what we started with, rather we just know the answer. Thus we 
have created an entropy 

S = 2 × (16 log 2) − (16 log 2) = 16 log 2 (8.5.2) 

through the process of erasure! 
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Since our computer will certainly be working at finite temperature, eg room temperature, we 
will be forced by the laws of thermodynamics to create heat 

Q = kBT (16 log 2) ≈ 5 × 10−20 Joules (8.5.3) 

Clearly this isn’t very significant for one addition, but it’s interesting as its the fundamental limit. 
Furthermore, computers today are very powerful. For example, it has been estimated that while 

training AlphaGo Zero, roughly 

1023 float point operations (8.5.4) 

were performed. Depending on whether they were using 8, 16, or 32 bit floating point numbers (let’s 
assume the last), this meant that erasure accounted for 

Q = kB T (32 log 2) × 1023 ∼ 8000 Joules (8.5.5) 

of heat. That’s actually a macroscopic quantity, and the laws of thermodynamics say that it’s 
impossible to do better with irreversible computation! 
But note that this isn’t most of the heat. For example, a currently state of the art GPU like the 

Nvidia Tesla V100 draw about 250 Watts of power and perform at max about 1014 flop/s. This 
means their theoretical minimum power draw is 

Q = kBT (16 log 2) × 1014flop/s ∼ 10−5 Watts (8.5.6) 

Thus state of the art GPUs are still tens of millions of times less efficient than the theoretical 
minimum. We’re much, much further from the theoretical limits of computation than we are from 
the theoretical limits of heat engine efficiency. 
In principle we can do even better through reversible computation. After all, there’s no reason to 

make erasures. For example, when adding we could perform an operation mapping 

(x, y) → (x, x + y) (8.5.7) 

for example 

(58, 23) → (58, 81) (8.5.8) 

so that no information is erased. In this case, we could in principle perform any computation we like 
without producing any waste heat at all. But we need to keep all of the input information around 
to avoid creating entropy and using up energy. 

9 Transport, In Brief 

Let’s get back to real physics and discuss transport. This is a fun exercise. We’ll study the transport 
of heat (energy), of momentum, and of particles. 
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9.1 Heat Conduction 

We’ll talk about radiation later, in the quantum stat mech section. And discussing convection is 
basically hopeless, as fluid motions and mixings can be very complicated. But we can try to discuss 
conduction using some simple models and physical intuition. 
The idea is roughly that molecules are directly bumping into each other and transferring energy. 

But this can also mean that energy is carried by lattice vibrations in a solid, or by the motion of 
free electrons (good electrical conductors tend to have good heat conductivity too). 
We can start by just making a simple guess that 

ΔT δtA 
Q ∝ 

δx 
(9.1.1) 

or 

dQ dT ∝ A 
dt dx 

(9.1.2) 

The overall constant is called the thermal conductivity of a given fixed material. So 

dQ dT 
= −ktA 

dt dx 
(9.1.3) 

which is called the Fourier heat conduction law. 
Thermal conductivities of common materials vary by four orders of magnitude, in W/(mK): air 

0.026, wood 0.08, water 0.6, glass 0.8, iron 80, copper 400. In common household situations thin 
layers of air are very important as insulation, and can be more important than glass itself. 

Heat Conductivity of an Ideal Gas 

Let’s derive the simplest example of this, the conductivity for an ideal. 
An important relevant parameter is the mean free path, which is the distance a molecule can 

go before interacting with another molecule. It’s typically much larger than the distance between 
molecules in a dilute gas. Let’s estimate it. 
Collisions happen when molecules get within 2r of each other, where r is some rough estimate 

of the ‘size’ the molecule. Really this is related to the cross section for interaction. Anyway, 
molecules collide when the volume swept out 

π(2r)2` (9.1.4) 

is of order the volume per molecule, ie 

π(2r)2` ≈ 
V 

(9.1.5)
N 

or 

V 
` ≈ (9.1.6)

4πr2N 
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for the mean free path `. This is an approximation in all sorts of ways, but it’s roughly correct. 
In air the volume per particle is, using the ideal gas approximation, about 

3V ≈ 
kT ≈ 4 × 10−26 m (9.1.7)

N P 

at room temperature. If the radius of nitrogen or oxygen molecules is about 1.5 angstroms, then 
the mean free path is about 150 nm, which is about 40 times greater than the average separation 
between air molecules. The average collision time is 

` 
Δ̄t = 

v̄ 
≈ 3 × 10−10 s (9.1.8) 

so this gives another relevant quantity. Apparently they’re colliding very frequently! 
Now let’s study heat conduction. Imagine a surface across which we are studying heat flow. The 

energy crossing this surface will be about UL/2 from the left and UR/2 from the right, if we study a 
time Δt and a thickness away from the surface of order `. This leads to a net heat flow 

1 1 1 dT 
Q = (U1 − U2) = − CV (T2 − T1) = − CV ` (9.1.9)

2 2 2 dx 

This leads to a prediction for the thermal conductivity as 

CV ` CV
kt = = `v̄ (9.1.10)

2AΔt 2V 

in terms of the MFP and average velocity. For an ideal gas 

CV fP 
= (9.1.11)

V 2T 

where f is the number of active DoF per molecule. √ 
This suggests a general scaling law that since v̄ ≈ T and ` is independent of temperature, we √ 

expect kT ∝ T . This has been confirmed for a wide variety of gases. 

9.2 Viscosity 

Another quantity that you may have heard of is viscosity. It concerns the spread of momentum 
through a fluid. 
To understand this, we want to think of a picture of a fluid flowing in the x̂ direction, but where 

the velocity of the fluid changes in the z direction. This could lead to chaotic turbulence, but let’s 
assume that’s not the case, so that we have laminar flow. 
In almost all cases, as one might guess intuitively, fluids tend to resist this shearing, differential 

flow. This resistance is called viscosity. More viscosity means more resistance to this differential. 
It’s not hard to guess what the viscous force is proportional to. We’d expect that 

Fx dux∝ (9.2.1)
A dz 
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and the proportionality constant is the viscosity, ie 

Fx dux∝ η (9.2.2)
A dz 

for coefficient of viscosity η. Although Fx/A has units of pressure, it isn’t a pressure, rather its 
shear stress. 
Viscosities vary a great deal with both material and temperature. Gases have lower viscosities 

than fluids. And ideal gases have viscosity independent of pressure but increasing with temperature. 
This can be explained because viscosity depends on momentum density in the gas, the mean free 

path, and the average thermal speed. The first two depend on the density, but this cancels between 
them – a denser gas carries more momentum, but it carries it less far! But since molecules move √ 
faster at higher temperature, more momentum gets transported, and so in a gas η ∝ T just as for 
heat conductivity. 
In a liquid, viscosity actually decreases with temperature because the molecules don’t stick to 

each other as much or as well at higher temperature, and this ‘sticking’ is the primary cause of 
liquid viscosity. Note that in effect η = ∞ for a solid, where ‘sticking’ dominates. 

9.3 Diffusion 

Now let’s talk about the spread of particles from high concentration to low concentration. 
Let’s imagine the density n of particles increases uniformly in the x̂ direction. The flux is the 

~ net number of particles crossing a surface, we’ll write it as J . Once again we’d guess that 

dn 
Jx = −D (9.3.1)

dx 

where D is the diffusion coefficient, which depends on both what’s diffusing and what it’s diffusing 
through. Diffusion for large molecules is slower than for small molecules, and diffusion is much 
faster through gases than through liquids. Values ranging from 10−11 to 10−5 m2/s can be found. 
Diffusion coefficients increase with temperature, because molecules move faster. 
Diffusion is a very inefficient way for particles to travel. If I make a rough estimate for dye in 

water that I want roughly all the dye to move through a glass of water then 

N N/V 
= D (9.3.2)

AΔt δx 

and V = Aδx, then i have that 

V δx δx2 

Δt ≈ ≈ (9.3.3)
AD D 

for a glass of water with δx ≈ 0.1 m and a D ≈ 10−9m2/s, it would take 107 seconds, or about 4 
months! 
Real mixing happens through convection and turbulence, which is much, much faster, but also 

more complicated. 
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10 Quantum Statistical Mechanics 

Let’s get back to our main topic and (officially) begin to discuss quantum statistical mechanics. 

10.1 Partition Functions for Composite Systems 

We’d like to understand what happens if we combine several different systems together – what is the 
partition function for the total system, in terms of the partition functions for the constituents? 
The simplest and most obvious case is when we have two non-interacting distinguishable systems. 

Then we have X 
−βE1(s1) −βE2(s2)Ztotal = e e = Z1Z2 (10.1.1) 

s1,s2 

This follows because every state of the total systems is (s1, s2), the Cartesian product. And 
furthermore, there is no relation or indistinguishability issue between states in the first and second 
system. 
I put this discussion under the Quantum Stat Mech heading because, in many cases, the systems 

are indistinguishable. In that case the state stotal = (s1, s2) = (s2, s1), ie these are the same state. 
We can approximate the partition function for that case by 

1 
Ztotal ≈ Z1Z2 (10.1.2)

2 

but this is only approximate, because we have failed to account correctly for s1 = s2, in which case 
we don’t need the 1/2. In the limit that most energy levels are unoccupied, this isn’t a big problem. 
We’ll fix it soon. 
These expressions have the obvious generalizations 

NY 
Ztotal = Zi (10.1.3) 

i=1 

for distinguishable and 

NY1 
Ztotal = Zi (10.1.4)

N ! 
i=1 

for indistinguishable particles or sub-systems. 

