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" PREFACE

This book introduces the beginners to the basic philosophy and technique of
Statistical Mechanics as first formulated by J W Gibbs. It is a powerful method
that calculates and relates different kinds of things in almost all branches of
physics. _ : .

Statistical Mechanics is an extremely fascinating field of study. However, it
presents difficulties toboth the reader and the teacher. We felt that a simple and
straightforward book on it is very much needed. Our colleagues in other

" universities confirmed this. We then decided to give a final shape to the original
working draft of this book.

Recently there has been an explosion of new ideas and techniques to solve
problems that were intractable so far. The relationship between mechanics and
statistical mechanics is also now understood a little better. Some idea of the
thrust of modern concerns is given by our treatment of critical phenomena. It -
exposes the reader to the concepts of scaling, universality and renormalization.

We are grateful to Dr. Ranjana Prakash and Dr. V.P. Verma for the help given
in preparing the corrections for reprinting the book.

We welcome any suggestions for improvement in the text.

BKA.
March 1989
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1
" BASIS OF CLASSICAL
STATISTICAL MECHANICS

1.1 INTRODUCTION

In statistical mechanics we study the physical systems consisting of very
large number of particles (N ~ 10%3). The simplest physical system of inte-
rest is a pérfect gas in thermal equilibrium. From the macroscopic point
of view it appears to be a continuum. A complete set of thermodynamic
variables, characterizing its equilibrium state, is the energy E, volume V
and the number of molecules N. The N, although referred to molecules for
convenience, is a macroscopic variable because it is dlrectly related to the
mass of the gas.

From the microscopic pomt of view the gas (matter) consxsts of dlscrete
particles, like atoms or molecules. In classical mechanics, the microscopic
description will specify, at a given time, the positions and velocities (or
momenta) of all the particles in the gas. It is impossible to measure them
instantaneously as N ~ 10%, With lapse of time, the description of the be-
haviour of the gas will require solving an enormous number of -equations
of motion involving collisions. To get out of this impasse, we can try to
relate the macroscopic description based on a few variables with the micro-
scopic description based on a large number of variables, by using the
method of (i) kinetic theory, or (ii) statistical mechanics.

The drastic reduction in the number of variables occurs because a
measurement of the macroscopic property, like pressure P, gives anaverage
of the values over a finite time interval (~ 1s). During this period the
molecules undergo a very large number of collisions as the time interval be-
tween two successive collisions is of the order of 10-19s, The mathematica}l
process of averaging over a coordinate obyiously eliminates it, resulting in
simplicity. For example, consider the kinetic theory calculation of gmsam
of 2 gas in @ cubical box of side Jength L.
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Let ¢ be the velocity component along the edge parallel to the x axis
for the ith molecule of mass m. The rate of momentum transfer to a wall
normal to the x axis is given by (number of collisions per s) X (momentum
imparted per collision) = (cx/2L) X (2mcy). Therefore, the pressure P

exerted by the molecules on that wall is ..
P = total force on the wall m(c,z,, + ... 42
area of the wall - L3
1 =3 s 1X
=Z3mNciy cg:-]_vigl CEI,

where ¢ is the average value of ¢% for all the molecules. Thus N(~ 10%)
velocity coordinates are reduced to a single suitably averaged coordinate.
In kinetic theory certain basic assumptions are made regarding the
. nature of molecules and their mutual interactions. Statistical mechanics
does not concern itself with such details as it deals mainly with the energy
aspects of the molecules. It makes assumptions of a more general nature,
uses the theory of probability and is mathematically simpler. We shall dis-
cuss the method of statistical mechanics as first formulated by Josiah
Willard Gibbs.

12 PHASE SPACE

"First consider a very simple. case. A bead of mass m moves freely and arbi-.
trarily on a string stretched along the x axis. It has one degree of freedom.
The position of the bead at time ¢ is x(f) and its velocity v.=X (or momen-
tum px = mx) at that instant. The state of the bead at any instant can be
represented by a point P in a hypothetical two-dimensional space, called the
phase space, whose coordinates are x and p,. As the bead moves on the
string, the value of x changes. Under accelerating forces, px also changes.
As a result the point P traces a trajectory in the phase space with the pass-
age of time (Fig. 1.1).

P

STRING
BEAD

. (a) - (b)
Fig. 1.1 (a) A bead sliding on a ring. (b) Phase space and phase line for the bead.

A molecule of an ideal gas can be represented as a structureless particle.
Such a molecule has three translational degrees of freedom. Its phase space
has six dimensions whose Cartesian coordinates are x,, X;, X3, Py, Pas Ps. It
is called the p-space, where p stands for molecule. The instantaneous
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translational state of the molecule is given by ‘the representative point in
this hypothetical space. For a system of N molecules (gas) the instantaneous
state (Fig. 1.2a) is represented by a set of N points in the p-space, one for
each molecule (Fig. 1.2b). It is a symbolic picture of the space because it is
not possible to display a six-dimensional space. The total number-of trans-
lational degrees of freedom is 3 X N = 3N. Following Ehrenfest, we can
construct a phase space, for all the molecules, which has 6N dimensions. It
is called the I' space, where I' stands for gas. It is spanned by 3N coordinate
axes and 3N momentum axes. The 6N coordinates .

(X110 Xgps Xg1s ++0s X100 XaNs X¥3Ns P1as Paps Pars -+« Pins Pans Pan)
represent the positions and momenta of all the molecules (state of the sys-
tem) at a given time, In the I' space, the instantaneous state. of the whole
system (gas of N molecules) is given by a single representative point (or phase
point), Fig. 1.2c. The notation [x], [p] stands for the 3N cootdlnate axes
and 3N momentum axes.

P useace [P] I SPACE
L ]
1 e [ ]
N .
¢ ¢ e B REPRESENTATVE
o [ 42 o POINT
O TR g

(a) (b) . {c)

. Fig. 1.2 (a) A gas containing N molecules (system). (b) p. space for the system.
(¢) I space and the representative point for the entire system.

In general, if findependent position coordinates and f momentum co-
ordinates are required to fully specify the state of a system, then the system
is said to possess f degrees of freedom. Any set of f generalized coordinates
1, s --+» 9 (Cartesian, polar or some other convenient set) can be used to
uniquely determine the configuration of the system. The corresponding
generalized momenta are p,, p,, -.., Ps The T space is then a conceptual
Euclidean space having 2f rectangular axes [g], [p]. The microscopic state of
the whole system is specified by a representative point in this space. With the
lapse of time, some or all of the 2f coordinates take on different values
(Fig. 1.3). As a result, the representative point traces a phase line (or Phase
trajectory) in the accessible phase space (Fig. 1.4). Each point on the phase

-line represents one such possible microscopic state. A point in the phase
space is accessible if it corresponds to the physical specification of the system
under observation. For example, the states of the crystalline form of sodium
are inaccessible at very high temperature. The system is likely to pass through
all the accessible states. In this sense, the 2f coordinates take on alf possible: :
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43 Fw b | A
' ' P or)
RS s «:f :
NVE NVE NVE

(a) - (b) (c):

Fig. 1,3 A few possible states of the system (gas containing N molecules). For
convenience only few molecules are shown.

P) t CHANGING

I K\// la]

Fig. 1.4 Phase space and a portion of the phase line.

values."We can say that they are randomized. The phase line tends to fill
the accessible phase space. The measurement of macroscopic variables (like
2, ¥V, T, etc.) involves taking time averagés over an appropriate portion of
the phase line of the system.

So far we have not introduced any concept of statistical mechanics. The
problem of solving an enormous number of equations of motion and of
calculating the time averages of interest is still with us. Around 1900 Gibbs
suggested that a way out is to introduce the idea of an ensemble of systems.

13 ENSEMBLE

Each phase point on the phase line of a single system develops out of the
previous point in time, according to the laws of mechanics. Gibbs replaced
this time dependent picture by a static picture in which the entire phase line
exists at one time (Fig. 1.5 a). Then each phase point represents a separate
system with the same macroscopic properties (N, ¥, E) as the system of
interest but a different microscopic state. In other words, we ‘imagine’ a
large number M (M — o) of systems, similar in structure to the system of
interest but suitably randomized in the accessible, unobservable, microscopic
states, Instead of taking the time average, we take an average over this
artificially constructed group existing simultaneously at one time. Such a
group of replicas or collection of similar, noninteracting, independent, imagined
systems is called an ensemble by Gibbs (Fig. 1.5b). We bave assumed that the
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N VIN VIN VN V
E E E E

N VIN VIN VNV
(] t FIXED E | |E [E

N VIN V[NV INY

i eElel|ele
ar Nv] [NVINVINV[NV
.'A

E E E E E
[a] SYSTEMOF ENSEMBLE
INTEREST

(a) (b)

Fig, 1.5 (a) The ensemble (a small portion) at one time. Any region like A will
appear to contain a swarm of phase points. (b) Schematic lattice’ rep~
* resentation of an ensemble of M (M — o0) imaginary systems, at one

time, each with same N, V, E. o

time average of some property of a system in equilibrium is same as the
instantaneous ensemble average. This is known as the ergodic hypothesis.*

All the members of an ensemble, which are identical in features like N,
V, E, are referred to as elements. These elements, though identical in struc-
ture (same macroscopic state), are randomized in the sense that they differ
from one another in the coordinates and momenta of the individual mole-
cules, that is, the elements differ in their unobservable microscopic states.
The various elements, being imaginary, do not interact with. each othér.
Each element behaves independently in accordance with the laws of mecha-
nics (classical or quantum).

A clear difference exists between the actual system of interest and an
element of the ensemble. The system is the physical object about which we
intend to make predictions. The elements of the ensemble are mental copies -
of it to enable us to use the probability theory.

Thus an ensemble of systems consists of randomized ‘mental’ pictures of
the system of interest that exist simultaneously. It is to be viewed as an_
intellectual exercise to imitate and represent at one time the states of the
actual system as developed in the course of time. It is easier to compute the
statistical behaviour of such a suitably chosen ensemble than to study the
behaviour of any particular complex system. Results so obtained enable us
to predict the probable behaviour of the system' of interest.

An ensemble average is the average at a fixed time over all the elements
in an ensemble. It is difficult to prove the exact equivalence of the ensemble
average and the time average over a single system. However, one can hope

¥The erogodic hypothesis is not rigorously true. One of the elements may béhave
in a strange fashion and upset it, However, experim:nts show that if an element is
chosen at- random, the odds are overwhelming that it has the same time averags pro=
perties as predicted- by the ensemble average. :
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that the former would closely approximate the latter lf the following essentlal

conditions are satisfied:
1. The system of interest is a macroscopic system consisting of a large

number of molecules (N —» c0) so that we can randomize in a true sense the

microscopic variables.
2. The number of imagined elements that form the ensemble at-one

time is large (M —> 0) so that they can truly represent the range of states
available to the actual system over a really long period of time (# - o). In
statistical mechanics we shall use the terms system and ensemble in this

above sense only.
In Fig. 1.5a, each phase point corresponds to an element in the ensem-

ble (Fig. 1.5b). In an appropriate ensemble the phase points would be dis-
tributed continuously.

14 ENSEMBLE AVERAGE

(A) Average Values
Consider the simple case of a set of N points dlstnbuted arbitrarily along a

line. If x(i) is the distance of the ith point from the origin, then the average
distance % from the origin is given by

x—-N-l- Ex(t)

1f the line is divided into cells, and N; is the number of points in the ith
cell located at x(i), then we can write

1 - » :
| ?:F‘E.N’ X(l). (1.1)
If the distribution is known in the form of a continuous function N(x),
+00 -
X = ﬁl I xN(x)dx, N= I N(x) dx. 1.2

In general if R(x) is any arbitrary property of the points,

» I R(x) N(x) t_lx
R . : 1.3
I N(x)dx

Generalization to higher dimensions is straightforward.

(B) Density of Distribution in the Phase Space
The use of ensembles statistical mechanics is guided by the following
factors:.

1. The aim is to know only the number of systems or elements that
would be found in different states, that is, in different regions of the I'space,
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at any time. All the elements being similar in structure, we need not distin-

guish between them.

2. The number of elements in the ensemble is so large (M — o) that
there is a continuous change in their number in passing from one region of
the phase space to another.

We can, therefore, describe the condition of an ensemble by a density D
with which the phase points are distributed in the I' space. It is called the
distribution function (or density of distribution or probability density).

In an ensemble of systems of f degrees of freedom, D is a function of
2f position and momentum coordinates gy, g, - - -5 4y P1s Pos - - -5 Py Which
correspond to the 2f axes in the phase space. It can also depend on time ¢
explicitly, The reason is that although we are free to fix the distribution at
any given time 7,, we have as yet no assurance for the distribution to remain
same. If it remains same, the particular distribution would be one of equili-
brium. We'shall discuss this later on. Thus, in general,

D D(ql.’ b lq]’pl" ’pf’t)=D(q9P’t) (l 4)
Consider a small region 4 of the I space such that the position coordi-
nates lie between ¢, and ¢, + dg,, ..., q,and gr + dg,, and the momenta
lie between p, and py + dpy, ..., P, and Py + dp,(Fig. 1.5a). The hyper-
volume of this region is .
d_I‘ =dgq, ... dq.dp, ... dp, = dqdp. (1.5)
By the definition of density, the number of systems or elements dM lyinz in
the specified infinitesimal region situated at the phasc pomt Gss -« -y Drat
the instant ¢ is .

dM = D(q, p, t) dT.. - | (1.6)

If M is the total number of elements in the phase space, then at every in-
stant t,

‘M=J"Ddr, N (1.7
where the integration is over the whole phase space. ’

As suggested by (1.3), the ensembIe average of a quantity R(q, p) is
defined by . ,

_ |r@» D@ r.1ar
R= = iz Rap D@D 09

[ p@.p.ar
If a system is selected at random from the ensemble, the probability of

selectmg one whose phase point lies in the small region at the point ¢y, ..., ps
is simply pdI', where

D D I |
R (R , (1.9)
[par # 07 :
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In terms of p (g, p, 1), called the normalized density of distribution,

[ R@.p)etq,p. 1) dg ap
R =

I (g, p, t)dg dp

'=_[de[*. .10)

The ensemble average (1.10) gives the average value of the physical quan-
tity R for the actual system of interest. :

The macroscopic average properties (like N, ¥, E) of a system in thermo-
dypamic equilibrium'do not change with time. Therefore, our ensemble
representing it must be such that the ensemble averages are time independ-
ent. This is a reasonable requirement. It follows that to construct a suit-
able ensemble we should study the behaviour of p (or D) with time.

1.5- LIOUVILLE THEOREM

In 1838, Liouville showed, in another connection, how to use the classical
Hamilton equations of motion,

_9H . 9H . PN
QI_%) ‘Pt— aq." (1_1’2’ '-'rf)r ‘ (1'11)

where H is the Hamiltonian (total energy expressed as a function of ¢’sand
P’s), to obtain a statement about dD/dt. A knowledge of H at every point
in the phase space yields the element of the trajectory passing through the
point, (1.11). The uniqueness theorem for systems of ordinary, nonlinear
differential equations® implies that through every phase point in I' space
there passes one and only one trajectory uniquely determined by (1.11).
Consequently no two trajectories can ever cross-in T space. .
Consider at any point g,, ..., 9y Pys -5 Py situated in the T' space a
small region of hypervolume dT' = dg, ... dq.dp, ... dp,(Fig. 1.5a). At
- any instant, the number dM of phase points in this region is given by (1.6),

dM = D(q,p, t)dyg, ... dpf. (1.12)

This number will, in general, change.with time due to the flow of phase
points. The change will occur when the number of phase points entering
th: hypervolume through any one face is different from the number leaving
th: opposite face. ) .

Let us consider two faces normal to the g, axis with coordinates g, and
g, + dq, (Fig. 1.6). The number of phase points entering the first face
(¢, = constant) in time d¢ is given by . , '

D-(¢ydt)-(dqy |-\, dp, ... dp,),

*R. Courant, Differential and Integral Calculus, (E.J. McShane, transl.), Vol 11,
Blackie, London, 1937, p. 454.
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Py .
§,dt (&,+ﬁadq,)df
P|+dP1 ~ X :
Pip—-—=—-- 1 [
f-da—=
] . 1
i '
[] ]
! 1
| ]
1 1
L 'y B
q q+day G

Fig. 1.6 A fixed volume of (two-dimensional) phase space.

where ¢, is the component of'velocity, in the direction of g, axis, of re-
presentative points at g, ..., p,. The number of phase points leaving the
opposite face (q, + dg, = constant) in time d¢ is

(D 4+ = dq;)-(q'; + 5%‘1 dq,) dt.(dgy ... dg,dp, ... dp,),
after neglectmg the higher differentials. Subtracting_'t_h_e latter expression.

from the former and again neglecting the second order differential, we get
the net number of phase points entering the hypervolume 4T in time dr as

( aq,+a ql) dt dr.
A similar expression exists for the p, coordmate; v
_.( ep‘+a pl) dt dr.
The total rate of change with time in the number of phase points

3 (dM)/0r in region dT' is obtained by summing the net numbers of phase
points entering the hypervolume 'thro-ugh allthe faces labelled by ¢y, . . ., Pr

© 9 (dM) dt = — E[ (aq:+8})l)+(aq' q:+ P:)] drdr. (1.13)

ot el 9q;  opy
From equations of motion (1.11),
- ¥ op _ OH 0 H
o ' op, daiop  opiog;

From (1.12-14), we get for the rate of change of density 8D/0t at the fixed
phase point (g, p) under consideration,

aa._l’)) - 1-1(361 G+ a?tp') ' .13

¥ we taie into consideration the full dependence of the density D (g, p, 1)
on the coordisates, womenta and time, (1.15) can be expressed as

=0 (1.14)
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dD f)D) { dDdg, £ 9Ddp .
2 = i—o. 1.i6
dt (8‘ op  i=10q dt 2y opdt (1.16)
Here dD/dt is the total time derivative of D (g, ..., Py, 1). It gives the rate
of chdnge of D in the neighbourhood of any selected moving phase point
(¢’s and p’s changing), instead of in the neighbourhood of a fixed point in
the I' space. The relation (1.15) or (1.16) is known as Liouville theorem.

Using (1.9), we can write (1.16) as
dpldt = 0. 1.17)

The simplicity of (1.15) -depends on the use of (1.14), which in turn
depends on the choice of conjugate coordinates and momenta for construct-
ing the I space. Use of velocities in place of momenta would have led to
a more complex result.

From (1.16) we note that D can vary with time under two separate
conditions. (1) There is an explicit dependence on time, (3D/3t),, ,- The
density can vary with time at a given point in I' space. (2) There is an
implicit dependence as some or all of the coordinates of the system vary
with time, and the phase point wandersin the I’ space. This implicit depend-
ence of the density in the vicinity of a selected moving phase point is de-
scribed by the two terms under the summation signs in (1.16).

The time rate of change of D due to changes in ¢, alone is given by /
0D/d9g; multiplied by the component of velocity in ¢, direction; that is, by
(@D[0q;) (dgi/dt). If we consider changes in all ¢’s,

é oD dqi _ (8_13)
i 0q dt ot Jpre

where the suffixes suggest that the variation is being considered w1th respect
to g¢. Similarly,

b (i2)

Jma} aPl dt at iNs

and (1.16) can be written as

ap _ (D ) Dy
dar (a’)q’p+ (—6_t-)p,,+(’()—t)q,,—0'

This clearly shows that the total rate of change of density dp/dt in the vicinity
of any selected phase point of a system, as it moves through the T' space, is
zero. Following Gibbs, this is known as the principle of the conservation of
density in phase. 1t implies that the density of a group of phase points remainy
constant along their trajectories in the I' space, that is, it does not disperse.
The distribution of representative points moves in phase space like an in-
compressible fluid.

We can use Liouville theorem to construct distribution functions that
are independent of time. For example, if at any time the phase points are
distributed uniformly in the I' space, they will have uniform deusity for ever.
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As a group of phase points move away from a given region of T space, a
different group would move in, and because they keep the same density, the
density in the given region would not change. Thus there is no crowding -
together of the phase points into some favoured regions of I' space. Later
on we shall construct more useful and realistic stationary distributions.

1.6 CONSERVATION OF EXTENSION IN PHASE

We can use (1.16) to obtain one more important principle of statistical
mechanics. Consider a small region of hypervolume AT in the phase space
which is small enough for the density D (or p) to be taken as uniform
throughout its extension. From (1.12, 16),

AM — DAT,
d‘ﬁf’) dD 7 AT + D d‘“" =D _d——(f). (1.18)

Here AT is the hypervolume of a- closed region bounded by a (2f— 1)-
dimensional hypersurface in a 2f-dimensional phase space (Fig. 1.7). The
phase points lying on this hypersurface form a movable boundary which
changes its shape and moves about in the I' space due to the ‘low’ of the
phase points. The phase points can neither enter nor leave through this
boundary because with every point on each phase line a definite phase velo-
city is associated.

!

(Pl I SPACE

YPER-- .
SURFACE Ar H

u) pit)

qlto), p(te)

{a)
Fig. 1.7 Motion of phase volume in T’ space,

The phase points on the boundary form a kind of continuous skin which
permanently encloses the phase points of the hypervolume AT under con-
sideration. Also, these points can neither be created nor destroyed, because
each point represents a definite element in the ensemble. Consequently, the
number AM of phase points enclosed in the region AT’ must remain con-
stant, d(AM)/dt = 0, and (1.18) becomes

" d(AT
(d, ) 0. ' (1.19)
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This means that the volume AT, or extension-in-phase in I’ space, bounded
by a moving surface and containing a definite number of phase points, does
not change with time in spite of the displacements and distortions. Every
finite arbitrary -extension-in-phase can be regarded as composed of infinit-
esimal parts, and so this result can be generalized. Following Gibbs, the
result expressed in (1.19) is called the principle of conservation of extension-
in-phase. : :

1.7 EQUATION OF MOTION AND LIOUVILLE THEOREM

The Poisson bracket {a, b} is defined by
saddb qa 6b)
L by =2 o — — — ) 1.20)
@8 :2 (aq,- pi 0P oq ~ (1.20)
The canonical equations of motion ¢1.11) and total time derivative dDj/dt
can be written as

. oH - oH )
HY = — = g N _——— = . g .21
{q:, H} 3 = o {pv H} i | (1.21)
dD _ oD~ oD dg; oD dp;
@~ T riga Timar

aD (aD oH oD 6H)‘
]

“ o T \oq % 0y

D -
==+ (D, H). (1f22)

The last result is the equation of motion in terms of Poisson bracket.

The Liouville theorem (1.16), dD/dr = 0, can now be expressed as
212 = — (D, H}. (1 23)

The implicit dependence of D(g, p, t) on time is thus given by the Poisson
bracket. We shall deal only with those ensembles for which D does not
depend on time explicitly, 0D/ot = 0. Therefore, the stationary ensemble
described by D(g, p) or p(g, p) is the same for all times,

dp/ot = 0, {e(g, p), H} = 0. (1.24)
1.8 EQUAL A PRIORI PROBABILITY

In the ensemble we have large number of elements (replicas of the original
system) distributed in different possible (accessible) microscopic states but -
characterized by the same macroscopic variables N, ¥, E. Thisis all the
knowledge we can claim about them. To this extént we have no reason to
prefer one microscopic state over the other.

A fundamental postulate of statistical mechanics is that a macroscopic
system in equilibrium is equally likely to be in any of its accessible micro-
scopic states satisfying the macroscopic eonditions of the system. 1t is called
the postulate of equal a priori probability. We Bave no direct proof for it. It
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is reasonable and does not-contradict any known laws of mechanics, It leads
to results that agree with the observations.

In classical mechanics every poiat in the phase space represents a possi-,
ble microscopic state of the system. Therefore, it is reasonable to say that
the number of states in a given region of phase space is proportional to the
hypervolume dT' = dg, ... dgy dp,...dp, of that region. As classically the
possible states form a continuum, the constant of proportionality cannot be
fixed. (In the quantum theory we can think of the phase space as subdivided
into cells of volume A’ each, where 4 is Planck’s constant. The constant of
proportionality involves / as a result of quantal picture of discrete states).

1.9 STATISTICAL EQUILIBRIUM

A statistical ensemble is defined by the distribution function p which charac-
terizes it. In general, there are seven constant independent additive integrals
of motion in meckanics: the energy, the three components of the moment-
um vector, and the three components of the angular momentum vector.
Usually energy is the only constant known. For a large system the total
momentum and angular momentum have zero value or can be reduced to
zero by a suitable choice of the coordinate system, We shall therefore con-
sider only those ensembles that are functions of the energy and so useful in
thermodynamics. '

The energy E is a constant of the motion for a conservative system. Let
us take p as a function of energy which in turn can be expressed as a func-
tion of ¢ and p, .

e = e(E), (1.25)
% _dp OF % dpo OE
Ga ~ dEdq  Om dEDp (1.26)
The Liouville theorem (1.15) becomes

dp F ' ;
(37 )c,p = aE 53 (\341 31’: p, ) a.27
By hypothesis, E = E(q, p), and dE/dt = 0, so that '
dE 8E . | O0E .\ )
3;'—1(3—%‘1,-1- gp—’i’t)—o- : (1.28)
From (1.27, 28),
op .

(a‘t),, -0, (1.29)
in agreement with the condition (1.24) for the stationary ensemble. Obvi-
ously, for such an ensemble

{p(E),H} = 0. (1.30)

Thus, an ensemble characterized by (1.25) is in sratistical equilibrium.
Such ensembles enable us to apply statistical mechanics to thermodynamxcs
where we are interested in a system for whu:h the total energy H(g, p) =
is conserved,
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E (qy ..., pf) = constant. (l.3i)

Locus of phase points corresponding to (1.31) forms a (2f—1)-dimen-
sional hypersurface, called an energy surface or ergodic surface, in the T
space (Fig. 1.8a). We can imagine a family of such energy surfaces con-
structed in' the I' space (Fig. 1.8b). Each energy surface divides the phase
space in two parts, one of lower and the other of higher energy. Clearly,
two surfaces of constant energy cannot iatersect. '

[P]
CONSTANT £
HYPER- -
SURFACE
PHASE.
LINE l - [q]
(a) (b)

Fig. 1.8 (a) Ergodic surface. (b) Ergodic surfaces in the 2 f-dimensional phase space,

The representative point of a conservative system remains always on the
same ergodic surface. The ensemble for a consetvative system at one time
will populate one such ergodic surface. Values of g, p have not been speci-
fied in (1.29). Therefore, (1.29) will hold good for ahy point in the I’

space. _
1.10 MICROCANONICAL ENSEMBLE

An ensemble defined on the ergodic surface (1.31) satisfies the condition
(1.29) of statistical equilibrium for any p which is a function of energy
alone. A simple choice is

p = constant for E = E,
=0 otherwise. : (1.32)

The ensemble characterized by this density distribution is called the micro-
canonical ensemble, It can also be expressed as (Fig. 1.9a)

p(E) = constant X 8 (E—E). - {1.33)
The 3 is the Dirac delta function with the property

+o0
16y = | 8 =) fx) a, (1,34)

where f(x) is an arbitrary well-behaved function. In particular,
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Fig. 1.9 (a) Density distribution for the microcanonical ensemble. (b) Schematic
lattice representation of the microcanonical ensemble. The shaded walls
are nonconducting for heat and impermeable to all molecules.

+w
J" S (x—x)dx = 1.

Effectively, 8 (x — x') = O except at x = x".

The microcanonical ensemble is appropriate for an isolated system
(N, V, E), because the energy of an isolated system is constant. Schemati-
cally it is shown in Fig. 1.9b. ' :

We cannot specify exactly the energy of a system. However, we can
certainly specify the energy within some narrow range, say, between E
and E + AE. We can then select two neighbouring ergodic surfaces, one at
E and the other at E + AE (Fig. 1.10). The phase point of a conservative .
system remains always on the same ergodic surface. Consequently, phase
points lying within the shell will always remain in it. The microcanonical
ensemble can now be defined as ]

p = constant in the range Eto E + AE
=0 - outside this range. (1.35)

[rl

E +AE

jE

[q]'

Fig. 1.10 The microcanonical ensemble representing an isolated system (gas contained
in a finite volume) with energy between E avd E -+ 'AE. The shaded region
represents the accessible portion of the phase space. It corresponds to- a
uniform distribution of representative points bounded by the ergodic surfaces
of constant energy E and E -+ AFE and the surfaces corresponding to the
physical boundary -of the container,
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i
As p is a function of energy, the microcanonical ensemble is in statistic-
al equilibrium. The characteristic feature of this ensemble is that p is
constant within the energy shell and so the distribution of phase points is
uniform; by Liouville theorem, it remains so always.
For an isolated system in equilibrium, each of the allowed microscopic
states is realized with equal a priori. probability, namely,

p(P) = constant == [ I dI"] 1, (1.36)
E<E (P)<E+4E
where P = (q, p) belongs to the set of phase points within the shell (1.35).
The constant is determined by the normalization condition

J'p dr =1, pdD = probability. 1.3

The microcanonical ensemble, defined by the distribution (1.36), forms
the basis for statistical mechanics.

If some physical quantity R is measured relating to an isolated system,
the distribution of our observations will follow a curve of the type shown
in Fig. 1.11. We claim that the sharp maximum of the curve will fall at the
ensemble average R, that is,

R 2 R = [ RP) o(P) dr, (1.38)

where p(P) is given by (1.36). The system of interest spends most of its
time in the region of I' space for which R o< R. This illustrates an import-
ant feature of statistical mechanics. It is assumed that the time interval
between two successive observations is longer than the time required for a
fluctuation in the properties of the system to die out (relaxation time).

R

NUMBER OF
OBSERVATIONS

R R
Fig. 1,11  Expected disgribution of observations of the physical quantity R.
1,11 IDEAL GAS

To illustrate the use of microcanonical ensemble let us consider an jdeal
gas. It is a system of N neninteracting point particles of equal mass enclos-
ed in a cubical box of side length L with perfectly elastic walls. Let the
edges form the rectangular coordinate axes x,, X3, ¥
Suppose the ith particle has py, pg, pw as the three componpents of
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momentum. The pressure P, exerted by the molecules on the wall normal
to the x, axis is )3 p/mL>.

We construct a microcanonical ensemblé and calculate the ensemble

average P,, _
l N
: —— | T pyedl
?,=’"LJ"" . O 1.39)
I pdll .

where dT" = dg dp and p = constant in the region of phase space specified
by E<3 P}2m < E + A E. We can put the average of %"p},, }': 2oy
n~ i

as equal to each other. Then P, = P, = P, = P and (1.39) gives

[ (% . J‘ '
P= [3mVI bR d".d”]/ 9 &, (1.40)
.where V = L8
In the limit AE - 0, we can replace ? P! by the constant factor 2mE to
get
. 2.
PV =3E. (1.41)

The ideal gas law is PV = nRT = NkT where n is the number of moles
of gas, R the gas constant for one ' mole, N the number of molecules, & the
Boltzmann constant, and T the absolute temperature. Comparing it with
(1.41), we obtain

=3mr. (1.42)

This result is expected from heat. capacity determinations.

PROBLEMS

1.1 A system can with equal probability be in any of its N states. What
" is the probability of the system being in one of its states?

1.2 A two-dimensional vector A of given length 4 = | A | is equally
likely to point in any direction specified by the angle 8 from the x-axis,
Show that the probability that the x component of this vector lies
betweer 4, and A, + dA, is (dAs/r) (4 — AN/ for —A< A< 4.

1.3 A simple pendulum .oscillates according to & = 6, cos (2=/T)s,
T = 2x (1/g)'2. Show that the probability that in a random measure-
ment the angle of deviation is between 0 and 6 + d@ is (db/x)
(63 — 6n)-1, '

1.4 Show that for a random variable x, the probability of an event in
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which x becomes greater than a given value 4 satisfies the inequality
P (x> 4) < x?42

1.5 A particle initially at origin jumps by one unit to the right or left,
with probability 3. In } (e + e*), — = < ¢ < =, we caninterpret
the coeflicient of e’# as the probability for moving one step to the right,
and of e~ for the left. Find the probability P,(/) that after n steps
the particle will be at the point ! of the one-dimensional grating.

1.6 By analogy with Prob. 1.5, find P,(/) of a similar random walk on a
two-dimensional square and a three-dimensional cubic grating.

1.7 Convert I =” (%, ¥) dxdy, for a given region of integration, to an

integration in the u-v space, assuming a one-to-one relationship be-
tween the points (x, y) and the points («, v) given by x = x(#, y)and
¥y = y(u, v).

1.8 In a one-dimensional box of length 24, a particle with constant velo-
city is mirror-reflected at the ends. Draw its phase trajectory.

1.9 A particle of mass m moves vertically upward with an initial velocity
vo in a constant gravitation field from point z,. Find the phase traj-
ectory.

1.10 Find the phase trajectory for an oscillator, with a small friction,

R+ %+ 0fx =0, 0, = (klm)'® » v.
What is the change in the phase volume with time?

1.11 For a simple pendulum E = (p3/2mi®)—mgl cos 0. Draw the phase
space orbits when (i) |0 | < cos! (—E/mgl), (i) E=mgl, and
(iii) E > mgl.

1.12 Verify Liouville’s theorem for:

(a) an elastic impact between two spheres moving along a line; (b) the
motion of three particles in a constant gravitational field with initial
phase points 4(zy, Po), B(zo + a, Po)s C(Zos po + b)-

1.13 Apply Liouville’s theorem to a fully nonelastic collision between two
spheres.

1.14 In general, p = constant for all points in phase space which corres-
pond to given constant values of the energy (E,), momentum (P,)
and angular momentum (M,) of the system, and p = 0 at all other
points, defines a microcanonical distribution. Show that the points
defined by

E(q’ P) = Em P(q» P) = Po: M(q’ .p) = Mo
form a manifold of only 2f—7 dimensions and not 2f dimensions
like the phase volume. Does this create any problem? If yes, how can
you resolve it ? -

1.15 How can we exclude the momentum and angular momentum from
the definition of p? What is the remaining integral of the motion?

1.16 Show that the ergodic surfaces are ellipses in the phase space of a
linear oscillator of frequency v. Find the phase space volume enclosed
by an ergodic surface in terms of energy and frequency.
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1.17 Use the canonical transformation mY* g = Q, m~8 p = P, pdq—.
P30 = 0, to express the Hamiltonian for the linear oscillator in a
form which does not contain the mass m. Discuss the effect of this
transformation on the ergodic surface and on the phase volume.

1.18 A particle of mass i moves in a box with walls at x = O and x = L,
Plot the trajectory of the particle in the phase space. Calculate the
phase space volume I'(E) with energy less than E. Show that I'(E)
does not change as the wall at x = L is slowly moved.



. 2
QUANTUM PICTURE

2.1 MICROCANONICAL ENSEMBLE

The correct description of any system, small or large, is provided by quantum
mechanics. The classical statistical mechanics is useful only as a certain
approximation to quantum statistical mechanics. We had to use the method
of classical statistical mechanics' due to the complexity of the problem
(N ~ 10%). We now have another reason to use the method of statistical
mechanics ‘arising from the uncertainty principle of Heisenberg. According
to it we cannot simultaneously measure exactly both the position and the
conjugate momentum coordinates of a particle, needed for the classical
description. Therefore, no single microscopic state of any system can be found
from measurement. We must then use the method based on probabilities
and averages.

Due to the uncertainty principle, the notion of the classical phase space
cannot be used as such in the quantum statistical mechanics. ‘

In quantum statistical mechanics, a microscopic state is defined in a
quantum mechanical sense. In particular, a stationary system of N particles
in volume V can be in any one of the quantum states determined by the
Schrodinger eigenvalue equation

Ay (@) = Bt (gD, e

where H,, is the Hamiltonian operator of the N-particle system, ¢, (Ig}) is
the wave function for the entire system in the quantum state i, and E; the
energy of the quantum state i’ The set of microscopic states in quantum
statistical mechanics is thus a discrete denumerable set {i} of quantum states
denoted by the quantum number . If we know N and ¥, we can always,
in principle, solve (2.1) and knowsthe allowed quantpm.states (accessible
microscopic states) . The system must be in one or another of these states,

We can construct mentally an ensemble to represent what we know about
the physical system of interest. Each element of the ensemble can be in one
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of the discrete quantum states allowed by the system. The probability P,
of finding an element in the state i is determined in such a way as to reflect
the'initial information (like energy) on the system of interest.

The number of different quantum states which have a given energy is
called the degeneracy g of the energy level. The word level’ will always con-
note the value of the energy for-one or more states. Thus, energy levels can
have degeneracies while quantum states do not.

A basic assumption of equilibrium statistical mechanics is that the
probability P; of the ith N-particle quantum state being occupled is a func-
tion of E; only, (1.25),

Py = Py (Ey). 2.2)
Further, all quantum states with the same energy (say E; = E; = E; = E;
== E)have the same probability (P, = Py = Py = P; = P(E)). The probabili-
ties of all degenerate quantum states in one level are equal. We can say that
in a state of macroscopic equilibrium, all stationary quantum states of equal
energy have equal a priori probability. This replaces the familiar hypothesis
of equal a priori probability of microscopic state in the classwa] phase
space.

For an isolated system the energy Egygem is constant. The P, should
then depend on i such that zero probability is assigned to all states 7 unless
E; = Egysiem. If Q is the degeneracy of the energy level Egygem then these
states arc the only ones which are represented in the ensemble. Each such
state has equal probability,

Py = constant = a, (E; = Egstem) 2.3
SP=3%a=ga=1 g=Q(&EV,N). 2.4
i=1 jm=1 . :

This defines the microcanonical ensemble with probability distribution
{I/Q E; = Egystem
' =

0 EI ?l-' Elystam (2'5)
where Q@ = Q (Egysiems ¥, N) and Egyger is well determined so as to lie be-
tween E and E 4 AE. One should regard AE as large compared with the
Heisenberg uncertainty 8E ~ #/3t, where 8¢ is the time avaxlable for obser-
vation, and /4 is Planck constant.

Note that as the energy of a macroscopic system increases, the degener-
acies of the different energy levels increase rapidly. Thus, the larger the system
energy, the more quantum states are available to the system and the smaller
the probability of any one state being occupied, as it should be (Fig. 2.1).

2.2 QUANTIZATION OF PHASE SPACE

Due to uncertamty principle, _

3x3p; ~ h, (2.6)
the classical states in a cell of size & per degree of freedom, or 4/ per f
degrees of freedom, in the phase space, merge into a single quantum
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]
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{a)
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n, bo————c
3
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¢ Egystem Ej

{b} :

Fig- 2.1 (a) The microcanenical distribation shewing P; as a function of energy E;
of state /. Here £, = €2 system. (b) A typical variation of degeneracy
£2; of the energy level ; as & function of energy ;.

state. Within such a cell the states cannot be further differentiated. If we
think of the phase space as divided into cells, each of size &, then the set
of microscopic states contained in & volume element Al corresponds to a

set of ,
AL 2.7

guantume states. As k has a small value, (b = 6.626 10~3¢ Js), this corres-

pondence is a good approximation. Im this sense, a discrete quantum state

occupies a volume equal to &' in the ‘cellular’ guantum mechanical phase
space. This resuit of comverting continuous classical phase space into a
‘celiular” one was propesed by Planck in cobnection with his work on the
backbedy radiation.
As a simple illustration, consider 2 particic enclosed in a three-dimen-
sional cubical box of size L (F — L3). We have
By 91 (9) = & b (@), Finy = p2m = — (%/87°m) %,
@ (@) = dumy e = Yimy Yooy Ying »
= A4 sin %y . HByBXy . HgRXy
A sin T sin I sim Y
and the enesgy levels are
. '3
By, By By = L 2,3,.. 2.8}
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In the (n,, ny, ng)-space each lattice point, whose coordinates are all posit-
ive integers, corresponds to a quantum state (eigenstate). Therefore, for
large n (Bohr’s correspondence principle) we can write (Fig. 2.2)

n3

Fig. 2.2 Lattice points for the combinations of integers n,, n,, ng.

4 . 4 L
3T T3TE
because classically the volume in the I' space is given by

o @= [ exap=r [dp =1 §rimen. @.10)
P 2me
The Q (e,) is the number of microstates or I'-cells which are accessible to
the system.

Because any combination of three integers (n,, ng, n,) gives only one
number n® = n3 + nh + ni, fora given ¢, (or n) there correspond several
states Qny, ny, nye Thus the six states ¢y, g, 35 Yo 15 25 Vas 2215 Voo 10 25 P 0020 Y1 202
belong to the same energy level (degeneracy). The degree of degeneracy
grows with n, that is, with energy. If we consider a thin energy shell of
average energy e, in the accessible I' space, then we imagine that all quant-
um cells corresponding to the degeneracy of the energy level ¢, have been
included. .

The difference between (2.1) and (2.8) is important. The wave function
§; in (2.8) describes a single particle in the ith particle quantum state. The
¢; is a function of the coordinates of one particle. The energy eigenvalue is
the energy of a single particle when it is in the particle quantum state i.

An ideal gas is one in which there is no interaction between the particles.
Each particle is described quantam mechanically as if it is alone in the box.
EBach particle then is in one of the accessible single particle quantum states
given by (2.8).

For a macroscopic system we can apply the classical equations of motion
in view of Bohr’s correspondence principle. Thus, Liouville’s theorem will
again hold. In the classical limit, we replace P, in (2.3) by a probability
density p. '

Q () = %- Qe ¥t = ‘Lh(jz) , C@.9)
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23 BASIC POSTULATES

Let ¥, be the state function of the nth element in an arbitrary ensemble 4.
The expectation value of the energy is the quantum-mechanical average of

the Hamiltonian operator
Hoa= [ ¥ BY.dg=Ca | HI ¥, (Fn| T>=om @11
‘where Smp is the Kronecker delta. The ensemble average is
e 1 M 1 M A : :
= — = = . 2.12
<H>A M El <H>'l M;El <‘F'l lHl Tn) ( )

In the ideal (microcanonical) ensemble I, representing an isolated system
in equilibrium, the elements are all in one of the energy eigenstates i,

Hy=Ed,  dn=lip @
Therefore, in this énsemble

<H>I = '_ 2 <‘p’n l Hl ‘plu)

) .
= 2.14
M..El E, » ):P,E,, 2.19)

where P, is the probability that an element in ensemble / is in the state {;.
Note that (2.14) is also the definition of quantum mechanical average. Thus,
for an isolated system in equilibrium (pure case) the ensemble average gives
nothing new. This situation has no classical analogue because in spite of
the maximal knowledge given by the wave function we must use an averag-
ing process prescribed by quantum mechanics itself.

~ We can expand ¥, for the arbitrary ensemble as

¥, = 12 Gy W > = 3. 2.15)

This would be so if the system of interest interacts, however weakly, with
the surroundings. The system would not be in a stationary state (mixed
case). Its state is a superposition of pure states, (2.13). Then we do not
possess such complete knowledge, as in the pure case, about the quantum
mechanical description of the system. There may exist many wave functions
compatible with the incomplete information about the system. The effect of
these must be su_itably averaged (ensemble average). In this case

i =g & G awty | H1 3 e >

i
M,

IMR "

?a:j an; E;. (2.16)

) 1
If we choose

1 M —_—
Pr=1q; Z 0o =audu .19
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we get CH)p = CH)y. _
Let us find the expectation value of some observable R such that
Rép=Rid, <(léd=38. (2.18)
We can write
b = ?bu b Y= ? cn b1 @19

The quantity | ¢; [* = cfi ¢ gives the probability that if the element is in
the state ¢, 2 measurement of R will give the value R corresponding to the
eigenfunction ¢;. Now

i = g ECH I RITD= 5 % Ul Rt

1
=M-§ ? zc:,k(¢1|R|¢k>
1 M '
= E’EI chi Cipi R) = ‘ZPI ? (c".'l Cu) R;, (2'20)
—_— 1 M
Toa=3; 3 B2as am <y | R 00>
1 M .. A
=ﬂ'.§1 f{ ? Ea,,j Qnk Cj1 Ckm <¢l I R I¢"'>
1M .
= A—“zl ?21‘ 21 ah; Gk Gt € Ry (1—§1k)
' 1 M » .
+ M "2_1 2} zk 2’ Az Gk Cfi Cut R, 3. (2.21)

The last term in (2.21) is just (R);. Therefore, the condition for (R)4 = (R},
is that the first term on the right side in the last step of (2.21) vanishes. A
sufficient condition for this is

M .
H n§1 a:; Qnk (l —_— 8jk) =0 (2-22) )
or, with a,; = rs; exp (i6,)),
1 M . .
37 .2, 72 ok B [ Guk=0u)] (1=3) = 0. 2.23)

We have no information on the phases 0, because the measurable quantity
in quantum mechanics is ¥'5 ¥, and not ¥,. The condition (2.23) will hold
if the phase angles 9,; are completely random over the ensemble 4. Thus the
arbitrary ensemble 4 will show the statistical behaviour of the ideal ensem-
ble 1 if we postulate random phases. This hypothesis is known as the postulate
of random phases. It is needed for real physical systems that interact, how-
ever weakly, with the surroundings. _
We can now state the postulates of statistical mechanics as follows;
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Postulate of Equal a priori Probabilities

1/Q E < E;y< E+ AE
Py = an an = 2.29)
0 otherwise
Postalate of Random Phases
a:jank = 0) j #* kr (2'25)

where bar denotes the ensemble average. The constant 1/Q follows from the
normalization 2 a} a, = 1. For the mixed case we need both the quantum
'

mechanical and the ensemble average. For the microcanonical ensemble
only (2.24) is required.

We need (2.25) for systems interacting with surroundings (say, the can-
onical ensemble to be discussed later). It ensures that the relevant probab-
ility amplitudes do not interfere. We have an incoherent superposition of
states. In the absence of interference, we can assume that me elements are
in definite energy eigenstates.

In the classical limits, under Bohr’s correspondence principle, it is found
that these allowed eigenstates divide the phase space into cells of equal size,
(2.7). We can then replace the eigenstates by equal regions in phase space.
These equal regions in phase space are assigned equal a priori probabilities.
In the classical case there is no analogue to the postulate of random phases
because unknown phases arise solely in connection with the quantum
mechanical description in terms of the wave functions that are determined
only within a phase factor.

For the purpose of calculations we now formulate the statistical hypo-
thesis in terms of the following postulates:

(1) Postulate of Ensemble Average: The average behaviour of a
macroscopic system in equilibrium is given by the average taken over a suit-
able ensemble consisting of an infinite number of randomlzed mental copies
of the system of interest. .

€2) Postulate of Equal a priori Probabilities: Ina state of macroscopic
equilibrium, all stationary quantum states of equal energy have equal a
priori probability. (This statement is devoted to the microcanonical ensem-
ble). :

(3) Postulate of Equilibrium State: Equilibrium state is the one which
cccupies the maximum volume in I' space (classical or-“cellular’ quantal).

Some implications of these postulates are:

(a) The method of calculation is statistical in nature.

(b) The predictions are to be regarded as true on the average rather
than precisely expected for any particular system, Rops = R.

{c) The probability of fiuding a system in a given state being propor-
tional to the phase space volume associated with it, the most probable state
would be one which occupies the maximum volume in phase space. It follows
that the equilibrium state is the state of maximum probability,
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Note that, in (2.24), Q = Q (N, ¥, and E given) is the number of acces-
sible quantum states (degeneracy associated with the energy level E) for an
isolated system in equilibrium and P; is a function of quantum numbers.
The value of E is one of the energy levels of the quantum mechanical system
defined by N and V. Because V¥ and N are very large, the energy levels for
such a macroscopic system will be so close together as to form almost a
continuum of states, and moreover, each of these levels will have an extremely
high degeneracy. This degeneracy increases with energy, (2.9).

24 CLASSICAL LIMIT

In classical mechanics we can specify simultaneously both ¢, and p; for a

particle. In quantum mechanics the uncertainty principle prevents this. A

classical description is a reasonable approximation only when the effect of
h is negligible, that is, _

3g3p » h. (2.26)

Consider the motion of a molecule in a gas. If p,y denotes its mean mo-

mentum and 7,y its mean separation from other identical molecules, then a
classical description is valid when

Iav Pav » 4, 2.27)
or, using the de Broglie wavelength, p = h/A, when
Fav 3 Aavs (classical limit). (2.28)

Since A,y is a measure of the spread of molecule in space, it means that
when (2.28) holds the molecular wave functions do not overlap and there-
fore they are distinguished by their position.

Suppose the gas contains N identical particles in a volume V. Let the N
one-particle wave functions for the NV particles be

Bal1), 962, ..y G, 2.29)
where /;(1) means particle 1 is in state ‘a. Their ‘product gives the wave
function for the total system

¥(1,2, ..., N) = ¢u(1) $6(2) ... $:(N). (2.30)
When (2.28) holds, the individual wave functions ¢u(1), ¢s(2), ... do not

overlap appreciably, and an exchange of partlcles (say, I and 2) in (2.30)
produces a new state,
¥(1, 2, ooy N) = $u(2) $a(1) ... UiN). (2.31
In the familiar classical language a new microscopic state results and the
phase point is shifted from one cell in the T space to another. In all we get
N! product type wave functions for the N! possible permutations of the
particles among the one-particle wave functions. Thus, the particles are
distinguishable and classical statistics is valid.
If
Tav << Aavs (quantum limit), 2.32)
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then the one-particle wave functions overlap. A given particle in the gas
cannot be localized. The state of the whole gas is described by a single
wave function¥(l, 2, ..., N) which cannot be decomposed in any meaning-
ful simple way. Thus, the particles are indistinguishable and quantum statis-
- tics must be employed.
To give a physical content to (2.28), we imagine that each particle
occupies a tiny cube of side r,y and theése cubes fill the volume ¥,

AN=V, ry=(V/IN} (2.33)

If we anticipate and relate the temperature 7" with the average energy ¢ by
Pl2m s T =3 KT,  puy o (3mkTPH,

where k is the Boltzmann constant, then

Aav o2 hJ(3mkTY2, (2.34)
Therefore, the condition (2. 28) becomes
(VINY® > hi(3mkT)y2,  (classical limit). (2.35).

This means that the classical description is valid when

(i) N is small (dilute gas),

(ii) T is large, and

(iii) m is not too small. (2.36)

As an example of classical particles, consider the molecules in a gas ‘at
NTP. The molecular density is 10'® mol/cm3, and so the volume avaijlable
to each molecule is 10~1* cm?, If the molecular radius is taken to be of the
order of 10-® cm, the molecular volume is about. 10-2 cm3. The molecule
being much smaller than the volume available to it, we can, in principle,
identify each molecule in the gas. Therefore, the molecules are localized
and distinguishable.

As an example of quantum particles, consider the conduction electrons
in a metal. The density of electrons is of the order of 1022 per cm® The
volume available to each electron is 10—22 cm®. For a 1 eV electron the mo-
mentum is px = (2mE)'2 = 0.5 x 10~ erg. s. cm-1. The corresponding
de Broglic wavelength is 4/px = 13 X 10-8 cm. So the volume of conduc-
tion electron is about 2 x 102! cm®, which is larger than the volume avail-
able to the electron (10-22 cm®). Hence the electron wave functions overlap
considerably. We cannot localize the electrons, they are indistinguishable,
and quantum statistics must be applied.

2.5 SYMMETRY OF WAVE FUNCTIONS

For simplicity, first consider a two-partlcle system described by the wave.
function ¥(1,2). We have seen that in the quantum region, unlike the clas- -
sical region, it is not possible to distinguish between identical particles. To

state this in a formal way we introduce the permutation operator P,,, whlch
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acting on a state, interchanges all coordinates of particles 1 and 2,
B, ¥(1,2) = ¥(2,1). (2.37)

If identical particles are indistinguishable, the interchange (2.37) should
not produce any observable effect. This would be so if the wave function
changes at most by a phase factor n which leaves ¥*¥" unchanged,

Ppaw(1,2) = ¥(2, 1) = e ¥(1, 2). : (2.38)
If the mterchange is repeated, the original wave function must be obtained,

BP(, 2) = Py ¥, 1) =¥(1,2) = ¥(1,2). (2.39)
Thus
e =1,ore" =4 1, (2.40)

¥(1,2) = ¥(2, 1), (symmetric), 2.4))
¥(l,2) = — W2, 1), (antisymmetric). (2.42)

It is a law of nature that the symmetry or antisymmetry under theinter-
change of two particles is a property of the particles themselves. Pauli first
" stated this law as follows:

1. Systems consisting of identical particles of integral spin, 0, 1h,
24, .., are described by symmetric wave functions, ¥,

2. Systems consisting of identical particles of half-odd-integral spin,
ih, 3, 51, ..., are described by antisymmetric wave functions, ‘¥4,

Particles of type (1) are called bosons and obey Bose-Einstein statistics.
Particles of type (2) are called fermions and cbey Fermi-Dirac statistics.
Thus there is a deep lying connection between spin and quantum statistics.
Examples of bosons are photon, = meson, 4He atom, etc. Examples of
fermions are neutrino, electron, proton, *He atom, etc.

The simple product type wave function (2.30), sufficient for classical
statistics, must now be properly symmetrized in quantum statistics. For the
two-particle system,

W(1,2) = bo(l) $6(2), - (classical), (2.43)
Y& (1, 2) = 2718 [{,(1) s(2) + %(2) $(D] = ¥ (2, 1), (Bose- -Einstein),
2.44)

YU (1, 2) = 2792 [§o(1) $(2) — dul2) d(D)]
RS ¢.,(2)'
‘/2 W) d(2)

Two fermions (like, electrons) cannot be in the same state, @ = b, because
then ¥4 (1, 2) vanishes, (2.45). This is trye for a system of NV fermions as
well. Then (2.45) has the form of the Slater determinant,

Gall) $a2) o BalV)
Y (1, 2, ...,N)=(—N!l)l,—, W @ e W) (2.46)
P WD L )

= — ¥ (2, 1), (Fermi-Dirac). (2.45)
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where 1/(N1)¥2 is the normalization factor. The interchange of two particles
involves the interchange of two columns in the detérminant. This changes
the sign of the determinant. If we attempt to put two fermions in the same
state, then the determinant vanishes. Thus two otherwise noninteracting
fermions appear to stay away from one another because of the requirement
of antisymmetry.

The statement that no two fermions can be in the same quantum state is
called the Pauli exclusion principle. If we have discrete states labelled by
$a, s Pr, ... then for fermions the occupation number n, of electrons in
any state is

n, = 0,1, (allr, for fermions). 2.47
For bosons there is no resiriction on the occupation numbers,

n=20,123,..  (all r, for bosons). (2.48)
2.6 EFFECT OF SYMMETRY ON COUNTING

We can associate a definite number g; of elementary cells, or single-particle
wave functions, with the same energy eigenvalue ¢, where g; is the degeneracy
of the energy state ;. For the non-degenerate case g;=1. By hypothesis, every
quantum state has an equal a priori probability. Therefore, gy is also called
the statistical weight of the concerned energy state or level.

Maxwell-Boltzmann (MB) Statistics
In the classical limit (2.28) the N particles are distinguishable, there are
no symmetry restrictions on ¥, and any combination of the {’s such as

v (1, 2, eeey N) = q"a(ql.) q’b(ql) see ‘Pz (qN) (2‘49)
is a possible state. The distinguishability of particles means that any inter-
change of particles among the occupied states ¢y, ¢, ..., leads to a new state
for the system, without a change in total system energy. '

To include degeneracy, we divide the {’s into the groups 1,2, ..., 7, ..., k,
with respective energies ¢, €, -+, €, ... €, SO that the energy cigenvalues
for all the {’s in the ith group lie between ¢; and ¢ -+ de;. We assume that
the number of such {'s is g,. Each g; is assumed to be large, but its exact
value is unimportant. .

For the particular macroscopic state or macrostate {n;} (m particles in
the energy region corresponding to the group i) the number of microscopic
states or microstates is

N!
3

II !
=1

Q{n} = (2.50)

This number is_ obtained by counting the different possible ways of arrang-
ing N distinguishable objects, so that there are n, in the first group, n, in
the second group, and so on. We can arrange N objects in N different ways.
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However, the permutation of 1, objects among themselves in group 1, etc.,
will not alter the groupings. We now wish to calculate the number of ¥’s
corresponding to this distribution. We denote this number by Q {g;, #;}. The
number of ¢’s or states is g; in the ith group (level). Among the n; particles
in this group, the first can occupy these states g; ways. The second and also
the subsequent ones can occupy these states g; ways, because there is no
restriction on the number of particles that can occupy a given . Therefore,
there are (g;)" different ways, each corresponding to a new ¥, in which #
particles can occupy the g, states. This gives for the k possible groups of
eigenstates,

o k(gD .
Q {gi’ ng} = N! l£I1 (W), (2.51)

where ny + ny 4 ... + m = N. Note that N is a constant number.

