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PREFACE 

This edition would probably not have been written without the impetus from George 
Bergman, of the University of California, Berkeley. After using the book, on more 
than one occasion he sent us a large number of detailed suggestions on how to 
improve the presentation . Many of these were in response to questions from his 
students, so we owe an enormous debt of gratitude to his students, as well as to 
Professor Bergman . We believe that our responses to his suggestions and corrections 
have measurably improved the book. 

We would also like to acknowledge important corrections and suggestions that 
we received from Marie Vitulli, of the University of Oregon, and from David Doster, 
of Choate Rosemary Hall. We have also benefitted over the years from numerous 
comments from our own students and from a variety of colleagues. We would like 
to add Doug Bowman, Dave Rusin, and Jeff Thunder to the list of colleagues given 
in the preface to the second edition. 

In this edition we have added a number of exercises , we have added 1 to all 
rings, and we have done our best to weed out various errors and misprints . 

We use the book in a linear fashion, but there are some alternatives to that 
approach. With students who already have some acquaintance with the material in 
Chapters 1 and 2, it would be possible to begin with Chapter 3, on groups, using the 
first two chapters for a reference. We view these chapters as studying cyclic groups 
and permutation groups , respectively. Since Chapter 7 continues the development 
of group theory, it is possible to go directly from Chapter 3 to Chapter 7 .  

Chapter 5 contains basic facts about commutative rings, and contains many ex
amples which depend on a knowledge of polynomial rings from Chapter 4. Chapter 5 
also depends on Chapter 3, since we make use of facts about groups in the devel
opment of ring theory, particularly in Section 5 .3  on factor rings. After covering 
Chapter 5 ,  it is possible to go directly to Chapter 9, which has more ring theory and 
some applications to number theory. 

Our development of Galois theory in Chapter 8 depends on results from Chap
ters 5 and 6. Section 8 .4, on solvability by radicals , requires a significant amount 
of material from Chapter 7 .  

Vll 
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Rather than outlining a large number of possible paths through various parts of 
the text, we have to ask the instructor to read ahead and use a great deal of caution 
in choosing any paths other than the ones we have suggested above. 

We would like to point out to both students and instructors that there is some 
supplementary material available on the book's website : 

www.math .ni  u .edu/� beachy / abstract _ algebra/ .  
Finally, we  would like to thank our publisher, Neil Rowe, for his continued 

support of our writing . 

DeKalb, Illinois John A. Beachy 
William D. Blair 

September 1, 2005 



PREFACE 

PREFACE TO THE SECOND 
EDITION 

IX 

An abstract algebra course at the junior/senior level , whether for one or two 
semesters, has been a well-established part of the curriculum for mathematics majors 
for over a generation. Our book is intended for this course, and has grown directly 
out of our experience in teaching the course at Northern Illinois University. 

As a prerequisite to the abstract algebra course, our students are required to 
have taken a sophomore level course in linear algebra that is largely computational, 
although they have been introduced to proofs to some extent. Our classes include 
students preparing to teach high school, but almost no computer science or engi
neering students . We certainly do not assume that all of our students will go on to 
graduate school in pure mathematics . 

In searching for appropriate text books, we have found several texts that start 
at about the same level as we do, but most of these stay at that level , and they do 
not teach nearly as much mathematics as we desire. On the other hand, there are 
several fine books that start and finish at the level of our Chapters 3 through 6, but 
these books tend to begin immediately with the abstract notion of group (or ring) , 
and then leave the average student at the starting gate . We have in the past used 
such books, supplemented by our Chapter 1 .  

Historically the subject of abstract algebra arose from concrete problems, and 
it is our feeling that by beginning with such concrete problems we will be able 
to generate the student 's interest in the subject and at the same time build on the 
foundation with which the student feels comfortable. 

Although the book starts in a very concrete fashion, we increase the level of 
sophistication as the book progresses, and, by the end of Chapter 6, all of the 
topics taught in our course have been covered. It is our conviction that the level of 
sophistication should increase, slowly at first, as the students become familiar with 
the subject. We think our ordering of the topics speaks directly to this assertion. 

Recently there has been a tendency to yield to demands of "relevancy," and to 
include "applications" in this course. It is our feeling that such inclusions often 
tend to be superficial . In order to make room for the inclusion of applications, some 
important mathematical concepts have to be sacrificed. It is clear that one must have 
substantial experience with abstract algebra before any genuine applications can be 
treated. For this reason we feel that the most honest introduction concentrates on 
the algebra. One of the reasons frequently given for treating applications is that 
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they motivate the student. We prefer to motivate the subject with concrete problems 
from areas that the students have previously encountered, namely, the integers and 
polynomials over the real numbers . 

One problem with most treatments of abstract algebra, whether they begin with 
group theory or ring theory, is that the students simultaneously encounter for the 
first time both abstract mathematics and the requirement that they produce proofs 
of their own devising. By taking a more concrete approach than is usual, we hope 
to separate these two initiations. 

In three of the first four chapters of our book we discuss familiar concrete mathe
matics: number theory, functions and permutations, and polynomials . Although the 
objects of study are concrete, and most are familiar, we cover quite a few nontrivial 
ideas and at the same time introduce the student to the subtle ideas of mathematical 
proof. (At Northern Illinois University, this course and Advanced Calculus are the 
traditional places for students to learn how to write proofs.) After studying Chap
ters 1 and 2, the students have at their disposal some of the most important examples 
of groups-permutation groups , the group of integers modulo n, and certain matrix 
groups . In Chapter 3 the abstract definition of a group is introduced, and the students 
encounter the notion of a group armed with a variety of concrete examples. 

Probably the most difficult notion in elementary group theory is that of a factor 
group. Again this is a case where the difficulty arises because there are, in fact, 
two new ideas encountered together. We have tried to separate these by treating 
the notions of equivalence relation and partition in Chapter 2 in the context of sets 
and functions. We consider there the concept of factoring a function into "better" 
functions, and show how the notion of a partition arises in this context. These ideas 
are related to the integers modulo n ,  studied in Chapter 1 .  When factor groups are 
introduced in Chapter 3 ,  we have partitions and equivalence relations at our disposal , 
and we are able to concentrate on the group structure introduced on the equivalence 
classes. 

In Chapter 4 we return to a more concrete subject when we derive some important 
properties of polynomials . Here we draw heavily on the students ' familiarity with 
polynomials from high school algebra and on the parallel between the properties of 
the integers studied in Chapter 1 and the polynomials . Chapter 5 then introduces 
the abstract definition of a ring after we have already encountered several important 
examples of rings : the integers , the integers modulo n ,  and the ring of polynomials 
with coefficients in any field. 

From this point on our book looks more like a traditional abstract algebra text
book. After rings we consider fields , and we include a discussion of root adjunction 
as well as the three problems from antiquity : squaring the circle, duplicating the 
cube, and trisecting an angle. We also discuss splitting fields and finite fields here. 
We feel that the first six chapters represent the most that students at institutions such 
as ours can reasonably absorb in a year. 

Chapter 7 returns to group theory to consider several more sophisticated ideas 
including those needed for Galois theory, which is the subject matter of Chapter 8 .  
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In Chapter 9 we return to a study of rings, and consider questions of unique fac
torization. As a number theoretic application, we present a proof of Fermat's last 
theorem for the exponent 3. In fact, this is the last of a thread of number theoretic 
applications that run through the text, including a proof of the quadratic reciprocity 
law in Section 6.7 and a study of primitive roots modulo p in Section 7 .5 . The 
applications to number theory provide topics suitable for honors students . 

The last three chapters are intended to make the book suitable for an honors 
course or for classes of especially talented or well-prepared students . In these 
chapters the writing style is rather terse and demanding. Proofs are included for the 
Sylow theorems , the structure theorem for finite abelian groups , theorems on the 
simplicity of the alternating group and the special linear group over a finite field, the 
fundamental theorem of Galois theory, Abel 's theorem on the insolvability of the 
quintic, and the theorem that a polynomial ring over a unique factorization domain 
is again a unique factorization domain. 

The only prerequisite for our text is a sophomore level course in linear algebra. 
We do not assume that the student has been required to write , or even read, proofs 
before taking our course. We do use examples from matrix algebra in our discus
sion of group theory, and we draw on the computational techniques learned in the 
linear algebra course-see, for example, our treatment of the Euclidean algorithm 
in Chapter 1 .  

We have included a number of appendices to which the student may be referred 
for background material . The appendices on induction and on the complex numbers 
might be appropriate to cover in class, and so they include some exercises . 

In our classes we usually intend to cover Chapters 1 ,  2 and 3 in the first semester, 
and most of Chapters 4, 5 and 6 in the second semester. In practice, we usually 
begin the second semester with group homomorphisms and factor groups, and end 
with geometric constructions . We have rarely had time to cover splitting fields and 
finite fields . For students with better preparation, Chapters 1 and 2 could be covered 
more quickly. The development is arranged so that Chapter 7 on the structure of 
groups can be covered immediately after Chapter 3 .  On the other hand, the nlaterial 
from Chapter 7 is not really needed until Section 8 .4, at which point we need results 
on solvable groups. 

We have included answers to some of the odd numbered computational exercises . 
In the exercise sets , the problems for which answers are given in the answer key are 
marked by the symbol t. 

ACKNOWLEDGMENTS 

To list all of the many sources from which we have learned is almost impossible. 
Perhaps because we are ring theorists ourselves, we have been attracted to and 
influenced by the work of two ring theorists-I. N. Herstein in Topics in Algebra 
and N. Jacobson in Basic Algebra I, II. In most cases our conventions, notation, and 
symbols are consistent with those used by Jacobson. We certainly need to mention 
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the legacy ofE. Noether, which we have met via the classic text Algebra by B .  L. van 
der Waerden. Our treatment of Galois theory is influenced by the writing of E. Artin. 
In many ways our approach to abstract concepts via concrete examples is similar in 
flavor to that of Birkhoff and Mac Lane in A Survey of Modern Algebra, although 
we have chosen to take a naive approach to the development of the number systems 
and have omitted any discussion of ordered fields . We have also been influenced 
by the historical approaches and choice of material in Abstract Algebra: A First 
Course by L. Goldstein and Introduction to Abstract Algebra by L. Shapiro. 

Many colleagues have taught from preliminary versions of parts of this book. 
We would like to thank a number of them for their comments : Harvey Blau, Harald 
Ellers , John Ewell, Tac Kambayashi, Henry Leonard, John Lindsey, Martin Lorenz, 
Donald McAlister, Robert McFadden, Gunnar Sigurdsson, George Seelinger, Doug 
Weakley, and John Wolfskill . Various students have offered comments and pointed 
out errors . We are particularly indebted to Svetlana Butler, Penny Fuller, Lauren 
Grubb, Michelle Mace, and Susan Talarico for giving us lists of misprints . We would 
like to thank all of the reviewers of our previous version, including: Victor Camillo, 
The University of Iowa; John C .  Higgins , Brigham Young University ; I. Martin 
Isaacs, University of Wisconsin, Madison ; Paul G. Kumpel, State University of New 
York at Stony Brook; and Mark L. Teply, University of Wisconsin, Milwaukee. We 
would also like to thank Neil Rowe of Waveland Press for keeping our book in print 
at a reasonable price. 

This seems to be an appropriate place to record our thanks to Goro Azumaya and 
Lance Small (respectively) for their inspiration, influence, and contributions to our 
mathematical development. Finally, we would like to thank our families : Marcia, 
Gwendolyn, Elizabeth, and Hannah Beachy and Kathy, Carla, and Stephanie Blair. 

John A. Beachy 
William D. Blair 
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TO THE STUDENT 
This book has grown out of our experiences in teaching abstract algebra over 

a considerable period of time. Our students have generally had three semesters of 
calculus , followed by a semester of linear algebra, and so we assume only this much 
background. This has meant that our students have had some familiarity with the 
abstract concepts of vector spaces and linear transformations . They have even had 
to write out a few short proofs in previous courses. But they have not usually been 
prepared for the depth in our course, where we require that almost everything be 
proved quite carefully. Learning to write proofs has always been a major stumbling 
block. The best advice we can give in this regard is to urge you to talk to your 
teacher. Each ten minutes of help in the early going will save hours later. 

Don ' t  be discouraged if you can't solve all of the exercises . Do the ones you are 
assigned, try lots of others , and come back to the ones you can ' t  do on the first try. 
From time to time there will be "misplaced" exercises . By this we mean exercises 
for which you have sufficient tools to solve the problem as it appears , but which 
have easier solutions after better techniques have been introduced at a later stage. 
Simply attempting one of these problems (even if the attempt ends in failure) can 
help you understand certain ideas when they are introduced later. For this reason 
we urge you to keep coming back to exercises that you cannot solve on the first try. 

We urge any student who feels in need of a pep talk to reread this part of the 
preface. The same general comment applies to the introductions to each chapter, and 
to the notes at the ends of chapters . When first read, these introductory COIIlments 
are meant to motivate the material that follows by indicating why it is interesting or 
important and at the same time relating this new material to things from the student's 
background. They are also intended to tie together various concepts to be introduced 
in the chapter, and so some parts will make more sense after the relevant part of 
the chapter has been covered in detail. Not only will the introductions themselves 
make more sense on rereading, but the way in which they tie the subject matter of 
the chapter into the broader picture should be easier to understand. 

We often hear comments or questions similar to the ones we have listed below. 
We hope that our responses will be helpful to you as you begin studying our book. 

"[ have to read the text several times before [ begin to understand it." 

Yes, you should probably expect to have to do this . In fact, you might benefit 
from a "slow reading" rather than a "speed reading" course. There aren ' t  many 



XIV TO THE STUDENT 

pages in a section, so you can afford to read them line by line. You should make 
sure that you can supply any reasons that may have been left out. We have written 
the book with the intention of gradually raising the level as it progresses . That 
simply means that we take more for granted, that we leave out more details . We 
hope to force you to become more sophisticated as you go along, so that you can 
supply more and more of the details on your own. 

"[ understand the definitions and theorems, but [ can't do the problems." 

Please forgive us for being skeptical of this statement. Often it just simply 
isn ' t  the case. How do you really understand a definition or a theorem? Being 
able to write down a definition constitutes the first step. But to put it into context 
you need a good variety of examples , which should allow you to relate a new 
definition to facts you already know. With each definition you should associate 
several examples , simple enough to understand thoroughly, but complex enough to 
illustrate the properties inherent in the definition. In writing the book we have tried 
to provide good examples for each definition, but you may need to come up with 
your own examples based on your particular background and interests . 

Understanding a proof is similar. If you can follow every step in the proof, 
and even write it out by yourself, then you have one degree of understanding. A 
complementary aspect of really understanding the proof is to be able to show exactly 
what it means for some simple examples that you can easily grasp. Sometimes it is 
helpful to take an example you understand well and follow through each step of the 
proof, applying it to the example you have in mind. 

Trying to use "lateral thinking" is often important in solving a problem. It is 
easy to get stuck in one approach to a problem. You need to keep asking yourself 
if there are other ways to view the problem. Time to reflect is important. You need 
to do the groundwork in trying to understand the question and in reviewing relevant 
definitions and theorems from the text. Then you may benefit from simply taking a 
break and allowing your subconscious mind to sort some things out and make some 
connections. If you do the preparation well, you will find that a solution or method 
of attack may occur to you at quite unlikely times , when you are completely relaxed 
or even absorbed in something unrelated. 

After emphasizing the use of examples, we need to discuss the next complaint, 
which is a standard one. 

"[ need more examples." 

This is probably true, since even though we have tried to supply a good variety 
of examples, we may not have included the ones that best tie into your previous 
experience. We can' t overemphasize the importance of examples in providing mo
tivation, as well as in understanding definitions and theorems. Keep in mind that 
the exercises at the end of each section provide a source for more examples . 
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In fact, each time you learn a new definition you should choose several examples 
to help you remember the definition. We have tried to present the examples that 
we feel would be the most helpful in understanding definitions and theorems . This 
approach is rather different from that in a calculus text, where many examples are 
simply intended to be "model exercises ." That approach doesn ' t  work, anyway, in 
an abstract algebra text, since many exercises by their very nature involve "one of a 
kind" proofs . 

For real understanding you must learn to construct your own examples . A 
good example should be simple enough for you to grasp, but not so simple that 
it doesn ' t  illuminate the relevant points . We hope that you will learn to construct 
good examples for yourself while reading our book. We have drawn our examples 
from areas that we hope are familiar. We use ordinary addition and multiplication 
of various sets of numbers, composition of functions, and mUltiplication of matrices 
to illustrate the basic algebraic concepts that we want to study. 

"When I try to find a proof, I don't know where to start." 

Partly, this is just a matter of experience. Just as in any area, it takes some 
practice before you will feel able to use the various ideas with some ease. It is also 
probably a matter of some "math anxiety," because actually doing a proof can seem 
a little mysterious . How is it possible to come up with all the right ideas , in just the 
right order? 

It is true that there are certain approaches that an experienced mathematician 
would know to try first while attempting to solve a problem. In the text we will 
try to alert you to these. In fact, sometimes we have suggested a few techniques 
to keep in mind while attacking the assigned problems . If you get stuck, see what 
happens in some simple examples. If all else fails, make a list of all of the results 
in the text that have the hypothesis of your proof as their hypothesis . Also make a 
list of all those results which have the conclusion of your proof as their conclusion. 
Then you can use these results to help you narrow the gap between the hypothesis 
and conclusion of the proof you are working on. 

"I'm no good at writing proofs." 

There are really several parts to proving something: understanding the problem, 
finding a solution, and writing it down in a logical fashion. 

What is involved in writing a proof? Isn ' t  it just an explanation? Of course, it 
has to include enough detail to be convincing, but it shouldn ' t include unnecessary 
details which might only obscure the real reasons why things work as they do. One 
way to test this is to see if your proof will convince another student in the class . 
You should even ask yourself whether or not it will convince you when you read it 
while studying for the final exam. 

Constructing a proof is like building a bridge. Construction begins at both ends 
and continues until it is possible to put in the final span that links both sides . In 
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the same way, in actually constructing a proof, it is often necessary to simplify or 
rewrite or expand both the hypothesis and the conclusion . You need to try to make 
the gap between the two as small as possible, so that you can finally see the steps 
that link them. 

The bridge is designed to be used by people who simply start at one side and 
move across to the other. In writing down a proof you should have the same goal , so 
that a reader can start at the hypothesis and move straight ahead to the conclusion . 
Writing a clear proof is like any writing-it will probably take several revisions, 
even after all of the key ideas are in place. (We want to make sure that you don' t 
suffer from writer 's block because you believe that a proof should appear on your 
paper, line after line, in perfect order.) 

Of course, we can' t  avoid the real problem. Sometimes the proofs are quite 
difficult and require a genuine idea. In doing your calculus homework, you may 
have followed the time-honored technique used by most students . If you couldn' t 
do a problem, you would look for an example of exactly the same type, reading 
the text only until you found one. That technique often is good enough to solve 
routine computational problems , but in a course such as this you should not expect 
to find models for all of the problems that you are asked to solve as exercises . These 
problems may very well be unique. The only way to prepare to do them is to read 
the text in detail. 

"[ keep trying, but [ don't seem to be making any progress." 

We can only encourage you to keep trying. Sometimes it seems a bit like learning 
to ride a bicycle. There is a lot of struggling and effort, trial and error, and it can be 
really discouraging to see your friends all of a sudden riding pretty well, while you 
keep falling over. Then one day it just seems to happen-you can do it, and you 
never really forget how. 

WRITING PROOF S 
Logic is the glue that holds together the proofs that you will be writing. Logical 

connectives such as "and," "or," "if . . .  then . . .  ," and "not" are used to build com
pound statements out of simpler ones . We assume that you are more or less familiar 
with these terms, but we need to make a few comments because they are used in 
mathematics in a precise fashion. 

Let P and Q be statements , that is , declarative sentences which are either true 
or false. The word "or" can be ambiguous in ordinary English usage. It may mean 
"P or Q, but not both," which we call the exclusive "or," or it may mean "P or Q, 
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or possibly both," which we call the inclusive "or." In mathematics, it is generally 
agreed to use "or" only in the inclusive sense. That is, the compound statement "P 
or Q" is true precisely when one of the following occurs : (i) P is true and Q is 
false ; (ii) Q is true and P is false; (iii) P is true and Q is true. 

The expression "if P then Q" is called a conditional expression, and is the 
single most important form that we will use. Here P is the hypothesis and Q is the 
conclusion . By definition, this expression is true in all cases except when P is true 
and Q is false . In fact, "if P then Q" has the same meaning as "Q or not P." There 
are several equivalent ways to say "if P then Q." We can say "P implies Q," or "P 
is sufficient for Q," or "Q if P," or "Q necessarily follows from P." 

Two expressions related to "if P then Q" are its contrapositive "if not Q then 
not P" and its converse "if Q then P." The expression "P implies Q" is logically 
equivalent to its contrapositive "not Q implies not P ," but is not logically equivalent 
to its converse " Q implies P." 

For example, the most intuitive way to define a one-to-one function I from a 
set S into a set T is to require that the following condition holds for all Xl, X2 E S :  
i f  X l =I=- X2 in  S ,  then I (XI ) =I=- I (X2) . In practice, though, i t  i s  easier to work with 
equalities , and so the definition is usually reformulated using the contrapositive of 
the stated condition : if I (X I )  == I (X2) ,  then X l == X2 . 

The biconditional is the statement "P if and only if Q." We can also say "P is 
equivalent to Q," or "P is necessary and sufficient for Q." 

The precision of our mathematical language is abused at one point. Definitions 
are usually stated in a form such as "a number is said to be even if it is divisible by 
2." It must be understood that the biconditional is being used, since the statement 
is clearly labeled as a definition, and so the meaning of the definition is "a number 
is said to be even if and only if it is divisible by 2." 

We are now ready to illustrate some techniques of proof: direct proof, and 
indirect proof . In a direct proof that a statement P implies a statement Q, the proof 
should begin with the hypothesis that P is true and end with the conclusion that Q is 
true. In an indirect proof we actually prove the contrapositive of the desired result, 
so the proof should begin with the hypothesis that "not Q" is true and end with 
the conclusion that "not P" is true. In a proof by contradiction, the proof should 
begin with the assumption that the conclusion of the theorem is false, and end with 
a contradiction, in which some statement is shown to be both true and false. 

We begin with a direct proof of the well-known fact that the square of an even 
integer is even. To give a convincing proof, we need something concrete to work 
with, like an equation. We will use the condition that defines a number to be even 
if it is a mUltiple of 2. An equivalent condition is that the number can be factored, 
with 2 as one of the factors . 

Proposition. If an integer is even, then its square is also even. 

Proof Assume that n is an even integer. Then since n has 2 as a factor, we can 
write 

n == 2m , 
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for some integer m .  We can square both sides of this equation, to get 

The new equation shows that the square of n has 2 as a factor, and so n2 is an even 
integer. D 

You can see that in the proof we began with the hypothesis that n is an even 
integer, and we ended with the conclusion that n2 is an even integer. To fill in the 
necessary steps to get from the hypothesis to the conclusion we needed to work with 
the definition of the terms involved in the statement. We suggest that as a first step 
you should try, whenever possible, to use definitions and theorems that return you to 
the more familiar world of high school algebra, with concrete equations involving 
numbers . The next step is to become familiar with equations that hold in a more 
general context, say for matrices. Some of the familiar rules will still hold, but some 
may fail .  As one example, contrast this statement from high school algebra: "If 
both sides of an equation are multiplied by the same number, then the equation is 
still valid," with the corresponding statement from matrix theory: "If both sides of 
a matrix equation are multiplied on the left by the same matrix, then the equation 
is still valid ." The second statement is similar to the first, but greater care must be 
taken with matrices, because matrix multiplication does not in general satisfy the 
commutative law. 

We next give an example of an indirect proof, in which we prove the contrapos
itive of the desired result. We will use the fact that adding one to an integer changes 
its parity, so that it changes from even to odd, or from odd to even. This means that 
one way to describe all odd integers is to say that they can be expressed as one plus 
an even integer, so they have the form 2m + 1, for some integer m. This also shows 
that every integer is either even or odd, but not both. 

Proposition. If the square of an integer is even, then the integer itselfmust be even. 

Proof Suppose that the desired conclusion is false. Then the integer in question, 
say n, must be odd, so it has the form 

n == 2m + 1 . 

But then n2 has the form 

n2 == (2m + 1)2 == 4m2 + 4m + 1 == 2(2m2 + 2m) + 1 , 

which shows that n2 must be odd. Thus the hypothesis that the square is even 
must be false. We have proved the contrapositive of the desired statement, and this 
completes the proof. D 

If you have already studied Chapter 1, then you will surely have realized that it 
is possible to give a direct proof of the previous proposition, based on Lemma 1.2 .5 . 
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It is called Euclid 's lemma, and states that if p is a prime number that is a factor of 
the product ab of two integers a and b, then p must be a factor either of a or of b.  
If we take the special case p == 2, a == n ,  and b == n ,  then the lemma reduces to the 
statement that if p is a factor of n2 , then p must be a factor of n itself. 

We next give an example of a proof by contradiction. In this method of proof, 
we assume that the conclusion of the theorem is false, and attempt to arrive at a 
contradiction. The form of the contradiction should be that some statement is both 
true and false. We will prove that v'2 is an irrational numbers , that is, that it cannot 
be expressed as a quotient of integers , of the form m / n .  

Proposition. The square root 0/2 is an irrational number. 

Proof Suppose that the conclusion of the theorem is false, in other words , that v'2 
is a rational number. Then we can write 

for some integers m and n ,  where n is nonzero. Furthermore, we can cancel common 
factors of m and n until there are no such common factors left, so we can assume 
that the fraction m / n has been reduced to lowest terms . 

Multiplying both sides of the above equation by n ,  and then squaring both sides, 
yields the equation 

2n2 == m2 
. 

This shows that m2 is an even integer, so by our previous proposition, the number 
m itself must be even. This means that we can factor 2 out of m ,  so we can write 
m == 2k for some integer k .  Making this substitution gives 

and then we can divide both sides of the equation to obtain 

As before, this shows that n2 is even, and it follows that n is even. We have now 
reached a contradiction to the assumption that v'2 can be written as a fraction m / n 
in lowest terms, since the numerator and denominator both have 2 as a factor. D 

Our final proof illustrates that in some cases a great deal of interesting informa
tion can be obtained by looking at something from two different points of view. We 
recall that if n is a positive integer, then the symbol n !  (read n factorial) is defined 
by n !  == n (n - 1) .. . 2 . 1. The binomial coefficient (7) (pronounced n choose i) is 
defined by (n) n !  

i 
-

i ! (n - i ) ! 
. 
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With this notation, the binomial theorem states that 

(a + b) n = 2:7=0 (7)ai bn-i . 

The binomial coefficients can be generated recursively. We show the first few by 
giving part of Pascal 's triangle . 

1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

1 7 2 1  35 35 2 1  7 1 

1 8 28 56 70 56 28 8 1 

Proposition . For any positive integer n, we have 2:7=0 (7) = 2n . 

Proof Let S be a set with n elements . We will count the number of subsets of S in 
two different ways . 

First, to construct a subset with i elements , we must choose i of the n elements 
of S, and this can be done in (7) ways. Adding (7) from i = 0 through n counts all 
subsets of S.  Thus 2:7=0 (7) is the number of subsets of S .  

On the other hand, when constructing a subset of S, for each of the n elements 
of S we must choose whether or not to include that element. This gives us a total 
of 2n choices , and so we conclude that S has 2n subsets . Hence the desired equality 
holds . D 

So far we have discussed the construction of the proof of an individual theorem 
or proposition. Theorems don 't exist in isolation ; they are part of a body of results . 

While studying such a body of results , it is important to step back from time 
to time to get a global picture. It is of course necessary to note which definitions , 
theorems , and propositions are used to obtain each result, but it is also important 
when reviewing a topic to note which theorems are obtained by applying a given 
result. In order to understand a result 's place in the full scheme of things you should 
note not only its ancestors , but also its descendents . 

As you read through a chapter, think of the collection of results as a tapestry 
woven from individual strands . The true value of each individual theorem only 
emerges as you see parts of the whole tapestry. 
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HISTORICAL BACKGROUND 
The word "algebra" entered the mathematical vocabulary from Arabic over one 

thousand years ago, and for almost all of that time it has meant the study of equations. 
The "algebra" of equations is at a higher level of abstraction than arithmetic, in 
that symbols may be used to represent unknown numbers . "Modern algebra" or 
"abstract algebra" dates from the nineteenth century, when problems from number 
theory and the theory of equations led to the study of abstract mathematical models. 
In these models ,  symbols might represent numbers, polynomials, permutations, or 
elements of various other sets in which arithmetic operations could be defined. 
Mathematicians attempted to identify the relevant underlying principles , and to 
determine their logical consequences in very general settings. 

One of the problems that has motivated a great deal of work in algebra has been 
the problem of solving equations by radicals . We begin our discussion with the 
familiar quadratic formula 

-b ± Jb2 - 4ac 
x 

2a 

This formula gives a solution of the equation ax2 + bx + c == 0, where a i= 0, 
expressed in terms of its coefficients, and using a square root. More generally, we 
say that an equation 

anxn + . . .  + a lX  + ao == 0 
is solvable by radicals if the solutions can be given in a form that involves sums, 
differences, products, or quotients of the coefficients an , . . .  , a I , ao , together with 
square roots , cube roots, etc . ,  of such combinations of the coefficients . 

Quadratic and even cubic equations were studied as early as Babylonian times. 
In the second half of the eleventh century, Omar Kbayyam ( 1048-1 1 3 1 ) wrote a book 
on algebra, which contained a systematic study of cubic equations . His approach 
was mainly geometric, and he found the roots of the equations as intersections of 
conic sections .  A general method for solving cubic equations numerically eluded 
the Greeks and later oriental mathematicians . The solution of the cubic equation 
represented for the Western world the first advance beyond classical mathematics .  

General cubic equations were reduced to the form x3 + px + q == O. In the early 
sixteenth century, a mathematician by the name of Scipione del Ferro ( 1 465-1 526) 
solved one particular case of the cubic . He did not publish his solution, but word 
of the discovery became known, and several others were also successful in solving 



XXll H�TORICAL BACKGROUND 

the equations . The solutions were published in a textbook by Girolamo Cardano 
( 150 1-1576) in 1545 . This caused a bitter dispute with another mathematician, 
who had independently discovered the formulas , and claimed to have given them to 
Cardano under a pledge of secrecy. (For additional details see the notes at the end 
of Chapter 4.)  The solution of the equation x3 + px == q was given by Cardano in 
the form 

A solution to the general quartic equation was also given, in which the solution 
could be expressed in terms of radicals involving the coefficients. (See Section A.6 
of the appendix .) 

Subsequently, attempts were made to find similar solutions to the general quintic 
equation, but without success .  The development of calculus led to methods for 
approximating roots , and the theory of equations became analytic. One result of 
this approach was the discovery by Jean Ie Rond D' Alembert ( 17 17-1783) in 1746 
that every algebraic equation of degree n has n roots in the set of complex numbers . 
Although it was not until 180 1 that a correct proof was published, by Carl F. Gauss 
( 1777 - 1855) ,  this discovery changed the emphasis of the question from the existence 
of roots to whether equations of degree 5 or greater could be solved by radicals .  

In 1798, Paolo Ruffini ( 1765-1822) published a proof claiming to show that the 
quintic could not be solved by radicals .  The proof was not complete, although the 
general idea was correct. A full proof was finally given by Niels Abel ( 1802-1829) 
in 1826. A complete answer to the question of which equations are solvable by 
radicals was found by Evariste Galois ( 18 11- 1832) . Galois was killed in a duel , 
and did not live to see the remarkable consequences of the papers he submitted to 
the French Academy. (See the introduction to Chapter 8 for further details . ) Galois 
considered certain permutations of the roots of a polynomial-those that leave the 
coefficients fixed-and showed that the polynomial is solvable by radicals if and 
only if the associated group of permutations has certain properties . (See the notes 
at the end of Chapter 3 and the introduction to Chapter 8) . This theory, named after 
Galois ,  contains deep and very beautiful results , and is the subject of Chapter 8 .  
Although it i s  not always possible to cover that material in a beginning course in 
abstract algebra, it is toward this goal that many of the results in this book were 
originally directed. 

The final chapter of the book studies the question of unique factorization, in cer
tain subsets of the set of complex numbers, and for polynomials in several variables . 
Much of the original investigation was motivated by attempts to prove Fermat 's last 
theorem. (See the introduction to Chapter 9 . )  

The mathematics necessary to answer the question of solvability by radicals and 
the question of unique factorization includes the development of a good deal of the 
theor,y of groups , rings, and fields, which has subsequently been applied in many 
other areas, including physics and computer science. In studying these areas we 
have used a modem, axiomatic approach rather than an historical one. 



Chapter 1 

INTEGERS 

In this chapter we will develop some of the properties of the set of integers 

Z == { . . .  , -2 ,  - 1, 0 , 1, 2, . . .  } 
that are needed in our later work. The use of Z for the integers reflects the strong 
German influence on the modem development of algebra; Z comes from the German 
word for numbers, "Zahlen." Some of the computational techniques we study here 
will reappear numerous times in later chapters . Furthermore, we will construct 
some concrete examples that will serve as important building blocks for later work 
on groups, rings, and fields . 

To give a simple illustration of how we will use elementary number theory, 

consider the matrix A = [ _ � � ]. The powers of A are A 2 = [ -� _ � ] , 
3 [ 0 - 1 ] 4 [ 1 0 ] 5 [ 0 1 ] . 4 . 

A == 
1 0 ' 

A == 0 1 ' 
A == 

- 1  0 , etc . SInce A IS the 

identity matrix / , the powers begin to repeat at A 5 , as we can see by writing 

etc . 

How can we find A231 , for example? If we divide 23 1 by 4, we get 57, with 
remainder 3 ,  so 23 1 == 4 . 57 + 3 .  This provides our answer, since 

A231 
== A4.57+3 

== A4.57 A
3 

== (A4)57 A
3 

== /57 A
3 

== / A
3 

== A
3 

. 

We can see that two powers Aj and Ak are equal precisely when j and k differ 
by a multiple of 4. Altogether there are only the following four powers : 

1 

[ - 1  0 ] 
o - 1  ' 

[ 0 - 1 ] 
1 0 . 
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A very similar situation occurs when we analyze the positive powers of the 
complex number i .  We have i I == i ,  i 2 == -1, i 3 == -i , and i 4 == 1. As before, we 
see that iJ == i k if and only if j and k differ by a multiple of 4 .  

As a slightly different example, consider the positive powers of the complex 
number 

1 �. 
w == -- + - l . 

2 2 
There are only three distinct powers of w, as shown below: 

1 �. 
- - - - l 

2 2 ' 

1 . 

From this point on, the positive powers begin to repeat, and wJ == wk if and only if 
j and k differ by a multiple of 3 .  

To give a unified approach to situations analogous to the ones above, in which 
we need to consider numbers that exhibit similar behavior when they differ by a 
multiple of a number n ,  we will develop the notion of congruence modulo n .  The 
notion of a congruence class will enable us to think of the collection of numbers 
that behave in the same way as a single entity. The simplest example is congruence 
modulo 2. When we consider two numbers to be similar if they differ by a multiple 
of 2, we are just saying that the two numbers are similar if they have the same parity 
(both are even, or both are odd). Another familiar situation of this type occurs when 
telling time, since on a clock we do not distinguish between times that differ by a 
multiple of 12 (or 24 if you are in Europe or the military). 

In this chapter we will develop only enough number theory to be of use in later 
chapters , when we study groups ,  rings ,  and fields. Historically, almost all civiliza
tions have developed the integers (at least the positive ones) for use in agriculture, 
commerce, etc . After the elementary operations (addition, subtraction, multipli
cation, and division) have been understood, human curiosity has taken over and 
individuals have begun to look for deeper properties that the integers may possess . 

Nonmathematicians are often surprised that research is currently being done in 
mathematics. They seem to believe that all possible questions have already been 
answered. At this point an analogy may be useful. Think of all that is known as 
being contained in a ball . Adding knowledge enlarges the ball, and this means that 
the surface of the ball-the interface between known and unknown where research 
occurs-also becomes larger. In short, the more we know, the more questions there 
are to ask. In number theory, perhaps more than in any other branch of mathematics, 
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there are still many unanswered questions that can easily be posed. In fact, it seems 
that often the simplest sounding questions require the deepest tools to resolve. 

One aspect of number theory that has particular applications in algebra is the 
one that concerns itself with questions of divisibility and primality. Fortunately for 
our study of algebra, this part of number theory is easily accessible, and it is with 
these properties of integers that we will deal in this chapter. Number theory got its 
start with Euclid and much of what we do in the first two sections appears in his 
book Elements .  

Our approach to number theory will be to study it as a tool for later use. In 
the notes at the end of this chapter, we mention several important problems with 
which number theorists are concerned. You can read the notes at this point, before 
studying the material in the chapter. In fact, we suggest that you read them now, 
because we hope to indicate why number theory is so interesting in its own right. 

1 .1  Divisors 

Obviously, at the beginning of the book we must decide where to start mathemati
cally. We would like to give a careful mathematical development, including proofs 
of virtually everything we cover. However, that would take us farther into the 
foundations of mathematics than we believe is profitable in a beginning course in 
abstract algebra. As a compromise, we have chosen to assume a knowledge of basic 
set theory and some familiarity with the set of integers . 

For the student who is concerned about how the integers can be described for
mally and how the basic properties of the integers can be deduced, we have provided 
some very sketchy information in the appendix. Even there we have taken a naive 
approach, rather than formally treating the basic notions of set theory as undefined 
terms and giving the axioms that relate them. We have included a list of the Peano 
postulates, which use concepts and axioms of set theory to characterize the natural 
numbers . We then give an outline of the logical development of the set of integers , 
and larger sets of numbers . 

In the beginning sections of this chapter we will assume some familiarity with 
the set of integers , and we will simply take for granted some of the basic arithmetic 
and order properties of the integers . (These properties should be familiar from ele
mentary school arithmetic. They are listed in detail in Section A.3 of the appendix.) 
The set {a, ± 1 ,  ±2,  . . .  } of integers will be denoted by Z throughout the text, while 
we will use N for the set {a, 1 ,  2, . . .  } of natural numbers. 

Our first task is to study divisibility. We will then develop a theory of prime 
numbers based on our work with greatest common divisors . The fact that exact 
division is not always possible within the set of integers should not be regarded as a 
deficiency. Rather, it is one source of the richness of the subject of number theory 
and leads to many interesting and fundamental propositions about the integers . 
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1.1 .1 Definition. An integer a is called a multiple of an integer b if a == bq for 
some integer q .  In this case we also say that b is a divisor of a, and we use the 
notation b I a.  

In the above case we can also say that b is a factor of a ,  or that a is divisible 
by b. If b is not a divisor of a ,  meaning that a i= bq for any q E Z, then we write 
b A' a .  The set of all multiples of an integer a will be denoted by aZ. 

Be careful when you use the notation b I a .  It describes a relationship between 
integers a and b and does not represent a fraction. Furthermore, a handwritten 
vertical line I can easily be confused with the symbol / .  The statement 216 is a true 
statement; 612 is a statement that is false. On the other hand, the equation 6/2 == 3 
is written correctly, since the fraction 6/2 does represent the number 3 .  We have 
at least three different uses for a vertical line : for "such that" in the "set-builder" 
notation { I } , when talking about the absolute value of a number, and to indicate 
that one integer is a divisor of another. 

We note some elementary facts about divisors . If a i= 0 and b I a ,  then I b  I < la  I 
since I b l  < I b l l q  I == l a  I for some nonzero integer q .  It follows from this observation 
that if b I a and a I b, then I b l  == la I and so b == ±a . Therefore, if b 1 1 ,  then since it 
is always true that 1 1  b, we must have b == ± 1 .  

Note that the only multiple of 0 is 0 itself. On the other hand, for any integer a 
we have 0 == a . 0, and thus 0 is a multiple of any integer. With the notation we have 
introduced, the set of all multiples of 3 is 3Z = {O, ±3, ±6, ±9, . . .  } . To describe 
aZ precisely, we can write 

aZ == {m E Z 1m == aq for some q E Z} . 

Suppose that a is a multiple of b .  Then every multiple of a is also a multiple of 
b, and in fact we can say that a is a multiple of b if and only if every multiple of 
a is also a multiple of b .  In symbols we can write b I a if and only if aZ C bZ. 
Exercise 15 asks for a more detailed proof of this s�atement. 

Before we study divisors and multiples of a fixed integer, we need to state an 
important property of the set of natural numbers , which we will take as an axiom. 

1.1 .2 Axiom (Well-Ordering Principle). Every nonempty set of natura I numbers 
contains a smallest element. 

The well-ordering principle is often used in arguments by contradiction. If we 
want to show that all natural numbers have some property, we argue that if the set 
of natural numbers not having the property were nonempty, it would have a least 
member, and then we deduce a contradiction from this, using the particular facts of 
the situation. The theory of mathematical induction (see Appendix A.4) formalizes 
that sort of argument. 

Let S be a nonempty set of integers that has a lower bound. That is, there is an 
integer b such that b < n for all n E S.  If b > 0, then S is actually a set of natural 
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numbers, so it contains a smallest element by the well-ordering principle. If b < 0, 
then adding I b l  to each integer in S produces a new set T of natural numbers, since 
n + I b I > 0 for all n E S.  The set T must contain a smallest element, say t, and 
it is easy to see that t - I b l  is the smallest element of S.  This allows us to use, if 
necessary, a somewhat stronger version of the well-ordering principle: every set of 
integers that is bounded below contains a smallest element. 

The first application of the well-ordering principle will be to prove the division 
algorithm. In familiar terms, the division algorithm states that dividing an integer a 
by a positive integer b gives a quotient q and nonnegative remainder r ,  such that r 
is less than b .  You could write this as 

but since we are studying properties of the set of integers, we will avoid fractions 
and write this equation in the form 

a == bq + r. 

For example, if a = 29 and b = 8, then 

29 == 8 . 3 + 5 ,  

so  the quotient q is 3 and the remainder r i s  5 .  You must be careful when a is a 
negative number, since the remainder must be nonnegative. Simply changing signs 
in the previous equation, we have 

-29 == (8) ( -3) + (-5) , 

which does not give an appropriate remainder. Rewriting this in the form 

-29 == (8) ( -4) + 3 

gives the correct quotient q == -4 and remainder r == 3 .  
Solving for r in the equation a == b q  + r shows that r == a - bq , and that r must 

be the smallest nonnegative integer that can be written in this form, since 0 < r < b .  
This observation clarifies the relationship between the quotient and remainder, and 
forms the basis of our proof that the division algorithm can be deduced from the 
well-ordering principle. Another way to see this relationship is to notice that you 
could find the remainder and quotient by repeatedly subtracting b from a and noting 
that you have the remainder in the required form when you obtain a nonnegative 
integer less than b .  

The next theorem on "long division with remainder" has traditionally been called 
the "division algorithm" . 
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1.1.3 Theorem (Division Algorithm). For any integers a and b, with b > 0, there 
exist unique integers q (the quotient) and r (the remainder) such that 

a � bq + r ,  with 0 < r < b . 

Proof Consider the set R � {a - bq : q E Z} .  The elements of R are the 
potential remainders, and among these we need to find the smallest nonnegative 
one. We want to apply the well-ordering principle to the set R+ of nonnegative 
integers in R,  so we must first show that R+ is nonempty. Since b > 1 ,  the number 
a - b(  - Ia I )  � a + b . la I is nonnegative and belongs to R+, so R+ is nonempty. 

Now by the well-ordering principle, R+ has a smallest element, and we will 
call this element r .  We will show that a � bq + r ,  with 0 < r and r < b. By 
definition, r > 0, and since r E R+, we must have r � a - bq for some integer 
q .  We cannot have r > b, since if we let s � r - b we would have s > 0 and 
s � a - b(q + 1 )  E R+ . Since s < r ,  this would contradict the way r was defined, 
and therefore we must have r < b .  We have now proved the existence of r and q 
satisfying the conditions a � bq + r and 0 < r < b .  

To show that q and r are unique, suppose that we can also write a � bp + s 
for integers p and s with 0 < s < b .  We have 0 < r < b and 0 < s < b ,  and this 
implies that Is - r l  < b. But bp + s � bq + r and so s - r � b (q - p), which 
shows that b I (s - r) .  The only way that b can be a divisor of a number with smaller 
absolute value is if that number is 0, and so we must have s - r � 0, or s � r .  Then 
bp � bq , which implies that p � q since b > O. Thus the quotient and remainder 
are unique, and we have completed the proof of the theorem. D 

Given integers a and b,  with b > 0, we can use the division algorithm to write 
a � bq + r ,  with 0 < r < b .  Since b I a if and only if there exists q E Z such 
that a � bq , we see that b I a if and only if r � O. This simple observation gives 
us a useful tool in doing number theoretic proofs . To show that b I a we can use the 
division algorithm to write a � bq + r and then show that r � O. This technique 
makes its first appearance in the proof of Theorem 1 . 1 .4. 

A set of multiples aZ has the property that the sum or difference of two integers 
in the set is again in the set, since aq I ± aq2 � a (q I ± q2) .  We say that the set aZ 
is closed under addition and subtraction . This will prove to be a very important 
property in our later work. The next theorem shows that this property characterizes 
sets of multiples, since a nonempty set of integers is closed under addition and 
subtraction if and only if it is a set of the form aZ, for some nonnegative integer a .  

1.1 .4 Theorem. Let I be a nonempty set of integers that is closed under addition 
and subtraction. Then I either consists of zero alone or else contains a smallest 
positive element, in which case I consists of all multiples of its smallest positive 
element. 



1 . 1 . DIVISORS 7 

Proof Since I is nonempty, either it consists of 0 alone, or else it contains a nonzero 
integer a .  In the first case we are done. In the second case, if I contains the nonzero 
integer a,  then it must contain the difference a - a == 0, and hence the difference 
o - a == -a,  since I is assumed to be closed under subtraction. Now either a or 
-a is positive, so I contains at least one positive integer. Having shown that the set 
of positive integers in I is nonempty, we can apply the well-ordering principle to 
guarantee that it contains a smallest member, say b .  

Next we  want to show that I i s  equal to the set b Z  of all multiples of b .  To show 
that I == bZ, we will first show that bZ C I ,  and then show that I C bZ.  

Any nonzero multiple of b is given by just adding b (or -b) to itself a finite 
number of times, so since I is closed under addition, it must contain all mUltiples 
of b. Thus bZ C I .  

On the other hand, to show that I C bZ we must take any element c in I and 
show that it is a mUltiple of b,  or equivalently, that b I c. (Now comes the one crucial 
idea in the proof. ) Using the division algorithm we can write c == bq + r ,  for 
some integers q and r with 0 < r < b .  Since I contains bq and is closed under 
subtraction, it must also contain r == c - bq .  But this is a contradiction unless r == 0, 
because b was chosen to be the smallest positive integer in I and yet r < b by the 
division algorithm. We conclude that r == 0, and therefore c == bq , so b I c and we 
have shown that I C bZ. 

This completes the proof that I == bZ. 0 

One of the main goals of Chapter 1 is to develop some properties of prime num
bers , which we will do in Section 1 .2 . Before discussing prime numbers themselves, 
we will introduce the notion of relatively prime numbers, and this definition in turn 
depends on the notion of the greatest common divisor of two numbers . Our defini
tion of the greatest common divisor is given in terms of divisibility, rather than in 
terms of size, since it is this form that is most useful in writing proofs . Exercise 20 
gives an equivalent formulation that focuses on size. 

1.1 .5 Definition. Let a and b be integers, not both zero. A positive integer d is 
called the greatest common divisor of a and b if 

(i) d is a divisor of both a and b, and 

(ii) any divisor of both a and b is also a divisor of d. 

The greatest common divisor of a and b will be denoted by gcd(a , b) or (a , b). 

Our first observation is that gcd(O , 0) is undefined, but if a is any nonzero integer, 
then gcd (a , 0) is defined and equal to la I .  The definition of the greatest common 
divisor can be shortened by using our notation for divisors . If a and b are integers, 
not both zero, and d is a positive integer, then d == gcd (a , b) if 

(i) d I a and d I b,  and 
(ii) if c I a and c I b, then c I d .  
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The fact that we have written down a definition of the greatest common divisor 
does not guarantee that there is such a number. Furthermore, the use of the word 
"the" has to be justified, since it implies that there can be only one greatest common 
divisor. The next theorem will guarantee the existence of the greatest common 
divisor, and the question of uniqueness is easily answered: if dl and d2 are greatest 
common divisors of a and b, then the definition requires that dl I d2 and d2 1 dl , so 
dl == ±d2 . Since both dl and d2 are positive, we have dl == d2 . 

If a and b are integers, then we will refer to any integer of the form ma + nb,  
where m, n E Z, as a linear combination of a and b .  The next theorem gives a 
very useful connection between greatest common divisors and linear combinations. 

1.1.6 Theorem. Let a and b be integers, not both zero. Then a and b have a greatest 
common divisor, which can be expressed as the smallest positive linear combination 
ofa and b. 

Moreover, an integer is a linear combination of a and b if and only if it is a 
multiple of their greatest common divisor. 

Proof Let I be the set of all linear combinations of a and b, that is, 

I == {x E Z I x == ma + nb for some m, n E Z} . 

The set I is nonempty since it contains a == 1 . a + 0 . b and b == 0 . a + 1 . b .  It is 
closed under addition and subtraction since if kl ' k2 E I ,  then kl == m 1 a + n 1 b and 
k2 == m2a + n2b for some integers m l , m2 , n l , n2 . Thus 

also belong to I .  By Theorem 1 . 1 .4, the set I consists of all multiples of the smallest 
positive integer it contains, say d. Since d E I , d == ma + nb for some integers m 
and n .  

Since we already know that d i s  positive, to show that d == (a , b)  we must show 
that (i) d I a and d I b and (ii) if c I a and c I b, then c I d. First, d is a divisor of every 
element in I ,  so d I a and d I b since a ,  b E l . Secondly, if c I a and c I b, say a == cq l 
and b == cq2 , then 

which shows that c I d.  
The second assertion follows from the fact that I ,  the set of all linear combina

tions of a and b, is equal to dZ, the set of all multiples of d. 0 

You are probably used to finding the greatest common divisor of a and b by first 
finding their prime factorizations . This is an effective technique for small numbers, 
but we must postpone a discussion of this method until after we have studied prime 
factorizations in Section 1 .2 . In practice, for large numbers it can be very difficult 
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to find prime factors , whereas the greatest common divisor can be found in many 
fewer steps by using the method we discuss next. 

The greatest common divisor of two numbers can be computed by using a 
procedure known as the Euclidean algorithm. (Our proof of the existence of the 
greatest common divisor did not include an explicit method for finding it. ) Before 
discussing the Euclidean algorithm, we need to note some properties of the greatest 
common divisor. First, if a and b are not both zero, then it is not difficult to see that 
gcd (a , b) == gcd ( l a l ,  I b l ) .  Furthermore, if b > 0 and b I a ,  then (a , b) == b .  

The next observation provides the basis for the Euclidean algorithm. If b � 0 
and a == bq + r ,  then (a , b) == (b , r) .  This can be shown by noting first that a is 
a multiple of (b, r) since it is a linear combination of b and r .  Then (b , r) I (a , b) 
since b is also a multiple of (b , r) .  A similar argument using the equality r == a - bq 
shows that (a , b) I (b , r) ,  and it follows that (a , b) == (b , r) .  

Given integers a > b > 0 ,  the Euclidean algorithm uses the division algorithm 
repeatedly to obtain 

a 

b 
bq l + rl 

rl q2 + r2 
r2q3 + r3 

with 
with 
with 
etc. 

o < rl < b 
o < r2 < rl 
o < r3 < r2 

If rl == 0, then b I a ,  and so (a , b) == b .  Since rl > r2 > . . . , the remainders 
get smaller and smaller, and after a finite number of steps we obtain a remainder 
rn+ l == O. The algorithm ends with the equation 

This gives us the greatest common divisor: 

Example 1 .1 .1 .  

In showing that (24, 1 8) == 6, we have (24 , 1 8) == ( 1 8 , 6)  since 24 == 1 8 · 1 +6, 
and ( 1 8 , 6) == 6 since 6 1 1 8 . Thus (24, 1 8) == ( 1 8 , 6) == 6. D 

Example 1.1 .2. 

To show that ( 1 26 , 35) == 7, we first have ( 1 26 , 35) == (35 , 2 1 )  since 1 26 == 
35 · 3  + 2 1 .  Then (35 , 2 1 )  == (2 1 , 14) since 35 == 2 1  . 1 + 14, and (2 1 , 14) == 
( 14 , 7) since 2 1  == 14 . 1 + 7 .  Finally, ( 1 4, 7) == 7 since 1 4  == 7 · 2 . Thus 
( 1 26, 35) == (35 , 2 1 )  == (2 1 , 14) == ( 1 4 , 7) == 7. D 
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Example 1 .1 .3. 

In finding (83 ,  38) , we can arrange the work in the following manner: 

83 
38 
7 
3 

38 · 2  + 7 
7 · 5  + 3 
3 · 2 +  1 
3 . 1 

(83 , 38) 
(38 , 7) 
(7 , 3) 
(3 , 1 )  

(38 , 7) 
(7 , 3) 
(3 , 1 )  
1 . 

If you only need to find the greatest common divisor, stop as soon as you 
can compute it in your head. In showing that (83 , 38) == 1 ,  note that since 7 
has no positive divisors except 1 and 7 and is not a divisor of 38 ,  it is clear 
immediately that (38 , 7) == 1 .  D 

Example 1 .1.4. 

Sometimes it is necessary to find the linear combination of a and b that gives 
(a , b) . In finding ( 1 26, 35) in Example 1 . 1 .2 we had the following equations : 

a 
b 

bq l + rl 
rl q2 + r2 
r2q3 + d 
dq4 + 0  

126 
35 
2 1  
14 

35 . 3 + 21  
2 1  . 1 + 14 
1 4 · 1  + 7 
7 · 2 + 0 . 

The next step is to solve for the nonzero remainder in each of the equations 
(omitting the last equation) : 

a + ( - q l )b 
b + (-q2 )rl 
rl + (-q3 )r2 

2 1  
1 4  
7 

1 . 126 + (-3) · 35 
1 · 35 + (- 1 ) · 2 1 
1 · 2 1 + (- 1 )  . 14 . 

We then work with the last equation d == rl + (-q3 )r2 , which contains the 
greatest common divisor, as desired, but may not be a linear combination of 
the original integers a and b .  We can obtain the desired linear combination by 
substituting for the intermediate remainders , one at a time. Our first equation 
IS 

7 1 · 2 1 + (- 1 )  . 14 . 

We next substitute for the previous remainder 14, using the equation 14  == 

1 . 35 + (- 1 )  . 2 1 .  This gives the following equation, involving a linear 
combination of 35 and 2 1  : 

7 1 · 2 1 + (- 1 )  . [ 1  · 35 + (- 1 )  · 2 1 ]  
(- 1 )  · 35 + 2 . 2 1  . 
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Finally, we use the first equation 2 1  == 1 . 1 26 + (-3) · 35 to substitute for the 
remainder 2 1 .  This allows us to represent the greatest common divisor 7 as a 
linear combination of 126 and 35: 

7 (- 1 ) · 35 + 2 · [ 1 · 126 + (-3) · 35] 
2 . 126 + (-7) . 35 . D 

1 1  

The technique introduced in the previous example can easily be extended to the 
general situation in which it is desired to express (a , b) as a linear combination of a 
and b .  After solving for the remainder in each of the relevant equations , we obtain 

rl a + (-q l )b 

r2 b + ( -q2)rI 

r3 rl + (-q3 )r2 
r4 r2 + (-q4)r3 

At each step, the expression for the remainder depends upon the previous two re
mainders . By substituting into the successive equations and then rearranging terms , 
it is possible to express each remainder (in turn) as a linear combination of a and b .  
The final step is  to express (a , b) as a linear combination of a and b .  

The Euclidean algorithm can be put into a convenient matrix format that keeps 
track of the remainders and linear combinations at the same time. To find (a ,  b) ,  
the idea is to start with the following system of equations : 

x a 

y b 

and find, by using elementary row operations , an equivalent system of the following 
form: 

Beginning with the matrix 

(a ,  b) 

o 

we use the division algorithm to write a == bq I + ri . We then subtract qi times the 
bottom row from the top row, to get 

[ � rl ] 
b 

. 
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We next write b == rl q2 + r2 , and subtract q2 times the top row from the bottom row. 
This gives the matrix 

and it can be checked that this algorithm produces rows in the matrix that give each 
successive remainder, together with the coefficients of the appropriate linear combi
nation of a and b. The procedure is continued until one of the entries in the right-hand 
column is zero. Then the other entry in this column is the greatest common divisor, 
and its row contains the coefficients of the desired linear combination . 

Example 1.1 .5. 

In using the matrix form of the Euclidean algorithm to compute ( 1 26 , 35) 
we begin with the equations x == 1 26 and y == 35. We have the following 
matrices : [ � 0 1 26 ] [ � -3 2 1  ] [ - � -3 2 1  ] 

35 � � 14 � 
1 1 35 4 

[ 2 -7 
1� ] [ -� -7 � ] , - 1  4 � 1 8  

ending with the equations 2x - 7y == 7 and -5x + 1 8y == O .  Thus ( 1 26, 35) == 
7, and substituting x == 126 and y == 35 in the equation 2x - 7 y == 7 gives us 
a linear combination 7 == 2 . 1 26 + (-7) . 35 .  

Substituting into the second equation -5x + 81 y == 0 also gives us some 
interesting information. Any multiple of the linear combination 0 == (-5) . 
126 + 1 8  . 35 can be added to the above representation of the greatest common 
divisor. Thus, for example, we also have 7 == (-3) . 126 + 1 1  . 35 and 
7 == (-8) . 126 + 29 . 35 .  0 

Example 1.1.6. 

In matrix form, the solution for (83 ,  38) is the following: [ 1 0 83 ] [ � -2 7 ] [ -� -2 7 ] 
o 1 38 � � 1 1  3 � 

1 38 [ 1 1  -24 1 ] [ 1 1  -24 � ] . -5 1 1  3 � -38 83 

Thus (83 , 38) == 1 and ( 1 1 ) (83) + (-24) (38) == 1 .  0 
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The number (a , b) can be written in many different ways as a linear combination 
of a and b .  The matrix method gives a linear combination with 0 == rn l a + n I b ,  so 
if (a , b) == rna + nb,  then adding the previous equation gives (a , b) == (m + rn l )a + 
(n + n I )b .  In fact, any mUltiple of the equation 0 == rn I a + n I b  could have been 
added, so there are infinitely many linear combinations of a and b that give (a , b) .  

EXERCISES : SECTION 1.1  

Before working on the exercises , you must make sure that you are familiar with all of 
the definitions and theorems of this section. You also need to be familiar with the techniques 
of proof that have been used in the theorems and examples in the text. As a reminder, we 
take this opportunity to list several useful approaches. 

-When working questions involving divisibility you may find it useful to go back to 
the definition. If you rewrite b I a as a == bq for some q E Z, then you have an equation 
involving integers , something concrete and familiar to work with. 

-To show that b I a , try to write down an expression for a that has b as a factor. 
-Another approach to proving that b I a is to use the division algorithm to write a == 

bq + r ,  where 0 < r < b,  and show that r == O. 
-Theorem 1 . 1 .6 is extremely useful in questions involving greatest common divisors . 

Remember that finding some linear combination of a and b is not necessarily good enough 
to determine gcd (a , b) . You must show that the linear combination you believe is equal to 
gcd (a , b) is actually the smallest positive linear combination of a and b .  

Exercises for which a solution is given in the answer key are marked by the symbol t . 

1 .  A number n is called perfect if it is equal to the sum of its proper positive divisors 
(those divisors different from n) .  The first perfect number is 6 since 1 + 2 + 3 == 6. 
For each number between 6 and the next perfect number, make a list containing the 
number, its proper divisors , and their sum. 
Note : If you reach 40, you have missed the next perfect number. 

2. Find the quotient and remainder when a is divided by b.  
(a) a == 99 , b == 1 7  
(b) a == -99 , b == 1 7  
( c )  a == 1 7 ,  b == 99 
(d) a == - 10 1 7 , b == 99 

3. Use the Euclidean algorithm to find the following greatest common divisors . 
t ea) (35 , 14) 
(b) ( 1 5 ,  1 1 ) 

t (c) (252 , 1 80) 
(d) (5 1 3 , 1 87) 

t (e) (7655 ,  100 1 )  
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4. Use the Euclidean algorithm to find the following greatest common divisors . 
(a) (6643 , 2873) 
(b) (7684, 4 1 48) 
(c) (26460, 1 2600) 
(d) (6540, 1206) 
(e) ( 1 209 1 , 8439) 

5. t For each part of Exercise 3, find integers m and n such that (a , b) is expressed in the 
form ma + nb . 

6 . For each part of Exercise 4, find integers m and n such that (a , b) is expressed in the 
form ma + nb . 

7 .  Let a , b , c be integers . Give a proof for these facts about divisors : 
(a) If b I a, then b l ac. 
(b) If b I a and c I b, then c I a . 
(c) If c I a and c I b , then c I (ma + nb) for any integers m ,  n .  

8 .  Let a , b ,  c be integers such that a + b + c == 0 .  Show that if n is an integer which is 
a divisor of two of the three integers , then it is also a divisor of the third . 

9. Let a , b , c be integers . 
(a) Show that if b I a and b I (a + c) , then b I c. 
(b) Show that if b I a and b J c, then b J (a + c) . 

10. Let a , b , c be integers, with c i=- 0. Show that bc I ac if and only if b I a . 
1 1 . Show that i f  a > 0 ,  then (ab , ac) == a (b , c) . 
12 . Show that if n is any integer, then ( I On + 3 ,  5n + 2) == 1 .  

1 3 . Show that if n i s  any integer, then (a + nb, b ) == (a , b) . 
14. For what positive integers n is it true that (n , n + 2) == 2? Prove your claim. 

1 5 .  Give a detailed proof of the statement in the text that if a and b are integers , then b I a 
if and only if aZ c bZ. 

16 . Let a , b , c be integers , with b > 0, c > 0, and let q be the quotient and , the 
remainder when a is divided by b. 
(a) Show that q is the quotient and rc is the remainder when ac is divided by bc. 
(b) Show that if q ' is the quotient when q is divided by c, then q ' is the quotient when 
a is divided by bc. (Do not assume that the remainders are zero.) 

1 7 . Let a, b , n be integers with n > 1 . Suppose that a == nql + r] with ° :s r1 < n and 
b == nq2 + '2 with ° ::; r2 < n .  Prove that n I (a - b) if and only if r 1 == r2 . 

1 8 . Show that any nonempty set of integers that is closed under subtraction must also be 
closed under addition. (Thus part of the hypothesis of Theorem 1 . 1 .4 is redundant.) 
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19 . Let a , b ,  q ,  r be integers such that b 1= 0 and a == bq + r .  Prove that (a , b) == (b, r)  
by showing that (b , r) satisfies the definition of the greatest common divisor of a and 
b .  

20. Perhaps a more natural definition of the greatest common divisor is the following: 
Let a and b be integers, not both zero . An integer d is called the greatest common 
divisor of the nonzero integers a and b if (i) d I a and d I b, and (ii) c I a and c I b 
implies d � c.  Show that this definition is equivalent to Definition 1 . 1 .5 .  

2 1 . Prove that the sum of the cubes of any three consecutive positive integers i s  divisible 
by 3 .  

22 .  t Find all integers x such that 3x + 7 is divisible by 1 1 . 

23 . Develop a theory of integer solutions x ,  y of equations of the form ax + by == c,  
where a , b ,  c are integers . That is , when can an equation of this form be solved, 
and if it can be solved, how can all solutions be found? Test your theory on these 
equations : 

60x + 36y == 1 2 , 35x + 6y == 8 ,  1 2x + 1 8  y == 1 1 . 

Finally, give conditions on a and b under which ax + by == c has solutions for every 
integer c. 

24. Formulate a definition of the greatest common divisor of three integers a , b, c (not 
all zero) . With the appropriate definition you should be able to prove that the greatest 
common divisor is a linear combination of a , b and c .  

1.2 Primes 

The main focus of this section is on prime numbers . Our method will be to investigate 
the notion of two integers which are relatively prime, that is, those which have no 
common divisors except ± 1 .  Using some facts which we will prove about them, 
we will be able to prove the prime factorization theorem, which states that every 
nonzero integer can be expressed as a product of primes . Finally, we will be able 
to use prime factorizations to learn more about greatest common divisors and least 
common multiples. 

1 .2.1 Definition. The nonzero integers a and b are said to be relatively prime if 
(a , b) == 1 .  

1 .2.2 Proposition. Let a ,  b be nonzero integers. Then (a , b )  == 1 ifand only if there 
exist integers rn ,  n such that rna + nb == 1 .  
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Proof. If a and b are relatively prime, then by Theorem 1 . 1 .6 integers m and n can 
be found for which ma + nb == 1 .  To prove the converse, we only need to note that if 
there exist integers m and n with ma + nb == 1 ,  then 1 must be the smallest positive 
linear combination of a and b, and thus (a , b) == 1 ,  again by Theorem 1 . 1 .6 .  D 

Proposition 1 .2 .2 will be used repeatedly in the proof of the next result. A 
word of caution-it is often tempting to jump from the equation d == ma + nb to 
the conclusion that d == (a , b) . For example, 1 6  == 2 . 5 + 3 · 2, but obviously 
(5 , 2) � 1 6. The most that it is possible to say (using Theorem 1 . 1 .6) is that d is a 
multiple of (a , b) . Of course, if ma + nb == 1 ,  then Proposition 1 .2 .2 implies that 
(a , b) == 1 .  

1.2.3 Proposition. Let a ,  b ,  c be integers, where a � 0 or b � o. 

(a) Ifb l ac, then b l (a , b) · c. 

(b) If b I ac and (a , b) == 1 ,  then b I c. 

(c) Ifb l a, c l a and (b , c) == 1 ,  then bc l a . 

(d) (a , bc) == 1 if and only if (a , b) == 1 and (a , c) == 1 .  

Proof. (a) Assume that b I ac. To show that b I (a , b )  . c ,  we will try to find an 
expression for (a , b) · c  that has b as an obvious factor. We can write (a , b) == ma +nb 
for some m, n E Z, and then mUltiplying by c gives 

(a , b) . c == mac + nbc . 

Now b is certainly a factor of nbc,  and by assumption it is also a factor of ac ,  so it 
is a factor of mac and therefore of the sum mac + nbc.  Thus b I (a , b) . c . 

(b) Simply letting (a , b) == 1 in part (a) gives the result immediately. 
(c) If b I a ,  then a == bq for some integer q .  If c I a ,  then c I bq , so if (b , c) == 1 ,  it 

follows from part (b) that c I q , say with q == cq l . Substituting for q in the equation 
a == bq gives a == bcq l , and thus bc I a .  

(d) Suppose that (a , bc) == 1 .  Then m a  + n (bc) == 1 for some integers m and 
n ,  and by viewing this equation as ma + (nc)b == 1 and ma + (nb)c == 1 we can 
see that (a , b) == 1 and (a , c) == 1 .  

Conversely, suppose that (a , b) == 1 and (a , c) == 1 .  Then m l a + n I b == 1 
for some integers m l and n l , and m2a + n2c == 1 for some integers m2 and n2 . 
Multiplying these two equations gives 

which shows that (a , bc) == 1 .  D 

1.2.4 Definition. An integer p > 1 is called a prime number ifits only divisors are 
± 1 and ±p. An integer a > 1 is called composite if it is not prime. 
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To determine whether or not a given integer n > 1 i s  prime, we could just 
try to divide n by each positive integer less than n .  This method of trial division 
is very inefficient, and for this reason various sophisticated methods of "primality 
testing" have been developed. The need for efficient tests has become particularly 
apparent recently, because of applications to computer security that make use of 
cryptographic algorithms . To determine the complete list of all primes up to some 
bound, there is a useful procedure handed down from antiquity. 

Example 1 .2.1 (Sieve of Eratosthenes). 

The primes less than a fixed positive integer a can be found by the following 
procedure. List all positive integers less than a (except 1 ) , and cross off every 
even number except 2. Then go to the first number that has not been crossed 
off, which will be 3, and cross off all higher mUltiples of 3 .  Continue this 
process to find all primes less than a. You can stop after you have crossed 
off all proper mUltiples of primes p for which p < .va, since you will have 
crossed off every number less than a that has a proper factor. (If b is composite, 
say b == b I b2 , then either b I ::; -Jb or b2 < -Jb.) For example, we can find 
all primes less than 20 by just crossing off all multiples of 2 and 3 ,  since 
5 > .J2O: 

1 1  
2 3 
It 1 3  

� 5 
1;4 lfi 

� 7 
1;6 17  

$ ? 1)) 
1� 1 9  

This method i s  attributed to the Greek mathematician Eratosthenes ,  and is 
called the sieve of Eratosthenes. 

Similarly, the integers less than a and relatively prime to a can be found by 
crossing off the prime factors of a and all of their multiples .  For example, the 
prime divisors of 36 are 2 and 3 , and so the positive integers less than 36 and 
relatively prime to it can be found as follows : 

1 '7 'J � 5 � 7 $ ? 1)) 1 1  It 
1 3  1;4 lfi 1;6 1 7 1� 19  2j) 2;i 2J, 23 44-
25 2fj 271 4S 29 3)) 3 1  3t 3� 3;4 35 D 

Euclid 's lemma, the next step in our development of the fundamental theorem 
of arithmetic, is the one that requires our work on relatively prime numbers . We 
will use Proposition 1 .2 .3 (b) in a crucial way. 

1.2.5 Lemma (Euclid). An integer p > 1 is prime if and only if it satisfies the 
following property: for all integers a and b, if p I ab, then either p I a or p l b. 

Proof Suppose that p is prime and p I abo  We know that either (p , a)  == p or 
(p , a) == 1 ,  since (p , a) is always a divisor of p and p is prime. In the first 
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case p I a and we are done. In the second case, since (p , a)  == 1 ,  we can apply 
Proposition 1 .2 .3 (b) to show that p i  ab implies p i  b. Thus we have shown that if 
p I ab,  then either p I a or p i  b .  

Conversely, suppose that p satisfies that given condition. If p were composite, 
then we could write p == ab for some positive integers smaller than p .  The condition 
would imply that either p I a or p I b,  which would be an obvious contradiction . D 

The following corollary extends Euclid's lemma to the product of more than 
two integers . In the proof we will use mathematical induction, which we hope is 
familiar to you . If you do not remember how to use induction, you should read the 
discussion in Appendix A.4. 

1.2.6 Corollary. If p is a prime number, and p I a I a2 · . .  an for integers a I ,  a2, . . .  , 
an , then p I ai for some i with 1 < i < n. 

Proof In order to use the principle of mathematical induction, let Pn be the follow
ing statement : if p I a I a2 . . .  an , then p I ai for some 1 < i < n .  The statement PI is 
clearly true. Next, assume that the statement Pk is true, that is, if p I a I a2 . . .  ak , then 
p I ai for some 1 < i < k .  If p I a I a2 . . .  akak+ I ,  for integers aI , a2 , . . .  , ak , ak+ 1 ,  then 
applying Euclid 's lemma to a == a I a2 . . .  ak and b == ak+ I yields that p I a I a2 . . .  ak 
or p I ak+ 1 . In case p I a 1 a2 . . .  ak , the truth of the statement Pk implies that p I ai for 
some 1 < i < k .  Thus, in either case, p I ai for some 1 < i < k + 1 ,  and hence 
the statement Pk+ I is true. By the principle of mathematical induction (as stated in 
Theorem A.4.2 of Appendix A.4), the statement Pn holds for all positive integers 
n .  D 

The next theorem, on prime factorization, is sometimes called the fundamental 
theorem of arithmetic . The naive way to prove that an integer a can be written as 
a product of primes is to note that either a is prime and we are done, or else a is 
composite, say a == bc . Then the same argument can be applied to b and c,  and 
continued until a has been broken up into a product of primes . (This process must 
stop after a finite number of steps because of the well-ordering principle . ) We also 
need to prove that any two factorizations of a number are in reality the same. The 
idea of the proof is to use Euclid 's lemma to pair the primes in one factorization with 
those in the other. In fact, the proof of the uniqueness of the factorization requires 
a more delicate argument than the proof of the existence of the factorization. 

1.2.7 Theorem (Fundamental Theorem of Arithmetic). Any integer a > 1 can 
be factored uniquely as a product of prime numbers, in the form 

where P I < P2 < . . .  < Pn and the exponents a I , a2 , . . .  , an are all positive. 
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Proof Suppose that there i s  some integer that cannot be written as a product of 
primes . Then the set of all integers a > 1 that have no prime factorization must be 
nonempty, so as a consequence of the well-ordering principle it must have a smallest 
member, say b. Now b cannot itself be a prime number since then it would have 
a prime factorization . Thus b is composite, and we can write b == cd for positive 
integers c ,  d that are smaller than b .  Since b was assumed to be the smallest positive 
integer not having a factorization into primes , and c and d are smaller, then both c 
and d must have factorizations into products of primes . This shows that b also has 
such a factorization, which is a contradiction. Since multiplication is commutative, 
the prime factors can be ordered in the desired manner. 

If there exists an integer > 1 for which the factorization is not unique, then 
by the well-ordering principle there exists a smallest such integer, say a .  Assume 
that a has two factorizations a == p� l p�2 . . . p�n and a == q�l qf2 . . . q!m , where 
Pl < P2 < . . .  < Pn , and q i < q2 < . . .  < qm , with (ti > 0 for i == 1 ,  . . .  , n , and 
f3i > 0 for i == 1 ,  . . .  , m . By Corollary 1 .2 .6 of Euclid's lemma, q} I Pk for some k 
with 1 < k < n and PI  I qj for some j with 1 < j < m .  Since all of the numbers 
Pi and qi are prime, we must have q i == Pk and PI == qj . Then P I  == ql since 
q i < qj == P I  < Pk == q I · Hence we can let 

a a a 1 a fJ 1 I fJ2 fJ S - - - - - P 1 - P 2 • • • pan - q - q . . .  q m -
PI  - qi - I 2 n - 1 2 m . 

If s == 1 then a == P I  has a unique factorization, contrary to the choice of a .  If 
s > 1 ,  then since s < a and s has two factorizations , we again have a contradiction 
to the choice of a .  0 

If the prime factorization of an integer is known, then it is easy to list all of 
its divisors . If a == p�l p�2 . . .  p�ll , then b is a divisor of a if and only if b == 
pfl p�2 . . .  p�ll , where f3i < (ti for all i .  Thus we can list all possible divisors of a 
by systematically decreasing the exponents of each of its prime divisors . 

Example 1.2.2. 

The positive divisors of 12 are 1 ,  2, 3, 4, 6, 1 2 ; the positive divisors of 8 are 
1 , 2 , 4 , 8 ; and the positive divisors of 36 are 1 , 2 , 3 , 4 , 6 , 9 , 1 2 , 1 8 , 36 . In 
Figure 1 .2. 1 ,  we have arranged the divisors so as to show the divisibility 
relations among them. There is a path (moving upward only) from a to b if 
and only if a l b . 
In constructing the first diagram in Figure 1 .2 . 1 ,  it is easiest to use the prime 
factorization of 12 . Since 12  == 223 ,  we first divide 1 2  by 2 to get 6 and then 
divide again by 2 to get 3 .  This gives the first side of the diagram, and to 
construct the opposite side of the diagram we divide each number by 3 .  
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If the number has three different prime factors, then we would need a three
dimensional diagram. (Visualize the factors as if on the edges of a box. )  With 
more than three distinct prime factors, the diagrams lose their clarity. 0 

Figure 1 .2 . 1 :  

8 36 
1 2  / " I / " 1 8  1 2  

6 4 4 / " / " / " / I 9 6 4 
3 2 2 " / " / " / 3 2 

1 I " / 
1 1 

The following proof, although easy to follow, is an excellent example of the 
austere beauty of mathematics . 

1.2.8 Theorem (Euclid). There exist infinitely many prime numbers. 

Proof Suppose that there were only finitely many prime numbers, say P I , P2 , 
. . .  , Pn . Then consider the number a == PI P2 . . .  Pn + 1 .  By Theorem 1 .2.7, the 
number a has a prime divisor, say p .  Now P must be one of the primes we listed, 
so p i  (P I P2 · . .  Pn ) ,  and since P I a, it follows that P I (a - PI P2 · . .  Pn ) .  This is a 
contradiction since P cannot be a divisor of 1 .  0 

Example 1 .2.3. 

Consider the numbers 22 - 1 == 3 , 23 - 1 == 7 , 24 - 1 == 1 5 , 25 - 1 == 3 1 , 
and 26 - 1 == 63 . The prime exponents each give rise to a prime, while the 
composite exponents each give a composite number. Is this true in general? 
Continuing to investigate prime exponents gives 27 - 1 == 1 27, which is prime, 
but 2 1 1  - 1 == 2047 == 23 · 89 . Thus a prime exponent may or may not yield 
a prime number. 
On the other hand, it is always true that a composite exponent yields a com
posite number. To prove this , let n be composite, say n == qm (where q and 
m are integers greater than 1 ) , and consider 2n - 1 == 2qm - 1 .  We need to 
find a nontrivial factorization of 2qm - 1 == (2q )m - 1 .  We can look at this as 
xm - 1 ,  and then we have the familiar factorization 

xm - 1 == (x - 1 ) (xm- 1 + xm-2 + . . .  + x2 + x  + 1 ) . 
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Substituting x == 2q shows that 2q - 1 i s  a factor of 2n - 1 . Now 1 < 2q - 1 < 
2n - 1 since both q and m are greater than 1 ,  and so we have found a nontrivial 
factorization of 2n - 1 .  0 

2 1  

The final concept we study in this section is the least common multiple of two 
integers . Its definition is parallel to that of the greatest common divisor. We can 
characterize it in terms of the prime factorizations of the two numbers , or by the 
fact that the product of two numbers is equal to the product of their least common 
multiple and greatest common divisor. 

1.2.9 Definition. A positive integer m is called the least common multiple of the 
nonzero integers a and b if 

(i) m is a multiple of both a and b, and 
(ii) any multiple of both a and b is also a multiple of m. 

We will use the notation lcm [a , b ] or [a , b ] for the least common multiple of a and 
b. 

When written out in symbols, the definition of the least common multiple looks 
like this :  m == lcm[a , b] if (i) a I m and b I m, and (ii) if a I c and b I c, then m I c . 

There are times , as in next proposition, when it is convenient to allow the prime 
factorization of a number to include primes with exponent O. This leads to a repre
sentation that is no longer unique, but it is particularly useful to be able to write the 
prime factorizations of two different integers in terms of the same primes . 

1.2.10 Proposition. Let a and b be positive integers with prime factorizations a == 
Pa l pa2 . . .  pan and b == pflI pfh . . .  pfJll where (x .  > 0 and R .  > Of or all i 1 2 n 1 2 n , 1 - jJl - • 

(a) Then a I b if and only if (Xi < f3i for i == 1, 2 ,  . . .  , n . 
(b) For each i , let 8 i  == min {(Xi , f3i } and ILi  == max {(Xi , f3i } .  Then 

gcd (a , b) == pf l p�2 . . .  p�n and lcm[a , b] == pil pi2 . . .  p�n . 

Proof (a) Suppose that (Xi < f3i for i == 1, 2 ,  . . .  , n . Let Yi == f3i - (Xi , for 
i == 1, 2, . . .  , n ,  and set c == pil pr2 . . .  p�n (note that Yi > 0 for i == 1, 2 ,  . . .  , n) . 
Then 

ac p� l p�2 . . .  p�n pil pr2 . . .  p�n == p�I +YI p�2+Y2 . . .  p�Il+Yn . 

pfl p�2 . . .  p�1l == b .  

Since b == ac, we have a l b . 
Conversely, suppose that a I b. Then there exists c E Z such that b == ac. For 

any prime p such that p i c , we have p I b, and so p == p j for some j with 1 < j < n .  
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Thus c has a factorization c == pil pr2 . . .  p�n , where Yi > ° for i == 1 ,  2 ,  . . .  , n .  
Since b == ac, we have 

PflI pfh . . . pfJn == pal pa2 . . .  pan pYI pY2 . . .  pYn == pal +YI pa2+Y2 . . .  pan +Yn 1 2  n 1 2  n 1 2  n 1 2 n ' 
where f3i == (Xi + Yi for i == 1 ,  2 ,  . . .  , n . Because Yi > 0, we have (Xi < f3i for 
i == 1 ,  2 ,  . . .  , n .  

(b) The proof follows immediately from part (a) and the definitions of the least 
common multiple and greatest common divisor. 0 

As a corollary of Proposition 1 .2 . 1 0, it is clear that 

gcd(a , b) . lcm[a , b] == ab . 

This can also be shown directly from the definitions , as we have noted in Exercise 1 5 .  
For small numbers i t  i s  probably easiest to use their prime factorizations to find 

their greatest common divisor and least common multiple. It takes a great deal of 
work to find the prime factors of a large number, even on a computer making use of 
sophisticated algorithms . In contrast, the Euclidean algorithm is much faster, so its 
use is more efficient for finding the greatest common divisor of large numbers . 

Example 1.2.4. 

In the previous section we computed ( 1 26, 35) . To do this using Proposi
tion 1 .2. 10 we need the factorizations 126 == 2 1 . 32 . 7 1 and 35 == 5 1 . 7 1 . 
We then add terms so that we have the same primes in each case , to get 
1 26 == 2 1 . 32 . 5° . 7 1 and 35 == 2° . 3° . 5 1 . 7 1 . Thus we obtain ( 1 26, 35) == 
2° . 3° . 5° . 7 1 == 7 and [ 1 26 , 35] == 2 1 . 32 . 5 1 . 7 1 == 630. D 

EXERCISES: SECTION 1.2 

When proving results in these exercises, we recommend that you first try to use Propo
sition 1 .2 .2, Proposition 1 .2 .3 ,  or Lemma 1 .2 .5 ,  before trying to use the very powerful 
Fundamental Theorem of Arithmetic .  

1 .  Find the prime factorizations of each of the following numbers, and use them to 
compute the greatest common divisor and least common multiple of the given pairs 
of numbers . 

t ea) 35 ,  14 
(b) 1 5 , 1 1  

t (c) 252, 1 80 
(d) 7684, 4 1 48 

t ee) 6643 , 2873 
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2. Use the sieve of Eratosthenes to find all prime numbers less than 200. 

3 .t For each composite number a ,  with 4 :S a :::: 20, find all positive numbers less than 
a that are relatively prime to a . 

4 .  Find all positive integers less than 60 and relatively prime to 60. 
Hint: Use techniques similar to the sieve of Eratosthenes . 

5 . tFor each of the numbers 9, 1 5 , 20 , 24 and 100, give a diagram of all divisors of the 
number, showing the divisibility relationships . (See Example 1 .2 .2 . )  

6. For each of the following numbers, give a diagram of all divisors of the number, 
showing the divisibility relationships. 
(a) 60 
(b) 1 575 

7. Let m and n be positive integers such that m + n == 57 and [m ,  n] == 680 . Find m 
and n .  

8 .  Let a ,  b be positive integers, and let d == (a , b) . Since d I a and d I b , there exist 
integers h ,  k such that a == dh and b == dk . Show that (h , k) == 1 .  

9 .  Let a ,  b ,  e be positive integers, and let d == (a , b) . Since d I a ,  there exists an integer 
h with a == dh . Show that if a I be , then h i e . 

10 . Show that aZ n bZ == [a ,  b]Z. 
1 1 . Let a ,  b be nonzero integers, and let p be a prime. Show that if p I [a ,  b] , then either 

p i a  or p l b . 
1 2. Let a , b , e be nonzero integers . Show that (a , b) == 1 and (a , e) == 1 if and only if 

(a , [b , e] ) == 1 .  

1 3 .  Let a , b be nonzero integers. Prove that (a , b) == 1 if and only if (a + b ,  ab) == 1 .  

14 . Let a ,  b be nonzero integers with (a , b) == 1 .  Compute (a + b ,  a - b) . 
1 5 .  Let a and b be positive integers, and let m be an integer such that ab == mea , b) . 

Without using the prime factorization theorem, prove that (a , b) [a ,  b] == ab by 
verifying that m satisfies the necessary properties of [a , b] . 

1 6. A positive integer a is called a square if a == n2 for some n E Z. Show that the 
integer a > 1 is a square if and only if every exponent in its prime factorization is 
even . 

1 7 .  Show that if the positive integer a is not a square, then a i= b2 / e2 for integers b , e. 
Thus any positive integer that is not a square must have an irrational square root. 
Hint : Use Exercise 16 to show that ae2 i= b2 . 

1 8 . Show that if a , b are positive integers such that (a , b) == 1 and ab is a square , then a 
and b are also squares. 
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19 . Let p and q be prime numbers . Prove that pq + 1 is a square if and only if p and q 
are twin primes. 

20. A positive integer is called square-free if it is a product of distinct primes . Prove 
that every positive integer can be written uniquely as a product of a square and a 
square-free integer. 

2 1 .  Prove that if a > 1 ,  then there is a prime p with a < p S a ! + 1 .  

22. Show that for any n > 0, there are n consecutive composite numbers. 

23 . Show that if n is a positive integer such that 2n + 1 is prime, then n is a power of 2 .  

24. Show that log 2/ log 3 is not a rational number. 

25 . If a , b , c are positive integers such that a2 + b2 = c2 , then (a , b , c) is called a 
Pythagorean triple . For example, (3 , 4, 5) and (5 , 12 ,  1 3) are Pythagorean triples . 
Assume that (a , b , c) is a Pythagorean triple in which the only common divisors of 
a , b , c are ± 1 .  
(a) Show that a and b cannot both be odd. 
(b) Assume that a is even. Show that there exist relatively prime integers m and n 
such that a = 2mn , b = m2 - n2 , and c = m2 + n2 . 
Hint: Factor a2 = c2 - b2 after showing that (c + b , c - b) = 2. 

1.3 Congruences 

For many problems involving integers , all of the relevant information is contained in 
the remainders obtained by dividing by some fixed integer n .  Since only n different 
remainders are possible (0 , 1 ,  . . .  , n - 1 ) , having only a finite number of cases to 
deal with can lead to considerable simplifications .  For small values of n it even 
becomes feasible to use trial-and-error methods. 

Example 1 .3.1.  

A famous theorem of Lagrange states that every positive integer can be written 
as sum of four squares. (See the notes at the end of this chapter for a short 
discussion of this problem.) To illustrate the use of remainders in solving 
a number theoretic problem, we will show that any positive integer whose 
remainder is 7 when divided by 8 cannot be written as the sum of three squares. 
Therefore this theorem of Lagrange is as sharp as possible . 
If n = a2 + b2 + c2 , then when both sides are divided by 8, the remainders 
must be the same . It will follow from Proposition 1 .3 .3 that we can compute 
the remainder of n = a2 + b2 + c2 by adding the remainders of a2 , b2 , and c2 
(and subtracting a multiple of 8 if necessary) . By the same proposition, we can 
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compute the remainders of a2 , b2 , and c2 by squaring the remainders of a , b, 
and c (and subtracting a multiple of 8 if necessary). The possible remainders 
for a , b, and c are 0, 1 ,  . . .  , 7 , and squaring and taking remainders yields only 
the values 0, 1 ,  and 4. To check the possible remainders for a2 + b2 + c2 
we only need to add together three such terms. (If we get a sum larger than 
7 we subtract 8 . )  A careful analysis of all of the cases shows that we cannot 
obtain 7 as a remainder for a2 + b2 + c2 . Thus we cannot express any integer 
n whose remainder is 7 when divided by 8 in the form n == a2 + b2 + c2 . 0 
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Trial and error techniques similar to those of Example 1 . 3 . 1 can sometimes be 
used to show that a polynomial equation has no integer solution. For example, if x == 
c is a solution of the equation akxk+ . . .  +a lx +aO == 0, then akck+ . . .  +a l c+ao must 
be divisible by every integer n. If some n can be found for which akxk + . . .  +a l x +ao 
is never divisible by n , then this can be used to prove that the equation has no integer 
solutions . For example, x3 + x + 1 == 0 has no integer solutions since c3 + c + 1 is 
odd for all integers c, and thus is never divisible by 2. 

A more familiar situation in which we carry out arithmetic after dividing by 
a fixed integer is the addition of hours on a clock (where the fixed integer is 1 2) . 
Another example is given by the familiar rules "even plus even is even," "even 
times even is even," etc . ,  which are useful in other circumstances (where the fixed 
integer is 2) . Gauss introduced the following congruence notation, which simplifies 
computations of this sort. 

1 .3.1 Definition. Let n be a positive integer. Integers a and b are said to be congru
ent modulo n if they have the same remainder when divided by n . This is denoted 
by writing a = b (mod n) . 

If we use the division algorithm to write a == nq + r , where 0 < r < n , then r == 
n · 0  + r . It follows immediately from the previous definition that a = r (mod n) . In 
particular, any integer is congruent modulo n to one of the integers 0 , 1 ,  2, . . .  , n - 1 . 

We feel that the definition we have given provides the best intuitive understand
ing of the notion of congruence, but in almost all proofs it will be easiest to use the 
characterization given by the next proposition. Using this characterization makes it 
possible to utilize the facts about divisibility that we have developed in the preceding 
sections of this chapter. 

1.3.2 Proposition. Let a, b, and n > 0 be integers. Then a = b (mod n) if and 
only ifn I (a - b) . 

Proof If a = b (mod n) , then a and b have the same remainder when divided by 
n , so the division algorithm gives a == nq l + r and b == nq2 + r . Solving for the 
common remainder gives a - nq l == b - nq2 . Thus a - b == n (q l - q2 ) , and so 
n l (a - b) .  
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To prove the converse, assume that n I (a - b) . Then there exists k E Z with 
a - b == nk, and hence b � a - nk . If upon applying the division algorithm we have 
a == nq +r , with 0 < r < n , then b � a -nk � (nq +r) -nk == n (q - k) + r . Since 
o < r < n , division of b by n also yields the remainder r . Hence a = b (mod n ) . 0 

When working with congruence modulo n , the integer n is called the modulus. 
By the preceding proposition, a = b (mod n) if and only if a - b � nq for some 
integer q .  We can write this in the form a == b + nq , for some integer q .  This 
observation gives a very useful method of replacing a congruence with an equation 
(over Z) . On the other hand, Proposition 1 .3 . 3  shows that any equation can be 
converted to a congruence modulo n by simply changing the == sign to =. In doing 
so, any term congruent to 0 can simply be omitted. Thus the equation a � b + nq 
would be converted back to a = b (mod n) . 

Congruence behaves in many ways like equality. The following properties, 
which are obvious from the definition of congruence modulo n, are a case in point. 
Let a , b, c be integers . Then 

(i) a = a (mod n) ; 
(ii) if a - b (mod n ) , then b - a (mod n) ; 
(iii) if a = b (mod n) and b - c (mod n) , then a - c (mod n ) . 
The following theorem carries this analogy even further. Perhaps its most impor

tant consequence is that when adding, subtracting, or multiplying congruences you 
may substitute any congruent integer. For example, to show that 992 - 1 (mod 1 00) , 
it is easier to substitute - 1  for 99 and just show that (- 1 )2 == 1 .  

1 .3.3 Proposition. Let n > 0 be an integer. Then the following conditions hold for 
all integers a , b , c , d: 

(a) /fa = c (mod n) and b = d (mod n), then a ± b = c ± d (mod n), and 
ab - cd (mod n) . 

(b) /f a + c = a + d (mod n), then c = d (mod n) . If ac - ad (mod n) and 
(a , n) � 1, then c = d (mod n) . 

Proof (a) If a = c (mod n) and b = d (mod n) , then n I (a - c) and n I (b - d) . 
Adding shows that n I ( (a + b) - (c + d)) , and subtracting shows that n I ( (a - b) -
(c - d) ) .  Thus a ± b = c ± d (mod n ) . 

Since n I (a -c) ,  we have n I (ab -cb) , and since n I (b -d) , we have n I (cb-cd) . 
Adding shows that n I (ab - cd) and thus ab = cd (mod n) . 

(b) If a + c - a + d (mod n) , then n I ( (a + c) - (a + d)) .  Thus n I (c - d) and 
so c - d (mod n) . 

If ac = ad (mod n) , then n I (ac - ad) , and since (n , a) � 1 ,  it follows from 
Proposition 1 .2 .3  (b) that n I (c - d) . Thus c - d (mod n) . 0 

The consequences of Proposition 1 . 3 . 3  can be summarized as follows. 
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(i) For any number in the congruence, you can substitute any congruent integer. 
(ii) You can add or subtract the same integer on both sides of a congruence. 
(iii) You can multiply both sides of a congruence by the same integer. 
(iv) Canceling, or dividing both sides of a congruence by the same integer, must 

be done very carefully. You may divide both sides of a congruence by an integer a 
only if (a , n) == 1 .  For example, 30 - 6 (mod 8) , but dividing both sides by 6 gives 
5 - 1 (mod 8) , which is certainly false. On the other hand, since 3 is relatively 
prime to 8, we may divide both sides by 3 to get 10 = 2 (mod 8) . 

Proposition 1 . 3 . 3  shows that the remainder upon division by n of a + b or ab can 
be found by adding or multiplying the remainders of a and b when divided by n and 
then dividing by n again if necessary. For example, if n == 8, then 1 0 1  has remainder 
5 and 142 has remainder 6 when divided by 8 .  Thus 1 0 1  . 1 42 == 1 4 , 342 has the 
same remainder as 30 (namely, 6) when divided by 8 .  Formally, 1 0 1  = 5 (mod 8) 
and 142 - 6 (mod 8) , so it follows that 1 0 1  . 142 - 5 · 6  = 6 (mod 8) . 

As a further example, we compute the powers of 2 modulo 7 .  Rather than 
computing each power and then dividing by 7 ,  we reduce modulo 7 at each stage of 
the computations : 

22 _ 4 (mod 7) , 
23 = 222 - 4 . 2 _ 1 (mod 7) , 
24 = 232 = 1 . 2 = 2 (mod 7) , 
25 = 242 = 2 . 2 = 4 (mod 7) . 

From the way in which we have done the computations , it is clear that the powers 
will repeat. In fact, since there are only finitely many remainders modulo n , the 
powers of any integer will eventually begin repeating modulo n . 

1.3.4 Proposition. Let a and n > 1 be integers. There exists an integer b such that 
ab = 1 (mod n) ifand only if (a , n) == 1 .  

Proof If there exists an integer b such that ab - 1 (mod n) , then we have 
ab == 1 + q n for some integer q .  This can be rewritten to give a linear combination 
of a and n equal to 1 ,  and so (a , n) == 1 .  

Conversely, if (a , n )  == 1 ,  then there exist integers s ,  t such that sa + tn == 1 .  
Letting b == s and reducing the equation to a congruence modulo n gives ab = 
1 (mod n) . 0 

We are now ready to present a systematic study of linear congruences that involve 
unknowns . The previous proposition shows that the congruence 

ax - 1 (mod n) 

has a solution if and only if (a , n) == 1 .  In fact, the proof of the proposition shows that 
the solution can be obtained by using the Euclidean algorithm to write 1 == ab + nq 
for some b , q E Z, since then 1 - ab (mod n) . 



28 CHAPTER 1. INTEGERS 

The next theorem determines all solutions of a linear congruence of the form 

ax = b (mod n) . 

Of course, if the numbers involved are small, it may be simplest just to use trial 
and error. For example, to solve 3x - 2 (mod 5) ,  we only need to substitute 
x == 0, 1 , 2 , 3 , 4 . Thus by trial and error we can find the solution x = 4 (mod 5) . 

In many ways, solving congruences is like solving equations .  There are a few 
important differences , however. A linear equation over the integers (an equation 
of the form ax == b, where a "I 0) has at most one solution. On the other hand, 
the linear congruence 2x - 2 (mod 4) has the two solutions x = 1 (mod 4) and 
x - 3 (mod 4) . 

For linear equations, it may happen that there is no solution . The same is true 
for linear congruences . For example, trial and error shows that the congruence 
3x = 2 (mod 6) has no solution . Thus the first step in solving a linear congruence 
is to use the theorem to determine whether or not a solution exists . 

We say that two solutions r and s to the congruence ax = b (mod n) are 
distinct solutions modulo n if r and s are not congruent modulo n . Thus in the 
next theorem the statement "d distinct solutions modulo n" means that there are d 
solutions S l , S2 , . • .  , Sd such that if i "I j ,  then Si and s j are not congruent modulo 
n . This terminology is necessary in order to understand what we mean by "solving" 
the congruence ax = b (mod n) . In the next section, we will introduce the concept 
of a "congruence class" to clarify the situation. 

1.3.5 Theorem. Let a , b and n > 1 be integers. The congruence ax - b (mod n) 
has a solution if and only if b is divisible by d, where d == (a , n) . If d I b, then there 
are d distinct solutions modulo n, and these solutions are congruent modulo n j d. 

Proof To prove the first statement, observe that ax = b (mod n) has a solution 
if and only if there exist integers s and q such that as == b + nq , or, equivalently, 
as + (-q)n == b. Thus there is a solution if and only if b can be expressed as a 
linear combination of a and n . By Theorem 1 . 1 .6 the linear combinations of a and 
n are precisely the multiples of d, so there is a solution if and only if d l b . 

To prove the second statement, assume that d I b, and let m == njd. Suppose 
that Xl and X2 are solutions of the congruence ax = b (mod n ) , giving aXI -
aX2 (mod n) . Then n I a (x i - X2 ) , and so it follows from Proposition 1 .2 .3 (a) that 
n I d (XI - X2) . Thus m I (X l  - X2 ) , and so Xl  = X2 (mod m) . On the other hand, if 
Xl  - X2 (mod m) , then m I (Xl  - X2 ) , and so n I d (XI - X2) since n == dm . Then 
since d I a we can conclude that n I a (x i - X2) , and so aXI = aX2 (mod n) . 

We can choose the distinct solutions from among the n remainders 0, 1 ,  . . .  , n-1 . 
Given one such solution, we can find all others in the set by adding mUltiples of 
n j d, giving a total of d distinct solutions . 0 
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We now describe an algorithm for solving linear congruences of the form 

ax = b (mod n) . 

We first compute d � (a , n) , and if d I b, then we write the congruence ax -
b (mod n) as an equation ax � b + qn . Since d is a common divisor of a , b , and n , 
we can write a � daI , b � dbI , and n � dm . Thus we  get a l x � b I + q m ,  which 
yields the congruence 

al x = bI (mod m) , 
where al � aid, b I � bid, and m � nld . 

I t  follows immediately from Proposition 1 .2 . 1 0  that since d � (a , n ) , the num
bers a l and m must be relatively prime. Thus by Proposition 1 . 3 .4 we can apply the 
Euclidean algorithm to find an integer c such that ca l = 1 (mod m) . Multiplying 
both sides of the congruence a 1 x = b I (mod m) by c gives the solution 

x = cb I (mod m) . 

Finally, since the original congruence was given modulo n , we should give 
our answer modulo n instead of modulo m .  The congruence x = cb I (mod m) 
can be converted to the equation x � cb I + mk, which yields the solution x = 
cb I + mk (mod n) . The solution modulo m determines d distinct solutions modulo 
n . The solutions have the form So + km , where So is any particular solution of 
x = b l c (mod m) and k is any integer. 

Example 1.3.2 (Homogeneous linear congruences). 

In this example we consider the special case of a linear homogeneous congru
ence 

ax = 0 (mod n) . 

In this case there always exists a solution, namely x = 0 (mod n) , but this 
may not be the only solution modulo n. 
As the fi rst step in the solution we obtain atx = 0 (mod n 1 ) , where a == 
da l and n == dn 1 .  Since a l  and n 1 are relatively prime, by part (b) of 
Proposition 1 .3 . 3  we can cancel a I , to obtain 

We have d distinct solutions modulo n . 

n 
with n I == . 

gcd(a , n) 

For example, 28x = 0 (mod 48) reduces to x = 0 (mod 1 2) ,  and x = 0, 1 2, 
24, 36 are the four distinct solutions modulo 48 .  0 
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Example 1 .3.3. 

To solve the congruence 

60x = 90 (mod 105) , 

we first note that (60, 105) == 1 5 ,  and then check that 1 5  1 90, so that there will 
indeed be a solution. Dividing the corresponding equation 60x == 90 + 105q 
by 1 5 , we obtain the equation 4x == 6 + 7q , which reduces to the congruence 

4x = 6 (mod 7) . 

To solve this congruence, we need an integer c with c · 4 = 1 (mod 7) , so in 
effect we must solve another congruence, 4z = 1 (mod 7) . We could use the 
Euclidean algorithm, but with such a small modulus, trial and error is quicker, 
and it is easy to see that c == 2 will work. 
We now multiply both sides of the congruence 4x = 6 (mod 7) by 2, to obtain 
8x = 1 2  (mod 7) , which reduces to 

x = 5 (mod 7) . 

Writing the solution in the form of an equation, we have x == 5 + 7k, so 
x = 5 + 7k (mod 105) . By adding multiples of 7 to the particular solution 
xo == 5, we obtain the solutions . . .  , -2, 5 ,  1 2, 1 9 , . . . .  There are 1 5  distinct 
solutions modulo 1 05 ,  so we have 

x = 5 , 1 2 , 1 9 , 26 , 33 , 40 , 47 , 54, 6 1 , 68 , 75 , 82, 89, 96, 103 (mod 105) . 0 

In the next theorem we show how to solve two simultaneous congruences over 
moduli that are relatively prime. The motivation for the proof of the next theorem 
is as follows .  Assume that the congruences x = a (mod n)  and x = b (mod m) are 
given. If we can find integers y and z with 

y = 1 (mod n) y = 0 (mod m) 

z = 0 (mod n) z = 1 (mod m ) 

then x == ay + bz will be a solution to the pair of simultaneous congruences x = 
a (mod n) and x = b (mod m ) .  This can be seen by reducing modulo n and then 
modulo m .  
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1.3.6 Theorem (Chinese Remainder Theorem). Let n and m be positive integers, 
with (n , m) == 1 .  Then the system of congruences 

x = a (mod n) x = b (mod m) 

has a solution. Moreover, any two solutions are congruent modulo mn. 

Proof Since (n , m) == 1 ,  there exist integers r and s such that rm + sn == 1 .  
Then rm = 1 (mod n) and sn = 1 (mod m) . Following the suggestion in the 
preceding paragraph, we let x == arm + bsn . Then a direct computation verifies 
that x = arm = a (mod n) and x = bsn = b (mod m) . 

If x i s  a solution, then adding any multiple of mn i s  obviously still a solution. 
Conversely, if Xl and X2 are two solutions of the given system of congruences , then 
they must be congruent modulo n and modulo m . Thus Xl - X2 is divisible by 
both n and m , so it is divisible by mn since by assumption (n , m) == 1 .  Therefore 
Xl = X2 (mod mn) . 0 

Example 1 .3.4. 

The proof of Theorem 1 .3 .6 actually shows how to solve the given system of 
congruences . For example, if we wish to solve the system 

x = 7 (mod 8) x - 3 (mod 5) 

we first use the Euclidean algorithm to write 2 . 8 - 3 . 5 == 1 .  Then x == 
7 (  -3) (5) + 3 (2) (8) == -57 is a solution, and the general solution is x == 
-57 + 40t . The smallest nonnegative solution is therefore 23, so we have 

x = 23 (mod 40) . 0 

Another proof of the existence of a solution in Theorem 1 .3 .6 can be given as 
follows. In some respects this method of solution is more intuitive and provides a 
convenient algorithm for solving the congruences . Given the congruences 

X = a (mod n) X = b (mod m) 

we can rewrite the first congruence as an equation in the form X == a + qn for some 
q E Z. To find a simultaneous solution, we only need to substitute this expression 
for X in the second congruence, giving a + qn = b (mod m) , or 

qn = b - a (mod m) . 

Since (n , m) == 1 ,  we can solve the congruence nz = 1 (mod m) , and using this 
solution we can solve for q in the congruence qn - b - a (mod m) . 
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Recall that we converted the first congruence x = a (mod m) to the equation 
x == a + qn .  Now that we have a value for q ,  we can substitute, and so this gives 
the simultaneous solutions to the two congruences in the form x == a + qn .  We 
can choose as a particular solution the smallest positive integer in this form. The 
general solution is obtained by adding multiples of mn . 

Example 1.3.5. 

To illustrate the second method of solution, again consider the system 

x = 7 (mod 8) x = 3 (mod 5) . 

The first congruence gives us the equation x == 7 + 8q , and then substituting we 
obtain 7 + 8q = 3 (mod 5) ,  or equivalently, 3q = -4 (mod 5) .  Multiplying 
by 2, since 2 · 3  = 1 (mod 5) ,  gives q = -8 (mod 5) or q = 2 (mod 5) . This 
yields the particular solution x == 7 + 2 . 8 == 23. 0 

EXERCISES: SECTION 1.3 

1 .  Solve the following congruences. 
t ea) 4x = 1 (mod 7) 
(b) 2x = 1 (mod 9) 

t (c) 5x = 1 (mod 32) 
(d) 1 9x = 1 (mod 36) 

2. Write n as a sum of four squares for 1 < n < 20. 

3. Solve the following congruences . 
t ea) l Ox = 5 (mod 2 1 )  
(b) lOx = 5 (mod 1 5) 

t (c) .l Ox = 4 (mod 1 5) 
(d) l Ox = 4 (mod 14) 

4. Solve the following congruence. 

5 .t Solve the following congruence. 

20x = 12 (mod 72) 

25x = 45 (mod 60) 

6. Find all integers x such that 3x + 7 is divisible by 1 1 . 
(New techniques are available for this problem, which was Exercise 22 in Section 1 . 1 ) 
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7. The smallest positive solution of the congruence ax = 0 (mod n) i s called the 
additive order of a modulo n . Find the additive orders of each of the following 
elements , by solving the appropriate congruences. 

t ea) 8 modulo 1 2  
(b) 7 modulo 1 2  

t (c) 2 1  modulo 28 
(d) 12 modulo 1 8  

8 .  Prove that if p is a prime number and a is any integer such that p A' a ,  then the 
additive order of a modulo p is equal to p. 

9. Prove that if n > 1 and a > 0 are integers and d = (a , n) , then the additive order of 
a modulo n is njd. 

10. Let a ,  b , n be positive integers . Prove that if a = b (mod n) , then (a , n) = (b , n) . 

1 1 . Show that 7 is a divisor of  (6 ! + 1 ) , 1 1  i s  a divisor of  ( 1 0! + 1 ) , and 1 9  is a divisor 
of ( 1 8 !  + 1 ) .  

1 2. Show that 4 . (n 2 + 1 )  i s  never divisible by 1 1 . 

1 3 .  Prove that the sum of the cubes of any three consecutive positive integers is divisible 
by 9 . (Compare Exercise 2 1  of Section 1 . 1 . ) 

14 .  Find the units digit of 329 + 1 1 1 2  + 15 .  
Hint: Choose an appropriate modulus n, and then reduce modulo n . 

1 5 .  Solve the following congruences by trial and error. 
t ea) x2 = 1 (mod 1 6) 
(b) x 3 = 1 (mod 1 6) 

t (c) x4 = 1 (mod 1 6) 
(d) x8 = 1 (mod 16) 

1 6 . Solve the following congruences by trial and error. 
(a) x 3 + 2x + 2 - 0 (mod 5) 
(b) x4 + x3 + x2 + x + 1 = 0 (mod 2) 
(c) x4 + x3 + 2x2 + 2x = 0 (mod 3) 

1 7 .  List and solve all quadratic congruences modulo 3. That is , list and solve all con
gruences of the form ax2 + bx + c = 0 (mod 3) . The only coefficients you need to 
consider are 0, 1 ,  2 .  

1 8 . Solve the following system of congruences . 

x = 1 5  (mod 27) x = 16 (mod 20) 
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1 9. t Solve the following system of congruences .  

x = 1 1  (mod 16) x = 1 8  (mod 25) 

20. Solve the following system of congruences . 

2x = 5 (mod 7) 3x = 4 (mod 8) 

Hint: First reduce to the usual form. 

2 1 . Solve the following system of congruences . 

x = a (mod n) x = b (mod n + 1 )  

22. Extend the techniques of the Chinese remainder theorem to solve the following system 
of congruences . 

2x = 3 (mod 7) x = 4 (mod 6) 5x = 50 (mod 55) 

23 . This exercise extends the Chinese remainder theorem. Let m ,  n be positive integers , 
with (m , n) == d and [m , n] == k . Prove that the system of congruences 

x = a (mod n) x = b (mod m) 

has a solution if and only if a = b (mod d) , and in this case any two solutions are 
congruent modulo k . 

24. (Casting out nines) Show that the remainder of  an integer n when divided by 9 is the 
same as the remainder of the sum of its digits when divided by 9 . 
Hint : For example, 7862 = 7 + 8 + 6 + 2 (mod 9) . How you can use the digits of 
7862 to express it in terms of powers of 10? 
Note : "Casting out nines" is a traditional method for checking a sum of a long column 
of large numbers by reducing each of the numbers modulo 9 and checking the sum 
modulo 9 . This exercise shows that the method is practical, because it provides a 
quick algorithm for reducing an integer modulo 9 .  

25 . Find a result similar to casting out nines for the integer 1 1 . 

26. Let p be a prime number and let a , b be any integers . Prove that 

(a + b)P = aP + bP (mod p) . 

27 . Prove that in any Pythagorean triple (a , b ,  c) , either a or b is divisible by 3 ,  and one 
of a, b, c is divisible by 5 .  

28 . Prove that there exist infinitely many prime numbers of the form 4m + 3 (where m 
is an integer) . 
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1 .4 Integers Modulo n 

In working with congruences, we have established that in computations involving 
addition, subtraction, and multiplication, we can consider congruent numbers to be 
interchangeable. In this section we will formalize this point of view. We will now 
consider entire congruence classes as individual entities , and we will work with 
these entities much as we do with ordinary numbers . The point of introducing the 
notation given below is to allow us to use our experience with ordinary numbers as 
a guide to working with congruence classes . Most of the laws of integer arithmetic 
hold for the arithmetic of congruence classes . The notable exception is that the 
product of two nonzero congruence classes may be zero . 

1.4.1 Definition. Let a and n > ° be integers. The set of all integers which have the 
same remainder as a when divided by n is called the congruence class of a modulo 
n, and is denoted by [a]n , where 

[a]n == {x E Z I x = a  (mod n) } . 

The collection of all congruence classes modulo n is called the set of integers 
modulo n, denoted by Zn . 

Note that [a]n == [b]n if and only if a = b (mod n ) . When the modulus is 
clearly understood from the context, the subscript n can be omitted and [a ]n can be 
written simply as [a ] . 

A given congruence class can be  denoted in many ways . For example, x = 
5 (mod 3) if and only if x = 8 (mod 3) , since 5 = 8 (mod 3) . This shows 
that [5] 3 == [8] 3 . We sometimes say that an element of [a]n is a representative 
of the congruence class. Each congruence class [a]n has a unique nonnegative 
representative that is smaller than n , namely, the remainder when a is divided by 
n . This shows that there are exactly n distinct congruence classes modulo n . For 
example, the congruence classes modulo 3 can be represented by 0, 1 ,  and 2. 

[0] 3 { . . .  , -9, -6, -3 , 0, 3 , 6 , 9 ,  . . .  } 
[ 1 ] 3 { . . . , -8 ,  -5 ,  -2, 1 , 4 , 7 , 1 0 , . . . } 
[2] 3 { . . .  , -7 , -4, - 1 , 2 , 5 , 8 , 1 1 , . . .  } 

Each integer belongs to exactly one congruence class modulo 3 ,  since the remainder 
on division by 3 is unique. In general , each integer belongs to a unique congruence 
class modulo n . Hence we have 

The set Z2 consists of [0]2 and [ 1 ]2 , where [0]2 is the set of even numbers and 
[ 1 ]2 is the set of odd numbers . With the new notation, the familiar rules 
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"even + even = even," "odd + even = odd," "odd + odd = even" 

can be expressed as 

Similarly, 

"even x even = even," 

can be expressed as 

"even x odd = even " "odd x odd = odd" , 

These rules can be summarized by giving an addition table and a multiplication 
table (Table 1 .4. 1 ) . 

Table 1 .4 . 1 :  Addition and Multiplication in Z2 

+ [0] [ 1 ]  
[0] [0] [ 1 ]  
[ 1 ]  [ 1 ]  [0] 

[0] [ 1 ]  
[0] [0] [0] 
[ 1 ]  [0] [ 1 ] 

To use the addition table, select an element a from the first column, and an 
element b from the top row. Read from left to right in the row to which a belongs , 
until reaching the column to which b belongs . The corresponding entry in the table 
is a + b. In this table, as we will sometimes do elsewhere, we have simplified our 
notation for congruence classes by omitting the subscript in [a]n . 

A similar addition and multiplication can be introduced in Zn , for any n .  Given 
congruence classes in Zn , we add (or multiply) them by picking representatives 
of each congruence class . We then add (or multiply) the representatives , and find 
the congruence class to which the result belongs. This can be written formally as 
follows .  

Addition: 

Multiplication : 

[a]n + [b]n � [a + b]n 
[a ]n . [b]n � [ab]n 

In Z12 , for example, we have [8] 1 2 � [20] 12 and [ 1 0] 12 � [34] 1 2 . Adding 
congruence classes gives the same answer, no matter which representatives we use: 
[8] 1 2 + [ 1 0] 12 � [ 1 8] 12 � [6] 1 2 and also [20] 1 2 + [34] 1 2 � [54] 1 2 � [6] 1 2 . 
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1 .4.2 Proposition. Let n be a positive integer, and let a ,  b be any integers. Then the 
addition and multiplication of congruence classes given below are well-defined: 

[a]n + [b]n == [a + b]n , [a]n . [b]n == [ab]n . 

Proof We must show that the given formulas do not depend on the integers a and 
b which have been chosen to represent the congruence classes with which we are 
concerned. Suppose that x and y are any other representatives of the congruence 
classes [a]n and [b]n , respectively. Then x = a (mod n) and y = b (mod n) , and 
so we can apply Proposition 1 . 3 . 3 .  It follows from that proposition that x + y = 
a + b (mod n) and xy = ab (mod n) , and thus we have [x ]n + [Y]n == [a + b]n 
and [x ]n . [Y]n == [ab]n . Since the formulas we have given do not depend on 
the particular representatives chosen, we say that addition and multiplication are 
"well-defined." D 

The familiar rules for addition and multiplication carry over from the addition 
and multiplication of integers . A complete discussion of these rules will be given 
in Chapter 5 ,  when we study ring theory. If [a]n , [b]n E Zn and [a]n + [b]n == [O]n , 
then [b]n is called an additive inverse of [a]n . By Proposition 1 . 3 . 3  (b) , additive 
inverses are unique. We will denote the additive inverse of [a]n by - [a]n . It is easy 
to see that - [a]n is in fact equal to [-a]n , since [a]n + [-a]n == [a - a]n == [O]n . 

For any elements [a]n , [b]n , [c]n in Zn , the following laws hold. 

Associativity : 

Commutativity : 

Distributivity : 

Identities : 

Additive inverses : 

( [a]n + [b]n ) + [c]n == [a]n + ([b]n + [c]n ) 

( [a]n . [b]n ) · [c]n == [a]n . ( [b]n . '[c]n ) 

[a]n + [b]n == [b]n + [a]n 
[a]n . [b]n == [b]n . [a]n 

[a]n . ( [b]n + [c]n ) == [a]n . [b]n + [a]n . [c]n 
[a]n + [O]n == [a]n 
[a]n . [ 1 ]n == [a]n 

[a]n + [-a]n == [O]n 

We will give a proof of the distributive law and leave the proofs of the remaining 
properties as an exercise. If a ,  b, c E Z, then 

[a]n . ( [b]n + [c]n ) [a]n · ( [b + c]n ) == [a (b + c) ]n 
[ab + aC]n == [ab]n + [ac]n 
[a]n . [b]n + [a]n . [c]n . 
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The steps in the proof depend on the definitions of addition and multiplication and 
the equality a (b + c) == ab + ac, which is the distributive law for Z. 

In doing computations in Z/1 ' the one point at which particular care must be taken 
is the cancellation law, which no longer holds in general . Otherwise, in almost all 
cases your experience with integer arithmetic can be trusted when working with 
congruence classes . A quick computation shows that [6] 8 . [5] 8 == [6] 8 . [ 1 ] 8 , but 
[5] 8 i= [ 1 ] 8 · It can also happen that the product of nonzero classes is equal to zero . 
For example, [6] 8 . [4] 8 == [0] 8 . 

1 .4.3 Definition. If [a] /1 belongs to Z/1 ' and [a] /1 [b]/1 == [0] /1 for some nonzero 
congruence class [b ] /1 , then [a] /1 is called a divisor of zero. 

If [a]n is not a divisor of zero, then in the equation [a]n [b]n == [a ]n [c]n we 
may cancel [a]n , to get [b]n == [c]n . To see this ,  if [a]n [b]n == [a]n [c]n , then 
[a]n ( [b]n - [c]n ) == [a]n [b - c]n == [O]n , and so [b]n - [c]n must be zero since [a]n 
is not a divisor of zero . This shows that [b]n == [c]n . 

1.4.4 Definition. If [a]n belongs to Zn, and [a]n [b]n == [ 1 ]n , for some congruence 
class [b ]n , then [b]n is called a multiplicative inverse of [a]n and is denoted by 
[a]� I . 

In this case, we say that [a]n is an invertible element ofZn, or a unit ofZn . 

The next proposition (which is just a restatement of Proposition 1 . 3 .4) shows 
that a has a multiplicative inverse modulo n if and only if (a , n) == 1 .  When a 
satisfies this condition, it follows from Proposition 1 . 3 . 3  (b) that any two solutions 
to ax = 1 (mod n) are congruent modulo n , and so we are justified in referring to 
the multiplicative inverse of [a]n , whenever it exists . 

In Z7 , each nonzero congruence class contains representatives which are rela
tively prime to 7, and so each nonzero congruence class has a multiplicative inverse. 
We can list them as [ l l] 1 == [ 1 ] 7 , [2];- 1 == [4]7 , [3];- 1 == [5]7 , and [6];- 1 == [6]7 . 
We did not need to list [4];- 1 and [5];- 1 since, in general , if [a]� 1 == [b]n , then 
[b ]� 1 == [a]n . 

From this point on, if the meaning is clear from the context we will omit the 
subscript on congruence classes . Using this convention in Zn , we note that if [a] 
has a multiplicative inverse, then it cannot be a divisor of zero, since [a] [b] == [0] 
implies [b] == [a]- I ( [a ] [b] ) == [a ]- I [O] == [0] . 

1 .4.5 Proposition. Let n be a positive integer. 
(a) The congruence class [a ]n has a multiplicative inverse in Zn if and only if 

(a , n) == 1 .  
(b) A nonzero element ofZn either has a multiplicative inverse or is a divisor of 

zero. 
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Proof (a) If [a] has a mUltiplicative inverse, say [a] - 1 == [b] , then [a ] [b] == [ 1 ] .  
Therefore ab - 1 (mod n ) ,  which implies that ab == 1 + qn for some integer q . 
Thus ab + (-q)n == 1 ,  and so (a , n ) == 1 .  

Conversely, if (a , n ) == 1 ,  then there exist integers b and q such that ab+qn == 1 .  
Reducing modulo n shows that ab = 1 (mod n) , and so [b] == [a] - I . 

(b) Assume that a represents a nonzero congruence class, so that n J a . If 
(a , n) == 1 ,  then [a] has a multiplicative inverse. If not, then (a , n) == d, where 
1 < d < n . In this case, since d i n  and d I a , we can find integers k , b with n == kd 
and a == bd . Then [k] is a nonzero element of Zn , but 

[a] [k] == [ak] == [bdk] == [bn] == [0] , 
which shows that [a] is a divisor of zero. 0 

1.4.6 Corollary. The following conditions on the modulus n > 0 are equivalent. 
(1) The number n is prime. 
(2) Zn has no divisors of zero, except [O]n . 
(3) Every nonzero element of Zn has a multiplicative inverse. 

Proof Since n is prime if and only if every positive integer less than n is relatively 
prime to n , Corollary 1 .4 .6 follows from Proposition 1 .4 .5 .  0 

The proof of Proposition 1 .4.5 (a) shows that if (a , n) == 1 ,  then the multiplicative 
inverse of [a] can be computed by using the Euclidean algorithm. 

Example 1.4.1.  

For example, to find [ 1 1 ]- 1 in Z16 using the matrix form of the Euclidean 
algorithm (see the discussion preceding Example 1 . 1 .5) we have the following 
computation : [ 1 0 16 ] [ 1 - 1 

o 1 1 1  � 0 1 [ 1 - 1  5 ] [ 1 1  - 1 6 0 ] 
-2 3 1 � -2 3 1 . 

Thus 16 ( -2) + 1 1  · 3 == 1 ,  which shows that [ 1 1 ] 161 == [3] 1 6 . 
When the numbers are small, as in this case, it is often easier to use trial 
and error. The positive integers less than 1 6  and relatively prime to 16  are 
1 , 3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5 .  It is easier to use the representatives ± 1 ,  ±3 , ±5 , ±7 
since if [a] [b] == [ 1 ] ,  then [-a] [ -b] == [ 1 ] ,  and so [-a]- 1 == - [a] - I . Now 
we observe that 3 · 5 == 1 5  = - 1  (mod 16) ,  so 3 (-5) = 1 (mod 16) .  Thus 
[3] 161 == [-5] 1 6 == [ 1 1 ] 1 6 and [-3] 161 == [5] 1 6 . Finally, 7 · 7  = 1 (mod 16) ,  
so [7]161 == [7] 1 6 and [-7]161 == [-7] 1 6 == [9] 1 6 . 0 
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Another way to find the inverse of an element [a] E Zn is to take successive 
powers of [a] . If (a , n) == 1 ,  then [a] is not a zero divisor, and so no power of 
[a] can be zero. We let [a ]o == [ 1 ] .  The set of powers [ 1 ] ,  [a] ,  [a ]2 , [a]3 , . . .  must 
contain fewer than n distinct elements , so after some point there must be a repetition. 
Suppose that the first repetition occurs for the exponent m, say [a]m == [a ]k , with 
k < m . Then [a]m-k == [a]o == [ 1 ]  since we can cancel [a] from both sides a total of 
k times . This shows that for the first repetition we must have had k == 0, so actually 
[a]m == [ 1 ] . From this we can see that [a ] - 1 == [a]m- l . 

Example 1.4.2. 

To find [ 1 1 ] 161 , we can list the powers of [ 1 1 ] 1 6 . We have [ 1 1 ]2 == [-5]2 == [9] , 
[ 1 1 ]3 == [ 1 1 ]2 [ 1 1 ]  == [99] == [3] , and [ 1 1 ]4 == [ 1 1 ]3 [ 1 1 ] == [33] == [ 1 ] .  Thus 
again we see that [ 1 1 ] 161 == [3] 1 6 . 0 

We are now ready to continue our study of equations in Zn . A linear congruence 
of the form ax - b (mod n) can be viewed as a linear equation [a]n [x ]n == [b]n 
in Zn . If [a]n has a mUltiplicative inverse, then there is a unique congruence class 
[x ]n == [a ]; 1 [b]n that is the solution to the equation. Without the notation for 
congruence classes we would need to modify the statement regarding uniqueness to 
say that if Xo is a solution of ax - b (mod n) , then so is Xo + qn , for any integer q .  

It is considerably harder to solve nonlinear congruences of the form akxk + 
. . .  + a lX + ao = 0 (mod n) , where ak , . . .  , ao E Z.  It can be shown that in 
solving congruences modulo n of degree greater than or equal to 1 ,  the problem 
reduces to solving congruences modulo pcx for the prime factors of n . This question 
is usually addressed in a course on elementary number theory, where the Chinese 
remainder theorem is used to show how to determine the solutions modulo a prime 
power pcx (for integers ex > 2) from the solutions modulo p .  Then to determine the 
solutions modulo p we can proceed by trial and error, simply substituting each of 
0, 1 ,  . . .. , p - 1 into the congruence. Fermat's theorem (Corollary 1 .4. 1 2) can be 
used to reduce the problem to considering polynomials of degree at most p - 1 .  

We will prove this theorem of Fermat as a special case of a more general theorem 
due to Euler. Another proof will also be given in Section 3 .2, which takes advantage 
of the concepts we will have developed by then. The statement of Euler's theorem 
involves a function of paramount importance in number theory and algebra, which 
we now introduce. 

1.4.7 Definition. Let n be a positive integer. The number of positive integers less 
than or equal to n which are relatively prime to n will be denoted by cp (n) . This 
function is called Euler's cp-junction, or the totientfunction . 
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In Section 1 .2 we gave a procedure for listing the positive integers less than n 
and relatively prime to n . However, in many cases we only need to determine the 
numerical value of cp (n) , without actually listing the numbers themselves . With the 
formula in Proposition 1 .4. 8 ,  cp (n) can be given in terms of the prime factorization 
of n . Note that cp ( l )  == 1 .  

1.4.8 Proposition. If the prime factorization of n is n == p�l p�2 . . .  p�k , where 
(Xi > 0 for 1 < i < k, then 

Proof See Exercises 17 , 29, and 30. A proof of this result will also be presented 
in Section 3 .5 .  0 

Example 1.4.3. 

U sing the formula in Proposition 1 .4 .8 ,  we have 

� ( 1 O) = 10  (�) (�) = 4 and � (36) = 36 (�) (�) = 1 2 . 0 

1.4.9 Definition. The set of units ofZn, the congruence classes [a] such that (a , n) == 
1 ,  will be denoted by Z: . 

1.4.10 Proposition. The set z: of units of Zn is closed under multiplication. 
Proof This can be shown either by using Proposition 1 .2 .3 (d) or by using the 
formula ( [a ] [b] ) - l == [b] - l [a ] - l . 0 

The number of elements of Z: is given by cp (n ) . The next theorem should be 
viewed as a result on powers of elements in Z: ' although it is phrased in the more 
familiar congruence notation. 

1.4. 11  Theorem (Euler). If (a , n) == 1, then a<p(n) = 1 (mod n) . 

Proof In the set Zn , there are cp (n) congruence classes which are represented 
by an integer relatively prime to n . Let these representatives be {a I , . . .  , a<p(n) } .  
For the given integer a , consider the congruence classes represented by the products 
{aa l ' . . .  , aa<p(n) } .  By Proposition 1 . 3 . 3  (b) these are all distinct because (a , n) == 1 .  
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Since each of the products is still relatively prime to n , we must have a representative 
from each of the cp (n) congruence classes we started with. Therefore 

al a2 . . .  a<p(n) - (aal ) (aa2) . . .  (aa<p(n) ) = a<P(n)a l a2 . . .  a<p(n) (mod n) . 

Since the product al . . .  a<p(n) is relatively prime to n , we can cancel it in the con
gruence 

a l a2 . . . a<p(n) = a<P(n) a l a2 . . .  a<p(n) (mod n) , 
and so we have a<p(n) = 1 (mod n) . 0 

1.4.12 Corollary (Fermat). If p is a prime number, then for any integer a we have 
aP - a (mod p) . 

Proof If p I a, then trivially aP - a = 0 (mod p) . If p J a , then (a , p) == 1 and 
Euler's theorem gives a<p(p) - 1 (mod p) . Then since cp (p) == p - 1 ,  we have 
aP - a (mod p) . 0 

It is instructive to include another proof of Fermat's "little" theorem, one that 
does not depend on Euler's theorem. Expanding (a + b)P we obtain 

(a + b) P = aP + pap- 1 b + 
p ep - 1 ) ap-2b2 + . . .  + pabP- 1 + bP . 1 · 2  

For k � 0, k � p, each of the coefficients 

p !  
k ! (p - k) ! 

is an integer and has p as a factor, since p is a divisor of the numerator but not the 
denominator. Therefore 

(a + b)P = aP + bP (mod p) . 

Using induction, this can be extended to more terms, giving (a + b + c) P - aP + 
bP + cP (mod p) , etc . Writing a as ( 1  + 1 + . . .  + 1 ) shows that 

aP == ( 1  + 1 + . . .  + I ) P - IP + . . .  + I P = a (mod p) . 

As a final remark we note that if (a , n) == 1 ,  then the multiplicative inverse of 
[a]n can be given explicitly as [a]h (n)- l , since by Euler's theorem, a . a<p(n)- l -
1 (mod n) . Note also that for a given n the exponent cp (n) in Euler 's theorem may 
not be the smallest exponent possible. For example, in Zg the integers ± 1 ,  ±3 ,  are 
relatively prime to 8 ,  and Euler's theorem states that a4 = 1 (mod 8) for each of 
these integers . In fact, a2 = 1 (mod 8) for a == ± 1 ,  ±3 . 
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EXERCISES: SECTION 1.4 

1 .  Make addition and mUltiplication tables for the following sets . 
(a) Z3 
(b) Z4 

t (c) Z12 
2. Make multiplication tables for the following sets . 

(a) Z6 
(b) Z7 
(c) Zs 

3. Find the multiplicative inverses of the given elements (if possible) . 
t (a) [ 1 4] in Z 15 
(b) [38] in ZS3 

t (c) [35 1 ]  in Z6669 
(d) [9 1 ]  in Z2565 

4. Let a and b be integers . 
(a) Prove that [a ]n = [b]n if and only if a = b (mod n) . 
(b) Prove that either [a ]n n [b]n = 0 or [a ]n = [b]n . 
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5. Prove that each congruence class [a ]n in Zn has a unique representative r that satisfies 
0 :::: r < n . 

6 .  Let m and n be positive integers such that m i n . Show that for any integer a , the 
congruence class [a ]m is the union of the congruence classes [a ]n , [a+m]n , [a+2m]n , 
. . .  , [a + n - m]n . 

7. Prove that the associative and commutative laws hold for addition and multiplication 
of congruence classes, as defined in Proposition 1 .4 .2 . 

8 . Use Proposition 1 . 3 . 3 (b) to show that if [b] and [c] are both multiplicative inverses 
of [a] in Zn , then b = c (mod n) . 

9 . Let (a , n) = 1 .  The smallest positive integer k such that ak = 1 (mod n) is called 
the multiplicative order of [a ] in Z� . 

t ea) Find the multiplicative orders of [5] and [7] in Z�6 . 
(b) Find the multiplicative orders of [2] and [5 ] in Zr7 . 

10 . Let (a , n) = 1 .  If [a ] has multiplicative order k in Z� , show that k I (p (n) .  
1 1 . t In Z� each element is equal to a power of [2] . (VeTify this .) Can you find a congruence 

class in Z� such that each element of Z� is equal to some power of that class ? Answer 
the same question for Z; . 
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1 2. Generalizing Exercise 1 1 , we say that the set of units Z: of Zn is cyclic if it has an 
element of multiplicative order cp (n ) .  Show that Zro and Zrl are cyclic, but Zr2 i s 
not. 

1 3 . An element [a ] of Zn is said to be idempotent if [a ]2 == [a ] .  
t ea) Find all idempotent elements of Z6 and Z1 2 . 
(b) Find all idempotent elements of ZIO and Z30 . 

14. If p is a prime number, show that [0] and [ 1 ]  are the only idempotent elements in Zp , 
1 5 .  If n is not a prime power, show that Zn has an idempotent element different from [0] 

and [ 1 ] .  
Hint : Suppose that n == be, with (b , e) == 1 .  Solve the simultaneous congruences 
x - 1 (mod b) and x = 0 (mod e) . 

16 . An element [a ] of Zn is said to be nilpotent if [a]k == [0] for some k. Show that 
Zn has no nonzero nilpotent elements if and only if n has no factor that is a square 
(except 1 ) . 

17 .  Using the formula for cp (n ) ,  compute cp (27) ,  cp (8 1 ) ,  and cp (pa ) ,  where p is a prime 
number. Give a proof that the formula for cp (n ) is valid when n == pa , where p is a 
prime number. 

1 8 . Show that if a and b are positive integers such that a I b, then cp (a) I cp (b) . 

1 9 . Find all integers n > 1 such that cp (n) == 2. 

20. Show that cp ( 1 )  + cp (p) + . . .  + cp (pa ) == pa for any prime number p and any positive 
integer a .  

21 .  Show that if n > 2 ,  then cp (n) i s  even . 

22. For n == 1 2  show that Ldln cp (d) == n .  Do the same for n == 1 8 . 

23 . Show that if n > 1 ,  then the sum of all positive integers less than n and relatively 
prime to n is ncp(n)j2. That is, LO<a <n , (a ,n)= 1 a == ncp(n)j2. 

24. Show that if p is a prime number, then the congruence x2 = 1 (mod p) has only the 
solutions x = 1 and x = - 1 .  

25 . Let a ,  b be integers , and let p be a prime number of the form p == 2k + 1 .  Show that 
if p A' a and a = b2 (mod p) , then ak = 1 (mod p) .  

26. Let p == 2k + 1 be a prime number. Show that if a is an integer such that p A' a ,  then 
either ak = 1 (mod p) or ak = - 1  (mod p) . 

27 . Prove Wilson 's theorem, which states that if p is a prime number, then (p - I ) !  -

- 1  (mod p) .  
Hint : (p - I ) !  is the product of all elements of Z; .  Pair each element with its inverse, 
and use Exercise 24. For three special cases see Exercise 1 1  in Section 1 .3 .  
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28. Prove that if (m , n) == 1 ,  then n({J(m) + m({J(n) = 1 (mod mn) . 
29 . Prove that if m , n are positive integers with (m , n) == 1 ,  then cp (mn) == cp (m)cp (n) . 

Hint : Use the Chinese remainder theorem to show that each pair of elements [a ]m 
and [b]n (in Zm and Zn respectively) corresponds to a unique element [x ]mn in Zmn . 
Then show that under this correspondence, [a] and [b] are units if and only if [x ] is 
a unit. 

30. Use Exercise 17 and Exercise 29 to prove Proposition 1 .4. 8 .  

Notes 

The prime numbers are the basic the basic building blocks in number theory, since 
every positive integer can be written (essentially uniquely) as a product of prime 
numbers . (If you are reading this before studying the chapter, perhaps we need to 
remind you that an integer p > 1 is called prime if its only positive divisors are 1 
and p . )  Euclid considered primes and proved that there are infinitely many. When 
we look at the sequence of primes 

2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 23 , 29 , 3 1 ,  

we observe that except for 2, all primes are odd. Any two odd primes on the list 
must differ by at least 2, but certain pairs of "twin primes" that differ by the minimal 
amount 2 do appear, for example, 

(3 , 5) , (5 , 7) ,  ( 1 1 , 1 3) ,  ( 1 7 , 1 9) ,  (29 , 3 1 ) ,  (4 1 , 43) , . . . .  

Are there infinitely many "twin prime" pairs? The answer to this innocent question 
is unknown . 

Although any positive integer is a product of primes ,  what about sums? Another 
open question is attributed to Christian Goldbach ( 1 690-1764) . He asked whether 
every even integer greater than 2 can be written as the sum of two primes .  (Since 
the sum of two odd primes is even, the only way to write an odd integer as a sum of 
two primes is to use an odd prime added to 2. That means that the only odd primes 
that can be represented as a sum of two primes are the ones that occur as the larger 
prime in a pair of "twin primes .") We invite you to experiment in writing some even 
integers as sums of two primes. 

A beautiful theorem proved by Joseph Louis Lagrange ( 1 736-1 8 1 3 ) in 1770 
states that every positive integer can be written as the sum of four squares (where 
an integer of the form n2 is called a square) . Could we get by with fewer than 
four squares? The answer is no; try representing 7 as a sum of three squares . This 
naturally leads to the question of which positive integers can be written as the sum 
of three squares . The answer is that n can be written as a sum of three squares if and 
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only if n is not of the form 4m (8k + 7) , where m , k are any nonnegative integers . 
This theorem was first correctly proved by Gauss and appears in his famous book 
Disquisitiones Arithmeticae ( 1 80 1 ) . 

This raises the question of which positive integers can be written as the sum 
of two squares . The answer in this case is slightly more complicated. It is that 
n can be written as the sum of two squares if and only if when we factor n as a 
product of primes, all those primes that give a remainder of 3 upon division by 4 
have even exponents . The first published proof of this fact (dating from 1 749) is 
due to Leonhard Euler ( 1 707-1 783) . Around 1 640 Pierre de Fermat ( 1 60 1-1 665) 
had stated, without proof, all three of these theorems on the representation of n as 
a sum of squares . 

Our fourth and final topic deals with another statement of Fermat, usually known 
as "Fermat's last theorem." The ancient Greeks (the Pythagoreans, in particular) 
knew that certain triples (x , y ,  z )  of nonzero integers can satisfy the equation 

for example, 

(3 , 4, 5) , (5 , 1 2 , 1 3) ,  (8 , 1 5 , 17) ,  (7 , 24, 25) ,  . . . . 

(See Exercise 25 of Section 1 .2 . ) Fermat considered a generalization of this equation, 
and asked whether for any integer n > 2 there exists a triple (x , y ,  z) such that 

In the margin of his copy of a number theory text he stated that he had a wonderful 
proof that there exists no such triple for n > 3 , but he went on to say that the 
margin was not wide enough to write it out. His assertion dates from 1 637, and 
mathematicians have spent the last 350 years searching for a proof! Finally, in 
1 993 , Andrew Wiles announced that he had completed the proof of "Fermat's last 
theorem." A gap was found in his initial proof, but within a year, Wiles , with the 
assistance of Richard Taylor, found a way to complete the proof. A long paper by 
Wiles , together with a shorter one by Taylor and Wiles , fill the May, 1 995 issue of the 
Annals of Mathematics. This proof will stand as one of the major accomplishments 
of our time. 

Fermat is clearly the first truly modern number theorist, and he deserves much 
of the credit for the subject as we know it today. Another important milestone 
in modern number theory is Gauss 's Disquisitiones Arithmeticae, which changed 
number theory from a "hodge-podge" of results into a coherent subject. The material 
on congruences in Section 1 . 3 first appeared there, and contributed much to the 
systematic organization of number theory. 



Chapter 2 

FUNCTIONS 

In studying mathematical objects, we need to develop ways of classifying them, and 
to do this , we must have various methods for comparing them. Since we will be 
studying algebraic objects which usually consist of a set together with additional 
structure, functions provide the most important means of comparison. In this chapter 
we will study functions in preparation for their later use, when we will utilize 
functions that preserve the relevant algebraic structure. Recall that in linear algebra 
the appropriate functions to work with are those that preserve scalar mUltiplication 
and vector addition, namely, linear transformations .  

To give an example of such a comparison, we point out that the mUltiplicative 
structure of the set of all positive real numbers is algebraically similar to the additive 
structure of the set of all real numbers . The justification for this statement lies 
in the existence of the log and exponential functions, which provide one-to-one 
correspondences between the two sets and convert multiplication to addition (and 
back again) . 

When we need to show that two structures are essentially the same, we wi ll need 
to use one-to-one correspondences . As a second example, consider the set 

using addition of congruence classes, and the set 

Z; == { [ 1 ] 5 , [2]5 , [3]5 , [4] 5 } 

using multiplication of congruence classes .  Although we are using addition in 
one case and multiplication in the other, there are clear similarities . In Z4 each 
congruence class can be written as a sum of [ 1 ]4 ' s ;  in Z; each congruence class can 
be written as a product of [2] 5 ' S o  We will see in Chapter 3 that this makes the two 
algebraic structures essentially the same. 

To make the idea of similarity precise, we will work with one-to-one correspon
dences between the relevant structures . We will restrict ourselves to one-to-one 
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correspondences that preserve the algebraic aspects of the structures .  In the above 
example, if [ 1 ]4 corresponds to [2] 5 and sums correspond to products , then we must 
have [ 1 ]4 B [2]5 , [2]4 B [4]5 , [3]4 B [3] 5 and [0]4 B [ 1 ] 5 . 

We can also obtain useful information from functions that are not necessarily 
one-to-one correspondences. In the introduction to Chapter 1 we discussed the 

problem of investigating the powers of the matrix A = [ _ � � J . It is useful 

to consider the exponential function f (n) == An that assigns to each integer n the 
corresponding power of the matrix A . The rules for exponents of matrices invol ve the 
relationship between addition of integers and taking powers of the matrix and show 
that the function respects the inherent algebraic structure. If we collect together the 
exponents that yield equal powers of A , we obtain the congruence classes of integers 
modulo 4. In fact, this function determines a natural one-to-one correspondence 
between Z4 and the powers of A . 

In working with particular mathematical objects it is often useful to consider 
distinct objects to be essentially the same, just for the immediate purpose. In the 
previous example, we can consider two exponents to be the same if the corresponding 
powers of A are equal . In studying the Euclidean plane it is useful to consider all 
triangles that are congruent to each other to be "essentially the same." In Chapter 1 
we studied the notion of congruence modulo n ,  where we did not differentiate 
between integers that had the same remainder- on division by n .  That led us to 
construct sets Zn from the set of integers Z. 

This idea of collecting together similar objects leads to the important notion of a 
partition, or what amounts to the same thing-an equivalence relation. We partition 
a set into subsets consisting of those objects that we do not wish to distinguish from 
each other, and then we say that two objects belonging to the same subset of the 
partition are equivalent. Thus equivalence relations enable us to study objects by 
making distinctions between them that are no finer than those needed for the purpose 
at hand. Of course, for some other purpose we might need to preserve some other 
distinction that is lost in the equivalence relation we are using . In that case we would 
resort to a different equivalence relation, in which the subsets in the partition were 
smaller. 

