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Foreword
	

Vinton	G.	Cerf
	

The	 Internet	has	been	around	 in	concept	 since	1973	and	 in	operation	 since
1983.	Its	usage	exploded	when	the	World	Wide	Web	application	became	broadly
available	 with	 the	 arrival	 of	 the	 commercial	 Netscape	 Navigator	 browser	 and
server	 applications	 around	 1994.	 Since	 that	 time,	 an	 avalanche	 of	 content	 and
new	 applications	 have	 poured	 into	 the	 Internet,	 which	 has	 grown	 to	 include
nearly	 2	 billion	 people	 and	 possibly	 that	many	 servers,	 laptops,	 desktops,	 and
mobile	units.	But	the	system	is	about	to	experience	yet	another	explosive	period
of	growth	as	smart	devices	become	a	part	of	the	Internet	environment.	The	trend
has	already	become	visible	as	sensor	networks	connect	to	the	Internet	along	with
some	fraction	of	the	4	billion	mobiles	thought	to	be	in	use	around	the	world.	To
these	devices	 appliances	of	 all	 kinds	 (home,	office,	portable,	 fixed	and	mobile
sensors,	etc.)	will	be	added.

What	will	 this	 “Internet	 of	 Things”	 be	 like?	 For	 one	 thing,	many	 of	 these
“Internet-enabled”	 devices	 will	 be	 using	 the	 relatively	 new	 IPv6	 protocol	 for
access.	 IPv6	was	 standardized	 by	 the	 Internet	 Engineering	 Task	 Force	 around
1996,	but	implementation	has	been	sparse.	It	is	expected	to	accelerate,	partly	to
accommodate	the	huge	number	of	potential	devices	that	will	be	connected	to	the
Internet	 and	 also	 to	 cope	with	 the	 anticipated	 exhaustion	 of	 the	 original	 IPv4
address	 space.	 The	 latter	 provided	 for	 approximately	 4.3	 billion	 unique
terminations.	A	combination	of	relatively	sparse	assignment	practices	and	reuse
of	 “private	 address	 space”	 through	Network	Address	Translation	 (NAT)	boxes
has	allowed	operation	of	the	limited	IPv4	address	space	through	the	present,	but
it	is	expected	that	the	last	of	the	IPv4	addresses	will	be	allocated	by	the	Internet
Corporation	for	Assigned	Names	and	Numbers	by	mid-2011,	and	 the	Regional
Internet	Registries	 that	 assign	 address	 space	 to	 Internet	 Service	 Providers	will
exhaust	 their	 supplies	not	 long	 thereafter.	There	are	340	 trillion	 trillion	 trillion



IPv6	addresses,	and	it	is	hoped	that	this	will	suffice	for	the	foreseeable	future.
Many	 of	 the	 “things”	 on	 the	 Internet	 will	 be	 appliances	 that	 can	 accept

control	 inputs	 remotely	 or	 can	 report	 status	 information	 remotely.	 Sensor
systems	are	good	examples.	I	have	a	monitoring	system	in	my	home	that	tracks
temperature,	 humidity,	 and	 light	 levels	 in	 every	 room	 in	 the	 house	 every	 5
minutes.	This	information	is	captured	and	stored	in	a	local	database	at	home	but
is	 accessible	 remotely	 from	anywhere	on	 the	 Internet.	One	can	easily	 envision
security	systems	and	a	wide	range	of	appliances	that	might	be	able	to	report	their
status	 and	 accept	 control	 information.	 The	 Smart	 Grid	 project	 in	 the	 United
States	 is	 prototypical	 of	 the	 ideas	 behind	 the	 Internet	 of	Things.	 For	 example,
devices	can	not	only	report	their	energy	usage	but	also	be	provided	by	users,	or
others	 on	 their	 behalf,	with	 profiles	 to	moderate	 energy	usage	 during	 times	 of
peak	loads	in	exchange	for	reduced	charges.

How	often	have	you	gone	off	on	a	trip,	only	to	wonder	whether	a	particular
appliance	was	on	or	off,	a	light	switch	was	set	on	or	off,	or	some	other	home	or
office	 device	was	 properly	 configured	 for	 your	 absence?	The	Smart	Grid	may
provide	a	means	to	answer	such	questions	remotely	and	securely	and	even	allow
remote	interaction.

Standards	to	permit	the	interoperation	of	smart,	Internet-enabled	devices	will
also	 be	 essential.	 Such	 standards	 will	 also	 promote	 competitive	 provision	 of
devices	and	services	associated	with	them.	Such	potentially	large-scale	systems
will	make	demands	on	designers	 to	cope	with	billions	of	devices	 interacting	 in
various	 subsets	 with	 each	 other.	 Emergent	 properties	 may	 well	 appear
unexpectedly.	 Security	 and	 strong	 authentication	 of	 identity	 and	 authority	will
play	key	roles	in	making	such	systems	safe	to	use.

Our	ability	 to	model,	understand,	 and	 successfully	operate	 such	 large-scale
infrastructure	 will	 be	 challenged,	 and	 within	 that	 challenge	 there	 may	 dwell
many	Ph.D.	dissertations	as	well	as	new	and	unexpected	businesses.	The	law	and
policy	will	 not	 escape	 the	 impact	 of	 this	 gigantic	 network	with	 its	 billions	 of
components.	 The	 potential	 for	 mischief,	 interference,	 and	 even	 significant
infrastructure	failures	(deliberate	or	accidental)	will	be	made	even	more	complex
by	 the	 global	 scope	 of	 the	 Internet	 and	 its	 connections.	 New	 frameworks	 for
dealing	 with	 liability,	 risk,	 vulnerability,	 and	 criminal	 activity	 will	 be	 needed
along	with	multilateral	agreements	to	secure	the	benefits	and	protect	users	from
harm.

The	authors	of	this	book	offer	a	rich	and	thoughtful	exploration	of	this	new
Internet	canvas	on	which	the	twenty-first	century	will	unfold.	Predictions	will	be
hard;	we	are	all	just	going	to	have	to	live	through	it	to	find	out	what	happens!

Vinton	G.	Cerf
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Preface
	

The	 digital	 revolution	 of	 the	 21st	 century	will	 be	much,	much	 larger	 than
previous	digital	revolutions.	During	the	20th	century,	 the	world	underwent	 two
major	 digital	 revolutions:	 computers	were	 developed	 and	 found	 their	way	 into
offices	 and	 homes,	 and	 the	 Internet	 interconnected	 the	 computers	 and
fundamentally	changed	the	way	we	interact	with	the	digital	world.

