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Foreword

The Masterclass series of eBooks bring together pedagogical articles on single broad topics

taken from Resonance, the Journal of Science Education that has been published monthly by

the Indian Academy of Sciences since January 1996. Primarily directed at students and teachers

at the undergraduate level, the journal has brought out a wide spectrum of articles in a range of

scientific disciplines. Articles in the journal are written in a style that makes them accessible to

readers from diverse backgrounds, and in addition, they provide a useful source of instruction

that is not always available in textbooks.

The second book in the series, Linear Algebra and Analysis Masterclasses, is by Prof.

Rajendra Bhatia. A celebrated mathematician, Prof. Bhatia’s career has largely been at the

Indian Statistical Institute, New Delhi where he has been for over three decades and is currently

a Distinguished Scientist. He has also contributed pedagogical articles regularly to Resonance,

and these comprise the bulk of the present book. Only two of the ten articles in the book have

not appeared earlier in Resonance.

Professor Bhatia’s work has made significant inroads in a variety of areas, including math-

ematical physics, computer science, numerical analysis, and statistics. The book, which will

be available in digital format and will be housed as always on the Academy website, will be

valuable to both students and experts as a useful handbook on Linear Algebra and Analysis.

T. N. Guru Row

Editor of Publications

Indian Academy of Sciences

August 2016
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About the Author

Rajendra Bhatia has spent the major part of his professional life at the Indian Statistical

Institute, Delhi, where he now holds the position of Distinguished Scientist. He was earlier

at the Tata Institute and at the University of Bombay, and has held visiting positions in sev-

eral universities, starting with the University of California, Berkeley in 1979, the latest being

Shanghai University in 2015.

Bhatia is the Founding Editor of the book series “Texts and Readings in Mathematics”

or TRIM, which has published over 70 books, as well as the series “Culture and History of

Mathematics”. He is a Fellow of the Indian National Science Academy, the Indian Academy

of Sciences and TWAS, The World Academy of Sciences. He is a recipient of the Indian

National Science Academy Medal for Young Scientists, the Shanti Swarup Bhatnagar Award,

the Hans Schneider Prize in Linear Algebra, and the J. C. Bose National Fellowship.

His research work in Matrix Analysis is cited equally often by mathematicians, statisticians,

physicists and computer scientists. This is largely due to the fact that his work on matrix anal-

ysis (perturbation of spectra, matrix inequalities and equations, positivity, means) combines

ideas and methods from Fourier analysis and differential geometry. It has stimulated much re-

search and has been used in mathematical physics, computer science, numerical analysis, and

statistics.

In 2005 Bhatia gave a definition of “geometric mean” of more than two positive definite

matrices (a definition that has since become standard) and demonstrated that it had the right

properties demanded by various subjects (operator theory, elasticity, diffusion tensor imaging

etc). This has led to interesting theorems spanning analysis and differential geometry and has

found applications in diverse areas such as image processing, smoothing of radar data, machine

learning, and brain-computer interface.

Bhatia is a master of exposition. He is the author of several books, some of which are now

the definitive treatises on their subjects. It is very timely that a collection of his shorter essays

and didactic articles should now be made available in a convenient format.

T R Ramadas

Chennai Mathematical Institute

Chennai
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The Work of the Fields Medallists: 1998
– William T Gowers∗

Rajendra Bhatia
Indian Statistical Institute, New Delhi 110 016, India.

The subject Functional Analysis started around the beginning of this century, inspired by

a desire to have a unified framework in which the two notions of continuity and linearity that

arise in diverse contexts could be discussed abstractly. The basic objects of study in this subject

are Banach spaces and the spaces of bounded (continuous) linear operators on them; the space

C[a, b] of continuous functions on an interval [a, b] with the supremum norm, the Lp spaces

arising in the theory of integration, the sequence spaces lp, the Sobolev spaces arising in differ-

ential equations, are some of the well-known examples of Banach spaces. Thus there are many

concrete examples of the spaces, enabling application of the theory to a variety of problems.

It is generally agreed that finite-dimensional spaces are well understood and thus the main

interest lies in infinite-dimensional spaces. A Banach space is separable if it has a count-

able dense subset in it. From now on we will talk only of separable Banach spaces; the non-

separable Banach spaces are too unwieldy.

The simplest examples of infinite-dimensional Banach spaces are the sequence spaces

lp, 1 ≤ p < ∞ consisting of sequences x = (x1, x2, . . .) for which the sum
∑∞

i=1 |xi|p is fi-

nite; the pth root of the latter is taken as the norm of x. These spaces are separable. The space

of all bounded sequences, equipped with the supremum norm, is called l∞. It is not separable,

but contains in it the space c0 consisting of all convergent sequences, which is separable. The

following was an open question for a long time: does every Banach space contain in it a sub-

space that is isomorphic to either c0 or some lp, 1 ≤ p < ∞? It was answered in the negative

by B. Tsirelson in 1974.

It may be recalled that in the theory of finite-dimensional vector spaces, bases play an im-

portant role. A Schauder basis (or a topological basis) for a Banach space X is a sequence {en}
in X such that every vector in X has a unique expansion where the infinite series is understood

to converge in norm. Unlike in the finite-dimensional case, in general this notion depends on

the order in which {en} is enumerated. We say a Schauder basis {en} is an unconditional basis

if {ep(n)} is a Schauder basis for every permutation p of natural numbers.

It is easy to see that if a Banach space has a Schauder basis, then it is separable. There was

a famous problem as to whether every separable Banach space has a Schauder basis. P Enflo

showed in 1973 that the answer is no. It had been shown quite early by S Mazur that every

(infinite-dimensional) Banach space has an (infinite-dimensional) subspace with a Schauder

basis. (The spaces lp, 1 ≤ p < ∞ and c0 do have Schauder bases.)

∗Reproduced from Resonance, Vol. 4, No. 4, pp. 85–87, April 1999. (Research News)
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One of the major results proved by W T Gowers, and independently by B Maurey, in 1991

is that there exist Banach spaces that do not have any infinite-dimensional subspace with an

unconditional basis.

In many contexts the interest lies more in operators on a Banach space than the space

itself. Many of the everyday examples of Banach spaces do have lots of interesting operators

defined on them. But it is not clear whether every Banach space has nontrivial operators acting

on it. If the Banach space has a Schauder basis one can construct examples of operators by

defining their action on the basis vectors. Shift operators that act by shifting the basis vectors

to the left or the right have a very rich structure. Another interesting family of operators is the

projections. In a Hilbert space every subspace has an orthogonal complement. So, there are

lots of orthogonal decompositions and lots of projections that have infinite rank and corank.

In an arbitrary Banach space it is not necessary that any infinite-dimensional subspace must

have a complementary subspace. Thus one is not able to construct nontrivial projections in an

obvious way.

The construction of Gowers and Maurey was later modified to show that there exists a

Banach space X in which every continuous projection has finite rank or corank, and further

every subspace of X has the same property. This is equivalent to saying that no subspace Y of

X can be written as a direct sum W⊕Z of two infinite-dimensional subspaces. A space with this

property is called hereditarily indecomposable. In 1993 Gowers and Maurey showed that such

a space cannot be isomorphic to any of its proper subspaces. This is in striking contrast to the

fact that an infinite-dimensional Hilbert space is isomorphic to each of its infinite-dimensional

subspaces (all of them are isomorphic to l2). A Banach space with this latter property is called

homogeneous.

In 1996 Gowers proved a dichotomy theorem showing that every Banach space X contains

either a subspace with an unconditional basis or a hereditarily indecomposable subspace. A

corollary of this is that every homogeneous space must have an unconditional basis. Combined

with another recent result of R Komorowsky and N Tomczak-Jaegermann this leads to another

remarkable result: every homogeneous space is isomorphic to l2.

Another natural question to which Gowers has found a surprising answer is the Schroeder-

Bernstein problem for Banach spaces. If X and Y are two Banach spaces, and each is isomor-

phic to a subspace of the other, then must they be isomorphic? The answer to this question has

long been known to be no. A stronger condition on X and Y would be that each is a comple-

mented subspace of the other. (A subspace is complemented if there is a continuous projection

onto it; we noted earlier that not every subspace has this property.) Gowers has shown that

even under this condition, X and Y need not be isomorphic. Furthermore, he showed this by

constructing a space Z that is isomorphic to Z ⊕ Z ⊕ Z but not to Z ⊕ Z.

All these arcane constructions are not easy to describe. In fact, the norms for these Banach

spaces are not given by any explicit formula, they are defined by indirect inductive procedures.

All this suggests a potential new development in Functional Analysis. The concept of a Banach

space has encompassed many interesting concrete spaces mentioned at the beginning. How-

ever, it might be too general since it also admits such strange objects. It is being wondered now
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whether there is a new theory of spaces whose norms are easy to describe. These spaces may

have a richer operator theory that general Banach spaces are unable to carry.

In his work Gowers has used techniques from many areas, specially from combinatorics

whose methods and concerns are generally far away from those of Functional Analysis. For

example, one of his proofs uses the idea of two-person games involving sequences of vec-

tors and Ramsey Theory. Not just that, he has also made several important contributions to

combinatorial analysis. We end this summary with an example of such a contribution.

A famous theorem of E. Szemeredi, which solved an old problem of P Erdos and P Turan,

states the following. For every natural number k and for 0 < δ < 1, there exists a natural

number N(δ, k) such that if n > N(δ, k), then every subset of {1, 2, . . . , n} of size δN contains

an arithmetic progression of length k. Gowers has found a new proof of this theorem based on

Fourier analysis. This proof gives additional important information that the original proof, and

some others that followed, could not. It leads to interesting bounds for N(δ, k) in terms of k

and δ.
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David Hilbert∗

Rajendra Bhatia
Indian Statistical Institute, New Delhi 110 016, India.

It will be difficult to find a twentieth century mathematician working in an area that was

not touched by David Hilbert. There is Hilbert space, Hilbert scheme, Hilbert polynomial,

Hilbert matrix, Hilbert inequality, Hilbert invariant integral, Hilbert norm-residue symbol,

Hilbert transform, Hilbert class-field, Hilbert basis theorem, Hilbert irreducibility theorem,

Hilbert nullstellensatz.

Hilbert also changed the way mathematicians think about their subject. The axiomatic

spirit in which modern mathematics is done owes much to him.

In an address to the International Congress of Mathematicians in 1900, he proposed a list

of 23 problems that, in his opinion, should be the principal targets for mathematicians in this

century. This famous list, now called Hilbert’s Problems, has directed the work of several

leading mathematicians.

David Hilbert was born on January 23, 1862 near Königsberg, then the capital of East

Prussia, now renamed as Kaliningrad in Russia. The seven bridges on the river Pregel flow-

ing through this town are associated with one of the most famous problems in mathematics.

The solution of this problem by Euler became the first theorem in graph theory. The famous

philosopher Kant lived here and the great mathematician Jacobi taught at the university of this

town.

David’s parents were Maria and Otto Hilbert. David’s father was a judge. Hilbert’s teachers

at Königsberg, then a leading university of Germany included H Weber and A Hurwitz. Among

his fellow students was H Minkowski. Hilbert, Hurwitz and Minkowski began here a life-long

friendship that nourished them in their scientific and personal lives.

Hilbert’s research began with the theory of invariants, a subject with roots in geometry and

number theory. The theory had begun with the work of A Cayley and was developed further

by J J Sylvester, R Clebsch and P Gordan. Hilbert changed the face of the subject in two ways.

First he broadened the scope of the theory by introducing the notion of invariants for general

groups. Second, he proved the existence of a finite basis for the ring of invariants, not by

explicit computations as others before had done, but by a general existential argument. Such

an argument, now so commonly used, proceeds by showing that an object must exist, because

if it did not, a contradiction would follow.

Gordan, then considered the ‘King of Invariants’, on seeing Hilbert’s proof remarked “This

is not Mathematics. It is Theology”. It is somewhat ironic that Hilbert got a crucial idea for

his theorem on invariants by studying the work of L Kronecker who was a staunch opponent of

such non-constructive proofs.

∗Reproduced from Resonance, Vol. 4, No. 8, pp. 3–5, August 1999. (Article-in-a-Box)
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To meet such criticisms, and to show the way out of certain paradoxes that had arisen in the

theory of sets, Hilbert advanced the doctrine of formalism as opposed to logicism of B Russell

and intuitionism of L E J Brouwer. At issue was the very nature of mathematical proof. Today,

most mathematicians have accepted the formalist viewpoint.

Hilbert’s work on invariants became the cornerstone of modern algebra. He went on to

do equally fundamental work in geometry, number theory, analysis, differential and integral

equations, calculus of variations, and mathematical physics. In his Zahlbericht (1897), a mon-

umental report written at the invitation of the German Mathematical Society, he presented a

unification of the known results on algebraic number fields as “an edifice of rare beauty and

harmony”. In his book Grundlagen der Geometrie (1899) he laid down a list of complete

axioms of Euclidean geometry. He examined the logical relations between these axioms and

showed their independence by constructing models in which all but one of the axioms are sat-

isfied. He went on to show that this axiomatic system is as consistent as the theory of real

numbers.

Hilbert spent most of his professional life at Göttingen, for a long time regarded as the

mathematics capital of the world. Among his predecessors here had been C F Gauss and B

Riemann; among his contemporaries were F Klein, E Landau, H Weyl and Emmy Noether.

The physicist Max Born began his scientific career as Hilbert’s assistant. Born’s first two

assistants, when he later established an institute for physics at Göttingen, were W Pauli and W

Heisenberg.