The notion of a one-to-one correspondence, when expressed in the concept of 
a permutation, can be used to describe symmetry of geometric objects and also 
symmetry in other situations . For example, the symmetry inherent in a square or 
equilateral triangle can be expressed in terms of various permutations of its vertices . 
Our study of permutations in this chapter will provide the motivation for a number 
of important concepts in later chapters . 

We should emphasize that in this chapter we are developing important parts 
of our mathematical language which will be used throughout the remainder of the 
book. The reader needs to be thoroughly familiar with these ideas . 
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2.1 Functions 

The concept of a function should already be familiar from the calculus and linear 
algebra courses which we assume as a prerequisite for this book. At that level, it 
is standard to define a function f from a set S of real numbers into a set T of real 
numbers to be a "rule" that assigns to each real number x in S a unique real number 
y in T .  An example would be the function f (x) given by the rule f (x ) == x2 + 3 ,  
where f assigns to I the value 4 ,  to 2 the value 7 , and so on. 

The graph of the function f (x) == x2 + 3 is the set of points in the real plane 
described by { (x , y)  I y == x2 + 3 } .  Using the "rule" definition of a function recalled 
in the previous paragraph, a set of points in the plane is the graph of a function from 
the set of all real numbers into the set of all real numbers if and only if for each 
real number x there is a unique number y such that (x , y) belongs to the set. In a 
calculus course this is often expressed by saying that a set of points in the plane is 
the graph of a function if and only if every vertical line intersects the set in exactly 
one point. 

In our development, we have chosen to take the concepts of set and element of 
a set as primitive (undefined) ideas . See Section A. I of the appendix for a quick 
review of some basic set theory. The approach we will take is to define functions in 
terms of sets , and so we will do this by identifying a function with its graph. 

It is convenient to introduce some notation for the sets we will be using. The 
symbol R will be used to denote the set of all real numbers . We will leave the precise 
development of the real numbers to a course in advanced calculus and simply view 
them as the set of all decimal numbers . They can be viewed as coordinates of points 
on a straight line, as in an introductory calculus course. 

We will use the symbol Q to denote the set of ratios of integers , or rational 
numbers; that is 

Q = { : 1 m ,  n E Z and n � 0 } 
where we must agree that min and plq represent the same ratio if mq == np . Of 
course, we can view the set of integers Z as a subset of Q by identifying the integer 
m with the fraction mi l .  The rational numbers can be viewed as a subset of R, 
since fractions correspond to either terminating or repeating decimals . 

The set C == {a + bi  I a ,  b E R and i 2 == - I }  is called the set of complex 
numbers. Addition and multiplication of complex numbers are defined as follows :  

(a  + bi ) + (e  + di ) == (a  + e)  + (b  + d) i , 

(a + bi ) (e + di ) == (ae - bd) + (ad + be) i . 

Note that a + bi  == e + di if and only if a == e and b == d. See Section A.5 of 
the appendix for more details on the properties of complex numbers, which will be 
developed from a more rigorous point of view in Section 4.3 .  

We now return to the definition of a function . To describe the graph of a function, 
we need to consider ordered pairs . Let A and B be any sets . The Cartesian product 
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of A and B is formed from ordered pairs of elements of A and B . Formally, we 
define the Cartesian product of A and B as 

A x B == { (a , b) l a E A  and b E B } .  

In this set, ordered pairs (a I , b l ) and (a2 , b2) are equal if and only if al == a2 and 
bl == b2 . For example, if A == { I , 2, 3 } and B == {4, 5 , 6 } , then 

A x B == { ( I , 4) , ( 1 , 5) , ( 1 , 6) , (2, 4) , (2 , 5 ) , (2 , 6) , (3 , 4) , (3 , 5) , (3 , 6) } . 

Since the use of ordered pairs of elements should be familiar from calculus and 
linear algebra courses, we will not go into further detail on Cartesian products at 
this point. (If there is any possibility of confusing the greatest common divisor of 
the integers m and n with an ordered pair, we will write gcd (m , n) for the greatest 
common divisor.) 

2.1.1 Definition. Let S and T be sets. A function from S into T is a subset F of 
S x T such that for each element X E S  there is exactly one element y E T  such 
that (x , y) E F. 

The set S is called the domain of the function, and the set T is called the 
codomain of the function. The subset 

{y E T I (x , y) E F for some X E S } 

of the codomain is called the image of the function. 

Many authors prefer to use the word range for what we have called the codomain 
of a function. The word range is also sometimes used for what we call the image of 
the function. For this reason, we will try to avoid using the word range . 

Example 2.1 .1 .  

Let S == { I ,  2 ,  3 }  and T == {4 , 5 ,  6} . The subsets FI == { ( I ,  4) , (2, 5) , (3 , 6) } 
and F2 == { ( I ,  4) , (2, 4) , (3 , 4) } of S x T both define functions since in both 
cases each element of S occurs exactly once among the ordered pairs . For 
each of FI and F2 the domain is S and the codomain is T . The image of FI 
is the set {4, 5 ,  6} == T , while the image of F2 is the proper subset {4} C T . 
As above, let S == { I ,  2 ,  3 }  and T == {4, 5 ,  6} . The subset F3 == { ( I ,  4) , (3 , 6) } 
of S x T does not define a function with domain S because the element 2 E S 
does not appear as the first component of any ordered pair. Note that F3 is a 
function if the domain is changed to the set { I ,  3 } .  Unlike the conventions used 
in calculus , the domain and codomain must be specified as well as the "rule 
of correspondence" (list of pairs) when you are presenting a function. The 
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subset F4 == { (  1 ,  4) , (2, 4) , (2, 5) , (3 , 6) } of S x T does not define a function 
since 2 appears as the first component of two ordered pairs . When a candidate 
such as F4 fails to be a function in this way, we say that the collection of 
ordered pairs does not make a "well-defined" assignment to each element of 
the domain S. D 

5 1  

If F c S x T defines a function, then we will simply write y == I (x) whenever 
(x , y) E F .  Thus I determines a "rule" that assigns to X E S  the unique element 
y E T , and we will call F the graph of I. We will also use the familiar notation 
I : S ---+ T . We continue to emphasize the importance of the domain and codomain. 
In particular, we even distinguish between the functions I : S ---+ T and g : S ---+ T' 
where T C T' and { (x ,  I(x)) I X E S} == { (x ,  g(x)) I X E S} . 

When using the notation I : S ---+ T for a function, the image of I is usually 
written I (S) . More generally, if A c S, then 

I (A) == {y E T I y == I(a) for some a E A } 
is called the image of A under I. 

We think i t  will be useful to rewrite Example 2. 1 . 1  using the "rule" definition 
of a function. 

Example 2.1 .1 .  (continued) 

Recall that S == { I ,  2 ,  3 }  and T == {4, 5 ,  6} . Instead of defining the functions 
FI and F2 as subsets of S x T , we can use the more familiar notation to their 
definitions as follows . We define the function 11 : S � T by using the rule 
11 ( 1 )  == 4, 11 (2) == 5, and 11 (3) == 6, and we define the function 12 : S � T 
by using the rule 12 ( 1 )  == 4, 12 (2) == 4, and 12 (3) == 4. The images of these 
functions are II (S) == {4, 5 ,  6} == T , and 12 (S) == {4} , and their graphs are 
the subsets FI and F2 (defined previously) . 
The formula 13 ( 1 )  == 4 and 13 (3) == 6 does not define a function with domain 
S because the rule does not assign any element of T to the element 2 E S .  
The formula 14 ( 1 )  == 4,  14 (2) == 4, 14 (2) == 5 ,  and 14 (3) == 6 does not define 
a function since the element 2 E S has two elements of T assigned to it, and 
thus 14 (2) is not uniquely defined. D 

Example 2.1.2 (Inclusion function). 

If A is a subset of the set T , we define the inclusion function L : A � T by 
setting L (x) == x, for all x E A . The graph of L is 

I == { (x ,  x) E A x T I x E A} , 

and it is easily shown that I defines a function from A to T .  The image of L 
is just L (A) == A .  D 
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Although the definition we have given provides a rigorous definition of a func
tion, in the language of set theory, the more familiar definition and notation are 
usually easier to work with. But it is important to understand the precise definition. 
If you feel unsure of a concept involving functions , it is worth your time to try to 
rephrase it in terms of the formal definition using graphs .  Becoming comfortable 
with both the formal and informal definitions will give you two ways to think about 
a function, so that you can use whichever one is appropriate . 

For example, if we attempt to use the square root to define a function I : R -* R, 
we immediately run into a problem: the square root of a negative number cannot 
exist in the set of real numbers . There are two natural ways in which this can be 
remedied. We can restrict the domain to the set R+ of all positive real numbers, 
in which case the formula I (x)  == ,JX yields a function I : R+ -* R. On the 
other hand, we can enlarge the codomain to the set C of all complex numbers, in 
which case the formula I (x) == ,JX yields a function I : R -* C.  Note that we 
are following the convention that if x is a nonnegative real number, then ,JX is the 
nonnegative real number whose square is x ,  and if x is a negative real number, then 
,JX is ivTx/. 

With the familiar notation, a function I : S -* T must be determined by a rule 
or formula that assigns to each element X E S  a unique element I (x) E T . It is 
often the case that the uniqueness of I (x) is in question. When checking that for 
each X E S the corresponding element I (x) E T is uniquely determined, we will 
say that we are checking that the function I is well-defined. Problems arise when 
the element x can be described in more than one way, and the rule or formula for 
I (x) depends on how x is written. 

Example 2.1.3. 

Consider the formula f(m/n) == m, which might be thought to define a 
function f : Q � Z. The difficulty is that a fraction has many equivalent 
representations , and the formula depends on one particular choice. For ex
ample, f ( I /2) == 1 ,  according to the formula, while f(3/6) == 3 . Since we 
know that 1 /2 == 3/6 in the set of rational numbers , we are forced to conclude 
that the formula does not define a function from the set of rational numbers 
into the set of integers since it is not well-defined. 

On the other hand, the formula f(m/n) == 2m/3n does define a function 
f : Q � Q. To show that f is well-defined, suppose that m / n == p / q . Then 
mq == np , and so multiplying both sides by 6 gives 2m · 3q == 3n . 2p, which 
implies that 2m/3n == 2p/3q , and thus f(m/n) == f(p/q ) .  D 
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Example 2.1.4. 

In defining functions on Zn it is necessary to be very careful that the given 
formula is independent of the numbers chosen to represent each congruence 
class .  
On the one hand, the formula 1 ([X ]4) == [X ]6 does not define a function from 
Z4 into Z6 . To see this, we only need to note that although [0]4 == [4]4 , the 
formula specifies that 1 ( [0]4) == [0]6 , whereas 1( [4]4 ) == [4]6 , giving two 
different values in Z6 , since [0]6 i= [4]6 · 
On the other hand, the formula 1 ( [x ]4) == [3X]6 does define a function from 
Z4 into Z6 . If a = b (mod 4) , then 4 1  (a - b) , and so mUltiplying by 3 
shows that 12 1 3 (a - b) . But then of course 6 1 3 (a - b) , which implies that 
3a = 3b (mod 6) . Thus [a ]4 == [b]4 implies 1 ( [a]4 ) == 1([b]4) ,  proving that 
1 is well-defined. D 
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Two subsets F and G of S x T define the same function from S into T if and 
only if the subsets are equal . In terms of the associated functions / : S --* T and 
g : S --* T , this happens if and only if / (x) == g (x ) for all X E S, giving the 
familiar condition for equality of functions, since / and g have the same domain 
and codomain. To see this, note that if X E S , then (x , / (x )) E F ,  and so we also 
have (x , / (x)) E G, which means that / (x) == g (x) , since a given first component 
has exactly one possible second component in the graph of the function. On the 
other hand, if / (x) == g (x) for all X E S, then the ordered pairs (x , / (x) ) and 
(x , g (x)) are equal for all X E S, so we have F == G.  

If / : S --* T and g : T --* U are functions , then the composite of / and g is 
defined by the formula (g 0 /) (x) == g(/(x)) for all X E S. Its graph is the subset 
of S x U defined by 

{ (x ,  z) I (x , y) E F and (y , z) E G for some y E T } , 

where F and G are the graphs of / and g, respectively. We note that g o / is indeed 
a function, for given X E S, there is a unique element y E T  such that y == / (x) , 
and then there i s  a unique element Z E U such that z == g(y) . Thus z == g(/ (x)) is 
uniquely determined by x. This justifies the following formal definition. 

2.1.2 Definition. Let / : S --* T and g : T --* U be/unctions. The composite g o /  
0/ / and g is the/unction/rom S to U defined by the/ormula (g 0 /) (x) == g(/(x)) 
/or all X E S. 

The composite of two functions is defined only when the codomain of the first 
function is the same as the domain of the second function. Thus the composite of 
two functions may be defined in one order but not in the opposite order. (In calculus 
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books, some authors allow the composite of two functions, g o  f , to be defined when 
the codomain of f is merely a subset of the domain of g .) 

The following analogy comparing a function to a deterministic computer pro
gram may be useful to students with some background in computer science. If 
f : S -* T is a function, then we can think of the set S as consisting of the possible 
values which can be used as input for the program, and the set T as consisting of 
the potential output values . The conditions defining a function ensure that (i) any 
element of S can be used as an input and (ii) the output is uniquely determined by 
the input. If g : T -* U ,  then the composite function g 0 f corresponds to a new 
program obtained by linking the two given programs, taking the output from the 
first program and using it as the input for the second program. 

Example 2.1.5. 

Let f : R � R be given by f (x) == x2 and g : R � R be given by 
g (x) == x + 1 ,  for all x E R. Then g 0 f is given by 

(g 0 f) (x) == g (f (x) ) == g (x2) == x2 + 1 

and f o g is given by 

(f 0 g) (x) == f(g (x)) == f(x + 1 ) == (x + 1 )2 == x2 + 2x + 1 . 

This example shows that you should not expect g o f and f og to be equal . D 

Example 2.1.6. 

As in calculus, one use of composite functions is to start with a given function 
and try to write it as the composite of two simpler functions . Here is one such 
example. If h : R � R is defined by h ex) == ex2 , for all x E R,  then we can 
write h == g 0 f, where f : R � R is defined by f(x) == x2, for all x E R,  
and g : R � R i s  defined by g(x) == eX , for all x E R. D 

Suppose that we are given three functions f : S -* T, g : T -* U ,  and 
h : U -* V .  If we wish to compose these functions to obtain a function from S into 
V , then there are two ways to proceed. We could first form g 0 f : S -* U and then 
compose with h to get h 0 (g 0 f) : S -* V , or we could first form h o g : T -* V 
and then compose with f to get (h 0 g) 0 f : S -* V .  These procedures define 
the same function, since in both cases the definition of the composition of functions 
leads to the expression h (g (f (x) ) ) , for all X E S. Thus we can say that composition 
of functions is associative, and write h 0 (g 0 f) == (h 0 g) 0 f. In practice, this 
allows us to ignore the use of parentheses, so that we can just write hgf for the 
composite function. 
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2.1.3 Proposition. Composition of functions is associative. 

Proof Let f : S ---+ T, g : T ---+ U ,  and h : U ---+ V be functions . Then for each 
X E S, we have 

(h 0 (g 0 f)) (x) == (h (g 0 f)) (x) == h (g (f (x) ) ) 

and also 
( (h 0 g) 0 f) (x) == (h 0 g) (f(x)) == h (g(f(x)) ) . 

This shows that h 0 (g 0 f) and (h 0 g) 0 f are equal as functions . 0 

In the definition of a function f : S ---+ T, every element of the domain S must 
appear as the first entry of some ordered pair in the graph of f, but nothing is said 
about the necessity of each element of the codomain T appearing as the second 
entry of some ordered pair. For example, in the function f : R ---+ R defined by 
f (x) == x2 for all x E R, no negative number appears as the second coordinate of 
any point on the graph of f. This particular example also points out the fact that 
two different elements of the domain may have assigned to them the same element 
of the codomain. Functions which avoid either or both of these forms of behavior 
are important enough to warrant the following definition. 

2.1.4 Definition. Let f : S ---+ T be a function. Then f is said to map S onto T if 
for each element y E T  there exists an element X E S with f(x) == y. If f maps S 
onto T, then we say that f is an onto function. 

If f (X l ) == f (X2) implies Xl == X2 for all elements X l , x2 E S, then f is said to 
be a one-to-one function. 

If f is both one-to-one and onto, then it is called a one-to-one correspondence 
from S to T. 

Some other terminology is also in common use. An onto function is said to be 
surjective or is called a surjection. Similarly, a one-to-one function is said to be 
injective or is called an injection . In this terminology, which comes from the French, 
a one-to-one correspondence is a bijection. This terminology has the advantage of 
avoiding the unfortunate use of the preposition "onto" as an adjective . We have 
decided to continue to use the word "onto" since it its use is so common in the 
mathematical literature. When you use it, remember that it has a technical meaning, 
so that the phrase "f maps S onto T" is different from the phrase "f maps S into 
T ." 

It may be helpful to think of onto functions in the following terms . If f : S ---+ T, 
then f i s  an onto function if and only if for each y E T  the equation y == f (x) 
has a solution X E S. Thus f is an onto function if and only if the image f (S) is 
equal to the codomain T. With this point of view, to show that f : R ---+ R defined 
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by f(x) == x3 + 1 is onto, we need to show that for each y E R we can solve the 
equation y == x3 + 1 ,  for x in terms of y .  All we have to do is give the solution 
explicitly : x == J y - 1 .  

The definition we have given for a one-to-one function is perhaps not the most 
intuitive one. For f : S --* T to be one-to-one we want to know that f (X l )  i= f (X2) 
whenever Xl i= X2 (for Xl , X2 E S) . However, if we try to apply this definition 
to show that the function f (x ) == x3 + 1 of the previous paragraph is one-to
one, we would need to work with inequalities . Working with equalities is much 
more familiar, so it is useful to reformulate the definition. Rewording the phrase 
"f (X l )  i= f (X2) whenever Xl i= X2" to read "if Xl i= X2 , then f (X l )  i= f (X2)"  allows 
us to pass to the logically equivalent contrapositive statement "if f (X l )  == f (X2) ,  
then Xl == X2 ." Using the second statement, which we have taken as the definition, 
to show that f is one-to-one we only need to show that if (X I ) 3 + 1 == (X2)3 + 1 ,  
then X l  == X2 . This is easy to do by just subtracting 1 from both sides and taking the 
cube root, which yields a unique value. 

Example 2.1.7. 

Let S == { I ,  2 ,  3 } and T == {4, 5, 6} . The function /1 : S � T defined 
by /1 ( 1 )  == 4, /1 (2) == 5, and /1 (3) == 6 is a one-to-one correspondence 
because it is both one-to-one and onto . The function /2 : S � T defined by 
/2 ( 1 )  == 4, /2 (2) == 4, and /2 (3) == 4 is not one-to-one since /2 (2) == /2 (3) , 
and it is not onto since its image is /2 (S) == {4} i= T .  
With these sets we cannot give an example that i s  one-to-one but not onto, and 
we cannot give an example that is onto but not one-to-one. Let S == { I ,  2 ,  3 }  
and U == {7 ,  8 } .  The function /3 : S � U defined by /3 ( 1 )  == 7 ,  /3 (2) == 8 ,  
and /3 (3) == 8 is onto since its image is U ,  but i t  is not one-to-one since 
/3 (2) == /3 (3) . The function /4 : U � S defined by /4 (7) == 1 and 
/4 (8) == 2 is one-to-one, but it is not onto since its image is { I ,  2} i= S. 0 

Example 2.1.8. 

Let / : S � T be a function . Define 1 :  S � /(S) by lex) == lex) , for 
all X E S. Then by definition 1 is an onto function. If L : / (S) � T is the 
inclusion function, then / == i 0 f, and we have written / as the composite 
of an onto function and a one-to-one function . 0 

2.1.5 Proposition. Let f : S --* T and g : T --* U be functions. 
(a) If f and g are one-to-one, then g 0 f is one-to-one. 
(b) If f and g are onto, then g 0 f is onto. 
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Proof (a) Assume that f and g are one-to-one functions .  Let Xl , X2 E S. If 
(g 0 f) (XI ) == (g 0 f) (X2 ) , then g (f (XI ) ) == g (f (X2 ) ) , and so f (X I ) == f (X2) since 
g is one-to-one. Then since f is one-to-one, we have Xl == X2 . This shows that 
g 0 f is one-to-one . 

(b) Assume that f and g are onto functions , and let Z E U .  Since g is onto, 
there exists y E T  such that g (y) == z .  Since f is onto, there exists X E S  such that 
f (x ) == y . Hence (g 0 f) (x ) == g(f(x)) == g(y) == z ,  and this shows that g 0 f is 
onto. 0 

We now want to study one-to-one correspondences in more detail .  We first note 
that Proposition 2. 1 .5 implies that the composite of two one-to-one correspondences 
is a one-to-one correspondence. One of the most important properties that we want 
to show is that any one-to-one correspondence f : S --* T is "reversible ." 

Let us return to our earlier analogy between functions and programs . If we are 
given a function f : S --* T, which we think of as a program, then we want to be able 
to construct another program (a new function g : T --* S) that is capable of taking 
any output from th� program f and retrieving the corresponding input. Another way 
to express this is to say that if the two programs are linked via composition, they 
would end up doing nothing :  that is, g(f(x)) == X for all X E S  and f(g (y)) == y 
for all y E T . 

We need some formal notation at this point. 

2.1.6 Definition. Let S be a set. The identity function 1 s : S --* S is defined by the 
formula I s (x) == x for all X E S. 

If f : S --* T is a function, then a function g : T --* S is called an inverse for 
f if g 0 f == 1 s and f o g  == 1 T · 

An identity function has the following important property. If f : S --* T, then 
for all X E S  we have f ( 1 s (x) ) == f (x) , showing that f 0 1 s == f . Similarly, we 
have I T 0 f == f · In particular, if f : S --* S, then f 0 I s == f and I s 0 f == f· 
Thus the identity function 1 s plays the same role for composition of functions as 
the number 1 does for multiplication. 

If g is an inverse for f, then the definition shows immediately that f is an inverse 
for g . The next proposition shows that a function has an inverse precisely when it 
is one-to-one and onto. It also implies that the inverse function is again one-to-one 
and onto. 

Suppose that g , h : T --* S are both inverses for f : S --* T . Then on the one 
hand, (g 0 f) 0 h == I s 0 h == h , while on the other hand, g o (f 0 h) == g 0 I T == g. 
Since composition of functions is associative, the two expressions must be equal, 
so h == g. This shows that inverses are unique, and so the use of the notation f- l 
for the inverse of f is justified. 
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2.1 .7 Proposition. Let f : S --+ T be afunction. If f has an inverse, then it must be 
one-to-one and onto. Conversely, if f is one-to-one and onto, then it has a unique 
inverse. 

Proof First assume that f has an inverse g : T --+ S such that g 0 f == 1 s and 
f o g == I T .  Given any element y E T , we have y == I T (Y) == f(g (y) ) , and so 
f maps g(y) onto y, showing that f is onto. If Xl , X2 E S with f (Xl ) == f(X2) , 
then applying g gives g(f (X I ) ) == g(f(X2)) , and so we must have X l == X2 since 
g 0 f == I s . Thus f is one-to-one. 

Conversely, assume that f is one-to-one and onto. We will define a function 
g : T --+ S as follows. For each y E T , there exists an element X E S  with f (x) == y 
since f is onto. Furthermore, there is only one such X E S  since f is one-to-one. 
This allows us to define g (y) == x, and it follows immediately from this definition 
that g(f(x)) == X for all X E S . For any y E T , we have g(y) == x for the element 
X E S  for which f (x) == y . Thus f (g (y)) == f (x) == y for all y E T , showing that 
g is an inverse for f .  

As in the remarks preceding the proposition, suppose that h : T --+ S i s  also an 
inverse for f. Then 

h == h 0 I T  == h 0 (f 0 g) == (h 0 f) 0 g == I s  0 g == g 

and the uniqueness is established . 0 

It is instructive to prove that a one-to-one and onto function has an inverse by 
using the graph of the function. Assume that f : S --+ T is one-to-one and onto, 
and let F denote the graph of f. We will define an inverse g : T --+ S by giving its 
graph G .  Let G == { (y , x) I (x , y) E F} . Then we have clearly defined a subset of 
T x S. Since f is onto, for each y E T  there exists X E S  such that (x , y) E F, and 
so for each y E T , there exists (y , x) E G.  Furthermore, the element x is uniquely 
determined by y, since f is one-to-one, showing that for each y E T  there is only 
one ordered pair in G with first component y . This shows that G does in fact define 
a function. The graph of g 0 f in S x S is { (x , x) I X E S} , and the graph of f o g  
in T x T  is { (y ,  y) I y '  E T } , and so g is the inverse of f. 

The final result in the section applies only to finite sets . If S and T are finite 
sets , and f : S --+ T is a one-to-one correspondence, then three things occur: f 
is one-to-one, f is onto, and S and T have the same number of elements . As a 
consequence of the next proposition, any two of these conditions imply the third. 

2.1.8 Proposition. Let f : S --+ T be dfunction, and assume that S and T are finite 
sets with the same number of elements. Then f is a one-to-one correspondence if 
either f is one-to-one or f is onto. 
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Proof Suppose that S and T both have n elements. 
First assume that f is one-to-one. Let S == {X l , X2 , . . . , xn } ,  and consider the 

subset 
B == {f (X 1 ) ,  f (X2) ,  . . .  , ! (xn ) } C T .  

Since f is one-to-one, the elements f (Xi ) are distinct, for i == 1 ,  2 , . . .  , n ,  and so B 
contains n elements . Since B is a subset of T and T also has n elements , we must 
have B == T ,  showing that f is onto . Thus f is a one-to-one correspondence. 

On the other hand, assume that f is onto. Suppose that T == {Y1 , Y2 , . . .  , Yn } 
and fez) == Yi and fez') == Yi for some z I- z' in S and some i with 1 < i < n .  
Since ! i s  onto, for each j I- i (with 1 < j < n ) there exists an element Zj such 
that f (z j ) == Y j . Consider the subset 

A == {z , z' , Z 1 , . . .  , Zi - 1 , Zi + 1 , . . .  , Zn } C S . 

The elements Zj are distinct since ! is a function. Thus A is a subset that has n + 1 
elements, which is impossible. Hence having ! (z) == f (z') for distinct elements Z 
and z' is impossible. We conclude that f is one-to-one, and so f is a one-to-one 
correspondence . D 

Example 2.1.9. 

Define f : Z ---+ Z by f en) == 2n , for all n E Z. Then f is one-to-one but 
not onto. On the other hand, if g : Z ---+ Z is defined by letting g (n) == n if n 
is odd and g (n) == nl2 if n is even, then g is onto but not one-to-one. D 

Example 2. 1 . 9 shows that it is possible to have a set S and a function f : S -+ S 
such that ! is one-to-one but not onto. It can also happen that f is onto but not 
one-to-one. Proposition 2 . 1 . 8 shows that this can only happen if S is an infinite set. 
In fact, it can be proved that this characterizes infinite sets : a set S is infinite if and 
only if there exists a one-to-one correspondence between S and a proper subset of 
S .  

EXERCISES: SECTION 2.1 

We use R + to denote the set of positive real numbers . 

1 .  In each of the following parts , determine whether the given function is one-to-one 
and whether it is onto . 

t ea) f : R ---+ R; f (x) == x + 3 
(b) f : C ---+ C; f (x) == x2 + 2x + 1 

t (c) f : Zn ---+ Zn ;  f ( [x ]n )  == [mx + b]n , where m,  b E Z 
(d) f : R+ ---+ R ;  f(x) == ln x 
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2. In each of the following parts, determine whether the given function is one-to-one 
and whether it is onto. 
(a) f : R � R; f(x) == x2 

(b) f : C � C; f(x) == x2 

(c) f : R+ � R+ ; f (x) == x2 

(d) f : R+ --+ R+ ; f(x) = { �2 
if x is rational 
if x is irrational 

3 .  t For each one-to-one and onto function in Exercise 1 ,  find the inverse of the function. 
Hint: It might not hurt to review the section on inverse functions in your calculus 
book. 

4. For each one-to-one and onto function in Exercise 2, find the inverse of the function. 

5. In each of the following parts , determine whether the given function is one-to-one 
and whether it is onto. If the function is both one-to-one and onto, find the inverse 
of the function. 
(a) f : R2 � R2 ; f(x ,  y) == (x + y , y) 
(b) f : R2 � R2 ; f(x ,  y) == (x + y , x + y) 
(c) f : R2 � R2 ; f(x ,  y) == (2x + y , x + y) 

6. Let S == { I ,  2 ,  3 }  and T == {4 , 5 } .  
t ea) How many functions are there from S into T?  from T into S? 
(b) How many of the functions from S into T are one-to-one? How many are onto? 
(c) How many of the functions from T into S are one-to-one? How many are onto? 

7 .  (a) Does the formula f (x) == 1 / (x2 + 1 ) define a function f : R � R? 
(b) Does the formula given in part (a) define a function f : C � C? 

8 .  Which of the following formulas define functions from the set of rational numbers 
into itself? (Assume in each case that n ,  m are integers and that n is nonzero.) 

t ea) f (m ) == 
m + 1 

n n + 1 
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9. Show that each of the following formulas yields a well-defined function. 
(a) I : Zg � Zg defined by I( [x ]g) == [mx] g , for any m E Z 
(b) g : Zg � Z12 defined by g( [x ]g) == [6X] 1 2 
(c) h : Z12 � Z4 defined by h ( [X ] 1 2 ) == [X ]4 
(d) p : Z10 � Z5 defined by p ([X] 1 0 ) == [x2 + 2x - 1 ]5 
(e) q : Z4 � Z12 defined by q ([X ]4) == [9X] 12 

6 1 

10. In each of the following cases, give an example to show that the formula does not 
define a function. 

t ea) I : Zg � Z10 defined by I( [x]g ) == [6X] 1 0 
(b) g : Z2 � Z5 defined by g ([X] 2) == [X ]5 

t (c) h : Z4 � Z12 defined by h ([X ]4) == [Xh 2 
(d) p : Z12 � Z5 defined by p([X ] 1 2 ) == [2X ]5 

1 1 . Let k and n be positive integers. For a fixed m E Z, define the formula I : Zn � Zk 
by I ([x]n ) == [mx]k , for x E Z. Show that I defines a function if and only if k lmn .  

1 2. Let k , m ,  n be positive integers such that k lmn .  Show that the function I : Zn � Zk 
defined in Exercise 1 1  by I ([x]n ) == [mx]k is a one-to-one correspondence if and 
only if k == n and (m , n) == 1 .  

1 3 . Let I : A � B be a function, and let I (A) == {/ (a) I a E A }  be the image of I . 
Show that I i s  onto i f  and only i f  I (A )  == B .  

14. Let I : A � B and g : B � C be one-to-one and onto. Show that ( g 0 1)- 1 exists 
and that (g 0 1)- 1 == I- l o g- I . 

1 5 .  Let I : A � B and g : B � C be functions. Prove that if g 0 I is one-to-one, then 
I is one-to-one, and that if g 0 I is onto, then g is onto. 

1 6. Let I : A � B be a function. Prove that I is onto if and only if there exists a 
function g : B � A such that l o g == l B .  

17 .  Let I : A � B be a function. Prove that I is onto if and only if h o i == k 0 I implies 
h == k, for every set C and all choices of functions h : B � C and k : B � c .  

1 8 . Let A be a nonempty set, and let I : A � B be a function. Prove that I i s  one-to-one 
if and only if there exists a function g : B � A such that g 0 I == 1 A .  

1 9 . Let I : A � B be a function. Prove that I is one-to-one if and only if I 0 h == 1 0 k 
implies h == k, for every set C and all choices of functions h : C � A and k : C � A .  

20. Define I : Zmn � Zm X Zn by I ([x]mn ) == ( [x ]m , [x]n ) . Show that I i s  a function 
and that I is onto if and only if gcd (m , n) == 1 .  
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2.2 Equivalence Relations 

It is very useful to introduce the notion of an equivalence relation. The basic idea of 
an equivalence relation is to collect together elements that, even though they differ, 
all behave in the same fashion with respect to some property of interest. We then 
treat this collection of similar elements as a single entity. This approach can be 
taken in many different situations and is fundamental in abstract algebra. 

We have already used this idea in Chapter 1 ,  when we collected together integers 
congruent modulo n and used these sets to construct elements [a ]n of the new object 
Zn . In this section we will adopt the point of view that studying equivalence relations 
is simply a continuation of our study of functions . 

Suppose that we are working with a function f : S -+ T . If f is one-to-one, 
then for elements X l , X2 E S we know that f (X l ) == f (X2) if and only if X l == X2 . 
Of course, this is not true in general . For example, if f : Z -+ Z is the function 
that assigns to each integer its remainder when divided by 1 0, then infinitely many 
integers are mapped to each of the possible remainders 0, 1 ,  . . .  , 9. In this example 
we might want to consider two integers as equivalent whenever the function maps 
them to the same value . Note that two integers are treated the same by our function 
if they are congruent modulo 1 0 . In general , for a function f : S -+ T, we can say 
that two elements X l , X2 E S are equivalent with respect to f if f (X I ) == f (X2) .  

As with the definition of a function, for the sake of precision we will use set 
theory to give our formal definition of an equivalence relation. We then immediately 
give an equivalent definition which is more useful and, we hope, more intuitive . 

2.2.1 Definition. Let S be a set. A subset R of S x S is called an equivalence 
relation on S if 

(i) for all a E S, (a , a ) E R; 
(ii)for all a , b  E S, if (a , b) E R then (b , a) E R; 
(iii)for all a , b , c  E S, if (a ,  b) E R and (b , c) E R, then (a , c) E R. 

We will write a � b to denote the fact that (a , b) E R. 

The symbol � is called tilde. For elements a, b the relation a � b is usually 
read "a is equivalent to b" or "a tilde b." 

Using the above definition and notation, it is clear that R is an equivalence 
relation if and only if for all a , b , c E S we have 

(i) [Reflexive law] a � a ; 
(ii) [Symmetric law] if a � b , then b � a ; 
(iii) [Transitive law] if a � b and b � c , then a � c . 

We will usually use these conditions rather than the formal definition. 
The most fundamental equivalence relation is given by simple equality of ele

ments ; that is, for a ,  b E S, define a � b if a == b. For this relation the reflexive, 
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symmetric, and transitive laws are clear. Under this relation, for any a E S the only 
element equivalent to a is a itself. In fact, equality is the only equivalence relation 
for which each element is related only to itself. For other equivalence relations we 
are interested in the set of all elements related to a given element. In reading the 
following definition, keep in mind the example of congruence classes modulo n . 

2.2.2 Definition. Let � be an equivalence relation on the set S. For a given element 
a E S, we define the equivalence class of a to be the set of all elements of S that 
are equivalent to a. We will use the notation [a] . In symbols, 

[a ] == {x E S I x � a } .  
The notation S /� will be used for the collection of equivalence classes of S defined 
by the equivalence relation �. We say that S/� is thefactor set of the relation �. 

The elements of the factor set S / � are the equivalence classes under the relation 
�, and are constructed as sets , but once the factor set has been constructed we 
no longer picture the equivalence classes as sets . Intuitively, the factor set S / � 
is thought of as a set of objects which are obtained by "gluing together" certain 
elements of S to get the elements [a ] of the new set S /�. 

Example 2.2.1 (Congruence modulo n). 

Let n be a positive integer. For integers a, b we define a � b if n I (a - b) . 
This, of course, is logically equivalent to the definition of congruence modulo 
n .  It is not difficult to check that congruence modulo n defines an equivalence 
relation on the set Z of integers . First, the reflexive property holds since for 
any integer a we certainly have a � a since n I (a - a) . Next, the symmetric 
property holds since if a � b, then n I (a - b) and so n I (b - a) , showing that 
b � a . Finally, the transitive property holds since if a � b and b � c, then 
n I (a - b) and n I (b - c) , so adding shows that n I (a - c) , and thus a � c. 
The equivalence classes of this relation are the familiar congruence classes 
[a]n ·  
As an alternate proof, we could use our original definition of congruence 
modulo n, in which we said that integers a and b are congruent modulo n if 
we obtain equal remainders when using the division algorithm to divide both 
a and b by n .  Then the reflexive, symmetric, and transitive properties really 
follow from the identical properties for equality. D 

Because of our work with congruences in Chapter 1 ,  the previous example is one 
of the most familiar nontrivial equivalence relations . The next example is probably 
the most basic one . In fact, later in this section we will show that every equivalence 
relation arises in this way from a function. 
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Example 2.2.2 (S / f). 

L�t I : S � T be any function. For Xl , X2 E S we define Xl � f X2 if 
I(X I ) == I(X2) .  Then for all X l , x2 , x3 E S we have (i) I (X I ) == I(Xl ) ;  
(ii) if I (Xl ) == I (X2) , then I(X2) == I (X I ) ; and (iii) if I (XI ) == I (X2) 
and I (X2) == I(X3 ) , then I (X I ) == I (X3 ) . This shows that �f defines 
an equivalence relation on the set S. The proof of this is easy because the 
equivalence relation is defined in terms of equality of the images I (x) , and 
equality is the most elementary equivalence relation. The collection of all 
equivalence classes of S under � f will be denoted by S / I . We say that S /1 
is the factor set of S determined by I. 
Later in  this section we will show that any function I : S � T naturally 
induces a one-to-one function I : S / I � T . Thus by introducing the factor 
set S / I we can study I by studying the equivalence relation it defines on S 
and the corresponding one-to-one function I. D 

Example 2.2.3 (Equivalence of rational numbers). 

Let A be the set of all integers and let B be the set of all nonzero integers . 
On the set S == A x B of ordered pairs , define (m,  n) � (p , q ) if mq == np . 
This defines an equivalence relation, which we can show as follows. Certainly 
(m,  n ) � (m , n ) , since mn == nm . If (m , n) � (p ,  q ) , then mq == np implies 
pn == qm , and so (p , q ) � (m , n) . Finally, suppose that (m , n) � (p , q) 
and (p , q ) � (s , t ) . Then mq == np and pt == qs, and multiplying the first 
equation by t and the second by n gives mqt == npt and npt == nqs .  After 
equating mqt and nqs and cancelling q (which is nonzero by assumption), 
we obtain mt == ns ,  and so (m , n) � (s , t ) . Thus we have verified the 
reflexive, symmetric, and transitive laws, showing that we have in fact defined 
an equivalence relation . 

The equivalence class of (m ,  n) E S is usually denoted by m / n ,  and this 
equivalence relation is the basis for the standard rule for equality of fractions . 
The equivalence classes of this equivalence relation form the set Q of rational 
numbers . 
As a passing remark, we note that in this example using the ordered pair 
formulation of the notion of an equivalence relation would lead to considering 
ordered pairs of ordered pairs . D 

Example 2.2.4. 

Consider the set of all differentiable functions from R into R. For two such 
functions I (x) and g (x ) we define I � g if the derivatives I' (x) and g' (x) 
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are equal . It can easily be checked directly that the properties defining an 
equivalence relation hold in this case. Furthermore, the equivalence class of 
the function I is the set of all functions of the form I (X ) + C, for a constant 
C. Using a somewhat more sophisticated point of view, we can consider 
differentiation as a function, whose domain is the set of all differentiable 
functions and whose codomain is the set of all functions . Then the equivalence 
relation we have defined arises as in the previous Example 2.2 .2 . D 

Example 2.2.5. 

Let S be the set R2 ofpoints in the Euclidean plane; that is, S = { (x ,  y) I x ,  Y E 

R} . Define (X l ,  Y I ) � (X2 , Y2) if X l  = X2 . There are several ways to check 
that we have defined an equivalence relation . First, the reflexive, symmetric, 
and transitive laws are easy to check since � is defined in terms of equality 
of the first components . As a second method we could use Example 2.2 .2 . If 
we define I : R2 � R by I (x ,  y) = x ,  then I (X I , Y I ) = I(X2 , Y2) if and 
only if X l  = X2 . Thus the relation � f defined by I is the same as �, and it 
follows that � is an equivalence relation. 
Now let us find the equivalence classes of the equivalence relation we have 
defined. The equivalence class of (a , b) consists of all points in the plane that 
have the same first coordinate ; that is, [ (a ,  b) ] is just the line X = a, which 
we will denote by La . Then since distinct vertical lines are parallel, we see 
that La n Lb == 0 for a i= b. We can summarize by saying that each point in 
the plane belongs to exactly one of the equivalence classes La . D 
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The following fact, observed at the end of Example 2.2 .5 , holds for all equiva
lence relations . 

2.2.3 Proposition. Let S be a set, and let � be an equivalence relation on S. Then 
each element of S belongs to exactly one of the equivalence classes of S determined 
by the relation �. 

Proof If a E S, then a � a, and so a E [a] . If a E [b] for some b E S, then we 
claim that [a ] == [b] . To show this , we must check that each element of [a ] belongs 
to [b] , and also that each element of [b] must belong to [a ] . If x E [a ] ,  then x � a 
by definition. We have assumed that a E [b] , so a � b, and then it follows from 
the transitive law that x � b, and thus x E [b] .  On the other hand, if x E [b] , then 
x � b. By the symmetric law, a � b implies b � a , and so this gives us x � a , 
showing that x E [a ] . We have thus shown that each element a E S belongs to 
exactly one of the equivalence classes determined by � .  D 

An alternate point of view with regard to equivalence relations is afforded by 
the notion of a partition of a set. In Proposition 2.2.5 we will see that any factor 
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set arising from an equivalence relation turns out to be a partition, and that every 
partition gives rise to an equivalence relation for which it is the factor set. 

2.2.4 Definition. Let S be a set. A collection P of nonempty subsets of S is called 
a partition of S if each element of S belongs to exactly one of the members ofP. 

In this terminology, Proposition 2.2 .3 implies that any equivalence relation on 
a nonempty set S determines a partition of the set. We will show that the converse 
is also true. We first give some additional examples of partitions . 

Example 2.2.6. 

The equivalence relation that we considered in Example 2.2 .5 partitions the 
Euclidean plane R 2 by using the collection of all vertical lines . 
Another interesting partition of R 2 uses lines radiating from the origin. First, 
let So be the x -axis, y == 0. Since the origin (0 , 0) belongs to So , it cannot 
belong to any other set in the partition, so for any nonzero real number a, let 
Sa be the line y == ax with the origin removed. Let Soo be the y-axis with the 
origin removed. Then each point in the plane (except the origin) determines 
a unique line through the origin, and so each point belongs to exactly one of 
the sets we have defined. D 

Example 2.2.7. 

It is obvious that the collection of all circles with center at the origin forms 
a partition of the plane R 2 . (We must allow the origin itself to be considered 
a degenerate circle.) There is a corresponding equivalence relation, which 
can be described algebraically by defining (X l ,  Y I ) � (X2 , Y2) if x f + Yf == 
2 2 X2 + Y2 . D 

2.2.5 Proposition. Any partition P of the set S determines a unique equivalence 
relation � on S such that P is the factor set S /�. 

Conversely, if � is any equivalence relation on S, then the factor set S / � is a 
partition of S that determines the equivalence relation �. 

Proof Assume that we are given a partition P of the set S. Then the given partition 
yields an equivalence relation on S by defining a � b when a and b belong to 
the same element of P. To prove that we have defined an equivalence relation, 
we proceed as follows. For all a E S we have a � a since a belongs to exactly 
one subset in the partition, and thus the reflexive law holds . It is obvious from 
the definition that the relation is symmetric. Finally, for a , b, c E S suppose that 
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a � b and b � c. Then a and b both belong to some subset of the partition, say 
Pl . Similarly, b and c both belong to some subset, say P2 . Since we are given a 
partition, the element b can belong to only one subset, so we have PI == P2 , and 
then this implies that a and c belong to the same subset, so we have a � c, and the 
transitive law holds . 

Let Pa be an element of P. Then Pet is nonempty, and so it contains some 
element a E S. We claim that Pet == [a ] .  To see this, let x E Pet . Then x � a ,  so 
x E [a ] ,  and thus Pet C [a ] .  If x E [a ] ,  then x � a, and so x belongs to the same 
element of P as a ,  namely x E Pa . Thus [a ] C Pa , and so [a ] == Pet . We have now 
shown that P C S/�.  

To show the reverse inclusion, let [a ] E S/�. Let Pet be the unique element of 
P for which a E Pet . We will show that Pet == [a ] .  Let x E Pet . Then x � a since 
x ,  a E Pet , so x E [a ] ,  and thus Pa C [a ] .  If x E [a ] then x � a ,  and so x and a 
belong to the same element of P .  Since a E Pet we must have x E Pa , and thus 
[a ] C Pet , showing that [a ] == Pa E P. This completes the proof that P == S/�. 

Conversely, if � is an equivalence relation on S, it follows immediately from 
Proposition 2.2 .3 that the factor set S / � is a partition of S .  We need to show that 
the factor set determines the equivalence relation � .  

Let � be the new equivalence relation on S determined by the partition S / � .  
If a ,  b E S and a � b, then a and b belong to [a ] E S/�, and since a ,  b belong to 
the same set in the partition S/�, we have a � b. Conversely, if a � b, then a ,  b 
belong to the same element of S/�, say [x ] .  Then a � x and b � x ,  and so a � b. 
Thus for all a ,  b E S we have a � b if and only if a � b, and so � and � are the 
same equivalence relation. D 

From our intuitive informal point of view, the way we think of factor sets and 
partitions of S are diametrically opposite. The sets that make up the partition are 
the collections of elements which are to be "glued together," and the elements of 
the factor set are what we get after the "gluing" process . 

We recall from Example 2.2 .2 that when an equivalence relation � on a set S is 
defined by a function f : S � T, we use the notation S / f for the factor set, instead 
of the notation S /� . 

Example 2.2.8. 

Let S be any set, and let � be an equivalence relation on S. Define a function 
n : S � S/� by n (x) == [x ] ,  for all X E S. Proposition 2.2 .3 shows that 
each element X E S  belongs to a unique equivalence class, and so this shows 
that n is a function. 
For any X l , X2 E S we have Xl � X2 if and only if n (x I )  == n (x2) .  This shows 
that n defines the original equivalence relation �, so that the factor sets S /� 
and S /n are identical. Thus we have just verified our earlier remark that every 
equivalence relation can be realized as the equivalence relation defined in a 
natural way by a function. D 
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2.2.6 Definition. Let S be a set, and let � be an equivalence relation on S. The 
function n : S -+ S / � defined by n (x ) = [x ], for all X E S, is called the natural 
projection from S onto the factor set S I�. 

2.2.7 Theorem. If f : S -+ T is any function, and � f is the equivalence relation 
defined on S by letting X l � f X2 if f (Xl ) = f (X2), for all X l , X2 E S, then there is 
a one-to-one correspondence between the elements of the image f (S) of S under f 
and the equivalence classes in the factor set S I f of the relation � f · 

Proof Define f : S / f -+ f (S) by f ( [x ] )  = f (x ) ,  for all X E S. The function f is 
well-defined since if Xl and X2 belong to the same equivalence class in the factor set 
S If, then by definition of the equivalence relation we must have f (X l ) = f (X2) .  

Furthermore, f is onto since if y E f (S) , then y = f (x)  for some X E S, and 
thus we have y = f ( [x ] ) . Finally, f is one-to-one since if f( [X I ] )  = f ( [X2 ] ) ,  then 
f (Xl ) = f (X2) ,  and so by definition Xl � f X2 , which implies that [X l ] = [X2] .  Thus 
we have shown that f is a one-to-one correspondence. D 

If f : S -+ T is a function, then we can use the function f defined in Theo
rem 2.2.7 to write f as a composite of better-behaved functions . Let t : f (S) -+ T 
be the inclusion mapping, defined by t (y )  = y ,  for all y E f (S) . Let n : S -+ S If 
be the natural projection, defined by n (x ) = [x ] ,  for all X E S. Then for each X E X 
we have 

t 0 f 0 n (x)  = t (f (n (x ) ) )  = t (f( [x ] ) )  = t (f (x) )  = f (x )  , 

which shows that f = t o f on . This composite function is illustrated in Figure 2.2 . 1 .  

Figure 2.2 . 1 : 

S ---.+-. Sif 1 . I (S) ----... T 

Figure 2.2 .2 illustrates the equality f = t 0 f 0 n more vividly. In summary, the 
point is to express f in such a way that the first function is onto, the second function 
is both one-to-one and onto , and the last function is one-to-one. 

We end this section with another very useful concept from set theory. 

2.2.8 Definition. Let S -+ T be afunction. If B C T, then the set 

{X E S I f (x )  E B}  

is called the inverse image of B under f. 
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Figure 2.2.2 : 

I 
S � T 
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If I : S ---+ T is a function and B C T , we will use the notation I- I (B) for 
the inverse image of B .  You must be very careful when using this notation, since it 
does not imply that I has an inverse function . If y E I (S) , it is customary to write 
1- 1 (y ) rather than 1- 1 ( {y } ) ,  even though this is an abuse of our notation. 

The notion of an inverse image of an element is closely connected to the results 
we have been discussing. If I : S ---+ T is any function, then the inverse image 
of an element of I (S) is just the corresponding equivalence class in the factor set 
S I� f ·  In fact, we can write 

SII == { I- I
(y) l y E  I (S) } . 

If I is a one-to-one and onto function, then it has an inverse, and for each y E T  
the inverse image 1- I (y) consists of a single element. This element is the image of 
y under the inverse function, and so in this case the new notation 1- 1 (y) coincides 
with the notation we have already been using for an inverse function. 

EXERCISES: SECTION 2.2 

1 .  It is shown in Theorem 2.2.7 that if f : S -* T is a function, then there is a one-to-one 
correspondence between the elements of f (S) and the equivalence classes of S / f .  
For each of the following functions, find f (S) and S / f and exhibit the one-to-one 
correspondence between them. 

t (a) ! : Z -* C given by f (n) == i n for all n E Z 
(b) g : Z -* ZI 2 given by g (n ) == [8n] I 2 for all n E Z 

t (c) h : Z I2 -* Z12 defined by h ( [x ]  12 ) == [9x] 12 
(d) k : Z I 2 -* ZI 2 defined by k ([X ] I 2 ) == [5X ] 1 2  

2. Repeat Exercise 1 for each of the following functions . 
(a) f : Z I 2 -* Z I 2 defined by ! ( [X ] 12 ) == [4X] I 2 
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(b) g : Z24 -* Z24 defined by g ( [X]24 ) == [4X]24 
(c) p : ZI2 -* Z24 defined by p ( [X ] I 2 ) == [4X ]24 
(d) q : Z24 -* ZI2 defined by q ( [X]24 ) == [4X] I 2 
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3 .  For each of the following relations on R, determine which of the three conditions of 
Definition 2 .2. 1 hold. 
(a) For a ,  b E R, define a "" b if a :s b . 
(b) For a , b E R, define a "" b i f  a - b E Q. 
(c) For a , b E R, define a "" b i f  l a - b l :s 1 .  

4. Let S be the set of all ordered pairs (m , n) of positive integers . For (a } , a2) E S and 
(b I , b2) E S, define (a I , a2) "" (b I , b2) if a l + b2 == a2 + b l . Show that "" is an 
equivalence relation. 

5. On R2 , define (a I , a2) "" (b I , b2) if af + ai == bi + bi . Check that this defines an 
equivalence relation. What are the equivalence classes? 

6.t In R3 , consider the standard (x , y , z ) -coordinate system. We can define a parti
tion of R3 by using planes parallel to the (x , y) -plane. Describe the corresponding 
equivalence relation by giving conditions on the coordinates x ,  y , z .  

7 .  Define an .equivalence relation on the set R that partitions the real line into subsets 
of length 1 .  

8 .  For integers m ,  n , define m "" n if and only if n I mk and m I nj for some positive 
integers k and j . 
(a) Show that "" is an equivalence relation on Z. 

t (b) Determine the equivalence classes [ 1 ] ,  [2] , [6] and [ 1 2] .  
(c) Give a characterization of the equivalence class [m] .  

9 .  Let S be a set. A subset R S; S x S i s  called a circular relation i f  (i) for each 
a E S, (a , a) E R and (ii) for each a , b, c E S, if (a , b) E R and (b , c) E R,  then 
(c, a) E R .  Show that any circular relation must be an equivalence relation. 

10 . Let S be a set and let 2s 
== {A I A C S} be the collection of all subsets of S. Define 

"" on 2s by letting A "" B if and only if there exists a one-to-one correspondence 
from A to B .  
(a) Show that "" i s  an equivalence relation on 2s . 
(b) If S == { I ,  2 , 3 ,  4} , list the elements of 2s and find each equivalence class deter
mined by "". 

1 1 . Let W be a subspace of a vector space V over R, (that is, the scalars are assumed 
to be real numbers) . We say that two vectors u, v E V are congruent modulo W if 
u - v E W, written u = v (mod W) . 
(a) Show that = is an equivalence relation. 
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(b) Show that if r, s are scalars and UI , U2 , V I , V2 are vectors in V such that U I  = 

V I  (mod W) and U2 - V2 (mod W) , then rU I + SU2 = rV I + SV2 (mod W) . 
(c) Let [u]w denote the equivalence class of the vector u. Set U == { [u] w I U E V } .  
Define + and · on U by [u] w + [v] w == [u + v] w and r . [u] w == [ru] w for all 
u , V E V and r E R .  Show that U is a vector space with respect to these operations .  
(d) Let V == R2

, and let W == { (x ,  0)  I x E R} . Describe the equivalence class 
[ (x , y) ] w geometrically. Show that T : R -* U defined by T (y) == [ (0 , y)] w is a 
linear transformation that is one-to-one and onto. 

1 2 . Let T == { (x , y , z) E R3 I (x , y , z) =I=- (O , O , O) } .  Define '"'-' on T by (X I , Y I , Z I )  '"'-' 
(X2 , Y2 , Z2 )  if there exists a nonzero real number A such that X l  == AX2 , Y I == AY2 , 
and Z l == AZ2 · 

(a) Show that '"'-' is an equivalence relation on T .  
(b) Give a geometric description of the equivalence class of (x , Y , z ) .  
The set T / '"'-' i s  called the real projective plane, and is denoted by p2 . The class of 
(x , Y , z) is denoted by [x , y , z ] ,  and is called a point . 

(c) Let (a , b ,  c) E T,  and suppose that (X l ,  Y I ,  Z I )  '"'-' (X2 , Y2 ,  Z2 ) .  Show that if 
aX I + bYI + CZ I == 0, then aX2 + bY2 + CZ2 == 0. Conclude that 

L == { [x , )" z] E p
2 

I ax + by + cz == O} 

is a well-defined subset of p2
. Such sets L are called lines . 

(d) Show that the triples (a I ,  b l , C I ) E T and (a2 , b2 , C2 ) E T determine the same 
line if and only if (a i , b l , C I ) '"'-' (a2 , b2 , C2 ) .  

(e) Given two distinct points of p
2

, show that there exists exactly one line that contains 
both points . 
(f) Given two distinct lines, show that there exists exactly one point that belongs to 
both lines. 
(g) Show that the function f : R2 -* p

2 defined by f (x , y) == [x , y, 1 ] is a one-to
one function. This is one possible embedding of the "affine plane" into the projective 
plane . We sometimes say that p2 is the "completion" of R2 . 

(h) Show that the embedding of part (g) takes lines to "lines ." 
(i) If two lines intersect in R2

, show that the image of their intersection is the inter
section of their images (under the embedding defined in part (g» . 
U) If two lines are parallel in R2

, what happens to their images under the embedding 
into p2

? 

2.3 Permutations 

We will now study one-to-one correspondences in more detail, particularly for finite 
sets . Our emphasis in this section will be on computations with such functions. We 
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need to develop some notation that will make it easier to work with such functions, 
especially when finding the composite of two functions. We will change our notation 
slightly, using Greek letters for permutations , and instead of writing er 0 r for the 
composite of two permutations , we will simply write er r ,  and refer to this as the 
product of the two permutations. 

2.3.1 Definition. Let S be a set. A function er : S ---+ S is called a permutation of 
S if er is one-to-one and onto. 

The set of all permutations of S will be denoted by SymeS) . 
The set of all permutations of the set { I ,  2 ,  . . .  , n } will be denoted by Sn . 

Proposition 2. 1 .5 shows that the composite of two permutations in Sym eS) 
is again a permutation . It is obvious that the identity function on S is one-to
one and onto. Proposition 2. 1 .7 shows that any permutation in SymeS) has an 
inverse function that is also one-to-one and onto. We can summarize these important 
properties as follows : 

(i) if er, r E SymeS) , then rer E SymeS) ; 
(ii) I s E Sym eS) ; 
(iii) if er E SymeS) , then er - l E SymeS) . 

We also mention that the composition of permutations is associative, by Propo
sition 2. 1 . 3 .  

We need to develop some notation for working with permutations in Sn . Given 
er E Sn , note that er is completely determined as soon as we know er ( I ) ,  er (2) , . . .  , 
er (n) ,  and so we introduce the notation 

( 1 2 
er == 

er ( l )  er (2) 

where under each integer i we write the image of i .  

n 

er (n) 
) , 

For example, if S == { I ,  2 ,  3 } and er : S ---+ S is given by er ( l )  == 2, er (2) == 3 ,  

a (3) = 1 ,  then we would write a = ( �  � � ) . 
Since any element er in Sn is one-to-one and onto, in the above notation for er 

each element of S must appear once and only once in the second row. Thus an 
element er E Sn is completely determined once we know the order in which the 
elements of S appear in the second row. 

To count the number of elements of Sn we only need to count the number of 
possible second rows. Since there are n elements in S == { I ,  2 ,  . . .  , n } , there are 
n choices for the first element er ( 1 )  of the second row. Since the element that is 
assigned to er ( l )  cannot be used again, we have n - 1 choices when we wish to 
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assign a value to er (2) , and thus there are n . (n - 1 )  ways to assign values to both 
er ( 1 )  and er (2) . Now there are n - 2 choices for er (3) and a total of n (n - 1 ) (n - 2) 
ways to assign values to er ( 1 ) ,  er (2) , and er (3) . Continuing in this fashion (there is 
an induction argument here) , we have a total of n !  ways to assign values to er ( 1 ) ,  
er (2) , . . . , er (n) . Thus Sn has n !  elements . 

The notation we have introduced is useful for computing in Sn . Suppose that ( 1 2  n ) d ( 1 2  n ) 
er - � r --

er ( 1 )  er (2) . . . er (n)  
-

T e l )  r (2) . . . T en)  
. 

Then to compute the composition 

we proceed as follows. To find er (r (i ) )  we first look under i in r to get j == r ei ) , 
and then we find er r (i ) == er (j ) by looking under j in er . 

Example 2.3.1. 

( 1 2 3 4 ) ( 1 2 3 4 ) 
Let a == 4 3 1 2 and r == 2 3 4 1 . To compute ar 
we have r ( l ) == 2 and then a (2) == 3 , giving a r ( l ) == 3 . Next we have 
r (2) == 3 and a (3) == 1 ,  giving ar (2) == 1 .  Continuing this procedure 

b . 
( 1 2 3 4 ) 

A . ' 1  . . we 0 taln a r == 3 1 2 4 '  SImI ar computatIon gIves ra == 
( 1 2 3 4 ) 

0 1 4 2 3 . 

Given (J = ( (J : 1 )  (J �2) (J �n)  

) in Sn , it is easy to compute (J - I . 

To find er - I (j ) we find j in the second row of er , say j == er (i ) .  The inverse of er 
must reverse this assignment, and so under j we write i , giving er - I (j ) == i .  This 
can be accomplished easily by simply turning the two rows of er upside down and 
then rearranging terms . 

Example 2.3.2. 

If a = ( ! ; i � ) . then 

a- I = ( 1 ; � � ) = ( � � ; 1 ) · 0 
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The double-row notation that we have introduced for permutations is transparent 
but rather cumbersome. We now want to introduce another notation that is more 
compact and also helps to convey certain information about the permutation. Con-

sider the permutation (J = ( � � ! � � ) . We do not necessarily have to 

write the first row in numerical order, and in this case it is informative to change 
the order as follows. The first column expresses the fact that cr ( l )  == 3 ,  and us
ing this we interchange the second and third columns. Now cr (3) == 4, and so as 
the third column we choose the one with 4 in the first row. Continuing gives us 

(J = ( � ! � � � ) . Now writing ( l ,  3, 4 ,  2) would give us all of the neces

sary information to describe cr , since cr ( l )  == 3 , cr (3)  == 4, cr (4) == 2, and cr (2) == 1 .  

In the new notation we do not need to mention cr (5) since cr (5) == 5 .  

2.3.2 Definition. Let S be a set, and let cr E Sym eS) . Then cr is called a cycle of 
length k if there exist elements a I , a2 , . . .  , ak E S such that cr (a l ) == a2, cr (a2) == a3, 

. . .  , cr (ak- l ) == ak , cr (ak) == a I , and cr (x)  == x for all other elements X E S  with 

x � ai for i == 1 ,  2 , . . .  , k. 

In this case we write cr == (a I , a2 , . . .  , ak ) .  

We can also write cr == (a2 , a3 , . . .  , ak , a l ) or cr == (a3 , . . .  , ak , a I , a2) ,  etc . 
The notation for a cycle of length k > 2 can thus be written in k different ways, 
depending on the starting point. We will use ( 1 )  to denote the identity permutation. 
This seems to be the most natural choice, although, in fact, ( 1 )  == (a) for any cycle 
(a) of length 1 .  Of course, if you are working in Sn and it is clear that you are 
referring to the set S == { I ,  2 ,  . . .  , n } , you can use the notation 1 s .  

Example 2.3.3. 

In S5 the permutation ( � ; ! 1 ; ) is a cycle of length 3 , written 

( 1 , 3 , 4) .  The permutation ( � ; ! 1 ; ) is not a cycle, since 

( � 2 3 4  
5 4 1 

(
3
1 2 3 4  

2 4 1 
( 1 , 3 , 4) (2, 5) 

is the product of two cycles . 0 

1 2 3 4 
1 5 3 4 
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Example 2.3.4. 

For any permutation of a finite set there is an associated diagram, found by 
representing the elements of the set as points and joining two points with an 
arrow if the permutation maps one to the other. Since any permutation is a 
one-to-one and onto function, at each point of the set there is one and only one 
incoming arrow and one and only one outgoing arrow. To find the diagram of 
a permutation such as ( 1 2  

8 2 
3 
10 

4 
1 1  

5 6 7 8 9  
5 9 4 6  1 

10 
3 

1 1  
1 2 

we first rearrange the columns to give the following form: 

( 1 8 6 9 2  
8 6 9 1 2  

3 
10 

10 
3 

4 
1 1  

1 1  
1 2 

The associated diagram is given in Figure 2.3 . 1 .  

Figure 2.3 . 1 :  

1 2  7 5 
7 4 5 

) . 

8 6 1 0  1 1  1 2  

t 
1 

- 1 n t - 1 n 
9 2 3 4 7 5 

The diagram of a = ( � ; ! 1 ; ) is given in Figure 2.3 .2 . 

Note that the diagram of a cycle of length k would consist of a connected 
component with k vertices, while all other components of it would contain only 
one element. This diagram would clearly illustrate why such a permutation is 
called a cycle. 0 

Example 2.3.5. 

Let ( 1 , 4 , 2 , 5) and (2 , 6 , 3) be cycles in S6 . Then 

( 1 2 3 4 5 6 ) ( 1 , 4 , 2 , 5) = 4 5 3 2 1 6 

75 
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Figure 2.3 .2 :  

3 

f>4 n n 
2 5 

1 

and ( 1 2 3 4 5 6 ) (2 , 6 , 3) == 1 6 2 4 5 3 . 

In computing the product of these two cycles we have 

( 1 , 4 , 2 , 5 ) (2 , 6 , 3) == ( ! 2 3 4 5 � ) ( 1 2 
5 3 2 1 1 6 ( ! 2 3 4 5 � ) 6 5 2 1 

( 1 , 4 , 2 , 6 , 3 , 5) , 

which is again a cycle. 

3 4 5 � ) 2 4 5 

Note that it is not true in general that the product of two cycles is again a cycle. 
In particular, 

== ( 1 2 3 4 5 6 ) ( 1 , 4 , 2 , 5) ( 1 , 4 , 2 , 5) 2 1 3 5 4 6 

is not a cycle. 0 

2.3.3 Definition. Let cr == (a I , a2 , . . .  , ak ) and T == (b l , b2 , . . .  , bm ) be cycles in 
Sym eS) , for a set S. Then cr and T are said to be disjoint if ai 1= b j for all i, j .  

It often happens that cr T  1= T cr  for two permutations cr ,  T .  For example, in S3 
we have 

( �  � � ) ( �  � � ) = ( �  � � )  
but on the other hand 
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If err  == rer , then we say that er and r commute . Using this terminology, the next 
proposition shows that disjoint cycles always commute. 

2.3.4 Proposition. Let S be any set. If er and r are disjoint cycles in Sym eS) , then 
err  == rer . 

Proof Let er == (a I , a2 , . . .  , ak ) and r == (b l , b2 , . . .  , bm ) be disjoint. If i == a j for 
some j < k,  then 

because r leaves a I , a2 , . . .  , ak fixed. In case j == k, we use er (aj ) == a l == T eal ) . 
A similar computation can be given if i == b j for some j ,  since then er leaves 
b 1 , b2 , . . .  , bm fixed. If i appears in neither cycle, then both er and r leave it fixed, 
so er r ( i )  == er (i ) == i == r ( i )  == r er (i ) . D 

Let er be any permutation in Sym eS) , for any set S. Taking the composition of er 
with itself any number of times still gives us a permutation, and so for any positive 
integer i we define 

i er == erer . . . er i times . 

Formally, we can define the powers of er inductively by letting er i == er er i - 1 for 
i > 2. Then the following properties can be established by using induction. For 
positive integers m and n we have 

and 

To illustrate, we have 

To preserve these laws of exponents , we define ero == ( 1 ) , where ( 1 )  is the identity 
element of Sym eS) , and er-n == (ern ) - l . Using these definitions , it can be shown 
that 

and 

for all integers m ,  n .  

2.3.5 Theorem. Every permutation in Sn can be written as a product of disjoint 
cycles. The cycles of length > 2 that appear in the product are unique. 

Proof Let S == { 1 ,  2 ,  . . .  , n } and let er E Sn == Sym eS) . If we apply successive 
powers of er to 1 ,  we have the elements 1 ,  er ( 1 ) ,  er 2 ( 1 ) , er 3 ( 1 ) ,  . . . , and after some 
point there must be a repetition since S has only n elements . Suppose that erm ( 1 )  == 
erk ( 1 )  is the first repetition, with m > k > 0. If k > 0, then applying er - 1 to both 
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sides of the equation a total of k times gives o-m-k ( l )  == 1 , which contradicts the 
choice of m .  Thus the first time a repetition occurs it is 1 that is repeated. 

If we let r be the least positive exponent for which we have o-r ( 1 )  == 1 , then the 
elements 1 , 0- ( 1 ) , 0- 2 ( 1 ) , . . .  o- r- l ( 1 )  are all distinct, giving us a cycle of length r :  

If r < n , let a be the least integer not in ( 1 , 0- ( 1 ) ,  . . .  , o- r- l ( I ) )  and form the 
cycle 

in which s is the least positive integer such that o-S (a) == a . (Such an exponent s 
exists by an argument similar to the one given above.) If r + s < n , then let b be 
the least positive integer not in the set 

{ I , 0- ( 1 ) ,  . . .  , o- r- l ( l ) , a ,  o- (a) , . . .  , o- s- l (a) }  

and form the cycle beginning with b .  We continue in this way until we have exhausted 
S. Then 

0- == ( 1 , 0- ( 1 ) , . . .  , 00 r- l ( 1 ) ) (a , o- (a) , . . .  , 00s- l (a) )  

and we have written 0- as a product of disjoint cycles . 
In fact we have given an algorithm for finding the necessary cycles . Since the 

cycles are disjoint, by the previous proposition the product does not depend on their 
order. Note that cycles of length 1 can be omitted. It is left as an exercise to show 
that a given permutation can be expressed as a product of disjoint cycles in only one 
way (if the order is disregarded) . D 

Since any cycle of length one in Sn is the identity function, we will usually omit 
cycles of length one when we write a permutation as a product of disjoint cycles. 
Thus if a permutation 0- E Sn is written as a product of disjoint cycles of length 
greater than or equal to two, it is not hard to verify that for any i ( 1  < i < n ) missing 
from these cycles we know that 0- (i ) == i .  On the other hand, if you want each i (for 
1 < i < n)  to appear in the notation, you may include all of the cycles of length 
one. 

Example 2.3.6. 

L ( 1 2 3 4 5 6 7 8 ) A l " h l " h "  et a == 5 2 7 6 3 8 1 4 . pp ylng t e a gont m gIven 

in the proof of Theorem 2 .3 . 5 , we can write a == ( 1 , 5 , 3 , 7) (2) (4 , 6 , 8) == 
( 1 , 5 , 3 , 7) (4 , 6 , 8) . 0 



2.3. PERMUTATIONS 79 

In general , if we wish to mUltiply (compose) two permutations in cycle notation, 
we do not have to return to the double-row format. We can use the algorithm in 
Theorem 2 .3 .5  to write the product (composition) as a product of disjoint cycles, 
remembering to work from right to left. The procedure is more difficult to describe 
in words than it is to carry out, but nonetheless we will now try to give a brief 
description of it. 

Say we wish to find the composite function (a i , a2 , . . .  , ak ) (b l , b2 , . . .  , bm ) .  To 
find the image of i we first see if i is equal to some bs . If it is , then we know 
that (b I , b2 , . . .  , bm ) maps i == bs to bs+ I . (In case s == m ,  i is mapped to b l . ) 
We then look for bs+ l in (a i , a2 , . . .  , ak ) .  If it appears here, say bs+ I == at , then 
(a i , a2 , . . .  , 'ak ) maps bs+ l to at+ l .  (In case t == k, bs+ I is mapped to a l . )  Thus the 
composite function maps i to at+ l .  If bs+ l does not appear in (a i ,  a2 , . . .  , ak ) ,  then 
(a i ,  a2 , . . .  , ak ) maps bs+ l to bs+ l ,  and so the composite function maps i to bs+ l in 
this case. 

Likewise, if i does not appear in (b l , b2 , . . .  , bm ) ,  then it leaves i fixed and we 
only need to look for i in (a i ,  a2 , . . .  , ak ) .  If i == as , then (a i , a2 , . . .  , ak ) maps i 
to as+ l (in case s == k, i is mapped to a I ) , and so the composite function maps i to 
as+ I .  If i does not appear in either (a i , a2 , . . .  , ak ) or (b I , b2 , . . .  , bm ) ,  then i is left 
fixed by the composite function. 

Thus if we want to write our product as a product of disjoint cycles, start with 
i == 1 and find the image of i , say j ,  as we have outlined above. N ow, starting 
with j , repeat the procedure until we return to 1 ,  completing the first cycle. Then, 
starting with the least integer that does not appear in that cycle , we apply the same 
procedure until the second cycle is complete. This is repeated until all entries of the 
two original cycles have been used. 

Example 2.3.7. 

Consider the cycles (2 , 5 , 1 , 4 , 3) and (4, 6 , 2) in S6 . We have 

(2, 5 ,  1 , 4 , 3) (4, 6 , 2) == ( 1 , 4 , 6 , 5) (2 , 3) 

and we note again that the product of two cycles need not be a cycle . D 

Since every positive power of a must belong to Sn , while there are only finitely 
many elements in Sn , there must exist positive integers i > j such that a i == aJ . 
Taking the composition with a - 1 a total of j times shows that a i -J == ( 1 ) .  Thus 
we have shown that there is a positive integer m such that am == ( 1 ) .  

If a == (a i ,  a2 , . . .  , am ) is a cycle of length m ,  then applying a m times to any ai , 
i == 1 , 2 , . . .  , m gives ai . Thus am == ( 1 ) . Furthermore, m is the smallest positive 
power of a that equals the identity, since a k (a l ) == ak+ l for 1 < k < m .  In terms of 
the following definition, we have just shown that a cycle of length m has order m .  
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2.3.6 Definition. Let a E Sn . The least positive integer m such that a m == ( 1 )  is 
called the order of a . 

2.3.7 Proposition. Let a E Sn have order m.  Then for all integers i ,  j we have 
a

i 
== a ) ifand only ifi  = j (mod m) .  

Proof By assumption m is the smallest positive exponent with am == ( 1 ) .  If 
a i == a ) , for any integers i, j , then mUltiplying by a -) shows that a i -) == ( 1 ) .  
Using the division algorithm we can write i - j == q m  + r for integers q ,  r with 
o < r < m . Then since 

we must have r == 0 because m is the least positive integer for which am == ( 1 ) .  
Thus m I (i - j )  and s o  i - j (mod m) . 

Conversely, if i = j (mod m ) ,  then i == j + mt for some integer t .  Hence 

This completes the proof. 0 

2.3.8 Proposition. Let a E Sn be written as a product of disjoint cycles. Then the 
order of a is the least common multiple of the lengths of its cycles. 

Proof If a == (a I , a2 , . . .  , am ) ,  then a has order m .  Furthermore, if a k == ( 1 ) , then 
m I k by the previous proposition. 

Next, if a == (a I , a2 , . . .  , am ) (b I , b2 , . . .  , br ) is a product of two disjoint cycles, 
then a ) == (a I , a2 , . . .  , am ) ) (b I , b2 , . . .  , br ) ) since (a I , a2 , . . .  , am ) commutes with 
(b I , b2 , . . .  , br ) .  If a ) == ( 1 ) ,  then (a I , a2 , . . .  , am )) == ( 1 )  and (b I , b2 , . . .  , br ) ) == 
( 1 )  since (b I , b2 , . . .  , br )) leaves each ai fixed and (a I , a2 , . . .  , am )) leaves each bi 
fixed. This happens if and only if m I j and r I j , and then lcm[m , r] is a divisor of 
j .  The smallest such j is thus lcm[m , r ] .  

It should now be  clear how to extend this argument to the general case. 0 

Example 2.3.8. 

The permutation ( 1 , 5 , 3 , 7) (2 , 8 , 4) has order 1 2 in S8 . The permutation 
( 1 , 5 , 3) (2 , 8 , 4 , 6 , 9 , 7) has order 6 in S9 . D 

If we wish to compute the inverse of a cycle, then we merely reverse the order 
of the cycle since 
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The inverse of the product (5 r of two permutations is r - 1 (5 - 1 since 

and similarly 

Thus we have 

Note that if the cycles are disjoint, then they commute, and so the inverses do not 
need to be written in reverse order. 

The simplest cycle, aside from ( 1 ) ,  is one of the form (a 1 , a2) .  This represents 
an interchange of two elements . We now show that any permutation of a finite 
set can be obtained from a sequence of such interchanges . Whether the number 
of interchanges is even or odd is important in certain applications , for example in 
determining the signs of the elementary products used to compute the determinant 
of a matrix . 

2.3.9 Definition. A cycle (a 1 ' a2) of length two is called a transposition. 

2.3.10 Proposition. Any permutation in Sn , where n > 2, can be written as a 
product of transpositions. 

Proof By Theorem 2 .3 .5  any permutation in Sn can be expressed as a product of 
cycles , and so we only need to show that any cycle can be expressed as a product 
of transpositions . The identity ( 1 )  can be expressed as ( 1 ,  2) ( 1 , 2) . For any other 
permutation, we can give an explicit computation : 

This completes the proof. 0 

In the above proof, the expression we have given for (a l ' a2 , . . .  , ar- 1 , ar ) seems 
to be the most natural one, given that we read composition of permutations from 
right to left. It is also true that 

This expression may be easier for the student to remember. It also shows that the 
representation of a permutation as a product of transpositions is not unique. 
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Example 2.3.9. 

Applying Proposition 2 .3 . 1 0 to S3 gives us the following products . We have 
( 1 )  = ( 1 , 2) ( 1 , 2) , and ( 1 , 2) , ( 1 , 3) , and (2, 3) are already expressed as 
transpositions .  Finally, ( 1 , 2 , 3) = (2, 3) ( 1 , 3) and ( 1 , 3 , 2) = (3 , 2) ( 1 , 2) . 
We could also write ( 1 , 2 , 3) = ( 1 , 2) ( 1 , 3) ( 1 , 2) ( 1 , 3) . 
As another example, we have (2, 5 , 3 , 7 , 8) = (7 , 8) (3 , 8) (5 , 8) (2 , 8) , as well 
as (2, 5 , 3 , 7 , 8) = (2, 5) (5 , 3) (3 , 7) (7 , 8) , using the second method. D 

In the above example we have illustrated that writing ( 1 ,  2 ,  3 )  as a product of 
transpositions can be done in various ways, and in fact we have written it as a 
product of two transpositions in one case and four in another. In general , although 
the transpositions in the product are not uniquely determined, we do have a bit of 
uniqueness remaining, namely, the parity of the product. By this we mean that the 
number of transpositions in the product is either always even or always odd. This 
is the content of Theorem 2.3 . 1 1 . 

The proof of the theorem may appear to be rather complicated, so it seems 
to be worthwhile to comment on the general strategy of the proof. We wish to 
show that something cannot occur, and we do so by contradiction, assuming that a 
counterexample exists . If so, then a counterexample of minimal length exists . After 
modifying the counterexample without ever making it longer, we show that we can, 
in fact, produce an even shorter counterexample. This contradicts the minimality 
of the counterexample we started with. This general technique of proof goes back 
to Fermat and is often quite useful . We give another proof of the same fact in 
Section 3 .6. 

2.3.11 Theorem. If a permutation is written as a product of transpositions in two 
ways, then the number of transpositions is either even in both cases or odd in both 
cases. 

Proof We will give a proof by contradiction. Suppose that the conclusion of 
the theorem is false. Then there exists a permutation a that can be written as a 
product of an even number of transpositions and as a product of an odd number of 
transpositions , say 

a == i1 i2 . . . i2m == 8 U 52 . . . 82n+ 1 
for transpositions iI , . . .  , i2m and 8 1 , • • •  , 82n+ 1 . Since 8 j == 8j 1 for j == 1 ,  . . .  , 2n + 

1 , we have a - I == 82n+ 1 . . . 8 1 , and so 

This shows that the identity permutation can be written as a product of an odd 
number of transpositions . 
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N ext suppose that ( 1 )  = PI P2 . . .  Pk i s  the shortest product of an odd number 
of transpositions that is equal to the identity. Note that k > 3 ,  and suppose that 
PI = (a , b) . We observe that a must appear in at least one other transposition, 
say Pi , with i > 1 ,  since otherwise PI . . .  Pk (a ) = b, a contradiction. Among all 
products of length k that are equal to the identity, and such that a appears in the 
transposition on the extreme left, we assume that PI P2 . . .  Pk has the fewest number 
of a 's .  

We now show that if Pi is the transposition of smallest index i > 1 in which a 
occurs , then Pi can be moved to the left without changing the number of transposi
tions or the number of times that a occurs in the product. Then combining Pi and 
PI will lead to a contradiction. 

Let a , u , v, and r be distinct. By computation, we see that (u , v ) (a ,  r) = 

(a , r) (u , v) and (u , v ) (a ,  v) = (a , u) (u , v) . Hence we can move a transposition 
with entry a to the second position without changing the number of a 's that appear, 
and thus we may assume that P2 is the next transposition in which a occurs , say 
P2 = (a , c) for some c � a .  If c = b, then PI P2 = ( 1 ) ,  and so ( 1 )  = P3 . . .  Pk is a 
shorter product of an odd number of transpositions ; this gives us a contradiction. If 
c � b , then since (a , b) (a ,  c) = (a , c) (b , c) , we see that ( 1 )  = (a , c) (b , C)P3 . . .  Pk 
is a product of transpositions of length k with fewer a 's ;  this again contradicts the 
choice of PI , . . .  , Pk . Thus we have shown that ( 1 )  cannot be written as a product 
of an odd number of transpositions , completing the proof. 0 

The point of Theorem 2.3 . 1 1  is that a given permutation is either even or odd, 
but not both. That result makes possible the following definition. 

2.3.12 Definition. A permutation (5 is called even if it can be written as a product 
of an even number of transpositions, and odd if it can be written as a product of an 
odd number of transpositions. 

Note that ( 1 , 2) is odd and ( 1 , 2 , 3) = (2 , 3) ( 1 , 3) is even. In remembering the 
parity of a cycle , it is important to note that in this terminology a cycle of odd length 
is even and a cycle of even length is odd. Calling to mind the simplest case ( 1 , 2) 
will remind you of this. 

We should also note that the identity permutation is even. Furthermore, if (5 
is an even permutation, then so is the inverse of (5 ,  since given (5 as a product of 
transpositions , we only need to reverse the order of the transpositions to write (5 - 1 
as a product of transpositions . 

Finally, we note that the product of two even permutations is again an even 
permutation, and also that the product of two odd permutations is even, while the 
product of an odd permutation and an even permutation is odd. This remark follows 
from Theorem 2.3 . 1 1 and the fact that the sum of two even integers is even, the sum 
of two odd integers is even, and the sum of an odd and an even integer is odd. 
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EXERCISES: SECTION 2.3 

1 .  Consider the following permutations in S7 . ( 1 2 3 4 5  6 7 ) a � 3 2 5 4 6 1 7 

Compute the following products . 
t ea) ar 
(b) ra 

t (c) r2a 
(d) a- I 

t ee) ara- l 
(f) r- I a r 

and r - ( 1 2 3 4 5 6 7
3) - 2 1 5 7 4 6  

2.tWrite each of the permutations ar , ra , r2a , a- I , ara- l , and r- I a r in Exercise 1 
as a product of disjoint cycles .  Write a and r as products of transpositions .  ( 1 2 3 4 5 6 7 8 9 1 0 ) 3 . Write 3 4 10  5 7 8 2 6 9 1 as a product of disjoint cycles and 

4. 

as a product of transpositions . Construct its associated diagram, find its inverse, and 
find its order. 

Find the order of each of the following permutations .  
Hint: First write each permutation as a product of disjoint cycles . 

t ea) ( ! 2 3 4 5 � ) 4 5 3 2 

(b) ( ! 2 3 4 5 6 7 � ) 6 7 5 1 8 2 

t ee) 
( ! 2 3 4 5 6 7 8 � ) 9 8 7 3 4 6 1 

(d) ( � 2 3 4 5 6 7 8 � ) 4 9 6 5 2 3 1 

5 . Let 3 :::; m :::; n . Calculate ar- l for the cycles a � ( 1 , 2 ,  . . .  , m - 1 )  and r 
( 1 , 2 ,  . . .  , m - 1 ,  m) in Sn . 

6. List all of the cycles in S4 . 

7 . t Find the number of cycles of each possible length in S5 . Then find all possible 
orders of elements in S5 . (Try to do this without having to write out all 1 20 possible 
permutations . ) 

8 . Count the permutations a in S6 that satisfy the conditions a ( 1 )  � 2 and a (2) � 3 . 
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9 . Let a, r E Sn be permutations such that a (k) == k and r (k) == k for some k with 
1 :s k :s n . Show that a- I (k) == k and that p (k) == k , where p == ar .  

10 . Let a E Sn , and suppose that a is written as a product of disjoint cycles . Show that 
a is even if and only if the number of cycles of even length is even. Show that a is 
odd if and only if the number cycles of even length is odd. 

1 1 . Prove that in Sn , with n :::: 3 , any even permutation is a product of cycles of length 
three. 
Hint: (a , b) (b , c) == (a , b , c) and (a , b) (c , d) == (a , b , c) (b , c , d) . 

12 . Prove that (a , b) cannot be written as a product of two cycles of length three. 

1 3 . Let r E Sn be the cycle ( 1 , 2 , . . .  , k) of length k, where k :s n . 
(a) Prove that if a E Sn , then ara- I == (a ( I ) ,  a (2) , . . .  , a (k)) . Thus ara- I i s  a 
cycle of length k. 
(b) Let p be any cycle of length k . Prove that there exists a permutation a E Sn such 
that a ra- l == p . 

14 . Let S be any nonempty set, and let a E SymeS) . For x ,  y E S  define x � y if 
an (x ) == y for some n E Z. Show that � defines an equivalence relation on S. 

1 5 . For a, {3 E Sn , let a � {3 if there exists a E Sn such that aaa- l == (3. Show that � 
is an equivalence relation on Sn . 

1 6 . View S3 as a subset of S5 , in the obvious way. For a, r E S5 , define a � r if 
ar- l E S3 . 
(a) Show that � is an equivalence relation on S5 . 
(b) Find the equivalence class of (4 , 5) . 
(c) Find the equivalence class of ( 1 ,  2 , 3 , 4 , 5) . 
(d) Determine the total number of equivalence classes . 

Notes 

Permutations are important in studying solvability by radicals .  The roots of any 
polynomial equation with rational coefficients exist in the set of complex numbers . 
To determine whether these roots can be expressed in terms of the coefficients , 
allowing various radicals, as in the quadratic formula, it is necessary to consider 
the permutations , or "substitutions," of the roots that leave the basic combinations 
of the coefficients unchanged . In general, it is not easy to determine whether or 
not a particular permutation of the roots leaves all sums, differences, products , and 
quotients of the coefficients fixed. 



86 NOTES 

In order to give a simple illustration of the effect of permuting the roots of an 
equation, we will consider a polynomial equation that is particularly easy to work 
with. We have chosen the equation 

x
3 - 3x + 1 = 0 

because its roots can be found from the identity 4 cos3 () - 3 cos () - cos (3()) = 0 
(proved in Lemma 6. 3 . 8) by choosing angles () with cos (3()) = - 1 /2. These roots 
are 

2;r 
x = 2 cos - ,  

9 

4;r 
x = 2 cos - ,  

9 

8;r 
x = 2 cos - . 

9 

If we call the roots rl , r2 , r3 , then we have the factorization 

and expanding the right hand side shows that 

( 1 )  

In these equations we can permute the roots rl , r2 , r3 .  The six possibilities are 
obtained by letting the elements of S3 act on the subscripts . In Figure 2 . 1 ,  each 
element of S3 is listed beside the corresponding permutation of the roots . 

Figure 2. 1 :  

rl r2 r3 

( 1 )  rl r2 r3 

( 1 , 2 , 3) r2 r3 rl 
( 1 , 3 , 2) r3 r l r2 
(2 , 3) rl r3 r2 
( 1 , 3) r3 r2 rl 
( 1 , 2) r2 rl r3 

In our study of polynomial equations , identities such as those given above in 
( 1 )  will play a crucial role. We will return to this example in the notes at the end of 
Chapter 3, where we will show (by finding an additional identity) that only certain 
permutations of the roots leave all combinations of the coefficients unchanged. 



Chapter 3 

GROUPS 

Symmetry occurs frequently and in many forms in nature. Starfish possess rotational 
symmetry ; the human body exhibits bilateral symmetry. A third sort of symmetry 
appears in some wallpaper or tile patterns that can be shifted in various directions 
without changing their appearance. 

Each coefficient of a polynomial is a symmetric function of the polynomial 's 
roots . To see what we mean by this, consider a monic cubic polynomial f(x) with 
roots rl , r2 , r3 . Then 

where rl + r2 + r3 = -b, rl r2 + r2r3 + r3rl = c ,  and rl r2r3 = -d.  Notice that if we 
permute rl , r2 , r3 by (for example) replacing r l by r2 , r2 by r3 , and r3 by rl , then the 
coefficients b ,  c ,  d remain unchanged. In fact, the coefficients remain unchanged 
under any permutation of the roots , and so we say that they are symmetric functions 
of the roots . 

The important feature of symmetry is the way that the shapes (or roots) can be 
changed while the whole figure (or the coefficients) remains unchanged. Geomet
rically, individual points move (or, algebraically, the roots interchange) while the 
figure as a whole (or the polynomial) remains the same. With respect to symmetry, 
geometrically the important thing is not the position of the points but the operation 
of moving them, and similarly, with respect to considering the roots of polynomials, 
it is the operation of shifting the roots among themselves that is most important and 
not the roots themselves . This was the key insight that enabled Galois to give a 
complete answer to the problem of solving polynomial equations by radicals . 

The mathematical idea needed for the study of symmetry is that of a group, and 
in this chapter we introduce this important concept. We first discuss the abstract 
definition of a group, and attempt to clarify it for the reader by considering a wide 
variety of examples in considerable detail. We include sections on permutation 
groups, in which we consider groups of symmetries of some geometric objects, 
and cyclic groups ,  which we have already met in the guise of Z and Zn . We also 
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study one-to-one correspondences that preserve the group structure (you may wish 
to reread the discussion in the introduction to Chapter 2) . The last section deals 
with the notion of a group formed from equivalence classes of elements of a group . 
The procedure by which we formed Zn from Z can be extended to any group. Such 
groups, which we call "factor groups," play a crucial role in Chapter 8 in the study 
of Galois theory. 

3.1 Definition of a Group 

In describing the difference between arithmetic and algebra, it might be said that 
arithmetic deals exclusively with numbers , while algebra deals with letters that 
represent numbers . The next step in abstraction involves dealing with objects that 
may not even represent numbers . For example , in learning calculus it is necessary 
to develop an "arithmetic" for functions . To give another example, in working with 
matrices, it is again necessary to develop some rules for matrix operations , and 
these rules constitute an "arithmetic" for matrices . The common thread in these 
developments , from an algebraic point of view, is the idea of an operation. Thus, as 
operations , we have addition, multiplication, and composition of functions , together 
with addition and multiplication of matrices . When we write A B for a product of 
matrices, for example, we have created a notation that allows us to think of it as 
analogous to ordinary multiplication, even though it represents a more complicated 
computation. 

The operations we will study will be binary operations ; that is, we will consider 
only operations which combine two elements at a time. A useful model to use is 
that of a computer program that allows two inputs and combines them in some way 
to give a single output. If we have an operation on a particular set, then we require 
that combining two inputs from the set will result in an output belonging to the same 
set. Furthermore, the output must depend only on the inputs , so that the answer is 
unique (when two inputs are specified) . 

A binary operation * on a set S is a rule that assigns to each ordered pair (a , b) 
of elements of S a unique element a * b of S. For example, the ordinary operations 
of addition, subtraction, and multiplication are binary operations on the set of real 
numbers . The operation of division is not a binary operation on the real numbers 
because it is not defined for all ordered pairs of real numbers (division by zero is 
not defined) . If we exclude zero from the set on which we are using -;-, then for any 
ordered pair (a , b) of real numbers , applying the operation -;- we get the quotient 
alb, which is uniquely defined and is again a nonzero real number, showing that 
we have a binary operation. Although subtraction is a binary operation on the set 
of all real numbers , it is not a binary operation on the set of natural numbers , since, 
for example, 1 - 2 is not in the set of natural numbers . 

A binary operation permits us to combine only two elements , and so a priori 
a * b * c does not make sense. But (a * b) * c does make sense because we first 
combine a and b to get a * b and then combine this element with c to get (a * b) * c. 
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On the other hand, a * (b * c) also makes sense because we combine b and c to get 
b * c and then combine a with this element to get a * (b * c) . The point of requiring 
the associative law is that both of these options should yield the same result, giving 
a * (b * c) == (a * b) * c for all a ,  b ,  c E S. Notice that the order in which a ,  b ,  
and c occur is not changed. For example, subtraction does not define an associative 
operation on the set R of real numbers , since it is not true that a - (b - c) == (a - b) - c  
for all a ,  b ,  c E R (we leave i t  up to the reader to find real numbers a ,  b ,  c for which 
the associative law fails) . 

3.1.1 Definition. A binary operation * on a set S is afunction * : S x S -+ S from 
the set S x S of all ordered pairs of elements in S into S. 

The operation * is said to be associative if a * (b * c) == (a * b) * c for all 
a , b , c  E S. 

An element e E S is called an identity element for * if a * e == a and e * a == a 
for all a E S. 

If * has an identity element e, and a E S, then b E S is said to be an inverse for 
a if a * b == e and b * a == e. 

To illustrate these ideas, we can look at some sets of real numbers . We have 
already noted that multiplication defines a binary operation on R. The number 1 
serves as an identity element, and if a E R is nonzero, then 1 /  a is the inverse of 
a .  The number 0 has no multiplicative inverse, since 0 . x == 1 has no solution in 
R. If S == {x E R I x > I } , then multiplication defines a binary operation on S, 
and 1 still works as an identity element. But now 1 is the only element of S that 
has a multiplicative inverse, since if a > 1 ,  then 1 /  a < 1 ,  and thus 1 /  a fj. S . If we 
redefine S to be {x E R I x > I } , then S does not have an identity element. Finally, 
as an extreme example, if we choose S to be {x E R I x < OJ ,  then multiplication 
does not even define a binary operation on S, since it is false that the product of any 
two elements of S again belongs to S. 

As a further illustration of the ideas in Definition 3 . 1 . 1 ,  let S be the set of 
all functions from a set A into itself. If ¢ ,  () E S, then define ¢ * () by letting 
¢ * () (a )  == ¢ (() (a ) )  for all a E A . This defines a binary operation on S, and the 
identity function is an identity element for the operation . Furthermore, composition 
of functions is associative, and the functions that have inverses are precisely the 
ones that are both one-to-one and onto . 

The set Mn (R) of all n x n matrices with entries from the real numbers R 
provides another good example. Matrix multiplication defines a binary operation 
on Mn (R) , and the identity matrix serves as an identity element. The proof that 
associativity holds is a laborious one if done directly from the definition. The 
appropriate way to remember why it holds is to use the correspondence between 
matrices and linear transformations, under which matrix multiplication corresponds 
to composition of functions . Then we only need to observe that composition of 
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functions is associative. Finally, recall that a matrix has a multiplicative inverse if 
and only if its determinant is nonzero. We should note that matrix multiplication 
does not define a binary operation on the set of nonzero matrices in Mn (R) , since 
the product of two nonzero matrices may very well be the zero matrix. 

Addition of matrices defines an associative binary operation on Mn (R) , and in 
this case the identity element is the zero matrix. Each matrix has an inverse with 
respect to this operation, namely, its negative. 

Since the definition of a binary operation involves a function, we sometimes face 
problems similar to those we have already encountered in checking that a function is 
well-defined. For example, consider the problem inherent in defining multiplication 
on the set of rational numbers 

Q = { : 1 m, n E Z and n # 0 } 
where min and p Iq represent the same element ifmq == np . (See Example 2.2 .3 for 
a discussion of this equivalence relation.) If a , b E Q with a == min and b == s i t , 
then we use multiplication of integers to define ab == ms I nt . We must check that 
the product does not depend on how we choose to represent a and b. If we also have 
a == plq and b == ulv , then we must check that pulqv is equivalent to mslnt . 
Since min and pi q are assumed to be  equivalent and s i t and u I v are assumed to 
be equivalent, we have mq == np and sv == t u . Multiplying the two equations gives 
(ms) (q v) == (n t ) (pu) , which shows that ms I nt is equivalent to pu I qv . This allows 
us to conclude that the given multiplication of rational numbers is well-defined. 

3.1.2 Proposition. Let * be an associative binary operation on a set S. 

(a) The operation * has at most one identity element. 
(b) If * has an identity element, then any element of S has at most one inverse. 

Proof (a) Suppose that e and el are identity elements for * .  Since e is an identity 
element, we have e * e' == e' , and since e' is an identity element, we have e * e' == e . 
Therefore e == e' . 

(b) Let e be the identity element for S relative to the operation * .  Let b and b' 
be inverses for the element a . Then b * a == e and a * b' == e, and so using the fact 
that * is associative we have 

bl == e * b' == (b * a) * b' == b * (a * b') == b * e == b . 
This completes the proof. 0 

Part (b) of Proposition 3 . 1 .2 justifies referring to the inverse of an element, 
whenever it exists . If * is an associative binary operation on a set S, and a E S 
has an inverse, then we will use the notation a- I to denote the inverse of a . Thus 
the equations that define an inverse (from Definition 3 . 1 . 1 ) can be rewritten in the 
following form: a * a- I == e and a- I * a == e . 
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3.1.3 Proposition. Let * be an associative binary operation on a set S. If * has 
an identity element and a , b E S have inverses a- I and b- I , respectively, then the 
inverse of a - I exists and is equal to a, and the inverse of a * b exists and is equal to 
b- I - 1 * a . 

Proof Let e be the identity element for S relative to the operation * .  The equations 
a * a- I == e and a- I * a == e that state that a- I is the inverse of a also show that a 
is the inverse of a- I . Using the associative property for * ,  the computation 

( (a * b) * b- I ) * a- I 
(a * (b * b- I ) ) * a- I 
(a * e) * a- I == a * a- I == e 

and a similar computation with (b- I * a- I ) * (a * b) shows that the inverse of a * b 
is b- I * a- I . 0 

The general binary operations we work with will normally be denoted multi
plicatively ; that is , instead of writing a * b we will just write a . b, or simply abo 
Using this notation, the previous proposition shows that (ab) - I == b- I a- I , provided 
that a and b have inverses . However, there are situations where it is natural to use 
a notation other than juxtaposition for the binary operation. In particular, when a 
binary operation * satisfies the commutative law a * b == b * a , it is quite common 
to use additive notation for the operation. 

We now come to the main goal of this section-the definition of a group. Since 
definitions are the basic building blocks of abstract mathematics, the student will not 
progress without learning all definitions very thoroughly and carefully. Learning 
a definition should include associating with it several examples that will immedi
ately come to mind to illustrate the important points of the definition. Following 
the definition we verify some elementary properties of groups and provide some 
broad classes of examples : groups of numbers, with familiar operations ; groups of 
permutations, in which the operation is composition of functions ; and groups of 
matrices, using matrix multiplication. 

3.1.4 Definition. Let (G, *) denote a nonempty set G together with a binary oper
ation * on G. That is, the following condition must be satisfied. 

(i) Closure: For all a ,  b E G, the element a * b is a well-defined element of G. 
Then G is called a group if the following properties hold. 

(ii) Associativity: For all a , b , c E G, we have a * (b * c) == (a * b) * c. 
(iii) Identity: There exists an identity element e E G, that is, an element e E G 

such that e * a == a and a * e == afar all a E G. 
(iv) Inverses: For each a E G there exists an inverse element a- I E G, that is, 

an element a- I E G such that a * a- I == e and a- I * a == e. 
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Proposition 3 . 1 .2 implies that the identity element e is unique. Proposition 3 . 1 .3 
implies that (a- I ) - 1 == a , and as an elementary consequence of this ,  we note that 
a == b if and only if a- I == b- I . 

In the definition of a group G we do not require commutativity. That is , we do 
not assume that a * b == b * a for all a , b E G, since we want to allow the definition 
to include groups in which the operation is given by composition of functions or 
multiplication of matrices . 

In the definition, note carefully one distinction between an identity element and 
an inverse element : an identity element satisfies a condition for all other elements 
of G, whereas an inverse element is defined relative to a single element of G. The 
order in which the axioms (iii) and (iv) are stated is important, since it is impossible 
to talk about an inverse of an element until an identity element is known to exist. 

In Definition 3 . 1 .4 the axioms for a group are written out in full detail . We 
believe that as you are learning the definition of a group, it will help to have a 
"check list" of conditions that you can use to determine whether or not a set is a 
group under a given operation. In particular, we have listed the closure property 
separately, although it is actually a part of the definition of a binary operation. By 
doing this, we hope to make i t  impossible for you to forget to verify that the closure 
property holds when checking that a set with a given operation is a group. 

After you are familiar with the definition of a group, it is convenient to have a 
shorter statement to remember. We next give a "compact" version of the definition . 
It includes all that you need to state the definition of a group ; implicit in the words 
is a great deal of meaning. 

3.1.4 ' (Restatement of Definition 3.1.4) A group is a nonempty set G with an asso
ciative binary operation, such that G contains an identity element for the operation, 
and each element of G has an inverse in G. 

If G i s  a group and a E G , then for any positive integer n we define an to be 
the product of a with itself n times . This can also be done inductively by letting 
an == a * an- I . It is not difficult to show that the exponential laws 

and 

must hold for all positive exponents m ,  n .  To illustrate, we have 

a2 * a3 == (a * a) * (a * a * a) == a5 

and 
(a2) 3 == (a2) * (a2) * (a2) == (a * a) * (a * a) * (a * a) == a6 . 

To extend these laws from positive exponents to all integral exponents, we define 
aO == e, where e is the identity element of G, and a-n == (an ) - I . Using these 
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definitions, the above rules for exponents extend to all integers. The general proof 
is left as an exercise. 

To begin our examples of groups , we now consider the set R of all real numbers, 
using as an operation the standard multiplication of real numbers . It is easy to check 
that the first three axioms for a group are satisfied, but the fourth axiom fails because 
o can never have a multiplicative inverse (0 . x == 1 has no solution) . Thus in order 
to define a group using the standard multiplication, we must reduce the set we work 
with. 

Example 3.1 .1  (Multiplicative groups of numbers). 

Let R x denote the set of nonzero real numbers , with the operation given by 
standard multiplication. The first group axiom holds since the product of any 
two nonzero real numbers is still nonzero. The remaining axioms are easily 
seen to hold, with 1 playing the role of an identity element, and 1 /  a giving 
the inverse of an element a E R x .Thus R x is a group under multiplication. 
Similarly, we have the groups Q x of all nonzero rational numbers and C x of 
all nonzero complex numbers , under the operation of ordinary multiplication . 
If we attempt to form a multiplicative group from the integers Z, we have 
to restrict ourselves to just ± 1 ,  since these are the only integers that have 
multiplicative inverses in Z. 
The development of these number systems from first principles is outlined in 
Section A.2 of the appendix, as it is beyond the scope of this course to give a 
full development of them. To actually verify the group axioms in the course 
of such a development is a long and arduous task. We have chosen to take 
a naive approach, by assuming that the reader is familiar with the properties 
and is willing to accept that a careful development is possible. 0 

The previous examples exhibit some of the most familiar groups .  The next 
proposition deals with the most basic type of group. Recall that a permutation of a 
set S is a one-to-one function from S onto S. We will show in Section 3 .6 that groups 
of permutations provide the most general models of groups . For convenience, we 
repeat the notation established in Section 2. 3 .  The use of the word group in the 
definition of SymeS) will be justified by Proposition 3 . 1 .6 . 

3.1.5 Definition. The set of all permutations of a set S is denoted by Sym eS). The 
set of all permutations of the set { I , 2 ,  . . .  , n } is denoted by Sn . 

The group SymeS) is called the symmetric group on S, and Sn is called the 
symmetric group of degree n. 

3.1.6 Proposition. If S is any nonempty set, then SymeS) is a group under the 
operation of composition offunctions. 
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Proof The closure axiom is satisfied since by Proposition 2. 1 .5 the composite of 
two one-to-one and onto functions is again one-to-one and onto . Composition of 
functions is associative by Proposition 2. 1 .3 .  The identity function on S serves as 
an identity element for SymeS) . Finally, by Proposition 2. 1 .7 a function from S into 
S is one-to-one and onto if and only if it has an inverse function, and the inverse is 
again one-to-one and onto, so it belongs to SymeS) .  0 

To see that Sn has n !  elements, let S == { I , 2, . . .  , n } .  To define a permutation 
(5 : S -+ S, there are n choices for (5 ( 1 ) .  In order to make (5 one-to-one, we must 
have (5 (2) i=- (5 ( 1 ) ,  and so there are only n - 1 choices for (5 (2) . Continuing this 
analysis we can see that there will be a total of n . (n - 1 )  . . . · 2 · 1 == n !  possible 
distinct permutations of S. 

In Table 3 . 1 . 1  we give the multiplication table for the group S3 . We will use 
cycle notation for the permutations. The function that leaves all three elements 
1 ,  2, 3 fixed is the identity, which we will denote by ( 1 ) .  It is impossible for a 
permutation on three elements to leave exactly two elements fixed, so next we 
consider the functions that fix one element while interchanging the other two. The 
function that interchanges 1 and 2 will be denoted by ( 1 , 2) . Similarly, we have 
( 1 , 3) and (2 , 3) . Finally, there are two permutations that leave no element fixed. 
They are denoted by ( 1 ,  2, 3) for the permutation (5 with (5 ( 1 )  == 2, (5 (2) == 3 ,  
and (5 (3)  == 1 ;  and ( 1 , 3 , 2) for the permutation r with r ( l )  == 3 ,  r (3)  == 2 ,  and 
r (2) == 1 .  Remember that the products represent composition of functions and 
must be evaluated in the usual way functions are composed, from right to left. In 
Table 3 . 1 . 1 , to find the product (5 r ,  look in the row to the right of (5 for the entry in 
the column below r .  Note that we are using the notation (5r  to indicate composition 
of functions, as we did in Section 2 .3 .  This is much simpler than writing (5 0 r or 
(5 * r .  

In each row of Table 3 . 1 . 1 , each element of the group occurs exactly once. The 
same is true in each column. This phenomenon occurs in any such group table. To 
explain this ,  suppose we look at the row corresponding to an element a . The entries 
in this row consist of all elements of the form ag , for g E G . The next proposition, 
the cancellation law, implies that if g I i=- g2 , then agI i=- ag2 . This guarantees that 
no group elements are repeated in the row. A similar argument applies to the column 
determined by a , which consists of elements of the form ga for g E G . 

In the next proposition, we drop the notation a * b for the product of  a , b E G , 
and simply write ab instead. It is important to remember how we are using this 
shorthand notation. For example, addition of exponents takes on a more familiar 
look: am an == am+n . We will need to use the axioms for a group, and if we 
omit the symbol * for the group operation, we have the following properties (see 
Definition 3 . 1 .4') .  We have (ii) a (be) == (ab)e for all a , b , e E G, (iii) there exists 
e E G with ea == a and ae == a for all a E G, and (iv) for each a E G there exists 
a- I E G with aa- I � e and a- I a == e . 
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Table 3 . 1 . 1 :  Multiplication in S3 

( 1 )  ( 1 ,2 ,3)  ( 1 ,3 ,2) ( 1 ,2) ( 1 ,3 )  (2,3 )  

( 1 )  ( 1 )  ( 1 ,2 ,3) ( 1 ,3 ,2) ( 1 ,2) ( 1 ,3 )  (2,3 )  

( 1 ,2,3)  ( 1 ,2,3 )  ( 1 ,3 ,2) ( 1 )  ( 1 ,3 )  (2,3)  ( 1 ,2) 

( 1 ,3 ,2) ( 1 ,3 ,2) ( 1 )  ( 1 ,2,3 )  (2 ,3 )  ( 1 ,2) ( 1 ,3 )  

( 1 ,2) ( 1 ,2) (2,3)  ( 1 ,3 )  ( 1 )  ( 1 ,3 ,2) ( 1 ,2,3)  

( 1 ,3 )  ( 1 ,3)  ( 1 ,2) (2,3)  ( 1 ,2 ,3) ( 1 )  ( 1 ,3 ,2) 

(2,3 )  (2,3 )  ( 1 , 3 )  ( 1 ,2) ( 1 , 3 ,2) ( 1 ,2,3 )  ( 1 )  

3.1.7 Proposition (Cancellation Property for Groups). Let G be a group, and let 
a ,  b, c E G. 

(a) If ab == ac, then b == c. 
(b) If ac == bc, then a == b. 

Proof Given ab == ac, mUltiplying on the left by a- I (which exists since G is a 
group) gives a- I (ab) == a- I (ac) . Using the associative law, (a- I a)b == (a- I a)c . 
Then eb == ec, which shows that b == c . The proof of the second part of the 
proposition is similar. 0 

The next proposition provides some motivation for the study of groups .  It shows 
that the group axioms are precisely the assumptions necessary to solve equations of 
the form ax == b or xa == b. 

3.1.8 Proposition. IfG is a group and a, b E G, then each o/the equations ax == b 
and xa == b has a unique solution. 

Conversely, if G is a nonempty set with an associative binary operation in which 
the equations ax == b and xa == b have solutions/or all a , b E G, then G is a group. 

Proof Let G be a group, and let a , b E G . Then a has an inverse, and substituting 
x == a - I b in the equation ax == b gives 
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showing that we have found a solution. If s and t are solutions of the equation 
ax == b, then as == b == a t , and so s == t by Proposition 3 . 1 .7 , showing that we have 
in fact found a unique solution of ax == b. Similarly, x == ba - l can be shown to be 
the unique solution of the equation xa == b. 

Conversely, suppose that G has an associative binary operation under which the 
equations ax == b and xa == b have solutions for all elements a , b E G . There is at 
least one element a E G, and so we first let e be a solution of the equation ax == a . 
Next, we will show that be == b for all b E G . Let b E G  be given, and let c be a 
solution to the equation xa == b , so that ca == b . Then 

be == (ca)e == c (ae) == ca == b . 

Similarly, there exists an element e' E G such that e'b == b for all b E G . But then 
e' == e' e and e' e == e , and so we conclude that e' == e . Thus e satisfies the conditions 
that show it to be an identity element for G. 

Finally, given any element b E G, we must find an inverse for b. Let c be a 
solution of the equation bx == e and let d be a solution of the equation x b == e. Then 

d == de == d(bc) == (db)c == ec == c 

and so d == c . Thus bc == e and cb == e , and so c is an inverse for b. This completes 
the proof that G is a group. D 

We have seen examples of groups of several different types . We already need 
some definitions to describe them. Groups that satisfy the commutative law are 
named in honor of Niels Abel , who was active in the early nineteenth century. He 
showed that such groups were important in the theory of equations, and gave a proof 
that the general fifth degree equation cannot be solved by radicals. 

3.1.9 Definition. A group G is said to be abelian if ab == ba for all a, b E G . 

In an abelian group G , the operation is very often denoted additively. With this 
notation, the associative law a * (b *c) == (a *b) *c becomes a + (b+c) == (a +b) +c 
for all a , b , c E G . The identity element i s  then usually denoted by 0 and is called 
a zero element , and the equations e * a == a and a * e == a that define the identity 
e are rewritten as 0 + a == a and a + 0 == a . The additive inverse of an element a 
is denoted by -a , and satisfies the equations a + (-a) == 0 and (-a) + a == O. 

It may be useful to interpret Propositions 3 . 1 .7 and 3 . 1 . 8 in additive notation. We 
begin by rewriting these propositions using our original notation * for the operation. 
Proposition 3 . 1 .7 says that if a , b, c are elements of a group G, then a * b == a * c 
implies b == c, and a * c == b * c implies a == b. If we use the symbol + in place 
of *, we have the statement a + b == a + c implies b == c, for all a , b , c E G . 
Because we are assuming that the commutative law holds , the second condition that 
a + c == b + c implies a == b does not add any additional information about G. In 
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additive notation, the equation a * x == b in Proposition 3 . 1 . 8 becomes a + x == b, 
so we have the statement that in any abelian group (G ,  +) the equation a + x == b 
has a unique solution, for any a , b E G . The solution is x == (-a) + b .  

Let G be an abelian group, and let a E G .  For a positive integer n , the sum of 
a with itself n times will be denoted by na . In additive notation, this replaces the 
exponential notation an . It is important to remember that this is not a multiplication 
that takes place in G,  since n is not an element of G .  For instance, G might be the 
group Mk (R) of k x k matrices over R, under addition of matrices . If n E Z and A is 
a matrix in G ,  it is easy to see why nA makes sense, even though the multiplication 
of matrices by integers does not define a binary operation on G .  

In a group denoted multiplicatively, we defined aD == e .  In additive notation 
this becomes 0 . a == O. Notice that in the equation 0 . a == 0 the first 0 is the 
integer 0, while the second 0 is the identity of the group. Similarly, in multiplicative 
notation we defined a-n == (an ) - l , for any positive integer n , and this becomes 
(-n)a == - (na) in additive notation. The standard laws of exponents am * an == 
am+n and (am )n == amn are then expressed as the following equations, which hold 
for all a E G and all m , n E Z: 

ma + na == (m + n)a and m(na) == (mn)a . 

Example 3.1.2 (Additive groups of numbers). 

When considering groups with additive notation, the most familiar examples 
are found in ordinary number systems . The set of integers Z is probably the 
most basic example. Results stated in Section A.3 of the appendix show that 
Z is closed under addition, that it satisfies the associative law, that 0 serves 
as the additive identity element, and that any integer n has an additive inverse 
- n o  

Additional additive groups can be found by considering larger sets of numbers . 
In particular, the set of rational numbers Q, the set of real numbers R, and the 
set of complex numbers C all form groups using ordinary addition. We make 
the convention that when we refer to Z, Q, R, and C as groups , the operation 
will be understood to be ordinary addition, unless we explicitly use a different 
operation. In particular, this convention does not apply to variants of these 
symbols such as R x . D 

Our next example will consist of an entire class of finite abelian groups . Before 
giving the example we will quickly review the notion of congruence for integers 
from Sections 1 . 3 and 1 .4 . We also need to introduce a notation for the size of a 
finite group. 
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3.1.10 Definition. A group G is said to be a finite group if the set G has a finite 
number of elements. In this case, the number of elements is called the order of G, 
denoted by I G I . If G is not finite, it is said to be an infinite group. 

Let n be a positive integer, which we call the modulus. Then two integers a , b 
are congruent modulo n , written a - b (mod n) , if a and b have the same remainder 
when divided by n . It can be shown that a = b (mod n) if and only if a - b is 
divisible by n , and this condition is usually the easier one to work with. If we let 
[a ]n denote the set of all integers that are congruent to a modulo n, then it is possible 
to define an addition for these congruence classes. Given [a]n and [b]n we define 

[a ]n + [b]n == [a + b]n . 

There is a question as to whether we have defined a binary operation, because the 
sum appears to depend on our choice of a as the representative of the congruence 
class [a]n and b as the representative of the congruence class [b]n . Proposition 1 .4 .2 
shows that if a l = a2 (mod n) and b I = b2 (mod n) , then it is true that al + b I = 
a2 + b2 (mod n) , and so the sum is well-defined. The set of all congruence classes 
modulo n is denoted by Zn . 

Example 3.1.3 (Group of integers modulo n). 

Let n be a positive integer. The set Zn of integers modulo n is an abelian group 
under addition of congruence classes . The group Zn is finite and I Zn I == n . 
Proposition 1 .4.2 shows that addition of congruence classes defines a binary 
operation. The associative law holds since for all a ,  b , C E Z we have 

[a] n + ([b]n + [c]n ) [a ]n + [b + c]n == [a + (b + c) ]n == [ (a + b) + c]n 
[a + b]n + [c]n == ( [a ]n + [b]n ) + [c]n 

The commutative law holds since for all a , b E Z we have 

[a ]n + [b]n == [a + b]n == [b + a]n == [b]n + [a]n . 

Because [a ]n + [O]n == [a + O]n == [a ]n and [a ]n + [-a]n == [a - a]n == [O]n , 
all of the necessary axioms are satisfied, and Zn is an abelian group. 
For each a E Z there exists a unique integer r with 0 :s r < n such that 
[a]n == [r ]n , and so I Zn I == n. 0 

As with addition of congruence classes in Zn , Proposition 1 .4 .2 implies that the 
multiplication defined by 

[a ]n . [b]n == [a . b]n 
is in fact well-defined. Furthermore, a proof utilizing the corresponding properties 
of multiplication of integers can be given to show that multiplication of congruence 
classes is associative and commutative. 



3. 1 . DEFINITION OF A GROUP 99 

If a is an integer that is relatively prime to n, then there exist integers b, m 
such that ab + mn == 1 .  This gives [a ]n . [b]n + [m]n . [n ]n == [ 1 ]n , or simply 
[a ]n . [b]n == [ 1 ]n , since [n ]n == [O]n . Thus [a ]n has a mUltiplicative inverse . 
Conversely, if [a ]n has a multiplicative inverse [b]n , then ab - 1 must be divisible 
by n, and this implies that a and n are relatively prime. 

The set of distinct congruence classes [a ]n such that (a , n)  == 1 is denoted by 
Z� . Recall that the number of elements in this set is given by the Euler cp-function. 

Example 3. 1.4 (Group of units modulo n). 

Let n be a positive integer. The set Z� of units of Zn is an abelian group under 
multiplication of congruence classes . The group Z� is finite and IZ� I == cp (n) . 
Proposition 1 .4 . 1 0  shows that multiplication of congruence classes is closed 
on Z� . Another way to prove this is to use Proposition 1 .2 .3 (d) to show that 
ab is relatively prime to n if and only if both a and b are relatively prime to 
n . We have remarked that the associative and commutative laws can easily be 
checked. The element [ l ]n serves as an identity element. The set was defined 
so as to include all congruence classes that have multiplicative inverses . These 
mUltiplicative inverses are again in the set, so it follows that Z� is a group . 

As a special case, in Table 3 . 1 .2 we include the multiplication table of Z� . D 

Table 3 . 1 .2 :  Multiplication in Z� 

[ 1 ]  [3 ] [5] [7] 

[ 1 ]  [ 1 ]  [3]  [5] [7] 

[3]  [3]  [ 1 ]  [7] [5 ] 

[5] [5] [7] [ 1 ]  [3]  

[7] [7] [5] [3] [ 1 ]  

We next want to consider groups of matrices . In this section we will consider 
only matrices with entries from the set R of real numbers . 

Example 3. 1.5 (Mn (R) under addition). 

The set of all n x n matrices with entries in R forms a group under matrix 
addition . Since addition is defined componentwise, the zero matrix is the 
identity of Mn (R) , and the additive inverse of a matrix is its negative. D 
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We recall how to mUltiply 2 x 2 matrices : 

A matrix [ :  ! ] has an inverse if and only if its determinant ad - be is nonzero, 

and the inverse can be found as follows: 

1 [ d -b ] ad - bc -c a 

In general , if (ai} ) and (bi} ) are n x n matrices, then the product (ci} ) of the two 
matrices is defined as the matrix whose i , j -entry is 

and this product makes sense since in R the two operations of addition and multi
plication are well-defined. 

3.1.1 1 Definition. The set of all invertible n x n matrices with entries in R is called 
the general linear group of degree n over the real numbers, and is denoted by 
GLn (R). 

The use of the word group in Definition 3 . 1 . 1 1 is justified by the next proposition. 

3.1.12 Proposition. The set GLn (R) forms a group under matrix multiplication. 

Proof If A and B are invertible matrices, then the formulas (A - I ) - I == A and 
(AB)- I == B- 1 A - I show that GLn (R) has inverses for each element and is closed 
under matrix multiplication . The identity matrix (with 1 in each entry on the main 
diagonal and a in every other entry) is the identity element of the group. We assume 
that you have seen the proof that matrix multiplication is associative in a previous 
course in linear algebra. The proof is straightforward but rather tedious . D 

EXERCISES: SECTION 3. 1 

1 .  Using ordinary addition of integers as the operation, show that the set of even integers 
is a group, but that the set of odd integers is not. 
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2. For each binary operation * defined on a set below, determine whether or not * gives 
a group structure on the set. If it is not a group, say which axioms fail to hold. 

t ea) Define * on Z by a * b == abo 
(b) Define * on Z by a * b == max {a ,  b } .  

t (c) Define * on Z by a * b == a - b. 
(d) Define * on Z by a * b == lab l .  

t ee) Define * on R+ by a * b == abo 
(f) Define * on Q by a * b == abo 

3 .  Let (G, . ) be a group. Define a new binary operation * on G by the formula a*b == b ·a ,  
for all a ,  b E G . 
(a) Show that (G , *) is a group. 
(b) Give examples to show that (G,  *) may or may not be the same as (G ,  . ) .  

4 .  Prove that multiplication of 2 x 2 matrices satisfies the associative law. 

5 .  Is GLn (R) an abelian group? Support your answer by either giving a proof or a 
counterexample. 

6. Write out the addition table for Zg . 
7. t Write out the multiplication table for Z; . 
8 . Write out the multiplication table for the following set of matrices over Q: 

[ 1 0 ] [ - 1  0 ] [ 1 0 ] [ - 1  0 ] 
o l '  0 1 ' 0 - 1 ' 0 - 1  . 

9. Let G == {x E R I x > 0 and x f=. I } . Define the operation * on G by a * b == a 1n b , 
for all a ,  b E G . Prove that G is an abelian group under the operation * .  

10. Show that the set A == { fm ,b : R ---+ R i m  f=. 0 and fm ,b (X ) == mx + b} of affine 

functions from R to R forms a group under composition of functions . 

1 1 . Show that the set of all 2 x 2 matrices over R of the form [ � � ] with m f=. 0 

forms a group under matrix multiplication . 

1 2 . In the group defined in Exercise 1 1  find all elements that commute with the element [ � � J 
1 3 . Let S == R - {- I } .  Define * on S by a * b == a + b + abo Show that (S, *) is a 

group. 

14. Let G be a group. We have shown that (ab) - l 
== b- 1 a- l . Find a similar expression 

for (abc) - l . 

1 5 . Let G be a group. If g E G and g2 == g , then prove that g == e .  
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1 6. Show that a nonabelian group must have at least five distinct elements . 

1 7 . Let G be a group. For a , b E G , prove that (ab)n == anbn for all n E Z if and only 
if ab == ba . 

1 8 . Let G be a group. Prove that aman == am+n for all a E G and all m ,  n E Z. 

1 9. Let G be a group. Prove that (am )n == amn for all a E G and all m ,  n E Z. 

20. Let S be a nonempty finite set with a binary operation * that satisfies the associative 
law. Show that S is a group if a * b == a * c implies b == c and a * c == b * c implies 
a == b for all a , b , c E S. What can you say if S is infinite? 

2 1 . Let G be a finite set with an associative, binary operation given by a table in which 
each element of the set G appears exactly once in each row and column. Prove that 
G is a group. How do you recognize the identity element? How do you recognize 
the inverse of an element? 

22. Let G be a group. Prove that G is abelian if and only if (ab) - I == a- I b- I for all 
a , b E G .  

23 . Let G be a group. Prove that i f  x2 == e for all x E G,  then G i s  abelian. 
Hint: Observe that x == x- I for all x E G .  

24. Show that i f  G i s  a finite group with an even number of elements , then there must 
exist an element a E G with a f=. e such that a2 == e .  

3.2 Subgroups 

Verifying all of the group axioms in a particular example is often not an easy task. 
Many very useful examples , however, arise inside known groups . That is, we may 
want to consider a subset of a known group, and restrict the operation of the group 
to this subset. For example, it is easier to show that the set of matrices in Exercise 1 1  
of Section 3 . 1 forms a group under multiplication by recognizing it as a subgroup 
of GL2 (R) than it is to show that it is a group by verifying all of the properties of 
Definition 3 . 1 .4 .  

In this section we introduce the notion of a subgroup, and present several condi
tions for checking that a subset of a given group is again a group . For example, we 
will show that if the closure axiom alone holds for a finite subset of a group, then 
that is enough to guarantee that the subset is a group. We will investigate one of the 
most important types of subgroup, that generated by a single element. Finally, we 
prove Lagrange' s  theorem, which relates the number of elements in any subgroup 
of a finite group to the total number of elements in the group. 

If H is a subset of a group G, then for any a , b E H we can use the operation 
of G to define abo This may not define a binary operation on H, unless we know 
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that ab E H for all a , b E H .  In that case we say that we are using the operation 
on H induced by G .  

3.2.1 Definition. Let G be a group, and let H be a subset of G .  Then H is called 
a subgroup of G if H is itself a group, under the operation induced by G. 

Example 3.2. 1. 

As our first examples of subgroups we consider some groups of numbers . 
We already know that Z, Q, R, and e are groups under ordinary addition. 
Furthermore, as sets we have 

and each group is a subgroup of the next since the given operations are con
sistent. 
If we consider multiplicative groups of nonzero elements , we also have the 
subgroups 

QX S; RX c e x . 
Note that we cannot include the set of nonzero integers in this diagram, since 
it is not a subgroup of QX . (Although the set of nonzero integers is closed 
under mUltiplication and contains an identity element, all elements except 1 
and - 1 fail to have multiplicative inverses . ) 
In the group Z of integers under addition consider the set of all multiples of a 
fixed positive integer n, denoted by 

nZ == {x E Z I x == nk for some k E Z} . 

U sing the operation of addition induced from Z, to show that nZ is a subgroup 
of Z we must check each of the axioms in the definition of a group. The closure 
axiom holds since if a ,  b E nZ, then we have a == nq and b == nk for some 
q ,  k E Z, and adding gives us a + b == nq + nk == n (q + k) . This shows 
that the sum of two elements in nZ has the correct form to belong to nZ. The 
associative law holds for all elements in Z, so in particular it holds for al l 
elements in nZ. The element ° can be expressed in the form ° == n . 0, and 
so it will work as an identity element for nZ. Finally, the additive inverse of 
x == nk has the correct form -x == n ( -k) to belong to nZ, and so it also 
serves as an inverse in nZ, since we have already observed that the identity 
elements of Z and nZ coincide. 
For the final example of subgroups of sets of numbers , let R + be the set of 
positive real numbers , and consider R + as a subset of the mUltiplicative group 
R x of all nonzero real numbers . The product of two positive real numbers is 
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again positive, so the closure axiom holds. The associative law holds for all 
real numbers , so in particular it holds for all real numbers in R + . The number 
1 serves as an identity element, and the reciprocal of a positive number is still 
positive, so each element of R + has a multiplicative inverse in R + . Thus we 
have shown that R + is a subgroup of R x . 0 

Example 3.2.2 (SL2 (R) c GL2 (R»). 

Recall our notation OL2 (R) for the set of all 2 x 2 invertible matrices over 
the real numbers R. The set of 2 x 2 matrices with determinant equal to 1 is a 
subgroup of OL2 (R) , which can be seen as follows: if A ,  B E OL2 (R) with 
det(A) == 1 and det (B) == 1 , then we have det (A B) == det (A) det (B) == 1 .  
The associative law holds for all 2 x 2 matrices . The identity matrix certainly 
has determinant equal to 1 , and if det(A) == 1 ,  then det (A - I ) == 1 .  
The set of all n x n matrices over R with determinant equal to 1 is called the 
special linear group over R, denoted by SLn (R) . Thus we have shown that 
SL2 (R) is a subgroup of OL2 (R) . 0 

The associative law is always inherited by a subset of a known group, as we have 
noted in each of the examples of subgroups that we have considered. This means 
that at least one of the group axioms need not be checked. The next proposition and 
its corollaries are designed to give simplified conditions to use when checking that 
a subset is in fact a subgroup. 

If a set S has a binary operation · defined on it, then a subset X C S is said to 
be closed under the operation · if a . b E X for all a , b E X .  This is the reason that 
the first property in the definition of a group is called the closure property. (It is 
actually redundant in the definition of a group since it is a part of the definition of a 
binary operation . However, we have included it in Definition 3 . 1 .4 since it is very 
easy to forget the full implications of having a binary operation.) 

The next proposition gives the conditions that are usually checked to determine 
whether or not a subset of a group is actually a subgroup. It can be summarized by 
saying that the subset must be closed under multiplication, must contain the identity, 
and must have inverses for each element. 

3.2.2 Proposition. Let G be a group with identity element e, and let H be a subset 
of G. Then H is a subgroup of G if and only if the following conditions hold: 

(i) ab E H for all a , b E H; 

(ii) e E H; 

(iii) a- I E H for all a E H. 

Proof First, assume that H is a subgroup of G .  Since H is a group under the 
operation of G, the closure axiom guarantees that ab must belong to H whenever 
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a , b belong to H.  There must be an identity element, say e' , for H.  Then considering 
the product in H ,  we have e' e' == e' . Now consider the same product as an element 
of G. Then we can write e' e' == e' e, and the cancellation law yields e' == e . Finally, 
if a E H, then a must have an inverse b in H, with ab == e . But then in G we have 
ab == e == aa - I , and the cancellation law implies that a - I == b is an element of H.  

Conversely, suppose that H i s  a subset of G that satisfies the given conditions . 
Condition (i) shows that the operation of G defines a binary operation on H,  and so 
the closure axiom holds . If a , b, e E H, then in G we have the equation a (be) == 
(ab)e , and so by considering this as an equation in H we see that H inherits the 
associative law. Conditions (ii) and (iii) assure that H has an identity element, and 
that every element of H has an inverse in H, since these elements have the same 
properties in H as they do when viewed as elements of G . 0 

Using the previous proposition, it is easy to see that for any group G,  the entire 
set G is certainly a subgroup. At the other extreme, the set {e } consisting of only 
the identity element is always a subgroup of G,  called the trivial subgroup. 

The next corollary shortens the subgroup conditions . In applying these condi
tions, it is crucial to show that the subset H is nonempty. Often the easiest way to 
do this is to show that H contains the identity element e . 

3.2.3 Corollary. Let G be a group and let H be a subset of G. Then H is a subgroup 
of G if and only if H is nonempty and ab- I E H for all a ,  b E H. 

Proof First assume that H is a subgroup of G.  Using condition (ii) of the previous 
proposition, we see that H is nonempty since e E H .  If a , b E H, then b- I E H 
by condition (iii) of the proposition, and so condition (i) implies that ab- I E H .  

Conversely, suppose that H i s  a nonempty subset of G such that ab- I E H for 
all a , b E H.  Since H is nonempty, there is at least one element a that belongs to H.  
Then e E H since e == aa- I , and this product belongs to H by assumption. Next, 
if a E H, then a- I can be expressed in the form a- I == ea- I , and this product must 
belong to H since e and a belong to H.  Finally, we must show that H is closed 
under products : if a ,  b E H, then we have already shown that b- I E H.  We can 
express ab in the form a (b- I ) - 1 , and then the given condition shows that ab must 
belong to H. 0 

If the subset in question known to be finite (and nonempty) , then it is only 
necessary to check the closure axiom. This is a bit surprising, but very useful. The 
crucial step in the proof of the next corollary is to show that in this case the inverse 
of each element in the set can be expressed as a positive power of the element. 

3.2.4 Corollary. Let G be a group, and let H be a finite, nonempty subset of G. 
Then H is a subgroup of G if and only if ab E H for all a, b E H. 
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Proof If H is a subgroup of G,  then Proposition 3 .2 .2 implies that ab E H for all 
a , b E H.  

Conversely, assume that H i s  closed under the operation of  G.  We can use the 
previous corollary, provided we can show that b- l E H whenever b E H.  Given 
b E H, consider the powers {b , b2 , b3 , . . . } of b. These must all belong to H,  by 
assumption, but since H is a finite set, they cannot all be distinct. There must be 
some repetition, say bn == bm for positive integers n > m .  The cancellation law then 
implies that bn-m == e . Either b == e or n - m > 1 ,  and in the second case we then 
have bbn-m- l == e ,  which shows that b- l == bn-m- l • Thus b- l can be expressed as 
a positive power of b, which must belong to H .  0 

Example 3.2.3 (Subgroups of S3). 

In S3 , the subset { ( I ) ,  ( 1 , 2 , 3) , ( 1 , 3 , 2) } is closed under multiplication . The 
easiest way to see this is to look at the mUltiplication table given in Section 3 . 1 .  
Since this subset is finite, Corollary 3 .2.4 shows that it is a subgroup. The 
subsets { ( I ) ,  ( 1 , 2) } ,  { ( I ) ,  ( 1 , 3) } ,  and { ( I ) ,  (2 , 3) } can be shown in the same 
way to be subgroups of S3 . D 

Example 3.2.4. 

In the group GL2 (R) of all invertible 2 x 2 matrices with real entries, let H 
be the following set of matrices : [ - 1  0 ] 

o 1 ' [ - 1  0 ] 
o - 1  . 

It is easy to see that the product of any two of these matrices is a diagonal 
matrix with entries ± 1 ,  which will again be in the set. Since the set is finite 
and closed under matrix multiplication, Corollary 3 .2.4 implies that it is a 
subgroup of GL2 (R) . D 

Example 3.2.5. 

Let G be the group GLn (R) of all invertible n x n matrices with entries in 
the real numbers . Let H be the set of all diagonal matrices in G .  That is, H 
consists of all matrices in G that have zeros in all entries except those along 
the main diagonal. Since the matrices in G are all invertible, the diagonal 
entries must all be nonzero . In showing that H is a subgroup of G, we can no 
longer apply Corollary 3 .2.4 since H is not a finite set. It is probably easiest 
to just use Proposition 3 .2 .2 . We only need to observe that the identity matrix 
belongs to H, that the product of two diagonal matrices with nonzero entries 
again has the same property, and that the inverse of a diagonal matrix with 
nonzero entries is again a diagonal matrix. D 
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If G is a group, and a is any element of G, then Proposition 3 .2 .6 will show that 
the set of all powers of a is a subgroup of G, justifying the terminology of the next 
definition. This is the smallest subgroup of G that contains a, and turns out to have 
a particularly nice structure. Groups that consist of powers of a fixed element form 
an important class of groups and will be studied in depth in Section 3 . 5 .  

3.2.5 Definition. Let G be a group, and let a be any element of G. 
The set (a) == {x E G I x == an for some n E Z} is called the cyclic subgroup 

generated by a. 
The group G is called a cyclic group if there exists an element a E G such that 

G == (a ) .  In this case a is called a generator of G. 

3.2.6 Proposition. Let G be a group, and let a E G. 
(a) The set (a ) is a subgroup ofG. 
(b) IfK is any subgroup ofG such that a E K, then (a ) C K. 

Proof (a) The set (a ) is closed under mUltiplication since if am , an E (a ) ,  then 
aman == am+n E (a ) .  Furthermore, (a ) includes the identity element and includes 
inverses, since by definition aO == e and (an )- l == a-n . 

(b) If K is any subgroup that contains a , then it must contain all positive powers 
of a since it is closed under multiplication. It also contains aO == e, and if n < 0, 
then an E K since an == (a-n ) - l .  Thus (a ) C K .  D 

The intersection of any collection of subgroups is again a subgroup (see Exer
cise 1 7). Given any subset S of a group G, the intersection of all subgroups of G 
that contain S is in fact the smallest subgroup that contains S. In the case S == {a } , 
by the previous proposition we obtain (a ) .  In the case of two elements a , b of a 
nonabelian group G, it becomes much more complicated to describe the smallest 
subgroup of G that contains a and b. The general problem of listing all subgroups 
of a given group becomes difficult very quickly as the order of the group increases . 

Example 3.2.6. 

In the multiplicative group e x , consider the powers of i .  We have i 2 == - 1 , 
i 3 == -i , and i 4 == 1 . From this point on the powers repeat, since i s == i i4 == i , 
i 6 == i 2 i4 == 

- 1 , etc . For negative exponents we have i - I == -i , i -2 == - 1 , 
and i -3 == i .  Again, from this point on the powers repeat. Thus we have 

( i ) == { I ,  i , - 1 , -i } . 
The situation is quite different if we consider (2i ) . In this case the powers of 
2i are all distinct, and the subgroup generated by 2i is infinite : 

(2i ) = { - . .  , 1
1
6 , � i , -� ,  - � i , 1 , 2i , -4 , -Si , 1 6 , 32i , . . . } .  0 
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Example 3.2.7 (Z is cyclic). 

Consider the group Z, using the standard operation of addition of integers . 
Since the operation is denoted additively rather than multiplicatively, we must 
consider multiples rather than powers . Thus Z is cyclic if and only if there 
exists an integer a such that Z == rna I n E Z} . Either a == 1 or a == - 1  will 
satisfy the condition, so Z is cyclic, with generators 1 and - 1 .  D 

Example 3.2.8 (Zn is cyclic). 

The additive group Zn of integers modulo n is also cyclic, generated by [ I ]n , 
since each congruence class can be expressed as a finite sum of [ I ]n ' S o  To be 
precise, [k]n == k[ I ]n . 
It is very interesting to determine all possible generators of Zn . If [a]n i s a 
generator of Zn , then in particular [ I ]n must be a mUltiple of [a] n . On the other 
hand, if [ I ]n is a mUltiple of [a]n , then certainly every other congruence class 
modulo n is also a multiple of [a]n . Thus to determine all of the generators 
of Zn we only need to determine the integers a such that some multiple of a 
is congruent to 1 .  These are precisely the integers that are relatively prime to 
n . 0 

Example 3.2.9 (Sometimes Z� is cyclic, sometimes not). 

The multiplicative groups Z� provide many interesting examples .  We first 
consider Z; . We will omit the subscript on the congruence classes when it is 
clear from the context. We have [2]2 == [4] , [2] 3 == [3 ] , and [2]4 == [ 1 ] . Thus 
each element of Z; is a power of [2] , showing that the group is cyclic, which 
we write as Z; == ( [2] ) . We note that [3] is also a generator, but [4] is not, 
since [4]2 == [ 1 ] ,  and so ( [4] ) == { [ I ] ,  [4] }  1= Z; . 
Next, consider Z� == { [ I ] ,  [3] , [5] ,  [7] } . The square of each element is 
the identity, so we have ( [3 ] ) == { [ I ] ,  [3 ] } ,  ( [5] ) == { [ I ] ,  [5] } ,  and ( [7] ) == 
{ [ I ] ,  [7] } .  Thus Z� is not cyclic . D 

Example 3.2.10 (S3 is not cyclic). 

The group S3 is not cyclic . We can list all cyclic subgroups as follows : 

( ( 1 ) ) == { ( I ) }  ; 

( ( 1 , 2) ) == { ( I ) ,  ( 1 ,  2) } , ( ( 1 , 3) ) == { ( I ) , ( 1 ,  3) } ,  ( (2, 3) ) == { ( I ) ,  (2 , 3) } ; 

( ( 1 , 2 , 3) ) == { ( I ) , ( 1 , 2 , 3) , ( 1 , 3 ,  2) } == ( ( 1 , 3 , 2) ) . 
Since no cyclic subgroup is equal to all of S3 , it is not cyclic . That is, we have 
shown that there is no permutation a in S3 for which S3 == (a ) . 0 
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3.2.7 Definition. Let a be an element of the group G. 
If there exists a positive integer n such that an == e, then a is said to have finite 

order, and the smallest such positive integer is called the order of a, denoted by 
o(a) . 

If there does not exist a positive integer n such that an == e , then a is said to 
have infinite order. 

We note that the proof of Corollary 3 .2 .4 shows that every element of a finite 
group must have finite order. We have already considered the order of a permutation 
in Section 2 .3 .  You may recall that problems in Sections 1 . 3  and 1 .4 dealt with the 
orders of elements in Zn and Z; . 

The next proposition establishes some basic facts about the order of an element. 
The proof of part (b) should remind you of the proof of Theorem 1 . 1 .4. In fact, 
instead of writing out the details , we could have applied Theorem 1 . 1 .4 to the set 
I == {k E Z I ak == e } , since this set can easily be shown to be closed under addition 
and subtraction . 

3.2.8 Proposition. Let a be an element of the group G. 
(a) If a has infinite order, then ak i= am for all integers k i= m. 
(b) If a has finite order and k E Z, then ak == e if and only if o(a) I k.  

(c) If a has finite order o (a) == n, then for all integers k ,  m, we have ak == am if 
and only if k = m (mod n) . Furthermore, I (a ) I == o (a) . 

Proof (a) Let a have infinite order. Suppose that ak == am for k ,  m E Z, with 
k > m . Then mUltiplying by (am )- l gives us ak-m == e , and since a is not of finite 
order, we must have k - m == O. 

(b) Let o(a) == n , and suppose that ak == e . Using the division algorithm we 
can write k == nq + r, where 0 < r < n. Thus 

Since 0 < r < o (a) and ar == e, by the definition of o(a) we must have r == 0, and 
so k == q . 0 (a ) . 

On the other hand, if o(a) I k, then k == nq for some q E Z. But then ak == 
(an )q == eq == e . 

(c) We must show that if a has finite order, then ak == am if and only if k = 
m (mod n) . We first observe that since we are working in a group, ak == am if 
and only if ak-m == e . By part (b) this occurs if and only if n I (k - m) , which is 
equivalent to the statement that k = m (mod n) . 

Finally, using Corollary 3 .2 .4, it follows that the subset S == {e , a ,  . . .  , an- I } 
is a subgroup that contains a . Hence (a ) C S. On the other hand, S C (a ) by the 
definition of (a ) . Thus I (a ) I == l S I  == o(a) . D 
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If you check all of the examples that we have given of subgroups of finite groups, 
you will see that in every case the number of elements in the subgroup is a divisor of 
the order of the group. This is always true, and is a very useful result. For example, 
in checking whether or not a subset of a finite group is in fact a subgroup, you can 
immediately answer no if the number of elements in the subset is not a divisor of 
the order of the group. We have separated out part of the proof as a lemma. 

3.2.9 Lemma. Let H be a subgroup of the group G. For a , b E G  define a � b if 
ab- 1 E H. Then � is an equivalence relation. 

Proof The relation is reflexive since aa- 1 == e E H. It is symmetric since if 
a � b, then ab- 1 E H.  Since H contains the inverse of each of its elements , we 
have ba- 1 == (ab- 1 ) - 1 E H, showing that b � a . Finally, the relation is transitive 
since if a � b and b � c for any a , b , c E G, then both ab- 1 and bc- 1 belong to 
H, so since H is a subgroup, the product ac- 1 == (ab- 1 ) (bc- 1 ) also belongs to H, 
showing that a � c . D 

The equivalence relation we have used to define congruence modulo n in Z is a 
special case of Lemma 3 .2 .9 .  If the operation of G is denoted additively, then the 
equivalence relation of Lemma 3 .2 .9  is defined by setting a � b if a + (-b) belongs 
to H .  This is usually written as a � b if a - b E H.  We consider the case when 
G == Z and H is the subgroup nZ. Since a = b (mod n) if and only if a - b is a 
multiple of n , we see that a is congruent to b modulo n if and only if a - b is an 
element of the subgroup nZ. This shows how to fit our earlier work on congruences 
into the new terminology of group theory. 