We	now	stand	before	the	digital	revolution	of	the	21st	century:	smart	objects
–	 the	 Internet	of	Things	–	 that	 interconnect	 the	digital	world	with	 the	physical
world.	 Industry	 predicts	 the	 number	 of	 smart	 objects	 to	 be	 counted	 in	 billions
within	the	next	ten	years.	Over	the	course	of	the	forthcoming	decade,	we	will	see
this	 fundamentally	 change	 the	 way	 we	 interact	 with	 both	 the	 digital	 and	 the
physical	world.

A	 smart	 object	 is	 a	 small	 micro-electronic	 device	 that	 consists	 of	 a
communication	device,	typically	a	low-power	radio,	a	small	microprocessor,	and
a	sensor	or	actuator.	The	sensors	give	the	smart	objects	 the	ability	 to	sense	the
physical	 world,	 for	 example	 by	 measuring	 its	 temperature.	 Actuators	 make	 it
possible	 for	 the	 smart	 objects	 to	 change	 the	 physical	 world,	 for	 example	 by
controlling	an	engine.

We	 already	 see	 a	 number	 of	 emerging	 applications	 of	 smart	 objects.	 The
power	grid	is	about	to	be	equipped	with	sophisticated	smart	objects	networks	to
help	better	manage	 the	grid,	handle	 renewable	sources	of	energy,	and	recharge
electric	 cars.	 Office	 buildings	 can	 become	 more	 energy-efficient	 with
temperature	 sensors	 that	monitor	 the	actual	 temperature	 in	 the	building	 so	 that
controllable	 radiators	 and	 air	 conditioners	 can	 better	 control	 the	 temperature.
Cities	 will	 support	 intelligent	 transport	 systems,	 environmental	 monitoring,
energy	management,	and	even	social	networking	using	smart	objects.	Freighter
containers	 can	 measure	 the	 climate	 inside	 the	 containers	 to	 make	 sure	 that
foodstuffs	are	kept	in	a	good	environment.

But	we	are	only	beginning	to	scratch	the	surface	of	what	smart	objects	can
do;	the	emerging	applications	we	see	today	are	just	the	start.	The	true	innovative
power	of	smart	objects	comes	from	their	interconnection.	When	innovators	can
begin	 to	 easily	 and	 rapidly	 build	 applications	 and	 systems	 that	 connect	 the
physical	and	the	digital	world,	a	new	level	of	serendipity	begins.



The	 network	 architecture	 for	 the	 smart	 objects	must	 be	 extremely	 open	 to
future	 innovation.	 We	 cannot	 possibly	 know	 what	 the	 future	 holds	 for	 smart
objects,	as	 the	 field	 is	 still	 in	 its	 infancy.	 Innovation	must	be	allowed	 to	occur
both	 in	 how	we	use	 smart	 objects	 and	 in	 the	way	 the	 smart	 object	 technology
itself	 is	 designed.	 The	 overall	 architecture	 is	 the	 fundament	 and	 must	 be
extremely	flexible	to	support	new	applications	in	the	future,	just	like	the	Internet
did	over	that	past	three	decades.

So	 far,	 however,	 smart	 objects	 have	 largely	 been	 isolated	 islands	 whose
interconnection	 has	 been	 made	 difficult	 because	 of	 a	 number	 of	 proprietary
solutions,	 usually	 optimized	 for	 one	 specific	 application,	 that	 have	 not	 been
possible	to	integrate.

Objectives
In	 this	 book,	 we	 explain	 why	 the	 Internet	 Protocol,	 IP,	 is	 the	 protocol	 of

choice	 for	 smart	 object	 networks,	 providing	 an	 open	 and	 standard	 based
technology	 for	 the	 endless	 number	 of	 applications	 to	 come.	 IP	 has	 already
successfully	 showed	 that	 it	 can	 interconnect	 billions	 of	 digital	 systems	 on	 the
global	 Internet	 and	 in	 private	 IP	 networks.	 Once	 smart	 objects	 can	 be	 easily
interconnected,	a	whole	new	class	of	smart	object	systems	can	begin	to	evolve.
Developers	 can	 build	 systems	 that	 integrate	 information	 physical-world
phenomena	with	digital	information	from	on-line	sources.	Businesses	can	make
use	of	physical	information	both	to	make	their	own	business	more	efficient	but
also	to	explore	completely	new	business	opportunities.

The	 interconnection	 of	 smart	 objects	 is	 not	 without	 significant	 technical
challenges.	 First,	 the	 sheer	 number	 of	 potential	 devices	 that	 can	 be	 connected
provides	 challenges	 for	 communication	 mechanisms,	 routing	 protocols,	 and
communication	 architecture.	 Deployments	 of	 hundreds	 or	 thousands	 of	 smart
objects	 are	 not	 uncommon.	 Second,	 the	 requirement	 for	 low-power	 operation
affects	 every	 layer	 of	 the	 system,	 from	 hardware	 through	 software	 and	 to	 the
data	 management	 architectures.	 To	 meet	 lifetime	 requirements,	 smart	 objects
must	 be	 able	 to	 operate	 with	 power	 consumptions	 of	 less	 than	 one	 milliwatt.
Third,	 the	requirements	for	a	small	physical	size,	 low	power	consumption,	and
low	 cost	mean	 that	 each	 device	must	make	 very	 efficient	 use	 of	 their	 limited
resources.	 Smart	 objects	may	 have	 only	 a	 few	 kilobytes	 of	memory.	 Still,	 IP-
based	 smart	 object	 networks	 are	being	designed	 and	deployed.	This	 book	 tells
you	how	this	 is	achieved.	But	 this	 is	 just	 the	beginning	of	an	exciting	journey:
the	future	of	interconnected	smart	objects	has	just	begun.
	
Structure	of	the	Book
We	spent	a	good	amount	of	 time	thinking	of	 the	most	appropriate	structure



for	 this	book,	 in	order	 to	make	 it	a	 reference	for	engineers	and	researchers	but
also	 provide	 materials	 valuable	 for	 non-expert	 in	 the	 field.	 We	 decided	 to
organize	the	book	around	three	main	parts:	the	book	starts	with	one	part	devoted
to	discussing	the	architectural	foundation	of	the	IP	smart	object	networks,	before
the	 second	 part	 takes	 a	 deep	 dive	 into	 protocols	 and	 algorithms,	 and	 the	 third
part	concludes	the	book	with	a	detailed	review	of	seven	important	use	cases	and
applications	for	IP-based	smart	objects.

