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PREFACE

The idea to write this book is not totally mine. It belongs partly to
Dr. Svetoslav D. Toschev, a colleague and friend of mine, with whom I
worked together on the kinetics of electrochemical nucleation of metals.
Unfortunately, his untimely death in 1971 prevented him to carry out this
project. The idea to write such a book arose out of the long experience we
had at the Institute of Physical Chemistry in the theories and experiments
on nucleation, crystal growth and epitaxy. In fact the first paper on crystal
growth was published in Bulgaria in as early as 1927 by Ivan Stranski,
who introduced the concept of half-crystal position simultaneously with W.
Kossel. This turned out to be the most important concept in nucleation
and crystal growth. Using this concept Stranski considered, two years
later, together with K. Kuleliev the stability of the first several monolayers
deposited on a foreign substrate. This work served as a basis for the later
treatment by Stranski and Krastanov of the mechanism of epitaxial growth
of a monovalent ionic erystal on the surface of a bivalent jonic crystal.
This system was chosen because of the easier evaluation of the interatomic
forces at that time. Stranski and his coworkers were the first to realise
that the thickness variation of the chemical potential in ultrathin epitaxial
films determines the mechanism of growth. Now the mechanism of epitaxial
growth by formation of several complete monolayers followed by the growth
of isolated 3D islands named after Stranski and Krastanov is well known
to all researchers involved in epitaxial growth. In fact the work of Stranski
and Kuleliev was the first theoretical study of epitaxial growth. In the early
thirties Stranski and Kaischew introduced the concept of mean separation
work in order to describe the eguilibrium of small three-dimensional and
two-dimensional crystals with the parent phase. This allowed them to
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describe the kinetics of crystal nucleation and 2D growth of perfect crystals
in a quantitative way. Today these early papers are almost forgotten but
they inspired further research in the field by many authors, like R. Becker
and W. Déring, Max Volmer, W. K. Burton, N. Cabrera and F. C. Frank,
and many others.

I got the idea to write this book when I was reading a course on Nu-
cleation, Crystal Growth and Epitaxy at the Institute of Microelectronics
and Optoelectronics in Botevgrad, Bulgaria. I was surprised to find that so
many people involved de facto in growth and characterization of advanced
materials by CVD, LPE, MOCVD, MBE, etc. have no basic knowledge in
crystal growth and epitaxy. Although they were good specialists in high
vacuum, surface and bulk materials characterization, device construction,
etc., they did not understand the elementary processes which form the
basis of the fabrication of these devices. I was further convinced to write
this book after I had read a similar course of lectures at the University of
Dresden a year later and after many discussions with colleagues of mine,

There are many excellent monographs, treatises and review papers on
different aspects of nucleation, crystal growth and epitaxy. Most of them
are listed in the reference list. I would like to bring the reader’s attention to
the monographs of Max Volmer, Kinetik der Phesenbildung, and Y. Frenkel,
Kinetic Theory of Liquids. The only books which cover an appreciable part
of the problems treated in this book are the monograph of A. A. Cherpov
in Vol. 3 of Modern Crystallography and The Theory of Transformations in
Metals and Alloys, 2nd edition, by J. W. Christian, which I read with great
pleasure. All these books are, however, aimed more or less at researchers
with some preliminary knowledge of the matter. It turned out that there
was not a textbook which could give the basic knowledge on nucleation,
crystal growth and epitaxy frorn a unified point of view and on a level
accessible to graduate students or even undergraduate students who have
just begun to do research. The reader will need some knowledge in ele-
mentary crystallography and chemical thermodynamics. The mathematical
description should not give trouble at all even to undergraduate students.
In fact in all cases in which more complicated mathematical treatment is
required, problems with lower dimensionality are considered instead. Thus
the mathematical treatment is considerably simplified and the physical
meaning is easier to grasp. A typical case is the consideration of Herring’s
formula. In some cases the use of some specific mathematical methods like
the Euler equation in Chap. 1 and special functions like the Bessel functions
and the elliptic integrals could not be avoided. However, the reader should
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not accept them with “grief.” Any good textbook will be able to help the
reader who is unfamiliar with the mathematical methods. All of the above
is what determined the title of the boak.

The book is naturally divided into four chapters: Equilibrium, Nucle-
ation, Crystal Growth and Epitaxial Growth. In the first chapter all the
information necessary to understand the material in the remaining chapters
is given. Thus the mean separation work which determines the equilibrium
of a 2D island with the parent phase is defined in Chap. 1 and is used in
Chap. 3 to derive an expression for the rate of propagation of curved steps.
The second chapter deals with all the problems connected with nucleation.
The only exception is the theory of one-dimensional nucleation which is
included in Chap. 3 because it is intimately connected with the propagation
of single height steps. The concept which unifies the whole presentation is
that of the separation work from a half-crystal (kink) posttion. One could
think of it as the chemical potential of the particular crystal of a monoclayer
of the deposit (taken with negative sign). By using this concept it is shown
that the only difference between crystal growth and epitaxial growth is of a
thermodynamic nature. The chemical potential in ultrathin epitaxial films
differs from that of the bulk crystal. The kinetics of growth of both single
crystals and epitaxial films are one and the same.

I did not discuss the text with any of my colleagues. That is why I take
the sole responsibility for any misinterpretations or errors and I will be very
grateful to anybody who detects them and brings them to my notice. On
the other hand, I am extremely grateful to V. Bostanov, A. Milchev, P. F.
James, H. Bétiner, T. Sakamoto and S. Balibar who gave me their kind
permission to reproduce figures from their papers and supplied me with
the corresponding photographs. I am also greatly indebted to Professor
D. D. Vvedensky from the Imperial College, London, for his kindness to
grant me his permission to use the beautiful picture of a Monte Carlo
simulation of Si(001} growth for the cover of the book. The book has been
written at the Institute of Physical Chemistry of the Bulgarian Academy of
Sciences with the only exception of Sec. 3.2.4, which deals with the growth
of 8i{001) vicinal surfaces by step flow. I decided to include this section in
order to illustrate the propagation of single height steps by one-dimensional
nucleation. This section was written during my stay at the Department of
Materials Science and Engineering of the National Tsing Hua University
in Hsinchu, Taiwan, Republic of China, where I was invited as a visiting
professor. The final preparation of the manuscript was also carried out at
the National Tsing Hua University. [ would like to express my sincere
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gratitude to Professor L. J. Chen and the staff of the department for
their kind hospitality and assistance. In this respect I would also like to
acknowledge the financial support of the Science Council of the Republic
of China.

Ivan V. Markov
Sofia, Bulgaria
Hsinchu, Taiwan
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CHAPTER 1

CRYSTAL-AMBIENT PHASE EQUILIBRIUM

1.1. Equilibrium of Infinitely Large Phases

The equilibrium between two infinitely large phases a and 3 is determined
by the equality of their chemical potentials i, and pgs. The latter represent
the derivatives of the Gibbs free energies with respect tc the number of
particles in the system at constant pressure P and temperature T, p =
{8G/8n)p, or, in other words, the work which has to be done in order to
change the number of particles in the phase by unity. In the simplest case
of a single component system we have

pa{P,T) = ps(P,T) . (1.1)

The above equation means that the pressures and the temperatures in
both phases are equal. The requirement P, = F3 = P is equivalent to the
condition that the boundary dividing both phases is flat or, in other words,
the phases are infinitely large. This question will be clarified in the next
section where the equilibrium of phases with finite sizes will be considered.

Let us assume now that the pressure and the temperature are infinites-
imally changed in such a way that the two phases remain in equilibrium,
ie.

fta + dpia = pp + dug (1.2)

It follows from (1.1) and (1.2) that
dpa(P,T) = dup(P,T) . (1.3)

1



2 Crystal-Ambient Phase Equilibrium

Recalling the properties of the Gibbs free energy (dG = —SdT + VdP)
we can rewrite {1.3) in the form

—~3,dT + v4dP = —5,dT + vgdP , (14)

where s, and s are the molar entropies, and v, and vz are the molar
volumes of the two phases in equilibrium with each other.
Rearranging (1.4) gives the well-known equation of Clapeyron:

dP _As  Ah

&~ B = Thv'
where As = 5, — 53, AV = vq — v5, and Ak = h, — hg is the enthalpy of
the corresponding phase transition.

Let us consider first the case when the phase 3 is one of the condensed
phases, say, the liquid phase, and the phase « i3 the vapor phase. Then the
enthalpy change Ah will be the enthalpy of evaporation Ah,, = Ay — by,
and » and v, will be the molar volumes of the liquid and the vapor phases,
respectively. The enthalpy of evaporation is always positive and the molar
volume of the vapor v, i3 usually much greater than that of the crystal ».
In other words, the slope dP/dT will be positive. We can neglect the molar
volume of the liquid with respect to that of the vapor and assume that the
vapor behaves as an ideal gas, i.e. P = RT/v,. Then Eq. (1.5) attains the
form

(1.5)

din P Ahe,
dT ~— RI?’
which is well known as the equation of Clapeyron-Clausius. Replacing
Ahgy with the enthalpy of sublimation Ahgy, we obtain the equation which
describes the crystal-vapor equilibrium.
Assuming Ah., {(or Ah,,) does not depend on the temperature,
Eq. (1.6} can be easily integrated to

P Abey (1 1
Eem[ 25 Gog)] oo

(1.6)

where Fy is the equilibrium pressure at some temperature Tg.

In the case of the crystal-melt equilibrium the enthalpy Ah is equal to
the enthalpy of melting Ahy,, which is always positive and the equilibrium
temperature is the melting point T,,.

As a result of the above considerations we can construct the phase
diagram of our single component system in coordinates P and T (Fig. 1.1).
The enthalpy of sublimation of crystals Ah,,, is greater than the enthalpy
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CRYSTAL LIGUID

B(R.Tnl
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TEMPERATURE

Fig. 1.1. Phase diagram of a single component system in P-T coordinates. O and
(¥ denote the iriple point and critical point, respectively. The vapor phase becomes
superssiurated or undercosled with respect to the crystalline phase if one moves along
the line AA’ or AA". The liquid phase becomes undercooled with respect to the
crystalline phase if one moves along the line BBY. AP and AT ate the supersaturation
and undercooling.

of evaporation Ah,, of liquid and hence the slope of the curve in the phase
diagram giving the crystal-vapor equilibrium is greater than the slope of
the curve of the liquid—vapor equilibrium. On the other hand, the molar
volume vy of the liquid phase is usually greater than that of the crystal phase
v, {with some very rare but important exceptions, for example, in the cases
of water and bismuth), but the difference is small so that the slope dP/dT
is great, in fact much greater than that of the other two cases, and is also
positive with the exception of the cases mentioned above. Thus the P-T
space is divided into three parts. The crystal phase is thermodynamically
favored at high pressures and low temperatures. The liquid phase is stable
at high temperatures and high pressures and the vapor phase is stable at
high temperatures and low pressures. Two phases are in equilibrium along
the lines and the three phases are simultaneously in equilibrium at the
so-called triple pdint O. The liquid-vapor line terminates at the so-called
critical point O/, beyond which the liquid phase does not exist any more
because the surface energy of the liquid becomes equal to zero and the
phase boundary between both phases disappeaxs.
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1.2. Supersaturation

When moving along the dividing lines the corresponding phases are in
equilibrium, i.e. Eq. {1.1} is strictly fulfilled. If the pressure or the
temperature is changed in such a way that we deviate from the lines of
the phase equilibrium, one or the other phase becomes stable. This means
that its chemical potential becomes smaller than the chemical potentials
of the phases in the other regions. Any change of the temperature and/or
pressure which results in a change of the region of stability leads in turn to
transition from one phase to another. Thus a decrease of temperature or an
increase of pressure leads to crystallization or liquefaction of the vapor; the
decrease of temperature leads to solidification of liquid. Figure 1.2 shows
the variation of the chemical potentials of the crystal and vapor phases
with pressure at a constant temperature. The chemical potential of the
vapor increases with pressure following a logarithmic law which corresponds
to a shift along the line AA’ in Fig. 1.1. At the same time the chemical
potential of the crystal phase is a linear function of pressure, its slope being
given by the molecular volume v.. Both curves intersect at the equilibrium
pressure Fy. At pressures smaller than Fp the chemical potential of the
crystal is greater than that of the vapor and the crystal should sublimate.
In the opposite case P > Fg, the vapor should crystallize. The difference
of the chemical potentials, which is a function of the pressure, represents
the thermodynamic driving foree for crystallization to occur. It is called
supersaturation and is defined as the difference of the chemical potentials
Ap of the infinitely large mother and new phases at the particular values
of pressure and temperature. In other words, we have (Fig, 1.2)

Ap = (P} — p.(P) . (1.8)
Bearing in mind Eq. (1.1), or p,(Pp) = p(Fp), we can rewrite Eq. (1.8)
in the form
Au= Lu‘V(P) - #'V(PD)] - [ru*c(P) - f-‘c(-‘Pﬂ)] .
For small deviations fram equilibrium the above equation turas into

P P
L’k,u.'-‘*’ B”Vdp ]3""‘dP=f(uv-uc)dngvvdP.

Treating the vapor as an ideal gas (v, = kT/FP) we obtain upon
integration
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Fig. 1.2. Dependence of the chemical potentials of the vapor, uy, and the cryatal, pc,
on pressure when one moves along the line AA' in Fig. 1.1. Py denotes the equilibrium
preasure.

P
Ap=KTln o (L9)

where Fp is the equilibrium vapor pressure of the infinitely large crystal
phase at the given temperature.

Without going into details we can write an expression for the supersat-
uration in the case of crystallization from solutions, when the solutiors are
considered as ideal, in the form

Ap =kTIn < , (1.10)
Co
where C and Cj are, respectively, the real and equilibrium concentrations
of the solute. In fact a more rigorous treatment requires the consideration
of multicomponent systems. For more details see Chernov [1984].

Figure 1.3 shows the variation of the chemical potentials of the crystal
and liquid phases with temperature at a constant pressure (the line BB”
in Fig. 1.1). The supersaturation which in this case is frequently called
undercooling is again defined as the difference of the chemical potentials of
the infinitely large liquid and crystal phases, u; and p., respectively, at a
given temperature:

Ap = m(T) — p(T) . (1.11)
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Fig. 1.3. Dependence of the chemical potentials of the liquid phase, g, and the crystal
phase, pc, on temperature when one moves along the line BB in Fig. 1.1. The melting
point is denoted by Th,.

Following the same procedure as above we obtain

Ap = [P’E(T) - Ml(Tm )] - [H'C(T) - ﬂ'c(Tm)]

T P T P Tin
H1 He
~ [ OB dT = .
aT f aT / Asmdl
Tm Tin T

Assnming the entropy of melting Asy, = & — s is independent of the
temperature one obtains after integration
Ah,
Ap=As,(Tn-T)= T—'“AT . (1.12)
Obviously, Eq. (1.12) is also applicable to the case of crystallization of
undercooled vapor after the enthalpy of melting is replaced by the enthalpy
of sublimation (the line AA” in Fig. 1.1).
Finally, in the particular case of electrocrystallization of metals the
supersaturation is given by

Ap = zepn , (1.13}

where z denotes the valence of the neutralizing ions, e = 1.60219 x 10~12C,
is the elementary electric charge and n = E — Ey is the so-called overvoltage
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or otverpotential given by the difference of the equilibrium potential By of
the deposited metal in the solution and the electrical potential E applied
from outside [Kaischew 1946/1947}.

It was Max Volmer [1939] who introduced the term “Uberschreitung” or
“step across™ for both the supersaturation and the undercooling to denote
the transition through the line of eoexistence of the two phases. Thus, the
difference of the chemical potentials of the infinitely large new and mother
phases appears as 4 measure of deviation from the phase equilibrium and
as the thermodynamic driving force for the phase transition to occur.

1.3. Equilibrium of Finite Phases

In the previous section we considered the equilibrium of two phases in
a single component system assuming that the phases are sufficiently {or
infinitely) large or, in other words, the phase boundary between them is
flat. This is not obviously the case at the beginning of the process of phase
transition which is of interest to us. Thus in the cases of transition from
vapor to crystal, from vapor to liquid or from liquid to vapor phases, the
process of formation of the new phase always goes through the formation
of small crystaliites, droplets or bubbles. In this section we will clarify
two questions: (i) the mechanical equilibrium of small particles with their
ambient phase or, in other words, the interrelation of the pressures in the
two phases when the phase boundary is not flat, and (ii) the thermodynamic
equilibrium of small particles or their equilibrium vapor pressure as a
function of their size. In fact we will derive and interpret the equations
of Laplace and Thomson—Gibbs.

1.3.1. Equation of Laplace

We consider a vessel with a constant volume V containing vapor with
pressure P, and a liquid droplet with a radius r and an inner pressure
B, both at one and the same constant temperature T. The condition for
equilibrium is given by the minimum of the Helmholz free energy of the
system F(V,T):

dF = —F,dV, — AdV\ + 0dS =0, (1.14)

where V., and V| are the volumes of the vapor phase and the droplet, o
is the surface tension of the liquid and 5 is the droplet surface area. The
value of the surface tension o of the infinitely large liquid phase is usually
taken. A3 V =V, + V| = const and dV, = —~dV}, Eq. (1.14) can be rewritten
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after rearrangement in the form

ds
H-—Pv—ﬂ'm.

Bearing in mind that § = 47r? and W = 4#73/3,

a5 d(4nr?) 2
dV, ~ d(4xr3/3) '
and the above equation turns into

P-P, = 27" , (1.15)

which is known as the Laplace equation. The latter states that the pressure
in a small droplet is always higher than the pressure of the surrounding
vapor. The difference 2¢0/r is called the Laplace or capillary pressure
and is equal to zerc when the phase boundary is flat (r — oo). Then
B = B, = P,, as stated in Sec. 1.1. Here the notation P, for the
equilibrium pressure is used instead of Fy to emphasize the fact that the
dividing surface is flat, i.e. it has an infinite radius of curvature.

The physical meaning of Eq. (1.15) becomes clearer if we derive it from
balance of forces. The overall force exerted on the droplet from the outside
is a sum of the force 4772 P, exerted from the vapor phase and the force
87re due to the surface tension. It is equal to the force due to the internal
pressure 47r2F, i.e.

4712 P, + 8xro = dwr P, ,

and Eq. (1.15) results. Thus the Laplace pressure is clearly due to the
surface tension of the small droplet.
In the case of an arbitrary surface with principal radit of curvature r,
and rz, Eq. (1.15) reads
A-P =a(«1-+—1-) . (1.16)

71 T3

1.3.2. Equation of Thomson—-Gibbs

In order to solve the problem of thermodynamic equilibrivm we consider the
same system as before at constant pressure P and temperature T'. In this
case the variation of the Gibbs free energy G{P, T, n,,n;, §) of the system
reads (dP = 0,dT = 0)
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AG = pydn, + ydny + 0dS =0, (1.17)

where n, and n; are the numbers of moles in the vapor and liquid phases,
respectively.

When writing the expression for the Gibbs free energy we take for the
chemical potential of the atoms in the small droplet the value which is valid
for the bulk phase and compensate the difference between the bulk liquid
and the small droplet by the surface energy ¢S. Besides, we again ascribe
to the surface tension its bulk value. As the system is closed, ny + ny =
const and dn, + dn; = 0. Solving (1.17) together with dn, = —dn; gives

_ s
Bv — 1= dn; -

With n = 4rr? /3v it turns into the famous equation of Thomson-Gibbs

2ot
-

Hy — 1 = (118)

Comparing Egs. (1.15} and (1.18) it becomes immediately clear that
the product (B — P, )V} = nAp is just equal to the work which is gained
when a liquid droplet is formed from the unstable vapor phase or, in other
words, when n = Vj/y atoms or molecules are transferred from the vapor
phase with higher chemical potential to the liquid phase with lower chemical
potential [Gibbs 1928).

As u is the chemical potential of the bulk liquid phase the difference
Iy — 14 I8 just equal to the supersaturation Ap {see Eq. (1.9)) and

P, = Py, exp (%%l) . (1.19)
It follows that the equilibrium vapor pressure of a small liguid droplet
with radius r iz higher than that of the infinitely large liquid with a fat
surface. The physical reason is easy to understand if we imagine that an
atom on a curved convex surface is more weakly bound to the remaining
atoms than in the case of an atom on a flat surface.
Obviously, we have the opposite case when considering a vapor bubble
with radivs r in an overheated liguid. Following a similar procedure we
find

P. = Pyexp (-%) . (1.20)
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EQUILIBRIUM VAPDUR PRESSURE

OROPLET RADIUS

Fig. 1.4. Dependence of the equilibrium vapor pressures of a small liquid droplet {curve
1, Eq. {1.19)) and in a vapor bubble in an overheated liquid {curve 2, Eq. (1.20)). Px
denotes the equilibrium vapor pressure of the infinitely large liquid phase,

The dependence of the equilibrinm vapor pressure of a liquid droplet
and of a gas bubble on their size is shown in Fig. 1.4.

In order to derive an analogous equation for a small crystallite we have
to know its equilibrium shape. The latter is defined as the shape at which
the crystal has a minimal surface energy at a given constant volume. For
a liquid droplet the equilibrium shape is obviously a sphere. We shall now
accept that Eq. {1.19) is valid for small crystallites with the only exception
being that the radius of the droplet is replaced by the radius of the sphere
inseribed in the crystallite.

1.4. Equilibrium Shape of Crystals

When considering the equilibrium of a small crystal with its ambient phase
(vapor, solution or melt) there exists, obviously, a shape which is the most
favorable from a thermodynamic point of view in the sense that the work
of formation of such a crystal is the minimal one at the given crystal
volume. The work of formation of a small crystal consists of two parts:
a volume part (F; — P )V, = n(g, — ) which is gained when transferring
7 atoms or molecules from the ambient (vapor) phase with higher chemical
potential ‘4, to the crystal phase with lower bulk chemical potential p
when the crystal phase is the stable one (4, < pv), and a surface part oS
which is spent to create a new phase-dividing surface. The volume part
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depends obviously only on the volume of the crystal or on the number of
the atoms transferred. At a constant volume the surface part depends only
on the crystal shape. Then the condition for minimum of the Gibbs free
energy change connected with the crystal formation at a constant volume
which determines the equilibrium shape is reduced to the condition for
minimum of the surface energy. The equilibrium shape of & liquid droplet
is evidently a sphere. The case of a crystal is more complicated as the latter
is confined by crystal faces with different crystallographic orientations and,
respectively, different specific surface energies. This means that the surface
energy depends on the crystallographic orientation and in that sense it is
anisotropic.

In general there are three ways to create a new surface. In the first one
two homogeneous phases are cut (or cleaved) into two parts each and then
the different halves are put into contact. New surface can be formed also
by the transfer of atoms from one phase to another forming convex {during
growth) or concave {during evaporation or dissclution) form. Finally new
surface can be created by stretching out an old one (by stretching out the
bulk crystal). When two liquid phases are involved the above three methods
do net differ. The work spent to create reversibly and isothermally a unit
area of a new surface is called specific surface free energy. When a new
surface is formed by the twe first methods chemical bonds are broken. Thus
the work for creation of a new surface or, in other words, the specific surface
free energy, is equal as a first approximation to the sum of the energies of the
broken bonds per unit area. When applying the third method the number
of broken bonds remains unchanged but the surface area per dangling bond
is changed, which in turn leads to a change of the surface energy.

It follows from the above that the more closely packed the given crystal
face is the smaller is the density of the unsaturated bonds and thus its
specific surface free energy. Let us consider for example the specific surface
free energies of the faces of a crystal with a simple cubic lattice. The latter
does not exist in nature, with the only exception being one of the crystal
modifications of the metal polonium, but is widely used in theoretical
congiderations. It is well known under the name Kossel crystal. When
determining the specific surface energy we will take into account the bonds
between first, second and third nearest neighbor atoms. The procedure
of the determination of ¢ of the face (hk!) involves the construction of a
column in the shape of a prism with a form of the base which follows,
for convenience, the symmetry of the crystal face, i.e. square for (100),
hexagonal for (111) faces of cubic crystals, etc. {Honnigmann 1958]. Then
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the energy necessary for the detachment of this column from the crystal
face Wy, is divided by the doubled area Xup of the contact because two
surfaces are involved. Thus ouxr = Uiy /284 Following Fig. 1.5(a), a
column of atoms with a square base is detached from the (100} face of a
Kossel erystal and two surfaces are created. The value of the surface energy
is then

by + 49y + 4 1 /1
0100‘—‘&—'—;[’H=E§(5¢1 +2¢2+2¢’3) ;

where 44, 12 and 13 are the works required to break the bonds between
the first, second and third neighbors, respectively, and b* is the area per
atom, b being the interatomic distance.

sy

| a l b

Fig. 1.5. For the determination of the specific surface energies oy of the faces (a) (100}
and {b} (110} of a crystal with simple cubic lattice.

For the rombohedral face (110} {see Fig. 1.5(b)} the column has a
rectangular base and

_ Wik Outdws _ 11 3
o110 = 2b2\/§ - B2 (\/‘2"‘{)1 + \/§¢2+ \[2-#4'3) .

The shortest first neighbor bonds have the greatest contribution to the
energy. The energies of the second reighbor bonds are probably not greater
than 10% of the energies of the first neighbor bonds for metallic and covalent
bonds. The contribution of the third neighbor bonds could be neglected.
It follows from above that o140 < oy319. Performing the same calculations
for the faces (111) and (211) we will find that o199 < o170 < F211 < 0211,
etc,
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1.4.1. Theorem of Gibba-Curie— Wulff

Following Gibbs [1878) and Curie [1885] we can derive an expression for the
equilibrium shape of a single crystal proceeding from the general condition
of the minimum of the Helmholz free energy of the system at T = const
and V = const:

dF =0, dvV =0, {1.21)

We assume first that the crystal is a polyhedron confined by a limited
number of different crystal faces with areas I, to which a series of discrete
values of the specific surface energies o, correspond. Then the equilibrivm
condition (1.21) reads

dF = —P,dV, —~ PdV. + Y _ 0,dS. =0, (1.22)

where P. is the inner pressure of the crystal phase, P, is the pressure of
the vapor phase, and V., and V, are the volumes of the vapor phase and the
crystal phase, respectively.

Bearing in mind that V =V, + V. = const or dV, = —dV., the above
equation is reduced to

~(P. = P}V + Y _0ndS, =0. (1.23)

The volume of the crystal can be considered as a sum of the volumes
of pyramids constructed on the crystal faces with a common apex in an
arbitrary point within the crystal. Then

1
Ve zgzﬂ:hnzn

and .
dve = - g (Endhn + hadZ,)

where h, are the heights of the pyramids.

On the other hand, every change of the volume with accuracy to
infinitesimals of second order is equal to a shift of the surfaces £, by a
distance dh, so that

dV, =Y Tndhn .
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Combining the last two equations gives

1
Ve =3 ;nndzn . (1.24)
Substituting (1.24) into (1.23) gives

> [on - %(Pc - Pv)hn] df, =0 .

n

As the changes d¥, are independent of each other every term in the
brackets is equal to zero and

Tn
P.—-P,=2—. 1.25
- (1.25)

The difference F. — F, does not depend on the crystallograpic orientation
and for the equilibrium shape one obtains

7% = const (1.26)
or
0'1:0'2.'0'3'-'=h1:h2:h3"'. (126’)

The relationship (1.26) expresses the geometrical interpretation given
later by Wulff (1901) known as the Wulff rule or Gibbs-Curie- Wulff
theorem. It states that in equilibrium the distances of the crystal faces
from a point within the crystal (called a Wulff s point) are proportional to
the corresponding specific surface energies of these faces. According to this
rule we can construct the equilibrium shape by the following procedure: We
draw vectors normal to all possible crystallographic faces from an arbitrary
point. Then distances proportional to the corresponding values of the
specific surface energies o are marked on the vectors and planes normal
to the vectors are constructed through the marks. The resulting closed
polyhedron is the equilibrium form. Crystal faces with the lowest surface
energies belong to it. Crystal faces which only touch the apexes of this
polyhedron or are situated even further do not belong to the equilibrium
form.

The proportionality constant in (1.26) is determined by the difference
of the pressures in both phases. As shown in the previous section, (P: —
P, = Ap, where v, = V. /n. is the molar volume of the crystal phase.
The condition P, — P, = const is thus equivalent to the statement that the
difference of the chemical potentials or, in other words, the supersaturation
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Ap = py — p., has one and the same value all over the crystal surface.
Then

Ap = v (1.27)

hn

and hence the supersaturation determines the scale or the size of the crystal.
As seen Eq. (1.27) has the familiar form of the Thomson-Gibbs equation.
As the Wulff point has been arbitrarily chosen we can take it at the center
of the crystal.

In the same way we can derive the Gibbs—Curie-Wulff theorem for a
crystal formed on a foreign substrate (Fig. 1.7) [Kaischew 1950, 1951, 1960).
In this case the crystal lies with one of its faces with specific surface energy
¢m On the substrate, the latter having a specific surface energy a,. An
interfacial boundary is formed between the crystal and the substrate. In
order to find its specific energy we will perform the following imaginary
experiment.

Fig. 1.6. For the determination of the specific energy of the interface between two
isamorphic crystals A and B (after Kern et al. (1979]).

We consider two crystals A (substrate) and B (deposit) of equal di-
mensions (Fig. 1.6) [Kern et al. 1979]. We cleave them reversibly and
isothermally and produce two surfaces of A, each with area L, and two
surfaces of B, each with area £y = 4. In doing so, we expend energies
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Uas and Upg. We then put the two halves of A in contact with the two
halves of B and produce two interfacial boundaries AB, each with area
Zap = Zg = Es. The work gained is —2U4p. The excess energy of
the boundary AB required to balance the energy change accompanying the
above process is 2U;. Thus we have

20, = Upp +Ups — 2Usp .

Clearly when the two crystals are indistinguishable from each other,
Usa = Upp = Uap and the excess energy Uy = 0. Using the definition of
the specific surface energy {one = Upp/2E44¢) one obtains the well-known
relation of Dupré [1869]:

oi=oaton— 8, (1.28)

where the specific interfacial energy oy = U;/Eap is defined as the excess
energy of the boundary per unit area and the specific adhesion energy
3 =Uag/Tag is defined as the energy per unit area to disjoin two different
crystals. Note that 8 accounts for the binding between the two crystals and
does not depend on the lattice misfit. The latter will be taken into account
in Chap. 4 when considering the epitaxial growth of thin films.

When a crystal is formed on a foreign substrate a surface energy ¢,Z,,
i8 lost and surface energy o;Z,, is expended, S,, being the area of contact.
Then instead of (1.22} one has to write

dF = ~PydV, - PudVe + 3 0,050 +(0i = 0,)dEm = 0.  (1.29)
ngm
Following the same procedure as above we find

On _ Om =

b, A

= const {1.30)

or
d1:02:03 O —F=hy thayihg- by, (1.307)

where h,, is the distance from the Wulff point to the contact plane
(Fig. 1.7).

It follows that the distance h,, from the Wulff point to the contact plane
is proportional to the difference of the corresponding specific surface energy
and specific adhesion energy. Obviocusly, when the substrate catalytic
potency is equal to zero, 4 = 0, the distance h,, will have its “homogeneous”
value in the absence of substrate. In this case we speak of complete
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h, hy

‘:a
3

-

Fig. 1.7. Equilibrium shape of a crystal on a foreign substrate. Wulff's point is denoted by
0. The distance from Wulff’s point to the contact plane is denoted by hm. The distances
hj and Ay to the free surfaces remain the same as in a free polyhedron. The equilibrium
shape in the absence of a foreign substrate is shown by the additional dashed line.

nonwetting. At the other extreme, 5 =o0a +op = 2vr (4o =op =0),
we have the case of complete wetting and the crystal will be reduced to a
two-dimensional monolayer island. In all intermediate cases, 6 < 3 < 20,
we have incomplete wetting and the height of the crystal will be smaller
than its lateral size.

1.4.2. Polar diagram of the surface energy

We have considered by now a crystal confined by discrete faces with small
Milier indices. Let us now imagine a crystal face which is slightly deviated
(by a small angle 8) from one of the small index faces, say, the cubic one
(100) of a Kossel crystal as shown in Fig. 1.8(a). Such a face is called vicinal.
It is clear for geometrical reasons that it consists of terraces and steps. For
simplicity we accept that the steps are monatomic and equidistant. The
specific surface energy of such a face is the sum of the surface energy of the
terraces oo and the energy of the steps or the edge energy » = bog, which
can be evaluated in the same way as the surface energy just by counting
the number of broken bonds per unit length. If one neglects the interaction
between ths steps as a first approximation for the specific surface energy of
stich a vicinal face one obtains [Landau 1969]

a(8) = %sin(a) + 0o cos(8) . (1.31)
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a

-0

Fig. 1.8. Vicinal surfaces tilted by an angle (a) 8 and (b} —8 from a small index (singular)
face.

We consider now a vicinal face which is symmetric to the first one, i.e.
tilted by an angle of -8 {Fig. 1.8(b)). Its surface energy is

o(—8) = ——bjfsin(ﬂ) + og cos(6} . (1.32)

Graphic representations of the ¢(8) functions (1.31) and (1.32) are given
in Fig. 1.9(a). As seen they are continuous everywhere with the exception of
the point & = 0 where (do/df)s>g = 5/b and (do/df)e<o = —s/b. In other
words, the o(#) dependence has a singular point at 8 = 0 with its derivative
making a jump of 2s¢/b. The same singular points exist at § = 72, +x,
etc. In Fig. 1.9(b) the same functions are plotted in polar coordinates. A
contour consisting of circular segments and possessing singular points at
8 = 0, r/2, and 37/2 results. In the three-dimensional case (Fig. 1.9(c))
a body is obtained which consists of 8 spherical segments and has 6 sharp
singular points. This plot is called a polar diagram of the surface energy.

When constructing the above polar diagram only the bonds between the
first neighbor atoms have been taken into account. The bonds between the
second neighbors in the Kossel crystal are directed at angle 7 /4 with respect
to the first neighbor bonds. We can perform the same considerations as
above [Chernov 1984] accounting for the second neighbor bonds only. Thus
a polar diagram which is inscribed in the first one (the second neighbor
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Fig. 1.9. Polar diagram of the specific surface energy — dependence of the surface
energy on angle # in (a) orthogonal coordinates, (b) polar coordinates (two-dimensional
representation), and (c) spherical coordinates (three-dimensional representation). First
neighbor interactions only are taken into account (after Chernov [1984]).

N— "~

Fig. 1.10. Polar diagram of the specific surface energy (the outermost contour denoted by
¥; + P2, two-dimensional representation) taking inte account the first (¥1) and second
(¥2) nearest peighbor interactions. The contours denoted by ¥; and ¥ give the polar
diagrams as calculated by taking into account separately the first and second nearest
neighbors. The closed contour consisting of straight lines drawn through the singular
points of the contour ¥; + ¥2 gives the equilibrium shape of the crystal.
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bonds are much weaker than the first neighbor ones) and is rotated at an
angle of x/4 with respect to the latter is obtained (Fig. 1.10). The sum of
the two curves gives the polar diagram when accounting simultaneously for
both the first and the second neighbors, As seen, new, shallower minima
appear which correspond to faces which are analogous to the (110) faces in
the three-dimensional Kossel crystal. The contribution of third neighbor
bonds is insignificant and will not affect considerably the shape of the polar
diggram. In any case accounting for the more distant neighbors leads to
more complicated polar diagram.

1.4.3. Herring’s formula

Let us now derive the condition for the equilibrium shape of the crystal
accounting for the anisotropy of the surface energy or, in other words,
the o(f) dependence. This is a question of utmost importance as it is
unambiguously connected with the problem of the equilibrium structure
(the roughness) of the crystal surfaces. The three-dimensional problem
is somewhat complicated from a mathematical point of view and for this
reason we will consider the simpler case of a2 “two-dimensional” crystal
which represents a cross section of a three-dimensional one. On the other
hand, the 2D case is very importans for understanding two-dimensional
nucleation and, in turn, layer growth of smooth crystal faces.

When treating the problem we will follow exactly the approach of
Burton, Cabrera and Frank [1951]. The crystal volume V; will be replaced
by the crystal surface area S. and the specific surface energy (@} by the
specific edge energy »(9). Then, instead of (1.21), we write

$ = min, 5. = const , (1.33)

where

&= [ s(8)dl (1.34)
/

is the edge energy of the “two-dimensional crystal,” the integration being
carried out over the whole periphery L of the latter, and

S.= {ds (1.35)
/

ia the surface area of the crystal where ds is the surface area of a curvilinear
sector.
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Let r and ¢ be the polar coordinates of a point M on the crystal
boundary L (Fig. 1.11) and let z and y be the corresponding orthogonal
coordinates. We construct a tangent T to the crystal boundary L at the
point M and & perpendicular ON with length n from the origin O to the
tangent. The latter makes an angle # with the abscissa, The line element
of the crystal boundary in a parametric form « = z(t) and y = p(t) reads

di = (=% +¢?) L ,

where &' = dz/dt and y' = dy/dt.

o L
L

)

Fig. 1.11. The derivation of Herring’s formula in the two-dimensional case: L and T
denote the crystal boundary and the tangent to it at a point M, r and \» are the polar
coardinates of a point M of the crystal surface, and n and # are the polar coordinates
of the] peint N belonging to the polar diagram »<(#} (after Burton, Cabrera and Frank
[1951)).

In the same way the area of the curvilinear sector ds is
1 ! J
ds=§(my —yz')dt .

If we choose the angle & as the parameter the integrals (1.34) and (1.35)
can be rewritten in the form
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27
5= f (8 (22 + y?) do | (1.36)
¢]
27
S, = -;-/(rcy' - yx')dd . (1.37)

0

From Fig. 1.11 we find that the perpendicular n from the origin to the
tangent T is given by
n=2xcosf +ysind .

Then we can find the point N for any point M on the crystal boundary.
Conversely, making use of the transformations

x=ncosf —n'sind {1.38'}

y=nsingd+n'cosé , (1.38")

we can construct the crystal contour once we know the polar diagram

n(6)(n' = dn/fdf).
Then Eqs. (1.36) and (1.37) can be written in terms of n(8) :

2

= f (8)(n +n")d = min , (1.39)
Q0
] 2r

S, = E/n(n +n'")df = const , (1.40)

0

where n” = d®nfdf?.
Following the method of Lagrange we multiply Eq. (1.40) by an indefi-
nite scalar A and sum up Eqs. (1.39) and (1.40) to obtain

2m

f [x(ﬂ)(n +n") — %An(n +n”)[ d9 = min . (1.41)
0

The condition for minimum is still preserved when we multiplied it
by a constant and added a constant. The solution of (1.41) will give us
a function n = n(f) which satisfies both conditions & = min and S, =
const. To solve the problem we will use the method of Euler for finding an
extremum [Arfken 1973]. It states that if we have a functional of the kind
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b
fF(a:,y, y’,y")d:c = min ,
&

where y = y(z), ¥’ = dy/dz and y"" = d’y/dz?, the equation which satisfies

it has the form
oo (o) (0r)
gy Az \dy') 0z \&y']

This is the well-known equation of Euler where the functions y, ¥’ and y”
are taken upon differentiation as independent variables without accounting
for their dependence on .

Applying the above method, from (1.41) one obtains

“a‘?;i[“(ﬂ) — An(@)] + [#(6) — An(8)) =0 . (1.42)

Thus the equilibrium shape of the crystal is governed by a nonlinear
equation of second order which satisfies the conditions @ = min and S, =
const. Its solution n(@) will give us the rule for constructing the equilibrium
shape of our two-dimensional crystal (the crysial countour) on the base of
the polar diagram of the edge energy and Eqs. (1.38).

Actually we have to solve the much simpler linear differential equation
of second order. With the substitution # = x#{8) — An(#), Eq. (1.42) turns
into 1" + u = 0. Its solution reads [Kamke 1959]

u = Csin(z — ¢)
or )
n(f) = Xx(ﬂ) ~ Csin(d — ¢) ,

where C and ¢ are constants. The second term on the right-hand side is a
periodic function with period 2x. However, different crystals have different
symmetry and thus different period. For example, cubic crystals have a
period of 7/2, hexagonal crystals have a period 7/3, etc. In order to get
rid of this restriction we put ¢' = 0 and obtain

n(8) = }x(e) . (1.43)

By analogy with the previous case the proportionality constant which
multiplies the crystal volume is A = Ap/s., where s, is the area of an atom
in the two-dimensional crystal and
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#(H) s,
Ay = e t8 .
= (1.44)
Equation {1.44) which appears as a generalized Thomson-Gibbs
equation is the Gibbs-Curie-Wulff theorem for two-dimensional crystals
in which n(8) is the radius vector of the polar diagram »(#).
Carrying out the differentiation in Eq. (1.42) gives

n+at = %[x(f)) + ()],

where »'(0) = d%x(8)/d8*.
Realizing that

" o_ (3:’2 + yl2)3/2 o
ntn = x’y” — -
Y

is in fact the principal radius of curvature of the polar diagram, R, then
with A = Ap/s. ope obtains
Sc d2se(M)
Ap == {x(f) + —=—]| .
“=TR ["( )+ g ]

By analogy, for a three-dimensional crystal with principal radit of cur-
vature R; and R; and polar angles 81 and @2 for the equilibrium shape,
one obtains an expression with s, and 3(#) respectively replaced by v, and
o(8} (for more rigorous derivation see Chernov {1984]) which is known as
the formula of Herring [Herring 1951, 1953]:

UC dza vc ({30'

A}L—R—l(ﬂ'-{-@?)*'z(ﬂ'ﬁ—@g) . (1.45)

In the same manner the generalized Gibbs—Curie-Wulff theorem for
three-dimensional crystals reads

_ 20(0)v,
A=)

(1.46)

Equations (1.44) and (1.46) give us the practical rule for the construc-
tion of the equilibrium shape. First, we ascribe a particular value to the
scale parameter Ayu/2v, which determines the size of the crystal. Then we
draw the radius vector n{#) from the central point at an arbitrarily selected
crystallographic direction § and find the cross-sectional point with the polar
diagram (Fig. 1.12). We then construct through it a plane normal to n(8)
and repeat this procedure for the whole contour of the diagram. A family
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e (n)

0

Fig. 1.12. Construction of the equilibrium shape based on the polar diagram of the
surface energy following Eq. (1.46) (after Chernov [1984]}.

of planes results and its inner envelope is in fact the equilibrium form of
the crystal.

Let us go back to Herring’s formula (1.45) and consider more closely the
quantity ¢ = ¢ + d®c¢/d68% (n = 1,2) which is usually called the surface
stiffness. At the singnlar points the first derivative of o with respect to
@ experiences a jump {equal to 2sx/b in the above oversimplified case).
Hence, the second derivatives and in turn the surface stiffnesses % have
infinitely large values. The left-hand side of Eq. (1.45) has a finite value,
and obviously the condition for the right-hand side to have a finite value
is for the principal radii R; and R; to be infinitely large. Hence at the
singular points the curvature of the corresponding crystal faces will be equal
to zero or, in other words, the crystal faces will be flat. This is the reason
that the flat faces are often called singular faces. Immediately aside of the
singular points the second derivatives of o and in turn the surface stiffnesses
on acquire finite positive values, and hence also do the radii Ry and Ra.
Therefore, the crystal surface will be rounded. It will consist of terraces
and steps or, in other words, it will be atomically rough. Finally, there are
reglons where ¢}, = 0 and so are the radii R, and Ry (the ratios /R,
again having finite values). These are obviously the edges and apexes of the
crystal. Negative values of the surface stiffnesses have no physical meaning
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as this means negative radii B; and R; and hence concave regions, which
cannot exist on the equilibrium shape.

As discussed above the supersaturation must have one and the same
value over every point of the surface of a crystal with ar equilibrium shape.
It follows that the supersaturation around a crystal without an equilibrium
shape will vary from one point to another. Facets with areas smaller
than that required by the equilibrium condition will have larger chemical
potentials and hence the supersaturation over them will be lower than the
current one in the system, and vice versa. If such a crystal is immersed in a
supersaturated ambient phase and given enough time to equilibrate, smaller
facets will dissolve to become larger facets and larger facets will grow to
become smaller facets up to the moment the supersaturation attains one
and the same value ali over the crystal surface and the equilibrium shape is
reached. As will be shown below the above conclusion is valid for crystallites
sufficiently small (kTR /o v. < 1) so that the supersaturation difference
which is the driving force for the equilibrium to be reached is sufficiently
large.

Finally, Eq. (1.45) can be expressed in the form

o o
Ap = =2 22 .
=1 (Rl + Rg) (1.47)
or * »
a o
PP =-1t4+2 )
-P= 4 2 (1.48)

‘We conclude that Herring’s formula is a generalization for finite crys-
tallites of Laplace’s equation (1.16) which relates the liquid surface tension
to the pressure difference on both sides of the curved liquid surface. The
Laplace pressure is determined in this case by the surface stiffnesses which
govern the crystal curvature, rather than by the specific surface energies.
Thus Eq. (1.48) explains the term surface stiffness. It is a measure of the
resistivity of the crystal faces against bending (roughening} when a pressure
(force per unit area) is applied on them. Flat facets require infinitely high
pressures in order to he “bent.”

1.4.4, Stability of crystal surfaces

In fact we have just concluded that the structure of a given crystal surface
is determined by the corresponding value of the surface stiffness. When the
latter is infinite the corresponding crystal face is flat and atomically smooth.
When the surface stiffness has some finite positive value, the erystal surfaces
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Fig. 1.13. A scheme illustrating the stability of a vicinal crystal surface against faceting:
(a) Schematic view in terms of the slope p = tan@ of the original vicinal face which
breaks down into facets with slopes p; = tan#; and py = tan 8. The dashed lines with
slopes p} and p}, give possible deviations from the faceted surface with slopes p; and po,
respectively (see text). (b) Side view of a vicinal surface of a Kossel crystal whose slope
is accommodated either by single height steps or by facets (after Cabrera and Coleman
{1963}).

are rounded and, in the near vicinity of the singular faces, should congist of
terraces divided by steps. We accepted that the steps are of monomolecular
height. The width of the terraces or the density of the steps depends on
the value of the polar angle. However, we can have different structures of
& vicinal face at one and the same value of the polar angle. Thus if the
steps are of a double height the terraces should be twice as wide; when
the steps have a triple height the terraces will have a triple width, etc., at
one and the same value of the polar angle (Fig. 1.13(b}). So one cannot
determine unambiguously the real structure of the corresponding vicinal
surface on geometrical reasons only. Moreover, under real conditions the
surface energy and in turn the surface stiffness can change their values.
This is usually the case when some impurity atoms are adsorbed on the
crystal surface. The impurity atoms saturate the unsaturated dangling
bonds on the crystal surface and decrease the surface energy. The larger
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the concentration of the impurity atoms is the smaller will be the specific
energy of a particular crystal surface. Another reason for changing of the
surface energy is surface reconstruction [Mdnch 1979]. As a result the
structure of the crystal surface should change. So our next task is to find
the real structure of the crystal surfaces or, in other words, the condition of
the stability of a given crystal surface. The problem of the stability of the
crystal surfaces was first considered by Chernov [1961] and later discussed
by Cabrera and Coleman [1963]. In this chapter we follow the presentation
of the latter.

We consider an infinite vicinal crystal surface inclining at an angle
& to the nearest singular face (Fig. 1.13) and consisting of terraces and
monomolecular steps. It is easy to realize such a face bearing in mind that
single crystal wafers which are cut and polished under the crystallographic
orientation of cne of the singular faces are always inclined to the latter
at some very small angle. In general such a face can be represented by
z = z{z,y), where z = ( determines the singular face. Then the orientation
at a point (z,y) will be determined by two independent components p =
—dz/dx and ¢ = —dz/dy. We consider for simplicity the case in which the
steps are parallel to the y axis {which is thus normal to the surface of the
sheet), i.e. ¢ =0, and the vicinal face is described by z = zy — pz, where
p = tanf. Let the face area be denoted by ¥;. Then the area of the
reference singular face is ¥ = ; cos 6.

The surface energy of the face Iy is $y = ¢()Zg. In terms of the
component p it can be written as

8o = 0(8)50 = o(p)(1 +p*) 'S = ¢(n)E, (1.49)

where (1 +p*)V/? = 1/ cos @ and £(p) = o(p)(1 + p?)1/2.
Let us now assume that two new faces with slightly differing orientations

p1=p+ép and py = p+ 6pg (1.50)

are formed. The total projected areas of these faces are £; and Ij,
respectively. If the face Tg is the stable one its surface energy ®¢ should be
smaller than the surface energy of the newly formed profile ® = £(p, )X +
&(p2)E2 at constant volume. In other words, the condition A® = &—~$y > 0
should be fulfilled. The condition of constant volume is reduced in our case
to that of constant area of the cross section shown in Fig. 1.13(a). It can
be easily obtained from AS = S| -~ 53 = 0, where S} and S5 are the areas
under the profiles, with slopes p and p; and py, respectively. One obtains
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i +ply=p2. {1.51)
Substituting (1.50} into (1.51) and making use of the relation
T+ =, (1.52)
the condition for constant velume (1.51) turns into
$16p1 + Dabpy = 0. (1.53)

The functions £(p;} {i = 1,2) can be expanded as a Taylor series up to
parabolic terms:

E(p) = £(p) + £ (P)6ps + 3E" (PR (1.50)

where £'{p) = d{/dp and £"(p) = d*¢/dp®.
Substituting (1.54) into the expression for A® and making use of (1.52)
and (1.53) give

A% = 2€'() [T (6m)? + Ta(0p)"] - (1.59)

The term in the square brackets is always positive and the condition
AP > 0 is satisfied when
&'(p)>o0. (1.56)

Bearing in mind that do/dp = (do/d6)(d8/dp), 8 = tan~1(p), d8/dp =
=1/(1+p?) and £"(p) = o* /(1 + p*}*/2, the condition {1.56) reduces to
d*c

U*:U+zﬁ>0. (1.56")

It follows that when the surface stiffness of the original vicinal face
which consists of terraces divided by monomolecular steps is positive it will
be stable. Otherwise, it will break down into terraces divided by macrosteps
or, in the limiting case, into separate crystal faces preserving the overall
slope of the original face with respect to the singular face.

A schematic plot of é(p) is given in Fig. 1.14. We have in principle three
possibilities. In the first one (Fig. 1.14(a)) the second derivative of {(p) is
everywhere positive between the singular minima at p = 0 and p = pp.
This means that all the possible surfaces beiween p =0 and p = py will be
stable and will not break into facets as long as there are no species adsorbed
on them. In the second case (Fig. 1.14(b)) the second derivative of £(p)
is everywhere negative. This means that only the singular surfaces with
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Fig. 1.14. Schematic plot of the parameter &(p) = o(p)(1 + p*)*/2 vs the slope p :
(a)"(p) > 0, (b) £"(p) < 0, (c) £”(p} > 0 between p; and pz and £(p) < 0 between 0
and p1 and between pz and po (after Cabrera and Coleman [1963]}.

orientations p and pg will be stable. If a surface with orientation p such
that 0 < p < py is formed it will break down into facets with orientations
p=0and p=py . In the general case {Fig. 1.14(c})) in between 0 and pg
there are regions with £(p) > 0 and £"{p) < 0. It follows that only the
surfaces at the singular minima whose orientations are between py and pe,
where the condition £7{p) > 0 is fulfilled, can exist on the crystal surface.
All others are not stable and should break down into facets.

The physical meaning of this result is simple. If the new crystal surfaces
with orientations p; and p; have smaller specific surface energies than
the original face with orientation p and a decrease of the surface energy
overcompensates the increase of the surface area the crystal surface will
break down into facets. In the reverse case it will be stable.

The stability of the facets can be examined in the same way as for
the original surface. In this case we allow two new surfaces with areas
i and Tf and orientations p{ = p, + 8py and p), = ps + &ps to form
(Fig. 1.13(a)). From the condition of a positive change of the surface
energy A®' = £(p])E] + £(py) 5 — [£(p1)T1 + E(p2)E2] at constant volume
(B 4+ = =% +%; and ;T + X2 = pL = pi ) + pbT5) we find
that the facets will be stable when the corresponding surface stiffnesses o3
and o3 of the facets are positive. Thus an unstable smooth surface with
negative surface stiffness should break down into facets with positive surface
stiffnesses.

Faceting of crystal surfaces was observed long ago. Early works are
reviewed by Moore [Moore 1963]. In principle, faceting could be caused by
any reason which diminishes the specific surface energy. In particular, this
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is the adsorption of surface active species. Thus the adsorption of Ag on
stepped Ge (111} surfaces leads to the formation of (544) and (111) facets
at Ag coverage of about 0.2 monolayers at " = 400°C [Suliga and Henzler
1983]. At an increased coverage of Ag greater than 0.7 monolayers (211)
facets are formed. The above results were refined in a later paper [Henzler,
Busch and Friese 1990]. A Ge crystal has been cut and polished with
3° misorientation (p = 0.0524) with respect to the (111) surface. Vicinal
surfaces with monatomic steps and 18 atomic spacings wide terraces were
obtained which can be described by the Miller indices (19,17,17). Silver was
then deposited at room temperature and the crystal was annealed at 400°C
for 10 min. After cooling down to room temperature again the following
changes were observed. At a coverage of the Ag atoms of 1/4 monolayer
(with respect to the surface coverage of (111) Ge) the initial (19,17,17)
surface broke down to facets (13,11,11) with greater slopes and narrower
terraces and flat wider portions with (111) orientation. The fractions of
the overall surface of both facets were estimnated to be 0.75 and 0.25,
respectively. At a Ag coverage of 1/2 monolayer half of the surface was
found to have (10,8,8) orientation and the other half has (111) orientation.
After desorption of the silver and annealing of the Ge crystal the initial
orientation (19,17,17) was recovered.

Clean Si (100) surfaces misoriented by 5° in the {011] direction contain
steps of average spacing 29 A and height 2.7 A (double steps). After de-
position of As beyond a critical surface coverage of 0.38 monolayers, which
is independent of the temperature, the terraces become about 100 A wide
and the steps are 9 A (6 monclayers) high [Ohno and Williams 1989a]. The
process is reversible, After desorption of the arsenic the surface recovers its
initial structure. The same is observed for Si (111) surfaces misoriented by
6° in the (110], [211] and {211] directions. At coverages of As higher than a
critical one of 0.16 monclayers the single steps turn into double steps [Ohno
and Williams 1989b].

Besides, it has been found that Si (112) surfaces are stable when heated
up to 800°C regardless of carbon contamination, but break down to {111},
(113), (525) and (255) surfaces when heated between 950-1150°C in the
presence of carbon on the crystal surface. The extent of faceting increases
if carbon is introduced before heating beyond 950°C. Annealing at 1250°C
removes the carbon and restores the initial surface structure [Yang and
Williams 1989].

It is worth noting that the As-induced faceting of Si (200} and (111}
surfaces takes place at Ass pressures comparable to those employed when
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GaAs is grown on 5i single crystal wafers. It is thus unsafe to assume
that the surface of the substrate preserves its original structure under
the conditions of the experiment. The same is valid when the necessary
precautions to lower the carbon contamination in the vacuum chamber are
not taken into account. Works on faceting of metal surfaces are summarized
by Somorjai and van Hove [1989).

1.5. Atomistic Views on Crystal Growth

1.5.1. Fquilibrium of infinitely large crystal with the
ambient phase— The concept of half-crystal position

The above considerations were purely macroscopic in the sense that ther-
modynamic macroscopic quantities have been used for the description of
the equilibrium between different phases. The elementary processes of
attachment and detachment of individual building units (atoms, ions or
molecules) to and from the crystal surfaces have not been taken into
account. This is one of the reasons the earlier ideas of Gibbs have not
been fully comprehended until 1927 when, simultaneousty, Kossel [1927)
and Stranski {1927, 1928] introduced the concept of work of separation of
a building unit from the so-called half-crystal position. In this section we
will consider the problem on a microscopic atomic level.

Fig. 1.15. The most important sites an atom can occupy on a crystal surface: 1 — atom
embedded into the outermost crystal plane, 2 — atom embedded into the step edge, 3
— atom in a half-crystal (kink) position, 4 — atom adsorbed at the step, 5 — atom
adsorbed on the crystal face.

Let us consider, for example, the cubic face (100) of a Kossel crystal
containing one monatomic step (Fig. 1.15). The step can be defined as the
boundary between some region of the surface and an adjacent region whose
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height differs by one interplanar spacing, Atoms can occupy different sites
on this surface — incorporated into the face (site 1}, the step (site 2), into
corner position 3, or adsorbed at the step (site 4) or on the crystal surface
(site 5). Depending on their positions the atoms are differently bound to
the crystal surface. Thus an atom adsorbed on the crystal surface is bound
by one bond to the crystal and has five unsaturated dangling bonds. On the
contrary, an atom incorporated into the face has five of its bonds saturated
and one unsaturated. Moreover, the detachment of these atoms leads to a
change in the number of the unsaturated dangling bonds or, in other words,
to the specific surface energy. The only exception is the atom in position
3 which has an equal number of saturated and unsaturated bonds. Then
no change of the surface energy will take place when the laiter is detached
from this peculiar position. As seen an atom in this position is bound to
a half-atomic row, half-crystal plane and half-crystal block, This is the
reason this position is called a helf-crystal or kink position. By repetitive
attachment or detachment of atoms to and from this position the whole
crystal (if it is large enough to exclude the size effects) can be built up or
disintegrated into single atoms.

The work ¢, /3 necessary to detach an atom from a half-crystal position
depends on the symmetry of the crystal lattice but is always equal to the
work required to break half of the bonds of an atom situated in the bulk of

“the crystal (Table 1.1). Thus for a Kossel crystal

P12 = 3P + 62 + dyfs .

Table 1.1. The number of the first, second and third neighbors of an atom in a half-crystal
position.

Number of neighbors

Crystal lattice First Second  Third

Simple cubic 3 6 4
Face-centered cubic 6 3 12
Body-centered cubic 4 3 [
Hexagonal closed packed 6 3 1
Diamond 2 6 6

If we denote by Z,, Z; and Z3 the coordination numbers of the first,
second and third coordination spheres in the corresponding crystal lattice,
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then .
2V (Z1¥1 + Zawpz + Z31h3) . (1.57)

When a sufficiently large crystal is in equilibrium with the ambient phase
the half-crystal position is statistically occupied and unoccupied with equal
frequency. This means that the probability of attachment of atoms from
the ambient phase to the kink position is equal to the probability of their
detachment. It follows that the equilibrium of the infinitely large crystal
with the ambient phase is determined by the half-crystal position and ¢,
may be taken as approximately equal to the enthalpy of evaporation Ah,, .
In other words, it is namely the work of separation from half-crystal (kink)
position which determines the equilibrium vapor pressure of infinitely large
crystal and in turn its chemical potential. Thus for crystals with monatomic
vapors [Stern 1919; Kaischew 1936]

B = pig + kT In Py = —py s + KT In[(20m )/ 2(kT)>/2 /R3] (1.58)

holds, where #2° is the chemical potential of the infinitely large bulk crystal,
m is the atomic mass and & is Planck’s constant.

As seen from the above equation, at T = 0, the chemical potential
is equal to the separation work from the half-crystal position taken with
opposite sign. It is namely this property of the half-crystal position which
makes it unique in the theory of crystal growth. For the history of the
discovery of the half-crystal position the reader is referred to the historical
review of Kaischew [1981].

The second very important property of the half-crystal position becomss
evident if we write the expression for the work of separation from it in the
form

P12 = P + Pnor

where 1. denotes the lateral bonding with the half-crystal plane and
half-atomic row and (.. denotes the normal bonding with the underlying
hal{-crystal block.

This division has two advantages. First, it reflects the properties of
the particular crystal face. Let us consider, for example, the most closely
packed faces (111) and (100) of the fcc lattice. We will restrict ourselves to
first neighbor interactions. In order to detach an atom from a half-crystal
position on the (111) face we have to break three lateral bonds and three
normal bonds, whereas on the (100) face we have to break two lateral bonds
and four normal bonds. In both cases we have to break six bonds, but we
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could conclude that the (100) face has a greater adsorption potential than
the (111) face.

Another very important consequence of this division is connected with
the epitaxial growth of thin films. In fact if we replace the underlying
crystal block by another block of different material the lateral bonding
will remain approximately the same if we assume additivity of the bond
energies. However, the normal bonding or the bonding across the interface
will change [Stranski and Kuleliev 1929]. Then for a Kossel crystal the
separation work from the half-crystal position will be (¢ = +)

Ve =20+ =3y — (¥ — )

or
Vrp=wp—0-9, (1.59)

where 9’ is the energy to break a bond between unlike atoms.

It is immediately obvious that when ¥ < ¢/, ¢} /2 > w12 and the
equilibrium vapor pressure of the first monolayer on the foreign substrate
is smaller than the equilibrium vapor pressure of the bulk crystal, i.e.
P! (1) < P, . Then at least one monolayer can be deposited at any vapor
pressure higher than P, (1). This means that deposition will take place
even when P, (1) < P < P, ie. at undersaturation with respect to the
bulk crystal. In the opposite case (v > ¢'), ¢} ;2 <¥1/2 and P! (1) > Pe.
This means that the deposition requires the existence of a supersaturation
in the system. The atoms of the second monolayer feel more weakly the
energetic influence of the substrate and the latter will have negligible effsct
on the atoms of the third monolayer. It follows that in this particular
case the chemical potential is not constant but depends on the number of
the monolayers or, in other words, on the film thickness. In this case we
speak of epitaxy which will be considered in more detail in Chap. 4. It will
be shown that the thickness dependence of the chemical potential can be
easily derived by assuming that the lateral bonding remains the same and
accounting only for the difference in bonding across the interface. As will
be discussed in Chap. 4 the latter leads to different modes of growth of the
thin epitaxial films (for a review see Markov and Stoyanov [1987}).

1.5.2. Equilibrium finite cryatal-ambient phase — The concept of
mean separation work

As was mentioned above, we can build up or dissolve a crystal by repetitive
attachment or detachment of building units only when the crystal is large



36 Crystal-Ambient Phase Eguilibrium

enough so that the role of the edges can be ignored. If this is not the
case the half-crystal position is no longer a repetitive step and it does not
determine the equilibrium of the crystal with its vapor phase. To solve
this problem Stranski and Kaischew [1934a,b,c,d] considered the dynamic
equilibrinm of a small crystal with its vapor and concluded that for a small
particle to be in equilibrium with its own ambient phase the probability of
building up a whole new crystal plane should be equal to the probability of
its dissolution. So as a measure of the equilibrium of a finite crystal with its
surrounding, they introduced the so-called “mean separation work” which
is defined as the energy per atom of disintegration of a whole crystal plane
into single atoms. This quantity must have one and the same value for all
the crystal planes belonging to the equilibrium form.

Consider, for example, a Kossel crystal with edge length I3 = nga, where
n3 is the number of atoms in the edge of the 3D crystal and o is the atomic
spacing. The energy per atom for disintegration of a whole lattice plane
into single atoms will be {following Figs. 1.16(a)-(c))

@3 = [3¢(na — 1)? + dp(ng — 1} + 4)/nd = 3¢ — 2y /n; .
On the other hand, 3¢ = ;9 (Table 1.1} so that
Pa =172 — 2¢/ng . (1.60)

It follows that the mean work of separation goes asymptotically to the
work of separation from kink position as the crystal size is increased. Then
a crystal can be considered large enough if ng > 70 or {3 > 2 x 107% ¢m
{a=3x1078 cm).

As @3 determines the equilibrium with the vapor phase we can write in
analogy with Bq. (1.58)

te = piv = po + kT In B = —@s + kT In[(2em)¥2(kT)32 /0% . (1.61)
Then
Ap = py — pg = kTIn{A/Py) = p172 — P3 = 2P{ng . (1.62)

Obviously, this is the same Gibbs—Thomson equation (1.19). We can
define the specific surface energy of the Kossel crystal confining ourselves
to first neighbor interactions as the energy to create two surfaces of area

2
a* each:

o =/2* . (1.63)
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Fig. 1.16. For the evaluation of the mean separation work @3 which determines the
equilibrium of a finite 3D crystal with the vapor phase according to Stranski and
Kaischew (1934b). First, (a) (n — 1)? atoms are detached in auch a way that two
edge rows of atoms are left. The detachment of each atom requires the breaking of three
bonds, then (b) the two remaining rows of atoms, each consisting of n — 1 atoms, are
detached with the exception of the corner atom. The detachment of the atoms requires
the breaking of two bonds per atom, and finally (c) the last atom at the corner is detached
which requires the breaking of only one bond (after Stranski and Kaischew [1934b]).

Substituting for 4 from Eq. (1.63) into {1.62) one obtains
Ap = dovfls , {1.64)

which is exactly the Thomson-Gibbs equation as given by (1.19) (I3 = 2r
and v, = o® for a Kossel crystal).

1.5.8. Equilibrium 2D crystal-ambient phase

Stranski and Kaischew considered further the case when a 2D crystal formed
on one of the faces of a 3D crystal is in equilibrium with the ambient phase.
In analogy with the 3D case they suggested that the probability of building
up a whole new atomic row with a length I = nza (Fig. 1.17) should
be equal to the prabability of its disintegration into single atoms. The
equilibrium 2D crystal vapor phase is now determined by the corresponding
mean work of separation 5y, which in this particular case is equal to the
energy per atom for disintegration of a whole edge row of atoms. Assuming
for simplicity a square-shaped crystal with ny atoms in the edge the mean
work of separation reads

Pa =3 —¥/ng =y — Y/ne . (1.65)
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Fig. 1.17. For the evaluation of the mean separation work @z which determines the
equilibrium with the ambient phase of a finite 2D crystal with edge length Iz on the
surface of a 3D crystal with edge iength I3. ny and nj denote the numbers of atoms on
the edges of the ZI» and 3D crystals, respectively (after Stranski and Kaischew [1934b]).

Then the supersaturation required for the formation of a 2D crystal on
the surface of 3 3D crystal is

Ap = RTIn(P[Py) = ¢/nq . (1.66)
Using the definition of the specific edge energy
w=19[2a, {1.67)

one obtains the familiar equation of Thomson—Gibbs for the two-dimen-
sional case:
Ap = 2ea’fly (1.66')

Comparing Eqs. {1.64) and {1.66) {3r = ga} leads to the conclusion that
in equilibrium the edge length of the 2D crystal should be shorter than that
of the 31} one by a factor of 2 at one and the same supersaturation, i.e.
b =13 / 2.

1.5.4. Eguilibrium shape of crystals—Atomistic approach

The introduction of mean works of separation enabled Stranski and
Kaischew [1935] to give a new atomistic approach to the determination of
the equilibrium shape of the crystals. The basic idea is that afoms whose en-
ergy of binding with the crystal is smaller than the mean work of separation
cannot belong to the equilibrium shape because the corresponding vapor
pressure will be higher than the equilibrium vapor pressure in the system.
Then in order to derive the equilibrium shape one starts from a crystal
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with an arbitrary simple form in which all atoms whose separation works
are smaller than y,,; are successively removed from the crystal surface.
Precisely at that moment all the crystal faces belonging to the equilibrium
shape appear. Then the areas of the faces are varied (whole crystal planes
are removed or added) up to the moment when the mean separation works
@a of all the crystal planes have one and the same value. During the last
operation all faces which do not belong to the equilibrium form disappear
(see Honnigmann 1958).

Taking into account more distant neighbor atoms in the calculation
of the mean separation works, facets with higher specific surface energy
appear on the equilibrium shape just like as shown in Fig. 1.10. Thus when
accounting only for the first neighbors in a Kossel crystal the equilibrium
shape consists only of the cubic faces (100). Taking into account the
second neighbors leads to the appearance of the (110) and (111) faces in
addition to the {100) faces. Then by comparing the theoretical predictions
with experimental observations one can make conclusions concerning the
influence of the radius of action of the interatomic forces on the equilibrium
shape.

The atomistic approach of Stranski and Kaischew can be illustrated by
finding the equilibrium shape of a 3D crystal lying on a foreign substrate.
‘We consider for simplicity a cubic crystal with a square base with lateral
edge | = na and height h = n’e, where n and n' are the numbers of atoms
on the horizontal and vertical edges, respectively (Fig. 1.18). Following the
above procedure the mean separation work calculated from the side crystal
face is
v=v Y

n' n’

Py = 3¢ —

The mean separation work calculated from the upper base is given by
Eq. (1.60). The condition for the equilibrium shape is that the chemical
potentials of the different faces or, in other words, their mean separation
works, have to be equal (@5 = ;). The latter leads to the relation
(Kaischew 1950)

' '
%:%:1—“’—_ (1.68)

Substituting 4 and 1’ with the specific surface energy and the specific
adhesion energy, respectively, gives

1= (1.69)
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Fig. 1.18. A cubic crystal of lateral extent I and height A on a foreign substrate. The
specific surface energies of the substrate, o, , the upper and lateral faces of the deposit
crystal, ¢, and the substrate-deposit interface, o;, determine the equilibrium shape ratio
kil

where g; is the specific interfacial energy expressed by the relation of Dupré
(1.28). The same result can be obtained if one starts from the classical
thermodynamic conditions @ = *(c +0; — 0, } +4lho = min and V, = A =
const [Bauer 1958).

1.5.5. Equilibrium vapor pressure of ¢ 2D crystel
on a foreign substrate

It is also of interest to treat the question of equilibrium vapor pressure
of a two-dimensional crystal formed on the surface of a crystal of different
material. Assuming for simplicity a square shape the mean separation work
estimated from the crystal edge reads

wr =7 r_ j’_ = 7 _
L2 v+y o Pifa ng
where the term ] 2 =2 +4' is in fact the work of separation of an atom
from the half-crystal position of the semi-infinite adlayer on the foreign
substrate {Stranski and Kuleliev 1929].

Bearing in mind that ¢, = 3¢ for the supersaturation and hence for

the equilibrium vapor pressure one finds

The difference p1/2 — ), = ¥ — ¢’ of the binding energies can be
either positive (¢ > ') or negative {3 < ¢’} as discussed above. This
means that the equilibrium vapor pressure of the 2D crystal can be either
higher or lower than the equilibrium vapor pressure of the bulk crystal and
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the deposition can be carried out at supersaturation or undersaturation,
respectively.

1.6. Equilibrium Structure of Crystal Surfaces
1.6.1. Classification of crystal surfaces

The process of growth of crystals takes place at the crystal-ambient phase
interface where the latter can be vapor, melt or solution. Obviously, the
equilibrium structure of this interface or, in other words, its roughness,
determines the crystal shape on one hand, and the mechanism of growth
and in turn its rate of growth on the other.

Let us consider, for example, an atomically smooth crystal face be-
longing to a perfect defectless crystal. The formation of a new lattice plane
requires the existence of monatomic steps which offer half-crystal positions.
Ag a source such steps can serve randomly appearing two-dimensional
formations of the new lattice layer with closed contours. Initially they are
unstable and have the tendency to dissolve into the mother phase. When
such formations which serve as “two-dimensional nuclei” of the new layer
exceed some critical size their further growth is thermodynamically favored
and they cover completely the crystal face. After that the steps vanish and
the initial state is restored. Then the formation of new lattice plane requires
the formation of new 2D nuclei and the process is repeated. Hence the
growth of a defectless atomically smooth crystal face is a periodic process
involving successive 2D nucleation and lateral growth (Fig. 3.23) which
is usually observed in crystal growth by Molecular Beam Epitaxy (MBE)
[Harris, Joyce and Dobson 1981a, 1981b; Neave, Joyce, Dobson and Norton
1983]. The formation of 2D nuclei is connected, however, with definite
energetic difficulties and requires overcoming s critical supersaturation.
Then the rate of growth of a defectless crystal surface will be a nonlinear
(in fact exponential) function of the supersaturation.

However, experimental data showed that crystals can grow at supersat-
urations as low as 0.01%, in marked discrepancy with the nucleation theory
of crystal growth. The problem was solved in 1949 when at a discussion
meeting of the Faraday Society in Bristol, Frank {1949ab] proposed the
apirel mechanism of crystal growth. He suggested that continuous growth
of crystals at low supersaturation can be attributed to the presence of
crystal defects, particularly screw dislocations (see Fig. 3.9). The latter
offer nonvanishing monatomic steps with kink positions along them, thus
making the 2D nucleation unnecessary. In 1951 Burton, Cabrera and Frark
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published their famous paper “The growth of crystals and the equilibrium
structure of their surfaces” [Burton et al. 1951]. Considering the growth
of a crystal face in the presence of screw dislocations they found that the
distance between consecutive coils of the spiral is directly proportional to
the linear size of the critical 2D nuclens which is determined by the existing
supersaturation. Then the slopes of the growth pyramids which are formed
at the emergency points of the screw dislocations are directly proportional
to the supersaturation. One can conclude that, in general, the growth rate
will again be a nonlinear function of the supersaturation.

Finally if the crystal face is atomically rough it offers a great number
of kink positions. Building particles arriving from the mother phase can
be incorporated to the crystal lattice practically at any place, which makes
the 2D nucleation as well as the presence of screw dislocations unnecessary.
No thermodynamic hindrance exists any more; the process is fast and the
growth rate is simply proportional to the flux of atoms from the ambient
phase and thus should be a linear function of the supersaturation.

Thus crystal growth means incorporation of building units which arrive
from the ambient phase to the haif-crystal positions. Then the rate of
growth of a given crystal face in a direction normal to its surface is
proportional to the density of growth sites (half-crystals or kink positions)
which the face offers to the building units from the ambient phase. This
density depends on the crystallographic orientation of the face on the one
hand, and temperature on the other.

Burton and Cabrera (1949) classified the crystal surfaces with respect to
their capability of growth into close-packed and non-close-packed or stepped
surfaces. The question has been further elucidated by Hartman [1973] and
others [Honigmann 1958; Cabrera and Coleman 1963].

The crystal surfaces are thus divided into three groups: F {flat), S
{stepped) and K (kinked) surfaces depending on whether they are parallel
to at least two most dense rows of atoms, one most dense row of atoms, or
are not parallel to any of the most dense rows of atoms at all, respectively
[Hartman 1973}]. F faces are, for example, the {100) face of Kossel crystals
and fcc crystals which are parallel to two most dense rows of atoms, the
(111) face of fcc and the (0001) face of hep crystals which are parallel to
three most dense rows of atoms, etc. {see Fig. 1.19). Typical examples of
S and K faces are the (110) and (111) faces of sodium chloride (or Kossel)
crystals. It is clear that when a crystal face is parallel to more than one
most dense row of atoms, the number of saturated shortest, and hence
strongest, chemical bonds parallel to the erystal surface is greatest. The
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number of the unsaturated bonds is minimal and so is the specific free
energy of the face (see the arrows in Fig. 1.19). When the crystal face is
parallel to one most dense row of atoms only, it intersects the other one
and all the chemical bonds parallel to the latter become unsaturated. Thus
the number of the unsaturated bonds reaches its highest value when the
crystal face intersects all the densest rows of atoms and hence such a face
offers more growth sites (kink positions) than the 8 and F faces.

—
o F
g s
T F S @'\Q
100y |

Fig. 1.19. A schematic representation of a Kossel crystal illustrating F (flat) and S
{stepped) surfaces depending on whether they are parallel 1o two and one most dense
rows of atoms, respectively, and a K (kinked)} surface which is not parallel to a most
dense row of atoms at all. The long arrows give the directions of the most dense rows
of atoms (the directions of the first neighbor bonds). The short arrows represent the
unsaturated first neighbor bonds of an atom belonging to the corresponding crystal face
{after Hartman [1973]).

As the K faces offer kink sites with much greater density than the S
and F faces they will grow faster than the latter. The S faces also offer
kink sites along the steps but their density is smaller than on the K faces.
Finally, the F faces of perfect crystals do not offer kink sites at all. Then at
small enough supersaturations to prevent 2D nucleation the rate of growth
in a direction normal to the particular faces will be highest for the K faces,
smaller for the S faces and zero for the F faces. 1t follows that the K faces
should disappear first, followed by the S faces and finally the crystal will
be enclosed during growth by the F faces only and will cease to grow at all
at small enough supersaturation.
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As has been shown in the previous section the crystal faces can be
divided also into singular and vicinal faces. Singular minima correspond
to the singular faces and the latter can be any of the low index faces
irrespective of whether they are F, S or K faces. Finally, the vicinal faces
which are slightly tilted with respect to one of the main (singular) crystal
planes offer to the arriving building units a train of paraliel steps divided
by smooth terraces. This classification is of practical interest. When
crystals are cut for the preparation of substrates for epitaxial growth with
particular crystallographic orientations the angle of cutting with respect to
the orientation selected is never equal to zero. Thus crystal wafers prepared
by cutting always offer vicinal surfaces for crystal growth. Besides, during
spiral growth (Fig. 3.9) the side faces of the growth pyramids represent in
fact vicinal surfaces. The same is true for the case when the crystal face
grows through formation and growth of 2D nuclei. Pyramids of growth are
formed by successive formation of 2D nuclei one on top of the other and
their side faces represent again vicinal surfaces (see Fig. 3.2). This is the
reason why we consider first the equilibrium structure of single height steps.

1.6.2, FBguilibrium structure of a step

We cousider for simplicity a single step of monatomic height and infinite
length on the surface of a simple cubic crystal. At T = 0 the step will
be perfectly straight. As the temperature is increased kinks separated by
smooth parts will begin to appear. The kinks can be conventionally divided
into positive and negative kinks depending on whether a new row of atoms
begins or ends {Fig. 1.20). If the step follows on average the direction of
a most dense row of atoms the number of positive and negative kinks will
be equal. The total number of kinks increases when the step deviates from
this direction. The kinks can be monatomic as well as polyatomic. For
simplicity we consider first monatomic kinks only. We rule out also the
so-called “overhangs” {Fig. 1.20).

The energy required to form a kink is w = /2. Indeed, as seen in
Fig. 1.21, in order to produce a hole and an adsorbed atom in the initially
straight step we break 3 lateral bonds and create one bond, thus expending
a net amount of energy of 2. The transfer of the next atom (to separate the
kinks by a smooth part) is not connected with the change of energy. Thus
we expend 2% energy to form four kinks {two positive and two negative) or
w = 1/2 per kink. This holds for crystal-vapor interface. If the ambient
phase is a melt we can calculate the energy to form a kink on the base of
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Fig. 1.20. Positive K* and negative K~ kinks along a step at T # 0. The overhang is
also shown.

the so-called lattice model of the melt. It is assumed that the atoms in the
liquid form the same lattice as in the crystal but the energies to disrupt
the bonds between two neighboring atoms in the crystal, 1., in the melt,
¥m, and belonging to both the crystal and the melt, Y.y, are different.
We perform the same considerations as before but now we add the energy
required to transfer two liquid atoms from the melt into the created holes
in the step. Then the energy w to form a kink per crystal-melt bond .
is

= e+ m) = Ve (1.70)

In the case of crystal-vapor interface ¥y = then = 0 and w = ¥, /2 =
¥/2.

It is worth noting that the work to create a kink is in fact the work to
create one more dangling bond or, in other words, to elongate the step by
one interatomic spacing, Thus, the creation of kinks leads to a change of
the specific edge enexgy of the step or of the surface energy of the crystal
face.

We denote by ny and n_ the densities of single positive and negative
kinks, respectively, and by ny the density of the smooth parts where there
are no jumps at all. Their sum
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Fig. 1.21, For the determination of the activation energy of formation of a kink: (a)
First we transfer an atom embedded inia the step {site 2 in Fig. 1.15} to an adsprption
position at the step (site 4 in Fig. 1.15). A hole and an adatom are formed. (b) The
hole is widened by removing a second atom and transferring it next to the first one. As
a result four kinks, two positive and two negative, are formed (after Burton and Cabrera
[1949]).

net+n_tng=n=1ja (1.71)

is just equal to the number of atoms per unit length of the step where e is
the first neighbor distance.

If the energy to form a kink is « = /2 we can write [Burton, Cabrera
and Frank 1951)

iy fng =n_/ng=n
or
nen_/ni =9, = exp{—w/kT) = exp(—v/2kT) . {1.72)

If the average orientation of the step deviates from the direction of the
most dense row of atoms by a small angle ¢ then

ny —n-=gla. (1.73)
By solving the system (1.71)-(1.73) at ¢ = 0 for the mean distance
between the kinks, 8, one obtains

g = —1—=a(1+%) :a(1+%exp(w/kT)) . (1.74)

By + 7
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Let us evaluate this quantity. The enthalpy of evaporation of, say, silver
is AH, = 60720 cal/mole; ¢ = AH./6 or w = AH,./12. At T = 1000K,
/T = 2.53 and 8 = 7a. In other words at the crystal-vapor interface of
silver we have kinks of any sign, on average, at every 7 atomic distances,
i.e. the step will be rough. In the case of Si crystal-melt interface at the
temperature of melting, T, = 1685 K, AH,,/kT, = 3.3, w/kTm = 1.66
and &y = 3.5a. An interesting example is the vicinal surface of Si(001). As
will be shown in Sec. 3.5 steps called Sa and Sy with w = 0.15 ¢V and
0.01 &V, respectively, alternate. Using Eq. (1.74) we find that very rough
and very smooth steps coexist on the Si(001) vicinal surface.

All this means that whereas at T = 0 the step is perfectly straight
without kinks of any sign at any temperature higher than zero, it will
contain kinks or, in other words, it will be rough. This is due to the
decrease of the Gibbs free energy of the step with increasing temperature
due to the increase of entropy. For the Gibbs free energy of the step we can
write the usual expression {we neglect the PV term)

Gst = Ust - TSgt N (175)

where
Up={n+ny+n_Jp/2 (1.78)

is the potential energy of the unsaturated bonds at the step (n is the number
of unsaturated bonds in a direction normal to that of the step and ny
and n_ are the numbers of unsaturated bonds parallel to the step, every
unsaturated bond having energy w = 9%/2).