Hilbert’s work on integral equations and eigenvalue problems was inspired by the important

papers of E Fredholm. Just as he had done in other subjects, Hilbert laid emphasis on the

fundamental principles of the subject. This laid the foundation for the theory of Hilbert spaces

developed by J von Neumann and others. The classic book Methods of Mathematical Physics

by Courant and Hilbert was also an outcome of this work. Here, several problems of differential

and integral equations were formulated as problems in infinite-dimensional linear algebra. In

this book physicists found many mathematical tools they needed to develop the new quantum

mechanics. It is most remarkable that the word spectrum Hilbert had used to describe some

quantities associated with linear operators later turned out to be exactly the spectrum associated

with atomic emissions.

The first approach to quantum mechanics was the matrix mechanics of Heisenberg, de-

veloped further by Born and Jordan. When they approached Hilbert for advice, he replied

that he did not know much about matrices except that he had thought of them in connection

with some differential equations and perhaps they should look for such equations associated

with their matrices. His suggestion was ignored as being a shot in the dark. However, soon E

Schrödinger proposed an alternative approach to quantum mechanics called wave mechanics.

This used differential equations and was very different from matrix mechanics. Soon however,

the two theories were shown to be equivalent, just as Hilbert had anticipated.

Of course, Hilbert could also be wrong in his judgements. In a lecture in 1919, he gave

some examples of problems in number theory that are simple to state but extremely hard to

solve. He mentioned the Riemann hypothesis, Fermat’s Last Theorem, and the conjecture
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that 2
√

2 is a transcendental number (Hilbert’s seventh problem in the famous list). He then

added that he might see the proof of the Riemann hypothesis in his life time, that the youngest

members of the audience might live to see Fermat’s Last Theorem proved, but no one present

in the hall would live to see a proof of transcendence of 2
√

2. Things did not go the way Hilbert

had predicted. The transcendence of 2
√

2 was established by A Gel’fond in 1934 when Hilbert

was alive; Fermat’s Last Theorem was proved by Andrew Wiles in 1994 when perhaps all

the members of Hilbert’s audience in 1919 were dead; the Riemann hypothesis is yet to be

proved. Incidentally, among Hilbert’s first works in number theory is a new and simple proof

of the transcendence of the number e (first established by Hermite) and of the number π (first

established by Lindemann, Hilbert’s teacher at Königsberg).

As a person, Hilbert was fair, firm and bold. In 1914, when the German government publi-

cised a declaration in defence of its war actions signed by its most famous scientists, Hilbert’s

name was missing. The declaration included several statements beginning “It is not true that...”

Hilbert refused to sign it on the ground that he could not ascertain whether these statements

were true. In 1917 he wrote and published a tribute to the French mathematician G Darboux

on his death. This tribute to an ‘enemy’ outraged some students who demonstrated at Hilbert’s

home demanding repudiation from him and the destruction of all copies of the publication.

Hilbert refused and then insisted on getting an apology from the university. When the conser-

vative professors of the university opposed the appointment of Emmy Noether, a mathematician

of the highest calibre, because she was a woman, Hilbert retorted that the University Senate

was not a bathhouse where women could not enter. He was outraged by, and was incredulous

at, the dismissal of his Jewish colleagues by the Nazis.

He lived to see the tragic destruction of his great centre of mathematics amidst the bigger

tragedy of his country. He died on February 14, 1943. The times were such that only about

ten persons attended his funeral service, and the news of his death reached the outside world

several months later.
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Algebraic Geometry Solves an Old Matrix Problem∗

Rajendra Bhatia
Indian Statistical Institute, New Delhi 110 016, India.

Let A, B be n × n Hermitian matrices, and let C = A + B. Let α1 ≥ α2 ≥ · · · ≥ αn, β1 ≥
β2 ≥ · · · ≥ βn, and γ1 ≥ γ2 ≥ · · · ≥ γn be the eigenvalues of A, B, and C, respectively.

Mathematicians, physicists, and numerical analysts have long been interested in knowing all

possible relations between the n-tuples {α j}, {β j} and {γ j}.
Since tr C = tr A + tr B, where tr stands for the trace of a matrix, we have

n
∑

i=1

γi =

n
∑

i=1

(αi + βi). (1)

H Weyl (1912) was the first to discover several non-trivial relations between these numbers;

these are the inequalities

γi+ j−1 ≤ αi + β j for i + j − 1 ≤ n. (2)

(See [1, Chapter 3 ]) for a proof and discussion of this and some of the other results described

below.)

When n = 2, this yields three inequalities

γ1 ≤ α1 + β1, γ2 ≤ α1 + β2, γ2 ≤ α2 + β1. (3)

It turns out that, together with the equality (1), these three inequalities are sufficient to char-

acterise the possible eigenvalues of A, B, and C; i.e., if three pairs of real numbers {α1, α2},
{β1, β2}, {γ1, γ2}, each ordered decreasingly (α1 ≥ α2, etc.), satisfy these relations, then there

exist 2×2 Hermitian matrices A and B such that these pairs are the eigenvalues of A, B and A+B.

When n ≥ 3, more relations exist. The first one due to Ky Fan (1949) says

k
∑

j=1

γ j ≤
k

∑

j=1

α j +

k
∑

j=1

β j, for 1 ≤ k ≤ n. (4)

When k = n, the two sides of (4) are equal; that is just the equality (1). A substantial gen-

eralisation of this was obtained by V B Lidskii (1950). For brevity, let [1, n] denote the set

{1, 2, . . . , n}. Lidskii’s theorem says that for every subset I ⊂ [1, n] with cardinality |I| = k, we

have
∑

i∈I
γi ≤

∑

i∈I
αi +

∑

j≤k

β j. (5)

∗Reproduced from Resonance, Vol. 4, No. 12, pp. 101–105, December 1999. (Research News).
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Note that these inequalities include (4) as a special case – choose I = [1, k].

Lidskii’s theorem has an interesting history. It was first proved by F Berezin and I M

Gel’fand in connection with their work on Lie groups. On their suggestion Lidskii provided an

elementary proof. Others had difficulty following this proof. It was H W Wielandt (1955) who

supplied a proof that was understood by others. Now several proofs of this theorem are known;

see [1].

When n = 3, we get six relations from Weyl’s inequalities :

γ1 ≤ α1 + β1, γ2 ≤ α1 + β2, γ2 ≤ α2 + β1,

γ3 ≤ α1 + β3, γ3 ≤ α3 + β1, γ3 ≤ α2 + β2. (6)

Five more follow from the inequalities (5):

γ1 + γ2 ≤ α1 + α2 + β1 + β2,

γ1 + γ3 ≤ α1 + α3 + β1 + β2,

γ2 + γ3 ≤ α2 + α3 + β1 + β2,

γ1 + γ3 ≤ α1 + α2 + β1 + β3,

γ2 + γ3 ≤ α1 + α2 + β2 + β3. (7)

(use the symmetry in A, B). It turns out that one more relation

γ2 + γ3 ≤ α1 + α3 + β1 + β3, (8)

is valid. Further, the relations (1), (6), (7) and (8) are sufficient to characterise the possible

eignevalues of A, B and C.

The Lidskii–Wielandt theorem aroused much interest, and several more inequalities were

discovered. They all have the form
∑

k∈K
γk ≤

∑

i∈I
αi +

∑

j∈J

β j, (9)

where I, J,K are certain subsets of [1, n] all having the same cardinality. Note that the inequal-

ities (2), (4) and (5) all have this form.

This leads to the following questions. What are all the triples (I, J,K) of subsets of [1, n]

for which the inequalities (9) are true? Are these inequalities, together with (1), sufficient to

characterise the α, β, and γ that can be eigenvalues of Hermitian matrices A, B and A + B?

In a fundamental paper in 1962, Alfred Horn made a conjecture that asserted that these

inequalities, together with (1), are sufficient and that the set T n
r of triples (I, J,K) of cardinality

r in [1, n] can be described by induction on r as follows. Let us write I = {i1 < i2 < · · · < ir}
and likewise for J and K. Then, for r = 1, (I, J,K) is in T n

1
if k1 = i1 + j1 − 1. For r > 1,

(I, J,K) ∈ T n
r if

∑

i∈I
i +

∑

j∈J

j =
∑

k∈K
k +

(

r + 1

2

)

(10)
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and, for all 1 ≤ p ≤ r − 1 and all (U,V,W) ∈ T r
p

∑

u∈U
iu +

∑

v∈V
jv ≤

∑

w∈W
kw +

(

p + 1

2

)

. (11)

Horn proved his conjecture for n = 3 and 4. Note that when n = 2, these conditions just reduce

to the three inequalities given by (3). When n = 3, they reduce to the twelve inequalities

(6)–(8). When n = 7, there are 2062 inequalities given by these conditions.

Horn’s conjecture has finally been proved by A Klyachko (1998) and A Knutson and T Tao

(1999) (see [2], [3]).

It turns out that this problem has some remarkable connections with problems in algebraic

geometry and the representation theory of Lie groups. Let us indicate briefly the connection

with algebraic geometry.

The classical minimax principle of Courant, Fischer, and Weyl says that the eigenvalues α j

of the Hermitian matrix A are characterised by extremal relations

α j = max
dim V= j

min
x∈V, ‖x‖=1

tr(Axx∗) (12)

Here, dim V stands for the dimension of a subspace V of ICn. Note that xx∗ is just the orthogonal

projection operator on the 1-dimensional subspace spanned by x. Note also that tr Axx∗ is just

the number x∗Ax = 〈x, Ax〉.
The complex Grassmann manifold Gk( ICn) is the set of all k-dimensional linear subspaces

of ICn. For k = 1, this is just the complex projective space ICIPn−1, the set of all complex

lines through the origin in the space ICn. Each k-dimensional subspace L of ICn is completely

characterised by the orthogonal projection PL with range L.

Given any Hermitian operator A on ICn, let AL = PLAPL. Note that tr AL = tr PLAPL =

tr APL. To prove the inequality (5), Wielandt invented a remarkable minimax principle. This

says that for any 1 ≤ i1 < · · · < ik ≤ n

k
∑

j=1

αi j
= max

V1⊂···⊂Vk

dim V j=i j

min
L∈Gk(Cn)

dim (L∩V j)≥ j

tr AL. (13)

Note for k = 1, this reduces to (12).

Another such principle was discovered by Hersch and Zwahlen. Let v j be the eigenvectors

of the Hermitian matrix A corresponding to its eigenvalues α j. For m = 1, . . . , n, let Vm be the

linear span of v1, . . . , vm. Then, for any 1 ≤ i1 < · · · < ik ≤ n,

k
∑

j=1

αi j
= min

L∈Gk(Cn)

{

tr AL : dim (L ∩ Vi j
) ≥ j, j = 1, . . . , k

}

. (14)

The Grassmannian Gk( ICn) is a smooth compact manifold of real dimension 2k(n − k). There

is a famous embedding called Plücker embedding via which Gk( ICn) is realised as a projective

variety in the space ICIPN , where N =
(

n
k

)

− 1.
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A sequence of nested subspaces {0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = ICn, where dim V j = j, is

called a flag. Given a flag F and a set of indices 1 ≤ i1 < · · · < ik ≤ n the subset

{W ∈ Gk( ICn) : dim (W ∩ Vi j
) ≥ j, j = 1, . . . , k}

of the Grassmanian is called a Schubert variety.

The principle (14) thus says that the sum
∑

αi j
is characterised as the minimal value of tr AL

evaluated on the Schubert variety corresponding to the flag constructed from the eigenvectors

of A.

This suggests that inequalities like the ones conjectured by Horn could be related to Schu-

bert calculus, a component of algebraic geometry dealing with intersection properties of flags.

This line was pursued vigorously by R. C. Thompson beginning in the early seventies. Finally,

the problem has now been solved by the efforts of several others using Schubert calculus.

There are other ways to look at Horn’s inequalities. The matrices X and Y are said to be

unitarily equivalent if there exists a unitary matrix U such that X = UYU∗. Two Hermitian

matrices are unitarily equivalent if and only if they have the same eigenvalues. It is easy to see

that Horn’s conjecture (now proved) amounts to the following. Given Hermitian matrices A, B,

consider the collection of all n-tuples that arise as eigenvalues of A+UBU∗ as U varies over all

unitary matrices (with the convention that the eigenvalues of a Hermitian matrix are counted in

decreasing order). Horn’s inequalities assert that this is a convex polytope in IRn whose faces

are characterised by the conditions (1), (10) and (11).

Postscript A fuller exposition of Horn’s problem and its solution appeared in the article:

R Bhatia, Linear Algebra to Quantum Cohomology: The Story of Alfred Horn’s Inequalities,

American Mathematical Monthly, Vol. 108, pp. 289–318, 2001.
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Orthogonalisation of Vectors∗

Matrix Decompositions and Approximation Problems

Rajendra Bhatia
Indian Statistical Institute, New Delhi 110 016, India.

1. The Gram-Schmidt Process

The Gram-Schmidt process is one of the first things one learns in a course on vectors or matri-

ces. Let us recall it briefly.

Let x = (x1, . . . , xn) be a vector with n coordinates x j, each of which is a complex number.

The collection of all such vectors is the vector space ICn. It helps to think of x as a column

vector and write x∗ for the row vector with coordinates x̄ j. The inner product (or the scalar

product) between two vectors x and y is the number

〈x, y〉 = x∗y =
n

∑

j=1

x̄ jy j.

The norm of x is defined as

‖x‖ = (x∗x)
1
2 =



















n
∑

j=1

|x j|2


















1
2

.