Part	 I	 demonstrates	 why	 the	 IP	 architecture	 is	 well	 suited	 to	 smart	 object
networks	 by	 contrast	 with	 non-IP	 based	 sensor	 network	 or	 other	 proprietary
systems	 interconnect	 to	 IP	 networks	 (e.g.	 the	 public	 Internet	 of	 private	 IP
networks)	by	means	of	hard	to	manage	and	expensive	multiprotocol	translation
gateways	 that	scale	poorly.	We	start	Part	 I	with	a	description	of	smart	objects.
After	 a	 review	of	 the	 architectural	 principles	 of	 IP,	we	 explain	why	 IP	 and	 in
particular	 IPv6,	 that	 uses	 the	 same	 architecture	 as	 IPv4,	 is	 particularly	 well
suited	 for	 smart	 objet	 networks.	Several	 key	networking	 features	 are	 reviewed
from	 an	 architectural	 angle	 such	 as	 routing,	 transport,	 service	 discovery,
security,	 and	 web	 services.	 Part	 I	 concludes	 with	 a	 discussion	 on	 potential
connectivity	models	of	IP	smart	objects	to	(private	and	public)	IP	networks.

The	second	part	is	a	deep	technology	dive	into	the	technologies.	Part	II	starts
with	 a	detailed	discussion	on	 smart	objects	 (hardware	 architecture,	 lightweight
operating	systems)	and	several	of	the	low	power	link	layers	technologies	used	in
these	 networks.	 Then	 follows	 a	 chapter	 devoted	 to	 standardization,	 a	must	 for
any	 technology	 to	 be	 widely	 adopted:	 this	 chapter	 discusses	 in	 details	 the
standardization	process	of	the	standardization	body	in	charge	of	IP	protocols:	the
IETF	(Internet	Engineering	Task	Force).	Then	follows	 two	chapters	explaining
in	details	two	key	areas	of	IP	smart	object	networks:	the	6LoWPAN	adaptation
layer	 specified	 to	carry	 IPv6	packet	over	 the	 IEEE	802.15.4	 link	 layer	and	 the
newly	 defined	 routing	 protocol	 (called	RPL)	 used	 in	 IP	 smart	 object	 network.
This	second	part	concludes	with	an	overview	of	the	IPSO	(IP	for	Smart	Object
alliance)	followed	by	a	discussion	on	two	non-IP	technologies.

IP	 smart	 object	 networks	will	 unavoidably	 change	 and	 improve	our	 day	 to
day	quality	of	life,	 in	a	number	of	ways:	 these	networks	will	radically	increase
the	efficiency	of	power	grids	allowing	for	new	sources	of	energy	generation	and
energy	 savings,	 they	 will	 help	 better	 manage	 buildings	 and	 homes,	 make	 our
cities	 smarter	and	 these	are	only	a	 few	examples.	Thus,	 instead	of	providing	a
few	examples	here	and	there,	we	decided	to	devote	en	entire	part	of	this	book	to
the	applications	of	IP	smart	object	networks:	“What	will	IP	smart	object	network
be	used	for?”	in	a	very	near	future.	Each	chapter	in	Part	III	of	the	book	describes
the	use	of	smart	object	networks	as	opposed	to	the	technology	itself	and	follows



a	similar	structure:	for	each	use	case,	we	start	with	a	detailed	description	of	the
various	 applications	 (for	 example,	 how	 to	 enable	 new	 services	 in	 a	 smart	 city
such	 urban	 environmental	 monitoring,	 social	 networking	 and	 intelligent
transport	systems)	followed	by	a	discussion	on	the	technical	challenges.	Part	III
discusses	 in	details	seven	major	applications:	smart	grid,	 industrial	automation,
smart	 cities	 and	 urban	 networks,	 home	 automation,	 building	 automation,
structural	health	monitoring,	and	container	tracking.
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Chapter	1	What	Are	Smart	Objects?
	

This	book	is	about	smart	objects,	networks	of	smart	objects,	and	how	these
networks	can	be	interconnected	using	the	Internet	Protocol	(IP).	In	this	chapter,
we	 define	 smart	 objects,	 give	 an	 overview	 of	 the	 history	 of	 smart	 object
technology,	and	discuss	the	present	challenges.

Smart	 object	 technology	 has	 many	 names.	 In	 this	 book,	 we	 use	 the	 term
smart	 objects,	 but	 the	 technology	 and	 its	 applications	 have	 names	 such	 as	 the
Internet	 of	 Things,	 the	 web	 of	 objects,	 the	 web	 of	 things,	 and	 cooperating
objects.	 Even	 though	 there	 are	 slight	 differences	 in	 the	 connotations	 and
definitions	 of	 those	 names,	 they	 represent	 the	 same	 fundamental	 type	 of
technology.

One	 definition	 of	 smart	 objects	 is	 a	 purely	 technical	 definition	—	 a	 smart
object	 is	 an	 item	 equipped	 with	 a	 form	 of	 sensor	 or	 actuator,	 a	 tiny
microprocessor,	 a	 communication	 device,	 and	 a	 power	 source.	 The	 sensor	 or
actuator	gives	the	smart	object	the	ability	to	interact	with	the	physical	world.	The
microprocessor	enables	the	smart	object	to	transform	the	data	captured	from	the
sensors,	albeit	at	a	limited	speed	and	at	limited	complexity.	The	communication
device	enables	the	smart	object	to	communicate	its	sensor	readings	to	the	outside
world	and	receive	input	from	other	smart	objects.	The	power	source	provides	the
electrical	energy	for	the	smart	object	to	do	its	work.

For	 smart	 objects,	 size	 matters.	 They	 are	 significantly	 smaller	 than	 both
laptops	and	cell	phones.	For	smart	objects	to	be	embedded	in	everyday	objects,
their	physical	size	cannot	exceed	a	few	cubic	centimeters.

Although	 this	 technical	 definition	 of	 a	 smart	 object	 is	 important	 —	 we
review	 it	 at	 length	 in	 Part	 II	—	 it	 does	 not	 help	 us	 understand	 the	 behavior,
interaction,	and	other	implications	of	smart	objects.	Thus	we	must	define	smart
objects	based	on	their	behavior.

