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PREFACE 

The idea to write this book is not totally mine. It belongs partly to 
Dr. Svetoslav D. Toschev, a colleague and friend of mine, with whom I 
worked together on the kinetics of electrochemical nucleation of metals. 
Unfortunately, his untimely death in 1971 prevented him to carry out this 
project. The idea to write such a book arose out of the long experience we 
had at the Institute of Physical Chemistry in the theories and experiments 
on nucleation, crystal growth and epitaxy. In fact the first paper on crystal 
growth was published in Bulgaria in as early as 1927 by Ivan Stranski, 
who introduced the concept of half-crystal position simultaneously with W. 
Kossel. This turned out to be the most important concept in nucleation 
and crystal growth. Using this concept Stranski considered, two years 
later, together with K. Kuleliev the stability of the first several monolayers 
deposited on a foreign substrate. This work served as a basis for the later 
treatment by Stranski and Krastanov of the mechanism of epitaxial growth 
of a monovalent ionic crystal on the surface of a bivalent ionic crystal. 
This system was chosen because of the easier evaluation of the interatomic 
forces at that time. Stranski and his coworkers were the first to realise 
that the thickness variation of the chemical potential in ultrathin epitaxial 
films determines the mechanism of growth. Now the mechanism of epitaxial 
growth by formation of several complete monolayers followed by the growth 
of isolated 3D islands named after Stranski and Krastanov is well known 
to all researchers involved in epitaxial growth. In fact the work of Stranski 
and Kuleliev was the first theoretical study of epitaxial growth. In the early 
thirties Stranski and Kaischew introduced the concept of mean separation 
work in order to describe the equilibrium of small three-dimensional and 
two-dimensional crystals with the parent phase. This allowed them to 
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describe the kinetics of crystal nucleation and 2D growth of perfect crystals 
in a quantitative way. Today these early papers are almost forgotten but 
they inspired further research in the field by many authors, like R. Becker 
and W. Doring, Max Volmer, W. K. Burton, N. Cabrera and F. C. Rank, 
and many others. 

I got the idea to write this book when I was reading a course on Nu- 
cleation, Crystal Growth and Epitaxy at the Institute of Microelectronics 
and Optoelectronics in Botevgrad, Bulgaria. I was surprised to find that so 
many people involved de facto in growth and characterization of advanced 
materials by CVD, LPE, MOCVD, MBE, etc. have no basic knowledge in 
crystal growth and epitaxy. Although they were good specialists in high 
vacuum, surface and bulk materids characterization, device construction, 
etc., they did not understand the elementary processes which form the 
basis of the fabrication of these devices. I was further convinced to write 
this book after I had read a similar course of lectures at  the University of 
Dresden a year later and after many discussions with colleagues of mine. 

There are many excellent monographs, treatises and review papers on 
different aspects of nucleation, crystal growth and epitaxy. Most of them 
are listed in the reference list. I would like to bring the reader’s attention to 
the monographs of Max Volmer, Kinetik der Phasenbildung, and Y .  Ftenkel, 
Kinetic Theory of Liquids. The only books which cover an appreciable part 
of the problems treated in this book are the monograph of A. A. Chernov 
in Vol. 3 of Modem Crystallography and The Theory of Ransfonnations an 
Metals and Alloys, 2nd edition, by J. W. Christian, which I read with great 
pleasure. All these books are, however, aimed more or less at researchers 
with some preliminary knowledge of the matter. It turned out that there 
was not a textbook which could give the basic knowledge on nucleation, 
crystal growth and epitaxy from a unified point of view and on a level 
accessible to graduate students or even undergraduate students who have 
just begun to do research. The reader will need some knowledge in ele- 
mentary crystallography and chemical thermodynamics. The mathematical 
description should not give trouble at all even to undergraduate students. 
In fact in all cases in which more complicated mathematical treatment is 
required, problems with lower dimensionality are considered instead. Thus 
the mathematical treatment is considerably simplified and the physicd 
meaning is easier to grasp. A typical case is the consideration of Herring’s 
formula. In some cases the use of some specific mathematical methods like 
the Euler equation in Chap. 1 and special functions like the Bessel functions 
and the elliptic integrals could not be avoided. However, the reader should 
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not accept them with “grief.” Any good textbook will be able to help the 
reader who is unfamiliar with the mathematical methods. All of the above 
is what determined the title of the book. 

The book is naturally divided into four chapters: Equilibrium, Nucle- 
ation, Crystal Growth and Epitaxial Growth. In the first chapter all the 
information necessary to understand the material in the remaining chapters 
is given. Thus the mean separation work which determines the equilibrium 
of a 2D island with the parent phase is defined in Chap. 1 and is used in 
Chap. 3 to derive an expression for the rate of propagation of curved steps. 
The second chapter deals with all the problems connected with nucleation. 
The only exception is the theory of one-dimensional nucleation which is 
included in Chap. 3 because it is intimately connected with the propagation 
of single height steps. The concept which unifies the whole presentation is 
that  of the separation work from a half-crystal (kink) position. One could 
think of it as the chemical potential of the particular crystal of a monolayer 
of the deposit (taken with negative sign). By using this concept it is shown 
that the only difference between crystal growth and epitaxial growth is of a 
thermodynamic nature. The chemical potential in ultrathin epitaxial films 
differs from that of the bulk crystal. The kinetics of growth of both single 
crystals and epitaxial films are one and the same. 

I did not discuss the text with any of my colleagues. That is why I take 
the sole responsibility for any misinterpretations or errors and I will be very 
grateful to anybody who detects them and brings them to my notice. On 
the other hand, I am extremely grateful to  V. Bostanov, A. Milchev, P. F. 
James, H. Bottner, T. Sakamoto and S. Balibar who gave me their kind 
permission to reproduce figures from their papers and supplied me with 
the corresponding photographs. I am also greatly indebted to  Professor 
D. D. Vvedensky from the Imperial College, London, for his kindness to 
grant me his permission to use the beautiful picture of a Monte Carlo 
simulation of Si(OO1) growth for the cover of the book. The book has been 
written at the Institute of Physical Chemistry of the Bulgarian Academy of 
Sciences with the only exception of Sec. 3.2.4, which deals with the growth 
of Si(OO1) vicinal surfaces by step flow. I decided to include this section in 
order to illustrate the propagation of single height steps by one-dimensional 
nucleation. This section was written during my stay at the Department of 
Materials Science and Engineering of the National Tsing Hua University 
in Hsinchu, Taiwan, Republic of China, where I was invited as a visiting 
professor. The final preparation of the manuscript was also carried out a t  
the National Tsing Hua University. I would like to express my sincere 
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gratitude to Professor L. J. Chen and the staff of the department for 
their kind hospitality and assistance. In this respect I would also like to 
acknowledge the financial support of the Science Council of the Republic 
of China. 

Ivan V. Markov 
Sofia, Bulgaria 
Hsinchu, Taiwan 
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CHAPTER 1 

CRYSTAL-AMBIENT PHASE EQUILIBRIUM 

1.1. Equilibrium of Infinitely Large Phases 

The equilibrium between two infinitely large phases a and P is determined 
by the equality of their chemical potentials p a  and pp.  The latter represent 
the derivatives of the Gibbs free energies with respect to the number of 
particles in the system at constant pressure P and temperature T , p  = 
(aG/bn)p ,~ ,  or, in other words, the work which has to be done in order to 
change the number of particles in the phase by unity. In the simplest case 
of a single component system we have 

The above equation mems that the pressures and the temperatures in 
both phases are equal. The requirement Pa = Pp = P is equivalent to the 
condition that the boundary dividing both phases is flat or, in other words, 
the phases are infinitely large. This question will be clarified in the next 
section where the equilibrium of phases with finite sizes will be considered. 

Let us assume now that the pressure and the temperature are infinites- 
imally changed in such a way that the two phases remain in equilibrium, 
i.e. 

P P + d P u = ~ l 7 + d P l 7  (1.2) 

It follows from (1.1) and (1.2) that 

1 



2 Crystal-Ambient Phase Equilibrium 

Recalling the properties of the Gibbs free energy (dG = -SdT + VdP) 
we can rewrite (1.3) in the form 

-S,dT + vadP = -s,dT + vpdP , ( 1-41 

where sa and sp are the molar entropies, and va and vp are the molar 
volumes of the two phases in equilibrium with each other. 

Rearranging (1.4) gives the well-known equation of Clapeyron: 

dP As Ah 
dT Av T A U ’  
- = - - -  - 

where A s  = s, - sp, Av = v, - vp, and Ah = h, - hp is the enthalpy of 
the corresponding phase transition. 

Let us consider first the case when the phase f l  is one of the condensed 
phases, say, the liquid phase, and the phase cy is the vapor phase. Then the 
enthalpy change Ah will be the enthalpy of evaporation Ah,, = h, - hi, 
and vi and v, will be the molar volumes of the liquid and the vapor phases, 
respectively. The enthalpy of evaporation is always positive and the molar 
volume of the vapor v, is usually much greater than that of the crystal v ~ .  
In other words, the slope dP/dT will be positive. We can neglect the molar 
volume of the liquid with respect to that of the vapor and assume that the 
vapor behaves as an ideal gas, i.e. P = RT/v,. Then &. (1.5) attains the 
form 

dln P Ah,, -=- 
dT RT2 ’ 

which is well known as the equation of Clapeyron-Clawizls. Replacing 
Ah,, with the enthalpy of sublimation Ahsub we obtain the equation which 
describes the crystal-vapor equilibrium. 

Assuming Ah,, (or Ahsub) does not depend on the temperature, 
Eq. (1.6) can be easily integrated to 

where PO is the equilibrium pressure at some temperature To. 
In the case of the crystal-melt equilibrium the enthalpy Ah is equal to 

the enthalpy of melting Ah, which is always positive and the equilibrium 
temperature is the melting point T,. 

As a result of the above considerations we can construct the phase 
diagram of our single component system in coordinates P and T (Fig. 1.1). 
The enthalpy of sublimation of crystals Ahsub is greater than the enthalpy 
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TEMPERATURE 

Fig, 1.1. Phase diagram of a single component system in P-T coordinates. 0 and 
0' denote the triple point and critical point, respectively. The vapor phase becomes 
rupcnatursted or undercooled with respect to the crystalline phase if one moves along 
the line AA' or AA". The liquid phase becomes undercooled with respect to the 
crystalline phase if one moves along the line BB". AP and AT are the supersaturation 
and undercooling. 

of evaporation Ah,, of liquid and hence the slope of the curve in the phase 
diagram giving the crystal-vapor equilibrium is greater than the slope of 
the curve of the liquid-vapor equilibrium. On the other hand, the molar 
volume VI of the liquid phase is usually greater than that of the crystal phase 
v, (with some very rare but important exceptions, for example, in the cases 
of water and bismuth), but the difference is small so that the slope dP/dT 
is great, in fact much greater than that of the other two cases, and is also 
positive with the exception of the case mentioned above. Thus the P-T 
space is divided into three parts. The crystal phase is thermodynamically 
favored a t  high pressures and low temperatures. The liquid phase is stable 
at high temperatures and high pressures and the vapor phase is stable at 
high temperatures and low pressures. Two phases are in equilibrium along 
the lines and the three phases are simultaneously in equilibrium at the 
so-called triple point 0. The liquid-vapor line terminates at the so-called 
critical point 0', beyond which the liquid phase does not exist any more 
because the surface energy of the liquid becomes equal to zero and the 
phase boundary between both phases disappears. 
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1.2. Supersaturation 

When moving along the dividing lines the corresponding phases are in 
equilibrium, i.e. If the pressure or the 
temperature is changed in such a way that we deviate from the lines of 
the phase equilibrium, one or the other phase becomes stable. This mean8 
that its chemical potential becomes smaller than the chemical potentids 
of the phases in the other regions. Any change of the temperature and/or 
pressure which results in a change of the region of stability leads in turn to 
transition from one phase to another. Thus a decrease of temperature or an 
increase of pressure leads to crystallization or liquefaction of the vapor; the 
decrease of temperature leads to solidification of liquid. Figure 1.2 shows 
the variation of the chemical potentials of the crystal and vapor phases 
with pressure at a constant temperature. The chemical potential of the 
vapor increases with pressure following a logarithmic law which corresponds 
to a shift along the line AA' in Fig. 1.1. At the same time the chemical 
potential of the crystal phase is a linear function of pressure, its slope being 
given by the molecular volume v,. Both curves intersect at the equilibrium 
pressure PO. At pressures smaller than Po the chemical potential of the 
crystal is greater than that of the vapor and the crystal should sublimate. 
In the opposite case P > Po, the vapor should crystallize. The difference 
of the chemical potentials, which is a function of the pressure, represents 
the thermodynamic driving force for crystallization to occur. It is called 
supersaturation and is defined as the difference of the chemical potentials 
Ap of the infinitely large mother and new phases at the particular values 
of pressure and temperature. In other words, we have (Fig. 1.2) 

Eq. (1.1) is strictly fulfilled. 

AP = pv(P) - pc(P) . (1.8) 
Bearing in mind Eq. (l.l), or pV(Po) = pC(Po),  we can rewrite Eq. (1.8) 

in the form 

For small deviations from equilibrium the above equation turns into 

P P P P 

Ap s? / $dP - / g d P  = /(vv - v,)dP Y / vvdP . 
Po Po Po Po 

'Ikeating the vapor as an ideal gas (v, = kT/P)  we obtain upon 
integration 
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PRESSURE 

Fig. 1.2. Dependence of the chemical potentials of the vapor, pv, and the crystal, pc, 
on pressure when one moves along the line AA' in Fig. 1.1. PO denotes the equilibrium 
pressure. 

P 
PO 

A p = k T l n - ,  

where PO is the equilibrium vapor pressure of the infinitely large crystal 
phase at the given temperature. 

Without going into details we can write an expression for the supersat- 
uration in the case of crystallization from solutions, when the solutions are 
considered as ideal, in the form 

C 
Ap = kTln - co ' 

(1.10) 

where C and CO are, respectively, the real and equilibrium concentrations 
of the solute. In fact a more rigorous treatment requires the consideration 
of multicomponent systems. For more details see Chernov [1984]. 

Figure 1.3 shows the variation of the chemical potentials of the crystal 
and liquid phases with temperature at a constant pressure (the line BB" 
in Fig. 1.1). The supersaturation which in this case is frequently called 
undercooling is again defined as the difference of the chemical potentials of 
the infinitely large liquid and crystal phases, p~ and pc, respectively, at a 
given temperature: 

ACL = PI(T) - p c ( T )  . (1.11) 
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Tm 
T E MPE RATURE 

Fig. 1.3. Dependence of the chemical potentials of the liquid phase, pi, and the crystal 
phase, per on temperature when one moves along the line BB” in Fig. 1.1. The melting 
point is denoted by T,. 

Following the same procedure as above we obtain 

Assuming the entropy of melting As, = SI - sc is independent of the 
temperature one obtains after integration 

(1.12) 

Obviously, Eq. (1.12) is also applicable to the case of crystallization of 
undercooled vapor after the enthalpy of melting is replaced by the enthalpy 
of sublimation (the line AA” in Fig. 1.1). 

Finally, in the particular case of electrocrystallization of metals the 
supersaturation is given by 

Ap = zeq , (1.13) 

where z denotes the valence of the neutralizing ions, e = 1.60219 x lO-”C, 
is the elementary electric charge and 7 = E - Eo is the so-called overuoltage 
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or overpotential given by the difference of the equilibrium potential Eo of 
the deposited metal in the solution and the electrical potential E applied 
from outside [Kaischew 1946/1947]. 

It was Max Volmer [1939] who introduced the term “Uberschreitung” or 
“step across” for both the supersaturation and the undercooling to denote 
the transition through the line of coexistence of the two phases. Thus, the 
difference of the chemical potentials of the infinitely large new and mother 
phases appears as a measure of deviation from the phase equilibrium and 
as the thermodynamic driving force for the phase transition to occur. 

1.3. Equilibrium of Finite Phases 
In the previous section we considered the equilibrium of two phases in 
a single component system assuming that the phases are sufficiently (or 
infinitely) large or, in other words, the phase boundary between them is 
flat. This is not obviously the case at the beginning of the process of phase 
transition which is of interest to us. Thus in the cases of transition from 
vapor to crystal, from vapor to liquid or from liquid to vapor phases, the 
process of formation of the new phase always goes through the formation 
of small crystallites, droplets or bubbles. In this section we will clarify 
two questions: (i) the mechanical equilibrium of small particles with their 
ambient phase or, in other words, the interrelation of the pressures in the 
two phases when the phase boundary is not flat, and (ii) the thermodynamic 
equilibrium of small particles or their equilibrium vapor pressure as a 
function of their size. In fact we will derive and interpret the equations 
of Laplace and Thomson-Gibbs. 

1.3.1. Equation of Laplace 

W e  consider a vessel with a constant volume V containing vapor with 
pressure P, and a liquid droplet with a radius r and an  inner pressure 
9, both at  one and the same constant temperature T. The condition for 
equilibrium is given by the minimum of the Helmholz free energy of the 
system F(V,  T): 

dF = -P,dV, - q d q  + ads = 0 , (1.14) 

where V, and V are the volumes of the vapor phase and the droplet, u 
is the surface tension of the liquid and S is the droplet surface area. The 
value of the surface tension G of the infinitely large liquid phase is usually 
taken. As V = V,+& = const and dV, = 4 6 ,  Eq. (1.14) can be rewritten 
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after rearrangement in the form 

Bearing in mind that S = 4nr2 and Vi = 4 7 r ~ ~ / 3 ,  

and the above equation turns into 

2u 
P, -P, = - , 

T 
(1.15) 

which is known as the Laplace equation. The latter states that the pressure 
in a small droplet is always higher than the pressure of the surrounding 
vapor. The difference 2 a / r  is called the Laplace or capillary pressure 
and is equal to zero when the phase boundary is flat (T --t 00). Then 
fi  = P, = P,, as stated in See. 1.1. Here the notation P, for the 
equilibrium pressure is used instead of PO to emphasize the fact that the 
dividing surface is flat, i.e. it has an infinite radius of curvature. 

The physical meaning of Eq. (1.15) becomes clearer if we derive it from 
balance of forces. The overall force exerted on the droplet from the outside 
is a sum of the force 47rr2PV exerted from the vapor phase and the force 
8nrn due to the surface tension. It is equal to the force due to the internal 
pressure 47rr2q, i.e. 

47rT2Pv -f- 87rTU = 4 7 r T 2 q  , 

and Eq. (1.15) results. Thus the Laplace pressure is clearly due to the 
surface tension of the small droplet. 

In the case of an arbitrary surface with principal radii of curvature TI  

and r z ,  Eq. (1.15) reads 

s - Pv = u (; + A) (1.16) 

1.3.2. Equation of Thomson-Gibbs 

In order to solve the problem of thermodynamic equilibrium we consider the 
same system as before at  constant pressure P and temperature T. In this 
case the variation of the Gibbs free energy G(P,T,n,,nl, S) of the system 
reads (dP = 0,dT = 0) 
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AG = p,dn, -t pldni+ udS = 0 , (1.17) 

where n, and ni are the numbers of moles in the vapor and liquid phases, 
respectively. 

When writing the expression for the Gibbs free energy we take for the 
chemical potentid of the atoms in the small droplet the value which is valid 
for the bulk phase and compensate the difference between the bulk liquid 
and the small droplet by the surface energy US. Besides, we again ascribe 
to the surface tension its bulk value. As the system is closed, n, + n1 = 
const and dn, + dnl = 0. Solving (1.17) together with dn, = -dni gives 

dS 
dni 

p, - pi = u- . 
With n1 = 4.rrr3/3v1 it turns into the famous equation of Thomon-Gibbs 

2aq 
cl" -PI = - T . (1.18) 

Comparing Eqs. (1.15) and (1.18) it becomes immediately clear that 
the product (8 - P,)K = n a p  is just equal to the work which is gained 
when a liquid droplet is formed from the unstable vapor phase or, in other 
words, when n = K/vr atoms or molecules are transferred from the vapor 
phase with higher chemical potential to the liquid phase with lower chemical 
potential [Gibbs 19281. 

As pi is the chemical potential of the bulk liquid phase the difference 
p,, - is just equal to the supersaturation Ap (see Eq. (1.9)) and 

(1.19) 

It follows that the equilibrium vapor pressure of a small liquid droplet 
with radius T is higher than that of the infinitely large liquid with a flat 
surface. The physical reason is easy to understand if we imagine that an 
atom on a curved convex surface is more weakly bound to the remaining 
atoms than in the case of an atom on a flat surface. 

Obviously, we have the opposite case when considering a vapor bubble 
with radius T in an overheated liquid. Following a similar procedure we 
find 

(1.20) 
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OROPLET RADIUS 

Fig. 1.4. Dependence of the equilibrium vapor pressures of a small liquid droplet (curve 
1, Eq. (1.19)) and in a vapor bubble in an overheated liquid (curve 2, Eq. (1.20)). POD 
denotes the equilibrium vapor pressure of the infinitely large liquid phase. 

The dependence of the equilibrium vapor pressure of a liquid droplet 
and of a gas bubble on their size is shown in Fig. 1.4. 

In order to  derive an analogous equation for a small crystallite we have 
to know its equilibrium shape. The latter is defined as the shape at which 
the crystal has a minimal surface energy at a given constant volume. For 
a liquid droplet the equilibrium shape is obviously a sphere. We shall now 
accept that Eq. (1.19) is valid for small crystallites with the only exception 
being that the radius of the droplet is replaced by the radius of the sphere 
inscribed in the crystallite. 

1.4. Equilibrium Shape of Crystals 

When considering the equilibrium of a small crystal with its ambient phase 
(vapor, solution or melt) there exists, obviously, a shape which is the most 
favorable from a thermodynamic point of view in the sense that the work 
of formation of such a crystal is the minimal one at the given crystal 
volume. The work of formation of a small crystal consists of two parts: 
a volume part (Pc - P ! ) K  = n(pv - pc) which is gained when transferring 
n atoms or molecules from the ambient (vapor) phase with higher chemical 
potential pv to the crystal phase with lower bulk chemical potential pc 
when the crystal phase is the stable one (pc < pv), and a surface part US 
which is spent to create a new phase-dividing surface. The volume part 
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depends obviously only on the volume of the crystal or on the number of 
the atoms transferred. At a constant volume the surface part depends only 
on the crystal shape. Then the condition for minimum of the Gibbs free 
energy change connected with the crystal formation at  a constant volume 
which determines the equilibrium shape is reduced to the condition for 
minimum of the surface energy. The equilibrium shape of a liquid droplet 
is evidently a sphere. The case of a crystal is more complicated as the latter 
is confined by crystal faces with different crystallographic orientations and, 
respectively, different specific surface energies. This means that the surface 
energy depends on the crystallographic orientation and in that sense it is 
anisotropic. 

In general there are three ways to create a new surface. In the first one 
two homogeneous phases are cut (or cleaved) into two parts each and then 
the different halves are put into contact. New surface can be formed also 
by the transfer of atoms from one phase to another forming convex (during 
growth) or concave (during evaporation or dissolution) form. Finally new 
surface can be created by stretching out an old one (by stretching out the 
bulk crystal). When two liquid phases are involved the above three methods 
do not differ. The work spent to create reversibly and isothermally a unit 
area of a new surface is called specific surface free energy. When a new 
surface is formed by the two first methods chemical bonds are broken. Thus 
the work for creation of a new surface or, in other words, the specific surface 
free energy, is equal as a first approximation to the sum of the energies of the 
broken bonds per unit area. When applying the third method the number 
of broken bonds remains unchanged but the surface area per dangling bond 
is changed, which in turn leads to  a change of the surface energy. 

It follows from the above that the more closely packed the given crystal 
face is the smaller is the density of the unsaturated bonds and thus its 
specific surface free energy. Let us consider for example the specific surface 
free energies of the faces of a crystal with a simple cubic lattice. The latter 
does not exist in nature, with the only exception being one of the crystal 
modifications of the metal polonium, but is widely used in theoretical 
considerations. It is well known under the name Kossel crystal. When 
determining the specific surface energy we will take into account the bonds 
between first, second and third nearest neighbor atoms. The procedure 
of the determination of o of the face (hlcl) involves the construction of a 
column in the shape of a prism with a form of the base which follows, 
for convenience, the symmetry of the crystal face, i.e. square for (loo), 
hexagonal for (111) faces of cubic crystals, etc. [Honnigmann 1958). Then 
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the energy necessary for the detachment of this column from the crystal 
face @hkl is divided by the doubled area Chkt of the contact because two 
surfaces are involved. Thus 5 h k [  = \Ehk[/2&kl.  Following Fig. 1.5(a), a 
column of atoms with a square base is detached from the (100) face of a 
Xossel crystal and two surfaces are created. The value of the surface energy 

where $2 and $3 are the works required to  break the bonds between 
the first, second and third neighbors, respectively, and b2 is the area per 
atom, b being the interatomic distance. 

Fig. 1.5. For the determination of the specific surface energies Ohkl of the faces (a) (loo) 
and (b) (110) of a crystal with simple cubic lattice. 

For the rombohedral face (110) (see Fig. 1.5(b)) the column has a 
rectangular base and 

The shortest first neighbor bonds have the greatest contribution to the 
energy. The energies of the second neighbor bonds are probably not greater 
than 10% of the energies of the first neighbor bonds for metallic and covalent 
bonds. The contribution of the third neighbor bonds could be neglected. 
It follows from above that 5100 < 0110. Performing the same calculations 
for the faces (111) and (211) we will find that ~ ~ 1 0 0  < cr110 < ulll < 0211, 

etc. 
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1.4.1. Theorem of Gibbs-Curie- Wulff 

Following Gibbs [1878] and Curie I18851 we can derive an expression for the 
equilibrium shape of a single crystal proceeding from the general condition 
of the minimum of the Helmholz free energy of the system at T = const 
and V = const: 

d F = 0 ,  d V = O .  (1.21) 

We assume first that the crystal is a polyhedron confined by a limited 
number of different crystal faces with areas C, to which a series of discrete 
values of the specific surface energies on correspond. Then the equilibrium 
condition (1.21) reads 

d F = - P v d V , - P , d V , + C a n d C n = O  1 (1.22) 
n 

where P, is the inner pressure of the crystal phase, P, is the pressure of 
the vapor phase, and Vv and V, are the volumes of the vapor phase and the 
crystal phase, respectively. 

Bearing in mind that V = V, + V,  = const or dV, = -dVc the above 
equation is reduced to 

-(Pc - Pv)dV, + C UndCn = 0 . (1.23) 

The volume of the crystal can be considered as a sum of the volumes 
of pyramids constructed on the crystal faces with a common apex in an 
arbitrary point within the crystal. Then 

n 

1 v - - C h n Z n  
n c - 3  

and 

where hn are the -heights of the pyramids. 
On the other hand, every change of the volume with accuracy to 

infinitesimals of second order is equal to  a shift of the surfaces C, by a 
distance dhn so that 

dVc = C Cndhn 
n 
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Combining the last two equations gives 

1 dV - - C hndCn . 
n , - 2  

(1.24) 

Substituting (1.24) into (1.23) gives 

As the changes dCn are independent of each other every term in the 
brackets is equal to  zero and 

on 
hn 

P, - Pv = 2-. (1.25) 

The difference P, - P, does not depend on the crystallograpic orientation 
and for the equilibrium shape one obtains 

un 
hn 
- = const 

or 

(1.26) 

(1.26') 

The relationship (1.26) expresses the geometrical interpretation given 
later by Wulff (1901) known as the Wulff rule or Gibbs-Curie-Wulfl 
theorem. It states that in equilibrium the distances of the crystal faces 
from a point within the crystal (called a Wulg's point) are proportional to 
the corresponding specific surface energies of these faces. According to this 
rule we can construct the equilibrium shape by the following procedure: We 
draw vectors normal to all possible crystallographic faces from an arbitrary 
point. Then distances proportional to the corresponding values of the 
specific surface energies un are marked on the vectors and planes normal 
to the vectors are constructed through the marks. The resulting closed 
polyhedron is the equilibrium form. Crystal faces with the lowest surface 
energies belong to it. Crystal faces which only touch the apexes of this 
polyhedron or are situated even further do not belong to the equilibrium 
form. 

The proportionality constant in (1.26) is determined by the difference 
of the pressures in both phases. As shown in the previous section, (Pc - 
Pv)wc = Ap, where TJ, = Vc/n, is the molar volume of the crystal phase. 
The condition P, - P, = const is thus equivalent to the statement that the 
difference of the chemical potentials or, in other words, the supersaturation 
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A 1  = p, - pc, has one and the same value all over the crystal surface. 
Then 

(1.27) 

and hence the supersaturation determines the scale or the size of the crystal. 
As seen Eq. (1.27) has the familiar form of the Thomson-Gibbs equation. 
As the Wulff point has been arbitrarily chosen we can take it at the center 
of the crystal. 

In the same way we can derive the Gibbs-Curie-Wulff theorem for a 
crystal formed on a foreign substrate (Fig. 1.7) [Kaischew 1950, 1951, 1960). 
In this case the crystal lies with one of its faces with specific surface energy 
cm on the substrate, the latter having a specific surface energy u8. An 
interfacial boundary is formed between the crystal and the substrate. In 
order to find its specific energy we will perform the following imaginary 
experiment 

Fig. 1.6. For the determination of the specific energy 
isomorphic crystals A and B (after Kern et 41. [1979]). 

of the interface between two 

We consider two crystals A (substrate) and B (deposit) of equal di- 
mensions (Fig. 1.6) [Kern et al. 19791. We cleave them reversibly and 
isothermally and produce two surfaces of A, each with area CA, and two 
surfaces of B, each with area Cg = CA. In doing so, we expend energies 
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UAA and UBB. We then put the two halves of A in contact with the two 
halves of B and produce two interfacial boundaries AB, each with area 
CAB = CB = CA. The work gained is - ~ U A B .  The excess energy of 
the boundary AB required to balance the energy change accompanying the 
above process is 2G. Thus we have 

2 q  = UAA -k UBB - 2 u A B  . 
Clearly when the two crystals are indistinguishable from each other, 

UAA = UBB = UAB and the excess energy Ui = 0. Using the definition of 
the specific surface energy (uhkl = U h k l / 2 C h k l )  one obtains the well-known 
relation of Dupre' [1869]: 

~ ~ = u A + u B - ~ ,  (1.28) 

where the specific interfacial energy Ui = Ui/CAB is defined as the excess 
energy of the boundary per unit area and the specific adhesion energy 
P = UAB/CAB is defined as the energy per unit area to disjoin two different 
crystals. Note that p accounts for the binding between the two crystals and 
does not depend on the lattice misfit. The latter will be taken into account 
in Chap. 4 when considering the epitaxial growth of thin films. 

When a crystal is formed on a foreign substrate a surface energy u,C, 
is lost and surface energy q C m  is expended, S,,, being the area of contact. 
Then instead of (1.22) one has to write 

dF = -PvdVv - PcdV, + C UndCn + (Ui - us)dCm = 0 . (1.29) 
n#m 

Following the same procedure as above we find 

(1.30) 

or 
g1 : ~2 : u3'..um - p = hi : h2 : h3.'.hm , (1.30') 

where h,  is the distance from the Wulff point to the contact plane 
(Fig. 1.7). 

It follows that the distance hm from the Wulff point to the contact plane 
is proportional to  the difference of the corresponding specific surface energy 
and specific adhesion energy. Obviously, when the substrate catalytic 
potency is equal to zero, /3 = 0, the distance h, will have its "homogeneous" 
value in the absence of substrate. In this case we speak of complete 
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Fig. 1.7. Equilibrium shape of a crystal on a foreign substrate. Wulff’s point is denoted by 
0. The distance from Wulff’s point to the contact plane is denoted by h,. The distances 
hl and h2 to the free surfaces remain the same as in a free polyhedron. The equilibrium 
shape in the absence of a foreign substrate is shown by the additional dashed line. 

nonwetting. At the other extreme, 0 = UA + UB = 2a (UA = UB = a), 
we hsve the case of complete vetting and the crystal will be reduced to a 
twedimensional monolayer island. In all intermediate cases, 0 < ,6 < 2a, 
we have incomplete wetting and the height of the crystal will be smaller 
than its lateral size. 

1.4.2, Polar diagmm of the surface eneryu 

We have considered by now a crystal confined by discrete faces with small 
Miller indices. Let us now imagine a crystal face which is slightly deviated 
(by a small angle 0) from one of the small index faces, say, the cubic one 
(100) of a Kossel crystal as shown in Fig. 1.8(a). Such aface is called vicinal. 
It is clear for geometrical reasons that it consists of terraces and steps. For 
simplicity we accept that the steps are monatomic and equidistant. The 
specific surface energy of such a face is the sum of the surface energy of the 
terraces a0 and the energy of the steps or the edge energy x Y, baa, which 
can be evaluated in the same way as the surface energy just by counting 
the number of broken bonds per unit length. If one neglects the interaction 
between the steps aa a first approximation for the specific surface energy of 
such a vicinal face one obtains [Landau 19691 

x 
o(8) = - sin(8) + a0 cos(8) . b 

(1.31) 
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Fig. 1.8. Vicinal surfaces tilted by an angle (a) 0 and (b) -8 from a small index (singular) 
face. 

We consider now a vicinal face which is symmetric to the first one, i.e. 
tilted by an angle of -8 (Fig. 1.8(b)). Its surface energy is 

x 
a(-0) = -- sin(8) + go cos(0) . (1.32) 

Graphic representations of the g(t9) functions (1.31) and (1.32) are given 
in Fig. 1.9(a). As seen they are continuous everywhere with the exception of 
the point 8 = 0 where (da/dO)e>O - = x/b and (da/d8)0<0 - = -x/b. In other 
words, the o(8) dependence has a singular point at 8 = 0 with its derivative 
making a jump of 2 ~ / b .  The same singular points exist at 8 = f7r/2, fn, 
etc. In Fig. 1.9(b) the same functions are plotted in polar coordinates. A 
contour consisting of circular segments and possessing singular points at 
8 = 0, n/2 ,  and 3w/2 results. In the three-dimensional case (Fig. 1.9(c)) 
a body is obtained which consists of 8 spherical segments and has 6 sharp 
singular points. This plot is called a polar diagram of the surface energy. 

When constructing the above polar diagram only the bonds between the 
first neighbor atoms have been taken into account. The bonds between the 
second neighbors in the Kossel crystal are directed at angle n/4 with respect 
to the first neighbor bonds. We can perform the same considerations as 
above [Chernov 19841 accounting for the second neighbor bonds only. Thus 
a polar diagram which is inscribed in the first one (the second neighbor 

b 
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b C 

Fig. 1.9. Polar diagram of the specific surface energy - dependence of the surface 
energy on angle 0 in (a) orthogonal coordinates, (b) polar coordinates (two-dimensional 
representation), and (c) spherical coordinates (three-dimensional representation). First 
neighbor interactions only are taken into account (after Chernov [1984]). 

Fig. 1.10. Polar diagram of the specific surface energy (the outermost contour denoted by 
Pi+ P2, two-dimensional representation) taking into account the first (PI) and second 
(Pa) nearest neighbor interactions. The contours denoted by and Pz give the polar 
diagrams as calculated by taking into account separately the first and second nearest 
neighbors. The closed contour consisting of straight lines drawn through the singular 
points of the contour W1 + Wz gives the equilibrium shape of the crystal. 
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bonds are much weaker than the first neighbor ones) and is rotated at an 
angle of 7r/4 with respect to the latter is obtained (Fig. 1.10). The sum of 
the two curves gives the polar diagram when accounting simultaneously for 
both the first and the second neighbors. As seen, new, shallower minima 
appear which correspond to faces which are analogous to the (110) faces in 
the three-dimensional Kossel crystal. The contribution of third neighbor 
bonds is insignificant and will not affect considerably the shape of the polar 
diagram. In any case accounting for the more distant neighbors leads to  
more complicated polar diagram. 

1.4.3. Herr ing’s formula 

Let us now derive the condition for the equilibrium shape of the crystal 
accounting for the anisotropy of the surface energy or, in other words, 
the a(0) dependence. This is a question of utmost importance as it is 
unambiguously connected with the problem of the equilibrium structure 
(the roughness) of the crystal surfaces. The three-dimensional problem 
is somewhat complicated from a mathematical point of view and for this 
reason we will consider the simpler case of a “twedimensional” crystal 
which represents a cross section of a three-dimensional one. On the other 
hand, the 2D case is very important for understanding two-dimensional 
nucleation and, in turn, layer growth of smooth crystal faces. 

When treating the problem we will follow exactly the approach of 
Burton, Cabrera and Rank [1951]. The crystal volume V,  will be replaced 
by the crystal surface area S, and the specific surface energy a(0) by the 
specific edge energy x(0). Then, instead of (1.21), we write 

@ = min, S, = const,  (1.33) 

where 
9 = J x(0)dl (1.34) 

L 

is the edge energy of the “two-dimensional crystal,” the integration being 
carried out over the whole periphery L of the latter, and 

S, = J d s  
S 

(1.35) 

is the surface area of the crystal where ds is the surface area of a curvilinear 
sector. 
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Let T and cp be, the polar coordinates of a point M on the crystal 
boundary L (Fig. 1.11) and let 2 and y be the corresponding orthogonal 
coordinates. We construct a tangent T to the crystal boundary L at the 
point M and a perpendicular ON with length n from the origin 0 to the 
tangent. The latter makes an angle 8 with the abscissa. The line element 
of the crystal boundary in a parametric form x = x ( t )  and y = y ( t )  reads 

dl = (d2 + y t2 )  ' dt , 

where x' = d x / d t  and y' = d y / d t .  

X- 
Fig. 1.11. The derivation of Herring's formula in the two-dimensional case: L snd T 
denote the crystal boundary and the tangent to it at a point M, r and y? are the polar 
coordinates of a point M of the crystal surface, and n and B are the polar coordinates 
of the point N belonging to the polar diagram x(B) (after Burton, Cabrera and Rank 
[ 195 11). 

In the same way the area of the curvilinear sector ds is 

If we choose the angle 8 as the parameter the integrals (1.34) and (1.35) 
can be rewritten in the form 
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2n 

s - - (zy’ - yz’)dd . 
= - 2  ‘I 

(1 -36) 

(1.37) 
0 

F’rom Fig. 1.11 we find that the perpendicular n from the origin to the 
tangent T is given by 

n = xcos8 + ysind . 

Then we can find the point N for any point M on the crystal boundary. 
Conversely, making use of the transformations 

x = ncos8 - n’sind , 
y = n s i n 8 + n ‘ c o s d ,  

(1 $38‘) 
(1.38“) 

we can construct the crystal contour once we know the polar diagram 
n(e)(n’ = dn/d0). 

Then Eqs. (1.36) and (1.37) can be written in terms of n(8) : 

= x(8)(n + n”)dd = min ) J 
0 

2n 

S, = - n(n + n ’ y 0  = const , 
2 .  ‘ I  

(1.39) 

( 1.40) 
0 

where nn = d2n/d02. 

nite scalar X and sum up Eqs. (1.39) and (1.40) to obtain 
Following the method of Lagrange we multiply Eq. (1.40) by an indefi- 

(1.41) 1 1 
x(8)(n + n”) - -Xn(n + n”) d0 = min . ir 0 2 

The condition for minimum is still preserved when we multiplied it 
by a constant and added a constant. The solution of (1.41) will give us 
a function n = n(0) which satisfies both conditions @ = min and S, = 
const. To solve the problem we will use the method of Euler for finding an 
extremum [Arfken 19731. It states that if we have a functional of the kind 
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F(x ,  y, y', y")dx = min , f 
a 

where y = y(x), yl = dy/dx and y" = d2y/dx2, the equation which satisfies 
it has the form 

This is the well-known equation of Euler where the functions y, y' and y" 
are taken upon differentiation as independent variables without accounting 
for their dependence on x. 

Applying the above method, from (1.41) one obtains 

(1 -42) 

Thus the equilibrium shape of the crystal is governed by a nonlinear 
equation of second order which satisfies the conditions Q = min and S, = 
const. Its solution n(0) will give us the rule for constructing the equilibrium 
shape of our two-dimensional crystal (the crystal countour) on the base of 
the polar diagram of the edge energy and Eqs. (1.38). 

Actually we have to solve the much simpler linear differential equation 
of second order. With the substitution u = x(e) - An(@), Eq. (1.42) turns 
into u" + u = 0. Its solution reads [Kamke 19591 

u = Csin(x - 4) 

or 
1 
X 

n(0) = -x(e) - Csin(8 - 4) , 

where C and q5 are constants. The second term on the right-hand side is a 
periodic function with period 27r. However, different crystals have different 
symmetry and thus different period. For example, cubic crystals have a 
period of n/2, hexagonal crystals have a period n/3, etc. In order to get 
rid of this restriction we put C = 0 and obtain 

(1.43) 

By analogy with the previous case the proportionality constant which 
multiplies the crystal volume is X = Ap/sc, where sc is the area of an atom 
in the two-dimensional crystal and 

1 n(e) = -x(e) . x 
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( 1.44) 

Equation (1.44) which appears as a generalized Thomson-Gibbs 
equation is the Gibbs-Curie-Wulff theorem for two-dimensional crystals 
in which n(9) is the radius vector of the polar diagram x(9). 

Carrying out the differentiation in Eq. (1.42) gives 

1 
x n + nr’ = -[+) + d ’ ( e ) ]  , 

where x”(9) = d2x(t?)/de2. 
Realizing that 

is in fact the principal radius of curvature of the polar diagram, R, then 
with X = Ap/s, one obtains 

By analogy, for a three-dimensional crystal with principal radii of cur- 
vature Rl and R2 and polar angles 81 and 82 for the equilibrium shape, 
one obtains an expression with s, and x(0) respectively replaced by v, and 
a(@) (for more rigorous derivation see Chernov [1984]) which is known as 
the formula of Hem’ng [Herring 1951, 19531: 

(1.45) 

In the same manner the generalized Gibbs-CurieWulff theorem for 
three-dimensional crystals reads 

(1.46) 

Equations (1.44) and (1.46) give us the practical rule for the construc- 
tion of the equilibrium shape. First, we ascribe a particular vdue to the 
scale parameter Ap/2uC which determines the size of the crystal. Then we 
draw the radius vector n(9) from the central point at an arbitrarily selected 
crystallographic direction 9 and find the cross-sectional point with the polar 
diagram (Fig. 1.12). We then construct through it a plane normal to 7-46) 
and repeat this procedure for the whole contour of the diagram. A family 



f . 4 .  Equilibrium Shape of Crystals 25 

0 

Fig. 1.12. Construction of the equilibrium shape based on the polar diagram of the 
surface energy following Eq. (1.46) (after Chernov [1984]). 

of planes results and its inner envelope is in fact the equilibrium form of 
the crystal. 

Let us go back to Herring’s formula (1.45) and consider more closely the 
quantity u: = c -t- &u/dB; (n  = 1,2) which is usually called the surface 
st@ess. At the singulax points the first derivative of u with respect to 
8 experiences a jump (equal to 2 x / b  in the above oversimplified case). 
Hence, the second derivatives and in turn the surface stiffnesses u: have 
infinitely large values. The left-hand side of Eq. (1.45) has a finite value, 
and obviously the condition for the right-hand side to have a finite value 
is for the principal radii R1 and Rz to be infinitely large. Hence at the 
singular points the curvature of the corresponding crystal faces will be equal 
to zero or, in other words, the crystal faces will be flat. This is the reason 
that the flat faces are often called singularfaces. Immediately aside of the 
singular points the second derivatives of u and in turn the surface stiffnesses 
0: acquire finite positive values, and hence also do the radii R1 and Rz, 
Therefore, the crystal surface will be rounded. It will consist of terraces 
and steps or, in other words, it will be atomically rough. Findly, there are 
regions where 0; F 0 and so are the radii R1 and R2 (the ratios a:/R, 
qain having finite values). These are obviously the edges and apexes of the 
crystal. Negative values of the surface stiffnesses have no physical meaning 
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as this means negative radii R1 and R2 and hence concave regions, which 
cannot exist on the equilibrium shape. 

As discussed above the supersaturation must have one and the same 
value over every point of the surface of a crystal with an equilibrium shape. 
It follows that the supersaturation around a crystal without an equilibrium 
shape will vary from one point to another. Facets with areas smaller 
than that required by the equilibrium condition will have larger chemical 
potentials and hence the supersaturation over them will be lower than the 
current one in the system, and vice versa. If such a crystal is immersed in a 
supersaturated ambient phase and given enough time to equilibrate, smaller 
facets will dissolve to become larger facets and larger facets will grow to 
become smaller facets up to the moment the supersaturation attains one 
and the same value all over the crystal surface and the equilibrium shape is 
reached. As will be shown below the above conclusion is valid for crystallites 
sufficiently small ( k T R , / a ~ v ,  << 1) so that the supersaturation difference 
which is the driving force for the equilibrium to  be reached is sufficiently 
large. 

Finally, Eq. (1.45) can be expressed in the form 

or 
u; a; 
RI R2 

P c - P v = - + - ,  

(1.47) 

(1.48) 

We conclude that Herring’s formula is a generalization for finite crys- 
tallites of Laplace’s equation (1.16) which relates the liquid surface tension 
to the pressure difference on both sides of the curved liquid surface. The 
Laplace pressure is determined in this case by the surface stiffnesses which 
govern the crystal curvature, rather than by the specific surface energies. 
Thus Q. (1.48) explains the term surface stiffness. I t  is a measure of the 
resistivity of the crystal faces against bending (roughening) when a pressure 
(force per unit area) is applied on them. Flat facets require infinitely high 
pressures in order to be “bent.” 

1.4.4. Stability of crystal surfaces 

In fact we have just concluded that the structure of a given crystal surface 
is determined by the corresponding value of the surface stiffness. When the 
latter is infinite the corresponding crystal face is flat and atomically smooth. 
When the surface stiffness has some finite positive value, the crystal surfaces 
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b 

Fig. 1.13. A scheme illustrating the stability of a vicinal crystal surface against faceting: 
(a) Schematic view in terms of the slope p = t an@ of the original vicinal face which 
breaks down into facets with slopes p i  = tan01 and p2 = tan 02. The dashed lines with 
slopes p i  and p i  give possible deviations from the faceted surface with slopes p i  and p z ,  
respectively (see text). (b) Side view 0f.a vicinal surface of a Kossel crystal whose slope 
is accommodated either by single height steps or by facets (after Cabrera and Coleman 
[1963]). 

are rounded and, in the near vicinity of the singular faces, should consist of 
terraces divided by steps. We accepted that the steps are of monomoleculax 
height. The width of the terraces or the density of the steps depends on 
the value of the polar angle. However, we can have different structures of 
a vicinal face at one and the same value of the polar angle. Thus if the 
steps are of a double height the terraces should be twice as wide; when 
the steps have a triple height the terraces will have a triple width, etc., at 
one and the same value of the polar angle (Fig. l . l3(b)).  So one cannot 
determine unambiguously the real structure of the corresponding vicinal 
surface on geometrical reasons only. Moreover, under real conditions the 
surface energy and in turn the surface stiffness can change their values. 
This is usually the case when some impurity atoms are adsorbed on the 
crystal surface. The impurity atoms saturate the unsaturated dangling 
bonds on the crystal surface and decrease the surface energy. The larger 
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the concentration of the impurity atoms is the smaller will be the specific 
energy of a particular crystal surface. Another reason for changing of the 
surface energy is surface reconstruction [Monch 19791. As a result the 
structure of the crystal surface should change. So our next task is to find 
the real structure of the crystal surfaces or, in other words, the condition of 
the stability of a given crystal surface. The problem of the stability of the 
crystal surfaces was first considered by Chernov [196l] and later discussed 
by Cabrera and Coleman [1963]. In this chapter we follow the presentation 
of the latter. 

We consider an infinite vicinal crystal surface inclining at  an angle 
8 to the nearest singular face (Fig. 1.13) and consisting of terraces and 
monomolecular steps. It is easy to realize such a face bearing in mind that 
single crystal wafers which are cut and polished under the crystallographic 
orientation of one of the singular faces are always inclined to the latter 
at some very small angle. In general such a face can be represented by 
z = z(z,y), where z = 0 determines the singular face. Then the orientation 
at a point (z,y) will be determined by two independent components p = 
-dz/dx and q = -dz/dy.  We consider for simplicity the case in which the 
steps are parallel to the y axis (which is thus normal to the surface of the 
sheet), i.e. q = 0, and the vicinal face is described by z = 20 - px, where 
p = tan8. Let the face area be denoted by CO. Then the area of the 
reference singular face is C = CO cos8. 

The surface energy of the face Co is @O = a(8)Eo. In terms of the 
component p it can be written as 

a. = a(e)co = a(p)(i + p 2 ) 1 / 2 ~  = ( ( p ) ~  , (1.49) 

where (1 +p2)'l2 = l / cos8  and ( ( p )  = a(p)(l  +p2)'I2. 
Let us now assume that two new faces with slightly differing orientations 

pl  = p + b p l  andpz = p + 6 p z  (1.50) 

are formed. The total projected areas of these faces are C1 and Ca,  
respectively. If the face CO is the stable one its surface energy should be 
smaller than the surface energy of the newly formed profile = ((p1)Cl + 
( ( p l ) C ,  at constant volume. In other words, the condition A@ = 3 4 0  > 0 
should be fulfilled. The condition of constant volume is reduced in our case 
to  that of constant area of the cross section shown in Fig. l.l3(a). It can 
be easily obtained from A S  = S1 - Sz = 0, where S1 and S2 are the areas 
under the profiles, with slopes p and pl and p2, respectively. One obtains 
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P I G  + P 2 C 2  = PE - 
Substituting (1.50) into (1.51) and making use of the relation 

C 1 + C z = C ,  

the condition for constant volume (1.51) turns into 

C16p1 + czap, = 0 . 

29 

(1.51) 

(1.52) 

(1.53) 

The functions [ ( p i )  (i = 1,Z) can be expanded as a Taylor series up to 
parabolic terms: 

(1.54) 1 
[ ( P i )  = {(PI + t'(P)bPi + $"(P)(W 1 

where [ ' (p)  = d</dp and ["(p) = d2</dp2. 

and (1.53) give 
Substituting (1.54) into the expression for A@ and making use of (1.52) 

The term in the square brackets is always positive and the condition 

t " ( P )  > 0 . (1.56) 
A@ > 0 is satisfied when 

Bearing in mind that du/dp = (du/dB)(dB/dp), 6 = tan-'(p), d6/dp = 
-l/(l + p 2 )  and E"(p) = a*/(l+ p 2 ) 3 / 2 ,  the condiGon (1.56) reduces to 

d2U 

dB2 u* = a+ - > 0 .  (1.56') 

It follows that when the surface stiffness of the original vicinal face 
which consists of terraces divided by monomolecular steps is positive it will 
be stabie. Otherwise, it will break down into terraces divided by macrosteps 
or, in the limiting case, into separate crystal faces preserving the overall 
slope of the original face with respect to the singular face. 

A schematic plot of ( ( p )  is given in Fig. 1.14. We have in principle three 
possibilities. In the first one (Fig. 1.14(a)) the second derivative of ( ( p )  is 
everywhere positive between the singular minima at p = 0 and p = PO. 
This means that all the possible surfaces between p = 0 and p = po will be 
stable and will not break into facets as long there are no species adsorbed 
on them. In the second case (Fig. 1.14(b)) the second derivative of ( ( p )  
is everywhere negative. This means that only the singular surfaces with 
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Fig. 1.14. Schematic plot of the parameter ( ( p )  = u ( p ) ( l  + p2) ' I2  vs the slope p : 
( a ) [ " ( p )  > 0 ,  (b) [ " ( p )  < 0, (c) [ " ( p )  > 0 between p i  and p2 and [ " ( p )  < 0 between 0 
and p l  and between p2 and po  (after Cabrera and Coleman [1963]). 

orientations p and po will be stable. If a surface with orientation p such 
that 0 < p < po is formed it will break down into facets with orientations 
p = 0 and p = po . In the general case (Fig. 1.14(c)) in between 0 and po 
there are regions with E"(p) > 0 and <"(p)  < 0. It follows that only the 
surfaces at the singular minima whose orientations are between pl and p z ,  
where the condition ,$"(p) > 0 is fulfilled, can exist on the crystal surface. 
All others are not stable and should break down into facets. 

The physical meaning of this result is simple. If the new crystal surfaces 
with orientations pl and p2 have smaller specific surface energies than 
the original face with orientation p and a decrease of the surface energy 
overcompensates the increase of the surface area the crystal surface will 
break down into facets. In the reverse case it will be stable. 

The stability of the facets can be examined in the same way as for 
the original surface. In this case we allow two new surfaces with areas 
El, and C& and orientations p i  = pl + 6pl and pk = pz + bpz to form 
(Fig. l.l3(a)). From the condition of a positive change of the surface 
energy A@' = <(pl,)C: + ,$(pk)Ca - [ < ( P I ) &  + < ( p ~ ) C 2 ]  at constant volume 
(C: + Ca = C = CI + C2 and p~ C1 + p2C2 = pC = pi Ci + p&Ei) we find 
that the facets will be stable when the corresponding surface stiffnesses 
and uz of the facets are positive. Thus an unstable smooth surface with 
negative surface stiffness should break down into facets with positive surface 
stiff nesses . 

Faceting of crystd surfaces was observed long ago. Early works are 
reviewed by Moore [Moore 19631. In principle, faceting could be caused by 
any reason which diminishes the specific surface energy. In particular, this 
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is the adsorption of surface active species. Thus the adsorption of Ag on 
stepped Ge (111) surfaces leads to the formation of (544) and (111) facets 
at  Ag coverage of about 0.2 monolayers at T S 400°C [Suliga and Henzler 
19831. At an increased coverage of Ag greater than 0.7 monolayers (211) 
facets are formed. The above results were refined in a later paper [Henzler, 
Bus& and Friese 19901. A Ge crystal has been cut and polished with 
3" misorientation (p = 0.0524) with respect to the (111) surface. Vicinal 
surfaces with monatomic steps and 18 atomic spacings wide terraces were 
obtained which can be described by the Miller indices (19J7J7). Silver was 
then deposited at room temperature and the crystal was annealed at 400°C 
for 10 min. After cooling down to room temperature again the following 
changes were observed. At a coverage of the Ag atoms of 1/4 monolayer 
(with respect to the surface coverage of (111) Ge) the initial (19,17,17) 
surface broke down to facets (13,11,11) with greater slopes and narrower 
terraces and flat wider portions with (111) orientation. The fractions of 
the overall surface of both facets were estimated to be 0.75 and 0.25, 
respectively. At a Ag coverage of 1/2 monolayer half of the surface was 
found to have (10,8,8) orientation and the other half has (111) orientation. 
After desorption of the silver and annealing of the Ge crystal the initial 
orientation ( 1 9 ~ 7 ~ 7 )  was recovered. 

Clean Si (100) surfaces misoriented by 5" in the [Oll] direction contain 
steps of average spacing 29 8, and height 2.7 8, (double steps). After de- 
position of As beyond a critical surface coverage of 0.38 monolayers, which 
is independent of the temperature, the terraces become about 100 8, wide 
and the steps are 9 A (6 monolayers) high [Ohno and Williams 1989al. The 
process is reversible. After desorption of the arsenic the surface recovers its 
initial structure. The same is observed for Si (111) surfaces misoriented by 
6' in the [lIO], [2II] and [211] directions. At coverages of As higher than a 
critical one of 0.16 monolayers the single steps turn into double steps [Ohno 
and Williams 1989bl. 

Besides, it has been found that Si (112) surfaces are stable when heated 
up to 800°C regardless of carbon contamination, but break down to ( l l l ) ,  
(113), (525) and (255) surfaces when heated between 950-1150°C in the 
presence of carbon on the crystal surface. The extent of faceting increases 
if carbon is introduced before heating beyond 950°C. Annealing at 1250°C 
removes the carbon and restores the initial surface structure [Yang and 
Williams 19891 .' 

It is worth noting that the As-induced faceting of Si (100) and (111) 
surfaces takes place at  As2 pressures comparable to those employed when 
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GaAs is grown on Si single crystal wafers. It is thus unsafe to assume 
that the surface of the substrate preserves its original structure under 
the conditions of the experiment. The same is valid when the necessary 
precautions to lower the carbon contamination in the vacuum chamber are 
not taken into account. Works on faceting of metal surfaces are summarized 
by Somorjai and van Hove [1989]. 

1.5. Atomistic Views on Crystal Growth 

1.5.1. Equilibrium of infinitely large crystal with the 
ambient phase- The concept of half-crystal position 

The above considerations were purely macroscopic in the sense that ther- 
modynamic macroscopic quantities have been used for the description of 
the equilibrium between different phases. The elementary processes of 
attachment and detachment of individual building units (atoms, ions or 
molecules) to and from the crystal surfaces have not been taken into 
account. This is one of the reasons the earlier ideas of Gibbs have not 
been fully comprehended until 1927 when, simultaneously, Kossel [1927] 
and Stranski [1927, 19281 introduced the concept of work of separation of 
a building unit from the so-called half-crystal position. In this section we 
will consider the problem on a microscopic atomic level. 

Fig. 1.15. The most important sites an atom can occupy on a crystal surface: 1 - atom 
embedded into the outermost crystal plane, 2 - atom embedded into the step edge, 3 
- atom in a half-crystal (kink) position, 4 - atom adsorbed at the step, 5 - atom 
adsorbed on the crystal face. 

Let us consider, for example, the cubic face (100) of a Kossel crystal 
containing one monatomic step (Fig. 1.15). The step can be defined as the 
boundary between some region of the surface and an adjacent region whose 
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height differs by one interplanar spacing. Atoms can occupy different sites 
on this surface - incorporated into the face (site l), the step (site 2), into 
corner position 3, or adsorbed at the step (site 4) or on the crystal surface 
(site 5). Depending on their positions the atoms are differently bound to 
the crystal surface. Thus an atom adsorbed on the crystal surface is bound 
by one bond to the crystal and has five unsaturated dangling bonds. On the 
contrary, an atom incorporated into the face has five of its bonds saturated 
and one unsaturated. Moreover, the detachment of these atoms leads to a 
change in the number of the unsaturated dangling bonds or, in other words, 
to the specific surface energy. The only exception is the atom in position 
3 which has an equal number of saturated and unsaturated bonds. Then 
no change of the surface energy will take place when the latter is detached 
from this peculiar position. As seen an atom in this position is bound to 
a half-atomic row, half-crystal plane and half-crystal block. This is the 
reason this position is called a half-crystal or kink position. By repetitive 
attachment or detachment of atoms to and from this position the whole 
crystal (if it is large enough to exclude the size effects) can be built up or 
disintegrated into single atoms. 

The work cp1l2 necessary to detach an atom from a half-crystal position 
depends on the symmetry of the crystal lattice but is always equal to the 
work required to break half of the bonds of an atom situated in the bulk of 
the crystal (Table 1.1). Thus for a Kossel crystal 

9112 = W +  6$2 + 4$3 . 

Table 1.1. The number of the first, second and third neighbors of an atom in a half-crystal 
position. 

Crystal lattice 
Number of neighbors 

First Second Third 

Simple cubic 3 6 4 
Face-centered cubic 6 3 12 
Body-centered cubic 4 3 6 

Diamond 2 6 6 
Hexagonal closed packed 6 3 1 

If we denote by 21, 2 2  and 2 3  the coordination numbers of the first, 
second and third coordination spheres in the corresponding crystal lattice, 
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then 
1 

When a sufficiently large crystal is in equilibrium with the ambient phase 
the half-crystal position is statistically occupied and unoccupied with equal 
frequency. This means that the probability of attachment of atoms from 
the ambient phase to the kink position is equal to the probability of their 
detachment. It follows that the equilibrium of the infinitely large crystal 
with the ambient phase is determined by the hdf-crystal position and cplp 
may be taken as approximately equal to  the enthalpy of evaporation Ahey I 

In other words, it is namely the work of separation from hdf-crystal (kink) 
position which determines the equilibrium vapor pressure of infinitely large 
crystal and in turn its chemical potential. Thus for crystals with monatomic 
vapors [Stern 1919; Kaischew 19361 

P," = PO + kTlnP, = -'pip + k.Tln[(2?rm)312(kT)5/2/h3] (1.58) 

holds, where is the chemical potential of the infinitely large bulk crystal, 
m is the atomic mass and h is Planck's constant. 

As seen from the above equation, at T = 0, the chemical potential 
is equal to the separation work from the half-crystal position taken with 
opposite sign. It is namely this property of the half-crystal position which 
makes it unique in the theory of crystal growth. For the history of the 
discovery of the half-crystal position the reader is referred to  the historical 
review of Kaischew [1981]. 

The second very important property of the half-crystal position becomes 
evident if we write the expression for the work of separation from it in the 
form 

cP1/2 = (Plat + %or t 

where (Plat denotes the lateral bonding with the half-crystal plane and 
half-atomic row and qnor denotes the normal bonding with the underlying 
half-crystal block. 

This division has two advantages. First, it reflects the properties of 
the particular crystal face. Let us consider, for example, the most closely 
packed faces (111) and (100) of the fcc lattice. We will restrict ourselves to 
first neighbor interactions. In order to detach an atom from a half-crystal 
position on the (111) face we have to break three lateral bonds and three 
normal bonds, whereas on the (100) face we have to break two lateral bonds 
and four normal bonds. In both cases we have to break six bonds, but we 
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could conclude that the (100) face has a greater adsorption potential than 
the (111) face. 

Another very important consequence of this division is connected with 
the epitaxial growth of thin films. In fact if we replace the underlying 
crystal block by another block of different material the lateral bonding 
will remain approximately the same if we assume additivity of the bond 
energies. However, the normal bonding or the bonding across the interface 
will change [Stranski and Kuleliev 19291. Then for a Kossel crystal the 
separation work from the half-crystal position will be ($1 E 4)  

+;,2 = 211, + = 3+ - (+ - +/) 

or 
'p$2 = (PI12 - ($ - $7 1 (1.59) 

where $J' is the energy to break a bond between unlike atoms. 
It is immediately obvious that when $J < +', 'pilz > (p1/2 and the 

equilibrium vapor pressure of the first monolayer on the foreign substrate 
is smaller than the equilibrium vapor pressure of the bulk crystal, i.e. 
Pk(1) < P, . Then at least one monolayer can be deposited at any vapor 
pressure higher than Pk(1). This means that deposition will take place 
even when PL(1) < P < P,, i.e. at undersaturation with respect to the 
bulk crystal. In the opposite case ($ > @), 1 ~ ; ~ ~  < 'p1p and PL(1) > P,. 
This means that the deposition requires the existence of a supersaturation 
in the system. The atoms of the second monolayer feel more weakly the 
energetic influence of the substrate and the latter will have negligible effect 
on the atoms of the third monolayer. It follows that in this particular 
case the chemical potential is not constant but depends on the number of 
the monolayers or, in other words, on the film thickness. In this case we 
speak of epitaxy which will be considered in more detail in Chap. 4. It will 
be shown that the thickness dependence of the chemical potential can be 
easily derived by assuming that the lateral bonding remains the same and 
accounting only for the difference in bonding across the interface. As will 
be discussed in Chap. 4 the latter leads to different modes of growth of the 
thin epitaxial films (for a review see Markov and Stoyanov [1987]). 

1.5.2. Equilibrium finite crystal-ambient phase - The concept of 

As was mentioned above, we can build up or dissolve a crystal by repetitive 
attachment or detachment of building units only when the crystal is large 

mean sepamtion work 
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enough so that the role of the edges can be ignored. If this is not the 
case the half-crystal position is no longer a repetitive step and it does not 
determine the equilibrium of the crystal with its vapor phase. To solve 
this problem Stranski and Kaischew [1934a,b,c,d] considered the dynamic 
equilibrium of a small crystal with its vapor and concluded that for a small 
particle to be in equilibrium with its own ambient phase the probability of 
building up a whole new crystal plane should be equal to the probability of 
its dissolution. So as a measure of the equilibrium of a finite crystal with its 
surrounding, they introduced the so-called “mean separation work” which 
is defined as the energy per atom of disintegration of a whole crystal plane 
into single atoms. This quantity must have one and the same value for all 
the crystal planes belonging to the equilibrium form. 

Consider, for example, a Kossel crystal with edge length 13 = n3a, where 
n3 is the number of atoms in the edge of the 3D crystal and a is the atomic 
spacing. The energy per atom for disintegration of a whole lattice plane 
into single atoms will be (following Figs. l.l6(a)-(c)) 

p 3  = [3+(n3 - 1)’ + 4+(n3 - 1) + +] /n ;  = 3$ - 2$/n3 . 
On the other hand, 3+ = (plp (Table 1.1) so that 

P3 = 9 1 ~ 2  - 2$/% . (1.60) 

It follows that the mean work of separation goes asymptotically to the 
work of separation from kink position as the crystal size is increased. Then 
a crystal can be considered large enough if n3 > 70 or 13 > 2 x cm 
(a  = 3 x cm). 

As $3 determines the equilibrium with the vapor phase we can write in 
analogy with Eq. (1.58) 

pc = pv = po + IcTlnq = -q3 + k T l n [ ( 2 . r r n ~ ) ~ / ~ ( I c T ) ~ / ~ / h ~ ]  . 
Then 

(1.61) 

Ap = pv - p: = kTIn(q/P,) = cp1p - @3 = 2$/n3 . (1.62) 

Obviously, this is the same Gibbs-Thomson equation (1.19). We can 
define the specific surface energy of the Kossel crystal confining ourselves 
to first neighbor interactions as the energy to create two surfaces of area 
u2 each: 

u = +/2a2 . ( 1.63) 



1.5. Atomistic Views on CryJtal Growth 37 

a b C 
Fig. 1.16, For the evaluation of the mean separation work @3 which determines the 
equilibrium of a finite 3D crystal with the vapor phase according to  Stranski and 
Kabchew (193413). First, (a) (n - 1)2 atoms are detached in such a way that two 
edge rows of atoms are left. The detachment of each atom requires the breaking of three 
bonds, then (b) the two remaining rows of atoms, each consisting of n - 1 atoms, are 
detached with the exception of the corner atom. The detachment of the atoms requires 
the breaking of two bonds per atom, and finally (c) the last atom at the corner is detached 
which requires the breaking of only one bond (after Stranski and Kaischew [1934bJ). 

Substituting for $ from Eq. (1.63) into (1.62) one obtains 

which is exactly the Thomson-Gibbs equation as given by (1.19) (13 = 2r 
and v, = u3 for a Kossel crystal). 

1.5.3. Equilibrium &D crystal-ambient phase 

Stranski and Kaischew considered further the case when a 2D crystal formed 
on one of the faces of a 3D crystal is in equilibrium with the ambient phase. 
In analogy with the 3D case they suggested that the probability of building 
up a whole new atomic row with a length 12 = n2a (Fig. 1.17) should 
be equal to the probability of its disintegration into single atoms. The 
equilibrium 2D crystal vapor phase is now determined by the corresponding 
mean work of separation p2, which in this particular case is equal to the 
energy per atom for disintegration of a whole edge row of atoms. Assuming 
for simplicity a square-shaped crystal with 722 atoms in the edge the mean 
work of separation reads 
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I ,  =an3 c --_L - 
Fig. 1.17. For the evaluation of the mean separation work 9 2  which determines the 
equilibrium with the ambient phase of a finite 2D crystal with edge length 12 on the 
surface of a 3D crystal with edge length 13. n2 and n3 denote the numbers of atoms on 
the edges of the 2D and 3D crystals, respectively (after Stranski and Kaischew [1934b]). 

Then the supersaturation required for the formation of a 2D crystal on 
the surface of a 3D crystal is 

A p  = RTIn(P/P,) = +In2 . (1.66) 

Using the definition of the specific edge energy 

x = $/2a , (1.67) 

one obtains the familiar equation of Thomson-Gibbs for the twedimen- 
sional case: 

A p  = 2xa2/12 . (1.66’) 

Comparing Eqs. (1.64) and (1.66) ( x  = aa) leads to the conclusion that 
in equilibrium the edge length of the 2D crystal should be shorter than that 
of the 3D one by a factor of 2 at one and the same supersaturation, i.e. 
12 = 1312. 

1.5.4. Equilibrium shape of crystals-Atomistic approach 

The introduction of mean works of separation enabled Stranski and 
Kaischew [1935] to give a new atomistic approach to the determination of 
the equilibrium shape of the crystals. The basic idea is that atoms whose en- 
ergy of binding with the crystal is smaller than the mean work of separation 
cannot belong to the equilibrium shape because the corresponding vapor 
pressure will be higher than the equilibrium vapor pressure in the system. 
Then in order to derive the equilibrium shape one starts from a crystat 
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with an arbitrary simple form in which all atoms whose separation works 
are smaller than cplp are successively removed from the crystal surface. 
Precisely at that moment all the crystal faces belonging to the equilibrium 
shape appear. Then the areas of the faces are varied (whole crystal planes 
are removed or added) up to the moment when the mean separation works 
p3 of all the crystal planes have one and the same value. During the last 
operation all faces which do not belong to the equilibrium form disappear 
(see Honnigmann 1958). 

Taking into account more distant neighbor atoms in the calculation 
of the mean separation works, facets with higher specific surface energy 
appear on the equilibrium shape just like as shown in Fig. 1.10. Thus when 
accounting only for the first neighbors in a Kossel crystal the equilibrium 
shape consists only of the cubic faces (100). Taking into account the 
second neighbors leads to the appearance of the (110) and (111) faces in 
addition to the (100) faces. Then by comparing the theoretical predictions 
with experimental observations one can make conclusions concerning the 
influence of the radius of action of the interatomic forces on the equilibrium 
shape. 

The atomistic approach of Stranski and Kaischew can be illustrated by 
finding the equilibrium shape of a 3D crystal lying on a foreign substrate. 
We consider for simplicity a cubic crystal with a square base with lateral 
edge 1 = na and height h = n’a, where n and n’ are the numbers of atoms 
on the horizontal and vertical edges, respectively (Fig. 1.18). Following the 
above procedure the mean separation work calculated from the side crystal 
face is 

The mean separation work calculated from the upper base is given by 
Eq. (1.60). The condition for the equilibrium shape is that the chemical 
potentials of the different faces or, in other words, their mean separation 
works, have to be equal (($h = p3). The latter leads to the relation 
[Kaischew 19501 

h n’ - = - = I - -  
E n  Q ’  ( 1.68) 

Substituting 9 and $‘ with the specific surface energy and the specific 
adhesion energy, respectively, gives 

(1.69) 
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Fig. 1.18. A cubic crystal of lateral extent 1 and height h on a foreign substrate. The 
specific surface energies of the substrate, us , the upper and lateral faces of the deposit 
crystal, u, and the substrate-deposit interface, ui, determine the equilibrium shape ratio 
hl l .  

where ui is the specific interfacial energy expressed by the relation of Duprd 
(1.28). The same result can be obtained if one starts from the classical 
thermodynamic conditions @ = 12(a+ai-a,)+41ha = min and Vc = Z2h = 
const [Bauer 19581. 

1.5.5. Equilibrium vapor pessure of a 2D crystal 

It is also of interest to treat the question of equilibrium vapor pressure 
of a two-dimensional crystal formed on the surface of a crystal of different 
material. Assuming for simplicity a square shape the mean separation work 
estimated from the crystal edge reads 

on a foreign substrate 

where the term (pi,2 = 21c, + @‘ is in fact the work of separation of an atom 
from the half-crystal position of the semi-infinite adlayer on the foreign 
substrate [Stranski and Kuleiiev 1929). 

Bearing in mind that cpl12 = 31c, for the supersaturation and hence for 
the equilibrium vapor pressure one finds 

The difference c p l j 2  - = 1c, - 1c,’ of the binding energies can be 
either positive (@ > q’) or negative (+ < $’) as discussed above. This 
means that the equilibrium vapor pressure of the 2D crystal can be either 
higher or lower than the equilibrium vapor pressure of the bulk crystal and 
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the deposition can be carried out at supersaturation or undersaturation, 
respectively. 

1.6, Equilibrium Structure of Crystal Surfaces 

1.6.1. Classification of crystal surfaces 

The process of growth of crystals takes place at the crystal-ambient phase 
interface where the latter can be vapor, melt or solution. Obviously, the 
equilibrium structure of this interface or, in other words, its roughness, 
determines the crystal shape on one hand, and the mechanism of growth 
and in turn its rate of growth on the other. 

Let us consider, for example, an atomically smooth crystal face be- 
longing to a perfect defectless crystal. The formation of a new lattice plane 
requires the existence of monatomic steps which offer half-crystal positions. 
As a source such steps can serve randomly appearing two-dimensional 
formations of the new lattice layer with closed contours. Initially they are 
unstable and have the tendency to dissolve into the mother phase. When 
such formations which serve as “twedimensional nuclei’’ of the new layer 
exceed some critical size their further growth is thermodynamically favored 
and they cover completely the crystal face. After that the steps vanish and 
the initial state is restored. Then the formation of new lattice plane requires 
the formation of new 2D nuclei and the process is repeated. Hence the 
growth of a defectless atomically smooth crystal face is a periodic process 
involving successive 2D nucleation and lateral growth (Fig. 3.23) which 
is usually observed in crystal growth by Molecular Beam Epitaxy (MBE) 
[Harris, Joyce and Dobson 1981a, 1981b; Neave, Joyce, Dobson and Norton 
19831. The formation of 2D nuclei is connected, however, with definite 
energetic difficulties and requires overcoming a critical supersaturation. 
Then the rate of growth of a defectless crystal surface will be a nonlinear 
(in fact exponential) function of the supersaturation. 

However, experimental data showed that crystals can grow at supersat- 
urations as low as O.Ol%, in marked discrepancy with the nucleation theory 
of crystal growth. The problem was solved in 1949 when at a discussion 
meeting of the Faraday Society in Bristol, Frank [1949a,b] proposed the 
spiral mechanism of crystal growth. He suggested that continuous growth 
of crystals at low supersaturation can be attributed to the presence of 
crystal defects, particularly screw dislocations (see Fig. 3.9). The latter 
offer nonvanishing monatomic steps with kink positions along them, thus 
making the 2D nucleation unnecessary. In 1951 Burton, Cabrera and Frank 
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published their famous paper “The growth of crystals and the equilibrium 
structure of their surfaces” [Burton et al. 19511. Considering the growth 
of a crystal face in the presence of screw dislocations they found that the 
distance between consecutive coils of the spiral is directly proportional to 
the linear size of the critical 2D nucleus which is determined by the existing 
supersaturation. Then the slopes of the growth pyramids which are formed 
at the emergency points of the screw dislocations are directly proportional 
to the supersaturation. One can conclude that, in general, the growth rate 
will again be a nonlinear function of the supersaturation. 

Finally if the crystal face is atomically rough it offers a great number 
of kink positions. Building particles arriving from the mother phase can 
be incorporated to the crystal lattice practically at  any place, which makes 
the 2D nucleation as well as the presence of screw dislocations unnecessary. 
No thermodynamic hindrance exists any more; the process is fast and the 
growth rate is simply proportional to the flux of atoms from the ambient 
phase and thus should be a linear function of the supersaturation. 

Thus crystal growth means incorporation of building units which arrive 
from the ambient phase to the half-crystal positions. Then the rate of 
growth of a given crystal face in a direction normal to its surface is 
proportional to the density of growth sites (half-crystals or kink positions) 
which the face offers to the building units from the ambient phase. This 
density depends on the crystallographic orientation of the face on the one 
hand, and temperature on the other. 

Burton and Cabrera (1949) classified the crystal surfaces with respect to  
their capability of growth into close-packed and non-close-packed or stepped 
surfaces. The question has been further elucidated by Hartman [1973] and 
others [Honigmann 1958; Cabrera and Coleman 19631. 

The crystal surfaces are thus divided into three groups: F (Pat), S 
(stepped) and K (kinked) surfaces depending on whether they are parallel 
to at least two most dense rows of atoms, one most dense row of atoms, or 
are not parallel to any of the most dense rows of atoms at all, respectively 
[Hartman 19733. F faces are, for example, the (100) face of Kossel crystals 
and fcc crystals which are parallel to two most dense rows of atoms, the 
(111) face of fcc and the (0001) face of hcp crystals which are parallel to 
three most dense rows of atoms, etc. (see Fig. 1.19). Typical examples of 
S and K faces are the (110) and (111) faces of sodium chloride (or Kossel) 
crystals. It is clear that  when a crystal face is parallel to more than one 
most dense row of atoms, the number of saturated shortest, and hence 
strongest, chemical bonds parallel to the crystal surface is greatest. The 
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number of the unsaturated bonds is minimal and so is the specific free 
energy of the face (see the arrows in Fig. 1.19). When the crystal face is 
parallel to one most dense row of atoms only, it intersects the other one 
and all the chemical bonds parallel to the latter become unsaturated. Thus 
the number of the unsaturated bonds reaches its highest value when the 
crystal face intersects all the densest rows of atoms and hence such a face 
offers more growth sites (kink positions) than the S and F faces. 

Fig. 1.19. A schematic representation of a Kossel crystal illustrating F (flat) and S 
(stepped) surfaces depending on whether they are parallel to two and one most dense 
rows of atoms, respectively, and a K (kinked) surface which is not parallel to a most 
denre row of atoms at all. The long arrows give the directions of the most dense rows 
of atom (the directions of the first neighbor bonds). The short arrows represent the 
umaturated first neighbor bonds of an atom belonging to the corresponding crystal face 
(after Hartman [1973]). 

As the K faces offer kink sites with much greater density than the S 
and F faces they will grow faster than the latter. The S faces also offer 
kink sites dong the steps but their density is smaller than on the K faces. 
Finally, the F faces of perfect crystals do not offer kink sites at all. Then at 
small enough supersaturations to prevent 2D nucleation the rate of growth 
in a direction normal to the particular faces will be highest for the K faces, 
smaller for the S faces and zero for the F faces. It follows that the K faces 
should disappear first, followed by the S faces and finally the crystal will 
be enclosed during growth by the F faces only and will cease to grow at all 
at small enough supersaturation. 
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As has been shown in the previous section the crystal faces can be 
divided also into singular and vicinal faces. Singular minima correspond 
to the singular faces and the latter can be any of the low index faces 
irrespective of whether they are F, S or K faces. Finally, the vicinal faces 
which are slightly tilted with respect to one of the main (singular) crystal 
planes offer to the arriving building units a train of parallel steps divided 
by smooth terraces. This classification is of practical interest. When 
crystals are cut for the preparation of substrates for epitaxial growth with 
particular crystallographic orientations the angle of cutting with respect to 
the orientation selected is never equal to zero. Thus crystal wafers prepared 
by cutting always offer vicinal surfaces for crystal growth. Besides, during 
spiral growth (Fig. 3.9) the side faces of the growth pyramids represent in 
fact vicinal surfaces. The same is true for the case when the crystal face 
grows through formation and growth of 2D nuclei. Pyramids of growth are 
formed by successive formation of 2D nuclei one on top of the other and 
their side faces represent again vicinal surfaces (see Fig. 3.2). This is the 
reason why we consider first the equilibrium structure of single height steps. 

1.6.2. Equilibrium structure  of a step 

We consider for simplicity a single step of monatomic height and infinite 
length on the surface of a simple cubic crystal. At T = 0 the step will 
be perfectly straight. As the temperature is increased kinks separated by 
smooth parts will begin to  appear. The kinks can be conventionally divided 
into positive and negative kinks depending on whether a new row of atoms 
begins or ends (Fig. 1.20). If the step follows on average the direction of 
a most dense row of atoms the number of positive and negative kinks will 
be equal. The total number of kinks increases when the step deviates from 
this direction. The kinks can be monatomic as well as polyatomic. For 
simplicity we consider first monatomic kinks only. We rule out also the 
secalled “overhangs” (Fig. 1.20). 

The energy required to form a kink is w = $12. Indeed, as seen in 
Fig. 1.21, in order to  produce a hole and an adsorbed atom in the initially 
straight step we break 3 lateral bonds and create one bond, thus expending 
a net amount of energy of 27cI. The transfer of the next atom (to separate the 
kinks by a smooth part) is not connected with the change of energy. Thus 
we expend 2$ energy to form four kinks (two positive and two negative) or 
CJ = $/2 per kink. This holds for crystal-vapor interface. If the ambient 
phase is a melt we can calculate the energy to form a kink on the base of 
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Fig. 1.20. Positive K+ and negative K- kinks along a step at T # 0. The overhang is 
also shown. 

the s+called lattice model of the melt. It is assumed that the atoms in the 
liquid form the same lattice as in the crystal but the energies to disrupt 
the bonds between two neighboring atoms in the crystal, &, in the melt, 
&,, and belonging to both the crystal and the melt, are different. 
We perform the same considerations as before but now we add the energy 
required to transfer two liquid atoms from the melt into the created holes 
in the step. Then the energy w to form a kink per crystal-melt bond &,,, 
is 

In the case of crystal-vapor interface &, = $ccm = 0 and w = $J2 -= 

It is worth noting that the work to create a kink is in fact the work to 
create one more dangling bond or, in other words, to elongate the step by 
one interatomic spacing. Thus, the creation of kinks leads to a change of 
the specific edge energy of the step or of the surface energy of the crystal 
face. 

We denote by n+ and n- the densities of single positive and negative 
kinks, respectively, and by no the density of the smooth parts where there 
are no jumps at all. Their sum 

$/2. 
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Fig. 1.21. For the determination of the activation energy of formation of a kink: (a) 
First we transfer an atom embedded into the step (site 2 in Fig. 1.15) to an adsorption 
position at the step (site 4 in Fig. 1.15). A hole and an adatom are formed. (b) The 
hole is widened by removing a second atom and transferring it next to the first one. As 
a result four kinks, two positive and two negative, are formed (after Burton and Cabrera 
(19491). 

n+ -t n- i- no = n = l/a (1.71) 

is just equal to the number of atoms per unit length of the step where a is 
the first neighbor distance. 

If the energy to form a kink is w = +/2 we can write [Burton, Cabrera 
and Rank 19511 

.+/no = n-/no = 7] 

or 

n+n-/ni = q2, q = exp(-w/kT) = exp(-$/2kT) . (1.72) 

If the average orientation of the step deviates from the direction of the 
most dense row of atoms by a small angle cp then 

n+ - n- = cp/a . (1.73) 

By solving the system (1.71)-(1.73) at  tp = 0 for the mean distance 
between the kinks, 60, one obtains 

1 
n+ +n- 

a, = 
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Let us evaluate this quantity. The enthalpy of evaporation of, say, silver 
is AH, = 60720 cal/mole; $J = AHe/6 or w = AHe/12. At T = lOOOK, 
w/kT = 2.53 and 60 = 7a. In other words at the crystal-vapor interface of 
silver we have kinks of any sign, on average, at every 7 atomic distances, 
i.e. the step will be rough. In the case of Si crystal-melt interface at the 
temperature of melting, T m  = 1685 K, A H m / k T m  = 3.3, w/kTm = 1.66 
and 60 = 3.5a. An interesting example is the vicinal surface of Si(OO1). As 
will be shown in Sec. 3.5 steps called SA and SB with w = 0.15 eV and 
0.01 eV, respectively, alternate. Using Eq. (1.74) we find that very rough 
and very smooth steps coexist on the Si(OO1) vicinal surface. 