The entropy is determined by the number of possible ways of distribu-
tion of the kinks and smooth parts so that (if we neglect the kink—kink
interaction)

1
S = kln (E";TE_"?;;T) . (1.77)

Selving again the system (1.71)-(1.73) for the simpler case of a step

parallel to the direction of the most dense atomic row (¢ = 0) we obtain

Ny N n mg 1

n_ n  1+2q n  1+2n°
Substituting {1.78) into (1.75), (1.76) and (1.77) and using the Stirling
formula e N1 =NIln N - N gives

(1.78)

G = —nkTIn[n(1 + 27)] . (1.79)
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This expression was obtained under the assumption that the kinks are
monatomic. If we relax this restriction for G, one obtains (see
Eg. (3.157')) [Burton, Cabrera and Frank 1951]

Gy = —nkTIn (ni*—”) . (1.80)

It is easy to see that G, > 0 when 5 is greater than some critical
value . = /2 — 1. Beyond this value G < 0. This means that a critical
temperature determined by the condition Gg = 0 exists:

KT, AH,
? = 0.57 or kT,r

=0.882 (1.81)

below which the steps are rough but still exist. Bearing in mind that a
step divides a half-crystal plane (with vacancies in it) from a dilute adlayer
it is clear that at temperatures higher than T, both regions are mutually
dissolved, the steps no longer exist, and the surface of the face becomes
atomically rough. This phenomenon is similar to the mutual dissolution of
aliquid and a vapor phase at the eritical point at which the phase boundary
between them disappears.

1.6.3. Equilibrium structure of F faces

We have seen in the previous section that the disappearance of a mon-
atomic step leads to the roughening of the stepped surface. So the next
logical question is: Can F faces roughen if steps are not initially present?
The answer is yes but the problem is muck more complicated.

The roughness of a crystal face can be defined as

U -U

R ,
Ug

(1.82)

where Uy is the internal {potential) energy of the reference flat face at T =0,
which is proportional to the number of the unsaturated bonds normal to
the face (Uy = /2 per atom), and U is the internal energy of the face at
T > 0. The latter is proportional to the number of both normal and lateral
bonds. Thus the roughness is given by the ratio of the unsaturated lateral
and normal bonds. If we exclude the overhangs shown in Fig. 1.24 from
our considerations (this is the well-known solid-on-solid or SOS model) the
number of the normal bonds does not change upon roughening and Uy =
const.
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At T = 0 the face is atomically smooth and all the surface atoms are
on one and the same lavel. Unsaturated lateral bonds do not exist and
R =0 At T > 0 some atoms can leave the uppermost atomic plane,
leaving vacancies in it, and adsorb on it, thus giving rise to unsaturated
lateral bonds and hence to some degree of roughness. When there are
atoms on different levels jumps analogous to the kinks in the step appear.
In the case of steps, however, the problem is much simpler because the total
number of kinks and smooth parts is equal to the number of bonds per unit
length of the step and the appearance of a kink or a smooth part at any
particular point does not depend on the situation in the neighbor points.
In the 2D case of a crystal surface the situation is completely different. If
we consider, for example, the (100) face of a Kossel crystal we will see that
the number of the lateral bonds is twice the number of atoms per unit area.
Hence the number of jumps between atoms on different levels is greater than
the number of atoms. This means that the existence of a jump at a given
site depends on the existence of jumps in neighboring sites although the
existence of atoms on different levels is independent. As we are interested in
the number and distribution of jumps or unsaturated lateral bonds we have
to deal with this cooperative phenomenon which means that the appearance
of jumps between atoms on different levels is interdependent. This is quite
a difficult problem end an exact solution exists only for the simplest case of
a surface with a square atomic mesh and atoms on two levels. More general
solutions can be found if some approximations are used.

Burton, Cabrera and Frank [1951] first realized that the two-level prob-
lem ia analogous to the 2D Ising model in the theory of ferromagnetism.
The latter deals with a square mesh of spins which can be directed either
up or down (Fig. 1.22). The energy of interaction of two neighboring spins
can be taken to be either +1 or —1 depending on whether they are parallel
or antiparallel, respectively. Such a system shows critical behavior in the
sense that beyond some critical temperature (the well-known temperature
of Curie) all the spins are randomly oriented (Fig. 1.22(a)). At lower tem-
peratures all the spins are equally directed thus giving rise to ferromagnetic
state (Fig. 1.22(b)).

Consider now a crystal face with atoms on two levels. If an atom
has a neighbor on the same level the energy of interaction between them
will be —%. Otherwise the bond will be unsaturated and the energy of
interaction will be zero. This is equivalent to parallel and antiparallel
spins, respectively. Hence, if all the atoms are sifuated on one and the
same level and the face is atomically smooth, all the lateral bonds are
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Fig. 1.22. A square mesh of spins as an illustration of the two-dimensional lsing model
at temperatures (a) higher and (b) lower than the critical temperature 7e.

saturated and this state is equivalent to the ferromagnetic one. Obviously,
a critical temperature analogous to that of Curie will exist above which
approximately half of the atoms will be on the upper level and the other
half on the lower level. Using the exact solution of Onsager [1944] for
this “simple” case, Burton, Cabrera and Frank deduced that the critical
temperature is given by

exp(~¥/2kT) =v2—~1 or kT./y =0.57 (1.83)

for the (001} face of a Kossel crystal.

Obviously, the roughening of a crystal face taking place on more than
two levels and without square symmetry cannot be treated in this way.
Some approximation should be used. So we consider first the two-level
model of Jackson [1958] and then treat in the same way the multilevel
model of Temkin [1964, 1968] (see also Bennema and Gilmer {1973]).

1.6.3.1. Model of Jackson

We consider a flat, atomically smooth face with N adsorption sites per unit
area at the equilibrinm temperature T,.. Let NV, atoms be adsorbed on this
face so that the surface coverage is 8 = Na /N. Every atom has Z; lateral
bonds. For instance, Z; = 4 for the (100) face of Kossel and fce crystals,
Zy = 6 for the (111} face of fec crystals, etc.
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The relative Gibbs free energy of the crystal face is (the PV term is
again neglected}
AGe = Al - TAS; (1.84)

where Al is again the internal energy due to the unsaturated lateral
bonds and ASy is the configurational entropy of distribution of V4 atoms
over N adsorption sites (S¢(T = 0) = 0). In order to calculate AUr we
usge the so-called approximation of Bragg-Williams [1934], also known as
“mean-field” approximation. In this particular case the latter consists of the
following. An adatom on the surface can have 1,2,3, ..., Z; first neighbors.
If we assume that the atoms are randomly distributed and clustering is ruled
out, we can accept that approximately every adatom will have on average
Z, 8 first neighbors and respectively Z;(1 — §) unsaturated bonds. Then

AUs = NpZy(1 — e)% = NZ.6(1 — e)lg— . (1.85)

The entropy can be calculated in the usual way:

N1

ASp=kln (mm

) = —kNOIng — kN(1 - 8)In(1 — 8) , (1.86)
where we again made use of Stirling’s formula.
Then for the Gibbs free energy one obtains

AG/NKT, = ab(1 - 8) + 88+ (1 — 6)In(1 - 6) . (1.87)

A graphical representation of AG/NkT, is given in Fig. 1.23 for differ-
ent values of the parameter o

o= 2 _ Z¥ 4 AH . Z,  AS. 4
T T,  %T. Z T kT.Z T k Z°
where Z is the coordination number of an atom in the bulk crystal.
As seen all curves are symmetric and have maximum or minimum at

& = 1/2. The second derivative

d*> AG 1 1

NI, - et i
is negative at # = 1/2 when o > 2 and is positive when o < 2. This means
that at & < 2 the surface free energy has a minimum at 8 = 1/2. On
the contrary at a > 2 the Gibbs free energy has a maximum at 8 = 1/2
and two equally deep minima at values of # very close to ¢ and 1. The two
minima correspond to two equivalent configurations — the first one (# = ()

{1.88)
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Fig. 1.23. Dependence of the relative Gibbs free surface energy AG{/NkT, on the surface
coverage § = N /N at different values of the parameter & denoted by the figure at each
curve (after Jackson [1958]).

consisting of small density of adatoms on a flat crystal face and the second
one (# = 1) representing a flat crystal face with a few vacancies in it. If
we accept that the maximum surface roughness is defined by & = 1/2 the
crystal face will be rough at @ < 2 and smoocth at « > 2.

We can now answer the question of what the structure of the crystal—
ambient phase interface will be at the temperature of transition melting
or sublimation. For many metals the relative entropy of melting ASy /R
has a typical value around 1.2 and their surfaces will be rough at T, or
near to it. The different crystal faces will have rearly one and the same
density of kinks and the crystals will grow rounded from their melts. On
the other hand, the relative entropy of evaporation AS,/R has a typical
value over 10 and « > 2. The F faces will be smooth and the crystals will
grow well polygonized from the vapor phase. The above refers to metals.
In the case of some organic crystals the entropy of melting is large and they
grow polygonized from their meits.

The model of Jackson was further generalized by Chen, Ming and
Rosenberger [1086] to account for the nonlinear behavior of energy to break
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a bond between first neighbors due to many body interactions with more
distant neighbors. The analysis leads to lower values of the a factor for a
series of metals (Cu, Pb, Zn), thus increasing the tendency to roughening
at temperatures lower than predicted by the Jackson model.

1.6.3.2. Model of Temkin

The main shortcomings of the Jackson model aside from the use of the mean
field approximation is that the roughness of the face is restricted to two
levels only and the result is applicable only at the equilibrium temperature
{or very close to it). This is the reason why Temkin [1964, 1968] developed
further this approach allowing the crystal face to roughen at an arbitrary
depth and arbitrary temperature, i.e. during the processes of growth and
dissolution (Ap # 0).

The Bragg-Williams approximation again permits one to solve the
more general case of multilevel roughening [Temkin 1968; Bennema and
Gilmer 1973). At T = 0 the crystal face is completely smooth as shown
in Fig. 1.24(a). At some higher temperature the face is rough and the
roughness is not confined to two levels as in Jackson’s model but can go from
—o0 to +oo. In fact we consider the SOS model ruling out the overhangs
(Fig. 1.24(b)). Every crystal layer (with number n) consists of N, solid
atoms belonging to the crystal and NV, atoms belonging to the fluid phase.
Then

Noa + Nog = N = const. (1.89)

T

a b

Fig. 1.24. Schematic representation of the SOS {Solid-On-Solid) model of an F face: (a)
amooth face at T' =0, (b} rough face at T > 0. Overhangs as shown by the shadowed
black are forbidden. The figures denote the number of the corresponding crystal layer.
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We define the corresponding surface coverages as before:

9n=‘r§\';‘ and 1—9nm%“7‘. {1.90)

Then the fraction of fluid atoms is 1 — 8,,. As r varies from —o0 t0 +oo
the problem of finding all the 8, is subject to the boundary conditions

fro=1 and Bre=0. (1.91)

As we exclude the overhangs from consideration and hence 8, < 8.1,
(1.91) means that we go from completely solid phase to completely fluid
phase. In order to find a solution for &, we will follow the approach of
Mutaftschiev [Mutaftschiev 1965; Bennema and Gilmer 1973].

The Gibbs free energy of a rough surface with respect to the smooth
one is given by [Mutaftschiev 1965]

AGy = AG, + AU; + TAS; . (1.92)

The first term accounts for the interchange of atoms between the crystal
and fluid phases. This interchange is connected with the difference between
the chemical potential of the atoms in the crystal, g, and that in the fluid,
it &p = pe — pi, which is just the supersaturation. Then for AG, we can
write (see Eq. (1.90))

4] o0
AG'V = (“c '"Ju'f)Zan+ (Juf_' 123 )Ean
—_— 1

]

=Nap (E(l —8n) - ie) ,
1

-0

the terms in the brackets giving the net amount of atoms leaving the crystal
or joining the crystal from the ambient phase. I the roughening takes place
without interchange of atoms between the two phases then both sums cancel
each other and AG, = (. This is strictly valid only at the equilibrium
temperature T = T, or, in other words, at Ap = 0.

The second term in (1.92) is completely analogous to the internal energy
in Jackson's model and gives simply the number of the unsaturated lateral
bonds. Then

AUt = Zy(9/2)N Y a1 — 6n) .
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It is immediately seen that in the case of a two-level model the sum
is reduced to one term only which is precisely equal to the firgt term in
Jackson’s expression (1.85).

The configurational entropy ASy can be calculated by the same way as
in Jackson’s model:

N (NE,)!
ASi=kln _Hw (Nt (N On — NOpyr)!

Using the boundary conditions (1.91} and Stirling’s formula an expres-
sion completely analogous to that of Jackson is obtained:

TAS; = —kTNY (0n = Out1) (B0 ~ Opnt1) -

—x

Then for the relative Gibbs free energy AGy /NET one obtains

ﬁﬁ—ﬁ(z 21:9,1)“;3“(1-9")

+ Y (6n = b p1) (8 — Bgn) (1.93)
where A
_ A
B=1r (1.94)

and o is again given by (1.88) in which T, is replaced by 7.

This expression is not simply a generalization of Jackson’s for the case
of many levels although it is immediately seen that Jackson’s expression is
automatically obtained if we put 3=0,6., =1,0;, =8 and #,, =0. The
roughness of the crystal face is considered in a nonconservative system as we
do not keep the number of the solid atoms constant but allow interchange
between phases. Thus although the Temkin model is a thermodynamic
model it considers surface roughening in the process of growth or dissolution
of & crystal, whereas Jackson considers a system in equilibrium (T = T,
and hence § = 0).

The stability of the crystal-fluid interface is determined by the condition
for minimum Gibbs free energy:

2 (28) -
88, \NkT} '
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which leads to the following master equation for 8,.:

'911 - 9n+1

AT N exp(2af, —a+ 3) . (1.95)
n-1—Un

Using the substitution z, = 2af, —a + 3, Eq. (1.95) turns into

.-z.n—-—-..:—zil.ﬂ = exp(zn) s (1_96)
Zn-1— #n

Expressing 2,_1 — 2, through 2, — 2,4, and substituting the latter into
the equation for z,, (1.96) can be written in the form

Zntl = Zn — (20 — 21) exp (Z zm) ) (1.97)

m=1

Z_(nt1) = 2_n+ (2 — z1) exp (— Z z_m> . (1.97")
m=0

The boundary conditions 6_,, = 1 and #,, = 0 turn into
oo =3 -0, Zo=A4a. (1.98)
Let us consider first the simpler case of # = 0, i.e. the multilevel
generalization of Jackson’s model. Two symmetric solutions of Eqs. (1.97)

subject to the boundary conditions (1.98) are possible [Temkin 1968]. The
first solution is

Tp=—1, 2_1=—1iy, Z_3=—zg, etc., (1.99)
which corresponds to
Oh=1-6, B_1=1—-6s, B_5=1-6;, etc.
The second solution is
2g=0, z_;=-2, Z_.2=—2z, etc., (1.10Q)
which corresponds to

9():1/2, 9‘1=1—'81, a_gzl*‘gg, etc.
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Comparing both solutions it is immediately seen that the second one
(1.100) corresponds to a higher value of the Gibbs free energy as fp = 1/2
and some degree of roughness always exists, whereas the first solution
(1.99) permits 8, to be close to unity and @, close to zero. Hence solution
{1.99) provides a minimum in the surface energy whereas solution (1.100}
corresponds to an inflection point. If we go back to Jackson’s model for
which #..;, 8-5, .3 = 1 and @y, 62, 63 = D, we will see that the second
solution &y = & = 0.5 corresponds to the maximum of the relative Gibbs
free energy at values of the parameter o greater than 2. The first solution
8o = 1 — 0, corresponds to either a flat face with negligible density of
adatoms (6 2 0) or a flat face with negligible density of vacancies (§ = 1).

Figure 1.25 shows the dependence of 8, on n for different values of the
parameter «. As seen the interface becomes more and more smeared with
decreasing a. On the contrary, when a« = 3.31 the interface consists of one
layer with some vacancies in it and a few adatoms on top of it. In other
words, at o > 3.3 the interface is flat and atomically smooth.

° -5 0 5

n—

Fig. 1.25. Dependence of the surface coverage on the pumber n of the layer at different
values of the parameter o denoted by the figure at each curve at equilibrium (3 = 0)
{(after Temkin {1964, 1968}).

We consider further the more general case of 8 # 0 and construct a
plot of In B vs a (Fig. 1.26). As seen the whole field is divided into two
parts, A and B. In part A Eq. (1.95) (or (1.97)) has two solutions: one
ground state solution (1.99) and one saddle point solution (1.100}. On the
dividing line both solutions coincide. In region B the master equation (1.95)
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Fig. 1.268. Phase diagram in coordinates In 8 and o showing the state of the crystal
surface as follows from the model of Temkin. In the region dencted by A the system
of equations {1.95) has two solutions, one of which is the ground state solution corre-
sponding to a smooth surface and the other is 2 saddle point. Both solittions ceincide on
the dividing line, and in the region denoted by B no solution exists. The latter can be
interpreted as disappearance of the crystallographic orientation of the face or roughening
of the face {after Temkin [1964, 1968]).

has no solution at al! which is interpreted as a loss of the crystallographic
orientation of the crystal face. In other words, it becomes o rough that
it cannot be distinguished as a crystal face with definite crystallographic
orientation any more. The latter means that under conditions of region B
the atoms arriving from the ambient phase can be incorporated at any site
of the crystal surface without the necessity to overcome a thermodynamic
energy barrier. At values of o and 2 such that we are in region A the ground
state is a more or less flat surface and its growth requires the formation of
2D nuclei or the presence of screw dislocations.

1.6.3.3. Criterion of Fisher and Weeks

Although the models of Jackson and Temkin predict roughening of the
crystal surfaces above socme critical temperature they do not correctly
account for the thermal fluctuations in the system because of the mean
field approximation used.
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As shown above the model of Temkin predicts that under conditions
of region B in Fig. 1,26 the crystal surface cannot be distingnished any
more as having a definite crystallographic otientation. In other words, the
crystal surface becomes delocalized with respect to the crystal lattice. This
statement contains in itself the main difference between a liquid and a
crystal surface. The flat crystal surface has a definite crystallographic ori-
entation and is said to be localized or immobile. On the contrary, the liquid
surface is delocalized in the sense that it has not a definite crystallographic
orientation. At low enough temperatures the crystal surfaces are more or
less smnooth and so are the steps on them. At higher temperatures thermal
finctuations become important and the steps become more and more rough,
the step Gibbs free energy Gy tending to zero. It was shown [Swendsen
1978; Weeks 1980; Fisher and Weeks 1983; Jayaprakash, Saam and Teitel
1983] that G., vanishes with temperature following the law

G,t ~ EXp (-—(IT_:(?T—)IE) f (1.101)
i.e. in a very smooth manner.

The step free energy G is closely connected with the specific surface
energy and thus with the surface stiffness. It has been shown in the previous
section that the surface stiffness is infinite for a flat crystal surface whereas
it has a finite value for a rounded “rough” surface. Theoretical treatment of
the temperature behavior of surface stiffness [Chui and Weeks 1978; Fisher
and Weeks 1983] resulted in an expression for the roughening temperature
which naturally connects the latter with the surface stiffness:

KT = 20 (T (1.102)

where ¢*(T;) is the surface stiffness at the transition temperature and duy;
is the interplanar distance parallel to the interface. The more closely packed
a given crystal face is, the larger the interplanar distance and the higher
the roughening temperature will be. Thus for a fcc lattice, d111 = ag/V/3,
dioo = ao/2 and {dy11/d1o0)? = 4/3 = 1.33. Hence, in equilibrium at some
finite temperature the most closely packed surfaces will be flat, whereas
others will be rounded. Slight deviation from equilibrium will lead to
growth of the rounded regions and their subsequent disappearance. The
crystal will be confined by low index planes only. If again equilibrated the
rounded regions should reappear.
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The theoretical criterion (1.102) has been experimentally verified in the
case of *He crystals [Wolf et al. 1985; Keshishev et al. 1981; Babkin
et ol. 1984; Avron ef ol 1980; Gallet et 2l 1986, 1987; Nozidres and
Gallet 1987], which is the ideal choice for such kind of investigations. The
main advantages are the following. The liquid helium-4 is superfluid below
1.76 K, 1.e. its viscosity is nearly zern. Moreover its thermal conductivity
is practically infinite. Besides, helinm can be easily purified, the impurity
concentration being as low as 1 x 10~%at., %. The latter is of utmost
importance as the adsorption of impurities changes drastically the surface
energy. Crystal helium has a very high thermal conductivity also. Thus, in
contrast to other crystals, the heat and mass transport are very fast. Then,
the equilibrium shape is reached in a very short time.
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Fig. 1.27. Semi-logarithmic plot of the ratio of the rate of growth V in (0001) direction
and the level difference H (the latier is proportional to the supersaturation Ap) as &
fanction of the reciprocal supersaturation 1/H = 1/Ap for various temperatures. The
straight lines show that V © Apexp{—Ka/Ap) and hence the growth takes place by
two-dimensional nucleation (see Chap. 2). The slopes of the straight lines give in fact
the squares of the specific edge energies of the steps surrounding the 2D nuclei. As seen
the slope becomes equal to zero at T = 1.232 K which shows that the specific energy
of the steps also becomes equal to zero. The latter means that the crystal surface is
no longer smeoth but is atomically rough. (P. E. Wolf, ¥. Galiet, S. Balibar, E. Rolley
and P. Nozieres, J. Phys. 46 (1987). By permission of Les Editions de Physique and
courtesy of S. Balibar.)



1.6. Equilibrizm Structure of Crystal Surfaces 61

As mentioned above the structure of the crystal surface affects the
mechanism of growth. Wolf ef ol [1985] investigated the latter and
found that at temperatures beyond 1.232 K the dependence of the growth
rate R on Ayp is linear, which can be considered as a direct indication of
atomically rough surface. On the contrary, at temperatures below 1,232 K
a ponlinear dependence is established which proved to be exponential as
required by the 2D nucleation mechanism of growth (Fig. 1.27). The slope
of the logarithmic plot gives directly the energetic barrier for 2D nucleus
formation, and at T = 1.232 K it becomes equal to zero. The latter means
that the free energy of the steps becomes equal to zero, the surface becomes
atomically rough, and 2D nucleation is no more necessary for the crystals
to grow. What is more interesting is that the dependence of the Gibbs free
energy of the steps (estimated from growth experiments) on temperature
decays exponentially, going smoothly to the roughening temperature 7}
(Fig. 1.28). Thus an excellent quantitative agreement between theory and
experiment is achieved.
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Fig. 1.28. Variation of the step free energy with temperature as deduced from plots shown
in Fig. 1.27. As seen the step free energy vanishes within the experimental accuracy near

T = T; = 1.28 K. (F. Gallet, 5. Balibar and E. Rolley, J. Phys. 48, 369 (1987). By
permission of Les Editions de Physique and courtesy of 8. Balibar.}

Let us consider Eq. (1.102) in more detail. The interplanar distance dung;
can be identified as the step height. Then the product o*({T})dpr: can be
treated as the energy of the step and the product o*(T,)d?,, as the energy
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to form a kink or the energy w to form a dangling bond {Chernov 1989].
Assuming ¢* = ¢ as a first approximation one can now use Eq. (1.102) to
find the critical temperature 7; and predict the mechanism of growth. Thus
for Ge (111} the surface energy of the crystal-melt interface as found from
nucleation experiments is equal to 251 erg.cm~? [Skripov 1977) and that
of the crystal-vapor interface is equal to 1100 erg.cm~2 (Swallin [1962];
see also Kern et al. [1979]). Then with dyy = 3.26 x 107® cm for the
critical temperature for roughening, 7,, the values 1150 K and 5000 K for
the crystal-melt and crystal-vapor interfaces, respectively, are obtained.
Bearing in mind that the melting point of Ge is T},, = 1210 K, it follows
that the most closely packed surface (111) and hence all the other surfaces
of Ge should be rough when in contact with the melt below the melting
point and the Ge crystals should grow rounded from the melt. In the other
case, the roughening temperature is well above the melting point and the
Ge crystals should grow well polygonized from a vapor phase.

1.6.4. Kinetic roughness

All eriteria of surface structure derived so far are of thermodynamic nature.
The roughness of the crystal face is due to entropy effects which decrease
the Gibbs free energy of the crystal surface. However, there can also be
the so-called kinetic roughness which can take place at temperatures below
the thermodynamic critical temperature, When the supersaturation is high
enough the rate of formation of 2D nuclei becomes very large so that new
nuclei can be formed before the complete coverage of the crystal face by the
preceding one. Several layers grow simultaneously and we observe what is
called a multilayer growth. Then if the density of 2D nuclei is very large it
may happen that the mean distance between their edges (which in turn are
rough) becomes comparable with the interatomic distance [Chernov 1973)].
Arriving atoms can thus be incorporated practically at any site. QObviously,
kinetic roughness can be observed when the specific edge free energy and
the work of formation of 2D nuclei are very small. This question will be
considered in more detail in Chap. 3.



CHAPTER 2

NUCLEATION

2.1. Thermodynamics

Gibbs was the first to realize that the formation of a new phase requires
as a mecessary prerequisite the appearance of small clusters of building
units (atoms or molecules) in the volume of the supersaturated ambient
phase (vapors, melt or solution). He considered these muclei as small
liquid droplets, vapor bubbles or small crystallites, or, in other words,
small complexes of atoms or molecules which have the same properties
as the corresponding bulk phases with the only exception being their small
linear sizes. Although oversimplified this picture has been a significant step
towards the understanding of the trausitions between different states of
aggregation, because when phases with small sizes are involved the surface-
to-volume ratio turns out to be large compared with that of macroscopic
entities. Then the fraction of the Gibbs free energy of systems containing
small particles which is due to the surface energy becomes considerable.
Moreover, this approach allows a description of phases with finite sizes in
terms of such macroscopic thermodynamic quantities as specific surface and
edge energies, pressure, etc, That is why the theory of formation of new
phases as developed by Gibbs [1928], Volmer [1926, 1939], Farkas [1927],
Stranski and Kaischew [1934], Becker and Doering [1935], Frenkel [1955],
and others is known as the capillary or clessical theory of nucleation. As will
be shown in this chapter the classical theory is valid at small or moderate
supersaturations, in contrast to the atomistic theory which is applicable
at extremely high supersaturations where the nuclei consist of very small
number of building units of the order of unity.

63
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In any thermodynamic system, even stable ones, local deviations from
the normal state or fluctuations should have place which are less probable
in the sense that they increase the thermodynamic potential of the system.
If one considers a homogeneous molecular system (liquid or vapor) there
are always small fluctuations of the density in the sense of small molecular
aggregates which are well compatible with the given state of aggregation.
Such density fluctuations can be called, after Frenkel [1955], “homophase”
fluctuations. On the other hand, there might be the so-called “heterophase”
fluctuations which could lead to visible transition to another state of
aggregation. Their concentration should increase considerably near the
phase equilibrium determined by the equality of the chemical potentials
He = pig. If the initial bulk phase a is the stable one (o < i) these density
fluctuations are “lifeless” in the sense that they grow to negligible sizes and
decay without revealing a tendency to unlimited growth. If, however, the
initial phase a is unstable (g, > pz) the tendency to growth prevails after
exceeding a certain critical size. It is just these density fluctuations or
clusters that are called the critical nuclei of the new phase. In order to
form such clusters some free energy should be expended. In other words,
the system should overcome an activation barrier whose height is given by
the work of formation of the critical nuclei.

When considering the change of the thermodynamic potential connected
with the formation of nuclei of the new phase one assumes that the shape
of the nuclei is just the equilibrium shape as determined in the previous
chapter. Arbitrary shapes could be accounted for as well but it is the
equilibrium shape that ensures minimal work for nucleus formation and
thus determines the most probable path. Moreover, when one considers
the transition from one condensed phase to another, say crystalline from
crystalline or amorphous ones, formation of the nuclei will be accompanied
by the appearance of elastic stresses due to the different molar volumes
of the two phases. The contribution of these siresses could be significant
[Hilliard 1966; Christian 1981] and often greater than the contribution due
to the nucleus shape. In the following presentation the contribution of these
strains will not be accounted for. For more details the reader is referred
to the monograph of Christian [1981]. In the case of epitaxial growth
of thin films, however, the substrate and deposit crystals have as a rule
different lattice parameters and lateral stresses in both crystals appear as a
consequence. Contributions due to these elastic strains cannot be avoided
if we want to understand the phenomenon and these should be added to
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the change of the thermodynamic potential, in addition to the volume and
surface terms discussed in the previous chapter.

In the present chapter the nucleation of single component systems will
be considered. Nucleation in binary systems was first treated by Reiss
[1950] following the approach of Frenkel [1955]. The problem was considered
further by many authors [Wilemski 1975a, 1975b; Temkin and Shevelev
1981, 1984; Shi and Seinfeld 1990; Zeng and Oxtoby 1991] and the interested
rveader is referred to the original papers. Cahn and Hilliard [1958, 1959]
considered nucleation in a two-component incompressible fluid and found
that at small supersaturations the classical theory results. However, on
approaching the spinodal the work for nucleus formation tends to zero as
the energy of the interface between the nucleus and the ambient phase
vanishes at the spinodal. The radius of the critical nucleus tends to infinity
but the density of the nucleus tends to that of the ambient phase. The
theory of Cahn and Hilliard was further developed by Hoyt {1990] for the
case of multicomponent systems. For a review see Uhlmann and Chalmers
{1966).

The problems of nucleation, both thermodynamic and kinetic, are con-
sidered in numerous monographs and review papers {Volmer 1939; Defay
et al. 1966; Kaischew 1980; Turnbull 1956; Frenkel 1935; Dunning 1955;
Hirth and Pound 1963; Nielsen 1964; Hollomon and Turnbull 1953; Toschev
1973; Stoyanov and Kashchiev 1981; Stoyanov 1979; Zettlemoyer 1969; Nu-
cleation Phenomena 1966, 1977; Skripov 1977; James 1982; Christian 1981;
Oxtoby 1992] and the reader interested in different aspects of particular
phase transitions is referred to them.

2.1.1. Homogeneous formation of nuclet

We consider first the simplest case of formation of liquid nuclei in the bulk
of a vapor phase. The simplicity is obviously due to the isotropic surface
tension ¢ of the liquid which leads to spherical equilibrium shape of the
small liquid entities. We consider a volume containing n, moles of a vapor
with chemical potential u., which is a function of the temperature T and
pressure P. The thermodynamic potential of the initial state of the system
at T = const and P = const is thus given by

Gl = Nylly .

A liquid droplet with bulk chemical potential p is formed from n
tooles of the vapor phase and the thermodynamic potential of the system
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vapor-liquid droplet reads
Gy = (ny — )iy + i + 4710 .

In this equation ¢ is the surface energy of the flat surface. The
dependence of the surface energy on the droplet size has been discussed
by Kirkwood and Buff {1949] and by Tolman [1949]. They found that the
surface energy should in general decrease with decreasing droplet size. As-
suming Lennard-Jones interatomic forces Benson and Shuttleworth [1951]
have found a decrease of 15% for the surface energy of a close-packed cluster
consisting of 13 atoms as compared with the energy of a flat surface. In
the analysis that follows we will neglect the curvature dependence of the
surface energy.

The change of the Gibbs free energy upon the formation of the droplet
is then

AG =Gy — Gy = —m(y — py) + dnrio .

Bearing in mind that n) = 477°/3v; (v1 being the molecular volume of
the liquid) one obtains

3
AG(r) = —g%m +4mrda | (1)

where Ay = p, — iy is the supersaturation (Eq. 1.9). The AG{r) depen-
dence is plotted in Fig. 2.1.

Thus in the simplest case of a droplet formation in vapor AG consists of
two terms: a volume term 4wr3Apf3v, = (4nr? 3} P ~ P,) and a surface
term 4wr2¢. The minus before the volume term reflects the fact that energy
is gained when the liquid phase is thermodynamically stable (i < p).
The increase of the thermodynamic potential of the system is due to the
formation of a dividing surface. Then AG displays a maximum at some
critical size r* given by (Fig. 2.1)

«_ 20U
= "g . (2.2)
Equation (2.2) is in fact the equation of Thomson—Gibbs (1.18) and gives
the condition for equilibrinm of the nucleus with the ambient phase, Note,
however, that this equilibrium is unstable. Indeed, if some more atoms join
the critical nucleus its radius increases and in turn its equilibrium vapor
pressure becomes smaller than the one available in the system (Eq. {1.19)}.
Then the probability of decay becomes smaller than the probability of
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Fig. 2.1. Dependence on the droplet radius of the Gibbs free energy change AG connected
with the formation of liquid nuclei from a supersaturated vapor phase. When the liquid
phase is stable () < uy) AQ displays a maximum at some critical radius = r*. Beyond
this size, growth of the nucleus leads to a decrease of the Gibbs free energy of the aystem.
The maximum Gibbs free energy AG* is the work of formation of the critical nucleus.
When the vapor phase is stable (¢, < (ty) both terms in Eq. (2.1} are positive and the
formation of nuclei capable of unlimited growth is thermodynamically prohibited as it
leads to infinite increase of the Gibba free energy.

growth and the nucleus should grow further. In the opposite case its
equilibrium vapor pressure becomes greater than that available in the
system and the nucleus reveals a tendency for further decay. In other words,
any infinitesimal deviation of the size of the nucleus from the critical one
leads to a decrease of the thermodynamic potential of the system. In this
sense a cluster of size r* is a critical nucleus of the new phase.

The maximal value of AG which is obtained by the substitution of r*
into Eq. {2.1), .2
. _ 167 oy

AGT = T_A—u—{ )
gives the height of the energy barrier which should be overcome for con-
densation to take place. It is inversely proportional to the square of the
supersaturation {a result which is obtained for the first time by Gibbs
[1878]) and increases steeply near the phase equilibrium (i.e. at small
supersaturations), thus imposing great difliculties for the phase transition
to occur.

When the ambient phase is stable (s, < 4) both terms in Eq. (2.1) are
positive and AG tends to infinity (see Fig. 2.1}, thus reflecting the fact that

(2.3)
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the heterophase density fluctuations at undersaturation are thermodynam-
ically unfavored.

Substituting the supersaturation Ay into (2.3) by the radius r* of the
critical nucleus from the Thomson—Gibbs equation (2.2) gives

* l *2 l
AG* = 347r'r o= 302 . {2.4)

As seen the Gibbs free energy required to form a critical nucleus of the
new phase with equilibrium shape is precisely equal to one third of the
surface energy o X, a result obtained for the first time by Gibbs [1878].

Useful expressions for AG(r) are obtained if we substitute the super-
saturation from the Thomson-Gibbs equation (2.2) into (2.1) in terms of
the radius r* of the critical nucleus:

. 2 3
AG(r) = AG [3 (;—) -2 (T) ] , (2.5)
or in terms of the number n* of atoms in the nucleus {from v.n = 4773 /3):
N n oy 2/3 n
AG(n) = AG [3 (n—) ~2 (ﬁ')] , (2.6)

where AG is given by (2.4). We will use Eqgs. (2.5) and (2.6) when deriving
an expression for the rate of nucleation.

The result (2.4) is a universal one. It does not depend on the state of
agegregation of the nucleus and can be easily obtained for crystalline nuclei
in a general form. Indeed, in this case

v*
o Ap+ ; EaZn |

where V* is the volume of the critical nucleus and v, is the volume of one
building unit in the crystal phase. Bearing in mind (see Chap. 1)

V= %ghnzﬂ

and Eq, (1.27) for the equilibrium shape,

hn,  2v,
on  Ap’

AG* = —

one obtains !
AG" =3 zﬂ: TnZ . (2.7)
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One can use this expression to obtain the work of formation of crystalline
nuclei with arbitrary symmetry and radius of action of the interatomic
forces. In the simplest case of a nucleus of a Kossel crystal with first
neighbor interactions the (100} faces appear only in the equilibrium shape.
Then
3203112

*2
AG* =2 o

(2.8)

Under the same condition {first neighbor interactions) the equilibrium
shape of a erystal with face-centred cubic (fce) lattice has the form of a trun-
cated octahedron and consists of six square faces (100) and eight hexagonal
(111) faces with equal edge lengths [Markov and Kaischew 1976b]. Then

AG* = % (6!*20100 + BQ?IQCHH) .

From the equilibrium shape condition hi31 : hieo = F111 1 F100 with the
first neighbor model relation @111 /0100 = V/3/2 it follows

Tro0Ve _ 201117

* = =
Au Apv3

and

2 2
AG* = ; A” 5 (60800 +16v30%,, ) = 8“’;;'2” . (2.9)

Equation (2.3), (2.8) or (2.9) is applicable for nucleation from any
supersaturated (undercooled) phase (vapor, liquid or solution). For this
aim the corresponding differences of the chemical potentials Au (Eq. (1.9),
(1.10) or (1.12)) and the specific energies of the corresponding interfaces
(crystal-vapor, crystal-melt or crystal-solution) should be taken into ac-
count.

2.1.2. Hetlerogeneous formation of 3D nuciei

The process of nucleation is stimulated by the presence of impurity particles,
ions or foreign surfaces. Nuclei are usually formed on the walls of the
reaction vessels. While these effects are usually undesirable, the process of
nucleation on foreign substrates is essential for epitaxial deposition of thin
films. We will illustrate this problem with the formation of a liquid droplet
on the so-called structureless substrate [Volmer 1939]. But before doing
that we have to clarify what “structureless substrate” means.
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A single crystal substrate exerts on the particles of the mother phase
a periodic potential which is characterized by a period equal to the inter-
atomic spacing and the overall amplitude equal to the activation energy for
surface diffusion [Frenkel and Kontorova 1938]. In the simplest case it can
be presented by a sinuscid {Fig. 2.2(a)). If a nucleus is formed on such a
surface it should be elastically strained to fit the substrate. Then the energy
of the elastic strains should be added to the change of the thermodynamic
potential. In order to simplify the problem we assume that the modulation
of the periodic potential is equal to zero. The hypothetical structureless
substrate (Fig. 2.2(b)) is the result which gives the possibility to study
the effect of interatomic forces on the process of nucleation, neglecting the
lattice mismatch as a first approximation. Then we can make the necessary
correction for the latter.

Fig. 2.2. For the determination of the concept of a structureless substrate which is very
convenient for studying the catalytic potency of the substrate on the nucleus formation.
{a) Shows the energetic profile of a single crystal substrate, where £, and Eg., are the
activation energies for surface diffusion and desorption, respectively. In (b) the surface
potential is no longer a periodic function (Eyq = (). This simplification excludes the
effect of the lattice misfit but permits the study of the effect of E4., #£ 0.
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When considering the homogeneous formation of liquid droplets from
a vapor phase we assume that the equilibrium shape of the droplet is a
sphere. We also assume that the shape of the crystalline nuclei iz the
equilibrium one in order to derive the expression for the Gibbs energy
change of their formation. Obviously, we should first derive an expression
for the equilibrium shape of a droplet on a foreign substrate.

We consider a liquid droplet on a smooth structureless substrate
(Fig. 2.3). It represents a segment of a sphere with radius of curvature r and
projected radius rsinf, where # is the so-called wetting angle. The latter
characterizes the energetic influence of the substrate. We denote the specific
surface energies of the free surfaces of the droplet and the substrate, and
of the substrate-droplet interface by o, o, and oy, respectively. Then the
condition of equilibrium is expressed by the well-known relation of Young
[1805] (see also Adam [1968]):

oy = o; +ocosf, (2.10)

which is an analog of the relation of Dupré [1869] (Eq. (1.28)) for the case
of a liguid droplet on a solid surface.

1 M y Gi

Fig. 2.3. Equilibrium shape of & liquid droplet with radius of curvature r on a structureless
substrate. The latter is characterized by the wetting angle & between the substrate plane
and the tangent to the droplet surface. The wetting angle is determined through the
Young equation from the specific surface energies of the interfaces between the liquid
droplet and the solid substrate and the vapor phase, and between the substrate and the
liquid droplet, denoted by ¢, ¢4 and o}, respectively.

The Young relation is easy to derive following the approach given in
Chap. 1. We have to find as before the minimum of the surface energy & of
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the liquid droplet at constant volume V; of the segment. Bearing in mind

that the area of the free surface and the area of the contact are given by
T = 2zr?(1 — cosh)

and
T, =nrisin? g,

respectively, the surface energy @ of the liquid droplet reads
& = 27r%(1 ~ cos@)o + 7r¥sin® B(o; — 04) . {2.11)
The volume of the segment is

4 — cos8)?(2
Vi= 51w:,,(l cos )4( + cosé) .

(2.12)

From dV; = 0 we find

{1+ cos@)sind

& = 0 0)(2 + cos )

Substituting it into d® = 0 results in Eq. (2.10).
The change of the thermodynamic potential upon formation of the
droplet is given by

AG=-Dau4a,
(Y]

where 14 and & are given by (2.12) and (2.11), respectively.
Substituting o; — 0, = —ocos# from the equation of the equilibrium
shape (2.10) into the expression for AG gives

4 (1 —cos8)2(2 + cos 8) A,u,

AG—3 y

—Lt+2ar?0(1—cos§)—nrg sin* Hcosé .

Following the same procedure as before we find that the change of the
thermodynamic potential reaches a maximum at a critical size
2oy
Ap

which does not depend on the wetting angle. The latter is clear recalling
that the equilibrium vapor pressure depends only on the curvature but not
on whether the droplet is a complete sphere or not.

Then for the work of nucleus formation one obtains

=

167 %07
3 Ap?

AGhet ¢(8) = AGrmmqs(g} ) (2‘13)
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Fig. 2.4. Plot of the wetting function ¢(#) = (1 ~cos 8)3(2+cos#)/4 vs the wetting angle
@. It varies from zero to unity when & varies from ¢ (complete wetting) to 7 (complete
nonwetting).

where

() = i(l — cos9)%(2 + cos §) (2.14)

is a function of the wetting angle and accounts for the catalytic potency of
the substrate with respect to nucleus formation.

A graphic representation of ¢(f) is given in Fig. 2.4. As seen it varies
from 0 to 1 when # varies from 0 to n. In other words, in the case
of complete wetting (¢(8 = 0) = 0) AGy,, = 0, the formation of 3D
droplets is thermodynamically unfavored and the liquid has s tendency to
cover the substrate as a continuous film. In the other extreme {complete
nonwetting; (6 = 7) = 1) AG},, = AG; . which means that the substrate
does not exert any energetic influence on the nucleus formation and the
nucleus has the shape of a complete sphere, i.e. we have in practice
homogeneous nucleation. It should be noted, however, that in the case
of complete wetting (# = 0) the formation of a new phase still requires
overcoming an energetic barrier which is connected with the formation of a
two-dimensional nucleus. The increase of the Gibbs free energy in this case
is due to the formation of a single height step surrounding the nucleus.

Comparing the wetting function ¢(#) with the volume of the segment it
becomes immediately clear that ¢{#) = V*/V;, where V; is the volume of
the complete sphere. Then
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V‘
AGiet = AGiomyr (2.15)

i.e. the ratio of the works for heterogeneous and homogeneous formation
of nuclei at one and the same supersaturation is simply equal to the ratio
of the corresponding volumes of the nuclei. As will be shown below this is
also a universal result which depends neither on the state of aggregation of
the nucleus nor its crystal lattice,

Indeed, the work of homogeneous formation of a crystalline nucleus in
a general form is

\7
AG'fmm = ‘"U_O&ﬂ + Zanzn ]

where Vj is the volume of the homogeneously formed critical nucleus.
Substituting o, from the Gibbs—Curie-Wulff theorem (Eq. 1.27) into
the surface energy term gives

1vy
—-—A 2.16
2 v, o ( )

AC;‘FIDI'('I =
i.e. the work of nucleus formation is equal to one-half of the volume work
which is required to transfer n = V /1. atoms from the parent to the new
phase.
The work of heterogeneous formation of a 3D nucleus is

*

. 14
AGhet. =- v
©

Ap+ z Tnln + (om ~ B)E: ,

nEm

where V* is the volume of the critical nucleus formed on a foreign substrate
and o, — 3 = ¢; — o, follows from the relation of Dupré.

Substituting again o,, and 7., — 3 from the Gibbs-Curie-Wulff theorem
valid for the heterogeneous case (Eq. 1.30) gives

.1V
AGhEt = EU—A’J . (2-1?)

c

Equation {2.15) follows from Eqgs. (2.16) and (2.17).
Equations (2.16) and (2.17) can be written in the form

_ 2467

=R

*

(2.18)

where n* = V* /v, is the number of atoms in the critical nucleus.
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It follows that in all cases the number of atoms in the critical nucleus is
equal to the doubled work for nucleus formation divided by the supersat-
uration. Bearing in mind that the work of nucleus formation is inversely
proportional to the square of the supersaturation {Eq. (2.3)) we find that
the number of atoms in the critical nucleus decreases with the cube of the
supergaturation.

Equation (2.17) allows us to calculate easily the work for nucleus for-
mation of, say, a cubic nucleus on foreign substrate (Fig. 1.18). With V* =
I*2h*, the condition for the equilibrium shape h*/I* = (¢ + 03 — 7;)/20 =
Ao /20 (Eq. 1.69) and the Thomson-Gibbs equation {* = 4ov./Au one
obtains 320302 (0 + 0y — 03) . Ao

A P = AGhﬂm“z; ) {2.19)
where Ag /20 = h*/I* = h*1*?f1*3 = V*/V}. Equation (2.19) can be easily
obtained also combining Eqs. (2.8), (2.15) and {1.69).

It appears (Eqs. (1.69) and {2.14)) as if the foreign substrate cuts the
homogeneous nucleus at a height determined by the equilibrium shape or,
in other words, by the ratio of the interatomic forces. The latter is given
by the wetting function ¢{#) for liquid droplets or the equivalent expression
(¢ +0.—a,)/20 =1 =1 [y valid for crystals.

AGhy =

2.1.3. Heterogeneous formation of elastically strained 3D nuclet

The problem of formation of nuclei on single crystal substrates is much more
complicated and can be solved more or less approximately. The difficulties
arise from the fact that the strains are anisotropic. There are lateral strains
due to the tendency of the nuclei to fit the substrate and normal strains
with opposite sign due to the Poisson effect. (The latter accounts for the
transverse deformations of the crystal lattice which appear as a result of
longitudinal strains.) This strain energy should be added to the change of
the thermodynamic potential. The role of the elastic strain is, however,
twofold. One problem arises in accounting for the strain dependence of the
specific surface energies. As mentioned in Chap. 1 a new surface can be
created by stretching out an old one (by stretching out the whole crystal).
Thus if the crystal is laterally strained in both orthogonal directions parallel
to the substrate surface the upper crystal surface will be “isotropically”
strained in two directions. As a result its specific energy will be changed.
On the other hand, the lateral deformation of the crystal leads to strongly
anisotropic change of the specific energy of the side faces. Bearing in mind
the Poisson effect the chemical bonds will be stretched out in directions
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parallel to the substrate surface but compressed in normal direction and
vice versa. As a result the specific energy of the side crystal faces will
be changed in a very peculiar way. Also, the elastic strains should affect
the chemical bonds between the substrate and deposit atoms and in turn
the specific energy of the interfacial boundary. The contribution of the
straing to the specific surface energies should be added to the surface term
of the thermodynamic potential of the system. A second problem is that
the strains change the strength of the lateral chemical bonds between the
atoms and thus the chemical potential of the crystal. This change should
obviously be included in the volume term of the thermodynamic potential.

That is why in this section a imore or less qualitative treatment of
the problem will be given based on the atomistic approach developed by
Kossel, Stranski and Kaischew (see Sec. 1.4). A Kossel crystal is adopted
for simplicity. We will confine ourselves to first neighbor interactions and
will neglect the Poisson effect. We assume further that the lattice misfit
is accommodated completely by the homogeneous elastic strain, misfit
dislocations being ruled out. The atomistic approach has in this case one
important advantage. It permits one to account for the effect of the strains
on the specific surface energies in an implicit way without entering into
sophisticated details.

The change of the thermodynamic potential when a nucleus of the new
phase is formed in a general form reads

AG = —-nAp+ @, (2.20)

where n is the number of building units and & is the surface energy.
According to the definition of Stranski [1936/7) the latter is given by

¢ = ntp”g - Un y (2.21)

where U, is the energy of disintegration of the whole crystal into single
atoms. In fact this quantity taken with negative sign, —U,, is the potential
(binding) energy of the chemical bonds of the crystal. Equation (2.21)
can be easily understood. The first term in the right-hand side gives the
energy of the bonds as if all the atoms are in the bulk of the crystal. The
second term gives the energy of the bonds between the atoms of the cluster
and hence the difference is simply the number of the unsaturated dangling
bonds on the cluster “surface” multiplied by the energy required to break
a bond. Note that & can be expressed in terms of the surface, edge and
apex energies in the case of large enough crystals, but, as written above, is
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applicable for arbitrarily small clusters. It is also very important to note
that whereas the first term is only & function of the crystal volume the
second is additionally a function of the crystal shape.

As shown in Chap. 1 the equation of Thomson-Gibba (1.62) in atomistic
terms reads

Ap =12~ 93, (2.22)

where @3 (Eq. (1.60)) is the mean work of separation representing the
energy of disintegration per atom of a whole uppermost lattice plane of
the crystal and must have one and the same value for all crystal faces
belonging to the equilibrinm shape.

Substituting Eq. (2.22) into Eq. {2.21) gives the work of formation of
the critical nucleus in the atomistic approach as

AG* =n*@3 — Uy . (2.23)

We have to account now for the effect of the elastic strain on the energy
of the first neighbor bonds. We consider the harmonic approximation of
the interatomic potential which is usually represented by a Lennard-Jones
or Merse potential. As seen in Fig. 2.5 the work necessary to disrupt a
strained bond will be equal to ¢ — £, where ¥ is the work to break an
ungtrained bond and ¢ is the strain energy of a bond. The latter is given
by

s=%ﬂa—wﬂ

where + is the elastic constant of the first neighbor bond, and a and b are
the natural interatomic spacings of the substrate and nucleys crystals.

The nucleus of our model is shown in Fig. 2.6. It can be imagined
as consisting of blocks having the shape of sguare-based prisms (rather
than cubes) with thicknesses smaller or larger than the lateral size, thus
reflecting the fact that the lateral bonds are strained whereas the normal
bonds pregerve their length (the Poisson effect is neglected). Then the
energy to break a lateral bond will be ¢ — € and that for a normal one,
. The numbers of atoms in the lateral and normal edges are n. and nf,
respectively.

The mean works of separation calculated from the upper (subscript u)
and side {subscript s) faces read

Y—c

Te

Po=3p -2 -2

(2.24)
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INTERATOMIC  POTENTIAL

Fig, 2.5. Schematic representation of the change of the interatomic bond strength with
the bond strain. The solid line shows the elastic (Hookean) approximation to a pairwise
interatomic potential given by the dashed line. The work to break an unstrained bond is

¥. The wark to break an elastically strained bond is 3 — ¢, where £ is the strain energy
per bond.

and

P-e -

e nl

9'55:3".1’-‘25—

: (2.24")

regpectively. The condition @, = . gives the expression for the equilibrium

shape:
n,, i e}
- = (1 - ——) (1 - w—) . (2.25)

Bearing in mind that the condition for the equilibrium shape of un-
strained nucleus is given by (Eq. 1.68)

it follows that

:]23
& e
Il
3|3,
PN
—
|
2] m
L

!

(2.25')
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Fig. 2.6. Part of a nucleus of a Kossel crystal formed on a single crystal substrate with
quadratic symmetry. The nucleus is homogeneously strained in both lateral directions
to fit the substrate. The lateral bonds are equally strained and the work to break them
is egual to ¥ —e. The normal bonds remain unchanged if the Poisson effect is neglected.
Then the work to break a bond perpendicular to the substrate surface is equal to .

i.e. an elastically strained nucleus consists of a larger number of lattice
planes than an unstrained one.

From Egs. (2.22) and (2.24), recalling that w;/; = 3¢ for a Kossel
crystal, for the supersaturation one obtains

Ap= 23' +2¢ (1 - —1—) : (2.26)
ne ne

where n? is the number of atoms in the lateral edge of the strained critical

nucleus. Rearranging (2.26) gives for the latter

n? = H =n' (1 - %) (1 - n%) B , (2.26)

where n* = 2¢p/Ap is the number of atoms on the edge of the unstrained
critical nucleus (¢ = 0) at the same value of the supersaturation. As seen ng
is inversely proportional to the difference Au. = Ap—2e, which reflects the
increase of the chemical potential of the strained nucleus due to the strain
energy per atom, 2¢. An inspection of Eq. (2.26') shows that »; > n* and
the difference increases sharply with the increase of the strain energy per
bond, e. Hence, we have both n’* > n'* and n; > n*, ie. the laterally
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strained nucleus is larger than the unstrained one in both height and width
at one and the same supersaturation.

The equilibrium vapor pressure of an unstrained nucleus is k7 In(P/ Py )
= Ap = 2¢¢/n* and then the analogous quantity for strained nucleus reads

P. = Pexp (:—;) : (2.27)

We have obtained the important result that the equilibrium vapor
pressure of a laterally strained small crystal formed on a foreign single
crystal substrate is higher than that of the unstrained one due to its
increased chemical potential as a consequence of the elastic strain.

Making use of Eqgs. (2.22), (2.25) and (2.26') and counting the bonds
between the atoms in the nucleus gives for the work of elastically strained

nucleus
v P 4y —e)? U
AGr_m%(LﬁE)_agtzﬁ(ymE). (2.28)
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Fig. 2.7. Dependence of the Gibbs free energy AG} of formation of an elastically strained
3D nucleus on a foreign single crystal substrate on the supersaturation. A critical
supersaturation Ap = ne should be exceeded which is equal to the sirain energy per
atom. The Gibbs free energy AG* of formation of elastically unstrained 3D nucleus
is also given for comparison. As seen, AG} is greater than AG” and the formation of
elastically strained nuclei requires higher supersaturation.
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In other words

e\? 2 \7?
AGl =4AG" {1~ — 1w == ; 2.29
¢ ( ab) ( ﬁku) (229)
where AG* is the work of formation of the unstrained nucleus (¢ = 0} given

by Eq. (2.19).

AG? and AG* are plotted against supersaturation in Fig. 2.7. As seen
AG} islarger than AG* and tends asymptotically to infinity when Ap tends
to 2¢, whereas AG* still has a finite value. It follows that the formation
of elastically strained nuclei requires supersaturation which is higher than
the strain ¢nergy per bond.

2.1.4. Formation of 2D nuclei

It was Brandes {1927] who first considered the possibility of formation of
2D nuclei on the surface of a foreign substrate. He found that the Gibbs
free energy of formation of such nuclei is precisely equal to one-half of their
edge energy:

AG) = % 3" stndn (2.30)

where s, is the specific edge energy of the nth edge and [, is its length.
The similarity of Eqs. (2.30) and (2.7) is apparent.

Foliowing the same procedure as before one can derive an expression for
the work of formation of 2D nuclei. The more general case of nucleation on
& foreign substrate will be treated first.

We consider a cluster with square equilibriuvin shape (in principle the
equilibrium shape has to be determined beforehand making use of the
Gibbs—Curie-Wulff theorem for the 2D case (Eq. (1.44)}). In the simplest
case of a Kossel crystal with first neighbor interactions only the equilibrium
shape is a square with edge length ! formed on the surface of a foreign
structureless substrate. The variation of the Gibbs free energy reads

2
AG = —%Au+£2[a+ai —03) + 4l (2.31)

where n = {5 is the number of atoms in the cluster. The dependence of
AG on [ is similar to that shown in Fig. 2.1. It displays a maximum at a
critical edge length

2xs

"=
Ap~sfo+o~as)

(2.32)



82 Nucleation

Then the work of formation of a critical 2D nucleus is

4?5,

AG2: -&#—Sc(a'i'ﬂ'i—th) .

(2.33)

Substituting Au from the Thomson—Gibbs equation (2.32) into (2.33)
one obtains AGS = 2I*3c which is identical to (2.30). The latter can be
easily obtained following the procedure applied for the 3D case.

Without going into details and following the same procedure as above
one can treat the problem of formation of elastically strained 2D nuclei.
For the corresponding work of formation one obtains [Markov et al. 1978)

(¥ —e)?
(Ap=2¢)— (¢~ ¢)

AGE, =

or
452,
(Ap—26) —sc(o+o;— o)

AG;Q = (2'3‘4)
where now the specific edge energy 32, = (1 —¢}/2a accounts for the elastic
strain and s. = a? is the area occupied by a surface atom.

In the case of nucleation on the surface of the same crystal (e = 0,07 =
0,0, = v and ¢ + g — 05 = 0),

. 2xsg
"= oV (2.35)
and 2
* __ 4 8¢
AGE === (2.36)

Equations (2.33), (2.34) and (2.36) are valid for polygonized square
nuclei without rounded regions as required by Herring’s formula at finite
temperatures, i.e. when the steps which appeared as a result of the nucleus
formation are straight. If the steps are roughened to some extent below
the roughening temperature T, the equilibrium shape will be more or less
circular, and instead of Eqs. (2.35) and (2.36) we have

S,

rt = An (2.37)

and
Tx2s,

AGy =

(2.38)
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where r* is the radius of the critical nucleus. Note that in this case s will
have & value different (smaller) from that in Eq. (2.36) which is valid for
straight steps without kinks. For more details concerning the formation of
2D nuclei the reader is referred to the work of Burton, Cabrera and Frank
{1951}

2.1.5. Mode of nuclealion on a foreign substrate

We discuss in this section the question as to which mode of nucleation, 2D
or 3D, is thermodynamically preferred as a function of the supersaturation
depending on the difference of the cohesion and adhesion energies Ag =
o+05—0, =20 — 3 = (¢ — ¢')/b? on the one hand, and the strain energy
e on the other.

Let us consider first the case of Ao < 0, i.e. when the attractive forces
exerted by the substrate on the deposit atoms are stronger than the forces
between the deposit atoms. Ags follows from the above considerations 3D
nucleation is thermodynamically prohibited (AG} = 0} and only 2D nuclei
can be formed. Under this condition the guantity in the denominator of
Eq. (2.33) is positive and AG} has a finite value at Ap = 0 and even at
undersaturation Ap < 0. Thus in this case (Fig. 2.8) 2D nuclei of at least
the first monolayer can be formed in an undersaturated system, an idea
introduced in the theory of the epitaxial crystal growth by Stranski and
Krastanoy (1938]. Obviously, AG3 tends to infinity at an undersaturation
—Ap = 5. Ao which determines the equilibrium vapar pressire of an adlayer
under stronger forces across the interface.

We have practically the same case when Ag = 0. In fact this condition
means that the 2D nuclei are formed on the surface of the same crystal,
only in this case o; is precisely equal to zero and ¢ = o,. 3D nucleation
is again prohibited {the wetting is complete) and 2D nuclei can be formed
only in a sypersaturated system Ap > 0.

The case of a positive surface energy change, Ao > 0, offers greater
variety — 3D nuclei can be formed as well in addition to 2D nuclei. We
consider first the case when the strain energy ¢ = 0. 3D nuclei can be
formed only in a supersaturated system Ap > 0 and AGj decreases with
the square of the supersaturation (Eq. (2.16)). 2D nuclei, however, can be
formed at positive supersaturations higher than a critical one:

App = 8c(0 + 01~ 0,) (2.39)
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Fig. 2.8, Dependence of the Gibbs free energies of formation of 2D and 3D nuclei on the
supersaturation for different values of the surface energy change A = o+ 0 —ay =
(% — ¥'}/b%. 2D nucleation is only possible at complete wetting Ao < 0 or Ae =0. In
the case of Ao < 0, 2D nucleation can take place even at undersaturation as discussed
in Chap. 1, whereas at A¢ = 0, 2D nucleation always requires a supersaturation.
In the case of incomplete wetting, Az > 0, 2D and 3D nucleation can occur, 3D
nucleation being always more probable than 2D nucleation, 2D nucleation occurs at
supersaturations higher than some value Apg = scAe = t — ¢ determined by the
difference in bonding. At a critical supersaturation Ap,, = 24Aup, the 3D nucleus
transforms into 2D nucleus (Fig. 2.9} and 3D nucleation is no Jonger possible. This is the
reason why the corresponding curves for AG3 are given by dashed lines at Ap > Apicy.
In this interval, only 2D nucleation is possible. The critical supersaturations Apg and
Aut, for formation of strained nuclei are shifted to greater values by the strain energy
per atom ne (the straight dashed lines).

which determines the equilibrium vapor pressure (or solubility) of the
adlayer.

Beyond this value AGY decreases with the supersaturation and at some
critical supersaturation,

Apter = 23\:(0 + 05 = 0y) = 2Aup (240)

becomes equal to AG} . Obvicusly the condition AG} = AG§ means that
the height of the 3D nucleus becomes equal to that of one monolayer or,
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in other words, the 3D nuclei turn into 2D ones (Fig. 2.9). This is easy
to understand bearing in mind the assumption made at the beginning of
this section that the nuclei retain the equilibrium shape. Therefore when
the supersaturation increases the 3D nuclei preserve their height-to-width
ratio A/l and as a result they turn into 2D nuclei at Ap,, [Lacmann 1961;
Toschev, Paunov and Kaischew 1968].

AL, < A, < Al

Fig. 2.9. Transformation of a 3D nucleus into a 2D nucleus with increasing supersatura-
tioht assuming the equilibrium shape is preserved (after Toschev, Paunov and Kaischew
[1968]).

In the same way one can consider the case of elastically strained (¢ # 0)
2D and 3D nuclei. 3D nuclei can be formed at supersaturations Ay higher
than the strain energy per atom, ne, where n is the number of lateral
bonds per atom in the nucleus {n = 2 and n = 3 for square and hexagonal
meehes of the substrate surface, respectively). 2D nuclei can be formed at
supersaturations higher than

Apd =ne+s.(oc+o;—0s) . (2.41)

The critical supersaturation Az, at which the 3D nuclei turn into 2D
nuclei is shifted by ne with respect to Ay, and reads

Apl =ne+ 25 (o +06; — 0.} = Apie +ne . {2.42)

It follows that at supersaturations in the interval Apg to A or,
corrrespondingly, Apd to Aps,, 3D nucleation is thermodynamically favored
although 2D nucleation is in principle also possible. Beyond Ap,, or
corrrespondingly, Apg,, only 2D nucleation is possible,

Rearranging (2.42} gives the following criterion for the mode of nucle-
ation on a foreign substrate [Markov and Kaischew 1976a, 1976b]. 3D
nucleation is energetically favored when
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A —
crs<0'+cr-.—--—p2-s£. (2.43)

2D nucleation will take place when

Ap —ne

Os >0+ 0 —
8 i 23c

(2.44)
The above criterion can be easily generalized for crystals with other
lattices and orientations [Markov and Kaischew 1976a, 1976b].
We can rewrite Eqs. (2.43) and (2.44) in the form

crs§a+ai*—% , (2.45)
28,
where 0 = | + ne/2s. is the specific energy of the interface accounting
not only for the different interaction energies but also for the homogeneous
strains at the interface {for more details see Chap. 4).

One concludes that the mode of nucleation in one and the same system
can be varied by changing the supersaturation. Thus at high enough
supersaturations 2D nucleation is only possible from the point of view of
classical thermodynamics, whereas at lower supersaturations 3D nucleation
prevails,

2.2. Rate of Nucleation

In this chapter the classical {capillary) theory of nucleation will be consid-
ered first, treating consecutively the cases of homogeneous and heteroge-
neous nucleation and the formation of 3D and 2D nuclei in the latter case.
Then we will treat in some detail the atomistic theory of heterogeneous
nucleation which plays an important role in the deposition of thin films
at high supersaturations. At the end of this chapter the nonsteady state
effects in nucleation as well as the saturation of the nucleus density will
be briefly considered. The Ostwald step rule for the case when nuclei
of thermodynamically less stable phase are initially formed will be briefly
discussed.

2.2.1. General formulation

As mentioned at the beginning of the previous section the nuclei of the new
phase appear in the bulk of the ambient one as heterophase fluctuations
of the density, i.e. the nucleation is a random process. The number of
nueclei formed in a fixed interval of time is a random quantity and is subject
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to statistical laws [Toschev 1973]). The average values, however, can be
calculated and are subject to the kinetic theory of nucleation. Thus the
aim of this chapter is to calculate the rate of nucleation or, in ather words,
the average number of nuclei formed per unit time and volume (or unit area
of the substrate in the heterogeneous case) of the ambient phase.

We will follow an approach developed by Becker and Déring [1935). In
fact the first treatment of the problem was given by Voliner and Weber
[1926]). The latter was further elaborated by Farkas [1927], Stranski and
Kaischew [1934] and Frenkel [1939] (for a review see Christian [1981]).

We treat first the rate of formation of liquid droplets in vapors. We
consider a vessel with volume V' containing supersaturated vapors with
pressure P and temperature T. The following simplifying assumptions are
adopted:

1. The growing clusters preserve a constant geometrical shape (spherical in
the particular case) which coincides with the equilibrium one. As mentioned
in the previous chapter it ensures minimal free energy.

2. Clusters consisting of N atoms (N being sufficiently greater than the
critical number n*) are removed from the system and replaced by an
equivalent number of single atoms, thus ensuring a constant supersaturation
in the system.

3. The nucleation process is considered as a series of consecutive bimolec-
ular reactions (a scheme proposed by Leo Scillard) (see Benson [1960])

wi
Ar+ A <= Az,

wa

w+
2
.AB +A1 ﬂAS)

Wi

wt
An+-'41 = -An+19

Yot

in which the growth and decay of the clusters take place by attachment
and detachment of single atoms. Triple and multiple collisions are ruled
out as less probable. w;} and w,; denote the rate constants of the direct
and reverse reactions, respectively. Here A is used a3 a chemical symbol.
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Clusters consisting of n atoms (to be called clusters of class n} are
formed by the growth of clusters of class n — 1 and decay of clusters of class
n+1 (birth processes), and disappear by the growth and decay into clusters
of classes n + 1 and n — 1 {death processes), respectively. Then the change
of the concentration Z,(1) of clusters of class n with time is given by

dZ,(t - -
—3# = Wi Zpr(t) = w0 Zalt) = wF Zat) + Wiy Zusa(t) . (2.46)
Introducing the net flux of clusters through the size n,
Ja(t) = C‘-Ja,-:-_.lzn—l(t) —w, Zna(t), (247)
turns Eq. (2.46) into
dZ,(t

) — (1) = Jan®) (2.48)
In the steady state, dZ,(t)/dt = 0 and

Jn(t) = Jn+1(t) = Jn y (249)

where we denote by Jp the steady state rate or the frequency of formation
of clusters of any class which obviously does not depend on the cluster size
n. Hence J; is also equal to the rate of formation of clusters with critical
size n*. In other words, in the steady state,

Jo =W?’Zl —wz_Zg ,

J(] ZUJ;ZQ —wa_Z;; y
Jo=witZn —wr 1 Zng1 (2.49')

Jh=wh_1Zy1,

where Zn = 0 as accepted at point 2.

Following Becker and Déring we multiply each equation by a ratio of
the rate constants, The first equation is multiplied by 1 /uf, the second
by wy fwiw], the nth by wy wy - wy /wiwd - - wi, etc. Then we sum up
the equations and obtain after rearrangement (Becker and Doring (1935])

£y

Jo = .
N-1 WL W
> 1 wpwy wy
nmt \wf wiwf wl

(2.50)
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This is the general expression for the steady state rate of nucleation.
It is applicable to any case of nucleation (homogeneous or heterogeneous,
3D or 2D, or even 1D) taking the appropriate expressions for the rate
constants w} and w,. Moreover, it allows the derivation of equations for
the classical as well as the atomistic nucleation rate at small and high
supersaturations as limiting cases. We will consider in more detail the
classical (capillary} theory of homogeneous nucleation. The corresponding
equations for heterogeneous formation of 2D and 3D nuclet will then be
written down by analogy without derivation. Finally, the atomistic theory
of nucleation will be treated on the basis of Eq. (2.50). 1D nucleation which
takes place when smooth single height steps propagate will be considered
in Chap. 3.

2.2.2. The equilibrium state

Before going further it is instructive to consider the equilibrium state.
In an undersaturated system the equilibrium state gives the equilibrium
distribution of the homophase density fluctuations [Frenkel 1955]. In a
supersaturated system the equilibrium state can be realized near enough to
the phase equilibrium. Obviously the latter will be a metastable equilibrium
and will give the equilibrium distribution of the heterophase fluctuations.
Far from the line of phase equilibrium (u, = pg) an equilibrium state
cannot be realized. However, we can write an expression even in this case
which will serve as a convenient reference.
Under the condition Jy = 0, from (2.47) follows

w} Na—y =wINn, (2.51)

where N, denote now the equilibrium concentrations of clusters of class »
in the absence of molecular flux in the system.
Equation (2.51) is known as the equation of detailed balance. It can be
rewritten in the form
N, wh,

Nn—l Wn
Multiplying the ratios N, /N,_; from n = 2 to n gives
n -1
_{Y_E = H w_?__,l — w{w; “ ’w; (2 52)
Ny g\ wi wiwf wf ) '

As seen the rate constant ratio on the right-hand side appears in the
expressions for both the equilibriuin concentration of clusters N, of class
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n and the steady state rate of nucleation (2.50). Obviously, the problem is
reduced to finding expressions for the rate constants w and w;. We will
do that for the simplest case of homogeneous formation of liquid nuclei in
supersaturated vapors adopting the idea of Gibbs that the nuclei represent
small liquid droplets.

The rate constant of the growth reactions, w}, is given by the number
of eollisions of atoms from the vapor phase on the surface of the droplets.
Then for the rate constant of growth of a cluster of class n — 1 to form a
cluster of class n we have

+ P

Wy_y = Wﬂn_l y (253)

where P/{2rmkT)"/? is the number of collisions per unit area, P being the
vapor pressure available in the system, and T,,_,; is the surface area of &
cluster of class n — 1.

The rate constant of the reverse reaction of decay of a cluster of class
n to form a cluster of class n — 1 can be evaluated as follows [Volmer
1939]. In equilibrium with the vapor phase the number of atoms leaving
the cluster in a fixed interval of time is equal to the number of atoms
arriving at its surface. Hence the flux of atoms leaving the cluster is equal
to the equilibrium flux of atoms arriving at its surface. On the other hand,
condensation takes place when the center of mass of the molecule joining
the droplet crosses the sphere of action of the interatomic forces (Fig. 2.10).
The radius of the droplet increases just after that event. The evaporation
of a molecule is the reverse process. When it leaves the droplet its center
of mass should cross the same sphere of action and at that moment the
droplet shrinks and its surface area becomes equal to T,_;. This area,
namely, should be taken into account when considering the rate constant
of the reverse reaction and

w, = P )
" (2xmkT)12 7L
where P, is the equilibrium vapor pressure of the cluster of class n.

The pressures I and F,, can be expressed through the Thomson-Gibbs
equation

(2.54)

P 2oy
kT hl a = "
and P 5
n T
kTln— =
" P Tn
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Fig. 2.10. For the determination of the surface arca of a liquid droplet containing
n molecules upon detachment of a single molecule shown by the small circle. The
molecule leaves the droplet when its center of mass crosses the surface of action of the
intermolecular forces given by the dashed circle. Precisely at that moment the surface
area of the droplet is T,—1 ag given by solid circle (after Volmer [1339]}.

where r,, is the radius of a droplet consisting of » molecules. Then

Wp  _ Pn ex 201 (1 1
wr, P OPRr AL )]
We replace then the radii v, and * by the number of atoms through

nu = 4nr?/3 and for every term in (2.52) (and also in the sum of (2.50)}
one obiains

— = - 2y 1/3 =
S o5 (52)" 5 (e 50)]-
wiws ow KT\ 3 ~ \nl/3  n*l/

n—-1

Assuming n* >» 1 (the capillary approximation)} we replace the sum by
an integral and carrying out the integration yields

- - w2y 1/3
wy Wyt Wy o (4mrvfin*? n \2/3 n
Wy W I (¥R LY (R Y (S .
wiwd - wl_, =P {kT ( 3 (n“) (”')

A comparison of the above equation with Eqs. (2.6) and (2.4) shows
immediately that the expression in the curly brackets in the right-hand
side is simply the function AG({n}/kT. Hence

Wy Wy Wy AG(n)
—273 n 2.55
ot} o, o (57 (2.55)
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or

wpuwy wy o[BG TN '
e —exp{ = [3(n) 2(2)|p . @)

n

i.e. every term in the sum in the denominator of {2.50) represents one point
of the dependence exp[AG{n)/kT).

Substituting (2.55) into (2.52) gives for the equilibrium concentration
of clusters of class n

N, = Njexp (—AfT(”)) . (2.56)

The reader can find a more rigorous derivation of (2.56) in the mono-
graph of Frenkel [1955] (see also Toschev [1973]).

2.2.3. Steady state nucleation rate

Replacing the sum in the denominator of Eq. (2.50) by an integral gives

N
> [ e { ST 3(5) -2 (3)]} e
1

The function in the exponent in the right-hand side displays a maximum
at n = n* (Fig. 2.1) and can be expanded in Taylor series in the vicinity of
the maximum:

AG(n) = AG* [3 (%)2/3 _9 (ni)] o AGH (1 - 37;,1*_2(” _ay?

(2.57)
Then the sum attains the form

N
. AG? 1 AG‘ 1 w2 d
exp |~ L-i—exp __Ic_i"—lin*?(n_n) n.
1

In order to carry out the integration we make the following approxima-
tions. As shown in Fig. 2.11 the exponent under the integral displays a
sharp maximum in the vicinity of n* and the limits of integration can be
extended to —co and +oo without making a significant error. Also, the
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aGin). exp{aGin)/kT] -——

—'l 1
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(n* )3

Fig. 2.11. Dependence of the Gibbs free energy change AG(n)/kT {dashed line),
exp[AG(n)/kT] and the reciprocal of the rate constant of the forward reaction on the
cluster size. As seen, exp[AG(n)/kT] displays a sharp maximum and its width is confined
to the near vicinity of the critical size. The reciprocal of the rate constant 1/w/ is a
weak function of n and can be taken as a constant at the critical size,

rate constant w; is not a sensitive function of n and can be replaced by
w]}. = w* = const and then taken out before the integral.

Finally, carrying out the integration from minus infinity to plus infinity,
one obtains for the steady state nucleation rate

AG*
= w* —— 2,
Jo = w I‘Zlexp( 5 ) \ (2.58)
where Z, is the steady state concentration of single molecules in the vapor
phase and w* is the frequency of the attachment of molecules to the critical
nucleus,

The parameter I in the expression (2.58) for the steady state nucleation

r 172
AG*
r=(527) (239)
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is known in the literature as a factor of Zeldovich [1943] (see also Frenkel
[1955]). Tn fact it was derived for the first time by Farkas [1927}. Its physical
meaning can be revealed if one inspects more closely the definition of the
steady state nucleation rate (2.50). Zeldovich [1943] argued that the steady
state distribution function Z, deviates perceptibly from the equilibrium
one, Ny, only in the vicinity of the critical size n*. In other words, the
processes taking place in an interval An* = n, — n; (Fig. 2.12) around the
critical size determine the overall rate of nucleation. According to Zeldovich
the width of this interval is determined by the condition that the free energy
change AG(n} varies by kT around the maximum {(at n < ny, 2, = Ny
andatn >n, =N, Zy =0), ie

AG" - AG(n =ng,n,) = kT .

TN kJ}T
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Fig. 2.12, For the determination of the interval An* = n; — n; around the critical size.
According to Zeldovich [1943] the processes which take place in this interval determine
the overall rate of the nucleation. The width of the interval is in fact the reciprocal to
the nonequilibrium Zeldovich factor I,

Bearing in mind {2.57) it follows that the width of the interval An*
reads

(2.60)

2 i/2
Ant =92 (3an ) 2

AG* W

In other words, the factor of Zeldovich is simply a reciprocal of Ar* and

thus accounts for the deviation of the system from the equilibrium state.
A more rigorous treatment of this problem is given by Kashchiev [1969].
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Bearing in mind Eqs. (2.2) and (2.3) it turns out that [ is directly
proportional to the square of the supersaturation, I' = Ap?/8mv(a3kT)1/2.
In other words, I' = 0 at the phase equilibrium (Ag = 0) and increases
steeply when deviating from it. In the case of water condensation from the
vapor (¢ = 70 erg/cm?) in the range of P/P., from 2 to 6, n* varies from
470 to 30 and correspondingly T’ increases from 0.004 to 0.054 [Toschev
1973]. Thus the Zeldovich factor is usually of the order of 1 x 1072 in the
case of homogeneous nucleation.

The steady state rate of nucleation (2.58) can be rewritten in the form
(2, = Ny)

Jo =w*TN*, (2.61)
that is, it is a product of the equilibrium concentration of critical nuclet,
AG*
= __ AT _
N* = Nyexp ( T ) ; {2.62)

the Zeldovich factor T and the frequency of attachment of building units
to the critical nucleus, w*. It can be easily proved that this ig a general
expression valid for all possible cases of nucleation and canr be used in any
particular case.

2.2.4. Nucleation of Lkguids from vapors

In this particular case the surface of the nucleus is given by 4xr*? and

w* = P(2xmkT)" 2 4mr*? (2.63)
Then
o= b gy B P (_16’“_"3‘”1"’_) (2.64)
0= ommkT " BroovVakT KT T\ 3kTApE) :

where P/kT = N; assuming the vapor phase behaves as an ideal gas.
Recalling the Thomson—~Gibbs equation (2.2) for the critical radius, (2.64)
turns into

Jo

P2 951/, 167rur3vl2 ) (2.65)

= w17 7 o (- sEreT e P

A closer inspection of Eq. (2.65) shows that the pre-exponent K; =
w*I'Z) is not very sensitive to the supersaturation in comparison with
exp(—AG* /kT) = exp(—K2/Au?). Therefore one can accept that K is
approximately a constant, i.e.
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JQ = K1 exp (—'-Aii%) ' (2.66)

where Ky = 16mo3v?/3kT. With typical values of the quantities involved
one finds that K, is of order of 1 x 10%® em—3sec—!

Equation (2.66) is demonstrated in Fig. 2.13. As seen there exists a
critical supersaturation Ay, below which the nucleation rate is practically
eqgual to zero and increases steeply beyond it. The critical supersaturation

can be determined by the condition Jy = 1 cm™3sec™. After taking the
logarithm of J; in (2.66) we find

K\
Auc—(ln Kl) . (2.67)
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Fig. 2.33. Plot of the nucleation rate versus the supersaturation. The nucleation rate
is practically equal to zero up to a critical supersaturation Ap.. Beyond this value the
rate of nucleation increases sharply by many orders of magnitude. This is the reason
why the nucleation rate can be measured in a very narrow interval of supersaturations,

In the case of nucleation in water vapor at a temperataure T' = 275 K,
Ky 2 1x 10 cm3sec™!, ¢ = 75.2 erg/em?, v, = 3 x 107 em~3,
Apie = 542 x 10714 erg or P,/ P = 4.16, which is in excellent agreement

with the value 4.21 found experimentally by Volmer and Flood [Volmer
1939).
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The existence of critical supersaturation leads to the conclusion that
condensation of vapors will be experimentally observed only at P > P.. In
the opposite case the vapors will be in a metastable state, i.e. due to kinetic
reasons no condensation will take place for the time of the experiment. Thus
we identify the critical supersaturation with the limit of metastability of the
ambient phase. Recalling the phase diagram (Fig. 1.1} of a one-component
system the existence of such a limit of metastability means that observable
phase transitions will not occur when the lines of the phase equilibrium
{determined by the equality of the chemical potentials) are crossed. For
this purpose the limits of metastability should be crossed and they lie to
the left of the phase equilibrium lines. It should be pointed out that the
metastability limits are very sensitive to the values of the specific surface
energies of the corresponding phase boundaries. In general, the metastabil-
ity limits will be smaller for liquid—crystal transition than for vapor-liquid
transition due to the smailer surface energy between the condensed phases.
The presence of impurity particles, ions or foreign substrates will reduce the
metastability limit with the square root of the wetting function. Besides,
the presence of surfactants (substances which once adsorbed at the phase
boundaries change drastically the surface energies) will also reduce the
values of the specific surface energies and in turn the metastability limit.

2.2.5, Statistical contributions

Later theoretical studies showed, however, that the above agreement be-
tween theory and experiment is apparent. Lothe and Pound [1962] (see
also Dunning [1969]) noted that the Gibbs free energy of formation of liquid
nuclei as given by Eq. (2.1} is valid for the state of rest. As discussed by
Christian [1981] it gives in fact the free energy of formation of a liquid
droplet confined in a liquid rather than a vapor. When formed in a vapor
phase the droplet must acquire the gas-like translational and rotaticnal
degrees of freedom and must Jose six internal or liquid-like degrees of
freedom. Then instead of (2.1) one should write

3
AG(r) = -% %Ap +477%0 + AGy + AGrot + AGrep

where AGy, and AGre must be positive and AGy.,; negative.
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The corresponding expressions are {Lothe and Pound 1962] respectively

2en*mk T/ 2kT
AGU =—kTIn (( Phs) ) y
3/2 avt/2
AGror = —kTln ((%T) ﬁs(”" ) )

and
AGrep = %k’l" In(2mn") + Ts,

where I 2 2n*mr*? is the moment of inertia of the nucleus, s is the entropy
of the liquid, h is Plank’s constant and i = h/2x. Then for water at T =
300K, n* =100, ] =86 x 107 gcm?, P=0.075 atm, m =3 x 103 g
and s = 70 J K'mole™!, AGy = —24.4 kT, AGrot = —20.6 kT and
AG, = 11.5 kT. As these terms for the free energy depend very weakly on
the nucleus size they contribute primarily to the pre-exponent with a total
of 1% 10'7. Then for the critical supersaturation one obtains F, /Py, = 3.08,
in marked disagreement with the experimentally found value of 4.21. The
interested reader can find more information in Feder et ol. {1966}, Lothe
and Pound [1969], Reiss [1977), Nishioka and Pound [1977], Kikuchi [1977]
and Christian [1981].

2.2.6. Nucleation from solutions and mells

In the first case the flux of building units to the critical nuclei is determined
by diffusion in the bulk of the solution. On the other hand, the molecules
of the solute should break the bonds with the molecules of the solvent
before being attached to the nucleus. In other words, an energy barrier for
desolvation should be overcome. The {frequency w* of attachment of the
molecules to the critical nucleus will be proportional to the concentration
of the solute C and thus instead of (2.63) we have

w* = dxr?Crlexp(—AU/KT) , {2.68)

where 1 is a frequency factor, AU is the energy of desolvation and A is the
mean free path of particles in the liquid which is approximately equal to
the atomic diameter. Then for the nucleation rate one obtains [Walton A
G 1969

Jo = 4nr™2C? v exp(— AU KT )T exp(—AG"* /kT) {(2.69)
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in which the concentration C is expressed in the number of molecules per
unit volume and the supersaturation is expressed by (1.10).