Ideal Gas from Boltzmann Statistics 

The natural application of our approximations above is to ideal gases. We still haven’t computed Z 
for an ideal gas! 
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The total partition function is 

1 
ZNZtotal = 1 (10.1.5)

N ! 

in terms of the partition function for a single gas molecule, Z1. So we just have to compute that. 
To get Z1 we need to add up the Boltzmann factors for all of the microstates of a single molecule 

of gas. This combines into 

Z1 = ZtrZint (10.1.6) 

where the first is the kinetic energy from translational DoF, and the latter are internal states such 
as vibrations and rotations. There can also be electronic internal states due to degeneracies in the 
ground states of the electrons in a molecule. For example, oxygen molecules have 3-fold degenerate 
ground states. 
Let’s just focus on Ztr. To do this correctly we need quantum mechanics. 
This isn’t a QM course, so I’m mostly just going to tell you the result. A particle in a 1-d box 

must have momentum 

h 
pn = n (10.1.7)

2L 

as it must be a standing wave (with Dirichlet boundary conditions). So the energy levels are 

2 h2 2p n 
En = n = (10.1.8)

2m 8mL2 

From the energies, we can write down the partition function X 2 
−β h

2 n 

Z1d = e 8mL2 (10.1.9) 
n 

Unless the box is extremely small, or T is extremely small we can approximate this by the integral Z ∞ 2 L 
Z1d ≈ dne−β h

2 

= 
h 

8mL
n 
2 (10.1.10)

√0 2πmkB T 

where we can define a quantum length scale 

h 
` Q = √ (10.1.11)

2πmkBT 

It’s roughly the de Broglie wavelength of a particle of mass m with kinetic energy kT . At room 
temperature for nitrogen, this length is ∼ 10−11 meters. 
The partition function in 3d is just 

Z3d = Z1
3 
d (10.1.12) 
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because the x, y, z motions are all independent. This gives 

V 
Z3d = (10.1.13)

`3 
Q 

So the total partition function for an ideal gas is !N 
1 V 

Z ≈ 
N ! 

Zint
`3 
Q 

(10.1.14) 

where we don’t know Zint and it depends on the kind of molecule. 
We can now compute the expected energy. Note that 

log Z = N (log V + log Zint − log N − 3 log ̀  Q + 1) (10.1.15) 

and we can find 

∂ 
U = − 

∂β 
log Z (10.1.16) 

This gives 

3 
U = NkT + Uint

2 
(10.1.17) 

which confirms equipartition once again, plus the interaction term. The heat capacity is 

CV = 
3 
Nk + 
2 

∂Uint 

∂T 
(10.1.18) 

We can compute the other properties of our gas using 

F = −kT log Z = Fint − NkT (log V − log N − 3 log ̀  Q + 1) (10.1.19) 

For example we can find the pressure, entropy, and chemical potential this way. We will once again 
recover expressions we’ve seen earlier in the semester. 

10.2 Gibbs Factors 

We can modify our original derivation of Boltzmann factors to account for the possibility that 
particles are exchanged between the reservoir and the system. The result are Gibbs factors and 
the Grand Canonical Ensemble. The latter means that we fix Temperature and Chemical 
Potential. Whereas in the microcanonical ensemble we fixed energy and particle number, and in 
the canonical ensemble we fixed temperature and particle number. 
Gibbs factors will be useful soon for quantum statistical physics because they allow us to re-

organize our thinking in terms of the number of particles in each state, rather than in terms of states 
as given by a configuration of a fixed number of particles. 
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Recall that 

P (s2) SR(s2)−SR(s1)= e (10.2.1)
P (s1) 

Now we need to use 

1 
dSR = (dUR + P dVR − µdNR) (10.2.2)

T 

to find that 

1 
SR(s2) − SR(s1) = − (E(s2) − E(s1) − µN(s2) + µN(s1)) (10.2.3)

T 

where E and N refer to the system. Thus we find that the Gibbs factor is 

−(E−µN)/(kB T )e (10.2.4) 

and so the probabilities are 

1 −(E−µN)/(kB T )P (s) = e (10.2.5)
Z 

where X 
−(E(s)−µN (s))/(kB T )Z = e (10.2.6) 

s 

where the sum includes all states, ranging over all values of E and all N . This is the promised 
grand partition function or grand canonical distribution. In the presence of more types of 
particles, we have chemical potentials and numbers for each. 

Carbon Monoxide Poisoning 

Carbon monoxide poisoning illustrates the use of the grand canonical ensemble. 
We can idealize hemoglobin as having two states, occupied and unoccupied (by oxygen). So 

−(�−µ)/kT Z = 1 + e (10.2.7) 

where � = −0.7 eV. The chemical potential µ is high in the lungs, where oxygen is abundant, but 
lower in cells where oxygen is needed. Near the lungs the partial pressure of oxygen is about 0.2 
atm, and so the chemical potential is ! 

V Zint 
µ = −kT log ≈ −0.6eV (10.2.8)

`3N Q 

So at body temperature 310 K we find that the Gibbs factor is 

−(�−µ)/kT ≈ 40e (10.2.9) 
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and so the probability of occupation by oxygen is 98%. 
But things change in the presence of carbon monoxide, CO. Then there are three possible states 

−(�−µ)/kT −(�0−µ0)/kT Z = 1 + e + e (10.2.10) 

The CO molecule will be less abundant. If it’s 100 times less abundant, then 

δµ = kT log 100 ≈ 0.12 eV (10.2.11) 

But CO binds more tightly to hemoglobin, so that �0 ≈ −0.85 eV. In total this means 

−(�0−µe 
0)/kT ≈ 120 (10.2.12) 

which means that the oxygen occupation probability sinks to 25%. This is why CO is poisonous. 

10.3 Bosons and Fermions 

Now let’s correct our mistake, where we took 

Z ≈ 
1 
Z1 

N (10.3.1)
N ! 

This was approximate because it ignores what happens when two particles are in the same state. 
In fact, there are two types of particles, fermions and bosons. We can put as many identical 

bosons as we like in the same state, but due to the Pauli exclusion principle, identical fermions 
cannot be in the same state. This has extremely important implications for statistical physics. Note 
that bosons always have integer spin, and fermions always have half-integer spin. 
Note that this idea is irrelevant in the classical limit, when Z1 � N , or when 

V/N � `3 
Q (10.3.2) 

When this is violated, the wavefunctions of the particles start to overlap, and quantum effects 
become important. Systems that are quantum are either very dense or very cold, since we recall that 

h 
` Q = √ (10.3.3)

2πmkBT 

We can picture this as a situation where the particle’s individual wavefunctions start to overlap. We 
can’t separate them (make the wavefunctions more narrow) without giving them a lot of momentum, 
increasing the energy and temperature of the gas. 

Distribution Functions 

We introduced the Gibbs ensemble to make computing the distribution functions easier. The idea is 
to focus on individual, specific states that (some number of) particles can be. 
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If we have a given single-particle state, then the probability of it being occupied by n particles is 

1 − 
kT (�−µ)P (n) = e 
n 

(10.3.4)
Z 

So we can use this to determine the Z for fermions and bosons. 
In the case of fermions, the only occupancy allowed is n = 0, 1. That means that for any given 

state, we simply have 

− 1 (�−µ)
kT Z = 1 + e (10.3.5) 

This allows us to compute the occupancy 

1 
n̄ = 0P (0) + P (1) = 

+ 1 (10.3.6) 
e (�−µ) + 1 kT 

Note the crucial sign flip in the denominator! This is the Fermi-Dirac distribution. The F-D 
distribution vanishes when � � µ and goes to 1 when � � µ. Draw it! 
In the case of bosons all values of n are allowed. That means that 

∞X 
− 

kT (�−µ)Z = e 
n 

n=0 

1 
= 1 (10.3.7)

− 
kT (�−µ)1 − e 

by summing the geometric series. Notice that crucially the signs in the denominator here are 
different. 
Let’s look at the expected occupancy. This is 

∞X 
n̄ = nP (n) 

n=0 

∂ 
= − log Z (10.3.8)

∂x 

where x = 1 (� − µ). By computing directly with this formula we find
kT 

1 
n̄ = 1+ (�−µ) − 1e kT 

(10.3.9) 

where once again we emphasize that the signs here are crucial! This is the Bose-Einstein 
distribution. 
Notice that the B-E distribution goes to infinity as � → µ. This means that in that limit, the 

state achieves infinite occupancy! In the case of fermions this was impossible because occupancy can 
only be 0 or 1. This divergence is Bose condensation. Draw it! 
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Let’s compare these results to the classical limit, where we’d have a Boltzmann distribution. 
In the Boltzmann distribution 

−(�−µ)/kT � 1n̄ = e (10.3.10) 

Draw it! I wrote the last inequality because the classical limit obtains when we don’t have many 
particles in the same state. In this limit, it’s fine to simply ignore large occupancies. Note that this 
is equal to both the F-D and B-E distributions in the desired limit. The classical limit is low 
occupancy. 
In the rest of this section we will apply these ideas to simple systems, treating ‘quantum gases’. 