All this means that whereas at T = 0 the step is perfectly straight 
without kinks of any sign at any temperature higher than zero, i t  will 
contain kinks or, in other words, it will be rough. This is due to the 
decrease of the Gibbs free energy of the step with increasing temperature 
due t o  the increase of entropy. For the Gibbs free energy of the step we can 
write the usual expression (we neglect the P V  term) 

Gst = ust - TSst , (1.75) 

where 
Us, = (n  + n+ + n-)$J,/2 (1.76) 

is the potential energy of the unsaturated bonds at the step (n  is the number 
of unsaturated bonds in a direction normal to that of the step and n+ 
and n- axe the numbers of unsaturated bonds parallel to  the step, every 
unsaturated bond having energy w = $12). 

The entropy is determined by the number of possible ways of distribu- 
tion of the kinks and smooth parts so that (if we neglect the kink-kink 
interaction) 

s,, = kin ( n! ) 
n+!n-!no! 

(1.77) 

Solving again the system (1.71)-(1.73) for the simpler case of a step 
parallel to the direction of the most dense atomic row (cp = 0) we obtain 

(1.78) 

Substituting (1.78) into (1.75), (1.76) and (1.77) and using the Stirling 
formula In N! = N In N - N gives 

G,, = -nlcTln[q(l + 2q)l . (1.79) 
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This expression was obtained under the assumption that the kinks are 
monatomic. If we relax this restriction for GSt one obtains (see 
Eq. (3.157')) [Burton, Cabrera and h a n k  19511 

GSt = -nkT In (qz) . (1.80) 

It is easy to  see that Gst > 0 when q is greater than some critical 
value qr = fi - 1. Beyond this value GSt < 0. This means that a critical 
temperature determined by the condition Gst = 0 exists: 

= 0.882 - = 0.57 or - kTr AH, 
II, kTr 

(1.81) 

below which the steps are rough but still exist. Bearing in mind that a 
step divides a half-crystal plane (with vacancies in it) from a dilute adlayer 
it is clear that at temperatures higher than T, both regions are mutually 
dissolved, the steps no longer exist, and the surface of the face becomes 
atomically rough. This phenomenon is similar to the mutual dissolution of 
a liquid and a vapor phase at the critical point at  which the phase boundary 
between them disappears. 

1.6.3. Equilibrium structum of F faces 
We have seen in the previous section that the disappearance of a mon- 
atomic step leads to the roughening of the stepped surface. So the next 
logical question is: Can F faces roughen if steps are not initially present? 
The answer is yes but the problem is much more complicated. 

The roughness of a crystal face can be defined as 

(1.82) 

where Uo is the internal (potential) energy of the reference flat face at T = 0, 
which is proportional to the number of the unsaturated bonds normal to 
the face (Uo = 7412 per atom), and U is the internal energy of the face at 
T > 0. The latter is proportional to the number of both normal and lateral 
bonds. Thus the roughness is given by the ratio of the unsaturated lateral 
and normal bonds. If we exclude the overhangs shown in Fig. 1.24 from 
our considerations (this is the well-known solid-on-solid or SOS model) the 
number of the normal bonds does not change upon roughening and U, = 
const. 
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At T = 0 the face is atomically smooth and all the surface atoms are 
on one and the same level. Unsaturated lateral bonds do not exist and 
R = 0. At T > 0 some atoms can leave the uppermost atomic plane, 
leaving vacancies in it, and adsorb on it, thus giving rise to unsaturated 
lateral bonds and hence to some degree of roughness. When there are 
atoms on different levels jumps analogous to the kinks in the step appear. 
In the case of steps, however, the problem is much simpler because the total 
number of kinks and smooth parts is equal to the number of bonds per unit 
length of the step and the appearance of a kink or a smooth part at any 
particular point does not depend on the situation in the neighbor points. 
In the 2D case of a crystal surface the situation is completely different. If 
we consider, for example, the (100) face of a Kossel crystal we will see that 
the number of the lateral bonds is twice the number of atoms per unit area. 
Hence the number of jumps between atoms on different levels is greater than 
the number of atoms. This means that the existence of a jump at  a given 
site depends on the existence of jumps in neighboring sites although the 
existence of atoms on different levels is independent. As we are interested in 
the number and distribution of jumps or unsaturated lateral bonds we have 
to deal with this cooperative phenomenon which means that the appearance 
of jumps between atoms on different levels is interdependent. This is quite 
a difficult problem and an exact solution exists only for the simplest Case of 
a surface with a square atomic mesh and atoms on two levels. More general 
solutions can be found if some approximations are used. 

Burton, Cabrera and Rank [1951] first realized that the two-level prob- 
lem is analogous to the 2D Ising model in the theory of ferromagnetism. 
The latter deals with a square mesh of spins which can be directed either 
up or down (Fig. 1.22). The energy of interaction of two neighboring spins 
can be taken to be either +1 or -1 depending on whether they are parallel 
or antiparallel, respectively. Such a system shows critical behavior in the 
sense that beyond some critical temperature (the well-known temperature 
of Curie) all the spins are randomly oriented (Fig. 1.22(a)). At lower tem- 
peratures all the spins are equally directed thus giving rise to ferromagnetic 
state (Fig. 1.22(b)). 

Consider now a crystal face with atoms on two levels. If an atom 
has a neighbor on the same level the energy of interaction between them 
will be -+. Otherwise the bond will be unsaturated and the energy of 
interaction will be zero. This is equivalent to parallel and antiparallel 
spins, respectively. Hence, if all the atoms are situated on one and the 
same level and the face is atomically smooth, all the lateral bonds are 



50 Crystal-Ambient Phase Equilibrium 

l i l l l t i t  t t t l t t t t  
l l t l t l t l  t t t 1 t t 1 1  
t l t l l t t l  I l t t t l l l  
t t i l t l t t  t l t t t l t t  
l l t t t l i t  t t t t n t t  

T >T, T c  T, 
a b 

Fig. 1.22. A square mesh of spins as an illustration of the two-dimensional Ising model 
at temperatures (a) higher and (b) lower than the critical temperature T,. 

saturated and this state is equivalent to the ferromagnetic one. Obviously, 
a critical temperature analogous to that of Curie will exist above which 
approximately half of the atoms will be on the upper level and the other 
half on the lower level. Using the exact solution of Onsager [1944] for 
this “simple” case, Burton, Cabrera and Frank deduced that the critical 
temperature is given by 

for the (001) face of a Kossel crystal. 
Obviously, the roughening of a crystal face taking place on more than 

two levels and without square symmetry cannot be treated in this way. 
Some approximation should be used. So we consider first the two-level 
model of Jackson [1958] and then treat in the same way the multilevel 
model of Temkin [1964, 19681 (see also Bennema and Gilmer [1973]). 

1.6.3.1. Model of Jackson 

We consider a flat, atomically smooth face with N adsorption sites per unit 
area at the equilibrium temperature T,. Let N A  atoms be adsorbed on this 
face so that the surface coverage is 8 = NA/N. Every atom has Zl lateral 
bonds. For instance, Z1 = 4 for the (100) face of Kossel and fcc crystals, 
21 = 6 for the (111) face of fcc crystals, etc. 
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The relative Gibbs free energy of the crystal face is (the P V  term is 
again neglected) 

AGf = AUf - TAS, , (1.84) 

where AiJf is again the internal energy due to the unsaturated lateral 
bonds and A& is the configurational entropy of distribution of NA atoms 
over N adsorption sites (&(T = 0) = 0). In order to calculate AUf we 
use the so-called approximation of Bragg-Williams 119341, also known as 
“mean-field” approximation. In this particular case the latter consists of the 
following. An adatom on the surface can have 1,2,3,. . . ,& first neighbors. 
If we assume that the atoms are randomly distributed and clustering is ruled 
out, we can accept that approximately every adatom will have on average 
Z16 first neighbors and respectively 2, (1 - 8) unsaturated bonds. Then 

The entropy can be calculated in the usual way: 

) = -IcNBln6 - kN(1- 8 ) l n ( l -  8) , (1.86) 
NA!(N - N A ) !  

AS, = kln 

where we again made use of Stirling’s formula. 
Then for the Gibbs free energy one obtains 

AGf/NkT, = d ( l  - 8) f 6 In 8 f (1 - 6 )  In(1- 6 )  . (1.87) 

A graphical representation of AGr/NkTe is given in Fig. 1.23 for differ- 
ent values of the parameter a: 

where 2 is the coordination number of an atom in the bulk crystal. 

19 = 1/2. The second derivative 

d2 AG 
de2 NkTe 8 1 - 6  

As seen all curves are symmetric and have maximum or minimum at 

1 1  
- -2a - l - -+ -  --- 

is negative at 8 = 1/2 when Q > 2 and is positive when Q c 2. This means 
that at cy c 2 the surface free energy has a minimum at 8 = 1/2. On 
the contrary at Q > 2 the Gibbs free energy has a maximum at 8 = 1/2 
and two equally deep minima at values of 6 very close to 0 and 1. The two 
minima correspond to two equivalent configurations - the first one (8 2 0) 
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Fig. 1.23. Dependence of the relative Gibbs free surface energy AGflNkT, on the surface 
coverage 0 = N A / N  at different values of the parameter a denoted by the figure at each 
curve (after Jackson [1958]). 

consisting of small density of adatoms on a flat crystal face and the second 
one (0 E 1) representing a flat crystal face with a few vacancies in it. If 
we accept that the maximum surface roughness is defined by B = 1/2 the 
crystal face will be rough at Q < 2 and smooth at Q > 2. 

We can now answer the question of what the structure of the crystal- 
ambient phase interface will be a t  the temperature of transition melting 
or sublimation. For many metals the relative entropy of melting ASm/R 
has a typical value around 1.2 and their surfaces will be rough at T, or 
near to it. The different crystal faces will have nearly one and the same 
density of kinks and the crystals will grow rounded from their melts. On 
the other hand, the relative entropy of evaporation ASJR has a typical 
value over 10 and Q > 2. The F faces will be smooth and the crystds will 
grow well polygonized from the vapor phase. The above refers to  metals. 
In the case of some organic crystals the entropy of melting is large and they 
grow polygonized from their melts. 

The model of Jackson was further generalized by Chen, Ming and 
Rosenberger [1986] to account for the nonlinear behavior of energy to  break 
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a bond between first neighbors due to many body interactions with more 
distant neighbors. The analysis leads to lower values of the cy factor for a 
series of metals (Cu, Pb, Zn), thus increasing the tendency to roughening 
at temperatures lower than predicted by the Jackson model. 

1.6.3.2. Model of Temkin 

The main shortcomings of the Jackson model aside from the use of the mean 
field approximation is that the roughness of the face is restricted to two 
levels only and the result is applicable only at the equilibrium temperature 
(or very close to it). This is the reason why Temkin [1964, 19681 developed 
further this approach allowing the crystal face to roughen at an arbitrary 
depth and arbitrary temperature, i.e. during the processes of growth and 
dissolution (Ah # 0). 

The Bragg-Williams approximation again permits one to solve the 
more general case of multilevel roughening [Temkin 1968; Bennema and 
Gilmer 19731. At T = 0 the crystal face is completely smooth as shown 
in Fig. 1.24(a). At some higher temperature the face is rough and the 
roughness is not confined to two levels as in Jackson’s model but can go from 
-00 to +oo. In fact we consider the SOS model ruling out the overhangs 
(Fig. 1.24(b)). Every crystal layer (with number n) consists of Nnr solid 
atoms belonging to the crystal and N,f atoms belonging to the fluid phase. 
Then 

N,, + N,f = N = const. ( 1.89) 

3 

a b 
Fig. 1.24. Schematic representation of the SOS (Solid-On-Solid) model of an F face: (a) 
smooth face at T = 0, (b) rough face at T > 0. Overhangs as shown by the shadowed 
black are forbidden. The figures denote the number of the corresponding crystal layer. 
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We define the corresponding surface coverages as before: 

Nns 
N 

en = - and (1.90) 

Then the fraction of fluid atoms is 1 - 8,. As n varies from --oo to +oo 
the problem of finding all the 6, is subject to the boundary conditions 

8-, = 1 and 8+, = O .  (1.91) 

As we exclude the overhangs from consideration and hence On 5 @,,-I, 

(1.91) means that we go from completely solid phase to  completely fluid 
phase. In order to  find a solution for 8, we will follow the approach of 
Mutaftschiev [Mutaftschiev 1965; Bennema and Gilmer 19731. 

The Gibbs free energy of a rough surface with respect to the smooth 
one is given by [Mutaftschiev 19651 

AGf = AG, i- AiJf i- TASf . (1 -92) 

The first term accounts for the interchange of atoms between the crystal 
and fluid phases. This interchange is connected with the difference between 
the chemical potential of the atoms in the crystal, pc ,  and that in the fluid, 
pf: Ap = pc - pf, which is just the supersaturation. Then for AG, we can 
write (see Eq. (1.90)) 

0 

-m 1 

the terms in the brackets giving the net amount of atoms leaving the crystal 
or joining the crystal from the ambient phase. If the roughening takes place 
without interchange of atoms between the two phases then both sums cancel 
each other and AG, = 0. This is strictly valid only at the equilibrium 
temperature T = T, or, in other words, at Ap = 0. 

The second term in (1.92) is completely analogous to  the internal energy 
in Jackson's model and gives simply the number of the unsaturated lateral 
bonds. Then 

Auf = z1($~/2)NE@n(l --&I . 
00 

--oo 
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It is immediately seen that in the case of a two-level model the sum 
is reduced to one term only which is precisely equal to the first term in 
Jackson's expression (1.85). 

in Jackson's model: 
The configurational entropy A& can be calculated by the same way as 

Using the boundary conditions (1.91) and Stirling's formula an expres- 
sion completely analogous to that of Jackson is obtained: 

00 

TASf = -kTN C(6n - 6,+1) In(& - @,+I) . 
-00 

Then for the relative Gibbs free energy AGf INkT one obtains 

00 

+ C(en - en+tl)ln(en - en+1) 1 (1.93) 
-00 

where 
p = -  ACL (1.94) 

kT 
and a is again given by (1.88) in which Te is replaced by T .  

This expression is not simply a generalization of Jackson's for the case 
of many levels although it is immediately seen that Jackson's expression is 
automaticdly obtained if we put = 0, = 1, Bo = 0 and B+l = 0. The 
roughness of the crystal face is considered in a nonconservative system as we 
do not keep the number of the solid atoms constant but allow interchange 
between phases. Thus although the Temkin model is a thermodynamic 
model it considers surface roughening in the process of growth or dissolution 
of a crystal, whereas Jackson considers a system in equilibrium (T = Te 
and hence p = 0). 

The stability of the crystal-fluid interface is determined by the condition 
for minimum Gibbs free energy: 

"(")=o, 68, NkT 
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which leads to  the following master equation for 6,: 

Using the substitution zn = 2 ~ ~ 6 ,  - a + P, Eq. (1.95) turns into 

zn - zn+l 
2,-1 - zn 

= exp(en) . 

(1.95) 

(1.96) 

Expressing z,-~ - z, through zn - z,+1 and substituting the latter into 
the equation for z,, (1.96) can be written in the form 

zn+1 = zn - (20 - z1)exp (1.97’) 

Z-(n+ l )  = .z-, + (20 - r1)exp ( - 2 Z - m )  . (1.97”) 
m=O 

The boundary conditions 6 - ,  = 1 and 6 ,  = 0 turn into 

z-oo=p-cr ,  2 ,=p+a.  (1.98) 

Let us consider first the simpler case of 0 = 0, i.e. the multilevel 
generalization of Jackson’s model. Two symmetric solutions of Eqs. (1.97) 
subject to the boundary conditions (1.98) are possible (Temkin 19681. The 
first solution is 

zo = -21, 2-1 = -22 ,  2-2 = -23, etc. , (1.99) 

which corresponds to 

60 = 1 - 61, 6-1 = 1 - 6 2 ,  6 - 2  = 1 - 6 3 ,  etc. 

The second solution is 

which corresponds to  

(1.100) 
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Comparing both solutions it is immediately seen that the second one 
(1.100) corresponds to a higher value of the Gibbs free energy as 00 = 1/2 
and some degree of roughness always exists, whereas the first solution 
(1.99) permits 00 to be close to unity and close to zero. Hence solution 
(1.99) provides a minimum in the surface energy whereas solution (1.100) 
corresponds to an inflection point. If we go back to Jackson's model for 
which 8-1, 8-2, 8-3 = 1 and 6'1, 82, 83 = 0, we will see that the second 
solution 80 EE 6' 0.5 corresponds to the maximum of the relative Gibbs 
free energy at values of the parameter a greater than 2. The first solution 
60 = 1 - 81 corresponds to either a flat face with negligible density of 
adatoms (0 Z 0) or a flat face with negligible density of vacancies (6' 2 1). 

Figure 1.25 shows the dependence of 6, on n for different values of the 
parameter a. As seen the interface becomes more and more smeared with 
decreasing a. On the contrary, when a = 3.31 the interface consists of one 
layer with some vacancies in it and a few adatoms on top of it. In other 
words, at a > 3.3 the interface is flat and atomically smooth. 

Fig. 1.25. Dependence of the surface coverage on the number n of the layer at different 
values of the parameter a denoted by the figure at each curve at equilibrium ( p  = 0 )  
(afier Temkin [1964, 19681). 

We consider further the more general case of p # 0 and construct a 
plot of In@ vs a (Fig. 1.26). As seen the whole field is divided into two 
parts, A and B. In part A Eq. (1.95) (or (1.97)) has two solutions: one 
ground state solution (1.99) and one saddle point solution (1.100). On the 
dividing line both solutions coincide. In region B the master equation (1.95) 
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Fig. 1.26. Phase diagram in coordinates In@ and a showing the state of the crystal 
surface as follows from the model of Temkin. In the region denoted by A the system 
of equations (1.95) has two solutions, one of which is the ground state solution corre- 
sponding to  a smooth surface and the other is a saddle point. Both solutions coincide on 
the dividing line, and in the region denoted by B no solution exists. The latter can be 
interpreted as disappearance of the crystallographic orientation of the face or roughening 
of the face (after Temkin [1964, 19681). 

has no solution a t  all which is interpreted as a loss of the crystallographic 
orientation of the crystal face. In other words, it becomes so rough that 
it cannot be distinguished as a crystal face with definite crystallographic 
orientation any more. The latter means that under conditions of region B 
the atoms arriving from the ambient phase can be incorporated at any site 
of the crystal surface without the necessity to overcome a thermodynamic 
energy barrier. At values of Q and ,O such that we are in region A the ground 
state is a more or less flat surface and its growth requires the formation of 
2D nuclei or the presence of screw dislocations. 

1.6.3.3. Criterion of Fisher and Weeks 

Although the models of Jackson and Temkin predict roughening of the 
crystal surfaces above some critical temperature they do not correctly 
account for the thermal fluctuations in the system because of the mean 
field approximation used. 
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As shown above the model of Temkin predicts that under conditions 
of region B in Fig. 1.26 the crystal surface cannot be distinguished any 
more as having a definite crystallographic orientation. In other words, the 
crystal surface becomes delocalized with respect to the crystal lattice. This 
statement contains in itself the main difference between a liquid and a 
cxystal surface. The flat crystal surface has a definite crystallographic ori- 
entation and is said to be localized or immobile. On the contrary, the liquid 
surface is delocalized in the sense that it has not a definite crystallographic 
orientation. At low enough temperatures the crystal surfaces are more or 
less smooth and so are the steps on them. At higher temperatures thermal 
fluctuations become important and the steps become more and more rough, 
the step Gibbs free energy GSt tending to zero. It was shown [Swendsen 
1978; Weeks 1980; Fisher and Weeks 1983; Jayaprakash, Saam and Teitel 
1983) t ha t  GSt vanishes with temperature following the law 

(1.101) 

i.e. in a very smooth manner. 
The step free energy Ggt is closely connected with the specific surface 

energy and thus with the surface stiffness. It has been shown in the previous 
section that the surface stiffness is infinite for a flat crystal surface whereas 
it has a finite value for a rounded “rough” surface. Theoretical treatment of 
the temperature behavior of surface stiffness [Chui and Weeks 1978; Fisher 
and Weeks 19831 resulted in an expression for the roughening temperature 
which naturally connects the latter with the surface stiffness: 

(1.102) 

where o*(T,) is the surface stiffness at the transition temperature and dhkl 
is the interplanar distance parallel to the interface. The more closely packed 
a given crystal face is, the larger the interplanar distance and the higher 
the roughening temperature will be. Thus for a fcc lattice, dlll  = ao / f l ,  
dloo = ao/2 and (dll l /dloo)2 = 4/3 = 1.33. Hence, in equilibrium at some 
finite temperature the most closely packed surfaces will be flat, whereas 
others will be rounded. Slight deviation from equilibrium will lead to 
growth of the rounded regions and their subsequent disappearance. The 
crystal will be confined by low index planes only. If again equilibrated the 
rounded regions should reappear. 
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The theoretical criterion (1.102) has been experimentally verified in the 
case of 4He crystals [Wolf et al. 1985; Keshishev et aE. 1981; Babkin 
et  al. 1984; Avron et al. 1980; Gallet e t  at. 1986, 1987; Nozihres and 
Gallet 19871, which is the ideal choice for such kind of investigations. The 
main advantages are the following. The liquid helium-$ is superfluid below 
1.76 K, i.e. its viscosity is nearly zero. Moreover its thermal conductivity 
is practically infinite. Besides, helium can be easily purified, the impurity 
concentration being as low as 1 x 10-9at. %. The latter is of utmost 
importance as the adsorption of impurities changes drastically the surface 
energy. Crystal helium has a very high thermal conductivity also. Thus, in 
contrast to  other crystals, the heat and mass transport are very fast. Then, 
the equilibrium shape is reached in a very short time. 

Fig. 1.27. Semi-logarithmic plot of the ratio of the rate of growth V in (0001) direction 
and the level difference H (the latter is proportional to the supersaturation Ap) as a 
function of the reciprocal supersaturation 1 / H  01 l/Ap for various temperatures. The 
straight lines show that V E Apexp(--Kz/Ap) and hence the growth takes place by 
two-dimensional nucleation (see Chap. 2). The slopes of the straight lines give in fact 
the squares of the specific edge energies of the steps surrounding the 2 D  nuclei. As seen 
the slope becomes equal to zero at  T = 1.232 K which shows that the specific energy 
of the steps also becomes equal to zero. The latter means that the crystal surface is 
no longer smooth but is atomically rough. (P. E. Wolf, F. Gallet, S. Balibar, E. Rolley 
and P. Noaibres, J .  Phys. 46 (1987). By permission of Les Editions de Physique and 
courtesy of S. Balibar.) 



1.6. Equilibrium Structure of Crystal Surfaces 61 

h 
N 

E 
9 

F 5 2 I O - ~  
4- e 

3 4 1 0 4  

E a. 
x 

v) 

As mentioned above the structure of the crystal surface affects the 
mechanism of growth. [1985] investigated the latter and 
found that at temperatures beyond 1.232 K the dependence of the growth 
rate R on Ap is linear, which can be considered as a direct indication of 
atomically rough surface. On the contrary, at temperatures below 1.232 K 
a nonlinear dependence is established which proved to be exponential as 
required by the 2D nucleation mechanism of growth (Fig. 1.27). The slope 
of the logarithmic plot gives directly the energetic barrier for 2D nucleus 
formation, and at T = 1.232 K it becomes equal to zero. The latter means 
that the free energy of the steps becomes equal to zero, the surface becomes 
atomically rough, and 2D nucleation is no more necessary for the crystals 
to grow. What is more interesting is that the dependence of the Gibbs free 
energy of the steps (estimated from growth experiments) on temperature 
decays exponentially, going smoothly to the roughening temperature Tr 
(Fig. 1.28). Thus an excellent quantitative agreement between theory and 
experiment is achieved. 

Wolf et al. 

- 

- 

I @ o  0 0 0 '  
1.1 1.15 1.2 1.25 1.3 1.35 

Temoeratye X) 

Fig. 1.28. Variation of the step free energy with temperature as deduced from plots shown 
in Fig. 1.27. As seen the step free energy vanishes within the experimental accuracy near 
T = Tr = 1.28 K .  (F. Gallet, S. Balibar and E. Rolley, J. Phys.  48, 369 (1987). By 
permission of Les Editions de Physique and courtesy of S. Balibar.) 

Let us consider Eq. (1.102) in more detail. The interplanar distance dhkl 

can be identified as the step height. Then the product a*(T,)dhkl can be 
treated as the energy of the step and the product u*(Tr)dEk, as the energy 
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to form a kink or the energy w to form a dangling bond [Chernov 19891. 
Assuming o* E as a first approximation one can now use Eq. (1.102) to 
find the critical temperature T, and predict the mechanism of growth. Thus 
for Ge (111) the surface energy of the crystal-melt interface as found from 
nucleation experiments is equal to 251 erg.cm-2 [Skripov 1977) and that 
of the crystal-vapor interface is equal to 1100 erg.cm-2 (Swallin (19621; 
see also Kern et al. [1979]). Then with dhkl = 3.26 x lo-* cm for the 
critical temperature for roughening, T,, the values 1150 K and 5000 K for 
the crystal-melt and crystal-vapor interfaces, respectively, are obtained. 
Bearing in mind that the melting point of Ge is Tm = 1210 K,  it follows 
that  the most closely packed surface (111) and hence all the other surfaces 
of Ge should be rough when in contact with the melt below the melting 
point and the Ge crystals should grow rounded from the melt. In the other 
case, the roughening temperature is well above the melting point and the 
Ge crystals should grow well polygonized from a vapor phase. 

1.6.4. Kinetic roughness 

All criteria of surface structure derived so far are of thermodynamic nature. 
The roughness of the crystal face is due to entropy effects which decrease 
the Gibbs free energy of the crystal surface. However, there can also be 
the so-called kinetic roughness which can take place at temperatures below 
the thermodynamic critical temperature. When the supersaturation is high 
enough the rate of formation of 2D nuclei becomes very large so that new 
nuclei can be formed before the complete coverage of the crystal face by the 
preceding one. Several layers grow simultaneously and we observe what is 
called a multilayer growth. Then if the density of 2D nuclei is very large it 
may happen that the mean distance between their edges (which in turn are 
rough) becomes comparable with the interatomic distance [Chernov 19731. 
Arriving atoms can thus be incorporated practically at any site. Obviously, 
kinetic roughness can be observed when the specific edge free energy and 
the work of formation of 2D nuclei are very small. This question will be 
considered in more detail in Chap. 3. 



CHAPTER 2 

NUCLEATION 

2.1. Thermodynamics 
Gibbs was the first to realize that the formation of a new phase requires 
as a necessary prerequisite the appearance of small clusters of building 
units (atoms or molecules) in the volume of the supersaturated ambient 
phase (vapors, melt or solution). He considered these nuclei as small 
liquid droplets, vapor bubbles or small crystallites, or, in other words, 
small complexes of atoms or molecules which have the same properties 
as the corresponding bulk phases with the only exception being their small 
linear sizes. Although oversimplified this picture has been a significant step 
towards the understanding of the transitions between different states of 
aggregation, because when phases with small sizes are involved the surface- 
to-volume ratio turns out to be large compared with that of macroscopic 
entities. Then the fraction of the Gibbs free energy of systems containing 
small particles which is due to the surface energy becomes considerable. 
Moreover, this approach allows a description of phases with finite sizes in 
terms of such macroscopic thermodynamic quantities as specific surface and 
edge energies, pressure, etc. That is why the theory of formation of new 
phases as developed by Gibbs [1928], Volmer [1926, 19391, Farkas [1927], 
Stranski and Kaischew [1934], Becker and Dijering [1935], F’renkel [1955], 
and others is known as the capillary or  classical theory of nucleation. As will 
be shown in this chapter the classical theory is valid at small or moderate 
supersaturations, in contrast to the atomistic theory which is applicable 
at extremely high supersaturations where the nuclei consist of very small 
number of building units of the order of unity. 

63 
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In any thermodynamic system, even stable ones, local deviations from 
the normal state or fluctuations should have place which are less probable 
in the sense that they increase the thermodynamic potential of the system. 
If one considers a homogeneous molecular system (liquid or vapor) there 
are always small fluctuations of the density in the sense of small molecular 
aggregates which are well compatible with the given state of aggregation. 
Such density fluctuations can be called, after F’renkel [1955], “homophase” 
fluctuations. On the other hand, there might be the so-called “heterophase” 
fluctuations which could lead to visible transition to another state of 
aggregation. Their concentration should increase considerably near the 
phase equilibrium determined by the equality of the chemical potentials 
p ,  = pp. If the initial bulk phase Q is the stable one (pa < pp) these density 
fluctuations are “lifeless” in the sense that they grow to negligible sizes and 
decay without revealing a tendency to unlimited growth. If, however, the 
initial phase cy is unstable (pa > pp) the tendency to growth prevails after 
exceeding a certain critical size. It is just these density fluctuations or 
clusters that are called the critical nuclei of the new phase. In order to 
form such clusters some free energy should be expended. In other words, 
the system should overcome an activation barrier whose height is given by 
the work of formation of the critical nuclei. 

When considering the change of the thermodynamic potential connected 
with the formation of nuclei of the new phase one assumes that the shape 
of the nuclei is just the equilibrium shape as determined in the previous 
chapter. Arbitrary shapes could be accounted for as well but it is the 
equilibrium shape that ensures minimal work for nucleus formation and 
thus determines the most probable path. Moreover, when one considers 
the transition from one condensed phase to  another, say crystalline from 
crystalline or amorphous ones, formation of the nuclei will be accompanied 
by the appearance of elastic stresses due to the different molar volumes 
of the two phases. The contribution of these stresses could be significant 
[Hilliard 1966; Christian 19811 and often greater than the contribution due 
to the nucleus shape. In the following presentation the contribution of these 
strains will not be accounted for. For more details the reader is referred 
to  the monograph of Christian [1981]. In the case of epitaxial growth 
of thin films, however, the substrate and deposit crystals have as a rule 
different lattice parameters and lateral stresses in both crystals appear as a 
consequence. Contributions due to these elastic strains cannot be avoided 
if we want to  understand the phenomenon and these should be added to 
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the change of the thermodynamic potential, in addition to the volume and 
surface terms discussed in the previous chapter. 

In the present chapter the nucleation of single component systems will 
be considered. Nucleation in binary systems was first treated by Reiss 
[lSSO] following the approach of Frenkel[1955]. The problem was considered 
further by many authors [Wilemski 1975a, 1975b; Temkin and Shevelev 
1981,1984; Shi and Seinfeld 1990; Zeng and Oxtoby 19911 and the interested 
reader is referred to the original papers. Cahn and Hilliard f1958, 19591 
considered nucleation in a twecomponent incompressible fluid and found 
that at small supersaturations the classical theory results. However, on 
approaching the spinodal the work for nudeus formation tends to zero as 
the energy of the interface between the nucleus and the ambient phase 
vanishes at the spinodal. The radius of the critical nucleus tends to infinity 
but the density of the nucleus tends to that of the ambient phase. The 
theory of Cahn and Hilliard was further developed by Hoyt [1990] for the 
case of multicomponent systems. For a review see Uhlmann and Chalmers 
[1966]. 

The problems of nucleation, both thermodynamic and kinetic, are con- 
sidered in numerous monographs and review papers [Volmer 1939; Defay 
et ul. 1966; Kaischew 1980; Turnbull 1956; Frenkel 1955; Dunning 1955; 
Hirth and Pound 1963; Nielsen 1964; Hollomon and Turnbull 1953; Toschev 
1973; Stoyanov and Kashchiev 1981; Stoyanov 1979; Zettlemoyer 1969; Nu- 
cleation Phenomena 1966, 1977; Skripov 1977; James 1982; Christian 1981; 
Oxtoby 19921 and the reader interested in different aspects of particular 
phase transitions is referred to them. 

2.1.1. Homogeneous formation of nuclei 

We consider first the simplest case of formation of liquid nuclei in the bulk 
of a vapor phase. The simplicity is obviously due to the isotropic surface 
tension CT of the liquid which leads to spherical equilibrium shape of the 
small liquid entities. We consider a volume containing n, moles of a vapor 
with chemical potential p, which is a function of the temperature T and 
pressure P. The thermodynamic potential of the initial state of the system 
at T = const and P = const is thus given by 

A liquid droplet with bulk chemical potential p1 is formed from n1 
moles of the vapor phase and the thermodynamic potential of the system 
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vapor-liquid droplet reads 

In this equation u is the surface energy of the flat surface. The 
dependence of the surface energy on the droplet size has been discussed 
by Kirkwood and Buff (19491 and by Tolman [1949]. They found that the 
surface energy should in general decrease with decreasing droplet size. As- 
suming Lennard-Jones interatomic forces Benson and Shuttleworth [1951) 
have found a decrease of 15% for the surface energy of a close-packed cluster 
consisting of 13 atoms as compared with the energy of a flat surfaxe. In 
the analysis that follows we will neglect the curvature dependence of the 
surface energy. 

The change of the Gibbs free energy upon the formation of the droplet 
is then 

AG = G2 - GI = -nl(pv - 111)  + 4 ~ ~ ~ 0  . 
Bearing in mind that nl = 4nr3/3vl (vl being the molecular volume of 

the liquid) one obtains 

4 nr3 
3 Y 

AG(T) = --- Ap + 4TT30 , 

where Ah = pv - p1 is the supersaturation (Eq. 1.9). The AG(r) depen- 
dence is plotted in Fig. 2.1. 

Thus in the simplest case of a droplet formation in vapor AG consists of 
two terms: a volume term 4nr3Ap/3v1 = (47rr3/3)(4 - Pv) and a surface 
term 47rr2a. The minus before the volume term reflects the fact that energy 
is gained when the liquid phase is thermodynamically stable (p1 < pV). 
The increase of the thermodynamic potential of the system is due to the 
formation of a dividing surface. Then AG displays a maximum at some 
critical size T* given by (Fig. 2.1) 

Equation (2.2) is in fact the equation of Thomson-Gibbs (1.18) and gives 
the condition for equilibrium of the nucleus with the ambient phase. Note, 
however, that this equilibrium is unstable. Indeed, if some more atoms join 
the critical nucleus its radius increases and in turn its equilibrium vapor 
pressure becomes smaller than the one available in the system (Eq. (1.19)). 
Then the probability of decay becomes smaller than the probability of 
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Fig. 2.1. Dependence on the droplet radius of the Gibbs free energy change AG connected 
with the formation of liquid nuclei from a supersaturated vapor phase. When the liquid 
phase is stable (jq < pv)  AG displays a maximum at some critical radius r = r* .  Beyond 
this size, growth of the nucleus leads to a decrease of the Gibbs free energy of the system. 
The maximum Gibbs free energy AG* is the work of formation of the critical nucleus. 
When the vapor phase is stable (pV < pl )  both terms in Eq. (2.1) are positive and the 
formation of nuclei capable of unlimited growth is thermodynamically prohibited as it 
leads to infinite increase of the Gibbs free energy. 

growth and the nucleus should grow further. In the opposite case its 
equilibrium vapor pressure becomes greater than that available in the 
system and the nucleus reveals a tendency for further decay. In other words, 
any infinitesimal deviation of the size of the nucleus from the critical one 
leads to a decrease of the thermodynamic potential of the system. In this 
sense a cluster of size T* is a critical nucleus of the new phase. 

The maximal value of AG which is obtained by the substitution of T' 

into Eq. (2.1), 

gives the height of the energy barrier which should be overcome for con- 
densation to take place. It is inversely proportional to the square of the 
supersaturation (a result which is obtained for the first time by Gibbs 
[1878]) and increases steeply near the phase equilibrium (i.e. at small 
supersaturations), thus imposing great difficulties for the phase transition 
to occur. 

When the ambient phase is stable (pv < p,) both terms in Eq. (2.1) are 
positive and AG tends to infinity (see Fig. 2.1), thus reflecting the fact that 
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the heterophase density fluctuations at  undersaturation are thermodynam- 
ically unfavored. 

Substituting the supersaturation Ap into ( 2 . 3 )  by the radius T' of the 
critical nucleus from the Thomson-Gibbs equation (2 .2)  gives 

1 1 
3 3 

AG' = - 4 7 ~ ' ~ ~  = -uC . (2 .4)  

As seen the Gibbs free energy required to  form a critical nucleus of the 
new phase with equilibrium shape is precisely equal to one third of the 
surface energy ox, a result obtained for the first time by Gibbs [1878]. 

Useful expressions for AG(r) are obtained if we substitute the super- 
saturation from the Thomson-Gibbs equation (2.2) into (2.1) in terms of 
the radius r+ of the critical nucleus: 

or in terms of the number n' of atoms in the nucleus (from w,n = 4xr3/3): 

AG(n)=AG* [3($) 213 - 2 ( ; ) ]  , 

where AG is given by (2.4). We will use Eqs. ( 2 . 5 )  and ( 2 . 6 )  when deriving 
an expression for the rate of nucleation. 

The result (2.4) is a universal one. It does not depend on the state of 
aggregation of the nucleus and can be easily obtained for crystalline nuclei 
in a general form. Indeed, in this case 

V' 
VC 

AG* = --AP + C u n C ,  , 
n 

where V' is the volume of the critical nucleus and zlc is the volume of one 
building unit in the crystal phase. 

V' = 

Bearing in mind (see Chap. 1) 

1 
- C hnxn 
3 n  

and Eq. (1.27) for the equilibrium 

h n  

shape, 

one obtains 
1 

AG' = 3 C unCn 
n 
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One caxi use this expression to obtain the work of formation of crystalline 
nuclei with arbitrary symmetry and radius of action of the interatomic 
forces. In the simplest case of a nucleus of a Kossel crystal with first 
neighbor interactions the (100) faces appear only in the equilibrium shape. 
Then 

Under the same condition (first neighbor interactions) the equilibrium 
shape of a crystal with face-centred cubic (fcc) lattice has the form of a trun- 
cated octahedron and consists of six square faces (100) and eight hexagonal 
(111) faces with equal edge lengths [Markov and Kaischew 197681. Then 

Fkom the equilibrium shape condition hill : hloo = u111 : UIOO with the 
first neighbor model relation u111/u100 = 4 / 2  it follows 

I * = - -  QOOVC 20111% -- 
AP A p f i  

Equation (2.3), (2.8) or (2.9) is applicable for nucleation from any 
supersaturated (undercooled) phase (vapor, liquid or solution). For this 
aim the corresponding differences of the chemical potentials Ap (EQ. (1.9), 
(1.10) or (1.12)) and the specific energies of the corresponding interfaces 
(crystal-vapor, crystal-melt or crystd-solution) should be taken into ac- 
count. 

2.1.2. Heterogeneous formation of 30 nuclei 

The process of nucleation is stimulated by the presence of impurity particles, 
ions or foreign surfaces. Nuclei are usually formed on the walls of the 
reaction vessels. While these effects are usually undesirable, the process of 
nucleation on foreign substrates is essential for epitaxial deposition of thin 
films. We will illustrate this problem with the formation of a liquid droplet 
on the sc+called structureless substrate [Volmer 19391. But before doing 
that we have to clarify what “structureless substrate” means. 
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A single crystal substrate exerts on the particles of the mother phase 
a periodic potential which is characterized by a period equal to the inter- 
atomic spacing and the overall amplitude equal to  the activation energy for 
surface diffusion [Fkenkel and Kontorova 19381. In the simplest case it can 
be presented by a sinusoid (Fig. 2.2(a)). If a nucleus is formed on such a 
surface it should be elastically strained to fit the substrate. Then the energy 
of the elastic strains should be added to the change of the thermodynamic 
potential. In order to simplify the problem we assume that the modulation 
of the periodic potential is equal to zero. The hypothetical structureless 
substrate (Fig. 2.2(b)) is the result which gives the possibility to study 
the effect of interatomic forces on the process of nucleation, neglecting the 
lattice mismatch as a first approximation. Then we can make the necessary 
correction for the latter, 

a 

I 

€des 

j 

Fig. 2.2. For the determination of the concept of a structureless substrate which is very 
convenient for studying the catalytic potency of the substrate on the nucleus formation. 
(a) Shows the energetic profile of a single crystal substrate, where E.d and Ede.  are the 
activation energies for surface diffusion and desorption, respectively. In (b) the surface 
potential is no longer a periodic function (Esd = 0). This simplification excludes the 
effect of the lattice misfit but permits the study of the effect of Edes  # 0. 
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When considering the homogeneous formation of liquid droplets from 
a vapor phase we assume that the equilibrium shape of the droplet is a 
sphere. We also assume that the shape of the crystalline nuclei is the 
equilibrium one in order to derive the expression for the Gibbs energy 
change of their formation. Obviously, we should first derive an expression 
for the equilibrium shape of a droplet on a foreign substrate. 

We consider a liquid droplet on a smooth structureless substrate 
(Fig. 2.3). It represents a segment of a sphere with radius of curvature T and 
projected radius ~ s i n 6 ,  where 6 is the so-called wetting angle. The latter 
characterizes the energetic influence of the substrate. We denote the specific 
surface energies of the free surfaces of the droplet and the substrate, and 
of the substrate-droplet interface by 0, us and oil respectively. Then the 
condition of equilibrium is expressed by the well-known relation of Young 
[1805] (see also Adam [1968]): 

a* = ui + acose , 

which is an analog of the relation of Dupr6 [1869] (Eq. (1.28)) for the case 
of a liquid droplet on a solid surface. 

(2.10) 
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Fig. 2.3. Equilibrium shape of a liquid droplet with radius of curvature r on a structureless 
substrate. The latter is characterized by the wetting angle 8 between the substrate plane 
and the tangent to the droplet surface. The wetting angle is determined through the 
Young equation from the specific surface energies of the interfaces between the liquid 
droplet and the solid substrate and the vapor phase, and between the substrate and the 
liquid droplet, denoted by u, us and ui, respectively. 

The Young relation is easy to derive following the approach given in 
Chap. 1. We have to find as before the minimum of the surface energy iP of 
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the liquid droplet at constant volume V, of the segment. Bearing in mind 
that the area of the free surface and the area of the contact are given by 

c = 2Tr2 (1 - cos e) 
and 

C; = X T ~  sin2 e , 

= 2ar2(1 - cos e)a + T T ~  sin2 e(ai - a,) . 

respectively, the surface energy @ of the liquid droplet reads 

(2.11) 

The volume of the segment is 

From dVi = 0 we find 

(1 +cose)sinB 
dr = - rd0 . 

(1 - cosB)(2 + COSB) 

Substituting it into d@ = 0 results in Eq. (2.10). 

droplet is given by 
The change of the thermodynamic potential upon formation of the 

fl A G = - - A p + @ ,  
VI 

where Vj and @ are given by (2.12) and (2.11), respectively. 

shape (2.10) into the expression for AG gives 
Substituting ai - cr, = -acosB from the equation of the equilibrium 

4 
3 

(1 - C O S ~ ) ~ ( ~  + C O S ~ )  A/.L 
4 'u1 

- +2TT2a( 1 -cos e)  sin2 8 cos 8 . AG = -rr3 

Following the same procedure as before we find that the change of the 
thermodynamic potential reaches a maximum at a critical size 

2 a y  
T* = - 

AP 

which does not depend on the wetting angle. The latter is clear recalling 
that the equilibrium vapor pressure depends only on the curvature but not 
on whether the droplet is a complete sphere or not. 

Then for the work of nucleus formation one obtains 

(2.13) 
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Fig. 2.4. Plot of the wetting function $ ( 8 )  = (1 - c o s ~ ) ~ ( ~ + c o s ~ ) / ~  vs the wetting angle 
8. It varies from zero to unity when 0 varies from 0 (complete wetting) to A (complete 
nonwtting). 

where 
1 
4 

$(e)  = - ( I  - C O S ~ ) ~ ( ~  + c o d )  (2.14) 

is a function of the wetting angle and accounts for the catalytic potency of 
the substrate with respect to  nucleus formation. 

A graphic representation of # ( O )  is given in Fig. 2.4. As seen it varies 
from 0 to 1 when 8 varies from 0 to 7r. In other words, in the case 
of complete wetting ($(a = 0) = 0) AGiet = 0, the formation of 3D 
droplets is thermodynamically unfavored and the liquid has a tendency to 
cover the substrate as a continuous film. In the other extreme (complete 
nonwetting; 4(0 = 7r) = 1) AG;,, = AG;,, which means that the substrate 
does not exert any energetic influence on the nucleus formation and the 
nucleus has the shape of a complete sphere, i.e. we have in practice 
homogeneous nucleation. I t  should be noted, however, that in the case 
of complete wetting (6 = 0) the formation of a new phase still requires 
overcoming an energetic barrier which is connected with the formation of a 
tw+dimensional nucleus. The increase of the Gibbs free energy in this case 
is due to the formation of a single height step surrounding the nucleus. 

Comparing the wetting function d(6) with the volume of the segment it 
becomes immediately clear that $(e)  = V*/Vo, where Vo is the volume of 
the complete sphere. Then 
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(2.15) 

i.e. the ratio of the works for heterogeneous and homogeneous formation 
of nuclei at one and the same supersaturation is simply equal to  the ratio 
of the corresponding volumes of the nuclei. As will be shown below this is 
also a universal result which depends neither on the state of aggregation of 
the nucleus nor its crystal lattice. 

Indeed, the work of homogeneous formation of a crystalline nucleus in 
a general form is - -  

where Vo is the volume of the homogeneously formed critical nucleus. 

the surface energy term gives 
Substituting g n  from the Gibbs-Curie-Wulff theorem (Eq. 1.27) into 

(2.16) 

i.e. the work of nucleus formation is equal to one-half of the volume work 
which is required to transfer n = V;/vc atoms from the parent to the new 
phase. 

The work of heterogeneous formation of a 3D nucleus is 

where V* is the volume of the critical nucleus formed on a foreign substrate 
and om - p = ui - o, follows from the relation of Duprk. 

Substituting again on and om - p from the Gibbs-Curie-Wulff theorem 
valid for the heterogeneous case (Eq. 1.30) gives 

1 v* 
2 u c  

AG;,, = --Ap . 

Equation (2.15) follows from Eqs. (2.16) and (2.17). 
Equations (2.16) and (2.17) can be written in the form 

(2.17) 

(2.18) 

where n* = V*/vc is the number of atoms in the critical nucleus. 
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It follows that in all cases the number of atoms in the critical nucleus is 
equal to the doubled work for nucleus formation divided by the supersat- 
uration. Bearing in mind that the work of nucleus formation is inversely 
proportional to the square of the supersaturation (Eq. (2.3)) we find that 
the number of atoms in the critical nucleus decreases with the cube of the 
supersaturation. 

Equation (2.17) allows us to calculate easily the work for nucleus for- 
mation of, say, a cubic nucleus on foreign substrate (Fig. 1.18). With V* = 
I*Ph*, the condition for the equilibrium shape h*/l* = (o + oi - a,)/2o = 
Aa/2a (Eq. 1.69) and the Thomson-Gibbs equation I* = 4ovJAp one 

where Aa/2a = h*/l* = h*l*2/l*3 = V*/V;. Equation (2.19) can be easily 
obtained also combining Eqs. (2.8), (2.15) and (1.69). 

It appears (Eqs. (1.69) and (2.14)) as if the foreign substrate cuts the 
homogeneous nucleus at a height determined by the equilibrium shape or, 
in other words, by the ratio of the interatomic forces. The latter is given 
by the wetting function $(8) for liquid droplets or the equivalent expression 
(c + ~i - cs)/2u = 1 - $‘/+ valid for crystals. 

2.1.3. Heterogeneous formation of elastically strained 3D nuclei 

The problem of formation of nuclei on single crystal substrates is much more 
complicated and can be solved more or less approximately. The difficulties 
arise from the fact that the strains are anisotropic. There are lateral strains 
due to the tendency of the nuclei to fit the substrate and normal strains 
with opposite sign due to the Poisson effect. (The latter accounts for the 
transverse deformations of the crystal lattice which appear as a result of 
longitudinal strains.) This strain energy should be added to the change of 
the thermodynamic potential. The role of the elastic strain is, however, 
twofold. One problem arises in accounting for the strain dependence of the 
specific surface energies. As mentioned in Chap. 1 a new surface can be 
created by stretching out an old one (by stretching out the whole crystal). 
Thus if the crystal is laterally strained in both orthogonal directions parallel 
to the substrate surface the upper crystal surface will be “isotropically” 
strained in two directions. As a result its specific energy will be changed. 
On the other hand, the lateral deformation of the crystal leads to strongly 
anisotropic change of the specific energy of the side faces. Bearing in mind 
the Poisson effect the chemical bonds will be stretched out in directions 
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parallel to  the substrate surface but compressed in normal direction and 
vice versa. As a result the specific energy of the side crystal faces will 
be changed in a very peculiar way. Also, the elastic strains should affect 
the chemical bonds between the substrate and deposit atoms and in turn 
the specific energy of the interfacial boundary. The contribution of the 
strains to the specific surface energies should be added to the surface term 
of the thermodynamic potential of the system. A second problem is that 
the strains change the strength of the lateral chemical bonds between the 
atoms and thus the chemical potential of the crystal. This change should 
obviously be included in the volume term of the thermodynamic potential. 

That is why in this section a more or less qualitative treatment of 
the problem will be given based on the atomistic approach developed by 
Kossel, Stranski and Kaischew (see Sec. 1.4). A Kossel crystal is adopted 
for simplicity. We will confine ourselves to first neighbor interactions and 
will neglect the Poisson effect. We assume further that the lattice misfit 
is accommodated completely by the homogeneous elastic strain, misfit 
dislocations being ruled out. The atomistic approach has in this case one 
important advantage. It permits one to account for the effect of the strains 
on the specific surface energies in an implicit way without entering into 
sophisticated details. 

The change of the thermodynamic potential when a nucleus of the new 
phase is formed in a general form reads 

AG = -nap -F a ,  (2.20) 

where n is the number of building units and 
According to the definition of Stranski [1936/7] the latter is given by 

is the surface energy. 

(2.21) 

where U,, is the energy of disintegration of the whole crystal into single 
atoms. In fact this quantity taken with negative sign, -Un, is the potential 
(binding) energy of the chemical bonds of the crystal. Equation (2.21) 
can be easily understood. The first term in the right-hand side gives the 
energy of the bonds as if all the atoms are in the bulk of the crystal. The 
second term gives the energy of the bonds between the atoms of the cluster 
and hence the difference is simply the number of the unsaturated dangling 
bonds on the cluster “surface” multiplied by the energy required to break 
a bond. Note that i€? can be expressed in terms of the surface, edge and 
apex energies in the case of large enough crystals, but, as written above, is 
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applicable for arbitrarily small clusters. It is also very important to note 
that whereas the first term is only a function of the crystal volume the 
second is additionally a function of the crystal shape. 

As shown in Chap. 1 the equation of Thomson-Gibbs (1.62) in atomistic 
terms reads 

4 = VlJ2 - @3 > (2.22) 

where @3 (Eq. (1.60)) is the mean work of separation representing the 
energy of disintegration per atom of a whole uppermost lattice plane of 
the crystal and must have one and the same value for all crystal faces 
belonging to the equilibrium shape. 

Substituting Eq. (2.22) into Eq. (2.21) gives the work of formation of 
the critical nucleus in the atomistic approach as 

AG' = ntp3 - U,. . (2.23) 

We have to account now for the effect of the elastic strain on the energy 
of the first neighbor bonds. We consider the harmonic approximation of 
the interatomic potential which is usually represented by a Lennard-Jones 
or Morse potential. As seen in Fig. 2.5 the work necessary to disrupt a 
strained bond will be equal to .1c, - E ,  where 2c, is the work to break an 
unstrained bond and E is the strain energy of a bond. The latter is given 
bY 

1 
e = p ( a  - b)2 , 

where 7 is the elastic constant of the first neighbor bond, and a and b are 
the natural interatomic spacings of the substrate and nucleus crystals. 

The nucleus of our model is shown in Fig. 2.6. It can be imagined 
as consisting of blocks having the shape of square-based prisms (rather 
than cubes) with thicknesses smaller or larger than the lateral size, thus 
reflecting the fact that the lateral bonds are strained whereas the normal 
bonds preserve their length (the Poisson effect is neglected). Then the 
energy to break a lateral bond will be $J - E and that for a normal one, 
$J. The numbers of atoms in the lateral and normal edges are ne and nt, 
respectively. 

The mean works of separation calculated from the upper (subscript u) 
and side (subscript s) faces read 

(2.24) 
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Fig. 2.5. Schematic representation of the change of the interatomic bond strength with 
the bond strain. The solid line shows the elastic (Hookean) approximation to a pairwise 
interatomic potential given by the dashed line. The work t o  break an unstrained bond is 
$. The work to break an elastically strained bond is 3 - E ,  where E is the strain energy 
per bond. 

and 

(2.24') 

respectively. The condition qu = Cps gives the expression for the equilibrium 
shape: 

(I-;) -1 , 

ne 
(2.25) 

Bearing in mind that the condition for the equilibrium shape of un- 
strained nucleus is given by (Eq. 1.68) 

n' +' 
- = ' - l o 7  n 

it follows that 

(2.25') 
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Fig. 2.6. Part of a nucleus of a Kossel crystal formed on a single crystal substrate with 
quadratic symmetry. The nucleus is homogeneously strained in both lateral directions 
to fit the substrate. The lateral bonds are equally strained and the work to break them 
is equal t o  + - E. The normal bonds remain unchanged if the Poisson effect is neglected. 
Then the work to break a bond perpendicular to the substrate surface is equal to $. 

i.e. an elastically strained nucleus consists of a larger number of lattice 
planes than an unstrained one. 

From Eqs. (2.22) and (2.24), recalling that cpl12 = 3+ for a Kossel 
crystal, for the supersaturation one obtains 

(2.26) 

where n,’ is the number of atoms in the lateral edge of the strained critical 
nucleus. Rearranging (2.26) gives for the latter 

-1 
n, * = 2 ( @ - E )  = n* (1 - ;) (1 - n*;) (2.26‘) A p  - 2~ 

where n* = 2$/Ap is the number of atoms on the edge of the unstrained 
critical nucleus ( E  = 0) at the same value of the supersaturation. As seen n: 
is inversely proportional to the difference Ape = Ap - 2eI which reflects the 
increase of the chemical potential of the strained nucleus due to  the strain 
energy per atom, 2 ~ .  An inspection of Eq. (2.26’) shows that n: > n* and 
the difference increases sharply with the increase of the strain energy per 
bond, e. Hence, we have both nr > n” and n: > n*, i.e. the laterally 
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strained nucleus is larger than the unstrained one in both height and width 
at one and the same supersaturation. 

The equilibrium vapor pressure of an unstrained nucleus is IcT ln(P/P,) 
= Ap = 2$/n* and then the analogous quantity for strained nucleus reads 

(2.27) 

We have obtained the important result that the equilibrium vapor 
pressure of a laterally strained small crystal formed on a foreign single 
crystal substrate is higher than that of the unstrained one due to  its 
increased chemical potential as a consequence of the elastic strain. 

Making use of Eqs. (2.22), (2.25) and (2.26') and counting the bonds 
between the atoms in the nucleus gives for the work of elastically strained 
nucleus 

W 
W a 
LL 

I I 

nE 
SUPERSATURATION 

Fig. 2.7. Dependence of the Gibbs free energy AG: of formation of an elastically strained 
3D nucleus on a foreign single crystal substrate on the supersaturation. A critical 
supersaturation Ap = nc should be exceeded which is equal to the strain energy per 
atom. The Gibbs free energy AG' of formation of elastically unstrained 3D nucleus 
is also given for comparison. As seen, AG; is greater than AG' and the formation of 
elastically strained nuclei requires higher supersaturation. 
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In other words 

81 

(2.29) 

where AG' is the work of formation of the unstrained nucleus ( E  = 0) given 
by Eq. (2.19). 

AG: and AG' are plotted against supersaturation in Fig. 2.7. As seen 
AG: is larger than AG' and tends asymptotically to infinity when Ap tends 
to ZE, whereas AG' still has a finite value. It folows that the formation 
of elastically strained nuclei requires supersaturation which is higher than 
the strain energy per bond. 

2.1.4. Formation of 2D nuclei 

It was Brandes (19271 who first considered the possibility of formation of 
2D nuclei on the surface of a foreign substrate. He found that the Gibbs 
free energy of formation of such nuclei is precisely equd to one-half of their 
edge energy: 

(2.30) 

where x,, is the specific edge energy of the nth edge and 1, is its length. 
The similarity of Eqs. (2.30) and (2.7) is apparent. 

FolLowing the same procedure as before one can derive an expression for 
the work of formation of 2D nuclei. The more general case of nucleation on 
a foreign substrate will be treated first. 

We consider a cluster with square equilibrium shape (in principle the 
equilibrium shape has to be determined beforehand making use of the 
Gibbs-Curie-Wulff theorem for the 2D case (Eq. (1.44))). In the simplest 
case of a Kossel crystal with first neighbor interactions only the equilibrium 
shape is a square with edge length 1 formed on the surface of a foreign 
structureless substrate. The variation of the Gibbs free energy reads 

l2 AG = --Ap -t Z2(a + ~i - a,) + 41x , 
sc 

(2.31) 

where n = la  Is, is the number of atoms in the cluster. The dependence of 
AG on 1 is similar to that shown in Fig. 2.1. It displays a maximum at a 
critical edge length 

(2.32) 
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Then the work of formation of a critical 2D nucleus is 

42s, 
= A p  - sC(a + - a,) ' 

(2.33) 

Substituting A p  from the Thomson-Gibbs equation (2.32) into (2.33) 
one obtains AG,t = 21*x which is identical to (2.30). The latter can be 
easily obtained following the procedure applied for the 3D case. 

Without going into details and following the same procedure as above 
one can treat the problem of formation of elastically strained 2D nuclei. 
For the corresponding work of formation one obtains [Markov et al. 19781 

or 

where now the specific edge energy xe = (11, - ~ ) / 2 a  accounts for the elastic 
strain and s, = a2 is the area occupied by a surface atom. 

In the case of nucleation on the surface of the same crystal ( E  = 0, ui = 
O,U, = (T and u + ai - as = 0 ) ,  

and 

(2.35) 

(2.36) 

Equations (2.33), (2.34) and (2.36) are valid for polygonized square 
nuclei without rounded regions as required by Herring's formula at finite 
temperatures, i.e. when the steps which appeared as a result of the nucleus 
formation are straight. If the steps are roughened to some extent below 
the roughening temperature T, the equilibrium shape will be more or less 
circular, and instead of Eqs. (2.35) and (2.36) we have 

(2.37) 

(2.38) 
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where T*  is the radius of the critical nucleus. Note that in this case x will 
have a value different (smaller) from that in Eq. (2.36) which is valid for 
straight steps without kinks. For more details concerning the formation of 
2D nuclei the reader is referred to  the work of Burton, Cabrera and Frank 
[1951]. 

2.1.5. Mode of nucleation on a foreign substmte 

We discuss in this section the question as to which mode of nucleation, 2D 
or 3D, is thermodynamically preferred as a function of the supersaturation 
depending on the difference of the cohesion and adhesion energies Au = 
u + uj - us = 20 - ,B = ($J - $J')/b2 on the one hand, and the strain energy 
E on the other. 

Let us consider first the case of Aa < 0, i.e. when the attractive forces 
exerted by the substrate on the deposit atoms are stronger than the forces 
between the deposit atoms. As follows from the above considerations 3D 
nucleation is thermodynamically prohibited (AG: = 0) and only 2D nuclei 
can be formed. Under this condition the quantity in the denominator of 
Eq. (2.33) is positive and AG; has a finite value at Ap = 0 and even at  
undersaturation Ap < 0. Thus in this case (Fig. 2.8) 2D nuclei of at least 
the first monolayer can be formed in an undersaturated system, an idea 
introduced in the theory of the epitaxial crystal growth by Stranski and 
Krastanov (19381. Obviously, AG; tends to infinity at  an undersaturation 
-Ap = s,Au which determines the equilibrium vapor pressure of an adlayer 
under stronger forces across the interface. 

We have practically the same case when Aa = 0. In fact this condition 
means that the 2D nuclei are formed on the surface of the same crystal, 
only in this case ui is precisely equal to  zero and a = as. 3D nucleation 
is again prohibited (the wetting is complete) and 2D nuclei can be formed 
only in a supersaturated system Ap > 0. 

The case of a positive surface energy change, A o  > 0, offers greater 
variety - 3D nuclei can be formed as well in addition to 2D nuclei. We 
consider first the case when the strain energy e = 0. 3D nuclei can be 
formed only in a supersaturated system Ap > 0 and AG; decreases with 
the square of the supersaturation (Eq. (2.16)). 2D nuclei, however, can be 
formed a t  positive supersaturations higher than a critical one: 

(2.39) 
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Fig. 2.8. Dependence of the Gibbs free energies of formation of 2D and 3D nuclei on the 
supersaturation for different values of the surface energy change Ag = u + g i  - a, = 
(+ - + ' ) / b 3 .  2D nucleation is only possible at complete wetting Au < 0 or Au = 0. In 
the case of Au < 0, 2D nucleation can take place even at undersaturation as discumd 
in Chap. 1, whereas at Au = 0, 2D nucleation always requires a supersaturation. 
In the case of incomplete wetting, Aa > 0, 2D and 3D nucleation can occur, 3D 
nucleation being always more probable than 2D nucleation. 2D nucleation occurs a t  
supersaturations higher than some value Apo = scAu = II, - +' determined by the 
difference in bonding. At a critical supersaturation Apcr = 2Apo, the 3D nucleus 
transforms into 2D nucleus (Fig. 2.9) and 3D nucleation is no longer possible. This is the 
reason why the corresponding curves for AG3 are given by dashed lines a t  Ap > Apcr. 
In this interval, only 2D nucleation is possible. The critical supersaturations Apt and 
A&, for formation of strained nuclei are shifted to  greater values by the strain energy 
per atom n~ (the straight dashed lines). 

which determines the equilibrium vapor pressure (or solubility) of the 
adlayer. 

Beyond this value AG; decreases with the supersaturation and at some 
critical supersaturation, 

becomes equal to  AG; . Obviously the condition AG; = AG; means that 
the height of the 3D nucleus becomes equal to that of one monolayer or, 
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in other words, the 3D nuclei turn into 2D ones (Fig. 2.9). This is easy 
to understand bearing in mind the assumption made at the beginning of 
this section that the nuclei retain the equilibrium shape. Therefore when 
the supersaturation increases the 3D nuclei preserve their height-to-width 
ratio h/l  and as a result they turn into 20 nuclei at Apcr [Lacmann 1961; 
Toschev, Paunov and Kaischew 19681. 

A 1.1.1 
Fig. 2.9. Tkansformation of a 3D nucleus into a 2D nucleus with increasing supersatura- 
tion assuming the equilibrium shape is preserved (after Toschev, Paunov and Kaischew 
P9881). 

In the same way one can consider the case of elastically strained ( E  # 0) 
2D and 3D nuclei. 3D nuclei can be formed at supersaturations Ap higher 
than the strain energy per atom, ne, where n is the number of lateral 
bonds per atom in the nucleus (n = 2 and n = 3 for square and hexagonal 
meshes of the substrate surface, respectively). 2D nuclei can be formed at 
supersaturations higher than 

A& =z 71.6 +s , (u+@ -as) . (2.41) 

The critical supersaturation Apt, at which the 3D nuclei turn into 2D 
nuclei is shifted by nnE with respect to Apcr and reads 

Apt, = nE + 2s,(a +- cq - 0.) = ApCr -k nE . (2.42) 

It follows that at supersaturations in the interval Apo to Apcr or, 
corrrespondingly, A& to APE,, 3D nucleation is thermodynamically favored 
although 2D nucleation is in principle also possible. Beyond Apt,,, or 
corrrespondingly, Ap&, only 2D nucleation is possible. 

Remranging (2.42) gives the following criterion for the mode of nucle- 
ation on a foreign substrate [Markov and Kaischew 1976a, 1976bJ. 3D 
nucleation is energetically favored when 
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2D nucleation will take place when 

The above criterion can be easily generalized for crystals with other 

We can rewrite Eqs. (2.43) and (2.44) in the form 
lattices and orientations [Markov and Kaischew 1976a, 1976bl. 

(2.45) 

where = ui + nc/2sC is the specific energy of the interface accounting 
not only for the different interaction energies but also for the homogeneous 
strains at the interface (for more details see Chap. 4). 

One concludes that the mode of nucleation in one and the same system 
can be varied by changing the supersaturation. Thus at high enough 
supersaturations 2D nucleation is only possible from the point of view of 
classical thermodynamics, whereas at lower supersaturations 3D nucleation 
prevails. 

2.2. Rate of Nucleation 

In this chapter the classical (capillary) theory of nucleation will be consid- 
ered first, treating consecutively the cases of homogeneous and heteroge- 
neous nucleation and the formation of 3D and 2D nuclei in the latter case. 
Then we will treat in some detail the atomistic theory of heterogeneous 
nucleation which plays an important role in the deposition of thin films 
a t  high supersaturations. At the end of this chapter the nonsteady state 
effects in nucleation as well as the saturation of the nucleus density will 
be briefly considered. The Ostwald step rule for the case when nuclei 
of thermodynamically less stable phase are initially formed will be briefly 
discussed. 

2.2.1. General formulation 

As mentioned at the beginning of the previous section the nuclei of the new 
phase appear in the bulk of the ambient one as heterophase fluctuations 
of the density, i.e. the nucleation is a random process. The number of 
nuclei formed in a fixed interval of time is a random quantity and is subject 
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to statistical laws [Toschev 19731. The average values, however, can be 
calculated and are subject to the kinetic theory of nucleation. Thus the 
aim of this chapter is to calculate the rate of nucleation or, in other words, 
the average number of nuclei formed per unit time and volume (or unit area 
of the substrate in the heterogeneous case) of the ambient phase. 

We will follow an approach developed by Becker and Doring [1935]. In 
fact the first treatment of the problem was given by Volmer and Weber 
[1926]. The latter was further elaborated by Farkas [1927], Stranski and 
Kaischew [1934] and Frenkel [1939] (for a review see Christian [198l]). 

We treat first the rate of formation of liquid droplets in vapors. We 
consider a vessel with volume V containing supersaturated vapors with 
pressure P and temperature T. The following simplifying assumptions are 

1. The growing clusters preserve a constant geometrical shape (spherical in 
the particular case) which coincides with the equilibrium one. As mentioned 
in the previous chapter it ensures minimal free energy. 
2. Clusters consisting of N atoms (N being sufficiently greater than the 
critical number n*) are removed from the system and replaced by an 
equident number of single atoms, thus ensuring a constant supersaturation 
in the system. 
3. The nucleation process is considered as a series of consecutive bimolec- 
ular reactions (a scheme proposed by Leo Scillard) (see Benson [1960]) 

adopted: 

... 

in which the growth and decay of the clusters take place by attachment 
and detachment of single atoms. Triple and multiple collisions are ruled 
out aa less probable. wf and w; denote the rate constants of the direct 
and reverse reactions, respectively. Here d is used as a chemical symbol. 
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Clusters consisting of n atoms (to be called clusters of class n) are 
formed by the growth of clusters of class n - 1 and decay of clusters of class 
n + l  (birth processes), and disappear by the growth and decay into clusters 
of classes n i- 1 and n - 1 (death processes), respectively. Then the change 
of the concentration Zn(t)  of clusters of class n with time is given by 

Introducing the net flux of clusters through the size n,  

turns Eq. (2.46) into 

(2.48) 

In the steady state, dZn(t)/dt = 0 and 

Jn(t> = Jn+l(t) = JO 7 (2.49) 

where we denote by JO the steady state rate or the frequency of formation 
of clusters of any class which obviously does not depend on the cluster size 
n. Hence Jo is also equal to the rate of formation of clusters with critical 
size n'. In other words, in the steady state, 

Jo = w:Z~ - W Z Z ~  , 
Jo = w,'& - w F Z ~  , 

(2.49') 

where ZN = 0 as accepted at point 2. 
Following Becker and Doring we multiply each equation by a ratio of 

the rate constants. The first equation is multiplied by l / w f ,  the second 
bywF/wfw$, thenth byw,w,...w,/wfw,+.'.w,+,etc . Then wesum up 
the equations and obtain after rearrangement (Becker and Doring (19351) 

(2.50) 
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This is the general expression for the steady state rate of nucleation. 
It is applicable to any case of nucleation (homogeneous or heterogeneous, 
3D or 2D, or even 1D) taking the appropriate expressions for the rate 
constants wz and w;. Moreover, it allows the derivation of equations for 
the classical as well as the atomistic nucleation rate at small and high 
supersaturations as limiting cases. We will consider in more detail the 
classical (capillary) theory of homogeneous nucleation. The corresponding 
equations for heterogeneous formation of 2D and 3D nuclei will then be 
written down by analogy without derivation. Finally, the atomistic theory 
of nucleation will be treated on the basis of Eq. (2.50). 1D nucleation which 
takes place when smooth single height steps propagate will be considered 
in Chap. 3. 

2.2.2. The equilibrium state 

Before going further it is instructive to consider the equilibrium state. 
In an undersaturated system the equilibrium state gives the equilibrium 
distribution of the homophase density fluctuations [Fkenkel 19551. In a 
supersaturated system the equilibrium state can be realized near enough to 
the phase equilibrium. Obviously the latter will be a metastable equilibrium 
and will give the equilibrium distribution of the heterophase fluctuations. 
Far from the line of phase equilibrium (pa = pp) an equilibrium state 
cannot be realized. However, we can write an expression even in this case 
which will serve as a convenient reference. 

Under the condition Jo = 0, from (2.47) follows 

(2.51) 

where Nn denote now the equilibrium concentrations of clusters of class 7t 

in the absence of molecular flux in the system. 
Equation (2.51) is known as the equation of detailed balance. It can be 

rewritten in the form + Nn Wn-1 -=- - Nn-1 Wn 

Multiplying the ratios Nn/Nn-l from n = 2 to n gives 

(2.52) 

As seen the rate constant ratio on the right-hand side appears in the 
expressions for both the equilibrium concentration of clusters Nn of class 
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n and the steady state rate of nucleation (2.50). Obviously, the problem is 
reduced to finding expressions for the rate constants w: and W E .  We will 
do that for the simplest case of homogeneous formation of liquid nuclei in 
supersaturated vapors adopting the idea of Gibbs that the nuclei represent 
small liquid droplets. 

The rate constant of the growth reactions, w:, is given by the number 
of collisions of atoms from the vapor phase on the surface of the droplets. 
Then for the rate constant of growth of a cluster of class n - 1 to form a 
cluster of class n we have 

c (2.53) 

where P / ( 2 ~ m l c T ) ' / ~  is the number of collisions per unit area, P being the 
vapor pressure available in the system, and is the surface area of a 
cluster of class n - 1. 

The rate constant of the reverse reaction of decay of a cluster of class 
n to  form a cluster of class n - 1 can be evaluated as follows [Volmer 
19391. In equilibrium with the vapor phase the number of atoms leaving 
the cluster in a fixed interval of time is equal to the number of atoms 
arriving at its surface. Hence the flux of atoms leaving the cluster is equal 
to the equilibrium flux of atoms arriving at  its surface. On the other hand, 
condensation takes place when the center of mass of the molecule joining 
the droplet crosses the sphere of action of the interatomic forces (Fig. 2.10). 
The radius of the droplet increases just after that event. The evaporation 
of a molecule is the reverse process. When it leaves the droplet its center 
of mass should cross the same sphere of action and at that moment the 
droplet shrinks and its surface area becomes equal to Cn-1. This area, 
namely, should be taken into account when considering the rate constant 
of the reverse reaction and 

+ P 
(2nmkT)'/2 ' wn-l = 

D 
(2.54) 

where P, is the equilibrium vapor pressure of the cluster of class n. 

eauation 
The pressures P and Pn can be expressed through the Thomson-Gibbs 

and 
P, 2uv1 
Pa Tn 

kTln- = - , 
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Fi 2.10. For t h  determination of the surface area of a liquid droplet containing 
n molecules upon detachment of a single molecule shown by the small circle. The 
molecule leaves the droplet when its center of maSs crosses the surface of action of the 
intermolecular forces given by the dashed circle. Precisely at that moment the surface 
area of the droplet is C,-1 as given by solid circle (after Volmer [1939]). 

where T~ is the radius of a droplet consisting of n molecules. Then 

We replace then the radii T,, and T* by the number of atoms through 
nq = 4nr3/3 and for every term in (2.52) (and also in the sum of (2.50)) 
one obtains 

Assuming n* >> 1 (the capillary approximation) we replace the sum by 
an integral and carrying out the integration yields 

A comparison of the above equation with Eqs. (2.6) and (2.4) shows 
immediately that the expression in the curly brackets in the right-hand 
side is simply the function AG(n)/kT. Hence 

(2.55) 
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or 

AG* 
w;w; * * w, = exp { k~ [3 (:) 2/3 - 2 (:)I } , (2.55') 

w1+w2+. . . w:-l 

i.e. every term in the sum in the denominator of (2.50) represents one point 
of the dependence exp[AG(n)/kT]. 

Substituting (2.55) into (2.52) gives for the equilibrium concentration 
of clusters of class n 

(2.56) 

The reader can find a more rigorous derivation of (2.56) in the mono- 
graph of Frenkel [1955] (see also Toschev [1973]). 

2.2.3. Steady state nucleation rate 

Replacing the sum in the denominator of Eq. (2.50) by an integral gives 

The function in the exponent in the right-hand side displays a maximum 
at n = n* (Fig. 2.1) and can be expanded in Taylor series in the vicinity of 
the maximum: 

* 2> 
AG(n) = AG* [3 ( :)2'3 - 2 (:)I AG* (1 - m ( n  1 - n ) . 

(2.57) 
Then the sum attains the form 

N 
AG* 1 

-exp - - - (~ . -n* )~  AG* 
(w) 1 1 W\ ( k T  3n*2 

In order to carry out the integration we make the following approximil 
tions. As shown in Fig. 2.11 the exponent under the integral displays a 
sharp maximum in the vicinity of n* and the limits of integration can be 
extended to --oo and +oo without making a significant error. Also, the 



2.2. Rate of Nucleation 93 

Fig. 2.11. Dependence of the Gibbs free energy change AG(n)/kT (dashed line), 
exp[AG(n)/kTJ and the reciprocd of the rate constant of the forward reaction on the 
cluster size. As seen, exp[AG(n)/kT] displays asharp maximum and its width is confined 
to  the near vicinity of the critical size. The reciprocal of the rate constant l/w+ ,, is ' a 
weak function of n and can be taken as a constant at the critical size. 

rate constant w: is not a sensitive function of n and can be replaced by 
w:. c w* = const and then taken out before the integral. 

Finally, carrying out the integration from minus infinity to plus infinity, 
one obtains for the steady state nucleation rate 

~ ~ = w * r ~ ~ e x p ( - ~ )  AG* , 
(2.58) 

where 21 is the steady state concentration of single molecules in the vapor 
phase and w* is the frequency of the attachment of molecules to the criticd 
nucleus. 

The parameter l? in the expression (2.58) for the steady state nucleation 
rate 

(2.59) 
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is known in the literature as a factor of Zeldovich [1943] (see also Frenkel 
[1955]). In fact it was derived for the first time by Farkas f19271. Its physical 
meaning can be revealed if one inspects more closely the definition of the 
steady state nucleation rate (2.50). Zeldovich (19431 argued that the steady 
state distribution function 2, deviates perceptibly from the equilibrium 
one, Nn, only in the vicinity of the critical size n*. In other words, the 
processes taking place in an interval An* = nr - n1 (Fig. 2.12) around the 
critical size determine the overall rate of nucleation. According to Zeldovich 
the width of this interval is determined by the condition that the free energy 
change AG(n) varies by kT around the maximum (at n < n1, 2, Y Nn 
and at n 2 n, = N ,  ZN = 0), i.e. 

AG* - AG(n = nl,nr) = kT . 

>- 
0 cr 
W 
Z 
W 

W 
W 
OL 
LL 

I 

n --- \ 
Fig. 2.12. For the determination of the interval An* = n, - ni around the critical size. 
According to Zeldovich [1943] the processes which take place in this interval determine 
the overall rate of the nucleation. The width of the interval is in fact the reciprocal to 
the nonequilibrium Zeldovich factor I'. 

Bearing in mind (2.57) it follows that the width of the interval An' 

(2.60) 
A n * = 2 ( = )  3 i ~ T n * ~  I f 2  =- 2 

In other words, the factor of Zeldovich is simply a reciprocal of An* and 
thus accounts for the deviation of the system from the equilibrium state. 
A more rigorous treatment of this problem is given by Kashchiev 119691. 

reads 

r f i .  
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Bearing in mind Eqs. (2.2) and (2.3) it turns out that I’ is directly 
proportional to the square of the supersaturation, r = Ap2/87r~1(u3kT)1/2. 
In other words, I? = 0 at the phase equilibrium (Ap = 0) and increases 
steeply when deviating from it. In the case of water condensation from the 
vapor (a = 70 erg/cm2) in the range of P/Pm from 2 to 6, n* varies from 
470 to 30 and correspondingly r increases from 0.004 to 0.054 [Toschev 
19731. Thus the Zeldovich factor is usually of the order of 1 x in the 
case of homogeneous nucleation. 

The steady state rate of nucleation (2.58) can be rewritten in the form 

Jo = w*r”* , (2.61) 
(21 y Nl) 

that  is, it is a product of the equilibrium concentration of critical nuclei, 

~ * = ~ ~ e x p ( - ~ )  AG’ , 
(2.62) 

the Zeldovich factor r and the frequency of attachment of building units 
to the critical nucleus, d. I t  can be easily proved that this is a general 
expression valid for all possible cases of nucleation and can be used in any 
particular case. 

2.2.4. Nucleation of liquids &om vapors 

In this particular case the surface of the nucleus is given by 4 7 r ~ * ~  and 

w* = P ( 2 ~ r n k T ) - ’ / ~ 4 n r * ~  . (2.63) 

Then 

where PIkT = N1 assuming the vapor phase behaves as an ideal gas. 
Recalling the Thomson-Gibbs equation (2.2) for the critical radius, (2.64) 
turns into 

) . (2.65) P 2  2a’/2v, 167r03v,2 
(-3(kT)3[ln(P/Pm)]2 

Jo = -- (W2 fi 
A closer inspection of Eq. (2.65) shows that the pre-exponent K1 = 

w*I”Zl is not very sensitive to the supersaturation in comparison with 
exp(-AG*/kT) = eXp(-K2/Ap2). Therefore one can accept that K1 is 
approximately a constant, i.e. 
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,TO = Klexp (-$) 
where K2 = 161ra~vf/3kT. With typical values 

? (2.66) 

of the quantities involved 
one finds that K1 isbf order of 1 x lo2' ~rn-~sec- l .  

Equation (2.66) is demonstrated in Fig. 2.13. As seen there exists a 
critical supersaturation Apc below which the nucleation rate is practically 
equal to zero and increases steepfy beyond it. The critical supersaturation 
can be determined by the condition J,-, = 1 ~ m - ~ s e c - ~ .  After taking the 
logarithm of JO in (2.66) we find 

(2.67) 

SUPERSATURATION 

Fig. 2.13. Plot of the nucleation rate versus the supersaturation. The nucleation rate 
is practically equal to zero up to a critical supersaturation Apt. Beyond this value the 
rate of nucleation increases sharply by many orders of magnitude. This is the rewon 
why the nucleation rate can be measured in a very narrow interval of supersaturations. 

In the case of nucleation in water vapor at a temperature T = 275 K, 
K1 1 x ~ m - ~ s e c - l ,  u = 75.2 erg/cm2, 'UI = 3 x c ~ n - ~ ,  
ApC = 5.42 x erg or PJP, = 4.16, which is in excellent agreement 
with the value 4.21 found experimentally by Volmer and Flood [Volmer 
1939). 
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The existence of critical supersaturation leads to the conclusion that 
condensation of vapors will be experimentally observed only at P > Pc. In 
the opposite case the vapors will be in a metastable state, i.e. due to kinetic 
reasons no condensation will take place for the time of the experiment. Thus 
we identify the critical supersaturation with the limit of metastability of the 
ambient phase. Recalling the phase diagram (Fig. 1.1) of a one-component 
system the existence of such a limit of metastability means that observable 
phase transitions will not occur when the lines of the phase equilibrium 
(determined by the equality of the chemical potentials) are crossed. For 
this purpose the limits of metastability should be crossed and they lie to 
the left of the phase equilibrium lines. It should be pointed out that the 
metastability limits are very sensitive to the values of the specific surface 
energies of the corresponding phase boundaries. In general, the metastabil- 
ity limits will be smaller for liquid-crystal transition than for vapor-liquid 
transition due to the smaller surface energy between the condensed phases. 
The presence of impurity particles, ions or foreign substrates will reduce the 
metastability limit with the square root of the wetting function. Besides, 
the presence of surfactants (substances which once adsorbed at the phase 
boundaries change drastically the surface energies) will also reduce the 
values of the specific surface energies and in turn the metastability limit. 