The main problem in the estimation of the pre-exponent is the lack of
knowledge concerning the value of Al. We may assume that it is of the
order of the molecular interactions, i.e. 10-20 kcal/mole. Measurements
of the critical supersaturation in the nucleation of a series of salts in
aqueous solutions [Nielsen 1967; Walton 1967] gave reasonable values for the
specific surface energies of the crystal-solution interface (= 100 erg/cm?)
and for the pre-exponential factors (= 10%*-10?° cm~3sec™!). The values
of AU caleulated from these data vary from 7 kecal/mole for BaSQO, to
14.5 kcal/mole for PbSQ,. Laudise determined the value 20 kcal/mole
for quartz in agueous solutions of NaOH from measurements of the rate
of hydrothermal growth of the (0001) face in the temperature interval
570660 K [Laudise 1959; see also Laudise 1970).

Solidification of liquids does not differ too much from crystallization
in solutions. In this case the activation energy barrier Al originates from
rearrangement of the molecules in the liquids when crossing the crystal-melt
boundary to occupy precise positions in the crystal lattice, i.e. from the
replacement of the long range disorder in the liquid by long range order
in the crystal. That is the reason why AU is usually identified with the
activation energy for viscous flow. The latier varies from 1 to 6 keal/mole
for metals [Grosse 1963], 10 keal/mole for organic melts to 50-150 kcal /mole
in glass forming melts (5i0,, GeQs) {Mackenzie 1960; Gutzow 1975; Oqui
1990]. On the other hand, there are no transport difficulties in melts and
the concentration € in {2.68) and {2.69) should be replaced by the number
of atoms in a unit volume 1/v. Then

w' = 41rr"'2-:—u)\ exp{—~AU/kT) (2.70)
|

and
Jo = 41772 exp(~AU/KT)Texp(~AG*/AT),  (271)
v

where the supersaturation is given by (1.12)

Ap = Ahm%:ﬂ = Asn AT .

m
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Assuming spherical symmetry and isotropic interfacial tension,

. IB?TJSUET;
AGT= 3ARL (AT)? (2.72)
_ (AhgAT)?
~ 8ru (e kT)IATE (2.73)
and oo
v _ 200T
" T BhaAT (274)
for the pre-exponent, one obtains
2042y, vA
Ky = Geyirs o SXP(-AUMKT) (2.75)

Thus for homogeneous nucleation in metal melts, say Ag [Turnbull and
Sech 1950} with 1/ = 5 x 1022 (v, 2 ), T = 1000 K, ¢ = 150 erg/cm?,
v 22 x 10" sec™!, A= 3 x 1078 cm and AU/AT = 3 the typical value of
1 x 1035 for K, is obtained.

Considering Eq. {2.71} more closely shows that the nucleation rate
depends not only on the undercooling AT = T, —T but also on the absolute
value of the temperature. Hence the temperature dependence of the nucle-
ation rate should display a maximum as decrease of the temperature leads
to an increase of undercooling. It is easy to find by differentiation of {2.71)
that Towx > Tin /3 (Tinex = Tin/3 when AG* » AU). The physical reason
for this behavior of the nucleation rate in melts, which is uncharacteristic
for nucleation in vapors, consists in the competition between the inhibition
of the transport processes in the melt (higher viscosity) and increasing
the thermodynamic driving force for nucleation to occur. At the lower
temperature side of the maximum the viscosity becomes so large that the
melt glassifies before crystallization takes place. The above behavior has
been established experimentally for the first time by Tamman [1833] in the
case of glycerine and piperine. Typical nucleation rate versus temperature
plots are shown in Fig. 2.14 for lithium disilicate melts in the interval
425-527°C [James 1974).

The main difficulty in the experimental verification of nucleation theory
in melts lies in the purification of the melts to avoid heterogeneous nucle-
ation on impurity particles. Turnbull and Sech [1950] (see also Hollomon
and Turnbull [1951]) measured the critical undercooling for homogeneous
nucleation to take place applying the following method. The bulk melt
sample was dispersed into small droplets in an inert matrix to outnumber
the impurity particles. Then the maximum undercooling measured is taken
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Fig. 2.14. Experimentally measured rate of nucleation in lithium disilicate melt versus
temperature. The high temperature branch is determined by the activation energy for
nucleus formation. The low temperature branch is determined by transport processes in
the melt. (P. F. James, Phys. Chem. Glasses 15, 95 (1974). By permission of Society
of Glass Technology and courtesy of P. F. James.)

as the one for the homogeneous nucleation. Their data for a series of
17 metals are compiled in Table 2.1 [Strickland-Constable 1968; Toschev
1973]. An updated table to include the later results of Skripov et al. [1970],
Powell and Hogan [1968] and others is given by Chernov [1984]. Turnbull
[1950] correlated the experimental results with (2.71) together with (2.72}
and (2.73) and found that the maximum relative undercoolings AT ax/Tm
are nearly constant for all metals investigated (AT nax/Tm 2 0.183). The
same behavior shows the ratio of the gramatomic surface energy om of
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Table 2.1. Homogenous nucleation of raefals after Turnbull and Cech [1950). ATimax
is the maximum supercooling, T, is the melting point, ATmax/Tm is the maximum
supercooling relative to the melting point, @ is the specific surface energy at the solid—
liquid boundary, oy is the molar surface energy and ARy is the molar enthalpy of
melting.

Metal ATman Ai"—"—’-‘- a Tm e
Tm erg cm™? cal g atom™! Ahm
Mercury 58 0.247 24.4 296 0.530
Gallium 76 0.250 55.9 581 0.436
Tin 105 0.208 54.5 720 0.418
Bismuth 90 0.166 54.4 825 0.330
Lead 80 0.133 33.3 479 0.386
Antimony 135 0.150 101 1430 0.302
Aluminium 130 0.140 93 932 0.364
Germanium 227 0.184 181 2120 (.348
Silver 227 0.184 126 1240 0.457
Gold 230 0.172 132 1320 0.436
Copper 236 0.174 177 1360 0.439
Manganese 308 6.206 206 1660 0.480
Nickel 319 0.185 255 1860 0.444
Cobalt 330 0.187 234 1800 0.490
Iron 295 0.164 204 1580 0.445
Palladium 332 0.182 209 1850 0.450
Platium 370 0.181 240 2140 0.456

the crystal-melt interface and the molar enthalpy of melting Ah,,. The
gramatomic surface emergy is defined as oy, = a‘NAvg/ ¥ where Ny is
Avogadro’s number (6.023 x 10% mol~!) and v, is the volume of one
building unit in the crystal. It was found that for most of the metals studied
the ratio om /Ahy =2 0.5. Figure 2.15 demonstrates the plot of oy, vs Aby,.
As seen most of the metals with the exception of Ge, Bi and Sb follow the
straight line with a slope of 0.46, The above result becomes immediately
clear bearing in mind that the enthalpy of melting is connected with the
separation work from the half-crystal position, i.e. it is proportional to Zf2
times the energy per bond. On the other hand, vf” 3 represents the area
occupied by such a unit. Then oy, is proportional to the work to separate
two nearest neighbor atoms [Stranski, Kaischew and Krastanov 1933].
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Fig. 2.15. Dependence of the molar surface energy o = aNAvgla on the molar enthalpy
of fusion Al for & series of metals. As seen, for maost of the metals the ratio 0 /A b, =
const & 0.5 (after Turnbull [1850]}.

Analogous results have also been obtained for nucleation for melts of
alkali halides [Buckle and Ubbelohde 1960, 1961], organic melts [Thomas
and Staveley 1952; Nordwall and Staveley 1954} and polymers [Koutsky
1966; Cormia, Price and Turnbull 1962}. They are reviewed by Jackson
[1966] and critically analysed by Walton A G {1969].

2.2.7. Rate of heterogeneous nucleation

As mentioned in the previous section one of the main difficulties in the
experimental verification of the theory of the homogeneous nucleation is the
preferred nucleation on the walls of the reaction vessels, foreign particles,
ions, etc. The rate of heterogeneous nucleation should obviously be much
greater than that of the homogeneous one under the same conditions due
to the wetting from the substrate. At the same time when depositing
a substance on a foreign substrate the latter is never homogeneous in the
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sense that there are always some defect sites with higher chemical potentials
such as emerging points of screw dislocations, embedded foreign atoms, ete.,
which are more active in comparison with the remaining part with respect
to crystal nucleasion. On the other hand, in the case of vapor condensation
the frequency of attachment of adsorbed atoms through diffusion of the
latter on the substrate surface to the periphery of the growing clusters
is usually much greater in comparison with volume diffusion in the vapor
phase [Pound, Simnad and Yang 1934; Hirth and Pound 1963]. We have
the opposite case when deposition takes place from solutions and meits.
Wea treat first the case of vapor condensation bearing in mind the general
expression {2.58) for the steady state nucleation rate. Atoms arrive from the
vapor phase on the substrate surface and after a thermal accommodation
period, which is of the order of magnitude of several atomic vibrations
[Hirth and Pound 1963], begin to migrate on the surface. Then they collide
with each other to produce clusters of different sizes thus giving rise to
critical nuclei. The concentration of atoms, Z;, is now identified with
the adatom concentration n,. The latter is determined by the adsorption—
desorption equilibrium and is equal to the prodact of the adsorption fux

P

= (2rmkT)172 (2.76)
and the mean residence time
1 B
T = -exp (-%ﬁi) , (2.77)

which lapses before re-evaporation takes place. Fqa., denotes the activation
energy for desorption and v the vibrational frequency of the adatoms in
a direction normal to the surface plane. Then

P 1 Edes
_ ES , 2.7
s = kT2 vy P ( kT ) (2.78)

The flux of adatoms towards the eritical nuclei along the subsirate
surface is

x=&ywmzm%, (2.79)

where

E
D, = a*v- exp (H« k;i) (2.80)
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is the surface diffusion coefficient, Fq is the activation energy for surface
diffusion, v= is the vibrational frequency of the adatoms in a direction
parallel to the surface plane and a is the length of a diffusion jump.

Bearing in mind that the periphery of the critical nucleus, assuming a
semispherical shape, is 2r7*sin@ and v; = v_ = v for the frequency of
attachment of atoms to the latter, one obtains

 __ . s P Edeu - Eld
w' = 2xr smﬂ(zwka)uzaexp ( o . {2.81)
Finally, for the steady state nucleation rate one obtains
_ . s R%a 2Ede3 — Fqa AGH
Jo = 2mr* sin 97F exp (_fﬁ"— exp (__ki"m) . {2.82)

This equation is valid for nucleation of liquid droplets. The Zeldovich
factor I' = Ap?/8xun o $(6)kT]Y/? now includes the wetting function ¢(8).
In the case of crystal nucleation the periphery of the nucleus 4/* should be
inserted instead of 2nr* sin @ and for the AG™ the corresponding expression
{2.16) must be taken.

In the case of heterogeneous nucleation there is a statistical contribution
to the work of nucleus formation, which is independent of the nucleus size
[Lothe and Pound 1962; see also Sigsbee 1969], and which accounts for the
distribution of the clusters and the single adatoms among the adsorption
sites of density Np {2 1 x 10*° ¢cm~2). Assuming the density of clusters is
negligible compared with the adatom concentration,

AGeont = —kTIn (_]E?,) . {2.83)

As a result the adatom concentration 7, is replaced by the density of
the adsorption sites Vg and the following expression for the nucleation rate
is obtained:

Jo = 2nr* sin dRal' Ny exp (%ﬁﬁ?ﬂ) exp (_ékgf_) . (2.84)

In the case of nucleation in condensed phases (solutions or melts)
expressions for the steady state rate are easy to obtain taking the frequency
of attachment of atoms w* as that given by Eq. (2.62) or (2.64) and replacing
the surface area of the critical nucleus 477*2 by the area of the segment
4nr*2(1 — cos¥).
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2.2.8. Rate of 2D nucleation

The 2D nucleation kinetics can be treated in the same way as the 3D one.
Following the procedure outlined in Chap. 2.1 we find

Wy Wy W AGS nAYE n
wiwd -wl —exp{ kT [2 (n*) n*{]
After expanding the function in the exponent as a Taylor series up to

the parabolic term and replacing the sum in (2.50) by an integral with
limits of integration extended to —oo and +oo we obtain

E 1 wiwyowy \ o L {dakIne? ”"ex AGS
wi wiwwi ] T w AGY PATT )

n=1

Then the expression (2.61) results, in which the Zeldovich factor is given

by
AGy \'*

2.2.8.1. Rate of 2D nucleation from vapors

The frequency of attachment of single atoms to the periphery of the critical
nucleus to produce a closter with a supercritical size ig given by

P aex Edes - Esd
@rmiTy 2" P kT :

and for the nucleation rate one obtains

wh =41

Jo(2D) = 41* RaT' Ny exp (%—k»}-ﬁi) exp (—%-?,2) , (2.86)

where I', I* and AG3 are given by (2.85), {2.32) and (2.33), respectively.
The same expression is valid for the case of 2D nucleation on the same
substrate {Ae = 0} by taking the expressions (2.35) and (2.36) for {* and
AGY, respectively. Also the values for the activation energies for surface
self-diffusion and desorption from the same substrate should be taken.

2.2.8.2. Rate of 2D nucleation from solutions

When considering the solution and melt growth of crystals through the
formation and lateral propagation of 2D nuclei we will need expressions for
the rate of 2D nucleation. In the first case the flux of arrival of molecules
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of the solute (cm~2sec™!) is given by avC exp(—AU/kT) (Eq. (2.68)) and
the frequency of arrival of molecules per molecular site will be

iy = a’vCexp (—%q) = vCu.exp (—%) . (2.87)

The number of sites available for attachment of molecules along the
perimeter of the 2D nucleus is 277 /o and

* I3
w* = ZW%CUCUEXD (-%%) . (2.88)

Bearing in mind (2.37), (2.38), (2.61), (2.85) and (2.88), the rate of 2D
nucleation reads

_ Ap\? AU 32 g?
Jo(2D) = vCv, (ﬁ) exp (_k_ff) Ngexp (— WTan) (2.89)

where Ap is given by Eq. (1.10). For typical values of the quantities
involved, v 22 1 x 103 sec™!, Cu, = 0.1 (10% concentration of the solute),
ApfkT = 0.04, AU = 10 keal mole™, Ny = 1 x 108 em~?and T=300K,
the pre-exponential factor has a value K; = 1 x 10'? em™?sec?.

2.2.8.3. Rate of 2D nucleation in melts

In order to calculate the rate of 2D nucleation in melts our first task is to
find an expression for the frequency of attachment of building units to the
critical nucleus. The flux of atoms which cross the phase boundary to be
incorporated into the crystal lattice is given by

. AU
js = kyexp (""é“‘?‘:‘) . (2.90)

The corresponding reverse flux is given by

ke (_Ahm+AU)
jo=koexp{-—— |

where k4 and k_ are rate constants.
At phase equilibrium T' = T}, both fluxes are equal and

ki =k_exp (—%ﬂ-) = k._exp (—A—;m) . (2.92)

(2.91)



108 Nuclealion

The reverse rate constant can be identified with the vibration frequency
of the surface atoms, A_ = v, and

. Asm AU
ji = vexp (w—-k—) exp (""ﬁ) , (2.93)
j_ =vexp (—A—hrfk-%w—‘ﬁ—q) . (2.94)
Making use of {2.93) gives
s _ o T _ Asm _AU
w' =27 v exp ( 5 ) exp ( E—T—) (2.95)
and
As AT\'?
J{} = UNU (—STCE__T—)

Sm e’

y A ) AU)
exp )P\ T%T ) P\ T A ATET ) (2.96)

An egtimate in the case of formation of 2D nuclei on the (111) fage
of Si growing at a temperature which is 1 K under the melting point
Tn = 1685 K, with v = 3 x 10'® sec™!, Asy,/k = 3.6, AUKT = 3
and No = 1 x 10'5 em~?, gives for the pre-exponent the value K; =
2 x 10% cm~2sec™ .

2.2.9, Atomistic theory of nucleation

Experimental investigations of the heterogeneous nucleation showed that
the number of atoms constituting the critical nucleus is very small [Robin-
son and Robins 1970, 1974; Paunov and Harsdorff 1974; Toschev and
Markov 1965]. It does not exceed several atoms and in some particular
cases of nucleation on active sites this number is equal to zero. This means
physically that the adatom is so strongly bound to the active site that the
combination active site-atom is a stable configuration. It is thus obvious
that the quantities used by the phenomenological thermodynamics such as
specific surface energies, equilibrium shape, even state of aggregation {we
cannot say whether a cluster of 4 to 5 atoms is solid or liquid as we do not
know the long range order) cannot be defined. That is why an atomistic
approach which excludes the use of such quantities has been developed
[Walton D 1962, 1969].



2.2, Rate of Nucleation 109

In order to understand the atomistic approach we should establish the
limits of validity of the classical theory of nucleation. For this aim we
should consider the equilibrium of small particles of the new phase or, in
other words, we should go back to the equation of Thomson—Gibbs (1.19)
represented graphically in Fig. 1.4.

We replace the radius of the particle in the equation of Thomson-Gibbs
by the number of atoms in it and obtain

P, 2obv’?
P P\ T

where P, is the equilibrium vapor pressure of a cluster consisting of 7 atoms
or molecules and b is a geometrical factor equal to {47 /3)'/3 for a spherical
droplet.

It is immediately seen that the left-hand side of the equation (the ratio
of the equilibrium vapor pressures) is a continuous quantity whereas the
right-hand side is a discrete function of the number of molecules. In other
words, a fixed value of the vapor pressure or of the chemical potential
corresponds to each number n of the molecules. At the same time there are
intermediate values of the vapor pressure to which correspond values of the
number of molecules which are not integers. This situation is represented
graphically in Fig. 2.16 [Milchev and Malinowski 1985]. The value P, of
the vapor pressure corresponds to two-atom clusters, Py to three-atom
clusters, etc. I the actual vapor pressure P = P, a pair of atoms is
precisely in equilibrium with the vapor phase (the critical nucleus) and
the three-atom cluster is stable, ag the vapor phase is supersaturated with
respect to it, and it can grow further. If P = P;, the three-atom cluster
is the critical nucleus and the four-atom cluster is stable. However, if
Py < P < P, the pair of atoms becomes nnstable as the vapor phage is
undersaturated with respect to it, and it should decay. At the same time
the three-atom cluster is still stable and will remain stable as long as the
vapor pressure is higher than P;. It follows that contrary to the classical
concept a cluster with a fixed size is stable in an interval of supersaturation
which is as larger as the cluster size is smaller. An increase of the cluster
size leads to a sharp decrease of the width of the intervals and the discrete
dependence can be approximated by a smooth curve. In other words, the
classical approach becomes applicable. For small clusters, however, the
latter is a very rough approximation although the tendency remaing the
same., Thus the fundamental difference between the classical and atomistic
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Fig. 2.16. Dependence of the equilibrium vapor pressure of atomic clusters on the number
of atoms in the clusters. Clusters of a given size are stable in intervals of supersaturation
given by the bars. The classical Thomson—Gibbs equation is plotted as a solid line. As
seen, it is a good approximation for large clusters (after Milchev and Malinowski {1985]).

considerations is that a single nucleus size should be operative over a range
of temperature or atom arrival rate.

In order to calculate the Gibbs free energy change of formation of small
clusters we will use the atomistic approach introduced by Stranski and
Kaischew (see Sec. 2.1.3) which has the advantage that it avoids the use
of macroscopic quantities. In terms of this approach, by making use of
Eqgs. (2.20) and {2.21) the Gibbs free energy change of formation of a cluster
consisting of n atoms reads

AG(n) = n(pr2 — Ap) = Un - (2.97)
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At small enough supersaturations n is large and the AG(n) dependence
resembles very much the classical one shown in Fig. 2.1 given in terms of
n instead of r. This is not the case, however, when the supersaturation is
large. As shown in Fig. 2.17(a), AG(n) is a discrete function of n and
displays a highest value at certain value of n = »*. In the particular case
of Aufy = 3.25 the cluster with a highest AG value consists of two atoms
and the equilibrium vapor pressure is determined by the breaking of one
lateral bond. The equilibrium vapor pressure of the three-atom cluster
is lower than that of the atom pair as it is determined by the breaking
of two bonds per atom. Hence, the latter is more stable than the pair
which thus plays the role of the critical nucleus. Analogously, in the case
of Aufy = 2.75 the cluster with maximum value of AG consists of six
atoms and the equilibrium vapor pressure is determined by the breaking of
two bonds per atom, whereas the equilibrium vapor pressure of seven-atom
cluster is determined by the breaking of three bonds per atom.

It follows from the above that when the size of the critical nucleus is
small its geometrical shape does not remain constant as adopted by the
classical theory. No analytical expression can be derived for n* and its
structure should be determined by a tnal-and-error procedure estimating
the binding energy of each configuration. It turns out for example [Stoyanov
1979] that small clusters with a fivefold symmetry have lower potential
energy than clusters with the normal fcc lattice with (111) orientation.

In order to calculate the steady state rate of nucleation we make use
of the general expression derived by Becker and Déring (2.50) [Stoyanov
1973). As was shown each term in the denominator of (2.50) represents one
point of the dependence exp[AG(n)/kT] (Eq. 2.55). For n sufficiently large,
exp[AG(n)/kT) is more or less a smooth function of n, which justifies the
replacement of the sum by an integral (see Sec. 2.1; Fig. 2.17(b)). At small
values of n this procedure is obviously unapplicable. The exp[AG(n)/kT)|
vs n dependence, normalized to exp[AG(n*)/kT)], is shown in Fig. 2.17(b)
for two different values of the supersaturation. As seen exp[AG(n)/kT)
displays a sharp maximum at n = n*, all other terms in the sum of the
denominator being negligible. Obviously, the term corresponding to the
critical size gives the main contribution to the sum. The latter constitutes
the main difference between the classical and the atomistic approach to
nucleation. In the former case we have to sum up (or integrate) over a
large number of terms whereas in the latter case we just take one of them
corresponding to the critical nuclens and neglect all the others.
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Fig. 2.17. Dependence of (a) the Gibbs free energy change AG(n}/y in units of the work
% to break a first neighbor bond and (b) exp[AG{n)/kT] an the number of atoms n in
the cluster at different values of the supersaturation. At small supersaturations (Ap =
0.02¢) the number of atoms in the critical nucleus is Jarge (¢ 100) and it can be described
in thermodynamic terms. The corresponding curves are fluent and the summation
in Eq. {2.50) can be replaced by integration. At extremely small supersaturations
(Au = 3.259 and Ap = 2.75y) the critical nuclei consist of 2 and 6 atoms, respectively.
The AG(n)/¥ and exp[AG(n)/4T| dependencies are represented by broken lines and
integration of exp[AG(r)/kT] is no longer possible. Instead, the value exp[AG(n”)/kT]
is taken with the contribution of the remaining terms being neglecied. In fact the
contribution of the remaining terms gives the nonequilibrium Zeldovich factor which is
close to unity in this particular case,

Hence

2

i AG*
;w'yexp( T ) \ (2.98)

N1 - -
Z 1 ey Wa " Wy
n=1 Wn wrw; i (.LJI_].
where ' = 1/v is the Zeldovich factor which accounts for the remaining
smaller terms in the sum and in this case is of the order of enity. w} 2w =

const as before.
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Fig. 2.18. Dependence of the logarithm of the nucleation rate on the supersaturation Au.
At high supersaturations the dependence is represented by a broken line reflecting the real
dependence of the supersaturation on the cluster size. Ag; and Aug denote the critical
supersaturations at which the number of atoms in the critical nucleus changes from one
integer value o ancther. At small supersaturations the broken line turns gradually into
a fluent curve due to the decrease of the widths of the cluster stability intervals (see
Fig. 2.18). Thus the classical nucleation theory appears to be a good approximation at
small supersaturations {after Milchev et al. {1974}).

Then bearing in mind (2.20) with n = n*
AG* = —n*Ap+ 3,

and for the nucleation rate one obtains

Jp = w*'n, exp (_k_q;:) exp (—‘:—%n*) . (2.99)

The logarithm of the stéady state nucleation rate is plotted against
the supersaturation in Fig. 2.18. It represents a broken line when the
experimental data cover more than one supersaturation interval. This is
easy to understand recalling that the size of the critical nucleus remains
constant in more or less wide intervals of the supersaturation [Stoyanov
1979] and so is its geometrical shape and in turm its “surface energy” &.
The slopes of the straight lines give directly the number of the stoms in the
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critical nuclei which can be evaluated from a comparison with experimental
data. Figure 2.19 represents experimental data for the nucleation rate in
electrodeposition of mercury on platinum single crystal spheres [Toschev
and Markov 1969] interpreted in the terms of the atomistic theory by
Milchev and Stoyanov [1976]. The values for n* = 6 and 10 have been
found from the slopes of both parts of the plot. The same values (n* =
2 and 5) have been obtained also in electrolytic nucleation of silver on
platinum single crystal spheres in a solution of AglNO; in fused salts at
high temperatures [Toschev et ol 1969

The expression (2.99) does not give explicitly the dependence of the
nucleation rate on the atom arrival rate and the temperature of deposition
from the vapor, and in this sense is not suitable for the interpretation of
the experimental data in this particular case. For this purpose we have to
derive expressions for the growth and decay frequencies specific for the case
under consideration and to insert them into Eq. (2.50).

In the capillary approach,

. _ P
wi = P.D, grad n, = PaDy"* = 2 D,n,

where F, is the perimeter of the cluster and P, /a is in fact the number of
the lateral unsaturated bonds.
In the atomistic approach [Stoyanov 1973],

wl = a,D,n. , (2.100)

=
where @,, in complete analogy with the capillary model (P, /a), gives the
number of ways of formation of a cluster of size n + 1 by joining an adatom
to a cluster of size n or, in other words, the number of the adsorption sites
neighboring a cluster of n atoms.

The decay constant reads

Un - Un.—l + Esd) (2 101)

w, = f.vexp (— T

where U/, is the energy required to disintegrate a cluster of size n into single
atoms. The difference U, ~ U,,_; gives the energy of detachment of an atom
from a cluster of size n. Eoq is the activation energy for surface diffusion
and 3, is the number of ways of detachment of single atoms from a cluster
of size n. A one-to-one correspondence exists between each decay process
n+ 1 -+ n and each growth process = — n + 1, and hence

Oy = ETH—J. B (2.102)
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Fig. 2.19. Experimental data for the nucleation rate as a function of the overpotential 7
in the case of electrochemical nucleation of mercury on platinum single crystals [Toschev
and Markov 1969]. The data are plotted in “atomistic” coordinates In.Jy vs 5. As sesn
the number of atoms in the critical nucleus changes at about 0.096 V. (A. Milchev and
S. Stoyanov, J. Electroanal. Chem. T2, 33 (1976). By permission of Elsevier Sequoia
5.A. and courtesy of A. Milchev.)

Recalling the expression for the surface diffusion coefficient Eq. {2.101)
can be rewritten in the form

wy = BnDyNyexp (--q'l—%gﬂ‘—) : (2.103)

where Ny = a~2 is the density of the adsorption sites on the substrate
surface.
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Equation (2.50) can be rewritten in the form

- - - - = - -1

/% Wo W Wo e W

J0=wl+ns(1+—'i+ e e e~ i+-~) . (2.104)
wo Ll Wy Wy Wy Wy

Assuming n* = 1 (all terms in the denominator are much smaller than
unity and U7 = 0), with (2.100) one obtains

R? 2E4es — E,
= 2 gy — Sdes — ad
Jo = a1 Den? = oy N exp ( T ) . (2.105)

For n* =2 (wy /wi > 1 and wy fwi > wywy fwfw]),

U2+ E
— 2.8,,—1 Uz + Bad
Jo = aaDinjv™" exp ( T )
or
R3 3Edes = Fag Uy
Jo = ag JINZ exp ( T ) exp (ﬁ . (2.106)
Respectively, for n* = 6,
_ Uﬁ + 5Esd
J[] = O!ﬁDf’ﬂ.:U sexp (T)
or
_ RT TEdes - Esd Uﬁ
Jo=ag ANT exp ( o ) exp (ﬁ) . {2.107)
Then in the general case,
Jo=a D pl (W - Dexp (U ha (“kT” ”E“d)
or
— a* R ™ v* + (n* + I)Edeu - Lad

where ¢* = a(n*} and U* = U(n*).
Equation {2.108) can be written also in terms of the adatom concentra-
tion in the form

nt 41 U
'}D = a*Ds%"”sn.—_l exp (7(,—]—") y (2109)
o



2.2, Rate of Nueleation 117

which will be used when considering the 2D nucleation growth of crystals
from vapors in Chap. 3.

The critical nucleus size can change by an integer number of atoms
and a single nucleus size is operative over a temperature interval. The
latter can be defined as follows. Let us consider for example nucleation
on Ag (111) surface. At extremely low temperatures a single atom will
be a eritical nucleus. Above some temperature T; the critical nucleus will
be a pair of atoms, and the cluster of three atoms, each one situated at
the apex of a triangle, will be a stable configuration so that two chemical
bonds correspond to each atom. Above some other critical temperature
Tz > T4, the six-atom cluster will be a critical nucleus and the seven-atom
cluster with three bonds per atom will be stable. We can easily calculate
Ty and 7y and determine the interval of stability of the two-atom nucleus.
The left-hand limit of the interval T is determined from the condition
wy fwi =1
_ Uz + Ees
T kln(B:Nov/asR)

I

In the same way we find

_ Us — Uz + 4Eue
= %ln(B; N34 jagRY) °

Then for Ag (111) with AH, = 60720 cal/mole, Uy = ¢ = AH. /6 =
10120 cal/mole, Uz = 9%, Eges = 39, Ng = 1 x 105 em™2, » & 1 x
1018 pec—1, R = 1 x 10*4 em~?sec™!, and neglecting the coefficients a,, and
A, for AT = T, —T; one obtains 160 K. This means that one and the same
critical size will be operative under the conditions of the experiment except
for the case when we work in a temperature region around the critical
temperature. This is the case in the electrolytic nucleation of mercury
shown in Fig. 2.19.

Critical nuclei consisting of 0, 1 and 2 atoms are found in the electrolytic
nucleation of silver on glassy carbon [Milchev 1983). The critical size of
0 atom is interpreted as nucleation on active sites whose binding energy
—~Uy to the adatoms is strong enough so that the mean residence time
of the atom on the site is longer than the mean time elapsed between
the arrivals of two successive atoms to the site. Under such a condition
the couple adatom—active-site is considered as a stable cluster because the
probability of its growth is larger than the probability of its decay. If this
is not the case the pair adatom-active-site is no longer a stable cluster
and nuclei can form also randomly on defect-free surface. Thus random

T
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nucleation on defect-free surface and selective nucleation on active sites
can take place simultaneously. Depending on the density of the active sites
and their binding energy, one or the other mechanism predominates. In
the limiting case of nucleation on active sites the following expression is
obtained [Stoyanov 1974]:

Zy R?
Jy = al—u—exp(

UO + 2Edes - ld)

e (2.110)

Ng UNQ
where zp is the density of the active sites.

As seen in both cases of critical sizes n* = 0 and 1 {Eq. 2.105) the
nucleation rate is directly proportional to the square of the atom arrival
rate. In that sense both cases are practically undistinguishable. Actually,
the pre-exponent in (2.110) is smaller than that in (2.105) by Z/Np =
10~2-104 but exp(Uy/kT) overcompensates this effect.

2.2.10. Nonsteady state nucleation

One can assume that at the initial moment after “switching on” of the
supersaturation the concentration of the homophase fluctuations given by
Eq. (2.56) is negligible and Jy = 0. It follows that some time from that
initial moment should pass in order that a steady state molecular flow in
the system be established or, in other words, the concentrations of the
clusters attain their steady state values Z,. The solution of this problem
attracted the attention of many authors [Zeldovich 1943; Kantrowitz 1951;
Probstein 1951; Farley 1952; Wakeshima 1954; Collins 1955; Chakraverty
1966; Kashchiev 1969] and the problem has been experimentally studied in
detail for different systems [Toschev and Markov 1968, 1969; James 1974
and reviewed extensively [Lyubov and Rottburd 1958; Toschev and Gutzow
1972; Toschev 1973]. We will show in this section how the problem of
transient states can be treated and will evaluate the nonsteady state effects
for different supersaturated (undercooled) systems.

As mentioned in Sec. 2.2.1 the steady state is determined by the condi-
tion dZ,(t)/dt = 0. We have now to solve the general problem as given by
Eq. (2.48). In other words, as follows from Eq. (2.47) the rates of formation
of clusters of different sizes are no longer equal in the time-dependent
case. This is the case at least at the beginning of the process after the
supersaturation is “switched on.”

We mentioned that the formation of a cluster with a critical size appears
as a result of fluctuations of the density in the parent phase. Let us
consider this process more closely. Imagine we have a cluster with a size
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n smaller than the critical one n*. When a single atom joins the cluster
it becomes of a size # + 1. When an atom is detached from the cluster
the latter goes to a size n — 1. The attachment and detachment of atoms
are random processes and hence the cluster increases or decreases in size
randomly. In other words, the cluster performs random walk back and forth
on the size axis up to the moment it reaches the critical size. Then any
further growth is connected with the fall of the thermodynamic potential
and loses its random character. We can easily prove this following the
approach developed by Frenkel and Zeldovich [Frenkel 1955]. Considering
n as p continuous variable Zeldovich and Frenkel replaced Eq. (2.48) by the
differential equation
dZ(n,t) _ dJ(n,t)

dt = dn

where n is now not an index to denote that it is no more a discrete variable.

The nucleation rate J(n, t) is defined in the continuous case as {compare
with Eq. (2.47))

(2.111)

Jn,t) =w} Z(n—1,t) ~w; Z(n,t) . (2.112)

The expression of the detailed balance (2.51) in the absence of a molec-
ular flux through the system now reads

wHin—-1IN(n— 1) =w ™ (n)N(n} . (2.113)
Eliminating the decay constant w™(n) from (2.112) and (2.113) gives

Z(n—1,1) Z(n,t))
N{n-1) N{n)

Jin,t) =w¥(n - 1)N(n - 1) (

or
d {Z(n,t)
& gt —_ 2
Jn,t) & —ut ()N ()= ( s ) , (2.114)
where the approximation w*{n — 1})N(n — 1) 2 w*(n)N(n) has been used.
Combining (2.111) and (2.114) gives

dZ(n,t) d d (Z(n,t)
P - Llrommg (B5)] - eno

Recalling the equilibrium distribution of clusters of class n (2.56) we
carry out the differentiation and obtain
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dZ(n,t)

N{n)dt

_ d? [ Z(n,t) dwt(n) wtn)dAGn)\ d [ Z(n,t)
“"+(“)En—2(N(n))+( in kT dn )EE(N(n))‘

This equation is valid within the whole range of n from 1 to N. In the
vicinity of the critical size it is simplified to

£(56) S (8. o

assuming as above that the growth coefficient is nearly a constant, w* {n) &
wt(n*) = const, and bearing in mind that AG(n) displays a maximum at
n=n* ie [dAGR)/dn)n=r- = 0.

As seen the time and size dependence of the steady state concentration
Z(n,t) is governed by a partial differential equation of second order. In
fact this is the familiar diffusion equation in which the diffusion coefficient
is replaced by the growth rate constant w*(n*) and which reflects the
random character of the growth process in the critical region An*. We can
thus envisage the growth of the clusters as “diffusion” in the space of the
size n.

Even without solving the governing Eq. (2.116) we can draw some qual-
itative conclusions by considering a simple analogy with diffusion process
towards some boundary. At the initial moment the “concentration” is one
and the same all over the system, which is equivalent to homogeneous
ambient phase without clusters of any size. Once we have a supersaturation
which is equivalent to the appearance of a diffusion gradient the "con-
centration” in the near vicinity of the boundary decreases and we have a
“concentration” profile which changes with time up to reaching steady state.
The same happens to the supersaturated medium. Clustering begina and
the concentration of clusters of 2 given class n gradually increases with time
up to the moment it reaches the steady state valye. This picture has been
directly verified by Courtney [1962] who computed the time dependence of
the clusters concentrations.

To proceed further it is necessary to define the boundary conditions.
As mentioned earlier, Zeldavich and Frenkel argued that rate determining
are the processes confined to a small region around the critical size. A
detailed mathematical analysis of the problem carried out by Kashchiev
[1969] has shown that this is a very good approximation. It follows that
Z(n,t) and N(n) differ only in this region An*, i.e. at n < n; (see Fig. 2.12),
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Z(n,t) = N(n) and at n > n,, Z{n,t) = O at any time t. Thus, the
natural initial condition {t = 0) is that immediately after “switching on”
the supersaturation clusters of any size are absent in the system. In other
words, at the initial moment only single molecules (monomers) are present
in the system. The boundary conditions arise from point 2 in Sec. 2.2.1.
At any moment the concentration of clusters of class N » n* is equal to
zero and the steady state concentration of the monomer is equal to the
equilibrium concentration. In other words,

Z(1,0)=N(1), Z{n>20=0,
Z(1,t) = N(1), Z(N,t)=0.

The solution of Eq. (2.116) subject to the above boundary conditions
reads [Kashchiev 1969]

¥ 9 had o - *
Z(n,t)=l_n n ——Z§sin(iﬂ'n n +ﬂr-)exp( 2 Tw't )

o An* 2 16An*2

It is immediately seen that at the steady state (¢t — oo} the sum vanishes
and Z(n*) = N(n*)/2.

Substituting the above solution into (2.114) (the latter being taken for
the rate of formation of critical nuclei) gives [Kashchiev 1969]

_ o (1) _-2£)
J&)=Jo [1+2§( 1) exp( = ] . (2.117)
where the parameter
*\2
_ 4an") (2.118)
Tt

is the so-calied induction period.
Bearing in mind that the number of the nuclei versus time is given by

the integral
t

N(t) = f J(t)dt | (2.119)

a

the integration of (2.117) gives [Kashchiev 1969)

N(t) = Jor [——--2m ' ( 2;)] , (2.120)

t=1
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7T

Fig. 2.20. Dependences of the nonsteady state nucleation rate J(t) relative to the steady
state nucleation rate Jy (curve 1, Eq. (2.117)}) and the number of nuclei (curve 2,
Eq. (2.120)) on time in units of the time lag 7. As seen the steady state rate is reached
after approximately 57, The incubation period tg of the N(t) curve is referred to v by
tg = n2+/6 = 1.647.

where J; is given by any of the expressions derived in the previous section.
As follows from (2.117) (Fig. 2.20) the steady state should be reached after
an interval of approximately 57.

We can now evaluate the induction period r for different cases of
nucleation. In the case of formation of spherical nuclei from vapors from
(2.118), (2.59), (2.60) and (1.9), one obtains

;= 16 ( m )1-’? o

k¥T/ Pln(P/Po)P (2121)

T

Then for homogeneous nucleation of water vapor at room temperature
T = 300 K with o = 75.2 erg/cm?, P, = 20 Torr = 2.66 x 10* dyne/cm?,
P/Py =4, m=3x107% g 7= 1 x 1078 sec, i.e the induction period is
practically negligible.

The problem differs considerably when condensed phases are invalved.
Making use of (2.68) for w* yields
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" T EI(CICa e O F (H’) (2122)

for nucleaticn in solutions where the concentration must be taken in number
of molecules per cubic centimster.

Evaluation of 7 shows that it varies by orders of magnitude due to the
different values of the activation energy of desolvation. In any case the value
of the induction period is several orders of magnitude greater than that from
vapors. Thus for nucleation of BaSQ, in aqueous solutions (assuming for
simplicity a spherical shape) with ¢ = 116 erg/em?, C = 1 x 1078 mole/l =
6 x 10'® molecules per cm?, C/Co = 1000, v = 3 x 10'® sec™!, @ =
4 x 1078 cm and AU = 7 keal/mole (AU/KT = 11.67), 7 22 5 x 1073 sec.
At the same time for PbSO,; (¢ = 100 erg/cm?, C = 8.5 x 10'%cm™3,
C/Cy = 28 and AU = 14.5 kcal/mole) 7 = 5 x 10? sec, i.e. the induction
period is five orders of magnitude longer.

In the case of nucleation in melts with (2.70)

_ 16 okTwu. p(AU)‘ (2.123)

T AsZ AT?pq KP\FT

The induction period is also negligible in homogeneous nucleation in
simple metal melts. Thus in solidification of Ag with o = 150 erg em™2,
T=120 K, AT=5K, v, =5x 10722 cm?, As,, = 2.19 cal K 'mole™!
= 152 % 1071% erg K™}, v = 2 x 101% gec™! and AU/KT = 2.5, 7 =
2 x 10~% gec. At the same time for typical glass-forming melts like SiO,
and GeO, (AU/KT = 30 - 40), 7 2 1 x 10° sec, i.e. the induction period is
as long as a day and night. This means that the process of phase transition
can be completed before a steady state nucleation rate is reached. In other
words, the whole crystallization process takes place in a transient regime.

Induction times of the order of tens of minutes have been observed in
nucleation of polydecamethylenterephthalate [Sharples 1962]. In the case
of crystallization of Graham glass (NaPOj3) on artificially introduced gold
and iridium particles, Toschev and Gutzow [1972] found induction periods
ag long as 10 and 5 h respectively at about 300°C. Moreover, the induction
time is a strong function of temperature. James [1974] found that the
induction periods in crystallization of lithium disilicate melts vary from
nearly 51 h at 425°C to 7 min at 489°C, i.e. more than two orders of
magnitude in a temperature interval of 64°C. A value of 105 kcal/mole or,
in other words, AU/kT = 72, for the activation energy for viscous flow has
been estimated from the data.
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An expression for the induction period 7 for heterogeneous nucleation
from the vapor phase is easy to obtain from (2.118) and (2.81):

m \1/2 ${(6) oy Eges — Esa
777) it aPn(P B “P\ " kT ) - (2124)

Comparing (2.124) with (2.121) gives

_”_'(hi)ﬁ"'”*ﬂ@ex (__Edes— sd) .

r(hom) ~ 2 a sin@ kT

‘r=17(

The pre-exponent is of the order of unity, with the exception of the cases
of extremely high values of the wetting angle and the ratio 7(het)/r (hom),
and is determined primarily by the activation energies for desorption and
surface diffusion. One can conclude that in the case of heterogeneous
nucleation the induction time is even smaller than in the homogeneous
case.

Bearing in mind that the Zeldovich factor is inversely proportional to
the square root of the wetting function ¢(¢) we find that in the case of
nucleation in condensed phases (solutions or melts) the induction period 7
for heterogeneous nucleation in condensed phases should be given by (2.122)
or (2.123) but multiplied by the quantity ¢(6)/(1 —cos8) = (1 — cos @2+
cos#) /4. This function displays a maximum of 0.5625 at # = 120°, Hence
7(het) will again be gmaller than 7(hom) by this function.

A straightforward test of nonsteady state effects in the theory of hetero-
geneous nucleation requires measurements of either the time of appearance
of the first nucleus or the dependence of the number of nuclei or time at
a constant supersaturation. Precise measurements of the number of nuclei
versus time have been performed in the case of electrolytic formation of
metal nuclei on foreign metal substrates and the results have been compared
with Eq. (2.120) |{Toschev and Markov 1969]. In order to separate the
process of nucleation from that of growth of the nuclei the so-called double
pulse potentiostatic technique has been used. Il-shaped electric pulses
(Fig. 2.21) are imposed on an electrolytic cell consisting of two electrodes
immersed in an electrolytic solution of metal ions. The height of the first
pulse of duration ¢ is a measure of the overpotential = E — Eq (Eq. (1.13)).
The height of the second pulse is sufficiently low (in fact lower than the
critical supersaturation) so that no nuclei can be formed for a long enough
time. The nuclei formed during the first pulse grow to visible sizes during
the second pulse and are counted under microscope. A platinum single
crystal sphere sealed into glass capillary served as a cathode while the
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Fig. 2.21. Double pulse technique for investigation of the number of nuclei versus time
when used to study the electrachemical nucleation of metals on foreign metal substrates.
Nuclei are formed during the first pulse AB of height 5. They grow to sizes visible under
microscope during the second pulse BC of height n,. The latter is lower than the critical
overpotential required for nucleation to occur with a significant rate. The number of
nuclet formed during the first pulse averaged from a large number of measurements is
then plotted versus the pulse duration ¢ at a constant pulse height [Toschev and Markov
19691

Fig. 2.22, Micrograph showing mercury droplets (bright points) electrodepasited on a
platinum single crystal sphere, Every droplet is reflected from the mirror smooth surface
of the electrode and looks like a bar. The large bright spot near the middle of the
elactrode is a reflection of tha lamp. The nuclei are formed preferably around the (111)
poles of the sphere [Toschev and Markov 1969].
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anode was & sheet or a wire (or a pool of mercury in this particular case)
of the metal whose ions are present in the solution. Figure 2.22 shows a
typical picture of mercury droplets formed on the platinum single crystal
sphere. As seen they are preferably formed around the (111) poles of the
sphere.

o ...-.:.-‘;"'- s
L2 20‘7_.!?” ety

Fig. 2.23. A series of number of nuclei versus time curves in the case of electrochemical
nucleation of mercury on platinum single crystal spheres at different overpotentials,
denoted by figures in mV at the curves. The transient behavior of the nucleation process
is clearly demonstrated. The curve obtained at # = 84 mV shows a saturation which is
due to overlapping of nucleation exclusion zones {Toschev and Markov 1969}

Figure 2.23 shows a series of number of nuclei versus time curves for
electrodeposition of mercury nuclei at different overpotentials denoted by
the figures at the curves. The transient behavior required by the nonsteady
state theory (Fig. 2.20) is clearly demonstrated. Induction periods of the
order of milliseconds are observed. The validity of Eq. (2.120) is tested in
Fig. 2.24. As seen the points fall close to the theoretical N(t) curve
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Fig. 2.24. Plot of the number of nuclei versus time from Fig. 2.23 in dimensionless
coordinates F(z) = N(t)/Jor and = = t/r. The solid line represents the thecretical
curve (2.125) [Toschev and Markov 1969].

flz)=a— éwz -2 i (—nlz}“ exp(—nz) (2.125)
n=1

in dimensionless coordinates f(x) = N/Jy7 and = = ¢/T.

The slopes of the linear parts of the curves in Fig. 2.23 give a straight
line in logarithmic coordinates log Jp vs 1/9* (Fig. 2.25), thus confirming
qualitatively the validity of the capillary model (2.66). The number of
atoms constituting the critical nucleus can be evaluated as a function of the
overpotential from the slope of the straight line, and the values from 3 to 8
have been obtained in this particular case. Obviously, the capillary model
of heterogenecus nucleation which makes use of such phenomenological
quantities as the bulk surface specific energies, etc., cannot be used for a
quantitative description of the process at very high supersaturations. This
is the reason the data of Fig. 2.23 have been interpreted in terms of the
atomistic mode! of nucleation (Fig. 2.19).
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Fig- 2.25. Plot of the logarithm of the steady state rate of electrolytic nucleation of mer-
cury on platinum single crystal spheres versus the reciprocal square of the overpotential
as required by the classical theory of 3D nucleation. The rates represent in fact the slopes
of the linear parts of the N(t) curves shown in Fig. 2.23. The straight line demonstrates
the qualitative validity of the classical nucleation theory although the number of atoms
in the critical nuclei is about 8 {Toschev and Markov 1969).

2.2.11. Saturation nucleus denasity

As was mentioned above the main problem in the investigation of the nu-
cleation kinetics in melts and solutions is the presence of impurity particles
which stimulate the process due to the wetting. However, the existence
of impurity particles leads, in addition, to another phenomenon. Tt is
reasonable to assume that the particles have different activities with respect
to crystal nucleation (or different wetting angles or adhesion forces) or, in
other words, a different critical supersaturation, according to Eq. (2.67),
in which the wetting function ¢$(¢) should enter in the case of heteroge-
neous nucleation. Then, the active particles will take part in the process
only when the supersaturation in the system is higher than their critical
supersaturation. In such a case the number of the nuclei formed will
be equal to the number of the particles whose critical supersaturation is
lower than the actual value in the system, A saturation phenomenon will
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be observed in the sense that the number of nuclei will reach a constant
value. As the particles have different critical supersaturations the increase
of the current supersaturation in the system will lead to involvement of new
particles with higher critical supersaturations, and the saturation nucleus
density will grow. This process will continue up to the moment when
the supersaturation exceeds the critical supersaturation for homogeneous
nucleation. Then a large number of homogeneously formed nuclei will
appear. Such a saturation behavior is clearly established in the case
of nucleation of polymethylenterephthalate [Sharples 1962], The author
explains the phenomenon with the catalytic action of foreign particles of
finite numbers and different activities in the melt.

The same picture holds for nucleation on foreign substrates. Defect sites
on the substrate surface with different critical supersaturation play the role
of the foreign particles in this particular case [Robins and Rhodin 1964;
Kaischew and Mutaftschiev 1965].

An expression for the time dependence of the number of nuclei can
be easily derived under the simplifying assumption of equal activity (or
critical supersaturation) of the defect sites [Robins and Rhodin 1964]. Let
us denote by Na (cm™2) the density of the defect sites and by J§ (sec™!)
the frequency of nucleation per active site. Then the change of the number
N of nuclei with time will be given by

dN
—E = JB(Nd - N) f (2126)
where Ny — N is the number of the free active sites on which nuclei are not

yet formed.

The integration of (2.126) subject to the initial condition N{t =0) =0
gives

N = Nafl —exp{—-Jjt)} . (2.127)

As seen, at t — 0o, N — Ny = const. The saturation is reached in
practice when ¢ > 5/J, where 1/J; is the time constant of the process.

This equation can be easily generalized to the case of active sites with
different critical supersaturations to give [Kaischew and Mutaftschiev 1965]

Ap
N= / Na(bp{1 - expl-Zy(Bp}ddn, ,  (2128)
1]

where Na(Ap,) and J5(Ap.) are now functions of the activity or the critical
supersaturation Ap.. Obvicusly, Eq. {2.128) holds for nucleation in 3D
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systems {(melts) as well as in 2D systems (surfaces). The main problem of
such a treatment, however, is that the distributions Ng(Ap.) and Jj(Ap.)
are usually unknown.

There could be, however, other explanations of the saturation phe-
nomenon. Thaus, if the heat conductivity of the melt is low the temperature
of the growing crystallites and their near vicinity increases as a result
of accumulation of the latent heat of crystallization. As a result, zones
with reduced undercooling appear around the growing crystallites in which
nucleation is more or less prohibited. When these zones overlap and fill up
the whole volume of the melt the nucleation process ceases and saturation
of the nucleus density is reached. Then new nuclei do not form and the
existing ones grow to complete solidification of the melt. In high heat
conductive melts the zones with reduced undercooling can be reduced to
the growing crystallites themselves. The final result, however, should be
qualitatively the same.

We have an analogous picture in deposition on substrates. Assuming
that the surface diffusion of adatoms is the process which determines the
rate of growth of the clusters from the gas phase we have to account
for the fact that the adatom concentration in the near vicinity of the
growing nuclei is reduced and the system is locally undersaturated. As
a result zones with reduced and even zero nucleation rate appear which
grow together with the clusters [Lewis and Campbell 1967; Halpern 1969;
Stowell 1970; Markov 1971]. Sigsbee and Pound {1967] (see also Sigsbee
{1969]) coined the term “nucleation exclusion zones.” When the zones
overlap and cover the whole substrate surface the nucleation ceases and
the saturation nucleus density is reached. The saturation phenomenon
has been observed in the case of deposition of gold on amorphous carbon
films [Paunov and Harsdorff 1974], of gold on cleaved surfaces of KCl
and NaF at low temperatures [Robinson and Robins 1970], etc. In the
same system {Au/{100) KCI, NaF but at high temperatures) Robins and
Donohoe [1972] observed the appearance of maxima instead of plateaus.
They explained this by the coalescence of crystallites which dominate at
higher temperatures. Note that the first two reasons, namely, the presence
of defect sites and the nucleation exclusion zones, lead to appearance of
saturation whereas coalescence leads to well-pronounced maximum,

The nucleation exclusion zones are easily visualized in the case of
electrolytic nucleation of metals on inert substrates. In this case the
reduction of the supersaturation around the growing particles of the new
phase is due predominantly to ohmic drop particularly in concentrated
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Fig. 2.26. Pulse train for visualization and investigation of the nucleation exclusion zones
in electrodeposition of metals. The height and duration of the first pulse are chosen in
such a way that only one nucleus is formed. It grows to a predetermined size during
the second pulse. The height of the third pulse is chosen in such a way that the whole
substrate surface is covered with metal nuclei except only the zone around the initial
droplet or small crystal. The metal coating which serves to outline the nucleation
exclusion zone grows to become visible under the microscope during the forth pulse.
The sizes of the nucleation exclusion zones and the inttial crystallites are then measured
as functions of the duration and height of the secand and third pulses, (I. Markov, A.
Boynov and S. Toschev, Blectrochim. Acta 18, 377 (1873). By permission of Pergamon
Press Ltd.)

solutiors of the electrolyte, but bulk diffusion towards the growing particles
also plays a part particularly in dilute solutions. A triple pulse train
as shown in Fig. 2.26 [Markov, Boynov and Toschev 1973; Markov and
Toschev 1975] is imposed on the cell consisting of a platinum single crystal
hemispherical cathode and an anode of the metal to be deposited, both
immersed in a solution of the electrolyte. The first pulse produces a single
nucleus which grows to visible size during the second pulse. The third pulse
is high enough to ensure a complete coverage of the piatinum sphere with
the metal except for a “prohibited” area around the initial particle where
the actual overpotential is insufficient to cause nucleation, thus visualizing
the nucleation exclusion zomes. Typical pictures of this phenomenon are
shown in Fig. 2.27 for the cases of electrodeposition of mercury and silver.

A mathematical treatment of the process of overlapping of nucleation
exclusion zones irrespective of the dimensionality of the system is usually
carried out on the basis of either the geometrical approach of Avrami [1939,
1940, 1941] or the probabilistic formalism developed by Kolmogorov [1937].
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(a)

(b)

Fig. 2.27. Nucleation exclusion zones around {a) mercury droplet and (b) silver crys-
tallites. It iz clearly seen that the zones grow together with the crystallites. ((a) L
Markov, A. Boynov and S. Toschev, Electrochim. Acta 18, 377 (1973). By permission

of Pergamon Press Lid. (b) By courtesy of A. Milchev.)
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Both approaches give one and the same result. The reason is clearly seen
in Fig. 2.28. The problem is reduced to calculation of the hatched areas
{or volumes) covered simultaneously by two or more circular (or spherical)
regions. It can be solved geometrically [Avrami 1939, 1940, 1941], but as is
well known the area covered simultanecusly by several regions is just equal
to the probability of finding an arbitrary peint simultaneously in all regions.
That is why the probabilistic approach is much simpler and permits an easy
generalization to account for nucleation on active sites. This is the reason
why we shall follow the probabilistic approach of Kolmogorov. We will give
a detailed derivation of Kolmogorov’s formula as we shall need it further
when considering the 2D growth of crystals and epitaxial films.

Fig. 2.28. A drawing illustrating the mathematical approaches of Avrami {1939] and
Kolmogorov [1937]. In order to calculate the part of the volume {or the substrate surface)
filled with circles representing the nucleation exclusion zones one has to subtract the
shadowed regions covered simultaneously by two or more circles, This could be done
geometrically (Avrami) or by using a probabilistic theory (Kolmogorov). It is clear that
the fraction of the volume, or the surface covered by the shadowed regions, is equal to
the probability of finding an arbitrary peint simultaneously in two or more circles,

We consider a supersaturated phase of volume V. Nuclei are formed with
a rate J; = const. A nucleation exclusion zone with a volume V' appears
and spreads around each growing nucleus. The rate of growth v{n, ) of the
zone is a function of the direction n and time ¢ and can be expressed in the
form
v{m, t) = c(n}k(t) , {2.129)
assuming the rate of growth v(n,t) follows one and the same law of growth,
k(t), irrespective of the direction.
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We introduce the quantity

3__}_[ 3
&= c¢*(n)de

b}

which has the sense of an average with respect to the direction and where
the integration is carried out along the surface ¥ of a sphere with center at
the origin of the coordinate system. Then the volume of the zone growing
around a nucleus formed at a time ¢’ will be at a moment ¢ > ¢

3

t
wayz%é(fkﬁ—mm . (2.130)
zn’
The density of nuclei N as a function of time is given by
%;:Lﬁ&% (2.131)

where Q(t) is the fraction of the volume of the system uncovered by
nucleation exclusion zones. Integration of {2.131) subject to the initial
condition N(t = 0) = 0 yields

t
Nzh/@ﬂﬁ. (2.132)
0

The fraction ©(t) is equal to the probability that an arbitrarily cho-
sen point P is at a moment ¢ to be outside a nucleation exclusion zone
{Fig. 2.29). The necessary and sufficient condition for the point P to be in
a nucleation exclusion zone at a moment ¢ is the formation of a nucleus at
a moment t' < t at another point P which is spaced from P at a distance

smaller than !

1‘=c/k(7’—t')d'r ,
tJ
or, in other words, the point P has to be in the volume V' given by
Eq. (2.130}.

The probability that at least one nucleus will form in the time interval
At' in a volume V' with accuracy to infinitesimals of second and higher
orders is

LV, AL .
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Fig. 2.28. For the calculation of the probability of finding an arbitrarily chosen point P
in a nucleation exclusion zone or in a crystallized volume. The necessary and sufficient
condition for the point P to be in a nucleation exclusion zone at a moment ¢ is that a
nucleus is formed at a moment ¢’ < t at point P’ which is spaced from P at a distance
smaller than »(t', t), i.e. in the volume outlined by the dashed line. Then the point P
will be in the nucleation exclusion zone outlined by the solid line.

The probability that a nucleus will not form in the time interval At" in
the volume V' is
1 — ViUt DAL .

The probability for the point P to be outside a nucleation exclusion zone
at a moment ¢ from the beginning of the process is

a(t) = f[u — WV (L)AL, (2.133)
i=1

where ¢t = sAt' and ¢; = iAt’. Taking the logarithm of (2.133) yields

In6(t) = Z!n[l—JgV’ JAL] = — ZJUV’(t JAE

1=1
t
—Jo / Vi dt .
a

Then the part of the volume V which is uncovered by nucleation
exclusion zones is

¢
O(t) = exp —JO/V’(t')dt'
o
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t T
N= Jg/exp (—Jg [V'[t')dt') dr , (2.134)
0

o
where V/{t'} is given by (2.130).

The saturation nucleus density N, obtained from the condition t — 00
is

o0 T

N, = Jgfexp ﬂJg/V'(t')dt' dr . (2.135)
0 0
Without loss of generality we can represent the growth of nucleation
exclusion zones by a power law

dr _—
v{t) = g SeattT (2.138)
Assuming a constant rate of growth k(1) =1 {a =1),
4
V= §1rc3(t -t')?

and [Kolmogorov 1937]
t
Nty = o / exp (—TJoctt) dt
0

Under the condition ¢ — oo for the saturation nucleus density one

obtains 3/
N, =09 (iﬁ_) .
[

The volume of the melt covered by nucleation exclusion zones (or by
growing crystallites}, V¢, is given by

t
Velt) _ TISTINE I R T 3.4
—V—ml—exp( JU[V{t)dt)-l-—exp( EJ“Ct)‘

[

For the particular case where the nucleation process takes place in a
short interval at the beginning of erystallization so that a number of nucle,
N,, is formed at the initial moment t = 0, we have one integration less and,
instead of the above equation, we get

Velt)

—1— - P = 1 _4 3,3
v =1—exp[-N;V'(#)] =1 exp( 37rN,,ct .
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In the case of nucleation on the surface of a foreign substrate we have
a two-dimensional system and Eq. (2.130) has to be replaced by

2

¢
S'(t't) = ne? /k(f -thdr | . (2.137)
tf

Assuming that the growth of the nuclei is governed by surface diffusion
the nucleation exclusion zones will be determined by a decrease of the
adatom concentration. The diffusion problems usually lead to square root
of time dependence of the growth rate, & = 1/2 and ¢ = k+/D,, where k is
a dimensionality constant of the order of unity {Markov 1970]. Then

t
N(t) = Jofexp (-5 Hoc?t?) dt' {2.138)
0

from which, with ¢ — oo,

1/2
N, = (2%“5) (2.139)
or e
N, = (%) . (2.140)

The deposition of thin films takes place as a rule under conditions of
either complete condensation (CC) or incomplete condensation (IC). The
former case is characterized by negligible desorption flux and far from
the growing nuclei the adatom concentration is a linear function of time,
n, = Rt. Then the steady state nucleation rate is a function of time through
the adatom concentration. In the IC case the adatom concentration is
determined by adsorption—desorption equilibrium and n, = Rr,, and the
nucleation rate is constant with respect to time.

Making use of Egs. (2.78) and (2.108) for the IC case one obtains

{n"+1}/2 re *
N, =a*'2N, (__R_,) exp (D +n'+ I}Ed")

UND 2kT

which reduces at high supersaturations, where n* =1 (U* = 0), to

R Eyes
N,:a“l”z-;—exp (—é%i—) )
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In the CC case the nucleation rate has the form (2.109) and from (2.135)
and (2.137) one obtains the expression first derived by Stowell [1970):

n*41
- R at+3 U‘
Ns = *lf(n +3J ( )
9 D.NZ Moo \ oo rayer )

where ¢ is a dimensioniess constant of the order of unity.

One can consider by the same way the coverage of a crystal face by
laterally growing 2D nuclei. Then the 2D islands themselves will play the
role of nucleation exclusion zones and with k(#) = 1 the surface coverage
at & moment ¢ will be given by

%“ =1 - exp (-%Juc%ﬂ) , (2.141)
where ¢ is the rate of growth of the 2D nuclei and S is the surface area of
the crystal face.

The active sites and nucleation exclusion zones usually influence simul-
taneously the nucleation kinetics. A general solution can be obtained by
following the above procedure. We will consider for simplicity the case of
equal activity of the nucleation centers with steady state nucleation rate.

Nuclei are formed with a frequency Jy {sec™!) on active centers whose
number is V4. To solve the problem we have to find the fraction of
free active centers at a moment . We consider as free those centers on
which nuclei have not yet formed and which are not captured by nucleation
exclusion zones. The latter means that a center on which nucleus has not
yet formed can be covered by a zone originated by a nucleus growing in the
near vicinity. Then the supersaturation in its vicinity can become lower
than its critical supersaturation and a nucleus cannot form anymore on it.
In that sense the center can be deactivated.

The probability of formation of at least one nucleus in the volume V/
(Eq. (2.130)) within the time interval At is now given by

N[V (E))Ar
where
Vf(tl’)
vV
is the average number of active sites in the volume V/(#'). This equation
accounts for the fact that in the volume V’(#') there is one center with a

Na[V'{t)) =1+ (Na—1)
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probability of unity {the center P) and the remaining Ny — 1 centers with a
probability of V’/(t')/V. Then the fraction ©(t) of the free centers on which
nuclei are not yet formed and which are not covered by nucleation exclusion
zones (Ng > 1) will be

O(t) = exp (—Jut - JnNd/ *) dt‘) . (2.142)

0

The time dependence of the number N of nuclei formed up to time £ is
given by the definition equation

N(t) = JoNy f o(r)dr
Li]

or

i
N(t) = JoNg f €exp (—Ju‘r — JoNa / V‘(f }dt’) dr (2.143)

4] 0

It is immediately seen that when the zone growth rate ¢ = 0, i.e.
V(') = 0, Eq. (2.143) turns into Eq. (2.127). In the other extreme when
the number of active centers is large enough or the rate of growth of the
nucleation exclusion zones is sufficiently high so that the second term in the
exponent is much greater than Jyt, Kolmogorov's formula (2.134) results
from (2.143). The physical meaning of this result is that the major part
of the active centers are deactivated by nucleation exclusion zones and the
latter govern the nuclestion kinetics. Generalization for time-dependent
nucleation and activity distribution of the centers is easy to carry out
and the interested reader is referred to the original papers [Markov and
Kashchiev 1972a, 1972b, 1973].

As mentioned at the beginning of this section the coalescence of growing
crystallites can also lead to limitation of the nuclens density. The reader
is referred to the numerous review papers and monographs [Stoyanov and
Kashchiev 1981; Lewis and Anderson 1978] and the references therein.

2.2,12. Ostwald’s step rule

1t was found long ago that when the new phase has several (at least two)
modifications, one of which is thermodynamically stable and the others
are metastable, the formation of one or more metastable phases is often
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(but not always) observed first. A typical example is the crystallization of
zeolites (for a review see Barrer [1988]). It appears that the first zeolite
which crystallizes is not stable when it is left for some time in the reaction
vessel in contact with the solution at the temperature of growth. After
some time it dissolves in the mother sotution and a new, more stable
type of zeolite crystallizes at the expense of the first one. The second
type can also dissolve, and a third type of zeolite nucleates and grows.
Thus, for example, the first type of zeolite (faujasite, pore size 7.4 A) is
replaced by mazzite (28M-4) which is more dense (pore size 5.8 A). At
about 100°C the faujasite displays a maximum yield after approximately
20 h of crystallization time. The mazzite first appears at the time of the
maximurn of the faujasite and reaches a maximum yield after 40 h more
[Rollmann 1979}. If the first zeolite is isolated from the mother solution it
usually remains stable for quite a long time, which is an indication that the
transformation occurs through dissolution and crystallization in the mother
phase. A similar step-like behavior shows the crystallization of amorphous
5i-Ti alloy upon annealing at 500°C [Wang and Chen 1992]. TisSi3, TisSi4,
TiS8i and TiSi; nucleate and grow consecutively. After sufficiently long
annealing the thermodynamically most stable phases TiSiz and TiSi only
are present,

It was Wilhelm Ostwald [1897] who first compiled the available ob-
servations and gave his famous empirical rule according to which the
thermodynamically metastable phase should nucleate first. Then at a
later stage the metastable phase should transform into the phase which
is thermodynamically stable under the given conditions {temperature and
pressure). Thus the formation of the new stable phase should take place by
consecutive steps from one phase to another with increasing thermodynamic
stability. The first theoretical interpretation of this phenomenon, which
is known as Ostwald’s step rule, was given by Stranski and Totomanow
[1933] in terms of the steady state nucleation rate. They showed that more
often the metastable phase should have higher nucleation rate provided the
system has not been transferred very far below the transformation poins.
We will repeat here in more detail their considerations.

We congsider for simplicity the phase diagram given in Fig. 1.1. We know
that the liquid can be undercooled to a considerable temperature without
visible crystallization taking place. This means that the liquid phase can
in principle nucleate and grow from the vapor phase when the system is
supersaturated (undercooled) below the triple point, i.e. along the line AA’
or AA". The liquid phase will be metastable and should solidify at a later
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stage. We have to compare now the steady state rates of mucleation of
the metastable liquid droplets and stable crystallites. The considerations
are valid for any crystallization process which includes more than one new
phase. We will assume for simplicity that the pre-exponential factors X
(see Eq. 2.65) are equal, Bearing in mind Eq. (2.65) for the ratio of the
nucleation rates the following holds:

In (J.,m) _ beoiv?  bmolvh
Jos ETAp2  kTAp? '

where the subscripts s and m refer to the stable and metastable phases,

respectively, and b, and by, are geometric factors. It follows that the

nucleation rate of the metastable phase will be higher or, in other words,

Ostwald’s step rule will be valid, when the first term on the right-hand side

is greater than the second one.

The stable phase is usually more dense 50 v; < vy. On the other hand,
the more dense phase has greater specific surface energy than the less dense
phase, i.e. ¢, > o, as the density of unsaturated dangling bonds on the
surface i3 greater, Near the triple point, or near any point of transformation,
for which the equilibrium vapor pressures (or solubilities) are equal, i.e.
Py = Poyy {of Cos = Com), the supersaturations Ap, = kT In(P/P,,) and
Ap = ETIn(P/Poy) are equal. Taking into account the third power of
the surface energy and the second power of the molecular volume one could
anticipate that the specific surface energy will overcompensate the influence
of the molecular volume and the geometric factors and

b2 > bnad V2, (2.144)

which is the necessary and sufficient condition for Ostwald’s step rule to
hold.

The situation becomes more complicated far from the point of transfor-
mation. As seen from Fig. 2.30, the equilibrium vapor pressvre P,y of the
metastable phase will be greater than that (P,,) of the stable phase. Then
Apy > Ap, at one and the same pressure in the system. Then in order
that Ostwald’s step rule holds (2.144) should be replaced by

B <A@ e

s _ () () v (Be)

G w(E) ()

where

>1. (2.148)
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Fig. 2.30. Part of the phase diagram shown in Fig. 1.1 near the triple point O. The
solid lines denoted by 5V and LV give the solid-vapor and liquid—vapor equilibrium,
respectively. The dashed line denoted by m is a continuation of the LV line in the region
of stability of the crystal phase and gives the equilibrium between the vapor phase and the
metastable liquid phase. As seen, the equilibrium vapor pressure Pom of the metastable
liquid 1s higher than the equilibrium vapor pressure Py, of the stable crystal phase. It
follows that at any temperature T < Ty the supersaturation A, = &T In( P/ Pos) with
respect to the stable phase will be higher than the supersaturation Apm = kT In{ P/ FPom}
with respect to the metastable phase.

The ratio Auy/Apny, is always greater than unity as Py, is always higher
than P,, by definition.

The physical meaning of {2.145) is immediately seen from Fig. 2.31
where the corresponding works of nucleus formation are plotted versus
the actual vapor pressure in the system. The metastable phase begins to
nucleate at a higher vapor pressure P, and initially the work of formation
of nuclei of the metastable phase is greater than that of the stable one.
Beyond some critical pressure P.; the two curves intersect each other and
nucleation of the metastable phase becomes thermodynamicaily favored.
When the vapor pressure is lower than P, but higher than Py, Apip
becomes very small and the ratio Ap, /Ay, can become large. The sign
in (2.145) is changed and the stable phase will nucleate first. At very
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Fig. 2.31. Plot of the works of formation of nuclei of the stable, AG}, and metastable,
A, phases versus the vapor pressure. Py and Pom denote the corresponding equilib-
riun vapor pressures. Both curves intersect at some critical vapor pressure Py;, beyond
which AGY, < AGy. Nucleation of the metastable phase is expected at P > Py

small vapor pressures such that £, < P < Fon, only the stable phase will
nucleate.

The main obstacle in applying Eqs. (2.144) and (2.145) is the lack of
knowledge about the specific surface energies particularly at the interfaces
between condensed phases. One can circumvent this obstacle in nucleation
in melts by using the finding of Turnbull [1950} that the molar surface
energies omo) = aNAvf/ 3 of materials with the same nature of the chemical
bonds are proportional to the corresponding enthalpies of melting [Jackson
1968] (see Fig. 2.15 and Table 2.1). We can assume that the proportionality
constant is one and the same for the different phases and that the nuclei
have one and the same shape, i.e. b, = by,. Recalling Eq. (1.12), Eq. (2.145}

turns into
(1- T/T,)2 Ah,g

(1=T/Twm)? = Abhm
In the case when the melting points T, and T, of both phases are

nearly the same, Ostwald’s step rule will be observed if the corresponding
enthalpies of melting Ak, and Ak, obey the inequality

Ah < Ah, (2.148)

(2.147)

which follows from (2.144).
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The problem becomes mare complicated if the transient effects in nu-
cleation have to be accounted for. The necessity of doing that arises from
the fact that if the induction period of nucleation of the metastable phase
is much longer than that of the stable phase, the metastable phase will
not crystallize although its steady state nucleation rate could be higher.
As shown above the transient effects play a considerable role in nucleation
from solutions and melts, while they can be neglected in nucleation from a
vapor phase. When considering the problem we will follow in general the
treatment of Gutzow and Toschev [1968}.

We will dencte by the subscripts s and m the induction periods of the
stable and metastable phases. It is seen from Egs. {2.122) and (2.123) that
T is directly proportional to the geometric factor b and the specific sarface
energy ¢ and inversely proportional to the square of the supersaturation.
Then the condition r,, < 7; leads to

Ap )2 by o,
1< & - — 2.149
(A“m b O ( )

Then the combination of (2.145) and {2.149) gives rise in principle to
the following four possibilities.
1. Jom > Jos and 7y < 75 (Fig. 2.32(a)):

AYTH 2 b, o bs s ’ Us 2
1< (Aum) < b < b \os o . (2.150)
The above holds when the cube of the ratio of the specific surface
energies overcompensates the square of the ratio of the molecular volumes.

The metastable phase will nucleate first with a higher rate.
2. Jom > Jos and 1y > 7 (Fig. 2.32{b}}:

b, o, A, )2 b, [ o, 3 Vg 2
1< = < < — | = —] . 21581
b Om (Aﬂm b \Om Vm ( )
The metastable phase will nucleate at a later stage but with a higher

rate,
3. Jom < Jos and 1 > 7 (Fig. 2.32(c)):

b o by [ o 3 Uy 2 Apg 2
1< —=2 < — (_,,..) (-——) < (-—~ . 2.152




2.2 Rate of Nucleation 145

NUCLEATION RATE

NUCLEATION RATE
j

NUCLEATION RATE

NUCLEATION RATE
(™
T

TIME

Fig. 2.32. Four possible cases of the time dependence of the nucleation rates of the stable,
Jus and the metastable, Ji, phases: (8} Jom > Jous Tm < 7, (B) Jom > Jous Tm > ey (€)
Jom < Josy T > Ta, (4} Jom < Jos, Tm < 7s. Tm and 1, denote the incubation periods
of the metastable and stable phases, respectively {after Gutzow and Toschev [1968]).

The stable phase will nucleate first and its rate of nucleation will be
greater. Ostwald’s step rule will not be observed.
4. Jom < Jos and Ty < 7 (Fig. 2.32(d)):

b, (o, 3 Yy 2 Ap, )2 by, o,
e (2) (2) < () <kE. e

The metastable phase will nucleate first but its nucleation rate will be
lower. The occurrence of this case requires a drastic change in chemical
bonding and should be a rare event.

The theoretical analysis presented so far leads to the conclusion that
in general the crystallization of the thermodynamically less stable phase is
more prohounced when the square of the supersaturation ratio Agim /A,
is smaller. Bearing in mind {2.146) the latter means that Ostwald’s step
rule will operate when crystallization takes place near the transformation
temperature andfor at very high supersaturations. Going below from
the transformation temperature leads to gradual tramsition from case 1
to case 3.






CHAPTER 3

CRYSTAL GROWTH

One can say that the building units (atoms or molecules) become a part
of the crystal when their chemical potential becomes equal to the chemical
potential of the crystal. As discussed in Chap. 1 the latter is equal at
absolute zero io the work necessary to detach a building unit from the
half-crystal or kink position taken with negative sign. In other words, when
the atoms or the molecules are attached to kink positions or even stronger
(positions 1 and 2 in Fig. 1.15) they become a part of the crystal. In any
other position they are connected more weakly to the crystal surface than
the atoms at the kink position, and their equilibrium vapor pressure and in
turn their chemical potential will differ from those of the bulk crystal. In
this sense the adsorption of atoms on the crystal surface or along the steps
cannot be considered as crystal growth. All this is valid when the crystal
is in contact with a supersaturated ambient phase, i.e. when the chemical
potential of the latter is greater than that of the crystal. In equilibrium the
chemical potential of the adlayer will be equal to that of the crystal and of
the parent phase.

The mechanism of crystal growth is unambiguously determiced by the
structure of the crystal surfaces. S and K faces offer sufficient kink sites
for their growth. F faces can grow without the necessity of overcoming an
energy barrier beyond the roughening temperature. Below this temperature
the F faces are smooth and their growth requires formation of 213 nuclei or
presence of screw dislocations to ensure steps with kink sites along them.
In this chapter we consider first the growth of rough faces or the so-called
normal mechanism of growth. Then the growth of defectless crystal faces

147
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through formation and lateral spreading of 2D nuclei and the spiral growth
of F faces containing screw dislocations are considered separately. In all
cases the peculiarities of the growth from melts, solutions and vapors are
accounted for.

3.1. Normal Growth of Rough Crystal Faces

We consider in this chapter the growth of rough faces without making
distinction for the reason of their roughness. The latter can be due either
to the crystallographic orientation of the face or to the entropy effects
at sufficiently high temperatures. In any case the change of the energy
of a building unit when shifting the latter across the phase boundary
between the crystal and the ambient phase (vapor, melt or solution) has
schematically the shape shown in Fig. 3.1. The lowest energy state at the
left-hand side of the boundary represents the energy of the building unit
incorporated at a kink position whereas the line at the right-hand side
gives the average value of the energy of the unit in the ambient phase.
The difference between both levels gives the enthalpy of the corresponding
phase transition {sublimation, dissolution or melting). The barrier at the
phase boundary with a height AU can have different nature in different
media as discussed in the previous chapter. Thus in growth from vapors
the barrier can be due to preceding chemical reaction, such as the pyrolysis
of silane (SiH,) in Chemical Vapor Deposition (CVD) of Si or arsine (AsHjz)
in Metal-Organic Chemical Vapor Deposition (MOCVD) of GaAs. Mare
complex molecules should overcome an energetic barrier in arder to occupy
the correct orientation, i.e. we have a barrier of steric character. QObviously,
in the growth of simple monoatomic crystals the value of the maximum
should be nearly equal to zero. In the cases of growth in solutions and melts
the energy barrier AU can be identified with the energies of desolvation and
viscous flow, respectively, as discussed in Chap. 2.

Experimental evidence concerning the roughening temperature shows
that metallic crystals in contact with their vapors remain faceted up to
the melting point. Heyraud and Metois [1980] observed {111} and (100)
facets on the surface of rounded gold crystallites on graphite up to 1303 K
(Tw = 1337 K). The same authors [Metois and Heyraud 1982; Heyraud and
Metois 1983] found that with increasing temperature the (111} and {100)
facets on the surface of Pb crystallites on graphite diminish in size but
are still persistent at 300°C (T, (Pb) = 327.5°C). Pavlovska et al. {1989
studied the equilibrium shape of small Pb crystals (10-20 pm) and found
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Fig. 3.1. Schematic variation of the free energy for the thermally activated transfer of
building unita across the interface between the ambient phase and the crystal. The lower
state corresponds to 2 building unit in a half-crystal position. Ak is the correspending
enthalpy of the transition (sublimation, dissolution or fusion). AU is the kinetic barrier
for the incorporation of building units into the half-crystal position connecied with
preceding chemical reactions, desolvation in soiution growth or viscous flow in growth in
melts.

that the most closely packed (111) faces were visible up to the melting
point. The less closely packed (110} face which is an S face disappeared
at 40 K lower than the melting temperature {Frenken and van der Veen
1985]. Tin [Zhdanov 1976}, zinc {Heyer, Nietruch and Stranski 1971] and
copper [Stock and Menzel 1978, 1980] in contact with their vapors did
not show roughening transition up to the corresponding temperatures of
melting. Well-pronounced roughening transitions below the melting point
show usually organic crystals such as dyphenyt (Nenow and Dukova 1968;
Pavlovska and Nenow 1971a, 1971b; Nenow, Paviovska and Karl 1984],
naphthalene [Paviovska and Nenow 1972}, carbon tetrabromide [Paviovska
and Nenow 1977] and adamantane [Pavlovska 1979]. For review see also
Nenow [1984]. We can conclude that crystals of practical importance with
stronger interatomic bonds in contact with their vapors should be faceted
up to the melting point and should grow from vapors by the spiral or 2D
nucleation mechanism, whereas organic crystals should grow by the normal
mechanism at elevated temperatures and 2D nucleation or spiral mechanism
at lower temperatures. We consider first the normal mechanism of growth
from melts.
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The rate of growth is proportional to the net flux of atoms:

2
R=a(3) (s ~i-), (3.1)
where § is the average spacing of the kink sites and {a/8)? is the geometrical
probability of a building unit arriving at the crystal surface to find a kink
site. j; and j_ are, respectively, the fluxes of attachment and detachment
of building units per site of growth to and from the growing surface given
by Egs. (2.93) and {2.94). Substituting (2.93) and (2.94) into (3.1) gives

e () o () (2)
SRS

The term in the square brackets is precisely equal to Au/kT (see
Fq. (1.12)) and

R=av (2) o (-2 )exp (<57 ) [1 -0 (- 35)] -

Rough faces can grow at any supersaturation higher than zero. Bx-
panding the exponent in a Taylor series up to the linear term for small
supersaturations (Ap < kT), the rate of growth becomes directly propor-
tional to the latter:

R = A, AT, (3.2)

2

B = W%‘-‘- (;) exp (w—«é’:—m) exp (-———2—%) (3.3)
is known as the kinetic coefficient for crystallization in melts [Chernov 1984].
As seen the latter depends on the entropy of the phase transition, the energy
barrier AU and the degree of roughness accounted by the probability (a/6)?
to find a kink site. When the average kink spacing § tends to infinity, the
kinetic coefficient and in turn the rate of growth go to 2ero, thus reflecting
the simple fact that atomically smooth crystal faces cannot grow through
the normal mechanism. Expressions similar to (3.2) and (3.3) have been

derived by Wilson [1900] and Frenkel [1932].
As seen the dependence of the growth rate of rough crystal faces on the
supersaturation is linear for small values of the latter. In other words, the
rough crystal surface behaves as the surface of a liquid. The atomically

where
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smooth crystal faces require formation of steps to ensure kink sites along
them. Then the kink spacing & will depend on the step density and thus on
the rate of formation of 2D nuclei or on the distance between the consecutive
coils of the growth spirals. As will be shown below the latter is also a
function of the supersaturation throngh the radius of the 2D nuclei which
is a nonlinear function of the supersaturation. It follows that in all other
cases except for the rough surfaces the growth rate will be a nonlinear
function of the supersaturation.

The theory of normal growth from melts was extended to cover the case
of growth of small rounded crystallites [Machlin 1953]. The derivation is
exactly the same as the one given by Burton, Cabrera and Frank [1951] for
lateral growth of 2D islands (see Sec. 3.2.1.1). The result (see Christian

(1981]) is
R(r)=3(1—:_l) ,

where r* is the radius of the critical nucleus and R is given by Eq. (3.2).
Obvicusly this equation is valid at the initial stages of the crystallization
process when the radius of the growing crystal grain is comparable with
the radius of the critical nucleus. It is importani o note, however, that
according to the above equation smaller crystallites grow more slowly than
larger crystallites. Besides, this equation states that the rate of growth of a
crystallite whose size is equal to that of the critical nucleus is equal to zero.
In other words, such a crystallite is in equilibrium with the parent phase.
For the growth of Si from its melt with As,/k = 3.5, T = 1685 K,
a3-107% em, § = 3a, v = 110" sec™?! and AU/RT, = 3, the kinetic
coefficient has the value 8 = 0.1 cm sec”*K~1. At the same time for the
growth of Ag with As,,/k =1.2, AU/RT,, =1 and 3 2 10 cm sec™ K1,
In the case of growth from solutions the growth fiux is given by

jy = vCu exp (-—%) s {3.4)
where C is the concentration of the solute at the crystal-solution interface
in units of number of molecules in a cubic centimeter and v, is the volume of
a building unit in the crystal phase. The product Cv, ia thys the probability
to find an atom in the vicinity of a kink site.