That means that we can pretend that the systems are governed by single-particle physics. This 
applies to electrons in metals, neutrons in neutron stars, atoms in a fluid at low temperature, photons 
in a hot oven, and even ‘phonons’, the quantized sound (vibrations) in a solid. We’ll determine µ in 
most cases indirectly, using the total number of particles. 

10.4 Degenerate Fermi Gases 

An extremely important application of quantum stat mech is to gases of fermions, or fermions at 
low temperature. Most importantly, this theory describes most of the properties of metals, which 
are just ‘gases’ of free electrons. This also applies to nuclei, white dwarves, and neutron stars. 
Here low temperature means ‘quantum’, not ‘low compared to room temperature’. That is we 

mean 

V 
N 

� �3
h 

. `3 = √ ≈ (4 nm)3 
Q 

2πmkT 
(10.4.1) 

where the last is for an electron at room temperature. The reason metals are at ‘low temperatures’ 
is because there is roughly one conduction electron per atom, and the atomic spacing are roughly 
0.2 nm. So we’re far outside the limit of Boltzmann statistics, and in fact closer to the limit T = 0. 
So let’s start with that. 

Zero Temperature 

Recall the F-D distribution 

1 
n̄ FD = 1 (10.4.2) 

e (�−µ) + 1 kT 

In the limit that T = 0 this is a step function. All states with � < µ are occupied, and all others are 
unoccupied. 

We call 

�F ≡ µ(T = 0) (10.4.3) 

the Fermi Energy. In this low-temperature state of affairs the fermion gas is said to be ‘degenerate’. 
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How can we determine �F ? It can be fixed if we know how many electrons are actually present. 
If we imagine adding electrons to an empty box, then they simply fill the states from lowest energy 
up. To add one more electron you need �F = µ of energy, and our understanding that � � 

∂U 
µ = (10.4.4)

∂N S,V 

makes perfect sense. Note that adding an electron doesn’t change S, since we’re at zero temperature 
and the state is unique! 
To compute �F we’ll assume that the electrons are free particles in a box of volume V = L3 . This 

isn’t a great approximation because of interactions with ions in the lattice, but we’ll neglect them 
anyway. 
As previously seen, the allowed wavefunctions are just sines and cosines, with momenta 

h 
p~ = ~n (10.4.5)

2L 
where ~n = (nx, ny, nz). Energies are therefore 

h2 

� = ~n 2 (10.4.6)
8mL2 

To visualize the allowed states, its easiest to draw them in ~n-space, where only positive integer 
coordinates are allowed. Each point describes two states after accounting for electron spins. Energies 
are proportional to ~n2 , so states start at the origin and expand outward to fill availabilities. 
The Fermi energy is just 

h2n2 

�F = max (10.4.7)
8mL2 

We can compute this by computing the total volume of the interior region in the space, which is 

1 4 πnmax 
3 

N = 2 × × πn3 = (10.4.8)
8 3 max 3 

Thus we find that � �2/3
h2 3N 

�F = (10.4.9)
8m πV 

Is this intensive of extensive? What does that mean? (Shape of ‘box’ is irrelevant.) 
We can compute the average energy per electron by computing the total energy and dividing. 

That is Z 
1 h2 

d3 2U = 2 n ~n 
8 8mL2 Z nmax h2 

= dn(πn2) ~n 2 

0 8mL2 

πh2nmax 
5 

= 
40mL2 

3 
= N�F (10.4.10)

5 

71 



 

where the 3/5 is a geometrical factor that would be different in more or fewer spatial dimensions. 
Note that �F ∼ few eV, which is much much larger than kT ≈ 

40
1 eV. This is the same as 

the comparison between the quantum volume and the average volume per particle. The Fermi 
temperature is 

�F
TF ≡ & 104 K (10.4.11)

kB 

which is hypothetical insofar as metals would liquefy before reaching this temperature. 
Using the standard or thermodynamic definition of the pressure we can find 

∂U 
P = − 

∂V � �2/3 
! 

∂ 3 h2 3N 
= − N 

∂V 5 8m πV 

2N�F 2U 
= = (10.4.12)

5V 3V 

which is the degeneracy pressure. Electrons don’t want to be compressed, as they want space! 
(Remember this has nothing to do with electrostatic repulsion.) 

The degeneracy pressure is enormous, of order 109 N/m2 , but it isn’t measurable, as it is canceled 
by the electrostatic forces that pulled the electrons into the metal in the first place. The bulk 
modulus is measureable, and its just � � 

∂P 10 U 
B = −V = (10.4.13)

∂V 9 VT 

This quantity is also large, but its not completely canceled by electrostatic forces, and (very roughly) 
accords with experiment. 

Small Temperatures 

The distribution of electrons barely changes when TF � T > 0, but we need to study finite 
temperature to see how metals change with temperature – for example, to compute the heat 
capacity! 
Usually particles want to acquire a thermal energy kT , but in a degenerate Fermi gas they can’t, 

because most states are occupied. So it’s only the state near the Fermi surface that can become 
excited. Furthermore, it’s only states within kT of the Fermi surface that can be excited. So the 
number of excitable electrons is proportional to T . 
This suggests that 

δU ∝ (NkT )(kT ) ∼ N(kT )2 (10.4.14) 

By dimensional analysis then, since the only energy scale around is �F , we should have 

(kT )2 

δU ≈ N (10.4.15)
�F 
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This implies that 

kT 
CV ∝ N (10.4.16)

�F 

This agrees with experiments. Note that it also matches what we expect from the 3rd law of 
thermodynamics, namely that CV → 0 as T → 0. 

Density of States 

A natural object of study is the density of states, which is the number of single-particle states 
per unit of energy. For a Fermi gas note that 

h2 2 L√ 
� = ~n , |~n| = 8m� (10.4.17)

8mL2 h 

so that r 
L 2m 

dn = d� (10.4.18)
h � 

This means that we can write integrals like Z nmax h2 

U = dn(πn2) n 2 

0 8mL2 Z �F 

" � �3/2 √ 
# 

π 8mL2 

= d� � � (10.4.19)
2 h2 

0 

where the quantity in square brackets is the density of states 

π V √ 3N √3/2 g(�) = (8m) � = � (10.4.20)
h3 3/22 2�F 

The total energy is the integral of the number of states at a given energy times that energy �g(�). 
Note that this expression does not depend on N except through V ; in the last formula N cancels. 
The density of states is a useful concept in a variety of systems. It doesn’t depend on statistical 

mechanics, rather determining it is just a quantum mechanics problem. 
At zero temperature we have Z �F 

N = g(�)d� (10.4.21) 
0 

but at higher temperature we have to multiply by the non-trivial occupancy, which is really the 
right way to think about zero temperature as well ZZ ∞ ∞ g(�)

N = g(�)n̄FD(�)d� = 1 d� (10.4.22) 
0 0 e (�−µ) + 1 kT 
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����

similarly for the energy Z ∞ Z ∞ �g(�)
U = �g(�)n̄FD(�)d� = d� (10.4.23) 

0 0 e 
1 (�−µ) + 1 kT 

The zero temperature limit is just a special case. 
Note that at T > 0 the chemical potential changes. Its determined by the fact that the integral 

expression for N must remain fixed, and since g(�) is larger for larger �, the chemical potential must 
change to compensate. In fact it must decrease slightly. We can compute it by doing the integrals 
and determining µ(T ). Then we can determine U(T ) as well. 

Sommerfeld Expansion – Evaluating Integrals at Low Temperature 

Unfortunately, we can’t do the integrals for N or U explicitly and analytically. But we can 
approximate them in the limit 

kB T � �F (10.4.24) 

which we have seen is a very good approximation. 
To get started, we can write Z ∞ √ 

� 
N = g0 d� (10.4.25) 

0 e 
1 (�−µ) + 1 kT 

The only interesting region in the integral is when � ≈ µ, as otherwise the n̄ FD factor is simply 1 or 
0. So to isolate this region, we can integrate by parts, writing 

∞ Z ∞ � � 
2 2 d¯ 

�3/2N = g0�
3/2 n̄ FD(�) + g0 − 

nFD 
d� (10.4.26)

3 3 d�0 0 

nFD The boundary term vanishes, and so what we’re left with is nicer, because d¯ 
d� is basically zero 

except near � ≈ µ. 
We will now start writing 

� − µ 
x = (10.4.27)

kT 

to simplify the algebra. In these terms we see that 

d¯ 1 exnFD 
= (10.4.28)

d� kT (ex + 1)2 

So we need to evaluate the integral Z ∞2 1 ex 

N = g0 �3/2d� 
3 0 kT (ex + 1)2 Z ∞ x 

=
2 
g0 

e
�3/2dx (10.4.29)

3 −µ/kT (e
x + 1)2 
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So far this was exact, but now we will start making approximations. 
First of all, note that µ/kT � 1 and that the integrand falls off exponentially when −x � 1. 