2.2.5, Statistical contr-ibzations 

Later theoretical studies showed, however, that the above agreement be- 
tween theory and experiment is apparent. Lothe and Pound [1962] (see 
also Dunning [1969]) noted that the Gibbs free energy of formation of liquid 
nuclei as given by Eq. (2.1) is valid for the state of rest. As discussed by 
Christian [1981] it gives in fact the free energy of formation of a liquid 
droplet confined in a liquid rather than a vapor. When formed in a vapor 
phase the droplet must acquire the gas-like translational and rotational 
degrees of freedom and must lose six internal or liquid-like degrees of 
freedom. Then instead of (2.1) one should write 

4 1rr3 
3 Vl 

AG(T) = - - - A/.t + 4.1rT2a + AGtr + AGmt + AGrq 

where AGt, and AGrOt must be positive and AG,,, negative. 
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The corresponding expressions are (Lothe and Pound 19621 respectively 

AGt, = -kT In ((2~n*;:)~/’kT 

and 
1 
2 

AG,,, = -kTln(2m*) + Ts , 

where I 2n*m1-*~ is the moment of inertia of the nucleus, s is the entropy 
of the liquid, h is Plank’s constant and h = h / 2 ~ .  Then for water at  T = 
300 K, n* = 100, I = 8.6 x g 
and s = 70 J K-lmole-l, AGt, = -24.4 kT, AGrOt = -20.6 kT and 
AG, = 11.5 kT. As these terms for the free energy depend very weakly on 
the nucleus size they contribute primarily to  the pre-exponent with a total 
of 1 x lo”. Then for the critical supersaturation one obtains P,/Pm = 3.09, 
in marked disagreement with the experimentally found value of 4.21. The 
interested reader can find more information in Feder et GI. (19661, Lothe 
and Pound [1969], Reiss [1977], Nishioka and Pound [1977], Kikuchi (19771 
and Christian [198ll. 

g cm2, P = 0.075 atm, m = 3 x 

2.2.6. Nucleation f i m  solutions and melts 

In the first case the flux of building units to the critical nuclei is determined 
by diffusion in the bulk of the solution. On the other hand, the molecules 
of the solute should break the bonds with the molecules of the solvent 
before being attached to the nucleus. In other words, an energy barrier for 
desolvation should be overcome. The frequency w* of attachment of the 
molecules to the critical nucleus will be proportional to the concentration 
of the solute C and thus instead of (2.63) we have 

w* = 47rrU2CvX exp( -MJ/kT) , (2.68) 

where u is a frequency factor, AU is the energy of desolvation and X is the 
mean free path of particles in the liquid which is approximately equal to 
the atomic diameter. Then for the nucleation rate one obtains [Walton A 
G 19691 

Jo = 4n~*~C~uXexp(-AU/kT)I’exp(-AG*/kT) , (2.69) 
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in which the concentration C is expressed in the number of molecules per 
unit volume and the supersaturation is expressed by (1.10). 

The main problem in the estimation of the pre-exponent is the lack of 
knowledge concerning the value of AU. We may assume that it is of the 
order of the molecular interactions, i.e. 10-20 kcal/mole. Measurements 
of the critical supersaturation in the nucleation of a series of salts in 
aqueous solutions [Nielsen 1967; Walton 19671 gave reasonable vdues for the 
specific surface energies of the crystal-solution interface (E 100 erg/cm2) 
and for the pre-exponential factors ( x  1024-1025 ~m-~sec-l) .  The values 
of AU calculated from these data vary from 7 kcal/mole for to 
14.5 kcal/mole for PbS04. Laudise determined the value 20 kcal/mole 
for quartz in aqueous solutions of NaOH from measurements of the rate 
of hydrothermal growth of the (0001) face in the temperature interval 
570-660 K [Laudise 1959; see also Laudise 19701. 

Solidification of liquids does not differ too much from crystallization 
in solutions. In this case the activation energy barrier AU originates from 
rearrangement of the molecules in the liquids when crossing the crystal-melt 
boundary to occupy precise positions in the crystal lattice, i.e. from the 
replacement of the long range disorder in the liquid by long range order 
in the crystal. That is the reason why AU is usually identified with the 
activation energy for viscous flow. The latter varies from 1 to 6 kcal/mole 
for metals [Grosse 19631,lO kcal/mole for organic melts to 50-150 kcal/mole 
in glass forming melts (Si02, GeO2) (Mackenzie 1960; Gutzow 1975; Oqui 
19901. On the other hand, there are no transport difficulties in melts and 
the concentration C in (2.68) and (2.69) should be replaced by the number 
of atoms in a unit volume l/w. Then 

(2.70) 1 
VI 

w* = 47r~*~-vAexp(-AU/kT) 

and 
(2.71) U A  J0 = 4mL2- exp(-AU/lcT)Fexp(-AG*/kT) , 

v12 
where the supersaturation is given by (1.12) 
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and 

Assuming spherical symmetry and isotropic interfacial tension, 

1 6nu3 v," T: 
3Ah$(AT)2 ' AG' = 

( Ah,AT)2 
8x71, (a3 kT) lI2T: 

r =  

2uv,T, 
Ah,AT 

T* = 

for the pre-exponent, one obtains 

2u1/2vc ux K1 = -- exp( -AU/kT) . 
(kT)1I2 vt 

(2.72) 

(2.73) 

(2.74) 

(2.75) 

Thus for homogeneous nucleation in metal melts, say Ag [Turnbull and 
Sech 19501 with 1/q zz 5 x (vc S q), T S 1000 K, o S 150 erg/cm2, 
v Y 2 x 1013 sec-', A 2( 3 x cm and AUIkT S 3 the typical value of 
1 x for K1 is obtained. 

Considering Eq. (2.71) more closely shows that the nucleation rate 
depends not only on the undercooling AT = Tm -T but also on the absolute 
value of the temperature. Hence the temperature dependence of the nucle- 
ation rate should display a maximum as decrease of the temperature leads 
to an increase of undercooling. It is easy to find by differentiation of (2.71) 
that  T,, > Tm/3 (T,,, = T,/3 when AG' >> AU). The physical reason 
for this behavior of the nucleation rate in melts, which is uncharacteristic 
for nucleation in vapors, consists in the competition between the inhibition 
of the transport processes in the melt (higher viscosity) and increasing 
the thermodynamic driving force for nucleation to occur. At the lower 
temperature side of the maximum the viscosity becomes so large that the 
melt glassifies before crystallization takes place. The above behavior has 
been established experimentally for the first time by Tamman "331 in the 
case of glycerine and piperine. Typical nucleation rate versus temperature 
plots are shown in Fig. 2.14 for lithium disilicate melts in the interval 
425-527OC [James 19741. 

The main difficulty in the experimental verification of nucleation theory 
in melts lies in the purification of the melts to avoid heterogeneous nucle 
ation on impurity particles. Turnbull and Sech [1950] (see also Hollomon 
and Turnbull [1951]) measured the critical undercooling for homogeneous 
nucleation to  take place applying the following method. The bulk melt 
sample was dispersed into small droplets in an inert matrix to outnumber 
the impurity particles. Then the maximum undercooling measured is taken 
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Temperature in degrees Celsius 

Fig. 2.14. Experimentally measured rate of nucleation in lithium disilicate melt versus 
temperature. The high temperature branch is determined by the activation energy for 
nucleus formation. The low temperature branch is determined by transport processes in 
the melt. (P. F. James, Phys. Chem. Glasses 15, 95 (1974). By permission of Society 
of Glass Technology and courtesy of P. F. James.) 

as the one for the homogeneous nucleation. Their data for a series of 
17 metals are compiled in Table 2.1 [Strickland-Constable 1968; Toschev 
19731. An updated table to include the later results of Skripov et ul. [1970], 
Powell and Hogan [1968] and others is given by Chernov [1984]. Turnbull 
[1950] correlated the experimental results with (2.71) together with (2.72) 
and (2.73) and found that the maximum relative undercoolings ATm,/Tm 
are nearly constant for all metals investigated (ATm,x/Tm E 0.183). The 
same behavior shows the ratio of the gramatomic surface energy urn of 
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Table 2.1. Homogenous nucleation of metals after ntrnbull and Cech [1950]. AT,., 
is the maximum supercooling, Tm is the melting point, ATmaX/Tm is the maximum 
supercooling relative to the melting point, u is the specific surface energy at the solid- 
liquid boundary, urn is the molar surface energy and Oh, is the molar enthalpy of 
melting. 

urn - ATmax 
Metal ATmm - U urn 

Tm erg cmPz cal g atom-' Ahm 

Mercury 
Gallium 
Tin 
Bismuth 
Lead 
Antimony 
Aluminium 
Germanium 
Silver 
Gold 
Copper 
Manganese 
Nickel 
Cobalt 
Iron 
Palladium 
Platium 

58 
76 
105 
90 
80 
135 
130 
227 
227 
230 
236 
308 
319 
330 
295 
332 
370 

0.247 
0.250 
0.208 
0.166 
0.133 
0.150 
0.140 
0.184 
0.184 
0.172 
0.174 
0.206 
0.185 
0.187 
0.164 
0.182 
0.181 

24.4 
55.9 
54.5 
54.4 
33.3 
101 
93 
181 
126 
132 
177 
206 
255 
234 
204 
209 
240 

296 
581 
720 
825 
479 
1430 
932 
2120 
1240 
1320 
1360 
1660 
1860 
1800 
1580 
1850 
2140 

0.530 
0.436 
0.418 
0.330 
0.386 
0.302 
0.364 
0.348 
0.457 
0.436 
0.439 
0.480 
0.444 
0.490 
0.445 
0.450 
0.455 

the crystal-melt interface and the molar enthalpy of melting Ah,, The 
gramatomic surface energy is defined as Om = c ~ N A V , ~ ' ~  where NA is 
Avogadro's number (6.023 x mol-') and v, is the volume of one 
building unit in the crystal. It was found that for most of the metals studied 
the ratio um/Ahm S 0.5. Figure 2.15 demonstrates the plot of 6, vs Ah,. 
As seen most of the metals with the exception of Ge, Bi and Sb follow the 
straight line with a slope of 0.46. The above result becomes immediately 
clear bearing in mind that the enthalpy of melting is connected with the 
separation work from the half-crysta1 position, i.e. it is proportional to 212 
times the energy per bond. On the other hand, v,2f3 represents the area 
occupied by such a unit. Then (T, is proportional to the work to separate 
two nearest neighbor atoms (Stranski, Kaischew and Krastanov 19331. 
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1 3000 

Fig. 2.15. Dependence of the molar surface energy urn = ~ N A v , ~ ’ ~  on the molar enthalpy 
of fusion Ahm for a series of metals. As seen, for most of the metals the ratio um/Ahm = 
const Y 0.5 (after Turnbull [1950]). 

Analogous results have also been obtained for nucleation for melts of 
alkali halides [Buckle and Ubbelohde 1960, 19611, organic melts [Thomas 
and Staveley 1952; Nordwall and Staveley 19541 and polymers [f(outsky 
1966; Cormia, Price and Turnbull 19621. They are reviewed by Jackson 
[1966] and critically andysed by Walton A G [1969]. 

2.2.7. Rate of heterogeneous nucleation 

As mentioned in the previous section one of the main difficulties in the 
experimental verification of the theory of the homogeneous nucleation is the 
preferred nucleation on the walls of the reaction vessels, foreign particles, 
ions, etc. The rate of heterogeneous nucleation should obviously be much 
greater than that of the homogeneous one under the same conditions due 
to the wetting from the substrate. At the same time when depositing 
a substance on a foreign substrate the latter is never homogeneous in the 
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sense that there are always some defect sites with higher chemical potentials 
such as emerging points of screw dislocations, embedded foreign atoms, etc., 
which are more active in comparison with the remaining part with respect 
to crystal nucleation. On the other hand, in the case of vapor condensation 
the frequency of attachment of adsorbed atoms through diffusion of the 
latter on the substrate surface to the periphery of the growing clusters 
is usually much greater in comparison with volume diffusion in the vapor 
phase [Pound, Simnad and Yang 1954; Hirth and Pound 1963]. We have 
the opposite case when deposition takes place from solutions and melts. 

We treat first the case of vapor condensation bearing in mind the general 
expression (2.58) for the steady state nucleation rate. Atoms arrive from the 
vapor phase on the substrate surface and after a thermal accommodation 
period, which is of the order of magnitude of several atomic vibrations 
(Kirth and Pound 19631, begin to migrate on the surface. Then they collide 
with each other to produce clusters of different sizes thus giving rise to 
critical nuclei. The concentration of atoms, 21, is now identified with 
the adatorn concentration ns. The latter is determined by the adsorption- 
desorption equilibrium and is equal to the product of the adsorption flux 

P 
( 2 ~ r n k T ) ' / ~  

R =  

and the mean residence time 

(2.76) 

(2.77) 

which lapses before re-evaporation takes place. Ed= denotes the activation 
energy for desorption and vl the vibrational frequency of the adatoms in 
a direction normal to the surface plane. Then 

(2.78) 

The flux of adatoms towards the critical nuclei dong the substrate 

(2.79) 
surface is 

j ,  = Ds grad ns 5 D,- n8 , 
a 

where 

(2.80) 
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is the surface diffusion coefficient, Esd is the activation energy for surface 
diffusion, v, is the vibrational frequency of the adatoms in a direction 
parallel to the surface plane and a is the length of a diffusion jump. 

Bearing in mind that the periphery of the critical nucleus, assuming a 
semispherical shape, is 27rr* sin6 and VL Y v= = v for the frequency of 
attachment of atoms to the latter, one obtains 

(2.81) P Edes  - Ead 
(2mnkT)1~2aexp ( k T  ) ' w* = 2ar* sin0 

Finally, for the steady state nucleation rate one obtains 

AG* JO = ~ X T *  sin 9-I' R2a exp ( 2EdeiG Esd) exp (-F) . (2.82) v 

This equation is valid for nucleation of liquid droplets. The Zeldovich 
factor I' = Ap2/8ny[r34(6)kT]1/2 now includes the wetting function #(@). 
In the case of crystal nucleation the periphery of the nucleus 42' should be 
inserted instead of  AT* sin 8 and for the AG* the corresponding expression 
(2.16) must be taken. 

In the cme of heterogeneous nucleation there is a statistical contribution 
to the work of nucleus formation, which is independent of the nucleus size 
[Ldhe and Pound 1962; see also Sigsbee 1969], and which accounts for the 
distribution of the clusters and the single adatoms among the adsorption 
sites of density No (g 1 x 1015 cm-2). Assuming the density of clusters is 
negligible compared with the adatom concentration, 

(?) * AGconf rY -kT In 

As a result the adatom concentration n, is replaced by the density of 
the adsorption sites No and the following expression for the nucleation rate 
is obtained: 

In the case of nucleation in condensed phases (solutions or melts) 
expressions for the steady state rate are easy to obtain taking the frequency 
of attachment of atoms u* as that given by Eq. (2.62) or (2.64) and replacing 
the surface area of the critical nucleus 4 7 r ~ * ~  by the area of the segment 
4nr*'(l- c.os8). 
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2.2.0. Rate of 2D nucleation 

The 2D nucleation kinetics can be treated in the same way as the 3D one. 
Following the procedure outlined in Chap. 2.1 we find 

After expanding the function in the exponent as a Taylor series up to 
the parabolic term and replacing the sum in (2.50) by an integral with 
limits of integration extended to --oo and +m we obtain 

Then the expression (2.61) results, in which the Zeldovich factor is given 
bY 

(2.85) 

2.2.8.1. Rate of 2D nucleation from vapors 

The frequency of attachment of single atoms to  the periphery of the critical 
nucleus to produce a cluster with a supercritical size is given by 

P Edes - E s d  

(27rmkT)1/2aexp ( k T  ) w' = 41' 

and for the nucleation rate one obtains 

Jo(2D) = 4Z*RaI'No exp exp (-2) , (2.86) 

where I', I* and AG; are given by (2.85), (2.32) and (2.33), respectively. 
The same expression is valid for the case of 2D nucleation on the same 
substrate (Au = 0) by taking the expressions (2.35) and (2.36) for I' and 
AGZ, respectively. Also the values for the activation energies for surface 
self-diffusion and desorption from the same substrate should be taken. 

2.2.8.2. Rate of 2D nucleation from solutions 

When considering the solution and melt growth of crystals through the 
formation and lateral propagation of 2D nuclei we will need expressions for 
the rate of 2D nucleation. In the first case the flux of arrival of molecules 
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of the solute (cm-2sec-1) is given by avCexp(-AU/kT) (Eq. (2.68)) and 
the frequency of arrivaf of molecules per molecular site will be 

AU AiJ 
j+ = a3uCexp (-w) = vCv,exp (-=) . (2.87) 

The number of sites available for attachment of molecules along the 
perimeter of the 2D nucleus is 2nr*/a and 

r* w* = 2n-CvCuexp 
a 

(2.88) 

Bearing in mind (2.37), (2.38), (2.61), (2.85) and (2.88), the rate of 2D 
nucleation reads 

where Ap is given by l3q. (1.10). 
involved, u Y 1 x 1013 sec-', Cv, 
Ap/kT Y 0.04, AU = 10 kcal mole-l, No = 1 x 1015 
the pre-exponential factor has a value K1 "5 1 x l O I 9  cme2sec-'. 

For typical values of the quantities 
0.1 (10% concentration of the solute), 

and T = 300 K, 

2.2.8.3. Rate of 2D nucleation an melts 

In order to calculate the rate of 2D nucleation in melts our first task is to 
find an expression for the frequency of attachment of building units to the 
critical nucleus. The flux of atoms which cross the phase boundary to be 
incorporated into the crystal lattice is given by 

The corresponding reverse flux is given by 

j- = k-exp (-Ahmk;Au) , 

where k+ and k- are rate constants. 
At phase equilibrium T = T, both fluxes are equal and 

k+ = k- exp ( -K) Ah, = k- exp ( -T) As, . 

(2.90) 

(2.91) 

(2.92) 
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The reverse rate constant can be identified with the vibration frequency 
of the surface atoms, k- = v ,  and 

Making use of (2.93) gives 

T *  

a 
W *  = 2n-ueexp 

(2.93) 

(2.94) 

(2.95) 

and 

As,AT 
JO =  NO (7) 

An estimate in the case of formation of 2D nuclei on the (111) face 
of Si growing at a temperature which is 1 K under the melting point 
T, = 1685 K, with Y = 3 x 1013 sec-', As,/k = 3.6, AU/kT = 3 
and No S 1 x 1015 cm-2, gives for the pre-exponent the value Kl = 
2 x cm-2sec-'. 

2.2.9. Atomistic theory of nucleation 

Experimental investigations of the heterogeneous nucleation showed that 
the number of atoms constituting the critical nucleus is very small (Robin- 
son and Robins 1970, 1974; Paunov and Harsdorff 1974; Toschev and 
Markov 19691. I t  does not exceed several atoms and in some particular 
cases of nucleation on active sites this number is equal to zero. This means 
physically that the adatom is so strongly bound to the active site that the 
combination active site-atom is a stable configuration. It is thus obvious 
that the quantities used by the phenomenological thermodynamics such as 
specific surface energies, equilibrium shape, even state of aggregation (we 
cannot say whether a cluster of 4 to 5 atoms is solid or liquid as we do not 
know the long range order) cannot be defined. That is why an atomistic 
approach which excludes the use of such quantities has been developed 
[Walton D 1962, 19691. 
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In order to understand the atomistic approach we should establish the 
limits of validity of the classical theory of nucleation. For this aim we 
should consider the equilibrium of small particles of the new phase or, in 
other words, we should go back to the equation of Thomson-Gibbs (1.19) 
represented graphically in Fig. 1.4. 

We replace the radius of the particle in the equation of Thomson-Gibbs 
by the number of atoms in it and obtain 

where P, is the equilibrium vapor pressure of a cluster consisting of n atoms 
or molecules and b is a geometrical factor equal to (47r/3)’I3 for a spherical 
droplet. 

It is immediately seen that the left-hand side of the equation (the ratio 
of the equilibrium vapor pressures) is a continuous quantity whereas the 
right-hand side is a discrete function of the number of molecules. In other 
words, a fixed value of the vapor pressure or of the chemical potential 
corresponds to each number n of the molecules. At the same time there are 
intermediate values of the vapor pressure to which correspond values of the 
number of molecules which are not integers. This situation is represented 
graphically in Fig. 2.16 [Milchev and Maiinowski 19851. The value P 2  of 
the vapor pressure corresponds to tweatom clusters, P3 to three-atom 
clusters, etc. If the actual vapor pressure P = P2, a pair of atoms is 
precisely in equilibrium with the vapor phase (the criticd nucleus) and 
the threeatom cluster is stable, as the vapor phase is supersaturated with 
respect to it, and it can grow further. If P = P3, the threeatom cluster 
is the criticd nucleus and the four-atom cluster is stable. However, if 
P3 < P < PZ the pair of atoms becomes unstable as the vapor phase is 
undersaturated with respect to it, and it should decay. At the same time 
the threeatom cluster is still stable and will remain stable as long as the 
vapor pressure is higher than P3. It follows that contrary to the classical 
concept a cluster with a fixed size is stable in an interval of supersaturation 
which is as larger as the cluster size is smaller. An increase of the cluster 
size leads to a sharp decrease of the width of the intervals and the discrete 
dependence can be approximated by a smooth curve. In other words, the 
classical approach becomes applicable. For small clusters, however, the 
latter is a very rough approximation although the tendency remains the 
same. Thus the fundamental difference between the classical and atomistic 
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Fig. 2.16. Dependence of the equilibrium vapor pressure of atomic clusters on the number 
of atoms in the clusters. Clusters of a given size are stable in intervals of supersaturation 
given by the bars. The classical Thomson-Gibbs equation is plotted as a solid line. As 
seen, it is a good approximation for large clusters (after Milchev and Malinowski [1985]). 

considerations is that a single nucleus size should be operative over a range 
of temperature or atom arrival rate. 

In order to calculate the Gibbs free energy change of formation of small 
clusters we will use the atomistic approach introduced by Stranski and 
Kaischew (see Sec. 2.1.3) which has the advantage that it avoids the use 
of macroscopic quantities. In terms of this approach, by making use of 
Eqs. (2.20) and (2.21) the Gibbs free energy change of formation of a cluster 
consisting of n atoms reads 
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At small enough supersaturations n is large and the AG(n) dependence 
resembles very much the classical one shown in Fig. 2.1 given in terms of 
n instead of r. This is not the case, however, when the supersaturation is 
large. As shown in Fig. 2.17(a), AG(n) is a discrete function of n and 
displays a highest value at  certain value of n = n*. In the particular case 
of A& = 3.25 the cluster with a highest AG value consists of two atoms 
and the equilibrium vapor pressure is determined by the breaking of one 
lateral bond. The equilibrium vapor pressure of the three-atom cluster 
is lower than that of the atom pair as it is determined by the breaking 
of two bonds per atom. Hence, the latter is more stable than the pair 
which thus plays the role of the critical nucleus. Analogously, in the case 
of Ap/+ = 2.75 the cluster with maximum value of AG consists of six 
atoms and the equilibrium vapor pressure is determined by the breaking of 
two bonds per atom, whereas the equilibrium vapor pressure of seven-atom 
cluster is determined by the breaking of three bonds per atom. 

It follows from the above that when the size of the critical nucleus is 
small its geometrical shape does not remain constant as adopted by the 
classical theory. No analytical expression can be derived for n* and its 
structure should be determined by a trial-and-error procedure estimating 
the binding energy of each configuration. It turns out for example [Stoyanov 
19791 that small clusters with a fivefold symmetry have lower potential 
energy than clusters with the normal fcc lattice with (111) orientation. 

In order to  calculate the steady state rate of nucleation we make use 
of the general expression derived by Becker and Doring (2.50) [Stoyanov 
19731. As was shown each term in the denominator of (2.50) represents one 
point of the dependence exp[AG(n)/kT] (Eq. 2.55). For n sufficiently large, 
exp[AG(n)/kT] is more or less a smooth function of n, which justifies the 
replacement of the sum by an integral (see Sec. 2.1; Fig. 2.17(b)). At small 
values of n this procedure is obviously unapplicable. The exp[AG(n)/kT] 
vs n dependence, normalized to exp[AG(n*)/kT], is shown in Fig. 2.17(b) 
for two different values of the supersaturation. As seen exp[AG(n)/kT] 
displays a sharp maximum at n = n*, all other terms in the sum of the 
denominator being negligible. Obviously, the term corresponding to  the 
critical size gives the main contribution to the sum. The latter constitutes 
the main difference between the classical and the atomistic approach to 
nucleation. In the former case we have to sum up (or integrate) over a 
large number of terms whereas in the latter case we just take one of them 
corresponding to the critical nucleus and neglect all the others. 
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Fig. 2.17. Dependence of (a) the Gibbs free energy change AG(n)/lC, in units of the work 
$J to break a first neighbor bond and (b) exp[AG(n)/kT] on the number of atoms n in 
the cluster at different values of the supersaturation. At small supersaturations (Ap = 
0.02+) the number of atoms in the critical nucleus is large (% 100) and it can be described 
in thermodynamic terms. The corresponding curves are fluent and the summation 
in Eq. (2.50) can be replaced by integration. At extremely small supersaturations 
(Ap = 3.251/, and Ap = 2.753) the critical nuclei consist of 2 and 6 atoms, respectively. 
The AG(n)/lC, and exp[AG(n)/kT] dependencies are represented by broken lines and 
integration of exp[AG(n)/kT] is no longer possible. Instead, the value exp[AG(n')/kT] 
is taken with the contribution of the remaining terms being neglected. In fact the 
contribution of the remaining terms gives the nonequilibrium Zeldovich factor which is 
close to unity in this particular case. 

Hence 

where I? = l /y  is the Zeldovich factor which accounts for the remaining 
smaller terms in the sum and in this case is of the order of unity. u: Y w* = 
const as before. 
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Fig. 2.18. Dependence of the logarithm of the nucleation rate on the supersaturation Ap.  
At high supersaturations the dependence is represented by a broken line reflecting the real 
dependence of the supersaturation on the cluster size. Ap1 and Ap2 denote the critical 
supersaturations at which the number of atoms in the critical nucleus changes from one 
integer value to  another. At small supersaturations the broken line turns gradually into 
a fluent curve due to  the decrease of the widths of the cluster stability intervals (see 
Fig. 2.16). Thus the classical nucleation theory appears to be a good approximation at  
smdl supersaturations (after Milchev et al. [1974]). 

Then bearing in mind (2.20) with n = n* 

AG* = -n*Ap + 9 , 
and for the nucleation rate one obtains 

J~ = u*rn. exp (-,&) exp ( E  b 7t* ) (2.99) 

The logarithm of the steady state nucleation rate is plotted against 
the supersaturation in Fig. 2.18. It represents a broken line when the 
experimental data cover more than one supersaturation interval. This is 
easy to understand recalling that the size of the critical nucleus remains 
constant in more or less wide intervals of the supersaturation [Stoyanov 
19791 and so is its geometrical shape and in turn its “surface energy” ip. 
The slopes of the straight lines give directly the number of the atoms in the 
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critical nuclei which can be evaluated from a comparison with experimental 
data. Figure 2.19 represents experimental data for the nucleation rate in 
electrodeposition of mercury on platinum single crystal spheres (Toschev 
and Markov 19691 interpreted in the terms of the atomistic theory by 
Milchev and Stoyanov [1976]. The values for n* = 6 and 10 have been 
found from the slopes of both parts of the plot. The same values (n* = 
2 and 5) have been obtained also in electrolytic nucleation of silver on 
platinum single crystal spheres in a solution of AgN03 in fused salts at 
high temperatures [Toschev et  al. 19691. 

The expression (2.99) does not give explicitly the dependence of the 
nucleation rate on the atom arrival rate and the temperature of deposition 
from the vapor, and in this sense is not suitable for the interpretation of 
the experimental data in this particular case. For this purpose we have to 
derive expressions for the growth and decay frequencies specific for the case 
under consideration and to insert them into Eq. (2.50). 

In the capillary approach, 

n Pn w,' = P,D, grad n, P,,D," = -Dsn, , a a  
where Pn is the perimeter of the cluster and Pn/a is in fact the number of 
the lateral unsaturated bonds. 

In the atomistic approach [Stoyanov 19731, 

w,' = a,D,n, , (2.100) 

where an, in complete analogy with the capillary model (P,/a),  gives the 
number of ways of formation of a cluster of size n + 1 by joining an adatom 
to a cluster of size n or, in other words, the number of the adsorption sites 
neighboring a cluster of n atoms. 

The decay constant reads 

(2.101) 

where U, is the energy required to disintegrate a cluster of size n into single 
atoms. The difference U,, - Un-l gives the energy of detachment of an atom 
from a cluster of size n. Esd is the activation energy for surface diffusion 
and p, is the number of ways of detachment of single atoms from a cluster 
of size n, A one-to-one correspondence exists between each decay process 
n + 1 -+ n and each growth process n -+ n + 1, and hence 

a n  = Pn+l . (2.102) 
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Fig. 2.19. Experimental data for the nucleation rate as a function of the overpotential 9 
in the case of electrochemical nucleation of mercury on platinum single crystals [Toschev 
and Markov 19691. The data are plotted in “atomistic” coordinates In Jo vs 9. As seen 
the number of atoms in the critical nucleus changes at about 0.096 V. (A. Milchev and 
S. Stoyanov, J. ElectwanaL Chem. 72, 33 (1976). By permission of Elsevier Sequoia 
S.A. and courtesy of A. Milchev.) 

Recalling the expression for the surface diffusion coefficient Eq. (2.101) 
can be rewritten in the form 

(2.103) 

where NO S a-’ is the density of the adsorption sites on the substrate 
surface. 
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Equation (2.50) can be rewritten in the form 

1 + w2 + w2-w3- - wzwiw4- + . * .  ) -l (2.104) 
- 

w2 w i w ;  + wz'w;w: 

Assuming n' = 1 (all terms in the denominator are much smaller than 
unity and U1 = 0 ) ,  with (2.100) one obtains 

(2.105) 2Edes - Esd 
JO = alDsnz = a1 - exp 

VNO R2 ( kT ) ' 

For n' = 2 (w,/w,' >> 1 and w,/w,' >> w,w;/w$w$), 

u2 + Esd ( kT ) 2 3 -1 JO = a2 D, n, Y 

or 
R3 3Ede.9 - E s d )  exp (F;) - ( kT Jo = a2- 

Y 2  N,2 

Respectively, for n* = 6, 

J~ = a 6  ~ , 6 n , 7 v - ~  exp 

or 

(2.106) 

(2.107) 

or 

u' 4- (n' 4- - End 

kT 

where a* = a(n') and U' = U(n*) .  

tion in the form 
Equation (2.108) can be written also in terms of the adatom concentra- 

nn*+l 

Jo = a * D , L  NO"*-' exp (g) ' (2.109) 
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which will be used when considering the 2D nucleation growth of crystals 
from vapors in Chap. 3. 

The critical nucleus size can change by an integer number of atoms 
and a single nucleus size is operative over a temperature interval. The 
latter can be defined as follows. Let us consider for example nucleation 
on Ag (111) surface. At extremely low temperatures a single atom will 
be a critical nucleus. Above some temperature TI the critical nucleus will 
be a pair of atoms, and the cluster of three atoms, each one situated at 
the apex of a triangle, will be a stable configuration so that two chemical 
bonds correspond to each atom. Above some other critical temperature 
Ta > 2'1, the six-atom cluster will be a critical nucleus and the seven-atom 
cluster with three bonds per atom will be stable. We can easily calculate 
T2 and 2'1 and determine the interval of stability of the two-atom nucleus. 
The left-hand limit of the interval TI is determined from the condition 
w,/w,' = 1: 

u2 + Edes Ti = 
ln(P2NovlazR) * 

In the same way we find 

Then for Ag (111) with AHe = 60720 cal/mole, U2 = 11, = AHJ6 = 
10120 cal/rnole, = 911,, = 3$, No Y 1 x 1015 cm-2, v Y 1 x 
lola sec-' , R = 1 x lox4 cm-2sec-1, and neglecting the coefficients a n  and 
p,,, for AT = T2 -TI one obtains 160 K. This means that one and the same 
critical size will be operative under the conditions of the experiment except 
for the case when we work in a temperature region around the critical 
temperature. This is the case in the electrolytic nucleation of mercury 
shown in Fig. 2.19. 

Critical nuclei consisting of 0, 1 and 2 atoms are found in the electrolytic 
nucleation of silver on glassy carbon [Milchev 19831. The critical size of 
0 atom is interpreted as nucleation on active sites whose binding energy 
40 to the adatoms is strong enough so that the mean residence time 
of the atom on the site is longer than the mean time elapsed between 
the arrivals of two successive atoms to the site. Under such a condition 
the couple adatom-activesite is considered as a stable cluster because the 
probability of its growth is larger than the probability of its decay. If this 
is not the case the pair adatom-active-site is no longer a stable cluster 
and nuclei can form also randomly on defect-free surface. Thus random 
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nucleation on defect-free surface and selective nucleation on active sites 
can take place simultaneously. Depending on the density of the active sites 
and their binding energy, one or the other mechanism predominates. In 
the limiting case of nucleation on active sites the following expression is 
obtained [Stoyanov 19741: 

where zo is the density of the active sites. 
As seen in both cases of critical sizes n* = 0 and 1 (Eq. 2.105) the 

nucleation rate is directly proportional to the square of the atom arrival 
rate. In that sense both cases are practically undistinguishable. Actually, 
the pre-exponent in (2.110) is smaller than that in (2.105) by ZO/NO E 
10-2-10-4 but exp(Uo/lcT) overcompensates this effect. 

2.2.10. Nonsteady state nucleation 

One can assume that at the initial moment after “switching on” of the 
supersaturation the concentration of the homophase fluctuations given by 
Eq. (2.56) is negligible and JO = 0. It follows that some time from that 
initial moment should pass in order that a steady state molecular flow in 
the system be established or, in other words, the concentrations of the 
clusters attain their steady state values 2,. The solution of this problem 
attracted the attention of many authors [Zeldovich 1943; Kantrowitz 1951; 
Probstein 1951; Farley 1952; Wakeshima 1954; Collins 1955; Chakraverty 
1966; Kashchiev 1969) and the problem has been experimentally studied in 
detail for different systems [Toschev and Markov 1968, 1969; James 19741 
and reviewed extensively [Lyubov and Roitburd 1958; Toschev and Gutzow 
1972; Toschev 19731. We will show in this section how the problem of 
transient states can be treated and will evaluate the nonsteady state effects 
for different supersaturated (undercooled) systems. 

As mentioned in Sec. 2.2.1 the steady state is determined by the condi- 
tion dZ, ( t ) /d t  = 0. We have now to solve the general problem as given by 
Eq. (2.48). In other words, as follows from Eq. (2.47) the rates of formation 
of clusters of different sizes are no longer equal in the time-dependent 
case. This is the case at least at the beginning of the process after the 
supersaturation is “switched on.” 

We mentioned that the formation of a cluster with a critical size appears 
as a result of fluctuations of the density in the parent phase. Let us 
consider this process more closely. Imagine we have a cluster with a size 
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n smaller than the critical one n'. When a single atom joins the cluster 
it becomes of a size n + 1. When an atom is detached from the cluster 
the latter goes to a size n - 1. The attachment and detachment of atoms 
are random processes and hence the cluster increases or decreases in size 
randomly. In other words, the cluster performs random walk back and forth 
on the size axis up to the moment it reaches the critical size. Then any 
further growth is connected with the fall of the thermodynamic potential 
and loses its random character. We can easily prove this following the 
approach developed by Frenkel and Zeldovich [F'renkel 19551. Considering 
n as a continuous variable Zeldovich and Fkenkel replaced Eq. (2.48) by the 
differential equation 

(2.1 11) 

where n is now not an index to denote that it is no more a discrete variable. 
The nucleation rate J(n, t )  is defined in the continuous case as (compare 

with Q. (2.47)) 

J(n, t )  = w,t,&(n - 1, t )  - w,Z(n, t )  . (2.112) 

The expression of the detailed balance (2.51) in the absence of a molec- 
ular flux through the system now reads 

w+(n - 1)N(n - 1) = w"(n)N(n) . (2.1 13) 

Eliminating the decay constant w-(n)  from (2.112) and (2.113) gives 

or 

J(n,t) si (2.114) 

where the approximation w+(n - 1)N(n - 1) S wf(n)N(n) has been used. 
Combining (2.111) and (2.114) gives 

Recalling the equilibrium distribution of dusters of class n (2.56) we 
carry out the differentiation and obtain 
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dZ(n, t )  
N(n)dt 

= w+(n)s d2 (2) Z(n t )  + (9 I w+(n) -- dAG(n) d Z(n, t )  
N(n) dn kT dn )&(m)- 

This equation is valid within the whole range of n from 1 to N. In the 
vicinity of the critical size it is simplified to 

(2.116) 

assuming as above that the growth coefficient is nearly a constant, w+(n) E! 
w+(n*) = const, and bearing in mind that AG(n) displays a maximum at 
n = n*, i.e. [dAG(n)/dn],=,,. = 0. 

As seen the time and size dependence of the steady state concentration 
Z(n,t) is governed by a partial differential equation of second order. In 
fact this is the familiar diffusion equation in which the diffusion coefficient 
is replaced by the growth rate constant w+(n*) and which reflects the 
random character of the growth process in the critical region An*. We can 
thus envisage the growth of the clusters as “diffusion” in the space of the 
size n. 

Even without solving the governing Eq. (2.116) we can draw some qual- 
itative conclusions by considering a simple analogy with diffusion process 
towards some boundary. At the initial moment the “concentration” is one 
and the same all over the system, which is equivalent to homogeneous 
ambient phase without clusters of any size. Once we have a supersaturation 
which is equivalent to the appearance of a diffusion gradient the “con- 
centration” in the near vicinity of the boundary decreases and we have a 
“concentration” profile which changes with time up to reaching steady state. 
The same happens to the supersaturated medium. Clustering begins and 
the concentration of clusters of a given class n gradually increases with time 
up to the moment it reaches the steady state value. This picture has been 
directly verified by Courtney [1962] who computed the time dependence of 
the clusters concentrations. 

To proceed further it is necessary to  define the boundary conditions. 
As mentioned earlier, Zeldovich and Frenkel argued that rate determining 
are the processes confined to a small region around the critical size. A 
detailed mathematical analysis of the problem carried out by Kashchiev 
[1969] has shown that this is a very good approximation. It follows that 
Z(n, t) and N(n) differ only in this region An*, i.e. at n < n1 (see Fig. 2.12), 
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Z(n , t )  = N ( n )  and at n > mr, Z(n,t)  = 0 at any time t. Thus, the 
natural initial condition (t = 0) is that immediately after "switching on" 
the supersaturation clusters of any size are absent in the system. In other 
words, at the initial moment only single molecules (monomers) are present 
in the system. The boundary conditions arise from point 2 in Sec. 2.2.1. 
At any moment the concentration of clusters of class N >> n* is equal to 
zero and the steady state concentration of the monomer is equal to the 
equilibrium concentration. In other words, 

Z(1,O) = N(1), 
Z(1, t )  = N(1), 

Z(n 2 2,O) = 0 , 
Z ( N , t )  = 0 .  

The solution of Eq. (2.116) subject to the above boundary conditions 
reads [Kashchiev 19691 

It is immediately seen that at the steady state (t -, 00) the sum vanishes 

Substituting the above solution into (2.114) (the latter being taken for 
and Z(n*) = N(n*)/2.  

the rate of formation of critical nuclei) gives (Kashchiev 19691 

where the parameter 
4(An*)2 

T W *  
7 =  (2.118) 

is the so-called induction 
Bearing in mind that 

the integral 

period. 
the number of the nuclei versus time is given by 

N ( t )  = J( t )d t  , (2.119) i 0 

the integration of (2.117) gives [Kashchiev 1969) 
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Fig. 2.20. Dependences of the nonsteady state nucleation rate J ( t )  relative to the steady 
state nucleation rate Jo (curve 1, Eq. (2.117)) and the number of nuclei (curve 2, 
Q. (2.120)) on time in units of the time lag T .  As seen the steady state rate is reached 
after approximately 57. The incubation period to of the N ( 2 )  curve is referred to T by 
t o  = n27/6 = 1.647. 

where J0 is given by any of the expressions derived in the previous section. 
As follows from (2.117) (Fig. 2.20) the steady state should be reached after 
an interval of approximately 57. 

W e  can now evaluate the induction period r for different cases of 
nucleation. In the case of formation of spherical nuclei from vapors from 
(2.118), (2.59), (2.60) and (1.9), one obtains 

(2.121) 

Then for homogeneous nucleation of water vapor at room temperature 
T = 300 K with cr = 75.2 erg/cm2, P, Z 20 Torr = 2.66 x lo4 dyne/cm2, 
P/Poo = 4, m 3 x g, r 1 x sec, i.e the induction period is 
practically negligible. 

The problem differs considerably when condensed phases are involved. 
Making use of (2.68) for u* yields 
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16 U AU 
T kT[ln(C/C,)]2C~X (w) 7 = -  (2.122) 

for nucleation in solutions where the concentration must be taken in number 
of molecules per cubic centimeter. 

Evaluation of r shows that it varies by orders of magnitude due to the 
different values of the activation energy of desolvation. In any case the value 
of the induction period is several orders of magnitude greater than that from 
vapors. Thus for nucleation of BaS04 in aqueous solutions (assuming for 
simplicity a spherical shape) with (r = 116 erg/cm2, C = 1 x lo-' mole/l = 
6 x 1015 molecules per cm3, C/Cm = 1000, u = 3 x 1013 sec-', a Y 
4 x lo-* cm and AU = 7 kcallmole (AU/kT = 11.67), r Y 5 x sec. 
At the same time for PbS04 (U = 100 erg/cm2, C = 8.5 x 1016cm-3, 
C/C, = 28 and AU = 14.5 kcal/mole) r = 5 x lo2 sec, i.e. the induction 
period is five orders of magnitude longer. 

In the case of nucleation in melts with (2.70) 

(2.123) 

The induction period is also negligible in homogeneous nucleation in 
simple metal melts. Thus in solidification of Ag with (r = 150 erg cm-2, 
T = 1230 I(, AT = 5 K, v, = 5 x cm3, Asm = 2.19 cal K-lmo1e-l 
= 1.52 x erg K-*, v = 2 x lOI3  set" and AU/kT E 2.5, r E 
2 x sec. At the same time for typical glass-forming melts like SiOz 
and Ge02 (AU/kT s! 30 - 40), T Y 1 x lo5 sec, i.e. the induction period is 
as long as a day and night. This means that the process of phase transition 
can be completed before a steady state nucleation rate is reached. In other 
words, the whole crystallization process takes place in a transient regime. 

Induction times of the order of tens of minutes have been observed in 
nucleation of polydecamethylenterephthalate [Sharples 19623. In the case 
of crystallization of Graham glass (NaP03) on artificially introduced gold 
and iridium particles, Toschev and Gutzow [1972] found induction periods 
as long as 10 and 5 h respectively at about 30OOC. Moreover, the induction 
time is a strong function of temperature. James [1974] found that the 
induction periods in crystallization of lithium disilicate melts vary from 
nearly 51 h at 425°C to 7 min at 489OC, i.e. more than two orders of 
magnitude in a temperature interval of 64°C. A value of 105 kcd/mole or, 
in other words, AU/kT 2 72, for the activation energy for viscous flow has 
been estimated from the data. 
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An expression for the induction period T for heterogeneous nucleation 
from the vapor phase is easy to obtain from (2.118) and (2.81): 

= 17 (")1'2 k3T3 sine aP[ln(P/P,)]3 U2Vl exp E s d )  . (2.124) 

Comparing (2.124) with (2.121) gives 

The pre-exponent is of the order of unity, with the exception of the cases 
of extremely high values of the wetting angle and the ratio .r(het)/T(horn), 
and is determined primarily by the activation energies for desorption and 
surface diffusion. One can conclude that in the case of heterogeneous 
nucleation the induction time is even smaller than in the homogeneous 
case. 

Bearing in mind that the Zeldovich factor is inversely proportional to 
the square root of the wetting function #(e) we find that in the case of 
nucleation in condensed phases (solutions or melts) the induction period T 

for heterogeneous nucleation in condensed phases should be given by (2.122) 
or (2.123) but multiplied by the quantity #(e) / ( l -  cose) = (1 - cos8)(2 + 
cosO)/4. This function displays a maximum of 0.5625 at 8 = 120'. Hence 
.r(het) will again be smaller than .r(hom) by this function. 

A straightforward test of nonsteady state effects in the theory of hetero- 
geneous nucleation requires measurements of either the time of appearance 
of the first nucleus or the dependence of the number of nuclei on time at 
a constant supersaturation. Precise measurements of the number of nuclei 
versus time have been performed in the case of electrolytic formation of 
metal nuclei on foreign metal substrates and the results have been compared 
with Eq. (2.120) [Toschev and Markov 19691. In order to  separate the 
process of nucleation from that of growth of the nuclei the secalled double 
pulse potentiostatic technique has been used. n-shaped electric pulses 
(Fig. 2.21) are imposed on an electrolytic cell consisting of two electrodes 
immersed in an electrolytic solution of metal ions. The height of the first 
pulse of duration t is a measure of the overpotential 7 = E-Eo (Eq. (1.13)). 
The height of the second pulse is sufficiently low (in fact lower than the 
critical supersaturation) so that no nuclei can be formed for a long enough 
time. The nuclei formed during the first pulse grow to visible sizes during 
the second pulse and are counted under microscope. A platinum single 
crystal sphere sealed into glass capillary served as a cathode while the 
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Fig. 2.21. Double pulse technique for investigation of the number of nuclei versus time 
when used to  study the electrochemical nucleation of metals on foreign metal substrates. 
Nuclei are formed during the first pulse AB of height 7. They grow to sizes visible under 
microscope during the second pulse BC of height qs. The latter is lower than the critical 
overpotential required for nucleation to  occur with a significant rate. The number of 
nuclei formed during the first pulse averaged from a large number of measurements is 
then plotted versus the pulse duration t at  a constant pulse height [Toschev and Markov 
1969). 

Fig. 2.22. Micrograph showing mercury droplets (bright points) electrodeposited on a 
platinum single crystal sphere. Every droplet is reflected from the mirror smooth surface 
of the electrode and looks like a bar. The large bright spot near the middle of the 
electrode is a reflection of the lamp. The nuclei are formed preferably around the (111) 
poles of the sphere [Toschev and Markov 19691. 
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anode was a sheet or a wire (or a pool of mercury in this particular case) 
of the metal whose ions are present in the solution. Figure 2.22 shows a 
typical picture of mercury droplets formed on the platinum single crystal 
sphere. As seen they are preferably formed around the (111) poles of the 
sphere. 

Fig. 2.23. A series of number of nuclei versus time curves in the c a e  of electrochemical 
nucleation of mercury on platinum single crystal spheres at different overpotentids, 
denoted by figures in mV at the curves. The transient behavior of the nucleation process 
is clearly demonstrated. The curve obtained at t) = 84 mV shows a saturation which is 
due to overlapping of nucleation exclusion zones [Toschev and Markov 19691. 

Figure 2.23 shows a series of number of nuclei versus time curves for 
electrodeposition of mercury nuclei at different overpotentids denoted by 
the figures at the curves. The transient behavior required by the nonsteady 
state theory (Fig. 2.20) is clearly demonstrated. Induction periods of the 
order of milIiseconds are observed. The validity of Eq. (2.120) is tested in 
Fig. 2.24. As seen the points fall close to the theoretical N ( t )  curve 
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Fig. 3.24. Plot of the number of nuclei versus time from Fig. 2.23 in dimensionless 
coordinates F ( s )  = N(t) /Jo .r  and z = t / T .  The solid line represents the theoretical 
curve (2.125) [Toschev and Markov 19691. 

W 

(-l)n exp(-nZz) (2.125) 
1 
6 

f(z) = 2 - -7r2 - 2 c - n2 
n=l 

in dimensionless coordinates f(x) = N/JoT and x = t / ~ .  
The slopes of the linear parts of the curves in Fig. 2.23 give a straight 

line in logarithmic coordinates log JO vs l/q2 (Fig. 2.25), thus confirming 
qualitatively the validity of the capillary model (2.66). The number of 
atoms constituting the critical nucleus can be evaluated as a function of the 
overpotential from the slope of the straight line, and the values from 3 to 8 
have been obtained in this particular case. Obviously, the capillary model 
of heterogeneous nucleation which makes use of such phenomenological 
quantities as the bulk surface specific energies, etc., cannot be used for a 
quantitative description of the process at very high supersaturations. This 
is the reason the data of Fig. 2.23 have been interpreted in terms of the 
atomistic model of nucleation (Fig. 2.19). 
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Fig. 2.25. Plot of the logarithm of the steady state rate of electrolytic nucleation of mer- 
cury on platinum single crystal spheres versus the reciprocal square of the overpotential 
M required by the classical theory of 3D nucleation. The rates represent in fact the slopes 
of the linear parts of the N ( t )  curves shown in Fig. 2.23. The straight line demonstrates 
the qualitative validity of the classical nucleation theory although the number of atoms 
in the critical nuclei is about 8 [Toschev and Markov 1969). 

2.2.11. Saturation nucleus density 

As was mentioned above the main problem in the investigation of the nu- 
cleation kinetics in melts and solutions is the presence of impurity particles 
which stimulate the process due to the wetting. However, the existence 
of impurity particles leads, in addition, to another phenomenon. It is 
reasonable to assume that the particles have different activities with respect 
to crystal nucleation (or different wetting angles or adhesion forces) or, in 
other words, a different critical supersaturation, according to Eq. (2.67), 
in which the wetting function $ ( O )  should enter in the case of heteroge- 
neous nucleation. Then, the active particles will take part in the process 
only when the supersaturation in the system is higher than their critical 
supersaturation. In such a case the number of the nuclei formed will 
be equal to the number of the particles whose critical supersaturation is 
lower than the actual value in the system. A saturation phenomenon will 
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be observed in the sense that the number of nuclei will reach a constant 
d u e .  As the particles have different critical supersaturations the increase 
of the current supersaturation in the system will lead to involvement of new 
particles with higher critical supersaturations, and the saturation nucleus 
density will grow. This process will continue up to the moment when 
the supersaturation exceeds the critical supersaturation for homogeneous 
nucleation. Then a large number of homogeneously formed nuclei will 
appear. Such a saturation behavior is clearly established in the case 
of nucleation of potymethylenterephthalate [Sharples 1962). The author 
explains the phenomenon with the catalytic action of foreign particles of 
finite numbers and different activities in the melt. 

The same picture holds for nucleation on foreign substrates. Defect sites 
on the substrate surface with different critical supersaturation play the role 
of the foreign particles in this particular case [Robins and Rhodin 1964; 
Kaischew and Mutaftschiev 19651. 

An expression for the time dependence of the number of nuclei can 
be easily derived under the simplifying assumption of equal activity (or 
critical supersaturation) of the defect sites [Robins and Rhodin 19641. Let 
us denote by Nd (cm-2) the density of the defect sites and by Jh (sec-l) 
the frequency of nucleation per active site. Then the change of the number 
N of nuclei with time will be given by 

(2.126) 

where Nd - N is the number of the free active sites on which nuclei are not 
yet formed. 

The integration of (2.126) subject to the initial condition N ( t  = 0) = 0 
gives 

(2.127) 

As seen, at t + CQ, N --i Nd = const. The saturation is reached in 
practice when t > 5/Jh,  where l / J L  is the time constant of the process. 

This equation can be easily generalized to the case of active sites with 
different critical supersaturations to give [Kaischew and Mutaftschiev 19651 

N = Nd[l -exp(-JAt)] . 

Au 

where Nd(Apc)  and Jh(Apc) are now functions of the activity or the critical 
supersaturation Apt. Obviously, Eq. (2.128) holds for nucleation in 3D 
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systems (melts) as well as in 2D systems (surfaces). The main problem of 
such a treatment, however, is that the distributions Nd(Ap,) and J i ( A p , )  
are usually unknown. 

There could be, however, other explanations of the saturation phe- 
nomenon. Thus, if the heat conductivity of the melt is low the temperature 
of the growing crystallites and their near vicinity increases as a result 
of accumulation of the latent heat of crystallization. As a result, zones 
with reduced undercooling appear around the growing crystallites in which 
nucleation is more or less prohibited. When these zones overlap and fill up 
the whole volume of the melt the nucleation process ceases and saturation 
of the nucleus density is reached. Then new nuclei do not form and the 
existing ones grow to complete solidification of the melt. In high heat 
conductive melts the zones with reduced undercooling can be reduced t o  
the growing crystallites themselves. The final result, however, should be 
qualitatively the same. 

We have an analogous picture in deposition on substrates. Assuming 
that the surface diffusion of adatoms is the process which determines the 
rate of growth of the clusters from the gas phase we have to account 
for the fact that the adatom concentration in the near vicinity of the 
growing nuclei is reduced and the system is locally undersaturated. As 
a result zones with reduced and even zero nucleation rate appear which 
grow together with the clusters [Lewis and Campbell 1967; Halpern 1969; 
Stowell 1970; Markov 19711. Sigsbee and Pound [1967] (see also Sigsbee 
[1969]) coined the term “nucleation exclusion zones.” When the zones 
overlap and cover the whole substrate surface the nucleation ceases and 
the saturation nucleus density is reached. The saturation phenomenon 
has been observed in the case of deposition of gold on amorphous carbon 
films [Paunov and Harsdorff 19741, of gold on cleaved surfaces of KCl 
and NaF a t  low temperatures [Robinson and Robins 19701, etc. In the 
same system (Au/(100) KCI, NaF but at high temperatures) Robins and 
Donohoe [1972] observed the appearance of maxima instead of plateaus. 
They explained this by the coalescence of crystallites which dominate at 
higher temperatures. Note that the first two reasons, namely, the presence 
of defect sites and the nucleation exclusion zones, lead to appearance of 
saturation whereas coalescence leads to well-pronounced maximum. 

The nucleation exclusion zones are easily visualized in the case of 
electrolytic nucleation of metds  on inert substrates. In this case the 
reduction of the supersaturation around the growing particles of the new 
phase is due predominantly to ohmic drop particularly in concentrated 
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Fig. 2.26. Pulse train for visualization and investigation of the nucleation exclusion zones 
in electrodeposition of metals. The height and duration of the first pulse are chosen in 
such a way that only one nucleus is formed. It grows to a predetermined size during 
the second pulse. The height of the third pulse is chosen in such a way that the whole 
substrate surface is covered with metal nuclei except only the zone around the initial 
droplet or small crystal. The metal coating which Serves to outline the nucleation 
exclusion zone grows to become visible under the microscope during the forth pulse. 
The sizes of the nucleation exclusion zones and the initial crystallites are then measured 
as functions of the duration and height of the second and third pulses. (I. Markov, A. 
Boynov and S. Toschev, Electrochim. Acto 18, 377 (1973). By permission of Pergamon 
Press Ltd.) 

solutions of the electrolyte, but bulk diffusion towards the growing particles 
also plays a part particularly in dilute solutions. A triple pulse train 
a9 shown in Fig. 2.26 [Markov, Boynov and Toschev 1973; Markov and 
Toschev 19751 is imposed on the cell consisting of a platinum single crystal 
hemispherical cathode and an anode of the metal to be deposited, both 
immersed in a solution of the electrolyte. The first pulse produces a single 
nucleus which grows to visible size during the second pulse. The third pulse 
is high enough to ensure a complete coverage of the platinum sphere with 
the metal except for a “prohibited” area around the initial particle where 
the actual overpotential is insufficient to cause nucleation, thus visualizing 
the nucleation exclusion zones. Typical pictures of this phenomenon are 
shown in Fig. 2.27 for the cases of electrodeposition of mercury and silver. 

A mathematical treatment of the process of overlapping of nucleation 
exclusion zones irrespective of the dimensionality of the system is usually 
carried out on the basis of either the geometrical approach of Avrami “39, 
1940, 19411 or the probabilistic formalism developed by Kolmogorov “371. 
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Both approaches give one and the same result. The reason is clearly seen 
in Fig. 2.28. The problem is reduced to calculation of the hatched axeas 
(or volumes) covered simultaneously by two or more circular (or spherical) 
regions. It can be solved geometrically [Avrami 1939, 1940, 19411, but as is 
well known the area covered simultaneously by several regions is just equal 
to the probability of finding an arbitrary point simultaneously in all regions. 
That is why the probabilistic approach is much simpler and permits an easy 
generalization to account for nucleation on active sites. This is the reason 
why we shall folIow the probabilistic approach of Kolmogorov. We will give 
a detailed derivation of Kolmogorov’s formula as we shall need it further 
when considering the 2D growth of crystals and epitaxial films. 

Fig. 2.28. A drawing illustrating the mathematical approaches of Avrami [1939] and 
Kolrnogorov (19371. In order to  calculate the part of the volume (or the substrate surface) 
fillrd with circles representing the nucleation exclusion zone8 one has to subtract the 
shadowed regions covered simultaneously by two or more circles. This could be done 
geometrically (Avrami) or by using a probabilistic theory (Kolmogorov). It is clear that 
the fraction of the volume, or the surface covered by the shadowed regions, 9 equal to  
the probability of finding an arbitrary point simultaneously in two or more circles. 

We consider a supersaturated phase of volume V. Nuclei are formed with 
a rate JO = const. A nucleation exclusion zone with a volume V‘ appears 
and spreads around each growing nucIeus. The rate of growth v(n, t) of the 
zone is a function of the direction n and time t and can be expressed in the 
form 

v(n, t )  = c(nP(t> , (2.129) 

assuming the rate of growth v(n, t )  follows one and the same law of growth, 
k ( t ) ,  irrespective of the direction. 
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We introduce the quantity 

c 

which has the sense of an average with respect to  the direction and where 
the integration is carried out along the surface C of a sphere with center at 
the origin of the coordinate system. Then the volume of the zone growing 
around a nucleus formed at  a time t’ will be at a moment t > t’: 

The density of nuclei N as a function of time is given by 

d N  
dt 
- = JoO(t) , 

(2.130) 

(2.131) 

where @ ( t )  is the fraction of the volume of the system uncovered by 
nucleation exclusion zones. Integration of (2.131) subject to the initial 
condition N ( t  = 0) = 0 yields 

t 

N = J o ]  O(T)dT . (2.132) 
0 

The fraction @(t )  is equal to the probability that an arbitrarily che 
sen point P is at a moment t to be outside a nucleation exclusion zone 
(Fig. 2.29). The necessary and sufficient condition for the point P to be in 
a nucleation exclusion zone at  a moment t is the formation of a nucleus at 
a moment t’ < t at another point P’ which is spaced from P at a distance 
smaller than 

t 

T = cJ l i (T  - t’)dT , 
t’ 

or, in other words, the point P has to be in the volume V‘ given by 
Eq. (2.130). 

The probability that at  least one nucleus will form in the time interval 
At’ in a volume V’ with accuracy to infinitesimals of second and higher 
orders is 

JoV’(t’, t)At’ . 
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Fig. 2.29. For the calculation of the probability of finding an arbitrarily chosen point P 
in a nucleation exclusion zone or in a crystallized volume. The necessary and sufficient 
condition for the point P to  be in a nucleation exclusion zone at a moment t is that a 
nucleus is formed at  a moment t’ < t at point P‘ which is spaced from P at a distance 
smaller than r ( t ’ ,  t ) ,  i.e. in the volume outlined by the dashed line. Then the point P 
will be in the nucleation exclusion zone outlined by the solid line. 

The probability that a nucleus will not form in the time interval At’ in 
the volume V’ is 

1 - JoV’(t’, t)At’ . 
The probability for the point P to be outside a nucleation exclusion zone 

at a moment t from the beginning of the process is 

@ ( t )  = n[l - JoV’(t,)At‘] , (2.133) 

where t = sat’ and t i  = iAt’. Taking the logarithm of (2.133) yields 

In @ ( t )  = x l n [ l  - JoV’(ti)At’] Z - JoV’(ti)At’ 
i= 1 a= 1 

t 

Y -Jo J V’(t’)dt’ . 
0 

Then the part of the volume V which is uncovered by nucleation 
exclusion zones is 
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t 
and 

N = JO / exp ( -Jo / V‘(t’)dt’) d r  , (2.134) 

where V’(t‘) is given by (2.130). 

is 
The saturation nucleus density N, obtained from the condition t 4 00 

Without loss of generality we can represent the growth of nucleation 
exclusion zones by a power law 

(2.136) dr 
dt 

v(t) = - = cC2t-l . 

Assuming a constant rate of growth k ( t )  = 1 (a = l), 

4 
3 

V’ = -7Tc3(t - t ’ ) 3  

and [Kolmogorov 1937) 
t 

N ( t )  = JO /exp (-:Joc3t4) dt . 
0 

Under the condition t 00 for the saturation nucleus density one 
obtains 

3/4 
N, = 0.9 (:) . 

The volume of the melt covered by nucleation exclusion zones (or by 
growing crystallites), V,, is given by 

For the particular case where the nucleation process takes place in a 
short interval at the beginning of crystallization so that a number of nuclei, 
N,, is formed at the initial moment t = 0, we have one integration less and, 
instead of the above equation, we get 

- = 1 - exp [-N,V‘(t’)] = 1 - exp Vdt) 
V 
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In the case of nucleation on the surface of a foreign substrate we have 
a two-dimensional system and Eq. (2.130) has to be replaced by 

(2.137) 

Assuming that the growth of the nuclei is governed by surface diffusion 
the nucleation exclusion zones will be determined by a decrease of the 
adatom concentration. The diffusion problems usually lead to square root 
of time dependence of the growth rate, (Y = 112 and c = k a ,  where k is 
a dimensionality constant of the order of unity [Markov 19701. Then 

t 

from which, with t --t 00, 

or 

(2.138) 

(2.139) 

(2.140) 

The deposition of thin films takes place as a rule under conditions of 
either complete condensation (CC) or incomplete condensation (IC). The 
former case is characterized by negligible desorption flux and far from 
the growing nuclei the adatom concentration is a linear function of time, 
nu = Rt. Then the steady state nucleation rate is afunction of time through 
the adatom concentration. In the IC case the adatom concentration is 
determined by adsorption-desorption equilibrium and n, = Rru, and the 
nucleation rate is constant with respect to time. 

Making use of Eqs. (2.78) and (2.108) for the IC case one obtains 

U' + (n* + l)Edes (no +1)/2 

N, = cr*lI2No (&) ( 2kT 

which reduces at high supersaturations, where n* = 1 (U" = 0), to 
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In the CC case the nucleation rate has the form (2.109) and from (2.135) 
and (2.137) one obtains the expression first derived by Stowell [1970]: 

where g is a dimensionless constant of the order of unity. 
One can consider by the same way the coverage of a crystal face by 

laterally growing 2D nuclei. Then the 2D islands themselves will play the 
role of nucleation exclusion zones and with k ( t )  = 1 the surface coverage 
at a moment t will be given by 

- sc = 1 - exp ( - - J ~ A ~ )  71 , S 3 
(2.141) 

where c is the rate of growth of the 2D nuclei and S is the surface area of 
the crystal face. 

The active sites and nucleation exclusion zones usually influence simul- 
taneously the nucleation kinetics. A general solution can be obtained by 
following the above procedure. We will consider for simplicity the cme of 
equal activity of the nucleation centers with steady state nucleation rate. 

Nuclei are formed with a frequency JO (sec-') on active centers whose 
number is N d .  To solve the problem we have to find the fraction of 
free active centers at  a moment t .  We consider as free those centers on 
which nuclei have not yet formed and which are not captured by nucleation 
exclusion zones. The latter means that a center on which nucleus has not 
yet formed can be covered by a zone originated by a nucleus growing in the 
near vicinity. Then the supersaturation in its vicinity can become lower 
than its critical supersaturation and a nucleus cannot form anymore on it. 
In that sense the center can be deactivated. 

The probability of formation of at least one nucleus in the volume V' 
(Eq. (2.130)) within the time interval At' is now given by 

J~N,-J [V'(t ')] At' , 

where 

is the average number of active sites in the volume V'(t'). This equation 
accounts for the fact that in the volume V'(t ')  there is one center with a 
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probability of unity (the center P) and the remaining Nd - 1 centers with a 
probability of V’(t’)/V. Then the fraction @ ( t )  of the free centers on which 
nuclei are not yet formed and which are not covered by nucleation exclusion 
zones (Nd > 1) will be 

(2.142) 

The time dependence of the number N of nuclei formed up to time t is 
given by the definition equation 

or 

It is immediately seen that when the zone growth rate c = 0, i.e. 
V’(t’) = 0, Eq. (2.143) turns into Eq. (2.127). In the other extreme when 
the number of active centers is large enough or the rate of growth of the 
nucleation exclusion zones is sufficiently high so that the second term in the 
exponent is much greater than Jot,  Kolmogorov’s formula (2.134) results 
from (2.143). The physical meaning of this result is that the major part 
of the active centers are deactivated by nucleation exclusion zones and the 
latter govern the nucleation kinetics. Generalization for timedependent 
nucleation and activity distribution of the centers is easy to carry out 
and the interested reader is referred to the original papers [Markov and 
Kashchiev 1972a, 1972b, 19731. 

As mentioned at  the beginning of this section the coalescence of growing 
crystallites can also lead to limitation of the nucleus density. The reader 
is referred to the numerous review papers and monographs {Stoyanov and 
Kashchiev 1981; Lewis and Anderson 19781 and the references therein. 

2.2.12. Ostwald’s step rule 

It was found long ago that when the new phase has several (at least two) 
modifications, one of which is thermodynamic~ly stable and the others 
are metastable, the formation of one or more metastable phases is often 
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(but not always) observed first. A typical example is the crystallization of 
zeolites (for a review see Barrer [1988]). It appears that the first zeolite 
which crystallizes is not stable when it is left for some time in the reaction 
vessel in contact with the solution at  the temperature of growth. After 
some time it dissolves in the mother solution and a new, more stable 
type of zeolite crystallizes at  the expense of the first one. The second 
type can also dissolve, and a third type of zeolite nucleates and grows. 
Thus, for example, the first type of zeolite (faujasite, pore size 7.4 A)  is 
replaced by mazzite (ZSM-4) which is more dense (pore size 5.8 A). At 
about 100°C the faujasite displays a maximum yield after approximately 
20 h of crystallization time. The mazzite first appears at  the time of the 
maximum of the faujasite and reaches a maximum yield after 40 h more 
[Rollmann 19791. If the first zeolite is isolated from the mother solution it 
usually remains stable for quite a long time, which is an indication that the 
transformation occurs through dissolution and crystallization in the mother 
phase. A similar step-like behavior shows the crystallization of amorphous 
Si-Ti alloy upon annealing at  500°C [Wang and Chen 19921. Ti5Si3, Ti&&, 
TiSi and TiSia nucleate and grow consecutively. After sufficiently long 
annealing the thermodynamically most stable phases TiSiz and TiSi only 
are present. 

It was Wilhelm Ostwald [1897] who first compiled the available ob- 
servations and gave his famous empirical rule according to which the 
thermodynamically metastable phase should nucleate first. Then at  a 
later stage the metastable phase should transform into the phase which 
is thermodynamically stable under the given conditions (temperature and 
pressure). Thus the formation of the new stable phase should take place by 
consecutive steps from one phase to another with increasing thermodynamic 
stability. The first theoretical interpretation of this phenomenon, which 
is known as Ostwald's step rule, was given by Stranski and Totomanow 
[1933] in terms of the steady state nucleation rate. They showed that more 
often the metastable phase should have higher nucleation rate provided the 
system has not been transferred very far below the transformation point. 
We will repeat here in more detail their considerations. 

We consider for simplicity the phase diagram given in Fig. 1.1. We know 
that the liquid can be undercooled to a considerable temperature without 
visible crystallization taking place. This means that the liquid phase can 
in principle nucleate and grow from the vapor phase when the system is 
supersaturated (undercooled) below the triple point, i.e. along the line AA' 
or AA". The liquid phase will be metastable and should solidify at a later 
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stage. We have to compare now the steady state rates of nucleation of 
the metastable liquid droplets and stable crystallites. The considerations 
are valid for any crystallization process which includes more than one new 
phase. We will assume for simplicity that the pre-exponential factors K1 
(see Q. 2.65) are equal. Bearing in mind Eq. (2.65) for the ratio of the 
nucleation rates the following holds: 

where the subscripts s and m refer to the stable,and metastable phases, 
respectively, and b, and b,  are geometric factors. It follows that the 
nucleation rate of the metastable phase will be higher or, in other words, 
Ostwald’s step rule will be valid, when the first term on the right-hand side 
is greater than the second one. 

The stable phase is usually more dense so v, < v,. On the other hand, 
the more dense phase has greater specific surface energy than the less dense 
phase, i.e. ns > Cm, as the density of unsaturated dangling bonds on the 
surface is greater. Near the triple point, or near any point of transformation, 
for which the equilibrium vapor pressures (or solubilities) are equal, i.e. 
Po, = Po, (or Cog = Corn), the supersaturations ApB = kT ln(P/P,,) and 
Apm = kT ln(P/Po,) are equal. Taking into account the third power of 
the surface energy and the second power of the molecular volume one could 
anticipate that the specific surface energy will overcompensate the influence 
of the molecular volume and the geometric factors and 

bsu:v: > b,ulv$ , (2.144) 

which is the necessary and sufficient condition for Ostwald’s step rule to 
hold. 

The situation becomes more complicated far from the point of transfor- 
mation. As seen from Fig. 2.30, the equilibrium vapor pressure Po, of the 
metastable phase will be greater than that (Pas) of the stable phase. Then 
A h  > Ap, at one and the same pressure in the system. Then in order 
that Ostwald’s step rule holds (2.144) should be replaced by 

(2.145) 

where 
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Fig. 2.30. Part  of the phase diagram shown in Fig. 1.1 near the triple point 0. The  
solid lines denoted by SV and LV give the solid-vapor and liquid-vapor equilibrium, 
respectively. The dashed line denoted by m is a continuation of the LV line in the region 
of stability of the crystal phase and gives the equilibrium between the vapor phase and the 
metastable liquid phase. As seen, the equilibrium vapor pressure Porn of the metastable 
liquid is higher than the equilibrium vapor pressure Po. of the stable crystal phase. I t  
follows that at any temperature T < Tt, the supersaturation Apa = kT ln(P/Po.) with 
respect t o  the stable phase will be higher than the supersaturation Ap,,, = kT ln(P/P,,) 
with respect t o  the metastable phase. 

The ratio A,u,/Ap, is always gr.eater than unity as Po, is always higher 
than Po, by definition. 

The physical meaning of (2.145) is immediately seen from Fig. 2.31 
where the corresponding works of nucleus formation are plotted versus 
the actual vapor pressure in the system. The metastable phase begins to 
nucleate at  a higher vapor pressure Po, and initially the work of formation 
of nuclei of the metastable phase is greater than that of the stable one. 
Beyond some critical pressure P,, the two curves intersect each other and 
nucleation of the metastable phase becomes thermodynamically favored. 
When the vapor pressure is lower than P,, but higher than Po,, Ap,,, 
becomes very small and the ratio A,u,/A,u, can become large. The sign 
in (2.145) is changed and the stable phase will nucleate first. At very 
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Fig. 2.31. Plot of the works of formation of nuclei of the stable, AG:, and metastable, 
AG;, phases versus the vapor pressure. Po. and Porn denote the corresponding equilib- 
rium vapor pressures. Both curves intersect at some critical vapor pressure PcI, beyond 
which AG: < AG:. Nucleation of the metastable phase is expected at P > Per. 

small vapor pressures such that Po, < P < Porn, only the stable phase will 
nucleate. 

The main obstacle in applying Eqs. (2.144) and (2.145) is the lack of 
knowledge about the specific surface energies particularly at the interfaces 
between condensed phases. One can circumvent this obstacle in nucleation 
in melts by using the finding of Turnbull (19501 that the molar surface 
energies gmol = ~ ~ N A v : ’ ~  of materials with the same nature of the chemical 
bonds are proportional to the corresponding enthdpies of melting [Jackson 
19661 (see Fig. 2.15 and Table 2.1). We can assume that the proportionality 
constant is one and the same for the different phases and that the nuclei 
have one and the same shape, i.e. b, = b,. Recalling Eq. (l.lZ), Eq. (2.145) 
turns into 

(1 - T/Ts)2 Ah, <- .  
(1 - T/Tm)2 Ah, 

(2.147) 

In the case when the melting points T,,, and T, of both phases are 
nearly the same, Ostwald’s step rule will be observed if the corresponding 
enthalpies of melting Ah, and Ah, obey the inequality 

Ah,,, < Ah, (2.148) 

which follows from (2.144). 
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The problem becomes more complicated if the transient effects in nu- 
cleation have to be accounted for. The necessity of doing that arises from 
the fact that if the induction period of nucleation of the metastable phase 
is much longer than that of the stable phase, the metastable phase will 
not crystallize although its steady state nucleation rate could be higher. 
As shown above the transient effects play a considerable role in nucleation 
from solutions and melts, while they can be neglected in nucleation from a 
vapor phase. When considering the problem we will follow in general the 
treatment of Gutzow and Toschev [1968]. 

We will denote by the subscripts s and m the induction periods of the 
stable and metastable phases. It is seen from Eqs. (2.122) and (2.123) that 
7 is directly proportional to the geometric factor b and the specific surface 
energy u and inversely proportional to the square of the supersaturation. 
Then the condition 7, < T~ leads to  

(2.149) 

Then the combination of (2.145) and (2.149) gives rise in principle to 

1. JOm > J,, and T~ < T~ (Fig. 2.32(a)): 
the following four possibilities. 

The above holds when the cube of the ratio of the specific surface 
energies overcompensates the square of the ratio of the molecular volumes. 
The metastable phase will nucleate first with a higher rate. 

2. Jom > J,, and rm > T~ (Fig. 2.32fb)): 

The metastable phase will nucleate at a later stage but with a higher 

3. Jom < Jos and -rm > T~ (Fig. 2.32(c)): 
rate. 

(2.152) 
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TIYE TIME 

Fig. 2.32. Four possible cases of the time dependence of the nucieation rates of the stable, 
J., md the metastable, Jm, phases: (a) Jom > Jo,, rm < T., (b) Jom > Jos, Tm > 71, (c) 
Jom < Je,, Tm > 71, (d) Jom < Jo., Tm < 7.. Tm and T, denote the incubation periods 
of the metastable and stable phases, respectively (after Gutzow and Toschev [1968]). 

The stable phase will nucleate first and its rate of nucleation will be 
greater. Ostwald’s step rule will not be observed. 

4. JOm < J,, and 7, < T, (Fig. 2.32(d)): 

am urn 
(2.153) 

The metastable phase will nucleate first but its nucleation rate will be 
lower. The occurrence of this case requires a drastic change in chemical 
bonding and should be a rare event. 

The theoretical analysis presented so far leads to the conclusion that 
in general the crystallization of the thermodynamically less stable phase is 
more pronounced when the square of the supersaturation ratio Apm/Aps 
is smaller. Bearing in mind (2.146) the latter means that Ostwald’s step 
rule will operate when Crystallization takes place near the transformation 
temperature and/or at very high supersaturations. Going below from 
the transformation temperature leads to gradual transition from case 1 
to case 3. 





CHAPTER 3 

CRYSTAL GROWTH 

One can say that the building units (atoms or molecules) become a part 
of the crystal when their chemical potential becomes equal to the chemical 
potential of the crystal. As discussed in Chap. 1 the latter is equal at 
absolute zero to the work necessary to detach a building unit from the 
half-crystal or kink position taken with negative sign. In other words, when 
the atoms or the molecules are attached to kink positions or even stronger 
(positions 1 and 2 in Fig. 1.15) they become a part of the crystal. In any 
other position they are connected more weakly to the crystal surface than 
the atoms at the kink position, and their equilibrium vapor pressure and in 
turn their chemical potential will differ from those of the bulk crystal. In 
this sense the adsorption of atoms on the crystal surface or along the steps 
cannot be considered as crystal growth. All this is valid when the crystal 
is in contact with a supersaturated ambient phase, i.e. when the chemical 
potential of the latter is greater than that of the crystal. In equilibrium the 
chemical potential of the adlayet will be equal to that of the crystal and of 
the parent phase. 

The mechanism of crystal growth is unambiguously determined by the 
structure of the crystal surfaces. S and K faces offer sufficient kink sites 
for their growth. F faces can grow without the necessity of overcoming an 
energy barrier beyond the roughening temperature. Below this temperature 
the F faces are smooth and their growth requires formation of 2D nuclei or 
presence of screw dislocations to ensure steps with kink sites along them. 
In this chapter we consider first the growth of rough faces or the secalled 
nownal mechanism of growth. Then the growth of defectless crystal faces 
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through formation and lateral spreading of 2D nuclei and the spiral growth 
of F faces containing screw dislocations are considered separately. In all 
cases the peculiarities of the growth from melts, solutions and vapors are 
accounted for. 

3.1. Normal Growth of Rough Crys ta l  Faces 

We consider in this chapter the growth of rough faces without making 
distinction for the reason of their roughness. The latter can be due either 
to the crystallographic orientation of the face or to the entropy effects 
at sufficiently high temperatures. In any case the change of the energy 
of a building unit when shifting the latter across the phase boundary 
between the crystal and the ambient phase (vapor, melt or solution) has 
schematically the shape shown in Fig. 3.1. The lowest energy state at the 
left-hand side of the boundary represents the energy of the building unit 
incorporated at a kink position whereas the line at the right-hand side 
gives the average value of the energy of the unit in the ambient phase. 
The difference between both levels gives the enthalpy of the corresponding 
phase transition (sublimation, dissolution or melting). The barrier at the 
phase boundary with a height AU can have different nature in different 
media as discussed in the previous chapter. Thus in growth from vapors 
the barrier can be due to preceding chemical reaction, such as the pyrolysis 
of silane (SiH4) in Chemical Vapor Deposition (CVD) of Si or arsine (AsH3) 
in Metal-Organic Chemical Vapor Deposition (MOCVD) of GaAs. More 
complex molecules should overcome an energetic barrier in order to  occupy 
the correct orientation, i.e. we have a barrier of steric character. Obviously, 
in the growth of simple monoatomic crystals the value of the maximum 
should be nearly equal to zero. In the cases of growth in solutions and melts 
the energy barrier AU can be identified with the energies of desolvation and 
viscous flow, respectively, as discussed in Chap. 2. 

Experimental evidence concerning the roughening temperature shows 
that metallic crystals in contact with their vapors remain faceted up to 
the melting point. Heyraud and Metois [1980] observed (111) and (100) 
facets on the surface of rounded gold crystallites on graphite up to 1303 K 
(T, = 1337 K). The same authors [Metois and Heyraud 1982; Heyraud and 
Metois 19831 found that with increasing temperature the (111) and (100) 
facets on the surface of P b  crystallites on graphite diminish in size but 
are still persistent at 300°C (T, (Pb) = 327.5"C). Pavlovska et al. [1989] 
studied the equilibrium shape of small P b  crystals (10-20 pm) and found 
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Fig. 3.1. Schematic variation of the free energy for the thermally activated transfer of 
building units across the interface between the ambient phase and the crystal. The lower 
state corresponds to a building unit in a half-crystal position. Ah is the corresponding 
enthalpy of the transition (sublimation, dissolution or fusion). AU is the kinetic barrier 
for the incorporation of building units into the half-crystal position connected with 
preceding chemical reactions, desolvation in solution growth or viscous flow in growth in 
melts. 

that the most closely packed (111) faces were visible up to the melting 
point. The less closely packed (110) face which is an S face disappeared 
at 40 K lower than the melting temperature [Frenken and van der Veen 
19851. Tin [Zhdanov 19761, zinc [Heyer, Nietruch and Stranski 1971) and 
copper [Stock and Menzel 1978, 19801 in contact with their vapors did 
not show roughening transition up to the corresponding temperatures of 
melting. Well-pronounced roughening transitions below the melting point 
show usually organic crystals such as dyphenyl [Nenow and Dukova 1968; 
Pavlovska and Nenow 1971a, 1971b; Nenow, Pavlovska and Karl 19841, 
naphthalene [Pavlovska and Nenow 19721, carbon tetrabromide [Pavlovska 
and Nenow 1977) and adamantane [Pavlovska 19791. For review see also 
Nenow [1984). We can conclude that crystals of practical importance with 
stronger interatomic bonds in contact with their vapors should be faceted 
up to the melting point and should grow from vapors by the spiral or 2D 
nucleation mechanism, whereas organic crystals should grow by the normd 
mechanism at elevated temperatures and 2D nucleation or spiral mechanism 
at lower temperatures. We consider first the normal mechanism of growth 
from melts. 
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The rate of growth is proportional to the net flux of atoms: 

where 6 is the average spacing of the kink sites and ( a / ~ 5 ) ~  is the geometrical 
probability of a building unit arriving at the crystal surface to find a kink 
site. j+ and j -  are, respectively, the fluxes of attachment and detachment 
of building units per site of growth to  and from the growing surface given 
by Eqs. (2.93) and (2.94). Substituting (2.93) and (2.94) into (3.1) gives 

R = av (%) exp (-k) A s m  exp (-g) 
x { 1 -exp [-+ (+ - k)]} . 

The term in the square brackets is precisely equal to Ap/lcT (see 
Eq. (1.12)) and 

Rough faces can grow at any supersaturation higher than zero. Ex- 
panding the exponent in a Taylor series up to the linear term for small 
supersaturations (Ap << kT), the rate of growth becomes directly propor- 
tional to the latter: 

R=PmAT (3.2) 

is known as the kinetic coefficient for crystallization in melts [Chernov 1984). 
As seen the latter depends on the entropy of the phase transition, the energy 
barrier AU and the degree of roughness accounted by the probability 
to find a kink site. When the average kink spacing 6 tends to infinity, the 
kinetic coefficient and in turn the rate of growth go to zero, thus reflecting 
the simple fact that atomically smooth crystal faces cannot grow through 
the normal mechanism. Expressions similar to (3.2) and (3.3) have been 
derived by Wilson [1900] and Frenkel [1932]. 

As seen the dependence of the growth rate of rough crystal faces on the 
supersaturation is linear for small values of the latter. In other words, the 
rough crystal surface behaves as the surface of a liquid. The atomically 
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smooth crystal faces require formation of steps to ensure kink sites along 
them. Then the kink spacing 6 will depend on the step density and thus on 
the rate of formation of 2D nuclei or on the distance between the consecutive 
coils of the growth spirals. As will be shown below the latter is also a 
function of the supersaturation through the radius of the 2D nuclei which 
is a nonlinear function of the supersaturation. It follows that in all other 
cases except for the rough surfaces the growth rate will be a nonlinear 
function of the supersaturation. 

The theory of normal growth from melts was extended to cover the case 
of growth of small rounded crystallites [Machlin 19531. The derivation is 
exactly the same as the one given by Burton, Cabrera and Frank I19511 for 
lateral growth of 2D islands (see Sec. 3.2.1.1). The result (see Christian 
"811) is 

Rfr) = R (1 - :) , 

where r* is the radius of the critical nucleus and R is given by Eq. (3.2). 
Obviously this equation is valid at the initial stages of the crystallization 
process when the radius of the growing crystal grain is comparable with 
the radius of the critical nucleus. It is important to note, however, that 
according to the above equation smaller crystallites grow more slowly than 
larger crystallites. Besides, this equation states that the rate of growth of a 
crystallite whose size is equal to that of the critical nucleus is equal to zero. 
In other words, such a crystallite is in equilibrium with the parent phase. 