3.2.10 Theorem (Lagrange). If H is a subgroup of the finite group G, then the 
order of H is a divisor of the order ofG. 

Proof Let H be a subgroup of the finite group G, with I G I == n and I H I == m. Let 
� denote the equivalence relation defined in the previous lemma. 

For any a E G, let [a] denote the equivalence class of a . We claim that the 
function Pa : H ---+ [a ] defined by Pa (x) == xa for all x E H is a one-to-one 
correspondence between H and [a ] . We first note that the stated codomain of Pa 
is correct since if h E H, then Pa (h ) == ha E [a] because (ha) (a- 1 ) == h E H.  
To show that Pa is one-to-one, suppose that h ,  k E H with Pa (h ) == Pa (k) . Then 
ha == ka , and since the cancellation property holds in any group, we can conclude 
that h == k . Finally, Pa is onto since if y E G with y � a, then we have ya- 1 == h 
for some h E H, and thus the equation Pa (x) == y has the solution x == h since 
ha == (ya- 1 )a == y . 

Since the equivalence classes of � partition G, each element of G belongs 
to precisely one of the equivalence classes . We have shown that each equivalence 
class has m elements , since it is in one-to-one correspondence with H .  Counting the 
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elements of G according to the distinct equivalence classes, we simply get n == m t , 
where t is the number of distinct equivalence classes . D 

Example 3.2.11 .  

In this example we will investigate equivalence relative to two different sub
groups of S3 . The proof of Lagrange 's theorem shows us how to proceed in a 
systematic way. First, let 

H == ( ( 1 , 2 , 3) ) == { ( I ) ,  ( 1 , 2 , 3) , ( 1 , 3 ,  2) } . 

By definition, the elements of H are equivalent to each other and form the first 
equivalence class .  Any other equivalence class must be disjoint from the first 
one and have the same number of elements, so the only possibility is that the 
remaining elements of G must form a second equivalence class . Therefore the 
equivalence relation defined by the subgroup H determines two equivalence 
classes : 

{ ( I ) ,  ( 1 , 2 , 3) , ( 1 , 3 ,  2) } , { ( I , 2) , ( 1 , 3) , (2 , 3) } . 

Next, let us consider the subgroup K generated by ( 1 , 2) . Then 

K == { ( I ) ,  ( 1 , 2) } 

so the equivalence classes must each contain two elements . The proof of 
Lagrange's theorem shows that we can find the equivalence class of an element 
a by multiplying it on the left by all elements of K .  Ifwe let a == ( 1 , 2 , 3) , then 
we have two equivalent elements ( 1 ) ( 1 , 2 , 3) == ( 1 , 2 , 3) and ( 1 , 2) ( 1 , 2 , 3) == 
(2 , 3) . There are two elements remaining, and they form the third equivalence 
class . Thus the equivalence relation defined by the subgroup K determine� 
three equivalence classes : 

{ ( I ) ,  ( 1 ,  2) } , { ( I , 2, 3) , (2, 3) } , 

3.2.11 Corollary. Let G be afinite group of order n. 
(a) For any a E G, o(a) is a divisor ofn. 
(b) For any a E G, an == e. 

{ ( I , 3 ,  2) , ( 1 ,  3) } . D 

Proof (a) The order of a is the same as the order of (a ) ,  which by Lagrange's 
theorem is a divisor of the order of G . 

(b) If a has order m ,  then by part (a) we have n == mq for some integer q .  Thus 
an == amq == (am )q == e . D 
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Example 3.2.12 (Euler's theorem). 

We can now give a short group theoretic proof of Euler's theorem (Theo
rem 1 .4. 1 1 ) . We must show that if cp denotes the Euler cp function and a is any 
integer relatively prime to the positive integer n , then a({J(n) = 1 (mod n) . Let 
G == Z� , the group of units modulo n (see Example 3 . 1 .4) . The order of G 
is given by cp (n) , and so by Corollary 3 .2. 1 1 ,  raising any congruence class to 
the power cp (n) must give the identity element. The statement [a ]({J (n) == [ 1 ]  
is equivalent to a({J(n) = 1 (mod n) . 0 

3.2.12 Corollary. Any group of prime order is cyclic. 

Proof Let G be a group of order p, where p is a prime number. Let a be an element 
of G different from e. Then the order of (a ) is not 1 ,  and so it must be p since it is 
a divisor of p. This implies that (a ) == G, and thus G is cyclic . 0 

EXERCISES : SECTION 3.2 

1 .  In GL2 (R) , find the order of each of the following elements . 

t ea) [ � -� ] 
(b) [ _� � ] 
t ee) [ � � ] 
(d) [ -� � ] 

2. Let A = [ _ � -� ] E GL2 (R) . Show that A has infinite order by proving that 

An [ Fn+ l -Fn ] == -Fn Fn- l 
, for n � 1 ,  where Fa == 0, Fl == 1 ,  and Fn+ l == Fn + Fn- l 

is the Fibonacci sequence. 

3 .  Prove that the set of all rational numbers of the form min , where m , n E Z and n is 
square-free, is a subgroup of Q (under addition) . 

4. Show that { ( I ) ,  ( 1 , 2) (3 , 4) , ( 1 , 3) (2, 4) , ( 1 , 4) (2 , 3) } is a subgroup of S4 . 
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5 .  For each of the following groups, find all cyclic subgroups of the group. 
t ea) Z6 
(b) Zg 

t (c) Z� 
(d) S4 

6. Let G = GL2 (R) . 

(a) Show that T = { [ �  ! ] ad -=F o } is a subgroup of G .  

(b) Show that D = { [ �  � ] ad -=F o } is a subgroup of G .  

1 1 3 

7 . Let G = GL2 (R) . Show that the subset S of G defined by S = { [ �  ! ] b = e } 
of symmetric 2 x 2 matrices does not form a subgroup of G .  

8 .  Let G = GL2 (R) . For each of the following subsets of M2(R) , determine whether 
or not the subset is a subgroup of G .  

(a) A = { [ �  � ] ab -=F 0 } 

(b) B = { [ �  � ] be -=F 0 } 

(c) C = { [ �  � ] e -=F o } 
9. Let G = GL3 (R) . Show that H = { [ �  � � ] } is a subgroup of G .  

10 . Let m and n be nonzero integers, with (m , n ) = d . Show that m and n belong to dZ, 
and that if H is any subgroup of Z that contains both m and n ,  then dZ C H. 

1 1 . Let S be a set, and let a be a fixed element of S .  Show that {a E SymeS) I a (a) = a } 
is a subgroup of SymeS) . 

1 2 . t For each of the following groups , find all elements of finite order. 
(a) RX 
(b) e x  

1 3 .  Let G be an abelian group, such that the operation on G is denoted additively. Show 
that {a E G I 2a = O} is a subgroup of G .  Compute this subgroup for G = Z12 . 

14. Let G be an abelian group. Show that the set of all elements of G of finite order 
forms a subgroup of G .  

1 5 .  Prove that any cyclic group i s  abelian. 
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1 6. Prove or disprove this statement. If G is a group in which every proper subgroup is 
cyclic, then G is cyclic . 

17 . Prove that the intersection of any collection of subgroups of a group is again a 
subgroup. 

1 8 . Let G be the group of rational numbers , under addition, and let H,  K be subgroups 
of G. Prove that if H i= {OJ and K i= {O} , then H n K i= {OJ . 

19 . Let G be a group, and let a E G . The set C (a) = {x E G I xa = ax } of all elements 
of G that commute with a is called the centralizer of a . 
(a) Show that C(a) i s  a subgroup of G. 
(b) Show that (a ) C C (a) . 
(c) Compute C (a) i f  G = S3 and a = ( 1 , 2 , 3) . 
(d) Compute C(a) if G = S3 and a = ( 1 , 2) . 

20. Compute the centralizer in GL2 (R) of the matrix [ �  � l 
2 1 .  Let G be a group. The set Z(G) = {x E G I xg = gx for all g E G} of all 

elements that commute with every other element of G is called the center of G . 
(a) Show that Z(G) i s  a subgroup of G . 
(b) Show that Z(G) = naEGC (a ) . 
(c) Compute the center of S3 . 

22. Compute the center of GL2 (R) . 

23 . Let G be a cyclic group, and let a , b be elements of G such that neither a = x2 nor 
b = x2 has a solution in G. Show that ab = x2 does have a solution in G. 

24. Let G be a group with a , b E G . 
(a) Show that o(a- l ) = o (a ) . 
(b) Show that o(ab) = o (ba ) . 
(c) Show that o(aba- l ) = o(b) . 

25 . Let G be a finite group, let n > 2 be an integer, and let S be the set of elements of G 
that have order n .  Show that S has an even number of elements . 

26. Let G be a group with a , b E G . Assume that o(a) and o(b) are finite and relatively 
prime, and that ab = ba . Show that o(ab) = o(a)o(b) . 

27 . Find an example of a group G and elements a , b E G  such that a and b each have 
finite order but ab does not. 
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3.3 Constructing Examples 

Being able to construct your own examples is very important. To do this you need to 
be familiar with a good variety of groups .  In this section we first study groups with 
orders up to 6. Then we introduce the notion of the direct product of two groups, 
which can be used to construct new groups from known ones . Finally, we introduce 
some new matrix groups. 

As a corollary of Lagrange's theorem, we proved that any group of prime order 
must be cyclic . This shows that any group of order 2, 3 , or 5 must be cyclic . It is 
then easy to write down what the multiplication table of the group must look like. 

Next, take the case of a group G of order 4.  As another corollary of Lagrange's 
theorem, we proved that the order of any element of a group must be a divisor of 
the order of the group. Since I G I  == 4, we can only have elements (different from 
the identity) of order 2 or 4. If there exists an element a E G of order 4, then its 
four powers e, a, a2 , and a3 must be the only elements in G ,  and so G is cyclic . On 
the other hand, if there is no element of order 4, then every element not equal to e 
must have order 2. This means that in the multiplication table for G the element e 
must occur down the main diagonal , and then by using the fact that each element 
must occur exactly once in each row and column, it can be shown that there is only 
one possible pattern for the table. 

This analysis of the table does not imply that there exists a group with such 
a multiplication table. In particular, there is no guarantee that the associative law 
holds . However, a group that serves as a model for the table is not difficult to find. 
The group Z� of units modulo 8 is easily checked to have four elements , and the 
square of every element is the identity [ 1 ] 8 . Thus the multiplication table for a 
group of four elements has one of only two possible patterns .  These are listed in 
Table 3 . 3 . 1 .  

Table 3 .3 . 1 :  Multiplication Tables for Groups of Order 4 

e a a2 a3 e a b c 
e e a a2 a3 e e a b c 
a a a2 a3 e a a e c b 
a2 a2 a3 e a b b c e a 
a3 a3 e a a2 c c b a e 

We know of two basic examples of groups of order 6, the group Z6 of integers 
modulo 6, which is cyclic, and the group S3 of permutations on three elements . The 
multiplication table for a cyclic group of order 6 is given in Table 3 . 3 .2 . 

We have described S3 by explicitly listing the permutations that belong to it. It 
is possible to give another description, which is easier to work with in many cases . 
Let e == ( 1 ) ,  let a == ( 1 , 2 , 3 ) , and let b == ( 1 , 2) . Using the multiplication table 
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Table 3 .3 .2 : Multiplication Table for a Cyclic Group of Order 6 

e a a2 a3 a4 a5 
e e a a2 a3 a4 a5 
a a a2 a3 a4 a5 e 
a2 a2 a3 a4 a5 e a 
a3 a3 a4 a5 e a a2 
a4 a4 a5 e a a2 a3 
a5 a5 e a a2 a3 a4 

given in Table 3 . 1 . 1 ,  we see that a2 == ( 1 , 3 , 2) and then a3 == aa2 == e . For the 
element b we have b2 == e . Using the convention aO == e and bO == e ,  we can express 
each element of S3 in a unique way in the form ai bj , for i == 0, 1 ,  2 and j == 0, 1 .  
Specifically, we have ( 1 )  == e ,  ( 1 , 2 , 3) == a ,  ( 1 , 3 ,  2) == a2 , ( 1 ,  2) == b, ( 1 ,  3) == ab, 
and (2 , 3) == a2b. To multiply two elements in this form, we must be able to find 
the expression for their product in the standard form, but to do so only requires the 
formula ba == a2b, which holds since ( 1 , 2) ( 1 , 2 , 3) == (2 , 3 ) . This allows us to 
give the following description of the symmetric group on three elements : 

Using this notation, we can rewrite the multiplication table as shown in Table 3 . 3 . 3 . 

Table 3 . 3 . 3 : Multiplication Table for S3 

e a a2 b ab a2b 
e e a a2 b ab a2b 
a a a2 e ab a2b b 
a2 a2 e a a2b b ab 
b b a2b ab e a2 a 
ab ab b a2b a e a2 
a2b a2b ab b a2 a e 

The multiplication table for any group of order 6 must have the form of Ta
ble 3 . 3 .2 or that of Table 3 . 3 . 3 . We have indicated, in Exercises 1 5- 17 , how this 
can be proved. 

We now introduce a new method of combining two subgroups .  We have already 
observed that the intersection of subgroups of a group is again a subgroup. If H 
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and K are subgroups of a group G, then H n K is the largest subgroup of G that is 
contained in both H and K .  On the other hand, if we consider the smallest subgroup 
that contains both H and K ,  then it certainly must contain all products of the form 
hk , where h E H and k E K .  In certain cases , these products do form a subgroup. 
In general , though, it may be necessary to include more elements . 

3.3.1 Definition. Let G be a group, and let S and T be subsets of G. Then 
ST == {x E G I x == st for some s E S, t E T} . 

If H and K are subgroups of G, then we simply call H K the product of H 
and K .  The next proposition shows that if G is abelian, then the product of any 
two subgroups is again a subgroup since the condition of the proposition is satisfied 
whenever the elements of H and K commute with each other. If the operation of 
G is denoted additively, then instead of H K we write H + K ,  and refer to the sum 
of H and K .  

3.3.2 Proposition. Let G be a group, and let H and K be subgroups of G. If h- 1 kh E K for all h E H and k E K, then H K is a subgroup ofG. 

Proof Suppose that h - I kh E K for all h E H and k E K .  To show that H K is 
closed, let g l , g2 E H K .  Then g l == h I kl and g2 == h2k2 for some h I , h2 E H and 
k l ' k2 E K .  By our assumption we have h-:; 1 kl h2 E K ,  say h-:; 1 kl h2 == k3 . Thus 
k l h2 == h2k3 , and so 

g 1g2 == (h l k l ) (h2k2 ) == h l (k l h2 )k2 == h I (h2k3 )k2 == (h l h2) (k3k2 ) . 
This shows that gl g2 E H K,  since h I h2 E H and k3k2 E K .  Since the identity 
element belongs to both H and K ,  we have e == e . e E H K .  Finally, if g == hk for h E H and k E K ,  then 

g- 1 == k- 1 h- 1 == (h- 1 h )k- 1 h- 1 == (h - 1 ) ( (h- 1 ) - l k- 1 h- 1 ) E H K 

since h- 1 E H and k- 1 E K yields (h - 1 ) - l k- 1 h- 1 E K by the given condition . D 

Example 3.3.1. 

In the group Z�5 ' let H == { [ I ] ,  [ I I ] }  and K == { [ I ] ,  [4] } .  These are subgroups 
since [ 1 1 ]  and [4] both have order two . The condition that h - 1 kh E K for all 
h E H and k E K holds since Z�5 is abelian. Computing all possible products 
in H K gives us 

[ 1 ] [ 1 ]  == [ 1 ]  , [ 1 ] [4] == [4] , [ 1 1 ] [ 1 ]  == [ 1 1 ]  , [ 1 1 ] [4] == [ 1 4] , 

and so H K is a subgroup of order 4. 
Let L be the cyclic subgroup { [ I ] ,  [4] , [7] , [ I 3 ] }  generated by [7] .  Listing all 
of the distinct products shows that H L is all of Z �5 ' 0 
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Example 3.3.2 ( aZ + bZ � (a , b)Z ). 

Let G be the additive group Z of integers, and let H == aZ and K == bZ. We 
claim that H + K is the subgroup generated by d == (a , b) . Any element of 
H + K is a linear combination of a and b, and so it is divisible by d, which 
shows that H + K C dZ. On the other hand, d is a linear combination of a 
and b, so d E H + K,  which implies that dZ C H + K .  Thus aZ + bZ == 

(a , b)Z. 0 

Our basic examples thus far have come from ordinary sets of numbers , from the 
integers modulo n , and from groups of permutations and groups of matrices . We 
now study a construction that will allow us to give some additional examples that 
will prove to be very important. 

3.3.3 Definition. Let G I and G2 be groups. The set of all ordered pairs (X l , X2 ) 
such that X l E G I and X2 E G2 is called the direct product of G I and G2, denoted 
by G I x G2. 

3.3.4 Proposition. Let G I and G2 be groups. 
(a) The direct product G I x G2 is a group under the operation defined for all 

(a I , a2 ) ,  (b l , b2) E G I x G2 by 

(a I , a2) (b l , b2) � (a l b l , a2b2) . 

(b) If al E G I and a2 E G2 have orders n and m, respectively, then in G I X G2 
the element (a I , a2) has order lcm[n , mJ. 

Proof (a) The given operation defines a binary operation. The associative law 
holds since for all (a I , a2) ,  (b l , b2) ,  (C I , C2 ) E G I x G2 we have 

(a l , a2) (b l C I , b2C2) � (a l (b l C I ) ,  a2 (b2C2)) 
( (a l b l )C I , (a2b2 )C2 ) � (a l b l , a2b2) (C I , C2 ) 
( (a I , a2 ) (b l , b2 )) (C l , C2 ) .  

If we use e l and e2 to denote the identity elements in G I and G2, respectively, then 
(e l ' e2) is easily seen to be the identity element of the direct product. Finally, for 
any element (a I , a2) E G 1 x G2 we have (a I , a2)- 1 � (al l , a2 1 ) . 

(b) Let a l E G I and a2 E G2 have orders n and m, respectively. Then in G I X G2, 
the order of (a I , a2) i s  the smallest positive power k such that (a I , a2 )k � (e l , e2) . 
Since (a I , a2)k � (ar , a� ) , this shows that the order is the smallest positive integer 
k such that ar � e l and a� � e2 . By Proposition 3 .2 .8 (b) this must be the smallest 
positive integer divisible by both n and m, so k � lcm[n , mJ . 0 
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To simplify the notation in the next three examples, we have omitted the brackets 
denoting congruence classes . We may do this elsewhere as well, when the notation 
becomes too cumbersome. In particular, when we consider matrices with entries in 
Zn , we will usually omit the brackets and subscript in the notation [a ]n . 

Example 3.3.3 (Klein four-group). 

In this example we give the addition table for Z2 x Z2 . The operation in the 
direct product uses the operations from the given groups in each component, 
so in this example we use addition modulo 2 in each component. 

Table 3 . 3 .4 : Addition in Z2 x Z2 

(0,0) ( 1 ,0) (0, 1 )  ( 1 , 1 )  
(0,0) (0,0) ( 1 ,0) (0, 1 )  ( 1 , 1 ) 
( 1 ,0) ( 1 ,0) (0,0) ( 1 , 1 ) (0, 1 )  
(0, 1 )  (0, 1 )  ( 1 , 1 ) (0,0) ( 1 ,0) 
( 1 , 1 ) ( 1 , 1 ) (0, 1 )  ( 1 ,0) (0,0) 

This group is usually called the Klein four-group. The pattern in Table 3 . 3 .4 is 
the same as that of the second group in Table 3 .3 . 1 .  This group is characterized 
by the fact that it has order 4 and each element except the identity has order 
2. 0 

Example 3.3.4. 

In the group Z x Z, the subgroup generated by an element (m , n ) consists 
of all mUltiples k (m , n) . This subgroup cannot contain both of the elements 
( 1 , 0) and (0 , 1 ) , and so no single element generates Z x Z, showing that it is 
not cyclic. There are natural subgroups ( (  1 ,  0) ) and ( (0 , 1 ) ) .  The "diagonal" 
subgroup ( (  1 ,  1 ) )  is also interesting. 0 

Example 3.3.5. 

The group Z2 x Z3 is cyclic , since the element ( 1 , 1) must have order 6 by 
Proposition 3 . 3 .4 . (The order of 1 in Z2 is 2, while the order of 1 in Z3 is 3 ,  
and then we have Icm [2, 3] == 6.) 
On the other hand, the group Z2 x Z4 is not cyclic, since in the first component 
the possible orders are 1 and 2, and in the second component the possible orders 
are 1 ,  2, and 4. The largest possible least common multiple we can have is 4, 
so there is no element of order 8 and the group is not cyclic . 0 
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We now want to introduce some more general matrix groups. We first need the 
definition of a field, which we will phrase in the language of groups . The sets Q, R, 
and C that we have worked with form abelian groups under addition, and in each 
case the set of nonzero elements also forms an abelian group under multiplication. 
This is also the case for Zp , when p is a prime number, and we would like to be able 
to work with groups of matrices that have entries in any of these sets . Fields are 
fundamental objects in abstract algebra and will be studied in depth in later chapters. 
We note that the definition of a field that is given in Definition 4. 1 . 1  does not depend 
on the language of group theory. 

3.3.5 Definition. Let F be a set with two binary operations + and · with respective 
identity elements 0 and 1 , where 0 :F 1 .  Then F is called afield if 

(i) the set of all elements of F is an abelian group under + ; 
(ii) the set of all nonzero elements of F is an abelian group under · ; 
(iii) a (b + c) == ab + ac and (a + b)c == ac + bc for all a , b , c E F. 

Axiom (iii) lists the distributive laws, which give a connection between addition 
and multiplication. The properties of matrix multiplication depend heavily on these 
laws. The distributive laws also imply that for any element a of a field F we have 
a . 0 == O. To see this , note that 0 + a . 0 == a . 0 == a . (0 + 0) == a . 0 + a . 0, and 
then since F is a group under addition, we can cancel a . 0 from both sides of the 
equation, to get 0 == a . O. A similar argument shows that 0 . a == 0 for all a E F. 

We next want to consider matrices that have entries in a field F. (Even if  R 
and Zp are the only fields F with which you feel comfortable, using them in the 
following matrix groups will give you interesting and instructive examples . )  If (ai} ) 
and (bi} ) are n x n matrices , then the product (ei} )  of the two matrices is defined as 
the matrix whose i , j -entry is 

This product makes sense because in F the two operations of addition and multipli
cation are well-defined. 

3.3.6 Definition. Let F be a field. The set of all invertible n x n matrices with 
entries in F is called the general linear group of degree n over F, and is denoted 
by GLn (F) . 

3.3.7 Proposition. Let F be afield. Then GLn (F) is a group under matrix multi
plication. 

Proof If A and B are invertible matrices, then the formulas (A- l )- 1 == A and 
(AB)- 1 == B- 1 A - 1 show that GLn (F) has inverses for each element and is closed 
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under matrix multiplication. The identity matrix (with 1 in each diagonal entry and 
o in every other entry) is an identity element. The proof that matrix multiplication 
is associative is left as an exercise . D 

Example 3.3.6 (GL2 (Z2)). 

This example gives the multiplication table for GL2 (Z2) .  The total number 
of 2 x 2 matrices over Z2 is 24 

== 1 6, but it can be checked that only six of 
the matrices are invertible, and these are listed in Table 3 . 3 .5 .  We simply use 
o and 1 to denote the congruence classes [0]2 and [ 1 ] 2 . Note that the group 
GL2 (Z2) is not abelian. D 

Table 3 .3 .5 : Multiplication in GL2 (Z2) 

[ � � J  [ � � J [ � � J  [ � � J  [ �  � J  [ � � J  
[ � � J  [ � � J  [ � � J [ � � J [ � � J [ � � J  [ � � J 
[ � � J [ � � J  [ � � J  [ � � J  [ �  � J  [ � � J  [ � � J 
[ � � J  [ � � J  [ � � J  [ � � J [ � � J  [ � � J [ �  � J  
[ � � J  [ � � J  
[ �  � J  [ �  � J  
[ � � J  [ �  � J  

[ � � ] 
[ � � ] 
[ �  � ] 

[ �  � J  [ � � J  [ � � J  [ � � J 
[ � � J  [ � � J  [ � � J  [ � � J  
[ � � J  [ � � J [ � � J [ � � J  
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Example 3.3.7 (Quaternion group). 

Let Q be the following set of matrices in GL2 (C) : 

± [ � � J , ± [ � � ] ' - l  
± [ 0 

- 1  � ] ' ± [ � � ] . 
If we let 

1 _ [ 1 � l  . [ i  � l  . [ 0 � l k = [ � � l  1 ==  J ==  - 0 0 - l  - 1  

then computations show that we have the following identities : 

ij == k,  j k == i ,  ki == j ;  ji == - k ,  k e e J == - I , ek e 1 == -J . 
Since they show that the set is closed under matrix multiplication, we have 
defined a subgroup of GL2 (C) . We can make a few observations : Q is not 
abelian and is not cyclic. In fact, - 1  has order 2, while ±i, ±j , and ±k have 
order 4. D 

We next investigate the smallest subgroup that contains a nonempty subset S 
of a group G. If S C H, where H is a subgroup of G, and a , b , c E S, then all 
products such as a- 1 a- 1 bab- 1 c · . .  must belong to H.  In fact, as we show below, 
the collection of all such products of elements of S constitutes the smallest subgroup 
that contains S. It is called the subgroup generated by S. 

3.3.8 Definition. Let S be a nonempty subset of the group G. A finite product of 
elements of S and their inverses is called a word in S. The set of all words in S is 
denoted by (S) . 

3.3.9 Proposition. Let S be a nonempty subset of the group G. Then (S) is a 
subgroup of G, and is equal to the intersection of all subgroups of G that contain S. 
Proof Since S is nonempty, there is some a E S, and then the word aa- l == e 
belongs to ( S) .  If x and y are two words in S, then by definition their product xy is 
again a word in S. Finally, if x is a word in S, the so is X- I , since taking inverses 
simply reverses the order and changes the sign of the exponent. 

If S C H, where H is a subgroup of G, then since H is closed under the 
operation of G, it contains all words in S, and therefore it contains ( S) .  It follows 
immediately that ( S) is the intersection of all subgroups of G that contain S. D 
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EXERCISES : SECTION 3.3 

I .t Find H K in Zr6 ' if H == ( [3 ] )  and K == ( [5] ) .  

2. Find H K in Z;l ' if H == { [ I ] ,  [8] } and K == { [ I ] ,  [4] , [ 1 0] ,  [ 1 3] ,  [ 1 6] ,  [ I 9] } .  

3 . tFind an example of two subgroups H and K of S3 for which H K i s  not a subgroup. 

4. Find the cyclic subgroup generated by [ � ; ] in GL2 (Z3 ) .  

5 .  Prove that if G l and G2 are abelian groups, then the direct product G 1 X G2 i s  
abelian. 

6 . Construct an abelian group of order 1 2  that is not cyclic . 

7 .  t Construct a group of order 1 2 that is not abelian. 

8 . Let GI and G2 be groups , with subgroups HI and H2 , respectively. Show that 
{ (X l , X2) I X l  E HI ,  x2 E H2 } is a subgroup of the direct product G I x G2 . 

9. This exercise concerns subgroups of Z x Z. 
(a) Let C I == { (a ,  b) E Z x Z I a == b } . Show that Cl is a subgroup of Z x Z. 
(b) For each positive integer n 2:: 2, let Cn == { (a ,  b) E Z x Z I a = b (mod n) } .  
Show that Cn i s  a subgroup of Z x Z. 
(c) Show that every subgroup of Z x Z that contains Cl has the form Cn , for some 
positive integer n .  

10 . Let n > 2 be an integer, and let X C Sn X Sn be the set X == { (a, r )  I a ( I )  == r e i ) } .  
Show that X is not a subgroup of Sn x Sn . 

1 1 . Let G I and G2 be groups ,  and let G be the direct product G I x G2 . 
Let H == { (X l , X2) E G I X G 2 I X2 == e} and let K == { (x I , X2) E G I X G 2 I X I == e } .  
(a) Show that H and K are subgroups of G.  
(b) Show that H K == K H == G. 
(c) Show that H n K == l ee ,  e) } .  

1 2. (a) Generalize Definition 3 .3 . 3  to the case of the direct product of n groups. 
(b) Generalize Proposition 3 . 3 .4 to the case of the direct product of n groups .  Prove 
that your generalization is true. 

1 3 .  Let p, q be distinct prime numbers , and let n == pq . Show that H K == Z� , for the 
subgroups H == { [x ]  E Z� I X = 1 (mod p) }  and K == { [y] E Z� I y = 1 (mod q ) }  
of Z� . 
Hint : You can either use a counting argument to show that H K has cp (n) elements , 
or use the Chinese Remainder Theorem to show that the sets are the same. 
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14. Let G be a finite group, and let H, K be subgroups of G. Prove that 

I HK I  = 
I H I I K I . I H n K I 

15 .  Let G be a group of order 6. Show that G must contain an element of order 2 (see 
Exercise 24 of Section 3 . 1 ) . Show that it cannot be true that every element different 
from e has order 2 .  
Hint : Show that if every element had order 2 i t  would be possible to construct a 
subgroup of order 4 .  

1 6. Let G be a group of order 6, and suppose that a , b E G  with a of order 3 and b of 
order 2. Show that either G is cyclic or ab i- ba . 

1 7 . Let G be any group of order 6. Show that if G is not cyclic , then its multiplication 
table must look like that of S3 . 
Hint: If the group is not cyclic, use Exercises 1 5  and 1 6  to produce elements a , b E G  
with a3 == e, b2 == e and ba == a2b . 

1 8 . Let c be a positive constant. Show that the set L of all matrices of the form ( 2 ) - 1 /2 [ 1 
A (v) == 1 

-
� V 
c2 --c2 

-
� ] , V E R, I v l < c 

VI + V2 is a subgroup of GL2 (R) . Verify that A(V I ) A (V2) == A(V3 ) ,  where V3 == V I V2 . 1 + -c2 
Note : The set L is called the Lorentz group, and if c is the speed of light, then it 
models the addition of velocities under the theory of special relativity. Observe that 
in this model, if c were infinite, this formula for addition of velocities would reduce 
to A (VI ) A (V2) == A(V I + V2) .  

3.4 Isomorphisms 

In studying groups we are interested in their algebraic properties, and not in the 
particular form in which they are presented. For example, if we construct the 
mUltiplication tables for two fi nite groups and fi nd that they have the same patterns, 
although the elements might have different forms, then we would say that the groups 
have exactly the same algebraic properties . 

Consider the subgroup {± 1 }  of Q X  and the group Z2 . If you write out the 
group tables for these groups you will fi nd precisely the same pattern, as shown in 
Tables 3 .4. 1 and 3 .4.2. 

Actually, if we have any group G with two elements, say the identity element 
e and one other element a ,  then there is only one possibility for the multiplication 
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Table 3 .4 . 1 :  Multiplication in {± I }  

x 1 - 1  
1 1 - 1 

- 1  - 1  1 

Table 3 .4 .2 : Addition in Z2 

+ [0] [ 1 ] 
[0] [0] [ 1 ] 
[ 1 ]  [ 1 ]  [0] 
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table for G . We have already observed that Propositions 3 . 1 .7 and 3 . 1 . 8 imply that 
in each row and column of a group table, each element of the group must occur 
exactly once. Since e is the identity element, e . e == e ,  e . a == a , and a . e == a . 
Since a cannot be repeated in the last row of the table, we must have a . a == e .  This 
gives us Table 3 .4.3 ,  and shows that all groups with two elements must have exactly 
the same algebraic properties . 

Table 3 .4. 3 : -t-:-a 
e e a 
a a e 

We need a formal definition to describe when two groups have the same algebraic 
properties . To begin with, there should be a one-to-one correspondence between 
the elements of the groups . This means in essence that elements of one group 
could be renamed to correspond exactly to the elements of the second group. In 
addition, products of corresponding elements should correspond. If G 1 is a group 
with operation * and G2 is a group with operation *, then any function ¢ : G 1 -+ G2 
that preserves products must have the property that ¢ (a * b) == ¢ (a) * ¢ (b) for all 
a , b E G  1 . This expresses in a formula the fact that if we first multiply a and b to 
get a * b and then find the corresponding element ¢ (a * b) of G 2, we should get 
exactly the same answer as if we find the corresponding elements ¢ (a) and ¢ (b) in 
G2 and then compute their product ¢ (a) * ¢ (b) in G2 . It is rather cumbersome to 
write the two operations , so in our definition we will omit them, since it should be 
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clear from the context which operation is to be used. A one-to-one correspondence 
that preserves products will be called an isomorphism. It is derived from the Greek 
words isos meaning "equal" and morphe meaning "form." 

3.4.1 Definition. Let G 1 and G2 be groups, and let ¢ : G 1 � G2 be a function. 
Then ¢ is said to be a group isomorphism if ¢ is one-to-one and onto and 

¢ (ab) == ¢ (a)¢ (b) 

for all a , b E G  1 . In this case, G 1 is said to be isomorphic to G2, and this is denoted 
by G 1 r-..J G2. 

There are several immediate consequences of the definition of an isomorphism. 
Using an induction argument it is possible to show that 

for any isomorphism ¢ : G 1 � G2 • In particular, ¢ (an ) == (¢ (a) )n for all positive 
integers n . Let e l and e2 be the identity elements of G 1 and G2 , respectively. Then 

and then the cancellation law in G2 implies that ¢ (e l ) == e2 . Finally, 

so (¢ (a) )- 1 == ¢ (a- 1 ) ,  and it follows that ¢ (an ) == (¢ (a))n for all n E Z. We can 
summarize by saying that any group isomorphism preserves general products , the 
identity element, and inverses of elements . From now on we will generally use e 
to denote the identity element of a group, and we will not distinguish between the 
identity elements of various groups unless confusion would otherwise result. 

We have emphasized that we really do not distinguish (algebraically) between 
groups that are isomorphic . Thus isomorphism should be almost like equality. In 
fact, it satisfies properties similar to those of an equivalence relation. There are 
several things to prove, since our definition of isomorphism of groups involves a 
function, say ¢ : G 1 � G2, and this determines a direction to the isomorphism. 

The reflexive property holds , since for any group G the identity mapping is 
an isomorphism, and so G r-..J G . If G 1 r-..J G2, then there is an isomorphism 
¢ : G 1 � G2, and since ¢ is one-to-one and onto, there exists an inverse function 
¢- 1 , which by part (a) of the next proposition is an isomorphism. Thus G2 r-..J G 1 , 
and the symmetric property holds . Finally, the transitive property holds since if 
G1 r-..J G2 and G2 r-..J G3 , then by part (b) of the next proposition the composite of 
the two given isomorphisms is an isomorphism, showing that G 1 r-..J G3 . 
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3.4.2 Proposition. 
(a) The inverse of a group isomorphism is a group isomorphism. 
(b) The composite of two group isomorphisms is a group isomorphism. 

Proof (a) Let ¢ : G I -+ G2 be a group isomorphism. Since ¢ is one-to-one and 
onto, by Proposition 2. 1 .7 there is an inverse function () : G2 -+ G 1 .  Recall that 
() is defined as follows: for each element g2 E G2 there exists a unique element 
gI E G I such that ¢ (g I ) == g2 , and then () (g2) == g I . As a direct consequence 
of the definition of () ,  we have ()¢ equal to the identity on G 1 and ¢() equal to the 
identity on G2 . The definition also implies that () is one-to-one and onto . All that 
remains is to show that () preserves products . Let a2 , b2 E G2, and let () (a2) == a I 
and () (b2) == b I . Then ¢ (a I ) == a2 and ¢ (b I ) == b2 , so 

which shows, by the definition of () ,  that 

(b) Let ¢ : G I -+ G2 and () : G2 -+ G3 be group isomorphisms . By Proposi
tion 2. 1 .5 , the composite of two one-to-one and onto functions is again one-to-one 
and onto, so ()¢ is one-to-one and onto . If a , b E G  1 ,  then 

()¢ (ab) == () (¢ (ab) ) == () (¢ (a)¢ (b)) == () (¢ (a))() (¢ (b)) == ()¢ (a)()¢ (b) , 

showing that ()¢ preserves products . D 

Example 3.4.1 ( ( i ) � Z4). 

Consider the subgroup (i ) == {± 1 ,  ±i } of e x . Table 3 .4.4 gives a multiplica
tion table for this subgroup. 

Table 3 .4.4: Multiplication in ( i ) 

1 - 1 1 - 1 
1 1 - 1 1 - 1 

- 1 - 1 1 - 1 1 
1 1 - 1 - 1 1 

- 1 - 1 1 1 - 1 

Although Table 3 .4.4 presents the group in what may be the most natural order, 
it is useful rearrange the table. It is interesting to arrange the table in the order 



1 28 CHAPTER 3. GROUPS 

Table 3 .4 .5 : Multiplication in (i ) 

· 0 l . 1 l · 2 l · 3 l 
· 0 l ·0 l · 1 l · 2 l · 3 l 
· 1 l · 1 l · 2 l · 3 l · 0 l 
· 2 l · 2 l · 3 l · 0 l . 1 l 
· 3 l · 3 l · 0 l · 1  l · 2 l 

1 ,  i ,  - 1 , -i , as shown in Table 3 .4 .5 .  Actually, since 1 == i O , i == i i , - 1  == i 2 , 
and i 3 == - i ,  we have used this representation in the table. 
For the sake of comparison, in Table 3 .4 .6 we give the addition table for Z4. 
The elements of Z4 appear in precisely the same positions as the exponents 
of i did in the previous table. This illustrates in a concrete way the intuitive 
notion that multiplication of powers of i should correspond to addition of the 
exponents. 

Table 3 .4 .6 : Addition in Z4 

[0] [ 1 ]  [2] [3] 
[0] [0] [ 1 ]  [2] [3] 
[ 1 ]  [ 1 ]  [2] [3] [0] 
[2] [2] [3] [0] [ 1 ] 
[3] [3] [0] [ 1 ]  [2] 

To make the isomorphism precise, define a function ¢ : Z4 -+ ( i ) by ¢ ( [n] ) == 
i n . This formula depends on choosing a representative n of its equivalence 
class, so to show that the function is well-defined we must show that if n = 
m (mod 4) , then i n == im . This follows immediately from Proposition 3 .2 .8 ,  
since i has order 4. The function defines a one-to-one correspondence, so all 
that remains is to show that ¢ preserves the respective operations. We must 
first add elements [n] and [m] of Z4 (using the operation in Z4) and then apply 
¢, and compare this with the element we obtain by first applying ¢ and then 
multiplying (using the operation in ( i ) ) : 

¢ ( [n] + [m]) == ¢ ([n + m]) == i n+m == i n im == ¢ ( [n])¢ ( [m] ) . 
We conclude that ¢ i s a group isomorphism. D 
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Example 3.4.2 (Exponential and logarithmic functions). 

The groups R (under addition) and R+ (under multiplication) are isomorphic. 
Define ¢ : R � R + by ¢ (x) == eX . Then ¢ preserves the respective op
erations since ¢ (x + y) == eX+Y == eX eY == ¢ (x)¢ (y) .  To show that ¢ is 
one-to-one, suppose that ¢ (x) == ¢ (y) .  Then taking the natural logarithm of 
each side of the equation eX == eY gives x == y . Finally, ¢ is an onto mapping 
since for any y E R+ we have y == e1n (y) == ¢ (In (y)) . D 
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To show that two groups G l and G2 are isomorphic, it is often necessary to 
actually define the function that gives the isomorphism. In practice, there is usually 
some natural correspondence between elements which suggests how to define the 
necessary function. 

On the other hand, to show that the groups are not isomorphic, it is not practical 
to try to check all one-to-one correspondences between the groups to see that none 
of them preserve products . (Of course, if there is no one-to-one correspondence 
between the groups, they are not isomorphic .  For example, no group with four 
elements can be isomorphic to a group with five elements .) What we need to do is 
to find a property of the first group which (i) the second group does not have and (ii) 
would be preserved by any isomorphism. The next proposition identifies several 
structural properties that are preserved by group isomorphisms. 

3.4.3 Proposition. Let ¢ : G 1 ---+ G2 be an isomorphism of groups. 
(a) If a has order n in G 1 , then ¢ (a) has order n in G2• 
(b) IfG 1 is abelian, then so is G2• 
(c) If G 1 is cyclic, then so is G2• 

Proof (a) Suppose that a E G 1 with an == e . Then we must have (¢ (a ) ) n == 
¢ (an ) == ¢ (e) == e . This shows that the order of ¢ (a)  is a divisor of the order of 
a . Since ¢ is an isomorphism, then there exists an inverse isomorphism that maps 
¢ (a) to a, and a similar argument shows that the order of a is a divisor of the order 
of ¢ (a) . It follows that a and ¢ (a) must have the same order. 

(b) Assume that G 1 is abelian, and let a2 , b2 E G2 . Since ¢ is an onto mapping, 
there exist a l , b l E G1 with ¢ (a l ) == a2 and ¢ (b 1 ) == b2 . Then 

showing that G2 is abelian. 
(c) Suppose that G 1 is cyclic, with G 1 == (a ) . For any element y E G2 we have 

y == ¢ (x ) for some x E G 1 , since ¢ is onto. Using the assumption that G 1 is cyclic , 
we can write x == an for some n E Z. Then y == ¢ (an ) == (¢ (a) ) n , which shows 
that each element of G2 can be expressed as a power of ¢ (a ) . Thus G2 is cyclic, 
generated by ¢ (a) . 0 
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Example 3.4.3 (R '!:- R X ). 

The additive group R of real numbers is not isomorphic to the multiplicative 
group R x of nonzero real numbers . One way to see this is to observe that 
R x has an element of order 2, namely, - 1 .  On the other hand, an element 
of order 2 in R must satisfy the equation 2x == ° (in additive notation) . The 
only solution is x == 0, and so this shows that R has no element of order 
2. Thus there cannot be an isomorphism between the two groups , since by 
Proposition 3 .4 .3 it would preserve the orders of all elements . D 

The cyclic group Z4 and the Klein four-group Z2 x Z2 are not isomorphic .  In 
Z4 there is an element of order 4, namely, [ 1 ] .  On the other hand, the order of 
an element in a direct product is the least common multiple of the orders of 
its components , and so any element of Z2 x Z2 not equal to the identity must 
have order 2. D 

To motivate some further work with isomorphisms, let us ask the following 
question. Which of the groups S3 , GL2 (Z2) ,  Z6 , and Z2 x Z3 are isomorphic? The 
first two groups we know to be nonabelian. On the other hand, any cyclic group is 
abelian, since powers of a fixed element will commute with each other. The element 
( [ 1 ] ,  [ 1 ] ) of Z2 x Z3 has order 6 (the least common multiple of 2 and 3) , and so 
Z2 x Z3 is cyclic, as well as Z6 . Thus the four groups represent at least two different 
isomorphism classes . Proposition 3 .4 .5 will show that Z2 x Z3 is isomorphic to Z6 , 
and the next example shows that the two nonabelian groups we are considering are 
also isomorphic . 

Refer to Table 3 .3 .5  for a multiplication table for GL2 (Z2) .  To establish the 
connection between S3 and GL2 (Z2) ,  let 

e = [ b � ] . a = [ � b ] ' and 

Then direct computations show that a3 == e, b2 == e, and ba == a2b. Fur
thermore, each element of GL2 (Z2) can be expressed uniquely in one of the 
following forms :  e , a , a2 , b, ab, a2b . If we make these substitutions in the 
multiplication table for GL2 (Z2) ,  we obtain Table 3 .4 .7 .  
In Section 3 .3  we described S3 by letting a == ( 1 , 2 , 3) and b == ( 1 , 2) , which 
allowed us to write 
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Table 3 .4.7 : Multiplication in GL2 (Z2) 

e a a2 b ab a2b 
e e a a2 b ab a2b 
a a a2 e ab a2b b 
a2 a2 e a a2b b ab 
b b a2b ab e a2 a 

ab ab b a2b a e a2 

a2b a2b ab b a2 a e 

without using permutations . This indicates how to define an isomorphism 
from S3 to GL2 (Z2) .  Let 

cfJ ( ( 1 , 2 , 3» = [ � 6 ] and cfJ ( ( 1 , 2» = [ � 6 ] 
and then extend this to all elements by letting 

[ 1 0
1 ] i [ 01 0

1 ] i ¢ ( ( 1 , 2 , 3) i ( 1 ,  2)i ) == 1 

for i == 0, 1 ,  2 and j == 0, 1 .  Our remarks about the unique forms of the 
respective elements show that ¢ is a one-to-one correspondence. The fact that 
the multiplication tables are identical shows that ¢ respects the two operations . 
This verifies that ¢ is an isomorphism. D 

U sing the idea of the previous example, to show that Z6 and Z2 x Z3 are 
isomorphic , we can look for elements that can be used to describe each group. 
Since we have already observed in Examples 3 .2. 8 and 3 .3 . 5 that both groups 
are cyclic, we can let a be a generator for Z6 and b be a generator for Z2 x Z3 . 
Then the function ¢ (na) == nb can be shown to define an isomorphism. 
(Remember that we are using additive notation. ) D 

1 3 1  

The next proposition gives an easier way to check that a function which preserves 
products is one-to-one. In additive notation, it depends on the fact that for any 
mapping which preserves sums we have ¢ (X l ) == ¢ (X2) if and only if ¢ (X l - X2) == 
O. Any vector space is an abelian group under vector addition, and any linear 
transformation preserves sums . Thus the result that a linear transformation is one
to-one if and only if its null space is trivial is a special case of our next proposition. 
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3.4.4 Proposition. Let G I and G2 be groups, and let ¢ : G I ---+ G2 be afunction 
such that ¢ (ab) == ¢ (a)¢ (b) for all a ,  b E G I . Then ¢ is one-to-one if and only if 
¢ (x) == e implies x == e, for all x E G I . 

Proof. Let ¢ : G I ---+ G2 satisfy the hypothesis of the proposition . If ¢ is one
to-one, then the only element that can map to the identity of G2 is the identity of 
G 1 . On the other hand, suppose that ¢ (x) == e implies x == e, for all x E G 1 . 
If ¢ (X I ) == ¢ (X2) for some X l , X2 E G I , then ¢ (X I X:; I )¢ (X2) == ¢ (X I X:; l x2) == 
¢ (X I ) == ¢ (X2) == e¢ (x2) ,  so we can cancel ¢ (X2) to get ¢ (X I X:; I ) == e, which 
shows by assumption that X I X:; 1 == e, and thus Xl == X2 . This shows that ¢ is 
one-to-one. D 

3.4.5 Proposition. lfm , n are positive integers such that gcd(m , n) == 1, then Zmn is isomorphic to Zm x Zn . 

Proof. Define ¢ : Zmn ---+ Zm X Zn by ¢ ( [x ]mn ) == ( [x ]m , [x ]n ) .  If a = 
b (mod mn) , then a - b (mod m) and a = b (mod n) , and so ¢ is well-defined. 
It is easy to check that ¢ preserves sums. To show that ¢ is one-to-one we can use 
the previous proposition. If ¢ ( [x ]mn ) == ( [O]m , [O]n ) , then both m and n must be 
divisors of x . Since gcd (m , n) == 1 ,  it follows that mn must be a divisor of x , which 
shows that [x ]mn == [O]mn . Since the two groups have the same number of elements , 
any one-to-one mapping must be onto, and thus ¢ is an isomorphism. D 

In most of our exercises , to show that two groups G I and G2 are isomorphic, you 
must define a one-to-one function from one group to the other. Sometimes it is easier 
to define the function in one direction than in the other, so when you are working on 
a problem, it may be worth checking both ways. The inverse of the function we used 
in proving Proposition 3 .4 .5 is also interesting . Given ¢ : Zmn ---+ Zm X Zn defined 
by ¢ ( [x ]mn ) == ( [x]m , [x ]n ) ,  the inverse must assign to each ( [a]m , [b]n ) E Zm x Zn 
an element [x ]mn E Zmn such that x = a (mod m) and x = b (mod n) . We could 
have applied the Chinese remainder theorem (Theorem 1 . 3 .6) to define our function 
in this direction, but the other way seemed more natural . 

EXERCISES: SECTION 3.4 

1 .t Show that the multiplicative group Z�o is isomorphic to the additive group Z4 . 
Hint : Find a generator [a ] l o of Z�o and define ¢ : Z4 � Z�o by ¢ ( [n]4 ) = [a ]7o ' 

2. Show that the multiplicative group Z; is isomorphic to the additive group Z6 . 

3 .  t Show that the multiplicative group Z� is isomorphic to the group Z2 x Z2 . 
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4. Show that Z; is not isomorphic to Z� by showing that the first group has an element 
of order 4 but the second group does not. 

5 . t Is the additive group e of complex numbers isomorphic to the multiplicative group 
e x  of nonzero complex numbers? 

6. Let G I and G2 be groups .  Show that G2 x G I is isomorphic to G I x G2 . 

7 .  Let G be a group. Show that the group (G, *) defined in Exercise 3 of Section 3 . 1 is 
isomorphic to G .  

8 .  Prove that any group with three elements must be isomorphic to Z3 . 

9 .  t Find two abelian groups of order 8 that are not isomorphic . 

10. Show that the group { fm ,h : R � R I f (x ) = mx + b ,  m 1= O} of affine functions 
from R to R (under composition of functions) is isomorphic to the group of all 2 x 2 

matrices over R of the form [ � � ] with m =1= 0 (under matrix multiplication) . 

(See Exercises 1 0  and 1 1  of Section 3 . 1 . ) 

1 1 . Let G be the set of all matrices in GL2 (Z3 ) of the form [ � � J That is , m , b E Z3 
and m 1= [0] 3 ·  Show that G is a subgroup of GL2 ( Z3 ) that is isomorphic to S3 . 

1 2. Let G be the following set of matrices over R: 

[ -� � ] [ � -� ] 
Show that G is isomorphic to Z2 x Z2 . (See Example 3 .2.4.) 

1 3 .  Let C2 be the subgroup {± 1 }  of the multiplicative group R X . Show that RX is 
isomorphic to R+ x C2 . 

14. Let G = {x E R I x > 0 and x 1= I } , and define * on G by a * b = a1n h . Show 
that G is isomorphic to the multiplicative group R x .  (See Exercise 9 of Section 3 . 1 . ) 

1 5 .  Let G be any group, and let a be a fixed element of G .  Define a function ¢a : G � G 
by ¢a (x ) = axa- l , for all x E G .  Show that ¢a is an isomorphism. 

1 6 . Let G be any group. Define ¢ : G � G by ¢ (x ) = x- I , for all x E G .  
(a) Prove that ¢ i s  one-to-one and onto. 
(b) Prove that ¢ is an isomorphism if and only if G is abelian. 

1 7 . Let ¢ : G 1 � G2 be a group isomorphism. Prove that if H is a subgroup of G 1 , 
then ¢ (H) = { y E G2 I y = ¢ (h) for some h E H}  is a subgroup of G2 . 

1 8 . Define ¢ : e x  � e x  by ¢ (a + bi) = a - bi , for all nonzero complex numbers 
a + bi . Show that ¢ is an isomorphism. 
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19 . Show that e x  is isomorphic to the subgroup of GL2 (R) consisting of all matrices of 

the form [ _: ! ]  such that a2 + b2 =I=- O. 

20. Let G l and G2 be groups . Show that G l is isomorphic to the subgroup of the direct 
product G 1 X G2 defined by { (X l , X2) I x2 == e } . 

2 1 .  Prove that if m , n are positive integers such that gcd (m , n) == 1 ,  then Z�n is isomor
phic to Z� x Z� . 

22. Let a , b be positive integers , and let d == gcd (a , b) and m == lcm [a , b] . Write 
d == sa + tb, a == a'd , and b == b'd . Prove that the function f : Zm x Zd � Za x Zb 
defined by f ( ( [x ]m , [Y ]d ) ) == ([x + ysa']a , [x - ytb']b) is an isomorphism. 
Note: This generalizes Proposition 3 .4 .5 .  

23 . For each positive integer n 2: 2, let Cn == { (a , b) E Z x Z I a = b (mod n) } . (See 
Exercise 9 of Section 3 . 3 . ) Show that Cn is isomorphic to Z x Z. 

24. Let G == R - { - I } . Define * on G by a * b == a +b +ab. Show that G is isomorphic 
to the multiplicative group R x .  (See Exercise 1 3  of Section 3 . 1 . ) 
Hint : Remember that an isomorphism maps identity to identity. Use this fact to help 
find the necessary mapping . 

25 . Let G be a group, and let S be any set for which there exists a one-to-one and 
onto function ¢ : G � S. Define an operation * on S by setting X l  * X2 
¢ (¢- l (X l )¢- l (X2) ) ,  for all X l , x2 E S. 
(a) Show that S is a group under this operation. 
(b) Show that ¢ : G � S is a group isomorphism. 

26. Let G l and G2 be groups. A function from G 1 into G2 that preserves products but is 
not necessarily a one-to-one correspondence will be called a group homomorphism, 

from the Greek word homos meaning same. Show that ¢ : GL2 (R) � R x defined 
by ¢ (A) == det (A) for all matrices A E GL2 (R) is a group homomorphism. 

27 . Using the definition of a group homomorphism given in Exercise 26, let ¢ : G 1 � G2 
be a group homomorphism. We define the kernel of ¢ to be 

ker (¢) == {x E G l  I ¢ (x) == e } . 

Prove that ker( ¢) is a subgroup of G 1 .  

28. Let ¢ : G 1 � G2 be a group homomorphism. Prove that ¢ is a group isomorphism 
if and only if ker(¢) == { e }  and ¢ (G l ) == G2 . (See Exercises 26, 27, and 17 . ) 
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3.5 Cyclic Groups 

The class of cyclic groups will turn out to play a crucial role in studying the solution 
of equations by radicals . Yet this class can be characterized very simply, since we 
will show that a cyclic group must be isomorphic either to Z or Zn for some n . This 
allows us to apply some elementary number theory to describe all subgroups of a 
cyclic group and to find all possible generators . 

3.5.1 Theorem. Every subgroup of a cyclic group is cyclic. 

Proof. Let G be a cyclic group with generator a ,  so that G == (a ) , and let H be any 
subgroup of G. If H is the trivial subgroup consisting only of e , then we are done 
since H == (e) . If H is nontrivial , then it contains some element different from the 
identity, which can then be written in the form an for some integer n i=- O. Since 
a-n == (an )- l must also belong to H, we can assume that H contains some power 
ak with k > O. 

Let m be the smallest positive integer such that am E H. We claim that H == 

(am ) . Since am E H, we have (am ) C H, and so the main point is to show that 
each element of H can be expressed as some power of am . Let x E H. Then since 
G == (a ) , we have x == ak for some k E Z. By the division algorithm, k == mq + r 
for q ,  r E Z with 0 < r < m . Then x == ak == amq+r == (am )q ar . This shows that 
ar == (am )-qx belongs to H (since am and x belong to H). This contradicts the 
definition of am as the smallest positive power of a in H unless r == O. Therefore 
k == mq and x == (am )q E (am ) . We conclude that H == (am ) and so H is cyclic . D 

In our current terminology, Theorem 1 . 1 .4 showed that every subgroup of Z is 
cyclic . This result can actually be used to give a very short proof of Theorem 3 .5 . 1 .  
Let G == (a ) and let H be a subgroup of G. Let I == {n E Z I an E H } .  It 
follows from the rules for exponents that I is closed under addition and subtraction, 
so Theorem 1 . 1 .4 implies that I == mZ for some integer m. We conclude that 
H == (am ) , and so H is cyclic. 

The next theorem shows that any cyclic group is isomorphic either to Z or to 
Zn . Thus any two infinite cyclic groups are isomorphic to each other. Furthermore, 
two finite cyclic groups are isomorphic if and only if they have the same order. 

3.5.2 Theorem. Let G be a cyclic group. 
(a) If G is infinite, then G '"'-J Z. 
(b) If I G I == n, then G '"'-J Zn . 

Proof. (a) Let G == (a ) be an infinite cyclic group. Define ¢ : Z -+ G by ¢ (m) == 
am , for all m E Z. The mapping ¢ is onto since G == (a ) , and Proposition 3 .2 . 8 (a) 



1 36 CHAPTER 3. GROUPS 

shows that ¢ (m) i=- ¢ (k) for m i=- k, so ¢ is also one-to-one. Finally, ¢ preserves 
the respective operations since 

This shows that ¢ is an isomorphism. 
(b) Let G == (a ) be a finite cyclic group with n elements . Define ¢ : Zn ---+ G 

by ¢ ( [m]) == am , for all [m] E Zn . In order to show that ¢ is a function, we 
must check that the formula we have given is well-defined. That is, we must show 
that if k = m (mod n) , then ak == am . This follows from Proposition 3 .2 .8 (c) .  
Furthermore, i f  ¢ ([k]) == ¢ ( [m] ) , then the same proposition shows that [k] == [m ] , 
and so ¢ i s  one-to-one . It i s  clear that ¢ i s  onto, since G == (a ) . Finally, ¢ preserves 
the respective operations since 

¢ ( [m] + [k] ) == am+k == amak == ¢ ([m])¢ ( [k] ) . 

This shows that ¢ is an isomorphism. D 

The subgroups of Z have the form mZ, for m E Z. In addition, mZ C nZ if and 
only if n I m. Thus mZ == nZ if and only if m == ±n . 

The subgroups of Zn take more work to describe. Given m E Z, we wish to find 
the multiples of [m] in Zn . That is, we need to determine the integers b such that 
[b] == k [m] for some k E Z. Equivalently, we need to know when mx = b (mod n) 
has a solution. By Theorem 1 . 3 . 5 , the values of b are precisely the multiples of 
gcd (m , n) . 

In the next proposition, we have chosen to describe the subgroups of a cyclic 
group with n elements using multiplicative notation. If G == (a ) is a finite cyclic 
group, and m is a positive divisor of the order of G, then (am ) is a subgroup of G. 
The next proposition and corollary show that every subgroup of G can be  written 
uniquely in this form. 

3.5.3 Proposition. Let G == (a ) be a finite cyclic group of order n. If m E Z, then 
(am ) == (ad ), where d == gcd (m , n) , and am has order njd. 

Proof. Since d i m , we have am E (ad ) , and so (am ) C (ad ) . On the other hand, 
there exist integers s, t such that d == sm + tn , and so 

since an == e. Thus ad E (am ) ,  and so (ad ) C (am ) .  The order of ad is njd, and so 
am has order njd. D 
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3.5.4 Corollary. Let G == (a ) be afinite cyclic group of order n. 
(a) The element ak generates G if and only ifgcd (k , n) == 1 . 
(b) If H is any subgroup of G, then H == (ak ) for some divisor k of n. 
(c) Ifm and k are divisors ofn, then (am ) C (ak ) if and only if k i m. 
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Proof. The statements in parts (a) and (b) follow immediately from Proposi
tion 3 .5 . 3 . 

To prove part (c) ,  first suppose that k i m . If m == kq , then am == (ak )q E (ak ) , 
and therefore (am ) C (ak ) . Conversely, if (am ) C (ak ) , then am E (ak ) , and so 
m = kt (mod n) for t E Z. It follows that m == kt + nq for some q E Z, and so 
k i m because by assumption k is a divisor of n. D 

We will use the notation mZn for the subgroup ( [m ] ) consisting of all multiples 
of [m] . If m and k are divisors of n , then we have mZn c kZn if and only if k i m . 
For small values of n , we can easily give a diagram showing all subgroups of Zn and 
the inclusion relations between them. This is called a subgroup diagram. Since 
subgroups correspond to divisors of n and inclusions are the opposite of divisibility 
relations, we can find the diagram of divisors of n and simply turn it upside down. 

Example 3.5.1. 

In Example 1 .2 .2 we gave the diagram of all divisors of 1 2. This leads to the 
subgroup diagram given in Figure 3 .5 . 1 .  0 

Example 3.5.2. 

Figure 3 .5 . 1 :  Subgroups of Z12 

Z12 
/ 

2Z12 
/ "" 

6Z12 4Z1 2 
"" / 

(0) 

If n is a prime power, then the subgroup diagram of Zn i s particularly simple, 
since for any two subgroups , one is contained in the other. (Why?) We give 
the subgroup diagram for Z125 in Figure 3 .5 .2. 0 
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Figure 3 .S .2 : Subgroups of ZI25 
ZI 25 

I 
SZ1 25 

I 
2SZI 25 

I 
(0) 

CHAPTER 3. GROUPS 

In Definition 3 . 3 . 3 we introduced the direct product of two groups . This def
inition can easily be extended to the direct product G I x . . .  x Gn of n groups 
G 1 , • • •  , Gn by considering n-tuples in which the ith entry is an element of Gi , with 
componentwise multiplication. As with the direct product of two groups , the order 
of an element is the least common multiple of the orders of each component. 

The following proposition implies that every finite cyclic group is isomorphic to 
a direct product of cyclic groups of prime power order. We could call this a structure 
theorem for finite cyclic groups ,  in the sense that we can show how they are built 
up from combinations of simpler cyclic groups . This is a special case of the general 
structure theorem for finite abelian groups, proved in Section 7 .S , which states that 
any finite abelian group is isomorphic to a direct product of cyclic groups of prime 
power order. 

3.5.5 Theorem. Let n be a positive integer which has the prime decomposition 
n == p� l p�2 . . .  p�m , where P I < P2 < . . .  < Pm . Then 

Proof. In the direct product of the given groups, the element with [ 1 ] in each 
component has order n , since the least common multiple of the given prime powers 
is n. Thus the direct product is cyclic of order n , so by Theorem 3 .S .2, it must be 
isomorphic to Zn . D 

For a positive integer n , the Euler cp-function cp (n ) is defined to be the number 
of positive integers less than or equal to n and relatively prime to n . Thus cp (n ) 
gives the number of elements of Zn that are generators of Zn . In Section 1 .4 we 
gave a formula for cp (n ) ,  without proof. The proof is an easy consequence of our 
description of Zn . 
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3.5.6 Corollary. Let n be a positive integer which has the prime decomposition 
a l a2 am h Th n == PI P2 . . .  Pm ' w ere PI < P2 < . . .  < Pm · 1 1  en 

Proof To count the generators of Zn , it is easier to use the isomorphic direct product 

Z al X Z a2 X . . . x Z am r-v Z P I  P2 Pm n 

obtained in Theorem 3 .5 .5 than it is to use Zn , since an isomorphism preserves 
generators . An element of this direct product is a generator if and only if it has order 
n , and so this means that the least common multiple of the orders of its components 
in their respective groups must be n . If b == ( [b 1 ] pa l ,  [b2]pa2 , . . .  , [bm ]pam ) is an 1 2 m 
element of the direct product, then the order of each [bi ] p�i must be a divisor of 
p�i , say pf , with fJi < (Xi . Then b has order pf l p�2 . . .  p�m , and for this order to 
be equal to n we must have fJi == (Xi for each i .  It follows that an element of the 
direct product is a generator if and only if each of its components is a generator in 
its respective cyclic group of prime power order. Thus the total number of possible 
generators is equal to the product of the number of generators in each component. 

We have reduced the problem to counting the number of generators in Zpa , for 
any prime p . The elements that are not generators are the multiples of p, and among 
the pa elements of Zpa there are pa- l such multiples . Thus 

Taking the product of these values for each of the primes in the decomposition of n 
gives the formula we want. D 

If G is a finite group, then as we noted following the definition of order, each 
element of G must have finite order. Thus for each a E G, we have ao(a) == e . If N 
is the least common mUltiple of the integers o (a) , for all a E G, then aN == e for all 
a E G. Since o(a ) is a divisor of I G I for any a E G, it follows that N is a divisor 
of I G I .  Using this concept of the "exponent" of a group, we are able to characterize 
cyclic groups among all finite abelian groups . Note that some authors refer to every 
multiple of N as an exponent of G. 

3.5.7 Definition. Let G be a group. If there exists a positive integer N such that 
aN == e for all a E G, then the smallest such positive integer is called the exponent 
ofG. 
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Example 3.5.3. 

The exponent of any finite group is the least common multiple of the orders of 
its elements . Thus the exponent of S3 is 6, since S3 has elements of order 1 ,  
2, and 3 .  The exponent of Z2 x Z2 is 2. Since we are using additive notation, 
remember to use multiples instead of powers. The exponent of Z2 x Z3 is 6, 
since there are elements of order 1 ,  2, 3, and 6. 0 

3.5.8 Lemma. Let G be a group, and let a , b E G  be elements such that ab == ba. 
lf the orders ofa and b are relatively prime, then o (ab) == o (a)o (b) . 

Proof Let o (a) == n and o (b) == m . Then since ab == ba , we must have (ab)mn == 
amnbmn == (an )m (bm )n == e , which shows that ab has finite order, say o (ab) == k . 
Furthermore, (ab )mn == e implies that k I mn . On the other hand, (ab)k == e, which 
shows that ak == b-k . Therefore akm == (ak )m == (b-k)m == (bm) -k == e, showing 
that n I km . Since (n , m) == 1 ,  we must have n I k . A similar argument shows that 
m I k, and then mn I k  since (n , m) == 1 .  Since m , n ,  k are positive integers with 
mn I k and k I mn, we have k == mn . D 

3.5.9 Proposition. Let G be afinite abelian group. 
(a) The exponent of G is equal to the order of any element of G of largest order. 
(b) The group G is cyclic if and only if its exponent is equal to its order. 

Proof (a) Choose an element a E G whose order is as large as possible. Let b E G  
and suppose that o (b) is not a divisor of o (a) . Then in the prime factorizations of 
o (a) and o (b) , there exists a prime p with o (a) == pan and o (b) == pf3m, where 
p is relatively prime to both n and m, and f3 > a > O. Then o(aPcx ) == n and 
o (bm) == pf3 , so these orders are relatively prime. It follows from Lemma 3 .5 . 8 that 
o (aPcx bm) == npf3 , and this is greater than o (a) , a contradiction. Thus o(b) I o (a) for 
all b E G , and o (a ) is therefore the exponent of G. 

(b) Part (b) follows immediately from part (a) , since G i s  cyclic if and only if 
there exists an element of order I G I .  D 

EXERCISES: SECTION 3.5 

l . tLet G be a group and let a E G be an element of order 1 2. What is the order of aj 
for j == 2 ,  . . . , I I ? 

2. Let G be a group and let a E G be an element of order 30. List the powers of a that 
have order 2, order 3 or order 5 .  
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3 .  Give the subgroup diagrams of the following groups .  
(a) Z24 
(b) Z36 

4. Give the subgroup diagram of Z60 . 
5 .  t Find the cyclic subgroup of C x generated by (,J2 + ,J2i ) /2. 

6 .  Find the order of the cyclic subgroup of C x generated by 1 + i .  
7 .tWhich of the multiplicative groups Z� , Z� , Z� , Z� are cyclic? 

8 .  Find (TC ) in R x .  
9 .  t Find all cyclic subgroups of Z4 x Z2 . 

10. Find all cyclic subgroups of Z6 x Z3 . 
1 1 . Which of the multiplicative groups Z; , Zro ' ZG, Z� are isomorphic? 

1 4 1 

1 2. Let a ,  b be positive integers, and let d == gcd (a , b) and m == lcm [a , b] . Use Propo
sition 3 .5 .5  to prove that Za x Zb "-' Zd x Zm . 

1 3 . Show that in a finite cyclic group of order n , the equation xm == e has exactly m 
solutions, for each positive integer m that is a divisor of n . 

14 .  Prove that any cyclic group with more than two elements has at least two different 
generators . 

1 5 .  Prove that any finite cyclic group with more than two elements has an even number 
of distinct generators . 

16. Let G be any group with no proper, nontrivial subgroups, and assume that I G I > 1 .  
Prove that G must be isomorphic to Z p for some prime p. 

17 .  Let G be the set of all 3 x 3 matrices of the form [ �  � � ]  . 
(a) Show that if a ,  b , C E Z3 , then G is a group with exponent 3 .  
(b) Show that i f  a ,  b , C E Z2 , then G i s  a group with exponent 4. 

1 8 . Prove that Ldln ({J (d) == n for any positive integer n . 
Hint : Interpret the equation in the cyclic group Zn , by considering all of its subgroups .  

1 9 .  Let n == 2k for k > 2. Prove that Z� i s  not cyclic. 
Hint : Show that ± 1 and (n /2) ± 1 satisfy the equation x2 == 1, and that this is 
impossible in any cyclic group. 

20 . Let G be a group with pk elements, where p is a prime number and k 2: 1 .  Prove 
that G has a subgroup of order p . 
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3.6 Permutation Groups 

When groups were first studied, they were thought of as sets of permutations closed 
under products and including the identity, together with inverses of all elements . 
The abstract definition that we now use was not given until later. The content of 
Cayley 's theorem, which we are about to prove, is the surprising result that this 
abstract definition is not any more general than the original concrete definition. 

In the case of a finite group, a little thought about the group multiplication table 
may convince the reader that the theorem is not so surprising after all . As we have 
observed, each row in the multiplication table represents a permutation of the group 
elements . Furthermore, each row corresponds to multiplication by a given element, 
and so there is a natural way to assign a permutation to each element of the group. 

3.6.1 Definition. Any subgroup o/the symmetric group SymeS) on a set S is called 
a permutation group. 

In the following proof of Cayley 's theorem, we must show that any group G 
is isomorphic to a subgroup of SymeS) for some set S, so the first problem is to 
find an appropriate set S. Our choice is to let S be G itself. Next we must assign 
to each element a of G some permutation of G. The natural one is the function 
Aa : G ---+ G defined by Aa (x ) == ax for all x E G.  (We use the notation Aa to 
indicate multiplication on the left by a . ) The values Aa (x ) are the entries in the group 
table that occur in the row corresponding to multiplication by a , and this makes Aa 
a permutation of G .  Finally we must show that assigning Aa to a respects the two 
operations and gives a one-to-one correspondence. 

3.6.2 Theorem (Cayley). Every group is isomorphic to a permutation group. 

Proof Let G be any group . Given a E G, define Aa : G ---+ G by Aa (x ) == ax , 
for all x E G. Then Aa is onto since the equation ax == b has a solution for each 
b E G , and it is one-to-one since the solution is unique, so we conclude that Aa is 
a permutation of G. This shows that the function ¢ : G ---+ Sym(G) defined by 
¢ (a) == Aa is well-defined. 

We next want to show that GA == ¢ (G) is a subgroup of Sym(G) , and to do so 
we need several facts . The formula AaAb == Aab holds since for all x E G we have 
Aa (Ab (X) ) == a (bx ) == (ab)x == Aab (X ) . Because Ae is the identity function, this 
formula also implies that (Aa ) - l == Aa- l . This shows that GA is closed, contains the 
identity, and contains inverses for its elements , so it is a subgroup. 

To show that ¢ preserves products , we must show that ¢ (ab) == ¢ (a)¢ (b) . This 
follows from the formula Aab == AaAb . To complete the proof that ¢ : G ---+ GA is 
an isomorphism, it is only necessary to show that ¢ is one-to-one, since it is onto 
by the definition of GA . If ¢ (a ) == ¢ (b) for a , b E G, then we have Aa (X ) == Ab (X ) 
for all x E G. In particular, ae == Aa (e) == Ab (e) == be, and so  a == b . 
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In summary, we have found a subgroup GA of Sym(G) and an isomorphism 
¢ : G ---+ G A defined by assigning to each a E G the permutation Aa . D 

In this section we will assume as a matter of course that all permutations in Sn 
are expressed in the natural way as a product of disjoint cycles. A formal proof that 
this can be done is given in Section 2 .3 . Recall that if a E Sn , and a is written as a 
product of disjoint cycles, then the order of a is the least common multiple of the 
lengths of its cycles. 

Example 3.6.1 (Rigid motions of a square). 

4 

Groups of symmetries are very useful in geometry. We now look at the group 
of rigid motions of a square. Imagine a square of cardboard, placed in a box 
just large enough to contain it. Picking up the square and then replacing it in 
the box, in what may be a new position, gives what is called a rigid motion of 
the square. Each of the rigid motions determines a permutation of the vertices 
of the square, and the permutation notation gives a convenient way to describe 
these motions . To count the number of rigid motions, fix a vertex and label 
it A .  Label one of the adjacent vertices B .  We have a total of eight rigid 
motions, since we have four choices of a position in which to place vertex A ,  
and then two choices for vertex B because i t  must be adjacent to A .  

Figure 3 .6 . 1 :  Rigid Motions of a Square 

( 1 ,2,3 ,4) counterclockwise rotation through 900 
3 ( 1 ,3 )(2,4) counterclockwise rotation through 1 800 

( 1 ,4,3 ,2) counterclockwise rotation through 2700 

2 ( 1 )  counterclockwise rotation through 3600 
(2,4) flip about vertical axis 

( 1 ,3)  flip about horizontal axis 

( 1 ,2)(3 ,4) flip about diagonal 
1 ( 1 ,4)(2,3) flip about diagonal 

We have used ( 1 , 2 , 3 , 4) to describe the rigid motion in which the corner of 
the square currently occupying position 1 is placed in position 2, while the 
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comer currently in position 2 is moved to position 3 ,  the one in position 3 
is moved to position 4, and the one in position 4 is moved to position 1 .  In 
the rigid motion (2, 4) the square is replaced so that the comers originally in 
positions 2 and 4 are interchanged, while the comers originally in positions 1 
and 3 remain in the same positions. Note that we do not obtain all elements of 
S4 as rigid motions, since, for example, ( 1 , 2) would represent an impossible 
configuration. 
It is possible to introduce an operation on the rigid motions, by simply saying 
that the "product" of two rigid motions will be given by first performing one 
and then the other. This defines a group, since following one rigid motion by 
another gives a third rigid motion, the identity is a rigid motion, and any rigid 
motion can be reversed, providing inverses . In terms of permutations of the 
vertices of the square, this operation just corresponds to ordinary multiplica
tion of permutations . We give the multiplication table for this subgroup of S4 
in Table 3 .6. 1 .  In order to make the table smaller, we have found it necessary 
to use a more compact not�tion that omits commas . 
In our notation, the motion a carries the vertex currently in position i to 
position a (i ) . Thus we may think of a motion as a function from the set of 
position numbers into itself. As dictated by our convention for functions, the 
motion a r is the motion obtained by first performing r and then a .  The reader 
should be warned that our convention of labeling positions is not followed by 
all authors ; some prefer to follow the convention of labeling vertices . 0 

Example 3.6.2 (Rigid motions of an equilateral triangle). 

The rigid motions of an equilateral triangle yield the group S3 . With the 
vertices labeled as in Figure 3 .6.2, the counterclockwise rotations are given 
by the permutations ( 1 , 2 , 3 ) ,  ( 1 , 3 , 2) ,  and ( 1 ) .  Flipping the triangle about 
one of the angle bisectors gives one of the permutations ( 1 , 2) , ( 1 ,  3) or (2, 3) . 
The multiplication table for S3 has already been given in Table 3 . 1 . 1 .  0 

Example 3.6.3 (Rigid motions of a regular polygon). 

In this example we will determine the group of all rigid motions of a regular 
n-gon. In Section 3 . 3  we have seen that S3 , the group of rigid motions of an 
equilateral triangle, can be described using elements a (of order 3) and b (of 
order 2) which satisfy the equation ba == a2 b. The elements of S3 can then 
be written (uniquely) as e, a , a2 , b, ab, and a2b . 
In Example 3 .6. 1 ,  letting a == ( 1 , 2 , 3 , 4) and b == (2 , 4) , we have elements 
of order 4 and 2, respectively, which can be shown to satisfy the equation 
ba == a3 b. Furthermore, using these elements the group can then be described 
as the set fe , a ,  a2 , a3 , b , ab , a2b , a3b} . The equation ba == a3b shows us 



3.6. PERMUTATION GROUPS 145 

Table 3 .6 . 1 :  Rigid Motions of a Square 

( 1 )  ( 1 234) ( 1 3)(24) ( 1 432) (24) ( 1 2)(34) ( 1 3) ( 1 4)(23) 

( 1 )  ( 1 )  ( 1 234) ( 1 3)(24 ) ( 1 432) (24) ( 1 2)(34) ( 1 3 ) ( 1 4)(23) 

( 1 234) ( 1 234) ( 1 3)(24) ( 1432) ( 1 )  ( 1 2)(34 ) ( 1 3 ) ( 1 4)(23) (24) 

( 1 3 )(24) ( 1 3)(24) ( 1 432) ( 1 )  ( 1 234) ( 1 3 ) ( 1 4)(23) (24) ( 1 2)(34) 

( 1 432) ( 1 432) ( 1 )  ( 1 234) ( 1 3 )(24 ) ( 1 4)(23) (24) ( 1 2)(34) ( 1 3) 

(24) (24) ( 1 4)(23) ( 1 3) ( 1 2)(34) ( 1 )  ( 1 432) ( 1 3)(24) ( 1 234) 

( 1 2)(34) ( 1 2)(34) (24) ( 1 4)(23) ( 1 3 ) ( 1 234) ( 1 )  ( 1 432) ( 1 3)(24) 

( 1 3) ( 1 3) ( 1 2)(34) (24) ( 1 4)(23) ( 1 3)(24) ( 1 234) ( 1 )  ( 1 432) 

( 1 4  )(23) ( 1 4)(23) ( 1 3 ) ( 1 2)(34) (24) ( 1 432) ( 1 3)(24) ( 1 234) ( 1 )  

Figure 3 .6 .2 : Rigid Motions of an Equilateral Triangle 

3 2 ( 1 ,2,3) counterclockwise rotation through 1 200 
( 1 ,3 ,2) counterclockwise rotation through 2400 

( 1 )  counterclockwise rotation through 3600 
(2,3) flip about vertical axis 

( 1 ,3)  flip about angle bisector 

( 1 ,2) flip about angle bisector 



146 CHAPTER 3. GROUPS 

how to mUltiply two elements in this form and then bring them back to the 
"standard form." 

Now let us consider the general case of the rigid motions of a regular n-gon. 
Since a rigid motion followed by another rigid motion is again a rigid motion, 
and since any rigid motion can be reversed, the set of all rigid motions of a 
regular n-gon forms a group. To see that there are 2n rigid motions, fix two 
adjacent vertices . There are n places to send the first of these vertices, and 
then there are two choices for the adjacent vertex, giving a total of 2n motions. 
(The n-gon has been flipped over if the vertices appear in clockwise order. ) 

Figure 3 .6 .3 :  

T 

n - 1  3 

1 

Figure 3 .6 .3 represents part of a regular n-gon. Let a be a counterclock
wise rotation about the center, through 360/ n degrees .  Thus a is the cycle 
( 1 ,  2, 3 ,  . . .  , n) of length n and has order n .  Let b be a flip about the line of 
symmetry through position number 1 .  Thus b has order 2 and is given by the 
product of transpositions (2 , n) (3 , n - 1) . . . . 

Consider the set S == {ak , ak b I 0 :s k < n }  of rigid motions. It is easy to 
see that the elements ak for 0 :s k < n are all distinct, and that the elements 
ak b for 0 :s k < n are also distinct. Since the rigid motion represented by ak 
does not flip the n-gon, while the motion represented by ai b does , it is never 
the case that ak == ai b. Thus l S I == 2n , and so G == S. Since we have listed 
(uniquely) all the elements of G, it only remains to show how they can be 
multiplied. 

Clearly, an == e and b2 == e ,  and thus a- I == an- I and b- I == b. After 
multiplying two elements, to bring the product into one of the standard forms 
listed above, we only need to know how to move b past a . That is, we must 
compute ba , and to do so it turns out to be easiest to compute bab. From 
Figure 3 .6.4, it is easy to see that we obtain bab == a- I , and then multiplying 
on the right by b - 1 == b we obtain the formula ba == a- I b (or ba == an- I b) . 
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T 

n - 1 I 3 

~ 
1 

Figure 3 .6 .4 : 

3 n - 1 

M 
T 

4 I n n  4 

� M  
1 --+- 2 --+- 2 

a b 

Thus, for example, if we want to multiply ab by a2 , we use the formula 
ba == a- I b as follows: 

We have obtained a complete description of th� group of rigid motions of a 
regular n-gon in terms of elements a and b and the equations an == e,  b2 == e ,  
and ba == a - I b that they satisfy. 0 

147 

3.6.3 Definition. Let n > 3 be an integer. The group of rigid motions of a regular 
n -gon is called the nth dihedral group, denoted by Dn . 

Example 3.6.4 (Subgroups of S3). 

In Figure 3 .6 .5 we give the subgroup diagram of S3 , using the notation of 
Example 3 .6 .3 .  By Lagrange's theorem, the only possible orders of proper 
subgroups are 1 ,  2, or 3 .  Since subgroups of order 2 or 3 must be cyclic, it is 
relatively simple to find all subgroups .  0 

Example 3.6.5 (Subgroups of D4). 

In Figure 3 .6 .6 we give the subgroup diagram of D4 , again using the notation 
of Example 3 .6 .3 .  The possible orders of proper subgroups are 1 ,  2, or 4. 
We first find all cyclic subgroups : a has order 4, while each of the elements 
a2 , b , ab , a2b, a3b has order 2. Any subgroup of order 4 that is not cyclic 
must be isomorphic to the Klein four-group, so it must contain two elements 
of order 2 and their product . By considering all possible pairs of elements 
of order 2 it is possible to find the remaining two subgroups of order 4. Just 
as a cyclic subgroup is the smallest subgroup containing the generator, these 
subgroups are the smallest ones containing the two elements used to construct 
it. In general , to find all subgroups, one would need to consider all possible 
combinations of elements, a difficult task in a large group. 0 
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Figure 3 .6 .5 : Subgroups of S3 

{e , b} {e , ab} 

! 
{e } 

Figure 3 .6 .6 : Subgroups of D4 

{ e , b} 

{e} 
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In Section 2.3 we proved that any permutation in Sn can be written as a product 
of transpositions (cycles of length two) and then proved that the number of transpo
sitions in such a decomposition of a given permutation must either be always even 
or always odd. Thus we can call a permutation even if it can be expressed as an 
even number of transpositions, and odd otherwise. 

3.6.4 Proposition. The set of all even permutations of Sn is a subgroup of Sn . 

Proof If a and r are even permutations, then each can be expressed as a product of 
an even number of transpositions . It follows that ra can be expressed as a product 
of an even number of transpositions , and so the set of all even permutations of Sn is 
closed under multiplication of permutations. Furthermore, the identity permutation 
is even. Since Sn is a finite set, this is enough to imply that we have a subgroup. D 

3.6.5 Definition. The set of all even permutations of Sn is called the alternating 
group on n elements, and will be denoted by An . 

When we considered even and odd permutations in Chapter 2, our proof of The
orem 2 .3 . 1 1  (justifying the definition of even and odd permutations) was different 
from the one usually given. We now give the standard approach to parity of elements 
of Sn . 

Let �n be the polynomial in n variables X l , X2 , . . .  , Xn defined by 

Any permutation a E Sn acts on �n by permuting the subscripts , and we write 

If i < j and a (i ) < a (j ) ,  then the factors Xi - X j and Xa (i ) - Xa (j) of �n have the 
same sign, but if a (i )  > a (j) then xa (i ) - xa (j) == - (xa (j) - xa (i » ) .  Because of 
such sign changes, we either have a (�n ) == �n or a (�n ) == -�n . 

For example, we have �3 == (X l -X2) (X l -X3 ) (X2 -X3 ) . Letting the permutation 
( 1 , 2 , 3) act on �3 gives the new polynomial (X2 - X3 ) (X2 - X I ) (X3 - X l ) ,  in which 
the signs of two factors have been changed. On the other hand, the transposition 
( 1 , 2) applied to �3 gives the new polynomial (X2 - X I ) (X2 - X3 ) (X I - X3 ) ,  in which 
the sign of only one factor has changed. 

3.6.6 Theorem. A permutation in Sn is even if and only if it leaves the sign of �n 
unchanged. 

Proof Set X == { �n , -�n } . For a E Sn we define (j : X ---+ X by (j(�n ) == n
l:Si <j:sn (xa (i ) - xa (j » ) and (j(-�n ) == - n

l :Si <j:sn (Xa (i ) - xa (j» ) .  If p , a E Sn , 
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then it is routine to check that ap(�n) == a(p(�n )) by considering each case of 
whether or not a or p changes the sign of �n ' 

We next show that for any transposition T == (r, s ) we have r(�n ) == -�n .  
Assume that r < s .  We first observe that r(�n ) == nl:Si <j:sn (xr (i ) - Xr (j ) ) .  Next 
we see that xr (r) - xr (s) == Xs -Xr == - (xr -xs ) ,  and that if neither i nor j is r or s we 
have xr (i) - xr (j) == Xi - X j . We analyze the remaining cases by considering pairs 
of factors of �n : ( 1 )  if i > s ,  then (xr (r) - Xi ) (Xr (s) - Xi ) == (Xs - Xi ) (Xr - Xi ) == 

(X r -Xi ) (X s -Xi ) ;  (2) if r < i < s ,  then (x r (r) -Xi ) (Xi -X r (s) ) == (X s -Xi ) (Xi -X r ) == 

(X r -Xi ) (Xi -X s ) ;  and (3) if i < r ,  then (Xi -X r (r) ) (Xi -X r (s) ) == (Xi -X s ) (Xi -X r ) == 

(Xi - Xr ) (Xi - Xs ) .  Thus r(�n ) == -�n .  
Given any a E Sn , we can write a == Tl T2 . . .  Tk , where each Ti is a transposition . 

Then a(�n ) == (- I )k �n .  This completes the proof that a is even if and only if a 
leaves the sign of �n unchanged. D 

EXERCISES: SECTION 3.6 

1 .  Find the orders of each of these permutations. 
t ea) ( 1 , 2) (2, 3) (3 , 4) 
(b) ( 1 , 2 , 5) (2, 3 , 4) (5 , 6) 

t (c) ( 1 , 3 ,  ) (2 ,  6) ( 1 , 4 , 5) 
(d) ( 1 , 2 , 3) (2, 4 , 3 , 5) ( 1 , 3 , 2) 

2 . Write out the addition tables for Z4 and for Z2 x Z2 . Use cycle notation to write 
out the permutation determined by each row of each of the addition tables, as in the 
discussion preceding Cayley ' s  theorem. 

3 .  Write out the addition table for Z4 x Z2 . Use cycle notation to write out the permu
tation determined by each row of the addition table, as in the discussion preceding 
Cayley 's theorem. 

4. Find the permutations that correspond to the rigid motions of a rectangle that is not 
a square. Do the same for the rigid motions of a rhombus (diamond) that is not a 
square. 

5 .  Show that no proper subgroup of S4 contains both ( 1 , 2 , 3 , 4) and ( 1 , 2) . 

6 . Let the dihedral group Dn be given by elements a of order n and b of order 2, where 
ba == a- I b. 
(a) Show that a-m == an-m , for all m E Z. 
(b) Show that bam == a-mb, for all m E Z. 
(c) Show that bamb == a-m , for all m E Z. 

7 .  Find the order of each element of D6 . 
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8 . tFind the order of the group of rigid motions of a cube. (Imagine a wooden cube 
placed in a box just large enough to hold it. A rigid motion of the cube consists of 
picking up the cube and replacing it in the box, possibly in a different position.) 

9. A rigid motion of a cube can be thought of either as a permutation of its eight vertices 
or as a permutation of its six sides. Find a rigid motion of the cube that has order 
3 ,  and express the permutation that represents it in both ways, as a permutation on 
eight elements and as a permutation on six elements. 

10. Show that the following matrices form a subgroup of GL2 (C) isomorphic to D4 : 

1 1 . Show that Dn is isomorphic to a subgroup of Sn , for n � 3 .  

1 2. t Find the largest possible order of an element in S4 . Answer the same question for 
S5 , S6 , S7 , S8 , and S9 · 

1 3 . List the elements of A4 . 

14. t Without writing down all 60 elements of A5 , describe the possible shapes of the 
permutations (the number and lengths of their disjoint cycles) and how many of each 
type there are. 

1 5 .  (a) Show that A4 == {a E S4 I a == r2 for some r E S4 } .  
(b) Show that A5 == {a E S5 I a == r2 for some r E S5 } .  
(c) Show that A6 � {a E S6 I a == '[2 for some r E S6 } .  
(d) What can you say about An i f  n > 6? 

16 . Show that if G is any group of permutations, then the set of all even permutations in 
G forms a subgroup of G .  

1 7 . For any elements a, r E Sn , show that ara- l r- I E An . 

1 8 . Let S be an infinite set. Let H be the set of all elements a E SymeS) such that 
a (x) == x for all but finitely many X E S. Prove that H is a subgroup of Sym (S) . 

1 9. The center of a group is the set of all elements that commute with every other element 
of the group. That is , Z(G) == {x E G I xg == gx for all g E G }  . Show that if 
n � 3, then the center of Sn is trivial. 

20. Let the dihedral group Dn be given by elements a of order n and b of order 2, where 
ba == a- l b . Find the smallest subgroup of Dn that contains a2 and b. 
Hint : Consider two cases, depending on whether n is odd or even . 

2 1 .  Find the center of the dihedral group Dn . 
Hint : Consider two cases, depending on whether n i s odd or even. 
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22. Show that in Sn the only elements which commute with the cycle ( 1 , 2 ,  . . .  , n) are 
its powers . 

23 . Let T == (a , b , c) and let a be any permutation . Show that 

aTa- I == (a (a) , a (b) , a (c) ) . 

24. Show that the product of two transpositions is one of (i) the identity ; (ii) a 3-cycle ; 
(iii) a product of two (nondisjoint) 3-cycles . Deduce that every element of An can 
be written as a product of 3-cycles . 

25 . Show that Sn is isomorphic to a subgroup of An+2 . 

26. Prove that every group of order n is i somorphic to a subgroup of GLn (R) . 

27 . Let permutations in S4 act on polynomials in four variables by permuting the sub
scripts , as in Theorem 3 .6 .6 .  
(a) Which permutations in S4 leave the polynomial (Xl - X2) (X3 - X4) unchanged? 
(b) Which permutations in S4 leave the polynomial n 1 �i <j �4 (Xi + X j ) unchanged? 
(c) Which permutations in S4 leave the polynomial n 1 �i <j �4 (Xi - X j ) unchanged? 

3.7 Homomorphisms 

In Section 3 .4 we studied the notion of a group isomorphism. If G I  and G2 are 
groups , then a function ¢ : G I ---+ G2 is a group isomorphism if (i) ¢ is one-to-one 
and onto and (ii) ¢ respects the group operations, that is , if ¢ (ab) == ¢ (a)¢ (b) for 
all a , b E G  1 . In this section we will relax these requirements and study functions 
that satisfy the second condition but not necessarily the first. In Definition 3 .7 . 1 
(which follows shortly) , such functions are called group homomorphisms . 

A group homomorphism carries algebraic information from one group to an
other. Since a homomorphism is not required to be one-to-one and onto, the second 
group can have a different structure from the first. We will often study a group G 1 
by passing (via a homomorphism) from G I  to a simpler group G2 . In this section we 
will determine properties that are carried from the first group to the second, and we 
will begin to consider the more difficult issues revolving around pulling information 
about the second group back to the first. Our first example of a homomorphism that 
is not an isomorphism comes from linear algebra. 

Example 3.7.1 (Determinant of an invertible matrix). 

Let G I be the group GLn (R) of all invertible n x n matrices over the real num
bers, and let G2 be the multiplicative group R x of all nonzero real numbers . 
The formula det(AB) == det (A) det (B) for elements ofGLn (R) shows that the 
function ¢ : G I  ---+ G2 defined by ¢ (A) == det (A) is a group homomorphism. 
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To illustrate the information carried by the determinant function, consider the 
special case n == 3 .  For the associated linear transformation L : R 3 ---+ R 3 
defined by L (v) == Av, for all v E R3 , the following facts are usually men
tioned in a linear algebra course. If S is a region in R3 with volume V ,  then the 
image L (S) of S under the action of L is a region with volume I det (A) I . V .  
Furthermore, the sign of det (A) tells whether or not L preserves the orien
tation of the axes. The homomorphism property det(A B) == det (A) det(B) 
says that volume and orientation behave as expected when working with the 
composition of two linear transformations. D 
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If the operations in both G l and G2 are denoted additively, then the formula 
defining a homomorphism becomes if; (a + b) == if; (a) + if; (b) . A familiar operation 
in calculus can be put into this context: the derivative of a sum is the sum of the 
derivatives .  The next example also involves additive notation . 

Example 3.7.2 (Parity of an integer). 

The mapping ¢ : Z ---+ Z2 given by ¢ (n) == [n]2 enjoys the property that 
¢ (n + m) == [n + m]2 == [n ]2 + [m]2 == ¢ (n) + ¢ (m) for all n , m E Z, but it 
is not one-to-one, and so ¢ is a homomorphism but not an i somorphism. 
The information carried by ¢ involves the parity of an integer, since n E Z 
is even if and only if ¢ (n) == [0]2 , and odd if and only if ¢ (n) == [ 1 ] 2 . The 
homomorphism property describes how parity behaves under addition . For 
example, suppose that n , m E Z are odd. Then ¢ (n) == [ 1 ]2 and ¢ (m) == [ 1 ]2 , 
so n + m is even since ¢ (n + m) == ¢ (n) + ¢ (m) == [ 1 ]2 + [ 1 ] 2 == [0]2 . D 

One of the most important examples of a group homomorphism is provided by 
the rule for exponents : an+m == anam . The next example considers the appropriate 
function that relates integers to powers of a group element a . This is an occasion 
when we will be comparing a group whose operation is denoted additively with one 
whose operation is denoted multiplicatively. 

Example 3.7.3 (Exponential functions for groups). 

Let G be a group, and let a be any element of G. Define ¢ : Z ---+ G by 
¢ (n) == an , for all n E Z. The rules we have developed for exponents show 
that for all n , m E Z, 

Thus ¢ is consistent with the operations in the respective groups . 
If G is abelian, with its operation denoted additively, then we define ¢ : Z ---+ 
G by ¢ (n) == na . The fact that ¢ is a homomorphism is expressed by the 
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formula (n + m)a == na + ma, which holds for all n ,  m E Z. After we have 
studied homomorphisms in more detail we will return to these examples to 
show how the ideas we have developed can be applied to help understand the 
order of an element and the cyclic subgroup generated by an element. D 

Example 3.7.4 (Linear transformations). 

Many concepts from linear algebra provide examples of the general group 
theoretic concepts we are studying . Let V and W be vector spaces .  Recall 
that a function L : V ---+ W is called a linear transformation if L (V I + V2) == 

L (V I ) + L (V2) and L (avI ) == aL (V I ) for all vectors VI , V2 E V and all scalars 
a . Since any vector space is an abelian group under vector addition, any 
linear transformation between vector spaces is actually a homomorphism of 
the underlying abelian groups .  (The condition involving scalar multiplication 
is not involved in the group theory setting. ) Linear differential equations fit 
into this context and thus provide examples of homomorphisms of abelian 
groups. 
Note that the determinant function does not define a homomorphism on the 
abelian group of all n x n matrices under addition since it is possible to find 
matrices A ,  B for which det (A + B) i- det (A) + det(B) . On the other hand, 
the trace function Tr : Mn (R) ---+ R is a homomorphism, where Tr(A) is the 
sum of the diagonal elements of the matrix A .  D 

Example 3.7.5 (Linear functions on Zn). 

For a fixed integer m , define ¢ : Zn ---+ Zn by ¢ ( [x] ) == [mx] ,  for all [x ] E Zn . 
This is a function since if a = b (mod n ) , then ma = mb (mod n) . It 
is a homomorphism since ¢ ( [a] + [b]) == ¢ ( [a + b]) == [mea + b) ] == 
[ma] + [mb] == ¢ ( [a ]) + ¢ ( [b]) . D 

We now formally record our definition of a homomorphism between groups .  It 
follows immediately from the definition that an isomorphism is simply a homomor
phism that is one-to-one and onto. 

3.7.1 Definition. Let G 1 and G2 be groups, and let ¢ : G 1 ---+ G2 be a function. 
Then ¢ is said to be a group homomorphism if 

¢ (ab) == ¢ (a)¢ (b) 

for all a , b E G 1 . 
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3.7.2 Proposition. If¢ : G 1 ---+ G2 is a group homomorphism, then 
(a) ¢ (e) == e; 
(b) (¢ (a) ) - l == ¢ (a- I ) for all a E G 1 ; 
(c) for any integer n and any a E G 1 , ¢ (an ) == (¢ (a) )n ; 
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(d) if a E G 1 and a has order n, then the order of ¢ (a) in G2 is a divisor ofn. 

Proof (a) Since ¢ (e)¢ (e) == ¢ (e2) == ¢ (e) , cancellation gives ¢ (e) == e . 
(b) This follows since ¢ (a)¢ (a- l ) == ¢ (aa- l ) == e . 
(c) This can be proved using a simple induction argument. 
(d) Let a E G 1 with n == o (a) . Since ¢ : G 1 ---+ G2 is a homomorphism, we 

must have (¢ (a)) n == ¢ (an ) == ¢ (e) == e . Thus o(¢ (a) ) I n . D 

Example 3.7.6 (Homomorphisms defined on cyclic groups). 

In this example we will completely describe all homomorphisms defined on 
any cyclic group. Let C be a cyclic group, denoted multiplicatively, with 
generator a . If ¢ : C ---+ G is any group homomorphism, and ¢ (a) == g , then 
the formula ¢ (am ) == gm must hold. Since every element of C is of the form 
am for some m E Z, this means that ¢ is completely determined by its value 
on a . Note that if a has finite order, then by the previous proposition the order 
of g must be a divisor of the order of a . 
We next consider how to define homomorphisms on c .  If C i s  infinite, then 
for an element g of any group G ,  the formula ¢ (am ) == gm defines a homo
morphism since 

If I C I == n and g is any element of G whose order is a divisor of n ,  then 
the formula ¢ (am ) == gm defines a homomorphism. We must first show that 
the formula defines a function, since the formula depends on the choice of 
an exponent in writing an element x E C as a power of the generator a . If 
x == am and x == ak , then m = k (mod n) , since a has order n .  Thus we can 
write m == k + qn for some integer q ,  and then 

since gn == e . This depends on the crucial assumption that the order of g is 
a divisor of n. Now the previous argument can be used to show that ¢ is a 
homomorphism. 0 
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Example 3.7.7 (Homomorphisms from Zn to Zk). 

As a particular case of the previous example, we now give explicit formulas for 
all homomorphisms ¢ : Zn ---+ Zk . Any such homomorphism is completely 
determined by ¢ ([ I ]n ) ,  and this must be an element [m]k of Zk whose order 
is a divisor of n .  In an abelian group, with the operation denoted additively, 
Proposition 3 .2 .8 (b) states that if a has finite order, then o(a) I n if and only if 
n . a == O. Applying this result to [m]k in Zk , we have o( [m]k ) I n if and only 
if n ·  [m]k == [O]k , which happens if and only if k I nm . (Compare Exercise 1 1  
of Section 2. 1 . ) 
Thus the formula ¢ ( [x ]n ) == [mx]k , for all [x]n E Zn , defines a homomor
phism if and only if k I mn . Furthermore, every homomorphism from Zn into 
Zk must be of this form. Note that ¢ (Zn ) i s the cyclic subgroup generated 
by [m]k , and so ¢ will map Zn onto Zk if and only if [m]k is a generator of 
Zk . D 

Example 3.7.8 (Parity of a permutation). 

We return once more to the theorem which states that the parity of a permuta
tion in Sn is well-defined. (See Theorem 2. 3 . 1 1  and Theorem 3 .6.6.) We will 
give a proof of the theorem that uses the notion of a group homomorphism. 
Let £::"n == n1::S i <i :sn (Xi - xi ) , and let G be the subgroup {± 1 }  of Qx . We 
define ¢ : Sn ---+ G by ¢ (a) == 1 if a (£::"n ) == £::"n and ¢ (a) == - 1  if a (£::"n ) == 
-£::"n , for each a E Sn . Then ¢ is a group homomorphism, since if p , a E Sn , 
then we showed in the proof of Theorem 3 .6.6 that ap (£::"n ) == a (P (£::"n ) ) . 
Let T == ( 1 , 2) . Then r (£::"n ) == -£::"n , and hence ¢ (T) == - 1 .  Let p == 
(r, s) be any transposition . By Exercise 1 3  (b) of Section 2.3 ,  there exists a 
permutation a such that p == aTa- I . Then ¢ (p) == ¢ (a)¢ (T)¢ (a- I ) == 

-¢ (a )¢ (a - 1 ) == - 1 .  Hence ¢ (p) == - 1  for all transpositions p E Sn . 
Suppose that a == Tl T2 . . .  Tm == PI P2 . . .  Pk , where each Pi is a transposition. 
Then ¢ (a) == ¢ (TI T2 . . .  Tm ) == (- I )m and ¢ (a) == ¢ (PI P2 . . .  Pk ) == (_ I )k . 
Hence (- I )m == (_ I )k , and so m = k (mod 2) . 
We conclude that if a permutation is written as a product of transpositions in 
two ways, then the number of transpositions is either even in both cases or 
odd in both cases . D 

Let ¢ : G 1 ---+ G2 be a group homomorphism. Recall the statement of Propo
sition 3 .4.4: ¢ is one-to-one if and only if ¢ (x) == e implies x == e. The set 
{x E G1 I ¢ (x) == e }  plays an important role in studying group homomorphisms. It 
should already be familiar to the student in the setting of linear algebra, where the 
kernel (or null space) of a linear transformation is studied. 
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3.7.3 Definition. Let ¢ : G I ---+ G2 be a group homomorphism. Then 
{x E G 1 I ¢ (x) == e } 

is called the kernel of ¢, and is denoted by ker( ¢ ) . 
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3.7.4 Proposition. Let ¢ : G I ---+ G2 be a group homomorphism, with K == ker (¢) .  
(a) K is a subgroup ofG I such that gkg- I E K for all k E K and g E G I . 
(b) The homomorphism ¢ is one-to-one ifand only if K == {e } . 

Proof (a) The kernel of ¢ is nonempty since i t  contains e. If a, b E K ,  then 

¢ (ab- I ) == ¢ (a) (¢ (b) )- I == e · e == e 
and this implies that K is a subgroup of G 1 . Furthermore, if k E K and g E G 1 , 
then 

¢ (gkg- I ) == ¢ (g)¢ (k) (¢ (g)) - I == ¢ (g)e (¢ (g)) - I == e . 
Thus gkg- I E K.  

(b) If ¢ i s  one-to-one, then the only element that can map to the identity of G2 
is the identity of G 1 . On the other hand, suppose that K == {e } and ¢ (a ) == ¢ (b) 
for some a ,  b E G I . Multiplying both sides of this equation by (¢ (b) ) - I gives 
us ¢ (ab- I ) == ¢ (a) (¢ (b) )- I == e, which shows that ab- I E ker(¢) . But then by 
assumption, ab- I == e, and thus a == b. This shows that ¢ is one-to-one . D 

The previous proposition shows that the kernel of a group homomorphism is a 
special type of subgroup, which we define below. We will study these subgroups 
in much greater detail in Section 3 . 8 , so in this section our interest is only in their 
behavior with respect to group homomorphisms. 

3.7.5 Definition. A subgroup H of the group G is called a normal subgroup if 
ghg- I E Hfor all h E H and g E G. 

It is obvious from the definition that if H == G or H == {e } , then H is normal . It 
is also clear that any subgroup of an abelian group is normal . As one of the exercises 
at the end of the section asks you to show, the only proper nontrivial normal subgroup 
of S3 is its three element subgroup . The next proposition investigates how subgroups 
are related via a homomorphism. 

3.7.6 Proposition. Let ¢ : G I ---+ G2 be a group homomorphism. 
(a) If HI is a subgroup ofG I , then ¢ (HI ) is a subgroup ofG2. If ¢ is onto and 

HI is normal in G I , then ¢ (HI ) is normal in G2. 
(b) If H2 is a subgroup of G2, then ¢- I (H2) == {x E G I I ¢ (x) E H2 } is a 

subgroup ofG I . If H2 is a normal in G2, then ¢- I (H2) is normal in G I . 
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Proof (a) Let HI be a subgroup of G I , and let y , Z E ¢ (HI ) . Then there exist 
a , b E HI with ¢ (a) == y and ¢ (b) == z, and 

YZ- I == ¢ (a) (¢ (b) ) - I == ¢ (a)¢ (b- I ) == ¢ (ab- I ) E ¢ (Hl ) .  

Since e E ¢ (HI ) ,  this shows that ¢ (HI ) is a subgroup of G2 . 
If ¢ is onto and HI is normal in G I , let y E G2 and Z E ¢ (HI ) . There exist 

a E G I and b E HI with ¢ (a) == y and ¢ (b) == z. Then 

yzy- I == ¢ (a)¢ (b)¢ (a - I ) == ¢ (aba- I ) E ¢ (H1 ) 

since HI is normal and therefore aba - 1 E HI . 
(b) Let H2 be a subgroup of G2 , and let 

HI == ¢- I (H2) == {x E G I I ¢ (x) E H2 } . 

Then e E HI since ¢ (e) == e E H2 . If a ,  b E HI , then ab- I E HI since ¢ (ab- I ) == 
¢ (a) (¢ (b) ) - I E H2 because H2 is a subgroup . Thus HI is a subgroup. 

If H2 is a normal subgroup, then to show that HI is also normal, let g be any 
element of G I , and let h E HI . Then ghg- I E HI because 

¢ (ghg- l ) == ¢ (g)¢ (h) (¢ (g) )- I E H2 
since H2 is normal . Thus HI is a normal subgroup. D 

If ¢ : G 1 ---+ G2 is a group homomorphism, then there is a natural equivalence 
relation on G 1 associated with the function ¢ given by defining a r-..J ¢ b if ¢ (a) == 
¢ (b) , where a , b E G  1 . For arbitrary functions , this equivalence relation is studied 
in detail in Section 2.2 ,  where the notation G I l ¢ is used for the set of equivalence 
classes of the relation. We will use [a J¢ to denote the equivalence class of a E G 1 . 

It may be useful to review the proof that we have in fact defined an equivalence 
relation. We have a r-..J¢ a since ¢ (a) == ¢ (a) . If a r-..J¢ b, then ¢ (a) == ¢ (b) implies 
¢ (b) == ¢ (a) , which shows that b r-..J¢ a . Finally, if a r-..J¢ b and b r-..J¢ c, then 
¢ (a) == ¢ (b) and ¢ (b) == ¢ (c) implies ¢ (a) == ¢ (c) , so a r-..J¢ c . 

The formula [a Jn [bJn == [abJn for mUltiplication of congruence classes in Zn 
suggests that we might try a similar formula in G I l ¢, since we have a multiplication 
defined in G 1 . Part of the next proposition shows that this natural multiplication is 
in fact well-defined. We will use the notation [x J¢ for the elements of the factor set 
G I l ¢, and then the natural projection n : G 1 ---+ G I l ¢ (recall Definition 2.2.6) is 
defined by n (x) == [x J¢ , for all x E G 1 . 

3.7.7 Proposition. Let ¢ : G I ---+ G2 be a group homomorphism. Then multipli
cation of equivalence classes in the factor set G I l ¢ is well-defined, and G I l ¢ is a 
group under this multiplication. The natural projection n : G I ---+ G I /¢ defined 
by n (x) == [x J¢ is a group homomorphism. 
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Proof To show that multiplication is well-defined, we must show that if a �¢ b 
and c �¢ d, then ac �¢ bd. If ¢> (a) == ¢> (b) and ¢> (c) == ¢> (d) , then 

¢> (ac) == ¢> (a)¢> (c) == ¢ (b)¢> (d) == ¢> (bd) . 

The associative law for G I / ¢> follows from that of G 1 ,  since 

for all a , b , c E G I . The class [e]¢ is an identity element since 

and 

for all a E G 1 . Finally, for any equivalence class [a ]¢ , there exists an inverse [a - I ]¢ 
since [a - I ]¢ [a ]¢ == [a - I a ]¢ == [e ]¢ and [a ]¢ [a- l ]¢ == [e]¢ . Thus ( [a ]¢ ) - I == 
[a- l ]¢ . 

Since multiplication is well-defined, we have 

for all a , b E G  I , and so n is a homomorphism. 0 

The following theorem is extremely important, and we will return to it in the 
next section, where we give another proof. Theorem 2.2 .7 shows that if f : S ---+ T 
is any function, then there is a one-to-one correspondence between the elements of 
f (S) and the elements of the factor set S / f determined by the equivalence relation 
� f .  Thus the basic one-to-one correspondence that we will give in Theorem 3 .7 . 8 
comes from set theory, and not from the algebraic structure of either group or the 
fact that ¢> is a homomorphism. (We choose to reprove this fact in Theorem 3 .7 . 8  
to make its proof self-contained.) 

Now suppose that ¢> : G I ---+ G2 is a homomorphism. As in Figure 2.2 . 1 in 
Section 2.2,  we can write ¢> as a composite function t¢>n ,  where n is the function of 
Proposition 3 .7 .7 and t is the inclusion mapping. This is illustrated in Figure 3 .7 . 1 ,  

in which both n and t are homomorphisms. We now show that the function ¢> is an 
isomorphism of groups. 

Figure 3 .7 . 1 :  
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3.7.8 Theorem. Let 1> : G 1 ---+ G2 be a group homomorphism. Then there exists a 
group isomorphism 

1> : G l /1> ---+ 1> (G 1 ) , 
where 1> is defined by 1> ( [a lp ) == 1> (a), jor all [a lp E Gl /1>· 

Proof For each equivalence class [a lp E G l /1> we define 1>( [alp) == 1> (a) . This is 
a well-defined function since if [a lp == [b lp , then by definition 1> (a) == 1> (b) , and so 
1>( [alp) == 1>( [b]¢ ) .  If 1>( [a]¢ ) == 1>( [b]¢ ) , then 1> (a) == 1> (b) , and so [a]¢ == [b]¢ , 
which shows that 1> is one-to-one . The image of G I l 1> is 

so 1> maps Gl /1> onto 1> (G 1 ) .  Finally, 1> is a homomorphism since 

for all equivalence classes [a ]¢ , [b]¢ E G l /1> . 0 

Example 3.7.9 (Characterization of cyclic groups). 

The power of Theorem 3 .7 .8  can be illustrated by giving another proof that 
every cyclic group is isomorphic to either Z or Zn , for some n .  Given G == (a ) ,  
define ¢ : Z -+ G by ¢ (m) == am , as in Example 3 .7 .3 .  If a has infinite order, 
then ¢ i s  one-to-one, so in thi s  case, Z is isomorphic to ¢ (Z) == G. If a has 
order n, then am == ak if and only if m = k (mod n) . Thus ¢ (m ) == ¢ (k) if 
and only if m = k (mod n ) , which shows that Z/¢ is the additive group of 
congruence classes modulo n. Thus if a has order n, then G '" Zn . 0 

Example 3.7.10 (Cayley's theorem). 

Theorem 3 .7 . 8  is also useful in giving a more concise proof of Cayley 's the
orem. Given any group G,  define ¢ : G -+ Sym(G) by ¢ (a) == Aa , for any 
a E G, where Aa is the function defined by Aa (x) == ax for all x E G .  (It is 
necessary to check that Aa is one-to-one and onto.) Then ¢ i s a homomorphism 
since Aa Ab == Aab for all a ,  b E G . Because Aa is the identity permutation 
only if a == e, we have ker ( ¢) == {e } . Since ¢ is one-to-one, the equivalence 
classes of the factor set G / ¢ are just the subsets of G consisting of single 
elements, and thus G itself is isomorphic to ¢ (G) , which is a permutation 
group. 0 
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Example 3.7.11 .  

Define ¢ : R --+ e x  by ¢ (() ) = cos () + i sin () ,  for all () E R. The trigono
metric formulas for the cosine and sine of the sum of two angles can be 
used (see Section A.5 of the appendix, on complex numbers) to show that 
¢ (a + f3) = ¢ (a) · ¢ (f3) ,  and so ¢ is a group homomorphism. Geometrically, 
the function ¢ can be visualized as wrapping the real line around the unit 
circle. In this process, numbers that differ by a multiple of 2n are identified. 
It follows that [() lp = {x E R I x = () + 2kn, k E Z} . D 

1 6 1 

We conclude the section with a proposition that gives a more complete descrip
tion of the equivalence classes of the equivalence relation defined by a homomor
phism. It shows that the equivalence relation defined by cp is the same as the one 
defined in Lemma 3 .2 .9,  with H == ker(cp) . Thus in Section 3 . 8  we will switch from 
the notation G / cp to the more standard notation G / ker ( cp ) . 

3.7.9 Proposition. Let cp : G1 ---+ G2 be a group homomorphism, and a , b E G 1 • 
The following conditions are equivalent: 

(1) cp (a) == cp (b) ;  
(2) ab- l E ker (cp) ;  
(3) a == kb for some k E ker(cp) ;  
(4) b- 1 a E ker (cp) ;  
(5) a == bkfor some k E ker(cp) . 

Proof ( 1 ) implies (2) : If cp (a ) == cp (b) ,  then multiplying both sides of the equation 
by (cp (b) ) - l we have 

(2) implies (3) : If ab- l == k E ker(cp) , then a == kb. 
(3) implies ( 1 ) : If a == kb for some k E ker (cp) ,  then 

cp (a) == cp (kb) == cp (k)cp (b) == ecp (b) == cp (b) . 

Similarly it can be shown that ( 1 )  implies (4) implies (5) implies ( 1 ) . 0 

If cp : G 1 ---+ G2 is a homomorphism of abelian groups, with operations de
noted additively, then Proposition 3 .7 .9  has the following form: For a , b E G 1 , the 
following conditions are equivalent: ( 1 )  cp (a) == cp (b) ; (2) a - b E ker(cp) ; and (3) 
a == b + k for some k E ker (cp) . The following examples use additive notation. 
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Example 3.7.12 (Solution of nonhomogeneous linear systems). 

Let A be an m x n matrix, and consider the nonhomogeneous equation Ax == b. 

We may view the matrix A as defining a homomorphism ¢ : Rn -+ Rm , 
where ¢ (x) == Ax. By Proposition 3 .7 .9 , if we find a particular solution Xo 
with Axo == b, then the set of solutions to the nonhomogeneous equation 
Ax == b consists of all vectors of the form Xo + k, where k is any solution of 
the homogeneous equation Ax == 0, since ker ( ¢) is the solution space of the 
homogeneous equation Ax == O. D 

Example 3.7.13 (Linear differential equations). 

An analysis similar to the previous example shows that the standard theorem 
stating that the general solution to a nonhomogeneous linear differential equa
tion is obtained by finding any particular solution and adding to it all solutions 
of the associated homogeneous equation is really just a consequence of the 
fact that linear differential operators preserve sums of functions. D 

EXERCISES: SECTION 3.7 

I .t (a) Write down the formulas for all homomorphisms from Z6 into Z9 . 
(b) Do the same for all homomorphisms from Z24 into ZIg . 

2. Write down the formulas for all homomorphisms from Z onto Z12 . 
3 .  Show that the following functions are homomorphisms. (Recall that R+ is the group 

of positive real numbers under multiplication.) 
(a) ¢ : RX -+ R+ defined by ¢ (x) == Ix l 

x (b) ¢ : R X  -+ RX defined by ¢ (x) == -
Ix l 
x (c) ¢ : R X  -+ {± I }  defined by ¢ (x) == -Ix l 

4. Let G be an abelian group, and let n be any positive integer. Show that the function 
¢ : G -+ G defined by ¢ (x) == xn is a homomorphism. 

5 . tLet G be the mUltiplicative group Zrs == { I ,  2, 4, 7 , 8 , 1 1 , 1 3 ,  I4 } ,  and let n == 2. 
Compute the values of the function defined in Exercise 4, and find its kernel and the 
image of G .  

6 .  Define ¢ : e x  -+ RX by ¢ (a + bi ) = a2 + b2 , for all a + bi E e x . Show that ¢ i s 
a homomorphism. 
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7 .  Which of the following functions are homomorphisms? 

t ea) ¢ : RX � GL2 (R) defined by ¢ (a) = [ � � ] 

(b) ¢ : R � GL2 (R) defined by ¢ (a) = [ � � ] 

t (e) ¢ : M2(R) � R defined by ¢ ( [ : ! ]) = a 

(d) ¢ : GL2 (R) � RX defined by ¢ ( [ : ! ]) = ab 

t ee) ¢ : GL2 (R) � R defined by ¢ ([ : ! ]) = a + d 

(f) ¢ : GL2 (R) � RX defined by ¢ ([ : ! ]) = ad - be 
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8 .  Let ¢ : G I -+ G2 and () : G2 -+ G3 be group homomorphisms. Prove that 
()¢ : GI -+ G3 is a homomorphism. Prove that ker(¢) C ker (()¢) . 

9 .  Let ¢ be a group homomorphism of G I onto G2 . Prove that if G I i s  abelian then so 
is G2 ; prove that if G I i s  cyclic then so is G2 . In each case, give a counterexample 
to the converse of the statement. 

10. Let G be the group of affine functions from R into R, as defined in Exercise 10  
of  Section 3 . 1 .  Define ¢ : G -+ R x as follows : for any function f m ,b E G, let 
¢ (f m ,b ) == m .  Prove that ¢ is a group homomorphism, and find its kernel and image. 

1 1 . Let G be a group, and let H be a normal subgroup of G . Show that for each g E G 
and h E H there exist h I and h2 in H with gh == h I g and hg == gh2 . 

1 2. Show that the only proper nontrivial normal subgroup of S3 is the subgroup with 
three elements . 

1 3 . Let H be a subgroup of the group G. Prove that H is a normal subgroup of G if and 
only if for each a E G and each h E H there exists h' E H with ah == h' a .  

14 . Recall that the center of  a group G i s {x  E G I xg == gx for all g E G } .  Prove that 
the center of any group is a normal subgroup. 

1 5 .  Prove that the intersection of two normal subgroups is a normal subgroup . 

1 6. Let G be a finite group of even order, with n elements, and let H be a subgroup with 
nl2 elements . Prove that H must be normal . 
Hint : Define ¢ : G -+ RX by ¢ (x) == 1 if x E H and ¢ (x) == - 1  if x ¢ H and 
show that ¢ is a homomorphism with kernel H .  To show that ¢ preserves products, 
show that if g ¢ H then {x I gx E H}  == G - H.  

1 7 . t Determine which subgroups of D4 are normal . 
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1 8 . Let the dihedral group Dn be given by elements a of order n and b of order 2, where 
ba = a- l b . Show that any subgroup of (a ) is normal in Dn . 

19 . Give an example to show that the assumption that ¢ is onto is needed in part (a) of 
Proposition 3 .7 .6. 

20. Let G l and G2 be groups .  
(a) Define 7fl : G l x G2 --+ G l by 7fl ((a l , a2)) = a I , for all (a I , a2) E G l x G2 
and define 7f2 : G l x G2 --+ G2 by 7f2 ((a l , a2) ) == a2 , for all (a I , a2) E G l x G2 . 
Show that 7fl and 7f2 are group homomorphisms. 
(b) Let G be any group, and let ¢ : G --+ G l x G2 be a function. Show that ¢ i s a 
group homomorphism if and only if 7fl ¢ and 7f2¢ are both group homomorphisms. 

3.8 Cosets, Normal Subgroups, and Factor Groups 

In this section we introduce the important notion of a coset of a subgroup, moti
vated by the results in the previous section on the equivalence relation defined by 
a homomorphism. We also show that the set of all cosets of any normal subgroup 
can be given a natural group structure, just as we did in the previous section for the 
equivalence classes determined by a homomorphism. 

The congruence classes of the integers modulo 2 are the sets of even and odd 
integers . We have denoted the set of even integers by 2Z, and so we could denote 
the set of odd integers by 1 + 2Z, to show that each odd integer can be expressed as 
1 plus an even integer. Of course, we could use any odd integer in place of 1 ,  say 
3 + 2Z or 5 + 2Z, still giving the set of all odd integers. More generally, for any 
integer k we can express its congruence class in Zn in the form [k]n == k + nZ.  

Let cp : G l ---+ G2 be a group homomorphism, and let a be a fixed element in 
G l . By Proposition 3 .7 .9 ,  for b E G l we have cp (b) == cp (a) if and only if b can 
be written in the form b == ak for some element k E ker (cp) . We can express this 
by writing b E aK , where K == ker (cp) , and aK consists of all elements that can 
be written in the form ak for some k E K .  (This is the product of the sets {a } and 
K , as defined in Section 3 .3 . )  If �¢ is the equivalence relation defined by letting 
a �¢ b if cp (a) == cp (b) ,  then the equivalence class [a ]¢ defined by �¢ is precisely 
the set a K . Proposition 3 .7 .9  also shows that a K == K a . 

In the proof of Lagrange ' s  theorem (Theorem 3 .2 . 1 0) ,  for a subgroup H of 
the finite group G, we introduced the equivalence relation a � b on G by letting 
a � b if ab- l E H . In the course of the proof we showed that the elements of the 
congruence class [a] are precisely the elements of the form ha for h E H . Thus we 
can write [a] == Ha . 

We will now develop this idea further, for sets of the form a H . Let G be a group 
and let H be a subgroup of G. To review the work in Section 3 .2 without retracing 
precisely the same steps, we will consider the relation a � b if a- I b E H, for 
a ,  b E G . This defines an equivalence relation : a � a since a- l a E H ; if a � b, 
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then a- 1 b is in H, so its inverse b- 1 a is in H, and thus b � a ; if a � b and b � c, 
then a- I b and b - 1 C are in H, so their product is in H, and thus a � c . Our first 
proposition identifies the equivalence classes of this equivalence relation as sets of 
the form aH , for a E G . 

3.8.1 Proposition. Let H be a subgroup of the group G, and let a ,  b E G. Then 
the following conditions are equivalent: 

(1) bH == aH; 
(2) bH C aH; 
(3) b E aH; 
(4) a- 1 b E H. 

Proof It is obvious that ( 1 )  implies (2) . Furthermore, (2) implies (3 )  since b == 
be E bH. 

(3) implies (4) : If b == ah for some h E H, then a- 1 b == h E H . 
(4) implies ( 1 ) :  Suppose that a- 1 b == h for some h E H, so that b == ah and 

a == bh- 1 • To show that bH C aH, let x E bH. Then x == bh' for some h' E H, 
and substituting for b gives x == ahh' , which shows that x E aH . On the other 
hand, to show that a H C b H, let x E a H . Then x == ah" for some h" E H, and so 
x == bh- 1 h" E bH. Thus we have shown that bH == aH . 0 

3.8.2 Corollary. Let H be a subgroup of the group G. The relation � defined on 
G by setting a � b if aH == bH, for all a , b E G, is an equivalence relation on G. 
Proof By Proposition 3 . 8 . 1 we have aH == bH if and only if a- 1 b E H. Thus 
the relation defined in the corollary is the same as the one defined in the remarks 
preceding Proposition 3 . 8 . 1 ,  and it was shown there that the relation is an equivalence 
relation. 0 

In Proposition 3 . 8 . 1 ,  the symmetry in the condition bH == aH shows that the 
roles of a and b can be reversed. Thus a- I b E H if and only if b - 1 a E H . Since 
we are working with an equivalence relation, the equivalence classes must partition 
G, and so we know that if aH n bH -I=- 0, then aH == bH. 

3.8.3 Definition. Let H be a subgroup of the group G, and let a E G. The set 

aH == {x E G I x == ah for some h E H} 

is called the left coset of H in G determined by a. Similarly, the right coset of H in 
G determined by a is the set 

Ha == {x E G I x == ha for some h E H} . 

The number of left cosets of H in G is called the index of H in G, and is denoted 
by [G : H] . 
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A result similar to Proposition 3 . 8 . 1 holds for right cosets . Let H be a subgroup 
of the group G, and let a , b E G . Then the following conditions are equivalent: ( 1 )  
Ha == Hb ; (2) Ha c Hb ; (3) a E Hb ; (4) ab- l E H;  (5) ba- l E H;  (6) b E Ha ; 
(7) H b C H a . The index of H in G could also be defined as the number of right 
co sets of H in G ,  since there is a one-to-one correspondence between left cosets 
and right cosets . (See Exercise 5 . )  

We next show that all left co sets of  H have the same number of elements . 
Given any left coset aH of H ,  define the function f : H ---+ aH by f (h) == ah , 
for all h E H. Then f is one-to-one since if f (h l ) == f (h2) , then ah l == ah2 
and so h I == h2 by the cancellation law. It is obvious that f is onto, and so the 
one-to-one correspondence f : H ---+ aH shows that aH  has the same number of 
elements as H. If G is a finite group, this observation is at the heart of the proof of 
Lagrange's theorem, and shows that (in the notation introduced above) we always 
have [G : H] == I G I / I H I .  

In the next example we list the left co sets of a given subgroup H of a finite 
group. For any a E H we have aH  == H, so we begin by choosing any element a 
not in H .  Then a H is found by listing all products of the form ah for h E H. Now 
any element in aH  determines the same coset, so for the next coset we choose any 
element not in H or aH  (if possible) . Continuing in this way provides a method for 
listing all cosets . 

Example 3.8.1.  

Let G be the multiplicative group Zrl of nonzero elements of Zl l . Let H be 
the subgroup { [ I ] ,  [ 1 0] }  generated by [ 1 0] .  The first coset we can identify is 
H itself. Choosing an element not in H, say [2] , we form the products [2] [ 1 ]  
and [2] [ 1 0] == [9] , to obtain the coset [2]H == { [2] , [9] } .  Next we choose any 
element not in the first two cosets, say [3] , which gives us [3]H == { [3] , [8] } ,  
since [3] [ 1 ]  == [3] and [3] [ 1 0] == [8] . Continuing in  this fashion, we obtain 
[4]H == { [4] , [7] } and [5] H == { [5] , [6] } .  Thus the cosets of H are the 
following sets : 

H == { [ I ] ,  [ 1 0] }  , [2] H == { [2] , [9] } , [3]H == { [3] , [8] } , 

[4]H == { [4] , [7] } , [5] H == { [5] , [6] } . 

As another example, let K == { [ I ] ,  [3] , [9] , [5] , [4] } be the subgroup generated 
by [3] . Since the left cosets all have the same number of elements and we 
already have a coset with half of the total number of elements, there must be 
only one other coset, containing the rest of the elements . Thus the left cosets 
of K are the following sets : 

K == { [ I ] ,  [3] , [9] , [5] , [4] } , [2]K == { [2] , [6] , [7] , [ 1 0] ,  [8] } . 0 
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Example 3.8.2. 

Let G == S3 , the group of all permutations on a set with three elements , and 
let G == {e ,  a ,  a2 , b ,  ab, a2b } ,  where a3 == e ,  b2 

== e ,  and ba == a2b .  
First, let H be the subgroup {e ,  b} . We must be careful since this is the first 
example in a non-abelian group, so we must distinguish between left and right 
cosets . 
The left cosets of H are easily computed to be 

H == { e ,  b} , aH == {a , ab} , 

Since ba == a2b and ba2 == ab, the right cosets of H are 

H == { e ,  b} , 

Next, let N be the subgroup { e ,  a ,  a2 } .  The left cosets of N are 

N == {e , a ,  a2 } , bN == {b , ba , ba2 } == {b , a2b ,  ab} , 

since ba == a2b and ba2 == abo The right co sets of N are 

Nb == {b ,  ab, a2b} . 

Note that for the subgroup N the left and right cosets are the same. 0 

If G is an abelian group with the operation denoted by +, then the eosets of a 
subgroup H have the form 

a + H == {x E G I x == a + h for some h E H} . 

Proposition 3 . 8 . 1 shows that in this ease, a + H == b + H if and only if a - b E H. 

Example 3.8.3. 

Let G == Z 12 , and let H be the subgroup 4Z12 == { [O] , [4] , [8] } .  To find all 
cosets of H ,  we begin by noting that [4] + H == [8] + H == H, so we start 
with an element not in H,  say [ 1 ] .  Then 

[ 1 ]  + H == { [ I ]  + [0] , [ 1 ]  + [4] , [ 1 ]  + [8] } == { [ I ] ,  [5] , [9] }  . 

Next we choose an element not in H or [ 1 ]  + H,  say [2] . Then [2] + 
H == { [2] , [6] , [ I O] } ,  and we have only one coset remaining, [3] + H == 
{ [3] , [7] , [ I I ] } .  Since we have used all elements of the group, we have found 
the following cosets : 

H == { [O] , [4] , [8] } , [ 1 ]  + H == { [ I ] ,  [5] , [9] } , 

[2] + H == { [2] , [6] , [ I O] }  , [3] + H == { [3 ] , [7] , [ I I ] }  . 
Since G is abelian, the right cosets are precisely the same as the left cosets . 0 
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Example 3.8.4. 

Let m be a real number, and consider the line L == { (x ,  y) I y == mx} in the 
plane R 2 . Vector addition gives R 2 a group structure, and L is then a subgroup 
of R 2 . The coset determined by a vector (0 , b) consists of all vectors of the 
form (0 , b) + (x , mx) , or just (x , mx + b) . This is a line parallel to L, since 
it is the set { (x ,  y) I y == mx + b} . In fact, any line parallel to y == mx is a 
coset of L . It is true in general that the cosets of a line through the origin are 
the lines parallel to the given line. D 

For a homomorphism 1> : G I ---+ G2 , we saw in Section 3 .7 that the set G I /1> 

of equivalence classes defined by 1> forms a group. Since ¢ (a ) == 1> (b) if and only 
if 1> (ab- I ) == e, we have a �¢ b if and only if ab- I E ker(1)) . The equivalence 
classes of this equivalence relation are the right co sets of ker ( 1> ) .  Proposition 3 .7 .9  

shows that the equivalence classes are also the left cosets of ker ( 1> ) , since a � b if 
and only if a - I b E ker(1)) .  

Recall that a subgroup H of G i s  said to be normal if aha - I E H for all a E G 

and h E H .  (See Definition 3 .7 . 5 . ) Since (a- I ) - I == a, we can interchange the 
roles of a and a- I , showing that H is normal if and only if a- I ha E H for all a E G 

and h E H.  We will show that a subgroup is normal if and only if its left and right 
co sets coincide, that is, if and only if aH == H a for all a E G . This provides an 
additional way to determine whether a subgroup is normal . When a subgroup is 
normal , we will see that multiplication of cosets is compatible with the structure of 
G, and that the set of cosets forms a group . 

Since Z is abelian, the left and right cosets of any subgroup coincide. The 
equivalence relation defined by the subgroup nZ, when stated in additive notation, 
just says that a - b E nZ, and so we have the well-known equivalence relation of 
congruence modulo n .  We are already familiar with the resulting group Zn defined 
by the corresponding equivalence classes . 

Let N be a normal subgroup of the group G . We now want to introduce a 
multiplication for the cosets of N in G .  We will do this by  analogy with the 
multiplication in Zn and in G /1>, where 1> : G I ---+ G2 is a homomorphism. From 
a given coset of N we may choose any element a to use as a representative, so that 
we can write aN for the coset. The formula a N  bN == abN can then be interpreted 
in the following way : to mUltiply two cosets , choose representatives of the cosets, 
multiply them, and define the product to be the new coset in which the product of 
the representatives lies . There is a potential problem with the definition. We must 
make sure that it is independent of the choice of the representatives by which we 
have named the cosets. The following proposition takes care of the difficulty. 
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3.8.4 Proposition. Let N be a normal subgroup of G, and let a ,  b ,  c ,  d E G. If 
aN == cN and bN == dN, then abN == cdN. 

Proof If aN == cN and bN == dN,  then by Proposition 3 . 8 . 1 we have a- I c E N 
and b- I d E N .  Since N is normal, d- I (a- I c)d E N.  But then since b- I d E N,  
we have (ab)- I cd == (b- I d) (d- I a- I cd) E N, and so abN == cdN.  D 

3.8.5 Theorem. If N is a normal subgroup of G, then the set of left cosets of N 
forms a group under the coset multiplication given by 

aNbN == abN 

for all a , b E G. 

Proof Proposition 3 . 8 .4 shows that the given mUltiplication of left cosets is in fact 
well-defined. The subgroup N itself serves as an identity element, since N == eN 
and therefore eN aN == a N and aN eN == a N for all a E G . Furthermore, the 
inverse of aN is a - I N because aNa- I N == eN and a- I NaN == eN.  Finally, to 
show the associative law, let a ,  b ,  c E G . Then 

(aNbN)cN == abNcN == (ab)cN == a (bc)N == aNbcN == a N (bNcN) . 

This completes the proof. D 

3.8.6 Definition. If N is a normal subgroup of G, then the group of left cosets of N 
in G is called the factor group of G determined by N. It will be denoted by G / N. 

Example 3.8.5 (Order of an element in G / N). 

Let N be a normal subgroup of G. It is interesting to compute the order of 
an element of G / N. If a E G, then the order of aN is the smallest positive 
integer n such that (aN)n == an N == N. That is, the order of aN is the 
smallest positive integer n such that an E N. D 

Let N be a normal subgroup of G .  The mapping JT : G ---+ G / N defined by 
JT (x) == x N, for all x E G, is called the natural projection of G onto G / N. (This is 
consistent with Definition 2.2.6, since the elements of G / N are equivalence classes . )  
We showed in Proposition 3 .7 .4 that the kernel of any group homomorphism i s  a 
normal subgroup. The first part of the next proposition shows that the converse is 
true : any normal subgroup is the kernel of some group homomorphism. 
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3.8.7 Proposition. Let N be a normal subgroup of G. 

(a) The natural projection rr : G ---+ GI N defined by rr (x)  == x N, for all x E G, 
is a group homomorphism, and ker(rr ) == N. 

(b) There is a one-to-one correspondence between subgroups of GIN and sub
groups H of G with H � N. Specifically, if K is a subgroup of G I N, then rr - l (K)  
is the corresponding subgroup of G; if H is a subgroup of G with H � N, then 
rr (H) is the corresponding subgroup of GIN. 

Under this correspondence, normal subgroups correspond to normal subgroups. 

Proof (a) Let a ,  b E G . Then rr (ab) == abN == aNbN == rr (a)rr (b) , showing that 
rr is a homomorphism. Furthermore, we have a E ker(rr ) if and only if a N  == N, 
and this is equivalent to the statement that a E N . 

(b) Since rr is a homomorphism, we can apply Proposition 3 .7 .6 .  If K is a 
subgroup of GIN, then rr -

I (K)  is a subgroup of G that contains N, and if K is 
normal, then so is rr - l (K) . Since rr is onto, it is clear that assigning to each subgroup 
of GIN its inverse image in G is a one-to-one mapping. To show that this mapping 
is onto, let H be a subgroup of G with H � N. We claim that H == rr - l (rr (H) ) .  
By  definition, 

rr - l (rr (H))  == {x E G I rr (x )  E rr (H) } , 

and so it is clear that H C rr - l (rr (H) ) .  To show the reverse inclusion, let a E 
rr- l (rr (H) ) .  Then a N  == h N  for some h E H,  so we have h- 1 a E N.  But since 
N C H, this implies h- 1 a E H, and so a == h (h- 1 a) E H. Finally, it follows 
directly from Proposition 3 .7 .6 that if H is normal , then so is its image H I N under 
the natural projection. D 

Example 3.8.6. 

Let G == Z l 2 and let N == { [OJ , [3] , [6] , [9] } ,  the cyclic subgroup generated 
by the congruence class of 3 .  Then there are three elements of G / N, found 
by adding [ 1 ]  and [2] to each element of N :  

{ [OJ , [3] , [6] , [9] } , { [ I ] ,  [4] , [7] , [ I O] }  , { [2] , [5] , [8] , [ I I ] }  . 

Since we only have three elements , the factor group G / N must be isomorphic 
to Z3 . This can also be seen by considering the order of the equivalence class 
of [ 1 ] .  Its order is the smallest positive mUltiple that gives the identity element 
of G / N, and so that is the smallest positive multiple of [ 1 ]  that belongs to N .  
Thus [ 1 ]  has order 3 .  D 

Let N be a normal subgroup of G . When we introduced the multiplication of 
cosets we did so by choosing representatives and mUltiplying them. It is very useful 
to have another way of viewing the product of cosets as products of sets . 
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For subsets S1 , S2 of G ,  in Definition 3 .3 . 1 we used S1 S2 to denote all elements 
g E G that have the form g == S 1 S2 for some S I E SI and S2 E S2 . Using our notation 
for multiplicative cosets , the elements of G / N have the form a N  for elements 
a E G . We can then consider the product (aN) (bN) , for a ,  b E G , as the product 
of two subsets of G . To show that this product is equivalent to the one used in 
Theorem 3 . 8 .5 ,  we need to show that (a N) (bN) == abN. 

3.8.8 Proposition. Let H be a subgroup of the group G. The following conditions 
are equivalent: 

(1) H is a normal subgroup of G; 

(2) aH == Ha for all a E G; 

(3) for all a ,  b E G, abH is the set theoretic product (a H) (bH);  

(4) for all a , b E G,  ab-
l E H ifand onlY ifa - 1 b E H. 

Proof ( 1 )  implies (2) : Let a E G . To show that a H  C Ha , let h E H . Then 
aha- 1 E H since H is normal , and therefore aha- l == h' for some h' E H . Thus 
ah == h' a E H a . The proof of the reverse inclusion is similar, so a H  == H a . 

(2) implies (3) : Assume that Hb == bH for all b E G . It is always true that 
abH C (a H) (bH) ,  since any element of the form abh,  with h E H,  can be rewritten 
as abh == (ae) (bh ) ,  and the latter form shows it to be in (a H) (bH) .  To show the 
reverse inclusion, let (ah I ) (bh2) E (a H) (bH) , for h l , h2 E H . Then h 1 b E Hb and 
Hb == bH,  so h I b  == bh3 for some h3 E H .  Thus (ah l ) (bh2) == ab(h3h2) E abH . 

(3) implies ( 1 ) :  If (a H) (b H) == ab H for all a ,  b E G , then in particular we have 
(a H) (a- 1 H)  == H . Thus for any element h E H,  we have aha- l == aha-

I
e E H,  

showing that H is normal . 
(2) if and only if (4) : Condition (2) holds if and only if the left and right co sets 

of H coincide. The left co sets of H are the equivalence classes of the equivalence 
relation determined by setting a � b if a- I b E H, for all a ,  b E G . The right cosets 
are the equivalence classes determined by the symmetric condition ab- 1 E H . Since 
the two equivalence relations coincide if and only if their equivalence classes are 
identical, condition (4) holds if and only if condition (2) holds . D 

Example 3.8.7 (Normal subgroups of S3 ). 

As in Example 3 . 8 .2, we view S3 as the set {e, a, a2 , b, ab, a2b } ,  where a3 == e, 
b2 == e, and ba == a2b. The trivial subgroup {e} and the improper subgroup 
G are normal . The proper nontrivial subgroups of S3 are H == {e ,  b} , K == 
{e ,  ab} , L == {e ,  a2b} , and N == {e , a ,  a2 } (see Figure 3 .6 .5) . 

In Example 3 . 8 .2 we computed the left and right cosets of H. Since they do not 
coincide, it follows from Proposition 3 .8 . 8  (b) that H is not a normal subgroup 
of G .  Similarly, aK == {a , a2b} , while K a == {a , aba } == {a , b} , and therefore 
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K is not normal in G .  Furthermore, aL == {a , b} , but La == {a , ab} ,  and so L 
is not normal. 
We showed in Example 3 .8 .2 that the left cosets of N are N and bN == 

{b ,  a2b ,  ab} , while the right co sets are N and Nb == {b , ab, a2b} . Since the 
left and right cosets coincide, we conclude that N is the only proper nontrivial 
normal subgroup of S3 . D 

Example 3.8.8 (Subgroups of index 2 are normal). 

Let H be a subgroup of G, and assume that H has only two left cosets . Then 
these must be H and G - H, and since these must also be the right cosets , it 
follows from Proposition 3 .8 .8  that H is normal. This gives a much simpler 
proof than the one outlined in Exercise 16 of Section 3 .7 .  D 

Example 3.8.9 (Normal subgroups of D4). 

Let G be the dihedral group D4 , given by elements a of order 4 and b of order 
2, where ba == a- I b .  We refer to Figure 3 .6.6 for the diagram of subgroups 
of D4 . The subgroups G and {e} are normal, as always. The subgroups 
{e , a2 , b, a2b} , {e , a ,  a2 , a3 } ,  and {e , a2 , ab, a3b} each have index 2, so they 
are normal by Example 3 . 8 . 8 .  
Let N be the subgroup {e , a2 } .  The computation b·a2 == a3ba == a3a3b == a2b 
shows that a2 commutes with b, and since a2 commutes with powers of a ,  it 
must commute with every element of G .  This shows that N is contained in 
the center of G, and implies, in particular, that N is normal since its left and 
right co sets coincide. 
To show that none of the subgroups H == {e , b} ,  K == {e ,  a2b } ,  L == {e ,  ab } ,  
and M == {e ,  a3 b} is normal , we do not even need to find all of their left and 
right cosets . Short computations using the fact that ba == a3 b will show that 
aH i= Ha, aK i= Ka, aL i= La , and aM i= Ma . D 

In Section 3 .7, for any group homomorphism ¢> : G I ---+ G2 we constructed a 
group, which we denoted by G 1 /¢>. It consisted of the congruence classes of the 
equivalence relation '"'"'¢ defined by a '"'"'¢ b if¢> (a ) == ¢> (b) . By Proposition 3 .7 .9 this 
is precisely the relation of congruence modulo ker ( ¢> ) .  Thus if we let K == ker ( ¢> ) ,  
we have [alp == aK  for all a E G I . We now have in hand the notation in which 
the fundamental homomorphism theorem is usually stated. We include an outline 
of the proof using coset notation . 