The reverse Aux is

(3.5)

j— =v{l — Cv;}exp (—M) ,

kT
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where 1 ~ Cv. is the probability that the space around the kink site is free
of solute particles and Ahy is the enthalpy of dissolution.

In equilibriuvm C = Cp (Cp is the equilibrium concentration at a
temperature ') both fluxes are equal and

Ahd _ Co'U.;
ex"( kT ) T 1-Cove | (3.6)

Making use of this relation and Eqs. (3.1), {3.4) and {3.5) gives for the
growth rate

R =B (C ~ Co), (3.7)
where ) Ahs+ AT
_ o sa _ a+
b= o (5) exo ( R ) (3.8)

is the kinetic coefficient for crystallization in solutions.
Replacing Ahg by Cp through (3.6) gives for 3, in the case of dilute

solutions (Cov, € 1)
2 AU
8, = av (%) exp (—ﬁ) . (3.9)

A classical example of normal growth in solutions is the hydrothermal
growth of a-quartz (SiOs) [Laudise 1959, 1970]. Crystals of materials like
sapphire {AlpO3) [Laudise and Ballman 1958], ZnQ and ZnS [Kolb and
Laudise 1966; Laudise and Ballman 1960], yttrium-iron garnet (Y3FesO12)
[Kotb, Wood, Spencer and Laudise 1967) and many others [Demianetz,
Kuznetzov and Lobachov 1984] have also been successfully grown using
thiz method.

The growth is carried out in autoclave at high temperature under high
pressure. Small pieces of the material to be grown are poured into the
lower part of an autoclave in which it dissolves into the solvent. Single
crystal seeds are hanged on a wire of inert material in the upper growth
zone of the autoclave. Part of the latter (usually about 80%) is filled with
alkaline solution of NaOH, KOH or K2 COj3 which improves the solubility of
the crystals. The autoclave is then put down vertically in a furnace which
heats the lower part to a higher temperature as compared with the upper
part where the growth takes place. Both dissolution and the growth zones
are ysually divided by a perforated metallic disk to localize the temperature
gradients. Upon heating the solution fills up the whole volume of the
autoclave. At temperatures 400°C and 350°C of the lower and the upper
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parts, respectively, the pressure usually increases up to 2000 atm. The
material in the lower part dissolves into the solvent and by convection is
transported into the upper part. The solution is saturated in the lower part
at higher temperature and is supersaturated at lower temperature in the
upper part. The supersaturation is thus determined by the difference of
the solubilities Cy and C of the material at higher and lower temperatures,
respectively. Under these conditions the crystals grow at a rate of about 1
to 2 mm per day. The interested reader can find more details in Demianetz,
Kuznetzov and Lobachov [1984].

In the case of growth of a-quartz Laudise [1959] found that the rate
of growth is directly proportional to the difference of the temperatures,
AT, which is in turn proportional to the difference of the concentrations
AC = C - Cy. At a temperature of growth, 347°C, and AT = 50°C a rate
of growth as high as 2.5 mm/day has been measured. The Arrhenius plot
of the slopes of the straight lines R + AT vs the reciprocal temperature
represents a straight line whose slope can be identified by the activation
energy AU. The value 20 kcal/mole has thus been found for the growth
of the (0001) face of a-quartz. The solubilities of the a-quartz at 400°C
and 347°C are found to be 2.43 and 2.28 g/100 g solvent, or 1.43 x 10
and 1.35 x 10°® molecules/cm®. Then for the supersaturation AC/Cp
one obtains 0.059. Bearing in mind that the volume of a molecule is
ve 2 6x10723 ¢m? the approximation Cove = 8.6x 1073 « 1 and Eq. (3.9)
is justified. Then with § = 3e, v = 1 x 10" sec™! and o = 4 x 10~% cm,
By 22 5% 1073 ¢m sec™! and R = 2.5x 107% cm/sec or 2.1 mm/day, in good
agreement with the measured value.

Finally, we will derive an expression for the rate of normal growth in
a vapor phase. The direct flux of atoms per kink from the vapor phase
towards the growing crystal is

A AU
4 = Grmiryi® P ( kT) ’ (3.10)

where P/(2rmkT)}/2 is the flux of atoms per unit area and a® is the area
of a kink.
The reverse flux is given by

Ah, +AU)

j- = vexp (-— T (3.11)
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In equilibrium (3, = j_) P = P,, and

Po o _ _ A,
(zﬂka)I/ZG _uexp( kT) . (3.12)
Then

| = _—Poo a2e'x _é..g

== rmkTiz® TP\ TAT
and

R=3,(P~ P}, (3.13)

where

av gay? Ahy + AU
6‘"}":(3) e"p(“ KT )

an? a? AU
B —5) (27mkT)V/? &P (_ﬁ) (314)

is the kinetic coefficient in vapor. BEquation (3.13) with (3.14) has been
derived {without the kinetic barrier AU and the degree of roughness {a/6)?)
as early as the end of the last century {Hertz 1882] and the beginning of
the present one [Knudsen 1909j. For dyphenyl with § = 3, a® = 2.17 x
10722 em®, m = 2.56 x 10722 g, AU/kT = 1 and T = 68°C {Ty, = 69°C),
By =1x 107 cm3sec~tdyne~!. Then with P,, (T = 68°C) = 1 Torr =
1333 dyne/cm? and P = 1343 dyne/cm?, AP = P - P,, = 10 dyne/cm?®
ahd R = 10 pum/sec.

Comparing {3.3), (3.9) and (3.14) leads to the conclusion that in all cases
the kinetic coefficient is proportional to the surface roughness in terms of
the probability to find a kink, (a/§)?, aud to the exponent of the activation
energy for incorporation of a building unit into the crystal lattice, AU.
Then the latter can be determined from an Arrhenius plot of the kinetic
coefficient versus the reciprocal temperature as this is done in the case
of hydrothermal growth of a-quartz. Moreover, for growth from solutions
and vapors the rates of growth are of the order of micrometers per second
whereas from melts the growth rates are several orders of magnitude higher.
A detailed analysis of the theoretical models of the normal mechanism of
growth of atomically rough crystal surfaces is carried out by Rosenberger
[1982] (see also Christian {1981}).
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3.2. Layer Growth of Flat Faces

When the crystal face is atomically smooth its rate of growth or, in other
words, the velocity of its shift parallel to itself, is determined by two
independent processes: (i} formation of steps and (ii) lateral movement of
these steps. One or the other of these processes can determine the overall
rate of growth. In the case of a defectless crystal face the rate of growth
is determined by the frequency of formation of 2D nuclei. The latter is
an energetically activated process and a critical supersaturation should be
overcome for the growth to take place. When screw dislocations are present
they represent a nonvanishing source of steps and the process of growth is
no longer limited by step formation. Then the rate of growth is determined
by the rate of lateral movement of the steps, which in turn depends on their
height and structure, rate of surface diffusion, interaction of the steps with
each other, the encounter with crystal defects, impurity atoms, etc.

In the general case any small part of the crystal surface can be considered
a8 a vicinal face consisting of a train of parallel steps with arbitrary height
divided by smooth terraces which are parallel to the nearest singular face.
When the rate of growth is determined by 2D nucleation, pyramids of
growth are formed during growth by the formation of 2D nuclei one upon
the other (Fig. 3.2). The side surfaces of these pyramids can be considered
as vicinal faces, Hillocks with vicinal side surfaces are also formed during
the growth in the presence of screw dislocations (Fig. 3.9{d)). When single
crystal walers are prepared from bulk single crystals through cutting and
polishing, they can never be cut perfectly parallel to the singular faces and
thus they offer in fact vicinal surfaces for further growth for geometrical

4

Fig. 3.2. Pyramid of growth consisting of 2D islands formed one on top of the other.
The side surface of such a pyramid represents, in fact, a vicinal surface. The slope of
the vicinal is determined by the rates of 2D nucleation and step propagation.
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The rate of layer growth of the crystal face R in a direction normal to
the singular face or to the surface of the terraces depends on the velocity
of the step advance v and the density of the steps p

R=pv, (3.15)

where p = A/A = tan# is the slope of the vicinal given by the ratio of the
step height h and the step spacing X (Fig. 3.3). The velocity of growth of
the face V' parallel to itself will be given by V' = Recos#, where # is the
angle the particular part of the crystal surface makes with the singular face.

by

R|

o)
9
’:‘,'

Fig. 3.3. For the determination of the rate of growth R of a vicinal surface tilted by an
angle # with respect to the nearest singular face in a direction normal to the latter. The
quantity V' = Rcosd is the rate of growth of the vicinal surface parallel to itself.

Note that the angle # and in turn the step density depends in general
on the source of the steps and on the kinetics of growth, i.e. on the
supersaturation. In the case of 2D nucleation growth the step distance
(Fig. 3.2) depends on the rate of 2D nucleation. The higher the super-
saturation (the smaller the specific edge enetgy} is the greater the rate of
2D nucleation will be. Then 2D nuclei are formed at an earlier moment
on top of the underlying 2D islands and the step spacing is smaller. The
same is true for the case of spiral growth where the step distance is directly
proportional to the radius of the 2D nucleus which is inversely proportional
to the supersaturation. As will be shown in the next section the velocity
of step advance v is also a function of the step density p and it is our first
task to find expressions for v in any particular case of growth from vapor,
solution or melt.
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3.2.1. Rate of advance of sieps

The height of the steps on the crystal surface can vary in general from one
atomic diameter {monoatomic steps) to several atomic diameters (poly-
atomic steps), and finally to hundreds and thousands of atomic diameters
(macrosteps). In fact the latter represent ledges or even small crystal
faces which are often easily visible, The formation of macrosteps from
monoatomic steps can be easily explained bearing in mind that the higher
the step i3 the lower its rate of advance will be. The latter is due to
the fact that a polyatomic step requires a higher flux of atoms in order
to move the same rate as monoatomic step. Two monoatomic steps can
meet each other as a result of local fluctuation of the supersaturation or of
the concentration of impurity atoms on the one hand, or of encountering
lattice imperfections on the other. If such an event takes place irrespective
of the cause a double step is formed whose rate of advance will be smaller
than that of monoatomic step because it requires twice as great a flux of
atoms in order to move at the same rate as a monoatomic step. Then
a third monoatomic step will catch up with the double step to form a
triple height step. The process continues up to the moment a macrostep is
formed. Thus the initially smooth crystal surface {or the vicinal face} can
under certain conditions break up into hills and valleys. These processes
are usually described in terms of kinematic waves and shock waves by the
kinematic theory of crystal growth [Frank 1958b; Cabrera and Vermilyea
1958; Chernov 1961]. On the other hand, the macrosteps are dissipative
structures in the sense that they can turn into monocatomic steps again
under certain conditions [Chernov 1961; Bennema and Gilmer 1973].

In general macrosteps are permanently present on the crystal surfaces.
Their contribution to the overall rate of growth should not be great because
of the smaller rate of advance. That is the reason to begin our presentation
witk the rate of advance of monoatomic steps. As in the case of normal
growth of atomically rough faces we will consider separately the growth
from different ambient phases — vapors, solutions and melts.

3.2.1.1. Growth from vapor phase
A. Elementary processes on crystal surfaces

Consider a vicinal crystal face {vicinal side of a growth hillock or a pyra-
mid due to consecutive 2D nucleation, see Figs. 3.2 and 3.9) below the
roughening temperature in contact with its own vapor. We assume that
the steps are with monocatomic height. Now we are not interested in the
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origin of the steps — 2D nuclei or screw dislocations. The overall process
of growth includes the following separate elementary processes (Fig. 3.4):
(i) adsorption of atoms from the vapor on the terraces between the steps
which gives rise to a population of adatoms, (ii} surface diffusion of the
adatoms towards the steps and (iii) incorporation of the adatoms in the
kinks along the steps which leads to advancement of the steps and hence to
the growth of the crystal in a direction normal to its surface. The overall
process of evaporation consists of the same elementary steps taken in an
opposite order. We neglect the direct impingement of atoms on the steps
from the vapor phase. It is easy to show, as in the case of heterogeneous
nucleation from vapor, that the flux of atoms from the vapor phase going
directly to the step is much smaller than the flux of atoms diffusing on the
terraces to the step. (The coupled volume and surface diffusion problem
has been treated by Gilmer, Ghez and Cabrera [1971]).

Fig. 3.4. Schematic view of an isolated single height step growing through surface
diffusion. j, is the flux of atoms from the bulk vapor phase towards the crystal surface,
7a 18 the flux of adatoms diffusing to the step and &g is the average spacing between kinks
of any sign. A, is the mean distance covered by the adatoms during their life time 7, on
the surface.

Under conditions of equilibrium of the crystal with its vapor phase, the
fluxes of adsorption, Po,/{27mkT)'/?, and desorption, ns/7,, of atoms are
equal so that the adatom concentration n, has the equilibrium value

Poo

= GrmkT)yiiz (316)

s
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where P, is the equilibrium vapor pressure of infinitely large crystal, m is
the mass of the atoms and 7, is the mean time of residence of the adatoms
on the crystal surface before being re-evaporated and is given by

Te = ie:\cp (fﬁdﬁ) , (3.17)

where v is the vibrational frequency of the adatoms normal to the surface
and 4. s the activation energy for desorption of an adatom from the
crystal surface.

Substituting P, from (1.58) and +; from (3.17) into {3.16) for n,, one
obtains

(3.18)

fige = Np exp (“‘PI/Z - wden) ,

kT
where Ny combines the entropy factors in (1.58), but for simple crystals
is of order of the number Ny = 1/a® per unit area of adsorption sites on
the crystal surface (= 10'® cm™~2), a being the mean distance between the
adsorption sites. The difference /2 — W4e gives the energy required to
transfer an atom from a kink position on the flat surface. In other words,
Eq. {3.18) expresses also the equilibrium kinks adlayer, as at equilibrium
the fluxes from the adlayer to and from the kinks are equal.

The mean distance the adatoms can cover during their lifetime on the
surface is

A = (Ds'rs)llz ’ (3'19)
where D, is the surface diffusion coefficient:
.2 _“Pad
D, =a%u_ exp( kT) . (3.20)

Here i£,4 is the activation energy for surface diffusion and v is the vi-
brational frequency of the adatoms parallel to the erystal surface. Assuming
V| = V=SV,

Pdes ™ Psd
As = G exXp (——27:?—) . (3.21)

The desorption energy «aes is always greater than the diffusion energy
barrier @5 (des = 3y for (111) face and paes = 44 for (100} face of
fcc crystals while @,q < ). Then A, » a. In order to evaluate A, we
neglect .4 in comparison with yg... Considering the case of Ag at 1000 K
{(¥/kT = 5) we find A,(111) = 2- 10%a and A,(100) = 2- 10%a. We see that
As is much greater than the mean distance between the kinks, & = T7a,
under the same conditions. For (111) face of Si at the melting temperature
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Ay = 2-10% > 8y = 3.5a. As seen, the more closely packed the surface is
the smaller is A; and the smaller is the equilibrium adatom concentration
Ree. Thus for Ag, n,.(100) = 2- 1073 Ny, but ne (111} =2 - 107" Ny,

B. Kinetic coefficient of o step

We will perform the same considerations concerning a single step as for
a rough crystal face. Going back to Fig. 3.1 we identify the left-hand
energetic level with the energy of an atom at a kink position as before.
The upper right-hand side level is identified this time with the energy of an
atom adsorbed on the smooth part of the ¢rystal face. Then the difference
between the two levels, Ak = AW = ;5 — Pdes, gives the energy required
to transfer an atom from a kink position on the flat surface. The energy
barrier AU has the same meaning as before.
The flux of adatoms related to a kink site {sec™!) towards the step is

AU

iy = 2 - — 3.22

1+ Vg d exp( kT) 1 ( )

where 7y is the adatom concentration in the step’s vicinity and a? is the
area of a kink site.

The flux of atoms leaving the kink sites to be adsorbed on the crystal

face is
. pex AW + AU
J-= e T '

In equilibrium (j,. = j—) the adatom concentration attains its equilib-
rium value n, given by Eq. (3.18).
The rate of step advance is given by

(3.23)

Voo = 834 ~ 3-) | (3.24)
[}

where a /6 is the probability to find a kink site and &g is the kink spacing
defined by Eq. (1.74).
Substituting j; and j- from (3.22) and (3.23) into (3.24) for vy, one
obtains
Voo = 2078t (Mgt = Mge) (3.25)

where the factor 2 accounts for the arrival of atoms from both the lower
and upper terraces to the step and

AU
Bet = av%up ("ﬁ) (3.26)
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is the kinetic coefficient of the step or the rate of crystallization in complete
analogy with the kinetic coefficient of the crystal face (3.14).

Wa define the rate of diffusion as the mean distance ), divided by the
mean residence tims 7,:

As _ D, _ Pdes T Pad
W “”‘"‘P( T (3.27)

Obviousty, when the rate of diffusion is much lower than the kinetic

coefficient of the step, D

A—: € Bt {3.28)

which is equivalent 10 @des + Pa > 28U + 2w, the velocity of step advance
will be determined by the process of surface diffusion. In other words,
surface diffusion is the rate controlling process. It is said that the crystal
grows in a diffusion regéime. If this is not the case, i.e. when

% > B (3.29)

OF Pdes +sd < 2AU+ 2w, the processes taking part when the building units
are incarporated into the kink sites determine the rate of step advancement
and the crystal face grows in a kinetic regime.

C. Rote of advance of o single step

We consider a part of the crystal face containing a single monoatomic step
confined between two infinitely wide terraces (Fig. 3.4). The vapor pressure
is P > P, and the supersaturation is given by
Ap P P
— = _ — a2 —1l=ag~-1 3.30
7= TF ln(Pm) e l=o (3.30)
for P slightly greater than P, (a = P/Fy).
The adatom population in equilibrium with the vapor phase with pres-

sure F is
Pr,

=TT am . 3.41
s = @amkT)Iz = e (3:31)
The supersaturation in the adlayer is defined as
as=nﬁ“——1=as—1, (3.32)

where o = 1, /fige.
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Note that o, is a function of the distance ¥ normal to the step (Fig.‘ 3.4)
whereas o is constant all over the surface.
The flux of atoms diffusing on the surface towards the step is

dn dox
"d?s - —-Dsnse—a‘; .
We introduce the potential function ¥ = ¢ — 0y, = & — ay. Then the

rface fl ad
surface flux reads 4o

Js = Dsnse@

js =D,

'or, in a more general form,
Js = Dinge gf&d . {333)

The net flux of atoms arriving from the vapor phase on the crystal

surface is
P Ny Nage

ME kD) T, T
Assuming the movement of the step can be neglected in diffusion prob-

lems (the justification will be given below) the equation of continuity of ¥
reads

T, (3.34)

div j; = jv , {3.35)
which in the case of diffusion in one direction is equivalent to
s ()
dy =Jv

The latter is simply the condition for the adatom concentration at &
given distance ¥ from the step to have a time-independent (steady state)
value, In other words, the difference of the surface fluxes to and from a strip
parallel to the step with a width from y to ¥ + dy must be compensated by
the arrival of atoms from the vapor phase.

Then

Dynge div (grad ¥) = n—:f-'I' .
L]

The latter can be rewritten in the general form [Burton, Cabrera and

Frank 1951]

MAY =T, (3.36)
where the symbol A denotes the Laplace operator
2 2
NN N0 (337

dz?  dy? " d2?
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Equation (3.36) is the governing equation which must be solved subject
to various initial and boundary conditions for different symmetries and
physical conditions.

Several physical possibilities should be considered when approaching the
problem of the rate of advance of an isolated step:

(i) The mean path A, covered by the adatoms during their time of
residence 7; on the crystal face is much larger than the average kink spacing
ép. Physically this means that the step acts as a continuous trap for the
adatoms. The master equation (3.36) is then reduced to the equation of
linear diffusion (see Fig. 3.4)

dz
Af@? 0. (3.38)

(ii) The mean path ), covered by the adatoms during their time of
residence 7, is smaller than the average kink spacing §;. The adatoms
diffuse directly to the isolated kinks. The diffusion problem is solved in
polar co-ordinates as the diffusion field has a circular shape. A solution in
terms of Bessel functions is obtained [Burton, Cabrera and Frank 1951).

{iit) The mean path A; covered by the adatoms during their lifetime is
again smaller than the average kink spacing 8y but the adatoms diffuse on
the crystal surface to join the edge of the step and then diffuse along it to
be incorporated into the kinks [Burton, Cabrera and Frank 1951).

As has been shown in Chap. 1 the steps are rough long before the
critical temperature is reached and the condition A, 3> & is practically
always fulfilled. It follows that case (i) is the most probable one. As for
the remaining cases the reader is referred to the original paper [Burtonm,
Cabrera and Frank 1951] as well as to the review paper of Bennema and
Gilmer [1973] for more details.

We solve first the particular case (3.38) of linear diffusion to a single
isolated straight step. In order to find a solution of the master equation
{3.36) we have to specify the boundary conditions. At a distance large
enough from the step the adlayer is unaffected by the presence of the step
and n, = an.e (BEq. 3.31). Then o = ¢y, and ¥ = 0. In the near vicinity of
the step {y — 0) the adatom concentration is determined by the processes
of attachment and detachment of adatoms to and from the kink sites. If the
activation energy AU is negligible the kinetic coefficient will be large enough
and (3.28) will be fulfilled. Then the exchange of atoms between the kinks
and the adlayer will be rapid enough and the concentration of adatoms in
the near vicinity of the step will be equal to the equilibrium concentration
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Nye. Then o, =0 and ¥ = o. In the opposite case of considerable value of
AU, the kinetic coefficient of the step will be very small and the condition

(3.29) will hold.
In the general case at y =0,

Rat ~ Mae

O = Ogg = ———=— ,

Mlse

Then ¥ = o ~ g = xo where [Bennema and Gilmer 1973]

T Oy
X i o 1
whence
o =0l —Xx).

Equation (3.25) becomes
Voo = Qazﬁatnsea(l - X) .
The golution of Eq. (3.38) subject to the boundary conditions

y=0, ¥ =xo,
y — %oo, =90

reads

¥ = yoexp (:f:-y—) .
As

where the «+ and — signs vefer to y < 0 and y > 0, respectively.
Then the rate of advance of the single step,
v — Js ('y = ()
ad No 1
is

Yooy = 2xo‘a2nse% = 2yT AV exXp (_%%2_) .

{3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Equation (3.41) has been derived under the assumption that ny is
the adatom concentration in the near vicinity of the step. We did not
specify what was the reason for the deviation of the concentration from its
equilibriurn value. Then we can determine the parameter x by equating

the expressions (3.41) and (3.43) to obtain

D, ) -
={1+ .
X ( )‘sﬁst

(3.44)
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As seen the unknown parameter x depends only on the ratio of the rate
of diffusion D,/), and the rate of crystallization G-
Finally for the rate of advance of a single step one obtains

-1
Voo = 20X,v €Xp (—%) (1 + X%‘_) . (3.45)
s/'st

Applying the condition (3.28) leads to the expression

Voo = 20 Mgt exp (-% (3.48)
valid for the advance of the step in a purely diffusive regime. The condition

(3.29) leads to Eq. (3.41) with x — 0:
Voo = 202 By Mo | (3.41)

which describes the behavior of the step in a kinetic regime and where
the adatom concentration around the step is defermined solely by the
processes haking part at the step edge. No diffusion gradient exists in
this case and the adatom concentration preserves the value n, determined
by the adsorption—desorption balance all over the crystal surface except for
a narrow strip around the step. It is seen, however, that in both cases the
rate of advance of an isolated step is a linear function of the supersaturation
g.

The movement of the step, when solving the diffusion problem, can
obviously be neglected when the mean velocity of the motion of an adatom
on the surface, vggx = ), /7., is much greater than the rate of advance of
the step, Voo = 20 Dynyea?/As. The ratio v fugin = 20n4e /Ny is obviously
smaller than unity as the supersaturation o < I and the equilibrium adatom
concentration n,. is usually a small part of the density of the adsorption
sites Ny {Bennema and Gilmer 1973},

D. Rate of advance of o train of paralle! steps

We consider a train of parallel equidistant steps as shown in Fig. 3.5 where
¥o i8 the step separation. We again assume that A, >» §. Obviously, the
adatom concentration has its maximum value at the midpoint between the
steps so that (dn,/dy)y=0 = 0 (the distance y being measured from the
midpoint between the steps) or (d¥/dy)y=¢ = 0. The concentration in the
near vicinity of the steps is again equal to n, and T(y — Zyp/2) = xo.
Then the solution of Eq. (3.38) reads
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Y
hi 2
COos ( /\s)
Yo
cosh (H--—z X )

D Yo Y12 Yo

= Tn. 2y = ERTE) 29,

Voo = 2XTR2 Nse . anh (2/\5) 2yaAsvexp ( T ) tanh (2z\.
(3.48)

U =xo (3.47)

and for v., one obtains

which reduces to (3.43) when yg — o0,

Fig. 3.5. Train of parallel equidistant steps spaced at a distance yp from esach other.
To solve the diffusion problem it is convenient to consider distances from the midpoint
between the steps.

Bearing in mind that in a kinetic regime the adatom concentration on
the terraces between the steps is not affected by the presence of the latter
and the steps do not interact with each other through the diffusion fields,
we can perform the same operation as the above to find an expression for
x. Equating (3.41) and (3.48) gives

- D, Yo -t
X = [1 34, fanh (ms)]

and

o tanh (;—)‘0-)
Voo = 20U A, €XD (— kl,;z) 5 = ” . (3.49)
1+ —=- tanh w--t-’-)
f\a ﬁst (ZAS

It is immediately seen that the condition (3.28) leads to an expression
valid for the purely diffusion regime of growth:

Voo = 20 Ag1 €Xp (—%—%) tanh (é’i}%—) , (3.50)
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whereas the condition (3.29) leads again to Eq. (3.41") for the kinetic regime
of step advance.

The hyperbalic tangent tanh{z) initially increases linearly with its ar-
gument z, and at large enough values of the latter (x > 2} il goes
asymptotically to unity. So if the step distance y, is sufficiently larger than
the mean free path A; of the adatoms on the crystal surface tanh(yg/2)\) —
1 and the adatom concentration in the middle parts of the terraces far from
the steps will be unaffected by the presence of the latter, i.e. it will be
equal to n, = P(2rmkT)~*/*r,. The diffusion fields will not overlap, the
steps will not interact with each other and the rate of step advance will
be equal to that of the isolated steps. Equation (3.49) reduces to (3.45)
and Eq. (3.50) reduces to (3.46). At the other extreme yo/2A, — O (it is
enough if y /2A, < 0.1), the hyperbolic tangent can be approximated by its
argument and Eq. {3.50) turns into v, = voyy exp(—wy/e/kT). As will be
shown in the next chapter, the step separation y, is inversely proportional
to the supersaturation and v,, = const. Physically this means that the
overlapping of the diffusion fields is so strong that the adatom concentration
on the terraces between the steps is practically equal to the equilibrium
adatom concentration n,. and the diffusion gradient becomes equal to zero.
The steps move under conditions which are very near to equilibrivm and
their rate of advance ceases to depend on the supersaturation.

E. Rate of advance of curved steps

We consider the rate of lateral growth of a circular 2D cluster with radius
p- Its shape is determined by the differences in the velocities for different
orientations, If the velocity is orientationally independent the shape will
be circular.

The flux of atoms towards the curved step will be given now by

j+ = %‘eunstaz exp (-—%g-) , (3.51)
where 27p/6p is the number of the kinks at the island’s periphery.

In order to find the reverse flux we recall that the equilibrium of
small 2D islands with the parent phase is determined not by the work of
separation from the half-crystal position, but by the mean separation work
@z (Bq. (1.65)). Then the work to transfer an atom from a kink position
along the edge of the 2D island to the adlayer on the terrace will be given

by
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st »ma?

AW(p) = P2 ~ Pdes = 912 — > Pdes = AW — v (3.52)

where s is the specific edge energy of the step (Eq. (1.67)). In fact Eq. (3.52)
reflects the erhanced chemical potential of a cluster of finite size, or in other
words, the Thomson-Gihbs effect (see Eq. (1.667)).

The reverse flux reads

2mp . p(_AW(p}+AU) .

== 5 kT (3.53)

At equilibrium both fluxes are equal, g = Ne{p), and the equation of
Thomson—-Gibbs for the two-dimensional case

2
Nge{p) = N exp (— A‘;CVTEP)) = Tlge BAD ([%) (3.54)

results where ny. is given by {3.18).

Assuming the 2D island is large enough {low supersaturation) the net
fluxes from the upper surface of the island and the surrounding crystal face
to the circular step should be equal. Then the radial velocity of the step
advance will be

o d+ — -
v{p) = 2———-—2“ N,
and
v(p) = 20*Bus [ar ~ ue(p)] (3.55)

where the kinetic coefficient Jy is again given by {3.26). As seen, (3.55)
reduces to (3.25) when g — 0. Bearing in inind that ng(p) > fee it
follows that the velocity of advance of a curved step is smaller than the
rate of advance of a straight step under the same conditions.

The difference n,, — n..{p) can be rearranged as follows:

Mgt~ Nge(P) = Tge [(n’“ - 1) - (M - 1)] = Nge[oa — o (p)]

Tige flge

= ne{lo — o(p)] = o — 7)) = nuccr (1 2o x) |

The radius p. of the critical radius is defined by the Thomson~Gibbs
equation {1.66')

»wa®

o= Ko

(3.56)
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From (3.54) and (3.56) it follows that

ale) _ Pe
o p
and finally
v(p) = 2&263';11“0' (1 - %: - X) . (357)

The diffusion equation (3.36) in polar coordinates reads
2¥(r) N 1d%(r) _ T(r)

dr? r o dr Az (3.58)

where ¥(r) = ¢ — 0,(r), and is subject to the boundary conditions ¥(r —

) = 0, [d¥(r)/drlr=0 = 0 and ¥(r = p) = U{p) = ¢ — ou(p) = X0
{Gst(p) = Nyt /7se ~ 1). The solution of (3.58) reads

¥(r) = \I'(p)ﬁ-)—

“(3)

where Ig{z) and Kp(x) are the Bessel functions of the first and the second
kind with imaginary argument.
The flux of atoms towards the edge of the cluster is

forr<p, (3.59")

T(r) = ©(p} forr>p, (3.59")

. _ d¥ _ 21
Ja (P) = 27pD e ("F) — = 4T Phge N lI‘(p) ' (360)
where the formulae I{z) = I{z), Ki{z) = —Ki(z), Li{z)Kp(z)+

Io(z)Ky{z) = 1/z and the approximation Io(x)Ko(z) = 1/2z valid for
x > 1 have been used.
The radial velocity of advance of a curved step is then
3:{p)

D
I R ,
v{p) = 2mpNg 2a*n,.xo i (3.61)
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From {3.57) and (3.61) one obtains
Pe D, )_1
=1-—=}J1{1+-—
X ( Iy ) ( As B
_ _¥i2 _Pe p, !
v(p) = 20X vexp ( o7 ) (1 - ) (1 + )\sﬁn)

2(p) = Vog (1 - %—) , (3.62)

and

or

where v, is the rate of advance of a straight step given by (3.45).

Finally, for the interesting case of growth of concentric circular clusters
with edges spaced yy from each other the rate of advance will be given by
(see Eq. (3.49)}

Yo
tanh [ =——
w12 (2)\3) _ P
kT)1+ B twh(ﬂ) 1-%). (3.63)
As.ﬁsﬁ. 2)‘4

This is a general expression for the rate of advance of monoatomic steps.
All limiting cases of curved and straight steps or train of steps in both
diffusion and kinetic regimes of growth can be easily derived from it.

v(p) = 20 vexp (—

3.2.1.2. Growth from solutions

In the case of growth from solutions the supply of growth units takes place
predominantly through diffusion in the bulk of the solution [Burton, Cab-
rera and Frank 1951; Chernov 1961] although there is evidence that the
growth units reach the growth sites at least partly by surface diffusion
as well [Bennema 1974; Vekilov et ol 1992; Zhang and Nancollas 1990].
The problem of growth by surface diffusion resembles very much that from
vapors, and in the following presentation we will take into consideration the
bulk diffusion only. The problem of propagation of steps simultaneously by
surface and bulk diffusion has been treated theoretically by Van der Eerden
[1982, 1983).

The solutions are usually stirred. I the solution is still, the exhaustion
of the solution near the growing crystal will give rise to convection flows.
Thus in all cases the solution moves with respect to the growing crystal.
When a fluid moves tangentially to a plane surface the velocity of the
fluid decreases towards the surface and in the near vicinity of the latter
an immobile boundary layer is formed as shown in Fig. 3.6 [Schlichting
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1968). The latter is frequently called a stagnant layer. The thickness of the
stagnant layer depends on the velocity of the fluid, ¢, its viscosity # and
density p, and the distance z from the leading edge of the crystal surface
according to the approximate formula

X e

Fig. 3.6. Schematic representation of the stagnant boundary layer above the surface of
a crystal in a tangentially moving fluid. The arrows give an impression of the decrease
of the velocity of the fluid when approaching the crystal surface. The thickness of the
stagnant layer d depends on the distance z from the leading edge of the crystal face.

For values of the parameters involved, typical for aqueous solutions at
room temperature, n =1 x 102 gcm™sec™!, p=1gem 3, 9 =40cm
sec™! and z = 0.1 cm, d = 0.25 mm. The abovementioned formula gives
only a qualitative indication as the real situation in stirred solution or
around rotating crystal can be quite different. The concept of stagnant
boundary layer is also widely used for the description of processes taking
part in reactors for Chemical Vapor Deposition (CVD) [Carra 1988}.

It is usually assumed that within a stagnant layer the transport of the
growth species to the surface of the erystal oceurs by diffusion, while at the
upper boundary of the layer the concentration of the solute is maintained
constant and equal to the bulk concentration C,,. Assuming again that
the rate of the movement of the steps is sufficiently smaller than the rate of
diffusion the concentration of the solute in the boundary layer is described
by the equation of Laplace AC = 0, where A is the Laplace operator.
When considering the movement of a single step as a result of incorporation
of growth units into kink sites along the step, the mean kink spacing is
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obviously much smaller than the thickness of the boundary layer. Then the
step acts as a linear sink for the growth units and the diffusion field has the
form of a semicylinder oriented with its axis along the step (Fig. 3.7). It is
thus convenient to express the Laplace equation in cylindrical coordinates:

d*C 1dC _
&t o dr
where + is the radius vector. When we consider the growth of a vicinal
crystal face with equidistant steps we have to take into account the over-

lapping of the diffusion fields as is shown in Fig. 3.8 [Chernov 1961]. We
will consider these two cases separately as was done above.

0,

Fig. 3.7. Cylindrical symmetry of the volume diffusion field around an isolated step. The
distance from the step is characterized by the radius vector r.

Fig. 3.8. Schematic view of a train of parallel steps alang the y direction spaced at an
average distance yo. The transport of building units through bulk diffusion takes place
along the solid lines. The dashed lines represent surfaces with equal solute concentration.
Far from the steps at the upper boundary d of the stagnant layer the solute concentration
Coo i8 equal to that of the bulk of the solution (after Chernov [1961]).
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A. Rate of advance of a single step

‘We consider this simpler case for illustrating the approach. A solution of
the Laplace equation is the function [Carslaw and Jaeger 1960]

Clry=Aln(r)+ B , (3.64)

which can be verified by inspection and where A and B are constants. The
latter can be found from the boundary conditions '

r= E:F C=Cq, (3.65")
r=d, C=Cau, (3.65")

where Cy and C,, are the concentrations at the step vicinity and the upper
boundary of the stagnant layer or in the bulk of the solution, respectively
(Fig. 3.8).

The condition (3.65') means that we approximate the step with height
@ by a semicylindrical surface of radius » = a/x. The condition (3.65")
as it is written means that the concentration has the value C,, at the
semicylindrical surface with radius r = 4. As there are no other steps
nearby and therefore no other sinks for the solute species, this condition is
a direct consequence of the assumption that the transport occurs by volume
diffusion towards the sites of growth. In other words, there is no flux of
atoms to other parts of the surface, and the concentration far from the step
is constant and equal to C in all directions.

Then for the concentration profile around the step one obtains

T
C(r) = Coo — (Coo — Cu) o (ff)

. (3.66)
()
The rate of the step advance is
Voo = v D} ac = —W—Us—?g'—q-xa ) (3.67)
dr / _a ( d)
=7 aln w;

where v is the volume of a growth unit in the crystal, D is the bulk diffusion
coefficient and Cj is the equilibrium concentration of the solute at the given
temperature. ¢ = Co/Cp — 1 is the supersaturation, oy = Cyu/Cp — 1,
x = (0 — oa)/o and Cop — Cy = xCpo in complete analogy with the
pravious case.
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On the other hand,
Voo = Bste(Cse = Co) = Bet Coveoa = BaCovea(l — x) {3.68)
where
A = av 2 ex —ﬂ
e TP\ TwT

is the kinetic coeflicient of the step, in complete analogy with that of the
crystal face (Eq. 3.9). As seen, the only difference is in the dimensionality
of the probability to find a kink site.

Equating (3.67) with (3.68) gives

a3 In (wé)
[

X= d
70+ afs In (w——)
a
and
v = PtCOVO (3.69)
1+ af In (wg
xD a

As before, when the rate of diffusion, =D /e, is sufficiently greater than
the rate of crystallization, 3., the latter controls the rate of the step
advance. The latter is given in the kinetic regime by

Voo = FaCoveo . (3.70)

At the other extreme of the diffusion regime (7D /a < B4t),

== %U (3.71)

7 en ()
aln [ r—
a

and v, 18 a linear function of the supersaturation as in the case of vapor
growth.

B. Rate of advance of ¢ step in o train of steps

This problem was solved for the first time by Chernov [1961]. The solution
of the Laplace equation AC = 0 (see Fig. 3.8 for the orientation of the
coordinate system) subject to the boundary conditions
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=0 and zr=d, C=Ca., (3.72)
y=0 and z= f—r C=Cy (3.72")
reads
. x 12
C=Al [sin2 (—y) + sinh? (—z)] + B, {(3.73)
Yo Yo
where A and B are constants:
A= — - dc“? ~ O o — Cs; T (3.74)
In [sinh (—-)] ~In [sinh (—)] In [y—c' sinh ( )]
o o @ Yo
B=C,+Al [sinh (Z—d)] , (3.75)
[i]

where the approximation sinh(a/yo) 2 a/ys (2/ye € 1} has been used.

The function sin(wy/yq) in (3.73) reflects the periodicity in C due to the
sequence of equidistant steps. The hyperbolic sine sinh(wz/y,) accounts
for the dependence of C in a direction normal to the growing surface.
It is immediately seen that {3.73) reduces to (3.64) at y = 0 and large
distances between the steps so that sinh(wz/y0) = w2z/ys. The boundary
condition (3.72'), C = C, is, strictly speaking, valid for z = d at any y.
As discussed by Chernov [1961], when wd 3> yo the concentration does not
depend anymore on y for large values of z and the condition C{0,d) =C
becomes equivalent to C(d) = Co. In the opposite case where nd € yo we
have in fact steps far apart and the solution for single step is valid.

In order to calculate the rate of step advance we have to find the concen-
tration gradient dC'/dr. The latter is given by dC/dr = {(dC/dz)(dz/dr) +
(dC/dy)(dy/dr), where dz/dr = 7/z, dy/dr = r/y and r = (y? + 22)1/2.
Making use of (3.67) and the above relations, we find that (dC/dr),—asr =
w4/a and

7 DCoxo

" e [Ean (F)]

Equating (3.68) and the above expression gives

afs In [—a- sinh (Z:)]

x =
oD+ afgln [-—— sinh (Wd)]
a Yo




176 Crystal Growth

and finally
Voo =~ VeluCoo — - (3.76)
14 2 [@- sinh (—-)]
D a Yo

It is immediately seen that the condition 7d/yp <« 1 reduces the
equation (3.76) to (3.69), valid for single isolated steps.

The corresponding limit cases for diffusion and kinetic regime are easy
to obtain. In the first case (mnD/a € B..),

wDv.Coo

Voo = " py ,
aln [-3 sinh (—)}
a Yo

whereas in the second case (nD/a >» 35 ), Eq. (3.70) results.

The reciprocal of the function in the denominater in (3.77) has qual-
itatively the same behavior as the hyperbolic tangent. The velocity of
advance of a step in a train is a linear function of the supersaturation in
the diffusion regime only when the step spacing yp is sufficiently larger
than the thickness of the boundary layer, which means in practice isolated
steps. At the other extreme 7d » y, the hyperbolic sine sinh(z) can be
approximated by exp(x)/2 and v = Dv.Cooye/ad = const (yp = 1/0) as
in the case of growth from vapors.

Let us consider as an example the growth of the prismatic face of
NH4H,PO, (ADFP) crystals from an aqueous solution at room temperature
[Chernov 1989]. With ¢ = 4 x 1078 ¢m, v = 1 x 10" sec™, §; = 4e,
D =1x107% cm?sec™! and AU = 10 kecal/mole, G, = 4 x 1073 cm sec™!,
afBe /7D = 5 x 10~% <« 1 (the logarithm can contribute no more than an
order of magnitude) and the growth proceeds in the kinetic regime. The
saturation concentration Cp = 3.5 mole 17!, Cove = 0.2 and with o = 0.03,
Voo 2 2.4 x 107° cm sec™!, in good agreement with the experimentally
measured value 3 x 1075 cm sec™!. The reader can find more details in the
excellent review paper of Chernov {1989] and the original papers quoted
therein [Chernov et al. 1986; Kuznetsov, Chernov and Zakharov 1986,
Smol’sky, Malkin and Chernov 1986].

Another interesting example is the growth of (111) faces of Ba(NOj),
crystals [Maiwa, Tsukamoto and Sunagawa 1990). The experimentally
measured rate of step advance depends linearly on the supersaturation at
high rates of flow of the solution (40 cm sec™) and nonlinearly at low flow
rates (5 cm sec”!). Assuming wd/yo < 1 at high fow rates, the rate of
the step advance will be given by Eq. (3.69), which is a linear function

(3.77)
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of the supersaturation. At low flow rates, vd/yy » 1 and the hyperbolic
sine can be approximated by an exponent, thus giving rise to a linear term
of the supersaturation in the denominator of Eq. {3.76}. The latter leads
to a clear nonlinear dependence of v, on ¢ at small supersaturations as
observed in the experiment whose slope at ¢ = 0 is approximately equal to
ﬂstcnvc-

3.2.1.3. Growth from melis

As mentioned in Chap. 1 the entropies of melting, Asy/k (in terms of
Bolzmann's constant), of most of the metals have an average value of
about 1.2 and their surfaces near to the melting point are expected to
be rough according to the simplest criterion of Jackson. The Asy, /k values
for semiconductors are usually greater — from 3.6 and 3.7 for Si and Ge to
5.7 for InP, 7.4 for InSb, 7.6 for InAs and 8.5 for GaAs, etc. So the surfaces
of the binaties mentioned above are expected to be smooth and to grow
by the layer mechanism. As for elemental semiconductors it is difficult to
predict the structure of their surfaces with sufficient accuracy.

In general the growth from simple one-component melts is similar to
the growth from solutions [Chernov 1961, 1984]. When a building unit is
incorporated into a site of growth, heat of crystallization is released and the
local temperature becomes higher. Assuming as before that the mean kink
spacing 6y iz small enough the step will act as a linear source of heat. The
undercooling around the step will decrease just like the supersaturation in
the solution in the near vicinity of the steps. Then a temperature gradient
in a semicylindrical space around the steps arises. The mathematical
equations which govern the conduction of heat in condensed phases are
exactly the same as the diffusion equations [Carslaw and Jaeger 1960] and
we have to solve precisely the same mathematical probiem as for solution
growth [Chernov 1961, 1984]. The heat of crystallization can be taken away
through the melt or, more typically, through the crystal as the thermal
conductivity of the crystals is usually higher than that of the liquids. For
instance, the thermal conductivities of solid and liquid aluminum at the
melting point are 0.51 and 0.21 cal/cm sec K respectively. In the first case
when the heat is taken away through a stirred melt we have precisely the
same solution of the master equation as for growth in stirred solution and
the thickness of the boundary layer has the same physical meaning as before.
In the second case, the thickness of the single crystal wafer can be taken
instead. Obviocusly, the same expressions are obtained as in the previous
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section in which the supersaturation ¢ = (Cs — Cy)/C should be replaced
by the undercooling ¢ = {T\, — T }/T and the diffusion coefficient D by
the coefficient of the temperature conductivity, st = k1/Cyp (cm?sec™!)
(kr is the coefficient of the thermal conductivity, C, is the specific heat
capacity (calf/g K) and p {g/cm?®) is the density). lustead of the kinetic
coefficient of the erystal face, g5, for solutions one has to take the kinetic
coefficient of the step for melts,

Asm Asm AU
B;I; = av——é,——;—uexp (—%) exp (—-EY—,-) , (3.78)

multiplied by a characteristic temperature Tq = AH,, /Ch9 which is given
by the ratio of the heat of crystallization (or melting} to the molar heat
capacity of the liquid. As CU9 is the quantity of heat required to increase
the temperature of one mole of the melt by one degree and AH,, is the
guantity of heat per mole that is introduced into the melt as a result of
the crystallization process, Ty is the temperature up to which the melt
will be heated up if the heat of crystallization is not taken away from the
system. For metal melts it has the value of several hundreds of degrees
(445 K for Ag} but is considerably higher for semiconduetors (1860 K for
5i and 1490 K for GaAs).
Then the expression for the rate of advance of the step reads

ArT o

Voo = .
I+—=-= a'GStT [?—;9— sinh (ﬂ)]
T a Yo

This expression is valid for both cases of removing the heat of crystal-
lization, through the melt and through the crystal. One has to bear in
mind that in the first case the coefficient of the temperature conductivity,
»7, has the value for the liquid, and vice versa. In the case of growth of
Siat AT =Ty —T =1K, ky = 0.356 cal/em sec K, C2°' = 5.455 cal/g-
atom K = 0.194 cal/g K, Cl4 = 6.5 caJ/g-atom K, p = 2.328 gfcm?,
AH,, = 12082 cal/mole and 7 = 0.787 cm?/sec, T, = 1860 K. With
AU =2 5000 cal/mole, 83 = 3.50 and Asy/k = 3.6, 3% = 3.7 cm/sec K and
afRTafmser 1% 107 « 1, i.e. the growth proceeds in a kinetic regime.
For the rate of advance of the step one obtains v, = SLAT = 3.7 cm/sec.
The value for GaAs is two orders of magnitude smaller {v, = 0.1 cm/sec,
s = 0.267 cm®/sec, T, = 1490 K, B = 0.1 em/sec K) due to the higher
entropy of melting. Comparing the above values with the one valid for
growth in salutions one can see that they are about five orders of magnitude

(3.79)
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higher. The latter is due to the better supply of growth units in melts as
compared with {dilute) solutions on the one hand, and to the smaller harrier
for crystallization, AU/AT, in the melts on the other.

3.2.2. Spiral growth of F faces

As discussed in Chap. 1 screw dislocations offer nonvanishing steps on
crystal surface. A growth hillock is formed (Fig. 3.9) and in order to
calculate the rate B of growth of the crystal face we have to find an
expression for the step density p of the side face of the hillock, or in other
words, the distance gy between the successive turns of the spiral.

T e R W
a b
—_— ]
¢ d

Fig. 3.9. Consecutive stages from (a) to (d} of the formation of a growth pyramid around
the emergency point of a single screw dislocation. As in Fig. 3.2 the side faces of such
pyramids represent in fact the vicinal surfaces. Their slopes are proportional to the
supersaturation.

3.2.2.1. Shape of the growtk spiral

Let us consider first for simplicity the formation of a growth hillock around
a single screw dislocation (Fig. 3.10). We assume that the spiral is polygo-
nized with a square shape and that the rate of advance v, of the steps in
every direction is one and the same. In the initial moment (Fig. 3.10(a))
the dislocation offers a single step with a lower terrace to the right of it.
Atoms diffuse towards the step {on the crystal surface or in the bulk of the
solution) and join kink sites along it. As a result, the step moves to the
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Fig. 3.10. Consecutive stages from (a} to (e} of the formation of a growth spiral.
(=) shows a single step originating from the emergency point of the dislocation denoted
by the black point. The arrow shows the direction of step advance. During the growth of
the initial step a new step is formed as shown in (b). When the length of this step exceeds
2p., the second step begins to grow and a new step is formed as seen in (c). As seen in
{e), the distance between the consecutive turns of the growth spiral is proportional to
the radius of the critical 2D nucleus. The radius of curvature of the step which comes
aut from the emergency point is always equal to the radius of the critical 2D nucleus.
These are in fact the properties of the Archimedean spiral,

right and a new step normal to the first one appears (Fig. 3.10(b)). As
long as the second step is shorter than the edge of the critical 2D nucleus,
lz = 2p., at the given supersaturation it will not move because a 2D cluster
smaller than the critical nucleus is thermodynamically unfavored and has a
greater tendency to decay than to grow (the step “does not know” whether
it belongs to a 2D nucleus or to a growth spiral). Once the size 2p. is
reached the second step begins to grow with a velocity vo, and a third step
appears which is parallel to the first one (Fig. 3.10{(c)). This third step will
begin to grow when its length becomes greater than 2p.. At that moment
the length of the second step will be equal to 4p.. Then a fourth step will
appear, and so on. Following this procedure further we arrive at the picture
in Fig. 3.10(e) and see that the distance between two successive turns of the
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growth spiral is equal to 8p, . Obviously, this consideration is oversimplified
and gives only an indication of the real processes which take place during
~ growth. It reflects correctly, however, two very important facts: (i) the
spacing of the steps originating from a single dislocation is proportional to
the size (radius) of the critical 2D nucleus at the given supersaturation and
(ii) the length of the step which comes out from the emerging point of the
screw dislocation is always equal to 2p,. If we assume that the growth is
isotropic, the spiral will be rounded. Then the conclusion {ii) above means
that the radius of curvature of the step at the emerging point of the screw
dislocation is always equal to the radius p. of the critical nucleus.

In order to find a more accurate expression for the shape of the spiral
and, in turn, for the interstep distance we will follow the approach of
Burton, Cabrera and Frank [1951].

The radius of the curvature, p, in polar coordinates (the polar angle ¢
and radius vector ) is given by

(rz +r:2)3;‘2
T 0pi2 it

where r' = dr/dp and r* = d%r/dp*.

We consider further a spiral with center at the point O as shown in
Fig. 3.11. The rate of advance v(r) in the direction of the radius vector r
is

(3.80)

dr drdy ,
vir) T dodt wr', (3.81)
where w = dip/dt is the angular velocity of spiral winding.
The rate of advance in a direction of the radius of curvature, u(r), is
related to the rate of advance v{p) in a direction normal to the step by
v(r)r W

v{p} = v{r)cosy = EETTE = T (3.82)

Substituting (3.80) and (3.82} into (3.62) gives the equation

D wrr'
Yoo (1 ~ P (r% + 2)3/2 ) = (r? + 312’ (3.83)

whose solution r = r() will give us the shape of the spiral.

In order to simplify this expression we consider the case of small r, i.e.
around the center of the spiral. We neglect all terms containing r* and =
and integrate the remaining differential equation ' = 2p.. As a result the
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Fig. 3.11. Schematic view of the growth spiral around the emergency point of a screw
dislocation. w(r) and v(p) are the rates of step advance in directions along the radius
vector and normal to the step, respectively. v denotes the angle between them.

equation for the simplest spiral, which is well known as an Archimedean
spiral, is obtained:
r=2p0 . (3.84)

Let us consider this equation more carefully. Substituting v = 2p,
and r” = 0 into (3.80) we find that the radius of the curvature of the
Archimedean spiral is given by

(14?3
=P 1+ 122

H

where * = 7/2p.. It is immediately seen that the radius of the curvature
is equal to the radius of the 2D nucleus in the center of the spiral (z = 0)
and goes linearly to infinity far from the spiral center (z — oo). For
comparison the radius of curvature p = (1 + m?)!/? of the logarithmic
spiral (r = aexp(m)) tends to infinity for r — oc but is equal to zero at
the spiral center.
On the other hand, the multiplier
1Py 1+ te?
o 1+

in the equation for the rate of the step advance, (3.62), is equal to zero
at the spiral center and tends asymptotically to unity far from the spiral
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center. It foliows that the rate of the step advance will vary from zero
at the spiral center to the rate of advance of straight steps far from the
spiral center. Thus the first turns of the spiral will move more slowly (slow
kinetics) than the more distant ones (fast kinetics).

The distance A between two successive turns of the single spiral or two
successive steps is

A=r{eg+2x) — r{p) = 2p.{{p + 27) — ] = d7wp. . (3.85)

A more detailed analysis performed by Cabrera and Levine [1956] based
on a better approximation for the spiral shape r = () resulted in the

expression

2
A=19p, = 1:;3 (3.86)

which we will use further. It follows that the interstep distance is inversely
proportional to the supersaturation and the increase of the latter makes
the slope p = afA of the cone (or pyramid} of growth steeper and vice
versa. Note that p = tanf where # is the tilt angle with respect to the
corresponding singular face and hence p is equal to the step density.

The existence of only one screw dislocation on a given crystal face is
usually less probable than the existence of many dislocations and even
groups of dislocations. Two neighboring dislocations can have in general
equal or opposite signs. This means that they can either both turn clockwizse
{or counter-clockwise) or one of them clockwise and the other counter-
clockwise. If they have opposite signs and are spaced farther than 2p.
they will make loops as shown in Fig. 3.12(a) [Frank 1949aj. The problem
when the dislocations have like signs is more complicated. Two cases are
distinguished. In the first one the dislocation spacing [ is smaller than
2p., in the second one { is greater than 2p.. Imagine now a group of n
dislocations ordered in a straight line as along a grain boundary. Let L
denote its length so that the dislocation spacing ! = L/n. Figures 3.12(b)
and (c) show parts of the dislocation group {the grain boundary} consisting,
for clarity, only of two dislocations spaced at a distance AB, The condition
{ » 2p. is equivalent to L » A, where A is the interstep distance
determined by a single dislocation and is given by Eq. {3.86). The second
condition | < 2p. is equivalent to L < A (Fig. 3.12{c)). As seen in the
figures the real interstep spacing yo is equal either to ! = L/n (Fig. 3.12(b))
or to Afn (Fig. 3.12(¢)), when L > A or L <€ A, respectively. In the general
case [Burton, Cabrera and Frank 1951; Bennema and Gilmer 1973; Chernov
1989
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Fig. 3.12. Shape of growth spirals due to pairs of dislocations. {a} Closed loops due to
dislocations with opposite signs when the distance AB between the emergency points is
greater than the radius of the critical 21D nucleus. (b) Shape of the spiral due to a pair
of dislocations of like sign, separated by a distance | = AB >» 2p.. The step separation
is equal to the distance ! and does not depend on the supersaturation. {¢) Shape of the
spiral due to a pair of dislocations of like sign, separated by a distance { = AB < 2p..
The step separation is two times smaller than the distance A originating from a single
dislocation and is inversely proportional to the supersaturation {after Burton, Cabrera
and Frank [1951}).

==, (3.87)

L\
n:n(l-i—x)

is the so-called “strength” of the dislocation source. It follows from above
that when L 3> A the interstep spacing is simply equal to the interdisloca-
tion distance { = L/n and does not depend on the supersaturation. In the

A
n

where
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second limiting case the interstep spacing depends on the supersaturation
but is n times smaller than 19p.. In the case when the dislocations in the
source are not ordered in a straight line but are grouped in a spatial region
L denotes the perimeter of the region {Chernov 1989].

3.2.2.2. Growth from a vaper phose

The rate of growth normal to the surface is given by Eq. (3.15), R =
Plos = QU0 /Yo, Where v /yg is the flux of steps with thickness a passing
in a direction parallel to the singular crystal face over any point of the
latter. We assume first that the crystal face is entirely covered by a growth
pyramid formed by a singie dislocation {or by a group of dislocations such
that L < A and yo = A/n). Substituting {3.50), (3.86) and (3.87) into
(3.15) (diffusion regime of growth and far from the spiral center) gives, for
R,

2
R =C%= tanh (23) . (3.88)
Oe o
where 193g?
300
= e 3.89
7 = onkTA, (3.89)
is a characteristic supersaturation and
- P2
C = avexp ( T ) (3.90)

is a rate constant.

Let us study Eq. (3.88) more closely. For typical values of the parame-
ters included in (3.89): s = 3x107° ergfcm, a = 3x107% em, T = 1000 K,
n=1and A\ = 2 x10%a, ¢. = 3 x 10~2, However, growth of crystals is
observed at supersaturations ¢ as low as 1 x 10™%. Obvicusly, two limiting
cases can be distinguished. At small supersaturations such that o.fe » 1,
tanh(c./0) — 1 and R obeys the famous parabolic law of Barton, Cabrera

and Frank [1951]:
2

r=cL . (3.91)
Te

At supersaturations sufficiently higher than o, tanh(z — 0) = z and
R obeys a linear law
R=Cr. (3.92)

The dependence of R on ¢ is shown in Fig. 3.13. As seen the parabolic
law holds up to the characteristic supersaturation o.. Beyond it a linear
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relationship is gradually established. The condition for the latter is & 3 o,
or A, 3 yg/2. Physically this means that the density of rough steps and
hence of kinks on the surface is so high that every adatom is incorporated
into a growth site before succeeding to re-evaporate. Hence, R is directly
ptopotrtional to ¢ as in the case of normal growth of rough F faces. In the
other extreme (A, < yp/2) the diffusion fields of the neighboring steps do
not overlap and a large fraction of adatoms re-evaporate before joining the
growth sites. The proportionality of vy, and the step density 1/yo with
respect to o result in the parabolic law (3.91).

GROWTH RATE

~

s GC

-

a SUPERSATURATION

Fig. 3.13. Plot of the rate of spiral growth versus the supersaturation. For supersatu-
rations smaller than the characteristic one, ¢., the growth obeys the parabolic law of
Burton, Cabrera and Frank {1951]. Beyond o. the growth rate is a linear function of the
supersaturation (after Burton, Cabrera and Frank [1951]).

Let us consider now the case when L > A (I > 2p.)and yy == L/n
(Fig. 3.12(b)) does not depend on the supersaturation. A linear law for the
rate of growth R results instead of the parabolic one:

R=C's, (3.93)

where

¢ A2 t
c'=c ] tanh (2)\,) . (3.94)
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This is the so-called second linear law [Bennema and Gilmer 1973]. It
results from the specific interrelation of the spacing of the dislocations in the
source and the radius of the critical 2D nucleus. The interstep distance and
in turn the slope of the pyramids no longer depend on the supersaturation.
Two limiting cases are distinguished: (i) ! <€ 2A,, tanh(z) = z and
C' = C, and (ii) { » 2X,, tanh{(l/2X,) = 1 and ¢’ = 2A,C/l € C. Thus
linear dependence of the growth rate versus the supersaturation should be
observed which is characteristic for normal growth of rough faces.

On the other hand, a parabolic dependence of the growth rate versus
the supersaturation (the second parabolic law) [Bennema and Gilmer 1973
can be observed under conditions of a kinetic regime of growth. Then the
velocity of the step advance is given by Eq. (3.41') v, = 2a®B4nge0, which
combined with (3.15), {3.86) and (3.87) gives

R=C"d?, (3.95)
where o7
n
¢" = ‘E‘J;Enaeﬁst : (396)

It is interesting to compare the constants C and C” in order to distin-
guish the diffusion and kinetic mechanisms. The ratio C"/(C/o.) is given
by

C" o a N P12 — AU
_— = —— eXp | — | .
C/’O’c )\s 6[} Ng k‘T

Taking into account Eqs. (3.21), {3.18) and (1.74} the above equaiion
turns into

" _ Pdes + Pad — A0 — 2w
=P ( T :

where w is the work required to produce a kink on the step edge. As
seen the value of the ratio C”/(C/o.) depends on the interrelation of
the activation energies for desorption and crystallization. Obviously, when
Pdes + Psd > 24U + 2w, C" > C/o. and vice versa. However, in order to
derive Eq. (3.95) we assumed a kinetic regime of growth, i.e. the condition
(3.29) which is equivalent t0 @aes + wsd < 2AU + 2w. Then C" « C/o.
and the second parabolic law dependence will cross the straight line of the
linear BCF law at a characteristic supersaturation

Pag — 2AU -2
0":.' = g, exp (_ Pdes + Sasd2kT U “-")
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which is much greater than o.. It may happen that the second parabola
R = C"o? would not cross the BCF linear dependence in the experimental
interval of the supersaturation.

A. The back stress effect

It follows from Eq. (3.86) that the higher the supersaturation is the smaller
the interstep distance A will be. The latter in turn leads to the linear
law of growth (3.92). Cabrera and Coleman [1963] discussed this question
and found that the analysis of Cabrera and Levine [1956] underestimates
the interstep distance, particularly at the center of the growth spiral. The
center of the spiral “will see” a supersaturation smaller than & because of
the diffusion field which is due to the first turn of the spiral. The higher
the supersaturation is, the smaller should be the radius of the first turn
and the stronger should be its influence on the adatom concentration at
the center which in turn leads to an increase of the radius of the first turn
of the spiral. Thus we should observe a feedback effect which is known
in the literature as a “back stress” effect [Cabrera and Coleman 1963]. In
principle we should observe the back stress effect not only at the center of
the spiral as each step is under the influence of the diffusion fields of the
neighboring steps at higher supersaturations.

In order to estimate it we approximate the first turn of the spiral by
a circular step with a radius A, {Fig. 3.14). The supersaturation at the
center can be found easily from Eq. (3.59'). Under the condition r = 0, the
Beassel function f5{0) = 1 and the supersaturation in the center, #,,, reads

Oeo=0 |1 -I71 Ao . 3.97
- (3) 6

Iy{z)} is always greater than unity and the supersaturation at the spiral
center, o,,, will always be smaller than o. We multiply both sides of
Eq. (3.97) with Ag/A; and bearing in mind that o, Ae/ A = o, (Eq. (3.89))
with n = 1 (elementary steps), we rewrite (3.97) in the form

I 1

oo Ao (BN
2, [1 f (»\)]

We then tabulate the left-hand side of (3.98) and construct a plot of
Ag/As vs ofo, (curve 1 in Fig. 3.15). As seen, the interstep distance at the
spiral center is always larger than the one predicted by Eq. (3.86) (curve 2,
A=19p. or AfA, =2[(0f0.))

(3.98)
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Fig. 3.14. For the evaluation of the “back stress effect.” The spiral center is approximated
by & circle of radius Ag (after Cabrera and Coleman [1963]).

0 2 4 6 8 10
glg, ——

Fig. 3.15. Dependence of step spacing in units of X, on the supersaturation ¢ in units
of ¢ when the back stress effect is accounted for {curve 1). The dependence given by
Eq. (3.86) is also shown for comparison {curve 2).

In the more interested region of high supersaturations (small values of
Ag/fAs (AgfAe = 0)) the reciprocal of the Bessel function, I;!(z), can be
approximated by the parabala
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1
I(;I(I) =1- Z$2 ¥

which results in [Cabrera and Coleman 1963

L9 (Z—“)l_m . (3.99)

One can conclude that with increasing supersaturation the interstep
distance decreases much more slowly than required by the simple hyperbolic
law A ~ 1/¢. The step spacing practically no longer depends on the
supersaturation, but on the temperature through the mean free path A,.
What is more important, however, is that the slopes p of the growth
pyramids can never become too steep and the growing surface will remain
macroscopically more or less smooth. As for the R(¢) dependence the back
stress effect leads to a more gradual transition from the parabolic to the
linear growth law than that required by Eq. (3.88).

One can conclude that when the source of the steps on the crystal
surface is due to the presence of screw dislocations one can observe a
parabolic as well as a linear dependence of the rate of growth on the
supersaturation. In the diffusion regime one should observe a parabolic
dependence at small supersaturations which gradually becomes a linear
one at high supersaturations. The latter is due to the strong overlapping
of the diffusion fields around each step. The back stress effect makes the
transition from a parabolic to a linear dependence more gradual. A linear
dependence should be observed also from the beginning when the length or
the perimeter of the step source is much smaller than the interstep spacing
due to a single dislocation, In this case the constant of the proportionality
should be smaller than that due to the diffusion fields overlapping provided
the interdislocation distance is greater than the mean free path of the
adatoms and equal to it in the opposite case. In the case of kinetic regime of
growth a parabolic dependence of the growth rate on the supersaturation
should be observed with a rate constant much smaller than that in the
diffusion regime.

3.2.2.3. Growth in solutions

Combining (3.15), (3.86) and (3.76) gives an expression for the rate of
growth in a diffusion regime:
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2
R=C§— - 1 —<7 (3.100)
°] [—E sinh (—-)]
a [1PS

where 19a?

»xa
¢ = T (3.101)

is the characteristic supersaturation and
D

C = ";C“ (3.102)

is the rate constant.
The condition ¢ <€ ¢ (sinh{c/o.) = o/o.) results in the parabolic

dependence

ot 1

ac (d)'
In| —
Ta

At 0 » o the hyperbolic sine transforms into exp(c /o, )/2 and, neglect-
ing In{do. /2mac) with respect to o/o., one obtains the linear dependence

R=C (3.103)

R=Co (3.104)

as in the case of growth from a vapor phase.
In the kinetic regime of growth (a8, /7D < 1) one obtains the second
parabolic law
R=C"¢%, (3.105)

where kT
C" = %;aﬂ.¢0¢00 . (3106)

Bearing in mind (3.101), (3.102} and (3.103) we find that C"/[C/o.
In{d/na)) = (aBu/7D)In(d/ma) <« 1(In(d/me) = 10},i.e. the rate constant
in the second parabolic law in a kinetic regime of growth is again smaller
than that in the diffusion regime.

Finally, when L 3 A, yo = L/n = and p = an/L we obtain the second
linear law of growth

R=Cls, (3.107)

where

cr=2 BuCove _ (3.108)
! 1+ B In isiuh d
D a

i
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We consider again the example of growth of ADP erystals in aqueous
solutions at room temperature [Chernov 1989]. We can estimate the radius
o, of the critical nucleus and in turn the interstep spacing from independent
measurements of the rate of growth of a perfect crystal face without screw
dislocations. As will be shown in the next chapter, such measurements
allow the evaluation of the work of nucleus formation and of all parameters
connected with it, as the rate of growth is limited by 2D nucleation. Thus
the interpretation of the experimental results gave for the specific edge
energy the value » = 55 x 1077 erg cm~!. Then at ¢ = 0.03, p. =
0.95%x 107 € cm, yg = A =18x10%cm (n = 1) and p = 2.6 x 1073,
With the value v, = 2.4 x 107° cm sec™! calculated in the previous
chapter for o = 0.03; one obtains for B the value 6.24 % 10~ cm sec™1.
The latter is in good agreement with the experimentally measured value
5.8 x 108 cm sec™!.

3.2.2.4. Growth tn melts

The rate of growth in melts obeys the same equations as in solutions. We
assume that the interstep distance is again given by {3.86). In Sec. 3.2.1.3
we evaluated the rates of step advance of Si and GaAs to be 3.7 cm sec—?
and 0.1 ¢m sec™, respectively, at undercooling AT = 1 K. In order to
evaluate the slopes p we need data for the specific edge energies. We can
estimate the latter from data of the specific surface energies. However, such
data concerning the crystal-melt boundary for semiconductor substances
are scarce in the literature. It is believed that they are around some
hundreds of ergs per square centimeter (181 erg cm™? [Turnbull 1950} and
251 erg cm ™2 [Skripov, Koverda and Butorin 1975] for Ge). Adopting the
value 200 erg cm ™2 for both Si and GaAs we find y (Si) = 1.52x 107* cm,
Yo (GaAs) = 144 x 107" cm and p (Si) = 2x 1074, p (GaAs) =28 x 10™4
at AT = 1 K. Then for the rate of growth, B = pvy, the values 7.4 x
107 ¢m sec™ and 2.8 x 107% cm sec™! can be obtained for Si and GaAs,
respectively. As seen, they are 3 to 5 orders of magnitude higher than the
respective values for growth in solutions.

3.2.3. Growth by 2D nucleation

The growth of the defectless crystals of Si, Ge, GaAs, CdTe, etc. to meet
the demand of microelectronics stresses the necessity of developing in more
detail the theory of growth through formation and lateral propagation of
2D nuclei. Historically it was the first theory of crystal growth whose
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foundations were laid down more than a hundred years ago by Gibbs [1928).
He pointed out in his famous footnote (see also Frank 1958a) that the
continuous growth of a given crystal face is impossible if new molecular
layers could not be built. The building of 2 new layer is particularly
difficult at the beginning or immediately after the beginning of the new layer
formation. The change of the Gibbs free energy necessary for the growth of
the crystal face to take place is not, however, one and the same on different
crystal faces. [t is possible that it is greater for surfaces with smaller surface
energies. Thus without even mentioning the term “nucleus” Gibbs gave the
concept of the growth of perfeci crystals through the formation and lateral
spreading of two-dimensional nuclei. He even gave a hint concerning the
effect of the surface structure of the crystal faces with respect to the rate
of 2D nucleation.

We will consider first the layer-by-layer growth or, in other words, the
growth when the next atomic plane is nucleated after the completion of
the previous one. Then we will consider the case when the nucleation of
the next atomic plane takes place before the completion of the previous
one. This is the so-called multilayer growth when two or more monolayers
grow simultaneously. We will consider first the simpler case of constant
nucleation rate and constant rate of propagation of the 2D islands (constant
rate of step advance) and then we will allow the nucleation rate and the rate
of step advance to depend on time through the size of the underlying 2D
islands. In fact the latter takes place during the growth from a vapor phase
or MBE growth. In doing all that we will follow one and the same approach
which will be outlined when considering the simplest case of layer-by-layer
growth with constant rates of 2D nucleation and step advance.

3.2.3.1. Constant rates of nucleation and step advance
A. Layer-by-layer growth

Consider a face of a perfect defectless crystal with size L (Fig. 3.16)
[Chernov 1984]. At the given supersaturation 2D nuclei are formed with a
rate Jy = const (cm~?sec™!). We define first the frequency {sec™!)

Jo = JyL? (3.109)

of 2D nucleation on the crystal face with an area L2,

If the rate of lateral growth or the rate of step advance is v = const
(cm sec—!) then the time for complete coverage of the face by one monolayer
will be
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222

Fig. 3.16. Crystal face of linear size L with growing 2D islands on top of it.

T=Ljv.

The number of nuclei formed during this time interval is a product of
the nucleation frequency and the time for complete coverage of the face, or
3
N =J,T = JUL’*% = Ju% : (3.110)
One can distinguish two cases. In the first one, N < 1 which is
equivalent to L < (v/Jy)'/®. This means that every succeeding nucleus
will be formed after complete coverage of the crystal face by the monolayer
initiated by the preceding nucleus. As a result we will observe layer-by-layer
growth. Hence the growth of the crystal face will be a periodic process
of successive formation of 2D nuclei and their lateral propagation (see
Fig. 3.21). The rate of growth of the crystal face will be determined by
the rate of 2D nucleation and will be given by

R = Jya = JyL?a, (3.111)

where a is the height of the step originated by the nucleus and Jp is given
by Eq. (2.86), (2.89) or (2.96) in the particular cases of growth from vapors,
solutions or melts, respectively.

Bearing in mind that v depends linearly on the supersaturation while
the nucleation rate increases exponentially with it, one can conclude from
(3.110) that layer-by-layer growth should be observed at low enough super-
saturations. Besides, the smaller the crystal face is the more pronounced
the layer-by-layer growth will be. Bearing in mind the estimates of Jy and
v made in the previous chapters (Eqs. (2.89) and (3.76)) we find that the
linear size L of the face of a crystal growing in solution should be smaller
than 2 x 107! cm at ¢ = 0.01, or 2x 107% cm at o = 0.02, or 4 x 10~7 cm
at o = 0.03, etc., in order to grow layer after layer.
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The growth rate R vs supersaturation according to Eq. (3.111) is illus-
trated in Fig. 3.17 (curve 1). As seen a critical supersaturation

_ Wchaz
%= T in(K, L2a/ R,

should be overcome for visible grawth ta take place. In the above equation
K, is the pre-exponential term in Eq. (2.86) (or (2.89)) and R, is a more
or less arbitrary chosen critical value of the growth rate. For example,
in the growth of ADP crystals in aquecus solution at room temperature
{Chernov 1989) with » 2 11.8 erg cm™?x8x 1078 ¢cm 2 1x 107% erg cm ™",
a28x107% cm, Ky 221 x 10'? em™2sec™!, R, 21 x 107° cm sec™! and
L=1x10""cm, oo = Auc/kT =2 0.38 or C/Cp & 1.5. Thus a critical
supersaturation as high as 50% is required for the layer-by-layer growth of
the prismatic face of ADP crystal to take place.

(3.112)

RATE OF 20 GROWTH

0 g 0O
SUPERSATURATION

Fig. 3.17. Supersaturation dependence of the rate of 2D growth in the case of layer-by-
layer growth (curve 1} and multilayer growth (curve 2).

B. Multilayer growth

At the other extreme N > 1 (or L > {v/Jy)*/?), new nuclei will form on top
of the growing monoclayer before the latter is completed and the situation
given in Fig. 3.18 results. Several monolayers grow simultaneously. The
theoretical analysis of this case is much more complicated [Chernov and
Lyubov 1963, Nielsen 1964, Hillig 1966]. An approximate treatment will
be given here following Chernov [1984].
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VA= =

]

Fig. 3.18. Hlustration of the multilayer growth of a crystal face with a size L by 2D
nucleation.

Consider a crystal face with a monolayer island growing onto it at a
rate v. At a given moment when the size of the island reaches a lateral size
I a 2D nuecleus appears on top of it. The frequency of nucleation on top of
the island is now Jy = Jol? and the average time elapsed from the moment
of nucleation of the first island to the moment of nucleation of the second
island is {/v 2 1/Jp = 1/Jpl?. We then find that the mean size of the lower
2D island when a new 2D nucleus is formed on top is ! = (v/Jo)*/3. The
rate of growth of the crystal face is proportional to Jal%a, or

R = Jyl?a = a(Jpv?)!/3 . {3.118)

Recollecting that the pre-exponential factor in the equations (2.86),
(2.89) and (2.96) for the rate of 2D nucleation is proportional to the squase
root of the supersaturation and that the rate of step advance is a linear
function of the latter, we find

R = const (A,u)ﬁ/"3 exp (—- ?g, ) , (3.114)

where the constant is equal to {K{(BuCovc)? '} (K] = K1//7) (in the
particular case of growth from solutions). The rate of growth does not de-
pend any more on the size of the crystal, but still a critical supersaturation
should be overcome in order for the growth to take place. Obviously this
critical supersaturation should be smaller than the one calculated on the
basis of the layer-by-layer growth (Fig. 3.17, curve 2). Taking into account
the values of v = 2.4 x 1075 em sec™!, Kj = 1 x 10** cm~2sec™! and
R. =1 x 107? em/sec calculated before, we find a critical supersaturation
of about 8.6%, instead of 50%. Comparison with the experiment {Chernov
1989) shows that this value is still an overestimation, but it gives the right
tendency.
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One concludes that initially the perfect crystals grow by the layer-by-
layer mechanism up to a critical size determined by the condition N =1
or L = (v/Jp)!/%. Beyond this size, a gradual transition from layer-by-
layer to multilayer mechanism takes place. Large enough crystal faces
grow by the multilayer mechanism and the growth front consists of several
monomolecular layers which grow simultaneously. This question is closely
connected with the RHEED intensity oscillations of the specular beam
during MBE growth and will be considered here in some more detail.

We denote the surface coverage of the first monolayer by @,. The growth
rate is Ry = qdB, /dt and from Eq. (2.141) we find that the completion with
time of the first monolayer follows the time law

R, = maJov?t®exp (—%Jovzts) , (3.115)

which is illustrated in Fig. 3.19 (curve 1). As seen the rate of deposition of
the first monolayer increases parabolically at short times, then displays a
maximum at ty, = (2/7Jov?)1/3, and after that decreases exponentially at
large times up to the completion of the layer.

It is useful to express the growth rate (3.115) in terms of the surface
coverage ©,. Making use of (2.141) gives

Ry = a(97Jov®)Y3(1 — ©y)[~In(1 - ©,))/3 . (3.115)

The growth rate displays a maximum at O, = 1 exp(-2/3) = 0.4866.
As seen the maximum is slightly shifted to the left from &, = 1/2 when
constant growth v and nucleation Jp rates are assumed.

In fact Eq. (3.115) describes the behavior in time of the layer-by-layer
grawth when each layer is initiated by several nuclei growing simultaneously
{multinuclei layer-by-layer growth, see Fig. 3.23}. Then the maximum value
Ry = 1.19a(Jov?)}/? gives the amplitude of the growth oscillations. The
theoretical treatment of the multinuclei multilayer growth is much more
complicated and has not been solved analytically up to now. That is why
the time evolution of the separate monaolayers and of the growth front is
usually studied numerically by the method of Monte Carlo {Gilmer 1980a,
1980b)}.

The analysis is based again on the approach of Kolmogorov (1937} and
Avrami {1939, 1940, 1941). Recalling (2.137), the surface coverage ©y of
the first layer now reads
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Fig. 3.19. Plot of the rate of 2D} growth as a function of time in terms of the characteristic
time 7 = {Jgu?)~Y/3. Curve 1 gives the layer-by-layer growth. Gurve ? represents
the multilayer growth calculated with the mean field approximation of Borovinski and
Tzindergosen [1968]. Curve 3 is a result of Monte Carlo simulation by Gilmer [1980]
{after Gilmer [1980]).

t 2

t
0, =1-—exp —ﬂJgCZ/ /k('r— t'Ydr | dt’
Q 1

Assuming k(t) == 1 results in (2.141) and (3.115). For every succeeding
monolayer the above expression is not valid any more as the formation of 2D
nuclei of each new layer depends on the surface coverage of the preceding
one, or, more precisely, on the probability that there is a crystallized part
of the underlying layer just under the 2D nuclei. Instead, one writes the
expression

¢ ¢ 2

0, =1-exp —ngc2/pn_1(t') fk(T ~tYdr | dt'] , (3.118)
0 i

where p,_1{t’) is the probability at the moment t' of formation of a 2D
nucleus of the nth layer, the latter to find a crystallized part under itself in



3.2, Layer Growth of Flat Faces 199

the preceding n — 1 layer. Obviously p,,—1(t') = 1 for the first monolayer
n=1.

In the more general case when the nucleation rate is time dependent the
latter enters into the integral and Eq. (3.116) turns into

2

8, =1-exp —‘rrcng(t')pm_l(t') (fk(r—t')d*r) de'| . (3.116")

0 t

Differentiation of (3.116') gives an expression which is often used in
calculations of the growth rate:

de,,
dt

i
—[1-0.t)] / J@)pnr(O)2m0a(Yenlt)dt,  (3.116")
1

where v, (t',t) = dpn(t',t)/dt is the rate of growth of the 2D island of the
nth layer.

In order to find a solution of (3.116) one has to determine the prob-
ability p,_,(¢') and here is the main problem. To solve it Borovinski
and Tzindergosen [1968] used the mean field approximation assuming that
the probability p,.1(#') is equal to the surface coverage of the preceding
monolayer, i.e. pp—1(t') = 9,_1(t'), and they computed the set of recurrent
equations for ©,,. First the expression for @, is substituted into Eq. (3.116"}
for &, and the latter is solved numerically, then the result is substituted
into the equation for O3, ete. A set of S-shaped curves for @, going from
zero to unity and a set of bell-shaped curves R, /a = d©,,/dt are obtained.
The integration is carried out up to the moment at which a steady state is
reached such that the shift of each cutve with respect to the preceding one
remains constant (Fig. 3.20), i.e.

en-{—l(t) = O.(t - T) ’ (3.117)

where T is the period or the time of advance of the front of crystalliza-
tion by one monolayer. Numerical calculations have shown that T =
0.63(Jov?)~1/%, The steady state rate of growth is then given by

= % = 1.59a(Jov?)/? | (3.118)

which coincides up to a constant with Eq. (3.113).
A very important question is the number of monolayers which grow si-
multaneously or, in other words, the thickness of the front of crystallization.
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Fig. 3.20. Variation with time of the rates of growth of the separate monolayers, Rn =
ad8y, /dt, in the case of steady state multilayer growth. The curves are shifted by a
period T. One monolayer is completed in a time interval T'. The overall rate of growth,
A = ERn, is also shown by the straight line (after Borovinski and Tzindergosen [1968]).

Numerical calculations have shown that an S-shaped curve giving the time

dependence of @,, in the steady state varies from 0.001 to 0.999 in a time

interval 7" = 2.6(Jyv?)~1/3 (or so does the width of the bell-shaped curves

in Fig. 3.20). The number of the simultaneously growing monolayers is then

given by T'/T 2¢ 4, Note that the growth front thickness does not depend

on the rates of nucleation and step advance in the model under study.
Figure 3.20 shows also the sum of the bell-shaped curves

00 oo d@n
R=3) R.=a) —*, {3.119)

which represents the overall rate of growth of the crystal face.

Figure 3.20 gives the steady state, i.e. after enough time is elapsed from
the beginning of the growth. At the beginning of the process the growth
rate displays several oscillations {or a series of maxima and minima} which
gradually attenuate (Fig. 3.19, curve 2) due to the thickening of the growth
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front. The value of R(¢) at long enough times goes to a time-independent
value given by Eq. (3.119).

Numerical simulations performed using the method of Monte Carlo
[Gilmer 1980a,b] (Fig. 3.19, curve 3) have shown that the mean field
approximation used by Borovinski and Tzindergosen (Fig. 3.19, curve
2) overestimates the rate of growth. This is the reason why different
approximations for the probability p,_1(t) have been used [Armstrong
and Harrison 1969|, which give the same qualitative behavior but different
asymptotic values for the steady state growth rate [Gilmer 1980).