For the growth of Si from its melt with AsJk = 3.5, T = 1685 K, 
a PL 3 cm, 5 = 3a, Y = 1 * lOI3 sec-' and AU/mm 2 3, the kinetic 
coefficient has the value 0 0.1 cm sec-'K-'. At the same time for the 
growth of Ag with Ahs,/k = 1.2, AU/RTm Y 1 and @ Z 10 cm sec-lK-'. 

In the case of growth from solutions the growth flux is given by 

where C is the concentration of the solute at  the crystal-solution interface 
in units of number of molecules in a cubic centimeter and v, is the voIume of 
a building unit in the crystal phase. The product Cv, is thus the probability 
to find an atom in the vicinity of a kink site. 

The reverse flux is 
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where 1 - Cv, is the probability that the space around the kink site is free 
of solute particles and Ahd is the enthalpy of dissolution. 

In equilibrium C = CO (CO is the equilibrium concentration at a 
temperature T) both fluxes are equal and 

exp (-%) = co w c  
1 - cowc ' 

Making use of this relation and Eqs. (3.1), (3.4) and (3.5) gives for the 
growth rate 

R = P S W C  (C - CO) , (3.7) 

where 

is the kinetic coefficient for crystallization in solutions. 

solutions (Cowc << 1)  
Replacing Ahd by CO through (3.6) gives for Ps in the case of dilute 

A classical example of normal growth in solutions is the hydrothermal 
growth of a-quartz (Si02) [Laudise 1959, 19701. Crystals of materials like 
sapphire (A1203) [Laudise and Ballman 19581, ZnO and ZnS [Kolb and 
Laudise 1966; Laudise and Ballman 19601, yttrium-iron garnet (Y3FesO12) 
[Kolb, Wood, Spencer and Laudise 19671 and many others [Demianetz, 
Kuznetzov and Lobachov 19841 have also been successfully grown using 
this method. 

The growth is carried out in autoclave at  high temperature under high 
pressure. Small pieces of the material to be grown are poured into the 
lower part of an autoclave in which it dissolves into the solvent. Single 
crystal seeds are hanged on a wire of inert material in the upper growth 
zone of the autoclave. Part of the latter (usually about 80%) is filled with 
alkaline solution of NaOH, KOH or K2CO3 which improves the solubility of 
the crystals. The autoclave is then put down vertically in a furnace which 
heats the lower part to a higher temperature as compared with the upper 
part where the growth takes place. Both dissolution and the growth zones 
are usually divided by a perforated metallic disk to localize the temperature 
gradients. Upon heating the solution fills up the whole volume of the 
autoclave. At temperatures 400'C and 350°C of the lower and the upper 
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parts, respectively, the pressure usually increases up to 2000 atm. The 
material in the lower part dissolves into the solvent and by convection is 
transported into the upper part. The solution is saturated in the lower part 
at higher temperature and is supersaturated at lower temperature in the 
upper part. The supersaturation is thus determined by the difference of 
the solubilities CO and C of the material at higher and lower temperatures, 
respectively. Under these conditions the crystals grow at a rate of about 1 
to 2 mm per day. The interested reader can find more details in Demianetz, 
Kuznetzov and Lobachov [1984]. 

In the case of growth of a-quartz Laudise [1959] found that the rate 
of growth is directly proportional to the difference of the temperatures, 
AT, which is in turn proportional to the difference of the concentrations 
AC = C - CO, At a temperature of growth, 347"C, and AT = 50°C a rate 
of growth as high as 2.5 mm/day has been measured. The Arrhenius plot 
of the slopes of the straight lines R + AT vs the reciprocal temperature 
represents a straight line whose slope can be identified by the activation 
energy AU. The value 20 kcal/mole has thus been found for the growth 
of the (0001) face of a-quartz. The solubilities of the a-quartz at  400°C 
and 347°C are found to be 2.43 and 2.28 g/lOO g solvent, or 1.43 x lo2' 
and 1.35 x 1020 molecules/cm3. Then for the supersaturation AC/Co 
one obtains 0.059. Bearing in mind that the volume of a molecule is 
v, 91 6 x cm3 the approximation Cove = 8.6 x << 1 and Q, (3.9) 
is justified. Then with 6 Y 3a, v = 1 x 1013 sec-' and u E 4 x cm, 
fl, % 5 x cm/sec or 2.1 mm/day, in good 
agreement with the measured value. 

Finally, we will derive an expression for the rate of normal growth in 
a vapor phase. The direct flux of atoms per kink from the vapor phase 
towards the growing crystal is 

cm sec-' and R = 2.5 x 

(3.10) 

where P/(2?rmkT)'f2 is the ffux of atoms per unit area and u2 is the area 
of a kink. 

The reverse flux is given by 

(3.11) 
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In equilibrium ( j +  = j - )  P = Pw and 

where 

- - P ,  E- (;l2exp (- IcT + 
2 a3 AU 

(3.12) 

(3.13) 

(3.14) 

is the kinetic coefficient in vapor. Equation (3.13) with (3.14) has been 
derived (without the kinetic barrier AU and the degree of roughness ( ~ / 6 ) ~ )  
as early as the end of the last century [Hertz 18821 and the beginning of 
the present one [Knudsen 19091. For dyphenyl with 6 = 3a, a3 = 2.17 x 

1 and T = 68°C (T, = 69'C), 
Pv = 1 x cm3sec-'dyne-'. Then with P, (T = 68°C) 2 1 Torr = 
1333 dyne/cm2 and P = 1343 dyne/cm2, A P  = P - Pa = 10 dyne/cm2 
and R = 10 pm/sec. 

Comparing (3.3), (3.9) and (3.14) leads to  the conclusion that in all cases 
the kinetic coefficient is proportional to the surface roughness in terms of 
the probability to find a kink, and to the exponent of the activation 
energy for incorporation of a building unit into the crystal lattice, AU. 
Then the latter can be determined from an Arrhenius plot of the kinetic 
coefficient versus the reciprocal temperature as this is done in the case 
of hydrothermal growth of a-quartz. Moreover, for growth from solutions 
and vapors the rates of growth are of the order of micrometers per second 
whereas from melts the growth rates are several orders of magnitude higher. 
A detailed analysis of the theoretical models of the normal mechanism of 
growth of atomically rough crystal surfaces is carried out by Rosenberger 
I19821 (see also Christian [1981]). 

cm3, m = 2.56 x g, AU/kT 
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3.2. Layer Growth of Flat Faces 

When the crystal face is atomically smooth its rate of growth or, in other 
words, the velocity of its shift parallel to itself, is determined by two 
independent processes: (i) formation of steps and (ii) lateral movement of 
these steps. One or the other of these processes can determine the overall 
rate of growth. In the case of a defectless crystal face the rate of growth 
is determined by the frequency of formation of 2D nuclei. The latter is 
an energetically activated process and a critical supersaturation should be 
overcome for the growth to take place. When screw dislocations are present 
they represent a nonvanishing source of steps and the process of growth is 
no longer limited by step formation. Then the rate of growth is determined 
by the rate of lateral movement of the steps, which in turn depends on their 
height and structure, rate of surface diffusion, interaction of the steps with 
each other, the encounter with crystal defects, impurity atoms, etc. 

In the general case any small part of the crystal surface can be considered 
as a vicinal face consisting of a train of parallel steps with arbitrary height 
divided by smooth terraces which are parallel to the nearest singular face. 
When the rate of growth is determined by 2D nucleation, pyramids of 
growth are formed during growth by the formation of 2 0  nuclei one upon 
the other (Fig. 3.2). The side surfaces of these pyramids can be considered 
as vicinal faces. Hillocks with vicinal side surfaces are also formed during 
the growth in the presence of screw dislocations (Fig. 3.9(d)). When single 
crystal wafers are prepared from bulk single crystals through cutting and 
polishing, they can never be cut perfectly paralfel to the singular faces and 
thus they offer in fact vicinal surfaces for further growth for geometrical 
reasons. 

Fig. 3.2. Pyramid of growth consisting of 2D islands formed one on top of the other. 
The side surface of such a pyramid represents, in fact, a vicinal surface. The slope of 
the vicinal is determined by the rates of 2D nucleation and step propagation. 
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The rate of layer growth of the crystal face R in a direction normal to 
the singular face or to the surface of the terraces depends on the velocity 
of the step advance u and the density of the steps p : 

R = p v ,  (3.15) 

where p = h/X = t an8  is the slope of the vicinal given by the ratio of the 
step height h and the step spacing X (Fig. 3.3). The velocity of growth of 
the face V parallel to itself will be given by V = Rcos8, where 8 is the 
angle the particular part of the crystal surface makes with the singular face. 

1 
1 

Fig. 3.3. For the determination of the rate of growth R of a vicinal surface tilted by an 
angle 8 with respect to the nearest singular face in a direction normal to the latter. The 
quantity V = RcosO is the rate of growth of the vicinal surface parallel to itself. 

Note that the angle 8 and in turn the step density depends in general 
on the source of the steps and on the kinetics of growth, i.e. on the 
supersaturation. In the case of 2D nucleation growth the step distance 
(Fig. 3.2) depends on the rate of 2D nucleation. The higher the super- 
saturation (the smaller the specific edge energy) is the greater the rate of 
2D nucleation will be. Then 2D nuclei are formed at an earlier moment 
on top of the underlying 2D islands and the step spacing is smaller. The 
same is true for the case of spiral growth where the step distance is directly 
proportional to the radius of the 2D nucleus which is inversely proportional 
to the supersaturation. As will be shown in the next section the velocity 
of step advance u is also a function of the step density p and it is our first 
task to find expressions for v in any particular case of growth from vapor, 
solution or melt. 
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3.2.1. Rate of advance of steps 

The height of the steps on the crystal surface can vary in general from one 
atomic diameter (monoatomic steps) to several atomic diameters (poly- 
atomic steps), and finally to hundreds and thousands of atomic diameters 
(macrosteps). In fact the latter represent ledges or even small crystal 
faces which are often easily visible. The formation of macrosteps from 
monoatomic steps can be easily explained bearing in mind that the higher 
the step is the lower its rate of advance will be. The latter is due to 
the fact that a polyatomic step requires a higher flux of atoms in order 
to move the same rate as monoatomic step. Two monoatomic steps can 
meet each other as a result of local fluctuation of the supersaturation or of 
the concentration of impurity atoms on the one hand, or of encountering 
lattice imperfections on the other. If such an event takes place irrespective 
of the cause a double step is formed whose rate of advance will be smaller 
than that of monoatomic step because it requires twice as great a flux of 
atoms in order to move at the same rate as a monoatomic step. Then 
a third monoatomic step will catch up with the double step to form a 
triple height step. The process continues up to the moment a macrostep is 
formed. Thus the initially smooth crystal surface (or the vicinal face) can 
under certain conditions break up into hills and valleys. These processes 
are usually described in terms of kinematic waves and shock waves by the 
kinematic theory of crystal growth [Frank 1958b; Cabrera and Vermilyea 
1968; Chernov 19611. On the other hand, the macrosteps are dissipative 
structures in the sense that they can turn into monoatomic steps again 
under certain conditions [Chernov 1961; Bennema and Gilmer 19731. 

In general macrosteps are permanently present on the crystal surfaces. 
Their contribution to the overall rate of growth should not be great because 
of the smaller rate of advance. That is the reason to begin our presentation 
with the rate of advance of monoatomic steps. As in the case of normal 
growth of atomically rough faces we will consider separately the growth 
from different ambient phases - vapors, solutions and melts. 

3.2.1.1. Growth f r o m  vapor phase 

A. Elementary processes on crystal surfaces 
Consider a vicinal crystal face (vicinal side of a growth hillock or a pyr& 
mid due to consecutive 2D nucleation, see Figs. 3.2 and 3.9) below the 
roughening temperature in contact with its own vapor. We assume that 
the steps are with monoatomic height. Now we are not interested in the 
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origin of the steps - 2D nuclei or screw dislocations. The overall process 
of growth includes the following separate elementary processes (Fig. 3.4): 
(i) adsorption of atoms from the vapor on the terraces between the steps 
which gives rise to a population of adatoms, (ii) surface diffusion of the 
adatoms towards the steps and (iii) incorporation of the adatoms in the 
kinks along the steps which leads to advancement of the steps and hence to 
the growth of the crystal in a direction normal to its surface. The overall 
process of evaporation consists of the same elementary steps taken in an 
opposite order. We neglect the direct impingement of atoms on the steps 
from the vapor phase. It is easy to show, as in the case of heterogeneous 
nucleation from vapor, that  the flux of atoms from the vapor phase going 
directly to the step is much smaller than the flux of atoms diffusing on the 
terraces to the step. (The coupled volume and surface diffusion problem 
has been treated by Gilmer, Ghez and Cabrera [1971]). 

Fig. 3.4. Schematic view of an isolated single height step growing through surface 
diffusion. j, is the flux of atoms from the bulk vapor phase towards the crystal surface, 
j, is the flux of adatoms diffusing to the step and 60 is the average spacing between kinks 
of any sign. A. is the mean distance covered by the adatoms during their life time T. on 
the surface. 

Under conditions of equilibrium of the crystal with its vapor phase, the 
fluxes of adsorption, P , / ( 2 ~ m k T ) ' / ~ ,  and desorption, ns/rs ,  of atoms are 
equal so that the adatom concentration R, has the equilibrium value 

(3.16) 
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where P, is the equilibrium vapor pressure of infinitely large crystal, m is 
the mass of the atoms and 7, is the mean time of residence of the adatoms 
on the crystal surface before being re-evaporated and is given by 

(3.17) 

where VI is the vibrational frequency of the adatoms normal to the surface 
and (Pdes is the activation energy for desorption of an adatom from the 
crystal surface. 

obtains 
Substituting P, 

where NO combines 

from (1.58) and rs from (3.17) into (3.16) for ltse one 

(3.18) n,, = Noexp - 

the entropy factors in (1.58), but for simple crystals 
) .  ( (P1’2zdes 

is of order of the number NO E l/a2 per unit area of adsorption sites on 
the crystal surface (% l O l S  cm-2), a being the mean distance between the 
adsorption sites. The difference cpl12 - (Pdes gives the energy required to 
transfer an atom from a kink position on the flat surface. In other words, 
Eq. (3.18) expresses also the equilibrium kinks adlayer, as at equilibrium 
the fluxes from the adlayer to and from the kinks are equal. 

The mean distance the adatoms can cover during their lifetime on the 
surface is 

A, = (Osrs)1/2 , (3.19) 

where D, is the surface diffusion coefficient: 

(3.20) 

Here (Pad is the activation energy for surface diffusion and v= is the vi- 
brational frequency of the adatoms parallel to the crystal surface. Assuming 

(3.21) 

The desorption energy (Pdes is always greater than the diffusion energy 
barrier (Ped ((Pdes = 3@ for (111) face and (Pdes = 4@ for (100) face of 
fcc crystah while (Pad < $). Then A, >> a. In order to evaluate A, we 
neglect (Pad in comparison with (Pdes. Considering the case of Ag at 1000 K 
($/kT = 5) we find A,(111) = 2 .  103a and A,(lOO) = 2 .  104a. We see that 
A, is much greater than the mean distance between the kinks, 60 = 7a, 
under the same conditions. For (111) face of Si at the melting temperature 
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A s  = 2 .  102a >> 60 = 3.5a. As seen, the more closely packed the surface is 
the smaller is As and the smaller is the equilibrium adatom concentration 
nae. Thus for Ag, nse(lOO) = 2 .  but nse( l l l )  = 2 .  10-'NO. 

B. Kinetic coefficient of a step 

We will perform the same considerations concerning a single step as for 
a rough crystal face. Going back to Fig. 3.1 we identify the left-hand 
energetic level with the energy of an atom at a kink position as before. 
The upper right-hand side level is identified this time with the energy of an 
atom adsorbed on the smooth part of the crystal face. Then the difference 
between the two levels, Ah = AW = c p l p  - (Pdesr gives the energy required 
to transfer an atom from a kink position on the flat surface. The energy 
barrier AU has the same meaning as before. 

The flux of adatoms related to a kink site (sec-l) towards the step is 

j +  = unsta 2 exp (3.22) 

where nst is the adatom concentration in the step's vicinity and a2 is the 
area of a kink site. 

The flux of atoms leaving the kink sites to be adsorbed on the crystal 
face is 

(3.23) 

In equilibrium ( j+  = j - )  the adatom concentration attains its equilib- 

The rate of step advance is given by 
rium value n,, given by Eq. (3.18). 

a 
60 

v, = a-(j+ - j - )  , (3.24) 

where a/&) is the probability to find a kink site and 60 is the kink spacing 
defined by Eq. (1.74). 

Substituting j +  and j -  from (3.22) and (3.23) into (3.24) for vuoo one 
obtains 

21, = 2a2Pst(nst - rise) (3.25) 

where the factor 2 accounts for the arrival of atoms from both the lower 
and upper terraces to the step and 

a 
(3.26) 
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is the kinetic coefficient of the step or the rate of crystallization in complete 
analogy with the kinetic coefficient of the crystal face (3.14). 

We define the rate of diffusion its the mean distance As divided by the 
mean residence time rs: 

(Pdes + (Pad =avexp (- 2kT ) . As D, - = -  
7 8  AS 

(3.27) 

Obviously, when the rate of diffusion is much lower than the kinetic 

(3.28) 

which is equivalent to v d e s  + (Pad > 2AU + 2w, the velocity of step advance 
will be determined by the process of surface diffusion. In other words, 
surface diffusion is the rate controlling process. It is said that the crystal 
grows in a difusion regime. If this is not the case, i.e. when 

coefficient of the step, 
Ds 
.\a 
- < 0.t 3 

(3.29) 

or (#de#+(PSd < 2AU+2w, the processes taking part when the building units 
are incorporated into the kink sites determine the rate of step advancement 
and the crystal face grows in a kinetic regime. 

Ds - B P a t  
A S  

C. Rate of advance of a single step 

We consider a part of the crystal face containing a single monoatomic step 
confined between two infinitely wide terraces (Fig. 3.4). The vapor pressure 
is P > P' and the supersaturation is given by 

(3.30) 

for P slightly greater than P, (a = P/P,). 
The adatom population in equilibrium with the vapor phase with pres- 

sure P is 

The supersaturation in the adlayer is defined as 
n 
%e 

g 8 -  - - - l = g s - l ,  

where a, = n8/nBe. 

(3.31) 

(3.32) 
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Note that (T, is a function of the distance y normal to the step (Fig. 3.4) 

The flux of atoms diffusing on the surface towards the step is 
whereas (T is constant all over the surface. 

dn,  d a ,  is = -D,- = -D,n,,-- 
dY dY 

We introduce the potential function @ = (T - us = a - a,. Then the 
surface flux reads 

or, in a more general form, 

j ,  = Dsnse grad \E . (3.33) 

The net flux of atoms arriving from the vapor phase on the crystal 
surface is 

(3.34) 

Assuming the movement of the step can be neglected in diffusion prob- 
lems (the justification will be given below) the equation of continuity of Gf 
reads 

div j ,  = j ,  , 
which in the case of diffusion in one direction is equivalent to 

(3.35) 

The latter is simply the condition for the adatom concentration at a 
given distance y from the step to have a time-independent (steady state) 
value. In other words, the difference of the surface fluxes to and from a strip 
parallel to the step with a width from y to  y + dy must be compensated by 
the arrival of atoms from the vapor phase. 

Then 
nse 

7s 
Dsnse div (grad a)  = --9 . 

The latter can be rewritten in the general form [Burton, Cabrera and 

A:AQ = 9 ,  (3.36) 
Frank 19511 

where the symbol A denotes the Laplace operator 

d2 d2  d2 
d x 2  d y 2  d z 2  

A = - + - + -  (3.37) 
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Equation (3.36) is the governing equation which must be solved subject 
to various initial and boundary conditions for different symmetries and 
physical conditions. 

Several physical possibilities should be considered when approaching the 
problem of the rate of advance of an isolated step: 

(i) The mean path A, covered by the adatoms during their time of 
residence 7, on the crystal face is much larger than the average kink spacing 
60. Physically this means that the step acts as a continuous trap for the 
adatoms. The master equation (3.36) is then reduced to the equation of 
linear diffusion (see Fig. 3.4) 

(3.38) 

(ii) The mean path As covered by the adatoms during their time of 
residence 7, is smaller than the average kink spacing 60. The adatoms 
diffuse directly to the isolated kinks. The diffusion problem is solved in 
polar co-ordinates as the diffusion field has a circular shape. A solution in 
terms of Bessel functions is obtained [Burton, Cabrera and Frank 19511. 

(iii) The mean path A, covered by the adatoms during their lifetime is 
again smaller than the average kink spacing So but the adatoms diffuse on 
the crystal surface to join the edge of the step and then diffuse along it to 
be incorporated into the kinks [Burton, Cabrera and Frank 19511. 

As has been shown in Chap. 1 the steps are rough long before the 
critical temperature is reached and the condition A, >> 60 is practically 
always fulfilled. It follows that case (i) is the most probable one. As for 
the remaining cases the reader is referred to the original paper [Burton, 
Cabrera and Frank 19511 as well as to the review paper of Bennema and 
Gilmer (19731 for more details. 

We solve first the particular case (3.38) of linear diffusion to a single 
isolated straight step. In order to find a solution of the master equation 
(3.36) we have to specify the boundary conditions. At a distance large 
enough from the step the adlayer is unaffected by the presence of the step 
and n, = anne (Eq. 3.31). Then (T = us and 9 = 0. In the near vicinity of 
the step (y -+ 0) the adatom concentration is determined by the processes 
of attachment and detachment of adatoms to and from the kink sites. If the 
activation energy AU is negligible the kinetic coefficient will be large enough 
and (3.28) will be fulfilled, Then the exchange of atoms between the kinks 
and the adlayer will be rapid enough and the concentration of adatoms in 
the near vicinity of the step will be equal to the equilibrium concentration 
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rise. Then us = 0 and 9 = u. In the opposite case of considerable d u e  of 
AU, the kinetic coefficient of the step will be very small and the condition 
(3.29) will hold. 

In the general case at y = 0, 

(3.39) %t - %e 
u, = o;t = 

rise 

Then \E = u - oat = xu where [Bennema and Gilrner 19731 

- ust x = -  
U (3.40) 

whence 
ust = a ( 1 -  x) . 

Equation (3.25) becomes 

V, = 2a2B,tnse~(1 - X) . (3.41) 

The solution of Eq. (3.38) subject to the boundary conditions 

y = o ,  \ k = x a ,  

y - + f m ,  * = o  
reads 

where the + and - signs refer to y < 0 and y > 0, respectively. 
Then the rate of advance of the single step, 

is 

(3.42) 

(3.43) 

Equation (3.41) has been derived under the assumption that n,t is 
the adatom concentration in the near vicinity of the step. We did not 
specify what was the reason for the deviation of the concentration from its 
equilibrium value. Then we can determine the parameter x by equating 
the expressions (3.41) and (3.43) to obtain 

(3.44) 
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As seen the unknown parameter x depends only on the ratio of the rate 

Finally for the rate of advance of a single step one obtains 
of diffusion DS/& and the rate of crystallization &. 

v, = 2aAsuexp -- ( 3 * 

Applying the condition (3.28) leads to the expression 

v, = 2 a ~ , u  exp (- -) PlfZ 

kT 

(3.45) 

(3.46) 

valid for the advance of the step in a purely diffusive regime. The condition 
(3.29) leads to Eq. (3.41) with x -+ 0: 

v, = 2a2Pstns,a (3.41') 

which describes the behavior of the step in a kinetic regime and where 
the adatom concentration around the step is determined solely by the 
processes taking part at the step edge. No diffusion gradient exists in 
this case and the adatom concentration preserves the value n, determined 
by the adsorption-desorption balance all over the crystal surface except for 
a narrow strip around the step. It is seen, however, that in both cases the 
rate of advance of an isolated step is a linear function of the supersaturation 

The movement of the step, when solving the diffusion problem, caa 
obviously be neglected when the mean velocity of the motion of an adatom 
on the surface, ?Jdiff = A8/rsl  is much greater than the rate of advance of 
the step, voo = 2 ~ D ~ n ~ ~ a ~ / X ~ .  The ratio V,/Vdift = 2anle/No is obviously 
smaller than unity as the supersaturation u < 1 and the equilibrium adatom 
concentration nBe is usually a small part of the density of the adsorption 
sites NO [Bennema and Gilmer 19731. 

U. 

D. Rate of advance of a train of parallel steps 

We consider a train of parallel equidistant steps as shown in Fig. 3.5 where 
yo is the step separation. We again assume that As >> 60. Obviously, the 
adatom concentration has its maximum value at the midpoint between the 
steps so that (dn,/dy),,o = 0 (the distance y being measured from the 
midpoint between the steps) or (dq/dy),=o = 0. The concentration in the 
near vicinity of the steps is again equal to n,t and !P(y + fyo/2) = xu. 
Then the solution of Eq. (3.38) reads 
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cosh (:) 
cosh (z)  9 = xu (3.47) 

and for v, one obtains 

v, = 2xua2nse- DS tanh (E) = 2~uX,vexp (-F) tanh (E) 
A S  2XS 2fL 

(3.48) 
which reduces to (3.43) when yo 3 00. 

Fig. 3.5. 'Itain of parallel equidistant steps spaced at a distance yo from each other. 
To solve the diffusion problem it is convenient to consider distances from the midpoint 
between the steps. 

Bearing in mind that in a kinetic regime the adatom concentration on 
the terraces between the steps is not affected by the presence of the latter 
and the steps do not interact with each other through the diffusion fields, 
we can perform the same operation as the above to find an expression for 
x. Equating (3.41) and (3.48) gives 

and 
tanh (E) 

v, = 2uuX, exp (3.49) 

As P s t  
1+- Ds tanh (2- ' 

It is immediately seen that the condition (3.28) leads to an expression 
valid for the purely diffusion regime of growth: 

(3.50) 



3.2. Layer Growth of Flat Faces 167 

whereas the condition (3.29) leads again to Eq. (3.41') for the kinetic regime 
of step advance. 

The hyperbolic tangent tanh(z) initially increases linearly with its ar- 
gument z, and at  large enough values of the latter (z > 2) it goes 
asymptotically to unity. So if the step distance 90 is sufficiently larger than 
the mean free path As of the adatoms on the crystal surface tanh(yo/2X8) --+ 

1 and the adatom concentration in the middle parts of the terraces far from 
the steps will be unaffected by the presence of the latter, i.e. it will be 
equal to n. = P(27r7r1kT)-'/~r,. The diffusion fields will not overlap, the 
steps will not interact with each other and the rate of step advance will 
be equal to that of the isolated steps. Equation (3.49) reduces to (3.45) 
and Q. (3.50) reduces to (3.46). At the other extreme y0/2X8 -P 0 (it is 
enough if y0/2As < OJ), the hyperbolic tangent can be approximated by its 
argument and Eq. (3.50) turns into wm = v q o  exp(--cpl12/kT). As will be 
shown in the next chapter, the step separation yo is inversely proportional 
to the supersaturation and = const. Physically this means that the 
overlapping of the diffusion fields is so strong that the adatom concentration 
on the terraces between the steps is practically equal to the equilibrium 
adatom concentration nSe and the diffusion gradient becomes equal to zero. 
The steps move under conditions which are very near to equilibrium and 
their rate of advance ceases to depend on the supersaturation. 

E. Rate of advance of curved steps 

We consider the rate of lateral growth of a circular 2D cluster with radius 
p. Its shape is determined by the differences in the velocities for different 
orientations. If the velocity is orientationally independent the shape will 
be circular. 

The flux of atoms towards the curved step will be given now by 

(3.51) 

where 27rpj60 is the number of the kinks at the island's periphery. 
In order to find the reverse flux we recall that the equilibrium of 

small 2D islands with the parent phase is determined not by the work of 
separation from the half-crystal position, but by the mean separation work 
8 2  (Eq. (1.65)). Then the work to transfer an atom from a kink position 
along the edge of the 2D island to the adlayer on the terrace will be given 
bY 
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where xis the specific edge energy of the step (Eq. (1,67)). In fact Eq. (3.52) 
reflects the enhanced chemical potential of a cluster of finite size, or in other 
words, the Thomson-Gibbs effect (see Eq. (1.66')). 

The reverse flux reads 

(3.53) 

At equilibrium both fluxes are equal, net = nse(p), and the equation of 
Thomson-Gibbs for the two-dimensional case 

results where Its, is given by (3.18). 
Assuming the 2D island is large enough (low supersaturation) the net 

fluxes from the upper surface of the island and the surrounding crystal face 
to the circular step should be equai. Then the radial velocity of the step 
advance will be 

3+ -3- v(p) = 2- 
2 X P N o  

and 
V ( P )  = 2a2Pst[nst - nse(p)] 1 (3.55) 

where the kinetic coefficient Pst is again given by (3.26). As seen, (3.55) 
reduces to (3.25) when p -, 00. Bearing in mind that ns,(p) > n.,, it 
follows that the velocity of advance of a curved step is smaller than the 
rate of advance of a straight step under the same conditions. 

The difference 7tSt - nse(p) can be rearranged as follows: 

The radius pc of the critical radius is defined by the Thomson-Gibbs 
equation (1.66') 

(3.56) 
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From (3.54) and (3.56) it follows that 

"o=& 
U P 

and finally 
V ( P >  = 2a2/3St7t,e~ (3.57) 

The diffusion equation (3.36) in polar coordinates reads 

(3.58) d2*(r)  ldi€'E(r) i€ ' (r)  +--=- 

where Q ( r )  = ~7 - u#(T), and is subject to the boundary conditions * ( T  + 

00) = 0 ,  [dg((r)/dr),,o = 0 and Q(T = p )  = Q ( p )  = u - v s t ( p )  = xa 
(o.t(p) = Itst/nge - 1). The solution of (3.58) reads 

dr2 T dr X,z 

(3.59') 

( 3  159") 

where &(z) and &(z) are the Bessel functions of the first and the second 
kind with imaginary argument. 

The flux of atoms towards the edge of the cluster is 

where the formulae I;(%) = I l ( z ) ,  Ki (z )  = -KI(z ) ,  Il(z)Ko(s)+ 
I&)Kl(z) = 1/z and the approximation Io(z)Ko(z) = 1/2s valid for 
2 > 1 have been used. 

The radial velocity of advance of a curved step is then 

(3.61) 
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From (3.57) and (3.61) one obtains 

and 

v(p)  = 2oA,vexp 

or 

(3.62) 

where v, is the rate of advance of a straight step given by (3.45). 
Finally, for the interesting case of growth of concentric circular clusters 

with edges spaced yo from each other the rate of advance will be given by 
(see Eq. (3.49)) 

(1 - $) . (3.63) 

This is a general expression for the rate of advance of monoatomic steps. 
All limiting cases of curved and straight steps or train of steps in both 
diffusion and kinetic regimes of growth can be easily derived from it. 

3.2.1.2. Growth from solutions 

In the case of growth from solutions the supply of growth units takes place 
predominantly through diffusion in the bulk of the solution [Burton, Cab 
rera and Frank 1951; Chernov 19611 although there is evidence that the 
growth units reach the growth sites at least partly by surface diffusion 
as well [Bennema 1974; Vekilov et al. 1992; Zhang and Nancollas 19901. 
The problem of growth by surface diffusion resembles very much that from 
vapors, and in the following presentation we will take into consideration the 
bulk diffusion only. The problem of propagation of steps simultaneously by 
surface and bulk diffusion has been treated theoretically by Van der Eerden 
[1982, 19831. 

The solutions are usually stirred. If the solution is still, the exhaustion 
of the solution near the growing crystal will give rise to convection flows. 
Thus in all cases the solution moves with respect to  the growing crystal. 
When a fluid moves tangentially to a plane surface the velocity of the 
fluid decreases towards the surface and in the near vicinity of the latter 
an immobile boundary layer is formed as shown in Fig. 3.6 [Schlichting 
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19681. The latter is frequently called a stagnant layer. The thickness of the 
stagnant layer depends on the velocity of the fluid, 6, its viscosity 7 and 
density p, and the distance z from the leading edge of the crystal surface 
according to the approximate formula 

1 
N 

X- 
Fig. 3.6. Schematic representation of the stagnant boundary layer above the surface of 
a crystal in a tangentially moving fluid. The arrows give an impression of the decrease 
of the velocity of the fluid when approaching the crystal surface. The thickness of the 
stagnant layer d depends on the distance x from the leading edge of the crystal face. 

For values of the parameters involved, typical for aqueous solutions at 
room temperature, q = 1 x g cm-lsec-', p = 1 g ~ r n - ~ ,  8 = 40 cm 
sec-' and z = 0.1 cm, d 2 0.25 mm. The abovementioned formula gives 
only a qualitative indication as the real situation in stirred solution or 
around rotating crystal can be quite different. The concept of stagnant 
boundary layer is also widely used for the description of processes taking 
part in reactors for Chemical Vapor Deposition (CVD) [Carra 1988). 

It is usually assumed that within a stagnant layer the transport of the 
growth species to the surface of the crystal occurs by diffusion, while at the 
upper boundary of the layer the concentration of the solute is maintained 
constant and equal to the bulk concentration C,. Assuming again that 
the rate of the movement of the steps is sufficiently smaller than the rate of 
diffusion the concentration of the solute in the boundary layer is described 
by the equation of Laplace AC = 0, where A is the Laplace operator. 
When considering the movement of a single step as a result of incorporation 
of growth units into kink sites along the step, the mean kink spacing is 
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obviously much smaller than the thickness of the boundary layer. Then the 
step acts as a linear sink for the growth units and the diffusion field has the 
form of a semicylinder oriented with its axis along the step (Fig. 3.7). It is 
thus convenient to  express the Laplace equation in cylindrical coordinates: 

d2C 1dC - + - - = o  
dr2 T dr ' 

where T is the radius vector. When we consider the growth of a vicinal 
crystal face with equidistant steps we have to take into account the over- 
lapping of the diffusion fields as is shown in Fig. 3.8 [Chernov 19611. We 
will consider these two cases separately as was done above. 

Fig. 3.7. Cylindrical symmetry of the volume diffusion field around an isolated step. The  
distance from the step is characterized by the radius vector r .  

I 
N 

Y- 
I-- Yo- 

Fig. 3.8. Schematic view of a train of parallel steps along the y direction spaced at an 
average distance yo. The transport of building units through bulk diffusion takes place 
along the solid lines. The dashed lines represent surfaces with equal solute concentration. 
Far from the steps at the upper boundary d of the stagnant layer the solute concentration 
C, is equal to  that of the bulk of the solution (after Chernov [1961]). 
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A. Rate of advance of a single step 

We consider this simpler case for illustrating the approach. A solution of 
the Laplace equation is the function [Carslaw and Jaeger 19601 

C(T)  = Aln(r) + B , (3.64) 

which can be verified by inspection and where A and B are constants. The 
latter can be found from the boundary conditions 

(3.65') 

~ = d ,  C=C,, (3.65") 

where Cat and C, are the concentrations at the step vicinity and the upper 
boundary of the stagnant layer or in the bulk of the solution, respectively 
(Fig. 3.8). 

The condition (3.65') means that we approximate the step with height 
a by a semicylindrical surface of radius T = a/n. The condition (3.65") 
as it is written means that the concentration has the value C, at the 
semicylindrical surface with radius T = d. As there axe no other steps 
nearby and therefore no other sinks for the solute species, this condition is 
a direct consequence of the assumption that the transport occurs by volume 
diffusion towards the sites of growth. In other words, there is no ffux of 
atoms to other parts of the surface, and the concentration fax from the step 
is constant and equal to C, in all directions. 

Then for the concentration profile around the step one obtains 

(3.66) 

The rate of the step advance is 

where v, is the volume of a growth unit in the crystal, D is the bulk diffusion 
coafficient and Co is the equilibrium concentration of the solute at the given 
temperature. u = C,/Co - 1 is the supersaturation, uSt = C,t/Co - 1, 
x = (a - u,t)/t~ and C, - CSt = xCoa in complete analogy with the 
previous case. 
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On the other hand, 

where 

( :;) a 
60 

Pst = au- exp -- 

is the kinetic coefficient of the step, in complete analogy with that of the 
crystal face (Eq. 3.9). As seen, the only difference is in the dimensionality 
of the probability to find a kink site. 

Equating (3.67) with (3.68) gives 

and 

(3.69) 

As before, when the rate of diffusion, .rrD/a, is sufficiently greater than 
the rate of crystallization, Pst, the latter controls the rate of the step 
advance. The latter is given in the kinetic regime by 

wrn = PstCOVc0. . (3.70) 

At the other extreme of the diffusion regime ( r D / a  << Pst), 
TDCOV, 

urn = ff 

a l n  (r:) 
(3.71) 

and v, is a linear function of the supersaturation as in the case of vapor 
growth. 

B. R a t e  of advance of a s tep in a t ra in  of steps 

This problem was solved for the first time by Chernov [1961]. The solution 
of the Laplace equation AC = 0 (see Fig. 3.8 for the orientation of the 
coordinate system) subject to the boundary conditions 
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reads 
112 

C = A h  [sin2 (iy) + sinh2 ( i z ) ]  + B , 

where A and B are constants: 

A =  c, - cst  N CCQ - C s t  

In [sinh (:)I - In [sinh (-31 - In [ :sinh (:)I ’ 

B=C,+Aln[sinh($)] , 
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(3.72‘) 

(3.72”) 

(3.73) 

(3.74) 

(3.75) 

where the approximation sinh(a/yo) 2 a/yo (a/yo << 1) has been used. 
The function sin(?ry/yo) in (3.73) reflects the periodicity in C due to the 

sequence of equidistant steps. The hyperbolic sine sinh(7rzlyo) accounts 
for the dependence of C in a direction normal to the growing surface. 
It is immediately seen that (3.73) reduces to (3.64) at y = 0 and large 
distances between the steps so that sinh(az/yo) Y ?rz/yo. The boundary 
condition (3.72’), C = C,, is, strictly speaking, valid for z = d at any 9. 
As discussed by Chernov [1961], when ?rd >> yo the concentration does not 
depend anymore on y for large values of z and the condition C(0, d )  = C, 
becomes equivalent to  C(d) = C,. In the opposite case where ?rd << yo we 
have in fact steps far apart and the solution for single step is d i d .  

In order to calculate the rate of step advance we have to find the concen- 
tration gradient dC/dr. The latter is given by dC/dr = (dC/dz)(dz/dr) + 
( d C / d y ) ( d y / d r ) ,  where d z l d r  = T/X, dyldr = r /y  and T = (y2  + z 2 ) 1 / 2 .  
Making use of (3.67) and the above relations, we find that (dC/dr) ,=, / ,  = 
nA/a and 

rvC DCOXU 
v, = 

a ln  [: sinh (31 * 
Equating (3.68) and the above expression gives 

upst In [ p sinh (31 
nD + aPst In [ sinh ($)I X =  
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and finally 
VcPst Cog v, = 

1 + 6 X D  In [ f sinh (31 ' (3.76) 

It is immediately seen that the condition 7rd/yo << 1 reduces the 
equation (3.76) to (3.69), valid for single isolated steps. 

The corresponding limit cases for diffusion and kinetic regime are easy 
to obtain. In the first case ( n D / a  << Pst), 

7r Dv, COU v, = 
aln [: sinh (f)] ' 

(3.77) 

whereas in the second case (.rrD/a >> Pst), Eq. (3.70) results. 
The reciprocal of the function in the denominator in (3.77) has qual- 

itatively the same behavior as the hyperbolic tangent. The velocity of 
advance of a step in a train is a linear function of the supersaturation in 
the diffusion regime only when the step spacing yo is sufficiently larger 
than the thickness of the boundary layer, which means in practice isolated 
steps. At the other extreme xd >> y, the hyperbolic sine sinh(z) can be 
approximated by exp(z)/2 and v, "= Dv,C~ayo/ad = const (yo x l/a) as 
in the case of growth from vapors. 

Let us consider as an example the growth of the prismatic face of 
NH4H2P04 (ADP) crystals from an aqueous solution at room temperature 
[Chernov 19891. With a % 4 x loe8 cm, v S 1 x lOI3  sec-', 60 Z 4a, 
D 2 1 x cm2sec-1 and AU % 10 kcal/mole, Pst 4 x cm sec-', 
a p S t / r D  5 x <( 1 (the logarithm can contribute no more than an 
order of magnitude) and the growth proceeds in the kinetic regime. The 
saturation concentration CO S 3.5 mole 1-l' COV, Z 0.2 and with = 0.03, 
v, 2 2.4 x cm sec-l, in good agreement with the experimentally 
measured value 3 x cm sec-' . The reader can find more details in the 
excellent review paper of Chernov (19891 and the original papers quoted 
therein [Chernov et  al. 1986; Kuznetsov, Chernov and Zakharov 1986; 
Smol'sky, Malkin and Chernov 1986). 

Another interesting example is the growth of (111) faces of Ba(N03)2 
crystals [Maiwa, Tsukamoto and Sunagawa 1990). The experimentally 
measured rate of step advance depends linearly on the supersaturation at 
high rates of flow of the solution (40 cm sec-') and nonlinearly at  low flow 
rates ( 5  cm sec-l). Assuming d / y o  << 1 at high flow rates, the rate of 
the step advance will be given by Eq. (3.69), which is a linear function 
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of the supersaturation. At low flow rates, nd/yo >> 1 and the hyperbolic 
sine can be approximated by an exponent, thus giving rise to a linear term 
of the supersaturation in the denominator of Eq. (3.76). The latter leads 
to a clear nonlinear dependence of v, on B at small supersaturations as 
observed in the experiment whose slope at u = 0 is approximately equal to 
P s t  cove. 
3.2.1.3. Growth from melts 

As mentioned in Chap. 1 the entropies of melting, As,/k (in terms of 
Bolzmann’s constant), of most of the metals have an average value of 
about 1.2 and their surfaces near to the melting point are expected to 
be rough according to the simplest criterion of Jackson. The As,/k values 
for semiconductors are usually greater - from 3.6 and 3.7 for Si and Ge to 
5.7 for InP, 7.4 for InSb, 7.6 for InAs and 8.5 for GaAs, etc. So the surfaces 
of the binaries mentioned above are expected to be smooth and to grow 
by the layer mechanism. As for elemental semiconductors it is difficult to 
predict the structure of their surfaces with sufficient accuracy. 

In general the growth from simple one-component melts is similar to 
the growth from solutions [Chernov 1961, 19841. When a building unit is 
incorporated into a site of growth, heat of crystallization is released and the 
local temperature becomes higher. Assuming as before that the mean kink 
spacing 6, is small enough the step will act as a linear source of heat. The 
undercooling around the step will decrease just  like the supersaturation in 
the solution in the near vicinity of the steps. Then a temperature gradient 
in a semicylindrical space around the steps arises. The mathematical 
equations which govern the conduction of heat in condensed phases are 
exactly the same as the diffusion equations [Carslaw and Jaeger 19601 and 
we have to solve precisely the same mathematical problem as for solution 
growth [Chernov 1961,19841. The heat of crystallization can be taken away 
through the melt or, more typically, through the crystal as the thermal 
conductivity of the crystals is usually higher than that of the liquids. For 
instance, the thermal conductivities of solid and liquid aluminum at the 
melting point are 0.51 and 0.21 cal/cm sec K respectively. In the first case 
when the heat is taken away through a stirred melt we have precisely the 
same solution of the master equation as for growth in stirred solution and 
the thickness of the boundary layer has the same physical meaning 85 before. 
In the second case, the thickness of the single crystal wafer can be taken 
instead. Obviously, the same expressions are obtained as in the previous 
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section in which the supersaturation D = (C, - Co)/Co should be replaced 
by the undercooling u = (T,  - Tm)/T ,  and the diffusion coefficient D by 
the coefficient of the temperature conductivity, XT = k T / c , p  (cm2sec-') 
( k ~  is the coefficient of the thermal conductivity, C, is the specific heat 
capacity (cal/g K) and p (g/cm3) is the density). Instead of the kinetic 
coefficient of the crystal face, Pst ,  for solutions one has to take the kinetic 
coefficient of the step for melts, 

p: =av--exp As, a (-+) exp (-$) (3.78) kT 60 

multiplied by a characteristic temperature T ,  = A H , / C F  which is given 
by the ratio of the heat of crystallization (or melting) to the molar heat 
capacity of the liquid. As C!" is the quantity of heat required to increase 
the temperature of one mole of the melt by one degree and AH, is the 
quantity of heat per mole that is introduced into the melt as a result of 
the crystallization process, T, is the temperature up to which the melt 
will be heated up if the heat of crystallization is not taken away from the 
system. For metal melts it has the value of several hundreds of degrees 
(445 K for Ag) but is considerably higher for semiconductors (1860 K for 
Si and 1490 K for GaAs). 

Then the expression for the rate of advance of the step reads 

PzTrng v, = 
1+- In [ f sinh (z)]  

TXT 

(3.79) 

This expression is valid for both cases of removing the heat of crystd- 
Lization, through the melt and through the crystal. One has to bear in 
mind that in the first case the coefficient of the temperature conductivity, 
X T ,  has the value for the liquid, and vice versa. In the case of growth of 
Si at AT = T ,  - T = 1 K, kT = 0.356 cdfcm sec K, Cr'  = 5.455 calfg- 
atom K = 0.194 cal/g K ,  C!q = 6.5 cal/g-atom K, p = 2.328 g/cm3, 
A H ,  = 12082 cal/mole and XT = 0.787 cm2/sec, T ,  = 1860 K. With 
AU 2 5000 cal/mole, 60 = 3 . 5 ~  and A s , / k  = 3.6, /32 = 3.7 cm/sec K and 
a,8ZTs/7rx~ Z 1 x << 1, i.e. the growth proceeds in a kinetic regime. 
For the rate of advance of the step one obtains v, = pzAT = 3.7 cm/sec. 
The value for GaAs is two orders of magnitude smaller (v, E 0.1 cm/sec, 
XT = 0.267 cm2/sec, T ,  = 1490 K, pz S 0.1 cm/sec K) due to the higher 
entropy of melting. Comparing the above values with the one valid for 
growth in solutions one can see that they are about five orders of magnitude 
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higher. The latter is due to the better supply of growth units in melts as 
compared with (dilute) solutions on the one hand, and to  the smaller barrier 
for crystallization, AU/kT, in the melts on the other. 

3.2.2. Spiml growth of F faces 
As discussed in Chap. 1 screw dislocations offer nonvanishing steps on 
crystal surface. A growth hillock is formed (Fig. 3.9) and in order to 
calculate the rate R of growth of the crystal face we have to find an 
expression for the step density p of the side face of the hillock, or in other 
words, the distance yo between the successive turns of the spiral. 

b 

C d 

Fig. 3.9. Consecutive stages from (a) to (d) of the formation of a growth pyramid around 
the emergency point of a single screw dislocation. As in Fig. 3.2 the side faces of such 
pyramids represent in fact the vicinal surfaces, Their slopes are proportiona1 to the 
supernat urat ion. 

3.2.2.1. Shape of the growth spiral 

Let us consider first for simplicity the formation of a growth hillock around 
a single screw dislocation (Fig. 3.10). We assume that the spiral is poIygo- 
nized with a square shape and that the rate of advance vuoo of the steps in 
every direction is one and the same. In the initial moment (Fig. 3.10(a)) 
the dislocation offers a single step with a lower terrace to  the right of it. 
Atoms diffuse towards the step (on the crystal surface or in the bulk of the 
solution) and join kink sites along it. As a result, the step moves to the 
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Fig. 3.10. Consecutive stages from (a) to (e) of the formation of a growth spiral. 
(a) shows a single step originating from the emergency point of the dislocation denoted 
by the black point. The arrow shows the direction of step advance. During the growth of 
the initial step a new step is formed as shown in (b). When the length of this step exceeds 
2pc, the second step begins to grow and a new step is formed as seen in (c). As seen in 
(e), the distance between the consecutive turns of the growth spiral is proportional t o  
the radius of the critical 2D nucleus. The radius of curvature of the step which comes 
out from the emergency point is always equal to the radius of the critical 2D nucleus. 
These are in fact the properties of the Archimedean spiral. 

right and a new step normal to the first one appears (Fig. 3.10(b)). As 
long as the second step is shorter than the edge of the critical 2D nucleus, 
12 = 2pc, at the given supersaturation it will not move because a 2D cluster 
smaller than the critical nucleus is thermodynamically unfavored and has a 
greater tendency to decay than to grow (the step “does not know” whether 
it belongs to a 2D nucleus or to a growth spiral). Once the size 2pc is 
reached the second step begins to  grow with a velocity v, and a third step 
appears which is parallel to the first one (Fig. 3.10(c)). This third step will 
begin to grow when its length becomes greater than 2pc. At that moment 
the length of the second step will be equal to 4pc. Then a fourth step will 
appear, and so on. Following this procedure further we arrive at  the picture 
in Fig. 3.10(e) and see that the distance between two successive turns of the 
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growth spiral is equal to 8pc . Obviously, this consideration is oversimplified 
and gives only an indication of the real processes which take place during 
growth. It reflects correctly, however, two very important facts: (i) the 
spacing of the steps originating from a single dislocation is proportional to 
the size (radius) of the critical 2D nucleus at the given supersaturation and 
(ii) the length of the step which comes out from the emerging point of the 
screw dislocation is always equal to 2pc .  If we wsume that the growth is 
isotropic, the spiral will be rounded. Then the conclusion (ii) above means 
that the radius of curvature of the step at the emerging point of the screw 
dislocation is  always equal to the radius pc of the critical nucleus. 

In order to find a more accurate expression for the shape of the spiral 
and, in turn, for the interstep distance we will follow the approach of 
Burton, Cabrera and Rank [1951]. 

The radius of the curvature, p, in polar coordinates (the polar angle cp 
and radius vector T )  is given by 

(3.80) 
(r2 4- r ’2)3 /2  

p = r2  + 2Tf2  - TTl’ ’ 

where T’ = dr /dp  and r’’ = d2r /d@.  
We consider further a spiral with center at the point 0 w shown in 

Fig. 3.11. The rate of advance v(r)  in the direction of the radius vector T 

is 
dr dr dp 
dt dv dt 

V ( T )  = - = -- = WT‘ , (3.81) 

where w = dcp/dt is the angular velocity of spiral winding. 

related to the rate of advance v(p )  in a direction normal to the step by 
The rate of advance in a direction of the radius of curvature, v ( T ) ,  is 

Substituting (3.80) and (3.82) into (3.62) gives the equation 

whose solution T = r(p) will give us the shape of the spiral. 
In order to simplify this expression we consider the c u e  of small T ,  i.e. 

around the center of the spiral. We neglect all terms containing r2 and T 

and integrate the remaining differential equation r’ = 2pc.  As a result the 
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0 x 

Fig. 3.11. Schematic view of the growth spiral around the emergency point of a screw 
dislocation. u ( r )  and v ( p )  are the rates of step advance in directions along the radius 
vector and normal to the step, respectively. 7 denotes the angle between them. 

equation for the simplest spiral, which is well known as an Archimedean 
spiral, is obtained: 

T = 2p,(p . (3.84) 

Let us consider this equation more carefully. Substituting T’ = 2p,  
and T” = 0 into (3.80) we find that the radius of the curvature of the 
Archimedean spiral is given by 

(1  + x2)3/2 

1+;x2 ’ P = Pc 

where x = r/2pC. It is immediately seen that the radius of the curvature 
is equal to  the radius of the 2D nucleus in the center of the spiral (z = 0) 
and goes linearly to infinity far from the spiral center (x -P 00). For 
comparison the radius of curvature p = r(1 + m2)1/2 of the logarithmic 
spiral (T = aexp(m9))  tends to infinity for T -t 03 but is equal to zero at 
the spiral center. 

On the other hand, the multiplier 

Pc 1 + 4x2 

P (1 + x2)3/2 
1 - - = 1 -  

in the equation for the rate of the step advance, (3.62), is equal to zero 
at the spiral center and tends asymptotically to unity far from the spiral 
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center. It follows that the rate of the step advance will vary from zero 
at the spiral center to the rate of advance of straight steps far from the 
spiral center. Thus the first turns of the spiral will move more slowly (slow 
kinetics) than the more distant ones (fast kinetics). 

The distance A between two successive turns of the single spiral or two 
successive steps is 

A = T(V + 2%) - r ( ~ p )  = 2 p c [ ( 9  + 2 ~ )  - 91 = 4npC . (3.85) 

A more detailed anaIysis performed by Cabrera and Levine [1956] based 
on a better approximation for the spiral shape T = r(p) resulted in the 
expression 

(3.86) 

which we will use further. It follows that the interstep distance is inversely 
proportional to the supersaturation and the increase of the latter makes 
the slope p = a/A of the cone (or pyramid) of growth steeper and vice 
versa. Note that p = tan8 where 0 is the tilt angle with respect to the 
corresponding singular face and hence p is equal to the step density. 

The existence of only one screw dislocation on a given crystal face is 
usually less probable than the existence of many dislocations and even 
groups of dislocations. Two neighboring dislocations can have in general 
equal or opposite signs. This means that they can either both turn clockwise 
(or counter-clockwise) or one of them clockwise and the other counter- 
clockwise. If they have opposite signs and axe spaced farther than 2pc 
they will make loops as shown in Fig. 3.12(a) [Rank 1949al. The problem 
when the dislocations have like signs is more complicated. Two cases are 
distinguished. In the first one the dislocation spacing 1 is smaller than 
2pet in the second one 1 is greater than 2p,. Imagine now a group of n 
dislocations ordered in a straight line as along a grain boundary. Let L 
denote its length so that the dislocation spacing 1 = Lfn. Figures 3.12(b) 
and (c) show parts of the dislocation group (the grain boundary) consisting, 
for clarity, only of two dislocations spaced at a distance AB. The condition 
I W 2p, is e,quivalent to L >> A, where A is the interstep distaace 
determined by a single dislocation and is given by Eq. (3.86). The second 
condition 1 << 2pc is equivalent to L << A (Fig. 3.12(c)). As seen in the 
figures the real interstep spacing yo is equal either to I = L/n (Fig. 3.12(b)) 
or to A / n  (Fig. 3.12(c)), when L >> A or L << A, respectively. In the general 
case [Burton, Cabrera and Rank 1951; Bennema and Gilmer 1973; Chernov 
19891 
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J 

Fig. 3.12. Shape of growth spirals due to pairs of dislocations. (a) Closed loops due to 
dislocations with opposite signs when the distance AB between the emergency points is 
greater than the radius of the critical 2D nucleus. (b) Shape of the spiral due to a pair 
of dislocations of like sign, separated by a distance 1 = AB >> 2pc. The step separation 
is equal to the distance I and does not depend on the supersaturation. (c) Shape of the 
spiral due to a pair of dislocations of like sign, separated by a distance 1 = AB < 20,. 
The step separation is two times smaller than the distance A originating from a single 
dislocation and is inversely proportional to the supersaturation (after Burton, Cabrera 
and Frank [1951]). 

A 
n g o = - ,  (3.87) 

where 

is the so-called ‘‘strength)) of the dislocation source. It follows from above 
that when L >> A the interstep spacing is simply equal to the interdisloca- 
tion distance 1 = L/n  and does not depend on the supersaturation. In the 
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second limiting case the interstep spacing depends on the supersaturation 
but is n times smaller than 19pc. In the case when the dislocations in the 
source are not ordered in a straight line but are grouped in a spatial region 
L denotes the perimeter of the region [Chernov 19891. 

3.2.2.2. Growth from a vapor phase 

The rate of growth normal to the surface is given by Eq. (3.15), R = 
pv,  = avoo/yo, where vw/yo is the flux of steps with thickness a passing 
in a direction parallel to the singular crystal face over any point of the 
latter. We assume first that the crystal face is entirely covered by a growth 
pyramid formed by a single dislocation (or by a group of dislocations such 
that L < A and yo = A/n) .  Substituting (3.501, (3.86) and (3.87) into 
(3.15) (diffusion regime of growth and far from the spiral center) gives, for 

where 
19xa2 

uc  = - PnkTX, 

is a characteristic supersaturation and 

c = auexp (-F) cpl(f2 

(3.89) 

(3 90) 

is a rate constant. 
fRt us study Eq. (3.88) more closely. For typical values of the parame- 

ters included in (3.89): x E 3 x 10-5 erg/crn, a Y 3 x 10-8 cm, T = 1000 K, 
n = 1 and A, = 2 x 103a, uc = 3 x However, growth of crystals is 
observed at supersaturations u as low as 1 x lo'*. Obviously, two limiting 
cases can be distinguished. At small supersaturations such that uc/u >> 1, 
tmh(u,/u) 4 1 and R obeys the famous parabolic law of Burton, Cabrera 
and Frank [1951]: 

-2 v R=C-. 
C C  

(3.91) 

At supersaturations sufficiently higher than ucl tanh(a: --+ 0) = I and 

R = C u .  (3.92) 

is shown in Fig. 3.13. As seen the parabolic 
law holds up to the characteristic supersaturation uc. Beyond it a linear 

R obeys a linear law 

The dependence of R on 
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relationship is gradually established. The condition for the latter is 6 > uc 
or As >> ~ 0 1 2 .  Physically this means that the density of rough steps and 
hence of kinks on the surface is so high that every adatom is incorporated 
into a growth site before succeeding to re-evaporate. Hence, R is directly 
proportional to as in the case of normal growth of rough F faces. In the 
other extreme (As << y0/2) the diffusion fields of the neighboring steps do 
not overlap and a large fraction of adatoms re-evaporate before joining the 
growth sites. The proportionality of 21, and the step density l/yo with 
respect to u result in the parabolic law (3.91). 

Fig. 3.13. Plot of the rate of spiral growth versus the supersaturation. For supersatu- 
rations smaller than the characteristic one, uc, the growth obeys the parabolic law of 
Burton, Cabrera and Frank [1951). Beyond ue the growth rate is a linear function of the 
supersaturation (after Burton, Cabrera and Rank [1951]). 

Let us consider now the case when L >> A ( I  >> 2p,) and yo = 1 = Lfn 
(Fig. 3.12(b)) does not depend on the supersaturation. A linear law for the 
rate of growth R results instead of the parabolic one: 

R = C’a , (3.93) 

where 

(&) 2& 
1 

C’ = C- tanh (3.94) 
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This is the so-called second linear law [Bennema and Gilmer 19731. It 
results from the specific interrelation of the spacing of the dislocations in the 
source and the radius of the critical 2D nucleus. The interstep distance and 
in turn the slope of the pyramids no longer depend on the supersaturation. 
Two limiting cases are distinguished: (i) 1 << 2 X s ,  tanh(s) ?1 2 and 
C' = C, and (ii) I >> 2X,, tanh(E/2&) = 1 and C' = 2X,C/1 << C. Thus 
linear dependence of the growth rate versus the supersaturation should be 
observed which is characteristic for normal growth of rough faces. 

On the other hand, a parabolic dependence of the growth rate versus 
the supersaturation ( the second parabolic law) [Bennema and Gilmer 19731 
can be observed under conditions of a kinetic regime of growth. Then the 
velocity of the step advance is given by Eq. (3.41') v, = ~ c z ~ P ~ ~ ~ L S ~ Q ,  which 
combined with (3.15), (3.86) and (3.87) gives 

R = Cttu2 , (3.95) 

where 
(3.96) 

It is interesting to compare the constants C and C" in order to distin- 
guish the diffusion and kinetic mechanisms. The ratio C'l/(C/u,) is given 
bY 

cp1 j 2  - AU - = -_- a a 'se exp ( 
kT ) . 

> .  

C" 
C / Q c  A s 6 0  No 

Taking into account Eqs. (3.21), (3.18) and (1.74) the above equation 
turns into 

- C" 
C l U C  

("en + vsd - 2 A u  - 2~ 
2kT = exp 

where w is the work required to produce a kink on the step edge. As 
seen the value of the ratio C"/(C/ac) depends on the interrelation of 
the activation energies for desorption and crystallization. Obviously, when 
v)des + vsd > 2AU + 2w, C" >> C/uc and vice versa. However, in order to 
derive Eq. (3.95) we assumed a kinetic regime of growth, i.e. the condition 
(3.29) which is equivalent to  (Pdes + (Psd < 2AU + 2w. Then C" << c/o, 
and the second parabolic law dependence will cross the straight line of the 
linear BCF law at a characteristic supersaturation 



188 Crystal Growth 

which is much greater than u,. It may happen that the second parabola 
R = C1u2 would not cross the BCF linear dependence in the experimental 
interval of the supersaturation. 

A. The back stress effect 
I t  follows from Eq. (3.86) that the higher the supersaturation is the smaller 
the interstep distance A will be. The latter in turn leads to the linear 
law of growth (3.92). Cabrera and Coleman [1963] discussed this question 
and found that the analysis of Cabrera and Levine I19561 underestimates 
the interstep distance, particularly at the center of the growth spiral. The 
center of the spiral “will see” a supersaturation smaller than u because of 
the diffusion field which is due to the first turn of the spiral. The higher 
the supersaturation is, the smaller should be the radius of the first turn 
and the stronger should be its influence on the adatom concentration at 
the center which in turn leads to an increase of the radius of the first turn 
of the spiral. Thus we should observe a feedback effect which is known 
in the literature as a “back stress” effect [Cabrera and Coleman 19631. In 
principle we should observe the back stress effect not only a t  the center of 
the spiral as each step is under the influence of the diffusion fields of the 
neighboring steps at  higher supersaturations. 

In order to estimate it we approximate the first turn of the spiral by 
a circular step with a radius A0 (Fig. 3.14). The supersaturation a t  the 
center can be found easily from Eq. (3.59’). Under the condition T = 0, the 
Bessel function l o (0 )  = 1 and the supersaturation in the center, uso, reads 

us, = u [ l -  If1 (31 (3.97) 

lo(z) is always greater than unity and the supersaturation a t  the spiral 
center, o,,, will always be smaller than u. We multiply both sides of 
Eq. (3.97) with &/As and bearing in mind that usoA~/As  = u, (Eq. (3.89)) 
with n = 1 (elementary steps), we rewrite (3.97) in the form 

c7 1 (3.98) 

We then tabulate the left-hand side of (3.98) and construct a plot of 
&/As vs u/uc (curve 1 in Fig. 3.15). As seen, the interstep distance at  the 
spiral center is always larger than the one predicted by Eq. (3.86) (curve 2, 
A = 19pc or A/& = 2 / (u /uc ) ) .  
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Fig. 3.14. For the evaluation of the “back stress effect.” The spiral center is approximated 
by a circle of radius A0 (after Cabrera and Coleman [1963]). 

I I 1 I I I I I 

0 2 4 6 8 10 
G/U, - 

Fig. 3.15. Dependence of step spacing in units of A, on the supersaturation u in units 
of uc when the back stress effect is accounted for (curve 1). The dependence given by 
Eq. (3.86) is also shown for comparison (curve 2). 

In the more interested region of high supersaturations (small values of 
A,/A, (Ao/& --+ 0)) the reciprocal of the Bessel function, I;’(z), can be 
apprcrximated by the parabola 
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&-1(-2) s 1 - --2 1 2  , 
4 

which results in [Cabrera and Coleman 19631 

(3.99) 

One can conclude that with increasing supersaturation the interstep 
distance decreases much more slowly than required by the simple hyperbolic 
law A - l / a .  The step spacing practically no longer depends on the 
supersaturation, but on the temperature through the mean free path A,, 
What is more important, however, is that the slopes p of the growth 
pyramids can never become too steep and the growing surface will remain 
macroscopically more or less smooth. As for the R(o) dependence the back 
stress effect leads to  a more gradual transition from the parabolic to the 
linear growth law than that required by Eq. (3.88). 

One can conclude that when the source of the steps on the crystal 
surface is due to the presence of screw dislocations one can observe a 
parabolic as well as a linear dependence of the rate of growth on the 
supersaturation. In the diffusion regime one should observe a parabolic 
dependence at small supersaturations which gradudly becomes a linear 
one at high supersaturations. The latter is due to the strong overlapping 
of the diffusion fields around each step. The back stress effect makes the 
transition from a parabolic to a linear dependence more gradual. A linear 
dependence should be observed also from the beginning when the length or 
the perimeter of the step source is much smaller than the interstep spacing 
due to a single dislocation. In this case the constant of the proportionality 
should be smaller than that due to the diffusion fields overlapping provided 
the interdislocation distance is greater than the mean free path of the 
adatoms and equal to it in the opposite case. In the case of kinetic regime of 
growth a parabolic dependence of the growth rate on the supersaturation 
should be observed with a rate constant much smaller than that in the 
diffusion regime. 

3.2.2.3. Growth an solutions 

Combining (3.15), (3.86) and (3.76) gives an expression for the rate of 
growth in a diffusion regime: 
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where 

(3.100) 
U 2  1 

u c I n [ ~ ~ s i n h ( ~ ) ]  ' 
R = C -  

19xa2 
uc = - 

nnkTd 
is the characteristic supersaturation and 

DVCCO C = -  
d 

(3.101) 

(3.102) 

is the rate constant. 

dependence 
The condition u << uc (sinh(u/a,) u/uc)  results in the parabolic 

u2 1 R=C- 
u~ In (;) ' 

(3.103) 

At u > uc the hyperbolic sine transforms into exp(u/ac)/2 and, neglect- 
ing ln(duJ2nau) with respect to u/uc, one obtains the linear dependence 

R = C u  (3.104) 

as in the case of growth from a vapor phase. 

parabolic law 
In the kinetic regime of growth (apSt /~D << 1) one obtains the second 

R = C"u2 , (3.105) 

where 
nkT 
19xa C" = -@.tv,Co . (3.106) 

Bearing in mind (3.101), (3.102) and (3.103) we find that C"/[C/u, 
ln(d/na)J = (a&/?rD) In(d/?ra) << 1 (ln(d/Ta) S lo), i.e. the rate constant 
in the second parabolic law in a kinetic regime of growth is again smaller 
than that in the diffusion regime. 

Finally, when L B A, yo = L/n  = 1 and p = an/L we obtain the second 
linear law of growth 

R = C'u , (3.107) 

where 
PstCovc (3.108) a C' = - ' 1 + *In TD [:sinh ( y ) ]  * 



192 Crystal Growth 

We consider again the example of growth of ADP crystals in aqueous 
solutions at room temperature [Chernov 19891. We can estimate the radius 
pc of the critical nucleus and in turn the interstep spacing from independent 
measurements of the rate of growth of a perfect crystal face without screw 
dislocations. As will be shown in the next chapter, such measurements 
allow the evaluation of the work of nucleus formation and of all parameters 
connected with it, as the rate of growth is limited by 2D nucleation. Thus 
the interpretation of the experimental results gave for the specific edge 
energy the value H 1! 5.5 x erg cm-'. Then at  u = 0.03, pc Y 
0.95 x 
With the value v, = 2.4 x cm sec-' calculated in the previous 
chapter for u = 0.03; one obtains for R the value 6.24 x lo-* cm sec-'. 
The latter is in good agreement with the experimentally measured value 
5.8 x lo-* cm sec-'. 

cm, yo = A = 18 x cm (n = 1) and p S 2.6 x 

3.2.2.4. Growth in melts 

The rate of growth in melts obeys the same equations as in solutions. We 
assume that the interstep distance is again given by (3.86). In Sec. 3.2.1.3 
we evaluated the rates of step advance of Si and GaAs to be 3.7 cm sec" 
and 0.1 cm sec-', respectively, at undercooling AT = 1 K. In order to 
evaluate the slopes p we need data for the specific edge energies. We can 
estimate the latter from data of the specific surface energies. However, such 
data concerning the crystal-melt boundary for semiconductor substances 
are scarce in the literature. It is believed that they are around some 
hundreds of ergs per square centimeter (181 erg cm-2 [Turnbull 19501 and 
251 erg cm-2 [Skripov, Koverda and Butorin 19751 for Ge). Adopting the 
value 200 erg cm-2 for both Si and GaAs we find yo (Si) = 1.52 x lod4 cm, 
yo (GaAs) = 1.44 x p (GaAs) = 2.8 x lo'* 
a t  AT = 1 K. Then for the rate of growth, R = pv,, the values 7.4 x 

cm sec-' can be obtained for Si and GaAs, 
respectively. As seen, they are 3 to 5 orders of magnitude higher than the 
respective values for growth in solutions. 

cm and p (Si) = 2 x 

cm sec-I and 2.8 x 

3.2.3. Gmwth by 2D nucleation 

The growth of the defectless crystals of Si, Ge, GaAs, CdTe, etc. to meet 
the demand of microelectronics stresses the necessity of developing in more 
detail the theory of growth through formation and lateral propagation of 
2D nuclei. Historically it was the first theory of crystal growth whose 
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foundations were laid down more than a hundred years ago by Gibbs (19281. 
He pointed out in his famous footnote (see also Frank 1958a) that the 
continuous growth of a given crystal face is impossible if new molecular 
layers could not be built. The building of a new layer is particularly 
daficult at the beginning or immediately after the beginning of the new layer 
formation. The change of the Gibbs free energy necessary for the growth of 
the crystal face to take place is not, however, one and the same on different 
crystal faces. It is possible that it is greater for surfaces with smaller surface 
energies. Thus without even mentioning the term “nucleus” Gibbs gave the 
concept of the growth of perfect crystals through the formation and lateral 
spreading of two-dimensional nuclei. He even gave a hint concerning the 
effect of the surface structure of the crystal faces with respect to the rate 
of 2D nucleation. 

W e  will consider first the layer-by-layer growth or, in other words, the 
growth when the next atomic plane is nucleated after the completion of 
the previous one. Then we will consider the case when the nucleation of 
the next atomic plane takes place before the completion of the previous 
one. This is the so-called multilayer growth when two or more monolayers 
grow simultaneously. We will consider first the simpler case of constant 
nucleation rate and constant rate of propagation of the 2D islands (constant 
rate of step advance) and then we will allow the nucleation rate and the rate 
of step advance to depend on time through the size of the underlying 2D 
islands. In fact the latter takes place during the growth from a vapor phase 
or MBE growth. In doing all that we will follow one and the same approach 
which will be outlined when considering the simplest case of Iayer-by-layer 
growth with constant rates of 2D nucleation and step advance. 

3.2.3.1. Constant rates of nucleation and step advance 
A. Layer-by-layer growth 

Consider a face of a perfect defectless crystal with size L (Fig. 3.16) 
[Chernov 19841. At the given supersaturation 2D nuclei are formed with a 
rate Jo = const (cm-2sec-1). We define first the frequency (sec-’) 

j o  = JoL2 (3.109) 

of 2D nucleation on the crystal face with an area L 2 .  
If the rate of lateral growth or the rate of step advance is v = const 

(cm sec-’) then the time for complete coverage of the face by one monolayer 
will be 
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L 

Fig. 3.16. Crystal face of linear size L with growing 2D islands on top of it. 

T = L/u  . 
The number of nuclei formed during this time interval is a product of 

the nucleation frequency and the time for complete coverage of the face, or 

(3.110) N = &T = JoL2- = Jo- . 

In the first one, N < 1 which is 
equivalent to L < ( U / J ~ ) ' / ~ .  This means that every succeeding nucleus 
will be formed after complete coverage of the crystal face by the monolayer 
initiated by the preceding nucleus. As a result we will observe layer-by-layer 
growth. Hence the growth of the crystal face will be a periodic process 
of successive formation of 2D nuclei and their lateral propagation (see 
Fig. 3.21). The rate of growth of the crystal face will be determined by 
the rate of 2D nucleation and will be given by 

R = &a = JoL2a , (3.11 1) 

where a is the height of the step originated by the nucleus and JO is given 
by Eq. (2.86), (2.89) or (2.96) in the particular cases of growth from vapors, 
solutions or melts, respectively. 

Bearing in mind that 21 depends linearly on the supersaturation while 
the nucleation rate increases exponentially with it, one can conclude from 
(3.110) that layer-by-layer growth should be observed at low enough super- 
saturations. Besides, the smaller the crystal face is the more pronounced 
the layer-by-layer growth will be. Bearing in mind the estimates of Jo and 
v made in the previous chapters (Eqs. (2.89) and (3.76)) we find that the 
linear size L of the face of a crystal growing in solution should be smaller 
than 2 x cm at (T = 0.01, or 2 x cm 
at u = 0.03, etc., in order to grow layer after layer. 

L L3 

2, 2, 

One can distinguish two cases. 

cm at (T = 0.02, or 4 x 
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The growth rate R vs supersaturation according to Eq. (3.111) is illus- 
trated in Fig. 3.17 (curve 1). As seen a critical supersaturation 

n 2 a 2  
(kT)2 In(KlL2a/&) 

uc = (3.112) 

should be overcome for visible growth to take place. In the above equation 
K1 is the pre-exponential term in Eq. (2.86) (or (2.89)) and & is a more 
or less arbitrary chosen critical d u e  of the growth rate. For example, 
in the growth of ADP crystals in aqueous solution at room temperature 
[Chernov 19891 with x 2 11.8 erg cm'2 x 8 x loq8 cm Y 1 x erg cm-', 
a 1! 8 x cm sec-' and 
L = 1 x cm, crc = Apc/kT 2 0.38 or C/Co S 1.5. Thus a critical 
supersaturation as high as 50% is required for the layer-by-layer growth of 
the prismatic face of ADP crystal to take place. 

cm, KI 2 1 x 1019 cm-2sec'1, & S 1 x 

0 (3, *c 
SUPERSATURATI ON 

Fig. 5.17. Supersaturation dependence of the rate of 2D growth in the case of layer-by- 
layer growth (curve 1) and multilayer growth (curve 2). 

B. Multilayer growth 

At the other extreme N > 1 (or L > ( V / J O ) ' / ~ ) ,  new nuclei will form on top 
of the growing monolayer before the latter is completed and the situation 
given in Fig. 3.18 results. Several monolayers grow simultaneously. The 
theoretical analysis of this case is much more complicated [Chernov and 
Lyubov 1963, Nielsen 1964, Hillig 19661. An approximate treatment will 
be given here following Chernov [ 19841. 
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Fig. 3.18. Illustration of the multilayer growth of a crystal face with a size L by 2D 
nucleation. 

Consider a crystal face with a monolayer island growing onto it at a 
rate o. At a given moment when the size of the island reaches a lateral size 
1 a 2D nucleus appears on top of it. The frequency of nucleation on top of 
the island is now & = J0Z2 and the average time elapsed from the moment 
of nucleation of the first island to the moment of nucleation of the second 
island is l / v  2 l/jo = 1/&l2. We then find that the mean size of the lower 
2D island when a new 2D nucleus is formed on top is I = (v /JO) l i3 .  The 
rate of growth of the crystal face is proportional to Jo12a, or 

R Y ~ ~ i ~ a  = ~ ( J ~ v ~ ) ~ / ~  . (3.113) 

Recollecting that the pre-exponential factor in the equations (2.86), 
(2.89) and (2.96) for the rate of 2D nucleation is proportional to the square 
root of the supersaturation and that the rate of step advance is a linear 
function of the latter, we find 

(G) ' R = const ( A P ) ~ / ~  exp (3.1 14) 

where the constant is equal to [ K ~ ( & C O ~ , ) ~ ] ~ / ~ ( K ~  = K ~ / f i )  (in the 
particular case of growth from solutions). The rate of growth does not de- 
pend any more on the size af the crystal, but still a critical supersaturation 
should be overcome in order for the growth to take place. Obviously this 
critical supersaturation should be smaller than the one calculated on the 
basis of the layer-by-layer growth (Fig. 3.17, curve 2). Taking into account 
the values of v = 2.4 x cm sec-', K1 = 1 x lOIe cm-2sec-1 and 
R, = 1 x cm/sec calculated before, we find a critical supersaturation 
of about 8.6%, instead of 50%. Comparison with the experiment [Chernov 
19891 shows that this value is still an overestimation, but it gives the right 
tendency. 
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One concludes that initially the perfect crystals grow by the layer-by- 
layer mechanism up to a critical size determined by the condition N = 1 
or L = ( V / J ~ ) ' / ~ .  Beyond this size, a gradual transition from layer-by- 
layer to multilayer mechanism takes place. Large enough crystal faces 
grow by the multilayer mechanism and the growth front consists of several 
monomolecular layers which grow simultaneously. This question is closely 
connected with the MEED intensity oscillations of the specular beam 
during MBE growth and will be considered here in some more detail. 

We denote the surface coverage of the first monolayer by 81. The growth 
rate is R1 = adOl /d t  and from Eq. (2.141) we find that the completion with 
time of the first monolayer follows the time law 

T 
R1 = aaJov2t2 exp (-? Jov2t3) , (3.1 15) 

which is illustrated in Fig. 3.19 (curve 1). As seen the rate of deposition of 
the first monolayer increases parabolically at short times, then displays a 
maximum at t, = ( 2 / ~ J o v ~ ) ' / ~ ,  and after that decreases exponentially at 
large times up to the completion of the layer. 

It is useful to express the growth rate (3.115) in terms of the surface 
coverage 8 1 .  Making use of (2.141) gives 

The growth rate displays a maximum at 0, = 1 - exp( -2/3) = 0.4866. 
As seen the maximum is slightly shifted to the left from 81 = 1/2 when 
constant growth v and nucleation JO rates are assumed. 

In fact Eq. (3.115) describes the behavior in time of the layer-by-layer 
growth when each layer is initiated by several nuclei growing simultaneously 
(multinuclei layer-by-layer growth, see Fig. 3.23). Then the maximum value 
& = 1 . 1 9 a ( J o ~ ~ ) ' / ~  gives the amplitude of the growth oscillations. The 
theoretical treatment of the multinuclei multilayer growth is much more 
complicated and has not been solved analytically up to now. That is why 
the time evolution of the separate monolayers and of the growth front is 
usually studied numerically by the method of Monte Carlo [Gilmer 1980a, 
198Ob] . 

The analysis is based again on the approach of Kolmogorov [I9371 and 
Avrami (1939, 1940, 1941). Recalling (2.137), the surface coverage 81 of 
the first layer now reads 
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TIME 

Fig. 3.19. Plot of the rate of 2D growth as a function of time in terms of the characteristic 
time T = ( J O V ’ ) - ~ / ~ .  Curve 1 gives the layer-by-layer growth. Curve 2 represents 
the multilayer growth calculated with the mean field approximation of Borovinski and 
Tzindergosen [1968]. Curve 3 is a result of Monte Carlo simulation by Gilmer [1980] 
(after Gilmer [1980]). 

Assuming k ( t )  = 1 results in (2.141) and (3<115). For every succeeding 
monolayer the above expression is not valid any more as the formation of 2D 
nuclei of each new layer depends on the surface coverage of the preceding 
one, or, more precisely, on the probability that there is a crystallized part 
of the underlying layer just under the 2D nuclei. Instead, one writes the 
expression 

where p n - l ( t ’ )  is the probability at the moment t’ of formation of a 2D 
nucleus of the nth layer, the latter to find a crystallized part under itself in 
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the preceding n - 1 layer. Obviously ~ , + ~ ( t ' )  = 1 for the first monolayer 
n =  1. 

In the more general case when the nucleation rate is time dependent the 
latter enters into the integral and Eq. (3.116) turns into 

Differentiation of (3.116') gives an expression which is often used in 
calculations of the growth rate: 

where un(t ' , t )  = dp,(t',t)/dt is the rate of growth of the 2D island of the 
nth layer. 

In order to find a solution of (3.116) one has to determine the prob- 
ability pn-l(t ' )  and here is the main problem. To solve it Borovinski 
and Tzindergosen [1968] used the mean field approximation assuming that 
the probability pn-l(t') is equal to the surface coverage of the preceding 
monolayer, i.e. pn-l(t') = On-l(t ' ) ,  and they computed the set of recurrent 
equations for 0,. First the expression for 01 is substituted into Eq. (3.116") 
for 82 and the latter is solved numerically, then the result is substituted 
into the equation for @3, etc. A set of S-shaped curves for 8% going from 
zero to unity and a set of bell-shaped curves R,/a = dO,/dt are obtained. 
The integration is carried out u p  to the moment at which a steady state is 
reached such that the shift of each curve with respect to the preceding one 
remains constant (Fig. 3-20), i.e. 

Qn+l(t)  = Qn(t - T) 3 (3.117) 

where T is the period or the time of advance of the front of crystalliza- 
tion by one monolayer. Numerical calculations have shown that T = 
O.~~(JOV~)-'/~. The steady state rate of growth is then given by 

(3.118) a 
T R = - = 1.59a(Jo~~)'/~ , 

which coincides up to a constant with Eq. (3.113). 
A very important question is the number of monolayers which grow si- 

multaneously or, in other words, the thickness of the front of crystallization. 
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TIME - 
Fig. 3.20. Variation with time of the rates of growth of the separate monolayers, Rn = 
ade , /d t ,  in the case of steady state multilayer growth. The curves are shifted by a 
period T. One monolayer is completed in a time interval 2". The overall rate of growth, 
R = El?.,,, is also shown by the straight line (after Borovinski and Tzindergosen [1968]). 

Numerical calculations have shown that an S-shaped curve giving the time 
dependence of 0, in the steady state varies from 0.001 to  0.999 in a time 
interval T' = 2 . 6 ( 4 , ~ ~ ) - ' / ~  (or so does the width of the bell-shaped curves 
in Fig. 3.20). The number of the simultaneously growing monolayers is then 
given by T'/T 2 4. Note that the growth front thickness does not depend 
on the rates of nucleation and step advance in the model under study. 

Figure 3.20 shows also the sum of the bell-shaped curves 

d 0 ,  m 00 R=CR,,=~C---, dt 
n=l n=l 

(3.119) 

which represents the overall rate of growth of the crystal face. 
Figure 3.20 gives the steady state, i.e. after enough time is elapsed from 

the beginning of the growth. At the beginning of the process the growth 
rate displays several oscillations (or a series of maxima and minima) which 
gradually attenuate (Fig. 3.19, curve 2) due to the thickening of the growth 
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front. The value of R(t) at long enough times goes to a time-independent 
value given by Eq. (3.119). 

Numerical simulations performed using the method of Monte Car10 
[Gilmer 1980a,b] (Fig. 3.19, curve 3) have shown that the mean field 
approximation used by Borovinski and Tzindergosen (Fig. 3.19, curve 
2) overestimates the rate of growth. This is the reason why different 
approximations for the probability p,-1 ( t )  have been used [Armstrong 
and Harrison 19691, which give the same qualitative behavior but different 
asymptotic values for the steady state growth rate [Gilmer 1980). 

3.2.3.2. Time-dependent rates of nucleation and step advance 

Molecular Beam Epitaxy (MBE) [Chang and Ludeke 1975; Ploog 19861 is a 
powerful method for the investigation of the elementary processes of crystal 
growth in detail wbjch are inaccessible by other methods. Besides, in situ 
measurements with surface analytical methods such as RHEED and LEED 
are easily performed during growth and detailed information concerning 
the mechanism of growth is easily gathered. That is why we will consider 
the MBE growth in more detail. It is worth noting that the MBE growth 
represents simply a crystal growth via 2D nucleation. This is the reason 
why we will consider it in this chapter rather than later in Chap. 4. 