If we are given n linearly independent vectors a1, . . . , an, the Gram-Schmidt process con-

structs an orthonormal basis out of them as follows. We put q1 = a1/‖a1‖. This vector has

norm 1. We now put v2 = a2 − 〈q1, a2〉q1; and q2 = v2/‖v2‖. Then q2 is orthogonal to q1 and

has norm 1. At the next stage, we put v3 = a3 − 〈q1, a3〉q1 − 〈q2, a3〉q2; and q3 = v3/‖v3‖.
Continuing this way we obtain an orthonormal basis q1, . . . , qn. Note that for each 1 ≤ k ≤ n,

the linear spans of a1, . . . , ak and q1, . . . , qk are equal.

How close are the vectors {q j} to the original vectors {a j}? To make this precise let us

define the distance between two ordered sets {x1, . . . , xk} and {y1, . . . , yk} of vectors in ICn as



















k
∑

j=1

‖x j − y j‖2


















1
2

. (1)

Note that each x j is an n-vector. If we write it as x j = (x j1, . . . , x jn), then the quantity in (1) is



















k
∑

j=1

n
∑

r=1

|x jr − y jr |2


















1
2

. (2)

∗Reproduced from Resonance, Vol. 5, No. 3, pp. 52–59, March 2000. (General Article)
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Let us consider a very simple example in the space IC2. Let a1 = (1, 0), a2 = ( 4
5
, 3

5
). The vectors

a1, a2 are linearly independent and each of them has norm 1. However, they are not orthogonal

to each other. The Gram-Schmidt process applied to them gives the vectors q1 = (1, 0), q2 =

(0, 1). The distance between the pair {a1, a2} and the pair {q1, q2} is ( 4
5
)

1
2 . Can we find another

pair of orthonormal vectors that is closer to {a1, a2}. If we try the obvious possibilities that the

form of a1, a2 suggests, we soon find that the pair y1 = ( 4
5
,− 3

5
), y2 = ( 3

5
, 4

5
) is at distance ( 12

25
)

1
2

from {a1, a2}. Thus the Gram-Schmidt process while constructing an orthonormal basis can

take us far away from the original set of vectors.

Another pair that is even closer to {a1, a2} is the pair u1 = ( 2√
5
,− 1√

5
), u2 = ( 1√

5
, 2√

5
). One

can see that the distance of this pair from {a1, a2} is (4 − 8√
5
)

1
2 . Thus the three pairs {q1, q2},

{y1, y2} and {u1,u2} are at distance .8944, .6928 and .6498, respectively from the given pair

{a1, a2}.
One can see, using Lagrange multipliers, that among all pairs of orthonormal vectors, the

pair {u1,u2} is the closest to {a1, a2}. We will soon see this by another argument.

The problem of finding the orthonormal basis closest to a given set of linearly independent

vectors is of interest in quantum chemistry. In many models of atomic phenomena some of

the quantities of interest are represented by orthonormal vectors. Experimental observations to

measure these quantities are inaccurate and thus give us vectors that are not orthonormal. We

might want to stay as close to the experimental data as possible when converting these vectors to

orthonormal ones demanded by the model. The process of finding the closest orthonormal basis

is called the Löwdin Orthogonalisation after the Swedish chemist P O Löwdin who introduced

it. This is related to one of the basic theorems in linear algebra as we will see.

2. Matrix Approximation Problems

Let A be an n × n matrix with entries ai j. Let A∗ be the conjugate transpose of A-the matrix

whose i, j entry is ā ji. Let tr A stand for the trace of A. The Hilbert-Schmidt norm (or the

Frobenius norm) of A is defined as

‖A‖2 =



















∑

i, j

|ai j|2


















1/2

= (tr A∗A)1/2. (3)

This norm is unitarily invariant: if U,V are unitary matrices, then

‖A‖2 = ‖UAV‖2. (4)

This is so because

tr (UAV)∗(UAV) = tr V∗A∗AV = tr A∗A. (5)

Note that if {a1, . . . , an} are elements of ICn and if we write the n × n matrix A whose
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columns are a1, . . . , an as A = [a1, . . . , an], then

‖A‖22 =
∑

j

‖a j‖2.

The matrix A is invertible if and only if its columns are linearly independent as vectors, and it is

unitary if and only if they are orthonormal. Thus the problem of finding the orthonormal basis

closest to a given set of n linearly independent vectors is the same as the problem of finding

the unitary matrix closest to a given invertible matrix. Here the closest matrix is one whose

distance in the Hilbert-Schmidt norm from the given matrix is minimal.

This is a typical example of a matrix approximation problem.

3. The QR and the Polar Decompositions

The Gram-Schmidt process can be represented as an interesting matrix factoring theorem:

Every invertible matrix A can be factored as A = QR, where Q is unitary and R is upper

triangular. We can choose R so that all its diagonal entries are positive. With this restriction Q

and R are unique.

It is not difficult to see how this theorem follows from the Gram-Schmidt process. The

columns of Q are orthonormal vectors constructed from the columns of A. The fact that

{a1, . . . , ak} span the same linear space as {q1, . . . , qk} is reflected in the upper triangular form

of R. The vectors Q are unique upto a multiplication by a complex number of modulus one.

So, the restriction that the diagonal entries of R be positive imposes uniqueness.

The decomposition A = QR is called the QR decomposition. If A is singular, it still has a

QR decomposition. Now some of the rows of R are zero.

There is another factoring of an invertible matrix into two factors one of which is unitary.

This is the polar decomposition:

Every invertible matrix A can be factored uniquely as A = UP, where U is unitary and P is

positive definite.

The factor P is the unique positive definite square root of the positive definite matrix A∗A.

If one puts U = AP−1, then U∗U = UU∗ = I. If A is singular, it still has a polar decomposition

A = UP. Now the factor U is not unique, but P is.

The polar decomposition has an interesting extremal characterisation:

Theorem. Among all unitary matrices the one closest to A is the matrix U in the polar decom-

position A = UP.

Proof. Let W be any unitary matrix. Then

‖A −W‖2 = ‖UP −W‖2 = ‖P − U∗W‖2,

by the unitary invariance property (4). Thus to find the unitary matrix closest to A it suffices to

find the one closest to P. If we show that the unitary matrix closest to P is the identity matrix I

it will follow that the unitary matrix closest to UP is U.
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For every unitary matrix V

‖P − V‖22 = tr (P − V∗)(P − V) = tr (P2 + I − PV − V∗P).

This quantity is minimum when

tr (PV + V∗P) = tr P(V + V∗) (6)

is maximum. The trace is not affected if we apply a unitary similarity (i.e., tr X = tr WXW∗, for

all X and unitary W). The spectral theorem tells us that we can apply such a similarity to bring

V to the diagonal form. Thus we may assume that V is diagonal with entries eiθ j , 1 ≤ j ≤ n

down its diagonal. So, the quantity in (6) is

tr P(V + V∗) = 2
∑

j

p j j cos θ j.

Since p j j ≥ 0, clearly this is maximised when cos θ j = 1. This translates to the condition

V = I. �

Thus the polar decomposition provides the basis for the Löwdin Orthogonalisation. The

orthonormal basis closest to a set of linearly independent vectors {a1, . . . , an} is obtained by

writing the matrix A = [a1, . . . , an], then finding its polar decomposition A = UP, and reading

the columns of U = [u1, . . . ,un] to get the desired orthonormal basis {u1, . . . ,un}.
This explains the example discussed in Section 1. We have the polar decomposition
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.

Since P = WS W∗, where W is unitary and S diagonal with positive entries, we can write

A = UP = UWS W∗ = VS W∗, where V is unitary. This is called the singular value decompo-

sition of A. To find the factors here, we have to diagonalise P. This involves a more elaborate

calculation than the one for the Gram-Schmidt process.

4. The closest Hermitian matrix

The problem of finding the closest Hermitian matrix to a given matrix is motivated by the same

considerations as that of finding the closest unitary matrix. It is simpler to solve this.

If A = B + iC, where B and C are Hermitian, then

‖A‖22 = tr A∗A = tr (B − iC)(B + iC) = tr (B2 +C2) = ‖B‖22 + ‖C‖22.

Every matrix has a decomposition of this kind:
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If we put B = 1
2
(A+A∗) and X = 1

2i
(A−A∗), then B,C are Hermitian and A = B+ iC. This is

analogous to the decomposition z = x+iy of a complex number into its real and imaginary parts.

For this reason B and C are called the real and imaginary parts of A and the decomposition

A = B + iC is called the Cartesian decomposition.

Now, if H is any Hermitian matrix, then

‖A − H‖22 = ‖H − B‖22 + ‖C‖22.

Clearly, the choice H = B minimises this quantity. Thus the Hermitian matrix closest to A is

the real part of A.

The polar decomposition A = UP can be thought of as the analogue of the polar representa-

tion z = eiθr of a complex number. Thus the statements about the closest unitary and Hermitian

matrices proved above are analogues of the facts about the point on the unit circle and the point

on the real line closest to a given complex number.

A matrix is said to be normal if AA∗ = A∗A. This is equivalent to the condition that the

factors U and P in the polar decomposition of A commute. Evidently Hermitian matrices and

unitary matrices are normal.

The set of all Hermitian matrices is a real vector space; the set of all unitary matrices is

a differentiable manifold. The set of all normal matrices does not have any nice geometric

structure. This is one reason why the problem of finding the closest normal matrix to a given

matrix turns out to be much harder than the problems we have considered. This problem is not

yet solved completely. See [2] for a discussion, and also for examples of other problems where

the solution for normal matrices is much harder than that for Hermitian or unitary matrices.

5. Approximation in other norms

The Hilbert-Schmidt norm is the simplest norm on matrices from the point of view of approx-

imation problems. This is because it is like the Euclidean norm on vectors. There are other

norms that are of interest. For example, if we think of A as a linear operator on ICn, then the

operator norm of A is defined as

‖A‖ = max{‖Ax‖ : x ∈ ICn, ‖x‖ = 1}.

Like the Hilbert-Schmidt norm, this norm is also unitarily invariant. There are several other

norms on matrices that are unitarily invariant.

The answer to a minimisation problem often changes with the norm. That is natural, be-

cause the functions being minimised are different.

It is, therefore, interesting to know that for every unitarily invariant norm ||| · ||| on the space

of matrices, the minimum of |||A −W ||| over unitary matrices is attained when W is the unitary

factor in the polar decomposition of A; and the minimum of |||A − H||| over Hermitian matrices

is attained when H = 1
2
(A + A∗).
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Box 1.

Let A∗ be the matrix obtained from A by taking the transpose of A and then replacing each entry by its

complex conjugate. A matrix A is called Hermitian if A = A∗. A Hermitian matrix all whose eigenvalues

are positive is called positive definite. An invertible matrix A is called unitary if A−1 = A∗. A is called

normal if AA∗ = A∗A. Hermitian matrices and unitary matrices are special kinds of normal matrices.

The Spectral Theorem says that every normal matrix A can be diagonalised by a unitary conjugation;

i.e., there exists a unitary matrix U and a diagonal matrix D such that A = UDU∗. The diagonal entries

of D are complex numbers. They are real if A is Hermitian, positive if A is positive definite, and complex

numbers of modulus one if A is unitary.

Suggested Reading

[1] A detailed discussion of the polar and the QR deompositions may be found in H Helson,

Linear Algebra, TRIM 4, Hindustan Book Agency, 1994.

[2] A more advanced treatment of matrix approximation problems may be found in R Bhatia,

Marix Analysis, Springer-Verlag, 1997.

[3] The relevance of matrix approximation problems to quantum chemistry is explained in the

article J A Goldstein and M Levy, Linear algebra and quantum chemistry, American Math.

Monthly, 78, 710–718, 1991.

[4] The Löwdin Orthogonalisation was proposed by P O Löwdin, On the non-orthogonality

problem connected with the use of atomic wave functions in the theory of molecules and

crystals, J. Chem. Phys., 18, 365–374, 1950.

[5] Algorithms for finding the QR and the Singular Value Decompositions are discussed in
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Two ideas that pervade all of mathematics are equivalence, and the related notion of reduc-

tion. If an object in a given class can be carried into another by a transformation of a special

kind, we say the two objects are equivalent. Reduction means the transformation of the object

into an equivalent one with a special form as simple as possible.

The group of transformations varies with the problem under study. In linear algebra, we

consider arbitrary non-singular linear transformations while studying algebraic questions. In

problems of geometry and analysis, where distances are preserved, unitary (orthogonal) trans-

formations alone are admitted. In several problems of crystallography and number theory, the

interest is in linear transformation with integral coefficients and determinant one.

In this article we restrict ourselves to n × n complex matrices. Two such matrices A and B

are said to be similar if there exists a non-singular (invertible) matrix S such that B = S −1AS .

If this S can be chosen to be unitary (S −1 = S ⋆) we say that A and B are unitarily similar.

Similar matrices are representations of the same linear operator on Cn in two different bases.

Unitarily similar matrices represent the same linear operator but in two different orthonormal

bases. Similarity and unitary similarity are equivalence relations.

Similarity preserves (does not change) the rank, determinant, trace and eigenvalues of a

matrix. Unitary similarity preserves all these and more. For example if A is Hermitian (A =

A⋆), then every matrix unitarily similar to it is Hermitian too. If we define the norm of any

matrix A as

‖ A ‖2=



















∑

i, j

|ai j|2


















1/2

,

then every matrix unitarily similar to A has the same norm. The simplest way to see this is to

note that

‖ A ‖2= (trA⋆A)1/2 =‖ U⋆AU ‖2,
where tr stands for the trace of a matrix.

It is generally agreed that the more zero entries a matrix has, the simpler it is. Much of

linear algebra is devoted to reducing a matrix (via similarity or unitary similarity) to another

that has lots of zeros.

The simplest such theorem is the Schur Triangularization Theorem. This says that every

matrix is unitarily similar to an upper triangular matrix.