Bose-Einstein (BE) Statistics

Consider a system containing N indistinguishable bosons. The total wave
function ¥ (1, 2, ..., N) must be symmetrical with respect to the interchange
of two particles. A symmetric wave function can be represented by the
linear combination

¥ () = b [¥a (90 s (92)---9: (a)); 2.52)

where v is the number of binary permutations in the permutation P, ,
There is no restriction on the number of particles which can coexist
in a given state ¢, (2.48). The number of ways of distributing #, bosons
among the g; states of energy ¢ can be obtained as follows (Appendix I).
The problem is equivalent to that of distributing n; white balls among g;
labelled cells. A particular distribution (2 particles in cell 1, 1 in cell 2, 0 in
cell 3,4incell4, 1incell 5,...) can be represented as shown in Fig. 2.3. A cell
may be empty or may even contain all the particles. As is obvious from the

c0o0e® o @ 00D O- @ ¢ oane o

Fig. 2.3 Counting for the Bose-Einstein statistics. (O particles, @ dividing walls.

figure, we can get the desired number by finding the number of permuta-
tions of arranging in a row the n; white balls (representing the particles)
together with g;—1 black balls (representing the dividing walls). If we
label all the balls irrespective of their colour with the numbers 1, 2, ...,
n; + gi—1, the number of permutations is (n; + g1—1)t For each distinct
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distribution there are n;} permutations of the white balls among themselves

and (g;—1)! permutations of the black balls among themselves, which do
not change the distribution (2 particles in cell 1, 1 in cell 2, 0 in cell 3, 4
in cell 4, 1 in cell 5, ...). Therefore, the number of distinct distributions of
‘the bosons for state of energy ¢ is

©_ i+ a—D _(u+e)h 2
@ mT@—Dr = mig! * @.33)

remembermg thatg; > 1.
The bosons being indistinguishable, the total number of dlstnbutlons

of the N particles in the system among the k possible groups of eigenstates

is

i + gi— Dl

i=1 nl @@= ° (BE).  (2.54)

s {g,, n} =

Fermi-Dirac (FD) Statistics
The antisymmetric wave function (2. 46) can be expressed as

) = ?( 19 Py [$a () ¥ (99)---9: (aw)) (2'_55)

The occupation number for fermions is 0 or 1, (2.47). Therefore, we must
have n; < g, in the ith group.of states with energy ;. The number of distri-
butions in this case is bound to be different from (2.54) because we must
exclude in our counting all those states where the occupation number
exceeds 1. We, therefore, expect Q) & QG for any s1tuatlon in which
n< g

If we place n; particles among g; states, the first particle has a choice of
g states, the second has a choice of (g—1) states, because of the Pauli
exclusion principle, and so on. The total number of arrangements for the
ith group of states, takmg into account the indistinguishability of »; fer-
mions, is

g(g=1)..@—m+1)_ __ &l
! O miG—m)!

" The total number of arrangements for the k groups of energy states is
the product of individual arrangements,

k g,l .
Q(A) {g,, n‘} — r!(g-'—_n—’)!, (FD). (2. 56)

It is useful to compare Q, O and Q. For simplicity we take N =3,
k=2n =2,ine, n,=1ine, g =2,and g = 1. Then

&i! - o
o0 =N gt~ zor o= - P

— (ni +gl—])' —_ i_ l_!_._
Q® =T =t ~ 2y o= > BB
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gy 2811
[ ) L.
Q= Nl?,,l 3'2|10

where the particles are distinguishable in the last case (MB).

12,  (MB), @

2.7 VARIOUS DISTRIBUTIONS USING MICROCANONICAL
ENSEMBLE (IDEAL GASES)

The simplest system is of N identical noninteracting particles occupying a.
volume V. We have three cases: the ideal Boltzmann gas (classical gas), the
ideal Bose gas, and the ideal Fermi gas. We can represent such a system by
a microcanonical ensemble.

The postulate of cqual a priori probabilities, . applicable to the micro-
canonical ensemble, enables us to express the probability W of a particular
macrostate {n;} to occur as proportional to Q {g;, n;}, '

lf'CzT«’z I (g fmt)s (MB),
|LC511) ri[gt !Yn;! (gi-;":)!) (FD),

where C~Us are the constants of proportionality. Instead of maximizing
W, it is easier to maximize In W. Neglecting 1 compared to g;, taking the
logarithm and using the Stirling approximation In n! ~ n In n—n,

(2 n;In g—2 In m!—In Cys,
lnW = {l Sl + g—1D—Zlan!—In(g—1)!—In Cpe,
ILE Ing!—2lnn!—2In (&1—m)!—la Crp,
2, (In gg—In m)—constant, . . . (MB),
= { T[(m+ &) In(m+ g)—n lnn—g; In g;—constant, (BE),

2 [g11n g;—m 1n m—(gy—ny) In (gi—n;)—constant. (FD).
' 2.59)
The function In W can be approximately taken to be continuous, so that
—3 (In g—In ny—1) 3ny, (MB),
—3lnW=<Z{—In(@m+g)+ lan]dn, (BE), (2.60)
'LE (ln m—1n (g—n)) 3ny, - (FD).

The macroscopic conditions for the system (N, ¥, E) are the same in
ﬂu CASCS,
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k
N=32n, 3N= ?8)11 =0, 2.61)
. i=1 : : :

. k N '
E= 2 n ¢, 3E = 2 € 3ny = 0, (2.62)

The variation in In W for the maximum value is taken subject to these two
conditions,

S(lam—Ing; + « 4 Be) 3my, (MB),
0=4 []Il n—In(m+8) + «+ Be] 3ny, (BE), (2.63)
Z(lnm—In(g—n) + a + Be], 3n,  (FD),

where «, B are the Lagrange" multipliers which make the variaﬁons any
independent. Each term in the brackets must be zero. They give the most
probable distributions as

M= g 4o, (MB), (2.64)

Ay = (BE), " (2.65)

e¢+m 1

g . .
By = e“""_ﬂ"'-n’ (FD). (2.66)
The « is determined by the normalization condition (2.61), N = 2 M, or
from (2.64) for an ideal Boltzmann gas,

Net = 2 gie—b = 2 exp (—pp,’ [2m) (2.67)
=5 e (—tp¥12m) dmptdp = S (;fm "

The B should be determined from the relation (2. 62), E= 2 # ¢, which

cannot be solved expllcntly In the next chapter we shall show that B=1/kT.
Note that #,/g; is the fraction of the g, states that are oecupled There-
fore, the quantity

Re) = Aig, . (2.68)-

is called the occupation index for the states of energy €.
In the limit g; > »;,

&! < &i(g—D..(z—m + 1)
nl(g—n)l . myl slightly < !
o+ g—D!_ (m+gi—1)...(8 + l) (2) g
nl(g—1) nl Shshdy > n ml

'I'hereere. (2.57) gives
A Qpp o Qpg o ‘}Vl v (8> n) - (2.69)
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or for the distributions

#i rp, B pg —> 71 MB

& g S &
e eFi + 1’ & efii—1 > o oper? (& > ). (2.70)

This implies that when the number of quantum states in a level is much
greater than the number of indistinguishable particles (bosons or fermions)
in that level, g, > n;, we can safely use the MB distribution. Thus the
classical limit is reached when

g>m foralli, @.7)
emeB B 1, oret= V/N > 1 : 2.72)

For the MB distribution A/, = e~(«/=«/kT, where the suffix 0 refers to
the lowest level and we have taken gi/g, = 1. For kT = 4 x 1021 J,
corresponding to room temperature T = 300 K, we get

a—ed) 0 10 10 10~
Ml 1 08 0.1 4 x 10~

It means that energy levels lying higher than about 10 X7 above the ground
state are occupied to a negligible degree.

We have derived the quantum distributions (2.65, 66) by using the
method of the most probable distribution. This is not entirely satisfactory
because of the use of Stirling approximation which requires both g; and
gi—m to be large quantities in going from (2.59) to (2.60). The main
objection is that for the FD case when e* ef¢i € 1, we have # =~ g in
(2.66). This contradicts the assumption that (g;—n;) is large. It is
desirable, therefore, to derive these results in a rigorous way by using the
method based on the canonical and grand canonical partition functions (to
be discussed later). The method of Darwin and Fowler also avoids the use
of the Stirling approximation but will not be discussed here.

PROBLEMS

2.1 Calculate the de Broglie wavelength of (i) an electron with kinetic
energy 2.5x 10-10 ergs ~ 160 eV, (ii) for neutrons with kinetic energy
1.3 10772 ergs =~ 0.08 eV, and (iii) a droplet, 0.1 mm insize, moving
with a velocity of 10 cm/s. Discuss your results.

2.2 Show that for an electron me? o= 0.51 MeV, W/me ~ 39X 10-“ cm,
and Nmc? ~ 1.3x10-2 s, where h = h/2x, _

2.3 Calculate the velocity of a particle due to the uncertamty principle
(i) when it is an electron with Ax ~ lA and (u) a pnece -of chalk of
mass 1 gm with Ax ~ 0.1 mm,

2.4 An operator whose expectation value for all adnussnblc wave functlons
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is real is known as a hermitian opcrator. Show that 1; =—ihd/0x is
hermitian. :

Show that { p,> = 0 for the particle in a box.

Show that L+/{pzy > h for a particle in a box.

Define a function by

N NN
~N AW

W(x) = I $(Kk) e dk, k = p/h.

—~—®

Calculate I'(x) and | ¥(x) |* for the choice ¢(k) = e~* %=k, Plot ¥(x)
and $(k), and estimate Ax Ak.
2.8 Construct the energy level diagram for the particle in a cubic box
and indicate the degree of degeneracy of each level. Find the number
* of quantum states for this particle and compare it with the classical
phase volume. Find the density of states.
2.9 For a system of two non-interacting particles the Hamnltoman is

= ( pl 2my) + ( p, /2m,). The particles being independent, the prob-
ability of finding one at x, and the other at x, is simply the product
of two independent probabilities, P (x1, X,) = P(x,) P(x,). Show that

this implies that in the wave equation / ¢ (x,, X,) = E ¢ (X3, X,), the
$ (x,, x,) is separable as ¢ (x;, X,) = §; (x;) ¥, (X,). Write down the
equations satisfied by ¢; and ¢,, and solve them. Express the solutions
in the coordinates

m.X. mMoyX
G T Y SN
m,

X=x-X, X=
e m, + m, my

where g = mym,/(m, 4+ m,) is the reduced mass.
2.10 Solve the wave equation for a particle in a box with sides at x = 0
and x = L with the boundary condition {(0) = (L).
2.11 Solve the Schrodinger equation for the one-dimensional harmonic
oscillator problem.
2.12 The probability of finding any macrostate, W (macro), can be ¢xpres-
*  sed, according to the principle of equal a priori probabilities, as
number of microstates corresponding to the given
macrostate

W(macro) = total number of microstates

_ Qig.n}
2 Q {&i ﬂt}’
where the 2 mdlcates a sum over all possible sets of m;’s consistent

with the constramts (2.61, 62). Show that the total number of micro-’
states is fixed in any system and so justify (2.58), thatis, W is propor-
tional to Q {g(, n,} = H Q..

2.13 A total of 40 members of a club have to elect a guest speaker out of
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the two, 4 or B. If 16 vote for A and 24 for B, calculate Q {8 ni},
E Q {g;, n;}, and W.

[Ans 401/(161 241) = 6.29x 1019, 24, 0,06.] :
2.14 The quantity Q (E, ¥, N) = E Q {g;, n;} is called the mzcracanomcal

partition function. Show that

InQ(E,V,N)=h(Q, + Q, +.i) o In Qugx,

where Q,,.x is the largest Q; in the series.
[Hint: Assume that there are as many as N systems with Q;’s compar-
able t0 Qugx, that is, as many such systems as there are particles in
any one system. Then In Q (E, V, N) =~ In Qux 4 In.N.]

2,15 Use the method of steepest descent to derive the FD distribution.
(see, for example, An Introduction to Statistical Mechamcs by P.
Dennery, John Wiley, 1972).
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STATIST ICAL MECHANICS AND
| THERMODYN AMICS

3.1 ENTROPY

The connection between statistical mechanics and thermodynamics is pro-

vided by entropy.
Let Q(E) denote the volume m I' space enclosed by the ergodic sur-

face of energy E,

OKE) = d ,..'.dqfdpl...dp. 3.
E@H<E ’

The volume of the shell AT(E) between the ergodic surfaces E and E + A,
which is occupied by the microcanoncial shell, is given by .

AT(E) = Q(E + &) — Qr(E) = aQT(E) A=s(E)A

= dfq d'p (XCB P), (3'2)
E<H(q,p)<E+4 S S
where p(g, ) = 1 if E< H(g,p)) <E+ A and 0 otherwise. The quantity
g(E) = #Q(E)/dE is called the density of states of the system.
The entropy o of a system in statistical equilibrium is defined by
ofV, E) = In AT(E). (3.3)
" This definition is the same in-quantum statistical mechanics except that
AT(E) is then calculated in quantum mechamcs, (2.7). The dimension of
Qp(E), or of AT, is (Icngthxmomentum)’ (action)”. If AT'isimagined to be
divided into elementary cells of volume 47, where the Planck constant 4 has
the dimension of action, then AT/ is dimensionless. Defining

o =In (AT/A) = In AT—fln A, (3.9
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we find that the change in entropy, 3¢ = 5 In AT, is independent of the
unit, as it should be.

If (3.3) is to be acceptable, it should exhlblt the well-known properties
of the thermodynamic entropy S. To show this we consider the equilibrium
between two systems (N’, V', E’) and (N”, V"', E”) in thermal contact, -

Composite System

Consider two systems, (N’, V', E’) and (N”, V", E"'), that are isolated
from each other (Fig. 3.1a). We can construct the microcanonical ensemble
for each taken alone (Fig. 3.1b). :
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B s ,e"
“1 an 3 an
(91 [9")°
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Fig. 3.1 (a) Two isolated systems. (b) Microcanonical ensembles for the two
systems. The coordinates and momenta of the molecules in the two
systems are denoted by (¢’, ") and (g'’, p"*), respectively.

P, or p, =-constant for energy between E’ and E' + A
=0 otherwise,

P, or p, = constant for energy between E” and E” + A
=0 otherwise.

Let ATY(E’) and AT's(E"") be the volumes occupied by. the two ensembles in
their respective I' spaces.

Now imagine the two systems to be brought in thermal contact and
thereby form a composite system in equilibrium (Fig. 3.2). The micro-

CONDUCTING WALL
\\\\\\V\\}Y\\\\\Q

(I

0

A
EzE+E"
Fig. 32 Composite system. The total energy is E=E’ 4 E*,
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¢anonical énsemble for the composite system is defiried by
Py, or p;y = constant for energy between (E’ -+ E'’) and E'+E"+ 2K
=0 otherwise. ) (3.9

This ensemble will contain all mental copies of the composite system for
which: =~ -~

(a) N’ part:cles with coordinates and momenta (g’ p*) are contamed in
the volume V',

(b) N’ particles with coordinates and momenta (4", p”) are contained
iti the volume ¥"’. .

) E E’ + E”, the total emergy, lies between E and E + 2A.

(d) n, n) are the numbers of molecules of the two kinds that occupy
the various cells i, j into which the p spaces for different kinds of molecules

are divided.
The I space of the composite system is the product space of the phase
spaces of the individual parts,

ATy, (E', E”) = AT(E’) ATH(E"). : (3.-6)
Extensive Property of Entropy
From (3. 6) and (3:3) we at once get the additive property of entropy,
i = In ATy, = In AT, + In AT, = o + 0, 3.7

In (3.6), AP,;(E, E’) is the accessible region of I’ space for the composite
systemi when the system 1 has an energy E'.

Staté of Equilibrigm is the State of Maximum Entropy

Froi thé basic postulates of statistical mechanics, the equilibrium state
is theé one for which AT is maximum. Therefore, the entropy of a system ia
~quilibrium should really be defined by

o(V, E) = In (AT)up, (3.9)

where the suffix deriotes AT associated with the most probablé distribution.
Howevér, the distiiction between the original definition (3.3) and (3.8) is
unimportant for large systems. This is so because o depends on ln AT which
is a very slowly varying function of AT'. For éxample, for a system of
N =~ 10% particles (AT)mp = N!, oyp~ NIn N—N~ Nln N = 10%
I 1020 =~ 46 x 10%. If in measuring AI' we make an error of as much
as 101, the error it entropy is oily 8o = In 10% & 23 & oup.
For the cottiposite system at equilibrium, we can write (3.6) as

ADi(E, E) = AT(E')ATY(E") = ATy(E") AT(E—E). (3.9
Thie &, atid so AT, is a rapidly increasing function of enérgy E for a large
system. The phiysical redson is that the energy E, as it increases, can be

distributéd in many riore ways over \the microscopic degrees of freedom
of the systeii. This hapidly increases the numiber of accéssible microstates.
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For an estimate, let us comsider the case of an ideal gas, f = IN. Then
(3.1) can be expressed as :

E
QH(E) = VNI dpy...dpexs (.10)
0

where
VN = j dqioi.dq.w =-I dxndxudxu I dxndx“dxﬂ...

...Idxwdxmdxm,
because the energy of an ideal gas does not depend on the positions of
: 3N s
molecules. Since E = 3 p; /2m, this integral is just the volume contain-
]

ed in the 3N-dimensional hypersphere of radius (2mE)'”,
The volume of an n-dimensiomal hiypersphere of radius R is (see
Appendix V)

VuR) = auR", @y = w/%D@n + ) = =(gml.  (3.11)
Therefore, (3.10) can be written as
Q(Ey=const. E3N/3, ‘ (3.12)

which, for N~ 102, certainly varies very rapidly with E. In fact, it does not
matter whether we write {ir~E//? or Qp~E/. Since AI'=g(E)A, for & given
A we have g(E)~Ef-'~E/f, More precisely we can write (3.2) as

AT = Oy (E)—9; (E—~A) = const. [E/—(E—A))

= constf Eﬁ.[l—(l—%)’ ]

o const. Ef (1—e—f4if), (3.13)
For f ~ 102, fAJE % 1 and )
AT ~ const. Ef. . (3.13)

Thus AT is practically the volume of the whole hypersphére of radius
(2mE)'2, AT~Q; (E).

It follows that in (3.9) the term AT, (E’) increases rapidly with E’ and
the term AT, (E—E') decreases rapidly with E' (Fig. 3.3a). As a resuit
ATy, or thé combined demsity of states has a sharp maximum at, say, E’
E'" = E — E’, and (3.9) becomes

s

ATy, (E, E’) = AT (E') AT, (") = maximum. (2:15)
This implies, Fig. 3.3b,
@, (E') + o5 (E") = maximum, (3.16)

The value E’ which corresponds to the maximum of In AT, (E, E') is
determined by theé condition
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Inar | =~y nan

(a) (b)
.Fig. 3.3 (a) The combined density of states with a sharp maximnm at E’ (solul
curve), (b) The dependence of In AT, (E’) and In AT, (E—E’) on E’
(dotted curves), showing a unique max-lmnm (solid curve) at some value
E' for AT, (, E').

In Al (B, E') _ 1 2 ATy, (E E)
oE = ATL (B E)  oF =0, @I
or
a lnaAé‘x (E)+ oln Arll (E )(_l)___o’(E=EI+EII=EI+EII).
(3.18)
If we define a quantity 0 by
20 (¥, 1
0B e, (.19)
then (3.18) can be written as
0, (E) = 6,(E"”), E'=E—E". . (3.20)

This is the fundamental condition which determines the particular value

= E' (and so also the value E” = E—E' = E') for which the com-
posite system occupies the maximum volume in T’ space, that is, the system
is in equilibrium (or most probable state). This is also the state of maxi-
mum entropy.

This discussion gives meaning to the quantity 6 of an isolated system.
Thus 0 of an isolated system is the parameter that determines the equili-
brium between one part of the system and another. Later on we shall
identify it with temperature.

Principle of Entropy Increase

Let us discuss the problem of the approach to thermal equilibrium. We
have just seen that ATy, (E, E’) has a sharp maximum (Fig. 3.3a) at
E’ = E’. It means the system 1 almost always has an energy close to E’
and the system 2 has an energy close to E’’ = E—E’, when in contact.

Suppose 1 and 2 are initially separate. Their mean energies’ at equili-
brium are E; and E;, respectively. If they are brought in thermal contact,
an exchange of energy takes place until the equlhbnum of the composite
system is reached. For this the final energies Ef and Ef of the system must
be such that
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E;=F, and Ef = E—E =E", (3.21)
so that AT, becomes maximum, or (3.16) is satisfied. Thus the exchange

of energy goes on until the total entropy becomes maximum. It implies
that the final probability can never be less than the initial probability,

ou(ED) + o(E7) = o(E) + oo(E)). ¢.22)
The word ‘entropy’ is derived from the Greek word which roughly means
‘evolution’ (Gr. en, in -+ trope, turning). Itindicates the ‘turn’, or direction,
taken by the process. ,

We have shown that the definition (3.3) of entropy in statistical
mechanics, based on microcanonical ensemble, possesses all the basic pro-
perties of the thermodynamic entropy S.

The microcanonical ensemble for the composite system is defined in the
shell over a range of values (E’, E). However, at equilibrium the most
probable partition of energy (E', E”) prevails for a macroscopic system.
It implies that almost all the elements of the ensemble have the values
(EI, EII). :

The following definitions of ¢ are equivalent up to additive constants:

- ¢ = In AT(E), ¢ = In g(E), ¢ = In Q;(E),
c=InQm),c=InW. (3.23)
The last relation is called Boltzmann’s definition of entropy. '
From (2.50) and (3.23),
¢ =In N!—? In ny!

=N1DN'—2'II In n.
i

At equilibrium Q(n;) has its maximum value and #, is given by the Maxwell-
Boltzmana distribution (2.64). Therefore, apart from a constant,

¢ = NIn N-3X #i; (—a—B¢)
‘ : .
= NIaN + N + BE. (3.24)
3.2 EQUILIBRIUM CONDITIONS

Consider three basic situations: thermal, mechanical and concentration
equilibrium between two systems. They will define the basic intensive
_quantities: temperature, pressure and chemical potential.

For a system in equilibrium the entropy o will depend on the energy E
of the system, on some external variable X, such as volume, and on the
number N of molecules in the system,

¢ = o(E, X, N). . (3.25)

Consider an isolated composite system made up of two parts separated
by a barrier (Fig. 3.4a). It can be represented by a microcanonical ensemble
because the total energy is constant. Initially the barrier is insulating, rigid
and nonpermeable.
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Fig. 3.4 (a) Insulated systein made up of two parts, Initially the barrier B is
insulating, rigid and nonpermeable. B becomes (b) conducting, (c) con-
* ducting movable piston, and (d) porous.

Thermal Equilibrium

Suppose the barrier becomes thermally conductmg (Fig. 3.4b). At thermal
eqmlibnum the entropy ¢ = o, + ¢, of the compos;te system is required.
to be maximum,

do = do, + doy = (a%) dE, + (a;:) dE,=0.  (3.26)
Total energy E = E, + E, is constant, so that
dE = dE, + dE, = 0,
do = (aa%: aag:) dE, = 0. 3.27)
The variation dE, being arbitrary,
96,/0E, = 06,/0E,. (3.28)
The definition (3.19) of a quantity 6,
30/0E = 1/6 (3.29)
gives for thermal equilibrium
0, = 6, v ¢.30)

Suppose initially the two subsystems are not in thermal equilibrium, but
that 6, > 0,. By the pnncnple of entropy increase (3.22), after the thermal
contact we must have dgpai > Omiesa, OF do > 0. Then, by (3.27, 28),

1
—— . 3.
(91 0:) 4 > 0 @-3h
Because 0, > 0,, (3.31) is satisfied only if dE; < 0. This means the energy
flows from the system of high 0 to that of low 6, Therefore, 6 behaves like
temperature.

Mechanical Equilibrinm
Let the barrier be replaced by a conductmg piston which is free to move

(X = V) (Fig. 3.4c). We have to maximize ¢ while keeping N,, N, V=V,
+ Vg, and £ = 1‘5l + E, constant,

0 do. do b .
do = (a;;) v, + (r’) av, + ( ‘) dE, + (é:') dE, = 0. (3.32)
The last two terms add up to zero when thermal equilibrium is reached.
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Using dV = dV, + dVy = 0, we get for arbitrary dV,

36,/0¥; = 06,/0V,. (3.33)
Defining a quantity by ,
@/oV)g,y = 1/6, : (3.34)
we obtain the condition-for mechanical equilibrium, _
IL,/6, = TL,/6, (8, = 6,). (3.35)

Suppose initially the two subsystems in thermal equilibrium are not in
mechanical equilibrium,-but that IT, > II,. Then de > 0 implies

- 5 (I—1L,) ¥, > O, (3.36)

For I, > M, this requires dV, > 0, that is, system at high II expands.
Thus II behaves like pressure P.

Concentration Equilibrinm

If the barrier is rigid butconducting and permeable, Fig. 3.4d, then part-
icles and energy can be exchanged We have to maximize ¢ while keeping
Vs Vo Ny + N, and E; + E, constant,

do = (g5 4+ (555 ) av. + (532) 4. + (352) 482 = 0 3.37)
1

After thermal equilibrium has been reached, we get on using dN = 4N,
-+ dN, = 0, for the concentration equilibrium, '
36,/0N, = 80,/dN,. (3.38)

For convenience, define
9c/0N = — p/o, (3.39)
“where g is called the chemical potential. Then the condition for concentra-

tion equilibrium is

/0, = l‘-g/ez’ - (B, =19y (3.40)

Suppose initially the two subsystems in thermal equilibrium are not in
concentration equilibrium, but that ¢, > y,. Then do > 0 implies

— § (1y—) AN, > O, (3.41)

For p; > p,, we must have dn, < 0, that is, the molecules move from a
region of higher u to that of lgwe: I

3.3 QUASISTATIC PROCESSES

N,
Suppose the conditions of a system in equilibrium, ¢ = o(E, X, N), arp
changed slightly and reversibly so that the final state is also of equilibrium,.
Then
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da=( )dE+( )dX+( )dN

=§dE+ EdX"ﬁdN : . (3.42)

where x = Il if X = V, (3.34). Rearranging
dE = 0do—xdX + pdN. : (3.43)
First consider the simple case of fixed number of molecules, ’
"dN=0,x=I,X =7, 3.44)
dE = 6do—T1dV. ' (3.45)

The change in internal energy consists of two parts. The part 6do represents
the change in internal energy when the external parameter X is kept con-

- stant. This is the way we define Aeat. The quantlty of heat JQ added to the
system in a reversible process is therefore given by

do = 6do, (3.46)
where the symbol d' empbhasizes that dQ is not an exact differential. The
part —I1dV represents the change in internal energy due to the change in
the external parameter. This is the way we define work. Thus

W = -—11dV 3.47)
and (3.45) becomes

' dE = do + dw. : ) (3.48)
This is the first law of lhermodynamxcs In mechanics the work is given by
— PdV. Therefore, 11 is the pressure P,
O=P. (3.49)
The effects of a reversible addition of heat and work on the distribu-

tion of systems among the energy levels given by the Schrédinger equation-
are shown in Fig. 3.5.

- w3
v d-a v v ™ +
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Fig. 3.5 (a) The change in the most probable distribution 7; on reversibly adding
heat to system. Energy levels ¢; remain same but more particles occupy
higher energy levels. (b) The change in7; on reversibly performing work "
on the system, The energy levels are lowered Ieaving_',',,unchnged, Note

k

that  dE=UN) I mde.
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In thermodynamics we know that 1/T is the integrating factor of do,
as = doT, ' (3.50)
and that all integrating factors for JQ differ omiy by a constant of propor-
tionality. Comparing (3.46, 50),
' 1/T = kfe, .
S = ko, ' (3.5
where k is the Boltzmann constant. This relates the statistical entropy ¢ with

the thermodynamic entropy S. We can take (3.51) to be an experimental
fact, & = kT. From (3.24, 29, 51), 3/0E = B = 1/9, or

B— UkT. SR
Once we know E as a function of 6 and ¥, E = E(o, V), we can write
oE
= — —1 — 3 . 53
dE — bdo—PdV ( ac),, do + (av) . e

Therefore, we can define temperature and pressure as
0 = (3E/ee)y, —P = (3E[oV) . (3.59

Iustead of working with the parameters (o, ¥), it is sometimes more
convenient to work with (8, ¥), or with (8, P). This requires the use of the
thermodynamic functions F(8, V) and G(8, P).

Helmholtz free energy F(0, V) is defined by

F = E—Qc = E—c(0E/éc)y, (3.55
so that :
dF = dE—8do—odd = —od0—PdV
=(%§) de+( )dV (3.56)
Comparing the coefficients,
—o = (0F/20)y, —P = (2F[0V),. _ (3.57)
Gibbs free energy G(8, P) is defined by
' G = E—bo + PV = E—o(8E[dc)y — V(3E[V ), (3.58)
dG = dE—8ds—cd + PdV + VdP = —odd + VdP,  (3.59)
so that v :
— o = (0G/o8)p, V = (3G/OP),. (3.60)
From (3.43), '
dE = 0do—PdV + pdN. (3.61)
Then

dG = —od0 + VdP + pdN, (3.62)



48 STATISTICAL MECHANICS

2G |
( a’fv.)., L= (3.63)

or
G = Np. (3.64)
3.4 ENTROPY OF AN IDEAL BOLTZMANN GAS USING THE
MICROCANONICAL ENSEMBLE

Definitions (3.23) for entropy have been taken to be equivalent although
AT(E) is the volume of a shell of thickness AE at. E, while Qp(E) is the
volume of the whole sphere from O to E in the phase space. It works
because in the microcanonical ensemble In AT is not sensitive to the value
of AE, (3.14). This is a great advantage because we do not know how to
choose AE in each case of interest.

Consider an isolated ideal gas of N molecules of mass » in a volume
V. The total energy is between E and E+AE. The microcanonical ensemble
for this system occupies the phase space volume

AT = j dr
E<HZE+JE
- J' dg,. . .dgy I dp,. ..dpyy = V¥ AT, (3.65)

For f(=3N) very large, AT, is practically the volume of the whole sphere
N

of radius p = 2mEYA, E = (1)2m) 2 p}, AT, ~ Q(E), as shown in
J=]

(3.13), This means we can replace AE b-y the entire range from 0 to E in
the specification of the energy range of the microcanonical ensemble without
causing any serious error. The constraint

_ 1 3 s ' 3
» E AE<27-n‘§lp,<E 3.66)
is relaxed to read .
P E 67
sﬂfl”?g" (.67
Using (3.11), to sufficient accuracy,
. /8
AT = VN QiE) = VN —— (2mE)Y/, 3.68
r(E) Nt ( Y (3.68)
¢ = In AT = Nln [Vr¥* 2mE)/ (2¢[3N)¥%]
= N In [V(4nm/3)8 (E/N)*5] + 3N)2, (3.69)

where we have used the Stirling approximation n! o= (nje)” or In nl~n
In n—n with e = 2.71828 as the base .of the natural logarithm. :

Note that the use of (3.68) makes the calculation of entropy to be quite
an involved one even for an ideal gas in the method of microcanonical
ensemble. This complication can be avoided by using other enscmbles, as
we shall see later on.
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From (3.69) we can write the entropy of an ideal gas as

o = Nl [P(EINY™ + Noo, (3.70)
-3 4xm |
0o-=-2-(ln—3—-+ 1). 3.7)

The result (3.70) for the entropy is not correct. It runs into two main
difficulties:

(1) AT given by (3. 65) has the dlmenslon of (distance X momentum)®~,

(2) o is not additive because the volume ¥ (and not V/N) occurs in
the argument of the logarithm. This prevents us from dividing the system
in two parts and writing 6 = o, + o,

As shown in (3.4), the first dnﬂiculty is easily removed by measuring the
phase space volume in terms of 4. Thus AT'is replaced by the dimensionless
quantity AT/A*N and (3.70, 71) read

a = In (AT/A*S) = N In [V(E/NPP] + Noys 6.72)
3 4, o
o0 =3 (i 3% +1). e

The second difficulty is not removed so easily. In fact, it' leads to the
famous Gibbs paradox.

35 GIBBS PARADOX

(A) Mixing of Two Different Ideal Gases '

The mixing of two different gases is an irreversible process. It is there-
fore attended by an increase of the entropy. Consider two different ideal
gases (N, ¥y, T) and (N,, V,, T), Fig. 3.6. They are allowed to mix by

Ny Vi [ N2 V2

T T

Fig. 3.6 Mixhgoftwomu

removing the partition reversxbly It can be regarded ag the expanslon of
each of the gases to the volume ¥ = ¥V, 4+ V¥, The temperature; and
therefore E/N, remains unchanged for each gas. From (3. 72), the change in
entropy is
Ac = 0,4 (0, + o) .
=MhV+NhV)-@W,nV,+N,ln V)

: = Ny ln (V/¥y) + Ny la (V7 > 0. R L)
“This gives the entropy of mixing for two different ideal gases and is in
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agreement with eiperiments. For thecase Ny =N, =Nand V, = V, =}V,
we get A = 2N In 2,

(B) Mixing of One Ideal Gas with the Same Ideal Gas

Suppose the two gases are the same. Then the removal of the partition
should not affect the distribution of systems over the accessible states. The
final entropy ought to be the same with, or without, the partition,

P Ao = oy3— (01 + 65) = 0. (3.75)

This result is in agreement with the thermodynamics of a reversible
process and also with experiments, but contradicts (3.72, 74). The derivation
of (3.72, 74) does not depend on the identity of molecules and so would
give the same increase in entropy (3.74) even in this case. In particular, for
the case Ny = N, = N, ¥V, = V, = }V, we get an unobserved and there-
fore unaccountable increase of entropy by 2N In 2 when a partition is
simply removed from a box containing the same gas throughout. Thisis the
Gibbs paradox.

This Gibbs paradox implies that the entropy of a given gas depends on
the history of the gas. For example, if we imagine the present state of the
gas to be achieved just by slowly removing one by one a large number of
their partitions, then the final entropy can have any value one desires. This
is certainly not tenable. ’

Resolution of the Paradox

In the case (A), the removal of partmon leads to the diffusion of the
molecules throughout the whole volume V¥ (twice the volume if ¥V, =V,
= 4V). There is a random mixing of the different molecules and so an
increase of disorder. This is an irreversible process and the increase of
entropy (3.74) makes sense.

_ We can imagine the mixing to be a process in which the positions of
some of the molecules of one gas are interchanged with those of the other gas.
Each such exchange creates a new state. Therefore, the number of accessible
states increases or equlvalently the entropy increases.

On the other hand, in the case (B), any such interchange of molecules is
always an interchange between identical molecules. Therefore, no new state
is created when the partition is removed. It follows that in this case the
application of (3.72, 74) overestimates the number of -accessible states
because classically we have taken all the molecules, even of the same gas as
distinguishable.

The way out of the paradox is to regard all the identical molecules in
the case (B) to be indistinguishable. If there are N molecules, then N!
possible permutations among themselves do not lead to physically distinct
situations. There is just one way of arranging them. Therefore, our esti-
mation of number of accessible states, or equivalently of AT, is too large
by a factor of N1. We should replace AT by AT'/N! (Boltzmann counting),
so that (3.72) becomes
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o = In (AT/N! ##¥) = In (AT/A*N) — In N1
= In (AT/A*%) — (N In N —N)

= NIn [(VIN) (E'NYS) + Noo - 3-76)
3. 4
o,=§1n3—,:-f+§ - .7

Use of (3.76) gives the correct result (3.75) for the case (B) and reproduces
the result '(3.74) for the case (A). Thus the Gibbs paradox is resolved
because of the appearance of the extra term — N In N. It makes the entropy
properly additive, as now V/N, rather than ¥, appears in the argument of

the logarithm.
As indistinguishability of identical particles is assumed in quantum

mechanics, the Gibbs paradox will not occur if AT(E) in (3.3) is calculated
in quantum mechanics.

3.6 SACKUR-TETRODE EQUATION

The incorrect classical result (3.70) can be rescued, as shown above, by
introducing the following two ideas:

(1) There exists an elementary cell of volume 4/ in the phase space .

in terms of which AT is to be measured. "

(2) Molecules of a gas are indistinguishable.

Both these ideas occur naturally in quantum theory. In the classical
picture we have to take them into account explicitly as ad hoc corrections.
In this way, in 1911 Sackur obtained the correct equation for the entropy
of an ideal gas which was verified experimentally by Tetrode in 1912.

The contact with the thermodynamic quantities is made by using S = ko

and (3.54, 76),
1 1 (o 3N N
6=k_T_(aE),, ~ aE(z ln E) E G.7)
E = 3N0j2 = 3NKT}2, (3.19)

which is the familiar result for the internal energy of an ideal monatomic
gas. Then (3.76) reads

S = Nk In [(VIN) (1/A%)] + 5Nk/2, o (3.80)

or

where .
A = hjQ2rmkT)'A (3.81)
is called the thermal de Broglie wavelength associated with the molecule of
a gas at temperature 7. The relation (3.80) is the famous Sackur-Tetrode
equation. It is in complete agreement with experiments at higher tempera-

tures.
Note that

k=

gas constant R _ 8314JK-1 -33 JK-1
Avogadro number N, 6.02 x 10% 1.38 > 107 JK,
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Nk = (N/N.S R = nR, (3.82)

where n is the number of moles in the system. From (3.80) we can write the
entropy for one mole of an ideal gas as

 Smot = R In [(V/N;) 2rmkT/h%)*? &5/%], (3.83)
For argon at 25°C and 1 atm, using »
V= 22414 x 103 m?, h = 6.62 X 10-% Js,
m = 6.63 x 10-% kg, T = 2982 K, e = 2,718,
we get Sy = 154.7 JK-1 mol-'.

From (3.39, 76),
w/kT = — (3/dN)g, y = In (NX¥/V). o (3.84)
The equation of state is obtained by using (3.34, 80), ’
P|T = (8S/oV)s, v = kN|V, or PV = nRT. (3.85)

3.7 ENTROPY AND PROBABILITY
The microcanonical ensemble is defined by (2.5), with the normalization
$p=1 (3.86)
1 =1 .

The quantity Q is often called the microcanonical partition function and
represents the number of states of the system between E and E 4 AE.Qis
proportional to AT or to AT'/N! #* , and we can define entropy as

c=1InQ

-~ o(t)e(d

=—ZPInp,. . _ (3.87)
g

Since 0 < P, < 1, we have In P; < 0 and so the right hand side is properly
positive. .

We can interpret AT as a measure of the imprecision of our knowledge
of the state of a system or as a measure of its randomness. In the macro-
state of maximum AT, the microstate of the system (in equilibrium) is least
well defined. In fact, it is the macrostate of maximum disorder. The
definitions (3.3, 8) imply that entropy is also a measure of the degree of
disorder of a system in a given macrostate. It follows that in the state of
equilibrium the entropy attains its maximum value. We can take (3.87) as the
general definition of entropy. For an isolated system in equilibrium it
reduces to Boltzmann’s definition of entropy (3.23)
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3.8 PROBABILITY DISTRIBUTION AND ENTROPY OF A TWO
LEVEL SYSTEM

We can use the analogy between a cell in phase space and a quantum state
to discuss at this stage an illustrative example of a simple two level system.

Consider a system of N independent particles. Let each particle carry a
magnetic moment w that can be either parallel or antiparallel to an external
magnetic field H, Let e be the energy associated with one orientation and
— ¢ with the other, where | ¢ | = pH (Fig 3.7). The constant total energy E
of the isolated system is

+e ——
AE=2€

—€
Fig. 3.7 Two-level system.

. E =ne=—N.e +N+€, n =N.|.—N—9' (3'88)
where N (N_) is the number of particles with energy ¢(—e). Note that
N=N,+N, N.=}(N—n), No=3}({HN+n). (3.8)

We would like to calculate the number of microstates accesssible to our
isolated system with constant energy E.

We can arrange N particles among themselves in N! ways. Many of
these ways do not give independent distinguishable arrangements into groups
of N_ and N, particles. The- N_! interchanges of the N_ particles just
among themselves give no new arrangement. Similar situation holds for N,
particles. Therefore, the total number Q{n} of arrangements corresponding
to a net magnetic moment M = np and energy E = ne is

N
= e 3.9
Qn} = iw,T : 3.90)

For example, for the macrostate specified by N =4, E =0 (or n = 0,
N, = N_ = 2), we have 41/(2! 2!) = 6 possible microstates. Equal volumes
of phase space are to be associated with each independent arrangqment of
the magnetic moments. Taking this volume to be unity for convenience, we
have Q{n} = Win}, where I can be interpreted as the probability for a
particular macrostate to occur. Then

In Wo=InN! — In N_! —In Nyl .
=NIaN—N-—N_InN_. + N_—N,IlaNy + N,
— — [N= Io(N_/N) + Ny In (N,/N)]
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- [%N(_l - '1‘7) 1n}(1'—’-‘ﬁ) {-%N(l +z£v) ln-;-(l "‘77)]

@39
where we have used the Stirling app'roximation. Using (3.84) and ‘
| In (1 + N) &% N, & (.92)
we can write
o We — N[l (%10 N[ln+ "’)]
a - [ 3 ( N _N—’) + N 2N
n '
-——Nln-——z—N " (3.93)

We have not divided AT or Q{n} by the factor N1, (3.76), because here
the particles are localized: we can distinguish where the. parallel and anti-
parallel moments are located. The results (3.91, 93) can be used to obtain
the following quantities.

Probability w(f) of a net Moment M

In zero magnetic field the projection of each moment is equally likely to
be 4+ p. Consider a specific set of possible orientations. For each particle
the probability is § that it will take the orientation required by the specified
assignment. Therefore, the probability that a given sequence of particles
occurs is (1/2)N.

The probability w(M) of a net moment M = ny is obtained on multi-
plying W{n} by the probability (1/2)N of a specific sequence. Thus, using
(3.93) for In W, ‘

- w(M) = §NVW(n} =@ exp [In W]
= (DM@ exp(— n*/2N)]
" = exp (— n¥/2N). ' (3.94)

This shows that the magnetization has a Gaussian distribution about the
value n = 0 (Fig. 3.8). As expected, the average value of the magnetization

w(M)

n=0 n
Fig. 3.8 Gaussian distribution.
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in the absence of an external magnetic field is zero. Also, the most probar
ble value is the same as the average value,

Entropy
The entropy is defined by (3.91),

S = — k [N_In (N/N) + N, In (N/N)], (3.95)
where N_, N, depend on E through n, (3.88, 89). In the approximation
(3.93),

Sekin W=¥k(N1n2+2N)
=—Nk[—-1n2+(2ﬂN,‘l]. | (3.96)

A plot of S/Nk against E/eN is shown in Fig, 3.9.

S/ Nk

+1 E/EN

Fig. 3.9 Negative temperature in a two-level system, The slope
OS/OE gives the sign of T.

The case of zero moment, n = 0, gives S = kN In 2 in the Stirling
approximation (N — large). This is just the entropy of all possible arrange-
ments (2 X 2 X ... = 2N) because each particle can have two possibilities,
parallel or antiparallel moment, regardless of how the other particles are.
It shows that in calculating entropy no significant error is made if we
assume that the entire accessible phase space has the properties of the most
probable condition of the system with large N. In other words, for large N
the entropy is insensitive to the precise specification of the condition of the
system in the neighbourhood of the most probable condition.

Negative Temperatm-e
The temperature is defined by the slope of the S versus E curve (Fig. 3. 9),
1. (a8 18 1k, N—n 1k N .
T (aE)y,N_?&‘—" N+n 2¢ o N.’ (.97

where we have used (3.89) for N, N_ and (3.95) for S. Atthe conventional
absolute zero all the particles are in the ground state (e.), n = N, — N_
=0—N=~N <0, giving T=-10 and S=0 (complete order) at E=—Ne.
As the temperature is raised, or energy is given to the system, the popula-
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tion N, in the upper level (e,) grows T > 0, till we have n = 0, giving
S = Nk In 2 (maximuym disorder) and T = + co. If more energy is given
to the system; the upper level becomes more populated than the lower level,
N, > N_,n > 0,and we get a decrease in S (more order) and T < 0.
Thus the system is no longer normal in its behaviour. The negative temper-
ature T-. corresponds to higher energies than positive temperature T,..

If T_ and T, systems are brought info thermal contact, energy will flow
from T_to T, that is, T~ is hotter than T',. A maser or a laser is a devise
based on such a T_ system. _

As more and more energy is given to the systemwe getn =N, — N_ =
N —0=N > 0, that is all the particles are in the upper states, S=0 (com-
plete order), and T = — 0 (Fig. 3.9). The difference between the two zeros
(+0, —0) is that we approach the first of them from the side of positive,
and the second from the side of negative temperatures. The possible temper-
ature ranges are from + O through 4+ o0, — o to — 0, + o and — ©
coinciding with each other.

For a system to have negative temperature it inust (i) have a finite upper
limit to the energy spectrum, (ii) be in internal thermal equilibrium, and

(iii) have negative temperature states isolated from those states that are at
positive temperature.

Specific Heat
From (3.97), we get, with AE = 2¢,
N N.
¥ i : N* exp (— 2¢/kT) = exp( AE/kT),
N__ exp (¢/kT)
N exp (¢/kT) + exp (— ¢/kT) 1+ exp (-— AEJKTY
N exp(gkT) + exp(— ¢/kI) 1 t exp(AEKT) ”

These relations for N_/N and N,/N give the probablhtlés of finding any one

particle in the states — e and ¢, respectxvely The eneigy E and the specific
heat C are given by

E=ne= — (N_ — Nye = — Ne tanh (¢/kT), (3.99)
_dE_ (kTP '
C=7m=Nk Sost (JKT)
exp(AE/kT) ’
= Nk (kT [T + exp AE/KDJE" (3.100)

These quantities are plotted in Fig. 3.10a, b. The specific heat of the peak-
ed form (Fig. 3.10b) is called the Schottky anomaly. It is observed when a
body has a gap AE in its energy states,
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0.6

0.4

0.2

kT/€ kT/€

(@) (b)

Fig. 3.10 (a) Energy, and (b) specific heat and the fractional population N /N
in the upper state, as functions of kT/e for a two-level system.

3.9 ENTROPY AND INFORMATION THEORY

Comparison of (3.72) and (3.76) shows that the difference of N! in count-
ing implies

Sndistinguishable — Sdistinguishable = — k In NL (3.101)
The fact that real identical atoms are not distinguishable results in a loss
of entropy by &k In N1 We have fewer microscopic states from among which
the required macroscopic state can be chosen. Therefore, the macroscopic
state is the less probable than it was when we could distinguish the atoms
apart, We can view entropy as a measure of our ‘uncertainty’ as to the
microscopic state of a thermodynamic system*. 1n the information theory
formulation of statistical thermodynamics we can say that in this case - our
a priori uncertainty of the state of the gas has been reduced.

In general, let us consider a set of events. It may consist of values of a
property, or states of a system, Initially we may know only that Y of them
occur with equal probability, P° = 1/Y, and the rest are impossible. A bit
(binary unit of information) is defined as the amount of information that
allows one to make a choice between equally probable events. In the case
considered, after one bit is received, only 3 events are known to be possi-
ble, equally so; after 2 bits }¥ = (})2Y events are known to be possible,
equally so; after J bits, (})7Y events are known to be possible, equally so.
Each bit received reduces thefield of uncertainty by half. Thus, after posing
J binary questions, the field of possible events is reduced from ¥ to X, each
with probability P’ = 1/X. The probability of the remaining ¥ — X events
becomes zero. We can write

@'Y=2X, or YJX=2 . (3.102)

*See, for example, B.T. Jaynes, Phys, Rev. 106. 620, 1957; and 108, 171, 1957.
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lo(¥/X) = J1n2, (3.103)
bit bit
J—-—-l—n——zlnx+mln)’,
bt . o, bit o,

Because each of the nonzero probabilities has the same value, either
P? =1/Y or Pj=1/X, we get
InP;=InP; ZP =3 PrinP. (3.105)
[]

From (3.104) and (3.105),

bitw o o bit o,
inn—zlzP,lnP,—m?P,lnPf

=N —AN° = AN . :
= —F = —AS, (3.106)
where & is Shannon’s measure of uncertainty, and A" is the negative of
Shannon’s measure,

_bit o bit '
= _ OB = ot .10
& = .lnsz;lnP,, .A"_anEP,lnP,. (3.107)

Meaning of (3.106) is that the information received in bits is the difference
between two functions of the state of knowledge of the system. The result
obtained here for ensembles describing equally probable events is true for
other ensembles as well.

For equally probable events,

PR=}% Pi=4} - (3.108)
a choice reduces the probability distribution (3.108) to certainty
_ Pi=1 P=0, . (3.109)
with
bit . bit
J= (Il 1+0m0)— 2 (hln +}Ind)

= 1bit, (3.110)

as expected. The value of & is the nymber of binary questions that must be
answered to reduce the uncertainty in knowledge to certainty. If we have
two ensembles, the one with greater & has less information. '

For the set of states i/, we can find the probabilities Py corresponding to
maximum ignorance (or minimum information)about the liklihood of those
states by maximizing &. It amounts to finding the extremum of

v .
=2 PP, @.111)
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subject to the normalization

v | .
2 P=1. 3.112)
. =l
Due to (3.112), all the P’s are not independent. Suppose it fixes one called
P Y : . .
Yﬁl
Pr=1— 3 P, (3.113)
fml
Now we can vary all the other P’s independently to maximize

o -
F=73 PlnPi+ Pyln Py. (.114)
=1 .
Thus

aF @ '
0 =135, = 35, z5- (PyIn ¥y + Py In Py)

| =1+1np,+1ap’ +ap"1n1>. (.115)

Using 0Py/oP; = — 1 from (3,113), we finally get
Py = Py, forallj. (3.116)

All the P’s have the same value when & is maximum. The P; = 1/Y forall
i maximizes the uncertainty. This is understandable because to weigh P,
differently, from, say P; in the ensemble, some more information is needed.

Above discussion shows that the entropy S is proportional to Shannon’s .
measure of uncertainty &. It is a measure of uncertainty regarding the
quantum state of the system. We can write

o bit
S=——'k2‘..., «7_——111-—'2?..-,
s_"t';‘tzs’, . CG.a17)

where . is the number of binary choices to be made to find the quantum
state of the system.

As a simple illustration of the information theory concept of entropy
consider the dependence of S on V for an ideal gas. Let N molecules,
initially in volume ¥, finally occupy a volume V,, where V2 < V. The field
of uncertainty in the location of each molecule is reduced by a factor of
V,/V,. The gain in information is given by

bit ¥ _ bit ¥,

J=pzly =gzl (3.118)
The total gain in information is NJ, and the entropy change is
AS = k;ﬂsz_—k’an_ ~Nkm D2 (3.119)

bit A
It agrees with the thermodynamic calculation. '
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3.1

3.2

3.3

3.4

3.5

3.6

3.7

PROBLEMS

Find the equation of state for an ideal gas enclosed in a box made of
insulating walls and a movable piston loaded with weight w. .
A system of N independent harmonic oscillators enclosed in a volume
V satisfies a microcanonical distribution with an energy E. Find the
phase volume I and the entropy S.

Show that the absolute temperature is given by

1 dnQ (E)

kT TOE
Does it imply that for any ordinary system T > 0? Estimatc f by
assuming Q (E) ¢ (E — E,), where E, is the ground state energy and
f the number of degrees of freedom of the system.
Verify that the absolute temperature of any system is an increasing
function of its energy.
The atoms displaced from the lattice sites inside the crystal can mig-
rate to the crystal surface forming Schottky defects. Consider a crys- .
tal of N atoms with n Schottky defects. If w is the energy of formation
of a Schottky defect, show that S(n) = k In [(N + n)!/(n! NV)] and
that in the equilibrium state at temperature T,

n/N = (e*iT — 1)1,

Estimate n/N at T = 290 K and 10®* K, forw = 1 eV. _
Consider a perfect crystal of N atoms. We get n Frenkel defects if n
atoms are replaced from the regular lattice sites to interstitial sites., .
The number N’ of interstitial sites into which an atom can enter is of
the same order as N. Let w be the energy required to move an atom
from a lattice site to an interstitial site. Show that

NI _ N’
nl(N—mnl nl (N — n)!
and that in the equilibrium state at temperature T, w > kT,
n

N=n N —n)

Consider the following one-dimensional model of rubber. A chain

consists of n (3 1) elements, each of length 4. The ends of the chain

are distance x(< na) apart. With origin at the left-end of the chain,

if n,. (n_) is the number of links directed to. the right (left), then show

that- '

S(n) = kn

= exp( _—w/kT).

kT
n¢= _.Q() nln!.n,w——xforx<na,

where analogous to the pressure we have for the tension
n‘ = — T(aS/ax)B
and all orientations of the elements have the same energy.
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Calculate_the value of the thermal de Broglie wavelength A in A for
an electron, a nucleon, and a 4He atom at room temperature.

[Ans. 745 T-V3; 17.4 T-13; 8.7 T-1*%]
Show that Shannon’s measure of uncertainty based on the joint pro-
bability Py of two events is given by the sum of the uncertainties of
each event separately (based on P, and P;), when the events i and j
are uncorrelated. ' .

3.10 Let p; (E)) be the probability density that system # is in a state with

energy E;. For two statistically independent systems -
p(E, + Ep) = opy (E,) ps (Ep.

If p,, pa and p have the same functional dependence ‘on energy, then
show that p(E) = Ae-85, when there are many states available to the
system, irrespective of the assumptions of classical or quantum
physics,

[Hint: Dropping the subscripts on p,

Y T B+ B = s 7 B = b )
oE T E) dE + By " T B = iy 2, M =y aE, A

p(—lET) 2‘% ¢(E) = constant = - 8.
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CANONICAL AND GRAND
CANONICAL ENSEMBLES

4.1 CANONICAL ENSEMBLE

The microcanonical ensemble provides a general basis for statistical mecha-
nics. It has a fundamental importance because (1) it deals with the simplest
system known, that is, an isolated system, (2) the postulate of equal a
priori probability is strictly applicable in this case, and (3) other ensembles
can be deduced from the microcanonical ensemble. With its help we have
shown that the basic postulates of statistical mechanics lead to correct
thermodynamic relations. However, it is inconvenient in practice for two
reasons: (1) We do not know how to specify the width of the ergodic shell
between E and E -+ AE in any given case. (2) It deals with systems, isolated
from the rest of universe, with a given E, that do not occur in the labora-
tory. In thermodynamics we usually deal with systems kept in contact with
a heat reservoir at a given temperature. The temperature is introduced in a
artificial way, or through (3.31, 51). It would be useful to construct an
ensemble based on this fact. In a microcanonical ensemble we expect the
temperature to differ from element to element.

We have seen that an ensemble is stationary if P; = P;(E). For the
microcanonical ensemble we made the simple choice P,.= Py (5 only) =
constant. We can make other choices. For example, we can replace the
- constant energy constraint with the constant temperature constraint. Thus
for a system (N, V, T) in thermal equilibrium with a large heat reservoir
(Fig. 4.1a) we can allow the energy to vary from element to element in the
representative canonical ensemble (Fig. 4.1b), This is possible because the -
heat reservoir is such a large source of energy that the exchange of energy
with a system in contact does not change it appreciably. We now determine
a suitable functional dependence of P; on E; in suqh a case.
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(a) . (b)
Fig. 4.1 (a) Isolated composite system (c) consisting of the system (s) and the
* reservolr (r) in thermal contact. (b) Canonical ensemble of replicas in
thermal contact (exchange of energy across the conducting walls)
forming a lattice.

The composite system (c), consisting of system of interest (s) and reser-
voir (r), can be regarded as a single isolated system to which the method of
microcanonical ensemble can be applied. If P, is the probability that the
composite system is in AT, (E, Ep), then by (3.5, 6),

P_(E;) oc AT (E,, E)) = AT, (E) AT+ (E,) for E, <E<E,+ A

=0 . . otherwise, “4.1)
where E; is the unperturbed energy of ith quantum state of the system, E, is
the energy of the reservoir (E, > Ej), and E, is the constant total energy of
the isolated composite system, E, = E; + E, = constant.

Let the system (s) be in one definite state /. Then the number of states
accessible to the composite system (c) must simply be the number of states
that are accessible to the reservoir (r). Thus '

P; c AT, (E, — Ey), “4.2)
where P, is the probability that.the system is in the quantum state i. As
E, € E,, we can expand the slowly varying function In AT, (E, — E;)about
the value E, = E,,

In AT, (E, — Ej) = In AT, (E.) — (a_mgjsﬂ))x T
= In AT, (E;) — BEi, (4.3)
_ (31" AT, (E) _1 :
R T & @4

where T is the constant temperature of the reservoir®. We can express (4.3) as

* According to R.C. Tolman (The Principles of Statistical Mechanics, OUP London
1938, p. 501) a canonical ensemble is the representative of a system in equilibrium
(thermal contact) with a heat reservoir. The temperature T is not mentioned and so the
zeroth law of thermodynamics is not presupposed. Without the zeroth law one can still
infer the existence of functions § and s of the coordinates of the system such that
dQ = Ods (see H.A. Buchadel, J. Phys. A 16, 111, 1983).
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AT, (E, — Ej) = AT, (E;) exp (—BE), @.5

Py = Cexp(—BE), : 4.6)
where C is a constant independent of i. The factor exp (— BE)) is called the
Boltzmann factor. The canonical distribution (4.6) is shown in Fig. 4.2a. The
constant C is determined by the normalization condition

or

Ej

(a) (b)

Fig. 4.2 (a) Canonical distribution. (b) A typical plot of probability #; that
the system has a particular energy E as a fanction of energy E;. It is
the product of the functions Q(E;) and P;. At E the W, has its maxi-
mum value. The total area under the curve is unity.

?.P‘ = C?cxp (“ ﬁE,) = 1. (4.7)

Ej

Then the probability distribution is given by
PNV, T) = Emz[—a\?*w Z= 3 apl-pENV) (.9
(states)
where Z is called the partition function of the system.

The microscopically sharp energy requirement of the microcanonical
distribution is replaced by one where the system may have any-energy. The
higher the energy of a quantum state, the less likely the system is to be in
that state, (4.6). Note that all the N-particle quantum states with the same
energy have the same probability. In this sense a canonical ensemble is
constructed from thin slices of microcanonical ensembles, one for each
different possible energy level, weighted as (4.6).