This means that we can approximate Z ∞ x 

N ≈ 
2 
g0 

e
�3/2dx (10.4.30)

3 (ex + 1)2 
−∞ 

up to exponentially small corrections. Then we can expand 

�3/2 1/2 −1/2 = µ 3/2 + (� − µ)
3 
µ + 

3
(� − µ)2 µ + · · · (10.4.31)

2 8 

So we’re left with Z ∞ x � � 
2 e 3 3 (kT )2 

3/2 2N ≈ g0 µ + kT µ1/2 x + 
1/2 

x + · · · dx (10.4.32)
3 (ex + 1)2 2 8 µ−∞ 

Now the integral can be performed term-by-term. This provides a series expansion of the result, 
while neglecting some exponentially small corrections. 
The first term is Z Z � �∞ x ∞ e 1 

dx = −∂x dx = 1 (10.4.33)
(ex + 1)2 ex + 1) −∞ −∞ 

The second term vanishes because Z ∞ x Z ∞ xe x 
dx = dx = 0 (10.4.34)

(ex + 1)2 (ex + 1)(e−x + 1) −∞ −∞ 

since the integrand is odd. Finally, the integral Z ∞ 2 x π2x e 
dx = (10.4.35)

(ex + 1)2 3−∞ 

though it’s harder to evaluate. 
Assembling the pieces, we find that � � 

2 3/2 π2 (kT )2 

N = g0µ 1 + + · · · 
3 8 µ2 � �3/2 � � 

µ π2 (kT )2 

= N 1 + + · · · (10.4.36)
�F 8 µ2 

This shows that µ/�F ≈ 1, and so we can use that in the second term to solve and find 

µ π2 (kT )2 

≈ 1 − + · · · (10.4.37)
�F 12 �F 

2 
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so the chemical potential decreases a bit as T increases. 
We can evaluate the energy integrals using the same tricks, with the result that 

3 µ5/2 3π2 (kT )2 

U = N + N + · · · (10.4.38)
3/25 8 �F�F 

We can plug in for µ to find that 

3 π2 (kT )2 

U = N�F + N + · · · (10.4.39)
5 4 �F 

so that we have the energy in terms of T . As expected, it increases with temperature with the 
anticipated parametric dependence. 

10.5 Bosons and Blackbody Radiation 

Now we will consider what we expect to find for electromagnetic radiation inside a box. 
Classically, this radiation takes the form of excitations of the electromagnetic field. Without 

quantum mechanics, there is no notion of occupancy, and instead each degree of freedom is 
approximately quadratic. This means that we have 1

2 kT of energy per DoF. But there are infinitely 
many modes at short distances, leading to an infinite energy! This is called the ultraviolet catastrophe. 
Quantum Mechanics was invented, in part, to solve this problem. 

Planck Distribution 

Instead of equipartition, each mode of the electromagnetic field, which is its own harmonic oscillator, 
can only have energy 

En = n~ω (10.5.1) 

where the values of ω are fixed by the boundary conditions of the box. This n is the number of 
photons! 
The partition function is 

1 
Z = (10.5.2)

1 − e−β~ω 

for the Bose-Einstein distribution. So the average energy in an oscillator is 

Ē = − 
d 
log Z = 

~ω 
(10.5.3)

β~ω − 1dβ e

The number of photons is just given by n̄ BE . But in the context of photons, its often called the 
Planck distribution. 
This solves the ultraviolet catastrophe, by suppressing the high energy contributions exponentially. 

This really required quantization, so that high energy modes are ‘turned off’. 
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Note that for photons µ = 0. At equilibrium this is required by the fact that photons can be 
freely created or destroyed, ie � � 

∂F 
= 0 = µγ (10.5.4)

∂N T,V 

This explains why µ didn’t appear in the Planck distribution. 

Photons in a Box 

We would like to know the total number and energy of photons inside a box. 
As usual, the momentum of these photons is 

hm 
pm = (10.5.5)

2L 

but since they are relativistic, the energy formula is now 

hcm 
� = pc = (10.5.6)

2L 

This is also just what we get from their frequencies. 
The energy in a mode is just the occupancy times the energy. This is X hc|m| 1 

U = 2 (10.5.7)
2L hc|m|

2LkT e − 1mx,my ,mz 

Converting to an integral, we have Z ∞ π hcm 12U = mdm hcm2 LZ 2LkT 0 e − 1 
∞ πhcm3 1 

= dm (10.5.8)
2L hcm 

2LkT 0 e − 1 

We can then change variables to � = hcm and use L3 = V to find
2L Z 

U ∞ 8π�3 1 
= d� (10.5.9)

�/kT − 1V 0 (hc)3 e 

the integrand is the spectrum, or energy density per unit photon energy 

8π�3 1 
u(�) = (10.5.10)

�/kT − 1(hc)3 e 

The number density is just u/�. The spectrum peaks at � ≈ 2.8kT ; the �3 comes from living in 
3-dimensions. 
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To evaluate the integral, its useful to change variables to x = �/kT , so that all of the physical 
quantities come out of the integral, giving Z ∞ 3U 8π(kT )4 x 

= dx (10.5.11)
V (hc)3 0 ex − 1 

This means that one can determine the temperature of an oven by letting a bit of radiation leak out 
and looking at its color. 

Total Energy 

Doing the last integral gives 

U 8π5(kT )4 

= (10.5.12)
V 15(hc)3 

Note that this only depend on kT , as the other constants are just there to make up units. Since its 
an energy density, pure dimensional analysis could have told us that it had to scale as (kT )4 . 
Numerically, the result is small. At a typical oven temperature of 460 K, the energy per unit 

volume is 3.5 × 10−5J/m3 . This is much smaller than the thermal energy of the air inside the oven... 
because there are more air molecules than photons. And that’s because the photon wavelengths are 
smaller than the typical separations between air molecules at this temperature. 

Entropy 

We can determine the entropy by computing CV and then integrating C
T 
V dT . We have that 

CV = 
∂U 

= 4aT 3 (10.5.13)
∂T V 

8π5k4 
where a = Since our determinations were fully quantum, this works down to T = 0, which 

15(hc)3 . 
means that Z T CV 4 

S(T ) = dt = aT 3 (10.5.14)
t 30 

The total number of photons scales the same way, but with a different coefficient. 

CMB 

The Cosmic Microwave Background is the most interesting photon gas; it’s at about 2.73 K. So its 
spectrum peaks at 6.6 × 10−4 eV, with wavelength around in a millimeter, in the far infrared. 
The CMB has far less energy than ordinary matter in the universe, but it has far more entropy – 

about 109 units of S per cubic meter. 
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Photons Emission Power 

Now that we have understood ‘photons in a box’, we would like to see how radiation will be emitted 
from a hot body. A natural and classical starting point is to ask what happens if you poke a hole in 
the box of photons. 
Since all light travels at the same speed, the spectrum of emitted radiation will be the same as 

the spectrum in the box. To compute the amount of radiation that escapes, we just need to do some 
geometry. 
To get out through the hole, radiation needs to have once been in a hemisphere of radius R from 

the hole. The only tricky question is how much of the radiation at a given point on this hemisphere 
goes out through a hole with area A. At an angle θ from the perpendicular the area A looks like it 
has area 

Aeff = A cos θ (10.5.15) 

So the fraction of radiation that’s pointed in the correct direction, and thus gets out is Z π/2 Aeff 
dθ2πR2 sin θ 

0 4πR2 Z π/2 A A 
= dθ sin θ cos θ = (10.5.16)

2 40 

Other than that, the rate is just given by the speed of light times the energy density, so we find 

AU 2π5A(kT )4 

c = (10.5.17)
4 V 15h3c2 

In fact, this is the famous power per unit area blackbody emission formula 

2π5k4 

T 4P = A = AσT 4 (10.5.18)
15h3c2 

Wwhere σ is known as the Stefan-Boltzmann constant, with value σ = 5.67 × 10−8 
m2K4 . The 

dependence on the fourth power of the temperature was discovered by Stefan empirically in 1879. 

Universality of Black Body Spectrum 

This rule actually applies to emission from any non-reflecting surface, and is referred to as blackbody 
radiation. The argument that the hole and blackbody are the same is simply to put them in contact 
with each other via radiation, and demand that since they’re in equilibrium, to avoid violating the 
2nd law of thermodynamics, they must emit in the same way. Note that by adding filters, this 
implies the full spectra must be the same. 
The same argument implies that the emissivity e of the material at any given wavelength must 

be such that 1 − e is its reflection coefficient. So good reflectors must be poor emitters, and vice 
versa. In this case the spectrum will be modified, since e generally depends on wavelength. 
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Sun and Earth 

We can use basic properties of the Earth and Sun to make some interesting deductions. 
The Earth receives 1370 W/m2 from the sun (known as the solar constant). The earth’s 150 

million km from the sun. This tells us the sun’s total luminosity is 4 × 1026 Watts. 
The sun’s radius is a little over 100 times earth’s, or 7 × 108 m. So its surface area is 6 × 1018 m2 . 

From this information, if we assume an emissivity of 1, we can find that � �1/4
luminosity 

T = = 5800 K (10.5.19)
σA 

This means that the sun’s spectrum should peak at 

� = 2.82kT = 1.41 eV (10.5.20) 

which is in the near infrared. This is testable and agrees with experiment. This is close to visible 
red light, so we get a lot of the sun’s energy in the visible spectrum. Note that ‘peak’ and ‘average’ 
aren’t quite the same here. (Perhaps in some rough sense evolution predicts that we should be able 
to see light near the sun’s peak?) 
We can also easily estimate the Earth’s equilibrium temperature, assuming its emission and 

absorption are balanced. If the power emitted is equal to the power absorbed and emissivity is 1 
then 

(solar constant)πR2 = 4πR2σT 4 (10.5.21) 

which gives 

T ≈ 280 K (10.5.22) 

This is extremely close to the measured average temperature of 288 K. 
Earth isn’t a perfect blackbody, as clouds (and other stuff) reflect about 30% of the light, so 

that the earth’s predicted temperature is 255 K. Emissivity and absorption don’t balance because 
Earth emits in Infrared and mostly absorbs in near IR and visible. 
However, the earth’s surface is warmer than the upper atmosphere, so while 255 K applies to the 

atmosphere, the surface is warmer due to the greenhouse effect. If we treat the atmosphere as a thin 
layer intermediate between the earth’s surface, we get an extra factor of 2 in power on the surface, 
which brings the temperature back up by 21/4 to 303 K. This is a bit high, but roughly right again. 