∗Reproduced from Resonance, Vol. 5, No. 6, pp. 40–48, June 2000. (General Article)
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Our aim here is to show that though it is very easy to prove it, this theorem has many

interesting consequences.

Proof of Schur’s Theorem

We want to show that given an n × n matrix A, there exists a unitary matrix U and an upper

triangular matrix T such that A = UTU⋆. This is equivalent to saying that there exists an

orthonormal basis for Cn with respect to which the matrix of the linear operator A is upper

triangular. In other words, there exists an orthonormal basis v1, . . . , vn such that for each k =

1, 2, . . . n, the vector Avk is a linear combination of v1, . . . , vk.

This can be proved by induction on n. Let λ1 be an eigenvalue of A and v1 an eigenvector

of norm one corresponding to it. Let M be the one-dimensional subspace of Cn spanned by v1,

and let N be its orthogonal complement. Let PN be the orthogonal projection with range N. For

y ∈ N, let ANy = PN Ay. Then AN is a linear operator on the (n − 1)-dimensional space N. By

the induction hypothesis, there exists an orthonormal basis v2, . . . , vn of N such that the vector

ANvk for k = 2, . . . n is a linear combination of v2, . . . , vk. The set v1, . . . , vn is an orthonormal

basis for Cn and each Avk, 1 ≤ k ≤ n, is a linear combination of v1, . . . , vk. This proves the

theorem. The basis v1, . . . , vn is called a Schur basis for A.

Notice that we started our argument by choosing an eigenvalue and eigenvector of A. Here

we have used the fact that we are considering complex matrices only. The diagonal entries of

the upper triangular matrix T are the eigenvalues of A. Hence, they are uniquely specified up

to permutation. The entries of T above the diagonal are not unique. Since,

∑

i, j

|ti j|2 =
∑

i, j

|ai j|2,

they can not be too large. The reader should construct two 3 × 3 upper triangular matrices

which are unitarily similar.

The Spectral Theorem

A matrix A is said to be normal if AA⋆ = A⋆A. Hermitian and unitary matrices are normal.

The Spectral Theorem says that a normal matrix is unitarily similar to a diagonal matrix.

This is an easy consequence of Schur’s theorem: Note that the property of being normal is

preserved under unitary similarity, and check that an upper triangular matrix is normal if and

only if it is diagonal.

The Schur basis for a normal matrix A is thus a basis consisting of eigenvectors of A.

Normal matrices are, therefore, matrices whose eigenvectors form an orthonormal basis for

C
n.
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Some Density Theorems

A subset Y of a metric space X is said to be dense if every neighbourhood of a point in X

contains a point of Y . This is equivalent to saying that every point in X is the limit of a sequence

of points in Y . (The set of rational numbers and the set of irrational numbers are dense in R.)

The spaceM(n) consisting of n×n matrices is a metric space if we define for every pair A, B

the distance between them as d(A, B) =‖ A − B ‖2. We will show that certain subsets are dense

in M(n). The argument in each case will have some common ingredients. The property that

characterizes the subset Y in question will be one that does not change under unitary similarity.

So, if A = UTU⋆ and we show the existence of an element of Y in an ǫ-neighbourhood of

an upper triangular T , then we would have also shown the existence of an element of Y in an

ǫ-neighbourhood of A.

Invertible matrices are dense. A matrix is invertible if and only if it does not have zero as

an eigenvalue. This property is not affected by unitary similarity. We want to show that if A is

any matrix then for every ǫ > 0, there exists an invertible matrix B such that ‖ A − B ‖2< ǫ.
Let A = UTU⋆, where T is upper triangular. If A is singular some of the diagonal entries of T

are zero. Replace them by small non-zero numbers so that for the new upper triangular matrix

T ′ obtained after these replacements we have ‖ T − T ′ ‖2< ǫ. Then T ′ is invertible and so is

A′ = UT ′U⋆. Further,

‖ A − A′ ‖2=‖ U(T − T ′)U⋆ ‖2< ǫ.

Matrices with distinct eigenvalues are dense. Use the same argument as above. If any two

diagonal entries of T are equal, change one of them slightly.

Diagonalizable matrices are dense. A matrix is said to be diagonalizable if it is similar

to a diagonal matrix; i.e. if it has n linearly independent eigenvectors. Since eigenvectors

corresponding to distinct eigenvalues of any matrix are linearly independent, every matrix with

distinct eigenvalues is diagonalizable. (The converse in not true). So the set of diagonalizable

matrices includes a dense set (matrices with distinct eigenvalues) and hence is itself dense.

These density theorems are extremely useful. Often it is easy to prove a statement for

invertible or diagonalizable matrices. Then one can extend it to all matrices by a limiting

procedure. We give some examples of this argument.

The exponential of a matrix is defined as

eA = I + A +
A2

2!
+ · · · .

(The series is convergent.) We want to calculate the determinant det(eA). It turns out that

det(eA) = etr(A). This is obviously true if A is a diagonal matrix: if the diagonal entries of

A are λ1, . . . , λn then det(eA) = eλ1 . . . eλn = eλ1...λn = etr(A). From this one can see that this

equality is also true for diagonalizable matrices; just note that eS AS −1

= S eAS −1. Finally, the

equality carries over to all matrices since both sides are continuous functions of a matrix and

every matrix is a limit of diagonalizable matrices.
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Let A, B be any two matrices. We know that det(AB) = det(BA), and tr(AB) = tr(BA).

More generally, it is true that AB and BA have the same characteristic polynomial and hence the

same eigenvalues (including multiplicities). Recall that the k-th coefficient in the characteristic

polynomial of A is (up to a sign) the sum of k × k principal minors of A. These are polynomial

functions of the entries of A, and hence depend continuously on A. Thus, to prove that AB

and BA have the same characteristic polynomial, it is enough to prove this when B belongs

to a dense subset of M(n). The set of invertible matrices is such a set. But if B is invertible,

then B(AB)B−1 = BA, i.e. AB and BA are similar. Hence, they have the same characteristic

polynomial.

This theorem, in turn is very useful in several contexts. Let A and B be two positive

semidefinite matrices. Then all their eigenvalues are non-negative. The product AB is not

Hermitian (unless A and B commute), so a priori it is not even clear whether AB has real

eigenvalues. We can, in fact, prove that it has non-negative real eigenvalues. Let B1/2 be the

unique positive square root of B. Then AB = (AB1/2)B1/2 and this has the same eigenvalues as

B1/2AB1/2. This matrix is positive semidefinite, and hence has non-negative eigenvalues.

The Cayley Hamilton Theorem says that every matrix satisfies its characteristic equation;

i.e. if χ(z) is the polynomial in the variable z obtained by expanding det(zI−A), and χ(A) is the

matrix obtained from this polynomial on replacing z by A, then χ(A) = 0. The reader is invited

to write a proof for this using the above ideas; the proof is easy for diagonal matrices.

A Bound for Eigenvalues

In many problems it is of interest to calculate the eigenvalues of a matrix A. This is not always

easy. Sometimes, it helps to know the eigenvalues approximately, or at least that they lie (or do

not lie) in some region of the complex plane. From Schur’s Theorem, it is clear that, if λi are

the eigenvalues of A, then
n

∑

i=1

|λi|2 ≤
∑

i, j

|ai j|2.

The two sides are equal if and only if A is normal.

This leads to an amusing (but not the easiest) proof of the arithmetic-geometric mean in-

equality. Let a1, . . . , an be non-negative numbers. The eigenvalues of the matrix

A =























































0 a1 0 . . . 0

0
. . . a2 . . . 0

0 0
. . .
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0 0
. . . an−1

an 0 . . . 0























































are the n-th roots of a1a2 . . . an. Hence by the above inequality

n(a1a2 . . . an)2/n ≤ a1
2 + · · · + an

2.
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Changing ai
2 to ai, we get the inequality

(a1a2 . . . an)1/n ≤ a1 + · · · + an

n

between the geometric mean and the arithmetic mean. We even get the condition for equality;

just note that A is normal if and only if a1 = a2 = · · · = an.

Here is a more serious and powerful application of these ideas.

Theorem. If A, B are normal matrices such that AB is normal, then BA is also normal.

Proof. Let λi(AB), 1 ≤ i ≤ n, be the eigenvalues of AB. Since AB is normal

n
∑

i=1

|λi(AB)|2 = ‖ AB ‖22.

To prove that BA is normal, we have to show that this is true when AB is replaced by BA. We

have seen that λi(AB) = λi(BA). So, we have to show that

‖ AB ‖22 = ‖ BA ‖22,

i.e.,

tr(B⋆A⋆AB) = tr(A⋆B⋆BA).

Using the fact that tr(XY) = tr(YX) for all matrices X, Y , and the normality of A, B, the two

sides of this desired equality are seen to be equal to tr(AA⋆BB⋆). This proves the theorem. �

The reader might try to find another proof of this theorem. (If the reader is unable to find

such a proof from the mere definition of normality, she should not be surprised. The statement

is false in infinite-dimensional Hilbert spaces. It is, however, true if one of the operators A or

B is compact.)

Commuting Matrices

Let A and B be two matrices. Schur’s Theorem tells us that there exist unitary matrices U,V

and upper triangular matrices R,T such that A = URU⋆, B = VTV⋆. It turns out that if A and

B commute (AB = BA), then we can choose U = V . In other words, if A and B commute, they

have a common Schur basis.

To prove this, we first show that A, B have a common eigenvector. Let λ be an eigenvalue

of A, and let W = {x : Ax = λx} be the associated eigenspace. If x ∈ W, then

ABx = B(Ax) = B(λx) = λ(Bx).

Thus, Bx ∈ W. This says that the space W is invariant under B. So, there exists y ∈ W such

that By = µy. This y is a common eigenvector for A and B.

The rest of the proof is similar to the one we gave earlier for Schur’s Theorem.

The same argument shows that if {Aα} is any family of pairwise commuting matrices, then

all Aα have a common Schur basis.
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Distance between Eigenvalues

Let A and B be commuting matrices with eigenvalues λ1, . . . , λn and µ1, . . . , µn respectively.

We have seen that there exists a unitary matrix U such that A = UTU⋆, B = UT ′U⋆. The

diagonal entries of T and T ′ are the numbers λ1, . . . , λn and µ1, . . . , µn (in some order). Hence,















n
∑

i=1

|λi − µi|2














1/2

≤ ‖ T − T ′ ‖2 ≤ ‖ A − B ‖2 .

Thus, it is possible to enumerate the n-tuples {λ j} and {µ j} so that the distance between them is

smaller than the distance between A and B (in the sense made precise by this inequality).

This is no longer true if A and B do not commute. For example, consider

A =

(

0 1

0 0

)

, B =

(

0 1

t 0

)

.

A famous theorem of Hoffman and Wielandt says that if A and B both are normal, then the

above inequality is true even when A, B do not commute.

This article is based on a talk given by the first author at a Refresher Course for College

Teachers organized by CPDHE in April 1999.
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Let A, B be n × n matrices with complex entries. Given below are several proofs of the fact

that AB and BA have the same eigenvalues. Each proof brings out a different viewpoint and

may be presented at the appropriate time in a linear algebra course.

Let tr(T ) stand for the trace of T , and det(T ) for the determinant of T . The relations

tr(AB) = tr(BA) and det(AB) = det(BA). (1)

are usually proved early in linear algebra courses.

Let

λn − c1(T )λn−1 + · · · + (−1)ncn(T ) (2)

be the characteristic polynomial of T , and let λ1(T ), λ2(T ), . . . , λn(T ) be its n roots, counted

with multiplicities and in any order. These are the eigenvalues of T . We know that ck(T ) is the

kth elementary symmetric polynomial in these n numbers. Thus

c1(T ) =

n
∑

j=1

λ j(T ) = tr (T )

c2(T ) =
∑

i< j

λi(T )λ j(T )

...

cn(T ) =

n
∏

j=1

λ j(T ) = det(T ).

To say that AB and BA have the same eigenvalues amounts to saying that

ck(AB) = ck(BA) for 1 ≤ k ≤ n. (3)

We know that this is true when k = 1, or n; and want to prove it for other values of k.

Proof 1. It suffices to prove that, for 1 ≤ m ≤ n,

λm
1 (AB) + · · · + λm

n (AB) = λm
1 (BA) + · · · + λm

n (BA). (4)

(Recall Newton’s identities by which the n elementary symmetric polynomials in n variables

are expressed in terms of the n sums of powers.) Note that the eigenvalues of T m are the mth

∗Reproduced from Resonance, Vol. 7, No. 1, pp. 88–93, January 2002. (Classroom)
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powers of the eigenvalues of T . So,
∑

λm
j
(T ) =

∑

λ (T
m) = tr (T m). Thus the statement (4) is

equivalent to

tr [(AB)m] = tr [(BA)m].

But this follows from the first equation in (1) :

tr [(AB)m] = tr (ABAB · · · AB) = tr(BABA . . . BA) = tr [(BA)m].

Proof 2. One can prove the relations (3) directly. The coefficient ck(T ) is the sum of all the

k × k principal minors of T . A direct computation (the Binet-Cauchy formula) leads to the

equations (3). A more sophisticated version of this argument involves the antisymmetric tensor

product ∧k(T ). This is a matrix of order
(

n
k

)

whose entries are the k × k minors of T . So

ck(T ) = tr ∧k (T ), 1 ≤ k ≤ n.

Among the pleasant properties of ∧k is multiplicativity: ∧k(AB) = ∧k(A) ∧k (B). So

ck(AB) = tr [∧k(AB)] = tr [∧k(A) ∧k (B)]

= tr [∧k(B) ∧k (A)] = tr ∧k (BA) = ck(BA).