In spite of the form (4.6), Fig. 4.2a, the canonical distribufion can pre-
dict average quantities with sharply defined means. The reason is that the
probability W, that the system will be found with a particular energy E; is
the sum of probabilities (4.8) of all states of this.energy. The number of
such states is the degeneracy Q (E) of the energy level E;. Since all the de-
generate states have equal probabilities,

W, P[ Q (E) exp ( ﬂE() Q (El)

Being a product of an exponentially decteuing curve, exp (— ﬂE,), and a
rapidly rising curve, Q (E)) of Fig. 2.1, the W, is very sharply peaked overa.
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small range of energies (Fig. 4.2b). For macroscopic systems, Fig. 4.2b is
similar to Fig. 1.9a.

Dropping the suffix i in (4.6), we get In P = In C — BE. This quantity
is additive for two subsystems in thermal contact. Thus, In P, = In
C, —BE,and In.P, = In Cy — BE, give n P =In P,P, = lnC BE, where
C=C,Coand E=E, + E,.

Usually (s) is a large (macroscopic) system and therefore dlstmgulsh-
able. The distribution (4.6) gives the probability P; of finding the system in
any one given state i of energy E,. The use of (4.6) can be extended to the
case of molecules that are distinguishable. The gas is then said to be non-
degenerate (or classical) in the sense that the mean separation of the mole-
cules is larger than the typical thermal de Broglie wavelength of a molecule.

Suppose the gas containing N molecules is in equilibrium at temper-
ature T. The molecules being distinguishable, we can select a particular
molecule and imagine it to be a small system in thermal contact with a heat
reservoir consisting of all the other molecules of the gas. Applymg 4.8) to
the molecule,

Put = ‘Ei;(;:);f—(t-% =77 (molecule). 4.9
! ,
Here p,; is the probability of finding the molecule in any‘ of its state i,

where its energy is «;.

Consider a canonical ensemble of M(M — o) replicas of the system of
interest (Fig. 4.1b). The statistical weight Qs of the ensemble associated
with a particular macrostate {m;} of the canonical ensemble is

M ! .
Quefm} = nm T’ 4.10)

where m; is the number of systems in the state i.
If we maximize ln Qs {1} subject to the constraints

Sm=M, IZmE =E, ' @.11)
1 1 , )
we arrive at (4.8),
my exp (— BEi) exp (— BEi) .
g=h= TZep—pE) T Z ¢4.12)

as it should be. We can, as before, identify = 1/k7. Note that
' mi/my = exp (— BE)/exp (— BE)). (4.13)

The useful features of the Gibbs canonical ensemble are:

(1) The probability density depends on E and T.

(2) The additive property of In P; allows as to couple two canomcal
ensembles with the same i so that the resulting ensemble is again a canoni-
cal ensemble.
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(3) Canonical ensembles apply equally to macroscopic systems or
microscopic (atomic) subsystems.

(4) There is a strong resemblance between the probability density of a
canonical ensemble and the distribution function of classical statistics. This
is not accidental, because in the latter case we have an example of a sub-
system (one molecule) in an isolated system (the gas).

(5) As the system of interest is in thermal equilibrium with the heat
reservoir, fluctuations do not occur in temperature but appear in energy.

42 ENTROPY OF A SYSTEM IN CONTACT WITH A
HEAT RESERVOIR

The entropy of the ensemble is given by
Su =1k In Qu = k(ln M! — 3 In ml)

o~ k(M1in M — %m, In my).

The average entropy of one of the elements in the ensemble is
S = SulM. . ' ‘ - (4.14)
To determine S, note that
A/M) InQy = (A/M)EmIn M — ‘2 my 1n my)
. . i

= — X (mM) In (m/}1)
——32PhP, | .15

where P; = my/M is the probability that a single system chosen at random
is in the state i. Thus

=—kZPl P, ‘ (416

in agreement with (3.87).
The energy E; of the system is a function of ¥V and N. Therefore, the
partition function of the system, '

Z=2Zexp(— BE) = exp (— BE) + exp(—BE) + ...  (4.17)

is a function of ¥, N and B. .The terms in the summation of Z indicate
how the systems are partitioned among the various energy states, (4.13). .

AsR = ? P,R(E)) for the average value of a quantity R(E;), we can write

E = ‘EPtEl = Z"1 ? (exp (— BEY) E;

— — 243 F fexp (— BED] = — Z-* o [Z exp (— BE)
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18Z__ élnZ : @19

Substituting (4.8) in (4.16),
S = — kX P(—BE, — n 2)
i

~KE+klnZZP,

—kE + kInZ, | (4.19)
dS = k Edp + kBdE -+ kd (In Z). - (4.20)
Noting that Z = ,Z(B, V, N) and E; = E(V, N), we have

R = e85, M)

v
3 ‘;’;3 exp (~BE) |
olnZ \ ‘
N = B F,-‘Px(aE:/aM. } | 4.22) |

1
d(mz)_alnﬂzd3+alnde+aar11Vz aN

=—Edpg—8 [z P(oE[aV)y] dV — B [2 P,(aE,/aN)y] dn.

@. 23)
Therefore, on writing E = U, (4.20) becomes
dS = kBdU — k8 [2 P(3E[oV)y] dV — kB [2 P(oE[oN)y) dN
as
~@) s B+ @) v 2o
whence ‘
1T = (3S/0U)y, v = kB, : 4.25)
P|T = (3S/oV)y, y = — kB §P, (PEoV)y, (4.26)
—w/T = (3S/0N)y, v = — kB ?P: (OE)/oN)y. . '
Substituting f = l/kT in 74.19),
=UT)+kWnZ¥, N, T), 4.27)
and so the Helmholtz free energy F(V, N, T) is '
FV,N,T)=U~TS =—kThZW¥V,N,T), - . (4.28)
Z(V, N, T) = 3 exp [~ E; (¥, N)/KT], . (4.29)

This provides a complete thermodynamic description of the system In
particular,
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dInZ dln ZoT dlnz
E=U--= =" 5~ "1 (4.30)
(U _k #InZ
Cr= (ar)y SToTE @3

Dropping the suffix i, we can combine (4.6)‘and (4.28) to write the canoni-
cal distribution as

P(E) = exp [(F — E)/kT}, _ “4.32).
because C = 1/Z = exp (F/kT). , ' '

43 IDEAL GAS IN CANONICAL ENSEMBLE
For an ideal (Boltzmann) gas consisting of N molecules of mass m, -
E= 2 pi2m, . (4.33)
exp (— E/kT) = Il exp (— p’/2ka), (4.39)
Z= [2 exp (— p32mkT)) [2 exp (— pi/2mkT)]
[2 exp (—ps~/2ka)] = [2 exp (— P /2ka)]’" 4.35

We can replace the sum over discrete states by an integral over the phase
space,

N

where 1/N! comes from the Bolizmann counting, Thus the canonical part1~
tion function is .

- Lj‘m!dq, ...dq,;: dpy ... dpan | (4.36)

Z = rpaw [ exp [- EpylkT] dT

1 £ oy _
= VN[ ]’ exp (— pY/2mkT) d_p,] ; 4.37)

The integral can be evaluated by using l e-a dx ="(n/a)'ss,

VN (2emkT\Ni2  zN
Z= il ( o ) =7 | (4.38)
where z is the single-particle partition function, N = 1. We have
. 2nemkT ’l2 V
z= ?exp (—Be)=V ( m:, ) 3 = noV = noln,  (4.39)

where Be; = p}/2mkT, ng = 1/33 is called the quantum concentration ‘and
n=1/V is the concentration. The ng is the concentration associated with
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one particle in a cube of side A. Note that, in general, Z 7 2V,
Using the' Stirling formula nl = (n/e)", the Helmholtz free energy is
given by '

=—kTInZ =—NkT [Ve (Zn’r:;kT)s/s]
" = — NkT In (ez/N)
— — NkTIn (2/N) — NkT. ' (4.40)

Therefore, the translational contribution to entropy is
— (0F/3T )y = Nk In (ez/N) + 2 Nk
= Nk In [(VIN) (1A%} + £ Nk, 4.41)
in agreement with the Sackur-Tetrode equation.
We find that the knowledge of Z allows us to calculate S very easily.

The entropy (4.41) tends to infinity as T — 0. The third law of thermodyna-
mics assumes that for any system

Lim S = 0. 4.42)

T-0
This contradiction would not bhave occurred if we had used the original
definition (4.17) of Z where we have to sum over (discrete) states. The re-
. placement of sum by the integral (4.37) is not justified near the absolute
zero. At T = ( the lowest state (p = 0) becomes important, while its con-
tribution has been excluded altogether in (4.37). In classical statistics, since
P is a continuous variable and the size of cell in the phase space is not fixed,
we cannot estimate (4.42). For this we have to go to quantum theory.

44 MAXWELL VELOCITY DISTRIBUTION

The canonical ensemble is applicable both to macroscopic and atomic sub-
systems, When applied to a single molecule of mass m in a volume ¥V, we
can write (4.32) as

_P(E) VdT', = exp (F/kT) exp (— p*/2mkT) (V/h‘) dp. dpydp,. (4.43)

It gives the probability of finding the molecule in the momentum range
dp, dpy dp. at (s, Py, p:). The probability of finding the molccule in the
velocity range dc, dc, dc, at (cx, Cy, C;) can be expressed as

exp (FIKT) exp [— m(cy + ¢ + c2kT] (V m®|h®) de, dc, de,.

Let us now evaluate exp (F/kT; = 1/Z, (4.28). For N = 1, (4.38) gives
2 = z == V/»3. Therefore, the Maxwell distribution of velocities is given by

3,
dn (Cx Cys €2} ey dey de, = (2W_’;€‘T) . exp[—m(cs + ¢ +¢3)/2kT]dc, dey dc,,
(4.44)
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or the Maxwell speed distribution by
33 .
dn(c) de = ( Z?k_r) exp (— mc*2KkT) dmcde, (445

where ¢® = ¢ + ¢} 4 ¢2. The quantity dn(c)dc is the -probability that a
particle has its speed in dc at c.

Using e = §mc3, c’de = (2)V® de/mP?, we get the probability distribu-
tion that a molecule has translational kinetic energy between € and e + de,

dn(e) = 1/2 exp (— G’ kT) (kT) (kT )

= f(efkT) d(e/kT).
In Fig. 4.3 we show the plot of this energy distribution. The Boltzmann

0817 1/
\-2tesmkn)’ 2

e E/kT

]--1"

2
€/kT

Fig. 43 Maxwell energy distribntion. The Boltzmann factor ¢~¢/kT and the
density of states 2(¢/m kT)Y® are shown by dashed curves.

factor exp (— €/kT) decreases and the term representing the densny of states,
2(e/nkT)\?, increases w1th energy so that the total dlstnbutlon has a

maximum,
45 EQUIPARTITION OF ENERGY

From (4.18, 38), for the case N = 1,

U=E = (—Zaﬂ -

Thus thé average energy associated with each variable, like p,(i = 1, 2 or
3), which contributes a guadratic term to the energy, has the value 1/kT.
This can be verified by direct calculation. Suppose the Hamiltonian of a
system of particles is a quadratic function of the ¢’s and the p’s,

= § kT. | (4.46)
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H= ‘f(a:p? + by qi).

For the particular term a,p? the average energy is

a [ ot exp (— antiT) dp./ ! exp (— aplfkT) do,

=~ kT 5%; I exp (— aip}/kT) dp, /I exp (— api/kT) dps ’
. 0

0
= — akT @foa) [ln [ exp (—agtier) dp.] .
0

= — akT (3foa) [In (wkT/ayi?] = } kT. 4.47)

The same résult is obtained for a term like b,gf. Thus each term in the H
which depends quadratically on a p; or a g; conmbutes a mean energy of
kT2 (theorem of equipartition of energy).

4.6 GRAND CANONICAL ENSEMBLE

In going from the microcanonical ensemble to the canonical ensemble, we
relaxed the condition of constant energy E. This simplified the calculations
in thermodynarfiics where the exchange of energy is a common pheno-
menon,

In chemical processes the number of particles varies. In quantum pro-
cesses also particles are being created and destroyed. Therefore, it would be
useful to relax the condition of eonstant total number of particles N as
well.

In the canomcal ensemble the subsystem could exchange energy, butnot
particles, with the reservoir. We now consider the grand canonical ensem-
ble in which the subsystem (s) can exchange energy, as well as particles,
with the reservoir (r) (Fig. 4.4). The variable N is replaced by the variable
u, the chemical potential per particle. The composite system (c) is again
represented by a microcanonical ensemble, Fig. 4.4b, because the total
energy E, and the total number of particles N, are fixed,

E.=E+ E, (4.48)
N = N, + N, ’ 4.49)
AI‘c (Eﬂ Ncn E.n Nr) = AP; (E.n N:) Arr (Er, N,). (4.50)

The phase space'now depends on the number of particles N;in the quantum
state i of the system, because it affects the number of dimensions. A parti-
cular quantum state of the system is denoted by Yn ;o .

We wish to find Py, the probability in the ensemble of finding the sys-
tem (s) in a given state i when it contains N; = N particles and has an
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F]g. 4. 4 (a) Isolated composite system (c) consisting of the system (s) and the
reservoir (r) in thermal and material contact. (b) Grand cononical
ensemble of replicas in thermal ard material contact (exchange of
energy and particles across the conducting and porous walls) forming
a lattice,

energy E; = Ey;. Following the arguments similar to those leading to (4.2),
Pyi (Eniy N) ¢ AT, (E; — Eny, Ne — N). _ .51
Smce (s) is very small compared to(r), Eyy € E, and N £ N,.

10 AT, (E. — Eyy, No — N) = In AT, (o, N) — (a In AI‘, E,, N) )

_ {310 AT, (&, N,)) N
) o @.52)

The derivatives are evaluated for E, = E,and N, = N, and so are cons-
tants characterizing the reservoir (r). We can denote them as, (3.29, 39),

_ alnA[‘,) _ __(a'lnAl",)
B ( 5 Joer TN, Jypene @

wﬁeré the chemical potential u represents Gibbs free energy per particle,
(3.64). Then (4.52) reads _ ‘

AT, (E; — Eniy N, — N) = AL, (E,, N,) exp [— B(Eyy — Nw)l.  (4.54)
Since AT'W(E,; N,) is just a constant independent of i and N, (4.51) can be
written as

Ey -Ec

Pyi (Eyi, N) = C exp [— B(En — Nl 4.55)
C = B AT, (E, N)), (4.56)
where C and B are constants independent of i and N. This is called the

grand canonical distribution.
The constant C in (4.55) is determined by the normalization condition

\Z Pyt (Ewi N) = CZ exp [~ B(Ewi— N = L.~ (4.57)
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Then

P B 1) = SRI= BB = W, g 3 expl— B —Npl, 4.59)

where 2 is called the grand partition function. It is the sum of the canonical
partition functions Z(N) for ensembles with different N’s, with weighting
factors exp (BNw), )

- 5 2o @V, ZWN) = Zewp(—BEw) - (459

Consider a grand canonigal ensemble of M(M —» o) elements (Fig. 4.3b).
The state of each element is characterized by the energy Ey; and the number
N of particles in it. The statistical weight Qga of the ensemble associated
with a particular macrostate {my} is

M) :
QIM {mNi} = oo mNil‘ ) . ) (4.60)
N i .

To find the most probable macrostate. {myg) we maximize Qg {my}
subject to the constraints which are generalizations of (4.48,.49),

b my;, = M,
N" . ' ot

2 my; EN, =FE,
N, ¢

£ Nmy, =N, - 4.61)

N.i o
where N, is the total aumber of particles in the ensex_nble. The result is -

myi _ p o _ _ exp [~ B(Em — Nu)]
i 2 oxp [~ B(Ew — Ne)l”

M 4.62)

as expected, with the identifications B = 1kT, and « = — p/kT for the
Lagrange multipliers. Here « (or p) is determined by the last condition in
(4.61), The identification of p follows from the fact that we get back the
canonical distribution if assume N to have a fixed value.

We can again define entropy by

S = k 2 Py In Py, : (4.63)
X : -
- Substituting (4.58) in (4.63) and noting that Ey, is a function of ¥ alone,

S = kBE + kIn & — kBNg, . 4.64)
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a5 = KBdE — 8 | 3 PudOEwfoV)] AV — ud,
B = 1/kT, o ‘
—- E Pu@Enldn). (4.69)
We can now rewrite (4.64) as
Q= U—TS—pN = —P(T, V, p)V = — kT la (T, V, ), (4 66)

where E = U and 0, is the grand canonical DPotential, which determines the
entire tl_:ermodynamics. In particular,

F=U—TS =0, + pN,
G=U;TS+PV=,.JV

= — @Q/0T)pys N = — @Qy0uly, 1. T @6
Note that from (4.58, 66), dropping the suffixes,
P(N) = exp [(Qg — E + Np)/kT], (4.68)

£ = exp(— QkT) = 3 exp (Nu/kT) [ exp[— E(N)/RT] dT(H). (4.69)
4.7. IDEAL GAS IN GRAND CANONICAL ENSEMBIE
We can write for an ideal gas

200 = i fewi- EQVYKT] dr()

2rmkT\%¥2 2N
=7v‘|(T) =§.ﬂ, , (4.70)

& = 3 oMkt Z(N) = '}3 (’—-—'M ’)f = exp (zer/AT) = exp (z').) @)

where we have used the series expanslon e = 2 (*"/nl) and mtroduced
the convenient notation n.for the absolute activity (or SJugacity),

N = erlrT, (4;72)
It follows that :
Q, = —kT'In & = — kTzny =— kT eshtT (ZL:;H )"' v,  @.7)
whence ‘
(.99 _ L, QrmkTyn 5 u
s (a(kT))y, = v G DY e (5_ l?i) 4.74)
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— a0 2k T)¥®
N=— (3‘:')? .= V(——@h,ﬂ- T = — QKT. 4.75)

The relation (4.74) is the Sackur-Tetrode equation. From (4.75) we get the
chemical potential per particle for an ideal gas, '

=—kTln [(V/N) QrmkTPRH) = — kT In (z/N) = kT In (ning),
(4.76)

where n = NJV is the concentration of particles and ng = 1/3%, (4.39). Thus
@ increases with increase in n. We see from (4.72, 76) that for an ideal gas

Nais directly proportional to the concentration. The pressure is given by
(4.73, 75), :

P = — (8Q,/oV)r, , = kTN|V, 4.77)

which is the perfect gas law.
From (4.58, 69, 70) for the ideal gas

1 — (En; — Ny}
Pt (i, NY = 5w exp [—( M Nep)/kT} (4.78)

Let us take the sum of Py; over i for a given N, (4.70). This gives the pro-
bability Py that a volume V of the ideal gas at equilibrium will happen to
have N molecules in it, 1rrespect1ve of the energy of the subsystem,

oo S exp (— Eni/kT)
ZF ' TNIRNTTC

Nu/kT 1
“& N I"‘P[ E(N)/kT} dT(N)

= (1/%) eNw/kT Z(N), (4.79)

Py =

or
Py = exp [(Q, + Nw)/kT) Z(N)

— [N\N zN 1
=exp(—N)(i—v) T = 1D (— MW, 480

where in the end we have used (4.75, 76). This is the Poisson distribution,
which exhibits a maximum near N == N. Thus the bar can be dropped from
N and (4.66) can be taken as a proper definition of Q. '

48 COMPARISON OF VARIOUS ENSEMBLES

We have shown that all the three ensembles, microcanonical (Fig. 1.9),
canonical (Fig. 4.1) and grand canonical (Fig. 4.4) are applicable, in prin-
ciple, to the determination of the thermodynamic properties of a system.
The three ensembles are compared in Table 4.1. As far as thermodynamic
calculations are concerned, it is simply a matter of convenience which
method is followed All of them give equivalent resuits. Usually, the most
convenient from the point of view of factorizability of the partition func-
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tion is the grand. canonical ensemble. It is possible to construct other
ensembles as the need arises. An example is of 7-P distribution with in-
dependent parameters (T, P, N), and volume variable.

The relation between the grand canonical ensemble and the canonical
ensemble is in some sense similar to the relation between the canonical and
microcanonical ensembles. The description of a subsystem by means of the
microcanonical distribution ignores fluctuations in its total-energy while
the canonical distribution takes it into account. However, the latter ignores
the fluctuations in the number of particles (that is, it is microcanonical with
respect to the number of particles), whereas the grand canonical distribu-
tion takes this into account (that is, it is canonical both as regards energy
and the number of particles). If we neglect fluctuations in N, we have
Q, + uN = F and the distribution (4.68) reduces to (4.32). '

49 QUANTUM DISTRIBUTIONS USING OTHER ENSEMBLES

Canonical Ensemble
The canonical partition function (4.17, 37) for a system is

zZ = j exp [~ E(g, p)/kT] T (classical), (4 81)
Z = 2". exp (— E;/kT), (quantum). - 4.82)
For a system (N, V, T) the canonical distribution is
— exp (= BE)
P i Z »
where 8 = 1/kT, and P, is the probability for a given system in the ensem-
ble to be in the state i. :

We can use (4.83) to describe a sytsem (N, ¥, T) consisting of non-inter-
acting bosons or fermions, The wave functions, occupation numbers and
macroscopic constraints are

W) (ny, ngy ...y 1y, o0d), (BE),

¥ — { ' 4.89)
YA (ny, nyy ...y By, o02), (FD), .

(4.83)

0,1,2,3, .., (all i, BE),
n = (4‘85)
Oorl y (all i, FD),
Tm=N, Tmq=3E=E, (BEFD). (4.86)
The canonical distribution (4.83) is
' exp (— 2 meykT)
P(n,,nay ..oy, )= ! 4.87)

2 exp(—2 n,-e,/k'T)’
{my . !

where the summation in the denominator is over the set of all n; satisfying
(4.85). _ ,



78 STATISTICAL MECHANICS

The mean value of n is given by the average over the ensemble,

= 2 mP(u} = - kT 2 2 ‘nz - (4.88)

where » :
Z = 2 exp (— E mefkT) = Z II exp (—mefkT). (4.89)

The evaluation of Z, and therefore of #;, is difficult because of the restric-
-tions on ;. We do this here for the FD case.

The constraints m; = 0 or 1 and S, = N can be incorporated in the
definition of Z by using the Kronecker delta (not to be confused with the
Dirac delta functlon) :

3(n) == forn=4+1,4+2,.., .
=1 forn=0, ' _ (4.90)

which can be written as

3 = 5 I e""are——fc [ em o, @9

-

where « is some arbitrary real number. Then

Z= 2‘ 3 l"Iexp(—-n,c,/kT)a(N—}:n,)
. i

ny=0 nj=0

e*N e 1
= ] M S exp{— [(e/kT) + « + i6] m} db
™ A 1 m=0 »

aN 4 N ’
=5 f 0y do, _ (4.92)

f(8) = eN I (1 + by e=), b; = exp {— [(/kT) + o}. (4.93)
i
The absolute value of f(0) has a sharp peak at 6 = 0. We can choose «
-such that dfjdd = 0 at 6 = 0. Then the phase of f(0) will not change rapidly

at ® = 0, and most of the contribution to Z will occur around 6 = 0. For
convenience we work with the slowly varying function In f(6), such that

d
[33 In f(e)]’_o =0, (4.99)
Then N is determined by '

- by ‘
N= 21 o - (4.95)
i
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and

f(0) = exp [lnf(ﬂ)]
- exp{ln 70) + [ 4 1n ﬂe)] o+ [ [ m ﬂﬂ)] 02+ }
= f(0) exp (— aN0%2), a= [ a5 In f(ﬂ)] 4:96)
It follows that ' '

Z = e;_: f0) ]’Aexp (— aN©%2) do

= Gy SO | @
and from (4.88) ' '

ii,—-—kT 0 an

_ 3 19 (— l/kT)b, z( b )gci]
—kT[N——'--z-a—';] + l+\bl 4 l+bl ael

b

=3k "“‘+1+b o (4-98)
neglecting the small quantity } k7T 9(In a)/3¢;. Thus*
A= ! (FD). 4.99)

exp [a+ (kT + 1"

The derivation is very simple and direct if we use the grand canonical
ensemble due to greater factorizability of the grand partition function.

Grand Canonical Ensemble
The grand partition function (4.59) is -

ZF— T Vs Z(N) = 2 ZexpB3(w—e)n] -
N=q {ni} v !

N=0 .

=D D orl-beat e e Bulrin + b

N2 i ion (4.100)

*The derivation given here is after G. Speisman. (see, B.A, Desloge, Sratistical

Physics, Holt, Rinehart and Winson, N.Y., 1966, appendix 12). Similar arguments are

- given by J.S.R. Chisholm and A.H. de Borde, An Introduction to Statistical Mechanics,
Pergamon Press, London, 1958, pp. 19-22. :
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In the grand canonical ensemble the limitation to a specnﬁc value of N is
removed as reflected in the summatlon .
- Neo
If we first sum over all the n,, ny, ..., for fixed N, then sum over all
values of N from 0 to oo, the result of this double summation is equivalent
to summing over all values of »,, n,, ..., independently of each other. Every
term in the first case of double sum appears once and once only in the
second case of summing each n; independently. This is easily checked.
Therefore,

Z = E "}: oo XD [— Bty + Ngey + ...)] €xp [Bp(my + 1y + ..)]

- 1,1'{ Sexp (o — enl} = N2, 2, = Mi::o exp B — e)n]. (4.101)

We see that'the grand partition function is easily factorized. The reason
behind it is that the occupation numbers ny, n,, ... are not constrained to
add up to a fixed number. As a result the statistical distribution for each
single-particle state is independent of the presence of other .single-particle
states.

In (4.101) the sum E extends over the values 7, = 0, 1, 2, 3, ... for the

bosons (symmetric wave function) and the values n; = 0, 1 for the fermions
(antisymmetric wave function). Using the expansion (l —x)l= 3 x| x| < 1,
=0

we get for the bosons
26 = I'I { zo exp [B(» — ]}
Bi=

. 1 v
= —cpBe—a

For the fermions the result is obtained directly,

., n < gforalli, (BE) 4.102)

2 =71;[ [ z exp (B(@ - e,)n,)]

a=0 or1

~0{ +epl@—al @D (4.103)

From (4.66, 67) and the definition of grand potential Q; = E — TS — wN,
we have for bosons

O = — kT In Z®
=—kTShn{l—exp - =207, (.10
i
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Q%Y = kT In {1 —exp [8(s — &)]}, - (4.105)
and- . )
N =~ @Qufouly,r = — 2 (0Qufop) = S, (4.106)
S)
==t — e 2 ([l - exp (e — )]
—kr B exp Bl — Ef)] _ 1 (BE).

1 —exp[B(p — «)]  exp [B(e —w)] -1’ 4.107)

This agrees with (2.65), provided g, = 1 (single-particle state), and
o = —fu = — p/kT. . : (4.108)

Note that « depends upon temperature.
y For fermions the grand potential is

QW = — kTl 2@ = —~kTE1n{l + exp [B( — &)]}
. i ' _
=30, : (4.109)
i .
and the distribution is

. 00f)
==l = kT {ln [1 -+ exp (ﬁ(u — )}

— oy Bexp [a(u—enl _ 1
IR BTy (] e Y Ty
: (4.110)
in agreement with (2.66), provided g, — 1 (single-particle state), and
o = — Bu = — u/kT. We can imagine the ith single-particle state to be our

system and the remaining single‘particle states to be the heat and particle
reservoir. Exchange of energy and particles occurs on collision.

~ The sum in (4.82) is over all microstates or quantum states of the
system. The energies of the various single-particle states E; are not necessarily
different. Then the sum will involve many repeated equal terms given by the
degeneracy. To include the degeneracy term g;, the partition function (4.82)
can be expressed in an equivalent way as a sum over the different energy
levels and the degeneracies of the levels,

Z = E g exp (—BE,), (all E; diﬂ’erent). (4. 111)
(levell)
The form (4.82) is used for simplicity but for actual final calculations one
must remember to include g;, if the sum is over the energy levels.
From (2.72), for an ideal gas

e = exp (- pfkT) = V/N

> 1, (classical limir), (4.112)

(VIN)/A$ = 0.026 M3/ T52/P, @.113)
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In the grand canonical. ensemble the limitation to a specnﬁc value of N is
removed as reflected in the summatlon E
N=¢
If we first sum over all the ny, n,, ..., for fixed N, then sum over all
values of N from O to oo, the result of this double summation is equivalent
to summing over all values of ny, n,, ..., independently of each other. Every
term in the first case of double sum appears once and once only in the
second case of summing each n, independently. This is easily checked.
Therefore,

Z=2 Z ... exp [~ Blmey + nyey + ..)] exp [Bu(my + 1y - .

= I {Zexp [ — e} = 12, Z, = mi::o exp [B(n — ). (4.101)

We see that the grand partition function is easily factorized. The reason
behind it is that the occupation numbers ny, n,, ... are not constrained to
add up to a fixed number. As a result the statistical distribution for each
single-particle state is independent of the presence of other . single-particle
states.
In (4.101) the sum X extends over the values 7, = 0, 1, 2, 3, ... for the
n

bosons (symmetric wave function) and the values n; = 0, 1 for the fermions
(antisymmetric wave function). Using the expansion (1 —x)~1 = }: x", | x| < 1,

we get for the bosons

ZS =11{ 3 exp [B(r — ejm]}
i ni=0

i 1 \ I3 P -
= 1"1 T—exp B =9 p < ¢ foralli, (BE). §4, 102)

For the fermions the result is obtained directly,

204 =71;[ [ m;ﬂ exp (B — e:)n:)]

=O{ +exple@—alh, (D) (4.103)

From (4.66, 67) and the definition of grand potential Q; = E — TS — uh,
we have for bosons
O — — kTIn

= —KkTZIn{l—cxp [B(u — &)} = Z Q57 (4.104)
i
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O = kT In {1 — exp [B(» — &)]}» (4.105)
and-
N = — (0Qqfou)y,r = — § (0Q01/00) = 2 i, (4.106)
(S)y
= — as;:, - kT—a— {tn [1 — exp @(e — )]}
= kT B exp [B(u - 5!)] — 1 , (BE)

I —exp[B(n— &)  exp [B(e —w)] —1 '
(4.107)

This agrees with (2.65), provided g; = 1 (single-particle state), and
= — Bu = — p/kT. : (4.108)

Note that « depends upon temperature.
: For fermions the grand potentlal is

0N = kTl W = —kT z In {1 + exp [B(x — e,)]}

= §Q‘gf), . : (4.109)
and the distribution is
80y
B=— i = kT2 g (n 11+ exp (B — e}
B exp [B(p — )] 1
= kT = , (FD
TtepBla—e)] apBa—m+1 &
(4.110)
in agreement with (2 66), provided g, = 1 (single-particle state), and
a = — Bu = — p/kT. We can imagine the ith single-particle state to be our

system and the remaining single-particle states to be the heat and particle
reservoir. Exchange of energy and particles occurs on collision.

" The sum in (4.82) is over all microstates or quantum states of the
system. The energies of the various single-particle states E; are not necessarily
different. Then the sum will involve many repeated equal terms given by the
degeneracy. To include the degeneracy term g;, the partition function (4.82)
can be expressed in an equivalent way as a sum over the different energy
levels and the degeneracies of the levels,

Z=3gep(~pE) (I E different). @.111)
(levels)
The form (4.82) is used for simplicity but for actual final calculations one

must remember to include g;, if the sum is over the energy levels,
From (2.72), for an ideal gas

/N

e = exp( wkT) = > 1, .(classical_ limit), (4.112)

(VIN)/AS = 0.026 M3 T52/P, (4.113)
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where P is the pressure in atmospheres and M is the molecular weight in
atomic mass units. The right side of (4.113) is about 10¢ for air at NTP, 10~
for electrons at room temperature, and 1 for helium gas at 2K, 1 atm. Thus
the classical statistics can be used for air, fails for electrons, and nearly fails
for helium gas, under above conditions. When the classical distribution fails,
we are in a region where the distribution is degenerate.

4.10 THIRD LAW OF THERMODYNAMICS

The entropy defined in terms of the classical phase space, ¢ = In AT, gives
only entropy differences, It means that classically the entropy is defined up
to an arbitrary additive constant only. Therefore, in classical thermo-
dynamics the third law of thermodynamics is needed to fix the absolute value
of entropy as T —> 0. According to the Nernst postulate, the entropy of any
system vanishes in the states for which T’ = 0 K.
In quantum statistics we can define the entropy unambiguously as
o =InQE), E) = AT(E)W, 4.114)
where Q(E) is the number of discrete quantum states available to the system
with degrees of freedom f. At T = 0K, both fermion and boson gases
approach a unique ground state. For a discrete spectrum we can write (4.114)
as
Ormo = 1N &eer), . (4.115)
where g¢g,) is the degeneracy of the ground state. At T = 0, g is unity
when there is only one state of the system having the lowest possible energy.
If the ground state is a single pure quantum-mechanical state, gz = 1,
we at once get
Ore = 0. 4.116)
It is generally believed that the ground state of any system is non-
degenerate, g(;,) = 1. This cannot be proved but is found to be true in all
cases checked. As (4.116) depends on the discreteness of energy levels, itis
a consequence of quantum mechanics.

411 PHOTONS

The BE statistics is applicable to photons . (spin 1). For photons p = h/A
= hv/e, dp = hdy/c, and number of states for photons with momenta bet-
weenp and p + dp is
- __4mpdp _ Ve
gp)dp = 7 4-;:1/‘-:-s dv, “4.117)
where V is the volume of the enclosure for blackbody radiation. As there are
two independent directions of polarization,

8W) dv = 8rV(v¥/c®) dv ’ (4.118)
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for the total number of states lying in the frequency range dv atv, Then tﬁe
BE distribution for photons is

I OY. I dv
exp (¢ + Be)—1 il ¢ exp (x + Be)—1 (4.119)
where e = Av. The energy density udv = (dn/V)e in the specified energy range
is .

dn =

8nhv® dv
¢ exp (x -+ Bhv)—-1
This is the Planck radiation formula if we put fdr photons
« = 0,8 = 1/kT. (4.121)
The requirement « = 0 (or u = 0) simply means dropping the condition

3N = 33n = 0, for the fixed number of particles. Photons differ from other
bosons in that their total number is not conserved. Thus, for photons

8nchv® dv
cd " exp (W/kT)—1

Such a derivation of the Planck law* was first given by Boset.
For hv < kT, exp (hv/kT)—1 = hvkT,

udy = (4.120)

udv = (Planck law). (4.122)

udy = s’sz Wy,  (Rayleigh-Jeanslaw). = (4.123)
For hv > kT, exp (hv/kT)—1 == exp.(hv/kT),
udy = ¥ exp (~hkT) by, (Wien law) (4.124)

The total energy denszty is

o
" 8nh vidy
7=ju<v,r)m—7fm

wh (kT xsdx 8ntkt
’ca_(T) f =1 = T b = T3 (4.125)
(1}

It

.where x = hv/kT and the integral is given by (Appendix IV)
T(4) =4 = 6%(4) = =¥/15. (4.126)
The result (4.125) is called the Stefan-Boltzmann law.
With no restraint on r,, the partition function is

Zu (T, V)= P 2 - €xp [ (e + Ppe; + )

ny=0 ng=0

*M, Planck, Ann. Physik 4, 553 (1901).
+S.N. Bose, Z. Physik, 26, 178 (1924).
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1
= ,l_lo [.. 3T exp (~Bam)] = I T_eip_('Te,‘)
4.127)
so that
In Z, =—§ In [1—exp (—Be)]
- _f' In [1— exp (—@hv)] g(v) dv
=—§cE‘Z vi dy In [1—exp (—Bhv)), (4.128)
0
F(T, V)=—=kT In Z, (T, V)
= EVEL [ 2.y 1 [1—exp (—B)
SaVET [,
= c'ﬂ’h‘-{ x3dxIn (1—e%)
=—31 bVTS, (4.129)
where x—-ﬁhv, b is given by (4.125), and the integral is cqual to
3 I d(x%) In (1—e>)= [&x” In (l—e"") :L x'iblc = :—;'
 (4.130)

Note that Z can be interpreted as the grand partition function for an ideal
Bose gas with p. = 0. From (4.129),

S =—(8F[oT)y = & bVT?,

P =—(dF|oV)y = % bT*,

E = F+ TS = bVT". (4.131)
‘The radiation pressure at the surface of the sun (7'=6000°C) is

_ 8nd(kT)* _ 8 (1.38x 1010 erg deg~x 6273 deg)*
=45 hc)® 45 (6.62x10-¥ erg. sx3x10® cm s-1)

‘= 39.2 dyne/cm?.

4.12 EINSTEIN’S DERIVATION OF PLANCK'S LAW: MASER AND
LASER

An atom emits radiation if an electron makes a transition from a higher
energy state to a lower state m—>n. The transition can be either spontaneous,
or induced by the presence of some external radiation. If N, is the number
of atoms in the state m, the number of spontaneous radiative emissions per
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second is NmAmn, Where Amn is a coefficient of proportionality. On the other
hand, the number of induced emissions is NpBpy u, being proportional to
the energy density u of the external radiation present. The A,,s and B, are
called Einstein coefficients.

We can also have transitions from the state n to the state m, n->m,
induced by the external radiation. The corresponding number of absorptions
will be N,B,m u. While the spontaneous radiation is incoherent, the induced
radiation has the same phase as the external radiation.

When thermodynamic equilibrium is obtained

* NpAmn + NpBpp 6. = NoBpy u. 4.132)
Using Boltzmann distribution for the energy distribution of the atoms
Nm/Nn = exp (—hv/kT), (4.133)
where Av is the energy difference between the levels m and n,
' A Amn! Bonn

g e . mn o _AmalBmn
U = eXp /kT) Bum—Bi = &xp (hvRT)=1" (4.134)
In the last step we have put B,, = Bm, The B,,, being a transition
probability, is a matrix element of a Hermitian Hamiltonian, and so
symmetric. )
For very large T, hv € kT,

U o (Amn/Bm;l) (kT/hv).
Comparison with the Rayleigh-Jeans law (4.123) gives
Awn|Bmn = 8Thv¥[c3. (4.135)

Einstein obtained the Planck radiation law from (4.134, 135).

The radiative transitions from a state m to a state n are given by
(Amn + # Bna) N, and the inverse transitions by By, u N,. For atoms kept
in a radiation field of density u, this incident radiation will emerge from the
atoms with intensity given by (Nx—N,) ¥ Bym. It is either amplified or
reduced with respect to the incident radiation, depending upon

Nm > Na (amplified), (4.136)
[S
Np < N, (reduced). 4.137)

The condition N,, > N, is known as population inversion, or sometimes as
a negative temperature condition since use of Boltzmann distribution (4.133)
implies T negative. More generally, for degenerate levels, the condition for
amplification is N, > (gm/gx) Na. The population inversion can never occur
in thermal equilibrium. Its non-equilibrium nature gives rise to an interest-
ing effect discussed below.

Let a light beam of intensity /(v) and frequency range v to v + dv pass
through a gas of atoms contained in a thick cavity, where significant
attenuation of the beam occurs. The beam travelling in the x-direction with
velocity ¢ in the gas, traverses a thickoess dx in a time df = dxjc. Since

or
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the induced radiation has the same phase as the external radiation, the
change in intensity of the beam is

—dI(v) dv = hv Bum (dNyy—dN,s) I(v) (dx/c), (4.138)
where N,, is the number of atoms in level # which can absorb radiation in
the frequency interval dv at v,.and N, in level m which can emit radiation
in the same interval. The experimental Lambert’s law for the attenuation of
radiation is :

I(v) = I, exp (—a,x), (4.139)
where I, is the incident radiation and a, is the absorption coefficient.
From (4.138, 139)

I ay dv = ’g Bum (Ny — No), (4.140)

where v is the center of the absorption line and the integration is over the
width of the line. We have thus related the transition rate or a, with B,,.
When N,, > N,, the integrated absorption coefficient is negative. This means
that the incident beam is amplified on coming out of the cavity (matter).
For an input beam of only several watts it may produce a highly mono-
chromatic flux of many mega-watts/cm?. The maser (microwave amplification
by stimulated emission of radiation) and laser (light...) devices work on
this principle. Note that the population inversion cannot be achieved by
resonance absorption of radiation at the transition frequency v = (E,,— E,)/h
of the two states. However, it can be achieved for levels m and # if a third
level is also involved. Let us call the ground state as level 3, and the first
and second excited states of the atom are called 1 and 2. respectively (Fig.
4.5).
2

Anl 1y B2
iy

| |
¥p P23, }‘n"za
4 3

Fig. 4.5 The atomic energy levels and transition rates for a three level laser.

.

A light beam (pump) of energy density u, excites the transition 32, so
that N, atoms are in state 2. The fraction N,/Nof the total number of atoms
pumped up like this is very small (about one in a million).

An‘atom in level 2 can emit light in the transitions 2—>1 or 2->3. An
atom in level 1 can make the transition 1->3. For appropriate values of the
Einstein coefficients, it is possible to achieve the condition N, > N, for the
amplification of light of frequency v = (E,—Ey)}h.

The equations for the transition rates for a three-level system are general-
izations of those for a two-level system. Besides the pump beam energy u,,
we assume that some radiation of energy density u, is present at the fre-
quency v. For three populated atomic levels -



CANONICAL AND GRAND CANONICAL ENSEMBLES 87

Ny, + Ng+ Ng =N (4.141)

the rate equations are

st/dt =_N2A21—N2Ana + “sza (Ns‘—Nz)_"an (Nn—N1)’

dN,/dt = NyA;—NyAys + u,By; (N3—Ny),

dNgldt = Npdys + NyAyg—1pByg (N3—Ny). (4.142)
Due to (4.141), the sum of these three rates is zero. In the steady state all
the dN,/dt = 0. This gives N,, N, and Ny in terms of N, u,, u,. The expres-
sions are lengthy. We bring out the main features of the steady state solu-

tions as follows.
The pumping rate r is defined by

r = u,By, (Ns—Np)/N. . (4.143)

The rN is the net rate at which atoms are excited to state 2 by the pump.
The steady state conditions from the last two relations in (4.142) are

Ny (Asy + Buwy)) = N1 (A + By, 4.144)
N,d,3 + N,A;s = rN. (4.145)

We can solve them for N, and N,. From (4.144), Ny > N, if
Ay < 43 - (4.146)

that is, the atoms excited into state 2 must decay relatively slowly into
state 1, from where they rapidly return to the ground state 3. A gas of atoms,
for which (4.146) is satisfied, will amplify the radiation of energy density u,.

4.13 EQUATION OF STATE FOR IDEAL QUANTUM GASES

The nonrelativistic energy of an elementary particle (no internal degrees
of freedom) is just the Kinetic energy of its translational motion, e = p?/2m.
Under normal conditions (big box) the translationallevels are closely spaced
and so the discrete spectrum can be treated approximately as continuous
(quasiclassical). Then (4.117) gives '

gle) de = g, (2nV[h3) (2m)3® &2 de, g, = 25 + 1, (4.147)

where g, is the degeneracy associated with the spin s of the particle. The
g(<) de is the number of quantum states of energy between ¢ and € + de.
The g(e) is the density of states. In fact, it is the density of quantum states
because it refers to one-particle system and not to the states of NV particle
system. When multiplied by the distribution function f(e, T, p),

f(e, T, p) = exp [—(e—w)/kT], (classical),
1
T, p) = ,
T 10 = eI £ 1
it gives the density of occupied quantum states. The total number of parti-
cles in a system is then given by

(quantum),
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N = J_dN = If(e, T, p) g(e) de.

In general, if R, is the value of the quantity R in the quantum state n,

then we can write
R=Zfleg; T, ) Ry
n

=Zgfes T, ) Ry (all ¢ different),
t
as

- J’ fie, T, ) R(e) gle) de. |  (4.148)

Thus the sum over the quantum states can be transformed under appro-
priate conditions (closely spaced energy levels) to an integral by the substi-
tution _

T (.oor 3 g,(;..)—)j(.‘..)g(e) de. (4.149)

n
(states) (levels)

Using upper sign for FD statistics and lower sign for BE statistics,

_ 4 V2 de v
N = v = & 55 e J apl—pnzr ¢

" €Yt de

exp [(e—p)kT] £ 1’

- I edN = g, ZZ,V (2m) Sx (4.151)

Q, = F kT g, 2%" Qaye j 21n {1 & exp [(u—e)kTT} de.

_ . (4.152)
Partial integration of the grand potential gives
220 o[ e _
O =—83 G @)Y j S (IS I i
(4.153)
where we have used (4.66), Q; =—PV.
From (4.151, 153), for any statistics
PV = §E . ' (4.154)
Putting x = ¢/kT, write (4.153) as
4nV x3/2 dx
— 3/2 5/2
P =g Jp () (kT j ook 19
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The equation of state of the gas is determined by (4.150, 155) in terms of
the parameter p.
For er/kT & 1,

I x3/2 dx =I X3/2 [F—wikT 4 151 dx
) .

P + 1
0

:x]‘ X3 oulkT=x [| T ewl*T] d
= |

_— [ I X % dx F ewz[ X8 et dx]
0

3172
= 31:;/ en/kT [ 1F 25% e,./kr} (4.156)
nS;:aV (2m)¥/2 (KT)5/2 er/kT (1 F¢ 2-5/3 guikT),
(4.157)

The first term in (4.157) gives just the classical value (4.75) for g, = 1. The
next term is the correction to it. We can write ‘ '

Qp =—PV =—g,

MB ¥y . s 4
Q, = QM2 + g, E (2m)/% (KT)%/2 2T, | 4.158)
Using (4.76), :
1 he N 2
eukt _ 2 [ __ N
~ & (V(znmknsn) ’ . (4.159)
-we have, to the same approximation, for the equation of state
pv_nkr[14 N 4.160
- [ + g, ammk Ty ¥ | (4.160)

Thus, the departure from the MB statistics is large when for a given density
the temperature is lowered. This is a measure of the degeneracy. In the FD
case, the pressure increases due to the correction term, implying the
appearance of an effective repulsion between the particles. In the BE case,
it leads to a decrease in pressure, implying an effective attraction between
the particles.

PROBLEMS

4.1 Ifg(E)is the number of microscopic states of the system between E
and E + dE, then (4.8) implies’

zZ= [ e~55 g(E) dE.
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4.2

4.3

4.4

4.5

4.6

4.7

4.8

Use the Taylor expansion of In 4(E), $(E) = g(E) %, to show that
In Z ~ In g(E,)—BE,;,

where E,, is the energy at which g(E) e~*F has its maximum.
Find the free energy of a gas in a centrifuge of radius R, length/and
angular velocity w. Calculate the mean square distance of a molecule
from the axis.
Consider an ideal gas of N atoms. Assuming canonical distribution at
temperature T, find the most probable value E, of the total energy E
of the system. Compare it with the mean value E in the canonical
distribution. .
Show that Z = 2rkT/hw for an oscillator defined by

= (*2m) + Imorgh
Consider a system with given number of particles N, N, ... in con-
tact with a bath at temperature T and pressure p through a movable
wall. Its volume ¥, like the number of particles in the grand canoni-
cal distribution (T—p distribution), is also indeterminate. Calculate
the results corresponding to (4.58, 59) for this T-p distribution.
Approximating the integrand by the largest term use

Y— J’ Z(N, V) exp (—BpV) dV = I dV exp (—BpVim) ZWN, Vi)
0 1]

exp [_}a’lna%g\l, V) (V—Vm)2 ] to calculate the Gibbs free energy.
m

[Hint: The integral contributes near ¥, to In ¥ a term of the order
of InN&EN, soput —kTlnY = —kT ln Z(N, V,,) + PVms, where
Vo is given by 8 1n Z(N, V.n)/dV, =—p/kT].

Use (4.16) to show that P, which makes the entropy under the cons-
traints }:‘.P, =1, )‘:E,P, = E = constant maximum when the mean

energy of the system is E, exhibits canonical distribution.

[Hint: Maximize S -+ aF + bl].

Consider a system of two noninteracting types of particles whose
numbers 7, and n_ can vary provided ny —n_ = n = constant. Show

that
Z = exp (—Q,/kT)

5 P (Bn+ ) 559_,@{'.:.9—) I exp (—En(X)/kT) dX

LI !
-z (?Z’i) L VZZD),

where
z. = [ exp (Bus—E* (X)) aX,
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E@® =3 Bra)+ 3 E-(X),
jom) J=t

and I,(x) is the modified Bessel function of the first kind of order n.
Now show that

pe =4 215D, where Z = WZ T, o
I, (2)
4.9 By definition, Z(B) is the Laplace transformation of g(E),

ZP) = ‘71 exp (—BE;) = I eFE g(E) dE,
Eo

where E, is the lowest energy and the density of state g(E) > 0,
lim g(E) eE = 0 for « > 0. The inverse formula is
E-»®, .

1 p+io
8B = 5 | 2@ 5 ap.
B =i .
‘Show that for Z(B) = A/BN, we get g(E) = AEN"Y(n—1)!.

4.10 Consider a zipper 4B with N links. For each link there is a state of
energy O when it is closed and a state of energy e when it is. open. The
zipper can unlink only from the end .4, and the ath link can open
only when all the links 1, 2, ..., n—1 beginning from the end A4 are
open. Show that the partition function sums to

1 — e~ (N+1)¢/kT

2=

Find the average number of open links fof e > kT.
[Hint: See C. Kittel, Amer. J. Phys. 37, 917(1969)]



5
PARTITION FUNCTION

5.1 CANONICAL PARTITION FUNCTION

Even when quantum effects are negligible (classical limit), the' appropriate
language for the description of a system is provided by the quantum theory.
To characterize a system we should therefore specify the energy eigenvalues
and the corresponding wave functions for the system as a whole.

Consider a system 4 composed of two noninteracting dlstmgmshable
(localized) atoms a, b. The ope particle wave functions and energy levels
arety, Uy, ..., 4, ... and e, €, ..., €, ..., respectively. The eigenvaluc
equations are H,u(a) = ea #(a), and Hy uy(b) = ey wy(b). For the whole
system .

H=H, +H, ' R
W) = uya) ulb), oo ' (5.2)
e o B = e“—l—ew . (5'3)

The double index’ (i/y denotes a single state of- the composite: system
The one p?rtxclc caqonlml partition function is

z =D exp (Be), S )
and the canot;ical partition functlon for the whole systeﬁi s
Z=Zexp(-pE)=ZZexp[Blea+w)l (5.9)
We can write Z a8 =< ©ev e e
Z = [ exp (el 12 exp (el = z0°2 .(5.6)

where the summations extend over all quantum states of the individual
atoms a and b. :
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Since @ and b are identical, e,y = e; and .z, = z;. Then
Z =2, ¢$.7
and generalizing it to a system of N identical but distinguishable particles,
Z = N, (identical distinguishable particles). (5.9

If @ and b are indistinguishable particles, the wave function (5.2) must
be symmetrized (or antisymmetrized). Then the 2! ways of obtaining E¢/
in (5.3), €ar + €5y and e,; + €, correspond to only one wave function
W4 = ua) uy(b) + u(b) u)(a) for the symmetric case. Consequently in the
sum (5.5), for a given EY”, we have 2! terms in'the summation which differ
only in the particle labels. For example, the two terms exp [—B(ea; + €5)]
and exp [—B (esy + €2)] correspond to the same energy ES2. Because our
sum should contain only one term for each distinct ¥4, the summation (5.6)
is too large by a factor of 2 1, Therefore, for indistinguishable particles we
should replace (5.7) by
22, ) ' (5.9

1
Z =5

and (5.8) by

Z = 17]" zN, (indistinguishable particles), (5.10)

in agreement with (4.38). Thus, the Boltzmann counting appears as a natural
consequence of the symmetry of wave functions in quantum theory.

The use of (5.10) describes a ‘Boltzmann gas’. The molecules are iden-
tical (either bosons or fermions). When many more particle states than
particles are available, (2.71), the difference between bosons and fermions
can be neglected, and (2.64) used along with (5.10).

5.2 MOLECULAR PARTITION FUNCTIONS

For distinguishable particles forming a system we have to use (5.8). The
distinguishability for identical particles arises when the classical limit (2.28),
rav > A, holds and the particles can be treated as localizzd. Another exam-
ple is that of particles constrained to occupy fixed lattice sites as in a crystal.
Aside from localization any other measurable property of the particles such
as their internal state may be used to distinguish the particles or their states.
For example, consider a system of two diatomic molecules. The system can
be found in two distinct states

¥, = u(a, 1) u(b, 2), ¥ = u(a, 2) u(b, 1),
where u(a, 1) means the molecule occupying the translational state a is in
the vibrational state 1. In this case the occupation of distinct translational

quantum states provides as much ground for differentiation as was provided
by the occupation of distinct spatial positions in a crystal.
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In molecular system various internal degrees of freedom are only weakly
coupled to the external degrees of freedom and each other. Therefore the
total energy E of the system can be expressed as the sum of translational
(1), vibrational (v), rotational (r), electronic (¢) and nuclear () energies,

E = E(t) + E(v) + E(r) + E(e) + E(n). ¢.11)

To this approximation, we can write the total partition function Zr for the
system as

Zr = 2 exp (—BE)
= Zexp {—BEW) + EO) + E() + Ee) + E(n)]}

= [Z exp (~BE(r) ][5 exp (~BEO))]-[2 exp (—BE(]. -

= Z(t)- Z(v)- Z(r)- Z(€)- Z(n). , (5.12)
Using (5.8,10) appropriately, for a gass of N identical molecules,
Zy = [(INY) O] [z - [2(r) V- [2(e)]V - [z(m)}, (5.13)

where z represents the partition function for a single molecule. For the
translational motion we have used (5.10) because each molecule is free to
move about in the whole volume and so the states cannot be distinctly
labelled as in the case of solids. The factor (1/N!) multiplying [z()}" is
.appropriate only when there is no degeneracy (all molecules occupy different
quantum states). If the occupation number of a given state ¥, is much less
than 1, effects arising from symmetry imposed liniitations on # are unim-
portant and classical statistics applies. This requires a large number of
available system’s states for a given number of particles. Then the use of
(5.13) and ‘MB statistics with correct Boltzmann counting for the transla-
tional states is a good approximation. Exception will arise, for example, for
helium at about 2K, which remains a gas at this low temperature and the '
number of accessible translational states becomes comparable to the num-
ber of atoms N. Then we must use the BE statistics.
“Under normal conditions
z = X exp (—Pe), (5.14)
(l'u':es)

where the sum is over all the allowed quantum states of the molecule, or
equivalently _

z = Z g exp (—Pe), (different ¢), (5.15)

(lovals)

where g, is the degeneracy of the level /7 and the sum is over the energy
levels ¢ of the molecule. To a good approximation

E; roml = €(t) + &(v) + ..., (5.16)
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zp = z(t)-z(v) - 2(r) - z(€)- z(n), (5. 17)
so that (5.13) simply reads
= zZy/NL. - (5.18)

Thus the problem of calculating Z; reduces to that of calculating z7.
5.3 TRANSLATIONAL PARTITION FUNCTION

The classical value of z(¥) is given by (4.39), v

z(t) = V/X3, A = h/(2zmkT)'/2 (5.19)
To derive this result in quantum theory consider the translational energy
levels of a molecule enclosed in a box,
-r.:'h’nx
2mLZ’
where L, is. the side length of the rectangular box along the x-axis. Similar

expressions exist for the motion parallel to y and z axes. The translatlonal
partition function is ’

ne=1,2,3, .., S (5.20)

€x =

20 = 2 exp(—and) I exp(—amd) 3 exp(—amd)
B y=l - Nywml Rgwi
(5.21)

where af = n’h*/(ZmL,kT), etc.

For ordmary temperatures and large size of the box the quantlty ®x iS
much less than unity. Hence, e2n? changes slowly as we vary n,. For
m = 10~ g and L, = 1 cm, we get Ae, = (n*h?/2mL}) (22 —12) =~ 10-%erg.
The corresponding characteristic temperature for the translational motion
is 8, = Ae/k = 10-1¢ K, At temperatures @,/T <€ 1the energy levels are
closely spaced, and we can replace the summation by integration

o . 1/8
Z exp (—ainp) = J- exp (—axny) dn, = 72‘— : (5.22)
LY 3 Ly
Using V = L,L,L, and a, = AnV%/2L,,
() =t Y s = 5@y g, (5.23)

23 oo, =

in agreement with (5.19). We have Z(t) = [z()IV/N! and F(¢) is given by

(4.40).
From (4.18), we get for the system
dln Z(t) d 1
Et) ——-—(—d‘3 )V -~ []n ¥ (z(t))"]y
A (N 23 y ¢l _3N 2
=11 (3) V@ =% .24

The entropy S(?) is given by (4.41).
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54 ROTATIONAL PARTITION FUNCTION

For a diatomic molecule the rotational energy levels are given by*
«r)=0¥2)JJ+ 1), J=0,12,.. (5.25)

where I is the moment of inertia of the molecule and J is the rotational
quantum number. The degeneracy of each level of a two-dimensional rotator
is g(r) = 27 + 1 since there are 2J - 1 values of the z component of
angular momentum. Therefore, )

) =B @J + 1) exp [—B(h2/2I) J(J + 1)] (5.26)

For I = mr? ~ 10~ (10-%)2 = 10~ g. cm?, Ae(r) o~ 10-8 erg, 6,=A¢/k
~ 10 K. When 6,/T € 1, we can replace the sum by integration,

z2(r) = I exp [—B(h2) J(J + 1) (27 + 1 dJ
0 .

KT _ T , M
7w =g - ¢-27)

where we have neglected unity in comparison to J and used

xe=a:* dx = (1/2a).