3.8.9 Theorem (Fundamental Homomorphism Theorem). Let G I , G2 be groups. 
If ¢> : G I ---+ G2 is a homomorphism with K == ker(¢» , then G I l K '"'"' ¢> (G I ) .  
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Proof Define 1J : G I l  K ---+ 1J (G 1 ) by setting 1J (aK) == 1J (a) ,  for each element 
a K of G I l K .  The function 1J is well-defined since if a K == b K for a ,  b E G  1 , then 
a == bk for some k E ker(1J) , and so 

1J (a ) == 1J (bk) == 1J (b)1J (k) == 1J (b) . 

It is a homomorphism since 

1J(aKbK)  == 1J(abK) == 1J (ab) == 1J (a )1J (b) == 1J(aK)1J (bK)  

for all a ,  b E G I •  If 1J (a ) == 1J (b) for a ,  b E G 1 , then we have 

1J (ab- l ) == 1J (a ) (1J (b) )-
I == e 

and so ab- l E K ,  showing that aK == b K .  Thus 1J is one-to-one, and it clearly 
maps G I l K onto 1J (G I ) .  D 

Let 1J : G I ---+ G2 be a group homomorphism. Then we know that 1J is one
to-one if and only if its kernel is the trivial subgroup of G I ,  and in this case G I is 
isomorphic to 1J (G I ) ' At the other extreme, if ker ( 1J) == G I ,  then 1J is the trivial 
mapping, which sends every element to the identity. Thus if G I has no proper 
nontrivial normal subgroups and 1J : G I ---+ G2 is a group homomorphism, then 1J 
is either one-to-one or trivial . 

3.8.10 Definition. The nontrivial group G is called a simple group if it has no 
proper nontrivial normal subgroups. 

For any prime p,  the cyclic group Zp is simple, since it has no proper nontrivial 
subgroups of any kind (every nonzero element is a generator) . We will study simple 
groups in Chapter 7 because they play an important role in determining the str!.lcture 
of groups . We will show that the alternating group An is simple, if n > 5 ,  and this 
fact will play an important role in the proof (in Chapter 8) that the general equation 
of degree 5 is not solvable by radicals . 

Example 3.8.10 (Zn lmZn � Zm if m I n). 

In Example 3 .8 .6 we computed a particular factor group of ZI 2 . It is not 
difficult to do this computation for any factor group of Zn . Any homomorphic 
image of a cyclic group is again cyclic, and so all factor groups of Zn must 
be cyclic, and hence isomorphic to Zm for some m.  However, we prefer to 
give a direct proof of the isomorphism. Let n be any positive integer. Then 
the subgroups of Zn correspond to divisors of n ,  and so to describe all factor 
groups of Zn we only need to describe Zn /mZn for all positive divisors m of 
n . 
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Define ¢ : Zn � Zm by ¢ ( [x ]n ) == [x]m . The mapping is well-defined since 
m I n . It is a homomorphism by Example 3 .7 .6, which describes homomor
phisms of cyclic groups, and it is clearly onto . Finally, 

ker (¢) == { [x ]n I [x ]m == [O]m } == { [x ]n I x is a mUltiple of m} 

and so ker(¢) is equal to mZn . It follows from the fundamental homomor
phism theorem that Zn /mZn "'-' Zm . D 

In Example 3 . 8 .9 , we showed that N == {e , a2 } is a normal subgroup of D4 , 
since it lies in the center Z (D4) . The factor group G / N consists of the four 
co sets N, aN == {a ,  a3 } , bN == {b , a2b} , and abN == {ab , a3b } . We have 
aNaN == N, bNbN == N and abNabN == N, which shows that every 
nontrivial element of G / N has order 2 . D 

Example 3.8.12. 

Let G == Z4 X Z4 and let N == { (O , 0) , (2, 0) , (0 , 2) , (2, 2) } .  (We have omitted 
the brackets denoting congruence classes because that makes the notation too 
cumbersome.) There are four co sets of this subgroup, which we can denote 
as follows : 

N, ( l , O) + N , (O, l ) + N , ( l , l ) + N. 

The representatives of the co sets have been carefully chosen to show that each 
nontrivial element of the factor group has order 2, making the factor group 
G / N isomorphic to Z2 x Z2 . 
Let K be the subgroup { (O , 0) , ( 1 , 0) , (2 , 0) , (3 , O) } . It can be checked that 
the cosets of K have the following form: 

K, (O , l ) + K , (0 , 2) + K, (0 , 3) + K . 

Having chosen these representatives ,  it is clear that the factor group must be 
cyclic, generated by (0 , 1) + K, and so G / K is isomorphic to Z4 . D 

The previous example provides the motivation for a general comment concerning 
factor groups of direct products . One way to define a subgroup of a direct product 
G 1 x G2 is to use normal subgroups NI C G 1 and N2 C G2 to cons�ruct the 
following subgroup: 



3. B. COSETS, NORMAL SUBGROUPS, AND FACTOR GROUPS 1 75 

In the previous example we computed the factor groups for the subgroups 2Z4 x 2Z4 
and Z4 x (0) , respectively. The factor group is easy to describe in this case. (See 
Example 3 . 8 . 1 3  for a subgroup of a direct product that cannot be described in this 
manner. ) 

Let NI and N2 be normal subgroups of the groups G I  and G2 , respectively. 
Then NI x N2 is a normal subgroup of the direct product G I X G2 and 

To prove this statement, define ¢> : G I X G2 ---+ G 1 / NI x G2/ N2 by ¢> (X l , X2) == 
(X l NI , X2N2) for all X l  E G I , X2 E G2 . It is easy to verify the following : ¢> is a 
homomorphism, ¢> is onto, and ker (¢» == NI x N2 . The desired conclusions follow 
from the fundamental homomorphism theorem. 

Example 3.8.13. 

Let G == Z4 X Z4 and let N be the "diagonal" subgroup generated by ( 1 , 1 ) .  
Then N == { (O ,  0) , ( 1 ,  1 ) ,  (2, 2) , (3 , 3) } and the factor group G / N will have 
four elements , so it must be isomorphic to either Z4 or Z2 x Z2 . The smallest 
positive mUltiple of ( 1 , 0) that belongs to N is 4 ·  ( 1 , 0) == (0 , 0) , showing that 
the coset ( 1 , 0) + N has order 4 .  Thus G / N is cyclic, and hence isomorphic 
to Z4 . D 

Example 3.8. 14 (GLn (R) / SLn (R) � RX ). 

To give an example involving a group of matrices , consider GLn (R) and 
the subgroup SLn (R) of all n x n matrices with determinant 1 .  Define ¢ : 
GLn (R) � RX  by letting ¢ (A) == det(A) ,  for any matrix A E GLn (R) . 
The formula det(AB) == det (A) det (B) shows that ¢ is a homomorphism. 
It is easy to see that ¢ is onto, and ker( ¢) is precisely SLn (R) . Applying 
the fundamental homomorphism theorem, we see that SLn (R) is a normal 
subgroup, and we obtain GLn (R) / SLn (R) "'-' R x . D 

EXERCISES: SECTION 3.8 

1 .  List all cosets in Z24 of each of the given subgroups . 
t ea) ( [3 ] )  
(b) ( [  1 6] )  

2 .  Let G == Z3 x Z6 , let H == ( ( 1 , 2) ) and let K == ( ( 1 , 3) ) .  List all cosets of H and K .  
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3 .  t For the subgroup {e ,  ab} of S3 , list all left and right cosets . 

4. For each of the subgroups {e ,  a2 } and {e ,  b} of D4 , list all left and right cosets . 

5 .  Let G be a group with subgroup H .  Prove that there is a one-to-one correspondence 
between the left and right co sets of H. (Your proof must include the case in which 
G is infinite.) 

6 . Prove that if N is a normal subgroup of G,  and H is any subgroup of G, then H n N 
is a normal subgroup of H .  

7 .  Let H be a subgroup of G ,  and let a E G .  Show that a H a - 1 is a subgroup of G that 
is isomorphic to H .  

8 .  Let H be a subgroup of G .  Show that H is normal in G if and only if aHa- 1 == H 
for all a E G .  

9 .  Let G be a finite group, and let n be a divisor of I G I .  Show that if H i s  the only 
subgroup of G of order n ,  then H must be normal in G .  

10. Let N be a normal subgroup of index m i n  G .  Show that am E N for all a E G .  

1 1 . Let N be a normal subgroup of G .  Show that the order of any coset aN in G / N i s  a 
divisor of o(a) , when o(a) is finite. 

1 2. Let H and K be normal subgroups of G such that H n K == (e ) . Show that hk == kh 
for all h E H and k E K .  

1 3 . Let N be a normal subgroup of G .  Prove that G / N i s  abelian if and only if N contains 
all elements of the form aba- 1 b- 1 for a ,  b E G . 

14. Let N be a subgroup of the center of G .  Show that if G / N is a cyclic group, then G 
must be abelian. 

1 5 . tFind all factor groups of the dihedral group D4 . 

16 . Let H and K be normal subgroups of G such that H n K == (e ) and H K == G .  Prove 
that G "'-' H x K .  

17 .t Compute the factor group (Z6 x Z4)/ ( (2 , 2) ) .  

1 8 . Compute the factor group (Z6 x Z4)/ ( (3 , 2) ) . 

1 9 . Show that (Z x Z) / ( (0, 1 ) )  is an infinite cyclic group. 

20. Show that (Z x Z) / ( (  1 ,  1 ) )  is an infinite cyclic group. 

2 1 .  Show that (Z x Z)/ ( (2 , 2) ) is not a cyclic group. 

22. Show that R x / ( - 1 )  is isomorphic to the group of positive real numbers under 
multiplication. 
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23. Let G be the set of all matrices in GL2 (ZS ) of the form [ � � J 
(a) Show that G is a subgroup of GL2 (ZS) .  

(b) Show that the subset N of all matrices i n  G of the form [ � � J ,  with C E Zs , 

is a normal subgroup of G .  
(c) Show that the factor group G / N i s  cyclic of order 4. 

24. Let S be an infinite set. Let H be the set of all elements a E SymeS) such that 
a (x) == x for all but finitely many X E S. Prove that the subgroup H is normal in 
SymeS) . (See Exercise 1 8  of Section 3 .6.) 

25 . Give an example of a finite group G with two normal subgroups H and K such that 
G/ H � G/ K but H � K .  

26. Let H and K be subgroups of the group G ,  and let a ,  b E G . Show that either 
aH n bK == 0 or else aH n bK is a left coset of H n K .  

27 . Let H and N be subgroups of a group G,  and assume that N i s  a normal subgroup 
of G .  Prove the following statements . 
(a) N is a normal subgroup of H N.  
(b) Each element of H N / N has the form hN, for some h E H .  
(c) ¢ : H � H N / N defined by ¢ (h) == hN, for all h E H ,  i s  an onto homomor
phism. 
(d) H N / N � H / K, where K == H n N. 

28. Let H and N be normal subgroups of a group G,  with N C H. Define ¢ : G / N � 
G/ H by ¢ (xN) == x H, for all cosets xN E G/ N .  
(a) Show that ¢ i s  a well-defined onto homomorphism. 
(b) Show that (G/ N)/ (H / N) � G/ H .  

Notes 

The publication in 1 870 of Traite des substitutions et des equations aZgebriques by 
Camille Jordan ( 1 83 8-1 922) represented a fundamental change in the character of 
group theory. Prior to its publication, various individuals had studied groups of 
permutations and groups of geometric transformations, but after 1 870 the abstract 
notion of a group was developed in several steps . The modern definition of a 
group, using an axiomatic approach, was given in the commutative case in 1 870 by 
Leopold Kronecker ( 1 823-1 89 1 ) , and in the general noncommutative case in 1 893 
by Heinrich Weber ( 1 842-19 1 3) .  Arthur Cayley ( 1 82 1- 1 895) should be given credit 
for two papers that he published in 1 854 on the theory of groups . He introduced the 
concept of a group table, which is sometimes still referred to as a "Cayley table." 
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We now return to our discussion (begun in the notes at the end of Chapter 2) of 
the use groups in the theory of equations. Certain "substitutions," or permutations , 
of the roots of a polynomial define its Galois group. For a polynomial with rational 
coefficients, every rational number must be left fixed by the substitution . Whether 
or not a particular permutation of the roots belongs to the Galois group depends on 
the coefficients of the equation, and is not generally easy to determine. We will see 
in Chapter 8 that the Galois group of a polynomial p (x)  determines whether or not 
p (x)  == 0 is solvable by radicals . 

To give an elementary illustration, we return to the discussion of the polynomial 
x3 - 3x + 1 begun in the notes at the end of Chapter 2. From the equation 

( 1 )  

we obtain general identities for the roots rl , r2 , r3 : 

It is possible to find another identity that holds for the roots of this particular poly
nomial . To do so we will evaluate the discriminant 

of x 3 - 3x + 1 (see the discussion of the discriminant in Appendix A.6) .  By 
differentiating equation ( 1 )  we obtain 

Successive substitutions of x == rl , r2 , r3 yield (rl - r2) (rl - r3 ) == 3 (rl - 1 ) ,  

(r l - r2) (r2 - r3 ) == -3 (ri - 1 ) ,  and (rl - r3 ) (r2 - r3 ) == 3 (ri - 1 ) ,  so 

� 3 (r� - 1 ) (  -3) (ri - 1 ) (3) (ri - 1 )  

( -27) [r�riri - (r�ri + r�ri + riri) + (r� + ri + ri) - 1 ] 
Squaring equation (4) gives us rlriri == 1 .  Squaring equation (3) ,  we see that 
(rl r2 +r2r3 +r3rl )2 == rlri +rlri +riri + 2rl r2r3 (rl +r2 +r3 ) and so it follows from 
(2) that rlri + rlri + riri == 9 . Finally, by squaring equation (2) and using equation 
(3) we get rl + ri + ri == 6. Thus � == 8 1 ,  and so (rl - r2) (rl - r3 ) (r2 - r3 ) == 
"JE E Q. Any permutation of the roots that belongs to the Galois group must 
therefore leave "JE fixed. The permutations ( 1 ) ,  ( 1 , 2 , 3) , and ( 1 , 3 , 2) applied to 
the subscripts leave (rl - r2) (rl - r3 ) (r2 - r3 ) invariant, but the transpositions ( 1 , 2) , 
( 1 ,  3) , and (2 , 3)  each change the sign . As this argument suggests , we will be able 
to show in Example 8 .6 .5 that the Galois group of x 3 - 3x + 1 is the set of even 
permutations in S3 : { ( I ) ,  ( 1 , 2 , 3 ) , ( 1 , 3 ,  2) } .  



Chapter 4 

POLYNOMIALS 

In this chapter we will study polynomial equations from a concrete point of view. 
We will find it convenient, though, to introduce one abstract concept. We will study 
polynomials in which the coefficients can come from any set in which addition, 
subtraction, multiplication, and division are possible . In this setting we will prove 
numerous results for polynomials analogous to those for the set of integers : a prime 
factorization theorem, a division algorithm, and an analog of the Euclidean algo
rithm. Congruences for polynomials will be used to show that roots of polynomials 
can always be found, by enlarging (if necessary) the set over which the polynomials 
are considered. 

4.1 Fields ; Roots of Polynomials 

We introduced the concept of a field in Section 3 . 3  in order to work with the group 
GLn (F) of invertible n x n matrices with entries in a field F. We now want to work 
with polynomials with coefficients in an arbitrary field, and so we need to develop 
this concept further. One very important tool is a division algorithm for polynomials 
(analogous to Theorem 1 . 1 . 3 for integers) . To make sure that the division algorithm 
works, we need to be able to assume that we can add, subtract, multiply, and divide 
coefficients . Of course, all four operations are possible in the familiar fields Q, R, 
C, and Zp , where p is prime. However, we also need to be able to consider other 
sets as coefficients . 

For example, a typical procedure in our later work is the following . To find 
all solutions in C of a polynomial equation with coefficients in Q, we proceed in 
stages . After we have found one solution, we let F be the smallest set of complex 
numbers that is a field and contains both Q and the solution. We then treat the 
original polynomial as if its coefficients come from F. Since the polynomial has 
a root in F, we will show that it can be factored into polynomials of lower degree 
(with coefficients in F). Then each of the factors can be investigated in a similar 

179 
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manner, and the process is continued until a field E is obtained that is the smallest 
field inside C containing Q and all solutions of the original equation . 

Example 4.1 .1  (Q( v'2)). 
Given the equation x4 - 2x3 - 3x2 + 4x + 2 == 0, we can factor to obtain 
(x2 -2) (x2 -2x - 1 ) == 0, and so ,J2 is a solution. We want to find the smallest 
set of complex numbers that contains all coefficients and roots of the equation 
and is closed under addition, subtraction, multiplication, and division. We 
will start by finding the smallest set of complex numbers that contains Q and 
,J2 and forms a field (see Definition 3 .3 .5) .  We denote this set by Q( ,J2) .  It 
is obvious that Q(,J2) must contain {a + b,J2 I a , b E Q} , since we must 
have closure under multiplication and addition. 

We will show that Q(,J2) == {a + b,J2 I a , b E Q} . We first note that if 
al + bI,J2 == a2 + b2,J2, then a l - a2 == (b2 - b I ),J2, so if b2 - bI i=- 0 then 
we can divide by b2 - b 1 ,  which shows that ,J2 is rational, a contradiction. 
We conclude that b I == b2 , and al == a2 , so there is only one way to represent 
an element of {a + b,J2 I a , b E Q} . 
It is easy to see that {a + b,J2 I a , b E Q} is closed under addition and 
subtraction. It is only slightly more difficult to check that the same is true for 
multiplication and division : 

(a + b,J2) (c + d,J2) ae + ad,J2 + be,J2 + 2bd 
(ae + 2bd) + (ad + be),J2 , 

and, if e and d are not both zero, then 

a + b,J2 
e + d,J2 

(a + b,J2) (e - d,J2) 
(e + d,J2) (e - d,J2) ( ae - 2bd ) ( be - ad ) ,J2 
e2 _ 2d2 + e2 _ 2d2 2 . 

In both cases the answer has the correct form: a rational number plus a rational 
number times the square root of 2. Note that e2 - 2d2 i=- 0 since ,J2 is not a 
rational number, which also shows that e - d,J2 i=- O. 

Thus Q(,J2) is the smallest field that contains Q and the one root ,J2. In 
Q(,J2) , we can factor x 2 - 2 to get x2 - 2 == (x - ,J2) (x + ,J2) .  The 
quadratic formula can be used to show that the roots of x2 - 2x - 1 are 
1 + ,J2, and 1 - ,J2, which have the correct form to belong to Q(,J2) .  Thus 
by allowing coefficients from Q(,J2) we have the following factorization: 



4. 1 . FIELDS; ROOTS OF POLYNOMIALS 

Example 4.1.2. 

The polynomial x4 - x2 - 2 factors as (x2 - 2) (x2 + 1 ) .  In this case the field 
Q(,J2) contains two roots ±,J2, but not the two remaining roots ±i , and so 
we need a larger field to be certain of including all roots . Such a field will be 
constructed in Example 4 .3 .3 .  0 

1 8 1  

In Definition 3 .3 . 5 we stated the definition of a field in group theoretic terms : 
the elements of a field form an abelian group under addition, the nonzero elements 
form an abelian group under multiplication, and addition and multiplication are 
connected by the distributive law. Roughly speaking, then, a field is a set in which the 
operations of addition, subtraction, multiplication, and division can be performed. 
We now repeat the definition of a field, with somewhat more detail, and without 
reference to groups . 

4.1.1 Definition. Let F be a set on which two binary operations are defined, called 
addition and multiplication, and denoted by + and · respectively. That is, the 
following condition must be satisfied. 

(i) Closure: For all a ,  b E F the sum a + b and the product a . b are well-defined 
elements of F. 

Then F is called afield with respect to these operations if the following properties 
hold. 

(ii) Associative laws: For all a ,  b ,  c E F, 

a + (b + c) == (a + b) + c and a . (b . c) == (a . b) . c . 

(iii) Commutative laws: For all a ,  b E F, 

a + b == b + a  and a · b == b · a . 

(iv) Distributive laws: For all a ,  b ,  c E F, 

a ·  (b + c) == (a · b) + (a · c) and (a + b) . c == (a . c) + (b . c) . 

(v) Identity elements: The set F contains an element 0, called an additive 
identity element, such that for all a E F, 

and O + a == a . 

The set F also contains an element 1 (required to be different from 0) called a 
multiplicative identity element, such that for all a E F, 

a · l == a and l · a == a . 
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(vi) Inverse elements: For each a E F, the equations 

a + x == O  and 

have a solution x E F, called an additive inverse of a, and denoted by -a. 
For each nonzero element a E F, the equations 

a · x == l and x · a == l 

have a solution x E F, called a multiplicative inverse of a, and denoted by a- I . 

We will shortly show that both additive inverses and multiplicative inverses are 
unique, and this will justify the notation in the preceding definition . 

The basic examples you should keep in mind in this section are Q, R, C, and Zp , 
where p is prime. In Section 4 .3  we will show how to construct other important ex-
amples of fields, by generalizing the construction of Q(,J2) given in Example 4. 1 . 1 .  
This will also allow us to construct finite fields, which have many important appli
cations . We now provide the first example of a finite field different from Zp , for p 
prIme. 

Example 4.1.3. 

The following set of matrices, with entries from Z2 , forms a field under the 
operations of matrix addition and multiplication : 

F = { [ � � ] , [ � � ] , [ � � ] , [ � � ] } .  

Here we have omitted the brackets from the congruence classes [0] and [ 1 ] ,  so 
that we simply have 1 + 1 == 0, etc . You should check that F is closed under 
addition and multiplication . The associative and distributive laws hold for all 
matrices . You can check that these particular matrices commute under mul-

tiplication. The additive identity is [ � � ] , and the multiplicative identity 

is [ �  � ] . Each element is its own additive inverse, and the multiplicative 

. f [ l 1 ] . [ 0 1 ] Inverse 0 l O IS 1 1 . D 

Each nonzero element of a field F is invertible ; we will use F x to denote the 
set of all nonzero elements of F . When there is no risk of confusion, we will often 
write ab instead of a ·  b.  Ifwe assume that multiplication is done before addition, we 
can often eliminate parentheses . For example, the distributive laws can be written 
as a (b + c) == ab + ac and (a + b)c == ac + bc . You should also note that the 
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list of properties used to define a field is redundant in a number of places . For 
example, since multiplication is commutative, we really only need to state one of 
the distributive laws. 

To simplify matters , we have dealt only with the two operations of addition and 
multiplication. To define subtraction we use the additive inverse of an element: 
a - b == a + (-b) . Similarly, we use the multiplicative inverse of an element to 
define division, as follows : if b =j=. 0, then a -;- b == ab- 1 • We will sometimes write 
a / b in place of ab- 1 • There is the possibility of a problem with these definitions, 
since a - b and a -;- b should be unique, whereas we do not as yet even know that 
-b and b- 1 are unique. The next proposition takes care of this problem. 

4.1.2 Proposition. Let F be afield, with a ,  b ,  c E F. 

(a) Cancellation laws: If a + c == b + c,  then a == b. If c =j=. 0 and a . c == b . c, 
then a == b. 

(b) Uniqueness of identity elements : If a + b == a, then b == O. If a . c == a and 
a =j=. 0, then c == 1 .  

(c) Uniqueness of inverses : If a + b == 0, then b == -a. If a =j=. 0 and a b  == 1 ,  
then b == a - I . 

Proof Proposition 3 . 1 .2 shows that identity elements and inverses are unique for 
any binary operation. The axioms that hold for the field F show that F is an 
abelian group under addition, and so the additive cancellation law follows from 
Proposition 3 . 1 .7 of Chapter 3 .  

Suppose that a . c == b . c ,  with c =j=. O. Since c i s  nonzero, an inverse c- 1 exists , 
and we can rewrite the equation in the following way: 

This completes the proof. 0 

ac 

(ac )c- l 

a (cc- 1 ) 

a · 1  

a 

4.1.3 Proposition. Let F be afield. 

(a) For all a E F, a . 0 == O. 

bc 

(bc)c- l 

b (cc- l ) 

b . 1 

b . 

(b) If a ,  b E F with a =j=. 0 and b =j=. 0, then ab =j=. O. 

(c) For all a E F, - (  -a) == a.  

(d) For all a ,  b E F, (a) (-b) == (-a) (b) == -abo 

(e) For all a ,  b E F, (-a) ( -b) == abo 
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Proof. (a) We will use the fact that 0 + 0 == O. By the distributive law, 

a . 0 + a . 0 == a . (0 + 0) == a . 0 == a . 0 + 0 , 

so the cancellation law for addition shows that a . 0 == O. 

(b) If a i=- 0 and a . b == 0, then a . b == a . 0 and the cancellation law for 
multiplication shows that b == O. 

(c) In words, the equation - ( -a) == a states that the additive inverse of -a is 
a ,  and this follows from the equation -a + a == 0 which defines -a . 

(d) Using the distributive law, 

a ·  b + a ·  (-b) == a ·  (b + (-b) )  == a ·  0 == 0 ,  

which shows that (a ) (-b) is the additive inverse of ab, and so (a) (-b) == - Cab) . 
Similarly, (-a) (b) == -abo  

(e) Now consider (-a) ( -b) . By what we have just shown, 

(-a) (-b) == - ((-a) (b) ) == - (-ab) == ab , 

and this completes the proof. 0 

Having proved some elementary results on fields, we are now ready to discuss 
polynomials with coefficients in a field. In high school algebra we talk about x as 
an "unknown" quantity. Sometimes this is appropriate, but we need to think in a 
more general context, not limiting x to be an element of a specific field. We should 
usually think of x as a symbol on which various operations can be performed, and 
to encourage this we use the word "indeterminate" in place of "unknown" . 

4.1.4 Definition. Let F be a field. If am , am- I , . . .  , a I , ao E F (where m is a 

nonnegative integer), then any expression of the form 

is called a polynomial over F in the indeterminate x with coefficients am , am- I , 

. . .  , ao. The subscript i of the coefficient ai is called its index. 

If n is the largest nonnegative integer such that an i=- 0, then we say that the 

polynomial f (x) == anxn + . . .  + ao has degree n, written deg(f (x ) )  == n, and an is 
called the leading coefficient of f (x ) .  If ao is the leading coefficient of f (x ), then 
f (x) is called a constant polynomial. 

If the leading coefficient of f (x) is 1 ,  then f (x) is said to be a monic polynomial. 

The set of all polynomials with coefficients in F is denoted by F [x] .  
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According to this definition, the zero polynomial (each of whose coefficients 
is zero) has no degree. For convenience, it is often assigned - 00  as a degree . A 
constant polynomial f (x) == ao has degree 0 if ao i=- O. Thus a polynomial belongs 
to the coefficient field if and only if it has degree 0 or - 00 .  

Two polynomials are equal by definition i f  they have the same degree and all 
corresponding coefficients are equal. It is important to distinguish between the 
polynomial f (x) as an element of F[x]  and the corresponding polynomial function 
from F into F defined by substituting elements of F in place of x . If f (x) == 
amxm + . . .  + ao and c E F ,  then f (c) == am cm + . . .  + ao .  In fact, if F is a finite 
field, it is possible to have two different polynomials that define the same polynomial 
function. 

Example 4.1 .4. 

and 

Let F be the field Z5 and consider the polynomials x5 and x .  For any c E Z5 , 
by Fermat 's theorem (Theorem 1 .4. 1 2) we have c5 = c (mod 5) ,  and so the 
polynomial functions f (x) == x5 and g (x) == x are equal when considered as 
functions from Z5 into Z5 . 
As another example, consider the polynomials x5 - 2x + 1 and 4x + 1 .  Then 
for any c E Z5 we have 

c5 - 2c + 1 - -c + 1 = 4c + 1 (mod 5) , 

which shows that x5 - 2x + 1 and 4x + 1 define the same function. 0 

For the polynomials 

f (x)  == amxm + am_ lX
m- 1 + . . .  + a l X + ao 

g (x )  == bnxn + bn_ l x
n- l 

+ . . .  + b l x + bo , 

the sum of f (x)  and g (x)  is defined by just adding corresponding coefficients . The 
product f (x) g (x) is defined to be 

am bnx
n+m + . . . + (a2bo + a l b l + aob2)x2 + (a l bo + aOb l )x + aobo . 

The coefficient Ck of xk in f (x)g (x )  can be described by the formula 

This definition of the product is consistent with what we would expect to obtain 
using a naive approach : expand the product using the distributive law repeatedly 
(this amounts to mUltiplying each term by every other) and then collect similar 
terms . 
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With this addition and multiplication, F [x]  has properties similar to those of 
the integers . Checking that the following properties hold is tedious, though not 
difficult. The necessary proofs use the definitions, and depend on the properties of 
the coefficient field. We have omitted all details. 

(i) Associative laws: For any polynomials f (x) , g (x ) , h ex) over F, 

f (x)  + (g (x)  + h ex ) )  (f(x )  + g (x) )  + h ex)  , 

f (x)  . (g (x) . h ex ) )  == (f(x ) · g (x) )  . h ex) . 

(ii) Commutative laws: For any polynomials f(x) , g (x) over F, 

f (x)  + g (x )  g (x )  + f(x)  , 

f (x )  . g (x )  == g (x) · f (x )  . 

(iii) Distributive laws: For any polynomials f(x ) ,  g (x) , h ex) over F, 

f (x)  . (g (x) + h ex ) )  (f (x) . g (x) )  + (f(x)  . h ex ) )  , 
(f (x)  + g (x ) )  . h ex)  == (f (x) · h ex ) )  + (g (x) . h ex) )  . 

(iv) Identity elements : The additive and multiplicative identities of F, consid
ered as constant polynomials, serve as identity elements . 

(v) Additive inverses: For each polynomial f (x) over F, the polynomial - f (x)  
serves as an additive inverse. 

In the formula above, two polynomials are multiplied by multiplying each term 
of the first by each term of the second, and then collecting similar terms . In Fig
ure 4. 1 . 1  we show an efficient way to do this , by arranging the similar terms in 
columns. 

4.1.5 Proposition. If f (x) and g (x) are nonzero polynomials in F [x] , then their 
product f (x)g(x )  is nonzero and 

deg(f (x)g (x) )  == deg(f (x)) + deg(g (x)) . 

Proof Suppose that 

and 
g (x)  == bnxn + . . .  + b 1 x + bo , 

with deg(f (x ))  == m and deg(g (x ) )  == n .  Thus am i= 0 and bn i= O. It follows from 
the general formula for multiplication of polynomials that the leading coefficient of 
f (x)g (x)  must be am bn , which must be nonzero by Proposition 4. 1 . 3 (b) . Thus the 
degree of f (x) g (x ) is m + n ,  since in f (x) g (x) the coefficient of xm+n is am bn . 0 
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Figure 4. 1 . 1 :  

2x4 - 3x2 

x x2 

-4x4 +6x2 

- 8x5 + 1 2x
3 

_20x2 

2x6 -3x4 +5x
3 

+x2 

2x6 - 8x5 -7x4 + 1 7x
3 

- 1 3x2 

1 87 

+5x + 1 
-4x - 2  

- l Ox -2 

-4x 

- 14x -2 

Note that we could extend the statement of  Proposition 4. 1 .5 to include the 
zero polynomial, provided we would use the convention that assigns to the zero 
polynomial the degree - 00 . 

4. 1.6 Corollary. If f (x) , g (x) , h ex )  E F [x], and f (x)  is not the zero polynomial, 
then f (x)g (x )  == f (x)h (x)  implies g (x)  == h ex) .  

Proof If f (x)g (x )  == f (x)h (x ) ,  then we can use the distributive law to rewrite the 
equation as f (x ) (g (x) - h (x ))  == 0, and since f (x) =j=. 0, the previous proposition 
implies that g (x)  - h ex)  == 0, or simply g (x) == h ex) . 0 

Having proved Proposition 4 . 1 .5 ,  we can make some further observations about 
F [xl If f(x)g (x )  == 1 ,  then both f (x)  and g (x) must be constant polynomials, 
since the sum of their degrees must be 0. This shows that the only polynomials that 
have multiplicative inverses are those of degree 0, which correspond to the nonzero 
elements of F.  In this sense F [x] is very far away from being a field itself, although 
all of the other properties of a field are satisfied. 

4.1.7 Definition. Let f (x) , g (x )  E F [x] .  If f (x)  == q (x)g (x) for some q (x) E 
F [x], then we say that g (x )  is a/actor or divisor of f (x) , and we write g (x)  I f (x) .  

The set of all polynomials divisible by g (x ) will be  denoted by (g (x) ) .  

4.1.8 Lemma. For any element c E F, and any positive integer k, 

Proof A direct computation shows that we have the following factorization : 

x
k 

- c
k == (x - c) (x

k- 1 + cx
k-2 + . . .  + c

k-2x + ck- l ) • 
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Note that the quotient xk- l 
+ cxk-2 + . . .  + ck-2x + ck- l has coefficients in F. 0 

The next theorem shows that for any polynomial f (x) ,  the remainder when f (x) 
is divided by x - c is f (c) . That is , f (x) == q (x) (x - c) + f (c) . The remainder 
f(c) and quotient q (x)  are unique . 

4.1.9 Theorem (Remainder Theorem). Let f (x) E F [x] be a nonzero polynomial, 
and let c E F. Then there exists a polynomial q (x)  E F [x]  such that 

f (x )  == q (x ) (x - c) + f(c) . 

Moreover, if f (x)  == q l (x) (x - c) + k, where q l (x) E F [x]  and k E F, then 
q l (x ) == q (x) and k == f (c) . 

Proof If f(x) == amxm + . . .  + ao , then 

f (x)  - f(c) == am (xm - em ) + . . .  + a l ex - c) . 

By Lemma 4. 1 . 8 ,  x - c is a divisor of each term on the right-hand side of the 
equation, and so it must be a divisor of f (x ) - f (c) . Thus 

f (x)  - f (c) == q (x) (x - c) 

for some polynomial q (x)  E F [x ] ,  or equivalently, 

f (x)  == q (x ) (x - c) + f (c) . 

If f (x)  == q l (x) (x - c) + k ,  then 

(q (x) - q l  (x ) ) (x - c) == k - f (c) . 

If q (x) - q l (x ) =j=. 0, then by Proposition 4. 1 .5 the left-hand side of the equation 
has degree > 1 ,  which contradicts the fact that the right-hand side of the equation 
is a constant. Thus q (x)  - q l (x ) == 0, which also implies that k - f (c) == 0, and 
so the quotient and remainder are unique. 0 

Example 4.1.5. 

Let us work through the previous proof in the case F == Q, for f (x) 
x2 + 5x - 2 and c == 5 :  

f (x) - f (5) (x2 + 5x - 2) - (52 + 5 . 5 - 2) 
(x2 - 52) + (5x - 25) 
(x + 5) (x - 5) + 5 (x - 5) 
(x + lO) (x - 5) . 

Thus we obtain x2 + 5x - 2 == (x + lO) (x - 5) + 48. D 
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4.1.10 Definition. Let f (x)  == amxm + . . .  + ao E F [x] .  An element c E F is called 
a root of the polynomial f (x )  if f (c) == 0. 

4. 1.1 1 Corollary. Let f (x )  E F [x]  be a nonzero polynomial, and let c E F. Then 
c is a root of f (x ) if and only if x - c is a factor of f (x ) .  That is, f (c) == ° if and 
only if (x - c) I f (x ) .  

4.1.12 Corollary. A polynomial of degree n with coefficients in the field F has at 
most n distinct roots in F. 

Proof The proof will use induction on the degree of the polynomial f (x) . The 
result is certainly true if f (x) has degree 0, that is, if f (x ) is a nonzero constant. Now 
suppose that the result is true for all polynomials of degree n - 1 . If c is a root of f (x ) ,  
then by Corollary 4. 1 . 1 1 we can write f (x ) == q (x ) (x - c) , for some polynomial 
q (x) . If a is any root of f (x ) ,  then substituting shows that q (a) (a - c) == 0, which 
implies that either q (a)  == ° or a == c. By assumption, q (x)  has at most n - 1 
distinct roots and so this shows that f (x) can have at most n - 1 distinct roots which 
are different from c. 0 

EXERCISES: SECTION 4.1 

1 .  Let f(x) , g (x) ,  h ex) E F [x ] . Show that the following properties hold. 
(a) If g (x) I f (x) and h ex) I g (x) , then h ex) I f (x) . 
(b) If h ex) I f (x) and h ex) I g (x) , then h ex) I (f (x) ± g (x) ) . 
(e) If g (x) I f (x) , then g (x) . h ex) I f (x) . h ex) . 
(d) If g (x) I f (x) and f (x) I g (x) , then f(x) == kg (x) for some k E F . 

2. Let p be a prime number, and let n be a positive integer. How many polynomials are 
there of degree n over Z p ? 

3 . tFor f (x) == 2x3 + x2 - 2x + 1 ,  use the method of Theorem 4. 1 .9 to write f(x) == 
q (x) (x - 1 )  + f ( I ) .  

4 . For f (x) == x3 + 3x2 - lOx + 5, use the method of Theorem 4. 1 .9 to write f(x) == 
q (x) (x - 2) + f (2) . 

5 . Over the given field F, write f (x) == q (x) (x - c) + f (c) for 
t ea) f(x) == 2x3 + x2 - 4x + 3 ;  c == 1 ; F == Q; 
(b) f (x) == x3 - 5x2 + 6x + 5 ; c == 2; F == Q; 
t ee) f (x) == x3 + 1 ; c == 1 ; F == Z3 ; 
(d) f (x) == x3 + 2x + 3 ;  c == 2; F == Z5 . 
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6. Let p be a prime number. Find all roots of xp- l - 1 in Zp . 
7. Show that if c is any element of the field F and k > 2 is an odd integer, then x + c 

is a factor of xk + ck . 
8 .  Show that rational numbers correspond to decimals which are either repeating or 

terminating . 
Hint : If q = m in , then when dividing m by n to put q into decimal form there are 
at most n different remainders . Conversely, if d is a repeating decimal , then find s ,  t 
such that lOs d - lOt d is an integer. 

9. Let a be a nonzero element ofa field F . Show that (a- l )- l  = a and (_a)- l = -a- I . 
10. Let a ,  b , c be elements of a field F. Prove that if a i= 0, then the equation ax + b = c 

has a unique solution. 
1 1 . Show that the set Q(-J3) = {a + b-J3 1 a , b E Q} is closed under addition, subtrac

tion, multiplication, and division. 
12 . Let F be any field. An n x n matrix with entries in F is called a scalar matrix if it 

has the form a I ,  where I is the n x n identity matrix, and a E F. Prove that the set 
of all n x n scalar matrices over F is a field under the operations of matrix addition 
and multiplication. 

1 3 .  Show that the set of matrices of the form [ _� ! l where a , b E R, is a field 

under the operations of matrix addition and multiplication. 

14 . Show that the set of matrices of the form [ 2� ! l where a , b E Q, is a field 
under the operations of matrix addition and multiplication . 

1 5 .  Complete the proof that the set of matrices in Example 4. 1 . 3 is a field. 
1 6. Show that the following set of matrices over Z2 is a field under the operations of 

matrix addition and multiplication : 

[ � � � ] [ � ! � ] [ � � ! ] [ � : ! ] 
[ ! : � ] [ i � � ] [ ! i : ] [ : � i ] · 

17 . Let (xo , Yo ) , (X l , Y I ) , (X2 , Y2) be points in the Euclidean plane R2 such that xo , xl , X2 
are distinct. Show that the formula 

f( )  YO (X - XI ) (X - X2) YI (x - XO) (X - X2) Y2 (X - XO) (X - Xl ) X = + + -------(xo - X l ) (xo - X2) (X l - Xo) (X l - X2) (X2 - Xo) (X2 - Xl ) 
defines a polynomial f(x) such that f(xo) = Yo , f (X I ) = YI , and f(X2) = )'2 · 
(This is a special case of Lagrange 's interpolation formula.) 
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1 8 . Use Lagrange's interpolation formula to find a polynomial J(x) such that J ( I ) == 0, 
J (2) == 1 ,  and J (3) == 4. 

19 .t Find a polynomial J (x) such that J ( I ) == - 1 5, J(O) == 3 ,  J (2) == -3 ,  and J (4) == 
1 5 . 

1 (x - a ) 1 (x - a ) 2 
20. Show that J(x) == b I + 2 (b2 - bo) -h - + 2 (b2 - 2b I + bo) -h - has 

the property that J(a - h) == bo , J(a) == b I , and J(a + h) == b2 . 

Note : Exercises 20 and 2 1  provide the basis for Simpson's rule for numerical inte
gration via parabolic approximations. 

2 1 . tFor the polynomial J(x) in Exercise 20, find faa�: J(x)dx . 
22. Is it possible to define a quadratic polynomial whose graph contains the four points 

(- 1 ,  -2) , (0 , -2), ( 1 , 0) , and (2 , 2) ? 

23 . (a) Extend the formula of Exercise 1 7  to the case of four points in the plane. 

(b) Extend the formula of Exercise 1 7  to the case of k points in the plane. 

24. From Exercises 2 and 3 of Section A.4 of the appendix, it appears to be a reasonable 
conjecture that :L7= 1 i k is a polynomial of degree k+ 1 in n ,  e .g . :L7= I i == (n2+n) /2 
and :L7= I i 2 == (2n 3 + 3n2 + n) /6. We will assume, for the moment, that :L7= I i k == 
Pk+ I (n) is a polynomial in n of degree k + 1 ,  and then attempt to find Pk+ I (n) by 
using the formula from Exercise 23 . For this purpose we need k + 2 points that the 
polynomial passes through. We get these by evaluating the sums :L7= I i k == Pk+ I (n) 
for n == 1 , 2 , . . .  , k+2 . (Any k+2 values ofn will do, but these are easy to compute.) 

For example, to find :L7= I i == P2 (n) we have P2 ( 1 )  == :LI= l i == 1 ,  P2 (2) == 
:L�= I i == 3 ,  P2 (3) == :LT= I i == 6. Hence P2 (n) passes through ( 1 , 1 ) ,  (2 , 3 ) ,  and 
(3 , 6) . Thus 

l (n - 2) (n - 3) 3 (n - l ) (n - 3) 6(n - l ) (n - 2) 1 2 1 
P2 (n) = ( 1  - 2) ( 1  - 3) 

+ 
(2 - 1 ) (2 - 3) 

+ 
(3 - 1 ) (3 - 2) 

= "in + "in .  

Note that the derivation was based on the unproved assumption that Pk+ I (n ) is a 
polynomial . Once we have Pk+ I (n) ,  we can prove that Pk+ I (n ) == :L7= I i k by 
induction. 

Use the above method to find formulas for the following sums. 

(a) :L7= I i 2 

(b) :L7= I i 3 . 
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4.2 Factors 

Our aim in this section is to obtain, for polynomials, results analogous to some of 
the theorems we proved in Chapter 1 for integers . In particular, we are looking for a 
division algorithm, an analog of the Euclidean algorithm, and a prime factorization 
theorem. Many of the arguments in Chapter 1 involved finding the smallest number 
in some set of integers , and so the size, in terms of absolute value, was important. 
Very similar arguments can be given for polynomials, with the notion of degree 
replacing that of absolute value. 

Our first goal is to formulate and prove a division algorithm. The following 
example is included just to remind you of the procedure that you probably learned 
in high-school algebra. 

Example 4.2.1. 

In dividing the polynomial 6x4 - 2x3 + x2 + 5x - 18 by 2x2 - 3 ,  the first step 
is to divide 6x4 by 2x2 , to get 3x2 . The next step is to multiply 2x2 - 3 by 
3x2 and subtract the result from 6x4 - 2x3 + x2 + 5x - 1 8 . The algorithm for 
division of polynomials then proceeds much like the algorithm for division of 
integers , as shown in Figure 4.2 . 1 .  

Figure 4.2 . 1 : 

3x2 -x +5 

2x2 -3 6x4 -2x3 +x2 +5x - 1 8  

6x4 -9x2 

-2x3 + 1 0x2 +5x 
-2x3 +3x 

1 0x2 +2x - 1 8  

1 0x2 - 1 5 

2x -3 

Thus 6x4 - 2x3 + x2 + 5x - 1 8  == (3x2 - x + 5) (2x2 - 3) + (2x - 3) ,  where 
the last term is the remainder. 0 

The proof of Theorem 4.2 . 1 is merely a formal verification, using induction, 
that the procedure followed in Example 4.2 . 1 will always work. The polynomials 
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q (x)  and r ex )  given by the theorem, with f(x) == q (x)g (x) + r ex ) ,  are called (as 
expected) the quotient and remainder when f (x)  is divided by g (x) . Notice that 
if we divide polynomials with coefficients in a given field, then the quotient and 
remainder must have coefficients from the same field. 

The division algorithm for integers (Theorem 1 . 1 . 3) was stated for integers a 
and b, with b > O. It is easily extended to a statement that is parallel to the next 
theorem for polynomials : For any a ,  b E Z with b =1= 0, there exist unique integers 
q and r such that a == bq + r ,  with 0 < r < I b l .  The role played by the absolute 
value of an integer is now played by the degree of a polynomial . Note that assigning 
the degree -00 to the zero polynomial would simplify the statement of the division 
algorithm, requiring simply that the degree of the remainder be less than the degree 
of the divisor. 

4.2.1 Theorem (Division Algorithm). For any polynomials f (x) and g (x )  in F [x ], 
with g (x) =1= 0, there exist unique polynomials q (x ) , r ex )  E F[x]  such that 

f (x) == q (x)g (x) + r ex )  , 

where either deg (r (x ) )  < deg(g (x ) )  or r ex) == O. 

Proof Let 

and 
g (x ) == bnxn + . . .  + bo , 

where am =1= 0 and bn =1= O. In case f (x) has lower degree than g (x ) ,  we can simply 
take q (x) == 0 and r (x ) == f (x ) .  The proof of the other case will use induction on 
the degree of f (x ) .  

If f (x ) has degree zero, i t  is easy to see that the theorem holds . Now assume 
that the theorem is true for all polynomials f (x) of degree less than m . (We are 
assuming that m > n .) The reduction to a polynomial of lower degree is achieved 
by using the procedure outlined in Example 4.2 . 1 .  We divide amxm by bnxn to get 
am b;; 1 xm-n , then multiply by g (x)  and subtract from f (x ) .  This gives 

where fl (x ) has degree less than m since the leading term of f (x) has been cancelled 
by amb;; 1 xm-nbnxn . Now by the induction hypothesis we can write 

fl (x ) == q I (x ) g (x) + r ex) , 

where the degree of r ex )  is less than n ,  unless r ex) == O. Since 
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substitution gives the desired result: 

The quotient q (x) == q I (x ) + amb;; 
1 
xm-n has coefficients in F, since am , bn E F, 

and qI (x ) has coefficients in F by the induction hypothesis .  Finally, the remainder 
r (x ) has coefficients in F by the induction hypothesis . 

To show that the quotient q (x ) and remainder r (x) are unique, suppose that 

f (x)  == q I (x) g (x )  + rl (x ) 

and 

Thus 
(q I (x ) - q2 (X ) ) g (x )  == r2 (X ) - rl (x ) , 

and if q2 (X) - q I (x ) =1= 0, then the degree of (q2 (X) - q I (x ) )g (x)  is greater than or 
equal to the degree of g (x)  (by Proposition 4. 1 .5) ,  whereas the degree of r2 (x ) -rl (x ) 
is less than the degree of g (x) .  This is a contradiction, so we can conclude that 
q2 (x ) == q 1 (x ) ,  and this forces 

completing the proof. 0 

Theorem 4. 1 .9 is a particular case of the general division algorithm. If g (x ) is 
the linear polynomial x - c, then the remainder must be a constant when f (x ) is 
divided by x - c.  Substituting c into the equation f (x ) == q (x) (x - c) + r (x ) shows 
that r (c) == f (c) , so the remainder on division by x - c is the same element of F 
as f (x ) evaluated at x == c. 

Example 4.2.2. 

In this example we illustrate the division algorithm for the polynomials in 
Example 4.2. 1 ,  over the finite field Z7 . Here, as on previous occasions , we 
simplify the notation by omitting the notation for congruence classes modulo 7 .  
Our first step i s  to reduce the coefficients of f (x) == 6x4 - 2x3 + x2 + 5x - 1 8  
and g (x) == 2x2 - 3 modulo 7 ,  to obtain f (x) = 6x4 + 5x3 + x2 + 5x + 3 
and g (x) = 2x2 + 4. Since it is much easier to divide by a monic polynomial, 
we mUltiply g (x) by 4 (the inverse of 2 modulo 7) and work with x2 + 2. 
Proceeding as in Example 4.2. 1 ,  we obtain 

6x4 + 5x3 + x2 + 5x + 3 = (6x2 + 5x + 3) (x2 + 2) + (2x + 4) , 

where the last term is the remainder. The work is shown in Figure 4.2.2 . 
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Figure 4.2 .2 : 

6x2 +5x +3 

x2 +2 ! 6x4 +5x
3 +x2 +5x +3 

6x4 +5x2 

5x
3 +3x2 +5x 

5x
3 +3x 

3x2 +2x +3 
3x2 +6 

2x +4 

To take care of the fact that we divided by g (x) /2, we need to mUltiply the 
divisor x2 + 2 by 2 and divide the quotient 6x2 + 5x + 3 by 2. This finally 
gives us 

6x4 + 5x3 + x2 + 5x + 3 == (3x2 + 6x + 5) (2x2 + 4) + (2x + 4) , 
with the remainder being unchanged. 0 
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The next result is parallel to Theorem 1 . 1 .4, which shows that every subgroup 
of Z is cyclic. It will play an important role in Chapters 5 and 6. 

4.2.2 Theorem. Let I be a subset of F [x]  that satisfies the following conditions: 

(i) I contains a nonzero polynomial; 

(ii) if f (x) ,  g (x ) E I, then f (x) + g (x ) E I;  

(iii) if f (x) E I and q (x )  E F [x] ,  then q (x) f (x)  E I .  

If d (x ) is any nonzero polynomial in I of minimal degree, then 

I == { f (x)  E F [x]  I f (x)  == q (x)d(x )  for some q (x) E F [x ] } . 

Proof If I contains a nonzero polynomial, then the set of all natural numbers n such 
that I contains a polynomial of degree n is a nonempty set, so by the well-ordering 
principle it must contain a smallest element, say m .  Thus we can find a nonzero 
polynomial of minimal degree m in I ,  say d (x) .  



1 96 CHAPTER 4. POLYNOMIALS 

Every multiple q (x)d(x)  of d (x )  must be in I by condition (iii) . Next we need 
to show that d (x) is a divisor of any other polynomial h (x) E I . One way to proceed 
is to simply divide h (x ) by d (x) ,  using the division algorithm, and then show that 
the remainder must be zero. 

We can write 
h ex)  == q (x)d(x )  + r ex )  , 

where r ex) is either zero or has lower degree than d (x) . Solving for r ex) , we have 

r ex )  == h ex)  + (-q (x) )d(x )  . 

This shows that r (x ) E I ,  since h (x) E I and I is closed under addition and under 
multiplication by any polynomial . But then r (x ) must be zero, since I cannot 
contain a nonzero polynomial of lower degree than the degree of d (x ) .  This shows 
that h (x) is a mUltiple of d (x ) .  0 

We should note that in any set of polynomials of the form 

{f (x )  E F [x ]  I f (x)  == q (x)d(x )  for some q (x)  E F [x ] } , 

the degree of d (x) must be minimal (among degrees of nonzero elements) .  Multi
plying by the inverse of the leading coefficient of d (x) gives a monic polynomial of 
the same degree that is still in the set. 

4.2.3 Definition. A monic polynomial d (x )  E F [x ]  is called the greatest common 
divisor of f (x) , g (x )  E F [x ]  if 

(i) d (x ) is a divisor of both f (x ) and g (x),  and 

(ii) any divisor of both f (x) and g (x ) is also a divisor of d (x) .  

The greatest common divisor of f (x)  and g (x)  is denoted by gcd (f (x) , g (x) ) .  

If gcd (f (x ) ,  g (x) )  == 1 ,  then the polynomials f (x ) and g (x) are said to be 
relatively prime. 

Note that if both f (x) and g (x ) are the zero polynomial, then by our definition 
there is no greatest common divisor, since the zero polynomial is not monic . We can 
show the uniqueness of the greatest common divisor as follows. Suppose that c(x)  

and d(x) are both greatest common divisors of f (x )  and g (x) . Then c(x)  I d (x)  
and d(x) I c (x ) ,  say d(x) == a (x )c (x)  and c (x )  == b (x)d (x ) ,  and so we have 
d(x) == a (x)b(x)d(x ) .  Therefore a (x)b(x )  == 1 ,  and so Proposition 4. 1 .5 shows 
that a (x)  and b (x)  are both of degree zero. Thus c(x)  is a constant mUltiple of d (x ) ,  
and since both are monic, the constant must be 1 ,  which shows that c(x)  == d (x) .  
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4.2.4 Theorem. For any nonzero polynomials f (x) , g (x )  E F [x ], the greatest com
mon divisor gcd (f (x ) ,  g (x ) )  exists and can be expressed as a linear combination 
of f (x)  and g (x), in the form 

gcd (f (x) , g (x) )  == a (x) f (x)  + b(x )g (x )  

for some a (x) , b (x)  E F [x] .  

Proof It is easy to check that 

I == {a (x ) f (x) + b (x ) g (x) I a (x) , b(x)  E F [x ] } 

satisfies the conditions of Theorem 4.2.2, and so I consists of all polynomial mul
tiples of any monic polynomial in I of minimal degree, say d (x ) .  

Since f (x ) ,  g (x )  E I , we have d(x) I f (x) and d(x)  I g (x ) .  On the other hand, 
since d(x) is a linear combination of f(x) and g (x) , it follows that if h ex)  I f (x )  
and h ex) I g (x ) , then h ex) I d(x) . Thus d(x)  == gcd (f(x) , g (x) ) . 0 

Example 4.2.3 (Euclidean algorithm for polynomials). 

Let f (x ) ,  g (x )  E F [x]  be nonzero polynomials . We can use the divis ion 
algorithm to write f (x )  == q (x)g (x) + r ex ) ,  with deg (r (x) )  < deg(g (x ) )  or 
r ex) == 0 . If r ex )  == 0 , then g (x) is a divisor of f (x ) ,  and so gcd(f(x ) ,  g (x) )  == 
cg (x) ,  for some c E F.  If r ex) i= 0, then it is easy to check that the common 
divisors of f (x )  and g (x) are the same as the common divisors of g (x) and 
r ex ) ,  so gcd (f (x ) ,  g (x) )  == gcd (g (x) ,  r ex ) ) .  This step reduces the degrees of 
the polynomials involved, and so repeating the procedure leads to the greatest 
common divisor of the two polynomials in a finite number of steps . 
The Euclidean algorithm for polynomials is similar to the Euclidean algorithm 
for finding the greatest common divisor of nonzero integers . The polynomials 
a (x) and b(x )  for which gcd (f(x) , g (x)) == a (x )f (x) + b (x)g (x )  can be 
found just as for integers (see Example 1 . 1 .2). 0 

Example 4.2.4. 

To find gcd (2x4 + x3 - 6x2 + 7x - 2, 2x3 - 7x2 + 8x - 4) over Q, divide the 
polynomial of higher degree by the one of lower degree, to get the quotient x +4 
and remainder 14x2 - 2 1x  + 14 . The answer will be unchanged by dividing 
through by a nonzero constant, so we can use the polynomial 2x2 - 3x + 2 .  
As for integers , we now have 

gcd (2x4 + x3 - 6x2 + 7x - 2, 2x3 - 7x2 + 8x - 4) 



1 98 CHAPTER 4. POLYNOMIALS 

== gcd(2x3 - 7x2 + 8x - 4, 2x2 - 3x + 2) . 

Dividing as before gives the quotient x - 2, with remainder zero. This shows 
that the greatest common divisor that we are looking for is x2 - (3/2)x + 1 
(we divided through by 2 to obtain a monic polynomial). 0 

4.2.5 Proposition. Let p (x) , f (x) , g (x) E F [xl If gcd(p (x) , f (x) ) 
p (x) I f (x)g (x) , then p (x) I g (x) . 

Proof If gcd(p (x) , f (x)) = 1 ,  then 

1 = a (x )p (x) + b (x) f (x) 

for some a (x) , b(x ) E F[x ] . Thus 

g (x) = a (x)g (x)p (x) + b (x) f (x)g (x) , 

which shows that if p(x) I f (x)g (x ) , then p(x) I g (x ) . D 

1 and 

4.2.6 Definition. A nonconstant polynomial is said to be irreducible over the field 
F if it cannot be factored in F [x ] into a product of polynomials of lower degree. It 
is said to be reducible over F if such afactorization exists. 

All polynomials of degree 1 are irreducible. On the other hand, any polynomial 
of greater degree that has a root in F is reducible over F, since by the remainder 
theorem it can be factored into polynomials of lower degree. To check that a poly
nomial is irreducible over a field F, in general it is not sufficient to merely check 
that it has no roots in F. For example, x4 + 4x2 + 4 = (x2 + 2)2 is reducible over 
Q, but it certainly has no rational roots . However, a polynomial of degree 2 or 3 can 
be factored into a product of polynomials of lower degree if and only if one of the 
factors is linear, which then gives a root. This remark proves the next proposition. 

4.2.7 Proposition. A polynomial of degree 2 or 3 is irreducible over the field F if 
and only if it has no roots in F. 

The field F is crucial in determining irreducibility. The polynomial x2 + 1 is 
irreducible over R, since it has no real roots , but considered as a polynomial over C, 
it factors as x2 + 1 = (x + i ) (x - i ) .  Over the field Z2 , the polynomial x2 + x + 1 
is irreducible, since it has no roots in Z2 . But on the other hand, it is reducible 
over the field Z3 , since x2 + x + 1 = (x + 2)2 when the coefficients are viewed as 
representing congruence classes in Z3 . 
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4.2.8 Lemma. The nonconstant polynomial p (x) E F[x] is irreducible over F if 
and only iffor all f (x) , g (x) E F[x], p (x) I (f (x)g (x) ) implies p (x) I f (x) or 
p (x) I g (x) . 

Proof First assume that p(x) I f (x)g (x ) . If p (x) i s  irreducible and p(x ) A' f(x ) , 
then gcd (p (x) , f (x) ) == 1 ,  and so p(x) I g (x) by Proposition 4.2 . 5 .  

Conversely, if the given condition holds , then p (x) � f(x)g (x ) for polynomials 
of lower degree, since p(x) A' f (x) and p (x) A' g (x ) . 0 

Because of the similarity between Lemma 4.2 .8 and Lemma 1 .2 .5 ,  it is evident 
that irreducible polynomials should play a role analogous to that of prime numbers , 
and one of the results we should look for is a unique factorization theorem. The 
proof of Theorem 1 .2 .7 can be carried over to polynomials by using irreducible 
polynomials in place of prime numbers and by using the degree of a polynomial in 
place of the absolute value of a number. For this reason we have chosen to omit the 
proof of the next theorem, even though it is extremely important. 

4.2.9 Theorem (Unique Factorization). Any nonconstant polynomial with coeffi
cients in the field F can be expressed as an element of F times a product of monic 
polynomials, each of which is irreducible over the field F. This expression is unique 
except for the order in which the factors occur. 

We will show in Section 4.4 that the irreducible polynomials in C[x ] are precisely 
the linear polynomials, and that any irreducible polynomial in R[x] has degree one 
or two. These facts are a consequence of the fundamental theorem of algebra, which 
states that any polynomial over C of positive degree has a root in C. (A proof is 
given in Theorem 8 .3 . 1 0.) 

Polynomials cannot be factored as easily over the field of rational numbers as 
over the field of real numbers , so the theory of irreducible polynomials over the 
field of rational numbers is much richer than the corresponding theory over the real 
numbers . For example, x2 - 2 and x4 + x3 + x2 + X + 1 are irreducible over the field 
of rational numbers , the first since ,vf2 is irrational and the second as a consequence 
of a criterion we will develop in the next section. 

In studying roots and factors of polynomials, it is often of interest to know 
whether there are any repeated roots or factors . The derivative p' (x ) of the poly
nomial p(x) can be used to check for repeated roots and factors . It is possible to 
formally define the derivative of a polynomial over any field, and we will do so in 
Section 8 .2 . For the moment we will restrict ourselves to the case of polynomials 
with real coefficients , so that we can feel free to use any formulas we might need 
from calculus . 
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4.2.10 Definition. Let f (x ) E F[x] . An element c E F is said to be a root of 
multiplicity m > 1 of f (x) if 

(x - c)m I f(x) but (x - c)m+ l A' f(x) . 

4.2.11  Proposition. A nonconstant polynomial f (x) over the field R of real numbers 
has no repeatedfactors ifand only ifgcd(f (x ) , f' (x) ) == 1 .  

Proof We will prove an equivalent statement: a nonconstant polynomial f(x) over 
R has a repeated factor if and only if gcd(f(x) , f' (x) ) � 1 . 

Suppose that gcd (f (x) , f' (x ) ) == d (x) � 1 and that p(x) is an irreducible factor 
of d(x ) . Then f(x) == a (x )p (x ) and f' (x) == b (x )p (x) for some a (x) , b(x) E 
F[x ] . Using the product rule to differentiate gives 

f' (x ) == a' (x)p (x) + a (x )p' (x) == b(x )p (x) . 

This shows that p (x) I a (x )p' (x ) , since 

a (x )p' (x ) == b(x )p (x) - a' (x )p (x) , 

and thus p (x) I a (x) because p (x) is irreducible and p (x) A' p' (x ) . Therefore 
f (x) == c(x )p (x)2 for some c (x) E F [x ] , and so f(x) has a repeated factor. 

Conversely, if f(x) has a repeated factor, say f(x) == g (x)nq (x ) , with n > 1 ,  
then 

f' (x ) == n . g (x )n- l g' (x)q (x) + g (x)nq ' (x) 

and g (x) is a common divisor of f(x) and f' (x ) . 0 

EXERCISES: SECTION 4.2 

1 .  Use the division algorithm to find the quotient and remainder when f (x ) is divided 
by g (x) over the field of rational numbers Q. 

t ea) f (x) == 2x4 + 5x3 - 7x2 + 4x + 8 g (x) == 2x - 1 
(b) f(x) == 2x 7 - 5x6 + 5x5 - x3 - x2 + 4x - 5 g (x) == x2 - x + l 

t ee) f(x )  == x5 + 1 g (x) == x + 1 
(d) f(x) == 2x4 + x3 - 6x2 - x + 2 g (x) == 2x2 - 5 
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2. Use the division algorithm to find the quotient and remainder when f (x ) is divided 
by g (x ) ,  over the indicated field. 
(a) f (x) == x4 + 1 g (x) == x + l over Z2 
(b) f (x) == xS + 4x4 + 2x3 + 3x2 g (x )  == x2 + 3 over Zs 
(c) f (x) == xS + 2x 3 + 3x2 + x  - 1 
(d) f (x )  == 2x4 + x3 + x2 + 6x + 2 

g (x )  == x2 + 5 over Z7 
g (x) == 2x2 + 2 over Z7 

3 .  Find the greatest common divisor of f (x) and f' ex ) ,  over Q. 
t ea) f (x )  == x4 - x3 - x + 1 
(b) f (x) == x3 - 3x - 2 

t (c) f (x) == x3 + 2x2 - x - 2 
(d) f (x )  == x4 + 2x 3 + 3x2 + 2x + 1 

4. Find the greatest common divisor of the given polynomials, over Q. 
(a) 2x 3 + 2x2 - x - I and 2x4 - x2 

(b) 4x3 - 2x2 - 3x + 1 and 2x2 - x - 2 
(c) x l O - x7 - xS + x3 + x2 _ 1 and x8 - xS - x3 + 1  
(d) xS + x4 + 2x2 - x - I and x3 + x2 - x 

5 .  Find the greatest common divisor of the given polynomials, over the given field. 
t ea) x4 + x 3 + x + 1 and x 3 + x2 + x + l over Z2 
(b) x3 - 2x2 + 3x + l  and x 3 + 2x + l  over Zs 

t (c) xS + 4x4 + 6x3 + 6x2 + 5x + 2 and x4 + 3x2 + 3x + 6 over Z7 
(d) xS + x4 + 2x2 + 4x + 4 and x3 + x2 + 4x over Zs 

6. In each part of Exercise 4, write the greatest common divisor as a linear combination 
of the given polynomials . That is, given f (x )  and g (x ) ,  find a (x )  and b (x )  such that 
d (x )  == a (x) f (x )  + b (x )g (x ) ,  where d(x )  is the greatest common divisor of f (x )  
and g (x ) .  

7. t In  each part of  Exercise 5 ,  write the greatest common divisor as a linear combination 
of the given polynomials. 

8 .  Let F be a field, let f (x ) ,  g l (x ) ,  g2 (X) be nonzero polynomials in F [x ] .  Let q l (x ) 
and rl (x ) be the quotient and remainder when f (x ) is divided by g 1 (x ) ,  and let q2 (x) 
and r2 (x ) be the quotient and remainder when q l (x ) is divided by g2 (x ) .  Show that 
the quotient when f (x )  is divided by the product g l (X)g2 (X ) is q2 (X ) .  What is the 
remainder? 

9. Let a E R, and let f (x) E R[x ] ,  with derivative f' ex ) .  Show that the remainder 
when f (x) is divided by (x - a)2 is f' (a) (x - a) + f (a) .  
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10 . Let p(x) == anxn + an_ l xn- 1 + . . .  + a l x + ao be a polynomial with rational 
coefficients such that an and ao are nonzero. Show that p (x) is irreducible over the 
field of rational numbers if and only if q (x) == aoxn + a l xn- J + . . .  + an- I X + an 
is irreducible over the field of rational numbers . 

1 1 . Find the irreducible factors of x6 - l over R. 

1 2. t Find all monic irreducible polynomials of degree :::: 5 over Z2 . Show that the product 
of all such polynomials of degree :::: 2 is x4 - x . 
Hint : First develop a criterion that allows you to tell at a glance whether or not a 
polynomial has no roots . Among the polynomials with no roots, use irreducible 
factors of degree :::: n to find reducible polynomials of degree n + 1 .  

1 3 .  Find all monic irreducible polynomials of degree :::: 3 over Z3 . 

U sing your list, write each of the following polynomials as a product of irreducible 
polynomials . 
(a) x2 - 2x + 1 
(b) x4 + 2x2 + 2x + 2 
(c) 2x3 - 2x + 1 
(d) x4 + 1 
(e) x9 - x 

14. Show that there are exactly (p2 - p) /2 monic irreducible polynomials of degree 2 
over Zp (where p is any prime number) . 

1 5 . Show that for any real number a i= 0, the polynomial xn - a has no multiple roots 
in R. 

Use the following definition in Exercises 1 6-20. 

Definition. Let p (x) be a nonzero polynomial in F [x] . For any f(x ) , g (x) E F [x], we 
write f (x) = g (x) (mod p(x)) if f(x) and g (x) have the same remainder when divided by 
p (x) . That is, f (x) = g (x ) (mod p (x)) if and only if p (x) I (f (x) - g (x )) . 

1 6. Let p (x) be a nonzero polynomial . Show that for each polynomial f (x) there is a 
unique polynomial r ex) with r ex) == 0 or deg (r (x) ) < deg (p (x ) ) such that r ex) = 
f(x) (mod p (x) ) . 

1 7 .  Let p (x) be a nonzero polynomial . Show that i f  f (x) = c(x) (1Jlod p (x)) and 
g (x) = d(x) (mod p (x) ) , then 

f (x) + g (x) = c(x) + d(x) (mod p (x)) 

and 
f (x)g (x) = c(x)d(x) (mod p(x)) . 
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1 8 . Compute the following products . (Your answer should have degree 1 . ) 
t ea) (a + bx) (c + dx) = ??? (mod x2 + 1) over Q 
(b) (a + bx) (c + dx) = ??? (mod x2 - 2) over Q 

t (c) (a + bx) (c + dx ) = ??? (mod x2 + x + 1) over Z2 
(d) (a + bx) (c + dx) = ??? (mod x2 + 1)  over Z3 
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1 9 . Let f (x) be a nonzero polynomial . Show that there exists a polynomial g (x )  with 
f (x)g (x )  = 1 (mod p (x) )  if and only if gcd(f (x) , p (x) )  == 1 .  

20. Find a polynomial q (x ) such that 
t ea) (a + bx)q (x) = 1 (mod x2 + 1 )  over Q 
(b) (a + bx)q (x )  = 1 (mod x2 - 2) over Q 

t (c) (a + bx)q (x )  = 1 (mod x2 + x + 1 )  over Z2 
(d) (x2 + 2x + l )q (x )  = 1 (mod x3 + x2 + 1 )  over Z3 

4.3 Existence of Roots 

The polynomial x2 + 1 has no roots in the field R of real numbers . However, we 
can obtain a root by constructing an element i for which i 2 == - 1 and adding it (in 
some way) to the field R. This leads to the field C, which contains elements of the 
form a + bi , for a , b E R. The only problem is to find a way of constructing the 
root i . 

In this section we will show that for any polynomial, over any field, it is possible 
to construct a larger field in which the polynomial has a root. To do this we will use 
congruence classes of polynomials .  The construction is similar in many ways to 
the construction of the field Zp as a set of congruence classes of Z. By iterating the 
process, it is possible to find a field that contains all of the roots of the polynomial, 
so that over this field the polynomial factors into a product of linear polynomials . 

4.3.1 Definition. Let E and F be fields. If F is a subset of E and has the operations 
of addition and multiplication induced by E, then F is called a subfield of E, and 
E is called an extensionfield of F. 

4.3.2 Definition. Let F be a field, and let p (x) be a fixed polynomial over F. If 
a (x) , b(x) E F[x] , then we say that a (x) and b(x) are congruent modulo p (x), 
written a (x) = b(x) (mod p(x) ) , if p(x) I (a (x) - b(x)) . 

The set {b(x) E F[x ] I a (x) = b(x) (mod p(x)) } is called the congruence 
class of a (x), and will be denoted by [a (x ) ] . 

The set of all congruence classes modulo p(x) will be denoted by F [x ]/ (p(x ) ) . 



204 CHAPTER 4. POLYNOMIALS 

The reason for the notation F[x]/ (p(x ) ) will become clear in Chapter 5 .  
We first note that congruence of polynomials defines an equivalence relation. 

Then since a (x) = b (x) (mod p (x) ) if and only if a (x ) - b(x) == q (x )p (x) for 
some q (x ) E F[x ] , the polynomials in the congruence class of a (x) modulo p (x ) 
must be  precisely the polynomials of the form b (x) == a (x) + q (x)p (x ) , for some 
q (x ) . We gave a similar description for the congruence classes of Zn . 

When working with congruence classes modulo n , we have often chosen to 
work with the smallest nonnegative number in the class. Similarly, when working 
with congruence classes of polynomials, the polynomial of lowest degree in the 
congruence class is a natural representative. The next proposition guarantees that 
this representative is unique. 

4.3.3 Proposition. Let F be a field, let p (x) be a nonzero polynomial in F[x ], 
and let a (x) be any polynomial in F [x] . If p (x) is not a factor of a (x), then the 
congruence class [a (x) ] modulo p (x ) contains exactly one polynomial r ex) with 
deg (r (x) ) < deg (p (x) ) . 

Proof Given a (x) E F[x] , we can use the division algorithm to write 

a (x) == q (x )p (x) + r ex ) , 
with deg(r (x )) < deg (p (x) ) or r ex) == O. The assumption that p(x) is not a divisor 
of a (x) eliminates the case in which r (x) == O. 

Solving for r (x ) in the above equation shows it to be in the congruence class 
[a (x ) ] . The polynomial r ex) is the only representative with this property, since if 

b(x ) = a (x) (mod p(x) ) 
and deg (b (x)) < deg (p (x) ) , then 

b (x) = r ex) (mod p (x ) ) 
and so  p (x) I (b (x ) - r (x ) ) . This i s  a contradiction unless b(x) == r (x) ,  since either 
deg (b (x )  - r ex) ) < deg (p (x) ) or b(x ) - r ex) == o. 0 

4.3.4 Proposition. Let F be afield, and let p (x) be a nonzero polynomial in F [x ] . 
For any polynomials a (x), b (x) , c (x) , and d(x) in F [x ], the following conditions 
hold. 

(a) If a (x) = c (x) (mod p (x) ) and b(x) = d(x ) (mod p(x)), then 

a (x) + b(x) = c (x ) + d (x) (mod p (x) ) and a (x)b(x) = c (x)d (x) (mod p (x) ) . 

(b) If a (x)b(x) = a (x)c(x) (mod p (x ) ) and gcd (a (x ) ,  p(x)) == 1 ,  then 

b(x ) = c (x) (mod p(x) ) . 
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Proof The proof is similar to that of Theorem 1 . 3 . 3  and will be omitted. 0 

Proposition 4.3 .4 allows us to define addition and mUltiplication in F[x]/ (p(x) ) ,  
for any nonzero polynomial p (x ) E F[x] . We make the following definitions, 
analogous to those in Proposition 1 .4 .2 :  

[a (x ) ] + [b (x ) ] == [a (x ) + b (x) ] and [a (x )] . [b (x) ] == [a (x ) b (x ) ] . 

Example 4.3.1 (R[x]/ (x2 + 1 ) . 

Let F == R, the field of real numbers, and let p (x) == x2 + 1 .  Then every 
congruence class in R[x ]/  (x2 + 1 )  can be represented by a linear polynomial 
of the form a + bx , by Proposition 4 .3 . 3 .  If we multiply the congruence classes 
represented by a + bx and e + dx , we have 

ae + (be + ad)x + bdx2 . 

Dividing by x 2 + 1 gives the remainder 

(ae - bd) + (be + ad)x , 

which is a representative of the product of the two congruence classes. An 
easier way to make this computation is to note that 

x2 + 1 = 0 (mod x2 + 1 )  , 

and so 
x2 = - 1  (mod x2 + 1) , 

which means that we can replace x2 by - 1  in the product 

ae + (be + ad)x + bdx2 . 

This multiplication is the same as the multiplication of complex numbers, and 
gives another way to define C. Note that the congruence class [x ] has the 
property that its square is the congruence class [- 1 ] , and so if we identify the 
set of real numbers with the set of congruence classes of the form [a] ,  where 
a E R, then the class [x ] would be identified with i . We can formalize this 
identification after we define the concept of an isomorphism of fields . 0 

4.3.5 Proposition. Let F be afield, and let p(x) be a nonzero polynomial in F[x] . 
For any a (x) E F[x] , the congruence class [a (x ) ] has a multiplicative inverse in 
F [x]/ (p (x ) ) if and only ifgcd(a (x) , p(x)) == 1 . 



206 CHAPTER 4. POLYNOMIALS 

Proof To find a multiplicative inverse for [a (x)] we must find a congruence class 
[ b (x )] with [a (x ) ] [ b (x )] == [ 1 ] .  Since 

a (x)b(x) = 1 (mod p (x)) 

if and only if there exists t (x)  E F[x ] with 

a (x)b (x) == 1 + t (x )p (x) , 

this shows that [a (x) ] has a mUltiplicative inverse if and only if 1 can be written as a 
linear combination of a (x ) and p (x ) , which occurs if and only if gcd (a (x ) ,  p (x) ) == 
1 .  The inverse [b (x ) ] == [a (x ) ]- 1 can be found by using the Euclidean algorithm. 0 

4.3.6 Theorem. Let F be a field, and let p (x) be a nonconstant polynomial over 
F. Then F [x]/ (p (x ) ) is afield if and only if p (x) is irreducible over F. 

Proof Proposition 4 .3 .4 shows that addition and multiplication of congruence 
classes are well-defined. The associative, commutative, and distributive laws follow 
easily from the corresponding laws for addition and multiplication of polynomials . 
For example, 

[a (x ) ] [b (x) ] == [a (x)b (x) ] == [b (x)a (x) ] == [b (x) ] [a (x) ] 

for all a (x) , b(x ) E F[x ] . The additive identity i s  [0] and the multiplicative identity 
is [ 1 ] ,  while the additive inverse of [a (x ) ] is [-a (x) ] . All that remains to show 
that F[x]/ (p(x ) ) is a field is to show that each nonzero congruence class has a 
mUltiplicative inverse. Since by Proposition 4.3 .3 we can work with representatives 
of lower degree than deg(p (x ) ) , by Proposition 4. 3 . 5 each nonzero congruence class 
[a (x ) ] has a multiplicative inverse if and only if gcd (a (x ) , p(x)) == 1 for all nonzero 
polynomials a (x) with deg (a (x ) ) < deg(p (x) ) .  This occurs if and only if p (x) is 
irreducible, completing the proof. 0 

We note that whenever p (x) is irreducible, the congruence class [a (x ) ] is in
vertible if a (x) =I=- 0 and deg (a (x )) < deg (p (x)) . Conversely, if [a (x ) ]  is invertible, 
then [a (x) ]  == [r ex ) ] where r ex ) =I=- 0 and deg (r (x)) < deg (p (x) ) . 

Our final remarks about Theorem 4.3 .6 tie these ideas back to ideas we have 
already met in Chapter 3 .  The discussion following Definition 4. 1 .4 shows that 
the set F [x] of polynomials forms an abelian group under addition. Furthermore, 
since the set (p (x ) ) of all polynomials divisible by p(x) is closed under addition 
and subtraction, it is a subgroup of F [x ] . Since every subgroup of an abelian 
group is normal , it follows that addition of congruence classes modulo p (x) is 
just the operation defined in the corresponding factor group F[x ]/ (p (x ) ) . Thus 
Theorem 3 .8 .5 shows that F[x]/ (p (x ) ) is a group under addition, and it is clear 
that this factor group is abelian. Note that we could have shortened the proof of 
Theorem 4.3 .6 by using these results . We cannot apply results on groups to the 
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mUltiplication of co sets of (p (x ) ) , since the set of nonzero polynomials is not a 
group under multiplication. In Section 5 . 3  we will handle multiplication of cosets 
in the more general setting of commutative rings . 

4.3.7 Definition. Let FI and F2 be fields. A function ¢ : FI ---+ F2 is called an 
isomorphism of fields if it is one-to-one and onto, 

¢ (a + b) == ¢ (a) + ¢ (b) , and ¢ (ab) == ¢ (a)¢ (b) 
for all a ,  b E Fl , 

Our first use of the notion of an isomorphism of fields is in comparing two 
different constructions of the set of complex numbers . 

Example 4.3.2 (Construction of the complex numbers). 

We can now give the full story of Example 4. 3 . 1 .  In Section A.S of the 
appendix, we define C to be the set of all expressions of the form a + bi , 
where a ,  b E R and i 2 == - 1 . Since x2 + 1 is irreducible over R, it fol
lows from Theorem 4.3 .6 that R[x ]/  (x2 + 1 ) is a field. By Proposition 4.3 .3 
its elements are in one-to-one correspondence with polynomials of the form 
a + bx . Furthermore, the mapping ¢ : R[x]/  (x2 + 1 ) � C defined by 
¢ ( [a + bx] )  == a + bi can be shown to be an isomorphism of fields (see 
Exercise 7). Since x2 = - 1  (mod x2 + 1 ) ,  the congruence class [x ] of 
the polynomial x satisfies the condition [x ]2 == - 1 .  Thus the construction 
of R[x ]/  (x2 + 1 ) using congruence classes allows us to provide a concrete 
model for the construction usually given in high school, in which we merely 
conjure up a symbol i for which i 2 == - 1 .  0 

When we think of the set of complex numbers as C == {a + bi I a ,  b E R} ,  we 
think of a as the "real" part of a + bi , so that we have R c C. In a similar way, in 
R[x ]/ (x 2 + 1 ) we can think of the cosets [a ] coming the from constant polynomials 
as coming from R. To make this precise, we can define an isomorphism of fields 
between R and { [a] E R[x]/ (x2 + 1 ) I a E R} , by letting ¢ (a) == [a] ,  for all a E R. 
We often say that we can "identify" these two fields , in order to be able to think of 
R as a subfield of R[x ]/ (x2 + 1 ) . 

In the next theorem we will make this sort of identification. If p (x) is an 
irreducible polynomial in F[x] , then in F[x]/ (p(x ) ) the subset { [a] I a E F} is a 
subfield isomorphic to F (see Exercise 6). 

4.3.8 Theorem (Kronecker). Let F be a field, and let f (x) be any nonconstant 
polynomial in F [x] . Then there exists an extension field E of F and an element 
u E E such that f eu) == o. 
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Proof The polynomial f (x) can be written as a product of irreducible polynomials, 
and so we let p (x) be one of the irreducible factors of f (x) . It is sufficient to find 
an extension field E containing an element u such that p (u) == O. 

By Theorem 4.3 . 6, F [x]/ (p (x ) ) is a field, which we will denote by E .  The field 
F is easily seen to be isomorphic to the subfield of E consisting of all congruence 
classes of the form [a ] , where a E F. We make this identification of F with the 
corresponding subfield of E so that we can consider E to be an extension of F. Let 
u be the congruence class [x ] . If p (x) == anxn + . . .  + ao , where ai E F, then we 
must compute p(u) . We obtain 

p(u) == an ( [x ])n + . . .  + a l ( [x ] ) + ao == [anxn + . . .  + alx + ao] == [0] 
since p (x) = 0 (mod p (x)) . Thus p(u) == 0 and the proof is complete . 0 

4.3.9 Corollary. Let F be a field, and let f (x) be any nonconstant polynomial in 
F [x] . Then there exists an extensionfield E over which f (x) can be factored into 
a product of linear factors. 

Proof Factor out all linear factors of f (x) and let fl (x) be the remaining factor. 
We can find an extension E 1 in which fl (x ) has a root, say u 1 . Then we can write 
fl (x) == (x - u l )f2 (X ) , and by considering f2 (X) as an element of E l [x ] , we can 
continue the same procedure for f2 (x ) .  We will finally arrive at an extension E 
that contains enough of the roots of f (x) so that over this extension f (x) can be 
factored into a product of linear factors . 0 

Example 4.3.3. 

Consider the polynomial x4 - x2 - 2 of Example 4. 1 .2, with coefficients in 
F == Q. It factors as (x2 - 2) (x2 + 1 ) ,  and as our first step we let E l == 
Q[x]/ (x2 - 2) , which is isomorphic to Q(,J2) (see Exercise 1 2) .  Although 
E 1 contains the roots ±,J2 of the factor x2 - 2, it does not contain the roots 
±i of the factor x2 + 1 ,  and so we must obtain a further extension E2 == 
E 1 [x ]/ (x2 + 1 ) . In Chapter 6 we will see that E2 is isomorphic to the smallest 
subfield of C that contains ,J2 and i ,  which is denoted by Q(,J2, i ) .  0 

Example 4.3.4. 

Let F == Z2 and let p (x) == x2 +x + 1 .  Then p (x) is irreducible over Z2 since 
it has no roots in Z2 , and so Z2 [X ]/ (x2 + x + 1 )  is a field by Theorem 4.3 .6. 
It follows from Proposition 4.4.4 that the congruence classes modulo x2 + 
x + 1 can be represented by [0] , [ 1 ] ,  [x ] and [ 1  + x ] ,  since these are the only 
polynomials of degree less than 2 over Z2 . Addition and multiplication are 
given in Tables 4.3 . 1  and 4.3 .2. To simplify these tables, all brackets have 
been omitted in listing the congruence classes. 0 
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Table 4.3 . 1 :  Addition in Z2 [X ]/  (x2 + x + 1 ) 

+ 0 1 x l + x 
0 0 1 x l + x 
1 1 0 l + x x 
x x l + x 0 1 

l + x l + x x 1 0 

Table 4 .3 .2 :  Multiplication in Z2 [X ]/  (x2 + x + 1 ) 

x 0 1 x l + x 
0 0 0 0 0 
1 0 1 x l + x 
x 0 x l + x 1 

l + x 0 l + x 1 x 

Ifq (x) is irreducible overZp , then Zp [x ]/  (q (x) ) has pn elements ifdeg(q (x) )  == 
n ,  since there are exactly pn - 1  polynomials over Zp of degree less than n (including 
o gives pn elements) .  It is possible to show that there exist polynomials of degree 
n irreducible over Z p for each integer n > O. This guarantees the existence of a 
finite field having pn elements , for each prime number p and each positive integer 
n .  Finite fields will be investigated in greater detail in Section 6.5 . 

EXERCISES: SECTION 4.3 

1 .  Let F be a field. Given p (x) E F [x] ,  prove that congruence modulo p (x ) defines 
an equivalence relation on F[x ] .  

2 .  Prove Proposition 4.3 .4. 

3. Let E be a field, and let F be a subfield of E.  Prove that the multiplicative identity 
of F must be the same as that of E. 

4. Let E be a field, and let F be a subset of E that contains a nonzero element. Prove 
that F is a subfield of E if and only if F is closed under the addition, subtraction, 
multiplication, and division of E.  
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5. Let ¢ : FI � F2 be an isomorphism of fields . Prove that ¢ ( 1 )  == 1 (that is, prove 
that ¢ must map the multiplicative identity of FI to the multiplicative identity of F2) .  

6. Let F be a field, let p (x) be an irreducible polynomial in F[x ] ,  and let 

E == { [a ]  E F[x]/  (p (x) )  I a E F} . 

Show that E is a subfield of F [x ]/  (p (x) ) .  Then show that ¢ : F � E defined by 
¢ (a) == [a ] ,  for all a E F, is an isomorphism of fields . 

7 . tVerify that the function ¢ : C � R[x ]/  (x2 + 1 ) defined by ¢ (a + bi ) == [a + bx ] 
is an isomorphism of fields . 

8 .  Prove that R[x ]/  (x2 + 2) i s  isomorphic to C. 
9. Prove that R[x ]/  (x2 + x + 1 ) is isomorphic to C. 

10. Is Q[x]/ (x2 + 2) isomorphic to Q[x ]/  (x2 + I ) ? 
1 1 . Let F be any field. Prove that the field of n x n scalar matrices over F (defined in 

Exercise 12 of Section 4. 1 )  is isomorphic to F .  

1 2 . Prove that Q[x ]/  (x2 - 2) i s  isomorphic to Q( -J2) == { a  + b-J2 I a ,  b E Q} ,  which 
was shown to be a field in Example 4. 1 . 1 .  

1 3 . Prove that Q[x ]/  (x2 - 3 ) is isomorphic to QCJ3) == {a + b,J"3 I a ,  b E Q} , which 
was shown to be a field in Exercise 1 1  of Section 4. 1 .  

1 4. Show that the polynomial x2 - 3 has a root in Q(,J"3) but not in Q (  -J2). Explain 
why this implies that Q(,J"3) is not isomorphic to Q( -J2). 

1 5 .  Prove that the field of all matrices over Q of the form [ 2� ! ] (as defined in 

Exercise 14 of Section 4. 1 )  is isomorphic to Q( -J2). 
16 . t Prove that the field given in Example 4.3 .4 is isomorphic to the following field of the 

four matrices given in Example 4. 1 .3 :  

{ [ � � ] , [ � � ] , [ i � ] ,  [ � i ] } ·  
17 .tFind an irreducible polynomial p (x) of degree 3 over Z2 , and list all elements of 

Z2 [X ]/ (p (x) ) . Give the identities necessary to multiply elements . 

1 8 . Give addition and multiplication tables for the field Z3 [X]/ (x2 + x + 2) . 
1 9 . tFind a polynomial of degree 3 irreducible over Z3 , and use it to construct a field with 

27 elements . List the elements of the field; give the identities necessary to multiply 
elements . 

20. As in Exercise 1 9 , construct a field having 125 elements . 
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2 1 . Find multiplicative inverses of the given elements in the given fields . 
t ea) [a + bx ] in R[x ]/  (x2 + 1 )  
(b) [a + bx ] In Q[x ]/  (x2 - 2) 

t (c) [x2 - 2x + 1 ]  in Q[x ]/  (x 3 - 2) 
(d) [x2 - 2x + 1 ]  in Z3 [X ] /  (x3 + x2 + 2x + 1 )  

t ee) [x ] in Zs [x ] /  (x2 + x + 1 )  
(f) [x + 4 ]  in Zs [x ]/ (x 3 + x + 1 )  

2 1 1 

22. For which values of a == 1 , 2 , 3 , 4  is Zs [x ] /  (x2 + a) a field? Show your work. 

23 . tFor which values of k == 2, 3 , 5 , 7 ,  1 1  is Zk [X ]/ (x2 + 1) a field? Show your work. 

24. Let F be a finite field. Show that F [x ]  has irreducible polynomials of arbitrarily high 
degree. 
Hint : Imitate Euclid's proof that there exist infinitely many prime numbers . 

4.4 PolynoDlials over Z, Q, R, and C 

In this section we will give several criteria for determining when polynomials with 
integer coefficients have rational roots or are irreducible over the field of rational 
numbers . We will use the notation Z[x] for the set of all polynomials with integer 
coefficients . We will also investigate polynomials with complex coefficients , in 
which case we can show that allowing complex numbers as coefficients makes it 
possible to factor a polynomial completely (as a product of linear factors) . 

4.4. 1 Proposition. Let f (x ) == anxn + an_ I xn- 1 + . 0 • + a l x + ao be a polynomial 
with integer coefficients. If r / s is a rational root of f (x), with (r, s ) == 1, then r lao 
and s ian o 

Proof If f (r / s) == 0, then multiplying f (r / s) by sn gives the equation 

It follows that r l aosn and s lanrn , so r lao and s Ian since (r, s) == 1 .  D 

Example 4.4.1. 

Suppose that we wish to find all integral roots of 
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U sing Proposition 4.4. 1 ,  all rational roots of I (x) can be found by testing 
only a finite number of values . By considering the signs we can see that I (x) 
cannot have any negative roots, so we only need to check the positive factors 
of 6. Substituting, we obtain 1 ( 1 )  = -6, 1 (2) = -6, and 1 (3) = O. Thus 3 
is a root of f (x ) ,  and so we can use the division algorithm to show that 

x3 - 3x2 + 2x - 6 = (x2 + 2) (x - 3) . 

It is now clear that 6 is not a root, and we are done. D 

Example 4.4.2. 

Let f (x) E Z[x ] .  If c is an integral root of f (x) ,  then I (x) = q (x ) (x - c) for 
some polynomial q (x ) .  The proof of the remainder theorem (Theorem 4. 1 .9) 
uses the fact that 

Since c is an integer, a further analysis of the proof shows that q (x) E Z[x ] .  For 
any integer n ,  we must have I (n) = q (n) (n - c) , and since f en) , q (n) E Z, 
this shows that (c - n) 1 f (n) .  
This observation can be combined with Proposition 4.4. 1 to find the integer 
(and thus rational) roots of monic equations such as 

x3 + 1 5x2 - 3x - 6 = 0 . 

By Proposition 4.4. 1 ,  the possible rational roots are ± 1 ,  ±2, ±3, and ±6. 
Letting f (x )  = x3 + 1 5x2 - 3x - 6, we find that f ( l )  = 7, so for any root 
c, we have (c - 1 ) 1 7 .  This eliminates all of the possible values except c = 2 
and c = -6. We find that f (2) = 56, so 2 is not a root . This shows, in 
addition, that (c - 2) 1 56 for any root c, but -6 still passes this test. Finally, 
f (-6) = 336, and so this eliminates -6, and I (x ) has no rational roots . We 
have also shown, by Proposition 4.2 .7 , that the polynomial 

f (x) = x3 + 1 5x2 - 3x - 6 

is irreducible in Q[x ] . D 

4.4.2 Definition. A polynomial with integer coefficients is called primitive if 1 and 
- 1  are the only common divisors of its coefficients. 

At this point it is useful to extend the definition of the greatest common divisor to 
the case of more than two integers . For a l , . . .  , an E Z, the greatest common divisor 
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gcd (a l , . . .  , an ) is defined to be a positive integer d such that d I ai , for 1 < i < n , 
and if c E Z with c l ai ,  for 1 < i < n ,  then c l d . Note that gcd (a l ' a2 , a3 ) == 
gcd(gcd(a l , a2) ,  a3 ) , and so we could have given an inductive definition. It is easy 
to check that the integer d in this definition is unique, so we are justified in referring 
to the greatest common divisor of a finite set of integers . 

For any polynomial p(x) with integer coefficients, the greatest common divisor 
of its coefficients will be called the content of p (x ) . We can always factor out the 
content of p (x) , leaving a primitive polynomial . 

For example, the polynomial 1 2x2 - 1 8x + 30 has content 6, and so we can 
write 

1 2x2 - 1 8x + 30 == 6(2x2 - 3x + 5) , 
where 2x2 - 3x + 5 is a primitive polynomial . 

Our immediate goal is to prove Gauss 's lemma, which states that the product 
of two primitive polynomials is again primitive. In the proof, given two primitive 
polynomials we will show that no prime number can be a divisor of all of the 
coefficients of the product. To do this we will use a lemma illustrated by the 
following example . Recall that in the polynomial amxm + . . .  + a l x + ao the 
subscript attached to a coefficient is called its index (see Definition 4. 1 .4) .  

If g(x) == x2 - 2x + 6 and h ex) == x3 - 5x2 + 3x + 12 , let f(x) == g (x)h (x) == 
x5 - 7x4 + 1 9x3 - 24x2 - 6x + 72. In the product f(x) , the coefficients 72, -6, and 
-24 are each divisible by 2. The coefficient of x3 is 1 9, and this is the coefficient 
of least index that is not divisible by 2. In g (x) , the coefficient of least index that 
is not divisible by 2 is the coefficient 1 of x2 . In h ex ) , the coefficient of least index 
that is not divisible by 2 is the coefficient 3 of x . The following lemma shows that 
it is no coincidence that 1 9  is the coefficient in g (x)h (x) of x3 == x2 . x .  

As another example, for the above polynomials f (x) , g (x ) , h (x ) consider the 
prime 5 . The constant terms of g (x ) and h (x) are the coefficients of least index not 
divisible by 5 , and so the constant term of f (x) is the coefficient of least index not 
divisible by 5 . 

4.4.3 Lemma. Let p be a prime number, and let f (x) == g (x)h (x) , where f(x) == 
amxm+ . . .  +a I x+aO, g (x) == bnxn + . . .  +b Ix+bo, andh (x) == Ckxk + . . .  +C I X+CO. If bs and Ct are the coefficients of g (x) and h ex) of least index not divisible by p, 
then as+t is the coefficient of f (x) of least index not divisible by p. 

Proof For the coefficient as+t of f (x) ,  we have 

By assumption, each of the coefficients bo , b l , . . .  , bS- 1 and Ct- I , . . .  , Co is divisible 
by p. Thus, with the exception of bscr , each term in the above sum is divisible by 
p. This implies that as+t is not divisible by p . 

In any coefficient of  f (x) of smaller index, each term in the sum ak == L�=o bi Ck-i is divisible by p, and thus as+t is the coefficient of least index not divisible by p . D 
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4.4.4 Theorem (Gauss 's Lemma). The product of two primitive polynomials is 
itself primitive. 

Proof Let p be any prime number, and let f(x) == g (x)h (x) be a product of 
primitive polynomials . Since g (x) and h (x) are primitive, each one has a coefficient 
not divisible by p, and then by Lemma 4.4 .3 it follows that f (x) has at least one 
coefficient not divisible by p . Since this is true for every prime, we conclude that 
f (x) is primitive. D 

4.4.5 Theorem. A polynomial with integer coefficients that can be factored into 
polynomials with rational coefficients can also be factored into polynomials of the 
same degree with integer coefficients. 

Proof Let f(x) E Z[x] , and assume that f(x) == g (x)h (x) in Q[x] . By factoring 
out the appropriate least common multiples of denominators and greatest com
mon divisors of numerators , we can assume that f(x) == (m/n)g* (x )h * (x) , where 
(m , n) == 1 and g* (x ) ,  h* (x) are primitive, with the same degrees as g (x) and h ex ) , 
respectively. If di is any coefficient of g* (x)h * (x) ,  then n I mdi since f (x) has integer 
coefficients, so n idi since (n , m) == 1 .  By Gauss 's lemma, g* (x)h * (x ) is primitive, 
so we have n == 1 ,  and thus f (x) has a factorization f(x) == (mg* (x ) ) (h* (x ) ) into 
a product of polynomials in Z[x ] . The general result, for any number of factors, 
can be proved by using an induction argument. D 

4.4.6 Theorem (Eisenstein's Irreducibility Criterion). Let 

be a polynomial with integer coefficients. If there exists a prime number p such that 

an- l = an-2 - . . .  = ao - 0 (mod p) 

but an ¢ 0 (mod p) and ao ¢ 0 (mod p2), then f (x ) is irreducible over the field 
of rational numbers. 

Proof Suppose that f(x) can be factored as f (x) == g (x)h (x ) , where g (x) 
bmxm + . . .  + bo and h ex) == Ckxk + . . .  + co . By Theorem 4.4.5 we can assume 
that both factors have integer coefficients . Furthermore, we can assume that either 
bo or Co is not divisible by p, since boco == ao is not divisible by p2 . Let us assume 
that p A' bo o If Ct is the coefficient of h ex) of least index that is not divisible by p, 
then by Lemma 4.4.3 i t  follows that at == aO+t i s  the coefficient of f (x) of least 
index that is not divisible by p . By assumption ai is divisible by p for i < n , so 
t == n, showing that h (x) and f (x) have the same degree. Thus f (x) is irreducible 
because it cannot be factored into a product of polynomials of lower degree . D 
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In Theorem 4.4.6, the condition an- l = . . . - ao = 0 (mod p) can be summed 
up as saying that p is a divisor of the greatest common divisor of these coefficients. 
The theorem cannot always be applied. For example, if f (x) == x3 - 5x2 - 3x + 6, 
then gcd (5 , 3 , 6) == 1 and no prime can be found for which the necessary conditions 
are satisfied. Yet f (x) is irreducible, since Propositions 4.4. 1 can be used to show 
that f (x) has no rational roots . 

To show that p (x) is irreducible, it is sufficient to show that p (x +c) is irreducible 
for some integer c, since if p(x) == f(x)g(x) , then p(x + c) == f(x + c)g (x + c) . 
For example, Eisenstein 's criterion cannot be applied to x2 + 1 ,  but substituting 
x + 1 for x gives another proof that x2 + 1 is irreducible over the field of rational 
numbers . 

4.4.7 Corollary. If p is prime, then the polynomial 

<l>p (x) == xp- 1 + xp-2 + . . .  + x + 1 

is irreducible over the field of rational numbers. 

Proof Note that 
xP - 1 <l>p (x) == -x - I 

and consider 

(x + I )P - 1 <l>p (x + 1 )  == == xp- 1 + (f)xp-2 + (i)xp-3 + . . .  + p . x 

For 1 < i < p - 1 ,  the prime p is a factor of the binomial coefficient (f) , and 
so Eisenstein's criterion can now be applied to <l>p (X + 1 ) ,  proving that <l>p (x) is 
irreducible over Q. D 

If p is prime, Corollary 4.4.7 shows that 

xP - 1 == (x - 1 ) (xp- 1 + . . .  + 1 )  

gives the factorization over Q of xP - 1 into two irreducible factors . This is not the 
case when the degree is composite . For example, 

X4 - 1 == (x - 1 ) (x + 1 ) (x2 + 1 )  

and 
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4.4.8 Definition. The roots in C of the polynomial xn - 1 are called the complex 
nth roots of unity. 

A complex nth root of unity is said to be primitive if it is a root of the polynomial 
xn - 1, but is not a root of xm - 1 for any positive integer m < n. 

For example, the 4th roots of unity are ± 1 ,  ±i . Of these, i and - i are primitive 
4th roots of unity, and they are roots of the factor x2 + 1 of x4 - 1 .  The reader 
is referred to Section 8 .5 for a full discussion of the factors of xn - 1 ,  and their 
relationship to primitive roots of unity. Note that if p is a prime number, then every 
pth root of unity except 1 is primitive. 

In order to characterize the irreducible polynomials over the complex numbers 
and over the real numbers, we need to use the theorem that is usually referred to as 
the "fundamental theorem of algebra." It was discovered by D'  Alembert in 1746, 
although he gave an incorrect proof. The first acceptable proof was given by Gauss 
in 1 799. We will postpone our proof until Section 8 .3 ,  at which point we will have 
developed enough theory to give an algebraic proof using Galois theory. 

Using analytic techniques, a short proof is usually given in a beginning course 
in complex variables . This proof is an application of a theorem of Liouville which 
follows from an estimate (due to Cauchy) of the derivative of an analytic function. A 
standard reference for this material is the book Functions of One Complex Variable, 
by Conway. There is a topological proof based on the notion of a winding number. 
A nice discussion of this proof appears in the book Algebraic Topology: A First 
Course, by Fulton. 

4.4.9 Theorem (Fundamental Theorem of Algebra). Any polynomial of positive 
degree with complex coefficients has a complex root. 

Proof See Theorem 8 .3 . 10 . 0 

4.4.10 Corollary. Any polynomial f (Z) of degree n > 0 with complex coefficients 
can be expressed as a product of linear factors, in the form 

f ez) == c (z - Z l ) (Z - Z2) . . . (Z - Zn ) . 

Proof We need to use Corollary 4. 1 . 1 ,  which shows that roots of f (z) correspond 
to linear factors . A detailed proof would use Theorem 4.4.9 and induction on the 
degree of f ez) .  0 

Corollary 4.4. 1 0  can be used to give formulas relating the roots and coefficients 
of a polynomial . For example, if f (z) == Z2 + a l Z + ao has roots Z l , Z2 , then 



4.4. POLYNOMIALS OVER Z, Q, R, AND C 

Thus, 
Zl + Z2 == -a l and Z l Z2 == ao . 

Similarly, if f (z) == Z3 + a2z2 + a l Z + ao has roots Z l , Z2 , Z3 , then 

2 1 7 

Z l + Z2 + Z3 == -a2 , Z l Z2Z3 == -an . 

This pattern can be extended easily to the general case. 
If Z == a + bi is a complex number, then its complex conjugate, denoted by Z, 

is z == a - bi . Note that zz == a2 + b2 and Z + z == 2a are real numbers, whereas 
Z - z == (2b) i is a purely imaginary number. Furthermore, Z == z if and only if Z is a 
real number ( i .e . , b == 0) . Since a2 + b2 > 0, and we define l a + bi I == ,J a2 + b2 , 
we have I z i == ,JZZ. It can be checked that Z + w == z + w and zw  == z w .  

4.4. 11  Proposition. Let f (x) be a polynomial with real coefficients. Then a complex 
number Z is a root of f (x) if and only if its complex conjugate Z is a root of f (x) . 

Proof If f(x) == anxn + . . .  + ao , then anzn + . . .  + ao == 0 for any root Z of f(x) . 
Taking the complex conjugate of  both sides shows that 

an (z) n + . . .  + alZ + ao == an (z)n + . . .  + alZ + ao == 0 

and thus z is a root of f(x) . 
Conversely, if z i s  a root of  f(x) , then so i s  Z == z. 0 

4.4.12 Theorem. Any polynomial of positive degree with real coefficients can be 
factored into a product of linear and quadratic terms with real coefficients. 

Proof Let f (x) be a polynomial with real coefficients , of degree n > O. By 
Corollary 4.4. 1 0  we can write f(x) == c(x - Z I ) (X - Z2) . . .  (x - Zn ) , where c E R. 
If Zi is not a real root, then by Proposition 4.4. 1 1 ,  Zi is also a root, and so x - Zi 
occurs as one of the factors . But then 

has real coefficients . Thus if we pair each nonreal root with its conjugate, the 
remaining roots will be real, and so f (x) can be written as a product of linear and 
quadratic polynomials each having real coefficients . 0 

As an immediate consequence of the above result, note that any polynomial of 
odd degree that has real coefficients must have at least one real root. This follows 
from the fact that such a polynomial must have a linear factor with real coefficients , 
and this factor yields a real root. 
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Example 4.4.3 (Irreducible polynomials in R[x ]). 

In R[x ] ,  a polynomial ax2 + bx + c with a i= 0 has roots 

-b ± Jb2 - 4ac 
x � ------------

2a 

and these are real numbers if and only if b2 - 4ac :::: O. Since any factors of 
ax2 + bx + c must be linear and hence correspond to roots , we can see that 
the polynomial is reducible over R if and only if b2 - 4ac :::: O. For example, 
x 2 + 1 is irreducible over R. 

In summary, irreducible polynomials in R[x ]  must have one of the forms 
ax + b, with a i= 0 or ax2 + bx + c, with a i= 0 and b2 - 4ac < O. D 

EXERCISES: SECTION 4.4 

1 .  If f (x) has integer coefficients and m is an integer solution of the polynomial equa
tion f (x) � 0, then for any n we can reduce both m and the coefficients of f (x ) 
modulo n , and the equation becomes a congruence that still holds . For the following 
equations, verify that the given roots modulo 3 and 5 are in fact all such roots . Use 
this information to eliminate some of the integer roots , and then find all integer roots . 
(a) x3 - 7x2 + 4x - 28 � 0 (roots are 1 (mod 3) and ± 1 , 2 (mod 5)) .  
(b) x3 - 9x2 + lOx - 16 � 0 (roots are 2 (mod 3) and 3 (mod 5)) .  

2 .  Find all integer roots of the following equations (use any method) . 
(a) x3 + 8x2 + 1 3x + 6 � 0 
(b) x 3 - 5x2 - 2x + 24 � 0 
(c) x3 - 10x2 + 27x - 1 8  � 0 
(d) x4 + 4x3 + 8x + 32 � 0 
(e) x7 + 2x5 + 4x4 - 8x2 - 32 � 0 

3 .  Find all integer roots of the following equations (use any method) . 
t ea) x4 - 2x3 - 2 1x2 + 22x + 40 � 0 
(b) y3 - 9y2 - 24y + 2 1 6  � 0 

t (c) x5 + 47x4 + 423x3 + 140x2 + 1 2 1 3x - 420 � 0 
(d) x5 - 34x3 + 29x2 + 2 1 2x - 300 � 0 

t ee) x4 - 23x3 + 1 87x2 - 653x + 936 � 0 
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4 .  Use Eisenstein 's criterion to show that each of these polynomials i s  irreducible over 
the field of rational numbers . (You may need to make a substitution.) 
(a) x4 - 1 2x2 + 1 8x - 24 
(b) 4x3 - 1 5x2 + 60x + 1 80 
(c) 2x I O - 25x3 + 10x2 - 30 
(d) x2 + 2x - 5 (substitute x - l or x + 1 )  

5 .  Use Eisenstein 's criterion to show that each of these polynomials i s  irreducible over 
the field of rational numbers . (You may need to make a substitution.) 

t (a) x4 + 1 (substitute x + 1 )  
(b) x6 + x3 + 1 (substitute x + 1 )  

t (c) x 3 + 3x2 + 5x + 5 
(d) x 3 - 3x2 + 9x - 10 

6. Show that i f  the positive integer n i s  not a square, then for some prime p and some 
integer k, the polynomial x2 -

�
k satisfies Eisenstein 's criterion. Conclude that p 

In is not a rational number. 

7 .  Let f (x) == x2 + 100x + n . 
(a) Give an infinite set of integers n such that f (x) i s  reducible over Q. 
(b) Give an infinite set of integers n such that f (x) is irreducible over Q. 

8 . Find the irreducible factors of x4 - 5x2 + 6 over Q, over Q( ,j2) , and over R. 

9 .  Let f (x )  == anxn + an_ I Xn- 1 + . . .  + al x + ao be a polynomial with rational 
coefficients . Show that if e i= 0 and e is a root of f (x) ,  then l ie is a root of 
g (x) == aoxn + a Ixn- 1 + . . .  + an- I X + an . 

10. Let f (x) == anxn + an_ I Xn- 1 + . . .  + a lx + ao be a polynomial with rational 
coefficients . Show that if e is a root of f (x ) ,  and k is a nonzero constant, then ke is 
a root of g (x) == bnxn + bn_ I Xn- 1 + . . .  + b lX + bo , where bi == kn-i ai . 

1 1 . Verify each of the following, for complex numbers z and w . 
(a) zw == Z w 
(b) I zw l == I z l l w l  

1 2. Let a and b be integers, each of which can be written as the sum of two squares . 
Show that ab has the same property. 
Hint : Use part (b) of Exercise 1 1 . 

1 3 . For f (x) == anxn + . . .  + ao E C[x ] ,  let f (x) == anxn + . . .  + ao be the polynomial 
obtained by taking the complex conjugate of each coefficient. Show that the product 
f (x) f (x) has coefficients in R. 

14. Let m and n be positive integers . Prove that xm - 1 is a factor of xn - 1 in Q[x ]  if 
and only if m in .  
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1 5 . tFind the irreducible factors of x8 - l over Q. 

16 . Find the irreducible factors of x9 - l over Q.  

17 . One way to substitute x + c for x in a polynomial f(x) i s  to use Taylor's formula. 
Recall that for a polynomial f (x) of degree n , 

f (n) (c) f (n- l ) (c) f (x) � (x - c)n + (x - c)n- l + . . .  + f' (c) (x - c) + f (c) , n ! (n - I ) ! 

where f (k) (x) denotes the kth derivative of f(x) . Thus 

f(n) (c) f (x + c) � xn + . . .  + f' (c)x + f(c) . n !  
This can sometimes be an efficient method to check Eisenstein 's criterion for the 
coefficients that occur in several different substitutions . 
(a) For the polynomial x6 +x3 + 1 in Exercise 5 (b) , use Taylor' s formula to determine 
which of the substitutions x + 1 , x - I , x + 2, x - 2 lead to coefficients that satisfy 
Eisenstein' s criterion for some prime p. 
(b) Repeat part (a) for the polynomial x3 - 3x2 + 9x - 10 in Exercise 5 (d) . 

1 8 . Verify that x lO - 1 � (x - 1 ) (x + 1 ) (x4 + x3 + x2 + x  + 1 ) (x4 - x3 + x2 - x + 1 ) . 
Use the method of Exercise 1 7 to show that x4 -x3 +x2-x+ 1 i s  irreducible over Q. 

19. Verify that x l 2 - 1 � (x - 1) (x + 1 ) (x2 + 1 ) (x2 + x + 1 ) (x2 - x + 1 ) (x4 - x2 + 1 ) .  
Use the method of Exercise 17 to show that for the polynomial x4 - x2 + 1 ,  no 
substitution of the form x + n will lead to a polynomial that satisfies Eisenstein 's 
criterion. Find another way to show that x4 - x2 + 1 is irreducible over Q. 

20. Let f(x)/ g (x) be a rational function, where f(x) , g (x) E R[x ] . 
(a) Show that i f  g (x) � h (x)k (x) , with gcd (h (x) , k(x)) � 1 ,  then there exist poly-

. f (x) s ex) t (x) nomlals s ex) , t (x) such that -- � -- + -- . g (x) h ex) k (x) 
Hint : If p (x) and q (x) are relatively prime, then there exist polynomials a (x) and 

1 a (x) b (x) b (x) with a (x)p (x) + b (x)q (x) � 1 . Therefore � - + --. 
p(x)q (x) q (x) p (x) 

(b) Show that if h ex) � p(x)m , where p(x )  is irreducible, then there exist poly
nomials q (x) , ro (x) ,  rl (x) ,  . . .  , rm- l (x)  such that for each i either ri (x) � 0 or 

s ex) rm- l (x) rm-2 (x ) ro (x) deg(fi (X »  < deg(p (x» and h ex) = q (x) + p(x) 
+ p(x)2 + . . .  + p(x)m · 

(C) Show that f (x ) / g (x ) can be expressed as a polynomial plus a sum of partial 
. c ex + d 

fractions of the form or 2 . (x + a )m (x + ax + b)m 
Note : This result is used in calculus to prove that the indefinite integral of any 
rational function can be expressed in terms of algebraic, trigonometric, or exponential 
functions and their inverses. 
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Notes 

22 1 

In Section A.6 of the appendix we give solutions by radicals to the general cubic and 
quartic equations . We now give a brief historical note on the developments leading 
up to the formulation of these solutions. 

Leonardo of Pisa ( 1 1 70-1 250) published Liber abbaei in 1 202. (He was called 
Fibonacci, as a member of the Bonacci family. ) His book contained, among other 
topics, an introduction to Hindu-Arabic numerals , a variety of problems of interest 
in trade, a chapter on calculations with square roots and cube roots , and a chapter 
containing a systematic treatment of linear and quadratic equations. Leonardo's 
book built on work written in Arabic and set the stage for further development. 

Mathematicians in the Arab world, including the Persian Omar Khayyam (about 
1 1 00) , had studied cubic equations. Their solutions were found as intersections 
of conic sections . The Italians were also interested in solving cubic equations. 
For example, in a book published in the middle of the fourteenth century there 
are problems involving interest rates which lead to cubic equations. At that date, 
solutions to certain very special cases of cubic equations were already known. 

The general cubic equation 

ax3 + bx2 + ex + d == 0 

can be reduced to the form 
x3 + px + q == 0 

by dividing through by a and then introducing a new variable y == x + b /3a . If only 
positive coefficients and positive values of x are allowed, then there are three cases : 

q 

px + q 

px . 

The first case was solved by Scipione del Ferro, a professor at the University of 
Bologna, who died in 1 526. His solution was never published, although he told it 
to a few friends. 

In 1 535 there was a mathematical contest between one of del Ferro 's students 
and a Venetian mathematics teacher named Niccolo Fontana ( 1 499- 1 557) . (He 
is usually known as Tartaglia, which means the "stammerer.") Tartaglia found the 
general solution to the equations (of the first type above) posed by del Ferro 's student 
and won the contest. Then four years later Tartaglia was approached by Cardano, 
who lived in Milan, with a request to share his method of solution. Tartaglia finally 
did so, but only after obtaining a sworn oath from Cardano that he would never 
publish the solution . 

Shortly afterward, Cardano succeeded in extending the method of solution of 
cubics of the first type to the remaining two types . In doing so, he was probably 
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the first person to use complex numbers in the form a + H. Cardano's younger 
friend and secretary, Lodovico Ferrari ( 1 522-1 565) , discovered that the general 
fourth degree equation can be reduced to a cubic equation� and hence could be 
solved. This put Cardano and Ferrari in a difficult position, being in possession of 
important new results which they could not publish because of the oath Cardano 
had sworn. In 1 543 they were able to examine del Ferro ' s  papers in Bologna, and 
found out that he had indeed discovered a solution to the one case of the cubic . 

Cardano decided to publish the solution of the cubic and fourth-degree equation 
in a book entitledArs Magna ( 1 545) , in which he stated that del Ferro deserved credit 
for the solution of cubic equations of the first type, although it was from Tartaglia, 
who had rediscovered the solution, that he had learned it. He stated that he had 
extended the solution to the two remaining cases, and that Ferrari had given him 
the solution to the fourth-degree equation. This marked the beginning of a dispute 
between Cardano and Tartaglia, and a year later Tartaglia published the story of the 
oath, including its full text. 

In Section A.6 of the appendix we also include the solution of the general 
fourth-degree equation that was given by Rene Descartes ( 1 596-1 650) . Much of our 
modem notation is due to Descartes, who used the last letters of the alphabet to denote 
unknown quantities, and the first letters to denote known quantities. He used the 
term "imaginary numbers" for expressions of the form a ± H, and was the first to 
systematically write powers with exponents in the modern form. Analytic geometry, 
whose primary aim is to solve geometric problems using algebraic methods, was 
invented independently (and very nearly simultaneously) by Descartes and Fermat. 



Chapter 5 

COMMUTATIVE RINGS 

Many of the algebraic properties of the set of integers are also valid for the set of all 
polynomials with coefficients in any field. By working with these properties in an 
abstract setting, it is sometimes possible to prove one theorem that can be applied 
to both situations, rather than proving two separate theorems, one for each case . As 
an additional bonus, the abstract setting for the theorem can then be applied to new 
situations . 

For example, we have shown that any integer greater than 1 can be written as a 
product of prime numbers . It is also true that any nonconstant polynomial with real 
coefficients can be written as a product of irreducible polynomials . Since the same 
basic principles are used in each proof, it should be possible to give one proof that 
would cover both cases. A mathematician should try to recognize such similarities 
and take advantage of them, and should also ask whether the techniques can be 
applied to other questions . 

The interplay between specific examples and abstract theories is critical to the 
development of useful mathematics. As more and more is learned about various 
specific examples, it becomes necessary to synthesize the knowledge, so that it is 
easier to grasp the essential character of each example and to relate the examples 
to each other. By generalizing and abstracting from concrete examples, it may 
be possible to present a unified theory that can be more easily understood than 
seemingly unrelated pieces of information from a variety of situations . 

In a general theory of abstract algebraic objects of a particular type, the main 
problem is that of classifying and describing the objects . This often includes deter
mining the simplest sort of building blocks and describing all of the ways in which 
they can be put together. In this chapter we give a very simple example of a theorem 
of this sort, when we show that, as a ring, Zn is isomorphic to a direct sum of similar 
rings of prime power order. These rings have a particularly simple structure, and 
cannot themselves be expressed as a direct sum of smaller rings. 

The concept of an abstract commutative ring will be introduced in Section 5 . 1 
to provide a common framework for studying a variety of questions. The set of 

223 
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integers modulo n will be shown to form a commutative ring. This is an example 
of an important procedure by which new rings can be constructed-the use of a 
congruence relation on a given ring. The notion of a factor group will be extended to 
that of a factor ring . In the construction of factor rings, the role of normal subgroups 
in forming factor groups will be played by subsets called "ideals ." Examples are 
nZ in Z and (f (x ) ) in F[x ] . Then the notions of prime number and irreducible 
polynomial motivate the definition of a "prime ideal," which allows us to tie together 
a number of facts about integers and polynomials . In Section 5 .4 we construct 
quotient fields for integral domains, and thus characterize all subrings of fields. 

5.1 Commutative Rings ; Integral Domains 

In Chapter 1 ,  we began our study of abstract algebra by concentrating on one of the 
most familiar algebraic structures, the set of integers . In both Z and Zn we have 
two basic operations-addition and multiplication. Subtraction and division (when 
possible) are defined in terms of these two operations . After studying groups in 
Chapter 3, where we have only one operation to deal with, we returned to systems 
with two operations when we worked with fields and polynomials in Chapter 4. 

We will now undertake a systematic study of systems in which there are two 
operations that generalize the familiar operations of addition and multiplication. 
The examples you should have in mind are these: the set of integers Z; the set Zn of 
integers modulo n ; any field F (in particular the set Q of rational numbers and the 
set R of real numbers) ;  the set F[x] of all polynomials with coefficients in a field F. 
The axioms we will use are the same as those for a field, with one crucial exception. 
We have dropped the requirement that each nonzero element has a multiplicative 
inverse (see Definition 4 . 1 . 1 ) , in order to include integers and polynomials in the 
class of objects we want to study. Because we are now considering two operations 
at the same time, rather than studying one operation at a time, we need to have a 
connection between the operations ; the distributive laws accomplish this .  

5.1.1 Definition. Let R be a -set on which two binary operations are defined, called 
addition and multiplication, and denoted by + and · . Then we say that the distribu
tive laws hold for addition and multiplication if 

a . (b + c) == a . b + a . c and (a + b) . c == a . c + b . c 

for all a , b , c E R. 

The distributive laws should be familiar, since we have already used them in 
the set of integers (see Appendix A. l )  and in the definition of a field (see Defini
tion 4. 1 . 1 ) . You should have met them in other examples too, since they hold for 
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the usual addition and multiplication of polynomials, as in Chapter 4, and also for 
addition and multiplication of matrices . 

5.1 .2 Definition. Let R be a set on which two binary operations are defined, called 
addition and multiplication and denoted by + and · respectively. Then R is called a 
commutative ring with respect to these operations if the following properties hold: 

(i) R is an abelian group under addition; 
(ii) multiplication is associative and commutative; 
(iii) R has a multiplicative identity element; 
(iv) the distributive laws hold. 

Since any commutative ring R determines an abelian group by just considering 
the set R together with the single operation of addition, we call this group the 
underlying additive group of R. Although we require that multiplication in R is 
commutative, the set of nonzero elements certainly need not define an abelian group 
under multiplication. 

As you are learning the definition of a commutative ring, it may help to refer to 
the expanded version of the definition, given below, in which all of the conditions are 
written out explicitly. If you need to determine whether or not a set is a commutative 
ring under two given operations, this expanded version gives you a "check list" of 
conditions that you need to go through. 

5.1 .2 / (Expanded version of Definition 5.1.2) Let R be a set on which two binary 
operations are defined, denoted by + and · respectively. That is, the following 
condition must be satisfied. 

(i) Closure: /fa , b E R, then the sum a +b and theproduct a · b are well-defined 
elements of R. 

Then R is called a commutative ring with respect to these operations if the 
following properties hold. 

(ii) Associative laws: For all a , b , c E R, 

a + (b + c) == (a + b) + c and a · (b . c) == (a . b) . c . 

(iii) Commutative laws : For all a , b E R, 

a + b == b + a and a · b == b . a . 

(iv) Distributive laws: For all a , b, c E R, 

a . (b + c) == a . b + a . c and (a + b) . c == a . c + b . c . 
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(v) Identity elements: The set R contains an element 0, called an additive 
identity element, such that for all a E R, 

a + 0 == a and 0 + a == a . 

The set R contains an element 1 ,  called a multiplicative identity element, such 
that for all a E R, 

a . 1 == a and 1 ·  a == a . 

(vi) Additive inverses : For each a E R, the equations 

a + x == 0 and x + a == 0 

have a solution x in R, called the additive inverse of a, and denoted by -a. 

We usually refer to the element 1 simply as the identity of the ring R. To avoid 
any possible confusion with the additive identity 0, we will refer to 0 as the zero 
element of R. Since we do not require that 1 � 0, we could have R == {O} , with 
0 + 0  == 0 and 0 . 0 == o. We will refer to this ring as the zero ring . 

A set with two binary operations that satisfy conditions (i)-(vi) of 5 . 1 .2 / , with the 
exception of the commutative law for multiplication, is called a ring. Although we 
will not discuss them here, there are many interesting examples of noncommutative 
rings. From your work in linear algebra, you should already be familiar with one 
such example, the set of all 2 x 2 matrices over R. The standard rules for matrix 
arithmetic provide all of the axioms for a commutative ring, with the exception of 
the commutative law for multiplication. Although this is certainly an important 
example worthy of study, we have chosen to work only with commutative rings, 
with emphasis on integral domains, fields , and polynomial rings over them. 

We should note that in a commutative ring, either one of the distributive laws 
implies the other. If you are checking the axioms for a ring, if you first prove that 
multiplication is commutative, then you only need to check one of the distributive 
laws. The definition requires you to check that there is an identity element. We 
should point out that many textbooks do not include the existence of an identity 
element in the definition of a commutative ring. 

Before giving some further examples of commutative rings, it is helpful to have 
some additional information about them. Our observation that any commutative 
ring is an abelian group under addition implies that the cancellation law holds for 
addition. This proves part (a) of the next statement. Just as in the case of a field, 
various uniqueness statements follow from Proposition 3 . 1 .2 . 

Let R be a commutative ring, with elements a, b, c E R . 
(a) If a + c == b + c , then a == b . 
(b) If a + b == 0 ,  then b == -a . 
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(c) If a + b == a for some a E R , then b == O. 
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In Proposition 4. 1 .3 the following properties were shown to hold for any field. 
The proof remains valid for any commutative ring. Note that (d) and (f) involve 
connections between addition and multiplication. Their proofs make use of the 
distributive law, since at the beginning it provides the only link between the two 
operations . 

Let R be a commutative ring, with elements a ,  b E R . 
(d) For all a E R , a · 0  == O. 

(e) For all a E R , - ( -a ) == a . 
(f) For all a ,  b E R , (-a ) · (-b) == a ·  b .  

We will follow the usual convention of performing multiplications before addi
tions unless parentheses intervene. 

Example 5.1 .1  (Zn as a ring). 

In Section 1 .4 we listed the properties of addition and multiplication of congru
ence classes , which show that the set Zn of integers modulo n is a commutative 
ring. From our study of groups we know that Zn is a factor group of Z (under 
addition), and so it is an abelian group under addition. To verify that the neces
sary properties hold for multiplication, it is necessary to use the corresponding 
properties for Z. We checked the distributive law in Section 1 .4 . It is worth 
commenting on the proof of the associative law, to point out the crucial parts 
of the proof. To check that the associative law holds for all [a ] , [b] ,  [c] E Zn , 
we have 

[a ] ( [b] [e] ) == [a ] [be] == [a (be) ] and ( [a ] [b] ) [e] == [ab] [e] == [ (ab)e] , 

and so these two expressions are equal because the associative law holds for 
multiplication in Z. In effect, as soon as we have established that multiplica
tion is well-defined (Proposition 1 .4.2), it is easy to show that the necessary 
properties are inherited by the set of congruence classes . Note that [ 1 ] is the 
identity of Zn . 

The rings Zn form a class of commutative rings that is a good source of 
counterexamples . For instance, it provides an easy example showing that the 
cancellation law may fail for multiplication. In the commutative ring Z6 we 
have [2] [3] == [4] [3 ] , but [2] =1= [4] . D 
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Example 5.1.2 (Polynomial rings). 

Let R be a commutative ring. We let T denote the set of infinite tuples 

such that ai E R for all nonnegative integers i ,  and ai :j=. ° for only finitely 
many tenns ai . We say that two infinite tuples are equal if and only if the 
corresponding entries are equal. We introduce addition and multiplication in 
T as follows :  

(ao , aI , a2 , . . .  ) . (bo , hI , b2 , . . .  ) = (co , CI , C2 , . . .  ) , for Ck = Li+ j=k ai b j . 
Then ( 1 , 0 , 0, . . .  ) is the identity of T , where 1 is the identity of R , and it can 
be shown that T is a commutative ring under the above operations. 
We will follow the usual conventions of writing a for the element (a , 0, 0, . . .  ) , 
when a E R , and x for the element (0, 1 , 0 , . . .  ) . Then 

x2 (0 , 1 , 0, . . .  ) ·  (0 , 1 , 0 , . . .  ) 
(0 . 0, 0 ·  1 + 1 . 0, 0 ·  ° + 1 . 1 + ° . 0 , 

° . ° + 1 . ° + ° . 1 + ° . 0, . . .  ) 
(0, 0, 1 ,  0, . . .  ) . 

Similarly, x3 = (0 , 0, 0, 1 , 0 , . . .  ) ,  and so on. We can then write 

(ao , a I , . . .  , am , 0, 0, . . .  ) ao ( 1 , 0, 0, . . .  ) + a 1 (0, 1 ,  0, . . .  ) 
+ a2 (0, 0, 1 , . . .  ) +  . .  . 

m- I m ao + al x + . . .  + am- I X + amx , 

allowing us to use our previous notation R [x ] for the ring of polynomials 
over R in the indeterminate x . We say that R is the coefficient ring. As 
in Definition 4. 1 .4, if n is the largest integer such that an :j=. 0, then we say 
that the polynomial has degree n , and an is called the leading coefficient 
of the polynomial . An element of the fonn a = (a , 0, 0, . . .  ) is called a 
constant polynomial . We can, of course, use any symbol to represent the 
tuple (0, 1 ,  0, . . .  ) . 
Once we know that R [x] is a commutative ring, it is easy to work with polyno
mials in two indetenninates x and y . We can simply use R [x ] as the coefficient 
ring, and consider all polynomials over R [x ] in the indetenninate y . For ex
ample, by factoring out the appropriate tenns we have 

2x - 4xy + y2 + xy2 + x2y2 _ 3xy3 + x3y2 + 2x2y3 = 

2x + (-4x)y + ( 1 + x + x2 + x3 )y2 + (-3x + 2x2)y3 . 
The ring of polynomials in two indetenninates with coefficients in R is usually 
denoted by R [x , y] , rather than by (R [x ] ) [y ] . D 
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The next proposition will make it easier for us to give examples ,  by giving 
a simple criterion for testing subsets of known commutative rings to determine 
whether they are also commutative rings . It seems easiest to just use ab to denote 
the product a . b, as we have already been doing. But you must remember that 
this can represent any operation that merely behaves in certain ways like ordinary 
multiplication. 

5.1.3 Definition. Let S be a commutative ring. A subset R of S is called a subring 
of S if it is a commutative ring under the addition and multiplication of S, and has 
the same identity element as S. 

Looking at the familiar sets Z C Q C R C C, it is easy to check that each one 
is a subring of the next larger set. If F is any field, then in the polynomial ring F [x]  
we can identify the elements of F with the constant polynomials . This allows us to 
think of F as a subring of F [x ] .  

Let F and E be fields . If F i s  a subring of E,  according to the above definition, 
then we usually say (more precisely) that F is a subfield of E (as in Definition 4.4. 1 ) . 
Of course, there may be other subrings of fields that are not necessarily subfields . 
Any subring is a subgroup of the underlying additive group of the larger ring, so the 
two commutative rings must have the same zero element. 

If S is not the zero ring, then it contains the zero ring R == {o} as a proper subset. 
We note that the zero ring is not a subring of S, since it does not contain the identity 
element 1 of S. This is in distinct contrast to the situation for groups. 

5.1.4 Proposition. Let S be a commutative ring, and let R be a subset of S. Then 
R is a subring of S if and only if 

(i) R is closed under addition and multiplication; 
(ii) if a E R, then -a E R; 
(iii) R contains the identity of s. 

Proof If R is a subring, then the closure axioms must certainly hold. Suppose that 
z is the zero element of R .  Then z + z == z == z + 0, where ° is the zero element 
of S, so z == 0, since the cancellation law for addition holds in S. If a E R and b 
is the additive inverse of a in R,  then a + b == 0, so b == -a by Proposition 3 . 1 .2, 
and this· shows that -a E R. Finally, the definition of a subring demands that the 
subring must have the same multiplicative identity, and therefore the identity of S 
must belong to R .  

Conversely, suppose that the given conditions hold. The first condition shows 
that condition (i) of 5 . 1 .2 '  is satisfied. Conditions (ii)-(iv) of 5 . 1 .2 '  are inherited 
from S. The element 1 serves as an identity for R ,  and then - 1  E R by assumption, 
so ° == 1 + (- 1 )  E R since R is closed under addition. Thus conditions (v) and (vi) 
of 5 . 1 .2 '  are also satisfied. D 
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Example 5.1.3 (Sub rings of Zn ). 

If R is any subring of Zn , then according to our definition [ 1 ]  must belong to 
R. Since R is a subgroup of the underlying additive group of Zn , and [ 1 ]  is a 
generator of this group, it follows that R = Zn . Thus the only subring of Zn 
is Zn itself. D 

Example 5.1.4. 

Let S be the commutative ring Z6 and let R be the subset { [OJ , [2] , [4] } .  Then 
R is closed under addition and multiplication and contains the additive inverse 
of each element in R. Since [4] [0] = [0] , [4] [2] = [2] , and [4] [4] = [4] , the 
subset R also has an identity element, namely [4] . This shows that R can be 
considered to be a commutative ring under the operations on S, but we do not 
consider it to be a subring, since its identity element is not the same as the one 
in S. D 

Example 5.1.5 (Gaussian integers). 

Let Z[i ] be the set of complex numbers of the form m + ni , where m , n E Z. 
Since 

(m + ni ) + (r + s i ) = (m + r) + (n + s) i 
and (m + ni ) (r + s i ) = (mr - ns) + (nr + ms)i , 

for all m , n , r, s E Z, the usual sum and product of numbers in Z[i ]  have the 
correct form to belong to Z[i ] .  This shows that Z[i ]  is closed under addition 
and multiplication of complex numbers. The negative of any element in Z[i ]  
again has the correct form, as does 1 == 1 + Oi , so Z[i ]  i s  a commutative ring 
by Proposition 5 . 1 .4. D 

Example 5.1.6 (Z [ -viz]). 
In Example 4. 1 . 1  we verified that Q (,J2) == {a + b,J2 I a ,  b E Q} is a field. 
It has an interesting subset 

Z[,J2] == {m + n,J2 I m , n E Z} 

which is obviously closed under addition. The product of two elements is 
given by 

(m l + n l ,J2) (m2 + n2,J2) == (m lm2 + 2n l n2) + (m l n2 + m2n l ),J2 

and so the set is also closed under multiplication . Proposition 5 . 1 .4 can be 
applied to show that Z[,J2] is a subring of Q( ,J2) ,  since 1 E Z[ ,J2] . 
Since Q(,J2) is a field, it contains l / (m + n,J2) whenever m + n,J2 i= 0, 
but l / (m + n,J2) E Z[,J2] if and only if m/(m2 - 2n2) and n/(m2 - 2n2) 
are integers. It can be shown that this occurs if and only if m2 - 2n2 == ± 1 .  
(See Exercise 4.) D 
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5.1.5 Definition. Let R be a commutative ring. An element a E R is said to be 
invertible if there exists an element b E R such that ab == 1 .  

In this case, the element a is also called a unit of R ,  and the element b is called 
a multiplicative inverse of a, usually denoted by a- I . 

It follows from Proposition 3 . 1 .2 that if a E R is invertible, then the multiplica
tive inverse of a is unique. Since 0 . b == 0 for all b E R,  it is impossible for 0 to 
be invertible (except in the zero ring) . Furthermore, if a E R and ab == 0 for some 
nonzero b E R,  then a cannot be a unit since mUltiplying both sides of the equation 
by the inverse of a (if it existed) would show that b == O. 

An element a such that ab == 0 for some b :F 0 is called a divisor of zero . 

Example 5.1.7. 

Let R be the set of all functions from the set of real numbers into the set 
of real numbers , with ordinary addition and multiplication of functions (not 
composition of functions) . It is not hard to show that R is a commutative ring, 
since addition and multiplication are defined pointwise, and the addition and 
multiplication of real numbers satisfy all of the field axioms. It is easy to find 
divisors of zero in this ring : let f (x ) == 0 for x < 0 and f (x) == 1 for x ::: 0, 
and let g (x) == 0 for x ::: 0 and g (x )  == 1 for x < O. Then f (x)g (x) == 0 for 
all x ,  which shows that f (x)g (x) is the zero function. 

The identity element of R is the function f (x) == 1 (for all x) .  Then a function 
g (x) has a multiplicative inverse if and only if g (x) i= 0 for all x .  Thus, for 
example, g (x) == 2 + sin (x) has a multiplicative inverse, but h ex )  == sin (x ) 
does not. 0 

When thinking of the units of a commutative ring, here are some good examples 
to keep in mind. The only units of Z are 1 and - 1 .  We showed in Proposition 1 .4 .5 
that the set of units of Zn consists of the congruence classes [a ] for which (a , n) == 1 .  
We showed in Example 3 . 1 .4 that Z� is a group under multiplication of congruence 
classes . 

We will use the notation R x for the set of units of any commutative ring R .  

5.1 .6 Proposition. Let R be a commutative ring. Then the set R x of units of R is 
an abelian group under the multiplication of R. 

Proof As usual , let 1 denote the identity of R. If a, b E R X ,  then a- I and b- I 
exist in R ,  and so ab E RX  since (ab) (b- I a- I ) == 1 .  We certainly have 1 E R X ,  
and a- I E R X  since (a - I ) - I == a .  Finally, the associative and commutative laws 
hold in R x since they hold for all elements of R. D 
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In the context of commutative rings we can give the following definition. A 
field is a commutative ring in which 1 :F 0 and every nonzero element is invertible. 
We can say, loosely, that a field is a set on which the operations of addition, sub
traction, multiplication, and division can be defined. For example, the real point of 
Corollary 1 .4 .6 (c) is that Zn is a field if and only if n is a prime number. 

We have already observed that the cancellation law for addition follows from the 
existence of additive inverses. A similar result holds for multiplication . If ab == ac 
and a i s  a unit, then mUltiplying by a- I gives a- I (ab) == a- I (ac) , and then by using 
the associative law for multiplication, the fact that a- I a == 1 ,  and the fact that 1 is 
an identity element, we see that b == c . 

If the cancellation law for multiplication holds in a commutative ring R ,  then 
for any elements a , b E R,  ab == 0 implies that a == 0 or b == O. Conversely, if this 
condition holds and ab == ac, then a (b - c) == 0, so if a :F 0 then b - c == 0 and 
b == c. Thus the cancellation law for multiplication holds in R if and only if R has 
no nonzero divisors of zero. 

5.1.7 Definition. A commutative ring R is called an integral domain if 1 :F 0 and 
for all a , b E R, 

ab == 0 implies a == 0 or b == 0 . 

The ring of integers Z is the most fundamental example of an integral domain. 
The ring of all polynomials with real coefficients is also an integral domain, since 
the product of any two nonzero polynomials is again nonzero. As shown in Exam
ple 5 . 1 .7 ,  the ring of all real valued functions is not an integral domain . 

Our definition of a commutative ring allows the identity element to be equal to 
the zero element. Of course, if 1 == 0, then every element of the ring is equal to 
zero. In this respect the definition of an integral domain parallels the definition of 
a field, as given in Definition 3 .5 .6 .  

Example 5.1.8 (D[x] is an integral domain if D is an integral domain). 

Let D be any integral domain. The ring D[x ]  of all polynomials with coeffi
cients in D is also an integral domain. To show this we note that if f (x) and 
g(x) are nonzero polynomials with leading coefficients am and bn , respec
tively, then since D is an integral domain, the product ambn is nonzero . This 
shows that the leading coefficient of the product f (x ) g (x) is nonzero, and so 
f (x)g(x )  i= O. Just as in Proposition 4. 1 .5 ,  we have f (x)g(x) i= 0 because 
the degree of f (x)g (x) is equal to deg(f (x) )  + deg(g(x ) ) .  Since the constant 
polynomial 1 is the identity of D [x ] ,  we certainly have 1 i= O. 0 

The next theorem gives a condition that is very useful in studying integral do
mains . It shows immediately, for example, that Z[i ] and Z[,J2] are integral domains. 
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A converse to Theorem 5 . 1 . 8 will be given in Section 5 .4, showing that all integral 
domains can essentially be viewed as being subrings of fields . Proving this con
verse involves constructing a field of fractions in much the same way that the field 
of rational numbers can be constructed from the integers . 

5.1.8 Theorem. Any subring of afield is an integral domain. 

Proof If R is a subring of the field F,  then it inherits the condition 1 i= O. If 
a , b E R with ab == 0 (in R), then of course the same equation holds in F .  Either 
a == 0 or a i= 0, and in the latter case a has a multiplicative inverse a- I in F,  even 
though the inverse may not be in R . Multiplying both sides of the equation ab == 0 
(in F) by a- I gives b == 0, and this equation is the same in R as in F.  D 

Corollary 1 .4 .8 (b) shows that Zn is an integral domain if and only if n is a prime 
number. It may be useful to go over the proof again . If we use the condition that 
ab = 0 (mod n) implies that a = 0 (mod n) or b - 0 (mod n) , or equivalently, the 
condition that n I ab implies n I a or n i b, then we can see why n must be prime if 
and only if Zn is an integral domain. Why should the notions of field and integral 
domain be the same for the rings Zn ? The next theorem gives an answer, at least 
from one point of view. 

5.1.9 Theorem. Any finite integral domain must be afield. 

Proof Let D be a finite integral domain, and let D* be the set of nonzero elements 
of D.  If d E D and d i= 0, then multiplication by d defines a function from D* into 
D* , since ad i= 0 if a i= O. Let f : D* -+ D* be defined by f (x ) == xd , for all 
x E D* . Then f is a one-to-one function, since f (x ) == f (y) implies xd == yd, and 
so x == y since the cancellation law holds in an integral domain . But then f must 
map D* onto D* , since by Proposition 2. 1 . 8 any one-to-one function from a finite 
set into itself must be onto, and so 1 == f (a) for some a E D* . That is, ad == 1 
for some a E D, and so d is invertible. Since we have shown that each nonzero 
element of D is invertible, it follows that D is a field. D 

EXERCISES : SECTION 5.1 

1 .  Which of the following sets are subrings of the field Q of rational numbers? Assume 
that m ,  n are integers with n i- 0 and (m , n) == 1 .  

t ea) { � I n is odd} 
(b) { � I n  is even} 

t (c) { � 1 4 A' n } 
(d) { � I (n , k) == I }  where k is a fixed positive integer 
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2. Which of the following sets are subrings of the field R of real numbers? 
(a) A = {m + n-/2 I m , n E Z and n is even} 
(b) B = {m + n-/2 I m , n E Z and m is odd} 
(c) C = {a + b� I a ,  b E Q} 
(d) D = {a + b� + c� I a, b , C E Q} 
(e) E = {m + nu I m , n E Z} , where u = ( 1  + ,J3)/2 
(f) F = {m + nv I m , n E Z} , where v = ( 1 + 0)/2 

3. Consider the following conditions on the set of all 2 x 2 matrices [ � ! ] with 

rational entries . Which conditions below define a commutative ring? If the set is a 
ring, find all units . 
Hint : From your previous work in linear algebra, you may assume that the set of 
2 x 2 matrices over Q satisfies all of the properties of Definition 5 . 1 .2 except the 
commutative law for multiplication. Thus it is sufficient to check the commutative 
law and the conditions of Proposition 5 . 1 .4. 

t ea) all matrices with d = a, C = 0 
(b) all matrices with d = a, C = b 

t (c) all matrices with d = a , C = -2b 
(d) all matrices with d = a , C = -b 

t ( e) all matrices with C = 0 
(f) all matrices with a = 0 and d = 0 

4. Let R = {m + n-/2 I m , n E Z} . 
(a) Show that m + n-/2 is a unit in R if and only if m2 - 2n2 = ± 1 .  
Hint: Show that if (m + n-/2) (x + y-/2) = 1 ,  then (m - n-/2) (x - y-/2) = 1 and 
multiply the two equations. 
(b) Show that 1 + 2-/2 has infinite order in R x . 
(c) Show that 1 and - 1 are the only units that have finite order in R x . 