We	 already	 know	 that	 smart	 objects	 are	 able	 to	 interact	 with	 the	 physical
world	by	performing	limited	forms	of	computation	as	well	as	communicate	with
the	outside	world	and	with	other	smart	objects.	But	what	do	smart	objects,	given
their	technical	abilities,	actually	do?

The	answer	to	this	question	is	not	as	easy	as	it	seems.	First,	the	behavior	of	a
smart	 object	 depends	 heavily	 on	 where	 and	 how	 it	 is	 used.	 A	 smart	 object



deployed	in	a	freighter	container	to	monitor	its	 temperature	behaves	differently
than	a	smart	object	 that	monitors	parking	spaces.	Second,	and	more	 important,
we	cannot	know	at	this	point	how	future	smart	objects	will	be	used.	Even	though
we	can	accurately	predict	 future	smart	object	uses	based	on	how	smart	objects
are	used	today,	we	cannot	know	exactly	what	the	future	usage	patterns	will	be.
This	is	an	important	point,	because	it	tells	designers	of	smart	object	systems	that
they	must	future-proof	their	systems,	protocols,	and	architectures.

Despite	 not	 knowing	 the	 exact	 behavior	 of	 a	 smart	 object,	 there	 are	 two
behavioral	properties	common	to	any	smart	object:	interaction	with	the	physical
world	and	communication.

Smart	objects	interact	with	the	physical	world	by	obtaining	information	from
the	physical	world	with	 their	 sensors	 and	by	affecting	 the	physical	world	with
their	 actuators.	 Smart	 objects	 use	 their	 sensors	 to	 sense	 physical	 properties
ranging	from	simple	and	easy-to-measure	properties	such	as	 light,	 temperature,
and	air	humidity,	to	more	complex	properties	such	as	air	pollution,	the	presence
of	a	car,	or	when	an	 industrial	machine	 is	 about	 to	break	down.	Smart	objects
affect	 the	 physical	 world	 using	 different	 forms	 of	 actuators.	 This	 may	 be	 as
simple	as	switching	on	a	small	LED	or	as	complex	as	switching	on	the	heat	in	a
particular	part	of	a	building.

Smart	objects	communicate.	Even	though	a	single	smart	object	can	be	very
useful,	by	turning	on	the	light	in	a	doorway	when	the	door	opens,	for	example,
the	 real	 power	 of	 smart	 objects	 comes	 from	 their	 ability	 to	 communicate.	The
smart	 object	 that	 would	 previously	 switch	 on	 the	 door	 light	 is	 now	 able	 to
communicate	that	the	door	was	opened	to	every	other	nearby	smart	object.	These
smart	 objects	may	 turn	 on	 other	 lights	 in	 the	 house,	 turn	 up	 the	 heat,	 and	 so
forth.	Likewise,	 smart	 objects	 in	 an	 industrial	 plant	 that	 sense	 the	 vibration	of
machinery	may	communicate	 their	 vibration	 reading	both	 to	 each	other	 and	 to
the	plant’s	operator.	Communication	is	essential	to	the	behavior	of	smart	objects,
thus	we	frequently	use	the	term	smart	object	networks	throughout	this	book.

In	Part	III	of	this	book,	we	further	explore	the	question	of	how	smart	objects
behave	through	detailed	case	studies	of	deployed	smart	object	networks.	These
case	studies	provide	important	insights	into	how	smart	objects	are	used	now	and
how	 they	 are	 intended	 to	 be	 used	 in	 the	 near	 future	 to	 support	 the	myriad	 of
applications	impacting	our	day-to-day	lives,	but	they	do	not	allow	us	to	look	into
the	 future.	 We	 have	 to	 use	 the	 available	 tools	 —	 knowledge	 of	 history,
understanding	and	experience,	and	sound	engineering	practices	—	to	build	 this
technology	for	the	future.

1.1	Where	Do	Smart	Objects	Come	From?
Smart	 objects	 come	 from	 a	 number	 of	 different	 technology	 areas	 and



scientific	disciplines	with	each	area	making	its	own	imprint	on	the	technology.
To	understand	 the	origins	of	smart	objects,	we	must	 look	at	 the	conceptual

developments	 as	 well	 as	 the	 technological	 progress	 that	 makes	 smart	 objects
possible.	The	concepts	and	the	technology	have	coexisted	for	a	long	time	and	the
developments	 in	 their	 respective	 areas	 are	 intertwined,	 but	 they	 have	 largely
progressed	and	matured	independently	of	each	other.

Computing	and	telephony	are	two	disparate	strands	of	development	that	have
led	 to	 the	development	of	smart	objects.	Both	computing	and	 telephony	play	a
large	 part	 in	 the	 formulation	 of	 smart	 objects,	 but	 the	 two	 technologies	 have
different	cultural	and	technical	histories.

The	 roots	 of	 computing	 can	 be	 traced	 back	 to	 the	 academic	 environments
that	spun	out	of	the	aftermath	of	World	War	II.	Computer	scientists	such	as	John
von	Neumann,	who	were	employed	by	the	US	military	during	WW	II,	continued
their	work	in	the	US	academic	system,	often	funded	by	the	US	military.	It	was
this	environment	that	developed	the	first	computers,	the	first	operating	systems,
and	 subsequently	 the	 Internet.	 This	 culture	 was	 often	 characterized	 by	 witty
engineering,	 the	development	of	evolvable	systems,	and	the	desire	 to	make	the
most	 out	 of	 available	 tools.	 Frequently,	 the	 systems	 developed	 in	 this
environment	were	never	intended	to	have	a	worldwide	distribution,	but	because
they	were	 built	 to	 evolve	 and	 built	 on	 solid	 engineering	 principles,	 they	 often
succeeded	 in	 reaching	 monumental	 importance.	 Examples	 of	 this	 include	 the
UNIX	 family	 of	 operating	 systems	 whose	 heirs	 support	 most	 of	 the	 Internet
today,	and	indeed,	the	global	Internet	itself.