St

The rotational motion about the axis (third rotational degree of freedom)
is not counted at ordinary T because it involves the excitation to higher
states of electronic angular momentum.. Such excitations require large
amounts of energy as the moment of inertia about this axis is very small.

The total wave function {n of any molecule, including diatomic mole-
cules, can be expressed as

br = dinsernal Yr = Yo Yy Or Y G (molecule).

The ¢, specifies an électronic state. The product ¢, ¢, specifies a vibrational
level because such levels are associated with some particular electronic state.
Similarly, a rotational level is specified only when the product ¢, ¢, ¢, is
given. We call ¢, and ¢,, by themselves, the vibrational and rotational
eigenfunctions, respectively. '

The ¢, depends only on the magnitude of the internuclear distance and
s0 is not changed by reflection in the origin. For symmetry considerations
it is enough to examine

‘p = ‘l’d 4"-

*See, for example, B.K. Agarwal, Quantum Mechanics and Field Theory, 2nd ed.,
Lokbharti Publications, Allahabad, 1983, p. 59.
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The ¢. is described with respect to a set of coordinates rigidly attached to
the nuclei. It is unalter'ed if the nuclei rotate. We shall ignore nuclear spin
here.

For a simple rotator (heteronuclear), the ¢, are simply spherical har-
monics Y,y whose parity is (—1)J. This means, under a reflection in the
origin, ¢, changes sign only for odd J. If ¢, of the ground state is even and
does not change in chemical reactions and phase transformations, the ¢ is
symmetric for J even and antisymmetric for J odd.

For homonuclear molecules the interchange of nuclei can change the
sign of ¢. Then each rotational level carries two symmetry labels: plus or
minus with respect to a reflection in origin of all the particles symmetric or
antisymmetric with respect to an interchange of nuclei. A proper quantum
treatment of the indistinguishability of like particles gives the rule: symme-
tric linear molecules can have either even (0,2, 4, ...) values orodd (1,3, 5, ...)
values of J, but not both.

Therefore, when the atoms in a diatomic molecule are alike, the allowed
energy levels will yield a summation term just half as big as if the atoms
were different. In such a case we must divide the sum over all states by the
symmetry number o, = 2. We therefore should write

z(r) = T/(ss 8,), (linear molecule), (5.28)

where o, = 1 for an asymmetrical molecule and o, = 2 for a symmetric
linear molecule. The symmetry number is just the number of indistinguish-
able orientations of the molecule, Any molecule can only exist in 1/a, of
the rotational eaergy levels. Thus, o, = 2 for H;0, 3 for NH; and 12 for

methane.
For an ideal gas of diatomic molecules we have for T > 6,,

Z(r) = [z(NI = [T)(040, )W,
F(r) =—NKT In [T}/(c,8,)],
U(r)= kT? (8 In Z/3T) = NkT,

Cy(r) = d U)/dT = d%,[kT” a_ar‘ In Z(r)] ~ Nk (5.29)

Note that Z(r) does not exist for a monatomic gas. For diatomic gases
F=F(t)+ F(r), U = U(t) + U(r) = 8 NkT + NkT = § NkT, and Cy=3§ Nk,
where F(t) is given by (4.40). '
From (4.27), -
S(*) = k In Z(r) + U(r)/T

IT | 2% | |
— Nk (ln T+ 1), (5.30)

so that for one mole of gas
S(r) = R In (IT/s) + 177.68. (5.:31)
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5.5 VIBRATIONAL PARTITION FUNCTION

A djatomic molecule has one degree of freedom associated with the vibra-
tional motion of the nuclei along the axis joining them. The vibration of
the massive atomic nuclei is driven by the force provided by the electronic
molecular distribution which acts as a ‘linear spring’ yielding a harmomc
motion.

The Hamiltonian for a linear harmonic oscillator of frequency v is
H(x, px) = (p32m) + }kx?,  k; =m(2nv)2
The eigenvalues for this system are
a=0O+Pv, nr=0,1,2,3, ... (5.32)

It is obviously unreasonable to integrate* to find Z(v). Therefore the vib-
ration partition function for the molecule is

2(v) ="§o exp [—B(m + HAv]

= exp (— BAv/2) [1 + exp (—Bhv) + exp (— 28) + ...]
= exp (— Bhv/2) [1 — exp (—Bhv)]*
¢ = [2sinh Bhv/2)] ©(5.33)
If we count our energies above the zero-point vibrational energy, & = thv

=constant, as it represents vibrational motion of the molecule in its ground
stete, we get

1 .
Z(V) = l—_e—xm . (5.34)

At room temperature (300K), a typical value is v o< 6 X 1018 5%, hv/k =~
3000 K, and so z(v) =< 1.

For the whole system, consisting of N(distinguishable) independent
oscillators,

Z() =[O,
F(¥) =—kT In Z(v) = Neo -+ NKT 1n [1 —exp (—BA)],
dln Z(v) Nhv
—ar = Neo T GpEm—T1°
N(h)* _exp Bhv)

Cy(l’) = W.W. (5.35)

At low temperatures (kT < hv) these quantities tend exponentially to zero,
F(v) ~—NKT exp (—phv),
Cy(v) s Nk(hv[kT)? exp (—B8hv)..

U() =kT?

*For kT > hv the important quantum numbers n are the large ones (classical
limit). Then the summation can be replaced by integration to give Z(v) = (Bhv)~! =
kT/hv.
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At high temperatures (kT > hv),
F(v) ~#~N(3hv)—NkT In (kT) + NKT In (hv),
Cy(v) =2 Nk.
The contribution to entropy is
S(v) = k In Z(v) + UM)/T
= Nk T—?’ﬁ?ﬁiﬁ) + 8 Nk(%)mT}”)_l; (5.36)
In c.g.s. units ' ' :
B 40,3 x 10-40 P hy v

b=gm=" 1 &k~ zmxw0"°

where 6, is the characteristic temperature of vibration. For oxygen mole-
cule 6, = 2.07 K, 8, == hv/k == 2230 K, so that at 273 K for one g-mole,

2(t) : 2(r) : 2(v) = 3.4 x 10% ; 65.3: 0.16
S(t): S(r) : S(v) =35.9: 8.5: 0.004 (cal/g-mole K).
The values of parameters for a few diatomic molecules are given in
Table 5.1,

Table 5.1. The values of parameters for some diatomic molecules

Molecule 6,(K) Kg.cm?) 6,K) 2nv (rad/s)

H, 85.4 - 0 047x10-% 6210 8.13 X104
HCI 15.2 . 0.265x10% 4140 5.42x104
N 2.9 1.41 x10-38 3340 4.37x10%
0, D2 1.94 x10-1 2230 2,925 104

Cl, 0.3 11.6 x10-% 810 1.06x104

5.6 ELECTRONIC AND NUCLEAR PARTITION FUNCTIONS

Molecules can exist with electrons excited to states higher than the ground
state, The energy spacings of these states vary in irregular fashion. There-
fore, it is not possible to give a general expression for z(e). However, at
ordinary temperatures most of the molecules are usually in their ground
state whose energy is by definition set equal to zero. Thus,
z(e) = g(:r)(e) + &, exp [/‘ﬂil(e)] + ..
= ggr)(€), . (5.37)
where g () is the degeneracy of the electronic ground state.
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The nuclear energy can be taken to be zero. Except in atomic explo-
sions, the nuclei are not excited thermally to states above their ground
state. Thus, )
z(n) = gen(n, ), : (5.38)

where g((n, 5) is the nuclear spin degeneracy. If in a distomic molecule
the nuclei have spins s, and s,, we have gegny(n, 5) = (25; + 1) (254 + 1).

5,7 ‘APPLICATION OF ROTATIONAL PARTITION FUNCTION
For a heteronuclear molecule (like, HD or HCI), (5.26) gives
2 = 1§o @J + 1) exp [~J(J + 1)6]

= 14 3e~¥ | 5% 4 ..., (5.39)
where 0 — 8,/T.

High Temperature Limit 6 € 1: We can use EBuler-MacLaurin formula

3 0 =[£0 &+ 31O 1O+ 75 O (540
o

Putting f(x) = (2x + 1) exp [—x(x+1)8], we have I f(x)dx-=1/8 as shown
) ,

in (5.27), and
R0 =1, (0) =28, f"'(0) =— 126 + 126%--63, ...
so that }

Y 1,1
z(r_)==§( 1+§e+ﬁez+...).. (5.41)
For 8 = 1/20, the first few terms in (5.41) are
Z{P)elassient = 1/8 = 20,

(/e ( 1+ %e ) —20333 ...,

1/0) ( 130+ lls 62 ) —~ 20.33666 ... .

The thermodynamic functiens are

| - 1 1.,
F(r) =—NkT In z() =--NkT In [5( 430+ 550+ .. )]

=~ NeTIn 0-NiT1a( 1+ 30+ 50 )

— NkT In B—NlcTG 6+ 91—092 fo ) . 5.42)
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U =-1t 2 (agg)) NKT—NKT (% 0+ 313 62 4 ) . (5.43)
cvn =50 — N+ Nk (7‘13 6+ .. ) , (5.49)

where in (5.42) we havcusedIn (1 + x) = x—}x? + .... For T—> o0, Cp dec-
reases toward the classical value Nk. For T'—> 0, we must have Cp(r) = 0.
Therefore, the Cy(r) vs. T curve should show a maximum.

Low Temperature Limit ¢ > 1: The series (5.39) can be directly summed.
In Fig. 5.1 we plot z(r) and Cy(r) for the range 0< 7/6, < 2. For HD the
value of 6, is 64 K.

[ete) Ink

A
1
TIQr —

05

Fig. 5.1 Plot of z(r) and Cy(r)/Nk for a heteronuclear molecule,

The measured values of Cy(r) for HD agree with the curve in Fig. 5.1,
in the entire range from 32 K to several hundred degrees K, when molecular
vibrations begin to occur. The measured values for homonuclear molecules
H, and D, do not agree with this curve for low T' The explanation for this
anomaly is to be found in the consideration of indistinguishability of the
- mnuclei in the molecule. The H, and D, are the only homonuclear miolecules
with a low enough boiling point to exhibit this effect of quantum statistics.

58 HOMONUCLEAR MOLECULES AND NUCLEAR SPIN

So far we have ignored the contribution of nuclear spin to the partition
function because it cannot be excited at laboratory teniperatures. However,
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for homonuclear molecules its inclusion can lead to quantum states with
different statistical weights even in the ground state of the molecule.

We have already stated that each rotational level g = ¢u,J, is either
symmetric or asymmetric with respect to an interchange of nuclei. Here ¢z
is a function of coordinates. If we include the effect of spin of the nuclei,

an = v, (5.45)

where the spin wave function Xy is not a function of coordinates. The {xy
is essentially the product of the wave function for the independent rota-
tional and spin modes of energy storage, if we neglect electronic states and
consider translation and vibration separately in {7 = {ryt;.

The nuclei can obey either Bose or Fermi statistics depending on whe-
ther the spin S of the nucleus is integral or half-integral, respectively. For
nuclei with § = 0, 1, 2, ... (bosons) the Xg is symmetric in the sense that an
interchange of the two nuclei does not change sign of the molecular wave
function. On the other hand for nuclei with S = }, £, ... (fermions) the sign
changes. We thus have the scheme

S statistics YrN
integral Bose symmetric
half-integral Fermi antisymmetric (5.46)

If $=0, as in O,, the nuclei obey Bose statistics, and so Ygy = Yz is
symmetric. Thus the antisymmetrical levels are not occupied. If S = §, as
in H,, the nuclei (protons) obey Fermi statistics, and so Ygy must be anti-
symmetric. For the two protons 1 and 2 in H, the total spin is § = S, -+ S,
=0,1. The symmetry considerations give the spin wave functions Xy as
follows

G (8 =0, 8,=0 =2 (4§~} 4)

X (1,1 =144 ]

T (LO=272(4 } 4 }4) I( (5.47)
J

N L-)= 4}

where .( 1) denotes spin up and the superscript denotes the symmetric ()
or antisymmetric (¢) property in the two spins. Finally, for H, we have the -
combinations

Yrn S Xy Xz Spin deéeneracy statistical
2s+1) weight
a 0 a s(even J) 1 1e74+1
a 1 s afoddJ) 3 327 +1)  (5.48)

We find that the antisymmetric rotational levels g have a statistical weight
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of 3(2J+4-1) whereas the symmetric ones have a statistical weight of Q@J+1).

If § =1, as in D, or N,, the nuclei again obey Bose statistics and gy
is symmetric. The coupling of two spins yields § =0, 1, 2 with Xy symme-
tric for § =0, antisymmetric for S =1, and symmetric for S = 2. The
allowed combinations are

Urn S Ay Xz 28 +1 statistical weight

s 0 s s 1 17+ 1)
s 1 a a 3 327 +1)
s 2 s s 5 5274 1) (5.49)

Thus the symmetric rotational levels ¢z have a statistical weight of 6(27 4 1)
compared to 3(2J -+ 1) for the antisymmetric levels.

Ortho-and Parahydrogen
From (5.48) we actually get two types of H, molecules. The parahydrogen
molecules with S =0 (antiparallel spins) occupy rotational levels with
J=0,2,4,.. whereas the orthohydrogen molecules with S = 1 (parallel
spins) occupy levels with J =1, 3, 5, ... . Because each quantum state has
equal a priori probability, there exist three times as many -odd rotational
states (ortho) as even (para), due to the different statistical weights. If ther-
mal equilibrium is established between nuclear spin orientations, we should
have

2(Pequis = 32("Jortho + Z(r)pacas (5.50)
HPoctio = 2 (@t Dexp[-JU+ 1)6]

et 7wy (5.51)
2(Ppara =, o,}i (27 + 1) exp [—=J(J + 1)6] '

=1+ 5e% ..., (5.52)
where , .
0=06,/T=_85/T for H,.
The MB distribution gives
N, grexp ( —e,lkT) (21 + 1) exp [—J(J + 1)0] .

E 8; exp (—«i/kT) z(n (5.53)

The ratio of the number of para to ortho molecules in thermal equilibrium
can therefore be expressed as
Npara® Nortno = 32(Nortmo® 2(r)para- (5.59)
We can easily calculate Npara/(Npara -+ Nopmo) in the equilibrium mixture
for various values of T (Fig. 5.2).
At room temperature (300 K) we have one-quarter para and three-
quarters orthohydrogen. As the temperature is decreased we expect ortho
states (higher energy as odd J > 0) to be converted to para state (ground
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1.0
N
para
0.5f
0.1 L. .
0 100 200

T(K)
Fig. 5.2 Variation of Npq,, with T.

state, J = 0), according to Fig. 5.2. Note that (5.50), being the partition
function per molecule at equilibrium, will continue to hold even as T—>0,
where the gas is entirely para. The specific heat curve (Fig. 5.3, curve B)
calculated according to this prescription is alse found to disagree with ex-
periments: The reason for this anomaly is that the process of establishing
thermat equilibrium is very slow. It may take about three years for the pro-
cess to go half way under ordinary conditions.

4 1.5
Cy(r)
" Nk

1.0]

0.5

Fig. 5.3 Plot of Cy(r) in various approximations for the H, molecule.
A, pure parahydrogen; B, equilibrium; C,  para -+ £ ortho;
D, pure orthohydrogen (inferred).

Under the condition of complete inhibition of the ortho-para conversion,
we must regard ortho and para molecules as quite distinct, and the sum in
(5.50) should be replaced by the product,

2(r) = [2(Portmol®/%. [2(F)paral®. (5.55)
From (5.51, 52, 55)

_ v 0 [ 810 z(Posmo
CV(r)ortho—NkéT[ ol/T) ]

st st liee (14 3o )
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700

NK§te109 + . , (5.56)
Cy(Ppara = 180 Nkb2e—8? 4 ..., (5.57) -
CH) = 3 Coltorso + § CrlPhpurs | ©(5.58)

with 6 = 85/T. The result (5.58) is in agreement with experiment (Fig. 5.3,
curve C). The curve 4 (Fig. 5.3) has also been observed by producing pure
parahydrogen with the help of a catalyst,

The energy to excite molecules rotationally comes from collisions bet-
ween molecules in the gas. For H, the 6, has a relatively large value due
to small I(Table 5.1). Therefore, at low temperatures the colliding molecules
do not have enough kinetic energy for collisions to provide a whole quan-
tum of rotational energy. In this sense the rotational degrees are ‘frozen’
and the gas behaves like a classical monoatomic gas.

59 APPLICATION OF VIBRATIONAL PARTITION FUNCTION
TO SOLIDS

CQonsider a crystal consisting of N atoms. This system has 3N degrees of
freedom. Einstein assumed that the thermal vibrations of atoms are (1)
harmonic oscillations all of the same characteristic frequency vg, (2) inde-
pendent from one atom to another, and (3) independent from one vibra-
tional degree of freedom to another of the same atom. Then the crystal can
be simply regarded as an assembly of 3N one-dimensional oscillators with
the crystalline partition function given by (5.33) as

Z = exp [—3N(hvg/2kT)] [1—exp (—hvg/kT)|N

= [2 sinh (hvg/2kT)}-V, (5.59)
whence '
11'1 z _ hVE hVE
=k 5 =3N 7 ot
= 3N 1 3Nk fexp (valkT)—11,
U-U,= 3thz [exp (hvg/kT)— 1]—1, Uy=12 3 Nhvg , ' (5.60)
U} xlex . .
Cy= (ﬁ),, ~ 3Nk i (5.61)
e _6g hvg
xz—k—I":'—T—’ @E—T (5.62)

6y is called the Einstein temperature and vg the Einstein frequency of the
solid. O is the only parameter in the theory and cam be chosen differently
for each solid.
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For high temperature, x = 8g/T € 1, we have e* ~ 1, e*~1 ~ x and
(5.61) reduces to
Cy = 3Nk = 3R =~ 6 cal/mole K, (T > 6p),
in agreement with the experimentally verified Dulong and Petit’s. law.
For low temperatures, x = 6g/T > 1, we have ex—1 ~¢* and (5.61)
becomes '

Cy = 3Nk (%5)' exp (—8/T), (T'< O%). (5.63)

Thus Cy —> 0 as T— 0, in agreement with experiment, but the manner of
approach to the zero value given by (5.63) is quite different from the ex-
perimental 7T law. The experimental points for T'< 10K lie above the
theoretical curve (5.63), Fig. 5.4. The Debye theory explains this in a satis-

0 i _ 1
. 0 100 200 300

T(K)

Fig. 5.4 Specific heat curves for classical (dashed, A), Einstein
(dashed, B), and Debye (solid, C) models, using
6; = 225K, Op = 310 K. The experimental points
are for copper.

factory way. Debye noted that the motion of each atom in a solid is not
independent of the motions of its neighbours, as assumed by Einstein. He
suggested that the single frequency vz of Einstein should be replaced by a
spectrum of vibrational frequencies for the crystal.

At low temperatures, when quantum effects begin to be most signifi- -
cant, most substances are in the solid state. The atoms in asolid are arrang-
ed in a crystal lattice. The displacement of one atom in a lattice leads to
the displacement of neighbouring atoms. This results in a wave propagating
along the crystal. The wave nature of the motion of atoms in a crystal
lattice enables us to develop a statistical theory of crystals by analogy with
the theory of radiation in an enclosure. Complications arise because a lattice
is discrete and vibrations of various kinds are possible. We should analyze
the vibrations of the whole lattice. The Hamiltonion for a solid can then be
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approximated by a sum of terms, each representing a harmonic oscillator,
corresponding to a normal mode of lattice vibration. Classically, each nor-
mal mode is a wave of distortion of the lattice planes, that is, an elastic
wave or sound wave. Following de Broglie, a particle (called phonon) can be
associated with these waves. Thus, the energy of an elastic wave in a solid
can be quantized just as the energy of electromagnetic wave in an enclo-
sure is quantized. The quantum energy of a phonon is Av for an elastic wave
of frequency v. Like photon, it is also a boson of zero mass.

Enumeration of all the phonons present specifies the solid near its
ground state. At very low temperatures, we can regard a solid as a gas of
non-interacting phonons, enclosed in a volume ¥. Each phonon, beinga quan-
tum of a certain harmonic oscillator, has a characteristic frequency v, and
energy hv,. The state of lattice with one phonon present is described by a
sound wave of the form e exp [ i (k.r—ot)] where k is the propogation vec-
tor of magnitude | k | = o/c, = 2nv/c,, with ¢, = velocity of sound, and e
is the polarization vector (not mecessarily perpendicular to k). The e can
have three independent directions, corresponding to one longitudinal mode
of compression wave and two transverse modes of shear wave.

The harmonic oscillator in an excited state can contain any number of
quanta. The phonons obey BE statistics, with no conservation of their
total number (x = 0), A solid, containing N atoms, has (3N—6) ~ 3N
number of modes of vibration. Therefore, we can-have 3N different types
of phonons with frequencies v, vy, ..., vay. It is difficult to calculate these
characteristic frequencies as their values depend on the lattice of interest.
Einstein assumed vy = v, = ... == vsy. Improving upon it, Debye assumed
that for finding these frequencies the solid can be approximated by an elas-
tic continuum of volume V. Thus the frequencies required are the lowest 3N
frequencies of this model system.

An elastic continuum has continuous distribution of normal frequencies.
We wish to find the number of normal modes whose frequencies lic bet-
ween v and v + dv. Use of periodic boundary conditions gives k=(2x/L)n,
where L = V2 and n has the components n,, ny, n,=0, 41, £2, .... Since
ky = (2=r/L)n,, and n, is integral, the k, increases by 2n/L for each addi-
tional state. Therefore, the number of k., values in the interval dk, is
(L/2w)dk,. With similar results for other directions, the number we want is

L\3 % '
g dv = ( 27:) bl = s Amkidk. (5.64)
As k= wfc, = 2nv/c,, ’
s = vl g, (5.65)
. £ ]

Because there are two transverse and one longitudinal types of vibrations,

g(v) dv = 41:V( L 53‘) Vidy. (5.66)

o3
cl t
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The normal modes representing the collective oscillations of the crystal have
a continuous spectrum from v = 0 to v = vp. Following Debye, we require
that the maximum frequency vp, called the Debye frequency, is determined
from the sum of the degrees of freedom of the N particle system,

v,

3N = I o) dv = 4’3‘—V (—13 -+ %)v%- (5.67)
0

Cy Cy

Such a cut-off in the frequency is associated with the discrete structure of the
crystal lattice and was not needed for photons. Writing ¢; = ¢; = &, (5.67)
gives vp = (3/4w) &3 (N/V). This means the minimum phonon wavelength is
Ap = &/vp = (4r/3)18 (V[N ® = interparticle spacing (N = 10%* atoms, per
cubic centimeter). For a one-dimensional lattice of atoms, for example, the
smallest possibie value of the wavelength of a transverse wave is equal to
twice the lattice constant when neighbouring atoms vibrate in counterphase
(Fig. 5.5). From (5.66, 67)

T e

Fig. 5.5 Transverse waves in a one-dimensional lattice.

gv)dv = IN(v¥/vp) dv. (5.68)
Thus in the Debye approximation g(v) oc v2. The frequency spectra of three-

dimensional lattice vibrations for various approximations are shown in
Fig. 5.6. :

giv) g(v)

IN 3N

\)D Vg V A Y

(@) © (b)

Fig. 5.6 The density of modes as a function of frequency in (a) Debye and
Eiastein approximations, and (b) an actual crystal structure(begins
as v2 for small v, but deveiops discontinuities as v increases).

The distribution faw for phonons is similar to that for photons,
1
exp (AvjkT)—1

(5.69)

i, =
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Therefore, the internal energy of the phonon gas is

vD
U—-U, = ! hyiug(v) dv
(1]
L
N, vidy 9NkT x3dx _
- T‘?-)- -! exp (h\‘/kT}—l [J- ex__l]! (5.70)

and
v

D
Oy (ag)y INh? .l v exp (W/kT)

T kT’v" [exp (Av/k I)—1}*
3Nk ¢ xbex dx : '
=% [3 ]’ Z=5) | 6
X = ﬁhv:hv/kT, Xp EhVD/kTE @D/T. ' (5.72)

This defines the Debye temperature ©@p = hvp/k, in analogy to the Einstein
temperature g, and is the only parameter in the theory. If heat capacities of
different solids are plotted against T/@p, they should fall on asingle curve.

The integral in (5.71) cannot be evaluated analytically. Its tabulated
values are available. However, we can obtain the following limits.

High Temperature Limit T > @p: For 0 < x < xp and x» <€ 1, we can write

x4 e* x4 x4
(F=1p "~ (—e=) (&— 1) = 2(cosh x—1)

-1
( S ERLPTEN )

7
1 -1
mlm ( xz) ey (5.73)
so that
oNk [
Crov—- J xtdx = 3Nk, (T > 6p),’ G.74
D

in agreement with the Dulong and Petit law,

Low Temperature Limit T < @p: For xp > 1 we can replace the upper limit
in (5.70, 71} by 0. Both the integrands, behaving like x%—~ and x%¢—*, go
to zero very rapidly for large x. Therefore,

ONET[ [ x%dx 7| _ ONKT*
=0, =2 [o e e a0

_ 9NKT [ s 3 17_ omere [_1:_‘]

OD nm} n‘ 8% 15
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- g TNET/6}, (5.75)

Cv = (12n*Nk/[5) (T/6o), (T < 6p), (5.76)

where (4) is the Riemann Zeta function (Appendix VI), {(4) = n4/90. Thus
for Cy we get the famous T3-law of Debye, valid at low temperatures and in
agreement with experiment (Fig. 5.4). Values of @) for a few elements are Na
(160 K), Cu (310 K), Al (380 K) and Diamond (about 1950 K).

5.10 VAPOUR PRESSURE

Let us calculate the equilibrium vapour pressure of a. monatomic solid at
T—0. The vapour and solid form two subensembles in equilibrium with
respect to exchange of particles and epergy. This equilibrium is governed by
the equality of . and T. We will calculate pg of the solid and pg of the gas
and equate them.
From (4.66),
ps = N5 (Us—TSs—Qys), - 6Mm
—~where N is the number of atoms in the solid phase. The energy Us of the
solid will be the sum of two parts: the energy U, if there are no phonons
present and the energy U, of the phonons. The U, is the work required to
break up the solid, atom by atom, without exciting any phonon. It gives the
latent heat of the sample. If ], is the latent heat per atom then

Us = Up“Nslo.

‘The entropy of solid is entirely due to phonons, T'Sg= TS,. Finally,
Qg =—PVg—> 0as the pressure is very low for T— 0. Thus, (5.77) becomes

ps = N5 (—Nsl, + U,—TS,). - (5.78)
As p, =0, from (4.66), :
ps =—1o + (Qusl N)- (5.79)
Using d(BQ,)/8p = U and (5.75), the low temperature limit of Qg is
— N5 ' 5.80
er ——SB‘(k@p)s' . G. )
Therefore,
wik T
ps =—lo— 563" (5.81)
From (4.76, 77), for the vapour
TP h? 8/2
e = kT In [ﬁ(m) ]. . (5.82)

Put pg = pg and solve for P,

P= (z%m)m (KT exp [—(w4/5) (1/8p)"] exp (~lykT).  (5.83)
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Note that in this result 4 occurs explicitly.

5.11 CHEMICAL EQUILIBRIUM —

In chemical reactions the number of particles of different species change.
A general chemical reaction is described by the formula

-2 wyM; - ? veMjy. (5.84)
1

It states that a certain number, —v;, of molecules of the initial reactants M
combine to produce a certain number, vy, of the ﬁnal products My. A sim-
ple example is

H, + Cl, « 2HC),
for which, .
M, =H,, M,=Cl,, M, =HCI,

vy =—1, vg=—1, vy=+2,

The chemlcal reaction can proceed in either direction, dependlng upon the
* conditions. We can express (5.84) as

ZwM; =0, ‘ (5.85)

where the negative (positive) v's represent initial (final) molecules. When
the quantities are measured in moles, the v’s are called stoichiometric num-

bers.
In a chemical reaction the numbers N, of moles of the reacting subs-

tances will change during the reaction. Therefore, the method of ‘ grand
canonical ensemble is suitable for the study of chemical equilibrium.
The Gibbs function (3.64) and its change (3.62) in a reaction are

G =2 N, C (5.86)
dG =— SAT + Vdp + £ wdN,, (5.87)
' J

where g, is the chemical potential of the jth molecular species M;, and N;
is the corresponding number of molecules. If the reaction occurs at cons-
tant pressure and temperature, dp = dT = 0,

dG =32 y.]dN]. (5. 88)
J

The N, cannot change arbitrarily because they are related to each other

through the chemical reaction (5.85). This requires dN; o« v;, or
dN; = vydn, ' (5.89)
" dG = E wyvy dn. L ' (5.90)
For equilibrium G is a minimum, that is, a small change in n, 3n, corres-

ponds to 3G =0, or

lz =0, (for equilibrium). ' (5.91)



112 STATISTICAL MECHANICS

We require G to be a minimum because in any natural process G can only

decrease.
The relation (5.91) is the basic equation for chemical reactions. For the

reaction H, + Cl, = 2HCI, it implies

vaa = $(um, + tey): (5.92
Thus the p’s of the different components are just added in the same propor-
tions in which they occur in the reaction.

Further progress consists in expressing the u’s in terms of temperature,
pressure, composition and molecular characteristics. We apply (5.91) to a
reaction in a gaseous phase. We treat the gases as ideal gases so as to be
able to obtain p’s from the Helmholtz free energy. For ideal gases

F(T, V, Ny, Ny . N)) = B FAT, ¥, N, (5.93)
Z(T, V, Nj) = (N; U [zAT, V), (5.94)
F(T,V,Nj)) =—kTIn Z(T, V, N})
—=—KT[N) In z)—N{In Ny—1)], (5.95)
wy = (OF/AN)r, v, Nisn ' ’
=—kT (In z;—1n N)), (5.96)
2, = exp [z exp (u/kT)]. (5.97)

For a monatomic gas, from (4.39),
zy=V/Ay, N\ =(K[2rmKT)'P,
uy = kT In (N,/V)—2 kT In (2nm; kT[h%)
= kT In Py~kT In kT—§ kT In (2nm,kT/hS)
= kT In P)—DyT), (5.98)
where Py = N,kT}V is partial pressure of the jth component and Dy(T) is
a function qf temperature alone. From (5.91, 98), _
§wvf = kT?v, In P;+L;v,D,(T) =0, ‘ (5.99)

or
?v,lnP,-—-—(l/kT)?v,D;(T). C o (5.100)

Remembering that initial v’s are negative,

v v \J n P;f .
np’=pP'Pr. = I;—v; = exp [~(L/kT) 23 v;DAT)] =Kp(T)-

1

: H

(5.101)
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This relation relates the Py's to the equilibrium constant Kp(T), which is a
function of T alone. It is given by

In KP(T) =—(l/kT)lZ VJD](T)
= Zv [ Grmy/WPR + In (PR (5.100)

In general, for a molecular species,

. zy = z)(t) z(int), ' . (5.103)
where z(t) is the translational and z)(int) is the internal partition function
like zy(r), z4(v), etc. It is convenient to write.

z; (int) = gy, exp (—e€/kT) 2z, (int), (5.104)
where ¢j, and gj, are the energy and degeneracy of the ground state, and

Zo(nt) = 1 + = & exp(—e/kT). . (5.105)
1=18j0

Here ¢j; are the internal energy levels relative to the zero ground state
energy €. As T —> 0, z;, (iat) - 1, so that at temperatures for which the
excitation of the molecule is unimportant,

z; (int) o< gy, €xp (—ejo/kT). (5.106)
The factor exp (—ej,/kT) is shown explicitly because often it is the’ most’

important term in the z; (int).
From (5. 97) and ~Qp) =P;V =kT In &,

= (KTIV) In 2 = (kT V) [z, exp (w/kT)]
= (KT/V) exp (u,/kT) z,(t) z; (int)
= (kT/V) exp (w/kT) z/(t)gso €Xp (—eso/kT). (5.107)

We can calculate Kp(T) for any process from (5. 101 107). .
For a process of the type

M—>B+C, ' . (5.108)

we have ' '

Ko(T) = PBP c k;" exp (l-‘s/kT) exp (uc/kT) o, (2"'”8"'6"" )
exp (Lad/kT) muh
' zp (int) z¢ (int)
Zx (int)
where in the last step we have used the basic equation (5.91), that is,

M = s + po {5.110)

at equilibrium. Since Kx(7) is a function of T only, the ratio PaPc/Py is
constant at a given temperature. This is the law of mass action.
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We can apply the above considerations to the thermal ionization of a
gas at a very high temperature,

M —> M+ +e. (5.111)

A simple case is the thermal ionization of sodium vapour, Na -» Nat -+ e.

At a given temperature, the ionization reaction attains a state of equili-
brium which is quite analogous to the chemical equilibrium for ordinary
chemical reactions. Bach of these substances(M, M*, ¢) behaves like amon-
atomic gas. Therefore, :

- PM+ P, _ 21!1)1. 3/3 ZM+ (iﬂt) _
Kt = Pt P _ (220 V™ ey 26 (80 g exp (—euli),
(5.112)

where ge, = 2 is the weight function of electron, e, is the energy of .the
released electron, zy (int) is the internal or electronic partition function
of the element M, and zy. (int) is the partition function of the ion. The
relation (5.112) was first derived by Saha* and has found several applica-
tions in astrophysics.

5. 1_2 REAL GAS

In this section we consider imperfect (real) gases, that is, gases for which
* the interactions between the constituent particles cannot be neglected as was
assumed so far,

The Hamiltonian for a real gas is taken to be
H(q,p) = E(P) + :f, 5 (rig),s (5.113)

where E(p) is the total kinetic energy and uy the potential energy between

the particles / and j We assume that u,; depends only upon the distance

riy =| r,—1;| between the pairs of particles i and j. We can also write the

Potential energy term as } X uy (ry), where the factor % is included to
1%

compensate for counting each interaction twice (once as ij and once as ji).
For ideal gases #; = 0, and so the potential energy of the ideal gas is

My s ¥ = Z 1y (ry)) =0, (id:al gas). © (5.114)
i>j

For a classical imperfect gas we can write the partition function, neg-
lecting internal degrees freedom in molecules, as

Z = 5w | o0 [=8 B, ) dg dp

- []'\’,—"! J‘ exp [—8 E(p)] ,?3%][7,';, I exp [—B $(g)] dq]
~2,2, | (5.115)

*M.N. Saha, Proc. Roy. Soc. (London), A99, 135 (1921).
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where Z, is the partition function for the perfect gas and .
1 .
Z= g | oxp 1~ $(a)) day ... dan (5.116)

is called the configurational partition function of the gas. For an ideal gas
Z; =1, .
In the approximation (5.113),

Zy= gy | exp (=2 pu) T

_-—jn exp (—pu) T . __ L 5.117)

In (5 117) each coordinate can vary within the ennrc volume V of the gas.
Introduce the function .

My = ig(ry) = exp (—Buiny)— 1 I € B 3t
In the ideal gas limit, %;;—> 0, and so w;; is a measure of the degree of
imperfection of the gas. Rewrite (5.117) as

Zy= VN{. [n A+ ) o,
— VN I Bry oo Pry (L 1) (1 + 1g) e (14 10, )

= VN Idsr',...dam(i +Zm+ z{ k) 619

k>
Ligk, 1 .
The complicated integral (5.119) is reduced to a sum of relatlvely simple
but still multiple integrals. Except for the first two of these integrals, the
remaining ones are even now very difficult to estimate even approximately.

\ Ay
1 - d ad-
0p2red 1y, / r— M2 M2 34
1 2
Z_Aoi 1A3
n(r [\ Mz 23 Ni2%3 23

() | (b)

-
i

Fig. 5.7 (a) Plot of the intermolecular potential x(r) and the function v (r).
A usual form is u(r) = er="—dr=", m >y n. (b) Clmter terms.
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The usual forms of u(r) and 0(r) are shown in Fig. 5.7a. It is seen that
%(r;j) is zero except when r,;<2r,, where r, is the radius of one molecule.
Thus ¥, is negligible unless molecules 1 and 2 are close together (binary
collision). Similarly, 73,1, contributes only when molecules 1, 2, 3 are all
simultaneously close together (triple collision), and so on. A graphical
representation of such terms is shown in Fig. 5.7b. They represent clusters
of molecules. The series (5.119) is called a cluster expansion. We shall dis-
cuss only the first two terms, 1 and vy, in this series.

If we retain'the first term, I, only and neglect all «’s (that is, neglect all
collisions), then (5.119) simply gives Z; = 1, Z = Z, (perfect gas approxi-
mation).

Let us consider the second term, 2 7y, in (5.119). This sum contains in
all § N(N—1) terms determined by the number of ways we can choose
pairs of molecules. All these terms are equal because they differ only in the
labels of integration vatiables. Therefore, we can write the contribution of
the second term as

C, = VN IN(N—1) f N

— V-N } N(N—1) PN-3 Id’r, dr, [exp (—B u(rea))—1],

where u(ry,) is the potential energy between the molecules 1 and 2 as a
function of their distance apart r,, = |r;—r,|. If we introduce the new vari-
ables of integration,

r = r,—r,, R=1%(@+r,),

then the integration over R gives one more factor ¥, so that
C,=V-1}N? f ar (ePu—1) = %,[Is], (5.120)

where we have put § N(N—1) =~} N2for N> 1.
For Z;, (5.119), we can write approximately

Z,= [1 +N (N”) + ]

(1 + N’*) for NIj2V < 1. (5.121)

We have NL,/2V < 1 because I, is of the order of the volume v, of one
molecule (the integrand in 7, differs appreclably from zero only within such
a volume and is nearly 1 there).
The departure from the ideal gas behaviour at low densities, Nv,, <LV,
can now be found from (5.121). Using Z =2, Z,,

F= —kTlhZ=—kTlhZ,—kTIn Z,
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~ Fp—kTN In (1 + JZ—V-;*)

~ Fp— krﬁf, (5.122)
NKT . NI
P=—(E W), = —kT 575 2V"2
NkT{. NI,
- (1~2V) (5.123)

remembering that F, leads to the ideal gas equation.
The equation of state is usually written in the virial form

P=1%T[1+ B(T)f( )C(TH— ],_(5.124)

so that (5.123).gives just its beginning. The ‘sec_ond virial coefficient B(T)
is related to the cluster integral I, as B(T) = —1I,/2.

- Van der Waals Gas
Let us assume that the molecules are hard spheres of radius:r, and volume
v =(4/3) =r§. Then the cluster integral I, can be divided into two parts.

In the first part, 0 < r < 2r,, the potential term u(r) is infinite (two hard
spheres in contact), so that exp (—Bu(r))—1=2—1. The second part extends
from 2r, to o (Fig. 5.8). Thus : . LR

&b

Fig. 58 Hard sphere potential for Van der Waals gas.

B(T) =~ =—4 [ drlexp (—pur)—1]
0

2, oo
=—1 I (=D ad—} Id'r[cxp (—Bu(r)—1]
0 ’ 2, ’ .

2r, T
o~ rn I ridr -+ % j 4rr® drBu(r)
L] 2r,
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. ©
= 2m} 2r ) + % ] dr riu(r) = b—l—%., (5.125)

ry

where we have put exp (—u(r)/kT)—1=<—u(r)/kT, assuming u, (Fig. 5.7) to
be numerically small in comparison with kT, and

b= dvy a=—2r jdr Au). O 5.126)

The equation of state up to B(7) is

P~””[‘+ ( )|

_ NkT N?

VvV
, a1 2 )
.rul-v#\l—%b) e (5.127)

which yields the familiar Van der Waals equation

(P e )(V—Nb) NkT. (5.128)

As suggested by Van der Waals, the correction term a comes from the
long-range weak attractive force between the molecules (Fig. 5. /), and b
comes from the volume v, of the molecule: ,

[V V]
wn S

5.6

PROBLEMS

For a monatomic noble gas Cy = (dE/dT)y = 12.47 J/mole-K. Com-
bine this with (5.24) to determine k if p = 1/k86.

Use (5.23) and P = —(dF/dV)r to derive PV = RT for an ideal gas.
Show that Firans =—17354X 107 erg, Utans = 1.56 X 10° erg, Sirans =
4.6 x°10* erg/deg, purans =—0.67X 10-12 erg and Zip,n= exp (4189 %
10%) = 109" for Argon gas (at wt. 39.94).

Calculate the rotational energy of para-and ortho-deuterium.
Determine the Helmholtz free energy, the entropy and the molar heat
capacity at constant pressure of CO, gas at 0°C and 1 atm, using the
ideal gas result. Given: molecular weight =44.010, moment of inertia
(O—C-0) I = 71.67x10-*9gcm?®, normal modes of vibration v,=v,=
667.3, v = 1383.3, v, = 2439.3 cm~1. The v,, v, arise from the bend-
ing . modes, vy from the two Cc-0 bOnds osetilaung out of, and v,
from in phase. _

The kinetic energy of the rotational motion of a diatomic molecule
(rigid rotator) is given by
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‘rot=—1"p’ ’1‘——]"“- 2

21 Po T 3 sinio Pe

where p,, P4 are canonical conjugate momenta. Use it to derive (5.27).
Show that Cy ~ 3.44R for NH, at 300 K. Given: Principal moment
of inertia I,=4.44x 10-9, J,—J,— 2.816 X 1040 cm?; normal modes
of vibrationv; = v, = 3336, v; = v4 = 950, v; = 414, v, = 1627 cm—.
The deformational vibration modes of a linear molecule 4 B4 are dis-
placement of B in one direction normal to the line ABA4 and the dis-
placcment of both 4 atoms to equal distances in the opposite direc-
tion. Find the angle of deviation from the linear form if the masses
of 4 and B, the distance 4 B, and the vibrational frequencies are given.
[Hint: use gy.l”m $* == 3hv(n, + ny+ 1), where w is the reducedmass
and / the distance between 4-and B.] :
Calculate Kp(1000°C) for the dissociation of iodine. Given

I = 750 x 10—%9g cm?, v = 6.41 x 10121

and dissociation energy e = 2.466 % 19-2 ergs. [Ans. Kp = 0.175 atm]
Use the result of Prob. 5.9 to estimate the enthalpy change, and ex-
tend the result to other temperatures.

Calculate the cquilibrium constant Kp(5000K) = PyPn/Py, of the
dissociative reaction N,=2N. Given: 6,=2.84(K), 6,=3.35x 103(K),
dissociation energy s = 169.3kcal mol-1, the electronic ground state
of the molecule is nondegenerate while that of atom has degeneracy
4 due to electron spin.

Show that the quantities 1/4%, 1/1h® and 1/¥(2x)® can be regarded as
densities of states in the phase space, momentum space and the wave
vector space. respectively.

Evaluate the entropy of the lattice vibrations of monatomic crystal in
(i) Einstein theory, and (ii) Debye theory.

The surface tension waves of frequency v and wavelength A on the
surface of a liquid of density p and surface tension o are described by

2nq \1/2
= ()"
Use Debye-like approach to calculate the surface energy of the liquid

3

.- /3
at low temperatures. [:Hmt Use g(v) dv = 4n (2—'7-:-6) Av13dy where

A is surface area.
In an imperfect gas the intermolecular potential is
d(r)y=Aexp(—br¥), A <€ 1.

Expand the partition function in a seri¢s in 4 and obtain the equa-
tion of state to first order in 4.



6
IDEAL BOSE-EINSTEIN GAS

6.1 BOSE-EINSTEIN DISTRIBUTION .

For an ideal BE gas of N molecules in a volume ¥, the most probable num-
ber of particles with energy ¢ is

8i
W) = oo P=1 ~ ep e e ETI=T" @.D

wherep =1 /kT , « =—u/kT, and g; = degeneracy of the ith level. The para-
meter & (or ) Vis'determ'ined as a function of Nand T by the condition

L > = &o ) 1 .
N=Z2 &= G —mI—1 T expB(e—w1=1 '
(levels) )
= Ay + A+ .... 6.2)

where the sum is over the energy levels as we have included g in (6.1).
Eqmvalently, we can replace g; by 1 in (6.1) and then sum over the quan-
tum states in (6.2).

‘We must have A, > 0, because the number of partlcles in a level can-
ot be negative. Therefore, for a boson gas at all temperatures (e—w) must
be greater than zero for all ¢, that is,

exp(—w/kT)>1, or <0 . (6-3)
 We can replace the sum by an integral in (6.2) by using in place of g
the densit of statés, (4.149),
g(e)de = Z—ZTV @mprede, . (6.4)
Then (6.2) becotnes

" ea
_ T _gle)de
N —J efr eb—]



IDEAL BOSE-EINSTEIN GAS 121

=2 amyn 1‘ nde
eﬁ'--l
v | N _
=3 Fy/5(Me) = Vg Fy/s(na), (6.5)

where %, = the absolute activity (or fugacity, for a gas), ng = 1/A% == quan-
tum coneentration (concentration associated with one atom in a cube of
side equal to 2),

A .
ebr = Ne < l, A= (27‘mk )lla’ (6‘6)
and with x = B¢ = ¢/kT, '

. 1/24.
. Fusnd) = o j l" =
oq -1
= 2 i 1/2 1 -X -iz
=nB X X12 nee~*(1 -+ nqe +7)e +..)
0
%o, 3
=Na+ 535 P»E + mE 3% + . -1"3/’ . 6. 7)
The Fy4(1) is a special case of the general class of functions (Appendix VI)
F(n)= X ;’ (6.8)

illustrated in Fig. 6.1. At the limiting value y, = 1 (or p = 0), the deriva-
tive of Fyy(n,) diverges but the series (6.7) converges

26121
A -
2
8 I
1.341 2_512---.._-_-_—' -
T | !
Fstx)|c ‘ Fa12(%a) II
1
' .
(] M | ) 0 H
0 a‘ 2 0 _?° 1
{a) - {b)

Fig. 6.1 (a) The functions Fyy(a), curve A; Fy/y(a), curve B; and
Foo®) = €%, carve C. (b) The fanction Fyy(n,). Note
that v, — ¢,
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oo 1
Fyp (a=1) = nz-;:m

ST 3 ‘
:l+-2—,73+3—3—,2+...=c(_)=2.612, 6.9)

where § is the Riemann zeta function. This is the maximum poss:ble value
of Fy (1) due to (6.3, 6).

We can define a minimum temperature 7T, called the critical tempera-
ture, at which », has the maximum value 1, (6.5), by

e _ 2emkT, \*?
N 352612~V (_IT‘) 2.612, (6.10)
R p \23 _ . )
°‘27:Wc(2.6_12) , p=NJV. (6.11)
If we have one mole of gas, so that N is Avogadro number,
115
T, = W K, _ (6.12)

where M is the molecular weight and V), is the molar volume in cm?® mol-1,
6.2 BOSE-EINSTEIN CONDENSATION

We find that (6.5) has no solution for T < T,. This difficulty does not
occur in the original sum (6.2). Therefore, it must come from improperly
changing the sum (6.2) into the integral (6.5). For low tcmperatures, T < T,
this causes serious error. Large contributicn coming from the first few terms
in (6.2) are left out as discussed below.

For small 1, (or large e~P+), the terms with the lowest ¢; do not contri-
bute much to the sum, and sq replacement of the sum with an integral cau-
ses little error. However, when 7, is approaching 1 (or ¢=# is small), the
first few terms in (6.2) become important, and so we cannot replace the
sum with an integral. For ¢, > ¢, we find that for sufficiently low temper-
atures,

A - 1 < I =fp - (6.13)
17 exp[Bler—w]—1 “exp [Hew)]—1 " '
In fact, for T— 0 that first term A, approaches the total number of parti-
cles N,

1 kT
i =N =~ o —— (B, | X .
Hmi =N o exp -] —1 " g—p Polarze) (6.14)

This is possible because for symmetric wave function (BE case) there is
no restriction on the occupation number, For N = 10* at T'= 1K, we get
--p22 1.4 x 10~ erg. For such low temperatures u is very close to ¢;. As
p. is closer to ¢, than to the first excited level, most of the particles tend to
occupy e, (Bose-Einstein condensation) for T— 0. Thus the reason behind
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T
the BE"éondensation is the behaviour of the chemical potential u of a boson
gas at low temperatures. The BE condensation is a special feature of the
BE distribution (6.1), arising from the minus sign of the term unity in the
denominator. .
For T—>0, the sum for N—fi, can be approximated by anintegral with-
out serious error,

T /
N—#iy = z ﬂ‘% (2 )32 I _‘l.;d‘_

— efe—1
MNa ~
= (V/A%) Fyy(nal. . (6.15)
Using (6.10) to eliminate ¥, write (6.15) as '
_ T \*2 Fy/o(na) (
N_n,,+N(.T-°)_ Tauslne) (6.16)

We discuss this result in the limits (i) T < T, and (i) 7> T,
(i) Below T,: Without any loss of generality, we can take ¢, = 0 and
8o = 1. Then (6.14) gives ‘
o= == T Gargeny. 6.17)
ePr—1] ® ~
For low temperatures, p. is very close to zero (~—10" erg),

n—0, or  w,—1, (quantum region). (6.18)

Therefore, for the energy states above ¢, we can neglect u (or put 7, = 1)
and write (6.16) as

. T a“ :
fy= N, = N_--N'=N[1—(-T—) ] (6.19)
0, . .
where N’ is the number of particles in the excited state,
= NTITP. ’ (6.20)

Aplotof Ny/Nas a ‘function for T/T,is shown in Fig. 6.2a. At the conden-
sation temperature T, we have N’(T,) = N. As the temperature is decreased
below T, more and more particles begin to occupy the ground state 5 The
BE gas is then degenerate and we are in the quantum region characterized
by p.~ 0. The T, is also called the degeneracy temperature for this reason.

As an alternative to (6.10) defining T, we can define a critical volume
V, such that at a temperature T

82
N=2 Yo Fun(l) = ¥, (2";’:” ) 2,612 = Vnp 2.612. (6.21;

Using it to eliminate T, we can write (6;16)‘ as

V Fys(na) Y4
N=p,+ Nl N 4+ N—-. 6.22
o+ V72612 =Nt Ny (6.22)
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Thus
N,—_-N(I—VK,). (VaVy). (6.23)
]
which is shown in Fig 6.2b. Below Ty(or ¥,) we have BE condensation.
1 1
No No
N N
oL Y
Y Y/Te ! 0 V7V ‘
ta) : {(b)

Fig. 6.2 Number of BE particles, in the ground state, as a function
of (a) temperatare, (b) volme.

We can write (6.10) as
A% = 2.612/p. : (6 24)
At T, the de Broglie wavelength 2, is of the order of the average particle
distance. The wave functions overlap and so the quantum effects are im-
portant.

(i) Above Ty: For T >> T, we have v, < 1 (classical region). In (6.16)
the first term #, on the right becomes negligible and the second term in-
creases as T2 when the BE gas is heated above 7, Thus, (6.15) reduces
to N = (V/33) Fy5(n,) and (6.16) to

Fua(na) = (To/ TP Fy1) = (T/ T2 2.612 A

= (A/A)® 2.612, (T>T). (6.25)
For T % 0, the ground state is practically empty and most of the particles
are in the states with ¢ > 0. We can approximate the BE distribution by the
MB distribution. In fact, for 4, € 1, Fygs(9s) 22, from (6.7), and (5.25)
becomes

Na = (AMA)* 2.612 = pA® = e, (classical limit).
It can now be compared with (4.39), wheie for the MB gas the single-mole-
cule partition fuaction z is given by
N N ,
=~ V/P—ph , _ (6.26) |

It is “instructive to compare the distributions for T'< T, and T> T,
(Fig. 6.3).
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€o

Gi—-;—’

Fig. 6.3 Schematic diagram of the distribution function for the particles
of an ideal BE gas.

6.3 THERMODYNAMIC PROPERTIES OF AN IDEAL BOSE-
EINSTEIN GAS

Chemical Potential
The chemical potential . is.related to the fugacityn, by v, = es/AT, We can
write (6.15), for N -+ o0 but N/V ﬁnite, as

97\3 = P)‘s N _l + F, 3[;(7111), (6. 27)

where we have used (6.17), #, = n,,/(l —%,). We know the behaviour of
Fyy(na) (Fig. 6.1). Therefore, we can solve (6.27) graphically to find %, as a
function of p and T (Fig. 6.4).

2.612f -~~~ -

Fig. 64 Graphical solution of (6.27), Curve A, A%;
curve B, Fyy(ne); curve C, pA™N,/(1—1,).

Energy
From (6.1, 4),

oo o
Uﬂz ¢1ﬂ1=j edn= j e:(g‘(_?’fl
[

€32 de
—FZ"(Z"’W Iegu ~M—1

_VET 2 J X902 (_1. ex—l)-ldx

28 gifd T
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3.V
=5 kT 35 Fys(na)s (6.28)

where x = pe and

Fyy(na) = '31— X33 (l— ex—l)—l dx

Na

]
1
Ot g

- I KR, e (1 +nze~* + n2etx 4..)
0

. =‘e‘°‘+2ﬁ+ = Fyq(a). . (6.29)
A plot of Fs,,(a) is shown in Fig. 6.1. Note that Fy(ns) = 74 5;“ Fyi5(na)-

We shall distinguish the two cases: U for T' < T, (degenerate gas), and
U, for T > T, (nondegenerate gas).

For T < T, 7 =1, and so from (6.10, 28),

3 | 4
= 2k1L Rt =1)

3

NAp
kTF'/ (," _1))‘3 FS/S(.’IG )

=3

2
3 — nr (L) 6.30
3 Mt (T.,) 0.51 = NKT. (To) 0.7, (6.30)
where we have used Fyg(ne = 1)/Fys(ns = 1) = UKE) = 1.341/2.612
= 0.5134, and /a3 = (T/T ).

For T'> T,, n, € 1, drop the first term in (6.15), and write
=g Futnd, (T>Tw (6.31)

From (6.28, 31),

_ 3 V . F5l,(7‘a)
Uy= 3 kTi’ Fys(na) = NkTFal (na)

= (3/2) NET [1—2-5/% Fyjs(na)—2(3~5/4—2-%) Fys(na)—
= (3/2) NKT [1—0.177 Fy4(na) ~0.003 Fy/g(na)t—...]

=3 mer [l—‘0.462 (5)"'-—0.023 (5)'—] (6.3

where Fyo(na)/Fan(na) is given in Appendlx VI and in the last step we have
used (6.25).
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Specific Heat
Using Cy = (0U/eT )y,

15 T \82 T \3/2 .
Cro =7 0.51 Nk (Tn ) - 1.926 Nk (To) A 6.33)
3/2 3
Cre— 3Nk [1 +0.231 (%’) +0.045 (;0) +] (6.34)
2 T
, BE
yslMB__ 0T
|
|
1h I
v !
Nk |
3/2 |
o7 . .
0 1 - 2
T/Te

Fig. 6.5 Specific heat of an ideal BE gas.

These values are plotted in Fig. 6.5. For T =T, the values are same,
Cy_ = Cpy = 0.51 (15/4) Nk = 1.926 Nk. Therefore, Cy is continuous at
T = T, but shows a kink there. This suggests that the Bose-Einstein con-
densation is a third order phase transition.

N

»OIropy
We have
. T
e 2. 2. T\
S(T)= f Groar=% ¢, =2 1926 (To) : (6.35)
0 .
' T v
SAT) = ST+ | SgFar
To

_ 3 T 2 T\ ‘
—stro+ 3Nk [ln 7+ 30231 ( ~ T) +] (6.36)
. The entropy shows a sudden drop for T < T,. In(6.35) S=04t T =0,
in accordance with the third law of thermodynamics. This means that for
the condensed phase (which exists at T = 0) the entropy is zero, that is, all
the particles are in one state.

Pressure -
For all ideal gases P — 2U/3¥ independently of the statistics, (4.154).
Therefore, using V/V, = (TT,)*/*,

20U . T5/3 T
P_=3 — =Nkﬁ=Nk

3y ° —V('; (6. 37)
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_2U, NkT[, Vo , '

p=3 2N [1 . 0.462——...]. (6.38)
Note that P_ is independent of ¥ and a function of T only, as for a con-
densing gas (Fig. 6.6). In this region further reduction in volume simply
condenses more particles into the ground state.

Fig. 6.6 .Isotherms of an ideal BE gas. The region below the dotted
curve correspoids to the degenerate state.

6.4 LIQUID HELIUM

A ‘He atom contains an even number of fermions (2 protons, 2 neutrons,
and 2 electrons) and so obeys BE statistics. The phase diagram for helium is
shown in Fig. 6.7. The normal boiling point of ‘liquid *He is 4.2 K. The

P
SOLID He /v=z1724k
¥ P=20.09atm
25atm \

1

\

| LIQUID
! He 1

\
\
\

LIQuIiD
He Il

-y

ol
0 ™ T

Fig. 6.7 Mcmﬁmd‘ﬂe.

liquid-ges vapour pressure curve extrapolates to the origin with no sign of
the triple point. Thus solid is not formed merely by cooling under its satu-
rated vapour pressure. The solid-liquid curve flattens out to a pressure of
25 atm near 1 K. ‘

As liquid ‘He in contact with its vapour is cooled, it begins to show
dramatic change in properties at T = T, = 2.18 K. For T > T, its behavi-
our is that of a normal liquid and is called He I. For T < T, the liquid
helium begins to show remarkable properties, such as zero viscosity (under
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certain conditions) or superfluidity and zero entropy, and is called He II.
There is apparently a further phase transition in the liquid phase, called
the lambda transition, which divides the liquid state into two phases He 1
and He II (Fig. 6.7). Evidence for this A-transition is provided, for exam-
ple, by the specific heat and entropy measurements (Fig. 6.8). The specific

0.4 -——- -
— Ll
5 T
' x
* 0
'u'm o
- 5 02f---=f————-1
[} o
8 ~
Py — ")

3.0

T(K)
(a)

Fig, 6.8 (a) Specific heat for liquid ‘He under saturated vapour pressure,
(b) Entropy curve for liquid 4He under saturated vapour pressure.

heat along the vapour curve becomes logarithmically infinite at the temper-
ature of A-transition, called the lambda temperature T,. The resemblance in
the shape of the specific heat curve and the Greek letter A has given rise to
this nomenclature. The A-transition occurs on the vapour pressure curve at

T, = 2.18 K, 1/p, = 46.2 A%atom:

With M =4, Vg == 27.6 cm®, (6.12) gives the condensation temperature
T, = 3.14K for liquid helium treated approximately as an ideal BE gas.
This is close to the observed A-temperature T, = 2.18 K, considering the
approximaition involved. This fact, and the similarity of Fig. 6.5 and Fig.
6.81 led London* to suggest that the lambda transition of *He is a form of
Einstein condensation. . )

The fluidity of ¢He at low temperatures is mainly due to two reasons:

(1) weak intermolecular force between atoms (*He is a noble gas), and

(2) small mass of 4He atom.