3.2.3.2. Time-dependent rates of nucleation and step advence

Molecular Beam Epitaxy (MBE} [Chang and Ludeke 1975; Ploog 1986] is a
powerful method for the investigation of the elementary processes of crystal
growth in detail which are inaccessible by other methods. Besides, in situ
mensurements with surface analytical methods such as RHEED and LEED
are eagily performed during growth and detailed information concerning
the mechanism of growth is easily gathered. That is why we will consider
the MBE growth in more detail. It is worth noting that the MBE growth
represents simply a crystal growth via 2D nucleation. This is the reason
why we will consider it in this chapter rather than later in Chap. 4.

As was shown above the basic postulates J, = const and v = const
lead to several, in fact not more than 4 or 5, oscillations of the overall
growth rate (Fig. 3.19). The latter is in agreement with experimental
observation for electrolytic growth of Ag from aqueous solutions where the
above postulates are fulfilled. This is not, however, the case of MBE growth.
Strong oscillations of the RHEED intensity have been reported during the
growth of a series of materials such as Si, Ge and GaAs [Wood 1981; Harris,
Joyce and Dobson 1981; Neave ef al. 1983; Van Hove et al. 1983]. 700
oscillations of the specular beam during the growth of Al.Ga;_.As(100)
face (x = 0.41) in the [100] azimuth [Sakamoto et ol 1985b, 1990} and
2200 oscillations of the specular beam during the growth of Si(100) in the
{110] azimuth (Fig. 3.21) [Sakamoto et ol. 1986a, 1987] have been reported.

The decoding of the true nature of the oscillations leads to accumulation
of new knowledge about crystal growth processes. It was proved that one
period of the oscillations corresponds exactly to the time T of growth of
one complete monolayer. We thus measure exactly the rate of growth.
On the other hand, we could use the oscillations in order to tailor more
precisely the epitaxial layers or superlattices. Obviously, if the deposition
of one material is interrupted in order to deposit another material when
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Fig. 3.21. RHEED intensity oscillations on Si{100) taken from the [110] azimuth at 500°C.
(T. Sakamoto, N. J. Kawai, T. Nakagawa, K. Ohta, T. Kojima and G. Hashiguchi, Surf.
Sei. 174, 651 (1986). By permission of Elsevier Science Publishers B.V. and courtesy
of T. Sakamoto.)
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Fig. 3.22, RHEED intensity oscillations of the specular beam observed in the
{160) azimuth of (001) GaAs substrate during the continuous growth of GaAs,
Al;Gaj_zAs and AlAs. (T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N. G.
Kawai, T. Ko)ima and Y. Bando, Superlatt. Microstruct. 1, 347 (1985). By permission
of Academic Press Ltd. and courtesy of T. Sakamaoto.)
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the RHEED intensity goes through a maximum the possibility to produce
a sharp interface is much greater. This is usually known as “phase-locked
epitaxy” [Sakamoto et ol. 1985b].

Another example of the use of the RHEED intensity oscillations is the
measurement of the composition of, say, a ternaty alloy and in turn the
natural misfit between it and the underlying binary [Sakamoto et al. 1985b;
Chang et ol. 1991]. If for example a superlattice Al,Ga;_,As/GaAs(100}
is grown [Sakamoto et al. 1985b] the opening and closing of the shutter
of the Al source lead to increase and decrease of the growth rate and, in
turn, of the oscillations frequency (Fig. 3.22). Measuring the oscillations
frequencies f{{GaAs) and §{Al, Ga;_.As) one can calculate the mole fraction
z through the relation [Sakamoto et al. 1985b)

_ f(Al:Gay_5As) - f{GaAs)
- f(Al,Ga,_, As) '

Then the natural misfit f can be easily estimated through Vegard's law
[1921]. According to the latter the relative change of the lattice parameter
(increase or decrease) of the host crystal is directly proportional to the
concentration of the solute atoms within a certain interval. In other words,

ag(AlAs) — ag(GaAs)
ap({GaAs)

f=z2

In this section we will consider the growth of a defectless crystal face via
2D nucleation in the more realistic case when Jy and v depend on the size
of the underlying 2D islands through the adatom concentration on top of
it. First we will consider the multinuclei layer-by-layer growth (Fig. 3.23)
and the simultaneous growth of two monolayers (Fig. 3.24). Then we will
generalize the model for an arbitrary number of simultaneously growing
monolayers and study the dependence of the total step density on the
thickness of the growth front. After that, the transition from layer-by-layer
to bitayer growth will be considered as a first step to the thickening of the
growth front and damping of the RHEED intensity oscillations. At the end
of this section the influence of the anisotropy of the growing surface on the
mode of growth will be considered using the example of the growth of the
(001} face of Si.

A. Multinuclear loyer-by-layer growth

We make the following assumptions. First, we consider the case of complete
condensation or absence of re-evaporation. This means that all material
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Fig. 3.23. Different stages of growth of a crystal face by multinuclear layer-by-layer
growth. After deposition of a monolayer the face restores its initial state.
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deposited joins the growing 2D islands. In fact this is usually the case when
semiconductor films are grown due to the high binding energies. Second,
we assume that the nucleation of the first monolayer takes place in a short
(in fact negligible) period of time in the beginning of deposition {this is the
so-called instantaneous nucleation). In other words, N; nuclei are formed
in the initial moment ¢ = 0 of growth of each monolayer [Toschev, Stoyanov
and Milchev 1972]. After complete coverage of the crystal face N, nuclei
are again formed in a short interval of time, and so on. In considering this
problem we will follow the treatment given by Stoyanov [1988].
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Fig. 3.24. Different stages of growth of a crystal face by bilayer growth. In this case the
crystal face never restores its initial state. Instead, states with higher and lower total
step densities alternate.

Before going into details a certain point should be clarified. As dis-
cussed ahove, any deviation from the layer-by-layer growth (Fig. 3.23), i.e.
transition to simultaneous growth of two, three, etc. monolayers, leads to
a decrease of the amplitude of the RHEED intensity oscillations with time.
Two parameters vary periodically with time during growth: first the rate
of growth of each monclayer, R, = ad©,/dt (Fig. 3.20}, and second the
total step density. The overall growth rate is a sum of the growth rates
of the separate monolayers (see Eq. (3.119) and Fig. 3.20) and should vary
periodically with time also. It will be shown in this section that the rate
of growth of each monolayer is directly proportional to the step density
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and the proportionality constant is simply the rate of advance v of the
separate 2D islands. In the model considered above the rate of advance
v was assumed constant and hence both the step density and the rate of
growth of each monolayer R, oscillate in a phase. When more than 4 or
5 layers grow simultaneously the growth rate ceases to oscillate visibly. A
more elaborate model of growth should account for the surface diffusion of
adatoms between the steps originated from 2D islands on different levels
and the rate of advance of the steps depends on the island size and hence
on time. Then the total step density and the rates of growth of the separate
monolayers cease to oscillate in a phase. The second important assumption
made is that the re-evaporation of adatoms is negligible, This means that at
a constant rate of deposition the overall rate of growth should be constant,
i.e. it will not oscillate irrespective of the oscillations of the growth rates of
the separate monolayers. However, the total step density oscillates and the
amplitude of the oscillations is a decreasing function of the growth front
thickness. It follows that the oscillations of the RHEED intensity during
MBE growth are due solely to the oscillations of the total step density but
not to the oscillations of the surface coverages or the rate of growth.

With the assumption for instantaneous nucleation the surface coverage
of the first monolayer O, is given by (see Chap. 2)

‘ 2
O, =1-—exp|-7N, /v(t')dt’ . {3.120)

0

The growth rate Ry = ad6,/dt of the first monolayer then reads

Ry = Zav(t}/7N(1 — O1)/—In(1 — &) . {3.121)

The total step density is given by (see Fig. 3.25)

1 40, Ry
= ——— = — 3.122
v(t) dt av(t) ( )
Equation (3.122) gives the proportionality between the step density and
the growth rate discussed above. As seen if the rate of step advance v is
time-independent both I and R; should have the same time behavior.
Substituting (3.121) into (3.122) gives

L=2rNo(1 -9;)v/—In(1=©;}. (3.122')
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Fig. 3.25. For the determination of the step density L(t) through the surface coverage
©(t). The change of ©(t} with time is represented by the shadowed areas.

The step density displays a maximum Lyayx = (27N, /e)1/? at a certain
value of the surface coverage ©ax = 1 —exp{—0.5) = 0.393. The maximum
is shifted much more to the left of ©; = 0.5 than in the case of constant
rate of nucleation and step propagation. As seen the variation of the step
density is reduced to that of the number of nuclei N,.

We consider a system of N, regularly spaced 2D islands and at & moment
t the surface coverage is
Rt
Fﬂ ]
where N (em~2) is the density of 2 monolayer and R (cm~2sec™?) is the
atom arrival rate. The above equation means that all atoms arriving from
the vapor phase join the 2D islands, or in other words, all material deposited
until the moment ¢, Rt/Ny, is equally distributed among the growing 2D
islands.

Further, we will follow the same approach as developed by Chernov
[1984] and Borovinski and Tzindergosen [1968]. Analogously to the fre-
quency of nucleation on a crystal face with a lateral size L, JyL? (3ee
Eq. 3.109), the frequency of nucleation on the surface of a growing island
with a radius p:(t) is

0, = 1piN, = (3.123)

£1
Jo(p1) = / Jo(r)2nrdr . (3.124)
0

In the above equation Jy{r) = Jo[ne{r)] is the nucleation rate which
is now a function of time through the size dependence of the adatom
concentration n,(r) on the surface of the latter.
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The adatom concentration on the surface of the growing 2D island can
be found by solving the diffusion problem in polar coordinates (Eq. 3.58),
which in the case of complete condensation reads
d*n, ldn, R
ar + 7 ar + E =0. (3.125)
This equation differs from (3.58) only by the absence of the desorption
flux n, /7. It must be solved subject to the boundary conditions

ns(r = o) = Nge (3.128")

dnH _ 7t
( = )mo =0. (3.126")

The condition (3.126") means that the exchange of atoms between the
island edges and the adlayer is fast enough and near the isiand edge
the adatom concentration has its equilibrium value ng.. In other words
the growth proceeds in a diffusion regime.

The solution of the problem reads

R
ns(T) = Nge + E:(pf - Tz) . (3.127)

It is immediately seen that the adatom concentration has its highest
value n(r = 0) = Ny max = Mae + Rp? /4D, at the island center and that the
larger the island is the higher this adatom concentration will be. Obviously,
the nucleation on the island center is most probable. Besides, the flux of
atoms towards the edge of the island, j; = ~27p; De(dng /dr)s=p, = 7R3,
also increases with the island size, and so does the rate of growth (c.f.
Eq. (3.62)). It follows that the nucleation rate and the rate of step advance
become greater with increasing island size.

At high temperatures the equilibrium adatom concentration g, in-
creases whereas the second term in (3.127) decreases (see Eq. (3.20)).
Bearing in mind that R = 1 x 10*3-1 x 10'* cm™~2?sec™?, v = 3 x 10'3 gec™?
and p; 21 x 107%-1 x 107" em, we find that at high enough temperatures
nge becomes much greater than Rp?/4D, and g max — Mee. The latter
means that the supersaturation tends to zero at high temperatures. At
low temperatures we can neglect 7, in comparison with Rp?/4D, and
n, = (R/4D)}(p} — r?). Bearing in mind Eq. (3.18) it follows that for
Si (@172 — Pdes = 1.8 V) ng can be neglected in the whole temperature
interval of interest (300-800°C). This is valid also for many other materials.
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The nucleation rate as a function of the adatom concentration reads
(see Eq. 2.109)

n ‘41 o+
Jh=a"D, N“ — T exp (kT) (3.128)

Substituting (3.127} into (3.128} (neglecting n..} and the latter into
(3.124) gives upon integration for the nucleation frequency Jy

Jo(o) = Api™ 3 (3.129)

where A combines all the quantities which are independent of the island

size: "
R \" U+
A= - +2D. (4D Nn) exp (kT) (3.129")

The condition for layer-by-layer growth in complete analogy with con-
dition {3.110) is
T

- /jo(pl)dt -1, (3.130)
|

where the integral gives the number of nuciei which can be formed on top of
the growing island for the time of deposition of one monolayer, T = Np/R.
In other words, this condition states that a nucleus of the second monolayer
will be formed exactly at the moment of completion of the first one.

We then substitute p? from (3.123) into (3.129) and (3.130) and after
integration and rearrangement of the results we obtain

- . ar 1/(n"+2) .
N = 1 dre R Ng exp )
4r |\ (n* +2)(n*+3) / \ DNy (n* + 2)kT

r a1 1/(n"+2)
_ 1 ( 47a® ) N2 (E) ex U* +n*peg
Tan [\ (»*+ 2 +3)/) "\ P\ +24T /) -

(3.131)

We have just obtained an expression for the density of nuclei which
give rise to 2D islands belonging to the first monolayer. This was possible
thanks to the conditions of complete condensation (3.123) and layer-by-
layer growth (3.130) of a perfect crystal face. Let us evaluate it. In the case
of growth of $i(001} at 7" = 600 K (high supersaturation), n* =1, U* =0,
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AH, = 433 eV, P/kT = 31, gy = 0.67 6V, R = 1 % 10'® em™%sec™?,
v=1x108 sec™!, a* =4, Ny = 0.68 x 10'* cm™2, N, = 7.4 x 101° cm~2.
In the case of a higher temperature T = 1200 K (lower supersaturation),
n* = 3. The nucleus represents a cluster consisting of three atoms situated
at the apexes of a rectangular triangle. The cluster consisting of four atoms
in the shape of a quadrate is a stable cluster with a greater probability to
grow than to decay. It should be noted that the bonds between the atoms
are second nearest bonds and we can assume that %o = 1%/10. Then with
U* = 240 = 029, ¥/kT = 25, R = 1 x 10'®* cm~?%sec™! and a* = 8,
N, =1 x 107 cm~2. Thus a decrease of the supersaturation leads to an
increase of the size of the critical nucleus, which in turn leads to a sharp
decrease of the saturation nucleus density.

The maximum step density reads (the minimum step density is equal

to zero)
Lo = 1 ( dra? )Nz (E)ﬂ Lae2)
mECT V2e | \nt + 2)(n* + 3) O\ u

U* +n*Eaa
X exp (m) . (3.132)

Values of 4 x 10° and 5 x 10° cm™? for the maximum step density on
Si{001) are obtained at high (n* = 1) and low (n* = 3) supersaturations,
respectively. It follows that the amplitude of the oscillations of the step
density during the periodic process of consecutive 2D nucleation and lateral
propagation will decrease with decreasing supersaturation (increasing tem-
perature). Obviously at too high a temperature {too low a supersaturation)
the RHEED intensity oscillations should disappear because of the inhibition
of the 2D nucleation process. The same should be expected at too low a
temperature or at high supersaturations, but for another reason. The step
density becomes very high and the step spacing too small. In other words,
the crystal surface will behave as a rough one although the temperature
is lower than the critical temperature for thermodynamic roughness (see
Chap. 1}. As discussed at the end of Chap. 1 this phenomenon is called
kinetic roughness. What follows is that the oscillations of the step density
and in turn the RHEED intensity oscillations will disappear as the steps
are practically no more detectable.
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B. Simultaneous growth of two monolayers

In considering this case [Stoyanov and Michailov 1988] we follow the same
procedure as described above. We consider again the case of complete
condensation and instantaneous nucleation. The latter now means that
before the complete coverage of the crystal face by 2D islands of the nth
monolayer 2D nuclei of the (n + 1}th monolayer are formed in a short
period of time (as if by a pulse) on top of the islands of the nth monolayer.
Then the growth of the crystal face is realized by simultaneous growth
of pyramids with two monolayers thickness. We assume further that the
number of 2D nuclei giving rise to the islands of the nth monolayer is equal
to that of the (n + 1)th monolayer, or in other words, the growth proceeds
by simultaneous growth of N, bilayer pyramids (Fig. 3.26). This pattern
is preserved indefinitely and every deviation from it leads to a further
increase of the growth front thickness and, in turn, to further damping
of the oscillations of the step density.

Fig. 3.26. Bilayer pyramid of growth. py and p» denote the radii of the lower and upper
2D islands, respectively.

Making use of (3.122) gives the step density for each monolayer

Loty = == _ 5 AN (1-0.) /I -0.  (3.133)

vt} di

The total step density then is

L{t) = 2/7N, Z[l - 0,(t)]/— e[l —©,()] . (3.134)

Note that in this case the rates of step advance v,,(¢) and the surface
coverages O, (f) (n = 1,2} are not independent but are interconnected
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through the diffusion fields. Then our next task is to solve again the
diffusion problem and to find the density of the bilayer pyramids.

The solution for the adatom concentration on top of the upper island
{r < pg) (see Eq. {3.127)) is

[
RS(T) = Nse + Zﬁ;(ﬁ% - 7'2} . (3.135)
The adatom concentration on the terrace (p; < r < p) is given by

(3.136)

R
nﬂ(r) = - 4D 2 Y

where A and B are constants which can be determined from the boundary
conditions ns(p;} = ns(p2)} = Nse. The solution reads

‘(2
) —ELs (3.136)
In (E_z_)
f1
The flux of adatoms diffusing to the edges of the lower islands on the
surface of the complete (n — 1)th layer is

(P1

R
h=5 0 —mpiN) . (3.137)
]

In the above eguation it is assumed that the atoms arriving from the
vapor phase on the area 1 — wpiN; uncovered by growth pyramids are
equally distributed among the latter.

Correspondingly, the Alux of adatoms diffusing to the same edges but on

the terraces is dna(r)
, T\ T
Ja==2mpDs ( d ) :
r r=p

The rate of growth v, is then given by

oo 1
! di 2y Ny

% _ R ( N, ﬂ1 92 )
4t 2w py Ng N *21n{p1/p2)

(7 + d2)

or
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In the same way one obtains for the upper island

dpp . R -0}
dt  2paNo 21In(p1/p2)

We have to solve now a set of two nonlinear differential equations for
the rates of advance of the steps. The latter can be wiitten in terms of
sutface coverages

On =7plN, (n=n,n+1) (3.138)

as a function of a dimensionless time # = Rt/ny, which is in fact the number
of monolayers deposited, in the form

@g_ =1 en - 9ﬂ+1
df ~  In(0a./On41)

|"7z('3:'l+1 eﬂ - 6ﬂ+1.

48 in(6./0n41)

(3.139)

As seen the overall rate of growth, R = LR, = aXd0O,/dt = Ra/ny,
does not vary with time. This is a direct consequence of the lack or
re-evaporation or complete condensation.

An approximate analytical solution of {3.139) can be obtained if the
equations are linearized assuming In(8,,/@n41) = const = 2. Then the
solution of (3.139) subject to the boundary conditions ©,4:(6 = 0) = 0
and ©,{(¢ = 1) = 1 reads [Kamke 1959

= }. __& —~# '
O =1+ 36 e 1)(1+e Y, (3.140')
_ l _ € —B "
Bnpr = 50 ICrS] 1)(1 -, (3.140")

where e = 2.71828 is the base of the Naperean logarithms.

Assgeen, at #=0,0, = 1/(e+1) =0.27 and ©,,4; =0, while at § =1,
0, =1and O, = 1/(e+ 1) = 0.27. In other words, the solution reflects
the periodicity inherent in the front of growth consisting of two monolayers.

Substituting (3.140) into (3.134) results in a periodic curve with ampli-
tude Lpmay = 0.23 (4aN,)Y/2? [Stoyanov and Michailov 1988]. So our next
task is to find the number N, of the growth pyramids, and we follow exactly
the procedure used in the previous section. The frequency of nucleation on
top of the upper islands is obtained by substituting the solution (3.135)
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(neglecting ng.) into the expression (3.128) for the nucleation rate and
the latter into (3.124). The integration gives an expression completely
equivalent to {3.129) with the only exception being that p; is replaced by
Pz
J= Apatnt+a) (3.141)
where A is given by (3.129").
From (3.138) and (3.140”) we have

o= ZWlN (9— ¢ (1—6—9)) . (3.142)

Substituting (3.142) into (3.141) and the latter into {3.130) and carrying
out the integration gives after rearrangement of the result

_ 1 Ara* 3N\ (R n ol R U* + n*Pag
Ny = 87 ]:( n* +2 ) (V) No} exp (n*+2)kT )’ (3.143)

where the definite integral

1 e n*42
. _ _—f
J w'/(ﬁ e+1(1 € )) dg
o

is a function only of the number of atoms in the critical nucleus, n*, and has
values 0.03, 0.0125, 0.0056 and 0.00056 for n* = 1,2,3 and 6, respectively.

We can estimate now the decrease of the amplitude of the step density
oscillations when the growth front increases from one to two monolayers.
The latter depends on the height and the number density of bilayer pyra-
mids as given by (3.143) and morolayer 2D islands as given by (3.131}.
The ratio of the square root of the islands densities is not very sensitive to
the number of atoms in the critical nuclei, n*, and is approximately equal
to 0.5. In addition, the decrease of the amplitude due to the fact that
the surface never reaches a state without steps when two monolayers grow
simultaneously is also approximately equal to 0.5, so the overall decrease
of the amplitude of the total step density is about 0.2-0.25. OCbviously
further decrease of the amplitude should be expected when further increase
of the growth front thickness takes place.

C. Simultaneous growth of an arbitrary number of monelayers

We consider now the problem of simultaneous growth of N > 2 monolayers
where N is an integer. This means that the instantaneous nucleation of 2D
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islands of the Nth monolayer coincides exactly with the completion of the
zeroth monolayer. We assume further that the nucleation of the (N + 1)th
monolayer takes place before a significant coalescence of the 2D islands of
the first monolayer occurs. Then N, pyramids of growth, each consisting of
N 2D islands one on top of the other, will be formed as shown in Fig. 3.2.
This model is a variation of the “birth—death model” proposed by Cohen
et al. [1989] (see also Kariotis and Lagally [1989]).

We solve the same diffusion problem as above. The adatom concentra-
tion on top of the islands of the Nth monolayer is given by (3.135) in which
pa is replaced by py. The adatom concentration on the terraces is given by
(3.138') where p; and py are replaced by p, and pn.1, respectively. Then,
instead of (3.139), one obtains

918
d ~ ' In(6;/0;) "
deﬂ. - eﬂ-.t - en _ g-n - en-H
& In(©,-1/0,) In(6,/0,11) "
dOy On_1 —~ONn

df " In(@n_1/On)

(3.144)

As above, the overali rate of growth R = LR, = Ra/ng = const.

A remarkable property of the system (3.144} is that the dependence of
the surface coverages on the number of the monolayers does not involve any
other parameter. This means that the solution of the system subject to the
steady state boundary conditions @,(8 = 0) = @, 4;(# = 1) is unique. The
solutions of (3.144) for N = 2 and N = 3 in a reduced form are shown in
Fig. 3.27. The solutions for N = 2 and N = 4 are shown in Fig. 3.28 in an
unfolded form. As seen they represent S-shaped curves with an infiection
point between the surface coverages of the second and first monolayers. It
follows that with increasing growth front thickness N the rates of growth
of the separate monolayers, R, = ad©,/df, will become more and more
asymmetric with a maximum which shifts more and more to the right of
# = 0.5. In other words, the bell-shaped curves obtained by differentiation
of the curves shown in Fig. 3.28 will have a downward branch after the
maximum steeper than their upward branch before the maximum.

The total step density is given by (3.134) and is shown in Fig. 3.29
in terms of 24/7N, for N varying from 1 to 6. The curves are obviously
asymmetric with a maximum shifted to the left of 0.5.
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Fig. 3.27. Steady state variation with time in a folded form of the surface coverage of
the separate monolayers in (a) bilayer and (b} trilayer growtih. In (a}, curves 1 and 2
correspond to the first and second monolayers, respectively, and the straight line 3 gives
the layer-by-layer growth. In (b) the surface coverages of the first, second and third
monolayers are shown by curves 1, 2 and 3, respectively. The curves are obtained by
numerical solution of the system of equations (3.144).
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Fig. 3.28. Unfolded view of the steady state variation with time of the surface coverages
of the separate monolayers in bilayer (N = 2} and tetralayer (N = 4) growth. The
curves are obtained by numerical solution of the system of equations (3.144).

Making use of the same approach as above (Egs. (3.124) and (3.130)) we
can calculate the number N, of the growth pyramids at different values of
the growth front thickness V and then the amplitudes of the time variations
of the total step density. The latter are shown in Fig. 3.30 relative to that
of N =1 for N varying from 1 to 6. It is seen that the total step density
decreases by an order of magnitude when the number of the simultaneously
growing monolayers, N, increases from 1 to 4, and about 20 times when
N =8,

The most important conclusions we can draw are the following:

(i) The shape of the oscillations of the total step density depends only
on the surface coverage. In that sense it is unique.

(ii) The amplitude of the total step density oscillations is a function
of the height and density of the growth pyramids. In the extreme case of
layer-by-layer growth, stepped and completely smooth surfaces alternate
(Fig. 3.23) and the amplitude has its highest value. The increase of the
number of the simultaneously growing crystal planes leads to alternation
of states with higher and lower step density (see Fig. 3.24), thus decreasing
the overall amplitude. In addition, the density of the growth pyramids is a
decreasing function of the thickness of the growth front (the density of the
higher pyramids must be obviously smaller than that of the lower oues),
this leading to additional decrease of the amplitude of the step density.
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Fig. 3.29. Variation with time of the total step density in units of (4w N,}!/2 at different
thicknesses of the growth front denoted by the figure at each curve. As seen the curves
are visibly asymmetric. The amplitnde decreases with increasing thickness of the growth
front. In the case of layer-by-layer growth (N = 1}, the step density varies from zero
to the maximum densit'y, thus reflecting the fact that the crystal face restores its initial
(smooth} state after deposition of one monolayer. The variation of the step density in
the case of multilayer growth never reaches zero. This means that the crystal face never
becomes smooth again.

(iii) The decrease of the amplitude due to a decrease of the density of
the growth pyramids is a function only of the size n* of the critical nucleus
at the particular temperature.

(iv) The amplitude of the step density oscillations is not very sensitive
to the atom arrival rate R as the exponent n*/2(n* + 2) is smaller than
unity.

(v) A decrease of temperature leads to a sharp increase of the number
of the growth pyramids, N;, and to a kinetic roughness of the crystal face.
The latter leads in turn to disappearance of the oscillations.
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Fig. 3.30. Dependence on the thickness of the growth front of the amplitude of the total
step density Lmax relative to the step density in layer-by-layer growth (curve 3}, the
amplitude of the total step density Lmax relative to the step density in layer-by-layer
growth in units of {47 Ny/e)}*/? (curve 2}, and the square roat of the density of the
pyramids of growth (4mN,/e)/? relative to the layer-by-layer growth (curve 1).

{vi) An increase of temperature leads to a decrease of the supersatura-
tion. The nucleation is suppressed and the density of growth pyramids and
in turn the step density can become smaller than the resolution capabilities
of the surface analytical tools. The latter leads again to disappearance of
the oscillations. It follows that the oscillations of the step density can be
observed in a limited interval of the temperature, which is in qualitative
agreement with the experimental observations {Neave et al. 1985].

Note that the size of the critical nucleus depends on temperature but re-
mains constant in a comparatively large interval of the latter (see Sec. 2.2.9).
The lower the temperature is the broader the intervals of constant nucleus
size will be. This is in agreement with the statement of Neave et al. [1983]
that the damping of the oscillations is not sensitive to temperature. It is,
however, worth noting that at high enough temperatures the condensation
can hecome incomplete. In other words, significant part of the material
deposited can re-evaporate before being incorporated into the growth sites.
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D. Damping of oscillations

As discussed above the damping of the step density oscillations is due to the
gradual transition from layer-by-layer growth to multilayer growth, In this
section we will consider only the transition from layer-by-layer growth to
the simultaneous growth of two monolayers [Stoyanov and Michailov 1988).

The problem is simplified if we take into account the periodicity con-
necied with the multilayer growth. The latter was demonstrated when the
case of the multilayer growth with J; = const and v = const was considered.
As shown in Fig. 3.20 (Eq. 3.117) the surface coverage is repeated after a
period of time T but each monolayer is fully completed after a period of
time T’ so that the number of the simultaneously growing monolayers is
equal to N = T’ /T. Obviously when N = 1,2, 3, ete., T/ = T, 2T, 3T and so
on. The damping of the step density osciflations is evidently characterized
by the derivative d/V/dt and it is the aim of this chapter to estimate it.

The transition from layer-by-layer growth to bilayer growth means
that T' increases gradually from T to 27. As shown in Fig. 3.24, after
a deposition of one monolayer, ©,(T) = 1 — @,1(T). In other words,
in the transition from layer-by-layer to bilayer growth, T' becomes longer
than T, or T’ = T + At, where At is just the time necessary to deposit the
material of the upper monolayer. Then one can write ©,,4(T) = RAt/Ny,
or At 2 Ny@, 1(T)/R =T0,4,(T), and

T At

N:?:1+?*1+@“+1(T)' (3.145)

One can also write N = 1 + AN, AN = 0,,(T). The increment
of N takes place in a time interval of T, and hence dN/dt & AN(T =
0,41 (T)/T, or TAN/dt = AN/d6 = ©,,(T).

In order to calenlate 8,.4,(T) we can use Eq. {3.116) or, better, its
equivalent in the differential form (3.116"”). We will use the mean field
approximation p,(t') = @,(t'} as the latter is quite correct at the beginning
of the formation of the second monolayer {compare curves 2 and 3 in
Fig. 3.19). Besides, we should calculate the rate of nucleation on the islands
of the lower monolayer, J(¥'), and the rate of growth of an island of the
upper monolayer, v, = ck(t — '), where t' is the moment of its nucleation.

The nucleation rate is given by the nucleation frequency Jo(p; ), as given
by Eq. (3.129) divided by the area of the undetlying island 753, The growth
rate v, can be found by solving Eq. (3.139") in its linearized form

d9n+1

1
Fra E(en —0,41)
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subject to the boundary condition 8 = §' = Rt'/Ny, Op¢1 = 0 and under
the simplifying condition ©, = O,(t') = Rt'/Np. The latter means that
in the beginning of the formation and growth of the upper monolayer the
material deposited in the time interval {0,¢'] has been consumed practically
completely by the lower monolayer. Then for p, 1 and v, one obtains

_k_ 1 __
Prn+t = No (2ZrN, 72

1R 1 #1/2
Untl = 5}?‘0 (2r N2 (¢ — #3172
As seen, the size of the island and its growth rate are proportional to
the square root of the time of nucleation, t/, of the upper island. This
dependence reflects the size of the underlying island, p;{#'). As discussed
above the larger pq is the higher the adatom concentration on top of it and
the greater the flux of adatoms to the edge of the upper island will be.
It follows that when the upper 2D island is formed at a later moment ¢
the greater will be its rate of growth and the larger will be its radius at a
moment ¢.
Substituting (3.129), (3.146) and (3.147) into (3.116”) and carrying out
the integration (with upper limit £ =T = Ny /R) give
dN 1 (n*+3) )

U O.,:1{T) = 1 —exp (—fm

/2 (g — )/ (3.146)

(3.147)

1 (n* +3)
2(n* + 4)(n* +5)

Then the transition from the layer-by-layer to the bilayer growth will
take place after the deposition of ., monolayers, where

1 (n*+4){n*+5)
dN/df {n* +3)

It follows that the damping of the oscillations of the step density
depends only on the size of the critical nucleus, and hence is not much
sensitive to the temperature (recoliecting that the number of atoms in the
nucleus remains one and the same in a broad interval of temperatures).
Thus in the case of MBE growth of Si(111) a fourfold decrease of the
amplitude of the step density oscillations is expected after 15 oscillations
at low enough temperatures when n* = 1, after 17 oscillations at some
intermediate temperatures when n* = 2 and after 24 oscillations at high
enough temperatures when n* = 6.

IR

(3.148)

Ber = (3.149)
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3.2.4, Influence of surface anisotropy— Growth of
Si(001) vicinal surface

A simplification of the model outlined above is obtained by assuming
isotropy of the growing crystal face, which leads to the circular shape of
the islands at high enough temperatures (Fig. 3.26) and the corresponding
shape of the diffusion fields around them. This model describes well the case
of growth of materials with central forces like metals. This is not the real
case, however, when, particularly, materials with diamond lattice, such as
GaAs and Si, are grown. The (001) surfaces of such crystals show significant
anigotropy, which in turn affects strongly the parameters controling the
growth process, namely, the height and roughness of the consecutive steps
and the surface diffusion. The problems discussed in the present section
are still under intensive study and thus illustrate the difficulties the theory
encounters in treating real experimental observations.

We consider as an example the vicinal face of 5i which is obtained
by a slight tilt with respect to the (100) direction towards the {110] az-
imuth. Then the monoatomic steps which accommodate the macroscopic
inclination are directed along the [110} azimuth and have a height aq/4,
where ag = 5.4307 A is the lattice parameter of silicon (Fig. 3.31(a)). The
projections of the dangling bonds on the unreconstructed surface on the
upper terrace are directed along the same [110] direction, and those on
the lower terrace, along the perpendicular [110] direction. In other words,
assuming the crystal surface preserves its bulk structure, the projections of
the dangling bonds will rotate by 90° on every next terrace. This means
that the consecutive steps will be parallel or normal to the projections of
the dangling bonds on the upper terraces.

This is the case when the (100) surface is unreconstructed, i.e. it
preserves its bulk structure. The latter is characterized by two dan-
gling bonds per atom on the surface and the surface energy is very high.
In order to reduce the surface free energy, the dangting bonds of two
neighboring atomic rows interact with each other thus forming = bonds
[Levine 1973]. As a result only one bond per atom remains unsatu-
rated on the surface. The w-bonded atoms move closer than required
by lattice geometry (the bulk 1 x 1 spacing is & = ap/v2 = 3.84 A)
thus forming “dimers” (Fig. 3.32) which in turn are spaced broader than
the normal interatomic spacing a. The dimers form rows which rotate
by 90° on every next terrace (Fig. 3.31(b)). The latter leads to the
appearance of strong elastic deformations which spread deep under the
crystal surface. The so-called 2 x 1 and 1 x 2 reconstructed surfaces result.
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Fig. 3.31. (a) Bulk and (b) reconstructed view of a 5i(001) vicinal surface tilted towards
the [110] direction. A rotation by 90° of the projections of the dangling bonds is clearly
seen in (a). The dimers also rotate by 90° on every next terrace. The terraces are
separated by single layer steps denoted by 55 and Sg according to the notation of Chadi
[1987]. The structure of the steps also alternate due to the rotation of the chemical
bonds. The step height is ¢o/4 = 1.36 A, where eg = 5.4307 A is the bulk lattice
constant of Si.

They alternate on every second terrace and it is said that 1 x 2 and 2 x 1
domains alternate. Such a surface is often called nonprimitive. It is worth
noting that a 7-bonded chain model has also been proposed for the Si(111}
surface [Pandey 1981).
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Fig. 3.32. Side view of a dimer. (a) shows the bulk structure. (b} shows a symmetric
(nonbuckied) dimer. (c) shows an asymmetric (buckled) dimer, The buckling causes
a partial charge transfer from the “down™ to the “up” atom and the dimer’s bond is
partially ionic.

3.2.4.1. Dimer’s structure

Chadi [1979] concluded that when the atoms which constitute the dimer
are situated in one plane which is parallel to the surface (the so-called sym-
metric dimer, Fig. 3.33(b)} the dimer is unstable. The lowest energy state
is reached when the dimer’s atoms are displaced in a direction normal to
the surface in addition to the in-plane displacements towards one another.
Thus one of the atoms is displaced upwards and the other, downwards
(Fig. 3.33(c)). Such “buckled” dimer is called asymmetric. Whereas the
bonding hetween the atoms of symmetric dimers is covalent the bonding in
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asymmetric dimers is partially covalent and partially ionic. The formation
of an asymmetric dimer results in a charge transfer from the “down” to the
“up” atom of the dimer [Chadi 1979]. The same conclusion concerning the
dimer’s geometry has been drawn by Pauling and Herman [1983] (see also
Lin, Miller and Chiang [1991}).

b

Fig. 3.33. [llustration of an imaginary process of formation of a S, step. First, we
cleave the uppermost atomic plane hetween two dimer rows and shift (to infinity) the
right-hand half-plane to the right 29 shown in (a). Two S, steps are formed (the second
not shown) as shown in (b). Dimers on the lower B type terrace are formed and are
directed perpendicular to the plane of the figure. The atoms which form dimers are
shown by solid circles,

Both symmetric and asymmetric ditners have been observed to exist
simultaneously on Si(100) by Tromp, Hamers and Demuth [1985] (see
also Hamers, Tromp and Demuth [1986]) with the help of scanning tun-
neling microscopy (STM). They found that the (100) surface of Si has
many defects, particularly vacancies or missing dimers, which in turn give
rise to additional elastic strains. Far from the defects, only symmetric
(nonbuckled) dimers were observed, while near the defects, asymmetric
(buckled) dimers were observed as a rule. It was concluded that the vacancy
type defects stabilize the dimer asymmetry, and often zigzag patterns were
observed near large defect sites. These zigzag structures were explained
as rows of asymmetric dimers in which the direction of buckling alternates
from dimer to dimer along the row. Rows in which the dimers are buckled
in one direction only have never been detected. Moreover, the degree
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of buckling (or asymmetry) s not always the same as that predicted by
theory, A gradual transition from symmetric t0 asymmetric dimers has
been observed when going from defectless area to an area consisting of
large defects. It is interesting to note that the dimers which belong to a
row at the edge of a step are always strongly buckled. For more details the
reader is referred to an excellent review paper of Griffith and Kochanski
{1990].

3.2.4.2. Structure and energy of steps

Consecutive steps on a vicinal {100) surface will be either parallel or normal
to the dimer rows. Adopting the notation suggested by Chadi [1987],
monoatomic steps which are parallel to the dimers rows on the upper
terrace (or normal to the dimers bonds) are labelled S5 (single A) steps
and those perpendicular to the dimers rows (parallel to the dimers bonds)
on the upper terrace are labelled Sg (single B) steps (Fig. 3.31(b)). The
corresponding upper terraces with 2 x 1 and 1 % 2 reconstructed surfaces
are labelled type A and type B terraces, respectively (Fig. 3.31(b)). We
will consider the two types of steps separately.

Two Sa steps can be produced by imaginary cleaving of the uppermost
lattice plane beiween two dimers rows (parallel to the dimers rows) and
shifting of one of the half-planes far enongh from the other (Fig. 3.33). It
is very important to note that strong first neighbor bonds are not broken
during this process which means that extra dangling bonds are not created.
It follows that the edge energy of such sieps should be very small. In
order to produce two Sg steps we cleave the uppermost lattice plane in a
direction normal to the dimers rows between two neighboring dimers and
shift apart the two half-planes. To do this we break a. first neighbor o bond
per atom between the atoms of the uppermost and the underlying layers
{Fig. 3.34(a)). Then an extra dangling bond per atom of the underlying
layer is created and the specific edge energy of the Sg step should be
much greater than that of the S, steps (Fig. 3.34(b)). Such a gtep is
called a nonbonded Sy step. The dangling bonds at the step edges can
interact with the dangling bonds belonging to the atoms of the neighboring
paralle] row of the lower terrace. As a result an additional = bond per
atom is created to reduce the step energy. The so-called rebonded Sp
step is formed as shown in Fig. 3.34(c) [Chadi 1987]. The calculations of
Chadi [1987] gave the values »sa = 0.01 eV /a = 4.16 x 10~7 ergcm™ and
xsn = 0.15 eV/a = 6.24 x 1076 ergem ™! for the specific edge energies of
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c

Fig. 3.34. lllustration of an imaginary process of formation of a Sgp step. First, we cleave
the uppermost atomic plane perpendicular to the dimer rows as shown in (a) and shift
{to infinity) the nght-hand half-plane to the right. Two Sg steps are formed (the second
not shown) as shown in (b) and (c). The atorns on the exposed sutface then form dimers.
Two configurations of the Sy steps are possible. In (b) the bonds belonging to the atoms
at the step edge do not take part in dimer formation. Nonbonded Sp step results. In
{c) the bonds belonging to the atoms at the step edge take part in dimer formation and
rebonded Sp step resulis.

the S, and the rebonded Sg steps, respectively, in qualitative agreement
with the above considerations. Qbviously, the edge energy of a nonbonded
Sg step (Fig. 3.34(b}) should be greater than that of a rebonded one. Note
that no rebonding of the S, steps can take place as no extra dangling bonds
are formed.

Monoatomic steps have been studied by Hamers, Tromp and Demuth
[1986] with the help of STM. As mentioned above the dimer row which
forms the upper S4 step edge is strongiy buckied. An interesting picture
is observed in the vicinity of a kink site along the Sa step. Before the
kink the dimers which constitute the row on the upper edge are strongly
asymmetric. After the kink the same row is spaced at a distance 22 =
7.68 A from the edge and the dimers are no longer buckled. Besides,
simultaneous existence of rebonded and nonbonded Sp steps has been
established although minimum energy considerations [Chadi 1987) showed
that the nonbonded steps are energetically unfavored. The experimental
observations of Hamers, Tromp and Demuth [1986] are in good qualitative



228 Crystal Growth

agreement with theoretical conclusions which follow from the calculations of
the electronic states of the $i(100) stepped surface {Yamaguchi and Fujima
1991].

An immediate consequence of the calculations of the specific edge free
energies of the monoatomic steps is that a 2D island with a monolayer
height will be surrounded by two Sa and two Sp steps. As wsa < xsp
the equilibrium shape of the island will be elongated along the dimer rows
according to the Gibbs—Curie-Wulff’s theorem (see Chap. 1).

It was found by LEED measurements that in the case of highly mis-
oriented 5i{100) surfaces (6° < @ < 10°) the macroscopic inclinations were
accommodated in all cases by steps with double height ag/2 [Henzler and
Clabes 1974; Kaplan 1980]. It is worth noting that the cleaning procedure
included anunealing for 2 min at 1100°C and for 30 min at 950°C [Kaplan
1980]. Double steps have been observed in the case of smaller inclinations
(2° € @ < 4°) [Sakamoto et al. 1985a} after annealing for 85 min at
1000°C. Even well-oriented surfaces (6 < 0.5°) [Sakamoto and Hashiguchi
1986] showed double steps after sufficiently prolonged annealing at high
temperatures. Double height steps Ds and Dpg in the notation of Chadi
[1987) are shown in Fig. 3.35. As seen, only one type of terraces, either
of type A or type B, exists in these cases. The double steps can also be
rebonded. We can imagine the Dy step as having been formed by a Sy
step which has caught up with a Sy step. Then the 7 bonds are formed
between the atoms in the lower edge and the neighboring atoms belonging
to the lower terrace. In the reverse case, when a 54 step is on top of
a Sg step, a Dp step results. The rebonding is between the neighboring
atoms of the intermediate lattice plane. The energy of rebonded double
steps has been calculated in a series of papers [Aspnes and Ihm 1986;
Chadi 1987). The values spy = 0.54 eV/a = 2.25 x 107% ergem™ and
spa = 0.05 eV/e = 2.08 x 107% ergem™' have been estimated [Chadi
1987].

In order to find the equilibrium structure of the steps we should estimate
as before the corresponding works for kink formation. To this aim we follow
a procedure analogous to that used above for the estimation of the specific
step energies. In doing that we have to bear in mind that we have to
preserve the integrity of the dimers. We consider first a completely smooth
Sa step (Fig. 3.36(a)). We break a bond between two neighboring dimers
and shift apart the two half-rows of atoms tc form two single kinks. It is
immediately seen that we spent an amount of work which is exactly equal
to the work required to form a step S4 with length 2a. Then the work
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Fig. 3.35. Schematic view of {a} Da {double A) and (b} Dg (double B) staps. The double
steps can be thought of as consisting of single steps one on top of the other. In the case
of the D4 step, the S, step is on top of the Sp step and vice versa.

of formation of a single kink on the Sp step is wa = 26x#5p/2 = axsp.
Applying the same procedure on the Sg step (Fig. 3.36(b)) we find wg =
xgaa. It follows that the work of kink formation is greater for the step with
lower specific edge energy, and vice versa [Van Loenen et al. 1990). This
Ieads in turn to the conclusion that the S steps will be smooth to much
higher temperatures than the Sg steps. Then smooth and rough steps
will alternate on a nonprimitive Si(001) surface (Fig. 3.37). Numerous
STM investigations confirmed this conclusion (e.g., see Swartzentruber et
al. [1990}).
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Fig. 3.36 (a) & (b). For the determination of the works of formatien of kinks w, and wp
along Sa and Sp steps, respectively. The atoms of the lower terraces are shown by filled
circles. Imagine that in {a) we cleave the dimer row at the edge of 2 $, step and shift to
infinity the upper half-row as shown by the arrow. Two kinks are formed as a result, one
of themn being shown in {b). In fact a part of a Sp step with length 24 is formed, where
a = 3.84 A is the 1 x I interatomic spacing on the Si(001). The same in the case of a Sp
step is shown ii: (c) and (d). A part of a S4 step with length 2a is formed in the latter
case, Thus the side steps of the kinks are always equal to 2a in order to permit dimer
formation at the lower terraces. Comparing (b} and (d} shows that the kinks along the
Sa and Sp steps are equivalent although the steps differ. This is clear bearing in mind
that the work to separate an atom from a kink position at 0 K i3 equal to the chemical
potential of the bulk crystal taken with negative sign.
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In other words, one of the edges of the kinks represents a part of a
Sa step and the other edge a part of a Sg step, irrespective of whether
the kink is on a Sa or Sg step. It is thus obvious that the detachment
of & single atom from the kink position is no longer a repeatable step.
One has to detach four atoms constituting two dimers in order to restore
the initial state. It follows that the work spent to evaporate a complex
of two dimers from a single kink is one and the same irrespective of the
type of the step. Namely this work (per atom) taken with negative sign
is equal to the chemical potential of the Si crystal at the absolute zero as
shown in Chap. 1. Moreover, this leads to the conclusion that every kink
should have a length being a multiple of 2a because of the way in which the
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Fig. 3.37. Train of alternating smooth S, and rough Sp steps.

step must terminate at the lower terrace and the latter has a periodicity
of 22 normal to the step. The distance between two kinks should be a
multiple of 2a for the same reason. These considerations were confirmed by
STM observations of Sy and Sp steps [Swartzentruber et al. 1990]. These
authors also showed that the kinks on the Sg step, which is very rough even
at moderate temperatures, often have a length greater than 20 (but always
a multiple of 2a). This means that a statistics of kinks of amount greater
than unity should be applied.

We can now calculate the density of kinks along the 55 and Sp steps
as an illustration of the above considerations. To this aim we follow the
ideal gas approximation (noninteracting kinks) of Burton, Cabrera and
Frank [1951} although it was shown that there is considerable kink-kink
interaction [Zhang, Lu and Metiv 1991c].

In analogy with Eq. (1.71) the sum of all kinks with arbitrary length r
is

2L 2L
nu+2n+r+2n_, =n= 1/26&, (3150)
r=1 r=}

where 1, and n_, are the numbers of positive and negative kinks of length
T and ng is the number of the smooth parts. The summation is now carried
out from r = 1 to» = 2L, where 2L is the mean distance between two steps
in units of 2¢ of one and the same type A or B.
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Equation (1.73) now becomes

2L 2L
Sy~ o =9fa, {3.151)
=1

re=1

where ¢ is the angle between the step direction and the (110} azimuth,
As before (see (1.72))

n+ n_ 2
= —=p, 3.152
ol (3.152)
where ny = ny; and
w
11 =17ap = exp (——k’f;,—’,B-) . {3.153)

Burton, Cabrera and Frank [1951, Appendix C] showed that the follow-
ing thermodynamical relation between multikinks of amount r and single
kinks of amount r = 1 holds:

»
R (“_*) . (3.154)
N o

The latter is easy to understand bearing in mind that in order to form
a kink of amount r, a kink of amount + — 1 must be formed before that.
In other words, the probability of formation of a kink of amount r, P,, is
a product of the probability of formation of a kink of amount r — 1, Pr_;,
and the probability of formation of a single kink, P, ie. P.- = P, ;.
Then by induction (P,_3 = P._, B, etc.) P, = Pf.

The average spacing 8y between kinks of any amount iz now given by
{compare with {1.74))

2l 2L -1
bo = (Z Ngr + Y, n-,) . (3.155)
r=1 r=1

Solving the system (3.150), (3.151), (3.152) and (3.154) by summing a
geometric series with ¢ = 0 gives

_ 1y WA,B
5(AB)=a (1 + 5) =af1+exp (22)] (3.156)
which is a good approximation for wide enough terraces (L > 10a). Using
the values taken by Van Loenen et al. [1990] for Monte Carlo simulation
of the growth process, wa = 0.5 eV and wp = 0.05 eV for the mean kink
spacings at T = 750 K, we obtain the values §3(A) = 2.3 x 10%¢ and
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80(B) 2 2a. The values estimated by Chadi [1987], wy = 0.15 eV and
wp = 0.01 eV, give smaller value for §(A) = 120 and the same value for
8p(B) = 2q. In any case 8(A) is always greater than &(B). It is worth
noting, however, that Eq. (3.156) is only approximate as the ideal gas
model (noninteracting kinks) has been used. More elaborate calculations
including kink-kink interactions give more realistic results [Zhang, Lu and
Metiu 1991¢].

Following the same procedure as in Chap. 1 but solving Egs. (3.150)~
(3.154) for the Gibbs free energy of the Sg steps, one obtains

1+n — 2’?123“1)

3.157
1 —mm ( )

GsB = Mgp — nkT In (

where »5p 15 the energy of the straight step.

The Gibbs free energy of the 54 is obtained by replacing the index B
by A. In the extreme case of steps far apart (I — o) Eq. (3.157) turns
into the one derived by Burton, Cabrera and Frank [1951):

Geg = xsp —~ nkTIn (1 + ’“’) . (3.157")
1-mm

3.2.4.3. Ground state of vicinal S{{100) surfaces

The question of the lowest energy state of the 8i{100) vicinal surfaces is very
important as the latter are used as substrates for the growth of epitaxial
films of GaAs and other 11V compounds. The latter are of utmost
importance for potential device applications [Shaw 1989]. Obviously, the
surface with single height steps necessarily leads to antiphase boundaries
in the III-V epilayers [Kroemer 1986].

As seen, the S, steps have the lowest edge energy. However, they
unavoidably lead to the existence of Sp steps and the overall emergy is
#gpa + #sp = 0.16 eV/a = 6.66 x 107® ergcm™'. This value is three
times higher than the energy of a Dy step but more than three times
lower than that of a Ds step. It was concluded that the Dp steps are
thermodynamically favored on a vicinal (001) surface of Si and a single
domain 1 x 2 reconstruction should always dominate after sufficiently long
annealing at high temperatures [Chadi 1987]. Such a surface is often called
a primitive surface.

As shown in Fig. 3.31(b), terraces with 2 x 1 and 1 x 2 reconstructions
alternate on the nonprimitive surface. Due to the displacements of the
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dimer atoms towards one another, such a reconstructed surface is under
tensile stress o parallel to the dimer bonds and under compressive stress
oy in the perpendicular direction. The overall stress Ao = 7. — 0oy is
tensile. The stress rotates by 90° on the neighboring terrace and as a result
tensile and compressive stresses alternate on a vicinal Si(100)} surface, the
period of alternation being given by the terrace width. It was first pointed
out by Marchenko [1981] that on a surface with alternating stress domains
{parquet-like surface) the stress relaxation lowers the surface energy. The
decrease of the surface energy due to sirain relaxation was found to depend
logarithmically on the interstep distance [Marchenko 1981; Alerhand et
al. 1988]. Obviously, in the case of a surface with double height steps
(Fig. 3.35) all dimers strain the crystal in one and the same direction,
the surface stress does not alter its sign and there is no strain relaxation.
Then the difference between the Gibbs free energies of single height (SH)
and double height (DH) stepped surfaces will be given by [Alerhand et al.
1990}

AG = L1 [%(GSA +Gsg — Gps) — Az In (%)] R (3.158)

where A, = Ao?(1 — »}/2rG (energy per unit length) originates from the
anisotropy of the stresses, Ac, and depends on the shear modulus G and
the Poisson ratio v of the bulk silicon [Marchenko 1981; Alerhand et al.
1988].

As discussed above, the work for kink formation is high for the 5, step
and low for the Sp step. The same is valid for the double height steps.
The Dp steps have high energy excitations, i.e. wpg = axpa, and we can
approximate G'ga and Gpg by the edge energies of the perfectly straight
steps srg 4 and »gp. We have to take the full expression (3.157)} only for Ggg.

Then in the ideal gas approximation (neglecting for simplicity the term
22041 in (3.157)) (3.158) turns into

1|1 kT 1+np L
A r-11C - - - A, il .
L [2(XSA+J¢SB #pp) 5 ln(l_%) AeIn (wa)}

The condition AG = 0 determines the first order phase transition from
nonprimitive (SH-stepped) to primitive (DH-stepped) surface. A critical
terrace width L (or a critical tilt angle 8. = tan~*(A/L.); A = ap/4 =
1.36 A is the single step height) can be determined showing that the
primitive surface will be energetically favored at L < L. (@ > &), and
the nonprimitive surface at L > L. (8 < 6.}. L. is then given by
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Fig. 3.38. Phase diagram of a vicinal 5i(001) surface showing regions of stability of double
layer (DL} and single [ayer {SL) stepped surfaces (after Alerhand et al [1990]).

L. = maexp

(3.159)

ssa +sp —xpg kT In 1+ 98
2/\,,- 20‘)0 1- B '

#. is plotted versus temperature in Fig., 3.38 with sgy + s1gp — spp =
110 meV/a, A, = 11.5 meV/e and wg = 10 meV. As seen, at low
temperatures the entropy term on the right-hand side of (3.159) goes to
zero and Lo — L., = 1440 A or 6, — 6, = 0.05°. In general, the
primitive surface is the ground state at high tilt angles, and vice versa,
the single height stepped surface being energetically favored at low tilt
angles. Equation (3.159) overestimates the result obtained by Alerhand et
al. [1990). More elaborate studies take into account the influence of strain
relaxation on the step roughness [Alerhand et al. 1990], the corner energy
of the kinks [Poon et al. 1990], etc. In particular, more elaborate evaluation
of the specific edge energies [Poon et ol. 1990] gives for 8., a much higher
value of about 1°. Pehlke and Tersoff [1991a] found that at the ground state
the B type terraces are narrower than the A type terraces. The problem
of the equilibrium structure of vicinal Si{100} surfaces is still a subject
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of intensive experimental and theoretical investigations. The interested
reader is referred to the original papers [De Miguel et al. 1991; Barbier and
Lapujoulade 1991; Barbier et al. 1991; Pehlke and Tersoff 1991b).

3.2.4.4. Anisotropy of surface diffusion coefficient

The anisotropy of the surface diffusion follows directly from the anisotropy
of the crystal surface itself [Stoyanov 1989). The first questions which arise
are connected with the location of the adsorption sites on the reconstructed
surface, with what happen to the dimers when adatoms appear on top of
them or in their vicinity, etc. Then an energy surface should be constructed
and the lowest energy path for surface diffusion should be determined.
Brocks, Kelly and Car {1991a, b] found that the deepest minima for an
adsorbed atom are located along the dimer rows between two neighboring
dimers belonging to the same row (point M in Fig. 3.39). This site is favored
by the fact that the bonds between the adatom and the nearest dimer atoms
have the same length 2¢v/3/4 = 2.35 A as the nearest neighbor spacing in
the bulk silicon. The site B, which connects two dimers in adjacent rows,
although looks very favorable, requires too long a bond of 2.49 A and the
dimers bond should be stretched alse. Thus the energy of an adatom in site
B is 1.0 eV higher than that in the deepest minimum M, The energy of the
site H which is located between two adjacent dimers of one row is 0.25 eV
higher than that of the site M, whereas the energy of the site D which is
just on top of the dimer is 0.6 eV higher than the energy of the absolute
minimum M. It was thus found that the lowest energy path of an adatom in
a direction parallel to the dimer rows is D-H-M and the activation energy
for surface diffusion is 0.6 eV. The activation energy for surface diffusion in a
direction perpendicular to the dimer rows is greater than 1.0 €V. It was thus
concluded that the direction of fast diffusion is parallel to the dimer rows.
Miyazaki, Hiramoto and Okazaki [1991] found that an atom adsorbed on top
of a dimer (site D) canses a little distortion of the dimer while that adsorbed
at site B causes the dimer to break. They reached the same conclusion
concerning the direction of fast diffusion as Brocks, Kelly and Car [1991a,b}.
The activation energy along the path D~H-D parallel to the dimer rows
was found to be 0.6 eV whereas in the perpendicular direction D-B-D the
latter is somewhat larger (1.7 eV). Using a Stillinger—Weber interatomic
potential [Stillinger and Weber 1987] Zhang, Lu and Metiu [1991a,b] (see
also Lu, Zhang and Metiu {1991]) found even smaller activation energies for
surface diffusion of about 0.3 eV along the dimer rows when the adatoms
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diffuse on top of the dimers, 0.7 eV when the adatoms diffuse by the side
of the dimer string and 0.9 eV when the adatoms diffuse along the value
between the dimer rows. At the same time the latter authors found an
activation energy higher than 1.0 eV in a direction perpendicular to the
dimer rows. It follows that an adatom adsorbed on a dimer string can
quickly move to the end of the string and increase its length (Zhang, Lu
and Metiu 1991b). They also found that diffusion of dimers as entities is
highly improbable. Ashu, Matthai and Shen [1991] found the values 0.2 eV
and 2.8 eV for the activation energies for surface diffusion in directions
parallel and perpendicular to the dimer rows, respectively. Based on STM
measurements of the saturation island density, Mo et al. [1991] extracted
the values 0.67 £0.08 eV and 1 x 10~%cm? /sec for the activation energy for
fast diffusion and the pre-exponential factor. Excellent agreement with the
above values was found by Roland and Gilmer [1991, 1992a), the latter
authors having used the Stillinger—-Weber potential for their study. In
addition they found that exchange between substrate atoms and adatoms
takes place even at low temperatures. This phenomenon gives additional
contribution to the surface diffusion.

=—@

eCeCe e
OOOQOOO
oo 00
oo 00

Fig. 3.39. INustration of the directions of fast and slow surface diffusion of Si atoms on
8i(001). Top view of the topmost three layers of a (2 x 1) reconstructed Si(001) surface
is shown. The large filled circles represent the uppermost atoms, the medium-sized open
circles represent the second layer atoms and the small filled circles represent the third
layer atoms. The points denoted by B, D, M and H are explained in the text {after
Brocks, Kelly and Car [1991]).



3.2, Layer Growth of Flat Foces 233

The general conclusion is that, irrespective of the quantitative differ-
ences due to the different methods of calculations, the surface diffusion
on the reconstructed S$i(100) 2 x 1 surface is highly anisotropic and the
direction of fast diffusion is parallel to the dimer rows. The values for the
activation energy, although varying from 0.2 eV to nearly 0.7 €V in different
studies, suggest that considerable surface diffusion takes place even at room
temperature. What is much more important is that a critical temperature
should exist below which only surface diffusion in one direction takes place
and above which the diffusion in a direction normal to the dimer rows could
become significant.

3.2.4.5. Theory of 1D nucleation

It follows from above that rough (Sg) and smooth (S,) steps alternate
on a vicinal double domain Si(001) surface. The Sg steps advance by
direct incorporation of growth units to the kink sites in complete analogy
with the normal growth of rough crystal faces. The growth of the Sy
steps is more complicated. It reqguires the precursory formation of kinks.
As thermally activated formation of kinks with sufficiently great enough
density is inhibited another mechanism should obviously be involved. In
analogy with the formation of 2D nuclei on a smooth defectless crystal
surface one can think of the formation of 1D nuclei which represent finite
atomic rows. Every row will thus give rise to two kinks. The theory of 1D
nucleation has been treated by many authors [Voronkov 1970; Frank 1974;
Zhang and Nancollas 1990].

Let us try to treat thermodynamically the problem of the formation of
1D nuclei just as we did in the case of 3D and 2D nurlei. To this aim we
will use the atomistic approach suggested by Stranski and Kaischew [1934).

We consider first the formation of a 3D nucleus of a Kossel crystal with
a cubic equilibrium shape. The nucleus consists of N = nj atoms, where n3
is the number of atoms in the nucleus edge. The work for nucleus formation
is given by Eq. (2.20), AG} = N@3 — Uy, where @3 = 3¢ — 2¢p/n3 is the
mean separation work (Eq. 1.60). The equilibrium vaper pressure of the
nucleus is defined by Eq. (1.61), Ap = ¢)/2 — @3 = 29/n3. Substituting @;
into Eq. (2.20) and bearing in mind that Uy = 3ndy — 3n2y for the Gibbs
free energy, one obtains AG} = n3y. Applying the same procedure to a
2D nucleus with a square shape one correspondingly obtains Ap = ¥ fn,
and AGY = nav.



240 Crystal Growth

Fig. 3.40. Schematic view of 1D nucleus at the edge of a single step on the surface of a
Kossel crystal.

We consider now a row of n; atoms in a step edge (Fig. 3.40). The
mean separation work is calculated now by the detachment of the end
atoms and is exactly equal to the separation work from a kink position,
ie @ = 3 = /9. Then Ap = @1/ — @ =0, Le. the atomic row has
the same chemical potential as the bulk crystal irrespective of its length.
The potential energy is Uy = 3n;9 — ¢ and for the Gibbs free energy one
obtains AG} = . The results of the above calculations are summarized in
Table 3.1. As seen the Gibbs free energy does not depend on the nucleus
size, and hence we cannot define thermodynamically a critical size of the
row of atoms. However, as shown by the authors mentioned above a critical
1D nucleus can be well defined kinetically. In what follows we will consider
the problem of step advance by 1D nucleation following the approach of
Voronkov [1970].

We consider the growth and dissolution of the row of atoms shown
in Fig. 3.40 assuming that atoms attach to the row ends directly from the
terraces. We rule ont diffusion of atoms along the step edge. The diffusion of
atoms to the kinks is fast enough and the step advances in a kinetic regime.
Then a constant adatom concentration ng or a constant supersaturation
O = Mot /Mg — 1 exists in the near vicinity of the step. We denote by wdt
and w—dt the probabilities for attachment and detachment of adatoms to
and from a kink position in a time interval d¢. The corresponding frequencies
wt and w™ are given by
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Table 3.1, Gibbs free energies of formation and supersaturations for 3D, 2D and 1D
nuclei of a Kossel crystal. n denotes the number of atoms in the edges of the 3D nucleus
with & cubic shape, 2D nucleus with a square shape and 1D row of atoms. ¥ denotes
the work required to break the bond between the first neighbors.

Dimensionality "
of the nucleus AG Bu
3D nty 2%
ki
9D na kd
n
1D L ¢
- AW 4+ AU
w” = vexp (-— T ) , (3.160)
t oy et _Av
wt = uNo exp ( T ) , (3.161)

where AW = 172 — Pdea I8 the work to transfer an atom from a kink
position on the surface of the nearby terrace (Eq. (3.18)).

Bearing in mind that ¢ = N /Ny — 1 and n,/Ny = exp(—AW/kT)
(Eq. {3.18)) (3.161) can be rewritten in the form

wt=w™(1+0). (3.161")

As seen, at equilibrivm (o = 0) wt =w™ and Ry = e
The kink performs random walk back and forth with a diffusion coeffi-
cient
D =a%w™ {(3.162)

around a given constant position.
When not in equilibrium (¢ # 0) w* > w™ and the rate of advance of
the kink is given by

W = a(w"' —wY=aw s, (3.163)

At small supersaturations the probabilities of attachment and detach-
ment of atoms are close. The kink can perform simultaneously random
walk backward (dissolution of the row) and steady advance forward with a
rate v,. The direction of the random walk is opposite to the direction of
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advance. Then during a time ¢, ny, atoms will detach from the kink and n¢
atorns will join the kink. The kink will shift backward by a distance

1= a(ny — ng) = 2DV — et .

As seen, the shift of the kink backward displays a maximum ai some
time tpax = D/v;*:. The maximum or the most probable shift of the kink
backward is then

D
Emax = — =-. (3164)
Vi a

Let the mean kink spacing be
1
by =a (1 +3 exp(w/kT))

as given by Eq. (1.73). Ilf o/o » §, the probability for the kink to encounter
a neighboring kink with an opposite sign and to annihilate with it is very
large. If this happens the atomic row will disappear. In other words, atomic
rows smaller than e/ will have a greater tendency to decay than to grow
further.

If, however, the system is sufficiently far from equilibrium so that the
supersaturation is large enough, a/o < & or

o apg , (3.165)

where py = 1/8¢ is the equilibrium kink density, steady growth will prevail
over random walk., An atomic row longer than a/o most probably will not
disappear, but will grow with a steady state rate v,. Thus it is namely the
quantity /¢ which plays the role of critical size of the 1D nucleus. The
latter is defined solely on the basis of kinetic considerations.

It follows that when the inequality (3.165) is fulfilled the advance of
the step will take place by formation and growth of 1D nuclei. Thus this
inequality gives the lower limit of validity of the 1D nucleation mechanism
of growth. Obviously, an upper limit should exist. In complete analogy
with the growth of atomically smooth and defectless crystal face the upper
limit will be defined by the condition of the kinetic roughness of the step.
In the particular case of step advance the kinetic roughness is determined
by the condition that every atom adsorbed at the step edge remains there
for a sufficiently long time. Then each adsorbed atom will give rise to two
kinks.

We dencte the frequencies of adsorption and desorption of atoms at
the step edge by w] and w], respectively. The adsorption frequency wi
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should be nearly equal to the frequency wt of attachment to kink sites. The
desorption frequency w, should be much greater than w™ as the adsorbed
atoms are more loosely bound to the steps than the atoms in the kink
positions. If the supersaturation is not large, an atom adsorbed at the step
will desorh with greater probability than attach new atoms on either side
of it. In other words, when the frequency of desorption is comparable with
the double frequency of attachment of atoms to kink positions, w] = 2w*,
the step will by kinetically rough and the 1D nucleation mechanism will
no longer be valid. The reverse condition, or the condition that the step is
still smooth, is obviously w > 2w¥, or

27 €1, (3.166)

Wa

The inequality {3.166) can be expressed through the equilibrium kink
density and the supersaturation by using the condition for adsorption—
desorption equilibrium. We denote by p, o the equilibrium density of atoms
adsorbed at the step. The condition of detailed balance reads w), /a =
w;pn.ﬂ'l or 4
wa‘f = apan

a

Each adsorbed atom creates two kinks, one positive and one negative,
Then the probability to find an adsorbed atom, ap, g, will be equal fo the
probability to find simultaneously one positive, ap‘-‘}' , and one negative, apy,
kink. Neglecting any possible energetic interaction between the kinks, the
above results in ap, o = (ap Y(apy ). Bearing in mind that po = pf + p;
and pf = p; , one obtains p, o = a{pe/2)*. Then

+
W app 2
=== . 3.167
Wy ( 2 ) ( )
Excluding w] from (3.166) and (3.167) and bearing in mind that w* =

wl =wly (1+ ), (3.166) turns into

& . 3.168
(apo)? ( )

Thus the conditions (3.165) and {3.168) give the lower and upper limits
of validity of the 1D nucleation mechanism of advance of single steps.
Obviously, if apg < 1 as in the case under study this mechanism of growth
will be valid in a very wide interval of supersaturations. In the particular
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case of S, steps on the vicinal surface of Si(001) at T = 600 K, 64 =
870a. Then apy = 1.15 x 10~ and the advance of the steps through 1D
nucleation will take place from supersaturations as low as 1.15 x 10~ up
to supersaturations as high as 7.6 x 10°.

We can now calculate the steady state rate of formation of 1D nuclei
by using the classical approach of Becker and Doring [1935] described in
Chap. 2. Equations (2.49") in this particular case will look like

1
Jg = U:E - UJ;Pa y (3169')
Jo=2wp, — 2w py (3.169")
Jo=2wrpa_1 2w p, . (3.169"")

The first equation differs from all the others, on account of which we
will solve the system beginning from the second equation (3.169"). Thus
we will determine the density of the adsorbed atoms, p,, and substitute it
into the first equation (3.169'} to obtain an expression for Jj.

The expression (2.50) now reads (from Eq. (3.169”) onwards)

n W k}—L
Jg = 2w+,oa [1 + z (w—+) ] .
k=1
The sum in the denominator represents that of a geometric series and
can be easily found. The upper limit should be greater than the number
of atoms in the critical nucleus 1/0. The ratio w™jwt = 1/(1 + &)
{Eq. {3.161")) is always smaller than unity as ¢ > 0. At large supersat-
urations the critical size 1/0 is small and the upper limit n should be a
small number, and vice versa. At the same time, at large supersaturations
the terms in the sum vanish faster than at small ones so that we will not
make a large error if we extend the upper limit to infinity in both cases
of large and small supersaturations. Then the sum in the denominator is

equal to 1/o and Jo = 2wt pao /(1 +0) = W™ ap, = 2w™ —w™ )pa, OF
_ Jo
Pa = 2wt —w™)

This result can be immediately obtained from Eq. (3.169") assuming
Pa = Pn_1 = py = const [Voronkov 1970], i.e. the densities of the clusters
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do not depend on the cluster size as follows from the thermodynamic
considerations given in the beginning of this section.
Substituting p, into (3.169") gives for Jy [Voronkov 1970]
Cwi 2wt—w7)

Jo= . 3.170
T wa + 2wt —w) ( )

This expression can be easily simplified taking into account that wy »
2% (Eq. 3.166) and hence wy >» 2(w* —w™). Substituting w} = (1 +
), why = wo(apo/2)? from Eq. (3.167) and w* — w™ = w™o from
Eq. (3.163) into Eq. (3.170) gives

Jo= %a.w'p%cr(l +0). (3.171)

Finally, making use of Eq. (3.160) and py = 1/, gives
__‘Pl,f‘.! — Pdes + 2w + AU)

(3.172)

v
Jo= 2;0(1 + o) exp ( T

As seen the steady state rate of 1D nucleation is a linear function
of the supersaturation when the latter is much smaller than unity, but
increases parabolically with it when ¢ >» 1. Then at low temperatures,
eg, T = 600 K, with v = 3 x 10¥%ec™!, ¢ = 3.84 x 10°% em, o &
1x10%, @170 = 4.33 €V, paes = 2.99 eV [Roland and Gilmer 1991, 1992a),
wa = 0.5 eV and AU = 0.2 eV, the steady state 1D nucleation rate is
of the order of 7 x 10° cm—!sec™!. At T = 1000 K, o 2 1 x 10~3 and
Jo =2 % 10° cm~lsec™l,

3.2.4.6. Rate of siep advance by 1D nucleation

Asin the case of growth of a smooth and defectless crystal face by formation
and lateral spreading of 2D nuclei we will consider separately the advance
of infinitely long step and a step of finite length. In doing that we will
follow exactly the same approach.

In the case of infinitely long step we assume that a row with length ! is
formed. Then the frequency of 1D nucleation of a new row of atoms next to
the first one is J; = Jyl. The time elapsed from the nucleation of the first
row to the nucleation of the second row is [/v. The latter is approximately
inversely proportional to the nucleation frequency, or I/v, = 1/Jyl. Then
I = (vx/Jp)'/2. The rate of step advance is given by v = Jola, or [Voronkev
1970; Frank 1974

V= a(ngk)”z . (3.173)
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Making use of the expressions for Jy and vy, (3.171) and (3.163), gives
for v

v =a’ppw (1 +0)Y?, (3.174)

or

- es A
v=2aua(1+g)1f2exp(_%;z Pges + W+ U)‘

iT (3.175)

On the other hand, v = apy, = a‘pw o, where p is the real kink
density under conditions far from equilibrium. Comparing this expression
with Eq. (3.174) gives for the kink density

p=poll+0o)/? . (3.176)

It follows that at high temperatures {small supersaturations) when the
equilibrium density of thermally activated kinks is large the kink density is
close to the equilibrium omne, i.e. the contribution of the 1D nucleation to
the kink formation is negligible. The contribution of the 1D nucleation to
the kink formation is significant at low temperatures.

The propagation of steps with a finite length is completely analogous
to the layer-by-layer growth of finite crystal faces. The advance of a step
with a finite length [ in the row-by-row mode will be given by

= Jyle . (3.17T7)

Equation (3.177) is particularly important when the growth of a 5i(001)
surface through the formation of 2D islands is considered. As mentioned
above the latter are surrounded by two smooth, Sa, edges and two rough,
Sp, edges of finite length.

3.24.7. Growth of 5#{001) wvicinal by step flow

As follows from the above, the growth of a double domain vicinal Si(001)
2 x 1 surface is characterized by two fundamental properties: first, the
nonequivalency of the steps, and, second, the anisotropy of the surface
diffusion. As 3 conseguence of the first property the alternating steps
will propagate in general with different velocities and catch up with each
other to form higher steps. The second factor leads to the conclusion that
on B type terraces the atoms will diffuse predominantly in a direction
perpendicular to the steps, while on the A type terraces the adatoms will
diffuse in a direction parallel to the steps. It follows that the steps will
in fact propagate only at the expense of the atoms diffusing to them on
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the B type terraces. The atoms on the A type terraces will not take part
in the growth process at high enough temperatures. If the temperature
is low enough the adatoms on the A type terraces will give rise to 2D
nucleation and growth. Thus the S, steps will propagate at the expense
of the atoms diffusing to them on the lower terraces whereas the Sp steps
will advance at the expense of the atoms diffusing on their upper terraces.
In addition, Roland and Gilmer {1991} have found that the attachment of
adatoms to the 54 steps from the above A type terrace is less probable
than from the lower B type terrace. The reverse is valid for rebonded Sp
steps. Note that at lower temperatures 2D nucleation will take place on
the terraces and the growth will proceed by 2D nucleation mechanism. A
critical temperature for transition from step flow growth to 2D nucleation
growth should exist [Myers-Beaghton and Vvedensky 1990]. The problem
of the growth of Si(001) vicinal surfaces has been studied in detail by many
authors [Vvedensky et al. 1990a, b; Wilby et al. 1989] and the interested
reader is referred to their papers, A Monte Carlo simulation with video
animation to visualize the results was performed by Wilby ef al. [1991].
We will consider in this section the growth of Si{001) at high temperatures
to avoid 2D nucleation on A type terraces following the analysis given by
Stoyanov [1990].

We consider a double domain {nonprimitive) vicinal 8i{100) surface on
which 5S4 and Sg alternate (see Fig. 3.37). The initial interstep spacing is
denoted by A. The beginning of the coordinate system is at the middle point
of a B type terrace so that the S5 and Sp steps are located at © = —A/2
and z = A\/2, respectively.

The Sg steps are rough and propagate with a rate

vB = 0" BBN4e0B - (3.178")

The 5, steps are smooth and propagate through 1D nucleation with a

rate
Pp = 0.215,;\0,\(1 -+ U'A}l“',z Ea2ﬁAo’A . (3.173")

In the above equations, Jap and oA B = na,n/ne — 1 are the corre-
sponding kinetic coefficients and supersaturations in the vicinities of the
steps. ny g are the corresponding adatom concentrations.

In the case of complete condensation {the re-evaporation is strongly
inhibited) the diffusion on the B type terraces is governed by the diffusion
equation

dny(z) R

-t p =0 (3.179)
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The solution of the equation subject to the boundary conditions z =
~XA2n, =na and z = Af2n, = np reads

R A2 1
ng(z) = _2—.5,; (—4— - xz) + %(TLB —nad+ E(ﬂ.a +7a) . {3.180)

Bearing in mind that vap = a?D,(dn,/dx).=1/2 for the rates of
growth one obtains

RA Dyfige '

VA= SN T AN {ca — o8B}, (3.181")
RA D.n

_ sfuge _ A 3.1 Fi

U8 = 3N, T AN, (A T o8) (3.1817)

Comparing (3.178') with (3.181"), and (3.178") with (3.181'), we find
oa and op and in turn for vy and vg we obtain

_ RA Ma(2 + Mp)

¢
vA 2o 7 ; (3.182)
_RM Mp(2Z+ Ma) .
vg = 5N % . (3.182")
where MA,B = ,8A|B4\/Ds and M = My + Mg + MaMg.
The ratio of the step velocities reads
-1

Va PAD ﬁA)\) ( ﬁA)t)
— ===+ 1+ —/ . 3.183
s (PB,O 20, ) \' * 21, (.189)

It follows that the rates ratio depends on the ratio of the crystallization
rate G5 and the rate of diffusion D,/A. When 35 > D, /A, both steps will
propagate in a diffusion regime with equal rates. The supersaturations o4
and op will be equal and v4 = vg = RA/2N;. As a result, the Si(001)
vicinal will grow with single height steps. In the reverse case, Sa € DyfA,
the propagation rates relate as the corresponding equilibrium densities of
the thermally activated kinks pa o/pp 0 € 1. The rate of growth of the Sp
steps is much greater than the rate of growth of the S4 steps. Then the
former will catch up with the latter and Dg steps will be formed. Roland
and Gilmer [1992b] treated the growth of Si(001) vicinal by step flow in
detail using Eq. (3.173) and found that the Sg steps always propagate with
higher velocity than the S5 steps.

Let us now try to define the conditions of growth with single and double
height steps. The ratio s A/2D, reads
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%—f = -:-:-ex (ELLZ%__S‘.E) , (3.184)
where Afa == v/2/4tan# 3 1, 8 being the tilt angle.

The condition for the diffusion regime of growth, SaA/2D, » 1, and
hence of single height steps will always be fulfilled when ,q —wa —AU >0
because A > a. Only in the reverse case when g —ws — AU < 0 should
a transition from single height steps to double height steps be observed.

A critical temperature for transition from single to double steps can be
defined from the conditior B4 A/2D, = 1:

Pad — wa ~— AU
T LA _WAT O 3.185
7 T kIn(4tan8/v2) (3.185)
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Fig. 3.41. Diagram of a vicinal 3i(001) surface 6—T showing regions of formation of double
Iayer {DL) and single layer (SL) stepped surfaces during growth. The S, steps grow by
1D nucleation mechanism.

As discugsed above, the activation erergy for surface diffusion in a
direction parallel to the dimer rows was calculated to vary in the interval
0.3-0.65 eV. The value of 0.15 eV was estimated for ws [Chadi 1987] but
a higher value of 0.5 eV has been taken by Van Loenen ef al. {1990]. The
kinetic barrier AU should be connected with the attachment of a single
atom to the kink site, bearing in mind that the repeatable step consists
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of attachment and detachment of building units containing four atoms.
A value of the order 0.2-0.4 eV seems reasonable. Thus the difference
wsq — wa — AU could vary between —0.6 eV and +0.3 eV. A valye of
—0.1 eV seems reasonable. The critical temperature T, is plotted against
the tilt angle # in Fig. 3.41. As seen, single steps should be observed at high
temperatures. At low temperatures, double steps should be observed as a
result of the kinetic regime of growth of the S4 steps. Note that this result
which is based on a kinetic treatment should obviously be considered as
complementary to the equilibrium considerations of Alerhand et al. [1990)]
(Fig. 3.38). Following the same approach but using Eq. (3.177) for the rate
of advance of the S, steps one can study the dynamical evolution of the
step density on Si{001) as was done in the previous section [Markov 1992].

3.3. Kinematic Theory of Crystal Growth

The layer growth is often realized as a lateral propagation of monomolecular
{monoatomic) steps, which is not always the case. Just the opposite, the
propagation of thicker steps, is frequently observed. As discussed briefly
in Sec. 3.2 the rate of advance of such steps should be lower than that
of monomolecular or elementary steps. This is eagy to understand, but
nevertheless we will illustrate it by a simple example.

The example consists in a comparison of the rates of advance of two
elementary steps due to 2D nuclei formed one over the other (Fig. 3.26)
and the double step which is formed when the upper step catches up with
the lower step. In other words, we consider a pyramid of growth as shown
in Fig. 3.26.

The solution of the diffusion problem (3.58) now reads

1 (_’"_)
LN ,
———) for r < pa , (3.186')

A

¥(r) = Ay (:\-t) + BK, (:;-) for p; <7 <y,
: : (3.186")
(5
T(r) = q;(pl)_..__;‘_ for v > py , (3.186")
1
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where
P(p1)Ky (i—z) - U(p2) Ko (%)
A= 2 = .
() (f)-n(f)m(f)  ewn
L Heuh %) - ot (1)

@) @R e

Following Burton, Cabrera and Frank [1951) and making use of the
refation J1{z)Ko(z) + Iy{2)K;(z) = 1/z and the approximations valid for
P2 > A Ip(z) = (we/2)V2 exp(z) and Ko(2) = (n/22)'/% exp(—z), we
find

- T(pa) exp _A
v{p1) = Voo (l— ﬁf) ‘I’l(illxp (—21’1() ,\5) ’ (3.188")

1- Y(ps) exp A
v(p2) = veo (1_%) ‘I’l(izlxp (uzf-() )‘=) " (31887

where now A = p; — pa is the step spacing. ¥{pe) > W¥(p;), m > p2 and
the rate of propagation of the upper island is smaller than that of the lower
one. This holds for small encugh radii p; and p;. At large enough sizes
of p; and p; when (p;/p2)'/? 2 1, U(p,)/T(p;) = 1 and v{p) = v{pa).
Expanding the exponents in power series to the linear term at A — 0 we
find that the rate of advance of a double step is exactly twice smaller than
that of a single elementary step (Eq. 3.62).

When considering the propagation of a step with arbitrary thickness
h > a in the case of growth from vapors, one has to take into account
direct incorporation of atoms from the vapor phase to the step in addition to
surface diffusion [Chernov 1984]. The surface diffusion flux per unit length
of the step is (the diffusion gradient is approximated by (ny — Bse)/ Ay, Se€
Eq. (3.33))

P-F

V2rmkT

222 (ny o) =2,
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The flux from the vapor phase directly onto the step per unit length of
the step is
P-5
o = h———== .
I 2rmkT

Bearing in mind that the total number of atoms required to shift the
step by one atomic spacing a is a>h /v, = h/a, the step velocity is equal to

m ity (1) PR
* hINy h ‘V2rmkT

In other words, the factor 1+ 2A;/h should be added to the expressions
for the rate of step advance in vapors to account for the step height.
Obviously, when h » A, the step should be considered as a separate crystal
face and its growth does not depend on the step height. In the opposite
case h < ), the rate of the step advance is inversely proportional to the
step height.