10.6 Debye Theory of Solids 

Now we get to see why I was complaining about the Einstein model early in the course. 
The point is that the vibrations in a solid are sound waves, and so they have a range of wavelengths 

and corresponding frequencies, with λf = cs. So it doesn’t make sense to treat them as copies of 
the same harmonic oscillator. 
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In fact, the ‘phonons’ of sound are extremely similar to the photons of light, except that phonons 
travel at cs, have 3 polarizations, can have different speeds for different polarizations (and even 
directions!), and cannot have wavelength smaller than (twice) the atomic spacing. 
All this means that we have a simple relation 

hcs
� = hf = |~n| (10.6.1)

2L 

and these modes have a Bose-Einstein distribution 

1 
n̄ BE = (10.6.2)

�/(kT ) − 1e 

with vanishing chemical potential, as phonons can be created and destroyed. 
The energy is also the usual formula X 

U = 3 �n̄ BE (�) (10.6.3) 
nx,ny ,nz 

The only complication is that we need to decide what range of sum or integration to do for the ~n.√ 
Formally we should sum ni from 1 to 3 N . But that would be annoying, so let’s pretend that 

instead we have a spehere in n-space with � �1/3
6N 

nmax = (10.6.4)
π 

so that the total volume in n-space is the same. This approximation is exact at both low and high 
temperatures! Why? 
Given this approximation, we can easily convert our sum into spherical coordinates and compute 

the total average energy. This is Z nmax 4πn2 � 
U = 3 dn 

0Z 8 e kT 
� − 1 

nmax 33π hcs n 
= dn hcsn (10.6.5)

2 2L 2LkT 0 e − 1 

Don’t be fooled – this is almost exactly the same as our treatment of photons. 
We can change variables to 

hcs 
x = n (10.6.6)

2LkT 

This means that we are integrating up to � �1/3
hcs hcs 6N TD 

xmax = nmax = = (10.6.7)
2LkT 2kT πV T 
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where � �1/3
hcs 6N 

TD = (10.6.8)
2k πV 

is the Debye Temperature. 
The integral for energy becomes Z TD /T 39NkT 4 x 

U = dx (10.6.9)
T 3 ex − 1D 0 

We can just integrate numerically, but what about physics? 
In the limit that T � TD, the upper limit of the integral is very small, so Z Z � �3TD /T 3 TD /Tx 1 TD

dx ≈ x 2dx ≈ (10.6.10) 
0 ex − 1 0 3 T 

so that we find 

U = 3NkT (10.6.11) 

in agreement with equipartition and also the Einstein model. 
In the opposite limit of T � TD the upper limit doesn’t matter, as its almost infinity, and we 

find 

3π4Nk 
T 4U = (10.6.12)

5T 3 
D 

which means that phonons are behaving exactly like photons, and physics is dominated by the 
number of excited modes. 
This means that at low temperature 

12π4Nk 
T 3CV = (10.6.13)

5T 3 
D 

and this T 3 rule beautifully agrees with experimental data. Though for metals, to really match, we 
need to also include the electron contribution. 

Some Comments on Debye 

Let’s compare this to the Fermi energy 

h2 � �2/3
3N 

�F = (10.6.14)
8me πV 
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for electrons. Notice that the power-law dependence on the density is different because electrons are 
non-relativistic. In particular, we have � �1/3

�D csme V ∝ (10.6.15)
�F h N 

This shows that if V/N doesn’t vary all that much, the main thing determining �D is the speed of 
sound cs. If we had time to cultivate a deeper understanding of materials, we could try to estimate 
if we should expect this quantity to be order one. 
You should also note that for T � TD we might expect that solids will melt. Why? If not, it 

means that the harmonic oscillator potentials have significant depth, so we can excite many, many 
modes without the molecules escaping. 

10.7 Bose-Einstein Condensation 

So far we have only treated bosons where µ = 0, so that particles can be created and destroyed. But 
what about bosonic atoms, where N is fixed? In that case we’ll have to follow the same procedure 
as for Fermions. But we get to learn about B-E condensation, another rather shocking consequence 
of quantum mechanics. 
Note that in the limit T → 0 this is obvious – the bosons will all be in their ground state, which 

is the same state for all N atoms. That this state has energy 

h2 3h2 

�0 = (1 + 1 + 1) = (10.7.1)
8mL2 8mL2 

which is a very small energy if L is macroscopic. 
Let’s determine µ in this limit. We see that 

1 kT 
N0 = �0−µ ≈ 

�0 − µ 
(10.7.2) 

e − 1kT 

This means that µ = �0 at T = 0, and just a bit larger for small, positive T . But the question is, 
how low must T be for N0 to be large? 
We determine µ by fixing N , and it’s usually easiest to think of this as Z ∞ 1 

N = d� g(�) �−µ (10.7.3) 
0 e kT − 1 

Here g(�) is the usual density of states. For spin-zero bosons in a box, this is identical to the case of 
electrons (ignoring a 2 for spin) so that � �3/2

2 2πm √ 
g(�) = √ V � (10.7.4)

π h2 

Note that this is an approximation assuming a discretum of states, which isn’t a good approximation, 
really, for very small energies. 
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As we’ve seen before, we cannot do the integral analytically. 
Let’s see what happens if we just choose µ = 0. In that case, using our usual x = �/kT type 

change of variables we have � �3/2 Z ∞ √ 
2 2πmkT xdx 

N = √ 
π h2 

V 
0 ex − 1 

(10.7.5) 

Numerically this gives � �3/2
2πmkT 

N = 2.612 
h2 

V (10.7.6) 

This really just means that there’s a particular Tc for which it’s true that µ = 0, so that � �2/3
h2 N 

kTc = 0.527 (10.7.7)
2πm V 

At T > Tc we know that µ < 0 so that the total N is fixed. But what about at T < Tc? 
Actually, our integral representation breaks down at T < Tc as the discreteness of the states 

becomes important. The integral does correctly represent the contribution of high energy states, but 
fails to account for the few states near the bottom of the spectrum. 
This suggests that � �3/2

2πmkT 
Nexcited ≈ 2.612 V (10.7.8)

h2 

for T < Tc. (This doesn’t really account for low-lying states very close to the ground state.) 
Thus we have learned that at temperature T > Tc, the chemical potential is negative and all 

atoms are in excited states. But at T < Tc, the chemical potential µ ≈ 0 and so � �3/2
T 

Nexcited ≈ N (10.7.9)
Tc 

and so the rest of the atoms are in the ground state with " � �3/2 
# 

T 
N0 = N − Nexcited ≈ N 1 − (10.7.10)

Tc 

The accumulation of atoms in the ground state is Bose-Einstein condensation, and Tc is called 
the condensation temperature. 
Notice that as one would expect, this occurs when quantum mechanics becomes important, so 

that the quantum length � �3
V h ≈ `3 

Q = √ (10.7.11)
N 2πmkT 
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So condensation occurs when the wavefunctions begin to overlap quite a bit. 
Notice that having many bosons helps – that is for fixed volume 

h2 � �2/3 

kTc = 0.527 
N ∝ N2/3�0 (10.7.12)

2πm V 

We do not need a kT of order the ground state energy to get all of the bosons into the ground state! 

Achieving BEC 

BEC with cold atoms was first achieved in 1995, using a condensate of about 1000 rubidium-87 
atoms. This involved laser cooling and trapping. By 1999 BEC was also achieved with sodium, 
lithium, hydrogen. 

Superfluids are also BECs, but in that case interactions among the atoms are important for 
the interesting superfluidic properties. The famous example is helium-4, which has a superfluid 
component below 2.17 K. 
Note that superconductivity is a kind of BEC condensation of pairs of electrons, called Cooper 

pairs. Helium-3 has a similar pairing-based superfluidic behavior at extremely low temperatures. 

Why? Entropy 

With distinguishable particles, the ground state’s not particularly favored until kT ∼ �0. But with 
indistinguishable particles, the counting changes dramatically. 
The number of ways of arranging N indistinguishable particles in Z1 1-particle states is � �Z1(N + Z1)! N ∼ e Z1 (10.7.13)

N !Z1! Z1 

for Z1 � N . Whereas in the distinguishable case we just have Z1 
N states, which is far, far larger. So 

in the QM case with Bosons, at low temperatures we have very small relative multiplicity or 
−U/kT ∼ e−Nentropy, as these states will be suppressed by e . So we quickly transition to a BEC. 

10.8 Density Matrices and Classical/Quantum Probability 

As a last comment on quantum statistical mechanics, I want to mention how we actually combine 
quantum mechanics with statistics, and to emphasize that statistical probabilities and quantum 
probabilities are totally different. 