Small mass makss the thermal wavelength A and the average distance be-
tween the particles ry to be of the same order of magnitude for T < Ty,

* F. London. Phys. Rev. 54, 947 (1938); Superfluids vol. 11, John ‘Wiley, New
. York, 1954, _
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(6.24). Therefore, it is not possible to specify the position of the helium
atom with an uncertainty less than r,. In other words, helium is a liquid
and not a solid with atoms localized at lattice sites. To understand this
more quantitatively consider the potential energy ¢(r) between two He
atoms separated by a distance r (Fig. 6.9).

K )
o (r)

: Yo (A)e
3 & 5 ¥

0 T T t

. bbb

-9‘“ e —— -

Fig. 6.9 Potential energy ¢(r) between two He atoms.

A helium atom will have a well defined location on a crystal site if it

can be confined within a distance, say Ax ~ 0.5 1&', which is smaller than the
range of the potential. The corresponding uncertainty in its energy is of
the order of
Ap) _ (WAx)*
AE~ = om 10 K.

This energy is enough to allow the atom to escape from the potential well
(—9 K), Fig. 6 9. Therefore, localization is not possible. Note that Argon
solidifies because of its large mass and hydrogen because of the stronger
interaction between the molecules. 3He remains liquid, like 4He, and forms
more complex ordered pairs.

6.5 TWO-FLUID MODEL FOR LIQUID HELIUM 11

Tisza suggested that He II (T < T;) consists of two independent compo-
nents, a normal fiuid (N,) and a superfluid (N,). We can express the total
number of particles N as

N=N,+N,, (T < T, (6.39)

in complete analogy with (6.19) for the BE gas (T < T).
The superfluid has zero entropy, and vanishing viscosity. The normal
fluid (e > O for all N, atoms) coqtributes to free energy and viscosity.
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In the two fluid model we can express the mass-density p and mass-velo-
city v as
P = Ps + Pn» (6.40)

pU = pglts + Pplln. (6.41)
"We can use this model to explain the following strange properties of He II.

(1) Viscosity: Viscosity measurements made with dynamical methods
show that liquid He I (T > T,) behaves like a gas in that it exhibits a low-
ering of viscosity with decrease in temperature. Usually liquids show the
opposite behaviour. In liquid He II (T < T) the behaviour is even more
strange than in He I. Here the viscosity rapidly decreases as the temper-
ature is decreased below T, (Fig. 6.10).

N
(=]
T

VISCOSITY (micropoise)
S
L}

0

1.0 1.6 2.2

Fig. 6.10 Viscosity of liguid He and He gas.

Andronikashvili used a pile of aluminum ciisks, spaced 0.2 mm apart
and mounted on a common axis, that rotates in a liquid He bath (Fig. 6.11).

Fig. 6 11 Andronikashvili’s arrangement for measuring p,/p of liguid He IL

In the two-fluid model the fraction N, of atoms (¢ > 0) are assumed to
interchange energy with the moving disks. The fraction N, of atoms (¢=0)
are regarded as idle spectators that do not interchange any energy. Then only
the normal fluid rotates between the disks and thereby contributes to the
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moment of inertia I. For each temperature T,

Experimental 1 p,,

Geometrical Iy (6.42)

The observed p,/p curve (Fig. 6.12) gives the same qualitative trend for p,/p
as of the N,/N curve, (Fig. 6.2a). Hollis-Hallett used a rotating cyclinder
viscometer to measure the temperature dependence of pa/p in liquid He IL

1 '--\\
PIP RN [
s . !
Vi
Mo
Vi
en/e ‘\l
n 1
0 1 g™
(v 1 2
T(K)

Fig. 6.12 Results of Andronikashvili’s measurements p,/p.

When the viscosity was measured by the capillary flow (Poiseuille) method,
or by the flow through fine slits, the results did not agree with the values
obtained by the oscillating or rotating disk method. It was found that the
apparent viscosity of the liquid He II almost vanishes as the width of the
channel is reduced. Tisza pointed out an essential difference between the two
types of measurements. In the rotating disk method the disk is damped in
the normal fluid whose fraction decreases as the temperature is lowered. In
fine capillaries, or narrow slits, it is the superfluid which contributes to the
mcasured flow, because the normal fluid is held stationary with the walls
due to the exchange of energy. The velocity gradient being absent in the
normal fluid, there are no viscous effects. Thus superfluid atoms can move -
through the normal atoms without friction or viscosity, for small velocltles
(non-turbulent flow).

For T >0, pn—>0 and so viscosity -» 0 in Tisza’s model. However, the
observed viscosity increases (Fig. 6.10) as T — 0. This shows that the idea
of identifying specific atoms with the superfluid is not correct.

(2) Thermo-Mechanical Effect: Daunt and Mendelssohn immersed a
small heater coil H in He II contained in the inner bath 4, which is sur-
rounded by an outer bath B of the same liquid (Fig. 6.13a). They found that
there is a transfer of (superfluid) helium due to the formation of a thin
liquid film crecping towards the source of heat. ’I’hns is called the thermo-
mechanical cffect. )

The fountain effect, analogous to the thermo-mechanical effect, was ob-
served by Allen and Jones. Their apparatus is shown in Fig. 6.13b. One
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4

(]

(a) ®
Fig. 6,13 (a) Thermo-mechanical effect, (b) fountain effect.

arm of a U-tube is lengthened in a capillary, the bent portion is packed
with emery, and the other arm having an orifice is immersed in He II. When
a temperature gradient is created by allowing light to fall on the portion
containing emery, a fountain flow is observed at the capillary end.

The mechano-caloric effect (reverse of the thermo-mechanical effect) can
be observed by connecting two vessels 4 and B by a very narrow capillary
C (Fig. 6.14) through which only the superfinid can pass. When pressure is

. 7]

Fig 6.14 Mechano-caloric effect,

exerted on the liquid He II in 4, some superfluid flows to Band the temper-
ature in B falis.

These experiments can be explained on the two-fluid model by assum-
ing that the superfluid component has zero entropy in addition to its zero visco~
sity and being cold (¢ = 0) readily moves towards the source of heat (Fig.
6.13). Then there is no entropy transport from 4 to B (Fig. 6.14). The en-
tropy per unit mass S increases in 4 and decreases in B, S4 > S3. Accord-
ing to the equation CydT = TdS, T4 will rise and Tp will fall. -

(3) Second Sound: The familiar (first) sound is a pressure wave. Unlike
it, the second sound is a temperature or entropy wave. It was predicted by
Tisza* and first observed by Peshkovt using a continuous wave resonance

* L. Tisza, J. Phys. Radium 1, 165 (1940).
1 V.P. Peshkov, J. Phys. (Moscow) 8, 131, 381(1944).
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technique (Fig. 6.15). Periodic heat produced at 4 was found to travel
through He II and detected at the other end by the thermometer coil at the

end B.
T

A B

Fig. 6.15 Mmure;nent of second sound velocity. A, pulsed thermal
waye generator; B, receiver.

Tisza emphasized that the two types of interpenetrating fluids, p, and pp,
do not resist the motion of each other. Any temperature gradient tends to
be smoothed out by a current of normal (warm, > 0) fluid in the direc-
tion of falling temperature and a current of superfluid (cold, ¢ = 0) in the
opposite direction (out of phase by 180°) such that the total density remains
constant. This process is in agreement with the Le Chatelier principle. As
the total density remains constant, we have to imagine a motion of fluid for
which the average velocity # in (6.41) is zero. Then there is no net trans-
port of mass across any plane in the liquid and the flow equation (6.41)
reduces to

Psts + Pplin = 0. (6.43)
This possible mode of motion in which the normal fluid and superfluid
oscillate out of phase by 180° leads to thermal waves.or second sound.

The velocity u, of the second sound can be easily calculated*. The
superfluid component has zero entropy. Therefore, the total entropy S per
gram of the liquid He II can be expressed as

Ps = PnSu- (6. 44)

For simplicity consider the transport of entropy in one direction only.
Imagine a parallelopiped of unit cross-section and length Ax inside the
liquid with one pair of opposite faces vertical. The amount of entropy en-
tering the volume per second at one face is

pSUn = PuSulin, (6.45)
and leaving at the opposite face is

pSun + % (Sup) Ax.
Therefore, the net transport of entropy per unit volume per second is

52—‘ (pSuy). (6.46)

The original entropy within the volume was pS and the loss in unit time is
—(9/0r)(pS). This gives the equation of continuity :

*D. Gogate and P. Pathak, Proc. Phys. Soc. (London) 59, 457(1947).
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o) )
5 (eS) = 55 (St). . 6.47)
If p is sensibly constant and u, is small, we can write
oS au,.
~5 = S (6.48)

'

after neglecting the small term (aS/ax)u,..

Let the opposite faces have temperatures Tand T + AT. Then the quan-
tity of heat transferred across Ax per second is Q = pSu,7". By the second
law of thermodynamics W/Q = AT/T, where W is the reversible work done
in the heat transfer. Thus

W = Q(AT/T) = pSusAT. (6.49)

This work brings about a change in kinetic energy, (0U/at) Ax, within
Ax. There is no net mass flow, (6.43). So

U=}(puu:+p.u§)

ll

ntis [1+ (puln) (us/un)’]

5
1
=5 eatén [1 + (ealps)]
1
=5 (pFalpa) ti, (6.50)
(%t—t]) Ax _pP—P‘"u,, au'Ax = — W = —oSus AT,
or : .
2_%“7 - saT (6.51)

Using Cy dT = TdSand 3T/S = T/Cy = (3T/2x) (3x/0S), we have (37/ox)
= (T/Cy) (85/0x), so that
Pa a"n T oS

oot SCT,:EJ? : | '(6.52)
Eliminating u, in (6.47) and (6.52), .
S (e ST\ S '
= (0 ) o -39
The second sound velocity s defined by this equation is
= (8s5°T )m 6.54
“ (Pn Cr ) ©.54)

It follows that Tisza's two-fluid model predicts #, - 0 both when 7'— 0
and when T — T, (p, > 0). The prediction for T — 0 turned out to be
wrong. In fact, u, — u,/34® = 137 m/s for T — 0, where , is the first sound
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velocity. This shows that Tisza’s idea of associating the condensed parti-
cles with superfluid, as a natural extension of London’s theory of He II, is
not correct.

(4) Third and Fourth Sounds: When He II flows through a channel,
the normal fluid part gets clamped to the substrate, while the superfluid part
moves without hindrance (below the critical velocity). In addition, the sur-
face waves are also possible where the superfluid oscillates parallel to the
substrate. This mode is called third sound. There is a periodic variation in
the flim thickness attended with temperature fluctuations. The thicker part
contains superfluid in excess and has lower temperature. The phase velocity
u, is obtained by considering the velocity v,y, of a surface wave on a shal-
low liquid of depth d,

s (S 21:7 an ‘
where f is the attractive force of the substrate per unit mass of liquid, y the
surface tension, the p the density, and A the wavelength, For A —> large,
second term is negligible, the tanh is replaced by its argument, and it redu-
ces to

ui = fd (ps/e).

The factor (p,/p) is inserted because only the superfluid moves,* The measu-
red values of u, are in the range 1-40 m/s.

The fourth sound has features of the first sound (periodic variation in p)
as well as of the second sound (periodic vibrations in p,/¢). As first sound
moves through narrow channel (say, packed powder) its velocity is modi-
fied because only the superfluid can move freely. We can write},

ud = (ps/e) 43 + (pule) ui.

The u, rises from zero at T, and approaches %, as T-50 K, in agreement
with this equation.

6.6 LANDAU SPECTRUM OF PHONONS AND ROTONS

Landau found the explanation of London and Tisza based on the Einstein
condensation of ideal BE gas for the peculiar properties of liquid He II to
be unsatisfactory. In particular, it gives wrong predictions for viscosity and
second sound velocity as T — 0. According to him all bodies as T — 0
should show solid-like behaviour. The observed specific heat of He II as
T — 0 follows the Debye T3.law (5.76) which is valid for solids at low
temperatures. This 7'® dependence associated with elastic or sound waves in
solids can be understood in terms of phonons, the quanta of longitudinal

* For detailed treatment: K.R. Atkins and I. Rudnick, in Progress in Low Tem-
Dperature Physics, ed, C.J. Gorter, vol VI, North-Holland, 1970.

1 K.A. Shapiro and I. Rudnick, Phys. Rev. A 137, 1383 (1965); R.J. Donnelly,
Experimental Superfiuidity, UCP Chicago, 1967. ‘
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sound waves. Thus, for T < 1 K, the potential internal motions of the liquid
He II are longitudinal sound waves and the excited state can be regarded.as
an aggregate of phonons. The energy of phonons is linear function of their
momentum p,

€pp = U P» (6.55)
where u, is the first sound velocity.

This does not exhaust all the 3N. degrees of freedom, if there are N
atoms in the system of liquid He II. A liquid is not expected to sustain high
energy transverse (shear) wave, as a solid can. Therefore, for 1IK < T < T,
Landau* assumed the existence of excitations called rotons (quanta of vortex
motion) with the energy spectrum

Gor = A + (PY2p,), . (6.56)
where A is the energy gap (minimum energy required to excite a roton at
rést), p the linear momentum of the roton, and p, the effective mass of the
roton.

Phonons, like photons, obey BE statistics. Rotons are also assumed to
obey BE statistics. However, because the ¢,,, involves A > kT for T < T,
the aggregate of rotons can be treated, to a good approximation, as a Max-
well-Boltzmann gas. Both phonons and rotons behave like quasi-particles
that can move about and form the normal fluid. The superfluid has strictly
zero entropy.

To improve the agreement with experiments, Landau** finally proposed
the energy spectrum

{ €oh = U D, (phonon),
€ =

€or =.A 4 =0 (p p") , (roton), (6.57)

where the parameters u,, A, P, and yu, are adjusted to givé the best fit to

specific heat measurements. Landau finds
u, = 22.6x 10° cm/s, Alk = 9K, po/h = 2A-1, u, = 0.3 m,  (6.58)
where m is the mass of the He atom. The experimental value for u, is 23.9
x 10® cm/s. The Landau  spectrum is shown in Fig. 6.16. The active portions
€

Fig. 6.16 Dispersion curve (e #s. p plot) for liquid *He showing the two
branches (A, linear phonon branch, and B, -parabolic roton
branch) of the Landau spectrum (6.57). The ad hoc curve C
smoothly joins the two distinct branches,

*L.D. Landau, J. Phys. (Moscow) 5, 71 (1941)
*# 1. D. Landau J. Phys. (Mosco w) 11, 91 (1947),
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of the spectrum are shown by solid curves. At low temperatures (0<:T< 1K)
only the linear part of the spectrum corresponding to phonons becomes
active. At about 1 K, both phonons and rotons exist.

If the number of phonons and rotons per unit volume of liquid He II is
not large, their aggregate can be regarded as a mixture of two ideal gases—
a phonon gas and a roton gas. Then the specific heat will be the sum of the
contributions from the two, Cy = Cp; + Cyor.

Phonon Contribution: From (5.65), for the longitudinal wave,

ud’

3N=Ig(v)dv r4 V—dv._ an"' (6.59)
]

which relates the cut-off frequency v, with »,. Then (5.76) gives

. 12néNk { kT 16n5k4
Cr=—"3 (hv..) Y iswoay T
that is, the specific heat per unit volume for phonons is
16n5k¢

We can express it as per unit mass by using ¥ = 1/p for 1 gram. From (6.60),

Up = I C,u dT = bTY4, (6.61)

Spn = J.(C,;./T )dT = (b/3) T3, (6.62)

where b is a constant. Note that, as for photons, for phonons, . = 0. 1t is
interesting to compare (4.125) and (6.61), remembering that the former in-
_volves two directions of polarization.

In Landau’s theory phonons play an u'nportant role for T < 1 K, where
few rotons exist. Unlike the theory of London and Tisza, here they contri-
bute to the normal fluid and so lead to the correct prediction of u, at low
temperatures. To calculate. this we first show that p2*p = $ Up/ut, where
Ups = bTYa.

Let He Il at T < 1 K be enclosed in a long tube along the z direction
and let the walls of the tube move with a velocity v,. The superfluid compo-
nent remains at rest but phonons collide with the walls and acquire a velo-
city v;. For a stationary observer the energy ¢ of the phonon of rest energy
€ is €.= € + VeP: = ¢ + v,p cos O, where cos 6 = p,/p. Then for the pho-
non gas )

© % 8w
V _pcos® 2
P= pcosedN,,,=-—Jj pidp sin 046 d¢.
I h® ) I exp(e.,/kT) 1

By Maclaurin expansion for small v,
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1 1 - 1
exp(eg/kT)—1  expl(e—v; pcosO)kT]—1 " exp (JkT)—1
+y (P cos 6/kT) exp (e/kT)

* Texp (/kT)—1P°

The zero order term disappears when integrated over the directions,

x .
I sin 6 cos 0 d6 = 0, and so

‘© 7
2 J __exp (¢/kT) . . 2
—_— ——il’ dp sin 6 cos? d6
hs kT J ) [exp (¢/kT)—
4n¥ v, ]2 exp (pu,/kT) KT) __ e dp
5k kT ) [exp (puJkT)—1]° ’
[}

where we have used j sin 0 cos®0 d0 = 2/3 and € = p(u; + v, cos) =~ pu,

kT
for v; € u,. Integrating by parts and notmg that — 7 [exp @ u,/kT)—l

vanishes for both limits,

Y L . N
P=ren¥:= W 7 W ] exp ( pu,[kT)—

ph

4U
T3y

because .
_ L4 2y
Uk = I N = 5 | exp CougfTH—1 7'
If we write Uy per unit volume then
4 U, 4 bT‘/4 pr4
p’”_93u2_93 uf = 3u¥
In Landau’s theory for T’ <¢ 1 K the normal fluid p,. is entirely made of
.Pon. Therefore, substituting (6.60-63) in (6.54),
= (p—em ST = 2 _pTays -
“ ( Pok C,,,) §(Bu —bT P = s
=13.7x10% cnyys, for T — 0. . (6.64)
The experiment (Fig. 6.17) supports this calculatlon whereas Tisza wrongly

predicted u, > 0 as T— 0.
The reason for the success of Landau’s theory is that here not particular

particles but all excitations, phonons and rotons, are associated with the
normal fluid.

(6.63)

Roton Contribution: From (4.40), the free energy of a gas of N particlesin
a volume ¥ is



140 STATISTICAL MECHANICS
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Fig. 6.17 Second sound velocity in liquid He II.
F=—kTIn Z=—NkT In z + NkT In N—NkT, (6.65)
where .
7= 4::' j exp (—e/kT) pdp. ‘ (6.66)
] :

The number of rotons changes with 7 and is determined by the condition
that Fbe a minimum,
0=0F/ON =—kT In z + kT ln N,

Now=12. : . (6.67)
The correspbnding value of the free energy, given by (6.65), is
=—kTN,o =—kTz. _ (6.68)
Using (6.57), '

E)

+= T [ w0 (~ta 4 O-rrr2eirs P

Putting p—p; = ¢, dp = dg, p* = (¢ + p,)* ~p}, since p§ » wkT, we can
write after extending the limits to —c0 and -0 -

+o . .
Zoe %, exp (—A/kT) p} j exp (—¢*/2u,kT) dg

=2 exp(~ AT Qe TV = Ny =—F.ulkT, (6.69
Sra = —(OF,ul0TYy = kN;a (; + ,%T) (6.70)
Cooe= TOSwli T = kN [3+ 55+ (&) | 6™

Because of the factor exp (—A/kT), very few rotons are present at low
temperatures (N, >0 as T—>0).
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The choice (6.58) of parameters A, p,, ur gives a good fit to the mea-
sured values of Cy, S, and p,/p for He II. However, Landau’s theory has no
satisfactory explanation for the existence of 7).

The full dispersion curve (Fig. 6.16) with the phonon (linear) part and
roton (parabola) part connected by an ad hoc smooth curve has been ob-
served by the neutron diffraction experiments* (Fig. 6.18). Thisentire curve
is not given by (6.57). Feynmant has derived the full curve from the first
principles. However, the quantitative agreement is poor, specially in the roton
region where it gives a minimum at about e = 19 K. It is now believed that
rotons actually exist in liquid He II, although strictly speaking all evidence
is indirect. .

€ (%K)

/] 1

0 0.8 1.6 24
._1
k(A™")

Fig. 6.18 Full dispersion curve for liquid *He. The points are from the
neutron diffraction experiment and the solid curve Is a fit
according to the linear chain model.**

Several attempts have been made to use approaches other than the
Landau model to /derive the dispersion curve in agreement the neutron
diffraction results, Khanna and Das* have used a realistic potential for the
interaction energy, due to Van der Waals forces between two helium atoms,
as their starting point. Agarwal** hasregarded He II as an aggregate of long
monatomic one-dimensional chains formed under Van der Waals forces. Such
a chain supports Debye waves at low temperatures (T—0) and develops
vacancy waves for temperatures around 1K and below T;. The resulting dis-
persion curve is in good agreement with experiment (Fig. 6. 18). The melting
point of the chain can be associated with T;. It suggests quantized evapora-

*D.G. Henshaw and A.D.B. Woods, Phys. Rev. 121, 1266 (1961); A.D.B. Woods and
R A. Cowley. Rep. Prog. Phys. 36, 1135 (1973).
1R.P. Feynman, Phys. Rev. 94, 262 (1954); Progress in Low Temperature Physics, ed.
by C.J. Gorter, North-Holland, Amsterdam, 1955, Vol. 1.
+K.M. Khanna and B.K. Das, Physica 69, 611 (1973). .
**B.K. Agarwal, Lettere al Nuovo Cimento 17, 262 (1976).
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tion from liquid He II which has been observed.t This modelt} also shows
the possibility of Josephson tunneling of superfluid Heatoms through a thin
layer of He gas held between two films of liquid He II at T720.5 K. This
effect has been observed using a level difference in two reservoirs.t

6.7 *He-*He MIXTURES

The London-Tisza theory and the Landau theory differ in the relative im«
portance assigned to the role of quantum statistics. It was therefore sugges-
ted that a study of the mixture of a BE gas of ‘He atoms and a FD gas of
3He atoms below 2.2 K would throw some light on this issue.

- Daunt et al* showed that 3He neither -participates in the helium film
transfer nor in the flow through very narrow slits. In other words, it does
not show superfluid properties. Recently it has been observed** that at a
temperature of few millikelvin liquid 3He undergoes a superfluid transition
connected with spin pairing. The presence of 3He decreased the observed
value of T, and other thermodynamic properties were also affected.

The phase diagram is shown in Fig. 6.19. Above 0.86 K we can mix *He
and 4He in all proportions. However, beyond a certain concentration of #He
there is no superfluidity. If 3He is more than 6%, then below 0.86 K the
3He-rich phase begins to separate and float on the top of the *He-rich phase.
There is a visible interface. The equilibrium concentrations are given by
points like P, P’ at, say, 0.5 K. The tricritical point Y has received much
attention@. As T—> 0, the solubility of tHe in *He tends to zero, but that of
3He in ‘He to about 6% under the saturated vapour pressure. It means when
3He atoms are placed in pure ‘He at T = 0, they have lower energy com-
pared to that in pure *He. As more He are added, being fermions, they
occupy successively higher energy states. After certain concentration itisno
more advantageous to be in *He than to be in *He.

Heer and Dauntft extended London’s theory of He Il to the mixture by
regarding it asan ideal mixturc of a degenerate BE gas of *He atoms and a
non-degenerate FD gas of 3He atoms. They found that T3 varies with the

3He concentration as

mix _ o [ NaVa &3
I =T (7ot ) i 6.72)

tM.J. Baird, F.R. Hope and A.F.G. Wyatt, Nature, 304, 28, 1983.
11B.K. Agarwal, Lettere al Nuovo Cimento 21, 463 (1978).
tP.L. Richards, Phys. Rev. A 2, 1532 (1970).
*5.G. Daunt, R.E. Probst and H.L. Johnston, Phys. Rev. 73 638 (1948).
**For a review see J.C. Wheatley, Rev. Mod. Phys. 47, 415 (1975). Also see O.V. Louna-
smaa, Contcmp. Phys. 15, 353 (1974).
(@G. Ahlers in The Physics of Liquid and Solid Helium. eds. K.H. Bennﬂnann and
J.B. Ketterson, Willey NY 1976, part 1.
t1C.V. Heer end J.G. Daunt, Phys. Rev. 81. 447 (195]).



IDEAL BOSE-EINSTEIN GAS 143
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N3 /(N3+ Ng)

Fig, 6,19 The phase diagram for liquid 3He-*He mixtures under their
saturated vapour pressures, A is the region of normal homo-
geneous mixture, B of superfluid homogeneous mixtare, and C
of phase-separated mixture,

where v, is the volume per atom in 3He and v, in *He, v > v,, This formula
is obtained simply on replacing in (6.11),

T he ’ N, 2/3
°~ 2xmk (2'.612 V'l) ’
Vo by Vnix = Ngvs + Ny,

o _ A2 1 2/s Ny, 23
21mk \2.612 v, Ngvg. -+ Ny,

= Nyg -

Nyvg + Ny, *
The agreement with experiment is modest.-

Several other phenomenological theories have been given to account for
a large body of data on the *He-*He mixture. Nanda* has assumed that 3He
forms a non-ideal mixture with the ‘He normal fluid. Mikura** has em-
ployed the ad hoc energy spectrum ' _

€= A + p*lam*, . (6.73)

where A is the energy gap between the zero energy ground state and the
lowest excited state, and m* is the effective mass. His result is

TP® = T, {X exp [(A,—A)T]}%8, A=A, X4, (6.74)
Agarwal}, following Dingle@, has used the general spectrum

= T, X, X

* V.S. Nanda, Phys. Rev. 94, 241 (1954); 97, 571 (1955).
** Z. Mikura, Prog. Theoref Phys. (Japan) 11, 25 (1954).
+ B.K. Agarwal, Z. Physik 145, 515 (1956); 146, 9 (1956).
@ R.B. Dingle, Advances in Phys. 1, 111 (1952).
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= Mple, (6.75)

where M and r are parameters. It reduces to ¢ = p%/2m for the choice
M = 1/2m and ¥ = 1/2. This spectrum leads to the BE distribution*.

CVev-tde . dur
W) = ot -1 ¢~ ms . 679

The T8 is then given by

TP® = T X\, r=1} :_' ) 6.77)
4

Both (6.74) and (6.77) give very good agreement with experiment. Predic-
tions from these and other theories have been compared by Daunt**. For a
survey of properties see the review by Wheatley.t

A similar variation of T{™* also follows from Landau’s theory, without
emphasizing the role of statistics. It regards ®He atoms as impurity atoms
in the mixture, which merely increase the normal fluid concentration. Thus
the hope of deciding the exact role of statistics in liquid helium phenomenon
by the study of 3He—*He mixtures has remained unfulﬁlled.

6.8 SUPERFLUID PHASES OF *He
The phase diagram of 3He (Fig. 6.20), is quite different from that of ‘He. As

3He obeys the Fermi-Dirac statistics, nt is surprising that it shows super-
fluidity at all.

SOLID

o
<

NORMAL

b o —— -

=

Fig. 620 Phase diagram of *He when there is no magnetic field, The
polycritical point is at about 20 atm pressure and 2.5 X 10~3
K temperature, .

*D.S. Kothari and B.N. Sin\gh, Proc. Roy, Soc. (London) A 178, 135 (1941).

**].G, Daunt, Low Temperature Physics and Chemistry, ed. by J.R. Dillinger, Univ. of
Wisconsin Press, 1958,

1J.C. Wheatley, Am. J. Phys. 36, 181 (1968),
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The superfluidity in 3He occurs at 1.0 mK under the saturated vapour
pressure and at 2.8 mK near the solidification ponnt. Thls is very much
smaller than T, for ‘He.

3He shows two principal superfluid phases, 4 and B, rather than one.
At the polycritical point Y the phases 4 and B and the normal liquid co-
exist. If a magnetic ficld B is applied, Y disappears, A stretches down teo
zero pressure, and a new superfluid phase 41 appears between 4 and the
normal liquid 3He (Fig. 6.21). As field is increased, B shrinks towards lower

SOLID
A

NORMAL

T

Fig, 6,21 Phase diagram of 3He when the magnetie ficld is present,

T, while 4 and to a lesser extent 41 grow. For very strong fields, B is com-
pletely replaced by A. The superfiuid 3He is both magnetic and anisotrepic.
It exhibits three distinct phases when B ¢ 0. Various phase transitions are

given in Table 6.1.

Table 6.1 Phase Transitions in 3Fe

Magnetic field Phase transition Type
0 Nermal —» A4 Secend order
.0, B A —>B First ordex
B Normal —» A1 Second order
B = At —-> A4 Ssecond erder

The second-order phass tramsition (normal > A) shows a fimite dis-
continuity in the specific heat curve, This earve resemables in shaje the
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normal — superconductivity transition for the electron gasin a metal, rather
the A-transition in liquid 4He.

The superfluidity in liquid 3He results from the formation of Cooper
pairs, analogous to the case of electrons in a superconductor. In latter, the
Cooper pairs are formed between electrons with opposite spins (S = 0,
singlet state) and zero angular momentum (L = 0, s-state). However, in 8He
the pairing is between neutral atoms under weak attractive forces with § = 1
(triplet state) and L = 1 (p-wave). Again the overall wave function is anti-
symmetric, as L is odd. Even in zero magnetic field, the (S = 1,L = 1)
Cooper pairs can occur with S; = 1(44), 0(44 + 1), —1(}}), where 4(})
denotes spin up (down). Various spin states are:

Phase Spin State
B thty F4h 4 Bw*
4 e ABM¢
Al either 44 or ||

Superfluidity is associated with the formation of Cooper pairstt and the
associated energy gap A(T).

In spite of many differences between liquid “He and liquid #He, the two-
fluid model is applicable to 3He. The superfluid part in ®He is associated
with the Cooper pair condensate and the normal fluid part with the unpair-
ed fermions in excited states. Complications arise from the magnetic
properties of the liquid and from texfure (bending of the macroscopic angu-
lar momentum vector near the container walls). Due to the liquid *He being
both anisotropic and magnetic, the p, depends** on ghe direction in the
liquid and also on the orientation of the external field B.

Effect of Bin A Phase. In A, the vector L for every pair tends to be in the
same direction, The liquid acquires a macroscopic angular momentum 1, as
if it is an orbital ferromagnet.

It is useful to think of a vector a (k) such that | a (k) | signifies the pair
condensate amplitude at the intersection point of the momentum direction
hk and the Fermi surface. In 4, a(k) is in the same direction for all k. For
minimum energy a(k) and 1 are parallel, and B (therefore S) is perpendi-
cular to them (Fig. 6.22). The net magnetization M of the liquid is along B.

*R. Balian and N.R. Werthamer, Phys. Rev. 131, 1553 (1963).

1_'P.W- Anderson and P. Morel, Phys. Rev. 123, 1911 (1961); P.W. Andersonand W.F.
Brinkman, Phys. Rev. Lett. 30, 1108, (1973).

t{E.M. Lifshitz and L.P. Pitaevskii, Statistfcal Physics, Pergamon, 1980, part 2, p. 219,

**).E. Berthold ef al., Phys. Rey. Let. 37, 1138 (1976).
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Fig. 6.22 Effect of B in the phase A of 3He superfinid.

Effect of B in B Phase: In B, the L are oriented differently for different
Fermi surface points. The resulting net angular momentum in the ground
state is zero. Also, | a (k) | do not depend on k. To find how the direction
of a varies over the Fermi surface, first imagine the a vectors to stick out
radially over the Fermi surface. To minimize the magnetic dipole energy,
rotate all the a vectors about an arbitrary axis n by the angle cos=? (1) ~ 104°,
This adjusts L relative to S for each pair. The vectors a are affected most
(least) which lie in a plane N normal to n (lie on the n axis) (Fig. 6.23). The

—
S
—
\
—
| \

Fig. 6.23 Effect of B in the phase B of 3He superfinid.

N plane a vectors beconte almost tangential. The dipole energy is minimum
when n is parallel to the applied field B.

Texture: The vectors ), &, n, are not always arranged throughoutthe liqtiid
as shown in the ideal pictures given in Figs. 6.22, 6.23. The Cooper pairs
tend to orbit in a plane parallel to the surface, when near it, This preveqts
breaking of pairs by collisions with the surface itself. Thus, I in A phase is
perpendicular to B in the interior and bends to be perpendicular to the con-
tainer walls in the cuter region (Fig. 6.24): This gives a texture to the liquid.

In the B phase, it 1s the vector n which is parallel to B and perpendi-
cular to the walls. :
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Fig. 6.24 A possible textyre of the ®He in 4 phase inside a sphere,

Leggett Effect: We can associate characteristic frequencies o 4(T)and wg(T)
with the oscillations of the a vector about its equilibrium orientations given
in (Figs, 6.22, 6,23). They can be measured by the nuclear magnetic resonance
(NMR) method. They can also be measured by the method* of ‘parallel
ringing’.

When strength of B is adjusted in small steps, the magnetization of liguid
*He begins to oscillates at w4 or wp. The weakiy damped oscillations last
till equilibrium positions are restored for the involved vectors. It can akso
be uaderstood in terms of tunneling of Cooper pairs between two separate
superfluids consisting of 44 and || pairs. As these fluids are weakly coupled
and interpenetrating, itis a kind of internal-Josephson effect. It was predicted
by Leggett® and observed by Qsheroff and Brinkmant. The ringing does not
occyr in 4 § as it has only one type of pair.

PROBLEMS

6.1 Show that p =—AT/N as T->0 fora BE gas with ground state at
== 0, Show that, for N = 1022, y ~—1.4x10® ergat F =1 K and
mwox=14x107% erg at P= Im K. Show that the lowest excitation
emergy of an atom in a cube of side 1 cm is Ae= e(211) —e(l1)
=248 x 10~ erg or 1.80 X 10— K. Compare the closeness of u to the
ground state and of the lowest excited state to the ground state,
Justify Fig. P 6.1, with ¢, = ¢(111) = zero of energy

€ €
.
2T, , T<T,
Big. P 63

*A.k Leseets, J. Phys. €6, 3187 (1973); Phys. Rev. Lest. 34, 352 (1973)
1D.D-. Oshoreff and W.F. Brinkman, Phys. Rev. Lett. 32, 5846 (1974).
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6.2 Show that for a two-dimensional ideal Bose-Rinstein gas

o omldym [ de _
N= h? !; exp {(e—w)/kT} — 1

mkT %3 -
= 1y 2L 3 2 expouikr)

where I/, is the area. Can it undergo Bose-Einstein condensation?

(Ans: No, because in this result a value of p always exists which is

not of order 1/N. So no levels are occupied by a number of molesules

of order N)[Hint: ¢ = (W/2m) (k% 4+ k}), ks = 2omflymy =0, 3=1...;
for latge lr, J, and k* = k} + K, '
N = ;Elexp {(ey — W/kT} = 1]

LT P L P—

= (2m)8 ) exp [{(0*k*/2m) — p}/kT] —~1"*

6.3 Anideal Bose-Einstein gas consists of partioles with an internal degres
of freedom. Besides the ground state ¢; = 0, suppose just one excited
level ¢, is important. Find the condensation temperaturs of this gas.

6.4 Calculate 9p/80, 0 = kT, and discuss its sign.

6.5 London suggested an ad hoc energy speotrutn for liquid ‘He,

=04 (P2m*)=A+ ¢
where A is the energy pap between the ground state ¢, =0 and the

excited state e, p5~ 0, Show the N = }% Qrm* kTR exp (=A/kTo),

NN (% )"i exp (A/KT—AJkTy).
0,
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IDEAL FERMI-DIRAC GAS

7.1 FERMI-DIRAC DISTRIBUTION

For an ideal FD gas of N molecules in a volume ¥, the most probable
number of particles with energy ¢; is

_ N { L &
M) = Gp Gt B T 1 T BRI T T a.n
where B = 1/kT, a =—p/kT, and g; = degeneracy of the ith level. The para-
meter « (or ) is determined as a function of N and 7 by the condition

&t
RS L T e @.2)
(levels)
where the sum is over the energy levels as we have included g; in .1).
Because of the factor + 1 in the denominator of (7.1), « need not be restric-
ted to « > 0 as in the BE case. For the FD gas a can be positive or negative.
It is more convenient to work with the chemical potential p(T), since w
approaches a finite value g, at T =0 whereas « becomes negatively infinite.
The finite value s, at T = 0 follows from the Pauli exclysion principle. The
fermions in the gas occupy all possible quantum stafes with energies bet-
ween zero and the Fermi energy ex(T = 0) = p, whese value depends on the
number of fermions in the gas. The states with energy greater than o are
empty at absolute zero. The Fermi level is defined by u(T') for T > 0.

Once again we can approximate the sum by an integral. In the FD case,
due to the Pauli prmclple, there is no danger that a sizeable fraction of the
particles will be in the ground state. If we introduce the Fermi-Dirac distri-
bution function (Fig. 7.1)

1

(7.2) becomes
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Fig. 7.1 (@) FD distribution function for a gas in three dimensions. At the
Fermi level the value of fis . Note that u(T}) is negative. As
k = 8.62 X 1075 eV K-, for pu/kT == 1, we have u(T) o~
1eV for T ~ 104 K. For a metal p,might correspond to
5x10* K as here.(b) Comparison of Fermi-Dirac and Bose-
Einstein -distribution functions. For (e—p) $ kT we get the

classical limit.
N— J £ g(e) de, (7.4)
whére . )
2(€) de = g,(2nV /%) (2m)*® M2 de. (1.5

The g, =(2s + 1) is the spin degeneracy and comes from (2s+ 1) different
spin orientations possible for the same energy e. Forelectrons s = }, g, = 2.
The plot of

di(e)lde =g(e) () (7.6)
is shown in Fig. 7.2, :
0‘ _ A
P |
P 1
e |
PL 9z ¥
d

i
I
|
I

] .

1 A L d (] 1

v 1

€E/N—»

Fig 7.2 Plot of dn/de as a function of (e/y), at T = 0 K (dashied curve) snd
T = p/5k (solid curve).
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In general, p is determined from N,

2V T de |
N=g. @m® .[ exp [(«—m/KT]+ 1
_ar2 I xiAdx
—g v 2 [ XD
Watllet
%a
=8 ,‘K,Gm(m), a.m

~ where x = e/kT, o = exp (w/kT) is fugacity and

2 7 1 -1
G"'(”")zw?ﬁ’.{d""m(i‘“”) . (1.8
’ .

For small gq, . s

a a @ (—1)+ "
_ Galn(na)=x)¢—§'qrh+ s_’iﬁ_ _ e

=2 —m 7.9
Thus Gyj(.) is a monotonically increasing function of n,, s is easily verified.

The value of ep(0) is determined by noting that at 7 =0f(¢) is 1 for
¢ < ¢¢(0) and O for ¢ > ¢x(0),

«x(0) «5(0)
N= [ stode=g %7 @mn [ ande
[} 0
=8 2_"%‘-5’_’ (2m)*2 % [er(O)F73, (7.10)

or equivalently, with ¢ = p?/2m,

Pr
4 ’ 14
N‘;gc.-_:f';—;,dg=gs—3—h“‘p;. ;
0
Thus '

_ B 3N\ _p}-'
fﬂﬁ)—m(m) =Me=%p 7.1

wﬁere pr is called the Fermi momentum. With g, = 2 and the density of gas
p = (Nm/V) kg/m?,

#(0) = 0.623 x 10— 23 Joule or 39 p¥* ¢V for electrons. (7.12)
«#(0) represonts the encrgy of the highest level ocoypied at 0 K. For com-
duction electrons in metals p =« 0.1 kg/m?. Thus a Fermi gas possesses an
appreciable energy at 0 K while both MB and BE statistics predict a zero
value in the energy. The reason behind this is that the occupation number
for cach guantum state is © or 1 only for the F statistics.
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As the temperature increases above 0 K, the distribution near the «£(0)
rounds off (Fig. 7.1). If we define a temperature, called the Fermi tempera-
ture, by

Tp = ex{0)/k (= 4.52%x 108 p¥3 K for electrons) (7.13)
then for T € Ty, or kTr € «#(0), the distribution is called degenerate. For
T » Tp, the distribution is nondegenerate and we get the classical limit.
The parameter a = —w(T)/kT is negative in the former case and positive in
the latter case. It means that g > 0 at low temperatures, and u < 0 at high
temperatures (Fig. 7.1).

7.2 DEGENERACY

We have three cases: (i) T' = 0, the gasis completely degenerate, (i) T < T¥,
low temperatures, the gas is degenerate, and (iii) intermediate temperatures,

the gas is slightly degenerate.
(i) Completely degenerate gas, T = 0 K. We have

dn = g, 2nV/h?) 2m)*R 2 de, 0 € ¢ < x(0)
=0, ¢ > (0), (7.14)
wheré e(0) or y, is given by (7.11). The internal energy is

o . (]
=I edn = g, V%) (2m) I N de
H H

3 3
=3 Nity = 3 Nex(0). : (7.15)
Qther thermodynamic functions are
so =0,
Qo = Up= ST~ ==} N 7.18

P =—(QlV)= % (N/V) o (= 2.71X 107 p atm for electrons).

Thus even at 0 K a fermion gas exerts a pressure, If the electrons in a metal
were neutral they would exert a pressure of about 10° atm. The Coulomb
attraction to the ions counterbalances the pressure. For T = 0 K the value
of «(0) is positive and large.

e (i) Degenerate gas, T € Tr. The value of u(T) is still positive. We
ve

N = [ 1@ st de =557
[

\ ? e‘/’ d€ \
en | e 01D
0

The series (7.9) does not converge because 1/n, < 1 with p positive. So we
have to mdke use of an approximation. It uses the fact that for the degene-
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rate case f(e) [exp ((e—p)/kT) + 1] changes slowly with e except in the
region e o2 p. where it changes very rapidly (Fig. 7.1). In other words,
—(9f/0¢) resembles a delta function (Fig. 7.3) being negligible except when
| e—p | Is small and large enough at ¢ = u to give unit area under the peak,

L XARN 1

T €
Fig. 7.3 Plot of f and =3f/0e as a function of ¢.

Introduce the function

" Fe= J g(e) dey ' (7.18)

so that F(0) = 0. Now consider the integral (7.17),

N= ! 79 5F ge. ‘ (1.19)
Integrating by parts and noting that F(0) = 0 and f{oo) = 0,
N=- f R9) %de. ' (7.20)

The integrand is appreciable only for ¢ = u(T) (Fig. 7.3). Therefore, expand
F(e) by Taylor’s theorem about p,
N 2 (e—wp(dF
H‘)—'-o nl (a:ll-) €= , ‘ .
=F@) + (=) F' ) + § (=0} F () +...., (7.21)

so that

_ N=LFW+LF @+ LF @)+, (1.22)
. where

I, -—J £ (@ de,

L =—! (e—w) f' (e) de,
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— j (~uif ()de. (1.23)

At low temperatures the lower limits on the integrals can be replaced by
—o0. Then I, = 1, and, as it is easily seen that f'(¢) is an even power of
€—p, we have I, = 0. Writing y = (e—p,)/kT s

I = & (T j oD =% Gy, (1.24)

where the definite integral is given in standard tables. Thus

N= J £ F (o de = F@) + T RTPF @) +..

8(e)de + ' (kT)’ g +... (7.25)

=n._..1_

Since N is also given by (7.10),

0=— j 8(e) de + Ig(e) de 56: (kT g'(1)

g hwl + S 6TV @ (7.26)
Using g(e) = (2nV/h3) Rm)* &4, ’
w(T) =~ %[1—15(”) ] T € Ts, (.21

where in the second small term we have replaced p by . Thus p.(T) is
lowered slightly as the temperature is increased (Fig. 7.4).
The internal energy is given by

U= j ef(€).5(e) de
0

[ 4 3 d
= [ @@ d+ Torr L@
[

' 3q?
o~ Uo -+ [!"—l"o] ko 8(('1)) + 2-6- (kT)a g("'o)! (7'28)
where we have used (7.15). In view of (7.27),

2 : .
U =0, + G KT 2o, | (1.29)
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KT

Fig 7.4 Variation of the chemicai poteatial with T for an ideal FD gas in
three dimensions, u, is given by (7.11) and N/V is chosen here
to give p,=(1.5)%3, the region 4 correspondsto the degenerate
gquantum FD gas, B to slightly degenerate FD gas, and C indi-

" cates the region of classical gas,
Using | .

s = 8,557 mpn ygn = 5] — 206, (1.30)
we get _

U=U, [1 + 5"'(”)'-...], Uy = 3 Nt (7.31)
The heat capacity is

Cr =5 KT g = ST =8 neik O X )

This result is due to Sommerfeld (1928).
In Fig. 7.5 we compare the heat capacity of a gas acoordmg to the
three statistics. The pressure is given by P = (2U/3V).

Fig. 7.5 Comparison of heat capacity of a gas according to the three
" statistics, 6 = (h%¥mk) (NigV)*P.

Gy Slight degeneracy, kT > ex(0). In this case u(T) is negative or «
is positive and 4, < I. Wecanwrite,asin(?‘i),
P an de
f o

 N=g 7 - Qmpr
) exp(e/kn+1
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14 n, -
= g ia—‘l)a ( ]'—227'“2+ 3-5—/2—'... ) (7-33)
The series converges for exp (u/kT) = %, < L.

7.3 ELECTRONS IN METALS

We have applied FD statistics to an electron gas in which the mutual inter-
action of electrons is absent. To a first approximation this interaction may
be neglected due to the neutralizing effect of positive ions inside a metal.

Drude (1900) was first to suggest that the electrical and thermal be-
haviour of metals can be correlated by assuming that free electrons existin
thermal equilibrium with the atoms of the metal. Lorentz (1903) gave a
logical form to this idea by assuming that the electrons in metals obey MB
statistics. If this is so then the free electrons should contribute an amount
£ k per free (valence) electron te the heat capacity, in addition to the con-
tribution from the atomic vibrations. At room temperature, the latter leads
to Dulong and Petit’s law which gives 3R per gram-atom contribution to
the heat capacity. For monovalent metals, therefore, the heat capacity
should be the sum of two contributions, that is, 9R/2 per gram-atom. But
metals obey Dulong and Petit’s law quite accurately. This difficulty is re-
moved. if the free electrons in metals are described by the FD statisties,
(7.32).

We see from Fig. 7.1 that the FD distribution depends only slightly on
temperature. As the temperature is raised from 0 K to T, each freeelectron
deoes not gain energy by an amount kT because most of them are occupy-
ing states of energy less than 11, By the Pauli principle they cannot be excit-
ed to these states as they are already fully occupied. It is only a small frac-

-tion of electrons with energy close to p, that can be excited to empty states
lying in the range &T about u,. This number of excited electrons Nex is
given by

Nae = glup)kF
3N 3. T
=-2—!ZokT—ZN-ﬁ. (7.34)

Thus onty a small fraction (~ 3F/2Tp) of the cenduction electrons are
excited. For Ty ~ 100K, T = 300 K, only a few per cent are excited.
The electronic energy is given by

U(T) = NuckT=2 Nk & (7.35)
= Nexc 2 TF > L £
and the electronic heat capacity is

Cy (T) = 3UJT = 3Nk 1% ' (.36)

which is close to the correct result (7.32).
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Thus at room temperature the electronic heat capacity per electron,
3k (T/TF), calculated according to FD statistics is very small compared to
the atomic specific heat of about 3k per atom, in agreement with experi-
ments.

At very low temperatures the lattice heat capacity (due to phonons) is
proportional to T, (6.60), while the electronic heat capacity varies only
linearly with T. For very low temperatures, the former decreases very rapid-
ly and the latter begins to dominate. This is again in agreement with ex-
periments.

74 THERMIONIC EMISSION

" Electrons with sufficiently large kinetic energy within a conductor can es-
cape from the surface. This is called thermionic emission. For interatomic
distances of the order of A, and one conduction electron per atom, (7.13)
gives Tp/T ~~10 at room temperature. Thus the electron gas within a metal
is highly degenerate.

The work function ¢ of the metal is defined by

¢ = us—w(T), : ' (7.37)
where pp is the binding energy (energy required to remove toinfinity a zero-

energy electron from the metal). The free-electron model for a metal is
shown in Fig. 7.6, where ¢ is the energy required to remove an’electron of

energy w(T).
LR

|
|

1

i
R
Fig. 7.6 Free electron model of a metal.

‘- .'-t_-.b;’

Let the x-axis be normal to the surface of the metal. Let p, be the mo-
mentum of an electron in the x direction. _It can leave the metal if -

Pi2m > ps.
If j is the electron current per é'quare centimeter in the x direction, and
if vy is its velocity in that direction, then
L] © [
j=ef [ [ [ vt
© " Vi

%
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0

I _[ In[1 + ] dp,dp., (7.38)

—00 —C0

where E = ¢ + w(T) + (p + P?)/2m and
0= (g + (p} + Pu)/2m])/kT.
At ordinary temperatures 6 > 1. Put In(x + 1) =~ x, if x is small. Thus
kT
2 exp (—¢/kT) _[ I exp [—(p} + P2 )2mkT] dp,dp.

= AT? exp (—4/kT), » (7.39)

where A = 4nmek3h® = 120.amp cm-? deg=?. This is the Richardson-
Dushman equation. In general, ¢ is of the order of a few electron-volts.

- 2ekT

J=

7.5 MAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS

The conduction electrons are found to possess a small temperature inde-
pendent paramagnetic volume susceptibility. It is of the order of 10+, in
disagreement with the Langevin value 10~ at room temperature which
varies as 1T Pauli* showed that the use of FD statistics can correct the
theory as required.

Each conduction electron has a magnetic moment whose component in the
direction of magnetic field is 4 ug. If there are n conduction electrons per
unit volume, thé net magnetization is

_ M = pg(ne—n_y, n = n, + n_, (7.40y
where 7, is the number of electrons parallel to H and n_ the number anti-
parallel. Regarding the electrons as a fermion gas,

ny = j' §o(c + unb) fie) de, (7.41)

where e is the total energy, kinetic plus magaetic, of an electron. The fac-
tor } is included because the magnetic field H has removed the spin de-
generacy. We can write

. ole + uH) = 21:V 2V omyn e ( 1+ PHH)I/!

o~ ZLV @mypn an (1 + *_‘g’) . (7.42)

M= .‘;75 [4g+ warH)—} gle—unED] () de
[
2 @®
o ' '

*W. Pauli, Z. Physik 41, 81 (1927).
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Using (7.25), [ /(o) F(e) de = Fw) + G (kT F(),

M= 4n ImPA p2H | uie = —32
=g (2mp" pgH | pti—my + ... (7.44)
In view of (7.11, 27), at low temperatures,
3”‘&1;”
M= (e )
SHQJ-HH .
o u . (7.45)
Therefore, the Pauli result for the susceptibility X is

l=%=2—k3-’]—’..;p§;, (7.46)
which is independent of temperature.

The physical reason for this result is again that only a small fraction
(7.34) of electrons at the top of the Fermi distribution (Fig. 7.2) has a chance
to turn over in the ficld H and so to contribute to X. The Langevin result
is that the probability that an atom wilt be lined up parallel to the field
exceeds the probability of the antiparaliel alignment by a factor ~ pH/kT.
For n atoms this gives a net magnetic moment ~ npu3H/kT. This classical
result should be multiplied by 37727, to obtain the correct contribution.
Hence X o (ap3H/kT) (3T/2T ) = 3np? H/kTx, in agreement with (7.46).

7.6 WHITE DWARFS

The white dwarf stars are much fainter, possess smaller diameter, and
are very denmse, compared to other stars of the same mass. An idealized
white dwarf is a mass of helium (~ 10%3g ~ mass of sun) with density ~
107 g em~? ~ 107 x density of sun, and temperature ~ 10? K ~ temperature
of sun. At this temperature the helinm atoms get completely ionized. The
gasof electrons behaves as an ideal FD gas of density ~ 10%° electrons/cc,
This gives
8, _zﬂ(s%)” ~ 20 MeV, Tp ~ 101 K. (7.47)
Since T¢/T » 1, the electron gas is a highly degenerate FD gas. We can re-
gard it as an ideal FE¥ gas at T = 0 (that is, in the ground state).
The effect of high electron density is to yield Tr » T and also to make
the electrons attain relativistic energies due to increase in the mean energy.
We first calcufate the pressure exerted by a FD gas of relativistic elec-
troas in the ground state. The single particle emegy levels are given by
= (PP + mBctpn, (7.48)
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where the states for a single electron are specified by the momentum p and
the spin s. The ground state energy of the FD gas is

P
E,=g X (P + mzc‘)‘/’ g4 I (P’c* + m?c')!* 4mp*dp,
Ipl <pr
s (1.49)
where pr = h(3N/8nV)'3, (7.11). Putting p/mc = x,
4,5
Ey= T2y, (1.50)

where xp = pg/mc and .
3 : x5 l+ix§+... , xp €1,
10
fa = (xynede=11
) e xp(l +x;’+...), xp > 1.

(1.51)

The xr < | corresponds to the non-relativistic case, and Xz > 1 to the

relativistic case. The pressure exerted by the FD gas is

dE, - 8'trm4c5 of(xf) Oxz

oo - [+ v 2 5

- Snm‘c'[ R+ x )‘lz—-f(xp)]

] = W

Py=—

hs
- { [8rmtcs/(15h%)] ¥, xr < I, 1.5
Rrm*cS/(30%)] (xp — X7 ), Xp > 1.

We can now use these results to discuss white dwarfs.
The mass of the star, M, and its radius R can be written as.

M = (m 4 2mp) N = 2mpN, R = (3V/[4n)3, (7.53)
where mp (> mass of electron m) is the proton mass. Then
VN = (8n/3) (mpM/R?), ' (7.59
' h 1 (9% M\M_ M
=g (3;‘- m“:) == (7.55)

where M = (9x/8) (M/mp) and R = R/(h|2rmc).

The enormous zero-point pressure P, exerted by the electron gas is
balanced off by the gravitational attraction that binds the star. The work
done to go from the state of infinite diluteness to a state of flnite density to
form the star of radius R is

- f P Anrdr,
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where P, is the pressure of a uniform FD gas. We now introduce the gravi-
tational interaction. The gravitational self-energy, on dimensional considera-
tions, has the form —aBgM? R, where Bg is the gravitational coastant and
a (~1) is a number determined by the functional form of density. Differen-
tiation of

2 M 2 ' R
J' PAnrdr = —aBg —, (7.56)

with respect to R, gives the equilibrium condition

_aBg M*_a 8mp\ (2rmc\t M*?
i inlr Pl T = "(’9?) (7‘) = .57,
We now relate this result with (7.52) expressed in terms of # and R. For

xp<l

o ] —_ .
gKMm/R =K'M?*/R?, (non-relativistic), (7.58)
where
2rnmc 8mp (2rmc\4
K—xw( o ) =4 Bo 5t (_) (7.59)
Thus the radius of the star decreases when the mass increases,
AR = 4K/(5K’). (7.60)
For Xp D 1,
43 __93
2 .
K (MT —I—W_—) K’M s . (extreme relativistic), (7.61)
R R? R?
or
- 2B -
R=M [1— (MM e, (7-62)
where ’ ’
- K \%2% (27m\3/2 ch 32
My = (k“) - 6_4—a) (2————“&"’}) ; (7.63)

Thus no white dwarf star can have a mass larger than M, = (9/8n)mpd,
= 103 g =~ mass of the sun, with @ /s 1. Refined estimates give M, = 1.4 x
mass of the sun. This mass is known as the Chandrasekhar limit.*

7.7 NUCLEAR MATTER

Qualitatively, the nucleons (neutrons and protons) inside a nucleus form a
degenerate FD gas. The radius of a nucleus containing 4 number of nucleons
is given by the empirical formula R =2 a4¥3, a = 1.3 x 10-'% cm. Therefore,
the concentration of nucleons in nuclear matter is

*S. Chandrasekhar, Stellar Structure, Dover, N.Y.. 1957.
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nee ;A o 11 10% e, (7.64)
31!0844

1t is about 108 times higher than the concentration of nucleons in a white
dwarf star, From (7.11), the Fermi energy is given by a relation of the form
2 {3n\2%3 .
l0) = oo (gg) : (7.65)
for each type of particle (neutron or proton are not identical particles), For |
the simple case, '
Paeutrons R Mprotons =2 0.5 X 10%8 cm~3, (7.66)

we get ep(0) &2 27 MeV, or Tr = ep/k &3 x 1011 K, We compare this value
with other typical values in Table 7.1.