5 . Let R be a subset of an integral domain D.  Prove that if R is a ring under the 
operations of D ,  then R is a subring of D .  

6. Let D be a finite integral domain. Give another proof of  Theorem 5 . 1 .9 by showing 
that if d is a nonzero element of D, then d- 1 = dk , for some positive integer k . 

7 .  An element a of a commutative ring R is called nilpotent if an = 0 for some positive 
integer n . Prove that if u is a unit in R and a is nilpotent, then u - a is a unit in R . 
Hint : First try the case when u = 1 .  

8 .  Let R be a commutative ring such that a2 = a for all a E R .  Show that a + a = 0 
for all a E R . 
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9. Let I be any set and let R be the collection of all subsets of I. Define addition and 
multiplication of subsets A ,  B � I as follows: 

A + B == (A U B) n A n  B and A . B == A n B . 

Show that R is a commutative ring under this addition and multiplication. 

10 . For the ring R defined in Exercise 9 , write out addition and multiplication tables for 
the following cases : 

t ea) I has two elements ; 
(b) I has three elements . 

1 1 . A commutative ring R is called a Boolean ring if a2 == a for all a E R.  Show that 
in a Boolean ring the commutative law follows from the other axioms. 

1 2. Let I be any set and let R be the collection of all subsets of I .  Define addition and 
multiplication of subsets A ,  B � I as follows :  

A + B == A U B and A . B == A n B . 

Is R a commutative ring under this addition and multiplication? 

1 3 . Let R be the set of all continuous functions from the set of real numbers into itself. 
(a) Show that R is a commutative ring if the formulas (f + g) (x ) == f(x) + g (x) and 
(f . g) (x) == f(x)g (x ) for all x E R, are used to define addition and multiplication 
of functions. 
(b) Which properties in the definition of a commutative ring fail if the product of two 
functions is defined to be (fg) (x ) == f(g (x) ) , for all x ?  

14 . Define new operations on Q by letting a EB b == a + b and a 0 b == 2ab, for all 
a ,  b E Q. Show that Q is a commutative ring under these operations. 

1 5 .  Define new operations on Z by letting m EB n == m + n - 1 and m 0 n == m + n - mn,  

for all m, n E Z. Is Z a commutative ring under these operations? 

16 . Let R and S be commutative rings . Prove that the set of all ordered pairs (r, s) such 
that r E R and s E S can be given a ring structure by defining 

This is called the direct sum of R and S, denoted by R EB S. 
1 7 . Give addition and multiplication tables for Z2 EB Z2 . 
1 8 . Generalizing to allow the direct sum of three commutative rings , give addition and 

multiplication tables for Z2 EB Z2 EB Z2 · 
19 . Find all units of the following rings. 

(a) Z EB Z 
t (b) Z4 EB Z9 
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20. An element e of a ring R is said to be idempotent if e2 = e. Find all idempotent 
elements of the following rings .  
(a) Zs and Z9 
(b) ZIO and ZI2 
(c) Z EB Z 
(d) ZIO EB ZI2 

2 1 . Let A be an abelian group, and let R = { (a , n) I a E A and n E Z} . Define binary 
operations + and · on R by (a , n) + (b , m) = (a + b, n + m) and (a , n) . (b , m) = 
(am + nb , nm) , for all (a , n) and (b , m) in R. Show that R is a commutative ring . 

22. Let R be a set that satisfies all of the axioms of a commutative ring, with the exception 
of the existence of a multiplicative identity element. Define binary operations + and 
. on RI = { (r, n) I r E  R , n E Z} by (r, n) + (s , m) = (r + s , n + m) and 
(r, n) . (s , m) = (rs + ns + mr, nm) , for all (r, n) and (s , m) in RI . Show that RI 
is a commutative ring with identity (0 , 1 ) and that { (r, 0) I r E  R} satisfies all of the 
conditions of a subring, with the exception that it does not have the multiplicative 
identity of R. 

5.2 Ring Homomorphisms 

In Chapter 3, we found that homomorphisms played an important role in the study 
of groups .  Now in studying commutative rings we have two operations to consider. 
As with groups, we will be interested in functions which preserve the algebraic 
properties that we are studying. We begin the section with two examples, each of 
which involves an isomorphism. 

Example 5.2.1. 

The definition of the set of complex numbers usually involves the introduction 
of a symbol i that satisfies i 2 = - 1 , and then we let 

C = {a + bi I a ,  b E R} . 

In Section 4.3 we gave another definition by using the field R[x]/ (x2 + 1 ) , in 
which the congruence class [x] plays the role of i .  To look for a more concrete 
description of C,  we can try to find such an element i with i 2 = - 1  in some 
familiar setting. If we identify real numbers with scalar 2 x 2 matrices over 
R, then the matrix 

[ -� � ] 
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has the property that its square is equal to the matrix corresponding to - 1 .  
This suggests that we should consider the set T of matrices of the fonn 

You should verify that T is a commutative ring . To show the connection with 
C, we define ¢ : C ---+ T by 

To add complex numbers we just add the corresponding real and imaginary 
parts, and since matrix addition is componentwise, it is easy to show that ¢ 
preserves sums. To show that it preserves products we give the following 
computations : 

¢ « a+bi ) (c+di) ) = ¢ « ac-bd)+ (ad+bc) i ) = [ _ (a�c;-:c� :� �:� ]  , 
¢ (a + bi )¢ (e + di) == [ a b ] [ e d ] == [ ae - bd ad + bC ] . -b a -d e - (ad + be) ae - bd 
Thus ¢ ( (a + bi ) (e + di) ) == ¢ (q + bi)¢ (e + di ) ,  and since it is clear that 
¢ is one-to-one and onto, we could compute sums and products of complex 
numbers by working with the corresponding matrices . This gives a concrete 
model of the complex numbers. Note that the function ¢ preserves both the 
zero element and the identity element, since 

¢ (0) = [ �  � ] and ¢ ( 1 )  = [ �  � ] . 
The notion of a ring isomorphism that will be given in Definition 5 .2. 1 makes 
this correspondence precise, and justifies the remarks in Appendix A.5 regard
ing this matrix model of the field of complex numbers . 0 

Example 5.2.2. 

In Section 4.4, in some cases in which Eisenstein 's criterion for irreducibility 
did not apply to a polynomial f (x) directly, we were able to apply the criterion 
after making a substitution of the form x + e. It is useful to examine this 
procedure more carefully. Let F be a field and let e E F. We can define a 
function ¢ : F [x ] ---+ F[x] by ¢ (f(x)) == f(x + e) , for each polynomial 
f(x) E F[x ] . To show that ¢ is one-to-one and onto we only need to observe 
that it has an inverse function ¢- l defined by ¢- l (f(x)) == f(x - e) , for each 
f(x) E F[x] .  It can be checked that ¢ preserves addition and multiplication, 

237 
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in the following sense: adding or mUltiplying two polynomials first and then 
substituting x + c is the same as first substituting x + c into each polynomial 
and then adding or multiplying. In symbols, 

¢ (/ (x) + g(x) ) == ¢ (/ (x ) ) + ¢ (g (x)) 

and 
¢ (/ (x)g (x) ) == ¢ (/ (x))¢ (g (x )) 

for all I(x) , g (x) E F[x ] .  Furthermore, the function ¢ leaves the constant 
polynomial 1 unchanged. 
Using the above correspondence, we see that if I(x) has a nontrivial fac
torization I(x) == g(x)h (x) , then ¢ (/ (x)) has the nontrivial factorization 
¢ (/(x)) == ¢ (g(x))¢ (h (x) ) . A similar condition holds with ¢- l in place of 
¢, and so we have shown that f (x ) is irreducible if and only if ¢ (I (x)) == 
I (x + c) is irreducible. 0 

5.2.1 Definition. Let R and S be commutative rings. A function ¢ R -+ S is 
called a ring homomorphism if 

(i) ¢ (a + b) == ¢ (a) + ¢ (b), for all a ,  b E R; 
(ii) ¢ (ab) == ¢ (a)¢ (b), for all a ,  b E R; and 
(iii) ¢ ( 1 )  == 1 .  
A ring homomorphism that is one-to-one and onto is called a ring isomorphism. 

If there is a ring isomorphismfrom R onto S, we say that R is isomorphic to S, and 
write R � S. 

A ring isomorphism from the commutative ring R onto itself is called an auto
morphism of R. 

The condition that states that a ring homomorphism must preserve addition is 
equivalent to the statement that a ring homomorphism must be a group homomor
phism of the underlying additive group of the ring. This means that we have at our 
disposal all of the results that we have obtained for group homomorphisms . 

A word of warning similar to that given for group homomorphisms is probably 
in order. If ¢ : R -+ S is a ring homomorphism, with a , b E R, then we need to 
note that in the equation 

¢ (a + b) == ¢ (a) + ¢ (b) 

the sum a +b occurs in R, using the addition of that ring, whereas the sum ¢ (a) +¢ (b) 
occurs in S, using the appropriate operation of S. A similar remark applies to the 
respective operations of multiplication in the equation 

¢ (ab) == ¢ (a)¢ (b) , 
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where the product ab uses the operation in R and the product 4> (a)4> (b) uses the 
operation in S .  We have chosen not to use different symbols for the operations 
in the two rings, since there is generally not much chance for confusion, and it 
is customary to make this simplification. Finally, in both rings we have used the 
symbol 1 to denote the identity element. 

Note that Exercise 5 of Section 4.3 shows that our definition of a ring iso
morphism is consistent with the definition of an isomorphism of fields given in 
Definition 4. 3 .7 .  Section 4.3 thus contains a number of examples of ring isomor
phisms .  

We begin with some basic results on ring isomorphisms. It follows from the next 
proposition that "is isomorphic to" is reflexive, symmetric, and transitive. Recall 
that a function is one-to-one and onto if and only if it has an inverse (see Proposi
tion 2. 1 .7) . Thus a ring isomorphism always has an inverse, but it is not evident that 
this inverse must preserve addition and multiplication. 

5.2.2 Proposition. 

(a) The inverse of a ring isomorphism is a ring isomorphism. 
(b) The composite of two ring isomorphisms is a ring isomorphism. 

Proof (a) Let 4> : R � S be an isomorphism of commutative rings .  We have 
shown in Proposition 3 .4 .2 that 4>- 1 is an isomorphism of the underlying additive 
groups .  To show that ¢- l is a ring homomorphism, let S l , S2 E S. Since ¢ is onto, 
there exist rl , r2 E R such that ¢ (rl ) == S l and ¢ (r2 ) == S2 . Then ¢- l (S l S2) must be 
the unique element r E R for which ¢ (r) == S l S2 . Since ¢ preserves multiplication, 

¢- 1 (S l S2) == ¢- 1 (¢ (rl )¢ (r2) ) == ¢- 1 (¢ (rl r2) ) == rl r2 == ¢- I (S l )¢- I (S2) . 

Finally, ¢- l ( 1 )  == 1 since ¢ ( 1 )  == 1 .  
(b) If ¢ : R � S and fJ : S � T are isomorphisms of commutative rings, then 

fJ¢ (ab) == fJ (¢ (ab) ) == fJ (¢ (a)¢ (b) ) == fJ (¢ (a) ) . fJ (¢ (b) ) == fJ¢ (a) . fJ¢ (b) . 

Furthermore, fJ ¢ ( 1 )  == fJ (¢ ( 1 ) ) == fJ ( 1 )  == 1 .  The remainder of the proof follows 
immediately from the corresponding result for group homomorphisms .  D 

To show that commutative rings R and S are isomorphic, we usually construct 
the isomorphism. To show that they are not isomorphic, it is necessary to show 
that no isomorphism can possibly be constructed. Sometimes this can be done by 
just considering the sets involved. For example, if n and m are different positive 
integers , then Zn is not isomorphic to Zm since no one-to-one correspondence can 
be defined between Zn and Zm . 

One way to show that two commutative rings are not isomorphic is to find an 
algebraic property that is preserved by all isomorphisms and that is satisfied by 
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one commutative ring but not the other. We now look at several very elementary 
examples of such properties . 

If ¢ : R � S is an isomorphism, then from our results on group isomorphisms 
we know that ¢ must map 0 to 0 and must preserve additive inverses . If a E R is 
a unit, then there exists an element b E R with ab == 1 ,  so ¢ (a)¢ (b) == ¢ (ab) == 
¢ ( 1 )  == 1 .  This shows that ¢ (a)  is a unit in S, and thus ¢ preserves units . In fact, 
by using the same argument for ¢ - 1 , we see that a is a unit in R if and only if ¢ (a) 
is a unit in S. This implies that R is a field if and only if S is a field. 

As an immediate consequence of the remarks in the previous paragraph, we 
can see that Z is not isomorphic to Q, because Q is a field but Z is not. Another 
interesting problem is to show that R and C are not isomorphic. Since both are 
fields, we cannot use the previous argument. Let us suppose that we could define 
an isomorphism ¢ : C � R. Then we would have 

¢ (i )2 == ¢ (i 2) == ¢ (- 1 ) == -¢ ( 1 )  == - 1  , 

and so R would have a square root of - 1 , which we know to be impossible. Thus 
R and C cannot be isomorphic . 

In many important cases we will be interested in functions that preserve addition 
and multiplication of commutative rings but are not necessarily one-to-one and onto . 

Example 5.2.3 (Natural projection Jr : Z � Zn ) . 

We already know by results on factor groups in Section 3 . 8 that the mapping 
n : Z ---+ Zn given by n (x) == [x]n , for all x E Z, is a group homomorphism. 
The formula [x ]n [Y]n == [xY ]n , which defines multiplication of congruence 
classes, shows immediat�ly that n also preserves multiplication. Since n ( 1 ) == 
[ l ]n , it follows that n is a ring homomorphism. Note that n is onto, but not 
one-to-one, since n (n) == [O]n . 0 

Example 5.2.4 (Natural inclusion l : R � R [x]). 

Let R be any commutative ring, and define l : R ---+ R [x] by l (a) == a , for all 
a E R .  That is , l ea) is defined to be the constant polynomial a . It is easy to 
check that l is a ring homomorphism that is one-to-one but not onto . 0 

In high school the operation of "substituting numerical values for the unknown 
x" in polynomial functions (and more general functions) plays an important role . 
A precise understanding of "substitution" depends on the idea of a ring homo
morphism, as the next two examples illustrate . Example 5 .2 .6 will be particularly 
important in later work. 
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Example 5.2.5 (Evaluation at -J2). 
Consider the mapping ¢ : Q[x ]  � R defined by ¢ (f (x) )  == f(,J2) , for all 
polynomials f (x) E Q[x ] .  That is, the mapping ¢ is defined on a polyno
mial with rational coefficients by substituting x == ,J2. It is easy to check 
that adding (or multiplying) two polynomials first and then substituting in 
x == ,J2 is the same as substituting first in each polynomial and then adding 
(or multiplying) . Thus ¢ preserves sums and products , and so it is a ring homo
morphism since we also have ¢ ( 1 ) == 1 .  Note that ¢ is not one-to-one, since 
¢ (x2 - 2) == O. For any polynomial f (x ) ,  in computing ¢ (f (x ) )  == f (,J2) 
we can use the fact that (,J2)n == 2n/2 if n is an even positive integer, and 
(,J2)n == 2(n- l ) /2,J2 if n is an odd positive integer. It follows that the image 
of ¢ is Q(,J2) == {a + b,J2 1 a , b E Q} .  0 

Example 5.2.6 (Evaluation mapping). 

The previous example can generalized, since there is nothing special about the 
particular fields we chose or the particular element we worked with. Let F and 
E be fields, with F a subfield of E. For any element u E E we can define a 
function ¢u : F [x ]  � E by letting ¢u (f(x) )  == f eu ) , for each f(x) E F[x ] .  
Then ¢u preserves sums and products since 

¢u (f (x) + g (x) )  == f eu ) + g (u) == ¢u (f (x) )  + ¢u (g (x) )  

and 
¢u (f (x) . g (x) )  == f eu ) . g (u ) == ¢u (f (x) )  . ¢u (g (x) )  , 

for all f(x) , g (x) E F[x ] .  Furthermore, ¢ ( 1 ) == 1 ,  and thus ¢u is a ring 
homomorphism. 
Since the polynomials in F[x ]  are evaluated at u , the homomorphism ¢u is 
called an evaluation mapping . 0 

24 1 

Let ¢ : R � S be a ring homomorphism. By elementary results on group 
theory, we know that ¢ must map the zero element of R onto the zero element 
of S, that ¢ must preserve additive inverses, and that ¢ (R) must be an additive 
subgroup of S. It is convenient to list these results formally in the next proposition. 
To complete the proof of part (c) , the fact that ¢ (R) is closed under multiplication 
follows since ¢ preserves multiplication, and ¢ (R) has the same identity as S since 
¢ ( 1 ) == 1 .  

5.2.3 Proposition. Let ¢ : R � S be a ring homomorphism. Then 
(a) ¢ (0) == 0; 
(b) ¢ (-a) == -¢ (a) for all a E R; 
(c) ¢ (R) is a subring of s. 
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Example 5.2.7. 

Any isomorphism ¢ : R � S of commutative rings induces a group isomor
phism from R x onto S x .  For any a E R x we have 

and so ¢ maps RX into SX . Applying this argument to ¢- l , which is also a 
ring homomorphism, shows that it maps SX into R X .  We conclude that ¢ is 
one-to-one and onto when restricted to R x , and this shows that R x and S x 
are isomorphic (as groups) . 0 

Before giving some additional examples, we need to give a definition analogous 
to one for groups .  The kernel of a ring homomorphism will be defined to be the 
kernel of the mapping when viewed as a group homomorphism of the underlying 
additive groups of the rings . 

5.2.4 Definition. Let ¢ : R � S be a ring homomorphism. The set 

{a E R I ¢ (a) == O} 

is called the kernel of ¢, denoted by ker(¢). 

For example, the kernel of the natural projection n : Z � Zn discussed in 
Example 5 .2 .3 is {x I [x ]n == [O]n } == nZ. Note that ker (n ) is not a subring of Z. In 
fact, the kernel of a ring homomorphism is a subring only in the trivial case, when 
the codomain is the zero ring. 

Example 5.2.8 (Kernel of the evaluation mapping). 

Let F be a subfield of the field E .  For an element U E E, let ¢u : F [x ] � E 
be the evaluation mapping defined by setting ¢u (f (x» == f (u ) , for each 
f(x) E F[x] (see Example 5 .2 .6) .  In this case 

ker(¢u ) == {f (x) E F [x ]  I f eu ) == O} 

is the set of all polynomials f(x) E F[x] for which u is a root (when f(x) i s  
viewed as a polynomial in E [x ] ) . 0 

5.2.5 Proposition. Let ¢ : R � S be a ring homomorphism. 
(a) If a ,  b E ker(¢) and r E R, then a + b, a - b, and ra belong to ker(¢). 
(b) The homomorphism ¢ is an isomorphism if and only ifker(¢) == {O J and 

¢ (R) == S. 
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Proof (a) If a , b E ker(¢) , then 

¢ (a ± b) == ¢ (a) ± ¢ (b) == 0 ± 0 == 0 , 

and so a ± b E ker(¢) . If r E R, then 

¢ (ra) == ¢ (r ) . ¢ (a) == ¢ (r ) · 0 == 0 , 

showing that ra E ker(¢) .  
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(b) This part follows from the fact that ¢ is a group homomorphism, since ¢ is 
one-to-one if and only if ker ( ¢) == 0 and ¢ is onto if and only if ¢ (R) == S . D 

Let ¢ : R � S be a ring homomorphism. The fundamental homomorphism 
theorem for groups implies that the abelian group Rj ker (¢) is isomorphic to the 
abelian group ¢ (R) ,  which is a subgroup of S. In order to obtain a homomorphism 
theorem for commutative rings we need to consider the cosets ofker(¢) . Intuitively, 
the situation may be easiest to understand if we consider the cosets to be defined 
by the equivalence relation �¢ given by a �¢ b if ¢ (a) == ¢ (b) ,  for all a , b E R .  
The sum of equivalence classes [a ] and [b] in Rj ker (¢) i s  well-defined, using the 
formula [a ] + [b] == [a + b] , for all a , b E R.  The product of equivalence classes 
[a ] and [b] in Rj ker (¢) is defined by the expected formula [a ] . [b] == [ab] , for all 
a , b E R.  To show that this multiplication is well-defined, we note that if a �¢ c 
and b �¢ d, then ab �¢ cd since 

¢ (ab) == ¢ (a)¢ (b) == ¢ (c)¢ (d) == ¢ (cd) . 

Since our earlier results on groups imply that Rj ker (¢) is an abelian group, to show 
that Rj ker (¢) is a commutative ring we only need to verify the distributive law, 
the associative and commutative laws for multiplication, and check that there is an 
identity element. We have 

[a ] ( [b]+ [c] ) == [a ] [b+c] == [a (b+c) ] == [ab+ac] == [ab]+ [ac] == [a ] [b]+ [a] [c] , 

showing that the distributive law follows directly from the definitions of addition 
and multiplication for equivalence classes, and the distributive law in R .  The proofs 
that the associative and commutative laws hold are similar. It is easy to check that 
[ 1 ] serves as an identity element . 

The coset notation a + ker (¢) is usually used for the equivalence class [a] . With 
this notation, addition and multiplication of co sets are expressed by the formulas 

(a + ker(¢)) + (b + ker(¢) )  == (a + b) + ker(¢) 

and 
(a + ker(¢) )  . (b + ker(¢)) == (ab) + ker (¢) . 

It is important to remember that these are additive cosets , not multiplicative cosets . 
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5.2.6 Theorem (Fundamental Homomorphism Theorem for Rings). Let 
¢ :  R ---+ S be a ring homomorphism. Then R/ ker(¢) � ¢ (R) .  

Proof Define ¢ : R/ ker (¢) ---+ ¢ (R) by setting ¢ (a + ker(¢) )  == ¢ (a) ,  for all 
a E R. Since we have already shown that R/ ker (¢) is a commutative ring, we 
can apply the fundamental homomorphism theorem for groups to show that ¢ is an 
isomorphism of the abelian groups R / ker ( ¢) and ¢ (R) . We only need to show that 
¢ preserves multiplication, and this follows from the computation 

¢ ( (a + ker(¢) )  . (b + ker(¢)) )  ¢(ab + ker (¢) )  
¢ (ab) == ¢ (a)¢ (b) 

This completes the proof. D 

¢(a + ker(¢)) . ¢(b + ker(¢)) . 

The evaluation mapping in Example 5 .2 .6 can perhaps be better understood in a 
more general context. In working with F[x ] , we never used the fact that F was a field, 
so we can consider polynomials over any commutative ring, as in Example 5 . 1 .2. 
In Example 5 .2 .6 we did use the fact that the inclusion mapping F ---+ E is a ring 
homomorphism, so we will consider the situation in that generality. 

5.2.7 Proposition. Let R and S be commutative rings, let () : R ---+ S be a ring 
homomorphism, and let s be any element of S. Then there exists a unique ring 
homomorphism Bs : R [x] ---+ S such that Bs (r) == (} (r )for all r E R, and

Bs (x) == s . 
Proof We will first show the uniqueness. If ¢ : R[x ] ---+ S is any ring homomor
phism with ¢ (r) == () (r) for all r E R and ¢ (x ) == s , then for any polynomial 

f(x) == ao + al x + . . .  + amxm 

in R[x] we must have 

¢ (ao + al x + . . .  + amxm ) ¢ (ao) + ¢ (alx) + . . .  + ¢ (amxm ) 
¢ (ao) + ¢ (a l )¢ (x) + . . .  + ¢ (am) (¢ (x) )m 
() (ao) + () (a l )s + . . .  + () (am )sm . 

This shows that the only possible way to define 
Bs 

is the following: 
Bs (ao + alx + . . .  + amxm ) == (} (ao) + (} (a l )s + . . .  + (} (am )sm . 

Given this definition, we must show that 
Bs 

is a ring homomorphism. Since 
addition of poJynomials is defined componentwise, and () preserves sums, it is easy 
to check that (}s preserves sums of polynomials . If 

g (x ) == bo + b l x + . . .  + bnxn , 
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then the coefficient Ck of the product h (x) == f (x) g (x ) is given by the formula 

Applying () to both sides gives 

e (Ck ) = e (Li+j=k ai bj) = Li+j=k e (aJe (bj ) 

since () preserves both sums and products . This formula is precisely what we need 
to check that 

8; (f(x)g (x) ) == 
8; (h (x)) == 

8; (f (x) )8; (g (x) ) . 

Since 
8; 

( 1 )  == 1 ,  this finishes the proof that 
8; 

is a ring homomorphism. D 

Example 5.2.9 (Zn � Z/ nZ). 

The natural projection rr : Z � Zn defined by rr (x) == [x ]n , for all x E Z, is 
onto with ker (rr ) == nZ. 0 

Example 5.2.10 (Q(v'2) � Q[x ] /I for I == { f (x) E Q [x ] I f (
v'2) == OJ). 

It was shown in Example 5 .2 .5 that evaluation at -J7i defines a ring homomor
phism ¢ : Q[x ]  � R with ¢ (Q[x] )  == Q( -J7i) , and in Example 5 .2 .8 that 
ker(¢) == { f (x) E Q[x] I f (-J7i) == O} . By the fundamental homomorphism 
theorem we have Q(-J7i) r-v Q[x]/ ker(¢) . 0 

Example 5.2.1 1  (Roots of polynomials). 

Let R be a subring of the ring S, and let () : R � S be the inclusion 
mapping. If s E S, then the ring homomorphism Bs : R [x] � S defined 
in Proposition 5 .2.7 should be thought of as an evaluation mapping, since 
Bs (f (x) )  == f (s ) ,  for any polynomial f (x) E R[x] . If f (s) == 0, then we say 
that s i s  a root of the polynomial f (x) . (Compare Definition 4 . 1 . 1 0 . ) 
We must be careful when considering roots of polynomials whose coefficients 
come from an arbitrary commutative ring. If (x - 2) (x - 3) == 0 and x is an 
integer, then we can conclude that either x - 2 == 0 or x - 3 == 0, and so either 
x == 2 or x == 3 .  But if x represents an element of Z6 , then we might have 
x - [2] == [3] and x - [3] == [2] , since this still gives (x - [2] ) (x - [3]) == 
[3] [2] == [0] in Z6 . In addition to the obvious roots [2] and [3] , it i s  easy to 
see that [0] and [5] are also roots , so the polynomial x2 - [5]x + [6] has four 
distinct roots over Z6 . 0 
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Example 5.2.12 (Reduction modulo n). 
Let n : Z � Zn be the natural projection considered in Example 5 .2 .3 .  In 
Example 5 . 1 .2 we discussed the ring of polynomials with coefficients in a 
commutative ring, and so in this context we can consider the polynomial rings 
Z[x] and Zn [x] .  Define Ti : Z[x] � Zn [x] as follows: For any polynomial 

f (x) == aa + a lx + . . .  + amxm 

in Z[x ] ,  set 

Ti(f (x) )  == n (aa) + n (a l )x + . . .  + n (am )xm . 

That is, Ti simply reduces all of the coefficients of f (x) modulo n .  This is 
actually a special case of the result obtained in Proposition 5 .2 .7 . We can think 
of n as a homomorphism from Z into Zn [x] ,  and then we have extended n to 
Z[x ]  by mapping x E Z[x]  to x E Zn [x] .  It follows that Ti is a homomorphism. 
Furthermore, it is easy to see that the kernel of Ti is the set of all polynomials 
for which each coefficient is divisible by n . 

To illustrate the power of homomorphisms, suppose that f (x) has a nontrivial 
factorization f (x) == g (x)h (x) in Z[x] . Then 

Ti(f (x)) == Ti(g (x)h (x) )  == Ti(g (x) )Ti(h (x) )  . 

If deg(Ti(f (x) ) )  == deg(f (x) ) ,  then this gives a nontrivial factorization of 
Ti(f (x)) in Zn [x ] .  
This means that a polynomial f (x) with integer coefficients can be shown 
to be irreducible over the field Q of rational numbers by finding a positive 
integer n such that when the coefficients of f (x) are reduced modulo n, the 
new polynomial has the same degree and cannot be factored nontrivially in 
Zn [x ] .  Eisenstein 's irreducibility criterion (Theorem 4.4.6) for the prime p 
can be interpreted as a condition which states that the polynomial cannot be 
factored when reduced modulo p2 . 0 

We next introduce a construction for commutative rings that is analogous to the 
direct product of groups. 

5.2.8 Proposition. Let RI , R2 , . . .  , Rn be commutative rings. The set ofn-tuples 
(a i , a2 , . . .  , an ) such that ai E Ri for each i is a commutative ring under the 
following addition and multiplication: 

(a i , a2 , . . .  , an ) . (b l , b2 , . . .  , bn ) == (a l b l , a2b2 , . . .  , anbn ) , 
for n-tuples (ai , a2 , . . .  , an ) and (b I , b2 , . . .  , bn ) . 
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Proof The proof that the given addition defines a group is an easy extension of the 
proof of Proposition 3 . 3 .4. The remainder of the proof is left as an exercise. D 

We say that the addition and multiplication defined in Proposition 5 .2 . 8  are de
fined "componentwise", since there is no interaction between different components. 
(Compare this, for example, with the definition of multiplication of complex num
bers thought of as ordered pairs : (a I , a2) . (b l , b2) == (a l b l - a2b2 , a l b2 + a2b l ) . ) 

5.2.9 Definition. Let R I , R2 , . . .  , Rn be commutative rings. The set of n-tuples 
(a I , a2 , . . .  , an ) such that ai E Ri for each i , under the operations of component
wise addition and multiplication, is called the direct sum of the commutative rings 
RI , R2 , . . .  , Rn, and is denoted by 

Let RI , R2 , . . •  , Rn be commutative rings . Then ( 1 , 1 , . . .  , 1 ) is the identity of 
the direct sum 

R == RI EB R2 EB . . . EB Rn . 
Furthermore, an element (a I , a2 , . . .  , an ) in the direct sum is a unit if and only if 
each component ai is a unit in Ri .  This can be shown by observing that 

(a I , a2 , . . .  , an ) (b I , b2 , . . .  , bn ) == ( 1 ,  1 , . . . , 1 )  

if and only if ai bi == 1 for each i . It then follows easily that 

R x � R r x R{ x . . .  x R: 

as groups. (This is part of Exercise 2 1 . ) 

Example 5.2.13. 

Let n be a positive integer with prime decomposition n == p� l p�2 . . .  pC;:n . 
Then the isomorphism 

can be shown easily by referring to Theorem 3 .5 .5 .  The mapping ¢ defined 
by 

¢ ( [x]n ) == ( [x] cq , [x] 112 , • • • , [x]pl1m ) P I  P2 m 
for all [x ]n E Zn is easily seen to preserve multiplication . 
Recall that if n is a positive integer with prime decomposition 
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then 

where cp (n) is the number of positive integers less than or equal to n and 
relatively prime to n .  This was proved in Corollary 3 .5 .6 by counting the 
generators of the direct product of the component groups rather than counting 
the generators of Zn directly. We are now in a position to give a proof based 
on results for commutative rings. From the general remarks preceding this 
example, we have 

Zx � ZX ZX ZX n == a I X a2 X . . . X am ' P I P2 Pm 

Then cp (n) ,  which is the order of Z� , can be found by mUltiplying the orders 
of the given groups Z x a; • From here this argument proceeds just as the one in Pi 
Corollary 3 .5 .6 . 0 

As an application of the results in this section we study the characteristic of a 
commutative ring. 

5.2.10 Definition. Let R be a commutative ring. The smallest positive integer n 
such that n . 1 == 0 is called the characteristic of R, denoted by char (R) .  

lfno such positive integer exists, then R is said to have characteristic zero. 

The characteristic of a commutative ring R is closely connected to a definition 
from group theory : if char (R) is nonzero, then it is just the order of 1 in the 
underlying additive group of R .  If char(R) == n 1= 0, then it follows from the 
distributive law that n . a == (n . 1 )  . a == 0 . a == 0 for all a E R .  This implies that 
n is the exponent of the underlying abelian group, giving another way to think of 
char(R) . 

A more sophisticated way to view the characteristic is to define a ring homo
morphism ¢ : Z � R by ¢ (n ) == n . 1 .  The rules we developed in Chapter 3 for 
considering multiples of an element in an abelian group show that ¢ is a homomor
phism. The characteristic of R is just the (nonnegative) generator of ker(¢) . 

5.2.11  Proposition. An integral domain has characteristic 0 or p, for some prime 
number p. 

Proof Let D be an integral domain, and consider the mapping ¢ : Z � D 
defined by ¢ (n ) == n . 1 .  Note that ¢ is a ring homomorphism, since for any 
m ,  n E Z we have ¢ (m + n) == (m + n) . 1 == m . 1 + n . 1 == ¢ (m ) + ¢ (n ) ,  
¢ (mn ) == (mn) . 1 == (m . 1 ) (n . 1 )  == ¢ (m )¢ (n ) ,  and ¢ ( 1 )  == 1 . 1 == 1 .  
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The fundamental homomorphism theorem for rings shows that Z j ker (¢) is 
isomorphic to the subring ¢ (Z) of D .  Since ¢ (Z) inherits the property that D has 
no nontrivial divisors of zero, this shows that Zj ker (¢) must be an integral domain. 
Thus either ker (¢) == 0, in which case char (D) == 0, or ker (¢) == nZ for some 
positive number n .  Then Zj ker (¢) � Zn , and Corollary 1 .4 .6 implies that n is 
prime, so in this case char(D) is a prime number. D 

EXERCISES: SECTION 5.2 

1 .  Let R be a commutative ring, and let D be an integral domain. Let ¢ : R � D be a 
nonzero function such that ¢ (a + b) == ¢ (a) + ¢ (b) and ¢ (ab) == ¢ (a)¢ (b) , for all 
a ,  b E R.  Show that ¢ is a ring homomorphism. 2. Let F be a field and let ¢ : F � R be a ring homomorphism. Show that ¢ is either 
zero or one-to-one. 

3. Let F, E be fields , and let ¢ : F � E be a ring homomorphism. Show that if ¢ is 
onto, then ¢ must be an isomorphism. 

4. Show that taking complex conjugates defines an automorphism of C. That is, for 
Z E C ,  define ¢ (z) == Z, and show that ¢ is an automorphism of C .  

5 .  Show that the identity mapping i s  the only ring homomorphism from Z into Z. 

6. Show that the set of all matrices over Z of the form [ 2: � ] is a ring isomorphic 

to the ring Z[.J2] defined in Example 5 . 1 .6 . 

7 .  Define ¢ : Z[.J2] � Z[.J2] by ¢ (m + n.J2) == m - n.J2, for all m , n E Z. Show 
that ¢ is an automorphism of Z[ .J2] . 

8 .  Let F be a field, and let a E F.  Define ¢ : F[x ]  � F[x ]  by ¢ (/ (x ) )  == I(x + a) ,  
for all I(x ) E F[x ] .  Show that ¢ i s  an automorphism of F[x ] .  

9. Show that the composite of  two ring homomorphisms i s  a ring homomorphism. 

10. Let R and S be rings , and let ¢, () : R � S be ring homomorphisms. Show that 
{r E R I ¢ (r ) == () (r ) }  is a subring of R .  

1 1 . Show that the direct sum of two nonzero rings i s  never an integral domain. 

1 2. Let R I and R2 be commutative rings. 
(a) Define Jrl : RI EB R2 � RI by Jrl ( (r l , r2)) == r l , for all (r l , r2 ) E RI EB R2 and 
define Jr2 : R I EB R2 � R2 by Jr2 ((r l , r2)) == r2 , for all (r l , r2) E RI EB R2 . Show 
that Jrl and Jr2 are ring homomorphisms . 
(b) Let R be any ring, and let ¢ : R � RI EB R2 be a function. Show that ¢ is a ring 
homomorphism if and only if Jrl ¢ and Jr2¢ are both ring homomorphisms. 
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1 3 . t Find all ring homomorphisms from Z EB Z into Z. That is , find all possible formulas , 
and show why no others are possible. 

14. Find all ring homomorphisms from Z EB Z into Z EB Z. 

1 5 .  For the rings Zn and Zk , show that if k i n , then the function ¢ : Zn --+ Zk defined 
by ¢ ( [x ]n ) = [X ]k , for all [x ]n E Zn , is a ring homomorphism. Show that this is the 
onl y ring homomorphism from Zn to Zk . 

16 . Are Z9 and Z3 EB Z3 isomorphic as rings? 

17 . Let S be the subset of Z4 EB Z4 given by { ( [m]4 , [n ]4) I m = n (mod 2) } .  

(a) Show that S is a subring of Z4 EB Z4 . 

(b) Show that S is not isomorphic (as a ring) to any ring of the form Zn , nor to any 
direct sum of such rings . 

1 8 . Define ¢ : Z --+ Zm EB Zn by ¢ (x )  = ( [x ]m , [x ]n ) .  Find the kernel and image of ¢. 
Show that ¢ is onto if and only if gcd (m , n) = 1 .  

1 9 . Let R be the ring given by defining new operations on Z by letting m EBn  = m +n - l  
and m 0 n = m + n - mn . Define ¢ : Z --+ R by ¢ (n) = 1 - n .  Show that ¢ is an 
isomorphism. 

20. Let I be any set and let R be the collection of all subsets of I. Define addition and 
multiplication of subsets A ,  B C I as follows : 

A + B = (A U B) n A n  B and A . B = A n B . 

t (a) Show that if I has two elements , then R is isomorphic to Z2 EB Z2 . 

(b) Show that if I has three elements , then R is isomorphic to Z2 EB Z2 EB Z2 . 

2 1 . Let R l , R2 , . . .  , Rn be commutative rings . Complete the proof of Proposition 5 .2 .8 ,  
to show that R = R 1 EB R2 EB . . .  EB Rn i s  a commutative ring. Then show that 
R X  r-..J Rr x R; x . . .  x R: . 

22. Let R be an integral domain. Show that R contains a subring isomorphic to Z p for 
some prime number p if and only if char(R) = p .  

23 . Show that i f  R i s  an integral domain with characteristic p > 0, then for all a ,  b E R 
we must have (a + b)P = aP + bP . Show by induction that we must also have 
(a + b)pn = apn + bpn for all positive integers n .  
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5.3 Ideals and Factor Rings 
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We have shown that the kernel of any ring homomorphism is closed under sums, 
differences, and "scalar" mUltiples (see Proposition 5 .2 .5) .  In other words, the kernel 
of a ring homomorphism is an additive subgroup that is closed under multiplication 
by any element of the ring. For any integer n , the subset nZ of the ring of integers 
satisfies the same properties . The same is true for the subset (f (x ) )  of the ring 
F [x]  of polynomials over a field F, where f (x) is any polynomial . In each of these 
examples we have been able to make the cosets of the given set into a commutative 
ring, and this provides the motivation for the next definition and several subsequent 
results . 

5.3.1 Definition. Let R be a commutative ring. A nonempty subset I of R is called 
an ideal of R if 

(i) a ± b E l  for all a , b E l, and 
(ii) ra E I for all a E I and r E R. 

For any commutative ring R,  i t is clear that the set {OJ is an ideal of R,  which 
we will refer to as the trivial ideal . The set R is also always an ideal of R ;  we say 
that it is not a proper ideal since it is not a proper subset of R.  Among commutative 
rings (with 1 1= 0), fields are characterized by the property that these two ideals are 
the only ideals of the ring. 

5.3.2 Proposition. Let R be a commutative ring with 1 1= O. Then R is a field if 
and only if it has no proper nontrivial ideals. 

Proof First assume that R is a field, and let I be any ideal of R.  Either I == {OJ , or 
else there exists a E I such that a 1= O. In the second case, since R is a field, there 
exists an inverse a- I for a , and then for any r E R we have r == r . 1 == r (a- I a) == 
(ra- 1 )a , so by the definition of an ideal we have r E I . We have shown that either 
I == {O} or I == R .  

Conversely, assume that R has no proper nontrivial ideals, and let a be a nonzero 
element of R.  We will show that the set 

I == {x E R I x == ra for some r E R }  

is an ideal . First, I is nonempty since a == 1 . a E I . If rl a ,  r2a E I , then we have 
rI a ± r2a == (r l ± r2)a , showing that I is an additive subgroup of R .  Finally, if 
x == ra E I , then for any s E R we have sx == (sr)a E I , and so I is an ideal . By 
assumption we must have I == R,  since I 1= {OJ ,  and since 1 E R,  we have 1 == ra 
for some r E R. This implies that a is invertible, and so we have shown that R is a 
field. D 
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Let R be a commutative ring. For any a E R, we use the notation 

Ra == {x E R I x == ra for some r E R} . 

The proof of the previous theorem shows that Ra is an ideal of R that contains 
a . It is obvious from the definition of an ideal that any ideal that contains a must 
also contain Ra , and so we are justified in saying that Ra is the smallest ideal that 
contains a . 

Note that R . 1 consists of all of R, since every element r E R can be  expressed 
in the form r . 1 .  Thus R is the smallest ideal (in fact, the only ideal) that contains 
the identity of R . 

5.3.3 Definition. Let R be a commutative ring, and let a E R. The ideal 

Ra == {x E R I x == ra for some r E R} 

is called the principal ideal generated by a . The notation (a ) will also be used. 
An integral domain in which every ideal is a principal ideal is called a principal 

ideal domain. 

Example 5.3.1 (Z is a principal ideal domain). 

In the terminology of the above definition, we see that Theorem 1 . 1 .4 shows 
that the ring of integers Z is a principal ideal domain. Moreover, given any 
nonzero ideal I of Z, the smallest positive integer in I is a generator for the 
ideal . 0 

Example 5.3.2 (F [x] is a principal ideal domain). 

We showed in Theorem 4.2 .2 that if F is any field, then the ring F [x ]  of 
polynomials over F is a principal ideal domain. If I is any nonzero ideal of 
F [x] ,  then f (x) is a generator for I if and only if it has minimal degree among 
the nonzero elements of I .  Since a generator of I is a divisor of every element 
of I ,  there is only one monic generator for I (see Exercise 6 (a)) . 0 

In addition to studying the ring of polynomials F[x] over a field, as in Exam
ple 5 .3 .2, we have also considered the ring of polynomials R [x] over any commu
tative ring R. However, if the coefficients do not come from a field, then the proof 
of the division algorithm is no longer valid, and so we should not expect R [x] to be 
a principal ideal domain. The ring Z[x] of polynomials with integer coefficients is 
an integral domain, but not every ideal is principal (see Exercise 24) . 
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Let I be an ideal of the commutative ring R . Then I is a subgroup of the 
underlying additive group of R, and so by Theorem 3 . 8 .5 the cosets of I in R 
determine a factor group R/ I , which is again an abelian group. The cosets of I are 
usually denoted additively, in the form a + I ,  for all elements a E R . We know 
from Proposition 3 . 8 . 1 that elements a , b E R determine the same coset of I if and 
only if a - b E l . Since the cosets of I partition R, they determine an equivalence 
relation on R, by defining two elements of R to be equivalent if their difference is 
in I .  

In Chapter 1 we  used the notion of congruence modulo n to define the sets Zn , 
which we now know to be commutative rings . Since a - b (mod n) if and only if 
a - b is a multiple of n , this is precisely the equivalence relation determined by the 
co sets of the ideal nZ. 

In Section 4.3 ,  given an irreducible polynomial p(x ) , we used the notion of 
congruence modulo p (x) to construct a new field from the congruence classes , in 
which we could find a root of p (x ) . Again in this case, the congruence classes 
are the cosets of the principal ideal (p (x ) ) of F[x] , consisting of all polynomial 
multiples of p (x ) . 

You should keep these examples in mind as you become familiar with the coset 
notation for elements of R / I , when I is an ideal of a commutative ring R . 

5.3.4 Proposition. Let I be an ideal of the commutative ring R. The operation 
defined on the abelian group R/ I by setting 

(a + I) . (b + I) == ab + I , 

for a , b E R, is a binary operation. 

Proof To show that the given operation is well-defined, let a , b E R . If c E a + I 
and d E b + I ,  then by definition a - c E I and b - d E l . Multiplying a - c by b 
and b - d by c gives us elements that still belong to I .  Then using the distributive 
law and adding gives (ab - cb) + (cb - cd) == ab - cd, and this is an element of 
I ,  showing that cd E ab + I .  Thus the definition of the operation . is independent 
of the choice of representatives of the cosets , and so it is a well-defined operation 
on the factor group R / I . D 

Given any ideal, we can now construct afactor ring relative to the ideal . This 
parallels the construction (in Theorem 3 . 8 .5) of a factor group relative to a normal 
subgroup. 

5.3.5 Theorem. If I is an ideal of the commutative ring R, then R / I is a commutative 
ring under the operations definedfor a , b E R by 

(a + I ) + (b + I ) == (a + b) + I and (a + I) . (b + I) == ab + I . 
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Proof It follows from Theorem 3 . 8 .5 that Rj I is a group under the addition 
of congruence classes . Proposition 5 .3 .4 shows that multiplication of congruence 
classes is well-defined. To show that the distributive law holds, let a , b , c E R . 
Then 

(a + I ) . ( (b + I ) + (c + I) ) (a + I) . ( (b + c) + I) 
a (b + c) + I 
(ab + ac) + I 
(ab + I) + (ac + I) 
(a + I) . (b + I) + (a + I) . (c + I) . 

Note that we have used the definitions of addition and multiplication of cosets , 
together with the fact that the distributive law holds in R . 

Similar computations show that the associative and commutative laws hold for 
multiplication. The coset 1 + I is a multiplicative identity for R j I , and this obser
vation completes the proof that R j I is a commutative ring. D 

5.3.6 Definition. Let I be an ideal of the commutative ring R. The ring Rj I is 
called the factor ring of R modulo I . 

The most familiar factor ring is Zj nZ, for which we will continue to use the 
notation Zn . In this ring, multiplication can be viewed as repeated addition, and it 
is easy to show that any subgroup is an ideal . Thus we already know the diagram 
of ideals of Zn , in which ideals correspond to the divisors of n . Recall that in Z we 
have m I k if and only if mZ � kZ, and so the diagram of ideals of Zn corresponds 
to the diagram of all ideals of Z that contain nZ. As shown by the next proposition, 
the analogous result holds in any factor ring. 

5.3.7 Proposition. Let I be an ideal of the commutative ring R. 
(a) The natural projection n : R --+ Rj I defined by n (a) == a + I for all a E R 

is a ring homomorphism, and ker (n ) == I . 
(b) There is a one-to-one correspondence between the ideals of Rj I and ideals 

of R that contain I . The correspondence is defined as follows: to each ideal J of 
Rj I we assign the ideal n- l (J) of R; to each ideal J of R that contains I we assign 
the ideal n (J) of Rj I . 

Proof The parts of the proposition that involve addition follow directly from 
Proposition 3 .8 .7 .  To prove part (a) , the natural projection must be shown to preserve 
multiplication, and this follows directly from the definition of multiplication of 
congruence classes. 

To prove part (b) , we can use the one-to-one correspondence between subgroups 
that is given by Proposition 3 . 8 .7 .  We must show that this correspondence preserves 
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ideals . If J is an ideal of R that contains I ,  then it corresponds to the additive 
subgroup 

n (J)  == {a + I I a E J }  . 

For any element r+I  E R/ I and any element a+I  E n (J ) ,  we have (r+I ) (a+I )  == 
ra + I ,  and then ra + l E n (J)  since ra E J .  On the other hand, if J is an ideal 
of R/ I ,  then it corresponds to the subgroup 

n - 1 (J)  == {a E R I a + I E J }  . 

If r E R and a E n - 1 (J ) , then ra E n - 1 (J)  since ra + I  == (r + I ) (a + I ) E J .  D 

Example 5.3.3 (Q[x]/ (x2 - 2x + 1 )) . 

Let R == Q[x ] and let / == (x2 - 2x + 1 ) . Using the division algorithm, it is 
possible to show that the cosets of / correspond to the possible remainders 
upon division by x2 - 2x + 1 (see Proposition 4 .3 .3 ) .  Thus we only need to 
consider cosets of the form a +bx + / , for all a ,  b E Q. Since x2 - 2x + 1 E / , 
we can use the formula x2 + / == -1 + 2x + / to simplify products . This 
gives us the following formulas : 

(a + bx + /) + (e + dx + /) == (a + e) + (b + d)x + / 

and 

(a + bx + /) . (e + dx + /) == (a e - bd) + (be + ad + 2bd)x + / . 

By the previous proposition, the ideals of R / / correspond to the ideals of R that 
contain / .  Since Q[x] is a principal ideal domain, these ideals are determined 
by the divisors of x2 - 2x + 1 ,  showing that there is only one proper nontrivial 
ideal in R / / , corresponding to the ideal generated by x - I . 0 

Example 5.3.4 (Q[x , y]/ (y ) � Q[x ]). 
Let R == Q[x , y] , the ring of polynomials in two indeterminates with rational 
coefficients , and let / == (y ) . That is, / is the set of all polynomials that have y 
as a factor. In forming R / / we make the elements of / congruent to 0, and so in 
some sense we should be left with just polynomials in x. This is made precise 
in the following way : define ¢ : Q[x , y] --+ Q[x] by ¢ (f (x , y)) == f (x , 0) . 
It is necessary to check that ¢ is a ring homomorphism. Then it is clear that 
ker (¢) == (y ) , and so we can conclude from the fundamental homomorphism 
theorem for rings that R / / r-..J Q [x ] . 0 
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Example 5.3.5. 

Let ¢ : R --+ S be an isomorphism of commutative rings, let / be any ideal 
of R ,  and let J == ¢ (/) . We will show that R/ / is isomorphic to S / J .  To do 
this ,  let n be the natural projection from S onto S / J, and consider ¢ == n ¢. 
Then ¢ is onto since both n and ¢ are onto, and 

ker ( ¢ ) == {r E R I ¢ (r ) E J }  == / , 

so it follows from the fundamental homomorphism theorem for rings that R / / 
is isomorphic to S / J . 0 

To motivate the next definition, consider the ring of integers Z. We know that 
the proper nontrivial ideals of Z correspond to the positive integers , with nZ C mZ 
if and only if m i n . Euclid's lemma (Lemma 1 .2 .5) states that an integer p > 1 is 
prime if and only if it satisfies the following property: if p I ab for integers a ,  b, 
then either p I a or p I b. In the language of ideals, this says that p is prime if and 
only if ab E pZ implies a E pZ or b E pZ, for all integers a , b. 

Lemma 4.2 .8 gives a similar characterization of irreducible polynomials, stating 
that a polynomial p (x) E F [x]  is irreducible if and only if p(x) I f(x)g (x) implies 
p (x) I f(x) or p (x) I g (x ) . When formulated in terms of the principal ideal ( p (x) ) ,  
this shows that p (x) is irreducible over F if and only if f (x )g (x) E (p (x ) ) implies 
f(x) E (p (x) ) or g (x) E (p (x ) ) Thus irreducible polynomials play the same role 
in F[x ]  as do prime numbers in Z. 

The prime numbers in Z can be characterized in another way. Since a prime p 
has no divisors except ± p and ± 1 ,  there cannot be any ideals properly contained 
between pZ and Z. We refer to ideals with this property as maximal ideals . 

5.3.8 Definition. Let [ be a proper ideal of the commutative ring R. Then [ is said 
to be a prime ideal of R if for all a ,  b E R it is true that ab E [ implies a E [ or 
b E [ .  

The ideal [ is said to be a maximal ideal of R iffor all ideals J of R such that 
[ C J C R, either J == [ or J == R. 

Note that if R is  a commutative ring with 1 1= 0,  then R is  an integral domain if 
and only if the trivial ideal {OJ of R is a prime ideal . This observations shows that 
in Z the trivial ideal is a prime ideal that is not maximal . On the other hand, the 
characterization of prime and maximal ideals given in the next proposition shows 
that in a commutative ring any maximal ideal is also a prime ideal, since any field 
is an integral domain. 
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5.3.9 Proposition. Let I be a proper ideal of the commutative ring R. 
(a) The factor ring Rj I is afield if and only if I is a maximal ideal of R. 
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(b) The factor ring Rj I is an integral domain if and only if I is a prime ideal 
ofR. 

(c) If I is a maximal ideal, then it is a prime ideal. 

Proof (a) Since I is assumed to be a proper ideal of R, it does not contain 1 ,  and 
thus 1 + I 1= 0 + I in Rj I .  Therefore Proposition 5 .3 .2 implies that Rj I is a field if 
and only if it has no proper nontrivial ideals . Using the one-to-one correspondence 
between ideals given by Proposition 5 .3 .7 (b) , this occurs if and only if there are 
no ideals properly between I and R, which is precisely the statement that I is a 
maximal ideal . 

(b) Assume that R j I is an integral domain, and let a , b E R with ab E I .  
Remember that the zero element of R j I is the coset consisting of all elements of I .  
Thus in Rj I we have a product (a + I ) (b + I )  of cosets that is equal to the zero 
coset, and so by assumption this implies that either a + I or b + I is the zero coset. 
This implies that either a E I or b E l , and so I must be a prime ideal. 

Conversely, assume that I is a prime ideal. If a ,  b E R with (a+ /) (b+ I)  == 0+ I 
in Rj I ,  then we have ab E I ,  and so by assumption either a E I or b E l . This 
shows that either a + / == 0 + I or b + I == 0 + I, and so R j I is an integral domain. 

(c) This follows from (a) and (b) , since every field is an integral domain. 0 

Example 5.3.6 (Ring isomorphisms preserve prime (or maximal) ideals). 

Let ¢ : R --+ S be an isomorphism of commutative rings . The isomorphism 
gives a one-to-one correspondence between ideals of the respective rings, and 
it is not hard to show directly that prime (or maximal) ideals of R correspond 
to prime (or maximal) ideals of S. This can also be proved as an application 
of the previous proposition, since in Example 5 .3 .5 we observed that if / is 
any ideal of R, then ¢ (/) is an ideal of S with R/ / r-..J S /¢ (/ ) . It then follows 
immediately from Proposition 5 .3 .9 that / is prime (or maximal) in R if and 
only if ¢ (/ ) is prime (or maximal) in S. D 

We have already observed that in the ring Z, prime numbers determine maximal 
ideals . One reason behind this fact is that any finite integral domain is a field, 
which we proved in Theorem 5 . 1 . 9 .  It is also true that if F is a field, then irreducible 
polynomials in F[x] determine maximal ideals. The next proposition gives a general 
reason applicable in both of these special cases . 

5.3.10 Theorem. Every nonzero prime ideal of a principal ideal domain is maximal. 



258 CHAPTER 5. COMMUTATIVE RINGS 

Proof. Let P be a nonzero prime ideal of a principal ideal domain R,  and let J be 
any ideal with P C J C R. Since R is a principal ideal domain, we can assume that 
P == Ra and J == Rb for some elements a ,  b E R .  Since a E P ,  we have a E J ,  
and so there exists r E R such that a == r b .  This implies that r b E P ,  and so  either 
b E P or r E P . In the first case, b E P implies that J == P .  In the second case, 
r E P  implies that r == sa for some s E R, since P is generated by a .  This gives 
a == sab, and using the assumption that R is an integral domain allows us to cancel 
a to get 1 == s b. This shows that 1 E J, and so J == R .  D 

Example 5.3.7 (Ideals of F [x ] ). 

We can now summarize the infonnation we have regarding polynomials over 
a field, using a ring theoretic point of view. Let F be any field. The nonzero 
ideals of F[x ]  are all principal , of the form (f (x) ) ,  where f (x) is any polyno
mial of minimal degree in the ideal . The ideal is prime (and hence maximal) 
if and only if f (x ) is irreducible. If p (x) is irreducible, then the factor ring 
F [x ]/  (p (x) )  is a field. 0 

Example 5.3.8 (F [x ,  y ]  is not a principal ideal domain). 

To show that F [x , y] is not a principal ideal domain we will show that the 
conclusion of Theorem 5 .3 . 1 0 does not hold. The ideal P = { f (x ,  y) E 
F[x ,  y] I f (O, y) = O} is a prime ideal, since F[x ,  y ] /P r-..J F[y] . To see 
this, define ¢ : F [x ,  y] --+ F [y] by ¢ (f (x ,  y)) = f (O, y) ,  for all f (x ,  y) 
in F[x ,  y] . Then P is a nonzero prime ideal that is not maximal, since i t  is 
properly contained in the ideal M = { f (x ,  y) E F[x ,  y] I f (O, O) = OJ .  
Note that M i s  a maximal ideal since it i s  the kernel of the onto mapping () : 
F[x ,  y] --+ F defined by () (f (x ,  y) )  = f(O, 0) , for all f (x ,  y) E F[x ,  y] .  0 

Example 5.3.9 (Kernel and image of the evaluation mapping). 

Let F be a subfield of E, and for any element U E E define the evaluation 
mapping ¢u : F [x ]  --+ E by ¢u (f (x) )  = f eu) ,  for all f (x) E F[x ] .  We 
have already seen in Example 5 .2.6 that ¢u defines a ring homomorphism. 
Since ¢u (F[x]) is a subring of E, it follows from Theorem 5 . 1 . 8 that it must 
be an integral domain. By the fundamental homomorphism theorem for rings 
this image is isomorphic to F [x ]/  ker(¢u ) ,  and so by Proposition 5 . 3 .9, the 
kernel of ¢u must be a prime ideal . If ker (¢u ) is nonzero, then it follows from 
Theorem 5 .3 . 1 0 that it is a maximal ideal . By Proposition 5 . 3 .9, we know that 
F [x ]/  ker(¢u ) is a field, so it follows from the fundamental homomorphism 
theorem for rings that the image of ¢u is in fact a subfield of E. This fact 
will be very important in our study of fields in Chapter 6, where we denote 
¢u (F[x] )  by F (u ) .  0 
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We motivated the definition of a prime ideal by looking at the principal ideal 
generated by a prime number in Z and at the principal ideal generated by an irre
ducible polynomial in F [x ] .  These two examples, by themselves, probably would 
not provide sufficient motivation for the abstract definition. In both Z and F [x ] ,  
where F i s  a field, we have shown that each element can be  expressed as a product of 
primes or irreducibles, respectively. This is not true in general for all commutative 
rings. In fact, certain subrings of C which turn out to be important in number theory 
do not have this property. One of the original motivations for introducing the notion 
of an ideal (or "ideal number") was to be able to salvage at least the property that 
every ideal can be expressed as a product of prime ideals . 

EXERCISES: SECTION 5.3 

l . tGive a multiplication table for the ring Z2 [X ] /  (x2 + 1) . 

2 .  Give a multiplication table for the ring Z2 [x ]/ (x3 + x2 + x + 1 ) . 

3 . tLet R be the ring Q[x ] /  (x 3 + 2x2 - x - 3) . Describe the elements of R and give 
the formulas necessary to describe the product of any two elements . 

4. Give a multiplication table for the ring Z3 [x ] /  (x2 - 1 ) . 

5 .  Show that Q[x ] /  (x2 - 2) "v Q[x ]/  (x2 + 4x + 2) .  
Hint: Use Example 5 . 3 .5 and Exercise 8 of Section 5 .2. 

6. Let R = F[x ]  and let I be any ideal of R. 
(a) Prove that there is a unique monic polynomial f (x ) with I = (f (x) ) .  
(b) Prove that if I is a maximal ideal of R ,  then I = (p(x) )  for some monic irreducible 
polynomial p (x) . 

7 .  Show that the intersection of two ideals of a commutative ring is again an ideal . 

8 . Show that if R is a finite ring, then every prime ideal of R is maximal . 

9. Find a nonzero prime ideal of Z EB Z that is not maximal . 

10. Let P be a prime ideal of the commutative ring R .  Prove that if I and J are ideals 
of R and I n J c P, then either I C P or J C P .  

1 1 . Let R be  a commutative ring, with a E R. The annihilator of a is defined by 

Ann (a) = {x E R I xa = O} . 

Prove that Ann (a) is an ideal of R .  
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12 . Recall that an element of a commutative ring is said to be nilpotent if an = 0 for 
some positive integer n . (See Exercise 7 of Section 5 . 1 . ) 
(a) Show that the set N of all nilpotent elements of a commutative ring forms an ideal 
of the ring . 
(b) Show that R/ N has no nonzero nilpotent elements . 
(c) Show that N C P for each prime ideal P of R .  

1 3 . Let R be a commutative ring with ideals I ,  J .  Let 

I + J = {x E R I x = a + b for some a E I ,  b E J } . 

(a) Show that I + J is an ideal . 
t (b) Determine nZ + mZ in the ring of integers . 

14 . Let R be a commutative ring with ideals I ,  J .  Define the product of the two ideals 
by 

I J = {L:7= 1 ai bi I ai E I , bi E J, n E Z+ }  . 

(a) Show that I J is an ideal that is contained in I n J .  
(b) Determine (nZ) (mZ) in the ring of integers . 

1 5 . Let M = {f (x ,  y) E F[x ,  y] I f (O, O) = O} be the maximal ideal of F[x ,  y ] defined 
in Example 5 .3 . 8 . 
(a) Show that M = {s ex ,  y)x + t (x ,  y)y I s ex ,  y) , t (x , y) E F[x , y ] } .  
(b) Using the definition in Exercise 1 4, find M2 . 

16 . Let R == {m + n-Ji I m,  n E Z} and let I = {m + n-Ji I m,  n E Z and m is even } .  
(a) Show that I is an ideal of R .  

t (b) Find the well-known commutative ring to which R/  I i s  isomorphic. 
Hint : How many congruence classes does I determine? 

17. Let R be the set of all matrices [ � ! ]  over Q such that a = d and c = o. 
(a) Verify that R is a commutative ring. 
(b) Let I be the set of all such matrices for which a == d = O. Show that I is an ideal 
of R .  
(c) Use the fundamental homomorphism theorem for rings to show that R/ I � Q.  

1 8 . Let R be a commutative ring with ideals I ,  J such that I C J C R.  
(a) Show that J / I is an ideal of R/ I .  
(b) Show that the factor ring (R / I)  / (J  / I)  is isomorphic to R / J . 
Hint : Define a ring homomorphism from R/ I onto R/ J and apply the fundamental 
homomorphism theorem for rings .  
(c) Show that J / I is a prime (or maximal) ideal of R / I if and only if J is a prime 
(or maximal) ideal of R .  
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1 9 . Use Exercise 1 8  together with Proposition S .3 .9 to determine all prime ideals and all 
maximal ideals of Zn . 

20. In the ring Z[ i ]  of Gaussian integers (see Example S . 1 .S) let (p )  be the ideal generated 
by a prime number. Show that Z[i ]1  (p) has p2 elements, and has characteristic p. 

2 1 .  In the ring Z[i ] of Gaussian integers find necessary and sufficient conditions on 
integers m and n for the element m + ni to belong to the ideal ( 1 + 2i ) .  Use these 
conditions to detennine the ideal ( 1 + 2i )  n Z of Z. 

22. In the ring Z[i ] of Gaussian integers show that the ideal (S - i )  i s not a prime ideal. 
Hint: Show that Z[i ] 1  (S - i )  � Z26 by defining an onto ring homomorphism ¢ : 
Z � Z[i ] 1  ( S - i )  by ¢ (n ) == n + (S - i ) .  

23 . Let R be the set of all continuous functions from the set of real numbers into itself. 
In Exerci se 1 3 of Section S . I ,  we have shown that R is a commutative ring if the 
following formulas 

(J + g) (x ) == J (x) + g (x) and (J . g) (x) == J (x) g (x ) 

for all x ,  are used to define addition and multiplication of functions. Let a be a fixed 
real number, and let J be the set of all functions J (x ) E R such that J(a) == O. Show 
that J is a maximal ideal of R .  

24. Let J be the smallest ideal of Z[x ]  that contains both 2 and x .  Show that J i s  not a 
principal ideal . 

2S . Let R and S be commutative rings , let J be an ideal of R ,  and let J be an ideal of S. 
(a) Show that J EB J is an ideal of R EB S. 
(b) Show that (R EB S)/ (J EB J) � (RI J) EB (SI J ) .  
(c) Show that J EB J i s  a prime ideal of R EB S i f  and only i f  either J == R and J is a 
prime ideal of S, or else J is a prime ideal of R and J == S. 
(d) Show that if K is any ideal of R EB S, then there exists an ideal J of R and an 
ideal J of S such that K == J EB J .  

26. Let R be the set of all rational numbers min such that n i s  odd. 
(a) Show that R is a subring of Q. 
(b) Let 2k R == {min  E R i m i s  a multiple of 2k and n i s  odd} , for any positive 
integer k. Show that 2k R is an ideal of R .  
(c) Show that each proper nonzero ideal of R has the form 2k R, for some positive 
integer k. 
(d) Show that R 12k R is isomorphic to Z2k .  
(e) Show that 2R is the unique maximal ideal of R .  
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5.4 Quotient Fields 

In Section 5 . 1 we showed that any subring of a field is an integral domain. In this 
section we will show that any integral domain is isomorphic to a subring of a field. 
This can be done in such a way that the subring and field are very closely connected; 
the field contains no more elements than one would necessarily have in order for 
each element of the domain to have an inverse. 

The best example we can give is provided by considering the ring Z of integers 
as a subring of the field Q of rational numbers . Every rational number has the form 
min for integers m , n , with n :I O. Another way to say this is to observe that if q 
is any rational number, then there exists some nonzero integer n such that nq E Z, 
showing that Z and Q are closely related. This statement is false when Z is viewed 
as a subring of R, for example. 

We start with any integral domain D. (You may want to keep in mind the ring 
R[x J of polynomials with real coefficients .) We have information only about D and 
the operations defined on it, so we must be very careful not to make implicit assump
tions that are not warranted. The situation is something like that in constructing the 
complex numbers from the real numbers . At a naive level we can simply introduce 
a symbol i that does what we want it to do, namely, provide a root of the equation 
x2 + 1 == O. However, to give a completely rigorous development using only facts 
about the real numbers, we found it necessary to use the notion of a factor ring and 
work in R[x JI (x2 + 1 ) . 

To formally construct fractions with numerator and denominator in D we will 
consider ordered pairs (a , b) , where a is to represent the numerator and b is to 
represent the denominator. Of course, we need to require that b :I O. In Q, two 
fractions min and r Is may be equal even though their corresponding numerators 
and denominators are not equal . We can express the fact that min == r I s by 
writing ms == nr . This shows that we must make certain identifications within the 
set of ordered pairs (a , b) , and the appropriate way to do this is to introduce an 
equivalence relation . 

5.4. 1 Lemma. Let D be an integral domain, and let 

w == { (a , b) I a , b E D  and b :I O} . 

The relation r-v defined on W by (a , b) r-v (c , d) if ad == bc is an equivalence 
relation. 

Proof Given (a , b) E W we have (a , b) r-v (a , b) since ab == ba . The symmetric 
law holds since if (c , d) E W with (a , b) r-v (c , d) , then ad == bc, and so cb == da , 
showing that (c , d) r-v (a , b) . To show the transitive law, suppose that (a , b) � (c , d) 
and (c , d) r-v (u , v) for ordered pairs in W. Then we have ad == bc and cv == du , 
and so mUltiplying the first equation by v gives adv == bcv , while multiplying the 
second equation by b gives bcv == bdu . Thus we have adv == bdu , and since d is a 
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nonzero element of an integral domain, we can cancel it to obtain a v == bu , which 
shows that (a , b) r-v (u , v) . D 

5.4.2 Definition. Let D be an integral domain. The equivalence classes of the set 

{ (a , b) I a ,  b E D  and b :I O} 

under the equivalence relation defined by (a , b) r-v (c , d) if ad == bc will be denoted 
by [a , b] . 

The set of all such equivalence classes will be denoted by Q (D). 

Since our ultimate goal is to show that Q(D) is a field that contains a copy 
of D as a subring, we must decide how to define addition and mUltiplication of 
equivalence classes. Returning to Q, we have 

m p mq np mq + np 
- + - == - + - == ---n q nq nq nq 

With this as motivation, we define 

[a , b] + [c, d] == [ad + bc , bd] , 

since a and c represent the "numerators" of our equivalence classes , while b and d 
represent the "denominators ," and by analogy with Q the "numerator" and "denom
inator" of the sum should be ad + bc and bd, respectively. Similarly, since 

m p mp 
n q nq 

we define [a , b] . [c , d] == [ac , bd] . 

5.4.3 Lemma. Let D be an integral domain. Define binary operations + and · on 
Q(D) by 

[a , b] + [c, d] == [ad + bc , bd] and [a , b] . [c , d] == [ac, bd] , 

for [a , b] ,  [c, d] E Q (D). Then + and · are well-defined operations on Q (D). 

Proof Let [a , b] == [aI , bl] and [c , d] == [C' , d'] be elements of Q (D) . To show 
that addition is well-defined, we must show that 

[a , b] + [c, d] == [aI , b'] + [Cl , d'] ,  

or, equivalently, that 

[ad + bc, bd] == [a' d' + b' cl , b' d'] . 
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In terms of the equivalence relation on Q (D), this means that we must show that 

(ad + bc )b' d' == bd (a' d' + b' c') . 

We are given that ab' == ba' and cd' == dc' . Multiplying the first of these two 
equations by dd' and the second by bb' and then adding terms gives us the desired 
equation. 

In order to show that multiplication is well-defined, we must show that [ac , bd] == 
[a' c' , b'd'] . This is left to the reader, as Exercise 1 .  D 

5.4.4 Theorem. Let D be an integral domain. Then Q (D) is afield that contains 
a subring isomorphic to D. 

Proof Showing that the commutative and associative laws hold for addition is left 
as Exercise 2. Let 1 be the identity element of D .  For all [a , b] E Q (D) , we 
have [0 , 1 ]  + [a , b] == [a , b] ,  and so [0 , 1 ]  serves as an additive identity element. 
Furthermore, 

[-a , b] + [a , b] == [-ab + ba , b2] == [0 , b2] , 

which shows that [-a , b] is the additive inverse of [a , b] since [0 , b2] == [0 , 1 ] .  
Verifying the commutative and associative laws for multiplication is left as 

an exercise. The equivalence class [ 1 ,  1 ]  clearly acts as a multiplicative identity 
element. Note that we have [ 1 , 1 ]  == [d , d] for any nonzero d E D.  If [a , b] is 
a nonzero element of Q (D) , that is, if [a , b] :I [0, 1 ] ,  then we must have a :I 0. 
Therefore [b , a] is an element of Q (D) ,  and since [b , a] . [a , b] == [ab , ab] , we 
have [b , a] == [a , b ]- 1 . Thus every nonzero element of Q (D) is invertible, and so to 
complete the proof that Q (D) is a field we only need to check that the distributive 
law holds . 

To show that the distributive law holds, let [a , b] , [c, d] , and [u , v] be elements 
of Q (D) .  We have 

( [a , b] + [c , d] ) . [u , v] == [ (ad + bc)u , (bd) v] 

and 

[a , b] . [u , v] + [c, d] . [u , v] == [ (au) (dv) + (bv) (cu ) ,  (bv) (dv) ] . 

We can factor [v , v] out of the second expression, showing equality. 
Finally, consider the mapping ¢ : D � Q(D) defined by ¢ (d) == [d , I ] ,  

for all d E D . It is easy to show that ¢ preserves sums and products , and since 
¢ ( 1 )  == [ 1 ,  1 ] is the multiplicative identity of Q (D) ,  it follows that ¢ is a ring 
homomorphism. If [d , 1 ] == [0 , 1 ] ,  then we must have d == 0, which shows that 
ker (¢) == {OJ . By the fundamental homomorphism theorem for rings , ¢ (D) is a 
subring of Q (D) that is isomorphic to D .  D 
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5.4.5 Definition. Let D be an integral domain. The field Q (D) defined in Defini
tion 5.4. 2 is called thefield of quotients or field offractions of D. 

5.4.6 Theorem. Let D be an integral domain, and let ¢ : D � Q (D) be the ring 
homomorphism defined by ¢ (d) == [d , 1 ], for all d E D. 

Ife : D � F is any one-to-one ring homomorphismfrom D into afield F, then 
there exists a unique ring homomorphism 

e
: Q (D) � F that is one-to-one and 

satisfies 
e
¢ (d) == e (d), for all d E D. 

D 
¢ . Q(D) 

e� l e 
F 

Proof For [a , b] E Q (D) , define 
e
([a , b] ) == e (a)e (b) - l . Since b :I 0 and e is 

one-to-one, e (b) - 1 exists in F,  and the definition makes sense. We must show that e 
is well-defined. If [a , b] == [a' , b'] , then ab' == ba' , and applying e to both sides 

of this equation gives e (a)e (b') == e (b)e (a') since e is a ring homomorphism. Both 
e (b) - l and e (b') - l exist, so we must have e (a)e (b)- l == e (al)e (b') - l . 

The proof that 
e 

is a one-to-one ring homomorphism is left as an exercise. For 
any d E D, we have 

e
(¢ (d)) == 

e
([d , 1 ] ) == e (d)e ( l ) - l == e (d) , as required. 

To prove the uniqueness of
e

, suppose that 1/f : Q (D) � F with 1/f¢ (d) == e (d) 
for all d E D. It follows from the definition of ¢ that 1/f ([d , 1 ] ) == e (d) for all d E D. 
For any element [a , b] E Q (D) we have 

1/f ([a , 1 ] ) == 1/f ([a , b] [b , 1 ] ) == 1/f ([a , b] )1/f ( [b , 1 ] ) , 

and so substituting e (a) for 1/f ([a , 1 ] ) and e (b) for 1/f( [b , 1 ] ) gives us 

e (a ) == 1/f ([a , b])e (b) 

or 
1/f ([a , b] ) == e (a)e (b) - l , 

which completes the proof. D 

We have continued to use the notation [a , b] for elements of Q (D) in order to 
emphasize that equivalence classes are involved. From this point on we will use 
the more familiar notation alb in place of [a , b] . We identify an element d E D 
with the fraction dl 1 ,  and this allows us to assume that D is a subring of Q(D) . 
If b E D is nonzero, then l ib E Q (D) , and ( l ib) . (bl 1 ) == bib == 1 shows 
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that l ib == b- 1 , (where we have identified b and bl l ) . Thus we can also write 
alb == (al l ) . ( l jb) == ab- 1 , for a , b E D, with b :I O. 

5.4.7 Corollary. Let D be an integral domain that is a subring of afield F. If each 
element of F has the form a I b for some a , b E D, then F is isomorphic to the field 
of quotients Q (D) of D. 

Proof By Theorem 5 .4.6, the inclusion mapping e : D � F can be extended to a 
one-to-one ring homomorphism e :  Q (D) � F.  The condition that each element 
of F .Eas the form a I b for some a , b E D  is precisely the one necessary to guarantee 
that e is onto. 0 

Example 5.4. 1. 

Let D be the integral domain consisting of all fractions min E Q such that 
n is odd. (See Exercise 26 in Section 5 . 3 .) If alb is any element of Q such 
that gcd (a , b) == 1 ,  then either b is odd, in which case alb E D, or b is even, 
in which case a is odd and alb == 1 . (bla) - l , with bla E D. Applying 
Corollary 5 .4.7 shows that Q � Q (D) .  D 

Example 5.4.2 (Field of rational functions). 

If F is any field , then we know that the ring of polynomials F [x] is an integral 
domain. Applying Theorem 5 .4.4 shows that we can construct a field that 
contains F [x ] by considering all fractions of the form I (x) I g (x) , where 
I(x) , g (x ) are polynomials with g(x) =I- o. 
This field is called the field of rational functions in x, over the field F, and is 
denoted by F(x ) . Note that the elements of F(x) are no more functions than 
are the elements of the polynomial ring F[x ] . D 

5.4.8 Corollary. Any field contains a subfield isomorphic to Q or Zp' for some 
prime number p. 

Proof Let F be any field, and, as in Proposition 5 .2. 1 1 ,  let ¢ be the homomorphism 
from Z into F defined by ¢ (n)  == n · l . Ifker (¢) :1 {O } , then as in Proposition 5 .2 . l l , 
we have ker (¢) == pZ for some prime p, and so the image of ¢ is a subfield 
isomorphic to Zp . If ¢ is one-to-one, then by Theorem 5 .4.6 it extends to a one-to
one ring homomorphism from Q (the field of quotients of Z) into F. The image of 
this ring homomorphism is a subfield of F isomorphic to Q. 0 
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EXERCISES: SECTION 5.4 

Throughout these exercises, D will denote an integral domain, and Q (D) will denote 
its quotient field. 

1 .  Complete the proof in Lemma 5 .4 .3 , to show that mUltiplication of equivalence 
classes in Q (D) is well-defined. 

2. Show that the associative and commutative laws hold for addition in Q(D) . 
3 . Show that the associative and commutative laws hold for multiplication in Q(D) . 

4. Let ¢ : D � Q(D) be the mapping ¢ (d) � [d , 1 ]  defined in Theorem 5 .4 .4 . Show 
that ¢ is an isomorphism if and only if D is a field. 

5 . In Theorem 5 .4 .6 , verify that 8 is a one-to-one ring homomorphism. 

6. Let D} and D2 be integral domains , with quotient fields Q(D} ) and Q(D2) ,  respec
tively. Let (J : D}  � D2 be a ring homomorphism. 
(a) Prove that if (J is one-to-one, then there exists a ring homomorphism 8 : Q (D} ) � 
Q (D2) such that 8([d ,  1 ] ) � [(J (d) , 1 ]  for all d E D} . 
(b) Prove that if (J is not one-to-one, then it is impossible to find a ring homomorphism 
8 : Q(D} ) � Q(D2) that satisfies the conditions of part (a) . 

7 . tDetermine Q(D) for D � {m + n-Ji I m ,  n E Z} . (See Example 5 . 1 .6 . ) 
8. Let p be a prime number, and let D � {min 1 m , n E Z and p A' n} .  Verify that D 

is an integral domain and find Q(D) . 
9.tDetermine Q (D) for D � {m + n i l m ,  n E Z} C c.  
10 . Considering Z[x ]  as a subring of Q[x ] ,  show that both rings have the same quotient 

field. 

1 1 . Show that if P is a prime ideal of D, then D p � {alb E Q (D) I b tf. P } is an 
integral domain with D C Dp C Q(D) . 

1 2 . In the ring D p defined in Exercise 1 1 , let M � {alb E D p I a E Pl .  
(a) Show that M i s  an ideal of D p .  
(b) Show that D p I M � Q (R I P ) ,  and conclude that M i s  a maximal ideal of D p . 

1 3 . Let R be a commutative ring. A derivation on R is a function a : R � R such that 
(i) a (x + y) � a (x ) + a (y ) and (ii) a (xy) � a (x)y + x a (y) . Show that if a is a 
derivation on an integral domain D with quotient field Q (D) ,  then a can be extended 
to a derivation a of Q(D) by defining a(alb) � (ba (a) - aa (b) )lb2 for all a ,  b E D  
with b =I- O. 

14. Show that a : Q[x ]  � Q[x ]  defined by a (f (x) )  � f' ex) for all f (x) E Q[x]  is 
a derivation. Describe the derivation a defined on the quotient field of Q[x] (see 
Exercise 1 3) . 
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Notes 

The terminology for the structures we studied in this chapter apparently came origi
nally from an 1 897 paper by David Hilbert ( 1 862-1943). He used the name "number 
ring" for sets of the form {m + na I m ,  n E Z} , where a is a root of a quadratic 
polynomial with integer coefficients . The more general definition of a ring evolved 
over the next quarter of a century. 

Of course, earlier work had been done in specific contexts . In particular, there 
was a great deal of interest in determining whether or not a unique factorization 
theorem (similar to Theorem 1 .2 .7 and Theorem 4.2 .9) holds in various subsets of 
the complex numbers . This question was answered in the negative as early as 1 844. 
(See the introduction to Chapter 9 for further information.) 

Hilbert used ideal theory to reformulate and solve some problems in the theory of 
invariants , which deals with finding polynomials that remain fixed under particular 
sets of transformations. One of the problems was to find a finite set of invariants 
that could be used in determining all the rest, and this is done in the "Hilbert basis 
theorem." (See Exercise 9 of Section 9.2 for a statement of the theorem.) 

Hilbert also recognized that the theory of ideals was important in the study of 
algebraic curves . Even today, commutative ring theory has maintained very close 
connections with the field of algebraic geometry. As with much of abstract algebra, 
the general notions that we now use took their present form in the work of the great 
algebraist Emmy Noether ( 1 882-1 935) .  



Chapter 6 

FIELDS 

In Corollary 4.3 .9 we showed that for any polynomial over a field K ,  a larger field 
F can be constructed, which contains enough of the roots of the given polynomial 
so that the polynomial then "splits" into a product of linear polynomials with co
efficients in F. Thus the roots of any polynomial in K [x ] can always be found in 
some extension field of K .  

A polynomial in Q[x]  i s  said to be solvable by radicals if its roots can be 
obtained from the coefficients of the polynomial by allowing field operations and 
the extraction of nth roots , for various n .  In Chapter 8 we will answer the question 
of which polynomials in Q[x]  are solvable by radicals. To do this we must study the 
interplay between the field of coefficients of the polynomial and the field of roots of 
the polynomial . This chapter therefore studies field extensions and splitting fields . 

If F is an extension field of K ,  then F can be viewed as a vector space over 
K .  We will exploit the concept of the dimension of a vector space to show that 
several geometric constructions are impossible . These constructions were already 
studied by the Greeks in the fifth century B .C. It is impossible to find a general 
method to trisect an angle; given a circle, it is impossible to construct a square of 
the same area; and given a cube, it is impossible to construct a cube with double 
the given volume. The method of construction in each case is limited to using a 
straightedge and compass .  The points constructed at any stage of the procedure 
represent solutions of quadratic equations with coefficients from the smallest field 
containing the previously constructed numbers . We will show that any constructible 
number lies in an extension of Q whose dimension over Q is a power of 2, and thus 
to show that a particular number cannot be constructed, we only need to use a 
dimension argument. 

As a further application we will be able to give a complete list of all finite fields. 
Such fields are used in algebraic coding theory, which provides an approach to a 
problem encountered in the transmission of encoded data. When data is transmitted 
over telephone lines or via satellite connections, there is a substantial chance that 
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errors will occur. To make it possible to detect (and even correct) these errors, addi
tional information can be sent along. In the most naive approach, the entire message 
could simply be repeated numerous times . The real task is to find efficient algo
rithms for encoding, and one successful algorithm involves the use of polynomials 
over finite fields . 

6.1 Algebraic Elements 

We recall from Chapter 5 that a commutative ring (with 1 i= 0) is called afield if 
every nonzero element is invertible. (See Definition 4. 1 . 1 for a complete list of the 
properties of a field.) Thus the operations of addition, subtraction, multiplication, 
and division (by nonzero elements) are all possible within a field. We should also 
note that the elements of a field form an abelian group under addition, while the 
nonzero elements form an abelian group under multiplication. This observation 
allows us to make use of the results we have proved for groups in Chapter 3 .  

Our primary interest i s  to study roots of polynomials . This usually involves the 
interplay of two fields : one that contains the coefficients of the polynomial, and 
another that contains the roots of the polynomial . In many situations we will start 
with a known field K ,  and then construct a larger field F .  At this point we need to 
recall Definition 4.3 . 1 .  The field F is said to be an extension field of the field K if 
K is a subset of F which is a field under the operations of F. This is equivalent 
to saying that K is a subfield of F .  In this context K is often called the base field. 
Note that if K is a subfield of F, then the additive and multiplicative groups that 
determine K are subgroups of the corresponding additive and multiplicative groups 
of F. 

If F is an extension field of the base field K, then those elements of F that are 
roots of nonzero polynomials in K [x ] will be called algebraic over K .  If u E F is a 
root of some nonzero polynomial f (x) E K [x ] ,  then let p (x) have minimal degree 
among all polynomials of which u is a root. Using the division algorithm, we can 
write f (x) == q (x )p (x) + r ex ) , where either r ex) == 0 or deg(r (x)) < deg(p (x ) ) .  
Solving for r ex) and substituting u shows that u i s  a root of r ex) ,  which violates the 
definition of p (x ) unless r (x ) == 0, and so we have shown that p (x ) is a divisor of 
f (x ) .  

With the notation above, we next observe that p (x) must be  an irreducible poly
nomial . To show this , suppose that p (x) == g (x) h (x)  for polynomials g (x) , h ex) in 
K [x]  with deg(g (x)) < deg(p (x))  and deg(h (x)) < deg(p(x) ) .  Then substituting 
u gives g (u)h (u ) == p (u) == 0, and so either g (u) == 0 or h (u ) == 0 since these 
are elements of F, which is a field. This contradicts the definition of p (x) as a 
polynomial of minimal degree that has u as a root. 

These facts about the polynomials that have a given element as a root can be 
proved in another way by using the concept of an ideal from Chapter 5. We will 
show in the proof of Proposition 6. 1 .2 that if F is an extension field of K ,  and u E F, 
then {f (x) E F[x] I feu) == O} i s  an ideal of the ring F [x ] .  The arguments in 
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the preceding paragraphs can be expressed more neatly by using results from ring 
theory. This approach also lends itself to more powerful applications, and so we 
will adopt the ring-theoretic point of view. 

Recall that the nonzero ideals of F[x] are all principal, of the form (f (x) ) == 
{q (x )f (x) I q (x) E F[x ] } , where f (x) is any polynomial of minimal degree in the 
ideal (see Example 5 . 3 .7) . A nonzero ideal is prime (and hence maximal) if and 
only if its generator f (x) is irreducible. Furthermore, if p (x) is irreducible, then 
the factor ring F[x]/ (p (x ) ) is a field. 

6.1 .1  Definition. Let F be an extension field of K and let u E F. If there exists a 
nonzero polynomial f (x ) E K [x] such that f (u) == 0, then u is said to satisfy the 
polynomial f(x) and to be algebraic over K. 

If u does not satisfy any nonzero polynomial in K [x], then u is said to be 
transcendental over K. 

The familiar constants e and n are transcendental over Q. These are not easy 
results, and the analytic proofs lie beyond the scope of this book. (Proofs can be 
found in the book by I. Niven called Irrational Numbers.) That e is transcendental 
was proved by Charles Hermite ( 1 822-1 882) in 1 873, and the corresponding result 
for n was proved by Ferdinand Lindemann ( 1 852- 1939) in 1 882. 

6.1.2 Proposition. Let F be an extension field of K, and let u E F be algebraic 
over K. Then there exists a unique monic irreducible polynomial p (x) E K [x] such 
that p (u) == O. It is characterized as the monic polynomial of minimal degree that 
has u as a root. Furthermore, if f(x) is any polynomial in K [x ] with feu) == 0, 
then p (x) I f (x) . 

Proof Let I be the set of all polynomials f (x) E K [x ] such that f (u) == O. It 
is easy to see that I is closed under sums and differences, and if f (x ) E I , then 
g (x) f (x) E I for all g (x) E K [xl Thus I is an ideal of K [x ] , and so I == ( p (x ) ) for 
any nonzero polynomial p (x) E I that has minimal degree. If f (x ) , g (x) E K [x] 
with f (x)g (x) E I , then we have f (u )g (u) == 0,  which implies that either f eu) == 0 
or g (u) == 0, and so we see that I is a prime ideal . This implies that the unique 
monic generator p (x) of I must be irreducible. Finally, since I == (p (x) ) ,  we have 
p (x) I f(x) for any f (x) E I .  D 

6.1.3 Definition. Let F be an extensionfield of K, and let u be an algebraic element 
of F. The monic polynomial p (x ) of minimal degree in K [x] such that p (u) == 0 is 
called the minimal polynomial of u over K. The degree of the minimal polynomial 
ofu over K is called the degree ofu over K. 
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Example 6.1.1 (-J2 has degree 2 over Q). 

Considering the set of real numbers R as an extension field of the set of rational 
numbers Q, the number ../2 E R has minimal polynomial x2 - 2 over Q, and 
so it has degree 2 over Q. D 

Example 6.1.2 (� 
has degree 2 over Q(  -J2)). 

Recall that Q(.J2)) == {a + b../2 I a, b E Q} was shown to be an extension 
field of Q in Example 4. 1 . 1 .  Considering R as an extension field of Q( ../2) , 
the number � E R has minimal polynomial x2 - ../2 over Q( ../2), and so it 
has degree 2 over Q(../2) .  
We note that � has degree 4 over Q , since Eisenstein's criterion shows that 
x4 - 2 is irreducible over Q, and so it is the minimal polynomial of � over 
Q. The minimal polynomial over Q and the minimal polynomial over Q(../2) 
are related since x2 - ../2  is a factor of x4 - 2 in Q(../2) [x] . D 

Example 6.1.3 (-J2 + y'3 has degree 4 over Q). 

In this example we will compute the minimal polynomial of ../2 + ,J3 over 
Q. If we let x == ../2 + ,J3, then we must find a nonzero polynomial with 
rational coefficients that has x as a root. We begin by rewriting our equation 
as x - ../2 == ,J3. Squaring both sides gives x2 - 2../2x + 2 == 3. Since we 
still need to eliminate the square root to obtain coefficients over Q, we can 
again rewrite the equation to obtain x2 - 1 == 2../2x. Then squaring both 
sides and rewriting the equation gives x4 - 10x2 + 1 == O. 
To show that x4 - 10x2 + 1 is the minimal polynomial of ../2 + ,J3 over 
Q, we must show that it is irreducible over Q. It is easy to check that there 
are no rational roots , so it could only be the product of two quadratic polyno
mials, which by Theorem 4.4 .5 can be assumed to have integer coefficients . 
Unfortunately, Eisenstein 's irreducibility criterion cannot be applied, and so 
we must try to verify directly that the polynomial is irreducible over Q. A 
factorization over Z of the form 

X4 - 10x2 + 1 == (x 2 + ax + b) (x2 + ex + d) 

leads to the equations a + e == 0, b + ae + d == - 10, ad + be == 0, and 
bd == 1 .  Substituting for e in the second equation, we get a2 == b + d + 10. 
Either b == d == 1 ,  and a2 == 1 2 , or b == d == - 1 , and a2 == 8 , a contradiction 
in either case since a E Z. We conclude that x4 - 1 Ox2 + 1 is irreducible over 
Q, and so it must be the minimal polynomial of ../2 + ,J3 over Q. D 
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In a field F, the intersection of any collection of subfields of F is again a 
subfield. In particular, if F is an extension field of K and S is a subset of F, then the 
intersection of all subfields of F that contain both K and S is a subfield of F .  This 
intersection is contained in any subfield that contains both K and S. This guarantees 
the existence of the field defined below. 

6.1.4 Definition. Let F be an extension field of K, and let u } ,  U 2, . . .  , Un E F. 
The smallest subfield of F that contains K and u 1 ,  u2 , . . .  , Un will be denoted by 
K (U I , U2 , . . .  , un ) .  It is called the extensionfield of K generated by U I , U 2 , . . .  , Un . 
Alternatively, K (U I , U2 , . . .  , un ) is called the extension field of K defined by ad-
joining U I , U2 , . . .  , Un to K. 

If F == K (u ) for a single element U E F, then F is said to be a simple extension 
of K. 

If F is an extension field of K,  and U 1 , u2 , . . .  , un E F, then i t is possible to 
construct K (u 1 ,  U2 , . . .  , Un ) by adjoining one element U i at a time. That is, we first 
construct K (U I ) , and then consider the smallest subfield of F that contains K (U I ) 
and U2 . This would be written as K (U I ) (U2) , but it is clear from the definition of 
K (u 1 ,  U2) that the two fields are equal . This procedure can be repeated to con
struct K (u 1 ,  U2 , . . .  , Un ) . The next proposition describes the adjunction of a single 
element. 

6.1.5 Proposition. Let F be an extension field of K, and let U E F. 
(a) If u  is algebraic over K, then K (u) r-v K [x]/ (p(x) ) , where p (x) is the 

minimal polynomial ofu over K. 

(b) If U is transcendental over K, then K (u ) r-v K (x ), where K (x ) is the quotient 
field of the integral domain K [x] . 

Proof Define CPu : K [x ] � F by CPu (f (x)) == feu ) , for all polynomials f(x) E 
K [x ] .  This defines a ring homomorphism, and ker (cpu ) is the set of all polynomials 
f (x) with f (u) == O. The image of CPu is a subring of F consisting of all elements 
of the form ao + a l U + . . . + anun , and it must be contained in every subring of F 
that contains K and u .  In particular, the image of CPu must be contained in K (u ) . 

(a) If u is algebraic over K,  then ker (cpu ) == (p (x) ) ,  for the minimal polynomial 
p (x) of u over K .  In this case the fundamental homomorphism theorem for rings 
implies that the image of CPu is isomorphic to K [x]/ (p(x ) ) , which is a field since 
p(x) is irreducible. But then the image of CPu must in fact be equal to K (u ) , since 
the image is a subfield containing K and u .  

(b) If u is transcendental over K,  then ker (cpu ) == {O} , and so the image of 
CPu is isomorphic to K [x ] . Since F is a field, by Theorem 5 .4.6 there exists an 
isomorphism () from the field of quotients of K [x ] into F .  Since every element of 
the image of () is a quotient of elements that belong to K (u ) ,  it follows that this 
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image must be contained in K (u ) .  Then since () (Q (K [x]) ) == () (K (x))  is a field 
that contains u, it must be equal to K (u) .  D 

To help understand the field K (u ) ,  it may be useful to approach its construction 
from a more elementary point of view. Given an extension field F of K and an 
element u E F, any subfield that contains K and u must be closed under sums and 
products , so it must contain all elements of the form ao + al u + . . .  + anun , where 
ai E K for ° < i < n .  Furthermore, since it must be closed under division, it must 
contain all elements of the form 

ao + a l u + . . .  + anun 
bo + b i u + . . .  + bm um 

such that the denominator is nonzero. The set of all such quotients can be shown to 
be a subfield of F, and so it must be equal to K (u ) .  

If u i s  algebraic of degree n over K ,  let the minimal polynomial of u over 
K be p (x)  == Co + C I X + . . .  + cnxn . Since Co + C I U + . . .  + cnun == 0, we 
can solve for un and obtain a formula that allows us to reduce any expression 
f h f m ' I '  I 2 n- I d o t e orm ao + a I u + . . . + am u to one Invo vlng on y u ,  u , . . .  , u an 

elements of K .  Given any expression of the form ao + al u + . . .  + an_ I Un- I , we 
let f (x) be the corresponding polynomial ao + a l x + . . .  + an_ I Xn- i . If f (x )  
i s  nonzero, then i t  must be  relatively prime to p (x ) since p (x) i s  irreducible and 
deg(f (x)) < deg(p (x) ) .  Thus there exist polynomials g (x)  and q (x) such that 
f (x)g(x) + p (x)q (x ) == 1 .  Substituting u gives f (u)g (u) == 1 since p (u) == 0, 
and so g (u) == I I f eu) .  Thus the denominators can be eliminated in our description 
of K (u ) .  We conclude that when u is algebraic over K of degree n ,  each element of 
K (u) has the form ao + a l u + . . .  + an_ I Un- I for elements ao , aI , . . .  , an- I E K .  

Example 6.1.4 (Q( y'2) r-v Q[x]1 (x2 - 2)). 

In the light of Example 6. 1 . 1  and Proposition 6. 1 .5 (a) , we can improve the 
result in Example 5 .2 . 1 0, since we now know that the kernel of the evaluation 
mapping ¢ : Q[x] � R defined by -J2 is the ideal (x2 - 2) . 0 

Example 6.1 .5 (Computations in Q( � )). 
We can let u be any root of the polynomial x3 - 2, since the computations will 
be the same as for u == �. The extension field Q(u) of Q is isomorphic to 
the factor ring Q[x ]1 (x3 - 2), and so computations can be done in either field. 
For example, let us compute ( 1  + u2)- I . In Q(u) we can set up the equation 
( 1  + u2) (a + bu + cu2) == 1 .  Using the identities u3 == 2 and u4 == 2u to 
multiply out the left-hand side, we obtain the equations a + 2b == 1 ,  b+ 2c == 0, 
and a + c == 0. These lead to the solution a == 1 /5 , b == 2/5 , and c == - 1 /5 . 
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On the other hand, if we let (x 3 - 2) == / ,  then to find the multiplicative inverse 
of the coset 1 + x2 + / in Q[x ]/ / ,  we can use the Euclidean algorithm to solve 
for 

gcd (x2 + 1 ,  x3 - 2) . 
We obtain x3 - 2  == x (x2 + 1 ) - (x +2) and then x2 + 1 == (x - 2) (x +2) + 5 . 
Solving for the linear combinations that give the greatest common divisor 
yields the equation ( 1 2 2 1 ) 2 ( 1 2 ) 3 1 == - -x + -x + - (x + 1 ) + -x - - (x - 2) . 5 5 5 5 5  

Thus 1 + / == ( 1  + x2 + / )  - + -x - -x2 + / and so we can use the 
( 1 2 1 ) 
2 5 5 

isomorphism to obtain the same answer we got previously : 

( 2) - 1 1 2 1 2 1 + U == 
S 
+ 

S
U -

S
U . D 
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Because of its importance in our current discussion, we recall the statement and 
proof of Kronecker' s theorem. We could now add the following information to the 
statement of the theorem: if f (x) is irreducible, then it is the minimal polynomial 
for u over K . 

4.3.8. Theorem (Kronecker) Let K be a field, and let f (x) be any nonconstant 
polynomial in K [x ] . Then there exists an extension field F of K and an element 
u E F such that feu) == o. 

Proof Recall that the extension field F is constructed as K [x] / (p (x ) ) , where p (x) 
is an irreducible factor of f (x) .  Then K is viewed as isomorphic to the subfield 
consisting of all cosets of the form a + (p (x ) ) , where a E K . The element u is the 
coset determined by x , and it follows that feu) == o.  D 

EXERCISES: SECTION 6.1 

1 .  Show that the following complex numbers are algebraic over Q. 
t ea) ,J2 
(b) In, for n E Z+ 

t (c)
�

+
� 

(d) 
)
2 + � 

t ee) (- 1 + �i)/2 
(f) � + ,J2  
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2. Let F be an extension field of K ,  and let u be a nonzero element of F that is algebraic 
over K . Show that u - I is also algebraic over K . 

3 . Suppose that u is algebraic over the field K , and that a E K . Show that u + a is 
algebraic over K , find its minimal polynomial over K, and show that the degree of 
u + a over K is equal to the degree of u over K . 

4 .  Show that ,J3 � Q(,J2) . 
5 . (a) Show that f (x) == x3 + 3x + 3 is irreducible over Q. 

t (b) Let u be a root of f (x) . Express u- I and ( 1  + u) - I in the form a + bu + cu2 , 
where a ,  b, C E Q. 

6. Show that the intersection of any collection of subfields of a given field is again a 
subfield. 

7. Let F == K (u) , where u is transcendental over the field K . If E is a field such that 
K c E C F, then show that u is algebraic over E.  

8 . Let F be an extension field of K. 
(a) Show that F i s  a vector space over K .  
(b) Let u E F .  Show that u is algebraic over K if and only if the subspace spanned 
by { I ,  u , u2 , . . .  } is a field. 

9. Let F be an extension field of K . If u E F is transcendental over K , then show that 
every element of K (u) that is not in K is also transcendental over K . 

1 0. Let u and r be positive real numbers , with u i=- 1 .  It follows from a famous theorem 
of Gelfand and Schneider that if r is irrational and both u and r are algebraic over 
Q, then ur must be transcendental over Q. You may use this result to show that the 
following numbers are transcendental over Q. 

(a) n � 

(b) n � + 7  

1 1 . Show that there exist irrational numbers a ,  b E R such that ab is rational . 

1 2. Assuming that 7r is transcendental over Q, prove that either 7r + e or 7r . e is irrational . 

6.2 , Finite and Algebraic Extensions 

If F is an extension field of K ,  then multiplication in F defines a scalar multiplica
tion, if we consider the elements of K as scalars and the elements of F as vectors . 
It is easy to check that the necessary axioms hold for this scalar multiplication, and 
since F is an abelian group under addition, we see that F is a vector space over K .  
This fact is worth formally recording as a proposition. 
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6.2.1 Proposition. If F is an extensionfield of K, then F is a vector space over K. 

Knowing that an extension field is a vector space over the base field allows us to 
make use of the concept of the dimension of a vector space. (If you need to review 
results on dimension, see Section A.7 of the appendix.) 

6.2.2 Proposition. Let F be an extension field of K and let u E F be an element 
algebraic over K . If the minimal polynomial of u over K has degree n, then K (u) 
is an n-dimensional vector space over K. 

Proof Let p (x) == Co + C I X + . . .  + cnxn be the minimal polynomial of u over 
K. We will show that the set B == { I ,  U , u2 , . . .  , un- I } is a basis for K (u) over K . 
By  Proposition 6 . 1 .5 ,  K (u) r-v K [x]/ (p (x) ) ,  and since each coset of K [x]/ (p (x ) ) 
contains a unique representative of degree less than n , it follows from this iso
morphism that each element of K (u) can be represented uniquely in the form 
ao 1 + al u + . . .  + an_ I un- l . Thus B spans K (u ) , and the uniqueness of repre
sentations implies that B is also a linearly independent set of vectors . D 

6.2.3 Definition. Let F be an extensionfield of K. If the dimension of F as a vector 
space over K is finite, then F is said to be afinite extension of K. 

The dimension of F as a vector space over K is called the degree of F aver K, 
and is denoted by [F : K ]. 

In the next proposition, by using the notion of the degree of an extension, we 
are able to give a useful characterization of algebraic elements , which implies, in 
particular, that every element of a finite extension must be algebraic .  After working 
through Example 6 . 1 .3 ,  the observant reader will have asked the question of whether 
the sum of two algebraic elements is always algebraic. The machinery that we are 
developing will let us get a handle on this not so innocent question . 

6.2.4 Proposition. Let F be an extension field of K and let u E F. The following 
conditions are equivalent: 

(1) u is algebraic over K; 
(2) K (u ) is a finite extension of K; 
(3) u belongs to afinite extension of K. 

Proof It i s  clear that ( 1 ) implies (2) and (2) implies (3) .  To prove (3) implies 
( 1 ) , suppose that u E E, for a field E with K C E and [E : K] == n . The set 
{ I ,  U , u2 , • . .  , un } contains n + 1 elements , and these cannot be linearly independent 
in an n-dimensional vector space . Thus there exists a relation ao +a 1 u + . . .  +an Un == 
o with scalars ai E K that are not all zero. This shows that u is a root of a nonzero 
polynomial in K [x] . D 
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Counting arguments often provide very useful tools. In case we have extension 
fields K C E C F, we can consider the degree of E over K and the degree of F 
over E.  The next theorem shows that there is a very simple relationship between 
these two degrees and the degree of F over K .  Theorem 6.2 .5 will play a very 
important role in our study of extension fields . 

6.2.5 Theorem. Let E be a finite extension of K and let F be a finite extension of 
E. Then F is afinite extension of K, and 

[F : K ] == [F : E] [E : K] . 

Proof Let [F : E] == n and let [E : K ] == m .  Let U I ,  U2 , . . .  , Un be a basis for F 
over E and let V I , V2 , . . .  , Vm be a basis for E over K .  We claim that the set B of 
nm products Ui Vj (where 1 < i < n and 1 < j < m) is a basis for F over K .  

We must first show that B spans F over K .  If U i s  any element of F, then 
U == L7=I ai U i for elements ai E E .  For each element ai we have ai == L7= I cij V j , 
where Cij E K .  Substituting gives U == L7=I L7= I Cij Vj U i , and so B spans F over 
K .  

To show that B is a linearly independent set, suppose that L i , j Cij V j U i == 0 for 
some linear combination of the elements of B, with coefficients in K .  This expres-
sion can be written as L7=1 (LJ= l Cij Vj) Ui . Since the elements U l , U2 , . . · , Un 
form a basis for F over E,  each of the coefficients L7=I cij v j (which belong to E) 
must be zero . Then since the elements V I , V2 , . . .  , Vm form a basis for E over K, 
for each i we must have cij == 0 for all j .  D 

As illustrated by the next example, the central idea used in the proof of Theo
rem 6.2 .5 is often useful in finding a basis for a field extension . 

Example 6.2.1 ( [Q( y'3, y'2) : Q] == 4). 

Consider the fields Q c Q(J2) c Q(,J3, J2) . We showed in Example 6. 1 . 1  
that [Q( J2) : Q] == 2, so to apply Theorem 6.2 .5 we only need to find 
[Q(,J3, J2) : Q(J2) ] . To compute [Q(J2, ,J3) : Q(J2) ] ' we need to show 
that x2 - 3 is irreducible over Q( J2) , in which case it will be the minimal 
polynomial of ,J3 over Q( J2) . The roots ±,J3 of the polynomial do not 
belong to Q( J2) (see Exercise 4 of Section 6. 1 ) . The desired conclusion now 
follows from Theorem 6.2 .5 . 
To find a basis for Q(,J3, J2) over Q, we note that { I ,  J2} i s  a basis for 
Q(J2) over Q, and { 1 , ,J3} is a basis for Q(,J3, J2) over Q(J2) .  Taking all 
possible products of these basis elements gives us the basis { I ,  J2, ,J3, ,J6} 
for Q(,J3, J2) over Q. D 
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Example 6.2.2 ( [Q (,J2 + ,J3) : Q] == 4). 

In Example 6. 1 .3 we showed that .J2 + J3 has degree 4 over Q by showing 
that it has the minimal polynomial x4 - 1 Ox2 + 1 .  The previous theorem can be 
used to give an alternate proof, using the fact that Q( .J2+J3) == Q(.J2, J3) . 
To show that the two field extensions are equal, we first observe that Q(.J2 + 
J3) S; Q(.J2, J3) , since we have .J2 + J3 E Q(.J2, J3) and the field 
Q(.J2 + J3) is defined by the property that it contains .J2 + J3 and is 
contained in any extension field that contains Q and .J2 + J3. On the other 
hand, (J3 - .J2) (J3 + .J2) == 1 ,  and so J3 - .J2 E Q(J3 + .J2) since 
it is the multiplicative inverse of J3 + .J2. Because J3 == ( ( J3 + .J2) + 
(J3 - .J2))/2, it follows that J3, .J2  E Q(.J2 + J3) , and so we also have 
Q(.J2, J3) c Q(.J2 + J3). 
It now follows from Example 6.2. 1 that .J2 + J3 has degree 4 over Q. This 
argument using degrees shows that any monic polynomial of degree 4 that has 
.J2 + J3 as a root must be its minimal polynomial. 
In contrast to the basis found in Example 6.2. 1 ,  we note that the basis for 
Q( .J2+J3) over Q produced by Proposition 6.2 .2 would consist of the powers 
of .J2 + J3. This yields the basis { 1 , .J2 + J3, 5 + .j6, 1 1 .J2 + 9J3} .  D 
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6.2.6 Corollary. Let F be a finite extension of K. If U E F, then the degree of U 
over K is a divisor of [F : K]. 

Proof If u E F, then [F : K] == [F : K (u) ] [K (u) : K] . D 

Example 6.2.3 (Irreducible polynomials over R have degree 1 or 2). 

U sing Corollary 6.2.6 we can give another proof of Theorem 4.4. 1 2. Suppose 
that f (x) E R[x]  is irreducible and has positive degree. By the fundamental 
theorem of algebra there is a root u of f (x ) in C, and its degree is a divisor 
of [C : R] == 2. This implies that f (x) has degree 1 or 2. D 

6.2.7 Corollary. Let F be an extension field of K, with algebraic elements 

Then the degree of K (u I , U2 , . . . , Un ) over K is at most the product of the degrees 
ofui over K, for 1 < i < n. 

Proof We give a proof by induction on n. By Proposition 6.2 .2 ,  the result is 
true for n == 1 .  If the result is assumed to be true for the case n - 1 ,  then let 
E == K (U I , U2 , . . .  , Un- I ) . Since 

K (U I , U2 , · · · , Un- I , Un ) == E(un ) , 
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the desired conclusion will follow from the equality 

[E (un ) : K] == [E (un ) : E] [E : K] , 

if we can show that [E (un ) : E] is at most the degree of Un over K .  Now the 
minimal polynomial of Un over K is in particular a polynomial over E, and thus the 
minimal polynomial of Un over E must be a divisor of it. Applying Proposition 6.2 .2 
completes the proof. D 

Example 6.2.4 ([Q( 4'2, v'2) : Q] == 6). 

Since .J2 has degree 2 over Q, and -n has degree 3 over Q, it follows from 
Corollary 6.2 .7 that [Q( -n, .J2) : Q] ::s 6. On the other hand, Corollary 6.2 .6 
implies that [Q ( -n, .J2) : Q] is divisible by both 2 and 3 , so we must have 
[Q( -n, .J2) : Q] = 6. D 

It is important to note that the inequality in Corollary 6.2.7 can be a strict 
inequality, as illustrated by the following example. 

Example 6.2.5 ([Q(�, v'2) : Q] == 4). 

Since .J2 = (�)2 E Q(�) ,  to show that [Q(�, .J2) : Q] = 4] we only 
need to note that � has degree 4 over Q. D 

6.2.8 Corollary. Let F be an extensionfield of K. The set of all elements of F that 
are algebraic over K forms a subfield of F. 

Proof If u , v are algebraic elements of F, then K(u ,  v) � K(u) � K, and since 
[K (u , v) : K (u) ] and [K (u) : K] are finite, it follows from Theorem 6.2 .5 that 
[K (u ,  v) : K] is finite. Since u + v , u - v, and u v all belong to K(u , v) , these 
elements are algebraic by Proposition 6.2.4. The same argument applies to u/v , if 
v =I=- O. D 

6.2.9 Definition. An extension field F of K is said to be over K if each element of 
F is algebraic over K. 
6.2.10 Proposition. Every finite extension is an algebraic extension. 

Proof This follows immediately from Proposition 6.2 .4. D 

The following example shows that an algebraic extension need not be a finite 
extension. 
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Example 6.2.6 (Algebraic numbers). 

Let Q be the set of complex numbers U E C such that u is algebraic over Q. 
Then Q is a subfield of C by Corollary 6.2 .8 , called the field of algebraic 

numbers. By definition, Q is an algebraic extension of Q. 
On the other hand, we showed in Corollary 4.4.7 that for any prime p the 
polynomial 1 + x + . . .  + xp-2 + xp- 1 is irreducible over Q.  The roots of 
this polynomial exist in C (they are the primitive pth roots of unity) and thus 
Q contains algebraic numbers of arbitrarily large degree over Q, which shows 
that it cannot have finite degree over Q. Thus Q is an algebraic extension of 
Q, but not a finite extension . D 
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6.2.1 1 Proposition. Let F be an algebraic extension of E and let E be an algebraic 
extension of K. Then F is an algebraic extension of K. 

Proof If F i s  algebraic over E, then any element U E F must satisfy some nonzero 
polynomial f(x) == ao + a lX + . . . + anxn over E. Since E is not necessarily a 
finite extension of K, we consider the smaller extension K (ao , a I , . . .  , an ) ,  which 
is a finite extension of K since each element ai is algebraic over K , for 0 < i < n . 
Because u i s  algebraic over K (ao , a I , '  . .  ' an ) , it follows that K(ao , a I , . . .  , an , u ) 
i s  a finite extension of K , and thus u i s  algebraic over K by Proposition 6 .2.4. D 

The following diagram illustrates the proof of Proposition 6.2 . 1 1 . 

Figure 6.2. 1 :  

F 

I �  

EXERCISES: SECTION 6.2 

1 .  Find the degree and a basis for each of the given field extensions . 
t ea) Q(-J3) over Q 
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(b) Q(,j3, -J"7) over Q 
t (c) Q(,j3 + -J"7) over Q 
(d) Q(�, �) over Q 

t ee) Q(� + �) over Q 
(f) Q (w) over Q, where w = (- 1 + ,j3i )/2 
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2. Find the degree and a basis for each of the given field extensions . 

(a) Q(,j3, ffi) over Q (-J"7) 

(b) Q(,j3 + -J"7) over Q (-J"7) 

(c) Q(,j3, -J"7) over Q(,j3 + -J"7) 

3 . Find the degree of Q(�, -15) over Q. 

4. Let F be a finite extension of K such that [F : K]  = p ,  a prime number. If U E F 
but u ¢ K,  show that F = K (u ) .  

5 . Let f (x) be an irreducible polynomial in K [x ] .  Show that if F i s  an extension field 
of K such that deg(f (x » is relatively prime to [F : K ] ,  then f (x ) is irreducible in 
F[x ] .  

6. Let K C E C F be fields. Prove that i f  F i s  algebraic over K ,  then F i s  algebraic 
over E and E is algebraic over K .  

7 .  Let F � K be fields , and let R be a ring such that F � R � K .  If F i s  an algebraic 
extension of K ,  show that R is a field. What happens if we do not assume that F is 
algebraic over K ?  

8 .tDetermine [Q(,Jn) : Q ]  for all n E Z+ . 

9. For any positive integers a ,  b , show that QCfo + -Jb) = QCfo, -Jb) . 

1 0. Let F be an extension field of K .  Let a E F be algebraic over K ,  and let t E F be 
transcendental over K .  Show that a + t is transcendental over K .  

1 1 . Let F be an algebraic extension of K ,  and let S be a subset of F such that S � K ,  S 
is a vector space over K ,  and sn E S for all s E S and all positive integers n .  Prove 
that if char (K) 1= 2, then S is a subfield of F .  

(The result i s  false i n  characteristic 2, and all of the tools necessary to construct a 
counterexample are at hand, but the counterexample is not an easy one.) 
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6.3 Geometric Constructions 

In this section we will exploit what we have learned about the degree of a finite 
extension defined in successive steps . We will show the impossibility of several 
geometric constructions which were first investigated by the ancient Greeks . One 
of the most elementary constructions taught in high-school geometry is how to 
bisect an angle . In this section, the word "construction" will be assumed to mean a 
geometric construction using only a straightedge and compass. It is important to note 
that the straightedge is not a ruler that can measure arbitrary lengths . Furthermore, 
according to classical Greek practice a compass is "collapsible" . While you can 
draw a circle with given center, passing through a given point, you cannot use the 
compass to transfer lengths . 

There is no general method for trisecting an angle, since we will show that a 
20° angle cannot be constructed, and thus it is impossible for any general method 
to successfully trisect a 60° angle . Secondly, given a circle, it is impossible (in 
general) to construct a square with the same area as that of the circle. (This is 
known as "squaring the circle .") Finally, given a cube, it is not generally possible 
to construct a cube with double the volume of the given cube. 

We will take as given a line segment that will be defined to be one unit in length. 
U sing this line segment, lengths corresponding to all positive rational numbers can be 
constructed. Since the constructions we will allow must involve only a straightedge 
and compass, they will be limited to the following : (i) constructing a line through 
two points whose coordinates are known, (ii) constructing a circle with center at a 
point with known coordinates and passing though a point with known coordinates, 
and (iii) finding the points of intersection of given lines and circles . The reader 
should review several constructions that we will need: that of a line parallel to 
a given line and passing through a point not on the given line, and that of a line 
perpendicular to a given line and passing through a given point. 

6.3.1 Definition. The real number a is said to be a constructible number if it is 
possible to construct a line segment of length la I by using only a straightedge and 
compass. 

One issue we need to address is how to transfer a length from one line to 
another. Figure 6 .3 . 1 illustrates the case in which we copy a line segment joining 
the constructible points A and B to a second line e. Given a constructible point C 
on e ,  we first construct a line through C parallel to the line determined by A and 
B . Then we construct a line through B parallel to the line determined by A and C. 
With C as center, we can construct a circle through E, and its intersection with the 
line e produces a length I C D I equal to the length I A B I .  We can transfer a length 
on a line to another position on the line by first copying it to a second line, and then 
using the above procedure. 

The next proposition implies that all rational numbers are constructible . 



284 CHAPTER 6. FIELDS 

Figure 6 .3 . 1 :  

A 
/ 

/ --
/ E t- -- -- --

/ -- --
I ----C � __ -- -- D -- • --

6.3.2 Proposition. The set of all constructible real numbers is a subfield of the field 
of all real numbers. 

Proof Let a , b be constructible real numbers , which we may assume to be positive . 
We must show that a ± b and ab are constructible , and that alb is constructible, 
provided b i- O. Assuming a > b, using the method outlined in the discussion 
preceding the proposition we can copy the line segment whose length is b to the line 
containing the segment whose length is a, and then it is clear how to construct a + b 
and a - b. Furthermore, given positive constructible numbers y ,  z ,  W ,  by choosing 
any angle a we can easily construct a triangle with two sides of length z and w ,  as 
in Figure 6.3 .2. Using the length y, we can construct a line parallel to the third side 
of the triangle, giving us two similar triangles with sides of length x ,  y ,  Z ,  W that 
satisfy the relation x I y == zl w .  (The diagram presumes that y > w ,  and can easily 
be modified if not. ) To construct x == ab, choose y == a, Z == b, and W == 1 .  To 
construct x == alb, choose y == 1 ,  z == a , and W == b. D 

Figure 6 .3 .2 :  

....... ....-- W ----l.� 
....... ....----- y ----�. 
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We now need further information about how a real number can actually be 
constructed. We will obtain it by considering intermediate extension fields between 
Q and the field of all constructible numbers . 

6.3.3 Definition. Let F be a subfield ofR. 
A straight line with an equation of the form ax + by + c == 0, for elements 

a ,  b, c E F, is called a line over F. 
Any circle with an equation of the form x2 + y2 + ax + by + c == 0, for elements 

a , b, c E F, is called a circle over F. 

We note that a line over F e R  may contain some points whose coordinates do 
not belong to F. For example, the point (-J2j2, -J2j2) belongs to the line x - y == ° 
over Q and to the circle x2 + y2 - 1 == 0 over Q. 

6.3.4 Lemma. Let F be a subfield ofR. 
(a) Any straight line joining two points whose coordinates belong to F is a line 

over F. 
(b) Any circle such that its radius and the coordinates of its center belong to F 

is a circle over F. 

Proof (a) Let (a I , bI ) and (a2 , b2) be points in R2 with aI , b I , a2 , b2 E F. The 
line x - al == ° takes care of the case at == a2 . Otherwise, the two-point form 

of the equation of a line determines an equation of the form we need. 
(b) If r E F  and (a , b) E R2 with a , b E F, then the equation of the circle with 

radius r and center (a , b) is 

and expanding it gives the form we need, since F is a field. D 

A word of caution may be in order, concerning the next result. Lemma 6 .3 .5  
does not say that two circles or a line and a circle must necessarily have a point of 
intersection. 

6.3.5 Lemma. Let F be a subfield ofR. The points of intersection of lines over F 
and circles over F belong to thefield F(,jU), for some u E F. 
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Proof Given two lines over F, we can find their point of intersection by using 
elementary row operations on the associated matrix. Since we use only field opera
tions, the coordinates of the point of intersection must still belong to F. Given two 
circles in F, subtracting one equation from the other reduces the question of their 
points of intersection to the question of the points of intersection of a line over F 
and a circle over F. To complete the proof, assume that we are given the equation of 
a line over F and the equation of a circle over F. In the equation of the line, one of x 
or y must have a nonzero coefficient, say y . Then we can solve for y and substitute 
into the equation of the given circle, yielding a quadratic equation in x .  Unless the 
line and circle have no intersection in R 2 , consider the solution produced by using 
the quadratic formula. Since F is closed under the operations of R, each number 
involved in the solution, including the term u under the radical, is again an element 
of F. Substituting back into the equation of the line shows that the coordinates of 
the points of intersection belong to F (,jU) . D 

6.3.6 Theorem. The real number u is constructible ifand only if there exists afinite 
set u 1 ,  u2 , . . .  , Un of real numbers such that 

(i) ur E Q, 
(ii) u; E Q(U l , . . .  , Ui - I ) , for i == 2, . . .  , n, and 
(iii) u E Q(U l , . . .  , un ) . 

Proof If u i s  constructible, then the construction can be done in a finite number of 
steps. Starting with Q, the first step must consist of finding an intersection of lines 
or circles over Q, so either this can be done in Q, or else by Lemma 6 .3 .5  we obtain 
an extension of the form Q(y'vl) , for some V I E Q. We may assume that the next 
step in the construction involves lines and circles over Q(y'vl), and so the points 
we obtain have coordinates in Q(y'vl, Fz) for some V2 E Q(y'vl) . Continuing 
in this manner allows us to obtain u as an element of a field of the required form 
Q(U I , U2 , . . .  , un ) .  

To show the converse, it suffices to show that if F is any subfield of the field 
of constructible numbers , then ,jU is constructible for all u E F, since this implies 
that every element of F (,jU) is constructible. Given u E F, we can construct a 
circle of diameter 1 + u . Then, as in Figure 6.3 .3 ,  we can construct a perpendicular 
line on the diameter, at a distance of 1 from its end. If x is the length on this line 
between the diameter and the intersection with the circle , then we have constructed 
similar triangles that yield the proportion x/ I == u / x . Thus x == ,jU, and the proof 
is complete . D 

6.3.7 Corollary. ffu is a constructible real number, then u is algebraic over Q, and 
the degree of its minimal polynomial over Q is a power of2. 

Proof Assume that u is a constructible real number. Then by Theorem 6.3 .6, u 
belongs to a field F C R of the form F == Q(u 1 , u2 , . . .  , Un ) , where (i) ur E Q and 
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Figure 6.3 . 3 :  

x 

+- 1 -.. -4"-- U 

(ii) ur E Q(U l , . . .  , U i - l ) , for i == 2, . . .  , n . By Theorem 6.2 .5 , the degree of F 
over Q is a power of 2, since [Q(u 1 ) : Q] < 2 and 

[Q (U l , . . .  , U i ) : Q(U l , · . · , U i- l ) ] < 2 ,  

for 1 < i < n .  The desired conclusion also follows from Theorem 6.2 .5 ,  since 

[F : Q] == [F : Q(u) ] [Q(u) : Q] , 
and thus [Q (u ) : Q] is a divisor of a power of 2. D 

6.3.8 Lemma. For any angle (), the following trigonometric identities hold. 
(a) 2 cos2 () - cos (2() ) - 1 == 0 
(b) 4 cos3 () - 3 cos () - cos (3() ) == 0 

Proof (a) We recall the trigonometric formulas involving the sum of two angles : 

sin (a + fJ) == sin a cos fJ +cos a sin fJ and cos (a + fJ) == cos a cos fJ -sin a sin fJ . 
From these we obtain sin (2() ) == 2 sin () cos () and cos (2()) == cos2 () - sin2 () .  

Using the identity sin2 () == 1 - cos2 () ,  we have 

cos (2() ) cos2 () - sin2 () 
== cos2 () - ( 1 - cos2 () )  
== 2 cos2 () - 1 . 

It follows that 2 cos2 () - cos(2() ) - 1 == O. 
(b) Using the above identities , let a == 2() and fJ == () in the formula for the 

cosine of the sum of two angles . Then we have 

cos (3() ) cos (2() + () )  
cos (2()) cos () - sin (2()) sin () 
(2 cos2 () - 1 )  cos () - (2 sin () cos () )  sin () 
2 cos3 () - cos () - 2 cos () sin2 () 
2 cos3 () - cos () - 2 cos () ( 1  - cos2 () )  
4 cos3 () - 3 cos () . 
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It follows immediately that 4 cos3 () - 3 cos () - cos (3() ) == O. D 

6.3.9 Theorem. It is impossible to find a general construction for trisecting an 
angle, duplicating a cube, or squaring a circle. 

Proof If a 60° angle (which is of course constructible) could be trisected, then 
it would be possible to construct a 20° angle, and so u == cos 20° would be a 
constructible real number. For () == 20° we have cos 3() == 1 /2, so by Lemma 6.3 . 8  
we have 4 cos3 () - 3 cos () - 1 /2 == O. MUltiplying by 2 shows that u == cos () is 
a root of the polynomial 8x3 - 6x - 1 .  Using Proposition 4.4. 1 it is easy to check 
that this polynomial has no rational roots , so it is irreducible over Q, and therefore 
the minimal polynomial of u over Q has degree 3 .  Since the degree of u over Q is 
not a power of 2, it cannot be constructible . 

To construct a cube with double the volume of the unit cube requires the con-
struction of a cube of volume 2. This requires constructing ,ifi, which is impossible 
since ,ifi has degree 3 over Q. 

Finally, constructing a square with the same area as a circle of radius 1 requires 
that ,JJi be constructible. This is not true since Jr is not algebraic over Q. For a 
proof of this deep fact we refer the student to a book by I. Niven called Irrational 
Numbers. Thus we have (almost) completed the proof. D 

EXERCISES : SECTION 6.3 

1 .  Show that the roots of the polynomial 8x3 - 6x - 1 used in Theorem 6 .3 .9 are 
][ 5][ d 7][ u l == cos 9 '  U2 == cos 9 '  an U3 == cos 9 ·  

2 .  Use the identity 4 cos3 () - 3 cos () - cos (3() == 0 to show that the roots of the 
polynomial x3 - 3x + 1 are U 1 == 2 cos 2; , U2 == 2 cos 4; , and U3 == 2 cos 8; . 

3 .  In this exercise we outline how to construct a regular pentagon. Let � == cos (2n /5) + 
i sin (2n /5) . 
(a) Show that � is a primitive fifth root of unity. 
(b) Show that (� + � - 1 ) 2 + (� + � - 1 ) - 1 == o. 
(c) Show that � + � - 1 = (- 1 + J5) /2. 

(d) Show that COS (21T /5) = ( - 1  + J5) /4 and that sin (21T /5) = ( J 1 0 + 2J5) /4. 
(e) Conclude that a regular pentagon is constructible. 

4 .  Prove that a regular heptagon is not constructible. 
Hint: Let � == cos (2n /7) + i sin (2n /7) . Show that [Q(� ) : Q] is not a power of 2. 
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6.4 Splitting Fields 

We will be interested, ultimately, in the question of determining when a given 
polynomial equation is solvable by radicals. The answer to this question involves 
a comparison between the field generated by the coefficients of the polynomial and· 
the field generated by the roots of the polynomial . This comparison must be done 
in some field that contains all roots of the polynomial . Over such a field the given 
polynomial can be factored (or "split") into a product of linear factors . Our task in 
this section is to study the existence and uniqueness of such fields . Recall that we 
have seen in Section 6 . 1 that given any field and any polynomial over that field there 
exists an extension field in which the polynomial has a root. Now we simply need 
to iterate this procedure, to obtain all roots of the polynomial . 

6.4.1 Definition. Let K be a field and let f (x) == ao + al x + . . . + anxn be a 
polynomial in K [x ] of degree n > O. An extension field F of K is called a splitting 
field/or f(x) over K if there exist elements rl , r2 , . . .  , rn E F such that 

(i) f(x) == an (x - rl ) (X - r2) . . .  (x - rn ), and 
(ii) F == K (rl ' r2 , . . .  , rn ) . 

The elements rl , r2 , . . .  , rn are roots of f(x) , and so F is obtained by adjoining 
to K a complete set of roots of f (x) .  We say that f (x) splits over the field E if E 
contains the splitting field of F. 

The proof of the next theorem parallels that of Corollary 4.3 .9 .  But we now 
know about the degree of an extension, and so we can give more information about 
the construction by keeping track of the degrees of the extensions that we use. 

6.4.2 Theorem. Let f (x) E K [x] be a polynomial of degree n > O. Then there 
exists a splitting field F for f (x) over K, with [F : K] < n L 

Proof The proof is by induction on the degree of f(x) . If deg (f (x) ) == 1 ,  then K 
itself is a splitting field. Assume that deg(f (x ) ) == n > 1 and that the theorem is 
true for any polynomial g (x) with 1 < deg (g (x) ) < n over any field K . Let p (x) 
be an irreducible factor of f(x) . By Kronecker's theorem there exists an extension 
field E of K in which p (x) has a root r . We now consider the field K (r) . Over this 
field f (x) factors as 

f (x) == p (x)q (x) == (x - r)g (x) 

for some polynomial g (x) E K (r) [x ] of degree n - 1 .  Thus by the induction hypoth
esis there exists a splitting field F of g (x ) over K (r) , say F == K (r) (rl , r2 , . . .  , r n- l ) , with [F : K (r) ] < (n - I ) ! .  Then F == K (r, rl , r2 , . . .  , rn- l ) and i t  is clear that 
f (x) splits over F. Finally, 

[F : K] == [F : K (r) ] [K (r ) : K] < (n - I ) !  . n == n ! , 
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which completes the proof. 0 

Example 6.4.1 (Splitting field for x2 + l over Q). 

If we consider x2 + 1 as a polynomial with rational coefficients , then to obtain 
a splitting field we only need to adjoin i to Q. Thus Q(i ) is a splitting field 
for x2 + l over Q. D 

Example 6.4.2 (Splitting field for x3 - 2 over Q). 

We must adjoin to Q all solutions of the equation x3 = 2. It is obvious that 
x = 0 is a solution . But in addition, w0 is also a solution for any complex 
number w such that w3 = 1 .  Since we have 

x3 - 1 = (x - 1 ) (x2 + x + 1 )  

we can let w be a root o f  x2 + x + 1 ;  that is 

- 1 + H I -J3 . w = == - - + - l .  
2 2 2 

Then 0, w0, and w20 are the roots of x3 -2. Thus we obtain the splitting 
field as Q(0 , w) . 
We claim that the degree of the splitting field over Q is 6. Since x3 - 2 is 
irreducible over Q, we have [Q( 0) : Q] = 3. The polynomial x2 + x + 1 
is irreducible over Q and stays irreducible over Q( 0) since it has no root in 
that field. The degree of x2 + x + 1 is not a divisor of [Q( 0) : Q] . Since w 
is a root of x2 + x + 1 ,  this implies that [Q(0 , w) : Q(0) ]  = 2. D 

Example 6.4.3 (Splitting fields for x2 + l over R). 

Recall that our standard construction for a splitting field of the polynomial 
x2 + l over R is to consider R[x ]/  (x2 + 1 ) .  (See Example 4.3 .2 and Corol
lary 4.4. 10 . ) Then the field R is identified with the cosets of the form 
a + (x2 + 1 ) , for a E R. 
Another familiar construction is to simply use ordered pairs of the form a + bi , 
where a , b E R and the "imaginary" number i is a square root of - 1 .  This 
can be done rigorously by using the set of all ordered pairs (a , b) such that 
a , b E R, with componentwise addition and multiplication (a , b) . (e , d) = 
(ae - bd , ad + be) .  In this case the field R is identified with ordered pairs of 
the form (a , 0) and i is identified with the ordered pair (0 , 1 ) .  We thus obtain 
C as the splitting field for x2 + l over R. 
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Another construction of this splitting field uses the set of 2 x 2 matrices over 
R. We first identify R with the set of scalar matrices . Let 

It can be shown that the function ¢ : C � F defined by ¢ (a + bi ) [ _: ! ] is an isomorphism. We have thus adjoined to the set of scalar 

matrices the matrix [ _ � � J ,  which satisfies the polynomial x2 + 1 .  D 

Example 6.4.4 (Alternate proof of Kronecker's theorem). 

The technique of the previous example can be extended to give another proof 
of Kronecker's theorem, which guarantees the existence of roots . If p(x) is a 
monic irreducible polynomial of degree n over the field K ,  we first identify 
K with the field of n x n scalar matrices over K .  There exists an n x n matrix 
C with p (C) == 0, called the companion matrix of the polynomial . (Refer to 
Exercise 8 for further details . )  
The set of all matrices of the form aoI + a l C + . . .  + an- l C

n- l , such that 
ao , a I , . . .  , an- l E K ,  then defines an extension field F of K in which p(x) 
has a root. The fact that p (C) == 0 guarantees that Ck can be expressed as 
element of F,  for k > n , and so F is closed under multiplication. For any 
nonzero element q (C) E F, we see that q (x) is relatively prime to p (x) ,  
since deg (q (x) )  < n . Thus there exist f (x ) ,  g (x) E K [x]  with p(x) f (x )  + 
q (x) g (x) == 1 .  Replacing 1 with the identity matrix I and substituting x == C 
yields q (C) g (C) == I , which completes the proof that F is a field. D 

29 1 

The previous examples show that splitting fields can be constructed in a variety 
of ways. One would hope that there would be some uniqueness involved. In fact, the 
next results show that splitting fields are unique up to isomorphism. This provides 
the necessary basis for our study of solvability by radicals . We will also use this fact 
in Section 6.5 to show that any two finite fields with the same number of elements 
must be isomorphic . 

6.4.3 Lemma. Let () : K ---+ L be an isomorphism of fields. Let F be an extension 
field of K such that F == K (u) for an algebraic element u E F. Let p (x) be the 
minimal polynomial ofu over K. Let q (x ) be the image of p (x) under (} . lfv is any 
root of q (x) in an extension field of L and E == L (v) , then there is a unique way to 
extend () to an isomorphism ¢ : F ---+ E such that ¢ (u) == v and ¢ (a) == () (a) for 
all a E K. 
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¢ 
F ==K (u) � L (v) == E 

K • L 
() 
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Proof If p(x) has degree n , then elements of K (u) have the form ao + al u + . . .  + 
an_ I Un- I for elements ao , aI , . . .  , an- I E K . Therefore the required isomorphism 
¢ : K (u) ---+ L (v ) must have the form 

¢ (ao + al u + . . .  + an_ I Un- I ) == () (ao) + () (a l ) v + . . .  + () (an_ l ) Vn- I . 

We could simply show by direct computation that this function is an isomorphism. 
However, it seems to be easier to show that ¢ is a composite of functions that we 
already know to be isomorphisms . 

Let l : L ---+ L [x ] be the natural inclusion mapping, with l (a ) == a for all a E L . 
By Proposition 5 .2 .7 ,  the ring homomorphism l() can be extended uniquely to a ring 
homomorphism e :  K [x ] ---+ L [x ] such that 

8
(x) == x . Since () is an isomorphism, 

it is clear that 
8 

is also an isomorphism. By assumption, 
8
(p (x) ) == q (x ) , and 

so 
8 

maps the ideal (p (x ) ) generated by p (x) onto the ideal (q (x ) ) generated by 
q (x) . Example 5 .3 . 5  shows that 

8 
induces an isomorphism () : K [x]/ (p (x ) ) ---+ 

L [x ]/ (q (x ) ) . Let rJ : K [x ]/ (p (x ) ) ---+ K (u) and E : L [x ] / (q (x ) ) ---+ L (v) be 
the isomorphisms defined by evaluation at u and v , respectively. Then ¢ == E () rJ- I 
defines the required isomorphism from K (u) onto L (v) . D 

6.4.4 Lemma. Let F be a splitting field for the polynomial f (x) E K [x] . If 
() : K ---+ L is a field isomorphism that maps f (x) to g (x) E L [x] and E is a 
splitting field for g (x) over L, then there exists an isomorphism ¢ : F ---+ E such 
that ¢ (a) == () (a) for all a E K. 

Proof The proof uses induction on the degree n of f (x) . If f (x) has degree one, 
then F == K and E == L , so there is nothing to prove. We now assume that the 
result holds for all polynomials of positive degree less than n and for all fields K . 
Let p (x) be an irreducible factor of f (x) , which maps to the irreducible factor q (x ) 
of g (x ) . All roots of p (x) belong to F, so we may choose one, say u , which gives 
K C K (u) C F.  Similarly, we may choose a root v of q (x) in E, which gives 
L C L (v) C E. By Lemma 6.4.3 there exists an isomorphism 

8
: K (u) ---+ L (v) 

such that 
8
(u) == v and 

8
(a) == () (a) for all a E K. If we write f(x) == (x - u)s (x) 

and g (x ) == (x - v) t (x ) , then the polynomial s (x ) has degree less than n , the 
extension F is a splitting field for s ex) over K (u ) , the polynomial s ex) is mapped 
by 

8 
to t (x) , and the extension E is a splitting field for t (x) over L (v) . Thus the 

induction hypothesis can be applied, and so there exists an isomorphism ¢ : F ---+ E 
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such that ¢ (w) == 
B
(w) for all w E K (u) . In particular, ¢ (a) == 

B
(a) == () (a) for 

all a E K, and the proof is complete. D 

The following theorem, which shows that splitting fields are unique "up to 
isomorphism", is a special case of Lemma 6.4.4. In the induction argument in the 
proof of Lemma 6 .4.4 we needed to change the base field. That made it necessary 
to use as an induction hypothesis the more general statement of that lemma. 

6.4.5 Theorem. Let f (x) be a polynomial of positive degree over the field K. If E and F are splitting fields of f(x) over K, then there exists an isomorphism 
¢ : F ---+ E such that ¢ (a) == a for all a E K. 

EXERCISES : SECTION 6.4 

1 .  Determine the splitting fields in C for the following polynomials (over Q). 
t ea) x2 - 2 
(b) x2 + 3  

t (c) x4 + x2 - 6  
(d) x3 - 5  

2. Determine the splitting fields in C for the following polynomials (over Q) . 
(a) x3 - 1 
(b) x4 - 1  
(c) x3 + 3x2 + 3x - 4 

3 .  Determine the splitting fields over Z2 for the following polynomials . 
t ea) x2 + x + 1 
(b) x2 + 1  

t (c) x3 + x + l  
(d) x3 + x2 + 1 

4. Let p be a prime number. Determine the splitting field in C for xP  - 1 (over Q) . 

5 .tDetermine the splitting field for xP - x over Zp . 

6. Determine the splitting field for x 9 - x over Z3 . 
Hint: See Exercise 1 3  of Section 4.2. 

7 .  Prove that if F is an extension field of K of degree 2, then F is the splitting field 
over K for some polynomial . 
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8 .  Let K be a field. For a monic polynomial f (x ) == ao + al x + . . .  + an_ IXn- I + xn 
in K [x] ,  the following matrix C is called the companion matrix of f (x) :  

0 1 0 0 
0 0 1 0 
0 0 0 0 

0 0 0 1 
-an -a l -a2 -an- I 

This exercise outlines a proof that f (C) == O. (That is , ao I +a l C + . . .  +an- I Cn- I + 
Cn == 0, where I is the n x n identity matrix.) Let V I == ( 1 , 0 ,  . . .  , 0) ,  V2 
(0, 1 ,  . . .  , 0) , . . .  , Vn == (0 , 0 ,  . . .  , 1 )  be the standard basis vectors for Kn . 

(a) Show that Vi C == Vi+ I for i == 1 ,  . . .  , n - 1 ,  and vnC == 'LJ= I -a)- I v) . 

(b) Find similar expressions for V I C2 , . . .  , VI Cn- I , vI Cn , and show that v I f (C) == O. 
(c) Show that Vi f (C) == 0, for i == 2, . . .  , n and conclude that f (C) == O. 
Hint: Use the fact that Ci f (C) == f (C)Ci for i == 1 ,  . . .  , n . 

9 .  Let K be a field, let f (x ) == ao + a l x + . . .  + an_ IXn- I + xn E F[x] , and let 
C be the companion matrix of f (x) ,  as defined in Exercise 8. Show that the set 
R == {boI + bI C + . . .  + bn- I Cn- I I bi E F for i == 0, . . .  , n - I }  is a commutative 
ring isomorphic to the ring F [x] / (f  (x ) ) . 

1 O. Strengthen Theorem 6.4.2 by proving that under the conditions of the theorem there 
exists a splitting field F for f (x) over K for which [F : K] is a divisor of n ! .  

1 1 . Let K be a field, and let F be an extension field of K . Let ¢ : F � F be an 
automorphism of F such that ¢ (a) == a ,  for all a E K . Show that for any polynomial 
f(x ) E K [x] ,  and any root U E F of f (x ) ,  the image ¢ (u) must be a root of f (x ) .  

12 . Use Exercise 1 1  to show that there are only two automorphisms of the field Q(i ) : the 
identity automorphism, and the one defined by ¢ (a + bi ) == a - bi , for all a ,  b E Q. 

13 . Use Exercise 1 1  to show that there are at most four distinct automorphisms of the 
field Q(,j2, -}3). 

14 . (a) Show that the splitting field of x4 - 2 over Q is Q(�, i ) . 
(b) Show that Q( �, i ) is also the splitting field of x4 + 2 over Q .  

1 5 .  Use Exercise 1 1  to show that there are at most eight distinct automorphisms of  the 
splitting field Q(�, i ) of x4 - 2 over Q. 
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6.5 Finite Fields 

We first met finite fields in Chapter 1 ,  in studying Z p ' where p is a prime number. 
With the field theory we have developed it is now possible to give a complete 
description of the structure of all finite fields. We note that Proposition 5 .2 . 1 1 
implies that any finite field has prime characteristic. 

6.5.1 Proposition. Let F be a finite field of characteristic p. Then F has pn 
elements, for some positive integer n. 

Proof Recall that if F has characteristic p, then the ring homomorphism ¢ : Z --+ 
F defined by ¢ (n) == n . 1 for all n E Z has kernel pZ, and thus the image of ¢ is 
a subfield K of F isomorphic to Zp . Since F is finite, it must certainly have finite 
dimension as a vector space over K, say [F : K] == n . If V I , V2 , . . .  , Vn is a basis for 
F over K, then each element of F has the form a l V I +a2V2 + . . .  +an Vn for elements 
a I , a2 , . . .  , an E K . Thus to define an element of F there are n coefficients ai , and 
for each coefficient there are p choices ,  since K has only p elements . Therefore 
the total number of elements in F is pn . D 

If F is any field, then the smallest subfield of F that contains the identity ele
ment 1 is called the prime subfield of F. As noted in the proof of Proposition 6.5 . 1 ,  
if F is a finite field, then its prime subfield is isomorphic to Zp , where p == char(F) . 

6.5.2 Theorem. Let F be a finite field with pn elements. Then F is the splitting 
field of the polynomial Xpl1 - x over the prime subfield of F. 