As was shown above the basic postulates Jo = const and v = const 
lead to several, in fact not more than 4 or 5, oscillations of the overall 
growth rate (Fig. 3.19). The latter is in agreement with experimental 
observation for electrolytic growth of Ag from aqueous solutions where the 
above postulates are fulfilled. This is not, however, the case of MBE growth. 
Strong oscillations of the M E E D  intensity have been reported during the 
growth of a series of materials such as Si, Ge and GaAs [Wood 1981; Harris, 
Joyce and Dobson 1981; Neave et al. 1983; Van Hove e l  al. 19833. 700 
oscillations of the specular beam during the growth of Al,Gal-,As(lOO) 
face ( z  = 0.41) in the [loo] azimuth [Sakamoto et al. 1985b, 19901 and 
2200 oscillations of the specular beam during the growth of Si(100) in the 
(1101 azimuth (Fig. 3.21) [Sakamoto et al. 1986a, 19871 have been reported. 

The decoding of the true nature of the oscillations leads to accumulation 
of new knowledge about crystal growth processes. It was proved that one 
period of the oscillations corresponds exactly to the time T of growth of 
one complete monolayer. We thus measure exactly the rate of growth. 
On the other hand, we could use the oscillations in order to tailor more 
precisely the epitaxial layers or superlattices. Obviously, if the deposition 
of one material is interrupted in order to deposit another material when 
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Fig. 3.21. RHEED intensityoscillations on Si(100) taken from the [110] azimuth at 500OC. 
(T. Sakamoto, N. J. Kawai, T. Nakagawa, K. Ohta, T. Kojima and G. Hashiguchi, Surf. 
Sci. 174, 651 (1986). By permission of Elsevier Science Publishers B.V. and courtesy 
of T. Sakamoto.) 

;a open A l  open Ga close 

1 GaAs 1 GaAlAs A l  As 

1 2 3 4 
Time (m in )  

Fig. 3.22. RHEED intensity oscillations of the specular beam observed in the 
(100) azimuth of (001) GaAs substrate during the continuous growth of GaAs, 
AI,Gal-,As and AlAs. (T. Sakamoto, H. Funabashi, K. Ohta,  T. Nakagawa, N. G. 
Kawai, T. Kojima and Y. Bando, Superlatt. Microstruct. 1, 347 (1985). By permission 
of Academic Press Ltd. and courtesy of T. Sakamoto.) 
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the MEED intensity goes through a maximum the possibility to produce 
a sharp interface is much greater. This is usually known as “phase-locked 
epitaxy” (Sakamoto et  al. 1985bl. 

Another example of the use of the RHEED intensity oscillations is the 
measurement of the composition of, say, a ternary alloy and in turn the 
natural misfit between it and the underlying binary [Sakamoto et al. 1985b; 
Chang et al. 19911. If for example a superlattice Al,Gal_,As/GaAs(lOO) 
is grown (Sakamoto et al. 1985b] the opening and closing of the shutter 
of the A1 source lead to increase and decrease of the growth rate and, in 
turn, of the oscillations frequency (Fig. 3.22). Measuring the oscillations 
frequencies f(GaAs) and f(Al,Gal-,As) one can calculate the mole fraction 
2 through the relation [Sakamoto et al. 1985bJ 

Then the natural misfit f can be easily estimated through Vegard’s law 
[1921]. According to the latter the relative change of the lattice parameter 
(increase or decrease) of the host crystal is directly proportional to the 
concentration of the solute atoms within a certain interval. In other words, 

ao(AIAs) - ao(GaAs) 
ao(GaAs) 

f = x  

In this section we will consider the growth of a defectless crystal face via 
2D nucleation in the more realistic case when Jo and v depend on the size 
of the underlying 2D islands through the adatom concentration on top of 
it. First we will consider the multinuclei layer-by-layer growth (Fig. 3.23) 
and the simultaneous growth of two monolayers (Fig. 3.24). Then we will 
generalize the model for an arbitrary number of simultaneously growing 
monolayers and study the dependence of the total step density on the 
thickness of the growth front. After that, the transition from layer-by-layer 
to bilayer growth will be considered as a first step to the thickening of the 
growth front and damping of the RHEED intensity oscillations. At the end 
of this section the influence of the anisotropy of the growing surface on the 
mode of growth will be considered using the example of the growth of the 
(001) face of Si. 

A. Multinvclear layer-by-layer growth 

We make the following assumptions. First, we consider the case of complete 
condensation or absence of re-evaporation. This means that all material 
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Fig. 3.23. Different stages of growth of a crystal face by multinuclear layer-by-layer 
growth. After deposition of a monolayer the face restores its initial state. 

deposited joins the growing 2D islands. In fact this is usually the c a e  when 
semiconductor films are grown due to the high binding energies. Second, 
we assume that the nucleation of the first monolayer takes place in a short 
(in fact negligible) period of time in the beginning of deposition (this is the 
so-called instantaneous nucleation). In other words, N, nuclei are formed 
in the initial moment t = 0 of growth of each monolayer [Toschev, Stoyanov 
and Milchev 19721. After complete coverage of the crystal face N. nuclei 
are again formed in a short interval of time, and so on. In considering this 
problem we will follow the treatment given by Stoyanov (19881. 
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Fig. 3.24. Different stages of growth of a crystal face by bilayer growth. In this case the 
crystal face never restores its initial state. Instead, states with higher and lower total 
step densities alternate. 

Before going into details a certain point should be clarified. As dis- 
cussed above, any deviation from the layer-by-layer growth (Fig. 3.23), i.e. 
transition to simultaneous growth of two, three, etc. monolayers, leads to 
a decrease of the amplitude of the WEED intensity oscillations with time. 
Two parameters vary periodically with time during growth: first the rate 
of growth of each monolayer, R, = adO,/dt (Fig. 3.20), and second the 
total step density. The overall growth rate is a sum of the growth rates 
of the separate monolayers (see Eq. (3.119) and Fig. 3.20) and should vary 
periodically with time also. It will be shown in this section that the rate 
of growth of each monolayer is directly proportional to the step density 
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and the proportionality constant is simply the rate of advance v of the 
separate 2D islands. In the model considered above the rate of advance 
v was assumed constant and hence both the step density and the rate of 
growth of each monolayer R, oscillate in a phase. When more than 4 or 
5 layers grow simultaneously the growth rate ceases to oscillate visibly. A 
more elaborate model of growth should account for the surface diffusion of 
adatoms between the steps originated from 2D islands on different levels 
and the rate of advance of the steps depends on the island size and hence 
on time. Then the total step density and the rates of growth of the separate 
monolayers cease to oscillate in a phase. The second important assumption 
made is that  the re-evaporation of adatoms is negligible. This means that at 
a constant rate of deposition the overall rate of growth should be constant, 
i.e. it will not oscillate irrespective of the oscillations of the growth rates of 
the separate monolayers. However, the total step density oscillates and the 
amplitude of the oscillations is a decreasing function of the growth front 
thickness. It follows that the oscillations of the RHEED intensity during 
MBE growth are due solely to the oscillations of the total step density but 
not to the oscillations of the surface coverages or the rate of growth. 

With the assumption for instantaneous nucleation the surface coverage 
of the first monolayer 01 is given by (see Chap. 2) 

The growth rate R1 = adOl /d t  of the first monolayer then reads 

The total step density is given by (see Fig. 3.25) 

(3.121) 

(3.122) 

Equation (3.122) gives the proportionality between the step density and 
the growth rate discussed above. As seen if the rate of step advance v is 
timeindependent both L and R1 should have the same time behavior. 

Substituting (3.121) into (3.122) gives 

L = 2 a ( 1 -  Ol)J- ln( l -  01) . (3.122') 
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Fig. 3.25. For the determination of the step density L ( t )  through the surface coverage 
Q(t). The change of 0(t) with time is represented by the shadowed areas. 

The step density displays a maximum L,,, = ( 2 ~ N , / e ) ' / ~  at a certain 
d u e  of the surface coverage Om,, = 1 -exp(-0.5) = 0.393. The maximum 
is shifted much more to  the left of el = 0.5 than in the case of constant 
rate of nucleation and step propagation. As seen the variation of the step 
density is reduced to that of the number of nuclei N,.  

We consider a system of N, regularly spaced 2D islands and at a moment 
t the surface coverage is 

2 Rt 
01 = np,N - - , 

No (3.123) 

where No (cm-2) is the density of a monolayer and R (cm-2sec-1) is the 
atom arrival rate. The above equation means that all atoms arriving from 
the vapor phase join the 2D islands, or in other words, all material deposited 
until the moment t, Rt/No, is equally distributed among the growing 2D 
islands. 

Further, we will follow the same approach as developed by Chernov 
[1984] and Borovinski and Tzindergosen [1968]. Analogously to the fre- 
quency of nucleation on a crystal face with a lateral size L, JoL2 (see 
Eq. 3.109), the frequency of nucleation on the surface of a growing island 
with a radius p l ( t )  is 

P1 

& ( P I )  = J Jo(r)2nrdr . (3.124) 

In the above equation &( r )  = Jo[n.(r)] is the nucleation rate which 
is now a function of time through the size dependence of the adatom 
concentration n.(r) on the surface of the latter. 

0 
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The adatom concentration on the surface of the growing 2D island can 
be found by solving the diffusion problem in polar coordinates (Eq. 3.58), 
which in the case of complete condensation reads 

d2ns 1dn R - + --> + - = 0. 
dr2 T dr D, (3.125) 

This equation differs from (3.58) only by the absence of the desorption 
flux ns/Ts. I t  must be solved subject to the boundary conditions 

(3.126") 

The condition (3.126') means that the exchange of atoms between the 
island edges and the adlayer is fast enough and near the island edge 
the adatom concentration has its equilibrium value ns,. In other words 
the growth proceeds in a diffusion regime. 

The solution of the problem reads 

(3.127) 

It is immediately seen that the adatom concentration has its highest 
value n , ( ~  = 0) = n,,,,, = n,, + Rp:/4D, at the island center and that the 
larger the island is the higher this adatom concentration will be. Obviously, 
the nucleation on the island center is most probable. Besides, the flux of 
atoms towards the edge of the island, j ,  = - 2 ~ p l D ~ ( d n ~ / d ~ ) ~ = ~ ~  = ~ R p t ,  
also increases with the island size, and so does the rate of growth (c.f. 
Eq. (3.62)). It follows that the nucleation rate and the rate of step advance 
become greater with increasing island size. 

At high temperatures the equilibrium adatom concentration nSe in- 
creases whereas the second term in (3.127) decreases (see Eq. (3.20)). 
Bearing in mind that R E 1 x 1013-1 x 1014 cm-%ec-l, v S 3 x lOI3 sec" 
and p1 2 1 x 10-6-1 x cm, we find that at  high enough temperatures 
n., becomes much greater than Rp:/4D, and ns,max -+ rise. The latter 
means that the supersaturation tends to  zero at  high temperatures. At 
low temperatures we can neglect n,, in comparison with Rp:/40, and 
ns 2 (R/4D,)(pq - r2). Bearing in mind Eq. (3.18) it follows that for 
Si (cplp - (P&, 2 1.8 eV) n,, can be neglected in the whole temperature 
interval of interest (300-800°C). This is valid also for many other materials. 
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The nucleation rate as a function of the adatom concentration reads 
(see Eq. 2.109) 

(3.128) 

Substituting (3.127) into (3.128) (neglecting rise) and the latter into 
(3.124) gives upon integration for the nucleation frequency & 

where A combines all the quantities which are independent of the island 

(3.129') 

The condition for layer-by-layer growth in complete analogy with con- 
dition (3.110) is 

T 

N = J &(p1)dt = 1 , (3.130) 

where the integral gives the number of nuclei which can be formed on top of 
the growing island for the time of deposition of one monolayer, T = No/R. 
In other words, this condition states that a nucleus of the second monolayer 
will be formed exactly at the moment of completion of the first one. 

We then substitute p: from (3.123) into (3.129) and (3.130) and after 
integration and rearrangement of the results we obtain 

0 

1/(n'+2) u* + n*%d ="( 47r (n* + 2)(n* + 3) ((n* + 2)kT) * 

(3.131) 

We have just obtained an expression for the density of nuclei which 
give rise to 2D islands belonging to the first monolayer. This was possible 
thanks to the conditions of complete condensation (3.123) and layer-by- 
layer growth (3.130) of a perfect crystal face. Let us evaluate it. In the case 
of growth of Si(OO1) at T = 600 K (high supersaturation), n* = 1, U* = 0, 
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AH, = 4.33 eV, $lkT E 31, q s d  0.67 eV, R = 1 x 1013 cm-2sec-1, 
v = 1 x 1013 sec-l, a* = 4, No = 0.68 x 1015 cm-2, N, Y 7.4 x 1O'O cm-2. 
In the case of a higher temperature T = 1200 K (lower supersaturation), 
n* = 3. The nucleus represents a cluster consisting of three atoms situated 
at  the apexes of a rectangular triangle. The cluster consisting of four atoms 
in the shape of a quadrate is a stable cluster with a greater probability to  
grow than to decay. It should be noted that the bonds between the atoms 
are second nearest bonds and we can assume that $~2 2 $110. Then with 
U' = 2~42 = 0.2$, $ / k T  = 25, R = 1 x 1013 cm-2sec-' and a* = 8, 
Ns = 1 x 10' cm-2. Thus a decrease of the supersaturation leads to an 
increase of the size of the critical nucleus, which in turn leads to  a sharp 
decrease of the saturation nucleus density. 

The maximum step density reads (the minimum step density is equal 
to zero) 

U* + n*Esd 
2(n* + 2)kT  

(3.132) 

Values of 4 x lo5 and 5 x lo3 cm-l for the maximum step density on 
Si(OO1) are obtained at high (n* = 1) and low (n* = 3) supersaturations, 
respectively. It follows that the amplitude of the oscillations of the step 
density during the periodic process of consecutive 2D nucleation and lateral 
propagation will decrease with decreasing supersaturation (increasing tem- 
perature). Obviously at too high a temperature (too low a supersaturation) 
the RHEED intensity oscillations should disappear because of the inhibition 
of the 2D nucleation process. The same should be expected at too low a 
temperature or at high supersaturations, but for another reason. The step 
density becomes very high and the step spacing too small. In other words, 
the crystal surface will behave as a rough one although the temperature 
is lower than the critical temperature for thermodynamic roughness (see 
Chap. 1). As discussed at  the end of Chap. 1 this phenomenon is called 
kinetic roughness. What follows is that the oscillations of the step density 
and in turn the RHEED intensity oscillations will disappear as the steps 
are practically no more detectable. 
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B. Simultaneous growth of two monolayers 

In considering this case [Stoyanov and Michailov 19881 we follow the same 
procedure as described above. We consider again the case of complete 
condensation and instantaneous nucleation. The latter now means that 
before the complete coverage of the crystal face by 2D islands of the nth 
monolayer 2D nuclei of the (n + 1)th monolayer are formed in a short 
period of time (as if by a pulse) on top of the islands of the nth monolayer. 
Then the growth of the crystal face is realized by simultaneous growth 
of pyramids with two monolayers thickness. We assume further that the 
number of 2D nuclei giving rise to the islands of the nth monolayer is equal 
to that of the (n + 1)th monolayer, or in other words, the growth proceeds 
by simultaneous growth of N, bilayer pyramids (Fig. 3.26). This pattern 
is preserved indefinitely and every deviation from it leads to a further 
increase of the growth front thickness and, in turn, to  further damping 
of the oscillations of the step density. 

Fig. 3.26. Bilayer pyramid of growth. p1 and p2 denote the radii of the lower and upper 
2D islands, respectively. 

Making use of (3.122) gives the step density for each monolayer 

(3.133) 

The total step density then is 

~ ( t )  = z J ~ C [ ~  - on(t)lJ- l n f l -  en(t)l - (3.134) 

Note that in this case the rates of step advance vn(t)  and the surface 
coverages @,(t)  (n = 1,2) are not independent but are interconnected 

n 
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through the diffusion fields. 
diffusion problem and to  find the density of the bilayer pyramids. 

(T < p2) (see Eq. (3.127)) is 

Then our next task is to solve again the 

The solution for the adatom concentration on top of the upper island 

R 
4 a  

n,(r) = n,, + - ( p i  - r 2 )  . (3.135) 

The adatom concentration on the terrace (p2 < T < p1) is given by 

R 
%(r)  = A - - r2  + B l n r  , 

4Ds 
(3.136) 

where A and B are constants which can be determined from the boundary 
conditions n,(pl) = n,(p2) = rise. The solution reads 

The flux of adatoms diffusing to the edges of the lower islands on the 
surface of the complete (n - 1)th layer is 

(3.137) 

In the above equation it is assumed that the atoms arriving from the 
vapor phase on the area 1 - np:N,  uncovered by growth pyramids are 
equally distributed among the latter. 

Correspondingly, the flux of adatoms diffusing to the same edges but on 

or 

The rate of growth v1 is then given by 
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In the same way one obtains for the upper island 

We have to solve now a set of two nonlinear differential equations for 
the rates of advance of the steps. The latter can be written in terms of 
surface coverages 

0, = 7rRNS (n = n,n 4- 1) (3.138) 

as a function of a dimensionless time 8 = Rt/no, which is in fact the number 
of monolayers deposited, in the form 

(3.139) 

As seen the overall rate of growth, R = CR, = UCd@n/dt = %/no, 
does not vary with time. This is a direct consequence of the lack or 
reevaporation or complete condensation. 

An approximate analytical solution of (3.139) can be obtained if the 
equations are linearized assuming 1n(Qn/en+1) = const = 2. Then the 
solution of (3.139) subject to the boundary conditions 0n+1(8 = 0) = 0 
and S,(O = 1) = 1 reads [Kamke 19591 

(1 + e-') , 1 e 
Qn = 1 + - - 

2(e + 1) 

e 
(1 - e-') , 1 

2 2(e+ 1) Q n + l =  -8 - - 

(3.140') 

(3.140") 

where e = 2.71828 is the base of the Naperean logarithms. 
As seen, at 8 = 0, 8, = l/(e + 1) = 0.27 and Qn+l = 0, while at 8 = 1, 

8, = 1 and On+l = l/(e + 1) = 0.27. In other words, the solution reflects 
the periodicity inherent in the front of growth consisting of two monolayers. 

Substituting (3.140) into (3.134) results in a periodic curve with ampli- 
tude Lmsx = 0.23 (47~N,)'/~ [Stoyanov and Michailov 19881. So our next 
task is to find the number N, of the growth pyramids, and we follow exactly 
the procedure used in the previous section. The frequency of nucleation on 
top of the upper islands is obtained by substituting the solution (3.135) 
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(neglecting rise) into the expression (3.128) for the nucleation rate and 
the latter into (3.124). The integration gives an expression completely 
equivalent to (3.129) with the only exception being that p1 is replaced by 
P2 : 

2(n* +2) J = Ap, 1 

where A is given by (3.129’). 
From (3.138) and (3.140”) we have 

(3.141) 

(3.142) 

Substituting (3.142) into (3.141) and the latter into (3.130) and carrying 
out the integration gives after rearrangement of the result 

U* + n*psd 
8?r n* + 2  n* + 2)kT 

77h 
N, = [ (-) 47rTT(y*3* ( F ) n * N i ]  

exp ( (  
) , (3.143) 

where the definite integral 

3’ = j (B - e - e - & y + 2  

0 

is a function only of the number of atoms in the critical nucleus, n*, and has 
values 0.03, 0.0125, 0.0056 and 0.00056 for n* = 1 ,2 ,3  and 6, respectively. 

We can estimate now the decrease of the amplitude of the step density 
oscillations when the growth front increases from one to two monolayers. 
The latter depends on the height and the number density of bilayer pyra- 
mids as given by (3.143) and monolayer 2D islands as given by (3.131). 
The ratio of the square root of the islands densities is not very sensitive to 
the number of atoms in the critical nuclei, n*, and is approximately equal 
to  0.5. In addition, the decrease of the amplitude due to the fact that 
the surface never reaches a state without steps when two monolayers grow 
simultaneously is also approximately equal to 0.5, so the overall decrease 
of the amplitude of the total step density is about 0.2-0.25. Obviously 
further decrease of the amplitude should be expected when further increase 
of the growth front thickness takes place. 

C. Simultaneous growth of an arbitrary number of monolayers 

We consider now the problem of simultaneous growth of N > 2 monolayers 
where N is an integer. This means that the instantaneous nucleation of 2D 
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islands of the N t h  monolayer coincides exactly with the completion of the 
zeroth monolayer. We assume further that the nucleation of the ( N  + 1)th 
monolayer takes place before a significant coalescence of the 2D islands of 
the first monolayer occurs. Then N, pyramids of growth, each consisting of 
N 2D islands one on top of the other, will be formed as shown in Fig. 3.2. 
This model is a variation of the “birth-death model” proposed by Cohen 
et al. (19891 (see also Kariotis and Lagally [1989]). 

We solve the same diffusion problem as above. The adatom concentra- 
tion on top of the islands of the N t h  monolayer is given by (3.135) in which 
p2 is replaced by p ~ .  The adatom concentration on the terraces is given by 
(3.136’) where p1 and p2 are replaced by pn and pn+l, respectively. Then, 
instead of (3.139), one obtains 

d@1 01 - 0 2  

de In( 01 /%) ’ - = I -  

(3.144) 

As above, the overall rate of growth R = CR, = Ra/no = const. 
A remarkable property of the system (3.144) is that the dependence of 

the surface coverages on the number of the monolayers does not involve any 
other parameter. This means that the solution of the system subject to  the 
steady state boundary conditions O,(O = 0)  = O,+1(8 = 1) is unique. The 
solutions of (3.144) for N = 2 and N = 3 in a reduced form are shown in 
Fig. 3.27. The solutions for N = 2 and N = 4 are shown in Fig. 3.28 in an 
unfolded form. As seen they represent S-shaped curves with an inflection 
point between the surface coverages of the second and first monolayers. It 
follows that with increasing growth front thickness N the rates of growth 
of the separate monolayers, R, = ad0,/dO, will become more and more 
asymmetric with a maximum which shifts more and more to  the right of 
8 = 0.5. In other words, the bell-shaped curves obtained by differentiation 
of the curves shown in Fig. 3.28 will have a downward branch after the 
maximum steeper than their upward branch before the maximum. 

The total step density is given by (3.134) and is shown in Fig. 3.29 
in terms of 2 m  for N varying from 1 to 6. The curves are obviously 
asymmetric with a maximum shifted to the left of 0.5. 
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Fig. 3.27. Steady state variation with time in a folded form of the surface coverage of 
the separate monolayers in (a) bilayer and (b) trilayer growth. In (a), curves 1 and 2 
correspond to  the first and second monolayers, respectively, and the straight line 3 gives 
the layer-by-layer growth. In (b) the surface coverages of the first, second and third 
monolayers are shown by curves 1, 2 and 3, respectively. The curves are obtained by 
numerical solution of the system of equations (3.144). 
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TIME 

Fig. 3.28. Unfolded view of the steady state variation with time of the surface coverages 
of the separate monolayers in bilayer (N = 2) and tetralayer (N = 4) growth. The 
curva are obtained by numerical solution of the system of equations (3.144). 

Making use of the same approach as above (Eqs. (3.124) and (3.130)) we 
can calculate the number N ,  of the growth pyramids at different values of 
the growth front thickness N and then the amplitudes of the time variations 
of the total step density. The latter are shown in Fig. 3.30 relative to that 
of N = 1 for N varying from 1 to 6. It is seen that the total step density 
decreases by an order of magnitude when the number of the simultaneously 
growing monolayers, N, increases from 1 to 4, and about 20 times when 
N = 6. 

The most important conclusions we can draw are the following: 
(i) The shape of the oscillations of the total step density depends only 

on the surface coverage. In that sense it is unique. 
(ii) The amplitude of the total step density oscillations is a function 

of the height and density of the growth pyramids. In the extreme case of 
layer-by-layer growth, stepped and completely smooth surfaces alternate 
(Fig. 3.23) and the amplitude has its highest value. The increase of the 
number of the simultaneously growing crystal planes leads to alternation 
of states with higher and lower step density (see Fig. 3.24), thus decreasing 
the overall amplitude. In addition, the density of the growth pyramids is a 
decreasing function of the thickness of the growth front (the density of the 
higher pyramids must be obviously smaller than that of the lower ones), 
this leading to additional decrease of the amplitude of the step density. 
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Fig. 3.29. Variation with time of the total step density in units of (47rN.)'/2 at different 
thicknesses of the growth front denoted by the figure at each curve. As seen the curves 
are visibly asymmetric. The amplitude decreases with increasing thickness of the growth 
front. In the case of layer-by-layer growth ( N  = l), the step density varies from zero 
to  the maximum density, thus reflecting the fact that the crystal face restores its initial 
(smooth) state after deposition of one monolayer. The variation of the step density in 
the case of multilayer growth never reaches zero. This means that the crystal face never 
becomes smooth again. 

(iii) The decrease of the amplitude due to a decrease of the density of 
the growth pyramids is a function only of the size n* of the critical nucleus 
at the particdar temperature. 

(iv) The amplitude of the step density oscillations is not very sensitive 
to the atom arrival rate R as the exponent n*/2(n* + 2) is smaller than 
unity. 

(v) A decrease of temperature leads to a sharp increase of the number 
of the growth pyramids, N., and to a kinetic roughness of the crystal face. 
The latter leads in turn to disappearance of the oscillations. 
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Fig. 3.30. Dependence on the thickness of the growth front of the amplitude of the total 
step density Lmax relative to the step density in layer-by-layer growth (curve 3), the 
amplitude of the total step density L,, relative to the step density in layer-by-layer 
growth in units of ( 4 ~ N . / ’ e ) ’ / ~  (curve 2), and the square root of the density of the 
pyramids of growth ( 4 ~ N , / e ) ’ / ~  relative to the layer-by-layer growth (curve 1). 

(vi) An increase of temperature leads to a decrease of the supersatura- 
tion. The nucleation is suppressed and the density of growth pyramids and 
in turn the step density can become smaller than the resolution capabilities 
of the surface analytical tools. The latter ieads again to disappearance of 
the oscillations. It follows that the oscillations of the step density can be 
observed in a limited interval of the temperature, which is in qualitative 
agreement with the experimental observations [Neave et al. 19851. 

Note that the size of the critical nucleus depends on temperature but re- 
mains constant in a comparatively large interval of the latter (see Sec. 2.2.9). 
The lower the temperature is the broader the intervals of constant nucleus 
size will be. This is in agreement with the statement of Neave et al. [1983] 
that the damping of the oscillations is not sensitive to temperature. It is, 
however, worth noting that at high enough temperatures the condensation 
can become incomplete. In other words, significant part of the material 
deposited can reevaporate before being incorporated into the growth sites. 
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D. Damping of oscillations 

As discussed above the damping of the step density oscillations is due to the 
gradual transition from layer-by-layer growth to multilayer growth. In this 
section we will consider only the transition from layer-by-layer growth to 
the simultaneous growth of two monolayers [Stoyanov and Michailov 19881. 

The problem is simplified if we take into account the periodicity con- 
nected with the multilayer growth. The latter was demonstrated when the 
case of the multilayer growth with Jo = const and w = const was considered. 
As shown in Fig. 3.20 (Eq. 3.117) the surface coverage is repeated after a 
period of time T but each monolayer is fully completed after a period of 
time T’ so that the number of the simultaneously growing monolayers is 
equal to N = T’/T. Obviously when N = 1,2,3, etc., T’ = T,  2T, 3T and so 
on. The damping of the step density oscillations is evidently characterized 
by the derivative dN/dt and it is the aim of this chapter to estimate it. 

The transition from layer-by-layer growth to bilayer growth mews 
that T’ increases gradually from T to 2T. As shown in Fig. 3.24, after 
a deposition of one monolayer, @,(T) = 1 - @n+l(T). In other words, 
in the transition from layer-by-layer to  bilayer growth, T‘ becomes longer 
than T ,  or T‘ = T + At, where At is just the time necessary to  deposit the 
material of the upper monolayer. Then one can write @,,+I ( T )  RAt/No, 
or At No@,+l(T)/R = T@,+I(T), and 

(3.145) T’ A t  N = - = 1 + T 
One can also write N = 1 + A N ,  A N  = @,+l(T). The increment 

of N takes place in a time interval of T, and hence dN/dt E AN/T = 
@,,+I (T ) /T ,  or TdN/dt = dN/dB = On+l (T) .  

In order to  calculate 0,+1(T) we can use Eq. (3.116f) or, better, its 
equivalent in the differential form (3.116”). We will use the mean field 
approximation p,(t’) = @,(to as the latter is quite correct at the beginning 
of the formation of the second monolayer (compare curves 2 and 3 in 
Fig. 3.19). Besides, we should calculate the rate of nucleation on the islands 
of the lower monolayer, J ( t ’ ) ,  and the rate of growth of an island of the 
upper monolayer, w, = ck(t  - t f ) ,  where t’ is the moment of its nucleation. 

The nucleation rate is given by the nucleation frequency & ( P I ) ,  as given 
by Eq. (3.129) divided by the area of the underlying island ?rpy. The growth 
rate v, can be found by solving Eq. (3.139”) in its linearized form 

= 1 + 0,+1(T) . 

d@n+1 1 -- - -(en - @n+l)  
d8 2 



3.2. Layer Growth of Flat Faces 221 

subject to the boundary condition 8 = 8' = Rt'/No, On+l = 0 and under 
the simplifying condition 0, = @,(tf )  Y Rt'/No. The latter means that 
in the beginning of the formation and growth of the upper monolayer the 
material deposited in the time interval [O, t'] has been consumed practically 
completely by the lower monolayer. Then for pn+1 and vn+1 one obtains 

(3.146) 

(3.147) 

As seen, the size of the island and its growth rate are proportional to 
the square root of the time of nucleation, t', of the upper island. This 
dependence reflects the size of the underlying island, pl(t'). As discussed 
above the larger p1 is the higher the adatom concentration on top of it and 
the greater the flux of adatoms to the edge of the upper island will be. 
It follows that when the upper 2D island is formed at  a later moment t' 
the greater will be its rate of growth and the larger will be its radius at a 
moment t .  

Substituting (3.129), (3.146) and (3.147) into (3.116") and carrying out 
the integration (with upper limit t = T = No/R)  give 

1 (n.4-3) ( 2 (n* + 4)(n* + 5 )  
- = @,+,(T) = 1 -exp -- dN 
dB 

1 (n* +3)  
2 (n* + 4)(n* + 5) . 

Y -  (3.148) 

Then the transition from the layer-by-layer to the bilayer growth will 
take place after the deposition of Bt, monolayers, where 

1 (n* + 4)(n* + 5) e,, = - - 
dN/di l  - (n* +3)  

(3.149) 

It follows that the damping of the oscillations of the step density 
depends only on the size of the critical nucleus, and hence is not much 
sensitive to the temperature (recollecting that the number of atoms in the 
nucleus remains one and the same in a broad interval of temperatures). 
Thus in the case of MBE growth of Si(ll1) a fourfold decrease of the 
amplitude of the step density oscillations is expected after 15 oscillations 
at  low enough temperatures when n* = 1, after 17 oscillations at some 
intermediate temperatures when n* = 2 and after 24 oscillations at high 
enough temperatures when n* = 6. 
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3.2.4. Influence of surface anisotropy-Growth of 

A simplification of the model outlined above is obtained by assuming 
isotropy of the growing crystal face, which leads to the circular shape of 
the islands at high enough temperatures (Fig. 3.26) and the corresponding 
shape of the diffusion fields around them. This model describes well the case 
of growth of materials with central forces like metals. This is not the real 
case, however, when, particularly, materials with diamond lattice, such as 
GaAs and Si, are grown. The (001) surfaces of such crystals show significant 
anisotropy, which in turn affects strongly the parameters controling the 
growth process, namely, the height and roughness of the consecutive steps 
and the surface diffusion. The problems discussed in the present section 
are still under intensive study and thus illustrate the difficulties the theory 
encounters in treating real experimental observations. 

We consider as an example the vicinal face of Si which is obtained 
by a slight tilt with respect to the (100) direction towards the [I101 az- 
imuth. Then the monoatomic steps which accommodate the macroscopic 
inclination are directed along the [110] azimuth and have a height ao/4, 
where a0 = 5.4307 A is the lattice parameter of silicon (Fig. 3.31(a)). The 
projections of the dangling bonds on the unreconstructed surface on the 
upper terrace are directed along the same [IlO] direction, and those on 
the lower terrace, along the perpendicular (1101 direction. In other words, 
assuming the crystal surface preserves its bulk structure, the projections of 
the dangling bonds will rotate by 90’ on every next terrace. This means 
that the consecutive steps will be parallel or normal to the projections of 
the dangling bonds on the upper terraces. 

This is the case when the (100) surface is unreconstructed, i.e. it 
preserves its bulk structure. The latter is characterized by two dan- 
gling bonds per atom on the surface and the surface energy is very high. 
In order to  reduce the surface free energy, the dangling bonds of two 
neighboring atomic rows interact with each other thus forming n bonds 
[Levine 19731. As a result only one bond per atom remains unsatu- 
rated on the surface. The n-bonded atoms move closer than required 
by lattice geometry (the bulk 1 x 1 spacing is a = a o / d  = 3.84 A) 
thus forming “dimers” (Fig. 3.32) which in turn are spaced broader than 
the normal interatomic spacing a. The dimers form rows which rotate 
by 90” on every next terrace (Fig. 3.31(b)). The latter leads to the 
appearance of strong elastic deformations which spread deep under the 
crystal surface. The so-called 2 x 1 and 1 x 2 reconstructed surfaces result. 

Si(OO1) vicinal surface 



3.2. Layer Growth of Flat Facea 223 

Fig. 3.31. (a) Bulk and (b) reconstructed view of a Si(OO1) vicinal surface tilted towards 
the [I101 direction. A rotation by 90° of the projections of the dangling bonds is clearly 
seen in (a). The dimers also rotate by 90° on every next terrace. The terraces are 
separated by single layer steps denoted by SA and' SB according to  the notation of Chadi 
11987). The structure of the steps also alternate due to the rotation of the chemical 
bonds. The step height is ao/4 = 1.36 A, where a0 = 5.4307 A is the bulk lattice 
constant of Si. 

They alternate on every second terrace and it is said that 1 x 2 and 2 x 1 
domains alternate. Such a surface is often called nonprimitive. It is worth 
noting that a ?r-bonded chain model has also been proposed for the Si(ll1) 
surface [Pandey 19811. 
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Fig. 3.32. Side view of a dimer. (a) shows the bulk structure. (b) shows a symmetric 
(nonbuckled) dimer. (c) shows an asymmetric (buckled) dimer. The buckling causes 
a partial charge transfer from the “down” to the “up” atom and the dimer’s bond is 
partially ionic. 

3.2.4.1. Dimer’s structure 

Chadi [1979] concluded that when the atoms which constitute the dimer 
are situated in one plane which is parallel to the surface (the so-called sym- 
metric dimer, Fig. 3.33(b)) the dimer is unstable. The lowest energy state 
is reached when the dimer’s atoms are displaced in a direction normal to 
the surface in addition to the in-plane displacements towards one another. 
Thus one of the atoms is displaced upwards and the other, downwards 
(Fig. 3.33(c)). Such “buckled” dimer is called asymmetric. Whereas the 
bonding between the atoms of symmetric dimers is covalent the bonding in 



3.2. Layer Growth of Fiat Faces 225 

asymmetric dimers is partially covalent and partially ionic. The formation 
of an asymmetric dimer results in a charge transfer from the “down” to the 
“up” atom of the dimer [Chadi 19791. The same conclusion concerning the 
dimer’s geometry has been drawn by Pauling and Herman [1983] (see also 
Lin, Miller and Chiang (19921). 

b 

Fig. 3.33. Illustration of an imaginary process of formation of a SA step. First, we 
cleave the uppermost atomic plane between two dimer rows and shift (to infinity) the 
right-hand half-plane to the right as shown in (a). Two SA steps are formed (the second 
not rhown) as ahown in (b). Dimers on the lower B type terrace are formed and are 
directed perpendicular to the plane of the figure. The stoma which form dimers are 
ahown by solid circles. 

Both symmetric and asymmetric dimers have been observed to exist 
simultaneously on Si(100) by Romp, Hamers and Demuth [1985] (see 
also Hamers, Tromp and Demuth [1986]) with the help of scanning tun- 
neling microscopy (STM). They found that the (100) surface of Si has 
many defects, particularly vacancies or missing dimers, which in turn give 
rise to additional elastic strains. Far from the defects, only symmetric 
(nonbuckled) dimers were observed, while near the defects, asymmetric 
(buckled) dimers were observed as a rule. It was concluded that the vacancy 
type defects stabilize the dimer asymmetry, and often zigzag patterns were 
observed near large defect sites. These zigzag structures were explained 
as rows of asymmetric dimers in which the direction of buckling alternates 
from dimer to dimer along the row. Rows in which the dimen are buckled 
in one direction only have never been detected. Moreover, the degree 
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of buckling (or asymmetry) is not always the same as that predicted by 
theory. A gradual transition from symmetric to asymmetric dimers has 
been observed when going from defectless area to an area consisting of 
large defects. It is interesting to note that the dimers which belong to a 
row at the edge of a step are always strongly buckled. For more details the 
reader is referred to an excellent review paper of Griffith and Kochanski 
[199oj. 

3.2.4.2. Structure and energy of steps 

Consecutive steps on a vicinal(lO0) surface will be either parallel or normal 
to the dimer rows. Adopting the notation suggested by Chadi [1987], 
monoatomic steps which are parallel to the dimers rows on the upper 
terrace (or normal to the dimers bonds) are labelled SA (single A) steps 
and those perpendicular to the dimers rows (parallel to the dimers bonds) 
on the upper terrace are labelled SB (single B) steps (Fig. 3.31(b)). The 
corresponding upper terraces with 2 x 1 and 1 x 2 reconstructed surfaces 
are labelled type A and type B terraces, respectively (Fig. 3.31(b)). We 
will consider the two types of steps separately. 

Two SA steps can be produced by imaginary cleaving of the uppermost 
lattice plane between two dimers rows (parallel to the dimers rows) and 
shifting of one of the half-planes far enough from the other (Fig. 3.33). It 
is very important to note that strong first neighbor bonds are not broken 
during this process which means that extra dangling bonds are not created. 
It follows that the edge energy of such steps should be very small. In 
order to produce two SB steps we cleave the uppermost lattice plane in a 
direction normal to the dimers rows between two neighboring dimers and 
shift apart the two half-planes. To do this we break a first neighbor Q bond 
per atom between the atoms of the uppermost and the underlying layers 
(Fig. 3.34(a)). Then an extra dangling bond per atom of the underlying 
layer is created and the specific edge energy of the SB step should be 
much greater than that of the SA steps (Fig. 3.34(b)). Such a step is 
called a nonbonded SB step. The dangling bonds at the step edges can 
interact with the dangling bonds belonging to the atoms of the neighboring 
parailel row of the lower terrace. As a result an additional x bond per 
atom is created to reduce the step energy. The so-called rebonded SB 
step is formed as shown in Fig. 3.34(c) [Chadi 19871. The calculations of 
Chadi 119871 gave the values XSA = 0.01 eV/a = 4.16 x ergcm" and 
XSB = 0.15 eV/a = 6.24 x ergcm-' €or the specific edge energies of 
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Fig. 3.34. Illustration of an imaginary process of formation of a SB step. First, we cleave 
the uppermost atomic plane perpendicular to the dimer rows as shown in (a) and shift 
(to infinity) the right-hand half-plane to the right. Two SB steps are formed (the second 
not shown) as shown in (b) and (c). The atoms on the exposed surface then form dimers. 
Two configurations of the SB steps are possible. In (b) the bonds belonging to  the atoms 
at the step edge do not take part in dimer formation. Nonbonded SB step results. In 
(c) the bonds belonging to the atoms at the step edge take part in dimer formation and 
rebonded SB step results. 

the SA and the rebonded SB steps, respectively, in qualitative agreement 
with the above considerations. Obviously, the edge energy of a nonbonded 
SB step (Fig. 3.34(b)) should be greater than that of a rebonded one. Note 
that no rebonding of the SA steps can take place as no extra dangling bonds 
are formed. 

Monoatomic steps have been studied by Hamers, Tromp and Demuth 
[1986] with the help of STM. As mentioned above the dimer row which 
forms the upper SA step edge is strongly buckled. An interesting picture 
is observed in the vicinity of a kink site along the SA step. Before the 
kink the dimers which constitute the row on the upper edge are strongly 
asymmetric. After the kink the same row is spaced at  a distance 2a = 
7.68 A from the edge and the dimers are no longer buckled. Besides, 
simultaneous existence of rebonded and nonbonded SB steps has been 
established although minimum energy considerations [Chadi 19871 showed 
that the nonbonded steps are energetically unfavored. The experimental 
observations of Hamers, Tromp and Demuth [1986] are in good qualitative 



228 Crystal Growth 

agreement with theoretical conclusions which follow from the calculations of 
the electronic states of the Si( 100) stepped surface vamaguchi and Fujima 

An immediate consequence of the calculations of the specific edge free 
energies of the monoatomic steps is that a 2D island with a monolayer 
height will be surrounded by two SA and two SB steps. As XSA < XSB 
the equilibrium shape of the island will be elongated along the dimer rows 
according to the Gibbs-CurieWulff's theorem (see Chap. 1). 

It was found by LEED measurements that in the case of highly mis- 
oriented Si(100) surfaces (6" 5 8 5 10") the macroscopic inclinations were 
accommodated in all cases by steps with double height ao/2 [Henzler and 
Clabes 1974; Kaplan 19801. It is worth noting that the cleaning procedure 
included annealing for 2 min at 1100°C and for 30 min at 950°C waplan 
19801. Double steps have been observed in the case of smaller inclinations 
(2" 5 8 5 4") [Sakamoto et al. 198Sa] after annealing for 85 min at  
1000°C. Even well-oriented surfaces (0 < 0.5") [Sakamoto and Hashiguchi 
19861 showed double steps after sufficiently prolonged annealing at high 
temperatures. Double height steps DA and DB in the notation of Chadi 
[1987] are shown in Fig. 3.35. As seen, only one type of terraces, either 
of type A or type B, exists in these cases. The double steps can also be 
rebonded. We can imagine the DA step as having been formed by a SA 
step which has caught up with a SB step. Then the ?r bonds are formed 
between the atoms in the lower edge and the neighboring atoms belonging 
to the lower terrace. In the reverse case, when a SA step is on top of 
a SB step, a DB step results. The rebonding is between the neighboring 
atoms of the intermediate lattice plane. The energy of rebonded double 
steps has been calculated in a series of papers [Aspnes and Ihm 1986; 
Chadi 19871. The values XDA = 0.54 eV/a = 2.25 x ergcm-' and 
XDA = 0.05 eV/a = 2.08 x ergcm-' have been estimated [Chadi 
19871. 

In order to find the equilibrium structure of the steps we should estimate 
as before the corresponding works for kink formation. To this aim we follow 
a procedure analogous to that used above for the estimation of the specific 
step energies. In doing that we have to bear in mind that we have to 
preserve the integrity of the dimers. We consider first a completely smooth 
SA step (Fig. 3.36(a)). We break a bond between two neighboring dimers 
and shift apart the two half-rows of atoms to form two single kinks. It is 
immediately seen that we spent an amount of work which is exactly equal 
to the work required to form a step SA with length 2a. Then the work 

19911. 
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Fig. 3.35. Schematic view of (a) DA (double A) and (b) DB (double B) steps. The double 
steps can be thought of as consisting of single steps one on top of the other. In the case 
of the DA step, the SA step is on top of the SB step and vice versa. 

of formation of a single kink on the SA step is WA = 2axSB/2 = WSB. 

Applying the same procedure on the Sg step (Fig. 3.36(b)) we find W E  = 
xsAa. It follows that the work of kink formation is greater for the step with 
lower specific edge energy, and vice versa [Van Loenen et al. 19901. This 
leads in turn to the conclusion that the SA steps will be smooth to much 
higher temperatures than the SB steps. Then smooth and rough steps 
will alternate on a nonprimitive Si(OO1) surface (Fig. 3.37). Numerous 
STM investigations confirmed this conclusion (e.g., see Swartzentruber et 
al. [1990]). 
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Fig. 3.36 (a) & (b). For the determination of the works of formation of kinks W A  and wg 
along SA and SB steps, respectively. The atoms of the lower terraces are shown by filled 
circles. Imagine that in (a) we cleave the dimer row at the edge of a SA step and shift to  
infinity the upper half-row as shown by the arrow. T w o  kinks are formed as a result, one 
of them being shown in (b). In fact a part of a SB step with length 2a is formed, where 
a = 3.84 A is the 1 x 1 interatomic spacing on the Si(OO1). The same in the case of a SB 
step is shown iii (c) and (d). A part of a SA step with length 2a is formed in the latter 
case. Thus the side steps of the kinks are always equal to 2a in order to permit dimer 
formation at the lower terraces. Comparing (b) and (d) shows that the kinks along the 
SA and SB steps are equivalent although the steps differ. This is clear bearing in mind 
that the work to separate an atom from a kink position at 0 K is equal to the chemical 
potential of the bulk crystal taken with negative sign. 
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Fig. 3.36 ( c )  & (d) (Continue). 

In other words, one of the edges of the kinks represents a part of a 
SA step and the other edge a part of a SB step, irrespective of whether 
the kink is on a SA or SB step. It is thus obvious that the detachment 
of a single atom from the kink position is no longer a repeatable step. 
One has to detach four atoms constituting two dimers in order to restore 
the initial state. It follows that the work spent to evaporate a complex 
of two dimers from a single kink is one and the same irrespective of the 
type of the step. Namely this work (per atom) taken with negative sign 
is equal to the chemical potential of the Si crystal at the absolute zero as 
shown in Chap. 1. Moreover, this leads to the conclusion that every kink 
should have a length being a multiple of 2a because of the way in which the 
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Fig. 3.37. Train of alternating smooth SA and rough SB steps. 

step must terminate at  the lower terrace and the latter has a periodicity 
of 2a normal to the step. The distance between two kinks should be a 
multiple of 2a for the same reason. These considerations were confirmed by 
STM observations of SA and SB steps [Swartzentruber et al. 1990). These 
authors also showed that the kinks on the SB step, which is very rough even 
at moderate temperatures, often have a length greater than 2a (but always 
a multiple of 2a). This means that a statistics of kinks of amount greater 
than unity should be applied. 

We can now calculate the density of kinks along the SA and SB steps 
as an illustration of the above considerations. To this aim we follow the 
ideal gas approximation (noninteracting kinks) of Burton, Cabrera and 
Fhnk (19511 although it was shown that there is considerable kink-kink 
interaction [Zhang, Lu and Metiu 1991~).  

In analogy with Eq. (1.71) the sum of all kinks with arbitrary length T 

is 

(3.150) 
r = l  r = l  

where n+, and n-, are the numbers of positive and negative kinks of length 
T and no is the number of the smooth parts. The summation is now carried 
out from T = 1 t o  T = 2L, where 2L is the mean distance between two steps 
in units of 2a of one and the same type A or B. 
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Equation (1.73) now becomes 

2L 2L 
C Tn+r - C T L r  = cp/a , (3.151) 
r=l  s=l 

where cp is the angle between the step direction and the (110) azimuth. 
As before (see (1.72)) 

n+ n- -- = 72 ) (3.152) 
no no 

where 7t* = 7tkl and 

(3.153) 

Burton, Cabrera and Frank [1951, Appendix C] showed that the follow- 
ing thermodynamical relation between rnultikinks of amount r and single 
kinks of amount T = 1 holds: 

(3.154) 

The latter is easy to  understand bearing in mind that in order to form 
a kink of amount T ,  a kink of amount r - 1 must be formed before that. 
In other words, the probability of formation of a kink of amount r, Pr, is 
a product of the probability of formation of a kink of amount T - 1, 
and the probability of formation of a single kink, PI, i.e. Ps = Pr-IPI. 
Then by induction (Pr-2 = Ps-1P1) etc.) P,. = Pi.  

The average spacing 60 between kinks of any amount is now given by 
(compare with (1.74)) 

-1 2L 2L 
6o = ( p + s  +p-J * (3.155) 

Solving the system (3.150), (3.151), (3.152) and (3.154) by summing a 
geometric series with cp = 0 gives 

which is a good approximation for wide enough terraces ( L  > 10a). Using 
the d u e s  taken by Van Loenen et al. [1990] for Monte Carlo simulation 
of the growth process, WA = 0.5 eV and WB = 0.05 eV for the mean kink 
spacings at T = 750 K, we obtain the values &(A) 'Y, 2.3 x 103a and 
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&(B) 2 2a. The values estimated by Chadi [1987], W A  = 0.15 eV and 
WB = 0.01 eV, give smaller value for &,(A) E 12a and the same value for 
&(B) S 2a. In any case &(A) is always greater than 60(B). It is worth 
noting, however, that Eq. (3.156) is only approximate as the ideal gas 
model (noninteracting kinks) has been used. More elaborate calculations 
including kink-kink interactions give more realistic results [Zhang, Lu and 
Metiu 1991~1. 

Following the same procedure as in Chap. 1 but solving Eqs. (3.150)- 
(3.154) for the Gibbs free energy of the Sg steps, one obtains 

where XSB is the energy of the straight step. 
The Gibbs free energy of the SA is obtained by replacing the index B 

by A. In the extreme case of steps far apart (L -+ ca) Eq. (3.157) turns 
into the one derived by Burton, Cabrera and Frank [1951]: 

(3.157') 

3.2.4.3. Ground state of vicinal Si( 100) surfaces 

The question of the lowest energy state of the Si(100) vicinal surfaces is very 
important as the latter are used as substrates for the growth of epitaxial 
films of GaAs and other III-V compounds. The latter are of utmost 
importance for potential device applications [Shaw 19891. Obviously, the 
surface with single height steps necessarily leads to antiphase boundaries 
in the III-V epilayers [Kroemer 19861. 

As seen, the SA steps have the lowest edge energy. However, they 
unavoidably lead to the existence of SB steps and the overall energy is 
XSA + XSB = 0.16 eV/a = 6.66 x ergcm-'. This value is three 
times higher than the energy of a DB step but more than three times 
lower than that of a DA step. It was concluded that the DB steps are 
thermodynamically favored on a vicinal (001) surface of Si and a single 
domain 1 x 2 reconstruction should always dominate after sufficiently long 
annealing at high temperatures [Chadi 19871. Such a surface is often called 
a primitive surface. 

As shown in Fig. 3.31(b), terraces with 2 x 1 and 1 x 2 reconstructions 
alternate on the nonprimitive surface. Due to the displacements of the 
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dimer atoms towards one another, such a reconstructed surface is under 
tensile stress o= parallel to the dimer bonds and under compressive stress 
41 in the perpendicular direction. The overall stress Au = t ~ =  - 41 is 
tensile. The stress rotates by 90' on the neighboring terrace and as a result 
tensile and compressive stresses alternate on a vicinal Si(100) surface, the 
period of alternation being given by the terrace width. It was first pointed 
out by Marchenko [1981] that on a surface with alternating stress domains 
(parquet-like surface) the stress relaxation lowers the surface energy. The 
decrease of the surface energy due to strain relaxation waa found to depend 
logarithmically on the interstep distance [Marchenko 1981; Alerhand et 
ol. 19881. Obviously, in the case of a surface with double height steps 
(Fig. 3.35) all dimers strain the crystal in one and the same direction, 
the surface stress does not alter its sign and there is no strain relaxation. 
Then the difference between the Gibbs free energies of single height (SH) 
and double height (DH) stepped surfaces will be given by [Alerhand et al. 
1990) 

1 
AG = L-' [ ~ ( G s A  + GSB - GDB) - A, In (3.158) 

where As = Aa2(1 - v)/27rG (energy per unit length) originates from the 
anisotropy of the stresses, Au, and depends on the shear modulus G and 
the Poisson ratio v of the bulk silicon [Marchenko 1981; Alerhand et aI. 
1 9881. 

As discussed above, the work for kink formation is high for the SA step 
and low for the SB step. The same is valid for the double height steps. 
The DB steps have high energy excitations, i.e. WDB =  am^, and we can 
approximate GSA and GDB by the edge energies of the perfectly straight 
steps XSA and XSB.  We have to take the full expression (3.157) only for GSB. 

Then in the ideal gas approximation (neglecting for simplicity the term 
2qaL+l in (3.157)) (3.158) turns into 

The condition AG = 0 determines the first order phase transition from 
nonprimitive (SH-stepped) to primitive (DH-stepped) surface. A critical 
terrace width L, (or a critical tilt angle 0, = tan-'(h/L,); h = a0/4 = 
1-36 A is the single step height) can be determined showing that the 
primitive surface will be energetically favored at L < L, (0 > O,), and 
the nonprimitive surface at L > L, (6 < 6,). L, is then given by 
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Fig. 3.38. Phase diagram of a vicinal Si(OO1) surface showing regions of stability of double 
layer (DL) and single layer (SL) stepped surfaces (after Alethand et al. (19901). 

~ S A  + ~ S B  -XDB L, = naexp . (3.159) 

0, is plotted versus temperature in Fig. 3.38 with XSA + XSB - XDB = 
110 meV/a, A, = 11.5 meV/a and W B  = 10 meV. As seen, at low 
temperatures the entropy term on the right-hand side of (3.159) goes to 
zero and L, -+ L,, = 1440 A or 0, --$ O,, 2 0.05". In general, the 
primitive surface is the ground state at high tilt angles, and vice versa, 
the single height stepped surface being energetically favored at low tilt 
angles. Equation (3.159) overestimates the result obtained by Alerhand et 
al. [1990]. More elaborate studies take into account the influence of strain 
relaxation on the step roughness [Alerhand et aI. 19901, the corner energy 
of the kinks [Poon et al. 19901, etc. In particular, more elaborate evaluation 
of the specific edge energies [Poon et al. 1990) gives for O,, a much higher 
value of about 1". Pehlke and Tersoff [1991a] foiind that a t  the ground state 
the B type terraces are narrower than the A type terraces. The problem 
of the equilibrium structure of vicinal Si(100) surfaces is still a subject 
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of intensive experimental and theoretical investigations. The interested 
reader is referred to the original papers [De Miguel et al. 1991; Barbier and 
Lapujoulade 1991; Barbier et al. 1991; Pehlke and Tersoff 1991bJ. 

3.2.4.4. Anisotropy of surface diffusion coefficient 

The anisotropy of the surface diffusion follows directly from the anisotropy 
of the crystal surface itself [Stoyanov 19891. The first questions which arise 
are connected with the location of the adsorption sites on the reconstructed 
surface, with what happen to the dimers when adatoms appear on top of 
them or in their vicinity, etc. Then an energy surface should be constructed 
and the lowest energy path for surface diffusion should be determined. 
Brocks, Kelly and Car [1991a, b] found that the deepest minima for an 
adsorbed atom are located along the dimer rows between two neighboring 
dimers belonging to the same row (point M in Fig. 3.39). This site is favored 
by the fact that the bonds between the adatom and the nearest dimer atoms 
have the same length a 0 6 1 4  = 2.35 A as the nearest neighbor spacing in 
the bulk silicon. The site B, which connects two dimers in adjacent rows, 
although looks very favorable, requires too long a bond of 2.49 A and the 
dimers bond should be stretched also. Thus the energy of an adatom in site 
B is 1.0 eV higher than that in the deepest minimum M. The energy of the 
site H which is located between two adjacent dimers of one row is 0.25 eV 
higher than that of the site M, whereas the energy of the site D which is 
just on top of the dimer is 0.6 eV higher than the energy of the absolute 
minimum M. It was thus found that the lowest energy path of an adatom in 
a direction parallel to the dimer rows is D-H-M and the activation energy 
for surface diffusion is 0.6 eV. The activation energy for surface diffusion in a 
direction perpendicular to the dimer rows is greater than 1.0 eV. It was thus 
concluded that the direction of fast diffusion is parallel to the dimer rows. 
Miyazaki, Hiramoto and Okazaki I19911 found that an atom adsorbed on top 
of a dimer (site D) causes a little distortion of the dimer while that adsorbed 
at site B causes the dimer to break. They reached the same conclusion 
concerning the direction of fast diffusion as Brocks, Kelly and Car [1991a,b]. 
The activation energy along the path D-H-D parallel to the dimer rows 
was found to be 0.6 eV whereas in the perpendicular direction D-B-D the 
latter is somewhat larger (1.7 eV). Using a Stillinger-Weber interatomic 
potential (Stillinger and Weber 19871 Zhang, Lu and Metiu [1991a,b] (see 
also Lu, Zhmg and Metiu [1991]) found even smaller activation energies for 
surface diffusion of about 0.3 eV along the dimer rows when the adatoms 
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diffuse on top of the dimers, 0.7 eV when the adatoms diffuse by the side 
of the dimer string and 0.9 eV when the adatoms diffuse along the value 
between the dimer rows. At the same time the latter authors found an 
activation energy higher than 1.0 eV in a direction perpendicular to the 
dimer rows. It follows that an adatom adsorbed on a dimer string can 
quickly move to  the end of the string and increase its length (Zhang, Lu 
and Metiu 1991b). They also found that diffusion of dimers as entities is 
highly improbable. Ashu, Matthai and Shen (19911 found the values 0.2 eV 
and 2.8 eV for the activation energies for surface diffusion in directions 
paralie1 and perpendicular to the dimer rows, respectively. Based on STM 
measurements of the saturation island density, Mo et al. I19911 extracted 
the values 0.67 f 0.08 eV and 1 x 10-3cm2/sec for the activation energy for 
fast diffusion and the pre-exponential factor. Excellent agreement with the 
above values was found by Roland and Gilmer [1991, 1992a], the latter 
authors having used the Stillinger-Weber potential for their study. In 
addition they found that exchange between substrate atoms and adatoms 
takes place even a t  low temperatures. This phenomenon gives additional 
contribution to the surface diffusion. 

Fig. 3.39. Illustration of the directions of fast and slow surface diffusion of Si atoms on 
Si(OO1). Top view of the topmost three layers of a (2 x 1) reconstructed Si(OO1) surface 
is shown. The large filled circles represent the uppermost atoms, the medium-sized open 
circles represent the second layer atoms and the small filled circles represent the third 
layer atoms. The points denoted by B, D, M and H are explained in the text (after 
Brocks, Kelly and Car [1991)). 
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The general conclusion is that, irrespective of the quantitative differ- 
ences due to the different methods of calculations, the surface diffusion 
on the reconstructed Si(100) 2 x 1 surface is highly anisotropic and the 
direction of fast diffusion is parallel to the dimer rows. The values for the 
activation energy, although varying from 0.2 eV to nearly 0.7 eV in different 
studies, suggest that considerable surface diffusion takes place even at room 
temperature. What is much more important is that a critical temperature 
should exist below which only surface diffusion in one direction takes place 
and above which the diffusion in a direction normal to the dimer rows could 
become significant. 

3.2.4.5. Theory of 1D nucleation 

It follows from above that rough (SB) and smooth (SA) steps alternate 
on a vicinal double domain Si(OO1) surface. The SB steps advance by 
direct incorporation of growth units to  the kink sites in complete analogy 
with the normal growth of rough crystal faces. The growth of the SA 
steps is more complicated. It requires the precursory formation of kinks. 
As thermally activated formation of kinks with sufficiently great enough 
density is inhibited another mechanism should obviously be involved. In 
analogy with the formation of 2D nuclei on a smooth defectless crystal 
surface one can think of the formation of 1D nuclei which represent finite 
atomic rows. Every row will thus give rise to two kinks. The theory of 1D 
nucleation has been treated by many authors [Voronkov 1970; Frank 1974; 
Zhang and Nancollas 19901. 

Let us try to treat thermodynamically the problem of the formation of 
1D nuclei just as we did in the case of 3D and 2D nuclei. To this aim we 
will use the atomistic approach suggested by Stranski and Kaischew [1934]. 

We consider first the formation of a 3D nucleus of a Kossel crystal with 
a cubic equilibrium shape. The nucleus consists of N = nj atoms, where n3 

is the number of atoms in the nucleus edge. The work for nucleus formation 
is given by Eq. (2.20), AG; = Nq3 - UN, where 9 3  = 3$ - 2$/n3 is the 
mean separation work (Eq. 1.60). The equilibrium vapor pressure of the 
nucleus is defined by Eq. (1.61), Ap = cpl/2 - p3 = 2$/n3. Substituting p3 
into Eq. (2.20) and bearing in mind that UN = 3ni$ - 3441  for the Gibbs 
free energy, one obtains AG; = n;$. Applying the same procedure to a 
2D nucleus with a square shape one correspondingly obtains Ap = $/nz 
and AG; = n&. 
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Fig. 3.40. Schematic view of 1D nucleus at the edge of a single step on the surface of a 
Kossel crystal. 

We consider now a row of n1 atoms in a step edge (Fig. 3.40). The 
mean separation work is calculated now by the detachment of the end 
atoms and is exactly equal to the separation work from a kink position, 
i.e. 81 = 310 = cpl12. Then Ap = cpl12 - 91 = 0, i.e. the atomic row has 
the same chemical potential as the bulk crystal irrespective of its length. 
The potential energy is UN = 3nl+ - I,!J and for the Gibbs free energy one 
obtains AG; = 11. The results of the above calculations are summarized in 
Table 3.1. As seen the Gibbs free energy does not depend on the nucleus 
size, and hence we cannot define thermodynamically a critical size of the 
row of atoms. However, as shown by the authors mentioned above a critical 
1D nucleus can be well defined kinetically. In what follows we will consider 
the problem of step advance by 1D nucleation following the approach of 
Voronkov (1970). 

We consider the growth and dissolution of the row of atoms shown 
in Fig. 3.40 assuming that atoms attach to  the row ends directly from the 
terraces. We rule out diffusion of atoms along the step edge. The diffusion of 
atoms to  the kinks is fast enough and the step advances in a kinetic regime. 
Then a constant adatom concentration nst or a constant supersaturation 
u = nst/nse - 1 exists in the near vicinity of the step. We denote by w+dt 
and w-dt the probabilities for attachment and detachment of adatoms to 
and from a kink position in a time interval dt.  The corresponding frequencies 
w+ and w- are given by 
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Table 3.1. Gibbs free energies of formation and supersaturations for 3D, 2D sad 1D 
nuclei of a Koasel crystal. n denotes the number of atoms in the edges of the 3D nucleus 
with a cubic shape, 2D nucleus with a square shape and 1D row of atoms. J, denotes 
the work required to break the bond between the first neighbors. 

AG8 5 p  
Dmensionali ty 
of the nucleus 

3D 

2D 

11, na+ 2- 
n 

1D !b 0 

w- = uexp (-Aw&Au) 1 (3.160) 

w+ = u z e x p  (-F) AU , 
NO 

(3.161) 

where AW = cpl/z - (Pde' is the work to transfer an atom from a kink 
position on the surface of the nearby terrace (Q. (3.18)). 

Bearing in mind that Q = nst/nse - 1 and nse/No = exp(-AW/kT) 
(Eq. (3.18)) (3.161) can be rewritten in the form 

w+ = w'(l+ 0 )  . (3.161') 

As seen, at equilibrium (cr = 0) w+ = w- and 7t.t = rile. 
The kink performs random walk back and forth with a diffusion coeffi- 

D = u2w- (3.162) 
cient 

around a given constant position. 

the kink is given by 
When not in equilibrium (u # 0) w+ > w- and the rate of advance of 

?& = U(wf - W - )  = w - a  (3.163) 

At small supersaturations the probabilities of attachment and detach- 
ment of atoms are close. The kink can perform simultaneously random 
walk backward (dissolution of the row) and steady advance forward with a 
rate 'uk. The direction of the random walk is opposite to the direction of 
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advance. Then during a time t ,  711, atoms will detach from the kink and nf 
atoms will join the kink. The kink will shift backward by a distance 

1 = a(nb - nf) 2(Dt)”2 - 2)kt . 
As seen, the shift of the kink backward displays a maximum at some 

time t,,, = D/vE. The maximum or the most probable shift of the kink 
backward is then 

D a  - _ -  l,,, = - . 
vk ff 

Let the mean kink spacing be 

(3.164) 

as given by Eq. (1.73). If a /a  >> 60, the probability for the kink to  encounter 
a neighboring kink with an opposite sign and to annihilate with it is very 
large. If this happens the atomic row will disappear. In other words, atomic 
rows smaller than a /u  will have a greater tendency to decay than to grow 
further. 

If, however, the system is sufficiently far from equilibrium so that the 
supersaturation is large enough, a/a << 60 or 

(7 >> U P 0  7 (3.165) 

where po = 1/60 is the equilibrium kink density, steady growth will prevail 
over random walk. An atomic row longer than a /u  most probably will not 
disappear, but will grow with a steady state rate Vk. Thus it is namely the 
quantity a /a  which plays the role of critical size of the 1D nucleus. The 
latter is defined solely on the basis of kinetic considerations. 

It follows that when the inequality (3.165) is fulfilled the advance of 
the step will take place by formation and growth of 1D nuclei. Thus this 
inequality gives the lower limit of validity of the 1D nucleation mechanism 
of growth. Obviously, an upper limit should exist. In complete analogy 
with the growth of atomically smooth and defectless crystal face the upper 
limit will be defined by the condition of the kinetic roughness of the step. 
In the particular case of step advance the kinetic roughness is determined 
by the condition that every atom adsorbed at the step edge remains there 
for a sufficiently long time. Then each adsorbed atom will give rise to two 
kinks. 

We denote the frequencies of adsorption and desorption of atoms at 
the step edge by w$ and w;, respectively. The adsorption frequency w,’ 
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should be nearly equal to the frequency w +  of attachment to kink sites. The 
desorption frequency w; should be much greater than w- as the adsorbed 
atoms are more loosely bound to the steps than the atoms in the kink 
positions. If the supersaturation is not large, an atom adsorbed at the step 
will desorb with greater probability than attach new atoms on either side 
of it. In other words, when the frequency of desorption is comparable with 
the double frequency of attachment of atoms to kink positions, w; E 2w+, 
the step will by kinetically rough and the 1D nucleation mechanism will 
no longer be valid, The reverse condition, or the condition that the step is 
still smooth, is obviously w; >> 2w+, or 

(3.166) 

The inequality (3.166) can be expressed through the equilibrium kink 
density and the supersaturation by using the condition for adsorption- 
desorption equilibrium. We denote by Pa,O the equilibrium density of atoms 
adsorbed at the step. The condition of detailed balance reads wLo / a  = 
qpa,o, or 

Each adsorbed atom creates two kinks, one positive and one negative. 
Then the probability to find an adsorbed atom, apa,O, will be equd to the 
probability to find simultaneously one positive, up:, and one negative, up;, 
kink. Neglecting any possible energetic interaction between the kinks, the 
above results in apa,o = (ap$)(upO). Bearing in mind that po = pof + pO 
and p$ = PO, one obtains pS,o = u ( p 0 / 2 ) ~ .  Then 

(3.167) 

Excluding w; from (3.166) and (3.167) and bearing in mind that w+ S 
w: = wa+l0 (1 +a), (3.166) turns into 

(3.168) 

Thus the conditions (3.165) and (3.168) give the lower and upper limits 
of validity of the 1D nucleation mechanism of advance of single steps. 
Obviously, if apo << 1 as in the case under study this mechanism of growth 
will be valid in a very wide interval of supersaturations. In the particular 
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case of SA steps on the vicinal surface of Si(OO1) at T = 600 K, SA = 
870a. Then up0 = 1.15 x and the advance of the steps through 1D 
nucleation will take place from supersaturations as low as 1.15 x up 
to supersaturations as high as 7.6 x 10‘. 

We can now calculate the steady state rate of formation of 1D nuclei 
by using the classical approach of Becker and Doring (19351 described in 
Chap. 2. Equations (2.49’) in this particular case will look like 

Jo = w,” - w;pa , a 

Jo = 2w+pa - 2w-p~ , 

(3.169’) 

(3.169”) 

Jo = 2wtpn-1 - 2w-pn . (3.169”’) 

The first equation differs from all the others, on account of which we 
will solve the system beginning from the second equation (3.169”). Thus 
we will determine the density of the adsorbed atoms, pa, and substitute i t  
into the first equation (3.169’) to obtain an expression for Jo. 

The expression (2.50) now reads (from Eq. (3.169”) onwards) 

The sum in the denominator represents that of a geometric series aod 
can be easily found. The upper limit should be greater than the number 
of atoms in the critical nucleus l/a. The ratio w-/w+ = 1/(1 + 0 )  

(Eq. (3.161’)) is always smaller than unity as a > 0. At large supersat- 
urations the critical size l/a is small and the upper limit n should be a 
small number, and vice versa. At the same time, at large supersaturations 
the terms in the sum vanish faster than at small ones so that we will not 
make a large error if we extend the upper limit to infinity in both cases 
of large and small supersaturations. Then the sum in the denominator is 
equal to 1/a and Jo = 2w+paa/( 1 + a)  = 2w-apa = 2(w+ - w-)p., or 

JO 
2(w+ - w- )  ’ 

Pa = 

This result can be immediately obtained from Eq. (3.169”’) assuming 
p n  = pn-l = pa = const [Voronkov 19701, i.e. the densities of the clusters 
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do not depead on the cluster size as follows from the thermodynamic 
considerations given in the beginning of this section. 

Substituting pa into (3.169') gives for JO [Voronkov 19701 

- w,+ 2(u+ -u- )  
Jo - - 

a u; +2(u+ -u- )  . (3.170) 

This expression can be easily simplified taking into account that w; > 
2w+ (Eq. 3.166) and hence u; >> 2(u+ - w-). Substituting w,' = u&(l+ 
a), w:o = w ~ ( a p o / 2 ) ~  from Eq. (3.167) and w+ - u- = w - u  from 
Eq. (3.163) into Eq. (3.170) gives 

1 -  J - -cw &(l +a) . 
O - 2  

Finally, making use of Eq. (3.160) and po = 1/60 gives 

(3.171) 

(3.1 72) 

As seen the steady state rate of 1D nucleation is a linear function 
of the supersaturation when the latter is much smaller than unity, but 
increases parabolically with it when u >> 1. Then at low temperatures, 
e.g., T = 600 K, with v = 3 x 1013sec-1, a = 3.84 x lo-* cm, a Z 

1 x lo3, cp1p = 4.33 ev,  (Pdes = 2.99 eV [Roland and Gilmer 1991, 1992a], 
WA = 0.5 eV and AU = 0.2 eV, the steady state 1D nucleation rate is 
of the order of 7 x lo5 cm-lsec-'. At T = 1000 K, a Y 1 x and 
Jo pr 2 x lo5 cm-'set-'. 

3.2.4.6. Rate of step advance by 1D nucleation 

As in the cBse of growth of a smooth and defectless crystal face by formation 
and lateral spreading of 2D nuclei we will consider separately the advance 
of infinitely long step and a step of finite length. In doing that we will 
follow exactly the same approach. 

In the case of infinitely long step we assume that a row with length 1 is 
formed. Then the frequency of 1D nucleation of a new row of atoms next to 
the first one is jb = JoZ. The time elapsed from the nucleation of the first 
row to the nucleation of the second row is 11%. The latter is approximately 
inversely proportional to the nucleation frequency, or Z/% E l/JoZ. Then 
I = ( v k / J ~ ) l / ~ .  The rate of step advance is given by v = JoZa, or [Voronkov 
1970; Bank 19741 

2) = a ( J o v p  . (3.173) 
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Making use of the expressions for J o  and Wk, (3.171) and (3.163), gives 

(3.174) 
for v 

v = a2pow-(r(l + u)1 /2  , 

or 
) . (3.175) VI/Z - Vdes + + A u  

kT v = 2avu( 1 + u)’I2 exp 

On the other hand, v = apwk = a 2 p - u ,  where p is the real kink 
density under conditions far from equilibrium. Comparing this expression 
with Eq. (3.174) gives for the kink density 

p = po(1 f u)1’2 (3.176) 

It follows that at high temperatures (small supersaturations) when the 
equilibrium density of thermally activated kinks is large the kink density is 
close to the equilibrium one, i.e. the contribution of the 1D nucleation to 
the kink formation is negligible. The contribution of the 1D nucleation to  
the kink formation is significant at low temperatures. 

The propagation of steps with a finite length is completely analogous 
to  the layer-by-layer growth of finite crystal faces. The advance of a step 
with a finite length 1 in the row-by-row mode will be given by 

w = Jola . (3.177) 

Equation (3.177) is particularly important when the growth of a Si(OO1) 
surface through the formation of 2D islands is considered. As mentioned 
above the latter are surrounded by two smooth, SA, edges and two rough, 
SB, edges of finite length. 

3.2.4.7. Growth of Sz(OO1) vicinal by step flow 

As follows from the above, the growth of a double domain vicinal Si(OO1) 
2 x 1 surface is characterized by two fundamental properties: first, the 
nonequivalency of the steps, and, second, the anisotropy of the surface 
diffusion. As a consequence of the first property the alternating steps 
will propagate in general with different velocities and catch up with each 
other to form higher steps. The second factor leads to the conclusion that 
on B type terraces the atoms will diffuse predominantly in a direction 
perpendicular to  the steps, while on the A type terraces the adatoms will 
diffuse in a direction parallel to the steps. It follows that the steps will 
in fact propagate only a t  the expense of the atoms diffusing to them on 
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the B type terraces. The atoms on the A type terraces will not take part 
in the growth process at high enough temperatures. If the temperature 
is low enough the adatoms on the A type terraces will give rise to 2D 
nucleation and growth. Thus the SA steps will propagate at the expense 
of the atoms diffusing to them on the lower terraces whereas the SB steps 
will advance at the expense of the atoms diffusing on their upper terraces. 
In addition, Roland and Gilmer [1991] have found that the attachment of 
adatoms to the SA steps from the above A type terrace is less probable 
than from the lower B type terrace. The reverse is valid for rebonded SB 
steps. Note that at lower temperatures 2D nucleation will take place on 
the terraces and the growth will proceed by 2D nucleation mechanism. A 
critical temperature for transition from step flow growth to 2D nucleation 
growth should exist [Myers-Beaghton and Vvedensky 19901. The problem 
of the growth of Si(OO1) vicinal surfaces has been studied in detail by many 
authors (Vvedensky et al. 1990a, b; Wilby et al. 1989) and the interested 
reader is referred to their papers. A Monte Car10 simulation with video 
animation to visualize the results was performed by Wilby et al. [1991]. 
We will consider in this section the growth of Si(OO1) at high temperatures 
to avoid 2D nudeation on A type terraces following the analysis given by 
Stoyanov [1990]. 

We consider a double domain (nonprimitive) vicinal Si(100) surface on 
which SA and SB alternate (see Fig. 3.37). The initial interstep spacing is 
denoted by A. The beginning of the coordinate system is at the middle point 
of a B type terrace so that the SA and SB steps are located at x = -X I2  
and x = X/2, respectively. 

The SB steps are rough and propagate with a rate 

VB = a2PBnseuB . (3.178') 

The SA steps are smooth and propagate through 1D nucleation with a 
rate 

VA = a2PAgA(I + uA) ' j2  a2PAUA . 
In the above equations, PA,B and UA,B = nA,B/n,. - 

sponding kinetic coefficients and supersaturations in the 
steps. nA,B axe the corresponding adatom concentrations. 

(3.1 78") 
1 are the corre- 
vicinities of the 

In the case of complete condensation (the re-evaporation is strongly 
inhibited) the diffusion on the B type terraces is governed by the diffusion 
equation 

d2n,(z) R 
dx2 D, + - = O .  (3.179) 
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The solution of the equation subject to  the boundary conditions x = 
-A/2ns = nA and x = X/2ns = nB reads 

R A2 X 1 
2 0 s  x 2 

ns(z) = - (7 - z2) + - (ng  - n ~ )  + -(ring + TI,A) . (3.180) 

Bearing in mind that VA,B = u2Ds(dns/dx),=*X/p for the rates of 
growth one obtains 

(3.181') 

(3.181") 

Comparing (3.178') with (3.181"), and (3.178") with (3.181'), we find 
OA and ~g and in turn for VA and VB we obtain 

(3.182') 

(3.182") 

(3.183) 

It follows that the rates ratio depends on the ratio of the crystallization 
rate PA and the rate of diffusion Ds/X.  When PA >> Ds/A,  both steps will 
propagate in a diffusion regime with equal rates. The supersaturations b~ 
and OE will be equal and VA = VE = RX/2No. As a result, the Si(OO1) 
vicinal will grow with single height steps. In the reverse case, PA << Dm/A, 
the propagation rates relate as the corresponding equilibrium densities of 
the thermally activated kinks PA,O/PB,O << 1. The rate of growth of the SB 
steps is much greater than the rate of growth of the SA steps. Then the 
former will catch up with the latter and DB steps will be formed. Roland 
and Gilmer [1992b] treated the growth of Si(OO1) vicinal by step flow in 
detail using Eq. (3.173) and found that the Sg steps always propagate with 
higher velocity than the SA steps. 

Let us now try to define the conditions of growth with single and double 
height steps. The ratio P A X / ~ D ,  reads 
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P A X  - = -exp 
2 0 ,  a 

(3.184) 

where X/a = &!/4 tan O > 1 , 0  being the tilt angle. 
The condition for the diffusion regime of growth, pA@D,, > 1, and 

hence of single height steps will always be fulfilled when vsd  - W A  - AU > 0 
because X >> a. Only in the reverse case when (Psd - W A  - AU < 0 should 
a transition from single height steps to double height steps be observed. 

A critical temperature for transition from single to double steps can be 
defined from the condition @ ~ ) r / 2 D ,  = 1: 

(3.185) 

1 
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of attachment and detachment of building units containing four atoms. 
A value of the order 0.2-0.4 eV seems reasonable. Thus the difference 
vsd - W A  - AU could vary between -0.6 eV and 3-0.3 eV. A value of 
-0.1 eV seems reasonable. The critical temperature Tt, is plotted against 
the tilt angle 0 in Fig. 3.41. As seen, single steps should be observed at high 
temperatures. At low temperatures, double steps should be observed as a 
result of the kinetic regime of growth of the SA steps. Note that this result 
which is based on a kinetic treatment should obviously be considered as 
complementary to the equilibrium considerations of Alerhand et al. [1990] 
(Fig. 3.38). Following the same approach but using Eq. (3.177) for the rate 
of advance of the SA steps one can study the dynamical evolution of the 
step density on Si(OO1) as was done in the previous section [Markov 19921. 

3.3. Kinematic Theory of Crystal Growth  

The layer growth is often realized as a lateral propagation of monomolecular 
(monoatomic) steps, which is not always the case. Just the opposite, the 
propagation of thicker steps, is frequently observed. As discussed briefly 
in Sec. 3.2 the rate of advance of such steps should be lower than that 
of monomolecular or elementary steps. This is easy to understand, but 
nevertheless we will illustrate it by a simple example. 

The example consists in a comparison of the rates of advance of two 
elementary steps due to 2D nuclei formed one over the other (Fig. 3.26) 
and the double step which is formed when the upper step catches up with 
the lower step. In other words, we consider a pyramid of growth as shown 
in Fig. 3.26. 

The solution of the diffusion problem (3.58) now reads 

(3.186‘) 

for T > p1 , 

(3.186”) 

(3.186”’) 
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where 

251 

A =  

10 (?) KO (t) - 10 (f) KO (2 )  ' (3.187') 

*E(Pl)lO (E) - W P Z V O  (?) 
B = -  

10 (2) KO (E) - 1 0  (?)KO (a) * 

(3.187") 

Following Burton, Cabrera and F'rank 119511 and making use of the 
relation Il(x)Ko(z) + lo(z)K1(z) = 1/z and the approximations valid for 
p1,z > As, lo (z )  = (7r~/2)'/~exp(z) and &(t) = (r/2z)1/2exp(-z), we 
find 

where now A = p1 - pz is the step spacing. * (pz )  > *(PI), p1 > p2 and 
the rate of propagation of the upper island is smaller than that of the lower 
one. This holds for small enough radii p1 and p2. At large enough sizes 

Expanding the exponents in power series to the linear term at X --t 0 we 
find that the rate of advance of a double step is exactly twice smaller than 
that of a single elementary step (Eq. 3.62). 

When considering the propagation of a step with arbitrary thickness 
h > a in the case of growth from vapors, one has to take into account 
direct incorporation of atoms from the vapor phase to the step in addition to 
surface diffusion [Chernov 19841. The surface diffusion flux per unit length 
of the step is (the diffusion gradient is approximated by (n, - nSe)/Xs, see 
Eq. (3.33)) 

of PZ and PI when (PI/P~)'/~ 2 1, %I)/WZ) 1 and ~ ( ~ 1 1  ~ ( p a f .  
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The flux from the vapor phase directly onto the step per unit length of 
the step is 

P - Po 
jv = hJZ--. xmkT 

Bearing in mind that the total number of atoms required to shift the 
step by one atomic spacing a is a2h/v, = h/a, the step velocity is equal to 

In other words, the factor 1 + 2AJh should be added to the expressions 
for the rate of step advance in vapors to account for the step height. 
Obviously, when h >> A. the step should be considered as a separate crystal 
face and its growth does not depend on the step height. In the opposite 
case h << A,, the rate of the step advance is inversely proportional to the 
step height. 

In growth from solutions (and melts) the boundary condition (3.65’) 
should read C(r = h/?r) = Cst and the height a of the elementary step 
should be replaced by h everywhere. Then v, becomes dependent on 
the step thickness. Figure 3.42 ilhstrates the decrease of the rate of 
step advance with increasing step height for the particular case of solution 
growth (Eq. (3.77)). 

Once a double step is formed it can catch up with other elementary 
steps and grows thicker, becoming a bunch of steps or a macrostep. On 
the other hand, elementary steps can leave the bunch of elementary steps 
and the macrostep can dissipate. Thus macrosteps and elementary steps 
usually coexist making the detailed description of the processes of growth 
very complex. As has been discussed in Chap. 1 vicinal surfaces cam 
break up into closely packed facets under the influence of impurity atoms 
adsorbed on them. The facets should grow through formation of 2D nuclei 
if they are larger than the size of the 2D nucleus (Chernov 19611. In order 
to overcome the difficulties connected with the complicated relief of the 
crystd surfaces Rank [1958b], Cabrera and Vermilyea [1958] developed the 
scxalled kinematic theory of crystal growth (see also Bennema and Gilmer 

In order to illustrate the essence and the consequences of the kinematic 
theory we will use an example whose mathematical treatment served as a 
basis of hank’s considerations. This is the model of road traffic developed 
by Lighthilt and Whitham 119551. 