Tabie 7.1. The characteristic values of Fermi temperature for degenerate FD gases

Phase of matter ‘ Particles . . Tp(K)

Liquid 8He . atoms 0.3

Metal electrons : 5x10%

White dwarf stars electrons. 3x10°

Nuclear matter nucleons © o 3x1o1t

Neutron stars neutrons - 3xl1012
PROBLEMS

7.1 Show that the density of states of a free electron gas in two-dimen-
sions is independent of energy, g(e) = 4mmn/h%, per unit area of speci-
men. :

7.2 Show that for a FD gas in two dimensions u(T) = kT In [exp (nhY
4zmkT)— 1] for n electrons per unit area.

7.3 Show that the initial curvature of u versus T is upward for a FD-gas
in one dimension and downward in three dimensions.

7.4 The ®He atom is a fermion as its spin is half. Calculate v, ey and Ty
for liquid ®He treated asa FD-gas at T = 0. The density is 0,081 gcm—3
for liquid #He. Calculate Cy at T &€ Ty and compare with the value
Cy = 2.89 NKT observed by A. C. Anderson, W. Reese, and J. C.
Wheatley (Phys. Rev. 130, 495, 1963) for T < 0.1 K.

7.5 The *He atoms are bosons and *He atoms are fermions. Let liquid
*He (lighter) be in equilibrium with a 3He—4He mixture (heavier) with
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7.6

7.7

7.8

7.9

7.10

—

7.1

7.12
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more than 6 pct 3He. If 4He is added to the mixture, the floating 3He
evaporates from pure *He liquid into the ¢He rich phase to restore
concentration and thereby absorbs heat. Construct a kelium dilution
refrigerator on this fact (see, for example, D.S. Betts, Contemporary
Physics 9, 97, 1968 O.V. Lounasmaa, Scientific American 221, 26,
1969).

Show that the clectron gas in copper is degenerate at room tempera-
ture (given: concentration = 8.5x 10% m-3),

Calculate the pressure of the electronsin a gas discharge at 7 .= 2000 K
and concentration 108 m~3. .

Use (7.11, 32, 46) to calculate the electronic specific heat and spin
paramagnetic susceptibility of Lithium (p = 0,534 g cm-?)

[Ans: Cp = 0.26 X 10~ T cal/g. deg, x = 1.48 1078 (cgs) (emu)/g.]
Show that for a rclativistic completely degenerate electron gas, with
€ =c¢ (p* + m¥c®)? = me® cosh 0, p = mc? cosh 0, and pr = mc
sinh 8,, we have ,

8n (mc s 8= (pr
N/V_?(T)s oh? 6, — (h)

EIV = e

= 3 [sinh (48,)—46,],

P = "_'"‘_c (4 sinh (48,)—2 sinh (20,) -+ 38,].

Consider the nonrelatmstlc limit in Prob. 7.9 for completely degene-
rate case.

Calculate 1. and Cy for an extreme relatnvnstxc(s == cp), highly degene-
rate, ideal electron gas.

Pulsars are stars consistingof a cold degenerate gas of neutrons. Show
that for a neutron star M2 R ~ 108 g!® cm.



8
SEMICONDUCTOR STATISTICS

8.1 STATISTICAL EQUILIBRIUM OF FREE ELECTRONS IN
SEMICONDUCTORS

A single electron in a semiconductor is described by a plane wave with wave
vector k. It is modulated by the periodic field of the lattice, According to
quantum mechanical calculations, the corresponding energy fevels are group-
ed into two bands with an energy gap e, between them (Fig. 8.1}. One can
consider regions in space x and in k space so that Heisenberg’s uncertainty
relation Ax Ak 2 1 holds. Then one can simultaneously pfot the emergy

cB

f(€)

mg 8.1 Energy scale for statistical calculations. The Fermi distribution function
is shown for a finite temperature. The conduction band (CBj and tte
valence band (VB) have their edges at ¢, and ¢;, respectively. The
Fermi level is marked g and fs taken fo Ne well within ffie encrgy

£3p €5
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levels as a function of spacial coordinate x. The ordinate represents the
energy of a particle, the abscissa its space coordinate (Fig. 8.1). The upper
band is called the conduction band and the lower one the valence band. In a
pure or intrinsic semiconductor (semiconductor without impurities) at 7=0
all the quantum states are occupied in the valence band and unoccupied in
the conduction band. We can write

€ = €6, @8.1)
where ¢ is the energy of the bottom of the conduction band (conduction
band edge) and ¢, of the top of the valence band (valence band edge).

A fully occupied band cannot carry any current. Therefore, at 7 = 0 a
pure semiconductor is an insulator. For the usual semiconductors ¢, is bet-
ween 0.1 and 2.5 eV. Because kT == 1/40 eV at room temperature (~ 300 K),
usually ¢; 3 kT. As the temperature is raised, the electrons are thermally
excited from the valence band to the conduction band. This creates conduc-
tion electrons in the conduction band and unoccupied quantum states in
the valence band, called Aoles. The conduction electrons and holes can also
be created by the presence of impurities that change the balance between
the number of single-particle quantum states in the valence band and the
number of electrons available to occupy them. The conductivity resuits
from the motion of electrons in the conduction band and of holes in the
valence band.

If n, is the concentration of conduction electrons and n, of holes, then
in a pure semiconductor, which is electrically neutral,

n, = ny, 8.2)

In practice, we have to deal more with impurity semiconductors. Impurities
that supply an electron to the conduction band, and thereby acquire a posi-
tive charge, are called donors. Impurities that accept an electron from the
valence band, and thereby acquire a negative charge, are called acceptors.
If n} is the concentration of positively charged donors and n; of the nega-
tively charged acceptors, then An given by
An = nf—n7 (8.3)
is called the net ionized donor concentration. The electrical neutrality condi-
tion can be expressed as
Re—ny = An = nf—n;, 8.4)
In the state of statistical (thermodynamic) equilibrium the electron con-
centration can be calculated from the FD distribution function
1
Je(e) = exp [(e—w)/kT] + 1 @5
where p = p (T) is the chemical potential of the electrons (subscript e in
f. refers to electrons). At T = 0 K, u(0) = ¢y = Fermi energy ez (T = 0).

The electron chemical potential u(T) is also called Fermi level. _
For known p. and T, the number of conduction electrons N, is given by
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_A N =21 () | (8.6)
where the sum is over all the conduction band states. The number of holes is
=ZI~f @l =2/ @®.7

where the sum is over all the va]ence band states and

1
Sy =1~fe (@) = o [(u—e)/kT] +1

gives the probability that a quantum state at energy e is unoccupied (or
equivalently, occupied by a hole).
Thus the concentrations 7, = N,/V and n, = N;/V in (8.4) depend on .

(8.8)

8.2 NONDEGENERATE CASE

For f. € 1 and f; < 1, the FD distribution function reduces to the classi-
cal distribution (Fig. 7.1). This is possxble when p lies inside the energy gap
(Fig. 8.1), and
ee—t P kT, p—e, > kT (8.9)

When ¢,—p and p—e, are positive and at least a few times greater than k7,
the semiconductor is said to be nondegenerate. Then

Je(e) = exp[— (e~w)kT), fu=exp[—(u—e)kT], (8.10)
and the density of states is (Fig. 8.1)

8e (€) = 4nV (2m.[h»)¥/? (e —e )2 €> €
g =0 a<e<e
&n(€) = 4V (2my/h¥)*® (e, —€)'/? € < €. 8.11)

The conduction electron concentration n, = N,/V is

n, = NV = ;Jf.(s)ge(e)de

== 4n ( Zh?)algexi’ (w/kT )] exp (—¢/kT) (e—e)/? de

€

= n, exp [(n—e)/kT], : (8.12)
where .
2xmkT\33 2

The quantum concentration n, for conduction electrons for actual semiconduc-
tors varies as 793, as in (8.13), but differs in magnitude by a propor-
tionality factor. A formal way to accommodate this is to replace m by an
effective mass m* in (8.13). Thus
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n, = 2 (2rme kT[h%)PR = 4.82 X 10'5 (m¥ [m)%® T3P, (8.14)
The n, represents the effective number of states per unit volume (effective

density of states) in the conduction band.
Similarly, for holes

m =NV = I Si(€) gu(e) de

= n, exp [—(n—<)/kT), @8.15)
m = 2 (L) = 482100 (ZE)" 7on, (8:16)

where n, is the quantum concentration for holes (or the effective number of
states per unit volume in the valence band) and m} the effective mass for
holes.

Note that in a nondegenerate semiconductor

neny = ncny, exp [—(e.—&)/kT] = ncny exp (—e/kT) (8.17)

does not involve w and is constant for a given 7. The equilibrium relation
(8.17) is the law of mass action for the reaction electron + hole < 0. The
result holds for impurity semiconductors because the only assumption made
is that the value of u from the edge of both the bands should be large in
comparison with kT. At 300 K the value of n.n; is 3.6 x10¥ cm—® for Ge,
taking m® = mf = m.

In a pure semiconductor, conservation of charge requires that n. = nj.
The common value of the two concentrations is called the intrinsic carrier

concentration ny,

= (1 ng)'® = (n, m,)M2 exp (—e5/2kT). (8.18)
We have in this case
m/n. = exp {[2p—(e; + &)/kT}, (8-19)

or
1
=5t e+ %kT In (n/n;)

=3 (et )+ JRT In @t md) = (e + ) (8.20)

asln (mi /mf)~ 1. ‘
Thus at T = 0 the Fermi level y lies in the middle of the energy gap and

its position depends linearly on T. As the temperature rises, the value of p
slightly shifts, towards the band the density of states in which is less and so will
be filled first (Fig. 8.2). Form} = m? , we have p=§(s; + &) = €, + 4 €, that
is, the Fermi level is independent of T and lies exactly at the middle of the
energy gap of width ¢; = e.—¢,. Clearly, for a nondegenerate semiconductor
the Fermi level lies inside the forbidden gap. Although there are no electrons
at the Fermi level in an intrinsic semiconductor, the deﬁmtlon that 7, = §

when e = p remains true.
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el-—%a-z
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Fig. 8.2 The variation of the Fermi level with temperature in an intrinsic
semiconductor. i = ¢ = intrinsic level; ¢ = } (¢, -+ ¢;)—the
middie of the energy gap; curve 1 for mf << mj , curve 2 for
m? = mj}, , and curve 3 for m¥ > m} .

* From (8.14, 16, 18),

’ # 0% \ 3/4
n = 4.82 105 (’”’m -’:"') T3 exp (—e;/KT),
3.1 ¢ 1
— —_in = —-£ _
In n; = const. 3 In T "% T (8.21)

As In (1/T) is negligible compared to the- linear one, the graph of In n,
against 1/T is practically a straight line. The slope of the line is determined
by the energy gap, tan ¢ =—¢,/2k. The tan ¢ can be measured from the
graph (Fig. 8.3).

In n;

\
\

LA _

"y

Fig. 8.3 Variation of In , with 1/T in an intrinsic semiconductor.
8.3 IMPURITY SEMICONDUCTORS

Suppose an As atom (five valency clectrons) occupies a substitutional position
in the Si (four valency electrons) lattice. Arsenic contributes four electrons to
the four covalent bonds with the neighbouring Si atoms. The extra electron
orbits about the As* ion with the hydrogen-like binding energy ’

m*et m*

€ionization = 2_:_{1’1_' = ( ;;e_: )x 13.6 electron volt, |
where ¢, is the dielectric constant of Si. Using ¢, = 12 for Si, and m*/m
~ 0.1, we find €jonization ~ 0.01 eV. Thus the energy level of the extra elec-
tron is just below the conduction band edge (Fig. 8.4). Itisa donor level be-
cause the thermal energy can raisc this extra electron to the conduction
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band. The substance is called an n-fype impurity semiconductor because we
have added an electron without creating a hole in the valence band.

If Ga atom (three valence electrons) is introduced as an impurity in Si
lattice, we have one too few electrons to form the four covalent bonds with
the neighbouring Si atoms. Consequently, a valence band electron can be
easily thermally excited to fill this ‘lack of an electron’ level just above the
valence band edge (Fig. 8.4). This will create a hole in the valence band. The
energy level which now accepts the electron is called an acceptor level and the
substance is a p-fype impurity semiconductor.

¢ E 2%222 C,B///E% ZZ ; , n=
€c

.on
g * > - oo I‘-edn;

g: - o -e:“ ,IAéa:S

% y %
X

Fig. 8.4 The donor (—@—) and acceptor (—o—) impurity levelslocated -
in the energy gap of a semiconductor.

Let us assume that (i) each donor atom contributes one electron which
can enter the conduction band or fill one hole in the valence band; (ii) each
acceptor atom removes one electron either from the conduction band or from
the valence band. This is called the approximation of fully lonized impurities.
All impurities when ionized are either positively charged donors Dt or nega-
tively charged acceptors A~. -

From (8.4, 18), An -=n,—ny = nj —nz, ny =nj |n, and so

n—n, An= nj. : T (8.22)
Solving this and remembering that n, > 0.
An 4n} 8.23
"¢=+—2—{[1+°(-A—n7, +1}, ] (8.23)
An 4n} P2 :
ny= n,—An = 7 {[l + (_An!)_’] —l}. (824)

Usually the doping concentration is large compared to the intrinsic concen-
tration. It means, either n, or n, is much large than n,,

|| > 1 (8.25)
This inequality defines an extrinsic semiconductor, and we can write

@ [1+ (T;‘—;"‘;,]"' ae\an |+ 26 | An | (8-26)
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An example of the extrinsic semiconductor of the donor (or n—) type is
n, =0 with a wide energy gap ¢ » A<y (Fig. 8.4).
In an n-type semiconductor An > 0 and so from (8.23, 24, 26)
ne = An + (nf jAn) >~ An, n,=n}[An & n,. .27

In a p-type semiconductor Az < 0 and so
mee=nl||An|€m, moz|An|+(nf{An])|An|. (8.28)

Solving (8.12) or (8.15) for u, ,
u=¢—kTIn (nn) =¢, + kTIn (n,[ny,). _ (8.29)

Use of (8.23, 24) now gives the Fermi level in extrinsic semiconductor as a
function of T and doping concentration Ar (| A n | ~ 1012 cm=3). As an
extrinsic semiconductor is cooled, the Fermi level approaches the conduc-
tion band edge for n-type (An > 0) and the valence band edge for p-type

(An < 0), Fig. 8.5,

INTRINSIC

€

€

Fig 8.5 The temperature dependence of the Fermi level in a semiconductor
which is doped by a donor or an acceptor. The curves marked 1
are for [ Anlyand 2 for [ An |, > | An .

84 DEGENERATE SEMICONDUCTORS

For large carrier concentrations, approaching the quantum concentration,
we cannot use the approximation (8.10) for that carrier. The method of Ch. 7
must now be used. Thus, (8.12) becomes

m == deg@1 0

1 (Sn’m: )m £ (e—e) de
\W ) )T ep (e—wikT]

=n,[ 2 f——”"—]=-n., G.;.(n.i. ®.30)

V= e+ 1

Na

where n. is given by (8.13), x = (e—¢)/kT, 14 = exp [(y.-—e,)/kT], and
G,ys (10) is the FD-integral of (7.8).

’
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When e,.—p > kT,
nen, == —2—_— Na f e=x xV2 dx = —-?_— I'(3/2) *q; = exp [(n—e)/kT].
vVr ) vV
8.31)

This is the known result for the ideal gas.
The value of p. given by (8.30) can be written approximately as*

Iny,~lnr+ (1/V8r+ .., r=nn, (8.32)
which is good for values of r upto about 10. In semlconductors this is the
usual range of values of r.

8.5 OCCUPATION OF DONOR LEVELS

We assume that one and only one electron with either spin up or spin down
can occupy a donor level. We then have two different quantum states with
the same energy. However, the occupations of two such quantum states are
not independent of one another. Once the level is eccupied by one electron,
the donor cannot bind a second electron of opposite spin.

The possible microscopic states for a donor level are three: one without
an electron, one with a spin up (4 ) electron, and one with a spindown ()
electron. The impurity atom is ionized in the first state and we take its
energy to be zero. Then the two possible occupied states have the common
energy — ey. All donor states are assumed independent with each other. The
grand partition funcﬂon is

=1+ 2exp[(n + exkT}- (8.33)

The probability P(N, ¢) that impurity atom is ionized (N = 0)is
PO, 0) = & = , 5.34
00 =7 = e+ DT €39

and that it is neutral (unionized) is
P(1t, —ea) + P(1{, —e}) = 1—P(0, 0). (8.35)
If we measure the energy of a singly occupied donor state relative to the
origin of energy (Fig. 8.2), we must replace —sg by e, in (8.33, 34). From
(8 34), the probability that the donor state is vacant (donor ionized), is then

written as )
] .
D+ . .3

O = r 7 exp la—eaTT (8-36)
It gives the distribution for holes over donor states. From (¢8.35), the pro-
bability that the domor state is occupied by an electron (donor neutral, un-

ionized), is

1
D) = : .
AP) = T3 Y exp Wea—rVET]
It gives the distribution of electrons over donor states.

(8.37)

*W.B. Joyce and R.W. Dixon, Appl. Phys. Lett. 31; 354, (1977).
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The case of acceptors is different. For an ionized acceptor 4~, the chemi-
cal bond with a neighbouring atom of the semiconductor involves a pair of
electrons with antiparallel spins. Only one such state is possible. Therefore,
A- contributes only one term, exp [(t—€a)/kT], to & for the acceptor. For
neutral acceptor 4, one electron is missing from the bond. This missing
electron can have either spin up or spin down. Therefore, it contributes the
term, 1, twice to the 2. We can write the thermal average occupancy as

f(A-) — €xXp [(“'_ ea)/kT] = 1
T 2+ exp[(n—e)/kT] 1+ 2 exp [(e,—p)/kT]"
(8.38)
It gives the distribution of electrons over acceptor states. For 4 neutral
(acceptor state unoccupied), .
2 1
A = e ey ®T] = T Texp l@—<KTT
(8.39)

It gives the distribution function for holes over acceptor states.
The concentrations of D+ and A~ are

nd = na ADY), n3 = na fl4°), (8.40)

where ny and n, are concentrations of donor and acceptor impurities on
doping. The neutrality condition (8.4), with An = n} —n;, gives

- =n,+ n; =n, + n¥ =nt. (8.41)

It is useful to display these results on a logarithmic plot of #— and n*as
function of p (Fig. 8.6). The dashed lines represent n;, s, n,, nz. The solid
curves are for n* = ng + nJ = sum of all positive charges, and n— = n, + n;
= sum of all negative charges. The actual Fermi level p is given by the
intersection of the n* and n— curves (n* = n™).

“The charge carriers are called majority carriers when their concentration
exceeds that of intrinsic carriers #; at the given 7. Thus, in donor-doped
semiconductors the majority carriers are electrons. If either 7, or n. is very
small, the majority carrier concentration can be easily calculated. Suppose
we have an n-type semiconductor with no acceptors. The neutrality point is
then given by the intersection of the n* curve with the n, curve (n* = n,). If
the donor concentration is not too high, we can use (8.12) for the straight
part of the n. curve,

exp (w/kT) = (ne/nc) exp (ec/kT), 8.42)

exp [(u— eg)/kT] = (ne/nc) exp [(ec—<a)/kT] = nefne . (8.43)
Here
nt = n, exp (—AefkT), Aey = ec—eqy (8.44)

is the electron concentration for the case u = ¢4, and Aey is the donor ioni-
zation energy.
From (8.36, 40, 43), with n, = n},
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€y € A . Sqm € €
Fig, 8,6 Determination of 1 from the intersection of curves (solid) on a logaris
thmic plot for n* = m, + n} and n— = n, - n; for an n-type
semiconductor having both acceptors and donors. The dashed curves
are for n}, ny, n,, n . The value of ny/n, ~ 10~2and of ":r/"c ~ 108,
For n, = 0, the actual Fermi level is at the intersection point of n,
and nt (or nt') curves.

ng
"= TF 2(uny (.49
n; +-% ng m-f% ngng =0, (8.46)

ne = + 3 M {01 + @nafn )PA—1)

o ng—2(ngint) = ng [1=2(myfn, ). @®.47

This is a good approximation for the case of weak doping, 874 € nf. For
complete ionization n, = ng. The term —2n3/n¢ gives the first order depar-
ture from complete ionization.

8.6 ELECTROSTATIC PROPERTIES OF p-n JUNCTIONS

A p-n junction consists of a p and an » semiconductor in intimate contact
(Fig. 8.7). On joining, the Fermi levels become equal because at equilibrium
the chemical potential is the same for the two semicenductors. This equili-
brium is achieved by a small transfer of electrons from n-type to p-type,
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TRANSITION
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Fig. 8.7 A p and an » semiconductor when in intimate contact form a p-n
junction with the electrostatic potential €(x) showing a transition .
region. The space charge p(x) is shown at the bottom.

where they recombine with free holes and produce a space charge (negative
on the p side and positive on the » side) which inhibits further flow. This
leaves a region with no free catriers near the junction (depletion layer), The
ionized donors and acceptors in this layer make the n-type positively char-
ged and the p-type negatively charged. The dipolar layer near the interface
so formed produces a potential gradient in the transition region (Fig.8.4).
This built-in electrostatic potential step ¥, exists even in the absence of an
externally applied voltage. The potential step of height eV, is needed to
equalize the total chemical potential of two semiconductors when their in-

trinsic chemical potentials are unequal.
Let the two semiconductors be extrinsic and nondegenerate, that is,

mEng k n, n & n, L, . (8.48)

For fully ionized donors on the » side and fully ionized acceptors on the -
p side, ‘

Ne o2 Ng, Np =2 Ny, (8.49)

where we have omitted the superscripts + from ny, n,. .
From (8.12), the conduction band energies on the n and p sides are
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en = W—kT In (ngfn.), (8.50)
écp = p—kT In (nepfn;) = p—kT In (n}fn,n), (8.51)
where we have used (8.18), #} = n,7;, in (8.51). Thus
eVon = €cp— €cn =—kT In (nifnng)
= ¢—kT In (n.n,/nng). 8.52)
For doping concentrations 7y ~ 0.01 n. and n, =~ 0.01 n,, we geteV,, == ¢
—9.2 kT =~ 0.9 eV in silicon at T = 300 K.
The electrostatic potential ¢(x) satisfies the Poisson equation
d® (x)dx® =—p(x)/E (8.53)
where p is the charge density and & the permittivity of the semiconductor.
In this one-dimensional model there is an abrupt change from » to p at
* Wg;h the origin of the electrostatic potential at x = —co, we have $(—x)
= 0, ,(x} = ¢, (—o0)—eg(x), and (8.12) reads
ny(x) = ny exp [ed(x)/kT]. (8.59
From (8.53, 54), , ’
T=— == (5) tu—m == G (1—exp (KT B.59)
Rewrite it as

(2 d’*) 2_d (""‘)’ - Egg ‘%‘ lep—kT exp @/M)], (8.56)

dx) &= dax\dx
and now integrate with ¢(—o) = 0,
dg\ 2 ' '
(Zig ) =~ 2 ey + KT—KT exp (kT @.57)
At the interface, x = 0, let
—ed(0) = eV, > kT, (8.58)

where ¥, is the part of V,, on the n side. Neglecting the exponential term
in (8.57), the x component of the electric field, E — —dy/dx, at the inter-
face is

E = Qng)E YA (eV— kTN, (8.59)
If ¥, is the part of ¥, on the p side, we have similarly
. E = (21,/E YA (eV,—kT)!A. (8.60)
Matching these values of E and using V,, = V, + V,,
. Zf ng Ny _2k T 12 :
£=[(F):% )] @60

The space charge is positive on the n side (Fig. 8.4). The field E is the
same as if all the electrons on the n side are depletegrfrom x = 0 to a dis~
' of .
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tance w, = EEJens. There is no depletion at | x | > w, The w, is the
thickness of the space charge transition region on the # side. On the p side,

wp = EElen,. Therefore, the total depletion width is

w=w,+ w, #6—;5;('—’;‘1—“”_%’) (8.62)
where E is given by (8.61).
PROBLEMS

00
2 X2
8.1 In (8.30),6;[, = -\7;_" I aﬁﬁj-ﬂ where E = (p.—-e,,)/kT. Show
0

that the Fermi integral Gy/y(£) can be approximated as

‘ r ek — o0 < £ <—1 nondegenerate,
| 1
— e« 5,
Gu® =) TDF e <t
i :/Z &’{'_ 5 < £ < w completely degenerate

8.2 If n, is not small compared to n;, show that the law of mass action ean
be expressed as
nemy=n} exp [—n,/V§n. +...1.
8.3 Verify that the Boltzmann constant k = 8,6167x 10~% eV K-, and
1/k = 11605.4 K.eV-Y, that is, 1 eV corresponds to 11605.4 K. Show
that (T, kT) = (1K, 8.6 x 10-% ¢V), (300 K, 0.0258 eV). Note that the .
energy of ionization of impurity atoms is of the order of hundredths of

an eV.

8.4 Taking ¢; = 1.1V and m} /m} = 6 in silicon, show that Fermi level in
the intrinsic material is 0,55¢V at = 8 K and 0.516 eV at 7 = 300 K.
If m2 /m = 0.8, where m is free-electron mass, show that the density of

- free electrons is 2.24 x 101° per cm3 at T = 300 K,

8.5 Inan n-type semiconductor the donor levels lie ¢; below the bottom of
the conduction band. If Ny, ns and n, are the number of donors, the
number of electrons in the donor levels, the number of conduction elec-
trons per unit volume, respectively, then show that the free energy of
electrons that are on the donor levels is

Nyt NBq |
F=—n4e;—kT In Tl 4].
Use p = 8F/on, to obtain
ngsm N4
3 exp [—(es + w)/kT]+ V'
For the nondegenerate case show that
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¢ kT\¥2
o= e exp WKT), ne =2 (ZEETY",

From these results obtain

n(Na—na)

=} n, exp (—eafkT).
nq

8.6 Derive the result of Prob. 8.2 by using the grand partition function
" &= [+ 2nq exp {ea/kT}]"4, 1, = exp (w/kT).
[Hint: ny = 94 (d In 2,/3n,)].

8.7 The transition temperature from impurity to intrinsic conductivity,
depends on the concentration of impurity in the specific semiconduc-
tor and on the band gap width ¢, = ¢,—e, for fixed impurity concen-
tration. If this transition is defined symbolically by the condition
By = ng, or n. = 2n,, show that the temperature (depletion temperature
Taep) is given by

Tiep = &
dep kin n ngp) (T gep)

2nd

for a donor-depend semiconductor. [Hint: #} = mn, = 212,

8.8 At low temperatures the impurity concentration plays the leading part.
Show that for a nondegenerate semiconductor (140, 1, = 0, or
An = ny) p is given by

b=ca+kTIn [—(1 + 4 exp [Ae,,/kf]) —1], 0< T< Taep,

“' = € + kT In {"d [1 + ( + 4_’:%")],2]}: T> Tdepv

d

where Tyep is given by Prob. 8.4. Interpret these cquatlons and plot o
versus T curves for various values of n,.

8.9 Obtain expressions corresponding to Prob. 8.5 for an acceptor im-
purity.

8.10 For P in Si at room temperature Aes kT ~ 1.74." Calculate n* from
(8.44). Use (8.47) to show that 11.4 pct of the donors remain union-
ized, if ny/n, = 1/100.
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NONEQUILIBRIUM STATES

9.1 BOLTZMANN TRANSPORT EQUATION

A complete description of a system in equilibrium is provided by the grand
cononical distribution. In practice, often we have systeins that are not in
statistical equilibrium. The study of such systems is very complicated. We
shall consider only the case of an ideal gas. Each particle of an ideal gas
moves independently. The total distribution function is determined by the
one particle distribution function. Therefore, it is enough to estabhsh anon-
equilibrium distribution for a single particle.

Boltzmann proposed to find the distribution function from an equation
similar in meaning to the Liouville equation. The state of a particle is given
by.its three coordinates (x, y, z) and three momentum components (P, Py,
P:). We can work in the six-dimensional space of Cartesian coordinatesr and
velocity v. The classical distribution function f{r, v) is defined as

f(r, v) = number of particles in a volime element dr dv. .1

By the Liouville theorem, as time lapses the volume element moves alonga
flowline in such a way that the distribution is conserved,

S+ dt, r+ de, v+ d¥) = ft, 1, V), | 9.2)
in the absence of collisions. In the presence of collisions,
f(' + dtp r+ dl‘, v+ dV)-—f(t, I, V) =dt (af/at)collhlenn (9~3)

whence .
dt(ofjot) + de-V f + dv-Vg f = dt (3f]d)cottisions: 9.9

If a denotes the acceleration dv/dt, '
oflde + vV, [+ 2-Vy f = @f 20 oo 0.5

This is the Boltzmann transport equation. In the steady state
affot =0, (equilibrium). (9.6)
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The particle collisions restore equilibrium which was disturbed by the ex-
ternal forces. If fdoes not vary greatly from its equilibrium value f;, then we
can write the collision term as

©f70t)con =~ (f—=LSo)/~, .7 -

where the relaxation time « depends, in general, on r and v. The Boltzmann
equation in this t-approximation simplifies to

af-l—va+an—---ff° | 9.8)

Let a nonequilibrium distribution of velocities reéult due to external
forees which are suddenly removed. Using 3f,/0¢ = 0, (9.7) is

0(f=f) _ [k . _
T 7—0’ (9.
and its solution is

S~fh = (f~fdemo €. (9.10)
9.2 PARTICLE DIFFUSION

We often have an isothermal system with a gradient in the particle concen-
tration. The steady state Boltzmann transport equation in the t-approxi-
mation is

ve (dfldx) = —(f—f)r. .11
The nonequilibrium distribution function f varies in the x direction. To
first order, with 2f/ax replaced by 9fy/0x, (9.11) is

fi == fo—vx (dfydx). 9.12)
By iteration, the second order solution is
Sy = fo—vx (dfy/dX)
= fo—vx (@fy/d%) + <3 (d%o/dx?). (9.13)
We need (9.13) for the study of nonlinear effects.

Classical Limit
In the classical limit the FD dlstnbutnon function is

Jo = exp [—(e—w)/kT]. . 14)

Because (9.8) is linear in f and f;, the normalization in (9. 14) need not be
the same as in (9.1). From (9.12, 14),

S = fo—vx (dfo/dp) (dp/dx) _
= fo—ve (fukT) (dp/dx). . 9.15)

The particle flux density in the x direction, j,, is

e = [ vefe@) de = —Gide) [ @ AKD) 8 oy 9.16)
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where g(e) = (4n?)~2 (8n2mh%)%2 1/ for a particle of zero spin. The left out
part, I vy [ 8(€) de, vanishes because f, is an even function of v, while v, is
an odd function. In general,

v =Av, A > 0,8 =0, —1, —2, etc.
If + happens to be independent of velocity (s = 0), .
I = —(@uds) (</kT) [ ¥ figte) de

—(dw/dx) 2jmkT) J' ( - ) Jo 2(e) de. ©.17)

Recalling (4.47), the integral is $nkT with I J, 8(€) de = n as the concent-

ration. Thus, with p = kT In » -+ constant,
jx = —(ntym) (dufdx) = —(<kT|m) (dn)dx). (9.18)
The driving force of isothermal diffusion is given by the gradient of the
particle concentration, that is by Fick’s law,
j=—Dgradn, 9.19)
where D is the particle diffusion constant (diffusivity). Clearly (9.18) is of
the form (9.19) with
D = (kT/m) = (1/3) v* =. - (9.20)
Another useful case is s = —1, 7 oc 1;¥, or © = I/v, where / is the
mean free path, Then

Jx = —(dw/dx) (4kT) I (V2 1v) fo 8(¢) de

= —(du/dx) (k) (3 né) = —3% le (dufdx), 0.21)
where ¢ is the average speed. In this case
D=}l (x oc 1/v). 9.22)
FD Distribution -
The Fermi-Dirac distribution is

e 1
" exp [(e—wykT] + 1

Following the discussion of (7.17), at low temperature, dfy/dyu. = (—dfy/de)
is small everywhere except in the region e ~ p. where it is very large. Thus
dfydp resembles a delta function, dfy/dp ~ 3 (e—p), or

dfydx = 8 (e—p) (du/dx). (9.24)
From (9.16, 24),

o= —Cldn) = @) [ 123 (=) £ () de, 0.29)

(9.23)
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where <(i) is the relaxation time at e = p. Using g(€) = g(1) = 3n/2p,,
(7.30), at absolute zero, the integral has the value

3 v (3n/2y,) = n/m, (9.26)
where py = e (T=0) = } mv} gives the Fermi velocity ve on the Fermi
surface. Using po = (43/2m) (3n/8x)%3, (7.11),

diydx = 3 (12 2m) (3/8)°8 V8 iy

= %‘ (o) (dn]d%). ©-27)
From (9.25-27),
Jx = (—nzm) (du/dx) = —(21/3m) py (dnydx)
= — 3 o} (dnjdx) = —D (dnfd), 9-28)
where
D=3wt(), (FD). | ©.29)

It resembles (9.20) for the classical distribution of velocities.
9.3 ELECTRICAL CONDUCTIVITY

We wish to find the electric conductivity of a metal at temperature 7T in the
presence of an electric field E. The electrons are assumed to be strongly

degenerate. From (9.8),

o f af _J=f
at VT 81: —= (9-30)
where p = mv. The equilibrium distribution function is
- 1 _ P
fo= S te@—Eny T ® =5 @30
Assuming steadiness and uniformity, (9.30) becomes
of __ S/
"'eE"a'i =— -—1_-9 (9..32)
As f, is a function of ¢, we have to first order, (9.12),
f=h+tes 54 vE (9.33)

where v = 0¢/0p is the velocity. To find the current density multiply (9.33)
by —ev and integrate over all values of the momentum,

J=—¢J.vfg-iha—=e I( af)‘rvv Ez;fap,

where dp = dp, dp, dp‘. The electric conductivity ¢ is defined by j =0 E.

(9.34)
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Thus the components of the electric conductivity tensor are

g = e”It Ve 5 ( gf")zd" e*jw, vp( af:’) o9 dey (9.39)

where «, B = x, y, z; v, vg is the average of v, v taken over the energy sur-
face ¢; and g(e) = (4n®)~! (8n=2m/h%)/2 €'/ is the density of states of the con-
duction band.

At low temperatures, —af,/d¢ has a sharp maximum at € = u, so that

aap = €2 7 () (v Vp)r &), 9.36)

where (Vg v)r is the value of v, v5 on the Fermi surface ¢ = . For a sphe-

rical energy surface e (p) = p%2m, we have v = p/m, v vz = 3ag (2 €/3m)
and

~ 1 g\ 8% (2mp)2 ne
o=3¢ T (u )——mh’ p — (1), (9.37)

where n = 8 (2m p)%2/3h3 is given by (7.10).
Note that the isothermal electric conductivity (9.37) also follows from
the particle diffusivity result (9.18) if we multiply the particle flux density

by —e and replace du/dx by the gradient —edp/dx = ¢E, of the external
potential.

Nondegenerate Case ' '
If (9.31) is approximated by the MB dlstl‘lbutloﬂ (9.14) and © = 4w, we
can still use the arguments leading to (9.34). We have

— o = So (fy = oxp [—(e—wlkTD,

o= Tlfv’f:,(e)g(e)de _

® i : /2
= sr ] 4 ()" e g = Coa— de
0

1) 32
A (Zk )( 135 8n (2kTm)*"
“m m

‘s + 5\
— —3p %P (p/kT) r (—-——2 )
Using

8r¥/8 (KTrm) /3
hl

n={ f@ede = exp (u/kT)
) |

we get

al

_net (21:1)(1/»« 2v/3 (s - 5) |
m .

m 3n1d 2
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When s = 0 (or-t = constant),,

- ne? .
G \/2 p 7. . (9.3%)

94 THERMAL CONDUCTIVITY

We wish to calculate the heat conductivity of a metal in which the electric
field vanishes and instead a uniform stationary temperature gradient 87/or
is introduced. The f, is given by (9.31) and (9.32) is replaced by :

S __Sh (9.39)

V‘a—-r o

The f on the left side can be replaced by f;, as in (9.33). Then

Yo _ o g, e—p)_ [_ 3T _ d(u
Var e V—('T— =%l o Ta T)"

o alnT ., dfp
f=f —'rv[ T T) . (9.40)
The flow of electrons is given by

j=j @_ ( afo),,,,v[ alnT—Ta%(-;—,)]‘g(e)de.

or
Taking .
«(p) = p*/2m, 'v.—vp = 3.5 2¢/3m, and g(e) = (dn?)-) Bn*m/h2) a1,
‘ olnT 0 fun '
-5 () e n [ ()]

where, witht = 4 v, 4 > 0,5 > -7,
R ¥ )
Rv=I(— g‘—f’) T _v3_ €' g(€) de

AL 2\ B Qm)n £ { A\ i
A2y @ [ (%) o
0

{1 + %[v +36+ 3)](v +3 s)(’—‘:{)"+ }
_ 9.42)

For j to vanish, j = 0, choose the gradient of the chemical potential as

The eneigy flow is given by



NONEQUILIBRIUM STATES 185

= ferr = [(-) o v -+ 5T ()] o

~0hT ofp .
— R, (-7 paz )+ R [—T = (T)] ©.49)
The energy flow in the case j = 0 is just the thermal current. From (9.43,44),
=" -’RQT : Bl‘ = K af ( 5)

where K = (R, R;—R})/(R, T) is the thermal conductivity. Clearly K = 0 if
we use ohly the first term in (9.43). If we keep the second order term in

9.43),
k=) B ()

= o T (40 § (h)'T. (9-46)
Combining (9.37) and (9.46), we get the Lorentz number
2
L. = Xz (lc-‘) = 272X 1071 e.5.u. deg2
) - 3\e
oT °
= 2.45x% 10~ watt-ohm. deg-2. 9.47)

It does not involve # and m. It does not involve = if the relaxation times are
same for the electrical and thermal processes. The value in (9.47) is close to
the experiment. The result (9.47) states the empmcal Wiedemann-Franz law.

The presence -of R,, both in (9.41) for j and in (9.44) for Q, reflects the
Onsager reciprocal theorem. According to this theorem there is reciprocity
of interference effects between irreversible processes. In this case, it implies
a close correlation between the flow of electrons due to a temperature gra-
dient and the thermal flow generated by an electric field.

9.5 ISOTHERMAL HALL EFFECT

A metal or a semiconductor is placed in a magnetic field H and current

density j passed through it. A transverse electric field Ey is set up given by
Ex = Rg HXj. 9.48)

This equation defines the Hall coefficient Ry. The effect arises from the

Lorentz force % vXH on the moving charge in H.

Consider a conductor in a longitudinal electric field E, and a transverse
. magnetic field H, (Fig. 9.1). If E, produces a current jy in the x-direction,
the H, deflects the electrons. They accumulate on the lower face of the plate.
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Ey

Ey (X TR PIN

e - e e —m—e

Fig. 9.1 Geometry of the Hall effect.

A positive ion excess is formed on the upper face until the Hall voltage is
set up in the y-direction just enough to cancel the force due to the magnetic
field.

In the theory of Drude, under E, the electrons acquire a drlft velocity
Ve and S0 experiencc a force

Fy——e (E,—lc va,) ©.49)
It is zero if Ey = v H,/c. As jx =—ne vy,
. E o 1
Ra = s = e © (9.50)

Thus Ry oc 1/ and its sign is same as that of the charge carriers, We now
derive (9.50) for electrons obeying Fermi-Dirac distribution. .

The Boltzmann equation for a metal, under electric fields in the ‘x 'and
y directions and a magnetic field in the z-direction, is, in the steady state,

2 € vwH\ of e | v H, —
gt (Bt ) o () =L,
- (9.51)
Following (9.12), put . o
f=f:) + Vx X+ VyYs - (9.52)

where X and Y depend on v® = v; + v} + v}. For weak E, and E,, neglect’
the products of X and Y with E,, E,, v, and v,. Then

BBt (5% ) 5 %)

o m
e of of v,,X T wY
- '75 (Vny é;;"Vtz av ) '—‘F—_ = 0. ., (9.53)
Using € = % my?, -
ofy _fode _ af, ax ax

we can write

b} )
Vx éﬁ. + V.v af —e (Egvx + E,Vy) %

- (v,H,X'—va,Y) $ 2Rl ©.54
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The values of v, and v, being arbitrary,

Y op %oyt pgy+Xoo, 9.55)

g_f—elz, th_ £ pxiL o, | ©.56)
or

el (e ) e

- et (et} oo

where a = 7 eH./mc.
The current density components js, j, are given by
o
Je=—e I viX dv, dv, dvs, (9.59)
0
Jy =—e I BY dvs dvy dise (9.60)
-0
If the current cannot flow out of the conductor in the y direction, we
must have -

Jy=0. » : (9.61)
If there is no thermal gradient in the X or y direction,
% Bf ‘
e ° =0. (9.62)

Substitute (9.57, 58, 61, 62) in (9.59, 60), and put v} = v’/3, dvy dvy dv,
= 4ryddv, to get*

s =‘—51‘i [Ely—E,L], 9.63)

jo =0 ==YE [EL, + B, B ©.64)

where, using e = }m»3,

-] " 00
v, e oofy , .
L= j 1 F a*0e dv J’l+a’a de,

*Note that formally

-G ) G)



188 STATISTICAL MECHANICS

wefors

g 2 e o
Ze m,J\I ade,

1+ a® e
.with /= v,
For a degenerate electron gas, use
3
S L (9.65)

T B exp [(e—p)kT] + 1

where 2m®)4® is just a normalization factor for the velocity distribution func-
tion f;, and the fact that 3f,/3e has a sharp maximum at e = p, to get

_ 161:mt«.’s Ipp Ipp

= (E"l-:a’ ﬂyl;a,) (9.66)
P léﬂme Ipp. Ipy.
O0=—3pm (E “r Tra t ’l+a‘) ©-67)

where Ir = t(u) v = mean free path at the Fermi energy, and ar = (Iz/vF)
(eHz/mc). Thus, using (9.67) to eliminate E, or E,,

3h3 1 .
* = Tomme® mJn (9.68)
Ey=_...3l8_._ I_{‘_j , 9.69)

16mme’c’ vep 7*
and using vy = (Qu/m)2,

E, 1 ;
= ——, 9.70
Ra JxH; nec’ ( )
This is same as (9.50). For monovalent metals like Li, Na, K, etc., it give:s
satisfactory results. Qur derivation is not restricted to metals or to semu-
conductors,
In Gaussian units the order of magaitude of Rg in a simple metal such
asK is

1
(10%) (5x10-19) (3 x 10%)
To obtain it in v-cm/amp-gauss, multiply by 300X (3 x 10%) = 9x 10,
The sign of Ry is same as the sign of carrier. For holes Rg > 0. The
measurement of Ry gives a direct measure of the number of carriers present
if all carriers, are of the same sign.

~—10-28 gsu.

Ry ~—

Semiconductors
For an intrinsic semiconductor both the electrons in the conduction band and
the holes in the valence band contribute to conduction. Therefore,

J= e(—neve+ mwy), (9.71)

Jx=€Ey ("clze + nlnl.;«h), ' (9 .12)
where 1, and p are called the mobilities of the conduction electrons and of
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the holes, respectively. ‘The mobilities are defined as the velocities in the
direction of the field for unit electric field. _
The forces F, on the electron and Fj on the hole, due to H;, are

F¢ = _';' l:eEtzi Fh = "g E:hExHr- (973)

At equilibrium there is a field £, so that the net forces are
‘eEy_ + Fey eE, 4 F. (0. 14)

The condition j, = 0 at equilibrium gives

nef‘lt (_‘eEy"‘ij [:.Etz) = ”"Eh(eE’—iT :LhExHr)- (9.75)
From (9.72, 75),

Ry = E;I =—elc ”_415‘""‘:'2' (9.76)

Jalts Mette + Mailn

This form is correct, like (9.70), if FD distribution is apphcable
9.6 NONEQUILIBRIUM SEMICONDUCTORS

Consider an n type semiconductor. If light of quantum energy greater than
the energy gap falls on it, an electron in the valence band can absorb a
photon and make a transition to the conduction band (phetoconductivity).
The electron and hole concentrations so created are larger than their equili-
brium concentrations. The excess electrons and holes finally recombine with
each other. The recombination time can vary over a large range, 10-% to
10-3s, depending upon the semiconductor. It is always much longer than the
times, ~ 10~'3s, taken by the conduction electrons (holes) to reach thermal
equilibrium with each other in the conduction band (valence band) at room
temperature. It means that even though the total number of holes is not in
equilibrium with the total number of electrons, the holes and electrons occupy
the quantum states in a way that closely resembles the FD distributions in
each band separately. The quasi-equilibrium state can be described by
associating different quasi-Fermi levels p. and p, with two bands,

T)= ©9.77)

; 1 1

Mo D)= o fe—wyer 71 Mo D)= e+ 1

At a uniform temperature, any conduction electron flow in a semi<
conductor is described by the electric current density

ie= !;ent grad p, (978)
if the gradient of the quasi-Fermi level p. is small. Here n, is the concen-
tration of conduction electrons. The j, is zero if its driving force grad y,
vanishes. The flow of electrons is from high to low chemical potential,

For electron concentration in the intrinsic but nondegenerate range,
ny & ne € n,, we can use (8.29) for the quasi-Fermi level g,
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e = €—kT In (n,/n,). 9.79)
Then

.ie = lzcnc grad € + l:.kT grad Ne.

The gradient at the bottom of the conduction band is produced by a gradient
in the electrostatic potential ¢ and so from an electric field E,

grad ¢, =~e grad ¢ = ¢E, (9.80)
The electron diffusion coefficient D, is defined by the Rinstein relation
‘ D, = pekT]e, (9.81)

whenever conduction and diffusion take place by the same mechanism. Thus,
finally o
jo = eonE + eD, grad n,. ' (9.82)

We have two' different contributions to j,. The first is due to E and the
second-due to grad n,.
For holes

in = pans grad g, = epyns E—eDy grad ng, ,
Dy=unkTe. (9.83)

9.7 ELECTRON-HOLE RECOMBINATION

If the number of cxcess carriers is small, we can define the rates of recom-
bination in terms of lifetimes 7, and 7, of the electrons and holes,
" dn, ne—n? dn, _ ny—np

P B
where n{ () is the thermal equilibrium value of n.(m).
Particle flow must satisfy the requirement of continuity, this is, particle
conservation. In a small volume element the rate of change of particle den-

9.84)

sity is given by thermal or photo generation rate g minus recombination rate
r and the divergence of the current,

dnjdt = g—r + (1/€) V+jer (9.85)
dm/dt = g—r—(1/€) V- ji 9.86)
The flow of electrons and holes is determined by (9.82, 83, 85, 86).

Diffusion Flow

Consider an n-type semiconductor rod. Excess holes are generated at x =0
by light or by some other method (say, forward bias). This creates a con-
centration gradient and diffusion in the x direction. The holes will diffuse
even if E = 0. From (9.83, 86),
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o~ me— o

5= nk + Dy g (9.87)
In the steady state condition, § = 0, dns/dt = 0, we get

dn —nd —

aTxTh = ""?"", Ly, = /D (9.88)

where L, is the diffusion length of holes. For a long n-type rod, (length of
rod)/L, - o0, (9.88) has a solution

n—nf) = n,, exp (—x/Ly). ‘ (9.89)
Then, from (9.83, 89),
Ju=—eny(Ds/Ls) exp (—x/Ly). . . (9.90)

For silicon: ﬁ,. = 1350 cm? v-1 s-L, D, = 12 cm? 81, 7, ~ 10~¢ to 10-4s.

Diode Action of p-n Junction
Assume that the transition region is small compared with the diffusion
lengths of the electrons or the holes. Let a potential ¥ be applied across the
junction, with the p side positive (forward bias). A positive potential lowers
electron energy. The flow of electrons from p to # is unaltered. At a given
energy level, the concentration on the » side is a factor exp (eV/kT) greater
than on the p side. So the flow of electrons from # to p is greater. The oppo-
site happens for the holes (Fig. 9.2a). The situation for the reverse bias (p
side negative) is shown in Fig. 9.2b.

As the potential drop occurs in the transition region where £ = 0, we

can use (9.88) in steady state conditions, g = 0, dn./dt = 0,
ddg An, = %- An, = nc“ng, L, = VD. Te- (9-91)
Its solution is
An, = A exp (—x/L,) + B exp (x/L.). 9.92)

The second term diverges for x — oo and so B = 0. At x = 0, according
to Boltzmann statistics,

Ne =12+ Ang =nl exp (eV/kT),

An, = nl[exp (eV/kT)—1] = A. (9.93)
Therefore, (9.22) becomes
= nd + n[exp (eVkT)—1] exp (—x/L.) (9.94)

" The electron current at x = Ois

JAO) =—e Doyn, | = et rllexp (VAT)-11.  (9.95)
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nleve) - (;) p(-ve)

Fig, 9,2 Effect of bias on the energy bands of a p-n junction: (a) Forward
bias, showing a large net current from p to », (b) Reverse bias
showing small net current from # to p.

Similarly, for holes, /
H0) = e %f 73 fexp (eV [k T)—1]. (9.96)

The total current is
J = Je(0) + ju(0)

(] -0 i
= (’3;-":" + ’1—'—") [exp (eV/RT)—1] ©.97

The current is small for ¥ < 0. Therefore, pn junction acts as a reetis
fier (Fig. 9.3). '

]
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CURRENT

FB
RB VOLTAGE

Fig. 9.3 Curent as a function of bias voltage for the regions of reverse
bias (RB) and forward bias (FB).

9.8 QUANTUM HALL EFFECT

In a magnetic field H an electron experiences the Lorentz force perpendi-
cular to the field. In Gaussian units , ,
' m (d%/dt?) = (e/c) (dr/dt) X H. (9.98)
Let H = (0, 0, H), so that [vXH], = v,H, [vXH], =—v,H, [vxH},= 0,
and
mdix/dt® = (e/c)v,H, md2y|dt* = —(e[c)v:H, md¥z/dt* = 0. (9.99)
In the (xy)-plane the inward directed magnetic force (e/c)vH gives rise to
motion in a circle of radius r with ‘cyelotron’ frequency o,
mr = (e/c)vH, & = 2n|T = 2x/(2nr[v) = eH|mc. (9.100)
For very large H, r is small, and in the correspondence principle limit of
very small orbits the associated energy is quantized
‘Ey =1+ Pho, 0 = eHlme, -(9.101)
where 7 is an integer. In the ST units « == (¢/m)H. o
The Schrodinger equation for a free electron in a magnetlc ﬁeld is

17, - o
E(_ ”'V_E A) $ = Ey v (9.102)
where v XA = H. The choice
=, xH,0) - . (9.103)
gives H in the z-direction. From (9.102, 103),
B3N A%\ Mo deH \*,
T ('a—x,- + a—z,') fm (a—y_"ﬁ?x ) Y = EY. (9.104)
Try the solution
(%, ¥, 2) = u(x) exp [iCks + k.z)] (9.105)
Then i
h2 983 ‘ha H 3 o .
oot o (k, f %) u=Euwm. (9.106)

Ey = E—(h%2m) k2 - (9.107)
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The motion along the field (z-direction) is of a free particle. In the
(xy)-plane, (9.106) describes a linear harmonic oscillator centred at x,=hck,/
(eH), with spring constant (eH/mc)? corresponding to the cyclotron fre-
quency o = (e/mc) H In a thin film of thickness d;, the k. (perpendicular to
the surface) also gets quantized in units of 2x/d,. Thus

E, =@+ §) ho,n=0,1, 2, ..., (xy)-plane,

(k) = (@2=ld:) 1,1 = 0, + 1, % 2, ..., along z-axis,

Ey=E, + E. = (n + §) ho + (W/2m) k.);. (9.108)
For small d;, the levels are separated enough to stratify the electron states
at low temperatures (7" -» 0). Then it is enough to consider the k, = 0
state. The quantized states Ey; are called Landau levels (Fig. 9.4). The dis-
crete levels E, separated by hw correspond to the circular orbits in the
(xy)-plane.

ro{ |

Kz 0 kg
Fig. 94 Landau levels,

Compare the continuously distributed classical orbits (h%/2m) (ki + kj)
and the discrete levels (eh/mc) H (n -i- }), for a given k, (or I). Equal area
concentric annular rings in the (xy)-plane will contain equal number of
states. When H is applied, the equally spaced levels of E; result when all
states initially in an annular ring collapse to one discrete level (Fig. 9.5).

T —
H=0 H LARGE _
Fig. 9.5 The grouping of the quasi-continuum of states given by hek22m, all

with the same k,, to form Landau levels in the presence of a strong
magnetic field. '
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The degeneracy gr the Landau level Ey, for a given /, is same for all n, and

g = no. of states (h?/2m) (k% + k3) < (¢h/mc) H. (9.109)

If p?2m = (h%2m) k* = (eh/mc) H defines p, then the number of states
within each Landau level is (area) X ©p®/h, or per unit area,

g)_ = (e/hc) H, neglecting spin. - (9.110)

Using heje = 4.14x10-7 G-cm?, H = 1 kilogauss, area = 1 cm?, one gets
gr ~ 10%, 1t is a complete degenerate gas at T - 0.

A single electron state is now labelled (n, /, «), n =0, 1,2, ...; I =0,
4+ 1, +2,...;a=1,2, .., g, The partition function is

Z=73 exp(—BZEn), A={nl a} ©.111)
{m} A

where 2’ impli.es the restrictions n, = 0, 1; 3 n, = N; in the sum.
A

Quantum Hall Effect

A two-dimensional electron system (9.110) exists in a metal oxide semi-
conductor field effect transistor (MOSFET) (Fig. 9.6). In an n-channel
MOSFET the Fermi level Er can be made to enter the conduction band by

P-Si

Fig. 9.6 A top (above) and a sectional view (bottom) of the MOSFET. G: gate,
H: strong magnetic field, S:source, D: drain, I: n-type Induced channel
between the insulator SiO, and the p-type silicon, PP; potential probes.

- For quantum Hall effect Klitzing et al. kept the length of the device
400 pm, width 50 ym, and the distance between the potential probes
(PP) 130 ym, at T== 1.5 K,
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applying a large positive gate voltage ¥ (Fig. 9.7). This creates an inversion
layer which forms a two-dimensional electron gas. The carriers in it are
electrons (majority carriers are holes in the rest of the material).

Let a current j, flow along the x-direction and a ‘magnetic field H be
applied along the z-direction (Fig. 9.6). A measurement of Hall effect gives,

(9.50),

o
2
"

Fig. 9.7 Formation of the inversion layer I (n-type induced channel) in p-silicon
at the interface with the insulator SiO, in a MOSFET. A:acceptor
states (negatively charged), C:conduction band. D:depletion layer,
S: surface of the semiconductor, V:valence band, E:energy, z:dis-
tance from interface into the crystal, Ep: semiconductor Fermi level,

E}‘: metal Fermi level, V,: gate voltage.

= (n.ec/H) Ey = 64y E,, 9.112)
where 7, is the denslty of charge carriers and o,, = (1, ec)/H, relating j,
and E,, is the Hall conductivity. Its reciprocal is the Hall resistivity p,, and
Ry = pyy/H = 1)(n.ec) is the Hall coefficient. _

Writing the carrier concentration as n, = n;, = grv, v= 1,2, 3, ...,
one gets from (9.110, 112),

Oxy =jx/E.v =V (e’/h)a v=123,.. (9.113)
Thus the Hall conductivity of the two-dimensional system (inversion layer)
in the quantum limit (small orbits) is quantized in mtegral multiples of e?/A.
Here v narrow levels are lying below Ep.

Klitzing received the 1985 Nobel prize for observing the quantum Hall
effect* (9.113) by measuring pyy in a silicon MOSFET and so e%/h (or ¢?/hc)
accurately (1 part in 10°). As p,, ¢ 1/n,, the sign and value of 7, is found
by measuring px,.

When a potential difference is applled across the SiO, crystal in a
MOSFET, an inversion layer (25-50 A thick) is formed at the SiO,-Si inter-
face. The density of electrons in the layer depends on the potential diffe-

*K.V. Klitzing, G. Dorda and M. Pepper, Phys. Rev. Letts. 45, 494 (1980).
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rence. The inversion layer region is a rectangular box of thickness 4,
(9.108). The lowest excitation energy (h?/2m) (k.)} for the motion of the
electron along z-axis is about 20 milli-eV. Below 10 K temperature, the
typical energies are only about 1 milli-eV. Thus the motion perpendicular
to the layer is frozen out and it behaves as a two-dimensional layer.
Klitzing et al. varied V, (that is, n,) with a constant source-drain current
Jx and measured the Hall voltage, which gave g,,. For small H, the expec-
ted smooth monotonic decrease of p,, with #,, psy oc 1/n., wasfound (Fig.
9.8). To have Hw > kT in (9.101), or 1.6 Hx10-* > 1.38 10-1¢ T, one

Ne

Fig. 9.8 Plot of p,, versus 7, at small H according to p,, oc 1/n, (dashed),
and large H (qunntnm Hall effect) showiog steps according to Pxy =
hlved), v = 1,2, 3, ... (solid).

gets H > 42 kilogauss for T =4.2K. In a run aT = 1L.5K, H = 180
kilogauss, they found that over certain ranges of », (surface charge density),
the px, remains constant (Hall steps) (Fig. 9.8). These steps are manifesta-
tions of quantization and occur at p,, = h/(ve?), (9.113). The value of e3/he
is found to be 1/137.0353. It is also found that, unlike the ordinary Hall
effect, the normal resistivity measured by potential probes vanishes, as in a
superconductor, in the regions of Hall steps. If Er for some ¥y is between
two Landau levels, the density of states at Ey is zero and an inversion layer
carrier cannot be scattered. Then the flow of current is lossless. The normal
resistivity vapnishes at Hall steps.