Proof 3. This proof invokes a continuity argument that is useful in many contexts. Suppose

A is invertible (nonsingular). Then AB = A(BA)A−1. So AB and BA are similar, and hence

have the same eigenvalues. Thus the equalities (3) are valid when A is invertible. Two facts

are needed to get to the general case from here. (i) if A is singular, we can choose a sequence

Am of nonsingular matrices such that Am → A. (Singular matrices are characterised by the

condition det (A) = 0. Since det is a polynomial function in the entries of A, the set of its zeros

is small. See also the discussion in Resonance, June 2000, page 43). (ii) The functions ck(T )

are polynomials in the entries of T and hence, are continuous. So, if A is singular we choose a

sequence Am of nonsingular matrices converging to A and note

ck(AB) = lim
m→∞

ck(AmB) = lim
m→∞

ck(BAm) = ck(BA).

Proof 4. This proof uses 2 × 2 block matrices. Consider the (2n) × (2n) matrix

[

X Z

O Y

]

in

which the four entries are n × n matrices, and O is the null matrix. The eigenvalues of this

matrix are the n eigenvalues of X together with the eigenvalues of Y . (The determinant of this

matrix is det(X)det(Y).) Given any n×n matrix A, the (2n)× (2n) matrix

[

I A

O I

]

is invertible,

and its inverse is

[

I −A

O I

]

. Use this to see that

[

I A

O I

]−1 [

AB O

B O

] [

I A

O I

]

=

[

O O

B BA

]
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Thus the matrices

[

AB O

B O

]

and

[

O O

B BA

]

are similar and hence, have the same eigenval-

ues. So, AB and BA have the same eigenvalues.

Proof 5. Another proof based on block matrices goes as follows. Let A =

[

A11 A12

A21 A22

]

be a

block matrix. If A11 is nonsingular, then multiplying A on the right by

[

I A−1
11

A12

O I

]

we get

the matrix

[

A11 O

A21 A22 − A21A−1
11

A12

]

. Hence,

det(A) = det(A11) det(A22 − A21A−1
11 A12).

[The matrix A22 − A21A−1
11

A12 is called the Schur complement of A11 in A. This determinant

identity is one of the several places where it shows up.] In the same way, if A22 is invertible,

then det(A) = det(A22) det(A11 − A12A−1
22

A21). So, if A11 commutes with A21, then det(A) =

det(A11A22 − A21A12); and if A22 commutes with A12, then det(A) = det(A22A11 − A12A21).

Now let A, B be any two n × n matrices, and consider the block matrix

[

λI A

B λI

]

. This is a

very special kind of block matrix satisfying all conditions in the preceding lines. So det(λ2I −
AB) = det(λ2I − BA). This is true for all complex numbers λ. So, AB and BA have the same

characteristic polynomial.

Proof 6. Let A be an idempotent matrix, i.e., A2 = A. Then A represents a projection operator

(not necessarily an orthogonal projection). So, in some basis (not necessarily orthonormal) A

can be written as A =

[

I O

O O

]

. In this basis let B =

[

B11 B12

B21 B22

]

. Then AB =

[

B11 B12

O O

]

,

BA =

[

B11 O

B21 O

]

. So, AB and BA have the same eigenvalues. Now let A be any matrix. Then

there exists an invertible matrix G such that AGA = A. (The two sides are equal as operators

on the null space of A. On the complement of this space, A can be inverted. Set G to be the

identity on the null space of A.) Note that GA is idempotent and apply the special case to GA

and BG−1 in place of A and B. This shows GABG−1 and BG−1GA have the same eigenvalues.

In other words AB and BA have the same eigenvalues.

Proof 7. Since detAB = detBA, 0 is an eigenvalue of AB if and only if it is an eigenvalue

of BA. Suppose a nonzero number λ is an eigenvalue of AB. Then there exists a (nonzero)

vector v such that ABv = λv. Applying B to the two sides of this equation we see that Bv

is an eigenvector of BA corresponding to eigenvalue λ. Thus every eigenvalue of AB is an

eigenvalue of BA. This argument gives no information about the (algebraic) multiplicities of

the eigenvalues that the earlier six proofs did. However, following the same argument one

sees that if v1, . . . , vk are linearly independent eigenvectors for AB corresponding to a nonzero

eigenvalue λ, then Bv1, . . . , Bvk are linearly independent eigenvectors of BA corresponding to
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the eigenvalue λ. Thus a nonzero eigenvalue of AB has the same geometric multiplicity as

it has as an eigenvalue of BA. This may not be true for a zero eigenvalue. For example, if

A =

[

1 0

0 0

]

and B =

[

0 1

0 0

]

, then AB =

[

0 1

0 0

]

and BA = O. Both AB and BA have zero

as their only eigenvalue. Its geometric multiplicity is one in the first case and two in the second

case.

Proof 8. We want to show that a complex number z is an eigenvalue of AB if and only if it is

an eigenvalue of BA. In other words, (zI−AB) is invertible if and only if (zI−BA) is invertible.

This is certainly true if z = 0. If z , 0 we can divide A by z. So, we need to show that

(I − AB) is invertible if and only if (I − BA) is invertible. Suppose I − AB is invertible and let

X = (I − AB)−1. Then note that

(I − BA)(I + BXA) = I − BA + BXA − BABXA

= I − BA + B(I − AB)XA

= I − BA + BA = I

Thus (I − BA) is invertible and its inverse is I + BXA.

This calculation seems mysterious. How did we guess that I + BXA works as the inverse

for I − BA? Here is a key to the mystery. Suppose a, b are numbers and |ab| < 1. Then

(1 − ab)−1 = 1 + ab + abab + ababab + · · ·
(1 − ba)−1 = 1 + ba + baba + bababa + · · ·

If the first quantity is x, then the second one is 1 + bxa. This suggests to us what to try in the

matrix case.

This proof gives no information about multiplicities of eigenvalues — algebraic or geo-

metric — since it does not involve either the characteristic polynomial or eigenvectors. This

apparent weakness turns into a strength when we discuss operators on infinite dimensional

spaces.

Let H be the Hilbert space l2 consisting of sequences x = (x1, x2, . . .) for which
∑∞

j=1 ‖x j‖2 < ∞. Let A be a bounded linear operator on H . The spectrum of σ(A) is the

complement of the set of all complex numbers λ such that (A − λI)−1 exists and is a bounded

linear operator. The point spectrum of A is the set σpt(A) consisting of all complex numbers λ

for which there exists a nonzero vector v such that Av = λv. In this case λ is called an eigen-

value of A and v an eigenvector. The set σ(A) is a nonempty compact set while the set σpt
can be empty. In other words, A need not have any eigenvalues, and if it does the spectrum

may contain points other than the eigenvalues (Unlike in finite-dimensional vector spaces, a

one-to-one linear operator need not be onto.)

Now let A, B be two bounded linear operators on H . Proof 8 tells us that the sets σ(AB)

and σ(BA) have the same elements with the possible exception of zero. Proof 7 tells us the

same thing about σpt(AB) and σpt(BA). It also tells us that the geometric multiplicity of
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each nonzero eigenvalue is the same for AB and BA. (There is no notion of determinant,

characteristic polynomial and algebraic multiplicity in this case.)

The point zero can behave differently now. Let A, B be the operators that send the vector

(x1, x2, . . .) to (0, x1, x2, . . .) and (x2, x3, . . .) respectively. Then BA is the identity operator while

AB is the orthogonal projection onto the space spanned by vectors whose first coordinate is

zero. Thus the sets σ(AB) and σpt(AB) consist of two points 0 and 1, while the corresponding

sets for BA consist of the single point 1.

A final comment on rectangular matrices A, B. If both products AB and BA make sense,

then the nonzero eigenvalues of AB and BA are the same. Which of the proofs shows this most

clearly?

(This is a corrected version of a note that appeared in Resonance, January 2002.)
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The Unexpected Appearance of Pi in Diverse
Problems∗

Rajendra Bhatia
Indian Statistical Institute, New Delhi 110 016, India.

There is a famous essay titled The Unreasonable Effectiveness of Mathematics in the Natu-

ral Sciences by the renowned physicist Eugene P Wigner. The essay opens with the paragraph:

There is a story about two friends, who were classmates in high school, talking about their

jobs. One of them became a statistician and was working on population trends. He showed

a reprint to his former classmate. The reprint started, as usual, with the Gaussian distribution

and the statistician explained to his former classmate the meaning of the symbols for the actual

population, for the average population, and so on. His classmate was a bit incredulous and

was not quite sure whether the statistician was pulling his leg. “How can you know that?”

was his query. “And what is this symbol here?” “Oh,” said the statistician, “this is π” “What

is that?” “The ratio of the circumference of the circle to its diameter.” “Well, now you are

pushing your joke too far,” said the classmate, “surely the population has nothing to do with

the circumference of the circle.”

Wigner then goes on to discuss the surprisingly powerful role mathematics plays in the

study of nature. I have quoted this para for making a small point. The number π, the ratio of

the circumference of the circle to its diameter, appears in many contexts that seem to have no

connection with diameters, areas, or volumes. One such problem that I discuss here concerns

properties of natural numbers.

Every student of calculus learns the Wallis product formula

π

2
=

2

1

2

3

4

3

4

5

6

5

6

7

8

7

8

9
. . . (1)

On the right hand side there is an infinite product and this is to be interpreted as

lim
n→∞

2

1

2

3

4

3

4

3
· · · 2n

2n − 1

2n

2n + 1
. (2)

This formula attributed to John Wallis (1616–1703) is remarkable for several reasons. It is,

perhaps, the first occurence of an infinite product in mathematics. And it connects π with

natural numbers. The formula has a simple proof. Let

In =

∫ π/2

0

(sin x)ndx.

Integrate by parts to get the recurrence formula

In =
n − 1

n
In−2.

∗Reproduced from Resonance, Vol. 8, No. 6, pp. 34–43, June 2003. (General Article)
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The sequence In is a monotonically decreasing sequence of positive numbers. This and the

recurrence formula show that

I <
In

In+1

< 1 +
1

n
.

So In/In+1 tends to 1 as n→ ∞. Note that I0 = π/2 and I1 = 1. The recurrence formula can be

used to get

I2n+1

I2n

=
2

1

2

3

4

3

4

5
· · · 2n

2n − 1

2n

2n + 1

2

π
.

Taking the limit as n→ ∞ we get (1).

Many infinite sums involving natural numbers lead to π. One that we need for our discus-

sion is a famous formula due to Leonhard Euler (1707–1783)

π2

6
=

1

12
+

1

22
+

1

32
+

1

42
+ · · · (3)

A (natural) number is said to be square-free if in its prime factoring no factor occurs more than

once. Thus 70 = 2 × 5 × 7 is a square-free number while 12 = 2 × 2 × 3 is not.

Many problems in number theory are questions about the distribution of various special

kinds of numbers among all numbers. Thus we may ask:

What is the proportion of square-free numbers among all numbers?

Or

If a number is picked at random what is the probability that it is square-free?

Now, randomness is a tricky notion and this question needs more careful formulation. How-

ever, let us ignore that for the time being. It is reasonable to believe that if we pick a number at

random it is as likely to be odd as it is even. This is because in the list

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .

every alternate number is even. In the same way every third number is a multiple of 3, every

fourth number is a multiple of 4, and so on. Thus the probability that a randomly picked number

is a multiple of k is 1/k, and the probability that it is not a multiple of k is 1 − 1/k:

Let p1, p2, p3 . . . be the sequence of prime numbers. Let n be a randomly chosen number.

For each prime p j the probability that p2
j

is not a factor of n is 1 − 1/p2
j
: Given two primes p j

and pk, what is the probability that neither p2
j

nor p2
k

is a factor of n? Again from probabilistic

reasoning we know that the probability of the simultaneous occurence of two independent

events is the product of their individual probabilities. (Thus the probability of getting two

consecutive heads when a coin is tossed twice is 1/4.) Whether n has a factor p2
j

has no bearing

on its having p2
k

as a factor. Thus the probability that neither p2
j

nor p2
k

is a factor of n is
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(1 − 1/p2
j
) (1 − 1/p2

k
). Extending this reasoning one sees that the probability of n being square

free is the infinite product
∞
∏

j=1

















1 − 1

p2
j

















(4)

There is a connection between this product and the series in (3). It is convenient to introduce

here a famous object called the Riemann zeta function. This is defined by the series

ζ(s) =

∞
∑

n=1

1

ns
. (5)

This series surely converges for all real numbers s > 1. Let us restrict ourselves to these values

of s, though the zeta function can be defined meaningfully for other complex numbers. The

formula (3) can be written as

ζ(2) =
π2

6
. (6)

The zeta function and prime numbers come together in the following theorem of Euler.

Theorem. For all s > 1

ζ(s) =

∞
∏

n=1

1

1 − p−s
n

. (7)

Proof. Fix an N, and use the geometric series expansion of 1
1−x

to get

N
∏

n=1

1

1 − p−s
n

=

N
∏

n=1

∞
∑

m=0

p−ms
n (8)

The last expression is equal to
∞
∑

j=1

1

ns
j

,

where n1, n2 . . . is an enumeration of those numbers that have p1, p2, . . . , pN as their only prime

factors. As n → ∞, the sequence {n j} expands to include all natural numbers. This proves the

theorem.

As a consequence the product (4) has the value 6/π2. This is the probability that a number

picked at random is square-free.

This is one more situation where the number π has made an appearance quite unexpectedly.

Our main point has been made; several interesting side-lines remain.

First note that our argument shows that if we pick a number n at random, then the proba-

bility that it has no prime factor with multiplicity k is 1/ζ(k).