The	roots	of	telephony	are	older	than	those	of	computing,	and	have	taken	a
slightly	 different	 path.	 The	 first	 patent	 on	 telephony	 was	 filed	 by	 Alexander
Graham	Bell	in	1876	(even	though	others	had	built	telephones	prior	to	Bell).	In
its	humble	beginnings,	telephony	was	available	only	to	a	lucky	few.	Installation
of	a	telephone	in	one’s	house	required	a	significant	investment	in	infrastructure.
Not	only	were	wires	needed	within	the	house,	but	they	also	had	to	be	drawn	all
the	way	from	a	central	switchboard	to	the	house.	Furthermore,	to	connect	these
wires	 together	 across	 larger	 distances,	 the	 switchboards	 had	 to	 be	 connected
using	wires	 drawn	 across	 long	 distances	 and	 each	 switchboard	 could	 even	 be
operated	by	a	different	 company.	All	 in	 all,	 large	 investments	were	needed	up
front,	 before	 the	 system	 would	 be	 able	 to	 work,	 and	 once	 the	 system	 was
installed,	it	was	of	utmost	importance	that	it	worked.	This	led	to	a	culture	where
systems	were	rigorously	specified	before	they	were	ever	implemented.	Without
rigorous	 specification,	 it	 would	 be	 extremely	 difficult,	 if	 not	 impossible,	 to
connect	 disparate	 operators	 and	 their	 various	 equipment.	To	make	 things	 even
more	 difficult,	 the	 telephony	 companies	 have	 always	 been	 monitored	 by



legislators	and	governments,	requiring	even	more	rigorous	attention	to	detail.
Smart	 objects	 represent	 the	 middle	 ground	 between	 computing	 and

telephony,	 borrowing	 from	 both.	 From	 its	 computing	 heritage,	 smart	 objects
have	 assumed	 the	 culture	 of	 engineering	 evolvable	 systems.	 This	 is	 important
because	at	 this	point,	 it	 is	 impossible	 to	 fully	 specify	 the	expected	behavior	of
future	smart	object	systems,	even	if	we	have	a	good	idea	of	where	smart	objects
are	heading	 today.	From	 its	 telephony	heritage,	 smart	objects	have	applied	 the
principles	from	connecting	disparate	systems	that	may	be	managed	by	different
companies	 and	 organizations.	 Smart	 objects	 are	 not	manufactured	 by	 a	 single
organization,	 but	 by	 multitudes	 of	 different	 people	 and	 parties.	 Smart	 object
technology	must	be	both	evolvable	and	standardized.

In	the	remainder	of	this	chapter,	we	discuss	areas	leading	up	to	today’s	smart
objects	 as	 shown	 in	 Figure	 1.1:	 embedded	 systems,	 ubiquitous	 and	 pervasive
computing,	 mobile	 telephony,	 telemetry,	 wireless	 sensor	 networks,	 mobile
computing,	 and	 computer	 networking.	 Some	 of	 these	 areas	 come	 from	 the
computing	 heritage	 and	 some	 from	 the	 telephony	 heritage.	 Some	 have	 sprung
out	 of	 academic	 research	 communities,	 some	 from	 an	 industrial	 background.
What	 they	 have	 in	 common,	 however,	 is	 that	 they	 either	 deal	 with
computationally	 assisted	 connectivity	 among	 physical	 items,	 wireless
communication,	or	with	interaction	between	the	virtual	and	the	physical	world.

Figure	 1.1	 Smart	 objects	 are	 the	 intersection	 of	 embedded	 systems,
ubiquitous	 computing,	 mobile	 telephony,	 telemetry,	 wireless	 sensor	 networks,
mobile	computing,	and	computer	networking.
	

1.1.1	Embedded	Systems
An	 embedded	 system	 is	 a	 computer	 embedded	 in	 something	 other	 than	 a



computer.	 Under	 this	 definition,	 any	 system	 that	 has	 a	 microprocessor	 is	 an
embedded	 system	 with	 the	 exception	 of	 PCs,	 laptops,	 and	 other	 equipment
readily	 identified	 as	 a	 computer.	 Thus	 this	 definition	 of	 an	 embedded	 system
would	 include	smart	objects.	Figure	1.2	 illustrates	different	 types	of	embedded
systems.

Figure	 1.2	 Embedded	 systems	 are	 microprocessor-equipped	 systems	 and
devices	 that	 interact	with	 the	physical	world.	Examples	 include	 traffic	 lights,	a
ship’s	rudder	controllers,	and	washing	machine	controllers.
	

Traditionally,	at	least	until	the	late	1990s,	embedded	systems	were	thought	to
be	 synonymous	 with	 real-time	 control	 systems.	 Real-time	 control	 systems	 are
computer-based	systems	used	to	control	physical	processes	such	as	the	pressure
of	a	nozzle,	the	rudder	of	a	ship,	or	the	temperature	of	a	radiator.	In	these	control
systems,	 an	 embedded	 computer	 typically	 is	 used	 to	 control	 the	 signals	 to	 an
actuator	that	controls	the	phenomenon	to	be	controlled.	For	a	control	system	to
work,	 it	 is	 imperative	 that	 the	 embedded	 computer	 produces	 signals	 to	 control
the	actuator	with	precise	timing.	Precise	timing	is	required	because	the	controller
interacts	with	the	physical	world.	A	ship’s	rudder	without	precise	timing	would
not	 be	 able	 to	 reliably	 steer	 a	 ship.	This	 type	of	 precise	 timing	 requirement	 is
embodied	in	the	concept	of	real-time.	A	real-time	system	is	a	system	that	always



responds	 to	 external	 input,	 or	 a	 timer,	 in	 a	 pre-specified	 amount	 of	 time.	 The
software	 for	 these	 devices	 needs	 to	 be	 strict	 about	 its	 timing,	 and	 operating
systems	 that	provide	 this	strict	 timing	are	called	Real-Time	Operating	Systems
(RTOS).

Although	 the	 traditional	 definition	 of	 an	 embedded	 system	 focuses	 on	 its
real-time	aspects,	not	all	 embedded	systems	have	 real-time	 requirements.	With
the	 widespread	 adoption	 of	 microcontrollers	 in	 everyday	 items	 such	 as	 TV
remote	controls,	wireless	car	keys,	and	 toys,	a	new	class	of	embedded	systems
has	emerged.	These	systems	do	not	have	the	same	strict	real-time	requirements
as	the	traditional	embedded	control	systems,	but	are	built	using	the	same	type	of
hardware.	 Many	 of	 these	 systems	 use	 RTOS	 similar	 to	 the	 real-time	 systems
because	this	is	the	kind	of	software	technology	widely	available	for	the	class	of
hardware	used.

Embedded	and	real-time	systems	share	many	properties	with	smart	objects.
The	hardware	used	 in	embedded	systems	 is	 typically	 similar	 to	or	 the	 same	as
that	used	for	smart	objects.	Embedded	systems	typically	have	similar	constraints
in	 terms	 of	 computational	 power	 and	 memory.	 Often	 the	 same	 types	 of
microcontrollers	 used	 in	 embedded	 systems	 are	 used	 in	 smart	 objects.	 Thus
much	of	the	software	used	for	embedded	systems	can	be	used	for	smart	objects
and	vice	versa.