[ 19731). 
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0 1 .o 2.0 
STEP HEIGHT hia - 

Fig. 3.42. Dependence of the rate of advance u(h) of a step of height h relative to the 
rate of advance of a single height step, v(a) ,  on the step height in units of a. The curve 
repreaents the case of solution growth after Eq. (3.77) in which the step height a is 
replaced by h. 

We consider a road and cars moving along it. The cars cannot outstrip 
each other but caa catch up with each other. In fact the same is also true 
of the behavior of the single elementary steps on a vicind two-dimensional 
crystal surface (prismatic or cylindrical). The speed of the cars depends on 
their proximity just like the rate of advance of steps in a train depends on 
their spacing (see Eq. (3.50)). In other words, we assume that the speed 
of the cars depends on their local density only. When the cars (steps) are 
equidistant all cars move with one and the same speed v .  We denote by p 
the density of the cars (cars per mile) which is just equal to the reciprocal 
of the distance between them. Obviously the local car density is analogous 
to the slope of the vicinal hillock p. As the system is discrete the local car 
density cannot be determined at  a point. That is why we take the average 
over a large distance neglecting any small fluctuations of speed and density. 
Imagine now an arbitrary car drops accidentally its speed and is caught up 
with the car behind. The pair of cars (a double step) moves together and 
its speed is lower than the speed of a single car (the cars cannot overtake 
each other). Then more and more cars catch up with them thus forming a 
pack or a ‘Lwave” of cars which moves with a speed of its own, denoted by c. 
Assuming now the flux of the cars along the road is constant (the number 
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of cars per unit time entering the road is equal to the number of cars per 
unit time leaving the road), waves and nearly empty spacings will alternate. 
Plotting the local car density along the road we find a wavy line. That is 
why the speed c of the wave has been called by Lighthill and Whitham a 
“kinematic wave velocity.” The same result would be obtained if by some 
reason an arbitrary car increases its speed and catches up with the car in 
front. Thus the kinematic wave velocity can in general be larger or smaller 
than the speed v of the single cars. If v > c, the front cars of the wave 
break off and leave the wave, whereas cars from behind catch up with the 
wave. When u < c the wave catches up with the front cars but the back 
cars drop behind and leave the wave. Thus the wave does not consist of 
one and the same cars but continuously exchanges them. Thus a particular 
car will join a kinematic wave, then leave it and join the next one, and so 
on. In between the waves its speed will be higher than that of the waves. 
In some cases the shape of the wave could display a discontinuity in the 
sense of a sharp edge which can be either behind or in front of the wave. 
The edge divides the wave into two regions with different density. Such a 
wave is called a “kinematic shock wave” or simply a shock wave and it will 
move with a speed determined by the difference of the densities of cars on 
either side of the edge and their respective speeds. 

Precisely the same can occur on vicinal crystal surfaces or on the sides of 
growth hillocks due to screw dislocations. Besides, external factors like the 
hydrodynamic conditions in solutions (the direction of solution flow above 
the crystal face with respect to the direction of step advance) can affect 
the formation or dissipation of the kinematic waves, thus smoothing or 
roughening the crystal face [Chernov and Nishinaga 1987; Chernov 19891. 

The growing crystal face is represented by the surface 

z = z(x,y,t) 3 ( 3.189) 

where the axis z is normal to the crystal surface and is on average parallel 
to the growing singular crystal plane. 

The rate of growth of the crystal face is 

dZ R = -  
dt * 

(3.190) 

The real profile z(z,y,t) deviates locally from z = 0 and the slopes p 
and q at the particular points z and y of the crystal surface are 

(3.191) 
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Assuming z (x ,  y, t )  is an analytic function, i.e. neglecting the discrete 
character of the system, 

then 

(3.192) 8P + aR ?!+all=(), and - aP + - = O .  89 - -=o,  
at ax  at a3 ay ax 

In fact Eqs. (3.192) represent the law of conservation of the elementary 
steps. If p = h/A, where h is the step height and A is the step spacing, the 
local density of the steps is pst = l / A  = p / h .  From (3.15) it follows that 
Jmt = v/A = R/h is the flux of steps which pass over a point of the crystal 
surface. Then 

1 dR 
at 

The basic equations (3.192) are unusable if some simplifying assump 
tions were not made. We assume that the growth rate depends on x and 
y - only through the local average slopes p and g, i.e. R(z,y) = R(p ,g ) .  
Second, when determining the slope p or g we take the average of a 
region sufficiently wider than the step spacing, i.e. in this respect the 
theory neglects any microscopic change in the surface relief. Nevertheless, 
some very valuable consequences can be drawn at the expense of the 
approximation used. In the analysis to follow we will consider for simplicity 
the twedimensional case accepting q = 0. 

With the above approximation (3.192) becomes 

We then denote b R j d p  = c (p )  and 

a P  aP - + c (p ) -  = 0 at ax 

( 3.193) 

(3.193') 

or 
dX 

dt - = -c(p) . (3.193") 
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It follows that c (p )  is the 2 component of the velocity of a point of 
the surface relief with a slope p .  In other words, we have regions with a 
constant slope which are called kinematic waves. In fact the kinematic 
waves represent bunches of elementary steps divided by regions with wider 
terraces (Fig. 3.43(b)), and c ( p ) ,  which is a function of the slope only, 
represents the velocity of the bunches as a whole. As c ( p )  is a function of 
p only, 2 is a linear function of time. 

r I 

Fig. 3.43. Schematic view of a kinematic wave (b) as compared with a train of equidistant 
steps (a). 

Let us follow the change of the relief of the growing crystal surface with 
time (Fig. 3.44) and find the trajectories of the waves or the lines which 
connect points with one and the same slope p or step density 1/X = p/h .  
The slope dz/dx at p = const ( z  and z are coordinates of points on the 
crystal surface) is given by (R = p ,  Eq. (3.15)) 

. (3.194) 
az R - p = ~ - p = p c  V - C  

Thus the slope of the wave trajectory is proportional to the rela- 
tive difference of the velocities of the elementary steps and the kinematic 
wave. When v > c the slope (dz ldz) ,  > 0 (Fig. 3.44(a)), and vice versa 
(Fig. 3.44(b)). As seen in the latter case when the wave moves faster than 
the train of more distant steps the wave tends to leave the vicinal and to 
disappear from the crystal face. 

Figure 3.45 illustrates the same phenomenon in the space of the growth 
rate R (or the flux Jst = R / h )  versus the step density p .  Figure 3.45(a) 



9.9. Kinematic Theoty of Crystal Growth 257 

1 
I 
N 

N 
b 

X- 

(b) 

Fig. 3.44. Time behavior of kinematic waves: (a) u > c and (b) u < c, where u and c 
are the velocities of the single steps far from the wave and the wave, respectively. The 
latter u e  shown by arrows denoted by u and c. The straight lines connect points of the 
same densities of steps. 

gives the dependence of R on p in the diffusion regime of growth under 
clean conditions (no impurities adsorbed). The growth is proportional to 
p but with increasing step density the step velocity decreases according to 
Q. (3.48) and R deviates downwards from the straight line. Hence, the 
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Fig. 3.45. Three possible variations of the rate of growth versus the step density. (a) The 
growth occurs in a diffusion regime in an absence of impurities. The growth rate R = pu 
is determined by the overlapping of the diffusion fields (the hyperbolic tangent in the 
BCF theory) and deviates downwards from the straight line at large p. The curvature 
of the R ( p )  dependence is everywhere negative (d2R/dp2 < 0). The rate of advance of 
the shock wave, C,h, with slopes p = PA and p P'L 0 on both sides of the edge is given by 
the slope of the chord represented by the dashed line. It lies between the slopes of the 
tangents at p = 0 and p = PA (the latter being given by the tangent t at the point A). 
(b) The growth takes place in a kinetic regime in an absence of impurities. The rate of 
step advance w is independent of the step density and R is a linear function of p. The 
curvature of the R(p)  dependence is equal to zero. The single steps and the shock waves 
propagate with equal rates, i.e. w = c. (c) The growth takes place in a diffusion regime in 
the presence of impurities. The concentration of impurity atoms is large at small p ,  i.e. 
on wide terraces, and vice versa. Then the curvature of the R(p)  depeadence is positive 
at small p and negative at large p. The rate of propagation of the shock wave c < u at 
smaller p, but c > 2) at larger p. The slopes of the dashed lines OA and OB give the rate 
of propagation of the shock waves, c, whereas the slopes of the tangents denoted by t~ 
and tg give the rate of propagation of the single steps, w .  

second derivative d 2 R / d p 2  is negative everywhere. In the case of kinetic 
regime of growth under clean conditions, the step velocity does not depend 
on the step density up to very high value of the latter (" 1); R is a linear 
function of p as shown in Fig. 3.45(b) and d2R/dp2 = 0. In the intermediate 
case (kinetic regime at small p but overlap of the diffusion fields at large p), 
R initially increases linearly with p and then gradually deviates from the 
straight line. Then d 2 R / d p 2  = 0 for small p ,  and &R/dp2 < 0 for larger p. 
Figure 3.45(c) illustrates the case where impurity atoms are adsorbed on the 
terraces between the steps [Frank 19581. At small p (wide terraces) there is 
time enough for an adsorption equilibrium to be established and there the 
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concentration of the impurity atoms is high. The latter inhibits strongly 
the propagation of the steps. At large p (narrow terraces) there is not 
enough time for considerable adsorption to take place and the propagation 
of the steps is faster although they are nearer to each other. Then the 
R(p) dependence has a positive curvature (d2R/dp2 > 0) at small p but a 
negative one (d2R/dp2 < 0) at large p .  When d2R/dp2 < 0 (Fig. 3.45(a), 
purely diffusion regime of growth) on the whole crystal surface, the rate 
of advance of the single steps, w = R / p ,  is always greater than the rate of 
advance of the step bunch, c = dR/dp ,  the slope of the trajectory ( d z l d x ) ,  
is always positive, and the kinematic waves will be present on the crystal 
surface. Under conditions of a kinetic regime of growth (Fig. 3.45(b)), c = v 
all over the crystal surface and the slope of the trajectory is ( d z l d z ) ,  = 0. 
If there are regions where d2Rldp2 > 0 as shown in Fig. 3.45(c), w < c, 
(dzldz), < 0 and the kinematic waves tend to leave the vicinals. 

We consider now the formation of shock waves, or waves with sharp 
edges. Figure 3.46 shows the step density, or p / h  = -(l/h)dz/dz, in a 
kinematic wave as a function of 2 at different times. At some initial moment 
t l  the step density represents a symmetric beII-shaped curve. Tkajectories 
far from the wave are parallel. Near the wave the trajectories are no 
longer parallel because their slopes are directly proportional to the step 
density according to Eq. (3.194). Therefore the trajectories become more 
and more steep from the rear end; they are steepest at  the maximum and 
after passing the latter they again tend to take the initial slope. As a 
result, the trajectories in the rear part of the wave will intersect each other 
after some time. The step density will have the shape shown by the curve 
denoted by t 2 .  Going back to the representation in coordinates (z,z)  a 
discontinuity or a sharp edge will appear on the crystal surface as shown 
in Figs. 3.47(b) and (c). This is called a shock wave to distinguish it from 
the usual kinematic wave (Fig. 3.47(a)). 

The rate of advance 6 h  of the shock wave is easy to find. It follows from 
Eq. (3.194): 

Pl(V1 - Csh) = p2(V2 - 6 h )  

or 
P2V2 - P l V l  - R2 - R1 - 6 h  = 

P2 - P i  P2 -P1 
(3.195) 

Thus the rate of advance of the shock wave is determined by the 
differences of the growth rates and the slopes of the crystal surface on 
the two sides of the edge. In fact, the shock wave represents a boundary 
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Fig. 3.46. The transformation in time ( t z  > t i )  of a kinematic wave into a shock wave. 
For details see text. 

:: 
X- 

Fig. 3.47. Kinematic shock waves with the sharp edge (b) in front of the wave rrnd 
(c) behind the wave. A usual kinematic wave is given for comparison in (a). pi and p2 
denote the slopes on both sides of the edge. 

between two regions with different step densities or, in other words, between 
two kinematic waves. 

Figure 3.47 shows a geometrical construction illustrating the interrela- 
tion between the velocities of the kinematic waves constituting the shock 
wave and the shock wave itself in the diffusion regime of growth (see 
Fig. 3.45(a)). The velocities of the two kinematic waves are given by the 
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slopes of the tangents, (dR/dp)p=pl  and (dR/dp),,, , .  The velocity of the 
shock wave, = (R2 - Rl) / (pz  - p l ) ,  is given by the chord connecting 
the points and R z ( p z ) .  Its slope is obviously in between the slopes 
( d R / d ~ ) ~ = ~ ,  and (dR/dp),,, , .  Then the velocity of the shock wave has a 
value in between the velocities of the kinematic waves that constitute it. It 
is evident that in the kinetic regime of growth (linear dependence of R on 
p, Fig. 3.45(b)) the velocities of the kinematic waves as well as of the shock 
wave do not depend on the step density and are equal to each other. 

As mentioned above, the retardation (or acceleration) of elementary 
steps which leads to bunching or formation of kinematic waves is due 
primarily to impurities [Frank 19581 or accidental local changes (fluctu- 
ations) of the supersaturation. In the first case the bunches are usually 
stabilized by the impurities and should move faster than the isolated steps 
pan der Eerden and Muller-Krumbhaar 19861. As discussed above, this 
is due to the fact that on the wide terraces between the isolated steps an 
adsorption-desorption equilibrium of the impurities is established and the 
concentration of the impurities there is higher compared with that on the 
narrow terraces which divide the steps constituting the bunch. Under clean 
conditions where the rate of advance of the elementary steps depends on 
the overlap of the diffusion fields the rate of advance of the bunch should 
be smaller than that of the isolated steps. 

3.4. A Classical Experiment in Crystal Growth 

The predictions of crystal growth theories have been the subject of nu- 
merous experimental verifications in different media (vapors, solutions and 
melts). Many accurate experiments have been carried out and, as shown 
above, most of the theoretical conclusions have been confirmed. In this 
chapter we describe one of the most elegant and precise experiments in 
crystd growth-the electrocrystallization of silver in aqueous solutions. In 
doing this we do not mean to underestimate the fine experimental work of 
many other investigators [Chernov 1989; Neave, Joyce and Dobson 1984; 
Neave et 01. 1985; Wolf et al. 1985; Keshishev, Parshin and Babkin 1981; 
Avron et al. 1980; etc.]. 

In the case of electrocrystallization of metals, the rate of growth is given 
by the electric current flowing through the electrolytic cell, the amount 
of material deposited is given by the amount of the electricity and the 
supersaturation is given by the overpotential. The electrical quantities and 
then the parameters characterizing the process of growth can be measured 
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with great accuracy. A particular advantage of the experiments of this kind 
is that a single crystal face with a definite crystallographic orientation can 
be produced and put in contact with the electrolyte solution. As will be 
shown below screw-dislocation-free crystal faces can be prepared as well as 
faces with definite number of dislocations. Thus the spiral growth of a single 
crystal face as well as the 2D nucleation growth, both iayer-by-layer and 
multilayer, can be studied in one and the same system under well-defined 
conditions. 

The electrolytic cell for the preparation of single crystal faces both 
dislocation-free and with one or more dislocations i s  shown in Fig. 3.48 
[Kaischew, Bliznakow and Scheludko 1950; Budewski and Bostanov 1964; 
Budewski et al. 1966; see also Kaischew and Budewski 19671. The cathode 
represents a glass tube containing the seed crystal which ends with a 
capillary with an inner diameter of approximately 200 pm. In some cases 
a capillary with rectangular cross section (100 pm x400 pm) has been 
used for measuring of the rate of advance of a single monoatomic step or 
a train of steps (see Fig. 3.57). The bottom of the cell is a plane-parallel 
glass window which permits microscopic observation of the front face of 
the growing crystal. The cell is filled with 6 N  aqueous solution of AgNOs 
acidified with HN03. Special measures are usually taken in the process of 
preparation to make the solutions as pure as possible. After switching on 
the electric current the seed crystal begins to grow and fills the capillary. 
A single crystal filament is formed which has the same crystallographic 
orientation as the seed crystal. Thus single crystal faces with (100) and 
(111) orientations are obtained [Budewski et al. 19661. When alternating 
current is superimposed onto the direct current of growth the silver filament 
begins to grow thicker and fills in the whole cross section of the capillary 
and the are3 of the front face becomes equal to the opening of the capillary. 

The filament inherits defects (screw dislocations) from the seed crystal 
which can be detected easily by the following procedure. The crystal face 
is initially smoothed by applying a low current. Then a high current pulse 
is applied which results in the appearance of distinct pyramids of growth at 
the emergency points of the screw dislocations. Figure 3.49 shows a (100) 
face with several square-based growth pyramids revealed by this method 
[Budewski et al. Triangular pyramids of growth (not shown) is 
the result in the case of (111) single crystal faces. Burger’s vectors of the 
screw dislocations are usually inclined with respect to the growing crystal 
face (in most cases !j(110) dislocations are detected). When the filament 
is carefully grown the emergency points of the screw dislocations inherited 

19661. 
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Fig. 3.48. Electrolytic cell for the investigation of the growth of Ag single crystal faces: 
(a) Ag seed crystal, (b) capillary, (c) silver anode, (d) brass block. The inset shows an 
enlargement of the end of the capillary, (E. Budewski and V. Bostanov, Electmchim. 
A d a  9,477 (1964). By permission of Pergamon Press Ltd. and courtesy of V. Bostanov.) 

from the seed crystal leave the front face and appear on the side faces of 
the filament. Defectless single crystal faices are thus prepared. 

The first convincing evidence of growth through 2D nucleation has been 
obtained on perfect faces prepared by the above method. A constant current 
density a = 0.5 r n A ~ m - ~  has been applied and the overpotentid measured. 
It has been found that the latter oscillated from zero to a maximum value 
of about 10 mV (Fig. 3.50) [Budewski et al. 19661. Increasing the current 
density has led to a decrease of the period of oscillation but the product 
of the current density and the period of oscillation remained constant. 
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Fig. 3.49. Pyramids of growth obtained by applying a short overpotential pulse, showing 
the emergency points of screw dislocations on Ag(001). (E. Budewski, V. Bostanov, T. 
Vitanov, Z. Stoynov, A. Kotzeva and R. Kaischew, Electrochim. Acta 11, 1697 (1966). 
By permission of Pergamon Press Ltd. and courtesy of V. Bostanov.) 

Fig. 3.50. Oscillations of the overpotential when a constant current is applied on the cell. 
The product of the current and the period of oscillations gives the amount of electricity to  
complete one monolayer. (E. Budewski, V. Bostanov, T. Vitanov, 2. Stoynov, A. Kotzeva 
and R. Kaischew, Electrochim. Acta 11, 1697 (1966). By permission of Pergamon Press 
Ltd. and courtesy of V. Bostanov.) 
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The latter is exactly equal to the amount of electricity required for the 
completion of a monolayer, itS = 3.83 x lo-' C, where i is the constant 
current density, S = 2 x cm2 is the area of the opening of the 
capillary and t is the period of oscillation. The amount of electricity 
required for the completion of a monolayer of one square centimeter is 
zeNo r* 1.92 x Ccm-2, where No = 1.2 x lOI5 cm-2 (for Ag(lO0)) is 
the atom density of the corresponding crystal face, e = 1.6 x C is the 
elementary charge of an electron and z = 1 is the valency of the neutralizing 
ions. Then its = teNoS. This behavior of the overpotential which is 
a measure of the difficulties accompanying the electrodeposition process 
can be easily explained if one assumed that each oscillation is due to the 
formation and lateral propagation of one 2D nucleus. At the initial moment 
the crystal face does not offer growth sites and the overpotential increases 
up to a critical value of about 10 mV necessary for 2D nucleation to take 
place. Once a 2D nucleus is formed, it begins to grow, offering more and 
more kink sites along its periphery, crystallization becomes easier, and the 
overpotential rapidly drops to zero when the edges surrounding the growing 
monolayer island reach the walls of the capillary. Then the formation of a 
new 2D nucleus is required for further growth and the process is repeated. 
Therefore, the amplitude of the oscillations should be equal to the critical 
supersaturation for 2D nucleation and the value 36% has been estimated 
for it (ac = zeqc/kT, where r), = 10 mV is the critical overpotential), in 
good agreement with the prediction of the theory of layer-by-layer growth 
in solutions. 

When the overpotential is fixed slightly above the critical value spon- 
taneous oscillations of the current are observed (Fig. 3.51) [Bostanov et 
al. 19811. The oscillations appear through irregular intervals of time, 
thus reflecting the random character of the nucleation process [Toschev, 
Stoyasov and Milchev 1972; Toschev 1973). However, the mean number 
of oscillations, averaged over a longer period of time, remains one and the 
same. Ascribing the formation of a 2D nucleus to each oscillation it becomes 
obvious that the mean number of the oscillations per unit time gives the 
steady state nucleation rate. 

In another experiment a constant overpotential lower than the critical 
one was applied on the electrolytic cell. No current was detected except 
for a very low capacitive current. The cell under these conditions was cut 
off. Then short potentiostatic pulses higher than the critical overpotential 
(" 9-10 mV) were superimposed on the constant overpotential and a 
current was detected to flow through the cell. The latter increased with 
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Fig. 3.51. Oscillations of the current at a constant overpotential slightly higher than 
the critical overpotential for 2D nucleation. The variation of the time elapsed between 
consecutive peaks reflects the random character of the nucleation process. (V. Bostanov, 
W. Obretenov, G. Staikov, D. K. Roe and E. Budewski, J. Crystal Growth 62, 761 
(1981). By permission of Elsevier Science Publishers B.V. and courtesy of V. Bostanov.) 

Fig. 3.52. Oscillations of the current obtained by superposition of high short potentio- 
static pulses over a constant overpotential lower than the critical one for 2D nucleation. 
The shape of the curves reflects the site on the electrode surface on which the 2D nucleus 
is formed (e.g., the narrow high peak in the middle is originated by a nucleus formed 
at nearly the center of the electrode). The areas under the curves are equal to each 
other and to  the amount of electricity to complete one monolayer. (E. Budewski, V. 
Bostanov, T. Vitanov, 2. Stoynov, A. Kotzeva and R. Kaischew, Electrochim. Acto 11, 
1697 (1966). By permission of Pergamon Press Ltd. and courtesy of V. Bostanov.) 
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time, displayed a maximum and dropped again to  zero. No current had been 
detected until a new pulse was applied (Fig. 3.52) [Budewski et al. 1966). 
The current-time curves had different shape but the integral of the current 
or the amount of electricity remained constant and equal again to that 
required for the completion of a monolayer. The difference of the shapes of 
the current-time curves is easily explained by the different locations of the 
nucleation event. Obviously the potentiostatic pulse provokes the formation 
of a 2D nucleus which then grows to cover the crystal face completely. The 
current is proportional to the length of the steps surrounding the growing 
island and goes to zero when the latter reach the walls of the capillary. 

The experimentally observed current transients have been compared 
with the time variation of the edge length of a monolayer island calculated 
numerically under the assumption of a different location of the nucleation 
event on the crystal face. This led to the conclusion that in most cases only 
one 2D nucleus has been formed or, in other words, an artificial layer-by- 
layer growth has taken place. Then the expression for the layer-by-layer 
growth rate (3.111) can be compared with the experimental observations. 
To this aim the height and duration of the nucleation pulse have been 
adjusted in such a way that nucleation took place only in 50% of the pulses 
applied. Then the pulse duration 7 can be treated as the time necessary 
for the formation of one nucleus. Neglecting the nonsteady state effects one 
can accept that the reciprocal of 7 is just equal to the rate of 2D nucleation, 

In the particular case of electrolytic nucleation the flux of atoms to the 
JO (2D). 

critical nucleus is given by 

where iet = ioat exp[(l - a)zeq/kT]  is the cathodic part of the current per 
unit length of the step (Acm-I), ioat is the exchange current density per 
unit step length ( is  = is the current density per unit area in Acm-2) 
and a 2 0.5 is the so-called transfer coefficient. 

The factor of Zeldovich reads 

Then for the nucleation rate of square-shaped nuclei one obtains 

- a)zev &a2 
J0(2D) = Afiexp  ((' kT ) (-=) ' 
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where A (cm-2sec-1V-1/2) is a constant given by 

A = aNo- 
ze 

With No = 1.2 x 1015 cm-’, iost = 5.5 x Acm-’, T = 318 K, 
C, A = 7.1 x lo2’ cm-2sec-1V-1/2, and with 11 = 0.01 V e = 1.6 x 

for the pre-exponent, one obtains K1 = 7.1 x lo2’ cm-2sec-1. 
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Fig. 3.53. Logarithmic plots of ths time of appearance of one 2D nucleus versus the 
reciprocal of the overpotential. The open and filled circles are from two series of 
measurements under slightly different conditions. The plots are in fact equivalent to 
the plots of the steady state nucleation rate versus the reciprocal of the overpotentid if 
one neglects the time lag for transient nucleation. The straight line shows the validity of 
the classical theory of nucleation. (E. Budewski, V. Bostanov, T. Vitanov, Z. Stoynov, 
A. Kotzeva and R. Kaischew, Electrochim. Aeta 11, 1697 (1966). By permission of 
Pergamon Press Ltd. and courtesy of V. Bostanov.) 

Figure 3.53 shows the plot of In7 vs 1/11 (Budewski et al. 19661. As 
seen it straight line is obtained as required by the theory. The d u e  
1.9 x Jcm-’ has been found for the specific edge energy x from 
the slope, and A = 1 x l O I 9  cm-2sec-1V-1/2 from the intercept of the line 
on the ordinate. Approximately the same value (w  = 2 x J cm-’) has 
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been found for the specific edge energy in the case of nucleation on the (111) 
face. Using the relations u100 = 4%10/dloo and ~ 1 1 1  = 2~11/d111 following 
the first neighbor mode1 (dl00 and dlll are the interplanar spacings of 
the (100) and (111) planes, respectively) for the fcc lattice [Markov and 
Kaischew 19761, we find cqoo = 372 ergcm-2 and 0111 = 170 ergcm-2 for 
the Ag/AgNOs (aq. 6N) boundary. 
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Fig. 3.54. The current of growth of single height steps versus time in a rectangular 
capillary (see Fig. 3.57). The inset below each curve shows the site of the nucleation 
event: (a) at the very end of the capillary, (b) a t  approximately one third from the end 
of the capillary, (c) at the middle of the capillary. (V. Bostanov, G. Staikov and D. K. 
Roe, J.  Electrochem. SOC. 122, 1301 (1975). By permission of Electrochemical Society 
Inc. and courtesy of V. Bostanov.) 
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The rate of step advance has been measured directly as a function of 
the supersaturation by using the rectangular capillary mentioned above 
(see Fig. 3.57) [Bostanov, Staikov and Roe 19751. Figure 3.54 shows the 
current-time curves which follow the application of a short potentiostatic 
pulse. As seen the shape of the transients depends again on the location 
of the nucleation event. It displays a plateau with single or double height 
when the nucleus was formed at  the very end or the middle of the capillary, 
respectively. It follows first that the current is directly proportional to the 
total step length L. Second, a linear dependence of the plateau current on 
the overpotentid is established as shown in Fig. 3.55 [Bostanov, Staikov 
and Roe 19'751. Besides, the current is proportional to the length of the 
advancing step. The latter depends on the orientation of the seed crystal 
and, in turn, of the 2D nucleus with respect to the capillary edge. Thus in 
the case of (100) direction of the step advance the current is greater by f i  
than the current which flows when the direction of the step advance is (110). 

In order to  shift the step with a length L by one atomic spacing we have 
to add L/a  atoms or zeL/a coulombs of electricity. The time elapsed will 
be t = zeL/ia,  where i(A) is the current of growth. Then the rate of step 
advance will be voo = a / t  or v, = a/qL, where q = zeNo is the amount 
of electricity required for the completion of a monolayer. The current i is 
given by the well-known expression in electrochemistry: 

which gives, in fact, the net flux of atoms j+- j -  to the propagating step. At 
small values of the overpotential (7 < k T / z e )  the latter turns into i = Icg, 
where k = aoze/kT and io is the exchange current. Then v, = kq/qL, 
where obviously the ratio Pst = k/qL is just the kinetic coefficient of the 
step in the case of electrocrystdlization. In other words, 

'uw = Pstrl , 

where 
k ze . p - - = -  

st - qL kTqLZ0 ' 

k is simply the slope of the current-overpotential curves and from Fig. 3.55 
one finds k = 2 x low6 ohm-'. Bearing in mind that q = 1.92 x lov4 C cmV2 
and L = 1 x cm, we find Pst = 1 cmsec-'V-'. Step advance rates are 
then of the order of 1 x lod3 cmsec-'. The exchange current is then equal 
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Fig. 3.55. The current of growth of single height steps versus the overpotential in a 
rectangular capillary (see Fig. 3.57). Curves a and b are for nuclei oriented along the 
(100) and (110) directions as shown in the insets. (V. Bostanov, G. Staikov and D. K. 
Roe, J. Electrochem. SOC. 122, 1301 (1975). By permission of Electrochemical Society 
Inc. and courtesy of V. Bostanov.) 

to io = 5.5 x lo-* A, or iost = 5.5 x 10-8/1 x 
per unit length of the step. 

= 5.5 x Acm-’ 

One can express the kinetic coefficient in the usual form (Eq. (3.26)) 

and estimate the energy barrier for crystallization. In the particular case 
of electrocrystallization it includes the energy of desolvation as well as the 
transition through the electric double layer. 

First, one has to evaluate the roughness factor a/& through Eq. (1.74). 
In order to do that one has to find the energy to break a first neighbor 
bond, +. To account for the situation in electrolytic solutions it is better if 
one uses the value of the specific edge energy found from the experiment. 
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Assuming for simplicity the existence of monoatomic kinks only, Eq. (1.79) 
gives 

1c, 2kT 
2a a x = GSt = -nkT In 7) - nkT ln(1 + 277) % - - -77 

from where 

- = - -  kT 2kT 11 2exP(-&) * 

The same result is obtained if we come out from Eq. (1.80) valid for 
polyatomic kinks, bearing in mind the simplification ( l+q) / ( l -q )  E 1+2q 
valid for small 7. 

Jcm-', 
a = 2.889 x lo-* cm and T = 318 K, we find Q/2kT = 1.64 and 60 ?y 4a 
[Budewski 19831. Bearing in mind that Pst = 1 cmsec-'V-' for AU one 
obtains the value 9 kcal mole-' which is typical for aqueous solutions. 

At this point it is interesting to compare the possible contribution 
of the surface diffusion processes in the lateral spreading of the steps. 
Dividing the exchange current iost per unit step length by the atomic 
spacing a = 2.889 x cm we find the value i,. = 190 Acm-2 for 
the exchange current per unit area [Vitanov, Popov and Budevski 19741. 
Vitanov et al. [1969] (see also Vitanov, Popov and Budevski [1974]) carried 
out impedance measurements on dislocation-free (100) Ag crystal faces at 
T = 318 K in 6 N  AgN03 and found that the exchange current density 
due to adsorbed atoms is iO+d = 0.06 A cm-2. Comparison with the above 
value 2,. = 190 Acm-2 shows that the surface diffusion contribution to 
the step advance does not exceed 0.03%. Estimations of the rate of step 
advance assuming surface diffusion supply of growth units show that the 
latter should be 60 times smaller than that found experimentally [Bostanov, 
Staikov and Roe 1975; Bostanov 1977; see also Budewski 19831. 

The rate of step advance has been measured independently by using 
quite a different method. A small number of screw dislocations have been 
left on the crystal surface. The monoatomic steps are invisible while growth 
pyramids with apparently smooth sides are observed during growth. The 
step spacing is a function of the overpotential applied, and increasing the 
latter leads to  an increase of the slope of the pyramids. Assume now that 
we grow the crystal face at a low value of the overpotential. Comparatively 
flat pyramids of growth are observed. When a short overpotential pulse 
of higher amplitude is superimposed on the lower one a stripe with higher 
slope will result. The latter is visible under the microscope. In fact, this 
stripe is an artificially produced kinematic wave. If now high overpotential 

Solving numerically the above equation with x = 1.9 x 
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pulses are applied regularly at equal intervds of time a train of kinematic 
waves will be formed (Fig. 3.56) [Budewski, Vitanov and Bostanov 19651. 
As shown in the previous section the velocity c of the kinematic waves 
is equal to the rate of advance 2) of the elementary steps in a kinetic 
regime of growth (Fig. 3.45(b)). Then, measuring the velocity of the 
kinematic waves, we find in fact the rate of advance of the elementary steps. 
The velocity of the kinematic waves is easily estimated from the distance 
between the stripes and the frequency of the high overpotential pulses. 
The d u e  flat S 1 cmsec''V-' has been found, confirming once again 
that the electrolytic growth of silver in aqueous solutions takes place under 
conditions of kinetic regime and the surface diffusion plays a negligible role 
[Bostanov, Russinova and Budewski 1969; see also Budewski 19831. 

If higher pulses are superimposed on the overpotential of growth a 
macrostep instead of an elementary step is produced. With the help of 
the Nomarski differential contrast technique steps thicker than, say, 10-15 
atomic diameters can be observed directly in the rectangular capillary 
mentioned above (Fig. 3.57) [Bostanov, Staikov and Roe 19751. Thus the 
rate of propagation of such steps can be measured directly and knowing the 
current the thickness can be estimated. It was found, quite unexpectedly, 
that the velocity of the macrostep was the same as that of the elementary 
step up to thicknesses of the order of 100 A. The slope of the macrostep 
has been estimated by analyzing the decay of the current-time curve when 
the sbep reached the end of the capillary [Bostanov, Staikov and Roe 19751. 
The values 0.01275 for the slope and 160 A (2 55 interatomic spacings) for 
the interstep distance have been found. The macrosteps can be considered 
as kinematic waves and, as before, their velocity should be equal to that of 
the elementary steps when the crystal grows in a kinetic regime. 

We now have all the information we need to make predictions concerning 
the mechanism of growth through 2D nucleation. The lateral size of the 
crystal plane (L = 2 x cm) becomes smaller than ( 2 1 , / J i ~ ) ~ / ~  at 
q 2 7 mV. Then layer-by-layer growth should be observed at overpotentials 
smaller than 7 mV. At higher overpotentids multilayer growth should take 
place. Indeed, increasing the overpotential beyond 8 mV leads to current 
transients of the kind shown in Fig. 3.58 [Bostanov et u1. 19811. As seen 
the corve reproduces fairly well what has been theoretically predicted. 

The steady state current density at large times is given in this case by 
2 113 i,t = qb(JolJ,) , 

where b is a constant of the order of unity. 
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Fig. 3.56. Pyramids of growth on Ag(ll1). The darker stripes are obtained by peri- 
odical superposition of higher overpotential pulses and represent trains of steps with 
larger densities (larger slopes), or in other words, artificially produced kinematic waves. 
(E. Budewski, T. Vitanov and V. Bostanov, Phys. Status Solidi 8, 369 (1965). By 
permission of Akademie Verlag GmbH and courtesy of V. Bostanov.) 

Fig. 3.57. Micrograph of the opening of the rectangular capillary with a macrostep 
photographed at different times to measure its rate of advance. (V. Bostanov, G. Staikov 
and D. K. Roe, J. Electrochen. SOC. 122,1301 (1975). By permission of Electrochemical 
Society Inc. and courtesy of V. Bostanov.) 
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Fig. 3.58. The current of growth versus time at an overpotential considerably higher 
than the critical overpotential. Several oscillations are clearly visible. At a longer time 
the current reaches a constant value which corresponds to  steady state growth. This 
is the first experimental recording of the oscillations of the rate of multilayer growth. 
(V. Boetanov, W. Obretenov, G. Staikov, D. K. Roe and E. Budewski, J. Crystal Crowfh 
52, 761 (1981). By permission of Elsevier Science Publishers B.V. and courtesy of 
V. Bostanov.) 

The interpretation of the experimental results in coordinates 
l 0 g { i , ~ 9 - ~ ~ ~  exp[-(1 - a)xee/kT]} vs 1/17 (see Eq. (3.114)) gives a straight 
line (Fig. 3.59), in good qualitative agreement with the theory [Bostanov et 
al. 19811. From the slope and the intercept of the straight line the values 
x = 2.0 x Jcm-' and A = 2 x lo'* cm-2sec-1V-'/2 have been 
estimated for the specific edge energy and the pre-exponential constant, 
respectively, in good agreement with the results from the study of the 
layer-by-layer growth. 

In the case where the crystal face is not defectless but contains several 
screw dislocations, polygonized pyramids of growth are usually visible 
(Fig. 3.60) [Bostanov, Russinova and Budewski 1969; see also Budewski 
19831, which represent hillocks due to growth spirals. No critical super- 
saturation should be overcome in order for the growth to take place and 
the current density is a parabolic function of the overpotential (Fig. 3.61) 
as required by the theory of Burton, Cabrera and Frank [1951] [Bostanov, 
Russinova and Budewski 19691. 
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Fig. 3.59. Plot of the logarithm of the steady state current of growth Venus the reciprocal 
of the overpotential according to Eq. (3.114). (V. Bostanov, W. Obretenov, G. Staikov, 
D. K. Roe and E. Budewski, J .  Crystal Growth 52,761 (1981). By permission of Elsevier 
Science Publishers B.V. and courtesy of V. Bostanov.) 

Assuming the growth rate is given by (3.15) and the slope of the growth 
pyramid is given by 

a 

one obtains for the growth rate 

The rate of growth is given by R = d / t ,  where d is the thickness of a 
monolayer and t = q/a is the time required to deposit a monoIayer. Then the 
current density should be proportional to the square of the supersaturation: 
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(b) 

Fig. 3.60. Pyramids of growth around the emergency points of screw dislocations on 
(a) Ag(ll1) and (b) Ag(100). As seen the pyramids are well polygonized. (V. Bostanov, 
R. Ruesinova and E. Budewski, Comm. Dept. Chern. (Bulg. Acad. Sci.) 2, 885 (1969). 
Courtesy of V. Bostanov.) 
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Fig. 3.61. Plot of the growth current versus the square of the overpotential of a Ag(001) 
crystal face with screw dislocations. The straight line confirms the validity of the 
theory of Burton, Cabrera and Frank [1951] for small supersaturations. (V. Bostanov, 
R. Russinova and E. Budewski, Comm. Dept. Chem. (Bulg. Acad. Sci.) 2, 885 (1969). 
Courtesy of V. Bostanov.) 

Obviously, one can calculate the value of the specific edge energy x from 
the slope of the straight line i vs v2 (Fig. 3.61). Bostanov, Staikov and Roe 
119751 estimated the value x = 2.4 x J cm-', in good agreement with 
the value found from a study of 2D nucleation. 

The latter shows that the expression found by Cabrera and Levine for 
the step spacing is valid for the case of eIectrolytic growth. At high enough 
supersaturations the step spacing should become so small that the diffusion 
fields around the step should overlap and the parabolic dependence of the 
growth rate on the supersaturation should change gradually to a linear 
one. It is then interesting to calculate the step spacing X = 19xa2/zev = 
19x/qq at the highest overpotential used at which a parabolic dependence 
is still observed. The value 793 8, is obtained at  the highest overpotential, 
4 = 3 x V, applied. The latter is equal to 275 interatomic spacings. 



3.4. A Classical Experiment in Crystal Growth 279 

Investigations [Bostanov, Staikov and Roe 19751 on the rate of advance 
in a rectangular capillary of macrosteps which represent, in fact, trains of 
monoatomic steps, have shown that the rate of advance of such a step train 
is just the same as that of a monoatomic step when the overall thickness of 
the macrostep does not exceed 80 A. Moreover it has been found that the 
interstep spacing is 160 A. We conclude that the parabolic law of growth 
should be observed approximately at least up to = 15 mV. 





CHAPTER 4 

EPITAXIAL GROWTH 

4.1. Basic Concepts and Definitions 

The oriented growth of a crystalline material on the single crystal surface of 
a different material is called epitaxy (or “ordered on” from the Greek words 
e m  - on and ra&a - in order). The term has been coined by Royer [1928) 
more than half a century ago. A typical example of epitaxial overgrowth is 
shown in Fig. 4.1 in the case of deposition of copper on the (111) surface 
of silver [Markov, Stoycheva and Dobrev 1978). As seen the truncated 
triangular copper crystallites are lying with their (111) faces on the (111) 
Ag surface. What is not immediately evident from the micrograph is that 
the (110) direction of the copper crystallites is parallel to the (110) direction 
of the silver substrate. This parallelism of directions, which we call epitaxial 
orientution, is usually described in terms of the Miller indices of crystal 
planes and directions. In our particular case it is (lll){llO)~u~~(lll)(ll~)~g 
and we say that the copper deposit is in parallel epitaxial orientation 
with the silver substrate. Although the parallel epitaxial orientation is 
frequently observed particularly in the very important cases of deposition 
of semiconductor compounds one on top of the other, this is not always the 
case. For example, when PbS or PbTe are deposited onto the (100) surface 
of MgO the epitaxial orientation is (100)~(110)~~~(100),(100).. This means 
that the crystal planes in contact with each other are (100) for both the 
substrate and the deposit, but the (110) direction of the deposit coincides 
with the (100) direction of the substrate [Honjo and Yagi 1969, 19801. 

281 
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Fig. 4.1. Electron micrograph of three-dimensional copper crystallites eletrodeposited at 
constant overpotential on Ag( l l1)  surface. The crystallites are in a parallel epitaxial 
orientation (lll)[llO]~u 11 (111)(l10].4g with the substrate. The Ag( l l1)  substrate is 
prepared by evaporation of Ag on mica in conventional vacuum. (I.  Markov, E. Stoycheva 
and D. Dobrev, Commun. Dept. Chem. [Bulg. Acad. Sci.] 3, 377 (1978).) 

In general the epitaxial orientation depends on the temperature. Massies 
and Linh [1982a, b and c] deposited Ag on the As side (001) of GaAs 
and established that at temperatures lower than 200°C the Ag plane in 
contact with GaAs(O0I) is (110), i.e. the Ag (111) direction is parallel to 
the direction (110) of the As dangling bonds. The epitaxial orientation 
is (Oll)(lll)~g~~(OO~)(llO)~a~s. The (011) plane of fcc metals consists 
of parallel rows of atoms whose spacing is equal to the lattice parameter 
(4.086 A of Ag). Along the rows, the atom spacing is equal to the first 
neighbor distance 2.889 8, for Ag. The lattice parameter of GaAs is a0 = 
5.6531 A and the atom spacing in the (100) plane is a o / 4  = 3.9973 A. 
So across the rows the lattice misfit is compressive and is equal to +2.22%. 
The lattice misfit is defined as the relative difference of the unit atom 
spacings, f = (6 - a)/a,  where 6 and a are the atom spacings of the deposit 
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and the substrate, respectively. Along the rows, the relative difference of 
the unit atom spacings is very large, in absolute value -27.7%, but with 
the opposite sign. However, it is easy to realize that four-atom spacings 
of the silver nearly coincide with three-atom spacings of the GaAs. Then 
the lattice misfit can be expressed as the relative difference of the multiple 
atom spacings, f = (4b - 3a)/3a = -3.63% (Matthews 1975bl. In other 
words, along the rows the silver bonds are stretched out, whereas across 
the rows they are compressed. At temperatures higher than 200'C the 
silver deposit is in parallel epitaxial orientation with (001) GaAs, i.e. the 
epitaxial orientation is ( ~ ~ ~ ) ( ~ ~ ~ ) ~ ~ ~ ~ ( ~ ~ ~ ) ( ~ ~ ~ ) c , A , ,  and the lattice misfit 
in both orthogonal directions is equal to -3,63%, i.e. the silver bonds 
are stretched out in both directions. As will be shown below such an 
orientation is connected with the lower energy due to the anharmonism 
of the interatomic bonding. 

Another interesting example of epitaxial orientation is established in 
the deposition of Cu on Ag (001) by Bruce and Jaeger (1977, 1978a, b]. 
Both bulk metals have one and the same fcc lattice, but the thin Cu 
films have a bcc lattice, the epitaxial orientation being (OOl)(liO)bcc cull 
(001)(010)~,, A ~ .  No evidence for the existence of bcc Cu in nature has been 
found. 

The last two examples show that the epitaxial orientation is determined 
by the condition for the minimum of the free energy of the system. We know 
however that the bcc lattice of copper has higher energy than the natural 
fcc one. It follows that the energy of the epitaxial interface between bcc Cu 
and fcc Ag overcompensates the energy difference between the bcc and fcc 
lattices of Cu. We can conclude that the structure and hence the energy 
of the epitaxial interface play a significant role in determining the epitaxial 
orientation. 

The parallelism of the contact planes is often called fibre or tezture 
orientution whereas the parallelism of the crystallographic directions at 
the contact plane is called azimuthal orientation. Thus epitaxy means 
simultaneous realization of texture and mimuthal orientations [Gebhardt 
19731. Very often only texture orientation takes place, the deposit being 
azimuthally misoriented. Here we will not discuss this case. 

In general, epitaxy does not require parallelism of low index crystal- 
lographic directions. A nonzero angle between these directions is possible 
provided that it is the same €or all islands (2D or 3D) of the deposit. This is 
the case, for example, of Pb  deposition on (111) Ag surface which is rotated 
about + 4 O  and -4' from the parallel orientation around the normal of the 
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(111) surface [Takayanagi 1981; Rawlings, Gibson and Dobson 1978). In 
such cases, which while appearing more exotic are not that rare, we have to 
look for a parallelism of higher index crystallographic directions. For more 
details the reader is referred to Stoyanov (19861. 

There exist terms in the specialized literature such as homoepitaxy, 
autoepitaxy, heteroepitaxy, etc. They are used sometimes quite arbitrarily. 
Thus homoepitaxy and autoepitaxy are often confused. This is the reason 
why we will define them here more rigorously in terms of the chemical 
potentials of the substrate and deposit materials. 

One way to understand epitaxial growth, perhaps the best way, is to 
compare it with crystal growth, or in other words, with the growth of a 
single crystal film on the surface of the same material [Stranski and Kuleliev 
1929; Stranski and Krastanov 19381. What differentiate epitaxial growth 
from crystal growth are the nature and strength of the chemical bonds 
of both the substrate and deposit crystals on one hand, and the crystal 
lattices and/or the lattice parameters on the other. In other words, both 
crystals differ energetically and geometrically. If both crystals do not differ 
simultaneously energetically and geometrically, which means that they are 
identical, we have the usual crystal growth. Strictly speaking, this means 
that the chemical potentials of the substrate, ps, and the deposit, /Ad, are 
precisely equal. Obviously, terms like autoepitaxy or homoepitaxy for the 
description of this case are irrelevant. Epitaxial growth takes place only 
when the chemical potentials of the deposit and the substrate crystals differ. 

Let us consider for example the case of deposition of Si on Si single 
crystal, the latter being doped with B [Sugita, Tamura and Sugawara 
19691. The nature and strength of the chemical bonds in both substrate 
and deposit crystals are one and the same and we can neglect the effect 
of the dopant on the strength of the chemical bonds. However, due to 
the presence of the dopant in the substrate crystal its lattice parameter is 
different (smaller) from that of the pure silicon and the deposit film should 
be compressed to match the substrate. Then the chemical potential of the 
strained deposit differs from that of the large deposit crystal. The difference 
of the chemical potentials is just given by the strain energy per atom. 
Thus we have a case in which both the crystals have different chemical 
potentials (pl # pd)  and the difference is due solely to the difference of the 
lattice parameters, the nature and strength of the chemical bonds remaining 
practically the same. We will call this case hornoepztaz$ 

There are cases, such as deposition of In,Gal-,As on (100)InP with 
2 = 0.47, when the lattice parameters coincide exactly and the lattice 
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misfit is equal to zero. The difference of the chemical potentials is in this 
case due to the difference in strength of the chemical bonds (different bond 
strengths mean different works of separation from half-crystal positions and 
different equilibrium vapor pressures). In the general case, however, the two 
materials differ geometrically as weI1. Then the strain energy per atom due 
to lattice misfit is added to the difference in bond strengths of the two 
materials. This case is known as heteroepitaxy. 

1. Homoepitaxy - when the difference of the chemical potentials of the 
substrate and deposit crystals is due mainly to the lattice misfit; 
2. Heteroepitaxy - when the difference of the chemical potentials of the 
substrate and deposit crystals is due mainly to the difference in strength of 
the chemical bonds irrespective of the value of the lattice misfit. 

When both substrate and deposit crystals do not differ in any way and 
their chemical potentials are exactly equal, we have crystal growth which 
we have just considered in the previous chapter. Some investigators call 
this case outoepitaxy but we will restrain ourselves from using this term. 

The influence of the bonding across the interface and the lattice misfit on 
the occurrence of epitaxy was noted for the first time in the famous rules of 
Royer [1928]. On the basis of experimental observations of epitaxial growth 
of ionic crystals one on top of the other he formulated the following rules: 

(i) The crystal planes in contact must have one and the same symmetry 
and close lattice parameters, the difference of the latter being no greater 
than approximately 15%. The lattice misfit should be considered in a more 
generalized sense - one has to compare not only the unit but also the 
multiple lattice parameters. 

(ii) Both crystals must have one and the same nature of the chemical 
bonds. 

(iii) When ionic crystals grow one upon the other the alternation of 
ions with opposite signs across the interface should be preserved. Although 
he mentioned the importance of the bonding in both materials he em- 
phasized more on the effect of the difference of the lattice parameters. 
The importance of lattice misfit was noted even earlier by Barker [1906, 
1907,1908] who concluded that oriented growth of alkali halide crystals one 
upon the other is more likely to occur when their molecular volumes are 
approximately equal. More details concerning the early works on epitaxy 
can be found in the excellent historical review of Pashley [1975]. 

When dealing with epitaxial problems one has to bear in mind the 
following. The epitaxial orientation of the deposit depends on the structure 

Summarizing we distinguish in general two cases: 
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of the crystal planes in contact and the nature of the bonding across the 
epitaxial interface. In other words, it does not depend on the process of 
growth. Indeed, as stated at the beginning of this chapter the phenomenon 
of epitaxy by definition does not refer to growth at all. On the other 
hand, the kinetics of growth is just the same as outlined in Chap. 3 of 
this book. Thus, in the case of vapor deposition it includes the same 
processes of adsorption and desorption, surface diffusion of adatoms and 
incorporation into kink sites. In deposition from solutions, the bulk dif- 
fusion of the growth species should be accounted for, etc. It follows that 
when considering epitaxy we could treat the problems of the equilibrium 
structure of the epitaxial interface, which is intimately connected with the 
epitaxial orientation, separately from the problems of the growth kinetics 
of the epitaxial films and the problems connected with it. 

Since the time Royer [1928] formulated his rules, the epitaxial growth of 
thin films has been developed to the basis for the fabrication of numerous 
modern devices. Thus, microelectronic devices are fabricated by epitaxial 
deposition of materials, varying from such “simple” ones as elementary 
semiconductors (Si, Ge) to binary compounds (GaAs, CdTe), and even to 
ternary and quaternary alloys such as In,Gal-.As and In,Gal-,As,P1-,. 
Bubble memory devices are prepared by epitaxial deposition of ferromag- 
netic garnets such as Y,Gd~-,G~Fes-,012 on the surface of nonmagnetic 
garnets, e.g., GdSGa5012, in high temperature solutions. Varying the 
values of x and 3,  one can change smoothly the crystallographic parameters 
(e.g., the lattice parameter) and the physical properties (e.g., width of the 
forbidden energy gap in semiconductors). 

Research in epitaxial growth is inseparable from the surface analytical 
methods that are employed and the development of the corresponding tools. 
At about the same time as vacuum techniques were developed, the electron 
diffraction methods, M E E D  and LEED (that is, “Reflection High Energy 
Electron Diffraction” and “Low Energy Electron Diffraction”), arose from 
the work of Thomson and Reid [1927] and Davisson and Germer [1927]. 
In addition, X-Ray Diffraction (XRD), X-Ray Topography (XRT), Replica 
Electron Microscopy (REM), Transmission Electron Microscopy (TEM), 
Scanning Electron Microscopy (SEM) , Auger Electron Spectroscopy (AES) 
and so on allowed quite an accurate characterization of the epitaxial films. 
REM and SEM investigations give information concerning the surface mor- 
phology of the growing deposit. TEM micrographs of the cross sections of 
the substratedeposit system reveal the structure of the epitaxial interface 
[Gowers 1987). The in situ measurement of the variation of the MEED 
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intensity of the specular beam as a function of time gives the possibility 
to follow the growth and determine the thickness of the growth front, the 
concentration of the dopant, etc. [Neave e t  al. 1983; Neave, Joyce and 
Dobson 1984; Sakamoto et al. 19871. In particular, a combination of LEED 
and AES has made it possible to obtain information on the initial stages 
of the epitaxial deposition. AES allows very small fractions of a monolayer 
of the deposited material to be detected OR the substrate surface. It is, in 
addition, a powerful analytical method for detecting any impurities on the 
surface of the substrate prior to deposition. On the other hand, LEED gives 
a very accurate picture of the geometric disposition of the substrate atoms, 
and of the adsorbed atoms of the deposit as well. Combining further AES 
and LEED with other methods like work function measurements, Thermal 
Desorption Spectroscopy (TDS), the mechanism of growth of epitaxial 
films can be followed from the very beginning (fraction of a monolayer) 
to the formation of a continuous film [Bauer et aE. 1974, 19771. A new 
powerful method, Scanning Tunneling Microscopy (STM), has been recently 
invented, which allows the surface of the growing deposit to  be visualized 
to  the resolution of single atoms [Binnig et al. 1982a, b; Binnig and Rohrer 
19831. The structure of the growing surface, monoatomic steps, 2D islands 
and their edges can thus be observed and analysed [Hamers, Tromp and 
Demuth 1986; Swartzentruber et al. 19901. 

A great variety of methods for epitaxial deposition of different materials 
have been invented so far. Chemical Vapor Deposition (CVD), Liquid Phase 
Epitaxy (LPE), Atomic Layer Epitaxy (ALE), Molecular Beam Epitaxy 
(MBE), Metal Organic Chemical Vapor Deposition (MOCVD), and such 
combinations as Low Pressure Metal Organic Chemical Vapor Deposition 
(LP-MOCVD) and Metal Organic Molecular Beam Epitaxy (MOMBE) are 
among the most widely used at present [Farrow et at. 19871. That is why 
the list of the epitaxial systems studied up to 1975 contains approximately 
6000 entries [Griinbaum 19751. Review papers, monographs [Pashley 1956, 
1965, 1970; Kern, LeLay and Metois 1979; Honjo and Yagi 1980; Vook 
1982; van der Merwe 1979; Markov and Stoyanov 1987; Matthews 19751, 
etc., and whole volumes of journals such as Surface Science and the Journal 
of Crystal Growth are devoted to different aspects of epitaxial growth and 
characterization of epitaxial films. 
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4.2. Structure and Energy of Epitaxial Interfaces 

4.2.1. Boundary region 

The interface represents the region between two bulk phases. The surface of 
a crystal in contact with its vapors or melt is also considered as an interface. 
The epitaxial interface is the boundary between two single crystals - the 
overgrowth crystal and the substrate crystal, the former being in epitaxial 
orientation with the latter. 

In principle, the boundary between two single crystals which are charac- 
terized by their bulk properties can have different structures depending on 
the nature of the chemical bonds, the crystal lattices and lattice parameters, 
the chemical properties of both materials, etc. Mayer [1971] classified the 
boundaries into five groups: 

(i) Layers of ordered adatoms or adions. For example, the layer between 
the bulk K deposit and W(100) substrate consists of one monolayer of 
negatively charged W ions, one monolayer of positively charged K ions and 
two monolayers of K dipols [Mayer 19711. 

(ii) Layers in which the difference between the lattice parameters is 
accommodated by  periodic strains due to misfit dislocations (Fig. 4.5(d)). 
The latter were predicted theoretically by Frank and van der Merwe (19491 
and found experimentally in a multitude of systems [Matthews 1961, 1963]. 

(iii) Pseudomorphic layers in which the deposit is homogeneously 
strained to fit exactly the periodicity of the substrate (Fig. 4.5(c)). Such 
layers have been detected in many epitaxial systems, e.g., Ni on Cu (111) 
[Gradmann 1964, 19661, Ge on GaAs (100) [Matthews and Crawford 19701, 
etc. (for a review, see Pashley [1970]; Matthews [1975]). The concept 
of pseudomorphism (or forced isomorphism) was introduced by Finch and 
Quarrel1 [1933, 19341 to explain the experimental observations of epitaxial 
growth of ZnO on Zn. Frank and van der Merwe (19491 found theoretically 
that a critical misfit exists under which the overgrowth should be pseude 
morphous with the substrate. Beyond this misfit the interface should be 
resolved in a sequence of misfit dislocations. The value 14% was estimated 
for the critical misfit, in tempting agreement with the experimental finding 
of Royer [1928]. 

(iv) Layers due to interdiflusion or consisting of alloys, solid solutions, 
metastable phases, etc. Thus an intermetallic compound AuzPb is formed 
upon deposition of Pb on Au (100) [Green, Prigge and Bauer 19781. 

(v) Layers consisting of chemical compounds between the substrate and 
deposit crystals. A typical example is the formation of NiSiz on Si(ll1) 
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[Jentzsch, Fkoitzheim and Theile 19891. Stoichiometric metal silicides are 
in fact often observed in the deposition of metals on Si(ll1) and Si(OO1) 
(for a review, see Chen and Tu [1991]). 

The considerations in this chapter will be confined to the accommoda- 
tion of the lattice misfit by homogeneous strain (HS) (pseudomorphism) or 
by periodic strain (misfit dislocations), all other phenomena like alloying, 
interdiffusion or chemical reactions between both partners being ruled out. 
We then consider the epitaxial interface as a geometric plane dividing two 
crystals which in general differ energetically and geometrically. We assume 
further that the structure of the interface is such that it minimizes the 
energy of the system. 

4.2.2. Models of epitaxial interfaces 

Various models have been invented for the theoretical description of the 
equilibrium (minimum energy) structure of the epitaxial interfaces. 

The coincidence lattice model developed by Bollmann [1967, 19721 con- 
siders the two lattices of the substrate and deposit crystals as rigid. The 
interatomic forces are assumed to have spherical symmetry and the model 
is valid for materials with metallic or van der Waals bonds. Two lattice 
points, one from each crystal, are brought into coincidence and the density 
of lattice points which are in perfect or near coincidence serves as a measure 
of registry of the two lattices (Fig. 4.2). The azimuthal orientation with 
maximum coincident points is considered as the minimum energy (ground 
state) orientation. 
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Fig. 4.2. Illustration of the coincidence lattice model of epitaxial interfaces. The atoms 
of the two planes in contact are denoted by open and filled circles. 
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The ball-and-wire model [Hornstra 19581 was developed initially to  de- 
scribe dislocations in diamond. It assumes anisotropic chemical bonds 
such as the directional covalent bonds, and is applicable to semiconductor 
materials. Holt [1966] extended it further to describe the structure of 
the semiconductor heterojunctions and found that dangling (unsaturated) 
bonds should exist at the interface originating from the material with the 
smaller lattice parameter (Fig. 4.3). Depending on the surface polarity 
of the adjacent crystal planes the dangling bonds can act as acceptors or 
donors [Holt 19661. Oldham and Milnes [1964] showed that the dangling 
bonds are expected to constitute deep energy levels in the forbidden energy 
gap and thus play the role of recombination centers. When the density 
of the dangling bonds is too high they can create a conducting band 
in the forbidden energy gap and alter significantly the properties of the 
heterojunction [Holt 1966; Sharma and Purohit 19741. 

Fig. 4.3. Illustration of the ball-and-wire model of epitaxial interfaces between two 
crystals with diamond lattice. The misfit dislocations represent unsaturated dangling 
bonds spaced at an average distance p (after Holt [1966]). 

In the variational approach developed by Fletcher [1964, 19671, Adam- 
son [Fletcher and Adamson 19661 and Lodge [Fletcher and Lodge 19751 the 
positions of the atoms of adjacent crystal planes have been varied to  find 
the minimum of the energy. A pairwise interatomic potential has been used 
for this purpose. The calculations were carried out in the reciprocal space. 
It has been found that the energy has a minimum value when as many 
as possible lattice points of either side of the interface coincide as in the 
coincidence lattice model. If elastic displacements of the atoms are allowed 
(restricted for simplicity to crystal planes in contact with each other) the 
resulting structure of the interface is very much like the one in the misfit 
dislocation model developed by Frank and van der Merwe [1949]. 
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The Volterra dislocation model was developed on the basis of the dislo- 
cation theory of low angle grain boundaries [Brooks 1952, Matthews 19751. 
The concept of edge type dislocations for accommodation of the lattice 
misfit was introduced explicitly in the model, both substrate and deposit 
crystals having been considered as elastic continua. The most general 
definition of edge dislocations given by Volterra [1907] at the beginning 
of the century (see also Hirth and Lothe [1968]) has been used. The energy 
of the interface is represented as a sum of the energy of the dislocations and 
the energy of the residual homogeneous strain. Minimization of the energy 
with respect to the homogeneous strain allows the calculation of the equi- 
librium strain and the critical thickness for pseudomorphous growth. The 
advantage of the model is its mathematical simplicity. The arbitrariness 
in the choice of the quantities determining the energy of the cores of the 
dislocations is, however, a shortcoming of the model. More details will be 
given below. 

-a- 
Fig. 4.4. Illustration of the one-dimensional misfit dislocations model of Frank and van 
der Merwe [1949a]. The deposit is simulated by a chain of atoms connected by elastic 
springs of length b and force constant y. The rigid substrate exerts a periodic potential 
with period a and amplitude W. The figure shows the atomic chain before and after 
being put in contact with the substrate. In the tatter caSe 11 atoms of the chain are 
distributed over 12  potential troughs of the substrate, thus forming a misfit dislocation. 

The misfit dislocation model of F'rank-van der Merwe [1949a, b] (for 
a review, see van der Merwe [1974]) deals with a linear chain of atoms 
conmcted with elastic springs subject to an external periodic potential 
exerted by a rigid substrate (Fig. 4.4). The misfit dislocations appear 
naturally as a result of the mathematical analysis of the model. 

In the present chapter the dislocation models of Frank and van der 
Merwe [1949] and van der Merwe [1950] will be described in more detail as 
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they are the most well known and most exploited. Besides, the Volterra 
approach of Matthews will also be described in more detail. The reader 
interested in the other models mentioned above is referred to the original 
papers and the review papers of van der Merwe [1974] and Woltersdorf 
[1981]. 

4.2.3. Misfit dislocations 

We will confine our considerations in this chapter only to the case where 
the deposit crystal possesses a crystal face with the same symmetry as the 
substrate surface. 

In general when two geometrically dissimilar crystals (A  and B) join 
each other in such a way that two particular crystal planes come into 
contact at the interface, the only physical reality is that the atoms in the 
adjoining crystal halves in the near vicinity of the boundary between them 
are displaced from their ideal positions which they should occupy if the 
foreign crystal was replaced by the same crystal. Two lateral forces act on 
each atom. The first is the force exerted by the neighboring atoms of the 
same crystal which tends to preserve its natural crystal lattice and keep 
the interatomic distances equal to their natural bond lengths. The second 
is the force exerted by the atoms of the adjoining crystal which tends to 
force the atoms to occupy the lattice sites of the foreign crystal. One can 
distinguish several limiting cases. First, when the interfacial bonding QAB is 
very weak compared with the bonds strengths, $AA and $BB, both crystals 
tend to  preserve their natural lattices. In such a case the difference of the 
periodicities of the two adjoining crystal lattices degenerates into a vernier 
of misfit (Fig. 4.5(a)). A special case is when the lattice parameters a and b 
are multiples of each other, i.e. ma = nb, where rn and n are small integen 
such that m = n + l  (Fig. 4.5(b)). Then every mth atom of A coincides with 
every nth atom of B and we arrive at the coincidence lattice model outlined 
above. In the other limiting case in which ($JAB >> $BE and ~ A B  2! +AA) 
the crystal B is forced to adopt the lattice of A, or in other words, the 
crystal B is homogeneously strained to  fit the crystal A, we say then that 
B is pseudomorphous with A (Fig. 4.5(c)). However, the elastic strains 
and in turn the energy of B increase linearly with the thickness. That is 
why beyond some critical thickness the pseudomorphous growth becomes 
energetically unfavored and the homogeneous strain should be replaced by a 
periodical strain which can attenuate with increasing film thickness. Thus, 
misfit dislocations with a lower energy are introduced at the interface to  
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accommodate the lattice misfit. Obviously, the smaller the natural misfit 
the greater will be the criticd thickness for pseudomorphous growth. In the 
intermediate case ($JAB z $AA = $BB), the interfacial forces are not strong 
enough to produce a pseudomorphous layer with considerable thickness and 
the lattice misfit will be accommodated by misfit dislocations (MDs), or in 
other words, by periodical strain (Fig. 4.5(d)), from the beginning of the 
growth process. 

0 b 

c d 

Fig. 4.6. Four possible modes of misfit accommodation: (a) vernier of misfit, (b) 
coincidence lattices, (c) homogeneous strain, (d) misfit dislocations (after van der Merwe, 
Waltendorf and Jesser [1986]). 

Misfit dislocations axe a convenient concept for the description of lattice 
distortions in the vicinity of the epitaxial interface. They represent atomic 
planes in excess in the material with the smaller atomic spacing (Fig. 4.5(d); 
see also Fig. 4.11). Their fundamental feature is the local strain with 
opposite sign in the cores of the dislocations. If the atomic spacing of 
the overgrowth is smaller than that of the substrate the chemical bonds 
in between the MDs will be stretched out but the bonds in the cores of 
the dislocations will be compressed, and vice versa. Thus an interface 
resolved in a sequence of MDs is characterized by a periodical elastic strain 
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with a period equal to the dislocation spacing. That is why the concept 
of the MDs is applicable only when the bonding across the interface is 
strong enough to ensure the appearance of local strains. It follows that 
the periodic distortions of both lattices (substrate and deposit) lead to 
an almost perfect match of the crystal planes in contact in some areas 
of the epitaxial interface. These areas are separated by stripes in which 
the two lattices are out of registry. Figure 4.6 is an illustration of an 
epitaxial interface between PbS and PbSe resolved in a sequence of misfit 
dislocations [Bottner, SchieBl and Tacke 19901. The situation is similar, 
in a topological sense, to that existing in a single crystal containing edge 
dislocations, from where the term “dislocation” was borrowed. Unlike edge 
dislocations, however, misfit dislocations are not linear defects of the crystal 
lattices themselves and their equilibrium density does not tend to zero with 
decreasing temperature. 

Fig. 4.6. High resolution TEM micrograph of a PbS/PbSe interface. The misfit d i s b  
cations are shown by arrows. (H.  Bottner, U .  Schieal and M. Tacke, Superlattices and 
Superstructures 7 ,  97 (1990). By permission of Academic Press Ltd. and courtesy of H. 
Bottner.) 

In fact there are two separate, though similar, misfit dislocation models 
which are solved exactly: the model of overgrowth with monolayer thick- 
ness, which is in fact the famous one-dimensional model of Frank and van 
der Merwe [1949], and the model of fairly thick deposit developed later by 
van der Merwe [1950, 1963a, b]. We consider first the monolayer model 
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in more detail although it can be taken only as a first approximation to 
a growing epitaxial film. However, it is very illustrative and helpful for a 
deeper understanding of the more realistic models of epitaxial interfaces. 
Then the model of thick overgrowth will be briefly out lined. The misfit 
dislocation models have been reviewed comprehensively in a series of papers 
by van der Merwe (1973, 1975, 19791 and others [Matthews 1975bJ. 

4.2.4. h n k - v a n  der Merwe model of thin overlayer 

The Frank and van der Merwe model [1949] recently gained prominence 
not only in the field of epitaxy but also in various other fields, a common 
feature of which is the competing periodicities. Thus it provided the 
grounds of the theory of commensurateincommensurate phase transitions 
in physisorbed layers [Villain 19801 and in layer compounds [McMillan 
19761, the alignments of cholesteric liquid crystals in a magnetic field [de 
Gennes 19681, etc. (for a review, see Bak 1982). The treatment is based 
on an earlier model of Frenkel and Kontorova [1939] who considered the 
“worm-like motion” of edge dislocations in crystals to explain the plastic 
flow of the latter. That is why the one-dimensional model is also known as 
the model of nenkel and Kontorova. 

In this chapter the original one-dimensional model of Frank and van 
der Merwe [1949] will be considered first. Then it will be generalized 
for a two-dimensional monolayer overgrowth, and after that it will be 
applied to the case of thickening overgrowth although it is inadequate for 
quantitatively describing this situation [van der Merwe, Woltersdorf and 
Jesser 19861. The influence of the anharmonicity and nonconvex characters 
of the more realistic interatomic potentials will be discussed at the end of 
the chapter. 

4.2.4.1. Interatomic potentials 

Pairwise interatomic potentials with simple analytical form are often used in 
direct lattice calculations in solid state physics. The potentials of Morse and 
Lennard-Jones (the 6-12 Mie potential) are the common choices [Kaplan 
19861. 

The potential of Morse [1929], 
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where VO is the energy of dissociation, TO is the equilibrium atom spacing 
and w is a constant which governs the range of action of the interatomic 
forces, was originally suggested for the evaluation of the vibrational energy 
levels in diatomic molecules. By varying w we shift the repulsive and 
attractive branches of the potential in opposite directions so that the degree 
of anharmonicity remains practically the same. Girifalco and Weiser [1959) 
adjusted the constants of the Morse potential to fit the lattice parameters, 
the cohesive energies and the elastic properties of a series of metals, and 
found a value for w varying around 4. 

The potential of Morse does not behave well at small and large atom 
spacings. At T = 0, the potential does not go to  infinity but has a finite 
value. The exponential dependence is not believed to  describe well the 
atom attraction at  T > T O .  In this respect the inverse power Mie potential 

n 
m - n  m - n  

is much more flexible than the Morse potential. The repulsive and attractive 
branches are governed by two independent parameters, m and n (m > 
n). The Mie potential with m = 12 and n = 6 which is known as the 
Lennard- Jones potential [Lennard-Jones 19241 describes satisfactorily the 
properties of the noble gases. 

A generalized Morse potential 

has been recently suggested [Markov and Trayanov 19881. It has all the 
shortcomings of the Morse potential except that the repulsive and attractive 
branches are governed by two independent parameters p and v ( p  > v). 
An advantage of both Morse potentials, particularly for solving interface 
problems, is that they are expressed in terms of strains T - TO which makes 
the mathematical formulation of the problems and the calculation of the 
strains, stresses and strain energy easier. If we put p = 2w/ro and Y = w/ro 
into (4.3) it turns into the Morse potential. It is worth noting that the 
6-12 Lennard-Jones potential is practically indistinguishable from the one 
expressed by (4.3) with p = 18 and Y = 4. The generalized Morse potential 
with p = 4 and u = 3 is plotted in Fig. 4.7. 

The pairwise potentials counted above have two fundamental properties. 
First they are anharmonic in the sense that the repulsive branch is steeper 
than the attractive one, and second they have an inflection point ri beyond 
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Fig. 4.7. The generalized Morse potential (Eq. (4.3)) (shown as real) with p = 4 and 
v = 3 and the Toda potential (Eq. (4.4)) with a = 2 and p = 6. The parameters a, p, p 
and Y are chosen in such a way that the repulsive branches of both potentials coincide 
up to  the third digit and have one and the same harmonic approximation given by the 
deshed h e .  For misfits smaller than fi = ( T O  - r i ) / a  (Eq. (4.84)), where ti denotes the 
inffcction point of the real potential, the atoms of the chain are equidistant as shown 
below to the left. For misfits larger than f i ,  the distorted state shown below to the 
right b the ground state. The latter consists of alternating short, strong and long, weak 
bonds. (I. Markov and A. Trayanov, J .  Phys.: Condens.  Mat t e r  2 ,  6965 (1990). By 
permission of IOP Publishing Ltd.) 

which they become nonconvex. In order to distinguish the influence of 
the anharmonicity from that of the nonconvex character one can use the 
well-known potential of Toda [Toda 19671 

which is shown in Fig. 4.7 with a = 2 and p = 6. By varying Q and /3 
but keeping their product constant we can go smoothly from the harmonic 
approximation (a --+ 00, p -+ 0, a@ = const) to the hard sphere limit 
(a! + 0, p .--) 00, a@ = const). It has no inflection point (or has an inflection 
point at infinity) and can be used to study the effect of anharmonicity in its 
pure form on the equilibrium structure of the epitaxial interfaces (Milchev 
and Markov 1984; Markov and Milchev 1984a, b, 19851. It is immediately 
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seen that expanding the second exponential term of the generalized Morse 
potential (4.3) in Taylor series to the linear term results in the Toda 
potential with ty = p / ( p  - v) and ,D = b. 

Expanding any of the above potentials in Taylor series to the parabolic 
term gives the harmonic approximation (the dashed line in Fig. 4.7), which 
for the generalized Morse potential (4.3) reads 

2 (4.5) V ( r )  = -pvVo(r - T o )  - vo , 1 
2 

where the product y = pV0  gives the elastic modulus. The force between 
the neighboring atoms, F ( r )  = y ( r  - T O ) ,  satisfies Hooke’s law exactly. 
Obviously, the harmonic approximation can be used for small deviations 
from the equilibrium atom separation, i.e. for small strains T - TO.  This is 
equivalent to  small misfits in interface problems. The force constant y is a 
measure of the bonding between the overgrowth atoms. 

Let us analyze more closely the above pairwise potentials. Figure 4.8(a) 
demonstrates the variation with the atom spacing of the first derivative, 
or the force exerted on one atom by its neighbor. As seen the force goes 
linearly to  infinity in the harmonic case. This means that increasing the 
atom spacing leads to an increase of the force which tends to keep the atoms 
together. The Toda force, however, goes to a constant value at large atom 
separations. This means that in applying a force greater than the maximum 
one the corresponding bond can break up and both atoms can be separated 
from each other. The same is valid for the potentials (4.1)-(4.3) (henceforth 
to be referred to  as real potentials). The force displays a maximum - the 
theoretical tensile strength of the material. 

Figure 4.8(b) demonstrates the variation of the second derivative of 
the pairwise potentials which in fact determines the sign of the curvature. 
In the harmonic case the second derivative is constant and positive. In 
the Toda case it is a decreasing function of the atom separation and goes 
asymptotically to zero but remains always positive. Only in the case of 
the real potentials the curvature changes its sign from positive to negative 
a t  the inflection point T = r, .  In other words, the real potentials become 
nonconvex at T > ri. As shown by Haas [Haas 1978, 19791 the nonconvex 
character of the real potential results in distortion or polymerization of 
the chemical bonds in expanded chain (or epilayers); long, weak and short, 
strong bonds alternate (Fig. 4.7). The driving force of such a distortion is 
the energy difference between the distorted and undistorted structures. It 
is easy to show that the mean energy of the distorted (dimerized) structure 
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(b) 

Fig. 4.8. (a) First and (b) second derivatives of the harmonic, Toda and real potentials. 
The force acting between the atoms (the first derivative) goes to infinity for the harmonic 
potential but is finite for the other potentials. The maximal force is in fact the theoretical 
tenrile strength of the material. The second derivative which determines the sign of the 
curvature is positive for both the harmonic and Toda potentials but becomes negative 
bepnd the inflection point in the case of the real pairwise potentials. 
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(V(T + u) + V ( r  - u)]/2 < V ( r )  for a curve with a negative curvature, 
[V(T + u)  + V ( r  - u)]/2 = V ( r )  for a straight line (zero curvature) and 
[V(T + u) + V ( r  - u) ] /2  > V ( r )  for a curve with a positive curvature. It 
follows that when applying the harmonic potential or the real potential at 
misfits smaller than that corresponding to  the inflection point, the ground 
state will be the undistorted structure. The distorted structure will be the 
ground state in epilayers expanded beyond the inflection misfit when a real 
potential is adopted. 

4.2.4.2. Interfacial interactions 

A single atom moving on a single crystal surface should feel a two-dimen- 
sional periodic potential relief. It is convenient to represent it in the form 
[Frank and van der Merwe 1949bl 

where a, and ay are the atom spacings (or more correctly the spacings 
between the neighboring potential troughs) and W, and W, are the overall 
amplitudes (the depths of the potential troughs) in the two directions 2 

and y. A potential relief of this kind should be exerted for example by the 
(110) face of a fcc crystal. 

In the case of a face with quadratic symmetry a, = ay  = a and 
W, = W, = W, the relief (4.6) simplifies to 

a 
1 
2 a 

v = -W (1 - (4.7) 

If one assumes a corrugation in one direction only, (4.6) simplifies further 
to  the potential field (Fig. 4.4) 

1 5 
V(x) = -w 2 (1 - cos2x-)  a (4.8) 

introduced initially by F'renkel and Kontorova [1939]. 
It is generally believed that the interfacial potential has a flatter crest 

than is represented by a single sinusoide. That is why Frank and van der 
Merwe [1949c] suggested a refined potential of the form 

"1 x 1  
a )  2 ( a 

1-cos2x-  + - w  1-cos4x- , 

where the maximum flattening is achieved when w/W = 1/4. 
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The amplitude W is related to  the substrate-deposit bond strength by 

w = gpd 7 (4.9) 

where q k j  is the desorption energy of an overlayer atom from the substrate 
surface and g is a constant of proportionality varying from 1/30 for long 
range van der Waals forces to approximately 1/3 for short range covalent 
bonds [van der Merwe 19791. In fact, W is the activation energy for surface 
diffusion and g gives the relation between the activation energies for surface 
diffusion and desorption. 

In some cases the rather unrealistic parabolic model has been employed 
which replaces the smooth sinusoide (4.8) by a sequence of parabolic arcs 

V(x) = const z2 (1x1 5 a / 2 )  

with sharp crests between them [van der Merwe 1963a; Stoop and van der 
Merwe 19731. The parabolic model permits linearization of the mathe- 
matical problem and makes it possible to obtain exact analytical solutions 
[Markov and Karaivanov 19791 in order to illustrate some properties of the 
system. 

A smooth potential, known as biparabolic potential, consisting of para- 
bolic segments 

1 1 
2 4 

V(z) = 4 x 2 ,  1x1 5 -a, 

was constructed by Stoop and van der Merwe [1973] and in a more general 
form by Kratochvil and Indenbom [1963]. The different interfacial poten- 
tials are shown in Fig. 4.9. 

4.2.4.3. 1 D model of epitaxial interface 

The overgrowth is simulated by a chain of atoms connected by purely elastic 
(Hookean) springs (Eq. 4.5) as a substitute of the real interatomic forces 
(Fig. 4.4). The springs are characterized by their natural length b ( ~  T O )  and 
force constant 7. The chain is subject to an external periodic potential field 
(4.8) exerted by a rigid substrate. The assumption of the substrate rigidity 
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Fig. 4.9. Comparison of several interfacial potentials: curve 1 - the sinusoidal potential 
(Eq. (4.8)), curve 2 - the refined sinusoidal potential, curve 3 -the parabolic potential. 

could be considered to reflect the real situation in the case of sufficiently 
thin overgrowth (not more than a few monolayers). In the case of thick 
deposit this assumption is not valid anymore and elastic strains in both 
substrate and deposit should be allowed [van der Merwe 19501. 

As b is not equal to a,  the atoms will not sit at the bottoms of the 
potential troughs but will be displaced. In fact, our task is to  find the 
atoms’ displacements. Then the energy can be calculated and in turn 
the ground state of the system can be easily found. To do this we have 
to analyze the forces acting upon every atom. As mentioned above two 
forces act on each atom: first a force exerted by the neighboring atoms, and 
second a force exerted by the substrate. The first force tends to  preserve 
the natural spacing b between the atoms, whereas the second one tends to 
place all the atoms at  the bottoms of the corresponding potential troughs 
of the substrate. As a result of the competition between the two forces, the 
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atoms will be spaced in general at some compromise distance 6 in between 
b and a. In the case of 6 = a the natural misfit will be accommodated by 
homogeneous strain and the overgrowth will be pseudomorphous with the 
substrate. At the other extreme, 6 = b ,  the deposit preserves on average 
its own atomic spacing and the natural misfit is accommodated entirely by 
misfit dislocations. It follows that in the intermediate case, u < 6 < 6, part 
of the natural misfit defined as 

6 - a  f = -  
U 

will be accommodated by misfit dislocations 

6 - a  
a f d  = - 

and the remaining part 

6 - b  a fe=3-= i ( f d  - f )  

(4.10) 

(4.11) 

(4.12) 

by homogeneous strain. In other words, the natural misfit appears in the 
general case as a sum of the homogeneous strain and the periodical strain 
due to the misfit dislocations, i.e. 

f Z' f d  + lfel . (4.13) 

In order to  find the forces acting on the atoms and in turn the atoms' 
displacements we have to  write an expression for the potential energy of 
the system. The force exerted by the neighboring atoms depends on the 
distance between them. To find it we choose the origin of the coordinate 
system at an arbitrary point to the left of the atoms under consideration 
(Fig. 4.10). Without loss of generality we can place the origin at the bottom 
of an arbitrary potential trough. Then the distances from the origin to  the 
(n+ l ) th  and nth atoms will be Xn+l = (n+l)u+z,+l and X, = na+zn,  
respectively, where zn and xntl are the displacements of the atoms from 
the bottoms of the potential troughs with the same numbers. Then the 
distance AX,, = XnCl - X,, between the (n + 1)th and the nth atoms is 

A x n  = z n + l  - xn + a = a(<n+l - <n + 1)  

where <,, = z,/a is the relative displacement of the nth atom from the 
bottom of the nth potential trough. The strain of the bond between the 
atoms will be 

~ ( n )  = AXn - b = a(<,+l - tn - f )  . (4.14) 
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Fig. 4.10. For the determination of the atom displacements X ,  and in and the atomic 
spacing AX, = X,+1 - X ,  in the 1D model of Frank and van der Merwe [1949a]. 

Bearing in mind (4.8) the potential energy of a chain consisting of N 
atoms reads 

N-2 N-1 1 
E = sYa2 C (En+l - En - f ) 2  + 2W C (1 - C O S ~ ~ F ( ~ )  , (4.15) 

n=O n=O 

where the first sum gives the strain energy of the system while the second 
sum accounts for the interaction across the interface. 