With a little thinking one can see that the probability that two numbers picked at random

are coprime is 6/π2. (This problem is equivalent to the one we have been discussing.)
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There is another interesting way of looking at this problem. Let Z2 be the collection of all

points in the plane whose coordinates are integers. This is called the integer lattice. If the line

segment joining the origin (0, 0) to a point (m, n) does not pass through any other lattice point

we say that the point (m, n) can be seen from the origin. For example, the point (1,−1) can be

seen from the origin but the point (2,−2) can not be seen. Among all lattice points what is the

proportion of those that can be seen from the origin? The answer, again, is 6/π2. The proof of

this is left to the reader.

The argument used in proving the Theorem above can be modified to give a proof of the fact

that there are infinitely many prime numbers. The probability that a randomly picked number

from the set {1, 2, . . . ,N} is 1 goes to zero as N becomes large. So the product Πp(1 − 1/p)

where p varies over all primes is smaller than any positive number. This would not be possible

if there were only a finitely many factors in the product.

The number π entered the picture via the formula (3). How does one prove it? Several

proofs are known. The daring ‘proof’ first given by Euler goes as follows.

Let α1, α2, . . . be the roots of the polynomial equation a0 + a1x + a2x2 + · · · + amxm = 0.

Then
∑ 1

αi

=
−a1

a0

.

We can write

cos
√

x = 1 − x

2
+

x2

24
+ · · · .

This is a ‘polynomial of infinite degree’, and the roots of cos
√

x = 0 are

(2n + 1)2π2

4
, n = 0, 1, 2, . . .

Hence,
∞
∑

n=0

1

(2n + 1)2
=
π2

8
. (9)

The formula (3) follows from this easily.

Surely this argument has flaws. They can all be removed! With the notions of uniform

convergence and ǫ − δ arguments, we can prove formulas like

sin x

x
=

∞
∏

n=1

(

1 − x2

n2x2

)

, (10)

from which the formulas (1) and (3) can be derived by simple manipulations. Finding the sum

of the series (3) was one of the early major triumphs of Euler. He was aware that the argument

we have described above is open to several criticisms. So he gave another proof that goes as

follows.

π2

8
=

(arcsin 1)2

2
=

∫ 1

0

arcsin x
√

1 − x2
dx
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=

∫ 1

0

1
√

1 − x2















x +

∞
∑

n=1

1 · 3 · · · (2n − 1)

2 · 4 · · · 2n

x2n+1

2n + 1















dx

= 1 +

∞
∑

n=1

1 · 3 · · · (2n − 1)

2 · 4 · · · 2n(2n + 1)

2n(2n − 2) · · · 2
(2n + 1)(2n − 1) · · · 3

=

∞
∑

n=0

1

(2n + 1)2
.

Following the ideas of his first proof Euler showed that ζ(2m) is π2m multiplied by a rational

number. Thus for example,

ζ(4) =
π4

90
, ζ(6) =

π4

945
. (11)

Neither Euler, nor anyone else in three centuries after him, has found much about the values of

ζ(k) when k is an odd integer. In 1978 R Apéry showed that ζ(3) is an irrational number. Even

this much is not known about ζ(5).

Another general method for finding sums like (3) and (11) goes via Fourier series. If f is a

continuous function on [−π, π] and f (x) =
∑∞

n=−∞ aneinx its Fourier expansion, then

∞
∑

n=−∞
|an|2 =

∫ π

−π
| f (x)|2dx. (12)

The method depends on recognising the summands of a particular series as coefficient of the

Fourier series of a particular function f and then computing the integral in (12).

Having seen expression like (10) and (12) one is no longer surprised that ζ(2m) involves π

in some way.

Finally, let us briefly discuss some issues related to ‘picking a natural number at random’.

Two standard examples of completely random phenomena are tossing of a coin and throw-

ing of a dice. In the first case we have two, and in the second case six, equally likely outcomes.

The ‘sample space’ in the first case is the set {1, 2} (representing the two outcomes head and

tail) and in the second case it is the set {1, 2, . . . , 6}. One can imagine an experiment with N

equally likely outcomes {1, 2, . . . ,N}.
The uniform probability distribution on the set X = {1, 2, . . . ,N} is the function that assigns

to each subset E of X values according to the following rules

µ({ j}) = µ({k}) for all j, k, (13)

µ(E) =
∑

j∈E
µ({ j}), (14)

µ(X) = 1. (15)

Note that these three conditions imply that µ({ j}) = 1/N for all j. This is a model for a random

phenomenon (like in some games of chance) with N equally likely outcomes.
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It is clear that if X is replaced by the set N of all natural numbers, then no function satis-

fying the three conditions (13)–(15) exists. So, if ‘picking an element of N at random’ means

assigning each of its elements j an equal ‘probability’ we run into a problem. However, there

is a way to get around this.

Let X = {1, 2, . . . ,N} and let E be the set of even numbers in X. If N is even, then µ(E) =

1/2. But if N = 2m + 1 is odd, then µ(E) = m/(2m + 1). This is less than 1/2, but gets very

close to 1/2 for large N. In this sense a number picked at random is as likely to be even as odd.

In the same spirit we can prove the following.

For every ε > 0, there exists a number N, such that if µ is the uniform probability distribu-

tion on the set X = {1, 2, . . . ,N} and E is the set of square-free numbers in X, then

6

π2
< µ(E) <

6

π2
+ ε.

The reader may prove this using the following observations. We know that

∞
∏

j=1

















1 − 1

p2
j

















=
6

π2
.

The factors in this product are smaller than 1. So, the sequence

M
∏

j=1

















1 − 1

p2
j

















, M = 1, 2, . . .

decreases to its limit. Choose an M such that

6

π2
<

M
∏

j=1

















1 − 1

p2
j

















<
6

π2
+ ε

and let N =
∏M

j=1 p2
j
.

A (non-uniform) probability distribution on X is a function µ that satisfies the conditions

(14)–(15) but not (necessarily) the condition (13). There is nothing that prevents the existence

of such a distribution on N. Any series with non-negative terms and with sum 1 gives such a

distribution. In particular if we set

µ({ j}) = 6

π2

1

j2
, j = 1, 2, . . . , (16)

then µ is a probability distribution on N. This assigns different probabilities to different ele-

ments of N. The reader may like to interpret and prove the following statement.

The probability that two natural numbers picked at random have j as their greatest common

divisor is µ({ j}) as defined by (16).

# 36

36



The Unexpected Appearance of Pi in Diverse Problems

Suggested Reading

[1] G H Hardy and E M Wright, An Introduction to the Theory of Numbers, Oxford University

Press, 1959. See Chapter VIII, and in particular Theorems 332 and 333. The latter theorem

attributed to Gegenbauer (1885) says that if Q(x) is the number of square-free numbers not

exceeding x, then

Q(x) =
6x

π2
+ O(

√
x).

Here O(
√

x) represents a function whose absolute value is bounded by A
√

x for some

constant A.

Use this formula, with a computer program for testing whether a number is square-free, to

obtain the value of π up to the third decimal place.

[2] P J Davis and R Hersch, The Mathematical Experience, Birkhauser, 1981. We have bor-

rowed our main argument from the discussion on page 366 here. This occurs in a chapter

titled The Riemann Hypothesis where the authors present an argument showing that this

most famous open problem in mathematics has an affirmative solution with probability

one.

[3] M Kac, Enigmas of Chance, University of California Press, 1987. See Chapters 3,4, and

in particular pages 89–91 of this beautiful autobiography for deeper connections between

number theory and probability found by its author. See also his book Statistical Indepen-

dence in Probability, Analysis and Number Theory, Mathematical Association of America,

1959.

[4] W Dunham, Journey Through Genuis, Penguin Books, 1991. See Chapter 9 titled The

Extraordinary Sums of Leonhard Euler for an entertaining history of the formula (3).

[5] R Bhatia, Fourier Series, Hindustan Book Agency, Second Edition 2003. See Chapter 3

for several series and products that lead to π.
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The Logarithmic Mean∗

Rajendra Bhatia
Indian Statistical Institute, New Delhi 110 016, India.

The inequality between the arithmetic mean (AM) and geometric mean (GM)

of two positive numbers is well known. This article introduces the logarithmic

mean, shows how it leads to refinements of the AM–GM inequality. Some

applications and properties of this mean are shown. Some other means and

related inequalities are discussed.

One of the best known and most used inequalities in mathematics is the inequality between

the harmonic, geometric, and arithmetic means. If a and b are positive numbers, these means

are defined, respectively, as

H(a, b) =

(

a−1 + b−1

2

)−1

, G(a, b) =
√

ab, A(a, b) =
a + b

2
, (1)

and the inequality says that

H(a, b) ≤ G(a, b) ≤ A(a, b). (2)

Means other than the three “classical” ones defined in (1) are used in different problems.

For example, the root mean square

B2(a, b) =

(

a2 + b2

2

)1/2

, (3)

is often used in various contexts. Following the mathematician’s penchant for generalisation,

the four means mentioned above can be subsumed in the family

Bp(a, b) =

(

ap + bp

2

)1/p

, −∞ < p < ∞, (4)

variously known as binomial means, power means, or Hölder means. When p = −1, 1, and 2,

respectively, Bp(a, b) is the harmonic mean, the arithmetic mean, and the root mean square. If

we understand B0(a, b) to mean

B0(a, b) = lim
p→0

Bp(a, b),
then

B0(a, b) = G(a, b). (5)

∗Reproduced from Resonance, Vol. 13, No. 6, pp. 583–594, June 2008. (General Article)
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In a similar vein we can see that

B∞(a, b) := lim
p→∞

(

ap + bp

2

)1/p

= max(a, b),

B−∞(a, b) := lim
p→−∞

(

ap + bp

2

)1/p

= min(a, b).

A little calculation shows that

Bp(a, b) ≤ Bq(a, b) if p ≤ q. (6)

This is a strong generalization of the inequality (2). We may say that for −1 ≤ p ≤ 1 the family

Bp interpolates between the three means in (1) as does the inequality (6) with respect to (2).

A substantial part of the mathematics classic Inequalities by G Hardy, J E Littlewood and

G Pölya is devoted to the study of these means and their applications. The book has had quite

a few successors, and yet new properties of these means continue to be discovered.

The purpose of this article is to introduce the reader to the logarithmic mean, some of its

applications, and some very pretty mathematics around it.

The logarithmic mean of two positive numbers a and b is the number L(a, b) defined as

L(a, b) =
a − b

log a − log b
for a , b, (7)

with the understanding that

L(a, a) = lim
b→a

L(a, b) = a.

There are other interesting representations for this object, and the reader should check the

validity of these formulas:

L(a, b) =

∫ 1

0

atb1−tdt, (8)

1

L(a, b)
=

∫ 1

0

dt

ta + (1 − t)b
, (9)

1

L(a, b)
=

∫ ∞

0

dt

(t + a)(t + b)
. (10)

The logarithmic mean always falls between the geometric and the arithmetic means; i.e.,

G(a, b) ≤ L(a, b) ≤ A(a, b). (11)

We indicate three different proofs of this and invite the reader to find more.

When a = b, all the three means in (11) are equal to a. Suppose a > b, and put w = a/b.

The first inequality in (11) is equivalent to saying

√
w ≤ w − 1

log w
for w > 1.
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Replacing w by u2, this is the same as saying

2 log u ≤ u2 − 1

u
for u > 1. (12)

The two functions f (u) = 2 log u, and g(u) = (u2 − 1)/u are equal to 0 at u = 1, and a small

calculation shows that f ′(u) < g′(u) for u > 1. This proves the desired inequality (12), and

with it the first inequality in (11). In the same way, the second of the inequalities (11) can be

reduced to
u − 1

u + 1
≤ log u

2
for u ≥ 1.

and proved by calculating derivatives.

A second proof goes as follows. Two applications of the arithmetic-geometric mean in-

equality show that

t2 + 2t
√

ab + ab ≤ t2 + t(a + b) + ab ≤ t2 + t(a + b) +

(

a + b

2

)2

for all t ≥ 0. Using this, one finds that

∫ ∞

0

dt

(t + a+b
2

)2
≤

∫ ∞

0

dt

(t + a)(t + b)
≤

∫ ∞

0

dt

(t +
√

ab)2
.

Evaluation of the integrals shows that this is the same as the assertion in (11).

Since a and b are positive, we can find real numbers x and y such that a = ex and b = ey.

Then the first inequality in (11) is equivalent to the statement

e(x+y)/2 ≤ ex − ey

x − y
,

or

1 ≤ e(x−y)/2 − e(y−x)/2

x − y
.

This can be expressed also as

1 ≤ sinh (x − y)/2

(x − y)/2
.

In this form we recognise it as one of the fundamental inequalities of analysis: t ≤ sinh t for

all t ≥ 0. Very similar calculations show that the second inequality in (11) can be reduced to

the familiar fact tanh t ≤ t for all t ≥ 0.

Each of our three proofs shows that if a , b, then G(a, b) < L(a, b) < A(a, b). One of the

reasons for the interest in (11) is that it provides a refinement of the fundamental inequality

between the geometric and the arithmetic means.
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The logarithmic mean plays an important role in the study of conduction of heat in liquids

flowing in pipes. Let us explain this briefly. The flow of heat by steady unidirectional conduc-

tion is governed by Newton’s law of cooling: if q is the rate of heat flow along the x-axis across

an area A normal to this axis, then

q = k A
dT

dx
, (13)

where dT/dx is the temperature gradient along the x direction and k is a constant called the

thermal conductivity of the material. (See, for example, R Bhatia, Fourier Series, Mathematical

Association of America, 2004, p.2). The cross-sectional area A may be constant, as for example

in a cube. More often (as in the case of a fluid travelling in a pipe) the area A is a variable. In

engineering calculations, it is then more convenient to replace (13) by

q = k Am

△T

△x
, (14)

where △T is the difference of temperatures at two points at distance △x along the x-axis, and

Am is the mean cross section of the body between these two points. For example, if the body

has a uniformly tapering rectangular cross section, then Am is the arithmetic mean of the two

boundary areas A1 and A2.