11 Phase Transitions 

A phase transition is a discontinuous change in the properties of a substance as its environment 
(pressure, temperature, chemical potential, magnetic field, composition or ‘doping’) only change 

85 



infinitesimally. The different forms of a substance are called phases. A diagram showing the 
equilibrium phases as a function of environmental variables is called a phase diagram. 
On your problem set you’ll show (if you do all the problems) that BEC is a phase transition. 
Phase structure of water has a triple point where all meet, and a critical point where water 

and steam become indistinguishable (374 C and 221 bars for water). No ice/liquid critical point, 
though long molecules can form liquid crystal phase where molecules move but stay oriented. There 
are many phases of ice at high pressure. Metastable phases are possible via super-cooling/heating 
etc. 
The pressure at which a gas can coexist with its solid or liquid phase is called the vapor 

pressure. At T = 0.01 Celsius and P = 0.006 bar all three phases can coexist at the triple point. 
At low pressure ice sublimates directly into vapor. 

We’ve seen sublimation of CO2, this is because the triple point is above atmospheric pressure, at 
5.2 bars. Note pressure lowers the melting temperature of ice, which is unusual (because ice is less 
dense than water). 
There are also phase transitions between fluid/superfluid and to superconductivity (eg in the 

temperature and magnetic field plane). Ferromagnets can have domains of up or down magnetization, 
and there’s a critical point at B = 0 and T = Tc called the Curie point. 
Phase transitions have been traditionally classified as ‘first order’ or ‘second order’ depending on 

whether the Gibbs energy or its various derivatives are discontinuous; we usually just say first order 
or ‘continuous’. 

Diamond and Graphite 

Graphite is more stable than Diamond in the atmosphere, as the Gibbs free energy of a mole of 
diamond is 2900 J higher than that of graphite. Recall 

G = U − TS + PV (11.0.1) 

To analyze what happens under other conditions, we can usefully note that � � � � 
∂G ∂G 
∂P 

= V, 
T,N ∂T 

= −S 
P,N 

(11.0.2) 

Since diamond has a smaller volume than graphite, as pressure increases its G doesn’t increase as 
fast as that of graphite, so at 15k atmospheres of pressure diamond becomes more stable. Thus 
diamonds must form deep in the earth – deeper than about 50 km. 
Graphite has more entropy, so at high temperatures graphite is even more stable compared to 

Diamond, and so at higher temperatures Diamonds are more likely to convert to graphite. 
In general, many properties of phase transitions follow from thinking carefully about the behavior 

of the free energy. 

11.1 Clausius-Clapeyron 

Given the relations for derivatives of G, it’s easy to see how phase boundaries must depend on P 
and T . 
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At the boundary we must have that the two phases have G1 = G2. But this also means that 

dG1 = dG2 (11.1.1) 

along the phase boundary, which means that 

−S1dT + V1dP = −S2dT + V2dP (11.1.2) 

so that 

dP S1 − S2 
= (11.1.3)

dT V1 − V2 

and this determines the slope of the phase boundary (eg between a liquid and gas transition). 
We can re-write this in terms of the latent heat L via 

L = T (S1 − S2) (11.1.4) 

and use the change in volume ΔV = V1 − V2 so that 

dP L 
= (11.1.5)

dT T ΔV 

This is the Clausius-Clapeyron relation. We can use it to trace out phase boundaries. 

11.2 Non-Ideal Gases 

Gases become ideal in the limit of very low density, so that N/V → 0. Thus it’s natural to treat 
this as a small parameter and expand in it. For this purpose, motivated by the ideal gas law, it’s 
natural to write � �2 � �3

P N N N 
= + B2(T ) + B3(T ) + · · · (11.2.1)

kT V V V 

We can actually try to compute the functions Bn(T ) by doing what’s called a ‘cluster expansion’ in 
the interactions of the gas molecules. 
But for now, let’s just see what we get if we include the first correction. A particular equation 

of state that’s of this form, and which keeps only the first two terms, is the famous va der Waals 
equation of state � � 

N2 

P + a 
V 2 

(V − Nb) = NkT (11.2.2) 

or 

NkT N2 

P = 
V − Nb 

− a 
V 2 

(11.2.3) 
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for constants a and b. This formula is just an approximation! Note that the absence of higher order 
terms means that we are neglecting effects from interactions among many molecules at once, which 
are certainly important at high density. 
We can also write the vdW equation more elegantly in terms of purely intensive quantities as 

kT 1 
P = − a (11.2.4) 

v − b v2 

where v = V/N . This makes it clear that the total amount of stuff doesn’t matter! 
The modification by b is easy to understand, as it means that the fluid cannot be compressed 

down to zero volume. Thus b is a kind of minimum volume occupied by a molecule. It’s actually 
well approximated by the cube of the average width of a molecule, eg 4 angstroms cubed for water. 
The a term accounts for short-range attractive forces between molecules. Note that it scales 

like N2/V 2 , so it corresponds to forces on all the molecules from the molecules, and it effectively 
decreases the pressure (for a > 0), so it’s attractive. The constant a varies a lot between substances, 
in fact by more than two orders of magnitude, depending on how much molecules interact. 
Now let’s investigate the implications of the van der Waals equation. We’ll actually be focused 

on the qualitative implications. Let’s plot pressure as a function of volume at fixed T . At large T 
curves are smooth, but at small T they’re more complicated, and have a local minimum! How can a 
gas’s pressure decrease when its volume decreases!? 
To see what really happens, let’s compute G. We have 

dG = −SdT + V dP + µdN (11.2.5) 

At fixed T and N this is just dG = V dP so � � � � 
∂G ∂P 

= V (11.2.6)
∂V ∂V T,N T,N 

From the van der Waals equation we can compute derivatives of P , giving� � 
∂G 2aN2 NkT V 

= − (11.2.7)
∂V T,N V 2 (V − Nb)2 

Integrating then gives 

N2bkT 2aN2 

G = −NkT log(V − Nb) + − + c(T ) (11.2.8)
V − Nb V 

where c(T ) is some constant that can depend on T but not V . 
Note that the thermodynamically stable state has minimum G. This is important because at a 

given value of pressure P , there can be more than one value of G. We see this by plotting G and P 
parametrically as functions of V . This shows the volume changes abruptly at a gas-liquid transition! 
We can determine P at the phase transition directly, but there’s another cute, famous method. 

Since the total change in G is zero across the transition, we have I I � � I 
∂G 

0 = dG = dP = V dP (11.2.9)
∂P T,N 
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We can compute this last quantity from the PV diagram. This is called the Maxwell construction. 
This is a bit non-rigorous, since we’re using unstable states/phases to get the result, but it works. 
Repeating the analysis shows where the liquid gas transition occurs for a variety different 

temperatures. The corresponding pressure is the vapor pressure where the transition occurs. At 
the vapor pressure at a fixed volume, liquid and gas can coexist. 
At high temperature, there is no phase boundary! Thus there’s a critical temperature Tc and 

a corresponding Pc and Vc(N) at which the phase transition disappears. At the critical point, liquids 
and gases become identical! The use of the volume in all of this is rather incidental. Recall that 
G = Nµ, and so we can rephrase everything purely in terms of intensive quantities. 
Note though that while van der Waals works qualitatively, it fails quantitatively. This isn’t 

surprising, since it ignores multi-molecule interactions. 

11.3 Phase Transitions of Mixtures 

Phase transitions become more complicated when we consider mixtures of different kinds of particles. 
Essentially, this is due to the entropy of mixing. As usual, we should study the Gibbs free energy 

G = U + PV − TS (11.3.1) 

In the unmixed case, with substances A and B, we would expect 

G = (1 − x)GA + xGB (11.3.2) 

where x is the fraction and GA/B are the Gibbs free energies of unmixed substances. 
But if we account for entropy of mixing, then instead of a straight line, Smix will be largest when 

x ≈ 1/2, so that G will be smaller than this straight line suggests. Instead G will be concave up as 
a function of x. 
We can roughly approximate 

Smixing ≈ −N (x log x + (1 − x) log(1 − x)) (11.3.3) 

where N is the total number of molecules. This is correct for ideal gases, and for liquids or solids 
where the molecules of each substance are roughly the same. This leads to 

G = (1 − x)GA + xGB − NkB T (x log x + (1 − x) log(1 − x)) (11.3.4) 

This is the result for an ideal mixture. Liquid and solid mixtures are usually far from ideal, but 
this is a good starting point. 
Since the derivative of G wrt x at x = 0 and x = 1 is actually infinite, equilibrium phases almost 

always contain impurities. 
Even non-ideal mixtures tend to behave this way, unless there’s some non-trivial energy or U 

dependence in mixing, eg with oil and water, where the molecules are only attracted to their own 
kind. In that case the G of mixing can actually be concave down – that’s why oil and water don’t 
mix, at least at low T . Note that at higher T there’s a competition between the energy effect and 
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the entropy effect. Even at very low T , the entropy dominates near x = 0 or x = 1, so oil and water 
will have some ‘impurities’. 
Note that concave-down G(x) simply indicates an instability where the mixture will split up 

into two unmixed substances. In this region we say that the two phases are immiscible or have a 
solubility gap. 
So we end up with two stable mixtures at small x > 0 and large x < 1, and unmixed substances 

between. Solids can have solubility gaps too. 
You can read about a variety of more complicated applications of these ideas in the text. 