We assume for definiteness that b > a and f > 0 (compression of 
the chain). The analysis is valid for the opposite case b < a and f < 0 
(expansion of the chain), which follows from the symmetric (Hookean) 
shape of the interatomic potential. The only difference consists in the fact 
that at positive misfits the atom (corresponding to atomic plane in the 3D 
case) in excess is in the substrate. In the 1D case this is equivalent to an 
empty potential trough as shown in Fig. 4.11(a). At negative misfits the 
atom (plane) in excess is in the overgrowth which is equivalent to a pair of 
atoms in one trough (Fig. 4.11(b)). In the harmonic approximation adopted 
both configurations are symmetric and have one and the same energy. As 
shown below, this is not the case when a more realistic interatomic potential 
is adopted. 

The derivative of the potential energy E with respect to the displace 
ment (,, gives the overall force acting on the nth atom. At equilibrium 
this force is equal to zero and dE/dEn = 0 appears as the condition for 
equilibrium. Minimizing (4.15) with respect to tn leads to the following set 
of recurrent equations: 
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-b- 

Fig. 4.11. Structure of misfit dislocations in the chain model of b a n k  and van der Merwe 
at (a) positive ( b  > a) and (b) negative ( b  < a) misfits. In (a) the misfit dislocation 
rep-nts an empty potential trough (light wall) which corresponds to  an excess atomic 
plane in the substrate. In (b) the dislocation represents two atoms in one trough (or 
three atoms in two troughs, heavy wall) which corresponds to an excess atomic plane in 
the ovargrowth. 
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R 
- t o  - f = -ssin2.rr& , 210" 

where 

(4.16) 

(4.17) 

is a parameter which accounts for the ratio of the forces between the 
overgrowth atoms and across the interface. The equations (4.16) can be 
solved numerically and the atoms' displacements can thus be found. How- 
ever, another procedure can be used to find an analytical solution for &,. 

Assuming that the displacements vary slowly with the atom number we 
can approximate the discrete quantities Jn by continuous variables J(n) and 
replace the differences En+l - En by the derivative dJ(n)/dn. Expanding 
it in a Taylor series and neglecting higher order differentials result in a 
differential equation of second order [Frank and van der Merwe 19491: 

-- d2E(4  R - - sin 2nJ(n) 
dn2 210" (4.18) 

This is the continuum approximation of the problem. It replaces the real 
discrete chain of atoms by an elastic continuum (a rubber cord). Although 
some details are usually lost in this procedure it has the merit of giving 
rise to an analytical solution. In fact Eq. (4.18) is the pendulum equation 
but in this particular case it is known as the static sine-Gordon equation 
or simply the sineGordon equation [Barone et  al. 1971; Scott, Chu and 
McLaughlin 1973; Villain 19801. 

The integration of the sineGordon equation can be carried out in 
two stages. First, we find the first integral by using the following simple 
procedure. We multiply both sides of (4.18) by dJ and reorganize the 
left-hand side to obtain 

The integration then gives 

cos 27r[(n) (z)2 = - 21; + c ,  
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where C is the integration constant. To find it we assume that in general 
the solution <(n) crosses zero at some angle so that d [ / d n  = w at ( = 0. 
Then C = (1 + 2w2S,2)/21,2 and 

Making use of the relations cos 2n< = 2 cos2 IT< - 1 and w21i = l / k 2  - 1 

(4.19) 
J1 - k2 cos2 r<(n) 

Single dislocations. We consider first for illustration the limiting case of 
a single dislocation assuming w = 0 and k = 1. Then the integration of the 
resulting equation 

d [ ( n )  sin r [ ( n )  

one finally obtains 
d< 
d n  kl0 
- -  - 

-= 
d n  10 

subject to the boundary condition n = 0, [ ( n )  = 1 / 2  gives 

r 
(4.20) 

The atomic displacements as a function of the atom number according 
to l3q. (4.20) are plotted in Fig. 4.12 (curve 1) .  As seen the solution has the 
form of a single wave. On the left-hand side, n - -00, the displacements 
approach zero, which means that the atoms lie at the bottoms of their 
respective troughs. On the right-hand side, n 4 +oo, the displacements 
approach unity, i.e. the atoms lie at the bottoms of the neighboring 
potential troughs. In other words, N atoms are distributed over N + 1 
(or N - 1 at negative misfit) potential troughs. This is equivalent to  one 
missing atomic plane (or a plane in excess) in the overgrowth with respect to 
the substrate if we imagine the one-dimensional model under consideration 
as a cross section of two crystal halves. (Note that the overgrowth crystal 
has as many atomic planes as its own structure demands). It is known in 
the literature as a misfit or interface dislocation [Frank and van der Merwe 
1949al or a solzton [Scott, Chu and McLaughlin 1973; Villain 19801. As will 
be shown below this is the shape the dislocations possess when they are far 
apast and do not interact with each other. 

As seen in Fig. 4.12 atoms which are in marked disregistry with the 
substrate potential troughs (or atoms) occupy a region with a width 10 
measured in number of atoms. The atoms to the left and to the right of 
this region are in a good fit, and those far enough from it are in a perfect fit, 
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ATOM NUMBER / 
Fig. 4.12. Dependence of the atom displacement on the atom number. Curve 1 represents 
a single misfit dislocation (single soliton) given by Eq. (4.20). Curve 2 represents a midit 
dislocation in a sequence of interacting dislocations given by Eq. (4.23). As seen, the 
latter cross& zero and unity under an angle w which determines the boundary condition 
for finding the first integral and the value of the modulus k of the elliptic integrals K ( k )  
and E(k) .  The greater the dislocation density, the greater the angle w and the smaller 
than unity the modulus k. Thus the latter is a measure of the dislocation density. In 
the case of a single dislocation or dislocations far apart, w = 0 and k = 1. lo denotes the 
width of a single dislocation. The width of a dislocation in a sequence of dislocations 
is given by 1 = klo < l o .  The reciprocal of the length L gives the density of the misfit 
dislocations according to Eq. (4.25). 

with the substrate potential. Thus lo gives the width of single isolated misfit 
dislocations which do not interact with each other. Within the framework 
of the harmonic approximation under consideration the dislocation width 
does not depend on the natural misfit, but on the energetic parameters 7 
and W only. As will be shown below it becomes a steep function of the 
misfit in the more realistic model with anharmonic interactions [Markov 
and Trayanov '19881. 

It is of interest to consider the elastic strains of the consecutive springs. 
The latter can be written in the continuum approximation in the form 
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I ATOM DISPLACEMENTS 

Fig. 4.13. Plot of the consecutive strains ~ ( n )  of the chemical bond versus the atom 
displacement ( (n )  in a chain containing dislocations far apart from each other (curve 1, 
Eq. (4.21)) and a sequence of interacting dislocations (curve 2, Eq. (4.27)). In the 
first case the strains in between the dislocations reach the value -af = -(b - a),  i.e. 
the dislocations divide the interface into regions of perfect fit with the substrate. The 
sequence of dislocations leads to  an appearance of periodical strains which change their 
sign. 

The variation of ~ ( n )  with n is plotted in Fig. 4.13 (curve 1). As seen, 
far from the dislocation, n + foo,  the first term in the brackets goes to 
zero and the strains are equal to ~ ( n )  = -af = - ( b  - a). In other words, 
the bonds between the overgrowth atoms are strained to fit exactly with 
the spacings of the potential troughs of the substrate, and the strains are 
precisely equal to the natural misfit taken with a negative sign. In the core 
of the dislocation (n = 0) the strain 

is positive as long as l/Zo > f. As will be shown below, it becomes equal 
to zero only when the misfit reaches the so-called limit of metastability of 
the pseudomorphous state defined as fms = 1/l0. 



310 Epitaxial Growth 

Sequence of dislocations. Making use of the substitution 

and after integration of (4.19) subject to the boundary condition <(n = 
0) = 1/2 and q5 = 0 we obtain the general solution of (4.18): 

(4.22) 

where F(+ ,  k )  is the incomplete elliptic integral of first kind [Janke, Emde 
and Losch 19601, or by inversion 

1 1  
2 7 r  

<(n) = - + - am (4.23) 

where a m ( F ( + , k ) , k )  denotes the elliptic amplitude and k < 1 is the 
modulus of the elliptic integrals. At k = 1 (4.23) turns into (4.20). 

A graphical representation of (4.23) is given in Fig. 4.12 (curve 2). When 
the dislocations are far apart, w + 0 and k -+ 1. The nearer the dislocations 
are to  each other, the greater w is and the smaller than unity k becomes. 
Thus the modulus of the elliptic integrals determines the spacing between 
the dislocations, or in other words, the mean dislocation density on the one 
hand and the dislocation width on the other. The latter is now smaller 
than that of a single dislocation and is equal to I = klo. 

The dislocation spacing measured in number of atoms can be easily 
calculated from (4.22) and reads 

1 L = - 2 k l o K ( k )  , 
R 

(4.24) 

where K ( k )  = K(7r/2, k) is the complete elliptic integral of the first kind. 
The reciprocal of the dislocation spacing gives the mean dislocation density 
in the ground state: 

(4.25) 

For values of k near to unity the elliptic integral K ( k )  can be approxi- 
mated by K ( k )  E ln[4/(1- k 2 ) 1 / 2 ]  and the mean dislocation density reads 

(4.26) 
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It is immediately seen that at Ic = 1 the dislocation spacing tends to 
infinity and the mean dislocation density to zero. The overlayer is strained 
to fit exactly the periodicity of the substrate, its atomic spacing being equal 
to that of the latter. 

In fact the mean dislocation density fd is just the part of the natural 
misfit given by Eq. (4.11) which is accommodated by misfit dislocations. 
The mean atomic spacing 6 is equal to 

from which (4.11) follows. 
The elastic strain of the consecutive springs is now 

which reduces to (4.21) at k = 1. The strain varies periodically with 
the spring number, compression and expansion alternating with a period 
equal to the dislocation spacing (Fig. 4.13, curve 2). In the cores of the 
dislocations the strain E~ = a(l/lclo - f )  is now greater than that in the 
core of a single dislocation. In between the dislocations, < = 0, 1, the strain 

no longer reaches the maximum strain e = -af as shown in Fig. 4.13 
(curve 2). With increasing dislocation density (decreasing k) the strain 
in the dislocation cores increases and the one in between the dislocations 
decreases in absolute value, i.e. the strain varies more and more symmetri- 
cally around the zero. When the sum of the positive strains become equal 
to that of the negative strains, or in other words, when the areas under 
the e(n) curve from either side of the zero become equal, the mean atomic 
spacing 6 = b. When the latter takes place, the natural misfit is completely 
accommodated by misfit dislocations, or in other words, by the periodical 
strain connected with them. When the positive and negative areas under 
the ~ ( n )  curve are not equal their difference gives the part of the natural 
misfit which is accommodated by homogeneous strain. 

We can now find the energy of the system. For this purpose we have to 
substitute the solution (4.23) into the continuum approximation of (4.15): 
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LP 2 L / 2  

E = iya2 J [ (2) - f] d n  + i W  J (1 - cos27rt) d n  . (4.28) 
2 

- L / 2  - L / 2  

Substituting 
(4.28) gives 

I w  2 (i’ 
-L 12 

(4.23) into the second integral of the right-hand side of 

LIZ 

1 - cos 2 7 4  d n  = W1: J [(32-$f] d n  
- L / 2  

and (4.28) turns into 

Substituting (4.19) into the above expression and carrying out the 
integration give the energy per atom (Fig. 4.18): 

where fd is given by (4.25) and 

is the complete elliptic integral of second kind. 

tion density fd gives 
Minimization of the energy per atom with respect to the mean disloca- 

(4.30) 

where the relationships d [ E ( k ) / k ] / d k  = - K ( k ) / k 2  and d [ k K ( k ) ] / d k  = 
E ( k ) / ( l -  k 2 )  are used. 

The condition for the lowest energy state then reads 

(4.31) 



4.2. Structure and Energy of Epitazial Interfaces 313 

MISFIT 

Fig. 4.14. Plot of the mean dislocation density f d  = (6 - a ) / a  vs natural misfit f = 
(b - .)/a in the 1D model (curve 1) and the 2D model (curve 2). The plot represents 
in fact the dependence of the average atomic spacing & on the bulk spacing b. At large 
enough values of the misfit 6 4 b and the misfit is accommodated completely by misfit 
dislocation. At misfits smaller than the stability limit f . , 6  = a and the misfit is 
accommodated completely by homogeneous strain. The overgrowth is pseudomorphous 
with the substrate. The straight line gives the case 6 = b (after van der Merwe [1975]). 

Substituting E ( k ) / k  from (4.31) into (4.29) gives the energy of the 
ground state: 

(4.32) 
1-k2 1 1-k2 Eo = Wli f2  - W - p -  = p a 2 f 2  - W- k2 * 

This means that as long as k = 1, €0 = 0.5ya2f2 and the pseudomor- 
phous state is always the ground state. 

Beyond the limit of stability the system in the ground state contains 
misfit dislocations whose density is determined by Eq. (4.25). Excluding k 
from (4.25) and (4.31) we find the mean dislocation density in the ground 
state as a function of the natural misfit. The dependence is plotted in 
Fig. 4.14 (curve 1). As seen the dislocation density is equal to zero up to  
the stability limit fs and then sharply increases and goes asymptotically 
to the value of the natural misfit. In fact, this is a plot of the mean atom 
spacing 6 relative to a as a function of the natural spacing b. 
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Let us analyze Eq. (4.29) in more detail. At k = 1 (dislocations far 
apart) it turns into 

where E(0) = Wl;f2 is the energy of the pseudomorphous state and f. is 
the limit of the stability of the pseudomorphous state (see Eq. (4.37)). 

The term 

represents the energy of a single misfit dislocation or a single soliton 

(4.34) 
4 

&I = -Wlo 
lr 

multiplied by the density of the dislocations, fd .  In other words, &d is the 
energy of the misfit dislocations. 

The second term 

is in fact the energy of the homogeneous strain. It turns out that in the 
case of noninteracting misfit dislocations ( I c  = l),  the energy is a sum of the 
energy of the homogeneous strain and the energy of the misfit dislocations, 
i.e. & = &d + &hs. 

The difference of the energies at k = 1 and k < 1 represents obviously 
the energy of interaction of the misfit dislocations. The latter is implicitly 
accounted for in the k-containing terms. The energy of interaction of a 
pair of dislocations has been calculated to give [Villain 1980; Theodorou 
and Rice 19781 the following asymptotic expression: 

(4.35) 

which is valid for dislocations far apart and N is a constant of the order of 
unity [Bak and Emery 1976; Theodorou and Rice 19781. The exponential 
behavior of the interaction energy obviously reflects the dependence of k 
on the mean dislocation density (4.26). 
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The energy of the incommensurate state then becomes 

(4.36) 

As shown above the pseudomorphous state is always the ground state as 
long as k = 1. When k < 1 the state with dislocations becomes the ground 
state, their density being determined by the value of k. Then from (4.31), 
with CC = 1, one obtains 

(4.37) 
2 

f l l0  
f = f s = - - ,  

which appears as the limit of stability of the pseudomorphous state. The 
limit of stability of a state with a particular density of dislocations is given 
by E!q. (4.31). Rank and van der Merwe calculated the value of Z, under 
the condition that the energies $JAA, $JBB and $JAB are equal and found 
10 = 7.35. Hence j s  2 9% in this particular case. 

As the strains (and the stresses) change their signs periodically 
(Fig. 4.13) there are obviously springs which are unstrained. If we cut 
such springs the parts of the chain to the left and to the right of the cut 
will remain in equilibrium with their free ends. This means that when 
a chain with a finite length is in equilibrium its hypothetical end springs 
with numbers n = -1 and n = N are unstrained. In such a case the end 
atoms will have a specific displacement 6. It can be found by assuming 
the periodic variation of the strain ~ ( n )  given by (4.27) crosses zero: 

As seen depends on the value of the misfit. When the misfit increases 
the end atom climbs the slope of its respective potential trough. Obviously, 
there exists a critical value of the misfit a t  which the end atom is just on 
top of the hill between its respective and the neighboring potential troughs, 
i.e. (0 = f1/2. If the misfit is infinitesimally increased the end atom will 
go down in the neighboring trough. The situation is equivalent to  the 
generation of a new misfit dislocation at the chain end. Mathematically this 
means that lif2 > 1/k2 and the quantity under the square root becomes 
negative. On the other hand, the misfit cannot be too small as this means 
that the quantity under the square root will become larger than unity and 
the equation will have no solution. Physically this means that under some 
critical value of the misfit an existing dislocation should leave the chain at 
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its free end. The above considerations are illustrated in Fig. 4.15 where the 
chains are shown in a folded form [Dubnova and Indenbom 19661. We have 
to imagine that each atom occupies the same position but in a separate 
potential trough. Figure 4.15(a) demonstrates a chain which does not 
contain misfit dislocations. All displacements lie between -1/2 and 1/2. If 
the natural misfit is equal to zero all atoms will lie in the bottoms of the 
potential troughs, i.e. <(n) = 0 (Fig. 4.15(b)). Increasing the misfit leads 
to a situation whenthe end atoms reach the tops of the respective hills, i.e. 
[(O) = -1/2 and <(N-1) = 1/2 (Fig. 4.15(c)). The difference of the overall 
lengths of the chains shown in Figs. 4.15(b) and (c) is precisely equal to a. 
This means that in Fig. 4.15(b) N atoms are distributed over N potential 
troughs whereas in Fig. 4.15(c) N atoms are distributed over N+1 troughs. 
The analogous situation for a chain containing one dislocation is shown in 
Figs. 4.15(d) and (e). In Fig. 4.15(d) N atoms are distributed over N + 1 
troughs while in Fig. 4.15(e), over N + 2 troughs. 

The necessary and sufficient condition for a finite chain in a certain state 
(dislocated or not, depending on the value of k) to  exist in equilibrium with 
its free ends is that the upper bound E(Q = 1/2) of the periodic variation 
of the strain e ( n )  (Eq. 4.27) be positive and the lower bound E(<O = 0) be 
negative. This leads to  

or in other words, to 

($ - 1 y 2  5 l o f  5 1 . 
(4.38’) 

The inequalities (4.38’) determine the interval of misfit in which there 
exist solutions of the sineGordon equation for a finite chain. Outside of 
this interval there are no solutions and the corresponding configurations do 
not exist. For a chain which is pseudomorphous with the substrate (k = 1) 
this interval is 

(4.38”) 

This means that the pseudomorphous state will be stable up to  f 5 fa 
and will exist, but not as a ground state, at misfits larger than f. but 
smaller than the limit of metastability 

1 O S f S - .  
10 
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Fig. 4.15. Illustration in a folded form of chains at different values of the misfit and 
containing different numbers of dislocations. Imagine that each atom has the same 
displacement as shown in the figure but is positioned in the next potential trough. 
(a) A chain without a dislocation at a misfit smaller than the metastability limit fms. 
(b) A chain without a dislocation at  f = 0. All the atoms are situated exactly at the 
bot tom of the corresponding potential troughs. (c) A chain without a dislocation at 
f = fm.. The end atoms are exactly on top of the crests between their respective 
troughs and the next ones. (d) A chain containing one dislocation at f = 0. (e) A chain 
containing one dislocation at f = fms. 
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MISFIT (IN%) 

Fig. 4.16. Misfit dependence of the potential energy per atom of a finite chain. The 
plot consists of a sequence of parabolic segments corresponding to states with increasing 
number of dislocations denoted by the figure at each segment. The segments intersect 
each other at the corresponding stability limits given by Eq. (4.31). fa and fma denote, 
respectively, the limits of stability (Eq. (4.37)) and metastability (Eq. (4.39)) of the 
pseudomorphous state. The solid line gives the ground state whereas the dashed lines 
represent the corresponding metastable states. 

1 
fma = lo . (4.39) 

Summarizing, we conclude that chains containing misfit dislocations 
will be stable beyond a misfit determined by Eq. (4.31). The value of the 
stability limit depends in this case on the density of the dislocations, or in 
other words, on the value of k. The region of metastability of dislocated 
chains is now shifted to larger limits according to (4.38’) determined again 
by the value of k. It follows that the misfit dependence of the energy 
of a finite chain of atoms will consist of intersecting parabolic segments 
(Eq. 4.29), each segment corresponding to a particular number of misfit 
dislocations increased by one (Fig. 4.16). The intersections define the 
corresponding stability limits, the first one being given by Eq. (4.37). Each 
segment is confined in a misfit interval determined by (4.38’). The envelope 
of the parabolic segments gives the ground state of the energy of infinitely 
long chain. 
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4.2.4.4. 2D model of Frank and van der M e w e  

In considering this problem we follow the analysis of van der Merwe [1970, 
19731. We consider an overlayer with rectangular symmetry and natural 
atom spacings bz along the z axis and b, along the y axis. The substrate 
periodic potential is given by Eq. (4.6). 

We enumerate the overlayer atoms and the substrate potential troughs 
by n in the x direction and by m in the y direction. Then the Carte- 
sian coordinates of an atom n,m from an arbitrarily placed origin of the 
coordinate system are 

As shown in Fig. 4.17 the linear and shear strains in the film are 

Making use of (4.40) gives 

(4.41") 

where 
by - a, and fy=- 

b, -az 
f z  = - 

a, a, 
(4.42) 

are the natural misfits in the two orthogonal directions. 
According to the theory of elasticity [Timoshenko 1934; van der Merwe 

19731 the stresses and the energy of isotropic elastic two-dimensional con- 
tinuum (rubber sheet) are given by 
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Fig. 4.17. Deformation of a rectangular unit atomic mesh of the overgrowth (open circles) 
from which the strains can be derived. The substrate atomic mesh is given by the filled 
circles (after van der Merwe [1975]). 

2Gt 
1 - v  Tz = - ( E z  +my) , 

2Gt 
y - l - u  
T - - ( ~ y  + Y E S )  , 

E = Gtbzby (4.43) 

where G is the shear modulus, v the Poisson ratio of the film material and 
t the thickness of the film which is equal to b, in our particular case of 
monoatomic overlayer, L being the direction normal to the interface. Then 
R = b,byb, is the volume of an overlayer molecule. 
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in mind (4.6) the potential energy of the overlayer is 

321 

The conditions of equilibrium of the nmth atom now read 

= O .  
aE d E  -- -- 

atnm aqnm 
Applying the first condition gives 

7r = -sin2n(En, . 
21: 

In the continuum limit 

(4.45) 
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and (4.45) turns into 

?r - sin 2x<,, . (4.46’) 

The second equilibrium condition gives the corresponding equation for 
qnm: 

(4.46”) 
where 

112 

(4.47) 
W, (1 - v)b; lx  = ( 

Wx(l - v)b: 

In the case of quadratic symmetry of the contact planes the above set 
of equations simplifies to [Frank and van der Merwe 1949bl 

a 2 c  1 8217 1 a2< 7r 

a 2 q  1 a2< 1 d2q ?r 

- + 2(1+ v)- + -(1 - v)- = -sin2?r~,, , (4.48’) 
dn2 andm 2 am2 212 

- + - ( 1 +  v)- + -( 1 - v)- = - sin 27rpnm , (4.48”) am2 2 dndm 2 an2 212 
where 

(4.49) 

If we are looking for solutions with edge type dislocations the mixed 
derivatives a2[/am2, d2q/dn2, a2[/dndm and d2r)/dnam vanish (in fact 
we neglect the shear strains E,, = 0) and the set of equations (4.46) turns 
into a set of two independent sineGordon equations 

a2< 7r 

a2r)  ‘IT 

-- - - sin 2?r[,, , 
dn2 21: 

- = - sin 27rvnm . 
am2 21; 

(4.50‘) 

(4.50“) 

One could consider the following limiting cases: 

(i) f, 0, < = [(n) and r )  = const (corrugation of the substrate surface 
in one direction only). The system (4.50) reduces to 

(4.51) 
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The solution of the first equation is given in the previous chapter. The 
solution of the second one is q = 0. The result is a sequence of edge type 
misfit dislocation lines parallel to the y axis and a homogeneous strain 
E~ = - fvay/bv in the y direction. Such situation is observed in the 
case of epitaxial growth of tetragonal MoSi2 on (100)-Si [Chen, Cheng 
and Lin 19861. The epitaxial orientations and the natural misfits in the 
two orthogonal directions are (100)[004]d 11 (100)[220],, f, = 2.34% and 
f, = O . l % ,  and (111)[112)d 11 (100)[220),, fz = 2.21% and fy = 0.1%. 

(ii) f, # far # 0, ,$ = ,$(n) and q = q(m). This is the general case 
leading to  a cross grid of misfit dislocations. Particular cases are f, = fa, 
(quadratic symmetry of the contact planes) and fz = -Iv. The latter is 
observed in some rare cases such as, for instance, in the epitaxial growth 
of tetragonal MoSi2 on (100)-Si [Chen, Cheng and Lin 19861 where the 
epitaxial orientation is (110)(004]d 11 (001)[220].. The natural misfits in 
both orthogonal directions are f, = 2.34% and f, = -1.69%. We will 
not treat this case here because considerations of the model with a more 
realistic anharmonic potential show a considerable influence of the sign of 
the natural misfit on the properties of the model. 

Following the same procedure as before we find the solutions for t(n) 
and 9(m) which have the same form as Eq. (4.22) with the only exception 
that Zo is replaced by 1, and I , .  The first and the second integrals now read 

(4.52) 

(4.53) 

and the corresponding solutions for q(m) have the same form. 

(with eZy = 0) 
Substituting the solutions into the continuum approximation of (4.44) 

(4.54) 
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gives for the energy per overlayer atom the expression 

where fd(z)  and fd(y) are the mean dislocation densities, and k, and k, 
are the corresponding moduli of the elliptic integrals in the two orthogonal 
directions 5 and y, respectively. 

In the case of quadratic symmetry (fx = fy = f ,  f d ( z )  = fd(y) = fd, 

k, = k, = k, W ,  = Wy = W ) ,  

As seen the first term in the round brackets (which is multiplied by 2 to 
account for the grid of misfit dislocations) in (4.56) is identical in form with 
Eq. (4.29). Both expressions differ only in the second term which includes 
explicitly the Poisson ratio. The last term in (4.55) and (4.56) contains the 
difference fd - f = fe which is in fact the residual homogeneous strain and 
should vanish at large misfits when fd = f in the ground state. 

Minimization of the energy with respect to f d ( 5 )  (or fd(3)) yields the 
condition for the ground state: 

The corresponding expression for fy can be easily obtained. 
Bearing in mind (4.47) the latter simplifies to 

(4.57) 

(4.58) 

The condition k, = 1 gives the limit of stability of the pseudomorphous 
state 

(4.59) 2 aybx 
fs(.) = - - V-fy , nl, byaz 
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which for quadratic symmetry reduces to 

A 

= nl( 1 + v) . (4.60) 

Note that in the 2D case the stability limit fs(z) in one of the directions 
depends on the misfit in the other orthogonal direction. The latter reflects 
the increased dimensionality of the system. 

Substituting the elliptic integrals E(k, )  and E(k,) from (4.58) the 
respective expression for f, in (4.55) gives the energy of the ground state: 

In the case of quadratic symmetry (4.61) reduces to 

1 - k2 
k2 12f2(1+ u )  - - - 

which for k = 1 gives the energy of the commensurate state 

&in = 2W12f2(1+ v) , (4.62) 

in which the term 1 + v containing Poisson’s ratio accounts for the dimen- 
sionality of the system. 

4.2.4.5. Comparison of 2D and 1D models 

In order to  compare numerically the 1D and 2D models we have to first 
find a relation between the shear modulus G and the force constant 7. For 
a quadratic symmetry of the contact planes this relation reads [van der 
Merwe 19731 

7 b  = Eb2 

where E is Young’s modulus. The theory of elasticity [Hirth and Lothe 
19681 gives the relationship between Young’s and the shear moduli: 

E = 2G(1+ u )  . 

Upon substitution we find 

7 = 2G(1 + u)b . (4.63) 
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Then from (4.17) and (4.49) follows 

10 

d c 7 .  
l = -  

F’rom (4.37), (4.60) and (4.64) we find 

(4.64) 

(4.65) 

With a reasonable value for u = 1/3, [(l - u) / ( l  + v) ] ’ f2  = 1 / h  or 
fs(2D) = fs(lD) /d.  Recalling that fs( lD) 9% with lo 2 7, fs(2D) E 
6%, or in other words, Poisson’s effect in 2D systems leads to  a considerable 
decrease of the stability limit. 

The dependence of the mean dislocation density fd on the natural misfit 
in the case of quadratic symmetry of the contact planes has the same 
behavior as shown in Fig. 4.14 (curve 2).  The only exception is that it 
does not increase as steeply as the mean dislocation density fd(1D) in the 
1D case. 

Figure 4.18 demonstrates the dependence of the energy per atom in 
both the 1D and 2D models. The difference is more pronounced in the 
lowest energy state (curves 1 and 2).  The difference of the energies when 
they are not in the ground state (curves 1’ and 2’) is due to the last term 
of Eq. (4.56) which vanishes at large misfits. 

4.2.4.6. Application of 1 D model to  thickening overlayer 

Obviously the 1D Frenkel-Kontorova model is inadequate for describing the 
case of thickening overlayers as three very important factors are not taken 
into account. The first is the rigidity of the substrate, which is believed 
to  be valid for very thin deposits not exceeding one or two monolayers. 
The second is the strain gradient normal to the interface when the latter 
is resolved in a sequence of misfit dislocations. As long as the underlying 
monolayer is homogeneously strained to fit the substrate the upper one is 
strained to the same degree. After breaking up of the commensurability 
the amplitude of the periodic strain in every next monolayer is smaller than 
that of the previous one. The mathematical treatment of the problem is 
formidable [Stoop and van der Merwe 19731. The third is Poisson’s effect 
in a direction normal to the interface. Obviously, if, for example, 6 > a and 
at least part of the natural misfit is accommodated by homogeneous strain, 
the overgrowth will be compressed in a direction parallel to the interface. 
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Fig. 4.18. Plots of the misfit energy per atom versus misfit in 1D model (curves 2 and 
2’) and 2D model with quadratic symmetry (curves 1 and 1‘). Curves 1 and 2 represent 
the ground state energies. Curves 1’ and 2’ represent the energies when the misfit is 
completely accommodated by misfit dislocations (6 = 6) and the homogeneous strain is 
equal to zero (after van der Merwe [1975]). 

At the same time, the overgrowth will be expanded in a direction normal 
to the interface. 

Assuming as a first approximation that (i) the substrate is rigid, (ii) no 
strain gradient normal to the interface exists and (iii) the normal strain due 
to Poisson’s effect is negligible, one can obtain qualitative results which give 
a good enough impression concerning the properties of a “thick” overlayer 
[van der Merwe et al. 19861. 

We simulate the thick overgrowth by 1D chains of atoms “piled up” 
one on top of the other. The film will in general be pseudomorphous 
with the substrate up to some critical thickness which is a function of 
the natural misfit. This follows from the fact that homogeneous strain 
accumulates linearly with increasing film thickness and at some value 
of the latter the strain energy becomes greater than the energy of the 
misfit dislocations. Then the commensurability breaks down and misfit 
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dislocations are introduced at  the interface. The homogeneous strain is 
replaced by a periodic strain and the overgrowth lattice is on average 
relaxed. Obviously, if the misfit is small the critical thickness will be 
large, and vice versa. The aim of this oversimplified model is to give some 
indication of the misfit dependence of the equilibrium critical thickness. 

The thickness t of the film is then given by 

t = t ,  = nb,  (4.66) 

where n denotes the number of atom chains “piled” up one on top of the 
other. 

Another oversimplified assumption concerns the force constant or “rigid- 
ity” of the overlayer 

’Yn = n’Y (4.67) 

Replacing lo by I ,  in the 1D model gives the solution of the model of 
thick overlayer. Thus the limit of stability becomes 

(4.69) 

The commensurability breaks down when k = 1 and this happens at 

(4.70) 
some critical thickness 

t c  R . = n c = -  
b 

at a misfit 
f = fdnc) = fs/& ’ (4.71) 

It follows from (4.70) and (4.71) that the equilibrium critical thickness 
beyond which the film will no longer be pseudomorphous with the substrate 
is 

2 

t , = b ( $ )  . (4.72) 

As follows from this oversimplified model the critical thickness for 
pseudomorphous growth decreases steeply with increasing lattice misfit and 
goes to infinity when the misfit vanishes. This behavior agrees qualitatively 
with the experimental evidence and, as will be shown below, appears as a 
better approximation for large misfits. Obviously, Eq. (4.72) cannot be 
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compated quantitatively with experimental data but it has one important 
advantage. It can be used to predict qualitatively the influence of the 
anharmonicity of the interatomic forces on the cirtical thickness of expanded 
and compressed epitaxial films as will be shown in Sec. 4.2.4.7.1. 

4.2.4.7. 1 D model with non-Hookean interatomic forces 
One of the basic restrictions of the model adopted originally by Rank and 
van der Merwe [1949] which makes it applicable for small lattice misfits only 
is the purely elastic interactions between neighboring atoms as a substitute 
of the real interatomic forces (see Fig. 4.7). This restriction can be relaxed 
by replacing the harmonic approximation with one of the more realistic 
pairwise potentials (4.1)-(4.3). Besides, one can use a combination of 
a Toda potential and a real potential such that the respective repulsive 
branches coincide. Then they will differ only for values of T larger than TO, 
and by comparison of the results one can distinguish the purely anharmonic 
effects from those due to the nonconvexity of the real potentials. This is 
shown in Fig. 4.6 where the Toda potential is plotted with a = 2 and 
p = 6 together with the generalized Morse potential (4.3) with p = 4, 
v = 3 and Vo = 1. The repulsive branches are indistinguishable and the 
two potentials differ perceptibly only at r > 1.2~0.  Moreover, the harmonic 
approximations of both potentials coincide (the broken curve) so that we 
can refer our results to those obtained with the harmonic potential. 

In principle an anharmonic potential can be constructed by joining two 
parabolic segments, V ( r  5 TO) = ~ ~ I ( T - T o ) ~  and V ( r  2 T O )  = ; ~ ~ ( T - T o ) ~  

with 71 > 7%. This potential does not display a finite force at large T as in 
the case of the Toda potential. Nevertheless, we will use the latter in our 
considerations and will study only the effect of the anharmonicity. 

4.2.4.7.1. Effect of anharmonicity in epitaxial interfaces 

Making use of the Toda potential (4.4) and the substrate periodic potential 
(4.8), the potential energy of the chain reads [Milchev and Markov 1984; 
Markov and Milchev 1984a] 

w N-1 

+ - c (1 - cos 27&) . 
n=O 

2 (4.73) 
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The equilibrium condition aE/a&, = 0 leads to the set of equations 

which turns into the harmonic set (4.16) when expanding the exponents in 
Taylor series up to the linear term a t  p + 0. 

In the continuous limit the system (4.74) turns into an anharmonic 
analog of the sineGordon equation [Milchev and Markov 19841 and an 
analytical solution can be found [Milchev 19861. On the other hand, the 
discrete system (4.74) can be easily solved numerically and the properties 
of the model studied. 

The disparity in the structural properties of the overgrowth with respect 
to  the sign of the misfit is clearly demonstrated in Fig. 4.19 [Markov and 
Milchev 19851 where the variation of the strains of the consecutive springs 
E,, = tn+1 - En - f is shown. As seen the expanded dislocationless chain 
(f = -10%) is in a much better fit with the substrate periodicity than is 
the compressed one (f = 10%). Neglecting the deviations near the chain 
ends the strains of the springs in the expanded chain are exactly equal to 
the absolute value of the lattice misfit. In the compressed chains, however, 
the strains approach the lattice misfit but do not become equal to it. The 
latter means that an expanded overgrowth adheres more strongly to  the 
substrate than does the compressed one. 

One of the most significant results of the anharmonic model is the split 
of the limits of stability fs and metastability fms with respect to  the misfit 
sign. As shown in Fig. 4.20 [Markov and Milchev 1984b], increasing the 
degree of anharmonicity p results in a reduction in the values of fs and 
fms for compressed chains ( b  > a) and in an increase in the absolute 
values of fs and fms for expanded chains ( b  < a ) .  The respective values 
for the harmonic model are given by the dashed lines. Thus the harmonic 
limit of stability fa = *8.6% splits into +6.7% and -12.2% whereas the 
limit of metastability fks = f13.6% splits into +10.2% and -23.2% at 
some average degree of anharmonicity /3 = 6. Therefore a pseudomorphous 
overlayer can be in a state of stable (below fs) or metastable (below fms)  

equilibrium up to quite different stability limits at positive and negative 
incompatibility with the substrate. 
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Fig. 4.19. Plot of the strains of the consecutive springs in compressed (f = 10%) and 
expanded ( f  = -10%) anharmonic Toda chains. (I. Markov and A. Milchev, Surf. Sci. 
148, 313 (1984). By permission of Elsevier Science Publishers B.V.) 

Another very important conclusion which follows from the split of the 
critical misfits with respect to  the misfit sign is connected with the critical 
thickness for pseudomorphous growth. As discussed above (Eq. 4.72) the 
latter is qualitatively proportional to the square of the limit of stability 
f.. I t  should be expected that the critical thickness for pseudomorphous 
growth will be 3 to  4 times greater when the natural misfit is negative 
rather than positive, if all the other parameters remain unchanged. This 
prediction of the model seems particularly important for the epitaxial 
growth of semiconductor films and strained layer superlattices where the 
dangling bonds associated with the misfit dislocations have a deleterious 
effect on the properties of the corresponding heterojunctions. LPE grown 
In,Gal-,As,P1-, on (100) InP shows clear asymmetric behavior of the 
critical thickness for pseudomorphous growth with the sign of the misfit 
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Fig. 4.20. The characteristic split of the limits of stability j .  and metastability fm. of 
the pseudomorphous state with the sign of the natural misfit when anharmonic (Todr) 
interactions between the overgrowth atoms are adopted. The critical misfits are plotted 
versus the degree of anharmonicity p of the Toda potential. The dashed lines give the 
critical misfits f: and j;,, in the harmonic approximation. (I. Markov and A. Milchev, 
Surf. Sci. 145, 313 (1984). By permission of Elsevier Science Publishers B.V.) 

[Krasil’nikov e t  al. 19881. The critical thickness of the expanded epilayers 
is always greater than that of the compressed epilayers (Fig. 4.21). The 
same is observed in MBE grown In,Ga~-, As on (100) InP [F’ranzosi et al. 
19861. 

It follows that an epitaxial film with a given thickness and different 
values of the misfit in different crystallographic directions x and y can be 
pseudomorphous with the substrate when the absolute values of the nega- 
tive misfit are even larger than the values of the positive misfit at a different 
epitaxial orientation. An excellent example is the deposition of tetragonal 
and hexagonal MoSi2 (t-MoSi2 and h-MoSi2) on the (111) and (100) faces of 
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Fig. 4.21. Plot of the critical thickness for pseudomorphous growth versus the natural 
misfit of LPE grown In,Ga1-,AsyP1-, on InP(001). The misfit is varied by changing 
the alloy composition. The asymmetrical behavior around a zero misfit is clearly seen. 
(V. Krasil'nikov, T. Yugova, V. Bublik, Y. Drozdov, N. Malkova, G. Shepenina, K. 
Hausen and A. Rezvov, Sou. Phys. Crystallogr. 33, 874 (1988).) 

Si, respectively [Chen, Cheng and Lin 1986; Lin and Chen 19861. In the first 
case, the epitaxial orientation is (110)[004]d 11 (111)[202],, the values of the 
naturd misfit are 2.34% and 2.21%, and the epitaxial interface is resolved 
in a hexagonal grid of misfit dislocations. In the second case, the epitaxial 
orientation is (!24!23)[2II2]d 11 (001)[220],, fz = -2.89%, f, = -1.84%, and 
the film is pseudomorphous with the substrate. Even more illustrative is 
the case where the epitaxial orientation is (111)[112]d 11 (111)[202]. and the 
values of the misfit are 2.21% and -2.68%. Instead of a hexagonal grid of 
dislocations, which is expected on the base of the harmonic model, a set of 
parallel dislocation lines is observed. The film is partially pseudomorphous 
even though the absolute value of the negative misfit is larger than the 
value of the positive one. 

Figure 4.22 shows the characteristic split of the misfit dependence of 
the mean dislocation density fd with respect to the misfit sign [Markov 
and Milchev 1984bI. The stepwise behavior is due to  the finite length of 
the chains used for the computation. It must not be confused with the 
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“devil staircase” [Aubry 19831. As seen, fi is always smaller than fd+ 
although the difference gradually decreases at large natural misfits. It can 
also be seen that the harmonic approximation is much closer to the positive 
misfit curve. What is more important, however, is that the curves, although 
shifted from the harmonic one, preserve their continuous character. In other 
words, the transition from the pseudomorphous (fd = 0) to the completely 
dislocated (fd = f) state is gradual and there is a misfit interval in which 
homogeneous strain and misfit dislocations coexist. 
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Fig. 4.22. Plot of the mean density of misfit dislocations of the ground state in the 
anharmonic Toda chain versus positive (dashed line) and negative (solid line) natural 
misfit. The curves are shown in one and the same quadrant for easier comparison. .f$ 
and fa- denote the corresponding limits of stability. The dotted line gives for comparison 
the mean dislocation density in the continuous harmonic model of Frank and van der 
Merwe (1949al. (I. Markov and A. Milchev, Surf. Sci. 145, 313 (1984). By permission 
of Elsevier Science Publishers B.V.) 

The misfit dependence of the ground state energy per atom is shown 
in Fig. 4.23 [Markov and Milchev 1984bJ for both positive (the dashed 
line) and negative (the solid line) misfits. The curves consist of a series of 
curvilinear segments as in the harmonic case (see Fig. 4.16). The segments 
again correspond to different numbers of misfit dislocations increasing from 
zero by one. It is seen that in the case of a compressed chain and particularly 
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Fig. 4.23. Plot of the energy of the ground state per atom of the anharmonic Toda chain 
versus positive (dashed line) and negative (solid line) natural misfit. The separate curvi- 
linear segments represent states with different numbers of misfit dislocations denoted by 
the figure at each segment (N = 30, a = 2, @ = 6) .  (I. Markov and A. Milchev, Surf. 
Sci. 145, 313 (1984). By permission of Elsevier Science Publishers B.V.) 

at small misfits the energy is considerably higher. At larger misfits the 
energy curves go closer and merge eventually. At low misfits, both positive 
and negative, the first sum in Eq. (4.73) (the strain energy) is dominant. At 
a positive misfit the steeper repulsive branch of the interatomic potential 
is mainly involved and accordingly the energy is higher than in the case of 
a negative misfit, where the strain energy is determined by the weaker 
attractive part of the interaction. At larger misfits, both positive and 
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negative, the second sum in (4.73) predominates and the energy difference 
between the two cases gradually vanishes. It is worth noting that the 
harmonic curve (not shown in the figure) is again much closer to the positive 
misfit curve. The above result is in agreement with the finding of Murthy 
and Rice [1990] that the interface energy of the low positive misfit couple 
Cu/Ni(001) (f = 2.56%) is considerably greater than that of the negative 
misfit couple Ni/Cu(001) (f = -2.49%). 

It can be concluded that the negative misfit appears to be more favorable 
than the positive misfit for epitaxial growth of thin films. If several 
epitaxial orientations are possible for a given overgrowth material on the 
same substrate plane, the orientation connected with a negative misfit 
should be favored as it is connected with a lower energy. An example 
for that is the orientation of Ag on (001) GaAs mentioned above [Massies 
and Linh 1982a,b,c]. At temperatures lower than 2OOOC the epitaxial 
orientation is (110)[111],4, 1 1  (OOi)[ilO],,,, with fz  = 2.23% and f, = 
-3.62%. At higher temperatures the overgrowth is in parallel orientation 
(001)[010]~, 11 ( 0 0 I ) [ 0 1 0 ] ~ ~ ~ ~  and the lattice misfit in both orthogonal 
directions is negative: fz = f, = -3.62%. 

4.2.4.7.2. Influence of nonconvexity in epataxzal interfaces 

A. Model 

The effect of anharmonicity can be more or less intuitively predicted from 
the asymmetry of the interatomic potential. This is not, however, the 
case with more real potentials where the nonconvex character leads to an 
existence of a maximal force between the atoms at  the inflection point and 
to distortion of the chemical bonds when stretched out beyond the latter. 
That is why we will consider this case in more detail. 

In order to study the effect of the nonconvexity of the real potentials we 
will use the generalized Morse potential (4.3). The latter has an inflection 
point 

(4.75) 

beyond which the second derivative d2V/dr2 becomes negative and has a 
minimum a t  

(4.76) 
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The value of the minimum 

(4.77) 

determines the maximum driving force for distortion to occur. 

of a “real” chain consisting of N atoms reads 
Making use of the generalized Morse potential (4.3) the potential energy 

N - 1  
+ w c (1 - cos27r<,) 

n=O 
2 

(4.78) 

Accordingly the system of equations giving the equilibrium displace- 
ments of the atoms reads 

where 
(4.80) 

B. E ~ s t e n c e  of solutions 

An examination of (4.79) concerning the existence of solutions is not 
possible in the general case as the equations are not solvable with respect to 
the highest variable therein. That is why we will consider the simplest case 
of a Morse chain ( p  = 2w/b, v = w / b ) ,  bearing in mind that examination 
of other cases (e.g., p = 3, v = l), although more complicated, leads to the 
same conclusion. 

The set of difference equations governing the behavior of a Morse chain 
can be written in terms of the strains en = - t, - f instead of the 
displacements <, in the form [Markov and Trayanov 19881 
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{ l=- f , - - ln  wa ( I f  /-). I-- 

b 
wa 

€,+I = -f1 - - 

(4.81) 

where 
bln 2 

f: = -- 
J I  wa 

is the misfit which corresponds exactly to the inflection point of the Morse 
potential (see Eq. (4.75)). 

One may look for a solution of Eqs. (4.81) provided the logarithmic 
terms therein are well-defined analytical functions, i.e. when their argu- 
ments are non-negative. This condition is fulfilled when the discriminants 
D under the square roots are positive for positive signs before the square 
roots, or positive but smaller than unity for negative signs before the roots. 
When the sign before the root is positive for D > 0 the corresponding 
strain Entl is always smaller than -f;. In the other case of negative sign 
for 0 < D < 1 the strain &,+I will be greater than -fi. This emphasizes 
the fundamental role that the inflection of the real potential plays. The 
latter becomes clearer when distortion of the chains at negative misfits takes 
place. Thus when the strains of both the long and short bonds are greater 
than -fi, the negative sign only enters the equations. When the strains 
of the short and long bonds are smaller and greater than -fi, respectively, 
positive and negative signs alternate in the consecutive equations of the 
system (4.81). 

The condition for existence of solutions D > 0 leads to the inequalities 

wvo nW 
2b a 
- > - sin 2.rrSo . 

w v ,  TW - > -- sin 2TtN-1 . 
2b a 
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which means that in order to  have solutions of the system (4.81) the 
resultant force exerted on the nth atom by the (n-1)th and by the substrate 
must be smaller than the theoretical tensile strength (Tth = wVo/2b of the 
Morse potential. If this is not the case the corresponding bond will break up 
and the chain will loose its integrity. This is just what happens to the most 
expanded bonds in the cores of the misfit dislocations at  positive misfits. 
The dislocations core bonds are stretched out and when their strains cc 
become equal to  -f,, or in other words, when the force applied to the 
bonds becomes equal to Bth, the chains break up. 

Figure 4.24 represents the strain cc of the bonds in the cores of the 
dislocations as a function of the natural misfit. It is interesting to note 
that eC = 0 when the misfit reaches the limit of metastability of the given 
state just as in the harmonic model. At some critical misfit the core strain 
cC reaches -fi with infinite slope and the chain breaks up just in the 
dislocation core. This does not mean that bonds that are stretched out 
more than -fi cannot exist. As will be shown below in the case of chain 
distortion, bonds dilated much more than -fi can exist without rupture. 
The explanation is simple if one looks at Fig. 4.11. In the case of a positive 
misfit the dislocation represents an empty trough and the atoms on both 
sides of the core bond are located in such a way that the force exerted by 
the substrate is destructive. It is just the opposite in the case of distorted 
chains at negative misfits greater in absolute values than -f,. The force 
exerted by the substrate on the atoms on both sides of the more expanded 
bonds is not destructive but tends to keep them together (see Fig. 4.6). 

MISFIT 

Fig. 4.24. Variation of the strain in the cores of the misfit dislocations versus positive 
misfit at different values of the relative substrate modulation W/Vo, given by the figure 
at each curve. The dashed line gives the maximum tensile strain permitted. (I .  Markov 
and A. Trayanov, J .  Phya. C: Solid State Phys. 21,  2475 (1988). By permission of IOP 
Publishing Ltd.) 
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C. Distortion of chemical bonds 

We consider first an infinite chain. The undistorted state is one in which 
all atoms are equally spaced at a distance equal to the substrate potential 
period a (Fig. 4.25(a)). A distorted chain can be dimerized so that short and 
long bonds alternate [Haas 1978, 19791 (Fig. 4.25(b); see also Marchand, 
Hood and Caille [1988]). As mentioned above, this phenomenon is due to 
the fact that the average energy of one long and one short bond is smaller 
than the energy of a bond of intermediate length. In a dimerized chain 
the displacements of the consecutive atoms are equal in absolute value and 
opposite in sign: (,,+I = [,,-I = -tn. 

Fig. 4.25. Distortion patterns in the chain model of Frank and van der Merwe with real in- 
teractions: (a) undistorted state, (b) dimerised state, (c) trimerised state, 
(d) tetramerised state, (e) pentamerised state. (I. Markov and A. Trayanov, J .  Phys. 
C: Solid State Phys. 21, 2475 (1988). By permission of IOP Publishing Ltd.) 

Obviously, a strong substrate-deposit interaction (W >> VO) favors the 
undistorted structure. A distorted structure will be tolerated when the 
ratio W/Vo is small enough. Thus, applying the condition <,,+I = -& to 
(4.79) for W/Vo in the limit <,, + 0 one obtains 

(4.83) 

This dependence of W/Vo vs f outlines an area in which the dimerization 
is energetically favored. It is plotted in Fig. 4.26 (curve A). As seen, i t  starts 



4.2. Structure and Energy of Epitan'al Interfaces 34 1 

0 0.3 0.6 
MISFIT 

Fig. 4.26. Phase diagram W/Vo versus misfit of existence and stability of distorted and 
undistorted states. Curve A outlines the area of existence and stability of dimerised 
state. Curve B outlines the region of existence of trimers. Curve C divides the regions 
of stability of dimerised and trimerised states. (I. Markov and A. lkayanov, J. Phya. C: 
Solid Slate Phys. 21, 2475 (1988). By permission of IOP Publishing Ltd.) 

at f = f, given by 
j a = - = -  To - T i  14Cllv) 

a 4Cl- v )  
and displays a maximum at f = fm (cf. (4.76)): 

(4.84) 

(4.85) 

The maximum value reads 

which corresponds to the maximum driving force (4.77) for distortion to 
occur. Clearly dimerization cannot take place when W > W,. 
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Fig. 4.27. Plot of the energy per atom of a distorted (dimerised) chain versus substrate 
modulation W (in units of Vo) at  a constant misfit f = f m .  Estr, Eint and Etot = 
E,,, + Eint denote the energies of the strain (the first sum in Eq. (4.78)) and the 
interfacial bonding (the second sum in Eq. (4.78)). Eund denotes the energy of the 
undistorted state. As seen Eint vanishes at the maximum substrate modulation W, 
(Eq. (4.86)) (see Fig. 4.26). (I. Markov and A. Trayanov, J .  Phys. C: Solid State Phys. 
21, 2475 (1988). By permission of IOP Publishing Ltd.) 

The energy of the distorted state consists of two parts (Fig. 4.27): the 
strain energy Eat, composed by the energies of the short and long bonds, and 
the energy of interaction with the substrate, Eint, due to the displacements 
of the atoms from the bottoms of the potential troughs. As can be seen the 
total energy of the distorted state, Etot = Est, + Eint, is smaller than the 
energy of the undistorted state Eund and merges with it when the maximum 
value W, is reached. Recall that at W > W,,, the distortion disappears. 

We consider further the formation of trimers or alternation of two 
equally short and one long bonds (Fig. 4.25(c)). Within the trimer &+I = 
-&-I and (,, = 0. The curve that outlines the area of existence of trimers 
lies under that of dimers (Fig. 4.26, curve B), its maximum value at  f = fm 

being given by 

(4.87) 
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Curve C in.Fig. 4.26 separates the regions of stability of dimers and 
trimers. Below it dimers still exist but not as a ground state. 

In the same way we consider tetramers, pentamers, etc. (Figs. 4.25(d) 
and 4.25(e)). By repeating the same procedure we find that the regions 
of existence of polymers with degrees of polymerization higher than 2 are 
included in that of dimers. It follows that curve A separates the regions of 
stability of distorted and undistorted states. It can be concluded that at 
W > W, no distortion of infinitely long chains takes place, irrespective 
of the value of the natural misfit. Besides, the higher the degree of 
polymerization the smaller the value of W at which the corresponding 
polymers are energetically favored. In the limit W + 0, the degree of 
the energetically favored polymers goes to infinity, which in practice means 
disappearance of distortion (this is equivalent to alternation of an infinite 
number of short bonds and one long bond which in fact means undistorted 
structure). 

Let us consider now a chain of finite length. It will be distorted if 
appropriate values of W/Vo and f are selected. If this is not the case, the 
middle part of the chain will not be distorted but it turns out that the end 
parts of the chain will always be distorted as long as I f 1  > l f J ,  irrespective 
of the value of WJVo. The latter is evidently due to the asymmetry of 
the atomic interactions near the free ends. As will be shown beIow, this 
edge effect leads to significant results concerning the metastability limit 
of the pseudomorphous state and the activation energy for introduction of 
dislocations at the free ends. 

A two-dimensional distortion of the chemical bonds (clustering of 4 and 
8 atoms) has been theoretically predicted with the help of the embedded 
atom method in a Ni monolayer grown on Ag(001) by Bolding and Carter 
“921. The absolute value of the negative misfit is very large, f = -13.9%. 
The growth of the second monolayer causes a relaxation of the distortion of 
the first monolayer bonds, i.e. atoms of the first monolayer tend to occupy 
the bottoms of the potential troughs of the silver substrate. The bonds 
in the second monolayer become distorted but their distortion is weaker. 
After deposition of four monolayers the distortion of the bonds between 
the atoms of the first monolayer practically vanishes. Thus, the Ni atoms 
closest to the substrate are under the largest uniform expansive strain and 
the strain diminishes away from the contact plane. 
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D. Width of misfit dislocations 

As shown above, the width of a single misfit dislocation in the harmonic 
model, l o ,  is determined solely by the energetic parameters of the system 
and does not depend on the natural misfit. It is quite clear that  the 
anharmonicity of the real potentid will strongly affect the dislocation width. 
This follows from the fact that the dislocations have different configuration 
at different signs of the natural misfit (Fig. 4.11). In the harmonic limit 
both the repulsive and attractive branches of the interatomic potential axe 
equally steep and the dislocation width is one and the same. 

The dislocation width can be expressed as a function of the core bond 
strain E ~ :  

(4.88) 

Note that E~ has the same sign as f. In the harmonic case, E$ = E; = 
a(l/ lo - f )  (Eq. (4.21)) and 1 = lo .  This is not, however, the case 
when the interatomic potential is asymmetric. Different branches of the 
potential determine the values of E~ and 1. The situation becomes even 
more complicated when the interatomic potential is not only asymmetric, 
as is the Toda potential, but is nonconvex like the real potential. 

14 i 

I 
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Fig. 4.28. Variation of the width of the misfit dislocations with natural misfit in a real 
chain: curve 1 - negative misfit; curve 2 - positive misfit; curve 3 - positive mirfit 
with Toda potential (a = 2, p = 6). The dashed line denoted by lh gives the harmonic 
reference with y = 12 (N = 8 0 , p  = 4,v = 3, W/Vo = 1). (I. Markov and A. 'Itayanov, 
J .  Phys. C: Solid State Phys. 21, 2475 (1988). By permission of IOP Publishing Ltd.) 
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Figure 4.28 shows the dependence of the dislocation width on the misfit 
for long enough chains to rule out the effects of the free ends. As seen 
(curve 2), I increases with positive misfit in a limited interval of the 
latter. The right-hand limit is in fact the limit of metastability f$a of 
the configuration with particular density of dislocations as in the harmonic 
case. The core strain cc = 0 and I,,, = l/fis. The left-hand limit fc is 
determined by the condition cc = -f, which means a rupture of the core 
bond. Then lmin = l/(-fi + fr ) .  For f < fr ,  the condition of existence 
(4.82) is no longer fulfilled. Thus, the interval of existence of solutions with 
a given dislocation density in real compressed chains is not determined by 
the conditions for generation and escape of dislocations at the free ends, 
but by those for generation and destruction of dislocations. The latter 
t a k a  place by breaking up of the bonds in the cores of the dislocations. 
Curve 3 gives the dislocation width as obtained with the help of the Toda 
potential (a = 2, p = 6, Fig. 4.6). Obviously, the tendency is the same, as 
the potential of Toda also displays a finite force at large T (Fig. 4.8(a)). 

In the case of negative misfit (curve l), however, nothing dramatic 
happens. The dislocation width again increases with the latter. The strain 
in the core of the dislocation is compressive and slowly increases in absolute 
value with increasing misfit. The condition (4.82) is always fulfilled. 

E. Energy 

The behavior of the energy versus misfit curve of a real chain differs 
qualitatively from that in the harmonic case (see Fig. 4.16), particularly 
at positive misfits. At small values of W(W/Vi < 0.5) the positive misfit 
dependence of the energy is similar to the harmonic one. At larger values of 
W, however, the E ( f )  dependence consists of curvilinear segments which do 
not intersect each other (Fig. 4.29(a)) due to the rupture of the core bonds. 
This tendency becomes stronger with increasing W (Fig. 4.29(b)) and in 
the case of shorter chains the effect of core bond rupture is so strong that 
the segments do not overlap and gaps appear between them in which no 
solutions of the system (4.79) exist. This is seen more clearly in Fig. 4.30, 
where the dependence of the energy on chain length {s shown at a constant 
d u e  of the positive misfit. Gaps without any solution exist for short chains 
and disappear for longer chains. The energy shows a sawtooth behavior and 
the introduction of each new dislocation is connected with an abrupt energy 
drop, which is uncharacteristic for the harmonic model. 



346 Epitazial Growth 

I 

MISFIT 

Fig. 4.29. Variation with positive misfit of the energy per atom in units of W : 
(a) W/Vo = 0.5; (b) W/Vo = 4. The figure at each curvilinear segment denotes the 
number of dislocations (N = 80, p = 4, v = 3). (I.  Markov and A. Trayanov, J .  Phys. 
C: Solid State Phys. 21, 2475 (1988). By permission of IOP Publishing Ltd.) 
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Fig. 4.30. Dependence of the energy per atom in units of W on the chain length. The 
number of dislocations in the ground state is denoted by the figure on each segment. 
The gaps without solutions at small chain lengths due to breaking of the dislocation core 
bonds are clearly demonstrated (W/Vo = 4, j = 0.2, p = 4, v = 3). (I. Markov and 
A. Trayanov, J .  Phys. C: Solid State Phys. 21, 2475 (1988). By permission of IOP 
Publishing Ltd.) 

The above result leads to a definite conclusion concerning the process 
of layer-by-layer growth of epitaxial overlays which are compressed and 
strongly bound to the substrate. Small monolayer islands are coherent 
with the substrate. After incorporating some more adatoms a dislocation 
is introduced at  the free boundary but its core bond is stretched out more 
than the theoretical tensile strength of the material. The overlayer island 
thus breaks up into two smaller islands. This process continues until the 
density of such small coherent islands becomes large enough. Then they 
begin to coalesce with each other to produce bigger islands. The gaps shown 
in Fig. 4.30 disappear and the overgrowth islands can grow further by the 
incorporation of single adatoms. This process takes place if the misfit is 
larger than the stability limit f,S. If this is not the case, the overlayer islands 
grow by the incorporation of single adatoms and are pseudomorphous with 
the substrate until complete coverage of the latter. As the coalescence 
begins at a later stage of growth the monolayer film will consist of a large 
number of small monolayer islands. The adatom concentration on top of the 
small islands is insufficient to give rise to nucleation of the upper monolayer 
[Markov and Stoyanov 1987) and hence the formation of the latter will be 
delayed. Thus layer-by-layer growth and in turn the much slower damping 
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of the RHEED intensity oscillations will be favored at positive misfit and 
strong bonding across the interface. Recently Becker et al. [1993] reported 
fragmentation upon high temperature annealing of 2D Ag islands deposited 
on Pt(l l1) in the submonolayer region. When deposited at temperatures 
below 500 K the silver formed large 2D islands pseudomorphous with the 
substrate. After annealing at higher temperature the silver islands broke 
down into islands consisting most probably of 7 or 12 atoms. These smaller 
islands were found to be nearly relaxed. When the deposition was carried 
out at temperatures higher than 500 K the silver film grew as small islands 
from the very beginning. The Ag is strongly bound to the Pt and the lattice 
misfit is positive and large enough (4.3%). 

The form of the E ( f )  dependence shown in Fig. 4.29, which is due to 
the rupture of the dislocation core bonds, leads to a new definition of the 
limit of stability f: of the pseudomorphous state. It is now determined 
by the condition of existence of a dislocation with core bond stress smaller 
than the theoretical tensile strength and coincides with the critical misfit 
fr for rupture of the most expanded core bonds. 

The case of negative misfit is quite different. The core bond strain ec 
is compressive and the force exerted by the substrate is not destructive 
(Fig. 4.11). It follows that expanded epilayers cannot break up in the cores 
of the disIocations at negative misfits. On the other hand, at  misfits larger 
in absolute value than fi the chains distort in between the dislocations and 
a rupture there is again excluded. 

Figure 4.31 shows the energies of chains without and containing one 
dislocation. The chains are distorted at I f 1  > If,/. The curves intersect 
with each other at the limit of stability f;. As seen the energies are very 
close particularly at misfits greater in absolute value than fi. Obviously 
the contribution of the dislocation energy is small compared with the 
contribution of the chain distortion. At positive misfit the energy gain 
due to the introduction of dislocations is much greater (Fig. 4.29). 

There are, however, two peculiarities at negative misfits which are 
uncharacteristic for the harmonic case. First, at strong enough bonding 
across the interface (W/Vo 2 W,/Vo = 2, see the x sign in Fig. 4.36) 
the energies of the chains without and containing one dislocation do not 
intersect. The energy of the commensurate state goes asymptotically to the 
energy of the incommensurate state, being always lower than the latter. It 
follows that the limit of stability disappears at strong bonding and epilayers 
which are thin enough to fulfill the requirements of the model will be 
pseudomorphous with the substrate irrespective of the natural misfit. 
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Fig. 4.31. Variation with negative misfit of the energy per atom: curve A - a chain 
without a dislocation; curve B - a chain containing one dislocation (W/Vo = 1, N = 
100,p = 4,u = 3). Note that there are no singular points at the inflection misfit f i .  (I. 
Markov and A. Trayanov, J. Phys. C: Solid State Phys. 21, 2475 (1988). By permission 
of IOP Publishing Ltd.) 

The second consequence of the use of red potentid in the 1D model of 
Frank and van der Merwe, which is absent in the original model, is that 
solutions of coherent configurations, although not in a ground state, exist 
at any value of the negative misfit. The condition is that the potential 
troughs be sufficiently deep (W/Vo 2 W,./Vo = 0.25). It follows that the 
metastability limit of the pseudomorphous state also disappears (see 
the x sign in Fig. 4.37). This is due to the polymerization of the free 
ends of the chains even under conditions (W,f) where the ground state 
is the undistorted state. Due to the chain end distortion the end atoms 
do not climb the slopes of the potential troughs with increasing misfit as 
shown in Figs. 4.15(c) and (e), which excludes the possibility of spontaneous 
introduction of dislocations at the free ends. 

Another consequence of the distortion of the chain ends at I f 1  > l f J  is 
that the activation energy for introduction of a dislocation at the free ends 
is greater than that in compressed chains. Owing to the chain distortion the 
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Fig. 4.32. Plot of the potential energy per atom relative to the energy of the commensu- 
rate state E ( 0 )  against the number of misfit dislocations in the chain for different values 
of the negative misfit (in percent) given by the figures at the curves. (a) W/Vo = 0.25; 
(b) W/Vo = 0.62. (I. Markov and A.  Trayanov, J. Phys.: Conden$. Matter 2, 6965 
(1990). By permission of IOP Publishing Ltd.) 

end atoms of the chain are always near the bottoms of the potential troughs. 
Hence, the introduction of a new dislocation requires overcoming a much 
higher energy barrier than in the case of a positive misfit, particularly at 
stronger bonding across the interface. It follows that expanded overlayers 
can exist in metastable state without dislocations at  higher temperatures 
compared with compressed epitaxial films. 

Figure 4.32 is a plot of the potential energy per atom of a real chain with 
respect to the commensurate state & - &(O), as a function of the dislocation 
density fd for different values of the negative misfit and at two different 
values of the relative substrate modulation W / & .  As in the harmonic case 
one can see that the energy of the commensurate state is an additive term 
to the energy of the incommensurate state. For W/Vo = 0.25 (Fig. 4.32(a)) 
no linear dependence of energy versus number of dislocations is observed. 
The reason for this is that the atoms experience the convex part of the 
potential as in the harmonic case and hence the interaction between the 
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Fig. 4.33. Behavior of the pair energy of interaction of misfit dislocations: (a) dependence 
of the energy on the number of the dislocations for positive and negative values of the 
natural misfit; (b) logarithmic plot of the energy of interaction against the dislocation 
spacing (reciprocal of the MD density). Curves 2 in both figures represent the harmonic 
limit (N = 60, f = f7%, W/Vo = 0.5, p = 4, v = 3). (I. Markov and A. Trayanov, J .  
Phyr.: Condena. Matter 2, 6965 (1990). By permission of IOP Publishing Ltd.) 

dislocations contributes significantly to the total energy. The same E(fd) 

dependence is observed for positive misfits irrespective of the value of the 
relative interfacial bonding W/Vo. However, this is not the case for a 
stronger interfacial bonding, W/Vo = 0.62 (Fig. 4.32(b)). The energy is 
a linear function of the dislocation density fd up to very high values of 
the latter. The atoms experience the nonconvex part of the interatomic 
potential, the bonds between the atoms are distorted and the interaction 
between the dislocations is suppressed. 

This is clearly seen in Fig. 4.33 where the split of the dislocation 
interaction energy with respect to the misfit sign is shown. The lat- 
ter is considerably larger for a positive misfit than for a negative one 
(Fig. 4.33(a)). The data from Fig. 4.33(a) are plotted in semilogarithmic 
scale in Fig. 4.33(b). As seen, for a positive misfit both in the real case 
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Fig. 4.34. Misfit dependence of the slopes d&/dfd of the linear parts of the &(fd) curves 
shown in Fig. 4.33. The straight line 1 illustrates the harmonic limit of Frank and van 
der Merwe. Curve 2 shows the negative misfit behavior with W/Vo = 1. Note that 
there is no singular point a t  the inflection misfit f;. Curves 3, 4 and 5 represent the 
positive misfit cases with W/Vo = 0.25, 0.5 and 1.0, respectively (N = 60, p = 4, Y E 3). 
(I. Markov and A. Trayanov, J. Phys.: Condens. Matter 2, 6965 (1990). By permission 
of IOP Publishing Ltd.) 

and in the harmonic limit, the plot deviates slightly from linearity at high 
dislocation densities (small dislocation spacing). In the case of negative 
misfit, the interaction energy depends exponentially on the dislocation 
density even at high values of the latter. 

In the harmonic limit the derivative of the energy with respect to the 
mean dislocation density, dE/dfd, is a linear function of the misfit (see 
Eq. (4.30)). It has a slope equal to  2W# and its intercepts with the abscissa 
and ordinate are equal to the stability limit fs and the energy of a single 
dislocation, 4WZ0/7r, respectively. The slopes of the linear parts of the 
curves in Fig. 4.32, i.e. the slopes dE/df,j, are presented in Fig. 4.34 as a 
function of the natural misfit. The straight line 1 shows the behavior of 
the harmonic approximation with y = p V o  = 12 discussed above. Curve 2 
represents the negative misfit dependence of d&/dfd of a real chain with 
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p = 4, v = 3, VO = 1 and W = 1. Curves 3, 4 and 5 give the positive 
misfit dependencies of real chains with W = 0.25, 0.5 and 1.0, respectively. 
All curves except for the harmonic one show strong nonlinearity and their 
curvatures have opposite signs. Curves 4 and 5 do not intersect the abscissa 
due to the rupture of the most expanded bonds in the cores of the misfit 
dislocations. 

As shown by Markov and Trayanov [1990] the data from the numerical 
solutions fit with the semiempirical expression 

(4.89) 

which is analogous to (4.33). It turns out that this expression describes all 
the data surprisingly well. Moreover, the harmonic limit for which fi = 00 
is also formally included. Then by analogy with (4.33) we can write the 
following expression for the energy of a single misfit dislocation: 

where &,O is the energy of a single dislocation at f = 0. Since fi < 0, 
it follows that El is a decreasing function of the negative misfit and an 
increasing function of the positive misfit. 

The zero energy of a single dislocation, &!, is shown in Fig. 4.35 as a 
function of ( p ~ V o W ) l / ~  (VO = const). The straight line 1 represents the 
harmonic reference. Curve 3 gives the energy of a negative dislocation 
(two atoms in a trough, Fig. 4.11(b)) whereas curve 2 gives the energy 
of a positive dislocation (an empty trough, Fig. 4.11(a)). The negative 
dislocation energy is computed directly as the energy of the incommensurate 
state of a long enough chain containing only one dislocation at f = 0 
(E(0)  = 0), while the positive dislocation energy is calculated through 
Eq. (4.90). The difference of the energies clearly reflects the anharmonicity 
of the real potential. In expanded chains (negative misfit) the atoms in the 
dislocation interact through the steeper repulsive branch of the potential 
and the zero energy €f is greater than that in compressed chains where the 
weaker attractive branch operates. 
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Fig. 4.35. Dependence of the energy at zero misfit of the static solitons on (pvV0W)’I2. 
The straight line 1 presents the harmonic limit of Frank and van der Merwe. Curve 2 gives 
the energy of a positive misfit dislocation (an empty trough or a light wall, Fig. 4.11(a)), 
Curve 3 shows the energy of a negative dislocation (two atoms in a trough or a heavy 
wall, Fig. 4.11(b)). (I. Markov and A. Trayanov, J.  Phys.: Condens. Matter 2, 6965 
(1990). By permission of IOP Publishing Ltd.) 

F. Limits of stability 

As shown above the limits of stability and metastability split with respect 
to the sign of the misfit when anharmonicity is “switched on.” Figure 4.36 
illustrates the split of the stability limit fs as a function of the substrate 
modulation W. The harmonic case is given by the straight line denoted by fa. The corresponding curves for Toda chain (a = 2, p = 6) are also given 
for comparison. As can be seen, the positive stability limit f: lies nearer 
to  the reference harmonic curve than the anharmonic Toda curve. This is 
not surprising, bearing in mind that in the real model at positive misfit 
the stability limit of the pseudomorphous state is determined not by the 
equality of the energies of states with zero and one dislocations, but by 
the limit of rupture of the core bonds, f r .  The latter is shifted to  greater 
values of the misfit. This is the reason why f$ lies nearer the harmonic 
reference than the Toda curve. On the other hand, the negative stability 
limit f,- is shifted to  greater absolute values than in the Toda case. This is 
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Fig. 4.36. Variation of the limits of stability, f$ and fc, with the square root of the 
relative substrate modulation (W/V0)'I2 ( p  = 4, u = 3). The straight line denoted by 
f!' denotes the harmonic limit. The limits of stability of the anharmonic Toda model 
(u = 2, p = 6) are also included as dashed lines for comparison. The negative stability 
limit f,- terminates at W/Vo = 2 (see the x sign). (I. Markov and A. Trayanov, J .  
Phya. C: Solid State Phys. 21, 2475 (1988). By permission of IOP Publishing Ltd.) 

easily understandable considering the shape of the corresponding attractive 
branches of the two potentials (Fig. 4.36). What is more important is 
that f; disappears after some critical substratedeposit bond strength 
W = 2V0 (note the x sign at the corresponding curve). Beyond this value 
the pseudomorphous state is always the ground state. 

Contrariwise, the positive metastability limits fLs for the real and Toda 
potentials (Fig. 4.37) overlap, which reflects the coincidence of the respec- 
tive repulsive branches. However, fGS disappears beyond some critical value 
of the potential amplitude W,,,,/Vo = 0.25 (note the x sign) governed by the 
condition fms(Wms) = fi. As mentioned above the chain ends are distorted 
and spontaneous generation of dislocations at the free ends never takes 
place whereas Toda limit still exists. 
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Fig. 4.37. Variation of the limits of metastability, fm+. and fie, with the square root of 
the relative substrate modulation ( W / V O ) ' / ~  ( p  = 4, v = 3). The straight line denoted 
by fkm gives the harmonic limit. The limits of metastability of the anharmonic Toda 
model (a = 2 , p  = 6) are also included as dashed lines for comparison. The curves in 
the real and the Toda models coincide for positive misfit due to the coincidence of the 
repulsive branches of both potentials. The negative metastability limit f i S  terminates 
at W/Vo = 0.25 (see the x sign) whereas the Toda limit still exists (the dashed line). (I. 
Markov and A. Dayanov, J. Phys. C: Solid State Phys. 21, 2475 (1988). By permission 
of IOP Publishing Ltd.) 

G .  Mean dislocation density 
The mean dislocation density fd in the ground state of a real chain is given 
in Fig. 4.38 as a function of the natural misfit f [Markov and Trayanov 
1990). The curves for positive and negative values off are presented in one 
and the same quadrant for easy comparison. The smooth curve represents 
the continuum limit of the harmonic model. The stepwise behavior is 
due to  the finite size of the chain (N = 60). The splitting of the two 
curves around the harmonic reference is due to the anharmonicity of the 
real potential. The positive misfit curve is considerably nearer to the 
harmonic limit than the respective curve for Toda chain. This is due to 
the limited interval of existence of the dislocated state as a result of the 
rupture of the most expanded bonds in the cores of the dislocations in 
compressed chains. What is more interesting is that the commensurate 
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Fie. 4.38. Plot of the mean dislocation density in a real chain against the natural 
misfit for both positive (left) and negative (right) misfits. The harmonic continuous 
approximation of b a n k  and van der Merwe (1949b] is presented by the smooth curve 
for comparison. The two curves are plotted in the same quadrant for easy comparison 
( p  = 4,u = 3, W/Vo = 1, N = 60). (I. Markov and A. Trayanov, J. Phys.: Condenr. 
Matter 2, 6965 (1990). By permission of IOP Publishing Ltd.) 

incommensurate (CI) transition is continuous in compressed chains but 
abrupt in expanded ones going by a single jump from zero to the maximum 
density of the dislocations. 

As is well known from the harmonic model the continuous behavior 
of the CI transition is due to the energy of dislocation interaction. As 
shown above, in anharmonic chains the energy of dislocation interaction 
depends on the sign of the misfit - it is much smaller in expanded chains, 
rather than in compressed ones. This is obviously due to the fact that 
dislocation interaction is realized through the weaker attractive branch 
of the interatomic potential in expanded chains and through the steeper 
repulsive branch in compressed ones. This explains the abrupt behavior of 
the CI transition in expanded chains. 
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H. Effect of anharmonicity and nonconvexity in epitaxial growth 
It is thus evident that in addition to its anharmonicity the fundamental 
characteristic which distinguishes the nonconvex interatomic potential from 
the harmonic approximation is not the finite energy of dissociation of two 
neighboring atoms but its inflection. It leads to two effects. First, there is 
the rupture of the bonds in the dislocation cores in compressed overlayers, 
and, second, there is the distortion of the chemical bonds in expanded 
films. In summary, the replacement of the harmonic interactions by more 
realistic interatomic forces in the Rank-van der Merwe model results in 
the following more important conclusions concerning the growth of thin 
epitaxial films: 

(i) Compressed epilayers can crack along the dislocation lines. 
(ii) The limits of stability and metastability of the pseudomorphous 

state are much greater in absolute value in expanded rather than in com- 
pressed epilayers. 

(iii) Thin expanded pseudomorphous films should be stable beyond some 
critical interfacial bonding W,, irrespective of the absolute value of the 
natural misfit, and should always exist in metastable state beyond some 
critical interfacial bond strength W,, <( W,. 

(iv) The activation barrier for introduction of dislocations at the free 
ends is higher in expanded rather than in compressed films, and therefore 
the expanded films can withstand higher temperatures in pseudomorphous 
state than compressed films. 

(v) The equilibrium critical thickness for pseudomorphous growth 
should be much greater for expanded rather than compressed films (see 
Eq. (4.72)). 

(vi) The mean dislocation density should be smaller in expanded rather 
than in compressed epilayers for one and the same film thickness. 

(vii) The natural misfit in expanded epilayers is entirely accommodated 
either by homogeneous strain or by misfit dislocations without intermediate 
state. 

One of the most important consequences of the nonconvexity of the 
real interactions from a technological viewpoint concerns crack formation. 
ll-shaped cracks have been observed in compressed Ge films deposited on 
Si [Tkhorik and Khazan 19831. Cracks have also been found in compressed 
garnet films grown on garnet substrates [Miller and Caruso 19741. In this 
case the cracks were observed in slightly, rather than strongly, compressed 
samples, in agreement with the predictions of the model. Olsen, Abrahams 
and Zamerowski [1974] observed unidirectional cracks in both expanded 
and compressed epilayers of In,Gal-,P deposited on (100) GaAs. They 
found that stretched layers cracked at  smaller misfits than compressed 
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layers, in contradiction with the prediction of the above model. Cracks in 
expanded In,Gal-,As and InzAll-.As layers grown by MBE on (100)InP 
and in expanded In,Gal-,As,P1-, layers grown by LPE on (100)InP 
were observed and studied by Ranzosi et al. [1988]. These authors 
found that the cracks propagate deeply into the InP substrate. The same 
phenomenon has been established also for misfit dislocations in MBEgrown 
In,Gal-,As/( 100)InP single heterostructures irrespective of the sign of the 
natural misfit [F’ranzosi et al. 19851. The misfit dislocations are “squeezed” 
into the substrate due to the stress in the overgrowth. This clearly shows 
the connection between the misfit dislocations and the formation of cracks. 
Obviously, the cracking phenomenon should be studied in more detail both 
experimentally and theoretically. Experimental observations concerning 
cracking of epitaxial films of different materials have been summarized by 
Tkhorik and Khazan (19831. 

4.2.5. van der Merrue model of thick overgrowth 
The case of thick overgrowth is considered in a more or less similar way. By 
“thick” we mean mathematically infinite. In this case (Fig. 4.39) the two 
crystal halves A and B with quadratic symmetry of the contact planes and 
atomic spacings a and b, respectively, are considered as elastic continua with 
shear moduli G, and Gb and Poisson’s ratios v, and q,, respectively [van 
der Merwe 1963al. An important feature of the system consisting of two 
semi-infinite crystals is that the homogeneous strain is equal to zero and the 
natural misfit is accommodated entirely by misfit dislocations. As shown 
in Sec. 4.2.4.4 the energy of a cross grid of misfit dislocations of an edge 
type to a first approximation represents a sum of two arrays of dislocations 
parallel to the two orthogonal directions. In other words, the energies of the 
two arrays are additive and we can consider them independently assuming 
a misfit in one direction only. 

Here we allow both crystals to be elastically strained. In order to 
describe the displacements at either side of the interface, we introduce a 
reference lattice C with a parameter c [van der Merwe 1950, 19731 along 
the x axis: 

P b = ( P + l ) a =  P + -  c ,  ( 9 
where P = a / (b  - a) is an integer. 

Assuming for definiteness that b > a we can imagine that the two lattices 
A and I3 are generated from C by contraction of A and expansion of B. Then 
the reference lattice spacing reads 

2 1 1  - + -  c a b  
_ - -  
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Fig. 4.39. Model of epitaxial interface between two semi-infinite crystals resolved in a 
sequence of misfit dislocations spaced at an average distance p .  The dashed lines located 
at a distance p / 2  from the contact plane show the boundary beyond which the periodic 
strains originating from the dislocations practically vanish (after van der Merwe [1950]). 

or 
ab 

;(a + b)  ' 
C =  

The vernier of misfit or the dislocation spacing p is given by 

(4.91) 

(4.92) 

Bearing in mind that both lattices A and B are strained i t  is reasonable 
to define the misfit as 

(4.93) 

rather than as f = 1/P = ( b  - a) /a  as in the rigid substrate model. 
Assume now that the atoms of A and B are located at points of the 

reference lattice and there is an atom of B exactly opposite to any atom of 
A. Then we allow the atoms of A and B to occupy their natural positions 
in their respective lattices. The atoms of A and B will be displaced 
with respect to  the respective positions of the reference lattice C. The 
displacement between the atoms with respect to each other will be 
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c c  
u = - + - x ,  

2 P  

where the first term c/2 locates the origin of the 2 axis at a dislocation 
line while the second term cx/p accounts for the linear increase of the atom 
spacing due to  the vernier of misfit. If we now allow elastic displacements 
v&) and vb(z) of the corresponding atoms of the A and B lattices, then 
the displacement of a B atom with respect to the corresponding A atom 
will be 

(4.94) 1 c  
2 P  

u = -c + -x + ?kb(x) - ?ka(x) . 

As in the previous case (Eq. (4.8)), each half-crystal exerts a periodic 
potential on the atoms of the other half in the form 

v = = [l -cos ( 2 . 3 1  , 
4n2d 

(4.95) 

where Gi is the shear modulus at the interface and d 2 c is the separation 
of the atoms of the adjoining crystal planes. 

The mathematical treatment of the problem, although involving much 
greater difficulties, leads to  expressions for U similar to (4.20) and (4.23). 
Thus for dislocations far apart (b + a, p 4 00) and, assuming for simplicity, 
ua = vb = v and G ,  = G b  = Gi = G, the solution reads 

u 1 1  - = - + - arctan 
c 2 7 r  

(4.96) 

where so = c/2(1- v). 
The general solution reads [van der Merwe 19751 

- = - + - a r c t a n  u 1 1  Kr 1+x-2+x-1 tan ( 7T- 31 , (4.97) 
c 2 n  

where 

and 

G' c x = 27r-- 
Gi P 

1 1 - v ,  1 - v b  
G' Ga Gb 

+-. - 

(4.98) 

(4.99) 

It is immediately seen that (4.96) can be easily obtained in the limit 
p + 00 with G, = Gb = G;. Equations (4.96) and (4.97) show a behavior 
similar to  that plotted in Fig. 4.12, curves 1 and 2, respectively. In other 
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words, as in the case of a monolayer overgrowth the interface is resolved in 
a sequence of misfit dislocations. 