The	primary	difference	between	a	traditional	embedded	system	and	a	smart
object	 is	 that	 communication	 is	 typically	 not	 considered	 a	 central	 function	 for
embedded	systems,	whereas	communication	is	a	defining	characteristic	for	smart
objects.	 Although	 there	 are	 many	 examples	 of	 communicating	 embedded
systems,	 such	 as	 car	 engines	 with	 embedded	 microprocessors	 that	 can
communicate	 their	status	 information	 to	a	computer	connected	 to	 the	engine	at
service	 time,	 these	 systems	are	not	defined	by	 their	 ability	 to	 communicate.	A
car	engine	that	cannot	communicate	can	still	operate	as	a	car	engine.	In	contrast,
a	 smart	 object	 such	 as	 a	 wireless	 temperature	 sensor	 deprived	 of	 its
communication	abilities	would	no	longer	be	able	to	fulfill	its	purpose.
	
1.1.2	Ubiquitous	and	Pervasive	Computing
Ubiquitous	 computing,	 also	 called	pervasive	 computing,	 is	 a	 field	of	 study

based	 on	 the	 concept	 of	 what	 happens	 when	 computers	 move	 away	 from	 the
desktop	and	become	immersed	in	the	surrounding	environment	as	 illustrated	in
Figure	 1.3.	 Ubiquitous	 computing,	 as	 a	 research	 discipline,	 originated	 in	 the
mid-1980s.	The	term	was	coined	by	Mark	Weiser,	a	professor	at	MIT,	in	1988.
Weiser	 published	 two	 short	 notes	 titled	 “Ubiquitous	 computing	 #1”	 and
“Ubiquitous	computing	#2.”	In	these	texts,	he	laid	out	a	future	where	computing,



as	we	know	it,	was	no	longer	done	by	desktop	computers.	Instead,	he	believed
computing	would	move	into	our	daily	environment,	living	in	“the	woodwork	of
everywhere”	as	exemplified	in	Figure	1.3.

Figure	 1.3	 Ubiquitous	 computing	 is	 a	 vision	 for	 the	 future	 of	 computers
where	computing	moves	into	everyday	objects.
	

Mark	Weiser	 criticized	 the	 trend	 of	 making	 computers	 exciting	 objects	 in
their	own	right.	He	took	a	different	perspective:	instead	of	making	computers	the
central	 object,	 they	 would	 become	 invisible.	 Weiser	 further	 argued	 that	 as
technology	became	successful,	it	became	invisible.

One	example	of	how	successful	 technology	becomes	invisible	is	 the	motor.
At	the	start	of	the	twentieth	century,	the	US-based	Sears	mail-order	catalog	sold
a	“home	motor.”	The	home	motor,	which	was	fairly	substantial,	was	designed	to
be	 placed	 at	 a	 central	 location	 in	 people’s	 homes.	 The	 purpose	 of	 the	 home
motor	was	to	run	various	types	of	external	equipment.	Together	with	the	motor,
customers	 could	 purchase	 connectors	 that	 would	 let	 the	 motor	 run	 sewing
machines,	meat	grinders,	and	hair	dryers.

Today,	 motors	 have	 become	 the	 type	 of	 successful	 technology	 that	 has
become	invisible.	Motors	are	found	in	various	types	of	equipment	and	machines
such	 as	 toothbrushes,	 hair	 dryers,	 car	windows,	 and	 automatic	 locks.	Yet	 very
few	of	us	ever	consider	that	a	motor	drives	these	everyday	items.	Of	course,	 if
we	 stop	 and	 think	 about	 it,	we	 can	 imagine	 that	 there	 are	 small	motors	 inside



these	 systems,	 but	we	 never	 see	 the	motor	 as	 a	 defining	 feature.	Motors	 have
become	invisible.

Ubiquitous	 computing	 has	 become	 an	 established	 academic	 research	 field
with	 several	 major	 annual	 conferences	 and	 a	 number	 of	 scientific	 journals.
Hundreds	of	doctoral	theses	have	been	written	about	this	topic	over	the	last	two
decades.

As	 an	 academic	 discipline,	 ubiquitous	 computing	 places	 a	 strong	 focus	 on
building	real	systems	that	embody	its	ideas.	There	is	a	long	string	of	important
prototype	systems	that	come	from	the	ubiquitous	computing	community.	These
prototypes	have	been	instrumental	in	pursuing	the	field	of	ubiquitous	computing
as	well	as	demonstrating	the	feasibility	of	an	ever-connected	world.

One	 early	 example	 of	 a	 ubiquitous	 prototype	 system	 is	 the	Active	Badges
system	developed	at	the	AT&T	laboratory	in	Cambridge,	UK,	in	the	late	1980s
and	early	1990s	[253].	The	Active	Badges	system	was	composed	of	badges	worn
by	 people	 in	 an	 office	 and	 a	 set	 of	 readers	 dispersed	 throughout	 the	 office
environment.	 The	 badges	 uniquely	 identified	 each	 wearer	 and	 the	 readers
enabled	 the	 system	 to	 keep	 track	 of	 the	 location	 of	 all	 badge	 wearers.	 This
location	 would	 be	 recorded	 and	 displayed	 on	 an	 application	 running	 on	 the
participant’s	desktop	PC.	With	the	system	each	participant	knew	where	everyone
was	and	where	to	contact	them.

The	 ubiquitous	 community	 has	 moved	 toward	 interacting	 with	 ubiquitous
systems	 immersed	 in	 an	 ambient	 environment.	 In	 1996	 the	 ambientROOM
project	at	MIT	was	developed	[133]	as	an	example	of	enriching	an	environment
with	 ubiquitous	 computing.	 The	 ambientROOM	 was	 fully	 equipped	 with
interaction	devices.	The	walls	were	used	 to	display	an	abstract	pattern	of	 light
that	changed	based	on	outside	 input.	Ambient	 sound	was	played	 that	 indicated
activity	on	the	local	network.

Wearable	 computing	 is	 a	 field	 that	 has	 grown	 out	 of	 the	 ubiquitous
computing	community.	With	wearable	computing,	 the	computing	infrastructure
moves	 onto	 the	 body	 of	 its	 users	 [165]	 or	 into	 their	 clothing	 [89].	 Wearable
computers	make	ubiquitous	computing	truly	person-centric.