Proof Since F has pn elements, the order of the multiplicative group F x of 
nonzero elements of F is pn - 1 .  By Corollary 3 .2 . 1 1 (b) , we have x pl1 - I == 1 for 
all 0 i=- x E F, and so Xpl1 == x for all x E F. Since the polynomial f (x) == xpn - x 
can have at most pn roots in any field, we see that F must contain all of its roots . 
Hence, since F is generated by these roots , it is a splitting field of f (x) over its 
prime subfield. D 

Example 6.5.1 (Wilson's theorem). 

The field Z p is the splitting field of x p - x, so we have 

xP - x == x (x - 1 ) (x - 2) · · ·  (x - (p - 1 ) ) . 

Thus 
xp- I - 1 == (x - 1 ) (x - 2) . . .  (x - (p - 1 ) ) , 

and substituting x == p gives pp- I - 1 == (p - 1 ) (p - 2) . . .  ( 1 ) .  Hence 
- 1  == (p - I ) !  in Zp , or, equivalently, (p - I ) !  = - 1  (mod p) , which is 
Wilson's theorem. (See Exercise 27 of Section 1 .4.) D 
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6.5.3 Corollary. Two finite fields are isomorphic if and only if they have the same 
number of elements. 

Proof Let F and E be finite fields with pn elements , containing prime subfields 
K and L , respectively. Then K r-v Zp r-v L and so F r-v E by Lemma 6.4.4, 

since by Theorem 6.5 .2  both F and E are splitting fields of xpn - x over K and L , 
respectively. D 

6.5.4 Lemma. Let F be afield ofprime characteristic p, and let n E Z+. 
(a) (a ± b)pn == apn ± bpn for all a ,  b E F. 
(b) {a E F I apn == a} is a subfield of F. 

Proof (a) With the exception of the coefficients of xP and yP , each binomial 
coefficient (p ! ) / (k ! (p - k) ! ) in the expansion of (x ±y)P contains p in the numerator 
but not the denominator, because p is prime. Since char(F) == p, this implies that 
(x ± y)P == xP ± yP , for all x ,  y E F.  Applying this formula inductively to (a ± b )pk 
for k < n shows that (a ± b )pn == apll ± bpn . 

(b) Let E == {a E F I apn == a } .  It follows immediately from part (a) that 
E is closed under addition and subtraction . Since (ab )pn == apn bpn ,  it is clear 
that E is closed under multiplication. To complete the proof of part (b) , we only 
need to observe that if a E E is nonzero, then (a- I ) pn == (aPIl ) - I == a- I , and so 
a- I E E. D 

The next proposition gives a complete characterization of the subfields of any 
finite field. It shows, for example, that in a field with 8 elements the only proper 
subfield is its prime subfield. On the other hand, a field with 1 6  elements must have 
precisely two proper subfields , with 2 and 4 elements , respectively. The proof uses 
the multiplication of the field in a critical way, since group theory only tells us that 
subgroups have an order that is a divisor of the total number of elements . 

We will need the fact that if m , n are positive integers with m in , then xm - 1 is 
a divisor of xn - 1 in Z[x ] . (See the stronger result in Exercise 8 . )  If n == mq , for 
q E Z, then Lemma 4. 1 . 8 implies that y - 1 is a factor of yq - 1 ,  and substituting 
y == xm shows that xm - 1 I xn - 1 .  

6.5.5 Proposition. Let F be a field with pn elements. Each subfield of F has pm 
elements for some divisor m of n. Conversely, for each positive divisor m of n there 
exists a unique subfield of F with pm elements. 

Proof Let K be the prime subfield of F .  Any subfield E of F must have pm 
elements , where m == [E : K] . Then m In since n == [F : K] == [F : E] [E : K] . 

Conversely, suppose that m In for some m > O . Then pm - 1 i s  a divisor of 
pn - 1 ,  and so g (x) == xpm - I - 1 is a divisor of f(x) == xpn- I - 1 .  Since F is the 
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splitting field of x f (x) over K, with distinct roots, it must contain all pm distinct 
roots of xg (x ) . By Lemma 6.5 .4, these roots form a subfield of F . Furthermore, 
any other subfield with pm elements must be a splitting field of xg (x ) , and so it 
must consist of precisely the same elements . D 

6.5.6 Lemma. Let F be a field of characteristic p. If n is a positive integer not 
divisible by p, then the polynomial xn - 1 has no repeated roots in any extension 
field of F. 

Proof Let c be a root of xn - 1 in an extension E of F. A direct computation 
shows that we must have the factorization 

With the notation xn - 1  == (x - c)f (x) , we only need to show that f (c) i=- O. Since 
f(x) has n terms, we have f (c) == ncn- l , and then f(c) i=- 0 since p A' n . D 

6.5.7 Theorem. For each prime p and each positive integer n, there exists a field 
with pn elements. 

Proof Let F be the splitting field of f(x) == xpn - x over the field Zp . Since 
xpn - x == x (xpn - l - 1 )  and pn - 1 is not divisible by p, Lemma 6.5 .6  implies that 
f (x) has distinct roots . By Lemma 6.5 .4, the set of all roots of f(x) is a subfield of 
F, and so we conclude that F must consist of precisely the roots of f (x) , of which 
there are exactly pn elements . D 

Any finite field F of characteristic p contains an isomorphic copy of Zp as its 
prime subfield. Theorem 6.5 .2 shows that F is a splitting field, so it is "unique up 
to isomorphism". Thus we can think of the field constructed in Theorem 6.5 .7 as 
"the" field of order pn . 

6.5.8 Definition. Let p be a prime number and let n E Z+. The field with pn 
elements is called the Galois field of order pn, denoted by GF(pn ) . 

For a prime number p, we now have two different notations for the set of 
congruence classes of integers modulo p, and these can be used interchangeably. We 
will generally use the notation GF(p) for the prime subfield of GF(pn ) , particularly 
when we want to emphasize the field structure. We will retain the notation Zp when 
considering only the group structure , and in most cases we will retain the notation 
Zp [x] for the polynomial ring with coefficients in Zp . 
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Example 6.5.2 (GF(22) ). 

The polynomial x2 + x + 1 is irreducible over Z2 , so Z2 [X] /  (x2 + x + 1 ) 
provides a model for GF(22) .  The cosets 0+(x2 + x + 1 ) and 1 +(x2 + x + 1 ) 
form the prime subfield GF(p) . Note that since the multiplicative group 
of nonzero elements has order 3, it is cyclic . Either x + (x2 + x + 1 ) or 
1 + x + (x2 + x + 1 ) is a generator for GF (22) x .  Addition and multiplication 
tables for this field can be found in Table 4.3 . 1 in Section 4 .3 .  D 

Our next goal is to show that the multiplicative group F X  of any finite field F is 
cyclic . In fact, without any additional effort, we can prove a more general theorem 
that does not require the field to be finite. We need the following lemma, whose 
proof is taken from that of Proposition 3 .5 .9 .  

6.5.9 Lemma. Let G be a finite abelian group. If a E G is an element of maximal 
order in G, then the order of every element of G is a divisor of the order of a. 

Proof Let a be an element of maximal order in G, and let x be any element of G 
different from the identity. If o (x ) A' o(a) , then in the prime factorizations of the 
respective orders there must exist a prime p that occurs to a higher power in o (x) 
than in o (a) . Let o (a) == pan and o (x) == pf3m , where a < fJ and p A' n , p A'm . 
Now o(aPO! ) == n and o (x m ) == pf3 , and so the orders are relatively prime since p A' n . 
It follows that the order of the product a pO! x m is equal to npf3 , which i s  greater than 
o(a) , a contradiction. D 

6.5.10 Theorem. Anyfinite subgroup of the multiplicative group of afield is cyclic. 

Proof Let F be a field, and let H be a finite subgroup of F x .  Let a be an element 
of H of maximal order, with o (a) == m. By Lemma 6.5 .9 ,  each element of H 
satisfies the polynomial x m - 1 .  Since F is a field, there are at most m roots of this 
polynomial, and so I H I  < m. This implies that o(a) == I H I , and so H is cyclic . D 

Example 6.5.3 (GF(23 ) ). 

The polynomial x 3 + x + 1 is irreducible over Z2 , since it has no roots in 
Z2 , so Z2 [X] /  (x3 + x + 1 ) provides a model for GF(23 ) .  If we let u = 
x + (x3 + x + 1 ) , then we can describe GF(23 ) as the set of elements 0, 1 ,  
u ,  1 + u ,  u2 , 1 + u2 , u + u2 , and 1 + u + u2 . The elements are added like 
polynomials, but multiplication involves numerous substitutions, using the 
identity u 3 = 1 + u .  
It is much more convenient to make use of the fact that the multiplicative 
group GF(23 ) x is cyclic . With the given representation, the element u is a 
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generator, so the correspondences 1 + u == u3 , 1 + u2 == u6 , u + u2 == u4 , 
and 1 + u + u2 == uS allow multiplication to be done in the exponential form. 
For example, we have ( 1  + u2) (u + u2) == u6u4 == u 7 u3 == u3 == 1 + u . Note 
the analogy with real logarithms .  

As in the proof of Kronecker's theorem, u is a root of the polynomial x3 +x + 1 
since u3 + u + 1 == O. Using Lemma 6.5 .4, it can be shown that the mapping 
¢ : GF(23 ) ---+ GF(23 ) defined by ¢ (x) == x2 is an automorphism of GF(23 ) .  
(See Exercise 1 2 .) Since ¢ (0) == 0 and ¢ ( 1 )  == 1 ,  it must map any root of 
x 3 + x + 1 to a root of x3 + x + 1 .  (See Exercise 1 1  of Section 6.4. ) Therefore 
u ,  u2 , and u4 == u + u2 are roots of x3 + x + 1 ,  showing that GF(23 ) is the 
splitting field for x3 + x + l over GF(3) . D 

Corollary 6.5 . 3  implies that the field F2 == Z2 [X ]/ (x3 + x2 + 1 ) is isomor
phic to FI == Z2 [X ]/ (X3 + x  + 1 ) . It is instructive to actually construct an 
isomorphism. Let w == x + (x3 + x2 + 1 ) , so that w is a root of x3 + x2 + 1 
in F2 . It follows from Lemma 6.4.3 that to construct an isomorphism from F2 
to FI we only need to find a root v of x3 + x2 + 1 in FI , and then map w to 
v .  The lemma then tells us how to extend this mapping. 
In Example 6.5 . 3  we studied FI , and let u == x + (x3 + x + 1 ) . We saw that u ,  
u2 , and u + u2 are roots of  x3 + x + 1 .  Since FI is a splitting field over GF(2) 
for x8 - x == x (x - 1 ) (x3 + x + 1 ) (x3 + x2 + 1 ) , it follows (by process of 
elimination) that the roots of x3 + x2 + 1 must be 1 + u, 1 + u2 , and 1 + u + u2 . 
Thus if we choose v == 1 + u ,  we then map an element aw2 + bw + c E F2 
to av2 + bv + C E Fl . 
In this particular case we can give another proof that uses earlier results . 
By Example 5 .2 .2, the mapping () : Z2 [X] ---+ Z2 [X] defined by () (J (x)) == 
J(x + l ) is an automorphism. Since () (x3 +x2+ 1 ) == (x + l )3 + (x + l )2 + 1  == 
x3 + x + 1 ,  it follows from Example 5 . 3 .5 that F2 � Fl . D 
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Recall that an extension field F of K is called a simple extension of K if 
F == K (u ) for some u E F.  

6.5.1 1  Theorem. Any finite field is a simple extension of its prime subfield. 

Proof Let F be a finite field with prime subfield K . By Theorem 6 .5 . 1 0, the 
multiplicative group F x is cyclic . It is clear that F == K (u) for any generator u of 
F X . D 
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6.5.12 Corollary. For each positive integer n there exists an irreducible polynomial 
of degree n over GF(p). 

Proof By Theorem 6.5 . 1 1 , if GF(pn ) is obtained by adjoining u to GF(p) , then 
the minimal polynomial p (x) of u over GF(p) must be an irreducible polynomial 
of degree n. D 

EXERCISES: SECTION 6.5 

1 .  Give addition and multiplication tables for the finite field GF(23 ) ,  as described in 
Example 6.5 . 3 .  

2. Give addition and multiplication tables for the finite field GF(32) ,  and find a generator 
for the cyclic group of nonzero elements under multiplication. 

3. t Find a generator for the cyclic group of nonzero elements of GF(24) .  

4. Find the splitting fields over GF(3) for the following polynomials . 
(a) x4 + 2 
(b) x4 - 2 
Hint: See Exercise 1 3  of Section 4.2 . 

5 .  Show that x3 - x - I and x3 - x + 1 are irreducible over GF(3) . Construct their 
splitting fields and explicitly exhibit the isomorphism between these splitting fields. 

6 . Show that x3 - x2 + 1 is irreducible over GF(3) . Construct its splitting field and 
explicitly exhibit the isomorphism between this field and the splitting field of x3 -x + 1 
over GF(3) . 

7 .  Show that if g (x )  is irreducible over GF(p) and g (x) I (xpm - x) ,  then deg(g (x) )  is 
a divisor of m .  

8 .  Let m ,  n be positive integers with gcd (m , n ) = d .  Show that, over any field, the 
greatest common divisor of xm - 1 and xn - 1 is xd - 1 .  

9 .t If E and F are subfields of GF(pn ) with pe and pi elements respectively, how many 
elements does E n F contain? Prove your claim. 

10. Let p be an odd prime. 
(a) Show that the set S of squares in GF(pn ) contains (pn + 1 ) /2 elements. 
(b) Given a E GF(pn ) ,  let T = {a - x I X E S} . Show that T n S 1= 0. 
(c) Show that every element of GF(pn ) is a sum of two squares. 
(d) What can be said about GF(2n ) ?  
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1 1 . Show that x p - x + a is irreducible over GF (p) for all nonzero elements a E GF (p ) .  

1 2. Define the function ¢ : GF(23 ) ---+ GF(23 ) by ¢ (x) = x2 , for all x E GF(23 ) .  
(a) Show that ¢ i s  an isomorphism. 
(b) Choose an irreducible polynomial p(x ) to represent GF(23 ) as Z2 [X ]/ (p (x ) ) , 
and give an explicit computation of ¢, ¢2, and ¢3 . 

6.6 Irreducible Polynomials over Finite Fields 

In this section, our task is to study the irreducible polynomials over a finite field. 
The following theorem is the key result, and comes from our earlier results on the 
structure of finite fields. 

6.6.1 Theorem. Let F == GF(q ), where q == pn . The monic irreducible factors 
of xqm - x in F [x ] are precisely the monic irreducible polynomials in F[x ] whose 
degree is a divisor of m. 

Proof The splitting field for f (x) == xqm -x over F is GF(qm ) ,  so the degree of any 
root of an irreducible factor of f(x) must be a divisor of m == [GF (qm ) : GF(q ) ] .  
Thus the degree of any irreducible factor i s  a divisor of m. 

On the other hand, let p (x ) E F[x] be any irreducible polynomial of degree 
k such that k im . Adjoining a root u of p (x) gives a field F(u) with qk elements , 
which must be isomorphic to a subfield of GF(qm ) since k im . Since p (x ) is still the 
minimal polynomial of the image of u in GF(qm ) ,  it follows that p (x) is a factor of 
xqm - x . 0 

Let f (x ) be an irreducible polynomial over the finite field K, and suppose that 
f (x) has a root in the extension F, with I F I == pn . Then the elements of F are 
the roots of x pn - x , and f (x) I x pfl - x , so there are several consequences . First, 
since x pn - x has no repeated roots the same condition holds for f(x) . Secondly, 
f (x) splits over F since F contains all the roots of f (x) . These remarks prove the 
following corollary. 

6.6.2 Corollary. Let K be a finite field, and let f (x) E K[x] be an irreducible 
polynomial. If F is an extension field of K that contains a root u of f (x), then K (u) 
is a splittingfieldfor f(x ) over K. 

Our next goal i s  to find a way to simply count the number of monic irreducible 
polynomials of a given degree over a given finite field. 
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Example 6.6.1. 

We recall that the Euler ({J-function counts the number of positive integers less 
than n and relatively prime to n. In Corollary 3 .5 .6 we proved that if the prime 
factorization of n is n == p� l . . . p�k , then 

For example, since 1 2  == 22 . 3 ,  we have ( 1 ) ( 1 ) ( 1 - 1  - 1  1 ) 
((J ( 1 2) == 1 2  1 - 2 1 - 3 == 1 2  "1 + 2 + 3 + 6 . 

The last term above uses the factors 1 , 2, 3 ,  and 6 of 12, while the remaining 
factors 4 and 1 2  are omitted. The omission of terms which are divisible by 
powers of primes provides one motivation for the definition of the function J1 
in Definition 6.6 .3 .  0 

Convention:  In each of the notations Ldln ' fld ln ' and flp1n '  
we will assume that d i n refers to the positive divisors of n , and that p in will only 
be used to refer to the positive prime divisors of n . 

6.6.3 Definition. If d is a positive integer, we define the Mobius function J.L (d) as 
follows: 

J.L( I ) == 1 ;  

J.L(d) == 1 if d has an even number ofprime factors (each occurring only once); 
J.L(d) == - 1  if d has an odd number of prime factors (each occurring only once); 
J.L (d) == 0 if d is divisible by the square of a prime. 

Our first proposition follows easily from the definition, and the proof will be 
omitted. 

6.6.4 Proposition. Ifm , n E Z+ and (m , n) == 1 ,  then J.L(mn) == J.L(m)J.L(n) . 

The property in the previous proposition is important enough to merit a defi
nition. If R is a commutative ring, then a function f : Z+ ---+ R is said to be a 
multiplicative function if f(mn) == f(m)f (n) , whenever (m , n) == 1 .  

6.6.5 Proposition. Let R be a commutative ring, and let f : Z+ ---+ R be a 
multiplicative function. If F : Z+ ---* R is defined by 

F (n) == Ldln fed) , for all n E Z+ , 
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then F is a multiplicative function. 
Proof If gcd (m , n) == 1 ,  then 

F(mn) Ldlmn f ed) == La lm Lbln f(ab) == La lm Lbln f(a)f (b) 
(La lm f(a») (Lbln f(b») = F(m)F(n) , 

and so the function F is multiplicative. D 

6.6.6 Proposition. For any positive integer n, 

ifn == 1 

ifn > 1 
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Proof Since JL( 1 )  == 1 ,  the case n == 1 is trivial . In the case of a prime power pm , 
we have 

It follows form Proposition 6.6 .5 that the given sum is a multiplicative function, 
so the existence of even one prime divisor of n implies that the sum is zero . Thus 
Ldln JL(d) == 0 if n > 1 .  D 

6.6.7 Theorem (Mobius Inversion Formula). Let R be a commutative ring, and 
let f : Z+ ---+ R be any function. If the function F : z+ ---+ R is defined by 

then 

F(n) == Ldln fed) for all n E Z+ , 

f (m) == Ln lm JL(m/n) F (n) for all m E Z+ . 

Proof We have 

Lnlm JL(m/n) F(n) Ln lm J1-(m/n) (Ldln f(d») = Ln lm Ldln J1- (m/n)f (d) 

Lij lm J1-(i )f (j ) = Lj lm (LWT J1-(i ») f (j ) = f (m) . 

The last equality holds since we have Li l J JL(i ) == 0 unless 7 == 1 ,  or j == m, in 
which case Li l � JL(i ) == 1 .  D 

} 

There is also a mUltiplicative form of the Mobius inversion formula, whose 
proof is similar to that for the additive form. Note that in the special case R == R, 
setting f ed) == log g (d) and F(n) == log fen) reduces the multiplicative form to 
the additive one . 
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6.6.8 Theorem (Mobius Inversion Formula (2)). Let R be a commutative ring, 
and let g : Z+ ---+ R be any function. If the function G : z+ ---+ R is defined by 

then 

G(n) == fldln g (d) for all n E Z+ , 

g em) == flnlm G (n)J1-(m/n) for all m E Z+ . 

Proof We have 

fln lm G (n)J1-(m/n) ( ) J1-(m/n) J1-(m/n) fln lm fld ln g (d) == flnlm fldln g (d) 

fl ( ' )J1-(i ) fl ( . )Li l !!; J1-(i ) ( ) ij lm g J == j im g J } == g m . 

The last equality holds since we have Li l T /-L(i ) == 0 unless 7 == 1 ,  or j == m, in 
which case Li l � /-L(i ) == 1 .  0 

} 

6.6.9 Corollary. For any positive integer n, cp (n) == n Ldln J1-�d) . 
Proof We first show that the formula n == Ldln cp(d) can be proved using facts 
from group theory. Let G == (a ) be a cyclic group of order n, and recall that 
Corollary 3 . 5 .4 shows that the subgroups of G are (ad ) where d i n .  Furthermore, the 
corollary shows that G has cp (n) generators, and that (ad ) has cp(n/d) generators , 
since its order is n / d. Because every element of G generates one and only one 
cyclic subgroup of G, we have 

n == Ldln cp (n/d) == Ldln cp (d) . 
Applying the Mobius inversion formula, with f en) == cp (n) and F(n) == n , 

we obtain cp(n) == Ldln /-L(n/d) . d. Finally, if we interchange d and n/d, for the 
positive divisors of n , we obtain the desired formula. 0 

With these tools in hand, we now turn to the problem of counting the number of 
monic irreducible polynomials of a given degree over a finite field. For example, the 
results of Exercise 1 2  of Section 4 .2 show that over GF(2) there is only one monic 
irreducible polynomial of degree 2. There are two monic irreducible polynomials 
of degree 3 ,  three of degree 4, and six of degree 5. Exercise 14 of Section 4.2 shows 
that over GF(p) there are (p2 - p) /2 monic irreducible polynomials of degree 2 .  

6.6.10 Definition. The number of monic irreducible polynomials of degree m over 
the finite field GF(q ), where q is a prime power, will be denoted by Iq (m) . 
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The following formula for Iq (m) is due to Gauss .  

6.6.11  Theorem. For any prime power q and any positive integer m, 

1 ", d Iq (m) == - �dlm JL(mjd)q . m 
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Proof Theorem 6.6 . 1 shows that over GF(q ) the polynomial xqm - x is the product 
of all monic irreducible polynomials whose degree is a divisor of m. Comparing 
degrees, we see that qm == Ldlm d . Iq (d) . Using the Mobius inversion formula with 
f (d) == d . Iq (d) and F (m) == qm , we obtain mIq (m) == Ldlm JL(m j d)qd . D 

6.6.12 Corollary. For all positive integers m and all prime powers q we have 
Iq (m) > 1 .  

Proof Since JL(d) > -1  for d > 1 and JL( I ) == 1 ,  we have 

> 

> 

This completes the proof. D 

1 ", d - �dlm JL(mjd)q m 
1 _ (qm _ qm- l _ qm-2 _ . . . _ q ) 
m 
1 
m 

The above corollary gives another proof that for each prime power pm there 
exists a finite field with pm elements , since Ip (m) > 1 .  

EXERCISES: SECTION 6.6 

1 .  Verify Theorem 6.6. 1 in the special case of x 1 6 -x over GF(2) , by multiplying out the 
appropriate irreducible polynomials from the list given in the answer to Exercise 12  
of Section 4.2 . 

2 . Use Theorem 6.6. 1 to show that over GF(2) the polynomial x32 + x factors as a 
product of the terms x , x + 1 ,  x5 + x2 + 1 ,  x5 + x3 + 1 ,  x5 + x4 + x3 + x + 1 ,  
x5 + x4 + x2 + x + 1 ,  x5 + x3 + x2 + x + 1 ,  and x5 + x4 + x3 + x2 + 1 .  

3 .  Let F be a field of characteristic p, with prime subfield K == GF(p) . Show that if 
u E F is a root of a polynomial f (x) E K [x ] , then uP is also a root of f (x) . 
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4. Let u be a primitive element of GF(pm ) ,  and let M(i) (x ) be the minimal polynomial 
of ui over GF(p) . Show that every element of the form U ipk is also a root of M(i ) (x ) . 

5 .  Let GF(26) be represented by Z2 [x ]j (x6 + x + 1 ) , and let u be any primitive element 
of GF(26) . Show that GF(23 ) == {O , 1 , u9 , u 1 8 , u27 , u36 , u45 , u54 } .  

6 .  Let F be a field, and let n be a positive integer. An element � E F i s  called a 
primitive nth root of unity if it has order n in the multiplicative group F x .  Show 
that no field of characteristic p > 0 contains a primitive pth root of unity. 

7. Let n E Z+, and define r (n) to be the number of divisors of n . 
(a) Show that r i s  a multiplicative function. 

(b) Show that if n == p� l p�2 . . .  p�k , then r (n) == (a l + 1 ) (a2 + 1 )  . . . (ak + 1 ) .  
(c) Show that r (n ) is odd if and only if n i s  a square. 

(d) Show that Ldln r (d)J.l(njd) == 1 .  
8 .  Let n E Z+ and define a (n) == Ldln d, the sum of the positive divisors of n . 

(a) Show that a i s  a multiplicative function. 

(b) Show that if n = p� 1 p�2 . . .  p�k , then a (n) = n1=1 ( (p�i + l - l )/ (Pi - 1 )) . 

(c) Show that a (n) is odd if and only if n is a square or two times a square. 

(d) Show that Ldln a (d)Jl (njd) == n . 
9 .  A positive integer n i s  called peifect i f  it is equal to the sum of its proper positive 

divisors . Thus n is perfect if and only if a (n) == 2n . Prove that n is an even perfect 
number if and only if n == 2P- 1 (2P - 1 ) ,  where p and 2P - 1 are prime numbers . 
Note: Prime numbers of the form 2P - 1 ,  for p prime, are called Mersenne primes . 
It is not known whether there are infinitely many Mersenne primes .  It is also not 
known whether there are any odd perfect numbers . 

10. Let D be an integral domain. Show that if f : Z+ ---+ D is a nonzero multiplicative 
function, then Ldln J.l(d) f (d) == np 1n ( 1 - f(p) ) ,  for all n E Z+ , where the product 
is taken over all prime divisors p of n . 

1 1 . Let R be a commutative ring. Let R be the set of all functions f : Z+ ---+ R .  For 
f, g E R define f + g by ordinary addition of functions : (f + g) (n) == f en) + g (n ) , 
for all n E Z+ . Define a product * on R as follows: 

(f * g) (n ) == Ldln f (d)g (njd) , for all n E Z+ . 

The product * is called the convolution product of the functions f and g . Define 
E : Z+ ---+ R by E ( I )  == 1 and E (n) == 0, for all n > 1 .  
(a) Show that R is a commutative ring under the operations + and * ,  with identity E .  
(b) Show that f E R has a multiplicative inverse i f  and only iff ( 1 )  i s  invertible i n  R .  
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(c) Show that if I, g E R are multiplicative functions , then so is I * g .  
(d) Show that i f  R is an integral domain, then the set of nonzero multiplicative 
functions in R is a subgroup of R x , the group of units of R. 
(e) Define /-lR E R as in Definition 6.6.3 ,  with the understanding that 0 and 1 are 
(respectively) the additive and multiplicative identities of R .  Let v E R be defined 
by v (n ) == 1 ,  for all n E Z+ . Show that /-lR * v == E ,  and that /-lR * v * I == I, for 
all I E R. 
Note : The formula I == /-lR * v * I is a generalized Mobius inversion formula. 

1 2. Let R be a commutative ring. Let I : Z+ ---+ R be any function, and let F : Z+ ---+ R 
be defined by F (n ) == Ldln I(d) , for all n E Z+ . Show that if F is a multiplicative 
function, then so is I .  

6.7 Quadratic Reciprocity 

Gauss 's law of quadratic reciprocity is one of the gems of eighteenth and nineteenth 
century mathematics . This remarkable result was first conjectured by Euler, and 
again later (independently) by Adrien Marie Legendre ( 1752-1 833) .  An incomplete 
proof was given by Lagrange, and the first complete proof was finally found by Gauss 
in 1796. His proof was first published in his book Disquisitiones Arithmeticae in 
1 80 1 . By 1 8 1 8 , Gauss had found his sixth proof of the result. It is evident that 
he considered this work on quadratic reciprocity one of his most important and 
favorite contributions to our subject. The quadratic reciprocity law, when used in 
conjunction with other results such as the Chinese remainder theorem, allows us to 
determine precisely which quadratic congruences are solvable. 

6.7.1 Definition. Let n be a positive integer, and let a be an integer such that n A' a. 
Then a is called a quadratic residue modulo n if the congruence 

x2 = a (mod n) 

is solvable, and a quadratic nonresidue otherwise. 
When n is a prime, we write (:) = 1 if a is a quadratic residue modulo n and 

(:) = - 1  if a is a quadratic nonresidue modulo n . 

The symbol (:) is called the Legendre symbol. The reason for choosing this 

notation will become apparent later in the discussion. 
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We begin with several easy observations about the Legendre symbol , when the 

modulus p is prime. We note that if a = b (mod p) , then (;) = (;) and so the 

symbol (;) is well-defined for nonzero elements x E Zp . This abuse of notation 

should not cause any confusion . It is routine to check that (a:) = (;) (;) for 

all a , b E Z such that p A' a and p A' b. Another easily verified fact is that (�) = 1 .  

If p and q are distinct odd primes, the law of quadratic reciprocity allows us to 

evaluate the symbol (:) provided we already know the value of the symbol (�) . 
We will establish this beautiful result using our work on finite fields . 

Let p be an odd prime. The set Q = { 1 2 , 22 , . . .  , (p � 1 ) 2 } is a set of 

quadratic residues modulo p .  If a and b are positive integers that are less than 
or equal to (p - 1 ) /2 and a2 - b2 (mod p) , then a - b (mod p) , and so 
a == b since a = -b (mod p) cannot occur when 2 < a + b < p - 1 .  Since 
a2 = (-a)2 = (p - a)2 (mod p) , every quadratic residue modulo p is congruent 
to one and only one element of Q .  Thus there are (p - 1 )  /2 quadratic residues 
modulo p and (p - 1 ) /2 quadratic nonresidues modulo p .  

Before stating our main theorem, we prove the following important proposition. 
Recall that if p prime, then the Galois field with p elements can be denoted by 
GF(p) , as well as by Zp . We will use the notation GF(p) throughout this section, 
and we need to recall the fact that GF(p) x is a cyclic group. (Theorem 6 .5 . 1 0  states 
that the multiplicative group of nonzero elements of any finite field is cyclic . )  

6.7.2 Proposition (Euler's Criterion). If p is an odd prime, and if a E Z with 
p A' a, then (;) = a (p- l )/2 (mod p) . 

Proof Let [w]p be a generator of the multiplicative group GF(p) x .  Then a -
wj (mod p) for some 0 < j < p - 2 .  Now (;) = 1 if and only if j is even, and 

so (;) = (- I )j . Since - 1  has order two in the cyclic group GF(p) x , we have 

- 1  - w(p- I )/2 (mod p) , 

and so (;) = (- I ) j - w (p- l )j/2 - a(p- I ) /2 (mod p) . 
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This completes the proof. D 
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In the course of the proof of Theorem 6 .7 .3 ,  we will abuse our notation and 
write j for the congruence class [j ]q in GF(q ) . This will simplify our formulas and 
should not confuse the careful reader. 

6.7.3 Theorem (Quadratic Reciprocity). Let p, q be distinct odd primes. Then 

(:) (!) = (_ 1 ) (p- l ) (q - l )/4 . 

Proof. Let K be an extension field of GF(q ) that contains a root (j) i= 1 of the 
polynomial xP - 1 .  Let G be the multiplicative group GF(p) x .  Since (j)P == 1 ,  for 
each t E G the expression (j)t is well-defined. 

We define the Gauss sum for each a E G as 

We note that g (a ) E K . As shown by the following argument, g (a) is completely 

determined by g ( l ) and (;) . Since C � 1) = (;) . we have 

(;) . g ( 1 )  = 
(a�) . g ( l ) = 

(a� l) LtEG (�}d 
_ " 

(
a- I t

) t 
_ " ( t ) at _ - �tEG P W - �tEG P 

w - g (a ) . 
The next to last equality holds because multiplication by a defines a permutation of 
G ,  and thus the sum over all t E G is the same as the sum over all elements at  E G .  

Since the characteristic of K i s  q ,  we have 

g ( l )q = [LtEG (�)wtr = LtEG (�) qWqt 

LtEG (�) Wqt = g (q ) = (!) g ( l ) . 
We have the following useful expression for g ( I )2 . 
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Next, we check that 

e(U; t ») = ( pI) (�) C -;- I U) = (- I ) (P- l ) /2 C -;- I U) , 
Let du = LtEG, tf-u 

C -;- l u) . Then if u = 0, we have do = LtEG (�) = p - l . 
On the other hand, if u i= 0, then 1 - t- 1 u runs over G - { 1 }  as t runs over G , with 
t i= u , and since there are an equal number of quadratic residues and nonresidues 
in G, we have 

du = LtEG, tf-u 
C -;- I U) = LSEG (;) - (�) = ° - (�) = - 1  , 

From our previous expression for g ( 1 )2 , we have 

g ( 1 )2 LUEGF(p) [ LtEG, tf-u e(U; t »)wuJ 
( 1 ) (p- 1 ) /2 "  d U - �uEGF(p) uW 
(_ 1 ) (p- l ) /2 [ (p - l )wo + LUEG (- l )wu ] 
(_ I ) (P- l ) /2 [pwo + (- 1 ) LUEGF(p) wu ] , 

Since w i= 1 is a root of xP - 1 ,  we have 

o == wp- 1 + wp-2 + . . .  + w + 1 == LUEGF(P) WU , 
and so g ( 1 )2 == (_ 1 ) (p- l )/2 p. Because g ( l ) i= 0 in K ,  the equation g ( l )q 
(;) g ( 1 ) implies that g ( 1 )q- l = (;) . Combining g ( 1 )2 = (_ I ) (p- l ) /2p and 

g ( 1 )q- l = (;) and another application of Euler 's criterion, we get 

(;) (;) = (; ) g ( 1 )q - l = (;) [g ( 1 )2 ] (q - l )/2 

as required. D 

(;) [( _ I ) (P- l ) /2 P ] (q - l )/2 (;) p(q-O/2 ( _ I ) (p- l ) (q - l ) /4 

(;) (;) (_ I ) (P- l ) (q - l ) /4 (_ I ) (p- l ) (q - l )/4 

The next theorem provides a pair of useful supplements to the law of quadratic 
reciprocity. 
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6.7.4 Theorem. Let p be an odd prime. Then 
(i) 

( 
p
I) = (_ l ) (p- l )/2, and 

(2) p2 - 1 
(ii) p = (- I )k, where k = 

8 
. 

Proof. Part (i) follows immediately from Euler's criterion . 
In proving part (ii) , we first note that 8 I (p2 - 1 ) because p is odd, and 

if p = ± 1 (mod 8) 
if p = ±5 (mod 8) . 

3 1 1 

Let (j) be a root of x8 - 1 that is not a root of x4 - 1 in some extension field K of 
GF(p) . Then since (j)4 i= 1 ,  we have (j)4 == - 1 ,  and so (j)2 == _(j)-2 and (j)5 == -(j). 
Now let p == (j) + (j)- I . Thus p2 == (j)2 + 2 + (j)-2 == 2. Since pP == (j)P + (j)-P , we 
have pP == P if p = ± 1 (mod 8) and pP == (j)5 + (j)-5 == - ((j) + (j)- I ) == -p if 
p = ±5 (mod 8) . Thus 

(;) 
= 2(p- I ) /2 = (p2) (p- l )/2 = pp- l = 

{ 
_
! 

Hence (;) = (- I )k for k = (p2 - 1 )  /8 , as required. 

Example 6.7.1 .  

if p = ± 1 (mod 8) 
if p = ±5 (mod 8) . 

o 

Is the congruence x2 = 3 (mod 47) solvable? To answer this question we 

need to determine 
(}
7
)
' In the statement of the quadratic reciprocity law we 

can multiply both sides of the equation by (�) . This gives us the following 

form of the law, where p and q are odd primes . 

(:) = 
(�) (_ I ) (P- l ) (q - l )/4 

Using the above form of the quadratic reciprocity law, we have 

(}
7
) 

= 
(�) (_ l ) (47- 1 ) (3- 1 ) /4 = 

G) (_ l ) 23 = (- 1 ) (- 1 )  = 1 

since 47 = 2 (mod 3) and since it is easy to check that x2 = 2 (mod 3) is not 

solvable. Since 
(}
7
) 

= 1 ,  we know that x2 = 3 (mod 47) is solvable. 0 
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Example 6.7.2. 

For the prime numbers 46 1 and 773 we have the following computation : 

(46 1) 773 (773) - 1  (773- 1 ) (46 1 - 1 ) /4 == (3 1 2) 46 1 ( ) 46 1 (8 . 3 . 1 3) ( 2 ) 3 ( 3 ) ( 1 3 ) 46 1 == 46 1 46 1 46 1 . 
We first note that (�) == (- 1 ) 3 == - 1 ,  since 46 1 = 5 (mod 8) . We 46 1 
have (4!1) = C�I) <_ l ) (46 1 - 1 ) (3- 1 ) /4 = (�) = - 1 . Next, we have (�) == (46 1) (_ 1 ) (46 1 - 1 ) ( 1 3- 1 ) /4 == (�) == (�) (�) and since 46 1 1 3 1 3 1 3 1 3 ' 
1 3 = 5 (mod 8) , we have C23) = - 1 .  Thus we have 

(46 1) == 773 (4�lr (4!1) (::1) = (- I ) (- I ) (- l ) C
3
3) 

(- l )C:) (_ l ) ( 1 3- 1 ) (3- 1 ) /4 = (- I ) G) = - 1  . o 

Example 6.7.3. 

In this example we determine the value of (:) , when p is an odd prime 

different from 3. By the quadratic reciprocity law we have 

(:) = (�) (_ 1 ) (P- l ) (3- 1 )/4 = (�) (_ 1 ) (P- l ) /2 . 

We have either p = 1 (mod 3) , in which case (�) = 1 ,  or p = 2 (mod 3) , 
in which case (�) = - 1 .  Furthermore, we have either p = 1 (mod 4) , in 

which case (p - 1 ) /2 is even, or p = 3 (mod 4) , in which case (p - 1 ) /2 is 
odd. 
The assumptions on p show that it is relatively prime to 12, so p is congruent 
to one of 1 , 5 , 7 , 1 1  modulo 1 2 . If p = 1 (mod 1 2) ,  then p = 1 (mod 3) 
and p = 1 (mod 4) , so (:) = ( 1 ) ( 1 )  = 1 .  If p = 5 (mod 1 2) , then 
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p = 2 (mod 3) and p = 1 (mod 4) , so (:) = (- 1 ) ( 1 )  = - 1 .  If p = 

7 (mod 12) ,  then p = 1 (mod 3) and p - 3 (mod 4) , so (:) = ( 1 ) (- 1 ) = 

- 1 .  If p = 1 1  (mod 12) ,  then p = 2 (mod 3) and p = 3 (mod 4) , so (:) = (- 1 )  ( - 1 )  = 1 .  

To summarize, we have 
if p = ±1  (mod 12) 
if p = ±5 (mod 12) . 

EXERCISES: SECTION 6.7 

o 

1 .  Prove that c:) = (;) (�) for all a ,  b E Z such that p 1 a and p 1 b . 

2.tCompute the following values of the Legendre symbol. 

(a) G��) 
(b) G��) 

3 .  Is the congruence x2 = 1 80873 (mod 997) solvable? 

3 1 3  

4. Determine the value of (:) for the indicated values of r ,  where p is an odd prime 

subject to the indicated conditions .  
t ea) r == 5 ,  p � 5 
(b) r == 6, p � 3 

t (c) r == 7, p � 7 
(d) r == 1 1 , p � 1 1  
(e) r == 1 3 , p � 1 3  

5 .  If a i s  a quadratic nonresidue of each of the odd primes p and q ,  is the congruence 
x2 = a (mod pq) solvable? 

6. If p and q are odd primes and p = q + 4t for some t E Z, prove that (:) = (�) . 
7 .  If p and q are distinct odd primes , prove that (:) (�) = { - �  if p = q = 3 (mod 4) 

otherwise 

8. Prove that there are infinitely many primes of the form 4m + 1 .  
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Notes 

In Theorem 6 .3 .6  we gave a characterization of constructible numbers . We were 
then able to use the characterization to show that it is impossible to find a general 
construction for trisecting an angle, duplicating a cube, or squaring a circle . 

A related problem is that of constructing (using only straightedge and compass) 
a regular polygon with n sides . The modern solution uses the methods of Galois 
theory and is beyond the scope of our book, but we can give a small part of the story 
at this point. The ancient Greeks already knew how to construct regular polygons 
of three, four, five, and six sides . The problem of constructing a regular pentagon 
can be translated into the problem of finding the complex roots of the polynomial 
x5 - 1 .  It is certainly possible to give a trigonometric solution as a complex number 
of the form cos (2rr /5) + i sin (2rr /5) , but we need to know that this can be expressed 
in terms of rational numbers and their square roots . By results in Section 4.4 we 
can give the factorization 

of x5 - 1 into factors irreducible over Q. The primitive fifth root of unity that we 
need to construct is a root of the equation x4 + x3 + x2 + X + 1 == 0, and since 
x5 == 1 ,  we can rewrite it in the form 

Substituting y == x + x- I yields the equation 

y2 + y _ 1 == 0 

and from its solution we can find a solution (by radicals) of x5 - 1 == O. 
When he was eighteen , Gauss discovered that the regular 17 -gon is constructible. 

He published the solution in Disquisitiones Arithmeticae as a special case of the 
general solution of the "cyclotomic equation" xn - 1 == O. He proved that a regular 
n-gon is constructible with straightedge and compass only if n has the form n == 
2CX P2 · . .  Pk ,  where the numbers Pi are odd primes of the form 22n + 1 .  The converse 
is also true, as was proved almost forty years later (see Section 8 .5 for a proof). 
We should note that not all numbers of the form 22n + 1 are prime, as had been 
conjectured by Fermat. Although 2 1 + 1 == 3 ,  22 + 1 == 5 ,  24 + 1 == 1 7 ,  28 + 1 == 257 ,  
and 2 1 6 + 1 == 655 37 are all prime, Euler showed that 232 + 1 == 64 1 · 67004 1 7 .  
The general solution of the cyclotomic equation, and his proof of the fundamental 
theorem of algebra, represent the most important contributions that Gauss made to 
the theory of algebraic equations. 
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STRUCTURE OF GROUPS 

Our ultimate goal is to attach a group (called the Galois group) to any polynomial 
equation and show that the equation is solvable by radicals if and only if the group 
has a certain structure. (A group with this structure is called "solvable.") This 
requires a much more detailed knowledge of the structure of groups than we have 
already acquired . To show (in Chapter 8) that there exist polynomial equations over 
C of degree 5 that cannot be solved by radicals , our approach will be to find an 
equation whose Galois group is isomorphic to S5 , and then show that S5 does not 
have the required property. This demands further study of permutation groups , in 
particular of An , which we do in Section 7 .7 .  

Lagrange 's theorem states that if H is a subgroup of a finite group G, then the 
order of H is a divisor of the order of G. The converse is false (A4 provides a 
counterexample) , but does hold in certain classes of groups . In a cyclic group of 
order n ,  the converse is true by Proposition 3 .5 . 3 :  for any divisor m of n ,  there 
exists a subgroup of order m .  In Section 7 .5  we will determine the structure of 
each finite abelian group (originally done by Kronecker in 1 870) , and using this 
characterization we will be able to show that the converse of Lagrange's theorem 
holds for such groups . We will also be able to obtain some partial results in this 
direction, for arbitrary finite groups .  The Sylow theorems (proved in Section 7 .4) 
state that if the order of the group is divisible by a power of a prime, then there exists 
a subgroup whose order is the given prime power. These theorems were proved in 
1 872 by M.L. Sylow ( 1 832-1 9 1 8) in the context of permutation groups , and then in 
1 887 Georg Frobenius ( 1 849-1 9 1 7) published a new proof based on the axiomatic 
definition of a group. 

A finite group G is solvable if and only if it has a sequence of subgroups 

such that each subgroup is normal in the previous one and each of the factor groups 
Ni - 1 / Ni is cyclic of prime order. We study such chains of subgroups in Section 7 .6 .  
One way to study the structure of groups is to find suitable "building blocks" and 

3 1 5 
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then determine how they can be put together to construct groups. The appropriate 
building blocks are simple groups, which have no nontrivial normal subgroups .  For 
any finite group it is possible to find a sequence of subgroups of the type given 
above, in which each factor group is simple (but not necessarily simple and abelian, 
as is the case for solvable groups) . 

The problem, then, is to determine the structure of each finite simple group and 
to solve the "extension problem." That is, given a group G with normal subgroup N 
such that the structure of N as well as that of G / N are known, what is the structure 
of G? The extension problem is still open, but the classification of finite simple 
groups is generally accepted as complete. 

An abelian group is simple if and only if it is cyclic of prime order. We will 
show in Section 7 .7 that the alternating group on n elements is simple, if n > 5 .  
We can easily describe one other family of finite simple groups .  Let F be any finite 
field, and let G == GLn (F) , the group of invertible n x n matrices over F. Then G 
has a normal subgroup N == SLn (F) ,  the subgroup of all matrices of determinant 
1 .  (Note that N is normal because it is the kernel of the determinant mapping . )  
The center of N, which we denote by Z, may be nontrivial, in which case N is not 
simple. However, the factor group N / Z is simple except for the cases n == 2 and 
F == GF(2) or GF(3) . 

William Burnside ( 1 852-1927) states in the second edition of his text Theory of 
Groups of Finite Order (published in 1 9 1 1 )  that his research "suggests inevitably 
that simple groups of odd order do not exist." He had shown that the order of a 
simple finite group of odd order (nonabelian, of course) must have at least seven 
prime factors , and then he had checked all orders up to 40 , 000. This was finally 
shown to be true in 1 963 , by Walter Feit and John Thompson, in a 255-page paper 
that proved that all groups of odd order are solvable . This sparked a great deal of 
interest in the problem of classifying all finite simple groups, and the classification 
was finally completed in 1 98 1 .  (The work required the efforts of many people, and 
is still being checked and simplified . )  There are a number of infinite families of 
finite simple groups in addition to those mentioned above. In addition there are 
26 "sporadic" ones, which do not fit into the other classes. The largest of these is 
known as the "monster," and has approximately 1054 elements . 

7.1 Isomorphism Theorems; Automorphisms 

We need to recall the fundamental homomorphism theorem for groups .  If G1 and 
G2 are groups, and ¢ : G 1 --* G2 is a group homomorphism, then ker (¢) is a 
normal subgroup of G 1 ,  ¢ (G 1 ) is a subgroup of Gi, and the factor group G 1 / ker ( ¢) 
is isomorphic to the image ¢ (G 1 ) .  We will exploit this theorem in proving two 
isomorphism theorems . Refer to Figure 7 . 1 . 1  for the first isomorphism theorem and 
Figure 7 . 1 .2 for the second isomorphism theorem. 
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7. 1.1 Theorem (First Isomorphism Theorem). Let G be a group, let N be a 
normal subgroup of G, and let H be any subgroup of G. Then H N is a subgroup 
ofG, H n N is a normal subgroup of H, and 

(H N) j N r-v H j (H n N) . 

Proof. Define ¢ : H --+ G j N by ¢ (h ) == hN, for all h E H . Since ¢ is the restric
tion of the natural projection TC : G --+ G j N, it is a group homomorphism. Recall 
that the set H N == {hn I h E H, n E N} is a subgroup of G by Proposition 3 .3 .2 .  

¢ (H) {gN E Gj N I gN == hN for some h E H} 
{gN E GjN l g E HN} 
HNjN 

Finally, ker (¢) == H n N, and so H n N i s  a normal subgroup of H. By the 
fundamental homomorphism theorem, we have ¢ (H) r-v H j ker(¢) . D 

Example 7.1 .1 .  

Figure 7 . 1 . 1 :  

G 
I 

HN 
/ "'N 

H
", 

/ 
H n N  

I { e } 

Let G be the dihedral group Dg , given by elements a of order 8 and b of order 2, 
with ba == a- l b . Let N == (a2 ) , and letH == { e , a4 , b , a4b} .  Then N is normal 
in G (see Exercise 1 8  in Section 3 .7), H N == {e , a2 , a4 , a6 , b, a2b , a4b , a6b} , 
and H n N == {e , a4 } .  Thus N has two co sets in  H N, and H n N has two 
cosets in H, so it is clear that H N / N must be isomorphic to H / H n N .  0 

Example 7.1 .2. 

Let G == GL2 (Q) , let N == SL2 (Q) , and let H be the set of diagonal matrices 
in G. Since N is the kernel of the determinant mapping from GL2 (Q) into QX , 
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it is a normal subgroup of G, and it is easy to check that H is a subgroup of G . 
Then H n N i s  the set of diagonal matrices of determinant 1 ,  and H N == G , 
since any element of G (with determinant d) can be expressed in the form 

It follows from the first isomorphism theorem that GL2 (Q) / SL2 (Q) 
H/(H n N). 0 

7.1.2 Theorem (Second Isomorphism Theorem). Let G be a group with normal 
subgroups N and H such that N C H. Then H I N is a normal subgroup of GIN, 
and 

(G I N) I (HI N) r-v G I H . 

Proof. By HI N we mean the set of all co sets of the form hN, where h E H. Define 
¢ : GIN ---* G I H by ¢ (aN) == aH for all a E G. Then ¢ is well-defined since if 
aN == bN for a , b E G, we have b- 1 a E N . Since N C H, this implies b- 1 a E H, 
and so  aH == bH. It i s  clear that ¢ maps GI N onto GI H .  To show that ¢ i s  a 
homomorphism we only need to note that 

¢ (aNbN) == ¢ (abN) == abH == aHbH == ¢ (aN)¢ (bN) . 

Finally, ker (¢) == {aN I aH == H} == HIN, and so HIN is a normal sub
group of GIN. The fundamental homomorphism theorem for groups implies that 
(GIN) I ker (¢) r-v GIH, the desired result. D 

Figure 7 . 1 .2 :  

GIN ¢ 

� �  
(GIN) I (HIN) � GIH 

Example 7.1.3 (Zn lmZn r-v Zm if m in). 

We have already proved this directly, in Example 3 . 8 . 10, but it also follows 
immediately from the second isomorphism theorem. Let G == Z, let m , n be 
positive integers with m in , let N == nZ, and let H == mZ. Then N C H, and 
so by the second isomorphism theorem we have (G / N) / (H / N) r-.J G / H .  
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That is, (ZI nZ) 1 (mZI nZ) � ZI mZ. In our standard notation, this is written 
as Zn 1 mZn � Zm . Of course, since Zn is cyclic, every subgroup of Zn has 
the form mZn , for some positive divisor m of n, and so we have characterized 
all factor groups of Zn . D 

Example 7.1.4. 

Let G == Dg , and let N and H be the subgroups defined in Example 7 . 1 . 1 . 
Then N and H n N are normal in G, and H n N e N. It follows from the 
second isomorphism theorem that (G/ (H n N)) 1 (N I(H n N)) � GIN. D 

3 1 9 

The next theorem will be crucial in proving later theorems which describe the 
structure of a finite abelian group. It is also useful in proving, for example, that 
D6 � S3 X Z2 , since we would only need to find normal subgroups of D6 isomorphic 
to S3 and Z2 which satisfy the conditions of the theorem. 

7.1.3 Theorem. Let G be a group with normal subgroups H, K such that H K == G 
and H n K == {e} . Then G � H x K. 

Proof We claim that ¢ : H x K ---+ G defined by ¢ (h , k) == hk, for all (h , k) E 
H x K is a homomorphism. First, for all (h I , kI ) ,  (h2 , k2) E H x K we have 

To show that this is equal to 

it suffices to show that h2k I == kI h2 . For any elements h E H and k E K ,  we have 
hkh- I k- I E H n K since hkh- I , k- I E K and h , kh- I k- I E H.  By assumption 
H n K == {e } , and so hkh- I k- I == e, or hk == kh . We have now verified our claim 
that ¢ is a homomorphism. 

Since H K == G, it is clear that ¢ is onto. Finally, if ¢ ( (h ,  k)) == e for (h , k) E 
H x K ,  then hk == e implies h == k- l E H n K,  and so h == e and k == e, which 
shows that ker (¢) is trivial and hence ¢ is one-to-one. D 

We have been using the definition that a subgroup H of a group G is normal if 
ghg- l E H for all h E H and g E G . We now introduce a more sophisticated point 
of view using the notion of an inner automorphism. The more general notion of an 
automorphism of a group is also extremely important. 

7.1.4 Proposition. Let G be a group and let a E G. The function ia G ---+ G 
defined by ia (x) == axa- I for all x E G is an isomorphism. 
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Proof If x , y E G,  then 

CHAPTER 7. STRUCTURE OF GROUPS 

ia (xy) == a (xy)a- I == (axa- I ) (aya- I ) == ia (x )ia (y) , 

and so ia is a homomorphism. If ia (x) == e, then ax a- I == e, so x == e and ia is 
one-to-one since its kernel is trivial .  Given y E G, we have y == ia (a- 1 ya) , and so 
ia is also an onto mapping. D 

7.1.5 Definition. Let G be a group. An isomorphism from G onto G is called an 
automorphism of G. 

An automorphism of G of the form ia, for some a E G, where ia (x ) == axa- I 
fo r all x E G, is called an inner automorphism of G. 

The set of all automorphisms of G will be denoted by Aut( G) and the set of all 
inner automorphisms of G will be denoted by Inn( G) .  

The condition that a subgroup H of G is normal can be expressed by saying that 
ia (h ) E H for all h E H and all a E G .  Equivalently, H is normal if and only if 
ia (H) C H for all a E G ,  and we can also express this by saying that H is invariant 
under all inner automorphisms of G .  

7.1 .6 Proposition. Let G be a group. Then Aut(G) is a group under composition 
offunctions, and Inn (G) is a normal subgroup of Aut (G) . 

Proof Composition of functions is always associative. We already know that the 
composite of two isomorphisms is again an isomorphism, and that the inverse of an 
isomorphism is an isomorphism, so it follows immediately that Aut(G) is a group. 

For any elements a, b E G , we have 

for all x E G, and so this yields the formula ia ib == iab . It follows easily that ie 
is the identity mapping and (ia )- I == ia- l , so Inn (G) is a subgroup of Aut(G) . To 
show that it is normal , let fJ E Aut(G) and let ia E Inn(G) . For x E G,  we have 

fJ (a (fJ- 1 (x) )a- l ) 
(fJ (a) ) (fJ fJ - I (x) ) (fJ (a - 1 ) ) 
(fJ (a ) ) (x) (fJ (a) ) - I == b x b- I 
ib eX ) 

for the element b == fJ (a) . Thus fJiafJ- 1 E Inn(G) ,  and so Inn (G) is a normal 
subgroup of Aut(G) . D 
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7.1 .7 Definition. For any group G, the subset 

Z(G) == {x E G I xg == gx for all g E G}  

is called the center of G. 

7.1.8 Proposition. For any group G, the center Z(G) is a normal subgroup, and 

GjZ(G) � Inn (G) . 

Proof Define ¢ : G ---+ Inn(G) by ¢ (a) == ia , for all a E G.  Then 

¢ (ab) == iab == ia ib == ¢ (a )¢ (b) 

and we have defined a homomorphism. Since ¢ is onto by the definition of lnn(G) , 
we only need to compute ker(¢) .  If ia is the identity mapping, then for all x E G 
we have axa- l == x , or ax == xa, so the kernel of ¢ is the center Z (G) . It follows 
that Z(G) is normal , and that GjZ (G) � Inn(G) . D 

Example 7.1 .5 (Aut (Z) � Z2 and Inn (Z) == { I } ). 

To compute Aut(Z) and Inn(Z) we first observe that all inner automorphisms 
of an abelian group are trivial (equal to the identity mapping) . Next, we 
observe that any isomorphism between cyclic groups maps generators to gen
erators, so if a E Aut (Z) , then a ( l )  == ± 1 .  Thus there are two possible 
automorphisms, with the formulas a (n) == n or a (n) == -n, for all n E Z. D 

Example 7.1.6 (Aut (Zn ) � Z� ). 

The computation of Aut (Zn ) is similar to that of Aut(Z) . For any automor
phism a of Zn , let a ( [ I ] )  == [a ] .  Since [ 1 ]  is a generator, [a ] must also be 
a generator, and thus gcd (a , n) == 1 .  Then a must be given by the formula 
a ( [m]) == [am] ,  for all [m] E Zn . Since the composition of such functions 
corresponds to multiplying the coefficients, it follows that Aut (Zn ) � Z� , 
where Z� is the multiplicative group of units of Zn . D 

EXERCISES: SECTION 7.1 

1 .  In G == Z;2 find cyclic subgroups H of order 2 and K of order 8 with H K == G and 
H n K == {e } . Conclude that Z;2 � Z2 x Zg . 



322 CHAPTER 7. STRUCTURE OF GROUPS 

2. Prove that D6 � S3 x Z2 . 

3 .tDetermine Aut (Z2 x Z2) .  

4 .  Let G be a finite abelian group of order n , and let m be a positive integer with 
(n , m) == 1 .  Show that ¢ : G � G defined by ¢ (g) == gm for all g E G belongs to 
Aut (G) .  

5 .tLet ¢ : G � G be the function defined by ¢ (g) == g- l for all g E G.  Find 
conditions on G such that ¢ is an automorphism. 

6. Show that for G == S3 , Inn (G) � G.  

7 .tDetermine Aut (S3 ) .  

8 .  For groups G I  and G2 , determine the center of  G I  x G2 . 

9 . Show that G / Z (G) cannot be a nontrivial cyclic group. (That is, if G / Z (G) is cyclic, 
then G must be abelian, and hence Z (G) == G .) 

1 0. Describe the centers Z(Dn ) of the dihedral groups Dn , for all integers n 2: 3 .  

1 1 . In the group GL2 (C) of all invertible 2 x 2 matrices with complex entries, let Q be 
the following set of matrices (the quatemion group, defined in Example 3 .3 .7) : 

(a) Show that Q is not isomorphic to D4 . 
(b) Find the center Z (Q) of Q .  

1 2. Let F20 be the subgroup ofGL2 (Zs) consisting of all matrices of the form [ � 7 l 
such that m , n E Z5 and m i=- 0, as defined in Exercise 23 of Section 3 . 8 .  This group 
will be called the Frobenius group of degree 5. Find the center of F20 .  

1 3 .  Show that the Frobenius group F20 defined in  Exercise 1 2  can be defined by generators 

and relations as follows. Let a = [ � � ] and b = [ �  � J .  
(a) Show that o (a ) == 5 ,  o(b) == 4, and ba == a2b . 
(b) Show that each element of F20 can be expressed in the form ai bj for 0 :::; i :::; 4 
and 0 :::; j :::; 3 .  

14. Let G be the subgroup of GL2 (R) consisting of all matrices [ a l l  a2 1 
a2 1 == 0 and a22 == 1 .  (See Exercises 1 0  and 1 1  of Section 3 . 1 . ) 

a l 2 ] such that a22 

(a) Let N be the set of matrices in G with a l l == 1 .  Show that N is a normal subgroup 
of G .  

(b) Let a = [ � � ] and b = [ � � l Show that if H = (a ) , then bHb- i i s  a 

proper subset of H. Conclude that H is not normal in any subgroup that contains b . 
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1 5 .  Give another proof of Theorem 7 . 1 . 1  by constructing an isomorphism from (H N) IN 
onto RI (H n N) .  
(In our proof we constructed an isomorphism from HI (H n N) onto (H N) IN.  The 
point is that it may be much easier to define a function in one direction than the other. ) 

7.2 Conjugacy 

If G is a group with a subgroup H that is not normal in G, then there must exist at 
least one element a E G such that a H a- I i= H. The set a H a - 1 is a subgroup of G, 
since it i s  the image of H under the inner automorphism ia of G. It i s  important to 
study the subgroups related to H in this way. It is also important to study elements 
of the form aha - 1 , for h E H, since H is normal if and only if it contains all such 
elements . 

7.2.1 Definition. Let G be a group, and let x ,  y E G. The element y is said to be a 
conjugate of the element x if there exists an element a E G such that y == axa- I . 

If H and K are subgroups of G, then K is said to be a conjugate subgroup of 
H if there exists a E G such that K == aHa- I . 

In an abelian group, elements or subgroups are only conjugate to themselves . 
More generally, an element x of a group G has no conjugates other than itself if and 
only if ax a- I == x for all a E G, and this holds if and only if x is a member of the 
center Z(G) . 

Recall Proposition 3 . 8 . 8 ,  which states that a subgroup H e G is normal if and 
only if a H == H a , for all a E G. As a slight modification of this result, we see that 
H is normal in G if and only if aHa- I == H, for all a E G. Thus H is a normal 
subgroup if and only if it has no conjugate subgroups other than itself. 

We can exploit the fact that a conjugate axa- I of the element x E G is the 
image of x under the inner automorphism ia to obtain valuable information. Since 
an automorphism preserves orders of elements, each conjugate of x must have the 
same order as x . Since an automorphism preserves inverses, if y is conjugate to x , 
then y- I i s  conjugate to x- I . 

7.2.2 Proposition. 

(a) Conjugacy of elements defines an equivalence relation on any group G. 
(b) Conjugacy of subgroups defines an equivalence relation on the set of all 

subgroups ofG. 

Proof For x ,  y E G, write x � y if y is a conjugate of x . Then for all x E G , we 
have x � x since x == exe- I . If x � y, then y == axa- I for some a E G, and it 
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follows that x == byb- l for b == a- I , which shows that y � x . Finally, if Z E G 
and x � y , y � z ,  then there exist a ,  b E G  with z == aya- I and y == bxb- I . Thus 
z == abxb- 1a- I , so z == (ab)x (ab) - I and we have x � z.  

A similar proof shows that conjugacy of subgroups defines an equivalence re
lation on the set of all subgroups of G .  D 

The equivalence classes under conjugacy of elements are called the conjugacy 
classes of G .  Thus the conjugacy class of x E G is 

{g E G I there exists a E G with g == axa- I } . 

Note that the conjugacy class of x is {x } if and only if x commutes with each elements 
of G .  We say that a conjugacy class is trivial if it contains only one member. 

Example 7.2.1 (Conjugacy in S3). 

If the group S3 is given by generators a ,  b of order 3 and order 2, respectively, 
and ba == a2b, then we can find the conjugacy classes as follows .  Since a 
does not commute with b, we know that there is more than one element in the 
conjugacy class of a , and we can compute bab- I == a2bb- I == a2 , so that a2 
is conjugate to a . We know that the subgroup {e ,  a ,  a2} is nonnal, so a cannot 
be conjugate to any element outside of the subgroup. 

To find the conjugates of b, we have 

which shows that a2b is conjugate to b. Conjugating b by a2b gives ab, and 
so the conjugacy classes of S3 are the following : 

{e } , 

Now that we know which elements of S3 are conjugate, it i s  easy to see 
which subgroups of S3 are conjugate. The subgroup {e ,  a , a2 } is nonnal, so 
it is conjugate only to itself. The subgroups {e ,  b} , {e ,  ab} , and {e ,  a2 } are 
conjugate to each other. (See Figure 3 .6 .5 for a diagram of the subgroups .) D 

Let x be an element of a group G .  The computations in the preceding example 
show that we need to find an answer to the general question of when elements 
a , b E G  determine the same conjugate of x . Since axa- I == bxb- I if and only 
if (b- I a)x == x (b- 1 a) , it turns out that we need to find the elements that commute 
with x . Then the co sets of this subgroup correspond to distinct conjugates of x . 
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7.2.3 Definition. Let G be a group. For any element x E G, the set 

{a E G I ax a- I == x }  

is called the centralizer ofx in G, denoted by C(x) .  
For any subgroup H ofG, the set 

{a E G I aHa- I == H } 

is called the normalizer of H in G, denoted by N(H). 

Using the above definition, note that C (x) == G if and only if x E Z(G) , and 
N(H) == G if and only if H is a normal subgroup of G. 

7.2.4 Proposition. Let G be a group. 
(a) Ifx E G, then C(x) is a subgroup ofG. 
(b) If H is a subgroup ofG, then N(H) is a subgroup ofG. 

Proof (a) lf a , b E C(x) , then (ab)x (ab) - I == a (bxb- I )a- I == axa- I == x , and so 
ab E C(x) .  Furthermore, a- I E C(x) ,  since axa- I == x implies that x == a- Ixa , 
and thus a- I x (a- I ) - 1 == x .  Finally, it is clear that e E C(x) . 

(b) The proof is similar to part (a) ,  and is left as an exercise. D 

If the conjugacy classes of G are known, then it is possible to tell whether or not 
a subgroup H is normal by checking that each conjugacy class lies either entirely 
inside of H or entirely outside of H. Equivalently, H is normal if and only if it is a 
union of some of the conjugacy classes of G. We note that the normalizer of H is 
in fact the largest subgroup of G in which H is normal . 

The next proposition explains why the centralizer of an element is so useful in 
finding its conjugates . There is a similar result for conjugate subgroups, stated in 
Exercise 2.  

7.2.5 Proposition. Let x be an element of the group G. Then the elements of the 
conjugacy class of x are in one-to-one correspondence with the left cosets of the 
centralizer C(x) of'x in G. 

Proof For a ,  b E G , we have axa- I == bxb- I if and only if (b- I a )x (b- I a )- I == x ,  
or equivalently, i f  and only i f  b- I a E C(x) . It follows from Proposition 3 . 8 . 1 that 
a and b determine the same conjugate of x if and only if a and b belong to the same 
left coset of C (x) .  D 
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Example 7.2.2 (Conjugacy in D4). 

We now compute the conjugacy class and centralizer of each element in the 
dihedral group D4 , described by the generators a and b of order 4 and order 
2, respectively, with ba == a- I b. 
It follows from the relation bai == a-i b that an element of the form a i com
mutes with b if and only if ai == a- i , and this holds if and only if i == 2. On 
the other hand, the same relation can be used to show that a2 commutes with 
every other element of D4 . Furthermore, a similar computation shows that 
any element of the form ai b fails to commute with a , and so Z(D4) == {e , a2 } . 
Thus the conjugacy classes with exactly one element are {e } and {a2 } . 
It is always true that (x ) C C (x) ,  since any power of x must commute with 
x . Thus {e ,  a , a2 , a3 } C C (a) , and we must have equality since a ¢ Z(D4) 
implies C(a) f. D4 . The conjugacy class of a is {a , a3 } . Similarly, b E C(b) , 
and we also have a2 E C (b) since a2 commutes with b. Again, C (b) f. D4 , 
and so we may conclude that C (b) == {e , b , a2 , a2b} , and then we can easily 
show that the conjugacy class of b is {b , a2b} by conjugating b by any element 
not in C (b) . Remember that the conjugates of b correspond to the left co sets 
of C (b) . Finally, a similar computation shows that C (ab) == {e , ab, a2 , a3 b} 
and the conjugacy class of ab is {ab , a3 b} . Thus the complete list of conjugacy 
classes of D4 is 

Example 7.2.3 (Conjugacy in Sn ). 

Writing the elements of S3 in cyclic notation gives a clue to what hap
pens in Sn . Using Example 7 .2 . 1 ,  the conjugacy classes of S3 are { ( I ) } , 
{ ( 1 ,  2 , 3) , ( 1 , 3 ,  2) } and { ( 1 ,  2) , ( 1 , 3) , (2, 3) } .  
We will show that two permutations are conjugate in Sn if and only if they have 
the same shape (i .e . , the same number of disjoint cycles, of the same lengths). 
For example, in S5 the conjugacy class of the identity permutation has only 
one element, and then in addition there is one conjugacy class for each of the 
following shapes (assuming the permutations are written in cyclic notation) :  
(a , b) , (a , b , c) , (a , b) (c , d) , (a , b , c,  d) , (a , b , c) (d , e ) , and (a , b , c ,  d , e) . 
Thus, in particular, cycles of the same length are always conjugate. 
Recall how a permutation a E Sn is written in cyclic notation. Starting with 
a number i we construct the cycle (i , a (i ) ,  a2 (i ) , . . . ) ,  and continue with 
additional disjoint cycles as necessary. If r E Sn , then to construct the cyclic 
representation of the conjugate ra r- 1 , we can start with the number r ei ) and 
then proceed as follows. We have rar- 1 (r (i )) == r (a (i ) ) as the next entry 
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of the cycle, showing that if a maps i to j ,  then r a r - 1 maps r (i ) to r (j ) . 
Thus i f  a == (a I , . . .  , ak ) , then rar- l i s  the cycle (r (a l ) ,  . . .  , r (ak ) ) . The 
cycles of r a r - 1 are found by simply applying r to the entries of the cycles 
of a , resulting in precisely the same cycle structure. 
On the other hand, if a and p have the same shape, then a simple substitution 
can be made in which the entries of a are replaced by the corresponding 
entries of p .  For the permutation r that is defined by this substitution, we 
have ra r- l == p ,  showing that p is conjugate to a . D 
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The equation in the following theorem is called the conjugacy class equation 
of the group G. Recall that the number of left cosets of a subgroup H of a group G 
is called the index of H in G , and is denoted by [G : H] . We will see that a great 
deal of information can be obtained simply by counting the elements in G according 
to its conjugacy classes . 

7.2.6 Theorem (Class Equation). Let G be afinite group. Then 

I G I  == I Z (G) I + L:[G : C(x) ] 

where the sum ranges over one element x from each nontrivial conjugacy class. 

Proof Since conjugacy defines an equivalence relation, the conjugacy classes 
partition G . By Proposition 7 .2.5 , the number of elements in the conjugacy class of 
the element x is the index [G : C (x)] of the centralizer of x . The conjugacy classes 
containing only one element can be grouped together, and this yields the form of 
the class equation given in the statement of the theorem. D 

Example 7.2.4 (Class equation of D4). 

It follows from the calculations in Example 7 .2.2 that the class equation for 
D4 is 8 == 2 + (2 + 2 + 2) . D 

Example 7.2.5 (Class equation of S4). 

To find the class equation of S4 , we can apply Example 7 .2 .3 ,  which shows 
that the conjugacy classes are determined by the possible shapes of elements 
in S4 . 

To construct a transposition (a , b) , we choose 2 of 4 elements, and this can 
be done in (i) == 6 ways. To construct a 3-cycle, we choose 3 of 4 elements, 
but then each choice can be arranged in two different ways, giving a total 
of 2 (j) == 8 cycles of the form (a , b , c) . To construct a 4-cycle, we fix 1 
as the first element, and then there are 3 !  == 6 ways to complete the cycle 
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( 1 ,  a ,  b , c) . Finally, there are 3 pennutations of the form (a , b) (c, d) . Thus 
the class equation for S4 is 

24 = 1 + (6 + 8 + 6 + 3) . 

Any normal subgroup must contain the identity, and cannot contain only part 
of a conjugacy class . It follows from the class equation for S4 that 1 2  = 
1 + 8 + 3 ,  4 = 1 + 3, and 1 are the only possible orders for a proper normal 
subgroup, since these are the only proper divisors of 24 that can be written as 
1 plus a subfamily of 6, 8, 6, 3 .  In this case the class equation also determines 
the elements that must belong to such subgroups, and so we conclude that 
the only proper nontrivial nonnal subgroups of S4 are A4 and the subgroup 
V = { ( I ) ,  ( 1 , 2) (3 , 4) , ( 1 , 3) (2, 4) , ( 1 , 4) (2 , 3) } .  D 

We next consider some applications to groups of prime power order. 

7.2.7 Definition. A group of order pn, with p a prime number and n > 1 ,  is called 
a p-group. Such groups are said to have prime power order. 

7.2.8 Theorem (Burnside). Let p be a prime number. The center of any p-group 
is nontrivial. 

Proof Let G be a p-group. In the conjugacy class equation of G, the order of G 
is by definition divisible by p, and the terms [G : C (x)] are all divisible by p since 
x � Z(G) implies [G : C(x) ] . > 1 .  Remember that [G : C(x) ] is a divisor of I G I  
and hence is a power of p .  This implies that I Z (G) I is divisible by p . 0 

7.2.9 Corollary. Any group of order p2 (where p is prime) is abelian. 

Proof If I G I  == p2 and Z(G) i= G, then let a E G - Z (G) . Then C (a) 
is a subgroup containing both a and Z (G) , with I Z (G) I > p by the previous 
theorem. This shows that C (a) == G , a contradiction . Thus Z (G) == G , and so G 
is abelian. 0 

Augustin Cauchy ( 1789-1 857) was one of the first (along with Lagrange and 
Ruffini) to investigate permutation groups , and the next theorem bears his name. 
The following proof makes use only of the conjugacy class equation. The next 
section contains a stronger statement of the theorem, together with a shorter proof, 
but the motivation for that proof is not as transparent. 

7.2.10 Theorem (Cauchy). If G is a finite group and p is a prime divisor of the 
order of G, then G contains an element of order p. 
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Proof Let I G I == n .  The proof proceeds by induction on n .  We start the induction 
with the observation that we certainly know that the theorem holds for n == 1 .  We 
may assume that the theorem holds for all groups of order less than n ,  and suppose 
that p i n . Consider the class equation 

n == I Z (G) I + I:[G : C (x) ] . 

Case 1. For each x � Z (G) , P is a divisor of [G : C (x) ] . 
As in the proof of Theorem 7 .2 .8 , in this case p I I Z (G) I .  Now if Z (G) -I G , then 
the induction hypothesis shows that Z (G) contains an element of order p and we 
are done. Thus we may assume that Z (G) == G, and so G is abelian. Let a E G, 
with a -I e , and consider H == (a ) .  If H == G, then G i s  cyclic and the theorem 
holds, so we may assume that I H I  < I G I .  If p is a divisor of k , where k == I H I ,  
then H has an element of order p by the induction hypothesis and we are done. 

Thus we may assume that p is not a divisor of k, and hence must be a divisor 
of I G / H I .  But then, since I G / H I  < n ,  the group G / H must contain a coset of 
order p, say bH. Therefore (bH)P == H, or, equivalently, bP E H. If c == bk , 
then cP == (bk )P == (bP )k , and this must give the identity element since bP E H and 
k == I H I .  If c == e, then bk == e, which in turn implies (bH)k == H in G/ H. Since 
bH has order p, we then have p l k , a contradiction. This shows that c is an element 
of order p . 

Case 2 .  For some x � Z (G) , p i s  not a divisor of [G : C(x) ] . 
In this case, for the given element x , it follows that p is a divisor of I C (x) I since p 
is a divisor of I G I  == I C (x) 1 . [G : C (x) ] . Then we are done since I C (x ) 1 < n and 
the induction hypothesis implies that C (x) contains an element of order p . D 

EXERCISES: SECTION 7.2 

1 .  Let H be a subgroup of the group G .  Prove that N (H) is a subgroup of G .  

2 .  Let H be a subgroup of the group G .  Prove that the subgroups of G that are conjugate 
to H are in one-to-one correspondence with the left co sets of N (H) in G .  

3 .  Let G be a group with subgroups H and K such that H C K .  Show that H i s  a 
normal subgroup of K if and only if K C N(H) .  

4 .  Let p be a prime number, and let C be a cyclic subgroup of order p in Sp . Compute 
the order of N (C) . 

5 .  Let G be a group, let H be a subgroup of G,  and let a E G.  Show that there exists a 
subgroup K of G such that K is conjugate to H and aH == K a .  

6. Let G be a group, let x ,  y E G, and let n E Z. Show that y i s  a conjugate of x n if 
and only if y is the nth power of a conjugate of x .  
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7 .  Find the conjugate subgroups of D4 . (See Figure 3 .6.6.) 

8 . tFind the conjugacy classes of D5 . 

9. Describe the conjugacy classes of S5 by listing the types of elements and the number 
of each type in each class . 

10.t Find the conjugacy classes of A4. 

Note : Two elements may be conjugate in S4 but not in A4 . 

1 1 . Find the conjugacy classes of the quaternion group Q defined in Example 3 . 3 .7 .  

1 2. Write out the conjugacy class equations for the following groups. 
t ea) A4 

(b) S5 

1 3 .  Let the dihedral group Dn be given by elements a of order n and b of order 2, where 
ba == a- I b. Show that am is conjugate to only itself and a-m , and that am b is 
conjugate to am+2kb, for any integer k. 

14 . Show that the Frobenius group F20 (defined in Exercise 12 of Section 7 . 1 )  is iso
morphic to the subgroup of S5 generated by the permutations ( 1 ,  2, 3 ,  4 , 5) and 
(2, 3 , 5 , 4) .  Use this fact to help in finding the conjugacy classes of F20 , and its 
conjugacy class equation . 

1 5 .  Show that if a group G has an element a which has precisely two conjugates, then 
G has a nontrivial proper normal subgroup. 

1 6 . Show that for each prime p there exists a nonabelian group of order p3 . 

1 7 .  Let G be a nonabelian group of order p3 , for a prime number p .  Show that Z (G) 
must have order p .  

1 8 . Determine the conjugacy classes of the alternating group A5 , and use this information 
to show that A5 is a simple group. 

7.3 Groups Acting on Sets 

Recall that if S is a set and G is a subgroup of the group SymeS) of all permutations 
of S, then G is called a group of permutations . Historically, at first the theory of 
groups meant only the study of groups of permutations . The concept of an abstract 
group was introduced in studying properties that do not depend on the underlying 
set. Cayley 's theorem states that every abstract group is isomorphic to a group of 
permutations, so the abstraction really just provides a different point of view. Still , 
when studying abstract groups , it is often important to be able to relate them to 
groups in which direct computations can actually be done. Since the appropriate 
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way to relate the algebraic structures of two groups is via a homomorphism, we 
should study homomorphisms into groups of permutations . 

If ¢ : G ---* Sym eS) is a group homomorphism, suppose that g E G and 
¢ (g) == CJ .  Then for any element X E S, CJ (x ) is another element of S, say y , and it 
makes sense to think of g as "acting" on x to produce y . In many cases it is easier to 
think of G as "acting" on the set S instead of thinking in terms of a homomorphism. 
For any group acting on a set, we will be able to obtain a very useful formula that 
generalizes the conjugacy class equation. 

7.3.1 Definition. Let G be a group and let S be a set. A multiplication of elements 
of S by elements of G (defined by a function from G x S ---* S) is called a group 
action of G on S providedfor each X E S: 

(i) a (bx ) == (ab)x for all a , b E G, and 
(ii) ex == x for the identity element e of G. 

Our usual notation for the action of a E G on X E S  is ax , but there will be 
occasions when it will be preferable to write a . x or a * x . 

Example 7.3.1.  

It is clear that any group G of permutations of the set S determines a group 
action of G on S. 0 

Example 7.3.2. 

If H is a subgroup of the group G, then H acts on the set G by using the group 
multiplication defined on G. D 

Example 7.3.3. 

Let G be the multiplicative group F x of nonzero elements of a field F. If V 
is any vector space over F, then scalar multiplication defines an action of G 
on V .  The two conditions that must be satisfied are the only two vector space 
axioms that deal exclusively with scalar multiplication . D 

Example 7.3.4. 

Let V be the vector space over the field F of all column vectors with n entries, 
and let G be any subgroup of the general linear group GLn (F) of all invertible 
n x n matrices over F. The standard multiplication of (column) vectors by 
matrices defines a group action of G on V .  0 
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The point of view of the next proposition will be useful in giving some more in
teresting examples . It explains the introductory statements hinting at the relationship 
between group actions and representations of abstract groups via homomorphisms 
into groups of permutations .  

7.3.2 Proposition. Let G be a group and let S be a set. Any group homomorphism 
from G into the group SymeS) of all permutations of S defines an action of G on S. 
Conversely, every action of G on S arises in this way. 

Proof Let ¢ : G ---* SymeS) be a homomorphism. For a E G ,  it is convenient to 
let the permutation ¢ (a ) be denoted by Aa . Since ¢ is a homomorphism, we have 
the formula 

for all a , b E G . For X E S and a E G, we define ax == Aa (X) . Since Ae is the 
identity permutation, and 

we have defined a group action. 
Conversely, suppose that the group G acts on S. For each a E G define a 

function Aa : S ---* S by setting Aa (x ) == ax , for all X E S. Then Aa is one-to-one 
since Aa (Xl ) == Aa (X2) implies that aXI == aX2 , so multiplying by a- I and using 
the defining properties of the group action we obtain Xl == X2 . Given y E S, the 
element a- I y is a solution to the equation Aa (x ) == y, and thus Aa is onto . It is 
not hard to show that AaAb == Aab , and this in turn can be used to show that the 
function ¢ : G ---* SymeS) defined by ¢ (a) == Aa for each a E G is a group 
homomorphism. D 

7.3.3 Definition. Let G be a group acting on the set S. For each element X E S, the 
set 

Gx == {s E S i s == ax for some a E G } 

is called the orbit of x under G, and the set 

Gx == {a E G I ax == x } 

is called the stabilizer of x in G .  The set 

SG == {x E S I ax == x for all a E G }  

is called the subset of S fixed by G. 
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Example 7.3.5. 

A subgroup H c G has a natural action on the entire group G, as seen in 
Example 7 .3 .2 . The orbit of an element g E G is the right coset H g . The 
stabilizer H g of g is just {e } .  If H is nontrivial , then the fixed subset G H 
equals {g E G I hg == g for all h E H} , and this must be the empty set . D 

Example 7.3.6. 

For any group G, the homomorphism ¢ : G ---+ Aut (G) defined by ¢ (a ) == ia , 
where ia is the inner automorphism defined by a , gives a group action of G 
on itself. The orbit Gg of an element g is just its conjugacy class, and the 
stabilizer G g is just the centralizer of g in G .  The fixed subset 

{g E G I a g a- I == g for all a E G }  

i s  the center Z (G) . D 

Example 7.3.7. 

This example is closely related to Example 7 . 3 .5 .  Let G be a group, and let S 
be the set of all subgroups of G .  If a E G and H is a subgroup of G ,  define 
a * H == aHa- I . The fact that a (bHb- I )a- I == abH (ab) - I shows that 
a * (b * H) == (ab) * H for all H E S and all a , b E G . Since e * H == H 
for all subgroups H of G, the multiplication * defines a group action of G 
on S. (We have introduced the * here to avoid confusion with the usual coset 
notation . )  
The orbit G * H of a subgroup H i s  the set of all subgroups conjugate to H. 
The stabilizer of H in G is  just the normalizer of H. Finally, the fixed subset 
SG is the set of normal subgroups of G .  
To illustrate the many possibilities, in a closely related example we can let H 
be any subgroup and let S be the set of all subgroups of G that are conjugate 
to H. If K is any subgroup of G ,  then for any k E K and J E S, the subgroup 
k * J == k J k- I is still a member of S since it is conjugate to H, and so the 
* operation defines an action of K on S. With this operation the stabilizer of 
J E S is K n N (J) , and the subset of S left fixed by the action is the set of 
conjugates J of H for which K c N(J) .  D 
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Example 7.3.8. 
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Let H be a proper subgroup of G, and let S denote the set of left cosets of H. 
We define a group action of G on S as follows : for a , x E G define a . (x H) == 

(ax ) H . To show that this multiplication yields a group action, let x H E S and 
a , b E G . Then a . (b · xH) == a . bxH == a (bx)H == (ab)xH == (ab) . xH 
and e . xH == (ex)H == xH . 
We note that the orbit of each coset x H is all of S, and thus SG == 0. The 
stabilizer of x H is the subgroup x H x- I . To see this, we first observe that if 
xhx- 1 E xHx- 1 , then (xhx - 1 • xH == xhH == xH . On the other hand, if 
a E G and a . x H == x H, then ax E x H, so ax == xh for some h E H, which 
shows that a == xhx- 1 E xHx- l . D 

7.3.4 Proposition. Let G be a group that acts on the set S, and let X E S. 
(a) The stabilizer Gx ofx in G is a subgroup ofG. 
(b) There is a one-to-one correspondence between the elements of the orbit Gx 

of x under G and the left cosets of G x in G. 

Proof (a) If a , b E Gx , then (ab)x == a (bx) == ax == x , and so ab E Gx . 
Furthermore, a- I x == a- I (ax ) == (a- 1 a)x , and then ex == x shows that a- I E Gx , 
as well as showing that Gx -=F 0.  

(b) For a, b E G  we have ax == bx if and only if b- I ax == x , which occurs if 
and only if b- 1a E Gx . Since this is equivalent to the condition that aGx == bGx , 
the function that assigns to the left coset a G x the element ax in the orbit of x is well
defined and one-to-one. This function is clearly onto, completing the proof. D 

Applying the above proposition to Example 7 .3 .6 shows that the normalizer 
N(H) of a subgroup H is a subgroup of G. Furthermore, the number of distinct 
subgroups conjugate to H is equal to [G : N(H)] . 

7.3.5 Proposition. Let G be a finite group acting on the set S. 
(a) The orbits of S (under the action of G) partition S. 

(b) For any X E S, I Gx l  == [G : Gx ] . 

Proof (a) For x ,  Y E S  define x � y if there exists a E G such that x == ay . This 
defines an equivalence relation on S, since, to begin with, for all X E S, x == ex 
implies x � x . If x � y , then there exists a E G with x == ay , and then y == a- I x 
implies that y � x .  If x � y and y � z for x ,  y , Z E S, then there exist a , b E G  
such that x == ay and y == bz . Therefore x == (ab)z and x � z . The equivalence 
classes of � are precisely the orbits G x .  

(b) This follows immediately from Proposition 7 .3 .4. D 
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7.3.6 Theorem. Let G be afinite group acting on the finite set S. Then 

where r is a set of representatives of the orbits Gx for which I Gx l  > 1 .  
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Proof Since the orbits Gx partition S, we have l S I == I: IGx l .  The equation we 
need to verify simply collects together the orbits with only one element and counts 
their members as I SG I .  D 

If we apply Theorem 7 .3 .6 to Example 7 .3 .5 ,  we obtain the class equation of 
Theorem 7.2 .6 . 

7.3.7 Lemma. Let G be afinite p-group acting on the finite set S. Then 

Proof Assume that I G I  == pn for some integer n . We simply reduce the equation 
in Theorem 7 .3 .6 modulo p . Each term [G : Gx ] > 1 in the sum I:[G : Gx] 
must be a divisor of I G I  == pn , and so for some ex > 1 we have [G : Gx ] == pCY. -
o (mod p) . D 

We now apply the theory of groups acting on sets to give a proof of a stronger 
version of Cauchy 's theorem. 

7.3.8 Theorem (Cauchy). If G is a finite group and p is a prime divisor of I G I , 
then the number of solutions in G of the equation xP == e is a multiple of p. In 
particular, G has an element of order p. 

Proof Let I G I  == n and let S be the set of all p-tuples (X l , X2 , . . .  , xp ) such that 
Xi E G for each i ,  and X I X2 · ·  · xp == e. The entry xp is determined by the first 
p - 1 entries, since xp == (X I X2 · · · Xp_ l ) - l , and so l S I == nP- 1 - 0 (mod p) , 
since p is a divisor of n . The motivation for considering this set is that the elements 
X E G satisfying xP == e are precisely the elements such that (X l , X2 , . . .  , Xp ) E S 
for X l == X2 == . . .  == Xp == x . 

Let C be the cyclic subgroup of the permutation group S p generated by the cycle 
CJ == ( 1 , 2 , . . .  , p) . Then C acts on S by simply permuting indices .  That is , 

The product extends to powers of CJ in the obvious way. Note that the action produces 
elements of S, since if yz == e, then zy == e. We have already observed that the 
fixed subset SC consists of p-tuples (X l , X2 , . . .  , Xp ) E S such that Xl == X2 == . . .  == 
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Xp == x and xP == e . Note that SC is nonempty since it contains (e , e , . . .  , e) . The 
result follows from the previous lemma since 

If G is a p-group, then by Lagrange 's theorem, the order of each element of G 
is a power of p .  The standard definition of a p-group, allowing its usage for infinite 
groups, is that G is a p-group if each element of G has an order that is some power 
of p. 

EXERCISES: SECTION 7.3 

1 .  Let G be a group acting on the set S, and let ¢ : G ---+ SymeS) be the group 
homomorphism defi ned in Proposition 7 .3 .2 . Show that ker (¢) == rJrESGX • 

2. Let H be a subgroup of G, and let S denote the set of left cosets of H. Defi ne a group 
action of G on S by setting a . (x H) == ax H , for all a , x E G (see Example 7 .3 .8) .  
(a) Let ¢ : G ---+ SymeS) be the homomorphism that corresponds to the group action 
defi ned above. Show that ker(¢) is the largest normal subgroup of G that is contained 
in H . 
(b) Assume that G is fi nite and let [G : H] == n .  Show that if n !  is not divisible by 
I G I ,  then H must contain a nontrivial normal subgroup of G. 

3 .  Let H and K be subgroups of  the group G, and let S be the set of left co sets of  K . 
Define a group action of H on S by setting a ·  (xH ) == ax K , fo ra I a E H and x E G . 

IH I I K I 
By considering the orbit of K under this action , show that I H K I == ---I H n K I 

4. Let G be a group of order 2 1 ,  which acts on the set S .  
(a) Show that if lS I == 8 ,  then SG f. 0 .  
(b) For what other integers n between 1 and 100 can you prove that if I S I == n ,  then 
SG f. 0? 
(c) For the remaining integers between 1 and 100, show that there is a set S with 
lS I == n and SG == 0. 

5 .  Let G be a group of order 28 . Use Exercise 2 to show that G has a normal subgroup 
of order 7. Show that if G also has a normal subgroup of order 4, then it must be an 
abelian group. 
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6. Let G be any non-abelian group of order 6. By Cauchy 's theorem, G has an element, 
say a ,  of order 2. Let H == (a ) ,  and let S be the set of left cosets of H .  
(a) Show that H is not normal in G .  
Hint : If H is normal, then H C Z(G) ,  and it can then be shown that G i s  abelian. 
(b) Use Exercise 2 and part (a) to show that G must be isomorphic to SymeS) . Thus 
any non-abelian group of order 6 is isomorphic to S3 . 

7 .  Let G be a p-group, with I G I == pn . Show that G has a normal subgroup of order 
pm for each integer 0 < m < n .  

8 .  Let G be a p-group with proper subgroup H .  Show that there exists an element 
a E G - H such that a- 1 Ha == H.  

9 . Let G be a p-group, with I G I == pn . Show that any subgroup of order pn- l must be 
normal in G .  

10. Let G be a group acting on a set S .  Prove that SG == { x  E S I Gx  == G}  and that 
SG == {x E S I Gx == {x } } .  

1 1 . Prove that if G i s  a finite p-group acting on a finite set S with p A' I S I ,  then G has at 
least one orbit which contains only one element. 

1 2. If G is a finite group of order n and p is the least prime such that p in ,  show that any 
subgroup of index p is normal in G .  

1 3 . Let G be a group acting on a set S . We say that G acts transitively on S if for each 
pair x ,  y of elements of S there exists an element g E G such that g x == y .  
(a) Show that the symmetric group Sn acts transitively on the set { I ,  2 ,  . . .  , n } .  
(b) Show that if n i= 2 ,  then the alternating group An acts transitively on the set 
{ I ,  2, . . . , n } .  
(c) Show that if V i s  an n-dimensional vector space over the field F , and S is the set 
of nonzero vectors in V ,  then GLn (F) acts transitively on S .  
(d) Show that if  G acts transitively on S, then [G : Gx ] == l S I for all X E S . Show 
that if l S I > 1 ,  then SG == 0 . 

14. If G is a subgroup of the symmetric group Sn , then G is called a transitive subgroup 
if it acts transitively on the set { I ,  2, . . .  , n } .  
(a) Show that i f  p i s  a prime number, and G i s  a transitive subgroup of SP ' then G 
must contain a cycle of length p .  
(b) Given an example in S4 of a transitive subgroup that does not contain a cycle of 
length 4. 
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7.4 The Sylow Theorems 

Lagrange 's theorem shows that for any finite group the order of a subgroup is a divisor 
of the order of the group. The converse is not true. For example, the alternating 
group A4 has order 1 2, but has no subgroup of order 6. Cauchy 's theorem gives a 
weak version of the converse (for prime divisors) . The major results in this direction 
are due to Sylow. 

7.4.1 Theorem (First Sylow Theorem). Let G be a finite group. If p is a prime 
such that pa is a divisor of I G I for some ex > 0, then G contains a subgroup of order 
pa. 

Proof We will use induction on n == I G I .  The theorem is certainly true for n == 1 ,  
and so we assume that it holds for all groups of order less than n . Consider the class 
equation 

I G I  == I Z (G) I + Z=[G : C(x) ] , 
where the sum ranges over one entry from each nontrivial conjugacy class . We 
will consider two cases, depending on whether or not each term in the summation 
Z=[G : C(x) ] is divisible by p . 

Case 1 .  For each x fj. Z(G) , p i s  a divisor of [G : C (x) ] . 
In this case the class equation shows that p must be a divisor of I Z (G) I ,  and so 
Z(G) contains an element a of order p by Cauchy 's theorem. Then (a ) is a normal 
subgroup of G since a E Z (G) , and so by the induction hypothesis , G / (a ) contains 
a subgroup of order pa- l , since pa- l is a divisor of I G / (a ) I .  The inverse image in 
G of this subgroup has order pa since each coset of (a ) contains p elements . 

Case 2. For some x fj. Z(G) , p is not a divisor of [G : C(x) ] . 
Since pa i s  a divisor of n == I C (x) I . [G : C (x) ] , i t  follows that pa is a divisor of 
I C (x) I .  But then the induction hypothesis can be applied to C (x) , since x fj. Z (G) 
implies I C (x) I < I G I ,  and so C (x) contains a subgroup of order pa . D 

7.4.2 Definition. Let G be afinite group, and let p be a prime number. A subgroup 
P of G is called a Sylow p-subgroup of G if I P I == pa for some integer ex > 1 such 
that peL is a divisor of I G I but pa+ l is not. 

The cyclic group Z6 has unique subgroups of order 2 and order 3 , and these are 
the Sylow p-subgroups for p == 2 and p == 3 . More generally, if n == p�l . . .  p�m 
is the prime factorization of n , then for 1 < i < m the group Zn has an element of 
order p�i , and the subgroup it generates is the unique Sylow Pi -subgroup of Zn . 

In the symmetric group S3 there are three subgroups of order 2, so we do not 
have uniqueness. Nevertheless, at least they are conjugate. The unique subgroup of 
order 3 is normal , and it turns out to be true in general that there is a unique Sylow 
p-subgroup if and only if there is a normal Sylow p-subgroup. 
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7.4.3 Lemma. Let G be a finite group with I G I  == mpO!, where ex > 1 and m is 
not divisible by p. If P is a normal Sylow p-subgroup, then P contains every 
p-subgroup ofG. 

Proof Suppose that a E H for a p-subgroup H of G. Since P is a normal subgroup 
of G, we may consider the coset a P as an element of the factor group G / P .  On 
the one hand, the order of a is a power of p since it belongs to a subgroup whose 
order is a power of p . The order of the coset a P  must be a divisor of the order of 
a, so it is also a power of p . On the other hand, the order of a P  must be a divisor 
of [G : P ] ,  but by assumption [G : P ]  is not divisible by p. This is a contradiction 
unless aP == P,  so a E P ,  and we have shown that H C P .  D 

7.4.4 Theorem (Second and Third Sylow Theorems). Let G be afinite 
group of order n, and let p be a prime number. 

(a) All Sylow p-subgroups ofG are conjugate, any p-subgroup ofG is contained 
in a Sylow p-subgroup, and any maximal p-subgroup is a Sylow p-subgroup. 

(b) Let n == mpO!, with gcd(m , p) == 1 , and let k be the number of Sylow 
p-subgroups ofG. Then k im and k = 1 (mod p). 

Proof Let P be a Sylow p-subgroup of G with I P I == pO! , let S be the set of all 
conjugates of P ,  and let P act on S by conjugation. If Q E S is left fixed by the 
action of P ,  then P C N(Q) .  Since I Q I == pO! , p is not a divisor of [G : Q]  and 
hence p is not a divisor of [N (Q) : Q] . Thus the hypothesis of Lemma 7 .4 .3 is 
satisfied by Q in N (Q) ,  since Q is normal in N (Q) .  It follows that P C Q, so 
P == Q since I P I  == I Q I .  Therefore the only member of S left fixed by the action 
of P is P itself, so I SP I  == 1 ,  and then Lemma 7 .3 .7 shows that l S I  = 1 (mod p) . 

Next let Q be any maximal p-subgroup. (That is, let Q be any p-subgroup that 
is not contained in any larger p-subgroup of G.) Let Q act on S by conjugation. 
Now l S I  = 1 (mod p) implies by Lemma 7 .3 .7 that I SQ I  = 1 (mod p) . In 
particular, some conjugate K of P must be left fixed by Q .  Then Q C N(K) , and 
as before it follows from Lemma 7 .4 .3  that Q C K.  But then since Q is a maximal 
p-subgroup, we must have Q == K .  This shows that Q is conjugate to P .  This 
implies not only that all Sylow p-subgroups are conjugate, but that any maximal 
p-subgroup is a Sylow p-subgroup. It is clear that any p-subgroup is contained in 
a maximal p-subgroup, so we have proved part (a) . 

Since we now know that S is the set of all Sylow p-subgroups of G, we have 
k = 1 (mod p) . Finally, k == [G : N (P) ] ,  since this is the number of conjugates of 
P. Since P C N(P) we see that k lm because [G : N (P)] is a divisor of [G : P ] .  D 
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Example 7.4.1. 

To give a simple application of the Sylow theorems, we will show that any 
group of order 100 has a normal subgroup of order 25 . We simply note that 
the number of Sylow 5-subgroups must be congruent to 1 modulo 5 and also 
a divisor of 4. The only possibility is that there is just one such subgroup (of 
order 25), which must then be normal . D 

Example 7.4.2. 

As a slightly less straightforward example, we will show that any group of 
order 30 must have a nontrivial normal subgroup. The number of Sylow 3-
subgroups must be congruent to 1 modulo 3 and a divisor of 10, so it must 
be either 1 or 10 . The number of Sylow 5-subgroups must be congruent to 1 
modulo 5 and a divisor of 6, so it must be either 1 or 6 .  Any Sylow 3-subgroup 
must have order 3, so the intersection of two distinct such subgroups must be 
trivial . Therefore ten Sylow 3-subgroups would yield twenty elements of 
order 3. Similarly, six Sylow 5-subgroups would yield twenty-four elements 
of order 5 .  Together, this would simply give too many elements for the group, 
so we conclude that there must be either one Sylow 3-subgroup or one Sylow 
5-subgroup, showing the existence of a nontrivial normal subgroup. D 

As further applications of the structure theorems we have proved, we can obtain 
the following information about the structure of groups of certain types . The amount 
of work it takes to get even such limited results should make the student appreciate 
the difficulty of determining the structure of groups . Note that Proposition 7 .4.5 

is a special case of Proposition 7 .4 .6 (b) . Its proof is of interest since it requires 
considerably less machinery than the proof of Proposition 7 .4 .6 .  

7.4.5 Proposition. Let p > 2 be a prime, and let G be a group of order 2p. Then 
G is either cyclic or isomorphic to the dihedral group Dp of order 2p. 

Proof By Cauchy 's theorem, G contains an element a of order p and an element 
b of order 2. The cyclic subgroup (a) has index 2 in G, and so it must be a 
normal subgroup. Thus conjugating a by b gives bab == an for some n . Then a == 

b (bab)b == banb == an2 , and so n2 = 1 (mod p) . It follows that n = ± 1  (mod p) , 
and thus bab == a or else bab == a- I . In the first case a and b commute, and so ab 
has order lcm(2, p) == 2 p and G is cyclic . In the second case, we obtain ba == a- I b 
(or ba == aP- I b), the familiar equation that defines Dp . 0 
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7.4.6 Proposition. Let G be a group of order pq, where p > q are primes. 
(a) If q is not a divisor of p - 1 , then G is cyclic. 

34 1 

(b) If q is a divisor of p - 1 , then either G is cyclic or else G is generated by 
two elements a and b satisfying the following equations: 

aP == e , 

where n ¢ 1 (mod p) but nq = 1 (mod p) . 

Proof The number of Sylow p-subgroups is a divisor of q , so i t must be either 1 
or q .  In the latter case it could not also be congruent to 1 modulo p, since p > q .  
Thus the Sylow p-subgroup is cyclic and normal, say (a ) .  There exists an element b 
of order q ,  and since (b) is a Sylow q -subgroup, there are two cases. If the number 
of Sylow q-subgroups is 1 ,  then (b) is a normal subgroup, and ab has order pq , 
showing that G is cyclic . (The intersection of Sylow subgroups for different primes 
is always trivial . Since both are normal subgroups, the element aba- 1 b- 1 belongs 
to both subgroups and hence must be equal to e, showing that ab == ba .) In the 
second case, since (a ) is normal , we have bab- l E (a) , and so ba == anb for some n . 
We can assume n is not congruent to 1 modulo p , since that would imply ba == ab, 
covered in the previous case . Conjugating repeatedly gives bq ab-q == anq ,  or simply 
a == anq , which shows that nq = 1 (mod p) since a has order p . D 

EXERCISES: SECTION 7.4 

1 .  Let G be a finite abelian group, and let p be a prime divisor of / G / .  Show that the 
Sylow p-subgroup of G consists of e and all elements whose order is a power of p .  

2 . Let G be a finite group, and let p be a prime divisor of / Z (G)  / .  Show that each Sylow 
p-subgroup of G contains the Sylow p-subgroup of Z (G) . 

3 .t In S4 find a Sylow 2-subgroup and a Sylow 3-subgroup. 

4. Find all Sylo\v subgroups of D5 and D6 . 

5 .  Find all Sylow subgroups of Dn , for the case in which n == pk is a prime power. 

6.t Find all Sylow 3-subgroups of S4 and show explicitly how they are conjugate. 

7 .  Show that A4 has no subgroup of order 6. 

8. This exercise classifies all subgroups of S4 . 

(a) Show that any proper, nontrivial subgroup of S4 is isomorphic to one of the 
following groups : Z2, Z3 , Z4 , Z2 x Z2, S3 , D4 , or A4 . 
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(b) For each of the groups in part (a) , detennine all subgroups of S4 that are isomorphic 
to the given group, determine which of these are conjugate, and determine their 
normalizers in S4 . 

9 .  Show that there is no simple group of order 148 .  

10. Show that there i s  no simple group of order 56. 

1 1 . Let G be a group of order p2 q, where p and q are distinct primes . Show that G must 
contain a proper nontrivial normal subgroup. 

12 . Show that there is no simple group of order 48. 

1 3 .  Show that there is no simple group of order 36. 

14 . Let G be a finite group in which each Sylow subgroup is normal . Prove that G is 
isomorphic to the direct product of its Sylow subgroups .  

7.5 Finite Abelian Groups 

If m > 1 and n > 1 are relatively prime numbers, and 4> : Zmn -+ Zm X Zn is 
defined by 4> ( [x]mn ) == ( [x]m , [x ]n ) ,  then 4> is an isomorphism. The statement that 
4> is onto is precisely the statement of the Chinese remainder theorem. Another 
proof is to observe that the second group is cyclic since the order of the element 
( [ 1 ] ,  [ 1 ] ) is lcm [m , n ] == mn . Applying this result repeatedly, we can show that for 
any n > 1 ,  the cyclic group Zn is isomorphic to a direct product of cyclic groups of 
prime power order, where the prime powers are those in the prime factorization of 
n . (See Theorem 3 .5 .5 of Section 3 .5 . ) The goal of this section is to prove a much 
more general result: any finite abelian group is isomorphic to a direct product of 
cyclic groups of prime power order. 

Since all of the groups under discussion in this section are abelian , we will 
use additive notation in the results leading up to, and including, the fundamental 
structure theorem. In additive notation, Proposition 7 . 1 . 3 states that if H and K are 
subgroups of an abelian group G such that H n K == {OJ and H + K == G, then 
G r-v H x K .  In this case each element of G can be written uniquely in the for� 
h + k , where h E H and k E K .  We generalize this in the next definition. 

7.5.1 Definition. Let HI , . . . , Hn be subgroups of the abelian group G. If each 
element g E G can be written uniquely in theform g == h I + . . .  + hn , with hi E Hi 
for all i , then G is called the direct sum of the subgroups HI , . . .  , Hn, and we write 
G == HI EB . . . EB Hn . 

7.5.2 Proposition. If H and K are subgroups of an abelian group G such that 
H n K == {OJ and H + K == G, then G == H EB K.  



7.5. FINITE ABELIAN GROUPS 343 

Proof It is clear that each element of G can be written in the form h + k, for some 
h E H and k E K .  Now suppose that h I + ki == h2 + k2 , with h I , h2 E H and 
k I , k2 E K .  Then h I - h2 == k2 - ki E H n K ,  so h I  - h2 == 0 == k2 - kl ' and thus 
h I == h2 and k l  == k2 . This shows that the sums are unique. D 

Our first step in describing the structure of a finite abelian group G is to show 
that G is a direct sum of subgroups of prime power order. This reduces the study to 
that of abelian p-groups. 

7.5.3 Theorem. A finite abelian group is the direct sum of its Sylow p-subgroups. 

Proof Let G be a finite abelian group, with I G I  == npO! , where p ,A' n . Let HI == 
{a E G I pO!a == O}  and let KI  == {a E G i na == OJ . Since G is abelian, both are 
subgroups, and HI is the Sylow p-subgroup of G. 

We will show that (i) HI n KI == {O J  and (ii) HI + KI == G . Then we can 
decompose KI in a similar fashion, etc . , to get G == HI EB H2 EB . . . EB Hk , where 
each subgroup Hi is a Sylow p-subgroup for some prime p . 

To prove (i) , we simply observe that if a E HI n K I ,  then the order of  a i s  a 
common divisor of pO! and n , which implies that a == O. To prove (ii) , let a E G. 
Then the order k of a i s  a divisor of  pO!n , and so k == pf3m, where m in , f3 < ex ,  
and p ,A'm. Since gcd (pf3 , m) == 1 ,  there exist r, s E Z with sm + rpf3 == 1 .  Then 
a == s (ma) + r (pf3a) , and a E HI + KI since ma E HI and pfJa E KI . The last 
statement follows from the fact that pO! (ma) == 0 and n (pfJ a) == 0 since pO! m and 
npfJ are multiples of the order of a . D 

7.5.4 Lemma. Let G be a finite abelian p-group, and let a E G be an element 
whose order is maximal in G. Then each coset of (a ) contains an element d such 
that (d) n (a ) == {OJ .  

Proof The outline of the proof is this :  for b E G , let y be the smallest nonnegative 
integer such that p Y b E (a ) . We seek x E (a ) such that pYx == P Y b, and then let 
d == b - x . The details go as follows. 

Let o(a) == pO! . Given b E G, let o (b) == pf3 , and let pY be the order of the 
coset b + (a ) in the factor group G j (a ) .  Note that y < f3 < ex since a is an element 
of maximal order in G. 

Since pY b E (a ) ,  we have pY b == p8qa for some nonnegative integers D ,  q such 
that p ,A' q . Then qa is a generator for (a ) ,  since q is relatively prime to o (a ) , and 
hence o (qa) == pO! . We have pfJ-Y p8 (qa) == pf3-Y pY b == 0, so o (a) I pf3-Y p8 and 
thus ex < f3 - Y + D .  It follows that y < D - (ex - f3) < D .  

Let x == p8-y qa , and set d == b - x . Note that pY x == pY b . Then d E b  + (a ) ,  
as required. To show that (d) n (a) == {O } ,  suppose that nd E (a ) , for some n E Z. 
Then nb - nx == nd E (a ) ,  and so nb E (a ) since x E (a) . This implies that 
n eb + (a ) ) == 0 + (a ) in Gj (a ) ,  and so pY I n  since pY is the order of b + (a ) .  But 
then nd == 0 since pY d == pY (b - x) == O. D 
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7.5.5 Lemma. Let G be a finite abelian p-group. If (a) is a cyclic subgroup of G 
of maximal order, then there exists a subgroup H with G == (a ) EB H. 

Proof The outline of the proof is to factor out (a ) and use induction to decompose 
G/ (a ) into a direct sum of cyclic subgroups. Then Lemma 7 .5 .4 can be used to 
choose the right preimages of the generators of G / (a ) to generate the complement 
H of (a ) . 

We use induction on the order of G .  If I G I is prime, then G is cyclic and there is 
nothing to prove. Consequently, we may assume that the statement of the theorem 
holds for all groups of order less than I G I == pcx . If G is cyclic , then we are done. 
If not, let (a ) be a cyclic subgroup of G of maximal order, and use the induction 
hypothesis repeatedly to write G / (a ) as a direct sum HI EB H2 EB . . .  EB Hn of cyclic 
subgroups. 

We next use Lemma 7 .5 .4 to choose, for each i ,  a coset ai + (a ) that corresponds 
to a generator of Hi such that (ai ) n (a ) == {OJ . We claim that G == (a) EB H for the 
smallest subgroup H == (a I , a2 , . . .  , an ) that contains a I , a2 , . . .  , an · 

First, if g E (a ) n (a I , . . .  , an ) ,  then g == m la l + . . .  + mnan E (a ) for some 
integers m l , . . .  , mn . Thus g + (a ) == m l al + . . .  + mnan + (a) == (a ) ,  and since 
G / (a ) is a direct sum, this implies that miai + (a ) == (a ) for each i .  But then 
miai E (a ) , and so miai == 0 since (ai ) n (a ) == {OJ . Thus g == O. 

Next, given g E G,  express the coset g + (a ) as m l al + . . .  + mnan + (a ) for 
integers m l , . . .  , mn . Then g E g + (a) , and so g == ma + m la l + . . .  + mnan for 
some integer m. 

Thus we have shown that (a ) n H == {O} and G == (a ) + H, so G  == (a ) EB H . D 

7.5.6 Theorem (Fundamental Theorem of Finite Abelian Groups). Any finite 
abelian group is isomorphic to a direct product of cyclic groups of prime power 
order. Any two such decompositions have the same number offactors of each order. 

Proof We can use Theorem 7 .5 . 3  to decompose any finite abelian group G into a 
direct sum of p-groups, and then we can use Lemma 7 .5 .5  to write each of these 
groups as a direct sum of cyclic subgroups. 

Uniqueness is shown by induction on I G I .  It is enough to prove the uniqueness 
for a given p-group. Suppose that 

where al > a2 > . . .  > an and f31 > f32 > . . .  > f3m . Consider the subgroups in 
which each element has been multiplied by p . By induction, al - 1 == f31 - 1 ,  . . .  , 
which gives al == f31 , . . .  , with the possible exception of the ai ' s  and f3 j ' s  that equal 
1 .  But the groups have the same order, and this determines that each has the same 
number of factors isomorphic to Z p • D 
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Example 7.5.1. 

We will find all finite abelian groups of order 72. The first step is to find the 
prime factorization : 72 == 23 32 . There are three possible groups of order 8 :  
Z8 , Z4 x Z2 , and Z2 x Z2 X Z2 . There are two possible groups of order 9 :  
Z9 and Z3 x Z3 . This gives us the following possible groups : 

Example 7.5.2. 

Z4 X Z2 x Z9 
Z4 x Z2 x Z3 x Z3 

Z2 X Z2 X Z2 x Z9 
Z2 x Z2 x Z2 x Z3 x Z3 . 

There is another way to describe the possible abelian groups of order 72. 
We can combine the highest powers of each prime by using the fact that 
Zm x Zn "" Zmn if (m , n) == 1 .  Then we have the groups in the following 
form: 

ZI 8 X Z2 x Z2 
Z6 x Z6 x Z2 . 

Note we have arranged the cyclic factors in such a way that the order of each 
factor is a divisor of the order of the preceding one. D 
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7.5.7 Proposition. Let G be afinite abelian group. Then G is isomorphic to a direct 
product of cyclic groups Zn I X Zn2 X . . . X Znk such that ni l ni - 1  for i == 2, 3 , . . .  , k. 

Proof We will use induction on the number of prime divisors of I G I .  If G is a p
group, then we only need to arrange its factors in decreasing order of size, since the 
divisibility condition automatically follows . If I G I has more than one prime factor, 
let Hp denote its p-Sylow subgroup, and let Kp be a subgroup with G r-v Hp x Kp . 
Then the induction hypothesis may be applied to K p to give K p r-v Zn l X Zn2 X . . . . 
Furthermore, Hp r-v Zpal X Zpa2 X . . . . Since n i and pal are relatively prime, 
the subgroup Zpa l  X Zn l is cyclic . Similarly, we may combine successive factors 
of H p with factors of K p ' and in doing so we maintain the necessary divisibility 
relations . D 

7.5.8 Corollary. Let G be afinite abelian group. If a E G is an element of maximal 
order in G, then the order of every element of G is a divisor of the order of a. 

Proof Let G be isomorphic to a direct product of cyclic groups Zn I X Zn2 X . . .  X Znk 
such that ni I ni- I for i == 2, 3 , . . .  , k . Recall that the order of an element in a direct 
product is the least common multiple of the orders of its components . Thus the 
largest possible order of an element of G is n 1 .  Furthermore, it is clear that the order 
of any element must be a divisor of n 1 .  D 
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If p is prime, then Z p is a field, and Theorem 6 .5 . 1 0 implies that Z; is a cyclic 
group. Of the composite numbers up to 20, it can be checked that Z� is cyclic for 
n == 4, 6 , 9 , 1 0 , 1 4 , 1 8 , while Z� fails to be cyclic for n == 8 , 1 2 , 1 5 , 1 6 , 20 . We 
leave it to the reader to make a conjecture as to when Z� is cyclic . (Results in this 
section will provide the answer.) 

When studying the multiplicative group Z� , it is natural to use multiplicative 
notation . We begin our description of Z� with an elementary number-theoretic 
lemma. 

7.5.9 Lemma. Let p be a prime number, and let k , a , b be integers. 
(a) If 1 < k < p - 1 , then p is a divisor of the binomial coefficient (r) . 
(b) Ifk > 1 and a = b (mod pk), then aP = bP (mod pk+ l ) . 
(c) If k > 2 and p is an odd prime, then 

(d) If p is an odd prime and p A' a, then 

Proof (a) Since (f) == p !  / k ! (p - k) ! and p is prime, no factor in the denominator 
cancels the factor p in the numerator. 

(b) Since a == b + q pk for some q E Z, we have 

aP == (b + qpk) p == bP + pbP- 1 . qpk + mp2k == bP + (bP- 1q + mpk- l )pk+ l 

for some m E Z. Therefore aP = bP (mod pk+l ) .  
(c) The proof is by induction, starting with k == 2 . This case i s  obvious since 

( 1  + ap) l = 1 + ap l (mod p2) . Now assume that the result holds for k . By part 
(b) we have 

Then 
P 

( l  + ap) pk- l = L (D (apk- l ) j = 1 + apk (mod pk+ l ) 
j=O 

since (k - l )j > k + 1 for j > 3 and 2(k - 1 )  > k and p I (i) . Thus the result 
holds for k + 1 .  

(d) By part (c) we have ( l +ap)pk- 1 = l +apk (mod pk+ l ) , and so ( l+ap) pk- 1 = 
1 (mod pk) .  On the other hand, ( 1  + ap)pk-2 = 1 + apk- l (mod pk) by part (c) , 
and 1 + apk- l ¥= 1 (mod pk) since p A' a D 
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7.5.10 Theorem. Let p be an odd prime, and let k be a positive integer. Then ZXk p 
is a cyclic group. 
Proof We have already noted that Z; is cyclic, so we choose a generator [a ] of 
Z; . Then [a + p] == [a ] , and so [a + p] is also a generator. If aP- 1 = 1 (mod p2 ) , 
then 

(a + p)p- l = aP- 1 + (p - 1 )aP-2 . p = 1 + pep - 1 )aP-2 (mod p2) . 
Since p A' a , we have (a + p) p- l ¥= 1 (mod p2) .  Thus without loss of generality 
we may assume that aP- 1 = 1 (mod p) , but aP- 1 ¥= 1 (mod p2) .  

We will show that [a ] i s  an element of order <p (pk) in the group Zxk . Thus we p 
must show that an = 1 (mod pk) implies that <p (pk ) I n . Since aP- 1 = 1 (mod p) , 
there exists q E Z such that aP- 1 == 1 + qp , and then since aP- 1 ¥= 1 (mod p2) ,  we 
must have p A' q . By Lemma 7.5 .9 (d) we have 

( 1 + qp)p
k
- l = 1 (mod pk) and ( 1 + qp)p

k
-
2 

¥= 1 (mod pk ) , 
which implies that the order of [ 1 +qp] in ZXk is pk- l . Since [ 1 +qp]n == [a P- I ]n == p 
[ 1 ] , we must have pk- l I n . Set n == mpk- l . Since an == (apk- l )m = am (mod p) 
and an = 1 (mod p) , we conclude that am = 1 (mod p) . Since the order of [a ] in 
Z; is p - 1 ,  we see that p - 1 I m . Thus <p (pk) == pk- l (p - 1 ) is a divisor of n , 
and our proof i s  complete . D 

We next consider the prime p == 2. Of course, the group Z; is trivially cyclic, 
and Z� is cyclic of order of 2. 

7.5.11  Lemma. Let k be an integer with k > 2. 
(a) In Z;k ' the element [5] has order 2k-2. 
(b) In Z;k ' the elements [±5n ] are distinct, as n ranges over nonnegative integers 

less than 2k-2. 
Proof (a) For k == 2 we have 5 = 1 (mod 4) , and so we assume that k > 3 . It 
suffices to show that 52k-3 = 1 + 2k- 1 (mod 2k) ,  since then 52k-3 ¥= 1 (mod 2k) , 
but 52k-2 

== (52k-3 ) 2 = ( 1  + 2k- I ) 2 = 1 (mod 2k) .  We will give a proof by 
induction . The case k == 3 is clear. Assume that the result holds for k . Then by 
Lemma 7 .5 .9 (b) we have 52k-2 == (52k-3 ) 2 = ( 1 + 2k- I )2 (mod 2k+ I ) .  But then 
( 1  + 2k- I )2 == 1 + 2k + 22k-2 = 1 + 2k (mod 2k+ l ) since 2k - 2 > k + 1 for k > 3 . 

(b) Assume that m , n are nonnegative integers less than 2k-2 such that ±5m = 
±5n (mod 2k) ,  with m > n . Since 5 = 1 (mod 4) , reducing modulo 4 shows that HIe 
signs must be the same. Then 5m = 5n (mod 2k ) implies that 5m-n = 1 (mod 2k) , 
because we can mUltiply by 5-n since gcd(5 , 2) == 1 .  By part (a) of the lemma, 
m - n = 0 (mod 2k-2) , and therefore m == n . 0 
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7.5.12 Theorem. If k > 3, then Z;k is isomorphic to the direct product of a cyclic 
group of order 2 and a cyclic group of order 2k-2. 

Proof In the group G == Z;k ' the subgroup H generated by [- 1 ]  has order 2, and 
if k > 3 , then Lemma 7 .5 . 1 1 (a) shows that the subgroup K generated by [5] has 
order 2k-2 . Since the order of G is <p (pk ) == 2k- 1 , Lemma 7 .5 . 1 1  (b) implies that 
G == { [±5n ] 1 0  < n < 2k-2 } .  Thus G == H K and H n K == { I } , so Theorem 7 . 1 . 3 
implies that G is isomorphic to H x K.  D 

7.5.13 Corollary. The group Z� is cyclic if and only if n is of the form 2, 4, pk, or 
2pk for an odd prime p. 

Proof Assume that n has the prime decomposition n == p�1 p�2 . . .  p�m , and sup
pose that Z� is cyclic. In Example 5 .2 . 1 3  we showed that 

Zx � Zx Zx Zx n == a I X a2 X . . . X am · P I P2 Pm 

Each of the nontrivial component groups in this direct product has even order, so the 
assumption that Z� is cyclic implies that there is only one nontrivial component. (If 
not, an element of maximal order in Z� would have order equal to the least common 
multiple of the orders of the groups on the right hand side, which is less than I Z� I . ) 
Since Z; is trivial , this implies that n has the form 2pk for an odd prime p, or the 
form pk . In the latter case, if p == 2, then k must be 1 or 2 by Theorem 7 .5 . 1 2. 

Conversely, if n has the stated form, then since Z; is trivial , Theorem 7 .5 . 1 0 
implies that Z� i s  cyclic . D 

In elementary number theory, an integer g is called a primitive root for the 
modulus n if Z� is a cyclic group and [g]n is a generator for Z� . Corollary 7 .5 . 1 3  
determines which moduli n have primitive roots . The proof of Theorem 7.5 . 10 
shows how to find a generator for Z x k • P 

EXERCISES: SECTION 7.5 

1 .  Give a representative of each isomorphism class of abelian groups of order 64. 

2. Using both the form of Theorem 7 .5 .6 and that of Proposition 7 .5 .7 , list all noniso
morphic abelian groups of order 56 . 

3 .  Using both the form of Theorem 7 .5 .6 and that of Proposition 7 .5 .7 , list all noniso
morphic abelian groups of the following orders . 
(a) order 108 
(b) order 200 
( c) order 900 
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4. Write each of the following groups as a direct product of cyclic groups of prime 
power order. 

t ea) Z;o 
(b) Z;4 

t (c) Z;o 
(d) Z�80 

5 .  Show that the following conditions are equivalent, for any positive integer n :  
(i) all abelian groups of order n are isomorphic ; 
(ii) all abelian groups of order n are cyclic ; 
(iii) the integer n is not divisible by the square of any prime number. 

6. Show that H == { ( [m]4 , [n]4) I m = n (mod 2) } is a subgroup of Z4 x Z4 . Write H 
as a direct sum of cyclic groups of prime power order. 

7 .  Prove that if p is a prime and Zpcx "'-' G I  X G2 , then either G I  "'-' Zpcx or G2 "'-' Zpcx .  

8 .  Let p be an odd prime, and let g be a primitive root modulo p . Prove that g (p- I )/2 = 

- 1  (mod p) .  
9 .  Prove that if the modulus n has a primitive root, then it has exactly ¢ (¢ (n)) pairwise 

incongruent primitive roots . 

10. Let a ,  b be positive integers, and let d == gcd(a ,  b) and m == lcm[a , b] . In the group 
G == Za x Zb , let M be the subgroup generated by ( 1 ,  1 ) .  Find a subgroup H of G 
with G == M E9 H (compare Lemma 7 .5 .5) .  

We now have enough information to complete a classification of groups of order less than 
1 2 . This can be done by using the fundamental theorem of finite abelian groups and Propo
sition 7 .4 .5 and 7 .4 .6 .  However, the case of order 8 requires some additional analysis . 

1 1 . Let G be a nonabelian group of order 8. 
(a) Prove that G must have an element of order 4, but none of order 8. 
(b) Let a be an element of order 4, and let N == (a ) .  Show that there exists an element 
b such that G == N U Nb. 
(c) Show that either b2 == e or b2 == a2 . (Since N is normal, consider the order of 
Nb in G/ N .) 
(d) Show that bab - 1 has order 4 and must be equal to a3 . 
(e) Conclude that either G "'-' D4 or else G is determined by the equations a4 

== e, 
ba == a3 b, b2 == a2 . Review Example 3 . 3 .7 (the quaternion group) to verify that the 
second case can occur. 

1 2 . Determine (up to isomorphism) all groups of order less than 12 . 
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7.6 Solvable Groups 

We are now ready to study groups arising from equations that are solvable by radicals .  
(We will not be able to give a proof of this correspondence until after we develop 
some new ideas in the next chapter. ) Groups in the class are simply said to be 
solvable . It is obvious from the following definition that any abelian group is 
solvable . 

7.6.1 Definition. The group G is said to be solvable if there exists afinite chain of 
subgroups G == No => NI => . . .  => Nn such that 

(i) Ni is a normal subgroup in Ni- I for i == 1 , 2 , . . .  , n, 
(ii) Ni - 1 / Ni is abelian for i == 1 ,  2, . . .  , n, and 
(iii) Nn == {e } .  

Example 7.6.1 (S3 is solvable). 

Let G == S3 , the group of all permutations on three elements (the smallest 
nonabelian group). For the descending chain of subgroups No == G, N 1 == A3 , 
and N2 == { ( I ) }  we have Nol Nl � Z2 and NI I N2 � Z3 . Recall that A3 is the 
set { ( I ) ,  ( 1 , 2 , 3) , ( 1 , 3 ,  2) } of all even permutations of S3 . This shows that S3 
is a solvable group. D 

Example 7.6.2 (S4 is solvable). 

Let G == S4 , and let No == G, NI == A4 . Since A4 has index 2 in S4 , we must 
have Nol NI � Z2 . Let N3 be the trivial subgroup { ( I ) } ,  and let 

N2 == { ( I ) ,  ( 1 , 2) (3 , 4) , ( 1 , 3) (2 , 4) , ( 1 , 4) (2 , 3) } . 

Then N2 is a subgroup of G since it is closed under multiplication . Moreover, 
it is a normal subgroup of both G and N 1 ,  since conjugating an element 
of N2 by any element of G must yield an element that has the same cycle 
structure, and the elements of N2 are the only permutations in S4 that can be 
expressed as products of disjoint transpositions . Since [Nl : N2 ] == 3, we 
have NI l N2 � Z3 . For all a E N2 , we have 0'2 

== ( 1 ) ,  and so N21 N3 � N2 
is isomorphic to the Klein four-group Z2 x Z2 . Thus each factor group in the 
given descending chain of subgroups is abelian, and this shows that S4 is a 
solvable group. D 

In Example 7 .6 .2 we could have added another term at the bottom of the de
scending chain of subgroups, by letting N3 == { ( I ) ,  ( 1 , 2) (3 , 4) } and N4 == { ( I ) } . 
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Then each factor group Ni / Ni + 1 would have been isomorphic to a cyclic group. 
This can always be done , as the next proposition shows (for finite groups) . 

7.6.2 Proposition. Let G be a finite group. Then G is solvable if and only if there 
exists a finite chain of subgroups G == No => NI => . . .  => Nn such that 

(i) Ni is a normal subgroup in Ni- l for i == 1 , 2 , . . .  , n, 
(ii) Ni- l / Ni is cyclic ofprime order for i == 1 , 2 , . . .  , n, and 
(iii) Nn == {e} . 

Proof Assume that G is solvable, with a chain of subgroups No => Nl => . . .  => Nn 
satisfying the conditions of Definition 7 .6 . 1 .  By omitting all unnecessary terms , we 
can assume that each factor group is nontrivial . If some factor group Ni / Ni + 1 is not 
cyclic of prime order, then let p be a prime number such that p divides I Ni / Ni + 1 1 . By 
Cauchy 's theorem there exists an element aNi+ 1 of Ni / Ni+ 1 of order p . Recalling 
that subgroups of Ni / Ni+ 1 correspond to subgroups of Ni that contain Ni+ 1 , we let 
H be the inverse image in Ni of (a Ni + 1 ) . Thus we have Ni => H => Ni + 1 , and H is 
a normal subgroup of Ni since (a Ni + 1 ) is a normal subgroup of the abelian group 
Ni / Ni + 1 . Furthermore, Ni + 1 is normal in H since Ni + 1 is normal in Ni => H. Since 
Ni / H is a homomorphic image of the abelian group Ni / Ni + 1 , it is abelian, and 
H / Ni+ 1 r-v (aNi+ l ) is a cyclic group of order p. We next consider the descending 
chain of subgroups constructed from the original chain by adding H. We can 
apply the same procedure repeatedly, ultimately arriving at a descending chain of 
subgroups, each normal in the previous one, such that all factors are cyclic of prime 
order. 

The converse is obvious . 0 

7.6.3 Theorem. Let p be a prime number. Any finite p-group is solvable. 

Proof Let G be any group of order pm . First let Co be the trivial subgroup. The 
center Z(G) == {x E G I xg == gx for all g E G} of G is nontrivial , so we let 
C1 == Z (G) . It follows from the definition of Z(G) that C1 is abelian, and also that it 
is normal in G. Since the factor group G / C 1 is defined, it also has nontrivial center 
Z(G/C1 ) since its order is again a power of p . Let C2 be the subgroup of G that 
contains C 1 and corresponds to Z (G / C 1 ) . Since normal subgroups correspond to 
normal subgroups, we see that C2 is normal in G . Furthermore, C2/ C 1 r-v Z(G / C1 ) , 
and so this factor is abelian . We can continue this procedure until we obtain Cn == G 
for some n . Then we have constructed a chain G == Cn => . . .  => C1 => Co satisfying 
the conditions of Definition 7 .6 . 1 ,  and so G is solvable. 0 

7.6.4 Definition. Let G be a group. An element g E G is called a commutator if 
g == aba- 1b- 1 for elements a , b E G. 

The smallest subgroup that contains all commutators of G is called the com
mutator subgroup or derived subgroup of G, and is denoted by G' . 
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We note that the commutators themselves do not necessarily form a subgroup. 

7.6.5 Proposition. Let G be a group with commutator subgroup G'. 
(a) The subgroup G' is normal in G, and the factor group GIG' is abelian. 
(b) If N is any normal subgroup ofG, then the factor group GIN is abelian if 

and only if G' C N. 

Proof (a) Let x E G' and let g E G. Then gxg- I x- I E G', and since x E G', we 
must have gxg- I == gxg- I x - I X E G' . 

The factor group GIG' must be abelian since for any cosets aG' , bG' we have 

aG'bG'a- I G'b- I G' == aba- I b- I G' == G' . 
Thus aG'bG' == bG'aG' . 

(b) Let N be a normal subgroup of G. If N => G', then GIN is a homomorphic 
image of GIG' and must be abelian. Conversely, suppose that GIN is abelian . 
Then aNbN == bNaN for all a , b E G, or simply aba- I b- I N == N, showing that 
every commutator of G belongs to N. This implies that G' e N. D 

7.6.6 Definition. Let G be a group. The subgroup (G') ' is called the second derived 
subgroup ofG. We define G(k) inductively as (G (k- I » )" and call it the kth derived 
subgroup of G. 

We note that the kth derived subgroup of G is always normal in G (see Ex
ercise 1 ) . In fact, it can be shown to be invariant under all automorphisms of G. 
Our reason for considering the commutator subgroups i s  to develop the following 
criterion for solvability. 

7.6.7 Theorem. A group G is solvable if and only if G(n) == {e} for some positive 
integer n. 

Proof First assume that G is solvable and that G == No => NI => . . .  => Nn == {e } is 
a chain of subgroups such that Ni I Ni+ 1 is abelian. Since G I NI is abelian, we have 
G' C NI . Then we must have G(2) == (G') ' C (NI ) ' c N2 since N} I N2 is abelian. 
In general, G(k) C Nk , and so G (n) == {e } . 

Conversely, if G (n) == { e } , then in the descending chain G => G' => . . .  => G(n) == 
{e } , each subgroup is normal in G and each factor G(i ) I GU+ l ) is abelian, showing 
that G is solvable. D 

7.6.8 Corollary. Let G be a group. 
(a) If G is solvable, then so is any subgroup or homomorphic image of G. 
(b) If N is a normal subgroup of G such that both N and GIN are solvable, 

then G is solvable. 
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Proof (a) Assume that G is solvable, with G(n) == {e } ,  and let H be a subgroup of 
G .  Since H' C G', it follows inductively that H(n) C G(n) == {e } . 

To show that any homomorphic image of G is solvable, it suffices to show that 
GIN is solvable for any normal subgroup N of G .  Commutators aba- 1 b- I of G 
correspond directly to commutators aN bN a- I N b- 1 N == aba- I b- I N of GIN, and 
so the kth derived subgroup of GIN is the projection of the kth derived subgroup 
of G onto GIN . It is then obvious that GIN is solvable. 

(b) Assume that N is a normal subgroup of G such that N and GIN are solvable. 
Then (G I N) (n) == {e N } for some positive integer n, and the correspondence between 
commutators of GIN and G that we observed in the proof of part (a) shows that 
G(n) C N. But then N(k) == {e} for some positive integer k ,  and so G(n+k) 
(G (n» ) (k) C N(k) == {e } . Thus G is solvable. D 

We have seen several methods of determining whether or not a given group is 
solvable. The methods involved sequences of subgroups, determined in various 
ways. This raises the question of uniqueness of such sequences . Theorem 7 .6 . 10  
shows that i f  we have a sequence that cannot be lengthened, then there i s  a certain 
amount of uniqueness, which we can illustrate with the following example. In Z6 
we have the following two descending chains of subgroups : 

and 

In the first chain we have Z6/3Z6 � Z3 and 3Z6 � Z2 . On the other hand, in the 
second chain we have Z6/2Z6 � Z2 and 2Z6 � Z3 . At least we have the same 
factor groups, even though they occur in a different order. 

7.6.9 Definition. Let G be a group. A chain of subgroups G == No � Nl � . . .  � 
Nn such that 

(i) Ni is a normal subgroup in Ni- 1 for i == 1 , 2 , . . .  , n, 
(ii) Ni- I I Ni is simple for i == 1 , 2 , . . .  , n, and 
(iii) N n == {e } 

is called a composition series for G. 
The factor groups Ni- 1 1 Ni are called the composition /actors determined by 

the series. The number n is called the length of the series. 

Note that any finite group G has at least one composition series. Let No == G 
and then let NI be a maximal proper normal subgroup of G .  (That is , let NI be 
a proper normal subgroup of G that is not contained in any strictly larger proper 
normal subgroup of G .) To continue the series , let N2 be a maximal proper normal 
subgroup of NI , etc . Since G is finite, the sequence must terminate at the trivial 
subgroup after at most a finite number of steps . 
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Example 7.6.3 (Composition series for S4). 

In Example 7 .6.2 we constructed a descending chain S4 == No � NI � N2 � 
{ (  I ) } ,  where N I == A4 and N2 is isomorphic to the Klein four-group. This is 
not a composition series for S4 since N2 is not a simple group. If we refine 
the series by including the subgroup N3 == { ( I ) ,  ( 1 , 2) (3 , 4) } ,  and if we let 
N4 == { ( I ) } , then 

is a composition series of length 4, since No/ NI 
N2/ N3 r-v Z2 , and N3 / N4 r-v Z2 . 0 

7.6.10 Theorem (Jordan-Holder). Any two composition series for a finite group 
have the same length. Furthermore, there exists a one-to-one correspondence be
tween compositionfactors of the two composition series under which corresponding 
composition factors are isomorphic. 

Proof The proof uses induction on the length of a composition series for the group 
G .  That is, we will show that if G is a finite group with a composition series 

G => NI => . . .  => Nk == {e } 

of length k, then any other composition series 

G => HI => . . .  => Hm == {e } 

for G must have m == k and there must exist a permutation a E Sk such that 
Ni- I / Ni � Ha (i )- I / Ha (i ) for i == 1 , 2 , . . . , k .  If k == 1 ,  then G must be simple and 
so there is only one possible composition series . 

Assume that G has a composition series of length k, as above. In addition, 
assume that the induction hypothesis is satisfied for all groups with a composition 
series of length less than k, and assume that G has another composition series of 
length m, as above. If NI == HI , then we can apply the induction hypothesis to the 
composition series 

NI => N2 => . . .  => Nk == {e } 
and thus obtain the result for G .  If HI i= NI , then let 

be a composition series. This gives the diagram in Figure 7 .6 . 1 .  
Since NI and HI are normal in G ,  so is their intersection. Furthermore, NI HI 

is normal in G ,  and so it must be equal to G since it contains both NI and HI , 
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Figure 7 .6 . 1 :  

� I /  
{e } 

which are maximal normal subgroups . Applying the first isomorphism theorem 
(Theorem 7 . 1 . 1 ) gives us the following isomorphisms : 

and 
HI / (Nl n HI ) � (NI HI ) / NI == G/ NI . 

This implies that NI n HI is a maximal normal subgroup of both Nl and HI , so we 
have the following four composition series for G : 

G � NI � NI n HI � . . .  � Kn == { e }  , 

G � HI � NJ n HI � . . .  � Kn == {e } , 

G � HI � H2 � . . . � Hm == {e }  . 

The first two composition series have NI as the first term, so we must have n == k, 
and isomorphic composition factors . The last two composition series have HI as 
the first term, so again we must have m == n , and isomorphic composition factors . 
The isomorphisms given above show that the middle two composition series have 
isomorphic composition factors , and so by transitivity the first and last composition 
series have the same length and isomorphic composition factors . D 
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EXERCISES: SECTION 7.6 

1 .  Let G be a group and let N be a normal subgroup of G. For a ,  b E G , let [a , b] 
denote the commutator aba- I b- I . 
(a) Show that g [a ,  b]g- I == [gag- I , gbg- I ] ,  for all g E G.  
(b) Show that N' i s  a normal subgroup of G .  

2 .  Prove that an abelian group has a composition series if and only i f  i t  i s  finite. 
3 .tGive an example of two groups G I and G2 that have the same composition factors , 

but are not isomorphic . 
4. Find a composition series for DI S . 

5 .  Let G be the Frobenius group F20 of matrices of the form [ �  � ] such that n E Zs 

and m E Z; . 
(a) Find a composition series for G .  
(b) Find the descending series of commutator subgroups of G .  

6 .  Prove that i f  G I X G2 x . . .  x G s � HI X H2 X . . .  x Ht , where each of the groups 
Gi and Hi is a finite simple group, then s == t and there exists CJ E St such that 
G j � Ha (j ) for j == 1 ,  . . .  , t . 

7 .  Let p and q be primes, not necessarily distinct. A famous theorem of Burnside states 
that any group of order pn qm is solvable for all n ,  m E Z+ . 
(a) Show that any group of order pq is solvable. 
(b) Show that any group of order p2q is solvable. 
(c) Show that any group of order pn q is solvable if p > q .  

8 .  Let G be a group. A subgroup H of G is called a characteristic subgroup if ¢ (H) c 
H for all ¢ E Aut(G) .  
(a) Prove that any characteristic subgroup i s  normal . 
(b) Prove that if H is a normal subgroup of G, and K is a characteristic subgroup of 
H,  then K is normal in G .  
(c) Prove that the center of  any group i s  a characteristic subgroup. 
(d) Prove that the commutator subgroup is always a characteristic subgroup . 
(e) Prove that if G is finite, then any normal Sylow p-subgroup of G is a characteristic 
subgroup. 
(f) Prove that the product of two characteristic subgroups is a characteristic subgroup. 

9 .  Prove that a finite solvable group of order 2: 2 must contain a nontrivial normal 
abelian subgroup. 

10 . Prove that if G is a finite group which is not solvable, then G must contain a nontrivial 
normal subgroup N such that N' == N. 
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7.7 Simple Groups 

Cyclic groups of prime order form the most elementary class of simple groups . In 
the introduction to Chapter 7 we presented, without proof, another class of finite 
simple groups, constructed from the group of invertible n x n matrices over a finite 
field. In this section we will return to this class (in the special case n == 2), after 
considering the class of alternating groups . The fact that An is simple, for n > 5, 
will play a crucial role in Chapter 8 . 

7.7.1 Lemma. lfn > 3, then every permutation in An can be expressed as a product 
of 3-cycles. 

Proof The product of any two transpositions must have one of the following forms 
(where different letters represent distinct positive integers) :  

(a , b) (a , b) 
(a , b) (b , c) 
(a , b) (c , d) 

( 1 )  == (a , b, c) (a , b, c) (a , b, c) , 
(a , b , c) , 
(a , b, c) (b , c, d) . 

Since any element of An is a product of an even number of transpositions , this shows 
that any element of An can be expressed as a product of 3-cycles . D 

7.7.2 Theorem. The symmetric group Sn is not solvable for n > 5. 

Proof We first show that the derived subgroup (An ) ' is equal to An . Let (a , b, c) 
be any 3-cycle in An . Since n > 5, we can choose d, f E { I ,  2, . . .  , n }  different 
from a , b , c. Then 

(a , b, c) == (a , b , d) (a , c, f) (a , d, b) (a , f, c) 

and we have shown that any 3-cycle is a commutator. Together with Lemma 7.7 . 1 ,  
this shows that any element of An is a product of commutators of elements in An . 

Finally, we have (Sn ) ' C An since the factor group Sn/ An is abelian . In the 
other direction, we have An == (An )' C (Sn ) ' , and so (Sn ) ' == An . It follows that 
(Sn ) (k) == An for all k > 1 ,  and thus Sn is not solvable. D 

7.7.3 Lemma. lfn > 4, then no proper normal subgroup of An contains a 3 -cycle. 

Proof Let N be a normal subgroup of An that contains a 3-cycle (a , b, c) . Note 
that N must also contain the square (a , c , b) of (a , b , c) . Conjugating (a , c , b) by 
the even permutation (a , b) (c , .x ) ,  we obtain (a , b , x) , which must belong to N since 
N is normal in An . By repeating this argument we can obtain any 3 -cycle (x , y , z) , 
and thus N contains a1l 3-cycles . By Lemma 7 .7 . 1 ,  we have N == An . D 
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7.7.4 Theorem. The alternating group An is simple ifn > 5. 

Proof Let N be a nontrivial normal subgroup of An . Using the previous lemma, 
we only need to show that N contains a 3-cycle. Let a E N, and assume that a is 
written as a product of disjoint cycles . If a is itself a 3-cycle, then we are done . 

If a contains a cycle of length > 4, say a == (a , b, c, d, . . . ) . . .  , then let 
r == (b , c, d) . Since N is a normal subgroup, a - I and ra r - I must belong to N ,  
and so a - I ra r - I E N. A direct computation shows that a - I r a r - I == (a , b, d) , 
and thus N contains a 3 -cycle. 