In growth from solutions (and melts) the boundary condition {3.65')
should read C(r = h/x)} = (4 and the height o of the elementary step
should be replaced by h everywhere. Then v., becomes dependent on
the step thickness. Figure 3.42 illustrates the decrease of the rate of
step advance with increasing step height for the particular case of solution
growth (Eq. (3.77)).

Once a double step is formed it can catch up with other elementary
steps and prows thicker, becoming a bunch of steps or a macrostep. On
the other hand, elementary steps can leave the bunch of elementary steps
and the macrostep can dissipate. Thus macrosteps and elementary steps
usually coexist making the detailed description of the processes of growth
very complex. As has been discussed in Chap. 1 vicinal surfaces can
break up into closely packed facets under the influence of impurity atoms
adsorbed on them. The facets should grow through formation of 2D nuclei
if they are larger than the size of the 2D nucleus {Chernov 1961}. In order
to overcome the difficulties connected with the complicated relief of the
crystal surfaces Frank [1958b], Cabrera and Vermilyea [1958] developed the
so-called kinematic theory of crystal growth (see also Bennema and Gilmer
[1973]).

In order to illustrate the essence and the consequences of the kinematic
theory we will use an example whose mathematical treatment served as a
basis of Frank's considerations. This is the model of road traffic developed
by Lighthill and Whitham {1955].
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Fig. 3.42. Dependence of the rate of advance v{h) of a step of height h relative to the
rate of advance of a single height step, v(a), on the step height in units of a. The curve
represents the case of solution growth after Eq. (3.77) in which the step height a is
replaced by h.

We consider a road and cars moving along it. The cars cannot outstrip
each other but can catch up with each other. In fact the same is also true
of the behavior of the single elementary steps on a vicinal {wo-dimensional
crystal surface (prismatic or cylindrical). The speed of the cars depends on
their proximity just like the rate of advance of steps in a train depends on
their spacing (see Eq. (3.50)}. In other words, we assume that the speed
of the cars depends on their local density only. When the cars (steps) are
equidistant all cars move with one and the same speed v. We denote by g
the density of the cars {cars per mile) which is just equal to the reciprocal
of the distance between them, Obviously the local car density is analogous
to the slope of the vicinal hillock p. As the system is discrete the local car
density cannot be determined at a point. That is why we take the average
over a large distance neglecting any small fluctuations of speed and density.
Imagine now an arbitrary car drops accidentally its speed and is caught up
with the car behind. The pair of cars (a double step) moves together and
its speed is lower than the speed of a single car (the cars cannot overtake
each other). Then more and more cars catch up with them thus forming a
pack or a “wave” of cars which moves with a speed of its own, denoted by ¢.
Assuming now the flux of the cars along the road is constant (the number
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of cars per unit time entering the road is equal to the number of cars per
unit time leaving the road), waves and nearly empty spacings will alternate.
Plotting the local car density along the road we find a wavy line. That is
why the speed c of the wave has been called by Lighthili and Whitham a
“kinematic wave velocity.” The same result would be obtained if by some
reason an arbitrary car increases its speed and catches up with the cay in
front. Thus the kinematic wave velocity can in general be larger or smaller
than the speed v of the single cars. If v > ¢, the front cars of the wave
break off and leave the wave, whereas cars from behind catch up with the
wave. When v < ¢ the wave catches up with the front cars but the back
cars drop behind and leave the wave. Thus the wave does not consist of
one and the same cars but continuously exchanges them. Thus a particular
car will join a kinematic wave, then leave it and join the next one, and so
on. In between the waves its speed will be higher than that of the waves.
In some cases the shape of the wave could display a discontinuity in the
sense of a sharp edge which can be either behind or in front of the wave.
The edge divides the wave into two regions with different density. Such a
wave is called a “kinematic shock wave” or simply a shock wave and it wiil
move with a speed determined by the difference of the densities of cars on
either side of the edge and their respective speeds,

Precisely the same can occur on vicinal erystal surfaces or on the sides of
growth hillocks due to screw dislocations. Besides, external factors like the
hydrodynamic conditions in solutions {the direction of solution flow above
the crystal face with respect to the direction of step advance) can affect
the formation or dissipation of the kinematic waves, thus smoothing or
roughening the crystal face [Chernov and Nishinaga 1987; Chernov 1989).

The growing crystal face is represented by the surface

z = z{z,y,t) , {3.189)

where the axis z is normal to the crystal surface and is on average parallel
to the growing singular crystal plane.
The rate of growth of the crystal face is

_o

=3

The real profile z(z,y,t) deviates locally from z = 0 and the slopes p
and ¢ at the particular points  and y of the crystal surface are

LB e
P= "5 an ¢= Sy

(3.190)

(3.191)
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Assuming z(z,y.t) is an analytic function, i.e. neglecting the discrete
character of the system,

9%z 9z 3z 9%z an 8z 8z
dxdt ~ Otbx’ Oybt  Btdy’ dxBy ~ Bydz '
then
dp OR dg &R dp 8g
) =0, —==0. 3.192
%t =" 5T " MM 5t (3.192)

In fact Eqs. (3.192) represent the law of conservation of the elementary
steps. If p = h/A, where k is the step height and A is the step spacing, the
local density of the steps is py = 1/A = p/h. From (3.15) it follows that
Jat = vfA = R/h is the flux of steps which pass over a point of the crystal
surface. Then

(). <(8)
1op 16R_"\h/ "\hJ _Bou 8Js _,
hot hox Ot 8z ~ 8t  dx

The basic equations (3.192) are unnsable if some simplifying assump-
tions were not made. We assume that the growth rate depends on z and
y only through the local average slopes p and ¢, i.e. R(z,y) = R(p,q).
Second, when determining the slope p or ¢ we take the average of a
region sufficiently wider than the step spacing, ie. in this respect the
theory neglects any microscopic change in the surface relief. Nevertheless,
some very valuable consequences can be drawn at the expense of the
approximation used. In the analysis to follow we will consider for simplicity
the two-dimensional case accepting g = 0.

With the above approximation (3.192) becomes

ap aR 3p SR 3p

%t or o Bpas (3.193)
We then denote dR/8p = ¢(p) and
ap gE _ ;
3 + c(p)a =0 (3.193")
or
dz _ —e{p) . (3.193")

dt
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It follows that c{p) is the = component of the velacity of a point of
the surface relief with a slope p. In other words, we have regions with a
constant slope which are called kinematic waves. In fact the kinematic
waves represent bunches of elementary steps divided by regions with wider
terraces (Fig. 3.43(b)), and ¢(p), which is a function of the slope only,
represents the velocity of the bunches as a whole. As ¢(p) is a function of
p only, z is a linear function of time.

s D

Fig. 3.43. Schematic view of a kinematic wave (b) as compared with a train of equidistant
steps (a).

Let us follow the change of the relief of the growing crystal surface with
time {Fig. 3.44} and find the trajectories of the waves or the lines which
connect points with one and the same slope p or step density 1/A = p/h.
The slope dz/dz at p = const (z and z are coordinates of points on the

crystal surface) is given by (R = pv, Eq. (3.15))

dz 8z (dt 8: R P v—0
(3;),,—5; (5),,*5; = Tp=Toesr— . (31%)
Thus the slope of the wave trajectory is proportional to the rela-
tive difference of the velocities of the elementary steps and the kinematic
wave. When » > ¢ the slope (dz/dx), > 0 (Fig. 3.44(a}), and vice versa
(Fig. 3.44(b)). As seen in the latter case when the wave moves faster than
the train of more distant steps the wave tends to leave the vicinal and to
disappear from the crystal face.
Figure 3.45 illustrates the same phenomencn in the space of the growth
rate R (or the flux J,, = R/h) versus the step density p. Figure 3.45(a)
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X —
(b)

Fig. 3.44. Time behavior of kinematic waves: {a}) v > ¢ and (b) v < ¢, where v and ¢
are the velocities of the single steps far from the wave and the wave, respectively. The
latter are shown by arrows denoted by v and ¢. The straight lineg connect points of the
same densities of steps.

gives the dependence of R on p in the diffusion regime of growth under
clean conditions (no impurities adsorbed). The growth is proportional to
P but with increasing step density the step velocity decreases according to
Eq. (3.48) and R deviates downwards from the straight line. Hence, the
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Fig. 3.45. Three possible variations of the rate of growth versus the step density. {a) The
growth occurs in a diffusion regime in an absence of impurities. The growth rate R = pw
is determired by the overlapping of the diffusion fields (the hyperbolic tangent in the
BCF theory) and deviates downwards from the straight line at large p. The curvature
of the R{p) dependence is everywhere negative {4 R/dp? < 0). The rate of advance of
the shock wave, c,p,, with slopes p = pa and p = 0 on both sides of the edge is given by
the slope of the chord represented by the dashed line. It lies between the slopes of the
tangents at p = 0 and p = pa (the latter being given by the tangent t at the point A),
(b) The growth takes place in a kinetic regime in an absence of impurities. The rate of
step advance v is independent of the step deusity and R is a linear function of p. The
curvature of the R(p) dependence is equal to zero. The single steps and the shack waves
propagate with equal rates, i.e. v = ¢. (¢} The growth takes place in a diffusion regime in
the presence of impurities, The concentration of impurity atoms is large at small p, i.e.
on wide terraces, and vice versa. Then the curvature of the R(p) dependence is positive
at small p and negative at large p. The rate of propagation of the shock wave ¢ < v at
smaller p, but ¢ > v at larger p. The slopes of the dashed lines OA and OB give the rate
of propagation of the shock waves, ¢, whereas the slopes of the tangents denoted by £4
and tg give the rate of propagation of the single steps, v.

second derivative d*R/dp? is negative everywhere. In the case of kinetic
regime of growth under clean conditions, the step velocity does not depend
on the step density up to very high value of the latter (2 1); R is a linear
function of p as shown in Fig. 3.45(b) and d>R/dp® = 0. In the intermediate
case (kinetic regime at small » but overlap of the diffusion fields at large p),
R initially increases linearly with p and then gradually deviates from the
straight line. Then d?R/dp* = 0 for small p, and d?R/dp? < O for larger p.
Figure 3.45(c) illustrates the case where impurity atoms are adsorbed on the
terraces between the steps [Frank 1958]. At small p {wide terraces) there is
time enough for an adsorption equilibrium to be established and there the
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concentration of the impurity atoms is high. The latter inhibits strongly
the propagation of the steps. At large p (narrow terraces) there is not
enough time for considerable adsorption to take place and the propagation
of the steps is faster although they are nearer to each other. Then the
R(p) dependence has a positive curvature (d?R/dp? > 0) at small p but a
negative one (d*R/dp® < 0) at large p. When d2R/dp® < 0 (Fig. 3.45(a),
purely diffusion regime of growth) on the whole crystal surface, the rate
of advance of the single steps, v = R/p, is always greater than the rate of
advance of the step bunch, ¢ = dR/dp, the slope of the trajectory (dz/dz},
is always positive, and the kinematic waves will be present on the crystal
surface. Under conditions of a kinetic regime of growth (Fig. 3.45(b)), c = v
all over the crystal surface and the slope of the trajectory is (dz/dx), = 0.
If there are regions where dR/dp* > 0 as shown in Fig. 3.45(c), v < ¢,
(dz/dx), < 0 and the kinematic waves tend to leave the vicinals.

We consider now the formation of shock waves, or waves with sharp
edges. Figure 3.46 shows the step density, or p/h = —(1/h)dz/dr, in a
kinematic wave as a function of x at different times. At some initial moment
t; the step density represents a symmetric bell-shaped curve. Trajectories
far {from the wave are parallel. Near the wave the trajectories are no
longer parallel because their slopes are directly proportional to the step
density according to Eq. (3.194). Therefore the trajectories become more
and more steep from the rear end; they are steepest at the maximum and
after passing the latter they again tend to take the initial slope. As a
reault, the trajectories in the rear part of the wave will intersect each other
after some time. The step density will have the shape shown by the curve
denoted by ¢;. Going back to the representation in coordinates (z,z) a
discontinuity or a sharp edge will appear on the crystal surface as shown
in Figs. 3.47(b) and (c). This is called a shock wave to distinguish it from
the usual kinematic wave (Fig. 3.47(2)).

The rate of advance ¢y, of the shock wave is easy to find. It follows from
Eq. (3.194}):

p1{v1 — csn) = p2(va2 — Cah)

or
P2—D PN

Thus the rate of advance of the shock wave is determined by the

differences of the growth rates and the slopes of the crystal surface on

the two sides of the edge. In fact, the shock wave represents a boundary
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Fig. 3.46. The transformation in time (#2 > t1) of a kinematic wave into a shock wave,
For details see text.

Z

x_._n-m-

Fig. 3.47. Kinematic shock waves with the sharp edge (b) in front of the wave and
(<) behind the wave. A usual kinematic wave is given for comparison in {a}. p; and p2
denote the slopes on both sides of the edge.

between two regions with different step densities or, in other words, between
two kinematic waves,

Figure 3.47 shows a geometrical construction illustrating the interrela-
tion between the velocities of the kinematic waves constituting the shock
wave and the shock wave itself in the diffusion regime of growth (see
Fig. 3.45(a)). The velocities of the two kinematic waves are given by the
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slopes of the tangents, (dR/dp)p=p, and (dR/dp)p=p,. The velocity of the
shock wave, ¢ = (R — R1)/(p2 — p1), is given by the chord connecting
the points By(p1) and Ra{p2). Its slope is obviously in between the slopes
(dR/dp)p=p, and (dR/dp)p=p,. Then the velocity of the shock wave has a
value in between the velocities of the kinematic waves that constitute it. It
is evident that in the kinetic regime of growth (linear dependence of R on
p, Fig. 3.45(b)) the velocities of the kinematic waves as well as of the shock
wave do not depend on the step density and are equal to each other.

As mentioned above, the retardation (or acceleration) of elementary
steps which leads to bunching or formation of kinematic waves is due
primarily to impurities [Frank 1958] or accidental local changes (fluctu-
ations) of the supersaturation. In the first case the bunches are usually
stabilized by the impurities and should move faster than the isolated steps
fVan der Eerden and Méiller-Krumbhaar 1986]. As discussed above, this
is due to the fact that on the wide terraces between the isolated steps an
adsorption—desorption equilibrium of the impurities is established and the
concentration of the impurities there is higher compared with that on the
narrow terraces which divide the steps constituting the bunch. Under clean
conditions where the rate of advance of the elementary steps depends on
the overlap of the diffusion fields the rate of advance of the bunch should
be smaller than that of the isolated steps.

3.4. A Classical Experiment in Crystal Growth

The predictions of crystal growth theories have been the subject of nu-
merous experimental verifications in different media (vapors, solutions and
melts). Many accurate experiments have been carried out and, as shown
above, most of the theoretical conclusions have been confirmed. In this
chapter we describe one of the most elegant and precise experiments in
crystal growth—the electrocrystallization of silver in aqueous solutions. In
doing this we do not mean to underestimate the fine experimental work of
many other investigators [Chernov 1989; Neave, Joyce and Dobson 1984;
Neave et al. 1985; Wolf et al. 1985; Keshishev, Parshin and Babkin 1981;
Avron et al. 1980; ete.).

In the case of electrocrystallization of metals, the rate of growth is given
by the electric current flowing through the electrolytic cell, the amount
of materia) deposited is given by the amount of the electricity and the
supersaturation is given by the overpotential. The electrical quantities and
then the parameters characterizing the process of growth can be measured



262 Crystal Growth

with great accuracy. A particular advantage of the experiments of this kind
is that a single crystal face with a definite crystallographic orientation can
be produced and put in contact with the electrolyte solution. As will be
shown below screw-dislocation-free crystal faces can be prepared as well as
faces with definite number of dislocations. Thus the spiral growth of a single
crystal face as well as the 2D nucleation growth, both layer-by-layer and
multilayer, can be studied in one and the same system under well-defined
conditions.

The electrolytic cell for the preparation of single crystal faces both
dislocation-free and with one or more dislocations is shown in Fig. 3.48
[Kaischew, Bliznakow and Scheludko 1950; Budewski and Bostanov 1964;
Budewski et al. 1966; see also Kaischew and Budewski 1967}, The cathode
represents a glass tube containing the seed crystal which ends with a
capillary with an inner diameter of appioximately 200 um. In some cages
a capillary with rectangular cross section (100 pm %400 pm) has been
used for measuring of the rate of advance of a single monoatomic step or
a train of steps (see Fig. 3.57). The bottom of the cell is a plane-parallel
glass window which permits microscopic observation of the front face of
the growing crystal. The cell is filled with 6]V aqueous solution of AgNO3
acidified with HNOj3. Special measures are usnally taken in the process of
preparation to make the solutions as pure as possible. After switching on
the electric current the seed crystal begins to grow and fills the capillary.
A single crystal filament is formed which has the same crystallographic
orientation as the seed crystal. Thus single crystal faces with (100} and
(111) orientations are obtained [Budewski et al. 1966). When alternating
current is superimposed onto the direct current of growth the silver filament
begins to grow thicker and fills in the whole cross section of the capillary
and the arex of the front face becomes equal to the opening of the capillary.

The filament inherits defects (serew dislocations) from the seed erystal
which can be detected easily by the following procedure. The crystal face
is initially smoothed by applying & low current. Then a high current pulse
is applied which resulis in the appearance of distinct pyramids of growth at
the emergency points of the screw dislocations. Figure 3.49 shows a (100)
face with several square-based growth pyramids revealed by this method
[Budewski et al. 1966). Triangular pyramids of growth (mot shown) is
the result in the case of (111) single crystal faces. Burger's vectors of the
screw dislocations are usually inclined with respect {o the growing crystal
face (in most cases %{ 110} dislocations are detected). When the filament
is carefully grown the emergency points of the screw dislocations inherited
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Fig. 3.48. Electrolytic cell for the investigation of the growth of Ag single crystal faces:
(a) Ag seed crystal, (b) capillary, (c} silver anode, (d) brass block. The inset shows an
enlargament of the end of the capillary. (E. Budewski and V. Bostanov, Electrochim.
Acto 9, 477 (1964). By permission of Pergamon Press Ltd. and courtesy of V. Bostanov.)

from the seed crystal leave the front face and appear on the side faces of
the filament. Defectless single crystal faces are thus prepared.

The first convincing evidence of growth through 2D nucleation has been
obtained on perfect faces prepared by the above method. A constant current
density i = 0.5 mA cm~? has been applied and the overpotential measured.
It has been found that the latter oscillated from zero to a maximum value
of about 10 mV (Fig. 3.50) [Budewski et af. 1966]. Increasing the current
density has led to a decrease of the period of oscillation but the product
of the current density and the period of oscillation remained constant.
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Fig. 3.49. Pyramids of growth obtained by applying a short overpotential pulse, showing
the emergency points of screw dislecations on Ag(001). (E. Budewski, V. Bostanov, T.
Yitanov, Z. Stoynov, A. Kotzeva and R. Kaischew, Electrochim. Acta 11, 1697 (1966).
By permission of Pergamon Press Ltd. and courtesy of V. Bostanov.)

Fig. 3.50. Oscillations of the overpotential when a constant current is applied on the cell.
The product of the current and the period of oscillations gives the amount of electricity to
complete one monolayer. {E. Budewski, V. Bostanov, T, Vitanov, Z. Stoynov, A, Kotzeva
and R. Kaischew, Electrochim. Acta 11, 1697 {1966). By permission of Pergamon Press
Ltd. and courtesy of V, Bostanov.}
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The latter is exactly equal to the amount of electricity required for the
completion of a monolayer, 55 = 3.83 x 10~% C, where 7 is the constant
current density, S = 2 x 10~ cm® is the area of the opening of the
capillary and ¢ is the period of oscillation. The amount of electricity
required for the completion of a monolayer of one square centimeter is
zeNp 21,92 x 10~* Ccm™?, where Ny = 1.2 x 10!% cm™? (for Ag(100)) is
the atom density of the corresponding crystal face, e = 1.6 x 10~*® C is the
elementary charge of an electron and z = 1 is the valency of the neutralizing
ions. Then itS = zeNyS. This behavior of the overpotential which is
a measure of the difficulties accompanying the electrodeposition process
¢an be easily explained if one assumed that each oscillation is due to the
formation and lateral propagation of one 2D nucleus. At the initial moment
the crystal face does not offer growth sites and the overpotential increases
up to a critical value of about 10 mV necessary for 2D nucleation to take
place. Once a 2D nucleus is formed, it begins to grow, offering more and
more kink sites along its periphery, crystallization becomes easier, and the
overpotential rapidly drops to zero when the edges surrounding the growing
monolayer island reach the walls of the capillary. Then the formation of a
new 2D nucleus is required for further growth and the process is repeated.
Therefore, the amplitude of the oscillations should be equal to the critical
supersaturation for 2D nucleation and the value 36% has been estimated
for it (0. = zen./kT, where n. = 10 mV is the critical overpotential), in
good agreement with the prediction of the theory of layer-by-layer growth
in solutions.

When the overpotential is fixed slightly above the critical value spon-
taneous oscillations of the current are observed (Fig. 3.51) {Bostanov et
al. 1981]. The oscillations appear through irregular intervals of time,
thus reflecting the random character of the nucleation process [Toschev,
Stoyanov and Milchev 1972; Toschev 1973]. However, the mean number
of oacillations, averaged over a longer period of time, remains one and the
same. Ascribing the formation of a 2D nucleus to each oscillation it becomes
obvious that the mean number of the oscillations per unit time gives the
steady state nucleation rate.

In another experiment a constant overpotential lower than the eritical
one was applied on the electrolytic cell. No current was detected except
for a very low capacitive current. The cell under these conditions was cut
off, Then short potentiostatic pulses higher than the critical overpotential
(= 9-10 mV) were superimposed on the constant overpotential and a
current wag detected to flow through the cell. The latter increased with
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Fig. 3.51. Oscillations of the current at a constant overpotential slightly higher than
the critical overpotential for 2D nucleation. The variation of the time elapsed between
consecutive peaks reflects the random character of the nucleation process. (V. Bostanov,
W. Obretenov, G. Staikov, D. K. Roe and E. Budewski, J. Crystal Growth 82, T61
(1981). By permission of Elsevier Science Publishers B.V. and courtesy of V. Bostanov.)
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Fig. 3.52. Oscillations of the current obtained by superposition of high short potentio-
static pulses over a constant overpotential lower than the critical one for 2D nucleation.
The shape of the curves reflects the site on the electrode surface on which the 2D nucleus
is formed (e.g., the narrow high peak in the middle is originated by a nucleus formad
at nearly the center of the electrode). The areas under the curves are equal to each
othet and to the amount of electricity to complete one monolayer. (E. Budewski, V.
Bostanov, T. Vitanov, Z. Stoynov, A. Kotzeva and R. Kaischew, Electrochim. Acte 11,
1697 (1966). By permission of Pergamon Press Litd. and courtesy of V. Bostanov.)
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time, displayed a maximum and dropped again to zero. No current had been
detected until a new pulse was applied (Fig. 3.52) [Budewski et al. 1966).
The current-time curves had different shape but the integral of the current
or the amount of electricity remained constant and equal again to that
required for the completion of a monolayer. The difference of the shapes of
the current-time curves is easily explained by the different locations of the
nucleation event. Obvigusly the potentiostatic pulse provokes the formation
of a 2D nucleus which then grows to cover the crystal face completely. The
current is proportional to the length of the steps surrounding the growing
island and goes to zero when the latter reach the walls of the capillary.

The experimentally observed current transients have been compared
with the time variation of the edge length of a monolayer island calculated
numerically under the assumption of a different location of the nucleation
gvent on the crystal face. This led to the conclusion that in most cases only
one 2D nucleus has been formed or, in other words, an artificial layer-by-
layer growth has taken place. Then the expression for the layer-by-layer
growth rate (3.111) can be compared with the experimental observations.
To this aim the height and duration of the nucleation pulse have been
adjusted in such a way that nucleation took place only in 50% of the pulses
applied. Then the pulse duration 7 can be treated as the time necessary
for the formation of one nucleus. Neglecting the nonsteady state effects one
can accept that the reciprocal of 7 is just equal to the rate of 2D nucleation,
Jo(2D).

In the particular case of electrolytic nucleation the flux of atoms to the
critical nucleus is given by

it
wr=4rE =
ze  zem ze

83002 fgge (1 - o)zen
e (02gm).

where i, = ig exp[(1 — a)zen/ kT] is the cathodic part of the current per
unit fength of the step (Acrm™!), 1oy is the exchange current density per
unit step length (i, = i, /e is the current density per unit area in A cm™2)
and o = 0.5 is the so-called transfer coefficient.

The factor of Zeldovich reads

__(zen)®®
T Bra(kT)V/2

Then for the nucleation rate of square-shaped nuclei one obtains

_ (1 —a)zen dsca?
Jo(2D) = A/mexp ( T ) exp (kaz_é;) .
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where A (cm™2sec~tV~1/2) is a constant given by
= a2 (22)
A=aNo ze (kT
With Np = 1.2 x 10" cm™2, fo = 55 x 107% Aem™!, T = 318 K,

e=16x%x10"19C, A="71x 10" ecm?sec™! V-2, and with 5 = 0.01 V
for the pre-exponent, one obtains K; = 7.1 x 10%® cm~2?sec™!.
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Fig. 3.53. Logarithmic plots of the time of appearance of one 2D nucleus versus the
reciprocal of the overpotential. The open and filled circles are from two series of
measurements under slightly different conditions. The plots are in fact equivalent to
the plots of the steady state nucleation rate versus the reciprocal of the overpotential if
one neglects the time lag for transient nucleation. The straight line shows the validity of
the ¢lassical theory of nucleation. (E. Budewski, V. Bostanov, T. Vitanov, Z. Stoynov,
A. Kotzeva and R. Kaischew, Electrechim. Acte 11, 1697 (1966). By permission of
Pergarnon Press Ltd. and courtesy of V. Bostanov.)

Figure 3.53 shows the plot of In7 vs 1/n [Budewski et ol 1966]. As
seen a straight line is obtained as required by the theory. The value
1.9 x 10712 Jem™! has been found for the specific edge energy » from
the slope, and A = 1 x 10!? cm~2sec~1V~=1/2 from the intercept of the line
on the ordinate. Approximately the same value (3 = 2x 1073 Jem™?) has
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been found for the specific edge enerpy in the case of nucleation on the (111)
face. USi[lg the relations Jl00 = 4%10/(1100 and o111 = 2)(11/(1111 fOllOWiIlg
the first neighbor model (djoo and djyy are the interplanar spacings of
the (100) and (111) planes, respectively) for the fcc lattice [Markov and
Kaischew 1976}, we find o100 = 372 erg cm~? and o131 = 170 ergem™2 for
the Ag/AgNO; (ag. 6N} boundary.

TIME {sec)

|
0 1 2 3 4

CURRENT (A.10%)

Fig. 3.54. The current of growth of single height steps versus time in a rectangular
capillary (see Fig. 3.57). The inset below each curve shows the site of the nucleation
event: (a) at the very end of the capillary, (b} at approximately one third from the end
of the capillary, (c) at the middle of the capillary. {V. Bostanov, G. Staikev and D. K.
Roe, J. Electrochem. Sec. 122, 1301 (1975). By permission of Electrochemical Society
Inc. and courtesy of V. Bostanov.)
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The rate of siep advance has been measured directly as a function of
the supersaturation by using the rectangular capillary mentioned above
(see Fig. 3.57) [Bostanov, Staikov and Roe 1975]. Figure 3.54 shows the
current—time curves which follow the application of a short potentiostatic
pulse. As seen the shape of the transients depends again on the location
of the nucleation event. It displays a plateau with single or double height
when the nucleus was formed at the very end or the middle of the capillary,
respectively. It follows first that the current is directly proportional to the
total step length L. Second, a linear dependence of the plateau current on
the overpotential is established as shown in Fig. 3.55 [Bostanov, Staikov
and Roe 1975]. Besides, the current is proportional to the length of the
advancing step. The latter depends on the orientation of the seed crystal
and, in turn, of the 2D nucleus with respect to the capillary edge. Thus in
the case of {100) direction of the step advance the current is greater by v/2
than the current which flows when the direction of the step advance is (110).

In order to shift the step with a length L by one atomic spacing we have
to add L/a atoms or zeL/a coulombs of electricity. The time elapsed will
be t = zeL/ia, where i(A) is the current of growth. Then the rate of step
advance will be v, = a/t or v, = ifgL, where ¢ = 2eNp is the amount
of electricity required for the completion of a monolayer. The current 4 is
given by the well-known expression in electrochemistry:

=i oo (550 o (-557)].

which gives, in fact, the net flux of atoms j; —j_ to the propagating step, At
small values of the overpotential {ry < kT'/ze) the latter turns into i = kv,
where k& = igze/kT and g is the exchange current. Then v, = kn/gL,
where obviously the ratio 3 = k/gL is just the kinetic coefficient of the
step in the case of electrocrystallization. In other words,

Uoo=.gst7?)
where
3 _i_ ze ;
T gL kTgL "

k is simply the slope of the current--overpotential curves and from Fig. 3.55
one finds k = 2x 107 % ohm~!. Bearing in mind that ¢ = 1.92x10~* Ccm™2
and L = 1x 1072 cm, we find 3, = 1 emsec™*V~!. Step advance rates are
then of the order of 1 x 10~% cmsec™!. The exchange current is then equal
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Fig. 3.55. The current of growth of single height steps versus the overpotential in a
rectangular capillary (see Fig. 3.57). Curves a and b are far nuclei oriented along the
{100} and {110} directions as shown in the insets. {V. Bostanov, . Stajkov and D. K.
Roe, J. Efectrochem. Soc. 122, 1301 {1975). By permission of Electrochemical Society
Inc. and courtesy of V. Bostanov.)

t0 dp = 5.5 x 1078 A, OF gpy = 5.5 x 1075/1 x 1072 = 5.5 x 107% Aem™!
per umnit length of the step.
One can express the kinetic coefficient in the usual form (Eq. (3.26))

i —avi-z—e-ex —-é—q-
TV TPATET )

and estimate the energy barrier for crystallization. In the particular case
of electrocrystallization it includes the energy of desclvation as well as the
transition through the electric double layer.

First, one has to evaluate the roughness factor a/8; through Eq. {1.74).
In order to do that one has to find the energy to break a first neighbor
bond, #'. To account for the situation in electrolytic solutions it is better if
one uses the value of the specific edge energy found from the experiment.
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Assuming for simplicity the existence of monoatomic kinks only, Eq. {1.79)
gives

# =Gy =—-nkTlhy—nkTIln(l+2) = -;% - gf?_

a

from where . "
»a
KT kT T 2exP (‘aﬁ) :

The same result is obtained if we come out from Eq. (1.80) valid for
polyatomic kinks, bearing in mind the simplification (1+7)/(1—5) 2 142y
valid for small 1.

Solving numerically the above equation with » = 1.9 x 107!% Jem™?,
a = 2889 x 107% cm and T = 318 K, we find ¢/2kT = 1.64 and & = da
[Budewski 1983). Bearing in mind that 8, = 1 cmsec™!'V~} for AU one
obtains the value 9 keal mole™! which is typical for aqueous solutions.

At this point it is interesting to compare the possible contribution
of the surface diffusion processes in the lateral spreading of the steps.
Dividing the exchange current i, per unit step length by the atomic
spacing @ = 2.889 x 107% cm we find the value i,y = 190 Acm~? for
the exchange current per unit area [Vitanov, Popov and Budevski 1974).
Vitanov et al. {1969] (see also Vitanov, Popov and Budevski [1974]) carried
out impedance measurements on dislocation-free (100) Ag crystal faces at
T = 318 K in 6N AgNO; and found that the exchange current density
due to adsorbed atoms is 4p,4 = 0.06 Acm™%. Comparison with the above
value s = 190 Acm~2? shows that the surface diffusion contribution to
the step advance does not exceed 0.03%. Estimations of the rate of step
advance assuming surface diffusion supply of growth units show that the
latter should be 60 times smaller than that found experimentally [Bostanov,
Staikov and Roe 1975; Bostanov 1977; see also Budewski 1983].

The rate of step advance has been measured independently by using
quite a different method. A small number of screw dislocations have been
left on the crystal surface. The monocatomic steps are invisible while growth
pyramids with apparently smooth sides are observed during growth. The
step spacing is a function of the overpotential applied, and increasing the
latter leads to an increase of the stope of the pyramids. Assume now that
we grow the crystal face at a low value of the overpotential. Comparatively
flat pyramids of growth are observed. When a short overpotential pulse
of higher amplitude iz superimposed on the lower one a stripe with higher
slope will resuit. The latter is visible under the microscope. In fact, this
stripe is an artificially produced kinematic wave. If now high overpotential
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pulses are applied regularly at equal intervals of time a train of kinematic
waves will be formed (Fig. 3.56) [Budewski, Vitanov and Bostanov 1965).
As shown in the previous section the velocity ¢ of the kinematic waves
is equal to the rate of advance v of the elementary steps in a kinetic
regime of growth (Fig. 3.45(b)). Then, measuring the velocity of the
kinematic waves, we find in fact the rate of advance of the elementary steps.
The velocity of the kinematic waves is easily estimated from the distance
between the stripes and the frequency of the high overpotential pulses.
The value Fa = 1 ecmsec~!V~1 has been found, confirming once again
that the electrolytic growth of silver in aqueous solutions takes place under
conditions of kinetic regime and the surface diffusion plays 2 negligible role
[Bostanov, Russinova and Budewski 1969; see also Budewski 1983).

If higher pulses are superimposed on the overpotential of growth a
macrostep instead of an elementary step is produced. With the help of
the Nomarski differential contrast technique steps thicker than, say, 10~15
atomic diameters can be observed directly in the rectangular capillary
mentioned above (Fig. 3.57) [Bostanov, Staikov and Roe 1975]). Thus the
rate of propagation of such steps can be measured directly and knowing the
current the thickness can be estimated. It was found, quite unexpectedly,
that the velocity of the macrostep was the same as that of the elementary
step up to thicknesses of the order of 100 A. The slope of the macrostep
has been estimated by analyzing the decay of the current-time curve when
the step reached the end of the capillary [Bostanov, Staikov and Roe 1975].
The values 0.01275 for the slope and 160 A (2 55 interatomic spacings) for
the interstep distance have been found. The macrosteps can be considered
as kinematic waves and, as before, their velocity should be equal to that of
the elementary steps when the crystal grows in a kinetic regime.

‘We now have all the information we need to make predictions concerning
the mechanism of growth through 2D nucleation. The lateral size of the
crystal plane (L = 2 x 10~? cm) becomes smaller than (ve/Jp)!/? at
7 > TmV. Then layer-by-layer growth should be observed at overpotentials
smaller than 7 mV. At higher overpotentials multilayer growth should take
place. Indeed, increasing the overpotential beyond 8 mV leads to current
transients of the kind shown in Fig. 3.58 [Bostanov et al. 1981}. As seen
the curve reproduces fairly well what has been theoretically predicted.

The steady state current density at large times is given in this case by

i = gb(Jov, )73 |

where b is a constant of the order of unity.
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Fig. 3.536. Pyramids of growth on Ag(111). The darker stripes are obtained by peri-
cdical superposition of higher overpotential pulses and represent trains of steps with
larger densities (larger slopes), or in other words, artificially produced kinematic waves.
(E. Budewski, T. Vitanov and V. Bostanov, Phys. Status Solidi 8 369 (1965). By
permission of Akademie Verlag GmbH and courtesy of V. Bostanov.)

Fig. 3.57. Micrograph of the opening of the rectangular capillary with a macrostep
photographed at different times to measure its rate of advance. (V. Bostanov, G. Staikov
and D. K. Roe, J. Electrochem. Soc. 122, 1301 (1975). By permission of Electrochemical
Society Inc. and courtesy of V. Bostanov.)



3.4. A Classicel Ezperiment in Crystal Growth 275

Fig. 3.58. The current of growth versus time at an overpotential considerably higher
than the critical overpotential. Several oscillations are clearly visible. At a longer time
the current reaches a consatant value which corresponds to steady state growth. This
is the first experimental recording of the oscillations of the rate of multilayer growth.
{V. Bostanov, W, Obretenov, G. Staikov, D. K. Roe and E. Budewski, J. Crystal Growth
%2, 761 (1981). By permission of Elsevier Science Publishers B.V. and courtesy of
V. Bostanov.}

The interpretation of the experimental results in coordinates
log{en3/% exp[— (1 — a)zen/kT1} vs 1/n (see Eq. (3.114)) gives a straight
line (Fig. 3.59), in good qualitative agreement with the theory [Bostanov et
el. 1981]. From the slope and the intercept of the straight line the values
3 =20x10"8 Jem™! and A = 2 x 10'® cm~2sec~'V~1/2 have been
estimated for the specific edge energy and the pre-exponential constant,
respectively, in good agreement with the results from the study of the
layer-by-layer growth.

In the case where the crystal face is not defectless but contains several
screw dislocations, polygonized pyramids of growth are usually visible
(Fig. 3.60) [Bostanov, Russinova and Budewski 1969; see also Budewski
1983], which represent hillocks due to growth spirals. No critical super-
saturation should be overcome in order for the growth to take place and
the current density is a parabolic function of the overpotential (Fig. 3.61)
as required by the theory of Burton, Cabrera and Frank [1951] [Bostanaov,
Russinova and Budewski 1969).
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Fig. 3.59. Plot of the logarithm of the steady state current of growth versus the reciprocal
of the overpotential according to Eq. (3.114). (V. Bostanav, W. Obretenov, G. Staikov,
D. K. Roe and E. Budewski, J. Crystal Growth 52, 761 (1981). By permission of Elsevier
Science Publishers B.V. and courtesy of V. Bostanov.)

Assuming the growth rate is given by (3.15) and the slope of the growth
pyramid is given by
a

p=‘1"”g';:r

one obtains for the growth rate
_ 9B 2
19

The rate of growth is given by R = d/t, where d is the thickness of a
monolayer and ¢ = ¢/7 is the time required to deposit 2 monolayer. Then the
current density should be proportional to the square of the supersaturation:
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(b)

Fig. 3.60. Pyramids of growth around the emergency points of =crew dislocations on
(a) Ag(111) and (b) Ag(100). As seen the pyramids are well polygonized. (V. Bostanov,
R. Russinova and E. Budewski, Comm. Dept. Chem. (Bulg. Acad. Sci.) 2, 885 (1969).
Courtesy of V. Bostanov.)
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Fig. 3.61, Plot of the growth current versus the aquare of the overpotential of a Ag(001)
crystal face with screw dislocations. The straight line confioms the validity of the
theory of Burton, Cabrera and Frank [1951] for small supersaturations. {V. Bostanov,
R. Russinova and E. Budewski, Comm. Dept. Chem. (Bulg. Acad. Sci.) 2, 885 (1969).
Courtesy of V. Bostanaov.)
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Obviously, one can calculate the value of the specific edge energy s from
the slope of the straight line ¢ vs 42 (Fig. 3.61). Bostanov, Staikov and Roe
[1975] estimated the value sc = 2.4 x 107** Jem ™, in good agreement with
the value found from a study of 2D nucleation.

The latter shows that the expression found by Cabrera and Levine for
the step spacing is valid for the case of electrolytic growth. At high enough
supersaturations the step spacing should become so small that the diffusion
fields around the step should overlap and the parabolic dependence of the
growth rate on the supersaturation should change gradually to a linear
one, It is then interesting to calculate the step spacing A = 19»a?/zen =
19s¢/gn at the highest overpotential used at which a parabolic dependence
is still observed. The value 733 A is obtained at the highest overpotential,
7 =3 x 107 V, applied. The latter is equal to 275 interatomic spacings.
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Investigations [Bostanov, Staikov and Roe 1975] on the rate of advance
in a rectangular capillary of macrosteps which represent, in fact, trains of
monoatomic steps, have shown that the rate of advance of such a step train
is just the same as that of a monoatomic step when the overall thickness of
the macrostep does not exceed 80 A. Moreover it has been found that the
interstep spacing is 160 A. We conclude that the parabolic law of growth
should be observed approximately at least up to 7 =15 mV.






CHAPTER 4

EPITAXIAL GROWTH

4.1, Basic Concepts and Definitions

The oriented growth of a crystalline material on the single crystal surface of
a different material is called epitaxy (or “ordered on” from the Greek words
et ~— on and rafio — in order). The term has been coined by Royer [1928]
more than half a century ago. A typical example of epitaxial overgrowth is
shown in Fig. 4.1 in the case of deposition of copper on the (111) surface
of silver [Markov, Stoycheva and Dobrev 1978]. As seen the truncated
triangular copper crystallites are lying with their (111) faces on the (111)
Ag surface, What is not immediately evident from the micrograph is that
the (110} direction of the copper crystallites is parallel to the {110} direction
of the silver substrate. This parallelism of directions, which we call epitazial
orientation, is usually described in terms of the Miller indices of crystal
planes and directions. In our particular caseit is (111){110)cuji(111){110) ¢
and we say that the copper deposit is in parallel epitaxial orientation
with the silver substrate. Although the parallel epitaxial orientation is
frequently observed particularly in the very important cases of deposition
of semiconductor compounds one on top of the other, this is not always the
case. For example, when PbS ar PbTe are deposited onto the (100} surface
of MgO the epitaxial orientation is {100)4{110}4}/{100),{100},. This means
that the crystal planes in contact with each other are {100} for both the
substrate and the deposit, but the (110} direction of the deposit coincides
with the (100} direction of the substrate [Honjo and Yagi 1969, 1980].

281
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Fig. 4.1. Electron micrograph of three-dimensional copper crystallites eletrodeposited at
constant overpotential on Ag(111) surface. The crystallites are in a parallel epitaxial
orientation (111){110)x, || (111){110]a, with the substrate. The Ag(111) substrate is
prepared by evaporation of Ag on mica in conventional vacuum, (I. Markov, E. Stoycheva
and D. Dobrev, Commun. Dept. Chem. [Bulg. Acad. Sci] 3, 377 (1978).)

In general the epitaxial orientation depends on the temperature. Massies
and Linh [1982a, b and c] deposited Ag on the As side (001) of GaAs
and established that at temperatures lower than 200°C the Ag plane in
contact with GaAs(001) is (110), i.e. the Ag {111} direction is parallel to
the direction {110} of the As dangling bonds. The epitaxial orientation
is (011){111)4,]I(001)(110)Gans. The (011) plane of fec metals consists
of parallel rows of atoms whose spacing is equal to the lattice parameter
(4.086 A of Ag). Along the rows, the atom spacing is equal to the first
neighbor distance 2.889 A for Ag. The lattice parameter of GaAs is ap =
5.6531 A and the atom spacing in the (100) plane is ag/v/2 = 3.9973 A.
So across the rows the lattice misfit is compressive and is equal to +2.22%,.
The lattice misfit is defined as the relative difference of the unit atom
spacings, f = (b—¢)/ae, where b and a are the atom spacings of the deposit
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and the substrate, respectively. Along the rows, the relative difference of
the unit atom spacings is very large, in absolute value —27.7%, but with
the opposite sign. However, it is easy to realize that four-atom spacings
of the silver nearly coincide with three-atom spacings of the GaAs. Then
the lattice misfit can be expressed as the relative difference of the multiple
atom spacings, f = (4b — 3a)/3a = —3.63% [Matthews 1975b]. In other
words, along the rows the silver bonds are stretched out, whereas across
the rows they are compressed. At temperatures higher than 200°C the
silver deposit is in parallel epitaxial orientation with (00I) GaAs, i.e. the
epitaxial orientation is (001)(010) 5¢[|{001}{010)Gaas, and the lattice misfit
in both orthogonal directions iz equal to —3.63%, i.e. the silver bonds
are stretched out in both directions. As will be shown below such an
orientation is connected with the lower energy due to the anharmonism
of the interatomic bonding.

Another interesting example of epitaxial orientation is established in
the deposition of Cu on Ag (001) by Bruce and Jaeger [1977, 1978a, b).
Both bulk metals have one and the same fce lattice, but the thin Cu
films have a bee lattice, the epitaxial orientation being (001){110}pcc cull
(001){010)¢.c ag. No evidence for the existence of bee Cu in nature has been
found.

The last two examples show that the epitaxial orientation is determined
by the condition for the minimum of the free energy of the system. We know
however that the bec lattice of copper has higher energy than the natural
fce one. It follows that the energy of the epitaxial interface between bee Cu
and fcc Ag overcompensates the energy difference between the bee and foc
lattices of Cu. We can conclude that the structure and hence the energy
of the epitaxial interface play a significant role in determining the epitaxial
orientation.

The parallelism of the contact planes is often called fibre or tezture
orientation. whereas the paralielism of the crystallographic directions at
the contact plane is called azimuthal orientetion. Thus epitaxy means
simultaneous realization of texture and azimuthal orientations [Gebhardt
1973]. Very often only texture orientation takes place, the deposit being
azimuthally misoriented. Here we will not discuss this case.

In general, epitaxy does not require parallelism of low index crystal-
lographic directions. A nonzero angle between these directions is possible
provided that it is the same for all islands (2D or 3D) of the deposit. Thisis
the cage, for example, of Pb deposition on (111} Ag surface which is rotated
about +4° and —4° from the parallel orientation around the normal of the
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{111) surface [Takayanagi 1981; Rawlings, Gibson and Dobson 1978]. In
such cases, which while appearing more exotic are not that rare, we have to
look for a parallelism of higher index erystallographic directions. For more
details the reader is referred to Stoyanov [1986)].

There exist terms in the specialized literature such as homoepitaxy,
autoepitaxy, heteroepitaxy, etc. They are used sometimes quite arbitrarily.
Thus homoepitaxy and autoepitaxy are often confused. This is the reason
why we will define them here more rigorcusly in terms of the chemical
potentials of the substrate and deposit materials.

One way to understand epitaxial growth, perhaps the best way, is to
compare it with crystal growth, or in other words, with the growth of a
single crystal film on the surface of the same material [Stranski and Kuleliev
1929; Stranski and Krastanov 1938]. What differentiate epitaxial growth
from crystal growth are the nature and strength of the chemical bonds
of both the substrate and deposit crystals on one hand, and the crystal
lattices and/or the lattice parameters on the other. In other words, both
crystals differ energetically end geometricelly. If both erystals do not differ
simultaneously energetically and geometrically, which means that they are
identical, we have the usual crystal growth. Strictly speaking, this means
that the chemical potentials of the substrate, u,, and the deposit, 4, are
precisely equal. Obviously, terms like autoepitaxy or homoepitaxy for the
description of this case are irrelevant. Epitaxial growth takes place only
when the chemical potentials of the deposit and the substrate crystals differ.

Let us consider for example the case of deposition of Si on Si single
crystal, the latter being doped with B [Sugita, Tamura and Sugawara
1869). The nature and strength of the chemical bonds in both substrate
and deposit crystals are one and the same and we can neglect the effect
of the dopant on the strength of the chemical bonds. However, due to
the presence of the dopant in the substrate crystal its lattice parameter is
different (smaller) from that of the pure silicon and the deposit film should
be compressed to match the substrate. Then the chemical potential of the
strained deposit differs from that of the large deposit crystal. The difference
of the chemical potentials is just given by the strain energy per atom.
Thus we have a case in which both the crystals have different chemical
potentials (u5 # ua) and the difference is due solely to the difference of the
lattice parameters, the nature and strength of the chemical bonds remaining
practically the same. We will call this case homoepitazy.

There are cases, such as deposition of In,.Ga;_ As on (100)InP with
r = 0.47, when the lattice parameters coincide exactly and the lattice
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misfit is equal to zero. The difference of the chemical potentials is in this
cage due to the difference in strength of the chemical bonds (different bond
strengths mean different works of separation from half-crystal positions and
different equilibrium vapor pressures). In the general case, however, the two
materials differ geometrically as well. Then the strain energy per atom due
to lattice misfit is added to the difference in bond strengths of the two
materials. This case is known as heteroepitaxy.

Summarizing we distinguish in general two cases:

1. Homoepitaxy — when the difference of the chemical potentials of the
subsirate and deposit crystals is due mainly to the lattice misfit;
2. Heteroepitaxy — when the difference of the chemical potentials of the
substrate and deposit crystals is due mainly to the difference in strength of
the chemical bonds irrespective of the value of the lattice misfit.

‘When both substrate and deposit crystals do not differ in any way and
their chemical potentials are exactly equal, we have crystal growth which
we have just considered in the previous chapter. Some investigators call
this case autoepitary but we will restrain ourselves from using this term.

The influence of the bonding across the interface and the lattice misfit on
the occurrence of epitaxy was noted for the first time in the famous rules of
Royer [1928]. On the basis of experimental observations of epitaxial growth
of fonic crystals one on top of the other he formulated the following rules:

(i) The crystal planes in contact must have one and the same symmetry
and close lattice parameters, the difference of the latter being no greater
than approximately 15%. The lattice misfit should be considered in a more
generalized sense — one has to compare not only the unit but also the
multiple lattice parameters.

{ii) Both crystals must have one and the same nature of the chemical
bhonds.

(iii) When ionic crystals grow one upon the other the alternation of
ions with opposite signs across the interface should be preserved. Although
ke mentioned the importance of the bonding in both materials he em-
phasized more on the effect of the difference of the lattice parameters.
The importance of lattice misfit was noted even earlier by Barker [1906,
1907, 1908] who concluded that oriented growth of alkali halide crystals one
upon the other is more likely to occur when their molecular volumes are
approximately equal. More details concerning the early works on epitaxy
can be found in the excellent historical review of Pashley [1975].

When dealing with epitaxial problems one has to bear in mind the
following. The epitaxial orientation of the deposit depends on the structure
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of the crystal planes in contact and the nature of the bonding across the
epitaxial interface. In other words, it does not depend on the process of
growth. Indeed, as stated at the beginning of this chapter the phenomenon
of epitaxy by definition does not refer to growth at all. On the other
hand, the kinetics of growth is just the same as outlined in Chap. 3 of
this hook. Thus, in the case of vapor deposition it includes the same
processes of adsorption and desorption, surface diffusion of adatoms and
incorporation inte kink sites. In deposition from solutions, the bulk dif-
fusion of the growth species should be accounted for, ete. It follows that
when considering epitaxy we could treat the problems of the equilibrium
structure of the epitaxial interface, which is intimately connected with the
epitaxial orientation, separately from the problems of the growth kinetics
of the epitaxial films and the problems connected with it.

Since the time Royer [1928] formulated his rules, the epitaxial growth of
thin films has been developed to the basis for the fabrication of numerous
modern devices. Thus, microelectronic devices are fabricated by epitaxial
deposition of materials, varying from such “simple” ones as elementary
semiconductors (5i, Ge) to binary compounds (GaAs, CdTe), and even to
ternary and quaternary alloys such as In.Ga;_As and In,Ga;_  As,Py_,,.
Bubble memory devices are prepared by epitaxial deposition of ferromag-
netic garnets such as Y, Gds_,Ga,Feg_, 012 on the surface of nonmagnetic
garnets, e.g., Gd3Gas0j2, in high temperature solutions. Varying the
values of z and y, one can change smoothly the crystallographic parameters
{e.g., the lattice parameter) and the physical properties (e.g., width of the
forbidden energy gap in semicondunctors).

Research in epitaxial growth is inseparable from the surface analytical
methods that are employed and the development of the corresponding tools.
At about the same time as vacuum techniques were developed, the electron
diffraction methods, RHEED and LEED (that is, “Reflection High Energy
Electron Diffraction” and “Low Energy Electron Diffraction”), arose from
the work of Thomson and Reid [1927] and Davisson and Germer [1927].
In addition, X-Ray Diffraction {XRD), X-Ray Topography (XRT), Replica
Electron Microscopy (REM), Transmission Electron Microscopy (TEM),
Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES)
and so on allowed quite an accurate characterization of the epitaxial films.
REM and SEM investigations give information concerning the surface mor-
phology of the growing deposit. TEM micrographs of the cross sections of
the substrate-deposit system reveal the structure of the epitaxial interface
[Gowers 1987). The in situ measurement of the variation of the RHEED
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intensity of the specular beam as a function of time gives the possibility
to follow the growth and determine the thickness of the growth front, the
concentration of the dopant, etc. [Neave et al. 1983; Neave, Joyce and
Dobson 1984; Sakamoto et al. 1987]. In particular, a combination of LEED
and AES has made it possible to obtain information on the initial stages
of the epitaxial deposition. AES allows very small fractions of a monolayer
of the deposited material to be detected on the substrate surface. it 1s, in
addition, a powerful analytical method for detecting any impurities on the
surface of the substrate prior to deposition. On the other hand, LEED gives
a very accurate picture of the geometric disposition of the substrate atoms,
and of the adsorbed atoms of the deposit as well. Combining further AES
and LEED with other methods like work function measurements, Thermal
Desorption Spectroscopy (TDS), the mechanism of growth of epitaxial
films can be followed from the very beginning (fraction of a monolayer)
to the formation of a continuous film [Bauer et al. 1974, 1977]. A new
powerful method, Scanning Tunneling Microscopy (STM), has been recently
invented, which allows the surface of the growing deposit to be visualized
to the resolution of single atoms {Binnig et al. 1982a, b; Binnig and Rohrer
1983]. The structure of the growing surface, monoatomic steps, 2D islands
and their edges can thus be observed and analysed {Hamers, Tromp and
Demuth 1986; Swartzentruber et al. 1990].

A great variety of methods for epitaxial deposition of different materials
have been invented so far. Chemical Vapor Deposition (CVD), Liquid Phase
Epitaxy (LPE), Atomic Layer Epitaxy (ALE), Molecular Beam Epitaxy
(MBE), Metal Organic Chemical Vapor Deposition (MOCVD), and such
combinations as Low Pressure Metal Organic Chemical Vapor Deposition
{(LP-MOCVD) and Metal Organic Molecular Beam Epitaxy (MOMBE) are
among the most widely used at present {Fairow e? al 1987]. That is why
the list of the epitaxial systems studied up to 1975 containg approximately
6000 entries [Griinbaum 1975]. Review papers, monographs [Pashley 1956,
1965, 1970; Kern, LeLay and Metois 1979; Honjo and Yagi 1980; Vook
1982; van der Merwe 1979; Markov and Stoyanov 1987; Matthews 1875],
ete., and whole volumes of journals such as Surface Science and the Journal
of Crystal Growth are devoted to different aspects of epitaxial growth and
characterization of epitaxial films.
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4.2, Structure and Energy of Epitaxial Interfaces
4.2.1. Boundary region

The interface represents the region between two bulk phases. The surface of
a crystal in contact with its vapors or melt is also considered as an interface.
The epitaxial interface is the boundary between two single crystals — the
overgrowth crystal and the substrate crystal, the former being in epitaxial
orientation with the latter.

In principle, the boundary between two single crystals which are charac-
terized by their bulk properties can have different structures depending on
the nature of the chemical bonds, the crystal lattices and lattice parameters,
the chemical properties of both materials, etc. Mayer [197]] classified the
boundaries into five groups:

(i) Layers of ordered adatoms or adions. For example, the layer between
the bulk K deposit and W{100) substrate consists of one monolayer of
negatively charged W ions, one monolayer of positively charged K ions and
two monolayers of K dipols [Mayer 1971].

(i1) Layers in which the difference between the lattice parameters is
accommodoted by periodic strains due to misfit dislocations (Fig. 4.5(d)).
The latter were predicted theoretically by Frank and van der Merwe [1949]
and found experimentally in a multitude of systems [Matthews 1961, 1963].

(iii) Pseudomorphic layers in which the deposit is homogeneously
strained to fit exactly the periodicity of the substrate (Fig. 4.5(c)). Such
layers have been detected in many epitaxial systems, e.g., Ni on Cu {111)
[Gradmann 1964, 1966}, Ge on GaAs (100) [Matthews and Crawford 1970,
ete. (for a review, see Pashley [1970]; Matthews [1975]). The concept
of pseudomorphism (or forced isomorphism) was introduced by Finch and
Quarrell [1933, 1934] to explain the experimental observations of epitaxial
growth of ZnO on Zn. Frank and van der Merwe {1949] found theoretically
that a critical misfit exists under which the overgrowth should be pseudo-
morphous with the substrate. Beyond this misfit the interface should be
resolved in a sequence of misfit dislocations. The value 14% was estimated
for the critical misfit, in tempting agreement with the experimental finding
of Royer [1928].

(iv) Layers due to interdiffusion or consisting of alloys, solid solutions,
metastable phases, etc. Thus an intermetallic compound AusPb is formed
upon deposition of Pb on Au (100) [Green, Prigge and Bauer 1978].

{v) Layers consisting of chemical compounds between the substrate and
deposit erystals. A typical example is the formation of NiSi; on Si(111)
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[Jentzach, Froitzheim and Theile 1989]. Stoichiometric metal silicides are
in fact often observed in the deposition of metals on Si(111) and Si{001)
(for a review, see Chen and Tu [1991]).

The considerations in this chapier will be confined to the accommoda-
tion of the lattice misfit by homogeneous strain (HS) (pseudomorphism) or
by periodic strain (misfit dislocations), all other phenomena like alloying,
interdiffusion or chemical reactions between both partners being ruled out.
We then consider the epitaxial interface as a geometric plane dividing two
crystals which in general differ energetically and geometrically. We assume
further that the structure of the interface is such that it minimizes the
energy of the system.

4.2.2. Models of epitazial interfaces

Various models have been invented for the theoretical description of the
equilibrium (minimum energy) structure of the epitaxial interfaces.

The coincidence lattice model developed by Bollmann [1967, 1972] con-
siders the two lattices of the substrate and deposit crystals as rigid. The
interatomic forces are assumed to have spherical symmetry and the model
is valid for materials with metallic or van der Waals bonds. Two lattice
points, one from each crystal, are brought into coincidence and the density
of lattice points which are in perfect or near coincidence serves as a measure
of registry of the two lattices (Fig. 4.2). The azimuthal orientation with
maximum coincident points is considered as the minimum energy {(ground
state) orientation,
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Fig. 4.2. Illustration of the coincidence lattice madel of epitaxial interfaces. The atoms
of the two planes in contact are denoted by open and filled circles.
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The ball-and-wire model [Hornstra 1958] was developed initially to de-
scribe dislocations in diamond. It assumes anisotropic chemical bonds
such as the directional covalent bonds, and is applicable to semiconductor
materials. Holt {1966] extended it further to describe the structure of
the semiconductor heterojunctions and found that dangling {unsaturated)
bonds should exist at the interface originating from the material with the
smaller lattice parameter (Fig. 4.3). Depending on the surface polarity
of the adjacent crystal planes the dangling bonds can act as acceptors or
donors [Holt 1966]. Oldham and Milnes [1964] showed that the dangling
bonds are expected to constitute deep energy levels in the forbidden energy
gap and thus play the role of recombination centers. When the density
of the dangling bonds is too high they can create a conducting band
in the forbidden epergy gap and alter significantly the properties of the
heterojunction [Holt 1966; Sharma and Purohit 1974,
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Fig. 4.3. Illustration of the ball-and-wire model of epitaxial interfaces between two
crystals with diamond lattice. The misfit dislocations represent unsaturated dangling
bonds spaced at an average distance p (after Holt [1966]).

In the variational approach developed by Fletcher [1964, 1967], Adam-
son [Fletcher and Adamson 1966] and Lodge [Fletcher and Lodge 1975] the
positions of the atoms of adjacent crystal planes have been varied to find
the minimum of the energy. A pairwise interatomic potential has been used
for this purpose. The calculations were carried out in the reciprocal space.
It has been found that the energy has a minimum value when as many
as possible lattice points of either side of the interface coincide as in the
coincidence lattice model. If elastic displacements of the atoms are allowed
(restricted for simplicity to crystal planes in contact with each other) the
resulting structure of the interface is very much like the one in the misfit
dislocation model developed by Frank and van der Merwe {1849].
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The Volterra dislocation model was developed on the basis of the dislo-
cation theory of low angle grain boundaries [Brooks 1952, Matthews 1975).
The concept of edge type dislocations for accommodation of the lattice
misfit was introduced explicitly in the model, both substrate and deposit
crystals having been considered as elastic continua. The most general
definition of edge dislocations given by Volterra [1907] at the beginning
of the century (see also Hirth and Lothe {1968]) has been used. The energy
of the interface is represented as a sum of the energy of the dislocations and
the energy of the residual homogeneous strain. Minimization of the energy
with respect to the homogeneous strain allows the calculation of the equi-
librium strain and the critical thickness for psendomorphous growth. The
advantage of the model is its mathematical simplicity. The arbitrariness
in the choice of the quantities determining the energy of the cores of the
dislocations is, however, a shortcoming of the model. More details will be
given below.

Fig. 4.4. Illustration of the one-dimensional misfit dislocations model of Frank and van
der Merwe [1849a]. The deposit is simulated by a chain of atoms connected by elastic
springs of length b and force constant 7. The rigid substrate exerts a periodic potential
with period ¢ and amplitude W, The figure shows the atomic chain before and after
being put in contact with the substrate. In the latter case 11 atoms of the chain are
distributed over 12 potential troughs of the substrate, thus forming a misfit dislocation.

The misfit dislocation model of Frank-van der Merwe [1949a, b} (for
a review, see van der Merwe [1974]) deals with a linear chain of atoms
connected with elastic springs subject to an external periodic potential
exerted by a rigid substrate (Fig. 4.4). The misfit dislocations appear
naturally as a result of the mathematical analysis of the model.

In the present chapter the dislocation models of Frank and van der
Merwe [1949] and van der Merwe [1950] will be described in more detail as
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they are the most well known and most exploited. Besides, the Volterra
approach of Matthews will also be described in more detail. The reader
interested in the other models mentioned above is referred to the original
papers and the review papers of van der Merwe [1974] and Woltersdorf
[1981).

4.2.3. Misfit dislocations

We will confine our considerations in this chapter only to the case where
the deposit crystal possesses a crystal face with the same symmetry as the
substrate surface.

In general when two geometrically dissimilar crystals (A and B) join
each other in such a way that two particular crystal planes come into
contact at the interface, the only physical reality is that the atoms in the
adjoining crystal halves in the near vicinity of the boundary between them
are displaced from their ideal positions which they should occupy if the
foreign crystal was replaced by the same crystal. Two lateral forces act on
each atom. The first is the force exerted by the neighboring atoms of the
same crystal which tends to preserve its natural crystal lattice and keep
the interatomic distances equal to their natural bond lengths. The second
is the force exerted by the atoms of the adjoining crystal which tends to
force the atoms to occupy the lattice sites of the foreign crystal. One can
distinguish several limiting cases. First, when the interfacial bonding p is
very weak compared with the bonds strengths, ¥4 s and ¥pg, both crystals
tend to preserve their natural lattices. In such a case the difference of the
periodicities of the two adjoining crystal lattices degenerates into a vernier
of misfit (Fig. 4.5(a)). A special case is when the lattice parameters a and b
are multiples of each other, i.e. ma = nb, where m and n are small integers
such that m = n+1 (Fig. 4.5(b)). Then every mth atom of A coincides with
every nth atom of B and we arrive at the coincidence lattice model outlined
above. In the other limiting case in which (¥a5 > ¥pp and ¥ap = ¥aa)
the crystal B is forced to adopt the lattice of A, or in other words, the
crystal B is homogeneously strained to fit the crystal A, we say then that
B is pseudomorphous with A (Fig. 4.5(c)). However, the elastic strains
and in turn the energy of B increase linearly with the thickness. That is
why beyond some critical thickness the pseudomorphous growth becomes
energetically unfavored and the homogeneous strain should be replaced by a
periodical strain which can attenuate with increasing film thickness. Thus,
misfit dislocations with a lower energy are introduced at the interface to
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accommodate the lattice misfit. Obviously, the smaller the natural misfit
the greater will be the critical thickness for pseudomorphous growth. In the
intermediate case (ap = ¥aa = ¥ng), the interfacial forces are not strong
enough to produce a pseudomorphous layer with considerable thickness and
the lattice misfit will be accommodated by misfit dislocations (MDs), or in
other words, by periodical strain (Fig. 4.5(d)), from the beginning of the

growth process.

TR

Fig. 4.5. Four possible modes of misfit accommodation: (a) vernier of misfit, (b)
coincidence lattices, (c) homogeneous strain, (d) misfit dislocations (after van der Merwe,
Waltersdorf and Jesser [1986]).

Misfit dislocations are a convenient, concept for the description of lattice
distortions in the vicinity of the epitaxial interface. They represent atomic
planes in excess in the material with the smaller atomic spacing (Fig. 4.5(d);
see also Fig. 4.11). Their fundamental feature is the local strain with
opposite sign in the cores of the dislocations. I the atomic spacing of
the overgrowth is smaller than that of the substrate the chemical bonds
in between the MDs will be stretched out but the bonds in the cores of
the dislocations will be compressed, and vice versa. Thus an interface
resolved in a sequence of MDs iz characterized by a periodical elastic strain
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with a period equal to the dislocation spacing. That is why the concept
of the MDs is applicable only when the bonding across the interface is
strong enough to ensure the appearance of local strains. It follows that
the periodic distortions of both lattices (substrate and deposit) lead to
an almost perfect maich of the crystal planes in contact in some areas
of the epitaxial interface. These areas are separated by stripes in which
the two lattices are out of registry. Figure 4.6 is an illustration of an
epitaxial interface between PbS and PbSe resolved in a sequence of misfit
dislocations [Béttner, Schiefil and Tacke 1990]. The situation is similar,
in a topological sense, to that existing in a single crystal containing edge
dislocations, from where the term “dislocation” was borrowed. Unlike edge
dislocations, however, misfit dislocations are not linear defects of the crystal
lattices themselves and their equilibrium density does not tend to zero with
decreasing temperature,
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Fig. 4.6. High resolution TEM micrograph of a PbS/PbSe interface. The misfit dislo-
cations are shown by arrows. (H. Bétiner, U. Schiefl and M. Tacke, Superlgitices and
Superstructures 7, 97 (1990). By permission of Academic Press Ltd. and courtesy of H.
Béttner.)

In fact there are two separate, though similar, misfit dislocation models
which are solved exactly: the model of overgrowth with monolayer thick-
ness, which is in fact the famous one-dimensional model of Frank and van
der Merwe [1949], and the model of fairly thick deposit developed later by
van der Merwe [1950, 1963a, b]. We consider first the monolayer model
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in more detail although it can be taken only as a first approximation to
a growing epitaxial film. However, it is very illustrative and helpful for a
deeper understanding of the more realistic models of epitaxial interfaces.
Then the model of thick overgrowth will be briefly out lined. The misfit
dislocation models have been reviewed comprehensively in a series of papers
by van der Merwe (1973, 1975, 1979] and others [Matthews 1975bj.

4,2.4, Frank-van der Merwe model of thin overlayer

The Frank and van der Merwe model [1949] recently gained prominence
not only in the field of epitaxy but also in various other fields, 2 common
feature of which is the competing periodicities. Thus it provided the
grounds of the theory of commensurate-incommensurate phase transitions
in physisorbed layers [Villain 1980] and in layer compounds [McMillan
1976], the alignments of cholesteric liquid crystals in a magnetic field [de
Gennes 1968, etc. {for a review, see Bak 1982). The treatment is based
on an earlier model of Frenkel and Kontorova [1939] who considered the
“worm-like motion” of edge dislocations in crystals to explain the plastic
flow of the latier. That is why the one-dimensional model is also known as
the model of Frenkel and Kontorova.

In this chapter the original one-dimensional model of Frank and van
der Merwe [1949] will be considered first. Then it will be generalized
for a two-dimensional monolayer overgrowth, and after that it will be
applied to the case of thickening overgrowth although it is inadequate for
quantitatively describing this situation [van der Merwe, Woltersdorf and
Jesser 1986]. The influence of the anharmonicity and nonconvex characters
of the more realistic interatomic potentials will be discussed at the end of
the chapter.

4.2.4.1. Interatomic potenticls

Pairwise interatomic potentials with simple analytical form are often used in
direct lattice calculations in solid state physics. The potentials of Morse and
Lennard-Jones (the 6-12 Mie potential} are the common choices [Kaplan
1986},

The potential of Morse [1929],

V(r):%{[l-—exp (—w";a’"“)rq} , (4.1)
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where Vj is the energy of dissociation, ry is the equilibrium atom spacing
and w is a constant which governs the range of action of the interatomic
forces, was originally suggested for the evaluation of the vibrational energy
levels in diatomic molecules. By varying w we shift the repulsive and
attractive branches of the potential in opposite directions so that the degree
of anharmonicity remains practically the same. Girifalco and Weiser [1959]
adjusted the constants of the Morse potential to fit the lattice parameters,
the cohesive energies and the elastic properties of a series of metals, and
found a value for w varying around 4.

The potential of Morse does not behave well at small and large atom
spacings. At r = 0, the potential does not go to infinity but has a finite
value. The exponential dependence is not believed to describe well the
atom attraction at r > ry. In this respect the inverse power Mie potential

V(T)=Vo[ L (l)n. (fﬂ)"] (42)

m—-n\r m-—-n\r

is much more flexible than the Morse potential. The repulsive and attractive
branches are governed by two independent parameters, m and » (m >
n). The Mie potential with m = 12 and n = 6 which is known as the
Lennard-Jones potential [Lennard-Jones 1924] describes satisfactorily the
properties of the noble gases.

A generalized Morse potential

v

o=y SXPIAr =)l - ——

Vir)=W ( exp[-v{r -y )]) (4.3)
has been recently suggested [Markov and Trayanov 1988]. It has all the
shortcomings of the Morse potential except that the repulsive and attractive
branches are governed by two independent parameters g and v (u > v).
An advantage of both Morse potentials, particularly for solving interface
problems, is that they are expressed in terms of strains r — ry which makes
the mathematical formulation of the problems and the calculation of the
strains, stresses and strain energy easier. i we put g = 2w/rp and v = w/re
into {4.3) it turns into the Morse potential. It is worth noting that the
6-12 Lennard-Jones potential is practically indistinguishable from the one
expressed by (4.3) with 4 = 18 and v = 4. The generalized Morse potential
with ¢ = 4 and v = 3 is plotted in Fig. 4.7,

The pairwise potentials counted above have two fundamental properties.
First they are anharmonic in the sense that the repulsive branch is steeper
than the attractive one, and second they have an inflection point r; beyond
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Fig. 4.7. The generalized Morse potential (Eq. (4.3)) (shown as real) with 4 = 4 and
v = 3 and the Toda potential (Eq. (4.4)) with o = 2 and # = 6. The parameters &, 5, u
and v are chosen in such a way that the repulsive branches of both potentials coincide
up to the third digit and have one and the same harmonic approximation given by the
dashed line, For misfits smaller than f, = (rg — r¢)/a (Eq. {4.84)), where r; denotes the
inflection point of the real potential, the atoms of the chain are equidistant as shown
below to the left. For misfits larger than f;, the distorted state shown below to the
right is the ground state. The latier consists of alternating short, strong and long, weak

bonds. (I. Markov and A. Trayanov, J. Phys.: Condens. Matter 2, 6965 (1990). By
permission of IOP Publishing Ltd.}

which they become nonconvex. In order to distinguish the influence of

the anharmonicity from that of the nonconvex character one can use the
well-known potential of Toda [Toda 1967)

Vir)=W (% exp[—8(r — ro)] + a(r — 1o} — % - 1)- (4.4)

which is shown in Fig. 4.7 with a = 2 and 8 = 6. By varying o and 8
but keeping their product constant we can go smoothly from the harmonic
approximsation (& — 00, @ — 0, af = const) to the hard sphere limit
(¢ — 0, 8 — o0, @B = const). It has no inflection point (or has an inflection
point at infinity) and can be used to study the effect of anharmonicity in its
pure form on the equilibrium structure of the epitaxial interfaces [Milchev
and Markov 1984; Markov and Milchev 1984a, b, 1985]. It is immediately
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seen that expanding the second exponential term of the generalized Morse
potential (4.3) in Taylor series to the linear term results in the Toda
potential with o = pv/(u — v) and 8 = p.

Expanding any of the above potentials in Taylor series to the parabolic
term gives the harmonic approximation (the dashed line in Fig. 4.7), which
for the generalized Morse potential {4.3) reads

1
V{r) = surVa(r — ro) - Vo, {4.5)

where the product v = pvVj gives the elastic modulus. The force between
the neighboring atoms, F(r) = ~(r — rg), satisfies Hooke's law exactly.
Obviously, the harmonic approximation can be used for small deviations
from the equilibrium atom separation, i.e. for small strains r — ry. This is
equivalent to small misfits in interface problems. The force constant v is a
measure of the bonding between the overgrowth atoms.

Let us analyze more closely the above pairwise potentials. Figure 4.8(a)
demonstrates the variation with the atom spacing of the first derivative,
or the force exerted on one atom by its neighbor. As seen the force goes
linearly to infinity in the harmonic case. This means that increasing the
atom spacing leads to an increase of the force which tends to keep the atoms
together. The Toda force, however, goes to a constant value at large atom
separations. This means that in applying a force greater than the maximum
one the corresponding bond can break up and both atoms can be separated
from each other. The same is valid for the potentials (4.1)—(4.3) (henceforth
to be referred to as real potentials). The force displays a maximum — the
theoretical tensile strength of the material.

Figure 4.8(b) demonstrates the variation of the second derivative of
the pairwise potentials which in fact determines the sign of the curvature.
In the harmonic case the second derivative is constant and positive. In
the Toda case it is a decreasing function of the atom separation and goes
asymptotically to zero but remains always positive. Only in the case of
the real potentials the curvature changes its sign from positive to negative
at the inflection point r = r,. In other words, the real potentials become
nonconvex at r > r;. As shown by Haas [Haas 1978, 1979] the nonconvex
character of the real potential results in distortion or polymerization of
the chemical bonds in expanded chain (or epilayers); long, weak and short,
strong bonds alternate (Fig. 4.7). The driving force of such a distortion is
the energy difference between the distorted and undistorted structures. It
is easy to show that the mean energy of the distorted (dimerized) structure
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Fig. 4.8. (a) First and (b) second derivatives of the harmanic, Toda and real potentials.
The force acting between the atoms (the first derivative) goes to infinity for the harmonic
potential but is finite for the other potentials. The maximal force is in fact the theoretical
tensile strength of the material. The second derivative which determines the sign of the
curvature is positive for both the harmonic and Teda potentials but becomes negative
beyond the inflection point in the case of the real pairwise potentials.
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[V(r +u) + V{r - w)]/2 < V(r) for a curve with a negative curvature,
[V(r +u) + V(r — w)]f2 = V(r) for a straight line (zero curvature) and
[V{r +u) + V(r — u}]/2 > V(r} for a curve with a positive curvature. It
follows that when applying the harmonic potential or the real potential at
misfits smaller than that corresponding to the inflection point, the ground
state will be the undistorted structure. The distorted structure will be the
ground state in epilayers expanded beyond the inflection misfit when a real
potential is adopted.

4.2.4.2. Interfacial interactions

A single atom moving on a single crystal surface should feel a two-dimen-
sional periodic potential relief. Tt is convenient to represent it in the form
{Frank and van der Merwe 1949b]

Viz,y) = %W, (1 - cosZﬂi) + %Wy (l — cos 2wf—y) , (4.6)
where a, and a, are the atom spacings (or more correctly the spacings
between the neighboring potential troughs) and W and W, are the overall
amplitudes (the depths of the potential troughs) in the two directions =
and y. A potential relief of this kind should be exerted for example by the
(110) face of a fee crystal.

In the case of a face with quadratic symmetry a, = ¢y, = a and
W, = W, = W, the relief (4.6) simplifies to

V= %W (1 _ cos 2«5) + %W (1 - cosZw%) . (4.7)

If one assumes a corrugation in one direction only, (4.6) simplifies further
to the potential field (Fig. 4.4)

Viz) = %W (1 - cos2?r§) (4.8)

introduced initially by Frenkel and Kontorova [1939].

It is generally believed that the interfacial potential has a flatter crest
than is represented by a single sinusoide. That is why Frank and van der
Merwe [1949c] suggested a refined potential of the form

V= %W (1 —cos?rr%) + %w (1 - cos4fr§) \

where the maximum flattening is achieved when w/W = 1/4.
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The amplitude W is related to the substrate—deposit bond strength by
W = gpa , {4.9)

where (4 is the desorption energy of an overlayer atom from the substrate
surface and ¢ is a constant of proportionality varying from 1/30 for long
range van der Waals forces to approximately 1/3 for short range covalent
bonds [van der Merwe 1979]. In fact, W is the activation energy for surface
diffusion and g gives the relation between the activation energies for surface
diffusion and desorption.

In some cases the rather unrealistic parabolic model has been employed
which replaces the smooth sinusoide (4.8) by a sequence of parabolic arcs

V(z) = const z* {|z] < a/2)

with sharp crests between them [van der Merwe 1963a; Stoop and van der
Merwe 1973]. The parabolic model permits linearization of the mathe-
matical problem and makes it possible to obtain exact analytical solutions
[Markov and Karaivanov 1979] in order to illustrate some properties of the
system.

A smooth potential, known as biparabalic potential, consisting of para-
bolic segments

1 1\ 1., 1 1
= —— [ — I
Vix) J\(m 2a) + 16)\& ) 2STE 50,
1 1\ 1 1 1
= - — —— 2 ——— ——
Viz) = 2A(::+2a) +16Aa, 2a$zg ik

was constructed by Stoop and van der Merwe {1973] and in a more general
form by Kratochvil and Indenbom [1963]. The different interfacial poten-
tials are shown in Fig. 4.9.

4.2.4.3. 1D model of epitaxial interface

The avergrowth is simulated by a chain of atoms connected by purely elastic
(Hookean) springs (Eq. 4.3) as a substitute of the real interatomic forces
(Fig. 4.4). The springs are characterized by their natural length b(= ro) and
force constant -v. The chain is subject to an external periodic potential field
(4.8) exerted by a rigid substrate. The assumption of the substrate rigidity
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Fig. 4.9. Comparison of several interfacial potentials: curve 1 — the sinusoidal potential
(Eq. (4.8}), curve 2 — the refined sinusoidal potential, curve 3 — the parabolic potential.

could be considered to reflect the real situation in the case of sufficiently
thin overgrowth (not more than a few monolayers). In the case of thick
deposit this assumption is not valid anymore and elastic strains in both
substrate and deposit should be allowed [van der Merwe 1950].

As b is not equal to a, the atoms will not sit at the bottoms of the
potential troughs but will be displaced. In fact, our task is to find the
atoms’ displacements. Then the energy can be calculated and in turn
the ground state of the system can be easily found. To do this we have
to analyze the forces acting upon every atom. As mentioned above two
forces act on each atom: first a force exerted by the neighboring atoms, and
second a force exerted by the substrate. The first force tends to preserve
the natural spacing b between the atoms, whereas the second one tends to
place all the atoms at the bottoms of the corresponding potential troughs
of the substrate. As a result of the competition between the two forces, the
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atoms will be spaced in general at some compromise distance b in between
b and a. In the case of » = a the natural misfit will be accommodated by
homogeneous strain and the overgrowth will be pseudomorphous with the
substrate. At the other extreme, & = b, the deposit preserves on average
its owm atomic spacing and the natural misfit is accommodated entirely by
misfit dislocations. It follows that in the intermediate case, @ < b < b, part
of the natural misfit defined as

b—a
f== (4.10)
will be accommodated by misfit dislocations
b—a
fa=— (4.11)
and the remaining part
b—b a
fe=——=10a= 1)) (4.12)

by homogeneous strain. In other words, the natural misfit appears in the
general case as a sum of the homogeneous strain and the periodical strain
due to the misfit dislocations, i.e.

f=~fat|fel. (4.13)

In order to find the forces acting on the atoms and in turn the atoms’
displacements we have to write an expression for the potential energy of
the system. The force exerted by the neighboring atoms depends on the
distance between them. To find it we choose the origin of the coordinate
gystem at an arbitrary point to the left of the atoms under consideration
(Fig. 4.10). Without loss of generality we can place the origin at the bottom
of an arbitrary potential trough. Then the distances from the origin to the
(n+1)th and nth atoms will be X,.1; = (n+1)a+2z,41 and X, = ne+xn,
respectively, where z,, and %,.; are the displacements of the atoms from
the bottoms of the potential troughs with the same numbers. Then the
distance AX,, = X, ;1 — X, between the (n + 1)th and the nth atoms is

aXn =Tntl —$n+a=a’(§n+l _Eﬂ+1) ]

where £, = z,/a is the relative displacement of the nth atom from the
bottom of the nth potential trough. The strain of the bond between the
atoms will be

e(n)=AX, —b=allns1 —&n — f) - (4.14)
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Fig. 4.10. For the determination of the atom displacements X, and T, and the atomic
spacing AXp = Xny] — X, in the 1D model of Frank and van der Merwe [1949a).

Bearing in mind {4.8) the potential energy of a chain consisting of N
atoms reads

p N2 , 1 N
2
=570 ﬂ§=0 nt1 —Eu—f) 4+ EW ,?—o {1 -cos2xE,) , (4.15)

where the first sum gives the strain energy of the system while the second
sum accounts for the interaction across the interface.

We assume for definiteness that b > a and f > 0 (compression of
the chain). The analysis is valid for the opposite case b < @ and f < 0
{expansion of the chain), which follows from the symmetric (Hookean)
shape of the interatomic potential. The only difference consists in the fact
that at positive misfits the atom (corresponding to atomic plane in the 3D
case) in excess is in the substrate. In the 1D case this is equivalent to an
empty potential trough as shown in Fig. 4.11(a). At negative misfits the
atom (plane) in excess is in the overgrowth which is equivalent to a pair of
atoms in one trough (Fig. 4.11(b)). In the harmonic approximation adopted
both configurations are symmetric and have one and the same energy. As
shown below, this is not the case when a more realistic interatomic potential
is adopted.