Smart	objects	owe	much	of	 their	history	to	ubiquitous	computing.	Many	of
the	 early	 developments	 and	 vision	 in	 ubiquitous	 computing	 directly	 apply	 to
smart	 objects.	 Whereas	 ubiquitous	 computing	 is	 interested	 in	 the	 interaction
between	 ubiquitous	 computing	 systems	 and	 humans,	 the	 area	 of	 smart	 objects
takes	 a	more	 technical	 approach.	Much	of	 the	 technology	developed	 for	 smart
objects	has	a	direct	applicability	to	ubiquitous	computing.	Similarly,	much	of	the
designs	 that	have	been	developed	within	 the	ubiquitous	computing	community
can	be	applied	to	smart	objects	as	well.



	
1.1.3	Mobile	Telephony
Mobile	 telephony	 grew	 out	 of	 the	 telephony	 industry	 with	 the	 promise	 of

ubiquitous	 access	 to	 telephony.	 Today,	 mobile	 telephony	 not	 only	 provides
telephony	 everywhere,	 but	 also	 Internet	 access.	 Even	 though	 the	 first	 steps
toward	 mobile	 telephony	 were	 taken	 in	 the	 mid-twentieth	 century,	 it	 was	 not
until	 the	 1980s	 that	 the	 first	 commercial	 mobile	 telephony	 operators	 started
gaining	 momentum.	 In	 the	 late	 1990s,	 nearly	 20%	 of	 the	 population	 in	 the
developed	world	had	a	mobile	telephone.	In	2008,	there	were	more	than	4	billion
mobile	telephony	subscribers.

Mobile	 telephony	 is	often	called	cellular	 telephony,	and	mobile	phones	are
called	 cell	 phones,	 because	 of	 the	 structure	 of	 the	wireless	 networks	 in	which
mobile	phones	operate.	The	network	 is	 divided	 into	 cells	where	 each	phone	 is
connected	 to	 exactly	 one	 cell	 at	 any	given	 time.	A	 cell	 covers	 a	 physical	 area
whose	 size	 is	 determined	 by	 the	 network	 operator.	 Since	 each	 cell	 typically
handles	 a	 limited	 number	 of	 simultaneous	phone	 calls,	 network	operators	 plan
their	 networks	 so	 that	 cells	 are	 smaller	 and	 more	 numerous	 in	 areas	 where
operators	expect	more	people	to	make	phone	calls.	Each	cell	is	operated	by	a	cell
tower	on	which	a	wireless	transceiver	base	station	is	mounted.	The	base	station
maintains	 a	wireless	 connection	 to	 all	 active	phones	 in	 its	 cell.	When	 the	user
and	the	phone	move	to	another	cell,	the	base	stations	perform	an	exchange	called
a	handover.

Mobile	 telephony	 has	 given	 rise	 to	 long-range	 wireless	 networking
technology	such	as	Global	System	for	Mobile	communications	(GSM),	General
Packet	 Radio	 Service	 (GPRS),	 Enhanced	 Data	 Rates	 for	 GSM	 Evolution
(EDGE),	and	Universal	Mobile	Telecommunications	System	(UMTS)	as	well	as
short-range	 wireless	 communication	 technology	 such	 as	 Bluetooth	 (IEEE
802.15.1).	Long-range	communication	is	used	to	transmit	voice	and	Internet	data
from	 the	 mobile	 phone	 to	 the	 nearest	 base	 station.	 Short-range	 wireless
communication	 is	 used	 for	 communication	 between	 the	 phone	 and	 wireless
accessories	such	as	wireless	headsets.

Mobile	 telephony	 has	 revolutionized	 the	 way	 we	 think	 of	 personal
connectivity.	Telephony	used	to	be	restricted	to	a	few	physical	locations:	we	had
a	phone	at	the	desk	in	our	office	and	a	few	phones	at	strategic	locations	in	our
homes,	such	as	the	kitchen	or	next	to	the	TV.	As	telephony	became	mobile,	we
stopped	thinking	about	telephony	as	location-bound,	but	as	a	ubiquitous	always-
on	service,	available	everywhere.

Mobile	 telephony	 not	 only	 revolutionized	 person-to-person	 access,	 but
changed	 the	way	we	 view	 network	 access.	 In	 the	 late	 1990s,	 the	 Internet	was



confined	 to	 PCs.	 Establishing	 an	 Internet	 connection	 required	 an	 expressed
action:	switch	on	the	modem,	open	the	modem	dialing	program	on	the	PC,	and
click	 the	 “Connect”	button.	After	 half	 a	minute	of	 noise	 from	 the	modem,	 the
Internet	connection	was	established.	The	interaction	was	anything	but	seamless.

With	modern	smartphones,	Internet	access	is	no	longer	confined	to	PCs;	it	is
truly	ubiquitous.	With	a	few	quick	button	presses,	e-mail,	instant	messaging,	and
the	 World	 Wide	 Web	 are	 immediately	 available.	 Instant	 Internet	 access	 is
equally	available	in	foreign	countries,	even	if	it	sometimes	costs	a	small	fortune.

The	way	mobile	 telephony	changed	 the	general	 view	on	connectivity	 is	 an
important	factor	for	the	continued	development	of	smart	objects.	As	we	are	now
accustomed	to	think	of	connectivity	as	ubiquitous,	we	are	equally	accustomed	to
think	of	access	to	smart	objects	as	ubiquitous.	This	view	was	not	as	widespread
in	the	early	2000s.

1.1.4	Telemetry	and	Machine-to-machine	Communication
The	word	 telemetry	 is	a	portmanteau	of	 the	Greek	words	 tele	 (remote)	and

metron	 (to	 measure).	 Telemetry	 is,	 as	 the	 name	 implies,	 about	 performing
remote	measurements.	Machine-to-machine	 communication	 is	 a	 generalization
of	 telemetry	 that	 implies	 autonomic	 communication	 between	 non-human
operated	machines	and	is	central	to	the	concept	of	telemetry.	Telemetry	is	used
to	 transmit	 information	 about	 current	 temperature,	 humidity,	 and	 wind	 from
distant	 weather	 stations	 (Figure	 1.4).	 Telemetry	 is	 used	 to	 transmit	 fuel
consumption	data	from	trucks	so	that	the	owner	can	optimize	the	truck’s	routes
to	save	on	fuel	costs,	and	as	a	consequence	reduce	pollution.