If a contains a 3 -cycle but no longer cycle, then either a == (a , b, c) (d , f, g) . . . 
or a == (a , b, c) (d , f) . . . . Let r == (b , c, d) . In the first case, a - I r a r - I == 
(a , b, d, c, g) , and in the second case, a - I ra r - I == (a , b, d, c, f) . Thus, by the 
previous argument, N must again contain a 3-cycle . 

Finally, if a consists of only transpositions , then either a == (a , b) (c, d) or 
a == (a , b) (c , d) . . . . The second case reduces to the first, since a - I r a r - I == 
(a , d) (b , c) , again using r == (b , c , d) . In the first case, since n > 5, there must be 
a fifth element, say f. For the permutation p == (c , d, f) , we have a - I pap - I 

(c , d, f) . Thus N must contain a 3-cycle, completing the proof. D 

We will now consider another infinite family of simple groups . Recall that for a 
field F the set of all invertible n x n matrices with entries in F is called the general 
linear group GLn (F) . If A ,  B E GLn (F) , then det(AB) == det(A) det (B) ,  and 
so the determinant defines a homomorphism from GLn (F) into the multiplicative 
group F x of nonzero elements of F. The kernel of this homomorphism is a normal 
subgroup consisting of the set of all matrices with determinant 1 .  

7.7.5 Definition. Let F be afield. The set of all n x n matrices with entries in F and 
determinant 1 is called the special linear group over F, and is denoted by SLn (F) . 

The group SLn (F) modulo its center is called the projective special linear group 
and is denoted by PSLn (F). 

7.7.6 Proposition. For any field F, the center ofSLn (F) is the set ofnonzero scalar 
matrices with determinant 1 . 

Proof Let 1 be the n x n identity matrix, and let eij denote the matrix having 
1 as the ijth entry and zeros elsewhere. If i i= j ,  then 1 + eij E SLn (F) , and 
so for any matrix A (with entries {aij } ) in the center of SLn (F) we must have 
(I + eij )A (1 + eij ) - I == A .  Considering the iith entry of this matrix equation leads 
to the equation au + a ji == au , and so A must be a diagonal matrix. With this 
assumption, considering the ijth entry of the matrix equation yields the equation 
a jj - au == 0, showing that A must be a scalar matrix. Since A E SLn (F) , we must 
have det (A) == 1 .  D 
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To find a family of finite simple groups, we will examine the structure ofGLn (F) ,  
for any finite field F .  The proof of Proposition 7 .7 .6  shows that the center ofGLn (F) 
is the set of all scalar matrices with nonzero determinant, and so it contains the center 
of SLn (F) ,  which we will denote by Z . Thus Z is a normal subgroup of GLn (F) ,  
and so  we have a chain of  normal subgroups 

where GLn (F)/ SLn (F) r-v FX  and Z is a finite abelian group. By Theorem 6 .5 . 10  
we know that FX is cyclic, and Theorem 7 .5 .6 gives a complete description of all 
finite abelian groups. Thus the interesting part of a composition series for GLn (F) 
is the factor SLn (F) / Z == PSLn (F) . With two exceptions, when n == 2 and either 
I F I  == 2 or I F I  == 3 ,  the groups PSLn (F) are simple. We will prove only a special 
case of this result, for n == 2. 

To determine the order of GL2 (F) ,  we consider the number of ways in which 
we can construct an invertible 2 x 2 matrix A with entries in F .  The first column 
of A must be nonzero, and then the second column cannot be a multiple of the first 
column. If I F I == q ,  then there are q 2 - 1 ways in which to choose a nonzero 
column. Next, there are q multiples of this column that we cannot choose for the 
second column, so the number of choices for the second column is q 2 - q ,  and thus 
the total number of choices for the matrix is (q 2 - 1 ) (q2 - q) . Therefore 

Since there are q - 1 co sets of SL2 (F) in GL2 (F) ,  by Lagrange' s theorem we have 

If char(F) == 2, then the center Z of SL2 (F) is trivial .  In any other characteristic, 
the entries in a matrix in Z must satisfy x2 == 1 ,  and so since F contains exactly two 
solutions of this equation, we have Z == {±I } ,  where I is the 2 x 2 identity matrix. 

We begin by looking at the exceptional cases PSL2 (F) ,  with I F I == 2 and 
I F I  == 3 .  

Example 7.7.1 (PSL2 (F) r-v S3 if I F I  == 2). 

If I F I == 2, then PSL2 (F) == SL2 (F) == GL2 (F) .  We have shown in Exam
ple 3 .4.5 that GL2 (F) is isomorphic to the symmetric group S3 . D 

Example 7.7.2 (PSL2 (F) r-v A4 if I F I == 3). 

Assume that F is a field with 3 elements . We will sketch a proof of the fact 
that PSL2 (F) is isomorphic to the alternating group A4 , showing that it is not 
simple. (The details are left as an exercise.) 
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To simplify the notation, let G == SL2 (F) .  We first define the subgroup 

The product HZ of H and the center Z is a subgroup of order 6, consisting of 
the elements of H and their negatives .  We let G act on the left co sets of H Z 
by defining a (x HZ) == axHZ, for all a , x E G. (See Example 7 . 3 . 8 .) This 
action defines a group homomorphism ¢ from G into the symmetric group S4 . 
It can be shown the action of each element of G produces an even permutation, 
and that ker (¢) == Z .  Thus we have PSL2 (F) == SL2 (F) / Z r-v A4 . 0 

7.7.7 Lemma. Let F be any field. Then SL2 (F) is generated by elements of the 
form [ �  � ] and [ �  � ] 
Proof If a2l i= 0, then 

for x == (a l l  - l )a2il and y == (a22 - 1 )a2/ . This depends on the identity 

y + a2l XY + x == a 12 , 
which follows from the computation 

a2 l (y + a2l x Y + x) == (a22 - 1 )  + (a 1 1  - 1 ) (a22 - 1 ) + (a 1 1  - 1 ) 
== a l l a22 - 1 == a2 l a 12 . 

Similarly, if a12 i= 0, then for x == (a l l  - l )a12l and y == (a22 - 1 )a12
l we have 

If a2 l == a12 == 0, then a l l  i= 0, and 

so it follows from the first case that 

for x == (a l l  - 1 )a1/ and y == (a22 - l )alil . D 
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7.7.8 Lemma. Let F be any finite field, and let N be a normal subgroup ofSL2 (F) .  

If N contains an element o/the/onn [ �  � J with a i- 0, then N = SL2 (F) .  

Proof Assume that F is a finite field with I F I == q, and that N is a normal subgroup 
of SL2 (F) . We let 

and 

and assume that N contains a matrix [ � � J in the subgroup U with a i- 0. Note 

that I V I == I V I == q . We will use the following equalities to show that N contains a 
set of generators for SL2 (F) . 

J [ �  � J [ � �- I J - 1 
J [ �  � J [ �  _�- I J - 1 

The mapping cjJ : F X  � FX  defined by cjJ (x ) == x2 is a group homomorphism, 
and ker (cjJ) consists of the solutions in F of the equation x2 == 1 .  Thus either 
ker (cjJ) == { 1 }  and every element of F is a square, or ker (cjJ) == {± 1 }  and exactly 
half of the nonzero elements of F are squares . Since a � 0, the set {x2a I x E F X } 
has either q - 1 or (q - 1 )/2 elements . Thus V n N has at least 1 + (q - 1 ) /2 
elements, so V n N == V since I V  n N I  > I V 1 /2. We conclude that V C N, and a 
similar argument shows that V C N, so N == SL2 (F) by Lemma 7 .7 .7 .  D 

Before proving the next theorem, we note one of the facts that we will use. If N 
is a normal subgroup of the group G and a E N, then xax- I a- l E N for all x E G.  

7.7.9 Theorem. Let F be any finite field with I F I > 3. Then the projective special 
linear group PSL2 (F) is a simple group. 
Proof Let F be any finite field with I F I > 3 .  Any normal subgroup of PSL2 (F) 
corresponds to a normal subgroup of SL2 (F) that contains the center Z of SL2 (F) ,  
so i t  suffices to prove the following assertion : if N is a normal subgroup of SL2 (F) 
that properly contains Z, then N == SL2 (F) . Assume that the normal subgroup N is 

given, and that the matrix A == [ a l l  al 2 J belongs to N - Z . We will show that a2 1 a22 
N contains a matrix 

[ � � l with a i- 0, and then it follows from Lemma 7 .7 .8 

that N == SL2 (F) . 
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First assume that a2 1 == O. Then a l l a22 == 1 ,  and the following matrix belongs 
to N. 

[ 1 1 - ail ] == [ 1 1 ] [ a l l a 1 2 ] [ 1 1 ] - 1 [ a l l a I 2 ] - 1 
o 1 0 1 0 a22 0 1 0 a22 

If 1 - a?l i= 0, then we are done. If not, there are two possibilities . If al l == 1 ,  
then a22 == 1 and a l 2  i= 0 since A fj. Z, and thus A itself has the required form. If a l l == - 1  i= 1 ,  then char(F) i= 2, a22 == - 1 , and a l 2 i= O. In this case A 2 has the 
required form since -2a 12 i= O. 

Now assume that a2 1 i= O. 

If we choose x -a2il a l l ,  then a l l + a2 l x  0, and we have constructed a 

matrix B E N with B = 
[ b�1 :�� J , where b2 1 = a2 1 i- 0, b 12 = -ai} , and 

b22 == al l + a22 - Then the following matrix belongs to N . 

[ � 2 ( l - �l2b 1 2b22 ] = [ �  �- 1 ] [ b�1 :�� J - 1 [ �  �- 1 ] - 1 [ b�1 :�� ] 
If this matrix is not in Z, then we have reduced the problem to the first case . We 
only need to know that F contains an element x such that x2 i= ±1 . If I F I  > 5 ,  
then F contains at most 4 solutions of x4 == 1 ,  and we are done. If I F I == 4 ,  then by 
Theorem 6 .5 .2 the nonzero elements of F are roots of x3 - 1 ,  and so again we can 
find an element x that does not satisfy x4 == 1 .  This leaves only the case I F I == 5 .  

In the exceptional case F == GF(5) ,  if b22 == 0, then since b2 l b l 2 == - 1  we have 

bl 2 ] [ 1 0 ] - 1 
= 
[ 2 b1 2 ] . 

o 2b2 1 1 0 -2 
This reduces the problem to the first case of the general proof. If b22 i= 0 then we 
can choose x == 2, to obtain the matrix 

[ 1 b 12b22 ] whose square 0 1 is in N and has the required form. This completes the 

proof. 0 
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EXERCISES : SECTION 7.7 

1 .  Let G be a group of order 2m , where m is odd. Show that G is not simple. 

2. t Find all normal subgroups of Sn , for n 2: 5 .  
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3 .  (a) Let G be a group with a subgroup H of index n. Show that there is a homomor
phism ¢> : G ---+ Sn for which ker (¢» = ngECgHg- 1 . 
Hint : Let G act on the set of left cosets of H by defining a (g H) = ag H, for all 
a , g E G . 
(b) Prove that if G i s  a simple group that contains a subgroup of index n , then G can 
be embedded in Sn . 
(c) Prove that if an infinite group contains a subgroup of finite index, then it is not 
simple. 

4. (a) Let S be the set { I ,  2 , . . .  } of positive integers , and let 

G = {a E SymeS) I a (j) = j for all but finitely many j }  . 

Show that G is a subgroup of SymeS) . 
(b) Let Aoo be the subgroup of G generated by all 3-cycles (a , b , c) . Show that Aoo 
i s  a simple group. 
(c) Show that every finite group can be embedded in Aoo .  

5 .  Show that Aoo i s  the only proper nontrivial normal subgroup of the group G defined 
in Exercise 4. 

6. Let G be a finite group containing a subgroup H of index p, where p is the smallest 
prime divisor of I G I . Prove that H is nonnal in G, and hence G is not simple if 
I G I  > p. 

7 .  Let H be a subgroup of G and let S be the set of all subgroups conjugate to H. Define 
an action of G on S by letting a (g H g- l ) = (ag)H (ag) - l , for a , g E G . Show that 
the corresponding homomorphism ¢> : G ---+ SymeS) has kernel ngEC gN(H)g- l . 

8 .  Let G be an infinite group containing an element (not equal to the identity) which 
has only finitely many conjugates. Use Exercise 7 to prove that G is not simple. 

9. Prove that (up to isomorphism) the only simple group of order 60 is As . 

10. Prove that if F is a finite field with I F I > 3 ,  then the group SL2 (F) is equal to its 
commutator subgroup. 

1 1 . t Let F be a finite field, with I F I = q. Detennine the orders of the groups GLn (F) ,  
SLn (F) ,  and PSLn (F) .  

1 2 . Let F be a finite field, with char(F) = p .  Show that { [ � � ] x E F } is a 
Sylow p-subgroup of SL2 (F) .  
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1 3 . Provide the details in Example 7 .7 .2 to complete the proof that if I F I  == 3 ,  then 
PSL2 (F) is isomorphic to the alternating group A4 . 

14 . Prove that if F is a field with I F I  == 5, then PSL2 (F) is isomorphic to the alternating 
group As . 



Chapter 8 

GALOIS THEORY 

A polynomial equation with real coefficients can be solved by radicals , provided 
it has degree less than five. The solutions for cubic and quartic equations were 
discovered in the sixteenth century (see the notes in Chapter 4) . From that time 
until the beginning of the nineteenth century, some of the best mathematicians of the 
period (such as Euler and Lagrange) attempted to find a similar solution by radicals 
for equations of degree five. All attempts ended in failure, and finally a paper was 
published by Ruffini in 1 798, in which he asserted that no method of solution could 
be found. The proof was not well received at the time, and even further elaborations 
of the ideas , published in 1 802 and 1 8 1 3 , were not regarded as constituting a proof. 
Ruffini ' s  proof is based on the assumption that the radicals necessary in the solution 
of the quintic can all be expressed as rational functions of the roots of the equation, 
and this was only proved later by Abel . It is generally agreed that the first fully 
correct proof of the insol vability of the quintic was published by Abel in 1 826 . 

Abel attacked the general problem of when a polynomial equation could be 
solved by radicals .  His papers inspired Galois to formulate a theory of solvability 
of equations involving the structures we now know as groups and fields. Galois 
worked with fields to which all roots of the given equation had been adjoined. He 
then considered the set of all permutations of these roots that leave the coefficient 
field unchanged. The permutations form a group, called the Galois group of the 
equation . From the modern point of view, the permutations of the roots can be 
extended to automorphisms of the field, and form a group under composition of 
functions. Then an equation is solvable by radicals if and only if its Galois group is 
solvable. Thus to show that there exists an equation that is not solvable by radicals, 
it is enough to find an equation whose Galois group is Ss . 

In 1 829, at the age of seventeen, Galois presented two papers on the solution 
of algebraic equations to the Academie des Sciences de Paris .  Both were sent to 
Cauchy, who lost them. In 1 830, Galois presented another paper to the Academie, 
which was this time given to Joseph Fourier ( 1 768-1 830), who died before reading 
it. A third, revised version, was submitted in 1 83 1 .  This manuscript was reviewed 

365 
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carefully, but was not understood. It was only published in 1 846 by Liouville , 
fourteen years after the death of Galois. Galois had been involved in the 1 830 
revolution and had been imprisoned twice. In May of 1 832 he was forced to accept a 
duel (the circumstances and motives are unclear) , and certain that he would be killed, 
he spent the night before the duel writing a long letter to his friend Auguste Chevalier 
( 1 809-1 868) explaining the basic ideas of his research. This work involved other 
areas in addition to what we now call Galois theory, and included the construction 
of finite fields, which are now called Galois fields (see Section 6.5) .  

In our modern terminology, we let F be the splitting field of a polynomial over 
the field K that has no repeated roots . The fundamental theorem of Galois theory (in 
Section 8 .3)  shows that there is a correspondence between the normal subgroups of 
the Galois group and the intermediate fields between K and F that are splitting fields 
for some polynomial . This gives the necessary connection between the structure of 
the Galois group and the successive adjunctions that must be made in order to solve 
the equation by radicals. 

8.1 The Galois Group of a Polynomial 

We begin by reviewing some facts about automorphisms. Recall that an automor
Phism cjJ of a field F is a one-to-one correspondence cjJ : F ---+ F such that cjJ ( 1 ) == 1 ,  
and for all a , b E F, 

cjJ (a + b) == cjJ (a ) + cjJ (b) and cjJ (ab) == cjJ (a )cjJ (b) . 

That is, cjJ is an automorphism of the additive group of F, and since a i= 0 implies 
cjJ (a) i= 0, it is also an automorphism when restricted to the multiplicative group 
F X . We use the notation Aut (F) for the group of all automorphisms of F .  

Recall that the smallest subfield containing the identity element 1 i s  called 
the prime subfield of F .  If F has characteristic zero, then the prime subfield is 
isomorphic to Q, and consists of all elements of the form 

{ (n · 1 ) (m . 1 )-
1 I n , m E Z, m i= O} . 

If F has characteristic p (p a prime) , then the prime subfield is isomorphic to GF (p) , 
and consists of all elements of the form 

{n · l l n == O , I ,  . . .  , p - l } .  

For any automorphism cjJ of F, we have 

cjJ (n . 1 )  == n . cjJ ( 1 )  == n . 1 

for any n E Z. Furthermore, if n . 1 i= 0, then 

cjJ ( (n · 1 ) - 1 ) == (cjJ (n · 1 ) ) - 1 == (n . 1 )- 1 . 
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This shows that any automorphism of F must leave the prime subfield of F fixed. 
To study solvability by radicals of a polynomial equation f (x) == 0, we let K 

be the field generated by the coefficients of f (x) , and let F be a splitting field for 
f (x) over K. (We know, by Kronecker' s  theorem, that we can always find roots . 
The question is whether or not the roots have a particular form.) Galois considered 
permutations of the roots that leave the coefficient field fixed. The modern approach 
is to consider the automorphisms determined by these permutations. 

8.1.1 Proposition. Let F be an extension field of K. The set of all automorphisms 
cp : F � F such that cp (a ) == a for all a E K is a group under composition of 
functions. 

Proof We only need to show that the given set is a subgroup of Aut(F) . It certainly 
contains the identity function. If cp , () E Aut (F) and cp (a) == a , () (a) == a for all 
a E K , then cp() (a) == cp ( () (a)) == cp (a ) == a and cp - 1 (a) == cp - 1 cp (a ) == a for all 
a E K . 0 

8.1.2 Definition. Let F be an extension field of K. The set 

{() E Aut(F) I () (a) == a for all a E K} 

is called the Galois group of F over K , denoted by Gal (F / K) . 

8.1.3 Definition. Let K be a field, let f (x) E K [x ], and let F be a splitting field 
for f(x) over K. Then Gal (F / K) is called the Galois group of f (x) over K, or 
the Galois group of the equation f (x) == ° over K. 

8.1.4 Proposition. Let F be an extension field of K, and let f (x) E K [x] . Then 
any element ofGal (F / K) defines a permutation of the roots of f (x) that lie in F. 

Proof Let f(x) == ao + a1 x + . . .  + anx'\ where ai E K for i == 0 , 1 ,  . . .  , n . If 
u E F with f eu) == ° and () E Gal(F / K) , then we have 

() (f (u ) ) () (ao + a1 U  + . . .  + anun ) 
() (ao) + () (a 1 u ) + . . .  + () (anun ) 
() (ao) + () (a 1 )() (u ) + . . .  + () (an ) (() (u )) n 

since () preserves sums and products . Finally, since () (ai ) == ai for i == 0, 1 ,  . . .  , n , 
we have 

() (f (u)) == ao + a1 () (u ) + . . .  + an (() (u)) n . 
Since feu) == 0, we must have () (f (u) ) == 0, and thus 

ao + a 1 () (u) + . . .  + an ( () (u ) ) n == ° , 



368 CHAPTER 8.  GALOIS THEORY 

showing that f (() (u )) == o.  
Thus () maps roots of f(x) to roots of f (x) . Since there are only finitely many 

roots and () is one-to-one, () must define a permutation of those roots of f (x) that 
lie in F. D 

At this point in the development of the theory we have enough information 
to do some easy calculations . These computations will help you understand the 
definitions, but you should be aware that later results such as Proposition 8 .4 .2 and 
Theorem 8 .4 .3  provide much more powerful techniques, so that it is not always 
necessary to do the detailed analysis of automorphisms that is presented in the 
following examples. 

Example 8.1.1 (Gal (Q(,lfi ) /Q) is trivial). 

In general, if F == K (u 1 ,  . . .  , Un ) ,  then any automorphism () E Gal (F 1 K) 
i s  completely determined by  the values () (U l ) ,  . . .  , () (un ) . If we let () E 
Gal (Q( -lfi)/Q) , then () is completely determined by () (  -lfi) .  Now -lfi is 
a root of the polynomial x 3 - 2 E Q[x ] ,  so by Proposition 8 . 1 .4, () must 
map -lfi into a root of x 3 - 2. The other two roots are w-lfi and w2-lfi, 
where w == ( - 1 + -/3i)  12 is a complex cube root of unity. Since these values 
are not real numbers, they cannot belong to Q( -lfi),  and so we must have 
() (-lfi) == -lfi. This shows that Gal (Q( -lfi) IQ) is the trivial group consist
ing only of the identity automorphism. Note also that any automorphism of 
Q( -lfi) fixes Q, so in fact Aut (Q( -lfi» is also trivial. 0 

Example 8.1 .2 (Gal (Q(,j2 + -J3)/Q) � Z2 x Z2). 

The field extension Q( -v'2 + -/3) is easier to work with when expressed as 
Q( -v'2, -/3) .  (We showed in Example 6.2.2 that these two fields are the same.) 
Let () be any automorphism in Gal (Q (-v'2, -/3)/Q) . The roots of x2 - 2 are 
±-v'2 and the roots of x2 - 3 are ±-/3, and so we must have () (  -v'2) == ±-v'2 
and () (-/3) == ±-/3. Since { I ,  -/3} is a basis for Q( -/3) over Q and { I ,  -v'2} is 
a basis for Q( -v'2, -/3) over Q( -/3) ,  recall that { I ,  -v'2, -/3, -v'2-/3} is a basis 
for Q( -v'2, -/3) over Q.  As soon as we know the action of () on -v'2 and -/3, its 
action on .J6 == -v'2-/3 is determined. This gives a total of four possibilities 
for (), which we have labeled with subscripts : 

()l (a + bh + c-J3 + dv'6) 
()2 (a + bh + c-J3 + d v'6) 
()3 (a + bh + c-J3 + dv'6) 
()4 (a + bh + c-J3 + dv'6) 

a + bh + c-J3 + dv'6 , 
a - bh + c-J3 - dv'6 , 
a + bh - c-J3 - dv'6 , 
a - bh - c-J3 + dv'6 . 
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It is left as an exercise to show that each of these functions defines an automor
phism. In each case, repeating the automorphism gives the identity mapping. 
Thus e2 == e for all e E Gal(Q(.j2, -J3)/Q) ,  which shows that this Galois 
group must be isomorphic to the Klein four-group Z2 x Z2 . 

We note that Q(.j2, -J3) is the splitting field of (x2 - 2) (x 2 - 3)  over Q. 
Theorem 8 . 1 .6 will show that the number of elements in the Galois group must 
be equal to [Q(.j2, -J3) : Q] . This degree is 4, as was shown in Example 6. 1 . 3 .  
S ince we found at most four distinct mappings that carry roots to roots , they 
must in fact all be automorphisms. Thus if we utilize Theorem 8. 1 .6, we 
do not actually have to go through the details of showing that the mappings 
preserve addition and multiplication. D 
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8.1.5 Lemma. Let f (x) E K [x] be a polynomial of positive degree such that each 
irreducible factor has no repeated roots, and let F be a splitting field for f (x) over 
K. If ¢ : K ---+ L is afield isomorphism that maps f (x) to g (x) E L [x] and E 
is a splitting field for g (x ) over L, then there exist exactly [F : K] isomorphisms 
(j : F ---+ E such that (j (a) == ¢ (a) for all a E K. 

Proof The proof uses induction on the degree of f(x ) . We follow the proof 
of Lemma 6.4.4 exactly, except that now we keep careful track of the number of 
possible isomorphisms . If f (x) has degree 1 ,  then F == K and E == L , so there 
is nothing to prove . We now assume that the result holds for all polynomials of 
degree less than n and for all fields K . Let p (x) be an irreducible factor of f (x) 
of degree d, which maps to the irreducible factor q (x) of g (x ) . All roots of p (x) 
belong to F, so we may choose one, say u, which gives K C K (u) C F. Since 
f (x) has no repeated roots , the same is true of q (x) , so we may choose any one, 
say v, of the d roots of q (x) in E, which gives L C L (v) C E. By Lemma 6.4.3 
there exist d isomorphisms ¢' : K (u ) ---+ L ( v) (one for each root v) such that 
¢/ (U) == v and ¢/ (a) == ¢ (a) for all a E K . If we write f (x) == (x - u)s (x) 
and g (x) == (x - v)t (x ) , then the polynomial s ex) has degree less than n , the 
extension F is a splitting field for s (x ) over K (u) , and the extension E is a splitting 
field for t (x) over L (v) . Thus the induction hypothesis can be applied, and so 
there exist [F : K (u )] isomorphisms (j : F ---+ E such that (j (x) == ¢' (x ) for all 
x E K (u ) .  In particular, (j (a) == ¢' (a) == ¢ (a) for all a E K . Thus we have 
precisely [F : K] == [F : K (u) ] [K (u ) : K] extensions of the original isomorphism 
¢, and the proof is complete . D 

8.1.6 Theorem. Let K be a field, let f (x) be a polynomial of positive degree in 
K [x] , and let F be a splittingfieldfor f(x) over K. Ifno irreducible factor of f (x) 
has repeated roots, then 

I Gal (F / K) I == [F : K] . 
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Proof This is an immediate consequence of the preceding lemma. D 

Lemma 6.5 .4 shows that if F is a field of characteristic p, then (a+b)P == aP +bP , 
for all a , b E F . Thus the mapping ¢ : F ---* F defined by ¢ (x) == x P , for all 
x E F, is a ring homomorphism, since it is clear that ¢ also respects multiplication 
and maps 1 to 1 .  Since F is a field, we have ker (¢) == (0) . If F is finite, then ¢ 
must also be onto , and thus ¢ is an automorphism of F. 

8.1.7 Definition. Let F be a finite field with char(F) == p. The automorphism 
¢ : F ---* F defined by ¢ (x ) == xP, for all x E F, is called the Frobenius 
automorphism of F. 

8.1 .8 Theorem. Let K be afinitefield with I K I  == pr , where p == char(F), let F be 
an extension field of K with [F : K] == m, and let ¢ be the Frobenius automorphism 
of F. Then Gal (F / K)  is a cyclic group of order m, generated by ¢r . 

Proof Since F is a finite extension of K of degree m, it has (pr )m elements . If we 
let n == rm , then it follows from Theorem 6.5 .2 that F is the splitting field of the 
polynomial x pn - x over its prime subfield, and hence over K .  Since f (x) has no 
repeated roots , we may apply Theorem 8 . 1 .6 to conclude that I Gal (F / K)  I == m . 

Define e : F ---* F by e (x ) == X pr . We note that e == ¢r , and so e i s  an 
automorphism of F. Furthermore, e E Gal (F / K) since K is the splitting field of 
x pr -x over its prime subfield, and thus e leaves the elements of K fixed. To compute 
the order of e in Gal (F / K) ,  we first note that em is the identity automorphism since 
em (x ) == x prm == x pn == x for all x E F . Furthermore, es does not equal the identity 
for any 1 < s < m, since this would imply that x prs == x for all x E F, and this 
equation cannot have pn roots . Thus e == ¢r is a generator for Gal (F / K) .  D 

Since [GF(24) : GF(22)] == 2, it follows immediately from Theorem 8. 1 . 8 
that Gal (GF(24) / GF(22) )  r-.v Z2 . The Galois group is generated by ¢2 , where 
¢ is the Frobenius automorphism of GF(24) .  Thus the generator is defined by 
¢2 (x ) == x4 , for all x E GF(24 ) .  
It i s  interesting to look at this result in  the context of  a particular description 
of GF(24) .  Consider the field GF(2) [x ]/  < x4 + x + 1 > .  (Exercise 1 2  
of Section 4 .2 shows that x4 + x + 1 is irreducible over GF(2) .) If we let 
u == x+ < x4 + x + 1 > ,  then Exercise 3 of Section 6.5 shows that u is a 
generator for the multiplicative group of the field . The four element subfield 
is the set of elements left fixed by ¢2 , so it is the set of elements a E GF(24) 
satisfying a4 == a .  This includes 0, 1 ,  and the elements of order 3 .  Since 
u5 == u . u4 == u2 + u and u 1 0 == (u2 + u)2 == u4 + u2 == u2 + u + 1 ,  we have 
{O , 1 ,  u2 + u ,  u2 + u + I }  r-.v GF(22 ) .  D 
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The first step in computing the Galois group of a polynomial f (x ) over a field 
K is to find the splitting field for the polynomial . If f (x ) has no repeated roots, then 
Theorem 8 . 1 .6 shows that the order of the Galois group is the same as the degree of 
the splitting field over K. In Section 8 .2 we will address the question of repeated 
roots , and we will show that there is nothing to worry about over finite fields or fields 
of characteristic zero, since in these cases no irreducible polynomial has repeated 
roots . 

Our next goal is a deeper study of splitting fields. In Section 8 .3 we will be able 
to give the following characterization . 

The following conditions are equivalent for an extension field F of a field K : 
(1) F is the splitting field over K of a polynomial with no repeated roots ; 
(2) there is a finite group G of automorphisms of F such that a E K if and only 

if e (a) == a for all e E G;  
(3) F i s  a finite extension of K ; the minimal polynomial over K of  any element 

in F has no repeated roots ; and if p (x) E K [x] is irreducible and has a root in F, 
then it splits over F. 

If F is the splitting field of a polynomial f (x ) over K, then certain sub fields 
between K and F may be splitting fields for other polynomials . The fundamental 
theorem of Galois theory (Theorem 8 . 3 . 8) explains the connection between subfields 
of F and subgroups of Gal (F / K) . It shows that the intermediate splitting fields 
correspond to normal subgroups, and this plays a crucial role in Section 8 .4, where 
we will investigate the connection between solvability by radicals and solvable 
groups . 

EXERCISES : SECTION 8.1 

1 . Show that Gal (GF(22)/ GF(2)) � Z2 . 

2 . t Find a basis for GF (23 ) ,  and then write out an explicit formula for each of the elements 
of Gal (GF(23 )/  GF(2) ) .  

3 .  Prove by a direct computation that the function e2 in  Example 8 . 1 .2 preserves prod
ucts . 

4 .t In Example 8 . 1 .2, find {x E Q(.J2 + -J3) I e2 (X ) == x }  and show that it is a subfield 
of Q(.J2 + -J3). 

5 .  Show that the Galois group of x3 - 1 over Q is cyclic of order 2 .  

6 .  Show that the Galois group of (x2 - 2) (x2 + 2) over Q is isomorphic to Z2 x Z2 . 

7. Let E and F be two splitting fields of a polynomial over the field K .  We already 
know that E � F. Prove that Gal(E / K) � Gal (F / K) . 
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8.2 Multiplicity of Roots 

In the previous section, we showed that the order of the Galois group of a polynomial 
with no repeated roots is equal to the degree of its splitting field over the base field. 
If we want to compute the Galois group of a polynomial f (x) over the field K , we 
can factor f (x) into a product 

of distinct irreducible factors . The splitting field F of f (x) over K is the same as 
the splitting field of 

g (x) == P I (X)P2 (X) . . .  Pn (x ) 

over K. Note that distinct irreducible polynomials cannot have roots in common. (If 
gcd(p (x) , q (x)) == 1 ,  then there exist a (x) , b (x) such that a (x )p (x) + b(x)q (x) == 
1 ,  showing that there can be no common roots . ) Thus g (x) has no repeated roots 
if and only if each of its irreducible factors has no repeated roots . We will show in 
this section that over fields of characteristic zero, and over finite fields, irreducible 
polynomials have no repeated roots . It follows that in these two situations, when 
computing a Galois group we can always reduce to the case of a polynomial with 
no repeated roots . The first thing that we need to do in this section is to develop 
methods to determine whether or not a polynomial has repeated roots . 

8.2.1 Definition. Let f (x) be a polynomial in K [x ], and let F be a splitting field 
for f(x) over K. If f(x) has the factorization 

over F, then we say that the root ri has multiplicity mi . 
Ifmi == 1 ,  then ri is called a simple root. 

In Proposition 4.2. 1 1 we showed that a polynomial f (x) over R has no repeated 
factors if and only if it has no factors in common with its derivative f' (x) .  We can 
extend this result to polynomials over any field and use it to check for multiple roots . 

8.2.2 Definition. Let f (x ) E K [x], with f (x) == L�=o akxk . Theformal derivative 
f' ex) of f(x) is defined by the formula 

where kak denotes the sum of ak added to itself k times. 
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It is not difficult to show from this definition that the standard differentiation 
formulas hold. The next proposition gives a test for multiple roots , which can be 
carried out over K without actually finding the roots. 

8.2.3 Proposition. The polynomial f (x ) E K [x ) has no multiple roots if and only 
ifgcd(f (x) , f' ex)) == 1 .  

Proof Let F be a splitting field for f (x) over K .  In using the Euclidean algorithm 
to find the greatest common divisor of f (x) and f' (x) ,  we make use of the division 
algorithm. We can do the necessary computations in both K [x)  and F [x ) .  But 
the quotients and remainders that occur over K [x ) also serve as the appropriate 
quotients and remainders over F [x ) .  Using the fact that these answers must be 
unique over F [x ) ,  it follows that it makes no difference if we do the computations 
in the Euclidean algorithm over the splitting field F .  

If f (x ) has a root r of multiplicity m > 1 in  F, then we can write f (x) 
(x - r)mg (x) for some polynomial g (x ) E F[x) .  Thus 

f' ex ) == m (x - r)m- l g (x) + (x - r)mg/ (x) , 

and so (x - r)m- l is a common divisor of f (x )  and f' ex ) ,  which shows that 
gcd(f (x) , f' ex) )  i- 1 .  

On the other hand, if f (x ) has no multiple roots , then we can write f (x ) == 
(x - rl ) (x - r2) . . .  (x - rt ) .  Applying the product rule, we find that f' (x) is a sum 
of terms, each of which contains all but one of the linear factors of f (x ) .  It follows 
that each of the linear factors of f (x) is a divisor of all but one of the terms in f' (x) ,  
and so  gcd(f (x) , f' ex) )  == 1 . D 

8.2.4 Proposition. Let f (x ) be an irreducible polynomial over the field K. Then 
f(x) has no multiple roots unless char(K) == p i- 0 and f(x) has the form 
f (x) == ao + alXP + a2x2p + . . .  + anxnP . 

Proof Using the previous proposition, the only case in which f (x) has a multiple 
root is if gcd (f(x ) ,  f' ex) )  i- 1 .  Since f(x) is irreducible and deg(f' (x) )  < 
deg(f (x) ) ,  the only way this can happen is if f' ex) is the zero polynomial . This is 
impossible over a field of characteristic zero. However, over a field of characteristic 
p > 0, it is possible if every coefficient of f' (x) is a multiple of p . Thus f (x) has no 
multiple roots unless it has the form specified in the statement of the proposition . D 

8.2.5 Definition. A polynomial f (x ) over the field K is called separable if its 
irreducible factors have only simple roots. 

An algebraic extension field F of K is called separable over K if the minimal 
polynomial of each element of F is separable. 

The field F is called perfect if every polynomial over F is separable. 
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8.2.6 Theorem. Any field of characteristic zero is perfect. Afield of characteristic 
p > 0 is perfect if and only if each of its elements has a pth root. 

Proof Proposition 8 .2 .4 implies that any field of characteristic zero is perfect, and 
so we consider the case of a field F of characteristic p > 0 and a polynomial f (x) 
irreducible over F . 

If f (x) has a multiple root, then it has the form f (x) == 2:7=0 ai (xP ) i . If each 
element of F has a pth root, then for each i we may let bi be the pth root of ai . Thus 

and so f (x) is reducible, a contradiction. 
To prove the converse, suppose that there exists an element a E F that has no pth 

root. Consider the polynomial f (x) == x P - a and let g (x) be an irreducible factor 
of f(x) . Next, consider the extension field F(b) , where b is a root of g (x ) .  Then 
bP == a , and so over F(b) the polynomial f(x) has the form f(x) == xP - bP == 
(x - b)p . But then g (x) must have the form g(x) == (x - b)k with 1 < k < p since 
b � F. Thus we have produced an irreducible polynomial with repeated roots . 0 

8.2.7 Corollary. Any finite field is perfect. 

Proof Let F be a finite field of characteristic p, and let ¢ be the Frobenius auto
morphism of F, defined by ¢ (x ) == x P , for all x E F . Since ¢ maps F onto F, it 
follows that every element of F has a pth root. 0 

It can be shown that if p is a prime number, and K == GF(p) , then in the field 
K (x) of rational functions over K , the element x has no pth root (see Exercise 8) .  
Therefore this rational function field is not perfect. 

In the final result of this section, we will use some of the ideas we have devel
oped to investigate the structure of finite extensions . We began by studying field 
extensions of the form F == K (u) .  If F is a finite field, then we showed in Theo
rem 6.5 . 10 that the multiplicative group F x is cyclic . If the generator of this group 
is a, then it is easy to see that F == K (a) for any subfield K . We now show that 
any finite separable extension has this form. Recall Definition 6. 1 .4 : the extension 
field F of K is called a simple extension if there exists an element u E F such that 
F == K (u ) .  In this case, u is called a primitive element. 

8.2.8 Theorem (Primitive element theorem). Let F be a finite extension of the 
field K. If F is separable over K, then it is a simple extension of K. 

Proof Let F be a finite separable extension of K . If K is a finite field, then F i s  
also a finite field. As remarked above, we must have F == K (u) for any generator 
u of the cyclic group F x • 
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If we can prove the result in case F == K (u 1 ,  U2) , then it is clear how to extend 
it by induction to the case F == K (U l , u2 , " ' , un ) .  Thus we may assume that K is 
infinite and F == K (u ,  v) for elements u, v E F. 

Let J (x ) and g (x ) be the minimal polynomials of u and v over K, and assume 
their degrees to be m and n , respectively. Let E be an extension of F over which 
both J (x ) and g (x ) split. Since F is separable, the roots U == U l , U2 , . . .  , Urn and 
v == V I , V2 , . . .  , Vn of j" (x ) and g (x) are distinct. If j i- 1 ,  then the equation 
Ui + VjX == U + vx has a unique solution x == (u - Ui )/ (Vj - v) in E. Therefore, 
since K is infinite, there must exist an element a E K such that u + av i- Ui + av j 
for all i and all j i- 1 .  

We will show that F == K (t) for t == u+av . It is clear that K (t) C K (u ,  v) == F. 
If we can show that v E K (t) ,  then i t will follow easily that U E K (t ) ,  giving us 
the desired equality. Our strategy is to show that the minimal polynomial p (x) of v 
over K (t) has degree 1 ,  which will force v to belong to K (t) . 

Let h ex) == J(t - ax ) . This polynomial has coefficients in K (t) and has v as 
a root since h (v) == J(t - av) == J(u ) == O. Since we also have g (v ) == 0, it 
follows that p (x) is a common divisor of h ex) and g (x ) . Now we consider all three 
polynomials p(x ) , h ex ) , and g (x ) over the extension field E . Since t i- Ui + aVj , 
it follows that t - av j i- U i for all i and all j i- 1 .  Thus v j is not a root of h (x ) , 
for j == 2, 3 ,  . . . , n . Since g (x ) splits over E and x - v j i s  not a divisor of  h (x) for 
j == 2 , 3 ,  . . . , n , we can conclude that over E we have gcd(h (x ) , g (x ) )  == x - v . 
But p (x) is a common divisor of h (x) and g (x ) over E as well as over K (t ) ,  and so 
p (x) must be linear. 0 

EXERCISES: SECTION 8.2 

1 .  Let p (x ) be an irreducible polynomial of degree n over a finite field K .  Show that 
its Galois group over K is cyclic of order n . 

2. Find the Galois group of x4 - 2 over GF(3) . 

3 .  Find the Galois group of x4 + 2 over GF(3) . 

4 . Show that any algebraic extension of a perfect field is perfect. 

5. Show that if F � E � K are fields and F is separable over K , then F is separable 
over E .  

6. Show that the product rule holds for the derivative defined in Definition 8 .2 .2 . 
7 .tLet w = (- 1 + -J)i)/2 (a primitive cube root of unity) .  Find a primitive element 

for the extension Q(w ,  �) of Q. 

8 . Let p be a prime number, and let K = GF(p) . Show that in the field K (x ) of rational 
functions over K , the element x has no pth root. 
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9. Let F be a field of characteristic p i- 0, and let a E F. Show that in F [x ] the 
polynomial x P - a is either irreducible or a pth power. 

8.3 The Fundamental Theorem of Galois Theory 

In this section we study the connection between subgroups of Gal (F j K) and fields 
between K and F .  This is a critical step in proving that a polynomial is solvable by 
radicals if and only if its Galois group is solvable . 

8.3.1 Proposition. Let F be a field, and let G be a subgroup of Aut(F) .  Then 
{a E F I B (a) == a for all B E G } is a subfield of F. 

Proof If a and b are elements of F that are left fixed by all automorphisms in G, 
then for any B E G  we have 

B (a ± b) == B (a) ± B (b) == a ± b 

and 
B (ab) == B (a)B (b) == ab . 

For a i=- 0 we have B (a- I ) == (B (a)) - I == a- I , and thus we have shown that the 
given set is a subfield. D 

8.3.2 Definition. Let F be a field, and let G be a subgroup of Aut(F) .  Then 
{a E F I B (a) == a for all B E G} is called the G-fixed subfield of F, or the 
G-invariant subfield of F, and is denoted by FG. 

For example, let F == C, and let G == { I c ,  B } , where B : C ---* C is defined by 
complex conjugation . A complex number is real if and only if it is left unchanged 
by conjugation, and so FG == R. 

8.3.3 Proposition. If F is the splitting field over K of a separable polynomial and 
G == Gal (F j K), then FG == K. 

Proof Let E == FG , so that we have K C E C F. It i s  clear that F i s  a splitting 
field over E as well as over K , and that G == Gal (FjE) . By Theorem 8 . 1 .6 we 
have both I G I  == [F : E] and I G I  == [F : K] . This implies that [E : K] == 1 ,  and 
so E == K. D 

8.3.4 Lemma (Artin). Let G be a finite group of automorphisms of the field F, and 
let K == FG. Then [F : K] < I G I . 
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Proof Let G == {Ol , 02 , . . .  , On } , with the identity element of G denoted by Ol . 
Suppose that there exist n + 1 elements {u 1 , u2 , . . .  , Un+ I } of F which are lin
early independent over K .  We next consider the following system of equations : 

Ol (U I )X I + Ol (U2)X2 + . . .  + Ol (Un+ I )Xn+ 1 0 , 
02 (U I )X I + 02 (U2)X2 + . . . + 02 (Un+ I )Xn+ 1 0 , 

There are n equations corresponding to the n elements of G and n + 1 unknowns 
corresponding to the n + 1 linearly independent elements of F, and so it follows 
from the elementary theory of systems of linear equations that there exists a non
trivial solution (a I , a2 , . . .  , an+ l ) in F. Among all such solutions ,  choose one with 
the smallest number of nonzero terms . By relabeling the indices on the x 's and u 's, 
we may assume that a l i= O. Dividing each of the solutions by a l still gives us a set 
of solutions , and so we may assume that al == 1 .  

Since Ol is the identity, the first equation is U I X I + U2X2 + . . . + Un+ I Xn+ 1 == O. 
Not all of the elements ai can belong to K, since this would contradict the fact 
that U I , U2 , . . .  , Un+ l are assumed to be linearly independent over K .  We can again 
relabel the indices on X2 , . . .  , Xn and U2 , . . .  , Un to guarantee that a2 � K.  Since 
K == FG,  this means that a2 is not invariant under all automorphisms in G, say 
Oi (a2) i= a2 · If we apply Oi to each of the equations in the system, we do not change 
the system, since G is a group and mUltiplying each element by Oi merely permutes 
the elements . On the other hand, since Oi is an automorphism, this leads to a second 
solution ( 1 , Oi (a2) ,  . . .  , Oi (an+ I ) ) . Subtracting the second solution from the first 
gives a nontrivial solution (since a2 - Oi (a2) i= 0) that has fewer nonzero entries .  
This is a contradiction, completing the proof. D 

Theorem 8 . 3 .6 will show that the following property holds for the splitting field 
of a separable polynomial . Let F be the splitting field of f (x) over K ,  and assume 
that f (x) has no repeated roots . Then if p (x) E K[x] is the minimal polynomial 
of any element of F ,  it follows that p (x ) splits into linear factors in F [x] .  This 
is equivalent to saying that F contains a splitting field for any polynomial in K [x ] 
that has a root in F .  It is convenient to make the following definition, in which the 
choice of the term normal is justified by part (c) of Theorem 8 . 3 . 8 . 

8.3.5 Definition. Let F be an algebraic extension of the field K. Then F is said to 
be a normal extension of K if every irreducible polynomial in K [x ] that contains a 
root in F is a product of linear factors in F[x] .  



378 CHAPTER 8. GALOIS THEORY 

8.3.6 Theorem. Thefollowing conditions are equivalentfor an extension field F of 
K:  

(1) F is the splitting field over K of a separable polynomial; 
(2) K == FG for some finite group G of automorphisms of F; 
(3) F is a finite, normal, separable extension of K. 

Proof ( 1 ) implies (2) : If F is the splitting field over K of a separable polynomial, 
then by Proposition 8 . 3 . 3 we must have K == FG for G == Gal (F / K) .  The Galois 
group is finite by Theorem 8 . 1 .6 . 

(2) implies (3) : Assume that K == FG for some finite group G of automorphisms 
of F. Then Artin 's lemma shows that [F : K ]  < I G I ,  and so F is a finite extension 
of K. Let f (x) be a monic irreducible polynomial in K [x ] that has a root r in 
F. Since G is a finite group, the set {(j (r) I (j E G} is finite, say with distinct 
elements rl == r, r2 , . . .  , r m .  These elements are roots of f (x) , since G is a group 
of automorphisms of F that fixes the coefficients of f(x) , so deg(f (x ) )  > m . Let 

It follows from our choice of the elements ri that applying any automorphism (j E G 
yields (j (ri ) == r j ,  for some j .  Therefore applying (j E G to the polynomial h (x ) 
simply permutes the factors, showing that (j (h (x) ) == h (x) .  Using the fact that () is an 
automorphism and equating corresponding coefficients shows that every coefficient 
of h (x) must be left fixed by G, so by assumption the coefficients of h (x ) belong 
to K == FG . Now f (x) is the minimal polynomial of r over K ,  and h (r) == 0, so 
f(x) I h ex) . Since f(x) and h ex) are monic and deg(f(x))  > deg(h (x ) ) ,  we must 
have f (x) == h (x ) .  In particular, we have shown that f (x) has distinct roots, all 
belonging to F. This implies that F is both normal and separable over K .  

(3 ) implies ( 1 ) : If F is a finite separable extension of K ,  then by Theorem 8 .2 .8 
i t  is a simple extension, say F == K (u) .  If F is a normal extension of K and u has 
the minimal polynomial f (x) over K ,  then F contains all of the roots of f (x) , and 
so F is a splitting field for f (x) .  D 

8.3.7 Corollary. If F is an extension field of K such that K == FG for some finite 
group G of automorphisms of F, then G == Gal (F / K) .  

Proof By assumption K == FG , so G is a subgroup of Gal (F / K) ,  and the result 
follows since 

[F : K] < I G I  < I Gal (F/K) 1 == [F : K] . 

The first inequality comes from Artin' s  lemma, and the last equality is implied by 
Theorems 8 . 1 .6 and 8 .3 .6 . D 
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Example 8.3.1 (Gal (GF(pn ) / GF(p) ) ). 

In Corollary 8 . 1 .8 we showed that Gal (GF(pn )j GF(p)) is cyclic of order n ,  

generated by the Frobenius automorphism ¢ defined by ¢ (x) == x P , for all 
x E GF(pn ) .  
In Section 6.5 we showed that the subfields ofGF(pn ) are of the form GF(pr ) ,  
for divisors r of n,  and then Corollary 8 . 1 . 8 shows that Gal (GF(pn ) j GF(pr) )  
has order m ,  where n == mr,  and is generated by ¢r . Note that as the value of 
r is increased, to give a larger subfield, the power of ¢ is increased, and so the 
corresponding subgroup it defines is smaller. It happens very generally that 
there is an order-reversing correspondence between subfields and subgroups 
of the Galois group, and this is proved in the following fundamental theorem 
of Galois theory. 
The Galois group of GF(pr) is also generated by the Frobenius automor
phism, when restricted to the smaller field. Is there a connection between 
Gal (GF(pn )j GF(p)) and Gal (GF(pr )j GF(p)) ?  Since any power of ¢r 
leaves elements of GF(pr ) fixed, for any integer we have ¢t (x) == ¢t+rs (x) 
for all x E GF(pr ) .  This suggests that the cosets of (¢r ) in (¢) might corre
spond to nontrivial automorphisms in Gal (GF(pr)j  GF(p) ) ,  and indeed this 
is the case, as will be shown in Theorem 8 .3 . 8 .  0 
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8.3.8 Theorem (Fundamental Theorem of Galois Theory). Let F be the splitting 
field of a separable polynomial over the field K, and let G == Gal (F / K).  

(a) There is a one-to-one order-reversing correspondence between subgroups 
of G and subfields of F that contain K :  

(i) If H is a subgroup ofG, then the corresponding subfield is FH, and 

(ii) If E is a subfield of F that contains K, then the corresponding subgroup 
of G is Gal (F / E), and 

E == FGa1(F / E) . 

(b) For any subgroup H of G, we have 

and [FH : K ]  == [G : H] . 

(c) Under the above correspondence, the subgroup H is normal if and only if 
the subfield E == FH is a normal extension of K. In this case, 

Gal(E / K)  r-v Gal (F / K) / Gal (F / E) . 
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Proof. (a) If we verify that (i) and (ii) hold, then it is clear that the mapping 
that assigns to each subgroup H of G the subfield FH has an inverse mapping, 
and so it defines a one-to-one correspondence. We will first show that the one-to
one correspondence reverses the natural ordering in the diagrams of subgroups and 
subfields . If HI c H2 are subgroups of G, then it is clear that the subfield left fixed 
by H2 is contained in the subfield left fixed by HI . On the other hand, if E I C E2 , 
then it is clear that Gal (F / E2) C Gal (F / E1 ) .  

Given the subgroup H, Corollary 8 .3 .7 implies that H == Gal (F / FH) .  On 
the other hand, given a subfield E with K C E C F, it is clear from the initial 
assumption that F is also a splitting field over E ,  and then E == FGa1 (F / E) by 
Proposition 8 .3 . 3 .  

(b) Given the subgroup H of G, since F i s  a splitting field over F H and H == 
Gal (F / FH) ,  it follows from Theorem 8 . 1 . 6 that [F : FH ] == I H I .  Since [F : K] == 
I G I  by Theorem 8 . 1 .6,  the desired equality [FH : K ]  == [G : H] follows from the 
two equalities [F : K]  == [F : FH ] [FH : K]  and I G I == I H I  . [G : H] . 

(c) Let E be a normal extension of K in F, and let ¢ be any element of G. 
If U E E with minimal polynomial p (x) , then ¢ (u) i s  also a root of p (x ) , and 
so we must have ¢ (u) E E since E is a normal extension of K . Thus for any 
() E Gal (F / E), we have ()¢ (u ) == ¢ (u ) , and so ¢- l ()¢ (u ) == ¢- l ¢ (u) == u .  This 
implies that ¢- l ()¢ E Gal (F / E) ,  and therefore Gal (F / E) is a normal subgroup of 
G. 

Conversely, let H be  a normal subgroup of G, and let E == F H . If ¢ E G and 
() E H, then by the normality of H we must have ¢- l ()¢ == ()' for some ()' E H, 
and then ()¢ == ¢()' . For any u E E we have by definition ()' (u) == u , and so 
() (¢ (u) ) == ¢ (()' (u ) ) == ¢ (u) . This shows that ¢ (u) E FH , and so ¢ maps E into E .  
Because ¢ leaves- K fixed, it i s  a K -linear transformation and is one-to-one when 
restricted to E, so a dimension argument shows that it maps E onto E .  

The above argument shows that the restriction mapping defines a function 
(which is easily seen to be a group homomorphism) from G == Gal (F / K) into 
Gal (E / K) . By Theorem 8 .2 .8 ,  F is a simple extension of E ,  and so Lemma 6.4.4 
implies that any element of Gal (E / K) can be extended to an element of Gal (F / K) . 
Thus the restriction mapping is onto, and since the kernel of this mapping is 
clearly Gal (F / E) == H, by the fundamental homomorphism theorem we must 
have Gal (E / K) r-v Gal (F / K) / Gal (F / E) . 

By part (b) the index of Gal (F / E) in G equals [E : K] ,  and so I Gal (E / K) I == 
[E : K ] .  Since I Gal (E / K) I is finite, Theorem 8 .3 .6  implies that E is a normal 
separable extension of EGa1(E/ K) . But then [E : EGa1 (E/ K) ] == [E : K ] ,  and so 
EGa1 (E / K) == K , which finally shows that E is a normal extension of K . D 

In the statement of the fundamental theorem we could have simply said that 
normal subgroups correspond to normal extensions. In the proof we noted that if E 
is a normal extension of K, then ¢ (E) C E for all ¢ E Gal (F / K) . In the context 
of the fundamental theorem, we say that two intermediate subfields E I and E2 are 
conjugate if there exists ¢ E Gal (F / K) such that ¢ (EI ) == E2 . We now show that 
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the subfields conjugate to an intermediate subfield E correspond to the subgroups 
conjugate to Gal (F I E) . Thus E is a normal extension if and only if it is conjugate 
onl y to itself. 

8.3.9 Proposition. Let F be the splitting field of a separable polynomial over the 
field K, and let E be a subfield such that K C E C F, with H == Gal (F I E) .  If 
¢ E Gal (FIK), then Gal(FI¢ (E)) == ¢H¢- l . 

Proof Since ¢ E Gal (F I K) ,  for any e E Gal (F I K) we have 

e E Gal (F I¢ (E)) if and only if e¢ (x)  == ¢ (x) for all x E E 
if and only if ¢- l e¢ (x ) == x for all x E E 
if and only if ¢- l e¢ E Gal(F I E) == H 
if and only if e E ¢H ¢- l . 

This shows that Gal (F I¢ (E)) == ¢H¢- l and completes the proof. D 

Example 8.3.2 (Galois group of x3 - 2 over Q). 

In this example we will compute the Galois group G of the polynomial p (x) == 
x3 -2 over Q. We will also illustrate the fundamental theorem by investigating 
the subfields of its splitting field. The roots of the polynomial are �, w�, 
and w2�, where w == ( - 1 + -J3i) /2 is a primitive cube root of unity. Thus 
the splitting field of p(x) over Q can be constructed as Q(w ,  �) .  Since x3 -2 
is irreducible over Q, adjoining � gives an extension of degree 3 ,  which is 
contained in R.  The minimal polynomial of w over Q is x2 + x + 1 ,  and it is 
irreducible since its roots are w and w2 , which are not real . This implies that 
[Q(w , �) : Q] == 6, and so I G I  == 6. The set { I ,  �, �, w , w�, w�} is 
a basis for Q(w ,  �) over Q. 
Note that any automorphism <p E G is completely determined by its values on 
� and w. Since ¢ must preserve roots of polynomials, the only possibilities 
are ¢ (�) == �, w�, or w2�, and ¢ (w) == w, or w2 . This gives 
six possible functions, and so they must determine the six possible elements 
of G. Let a be defined by a (�) == w� and a (w) == w, and let f3 be 
defined by f3 (�) == � and f3 (w) == w2 . Since w2 is the complex conjugate 
of w, complex conjugation defines an automorphism of Q (�, w) that has 
the properties required of f3, so evidently we have defined f3 (x) == X, for all 
x E Q(�, w) . A direct computation shows that a2 (�) == w2� and then 
a3 (�) == �, so a has order 3 .  Similarly, f3 has order 2. Furthermore, 
f3a (�) == f3 (w�) == w2� and f3a (w) == f3 (w) == w2 . On the other hand, 
a2f3 (�) == a2 (�) == w2� and a2f3 (w) == a2 (w2) == w2 . This shows that 
f3a == a2 f3 ,  and it follows that G is isomorphic to S3 . 
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The subfield Q (w) is the splitting field of x 2 + x + l over Q, and so it must be the 
fixed subfield of the only proper nontrivial normal subgroup { I ,  a, a2 } of G .  
The subfield Q(�) i s  the fixed subfield of the subgroup H � { I ,  ,B } , since 
,B(�) � �. By Proposition 8 .3 .9, the subfield Q(w�) � a (Q(�)) 
must be the fixed subfield of the subgroup aHa - 1 � { I ,  a2,B } . (A direct 
computation shows that a2,B (w�) � w�.) The remaining subfield is 
Q(w2�) � a2 (Q(�)) , and this suffices to determine the correspondence 
between subgroups and subfields. We give the respective diagrams in Fig
ure 8 . 3 . 1 .  0 

Figure 8 . 3 . 1 :  

{ 1 , a , a2 } 

{ I ,  ,B }  { I ,  a,B } { I ,  a2,B }  

l 
{ I }  

Q(�, w) 

\ 
Q(�) Q(w2�) Q(w�) 

Q(w) 

Q 
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Example 8.3.3 (Galois group of x4 - 2 over Q). 

In the final example of this section we compute the Galois group G of x4 - 2 
over Q and investigate the subfields of its splitting field. We have x4 - 2 == 
(x2 + -J2) (x2 - -J2) , and this factorization leads to the roots ±�, ±i � 
of x4 - 2. We can obtain the splitting field as Q(�, i )  by first adjoining 
the root � of x4 - 2 to obtain Q(�) and then adjoining the root i of the 
irreducible polynomial x2 + 1 .  Since any element of the Galois group must 
simply permute the roots of x4 - 2 and x2 + 1 ,  the eight possible permutations 
determine the Galois group, which has order 8 .  
Let a be the automorphism defined by a (�) == i � and aU) == i ,  and let 
fJ be defined by fJ (�) == � and fJ U ) == -i . Then a represents a cyclic 
permutation of the roots of x4 - 2 and has order 4, while fJ represents complex 
conjugation and has order 2. A direct computation shows that fJa == a- I fJ ,  
and so G r-...; D4 . 
To compute the fixed subfields of the various subgroups of D4 , we first note 
that all powers of a leave i fixed, and so the fixed subfield corresponding to (a ) 
contains Q(i ) .  We must have equality since the degree of the fixed subfield 
over Q is equal to the index of (a ) in D4 . Next, a2 also leaves -J2 fixed since 
a (-J2) == a (��) == (i�) (i�) == --J2. A degree argument shows that 
the fixed subfield of (a2) is Q( -J2, i ) .  

We next consider (a2 , fJ )  and its subgroups . Since -J2 i s  a real number, it is 
left fixed by fJ, as well as by a2 . It follows that the subfield left fixed by (a2 , fJ) 
is Q( -J2) . Adjoining either � or i � to Q gives a subfield of degree 4 that 
contains Q( -J2) , and so the corresponding subgroups must be contained in 
(a2 , fJ). Because Q(�) consists of real numbers, it is left fixed by fJ, and 
then Q(i �) is the subfield fixed by (a2 fJ) .  
To identify the subfield fixed by (afJ ) requires some additional computations. 
As a basis for Q(�, i) over Q we will use the set 

{ 1 , �, v'2, ,rs, i ,  i �, iv'2, i ,rs} . 

U sing the definitions of a and fJ it can be shown that 

afJ (�) == i �, afJ ( v'2) == -v'2, afJ (,rs) == -i ,rs, afJ (i ) == -i ,  

afJ (i �) == �, afJUv'2) == iv'2, and afJU ,rs) == -,rs . 
It follows that an element 

is left fixed by afJ if and only if a3 == a5 == 0, a6 == a2 , and ag == -a4 . Thus 

383 
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and so the subfield fixed by (afJ ) is Q( � + i �) . It is left as an exercise to 
verify that the subfield fixed by (a3 fJ) i s Q( � - i �) . 

There are various ways in which to obtain the splitting field of x4 - 2 by 
adjoining, at each stage, a root of a quadratic. These are reflected in the 
various chains of subfields . For example, we can first adjoin ,J2, to obtain 
the splitting field of x2 - 2. Then we can adjoin the root � of x2 - ,J2, 
which does not produce a splitting field. Finally, after adjoining a root of 
x2 + 1 we arrive at the splitting field Q(�, i ) .  It may be useful to note that 
this field is also the splitting field of x4 + 2 over Q, which has roots ±�v 

and ±i �v, where v = ,J2 + ,J2 i .  Adjoining these roots produces the 
2 2 

seemingly mysterious subfields Q( � + i�) and Q( � - i �) . 
The appropriate diagrams are given in Figure 8 . 3 .2 . D 

We end this section by proving the fundamental theorem of algebra. The proof 
uses algebraic techniques , although we do need to know that any polynomial over 
R of odd degree must have a root. If I(x) E R[x] had odd degree, then I (n) and 
I ( -n) have opposite signs for sufficiently large n , so I (x) must have a root since 
it is a continuous function. 

8.3.10 Theorem (Fundamental Theorem of Algebra). Any nonconstant polyno
mial in C[x] has a root in C. 

Proof Let I (x) be a nonconstant polynomial in C[x] and let L be a splitting field 
for I (x) over C. Let F be a splitting field for (x2 + 1 )  I (x) I (x) over R, where I (x) 
is the polynomial whose coefficients are obtained by taking the complex conjugates 
of the coefficients of I(x) . Since char(R) == 0, we are in the situation of the 
fundamental theorem of Galois theory. We will use G == Gal(F IR) to show that 
F == C. Then L == C since F :) L :) C. 

Let H be a Sylow 2-subgroup of G, and let E == FH . Since H is a Sylow 
2-subgroup, [G : H] is odd, which implies by Theorem 8 .3 . 8 that [E : R] is odd. 
By Theorem 8.2 .8 there exists U E E such that E == R(u) ,  and so the minimal 
polynomial of u over R has odd degree. The minimal polynomial is irreducible, so 
it can only have degree 1 ,  since any polynomial of odd degree over R has a root in 
R (by our comment preceding the theorem), and this implies that E == R. Now, 
since FH == R, we must have H == G , and so G is a 2-group. 

The subgroup G 1 == Gal (F IC) of G is also a 2-group . If G 1 is not the trivial 
group, then the first Sylow theorem implies that it has a normal subgroup N of 
index 2. Since F is a normal extension of C, we can again apply Theorem 8 . 3 . 8 . 
If K == FN , then [K : C] == [G 1 : N] == 2 ,  so  K == C (v) for some v E K with 
a minimal polynomial that is a quadratic . We know that square roots exist in C, so 
the quadratic formula is valid, which implies that no polynomial in C[x] of degree 
2 is irreducible. Therefore G 1 must be the trivial group, showing that F == C. D 
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Figure 8 .3 .2 : 

{ 1 , ,B } { I , a2,B } { I ,  a2 } { I , a,B } 
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{ I }  

Q(
�

, i ) 
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v'2) Q(i ) 
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{ I , a3 ,B } 
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EXERCISES: SECTION 8.3 

1 . In Example 8 .3 . 3 use a direct calculation to verify that the subfield fixed by (a3 fJ) is 
Q(� - i �) .  

2 .  In Example 8 . 3 .3 determine which subfields are conjugate, and in each case find an 
automorphism under which the subfields are conjugate. 

3 .  Find the Galois group of x4 + 1 over Q. 

4.tFind the Galois group of x4 - x2 - 6 over Q. 

5 .  Find the Galois group of x8 - 1 over Q. 

6. Let F be the splitting field of a separable polynomial over K ,  and let E be a subfield 
between K and F. Show that if [E : K ]  = 2, then E is the splitting field of some 
polynomial over K .  

7 .  Let E be a separable algebraic extension of F and let F be a separable algebraic 
extension of K .  Show that E is a separable extension of K .  

8.4 Solvability by Radicals 

In most results in this section we will assume that the fields have characteristic zero, 
in order to guarantee that no irreducible polynomial has multiple roots . When we 
say that a polynomial equation is solvable by radicals, we mean that the solutions 
can be obtained from the coefficients in a finite sequence of steps, each of which may 
involve addition, subtraction, multiplication, division, or taking nth roots . Only the 
extraction of an nth root leads to a larger field, and so our formal definition is phrased 
in terms of subfields and adjunction of roots of xl! - a for suitable elements a . The 
definition is reminiscent of the condition for constructibility given in Section 6.3 . 

8.4.1 Definition. An extension field F of K is called a radical extension of K if 
there exist U l , U2 , . . .  , Urn E F and positive integers n l , n2 , . ' "  nrn such that 

(i) F == K(U I , U2 , . . .  , urn), and 
(ii) u7 1 E K and u7i E K (U I , . . .  , u i- l ) for (== 2, . . . , m. 
For f (x) E K [x], the polynomial equation f (x) == 0 is said to be solvable by 

radicals if there exists a radical extension F of K that contains all roots of f(x) . 

We must first determine the structure of the Galois group of a polynomial of the 
form xl! - a . Then we will make use of the fundamental theorem of Galois theory 
to see what happens when we successively adjoin roots of such polynomials. 
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We first need to recall a result from group theory. We showed in Example 7 . 1 .6 
that Aut (Zn ) r-v Z: . This follows from the fact that any automorphism of Zn has 
the form ¢a ([x ] )  == [ax ] for all [x ] E Zn , where gcd(a , n) == 1 .  It is easy to see that 
¢a¢b == ¢ab ,  and it then follows immediately that Aut (Zn ) r-v Z: . 

8.4.2 Proposition. Let F be the splittingfield of xn - l over afield K of characteristic 
zero. Then Gal (F / K)  is an abelian group. 

Proof. Since char(K) == 0, the polynomial xn - 1  has n distinct roots , and it is easy to 
check that they form a subgroup C of F x , which is cyclic by Theorem 6 .5 . 1 0 . Every 
element of Gal (F / K)  defines an automorphism of C, and using this observation 
it is apparent that Gal (F / K) is isomorphic to a subgroup of Aut(C) . Since C is 
cyclic of order n , the remarks preceding the proposition show that Gal (F / K) is 
isomorphic to a subgroup of Z: ' and so it must be abelian. D 

Recall that the roots of the polynomial xn - 1 are called the nth roots of unity. 
Any generator of the group of all nth roots of unity is called a primitive nth root of 
unity. 

8.4.3 Theorem. Let K be afield of characteristic zero that contains all nth roots of 
unity, let a E K, and let F be the splitting field ofxn - a over K. Then Gal (F / K) 
is a cyclic group whose order is a divisor ofn. 

Proof. If u is any root of xn - a and S is a primitive nth root of unity, then all other 
roots of xn - a have the form S iu , for i == 1 , 2, " ' , n - 1 .  Thus F == K(u ) , and so 
any element ¢ E Gal (F / K) is completely determined by its value on u, which must 
be another root, say ¢ (u) == S i U .  If e E Gal (F/K) with e (u ) == s J u ,  then we have 
¢e (u ) == ¢ (s j u) == S i S j U == S i+ j u .  Assigning to ¢ E Gal (F / K)  the exponent i of 
S in ¢ (u) == S i u defines a one-to-one homomorphism from Gal(F / K) into Zn . D 

8.4.4 Theorem. Let p be a prime number, let K be afield that contains all pth roots 
of unity, and let F be an extension of K. If [F : K] == I Gal (F / K)  I == p, then 
F == K (u) for some u E F such that uP E K. 

Proof. Let G == Gal (F/K) .  If w E F is  not in K ,  then F == K (w) since [F : K] 
i s  prime. Let C == { SI , S2 , . . .  , Sp } C K be the pth roots of unity, and let e be a 
generator of G. Let W I  == w and Wi == e (Wi- I )  for 1 < i < p . Equivalently, 
Wi == e i -

I
(w) for 1 < i < p . Since e p is the identity, we have W I  == e (wp ) .  For 

each i we let 
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Applying e leaves the roots of unity fixed, and since SiP == 1 we obtain 

e (U i ) e (W I ) + Sie (W2) + . . .  + SiP- I e (Wp) 

and therefore we have 

p-2 p- l W2 + Si W3 + . . . + Si wp + Si WI 
Si- I (Si W2 + S?W3 + . . .  + SiP- 1 wP + W I ) 1"' - 1 "i U i 

This shows that uf is left fixed by the Galois group G, since e is a generator of G, 
and it follows that uf E K . 

Writing the definition of the U i ' s in the matrix form 

we see that the coefficient matrix has the form of a Vandermonde matrix, which is 
invertible since the Si ' s are distinct. One way to see that the matrix must be invertible 
is to observe that it is the matrix used to solve for the coefficients of a polynomial 
f(x) == ao + a I X + . . . + ap_ IxP- I over K such that f(si ) == 0 for all i .  The only 
solution is the zero polynomial, since no other polynomial of degree p - 1 can have 
p roots . This means that it is possible to solve for W == WI as a linear combination 
(with coefficients in K) of the elements U i . Thus if U i E K for all i ,  then W E K , a 
contradiction. We conclude that U i fj. K for some j ,  and so F == K (u ) ,  for U == U i '  
and u P E K, as we had previously shown. D 

8.4.5 Lemma. Let K be afield ofcharacteristic zero, and let E be a radical extension 
of K. Then there exists an extension F of E that is a normal radical extension of 
K. 

Proof. Let E be a radical extension of K with elements U I , U2 , . . .  , Urn E E such 
that (i) E == K(U I , U2 , . . .  , urn) and (ii) u7 1 E K and u7 i E K(U l , . . .  , U i- l ) for 
i == 2, . . .  , m and integers n 1 , n2 , . . .  , nrn . Let F be the splitting field of the product 
f (x) of the minimal polynomials of U i over K, for i == 1 ,  2, . . .  , n. The proof that 
condition (2) implies condition (3) in Theorem 8 .3 .6 shows that in F each root of 
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f (x ) has the form () (Ui ) for some integer i and some automorphism () E Gal (F / K) .  
For any () E Gal (F/K) ,  we  have () (U 1 )n 1 E K and () (U i )ni E K (() (U 1 ) ,  . . .  , () (Ui - 1 ) )  
for i == 2 , . . .  , m. Thus if Gal (F / K) == {()1 , ()2 , . . .  , ()k } ,  then the elements {()j (U i ) }  
for i == 1 ,  . . .  , m and j == 1 , . . .  , k satisfy the conditions of Definition 8 .4 . 1 ,  
showing that F is a radical extension of K .  0 

8.4.6 Theorem. Let f (x ) be a polynomial over afield K of characteristic zero. The 
equation f (x ) == 0 is solvable by radicals if and only if the Galois group of f (x ) 
over K is solvable. 

Proof We first assume that the equation f (x) == 0 is solvable by radicals . Let F 
be a radical extension of K that contains a splitting field E of f (x ) over K .  By the 
previous lemma we may assume that F is a splitting field over K ,  with elements 
U 1 , U2 , . . .  , Urn E F such that (i) F == K (U 1 , U2 , . . .  , urn) and (ii) u7 1 E K and 
u7i E K (U 1 , . . .  , U i - 1 ) for i == 2, . . .  , m and integers n 1 , n2 , . . .  , nrn . Let n be the 
least common multiple of the exponents ni .  By adjoining a primitive nth root of unity 
� ,  we obtain a normal radical extension F (� )  of K (� ) .  Note that K (� )  contains 
all of the n i th roots of unity for i == 1 ,  . . .  , m .  It follows from the fundamental 
theorem of Galois theory that Gal (E / K)  is a factor group of Gal (F(� )  / K ) .  Since 
any factor of a solvable group is again solvable, it suffices to show that Gal (F (� ) / K)  
is solvable. 

Let K (� ,  U I , . . .  , U i )  == Fi and let Gal (F(� )/ K) == G, Gal (F(� ) /  K (� )) == N, 
and Gal (F(� ) /  Fi ) == Ni , for i == 1 , 2 , . . .  , m - 1 . Since Fi - 1 contains all n i th 
roots of unity, Fi is the splitting field of xni - ai over Fi - 1 , for some ai E Fi- 1 . 
Therefore Ni is a normal subgroup of Ni - 1 and Gal (Fi / Fi - 1 ) r-v Ni - 1 / Ni by the 
fundamental theorem. Furthermore, by Theorem 8 .4.3 , Gal (Fi /  Fi - 1 ) is cyclic .  
Finally, N is normal in Gal (F(� ) /  K) , and G/ N r-v Gal(K (� )/ K) is abelian by 
Proposition 8 .4.2 . The descending chain of subgroups 

G :=) N :=) N1 :=) • • •  :=) Nrn == {e } 

shows that G == Gal (F (� ) /  K)  is a solvable group . 
To prove the converse, assume that the Galois group G of f (x ) over K is 

solvable, and let E be a splitting field for f (x ) over K .  If I G I == n , let � be a 
primitive nth root of unity, and let F == E(� ) .  We will show that ¢ (E) == E for any 
element ¢ of Gal (E (� ) / K (� ) ) .  To see this , let a E E,  and let g (x ) be the minimal 
polynomial of a over K .  Then ¢ (a ) is a root of g (x ) , and so ¢ (a ) E E since E is 
normal over K .  The restriction of ¢ to E defines an element of Gal(E / K)  == G. 
Thus Gal (F / K (� ) ) i s  isomorphic to a subgroup of G and hence i s  solvable. By 
Proposition 7 .6 .2 there exists a finite chain of subgroups 

Gal (F / K (� ) )  => N1 => . . .  => {e } 
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such that each subgroup is normal in the one above it and the factor groups Ni / Ni+ l 
are cyclic of prime order Pi . By the fundamental theorem of Galois theory there is 
a corresponding ascending chain of subfields 

K (� )  C FI C . . .  C F 

with Ni == Gal (F/Fi )  and Gal (Fi+ I /Fi )  r-v Ni /Ni+ l • Since Pi ln and Fi contains 
a primitive nth root of unity, it contains all Pi th roots of unity, and we can apply 
Theorem 8 .4.4 to show that f (x ) is solvable by radicals over K (� ) ,  and hence over 
K .  0 

This seems an appropriate point at which to remind the student that this funda
mental result has motivated almost all of our work on groups and extension fields . 

Theorem 7 .7 .2 shows that Sn is not solvable for n > 5 , and so to give an example 
of a polynomial equation of degree n that is not solvable by radicals, we only need 
to find a polynomial of degree n whose Galois group over Q is Sn . We will give 
such an example of degree 5 over Q, a special case of a more general construction, 
which we outline below. 

Let m be a positive even integer, and let n 1 < n2 < . . .  < nk-2 be even integers , 
where k is odd and k > 3 . Let 

g (x ) == (x2 + m ) (x - n l ) (x - n2) . . . (x - nk-2) . 

The polynomial f (x) == g (x ) - 2 has exactly two nonreal roots in C, if m is chosen 
large enough, and if k is prime, then its Galois group over Q is Sk (see Section 4. 1 0 
of  Jacobson 's Basic Algebra I) . For degree 5 , one of the simplest cases is 

f (x ) == (x2 + 2) (x + 2) (x) (x - 2) - 2 == x5 - 2x3 - 8x - 2 . 

To complete the proof that f (x ) has Galois group S5 , we need the following 
group theoretic lemma. 

8.4.7 Lemma. Any subgroup of S5 that contains both a transposition and a cycle 
of length 5 must be equal to S5 itself. 

Proof By renaming the elements of S5 we may assume that the given transposition 
is ( 1 , 2) . We can then replace the cycle of length 5 with one of its powers to obtain 
( 1 , 2 , a , b , c) , and then we can again rename the elements so that we may assume 
without loss of generality that we are given ( 1 , 2) and ( 1 , 2 , 3 , 4 , 5) . 

We have ( 1 , 2) ( 1 , 2 , 3 , 4, 5) == (2 , 3 , 4 , 5) , and conjugating ( 1 , 2) by powers of 
(2 , 3 , 4 , 5) gives ( 1 , 3 ) , ( 1 , 4) , and ( 1 , 5) . Then it follows from the formula 

( 1 , n) ( l ,  m) ( l , n) == (m , n) 

that any subgroup of S5 that contains the two given elements must contain every 
transposition. 0 
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8.4.8 Theorem. There exists a polynomial of degree 5 with rational coefficients that 
is not solvable by radicals. 

Proof Let f(x) == x5 - 2x3 - 8x - 2. Then f' ex) == 5x4 - 6x2 - 8,  and 
the quadratic formula can be used to show that the solutions of f' (x ) == 0 are 
x2 == 2 , -4/5 , yielding two real roots . Then f(x) has one relative maximum and 
one relative minimum, and since the values of f(x) change sign between -2 and 
- 1 , between - 1  and 0, and between 2 and 3 ,  it must have precisely three real roots . 

By Theorem 8 . 3 . 1 0  (the fundamental theorem of algebra) there exists a splitting 
field F for f(x) with F C C. The polynomial f(x) is irreducible by Eisenstein 's 
criterion, and so adjoining a root of f (x) gives an extension of degree 5. By the 
fundamental theorem of Galois theory, the Galois group of f (x) over Q must contain 
a subgroup of index 5 , so since its order is divisible by 5 , it follows from Cauchy 's 
theorem that it must contain an element of order 5. By Proposition 8 . 1 .4, every 
element of the Galois group of f (x) gives a permutation of the roots , and so the 
Galois group is easily seen to be isomorphic to a subgroup of S5 . This subgroup 
must contain an element of order 5, and it must also contain the transposition that 
corresponds to the element of the Galois group defined by complex conjugation. 
Therefore, by the previous lemma, the Galois group must be isomorphic to S5 . 
Applying Theorem 8 .4.6 completes the proof, since S5 is not a solvable group. 0 

EXERCISES: SECTION 8.4 

1 .  Show that 2x5 - 10x + 5 is irreducible over Q and is not solvable by radicals. 
2. Find the primitive 8th roots of unity in C, and show that they are the roots of the 

polynomial x4 + 1 .  
Hint : See Section A.5 of the appendix. 

3. Find the Galois group of x5 - 1 over Q. 
4. Find the Galois group of x9 - 1 over Q. 
5. Let � E C be a primitive 9th root of unity. Show that the roots of the polynomial 

x3 - 3x + 1 can be expressed as � + � 8 , � 2 + �7 , and �4 + �5 . 
Hint : Use the identity � 9 = 1 and the fact that � 3 is a primitive third root of unity. 

6. The determinant given below is called a Vandermonde determinant. Show that 

1 
1 

2 �l �1 2 �2 �2 
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Hint : Use induction. To make the inductive step, start from the right and subtract 
from each column �n times the column to its left. 

7 .  Let H be a subgroup of S p '  where p is prime. Show that if H contains a transposition 
and a cycle of length p, then H == S p '  

8 .  Prove that if I (x) E Q[x] i s  irreducible of prime degree p and has exactly two 
non-real roots in C,  then the Galois group of I (x) over Q is S p '  
Hint : Show that complex conjugation gives a transposition in the Galois group, and 
apply Exercise 7 .  

8.5 Cyclotomic Polynomials 

The complex roots of the polynomial xn - 1 are the nth roots of unity. If we let a 
be the complex number a == cos e + i sin e ,  where e == 2n/n , then 1 ,  a ,  a2 , . . .  , 
an- I are each roots of xn - 1 ,  and since they are distinct they must constitute the 
set of all nth roots of unity. Thus we have 

n 1 TIn- 1 ( k ) X - == k=O X - a . 

It is clear that the set of nth roots of unity is a cyclic subgroup of C x of order n . 
Thus there are ({J (n) generators of the group, which are the primitive nth roots of 
unity. If d i n , then any element of order d generates a subgroup of order d, which 
has ({J(d) generators . By Proposition 3 .5 . 3  there is a one-to-one correspondence 
between subgroups and positive divisors of n , so there are precisely ({J (d) elements 
of order d. 

If p is prime, then every nontrivial pth root of unity is primitive, and Corol
lary 4.4.7 shows that each pth root of unity is a root of the irreducible polynomial 
xp- l + xp-2 + . . .  + x + 1 ,  which is a factor of xP - 1 . The situation is more 
complicated when n is not prime. For example, 

x4 - 1 == (x - I ) (x + 1 ) (x2 + 1 )  , 
and the primitive 4th roots of unity are the roots of x2 + 1 ,  consisting of ±i . We 
also have 

x6 - 1 == (x - 1 ) (x + 1 ) (x2 + X + 1 ) (x2 - X + 1 )  . 
The primitive cube roots of unity are roots of x2 + x + 1 ,  while the primitive 6th 
roots of unity are roots of x2 - x + 1 .  

8.5.1 Definition. Let n be a positive integer, and let a be the complex number 
a == cos e + i sin e, where e == 2n / n. The polynomial 

<pn (x ) == TI (k , n)= I ,  l ::Sk<n (x - ak ) 
is called the nth cyclotomic polynomial. 
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8.5.2 Proposition. Let n be a positive integer, and let <Pn (x) be the nth cyclotomic 
polynomial. The lollowing conditions hold: 

(a) deg(<pn (x )) == cp (n); 
(b) xn - 1 == fldln <Pd (X) ; 
(c) <Pn (x ) is monic, with integer coefficients. 

Proof Let Cn denote the group of nth roots of unity, generated by a == cos () +i sin () ,  
where () == 2n / n . Since C n is cyclic of order n , it i s  isomorphic to Zn . 

(a) In the definition of <Pn , we have cp (n) linear factors . 
(b) If d i n , then Cd is a subgroup of Cn , and the primitive dth roots of unity are 

the elements of C n of order d. Grouping the linear factors x - ak of xn - 1 according 
to the order of a k  gives the required factorization of xn - 1 .  

(c) We give a proof using induction on the integer n .  To begin the induction, we 
have <P 1 (X) == x - l and <P2 (X ) == x + l . By part (b) we have xn - I  == <pn (x )/ (x ) ,  
where I (x ) i s  a monic polynomial, and by the induction hypothesis , I (x) has 
integer coefficients since it is a product of cyclotomic polynomials of degree less 
than n . Using the division algorithm over Q, we can write xn - 1 == q (x) / (x) ,  
for some quotient q (x ) .  I t  i s  clear from the division algorithm that q (x)  has integer 
coefficients since I (x ) is monic, and so uniqueness implies that <Pn (x) == q (x ) ,  and 
thus <Pn (x ) has integer coefficients . 0 

The proof of Proposition 8 .5 .2 shows how <pn (x ) can be computed inductively. 
Theorem 8 .5 .3  will prove that the answer is irreducible over Q. As an example, we 
compute <P 12 . 

Example 8.5.1. 

To compute <1> 12 we need to know <l>d , for the divisors d of 1 2 . We certainly 
already know that <1> 1  (x) == x - I , <l>2 (X) == x + 1 ,  <1>3 (x) == x2 + x + 1 ,  and 
<l>4 (X) == x2 + 1 .  To find <l>6 (X) == x2 - x + 1 ,  we have 

Then 

x6 - 1 
(x - l ) (x + 1 ) (x2 + x + 1 )  
(x3 + 1 ) (x3 - 1 ) 
(x + 1 ) (x3 - 1 ) 
x2 - x + 1 . 

(x - l ) (x + 1 ) (x2 + x + 1 ) (x2 + 1 ) (x2 - x + 1 ) 
(x6 + 1 ) (x6 - 1 ) 
(x2 + 1 ) (x6 - 1 ) 
x4 - x2 + 1 . 



394 CHAPTER 8. GALOIS THEORY 

8.5.3 Theorem. The nth cyclotomic polynomial <Pn (x ) is irreducible over Q, for 
every positive integer n. 

Proof We give a proof by contradiction. Assume that <Pn (x ) is not irreducible 
over Q. Then we can factor <Pn (x ) into a product of irreducible polynomials, and 
by Theorem 4.4.5 we can assume that they each have integer coefficients . Let f (x ) 
be one of the irreducible factors of <pn (x ) , and let f3 be any root of f(x ) . Note that 
f (x) must be monic, and is the minimal polynomial of f3 over Q. 

Now let p be any prime such that p I n . Since (p , n) == 1 , it follows from the 
definition of <Pn (x ) that f3P is a root of <Pn (x) . Suppose that f3P i s  not a root of f (x ) .  
Then f3P must be a root of a different irreducible factor of <Pn (x) , say g (x ) . We thus 
have xn - 1 == f(x)g (x)h (x ) , for some polynomial h ex ) with integer coefficients . 

For later reference we note that since g (x) has f3P as a root, the polynomial 
g (xP) must have f3 as a root. Since f(x) is the minimal polynomial of f3 over 
Q, this implies that g (xP) == f (x)k (x ) , for some polynomial k (x) with integer 
coefficients . 

Let n be the function which assigns to each polynomial over Z the polyno
mial in Zp [x] obtained by reducing each coefficient modulo p . For polynomials 
s ex ) , t (x) E Zp [x ] , we have (s (x) + t (x) )P == s (x)P + t (x)P , since the bino-
mial coefficient (f) has p as a factor unless i == 0 or i == p. Furthermore, 
if a E Zp , then aP == a by Euler's theorem (see Example 3 .2 . 1 2) .  Thus if 
s ex) == amxm + . . .  + a lx + ao , then 

s (x )P (amxm + . . .  + al x + ao)P == a�xmp + . . .  + afxP + a6 
am (xP )m + . . .  + aI xP + ao == s (xP) . 

Applying this result to n (g (x ) ) , we have (n (g (x) ) )P ==n (g (xP) ) ==n (f (x)k (x) ) == 
n (f(x))n (k (x) ) . (We have used the fact that n preserves products . )  In Zp [x ] , this 
shows that n (g (x )) and n (f (x ) ) must have an irreducible factor in common, so 
xn - 1 has a repeated factor in Zp [x ] .  As in the proof of Proposition 8 .2 .3 ,  this 
implies that xn - 1 and its formal derivative nxn- l must have an irreducible factor 
in common. This is an obvious contradiction, since p J n implies that the only 
possible irreducible factor is x . 

We have obtained a contradiction to our initial supposition that f3P is not a root 
of f(x ) . If k is any exponent with 1 < k < n and (k , n) == 1 ,  we can write 
k == PI · · ·  Pt where PI , . . .  , Pt are primes that are not divisors of n . Then an 
induction argument on t shows that fJk must be a root of f (x) .  We conclude that 
<Pn (x) == f (x) , and therefore <Pn (x) is irreducible over Q. 0 

8.5.4 Theorem. For every positive integer n, the Galois group of the nth cyclotomic 
polynomial <Pn (x ) over Q is isomorphic to Z� . 



8.5. CYCLOTOMIC POLYNOMIALS 395 

Proof. If a is a primitive nth root of unity, then the splitting field of <Pn (x ) over Q is 
Q(a) ,  and it follows from Theorem 8 .5 .3 that [Q(a) : Q] == cp (n) . Thus if G is the 
Galois group of <Pn (x ) over Q, it follows from Theorem 8 . 1 . 6 that I G I == cp (n) since 
<Pn (x) has no repeated roots over Q. The proof of Proposition 8 .4 .2 shows that G 
is isomorphic to a subgroup of Z� , and so I G I == cp (n) implies that G r-v Z� . 0 

8.5.5 Corollary. The Galois group of <Pn (x ) over Q is cyclic if and only if n is of 
theform 2, 4, pk, or 2pk for an oddprime p. 

Proof. This follows immediately from Theorem 8 .5 .4 and Corollary 7 .5 . 1 3 , which 
states the conditions under which Z� is cyclic. 0 

Example 8.5.2 (Constructible polygons). 

If a regular n-gon is constructible, then Corollary 6 .3 .7 can be used to show 
that a primitive nth root of unity lies in an extension F with [F : Q] == 2k , for 
some k � 1 .  It follows from Proposition 8 .5 .2 that cp(n) must be a power of 
2. 
If P is an odd prime, then cp(pa ) == pa- l (p - 1) is a power of 2 if and only if 
ex == 1 and p - 1 is a power of 2. Such a prime is called a Fermat prime, and 
must have the form p == 2k + 1 ,  where k is a power of 2 (see Exercise 23 of 
Section 1 .2) . The only known examples are 3 , 5 , 1 7  == 24 + 1 , 257 == 28 + 1 ,  
and 65537 == 2 1 6 + 1 .  The next possibility, 232 + 1 ,  is divisible by 64 1 .  
The complete answer to the constructibility question is that a regular n-gon is 
constructible if and only if n == 2k P2 . . .  Pm , where k � 0, and the factors Pi 
are distinct Fermat primes . (See Section 4. 1 1  of Jacobson 's Basic Algebra I 
for the "if" part of the proof. ) 0 

A set that satisfies all the axioms of a field except for commutativity of multipli
cation is called a division ring or skew field . We can use cyclotomic polynomials to 
give a proof of the following famous theorem of Joseph H. M. Wedderburn ( 1 882-
1948). 

8.5.6 Theorem (Wedderburn). Any finite division ring is afield. 

Proof. Let D be finite division ring, and let 

F == {x E D I xd == dx for all d E D} , 

the center of D.  The verification that F is a field is left as an exercise . It follows 
from Proposition 6.5 . 1 that F == GF(pm ) ,  for some prime number p and some 
positive integer m . Thus D is a vector space over F, and if it has dimension is n 
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over F, then D must have qn elements , where q == pm . To show that D == F, which 
will complete the proof, we only need to show that n == 1 .  

We now consider the class equation of the finite group D X . (See Defini
tion 7 .2 .6 .) Since the center of D X  is F X , we have 

where the sum ranges over one element a from each nontrivial conjugacy class, and 
C (a) == {x E D X  I xa == ax } is the centralizer of a in D X . Thus 

qn - 1 == (q - 1 )  + La [D X : C (a)] . 

For each a E D, let Da == {x E D I xa == ax } .  It is easy to check that Da is a 
division ring, so it is a vector space over F ,  and must have qk elements , for some 
positive integer k . Furthermore, it is clear that C (a) is just the multiplicative group 
D: of Da . It follows from Lagrange 's theorem that qk - 1 is a divisor of qn - 1 ,  
and Exercise 5 shows that k must be a divisor of n .  We have now shown that for 
each a E D X  we have qn - 1 

[D X : C (a) ] == --qk - 1 
for some positive integer k such that k i n . Since k in , Proposition 8 .5 .2 implies 
that <pn (x ) is a divisor of (xn - l ) j (xk - 1 ) ,  and so <pn (q ) must be a divisor of 
(qn - l ) j (qk - 1 ) .  It follows from the class equation that <pn (q ) is a divisor of 
q - 1 . 

To obtain the desired contradiction, substitute x == q in the equation 

<Pn (x ) == fl (i , n)= l , l :si <n (x - ai ) 
and consider the magnitude of the resulting complex numbers . We have I q - ai I > 
I q l - Iai l == q - 1 ,  and so 

l <pn (q ) 1 == fl (i , n)= l , l :Si <n I (q - ai ) 1 > (q - l )c,o (n) . 

We conclude that n == 1 ,  and thus D == F, showing that D is a field. 0 

EXERCISES: SECTION 8.5 

1 .  Compute the following cyclotomic polynomials . 
t ea) <1>8 
(b) <1>9 

t ee) <1> 15 (See the comments after Corollary 4.4.7 . ) 
(d) <1>20 
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2. Prove that if n is a power of 2, say n == 2k with k > 1 ,  then <l>n (x) == xm + 1 ,  where 
m == 2k- l . 

3 . Let n be an integer of the form n == pk , where k :::: 1 and p is any odd prime. 
Prove that <l>n (x ) == <I> p (xm ) == Lf:Ol xmi , where m == pk- l . (For example, 
<1>27 == x 1 8 + x9 + 1 . ) 

4. Let n be an integer of the form n == 2 pk , where k :::: 1 and p is any odd prime. 
Prove that <l>n (x) == <I> p ( -xm ) == Lf:Ol ( - 1 ) i xmi , where m == pk- l . (For example, 
<I> 54 == x 1 8 - x 9 + 1 . ) 
Hint: First prove the result that if q > 1 is odd, then <l>2q (x) == <I> q ( -x) . 

5 . Let a E Z with a > 1 ,  and let m ,  n be positive integers . Prove that if am - 1 is a 
divisor of an - 1 ,  then m is a divisor of n .  

6 .  This exercise extends Proposition 5 . 1 .4 to arbitrary rings , which must satisfy all of 
the axioms of Definition 5 . 1 .2 with the possible exception of the commutative law 
for multiplication. Let S be a ring, and let R be a nonempty subset of S .  Then R is a 
subring of S (use Definition 5 . 1 .3) if and only if for all x ,  y E R ,  the elements x - y 
and xy belong to R .  

7 .  Let D be divis ion ring, and let F == {x E D I xd == dx for all d E D} .  Prove that 
F is a field. 

8. Let D be division ring, and let a E D. Prove that Da == {x E D I xa == ax } is a 
division ring. 

9. Show that <l>m (x) == nn lm (xn - 1 )Il(m/n) , where � is the Mobius function defined 
in Section 6.6 . 

1 0 . Verify the following identities for the cyclotomic polynomials <l>n (x) . 
(a) If p i s  a prime number, with p A' m ,  then <l>mpk (x) == <l>mp (XPk- 1 ) .  
(b) If p is a prime number, with p A' m,  then <I> pm (x) <Pm (x) == <l>m (x P ) .  
(c) If n :::: 2 , then <l>n (x) == ndln ( l - xn/d)ll(d) . 
(d) If n :::: 3 , and n is odd, then <l>2n (x) == <l>n ( -x) . 

8.6 Computing Galois Groups 

In this section we will investigate some techniques that help in actually computing 
the Galois group of a polynomial . We warn the reader in advance that some of these 
techniques are based on theoretical results that are beyond the scope of this book. 

A reasonable question to ask is whether there are any restrictions on the groups 
that can occur as Galois groups. It can be shown that for any finite group G there 
exist a field K and an extension field F with Gal (F / K) == G. On the other hand, 
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whether or not there exists a polynomial in Q[x] whose Galois group over Q is G 
is still an open question . 

If we are given a polynomial f (x) of degree n that is irreducible over Q, then we 
can find some restrictions on the possible candidates for the Galois group of f (x) 
over Q. To do this , we need the definition of a transitive subgroup of Sn (which also 
appears in Exercise 14 of Section 7 .3) .  

8.6.1 Definition. Let G be a group acting on a set S. We say that G acts transitively 
on S if for each pair of elements x ,  y E S  there exist an element g E G such that 
y == gx . 

IfG is a subgroup of the symmetric group Sn, then G is called a transitive group 
if it acts transitively on the set { I , 2, . . .  , n } . 

8.6.2 Proposition. Let f (x) be a separable polynomial over the field K, with 
f (x) == PI (X)P2 (X ) . . .  Pk (X ) its factorization in K [x ] as a product of distinct 
irreducible polynomials. If F is the splitting field of f(x) over K, then f (x) is 
irreducible over K if and only if Gal (F / K) acts transitively on the roots of f (x) . 

Proof Assume that f (x) i s  irreducible over K. For any roots ri , r j of f (x) ,  since 
f (x) is irreducible there exists an isomorphism from K (ri ) onto K (r j ) that maps 
ri to r j . This can be extended to an automorphism of the splitting field F, yielding 
an element of Gal (F / K) which maps ri to rj . 

Conversely, suppose that Gal (F / K) acts transitively. Let P I (x) be the irre
ducible factor of f (x) which has rl as a root. Then since Gal (F / K) acts transitively, 
and any of its elements take r l to another root of PI (x) , we see that every root of 
f(x) is a root of PI (x ) .  Since f (x) == PI (X)P2 (X) . . .  Pk (X) has distinct factors , it 
follows that f (x) == PI (x) ,  and hence f (x) is irreducible over K . 0 

We can now give a list of the possible Galois groups of equations of small degree. 
Let f (x) be a separable polynomial over the field K . If f (x) is irreducible of degree 
3 ,  then its Galois group over K must be 

U sing Exercise 5, if f (x) is irreducible of degree 4, then its Galois group over K 
must be 

S4 , A4 , D4 , Z4 , or Z2 x Z2 . 

Using Exercise 8 ,  if f (x) is irreducible of degree 5 , then its Galois group over K 
must be 

S5 , A5 , F20 D5 , or Z5 . 
Here F20 is the Frobenius group of order 20, studied in Exercises 1 2  and 1 3  of 
Section 7 . 1 and Exercise 14 of Section 7 .2 . We can identify Z5 and D5 with sub
groups of F20 , with Z5 c D5 C F20 .  These are the solvable groups on the list, so a 
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polynomial f (x) of degree 5 is solvable by radicals if and only if its Galois group 
is isomorphic to a subgroup of F2o . 

Example 8.6.1 (Galois group of X4 - 2 over Q). 

In Example 8 .3 . 3  we computed the Galois group of x4 - 2 over Q. With our 
list of transitive subgroups of S4 in hand, as soon as we know that the order 
of the Galois group is 8 we can be certain that it is isomorphic to D4 . D 

Example 8.6.2 (Galois group of xS - 2 over Q). 

To compute the Galois group of xS - 2 over Q, we first need to find the 
splitting field of the polynomial. The polynomial is irreducible by Eisenstein's 
criterion, and it has 5 distinct roots , given by 0, y0, y20, y 30, and 
y40, where y is a primitive 5th root of unity. We have [Q ( 0) : Q] == 5, 
and since the minimal polynomial of y over Q is x4 + x3 + x2 + x + 1 , we 
have [Q(y ) : Q] == 4. The splitting field for xS - 2 over Q is Q( 0, y ) ,  so its 
degree over Q is divisible by 4 and 5, which shows that [Q( 0, y)  : Q] == 20. 
From our list of transitive subgroups of Ss , it follows that the Galois group 
over Q is F20 . D 

If f (x ) is irreducible of prime degree p over Q, then the next three results give 
some information about the case in which f (x ) is solvable by radicals . 

8.6.3 Lemma. Let p be a prime number, and let G be a transitive subgroup of Sp . 
Then any nontrivial normal subgroup of G is also transitive. 

Proof Assume that S p acts on P == { I ,  . . . , p } in the usual way, that G is a 
transitive subgroup of S p ' and that N is a nontrivial normal subgroup of G. Since 
N is nontrivial, I N  x I > 1 for some orbit N x with x E P . For x ,  y E P , since G 
is transitive there exists r E G with r (x) == y . For any a E N, define f (a x) == 
ra (x ) == ra r- I (y ) . Since N is normal in G, we have ra r- l E N, and so we 
have defined a function f : N x � Ny from the orbit of x into the orbit of y . This 
function has an inverse defined by g (a y) == r - 1 a (y) , and so N x and Ny have the 
same number of elements . Since P is the union of the orbits under N, it follows that 
I N x I is a divisor of p , and since I N  x I > 1 we must have I N x I == p . Thus N x == P , 
and so N is also a transitive subgroup of Sp . D 

8.6.4 Lemma. Let p be a prime number, and let G be a solvable, transitive subgroup 
of S p . Then G contains a cycle of length p. 



400 CHAPTER 8. GALOIS THEORY 

Proof Since G is solvable, by Proposition 7.6 .2 it has a composition series G == 
No � N1 � . . .  � Nk- 1 � Nk == { ( I ) }  in which each factor group is cyclic of prime 
order. By Lemma 8 .6 . 3 ,  each subgroup in the series is a transitive subgroup, and so 
Nk- 1 must be cyclic of order p . D 

8.6.5 Proposition. Let p be a prime number, and let G be a solvable, transitive 
subgroup of Sp . Then G is a subgroup of the normalizer in Sp of a cyclic subgroup 
of order p. 

Proof Let G == No � N1 � . . . � Nk- 1 � Nk == {( I ) }  be a composition series for 
G, and let N be the normalizer of Nk- 1 in Sp . By Lemma 8 .6 .4, Nk- 1 is cyclic of 
order p, and since it is normal in Nk-2 , it follows that Nk-2 is contained in N. 

We now give a proof by induction, in which we assume that Ni i s  contained in 
N and show that Ni - 1 is contained in N. Since Nk- 1 is normal in Ni , it follows 
that Nk- 1 is the only Sylow p-subgroup of Ni . Because the factor group Ni - 1 /Ni 
is cyclic of prime order, say [Ni- 1 : Ni ] == q ,  it has no proper nontrivial subgroups, 
and therefore there are no proper subgroups of Ni- 1 that properly contain Ni . Thus 
the normalizer of Nk- 1 in Ni- 1 is either Ni or Ni- 1 . In the first case we then have 
q conjugates of Nk- 1 in Ni- 1 , and so the number of Sylow p-subgroups of Ni- 1 is q .  This violates the Sylow theorems, since q < p implies that q ¢ 1 (mod p) . We 
conclude that the normalizer of Nk- 1 in Ni - 1 is Ni - 1 , showing that Ni - 1 is contained 
in N. D 

Suppose that Cp is a cyclic subgroup of Sp of order p, and that N(Cp) is the 
normalizer of C p in S p . It is easy to determine the order of N (C p) , since there are 
(p - I ) !  cycles of length p in S p ' and these combine to give (p -2) ! cyclic subgroups 
of order p. These subgroups are conjugate in Sp , since all p-cycles are conjugate, 
and so the index of N(Cp) in Sp is (p - 2) ! '  It follows that I N (Cp) 1 == pep - 1 ) .  

Exercise 9 provides another description of N (C p ) .  It shows that any such nor
malizer must be isomorphic to the group H p constructed as follows (a generalization 
of F2o) . Let Hp be the subgroup of GL2 (Zp ) consisting of all 2 x 2 matrices of the 

form [ � � ] such that m E Z; and b E Zp o This group has order pep - 1 ) ,  

and contains a normal cyclic subgroup of order p , given by all matrices of the form [ �  � ] such that b E Z p o 

Example 8.6.3 (Galois group of xP - 2 over Q). 

In this example we will show that for any prime number p, the Galois group 
of xP - 2 over Q is Hp . The polynomial is irreducible over Q by Eisenstein' s 
criterion, so [Q( q2) : Q] == p. To obtain a splitting field for xP - 2, in 
addition to adjoining q2 we must adjoin a primitive pth root of unity, say { . 
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Since the minimal polynomial of { over Q is xp- 1 + xp-2 + . . .  + x + 1 ,  we 
have [Q({ ) : Q] == p - 1 ,  and therefore [Q( I:/2, {) : Q] == p ep - 1 ) .  The 
polynomial is solvable by radicals, so by Proposition 8 .6 .5 its Galois group 
is isomorphic to a subgroup of H p . The order of the Galois group is order 
p cp - 1 ) ,  so the two groups must coincide. D 

40 1 

Let f (x) be a polynomial of degree n over the field K ,  and assume that f (x) 
has roots rl , r2 , . . . , r n in its splitting field F. The element � of F defined by 

is called the discriminant of f (x) .  
For example, the discriminant of the polynomial ax2 + bx + c is the familiar 

expression b2 -4ac . For a cubic polynomial ax3 +bx2+cx +d, we first assume that 
a == 1 ,  and then the substitution x == y - b /3 reduces the polynomial to y3 + py + q , 
where p == c - b2/3 and q == d - bc/3 + 2b3 /27 . Because this substitution is 
linear, it does not change the discriminant of the polynomial . In Section A.6 of the 
appendix, this discriminant is found to be � == -4 p3 - 27 q2 . 

It can be shown that the discriminant of any polynomial I (x) can be expressed 
as a polynomial in the coefficients of I(x) , with integer coefficients . This requires 
use of elementary symmetric functions, and lies beyond the scope of what we have 
chosen to cover in the book. 

We have the following properties of the discriminant : 
(i) � i= ° if and only if f (x) has distinct roots ; 

(ii) � E K ;  
(iii) if � i= 0, then a permutation (J E Sn is even if and only if it leaves the sign 

of n 1 �i <j �n (ri - r j ) unchanged. 
The first statement is obvious from the definition of � . If � == 0, then it certainly 
belongs to K .  If � i= 0, then f (x) has distinct roots , and so the fixed field of its 
Galois group is K (by Proposition 8 . 3 . 3) .  Any permutation of the roots of f(x) 
leaves � unchanged, and so � must belong to K. This verifies part (ii) . To prove part 
(iii), we note that any permutation (J E Sn acts on nl�i <j�n (ri - rj ) by permuting 
the subscripts , and so (iii) follows directly from Theorem 3 .6 .6 . 

8.6.6 Proposition. Let f (x) be a separable polynomial over the field K, with dis
criminant �, and let F be its splitting field over K. Then every permutation in 
Gal(F / K) is even if and only if � is the square of some element in K. 

Proof If every permutation in Gal (F / K) i s  even, then every permutation leaves 
n 1 �i <j �n (ri - r j ) fixed, so both this element and its square � belong to K .  

Conversely, if � == a2 for some a E K, then every permutation in Gal (F / K) 
must leave n 1 �i <j �n (ri - r j ) == ±a fixed, and hence must be even . D 
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Example 8.6.4 (Galois group of x 3 - 2 over Q). 

In Example 8 . 3 .2 we showed that the Galois group of the polynomial x3 - 2 
over Q is S3 . With the new knowledge in this section, we know at the outset 
that the Galois group is either S3 or A3 . The discriminant of the polynomial 
is -2 16, which is not a square, so the Galois group is not contained in A3 , 
and therefore must be S3 . D 

Example 8.6.5 (Galois group of x 3 - 3x + l over Q). 

In this example we consider the polynomial x3 - 3x + l over Q. This is irre
ducible over Q, since the substitution x - I gives x3 - 3x2 + 3 ,  which satisfies 
Eisenstein 's criterion . The next step is to compute the discriminant, which is 
-4( -3) 3 - 27 ( 1 ) 2 == 8 1 ,  and is thus a square in Q. By Proposition 8 .6.6 the 
Galois group is contained in A3 , so it must be equal to A3 . 0 

We now restrict our attention to polynomials with rational coefficients . The next 
lemma shows that in computing Galois groups it is enough to consider polynomials 
with integer coefficients . Then a powerful technique is to reduce the integer coeffi
cients modulo a prime and consider the Galois group of the reduced equation over 
the field GF (p) . 

8.6.7 Lemma. Let f (x) == xn + an_ I xn- 1 + . . .  + a I X + ao E Q[x], and assume 
that ai == bi /d for d , bo , b I , . . .  , bn- I E Z. Then dn f (x/d) is monic with integer 
coefficients, and has the same splitting field over Q as f(x) . 

Proof. Exercise. D 

If p is a prime number, we have the natural mapping Jr : Z[x] --+ Zp [x] which 
reduces each coefficient modulo p . We will use the notation Jr (f (x)) == fp (x) .  

The next theorem is due to Dedekind. For its proof we refer the reader to Section 
8 . 1 0  of Algebra by van der Waerden or Section 4. 1 6  of Basic Algebra I by Jacobson. 

Theorem (Dedekind) . Let f (x ) be a monic polynomial of degree n, with integer 
coefficients and Galois group G over Q, and let p be a prime such that fp (x ) has 
distinct roots. If fp (x ) factors in Zp [x] as a product of irreducible factors of degrees 
n l , n2 , . . .  , nk, then G contains a permutation with the cycle decomposition 

( 1 , 2 , . . .  , n l ) (n l + 1 ,  n l + 2 ,  . . .  , n i + n2) · · ·  (n - nk + 1 ,  . . .  , n) , 

relative to a suitable ordering of the roots. 
For the cases n == 4 and n == 5 ,  Tables 8 .6 . 1 and 8 .6 .2 list the shapes of the 

elements of the various transitive subgroups of S4 and S5 . 
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Table 8 .6 . 1 :  Number of Elements of Various Shapes in S4 

( 1 )  (a , b) (a , b) (c , d) (a , b, c) (a , b, c, d) 

S4 1 6 3 8 6 
A4 1 3 8 
D4 1 2 3 2 
Z4 1 1 2 
V 1 3 

Table 8 .6 .2 :  Number of Elements of Various Shapes in S5 

( 1 ) (a , b) (a , b) (c , d) (a , b, c) (a , b, c, d) (a , b, c) (d , e) (a , b, c, d, e) 

S5 1 10  1 5  20 30 20 24 
A5 1 1 5  20 24 
F20 1 5 1 0  4 
D5 1 5 4 
Z5 1 4 
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In the proof of Theorem 8 .4 .8 ,  to exhibit a polynomial of degree 5 that is not 
solvable by radicals, we showed that a polynomial irreducible of degree 5 over Q 
with precisely three real roots must have a Galois group equal to Ss .  The next 
example shows how to use techniques of this section to find polynomials of degree 
5 over Q that are not solvable by radicals . 

Example 8.6.6. 

As seen in Table 8 .6 .2, no proper transitive subgroup of Ss contains a cycle of 
the form (a , b, c) (d , e) . Thus to construct a polynomial with Galois group Ss 
it suffices to guarantee that modulo some prime number the polynomial has 
cubic and quadratic factors . 
For example, we can choose the modulus 2 and the irreducible factors x3 + x2 + 
1 and x2 + x + 1 .  Thus any irreducible polynomial with integer coefficients 
that reduces modulo 2 to the polynomial xS +x + 1 == (x3 +x2 + 1 ) (x2 +x + 1 ) 
will have a Galois group equal to Ss . Thus in the polynomial f (x ) == asxs + 
a4x4 + a3x3 + a2x2 + al x + ao we need to require that f (x) is irreducible, 
that the coefficients a4 , a3 , and a2 are even, while as , aI , and ao are odd. For 
instance, we can choose f (x) == xS + 3x + 3 , which is irreducible over Q by 
Eisenstein ' s criterion . Note that this polynomial has only one real root, since 
the fact that its derivative is positive everywhere shows it to be an increasing 
function. 0 

In the next example we return to the polynomial xS - 2x3 - 8x - 2, which was 
used in Theorem 8 .4 .8 .  For this particular polynomial, it would be rather difficult 
to do the calculations by hand, and this points out the usefulness of programs that 
can do symbolic computations . 

Example 8.6.7. 

For the polynomial xS - 2x3 - 8x - 2, the following factorizations were found 
on the computer. They represent the smallest moduli that yield significant 
information. 

Reducing modulo 7, we have the factorization xS - 2x3 - 8x - 2 == (x4 -
x3 - x2 + x - 2) (x + 1 ) .  After checking that the degree 4 factor has no 
roots , it is not difficult to show that it cannot be factored into a product of two 
monic polynomials of degree 2. This is left as an exercise. Reducing modulo 
7 shows that the Galois group must contain a 4-cycle, so it must be either Ss 
or F20 . 
Reducing modulo 37, we have the factorization xS - 2x3 - 8x - 2 == (x3 -
12x2 - l lx + 7) (x2 + 12x + 5) . It is left as an exercise to show that the cubic 
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factor is irreducible since it has no roots in GF(37) . Thus the Galois group 
must contain a 3-cycle. 
This establishes that the Galois group of xS - 2x3 - 8x - 2 over Q is Ss , 
since from Table 8 .6.2 the only transitive subgroup that contains a 4-cycle and 
a 3-cycle is S4 . D 
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The previous example shows that the techniques we have discussed are really 
only practical if you have access to a computer program that is capable of doing 
symbolic algebra. Even in that case, some additional techniques are likely to be 
necessary. In Section A.6 of the appendix, the solution by radicals of an equation 
of degree 4 uses a resolvent equation of degree 3. After a standard substitution the 
general equation of degree 4 reduces to y4 + py2 + qy + r == O. The resolvent 
equation is Z3 - PZ2 - 4rz + (4pr - q2) == 0, and any real root of this equation 
leads to a solution of y4 + py2 + qy + r == O. 

When developing computational techniques for finding Galois groups, it is nec
essary to consider resolvent equations, in addition to the above techniques that we 
have mentioned. In higher degrees this becomes rather complicated. For exam
ple, a polynomial equation of degree 5 leads to a resolvent equation of degree 6. 
In any case, factorizations of the resolvent equation yield some information about 
the original group, because they correspond to shapes of elements in appropriate 
homomorphic images of the Galois group . 

EXERCISES: SECTION 8.6 

1 .  Prove Lemma 8 .6 .7 .  
2. Let f (x ) be a cubic polynomial that is irreducible over the field K. Prove that if 

the discriminant of f (x ) is a square of some element of K ,  then its Galois group is 
cyclic of order 3. Prove that if this is not the case, then the Galois group of f (x ) is 
the symmetric group on 3 elements . 

3 . tCompute the Galois group of the polynomial xS - x - l over Q, by reducing the 
coefficients modulo 2 and then modulo 3 .  

4 .  Use techniques of this section to find the Galois group of x4 + 2x2 + x + 3 over Q .  
5 .  Show that the following i s  a complete list of the transitive subgroups of S4 : (i) S4 ; 

(ii) A4 ; (iii) the Sylow 2-subgroups (isomorphic to D4) ;  (iv) the cyclic subgroups of 
order 4; and (v) the subgroup V = { ( I ) ,  ( 1 , 2) (3 , 4) , ( 1 , 3) (2, 4) , ( 1 , 4) (2, 3) } .  

6. Let p (x) = 2xs - lOx + 5 be the polynomial in Exercise 1 of Section 8 .4 . 
(a) Check that p (x) = 2(x4 + 2x3 + 4x2 + x + 4) (x + 5) modulo 7 . 
(b) Check that p (x) = 2(x3 + x2 + 2x + 3) (x + 3) (x + 7) modulo 1 1 . 
(c) Use the techniques of this section to find the Galois group over Q of p (x ) . 
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7. Show that if G is a transitive subgroup of Sn that contains an (n - 1 )-cycle and a 
transposition, then G == Sn . 

8 .  Show that the following is a complete list of the transitive subgroups of Ss :  (i) Ss ;  
(ii) As ;  (iii) any cyclic subgroup of order 5 ;  (iv) the normalizer in As of any cyclic 
subgroup of order 5 (isomorphic to the dihedral group Ds ) ;  (v) the normalizer in Ss 
of any cyclic subgroup of order 5 (isomorphic to the Frobenius group F20). 

9. Let Hp be the subgroup of GL2 (Zp ) consisting of all 2 x 2 matrices of the form [ � � ]  such that m E Z; and b E Z p ' This group is known as the hoiomorph of 

Z p . Show that the normalizer in S p of any cyclic subgroup of order p is isomorphic 
to Hp . 

10. Show that x4 - x3 - x2 + x - 2 is irreducible over GF(7) . 

1 1 . Show that x3 - 12x2 - l lx + 7 is irreducible over GF(37) . 

1 2 . Show that over GF(3 1 )  the polynomial xS - 2x3 - 8x - 2 has x3 + 1 5x2 + 4x - 1 
and (x + 8) as irreducible factors . 



Chapter 9 

UNIQUE FACTORIZATION 

In the notes at the end of Chapter 1 ,  we discussed "Fermat's last theorem," which 
states that the equation xn + yn == zn has no solution in the set of positive integers, 
when n > 2. Attempts to prove this theorem led to the development of some very 
rich areas of mathematics .  In this chapter we will discuss unique factorization in 
commutative rings, and show how this theory provides a proof of Fermat's last 
theorem in certain cases . 

Ernst Kummer ( 1 8 10-1 89 1 )  became interested in higher reciprocity laws. (See 
the discussion of quadratic reciprocity in Section 6.7 . ) In his research he found it 
necessary to investigate unique factorization in subrings of the field C of complex 
numbers . When he found that elements do not always have a unique factorization 
into products of primes, he considered sets of numbers that he called "ideal" num
bers . Then the "greatest common divisor" of two elements could be represented by 
the sum of the "ideal numbers" which they determine. This is a generalization of 
the way in which we defined the greatest common divisor of two integers , and of 
two polynomials . 

In 1 847 , Gabriel Lame ( 1795-1 870) announced to the Paris Academy that he 
had proved Fermat's last theorem. His proof was based on factoring xn + yn into 
a product of linear factors . For example, since the complex number i belongs to 
Z[i ]  == {m + ni I m ,  n E Z} , in this ring we have the factorization 

x2 + y2 == (x + iy) (x - iy) . 

It is easy to reduce Fermat's last theorem to the cases n == 4 and n == p,  where p is 
an odd prime. To obtain a factorization in the general case, it is enough to work in a 
subring which includes a primitive pth root of unity, say a . Then over this subring 
we have the factorization 

407 
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The proof given by Lame required unique factorization of the numbers he needed 
to use in obtaining the factorization of xP + yp . 

The announcement by Lame created quite a stir, with divided opinions as to 
whether or not his proof was correct. In fact, Kummer had published his results 
in 1 844, and it was soon realized that this approach could not handle every case 
of Fermat's last theorem. However, it does work for those values of n for which a 
unique factorization theorem holds . In Section 9 .3 we show how such an argument 
can be given for the case n == 3 .  

The modem definition of  an ideal was given later by Richard Dedekind ( 1 83 1-
1 9 1 6) ,  in work which appeared in 1 87 1 .  He proved that in certain subrings of C 
every nonzero ideal can be expressed uniquely as a product of prime ideals. 

9.1 Principal Ideal Domains 

In our study of the ring of integers Z and the ring F [x ] of polynomials over a field 
F, we began with a proof of the division algorithm. Then we were able to define 
the notion of a greatest common divisor, and finally obtained results on unique 
factorization. 

In this section we will show that the proofs that Z and F[x] are principal ideal 
domains are special cases of a general argument that shows that any integral domain 
which satisfies a division algorithm must be a principal ideal domain . We then prove 
that a unique factorization theorem holds in any principal ideal domain. 

In stating a division algorithm, we need some notion of the "size" of an element. 
In Z, we used the absolute value of a number, and in F[x]  we used the degree of a 
polynomial . We now need to determine the crucial properties that will enable us to 
prove that every ideal is principal . First, the size of an element should be a positive 
integer. For the absolute value of integers we have Imn l == Im l l n l , while for the 
degree of nonzero polynomials we have deg(f (x)g(x)) == deg(f (x)) + deg(g (x ) ) .  
To find a common property, we can at least write I mn l > I n l and deg (f (x )g (x )) > 
deg(g (x)) . In general , we will use the term norm or degree, and write o Cr) for the 
norm of an element r of a ring. Then we will need to require that 0 (r s ) > 0 (s ) .  

In several examples our norm will be based on the length of a complex number. 
Recall that for any complex numbers z and w we have 

I wz l  == (wzwZ) 1 /2 == (wwZZ) 1 /2 == (ww) 1 /2 (ZZ) 1 /2 == I w l  I z l . 

Example 9.1.1 (Norm for Z[i ] ). 

In the ring Z[i ] of Gaussian integers , each element has the form m + n i ,  for 
m, n E Z. We can define a norm by letting 8 (m + n i ) == m2 + n2 . Then 
8 (a) is always a positive integer, provided a == m + n i i= O. Furthermore, 
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this norm is based on the usual nonn for complex numbers . Thus for nonzero 
elements a == m + ni and b == p + qi in Z[i ] we have 

since l a l 2 :::: 1 .  D 
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9.1 .1  Definition. An integral domain D is called a Euclidean domain if there exists 
a function 8 from the nonzero elements of D to the nonnegative integers such that 

(i) 8 (ab) > 8 (b) for all nonzero a , b E D, and 
(ii) for any nonzero elements a , b E D  there exist q ,  r E D  such that a == bq + r, 

where either r == 0 or 8 (r) < 8 (b) . 

Example 9.1.2 (Units of a Euclidean domain). 

We will show that if D is a Euclidean domain, then an element a E D i s  a 
unit of D if and only if 8 (a) == 8 ( 1 ) .  First, we observe that for any nonzero 
x E D  we have 8 ( 1 ) :s 8 ( 1  . x) == 8 (x) . If a is a unit of D, with ab == 1 ,  then 
8 (a) :s 8 (ab) == 8 ( 1 ) .  Conversely, if 8 (a) == 8 ( 1 ) ,  let us write 1 == aq + r ,  
with r == 0 or 8 (r ) < 8 (a) . The second condition is impossible, since 8 (r) :::: 
8 ( 1 )  == 8 (a ) . Hence r == 0 and a is a unit. Thus a is a unit if and only if 
8 (a) == 8 ( 1 ) .  D 

Example 9.1.3 (Z[i ] is a Euclidean domain). 

For each nonzero element a == m + ni of Z[i ] , we define 8 (a) == m2 + n2 . 
We have already shown that if b == s + t i is nonzero, then 8 (ab) :::: 8 (b) . 
For nonzero elements a and b, we have alb E C. Let alb == x + yi ,  where 
x ,  y E R. We can choose integers u and v such that I x - u I :s � and 
I y - v I :s � .  Set q == u + vi , and let r == a - bq . If r f. 0, then 

r = a - bq = b G - q) , 
and so 

8 (r) I b ( (x + yi ) - (u + v i ) ) 1 2 == I b 1 2 1 (x - u) + (y - v) i l 2 

/b / 2 ( (x - u)2 + (y - v)2) :s / b / 2 (� + �) . 
Thus 8 (r) :s 8 (b)/2, and so we have verified the division algorithm in Z[i ] , 
making i t  a Euclidean domain. D 
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Example 9.1.4 (Units of Z[i ]). 

Example 9 . 1 .2 allows us to find the units of Z[i ] .  Since m + ni is a unit if and 
only if 8 (m + ni )  == 1 ,  the only units are ± 1 and ±i . Because i has order 4, 
the group of units Z[i ]  x is isomorphic to Z4 . D 

9.1.2 Theorem. Any Euclidean domain is a principal ideal domain. 

Proof Let D be a Euclidean domain, and let I be any nonzero ideal of D. By 
the well-ordering principle there is an element d E l  whose norm 8 (d) i s  minimal 
in the set { 8 (x) I x E I and x 1= OJ . We claim that I == dD. Since d E I , 
it is clear that d D C I , and so we only need to show that I c d D . Given any 
a E I we can write a == dq + r , where r == 0 or 8 (r) < 8 (d) . We note that 
r == a - dq E I since a ,  d E l . But then the remainder r cannot be nonzero, since 
this would give 8 (r ) < 8 (d) , contradicting the way in which d was chosen . We 
conclude that a == dq E dD, and thus I == dD. D 

In any commutative ring R it is possible to develop a general theory of divisibility. 
For a , b E R,  we say that b is a divisor of a if a == bq for some q E R .  We also say 
that a is a multiple of b , and we will use the standard notation b la when b is a divisor 
of a . Divisibility can also be expressed in terms of the principal ideals generated 
by a and b. Since aR is the smallest ideal that contains a , we have aR C bR if and 
only if a E bR, and this occurs if and only if a == bq for some q E R .  Thus we 
have shown that aR C bR if and only if b la .  

Let a and b be elements of a commutative ring R .  Then a is called an associate 
of b if a == bu for some unit u E R .  Of course, if a == bu , then b == au - I , and 
so b is also an associate of a . In the ring Z, two integers are associates if they are 
equal or differ in sign. In the ring F [x ] , since the only units are the nonzero constant 
polynomials, two polynomials are associates if and only if one is a constant multiple 
of the other. Part (d) of the following proposition shows that for nonzero elements 
a and b of any integral domain, aR == bR if and only if a and b are associates. 

9.1.3 Proposition. Let R be a commutative ring with identity, with a , b, c E R. 
(a) If c lb and b la, then c ia . 
(b) If c i a, then c lab. 
(c) Ifc la and c lb, then c l (ax + by), for any x, y E R. 
(d) If R is an integral domain, a is nonzero, and both b la and a l b hold, then a 

and b are associates. 

Proof (a) If b == cq l and a == bq2 , then a == C (ql q2) .  
(b) If a == cq , then ab == c (qb) . 
(c) If a == Cq l and b == cq2 , then ax + by == C (ql x + q2Y) .  



9. 1 .  PRINCIPAL IDEAL DOMAINS 4 1 1 

(d) If a == bq I and b == aq2 , then substituting for b in the first equation yields 
a == aq2q I . If R is an integral domain, then we can cancel a to obtain 1 == q2q I . 
Thus q I and q2 are units , showing that a and b are associates. D 

If I and J are ideals of the commutative ring R , then their sum is defined to be 

I + J == {x E R I x == a + b for some a E I, b E J }  . 

It is easy to check that I + J is an ideal of R. 

9.1.4 Definition. Let a I , . . .  , an be elements of a commutative ring R. A nonzero 
element d of R is called a greatest common divisor of a I , . . .  , an if 

(i) d l ai for 1 < i < n, and 
(ii) if c lai for 1 < i < n, for c E R, then c ld. 

If d and d' are greatest common divisors of a and b, then d Id' and d' l d , that is, d 
and d' are associates. Conversely, any associate of a greatest common divisor of a 
and b is also a greatest common divisor of a and b . In the rings Z and F[x ] , where F 
is a field, we required the greatest common divisors to be nonnegative integers and 
monic polynomials, respectively. Thus we achieved uniqueness by excluding all 
but one member of each family of associates . There is no natural way of imposing 
uniqueness in arbitrary Euclidean domains .  

9.1.5 Lemma. Let R be a commutative ring, and let a , b , d E R, with d nonzero. 
If a R + b R == dR, then d is a greatest common divisor of a and b. 
Proof If aR + bR == dR, then a , b E dR, so d la and d l b . If c I a and c lb , then 
a , b E c R , and so a R + b R C c R , since a R + b R is the smallest ideal that contains 
both a and b. Hence dR == aR + bR C cR, and so c ld . D 

9.1.6 Proposition. Let D be a principal ideal domain. If a and b are nonzero 
elements of D, then D contains a greatest common divisor of a and b, of the form 
as + bt for s , t E D. Furthermore, any two greatest common divisors of a and b 
are associates. 
Proof Given nonzero elements a and b, since D is a principal ideal domain we can 
choose a nonzero generator d for the ideal aR + bR. By the preceding lemma, d is 
a greatest common divisor of a and b, and has the form as + bt for some s , t E R. 
If d' i s  another greatest common divisor, then d' ld and d Id' , and so d and d' are 
associates . D 

We will now begin our development of a theory of unique factorization for 
principal ideal domains . We first need to define an analog of prime numbers in Z 
and irreducible polynomials in F[x] . We also need to take into account the fact that 
factorizations are unique only up to units . 
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9.1 .7 Definition. Let R be a commutative ring. A nonzero element p of R is said 
to be irreducible if 

(i) p is not a unit of R, and 
(ii) if p == ab for a , b E R, then either a or b is a unit of R. 

The first result on irreducible elements generalizes a familiar property of integers 
and polynomials. 

9.1.8 Proposition. Let p be an irreducible element of the principal ideal domain 
D. If a , b E D  and p lab, then either p i a or p lb. 

Proof Assume that p lab . If p A' a , then the only common divisors of p and a are 
units , so 1 is a greatest common divisor of p and a . Thus there exist q I , q2 E D 
such that 1 == pqI + aq2 , and multiplying by b gives b == P (bq I ) + (ab)q2 . Finally, 
since p lab we must have p l b . D 

9.1.9 Proposition. Let D be a principal ideal domain, and let p be a nonzero 
element of D. Then p is irreducible in D if and only if pD is a prime ideal of D. 

Proof Assume first that p is irreducible in D. If ab E pD for a, b E D, then 
Proposition 9 . 1 . 8 shows that either a E pD or b E pD, and thus pD is a prime 
ideal. 

Conversely, assume that pD is a prime ideal of D. If p is not irreducible, then 
p == ab for some nonunits a ,  b of D. By assumption, ab E pD implies a E pD 
or b E pD , so either p I a or p I b . If p I a , then a == pc for some c , and so 
p == pcb . In a domain the cancellation law holds, so we have 1 == cb , contradicting 
the assumption that b is not a unit. If p I b, we obtain a similar contradiction. Since 
p D is a proper ideal, p is not a unit, and thus p is irreducible. D 

9.1.10 Definition. Let D be an integral domain. Then D is called a unique factor
ization domain if 

(i) each nonzero element a of D that is not a unit can be expressed as a product 
of irreducible elements of D, and 

(ii) in any two such factorizations a == PI P2 . . .  Pn == qI q2 . . .  qm the integers n 
and m are equal and it is possible to rearrange the factors so that qi is an associate 
of Pi , for 1 < i < n. 
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9.1.1 1 Lemma. Let D be a principal ideal domain. In any collection of ideals 
II C 12 C 13 C . . .  , there is a subscript m such that In == 1m for all n > m. 

Proof Let II C 12 C 13 C . . .  be any ascending chain of ideals, and let I == u� 1 In . 
If x ,  y E I , then x E Ij and y E Ik for some j ,  k .  We can assume that j > k ,  and 
then x , y E Ij , so x + y  E Ij c I . If r E D, then rx E Ij C I . Thus I is an ideal of 
D, and so I == aD for some a E D. But then a E 1m for some m, and so it follows 
that I == aD C 1m , and thus In == I == 1m for all n > m. D 

9.1.12 Theorem. Any principal ideal domain is a unique factorization domain. 
Proof Let D be a principal ideal domain, and let d be a nonzero element of D that 
is not a unit. Suppose that d cannot be written as a product of irreducible elements . 
Then d is not irreducible, and so d == a l b } , where neither a } nor b} is a unit and 
either a l or b I cannot be written as a product of irreducible elements . Assume that a l 
cannot be written as a product of irreducible elements . Now bI  is not a unit, and so 
we have d D c a 1 D. We can continue this argument to obtain a factor a2 of a 1 that 
cannot be written as a product of irreducible elements and such that a I D e a2 D .  
Thus the assumption that d cannot be written as a product of  irreducible elements 
allows us to construct a strictly ascending chain of ideals 

According to Lemma 9 . 1 . 1 1 ,  this contradicts the fact that D is a principal ideal 
domain. 

Now suppose that d can be written in two ways as a product of irreducible 
elements , say d == PI P2 · . .  Pn == qI q2 · . .  qm , where n < m . We will proceed by 
induction on n . Since PI is irreducible and a divisor of q I q2 . . .  qm , it follows that 
PI is a divisor of qi , for some i ,  and we can assume that i == 1 .  Since both P I  
and q I  are irreducible and P I lq I ,  it follows that they are associates . Then we can 
cancel to obtain P2 . . .  Pn == uq2 . . .  qm , where u is a unit, and so by induction we 
have n - 1 == m - 1 ,  and we can rearrange the elements qi so that qi and Pi are 
associates . D 

EXERCISES : SECTION 9.1 

1 .  An element p of an integral domain D is called prime if p is not a unit of D and 
p I ab implies p I a or p I b, for all a , b E D. Prove that in a principal ideal domain 
a nonzero element is prime if and only if it is irreducible . 

2. Let D be a Euclidean domain with norm 8 . Prove that if a , b E D  such that b la but 
a A' b, then 8 (b) < 8 (a ) . 
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3 .  Let D be a Euclidean domain , with norm 8 , and assume that 8 (x) 8 (y) == 8 (xy ) for 
all x ,  y E D. Prove that 8 ( 1 )  == 1 ,  and that if 8 (a) is a prime number, then a is 
irreducible in D. 

4. Prove that in any unique factorization domain , any two nonzero elements have a 
greatest common divisor. 

5 . Let D be a unique factorization domain . Formulate a definition of the least common 
multiple of two elements , and show that if a , b are nonzero elements of D, then ab 
is an associate of the product of the greatest common divisor and the least common 
multiple of a and b . 

6. Let R be a subring of the commutative ring S. Show that if d is a greatest common 
divisor of a and b in R, with d == r a + t b for some r, t E R, then d is a greatest 
common divisor of a and b in S. 

7. Let S == F[x , y , z ] , where F is a field, and let R == {f (xy , xz) I f eu , v ) E F [u ,  v ] } . 
Show that for the rings R C S the conclusion of Exercise 6 is false without the 
assumption that d == ra + tb for some r, t E R. 

8 .  Let R be the ring Z[x ]/ (5x ) . 
(a) Show that R is not an integral domain . 
(b) Show that the elements x + (5x ) and 2x + (5x ) of R are each divisors of the 
other, but are not associates. 

9 . Show that Z[x ] is not a principal ideal domain . 

10 . Prove that in a principal ideal domain every proper ideal is contained in a maximal 
ideal. 

1 1 . Let a and b be integers , with n == a 2 + b2 . 
(a) Show that if (a , b) == 1 ,  then Z[i ] / (a + bi ) � Zn . 
(b) Show that if (a ,  b) f. 1 ,  then Z[i ] / (a + bi ) is not isomorphic to Zm , for any 
positive integer m .  

1 2 . Let D be an integral domain for which there exists a function 8 from the nonzero 
elements of D to the nonnegative integers such that for any nonzero elements a , b E D 
there exist q ,  r E D  such that a == bq + r ,  where either r == 0 or 8 (r ) < 8 (b) . 
(a) Show that if 8 (ub) == 8 (b) for all b E D  and all units u E D, then 8 (ab) � 8 (b) 
for all nonzero a , b E D. 
(b) Show that D is a Euclidean domain. 
Hint: For each nonzero element a E D, let 8 (a ) == minuED x  { 8 (ua) } .  

1 3 . Let S be a subring of R for which there exists a unit u E SX with the property that 
u > 1 ,  but there are no units between 1 and u . Prove that S X � Z2 x Z. 

14. Let S == Z[ ,j2] . Show that S X � Z2 x Z. (See Exercise 4 of Section 5 . 1 . ) 
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9.2 Unique Factorization Domains 

If F is a field, then we know that the polynomial ring F[x] is a Euclidean domain, 
and therefore a unique factorization domain . If we relax the requirements so that 
the coefficients no longer need to form a field, but just a ring, then we may lose the 
division algorithm, and so the polynomial ring may not be a principal ideal domain. 
In fact, as shown by Exercise 9 of Section 9 . 1 ,  the ring Z[x] of polynomials with 
integer coefficients is not a principal ideal domain. In this section we will show that 
all is not lost, since if the coefficients come from a unique factorization domain D, 
then the ring of polynomials D[x] still has unique factorization. 

Even though D is a principal ideal domain, the polynomial ring D[x] need not 
have the same property. In fact, D [x ] is only a principal ideal domain if D is a 
field. But a weaker form of this property does hold, in the sense that every ideal of 
D[x] can be generated by a finite number of elements . In honor of Emmy Noether, 
a commutative ring R is said to be Noetherian if each ideal of R has a finite set of 
generators . That is , any ideal I of R has a set of generators X l , X2 , . . .  , Xn E I ,  such 
that for any X E I there exist a I , a2 , . . .  , an E R with X == a l X I + a2X2 + . . .  + anxn . 
In the exercises, we outline a proof of the theorem that if R is a Noetherian ring, 
then so is R [x] . 

We begin the section with a generalization of Euclid ' s  lemma (Lemma 1 .2 .5) .  

9.2.1 Lemma. Let D be a unique factorization domain, and let P be an irreducible 
element of D. If a , b E D  and p lab, then p ia or p lb. 

Proof Assume that P is irreducible and that p l ab. Then ab == pc for some c E D, 
and we can assume that ab 1= O. Let a == q l q2 · . .  qn , b == rl r2 · . .  rm , and c == 
PI P2 . . .  Pk be the factorizations of a , b, and c into products of irreducible elements . 
Then ab has the two factorizations ab == ql q2 · . .  qnrl r2 · . .  rm == PP I P2 . . .  Pk , and 
it follows that from the definition of a unique factorization domain that P is an 
associate of qi or rj , for some i or j .  Thus p ia or p l b. D 

9.2.2 Proposition. Let D be a unique factorization domain. Any finite set of nonzero 
elements of D has a greatest common divisor in D. 

Proof Let D be a unique factorization domain, and let a I , . . .  , an be a set of 
nonzero elements of D. If one of these elements is a unit, then it is clear that it is 
a greatest common divisor of the set. If not, for each i we consider a factorization 
of ai into a product of irreducible elements , and let PI , . . .  , Pm be the collection 
of all irreducible elements that occur in these factorizations . By choosing one 
irreducible element among each set of associates P j 's , we can now write ai in 
th � a I i a2i aki h . . t d th I t e lorm ai == U i PI P2 . . .  Pk , w ere Ui IS a unI , an e e emen s P I , . . . , Pk 
are irreducible and not associates .  We allow the exponents a j i to be nonnegative 
integers , so that we can use a common set of irreducible factors . For each j with 
1 < j < k , let � j == min {a j I , . . . , a jn } , and let d == pi l p!{2 . . . pfk . Clearly d lai 
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for 1 < i < n . If c l ai for 1 < i < n , then c == wpil pr2 • • • Pkk , where w is a unit, 
and O < Yj < aj i for 1 < i  < n o Hence Yj < �j for 1 < }  < k , and so c l d .  We 
conclude that d is a greatest common divisor of a I , . . .  , an . D 

9.2.3 Definition. Let D be a unique factorization domain. We say that the elements 
dI , d2 , • . .  , dn E D are relatively prime in D if there is no irreducible element 
p E D such p I ai for each i == 1 ,  . . .  , n. 

9.2.4 Definition. Let D be a unique factorization domain. A nonconstant polyno
mial f(x) == anxn + an_ I Xn- I + . . .  + al x + ao in D[x] is called primitive if its 
coefficients are relatively prime in D. 

Note that any nonconstant factor of a primitive polynomial is primitive. 

9.2.5 Theorem. Let D be a unique factorization domain. The product of two 
primitive polynomials in D[x ] is primitive in D[x] . 
Proof Let p be any irreducible element, and let f (x) == g (x)h (x ) , where g (x) 
and h ex) are primitive polynomials in D[x] and f(x) == amxm + . . .  + a l X + ao , 
g (x) == bnxn + . . .  + bI x + bo , and h ex) == Ckxk + . . .  + CI X + co . If bs and Ct are 
the coefficients of g (x ) and h (x) of least index not divisible by p, then as+t is the 
coefficient of f(x) of least index not divisible by p . This is proved by observing 
that the coefficient as+t of f (x ) is equal to 

as+t == bocs+t + bI cs+t- I + . . .  + bs- I ct+ I + bsct + bs+ 1 ct- I + . . .  + bs+t co . 

We know that p A' bs ct , since p is irreducible and p A' bs and p A' Ct . Because each 
of the coefficients bo , b I , . . .  , bs- I and Ct- I ,  . . . , Co is divisible by p by assumption, 
each term in the above sum is divisible by p, except for bs ct . Therefore as+t is not 
divisible by p. It is clear that in any coefficient of f (x ) of lower index, each term in 
the sum is divisible by p, and thus as+t is the coefficient of least index not divisible 
by p. 

Since g (x) and h ex ) are primitive, each has a coefficient not divisible by p , so 
i t  follows that f (x) has at least one coefficient not divisible by p . Since this i s  true 
for every irreducible element p of D, we conclude that f (x) is primitive . D 

Let D be a unique factorization domain . For any polynomial f(x) E D[x] of 
positive degree, we can write f(x) == df* (x ) , where f* (x ) is primitive, and d is a 
greatest common divisor of the nonzero coefficients of f(x) . To see this , we only 
need to observe that if f(x) == anxn + an_ I Xn- I + . . .  + al x + ao E D[x ] , then by 
Proposition 9 .2 .2 the nonzero coefficients of f (x) have a greatest common divisor 
d E D. It is clear that factoring out d leaves a primitive polynomial . In Lemma 9 .2 .6 
we will obtain a stronger result, stated for polynomials over the field of quotients of 
D. Recall that by Theorem 5 .4.4, an integral domain D has a field of quotients Q 
in which each element has the form alb, where a ,  b E D  and b 1= O. 



9.2. UNIQUE FACTORIZATION DOMAINS 4 17  

9.2.6 Lemma. Let D be a unique factorization domain. 
(a) Let a ,  b , c , d E D, and suppose that ad and bc are associates. If a and b 

are relatively prime, and c and d are relatively prime, then a and c are associates, 
and b and d are associates. 

(b) Let Q be the quotient field of D, and let f (x) E Q [x] . Then f (x) can 
be written in the form f (x) == (a I b) f* (x), where f* (x ) is a primitive element of 
D[x], a , b E D, and a and b are relatively prime. 

This expression is unique up to associates. That is, if(al b) f* (x ) == (c I d)g* (x), 
where g* (x ) is primitive and c and d are relatively prime in D, then a and c are 
associates, b and d are associates, and f* (x) and g* (x) are associates. 

Proof (a) Suppose that ad == ubc for some unit u E D, where a and b are 
relatively prime. Let pa be a factor of a , where p is irreducible in D. Since a 
and b are relatively prime, they have no irreducible factors in common, and so 
Lemma 9.2 . 1 implies that pa is a factor of c . Similarly, since c and d are relatively 
prime, each term in a factorization of c is also a factor of a . It follows that a and c 
are associates . It can be shown in the same way that b and d are associates. 

(b) Let Q denote the quotient field of D, described as elements of the form a I b, 
where a, b E D  and b 1= O. The required factorization of f (x) can be found as 
follows : let 

where ai , bi E D for 0 < i < n . We can find a common nonzero multiple of the 
denominators bo , b I , . . .  , bn , say t , and then f(x) == ( l i t ) . tf (x ) , and tf (x ) has 
coefficients in D. Next we can write tf (x) == sf* (x ) ,  where f* (x) is primitive in 
D[x ] . Finally, we can factor out common irreducible divisors of s and t to reduce 
the fraction s i t to a fraction alb in which a and b are relatively prime. This finally 
gives us the required form f(x) == (alb) f* (x) .  

To show uniqueness, let (alb) f* (x) == (cld)g* (x ) , where g* (x) i s  primitive 
and c and d are relatively prime. Then adf* (x) == bcg* (x ) ,  so the irreducible 
factors of ad and bc must be the same. Since a and b are relatively prime, and c 
and d are relatively prime, part (a) shows that a and c are associates and that b and 
d are associates . Thus f* (x ) and g* (x ) are associates . D 

9.2.7 Proposition. Let D be a unique factorization domain, let Q be the quotient 
field of D, and let f (x ) be a primitive polynomial in D[x] . Then f (x) is irreducible 
in D[x] ifand only if f (x) is irreducible in Q [x] . 