The derivative of the potential energy E with respect to the displace-
ment £, gives the overall force acting on the nth atom. At equilibrinm
this force is equal to zero and dE/df, = 0 appears as the condition for
equilibrium. Minimizing (4.15) with respect to &, leads to the following set
of recurrent equations:
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Fig. 4.11. Structure of misfit dislocations in the chain model of Frank and van der Merwe
at (a) positive (b > a) and (b) negative (b < a) misfits. In (a) the misht dislocation
represents an empty potential trough (light wall) which corresponds to an excess atomic
plane in the subatrate. [n (b) the dislocation represents two atomns in ene trough (or
three atoms in two troughs, heavy wall) which corresponds to an excess atomic plane in
the overgrowth.
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H~-&-—f= !2 sin2rég ,
Enit — 26n + Ent = 2% sin 2r€,, | (4.16)
5
Enaa—€n oz —f= 2!2 sin2wf{n_1 ,
where 12
2
Y&

is a parameter which accounts for the ratio of the forces between the
overgrowth atoms and across the interface. The equations {4.16) can be
solved numerically and the atoms’ displacements can thus be found. How-
ever, another procedure can be used to find an analytical solution for &,.
Assuming that the displacements vary slowly with the atom nuraber we
can approximate the discrete quantities £, by continuous variables £(n) and
replace the differences £,41 — €. by the derivative dé(n)/dn. Expandiog
it in a Taylor series and neglecting higher order differentials result in a
differential equation of second order [Frank and van der Merwe 1949]:

2
%?—) = ;Tgsin 2ré(n) . (4.18)

This is the continuum approximation of the problem. It replaces the real
discrete chain of atoms by an elastic continuum (a rubber cord). Although
gome details are usually lost in this procedure it has the merit of giving
rise to an analytical solution. In fact Eq. {4.18) is the pendulum equation
but in this particular case it is known as the static sine-Gordon equation
or simply the sine-Gordon equation {Barone et al. 1971; Scott, Chu and
MecLaughlin 1873; Villain 1930].

The integration of the sine—Gordon equation can be carried out in
two stages. First, we find the first integral by using the following simple
procedure. We multiply both sides of (4.18) by df and reorganize the
left-hand side to obtain

d*t(n d [d d T
d{—&ﬁ;—f?)—zd (dfz) :iifzd(dfz) l"" sin 2né(n)dE .

The integration then gives

dt Zﬁ cos 2mé(n)
(§) ==,
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where C is the integration constant. To find it we assume that in general
the solution £(n) crosses zero at some angle so that df/dn = w at £ = 0.
Then C = (1 + 2w?i2)/21% and

(g_g)"’* _ _cos2m(n) | 1+ 2
an) 212 202

Making use of the relations cos 2r¢ = 2cos® 7¢ — 1 and Wi = 1/k* -1
one finally obtains

df /1 —k?cos® m€(n)
dn klg '
Single dislocations. We comnsider first for illustration the limiting case of
a single dislocation assuming w = 0 and k = 1. Then the integration of the
resulting equation
dé(n)  sinwé(n)

dn l.'o
subject to the boundary condition n =0, £(n} = 1/2 gives

(4.19)

£(n) = %arctan [exp (Flo—n)] . (4.20)

The atomic displacements as a function cf the atom number according
to Eq. (4.20) are plotted in Fig. 4.12 (curve 1}. As seen the solution has the
form of a single wave. On the left-hand side, n — —oo, the displacements
approach zero, which means that the atoms lie at the bottoms of their
respective troughs. On the right-hand side, n — 400, the displacements
approach unity, i.e. the atoms lie at the bottoms of the neighboring
potential troughs. In other words, N atoms are distributed over N + 1
{or N — 1 at negative misfit) potential troughs. This is equivalent to one
missing atomic plane (or & plane in excess) in the overgrowth with respect to
the substrate if we imagine the one-dimensional model under consideration
as a cross section of two crystal halves. (Note that the overgrowth crystal
has as many atomic planes as its own structure demands). It is known in
the literature as a misfit or interface dislocation [Frank and van der Merwe
1949a] or a soliton [Scott, Chu and McLaughlin 1973; Villain 1980]. As will
be shown below this is the shape the dislocations possess when they are far
apart and do not interact with each other.

As seen in Fig. 4.12 atoms which are in marked disregistry with the
substrate potential troughs (or atoms) occupy a region with a width I,
measured in number of atoms. The atoms to the left and to the right of
this region are in a good fit, and those far enough from it are in a perfect fit,
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Fig. 4.12. Dependence of the atom displacement on the atom number, Curve 1 represents
a single misfit dislocation (single soliton) given by Eq. {4.20). Curve 2 represents a migfit
dislocation in a sequence of interacting dislocations given by Eq. (4.23). As seen, the
latter crosses zero and unity under an angle w which determines the boundary condition
for finding the first integral and the value of the modulus % of the elliptic integrals K'{k}
and E(k). The greater the dislocation density, the greater the angle w and the smaller
than unity the modulus k. Thus the latter is a measure of the distocation density. In
the case of a single dislocation or dislocations far apart, w = 0 and k = 1. iy denotes the
width of a single dislocation. The width of a dislocation in a sequence of dislocations
is given by ! = klp < lg. The reciprocal of the length L gives the density of the misfit
dislocations according to Eq. (4.25).

with the substrate potential. Thus {; gives the width of single isclated misfit
dislocations which do not interact with each other. Within the framework
of the harmonic approximation under consideration the dislocation width
does not depend on the natural misfit, but on the energetic parameters -
and W only. As will be shown below it becomes a steep function of the
misfit in the more realistic model with anharmonic interactions [Markov
and Trayanov 1988].

It is of interest to consider the elastic strains of the consecutive springs.
The latter can be written in the continuum approximation in the form

- e s (%) S
e(n) = algwps—6n=f) o ( F f)—“(zocosh(m/;o) f).(4.zn
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Fig. 4.13. Plot of the consecutive strains £{n) of the chemical bond versug the atom
displacement £(n) in a chain containing dislocations far apart from each other (curve 1,
Eq. (4.21)) and a sequence of interacting dislocations (curve 2, Eq. (4.27)). In the
first case the sirains in between the dislacations reach the value —af = —(b —a), ie.
the dislocations divide the interface into regions of perfect fit with the substrate. The
sequence of dislocations leads to an appearance of periodical strains which change their

sign.

The variation of (n) with n is plotted in Fig. 4.13 (curve 1). As seen,
far from the dislocation, n — oo, the first term in the brackets goes to
zero and the strains are equal to £(r) = —af = —(b — a). In other words,
the bonds between the overgrowth atoms are strained to fit exactly with
the spacings of the potential troughs of the substrate, and the strains are
precisely equal to the natural misfit taken with a negative sign. In the core
of the dislocation (n = 0) the strain

is positive as long as 1/l; > f. As will be shown below, it becomes equal
to zero only when the misfit reaches the so-called limit of metastability of
the pseudomorphous state defined as fu. = 1/b.
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Sequence of dislocations. Making use of the substitution

¢=w(§—%)

and after integration of (4.19) subject to the boundary condition £(n =
0} = 1/2 and ¢ = 0 we obtain the general solution of (4.18):

¢
T dp
_— = T = P, k), 4.22
kly 6/ 1 —k2sin? (&%) (4.22)

where F(¢, k) is the incomplete elliptic integral of first kind [Janke, Emde
and Lisch 1960], or by inversion

£(n) = % + % am (%) ) (4.23)
where am(F(¢,k), k) denotes the elliptic amplitude and k < 1 is the
modulus of the elliptic integrals. At k =1 (4.23) turns into (4.20).

A graphical representation of (4.23) is given in Fig. 4.12 (curve 2). When
the dislocations are far apart, w — 0 and & — 1. The nearer the dislocations
are to each other, the greater w is and the smaller than unity k& becomes.
Thus the modulus of the elliptic integrals determines the spacing between
the dislocations, or in other words, the mean dislocation density on the one
hand and the dislocation width on the other. The latter is now smaller
than that of a single dislocation and is equal to I = kly.

The dislocation spacing measured in number of atoms can be easily
calculated from (4.22) and reads

L= %2};:01((;&) , (4.24)

where K (k) = K(n/2,k} is the complete elliptic integral of the first kind.

The reciprocal of the dislocation spacing gives the mean dislocation density
in the ground state:

m
= 4.

fa 2klo K (k) (4.25)

For values of k near to unity the elliptic integral K (k) can be approxi-

mated by K (k) 2 In[4/(1 — k2)1/2] and the mean dislocation density reads

F

fa = e/ = FT

(4.26)
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It is immediately seen that at k = 1 the dislocation spacing tends to
infinity and the mean dislocation density to zero. The overlayer is strained
to fit exactly the periodicity of the substrate, its atomic spacing being equal
te that of the latter.

In fact the mean dislocation density fs is just the part of the natural
migfit given by Eq. (4.11) which is accommodated by misfit dislocations.
The mean atomic spacing b is equal to

Nj2 L2 df
- a a a
b—N_l E:(én-ﬁ-l""fn"‘l)azf (E-Fl)dﬂ--ﬂ'f'i,
~Nj2 -L/2

from which (4.11) follows.
The elastic strain of the consecutive springs is now

) =e (%@ - ) ¢ (\/1 _kzki:sz i f) , (4

which reduces to (4.21) at ¥ = 1. The strain varies periodically with
the spring number, compression and expansion alternating with a period
equal to the dislocation spacing (Fig. 4.13, curve 2). In the cores of the
dislocations the strain e, = e(1/kly — f) is now greater than that in the
core of a single dislocation. In between the dislocations, £ = 0,1, the strain

E=a(\/1-k2_f)

kly

no longer reaches the maximum strain € = ~af as shown in Fig. 4.13
{curve 2). With increasing dislocation density (decreasing k) the strain
in the dislocation cores increases and the one in between the dislocations
decreases in absolute valye, i.e. the strain varies more and more symmetri-
cally around the zero. When the sum of the positive strains become equal
to that of the negative strains, or in other words, when the areas under
the £(n) curve from either side of the zero become equal, the mean atomic
spacing b = b. When the latter takes place, the natural misfit is completely
accommodated by misfit dislocations, or in other words, by the periodical
strain connected with them. When the positive and negative areas under
the £(n) curve are not equal their difference gives the part of the natural
misfit which is accommodated by homogeneous strain.

We can now find the energy of the system. For this purpose we have {o
substitute the solution {4.23) into the continuum approximation of (4.15):
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. L2 g ) Lj2
= 570 / [( )—f] dn+ S W f (1-cos2xf)dn . (4.28)
—Lj2 —LJ2

Substituting (4.23) into the second integral of the right-hand side of
(4.28) gives

. L/2 Lj2 &\ 1-

1 _ W gy _1-k

S f (1 - cos 2n€) dn = W2 / [(dn) kzlgldn
—L/2 —L/2

ard (4.28) turns into
Lj2

_ dey? ¢ ., 1-k
E_W13/ [2(3;) -2+ f kzla]dﬂ

~L/2

Substituting (4.19) into the above expression and carrying out the
integration give the energy per atom (Fig. 4.18):

£ 2w (B8, 12 PBP-2R) )

where f; is given by (4.25) and

mf2

E(k) = f 1— k2sin? ¢ dib
0

is the complete elliptic integral of second kind.
Minimization of the energy per atom with respect to the mean disloca-
tion density f4 gives

e 2E(k)
E =2Wi, ( > lof) {4.30)

where the relationships d[E(k)/k}/dk = —K(k)/k® and dkK(k)]/dk =
E(k)/(1 — k) are used.
The condition for the lowest energy state then reads

2 EK)

f=h=05 (4.31)
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Fig. 4.14. Plot of the mean dislocation density fq4 = (b — a)/e vs natural misfit f =
(b~ a)/a in the 1D model (curve 1) and the 2D model (curve 2). The plot represents
in fact the dependence of the average atomic spacing & on the bulk spacing b. At large
enough values of the misfit b -+ b and the misfit is accommodated completely by misfit
dislocation. At misfits smaller than the stability limit f,,b = « and the misfit is
accommadated completely by homogeneous strain. The overgrowth is pseudomorphous
with the substrate. The straight line gives the case b = b {(after van der Merwe [1975]).

Substituting E(k)/k from (4.31) into (4.29) gives the energy of the
ground state:

1-k2 1 1= k2
€o= WBf* ~W— = sna®f2 =~ W . (4.32)

This means that as long as k = 1, £ = 0.5va*f? and the pseudomor-
phous state is always the ground state.

Beyond the limit of stability the system in the ground state contains
misfit dislocations whose density is determined by Eq. (4.25). Excluding &
from (4.25) and {4.31) we find the mean dislocation density in the ground
state as a function of the natural misfit. The dependence is plotted in
Fig. 4.14 (curve 1). As seen the dislocation density is equal to zero up to
the stability limit f; and then sharply increases and goes asymptotically
to the value of the natural misfit. In fact, this is a plot of the mean atom
spacing b relative to a as a function of the natural spacing b.
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Let us analyze Eq. (4.29) in more detail. At & = 1 (dislocations far
apart) it turns into

-4

£ = %WIofd +WIB(f2 —2ff4) = %WIofd ( 1.

) +£(0), (4.33)

where £(0) = W2 f? is the energy of the pseudomorphous state and f, is
the limit of the stability of the pseudomorphous state (see Eq. (4.37)).

The term

4
Eq = —WI
4= ofa

represents the energy of a single misfit dislocation or a single soliton

a:%wh (4.34)

multiplied by the density of the dislocations, fy4. In other words, £4 is the
energy of the misfit dislocations.
The second term

1

Ene = WIE(f2 — 2f fa) = sva®(f% - 2f fa) =

5 va? f2

b2 =

is in fact the energy of the homogeneous strain. It turns out that in the
case of noninteracting misfit dislocations (k = 1), the energy is a sum of the
energy of the homogeneous strain and the energy of the misfit dislocations,
ie & = Eq4 + s

The difference of the energies at £ = 1 and & < 1 represents obviously
the energy of interaction of the misfit dislocations. The latter is implicitly
accounted for in the k-containing terms. The energy of interaction of a
pair of dislocations has been calculated to give [Villain 1980; Theodorou
and Rice 1978| the following asymptotic expression:

Eint = #Eq €Xp ( —f—:l-o—) , (4.35)

which is valid for dislocations far apart and s is a constant of the order of
unity [Bak and Emery 1976; Theodorou and Rice 1978]. The exponential
behavior of the interaction energy obviously reflects the dependence of k
on the mean dislocation density (4.26).
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The energy of the incommensurate state then becomes

£=Efs [1— i+xexp (———“—)] + £(0) . (4.36)
fs fdlﬂ
As shown above the pseudomorphous state is always the ground state as
long as k = 1. When k < 1 the state with dislocations becomes the ground
state, their density being determined by the value of k. Then from (4.31),
with k = 1, one obtains

f=f=o. (4.37)

which appears as the limit of stability of the pseudomorphous state. The
limit of stability of a state with a particular density of dislocations is given
by Eq. (4.31). Frank and van der Merwe calculated the value of [y under
the condition that the energies 44, ¥pp and Y¥ap are equal and found
Ip = 7.35. Hence f, = 9% in this particular case.

As the strains (and the stresses) change their signs periodically
{Fig. 4.13) there are obviously springs which are unstrained. If we cut
such springs the parts of the chain to the left and to the right of the cut
will remain in equilibrium with their free ends. This means that when
a chain with a finite length is in equilibrium its hypothetical end springs
with numbers # = —1 and # = N are unstrained. In such a case the end
atoms will have a specific displacement . It can be found by assuming
the periodic variation of the strain (n) given by (4.27) crosses zero:

1 1/2
coswép = (k—z'"lgfz) .

As seen & depends on the value of the misfit. When the misfit increases
the end atom climbs the slope of its respective potential trough. Obviously,
there exists a critical value of the misfit at which the end atom is just on
top of the hill between its respective and the neighboring potential troughs,
ie. & = +1/2. If the misfit is infinitesimally increased the end atom will
go down in the neighboring trough. The situation is equivalent to the
generation of a new misfit dislocation at the chain end. Mathematically this
means that {2 > 1/k? and the quantity under the square root becomes
negative, On the other hand, the misfit cannot be too small as this means
that the quantity under the square root will become larger than unity and
the equation will have no solution. Physically this means that under some
critical value of the misfit an existing dislocation should leave the chain at
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its free end. The above considerations are illustrated in Fig. 4.15 where the
chains are shown in a folded form [Dubnova and Indenbom 1966). We have
to imagine that each atom occupies the same position but in a separate
potential trough. Figure 4.15(a) demonstrates a chain which does not
contain misfit dislocations. All displacements lie between —1/2 and 1/2. If
the natural misfit is equal to zero all atoms will lie in the bottoms of the
potential troughs, i.e. ¢(n) = 0 (Fig. 4.15(b)). Increasing the misfit leads
to a situation when the end atoms reach the tops of the respective hills, i.e.
£0)=-1/2and £(N-1) = 1/2 (Fig. 4.15(c)). The difference of the overall
lengths of the chains shown in Figs. 4.15(b) and (c) is precisely equal to a.
This means that in Fig. 4.15(b) N atoms are distributed over N potential
troughs whereas in Fig. 4.15(c) N atoms are distributed over N +1 troughs.
The analogous situation for a chain containing one dislocation is shown in
Figs. 4.15(d} and (e). In Fig. 4.15(d) N atoms are distributed over N +1
troughs while in Fig. 4.15(e), over N + 2 troughs.

The necessary and sufficient condition for a finite chain in a certain state
{dislocated or not, depending on the value of k) to exist in equilibrium with
its free ends is that the upper bound (£, = 1/2) of the periodic variation
of the strain e(n) (Eq. 4.27) be positive and the lower bound (£ = 0) be
negative. This leads to

1 1
G Sl o m-1<Gf,
1 2 2 2 2 1
Eﬁ“‘lof 20 or zﬁf SE!
or in other words, to
1 1/2 1
(k_2 - 1) Shisg. (4.38)

The inequalities (4.38') determine the interval of misfit in which there
exist solutions of the sine—Gordon equation for a finite chain. Outside of
this interval there are no solutions and the corresponding configurations do
not exist. For a chain which is pseudomorphous with the substrate {(k = 1)
this interval is

1
0<f< e (4.38")
0

This means that the pseudomorphous state will be stable up to f < f,
and will exist, but not as a ground state, at misfits larger than f, but
smaller than the limit of metastability
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Fig. 4.15. Illustration in a folded form of chains at different values of the misfit and
containing different numbers of dislocations. Imagine that each atom has the same
displacement as shown in the figure but is positioned in the next potential trough.
(a) A chain without a dislocation at a misfit smaller than the metastability limit fma.
(b) A chain without a dislocation at f = 0. All the atoms are situated exactly at the
bottoms of the corresponding potential troughs. (¢} A chain without a dislocation at
f = foma- The end atoms are exactly on top of the crests between their respective
troughs and the next ones. (d) A chain containing one dislocation at f = 0. {e) A chain
containing one dislocation at f = fi,.
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Fig. 4.16. Misfit dependence of the potential energy per atom of a finite chain. The
plot consists of a sequence of parabolic segments corresponding to states with increasing
number of dislocations denoted by the figure at each segment, The segments intersect
each other at the corresponding stability limits given by Eq. (4.31). f; and fms denote,
respectively, the limits of stability {Eq. {4.37)) and metastability (Eq. {4.39)) of the
pseudomorphous state. The solid line gives the ground state whereas the dashed lines
represent the corresponding metastable states.

fina = ll - (439)
0

Summarizing, we conclude that chains containing misfit dislocations
will be stable beyond a misfit determined by Eq. (4.31). The value of the
stability limit depends in this case on the density of the dislocations, or in
other words, on the value of k. The region of metastability of dislocated
chains is now shifted to larger imits according to (4.38’) determined again
by the value of k. It follows that the misfit dependence of the energy
of a finite chain of atoms will consist of intersecting parabolic segments
(Eq. 4.29), each segment corresponding to a particular number of misfit
dislocations increased by one (Fig. 4.16). The intersections define the
corresponding stability limits, the first one being given by Eq. (4.37). Each
segment is confined in a misfit interval determined by (4.38'). The envelope
of the parabolic segments gives the ground state of the energy of infinitely
long chain.
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4.2.44. 2D model of Frank and van der Merwe

In considering this problem we follow the analysis of van der Merwe [1970,
1973]. We consider an overlayer with rectangular symmetry and natural
atom spacings b, along the z axis and b, along the y axis. The substrate
periodic potential is given by Eq. (4.6).

We enumerate the overlayer atoms and the substrate potential troughs
by n in the z direction and by m in the y direction. Then the Carte-
sian coordinates of an atom n,m from an arbitrarily placed origin of the
coordinate system are

Xom = am(n + £am), Yom = Gy(m + Nam) (4.40)

Ag shown in Fig. 4.17 the linear and shear strains in the film are

Ex = (Xn,+1,m - Xom — b::) y

1
by

1
gy = 'b_(Yn,m-i—l ~Yom — by) y
Y

1 1
Ezy = E"‘(Xn,m+1 - Xnm) + ?)—(Yﬂ+1'm - Ynm) .
¥ T
Making use of (4.40) gives
s !
Ex = E‘(Eﬂ+1,m —&nm — f2) (4.41")
b
aﬂ "
Ey = B_(T]n.m-i-l — Tlam — fy) ' (4'41 )
y
a a
Ezy = f(fn.m-ﬁl —&am) + f‘l(ﬂnﬂ,m — Tam) (4.41")
¥V T
where
by — Gz b, —a
fm = . and fy = i-a:—g {442)

are the natural misfits in the two orthogonal directions.

According to the theory of elasticity [Timoshenko 1934; van der Merwe
1973] the stresses and the energy of isotropic elastic two-dimensional con-
tinuum (rubber sheet) are given by
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Xnstm=Xnm (ne1.m)

by

Fig. 4.17. Deformation of a rectangular unit atomic mesh of the overgrowth (open circles)
from which the strains can be derived. The substrate atomic mesh is given by the filled
circles (after van der Merwe [1975]).

2Gt
T: = T v(£’ +vey) ,
2t
Ty = 1= V(sy +VEI) ]
Toy = Glegy ,
2 .2
_ €5 tey +2vEzey, 1,
FE = Gtb, b, ( 1= + 5oy |+ (4.43)

where G is the shear modulus, v the Poisson ratio of the film material and
t the thickness of the film which is equal to b, in our particular case of
monocatomic overlayer, z being the direction normal to the interface. Then
2 = bbb, is the volume of an overlayer molecule.
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Bearing in mind (4.6) the potential energy of the overlayer is

=i

2 2
X [(:m) (€n+1 m Enm - f:!:)2 + (':l) (nn.m-’rl — am — f-y)z
'z v

+ 2 b b (£n+1 m— Enm — fz)("?n m4l — - -fb')]

1 az a 2
+ EGQ (E‘;(&n,m+l - &nm) + b_:(nn+1,m - nnm)) }

1
+3 z (Wl — cos 2mépm) + Wy(l — cos 2annm)] . (4.44)
,mM
The conditions of equilibrium of the nmth atom now read
0E _ 9E _ 0
aﬁnm aﬂnm ’

Applying the first condition gives

2
(Eﬂ+1,m - 2Enm + §n—1,m) + %(1 - V) (g_z__) (gn,m+l - 2Enm + En.m—l)
¥

ayhs
+v (nn.m+1 —Tam — Pn—1,m+1 ¥ ﬂn—l,m)
azby,

1 ayb
—(I—V) yx(’]n, -1~ = Mn+1, -14+n +1, )
2 a-zby m nm n+1,m . m
21, sin 2T nm . (4.45)
In the continuum limit
a2t

Eﬂ-i-l,m - 2Enm + Eﬂ.-l,m = E’:ﬁ' 1

nn,m+l = Mnm — ’7n—1,m+1 + nn—l,m

3n

= fnm-1 ~ fom = Antim—1 + ntim = 2om
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and (4.45) turns into

ot 8 1 b\ 8% 7w

hd Y 25— L sin2nt,, . (4.46
ER AR 51+) mby6n6m+2(l V)(by gmz ~ 22 SR 2 - (4.46))
The second equilibrium condition gives the corresponding equation for

Tm:

&n 1 azby 0% 1 b\ 8y 1
om? + 5(1 + I})a,ybrz ondm + 5(1 —) (E;) an? Eésm 2
(4.46")
where
9 1/2 ety 1/2
Lo (G N I, = ——f-— : (4.47)
We(l — v)b2 Wy (1 — v)b2

In the case of quadratic symmetry of the contact planes the above set
of equations simplifies to [Frank and van der Merwe 1949b]

e 1 2y 1 8% o . ,
et (1 v)a i (1 - u)g;-n-f = 3y Sin 2Ténm , (4.48")
&y 1 8% 1 n T .
3z +§(1+ )m+§(1—1})%—5—§155m27mﬂm , (4.48")
where 1
GNa?

If we are looking for solutions with edge type dislocations the mixed
derivatives 82£/8m?, 3*n/on?, 0%¢/Ondm and &°n/dndm vanish (in fact
we neglect the shear strains £;, = 0) and the set of equations (4.46) turns
into a set of two independent sine-Gordon equations

325 7 '
—= 212 sin 27énm , (4.50")
%y T

—_— = 5] . .50"
B2 2!3 sin 27N m (4.50")

One could consider the following limiting cases:

(1) fy 20, £ = &(n) and 7 = const {corrugation of the substrate surface
in one direction only). The system (4.50) reduces to

2
¢ -ﬂ—sinZ?rf,

T, _
T —sin2rp =0. {4.51)

2
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The solution of the first equation is given in the previous chapter. The
solution of the second one is n = 0. The result is a sequence of edge type
misfit dislocation lines parallel to the y axis and a2 homogeneous strain
ey = —fyay/by in the y direction. Such sitnation is observed in the
case of epitaxial growth of tetragonal MoSi; on (100)-Si [Chen, Cheng
and Lin 1986]. The epitaxial orientations and the natural misfits in the
two orthogonal directions are (100)[004]s || (100)[220],, f = 2.34% and
fy = 0.1%, and {111)[113)4 )} (100)[230},, f, = 2.21% and f, = 0.1%.

(@) fo # fy #0, § = &(n) and 7 = n(m). This is the general case
leading to a cross grid of misfit dislocations. Particular cases are f; = fy
(quadratic symmetry of the contact planes) and f. ~ —f,. The latter is
observed in some rare cases such as, for instance, in the epitaxial growth
of tetragonal MoSi; on (100)-Si [Chen, Cheng and Lin 1986] where the
epitaxial orientation is (110}[004]a || (001)[220),. The natural misfits in
both orthogonal directions are f, = 2.34% and f, = ~1.60%. We will
not treat this case here because considerations of the model with a more
realistic anharmonic potential show a considerable influence of the sign of
the natural misfit on the properties of the model.

Following the same procedure as before we find the solutions for £(n)
and n{m) which have the same form as Eq. (4.22) with the only exception
that Iy is replaced by [, and {,. The first and the second integrals now read

a  1- k2 cos? €
dn kzlz ’

:1 —F[k,,fr(g-~)] , (4.53)

and the corresponding solutions for n{m) have the same form.
Substituting the solutions into the continuum approximation of (4.44)
(with e,y = 0)

(4.52)

bt dg\? de 1— k2

— 2 hass _ a5 2 __ "%

E= f dn f {ctm{l'v‘l/;ljn [2 (d.’n) 2f. T + fz —__kﬁlg ]
-L./2 —-Ly/2

dn 1- k2
Wl [2 (d‘ﬁ) g im Ic212yJ
¥y

/Tl (5 - 1) (2 f)} (454)
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gives for the energy per overlayer atom the expression

eo B _w (4E(’° L falz )——’fi—um mifmfd(z))
I.L, k2

+wy(4E( )Ifd() kk +2f2 - 213fyfd(y))

¥
+ 2uy W::Wylzly [fd(m) - .fz] [fd(y) - fy] 1 (4'55)

where fy(x} and fy{y) are the mean dislocation densities, and %, and &,
are the corresponding moduli of the elliptic integrals in the two orthogonal
directions z and yp, respectively.

In the case of quadratic symmetry (f; = fy = f, fa(z) = faly) = fa,
ke =k, =k W, =W, =W),

2
£=2W (4E( ) fa— '2’° + 8252 - 2:2ffd) +2eWEB(fa—f)? . (4.56)

As seen the first term in the round brackets {which is multiplied by 2 to
account for the grid of misfit dislocations) in (4.56) is identical in form with
Eq. (4.29). Both expressions differ only in the second term which includes
explicitly the Poisson ratio. The last term in {4.55) and (4.56) contains the
difference fs — f = f, which is in fact the residual homogeneous strain and
should vanish at large misfits when fy = f in the ground state.

Minimization of the energy with respect to fa{z) {or f4(y}) yields the
condition for the ground state:

w2\’
f:=2£$:)+u(wzlz) o)~ £,) (a57)

The corresponding expression for f, can be easily obtained.
Bearing in mind (4.47) the latter simplifies to

Fk, by
fom B0 ) - 1) (458)

The condition &, = 1 gives the limit of stability of the psendomorphous

state 5 b
=2 0
fulzx) = o Ubya.,, fy s (4.59)

&
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which for quadratic symmetry reduces to

2

f(2D) = 0T

{4.60)
Note that in the 2D case the stability limit f,(z) in one of the directions
depends on the misfit in the other orthogonal direction. The latter reflects
the increased dimensionality of the system.
Substituting the elliptic integrals E(k.) and E(k,} from (4.58) the
respective expression for f, in (4.55) gives the energy of the ground state:

a2 1-—- k2
Ein = W2 f3 + W, 2 —w, L= ke _ Wy ot
k2 2
+ /W Wyloly [f2 fy — fal2)faly)] (4.61)

In the case of quadratic symmetry (4.61} reduces to

2 £2 1—k2 2 2
Emin = 2W (P21 +v) = == ~v2f3)

which for k = 1 gives the energy of the commensurate state
Emin = 2WEFA (1 +v) (4.62)

in which the term 1 + » containing Poisson's ratio accounts for the dimen-
sionality of the system.

4.2.4.5. Comparison of 2D and 1D models

In order to compare numerically the 1D and 2D models we have to first
find a relation between the shear modulus G and the force constant . For
a quadratic symmetry of the contact planes this relation reads [van der
Merwe 1973]

vb = Eb*

where E is Young’s modulus. The theory of elasticity [Hirth and Lothe
1968] gives the relationship between Young’s and the shear moduli:

E=2G(1+v).
Upon substitution we find

Y=2G(1+wv)b. (4.63)
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Then from (4.17) and (4.49) follows
o

I= A0 (4.64)
From (4.37), (4.60) and (4.64) we find
— 2
rep) = £00) (155) - (4.65)

With a reasonable value for v = 1/3, [(1 — /(1 + )] = 1/V2 or
£:(2D) = £,(1D) /+/2. Recalling that f,(1D) = 9% with ly = 7, f,(2D) =
6%, or in other words, Poisson’s effect in 2D systems leads to a considerable
decrease of the stability limit.

The dependence of the mean dislocation density fy on the natural misfit
in the case of quadratic symmetry of the contact planes has the same
behavior as shown in Fig. 4.14 (curve 2). The only exception is that it
does not increase as steeply as the mean dislocation density fa(1D) in the
1D case.

Figure 4.18 demonstrates the dependence of the energy per atom in
both the 1D and 2D models. The difference is more pronounced in the
lowest energy state {curves 1 and 2). The difference of the energies when
they are not in the ground state {curves 1’ and 2') is due to the last term
of Eq. (4.56} which vanishes at large misfits.

4.2.4.6. Application of 1D model to thickening overlayer

Obviously the 1D Frenkel-Kontorava model is inadequate for describing the
case of thickening overlayers as three very important factors are not taken
into account. The first is the rigidity of the substrate, which is believed
to be valid for very thin deposits not exceeding one or two monolayers.
The second is the strain gradient normal to the interface when the latter
is resolved in a sequence of misfit dislocations. As long as the underlying
monolayer is homogeneously strained to fit the substrate the upper one is
strained to the same degres. After breaking up of the commensurability
the amplitude of the periodic strain in every next monolayer is smaller than
that of the previous one. The mathematical treatment of the problem is
formidable [Stoop and van der Merwe 1973). The third is Poisson’s effect
in a direction normal to the interface. Obviously, if, for example, b > a and
at least part of the natural misfit is accommodated by homogeneous strain,
the overgrowth will be compressed in a direction parallel to the interface.
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Fig. 4.18. Plots of the misfit energy per atom versus misfit in 1D model (curves 2 and
2') and 2D model with quadratic symmetry {curves 1 and 1'). Curves 1 and 2 represent
the ground state energies. Curves 1’ and 2’ represent the energies when the misfit is
completely accommodated by misfit dislocations (b = b) and the homogeneous strain is
equal to zere (after van der Merwe [1975]).

At the same time, the overgrowth will be expanded in a direction normal
to the interface.

Assuming as a first approximation that (i) the substrate is rigid, (ii) no
strain gradient normal to the interface exists and (iii} the normal strain due
to Poisson's effect is negligible, one can obtain qualitative results which give
a good enough impresgion concerning the properties of a “thick” overlayer
[van der Merwe et al. 1986].

We simulate the thick overgrowth by 1D chains of atoms “piled up”
one on top of the other. The film will in general be pseudomorphous
with the substrate up to some critical thickness which is a function of
the natural misfit. This follows from the fact that homogeneous strain
accutnulates linearly with increasing film thickoess and at some value
of the latter the strain energy becomes greater than the energy of the
misfit dislocations. Then the commensurability breaks down and misfit
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dislocations are introduced at the interface. The homogeneous strain is

replaced by a periodic sirain and the overgrowth lattice is on average

relaxed. Obviously, if the misfit is small the critical thickness will be

large, and vice versa. The aim of this oversimplified model is to give some

indication of the misfit dependence of the equilibrizm critical thickness.
The thickness ¢ of the film is then given by

t=t, =nb, (4.66)

where n denotes the number of atom chains “piled” up one on top of the
other.
Another oversimplified assumption concerns the force constant or “rigid-
ity” of the overlayer
Tn =Y. (4.67)

Then

@\ e\ V2
zn=(2w) :(W) — I/ (4.68)

Replacing iy by I, in the 1D maodel gives the solution of the model of
thick overlayer. Thus the limit of stability becomes

2.2 _ 4
7la  whvm Jm

The commensurability breaks down when & = 1 and this happens at
some critical thickness

faln) = (4.69)

n=mng = % (4.70)
at a misfit
f = fs(nc) = fs/\/n_c - (471)

It follows from (4.70) and {4.71) that the equilibrium critical thickness
beyond which the film will no longer be pseudomorphous with the substrate

12
te=b (f?)z . (4.72)

As follows from this oversimplified model the critical thickness for
pseudomorphous growth decreases steeply with increasing lattice misfit and
goes to infinity when the misfit vanishes. This behavior agrees qualitatively
with the experimental evidence and, as will be shown below, appears as &
better approximation for large misfits. Obviously, Eq. (4.72) cannot be
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compared quantitatively with experimental data but it has one important
advantage. It can be used to predict qualitatively the influence of the
anharmonicity of the interatomic forces on the cirtical thickness of expanded
and compressed epitaxial films as will be shown in Sec. 4.2.4.7.1.

4.24.7. 1D model with non-Hookean interatomic forces

One of the basic restrictions of the model adopted originally by Frank and
van der Merwe [1949] which makes it applicable for small lattice misfits only
is the purely elastic interactions between neighboring atoms as a substitute
of the real interatomic forces (see Fig. 4.7). This restriction can be relaxed
by replacing the harmonic approximation with one of the more realistic
pairwise potentials (4.1)—(4.3). DBesides, one can use a combination of
a Toda potential and a real potential such that the respective repulsive
branches coincide. Then they will differ only for values of  larger than ro,
and by comparison of the results one can distinguish the purely anharmoric
effects from those due to the nonconvexity of the real potentials. This is
shown in Fig. 4.6 where the Toda potential is plotted with a = 2 and
B = 6 together with the generalized Morse potential (4.3) with ¢ = 4,
v = 3 and ¥ = 1. The repulsive branches are indistinguishable and the
two potentials differ perceptibly only at r > 1.2rg. Moreover, the harmonic
approximations of both potentials coincide {the broken curve) so that we
can refer our results to those obtained with the harmonic potential.

In principle an anharmonic potential can be constructed by joining two
parabolic segments, V(r < ro) = Imi(r—ro)? and V(r 2 ry) = %72(,-_“,)2
with 73 > 2. This potential does not display a finite force at large r as in
the case of the Toda potential. Nevertheless, we will use the latter in our
considerations and will study only the effect of the anharmonicity.

4.2.4.7.1. Effect of anharmonicily in epitezial interfoces

Making use of the Toda potential (4.4) and the substrate periodic potential
(4.8), the potential energy of the chain reads [Milchev and Markov 1984;
Markov and Milchev 1984a)

N=2 o .
E=Y" (Eexp[—ﬁa{fnn = )] + Q0(ngs — En = f) — E)

n=0

W N-1
+ 5 31— cos2nty) . (4.73)

n=0
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The equilibrium condition 2E /3¢, = 0 leads to the set of equations

e~ Pelbi—fo—f) _ 1 = —ﬂsin 2néy ,
aa
e—ﬁﬂ(fnq.]—fn—f) — e_ﬁ“(fﬂ—f"‘l_f) = T_TC%/_ sin 27T£n y (4'74)

aW
e Pallv-a1-bna—f) _q - sin 2n€n_1 ,
214

which turns into the harmonic set (4.16) when expanding the exponents in
Taylor series up to the linear term at 3 — 0.

In the continuous limit the system (4.74) turns intc an anharmonic
analog of the sine-Gordon equation [Milchev and Markov 1984] and an
analytical solution can be found [Milchev 1986]. On the other hand, the
discrete system (4.74) can be easily solved numerically and the properties
of the model studied.

The disparity in the structural properties of the overgrowth with respect
to the sign of the misfit is clearly demonsirated in Fig. 4.19 [Markov and
Milchev 1985} where the variation of the strains of the consecutive springs
En = €ns1 — En — f is shown, As seen the expanded dislocationless chain
(f = —10%) is in a much better fit with the substrate periodicity than is
the compregsed one (f = 10%). Neglecting the deviations near the chain
ends the strains of the springs in the expanded chain are exactly equal to
the absolute value of the lattice misfit. In the compressed chains, however,
the strains approach the lattice misfit but do not become equal to it. The
latter means that an expanded overgrowth adheres more strongly to the
substrate than does the compressed one.

One of the most significant results of the anharmonic model is the split
of the limits of stability f; and metastability f.s with respect to the misfit
sign. As shown in Fig. 4.20 [Markov and Milchev 1984b), increasing the
degree of anharmonicity 5 results in a reduction in the values of f, and
fus for compressed chains (b > a) and in an increase in the absolute
values of f; and f.. for expanded chains (b < a). The respective values
for the harmonic model are given by the dashed lines. Thus the harmonic
limit of stability f! = +£8.6% splits into +6.7% and —12.2% whereas the
limit of metastability f2, = +£13.6% splits into +10.2% and —23.2% at
some average degree of anharmonicity 8 = 6. Therefore a pseudomorphous
overlayer can be in a state of stable (below f,) or metastable {below fum,}
equilibrium up to quite different stability limits at positive and negative
incompatibility with the substrate.
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Fig. 4.19. Plot of the strains of the consecutive springs in compressed (f = 10%) and
expanded (f = —10%) anharmonic Toda chains. (I. Markov and A. Milchev, Surf. Sci.
145, 313 (1984). By permission of Elsevier Science Publishers B.V.)

Another very important conclusion which follows from the split of the
critical misfits with respect to the misfit sign is connected with the critical
thickness for pseudomorphous growth. As discussed above (Eq. 4.72) the
latter is qualitatively proportional to the square of the limit of stability
fx. It should be expected that the critical thickness for pseudomorphous
growth will be 3 to 4 times greater when the natural misfit is negative
rather than positive, if all the other parameters remain unchanged. This
prediction of the model seems particularly important for the epitaxial
growth of semiconductor films and strained layer superlattices where the
dangling bhonds associated with the misfit dislocations have a deleterious
effect on the properties of the corresponding heterojunctions. LPE grown
In.Ga;-;A8,P1— on (100) InP shows clear asymmetric behavior of the
critical thickness for pseudomorphous growth with the sign of the misfit
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Fig. 4.20. The characteristic split of the limits of stability f, and metastability fms of
the pseudomorphous state with the sign of the natural misfit when anharmonic (Toda)
interactions between the overgrowth atoms are adopted. The critical misfits are plotted
versus the degree of anharmonicity 4 of the Toda potential. The dashed lines give the
critical misfits P and f, in the harmonic approximation, (I. Markov and A. Milchev,
Surf. Sei. 145, 313 (1984). By permission of Elsevier Science Publishers B.V.)

[Krasil’'nikov et al. 1988]. The critical thickness of the expanded epilayers
is always greater than that of the compressed epilayers (Fig. 4.21). The
same is observed in MBE grown In.Gai_, As on (100) InP {Franzosi et al.
1986).

It follows that an epitaxial film with a given thickness and different
values of the misfit in different crystallographic directions z and y can be
pseudomorphous with the subsirate when the absolute values of the nega-
tive misfit are even larger than the values of the positive misfit at a different
epitaxial orientation. An excellent example is the deposition of tetragonal
and hexagonal MoSi, (t-MoSi; and h-MoSi; ) on the (111) and (100) faces of
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Fig. 4.21. Plot of the critical thickness for pseudomorphous growth versus the natural
misfit of LPE grown InzGa1-.AsyP1_y on InP(001). The misfit is varied by changing
the alloy composition, The asymmetrical behavior around a zero misfit is clearly seen.
(V. Krasil'nikov, T. Yugova, V. Bublik, ¥. Drozdov, N. Malkova, G. Shepenina, K.
Hansen and A. Rezvov, Sov. Phys. Crystallogr. 33, 874 (1988).)

Si, respectively [Chen, Cheng and Lin 1986; Lin and Chen 1986]. In the first
case, the epitaxial orientation is (110)[004]4 || (111)[202],, the values of the
natural misfit are 2.34% and 2.21%, and the epitaxial interface is resolved
in & hexagonal grid of misfit dislocations. In the second case, the epitaxial
orientation is (2423)[2112]q |} (001)[220),, f. = —2.89%, f, = —1.84%, and
the film is pseudomorphous with the substrate. Even more illustrative is
the case where the epitaxial orientation is (111)[112]4 || (111){202], and the
values of the misfit are 2.21% and —2.68%. Instead of a hexagonal grid of
dislocations, which is expected on the base of the harmonic model, a set of
paralle] dislocation lines is observed. The film is partially pseudomorphous
even though the absolute value of the negative misfit is larger than the
value of the positive one.

Figure 4.22 shows the characteristic split of the misfit dependence of
the mean dislocation density fy with respect to the misfit sign [Markov
and Milchev 1984b]. The stepwise behavior is due to the finite length of
the chains used for the computation. It must not be confused with the
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“devil staircase” [Aubry 1983]. As seen, f; is always smaller than f
although the difference gradually decreases at large natural misfits. It can
also be seen that the harmonic approximation is much closer to the positive
misfit curve. What is more important, however, is that the curves, although
shifted from the harmonic one, preserve their continuous character. In other
words, the transition from the pseudomorphous (fa = 0) to the completely
dislocated {fq4 = f) state is gradual and there is a misfit interval in which
homogeneous strain and misfit dislocations coexist.
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Fig. 4.22. Plot of the mean density of misfit dislocations of the ground state in the
anharmonic Toda chain versus positive (dashed line) and negative (solid line) natural
misfit. The curves are shown in one and the same quadrant for easier comparison. f.+
and f, denote the corresponding limits of stability. The dotted line gives for comparison
the mean dislocation density in the continuous harmonic model of Frank and van der
Merwe [1949a]. (1. Markov and A. Milchev, Surf. Sci. 145, 313 (1984), By permission
of Elsevier Science Publishers B.V .}

The misfit dependence of the ground state energy per atom is shown
in Fig. 4.23 |[Markov and Milchev 1984b) for both positive (the dashed
line) and negative (the solid line) misfits. The curves consist of & series of
curvilinear segments as in the harmonic case (see Fig. 4.16). The segments
again correspond to different numbers of misfit dislocations increasing from
zere by one. It is seen that in the case of a compressed chain and particularly
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Fig. 4.23. Plot of the energy of the ground state per atom of the anharmonic Toda chain
versus positive (dashed line) and negative (solid line) natural misfit. The separate curvi-
linear segmenta represent states with different numbers of misfit dislocations denoted by
the figure at each segment (N = 30, o = 2, § = 6). (I. Markov and A. Milchev, Surf.
Seci. 148, 313 (1984), By permission of Elsevier Science Publishers B.V.)

at small misfits the energy is considerably higher. At larger misfits the
energy curves go closer and merge eventually. At low misfits, both positive
and negative, the first sum in Eq. (4.73) (the strain energy) is dominant. At
a positive misfit the steeper repulsive branch of the interatomic potential
is mainly involved and accordingly the energy is higher than in the case of
a negative misfit, where the strain energy is determined by the weaker
attractive part of the interaction. At larger misfits, both positive and
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negative, the second sum in (4.73) predominates and the energy difference
between the two cases gradually vanishes. It is worth noting that the
harmonic curve (not shown in the figure) is again much closer to the positive
misfit curve. The above result is in agreement with the finding of Murthy
and Rice [1990] that the interface energy of the low positive misfit couple
Cu/Ni{001) {f = 2.56%) is considerably greater than that of the negative
misfit couple Ni/Cu(001) (f = —2.49%).

It can be concluded that the negative misfit appears to be more favorable
than the positive misfit for epitaxial growth of thin films. If several
epitaxial orientations are possible for a given overgrowth material on the
same substrate plane, the orientation connected with a negative misfit
should be favored as it is connected with a lower energy. An example
for that is the orientation of Ag on (001) GaAs mentioned above [Massies
and Linh 1982ab.c]. At temperatures lower than 200°C the epitaxial
orientation is (110}[111]a¢ || (001)[110]Gaas with fz = 2.23% and f, =
~3.62%. At higher temperatures the overgrowth is in parallel orientation
(001)j010]ag || (001)[010)Gaas and the lattice misfit in both orthogonal
directions is negative: f, = f, = —-3.62%.

4.2.4.7.2. Influence of nonconvezity in epitazial interfaces
A. Model

The effect of anharmonicity can be more or less intuitively predicted from
the asymmetry of the interatomic potential. This is not, however, the
case with more real potentials where the nonconvex character leads to an
existence of a maximal force between the atoms at the inflection point and
to distortion of the chemical bonds when stretched out beyond the latter.
That is why we will consider this case in more detail.

In order to study the effect of the nonconvexity of the real potentials we
will use the generalized Morse potential (4.3). The latter has an inflection
point

ry =1 + l8/Y) (4.75)
p—v
beyond which the second derivative d°V/dr? becomes negative and has a
minimum at
Inlu/v) (4.76)

L-v

Tm =To+ 2
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The value of the minimum

a2V v\ 28/ (e-v)
(7). = () (477)
r=tm

determines the maximum driving force for distortion to occur.
Making use of the generalized Morse potential (4.3) the potential energy
of a “real” chain consisting of V atoms reads

N=-2
E=V Z ( v e“#a(fnu-{n—f} __H e-—ua(c,.+1——£,,—f))
p-v gr—v

n=0

W N=~1
+ Z (1 — cos2xt,) . (4.78)

n=0

Accordingly the system of equations giving the equilibrium displace-
ments of the atoms reads

emHalbs—to—f) _ g—valli—fo=f) — _ A5in2xg, ,
e~ bollntr—in—f) _ p=va{{nt1—En—f)
—eHolbn—En1—F) | g—valén—En1—F) — _ Aginone,, (4.79)
e—raln—_1—in-2—f) _ gevalfn—1—En-2—f} = Agip ImlN_1 ,
where Wi )
P -
A= 'Tp%v’o"' . (4.80)

B. Existence of solutions

An examination of (4.79) concerning the existence of solutions is not
possible in the general case as the equations are not solvable with respect to
the highest variable therein. That is why we will consider the simplest case
of a Morse chain (g = 2w/b, ¥ = w/b), bearing in mind that examination
of other cases (e.g., 4 = 3, v = 1), although more complicated, leads to the
same conclusion.

The set of difference equations governing the behavior of a Morse chain
can be written in terms of the strains ¢, = .4 — £n — f instead of the
displacements &, in the form [Markov and Trayanov 1988)
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b 2abW
L=~fi— Eln (1 + \/7 A sin 27w&p ) .

b
Enpt = —fi - —
bW
xIn |1+ \/1 —4 (ewasu,fb — g~ 2wasa /b 4 T sin 2‘:‘1’1’:”) } 1
2waly

b QbW
en_1 = —fi — = In (1 + \/1 + T sin2mi N1 ) : (4.81)
where bln 2
n
fo=- wa

is the misfit which corresponds exactly to the inflection point of the Morse
potential (see Eq. (4.75)).

One may look for a solution of Eqs. {4.81) provided the logarithmic
terms therein are well-defined analytical functions, i.e. when their argu-
ments are non-negative. This condition is fulfilled when the discriminants
D under the square roots are positive for positive signs before the square
roots, or positive but smaller than unity for negative signs before the roots.
When the sign before the root is positive for D > 0 the corresponding
strain £,41 is always smaller than —f;. In the other case of negative sign
for 0 < D < 1 the strain £,44 will be greater than —f;. This emphasizes
the fundamental role that the inflection of the real potential plays., The
latter becomes clearer when distortion of the chains at negative misfits takes
place. Thus when the strains of both the long and short bonds are greater
than —f;, the negative sign only enters the equations. When the strains
of the short and long bonds are smaller and greater than — f;, respectively,
positive and negative signs alternate in the consecutive equations of the
system (4.81).

The condition for existence of solutions D > 0 leads to the inequalities

W
2
LUVD ZUJVU

2~

W .
> ——sin 2wg) ,
e

) w
(e_wac,”b _ e—?uaen/b) + L sin 27751’1 ,
a (4.82)
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which means that in order to have solutions of the system (4.81) the
resultant force exerted on the nth atom by the (n—1)th and by the substrate
must be smaller than the theoretical tensile strength 0w, = wVy/2b of the
Morge potential. If this is not the case the corresponding bond will break up
and the chain will loose its integrity. This is just what happens to the most
expanded bonds in the cores of the misfit dislocations at positive misfits.
The dislocations core bonds are stretched out and when their strains e,
become equal to —f;, or in other words, when the force applied to the
bonds becomes equal to oy, the chains break up.

Figure 4.24 represents the strain z. of the bonds in the cores of the
dislocations as a function of the natural misfit. It is interesting to note
that £, = 0 when the misfit reaches the limit of metastability of the given
state just as in the harmonic model. At some critical misfit the core strain
g, reaches —f; with infinite slope and the chain breaks up just in the
dislocation core. This does not mean that bonds that are stretched out
more than —f; cannot exist. As will be shown below in the case of chain
distortion, bonds dilated much more than —§; can exist without rupture.
The explanation is simple if one looks at Fig. 4.11. In the case of a positive
misfit the dislocation represents an empty trough and the atoms on both
sides of the core bond are located in such a way that the force exerted by
the substrate is destructive. It is just the opposite in the case of distorted
chains at negative misfits greater in absolute values than —f;. The force
exerted by the substrate on the atoms on both sides of the more expanded
bonds is not destructive but tends to keep them together (see Fig. 4.6).
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Fig. 4.24. Variation of the strain in the cores of the misfit dislocations versus positive
misfit at different values of the relative substrate modulation W/Vp, given by the figure
at each curve. The dashed line gives the maximum tensile strain permitted. (I. Markov
and A. Trayanov, J. Phys. C: Solid State Fhys. 21, 2475 (1688). By permission of IOP
Publishing Ltd.)
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C. Distortion of chemical bonds

We consider first an infinite chain. The undistorted state is one in which
all atoms are equally spaced at a distance equal to the substrate potential
period a (Fig. 4.25(a}). A distorted chain can be dimerized so that short and
long bonds alternate [Haas 1978, 1979] {Fig. 4.25(b); see also Marchand,
Hood and Caillé {1988]). As mentioned above, this phenomenon is due to
the fact that the average energy of one long and one short bond is smaller
than the energy of a bond of intermediate length. In a dimerized chain
the displacements of the consecutive atoms are equal in absolute value and
opposite in sign: £,41 = &1 = —£&,.

Fig. 4.25. Distortion patterns in the chain model of Frank and van der Merwe with real in-
teractions: (a) undistorted state, (b) dimerised state, (c) trimerised state,
(d) tetramnerised state, (e) pentamerised state. (I. Markov and A, Trayanov, J. Phys.
C: Solid State Phys. 21, 2475 (1988). By permission of [OP Publishing Ltd.}

Obviously, a strong substrate-deposit interaction (W > V) favors the
undistorted structure. A distorted structure will be tolerated when the
ratic W/Vp is small enough. Thus, applying the condition £r41 = —&5 to

(4.79) for W/V, in the limit £, — 0 one obtains
W 2pva’
_'[/—(; = .(I—y—)ﬂ-z (Ve"af - ﬂ;e'ua'f) . (4.83)

This dependence of W/V; vs f outlines an area in which the dimerization
is energetically favored. It is plotted in Fig. 4.26 (curve A). As seen, it starts
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Fig. 4.26. Phase diagram W/V) versus misfit of existence and stability of distorted and
undistorted states. Curve A outlines the area of existence and stability of dimerised
state. Curve B outlines the region of existence of trimers. Curve C divides the regions
of stability of dimerised and trimerised states. (I. Markov and A, Trayanov, J. Phys. €
Solid State Phys. 21, 2475 (1988). By permission of IOP Publishing Ltd.)

tf=figivenb
at f = f; given by foToo _ _ln(u/v) (4.84)
i - a - a(u-”) .

and displays a maximum at f = f,, (cf. (4.76)):

fm= 0 Tm PRy (485)

a a(p —v)
The maximum value reads

Eﬂ 2q2 (dzv) B 2u%a? (u)2n/{n—!')

Vo =—1r?% dr? ™ \u

(4.86)

which corresponds to the maximum driving force (4.77) for distortion to
occur. Clearly dimerization cannot take place when W > W,,.
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Fig. 4.27. Plot of the energy per atom of a distorted (dimerised) chain versus substrate
modulaticn W (in units of V3) at a constant misfit f = fm. Eatr, Eint and Egot =
E, 4+ Ein denote the energies of the strain (the first sum in Eq. (4.78)) and the

wtr
interfacial bonding (the second sum in Eq. (4.78})). Funq denctes the energy of the
undistorted state. As seen Ej,, vanishes at the maximum substrate modulation Wy,
{Eq. {4.88)) (see Fig. 4.26). {I. Markov and A. Trayanov, J. Phys. C: Solid State Phys.
21, 2475 (1988). By permission of IQP Publishing Ltd.)

The energy of the distorted state consists of two parts (Fig. 4.27): the
strain energy F,, composed by the energies of the short and long bonds, and
the energy of interaction with the substrate, Ej,.. due to the displacements
of the atoms from the bottoms of the potential troughs. As can be seen the
total energy of the distorted state, Fioe = E,. + Fint, is smaller than the
energy of the undistorted state Ey;g and merges with it when the maximum
value Wy, is reached. Recall that at W > W, the distortion disappears.

We consider further the formation of trimers or alternation of two
equally short and one long bonds (Fig. 4.25(c}). Within the trimer £,4, =
—&n—1 and £, = 0, The curve that outlines the area of existence of trimers
lies under that of dimers (Fig. 4.26, curve B), its maximum value at f = fy,
being given by

" (4.87)

Woe 3p2a? (v 2uf(p—v)
Vo = 211'2 ( ) '
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Curve C in Fig. 4.26 separates the regions of stability of dimers and
trimers. Below it dimers still exist but not as a ground state.

In the same way we consider tetramers, pentamers, etc. (Figs. 4.25(d)
and 4.25(e)). By repeating the same procedure we find that the regions
of existence of polymers with degrees of polymerization higher than 2 are
included in that of dimers. It follows that curve A separates the regions of
stability of distorted and undistorted states. It can be concluded that at
W > W, no distortion of infinitely long chains takes place, irrespective
of the value of the natural misfit. Besides, the higher the degree of
polymerization the smaller the value of W at which the corresponding
polymers are energetically favored. In the limit W — 0, the degree of
the energetically favored polymers goes to infinity, which in practice means
disappearance of distortion (this is equivalent to alternation of an infinite
nuamber of short bonds and one long bond which in fact means undistorted
structure). _

Let us consider now a chain of finite length. It will be distorted if
appropriate values of W/V; and f are selected. If this is not the case, the
middle part of the chain will not be distorted but it turns out that the end
parts of the chain will always be distorted as long as |f| > |f|, irrespective
of the value of W/V;. The latter is evidently due to the asymmetry of
the atomic interactions near the free ends. As will be shown below, this
edge effect leads to significant results concerning the metastability limit
of the pseudomorphous state and the activation energy for introduction of
dislocations at the free ends.

A two-dimensional distortion of the chemical bonds (clustering of 4 and
8 atoms) has been theoretically predicted with the help of the embedded
atom method in a Ni monolayer grown on Ag(001) by Bolding and Carter
[1992]. The absolute value of the negative misfit is very large, f = —13.9%.
The growth of the second monolayer causes a relaxation of the distortion of
the first monolayer bonds, i.e. atoms of the first monolayer tend to occupy
the bottoms of the potential troughs of the silver substrate. The bonds
in the second monolayer become distorted but their distortion is weaker,
After deposition of four monolayers the distortion of the bonds between
the atoms of the first monolayer practically vanishes. Thus, the Ni atoms
closest to the substrate are under the largest uniform expansive strain and
the strain diminishes away from the contact plane.
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D. Width of misfit dislocations

As shown above, the width of a single misfit dislocation in the harmonic
model, Iy, is determined solely by the energetic parameters of the system
and does not depend on the natural misfit. Ii is quite clear that the
anharmonicity of the real potential will strongly affect the dislocation width.
This follows from the fact that the dislocations have different configuration
at different signs of the natural misfit (Fig. 4.11). In the harmonic limit
both the repulsive and attractive branches of the interatomic potential are
equally steep and the dislocation width is one and the same.

The dislocation width can be expressed as a function of the core bond

strain £.: .
43

(df/dn)nzn  lec +af|
Note that e, has the same sign as f. In the harmonic case, ¢f = ¢ =
a{l/lp — f) (Eq. (4.21)) and ! = l;. This is not, however, the case
when the interatomic potential is asymmetric. Different branches of the
potential determine the values of . and [. The situation becomes even
more complicated when the interatomic potential is not only asymmetric,
as is the Toda potential, but is nonconvex like the real potential.

=

(4.88)
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Fig. 4.28. Variation of the width of the misfit dislocations with natural misfit in a real
chain: curve 1 — negative misfit; curve 2 — positive misfit; curve 3 — positive misfit
with Toda potential (« = 2, § = 6). The dashed line denoted by i) gives the harmonic
reference with v = 12 (N = 80, u = 4,» = 3, W/Vy = 1). (I. Markov and A. Trayanov,
J. Phys. C: Solid State Phys. 21, 2475 (1988). By permission of [OF Publishing Ltd.)
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Figure 4.28 shows the dependence of the dislocation width on the misfit
for long enough chains to rule out the effects of the free ends. As seen
(curve 2), ! increases with positive misfit in a limited interval of the
latter. The right-hand limit is in fact the limit of metastability f7, of
the configuration with particular density of dislocations as in the harmonic
case. The core strain e. = 0 and lgax = 1/f%,. The left-hand limit f, is
determined by the condition £. = —f; which means a rupture of the core
bond. Then lyin = 1/{—f: + f). For f < f;, the condition of existence
(4.82) is no longer fulfilled. Thus, the interval of existence of solutions with
a given dislocation density in real compressed chains is not determined by
the conditions for generation and escape of dislocations at the free ends,
but by those for generation and destruction of dislocations. The latter
takes place by breaking up of the bonds in the cores of the dislocations.
Curve 3 gives the dislocation width as obtained with the help of the Toda
potential (o = 2, 3 = 6, Fig. 4.6). Obviously, the tendency is the same, as
the potential of Toda also displays a finite force at large r (Fig. 4.8(a)).

In the case of negative misfit {curve 1), however, nothing dramatic
happens. The dislocation width again increases with the latter. The strain
in the core of the dislocation is compressive and slowly increases in absolute
value with increasing misfit. The condition (4.82) is always fulfilled.

E. Energy

The behavior of the energy versus misfit curve of a real chain differs
qualitatively from that in the harmonic case (see Fig. 4.16), particularly
at positive misfits. At small values of W(W/V) « 0.5) the positive misfit
dependence of the energy is similar to the harmonic one. At larger values of
W, however, the E{f) dependence consists of curvilinear segments whick do
not intersect each other (Fig. 4.29(a)) due to the rupture of the core bonds.
This tendency becomes stronger with increasing W (Fig. 4.29(b)) and in
the case of shorter chains the effect of core bond rupture is so strong that
the segments do not overlap and gaps appear between them in which no
solutions of the system (4.79) exist. This is seen more clearly in Fig. 4.30,
where the dependence of the energy on chain length is shown at a constant
value of the positive misfit. Gaps without any solution exist for short chaing
and disappear for longer chains. The energy shows a sawtooth behavior and
the introduction of each new dislocation is connected with an abrupt energy
drop, which is uncharacteristic for the harmonic model.



346 Epitazial Growth

08

ENERGY PER ATOM
o
-

02
-
0 005 010
MISFIT
(a)

08}
b3

Q -
2
<

x 06
wl
o

r
>

2 04k
1w
=z

w 3

0zr

0 Dos 010 015
MISFIT
(b)

Fig. 4.29. Variation with positive misfit of the energy per atom in units of W :
{(a} W/Vp = 0.5; (b} W/ly = 4. The figure at each curvilinear segment denotes the
number of dislocations (N = 80, # = 4, v = 3). {I. Markov and A. Trayanov, J. Phys.
C: Solid State Phys. 21, 2475 (1988). By permission of IOP Publishing Ltd.)
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Fig. 4.30. Dependence of the energy per atom in units of W on the chain length. The
number of dislocations in the ground state is denoted by the figure on each segment.
The gaps without solutions at small chain lengths due to breaking of the dislocation core
bonde are clearly demonstrated (W/Vp = 4, f = 0.2, ¢ = 4, v = 3). {1. Markov and
A, Trayanov, J. Phys. C: Solid State Phys. 21, 2475 (1988). By permission of IOP
Publishing Ltd.)

The above result leads to a definite conclusion concerning the process
of layer-by-layer growth of epitaxial overlays which are compressed and
strongly bound to the substrate. Small monolayer islands are coherent
with the substrate. After incorporating some more adatoms a dislocation
is introduced at the free boundary but its core bond is stretched out more
than the theoretical tensile strength of the material. The overlayer island
thus breaks up into two smaller islands. This process continues until the
density of such small coherent islands becomes large enough. Then they
begin to coalesce with each other to produce bigger islands. The gaps shown
in Fig. 4.30 disappear and the overgrowth islands can grow further by the
incorporation of single adatoms. This process takes place if the misfit is
larger than the stability limit f;F. If this is not the case, the overlayer islands
grow by the incorporation of single adatoms and are psendomorphous with
the substrate until complete coverage of the latier. As the coalescence
begins at a later stage of growth the monolayer film will consist of a large
pumber of small monolayer islands. The adatom concentration on top of the
small islands is insufficient to give rise to nucleation of the upper monolayer
[Markov and Stoyanov 1987) and hence the formation of the latter will be
delayed. Thus layer-by-layer growth and in turn the much slower damping
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of the RHEED intensity oscillations will be favored at positive misfit and
strong bonding across the interface. Recently Becker et al. [1993] reported
fragmentation upon high temperature annealing of 2D Ag islands deposited
on Pt(111) in the submonolayer region. When depasited at temperatures
below 500 K the silver formed large 2D islands pseudomorphous with the
substrate. After annealing at higher temperature the silver islands broke
down into islands consisting most probably of 7 or 12 atoms. These smaller
islands were found to be nearly relaxed. When the deposition was carried
out at temperatures higher than 500 K the silver film grew as small islands
from the very beginning. The Ag is strongly bound to the Pt and the lattice
misfit is positive and large enough (4.3%).

The form of the E(f) dependence shown in Fig. 4.29, which is due to
the rupture of the dislocation core bonds, leads to a new definition of the
limit of stability f} of the pseudomorphous state. It is now determined
by the condition of existence of a dislocation with core bond stress smaller
than the theoretical tensile strength and coincides with the critical misfit
fe for rupture of the most expanded core bonds.

The case of negative misfit is quite different. The core bond strain &,
is compressive and the force exerted by the substrate is not destructive
(Fig. 4.11). It follows that expanded epilayers cannot break up in the cores
of the dislocations at negative misfits. On the other hand, at misfits larger
in absolute value than f; the chains distort in between the dislocations and
a rupture there is again excluded.

Figure 4.31 shows the energies of chains without and containing one
dislocation. The chains are distorted at |f| > |f:|. The curves intersect
with each other at the limit of stability f;. As seen the energies are very
close particularly at misfits greater in absolute value than f;. Obviously
the contribution of the dislocation energy is small compared with the
contribution of the chain distortion. At positive misfit the energy gain
due to the introduction of dislocations is much greater (Fig. 4.29).

There are, however, two peculiarities at negative misfits which are
uncharacteristic for the harmonic case. First, at strong enough bonding
across the interface (W/Vp > W,/Vy = 2, see the x sign in Fig. 4.36)
the energies of the chains without and containing one dislocation do not
intersect. The energy of the commensurate state goes agympiotically to the
energy of the incommensurate state, being always iower than the latter. It
follows that the limit of stability disappears at strong bonding and epilayers
which are thin enough to fulfill the requirements of the model will be
pseudomorphous with the substrate irrespective of the natural misfit.
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Fig. 4.31. Variation with negative misfit of the energy per atom: curve A — a chain
without a dislocation; curve B — a chain containing one dislocation (W/Vp = 1,N =
100, 2 = 4, = 3). Note that there are no singular points at the inflection misfit f;. (1.
Markov and A. Trayanov, J. Phys. C: Solid State Phys. 21, 2475 (1988), By permission
of IOP Publishing Ltd.)

The second consequence of the use of real potential in the 1D model of
Frank and van der Merwe, which is absent in the original model, is that
solutions of coherent configurations, although not in a ground state, exist
at any value of the negative misfit. The condition is that the potential
troughs be sufficiently deep (W/Vy > Wy, /Vy = 0.25). It follows that the
metastability Jimit f, of the pseudomorphous state also disappears (see
the x sign in Fig. 4.37). This is due to the polymerization of the free
ends of the chains even under conditions (W, f} where the ground state
is the undistorted state. Due to the chain end distortion the end atoms
do not climb the slopes of the potential troughs with increasing misfit as
shown in Figs. 4.15(c} and (e}, which excludes the possibility of spontaneous
introduction of dislocations at the free ends.

Another consequence of the distortion of the chain ends at |f| > |f;] is
that the activation energy for introduction of a dislocation at the free ends
is greater than that in compressed chains. Owing to the chain distortion the
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Fig. 4.32. Plot of the potential energy per atom relative to the energy of the comnmensu-
rate state £(0) against the number of misfit dislocations in the chain for different values
of the negative misfit (in percent) given by the figures at the curves. (a) W/Vp = 0.25;
(b) W/Vy = 0.62. {I. Markov and A. Trayanav, J. Phys.: Condens. Matter 2, 6965
(1990}. By permission of IOP Publishing Ltd.)

end atoms of the chain are always near the bottoms of the potential troughs.
Hence, the introduction of a new dislocation requires overcoming a mmuch
higher energy barrier than in the case of a positive misfit, particularly at
stronger bonding across the interface. It follows that expanded overlayers
can exist in metastable state without dislocations at higher temperatures
compared with compressed epitaxial films.

Figure 4.32 is a plot of the potential energy per atom of a real chain with
respect to the commensurate state £ — £(0), as a function of the dislocation
density fy for different values of the negative misfit and at two different
values of the relative substrate modulation W/15. As in the harmonic case
one can see that the energy of the commensurate state is an additive term
to the energy of the incommensurate state. For W/V, = 0.25 (Fig. 4.32(a))
no linear dependence of energy versus number of dislocations is observed.
The reason for this is that the atoms experience the convex part of the
potential as in the harmonic case and hence the interaction between the
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Fig. 4.33. Behavior of the pair energy of interaction of misfit dislocations: {a) dependence
of the energy on the number of the dislocations for positive and negative values of the
natural misfit; (b) logarithmic plot of the energy of interaction against the dislocation
spacing (reciprocal of the MD density). Curves 2 in both figures represent the harmonic
limit (N = 60, f = +7%, W/Va = 0.5, p = 4, » = 3). (1. Markov and A. Trayanov, J.
Phys.: Condens. Matter 2, 6965 (1990). By permission of [OP Publishing Ltd.)

dislocations contributes significantly to the total energy. The same £(f4)
dependence is observed for positive misfits irrespective of the value of the
relative interfacial Londing W/V,. However, this is not the case for a
stronger interfacial bonding, W/, = 0.62 (Fig. 4.32(b)). The energy is
a linear function of the dislocation density fq up to very high values of
the latter. The atoms experience the nonconvex part of the interatomic
potential, the bonds between the atoms are distorted and the mtera.ctmn
between the dislocations is suppressed.

This is clearly seen in Fig. 4.33 where the split of the dislocation
interaction energy with respect to the misfit sign is shown. The lat-
ter is considerably larger for a positive misfit than for a negative one
(Fig. 4.33(a)). The data from Fig. 4.33(a) are plotted in semilogarithmic
scale in Fig. 4.33(b). As seen, for a positive misfit both in the real case
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Fig. 4.34. Misfit dependence of the slopes d€/df 3 of the linear parts of the £{f3) curves
shown in Fig. 4.33. The straight line 1 illustrates the harmonic limit of Frank and van
der Merwe. Curve 2 shows the negative misfit behavior with W/1p = 1. Note that
there is no singular point at the inflection misfit f;. Curves 3, 4 and 5 represent the
positive misfit cases with W/Vg = 0.25, 0.5 and 1.0, respectively (N =60, p =4, v = 3).
{I. Markov and A. Trayanov, J. Phys.: Condens. Matter 2, 6965 (1990). By permission
of IOP Publishing Ltd.)

and in the harmonic limit, the plot deviates slightly from linearity at high
dislocation densities (small dislocation spacing). In the case of negative
misfit, the interaction energy depends exponentially on the dislocation
density even at high values of the latter.

In the harmonic limit the derivative of the energy with respect to the
mean dislocation density, d€/dfq, is a linear function of the misfit (see
Eq. (4.30)). It has a slope equal to 2WI2 and its intercepts with the ahscissa
and ordinate are equal to the stability limit f; and the energy of a single
dislocation, 4Wly/m, respectively. The slopes of the linear parts of the
curves in Fig. 4.32, i.e. the slopes df/dfq, are presented in Fig. 43¢ as a
function of the natural misfit. The straight line 1 shows the behavior of
the harmonic approximation with v = pr'Vy = 12 discussed above. Curve 2
represents the negative misfit dependence of d£ /dfy of a real chain with
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p=4v=3Vg=1and W = 1. Curves 3, 4 and 5 give the positive
misfit dependencies of real chains with W = 0.25, 0.5 and 1.0, respectively.
All curves except for the harmonic one show strong nonlinearity and their
curvatures have opposite signs. Curves 4 and 5 do not intersect the abscissa
due to the rupture of the most expanded bonds in the cores of the misfit
dislocations.

As shown by Markov and Trayanov [1990] the data from the numerical
solutions fit with the semiempirical expression

—i14 f
=g e—ihi {1 L .
£=¢%, (1 r ) +£(0) (4.89)

which is analogous to {4.33). It turns cut that this expression describes all
the data surprisingly well. Moreover, the harmonic limit for which f; = oo
is also formally included. Then by analogy with (4.33) we can write the
following expression for the energy of a single misfit dislocation:

51 = Efe"”f" ’ (490)

where £] is the energy of a single dislocation at f = 0. Since f; < 0,
it follows that £, i a decreasing function of the negative misfit and an
increasing function of the positive misfit.

The zero energy of a single dislocation, £7, is shown in Fig. 4.35 as a
function of (urVuW)1/2 (Vy = const). The straight line 1 represents the
harmonic reference. Curve 3 gives the energy of a negative dislocation
(two atoms in a trough, Fig. 4.11(b)) whereas curve 2 gives the energy
of a positive dislocation (an empty trough, Fig. 4.11{a))}. The negative
dislocation energy is computed directly as the energy of the incommensurate
state of a long enough chain containing only one dislocation at f = 0
(£(0) = 0), while the positive dislocation energy is calculated through
Eq. (4.90). The difference of the energies clearly reflects the anharmonicity
of the real potential. In expanded chains (negative misfit) the atoms in the
dislocation interact through the steeper repulsive branch of the potential
and the zero energy £ is greater than that in compressed chains where the
weaker attractive branch operates.
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Fig. 4.35. Dependence of the energy at zero misfit of the static solitons on (paVpW)1/2,
The straight line 1 presents the harmonic limit of Frank and van der Merwe. Curve 2 gives
the energy of a positive misfit dislecation (an empty trough or a light wall, Fig. 4.11(a)).
Curve 3 shows the energy of a negative dislocation (two atoms in a trough or a heavy
wall, Fig. 4.11{b)). (I. Markov and A. Trayanov, J. Phys.;: Condens. Malter 2, 6965
(1990). By permission of IOP Publishing Ltd.)

F. Limits of stability

As shown above the limits of stability and metastability split with respect
to the sign of the misfit when anharmonicity is “switched on.” Figure 4.36
illustrates the split of the stability limit f, as a function of the substrate
modulation W. The harmonic case is given by the straight line denoted by
fI. The corresponding curves for Toda chain (@ = 2, 8 = 6) are also given
for comparison. As can be seen, the positive stability limit f;" lies nearer
to the reference harmonic curve than the anharmonic Toda curve. This is
not surprising, bearing in mind that in the real model at positive misfit
the stability limit of the pseudomorphous state is determined not by the
equality of the energies of states with zero and one dislocations, but by
the limit of rupture of the core bonds, f.. The latter is shifted to greater
values of the misfit. This is the reason why f! lies nearer the harmonic
reference than the Toda curve. On the other hand, the negative stability
limit f,~ is shifted to greater absolute values than in the Toda case. This is
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Fig. 4.36. Variation of the limits of stability, f.t and f;, with the square root of the
relative substrate modulation (W/Vp)}/? (i = 4, v = 3). The straight line denoted by
J! denotes the harmonic limit. The limits of stability of the anharmonic Toda model
(a = 2,0 = 6) are also included as dashed lines for comparison. The negative stability
limit f,” terminates at W/Vy = 2 (see the x sign). (I. Markov and A. Trayanov, J.
Phys. C: Solid State Phys. 21, 2475 (1988). By permission of IQP Publishing Ltd.)

easily understandable considering the shape of the corresponding attractive
branches of the two potentials (Fig. 4.36). What is more important is
that f; disappears after some critical substrate-deposit bond strength
W = 2V} (note the x sign at the corresponding curve). Beyond this value
the psesdomorphous state is always the ground state.

Contrariwise, the positive metastability limits f}, for the real and Toda
potentials (Fig. 4.37) overlap, which reflects the coincidence of the respec-
tive repulsive branches, However, f, disappears beyond some critical value
of the potential amplitude Wy, /Vy = 0.25 (note the x sign) governed by the
condition fie{Wms) = fi. As mentioned above the chain ends are distorted
and spontaneous generation of dislocations at the free ends never takes
place whereas Toda limit still exists.
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Fig. 4.37. Variation of the limits of metastability, f. and fo,, with the square root of
the relative substrate modulation (W/V3)*/2 (z = 4, = 3). The straight line denoted
by fh, gives the harmonic limit. The limits of metastability of the anharmonic Toda
model (e = 2,4 = 6) are also included as dashed lines for comparison. The curves in
the real and the Teda models caincide for positive misfit due to the coincidence of the
repulsive branches of both potentials. The negative metastability limit fm,. terminates
at W/Vp = 0.25 (see the x sign) whereas the Toda limit still exists {the dashed line). {I.
Markov and A. Trayanov, J. Phys. C: Solid State Phys. 21, 2475 (1988). By permission
of 1OP Publishing Ltd.)

G. Mean dislocation density

The mean dislocation density fq in the ground state of a real chain is given
in Fig. 4.38 as a function of the natural misfit f [Markov and Trayanov
1990). The curves for positive and negative values of f are presented in one
and the same quadrant for easy comparison. The smooth curve represents
the continnum limit of the harmonic model. The stepwise behavior is
due to the finite size of the chain (N = 60). The splitting of the two
curves around the harmonic reference is due to the anharmonicity of the
real potential. The positive misfit curve is considerably nearer to the
harmonic limit than the respective curve for Toda chain. This is due to
the limited interval of existence of the dislocated state as a result of the
rupture of the most expanded bonds in the cores of the dislocations in
compressed chains. What is more interesting is that the commensurate—
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Fig. 4.38. Plot of the mean dislocation density in a real chain against the natural
misfit for both positive (left) and negative (right) misfits. The harmonic continuous
approximation of Frank and van der Merwe [1949b] is presented by the smooth curve
for comparison. The two curves are plotted in the same quadrant for easy comparison
{(p =4,y = 3, W/Vy = L, N = 60), (I. Markov and A. Trayanov, J. Phys.; Cendens.
Matter 2, 6985 (1990). By permission of IOP Publishing Ltd.)

incommensurate (CI) transition is continuous in compressed chains but
abrupt in expanded ones going by a single jump from zero to the maximum
density of the dislocations.

As is well known from the harmonic model the continuous behavior
of the CI transition is due to the energy of dislocation interaction. As
shown above, in anharmonic chains the energy of dislocation interaction
depends on the sign of the misfit — it is much smaller in expanded chains,
rather than in compressed ones. This is obviously due to the fact that
dislocation interaction is realized through the weaker attractive branch
of the interatomic potential in expanded chains and through the steeper
repulsive branch in compressed ones. This explains the abrupt behavior of
the CI transition in expanded chains.
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H. Effect of anharmonicity and nonconvezity in epitarial growth

It is thus evident that in addition to its anharmonicity the fundamental
characteristic which distinguishes the nonconvex interatomic potential from
the harmonic approximation is not the finite energy of dissociation of two
neighboring atoms but its inflection. It leads to two effects. First, there is
the rupture of the bonds in the dislocation cores in compressed overlayers,
and, second, there is the distortion of the chemical bonds in expanded
films. In summary, the replacement of the harmonic interactions by more
realistic interatomic forces in the Frank—van der Merwe model results in
the following more important conclusions concerning the growth of thin
epitaxial films:

(i) Compressed epilayers can crack along the dislocation lines.

{ii) The limits of stability and metastability of the pseudomorphous
state are much greater in absolute value in expanded rather than in com-
pressed epilayers.

{iii}) Thin expanded pseudomorphous filts should be stable beyond some
critical interfacial bonding W, irrespective of the absolute value of the
natural misfit, and shouid always exist in metastable state beyond some
critical interfacial bond strength W, « W,.

{iv} The activation barrier for introduction of dislocations at the free
ends is higher in expanded rather than in compressed films, and therefore
the expanded films can withstand higher temperatures in pseudomorphous
state than compressed films.

(v) The equilibrium critical thickness for pseudomorphous growth
should be much greater for expanded rather than compressed films (see
Eq. (4.72)).

(vi) The mean dislocation density should be smaller in expanded rather
than in compressed epilayers for one and the same film thickness.

(vit) The natural misfit in expanded epilayers is entirely accommodated
either by homogeneous strain or by misfit dislocations without intermediate
state.

One of the most important consequences of the nonconvexity of the
real interactions from a technological viewpoint concerns crack formation.
II-shaped cracks have been observed in compressed Ge films deposited on
Si [Tkhorik and Khazan 1983]. Cracks have also been found in compressed
garnet films grown on garnet substrates [Miller and Caruso 1974). In this
case the cracks were observed in slightly, rather than strongly, compressed
samples, in agreement with the predictions of the model. Olsen, Abrahams
and Zamerowski {1974] observed unidirectional cracks in both expanded
and compressed epilayers of In,Ga,_.P deposited on (100) GaAs. They
found that stretched layers cracked at smaller misfits than compressed
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layers, in contradiction with the prediction of the above model. Cracks in
expanded In,Ga;—;As and In, Al;_; As layers grown by MBE on (100)InP
and in expanded In;Gai,As,P,_, layers grown by LPE on (100)InP
were observed and studied by Franzosi et al. {1988]. These authors
found that the cracks propagate deeply into the InP substrate. The same
phenomenon has been established also for misfit dislocations in MBE-grown
In.Ga, . As/(100)InP single heterostructures irrespective of the sign of the
natural misfit [Franzosi et ¢/ 1985). The misfit dislocations are “squeezed”
into the substrate due to the stress in the overgrowth. This clearly shows
the connection between the misfit dislocations and the formation of cracks.
Obviously, the cracking phenomenon should be studied in more detail both
experimentally and thecretically. Experimental observations concerning
cracking of epitaxial films of different materials have been summarized by
Tkhorik and Khazan {1983].

4.2.5. van der Merwe model of thick overgrowth

The case of thick overgrowth is considered in a more or less similar way. By
“thick” we mean mathematically infinite. In this case (Fig. 4.39) the two
crystal halves A and B with quadratic symmetry of the contact planes and
atomic spacings a and 6, respectively, are considered as elastic continua with
shear moduli G, and Gy, and Poisson’s ratios v, and 1, respectively [van
der Merwe 1963a). An important feature of the system consisting of two
semi-infinite crystals is that the homogeneous strain is equal to zero and the
natural misfit is accommodated entirely by misfit dislocations. As shown
in Sec. 4.2.4.4 the energy of a cross grid of misfit dislocations of an edge
type to a first approximation represents a sum of two arrays of dislocations
parallel to the two orthogonal directions. In other words, the energies of the
two arrays are additive and we can consider them independently assuming
& misfit in one direction only.