The energy of the misfit dislocations (the homogeneous strain is absent) 
is naturally divided into two parts. The first is the energy of interaction 
between the atoms of the two crystal halves: 

P I 2  

Ei = 1 1 
--PI2 

[I - cos (2n:)l dx 
P 

= X ( l + A - d S )  4r2d , (4.100) 

which is obtained by substitution of (4.97) into the integral of (4.100) and 
carrying out the integration. 

The second is the energy of the periodic elastic strain which is dis- 
tributed in the two crystal halves A and B. For the average strain energy per 
atom stored in that part of the crystal B which extends from the interface 
to a distance h from the latter, one obtains 

(1 - 4)c2G’Gi 
4r2Gbd 

E,b(h) = - 

H A 2 e - 2 H ( H  - 1 + A 2 e - 2 H )  
x x [ l l l (  1 - 1 - A 2  A2e-2H ) +  (1 - vb)( l  - A 2 e - 2 H ) 2  

(4.101) 

where 
h H = 2 ~ -  
P 

and 

The limit H -+ 00 gives the total strain energy per atom in the crystal B: 

The analogous expression can be written down for the strain energy 
per atom stored in the crystal A. The ratio of the strain energies gives the 
distribution of the strain in the two crystal halves: 
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As seen the “stiffer” the crystal the less strained it is and vice versa. 
Bearing in mind (4.99) the total strain energy per atom in the bicrystal 

connected with the misfit dislocations is then 

GiC2 ( J-- 2) E, = E,b + E,“ = --Aln 2X 1 + X2 - 2X 
4n2d 

(4.103) 

Summing up (4.100) and (4.103) gives the total energy per atom of the 
misfit dislocations: 

Ed = - Gic2 
4n2d 

+ A  - d lq  - Xln (2x4- - 2X2)] . (4.104) 

The energies Ee, Ei and E d  are plotted as functions of the misfit c / p  in 
Fig. 4.40. As can be seen the strain energy E, is greater than the energy of 
interaction Ei for small misfits. At larger misfits E, gradually diminishes 
and the total energy approaches a constant value: 

(4.105) 

which can be taken as a measure of the interfacial bonding, analogous to 
W in the monolayer model. This should be the energy if the two lattices 
A and B were assumed rigid. Then the relative displacements of the atoms 
with respect to each other would be given by U/c = 1/2 + z / p .  

One of the most important results of this analysis, which is closely con- 
nected with the mechanism of growth of thin films, concerns the distribution 
of strain energy with the distance from the interface. Making use of (4.101) 
and (4.102) gives for the fraction of average strain energy per atom stored 
beyond a distance h from the interface 

E,“ - E,b(h) AEt(h)  = 
E,b 

HA2e-2H(H - 1 + A2e-2H) 
(1 - q,)(l- A2e-2H)2 = (In (1 - A2e-2H)  - 

x [In(l - A2)]-l . (4.106) 

The latter is plotted in Fig. 4.41. As seen it decreases rapidly with 
the distance from the interface and practically vanishes at a distance equal 
to p/2. It follows that, first, we can qualify a deposit as thick when it is 
thicker than one half of the dislocation spacing, and, second, beyond this 
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Fig. 4.40. Misfit dependence of the strain energy Ee, the interaction energy Ei and the 
total dislocation energy E d  = E,  + Ei in units of Gic2/4r2d. The upper axis shows the 
variation of the parameter X (after van der Merwe [1950]). 

thickness the atoms of the deposit will not “feel” the presence of the foreign 
substrate. 

The gradual decrease of the fraction of the elastic energy AE,b(h), which 
is stored in the deposit crystal beyond a distance h from the interface, 
is illustrated schematically in Fig. 4.42. The amplitude of the periodic 
variation of the bond strains is greatest for the first monolayer. Expansion 
and compression alternate periodically with a period equal to the disloca- 
tion spacing. The amplitude gradually decieases in every next monolayer. 
Beyond a thickness h S p / 2 ,  the amplitude becomes practically equal to 
zero and the atoms become equidistant. However, if the deposited film is 
thinner than p / 2  a periodic variation of the bond lengths on the surface 
of the film should be detected. Such a variation is really observed on the 
surface of overlayers of Fe( 110) on W( 110) [Gradmann and Waller 19821 and 
of Cu on Pd(100) [Asonen et al. 19851. In the former case the thickness 
of the film samples varied between 2 and 9 monolayers and p / 2  = 7dl10 
(aFe = 2.866 A, aw = 3.165 A). 
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hlp - 
Fig. 4.41. Plots of the fraction AE,b(h) of the strain energy stored in the crystal B beyond 
a distance h from the contact plane as a function of h / p .  Curves 1 and 2 correspond 
to misfits c/p = 2% and 20%, respectively (G, = Gb = Gi, u, = Vb = u = 0.3) (after 
van der Merwe (19751). 

1 

ATOM Dl SPL ACEM EN TS 
Fig. 4.42. Schematic plot of the strains of consecutive bonds against the atom displace- 
ments as in Fig. 4.13 (curve 2) demonstrating the gradual decrease of the amplitudes 
of the periodic strains with distance from the contact plane. The figure at each curve 
denotes the number of the corresponding monolayer counted from the contact plane. 
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Let us illustrate the formulae we have just derived. In a system of 
low misfit, e.g., Ag on Au(001), aAg = 2.8894 8, and aAu = 2.8841 A, 
c / p  = 0.00184, c = d = 2.8867 A, G A ~  = 3.38 x 10" dyne/cm2 and GA" = 
3.1 x 10" dyne/cm2, V A ~  = 0.354 and VA" = 0.412 (see Huntington (19581 
and also Hirth and Lothe [l968], Appendix), G' = 2.63 x 10" dyne/cm2 
and Gi Z (GAgGAu)'I2 = 3.24 x 10" dyne/cm2. Then Gic2/4.1r2d = 
237 erg/cm2, = 0.0094 and E d  zs 11 erg/cm2. In a system with larger 
misfit, e.g., Ag on Cu(OOl), with GcU = 5.46 x 10" dyne/cm2, vcu = 0.324 
and a = 2.556 A, c / p  = 0.1223, X = 0.568, Gic2/4n2d = 294 erg/cm2 
and Ed = 192 erg/cm2. It is doubtful whether the above theory can be 
used in the case of semiconductor materials with covalent bonds which are 
rather brittle and unflexible. Nevertheless, for the case of a Ge deposit on 
(001) Si, with Gae = 5.64 x 10" dyne/cm2, Gsi = 6.42 x 10" dyne/cm2, 
V G ~  = 0.2, vsi = 0.215, aOGe = 5.6575 A and aOSi = 5.4307 A, c / p  = 0.041, 
Gi E 6 x 10" dyne/cm2, G' = 3.78 x 10" dyne/cm2 and E d  3 300 erg/cm2. 
Comparing these results with the values of the specific surface energies 
which are usually of the order of 1 x lo3 erg/cm2, we can conclude that the 
theory of van der Merwe predicts reasonable values for the energy of the 
misfit dislocations at the interface between semi-infinite crystals. 

It is worth noting, however, that a comparison of the energy of the misfit 
dislocations with surface energies is in principle incorrect. The energy of 
the misfit dislocations is often erroneously identified with the energy of the 
interface. As will be shown below the energy of the misfit dislocations is 
only a part of the energy of the interface which is due to the lattice misfit. 
The interfacial energy is composed of two parts. The first one is due to the 
difference in nature and strength of the chemical bonds in the absence of 
misfit. The second part, which we have just derived, is due to  the lattice 
misfit. A good example is the energy of the interface between In,Cal-,As 
and InP(001). When 2 = 0.43 the lattice misfit and the misfit energy are 
equal to zero. At the same time the interfacial energy is not equal to zero 
due to the difference of the strengths of the chemical bonds in the two 
materials. 

4.2.6. Thickening oue7.growth 

As shown above a thin film consisting of one to several monolayers can 
be either commensurate or incommensurate with the substrate. In other 
words, the natural misfit can be accommodated either by homogeneous 
strain or by misfit dislocations or by both in the general case. In contrast, 
the natural misfit between an infinitely thick deposit and the substrate is 
accommodated entirely by misfit dislocations. Thus in overgrowth with 
finite thickness the homogeneous strain can eliminate partially or entirely 
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the misfit dislocations. The purpose of this chapter is to study what will be 
the equilibrium (lowest energy) structure of the interface during the process 
of thickening of the deposit. 

As mentioned above, owing to the interaction across the interface, the 
lattice parameter b of the overgrowth tends to  take the value of the substrate 
lattice parameter a. On the other hand, owing to the cohesive forces between 
the overgrowth atoms, they tend to  keep their natural spacing b. As a result, 
the overgrowth atoms will be spaced a t  some average spacing 6 such that 
a < b < b .  

We can define now the natural misfit as [Matthews 19751 
a - b  f = -  

b 
and it  will be accommodated partly by homogeneous strain 

8 - b  
fe = --&- 

and partly by misfit dislocations 
a-6 

f d = i ; r  

so that  for small misfits 
6 - b  a - 6 8  

b b  f e + f d Z T + - - = f ,  

(4.107) 

(4.108) 

(4.109) 

(4.110) 

The misfit dislocations will be spaced in the general case at a distance 

and will have a Burger's vector 

(4.111) 

(4.1 12) 

Minimum energy considerations of epitaxial bicrystal systems [van der 
Merwe 1963b; Jesser and Kuhlmann-Wilsdorf 19671 have shown that ini- 
tially the deposit grows pseudomorphically with the substrate up to a 
critical thickness t ,  (see Eq. (4.72)). The natural misfit will be entirely 
accommodated by a homogeneous strain so that the average atomic spacing 
6 = a. Then fe = f and fd = 0. The interface is not resolved into a 
sequence of misfit dislocations as their spacing p tends to infinity. In the 
case of square atomic meshes of the adjoining crystal planes the energy of 
the interface due to the lattice misfit will be equal to the energy of the 
homogeneous strain Ehs given by 

(4.113) 
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Beyond the critical thickness, misfit dislocations are introduced at the 
interface so that initially homogeneous strain and misfit dislocations coex- 
ist. The misfit dislocation energy is then given by Eq. (4.104) but with p 
and c replaced by p and E ,  respectively. With the thickening of the film 
the homogeneous strain gradually vanishes, and in sufficiently thick films 
(t > p / 2 )  the natural misfit is totally accommodated by misfit dislocations. 
Then 6 = b, fe = 0, fd = f and the dislocations are separated by a distance 
p. In other words, the other extreme case is reached. 

In order to illustrate the minimum energy considerations, we plot the 
homogeneous strain energy Ehs for films of various thicknesses and the 
misfit dislocation energy Ed against the misfit as is done in Fig. 4.43. As 
we see, the homogeneous strain energy curves intersect the misfit dislocation 
energy curves at some critical values of the misfit f n  varying with the film 
thickness n = t / b  measured in number of monolayers. It follows that if 
f > fi, & is greater than E d  even for a monolayer film, and it will 
resolve into a sequence of misfit dislocations rather than be homogeneously 
strained. If f2 < f < f l ,  the first monolayer will be pseudomorphous with 
the substrate, but when a second monolayer is deposited on top of the 
first one, misfit dislocations will be introduced at  the interface to relieve 
the homogeneous strain if the necessary thermal activation exists. The 
smaller the natural misfit, the thicker the film can grow under homoge- 
neous strain. When the misfit is very small, the film can grow under 
homogeneous strain to a considerable thickness as in the growth of Ge 
on GaAs [Matthews, Mader and Light 19701. For this reason superlattices 
such as Al,Gal-,As/GaAs can be grown without misfit dislocations at the 
interface. If the temperature is low enough so that misfit dislocations are 
not introduced during the growth, then when the film thickness exceeds 
the critical value, the bicrystal system will be in a metastable state and 
any pumping of energy will lead to nucleation of dislocations and hence to 
deterioration of the performance of any device made in this way. 

Equating the energy 2Ed of a square grid of two perpendicular and 
noninteracting arrays of misfit dislocations from (4.104) and the energy 
&* of the homogeneous strain from (4.113) gives (va = Q, = v) 

(4.114) 

where 

f (x)  = 1 + x - JTTT- Xln (ZXJ~TF - 2x2) . (4.115) 

For small misfits where second order terms can be neglected (A2 << l), 
(4.115) reduces to 
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Fig. 4.43. Plot of the dislocation energy Ed and the energy of the homogeneous strain 
E b  versus misfit of overlayers with different thicknesses shown by the figures which 
denote the number of monolayers. The points of intersection determine the critical 
midto f,, (TI = 1,2,. . . ) which decrease with increasing film thickness given in number 
n of monolayers. (I. Markov and S. Stoyanov, Contemp. Phys. 28, 267 (1987). By 
permisrion of Taylor 8c Fkancis Ltd.) 

e f ( ~ )  = ~ ( 1 -  In 2x1 = X(ln e - in 2x1 = x In (s) , 

which appears as a very good approximation [Kasper and Herzog 1977). 

19731 
Accounting for (4.98) and (4.99), Eq. (4.114) turns into [van der Merwe 

t c  1 C- ln f  - =  
c 4n(l + Y ) ( l  +Gb/Ga) f ’ 

where 

(4.1 16) 

(4.117) 

Equation (4.116) is plotted in Fig. 4.44 (curve 1) with G, = G b  = Gj. As 
seen, the critical thickness goes to infinity with vanishing misfit. Moreover, 
it decreases with increasing ratio Gb/G,. In other words, the “stiffer” 
the deposit and the “softer” the substrate crystals, the lower the critical 
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Fig. 4.44. Misfit dependence of the equilibrium critical thickness for pseudomorphous 
growth in units of the Burgers vector c according to the theory of van der Merwe 
[19?3] (curve 1) (Eq. (4.116) with G, = Gb = Gi,  u, = tq, = u = 0.3) and the 
Volterra approach of Matthews [Matthews and Blakeslee 19741 (curve 2) (Eq. (4.124) 
with GI = Gd, u = 0.3). 

thickness will be, and vice versa. A similar analysis for finding t ,  for crystals 
with diamond lattice has been performed by Kasper and Herzog [1977]. 

Let us evaluate the critical thickness for some real systems. In the 
case of deposition of Ag on Au with the materials constants given above, 
Eq. (4.114) predicts t , / c  = 168 or t ,  % 485 A. In the case of deposition of 
Ag on Cu, t , / c  = 0.7 or dislocations will be introduced after the deposition 
of the first monolayer. The theory predicts a value of t , /c  = 5.7 for the 
system Ge/Si. This means that a film consisting of 5 monolayers should be 
pseudomorphous with the substrate, but after the deposition of the sixth 
monolayer the interface should resolve in a cross grid of misfit dislocations. 
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An example of interest is the deposition of alloys where one could change 
the value of the natural misfit by varying the alloy composition. One of the 
most studied systems is Ge,Sil-,/Si [Kasper and Herzog 1977; Kohama, 
h k u d a  and Seki 1988; Bean et al. 1984; Bean 19851. The natural misfit as 
a function of composition 2 is given by f = 0.0412. Thus at z = 0.5, 
f = 0.021 and the experimentally found critical thickness is 100 A or 
about 25 monolayers (Bean 1985). Calculations based on Eq. (4.114) 
give the value t c / c  = 9, i.e. approximately three times smaller than the 
experimentally found value. 

The above disagreement can be explained bearing in mind that 
Eq. (4.1 14) gives the equilibrium critical thickness for pseudomorphous 
growth. In other words, this is the thickness beyond which misfit dis- 
locations become energetically favored. However, in real experiments an 
energetic barrier for nucleation of dislocations should be overcome. It 
follows that the real critical thickness should be greater than that given 
above. The nucleation of the misfit dislocations has been taken into account 
in a series of papers (Mar& et al. 1987; Van de Leur et  al. 1988; Fukuda, 
Kohama and Ohmachi 1990; Kamat and Hirth 1990) and the interested 
reader is referred to them. 

Recalling (4.65) we conclude that the approximate expression for t c ( f ) ,  
given by Eq. (4.72), is in fact determined by the intersection of the ho- 
mogeneous strain energy (Eq. (4.113)) with the maximum energy of the 
misfit dislocations, Er , given by Eq. (4.105). Obviously, it overestimates 
the critical thickness. 

4.2.7. The Volterra approach 

Volterra [1907] considered the elastic properties of a hollow cylinder with 
inner and outer diameters TO and R, respectively, cut parallel to  the cylinder 
axis (Fig. 4.45(a)). When a force parallel to the cylinder axis is applied 
along the cut a screw dislocation is formed (Fig. 4.45(b)). When the force 
applied is normal to  the cylinder axis and the one edge of the cut is displaced 
normally with respect to  the other, an edge dislocation results (Fig. 4.45(c)). 
The displacement along the cut of one half of the cylinder with respect to 
the other is just equal to the Burgers vector of the dislocation. 

The strain energy of the edge dislocation per unit length is given by 
[Hirth and Lothe 19681 

’ 
Gb2 E, = 

4 ~ (  1 - V )  
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Fig. 4.45. Volterra models af (b) screw and (c) edge dislocations based on the considsr- 
ation of a hollow cylinder (a) with outer diameter R and inner diameter T O  cut parallel 
to the cylinder axis (after Hirth and Lothe [1968]). 

where G is the shear modulus of the crystal, v is the Poisson ratio and b 
is the magnitude of Burger’s vector. The total energy is obtained by the 
addition of the core energy. The latter represents a fraction of G@ and its 
contribution is formally accounted for by assuming TO = b/a, where a is a 
constant varying from 1 to 2 for metals and to 4 for nonmetals. Then the 
totd energy of an edge dislocation reads 

(4.118) 

For the energy of a misfit dislocation between two misfitting crystals 
with shear moduli G, and Gd and a Poisson ratio v ,  Matthews (19751 used 
a similar expression 

which turns into (4.118) with Gd = G, = G and a = e. R denotes the 
distance to the outermost boundary of the strain field of the dislocation, 
and c, which is given by Eq. (4.91), is the magnitude of Burger’s vector. 

If the film thickness t is smaller than the dislocation spacing p / 2 ,  R can 
be approximated by the film thickness t (Fig. 4.46(a)) and the energy reads 

(4.120) 
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Fig. 4.46. For the determination of the outermost boundary R of the strain field created 
by the dislocation. (a) t < p / 2 ,  R = t ;  (b) t > p / Z ,  R = p / 2  ( t :  film thickness, p :  
dislocation spacing). 

At the other extreme, t > p/2, R is approximated by p/2 (Fig. 4.46(b)). 
This choice of R becomes immediately understandable if one recollects the 
fact that the strain field of the dislocations practically vanishes beyond p / 2  
(see Fig. 4.41). Then the energy reads 

In the case of quadratic interfacial symmetry (fi = fy = f) and 
assuming the natural misfit is accommodated partly by misfit dislocations 
and partly by homogeneous strain, the energy Em due to the lattice misfit 
is a sum of the energies of two noninteracting arrays of misfit dislocations 
each with a density fd = f - fe and the energy of the homogeneous strain 
Ehs given by Eq. (4.113). Neglecting the energy of interaction between 
neighboring dislocations in the array one writes 

where R = t or fi/2 when t is smaller or greater than 9/2. 
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The condition dEm/dfe = 0 yields the homogeneous strain f,' which 
minimizes the energy. In the first case ( t  < p/2 and I? = t )  one obtains 
for f,' 

G,E [In (;) + 11 * (4.122) ',* = 4r(GS + Gd)(l + Y ) t  

In the second limiting case ( R  = p/2 and E / p  = fd = f - fe) the 
minimization gives 

(4.123) 

The critical thickness tc is determined by the condition fe = f .  Making 
use of Eq. (4.122) (the equilibrium thickness is usually smaller than p/2) 
gives 

_ -  t C  - Gs [In(: )+1] .  (4.124) 
I? 44GS + Gd)(l + v)f 

Equation (4.124) gives values for the critical thickness very close to 
that predicted by the theory of van der Merwe (see Fig. 4.44, curve 2). 
One should, however, note the uncertainty in the determination of the core 
energy of the dislocations. 

Thus the main advantage of the Volterra approach consists in the 
simplicity of the expression for the dislocation energy which allows the easy 
treatment of more difficult problems such as the equilibrium structure of 
the interface between tile-shaped 3D islands and the substrate [Matthews, 
Jackson and Chambers 1975~1, in multilayers [Matthews and Blakeslee 
19741, imperfect dislocations with Burger's vectors inclined with respect 
to the interface, generation of misfit dislocations, etc. [Matthews 1975a, 
1975b]. The interested reader is referred to the review paper of Matthews 
[1975b] and the references therein. 

As mentioned in the previous section a considerable discrepancy is 
established when experimental data are compared with the theoretical 
expressions for the critical thickness for pseudomorphous growth. On 
the other hand, the problem of the critical thickness for pseudomorphous 
growth turned out to be very important from a technological point of view. 
The reasons are well described in the review paper of Hu 119911. First, 
the misfit dislocations deteriorate the performance of the heterostructure 
devices due to  the increased leakage current. On the other hand, the misfit 
dislocations are often generated by dislocations which are inherited from 
the substrate and end at the film surface (threading dislocations). The 
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diffusion of the dopant is usually enhanced along the threading dislocation 
line and the latter forms the so-called “transistor pipe” connecting the 
emitter and the collector. Second, in uniformly strained epilayers the 
interatomic spacing differs from that in the unstrained (relaxed) ones, thus 
changing the width of the forbidden energy zone [Land et al. 19851. It 
is thus obvious that the homogeneous strain can serve in addition to the 
alloy composition as a parameter for further tailoring of the heterostructure 
properties. 

What both approaches of van der Merwe [1963b] and Matthews [1975b] 
to the problem of the critical thickness have in common is that the latter 
is inversely proportional to the lattice misfit. Recently People and Bean 
[1985, 19861 derived an expression for the critical thickness by comparing 
the energies of the homogeneous strain and the areal energy of a single screw 
dislocation. They found that the critical thickness is inversely proportional 
to the square of the lattice misfit and has an absolute value which is of 
one order of magnitude greater than that predicted by van der Merwe and 
Matthews. As their result is still under discussion (see Hu [1991]) we will 
not reproduce it here. The reader who is interested in the present day 
state of the problem of the critical thickness for pseudomorphous growth is 
referred to the excellent review paper of Hu [1991]. 

4.3. Mechanism of Growth of Thin Epitaxial Films 

As mentioned in the introduction of this chapter the chemical potentids 
of the substrate and deposit crystals differ owing to the difference in the 
nature and strength of the chemical bonds on the one hand, and the lattices 
and lattice parameters on the other. Then, the chemical potential of the 
overgrowth will differ from that of the infinitely large crystal due to the 
difference of bonding across the interface (see Eq. (1.59)). The atoms of 
the deposit can be bound more loosely or more tightly to the substrate 
atoms than to the atoms of the same crystal. As a result the chemical 
potential of the first layers of the deposit will be higher or lower than the 
chemical potential of the infinitely large deposit crystal. 

Let us consider this case in more detail beginning from the first m o m  
layer of the deposit. Its chemical potential is equal to the work of s e p  
aration of an atom from a half-crystal position taken with a negative 
sign (Eq. (1.59)). Assuming additivity of the bond energies the work to 
separate an atom from a kink position consists of two parts: the work 
to disrupt the lateral bonds and the work to disrupt the bonds with 
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the substrate atoms. However, the lateral bonds are the same as in the 
bulk deposit crystal. Then the difference in the chemical potentials is 
due to  the difference of bonding with the substrate. When the atoms 
of the deposit are more loosely bound to the foreign substrate than to 
the same crystal the equilibrium vapor pressure of the deposit will be 
higher than the equilibrium vapor pressure of the large deposit crystal and 
vice versa. In turn the chemical potential of the first monolayer will be 
higher or lower than the chemical potential of the infinitely large deposit 
crystal. The atoms of the second monolayer will “feel” more weakly the 
presence of the foreign substrate and hence their chemical potential will be 
closer to that of the large deposit crystal. In other words, the chemical 
potential of the deposit will vary from monolayer to monolayer due to  the 
interaction with the substrate. On the other hand, the overgrowth caa 
be pseudomorphous with the substrate or the interface can be resolved 
in a grid of misfit dislocations. Then the film can be homogeneously 
or periodically strained and the strain energy per atom should change 
additionally the chemical potential of the film. The homogeneous strain 
does not change from monolayer to monolayer of the overgrowth while the 
periodic strain due to  the misfit dislocations attenuates with the distance 
from the interface (see Figs. 4.41 and 4.42). Hence the chemical potential 
again varies from monolayer to monolayer due to the elastic strains in 
addition to the bonding with the substrate [Venables 1979; Grabow and 
Gilmer 1988; Stoyanov 19861. It is namely this dependence of the chemical 
potential of the overgrowth on its thickness which constitutes the main 
difference of the epitaxial growth from the usual crystal growth and which 
leads to  the appearance of the three well-known mechanisms of epitaxial 
growth: (i) Volmer- Weber mechanism or island growth (Fig. 4.47(a)), (ii) 
h n k - v a n  der M e m e  mechanism or layer-by-layer growth (Fig. 4.47(b)) 
and (iii) Stranski-Krastanov mechanism or layer-by-layer growth followed 
by formation of 3D islands (Fig. 4.47(c)). 

This classification has been given for the first time by Bauer (19581. 
The historical reason why the island growth was named after Vofmer and 
Weber was that Volmer was the first to  develop the theory of the rate 
of 3D nucleation on a foreign substrate and together with Weber [Volmer 
and Weber 1926) interpreted the experimental data of F’rankenheim [1836], 
which were the first laboratory experiments on epitaxial growth, in the light 
of his theory. 

Frank and van der Merwe simulated the overgrowth by an infinite chain 
of atoms, thus assuming implicitly that the overgrowth covers completely 



4.3. Mechanism of Growth of Thin Epitaxial Films 377 

Fig. 4.47. Schematic representation of the three possible mechanisms of growth of 
thin epitaxial films according to the classification of Bauer (19581: (a) Volmer-Veber 
mechanism or island growth, (b) Rank-van der Menve mechanism or layer-by-layer 
growth, (c) Stranski-Krastanov mechanism or layer-by-layer growth followed by 3D 
islands. (I. Markov and S. Stoyanov, Contemp. Phys. 28, 267 (1987). By permission of 
Taylor & Francis Ltd.) 

the substrate. In other words, they assumed that the overgrowth follows the 
layer-by-layer pattern of growth and they did not specify at that time that 
different values of the energetic parameter lo should lead in fact to different 
modes of growth. This was the reason why Bauer named the layer-by-layer 
growth after their names. 

The first paper devoted solely to the problem of the mode of epitaxial 
growth of thin films was written by Stranski and Kuleliev [1929]. The 
considerations, which were naturally based upon the concept of the work 
of separation of a building unit from a half-crystal position, were further 
developed by Stranski and Krastanov [1938]. We will outline their model in 
more detail as it lies in the base of our further considerations of the mode 
of growth. 

Thus, Stranski and Kuleliev studied the stability of the first, second, 
third, etc., monolayers of a monovalent ionic crystal K+A- with a sodium 
chloride lattice on the surface of a bivalent ionic crystal K2+A2- with the 
same lattice, assuming that no alloying takes place and that both crystals 
have equal lattice parameters (Fig. 4.48). As a measure of stability they 
accepted the equilibrium vapor pressure of each monolayer. According to 
Eq. (1.58) it is a function of the corresponding work of separation from 
the half-crystal position. As can be judged from Fig. 4.48 the ions of the 
first layer of K+A- are attracted by the underlying doubly charged ions 
more strongly than by the surface of their own monovalent crystal; the 
lateral interactions remain the same. Hence, the work of separation from 
the half-crystal position, q$, of the first monolayer is larger than that of 
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Fig. 4.48. Illustration of the model of Stranski and Kuleliev [1929] for the growth of 
monovalent ionic crystal K+A- on the surface of an isomorphous bivalent ionic crystal 
K2+Aa- (lefi), compared with the growth of the same monovalent ionic crystal K+A- 
(right). The symbols on the cube faces of the left-hand crystal represent doubly charged 
positive and negative ions. The stability of the consecutive monolayers is determined by 
the work of separation of the ions from the corresponding half-crystal positions denoted 
by the bold cubes. (1. Markov and S. Stoyanov, Contemp. Phy3. 28, 267 (1987). By 
permission of Taylor & Fkancis Ltd.) 

the bulk K+A- crystal, psi, and, correspondingly, the equilibrium vapor 
pressure PI will be lower than that of the bulk K+A- crystal, P,. It follows 
that one monolayer of K+A- can be adsorbed on the surface of K2+A2- 
at any vapor pressure higher than PI and lower than P,, in other words, 
at undersaturation with respect to the bulk K+A- crystal. The ions of the 
second layer are attracted by the ions of the first layer as if they are on the 
same crystal K+A- but are repulsed by the doubly charged ions of K2+A2' 
more strongly than if the substrate were monovalent. Thus q$$ < cp$\ 
and P2 > P,. Hence, a supersaturation is required in the system in order 
to deposit the second monolayer. Stranski and Kuleliev concluded that 
every odd or even overlayer will have an equilibrium vapor pressure that is, 
respectively, less than or greater than P,; in other words the equilibrium 
vapor pressures of the consecutive monolayers should oscillate around the 
equilibrium vapor pressure P,. The dependence of the chemical potential 
of the consecutive monolayers according to the considerations of Stranski 
and Kuleliev is shown in Fig. 4.49. As can be seen, after a few layers of 
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K+A-, the energetic influence of the substrate vanishes (P,, ? Poo) and 
the film will continue to  grow as if on the same crystal. 

Ten years later Stranski and Krastanov [1938] extended the considera- 
tions of the same model by calculating the Gibbs free energies of formation 
of 2D nuclei of the first, second, third, etc., monolayers, as well as two and 
four monolayers thick 2D nuclei. I t  turned out that, after the complete 
coverage of the substrate crystal K2+A2- by an adlayer of K+A- at 
undersaturation (for reasons given above), the work of formation of 2D 
nuclei of the second monolayer is significantly greater than that of 2D 
nuclei that  are two monolayers thick. The reason is that the chemical 
potential of a bilayer deposited on the first monolayer is lower than that 
of a single monolayer (see Fig. 4.49). Simple considerations show that 
the work of separation of a whole K+A- molecule from a doubly high 
half-crystal position (Fig. 4.50) is equal to the arithmetic average of the 
works of separation of single ions from the kink ositions of the second 
and third monolayers, i.e. (p112 (K+A-) = (~$1 + (p$)/2. Then the 
chemical potential of the bilayer will be precisely equal to the arithmetic 
average of the chemical potentials of the second and third monolayers, i.e. 
p(2 + 3) = (pz + p3)/2.  Note that when writing the chemical potential 
of the bilayer we do not account for the chemical potential of the first 
monolayer. The reason is that it is more strongly bound to  the substrate 
and is completely built up. On this account, it does not take part in the 
process of exchange of atoms with the vapor phase. 

Thus Stranski and Krastanov predicted the possibility - admittedly 
for a very particular system - of the formation of nuclei with many layer 
thickness on the first stable adlayer (or adlayers) of the overgrowth, a 
mechanism of growth well known today and bearing their names. As will 
be shown below, the physical reason for such a mode of growth could be 
different and could include the lattice misfit as well. I t  is worth noting, 
however, that Stranski and Krastanov considered the many layer thick 
nuclei as 2D nuclei. They also considered the formation of 3D nuclei on 
top of the first monolayer and found that it is slightly greater than that 
of bilayer 2D nucleus. In our further considerations we will consider the 
bilayer island as a three-dimensional island. 

In order to establish the factors affecting the mode of growth we will 
consider briefly some experimental examples, dividing them into several 
groups according to  the different nature of the chemical bonds: metals on 
insulators, metals on metals, metals on semiconductors and semiconductors 
on semiconductors [Markov and Stoyanov 19871. 
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Fig. 4.49. Dependence of the chemical potential pi (or the equilibrium vapor pressures 
P , )  of the consecutive uppermost monolayers on their number as follows from the model 
of Stranski and Kuleliev [1929] of the growth of a monovalent ionic crystal K+A- on 
the surface of a bivalent ionic crystal K2+A2- with the same lattice parameter (open 
circles). As seen, the chemical potential oscillates around the chemical potential of the 
bulk crystal K+A-. The filled circle gives the chemical potential of a bilayer formed on 
top of the completely built first monolayer (after Stranski and Krastanov [1938]). It is 
exactly equal to the arithmetic average of the chemical potentials of the separate second 
and third monolayers. (I. Markov and S. Stoyanov, Contemp. Phys. 28, 267 (1987). By 
permission of Taylor & Fkancis Ltd.) 

Fig. 4.50. Half-crystal position with a bilayer height (after Stranski and Krastanov 
[1938]). 
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A typical example of island growth is the deposition of metals on MgO, 
mica, molybdenite (MoS2) and on alkali halide crystals such as NaC1, KC1, 
KBr, etc. (for a review, see Pashley f1956, 1965, 19701; Griinbaum [1974]; 
Kern, LeLay and Metois [1979]). Metals such as Ag, Au, Cu, Fe, Pd, 
Ni, Co, etc. on these insulators comprise systems which are characterized 
by adhesion forces between the metal atoms and the insulator substrates 
that are considerably weaker than the cohesion forces within the metals 
themselves. An exception from the rule is the deposition of Ag on (100) 
MgO at extremely low temperatures. Lord and Prutton [1974] established 
with the help of LEED and AES that at -200°C Ag grows layer-by-layer 
on (100) MgO crystal cleaved in vacuum chamber. At room temperature, 
however, Ag grows on MgO as separate islands. 

In the case of deposition of metals on metals there is a greatest variety 
of modes of growth owing to the broad range of the ratio of adhesion to 
cohesion forces and of the lattice misfit as well (for a review, see Vook [1982, 
19841; Bauer [1982]). An interesting example is the deposition of Cu on the 
(111) plane of Ag [Horng and Vook 19741. When less than one-third of a 
monolayer of Cu is deposited on the (111) plane of Ag at 210°C, the RHEED 
pattern consists of diffraction streaks originated from the Ag substrate 
plus bright spots belonging to the Cu deposit. At room temperature the 
RHEED pattern of the Ag substrate plus one third of a Cu monolayer 
exhibits intense Ag streaks with fainter streaks for Cu overgrowth, which 
is indicative for a very smooth surface. It follows that at high substrate 
temperatures Cu begins to grow as isolated particles or islands from the very 
beginning of the process, while at low temperatures the Cu streaks originate 
from a deposit with a layer structure. When more than two Cu monolayers 
are deposited at room temperature the material in excess of two monolayers 
forms 30 islands. Thus the Volmer-Weber growth mode is established at 
high temperatures and the Stranski-Krastanov mechanism takes place at 
low temperatures. Besides, the thinner the overgrowth the larger its average 
lattice parameter. For thicker deposits it has its bulk value. In other words, 
thin Cu overlayers are at least partly homogeneously strained. It should be 
noted that the enthalpy of evaporation of Cu (80500 cal/g.atom) is greater 
than that of Ag (67900 cal/g.atom), which means that the cohesion forces 
are expected to be stronger than the adhesion forces. Besides, the misfit is 
quite large in absolute value, f = (b - a) /a = -11.5%. 

Face-centered cubic metals grow on the most densely packed planes 
(110) and (100) faces of body-centered cubic metals W and Mo, usually 
following the layer-by-layer mechanism at low temperatures and the 
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Stranski-Krastanov mechanism at high temperatures [Bauer 1982). It 
should be noted that the enthalpies of evaporation of Mo and W 
(142000 cal/g.atom and 191000 cal/g.atom, respectively) are much greater 
than those of fcc metals deposited which vary from 67900 cal/g.atom for 
Ag to 94000 cal/g.atom for Pd [Emsley 19911. Hence adhesion forces much 
stronger than the cohesion forces should be expected. 

A typical example is the case of deposition of Cu on (110) and (100) 
W [Bauer et al. 19741. LEED and AES measurements have shown that 
at room temperature the growth follows the layer-by-layer pattern. When 
the substrate plane is (110) the first Cu monolayer has 1.41 x 1015 atoms 
cm-2, which is exactly the surface density of the W atoms in the adjoining 
W(110) plane. Hence, the first Cu monolayer is pseudomorphous with the 
substrate. The second monolayer is expanded in the [loo] direction and not 
strained in the I1111 direction, thus having 1.6 x 1015 atoms cm-2, which 
is somewhere between the surface densities of the W(110) and Cu(ll1) 
planes. If a film thicker than two monolayers is annealed at a higher 
temperature all material in excess of two monolayers agglomerates into 
isolated 3D islands, which means that the first two monolayers are stable. 
In the case of the (100) substrate plane, the first two monolayers have 
1 x 1015 atoms cm-2 each, i.e. they have the same density as the W(100) 
plane and hence are pseudomorphous with the substrate. Even at room 
temperature the slope of the AES signal versus film thickness plot is very 
small after the second break point, which is an indication that 3D islands 
are formed on top of the second monolayer. This is unlike the (110) 
plane where 3D islands are formed on top of the second monolayer at 
temperatures higher than 700 K. Thus layer-by-layer growth is observed at 
low temperatures and Stranski-Krastanov growth at higher temperatures. 
The critical temperature for transition from one to the other mechanism is 
considerably higher for the more densely packed (110) than for the ( 1 0 )  
substrate plane. Similar results are also obtained in the case of deposition 
of Ag and Au on both Iow index planes of W [Bauer et al. 1977). 

When evaporating Fe on Cu(ll1) in the temperature range 20-4OO0C 
Gradmann, Kummerle and Tillmanns (19761 (see also Gradmann and Till- 
manns [1977]) established that the LEED patterns of the Fe films cannot 
be distinguished from the pattern of the pure Cu substrate. Note that at 
temperatures below 912OC the thermodynamically stable phase of iron is 
a-Fe with a bcc lattice; above this temperature it is 7-Fe with an fcc lattice. 
Hence, the thinnest Fe films (< 20 A) consist of the thermodynamically 
unstable 7-Fe and grow pseudomorphous with the Cu substrate. Moreover, 
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AES measurements showed that at low temperatures and/or high enough 
atom arrival rates, the films grow in the layer-by-layer mode, while at 
high temperatures and/or low atom arrival rates, island growth is observed 
from the very beginning of the deposition. Thus, the mode of growth 
depends on the supersaturation Ap, independently of whether the latter 
was changed by the temperature or by the atom arrival rate. Note that the 
enthalpy of evaporation of y-Fe (96000 cal/g.atom) is higher than that of Cu 
(80500 cal/g.atom). The atom spacings of a-Fe and y-Fe are 2.4823 8, and 
2.578 A, respectively, and the corresponding values of the misfit with the 
copper substrate are 2.88% and 0.85%. 

The deposition of metals on semiconductors follows more or less the 
same pattern as that of metals on metals systems. Stranski-Krastanov or 
Volmer-Weber growth at  high temperatures and layer-by-layer growth at  
low temperatures are usually observed. The interpretation of the obser- 
vations is much more complicated in view of the different nature of the 
chemical bonds in the substrate and deposit crystals. 

In the case of deposition of Ag on the As(001) face of GaAs described 
above [Massies and Linh, 1982a-cl AES measurements have shown that 
above 100°C, 3D islands are formed on the GaAs substrate (Volmer-Weber 
mode), while at lower temperatures the growth is very close to the layer- 
by-layer pattern. 

Gold and silver films on Si(ll1) and Si(100) are the most often studied 
systems ([Hanbiicken and Neddermeyer 1982; Hanbiicken, Futamoto and 
Venables 1984a, b; Hanbiicken and LeLay 19861; for a review see LeLay 
[1983]). A characteristic feature of the Au/Si system is the dloying which 
takes place even at room temperature. Silver has a much weaker tendency 
to make alloys with Si, and Ag adlayers on Si(ll1) are believed to form 
sharp interfaces with the Si substrate. It has been found that at room 
temperature the Ag films grow either via the Stranski-Krastanov mode 
with very fiat islands IVenables, Derrien and Janssen 19801 or via the 
layer-by-layer mode [LeLay et al. 1981; Bolmont et al. 19811. In a 
comparative study of Ag on the (111) and (100) planes of Si by AES 
and SEM, Hanbiicken, Futamoto and Venables [1984b] found that at high 
temperatures (400-500°C) the 3D Ag islands are flatter on Si(ll1) (relative 
height 0.01-0.04) compared to  those on Si(100) (relative height 0.3-0.6). 
An increase of the relative height of the 3D islands with temperature has 
been observed during deposition of Bi on Si(100) where a transition from 
layer-by-layer to Stranski-Krastanov growth at  a critical temperature of 
about 280 K has been found [Fan, Ignatiev and Wu 19901. 



384 Epitaxial Growth 

The epitaxial growth of one semiconductor material on the single crystal 
surface of another material is closely connected with device fabrication. 
Here both the substrate and the deposit materials are characterized by 
their directional covalent bonds. The growth of elementary semiconductors 
Si and Ge on top of each other as well as of Ge,Sil-, alloys on the (100) 
and (111) faces of Si is most often studied. 

Considering the covalent bonds as “brittle” and “inflexible,” the lattice 
misfit between Ge and Si (4.1%) can be accepted as very large. Nwusawa, 
Gibson and Hiraki [198la] (see also Narusawa and Gibson [1981b, 19821) 
interpreted their data of Rutherford Backscattering Spectroscopy (RBS) 
that Ge films deposited at  350°C grow pseudomorphically with the sub- 
strate up to three monolayers, after which 3D islands are formed on top. 
Alloying does not occur and the interface is abrupt. These conclusions 
were later confirmed by LEED and AES experiments of Shoji et al. [1983] 
and by Asai, Ueba and Tatsuyama [1985] for both (111) and (100) faces 
of Si. These authors reported that at  room temperature layer-by-layer 
growth takes place until six monolayers are formed, further deposition 
giving rise to amorphous Ge. Above 350°C the growth mode follows 
the Stranski-Krastanov pattern in which 3D islands are formed on top 
of three monolayers of Ge. MarCe et al. [1987] found with the help of 
RBS and MEED that 3D Ge islands were formed on four monolayers (two 
bilayers) which remained stable on the Si(l l1) substrate at  temperatures 
up to 800°C. The results obtained by deposition at room temperature with 
further annealing at higher temperatures were practically the same as the 
ones obtained by deposition at elevated temperatures. The room temper- 
ature deposited films were continuous and smooth. The high temperature 
films showed drastic changes which were attributed to island formation. 
SEM micrograph of a Ge film, 50 monolayer thick, deposited at room 
temperature and annealed at  500°C for 3 min, showed the presence of 3D 
islands with a density approximately 1 x lo9 cm-2. Thus layer-by-layer 
growth has been established up to 5OOOC and Stranski-Krastanov growth 
beyond this temperature. Similar investigations of the deposition of Si on 
Ge(ll1) [Made et  al. 19871 showed that layer-by-layer growth takes place 
at temperatures up to 600°C which was then replaced by growth of isolated 
islands with approximate density 4 x 107cm-2 directly on the Ge substrate 
(Volmer-Weber growth). 

A marked dependence of the mechanism of growth on the value of the 
natural misfit has been observed in the case of deposition of Ge,Sil-, 
alloys on Si(100). Kasper, Herzog and Kibbel [1975] established that when 
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the Ge content x in the alloy exceeded 0.2 so that the lattice mismatch is 
larger than 0.82%, the growth proceeds by formation of 3D islands. 2D 
growth takes place when the Ge content is less than 0.2. The lower the Ge 
content the thicker the alloy film can be grown by successive monolayers 
pseudomorphous with the substrate. These findings were later confirmed by 
Bean et al. [1984], who found, however, that pseudomorphous 2D growth 
can take place for alloys with Ge content up to 0.5 and thicknesses as great 
as 0.25 pm. 

The examples given above do not exhaust all the cases described in 
the literature. Deposition of noble gases is another interesting example. 
For instance, in the case of deposition of Xe on Si(l l1) at  25 K layerlike 
growth [Bartha and Henzler 19851 has been established, the film being 
pseudomorphous with the substrate. At elevated temperatures (36 K) clear 
island growth has been observed. The same tendency has been found in 
quite a different system, namely, the growth of tungsten oxide on tungsten 
[Lepage, Mezin and Palmier 19841. In the low temperature regime (< 
SOOOC) the oxide seems to  grow layer by layer, while at  high temperatures 
(> 700°C) the deposit is formed by discontinuous islands. 

We can summarize the main tendencies in the mode of growth which 
are more or less applicable to systems involving any kind of chemical bonds 
as follows [Markov and Stoyanov 19871: 

1. When the interfacial bonding is weaker than the bonding in the 
deposit itself, the formation and growth of isolated 3D islands rather than 
monolayers are favored. 

2. High substrate temperatures favor the growth of 3D islands either 
directly on the substrate (Volmer-Weber mechanism) or on one or several 
stable adlayers of the deposit (Stranski-Krastanov mechanism). In addi- 
tion, the higher the temperature, the greater is the relative height of the 
3D crystallites. 

3. Higher deposition rates favor layerlike growth. The higher the 
deposition rate, the more layerlike the growth pattern, and vice versa. 

4. The lattice misfit plays a prominent role in determining the mode 
of growth. The larger the misfit, the greater is the tendency towards 
island-like growth, and vice versa. 

5. The crystallographic orientation of the substrate also affects the 
mechanism of growth. The more densely packed the substrate plane, the 
greater the tendency towards layerlike growth in comparison with the less 
densely packed planes. In particular, this tendency is expressed by the 
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fact that the more densely packed the substrate planes are, the flatter the 
3D crystallites will grow. 

4.3.1. Relation of Dupre' for  misfitting crystals 

As discussed above, the substrate and deposit crystals differ not only in 
their lattices and lattice parameters but also in the nature and strength 
of the chemical bonds. In the case of zero misfit the quantity which 
gives properly the catalytic potency of the substrate, or in other words, 
the energetic influence of the substrate on the film growth, is the specific 
adhesion energy which is determined by Eq. (1.28). To account for the 
lattice misfit we perform the same imaginary process as described in Chap. 1 
(Fig. 1.6). 

We assume that two infinitely large crystals A and B have different 
lattice parameters a and b [van der Merwe 19791. We cleave both crystals 
reversibly and isothermally, and produce two surfaces of A and two surfaces 
of B. We then uniformly strain the halves of one crystal, say B, to match 
exactly the lattice parameter of the other (A),  and put the halves of A 
and B in contact as before. Assuming that the lateral homogeneous strain 
does not affect the bonding across the interface, we gain an energy -2UAB. 
After that  we allow the bicrystal system to relax completely so that misfit 
dislocations are introduced at the interface. The energy of homogeneous 
s t r ah  is regained completely, but the energy E d  of a cross grid of misfit 
dislocations is introduced. The energy balance now reads 

(4.126) 

where Ed = Ed/C is the misfit dislocation energy per unit area and the 
asterisks indicate that the quantities refer to misfitting crystals. The 
specific adhesion energy is now given by the difference 

p* = @ - ' E d .  (4.127) 

As we see, the dislocation energy appears as a decrement to the binding 
between both crystals. This is not surprising if we recollect that when 
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Ed = 0 the atoms are not displaced from their positions at the bottoms of 
the potential troughs provided by the other crystal. 

On the other hand, the dislocation energy appears as an increment to the 
specific interfacial energy which is due to the lattice misfit. The remaining 
part cq is due to the different nature and strength of the chemical bonds 
and does not depend on the misfit. Thus the interfacial energy a: = cri +Ed 
consists of two parts: a chemical part ui and a misfit part Ed. 

We can repeat this process assuming now that the crystal B is not 
infinitely thick, but thinner than the double critical thickness Zt, for pseu- 
domorphous growth (Fig. 4.51). We again cleave both crystals reversibly 
and isothermally, strain uniformly the halves of B to match exactly the 
lattice parameter of A, and put the halves of A and B in contact as before. 
Carrying out this operation we strain the free surfaces of B and change 
the specific surface energy. Drechsler and Nicholas [1967] found that the 
change of the specific surface energy does not exceed several percent of the 
absolute value. We assume that this change is much smaller than the work 
done to strain the crystals and neglect it. Then we allow the bicrystal 
systems to relax. Misfit dislocations will not be introduced at the interface 
as the half-thickness of B is smaller than the equilibrium critical thickness 
for pseudomorphous growth and the pseudomorphous film is stable. The 
energy balance will read 

0: = CA + CB - P + Ee(f) = ui + €e(f) , (4.128) 

where &, is the strain energy per unit area of the interface stored in 
crystal B. The latter is a parabolic function of the lattice misfit f .  

Finally, in the general case (the crystal B is again thin but is thicker 
than the double critical thickness 2t, for pseudomorphous growth) part of 
the homogeneous strain is regained and misfit dislocations are introduced 
at the interface but their density is partially reduced owing to the residual 
strain. Then [Markov 19881 

0: = c A + u B -  0 -k Ee(fe) + fd(f - fe) 
= ai + Ee(fe) -k Ed(f - fe) (4.129) 

and 
0' = P - Ee(fe) - E d ( f  - fe) 7 (4.130) 

where the strain energy Ee(fe) and the dislocation energy Ed(f-fe) depend 
on the homogeneous strain fe and the mean dislocation density fd = f-f,, 
respectively. 
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Fig. 4.51. For the derivation of the relation of Duprb in the case of thin films on a 
semi-infinite substrate. 

4.3.2. Thickness dependence of chemical potential 

As discussed in Chap. 1 the chemical potentials of the first deposited layers 
differ from the chemical potential of the bulk deposit crystal, pm. First, 
the interaction with the substrate differs from that with the same crystal, 
and second, the lattice misfit leads to  the appearance of homogeneous 
strain and/or misfit dislocations. We know that elastically strained crystals 
have higher chemical potentials and hence the homogeneous strain energy 
and the average value of the periodical strain energy due to the misfit 
dislocations contribute to the chemical potential of the film. On the other 
hand, the atom displacements affect the interaction across the interface 
and again lead to increase of the chemical potentials of the first few layers 
deposited on the foreign substrate. 

The chemical potential and hence the equilibrium vapor pressure of a 
semi-infinite monolayer on a foreign substrate is a function of the separation 
work from half-crystai position ~ i , ~  where the prime reflects the influence of 
the foreign substrate. An atom in a half-crystal position is again connected 
with half atomic row, half crystal plane and the underlying half crystal 
block, but now the latter is of a different material and the corresponding 
energy of desorption, cp',, differs from the energy of desorption, var from 
the surface of the same crystal. Thus we can write the following general 
expression for the chemical potentials of the atoms in the first, second, 
third, etc. monolayers: 
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p(n) = pea + a2(a + a: - a,) , (4.131) 

where Au = a +a: - a, is the change of the surface energy connected with 
the deposition and is exactly equal to the difference of bonding between 
like and unlike substrates (see Chap. 1). The chemical potential of each 
monolayer is just equal to the chemical potential of the bulk crystal plus 
the difference of the bondings per atom with the like and unlike crystals. 
In fact &. (4.131) is equivalent to Eq. (1.59) with the exception that it 
accounts for the lattice misfit. In this respect it appears as a generalization 
of a. (1.59). 

Substituting 0: from (4.129) into (4.131) and replacing u and P by (Pa 

and 96, respectively, give [Markov 19881 

p(n) = Po0 + [$'a - $'k(n) -k cd(n) -t E e ( n ) ]  Y (4.132) 

where E d ( n )  = a2&(n) and ee(n) = a2Ee(n) are now the energies per atom 
of the misfit dislocations and the homogeneous strain. 

The term in the square brackets accounts for the strength of the interfa- 
cial bonding related to the strength of bonding with the same crystal. It in- 
cludes the energy per atom, E d ,  of a cross grid of misfit dislocations as shown 
in the previous section. The last term in the brackets is the contribution 
of the homogeneous strain energy per atom, Ee,  to the chemical potential. 

It is clear that when the substrate is of the same material as the deposit, 

that the difference between the crystal growth and epitaxial growth is of 
purely thermodynamic nature. We could even define the different kinds of 
epitaxial growth on the base of Eq. (4.132). Thus if the main contribution 
to p(n) comes from the difference in bonding, va -p',(n), or in other words, 
from the nature of the chemical bonds in both partners, we have the case 
of heteroepitaxy. When the main contribution to p ( n )  comes from the 
misfit energy, the bonding in both crystals remaining essentially the same, 
we consider that as homoepitaxial growth. Finally, when p(n)  = poo we 
cannot speak of epitaxy at all. 

'p6 can be either greater or smaller than (Pa, and hence the term in the 
brackets can be either positive or negative and p(n)  can be either greater 
or smdler than boo. In order to follow the p ( n )  dependence we should 
consider the thickness dependence of the quantities involved in Eq. (4.132). 

The adhesion energy per atom, v:, accounts only for the atomic in- 
teraction across the interface in the absence of misfit. For short range 
interactions it changes rapidly with film thickness, going to pa from above 

Cp. = Cp:, fd = fe = 0, Ed = E, = 0 and p(n) = ,Urn. What fOllOWS iS 
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I d 
Fig. 4.52. Dependence of the energy of desorption of an atom from unlike substrate on 
the distance from the interface measured in number of monolayem 'p6 > pa corresponds 
to complete wetting and vice versa. 

or from below (Fig. 4.52). The energetic influence of the substrate on the 
atoms of the second monolayer will be very weak and can be neglected 
except for some extreme cases. 

As shown in the previous section, the thickness up to which Ed and 
contribute to  the chemical potential depends in a complicated way on 

the lattice misfit. The periodical strain due to misfit dislocations attenuates 
rapidly with the distance from the interface and practically vanishes beyond 
a distance equal to half of the misfit dislocation spacing, p / 2  (Fig. 4.41). 
The latter is inversely proportional to that part of the misfit fd which is 
accommodated by misfit dislocations. Hence, Ed = 0 for t > p / 2 .  

The homogeneous strain energy E, is a parabolic function of the homo- 
geneous strain fe and a linear function of the thickness t. When t < t,, 
E~ = e e ( f ) .  Above the critical thickness for pseudomorphous growth, t,, fe 
and ce rapidly decrease and can be neglected. Hence, we can simplify our 
considerations assuming Ed = 0 and E,  = Ee(f)  at t < tc and Ee = 0 and 
Ed = ~ ( f )  at t > t,. 

We consider now some typical cases. We assume first that cp; > qa, 
i.e. the adhesive forces are stronger than the cohesive ones. If the misfit is 
small enough so that E,  << poo and t ,  is large, then 
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~ ( 1 )  = Po0 + (Pa - (P: + Ee < C L ~  

and 
p(n) = pm + ee p a ,  

If the energetic influence of the substrate is felt not only by the first 
monolayer but also by the atoms of the second monolayer, though much 
more weakly, one observes the behavior shown in Fig. 4.53 by solid circles. 

2 5 n 5 t , / b  . 

Fig. 4.53. Schematic presentation of the dependence of the chemical potential of the 
uppermost monolayer on film thickness in ultrathin films. Filled circles: Frank-van 
der Merwe mechanism or layer-by-layer growth; semifilled circles: Stranski-Krastanov 
mechanism'or layer-by-layer growth followed by islands; empty circles: Volmer-Weber 
mechanism or island growth (after Stoyanov [1986]). 

Let us assume now that cpk > va as before but the misfit is large, say, 
f4 < f < fs (see Fig. 4.43) so that the energy of the homogeneous strain is 
not negligible compared with pm. Then 

P(1) = Pm + (Pa - v:, + Ee < CL , 
P(n)=Pao+Ee>P, ,  2 5 n 1 4 ,  

P(n)  = Pw +ed(t)  > n 2 5 . 
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The latter p ( n )  dependence is shown in Fig. 4.53 by the semifilled circles. 
The gradual decrease of p ( n )  beyond the fourth monolayer reflects the 
decrease of the mean energy per atom of the periodical elastic strain due 
to the misfit dislocations with film thickness (see Fig. 4.42). 

We assume further that 'p: < cpa. If the misfit is small enough so that 
t, is large, then 

~ ( 1 )  = ~m -t- (Pa - c ~ j ,  + ~ e ( f )  > pa, 7 

An)  = CL, + E, > pW, 2 5 n I t , lb  . 

Beyond t,, E =  vanishes and misfit dislocations are introduced at the 

If the misfit is large and in the extreme case larger than f i ,  ee = 0 from 
interface so that E,  is replaced by E d .  

the very beginning, 

Let us consider the last case in more detail. The p(n)  dependence is 
decreasing, thus reflecting the decrease of the periodical strain with film 
thickness (see Fig. 4.41). Then every next monolayer will have a chemical 
potential smaller than that of the previous one and will start to form before 
the completion of the latter. In such a case the formation of islands thicker 
than one monolayer is thermodynamically favored and their equilibrium 
with the vapor phase will be realized through a half-crystal position of 
a multilayer height (Fig. 4.50). Then the chemical potential of the film 
consisting of several atomic monolayers, p(1 + n) ,  will be given by the 
mean value of the chemical potentials of the constituent monolayers: 

(Fig. 4.53, open circles), as discussed above. 

4.3.3. Thermodynamic criterion for modes of growth 

It follows that depending on the interrelation between the adhesive and 
cohesive forces on the one hand, and the value of the misfit, resulting in an 
interplay between the energies of the misfit dislocations and homogeneous 
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strain, on the other, three different types of thickness dependence of the 
chemical potential can be distinguished: 

1. dpldn < 0 when cpk < (Pa at any value of the misfit, 
2. dp/dn > 0 when cpk > (Pa at small misfits, 
3. d,u/dn 5 0 when cp; > va at large misfits. 

Obviously when dpfdn is positive the completion of the first monolayer 
before the start of the second one, of the second before the start of the third, 
etc., is thermodynamically favored - layer-by-layer growth is expected. In 
the opposite case the formation of a second monolayer before the completion 
of the first one is thermodynamically favored and the formation of 3D 
islands should take place. It follows that the above inequalities define the 
thermodynamic criterion for the mechanism of growth of thin epitaxial 
films [Stoyanov 1986; Grabow and Gilmer 19881: 

1. VOLMER-WEBER growth when dp/dn < 0, 
2. FRANK-van der MERWE growth when dp/dn > 0,  
3. STRANSKI-KRASTANOV growth when dp/dn 5 0. 

Once the chemical potential acquires its bulk value ,urn the epilayer will 
grow further by the simultaneous growth of several monolayers [Borovinski 
and Tzindergozen 1968; Gilmer 1980a; Chernov 19841. 

It is worth noting that the above thermodynamic criterion is in fact 
equivalent to that given by Bauer [1958] in terms of the specific surface 
energies. The latter becomes clear if one looks at Eq. (4.131)- 

4.3.4. Kinetics of gmwth of thin epitaxial films 

We are now in a position to study the growth of thin epitaxial films 
bearing in mind the above thickness dependence of the chemical potential. 
The latter predicts the equilibrium morphology of the deposit whereas 
the deposition process is usually carried out under conditions far from 
equilibrium. So we have to study the question of how the substrate 
temperature and rate of deposition affect the mechanism of growth. 

We consider the case of complete condensation when all atoms arriving 
at the crystal surface join sites of growth before re-evaporation. As in the 
caae of growth of a defectless atomically smooth crystal face, the atoms 
from the vapor phase strike the substrate and, after a period of thermal 
accommodation, randomly walk to give rise of 2D nuclei. The 2D nuclei 
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grow further by the attachment of adatoms diffusing to their edges on 
the substrate surface and on their exposed surface as well. An adatom 
population is formed on top of them (Fig. 4.54(a)) whose concentration 
n,(r)  can be found upon solving the master equation (3.125) subject to the 
boundary conditions n,(r = p )  = nzl and (dn,/dr),,o = 0. The solution 
reads (see Eqs. (3.127) and (3.135)) 

(4.133) 

where R = P ( 2 ~ r n k T ) - ' / ~  cm-2sec-1 is the atom arrival rate. The 
quantity nZl is the concentration of adatoms in equilibrium with the island 
edges given by 

( 4.134) 

where n,, is the adatom concentration on the surface of the same bulk 
deposit crystal given by Eq. (3.18). 

Equation (4.133) shows a parabolic dependence of the adatom concen- 
tration on the distance from the island center (Fig. 4.55(a)) which displays 

41) - Po0 nEl =nseexp ( kT ) 

a maximum 

just over the island center. The increase in p leads to values of ns,max high 
enough to  give rise to nuclei on top of the islands (Fig. 4.54(b)). Thus 
nuclei of the second monolayer appear before the completion of the first 
one. Once such nuclei are formed they grow initially at the expense of the 
atoms diffusing to  their edges on the terrace between the edges of the upper 
and lower islands. The adatom concentration on the terrace (Fig. 4.55(b)) 
is given by Eq. (3.136) subject to the boundary conditions n,(pl) = nZl 
and n,(pz) = nE2, where 

(4.135) 

is the adatom concentration which is in equilibrium with the edges of the 
second monolayer islands [Markov and Stoyanov 1987). 

The solution reads (c.f. Eq. (3.136')) 

where An, = n:l - nE2 
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I SUBSTRATE I 

Fig. 4.54. Subsequent stages of film growth and atom exchange between the kinks and 
the dilute adlayer. (a) The concentration of atoms adsorbed on top of the first monolayer 
island increases with island size, which leads to nucleation of 2D islands of the second 
monolayer. (b) Surface transport from the edges AlBlClDl to the edges AzBzCzDz 
takes place when p ( 2 )  < p(1). ( c )  Surface transport transforms the layer configuration 
into a crystal of two-monolayer height, which grows further by nucleation of islands of 
the third monolayer. (I. Markov and S. Stoyanov, Contemp. Phys. 28, 267 (1987). By 
permission of Taylor & Francis Ltd.) 

Suppose now that p(1) > p(2) ,  i.e. d p / d n  < 0. The adatom population 
on top of the first monolayer islands is supersaturated with respect to the 
bulk deposit crystal. This favors nucleation on top of the first monolayer 
islands and the thermodynamic driving force for nucleation to occur should 
be greater than Ap = p ( l ) - p m .  On the other hand, nzl > nz2 and surface 
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Epitaxial Growth 

b 

Fig. 4.55. Profile of the adatom concentration on (a) the surface of a monolayer island and 
(b) the terrace formed between the edges of the lower and upper monolayer islands with 
radii p1 and p 2 ,  respectively. n:, and nZs are the adatom concentrations in equilibrium 
with the corresponding island edges. 

tmnsport from the edges of the lower island to the edges of the upper island 
will take place whose driving force is given by Ans/A = (nEl - ?&)/A, 
where X is the distance between the edges (Fig. 4.55(b)). Thus the upper 
islands will grow at the expense of the lower islands and after some time 
will catch up with the lower islands to produce islands with a double 
height (Fig. 4.54(c)). Hence, at temperatures high enough to facilitate 
the surface transport island growth will be observed. However, if the 
temperature is low the surface transport from edge to edge will be hindered 
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so that the first monolayer islands will grow laterally to coalesce and cover 
completely the substrate before a significant growth on top of them takes 
place. Layerlike growth will occur for kinetic reasons. However, such films 
grown at low temperature are metastable. Upon heating they will break up 
and agglomerate into 3D islands. Note that the growth will not follow the 
true layer-by-layer mechanism (complete coverage of the substrate by one 
monolayer before the next one to nucleate) as the thermodynamics favor 
island growth. 

In the opposite case, p(1) < 4 2 )  (dpldn > 0) (Fig. 4.55(b)), the islands 
of the second monolayer will have a chemical potential higher than that of 
the lower islands and surface transport of atoms will occur from the edges 
of the upper islands to the edges of the lower islands. As a result the upper 
islands will decay. Thus, layer-by-layer growth will be observed irrespective 
of the temperature. 

Finally, when dp/dn changes its sign with film thickness the first mono- 
layers will grow layer by layer for reasons given above. Once a particular 
thickness is reached (the so-called Stranski-Krastanov thickness) such that 
the corresponding chemical potential is higher than poo, 3D islands will 
form and grow at high temperatures. Surface transport from the edges of 
more elastically strained islands to the edges of islands less strained or not 
strained at all will take place. As a result the Stranski-Krastanov mecha- 
nism will be observed. At low temperatures the growth will proceed further 
by successive formation of monolayers. Again if such low temperature films 
are annealed at higher temperatures the material in excess of the first stable 
monolayers (for which dp(n)/dn > 0) will break up and agglomerate into 
3D islands. 

It is important to note once more that a true layer-by-layer growth takes 
place only when the chemical potential is an increasing function of the film 
thickness, i.e. dpldn > 0. At low temperatures and dp/dn < 0, the film 
growth will proceed by simultaneous growth of several monolayers as shown 
in Chap. 3. 

Thus, we have to  expect a change of the mechanism of growth from 
layerlike to  either Volmer-Webe; or Stranski-Krastanov with increasing 
temperature. The necessary condition for a transition to  occur is dpldn < 
0. In other words, the thermodynamics should favor island growth either on 
the substrate surface or on several stable monolayers of the deposit. Our 
next task is to find the critical temperature for transition to occur. 

We consider the case where p1 > p2 > p 3 . .  . so that island growth 
is expected under near-to-equilibrium conditions. The same is valid in 
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the case of Stranski-Krastanov growth after completion of the first stable 
adlayers. As discussed above, 2D nuclei of the second, third, etc. mone  
layers are formed on top of the first monolayer islands which results in the 
formation of flat pyramids of growth as shown in Fig. 3.26. A very nice 
picture of such pyramids of growth of Cu on Ru(0001) can be seen in the 
paper of Potschke et al. [1991]. As the chemical potential is a decreasing 
function of the monolayer number n the surface transport will be directed 
from the lower to the upper steps. We make use of the solutions of the 
diffusion equation (3.125) subject to the boundary conditions n,(pl )  = nzl, 
n . ( a )  = nE2, n , ( p s )  = n&, etc. assuming rapid exchange of atoms between 
the steps and the dilute adlayers on the terraces (diffusion regime). We 
then obtain solutions for n,(r) on every terrace (Eq. (4.136)) and, following 
the same procedure as in Chap. 3, we calculate the rates of advance of the 
circular steps, vn = dp,/dt [Stoyanov and Markov 19821. 

Thus for the first monolayer island we have 

where N, is the density of the growth pyramids formed by successive 
nucleation per unit area of the substrate and An: = n:l - 7 1 : ~ .  

In this expression, the first term on the right-hand side which contains 
R is always positive as the surface coverage rpTN, is smaller than unity 
before the coalescence and p1 > p2. The second term which contains the 
equilibrium concentration difference An: is also positive as nzl > n:2. It 
follows that u1 can be either positive or negative, depending on the values 
of the deposition rate R and the difference An: which is a steep function of 
the temperature. In the extreme case of an absence of deposition (annealing 
at R = 0), the first term in the right-hand side is equal to zero and w1 < 0, 
thus reflecting the process of detachment and transport of atoms from the 
lower monolayer island edge to  the edge of the upper island. The same 
process takes place during deposition, but at a higher temperature, when 
the negative term overcompensates the positive one. If this occurs before 
the coalescence of the first monolayer islands, say, at  a surface coverage 
01 = rp:Ns < 0.5, island growth has to be expected. On decreasing 
the temperature, An: decreases, and under a given temperature the term 
containing An: has a negligible contribution to u1. The rate w1 is then just 
the same as in the case of deposition on its own substrate, i.e. in the case 
of a growth of a bulk crystal when p(n)  = pm. 
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We have to solve now a set of differential equations for the rate of 
advance of the steps. The latter can be written in terms of surface coverages 
0, = .~rp;N, (n = 1,2 ,3 , .  . . ) as a function of a dimensionless time 8 = 
Rt/No,  which is in fact the number of monolayers deposited, in the form 

where the subscript N denotes the uppermost monolayer and the 
parameters 

(4.138) 

include all the materials quantities and the differences of the adatom 
concentrations, or in other words, the differences of the chemical potentials 
(see Eqs. (4.134) and (4.135)). 

4.3.5. Critical temperature for transition from 2D to SD gmwth 

A numerical analysis of (4.137) shows that the solutions for 0, and hence 
the time evolution of the shape of the growth pyramids are very sensitive 
to the values of M,,. The latter are strongly increasing functions of 
temperature and are inversely proportional to the atom arrival rate R. 
When the chemical potentials are independent of the layer number, or 
in other words, n t  = rise, Mn = 0.  In this case there is no directed 
surface transport between the steps and the growth pyramids preserve their 
shape. This means that the epitaxial film will grow as the bulk crystal face 
following the 2D nucleation mechanism with simultaneous growth of several 
layers. It is immediately seen that the system (4.137) turns into (3.144) for 
a pyramid of growth consisting of 2D islands with M,, = 0. 

Let us consider the simplest case of the biiayer pyramid shown in 
Fig. 4.54 or Fig. 4.55(b), assuming in addition that n:2 = nae, i.e. 4 2 )  = 
pao. This is a sufficient condition for islands growth to take place as bilayer 
islands will be.formed as a result of it. As discussed in Chap. 3, the bilayer 
steps propagate more slowly than single steps and the double step will be 
caught up with by the upper step. Trilayer island will be formed, etc. The 
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numerical solution of the system (4.137) in the case of a bilayer pyramid 
is shown in Fig. 4.56. At M I  = 0.25, 01 initially increases, displays a 
maximum 0 1  = 0.5 and then decreases. The latter means that at some 
stage of growth the rate of advance of the first monolayer island, d p l l d t ,  
becomes negative, or in other words, the first island decays and the atoms 
feed the second island. Then the edges of the latter catch up with the edges 
of the former and an island with double height is produced (Fig. 4.54(c)). 
The double step advances more slowly than the single step, and after 
some time the third step catches up the double step, thus producing an 
island with triple height. As a result, island growth takes place, the kinetic 
criterion for it being 

1.0 I - - -  
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w > 
0 u 
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-4 
L 
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(4.139) 

Fig. 4.56. Dependence of the surface coverages of the first (curves 1 and 1') and second 
(curves 2 and 2') monolayers on the number of monolayers deposited. Curves 1 and 2: 
A41 = 0.25 (p(1) > ~ ( 2 ) ) ;  curves 1' and 2': M = -1.5 (p(1) < ~( (2 ) ) .  
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The physical meaning of this criterion becomes transparent if we write 

The numerator represents the total diffusion flux from the edge of the 
lower island to that of the upper island resulting from the difference of 
the equilibrium adatom concentrations. The denominator is equal to the 
number of atoms joining one pyramid per unit time. Therefore, the criterion 
simply states that in order for island growth to take place the diffusion flux 
from edge to edge should be equal to or larger than 25% of the total number 
of atoms joining the pyramid. An increase of the deposition rate R leads to 
an increase of the overall growth rate of the pyramid without affecting the 
diffusion flux which is responsible for the transformation of the pyramid 
to a 3D island. The result is a transition to layer-by-layer growth. An 
increase of temperature has the opposite effect: it results in a faster surface 
transport, which in turn facilitates the 2 0  to 3D transformation. 

It is interesting to see what will happen when A41 has a negative value, 
i.e. when p(1) c poo. As seen in Fig. 4.56 the surface coverage of the 
second monolayer, 02, decreases, thus reflecting the fact that the surface 
transport is directed from the upper to the lower islands edges. The lower 
islands grow at the expence of the upper ones and cover completely the 
substrate. True layer-by-layer growth results. 

Making use of Eqs. (4.134), (3.18) and (3.20) for the transition temper- 
ature Tt from (4.136), one obtains 

(4.140) 

Substituting the difference of the chemical potentials from Eq. (4.132) 
into Eq. (4.140) for the transition from layerlike growth to island growth, 
one obtains 

(4.141) 

Bearing in mind that the lateral bonds of an atom in a kink position 
remain practically unchanged, p1j2 - qa S - cp:, and the energy 
difference in the square brackets is just equal to the energy - pa for 
the transfer of an atom from a kink position in the step of the first monolayer 
island to the dilute adlayer on top of it. 
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Fig. 4.57, Plot of the temperature (in K) for transition from a planar (layerlike) growth 
to Stranski-Krastanov growth as a function of the natural misfit at two different 
orientations (111) and (100) of fcc substrate crystal. An average enthalpy of evaporation, 
AH., I 'p1/2 = 70 kcalmol-', has been taken. The misfit dislocation energy Ed 
is computed using the theory of van der Merwe (Eq. (4.104)) with an average shear 
modulus G = 5 x 10" dyne/cm2 and Poisson's ratio v = 0.3. 

Equation (4.141) is valid for transition from layer-by-layer to island 
growth where the contribution of the interatomic forces across the interface 
to the chemical potential is greatest. In the case of transition from layer-by- 
layer to  Stranski-Krastanov growth (the latter taking place after formation 
of one or two stable adlayers) va - cpk can be neglected. Assuming that 
the stable monolayers are pseudomorphous with the substrate and the 3D 
islands are relaxed, Eq. (4.140) simplifies to  

(4.142) 

Then the surface transport will occur from the edges of more elasticaliy 
strained monolayer islands to the edges of less strained, or unstrained at 
all, monolayer islands. 

It should be noted that whereas (plp is characteristic for the bulk 
material, pa and 'pg depend on the crystallographic orientation of the 
substrate. It follows that the critical temperatures will be higher for the 
(111) face of an fcc crystal (cpa = 3$, cpk = 37)~') than for the (100) face 
(9. = 4.11, 9: = 4?,6'). This is indeed what is observed in a series of 
experiments (for a review, see Markov and Stoyanov [1987]; Markov [1983]). 
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The temperature for transition from layer-by-layer to Stranski- 
Krastanov growth (Eq. (4.142)) is plotted against the natural misfit in 
Fig. 4.57. The misfit dislocation energy per atom &d is calculated as a 
function of the misfit by using the theory of van der Merwe (a. (4.104)) 
with an average shear modulus G = 5 x 10" dyne/cm2 and Poisson's 
ratio v = 0.3. An average enthalpy of evaporation, AHev = cpl/z = 
70 kcalmol", has been taken. As seen the temperature decreases by no 
more than 140-150 degrees when the misfit increases from zero to 0.20, and 
a transition from planar to Stranski-Krastanov growth can be expected 
with increasing temperature or misfit. Besides, the transition temperature 
for the more closed packed surface is more than 200 degrees higher in 
comparison with the less closed packed surface. A transition from planar to 
Stranski-Krastanov growth can be expected even at room temperature for 
the latter. As will be shown below this result is in fairly good agreement 
with experimental observations. 

Thus the morphology of the growing epitaxial film is a result of the 
kinetics of deposition and can be quite different from the morphology 
required by the thermodynamic criterion. As seen the criterion (4.140) 
accounts for both the kinetics and the thermodynamics of the growth of 
thin epilayers. 

Let us go back to some of the experimental data mentioned at the 
beginning of this chapter. We consider first the transition from layer-by- 
layer to Stranski-Krastanov growth in the case of deposition of Cu on 
W(110) and W(100) [Bauer et al. 19741. The upper stable adlayer has 
1.6 x 1015 atoms/cm', and assuming an approximate (111) structure of 
the adlayer the average atom spacing is 2.686 A. Bearing in mind that the 
first neighbor distance of Cu is 2.556 A, the natural misfit between the 
copper crystallites and the underlying strained copper adlayer is f Y 0.05. 
G, = Gb = Gi = G = 5.46 x 10" dyne/cm2, v, = yb = v = 0.324, 
G' = G/2(1 - v )  and X = rf/(l - v) = 0.23. Then using the theory 
of vitn der Merwe (Eq. (4.104)) we find Ed = 310 erg/cm2. Then Ed = 
ua€d o! 2 x J/atom = 0.126 eV/atom. The enthalpy of evaporation 
of Cu is AH, = 72800 cal/mole and 'pip - cpa = 36400 cal/mole = 
2.5 x J/atom = 1.58 eV/atom. With v E 3 x lox3 sec-', N, Pr 
1 x 1Olo cm-2, R = 5.9 x 10I2 cm-2sec-1, and neglecting (Psd, we find & = 
600 K, in good agreement with the experimentally found value 700 K. The 
same calculations performed for the case of deposition of Cu on W(100) give 
f = 0.21, A = 0.976, Ed = 600 erg/cm2 and Ed = 0.245 eV/atom. Bearing 
in mind that (Pa = 4 ~ ,  cpl/2 - cpa = 26830 cal/mole = 1.053 eV/atom, 
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Tt = 330 K. As mentioned above, 3D islands have been experimentally 
observed to form on the stable adlayers even at room temperature. 

As seen, Eq. (4.142) predicts quantitatively the transition from layer 
to  Stranski-Krastanov mode of growth and gives correctly the dependence 
of the transition temperature on the crystallographic orientation of the 
substrate. As for transition from layer to island growth we need reliable 
values for the adhesion energy 96. It follows that Eq. (4.141) will operate 
satisfactorily when the enthalpies of evaporation and the bond strengths of 
both materials do not differ too much provided the nature of the chemical 
bonds is one and the same. We can assume then that the adhesion energy 
lies between the cohesion energies of the two materials. We will consider 
as an  example the deposition of Ge on Si(l l1) and Si on Ge(ll1) [Made, 
Barbour and van der Veen 19873. 

A transition from layer to Stranski-Krastanov growth is observed when 
Ge is deposited on Si( lll),  the transition temperature being 500°C. Making 
use of Q. (4.142) and following the procedure outlined above we find 
Ed = 400 erg/cm2 and &d = 0.4 eV/atom, cplp - (Pa = 44750 callmole 
= 1.94 eV/atom. With N, = 1 x lo9 cm-2 and R = 0.1 ML per sec 
= 7.2 x 1013 cm-%ec-l, Tt = 480°C, in excellent agreement with the 
experimental observation. 

The transition from layer-by-layer to island growth in the deposition of 
Si on Ge(l l1)  is more difficult to handle. We assume first that the shear 
modulus at the interface, Gi, has a value in between the shear moduli of 
Si and Ge, 6.41 x 10" dyne/cm2 and 5.46 x 10'l dyne/cm2, respectively. 
We accept the average value Gi = (GG,Gsi)'12 = 5.9 x 10" dyne/cm2. 
Then Ed = 600 erg/cm2 and Ed = 0.6 evlatom. The same assumption is 
made for evaluating cpb. From cp,(Si) = hHe(Si)/2 = 54450 cal/mole and 
cp,(Ge) = AHe(Ge)/2 = 44750 callmole, we find cp; S [cpa(Si)cp,(Ge)]1/2 = 
49360 cal/mole. Then cpl12 - cpa = 54450 callmole = 2.362 eV/atom, cp. - 
cp; = 5090 cal/mole = 0.221 eV/atom. With R = 7.2 x 1013 cm-2sec-1 and 
N, = 4 x lo7 cm-2 and neglecting again v s d  for the transition temperature 
one finds Tt = 590OC. It is worth noting that the approximation concerning 
'p6 is quite reasonable. If we approximate cp', by either cp. (Si) or cpa (Ge), 
then Tt = 72dOC or 48OoC, respectively. We can conclude that the real 
value of cp; lies, indeed, between cpa (Si) and cpa (Ge). 

We have to bear in mind, however, that the theoretically predicted vd- 
ues of Tt are underestimated as the activation energies for surface diffusion 
have been neglected. In the case of diffusion of Si atoms on Si ( l l l ) ,  the 
value 1.3 eV has been reported [Farrow 1974; Kasper 19821. In addition 
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Sakamoto, Miki and Sakamoto [1990] found that the surface diffusion on 
a vicinal Si(ll1) surface is anisotropic. Another uncertainty in calculating 
the transition temperatures comes from the application of the theory of van 
der Merwe [1973] to the calculations of the misfit dislocation energy in the 
case of materials with covalent bonds which axe considered as brittle and 
inflexible. Additional uncertainty comes from using the nearest neighbor 
model for the calculation of the desorption energies. It is thus surprising 
that irrespective of all the approximations made in the quantities involved in 
Eqs. (4.141) and (4.142), the latter are in good semiquantitative agreement 
with the experimental data. 

Equations (4.141) and (4.142) explain readily the transition from layer- 
by-layer to Stranski-Krastanov or island growth with increasing misfit. As 
an example we will consider the deposition of Sil-,Ge, on Si [Kasper, 
Herzog and Kibbel 19753. When the composition x varies from 0.15 to 0.25 
the natural misfit varies from 0.006 to 0.01, the parameter X vanes from 
0.024 to 0.04 and &d varies from 0.12 to 0.175 eV. The critical temperature 
for 2D-3D transition decreases by about 30 degrees which is sufficient to 
change the mode of growth when the deposition is carried out at  a constant 
temperature. 

4.5.6. Cmss hatch patterns 

The theoretical model described above gives an explanation of the appear- 
ance of the smxlled “cross hatch patterns” (see Franzosi et al. [1986] and 
the references therein). The latter represents an array of parallel lines 
or a grid of two arrays of mutually perpendicular lines on the surface 
of the growing epilayer where the latter is thicker than the remaining 
part of the film. Detailed investigation of the phenomenon in the case 
of growth of In,Gal-,As on InP(100) (F’ranzosi et al. 19861 showed that 
each cross hatch line corresponds to a dislocation line. Thus the cross 
hatch pattern appears only when the interface is resolved in a cross grid of 
misfit dislocations although one-teone correspondence between the hatch 
lines and the dislocation lines has never been found. Besides, cross hatch 
patterns have been observed on the surface of the films under both tensile 
and compressive stress. Cross hatch patterns have never been observed on 
the surface of pseudomorphous films. Bearing in mind the thermodynamical 
analysis of the equilibrium morphology of growing epilayers given in this 
chapter it is easy to assume that the parts of the film which are just over 
the dislocation lines are elastically relaxed (if t < p / 2 ) ,  whereas the film 
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remains under misfit stress in between the lines. It follows that the chemical 
potential of the  film over the  dislocation lines is lower in comparison with 
tha t  in the  regions between the  dislocation lines (Fig. 4.58) and the  variation 
of /I is just  given by t he  energy of the  homogeneous strain E ~ .  Then a surface 
transport of adatoms from regions with enhanced chemical potential to 
regions with lower chemical potential (denoted by the  arrows in Fig. 4.58) 
takes place just  as in the  case shown in Fig. 4.54(b). T h e  parts over the  
dislocation lines grow thicker than  the  remaining parts of the  film and  a 
cross hatch pattern results. 

- - n  c_ 

FILM 

SUBSTRATE 
Fig. 4.58. A schematic cross-sectional view of a cross hatch pattern. The upper curve 
illustrates a possible variation of the  chemical potential of the crystal surface due to 
nonuniform distribution of misfit strain. The  arrows show the direction of surface 
transport. 
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