11.4 Chemical Equilibrium 

Chemical reactions almost never go to completion. For example consider 

H2O ↔ H+ + OH− (11.4.1) 

Even if one configuration of chemicals is more stable (water), every once in a while there’s enough 
energy to cause the reaction to go the other way. 
As usual, the way to think about this quantitatively is in terms of the Gibbs free energy 

G = U − TS + PV (11.4.2) 

and to consider the chemical reaction as a system of particles that will react until they reach an 
equilibrium. We end up breaking up a few H2O molecuels because although it costs energy, the 
entropy increase makes up for that. Of course this depends on temperature though! 
We can plot G as a function of x, where 1 − x is the fraction of H2O. Without any mixing we 

would expect G(x) to be a straight line, and since U is lower for water, we’d expect x = 0. However, 
due to the entropy of mixing, equilibrium will have x > 0 – recall that G0(x) is infinite at x = 0! 
Plot this. 
We can characterize the equilibrium condition by the fact that the slope of G(x) is zero. This 

means that X 
0 = dG = µidNi (11.4.3) 

i 

where we assumed T, P are fixed. The sum on the right runs over all species. But we know that 

dNH2O = −1, dNH+ = −1, dNOH− = 1 (11.4.4) 

because atoms are conserved. So this implies that 

µH2O = µH+ + µOH− (11.4.5) 

at equilibrium. Since the chemical potentials are a function of species concentration, this determines 
the equilibrium concentrations! 

90 



The equilibrium condition is always the same as the reaction itself, with names of chemicals 
replaced by their chemical potentials. For instance with 

N2 + 3H2 ↔ 2NH3 (11.4.6) 

we would have 

µN2 + 3µH2 ↔ 2µNH3 (11.4.7) 

simply by noting how the various dNi must change. 
Note that these results apply beyond ‘Chemistry’, for instance they also apply to the reactions 

about nuclei in the early universe! 
If the substances involved in reaction are all ideal gases, then recall that we can write their 

chemical potentials as 

i i Pi 
µ = µ0 + kT log (11.4.8)

P0 

where µi 
0 is the chemical potential in a fixed ‘standard’ state when its partial pressure is P0. So for 

example, for the last chemical reaction we can write � � 
P 3PN2 H2 NH3 N2 H2 

ΔG0
kT log = 2µ0 − µ0 − 3µ0 = (11.4.9)

P 2 P 2 NNH3 0 

which means that 

P 3 
ΔG0PN2 H2 N kT = e − = K (11.4.10)

P 2 P 2 
NH3 0 

where K is the equilibrium constant. This equation is called the law of mass action by chemists. 
Even if you don’t know K a priori, you can use this equation to determine what happens if you add 
reactants to a reaction. 
For this particular reaction – Nitrogen fixing – we have to use high temperatures and very high 

pressures – this was invented by Fritz Haber, and it revolutionized the production of fertilizers and 
explosives. 

Ionization of Hydrogen 

For the simple reaction 

H ↔ p + e (11.4.11) 

we can compute everything from first principles. We have the equilibrium condition � � 
PH P0 p e HkT log 
PpPe 

= µ0 + µ0 − µ0 (11.4.12) 
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We can treat all of these species as structureless monatomic gases, so that we can use " � �3/2 
# 

kT 2πmkT 
µ = −kT log (11.4.13)

P h2 

The only additional issues is that we need to subtract the ionization energy of I = 13.6 eV from µ0 
H . 

Since mp ≈ mH we have � � " � �3/2 
# 

PH P0 kT 2πmkT I − log = kT log − (11.4.14)
PpPe P0 h2 kT 

Then with a bit of algebra we learn that � �3/2
Pp kT 2πmkT −I/kT = e (11.4.15)

h2PH Pe 

which is called the Saha equation. Note that Pe/kT = Ne/V . If we plug in numbers for the 
surface of the sun this gives 

Pp . 10−4 (11.4.16)
PH 

so less than one atom in ten thousand are ionized. Note though that this is much, much larger than 
the Boltzmann factor by itself! 

11.5 Dilute Solutions 

When studying mixtures, there’s a natural, ‘simplest possible’ limit that we can take, where one 
substance dominates. In this case, molecules of the other substances are always isolated from each 
other, as their immediate neighbors are molecules of the dominant substance. This is the limit of 
dilute solutions, and the dominant substance is called the solvent, while the other components are 
solutes. 
In this case we can think of the solutes as almost like an ‘ideal gas’, since they are approximately 

non-interacting. It’s the kind of problem we know how to solve! 
So we need to compute the Gibbs free energy and chemical potentials. If the solvent is A, then 

to start with, with no solute, we have 

G = NAµ0(T, P ) (11.5.1) 

Now we imagine adding B molecules, and G changes by 

dG = dU + P dV − T dS (11.5.2) 

The dU and P dV terms don’t depend on NA, rather they only depend on how B molecules interact 
with their A-molecule neighbors. But T dS depends on NB due to the freedom we have in placing 
the B molecules. The number of choices is proportional to NA, so we get one term 

dS ⊃ k log NA (11.5.3) 
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But we also need to account for the redundancy because B molecules are identical. The result is 

G = NAµ0(T, P ) + NBf(T, P ) − NB kT log NA + kT log NB ! 

= NAµ0(T, P ) + NBf(T, P ) − NB kT log NA + NB kT (log NB − 1) (11.5.4) 

where f(T, P ) doesn’t depend on NA. It is what accounts for the interaction of B molecules with 
the A molecules that surround them. This expression is valid as long as NB � NA. 
The chemical potentials follow from � � 

∂G NB 
µA = = µ0(T, P ) − kT (11.5.5)

∂NA NAT,P,NB 

and � � 
∂G NB 

µB = = f(T, P ) + kT log (11.5.6)
∂NB NAT,P,NA 

Adding solute reduces µA and increases µB. Also, these chemical potentials depend only on the 
intensive ration NB/NA. 

Osmotic Pressure 

If we have pure solvent on one side of a barrier permeable only by solvent, and solute-solvent solution 
on the other side, then solvent will want to move across the barrier to further dilute the solution. 
This is called osmosis. 
To prevent osmosis, we could add additional pressure to the solution side. This is the osmotic 

pressure. It’s determined by equality of solvent chemical potential. So we need 

NB ∂µ0 
µ0 − kT = µ0 + δP (11.5.7)

NA ∂P 

Note that 

∂µ0 V 
= (11.5.8)

∂P N 

at fixed T,N because G = Nµ, and so 

V NB
δP = kT (11.5.9)

NA NA 

or 

NBkT 
δP = (11.5.10)

V 

is the osmotic pressure. 
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Boiling and Freezing Points 

The boiling and freezing points of a solution are altered by the presence of the solute. Often we can 
assume the solute never evaporates, eg if we consider salt in water. Intuitively, the boiling point 
may increase (and the freezing point decrease) because the effective liquid surface area is decreased 
due to the solute ‘taking up space’ near the surface and preventing liquid molecules from moving. 
In the case of freezing, the solute takes up space for building solid bonds. 
Our theorizing above provides a quantitative treatment of these effects. For boiling we have 

NB 
µ0(T, P ) − kT = µgas(T, P ) (11.5.11)

NA 

and so the NB /NA fraction of solute makes the liquid chemical potential smaller, so that higher 
temperatures are needed for boiling. 
If we hold the pressure fixed and vary the temperature from the pure boiling point T0 we find 

∂µ0 NB ∂µgas 
µ0(T0, P ) + (T − T0) − kT = µgas(T, P ) + (T − T0) (11.5.12)

∂T NA ∂T 

and we have that 

∂µ S 
= − (11.5.13)

∂T N 

so that � � 
Sliquid − Sgas NB−(T − T0) = kT (11.5.14)

NA NA 

The difference in entropies between gas and liquid is L/T0, where L is the latent heat of vaporization, 
so we see that 

NkT0
2 

T − T0 = (11.5.15)
L 

where we treat T ≈ T0 on the RHS. 
A similar treatment of pressure shows that 

P NB 
= 1 − (11.5.16)

P0 NA 

for the boiling transition – we need to be at lower pressure for boiling to occur. 

11.6 Critical Points 

Now let us further discuss the critical point. We will see that critical points are universal. 
Note that both 

dP d2P 
dV 

= 0, 
dV 2 

= 0 (11.6.1) 
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at the critical point, which helps us to easily identify it (eg using the van der Waals equation). A 
cute way to say this is to write the vdW equation using intensive variables as 

Pv3 − (Pb + kT )v 2 + av − ab = 0 (11.6.2) 

The critical point occurs when all three roots of the cubic coincide, so that 

pc(v − vc)
3 = 0 (11.6.3) 

and if we expand this out we can identify that 

8a a 
kT = , vc = 3b, Pc = (11.6.4)

27b 27b2 

Law of Corresponding States 

We can eliminate a, b completely if we re-write the vdW equation in terms of Tc, vc, and Pc. 
Furthermore, we can then write the equation in dimensionless variables 

T v P¯ ¯T = , v̄ = , P = (11.6.5)
Tc vc Pc 

so that the vdW equation becomes 

8 T̄ 3 
P̄ = − 

2 
(11.6.6)

3 v̄ − 1/3 v̄ 

This is often called the law of corresponding states. The idea being that all gases/liquids correspond 
with each other once expressed in these variables. This extends the extreme equivalence among 
gases implied by the ideal gas law to the vdW equation. 
Furthermore, since Tc, vc, pc only depend on a, b, there must be a relation among them, it is that 

pcvc 3 
= (11.6.7)

kT 8 

Thus all gases described by the vdW equation must obey this relation! Of course general gases 
depend on more than the two parameters a, b, since vdW required truncating the expansion in the 
density. 
This universality has been confirmed in experiments, which show that all gases, no matter their 

molecular makeup, behave very similarly in the vicinity of the critical point. Let’s explore that. 