Use of n, = np = gz in (9.113) implies that v Landau levels are com-
pletely occupied. This is most unlikely because of the very large degeneracy
of each Landau level (g, ~ 10'°). Therefore, (9.113) cannot be taken as an
explanation of the integral quantum Hall effect. Tsui et a/* have also ob-
served fractional quantum Hall effect with v = 2/3, 4/3. 5/3, 2/5 etc.

The results are insensitive to the location or type of impurities, and also
to the type of host material. This suggests that some fundamental principle

*D. Tsui et al. Phys, Rev. Letts. 48, 1559 (1982).
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is at play. It is suspected that the quantum Hall effect is due to the long-
range phase rigidity characteristic of a supercurrent®.

To conclude, the Hall conductivity shows plateaus as a function of the
variables (for- example, the magnetic field) which determine the number of
electrons participating in the effect. In a MOSFET the change in the carrier
density is produced by varying thé gate voltage. At very low temperatures
the plateaus are surprisingly quite wide, implying a corresponding large
deviation from the integer filling of the Landau levels**.

PROBLEMS

Use the Liouville theorem to derive the Boltzmann transport equation.
Calculate the rate of photon-radiative recombination of electrons and

holes.
9.3 In a semiconductor s < z. If the conductivity o is considered as a
function of the hole concentration #,, show that

0 0
N =

- o2
Ominimum = 20} ‘(#,i):—’
(e + [

when ny, == n (ﬁ,/{l,.)ll’. The n, and o, refer to intrinsic material,

9.4 For Na we havep = 3.1eVand o = 2.1x 107 esu at OK. Calculate the
relaxation time from (9.37). [Ans: 3.3 10-1 g,]
9.5 Show that the diffusion equation (9.88),

d*Any _ Amy

has a solution, for an n-type rod of length / terminatéd at x =/ by
a boundary of recombination velocity S, given by

An, G sinh W + (S,L;/D;) cosh W
A0y — Cosh X—sinh X | e W+ (S.L/D;) sinh w]

X= x/Lh, W = IIL]”
for the boundary conditions
An, = Any(0) at x =0,

‘ — Dy ((—IA—n")=S.An;. at x =1,

dx

Discuss the cases (i) W — oo, (ii) S, large (> DyL4), and (iii) S, small
(<€ Dy/Ly). )
9.6 Show that if An,(0), the excess densityat x = 0, isa sinusoidal function
of time,
Ani(0) = Anmy(0) [1 + ael™],

*R.B. Laughlin, Phys. Rev. B 23, 5635 (1981); P, Streda, J. Phys. C15,L 717 (19§2);
H, Aoki, Phys. Rev. Letts, 55, 1136 (1985). :

**S, Trugman, Phys. Rev. B 27 7539 (1983).
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where a is a constant less than unity, then the resuits of Prob, 9.4 re-
main same if L; is replaced by L, = Ll — iwt)=42,

9.7 A magnetic field of flux density ! tesla is applied perpendicular to the
largest faces of a semiconductor crystal of size 12mm x 5mm x Imm.
For a 20 mA current along the length of the crystal, the voltage across
the width is found to be 7.4 mV. Calculate the Hall Coefficient.
[Ans.: 3.7x 10~4 m® coulomb-1].



10
FLUCTUATIONS

10.1 INTRODUCTION

With the passage of time the properties of a system vary about the mean of
equilibrium values. Similar behaviour will apply to‘the elements of an
ensemble. So far we have assumed that these fluctuations are quite small. It
is useful to study the conditions for this to be true. ]
The equivalence of the three ensembles studied also depends on the
fluctuations being very small. For example, if energy E fluctuations in the
systems of a canonical ensemble are small, it is equivalent to a micro-
canonical ensemble. If both NV and E of the systems in a grand canonical
ensemble fluctuate negligibly, all the three ensembles are equivalent.

102 MEAN-SQUARE DEVIATION

Consider a quantity », Its average value is 7. The deviation 8z is defined by

3n = n—n. : (10.1)
Clearly )
n=n—n=0. . (10.2)

A first rough measure of the fluctuation is provided by the mean-square
deviation

(@n) = (n—Ay = n*—2hn + (7)*
= ni—(#)e. o (10.3)

n? is called the second moment of the distribution. The standard deviation An,
that is, the rcot mean-square deviation from the mean, is defined by

an = [(n—A)" (10.4)
In general, if P, is the probability of finding a system in the state i, and
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if f; is the value of a physical quantity f when the system is in the state i,
then the average value of fis defined by

f= P : (10.5)
with .
? Py=1. . : (10.6)
Then
f~F=2Pfi-]) v
=3 Pfi~f EPi=F—f =0, (10.7)
(F—FR=SP(fi—fP=3Pfi—2f SPfi+ J25P,
- =it =, (10.8)
=[fA-Jn. (10.9) .

10.3 FLUCTUATIONS IN ENSEMBLES

Canonical Ensemble: Fluctuations occur in energy because the system is in
thermal equilibrium with the reservoir. For a canonical ensemble,

Z=Z cxp (—8E), } ©(10.10)
| X E; exp (—BE)
_ 7 __oZop

E=3PF Sep (BB " Z (10.11)

? Efexp ("ﬁEI)— 02Z)ope

E=Swcm ~z (1912
!
oF 1 [0*Z 1 (0Z)\*
%~ 2(%)2(%)
-= Ei-E*= (E), (10.13)
oE OE\ d3 _-(oE
o~ (i), - (), 7~ (), = |
= kp? BE3). _ (10.14)
A measure of the energy fluctuation is the ratio ' :
AE (gaEy)'/” (kT*Cy) o 15)
E E )

For large T the right hand side of (10.13) is of order 1/NV2 because the ex-
tensive quantities Cy and E are proportional to the number of molecules
N (for anideal gas, E ~ NkT, Cy ~ Nk). For a macroscopic system N ~ 1023,
AE[E ~ 10-11, that is, the fluctuations are very small. In fact in such a
canonical ensemble the distribution of energies is so peaked about the en-
semble average energy that the ensemble is practically a microcanonical
ensemble.
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For a solid at low temperatures the Debye law (5.75, 76) gives
E = U = NkT6pp, Cy o~ Nk(T/6p), for T € 6p,

and so AE/E = [N-YOp/TPP2. For 8y = 160 K, T = 10-*K, and N =~ 107
for a piece 0.01 ¢m on a side, we find A E/E =~ 0.006, which is small but
not negligible. Thus statistical thermodynamics is unreliable for a tiny piece
of matter.

Grand Canonical Ensemble: The energy fluctuations are calculated as in the
case of canonical ensemble. We study here the possibility of concentration
Sfluctuations. In this case (4.58, 67) give

Z = 2 exp [(Nu—Enw)/o), (10.16)
= (09, 3 _8 az
¥=~(%),. = mns=5%

E‘ N? exp [(Nu—Eni)/6]
N}:' exp (Np—Enpfs] 2

[ 5(2)]

3

Bz
op*’

-8 _.. (10.17)
ou

For an ideal classical gas (4.75) gives

N=estt (2"_'"2).2 v, (10.18)
oN/w = N, (10.19)
(N =N = PV/kT, (10.20)
AN/N = [@NP/(NYT# = 1/(N)s,  (MB). (10.21)

The smaller the volume of the gas studied (the smaller the value of N) the
greater is the fractional fluctuation, AN/N, of the number of particles.

104 CONCENTRATION FLUCTUATIONS IN QUANTUM
STATISTICS

Consider 7, the average number of particles in the single particle quantum
state i. We have on using upper (lower) sign for the FD(BE) statistics,
o _ 8 1 1_ 1 _ exp [(e—p)8]
op. 8u exp [(e—w)/8] £ 1]~ 6 {exp [(e— p)/0] & 1F*
{exp [(¢—w)/6] + 1} F 1
{exp [(e—w)O] £ 17
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, = ;— & F a) = é (1 F ). (10.22)
From (10.17), ‘
(n)® = 6(0R./0p) = A(l F &), (10.23)
(Amyng) = [Cni¥lA; 12 = (7 F 1), (10.24)
or .
[ (n7* =1y (FD),
(Anmyn)) = {I (n,—l + 1y (BE), ‘
L@t e (MB). (10.25)

Thus the fractional fluctuation in concentration is smaller than the MB
case (10.21) for FD statistics and larger for the BE statistics. The fractional
fluctuation in all cases is greatest for the least occupied state (n; < 1).

FD Case: The Pauli exclusion principle allows the maximum value A = 1.
Then the fluctuation vanishes for the FD case. In fact, (10.23) shows that
fluctuations vanish for #; = 0 and 1, that is, for empty high energy states
and for fully occupied states deep below the Fermi level. Fhe fluctuation is
large for high energy occupied state.

BE case: For the BE gas as T — 0, a large number of particles condense
in the ground state, e(g) = O, fi(gy = N. Then from (10.3)

(Ong)® = —(A)® ~n®—N?, (10.26)
and from (10.23) _
(3ng)t = Ry(l + Ay) >~ N + N? ~ N?, (10.27)
so that )
o~ 2N, (10.28)

Instead of considering the single-particle state #,, we can consider a
group of g neighbouring states, all having the same mean occupation num-
ber #. We can sum (10.23) over such a group of g neighbouring states con-
taining N = g#i particles. The statistical independence of the probability
distribution of the different single-particle states allows us to write

(BN = g (Bn)* = gh(1 F #) =1T/( 1 ¢éﬁ). (10.29)

The relation (10 23) isapplicable to photons as well, even though (10.22)
cannot be used, since u = 0 for photons.

We can use (10.29) for photons that obey BE statistics, n(e) (e/'—1)-1,
The number of quantum states of the photons with frequencies between v
and v + Av is given by (4.118), g = 8nV(»3/c?) Ay. The total energy of the
quanta in the frequency range is E¢yy = Nhv.

If we multiply (10.29) by (hv)?,

——— (E, y
BE)? = hv By + 8{??%331\, (10.30)
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This result was derived by Einstein. The first term on the right involving 4
is typical of the corpuscular nature of radiation. The second term, not in-
volving h, reqresents the classical result for the energy fluctuations of black-
body radiation. The result (10.30) implies that photons-like to travel in
bunches. Large photon density fiuctuations have been experimentally ob-
served*.

10.5 ONE DIMENSIONAL RANDOM WALK

A drunk sailor, who has lost the sense of direction, takes a random walk in
one dimension. Suppose he takes NV steps of equal length /, each step being
random (say) to the east or to the west. Each step has a probability 3 of
being in either direction. Let us find the probability that he is at a distance
x from the starting point after such a walk.

Denote by P(m, N) the probability that the sailor is at a point m steps
away after N steps. The probability of any given sequence of N steps is (3)V,
because each step: has a probability of 3. Hence

P(m, N) = (number of distinct sequences that reach m after N
steps) X (HV :
~To arrive at the point m, some set of n, = } (N + m) steps out of N
must be positive, and the remaining n, = } (N—m) steps must be negative.
Therefore, the number of distinct sequences that reach m is

S
) =+ m T = T (103D

and
P(m, N) = (DN W(m). : (10.32)
For large N use the Stirling approximation in its more exact form (Appendix
I), N! = (2rN)'2 NN ¢V, or
ImnN!=NIaN=N + }m(ZnN)
=(N+ 43 InN—N+ } In 2=, (10.33)

Then :
lnPm, Ny =N+ 3L N-3N+m+1)Ini N+ m

—3}N—m + 1)In } (N—m) —} In 2r—~NIn 2.
: (10.34)
Since m €N, expand
m m?
ln( l:tN) + 5—s3e £ (10.35)
‘sothat, usingin (N £ m) =Ila} N + In[l + (m/N)},

# R.H. Brown and R.Q, Twiss, Nature 177, 27(1956); E.M. Purcell, Nature, 178, 1449
(1956).
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In P@m, N) 2 (N + 3) In N—} In 2x—N In 2
2
—§(N+m+1)(lnN ln2+N 2’;’,,)

m?

~—3In N + ln 2—} In 2x—(m?*2N), (10.36)
or
P(m,N) ~ (2/n N)' exp (—m?2N). (10.37)
As x = ml and m = n,—ng = n, —(N—n,) = 2n, —N, the probability
that the sailor is between x and x + dx after N steps is

P(x, N) dx = P(m, N) dm = Pm, N) > (10.38)

We write dx = 2/ dm, because m can take only integral values separated by
an amount Am = 2,
From (10.37, 38)
P(x, N) dx = (2nI*N)~*/* exp (—x*/2N1%) dx. (10.39)
This is the normal or Gaussian distribution, which is usnally written as’
P(x) = (2m)V2 y-1 exp (—x%/2v%),
+o :
I P(x)dx = 1. o (10.40)
It has a symmetrical peak situated at x = 0. The width of the peak increa-
ses with y (Fig. 3.8). '
To introduce time, we assume that the sailor takes' N = nt steps in time
t. Then the probability of the sailor being in the interval dx at x after time ¢ is
P(x) dx = (2rl® nt)=V/2 exp (—x*/21nt) dx. (10.41)
The mean square distance travelled is given by the mean square fluctuation
. +® .
Ep=x= I x2 P(x) dx = I2nt = ¥ (10.42)
+w©
where we have used I x? exp (—ax?) dx = } (=/a®)'/2,
-0
If v is the time taken for each step, thent = N and 1/z = vis the
velocity. We can write the conditional probability, that the sailor will be
within dx at x at time 7 if he was at x = 0 at ¢ = 0, as
P, 0; x, t) = (4xDt)~*/* exp (—x%/4Dt) dx, D = } v'z. - (10.43)
Note that »t = 1. The spread of the distribution increases with ¢z, and
= (v7)? N = 2Dr. (10.44)
D is the particle. diffusion constant.
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The problem of N particles, each having a magnetic moment g which
may be either parallel or antiparallel to a magnetic field H was discussed in
Sec. 3.8. The calculation of the probability distribution of the total magne-
tic moment M for H = 0 is identical with that in the random walk problem
[compare (10.32, 37) with (3.94)]. If we write M = mpg, then (10.37) gives
for the entropy’

6 = In P(m,N) ~ constant—(m’/ZN). (10.45)
In the presence of the magnetic field H,

E =— muyH, F= E—ktc ~— myyH + (m*kt/2N) + constant.
If F is minimum, 8Fjam = O gives
m|N = pgH[kT, (10.46)

M = mpy =~ NugHIKT. (10.47)
Apart from numerical factors and replacement of kT by €z(0), (10.47) agrees
with (7.45). .

10.6 RANDOM WALK* AND BROWNIAN MOTION

A very small particle immersed in a liquid exhibits a random type of motion.
It is called Brownian motion. It is produced by the thermal fluctuation of
pressure on the particle. Because of the fluctuations, the forces do not always
cancel and the particle is knocked about in a random way.

The Brownian motion in one dimension is like a random walk along a
line. At the end of each period of time t the particle has either moved a
distance / = vt to the right or a distance / to the left. If the direction of
cach successive step is a random variable, then the probability that during
+ N periods the particle has made s positive and N—s negative steps, result-
ing in net displacement x; = [s—~(N—s)] / = (2s—N)I, is

PAN) = 13 (AJ,V 1 Prov-e (10.48)
It is called the binomial distribution (Appendix I) and reduces to (10.32)
for P = 1—-Q = } and m = 25—N. By definition

Xs = % x,P,(N) = ; (2:—N) IP:(N), (10.49)
—2) = E (x.-x:)’ P(N)= 2 [(2s—N) I—%J2 P(N).  (10.50)
The binomial expansion gives

M
z P N) = £ s POV = (P O = IV = 1, (10.51)

*For a detailed survey see, for example, S. Chandrasekhar, Rev. Mod, Phys. 15,1(1943),
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_ ; N B N (N—l)l ps-1 QN—1—3+1
§ = s:?.csP.,(N) = NP,_EI_Q E-DHIN—1—s+1)!

= NP(P + Q)¥-1 = NP, (10.52)

B = G = F—@" = I s PAN)—G)

= §(s—1) + s—N°P*
= NP(N-1) P + NP—N*P* = NP(1—P). (10.53)
The fluctuation formula (10.53) reduces to (3s)2 = NP =5 when P is a very
small fraction.
From (10.49-53)
% = @NP—N)l= (2P—1) NI =0,for P =}.  (10.54)

(x,—%5)* = 3 [(2s—N) I-(2P—1) NI P,

© = 3 [25—2PN) I} P,
— 41* 5 (s3—25PN + P*NY) P,
— 418 ([NP(1—P) -+ P*N®|~2NPPN + P*N%}
~ 41 NP(1—P)
= BN = (m)*N, for P=}. (10.55)

For the Brownian motion considered, we have P=}. Therefore, ¥; = 0and
the tendency to stay away from the origin is measured by

X} = (¥)! N = vict =2Dt, (10.56)

in agreement with (10.44) which was obtained by integration.
If N particles are concentrated at x = 0 when ¢ = 0, then the particle
concentration n. (x, t) at x after time ¢ is given by (10.43)

n—"(—xi—t) = P(x,t) = (4rDt)"12 exp (—x%/4Dt), (10.57)

D = X2t (10.58)

Following Einstein. we can estimate D in a simple way. Imagine a cylin-
der of unit cross-section with its axis along the x axis and faces separated
by the distance I. Let the molecular concentration be n, at the end 4 and
ny at the end B. The concentration gradient —dn/dx = (n,—n,)/l gives rise
to the diffusion of molecules. From the gas law the osmotic pressure at A4
i8 pa = ngkT and at B is p, = mkT. The resulting force pushing the cylin-
der in the positive x direction is ( p,—ps) = (n,—ny)/kT. If n is the mean
concentration of the molecules, the force acting on a single particle is

= 6Ny, (10.59)
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where the. last step comes from Stokes’ law for a spherical particle of radius
r moving with speed v = 1/v in a medium of viscosity 7,.
By the definition of D, we can equate —D(dn/dx) to the number of
molecules nv moving to the right per second per area,
dx — 6mon,r/ dx
D = kT/(6mn,r), (10.60)

as given originally by Einstein. Every quantity can now be measured in the
result ’

or

x? = 2Dt = (kT|3mn,r) t = (R/Na) (T/3mner) t. (10.61)
Perrin (1910) verified this relation by recording under a microscope the
position of a particle at intervals of 1 = 30s. The components x of the
observed displacements in 30 s intervals gave the mean value x2. Substitut-
ing it he found N, = 6.68 x 102 mol-1.

10.7 FOURIER ANALYSIS OF A RANDOM FUNCTION

Many processes proceed by random walk. A particle continues to move in
one direction until it comes across an obstacle. After some delay, it moves
off in a new direction, and so on.

A random process or stochastic process, is a process x(t) such that the
variable x does not depend in a well defined way on the independent
variable (say) time ¢. Measurements on the various but similar systems of
an ensemble give different functions x(t). As we cannot determine x(¢) for
the various systems, we try to study relevant probability distributions. It is
convenieat to resolve the variables into components according to a har-
monic law. .

As an example, consider a quantity x(¢) == F(¢) varying spontaneously
according to a random law, say, as a result of heat fluctuations. It may be
the readings of a-galvanometer in a closed circuit in the absence of exter-
pal emf. Heat fluctuation can produce an irregular emf and so current of
any sign in the circuit. The temperature and concentration of current
carriers fluctuate in various parts of the circuit thereby producing a variable

emf.
We can form an ensemble by cutting a long oscillogram record obtained

in a long period of time into equal length strips. Each strip is an element

of the ensemble. We can arrange them one below the other as shown in

Fig. 10.1. The ensemble averages are taken in a vertical direction. The time

averages are taken in the horizontal direction. '

We can find, for example,

Py(x, t) dx = probability of finding x between x and x + dx at time ¢,

Py (X35, Xaty) dxy dx, = probability of finding x between x, and x, + dx,
at time £, and between x4 and x; -+ dx; at time #,,
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x(t) 4
SYSTEM 1

SYSTEM 2

t
SYSTEM k W-——%——M

t t

Fig. 10.1 Plot of some physical quantity x(¢) versus time ¢ for various systems
of an ensemble.

and similarly pg, Py, oo Poo. Usually, it is enough to find p,. When it is so,

the random process is called a Markoff process. If the joint probablhty'
distributions p; are invariant under a transformation which shifts the origin

of time, we get a stationary random process. We would be interested only

in the stationary Markoff processes.

Consider a randomly fluctuating quantity x(t) = F(t) which varies with
time. We study its behaviour for a particular system in the ensemble from
t = 0 to t = T. This set of irregularly varying readings can be expressed as
a Founer series, .

£ = za.,cos_”_”t+ Eb,, inzg_,—it

= Z‘.1 (an €OS wnt + by sin wat), ©, = 2n/T. (10.62)
p=
Let { } denote the time average. We assume that {F(¢)} = 0. Therefore, we
have not taken any constant term in (10.62). The Fourier coefficients vary
from one record of duration T to another.
If x(t) is (say) an electric current in a unit resistance, the instantaneous
power dissipation is F(¢). The power in the nth component is

Wp = (@, COS wut + b, sin w,t)2. _ (10.63)
The time average is
{wa} = } (az + b}), (10.64)

because {€0s? w,t} = {sin® w,¢} = } and {cos oaf 8in w,t} = 0. By defini-
tion

—
°t—_ﬂ.i

F ) =7

2 (G, cOS Wat + by, sin w,t)? dr
n

=32 (m+ bh) = 2 {wa}. ' (10.65)

NIH
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" If we make measurements on a large number of systems (independent
strips of the record), the ensemble average of the time average is

T = 12@ + b)) = Z{m). (10.66)

Spectral Density

Each positive integer ¢ corresponds to a frequency o, = 2zn/T. The power
at this frequency is {w,}. The time period from 0 to T being arbitrary, w, is
also arbltrary Therefore, it is useful to define the amount of power G(wa)
Aa, in the frequency interval between two adjacent frequencies.

Aw, = @ppy—on = 2m/T. (10.67)
Then - '
Glon) Ao, = } (@ + B2 = {oah (10.68)
) =2 G(on) dop = IG(:») do. (10.69)
] |

The G(o)) is the spectral density or power spectrum of the randomly fluctu-
ating ‘quantity F%(r). Its integral over all frequencies gives the ensemble
averaged total power, which is independent of time.

'Correlation Function: Suppose x() is some displacement, so that it denotes
the difference between the quantity and its mean value {x} = 0. There
exists a correlation between the values of x(?) at different instants. The value
. of x at t affects the probabilities of its various possible values at a later
instant ¢ + v. We characterize this timé correlation by the mean value of
the product, called the correlation function,

) = () x(t + ), _ (10.70)

where the average is over time ¢. It is a function of = only. As © increases,
the correlation tends to zero, and so also C(t) = 0.

With no change in the result, we can take an ensemble average of
(10.70),

C(x) = {x(8) x(t + )}

= Tl, I b '[a, €08 wnt + B, sin wat] [@m COS 0 (t 1+ T)

+ b SiD 0p(t + 7))
=4 E (a2 + az + b)) 7) COS T, (10.71)

where we have expanded sin wm(f + 1) and cos wm(t - 7). From (10,68,
1), .
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C(x) = I G(v) cos w7 do, (10.72)

where the sum has been replaced by an integral. Thus C(z) is the Fouuet
cosine transform of G(w). The inverse transform gives

G(o) = 4 J. C(v) cos wor dv. (10.73)

These relations state the Wiener-Khintchine theorem.
As an example, take

C(x) = C(0) exp (—=/7,) = {F*(2)} eXp (—7/%,). (10.74)
The t, is a measure of the average. time the system persists without chang-

ing its state by more than e-2. Thus, 7, is a persistence time or correlation
time for the random process. From (10.73, 74).

) = 4! {F ()} exp (—7/%) cos wr dr = 14 1{5531 ’
(10.75)

This function is plotted in Fig. 10.2. The power spectrum is nearly flat up
to o = 1/1,, and then decreases rapidly as 18,

G(w)

-1 @

0_‘ T

Fig. 102 Plot of G(w) versus o,
108 ELECTRICAL NOISE (NYQUIST THEOREM)

Consider a resistor of area 4, length L and resistance R. Suppose it has »
electrons per unit volume and the time between colhsxons is 7¢. By Ohm's

law, the voltage V is given by
V = RI = RdAneq, : (10.76)
where 1 is the currént e the electrical charge and # the average velocity
components of the electrons along the length of the resistor. Because nALis
the total number of electrons,
nALa = 'S U, . (10.77)
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where the sum is over all electrons. From (10.76, 77),
V=(ReL)2u; =2V, V;= ReulL. (10.78)
i i
The random variable is u;, or V.

We can regard <, as the relaxation time, or mean time of flight of the
conduction electrons. Then the correlation function may be given the form

C) = VRO VT + 7) = Vi exp (—7/xo). (10.79)
By the Wiener-Khintchine theorem, the spectral density function is

G(o) == 4 (1%)2 u? J €xp (—7/t.) €08 ot dt

-Re b ;fc
=4 (T) u? ']T(—or‘)s. (10.80)

In meia]s at 300K, t. ~ 1025, or w7, € 1 for the usual circuit ana-
lysis frequencies (dc to microwave). Then 1+ (wv.)® = 1, and using
3 mu® = } kT,

77 = ndLV} = ndL G(o) Aw
2
— ndL 4 (’g) (%) te Ao, - (10.81)

As o = ne® <,/m, (9.37), and R = L]cA, where ¢ is the electrical conduc-
tivity, we get

V2 = 4kTR Ao. (10.82)

This is the Nyquist theorem.

PROBLEMS

10.1 What is the probability that n particles are found in avolumev < V
of an ideal classical gas?

A" exp (—#)

n!
particles in the volume v]. [Hint: use 4,58, 59, 70, 71, 75].

10.2 Consider a microcanonical ensemble of N elements and allow a very
weak interaction among the systems (interaction energy $E). Let w,,
be the probability per unit time that any system due to the interac-
tion makes a transition from a state r to a state s. By the principle

of detailed balance w, = w,.. If N, is thé number of subsystems in
the state r, we can write :

[Ans. Poisson distribution P, = , i = mean number of

dN,/dt = rate of entering r—rate of leaving r
=3 w,y, Ns—N, T wg; (master equation).
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Use these results to show that in equilibrium all states of the entire

system have the same occupation numbers.

Boltzmann defined a quantity which is minus the entropy o, H=—o.

Use the definitions ¢ =—2 p, In p,, p, = N,/N and the master equa-
r

tion given in Prob. 10.2 to prove the Boltzmann H theorem dH|dt < 0.
[Hint: ¢ =--Z(N,/N) ln (N,/N) = N-* (NI N—3N,Ia N,, do/dt
=—N1TN,InN, =(2N)* 3 wyy(N,—N;)(In N,—InN) >0 as
even term is positive or zero].

Consider a two-level system in contact with a heat reservoir. Let

E,—E, = e. Show that wy,/w;; = exp (—¢/kT), where wy, is the pro-
bability per unit time that a particle in state 2 makes a transition to
state 1.
A substance has nuclei of spin } and magnetic moment p,, and un-
paired electrons (. < 0). It is placed in a magnetic field H pointing
in the z direction. There is a hyperfine interaction due to the magne-
tic field produced by the electron at the position of the nucleus. Show
that ' '
pe = oxp 26 (va—oH]

where n,(N,) is the mean number of nuelear (electron) up spins.
[Hint: For the combined system (# + ¢) in thermal contact with
the lattice h.at reservoir, use the principle of detailed balance
nN_Wpe (+© - —@) = 0Ny Wpe (—@® - +O), where +(®)
indicates the up orientations of nucleus (electron)].
Use the result of Prob. (10.5) to discuss the Overhauser effect where-
by the nuclear polarization in a magnetic field is enhanced above the
thermal equilibrium value. (Phys. Rev. 92, 411, 1953).
Consider two types of quantum states 1 and 2. In a canonical ensem-
ble show that

Py = exp [—B(F,—F)],
where p, is the probability that the system is in state 1, F is the free
energy of the total system, and F, of the subsystem 1.
A container has exactly saturated vapour. What is the probability of
finding a droplet of radius R?
In problem 10.7, if we have a microcanonical ensemble, p, = nyn,
where 7, is the number of quantum states of type 1 and »is the total
number, then show that p, = exp (6,—0) = exp (Ac). If entropy o is
a function of some parameter x, show that the probability of a
fluctuation giving x is

ey cexp [ 5 =2 (3) ]

to second order. If Ag, is the change in entropy in the fluctuation given
by Ag; = —Ru/ T, where Ry, is the minimum work for the reversi-
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ble changé in the variables, Rz = Ae— T, Ac - p.,d ¥V, then show that

Ap AV—AT Ac
P(x) ~exp (T )v

ATy = kT*/Cy and (V) =—kT (0V/op)r.
10.10 Use the Fourier integral

x(t)= f A(w) e do

and the reality of x() to derive (10.72).
10.11 For a Gaussian random process

o(x) = (’(T‘rl:-)m exp (—x2/2p%).

Callcuiate x¥(t) x¥t + =) for it.

10.12 Use the drift velocity equation -
d 1)\
to derive ¢ = Ne® 7,/m, as used in obtaining (10.82).



11
COOPERATIVE PHENOMENA:
ISING MODEL

11,1 PHASE TRANSITIONS OF THE SECOND KIND

Consider ferromagnetic substances, like iron and nickel. Some of the spins
of the atoms become spontaneously (without any external ficld) polarized in
the same direction, below the Curie temperature 7. This creates a macro-
scopic magnetic field. As temperature is raised, the thermal energy makes it
possible for some of the aligned spins to flip over. This tends to destory the

initial ordered state. For T > T, the spins get oriented at random. Theéspon- -

taneous magnetization vanishes. As T, is approached from both sides, the
heat capacity of the metal approaches co. The transition from the non-
ferromagnetic state to the ferromagnetic state is called a phase transition of -
the second kind. 1t is associated with some kind of change in symmetry of the
lattice. For example, in ferromagnetism the symmetry of spins is involved,
The energy levels of the system are given by

E=— 2 €jj» G0y ""[LBHEG', ] (ll l)

where, on each lattice site /, the spin quantum number o is+1or —1, e, .
is the interaction energy, and ugH is the interaction energy assoclated with -
the external magnetic field H. For spontaneous configuration H = 0.

The change of symmetry can also occur due to the change in the order-
ing of the crystal. For example, in an alloy 4B the atoms may be subs-
tituted for one another on a set of given lattice sites. Then we can say that-.
o; =+ 1 for an atom A4 on the site i, and o, =— 1for an atom B on that site. -
At low temperatures the alloy 4B is ordered. Above a transition tempera-
ture it becomes disordered.

The difference between the nonfcrromagnetxc-ferromngnetlc transition
and the order-disorder transition is that in the former case ‘up’ and ‘down’ -
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spins can be transformed freely into one another, while in the latter case the
total number of 4 type and B type atoms is fixed. However similar theoreti-
cal results hold in both the cases.

These transitions come under a large group of phenomena called coopera-
tive phenomena. Certain subsystems, like spins or atoms, cooperate due to
exchange interactions to form units below a certain critical point.

Note that a phase transition of the second kind, in contrast to ordinary
phase transitioans (of the first kind), is continuous in the sense that the state
of the body changes continuously. Although the symmetry changes dis-
continuously at the transition point, at each instant the body belongs to one
of the two phases. At a phase transition point of the first kind, the bodies in
two different states are in equilibrium, while at a phase transition point of
the second kind the states of the two phases are the same.

11.2 ISING MODEL

The theory of cooperative phenomena is very complicated, specially when
all interactions are included and three-dimensional systems are considered.
We assume that in (11.1) the €, acts only between nearest neighbours in
the lattice. This.is the basic assumption of the Ising model. Then (11.1) is
written as.
Efo}=—e 2 ow;—ppHZo, (11.2)
<hl> i

where (i, j) means that the su.n is over pairs of nearest neighbours, and the
interactions are isotropic, that is, all ¢;; have the same value e. For ¢ > 0, the
neighbouring spins tend to be parallel and ferromagnetism is possible. The
spontaneous configuration of least energy is the completely polarized (ordered)
configuration in which all the Ising spins are oriented in the same direction, (11.2).
This configuration is attained at 7= 0. For ¢ < 0, the neighbouring spins-
tend to be antiparallel and antiferromagnetism results. We will assume that
e>0.

In (11.2) no distinction is made between {ij and {ji). The sum over {ij>
has zN/2 terms, where z is the number of nearest neighbours. of a site
(coordination number of the lattice) and N the number of spins.

The thermodynamic quantities require the evaluation of the partition
function

zZ= 2 exp (—BE{a)})

2 3. E exp( —BE{a}), (11.3)
0y Og
where 8 = 1/kT and the sum is taken over all the 2¥ possible combinations

of the N spins.
It is extremely difficult to calculate (11.3). Several approxnmate methods
have been developed for this. The Bragg- Williams (BW) approximation is the

simplest.
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11.3 BRAGG-WILLIAMS APPROXIMATION

Bragg and Williams assume that the distribution of spins is random. Let
N4(N-) be the number of spins for which o; is +1(—1). Thea N,/N (N-/N)
is the probability of finding a spin +1 (—1), or up (down), on a given
lattice site.

From (11.2), assuming random arrangement of spins over the whole
lattice,

- J \2 3
E=—37Ne [(%) + (%‘) —2N+N"]—-|J.BH(N+— . (11.4)

where z is the number of nearest neighbours of a site, N = N,+ N_isthe
number of spins, and we have taken N, > N_ in the last term. The number
N,/N is a measure of the long-range order, as it requires no correlation bet-
ween nearest neighbours. It only requires that in the entire lattice a fraction
N,/N of all the spins are up If N,/N is known in the neighbourhood of a
given spin, then the same average value is lxkely to occur everywhere on the
entire lattice.

As pp is'the magnetic moment associated with the spln, the ‘total mag-
netic moment is

M = pg (N,—N_). S (11.5)
Using N = N, + N_, o

Ni =M
%‘ (l :l: m)n m =N§La’ (ll '6)
E =—-§z¢Nm’—p,p NmH. (1.7

The m is called Jong-range order parameter,m = (N.—N_)/N = (2N,/N)—-1,
—1 < m < + 1. The order parameter m may be magnetization in a fer-
romagpetic system, the dielectric polarization in a ferroelectric system, the
fraction of neighbour 4 — B bonds to total bonds in an alloy 4B, or the frac-
tion of superconducting electrons in a superconductor. I transitions, where
the atoms are displaced from their positions in the symmetncal phase, m
can be taken as the amount of this dlsplacement

The number of arrangements of spins over the N sites is given by the aum-
ber of ways we can pick N, things out of &,

N!
. Waw = m- (11.8)
From (3.91), .
— &k In Waw ---—Nk(FlnIXI + 210 ’X;) 11.9)

The Helmholtz free energy F = E—TS is
F =—}zeNm*—pgNmH—~NKT [-1n 2 + } (1=m) In (1 —m)
+3Ad +mn( + m) (11.10)
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The equilibrium value of m (or N, —N_) is determined by 2F/om = 0,
~ —ZeNm—ps NH—NKT [—}In (1—m)—} + $ In(1 + m) +§]=0,

or
1+ m __Zem + ugH
In T=m = 2x, XE ) (11.11)
It gives the well-known result of th_e Weiss theory,
_ M ]
m=m—e,-—x—:-l_—-l —-tanhalc. (11.12?

T, m, _ M,

ms = taDhT T. = -'—— m,=m,

where T is the Curie temperature*. We can solve (11.13) graphically (Fig.
11,1a) to obtainm, as a function of T in the BW approximation (Fig. 11.1b),
‘For this, plot the right and left sides separately as functions of m;,. The

(11.13)

\

1
0.5 1
. T/Te
(a) (b)
+Fig. 11.1 (a) Graphical solution m; = tanh (m,T/T). The intersection point m
moves up to m; == 1 as T -0, All the magnetic moments are
linedupat T =0,
(b) The spontaneous magnetic moment in theBragg-Wlllhnu lpmxl
mation. The order parameter /2 varies smoothly in a second-order
phase transition.

intercepts of the two curves give the value of m at the temperature of in-
terest, Clearly the solution is such that m, = 0 for T.,/T < 1 and m, = m,
0, —m for T,/T > 1. In the latter case the root m; = 0 is not acceptable
because it corresponds to a maximum of F, instead of minimum. Thus, m,
= 0 for T > Tcand 4 m for T < T,, where m is the root of (11.13) that

*Curie points are phase transition points of the second kind.
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is greater than zero. The degeneracy m; = + m occurs because for H = 0
there is no intrinsic difference between ‘up’ and ‘down’. This degeneracy
does not affect F as it is and even function of m. In general, m is obtained
numerically to yield Fig. 11.1b.

11.4 FOWLER-GUGGENHEIM APPROXIMATION

In (11.4) the energy of a spin depends on the distribution of spins over the
entire lattice and not on its neighbours. Fowler and Guggenheim (FG) have
handled the spins more carefully.

Let N4 be the number of (++) pairs, N._ of (— —) pairs, and N, _ of

(+ —) pairs. There are only zN, links possible which end on -+ spins (Fig.
11.2). Each of these links is counted twice in N, and once in N,._. Thus

Fig. 11,2 A possible two-dimensional lattice (; = §) for the result

;N_,_ = 2N, + N;_. First Z lines are drawn to connect
4 to all the nearest neighbours, This is repeated for an-

other - site and continued for all 4 sites. In all 2N,
lines are drawn,

2N+ + N, = zN,, and similarly 2N_ _ 4+ N, = zZN_. Clearly N,,/(32N)
is a measure of the short-range order (local correlation). For a given spin, it -
gives the fraction of its nearest neighbours with spin up.

In BW approximation the possibility of local correlation between spins

was ignored. We took N,./(}zN) = (N+/N)’. For short-range order,
© E=—~(Ni+ + Ne_—N,-)—ps H(N,—N_). (11.14)

In the quasi-chemical approximation of FG, a (++) pair and a (——) pair
combine to form 2 (+ —) pairs according to the ‘reaction’

(++) + (==) > 2 (+—).
Then, for chemical equilibrium

N N_— 1 exp(—eps/kT) exp (—e__[kT) 1 _»
W —F exp (—e;JkD)P =g @kT) =3

(11.15)
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where e, is the potential energy of (+ +) pair, etc.,
| ey =€m=—¢ = + ¢ (¢ > 0),

and the factor 23comes from the pfesénce of the imsymmetrical bond (+ —).
In (11.15), the pairs are treated as independent chemical bonds, even though

they are not due to restrictions 2N, + N, = zN,, etc.
We can write (11.15) as

(§N+—.N.};3 SIZ_—M-) = - (11.16)

From (11.6, 16),
O*—1) Ny + EN)N._— } 2N (1—m?) = 0,
or '

- —] = - —
Ny = 2N 2(;,;1"; =N 2—(10%1-) (11.17)
where
a = [l + 1~m®) (P-1)P2 (11.18)
Thus

New =4 @V = 1N [0 £ m-152] ar1g)

For spontaneous magnetization (H = 0),

E—=—¢(Nyy+ No—N. )=_‘;EN(1—2M)
= ++ =N ) =+ TFa)

. (11.20)
The calculation of S in F = E—TS = —kT In Z is tedious. To simpliiy
it, define a quantity E’ as

F=E—kTln Way =—kTIn 2, (11.21)
where Wpy is given by (11.8). Then -
ur
dmZ . AET) ., I 1
E=-k —= =< . = —
ks = S E =T [ = (7) 11.22)

where E' = 0 for 1/T = 0.
From (11.15, 18),

4 . ad—1 . «?—m?
ET:lnya:]n(l + 1—m=)="‘ — (11.23)
1 k oda :

d('T, = WA _ (11.24)
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e (2 m—} m+}
=_iz.NkTI(a+l+a—-m_¢+m)d¢
1

——}INKT [2 T

¢+1

—— } 3NKT [2 In + (m— l)ln 2

m + «, 2 (11.25)

—(m+ 1) ——— + 75l

Using (11.9, 25),
F = E'—kT In Way

| =%Nk:r{('1 4 m) In (1 + m)+(1—m) In (1—m)—21n 2

+ ﬁ[(l +mh .“i_"i_,_ (l—m)lnf— ol® -;- 1_%]}
(11.26)

The equilibrium condition, 8F/om = 0, gives
14+m 1 a+m 14+4m 14 m do
In p—— +§z[ln 7 —In + ( 1+ dm)

1—m «-+m

1—m de
~=n (- o) arram] = (1.2
Using (11.18),
d 1=y _m l—a‘)
dm o m_'ez(i——mi 4
_a___(l__;)xnl“"’"ﬂ» mit?_ o, (11.28)

One root of (11.28) is always m = 0. A root m # 0 exists for low temper-
atures. At the Curie temperature the two roots merge to give the single
root m = 0, It means the Curie temperature is given by the conditions

m=0, oFom=0 Fom®=0, (11.29)

g:—”li; iz)(1+m l—-m)+* (a+m+a—lm)=0'
(11.30)

For m = 0, we have « = y and (11.30) gives

z

—a=y=exp QilkT), 2=t (11.31)
-2 ¢ z—2

N
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For z = 2, we have T, = 0. Therefore, a one-dimensional linear lattice
cannot be ferromagnetic. The BW approximation does not yield this result.
Bethe used a different approach to obtain (11.31).

The values of 7 and In {z/(z—2)] for the common lattice types are as
follows:

Lattice type - z In [2/(z—2)]
Simple cubic 6 0.41
Body-centered cubic 8 0.26
Face-centered cubic 12 0.18
Hexagonal close packed 12 - 0.18
Two-dimensional square net 4 0.69
115 KIRKWOOD METHOD
For H =0, (11.3) is
Z Ee s W = E 0‘,0’[ ‘ (11.32)

{1} kT <h)>
From (11.21, 32),

E 1
— = —] — w
k7" "bnwﬁe)

=~ [W‘w ti}( Lt +%Tw!+ )]
=...ln(l +<—l-—};’>+§%+‘---)

[(<“’> <”">+ ) (<w> %+)2+]

1!

=Wy [ W= W YT L= 3w+ 2C WY .
(11.33)

where
"y = wi., ' ©oat.
(W= (;:ﬂ | (11.34)
We have already calculated Wpy. To evaluate the averages (w ), it is
useful to let i, k, ... belong to one sublattice and j, /, ... to another. Then
o; and o can vary independently, Using (11.7),
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€ €
(wy= ﬁ'«‘.‘:n {o10;> = k—T"‘Jj(?O("!)
=—}Z g N, (11.35)
The term
W= L 3 ¢ : (11.36) .
W =% (u)m(”'c'am)

has three cases (Fig. 11.3): (@) i<k, j=1, (b) i# k, j=1lori=k,
j#1, and (¢) i~ k, /% I. The number of terms in each case is (a)

izk j=z! i jzloizk j i l: i"
/ ui i : {
(a) {b) {c)

Fig. 113 Construction for the three cases of (11.36).

g = } Nz, (b) ¢(z—1), and (c) ¢*—g—2g(z—1). The corresponding ave-
rage values are: (a) 1 as o] = 1, (b) for the pairs (i, k) which are on the
same sublattice, using (11.6), ;
_ NN 1) | IN-(N-—D) _, NN
o) =SNGN—D T INGN-D 2 INGN=D
1—m?
iN—1

and (¢) (‘o,c;cum > =< oo ) {00, ) implies, to order O(N),
(o0m0 ) = g + 29@Z—1)(m*—A) + q(g—27 + 1) (m*—A)*

o m’—%(l—m’) =m—A =09,

== m‘—

P
G (kD)
= g + 2(G—)m* + ¢*m*—2¢*m*A—g(2z—mi+ O(1)

= g*m* + q[1 + 2(z—1)m*—2zm® (1 —m?)
—~2z—)m] + 0(1) _
‘ = g'm* + q(1—m?)z, (11.37)
The final result has the form"
— =1 ;[k—‘T mt + } (k—‘T)' (1—m3p+ B (/—“T)' (1 —m?) + ]
(11.38)
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F= %NkT{(l +m)n (L4 m) + (1=m) In (1-m)~2 n 2 |

S RS R A

(11.39)
Tbe equilibrium value of m is obtained by 8F/om = 0,

lrﬂ n [ 21!(kT) (1—m)
¥ 311(2%‘) (1—m')(1—3m=j—;..]. (1140

The Curie temperature is given by (11.29). Differentiate (11.40) and put

m == 0, )
2 2¢ 1 f2\*, 1/[2 \®
i=Tm (ﬁ) + 5‘1(1??) —. (11.41)

=2 | (11.42)

2¢ 1f 2\
= 1—exp ("2""” kT 2!(kT.) +3 FT,) T
-(11.43)
Thus Bragg-lehams approxlmatlon agrees w:th Kirkwood’s approxima-
tion (11.41) only in the first term, while quasi-chemical approximation
(11.43) of Fowler and Guggenheim agrees up to the first three terms.
The heat capacity curves according to the three approximations are
compared in Fig. 11.4. The discontinuity in the specific heat curve charac-

(/e dgw
Fig. 11.4 Magnetic heat capacity of a simple cubic lattice for H = 0 in

the vations spproximations. The (7/T,)py, scale is for T/T,
= (kTIZs)
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terizes a second-order transition as the discontinuity is in the second deri-
vative of F,

d 4 0F

a T aT

For a simple cubic lattice, we have z = 6, and 2/z = 1/3 = 2¢/kT, in the
BW approximation. Energy is required to produce disorder. This excess
energy corresponds to a heat capacity in addition to what is given by the
Dulong-Petit law for ordinary thermal motion. The rate of disordering
increases from zero to a maximum value just below T, (Fig. 11.4). The
contribution above T, comes from the local order which continues to need
energy for its decrease at higher temperatures.

C‘V ==

11.6 ONE-DIMENSIONAL ISING MODEL

The one-dimensional Ising model consists of a chain of N spins, each spin
interacting only with its two nearest neighbours. The energy for the con-
figuration specified by {o,, o0,, ..., on} is

N :
E; =—e '21 0104y : (11.44)

It is convenient. to arrange the chain in a ring (Fig. 11.5) so that

Fig. 115 N Ising spins arranged in g ring,

ON4y = Oy - (11.45)
The partition function is
) N
Z-= 2 .. z exp [ﬂ! p> Gchrl]
Op=4-1 oN=+1 . j=1 -~
= 2 .. X I(coshBe + 0,0:, sinh B¢), (11.46)
o=l oy=El o
where we have used

. e (o'=1) ) '
exp (coo’) = { } = cosh ¢ 4 .g¢’ sinh ¢,
e (o6’ = —])

which holds because o¢’ can only be + 1 or —1.
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The expansion of products in (11.46) gives a sum of terms, each of which
is a product of the form

(cosh Be)¥-* (sinh Be)* (01014 - 0j011). - (1.47)

We can display these terms graphically by thick and thin links forming the
ring (Fig. 11.6). The thick link corresponds to (say) the factor oo’ sinh Be

Fig. 11.6 Construction for the terms (11.47).

and the thin link to cosh Be. If there is a site at which thick and thin links
join, then its spin occurs only once and the sum of the two values 4 1
makes the product zero. At a site where two thick links join its spin occurs
squared and gives a value 1, because o2 = 1. A non-zero contribution comes
only when the chain of thick links, if present, has no ends. Thus the only
nonzero terms are the first term (cosh Be)V, and the last term (sinh e)V, giving

Z = 2V [(cosh Pe)N + (sinh Be)V], " (11.48)

For Be = /kT £ oo (T # 0), cosh Be > sinh Be. Therefore, for N » 1,
(cosh Be)¥ » (sinh Be)¥,

= 2N (cosh fe)¥, ' (11.49)
F=—-—lenZ=—-NkT|n(2cosh,{T). (11.50)
The energy and heat capacity are
e F ) € .
E = Wﬂ7=-—Netanh T (11.51)
0E _ Ne* AN
C = a—-I,—-F]—.,i (COSh 7(-7.) . (11-52)

They are of the form (3.99, 100). Unlike Fig. 11.4, there is no transition
temperature (Fig. 3.10). Therefore, the one-dimensional Ising model cannot
be ferromagnetic. This result was first obtained by Ising in 1925,

A two-dimensional Ising model is a plane square lattice of N points, at
each of which is a spin (or dipole) pointing perpendicular to the lattice
plane. The total number of possible configurations is 2V. For interaction
between adjoining spins only,

E=—c¢ E | (okt Oka 141 + Okt Ok4152)s (11.53)

k!
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where L is the number of points in a lattice line, N = L2 The exact evalua-
tion of partition function using (11.53) is extremely complicated. but possi-
ble as shown by Onsager in 1944. The system is ferromagnetic with the

Curie temperature

2e ‘ '
For three-dimensional Ising model only approximaté series solutions exist.
A linear Ising chain is not ferromagnetic because it can be easily broken
at any point. A single break destroys the long-range order and increases
the energy by 2e (Fig. 11.7). This break can occur at any one of N sites.

+ + 4+ + + + + + + + +

‘++++++T—-_———

BREAK

Fig. 11.7 Long-range order in a linear chain (above); A single break destroys
the long-range order (below).

Therefore, the gain in entropy is k In N. The change in free energy is -
F = 2¢—kTIn N. (11.55)

It can always be made negative.even for every low T if N is sufficiently
large. Therefore, an infinite linear chain has no singularities, (11.52).

A simple argument shows that a two-dimensional Ising model is ferro-
magnetic (11.54) Consider the connected region of reversed (—) spins
shown in Fig. 11.8. It is bounded by a polygon of length I There are /

+ [+ +[+[+]+
F+F[ -+ F
[ +[=1--1+
+ |+ -[-]1=1+
++]-]-[+]+
+[={=-[-]+[+
F+| | H ]+

Fig. 11.8 A connected region of reversed spins.

links of type (+ —) at tl;é border of the two regions. The energy of the
system is thus increased by 2/e. At each node of the boundary there are
three choices of direction, in general. We can say that there are 3! ways of
laying down the boundary. This is an over-estimate because the polygon
must close somewhere. For large / this is a small error. Thus
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Frs2e-kTIn 3 = I (2¢—kT In 3). (11.56)

These contributions are positive if kT < 2¢/ln 3. Therefore, the ordered
state is stable below the Curie temperature,
2¢
In3
The correct result is (11.54).

The Ising model can simulate systems other than a ferromagnet.

kT, ~ (11.57)

11.7 ORDER-DISORDER IN ALLOYS

A binary alloy 4B is ordered if A and B are in a regular periodic arrange-
ment. In a common ordered alloy all the atoms 4 have atoms B as nearest
_neighbours. For example, the completely ordered alloy CuZn has a cubic
lattice with Zn atoms at the vertices, say, and the Cu atoms at the centers
of the cubic cells (body-centred cubic structure or bee structure) (Fig. 11.9a).

Fig. 11.9 (a) The CuZn alloy bee structure with Cu (o) at the centre and
Zn (x) at the vertices. (b) The disordered statc form = 0 .
showing greater symmetry as all sites are equivalent.

As the temperature is raised, the Cu and Zn atoms change places creating
disorder. We then have nonzero probabilities of finding atoms of either
kind at every lattice site. We can difine the order parameter as

Pcy — Pzn
"= Pout Pza’

where Pc, (Pz,) is the probability of finding a Cu (Zn) atom at a given
lattice site. For any nonzero value of m the sites (vertices and centres)
remain nonequivalent and the original symmetry is unchanged. Howcver,
the .symmetry of the system is changed when m = 0. For P, = Pgz,, all
sites become equivalent and the symmetry of the crystal is increased (Fig.
11.9b). '

" The bee structure is made up of two interpenetrating simple cubic lattices,
a and b. The nearest neighbours of an atom on (say) lattice a lie on the
lattice b. If there are N atoms 4 and N atoms B in the alioy, the long-range
order parameter m is defined so that the number of 4 atoms on the lattice a
is 4 (1 + m) N, and on the lattice b is § (1—m) N. When m = + 1, the
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order is perfect (each lattice contains only one type of atom). When m = 0,
each lattjce contains equal number of 4 and B atoms (Fig. 11.9b) and there
is no long-range order of the original kind but an increase in symmetry
(X-ray powder photograph shows smaller number of lines because lattice
points behave as if occupied by only one type of atom).
Note that any departure, however small, from the value- m = 0 results
“in a lowering of the symmetry. Thus, in general, the symmetry of one phase
(completely disordered phase here, m = 0) is higher than that of the other.
Usually the more symmetrical case corresponds to higher temperatures. In
particular, in a transition of second kind from an ordered (Fig. 11.9a) to-a
disordered state (Fig. 11.9b) the temperature increases. Exceptions to this
rule are possible (for example, Rochelle salt is orthorhombic below the ‘lower
Curie point’ and monoclinic above it).
Define o; to be + 1 for a site occupied by an atom 4 and —1 for a site
occupled by an atom B. Then
E = €44N44 + ssNpp + c4N a3, (11.58)
where N;; is the number of nearest nelghbour ij bonds, and ¢; is the energy
of an ij bond. Define '
2¢ =—} (caa + eBB)—eum. (11.59)
If € is positive, lower energies are obtained by creating unlike pairs of atoms
at the expense of like pairs, That is why in ordered structures like atoms tend
to keep apart. A negative value of e will make the like atoms to segregate
into pure metals at lower temperatures,
If n is the total number of pairs,

2}) 6,6 = N4+ Npp—Nag = n—2N 4z, (11.60)
<ih ’
E = in (eas + epp)—2¢N4p + constant
= €<'21> oy0; + constant. (11.61)

As (11.61) is of the same form as (11.2), the order-disorder transformation
can be described in the Ising model. We get the long-range order m versus
T/T, curve as shown in Fig. 11.1, when m now refers to an 4B alloy. . Thus
passage through a phase transition point of the second kind has a continu-
ous change of m to zero. As a result the thermodynamic functions of the
state of the body (volume, energy, entropy, etc) vary continuously as the

. transition point is passed. Therefore a phase transition of the second kind,
unlike one of the first kind, does not involve latent heat. It is characterized
by the derivatives of these thermodynamic quantities becoming discontinu-
ous at a transition point (Fig. 11.4).

11.8 STRUCTURAL PHASE CHANGE

Many crystals change from one structure to another as the temperature is
raised, or under external forces. For example, at high T the ferroelectric
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crystal BaTiO4 has a cubic (perovskite) strcuture (Fig. 11.10); The Ba atoms

Fig, 11.10 Unit cell of BaTiO; showing main distortion responsible for ferro-
electricity: Ba(o), Ti(@) and O(x).

are at the vertices, the O atoms at the centres of the faces, and the Ti atom
at the centre of the uait cell. As T is decreased below T, the positive -ions
begin to move relative to the negative ions, parallel to an edge of the cube.
Thus in the low T distorted phase the crystal acquires a macroscopic dipole
moment. The electric polarizability shows a dramatic increase as T T..
Below T, we get a spontaneous polarization.

The distortion due to the displacement,of atoms results in a change of
symmetry. In BaTiO, it changes from cubic to tetragonal. It is a phase
transition of the second kind. The changes take place continuously in the
configuration of atoms and reflect the properties of interatomic force. Even
a small displacement of the atoms from their original position is enough to
change the value of order parameter m. Here the m may be taken as the
amount of this displacement, - '

If x represents a displacement in one particular mode of motion, the free
energy F is a function of even powers of x,

F=Ax*+ Bx + O +.... (11.62)

The coeflicients 4, B, C, ... are functions of all other displacements and so of
T. The A is related to the characterstic frequency v; of the mode. If 4 islarge
and positive, the F has a minimum value near x = 0, An interesting case is
when A4 increase with T such that

A c vi(g) =c(T—T,). _ (11.63)

We get an instability as T is decreased below T, because then F has a local
maximum at x = 0 (Fig. 11.11). It means the crystal (like BaTiO,) tends to
distort at low T.
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F

Fig. 11.11 The free energy F as a function of displacement for a second-order
phase transition.

If B > 0, the minimum value of F, given by 8F/dx = 0, shifts to the
position x,, given by

¥ = o(T,~T)2B for T < T, (11.64)

The distortion sets in below T, and is proportional to (T.—T)"/* (Fig. 11.1b)
with m = x,. The F and x,, are continuous at the transition but the slope
0%,,/OT is not. The minimum of F at thermal equilibrium is

F=—c(T.—TPAB TT.<1
=0 7T, > 1. C(11.65)

The specific heat, C, = ¢*T/2B, falls discontinuously to zero at T = T,.

From (11.63), the phase transition of the second kind occurs when v,(¢)
—> 0. This decrease in the mode frequency is called softening. It implies that
the harmonic restoring forces have become so weak that finally a large dis-
placement can occur which is limited only by the anharmonic forces. We
can also say that for vy — 0 excitations require no energy. They are created
spontaneously in a large number to produce the distortion. - -

On the other hand, a first-order transition occurs if B <¢ 0 with stability
provided by C > 0 in (11.62). A second minimum is found in F besides the
one at x = 0 (Fig. 11.12a). For T < T, this (absolute) minimum s at F < 0,
and x,, changes discontinuously (Fig. 11.12b). As this can occur away from
A = 0, the softening of the mode is avoided. In such a case latent heat is
involved.