Consider, heat flow in a long hollow cylinder where end effects are negligible. Then the

heat flow can be taken to be essentially radial. (see, for example, J Crank: The Mathematics of

Diffusion, Clarendon Press, 1975.) The cross sectional area in this case is proportional to the

distance from the centre of the pipe. If L is the length of the pipe, the area of the cylindrical

surface at distance x from the axis is 2πxL. So, the total heat flow q across the section of the

pipe bounded by two coaxial cylinders at distance x1 and x2 from the axis, using (13), is seen

to satisfy the equation

q

∫ x2

x1

dx

2πxL
= k△T, (15)

or,

q =
k 2πL △T

log x2 − log x1

.

If we wish to write this in the form (14) with x2 − x1 = △x, then we must have

Am = 2πL
x2 − x1

log x2 − log x1

=
2πLx2 − 2πLx1

log 2πLx2 − log 2πLx1

.

In other words,

Am =
A2 − A1

log A2 − log A1

,

the logarithmic mean of the two areas bounding the cylindrical section under consideration. In

the engineering literature this is called the logarithmic mean area.
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If instead of two coaxial cylinders we consider two concentric spheres, then the cross sec-

tional area is proportional to the square of the distance from the centre. In this case we have,

instead of (15),

q

∫ x2

x1

dx

4 πx2
= k△T.

A small calculation shows that in this case

Am =
√

A1A2,

the geometric mean of the two areas bounding the annular section under consideration.

Thus the geometric and the logarithmic means are useful in calculations related to heat flow

through spherical and cylindrical bodies, respectively. The latter relates to the more common

phenomenon of flow through pipes.

Let us return to inequalities related to the logarithmic mean. Let t be any nonzero real

number. In the equality (11) replace a and b by at and bt, respectively. This gives

(ab)t/2 ≤ at − bt

t(log a − log b)
≤ at + bt

2
,

from which we get

t(ab)t/2 a − b

at − bt
≤ a − b

log a − log b
≤ t

at + bt

2

a − b

at − bt
.

The middle term in this equality is the logarithmic mean. Let Gt and At be defined as

Gt(a, b) = t(ab)t/2 a − b

at − bt
,

At(a, b) = t
at + bt

2

a − b

at − bt
.

We have assumed in these definitions that t , 0. If we define G0 and A0 as the limits

G0(a, b) = lim
t→0

Gt(a, b),

A0(a, b) = lim
t→0

At(a, b),

then

G0(a, b) = A0(a, b) = L(a, b).

The reader can verify that

G1(a, b) =
√

ab, A1(a, b) =
a + b

2
,

G−t(a, b) = Gt(a, b), A−t(a, b) = At(a, b).
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For fixed a and b, Gt(a, b) is a decreasing function of |t|, while At(a, b) is an increasing function

of |t|. (One proof of this can be obtained by making the substitution a = ex, b = ey.) The last

inequality obtained above can be expressed as

Gt(a, b) ≤ L(a, b) ≤ At(a, b), (16)

for all t. Thus we have an infinite family of inequalities that includes the arithmetic-geometric

mean inequality, and other interesting inequalities. For example, choosing t = 1 and 1/2, we

see from the information obtained above that

√
ab ≤ a3/4b1/4 + a1/4b3/4

2
≤ L(a, b) ≤

(

a1/2 + b1/2

2

)2

≤ a + b

2
. (17)

This is a refinement of the fundamental inequality (11). The second term on the right is the

binomial mean B1/2(a, b). The second term on the left is one of another family of means called

Heinz means defined as

Hν(a, b) =
aνb1−ν + a1−νbν

2
, 0 ≤ ν ≤ 1. (18)

Clearly

H0(a, b) = H1(a, b) =
a + b

2
,

H1/2(a, b) =
√

ab,

H1−ν(a, b) = Hν(a, b).

Thus the family Hν is yet another family that interpolates between the arithmetic and the geo-

metric means. The reader can check that

H1/2(a, b) ≤ Hν(a, b) ≤ H0(a, b), (19)

for 0 ≤ ν ≤ 1. This is another refinement of the arithmetic-geometric mean inequality.

If we choose t = 2−n, for any natural number n, then we get from the first inequality in (16)

2−n(ab)2−(n+1) a − b

a2−n − b2−n ≤ L(a, b).

Using the identity

a − b =
(

a2−n − b2−n
) (

a2−n

+ b2−n
) (

a2−n+1

+ b2−n+1
)

· · ·
(

a2−1

+ b2−1
)

,

we get from the inequality above

(ab)2−(n+1)
n

∏

m=1

a2−m

+ b2−m

2
≤ L(a, b). (20)
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Similarly, from the second inequality in (16) we get

L(a, b) ≤ a2−n

+ b2−n

2

n
∏

m=1

a2−m

+ b2−m

2
. (21)

If we let n→ ∞ in the two formulas above, we obtain a beautiful product formula:

L(a, b) =

∞
∏

m=1

a2−m

+ b2−m

2
. (22)

This adds to our list of formulas (7)–(10) for the logarithmic mean.

Choosing b = 1 in (22) we get after a little manipulation the representation for the logarithm

function

log x = (x − 1)

∞
∏

m=1

2

1 + x2−m , (23)

for all x > 0.

We can turn this argument around. For all x > 0 we have

log x = lim
n→∞

n
(

x1/n − 1
)

. (24)

Replacing n by 2n, a small calculation leads to (23) from (24). From this we can obtain (22) by

another little calculation.

There are more analytical delights in store; the logarithmic mean even has a connection

with the fabled Gauss arithmetic-geometric mean that arises in a totally different context. Given

positive numbers a and b, inductively define two sequences as

a0 = a, b0 = b

an+1 =
an + bn

2
, bn+1 =

√

anbn.

Then {an} is a decreasing, and {bn} an increasing, sequence. All an and bn are between a and b.

So both sequences converge. With a little work one can see that an+1 − bn+1 ≤ 1
2

(an − bn), and

hence the sequences {an} and {bn} converge to a common limit. The limit AG(a, b) is called the

Gauss arithmetic-geometric mean. Gauss showed that

1

AG(a, b)
=

2

π

∫ ∞

0

dx
√

(a2 + x2)(b2 + x2)

=
2

π

∫ π/2

0

dϕ
√

a2 cos2 ϕ + b2 sin2 ϕ

. (25)

These integrals called “elliptic integrals” are difficult ones to evaluate, and the formula above

relates them to the mean value AG(a, b). Clearly

G(a, b) ≤ AG(a, b) ≤ A(a, b). (26)
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Somewhat unexpectedly, the mean L(a, b) can also be realised as the outcome of an iteration

closely related to the Gauss iteration. Let At and Gt be the two families defined earlier. A small

calculation, that we leave to the reader, shows that

At +Gt

2
= At/2,

√

At/2Gt = Gt/2. (27)

For n = 1, 2, . . ., let t = 21−n, and define two sequences a′n and b′n as a′n = At, b′n = Gt; i.e.,

a′1 = A1 =
a + b

2
, b′1 = G1 =

√
ab,

a′2 = A1/2 =
a′

1
+ b′

1

2
, b′2 = G1/2 =

√

A1/2G1 =

√

a′
2
b′

1
,

...

a′n+1 =
a′n + b′n

2
, b′n+1 =

√

a′
n+1

b′n.

We leave it to the reader to show that the two sequences {a′n} and {b′n} converge to a common

limit, and that limit is equal to L(a, b). This gives one more characterisation of the logarithmic

mean. These considerations also bring home another interesting inequality

L(a, b) ≤ AG(a, b). (28)

Finally, we indicate yet another use that has recently been found for the inequality (11) in

differential geometry. Let ‖T‖2 be the Euclidean norm on the space of n × n complex matrices;

i.e.

‖T‖22 = tr T ∗T =
n

∑

i, j=1

∣

∣

∣ti j

∣

∣

∣

2
.

A matrix version of the inequality (11) says that for all positive definite matrices A and B and

for all matrices X, we have

∣

∣

∣

∣

∣

∣A1/2XB1/2
∣

∣

∣

∣

∣

∣

2
≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ 1

0

AtXB1−tdt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

AX + XB

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
. (29)

The space Hn of all n × n Hermitian matrices is a real vector space, and the exponential

function maps this onto the space Pn consisting of all positive definite matrices. The latter is

a Riemannian manifold. Let δ2(A, B) be the natural Riemannian metric on Pn. A very funda-

mental inequality called the exponential metric increasing property says that for all Hermitian

matrices H and K

δ2
(

eH , eK
)

≥ ||H − K||2 . (30)

A short and simple proof of this can be based on the first of the inequalities in (29). The

inequality (30) captures the important fact that the manifold Pn has nonpositive curvature. For

more details see the Suggested Reading.
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Suggested Reading

[1] G Hardy, J E Littlewood and G Pölya, Inequalities, Cambridge University Press, Second

edition, 1952. (This is a well-known classic. Chapters II and III are devoted to “mean

values”.)

[2] P S Bullen, D S Mitrinovic, and P M Vasic, Means and Their Inequalities, D Reidel, 1998.

(A specialised monograph devoted exclusively to various means.)

[3] W H McAdams, Heat Transmission, Third edition, McGraw Hill, 1954. (An engineering

text in which the logarithmic mean is introduced in the context of fluid flow.)

[4] B C Carlson, The logarithmic mean, American Mathematical Monthly, Vol. 79, pp. 615–

618, 1972. (A very interesting article from which we have taken some of the material

presented here.)

[5] R Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics, 2007, and

also TRIM 44, Hindustan Book Agency, 2007. (Matrix versions of means, and inequalities

for them, can be found here. The role of the logarithmic mean in this context is especially

emphasized in Chapters 4–6.)

[6] R Bhatia and J Holbrook, Noncommutative geometric means, Mathematical Intelligencer,

28 (2006) 32–39. (A quick introduction to some problems related to matrix means, and to

the differential geometric context in which they can be placed.)

[7] Tung-Po Lin, The Power Mean and the Logarithmic Mean, American Mathematical

Monthly, Vol. 81, pp. 879–883, 1974.

[8] S. Chakraborty, A Short Note on the Versatile Power Mean, Resonance, Vol. 12, No. 9,

pp. 76–79, September 2007.
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Convolutions

Rajendra Bhatia
Indian Statistical Institute, New Delhi 110 016, India

I am expected to tell you, in 25 minutes, something that should interest you, excite you,

pique your curiosity, and make you look for more. It is a tall order, but I will try. The word

“interactive” is in fashion these days. So I will leave a few things for you to check.

Let f1 and f2 be two polynomials, say

f1(x) = a0 + a1x + a2x2, (1)

f2(x) = b0 + b1x + b2x2 + b3x3. (2)

(Here the coefficients a’s and b’s could be integers, rational, real, or complex numbers.) Their

product f1 f2 is the polynomial

f1 f2(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2

+ (a0b3 + a1b2 + a2b1)x3 + (a1b3 + a2b2)x4

+ a2b3x5. (3)

What pattern do you see in the coefficients of the product f1 f2?

Let us consider the general situation. Suppose f1 and f2 are polynomials of degrees m and

n, respectively:

f1(x) = a0 + a1x + a2x2 + · · · + amxm, (4)

f2(x) = b0 + b1x + b2x2 + · · · + bnxn. (5)

Their product f1 f2 is a polynomial of degree m + n, and has the expression

f1 f2(x) = c0 + c1x + c2x2 + · · · + cn+mxn+m. (6)

What is the “formula” for the coefficients c’s in terms of the a’s and b’s? You can see that ck is

the sum of all a jbℓ, where j + ℓ = k. This can be written briefly as

ck =
∑

j+ℓ=k

a jbℓ, (7)

or as

ck =

k
∑

j=0

a jbk− j. (8)

A little care is needed in interpreting the meaning of this formula. The indices k vary from

0 to n + m but the j’s do not go beyond m. So, what is the meaning of the summation in (8)
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with j going up to k when k is bigger than m? If we agree to put am+1, am+2, . . . , am+n, and

an+1, bn+2, . . . , bm+n all equal to zero, then (8) is meaningful. This is a helpful device.

Let C00 be the collection of all sequences with only finitely many nonzero terms. Thus a

typical element of C00 is a sequence

a = (a0, a1, . . . , am, 0, 0, 0, . . .). (9)

If

b = (b0, b1, . . . , bn, 0, 0, 0, . . .) (10)

is another such sequence, then we define the convolution of a and b to be the sequence

c = (c0, c1, . . . , cm+n, 0, 0, 0, . . .), (11)

whose terms ck are given by (8). We write this relation between a, b and c as c = a ∗ b.

Let P be the collection of all polynomials (of any degree). Each polynomial is deter-

mined by its coefficients (i.e., there is exactly one polynomial fa(x) whose coefficients are a =

(a0, a1, . . . , am). As I explained, it is convenient to think of this as the sequence (a0, a1, . . . , am,

0, 0, 0, . . .). If we have two polynomials fa and fb of degree m and n, respectively, then their

sum is a polynomial whose degree is max(m, n). The coefficients of this polynomial are the

terms of the sequence

a + b = (a0 + b0, a1 + b1, . . .).

The product fa fb is a polynomial of degree m+n. Call this polynomial fc. Then the coefficients

of fc are ck where c = a ∗ b.