Approaching the Critical Point 

It turns out that the most interesting question is to ask how various quantities such as v, T, P behave 
as we approach the critical point. We’re now going to do a naive analysis that will turn out to be 
wrong for interesting reasons. 

95 



����
����

¯For T < Tc so that T < 1, the vdW equation has two solutions to 

8 T̄ 3
P̄ = − (11.6.8)

3 v̄ − 1/3 v̄2 

corresponding to a vgas and vliquid. This means that we can write 

(3v̄l − 1)(3v̄g − 1)(v̄l + v̄ g)
T̄ = 

2 (11.6.9)
8v̄2v̄ g l 

We can expand near the critical point by expanding in vg − vl, whcih gives 

T̄ ≈ 1 − 
1 
(v̄g − v̄ l)

2 (11.6.10)
16 

or p 
v̄ g − v̄ l ∝ Tc − T (11.6.11) 

so this tells us how the difference in molecular volumes varies near the critical temperature. 
We can answer a similar question about pressure with no work, giving 

P − Pc ∝ (v − vc)
3 (11.6.12) 

since the first and second derivatives of P wrt volume at Pc vanish. 
As a third example, let’s consider the compressibility 

1 ∂v 
κ = − (11.6.13) 

v ∂P T 

We know that at Tc the derivative of pressure wrt volume vanishes, so we must have that 

∂v 
= −a(T − Tc) (11.6.14)

∂P T,vc 

which we can invert to learn that 

1 
κ ∝ (11.6.15)

T − Tc 

Note that to discover these last two facts, we didn’t even need the vdW equation. Rather, we 
assumed that the scaling behavior near the critical point was analytic, ie it has a nice Taylor series 
expansion. 

Actually, our results are quite wrong, even the ones that didn’t rely on vdW! 
In fact, all gas-liquid transitions seem to universally behave as 

− T )0.32 vg − vl ∝ (Tc 

)4.8 p − pc ∝ (v − vc 

1 
κ ∝ (11.6.16)

)1.2(T − Tc 
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which differ significantly from our predictions. In particular, these are non-analytic, ie they don’t 
have a nice Taylor series expansion about the critical point. 
We already saw a hint of why life’s more complicated at the critical point – there are large 

fluctuations, for example in the density. The fact that the compressibility 

1 ∂v 1 − ∝ (11.6.17) 
v ∂P T (T − Tc)γ 

(where we though γ = 1, and in fact γ = 1.2) means that the gas/liquid is becoming arbitrarily 
compressible at the critical point. But this means that there will be huge, local fluctuations in the 
density. In fact one can show that locally 

Δn2 ∂hni 1 ∂v 
= −kT (11.6.18) 

n ∂v v ∂P P,T N,T 

so that fluctuations in density are in fact diverging. This also means that we can’t use an equation 
of state that only accounts for average pressure, volume, and density. 

Understanding how to account for this is the subject of ‘Critical Phenomena’, with close links to 
Quantum Field Theory, Conformal Field Theory, and the ‘Renormalization Group’. Perhaps they’ll 
be treated by a future year-long version of this course. But for now we’ll move on to study a specific 
model that shows some interesting related features. 

12 Interactions 

Let’s study a few cases where we can include the effects of interactions. 

12.1 Ising Model 

The Ising Model is one of the most important non-trivial models in physics. It can be interpreted as 
either a system of interacting spins or as a lattice gas. 

As a Magnetic System 

The kind of model that we’ve already studied has energy or Hamiltonian 

NX 
EB = −B si (12.1.1) 

i=1 

where si are the spins, an d we can only have 

si = ±1 (12.1.2) 

This is our familiar paramagnet. 
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The Ising model adds an additional complication, a coupling between nearest neighbor spins, so 
that 

NX X 
E = −J sisj − B si (12.1.3) 

hiji i=1 

where the notation hiji implies that we only sum over the nearest neighbors. How this actually 
works depends on the dimension – one can study the Ising model in 1, 2, or more dimensions. We 
can also consider different lattice shapes. We often use q to denote the number of nearest neighbors. 
If J > 0 then neighboring spins prefer to be aligned, and the model acts as a ferromagnet; when 

J < 0 the spins prefer to be anti-aligned and we have an anti-ferromagnet. 
We can thus describe the Ising model via a partition function X 

−βE[si]Z = e (12.1.4) 
si 

The B and J > 0 will make the spins want to align, but temperature causes them to want to 
fluctuate. The natural observable to study is the magnetization 

1 ∂ 
m = log Z (12.1.5)

Nβ ∂B 

As a Lattice Gas 

With the same math we can say different words and view the model as a lattice gas. Since the 
particles have hard cores, only one can sit at each site, so the sites are either full, ni = 1, or empty, 
ni = 0. Then we can further add a reward in energy for them to sit on neighboring sites, so that X X 

E = −4J ninj − µ ni (12.1.6) 
hiji i 

where µ is the chemical potential, which determines overall particle number. This Hamiltonian is 
the same as above with si = 2ni − 1. 

Mean Field Theory 

The Ising model can be solved in d = 1 and, when B = 0, in d = 2; the latter is either very 
complicated or requires very fancy techniques. But we can try to say something about its behavior 
by approximating the effect of the interactions by an averaging procedure. 
The idea is to write each spin as 

si = (si − m) + m (12.1.7) 

where m is the average spin throughout the lattice. Then the neighboring interactions are 

sisj = (si − m)(sj − m) + m(sj − m) + m(si − m) + m 2 (12.1.8) 
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The approximation comes in when we assume that the fluctuations of spins away from the average 
are small. This means we treat 

(si − m)(sj − m) → 0 (12.1.9) 

but note that this does’t mean that 

(si − m)2 = 0 (12.1.10) 

as this latter statement is never true, since we will sum over si = ±1. The former statement is 
possibly true because si 6= sj . In this approximation the energy simplifies greatly to 

Emft = 
X� � X 

2−J m(si + sj ) − more − B si 
hiji i 

= 
X1 

JNqm2 − (Jqm + B) si
2

(12.1.11) 
i 

where Nq/2 is the number of nearest neighbor pairs. So the mean field approximation has removed 
the interactions. Instead we have 

Beff = B + Jqm (12.1.12) 

so that the spins see an extra contribution to the magnetic field set by the mean field of their 
neighbors. 
Now we are back in paramagnet territory, and so we can work out that the partition function is 

−β JNqm2 
−βBef f βBef f )N2Z = e (e + e 

−β JNqm2 

= e 2N coshN (βBeff ) (12.1.13)2 

However, this is a function of m... yet m is the average spin, so this can’t be correct unless it predicts 
the correct value of m. We resolve this issue by computing the magnetization using m and solving 
for it, giving 

m = tanh(βB + βJqm) (12.1.14) 

We can understand the behavior by making plots of these functions. 

Vanishing B 

Perhaps the most interesting case is B = 0. The behavior depends on the value of βJq, as can be 
noted from the expansion of tanh. 
If βJq < 1, then the only solution is m = 0. So for T > Jq, ie at high temperatures, the average 

magnetization vanishes. Thermal fluctuations dominate and the spins do not align. 
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However if T < Jq, ie at low temperatures, we have a solution m = 0 as well as magnetized 
solutions with m = ±m0. The latter correspond to phases where the spins are aligning. It turns out 
that m = 0 is unstable, in a way analogous to the unstable solutions of the van der Waals equation. 
The critical temperature separating the phases is 

kTc = Jq (12.1.15) 

and at this temperature, the magnetization abruptly turns off. 
At finite B, the magnetization is never zero, but instead always aligns with B; it smoothly shuts 

off as T →∞, but is finite for any finite T . Though in fact at small T there are other solutions that 
are unstable or meta-stable. 
But wait... are these results even correct??? Mean Field Theory was an uncontrolled approxi-

mation. It turns out that MFT is qualitatively correct for d ≥ 2 (in terms of the phase structure), 
but is totally wrong for an Ising chain, in d = 1 – in that case there is no phase transition at finite 
temperature. It’s amusing to note that MFT is exact for d →∞. 

Free Energy 

We can understand the phase structure of the Ising model by computing the free energy. In the 
MFT approximation it is 

1 1 N 
F = − log Z = JNqm2 − log(2 cosh(βBeff )) (12.1.16)

β 2 β 

Demanding that F be in a local minimum requires dF/dm = 0, which requires that 

m = tanh(βBeff ) (12.1.17) 

To determine which solutions dominate, we just calculate F (m). For example when B = 0 and 
T < Tc we have the possibilities m = 0, ±m0, and we see that F (m = 0) = 0 while F (±m0) < 0, so 
that the aligned phases dominate. 
Usually we can only define F in equilibrium. But we can take a maverick approach and pretend 

that F (T, B, m) actually makes sense away from equilibrium, and see what it says about various 
phases with different values of m. This is the Landau theory of phases. It is the beginning of a rich 
subject... 

12.2 Interacting Gases 

Maybe someday. 
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