The arguments given here provide basis for the Landau theory which is
formulated in the language of magnetic systems (see next chapter for a formal

treatment).
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F Xm
CT>Te 1
T=Te
% /T<Tc 7
N X 0 T T

(a) ‘ (b)

Fig. 1112 (a) The free energy F, and (b) the order parameter for a first-
order phase transition. ’

119 LATTICE GAS

The Ising model can be applied to a lattice gas. It consists of atoms on (say)
a-sites and vacancies on b-sites of an atom-vacancy lattice. Then it is for-
mally equivalent to a binary alloy. The difference is that, as the atoms are
free to move about, an enumeration of the occupied sites gives N ! con-
figurations instead of unity.

PROBLEMS

11.1 Define a long-range order parameter m and a sbc;rt-mnge order
parameter s by '

NN=@m+1)2 (-1<m< 1)
o NI =6+ DR (—1<s< )
where z is the number of nearest neighbours of a site. Show that

3 a0y =} zN(2s—2m + 1),
LI

<

N .
2 o = Nm,
=1

7 Em, s) =— %  52s—~2m + 1)—psHim.
11.2  Show that in the Bragg-Williams theory we can write
sA }(m+ 1)2—1,

1 -1 -
ﬁE(m)N—i ezm’—p.gHm.

Now derive (11.13) in terms of m.
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For H = 0, (11.13) can be expressed as

Zem

*T°

where m is defined in Prob. (11.1). Show that -
m~ 1—=2 exp (=2T[T), (TJT £ 1),

T\ T
_mm[3(1—ﬁ)] .(0< -7 < 1),

where ze¢ = kT,. Plot m (Fig. 11.1b).

If N = total number of lattice sites, N, = total number of atoms,
and N,, == total number of nearest-neighbour pairs of atoms, write
down the grand partition function for a lattice gas and obtain the

m = tanh —

equation of state. [Hint: E=—€Nas Z=(Na)? 2 exp(BepNaa),
) (a)
Z2= 3 e z].
Ng=0

Relate the lattice- gas with the Ising model as follows: (Lattice gas,
Ising Model) == (N4, N,), (N-, N—Na), (4¢, &),

(—%-{- %;e peH, P) (M + ; Il,)
where M is spontaneous magnetization. .
For H = 0, (11.7; gives E =— } 7 < Nm?®. Show that
Nkx? tanh x '

X Rl
cosh? x— ——— *
tanh x

Cy

T _
F =

where x = mT,/T. Expand tanh in the neighbourhood of T to obtain
=3 (1— IL) for0-<(l ———) £ 1.

Calculate Cy in Prob. 11.6 for T € T,. .
The probability that an atom A on lattice a has an AA bondis equal
to the probability that an A occupies a given nearest-neighbour site
on b, times the number of nearest-neighbour sites (8 for bee structure)
in an alloy 4B. Show that

N4 = 2(l—m* N, Nps —-2(1 m’)N
N4 = 4(l + m?¥) N,

where m is the order parameter. If E, = 2N(e44 + eps.+ 2¢4n) and
€ = 2ean—(e44 + €53), show that (11.58) can be expressed as

E = Eo + 2Nm’€.
Show that the number of arrangements of these atom is
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( N1 ')2

3+ mNIFA—mN]! )°*

and the condition for free energy F to be minimum with respectto
the order parameter m is .

4Nme + NkTIn [ (1 + m)/(1 —m)] = 0.

Solve this to find the transition temperature T, and plot m versus
T curve. Also plot F versus m curves for T = 0, T,/2, T,, 5/4 T, and
interpret them. Discuss the order of the phase transition. [Hint :
Expand near the transition, 4Nme + 2NkTm = 0, to get T, = —
2¢/k, with € < 0 for the transition to occur.]

Obtain the free energy and the chemical potentials of each compo-
nent of a two component solution. Use a lattice model for the
liquid and work in the Bragg-Williams approximation.

1110 Consider a plane square lattice having N points. At each point place

11.11

11.12

a dipole with its axis perpendicular to the plane. The dipole can
have two opposite orientations. Thus to each lattice point (k, ) we
assign a variable ox; which can take two values 4 1. If interactoin
between adjoining dipoles is considered,

L
E (o) = — < ’21 (Okt Oharey + Okt Okypot)s
e

where L is the number of poinis on a lattice line, N = L2, Show
that

Z = (1—x%VS,

L

S=[Z 0 (14 xouok, 143) (1 + X0k10k41,1) ]
(0) ko I=1

where x = tanh (¢/kT).

Each term of the polynomial S in Prob. 119 can be uniquely corre-

lated with a set of bonds joining various pairs of adjoining lattice

points. Try to estimate S.

The magnetic induction B vanishes (Meissner effect) inside a super-

conducting metal (T<T.). Use this fact to show that the total

magnetic moment M, of the superconducting sample of volume

V is M; = —(V/4x) H, where H is the applied field. Then use dF,

= dF,;, where F, is the free energy in the normal phase and F; in

the superconducting phase to obtain

Vv . dH
Sa—S;s =— in H 77
Compare it with the Clausius-Clapeyron equation. Discuss this result

for dH/dT < 0. As T->0, the third law of thermodynamics requires
that S,—S; — 0. Use this fact to discuss the shape of H versus T
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curve, and the role of latent heat. For most of the superconductors

H,(T) = H, (0) [1 __(;_)2 ]

where H, is the critical field at which the transition from the normal
phase to the superconducting phase (or vice versa) occurs. At T
= T,, we have H; = 0 and so S; = S,. Use this to show that (i)
the F; and F, curves do not cross but merge at T, (ii) the two
energies are the same, and (iii) there is no latent heat associated
with the transition at 7' = T. Calculate and plot C, and C,. Show

that C; (T,)/C, (T:) = 3.
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121 INTRODUCTION

Part of our daily experience is the observation of phase changes resulting
from change in the temperature of a substance—for example, the freezing
of water at 273 K and the boiling of water at 373 K, both ata fixed pressure
of P = 1 atm. Similar phase changes occur at different temperatures if we
allow the pressure to vary. We can construct a phase diagram in the T, P
plane where boundaries between the various phases are delineated by the
locus of the appropriate T, P points. For a given point on the bounding curve,
the substance can exist in either of two phases. For example, at T = 373K
and P = 1 atm, water can exist as a high-density liquid or asa low-dénsity
vapour. Latent heat added to liquid at constant pressure and temperature
converts it into vapour. Following the liquid-vapour coexistence curve to
higher temperatures, we encouater a remarkable new region where the den-
sity difference between the liquid and vapour goes to zero and water and steam
become indistinguishable. Accompanying this decreased distinction between
phases is a decreased surface tension and-a growth of patches of each phase
immersed in the other, drops of water in steam and bubbles of steam in water.
The presence of drops and bubbles with sizes comparable to the wavelength
of visible light causes the system to scatter light strongly, sc that critical opal-
escence occurs and the system appears milky. The region where the ligunid-
vapour coexistence curve terminates is called the critical region, and critical
phenomena describe characteristic behaviour observed in this region sur-
rounding the critical point at 7. and P,. For water, the critical pointoccurs
at T = 647 K and P = 218 atm.

The reason for the great interest in elucidating criticial phenomena lies
in the fact that it is representative of a class of physical problems in which
microscopic behaviour persists and cannot be averaged out to obtain macro-
scopic descriptions. Far from the critical point the distance over which
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density fluctuations are correlated is small compared with distances of
macroscopic interest, and one can obtain a satisfactory macroscopic descrip-
tion by averaging over these small-scale fluctuations. In contrast, as one
approaches the critical point, the distance over which density fluctuations
are correlated increases without bound, and one needs to include a large
number of coupled degrees of freedom in order to describe the system ade-
quately. A key feature observed for critical phenomena is the emergence of
non-analytic dependence of thermodynamic quantities on their variables.
For example, as T approaches the critical temperature T, the density differ-
ence across the coexistence curve pp—py varies as (pp—opp) ~ (T.—T)8
where B, a so-called eritical exponent,is found to be of the order of 1/3.
Similar dependence of many variables in a variety of systems exhibiting
critical behaviour has been measured, and it is clear that non-integral cri-
tical exponents are a general characteristic of critical behaviour. The impli-
cation of the occurence of non-analytic behaviour is that standard methods
of analysis which make use of perturbative- techniques are not applicable,
and problems involving the singular behaviour cannot be approximated with
these techniques. What is more remarkable is that critical exponents for
systems with vastly different microscopic structure may be the same, and
that within a small number of classes, critical exponents display a remark-
able regularity.

122 CRITICAL EXPONENTS

Critical behaviour has been identified in many systems. In addition to-the
water-steam system, liquid-gas systems generally display critical behaviour
where the density difference between the liquid and gas phases tends to zero.
Other systems displaying critical behaviour include ferromagnets, ferro-
electrics, binary liquid mixtures, binary alloys, superfluids and superconduc-
tors. In many of these systems, one phase is ordered, while the second is
‘disordered. It has become customary to label a parameter which vanishes
at the critical point and above as the order parameter. The critical exponent
associated with all order parameters is designated as 8. For the liquid gas
system, the order parameter is chosen as the density difference between the
liquid and gas phases at a given point T, P on the coexistence curve, which
approaches zero according to .
(- o)~(T—TPF, T<T.. (12.1)
Above the critical temperature the order parameter is zero. For the
ferromagnetic system, the order parameter is the homogeneous magneti-
zation, while for the antiferromagnetic system it is the magnitude of the
alternating magnetization. In either case, the source of magnetization is
the spin-related magnetism of electrons in unfilled 4 and f shells of tran-
sition metals such as iron, cobalt and nickel. The combination of
Coulomb repulsion between electrons and the Pauli exclusion principle,
which keeps like spins separated, leads to a lower energy for parallel
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spins. Below the critical temperature, but in the absence of an external
magnetic field, the thermodynamically stable state is the one with a signi-
ficant number of spins aligned along a common direction, producing a net
macroscopic vector magnetization Above the critical temperature, the en-
tropy contribution dominates the free energy and the equilibrium state has
no residual. macroscopic magnetization in the absence of an external magne-
tic field. In the critical region about the critical point T’ = T, and H = 0, the
macroscopic magnetization is either quite small or zero, depending on whe-
ther T is below or above T,.. Even though the macroscopic magnetization
vanishes above T, there are still regions of considerable extension, whose
extent depends on how close Tis to T, in which a significant number of
spins are lined up. The macroscopic magnetization vanishes because the
microscopic magunetizations in different regions are not aligned along a
common direction. The situation is not so radically different for T below
T, since the only significant difference is that the ordering tendency wins
out —if just barely—over the disordering tendency, and a small but finite
number of the correlated spin regions are aligned along a common direc-
tion, producing a macrosopic magnetization. The common thread connec-
ting the behaviour of a liquid-vapour critical system and a ferromagnetic criti-
cal sytem is the dominance of fluctuations in the critical regions. In statisti-
cal mechanics, fluctuations are quantified by calculating the correlation
function. For a stationary (non-time varying) system which possesses trans-
lational symmetry,the correlation function for density fluctuation can be
expressed as

Lo 50 (%) = <80 (x) 30 (0)) (12.2)

where the bracket ¢} indicates an ensemble average. For many systems,
away from the critical point, the correlation function falls off exponenti-
ally with distance, and is given by :

P(x) = exp (—[x |/E), (12.3)
where £ defines the correlation length and provides a measure of distances
over which fiuctuations are strongly correlated. In the critical region, it is
found that the long-distance behavior of T'(x) as a function of | x | involves
a critical exponent, 7, according to

T(x) ~ |x|-4-4), T =T, E> x| >a (12.4)

where d is the dimension of the space and a is a measure of the microscopic
structure of the system. The correlation length diverges as T approaches T
with the critical exponent v according to
£~ [(T-To) [ (12.5)
The Fourier analysis of the correlation function allows one to represent
the fluctuating density as a superposition of sinusoidal density waves whose
amplitudes reflect the inteasity of the fluctuation as a function of wave-
length. These waves may be sensed by scattering waves of light, X-rays, or
neutrons off of the system, where the diffraction grating provided by each
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wavclength produces constructive interference patterns which can be ana-
lyzed to obtain the amplitude of a particular Fourier mode. Using the
inversion techniques, one can obtain both the correlation function and the
correlation length.

Three additional critical exponents are found to be useful. The coeffi-
cient « is associated with the behaviour of specific heat in the vicinity of the
critical temperature according to

C ~|(T—T) I (126

while the coefficient v is related to the critical behaviour of the generalized
susceptibility x according to

x ~ | (T=T) . (12.7)
For the liquid-gas system Cy = —T'(8*F/0T?), and Kr = (1/V)(@V/oP)r are
characterized by critical exponents « and y, while for the ferromagnet Cy
and Xy = (3M[3H)r are the appropriate variables with these exponents.

: Finally, the critical exponent 3 occurs either in the relation between the
external magnetic field and the magnetization, at the critical temperature
according to

H~M T=T, (12.8)

or to the relation between pressure and density at the critical temperature
according to
(P—P)~|p—pcl’, T=T. (12.9)

Traditionally, one made a distinction between the exponents «, y and v
for values of T' > T, and those for T < T.. Although it appears now that
these exponents have the same value on either side of T,. However, itisnot
correct to assume that the critical behaviour is symmetric about 7', since the
coefficients in front of the power-bearing term are different for the regions
above and below T,.

The six critical exponents defined here are connected by scaling relations.
These are: '

Rushbrooke scaling law: a + 2+ y =2 (12.10)

Widom scaling law: v =£(8—1)

Fisher scaling law: y = (2—n)v

and Josephson scaling law: vd = 2—a.

These laws, which were originally derived as inequalities, are converted
to equalities by the so-called scaling hypothesis. It appears that only two
of the critical exponents are independent and the others can be determined
using the scaling relations. Several inequalities involving the critical expo-
nents can be derived using phenomenological equilibrium thermodynamics
stability considerations. For example, the standard thermodynamic result
for the difference between the specific heat at constant magnetization Cu,
anc the specific heat at constant magoetic field Cp, for a magneticsystem is
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Cu—Cy = T(0H[dM)r (3M[3T)? . (12.11)

Thermodynamic stability requirements dictate that Cjy be non-negative,
leading to the inequality

Cu > T@H[OM)r QM[BTYs = (T/X) (3M/OT k. (12.12)

For temperatures in the vicinity of the critical temperature, one can make
use of the power law dependence of Cy, X and. M on (T, —T), to obtain the
incquality

(Te—T)* > A(T.~Ty®+v-2, (12.13)

where A is a function independent of (7,— T') and «’ and y’ refer to the critical
exponents for Cy and X for T’ < T, since the critical point is approached
from below. For infinitesimal values of (7,— T, the inequality can only be
maintained if

« +284+¢ =2 (12.14)
resulting in the Rushbrooke inequality. The Griffith inequality, o’ + B(1
+ &) = 2, can be derived following similar thermodynamic arguments. The
scaling hypothesis allows one to make a stronger statement and replace
these inequalities with the corresponding equalities. Furthermore, the criti-
cal exponents can be shown to be the same regardless of whether one is
above or below the critical point.

12.3 SCALING HYPOTHESIS

The scaling hypothesis is a conjecture which proposes that in the neighbour-
hood of a critical point, the singular parts of the appropriate thermodyna-
mic functions should transform homogeneously under a change of scale. If
A is an arbitrary scale change, then a generalized homogeneous function

satisfies the following relation:
JOx, Wexy, oo, AFX,) = NMF(X Xy, .y Xa). (12.15)

This scaling hypothesis leads to relationships among the critical expo-
nents, and also leads to predictions about the equation of state.

The physical ideas which make the scaling hypothesis plausible are most
easily visualized in the framework of correlation function for the order
paramcter, rather than in terms of macroscopic thermodynamic quantities,
such as specific heat or magnetization. Scattering experiments vyield direct
information on the Fourier transfrom of the correlation function in the
form of the square of the amplitudes of a Fourier mode with wavenumber
k, where hk is the change in momentum on scattering of the probe beam of
neutrons or X-rays. The singular behaviour exhibited by both macroscopic
thermodynamic ‘quantities and the correlation function in the vicinity of the
critical point have their common origin in the critical fluctuations and the
fluctuation-dissipation theorem relates the correlation function to the
macrscopic thermodynamic responsé variables. '
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For illustrative purposes, consider a magnetic system in which the fine
scale structural detail have been averaged out since they are not significant
for the description of critical behaviour. The magnetization vector is consi-
dered as a vector magnetization field M(x). In general, one defines at every
point x of a d-dimensional space a field variable M(x) having n components.
If the system Hamiltonian in the absence of an external field is H, the
application of a weak external magnetic field H, introduces the perturba-

tion —H, I dxM(x) and the Hamiltonian becomes H = H.,—H.I dx M(x).
The ensemble average magnetization is given by

<MD —_—21— 1}2‘e Idx M(x) exp (—e/ksT), (12.16)

where Z is the partition function and kp the Boltzmann constant. The
magnetic susceptibility X=0{M D>/oH. is easily obtained as

x= I?;—T_[ dx {{ (M) —CM(%) D) (M(0)— M(0)3))} = F‘;T‘j'rw(x) dx.
(12.17)

Use has been made of translational invariance property required for
passage to the thermodynamic limit of infinite system volume, leading to
the independence of the correlation function on the choice of origin. Experi-
mentally I'ypm(k), the Fourier transform of T'a(x), is observed in static
scattering experiments. I'y,,(k) is peaked strongly about k£ = 0 and diverges
at T, as

Tana(k) ~ k= ' (12.18)
where 7 is the same critical exponent as appears in (12.4) and the extra fac-
tor of d, the spatial dimension, follows from the dimension involved in
Fourier transformation.

The fluctuation-dissipation theorem result can be modified by replacing

T'uae(x) by its Fourier representation I'ap(x) = I T'arm(k) e**dk, leading to
the expression for the susceptibility '
1
x = ,; ” dx d Tarme(k) et
~or J Tan() 3(K) dk = EA@&)— (12.19)

The width Ak of the peak in I'y.(k) around k = 0 is a measure of the cor-
relation length & ~ 1/Ak, where £ is the average characteristic length of a--
region of correlated magnetization,

Applying the scaling hypothesis to the function I'p(k) results in

Trm(Vk) = MTae(k). (12.20)
With no loss in generality, this can be expressed as '
Tasa() = MTagn(k). - (2.2
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Equating the arbitrary scale parameter A to £, and noting that the
_critical behaviour of £ in terms of the reduced-temperature variable
v = | T'—T,|/T, can be written as £ ~ <+, we have
Trm(Ek) = ETam(k) = vVTppa(k). (12.22)
The critical exponent y associated with x allows us to relate y to vz as
follows:

x o D) — oy — oty ) (12.23)
which in turn requires that
) z =—vlv. : (12.24)
Using the k-dependence of T'ym(k) ~ k%1, we find from (12.8)
Tase(EK) = -7 k2, (12.25)
so that the exponents of £ and k are equal, which requires that
h=2—y (12.26)

resulting in the Fisher scaling law.

The scaling relations for the critical exponents o, B, 3, v and v, can be
obtained from the scaling of the Gibbs free energy G expressed as a func-
tion of H, the external magnetic fleld, and + = (I"'~T,)/T,, the reduced tem-
perature. The thermodynamic relations for obtaining #f, X, and Cy from G
are M =—(8G/3H),, X =—(0*G[oH?),, and -Cy = (1/T,) (0°G/9<%)5. The
requirement that G be a generalized homogeneous function can be expres-
sed by the condition .
AG(H, 7) = GOH, ¥n), (12.27)

which, in turn, leads to the following scaling for M, X and Cg:
AM(H, ©) = MM(H, 37), (12.28a)
M(H, ©) = A¥x(A2H, N1), ’ (12.28b)
ACu(H, 7) = A%Cg(AH, 3). (12.28¢c)

If, in (12.28a), the arbitrary scale parameter is chosen so that A¥=—(] %),
and H is set equal to zero, we get

M(0, 7) = (—7)-as M(O, 1) = (—1)* M(0, 1),
which allows us to assert that
- B = (1-a)/b. (12.29)

However, by choosnng A% = 1/H in (12.28a), and settmg = to zero, one ob-
tains

M(H, 0) = H@-9)a M(1, 0) = H'® M(1, 0),
and consequently can assert that : :
3 = a/(1—a). ' (12.30)
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If, in (12.28b), the scale parameter is chosen so that A6 = 1/r, and H =0,

one obtains
X0, ) = <(~2)6 (0, 1) = =~ X(0, 1),

and .
¥ = (2a—1)/b. ' : (12.31)

Finally, choosing A% = 1/z and A = 0 in (12.28c) results in
Cu(0, 7)-%)a Cy(0, 1) = 7= CH(O l).
from which we deduce that
o = (2b 1)/b. (12.32)
Oombmmg (12.29), (12.30), and (12.31), results in the Widom equality for-

critical exponents:
| y = B@E-1). (12.33)

Combining (12.29), (12.31) and (12. 32) resuits in the Rushbrooke equality
for critical exponents:
«+2B+y=2 (12.34)

The arguments given above can be applied, when appropriate, to" both
T>T,ahd T < T, and it can easily be shown that the critical exponents

must be the same for+ > Oand v < 0.
Solving (12.29) and (12.30) for a and b, we can write (12.28a) as

M(H, <) = 32 M\H, Mor) = A-11+0 NI, \VEH 7). (12.35)
Choosing the value of A so that A/BA+8) = 1/ | = |, we obtain

M(H, 7) = | = |f M[(H | =], 1], (12.36)
which leads to the form of the equation of state:
M|~ |f = fi (H] | = |P), (12.37)

where the function fi. (H/ | = |**) is different for * > O and © < 0. If M is
scaled in terms of H/® and  is scaled in terms of HY®, then M = M/H3

can be plotted as a function of ¢ = t/H%# and leads to a single function
valid for all ~. Experimental results obtained on many systéms have been
found to obey the equation of state predicted by these scaling requirements.
Unlike the three other scaling laws, the Josephson scaling law involves
d, the dimensionality of the space. Since we are dealing with an inflnite
system, the G function we have used is really the Gibbs function per unit
volume and as such entails a dimensional factor of 1/L9, where L is the
length unit. In the critical region, the proper length scale is £, so that. the
density dimension of G is given by 1/&4, Recalling the relation Cg = (1/T,)
(9%G/0+%)g and making use of (12.5) and (12.6), we find
T no A[Ed ~ A7, (12.38)

and as a consequence, obtain the Josephson scaling relation
vd = 2—a. (12.39)



244 STATISTICAL MECHANICS

The scaling hypothesis can be clarified through the use of the ideas of
scale transformation and dimensional analysis. The idea is that in the criti-
cal region, the significant length is the correlation length £, however, this
length increases as 1~ as we approach the critical point. We assume that
the basic physics remains the same as £ changes, provided we transform the
length scale accordingly. If we were to replace our standard measuring rod
with one of twice the length, a distance interval would be halved in terms
of the new unit of measurement. If L’ is the length measured after the scale
is transformed by a factor s, we find L' = L/s, for an-original length L.
Generalizing this idea, we introduce scale dimension 2g, associated with the
scale transformation of some quantity Q according to

0 = ShoQ. (12.40)
For example, the volume element in 4 dimensional space transforms as
(L')? = (L/s)? = S-¢ L3 and has scale dimension of —d. The scale dimen-
sion of the Gibbs free energy density is d, since it contains the reciprocal
of the d-dimensional volume element. From (12.18), the scale dimension of
the correlation function I'ypu(X), Agis (d—2 + %), from which it follows
that )y, the scale dimension of the parameter is (d—2 + )/2. Since M =
—(0G/oH),., the scale dimension of H, Ay is (d + 2—m)/2. Similarly, dimen-
sional analysis and the thermodynamic relation X == —((62G)/(0H?)), leads
to the dimension Ay = n—2. Once the scale dimension of a quantity is
known, the dependence of « follows from ther dependence of £. For G,
which varies as 1/L4, we get the © dependence of £-4 as +¥4, when we adjust
our scale according to &, Similarly, the order parameter M varies as
§—d-24m)i2 Jeading to a + dependence: t¥(4-2+"2, The critical exponent
associated with the order parameter satisfies the relation p = v(d—2 4 »)/2.
Continuing in this fashion, we can recover the scaling laws derived pre-
viously.

The predictions of the scaling hypothesis are in excellent agreement with
experimental results, taking into consideration both the crudeness of the
assumptions and the experimental difficulties associated with measurements
in the critical region. Although the scaling hypothesis is not a proper
theory, any proper theory must predict the scaling relations and give a satis-
factory basis for understanding them,

124 THEORY OF CRITICAL PHENOMENA

Initial efforts to account for observed phase transitions and critical pheno-
mena centred on developing phenomenological models which, when fitted
with appropriate choices of parameters, explained classes of phase transi-
tions over a range of physical parameter space. Perhaps the best known
example of this kind of model is the Van der Waals equation of state which
describes, when properly interpreted, the liquid-gas phase transition as well
as the critical point, observed for systems of real gases. With the develop-
ment of statistical mechanics emphasis shifted to describing phase transi-
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tions occurring in a many-body system, such as an imperfect gas, by calcul-
ating the partition function for the system when employing reasonable
physical functiohs for the two-body intermolecular potential energy of the
particular system involved. Although some degree of success has been
achieved in describing the deviation from perfect gas behaviour in terms of
the so-called virial expansions, no demonstrations Jf phase transitions have
been forthcoming based on such calculations. The problem involves more
than just calculational difficulties. From a general point of view, a satis-
factory of critical phenomena must account for the observed non-analytic
behaviour at T = T, and should predict the observed values of the critical
exponents as well as the equation of state in the critical region. The origin
of the already noted singular behaviour at the critical point is puzzling since
the partition function for a finite system, calculated on the basis of physi-
cally reasonable Hamiltonians is a finite sum of analytic functions and thus
itself analytic and cannot yield the observed non-analytic behaviour. Some
insight into the problem was given by Lee and Yang who considered the
grand canonical partition function, Q, for a finite system such as an imper-
fect gas with volume ¥, with N < Ny« (since for a fixed volume ¥, the
hard sphere character of the molecules limits the maximum number of
molecules),
© Nmax
Q= 3 2 NZy
N

where n, = er/*5T, is the activity, and Zy is the IV particle partition func-
tion. From elementary considerations it is clear that the appearance of
singularitiesin thermodynamic quantities requires the presence of singular-
ities in either Q or In Q; however, since Q is a polynomial in =, with positive
coeflicients, it has no singularities for any finite, real or complex values of
14, and no zeros on the positive real v, semiaxis, the physical domain of ;.
For this reason, the only possible explanation for the occurrence of phase
transitions associated with singular behaviour lies in the assumption that in
passing to the thermodynamic limit (N - oo, ¥ — oo, but N/V = n re-
maining finite), the zeros of the grand canonical partition function’ coalesce
to form sharp lines in the complex n, plane-and the edge of these lines touch
the real 7, axis at 74, a point in parameter space at which the phase transi-
tion occurs. The character of the phase transition is related to the density of
the zeros along the locus of zeros as the real axis is approached and second
order phase transitions, associated with critical phenomena, have a vanish-
ing density of zeros as the axis is approached with an isolated root on the axis.
Although the Lee-Yang approach indicates how non-analytic behaviour can
appear, it does not provide a practical frame work for investigating specific
phase transition problems, since it is generally easier to evaluate the partition
function than it is to trace the behaviour of its zeros in the complex plane in
the thermodynamic limit.

Important theoretical results on the theory of phase transitions have
been obtained by studying model systems with Hamiltonian$ permitting
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either exact evaluation, or reasonably accurate numerical calculation of the
partition function and the resulting thermodynamics of the system. For
example, a Hamiltonian describing a system of quantized spins arrayed on
a d-dimensional lattice, with adjacent spins coupled by an exchange mter-
action forms the basis of the Heisenberg model. In general,

E= 3 3 < of of, ) (12.4D

: ] a
where ¢ specifies the strength of the exchange interaction, i and j label the
interacting lattice sites and « labels the various components of the spin
vector o. The-Ising model follows by assuming

G:_; -+ 615 = 0, Ef] = 68/, 1+1s (1242)
while a model called X-Y model assumes
=06 =¢€; =€ 4y (12.43)

Studies of critical phenomena based on both Heisenberg and Ising models
have been seminal in the field, yielding results which support the non-
integral values for critical exponents as suggested by experiments and exhi-
biting the insensitivity of critical exponent values to certain details of the
model, supporting the ideas of universality, and the sensitivity of critical
phenomena to the value of n, the number of components of the spin vector,
which serves as the order parameter, and d the dimension of the space
covered by the lattice, in agreement with observation.

12.5 MEAN FIELD THEORY

The easily solved many-body problems of physics are those in which a
coordinate transformation allows the uncoupling of the various degrees of
freedom and the system reduces to N independent one-body problems which
are generally immediately soluble. The reduction of motion of a lattice of
coupled particles to a system of uncoupled normal modes is a familiar ex-
ample of the procedure. Often the coordinate transformation fails to com-
pletely uncouple the new degrees of freedom, but results in weak couplings
whose effects may be incorporated by perturbative techniques.

Another approach to the reduction of the many-body problem to a soluble
form involves treating each particle as moving in a force field which is the
ensemble average of the fields seen by each of the individual particles. The
N body system is reduced to a system of N non-interacting particles, each
moving in the same force field, the so-called mean field. Landau developed
a mean field theory which contained the elements necessary for the descrip-
tion of critical behaviour. Although this theory is correct only in some limited
cases it serves as a general model for what is called classical behaviour and
yeilds results which are equivalent to those obtained from a variety of
models developed to describe specific physical system embodying critical
behaviour. )

The Landau theory was couched in the language of magnetic systems
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and assumes that for the description of critical phenomena details such as
the magnitude of the spins, their geometric array and the range of their
interaction are irrelevant. The model employs an n-component magnetization
field variable M(x) distributed continuously at points x spanning a d-dimen-
sional space. Since the energy of a state of the system is a function of M(x),
it is convenient to integrate over all configurations of gM(x) rather than
summing over the states of the system in evaluating the partmon seen.
Defining W{M(x)} as the density of states corresponding to a given configu-
ration M(x), the canonical partition function can be written as

— [ ame) wime) exp [~ EMEx T (12.44)

Introducting the entropy S = k In W{M(x)}, the partition function can be
expressed in the local free energy Fr{M(x)} as .

z = [ M) exp (— f FL{M(x)) dx/kgT)‘ (12.45)

The system free energy F{M(x)} = E{(M(x)}—T In W{M(x)} is given by the
volume integral of the local free energy. Landau assumed that the principal
coatributions to Z came from a narrow range of M(x), the particular values
of M(x) being those which minimized Fy. The integral could then be replaced
by

Z = [ ab(s) SLM )~ M) exp (— [Fi 2} i),

(12.46)
where the field values My(x), were those which minimized the function
Fi{M(x)}. In the critical region Fr was assumed to be an analytic function of
M(x), containing only even powers of M since in the absence of an external
field the system is unchanged when M(x) is change to —M(x). The Landau-
Ginzburg form for Fy, is

F = >: {A M) + g Tute +c 3 (gM') } (12.47)

Because the gradleqt term is posmve definite and the system is specially
homogeneous, the minimum of F will occur for M(x) = M independent of
x, and is found by minimizing S: {; M} + gM, } requiring g M, = Qand

:;;" > 0. These conditions lead to the equations

M{A + BM}?) = 0, (12.48)

A+ 3BM; > 0. (12.49)

Equation (12.48) has two solutions M, = 0 and M; = 4/ —A/B, the first
root associated with the paramagnetic state, © < 0. Thermodynamicstability

requirements dictate that B > 0, otherwise M —=—o0 would minimize Fi.
_From (12.49) it is clear that for the paramagnetic root (M, = 0) 4 must be
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positive, while, for the ferromagnetic state 4 must be negative. It follows that
at the critical point 4 = 0. Landau assumed that 4 and B were analytic
functions of temperatnre so that in the critical region, the leading terms in
the expansion are _

A = (04{37)yt +..., B = B0)+.... (12.50)
It is interesting to note that the paramagnetic root M = 0, leads to a d*F/
M} < 0, if * < 0, so the paramagnetic state is unstable for T < T. Thisis
in contrast to the behaviour of phases for a first order phase transition where
the phases are metastable on crossing the phase transition boundary line. 1den-
tifying M; as an order parameter, the critical exponent Bis found to be 1/2,
since

M; = v/ =A[B = +/(34[3v)[B(0) (—)!2. (12.51)

To complete the thermodynamic description of the system, the response

to an external magnetic field H must be included. From thermodynamics
H; = 6F/8M, and

H, = Mj4 + BM}]. (12.52)

The scalaf magnetic susceptibility x = (aM,/aH,),,'_,o in the critical region can

be calculated from OH;/0M; = (A + BM}) + 2BM} = A + 3BM}. For
v <0, My =+ —A;B, y"! =—2A and while fort > 0, M; =0, x~! = 4.
The behaviour of the susceptibility around the critical point is

) (04/9)g, = T > 0,
T) = ]
[2(04/3)(—7)* + < 0.
So the critical exponent v has the value —1. From (12.52) the variation
of magnetization at = = 0 as a function of external field is
H, = BM}, ' (12.54)
so the value of the critical exponent § = 3.
For = 5= 0, (12.52) can be expressed as

(12.53)

}.\H,/Mf = B(0) + (04/07)yv/M?. (12.55)
Using the values critical exponents § and 8, gives
HIM® = B(0) + (3A[d<)yc/MF = f(s/ M), (12.56)

the scaling form of the equation of state.

The specific heat, calculated from Cy = (1/T.) (8*°F/at%)y, vanishes
above the critical point, while for v < 0 it is constant. Thus the critical
exponent @ = 0 both above and below the critical point, however, there is
a discontinuity in the value of the specific heat at the critical point, Finally,
the critical behaviour of the correlation function can be obtained by exam-
ining the spatial magnetization response to a non-uniform external magne-
tic field, H(x) = Hg3? (x). We consider only a one component M field and
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neglect the M* term in Fy, retain the gradeint term and add the term —H
(x) M (x): The condition for the minimum of

F = [d3% {ZiMz x)+C(VMX)?—H(x) M(x)}, (12.57)
follows from the Euler-Lagrange equation
—CV3M (x) + AM (x) = H (x), (12.58)

which for the delta function H(x) field reduces to the equation for the
Green'’s function for the Helmholz equation, with the well known solution

M (x) = De=VAixi[| x|, (12.59)

which gives the correlation length £ = 1/4/4 and the critical exponent,
v = 1/2,

12,6 THE RENORMALIZATION-GROUP THEORY OF CRITICAL
PHENOMENA :

The heart of the difficulty in treating problems dealing with critical pheno-
mena lies in the fact that the problems involve a large number of degrees
of freedom with no clear-cut procedure available for decoupling them in a
systematic way, Stated another way: the increase without limit of the
correlation'length £, as T approaches 7, means that elementary parts of the
system are coupled over distances of the order of &, enclosing volumes con-
taining many particles and so requiring the taking into account of more than
two body interactions. The renormalization group technique establishes a
correspondence between systems having different correlation lengths. Through
repeated use of the transformations generated by the renormalization group
which change the initial system to an equivalent system having a smaller corre-
lation length, the effective correlation length is reduced to a value where
methods which consider only pair interactions again can be used allowing the
problem to be solved by more or less standard methods. Once the problem is
solved for £ ~ 1, the correspondences can be followed in reverse to yield the
solution of the original problem. The renormalization-group technique provi-
des a systematic way of reducing the number of degrees of fresdom of the
system, the reduction resulting from scale changes which in turn reduce the
correlation length. Consider as an illustration a two-dimensional square
Ising lattice of spins with coupling constant K = ¢/kp7, and lattice spacing
a. The first step consists in grouping the individual spins into cells contain-
ing blocks of spins and to consider the Ising lattice constructed from these
block cells, treating each cell as an equivalent spin. The coupling constant
K’ between the equivalent cells is redefined by a renormalization transform-
ation so that the form of the partition function is unchanged. As a result
of this coarse graining of the lattice, the correlation length is reduced, along
with the number of degrees of freedom of the system. Such a renormaliza-
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tion transformation can be repeated, resulting in further reduction in scale
and yielding in turn a set of recursion relations, relating the coupling cons-
tants at different scales. The key feauture for the occurrence of critical
behaviour is the existence of fixed points associated with these recursion
relations, that is, specific points which are unchanged under the renormal-
ization transformation. When the renormalization transformation is viewed
as a symmetry operation, the fixed points represent invariants under the
symmetry operation of dilatation. Starting with the symmetry at the fixed
points allows for a simple treatment in the region close to fixed a, the point
where the symmetry is broken but still approximately valid. This takes the
form of a scale dilatation according to some power law.

A geometric picture can be constructed in which the state of the system
is represented by a point in multidimensional parameter space, with para-
meter such as temperature, magnitude of applied fields, and strength of in-
teraction between spins. The locus of the system point as temperature alone
is varied is called the physical line. This line crosses orthogonally a sequ-
ence of surfaces, on each of which the correlation length & is constant, the
value of £ increases as T approaches 7}, and the surface at T; correspond-
ing to £ = oo is called the critical surface. Applying the renormalization-
group transformation to any point on the physical line generates a trajec-
tory which may first approach the critical surface, but after repeated appli-
cations veers away towards regions of low &. The system states along these
trajectories generated by the renormalization group in general, have para-
meters differing from those on the physical line, from which the trajectory
started. From their definition, fixed points, which are unchanged by the
renormalization-group transformation, must lie on surface with either § =0
or £ = o0, &' = §/s =§ the only sulutions for £’ = &/s = E, for arbitrary s. In
particular, the critical points are associated with fixed points in the surface

= ¢0.

The fixed points which lie on the critical surface are located at either a
local maximum, a local minimum, or a saddle point, and these in turn give
rise to different types of critical behaviour. The fixed point which lies at a local
minimum on the critical surface corresponds to an ordinary critical point
while saddle points are associated with tricritical points. In the neighborhood
of a fixed point, it is possible to linearize and diagonalize the renormalization
transformation and use the eigenfunctions to construct scaling variables, a
function of system parameters that only changes in scale under the applica-
tion renormalization-group transformation. Associated with a scaling vari-
able is an anomalous dimension y, so that under scale change s, the scaling
variable is changed by a factor s”. If the anomalous dimension for a given
scaling variable is positive, a trajectory along a direction in parameter
space associated with the eigenvector linked to that scaling variable will
diverge from the fixed point under the application of the renormalization-
group transformation and the corresponding scaling field is said to be
relevant, If the anomalous dimension is negative, a trajectory along an axis
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defined by that scaling field will be driven toward the fixed point by the
renormalization group, and the scaling variable is said to be irrelevant. The
critical behaviour associated with each fixed point is determined by the
local scaling variables and their anomalous dimensions.

The point at which the physical line intersects the critical surface is not
necessarily a fixed point, however, the renormalization-group trajectory
issuing from this point is restricted to remaining on the critical surface.
Depending on the anomalous dimension of the appropriate scaling fields
associated with fixed points in the neighborhood of this intersection, the
trajectory will be drawn to or repelled away from the fixed point. From
this simple picture, it is possible to visualize the origin of the concepts of
scaling and universality.

‘ PROBLEMS
12.1 If Cpoc (T — T.)~> then show thata < 1.

[Hint: I Cp dT is always finite.]

12.2 If not Cp, but 8Cp/oT — co, then show that —1 < < 0.
12.3 For (T - T,) —+ 0, more accurately,

. dP, [V
Cr = T35 (57),+ @

) (), L
dT)r =~ \oP)rdT " T.apP’
where a and b are constants. If Cp oc (T — T,)~ tends to co with

a > 0, then show that 9Cy /0T | T — T, [-(1-,
[Hint: Cy ~a — b — b*C5p.]



APPENDICES

I. PROBABILITY

Concept of Probability

Consider a molecule 4 moving chaotically inside a box. A random event is
defined to be a phenomenon that in an experimental set up for its observation
either occurs or does not occur. For example, at any given instant of time,
the finding of 4 into the volume element AV selected inside the box isaran-
dom event. An experiment involving the observation of a random event is
called a trial,

The probability of a random event is given by the ratio of the number of
trials # at which the given event occurred to the total number of trials N,
provided that N is large enough. If P(4) is the probability that the event 4
occurs, then

P(4) = lim (n/N).

Mutually Exclusive Events

Two events are mutually exclusive if the happening of one excludes the possi-

bility of happening of the other. For example, the event 1 that at a given
instant the molecule A will be in AV, and the event 2 that at the same instant

it will be in AV, are mutually exclusive if the two volume elements do not

intersect. The probability of occurring of one of two mutually exclusive

events equals the sum of the probabilities of occurring of each of them.

Independent Events
Two events are independent if the happening of one of them does not affect
the probability of happening of the other one. The probability of the joint
happening of independent events equals the product of the probabilities of
each of them. ) -

For example, consider a rarefied gas. Suppose on n trials the molecule
A isfound n, times in the volume AV, and the molecule B is found n, times
in the volume AV, that is,
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P(4) = nfn, P (B) = nyn.
Among all the traials n, in which 4 got in AV, there would be some in
which B also gotinto AV,. Their number is n, (n,/n). Therefore, the proba-
bility of the joint happening of the events 4 and B is

=P (-2 ().

n, (n,/n) n n,
P (4B) = n.on
Mean Value
If in a total of N observations on a system we find that n, observations give
a value Ry, ng a value Ry, etc., for a physical quantity of interest R, then
he mean value R of R is defined as

R=M‘R| + n,R, + ... =2",R' - 2 nR,
n+n, + ... 3ny N

My, N
=3 R+ 3 R+

= PR, + PRy + ... = ZPR. )]

Permutations and Combinations

(i) The number of possible psrmutations of n distinct (distinguishable)
objects is n!

Think of » empty positions in a straight line. We have n choices of an
object to put into the first position, z— I choices from the remaining objects
to put into the second position, and so on. The total number of ways there-
fore n (n—1) (n—2) ...2 = n!

(i) We wish to arrange n objects in r groups, such thét there are n,

objects in the first group, n, in the second group, et¢., so that £ n, =n. We
iml

are not concerned with the order of the objects within the various groups.
For the first group the number of ways is n (n—1) ... (n—n, + 1)/n,!,
where the denominator gives the number of ways the objects could be arran-
ged in the group. For the second group the n, objects can be selected out
of the remaining N—n, objects in (n—n,) (n—m —1)..An—n;—ny + 1)/n,!
ways, etc. Therefore, multiplying these numbers we get the totdl number of
different permutations as
nl

M= ny'nyl.n, 1’ . : @
(iii) The number of permutations of n distincts objects taken r at a time,
denoted by P, is given by
P, = n(n—1)...n—r + 1)

(n=n) (n—r—1)...2.1

= n—Den—r + DX G
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n!
n-—-rt’

Note that #P, = nl.

(iv) If order is of no importance, then we have a cambination rather
than a permutation. The basic formula is

Total number of combinations X Number of permutations in each com-
bination = Total number of permutations.

If °C, denotes the number of combinations of 7 objects taken r ata
time, without regard to the order in which they are selected, then

nCy. rl = P,

N

or

1 n!

G = Ty

“

Binomial Distribution

Consider N boxes each containing R red balls and B black balls, The prob-
ability of drawing a red ball from a box is r = R/(R + B), and the prob-
ability of drawing a black ball is b = B/(R+ B) = 1—r. The probability
of taking s red balls from a particular group of s boxes and N—s black
balls from the group of N—s other boxes is then rsh¥~s, There are N!/s!
(N—s)! ways of selecting s boxes out of N, without regard to the order in
which they are selected. Therefore, the total probability P(s, N) that s of
the balls will be red and N—s black, when one ball is take;n from each box is

NI _
P(S.N)'—:W_TS)—!- s by-s, ®)
This is called the binomial distribution because we can use the binomial
expansion to prove 2 P(s, N) = 1,

PR = LB = =1 (6)

N NN
2PN =2 rw—sr

II. STIRLING APPROXIMATION

We have

n
Jlnxdx:[xlnx—x]n=nlnn-—n+l. 1)
. 1

1 .
If we plot (Fig; IL1) the curve y = In x and draw ordinates to it for x = 2,
3, ..., n, then the sum of the areas of strips is approximately .

n2+ M3+ ..+ nn=In(1X2X3X...Xn) =Innl 2)

For large n, the error incurred in regarding the strips as rectangles can be
neglected, and sum (2) of the areas of rectangles can be equated to the arez
(1) of the curve itself,
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Inx
0 p il Ll el o
0 /I 2 3 n-1 n x
Fig. 1L1. _Plot of In x versus x.
innlc~nmna—n, or n!cz(nfe), &)

where 1 on the right hand side of (1) has been neglected in comparison to
n. This is Stirling’ s approximation in its simple form. The approximation is
fairly satisfactory. For example, for N = 100, we have In N!= 3637, and
- Nln N—N = 360.5. _ :

If n is a positive integer,
2 ’ N
[ et at = nr—1)..2.0. < 1. @
0

In the integrand F = t"e~ for large n, 1" is a rapidly increasing function of
t and e~ is a rapidly decreasing function of r. Hence F exhibits a sharp
. maximum for some value of ¢.
Put t = xn, so that

F = nnxne—ra ,
= n"e7" exp (n—nx + In x")
= n"e~" exp [—n(x—1—In x)]
= n"e" exp {~n[y—In(1 + ]},
where in the last step x = y + 1. Then using In (1 + y) ~ y~} y*+ ...,
Foe e exp (—ny?/2).
Thus F has a sharp maximum for y = 0 and

+a - +o :
nl o pr¥l o—n I exp (—ny%2) dy = nrt! e-n I exp (—nyY2) dy
-1 —00
= (2rn)'8 (n/e)". )
Inn! = ninn—n+% In (2zn)
~nlnn—n. (6)

“Forn =100, } In (2rn) = 3.2. Thus, (5) isa better approximation than(3)
The gamma function is given oy
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I(x) = I Pletd x>0 )
[ ]

Integration by parts gives I'(x) = (x—1) I'(x—1). From (7), I‘(l) =1,T}) =
w2, If x is a positive integer, I'(x) = (x—1)!. .

III. LAGRANGE METHOD

The maximum, or minimum, of some function f = f(x,, X,, ..., %) is given _
by the ordinary conditions of extremum

s, _
f = ,.21 7 35 =0, _ )

where the 3x; are the variations of the x’s. Since x; are arbitrary, each co-
efficient. of the 3x; must vanish

af =0, (for alli). ' @
If we have constraints on the x’s, such as _
(%3 Xgy 05 Fn) = 0, ®
or, a condition ‘ |

i—l
then the 3x; are no longer all mdependent being interrelated by (3). For
example, if we knew (#—1) of them, we can evaluate the nth from (4).

In the method of Lagrange, we multiply (4) by an undetermined para-
meter A and add the result to (1),

(L 2% )5y, =0 5)
f=1 (axl+ ) =" )
Here only (n— 1) of the 3x; are independent, for example, 3x, ... 8x,—,. But
we still have the value of A at our disposdl. We can choose it so asto elimi-
nate the coefficient of 3x,,

of og -

5. T M ax, = O (©)
This method of elimination can be used for any of the terms. We therefore
conclude that

af _qg_ : _
7 +2a5==0, forall i=1,. )]

In other words, after A has been introduced, (5) can be regarded as if all
the 8x; are mutually independent.
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IV. MATHEMATICAL RESULTS

{A) A frequently occurring sum is that of a geometric series

S=c+cf +eft+ ... + ofn. )
Multiply it by f,
fS=cf +cft + ... + of* + ofr, 2
so that
1—fo+1 3
S=cT5 (&)
If| f| < 1and n - oo, the series converges, because fr+l _». 0, Thus
¢
,./s = =7 )
4o

(B) We wish to evaluate I,(a) = I x" exp (—ax?) dx, a > 0.
o

Ia) = I exp (—ax?) dx = -i- I exp (—t) dt = 5+ 2a‘ 5 I exp(—r?)dt.
o 0 -
' ®
We can write
460 . ) ©
( J' exp (—1%) dt) = I exp (—x%) dx J exp (—)) dy
= j [ exp [—(x* + W dxdy. ()

Changing to polar coordinates (r, 6) over the (x, y) plane, dxdy = rdrdb,
the double integral (6) becomes :

21:1 exp (—r®) rdr = 2z I (=}) d [exp (—r?)]
0

-_n [exp (—'-r’)]: — (0;-1) NG

Thus :
I(a) = 2-1 (x/a)'3, ®)

-]

I(a) = I X exp (—adx?) dx = i":T[ etdt = 2-17 )]
0 0 )

1
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Differentiation of ,(a) with respect to a yields

d—’(’;"(:—) = I X" exp (—ax?) (— x%) dx = —I,44(a). (10)
o .
Application of this recurrence relation repeatedly to (a) and I,(a) gives
3...(n—1) 1 (m\22 _
L0 (Z) . n=24,6,.., a1
= 24... -1 '
) —.(2;——7').—(';'—1-_1—)17', n = 3, 5, 7,.... (12)
Thus
Ifa) = 27! (w/a)'/*, Li(a) = (2a),
I(a) = (da)* (xa)', Ij(a) = 2a®), a3
and so on.
Note that

-3

jx’/2 exp (—ax) dx = 2 J’ 2 exp (—at?) dt = (2a)7 (-u/a)ll’..

(14
(C) We can evaluate
[ x* dx B |
in an elementary way as follows. Since e~* < 1 in the range of integration,
1 e -
=1 == T (19
. s _
I= ij'e-"*dx—- H‘Jr’y’dv
LLJ} : ) A=l
—3d_63F 1 _6xr0s, an
nea Nt = Pry -

where we have used (I1.4), and numerically evaluated the rapidly conver-

* gent series,

To sum the series (17) in closed form, consider the Fourier series
) fx) = 2 apsinnx (18)
. ) . fram)
for the function

®/d, O<x<n=

) =_{ S ()

—nf4, —nr<x<O.
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Using
H . %, m=an,
Isinmxsinnxdx= {
e 0, m # n,
we get
0, n=2,4,6,...
QAp =
l/”a n= l’ 3' sl seoy

© .. sinnx
Z s, . M ,0<x<1¢.

Integrating (22) from O to x, in succession, we find
1

B

T

i* ="-L"E"m y (1—cos nx),
L] : X sin nx
§x’ =n=x,§,... ('72— T Tm )’

7 x3 1 .
[Ty x3 =n-l§5,... [ﬁ, - (1—cos nx)].
For x = =/2, (23) and (25) give

n? _ 1
-§- —n-l;a.ﬁ.... ;-'_'-,
w  xl? 1
1_92—_-8. aml, 3, 8, h— - u'-l,U,ﬁ,...;l_4
nt 1
‘ T n-l,;,l, e B .
or
m 1
[ TRY S
Using
1 1 =1
D R iad (AL
we finally get
o 1 1 ns 1
Ea=( .t ke J=% 1 5w
or
0 1 _ 7:4
u-lF— ﬁ).
Thus
@®
I= Ii"i =
—1715"

(20)

@

@2

23)
)

(25)

(26)

@n

(28

29

(30)
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=T =1, 1 i

°
V. VOLUME OF A HYPERSPHERE

Consider the integral

-]

I= I exp[—(4 + x3 +... x3)] dx, dx, ... dx,

=[ i exp (—x%) dx:r = w2,

X ]“ + 4J' Xdx _ 413

€2))

M

For the n-dimensional sphen"e of volume V,, the surface area can be written

as r+15,, Therefore, we also have
(-]
I = I exp (—r)r*-1S, dr

[}

T 1 n'

1 w2ys 7 .. L n
=3 S J exp ‘—t) t-2)/2 gy - 2 S,,I‘(2 y
where we have used (IL.4).

From (1) and 2)

sl! == &:"g'r
r(3)
. |
V.=j's,,xn-ldx=—’;—"f——m
o r(ee)

For a pesitive integer », (n—1)! = ['(n).
VI. USEFUL FUNCTIONS

Consider

cn . v b —
F@= 3 ==
where {(s) is. called the Riemann-zeta function.

2y

&)

@

®

2)



APPENDICES 261

If s is positive and not an integer,
E@ = et I(=9) + £ (—a)" “‘“—n}"—’;

Useful functions are
Fyjg(@) = 1.773 a—2/2-1.460 + 0.208x- 0.0128 a?—...,
Fyy(@) = —3.545 «1/3 4+ 2.612 + 1.460 «—0.104 «* + ...,

Fyy(a) = 2.363 a®2 + 1.342—-2.612 « —0.730 a® + 0.0347 «®—...

We can invert* the series
X = Fyg () = e + 2732 g=3x | 392 =30 .
to get :
et = x—27%2 5% | (2723733 XP—...
a~=—In x 4 2-3% x.—3 (2-4—-3-5/2) x% ..,

(©)

@
©)
®)
(U]

®

.

We can also calculate y/x = Fy,(«)/Fyo(«) by finding y = p(x). If we

try the power series

¥y = 2 arxF,
k

the coefficients can be obtained by Taylor’s theorem
_ 1 (d
H = kt (‘R‘) kmp
where dky}qx" can be derived from x(¢)) and y(«) by using
Bk dty _ d (d*y\ |(dx
dx*  da\dx*1 (du .

This yields an expansion of y = Fy,(«) in powers of x = Fyy(a),
y = x—2-503 x3_2(3-52_2~4) x3_
= x—0,17678 x2—0.00330 x3--...
A similar calculation gives -
x=y+ 2750y 4 231 -2-0) y* +...
=y + 0.17678 y* ++ 0.06580 »* ...
and putting this in (10) '

My = x( + ax + agx® + ax® + ...), then inverting it
x=p + by + by + by + ...)
=(x + ax® + a3 + )+ byxdagx® 4+ b33 4 ... +...
=x 4 (4 + 5% + (a5 + 2a,b; + b)x® + ...
Therefore
by = —ay, by = —ay=2aby, by = —ay—2b,a,—byd—3ayb,, etc.

(10)

an
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ch’ = 1—0.17678 y—0.02455 32 —0.01291 3*—... (12)
From (2)
1 1 .
1 1
{(52) =1 +§'ng +§'57; +...==1.342, v 14)

SI (Systeme Internatlonal) Base Units _

Length: meter (m); Time: second (s); Mass: kilogram (kg)
Temperature: Kelvin (K); Amount: mole (mol); Current: ampere (A)
Luminous intensity: candela (cd).

Useful St Derived Units

Force newton (N) - 1kgm/s?

Energy joule () 1kgm¥s?=INm
Pressurc pascal (Pa) 1 kg/m s? = 1N/m2
Power watt W) 1kgm?s® =1
Charge coulomb C 1As

Potential difference volt. V) 1kzgm?Asd =1AQ
Resistance ohm (Q) 1kgm?/A%s® =1V/A
Capacitance ' farad, (F) 1Ast/kgm?® =1C/V
Magnetic flux weber (Wb) 1kgm?As? <1Vs
Inductance henry () 1kg m?/s® A® = Wh/A
Some Prefixes for SI Units

10~? nano (n); 10~¢ micro () ; 10~3 milli (m)
10~2 centi (c); 10® kilo (k); 10° mega (M)
10° giga (G) :

Values in CGS and SI Units _
Value CGS SI

Velocity of light c 2.9979 10%°cm s=1 10° m s~
Charge . e 1.6022 —_ 10~ C

. ' 4.8033 1010 esu -
Planck constant ’ h 66262 107 erg s 10347
Atomic mass unit amu 1.6606 10-%g 10727 kg
Elcctron mass " m 9.1095 10-28g 10-31 kg

Bohr magneton B 92741 10~ erg G! 10-2 § 11
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1 electron volt eV 1.6022 1018 erp 10-10 3
eV/ke 8.0655 103 co? 105 m—1
eVik 1.1605X10*° K — - .

Boltzmann constant . k 1.3807 10710 erg K1 10-13 JR-1

Permittivity (free space) ¢, — 1 107/4nc®

Permeability (free space) 1, - 1 41 10~7

Molar gas constant R 8.3144 107 erg mol-! K-!  J mol-} K-1

Molar volume ideal gas 224138 102 em® mol-3 10~2 m3 mol-?

at 273.15 K, 1 atm )

Useful Conversion Factors

1A 10-8 cm

IN 105dm

17 107 erg = 107 dyn-cm = 0.2390 cal

lcal 4,184

1eV  1602%10-13 erg == 1.602 X 10~3? J=1.1605x10% K = 23,06 kcal mol~*
1kWh 3600J B
1 BTU 10553 _
1latm 760 mm Hg = 1.013X10° N m~2 = 1.103 X 10® dyn cm—% = 1.013 bar
v e= 1010 cycles s—i .

associated energy v = 4.14x10~0 eV

associated temperature hy/k = 0.48 K.

Physical Constants in Useful Forms

Loschmidt number 2.68719 X 10! molecules cm=3
Avogadro number (¥,) 6.022 X 1088 mol-1
Boltzmann constant (k) 1.381 X10-2% J K= 8.62 X 10~8 eV K~! =1 ¢V/11604.5 K
Gas constant (R) 8.314 ¥ mol-! K-1 = 1.99 cal mol-1 K~1
Molar volume at NTP  22.4 x 10® cm?® mol~?
(or STP)
Planck constant (%) 6.626x10~ J g
h = k2m) 6.582x10-32 MeV 8 == 1.055%10~% ergs
Electron mass 9.109534 X 1028 g = 0,511 MeV
Proton mass 938.28 MeV
Nuomerical Constants
% = 3.14159 w2 = 1,772
e = 271828 212 . 1.414
In 2 = 0.6931472 313 = 1.732

In 10 = 2,3025851

1012 « 3.162
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fluctuations 203 quantum 193
liquid-helium-3 130 steps 197
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