Here we allow both crystals to be elastically strained. In order to
describe the displacements at either side of the interface, we introduce a
reference lattice C with a parameter ¢ [van der Merwe 1950, 1973) along
the z axis:

Pb:(P+1)a=(P+%)c,

where P = a/(b — @) is an integer.
Assuming for definiteness that b > ¢ we can imagine that the two lattices
A and B are generated from C by contraction of A and expansion of B. Then
the reference lattice spacing reads
2 1
=4+
c @

|
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Fig. 4.39. Model of epitaxial interface between two semi-infinite crystals resolved in a
sequence of misfit dislocations spaced al an average distance p. The dashed lines located
at & distance p/2 from the contact plane show the boundary beyond which the periodic
strains criginating from the dislocations practically vanish {after van der Merwe [1950]).

ar

ab
= 4.91
T Ia+b) (491)
The vernier of misfit or the dislocation spacing p is given by
1 ab
p—(P+§)C—m- (492)

Bearing in mind that both lattices A and B are strained it is reasonable

to define the misfit as b
c -a
f=-=+—— (4.93)
P 3(a+b)
rather than as f =1/P = (b —a}/a as in the rigid substrate model.
Assume now that the atoms of A and B are located at points of the
reference lattice and there is an atom of B exactly opposite to any atom of
A. Then we allow the atoms of A and B to occupy their natural positions
in their respective lattices. The atoms of A and B will be displaced
with respect to the respective positions of the reference lattice C. The
displacement between the atoms with respect to each other will be
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U= % + gx )
where the first term ¢/2 locates the origin of the z axis at a dislocation
line while the second term ex/p accounts for the linear increase of the atom
spacing due to the vernier of misfit. If we now allow elastic displacements
4a(z) and up(z) of the corresponding atoms of the A and B lattices, then
the displacement of a B atom with respect to the corresponding A atom
will be

U= -;—c + IEJ:U + up(z) —u,(z) . (4.94)
As in the previous case (Eq. (4.8)), each half-crystal exerts a periodic
potential on the atoms of the other half in the form

Gic? u
V= 34 [1 —cos (Zw—c-)] ) (4.95)

where (; is the shear modulus at the interface and d 22 ¢ is the separation
of the atoms of the adjoining crystal planes.

The mathematical treatment of the problem, although involving much
greater difficulties, leads to expressions for U similar to (4.20) and (4.23).
Thus for dislocations far apart (b — a, p — oo) and, assuming for simplicity,
v, =t =¥ and G, = G, = G; = G, the solution reads

u 1.1 T
; = 5 + ;arctan (E) . (496)
where 2o = ¢/2(1 - v).

The general solution reads [van der Merwe 1975}

E:— -1—+ — arctan [(m-i-/\ ) (Z)], (4.97)

2

where
G'e
= = 4.
A=2r e (4.98)

and
l _ 1—v, + 1—y
G G, Gy
It is immediately seen that {4.96) can be easily obtained in the limit
p — oo with G, = Gy = Gi. Equations (4.96) and (4.97) show a behavior
similar to that plotted in Fig. 4.12, curves 1 and 2, respectively. In other

(4.99)
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words, as in the case of a monolayer overgrowth the interface is resolved in
a sequence of misfit dislocations.

The energy of the misfit dislocations (the homogeneous strain is absent)
is naturally divided into two parts. The first is the energy of interaction
between the atoms of the two crystal halves:

L G U
iC
Ei_j_J / m[l-COS(2ﬂ'-C—)]dﬂf

—n/2
chz 2
= e (1+/\+\/1+A) , (4.100)

which is obtained by substitution of (4.97) into the integral of (4.100) and
carrying out the integration.

The second is the energy of the periodic elastic strain which is dis-
tributed in the two crystal halves A and B. For the average strain energy per
atom stored in that part of the crystal B which extends from the interface
to & distance h from the latter, one obtains

brpy (L~ )CG'G
E. () = 4 Gypd
3 i ( 1 A2 HA%e 2H(H — 1+ A%e2H)
1 AZe—2H (1 — )1 — AZe—2H)2 !
(4.101)

where b

H=2r—

P
and

A=V1I+A2 - ).

The limit H — oo gives the total strain energy per atom in the crystal B:
(1 —w)G'G

b _ i A2
E; = iend In{1 — A%)
_ _(1-w)e’G'G: 7 _ 932
=g A (2)\\/1 +AZ—2) ) : (4.102)

The analogous expression can be written down for the strain energy
per atom stored in the erystal A. The ratio of the strain energies gives the
distribution of the strain in the two crystal halves:
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E:J - (1 - Vb)Ga
Eg - (1 ‘_Va)Gb I
As seen the “stiffer” the crystal the less strained it is and vice versa.

Bearing in mind (4.99) the total strain energy per atom in the bicrystal
connected with the misfit dislocations is then

2
G‘;’dun (2AV1+27-232) . (4.103)

E,=1::;°-+~Eg=—4

Summing up (4.100) and (4.103) gives the total energy per atom of the
misfit dislocations:

Eq= o= 2d[u—A VIta— Aln(ZA\/14-A2 23 )] (4.104)

The energies F,, E; and Fy are plotted as functions of the misfit ¢/p in
Fig. 4.40. As can be seen the strain energy E. is greater than the energy of
interaction E; for small misfits. At larger misfits E, gradually diminishes
and the total energy approaches a constant value:

G;e?

4r?d '
which can be taken as a measure of the interfacial bonding, analogous to
W in the monolayer model. This should be the energy if the two lattices
A and B were assumed rigid. Then the relative displacements of the atoms
with respect to each other would be given by Ufc = 1/2+ x/p.

One of the most important results of this analysis, which is closely con-
nected with the mechanism of growth of thin films, concerns the distribution
of strain energy with the distance from the interface. Making use of (4.101)
and (4.102) gives for the fraction of average strain energy per atom stored
beyond a distance k from the interface

EY — Eg(h)
E?

= (ln (1- A% 24y~

EY = (4.105)

AEg(h) =

HAZ TH(H 1 4 A%¢™2H)
(1 —m){1 — AZe2H)2

x [In(1 - 4%)] " . (4.106)

The latter is plotted in Fig. 4.41. As seen it decreases rapidly with

the distance from the interface and practically vanishes at a distance equal

to pf2. It follows that, first, we can qualify a deposit as thick when it is
thicker than one half of the dislocation spacing, and, second, beyond this
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Fig. 4.40. Misfit dependence of the strain energy E., the interaction energy Ei and the
total dislocation energy Eg = E. + E; in units of G;c?/472d. The upper axis shows the
variation of the parameter A (after van der Merwe [1950]).

thickness the atoms of the deposit will not “feel” the presence of the foreign
substrate.

The gradual decrease of the fraction of the elastic energy AEP(h), which
is stored in the deposit crystal beyond a distance h from the interface,
is illustrated schematically in Fig. 4.42. The amplitude of the periodic
variation of the bond strains is greatest for the first monolayer. Expansion
and compression alternate periodically with a period equal to the disloca-
tion spacing. The amplitude gradually decreases in every next monolayer.
Beyond a thickness h = p/2, the amplitude becomes practically equal to
zero and the atoms become equidistant. However, if the deposited film is
thinner than p/2 a periodic variation of the bond lengths on the surface
of the film should be detected. Such a variation is really observed on the
surface of overlayers of Fe(110) on W(110) [Gradmann and Waller 1982] and
of Cu on Pd(100) [Asonen et al. 1985]. In the former case the thickness
of the film samples varied between 2 and 9 monolayers and p/2 = Tdi1o
(aFe = 2.866 A, aw = 3.165 A).
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Fig. 4.41. Plots of the fraction AEP(h) of the strain energy stored in the crystal B beyond
a distance k from the contact plane as a function of h/p. Curves 1 and 2 correspond
to misfits ¢/p = 2% and 20%, respectively (Gu = Gy = G;, va = vy, = v = 0.3} (after
van der Merwe [1975]).

BONDS STRAIN

ATOM DISPLACEMENTS

Fig. 4.42. Schematic plot of the strains of consecutive bonds against the atom displace-
ments as in Fig. 4.13 (curve 2) demonstrating the gradual decrease of the amplitudes
of the pericdic strains with distance from the contact plane. The figure at each curve
denotes the number of the corresponding monolayer counted from the contact plane.
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Let us illustrate the formulae we have just derived. In a system of
low misfit, e.g., Ag on Au{001), e, = 2.8804 A and g, = 2.8841 A,
¢/p=000184, c = d = 2.8867 A, Ga, = 3.38 x 10! dyne/em? and Ga, =
3.1 x 10" dyne/cm?, v, = 0.354 and va, = 0.412 (see Huntington [1958]
and also Hirth and Lothe {1968], Appendix), G' = 2.63 x 10'! dyne/cm?
and G; & (GagGau)? = 3.24 x 10 dynefem?. Then G;c*/dn’d =
237 erg/cm?, X = 0.0094 and E; 2 11 erg/cm®. In a system with larger
misfit, e.g., Ag on Cu(001), with G, = 5.46 x 10! dyne/em?, vo, = 0.324
and @ = 2.556 A, ¢/p = 0.1223, A = 0.568, G;c*/4x%d = 294 erg/cm?
and Eq4 = 192 erg/cm®. It is doubtful whether the above theory can be
used in the case of semiconductor materials with covalent bonds which are
rather britile and unflexible. Nevertheless, for the case of a Ge deposit on
(001) Si, with Gg. = 5.64 x 10!' dyne/cm?, Gs; = 6.42 x 10'! dyne/em?,
vge = 0.2, vg; = 0.215, apge = 5.6575 A and agg; = 5.4307 A, ¢/p = 0.041,
G; 2 6x 10" dyne/cm?, G’ = 3.78 x 10! dynefem? and E, 22 300 erg/cm?®.
Comparing these results with the values of the specific surface energies
which are usually of the order of 1 x 103 erg/cm?, we can conclude that the
theory of van der Merwe predicts reasonable values for the energy of the
misfit dislocations at the interface between semi-infinite crystais.

It is worth noting, however, that a comparisen of the energy of the misfit
dislocations with surface energies is in principle incorrect. The energy of
the misfit dislocations is often erroneously identified with the energy of the
interface. As will be shown below the energy of the misfit dislocations is
only a part of the energy of the interface which is due to the lattice misfit.
The interfacial energy is composed of two parts. The first one is due to the
difference in nature and strength of the chemical bonds in the absence of
misfit. The second part, which we have just derived, is due to the lattice
misfit. A& good example is the energy of the interface between In;Ga;—;As
and InP(001). When x = 0.43 the lattice misfit and the misfit energy are
equal to zero. At the same time the interfacial energy is not equal to zero
due to the difference of the strengths of the chemical bonds in the two
materials.

4.2.6. Thickening overgrowth

As shown above a thin film consisting of one to several monolayers can
be either commensurate or incommensurate with the substrate. In other
words, the natural misfit can be accommodated either by homogeneous
strain or by misfit dislocations or by both in the general case. In contrast,
the natural misfit between an infinitely thick deposit and the substrate is
accommodated entirely by misfit dislocations. Thus in overgrowth with
finite thickness the homogeneous strain can eliminate partially or entirely
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the misfit dislocations. The purpose of this chapter is to study what will be
the equilibrium (lowest energy) structure of the interface during the process
of thickening of the deposit.

As mentioned above, owing to the interaction across the interface, the
lattice parameter b of the overgrowth tends to take the value of the substrate
lattice parameter a. On the other hand, owing to the cohesive forces between
the overgrowth atoms, they tend to keep their natural spacing b. As a result,
the overgrowth atoms will be spaced at some average spacing » such that
a<b<h

We can define now the natural misfit as [Matthews 1975]

F=2 = b (4.107)
and it will be accommodated partly by homogeneous strain
b-b
fe = T (4108)
and partly by misfit dislocations
fa="2 T b (4.109)
so that for small misfits
b~b a-—bb
E—t—-=f. .
fetfa= P (4.110)
The misfit dislocations will be spaced in the general case at a distance
a ab
= — = = 4,111
fa a-b ( )
and will have a Burger’s vector
ab
&= _—— 4-112
‘T Tarb) (4.112)

Minimum energy considerations of epitaxial bicrystal systems [van der
Merwe 1963b; Jesser and Kuhlmann-Wilsdorf 1967) have shown that ini-
tially the deposit grows pseudomorphically with the substrate up to a
critical thickness ¢, (see Eq. {4.72)}). The natural misfit will be entirely
accommodated by a homogeneous strain so that the average atomic spacing
b = q. Then f. = f and fa = 0. The interface is not resolved into a
sequence of misfit dislocations as their spacing § tends to infinity. In the
case of square atomic meshes of the adjoining crystal planes the energy of
the interface due to the lattice misfit will be equal to the energy of the
homogeneous strain Ey, given by

Ep, = 2Gptf? (4.113)

1+
- .
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Beyond the critical thickness, misfit dislocations are introduced at the
interface so that initially homogeneous strain and misfit dislocations coex-
ist. The misfit dislocation energy is then given by Eq. (4.104) but with p
and c replaced by 7 and &, respectively. With the thickening of the film
the homogeneous strain gradually vanishes, and in sufficiently thick films
(t > p/2) the natural misfit is totally accommodated by misfit dislocations.
Then b= b, fo =0, fq = f and the dislocations are separated by a distance
p. In other words, the other extreme case is reached.

In order to illustrate the minimum energy considerations, we plot the
homogeneous strain energy E, for films of various thicknesses and the
misfit dislocation energy F, against the misfit as is done in Fig. 4.43. As
we see, the homogeneous strain energy curves intersect the misfit disiocation
energy curves at some critical values of the misfit f, varying with the film
thickness n = t/b measured in number of monolayers. It follows that if
f > fi, Ens is greater than Ey even for a monolayer film, and it will
resolve into a sequence of misfit dislocations rather than be homogeneously
strained. If fo < f < fy, the first monolayer will be pseudomorphous with
the substrate, but when a second monolayer is deposited on top of the
first one, misfit dislocations will be introduced at the interface to relieve
the homogeneous strain if the necessary thermal activation exists. The
smaller the natural misfit, the thicker the film can grow under homoge-
neous strain. When the misfit is very small, the film can grow under
homogeneous strain to a considerable thickness as in the growth of Ge
on GaAs [Matthews, Mader and Light 1970]. For this reason superlattices
such as Al, Ga;_. As/GaAs can be grown without misfit dislocations at the
interface. If the temperature is low enough so that misfit dislocations are
not introduced during the growth, then when the film thickness exceeds
the critical value, the bicrystal system will be in a metastable state and
any pumping of energy will lead to nucleation of dislocations and hence to
deterioration of the performance of any device made in this way.

Equating the energy 2E4 of a square grid of two perpendicular and
noninteracting arrays of misfit dislocations from (4.104) and the energy
Ey, of the homogeneous strain from (4.113) gives (v, = v, = v)

te G 1-—vwf(x)
¢ 8x:Gpl+w f2°

(4.114)

where
FO) =142 -1+ —Aln (m\n +2 - 2)@) . (4.115)

For small misfits where second order terms can be neglected (A% < 1),
{4.115) reduces to
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Fig. 4.43. Plot of the dislocation energy £4 and the energy of the homogeneous strain
Ey, versus misfit of overlayers with different thicknesses shown by the figures which
denote the numbet of monclayers. The points of intersection determine the critical
misfits fn (r =1,2,...) which decrease with increasing film thickness given in number
n of monolayers. (I. Markov and S. Stoyanov, Contemp. Phys. 28, 267 (1987). By
permission of Taylor & Francis Ltd.)

FO)=AM1—1n2)) = A(lne — 1n2)) = J\ln(n)

which appears as a very good approximation [Kasper and Herzog 1977}
Accounting for (4.98) and (4.99), Eq. (4.114) turns into jvan der Merwe
1973

tc — 1 C-lnf
WA 0+ Ge  F (4.116)
where
¢=In ((1 . ”)(1415:/‘?‘)&3) . (4.117)

Equation (4.118) is plotted in Fig. 4.44 (curve 1) with G, = G, = Gi. As
seen, the critical thickness goes to infinity with vanishing misfit. Moreover,
it decreases with increasing ratio Gy/G,. In other words, the “stiffer”
the deposit and the “softer” the substrate crystals, the lower the critical
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Fig. 4.44. Misfit dependence of the equilibrium critical thickness for pseudomorphous
growth in units of the Burgers vector ¢ according to the theory of van der Merwe
11973} (curve 1) (Eq. {4.116) with Ga = Gp = G;, va = »p = ¥ = 0.3) and the
Velterra approach of Matthews [Matthews and Blakeslee 1974) (curve 2) (Eq. (4.124)
with &y = &g, v = 0.3}

thickness will be, and vice versa. A similar analysis for finding £, for crystals
with diamond lattice has been performed by Kasper and Herzog [1977].
Let us evaluate the critical thickness for some real systems. In the
case of deposition of Ag on Au with the materials constants given above,
Eq. (4.114) predicts t./c = 168 or . = 485 A. In the case of deposition of
Agon Cu, t./c = 0.7 or dislocations will be introduced after the deposition
of the first monolayer. The theory predicts a value of /¢ = 5.7 for the
system Ge/Si. This means that a film consisting of 5 monolayers should be
pseudomorphous with the substrate, but after the deposition of the sixth
monolayer the interface shouid resolve in a cross grid of misfit dislocations.
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An example of interest is the deposition of alloys where one could change
the value of the natural misfit by varying the alloy composition. One of the
most studied systems is Ge,Si;_. /5i [Kasper and Herzog 1977; Kohama,
Fukuda and Seki 1988; Bean et of. 1984; Bean 1985]. The natural misfit as
a function of composition = is given by f = 0.041z. Thus at x = 0.5,
f = 0.021 and the experimentally found critical thickness is 100 A or
about 25 monolayers (Bean 1983). Calculations based on Eq. (4.114)
give the value ¢./c = 9, i.e. approximately three times smaller than the
experimentally found wvalue.

The above disagreement can be explained bearing in mind that
Eq. (4.114) gives the equilibrium critical thickness for pseudomorphous
growth. In other words, this is the thickness beyond which misfit dis-
locations become energetically favored. However, in real experiments an
energetic barrier for nucleation of dislocations should be overcome. It
follows that the real critical thickness should be greater than that given
above. The nucleation of the misfit dislocations has been taken into account
in & geries of papers (Marée et al. 1987; Van de Leur et al. 1988; Fukuda,
Kohama and Ohmachi 1990; Kamat and Hirth 1990} and the interested
reader is referred to them.

Recalling (4.65) we conclude that the approximate expression for ¢.(f),
given by Eq. (4.72), is in fact determined by the intersection of the ho-
mogeneous strain energy (Eq. {4.113)) with the maximum energy of the
misfit dislocations, EJ°, given by Eq. (4.105). Obviously, it overestimates
the critical thickness.

4.2.7. The Volterra approach

Volterra [1907] considered the elastic properties of a hollow cylinder with
inner and outer diameters rq and R, respectively, cut parallel to the cylinder
ads (Fig. 4.45{a)). When a force parallel to the cylinder axis is applied
along the cut a screw dislocation is formed (Fig. 4.45(b)). When the force
applied is normal to the cylinder axis and the one edge of the cut is displaced
normally with respect to the other, an edge dislocation results (Fig. 4.45(c})).
The displacement along the cut of one half of the cylinder with respect to
the other is just equal to the Burgers vector of the dislocation.

The strain energy of the edge dislocation per unit length is given by

[Hirth and Lothe 1968]
Gr R
B=maom" (FE) ’
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Fig. 4.45. Volterra models of {b) screw and (c) edge dislocations based on the consider-
ation of a hollow cylinder {a) with outer diameter R and inner diameter ry cut parallel
to the cylinder axis (after Hirth and Lothe [1968]).

where & is the shear modulus of the crystal, v is the Poisson ratio and b
is the magnitude of Burger’s vector. The total energy is obtained by the
addition of the core energy. The latter represents a fraction of G¥* and its
contribution is formally accounted for by assuming 7o = b/a, where a is a
constant varying from 1 to 2 for metals and to 4 for nonmetals. Then the
total energy of an edge dislocation reads

Gb? R
Eq = m (ln "g +]Il0.') . (4.118)

For the energy of a misfit dislocation between two misfitting crystals
with shear moduli @, and G4 and a Poisson ratio v, Matthews {1975} used
a similar expression

e b (@)

which turns into (4.118) with G4 = G, = G and « = e. R denotes the
distance to the outermost boundary of the strain field of the dislocation,
and ¢, which is given by Eq. (4.91), is the magnitude of Burger's vector.
If the film thickness ¢ is smaller than the dislocation spacing p/2, R can
be approximated by the film thickness ¢ {Fig. 4.46(a)) and the energy reads

Pa= zw(afif(éiizl ()] #120)
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Fig. 4.46. For the determination of the outermost boundary R of the strain field created
by the dislocation. (a) ¢ < p/2, R = ¢ (b} t > p/2, R = p/2 (¢ film thickness, p:
dislocation spacing).

At the other extreme, t > p/2, R is approximated by p/2 (Fig. 4.46(b)).
This choice of R becomes immediately understandable if one recollects the
fart that the strain field of the dislocations practically vanishes beyond p/2
(see Fig. 4.41). Then the energy reads

Ba= 5o ng:; T [1n( )+1] . (4.121)

In the case of quadratic interfacial symmetry (f = f, = f) and
assuming the natural misfit is accommodated partly by misfit dislocations
and partly by homogeneous strain, the energy E, due to the lattice misfit
is a sum of the energies of two noninteracting arrays of misfit dislocations
each with a density fy = f — f. and the energy of the homogeneous strain
Ep, given by Eq. (4.113). Neglecting the energy of interaction between
neighboring dislocations in the array one writes

B =21 ~ ) [ (%) +1] + 20ar2 122

where R =t or §/2 when t is smaller or greater than 5/2.
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The condition dE, /df. = 0 yields the homogeneous strain f} which
minirmizes the energy. In the first case (¢ < 5/2 and B = t) one obtains

for 1o Gz :
: = (G, ¥ G+ ) [1“ (E) * 1] ' (4.122)

In the second limiting case (B = /2 and &/ = fa = f — f.) the
minimization gives

«_ G E . .
fe - 47‘(‘(05 -+ Gd)(l 4 U)t ] [2(f fe )} . (4123)

The critical thickness t. is determined by the condition f, = f. Making
use of Eq. (4.122) (the equilibrium thickness is usually smaller than p/2)

gives
t. Gs te
T T 4n(G. + Ga)1+ ) f ['“ ( e) * 1] ' (4.124)

Equation (4.124) gives values for the critical thickness very close to
that predicted by the theory of van der Merwe (see Fig. 4.44, curve 2).
One should, however, note the uncertainty in the determination of the core
energy of the dislocations.

Thus the main advantage of the Volterra approach consists in the
simplicity of the expression for the dislocation energy which allows the easy
treatment of more difficult problems such as the equilibrium structure of
the interface between tile-shaped 3D islands and the substrate [Matthews,
Jackson and Chambers 1975c], in multilayers [Matthews and Blakeslee
1974], imperfect dislocations with Burger’s vectors inclined with respect
to the interface, generation of misfit dislocations, etc. [Matthews 1975a,
1975b]. The interested reader is referred to the review paper of Matthews
[1975b] and the references therein.

As mentioned in the previous section a considerable discrepancy Is
established when experimental data are compared with the theoretical
expressions for the critical thickness for pseudomorphous growth. On
the other hand, the problem of the critical thickness for pseudomorphous
growth turned out to be very important from a technological point of view.
The reasons are well described in the review paper of Hu {1991]. First,
the misfit dislocations deteriorate the performance of the heterostructure
devices due to the increased leakage current. On the other hand, the misfit
dislocations are often generated by dislocations which are inherited from
the substrate and end at the film surface (threading dislocations). The
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diffusion of the dopant is usually enhanced along the threading dislocation
line and the latter forms the so-called “transistor pipe” comnecting the
emitter and the collector. Second, in uniformly strained epilayers the
interatomic spacing differs from that in the unstrained (relaxed) ones, thus
changing the width of the forbidden energy zone [Land et al. 1985]. It
ig thus obvious that the homogeneous strain can serve in addition to the
alloy composition as a parameter for further tailoring of the heterostructure
properties.

What both approaches of van der Merwe [1963b] and Matthews [1975b}
to the problem of the critical thickness have in common is that the latter
is inversely proportional to the Iattice misfit. Recently People and Bean
[1985, 1986] derived an expression for the critical thickness by comparing
the energies of the homogeneous strain and the areal energy of a single screw
dislocation. They found that the critical thickness is inversely proportional
to the square of the lattice misfit and has an absolute value which is of
one order of magnitude greater than that predicted by van der Merwe and
Matthews. As their result is still under discussion (see Hu [1991]) we will
not reproduce it here. The reader who is interested in the present day
state of the problem of the critical thickness for pseudomorphous growth is
referred to the excellent review paper of Hu [1991].

4.3. Mechanism of Growth of Thin Epitaxial Films

As mentioned in the introduction of this chapter the chemical potentials
of the substrate and deposit crystals differ owing to the difference in the
nature and strength of the chemical bonds on the one hand, and the lattices
and lattice parameters on the other. Then, the chemical potential of the
overgrowth will differ from that of the infinitely large crystal due to the
difference of bonding across the interface (see Eq. (1.59}). The atoms of
the deposit can be bound more loosely or more tightly to the substrate
atoms than to the atoms of the same crystal. As a result the chemical
potential of the first layers of the deposit will be higher or lower than the
chemical potential of the infinitely large deposit crystal.

Let us consider this case in more detail beginning from the first mono-
layer of the deposit. Its chemical potential is equal to the work of sep-
aration of an atom from a half-crystal position taken with a negative
sign (Eq. (1.59)). Assuming additivity of the bond energies the work to
separate an atom from a kink position consists of two parts: the work
to disrupt the lateral bonds and the work to disrupt the bonds with
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the substrate atoms. However, the lateral bonds are the same as in the
bulk deposit crystal. Then the difference in the chemical potentials is
due to the difference of bonding with the substrate. When the atoms
of the deposit are more loosely bound to the foreign substrate than to
the same erystal the equilibrium vapor pressure of the deposit will be
higher than the equilibrivm vapor pressure of the large deposit crystal and
vice versa. In turn the chemical potential of the first monolayer will be
higher or lower than the chemical potential of the infinitely large deposit
crystal. The atoms of the second monolayer will “feel” more weakly the
presence of the foreign substrate and hence their chemical potential will be
closer to that of the large deposit crystal. In other words, the chemical
potential of the deposit will vary from monolayer to monolayer due to the
interaction with the substrate. On the other hand, the overgrowth can
be pseudomorphous with the substrate or the interface can be resolved
in a grid of misfit dislocations. Then the film can be homogeneously
or periodically strained and the strain energy per atom should change
additionally the chemical potential of the film. The homogeneous strain
does not change from monolayer to monolayer of the overgrowth while the
periodic strain due to the misfit dislocations attenuates with the distance
from the interface (see Figs. 4.41 and 4.42). Hence the chemical potential
again varies from monolayer to monolayer due to the elastic straing in
addition to the bonding with the substrate [Venables 1979; Grabow and
Gilmer 1988; Stoyanov 1986). It is namely this dependence of the chemical
potential of the overgrowth on its thickness which constitutes the main
difference of the epitaxial growth from the usual crystal growth and which
leads to the appearance of the three well-known mechanisms of epitaxial
growth: (i) Volmer-Weber mechanism or island growth (Fig. 4.47(a}), {ii)
Frank-van der Merwe mechanism or layer-by-layer growth (Fig. 4.47(b})
and (iii) Stranski-Krastanov mechanism or layer-by-layer growth followed
by formation of 3D islands (Fig. 4.47(c)).

This classification has been given for the first time by Bauer [1958].
The historical reason why the island growth was named after Volmer and
Weber was that Volmer was the first to develop the theory of the rate
of 3D nucleation on a foreign substrate and together with Weber [Volmer
and Weber 1926] interpreted the experimental data of Frankenheim [1836],
which were the first laboratory experiments on epitaxial growth, in the light
of his theory.

Frank and van der Merwe simulated the overgrowth by an infinite chain
of atoms, thus asssuming implicitly that the avergrowth covers completely
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Fig. 4.47. Schematic representation of the three possible mechanisms of growth of
thin epitaxial films according to the classification of Bauer {1958} (a) Volmer-Veber
mechanism or island growth, (b) Frank-van der Merwe mechanism or layer-by-layer
growth, (c) Stranski-Krastanov mechanism or layer-by-layer growth followed by 3D
islands. {I. Markov and S. Stoyanov, Contemp. Phys. 28, 267 (1987). By permission of
Taylor & Francis Ltd.)

the substrate. In other words, they assumed that the overgrowth follows the
layer-by-layer pattern of growth and they did not specify at that time that
different values of the energetic parameter I should lead in fact to different
modes of growth. This was the reason why Baner named the layer-by-layer
growth after their names.

The first paper devoted solely to the problem of the mode of epitaxial
growth of thin films was written by Stranski and Kuleliev [1929]. The
considerations, which were naturally based upon the concept of the work
of separation of a building unit from a half-crystal position, were further
developed by Stranski and Krastanov [1938). We will outline their model in
rore detail as it lies in the base of our further considerations of the mode
of growth.

Thus, Stranski and Kuleliev studied the stability of the first, second,
third, ete., monolayers of a moncvalent ionie erystal KT A~ with a sodinm
chloride lattice on the surface of a bivalent ionic erystal K2t A2~ with the
same lattice, assuming that no alloying takes place and that both crystals
have equal lattice parameters (Fig. 4.48). As a measure of stability they
accepted the equilibrium vapor pressure of each monolayer. According to
Eq. {1.58) it is a function of the corresponding work of separation from
the half-crystal position. As can be judged from Fig. 4.48 the ions of the
first layer of K* A~ are attracted by the underlying doubly charged ions
more strongly than by the surface of their own monovalent crystal; the
lateral interactions remain the same. Hence, the work of separation from
the half-crystal position, tpg?g, of the first monolayer is larger than that of
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Fig. 4.48. Illustration of the model of Stranski and Kuleliev [1929] for the growth of
monovalent ionic erystal KtA— on the surface of an isomorphous bivalent ionic erystal
K2+ A?- (left), compared with the growth of the same monovalent ionic crystal K+A~
(right). The symbols on the cube faces of the left-hand crystal represent doubly charged
positive and negative ions. The stability of the consecutive monclayers is determined by
the work of separation of the ions from the corresponding half-crystal positions dencted
by the bold cubes. {I. Markov and S. Stoyanov, Contemp. Phys, 28, 267 (1987). By
permission of Taylor & Franecis Ltd.)

the bulk KTA~ crystal, 5"1 2, and, correspondingly, the equilibrium vapor
pressure Py will be lower thau that of the bulk K* A~ crystal, P,,. It follows
that one monolayer of K¥ A~ can be adsorbed on the surface of K2+ A2~
at any vapor pressure higher than F; and lower than P, in other words,
at undersaturation with respect to the bulk K+ A~ crystal. The ions of the
second layer are attracted by the ions of the first layer as if they are on the
same crystal K¥ A~ but are repulsed by the doubly charged ions of K>+ A2~
more strongly than if the substrate were monovalent. Thus cpﬁ% < tp(lt})z
and P» > F,. Hence, a supersaturation is required in the system in order
to deposit the second monolayer. Stranski and Kuleliev concluded that
every odd or even overlayer will have an equilibrium vapor pressure that is,
respectively, less than or greater than P, in other words the equilibrium
vapor pressures of the consecutive monolayers should oscillate around the
equilibrium vapor pressure P,,. The dependence of the chemical potential
of the consecutive monolayers according to the considerations of Stranski
and Kuleliev is shown in Fig. 4.49. As can be seen, after a few layers of
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K+A~, the energetic influence of the substrate vanishes (P, 2 Poo} and
the film will continue to grow as if on the same crystal.

Ten years later Stranski and Krastanov [1938] extended the considera-
tions of the sarne model by calculating the Gibbs free energies of formation
of 2D nuclei of the first, second, third, etc., monolayers, as well as two and
four monolayers thick 2D nuclei. It turned out that, after the complete
coverage of the substrate crystal K2tA2- by an adlayer of KtA~ at
undersaturation (for reasons given above), the work of formation of 2D
nuclei of the second monolayer is significantly greater than that of 2D
nuclei that are two monoclayers thick. The reason is that the chemical
potential of a bilayer deposited on the first monolayer is lower than that
of a single monolayer (see Fig. 4.49). Simple considerations show that
the work of separation of a whole K* A~ molecule from a doubly high
half-erystal position {(Fig. 4.50) is equal to the arithmetic average of the
works of separation of single ions from the kmk ositions of the second
and third monolayers, i.e. ¢y (K*A~) = (:,c:”,2 33}2)/2 Then the
chemical potential of the bilayer will be pmemsely equal to the arithmetic
average of the chemical potentials of the second and third monolayers, i.e.
#(2 + 3) = (p2 + p3)/2. Note that when writing the chemical potential
of the bilayer we do not account for the chemical potential of the first
monolayer. The reason is that it is more strongly bound to the substrate
and is completely built up. On this account, it does not take part in the
process of exchange of atoms with the vapor phase.

Thus Stranski and Krastanov predicted the possibility — admittedly
for a very particular system — of the formation of nuclei with many layer
thickness on the first stable adlayer (or adlayers) of the overgrowth, a
mechanism of growth well known today and bearing their names. As will
be shown below, the physical reason for such a mode of growth could be
different and could include the lattice misfit as well. It is worth noting,
however, that Stranski and Krastanov considered the many layer thick
nuclei as 2D nuclei. They also considered the formation of 3D nuclei on
top of the first monolayer and found that it is slightly greater than that
of bilayer 2D nucleus. In our further considerations we will consider the
bilayer island as a three-dimensional island.

In order to establish the factors affecting the mode of growth we will
consider briefly some experimental examples, dividing them into several
groups according to the different nature of the chemical bonds: metals on
insulators, metals on metals, metals on semiconductors and semiconductors
on gemiconductors [Markov and Stoyanov 1987].
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Fig. 4.49. Dependence of the chemical potential y; (or the equilibrium vapor pressures
P) of the consecutive uppermost monolayers on their number as follows from the model
of Stranski and Kuleliev {1929] of the growth of a monovalent ionic crystal KTA~™ on
the aurface of a bivalent ionic erystal K2+ A?~ with the same lattice parameter (open
circles). As seen, the chemical potential oscillates around the chemical potential of the
bulk erystal K+ A=, The filled circle gives the chemical potential of a bilayer formed on
top of the completely built first monolayer (after Stranski and Krastanov [1938]). It is
exactly equal to the arithmetic average of the chemical potentials of the separate second
and third monolayers, (I. Markov and 5. Stoyanov, Contemp. Phys. 28, 267 (1987, By
permission of Taylor & Francis Ltd.}

Fig. 4.50. Half-crystal position with a bilayer height (after Stranski and Krastanov
[1938]).
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A typical example of island growth is the deposition of metals on MgO,
mica, molybdenite (MoS;) and on alkali halide crystals such as NaCl, KCl,
KBr, etc. (for a review, see Pashley {1956, 1965, 1970]; Grinbaum [1974];
Kern, LeLay and Metois [1979]). Metals such as Ag, Au, Cu, Fe, Pd,
Ni, Co, etc. on these insulators comprise systems which are characterized
by adhesion forces between the metal atoms and the insulator substrates
that are considerably weaker than the cohesion forces within the metals
themselves. An exception from the rule is the deposition of Ag on (100)
MgO at extremely low temperatures. Lord and Prutton [1974] established
with the help of LEED and AES that at —200°C Ag grows layer-by-layer
on (100) MgO crystal cleaved in vacuum chamber. At room temperature,
however, Ag grows on MgO as separate islands.

In the case of deposition of metals on metals there is a greatest variety
of modes of growth owing to the broad range of the ratio of adhesion to
cobesion forces and of the lattice misfit as well {for a review, see Vook {1982,
1984j; Bauer [1982]). An interesting example is the deposition of Cu on the
(111) plane of Ag [Horng and Vook 1974]. When less than one-third of a
monolayer of Cu is deposited on the (111) plane of Ag at 210°C, the RHEED
pattern consists of diffraction streaks originated from the Ag substrate
plus bright spots belonging to the Cu deposit. At room temperature the
RHEED pattern of the Ag substrate plus one third of a Cu monolayer
exhibits intense Ag streaks with fainter streaks for Cu overgrowth, which
is indicative for a very smooth surface. It follows that at high substrate
temperatures Cu begins to grow as isolated particles or islands from the very
beginning of the process, while at low temperatures the Cu streaks originate
from a deposit with a layer structure. When more than two Cu monolayers
are deposited at room temperature the material in excess of two monolayers
forms 3D islands. Thus the Volmer-Weber growth mode is established at
high temperatures and the Stranski-Krastanov mechanism takes place at
low temperatures. Besides, the thinner the overgrowth the larger its average
lattice parameter. For thicker deposits it has its bulk value. In other words,
thin Cu overlayers are at least partly homogeneously strained. It should be
noted that the enthalpy of evaporation of Cu (80500 cal/g.atom) is greater
than that of Ag (67900 cal/g.atom), which means that the cohesion forces
are expected to be stronger than the adhesion forces. Besides, the misfit is
quite large in absolute value, f = (b — a)/a = —11.5%.

Face-centered cubic metals grow on the most densely packed planes
(110) and {100) faces of body-centered cubic metals W and Mo, usually
following the layer-by-layer mechanism at low temperatures and the
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Stranski-Krastanov mechanism at high temperatures [Bauer 1982]. [t
should be noted that the enthalpies of evaporation of Mo and W
(142000 cal/g.atom and 191000 cal/g.atom, respectively) are much greater
than those of fcc metals deposited which vary from 67900 cal/g.atom for
Ag t0 94000 cal/g.atom for Pd [Emsley 1991). Hence adhesion forces much
stronger than the cohesion forces should be expected.

A typical example is the case of deposition of Cu on (110) and {100)
W [Bauer et al. 1974]. LEED and AES measurements have shown that
at room temperature the growth follows the layer-by-layer pattern. When
the substrate plane is (110} the first Cu monolayer has 1.41 x 10'% atoms
em™~?, which is exactly the surface density of the W atoms in the adjoining
‘W(110) plane. Hence, the first Cu monolayer is pseudomorphous with the
substrate. The second monolayer is expanded in the [100] direction and not
strained in the [111] direction, thus having 1.6 x 10> atoms cm~2, which
is somewhere between the surface deasities of the W(110) and Cu{111)
planes. If a film thicker than two monolayers is annealed at a higher
temperature all material in excess of two monoclayers agglomerates into
isolated 3D islands, which means that the first two monolayers are stable.
In the case of the (100) substrate plane, the first two monolayers have
1 x 10'5 atoms cm™~2 each, i.e. they have the same density as the W(100)
plane and hence are pseudomorphous with the substrate. Even at room
temperature the slope of the AES signal versus film thickness plot is very
smal} after the second break point, which is an indication that 3D islands
are formed on top of the second monclayer. This is unlike the {110)
plane where 3D islands are formed on top of the second monolayer at
temperatures higher than 700 K. Thus layer-by-layer growth is observed at
low temperatures and Stranski-Krastanov growth at higher temperatures.
The critical temperature for transition from one to the other mechanism is
considerably higher for the more densely packed (110) than for the (100)
substrate plane. Similar results are also obtained in the case of deposition
of Ag and Au on both low index planes of W [Bauer et al. 1977).

When evaporating Fe on Cu(111)} in the temperature range 20—400°C
Gradmann, Kiimmerle and Tillmanns [1976] (see also Gradmann and Till-
manns [1977]) established that the LEED patterns of the Fe films cannot
be distinguished from the pattern of the pure Cu substrate. Note that at
temperatures below 912°C the thermodynamically stable phase of iron is
c-Fe with a bece lattice; above this temperature it is v-Fe with an fec lattice.
Hence, the thinnest Fe films (< 20 A) consist of the thermodynamically
unstable +-Fe and grow pseudomorphous with the Cu substrate. Moreover,
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AES measurements showed that at low temperatures and/or high enough
atom arrival rates, the films grow in the layer-by-layer mode, while at
high temperatures and /or low atom arrival rates, island growth is observed
from the very beginning of the deposition. Thus, the mode of growth
depends on the supersaturation Ay, independently of whether the latter
was changed by the temperature or by the atom arrival rate. Note that the
enthalpy of evaporation of v-Fe (96000 cal/g.atom) is higher than that of Cu
(80500 cal/g.atom). The atom spacings of a-Fe and +-Fe are 2.4823 A and
2.378 A, respectively, and the corresponding values of the misfit with the
copper subatrate are 2.88% and 0.85%.

The deposition of metals on semiconductors follows more or less the
same pattern as that of metals on metals systems. Stranski-Krastanov or
Volmer-Weber growth at high temperatures and layer-by-layer growth at
low temperatures are usually observed. The interpretation of the obser-
vations is much more complicated in view of the different nature of the
chemical bonds in the substrate and deposit crystals.

In the case of deposition of Ag on the As(001) face of GaAs described
above {Massies and Linh, 1982a—] AES measurements have shown that
above 100°C, 3D islands are formed on the GaAs substrate (Volmer-Weber
mode), while at lower temperatures the growth is very close to the layer-
by-layer pattern.

Gold and silver films on Si{111) and 3i(100) are the most often studied
systems ([Hanbiicken and Neddermeyer 1982; Hanbiicken, Futamoto and
Venables 1984a, b; Hanbiicken and LeLay 1986}; for a review see LeLay
[1983]). A characteristic feature of the Au/Si system is the alloying which
takes place even at room temperature. Silver has a much weaker tendency
to make alloys with Si, and Ag adlayers on Si{111) are believed to form
sharp interfaces with the Si substrate. It has been found that at room
temperature the Ag films grow either via the Stranski-Krastanov mode
with very flat islands [Venables, Derrien and Janssen 1980] or via the
layer-by-layer mode [LeLay et al. 1981; Bolmont ef al. 1981]. In a
comparative study of Ag on the (111) and {i00) planes of Si by AES
and SEM, Hanbiicken, Futamoto and Venables [1984b] found that at high
temperatures (400-500°C) the 3D Ag islands are flatter on Si(111) (relative
height 0.01-0.04) compared to those on Si{100) (relative height 0.3-0.6).
An increase of the relative height of the 3D islands with temperature has
been observed during deposition of Bi on Si(100) where a transition from
layer-by-layer to Stranski-Krastanov growth at a critical temperature of
about 280 K has been found [Fan, Ignatiev and Wu 1990].
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The epitaxial growth of one semiconductor material on the single crystal
surface of another material is closely connected with device fabrication.
Here both the substrate and the deposit materials are characterized by
their directional covalent bonds. The growth of elementary semiconductors
Si and Ge on top of each other as well as of Ge;Si;—; alloys on the (100)
and {111} faces of Si is most often studied.

Considering the covalent bonds as “brittle” and “inflexible,” the lattice
misfit between Ge and Si (4.1%) can be accepted as very large. Narusawa,
Gibson and Hiraki [1981a] (see also Narusawa and Gibson [1981b, 1982])
interpreted their data of Rutherford Backscattering Spectroscopy (RBS)
that Ge films deposited at 350°C grow pseudomorphically with the sub-
strate up to three monolayers, after which 3D islands are formed on top.
Alloying does not occur and the interface is abrupt. These conclusions
were later confirmed by LEED and AES experiments of Shoji et ol [1983)
and by Asai, Ueba and Tatsuyama [1985] for both (111} and {100) faces
of Si. These authors reported that at room temperature layer-by-layer
growth takes place until six monolayers are formed, further deposition
giving rise to amorphous Ge. Above 350°C the growth mode follows
the Stranski-Krastanov pattern in which 3D islands are formed on top
of three monolayers of Ge. Marée et al. [1987] found with the help of
RBS and RHEED that 3D Ge islands were formed on four monolayers (two
bilayers) which remained stable on the Si(111) substrate at temperatures
up to 800°C. The results obtained by deposition at room temperaiure with
further annealing at higher temperatures were practically the same as the
ones obtained by deposition at elevated temperatures. The room temper-
ature deposited films were continuous and smooth. The high temperature
films showed drastic changes which were attributed to island formation.
SEM micrograph of a Ge film, 50 monolayer thick, deposited at room
temperature and annealed at 500°C for 3 min, showed the presence of 3D
islands with a density approximately 1 x 10° cm~2. Thus layer-by-layer
growth has been established up to 500°C and Stranski-Krastanov growth
beyond this temperature. Similar investigations of the deposition of Si on
Ge(111) [Marée et al. 1987] showed that layer-by-layer growth takes place
at temperatures up to 600°C which was then replaced by growth of isolated
islands with approximate density 4 x 107cm =2 directly on the Ge substrate
(Volmer-Weber growth).

A marked dependence of the mechanism of growth on the value of the
natural misfit has been observed in the case of deposition of Ge,Sij_,
alloys on Si{100}. Kasper, Herzog and Kibbel [1975] established that when
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the Ge content z in the alloy exceeded 0.2 so that the lattice mismatch is
larger than 0.82%, the growth proceeds by formation of 3D islands. 2D
growth takes place when the Ge content is less than 0.2. The lower the Ge
content the thicker the alloy film can be grown by successive monolayers
pseudomorphous with the substrate. These findings were later confirmed by
Bean ef al. [1984], who found, however, that pseudomorphous 2D growth
can take place for alloys with Ge content up to 0.5 and thicknesses as great
as 0.25 um.

The examples given above do not exhaust all the cases deseribed in
the literature. Deposition of noble gases is another interesting example.
For instance, in the case of deposition of Xe on Si(111) at 25 K layerlike
growth [Bartha and Henzler 1985] has been established, the film being
pseudomorphous with the substrate. At elevated temperatures (36 K) clear
island growth has been observed. The same tendency has been found in
quite a different system, namely, the growth of tungsten oxide on tungsten
[Lepage, Mezin and Palmier 1984]. In the low temperature regime (<
600°C) the oxide seems to grow layer by layer, while at high temperatures
(> 700°C) the deposit is formed by discontinuous islands.

We can summarize the main tendencies in the mode of growth which
are more or less applicable to systems involving any kind of chemical bonds
as follows [Markov and Stoyanov 1987]:

1. When the interfacial bonding is weaker than the bonding in the
deposit itself, the formation and growth of isolated 3D islands rather than
monolayers are favored.

2. High substrate temperatures favor the growth of 3D islands either
directly on the substrate (Volmer-Weber mechanism) or on one or several
stable adlayers of the deposit (Stranski-Krastanov mechanism). In addi-
tion, the higher the temperature, the greater is the relative height of the
3D crystallites,

3. Higher deposition rates favor layerlike growth. The higher the
deposition rate, the more layerlike the growth pattern, and vice versa.

4. The lattice misfit plays a prominent role in determining the mode
of growth. The larger the misfit, the preater is the tendency towards
island-like growth, and vice versa.

5. The crystallographic orientation of the substrate also affects the
mechanism of growth. The more densely packed the substrate plane, the
greater the tendency towards layerlike growth in comparison with the less
densely packed planes. In particular, this tendency is expressed by the
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fact that the more densely packed the substrate planes are, the flatter the
3D crystallites will grow.

4.3.1. Relation of Dupré for misfitting crystals

As discussed above, the substrate and deposit crystals differ not only in
their lattices and lattice parameters but also in the nature and strength
of the chemical bonds. In the case of zero misfit the quantity which
gives properly the catalytic potency of the substrate, or in cther words,
the energetic influence of the substrate on the film growth, is the specific
adhesion energy which is determined by Eq. (1.28). To account for the
lattice misfit we perform the same imaginary process as described in Chap. 1
(Fig. 1.6).

We assume that two infinitely large crystals A and B have different
lattice parameters ¢ and b [van der Merwe 1979]. We cleave both crystals
reversibly and isothermally, and produce two surfaces of A and two surfaces
of B. We then uniformly strain the halves of one crystal, say B, to match
exactly the lattice parameter of the other (A), and put the halves of A
and B in contact as before. Assuming that the lateral homogeneous strain
does not affect the bonding across the interface, we gain an energy —2Uzg.
After that we allow the bicrystal system to relax completely so that misfit
dislocations are introduced at the interface. The energy of homogeneous
strain is regained completely, but the energy £y of a cross grid of misfit
dislocations is introduced. The energy balance now reads

U; = Uap +Upp —2Usg + 2E, .

Then
g =oa+op—-f+Ea=a+E& {4.125)

or
o =os+os— 8", {4.126)

where £4 == E4/T is the misfit dislocation energy per unit area and the
asterisks indicate that the quantities refer to misfitting crystals. The
specific adhesionr energy is now given by the difference

B =p—&. (4.127)

As we see, the dislocation energy appears as a decrement to the binding
between both crystals. This is not surprising if we recollect that when
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E4 = 0 the atoms are not displaced from their positions at the bottoms of
the potential troughs provided by the other crystal.

On the other hand, the dislocation energy appears as an increment to the
gpecific interfacial energy which is due to the lattice misfit. The remaining
part o; is due to the different nature and strength of the chemical bonds
and does not depend on the misfit. Thus the interfacial energy o7 = oy + &
consists of two parts: a chemical part ; and a misfit part £4.

We can repeat this process assuming now that the crystal B is not
infinitely thick, but thinner than the double critical thickness 2¢_ for pseu-
domorphous growth (Fig. 4.51). We again cleave both crystals reversibly
and isothermally, strain uniformly the halves of B to match exactly the
lattice parameter of A, and put the halves of A and B in contact as before.
Carrying out this operation we strain the free surfaces of B and change
the specific surface energy. Drechsler and Nicholas [1967) found that the
change of the specific surface energy does not exceed several percent of the
absolute value. We assume that this change is much smaller than the work
done to strain the crystals and neglect it. Then we allow the bicrystal
systems to relax. Misfit dislocations will not be introduced at the interface
as the half-thickness of B is smaller than the equilibrium critical thickness
for pseudomorphous growth and the pseudomorphous film is stable. The
energy balance will read

o] =ca+op —B+E(f) =0 +E(f), {4.128)

where £, is the strain energy per unmit area of the interface stored in
crystal B. The latter is a parabolic function of the lattice misfit f.

Finally, in the general case (the crystal B is again thin but is thicker
than the double critical thickness 2t. for pseudomorphous growth) part of
the homogeneous strain is regained and misfit dislocations are introduced
at the interface but their dengity is partially reduced owing to the residual
strain. Then [Markov 1988]

of =oa+op =B +E(f}+Ealf — fe)

=0 + E(fe) +Ea(f - fo) (4-129)
and
B =B-E(fe) = Ealf = fe) (4.130)

where the strain energy £.{f.) and the dislocation energy £4( f — f.) depend
on the homogeneous strain f, and the mean dislocation density fq = f - fe,
respectively.
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Fig. 4.51. For the derivation of the relation of Dupré in the case of thin films on a
semi-infinite substrate.

4.3.2. Thickness dependence of chemical potential

As discussed in Chap. 1 the chemical potentials of the first deposited layers
differ from the chemical potential of the bulk deposit crystal, p... First,
the interaction with the substrate differs from that with the same crystal,
and second, the lattice misfit leads to the appearance of homogeneous
strain and/or misfit dislocations. We know that elastically strained crystals
have higher chemical potentials and hence the homogenecus strain energy
and the average value of the periodical strain energy due to the misfi
dislocations contribute to the chemical potential of the film. On the other
hand, the atom displacements affect the interaction across the interface
and again lead to increase of the chemical potentials of the first few layers
deposited on the foreign substrate.

The chemical potential and hence the equilibrium vapor pressuce of &
semi-infinite monolayer on a foreign substrate is a function of the separation
work from half-crystal position ¢ , where the prime reflects the influence of
the foreign substrate. An atom in a half-crystal position is again connected
with half atomic row, half crystal plane and the underlying half crystal
block, but now the latter is of a different material and the corresponding
energy of desorption, ¢, differs from the energy of desorption, s, from
the surface of the same crystal. Thus we can write the following general
expression for the chemical potentials of the atoms in the first, second,
third, etc. monolayers:
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w(n) = po +a¥ (e +o7 -0}, (4.131)

where Ac = o+ 0] —a; is the change of the surface energy connected with
the deposition and is exactly equal to the difference of bonding between
like and unlike substrates (see Chap. 1). The chemical potential of each
monolayer iz just equal to the chemical potential of the bulk crystal plus
the difference of the bondings per atom with the like and unlike crystals.
In fact Eq. (4.131) is equivalent to BEq. {1.59) with the exception that it
accounts for the lattice misfit. In this respect it appears as a generalization
of Eq. (1.59).

Substituting o from (4.129) into (4.131) and replacing ¢ and 8 by @,
and ¢, respectively, give [Markov 1988]

#(n) = fic + [pa — w3 (n) + £a(n) + £e(n)] , (4.132)

where e4(n) = a2£4(n) and c.(n) = a®E.(n) are now the energies per atom
of the misfit dislocations and the homogeneous strain.

Thke term in the square brackets accounts for the strength of the interfa-
cial bonding related to the strength of bonding with the same crystal. It in-
cludes the energy per atom, €4, of a cross grid of misfit dislocations as shown
in the previous section. The last term in the brackets is the contribution
of the homogeneous strain energy per atom, ¢, to the chemical potential.

It is clear that when the substrate is of the same material as the deposit,
Wa = @Whs fJa=Je =0, 64 = £, = 0 and u(n) = po. What follows is
that the difference between the crystal growth and epitaxial growth is of
purely thermodynamic nature. We could even define the different kinds of
epitaxial growth on the base of Eq. (4.132). Thus if the main contribution
to p(n) comes from the difference in bonding, ¢, — ¢} (n), or in other words,
from the nature of the chemical bonds in both partners, we have the case
of heteroepitaxy. When the main contribution to u(n) comes from the
misfit energy, the bonding in both crystals remaining essentially the same,
we consider that as homoepitaxial growth. Finally, when u(n) = pe we
cannot speak of epitaxy at all.

#, can be either greater or smaller than ,, and hence the term in the
brackets can be either positive or negative and u(n) can be either greater
or smaller than pie.. In order to follow the u{n) dependence we should
consider the thickness dependence of the quantities involved in Eq. (4.132}.

The adhesion energy per atom, ), accounts only for the atomic in-
teraction across the interface in the absence of misfit. For short range
interactions it changes rapidly with film thickness, going to , from above
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Fig. 4.52. Dependence of the energy of desorption of an atom from unlike substrate on
the distance from the interface measured in number of monolayers. @ > ¢, corresponds
to complete wetting and vice versa.

or from below (Fig. 4.52). The energetic influence of the substrate on the
atoms of the second monolayer will be very weak and can be neglected
except for some extreme cases.

As shown in the previous section, the thickness up to which ey and
€e coniribute to the chemical potential depends in a complicated way on
the lattice misfit. The periodical strain due to misfit dislocations attenuates
rapidly with the distance from the interface and practically vanishes beyond
a distance equal to half of the misfit dislocation spacing, /2 (Fig. 4.41).
The latter is inversely proportional to that part of the misfit fq4 which is
accommodated by misfit dislocations. Hence, €4 = 0 for t > 5/2.

The homogeneous strain energy ¢, is a parabolic function of the homo-
geneous strain f, and a linear function of the thickness t. When ¢ < £,
£e = £.(f). Above the eritical thickness for pseudomorphous growth, t., fe
and ¢, rapidly decrease and can be neglected. Hence, we can simplify our
considerations assuming ¢4 = 0 and . = £.(f) at t < ¢, and £, = 0 and
eqa=¢e4(f) att > ..

We consider now some typical cases. We assume first that ¢, > ¢a,
i.e. the adhesive forces are stronger than the cohesive ones. If the misfit is
small enough so that e, < po and & is large, then
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(1) = poo +‘Pa—§0;+£e<}um

and
#(n)=ﬂ'm+5egﬂw: 2£n£tc/b~

If the energetic influence of the substrate is felt not only by the first
monolayer but also by the atoms of the second monolayer, though much
more weakly, one observes the behavior shown in Fig. 4.53 by solid circles.

CHEMICAL POTENTIAL

=
3

Fig. 4.53. Schematic presentation of the dependence of the chemical potential of the
uppermost monolaysr on film thickness in ultrathin films. Filled circles: Frank-van
der Merwe mechanism or layer-by-layer growth; semifilled circles: Stranski-Krastanov
mechanism or layer-by-layer growth followed by islands; empty circles: Volmer-Weber
mechanism or island growth {after Stoyanov [1986]}.

Let us assume now that ¢ > ¢, as before but the misfit is large, say,
f1 < f < fs (see Fig. 4.43) so that the energy of the homogeneous strain is
not negligible compared with g... Then

B(1) = oo + o — WL+ e < it
#(n)=ﬂm+5e>l"m: 25”5‘*;

() = proo +€4(t) > floo, 125,
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The latter u{n) dependence is shown in Fig. 4.53 by the semifilled circles.
The gradual decrease of p{n) beyond the fourth monolayer reflects the
decrease of the mean energy per atom of the periodicyl elastic strain due
to the misfit dislocations with film thickness (see Fig. 4.42).

We assume further that ), < ,. If the misfit is small enough so that
t. is large, then

ﬂ(l):“m""‘:aa_@;‘f“ee(f])ﬂ'm 3
1) = ftog +Ee > peo, 250t Sb.

Beyond £, ¢, vanishes and misfit dislocations are introduced at the
interface 30 that £, is replaced by 4.

I the misfit is large and in the extreme case larger than fi, ¢, = 0 from
the very beginning,

21} = floo + @ — ¥y + 4 > foo
B(n) = oo +2a(N) > poo,  2<n < pf2b,
n) = po,  n>p/2b.

Let us consider the last case in more detail. The u(n) dependence is
decreasing, thus reflecting the decrease of the periodical gtrain with film
thickness (see Fig. 4.41). Then every next monolayer will have a chemical
potential smaller than that of the previous one and will start to form before
the completion of the latter. In such a case the formation of islands thicker
than one monolayer is thermodynamically favored and their equilibrivm
with the vapor phase will be realized through a half-crystal position of
a multilayer height (Fig. 4.50). Then the chemical potential of the film
consisting of several atomic monolayers, u{1 — n), will be given by the
mean value of the chemical potentials of the constituent monolayers:

gl —=n) Zu(n

(Fig. 4.53, open circles), as discussed above.

4.3.3. Thermodynamic criterion for modes of growth

It follows that depending on the interrelation between the adhesive and
cohesive forces on the one hand, and the value of the misfit, resulting in an
interplay between the energies of the misfit dislocations and homogeneous
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strain, on the other, three different types of thickness dependence of the
chemical potential can be distinguished:

1. dpfdn < 0 when ¢} < ¢, at any value of the misfit,
2. dufdn > 0 when ¢} > ¢, at small misfits,
3. du/dn < 0 when ¢, > @, at large misfits.

Obviously when du/dn is positive the completion of the first monolayer
before the start of the second one, of the second before the start of the third,
etc., is thermodynamically favored — layer-by-layer growth is expected. In
the opposite case the formation of a second monolayer before the completion
of the first one is thermodynamically favored and the formation of 3D
islands should take place. It follows that the above inequalities define the
thermodynamic criterion for the mechanism of growth of thin epitaxial
films [Stoyanov 1986; Grabow and Gilmer 1988]:

1. VOLMER-WEBER growth when du/dn < 0,
2. FRANK-van der MERWE growth when dy/dn > 0,
3. STRANSKI-KRASTANOV growth when dp/dn 5 0.

Once the chemical potential acquires its bulk value u., the epilayer will
grow further by the simultanecus growth of several monolayers [Borovinski
and Tzindergozen 1968; Gilmer 1980a; Chernov 1984].

It is worth noting that the above thermodynamic criterion is in fact
equivalent to that given by Bauer [1958] in terms of the specific surface
energies. The latter becomes clear if one looks at Eq. (4.131).

4.3.4. Kinetics of growth of thin epitozial filma

We are now in a position to study the growth of thin epitaxial films
bearing in mind the above thickness dependence of the chemical potential,
The latter predicts the equilibrium morphology of the deposit whereas
the deposition process is usually carried out under conditions far from
equilibrivin. So we have to study the question of how the substrate
temperature and rate of deposition affect the mechanism of growth.

‘We consider the case of complete condensation when all atoms arriving
at the crystal surface join sites of zrowth before re-evaporation. As in the
case of growth of a defectless atomically smooth crystal face, the atoms
from the vapor phase strike the substrate and, after a period of thermal
accommedation, randomily walk to give rise of 2D nuclei. The 2D nueclei
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grow further by the attachment of adatoms diffusing to their edges on
the substrate surface and on their exposed surface as well. An adatom
population is formed on top of them (Fig. 4.54(a)) whose concentration
ng(r) can be found upon solving the master equation (3.125) subject to the
boundary conditions n,(r = p) = n¢, and (dns/dr).—¢ = 0. The solution
reads (see Eqs. (3.127) and (3.135))

R
ny(r) =ng + Z’E(pz ~r?), (4.133)

where R = P(2nmkT)~'? cm~2sec™! is the atom arrival rate. The
quantity nt; is the concentration of adatoms in equilibrium with the island
edges given by

1)y —
N, = e €XP (———p( )kT pw) : (4.134)

where 75 is the adatom concentration on the surface of the same bulk
deposit crystal given by Eq. (3.18).

Equation (4.133) shows a parabolic dependence of the adatom concen-
tration on the distance from the island center (Fig. 4.55(a)) which displays

a maximuin
2
Mg, max = Mgy + — P

4D,

just over the island center. The increase in p leads to values of 7, max high
enough to give rise to nuclei on top of the islands (Fig. 4.54(b)). Thus
nuclei of the second monolayer appear before the completion of the first
one. Once such nuclei are formed they grow initially at the expense of the
atoms diffusing to their edges on the terrace between the edges of the upper
and lower islands. The adatom concentration on the terrace (Fig. 4.55(b})
is given by Eq. (3.136) subject to the boundary conditions n.(p1) = nf;
and n.(p2) = ns,, where

iy = ey (L2 0 ) (4.135)
is the adatom concentration which is in equilibrium with the edges of the
second monolayer islands [Markov and Stoyanov 1987).

The solution reads (c.f. Eq. {3.136"))

"
ne(r} = n& +—— (p? — %) — (&n, +

" B 1= ) ale (a1

4D, In{p2/p1)

where An, = ng, —nS,.
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Fig. 4.54. Subsequent stages of film growth and atom exchange between the kinks and
the dilute adlayer. (a) The concentration of atoms adsorbed on top of the first monolayer
island increases with island size, which leads to nucleation of 2D islands of the second
monolayer. {b) Surface transport from the edges AiB;CiD; to the edges AgB2aCaD2
takes place when u{2) < u(1). {(c) Surface transport transforms the layer configuration
into a crystal of two-monolayer height, which grows further by nucleation of islands of
the third monolayer. (I. Markov and 5. Stoyanov, Contemp. Phys. 28, 267 (1987). By
permisgion of Taylor & Francis Ltd.)

Suppose now that u(1) > p(2), i.e. dp/dn < 0. The adatom population
on top of the first monolayer islands is supersaturated with respect to the
bulk deposit crystal. This favors nucleation on top of the first monolayer
islands and the thermodynamic driving force for nucleation to occur shounld
be greater than Ap = p(1)— poo. On the other hand, ng; > nf, and surfoce
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Fig. 4.55. Profile of the adatom concentration on {a} the surface of a monolayer istand and
{b) the terrace formed between the edges of the lower and upper monolayer istands with
radii p1 and p2, respectively. n?, and nj, are the adatom concentrations in equilibrium
with the corresponding island edges.

trangport from the edges of the lower island tc the edges of the upper island
will take place whose driving force is given by An,/X = (n — n)/A,
where X is the distance between the edges (Fig. 4.55(b}). Thus the upper
islands will grow at the expense of the lower islands and after some time
will catch up with the lower islands to produce islands with a double
height (Fig. 4.54(c)). Hence, at temperatures high enough to facilitate
the surface tramsport island growth will be observed. However, if the
temperature is low the surface transport from edge to edge will be hindered
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so that the first monolayer islands will grow laterally to coalesce and cover
completely the substrate before a significant growth on top of them takes
place. Layerlike growth will occur for kinetic reasons. However, such films
grown at low temperature are metastable. Upon heating they will break up
and agglomerate into 3D islands. Note that the growth will not follow the
true layer-by-layer mechanism {complete coverage of the substrate by one
monolayer before the next one to nucleate) as the thermodynamics favor
island growth.

In the opposite case, u{1) < w(2) (du/dn > 0) (Fig. 4.55(b)), the islands
of the second monolayer will have a chemical potential higher than that of
the lower islands and surface transport of atoms will occur from the edges
of the upper islands to the edges of the lower islands. As a result the upper
islands will decay. Thus, layer-by-layer growth will be observed irrespective
of the temperature.

Finally, when du/dn changes its sign with film thickness the first mono-
layers will grow layer by layer for reasons given above. Once a particular
thickness is reached (the so-called Stranski-Krastanov thickness) such thas
the corresponding chemical potential is higher than p., 3D islands will
form and grow at high temperatures. Surface transport from the edges of
more elastically strained islands to the edges of islands less strained or not
strained at all will take place. As a result the Stranski-Krastanov mecha-
nism will be observed. At low temperatures the growth will proceed further
by successive formation of monolayers. Again if such low temperature films
are annealed at higher temperatures the material in excess of the first stable
monolayers (for which du(n}/dn > 0) will break up and agglomerate into
3D islands.

It is important to note once more that a true layer-by-layer growth takes
place only when the chemical potential is an increasing function of the film
thickness, i.e. du/dn > 0. At low temperatures and du/dn < 0, the film
growth will proceed by simultaneous growth of several monolayers as shown
in Chap. 3.

Thus, we have to expect a change of the mechanism of growth from
layerlike to either Volmer-Weber or Stranski-Krastanov with increasing
temperature. The necessary condition for a transition to occur is du/dn <
0. In other words, the thermodynamics should favor island growth either on
the substrate surface or on several stable monolayers of the deposit. Our
next task is to find the critical temperature for transition to occur.

We consider the case where y; > py > pg... so that island growth
is expected under near-to-equilibrium conditions. The same is valid in



398 Epitazial Growth

the case of Stranski-Krastanov growth after completion of the first stable
adlayers. As discussed above, 2D nuclei of the second, third, etc. mono-
layers are formed on top of the first monolayer islands which results in the
formation of flat pyramids of growth as shown in Fig. 3.26. A very nice
picture of such pyramids of growth of Cu on Ru{0001) can be seen in the
paper of Potschke et al. {1991}, As the chemical potential is a decreasing
function of the monolayer number n the surface transport will be directed
from the lower to the upper steps. We make use of the solutions of the
diffusion equation (3.125) subject to the boundary conditions ny(p1) = ngy,
na{p2) = nly, na(pa) = nfy, etc. assuming rapid exchange of atoms between
the steps and the dilute adlayers on the terraces (diffusion regime). We
then obtain solutions for n.(r) on every terrace (Eq. (4.136)) and, following
the same procedure as in Chap. 3, we calculate the rates of advance of the
circular steps, v, = dp,/dt [Stoyanov and Markov 1982].
Thus for the first monolayer island we have

dpn _ R (1 _ mpiN(1 ~p§/p?)) __ 2An3D,
dt ~ 2rNeN.p In(p}/r3) NopyIn{p}/e3) °

. where N; is the density of the growth pyramids formed by successive
nucleation per unit area of the substrate and Any = nf;, — nf,.
In this expression, the first term on the right-hand side which contains
R is always positive as the surface coverage mp?N, is smaller than unity
before the coalescence and p; > pp. The second term which contains the
equilibrivm concentration difference Ant is also positive as n%; > ng. It
follows that vy can be either positive or negative, depending on the values
of the deposition rate R and the difference Anf which is a steep function of
the temperature. In the extreme case of an absence of deposition (annealing
at R =0), the first term in the right-hand side is equal to zero and v <0,
thus reflecting the process of detachment and transport of atoms from the
lower monoclayer island edge to the edge of the upper island. The same
process takes place during deposition, but at a higher temperature, when
the negative term overcompensates the positive one. If this occurs before
the coalescence of the first monolayer islands, say, at a surface coverage
©y = wpiN, < 0.5, island growth has to be expected. On decreasing
the temperature, An? decreases, and under a given temperature the term
containing An? has a negligible contribution to »;. The rate v; is then just
the same as in the case of deposition on its own substrate, i.e. in the case
of a growth of a bulk crysial when p(n) = peo.
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We have to solve now a set of differential equations for the rate of
advance of the steps. The latter can be written in terms of surface coverages
O, = 12N, (n = 1,2,3,...) as a function of a dimensionless time 8 =
Rt/Ny, which is in fact the number of monolayers deposited, in the form

.d_@._l. 1 My + Q) -G
@ = n(0,/05) °
den = Mn—l + en-l - en _ Mn + en - en-{-l (4 137)
de In(@n-——l/en) In(en/eﬂ+1) ’ '
dOy  My.1+On-.;— 6N
a8 = Wbn_i/0n)

where the subscript N denotes the uppermost monolayer and the
parameters
_ 4w Dy Ne{ng . — 15 1)
" R
include all the materials quantities and the differences of the adatom
concentrations, or in other words, the differences of the chemical potentials
(see Eqs. (4.134) and (4.135)).

(4.138)

4.3.5, Critical temperature for transition from 2D to 8D growth

A numerical analysis of (4.137) shows that the solutions for ©, and hence
the time evolution of the shape of the growth pyramids are very sensitive
to the values of M,. The latter are strongly increasing functions of
temperature and are inversely proportional to the atom arrival rate R.
When the chemical potentials are independent of the layer number, or
in other words, ng, = fe, M, = €. In this case there is no directed
surface transport between the steps and the growth pyramids preserve their
shape. This means that the epitaxial film will grow as the bulk crystal face
following the 2D nucleation mechanism with simultaneous growth of several
layers. It is immediately seen that the system (4.137) turns into (3.144) for
a pyramid of growth consisting of 2D islands with M, = 0.

Let us consider the simplest case of the bilayer pyramid shown in
Fig. 4.54 or Fig. 4.55(b), assuming in addition that nfy = fg, i.e. p(2) =
Koo This i3 a sufficient condition for islands growth to take place as bilayer
istands will be-formed as a result of it. As discussed in Chap. 3, the bilayer
steps propagate more slowly than single steps and the double step will be
caught up with by the upper step. Trilayer island will be formed, etc, The
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numerical solution of the system (4.137) in the case of a bilayer pyramid
is shown in Fig. 4.56. At M, = 0.25, ©, initially increases, displays a
maximum &; = (.5 and then decreases. The latter means that at some
stage of growth the rate of advance of the first monolayer island, dp; /dt,
becomes negative, or in other words, the first island decays and the atoms
feed the second island. Then the edges of the latter catch up with the edges
of the former and an island with double height is produced (Fig. 4.54{c)).
The double step advances more slowly than the single step, and after
some time the third step catches up the double step, thus producing an
island with triple height. As a result, island growth takes place, the kiretic
eriterion for it being

dn Dy No(ng) — fge)

>0.25. (4.139)
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Fig. 4.56. Dependence of the surface coverages of the first (curves 1 and 1’} and second
(eurves 2 and 2'} monolayers on the number of monolavers deposited. Curves 1 and 2:
My =0.25 (p(1) > u(2)); curves 1V and 20 M = 1.5 {(p(1) < u(2)).
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The physical meaning of this criterion becomes transparent if we write

it in the form
ArD,(ng) — Nae)

R/N,

The numerator represents the total diffusion flux from the edge of the
lower island to that of the upper island resulting from the difference of
the equilibrium adatom concentrations. The denominator is equal to the
number of atoms joining one pyramid per unit time. Therefore, the criterion
simply states that in order for island growth to take place the diffusion flux
from edge to edge should be equal to or larger than 25% of the total number
of atoms joining the pyramid. An increase of the deposition rate R leads to
an increase of the overall growth rate of the pyramid without affecting the
diffusion flux which is responsible for the transformation of the pyramid
to a 3D island. The result is a transition to layer-by-layer growth. An
increase of temperature has the opposite effect: it regulis in a faster surface
transport, which in turn facilitates the 2D to 3D transformation.

It is interesting to see what will happen when M; has a negative value,
i.e. when u{l) < fto. AS seen in Fig. 4.56 the surface coverage of the
second monolayer, ©,, decreases, thus reflecting the fact that the surface
transport is directed from the upper to the lower islands edges. The lower
islands grow at the expence of the upper ones and cover completely the
substrate. True layer-by-layer growth results.

Making use of Egs. {4.134), (3.18) and (3.20) for the transition temper-
ature T} from (4.136), one obtains

>0.25 .

(‘191/2 —pa) — {I”(l) - #m] + Pad
kln(167vN,/R) ) (4.140)

T =

Substituting the difference of the chemical potentials from Eq. {4.132)
into Eq. (4.140) for the transition from layerlike growth to island growth,
one obtains

_ ers2 = 9a) — (0o~ @A) —ca + 9ua .

= kln(167vN,/R) (4141)

Bearing in mind that the lateral bonds of an atom in a kink position
remain practically unchanged, @172 — wa = ¢ P @4, and the energy
difference in the square brackets is just equal to the energy | /2~ Pa for
the transfer of an atom from a kink position in the step of the first monolayer
island to the dilute adlayer on top of it.
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Fig. 4.57. Plot of the temperature {in K) for transition fram a planar (layerlike) growth
to Stranski-Krastanov growth as a function of the natural misfit at two different
otrientations (111) and (100) of fcc substrate crystal. An average enthalpy of evaporation,
AHew = 172 = 70 keal mol~l, has been taken. The misfit dislocation energy £y
is computed using the theory of van der Merwe {(Eq. (4.104)) with an average shear
maodulus G = 5 x 10! dyne/cm? and Poisson’s ratio v = 0.3,

Equation {4.141) is valid for transition from layer-by-layer to island
growth where the contribution of the interatomic forces across the interface
to the chemical potential is greatest. In the case of transition from layer-by-
layer to Stranski-Krastanov growth (the latter taking place after formation
of one or two stable adlayers) ¢, — . can be neglected. Assuming that
the stable monolayers are pseudomorphous with the substrate and the 3D
islands are relaxed, Eq. {4.140) simplifies to

{(01j2 — ¥a) — €4+ Pad

L = 6N R)

(4.142)

Then the surface transport will occur from the edges of more elastically
strained monolayer islands to the edges of less strained, or unstrained at
all, monolayer islands.

It should be noted that whereas /5 is characteristic for the bulk
material, ¢, and ¢, depend on the crystallographic orientation of the
substrate. It follows that the critical temperatures will be higher for the
(111) face of an fee crystal (g, = 3y, », = 3’} than for the (100) face
{ws = 40, ¢, = 4¢"). This is indeed what is observed in a series of
experiments (for a review, see Markov and Stoyanov [1987}; Markov [1983]).
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The temperature for transition from layer-by-layer to Stranski-
Krastanov growth (Eq. (4.142)) is plotted against the natural misfit in
Fig. 4.57. The misfit dislocation energy per atom £y is calculated as a
function of the misfit by using the theory of van der Merwe {Eq. (4.104))
with an average shear modulus G = 5 x 10!! dyne/em? and Poisson’s
ratio v = 0.3. An average enthalpy of evaporation, A,y = w12 =
70 kealmol™!, has been taken. As seen the temperature decreases by no
more than 140-150 degrees when the misfit increases from zero to 0.20, and
a transition from planar to Stranski-Krastanov growth can be expected
with increasing temperature or misfit. Besides, the transition temperature
for the more closed packed surface is more than 200 degrees higher in
comparison with the less closed packed surface. A transition from planar to
Stranski-Krastanov growth can be expected even at room temperature for
the latter. As will be shown below this result is in fairly good agreement
with experimental observations.

Thus the morphology of the growing epitaxial film is a result of the
kinetics of deposition and can be quite different from the morphology
required by the thermodynamic criterion. As seen the criterion {4.140)
accounts for both the kinetics and the thermodynamics of the growth of
thin epilayers.

Let us go back to some of the experimental data mentioned at the
beginning of this chapter. We consider first the transition from layer-by-
layer to Stranski-Krastanov growth in the case of deposition of Cu on
W(110) and W(100) [Bauer et ol. 1974]. The upper stable adlayer has
1.6 x 10'% atoms/cm?, and assuming an approximate (111) structure of
tha adlayer the average atom spacing is 2.686 A. Bearing in mind that the
first neighbor distance of Cu is 2.556 A, the natural misfit between the
copper crystallites and the underlying strained copper adlayer is f = 0.05.
Gy = Gp = G; = G = 546 x 101 dyne/em?, v, = 1, = v = 0.3%4,
G = G/21 —v) and A = xf/(1 — v) = 0.23. Then using the theory
of van der Merwe (Eq. (4.104)) we find £ = 310 erg/cm?. Then g4 =
a?€s &= 2 x 10-2° J/atom = 0.126 eV /atom. The enthalpy of evaporation
of Cu is AH. = 72800 cal/mole and ;2 — ¢, = 36400 cal/mole =
2.5 x 107® J/atom = 1.58 eV/atom. With v & 3 x 10" gec™!, N, =
1%10° cm™2, R = 5.9 x 10'2 cm~2sec ™!, and neglecting ,q, we find T} =
600 K, in good agreement with the experimentally found value 700 K. The
same calculations performed for the case of deposition of Cu on W{100) give
f =021, A =0.976, £ = 600 erg/em? and £4 = 0.245 eV /atom. Bearing
in mind that @, = 41, @12 — ¢a = 26830 cal/mole = 1.053 eV/atom,



404 Epitazial Growth

T¢ = 330 K. As mentioned above, 3D islands have been experimentally
abserved to form on the stable adlayers even at room temperature.

As seen, Eq. (4.142) predicts gquantitatively the transition from layer
to Stranski—Krastanov mode of growth and gives correctly the dependence
of the transition temperature on the crystallographic orientation of the
substrate. As for transition from layer to island growth we need reliable
values for the adhesion energy .. It follows that Eq. (4.141) will operate
satisfactorily when the enthalpies of evaporation and the bond strengths of
both materials do not differ too much provided the nature of the chemical
bonds is one and the same. We can assume then that the adhesion energy
lies between the cohesion energies of the two materials. We will consider
as an example the deposition of Ge on Si(111) and Si on Ge(111) [Marée,
Barbour and van der Veen 1987].

A transition from layer to Stranski-Krastanov growth is observed when
Ge is deposited on Si{111), the transition temperature being 500°C. Making
use of Eq. (4.142) and following the procedure outlined above we find
£a = 400 erg/em? and ¢4 = 0.4 eV/atom, ¢, /2 — @a = 44750 cal/mole
= 1.94 eV/jatom. With N, = 1 x 10° em™? and R = 0.1 ML per sec
= 7.2 x 10'3 em~2%sec™?, T, = 480°C, in excellent agreement with the
experimental observation.

The transition from layer-by-layer to island growth in the deposition of
Si on Ge(111) is more difficult to handle. We assume first that the shear
modulos at the interface, Gj, has a value in between the shear moduli of
Si and Ge, 6.41 x 10! dyne/cm® and 5.46 x 10'! dyne/cm®, respectively.
We accept the average value G, = (GgeGsi)'/? = 5.9 x 10! dyne/cm?.
Then £ = 600 erg/cm? and ¢4 = 0.6 eV/atom. The same assumption is
made for evaluating ). From ¢,(5i) = AH(51)/2 = 54450 cal/mole and
@a(Ge) = AH.(Ge)/2 = 44750 cal/mole, we find ¢, = [p.(Si)@a.(Ge)]}/? =
49360 cal/mole. Then ¢y sy — @, = 54450 cal/mole = 2.362 eV /atom, @, —
1, = 5090 cal/mole = 0.221 eV/atom. With R = 7.2x 10'? cm~?sec~! and
N, = 4 x 107 cm™? and neglecting again .4 for the transition temperature
one finds Ty = 580°C. It is worth noting that the approximation concerning
¢, is quite reasonable. If we approximate ¢ by either ¢, (St) or ¢, (Ge),
then T, = 720°C or 480°C, respectively. We can conclude that the real
value of ¢! lies, indeed, between , (Si) and . (Ge).

We have to bear in mind, however, that the theoretically predicted val-
ues of T; are underestimated as the activation energies for surface diffusion
have been neglected. In the case of diffusion of Si atoms on Si{111), the
value 1.3 eV has been reported [Farrow 1974; Kasper 1982]. In addition
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Sakamoto, Miki and Sakamotc [1990] found that the surface diffusion on
a vicinal Si(111) surface is anisotropic. Another uncertainty in caleulating
the transition temperatures comes from the application of the theory of van
der Merwe {1973] to the calculations of the misfit dislocation energy in the
case of materials with covalent bonds which are considered as brittle and
inflexible. Additional uncertainty comes from using the nearest neighbor
model for the calculation of the desorption energies. It is thus surprising
that irrespective of all the approximations made in the quantities involved in
Eqgs. (4.141) and (4.142), the latter are in good semiquantitative agreement
with the experimental data.

Equations (4.141) and (4.142) explain readily the transition from layer-
by-layer to Stranski-Krastanov or island growth with increasing misfit. As
an example we will consider the deposition of 8i,..Ge, on Si [Kasper,
Herzog and Kibbel 1975]. When the composition z varies from 0.15 to 0.25
the natural misfit varies from 0.006 to 0.01, the parameter A varies from
0.024 to 0.04 and &4 varies from (.12 to 0.175 V. The critical temperature
for 2D-3D transition decreases by about 30 degrees which is sufficient to
change the mode of growth when the deposition is carried out at a constant
temperature.

4.3.6. Cross haich patterns

The theoretical model described above gives an explanation of the appear-
ance of the so-called “cross hatch patterns” (see Franzosi et ol. [1986] and
the references therein}). The latter represents an array of parallel lines
or a grid of two arrays of mutually perpendicular lines on the surface
of the growing epilayer where the latter is thicker than the remaining
part of the film. Detailed investigation of the phenomenon in the case
of growth of In.Ga;_,As on InP(100) [Franzosi et al. 1986] showed that
each cross hatch line corresponds to a dislocation line. Thus the cross
hatch pattern appears only when the interface is resolved in a cross grid of
misfit dislocations although one-to-one correspondence between the hatch
lines and the dislocation lines has never been found. Besides, cross hatch
patterns have been observed on the surface of the films under both tensile
and compressive stress, Cross hatch patterns have never been observed on
the surface of pseudomorphous films. Bearing in mind the thermodynamical
analysis of the equilibrium morphology of growing epilayers given in this
chapter it is easy to assume that the parts of the film which are just over
the dislocation lines are elastically relaxed (if ¢ < »/2), whereas the film
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remains under misfit stress in between the lines. It follows that the chemical
potential of the film over the dislocation lines is lower in comparison with
that in the regions between the dislocation lines (Fig. 4.58) and the variation
of 11 is just given by the energy of the homogeneous strain ¢.. Then a surface
transport of adatoms from regions with enhanced chemical potential to
regions with lower chemical potential (denoted by the arrows in Fig. 4.58)
takes place just as in the case shown in Fig. 4.54(b). The parts over the
dislocation lines grow thicker than the remaining parts of the film and a
cross hatch pattern results.

BVESVERVERY \f

HATCH
D/\ FILM mﬂ
SUBSTRATE

Fig. 4.58. A schematic cross-sectional view of a cross hatch pattern. The upper curve
illustrates a possible variation of the chemical potential of the crystal surface due to
nonuniform distribution of misfit strain. The arrows show the direction of surface
transport.
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