Proof If f (x) is irreducible in Q [x ] , then any factorization of f (x) in D[x] already 
takes place in Q [x ] , and so f (x) cannot have a proper factorization into polynomials 
of lower degree. Since f (x) is primitive in D[x] , it cannot have a factor of degree 
o that is not a unit. 

On the other hand, suppose that f (x) is irreducible in D[x] , but has a proper fac
torization in Q[x ] . Then since f (x) is primitive, the only factorization into nonunits 
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of Q[x] must have the form f(x) == g (x)h (x ) , where g (x) and h ex) belong to Q [x] 
and both have lower degree than f (x ) . We can then write g (x) == (alb)g* (x ) and 
h ex) == (cld)h* (x ) , where g* (x ) and h* (x ) are primitive polynomials in D[x ] . 

The next step i s  to factor out common irreducible divisors of ac and bd, to obtain 
s i t , where s , t E D  and s and t are relatively prime. Now tf (x) == sg* (x)h* (x ) E 
D[x] , and if p is any irreducible factor of t , then p is a divisor of every coefficient 
of sg* (x)h * (x) .  Since p is not a divisor of s , by our choice of s and t , it follows that 
p is a divisor of every coefficient of g* (x)h* (x) .  By Theorem 9 .2 .5 ,  the product of 
primitive polynomials in D[x] is again primitive, and so this cannot occur. 

We conclude that t is a unit of D, and so the factorization f(x) == g (x)h (x) 
in Q[x] actually gives rise to a factorization f(x) == tg* (x)h* (x) in D[x] . This 
construction does not change the degrees of the polynomials involved in the factor
ization, and so it contradicts the assumption that f (x ) is irreducible in D [x] . D 

9.2.8 Theorem. If D is a unique facto rization domain, then so is the ring D [x] of 
polynomials with coefficients in D. 

Proof We first show that each nonzero element of D[x] that is not a unit can be 
written as a product of irreducible elements . Let f (x) be a nonzero element of 
D[x] , and assume that f(x) is not a unit. We will use induction on the degree of 
f(x) . 

As the first step in the proof we will write f (x) == df* (x) , where d E D and 
f* (x) is primitive. If f (x) has degree 0, then d is not a unit. We can use the fact 
that D is a unique factorization domain to express d as a product of irreducible 
elements of D, and these elements are still irreducible in D[x] . Now assume that 
f (x) has degree n , and that the result holds for all polynomials of degree less than 
n . If f* (x) is not irreducible, then it can be expressed as a product of polynomials 
of lower degree, which must each be primitive, and the induction hypothesis can be 
applied to each factor. If d is a unit we are done, and if not we can factor d in D. 
The combined factorizations give the required factorization of df* (x) .  

Now we must show that the factorization is unique, up to associates . If f (x) is 
primitive, then it can be factored into a product of irreducible primitive polynomials, 
and these are irreducible over Q [x ] . Since Q [x] is a unique factorization domain, in 
any two factorizations the irreducible factors of one factorization will be associates 
in Q[x] of the irreducible factors of the other. Lemma 9.2 .6 implies that they will 
be associates in D[x] . If f(x) is not primitive, we can write f (x) == df* (x ) , where 
f* (x ) is primitive. If we also have f (x) == cg* (x) , then by Lemma 9.2 .6 , c and d 
must be associates, and f* (x ) and g* (x) must be associates . The previous remarks 
about primitive polynomials together with the fact that D is a unique factorization 
domain finish the proof. D 

9.2.9 Corollary. For any field F, the ring of polynomials F[Xl , X2 , . . . , xn ] in n 
indeterminates is a unique factorization domain. 



9.2. UNIQUE FACTORIZATION DOMAINS 4 1 9  

Proof. Since F [X l ] i s  a unique factorization domain, so i s  the ring (F [XI ] ) [X2] , and 
this is identical to the ring F[Xl , X2] .  This argument can be extended by induction 
to the ring of polynomials in any finite number of indeterminates. 0 

We end this section with two examples of integral domains which do not enjoy 
the unique factorization property. 

Example 9.2.1 (Z[ H] is not a unique factorization domain). 

It is easily checked that D == {m + nH I m , n E Z} is a subdomain of C.  
For a == m + nH E D, define 8 (a) == aa == m2 + 5n2 . We first note that 
if a is a unit in D, then 8 (a) 8 (a- l ) == 8 (aa- l ) == 1 ,  and so we must have 
8 (a) == 1 .  The only possibility is that m == ± 1 and n == 0, and so the units of 
D are ± 1 .  
Multiplying 1 + 2H by its conjugate produces the integer 2 1 , which of 
course can also be factored in Z. Thus we have two factorizations of 2 1  : 

2 1  == 3 · 7  and 2 1  == ( 1  + 2H)( 1  - 2H) . 

If we can show that 3 , 7 ,  1 + 2H, and 1 - 2H are each irreducible in 
D, then we will have shown that D is not a unique factorization domain. 
It is easy to check that there are no integer solutions to the equations m 2 + 5n 2 == 
3 andm2+ 5n2 == 7, and hence D has no elements with norm 3 0r 7 . If 3 == ab, 
where a , b E D  are not units , then 8 (a) 8 (b) == 8 (3) == 9, and so 8 (a) > 1 
and 8 (b) > 1 together imply that 8 (a) == 3 and 8 (b) == 3, a contradiction. 
A similar argument shows that 7 is irreducible in D. If 1 + 2H == ab, 
where a , b E D  are not units , then 8 (a) 8 (b) == 8 ( 1  + 2H) == 2 1 .  This 
implies 8 (a) == 3 or 8 (a) == 7, a contradiction. The same argument implies 
that 1 - 2H is irreducible in D, completing the proof that D is not a unique 
factorization domain. D 

Example 9.2.2. 

Let F be a field and let 

D F[x2 , x3 ] == {f (x) E F[x ] I f' (O) == O} 
{ f (x) E F[x ] I f (x ) == ao + a2x2 + a3x3 + . . .  + anxn } . 

It is easy to verify that D is a subring of F[x] , and that x2 and x3 are irreducible 
elements of D,  since D contains no polynomials of degree 1 .  The domain D 
is not a unique factorization domain since (x2)3 == (x3 )2 . 
It is interesting to note that the quotient field Q(D) of D is isomorphic to 
the quotient field Q(F [x ] ) '"'-' F(x) of F[x ] . To see this , set y == x3 jx2 
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in Q(D) . Then y2 == (x 3 . x3 )j (x2 . x2) == (x2)3 j (x2)2 == x2 , and y3 == 
(x3 ) 3 j (x2)3 == x3 . Thus D C F[y] C Q (D) , so Q(D) == Q(F [y]) � F (y) . 
Then Q(D) � Q(F [x ]) since F[y] � F[x] . D 

EXERCISES: SECTION 9.2 

1 .  Factor these polynomials as elements of (Z[x ]) [y ] , and then find their greatest com
mon divisor: 

t ea) x3y2 - 2xy2 - 2y - x and x2y2 + 3xy + 2; 
(b) x3y2 + x4y + 2x2y2 + 3x3y + x4 + xy2 + 2y2 + xy and x4y2 + x5y - 2x2y2 -
3x3y + x2y + x3 - 3y2 + y . 

2. Let D be the subring of C defined by D == Z[2i ] == {m + 2ni I m , n E Z} . 
(a) Prove that the quotient field of D is Q(D) == Q(i ) . 
(b) Prove that the polynomial x2 + 1 has a proper factorization over Q (D) , but not 
over D. 
(c) Prove that D i s  not a unique factorization domain. 

3 . Let D be a principal ideal domain, and let a, b be nonzero elements of D. Show that 
a and b are relatively prime if and only if aD + bD == D. 

4 .  Let D be an integral domain. Prove that i f  D [x] i s  a principal ideal domain, then D 
must be a field. 

5. Let D be an integral domain. Show that D is a unique factorization domain if and 
only if every nonzero element of D that is not a unit can be written as a product of 
prime elements . (See Exercise 1 of Section 9 . 1 for the definition of a prime element. ) 

6 . (Chinese remainder theorem) Let R be a commutative ring. 
(a) Prove that if I, J are proper ideals of R with I + J == R, then for any a ,  b E R 
there exists x E R such that x + I == a + I and x + J == b + J .  
(b) Show that i f  I , J are ideals o f  R with the property that for all a ,  b E R there 
exists x E R such that x + I == a + I and x + J == b + J ,  then I + J == R .  
(c) Give an example o f  a unique factorization domain R with relatively prime elements 
r and s and elements a , b E R such that there is no x E R with x + (r ) == a + (r ) 
and x + (s ) == a + (s ) .  

7 .  Show that the results of parts (a) and (b) of Exercise 6 remain true for subgroups I , J 
of an abelian group A .  

8 .  A commutative ring R i s  said to be a Noetherian ring if every ideal of R has a finite 
set of generators . Prove that if R is a commutative ring, then R is Noetherian if and 
only if for any ascending chain of ideals II C 12 C . . . there exists a positive integer 
n such that Ik == In for all k > n . 
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9. Let R be a Noetherian ring . This exercise provides an outline of the steps in a proof of 
the Hilbert basis theorem, which states that the polynomial ring R[x ] i s a Noetherian 
ring. 
(a) Let I be any ideal of R [x] , and let Ik be the set of all r E R such that r == 0 or r 

occurs as the leading coefficient of a polynomial of degree k in I .  Prove that Ik is an 
ideal of R. 
(b) For the ideals Ik in part (a) , prove that there exists an integer n such that In == 

In+ l == . . . . 

(c) By assumption, each left ideal Ik is finitely generated (for k S n), and we can 
assume that it has m (k) generators . Each generator of Ik is the leading coefficient of 
a polynomial of degree k, so we let {Pjk (x) }7

��) be the corresponding polynomials . 
Prove that B == Uk= 1 {p j k (x) } 7 

��) is a set of generators for I .  
Hint : If not, then among the polynomials that cannot be expressed as linear combi
nations of polynomials in B there exists one of minimal degree . 

10. Let F be a field, and let 11 , 12 , . . .  , In E F[x] . Let Yl , Y2 , . . .  , Yn be indeterminates. 
Define the mapping ¢ : F [Yl , Y2 , . . .  , Yn ] � F[x] by ¢ (a) == a for all a E F and 
¢ (y j ) == Ij for j == 1 ,  . . .  , n . Then ¢ is a homomorphism, and we denote the 
subring ¢ (F [Y I , Y2 , . . .  , Yn ]) of F[x] by F[ll , 12 , . . .  , In ] .  
If R i s  any subring of F[x] that contains F , prove that there exists a finite set of 
polynomials 11 , 12 , . . .  , In E F[x] such that R == F[ll , 12 , . . . , In ] . 

9.3 Some Diophantine Equations 

In this section we give two number theoretic applications of our results on unique 
factorization. Using the arithmetic of the Gaussian integers , we will be able to 
prove that every prime in Z of the form 4k + 1 can be written uniquely as the 
sum of two squares. As a second application, we introduce another subring of the 
complex numbers , based on a cube root of unity, and use its arithmetic to prove 
that x 3 + y3 == Z3 has no solution in the set of positive integers . In both cases we 
need to first determine the irreducible elements of the relevant unique factorization 
domain. Polynomial equations such as xn + yn == zn for which solutions are sought 
in Z are usually referred to as Diophantine equations after the Greek mathematician 
Diophantus (c . 250 A.D.) ,  who first studied such equations. 

9.3.1 Lemma. The following conditions are equivalent for a prime p of Z: 
(1) p is an irreducible element in Z[i ] ; 
(2) x2 + 1 is an irreducible polynomial in Zp [x] ; 
(3) p = 3 (mod 4) . 
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Proof. ( 1 )  if and only if (2) : In any principal ideal domain, a nonzero element is 
irreducible if and only if the ideal it generates is a prime ideal (Proposition 9. 1 .9) , and 
then since nonzero prime ideals are maximal (Theorem 5 . 3 . 10) ,  this is equivalent to 
the statement that the factor ring it determines is a field. The ideal of Z [i ] generated 
by p is pZ[i ] == {m + ni I p lm and p i n } . If we can show that Z[i ] / pZ[i ] is 
isomorphic to Zp [x ] / (x2 + 1 ) , then we can conclude that Z[i ] /pZ[i ] is a field if 
and only if Zp [x ]/ (x2 + 1 ) is a field, and hence that p is irreducible in Z[i ] if and 
only if x2 + 1 is irreducible in Z p [x ] .  

Define ¢ : Z[i ] � Zp [x ] / (x2 + 1 ) by ¢ (m + n i ) == [m] p + [n]px + (x2 + 1 ) , 
for all elements m + ni E Z[i ] .  Since x2 + 1 has degree 2, each equivalence 
class of elements of the ring Zp [x ] / (x2 + 1 ) contains a unique element of the form 
[m ]p + [n]px , and so ¢ maps Z[i ] onto Zp [x]/ (x2 + 1 ) . It is clear that ¢ is additive, 
and the proof that ¢ respects multiplication follows from 

· 2 1 l == - and x2 = - 1  (mod (x2 + 1 ) ) . 

It is easy to see that ker (¢) == {m + ni I p lm and p in } , and this set is precisely 
the ideal pZ[i ] . The fundamental homomorphism theorem (Theorem 5 .2.6) implies 
that Z[i ]/ ker(¢) is isomorphic to Zp [x] / (x2 + 1 ) . 

(2) if and only if (3 ) :  The polynomial x2 + 1 is irreducible in Zp [x] if and only if 
it has no roots in Zp . We will show that x2 + 1 has a root if and only if either p == 2 
or p = 1 (mod 4) , and thus x2 + 1 is irreducible if and only if p = 3 (mod 4) . 

If p == 2, then [ 1 ] is a root, and so we concentrate on the case when p is odd. 
In that case neither [ 1 ] nor [ - 1 ] is a root of x2 + 1 .  Since we have the factorization 
x4 - 1 == (x2 + 1 ) (x2 - 1 ) ,  to find a root of x2 + 1 it suffices to find a root of x4 - 1 
that is not a root of x2 - 1 .  Thus we can find a root of x2 + 1 in Zp if and only if 
there is an element of order 4 in the multiplicative group Z; . By Theorem 6.5 . 1 0, 
the multiplicative group of nonzero elements of any finite field is cyclic, and so this 
occurs if and only if the order p - 1 of Z; is divisible by 4, or, equivalently, if and 
only if p = 1 (mod 4) . D 

We note a useful fact that is verified in the proof of the next proposition. If D is 
a Euclidean domain with a norm 8 that is multiplicative (that is, 8 (ab) == 8 (a ) 8 (b) 
for all a , b E D), then any element p E D such that 8 (p) is a prime in Z must be 
an irreducible element of D. 

9.3.2 Theorem. Let a be a nonzero element ofZ[i ] . Then a is irreducible in Z[i ] 
if and only if one of the following conditions holds: 

(i) a == ±p or a == ±pi, where p is a prime ofZ such that p = 3 (mod 4), or 
(ii) 8 (a) is prime in Z. 
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Proof. If condition (i) holds, then it follows from Lemma 9 .3 . 1 that a is irreducible . 
If condition (ii) holds and a == be in Z[i ] , then 8 (b) 8 (e) == 8 (be) == 8 (a ) , and so 
either 8 (b) == 1 or 8 (e) == 1 ,  since 8 (a) is prime in Z. Thus either b or e is a unit, 
and so a is irreducible. 

Conversely, assume that a == m + ni is irreducible . Then the conjugate a == 
m - ni of a is also irreducible, since a == be implies a == be. We first consider the 
case in which a is an associate of a . Since the units of Z[i ] are ± 1 and ±i , one of 
the following equalities must hold . 

m + ni == m - ni m + ni == -m + ni 

m + ni == n + mi m + ni == -n - mi 
The first two equations imply either n ° or m == 0 ,  and so i t  follows from 
Lemma 9 .3 . 1 that condition (i) holds . The second two equations imply that a has 
1 + i as a factor, and so since a is irreducible we must have 8 (a) == 2, and thus 
condition (ii) holds . 

We next consider the case in which a is not an associate of a , which implies that 
a and a are relatively prime. Now suppose that 8 (a ) is a composite number, say 
8 (a) == uv , where u ,  v are positive integers . Then in Z[i ] we have a l u or a l v , say 
u == aq . Since u is real, u == u == aq , showing that a I u .  But then our observation 
that a and a are relatively prime implies that 8 (a) == aa divides u , so we must have 
u == 8 (a) and v == 1 .  This shows that 8 (a) is prime in Z, and so condition (ii) 
holds . D 

9.3.3 Theorem. Every prime in Z of the form 4k + 1 can be written as the sum of 
two squares, in an essentially unique manner. 
Proof. Assume that p is a prime in Z such that p = 1 (mod 4) . Then p is not 
irreducible in Z[i ] , by Lemma 9 .3 . 1 ,  and so in Z[i ] we have p == ae, where a == 
m + ni is an irreducible factor. Thus p2 == 8 (p) == 8 (a) 8 (e) , so 8 (a) == 8 (e) == p 
since neither a nor e is a unit, and then since a == m + ni we have p == m2 + n2 . 

The above solution is essentially unique. If p == m2 + n2 is prime in Z and 
can also be written as p == u2 + v2 for integers u ,  v , then in Z[i ] we would have 
p == (u + vi ) (u - v i ) , showing that u + vi must differ from m + ni by a unit of 
Z[i ] . Since the only units are ± 1  and ±i , either u == ±m and v == ±n or u == ±n 
and v == ±m. D 

We are now ready to begin a proof due to Gauss of Fermat's last theorem for 
the exponent 3 .  The case for the exponent 4 is easier than that for the exponent 3 ,  
and we suggest that the reader should try Exercises 5 and 6 at the end of the section. 
We want to show that 

x 3 + y3 == Z3 

has no solution in the set of positive integers . If we allow negative integers as 
solutions, and call any solution with one of x , y , z equal to zero a trivial solution, then 
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we can restate the problem as follows :  x3 + y3 == Z3 has no nontrivial solution in Z. 
This has the advantage of allowing us to rewrite the equation as x3 + y3 + ( -Z)3 == 0, 
which provides more symmetry in the problem. 

As a polynomial over Z, we have the factorization 

To factor x2 - xy + y2 completely, we can use the quadratic formula to solve 
x2 + (-y)x + y2 == 0, obtaining 

x = 
y ± J y2 - 4 y2 

= 
( 1  ± -Jii ) 

2 
y 

2 

This yields x == -wy or x == -w y ,  for the cube root of unity w == (- 1 + -Ji i) /2. 
As a polynomial over the field C, we have 

x3 + y3 == (x + y) (x + wy) (x + wy) == (x + y) (x + wy) (x + w2y) . 
If x and y are integers , then we can obtain this factorization in any subring of C that 
contains Z and w. We introduce the appropriate subring in the next example . 

Example 9.3.1 (Z[w]). 

Let w == (- 1 + -Jii) /2. Since w is a cube root of unity, it is a root of 
the polynomial x3 - 1 ,  and more specifically, of the factor x2 + x + 1 .  Thus 
w2 == - 1 -w. The other root of x2 +x + 1 is w == w2 , so we have w+w == - 1  
and ww == ww2 == 1 .  

If a , b , e , d E Z, then in the field of complex numbers we have 

(a + bw) (e + dw) ae + (ad + be)w + bdw2 
(ae - bd) + (ad + be - bd)w . 

This shows that the set {a + bw I a , b E Z} is closed under multiplication, 
and so it is easily seen to be a subring of C, which we will denote by Z[ w] . 
We can also write a + bw == (a - b/2) + (b-Ji/2) i ,  and so the uniqueness 
of representation for complex numbers shows that each element of Z[ w] has 
a unique representation in the form a + bw. 
We note that just as with Z[i ] ,  there is a natural norm on Z[w] based on the 
length l a +bw I of an element simply considered as a complex number. In order 
to obtain an integer valued norm we must use the square of the length. D 
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Any integer solution to X3 + y3 == Z3 will remain a solution in the ring Z[w] , 
and so we only need to find the solutions in Z[w] . The complete factorization of 
x3 + y3 in Z[w] is the reason that it is useful to translate the problem in Z into a 
problem in Z[w] . We will need the fact that Z[w] is a unique factorization domain. 
The proof that the division algorithm holds is similar to the proof for the Gaussian 
integers . 

9.3.4 Proposition. For w == (- 1 + ,J"3i)/2, the ring Z[w] is a Euclidean domain. 
Proof. Since Z[w] == {m + nw I m , n E Z} , for any element a == m + nw E Z[w] 
we let 

8 (a) la l 2 == (m + nw) (m + nw) 
m2 + mn (w + w) + n2ww 
m2 + n2 - mn . 

For nonzero elements a , b E Z[w] , we have 8 (ab) == l ab l 2 > I b l 2 == 8 (b) . 
For nonzero elements a and b of Z[w] , we consider the quotient alb (as a 

complex number) . Then for a == m + nw and b == s + tw we have 

a -
b 

(m + nw) (s + tw) 
(s + tw) (s + tw) 

(ms + nsw + mtw + ntww) 
s2 + t2 - s t (ms + nt - mt ) ( ns - mt ) 

s2 + t2 - st + s2 + t2 _ st w .  

We can choose the integers u and v ,  respectively, that are closest to 

c == (ms + nt - mt) / (s2 + t2 - st) and d == (ns - mt) / (s2 + t2 - st) . 

Then I c - u I < 4 and I d - v I < 4 .  Let q == u + V W ,  and let r == a - bq . If r � 0, 
then 

r = a - bq = b (� - q) , 
and so we have 

Thus 8 (r) < � 8 (b) < 8 (b) , completing the proof. D 
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Example 9.3.2 (Units of Z[w]). 

Since ww2 == 1 and w2 
== - 1  - w, it is clear that ± 1 ,  ±w, and ± ( 1  + w) 

are units of Z[w] . These can also be listed as ± 1 ,  ±w, and ±w. On the other 
hand, if a == m + nw is a unit of Z[w] , then we must have 8 (a) == 1 ,  and so 
m2 - nm + (n2 

- 1 )  == O. Using the quadratic formula shows that the only 
integer solution with both m i- 0 and n i- 0 requires a positive discriminant, 
and so we must have n2 - 4(n2 - 1 )  > 0, or 3n2 < 4. This solution yields 
n == m == 1 or n == m == - 1 ,  and so the six units listed above are the only 
ones. It follows immediately that Z[w] x "-' Z6 . D 

9.3.5 Lemma. Let w == (- 1 + ,J3i ) /2 . The following conditions are equivalent 
for a prime P ofZ: 

(1) p is an irreducible element in Z[w] ; 
(2) x2 + x + 1 is an irreducible polynomial in Zp [x] ;  
(3) p - 2 (mod 3) .  

Proof. ( 1 )  if and only if (2) : We define ¢ : Z[w] ---+ Zp [x]/ (x2 + x + 1 )  by 
¢ (m + nw) == [m] p  + [n ]px + (x2 + X + 1 ) , for all elements m + nw E Z[w] . 
Since x2 + x + 1 has degree 2, each equivalence class of elements of the ring 
Zp [x ]/ (x2 + x + 1 )  contains a unique element of the form [m]p  + [n]px ,  and so 
¢ maps Z[w] onto Zp [x ] /  (x2 + x + 1 ) . The fact that ¢ is a ring homomorphism 
follows from 

and x2 = - 1  - x (mod (x2 + x + 1 ) ) . 

It can be checked that 

ker (¢) == {m + nw I p lm and p in } == pZ[w] , 

so Z[w]/ ker(¢) is isomorphic to Zp [x ]/  (x2 + x + 1 ) . Thus p is irreducible in Z[w] 
if and only if the factor ring Zp [x ]/ (x2 + x + 1 )  is a field, and this occurs if and 
only if x2 + x + 1 is irreducible over Zp . 

(2) if and only if (3) :  Note first that x2 + x + 1 is irreducible over Z2 , but has 
the root [ 1 ]  over Z3 . We will show that if p > 3 ,  then x2 + x + 1 has a root in Zp 
if and only if p = 1 (mod 3) . 

We use the factorization x3 - 1 == (x - 1 ) (x2 + X + 1 ) .  If p > 3 ,  then [ 1 ]  
is not a root of x2 + x + 1 ,  and so Zp contains a root of x2 + x + 1 if and only 
if it contains a root of x 3 - 1 different from [ 1 ] .  Thus the roots of x2 + x + 1 
correspond to elements of order 3 in the multiplicative group Z; , and such elements 
exist if and only if 3 I (p - 1 ) .  Therefore x2 + x + 1 is irreducible if and only if 
p = 2 (mod 3) . D 
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In the statement of condition (3) of Lemma 9 .3 .5 ,  note that p = 2 (mod 3) if 
and only if p = 2 (mod 6) or p = 5 (mod 6) . If p = 2 (mod 6) , then p must be 
even, and hence p == 2. Thus the condition may be expressed by stating that either 
p == 2 or p = 5 (mod 6) . 

9.3.6 Theorem. Let w == (- 1 + ,J)i)/2, and let a be a nonzero element ofZ[w] . 
Then a is an irreducible element ofZ[w] if and only if one of the following conditions 
holds: 

(i) a == ±p or a == ±wp or a == ±w2 p, where p is a prime of Z such that 
p = 2 (mod 3), or 

(ii) 8 (a) is prime in Z. 

Proof. If a satisfies condition (i) , then a is an associate of an irreducible element 
of the type characterized in Lemma 9 .3 .5 ,  since the units of Z[w] are ± 1 ,  ±w, and 
±w, where w == w2 == - 1  - w. If a satisfies condition (ii), then 8 (a) is a prime in 
Z, and it follows that a is irreducible. 

Conversely, assume that a == m + nw is irreducible . Then the conjugate of a , 
given by a == m + nw == (m - n) - nw i s  also irreducible, and we first consider 
the case in which a is an associate of a . We have six cases, namely when a == 
a , aw , aw, -a , -aw , -aw. The first three cases lead to the respective equations 
n == 0, m == 0, and m == n , which imply that a must satisfy condition (i) . The last 
three cases lead to the respective equations 2m == n , m == 2n , and m == -n o These 
equations imply, respectively, that a must have the irreducible factor 1 + 2w, 2 + w, 
or 1 - w. Since a itself is irreducible, in each case we must have 8 (a) == 3 .  

In the second case, i f  a and a are not associates, then they must be relatively 
prime. Now suppose that 8 (a) is a composite number, say 8 (a) == u v , where u ,  v 
are positive integers . In Z[w] we also have the factorization 8 (a) == aa , so either u 
or v must be divisible by a , say u == aq . Since u is real, u == u == aq , showing that 
a I u . The fact that a and a are relatively prime implies that aa I u , so we must have 
u == 8 (a) and v == 1 .  This shows that 8 (a) is a prime in Z. D 

9.3.7 Lemma. Let w == (- 1 + ,J)i ) /2. 
(a) The ring Z[w] / ( 1  - w) is isomorphic to Z3 . 
(b) If [x] == [ 1 ]  in Z[w]/ ( 1  - w) , then x3 - 1 is divisible by ( 1 - W)4 in Z[w] . 

If [x] == [- 1 ] in Z[w]/ ( 1  - w), then x3 + 1 is divisible by ( 1 - w)4 in Z[w] . 
(c) In any solution of x3 + y3 == Z3 in Z[w], one of x3 , y3 , Z3 must be divisible 

by ( 1 - w) 4 . 

Proof. (a) We have 8 ( 1 - w) == ( 1  - w) ( 1  - (2) == 3 ,  so 1 - w is irreducible in 
Z[w] by Proposition 9 .3 .6 .  This also gives us the factorization of 3 in Z[w] , since 
1 + w == -w2 is a unit and 3 == ( 1  - w)2 ( 1 + w) . The factor ring Z[w] / ( 1  - w) is 
a field, which we will denote by F, with elements [m + nw] . 
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To show that F is isomorphic to Z3 , define ¢ : Z ---+ F by ¢ (m) == [m] , for all 
m E Z. This is a ring homomorphism, and using the defining equation [w] == [ 1 ] 
we see that ¢ is onto since [m + nw] == [m + n] == ¢ (m + n) . Since 3 is divisible by 
1 - w, we must have ker ( ¢) == 3Z. It follows from the fundamental homomorphism 
theorem (Theorem 5 .2 .6) that F is isomorphic to Zj3Z == Z3 . 

(b) If [x ] == [ 1 ]  in F, then x - I is divisible by 1 - w, say x - I == ( 1  - w)q 
for some q E Z[w] . In general, we have 

so if we set y == - 1  we obtain 

(x - 1 ) (x - w) (x - (2) 
(x - 1 ) (x - 1 + 1 - w) (x - 1 + 1 - (2) 
( 1  - w)q ( 1  - w) (q + 1 ) ( 1 - w) (q + 1 + w) 
( 1 - w) 3q (q + 1 ) (q + 1 + w) . 

In F we have [q + 1 + w] == [q - 1 ] , and since F is isomorphic to Z3 by part (a) , 
one of the elements [q ] , [q + 1 ] ,  [q - 1 ] must be zero . Thus one of the factors q , 
q + 1 ,  q + 1 + w must be divisible by 1 - w . This shows that x3 - 1 is divisible by 
( 1  - w)4 . 

If [x ] == [- 1 ] , then [-x] == [ 1 ] , and so x3 + 1 == - ( (  -x)3 - 1 ) is divisible by 
( 1  - w)4 . 

(c) With only a small number of possibilities to check, it is easy to find all 
solutions of [x ]3 + [y] 3 == [Z ] 3 in F. The only solutions in which [x ] , [y] , and [z] 
are all nonzero are [x ] == [ 1 ] ,  [y] == [ 1 ] ,  [z] == [- 1 ] and [x ] == [- 1 ] , [y] == [- 1 ] , 
[z] == [ 1 ] .  We will show that neither of these solutions arises from a solution in 
Z[w] . Thus in any solution that comes from a solution in Z[w] , either [x ] == [0] or 
[y ] == [0] or z == [0] , showing that one of x , y, or z is divisible by 1 - w. 

Let x, y, z be a solution of x3 + y3 == Z3 in Z[w] , such that [x ] == [ 1 ] , [y ] == [ 1 ] , 
[z] == [- 1 ] in F. Then by  part (b) , 

(x3 - 1) + (y3 - 1) + ((-Z) 3 - 1) == -3 

is divisible by (1 - w)4 . Because we have unique factorization in Z[ w] , this con
tradicts the factorization 3 == ( 1 + w) ( 1 - w)2 . A similar argument eliminates the 
case [x ] == [- 1 ] , [y] == [- 1 ] , [z] == [ 1 ] .  

Again, let x , y , z be a solution of x3 + y3 == Z3 in Z [ w] . Since a divisor of two of 
x , y, z is also a divisor of the third, we will assume that x , y, z are relatively prime 
in pairs . We have shown that [x ] == [0] ,  [y] == [0] , or [z] == [0] , so by changing 
variables in the equation we can assume without loss of generality that [z] == [0] . 
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Thus in F we have [x ] 3 + [y] 3 = [0] , and the only possible solutions are [x] = [ 1 ] ,  
[y] = [- 1 ]  and [x] = [- 1 ] ,  [y ] = [ 1 ] .  It follows from by part (b) and the equation 

x 3 + y3 = (x3 _ 1 )  + (y3 + 1 )  = (x3 + 1 )  + (y3 - 1 )  

that Z3 = x3 + y3 is divisible by ( 1  - w)4 in either case. 0 

9.3.8 Theorem. The equation x3 + y3 = Z3 has no solution in the set of positive 
integers. 

Proof We actually prove the stronger result that x3 + y3 = Z3 has no nontrivial 
solution in Z[w] . 

Assume that the nonzero elements x ,  y ,  z of Z[ w] represent a solution to the 
equation x 3 + y3 = Z3 . Any irreducible element of Z[w] that is a divisor of two 
of x ,  y ,  and z must also be a divisor of the third, and so we can assume that 
gcd(x , y) = gcd(x , z) = gcd(y , z) = 1 in Z[w] . 

Recall that in Z[w] we have ww2 = 1 and 1 + w + w2 = 0, and then w = w2 
implies further that ww = 1 and w + w = - 1 .  By Lemma 9 .3 .7 (c) , and renaming 
variables if necessary, we can assume without loss of generality that the element Z3 
must be divisible by ( 1  - w)4 . 

Among all solutions in Z[ w] of the above type, where (i) x ,  y ,  z are pairwise 
relatively prime and (ii) Z3 is divisible by ( 1  - w)4 , we can choose one in which the 
exponent of 1 - w in the factorization of z is minimal . (This depends on having 
unique factorization in Z[ w] .) Thus there is a positive integer k > 2 such that 
( 1  - w)k is a divisor of z but ( 1  - w)k+ l is not, while in any other solution that 
satisfies (i) and (ii) we know that ( 1  - w)k is a divisor of z .  We will arrive at a 
contradiction by showing that we can always find another solution x* , y* , z* in 
which z* is divisible by 1 - w, but not ( 1  - w)k . 

Consider the factorization 

Because z is assumed to be divisible by 1 - w, one of the factors x + y ,  x + wy , 
x + w2y must be divisible by 1 - w. Since [w] = [ 1 ]  in Z[w]/ ( 1  - w) , we have 
[x + wy] = [x + w2 y] = [x + y] , and this shows that each of the factors must be 
divisible by 1 - w. 

To find the new solution that we seek, let 

x + y 
Xo = -l - w ' 

We note that 

w (x + wy) 
yo = ---l - w 

w2 (x + w2y) 
Zo = ----l - w 

( 1  + w + (2) (x + y) 
Xo + Yo + Zo = = 0 . 

l - w 
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The following equations, which can easily be verified by direct computation, show 
that xo , Yo , Zo are pairwise relatively prime, since x and y are relatively prime. 

x 2 2 -WXo + w Yo Xo - w Zo 
Y 2 2 Xo - w Yo = -WXo + w Zo 

By our choice of xo , Yo , and Zo we have 

Z3 == ( 1 - w)3xoYozo . 

The product 
XoYoZo = (zl ( l  - w)) 3 

-Yo + WZo 
WYo - Zo 

is a cube, so the fact that xo , Yo , Zo are pairwise relatively prime implies that there 
exist elements X l , YI , Z l and units a , b , e with Xo = axi , Yo = byi , and Zo = ezi · 
(This again depends on having unique factorization in Z[ w] . ) Furthermore, one of 
xo , Yo , Zo must be divisible by 1 - w because Z3 is divisible by ( 1 - w)4 . Hence one 
of X l , YI , Z l must be divisible by 1 - w. Since xo , Yo , Zo are pairwise relatively prime, 
we have that Xl , Y I , Z l are pairwise relatively prime. Because z is not divisible by 
( 1  - w )k+ I , whichever of Xl , YI , Z I is divisible by 1 - w is not divisible by ( 1  - w)k . 
Since Xo + Yo + Zo = 0, we have 

axi + byi + ezi = 0 . 

We also note that 
Z3 abc = -------

(xiyizi ) ( l  - w) 3 
is a unit and a cube, and so abc == ± 1 .  

We now have a solution to the equation 

au3 + bv3 + ew3 == 0 , 

where a , b , e are units , abc is a cube, and the solution has the property that exactly 
one of u , v , w is divisible by 1 - w, and that one is not divisible by ( 1 - w)k . We 
will next show that a , b , e differ from each other only by a sign. Without loss of 
generality we may assume that 1 - w divides w, and that u and v are not divisible by 
1 - w in Z[w] . Thus in Z[w]1 ( 1  - w) � Z3 we have [u ] = [± 1 ] and [v] = [± 1 ] .  
Since 

au3 + bv3 + ew3 = 0 
and since ( 1  - w)3 divides w3 , we see that 

±a ± b = a (u3 ± 1 ) + b(v3 ± 1 ) + ew3 

is divisible by ( 1  - w) 3 for some choice of signs . Since a is a unit, ±a ± b 
±a ( l ± bla) and since bla is a unit, bla = ± 1 or ±w or ±w2 . The only choice 
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of bla for which 1 ± bla is divisible by ( 1  - w)3 is 1 ± bla == O. Thus a == ±b. 
Since abc == ± 1 ,  we have a2c == ± 1 .  Since a3 == ± 1 ,  we have c == ±a . Thus we 
may cancel a to obtain 

where w is divisible by 1 - w but not by ( 1  - w)k . Letting x* == ±u, y* == ±v, and 
z* == ±w, the appropriate choice of signs yields the desired contradiction . We have 

where z* is divisible by 1 - w but not by ( 1  - w)k , completing the proof. 0 

EXERCISES: SECTION 9.3 

1 .  t For each of the prime numbers less than 20, give the factorization into a product of 
irreducible elements in Z[i ] .  

2 .  For each of the prime numbers less than 20, give the factorization into a product of 
irreducible elements in Z[w] . 

3 .  The element 5 - i i s  not irreducible in Z[i ] (Exercise 22 of Chapter 5 shows that 
the ideal (5 - i ) i s  not a prime ideal of Z[i ]) . Show that 5 - i can be factored as 
5 - i == ( 1  - i ) (3 + 2i ) , and that 1 - i and 3 + 2i are irreducible in Z[i ] .  

4 .  Let n be a positive integer. Show that x2 + 1 = ° (mod n ) has a solution if and only 
if n == a2 + b2 , where (a , b) == 1 .  
Hint: Use Exercise 1 1  of Section 9. 1 .  

5 .  This exercise outlines a proof that the equation x4 + y4 == Z2 has no solution in Z+ . 
(a) Suppose that there is a positive triple x , y , z such that x4 + y4 == z2 . Show that 
we may assume that (x , y) == 1 ,  and that (x2 , y2 , z) == 1 .  
(b) Show that there exists a least positive integer z such that x4 + y4 == Z2 , with 
(x , y) == 1 ,  x > 0, and y > 0. 
(c) Show that x 1= y (mod 2) . 
(d) Without loss of generality, suppose that x is even and y is odd . Show that there 
exist positive integers r < s ,  (r, s) == 1 ,  r 1= s (mod 2) such that x2 == 2sr , 
y 2 == s 2 - r 2 , and z == s 2 + r 2 . 
( e) Show that r is even, and s is odd . 
(f) Say that r == 2t . Show that (t , s) == 1 ,  and that both t and s are squares. 
(g) Show that there exist integers m , n such that ° < m < n, (m , n) == 1 ,  and t == mn , 
y == n 2 - m 2 , and s == n 2 + m 2 . 
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(h) Show that both m and n are squares .  
(i) Say m == a2 and n == b2 . Show that there exists k E Z such that a4 + b4 == k2 , 
and obtain a contradiction to the choice of z in part (b) of this exercise. 

6. (a) Show that the equation x4 + y4 == Z4 has no integer solution with x y z i=- O. 
(b) In order to prove Fermat's last theorem, show this it suffices to prove that for any 
odd prime p, the equation x P + y P == zP has no integer solution with xyz i=- O. 



APPENDIX 

A.I Sets 

We have assumed that the reader is familiar with the basic language of set theory, 
allowing us to begin our book with elementary number theory. This section of the 
appendix is designed to serve two purposes : to establish our notation, and to provide 
a quick review of some basic facts . 

If S is a set (or collection) of elements denoted by a ,  b , c, etc. , then we indicate 
that a belongs to S by writing a E S. If a E S, we say that a is an element of S, that 
a is a member of S, or simply that a is in S. If a is not an element of S, we write 
a fj. S. When a set A consists entirely of elements of S, it is said to be a subset of 
S, denoted by A C S. More formally, A C S if and only if a E S for all a E A .  

Two sets A and B are said to be equal if they contain precisely the same elements . 
Thus to show that A == B ,  it is necessary to show that each element of A is also an 
element of B and that each element of B is also an element of A . In practice, equality 
is often proved by showing that A C B and B C A ,  since different arguments may 
apply in the two different situations .  If A C B but A i=- B ,  then we say that A is 
a proper subset of B ,  and we will use the notation A C B .  The meaning of the 
notations B :) A and B => A should be obvious. 

Let A and B be subsets of a given set S. There are several useful ways of 
constructing new subsets from A and B .  The intersection of A and B is the set of 
all elements which belong to both A and B ,  and is denoted by A n B .  In symbols 
we would write 

A n B == {x E S I x E A and x E B } .  

This notation { I  } requires some explanation. The braces { } are used to denote a 
set, and the vertical bar (occasionally replaced by a colon) is read "such that." Thus 

{x E S I x E A and x E B}  

i s  read "the set of all x in S such that x is an element of A and x is an element of 
B ." The intersection of two sets may very well not contain any elements , and this 
points up the necessity of considering the empty set, or null set , which we denote 
by 0.  

433 
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We also define the union of sets A and B in the following way: 

A U B == {x E S I x E A or x E B } . 

The word "or" is used in the way generally accepted by mathematicians ; that is , 
we use it in an inclusive rather than an exclusive way, so that A U B contains all 
elements either in A or in B or in both A and B . 

We need notations for the intersection and union of a family of subsets . If 
{AA }AEA is a collection of subsets of S indexed by the set A, then we write 

nAEA AA == {x E S I x E AA for each A E A } 

and 
UAEA AA == {x E S I x E AA for some A E A } 

for the intersection and union, respectively, of the collection. For example, let 
S == R2 and let ea be the vertical line through (a , 0) . We can express the fact that 
the plane is the union of these lines by letting A == R and writing R2 == UaER ea . 

We also define the difference of the two sets as follows : 

A - B == {x E A I x fj. B } . 

Thus A - B is the set obtained by taking from A all elements which belong to B . 
If S is the set we are working with, and A is a subset of S , then we call S - A 

the complement of A in S, and denote it by A . The two important identities given 
below are known as DeMorgan's laws : 

A n B == A U B , A U B == A n B . 

Example A.I.I. 

Let A and B be sets . We will show that A C B if and only if A U B == B . 
First assume that A C B . To show that A U B == B we must show that 
A U B C B and that B S; A U B . For this purpose, let x E A U B . Thus x E A 
or x E B . Since A C B, in either case x E B , and thus A U B S; B . On the 
other hand, it is always true that B i s contained in A U B . 
Conversely, assume that A U B == B , and let x E A . Since x i s  in A , it i s  in 
A U B and hence in B . This shows that A C B , completing the proof. D 

In several places in the book we need to work with ordered pairs of elements . 
If a E A and b E B , the notion of an ordered pair distinguishes between the pairs 
(a , b) and (b, a) . These are different from the set {a , b} , which is equal as a set to 
{b , a } .  Since ordered pairs are familiar from calculus and linear algebra, we will 
not go into more detail . 
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Let A and B be any sets . The Cartesian product of A and B is formed from 
all ordered pairs whose first element is in A and whose second element is in B . 
Formally, we define the Cartesian product of A and B as 

A x B == { (a , b) l a E A  and b E B } .  
In A x B , ordered pairs (a i , bl ) and (a2 , b2) are equal if and only if a l == a2 and 
bi == b2 . 

We can extend the definition of the Cartesian product to n sets by considering 
n-tuples in which the ith entry belongs to the ith set. The n-dimensional vector 
space Rn is just the Cartesian product of R with itself n times, together with the 
algebraic structure that defines addition of vectors and scalar multiplication. 

Example A.t.2. 

For example, if A == { I ,  2, 3} and B == {u ,  v } ,  then the Cartesian product of 
A and B has a total of six distinct elements : 

A x B == { ( I ,  u) , ( 1 , v) ,  (2, u) , (2, v) ,  (3 , u ) , (3 , v) } .  

The Cartesian product B x A is quite different : 

B x A == f eu ,  1 ) ,  (u , 2) , (u , 3) , (v , 1 ) ,  (v , 2) ,  (v , 3) } . D 

We have listed below some of the important facts about sets . They will provide 
good exercises for the reader who needs some review. 

EXERCISES: SECTION A.t 

Let A ,  B, C be subsets of a given set S . Prove the following statements . 

1 .  If A C B and B C C ,  then A C C .  
2 .  A n B C A and A n B C B .  
3 .  A C A U B and B c A U B . 
4. If A C B ,  then A U C C B U C.  
5 .  If A C B ,  then A n C C B n C.  
6. A C B if and only if A n B == A.  
7 .  A U B == (A n B) U (A - B) U (B - A) .  
8 .  A U (B n C) == (A U B) n (A U C) .  
9 .  A n (B U C)  == (A n B) U (A n C) . 

10 . (A - B ) U (B - A ) == (A U B ) - (A n B ) . 
1 1 . (A U B) x C == (A x C) U (B x C) . 
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A.2 Construction of the Number Systems 

The purpose of this section is to provide an outline of the logical development of 
our number systems-the natural numbers, integers , rational numbers , real numbers, 
and complex numbers . At best, we hope to whet the reader's appetite. We will only 
rarely attempt to give proofs for our statements . However, elsewhere in the text we 
study general constructions which include as special cases the construction of the 
rational numbers from the integers and the construction of the complex numbers 
from the real numbers . 

In Chapter 1 we take a naive approach in working with the set of integers . 
We have assumed that the reader is willing to accept the familiar properties of the 
operations of addition and multiplication. However, it is possible to derive these 
properties from a very short list of postulates . They are called the "Peano postulates ," 
formulated about the turn of the last century by Giuseppe Peano ( 1 858-1932). A 
similar set of axioms was stated by Richard Dedekind at about the same time. 
These axioms provide a description of the natural numbers (nonnegative integers 
0, 1 , 2 , . . .  ), denoted by N. 

We have chosen to take the language and concepts of set theory as the starting 
point of the development of the number systems . This means that the Peano postu
lates must be stated in set theoretic terms alone. Intuitively, to describe the natural 
numbers we begin with 0 and then list successive numbers . The process that extends 
the set from one natural number to the next can be described as a function, which 
we denote by S in the postulates . We have in mind the formula SCm) = m + 1 ,  al
though the formula does not yet make sense since + has not been defined. The third 
postulate is a statement of the principle of mathematical induction (see Section A.4) .  

A.2.t Axiom (Peano postulates). The system N of natural numbers is a set N with 
a distinguished element 0 and a function S from N into N which satisfies 

(i) Sen) i- 0 for all members n ofN, 
(ii) S(n l ) i- S (n2) for all members n l i- n2 ofN, and 
(iii) any subset N' ofN which contains 0 and which contains Sen) for all n in 

N' must be equal to N. 

The function S utilized in the Peano postulates is called the successor function. 
We will use it below to define addition and multiplication of natural numbers . Note 
that the assumption that S is a function means that it is possible to define the com
position of S with itself n times, which we denote by sn . We define SO to be the 
identity function. 

A.2.2 Definition. With the notation of the Peano postulates, let m , n E N. 
We define operations of addition and multiplication on N as follows: 

m + n = Sn (m) and m ·  n = (sm )n (o) . 

We define m > n if the equation m = n + x has a solution x E N. 
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It is possible to derive the basic arithmetic and order properties of the natural 
numbers from the Peano postulates, but that is beyond the scope of what we have 
set out to do. After defining the integers Z in terms of N, it is then possible to 
extend properties of N to Z. This indication of how the properties which are listed 
in Section A.3 can be proved is as much detail as we can provide without digressing. 

In Section 1 . 1  we take the well-ordering principle to be an axiom. Here we 
show that it is a direct consequence of the Peano postulates . In Section A.4 we show 
that the well-ordering principle implies the principles of mathematical induction, 
and so the well-ordering principle is logically equivalent to induction. The last 
sentence of the proof of the following theorem depends on the nontrivial fact that 
{m E N  I n < m < S(n) } is empty. 

A.2.3 Theorem (Well-Ordering Principle). Any nonempty set of natural numbers 
contains a smallest element. 

Proof (Outline) Let T be a nonempty subset of N and let L be the set of natural 
numbers x such that x < t for all t E T . We cannot have L == N since there is 
some natural number t in T , and then t + 1 == Set) is not in L . (We are making 
use of the function S from the Peano postulates .) This means that L cannot satisfy 
the assumptions of postulate (iii), and since we certainly have 0 E L, there must be 
some n in L with Sen) fj. L . Thus we have n < t for all t E T , and to finish the 
proof we only need to show that n E T . If this were not the case, then in fact n < t 
for all t E T , and therefore Sen) < t for all t E T, a contradiction . D 

The next step is to use natural numbers to define the set of integers . We can do 
this by considering ordered pairs of natural numbers . We know that any negative 
integer can be expressed (in many ways) as a difference of natural numbers . To 
avoid the use of subtraction, which is as yet undefined, we consider the set N x N, 
where an ordered pair (a , b) in N x N is thought of as representing a - b. 

Just as with fractions ,  there are many ways in which a particular integer can be 
written as the difference of two natural numbers . For example, (0 , 2) , ( 1 , 3) , (2 , 4) , 
etc . ,  all represent what we know should be -2. We need a notion of equivalence 
of ordered pairs , and since we know that we should have a - b == c - d if and 
only if a + d == c + b, we can avoid the use of subtraction in the definition. 
The formulas given below for addition and multiplication are motivated by the fact 
that we know that we should get (a - b) + (c - d) == (a + c) - (b + d) and 
(a - b) (c - d) == (ac + bd) - (ad + be) . If we were going to prove all of our 
assertions, we would have to show that the definitions of addition and multiplication 
of integers do not depend on the particular ordered pairs of natural numbers which 
we choose to represent them. 
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A.2.4 Definition. The set of integers, denoted by Z, is defined via the set N x N, 
where we specify that ordered pairs (a , b) and (c , d) are equivalent if and only if 
a + d = b + c. 

We define addition and multiplication of ordered pairs as follows: 

(a , b) + (c , d) = (a + c, b + d) and (a , b) (c , d) = (ac + bd, ad + bc) . 

It is possible to verify all of the properties of Z that are listed in Section A.3 ,  
using the above definitions and the properties of N. Furthermore, the set N can 
be identified with the set of ordered pairs (a , b) such that a > b, and so we can 
view N as the set of nonnegative integers . The well-ordering principle can easily 
be extended to the statement that any set of integers that is bounded below must 
contain a smallest element. 

The next step is to construct the set of rational numbers Q from the set of integers . 
This is a special case of a general construction given in Section 5 .4, where detailed 
proofs are provided. 

A.2.S Definition. The set of rational numbers, denoted by Q, is defined via the set 
of ordered pairs (m , n) such that m , n E Z and n > 0, where we agree that (a , b) 
is equivalent to (c , d) if and only if ad = bc. We define addition and multiplication 
as follows: 

(a , b) + (c , d) = (ad + bc , bd) and (a , b) (c , d) = (ac , bd) . 

It is more difficult to describe the construction of the set of real numbers from 
the set of rational numbers . The Greeks used a completely geometric approach to 
real numbers , and initially considered numbers to be simply the ratios of lengths of 
line segments . However, the length of a diagonal of a square with sides of length 
1 cannot be expressed as the ratio of two integer lengths , since -vI2 is not a rational 
number. This makes it necessary to introduce irrational numbers . 

A sequence {an }�l of rational numbers is said to be a Cauchy sequence if for 
each E > 0 there exists N such that I an - am I < E for all n , m > N.  It is then 
possible to define the set of real numbers R as the set of all Cauchy sequences of 
rational numbers, where such sequences are considered to be equivalent if the limit 
of the difference of the sequences is O. To verify all of the properties of the real 
numbers is then quite an involved process .  

We note only a few of the properties of real numbers : R is a field (see Section 4. 1 
for the definition and properties of a field) ordered by < . The set Q is dense in R, 
in the sense that between any two distinct real numbers there is a rational number. 
Any set of real numbers that has a lower bound has a greatest lower bound, and any 
set that has an upper bound has a least upper bound. The Archimedean property 
holds ; i .e . , for any two positive real numbers a , b there exists an integer n such that 
na > b . 
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Finally, the set C of complex numbers is described in Section A.S .  One method 
of construction is to use Kronecker's theorem, Theorem 4.3 . 8 .  An alternative is to 
consider ordered pairs of real numbers . Then addition and multiplication are defined 
as follows: 

(a , b) + (c , d) == (a + c, b + d) and (a , b) . (c , d) == (ac - bd, ad + bc) . 
The ordered pair (a , b) is usually written a + bi , where i 2 == - 1 .  

Detailed proofs of the assertions in this section can be found in various text 
books such as those by Landau and by Cohen and Ehrlich. The construction of the 
real numbers from the rationals is usually viewed as a part of analysis rather than 
algebra. 

A.3 Basic Properties of the Integers 

We assume that the reader is familiar with the arithmetic and order properties of the 
integers , and indeed, we have freely used these properties throughout the book. In 
the interest of completeness we now explicitly list these properties , as well as their 
names . 

A.3.t (Properties of Addition). 
(a) Closure : Given any two integers a and b, there is a unique integer a + b. 
(b) Associativity : Given integers a , b, c, we have (a + b) + c == a + (b + c). 
(c) Commutativity : Given integers a, b, we have a + b == b + a. 
(d) Zero element: There exists a unique integer 0 such that a + 0 == a for any 

integer a. 
(e) Inverses : Given an integer a, there exists a unique integer, denoted by -a, 

such that a + (-a) == O. 

A.3.2 (Properties of Multiplication). 
(a) Closure : Given any two integers a and b, there is a unique integer a . b == abo 
(b) Associativity : Given integers a, b , c, we have (a . b) . c == a . (b . c) . 
(c) Commutativity : Given integers a ,  b, we have a . b == b . a. 
(d) Identity element: There exists a unique integer 1 (¥= 0) such that a · 1  == a 

for any integer a . 
A.3.3 (Joint Property of Addition and Multiplication). 

Distributivity : Given integers a ,  b, c, we have a (b + c) == ab + ac. 
A.3.4 (Properties of Order). There exists a subset Z+ C Z, called the set of 
positive integers, which satisfies the following properties: 

(a) Closure under addition : If a , b E Z+, then a + b E Z+. 
(b) Closure under multiplication : If a , b E Z+, then ab E Z+. 
(c) Trichotomy : Given a E Z, exactly one of the following holds: 

(i) a E Z+ , (ii) a == 0 , (iii) -a E Z+ . 
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A number of these properties are redundant. Our purpose is to provide a working 
knowledge of the system of integers , and so we have not given the most economical 
list of properties . Rather than investigating the foundations of the number systems, 
we will be content with simply making the following statement: Together with the 
well-ordering principle, the above list of thirteen properties completely characterizes 
the set of integers . 

The following proposition lists some of the usual arithmetic properties of the 
set of integers . These properties hold in a more general setting, which is studied in 
Chapter 5 .  We will use the notation a - b for a + (-b) . 

A.3.S Proposition. Let a , b, C E Z. 
(a) If a + b == a + c, then b = c. 
(b) - ( -a) == a . 
(c) a · O = O. 
(d) (-a) ( -b) = abo 

We introduce the usual order symbols as follows. We say that a is greater than 
b, denoted by a > b, if a - b E Z+ . For a > b we also write b < a (read "b is less 
than a"), and a > b (read "a is greater than or equal to b") denotes that a = b or 
a > b. Finally, the absolute value of a , denoted by l a l ,  is equal to a if a E Z+ or 
a = ° and is equal to -a if -a E Z+ . The proof of the next proposition is left as 
an exerCIse. 

A.3.6 Proposition. Let a , b, C E Z. 
(a) If a > 0, then a > 1 . 
(b) If a > b and b > c, then a > c. 
(c) If a > b, then a + C > b + c. 
(d) a < ° if and only if -a E Z+. 
(e) If a > b and c > 0, then ac > bc. 
(f) If a > b and c < 0, then ac < bc. 
(g) l a l > 0, and la l = ° ifand only ifa = 0. 
(h) If a > 0, then Ib l < a if and only if -a < b < a. 
(k) l ab l = l a l l b l .  
(m) l a + b l < l a l  + Ib l · 
(n) If ab = ac and a i= 0, then b = c. 

A.4 Induction 

If one develops the natural numbers from the Peano postulates , then mathematical 
induction is taken to be one of the postulates . On the other hand, if one uses the 
list of properties given in Section A.3 as a starting point, then the well-ordering 
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principle is usually chosen as an axiom. We begin by showing that mathematical 
induction can be deduced from the well-ordering principle. We will let Z+ denote 
the set { I ,  2 , 3 , . . .  } of positive integers . 

A.4.1 Theorem. The well-ordering principle implies that if S C Z+ and 
(i) 1 E S 
(ii) n + 1 E S whenever n E S, 

then S == Z+. 

Proof Suppose that S i= Z+ . Then the set T == {n E Z+ 1 n rt S} is not empty 
and by the well-ordering principle has a least element k . Since 1 E S, k i= 1 ,  and 
so k - 1 E Z+ . Since k - 1 < k , we have k - 1 E S. But by (ii) , then we have 
k == (k - 1 )  + 1 E S, a contradiction. Thus T == 0 and S == Z+ . 0 

This theorem is applied in the principle of mathematical induction, which is of 
paramount importance. The principle of mathematical induction applies to state
ments which involve an arbitrary positive integer n . Examples of such statements 
are : 

1 .  1 + 2 + . . .  + n == n (n + 1 ) /2 . 
2. 3 1 ( 1 on - 1 )  . 

1 3 . Let aI , . . . , an be positive real numbers . Then ,yIaI a2 . . . an < - I:7= I  ai . n 
4. n2 - n + 41 is a prime number. 

Observe that each statement depends on the positive integer n and becomes 
either true or false when some value is substituted for n . The last example is true 
when n == 2, but false when n == 4 1 .  

Suppose that Pn is a statement depending on the positive integer n . If Pn becomes 
true for each choice of n , then the principle of mathematical induction frequently 
allows us to establish this fact. Let us state the principle, prove that it holds, and then 
apply it to some examples .  Note that we could begin numbering with any integer, 
say Po , PI , . . . or even P -297 , P -296 , . . . . 

A.4.2 Theorem (Principle of Mathematical Induction). Let PI , P2 , . . .  be a se
quence of propositions. Suppose that 

(i) PI is true, and 
(ii) if Pk is true, then Pk+ 1 is true for all positive integers k. 

Then Pn is true for all positive integers n. 

Proof Let S == {n E Z+ 1 Pn is true} .  By (i) , 1 E S; and (ii) , if n E S, then 
n + 1 E S. Apply Theorem A.4. 1 to get S == Z+ . Thus Pn is true for all positive 
integers . 0 
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Example A.4.1.  

To establish that 1 + 2 + . . . + n == n (n + 1 ) /2, let Pn be the statement 
1 + 2 + . . .  + n == n (n + 1 ) /2. Then 1 == 1 ( 1  + 1 ) /2, so PI is true. The next 
step is to show that Pk implies Pk+ 1 . Assume that Pk is true, so that we have 
1 + 2 + . . .  + k == k (k + 1 ) /2. Add k + 1 to both sides of this equation to get 

k (k + 1 ) k (k + 1 ) + 2 (k + 1 ) 1 + 2 + . . .  + k + (k + 1 ) == + (k + 1 ) == ------
2 2 

(k + l ) (k + 2) (k + l ) [ (k + 1) + 1 ] 
2 2 

Thus Pk+ l is true, and so by induction Pn holds for all n E Z+ . 0 

This is a good point at which to emphasize that when we are using the principle 
of mathematical induction, we must establish the truth of Pl . However, when we 
establish the truth of Pk+ 1 , we get to assume the truth of Pk without having to prove 
anything about the truth of Pk • 

Example A.4.2. 

To prove that 3 1  ( I on - 1 ) for all positive integers n, let P n be the statement 
3 1 ( 1 0n - 1 ) .  Now PI says 3 1 ( 1 0 1 - 1 ) or 3 19, which is true. Assume that Pk 
is true, that is , that 3 1  ( 1 0k - 1 ) .  Then since 

10k + 1 - 1 == 1 0 . 10k - 1 == 10 . 10k - 10 + 10 - 1 == 10 . ( 1 0k - 1 ) + 9 

we have that 3 1  ( 1  Ok+ 1 - 1 ) since 3 1  ( 10k - 1 )  and 3 19. Hence Pk+ 1 is true. 
By the principle of mathematical induction, Pn holds for all positive integers 
n . 0 

A second form of mathematical induction is more useful for some purposes . 

A.4.3 Theorem (Second Principle of Mathematical Induction). 
Let PI , P2 , . . .  be a sequence o/propositions. Suppose that 

(i) PI is true, and 
(ii) if Pm is true/or all m < k, then Pk+ 1 is true/or all k E Z+. 

Then Pn is true for all positive integers n. 

Proof Let S == {n E Z+ I Pn is true } .  If S i= Z+ , then the set T == {n E Z+ I 
Pn is false} is nonempty. By the well-ordering principle, T has a least element k . 
Since 1 rt T , k i= 1 . Thus for all m < k we have m E S; that is, Pm i s  true for all 
m < k - 1 .  By hypothesis Pk is true and so k rt T, a contradiction. Thus Pn is true 
for all natural numbers n .  0 
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Example A.4.3 (Fibonacci numbers). 

Define a sequence of natural numbers as follows: Let FI == F2 == I , and 
Fn == Fn- I + Fn-2 for n 2: 3 . Thus F3 == 2, F4 == 3 , F5 == 5, F6 == 8, etc . 
The sequence FI , F2 , . . .  is called the Fibonacci sequence . We will show that 
Fn < (7 j4)n for all positive integers n . 
Let Pn be the statement Fn < (7 j 4)n . Then PI says FI == I < (7 j 4) I , which 
is true. Assuming Pm for all m :s k, we have that 

( 7 ) k ( 7) k- 1 Fk+ 1 == Fk + Fk- I < 4 + 4 

= 
(�y- I (�

+ 1) = 
(�y- I ( �1 ) 

< 
(�y- I (�:) 

= 
(�y+1 

, 

and so Pk+ I holds, unless k == I , in which case the formula Fk+ I == Fk + Fk- I 
does not make sense since Fa is not defined. For this reason we must directly 
verify that P2 holds . Since F2 == I < (7 j 4)2 , we have that if Pm is true for 
all m :s k , then Pk+ 1 is true. Thus the fact that Fn < (7 j4)n for all positive 
integers n follows from the second principle of mathematical induction. 0 

EXERCISES: SECTION A.4 
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Use the principle of mathematical induction to establish each of the following, where 
n is any positive integer: 

2. I 2 + 22 + . . .  + n2 == n (n + I ) (2n + I )j6 

3 . I 3 + 23 + . . .  + n3 == n2 (n + I )2j4 

4. 2 + 22 + . . .  + 2n == 2n+ 1 - 2 

5 .  x + 4x + 7x + . . .  + (3n - 2)x == n (3n - I )xj2 

6. IOn+ 1 + Ion + I is divisible by 3 . 

7 . IOn+ 1 + 3 x I on + 5 is divisible by 9 .  

8 .  4 x I o2n + 9 x I02n- 1 + 5 is divisible by 99 . 
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9. Let a I , . . .  , an be positive real numbers , Gn == -Vial a2 . . .  an , and An == * L7= 1 ai · 

Then Gn is called the geometric mean and An is called the arithmetic mean. We 
wish to show that Gn ::s An . 

(i) Show that G2 ::s A2 . 
(ii) Show that G2n ::s A2n by using induction on n .  
(iii) Show that Gn ::s An . 

Hint : Let m be such that 2m � n ,  and set an+ 1 == an+2 == . . .  == a21n == An and apply 
part (ii) . 

1 0 . Let a and b be real numbers . Prove the binomial theorem, which states that 

where 

and n !  == n (n - 1 ) · · · 2 · 1 for n � 1 and O! == 1 .  
Hint : (mt l ) == (�) + (/� l ) . 

(n) n !  i - i ! (n-i ) !  

1 1 . Find a formula for the derivative of the product of n functions, and give a detailed 
proof by induction (assuming the product rule for the derivative of two functions) . 

1 2 . Find a formula for the nth derivative of the product of two functions, and give a 
detailed proof by induction. 

A.S Complex Numbers 

The equation x2 + 1 == 0 has no real root since for any real number x we have 
x2 + 1 > 1 . The purpose of this section is to construct a set of numbers that 
extends the set of real numbers and includes a root of this equation. If we had a 
set of numbers that contained the set of real numbers , was closed under addition, 
subtraction, multiplication, and division, and contained a root i of the equation 
x2 + 1 == 0, then it would have to include all numbers of the form a + bi where a 
and b are real numbers . The addition and multiplication would be given by 

(a + bi ) + (e + di ) == (a + e) + (b + d) i , 
(a + bi ) (e + di ) == ae + (be + ad) i + bdi 2 == (ae - bd) + (ad + be) i . 

Here we have used the fact that i 2 == - 1  since i 2 + 1 == O. 
Our construction for the desired set of numbers is to invent a symbol i for which 

i 2 == - 1 , and then to consider all pairs of real numbers a and b, in the form a + bi . 
In Chapter 4 we show how this construction can be done formally, by working with 
congruence classes of polynomials . At the end of this section, we also indicate how 
2 x 2 matrices can be used to construct a set in which the equation x2 + 1 == 0 has 
a solution . At this point, we simply ask the reader to accept the "invention" of the 
symbol i at an informal, intuitive level . 
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A.S.t Definition. The set C == {a + bi I a , b E R and i 2 == - 1 }  is called the set 
of complex numbers . Addition and multiplication of complex numbers are defined 
as follows: 

(a + bi ) + (c + di ) == (a + c) + (b + d) i , 
(a + bi ) (c + di ) == (ac - bd) + (ad + bc) i . 

Note that a + bi == c + di if and only if a == c and b == d. If c + di is nonzero, 
that is, if c i= ° or d i= 0, then division by c + di is possible : 

a + bi 
c + di 

(a + bi ) (c - di ) 
(c + di ) (c - di ) 

ac + bd bc - ad 
--- + l c2 + d2 c2 + d2 

A useful model for the set of complex numbers is a geometric model in which the 
number a + bi is viewed as the ordered pair (a , b) in the plane. (See Figure A.5 . 1 . ) 
Note that i corresponds to the pair (0, 1 ) .  

Figure A.5 . 1 :  

a + b i  

r 
b 

e 

a 

In polar coordinates , a + bi is represented by (r, e ) ,  where r == -J a2 + b2 and 
cos e == a / r , sin e == b / r . The value r is called the absolute value of a + bi , and 
we write l a + bi I == -J a2 + b2 . This gives a + bi == r (cos e + i sin e ) .  In this form 
we can compute the product of two complex numbers as follows :  

r (cos e + i sin e )  t (cos ¢ + i sin ¢ ) 
r t ( (cos e cos ¢ - sin e sin ¢) + i (sin e cos ¢ + cos e sin ¢ ) ) 
r t (cos (e + ¢) + i sin (e + ¢)) . 

This simplification of the product comes from the trigonometric formulas for the 
cosine and sine of the sum of two angles .  Thus to multiply two complex numbers 
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represented in polar form we mUltiply their absolute values and add their angles .  A 
repeated application of this formula to cos e + i sin e gives the following theorem. 

A.S.2 Theorem (DeMoivre). For any positive integer n, 

(cos e + i sin e)n == cos (ne ) + i sin (ne) . 

A.S.3 Corollary. For any positive integer n, the equation zn 
roots in the set of complex numbers. 

1 has n distinct 

2kn 2kn Proof. For k == 0, 1 , . . .  , n - 1 ,  the values cos -- + i sin -- are distinct and n n ( 2kn 2kn ) n 
cos -;;- + i sin -;;- == cos 2kn + i sin 2kn == 1 . D 

The complex roots of zn == 1 are called the nth roots of unity. When plotted in 
the complex plane, they form the vertices of a regular polygon with n sides inscribed 
in a circle of radius 1 with center at the origin. 

Example A.S.t (Cube roots of unity). 

. 2n 2n 4n 4n 
The cube roots of unIty are 1 ,  cos - + i sin - ,  and cos - + i sin -,  3 3 3 3 

. 1 � 1 � 
or equIvalently, 1 ,  (j) == -- + - i ,  and {j)2 == - - - -i . Note that 

2 2 2 2 
{j)2 + (j) + 1 == 0, since (j) is a root of z3 - 1 == (z - 1 ) (z2 + z + 1 ) == 0. (See 
Figure A.5 .2 . ) 0 

- 1  

/0 \2 - _ 1. _ v1Jl' U/ - 2 2 

Figure A.S .2 : 

1 

-l 
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Example A.S.2 (Fourth roots of unity). 

The fourth roots of unity are 1 , i ,  i2 
ure A.5 .3 . )  0 

- 1 , and i 3 -i . (See Fig-

Figure A.5 . 3 : 

i 

- 1  1 

- l  

Example A.S.3 (Finding nth roots). 

If zn == u ,  then (zw)n == u, where w is any nth root of unity. Thus if all 
nth roots of unity are already known, it is easy to find the nth roots of any 
complex number, provided we know one of them. In general , the nth roots of 
r (cos e + i sin e )  are 

l in ( e + 2kn . ,  e + 2kn ) r cos + l SIn , 
n n 

for 1 :s k :s n . 

To find the square root of a complex number it may be helpful to use the 
formulas () / 1 - cos () 

sin - == ± 2 2 and 
() / 1 + cos () cos - == ± . 0 2 2 
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We have noted that the powers of i are i , i 2 == - 1 ,  i 3 == -i , i4 == 1 . Since 
i 4 == 1 ,  the powers repeat. For example, i 5 == i 4i == i ,  i 6 == i 4i 2 == - 1 , and so on. 
For any integer n, the power i n depends on the remainder of n when divided by 4, 
since if n == 4q + r ,  then i n == i4q+r == (i 4)q ir == i r . In particular, i - I == i 3 == -i , 
and a similar computation can be given for any negative exponent. 
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We can use our knowledge of powers of i to give another way to express complex 
numbers . We need to recall the Taylor series expansions for eX , sin x ,  and cos x :  

cos x 

sln x 

x2 x3 x4 
1 + x + 2! + 3! + 4 ! + . . .  

x2 x4 x6 
1 - - + - - - +  . . .  2 ! 4 ! 6 ! 

x3 x5 x7 
x - - + - - - +  . . .  3 ! 5 !  7 ! 

We extend the definition of eX to complex values of x by using the same power 
series .  For real values of () ,  in eie we can reduce the exponents of i modulo 4 and 
then group together those terms that contain i and those terms that do not contain i . 
This gives us the expression 

eie == cos () + i sin () . 

Thus complex numbers can be written in polar coordinates in the form reie .  The 
product reie · tei¢ is then equal to rtei (e+¢) . Substituting () == Jr yields the remarkable 
formula 

eJr i + 1 == 0 , 
which combines 0, 1 ,  Jr ,  e , i , equality, addition, multiplication, and exponentiation. 

We will now construct a concrete model for the set of complex numbers, using 
2 x 2 matrices over R. We can identify the set R of real numbers with the set of 
all scalar 2 x 2 real matrices . That is, the real number a corresponds to the matrix [ � � ] . As you should recall from your study of linear algebra, scalar matrices 

are added and multiplied just like real numbers. We can now ask for a root of the 
equation x2 + 1 == 0 in the set of 2 x 2 matrices, where we can identify 1 with the 

scalar matrix [ �  � ] . In fact, the matrix [ _ � � ]  is one such root, since 

[ 0 1 ] 2 [ 1 0 ] [ - 1  0 ] [ 1 0 ] [ 0 0 ] - 1  0 + 0 1 == 0 - 1  + 0 1 == 0 0 . 
If we consider all matrices of the form 

we have a set that is closed under addition, subtraction, and multiplication, since [ a b ] ± [ C d ] _ [ a ± c b ± d ] 
-b a -d c - - (b ± d) a ± c 
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and [ -: ! ] · [ -� � ] = [ ae - bd ad + be ] - (ad + be) ae - bd 

Finally, if [ _: ! ] is not the zero matrix, then it has an inverse 

1 [ a -b ] a2 + b2 b a . 
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The set of2 x 2 matrices of the form [ _: ! ] has the properties we are looking for, 

and the correspondence a +bi B [ _: ! ] preserves addition and multiplication. 

We have thus constructed a concrete model for the set of complex numbers , for 
those who were worried by our "invention" of the root i of x2 + 1 == O. The matrix 
representation for C is a convenient form in which to verify that the associative and 
distributive laws hold for the set of complex numbers , since these laws are known to 
hold for matrix multiplication. It is routine to check that these special 2 x 2 matrices 
satisfy the commutative law for multiplication. 

EXERCISES: SECTION A.S 

1 .  Compute each of the following : 
(a) ( _1 + _i )6  

� � 
(b) ( 1  + i ) 8 
(c) (cos 20° + i sin 20° )9 

2. Find (cos e + i sin e) - I . 

3 . (a) Find the 6th roots of unity. 
(b) Find the 8th roots of unity. 

4. (a) Find the cube roots of -8i .  
(b) Find the cube roots of -4,J2 + 4,J2i . 
(c) Find the cube roots of 2 + 2i . 
( d) Find the fourth roots of 1 + i . 

5 .  Solve the equation Z2 + Z + ( 1 + i ) == o. 
6. Solve the equation x3 - 3x2 - 6x - 20 == 0, given that one root is - 1  + ,J3i . 
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7 .  Use DeMoivre' s theorem to find formulas for cos 38 (in terms of cos 8) and sin 38 
(in terms of sin 8) . 

8 . If  'I i s  an nth root of unity, i t  is called a primitive nth root of unity if  i t  i s  not a root 
of Zk - 1 == 0 for any k such that 1 :::; k < n .  
(a) Show that cos (2rr In) + i sin (2rr In) i s  a primitive nth root of unity. 
(b) If 'I == cos (2rr In) + i sin (2rr In) ,  show that '1m is a primitive nth root of unity if 
and only if n and m are relatively prime. 

A.6 Solution of Cubic and Quartic Equations 

In this section we will discuss the solution by radicals of cubic and quartic equations 
with real coefficients . 
A.6.1.  Solution of the General Quadratic Equation 

To solve the equation 
ax2 + bx + c == 0 

with a , b , C E R and a nonzero, we can divide through by a and make the substitution 
x == y - bl2a . (We have rearranged the usual approach of completing the square 
in order to parallel later work.) This gives 

y2 + p == 0 ,  where 
b2 - 4ac - P == 4a2 

and so 

Thus the general solution is 

±Jb2 - 4ac 
y == -----2a 

-b ± Jb2 - 4ac x == -------------2a 
A.6.2. Discriminant of a Quadratic Equation 

For the real quadratic equation ax2 + bx + c == 0, the discriminant 

� == b2 - 4ac 
determines whether the solutions are real numbers (when � > 0) or imaginary 
numbers (when � < 0) . The equation has a multiple root if and only if � == 0, and 
this occurs if and only if 

ax2 + bx + c == (mx + k)2 

for some m, k E R. If a == 1 ,  then � == (X l - X2)2 , where Xl , X2 are the solutions 
of the equation x2 + bx + c == o. 
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A.6.3. Discriminant of a Cubic Equation 

In discussing the general cubic equation 

ax3 + bx2 + ex + d == 0 

45 1 

with real coefficients , we will assume that a == 1 . The discriminant � of the equation 
is then defined by 

� == (X l - X2)2 (X I - X3 ) 2 (X2 - X3)2 

where X l , X2 , X3 are the roots of the equation, and it gives the following information : 
if the roots are all real , then � > 0, and � == 0 if and only if at least two of the 
roots coincide. If not all of the roots are real, say X2 is imaginary, then one of the 
other roots must be its complex conjugate, say X3 == X2 , and the remaining root X l 
is real . Since X I is real , 

is a real number, so 
(X l - X2)2 (X I - X2)2 > 0 . 

But X2 - X3 == X2 - X2 is purely imaginary, so (X2 - X3)2 < 0, and therefore � < o.  
Thus we have shown that � > 0 when all roots are real, � < 0 when two roots are 
imaginary, and � == 0 when there is a multiple root. 

If we make the substitution X == Y - b /3, which is the first step in solving the 
general cubic equation in F.4, we obtain the reduced equation y3 + py + q == O. 
This reduced equation has the same discriminant, which can now be computed as 
� == -4 p3 - 27 q2 . This can be shown either by using the relations YI + Y2 + Y3 == 
0, YI Y2 + YI Y3 + Y2Y3 == p, and YI Y2Y3 == -q for the roots Y I , Y2 , Y3 of the 
reduced equation, or by a direct computation involving the roots (which will be 
determined later) . See the exercises at the end of this section for hints in making 
this computation. 

A.6.4. Solution of the General Cubic Equation 

The first step in solving the equation 

X3 + bx2 + ex + d == 0 

is to substitute X == Y - b /3 , which eliminates the quadratic term. This gives the 
reduced cubic equation 

where 

y3 + py + q == 0 , 

b2 p == e - -
3 
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and 
be 2b3 q == d - 3 + 27 . 

The roots of the original equation can easily be found from those of the reduced 
equation. The method we will use to solve the reduced cubic equation is essentially 
the same as that used in 1 59 1  by Fran�ois Viete ( 1 540-1603) . We let 

1 v'3 .  W == - - + - l 2 2 
be a complex cube root of unity. 

We next make the substitution Y == Z - P /3z, to obtain the equation 

3 p3 Z - 27 Z3 + q = 0 . 
Multiplying through by Z3 gives the resolvent equation 

which is a quadratic equation in Z3 . Using the quadratic formula we obtain 

If zi and z� are the two solutions, then zi z� == - (p /3) 3 . It is possible to choose 
the cube root in such a way that Z l Z2 == -P /3 , or Z2 == -P /3z l , and then the other 
cube roots will be WZ I , W2Z I , WZ2 , and W2Z2 . Now substituting Z l in the equation 
Y == Z - p/3z to find the corresponding root Yl , we find that YI == Z l - p/3z 1 == 
Z l + Z2 . Since (WZ I ) (W2Z2) == (W2Z I ) (WZ2) == -p/3 , in the same way we have 
Y2 == WZ I + W2Z2 and Y3 == W2Z 1 + WZ2 . Thus the roots of Z6 + qz3 - (p/3) 3 == 0 
give at most three distinct values when substituted into Y == z - p /3z, and these are 
the roots of y3 + py + q == O. 

and 

Using the identities w3 == 1 and 1 + W + w2 == 0 it is not difficult to check that 

YI == Z l + Z2 , 
2 Y2 == WZ I + W Z2 , 

2 Y3 == W Z l + WZ2 
satisfy the relations 

Y I + Y2 + Y3 == 0 , 
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YI Y2 + YI Y3 + Y2Y3 == P , 

and 
YI Y2Y3 == -q , 
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so they are the three roots of the reduced equation. We now give additional details 
for finding the roots in practice. 

Finding the roots when � == 0 

If -4p3 - 27q2 == 0, then 

and so Z l  == Z2 . Thus 

Y l = Z l  + Z2 = 2fl = {j 4q . 

Since w + w2 == - 1 ,  we have Y2 == -Z l  == �/�, and similarly Y3 == �/�. 
Thus if � == 0 we have roots Y == .{j 4q and Y == � /�, the latter with multi
plicity 2. 

and 

Finding the roots when � < 0 

If -4p3 - 27q2 < 0, then 

p3 q2 
- + - > 0  
27 4 

is a real number. Thus we can take 

Z l  == 
3 -q J(P ) 3 (q ) 2 

2 
+ 

3 
+ 

2 ' 

Z2 == 

and YI == Z l  + Z2 · Then 
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and 
1 1 Y3 == - - (Z l  + Z2) - - (Z l  - z2)

J3
i . 2 2 

The real root Y I leads to the factorization 

y3 + py + q == (y - YI ) (y2 + YI Y + (p + yf)) , 

and using the quadratic formula gives the roots 

APPENDIX 

Once it has been checked that YI is a root, this formula can be used to check Y2 and 
Y3 · 

Finding the roots when � > 0 

When � > 0, all roots are real, but 

is imaginary, so to compute the roots of the reduced equation we must first find the 
cube roots of two imaginary numbers . It can be proved that no formula involving 
only real radicals can be given. 

In this case it is easier to use another method for finding roots , although we must 
admit that it does not yield a solution by radicals . Note that since -4p3 - 27q 2 > 0, 
we have -4p3 > 27q2 and so p must be negative. 

The trigonometric formula for the cosine of the sum of two angles can be used 
to show that cos 38 == 4 cos3 8 - 3 cos 8 ,  so that Z == cos 8 is a root of the equation 
4z3 - 3z == k if cos 38 == k, that is, if 8 == (arccos k) /3 .  In this case, cos (8 + 2n /3) 
and cos (8 + 4n /3) are also solutions , since cos 3 (8 + 2nn /3) == k .  This gives a 
method for solving the equation 4z3 - 3z == k, if I k  I < 1 .  

In the reduced equation y3 + PY + q == 0, we make the substitution 

(Remember that -p > 0 since � > 0. )  We obtain the equation 

or 
4z3 - 3z == k , 
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where 
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Since � > 0, we showed above that 27q2 < -4p3 , so (27q 2)j (-4p3 ) == k2 < 1 ,  
and thus z 1 == cos () is a root, where 

1 ( -q ( 3 ) 3/2) 
() = :3 arccos 2 _ p 

. 

Thus to solve y3 + py + q == 0 when � > 0, we find 

1 ( -q ( 3 ) 3/2) 
() = :3 arccos 2 _ 

p 
. 

Then the roots are 

for k == 0,  1 ,  2. 

FP ( 2kJr ) 
Yk = 2'1 3 cos () + -3- , 

A.6.S. Solution of the General Quartic Equation (Ferrari) 

The general quartic equation 

a � O 

becomes 
y4 + py2 + qy + r == 0 

after substituting x == y - (bj4) . Then y4 == -py2 -qy - r , and adding y2z + (z2j4) 
to both sides of the equation gives 

2 1 2 1 2 
( ) 2 ( )  
Y + 2z == (z - p)y - qy + 4 z - r . 

If the right-hand side can be put in the form (my + k)2 , then the roots of the reduced 
quartic are the roots of 

and 

1 
y2 + -z  == my + k 

2 

2 1 
y + -z  == -my - k . 

2 
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Since the right-hand side is a quadratic in y, it can be put in the form (my + k)2 if 
and only if its discriminant is zero. This occurs if and only if 

2 ( Z2 ) q - 4(z - p) 4 - r == 0 , 

or equivalently, if and only if 

Z3 - pZ2 - 4rz + (4pr - q2) == 0 . 

This latter equation in z is called the resolvent cubic equation, and any real root 
can be used to solve the reduced quartic . 

For example, for the equation 

y4 + 3y2 - 2y + 3 == 0 , 

the resolvent cubic is 
Z3 - 3z2 - 1 2z + 32 == 0 , 

which has the root Z == 4. Thus 

(y2 + 2)2 == y2 + 2y + 1 == (y + 1 ) 2 , 

so either y2 + 2 == y + 1 and then 

1 v'3 .  y == 2 ± T l , 

or else y2 + 2 == -y - 1 and then 

1 v'IT .  y == -- ± -- l . 2 2 
A.6.6. Solution of the General Quartic Equation (Descartes) 

We will try to factor the reduced quartic 

as 

(y2 + ky + m) (y2 - ky + n) == y4 + (m + n - k2)y2 + (kn - km)y + mn . 

We must have m + n - k2 == p, k (n - m) == q ,  and mn == r .  Since m + n == p + k2 
and n - m == q / k, we have 2n == p + k2 + (q / k) and 2m == p + k2 - (q / k) . Then 

4r = 2n2m = (p + k2 + � )  (p + k2 - � )  , 



A.6. SOLUTION OF CUBIC AND QUARTIC EQUATIONS 

which leads to the equation 
(k2) 3 + 2p (k2)2 + (p2 _ 4r)k2 _ q2 == O. 
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Any root of this equation gives a factorization of the desired form, and then the roots 
can be found from the quadratic formula. 

For example, the equation y4 - 3y2 + 6y - 2 == 0 leads to the equation 

(k2) 3 - 6(k2)2 + 17k2 - 36 == 0 , 

which has the root k2 == 4. Thus 
y4 _ 3y2 + 6y - 2 == (y2 + 2y - 1 ) (y2 - 2y + 2) , 

which gives the four roots Y l == - I  + -Vl, Y2 == - I  - -Vl, Y3 == I + i ,  Y4 == I - i .  
We have shown that any polynomial equation of degree less than 5 can be solved 

by radicals . It is possible to show that certain equations of degree 5 or higher cannot 
be solved by radicals . For example, the equation 2x5 - lOx + 5 == 0 cannot be 
solved by radicals . We can summarize this section with the following theorem. 

A.6.7 Theorem. Any polynomial equation of degree < 4 with real coefficients is 
solvable by radicals. 

EXERCISES: SECTION A.6 

1 .  Verify that cos 3() == 4 cos3 () - 3 cos () .  
2. Show that x3 + ax + 2 == 0 has three real roots if and only if a < -3 . 
3 . Use the method in A.6.4 to find the solutions of the equation x 3 - 3x + 1 == o . 
4. In A.6.4 check that Yl , Y2 , Y3 as given are solutions of y3 + py + q == O .  
5 .  To show that the discriminant of y3 + PY + q == 0 is -4p3 - 27q2 , we can use 

the relations Yl + Y2 + Y3 == 0, Yl Y2 + Yl Y3 + Y2Y3 == p, and Yl Y2Y3 == -q 
for the roots Yl , Y2 , Y3 · Substituting Yl == -Y2 - Y3 in the second equation gives 
p == -yi - yj - Y2Y3 and in the third equation gives q == yi Y3 + Y2yj . Compute 
-27q2 - 4p3 and check that it is equal to (Yl - Y2)2 (YI - Y3 )2 (Y2 - Y3 )2 when the 
same substitution Y l == -Y2 - Y3 is made. 

6. Give another proof that the discriminant of y3 + PY + q == 0 is -4 p3 - 27 q2 by using 
the following form of the roots : Yl == Z I  + Z2 ; Y2 == WZ I + W2Z2 ; Y3 == W2Z 1 + WZ2 ; 
where Z 1 Z2 == -p/3 .  
Hint : Since 1 , w, w2 are cube roots of unity, we have w3 == 1 , w2 + w + 1 == 0, 
and (x - 1 ) (x - w) (x - (2) == x3 - 1 ,  for any x. Substituting x == Z I /Z2 in 
the latter formula gives (Z 1 - Z2) (Z 1 - WZ2) (Z 1 - w2 Z2) == zj - z� . Write out 
(Yl - Y2) (Y I  - Y3 ) (Y2 - Y3 ) == ( 1  - W) (Z I - W2Z2) . . .  , square both sides, and 
simplify. 
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A.7 Dimension of a Vector Space 

We assume that the student has already taken an elementary course in linear algebra. 
It is quite possible that only real numbers were allowed as scalars , whereas we 
need to be able to use facts about vector spaces with scalars from any field. (See 
Definition 4. 1 . 1  for the definition of a field.) To make this book reasonably self
contained, in this section we include additional definitions, together with proofs of 
some facts about the dimension of a vector space. 

For our purposes, the main application of techniques from linear algebra occurs 
when we need to study the structure of an extension field F of a field K .  We can 
consider F as a vector space with scalars from K ,  and this makes it possible to 
utilize the concept of the dimension of F. We can get useful information about 
other extensions of K by comparing their dimension with that of F. 

A.7.1 Definition. A vector space over the field F is set V with a binary operation 
+ defined for all u, v E V and a scalar multiplication a . v E V defined for all 
a E F and v E V such that the following conditions hold: 

(i) u + v E V, for all u ,  v E V ;  
(ii) (u + v) + W == u + (v + w), for all u, v, W E V; 
(iii) V contains an element 0 such that 0 + v == v for all v E V; 
(iv) for each v E V there exists an element -v such that -v + v == 0; 
(v) u + v == v + u, for all u ,  v E V ;  
(vi) a · v E V, for all a E F and all v E V ;  
(vii) a (b · v) == (ab) . v, for all a ,  b E F and all v E V; 
(viii) (a + b) . v == a . v + b . v,  for all a , b E F and all v E V; 
(ix) a ·  (u + v) == a . u + a . v, for all a E F and all u, v E V; and 
(x) 1 ·  v == v, for all v E V.  

In the language of group theory, a vector space is an additive abelian group 
together with a scalar multiplication that satisfies conditions (vi) - (x) . Note that 
scalar multiplication is not a binary operation on V .  It must be defined by a function 
from F x V into V, rather than from V x V into V. As usual , we will use the 
notation av rather than a . v. 

If we denote the additive identity of V by 0 and the additive inverse of v E V 
by -v, then we have the following results : 0 + v == v, a · 0  == 0, and (-a)v == 
a (-v) == - (av) , for all a E F and v E V .  The proofs are similar to those for 
the same results in a field, and involve the distributive laws, which provide the only 
connection between addition and scalar multiplication. 

A.7.2 Definition. Let V be a vector space over the field F. A nonempty subset W 
of V is called a subspace of V if it is a vector space under the operations of vector 
addition and scalar multiplication in F. 
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A.7.3 Definition. Let V be a vector space over the field F, and let S be a set 
{VI , V2 , . . .  , Vn } of vectors in V. Any vector of the form V == L7=I ai Vi , for scalars 
ai E F, is called a linear combination of the vectors in S. The set of all linear 
combinations of vectors in S is called the span of S, denoted by Span (S) . The set 
S is said to span V if Span (S) == V.  

A.7.4 Proposition. Let V be a vector space over the field F, and let S be a set 
{VI , V2 , . . .  , Vn } of vectors in V. Then Span (S) is a subspace of v.  

A.7.S Definition. Let V be a vector space over the field F, and let S be a set 
{VI , V2 , . . .  , Vn } of vectors in V .  The vectors in S are said to be linearly dependent 
if one of the vectors can be expressed as a linear combination of the others. If not, 
then S is said to be a linearly independent set. 

In the preceding definition, if S is linearly dependent and, for example, V j can be 
written as a linear combination of the remaining vectors in S, then we can rewrite 
the resulting equation as a 1 V I + . . .  + 1 . V j + . . . + an V n == 0 for some scalars 
ai E F. Thus there exists a nontrivial (i .e . , at least one coefficient is nonzero) 
relation of the form L7= I ai Vi == 0 . Conversely, if such a relation exists , then at 
least one coefficient must be nonzero. If a j is nonzero, then since the coefficients 
are from a field, we can divide through by a j and shift V j to the other side of the 
equation to obtain V j as a linear combination of the remaining vectors . If j is the 
largest subscript for which a j � 0, then we can express V j as a linear combination 
of VI , . . .  , v j - 1  . 

From this point of view, S is linearly independent if and only if L7= I aiVi == 0 
implies a i == a2 == . . .  == an == 0. This is the condition that is usually given as the 
definition of linear independence. 

If V I , . . .  , V n span V and v j is a linear combination of the other vectors , then 
omitting v j still gives a spanning set. On the other hand, if V I , . . .  , V n are linearly 
independent and do not span V ,  then adjoining to this family any vector w that is 
not in the span of {V I , V2 , . . .  , vn } produces a linearly independent set . These two 
remarks prove the following proposition . 

A.7.6 Proposition. Let V be a vector space spanned by a finite set S of vectors. 
Then any linearly independent subset of S is finite andforms a subset of a basis for 
V, and any subset of S that spans V contains a subset that is a basis. 

A.7.7 Theorem. Let V be a vector space, let S == {u 1 ,  U2 , . . .  , Urn } be a subset of 
V with Span (S) == V, and let T == {V I , V2 , . . .  , vn } be a linearly independent set. 
Then n < m, and V can be spanned by a set of m vectors that contains T and is 
contained in S U T. 

Proof Given m > 0, the proof will use induction on n . If n == 1 ,  then of course 
n < m . Furthermore, VI can be written as a linear combination of vectors in S, so 
the set S' == {V I , U I , . . .  , Urn } is linearly dependent. One of the vectors in S' can 
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be written as a linear combination of VI  and the previous u's ,  so Proposition A.7.6 
implies that deleting it from S' leaves a set with m elements that still spans V and 
also contains V I . 

Now assume that the result holds for any set of n linearly independent vectors , 
and assume that T has n + 1 vectors . The first n vectors of T are still linearly 
independent, so by the induction assumption we have n < m and V is spanned 
by some set {VI , . . .  , Vn , Wn+I ,  . . . , wm } .  Then Vn+ I can be written as a linear 
combination of {v I , . . .  , V n , W n+ I ,  . . .  , W m } .  If n == m, then this contradicts the 
assumption that the set T is linearly independent, so we must have n + 1 < m . 
Furthermore, the set S' == {V I , . . .  , Vn , Vn+ I , Wn+ l ,  . . .  , wm } i s  linearly dependent, 
so as before we can express one of the vectors V in S' as a linear combination of the 
previous ones . But V cannot be one of the vectors in T, and so we can omit one of 
the vectors {Wn+ I ,  . . .  , wm } ,  giving the desired set. D 

A.7.8 Corollary. Any two finite subsets that both span V and are linearly indepen
dent must have the same number of elements. 

The above corollary justifies the second sentence of the following definition . 

A.7.9 Definition. A subset of the vector space V is called a basis for V if it spans 
V and is linearly independent. If V has a finite basis, then it is said to be finite 
dimensional, and the number of vectors in the basis is called the dimension of V .  

The proofs of the remaining results are left as exercises for the reader. 

A.7.10 Corollary. Let V be an n-dimensional vector space. Then any set of more 
than n vectors is linearly dependent, and no set offewer than n vectors can span V.  

A.7. 11  Corollary. Let V be an n-dimensional vector space, and let B be a set ofn 
vectors in V. Then B is a basis for V ifit is either linearly independent or spans V.  

A.7. 12 Corollary. Let V be an n-dimensional vector space. If W is any subspace 
of V, then W == V if and only if W has dimension n. 

EXERCISES: SECTION A.7 

1 .  Let V be an abelian group, with its operation denoted by +, and let p be a prime 
number. For any integer n and any element v E V ,  we have defined n ·  v in Section 3 . 1 .  
Show that V is a vector space over Z p if and only if each nontrivial element of V has 
order p .  

2. Let V be a finite dimensional vector space over the field F. Show that if WI and W2 
are subspaces of V ,  then there exists a basis B of V which has subsets Bl and B2 
that are bases of WI and W2, respectively. Show that this result cannot be extended 
to the case of three subspaces . 
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SELECTED ANSWERS 

ANSWERS TO SELECTED EXERCISES 

Exercises for which a solution is given are marked in the text by the symbol t . 

Chapter 1 

Section 1 .1  
3 . (a) gcd (35 , 14) == 7 (c) gcd (252, 1 80) == 36 (e) gcd (7655 , 1001 ) == 1 
5 . (a) 7 == 1 · 35 + (-2) . 14 (c) 36 == (-2) · 252 + 3 . 1 80 

(e) 1 == (-397) · 7655 + 3036 . 100 1 
22. The integer x must have remainder 5 when divided by 1 1 . 

Section 1.2 
1 .  (a) 35 == 5 1 7 1 , 1 4 == 2 1 7 1 , (35 , 1 4) == 7, [35 , 1 4] == 70. 
(c) 252 == 22327 1 , 1 80 == 22325 1 , (252, 1 80) == 36, [252, 1 80] == 1260. 
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(e) 6643 == 7 1 1 3 1 73 1 , 2873 == 1 32 1 7 1 , (6643 , 2873) == 1 3 , [6643 , 2873] == 1 468 103 . 
3 . for a == 4: { I ,  3 } ; for a == 6: { I ,  5 } ;  . . . for a == 9: { I ,  2, 4 , 5 , 7 , 8} ; . . . 

for a == 1 5 : { I ,  2 , 4, 7 , 8 , 1 1 , 1 3 , 14} ;  etc. 
5 . Diagrams of divisors of 9, 20, and 1 00: 

9 
I 
3 

Section 1.3 

I 
1 

20 
/ " 

10 4 
/ " / 

5 2 
" / 

1 

1 .  (a) x = 2 (mod 7) (c) x = 1 3 (mod 32) 
3 . (a) x = 1 1  (mod 2 1 ) (c) No solution 
5 . x = 9 , 2 1 , 33 , 45 , 57 (mod 60) 
7. (a) 3 (c) 4 

100 
/ " 

50 20 
/ " / " 

25 10 4 
" / " / 

5 2 
" / 

1 

1 5 . (a) x = 1 , 7 , 9, 1 5  (mod 1 6) (c) x = 1 , 3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5 (mod 1 6) 
19 . x = 43 (mod 400) 

Section 1.4 
1 .  Multiplication table for Z12 : 
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0 1 2 3 4 5 6 7 8 9 10 1 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 8 9 10 1 1  
2 0 2 4 6 8 10 0 2 4 6 8 10 
3 0 3 6 9 0 3 6 9 0 3 6 9 
4 0 4 8 0 4 8 0 4 8 0 4 8 
5 0 5 10 3 8 1 6 1 1  4 9 2 7 
6 0 6 0 6 0 6 0 6 0 6 0 6 
7 0 7 2 9 4 1 1  6 1 8 3 10 5 
8 0 8 4 0 8 4 0 8 4 0 8 4 
9 0 9 6 3 0 9 6 3 0 9 6 3 
10 0 10 8 6 4 2 0 10 8 6 4 2 
1 1  0 1 1  10 9 8 7 6 5 4 3 2 1 

3 . (a) [ 1 4] (c) Not invertible. 
9. (a) The element [5 ] has multiplicative order 4, and [7] has multiplicative order 2. 
1 1 . There is no such congruence class in Z; . In Z; each element is a power of [3 ] (or [5 ] ) . 
1 3 . (a) The idempotent elements of Z6 are [0] , [ 1 ] , [3] , [4] , and the idempotent elements of 

Z 12 are [0] , [ 1 ] , [4] , [9] . 

Chapter 2 

Section 2.1 
1 .  (a) The function I is one-to-one and onto. 

(c) The function I is one-to-one and onto if and only if (m , n) == 1 .  
3 . (a) 1- 1 (x) == x - 3 

(c) If (m , n) == 1 ,  and km = 1 (mod n) , then 1- 1 ( [x]n ) == [kx - kb]n , for all [x ]n E Zn . 
6. (a) There are 8 functions from S into T,  and 9 from T into S .  
8. The formula in (e) defines a function; the formulas in (a) and (c) do not. 
1 0 . (a) 1( [8] 8 ) =1= 1( [0] 8 ) (c) h ( [4]4) =1= h ( [0]4) 
Section 2.2 
1 .  (a) We have I(Z) == { I ,  i, - 1 ,  -i } , Z/I == Z4 , and the function I :  Z/I � I(Z) 

is defined by 1( [n]4) == i n . 
(c) We have h (Z I2 ) == { [0] 1 2 , [9] 1 2 , [6] 1 2 , [3] 1 2 } and Z12/ h == 
{ [ [0] 12] ,  [ [ 1 ] 1 2 ] , [ [2] 1 2] ,  [ [3 ] 1 2 ] } , where [ [0] 12 ] == { [0] 1 2 , [4] 12 , [8] 12 } , [ [ 1 ] 1 2 ] == 
{ [ 1 ] 1 2 , [5] 12 , [9] 1 2 } , [ [2] 1 2 ] == { [2] 1 2 , [6] 12 , [ 10] 1 2 } , [ [3] 1 2] == { [3] 1 2 , [7] 1 2 , [ 1 1 ] 1 2 } . 
The function h : Z 12/ h � h (Z I2) i s  defined by h ( [ [nh2] ) == h ( [n] 12 ) == [9n] 12 . 

6 . Define "-' by (X l , Y l , Z I ) "-' (X2 , Y2 , Z2) if and only if Z I == Z2 · 
8 . (b) We have [ 1 ] == {± 1 }  and [6] == {±2i 3J I i � 1 ,  j � I } . 

Section 2.3 ( 1 2 3 4 5 6 7 ) 1 .  (a) a T  == 2 3 6 7 4 1 5 
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- I  ( 1 2 3 4 5 6 7
5
) (e) ara == 1 3 2 7 6 4 

2. (a) ar  = ( 1 , 2 , 3 , 6) (4 , 7 , 5 ) 
(c) r2a == ( 1 , 4 , 3 , 7 , 5 , 6) 
(e) ara- I  == (2 , 3) (4 , 7 , 5 , 6) 

4. (a) ( 1 ,  6) (2, 4, 3 , 5) has order 4 
(c) ( 1 , 5 , 3 , 8) (2 , 9) (4, 7 , 6) has order 1 2 

465 

7. There is 1 cycle of length 1 ; there are 10 of length 2, 20 of length 3 , 30 of length 4, and 
24 of length 5 . Elements can have order 1 ,2,3,4,5 , or 6. 

Chapter 3 

Section 3.1 
2. (a) If a =1= ± 1 ,  then there does not exist an inverse for a under * .  

(c) The operation i s  not associative, and has no identity element. 
(e) The operation defines a group structure on R +. 

1 2 3 4 5 6 
1 1 2 3 4 5 6 
2 2 4 6 1 3 5 

7. Multiplication table for Z; : 3 3 6 2 5 1 4 
4 4 1 5 2 6 3 
5 5 3 1 6 4 2 
6 6 5 4 3 2 1 

Section 3.2 
1 .  The matrix [ � -� ] has order 6. The matrix [ � � ] has infinite order. 

5 . (a) Z6 == ( 1 ) = (5 ) ; (2) == (4) = {O , 2, 4} ;  (3 ) == {O, 3 } ; (0) == {OJ . 
(c) Z� == { I , 2 , 4 , 5 , 7 , 8} == (2) = (5 ) ; (4) == (7) == { I ,  4 , 7} ;  ( 8) == { I ,  8 } ; ( 1 ) == { I } . 

12 . (a) {± 1 } (b) The elements of finite order in C x are the complex roots of unity. (See 
Section A.5 of the appendix for a review of roots of unity. ) 

Section 3.3 
1 . HK == Z�6 
3 . For example, H = ( ( 1 ,  2) ) and K == ( ( 1 ,  3) ) . 
7 . Let G == Z2 x S3 . 

Section 3.4 
1 .  Define ¢ : Z4 -+ Z�o by ¢ ( [n]4 ) == [3]'10 · 
3 . Construct the group tables and find a one-to-one correspondence between the groups 

that preserves the entries of the tables . 
5 . No, because C X  has an element of order 2 but C does not. 
9. The groups Zs and Z2 x Z4 are not isomorphic . 

Section 3.5 
1 .  The element ai has order 1 2/(j , 1 2) . 
5 (.J2 + .J2i ) = {± 1 ±i ±.J2 ± .J2i } . 2 2 " 2 2 
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7 . The groups Zrs and Z;7 are cyclic . 
9. ( ( [0]4 , [0]2) ) == { ( [0]4 , [0]2) } ( ( [0]4 , [ 1 ]2) ) == { ( [0]4 , [0]2) ,  ( [0]4 , [ 1 ]2) } 
( ( [2]4 , [0]2) ) == { ( [0]4 , [0]2) ,  ( [2]4 , [0]2) }  ( ( [2]4 , [ 1 ]2 ) ) == { ( [0]4 , [0]2) ,  ( [2]4 , [ 1 ]2) } 
( ( [ 1 ]4 , [0]2 ) ) == { ( [0]4 , [0]2) ,  ( [ 1 ]4 , [0]2 ) ,  ( [2]4 , [0]2 ) ,  ( [3]4 , [0]2) } == ( ( [3]4 , [0]2) ) 
( ( [ 1 ]4 , [ 1 ]2) ) == { ( [0]4 , [0]2) ,  ( [ 1 ]4 , [ 1 ]2) ,  ( [2]4 , [0]2) ,  ( [3]4 , [ 1 ]2) } == ( ( [3]4 , [ 1 ] 2 ) ) 

Section 3.6 
1 . (a) 4 (c) 4 
8 . 24 
12 . The maximum order in S4 is 4; the maximum order in S6 is 6; the maximum order in 

Ss is 1 5 . 
1 4. In addition to the identity permutation, there are 1 5 products of two transpositions ,  

20 cycles of length 3 , and 24 cycles of length 5 . 
Section 3.7 
1 .  There are 3 different homomorphisms, given by the formulas ¢O ( [X ]6) == [0]9 , 
¢3 ( [X ]6) == [3X]9 , or ¢6 ( [X ]6) == [6X] 9 , defined for all [X]6 E Z6 . 

5 . For the given formula ¢, we have ¢ (G) == { I ,  4} and ker ¢ == { I , 4, 1 1 , 14 } . 
7. The formulas in  (a) and (c) define homomorphisms ; the formula in  (e) does not. 
1 7 . The normal subgroups of D4 are: D4 ; all three subgroups of order 4; {e , a2 } ;  and {e } .  
Section 3.8 
1 . The cosets of ( [3] ) in Z24 are 
[0] + ( [3] ) == { [O] , [3] , [6] , [9] , [ 1 2] , [ 1 5 ] , [ 1 8] , [2 1 ] } , 
[ 1 ] + ( [3] ) == { [ I ] , [4] , [7] ,  [ 10] , [ 1 3] , [ 1 6] , [ 1 9] , [22] } , and 
[2] + ( [3] ) == { [2] , [5] , [8] , [ 1 1 ] , [ 14] , [ 1 7] , [20] , [23] } . 

3 . The left cosets are {e , ab} , {a , a2b} , and {a2 , b} ; the right cosets are {e , ab} , {a , b} , and 
{a2 , a2b} . 

1 5 . If N is a proper, nontrivial normal subgroup of D4 , then the factor group D4/ N is 
isomorphic to either Z2 or Z2 x Z2 . 

1 7 . Z2 x Z2 . 

Chapter 4 

Section 4.1 
3 . f (x) == (2x2 + 3x + 1 ) (x - 1 ) + 2 
5 . (a) f (x) == (2x2 + 3x - 1 ) (x - 1 ) + 2 (c) f (x) == (x2 + x + 1 ) (x - 1 ) + 2 
1 9 . f (x)  == -4x3 + 27x2 - 4 1x + 3 
2 1 .  (b2 + 4b l + bo) % 
Section 4.2 
1 .  (a) f (x) == g (x) (x 3 + 3x2 - 2x + 1 ) + 9 (c) f (x) == g (x) (x4 - x3 + x2 - x + 1 ) 
3 . (a) gcd (f(x) , f' ex) )  == x - I  (c) gcd (f(x ) ,  f' ex) )  == 1 
5 . (a) gcd (x4 + x3 + x + 1 , x3 + x2 + x + 1 ) == x2 + 1 

(c) gcd (x5 + 4x4 + 6x3 + 6x2 + 5x + 2, x4 + 3x2 + 3x + 6) == x3 + 4x2 + 5x + 2 
7 . (a) x2 + 1 == 1 . (x4 + x3 + x + 1 ) + x . (x3 + x2 + x + 1 ) 
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(c) X3 +4x2 +5x+2 == 5 ·  (x5 +4x4 +6x3 +6x2+5x +2) + (2x + 1 ) ·  (x4 +3x2 +3x +6) 
12 . As a partial answer, the irreducible polynomials of degree :::; 4 are x , x + 1 ,  x2 + x + 1 ,  

x3 + x2 + 1 ,  x3 + x + 1 ,  x4 + x3 + x2 + x + 1 ,  x4 + x3 + 1 ,  and x4 + x + 1 .  
1 8 . (a) (a + bx) (e + dx) = (ae - bd) + (ad + be)x (mod x2 + 1 ) 

(c) (a + bx) (e + dx) = (ae + bd) + (ad + be + bd)x (mod x2 + x + 1 ) 
20. (a) q (x) == (a - bx) / (a2 + b2) , if a + bx 1= 0 (c) q (x) == (a + b) + bx , if a + bx 1= 0 
Section 4.3 
7. The mapping ¢ : R[x]/ (x2 + 1 ) � C defined by ¢ ( [a + bx]) == a + bi is an 

isomorphism. 
1 6 . If F is the field consisting of the 4 given matrices, then () : Z2 [X] / (x2 + x + 1 ) � F 

defined by () ([ � ! ] ) = [a + bx] is an isomorphism. 

17 . One possible irreducible cubic over Z2 is p(x) == x3 + x + 1 .  The elements of the ring 
Z2 [X ]/ (x3 + x + 1 ) correspond to quadratic polynomials over Z2 , and the identities 
necessary for multiplication are [x] [x2] == [x + 1 ] and [x2 ] [x2] == [x2 + x] . 

1 9. One possible irreducible cubic over Z3 is p (x) == x3 + 2x + 2. The identities necessary 
for multiplication are [x] [x2 ] == [x + 1 ] and [x2] [x2] == [x2 + x] . 

2 1 .  (a) [a + bx ]- 1 == [ (a/c) - (b/e)x ] , for e == a2 + b2 , if [a + bx] 1= [0] . 
(c) [x 2 - 2x + 1 ] - 1 == [3x 2 + 4 x + 5 ] (e) [x ] - 1 == [4 x + 4] 

23 . The set of congruences Zk [x ] / (x2 + 1 ) is a field for k == 3 , 7 , 1 1 . 
Section 4.4 
3 . (a) - 1 , 2 , -4, 5 . (c) - 1 2, -35 (e) 8 , 9 
5 . (a) Use p == 2. (c) Substitute x - I  and use p == 2. 
1 5 . We have the factorization x8 - 1 == (x - 1 ) (x + 1 ) (x2 + 1 ) (x4 + 1 ) , and x4 + 1 is 

irreducible over Q by Exercise 5 (a) .  

Chapter 5 

Section 5.1 
1 .  The set defined in (a) forms a subring, but the one defined in (c) does not. 
3 . The subsets defined in (a) and (c) form subrings ;  the one defined in (e) does not. 
1 0. (a) Let I == { I ,  2} , so that the associated ring R of all subsets of I consists of the 

elements I ,  a == { I } , b == {2} , and 0 . We have the following tables. 

+ 
o 
I 
a 
b 

o I 
o I 
I 0 
a b 
b a 

a b 
a b 
b a 
o I 
I 0 

o 
I 
a 
b 

o I a 
0 0 0  
o I a 
o a a 
o b 0 

b 
o 
b 
o 
b 

19 . (b) Units of Z4 EB Z9 : ( [ 1 ]4 , [ 1 ]9 ) , ( [3]4 , [ 1 ]9 ) , ( [ 1 ]4 , [2]9) , ( [3]4 , [2] 9) , ( [ 1 ]4 , [4]9) , 
( [3]4 , [4]9) , ( [ 1 ]4 , [5]9 ) , ( [3 ]4 , [5]9 ) , ( [ 1 ]4 , [7]9) , ( [3]4 , [7]9 ) , ( [ 1 ]4 , [8]9 ) , ( [3 ]4 , [8]9) . 
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Section 5.2 
1 3 . The two possible ring homomorphisms 7f1 and 7f2 from Z EB Z into Z are defined as 

follows, for all (m , n) E Z EB Z: 7f1 ((m , n)) == m and 7f2 ( (m , n)) == n . 
20. (a) Hint : With the notation of Exercise 1 0 of Section 5 . 1 ,  define ¢ : Z2 EB Z2 � R by 

¢ (O, O) == 0, ¢ ( I ,  0) == { I }  == a , ¢ (O, 1 ) == {2} == b, and ¢ ( I ,  1 ) == I . 
Section 5.3 
1 .  We have Z2 [X ]/ (x2 + 1 ) == { [OJ , [ 1 ] , [xJ , [x + I ] } , where [a ] == a + (x2 + 1 ) . 

[0] 
[ 1 ] 
[x] 

[x + 1 ] 

[0] [ 1 ] 
[0] [0] 
[0] [ 1 ] 
[0] [x ] 
[0] [x + 1 ] 

[x] 
[0) 
[x] 
[ 1 ] 

[x + 1 ] 

[x + 1 ] 
[0] 

[x + 1 ] 
[x + 1 ] 
[0] 

3. [a l x2 +bl x +cl ] [a2x2 +b2X+C2] == [ (5a l a2 - 2a l b2 +a l C2 -2b l a2 +b l b2 +c l a2)x2+ 
(a l a2 + al b2 + bl a2 + bl C2 + c l b2)X + (-6a l a2 + 3a l b2 + 3b l a2 + C I C2) ] 

1 3 . (b) nZ + mZ == dZ, where d == gcd (n , m ) 
1 6 . (b) The factor ring R / I is isomorphic to Z2 . 
Section 5.4 
7 . Q(D) � Q (-J2) 
9. Q(D) � Q(i) 

Section 6. 1 

Chapter 6 

1 .  (a) The number -J2 satisfies the polynomial f (x) == x2 - 2. 
(c) The number -J3 + v'5 satisfies f(x) == x4 - 1 6x2 + 4. 
(e) The number (- 1 + -J3i) /2 satisfies f (x) == x2 + x + 1 .  

5 . (b) We have u- l == - 1  - �u2 , and ( 1 + u)- l == 4 - u + u2 . 
Section 6.2 
1 .  (a) The number -J3 has degree 2 over Q. The set { I ,  -J3} is a basis for Q(-J3) over Q. 

(c) We have [Q (-J3 +,J7) : Q] == 4, and { I ,  u , u2 , u3 } is a basis for Q(-J3 +,J7) over 
Q, where u == -J3 + ,J7. 
(e) The degree of -J2 + 0 over Q is 6, and { I ,  0, �, -J2, -J20, -J2�} is a basis 
over Q. 

8. We have [Q(Jn) : Q] == 2, unless n is a square, in which case [Q(Jn) : Q] == 1 .  
Section 6.4 
1 .  (a) The splitting field for x2 - 2 over Q is Q( -J2) . 

(c) The splitting field for x4 + x2 - 6 over Q is Q( -J2, -J3i) . 
3 . (a) The splitting field for x2 + x + l over Z2 is Z2 (U ) , where u == x + (x2 + x + 1 ) . 

(c) The splitting field for x3 + x + l over Z2 is Z2 (U) , where u == x + (x3 + x + 1 ) . 
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5. The polynomial xP - x splits over Zp . 
Section 6.5 
3. The polynomial x4 + x + 1 is irreducible over Z2 , so Z2 [x] / (x4 + x + 1 ) is isomorphic 

to G F (24 ) .  The element x + (x4 + x + 1 ) has order 1 5 , and so it is a generator for the 
multiplicative group G F (24 ) x . 

9. If d == gcd (e , f) , then E n F == G F (pd) ,  the unique subfield of G F (pn ) with pd 

elements . 
Section 6.7 
2. (a) - == 1 (23 1) 997 (b) G!�) = - 1  

4. (a) (:) = { 
(c) (;) = { 

Section 7.1 

1 p = ± 1 (mod 5) 
- 1  p = ±2 (mod 5) 

1 p = ±1 , ±3, ±9 (mod 28) 
- 1  p = ±5 , ± 1 1 ,  ± 1 3  (mod 28) 

Chapter 7 

3 .  The automorphism group of Z2 x Z2 is isomorphic to S3 . 
5 .  The function ¢ : G � G defined by ¢ (g) == g- I for all g E G is an automorphism if 

and only if G is abelian. 
7 . We have Aut (S3 ) � S3 . 

Section 7.2 
8. If we represent Ds as { e ,  a ,  a2 , a3 , a4 , b, ab, a2b , a3b , a4b} , where as == b2 == e and 
ba == a- I b, then the conjugacy classes are {e } ,  {a , a4 } , {a2 , a3 } ,  {b , ab, a2b , a3b , a4b} .  

1 0. The conjugacy classes of A4 are { ( 1 ) } ,  { ( 1 ,  2 ,  3) , (2, 4 , 3) , ( 1 , 3 , 4) , ( 1 , 4 ,  2) } ,  
{ ( I , 3 ,  2) , (2, 3 , 4) , ( 1 , 4 , 3) , ( 1 , 2, 4) } ,  { ( I , 2) (3 , 4) , ( 1 , 4) (2, 3) , ( 1 , 3) (2, 4) } .  

1 2. (a) The conjugacy class equation for A4 is 1 2  == 1 + (4 + 4 + 3) . 
Section 7.4 
3. The centralizer of ( 1 , 2) (3 , 4) is a Sylow 2-subgroup, and the cyclic subgroup generated 

by ( 1 , 2 , 3) is a Sylow 3-subgroup. 
6 . The Sylow 3-subgroups of S4 are HI == ( ( 1 , 2 , 3) ) ,  H2 == ( ( 1 , 2 , 4) ) ,  H3 == ( ( 1 , 3 , 4) ) ,  

and H4 == ( (2 , 3 , 4) ) ,  with (3 , 4)H1 (3 , 4) == H2 , (2 , 4)HI (2 , 4) == H3 , and 
( 1 , 4)HI ( 1 , 4) == H4 . 

Section 7.5 
4. (a) Z;o � Z2 x Z4 (c) Z;o � Z4 X Z2 x Z3 

Section 7.6 
3. The groups Z4 and Z2 x Z2 provide an example. 

Section 7.7 
2. If n � 5, then An is the only proper nontrivial normal subgroup of Sn . 
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Chapter 8 

Section 8. 1 
2. The field GF (23 ) can be described as {a, 1 ,  a, a + 1 ,  a2 , a2 + 1 ,  a2 + a, a2 + a + I } 

with multiplication given by a3 == a + 1 .  The set { I , a, a2 } is a basis for G F (23 ) over 
GF (2) . The Galois group Gal (GF (23 )/ GF (2» is cyclic of order 3, generated by () ,  
where () (x ) == x2 for all x E G F (23 ) .  

4 .  I n  Example 8 . 1 .2, { x E Q(,J2" + ,j3) I ()2 (X) == x } == Q(,j3) .  
Section 8.2 
7. The element w + � is a primitive element for the extension Q(w,  �) of Q. 

Section 8.3 
4. We have Gal (Q(,j3, ,J2"i)/Q) "-' Z2 x Z2 . 

Section 8.5 
1 .  (a) <P8 == x4 + 1 (c) <P I S == x8 - x 7 + xS - x4 + x3 - x + 1 

Section 8.6 
3 .  The Galois group of xS - x - I over Q is Ss . 

Chapter 9 

Section 9.2 
1 .  (a) The greatest common divisor is xy + 1 .  

Section 9.3 
1 .  The primes 3 ,  7, 1 1 ,  1 9  are irreducible, since they are congruent to 3 modulo 4. We 

have 2 == ( 1  + i ) ( 1  - i ) ,  5 == (2 + i ) (2 - i ) ,  1 3  == (2 + 3i ) (2 - 3i ) ,  1 7  == (4 + i ) (4 - i ) .  
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SymeS) symmetric group, 93 
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[F : K] degree of F over K, 277 
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Aut (G) group of automorphisms of G,  320 
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SLn (F) special linear group over F, 358 

PSLn (F) projective special linear group over F, 358  

Gal (F / K) Galois group of F over K, 367 

FG subfield fixed by G,  376 

I + J  sum of ideals, 4 1 1 

E element of, 433 
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n intersection of sets , 433 
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A complement of the set A , 434 

� discriminant, 450 
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GREEK ALPHABET 

alpha ex A 
beta f3 B 
gamma y r 
delta 8 � 
epsi lon E , c E 
zeta � Z 
eta 17 H 
theta () e 
i ota I 
kappa K K 
lambda A A 
mu /h M 
nu  v N 
X l � � � 
omi cron 0 0 
pi 7T n 
rho p P 

s l gma (5 b 
tau r T 
ups i lon v Y 
phi c/J , cp  <I> 
chi X X 
ps i 1/f \II 
omega w Q 
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associate, of an element, 4 10 
associative law 

for congruence classes , 37 
for fields , 1 8 1  
for functions, 54 
for groups , 9 1 
for integers , 439 
for polynomials , 1 86 
for rings, 225 

associative operation, 89 

automorphism 
Frobenius, 370 
inner, 320 
of a group, 320 
of a ring, 238 

Azumaya, xii 

base field, 270 
basis, of a vector space, 460 
biconditional, xvii 
bijection, 55 
bijective function, 55 
binary operation, 89 
binomial 

coefficient, xix 
theorem, xx, 444 

Boolean ring, 235 
Burnside, 3 1 6 
Burnside 's theorem, 328 , 356 

cancellation law 
for fields , 1 83 
for groups , 95 
for rings, 226 

Cardano, xxii , 22 1 
Cartesian product, 49, 435 
casting out nines , 34 
Cauchy, 328, 365 
Cauchy sequence, 438 
Cauchy 's theorem, 328, 335 
Cayley, 1 77 
Cayley's theorem, 1 42, 1 60 
center 

of a group, 1 1 4, 321 
of a p-group, 328 
of the symmetric group, 1 5 1  

centralizer, of an element, 1 1 4, 325 
characteristic, of a ring, 248 
characteristic subgroup, 356 
characteristic zero, 248 
Chevalier, 366 
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Chinese remainder theorem, 3 1  
for rings, 420 

circle over F, 285 
circular relation, 70 
class, 

congruence, 35 , 98 , 203 
conjugacy, 324 
equivalence, 63 

class equation, 327 ff. 
closure 

for integers , 439 
in a field, 1 8 1  
in a group, 9 1  
in a ring, 225 
under addition, 6 

codomain of a function, 50 
coefficient 

binomial, xix 
of a polynomial, 1 84, 228 

coefficient ring, 228 
commutative law 

for congruence classes, 37 
for fields, 1 8 1  
for groups , 92 
for integers, 439 
for polynomials, 1 86 
for rings , 225 

commutative ring, 225 
COmlTIutator, 35 1 
commutator subgroup, 35 1 
commuting permutations , 77 
companion matrix, 294 
complement, of a set, 434 
complex conjugate, 2 1 7  
complex numbers , 49, 207 , 445 
complex root of unity, 2 1 6  
composite number, 1 6  
composition, of functions, 53 
composition factor, 353 
composition series , 353 
conclusion, xvii 
conditional expression, xvii 
congruence 

linear, 28 

modulo n, 25 , 98 
of polynomials, 203 

congruence class 
modulo n, 98 
of integers , 35 
of polynomials , 203 

conjugacy class, 324 
trivial, 324 

conjugacy class equation, 327 ff. 
conjugate 

of a complex number, 2 1 7  
of a group element, 323 
of a subfield, 380 
of a subgroup, 323 

constant polynomial, 1 84, 228 
constructible 

number, 283 
polygon, 288, 3 1 4, 395 

content, of a polynomial , 2 1 3  
contrapositive, xvii 
converse, x VB 
convolution product, 306 
correspondence, one-to-one, 55 
coset 

left, 1 65 
right, 1 65 

criterion, of Eisenstein, 2 14, 246 
cycle, 74 
cycles, disjoint, 76 
cyclic 

group, 1 07 ,  1 35ff. 
permutation, 74 
subgroup, 107 

cyclotomic equation, 3 1 4 
cyclotomic polynomial, 392 ff. 

D '  Alembert, xxii , 2 1 6  
Dedekind, 408 ,  436 
degree 

of a polynomial , 1 84, 228 
of an algebraic element, 27 1 
of an element, 408 
of an extension field, 277 

del Ferro, xxi , 22 1 
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DeMoivre's theorem, 446 
DeMorgan's laws , 434 
derivation, 267 
derivative, formal , 372 
derived subgroup, 35 1 
Descartes, 222, 456 
determinant, 1 00 

Vandermonde, 39 1 
diagram, 

of divisors , 20 
of subgroups, 1 37 

difference, of sets , 434 
dihedral group, 1 47 , 340 
dimension, of a vector space, 460 
Diophantine equation, 42 1 ff. 
Diophantus, 42 1 
direct product, of groups , 1 1 8 
direct proof, x vii 
direct sum 

of subgroups , 342 
of rings, 247 

discriminant 
of a cubic, 45 1 
of a quadratic, 450 

disjoint cycles, 76 
Disquisitiones Arithmeticae, 46, 307 
distinct solutions modulo n , 28 
distributive law 

for congruence classes , 37 
for fields, 1 20, 1 8 1  
for integers , 439 
for polynomials ,  1 86 
for rings, 225 

divisible, by an integer, 4 
division algorithm 

for integers , 4 
for polynomials, 1 93 

division ring, 395 
divisor(s) 

diagram, 20 
greatest common, 7, 2 1 2, 41 1 
in a ring, 4 1 0 
of a polynomial, 1 87 
of an integer, 4 

divisor of zero 
in a ring, 23 1 
modulo n, 38 

domain 
Euclidean, 409 
integral, 232 
principal ideal , 252, 408 ff. 
unique factorization, 4 1 2, 4 1 5 ff. 

domain of a function, 50 
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Eisenstein 's irreducibility criterion, 2 14, 246 
element 

algebraic, 27 1 ff. 
conjugate, 323 
idempotent, 44, 236 
identity, 89, 9 1 , 1 8 1 ,  226 
inverse, 89, 9 1 ,  1 82, 226 
invertible, 38 , 23 1 
irreducible, 4 1 2ff. 
nilpotent, 44, 234 
of a set, 433 
of finite order, 1 09 
of infini te order, 1 09 
prime, 4 1 3 
primitive, 374 
transcendental , 27 1 
unit, 38 , 23 1 

empty set, vi, 433 
equation 

conjugacy class , 327 ff. 
Diophantine, 42 1 ff. 

equivalence class , 63 
equivalence relation, 62 ff. 
Eratosthenes, 1 7 
Euclid, 3 , 20 
Euclid 's lemma, 1 7 
Euclidean algorithm 

for integers , 9 
for polynomials ,  1 97 
matrix form, 1 1  

Euclidean domain, 409 
Euler, 46, 307, 308 , 3 14, 365 
Euler's criterion, 308 
Euler' s phi-function, 40, 1 38 
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Euler's theorem, 4 1 , 1 1 2 
evaluation mapping, 24 1 ,  258 
even permutation, 83, 1 49 
exponent, of a group, 1 39, 248 
extension 

algebraic, 280.if, 373 
field, 203 , 270.if, 367 ff. 
finite, 277.if, 374 
normal, 377 ff. 
radical, 386 ff. 
separable, 373 , 378 
simple, 273 , 299 

extension field, 203 , 270.if, 367 ff. 
degree of, 277 

factor 
of a composition series, 353 
of a polynomial , 1 87 
of an integer, 4 

factor group, 1 69 
factor ring, 254 
factor set, 63 
factorization theorem 

for integers , 1 8  
for polynomials, 199 

Feit, 3 1 6 
Fermat, 46, 222, 3 14, 423 
Fermat prime, 395 
Fermat's last theorem, xxii , 46 
Fermat's little theorem, 42 
Ferrari, 222, 455 
Fibonacci , 22 1 
Fibonacci sequence, 443 
field, 1 20, 1 8 1  

characteristic of, 248 
extension, 203 , 270.if, 367 ff. 
Galois ,  297 fJ, 370 
of algebraic numbers , 28 1 
of complex numbers , 207 , 445 
of fractions, 265 
of quotients , 265 
of rational functions, 266 
perfect, 373 
skew, 395 

splitting, 289 
field isomorphism, 207 
finite 

abelian group, 342 ff. 
dimension, 460 

INDEX 

extension field, 203 , 270.if, 367 ff. 
group, 98 
order, 1 09 

first isomorphism theorem, for groups , 3 1 7 
first Sylow theorem, 338 
fixed subfield, 376 
fixed subset, 332 
Fourier, 365 
Frobenius, 3 1 5  
Frobenius automorphism, 370 
Frobenius group, 322, 356, 403 
function(s), 40, 50 

affine, 1 0 1 
codomain of, 50 
composite, 53 
domain of, 50 
graph of, 5 1  
identity, 57 
image of, 50 
inclusion, 5 1  
injective, 55 
inverse, 57 
multiplicative, 302 
one-to-one, 55 
onto , 55 
rational , 266 
surjective, 55 

fundamental theorem of 
algebra, 2 1 6, 384 
arithmetic , 1 8  
finite abelian groups , 344 
Galois theory, 379 
group homomorphisms, 1 72 
ring homomorphisms , 244 

G-fixed subfield, 376 
G-invariant subfield, 376 
Galois ,  xxii, 87, 365 
Galois field, 297 fJ, 370 
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Galois group 
of an equation, 367 
of an extension field, 367 
of a finite field, 370 

Galois theory, fundamental theorem of, 379 
Gauss, xxii, 25 , 46, 2 1 6, 305 , 307, 3 1 4, 423 
Gauss's lemma, 2 14 
Gaussian integers, 230, 26 1 ,  408 ff. 
Gelfand, 276 
general linear group, 100, 120 
generator, of a cyclic group, 107 
geometric mean, 444 
Goldbach, 45 
graph, of a function, 5 1  
greatest common divisor 

in a ring, 4 1 1 
of integers, 7, 2 1 2 
of polynomials, 1 96 

group(s), 9 1  
abelian, 96, 342 ff. 
action of, 33 1 ff. 
alternating, 149, 357 ff, 469 
center of, 1 14, 32 1 
cyclic , 107 , 1 35 ff. 
dihedral, 147 , 340 
direct product of, 1 1 8 
exponent of, 1 39 , 248 
factor, 1 69 
finite, 98 
finite abelian, 342 ff. 
Frobenius, 322, 356, 403 
Galois, 367 
general linear, 100, 1 20 
Klein four-group, 1 19 
Lorentz, 1 24 
monster, 3 1 6 
of integers modulo n ,  98 
of permutations, 142 
of quaternions, 1 22, 349 
of units modulo n, 99, 346 ff. 
order of, 98 
projective special linear, 358 ff. 
simple, 173 , 357 ff. 
solvable, 350 

special linear, 1 04, 358 ff. 
symmetric, 93, 326, 357 
underlying, of a ring, 225 

group action, 33 1 ff. 
transitive, 337 , 398 

group automorphism, 320 
group homomorphism, 1 54 
group isomorphism, 1 26 

Hermite, 27 1 
Herstein, xi 
Hilbert, 268 
Hilbert basis theorem, 42 1 
holomorph, 406 
homomorphism 

of groups, 1 54 
of rings, 238 

hypothesis, xvii 

ideal , 25 1 
maximal, 256 
prime, 256 
principal, 252 
trivial, 25 1 

idempotent element 
in a ring, 236 
modulo n, 44 

identity element, 89, 9 1 ,  1 8 1 ,  226 
identity function, 57 
image 

of a function, 50 
of a set, 5 1  

inclusion function, 5 1  
indeterminate, 1 84 
index 

of a coefficient, 1 84 
of a subgroup, 1 65 

indirect proof, xvii 
induced operation, 1 03 
induction, principle of, 44 1 
infinite group, 98 
infini te order, 109 
injection, 55 
injective function, 55 
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inner automorphism, of a group, 320 
insolvability of the quintic, 39 1 
integer(s), 3 , 438 

Gaussian, 230, 26 1 ,  408 ff. 
modulo n ,  35 
square, 23 
square-free, 24 

integral domain, 232 
interpolation formula, of Lagrange, 190 
intersection, of sets, 433 
invariant subfield, 376 
inverse 

additive, 37, 1 82 
multiplicative, 38 , 1 82, 23 1 

inverse element, 89, 9 1 ,  1 82, 226 
inverse function, 57 
inverse image, 68 
invertible element, 38 

i n  a ring, 23 1 
irreducibility criterion, 2 14, 246 
irreducible element, 4 12 ff. 
irreducible polynomial , 1 98 , 30 1 ff. 
isomorphic groups, 1 26 
isomorphism 

of fields, 207 
of groups, 1 26 
of rings, 238 

isomorphism theorem 
first, 3 1 7 
second, 3 1 8  

Jordan, 177 
Jordan-Holder theorem, 354 

kernel 
of a group homomorphism, 1 57 
of a ring homomorphism, 242 

Kbayyam, xxi, 22 1 
Klein four-group, 1 1 9 
Kronecke� 177 , 3 1 5 
Kronecker's theorem, 207, 275 , 289, 29 1 
kth derived subgroup, 352 
Kummer, 407 

INDEX 

Lagrange, 24, 45 , 307, 365 
Lagrange interpolation formula, 1 90 
Lagrange's theorem, 1 1 0 
Lame, 407 
leading coefficient, 1 84, 228 
least common multiple, 2 1 
left coset, 1 65 
Legendre, 307 
Legendre symbol, 307 
lemma of 

Artin, 376 
Euclid, 17 
Gauss, 2 14 

length, of a composition series, 353 
Lindemann, 27 1 
line 

in the projective plane, 7 1  
over F ,  285 

linear combination 
of integers, 8 
of vectors, 459 

linear congruence, 28 
linear dependence, 459 
linear independence, 459 
linear transformation, 1 54 
Liouville, 366 
Lorentz group, 1 24 

mathematical induction, 44 1 
matrix 

companion, 294 
scalar, 1 90 
Vandermonde, 388 

matrix multiplication, 1 20 
maximal ideal, 256 
mean 

arithmetic, 444 
geometric , 444 

Mersenne prime, 306 
minimal polynomial, 27 1 
Mobius function, 302 
modulus, 26, 98 
monic polynomial, 1 84 

irreducible, 304 
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monster group, 3 1 6 
motion, rigid, 143 
mUltiple 

of an integer, 4 
of an element in a ring, 4 10  

multiple root, 200, 372 
multiplication, of matrices, 1 20 
multiplicative function, 302 
multiplicative identity 

of a field, 1 8 1  
of a ring, 226 

multiplicative inverse 
in a field, 1 82 
in a group, 9 1  
in a ring, 23 1 
modulo n ,  38  

multiplicative order modulo n ,  43 
multiplicity, of a root, 200, 372 

natural numbers , 3, 436 
natural projection, 68, 1 69 
nilpotent element 

in a ring, 234 
modulo n, 44 

Noether, 268, 4 1 5  
Noetherian ring, 4 1 5  
nontrivial subgroup, 1 05 
norm, of an element, 408 
normal extension, 377 ff. 
normal subgroup, 1 57 
normalizer, of a subgroup, 325 
nth root of unity, 2 1 6, 387 

primitive, 2 1 6, 387 
null set, vi , 433 
number(s) 

algebraic, 28 1 
complex, 49, 207 , 445 
composite, 1 6  
constructible, 283 
Fibonacci, 443 
natural, 3, 436 
perfect, 1 3 ,  306 
prime, 1 6  
rational, 49, 64, 438 

real, 49, 438 

odd permutation, 83 ,  149 
one-to-one 

correspondence, 55 
function, 55 

onto function, 55 
operation 

associative, 89 
binary, 89 
commutative, 9 1  
induced, 103 

orbit, 332 
order 

additive, 33 
finite, 109 
infinite, 109 
multiplicative, 43 
of a group, 98 
of a group element, 109 
of a permutation, 80 
prime power, 328 

ordered pair, 434 

p-group, 328 
partial fractions, 220 
partition, of a set, 66 
Pascal 's triangle, xx 
Peano, 436 
Peano postulates, 436 
pentagon, regular, 288, 3 14 
perfect 

field, 373 
number, 1 3 , 306 

permutation(s), 72 
commuting, 77 
cyclic, 74 
even 83 , 149 
odd, 83 ,  149 
order of, 80 

permutation group, 142 
permutation multiplication, 72 
phi-function, 40, 1 3 8  
plane, projective, 7 1  
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point, in the projective plane, 7 1  
polygon, constructible, 288, 3 14, 395 
polynomial(s), 1 84, 228 

constant, 1 84, 228 
coefficient of, 1 84, 228 
cyclotomic, 392 ff. 
degree of, 1 84, 228 
derivative of, 372 
Galois group of, 367 
irreducible, 1 98 , 30 1 ff. 
leading coefficient of, 1 84, 288 
minimal, 27 1 
monic, 1 84 
monic irreducible, 304 
over a ring, 228 
primitive, 2 1 2, 4 1 6  
reducible, 198 
relatively prime, 1 96 
ring of, 228 
root of, 1 89 
separable, 373 
splitting field of, 289 

polynomial function, 1 85 
positive real numbers , 52 
postulates, of Peano, 436 
prime(s) 

element, in a ring, 4 1 3  
factorization, 1 8  
Fermat, 395 
ideal , 256 
Mersenne, 306 
number, 16  
sub field, 295 
twin, 45 

primitive 
element, 374 
root of unity, 2 1 6, 306, 387 ,  450 
polynomial, 2 1 2, 4 1 6  
root, 348 

principal ideal, 252 
principal ideal domain, 252, 408 ff. 
principle 

of induction, 44 1 
of well-ordering, 4, 437 

product 
Cartesian, 435 
direct, 1 1 8 
of permutations, 72 
of subgroups, 1 1 7 

projection, natural, 68, 1 69 
projective plane, 7 1  

INDEX 

projective special linear group, 358 ff. 
proof 

by contradiction, xvii 
direct, x vii 
indirect, xvii 

proper subset, 433 
Pythagorean triple, 24 

quadratic 
nonresidue, 307 
reciprocity, 307 ff. 
residue, 307 

quaternion group, 1 22, 349 
quintic, insolvability of, 39 1 
quotien� 6, 1 88 , 193 
quotient field, 265 

radical extension, 386 ff. 
radicals, solvability by, xxi , 386 
range, of a function, 50 
rational function, 266 
rational numbers, 49, 64, 438 
rational root theorem, 2 1 1 
real numbers, 49, 438 
reciprocity, quadratic , 307 ff. 
reducible polynomial , 1 98 
reduction modulo n ,  246 
reflexive law, 62 
regular 

heptagon , 288 
pentagon, 288, 3 1 4 

relation 
circular, 70 
equivalence, 62 ff 

relativel y prime 
elements, 4 1 6  
integers , 1 5  
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polynomials, 1 96 
remainder, 6, 1 88 , 1 93 
remainder theorem, 1 88 

Chinese, 3 1 ,  420 
representative, of a congruence class, 35 
residue, quadratic, 307 
resolvent equation, 452, 456 
right coset, 1 65 
rigid motion, 143 
ring(s), 226 

Boolean, 235 
coefficient, 228 
characteristic of, 248 
commutative, 225 
direct sum of, 247 
division, 395 
factor, 254 
Noetherian, 4 1 5  
of Gaussian integers , 230, 26 1 ,  408 
of polynomials , 228 

ring automorphism, 238 
ring homomorphism, 238 
ring isomorphism, 238 
root 

multiplicity of, 372 
of a polynomial , 1 89, 245 
of unity, 2 1 6, 387 , 446 
primitive, 348 
rational, 2 1 1 
simple, 372 

root of unity, primitive, 387 ,  450 
Ruffini , xxii, 365 

scalar matrix, 1 90 
scalar multiplication, 458 
Schneider, 276 
second isomorphism theorem, 3 1 8 
second Sylow theorem, 339 
separable extension, 373, 378 
separable polynomial, 373 
sequence, Cauchy, 438 
set(s) 

complement of, 434 
difference of, 434 

empty, vi , 433 
intersection of, 433 
union of, 434 

sieve of Eratosthenes, 17  
simple 

extension field, 273 ,  299 
group, 1 73 ,  357 ff. 
root, 372 

simplicity 
of the alternating group, 358 
of P SL2 (F) ,  36 1 

skew field, 372 
Small, xii 
solvable by radicals, xxi , 269 , 386 
solvable group, 350 
spanning set, 459 
special linear group, 1 04, 358 ff. 
splitting field, 289 
square (integer) , 23 
square-free integer, 24 
stabilizer, 332 
subfield, 203 , 229, 270 

conjugate, 380 
fixed, 376 
G-fixed, 376 
G-invariant, 376 
invariant, 376 
prime, 295 

subgroup, 1 03 
characteristic, 356 
commutator, 35 1 
conjugate, 323 
cyclic , 107 
derived, 35 1 
generated by a set, 1 22 
nontrivial, 105 
normal, 1 57 
Sylow, 338 
transitive, 337 ,  398 
trivial, 105 

subgroup diagram, 1 37 
subring, 229 
subset, 433 

proper, 433 
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subspace, 458 
successor function, 436 
sum 

direct, 247, 342 
of ideals, 4 1 1 
of subgroups, 1 1 7 

surjection, 55 
surjective function, 55 
Sylow, 3 1 5 , 338 
Sylow p-subgroup, 338 
Sylow's theorems, 338 
symmetric group, 93 , 326, 357 
symmetric law, 62 

Tartaglia, 22 1 
Taylor, 46 
theorem 

binomial, 444 
first isomorphism, 3 17 
of Burnside, 328, 356 
of Cauchy, 328, 335 
of Cayley, 142, 1 60 
of DeMoivre, 446 
of Euler, 4 1 ,  1 1 2 
of Fermat, 42 
of Hilbert, 42 1 
of Jordan and Holder, 354 
of Kronecker, 207, 275 , 289, 29 1 
of Lagrange, 1 1 0 
of Sylow, 338 
of Wilson, 44, 295 
primitive element, 374 
remainder, 1 88 
second isomorphism, 3 1 8 
unique factorization of integers, 1 8  
unique factorization of polynomials , 199 

third Sylow theorem, 339 
tilde, 62 
Thompson, 3 1 6 
totient function, 40 
transcendental element, 27 1 
transitive 

action, 337, 398 
law, 62 

subgroup, 337, 398 
transposition, 8 1  
trichotomy, 439 
trisection of an angle, 288 
trivial 

conjugacy class, 324 
ideal, 25 1 
subgroup, 105 

twin primes, 45 

underlying group, of a ring, 225 
union, of sets, 378 

INDEX 

unique factorization domain, 4 12, 4 1 5 ff. 
unique factorization 

of polynomials, 1 99 
of integers, 1 8  

unites) 
modulo n, 38 , 99, 346ff. 
of a ring, 23 1 

Vandermonde determinant, 39 1 
Vandermonde matrix, 388 
vector space, 458 

basis of, 460 
dimension of, 460 
spanning set for, 459 

Viete, 452 

Weber, 177 
Wedderburn, 395 
well-defined function, 52 
well-ordering principle, 4, 437 
Wiles, 46 
Wilson 's theorem, 44, 295 
word, in a group, 1 22 

zero divisor 
in a ring, 23 1 
modulo n ,  38 

zero element 
in an abelian group, 96 
of a ring, 226 

zero ring, 226 
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