You have learnt about binary operations. The operations ∗ is a binary operation on the set

C00. Here are some questions. Is this operation commutative? Is it associative? Does there

exist an identity element for this operation? i.e., is there a sequence e in C00 such that a ∗ e = a

for all a? If such an e exists, then we ask further whether every element a of C00 has an inverse;

i.e., does there exist a sequence a′ such that a ∗ a′ = e?

Let s(a) = a0 + a1 + · · · + am, be the sum of the coefficients in (4), and define s(b) and s(c)

in the same way. You can see that

s(c) = s(a) s(b). (12)

(Please do the calculations!)

The idea of convolution occurs at several places. One of them is in the calculation of

probabilities. Let (a1, . . . , an) be nonnegative real numbers such that a1+ · · ·+an = 1. Then a =

(a1, . . . , an) is called a “probability vector”. (Think of an experiment with n possible outcomes

with probabilities a1, . . . , an.) If a and b are two probability vectors, then their convolution

c = a ∗ b is another probability vector. (Use the relation (12) to see this.) What is the meaning

of this?

Think of a simple game of chance like throwing a dice. There are six possible outcomes,

1, 2, . . . , 6, each with probability 1/6. The probability vector (or the probability distribution)
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corresponding to this is (1/6, 1/6, . . . , 1/6), which for brevity I write as 1
6
(1, 1, . . . , 1). Suppose

we throw the dice twice and observe the sum of the two numbers that turn up. The possible

values for the sum are the numbers between 2 and 12. But they occur with different probabil-

ities. The numbers 2 and 12 can occur in only one way: both the throws should result in 1, or

both should result in 6. On the other hand the sum can be 5 in four different ways

5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1.

Thus the probability of the sum being 2 is 1/36 while its being 5 is 4/36. Let me write (a, b)

to mean that in the first throw of the dice the number a showed up, and in the second b. Let

s = a + b. Then the familiar laws of probability say that

Prob(s = 5) = Prob(1, 4) + Prob(2, 3) + Prob(3, 2) + Prob(4, 1).

That is because the probabilities add up when the events are mutually exclusive. The outcomes

of the two throws are independent, and probabilities multiply when the events are independent.

So we have

Prob(s = 5) = Prob(1)Prob(4) + Prob(2)Prob(3)

+ Prob(3)Prob(2) + Prob(4)Prob(1)

=
1

62
+

1

62
+

1

62
+

1

62

=
4

36
=

1

9
.

Here again you see convolution at work:

Prob(s = k) =

k−1
∑

j=1

Prob( j)Prob(k − j). (13)

If we represent the probability distribution corresponding to the throwing of a dice by p1 =
1
6
(1, 1, 1, 1, 1, 1), then the probability distribution corresponding the “sum of two throws of a

dice” is

p2 = p1 ∗ p1 =
1

36
(1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1).

You should check by a calculation what

p3 = p1 ∗ p1 ∗ p1

is. (Now we are observing the sum of the outcomes of three throws of a dice. There are 16

possibilities ranging between 3 and 18.) Plot the points corresponding to p1, p2, p3,. The plots

look like the one in Figures 1, 2, and 3.
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I will now discuss the “continuous version” of the same phenomenon. Let p(x) be a func-

tion on the real line (−∞,∞) satisfying two conditions

p(x) ≥ 0 and

∫ ∞

−∞
p(x)dx = 1.

Such a function is called a probability density function. This corresponds to a “random vari-

able” F which can possibly take all real values, and the probability of F being in the interval

[a, b] is
∫ b

a

p(x) dx.

If p1 and p2 are probability density functions, their convolution p1 ∗ p2 is defined as

(p1 ∗ p2)(x) =

∫ ∞

−∞
p1(t) p2(x − t) dt. (14)

Observe the similarity with the discrete convolution defined in (8). (The sum has now been

replaced by an integral and the indices k and j by x and t, respectively.) The function (p1∗p2)(x)

is another probability distribution. If p1 and p2 correspond to random variables F1 and F2 then

p1 ∗ p2 corresponds to their sum F1 + F2. We saw this in the case of two throws of a dice. The

general case involves a similar calculation with integrals.

As a simple example, let us consider

p1(x) =

{

1 if |x| ≤ 1/2

0 if |x| > 1/2.

The graph of p is Figure 4.
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Figure 4
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This is called a “rectangular distribution”. You are invited to calclulate p2 defined as

p2(x) = (p1 ∗ p1)(x) =

∫ ∞

−∞
p1(t)p1(x − t)dt.

(It is a simple integration.)

You will see that

p2(x) =

{

1 − |x| if |x| ≤ 1

0 if |x| ≥ 1.

The graph of p2 is Figure 5.
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Figure 5

Let us persist a little more and calculate

p3(x) = (p1 ∗ p2)(x) = (p1 ∗ p1 ∗ p1)(x).

The answer is

p3(x) =































1
8
(3 − 2|x|)2 if 1

2
≤ |x| ≤ 3

2

3
4
− x2 if |x| ≤ 1

2

0 if |x| ≥ 3
2
.

The graph of p3 normalized so that p3(0) = 1 is Figure 6.
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We can go on and calclulate p4(x). I asked a computer to do it for me and to show me the

graph of p4. It is Figure 7.
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Do you see a pattern emerge? The graphs seem to look more and more like the “normal

curve”, the famous bell-shaped curve.

Was there something special about the rectangular distribution that led to this‘? I start with

another distribution
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p1(x) =















2
π

√
1 − x2 if |x| ≤ 1

0 if |x| ≥ 1.

This looks like Figure 8.
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Successive convolutions of p1 with itself p2, p3 and p4 have graphs Figures 9, 10, 11.
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Here is yet another example in which the function is “random” (Figure 12). Again three

successive convolutions are shown in the (Figures 12-15) that follow.

This seems to be a very striking phenomenon. Starting with different probability distribu-

tions we seem to get close to a normal distribution if we take repeated convolutions. Does this

happen always? (The answer is: “with rare exceptions”.) So the normal distribution occupies a

very special position. One of the most important theorems in probability is the “Central Limit

Theorem”. That tells us more about this phenomenon. I hope you will find out about this soon.

Another feature that stands out in these examples is that successive convolutions seem to make

the functions smoother. This too is a general phenomenon, exploited by mathematicians and

by design engineers.
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Finally I wish to point out that there is an analogy between multiplication of ordinary

numbers and that of polynomials. Every number can be thought of as a polynomial with the

“base” of the system acting as the “ideterminate” x. Thus, for example, in the decimal system

3769 = 9 + 6.10 + 7.102 + 3.103

Ordinary multiplication of numbers is, therefore akin to multiplication of polynomials. There

is a famous algorithm called the Fast Fourier Transform that computes convolutions quickly

and helps computers do arithmetic operations like multiplication much faster.

(I thank Mrs Srijanani Anurag Prasad for preparing the figures.)
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Vibrations occur everywhere. My speech reaches you by a series of vibrations starting from

my vocal chords and ending at your ear drums. We make music by causing strings, membranes,

or air columns to vibrate. Engineers design safe structures by controlling vibrations.

I will describe to you a very simple vibrating system and the mathematics needed to analyse

it. The ideas were born in the work of Joseph-Louis Lagarange(1736–1813), and I begin by

quoting from the preface of his great book Méchanique Analitique published in 1788:

We already have various treatises on mechanics but the plan of this one is entirely new.

I have set myself the problem of reducing this science [mechanics],and the art of solving the

problems pertaining to it, to general formulae whose simple development gives all the equa-

tions necessary for the solutions of each problem ... No diagrams will be found in this work.

The methods which I expound in it demand neither constructions nor geometrical or mechan-

ical reasonings, but solely algebraic [analytic] operations subjected to a uniform and regular

procedure. Those who like analysis will be pleased to see mechanics become a new branch of

it, and will be obliged to me for having extended its domain.

Consider a long thin tight elastic string (like the wire of a veena) with fixed end points. If

it is plucked slightly and released, the string vibrates. The problem is to find equations that

describe these vibrations and to find solutions of these equations. The equations were first

found by Jean d’Alembert, and two different forms of the solution were given by him and by

Leonhard Euler.

Lagrange followed a different path: he discretised the problem. Imagine the string is of

length (n + 1)d, has negligible mass, and there are n beads of mass m each placed along the

string at regular intervals d:

Figure 1

The string is pulled slightly in the y-direction and the beads are displaced to positions

y1, y2, ..., yn.
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Figure 2

The tension T in the string is a force that pulls the beads towards the initial position of rest.

Let α be the angle that the string between the ( j − 1)th and the jth bead makes with the x-axis:

Figure 3

Then the component of T in the downward direction is T sinα. If α is small, then cos a is

close to 1, and sinα is close to tanα. Thus the downward component of T is approximately

T tanα = T
y j − y j−1

d
.

Similarly the pull exerted on the jth bead from the other side of the string is

T
y j − y j+1

d
.

Thus the total force exerted on the jth bead is

T

d
(2y j − y j−1 − y j+1).

By Newton’s second law of motion

Force = mass × acceleration,

this force is equal to mÿ j, where the two dots denote the second derivative with respect to time.

So we have

mÿ j =
−T

d
(2y j − y j−1 − y j+1). (1)
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The minus sign outside the brackets indicates that the force is in the ‘downward’ direction. We

have n equations, one for each 1 ≤ j ≤ n. It is convenient to write them as a single vector

equation
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(2)

or as

ÿ =
−T

md
Ly, (3)

where y is the vector with n components y1, y2, . . . , yn and L is the n × n matrix with entries

lii = 2 for all i, li j = −1 if |i − j| = 1, and li j = 0 if |i − j| > 1. (A matrix of this special form is

called a tridiagonal matrix.)

Let us drop the factor −T/md (which we can reinstate later) and study the equation

ÿ = Ly. (4)

We want to find solutions of this equation; i.e., we want to find y(t) that satisfy (4). In this

we are guided by two considerations. Our experience tells us that the motion of the string is

oscillatory; the simplest oscillatory function we know of is sin t, and its second derivative is

equal to itself with a negative sign. Thus it would be reasonable to think of a solution

y(t) = (sinωt)u. (5)

If we plug this into (4), we get

−ω2(sinωt)u = (sinωt)Lu.

So, we must have

Lu = −ω2u.

In other words u is an eigenvector of L corresponding to eigenvalue −ω2.

So our problem has been reduced to a problem on matrices: find the eigenvalues and eigen-

vectors of the tridiagonal matrix L. In general, it is not easy to find eigenvalues of a (tridiagonal)

matrix. But our L is rather special. The calculation that follows now is very ingenious, and

remarkable in its simplicity.

The characteristic equation Lu = λu can be written out as

−u j−1 + 2u j − u j+1 = λu j, 1 ≤ j ≤ n, (6)

together with the boundary conditions

u0 = un+1 = 0. (7)
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The two conditions in (7) stem from the fact that the first and the last row of the matrix L are

different from the rest of the rows. This is because the two endpoints of the string remain fixed

– their displacement in the y-direction is zero. The trigonometric identity

sin( j + 1)α + sin( j − 1)α = 2 sin jα cosα

= 2 sin jα

(

1 − 2 sin2 α

2

)

,

after a rearrangement, can be written as

− sin( j − 1)α + 2 sin jα − sin( j + 1)α =

(

4 sin2 α

2

)

sin jα. (8)

So, the equations (6) are satisfied if we choose

λ = 4 sin2 α

2
, u j = sin jα. (9)

There are some restrictions on α. The vector u is not zero and hence α cannot be an integral

multiple of π. The first condition in (7) is automatically satisfied, and the second dictates that

sin(n + 1)α = 0.

This, in turn means that α = kπ/(n + 1). Thus the n eigenvalues of L are

λ = 4 sin2 kπ

2(n + 1)
, k = 1, 2, . . . , n. (10)

You can write out for yourself the corresponding eigenvectors.

What does this tell us about our original problem? You are invited to go back to ω and to

the equation (3) and think. A bit of ‘dimension analysis’ is helpful here. The quantity T in

(3) represents a force. So its units are
mass×length

(time)2 . The units of T
md

are, therefore (time)−2. So,

after the factor −T
md

is reinstated, the quantity ω represents a frequency. This is the frequency

of oscillation of the string. It is proportional to
√

T/md. So, it increases with the tension and

decreases with the mass m of the beads and the distance d between them. Does this correspond

to your physical experience?

We can go in several directions from here. Letting d go to zero we approach the usual

string with uniformly distributed mass. The matrix L then becomes a differential operator. The

equation corresponding to (3) then becomes Euler’s equation for the vibrating string. We can

study the problem of beads on a heavy string. Somewhat surprising may be the fact that the

same equations describe the flow of electricity in telephone networks.

The study of the vibrating string led to the discovery of Fourier Series, a subject that even-

tually became ‘harmonic analysis’, and is behind much of modern technology from CT scans

to fast computers.

I end this talk by mentioning a few more things about Lagrange. Many ideas in mechanics

go back to him. It has been common to talk of ‘Lagrangian Mechanics’ and ‘Hamiltonian
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Mechanics’ as the two viewpoints of this subject. Along with L Euler he was the founder of

the calculus of variations. The problem that led Lagrange to this subject was his study of the

tautochrone, the curve moving on which a weighted particle arrives at a fixed point in the same

time independent of its initial position. The Lagrange method of undetermined multipliers is

one of the most used tools for finding maxima and minima of functions of several variables.

Every student of group theory learns Lagrange’s theorem that the order of a subgroup H of a

finite group G divides the order of G. In number theory he proved several theorems, one of

which called ‘Wilson’s theorem’ says that n is a prime if and only if (n − 1)! + 1 is divisible

by n. In addition to all this work Lagrange was a member of the committee appointed by the

French Academy of Sciences to standardise weights and measures. The metric system with a

decimal base was introduced by this committee.
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