Figure	 1.4	 Telemetry	 allows	 reading	 measurements	 from	 remote	 systems
such	as	weather	stations.	Data	are	typically	transported	using	mobile	telephony
systems.



	

The	 concept	 of	 machine-to-machine	 communication	 and	 telemetry	 is	 also
used	in	shorter	distances.	Today’s	pacemakers	(devices	that	are	implanted	in	the
hearts	of	people	who	have	had	a	heart	attack)	frequently	include	a	device	called
a	 “telemetry	 coil.”	 This	 allows	 a	 doctor	 to	 monitor	 the	 pacemaker’s	 activity
without	 surgery.	 Instead,	 the	 doctor	 uses	 a	 device	 that	 creates	 a	 low-power
electromagnetic	field	near	the	patient.	The	telemetry	coil	reacts	to	the	electrical
field	 by	 modulating	 it	 creating	 a	 low-power	 communication	 mechanism	 with
which	information	can	be	transferred	from	the	patient’s	heart	to	the	doctor.

Telemetry	 and	 machine-to-machine	 communication	 are	 similar	 to	 smart
objects	because	 they	are	both	used	 to	perform	 large-scale	measurements.	With
telemetry,	 these	 measurements	 can	 be	 performed	 from	 a	 remote	 site	 without
direct	physical	 access.	Remote	access	using	 telemetry	 is	most	often	performed
with	 existing	mobile	 telephony	networks	 such	 as	GSM	or	 3G	 (UMTS),	 or	 via
dedicated	networks	such	as	the	Inmarsat	satellite	network.	Smart	objects	are	not
only	 used	 for	measurements	 and	 sensing,	 but	 also	 affect	 their	 environment	 by
using	actuators.	Nevertheless,	much	of	the	remote	access	technology	developed
for	telemetry	systems	can	be	used	with	and	applied	to	smart	object	systems.

1.1.5	Wireless	Sensor	and	Ubiquitous	Sensor	Networks
Wireless	 sensor	 networks	 have	 evolved	 from	 the	 idea	 that	 small	 wireless

sensors	 can	be	used	 to	 collect	 information	 from	 the	physical	 environment	 in	 a
large	 number	 of	 situations	 ranging	 from	 wild	 fire	 tracking	 and	 animal
observation	 to	 agriculture	management	 and	 industrial	monitoring.	 Each	 sensor
wirelessly	 transmits	 information	toward	a	base	station.	Sensors	help	each	other
to	 relay	 the	 information	 to	 the	 base	 station,	 as	 illustrated	 in	 Figure	 1.5.	 The
research	 field	of	wireless	 sensor	networks	has	been	very	active	 since	 the	early
2000s	with	 several	 annual	 conferences,	many	 journals,	 and	 a	 large	 number	 of
annual	 workshops.	Wireless	 sensor	 networks	 are	 sometimes	 called	 ubiquitous
sensor	networks	to	highlight	the	ubiquity	of	the	sensors.



Figure	 1.5	Wireless	 sensor	 networks	 provide	 large-scale	measurements	 of
physical	 properties	 using	 large	 amounts	 of	 sensors	 that	 transport	 their	 data
wirelessly	to	a	base	station.
	

Early	 work	 in	 wireless	 sensor	 networks	 envisioned	 sensor	 networks	 to	 be
composed	of	so-called	smart	dust	[142].	Smart	dust	would	be	composed	of	large
numbers	 of	 tiny	 electronic	 systems	 with	 sensing,	 computation,	 and
communication	abilities.	It	would	be	spread	over	an	area	where	a	phenomenon,
such	as	humidity	or	 temperature,	was	 to	be	measured.	Because	 the	dust	specks
would	be	so	small,	they	could	be	dispersed	using	mechanisms	such	as	air	flow.
The	applications	of	smart	dust	would	initially	be	used	by	the	military	to	track	the
location	of	enemies,	to	signal	an	alarm	when	intruders	were	found,	or	to	detect
the	presence	of	a	vehicle.

The	concept	of	smart	dust	was,	however,	 too	restrictive	 for	most	uses.	The
limited	physical	size	of	the	dust	specks	severely	limited	possible	communication
mechanisms	 and	 the	 computational	 capability	 of	 the	 nodes.	 Instead,	 many
research	groups	started	building	hardware	prototypes	with	a	larger	physical	size
that	were	easier	to	use	for	experimentation	[200].

The	 research	 community	 around	 wireless	 sensor	 networks	 has	 developed
many	 important	 mechanisms,	 algorithms,	 and	 abstractions.	 Wireless	 sensor
networks	are	 intended	 to	have	a	 long	 lifetime.	Since	wireless	 sensors	 typically
use	 batteries,	 having	 a	 long	 lifetime	 translates	 into	 reducing	 the	 power



consumption	 of	 the	 individual	 nodes.	 Thus,	 several	 power-saving	mechanisms
have	been	designed,	deployed,	studied,	and	evaluated	both	in	simulators	and	in
actual	deployments.	Many	of	these	have	a	direct	applicability	to	smart	objects.

Wireless	 sensor	 networks	 have	 further	 spurred	work	 in	 standardization	 for
industrial	automation	and	monitoring.	Many	of	 the	recent	standards	 in	wireless
industrial	networking,	such	as	WirelessHART	and	ISA100a,	have	their	roots	in
the	wireless	sensor	networking	community.

The	concept	of	wireless	sensor	networks	 is	similar	 to	 that	of	smart	objects,
and	much	of	 the	development	 in	 smart	objects	has	occurred	 in	 the	 community
around	 wireless	 sensor	 networks.	 Wireless	 sensor	 networks	 are	 composed	 of
small	nodes,	equipped	with	a	wireless	communication	device,	that	autonomously
configure	 themselves	 into	 networks	 through	 which	 sensor	 readings	 can	 be
transported.	Smart	object	networks	are	less	focused	on	pure	data	gathering,	but
are	 intended	 for	a	 large	number	of	other	 tasks	 including	actuation	and	control.
Furthermore,	 wireless	 sensor	 networks	 are	 primarily	 intended	 to	 be	 operated
over	a	wireless	 radio	communications	device.	 In	contrast,	 the	concept	of	smart
objects	is	not	tied	to	any	particular	communication	mechanism,	but	can	run	over
wired	as	well	as	wireless	networks.

1.1.6	Mobile	Computing
Mobile	computing	 is	 the	 field	of	wireless	communication	and	carry-around

computers,	such	as	laptop	computers.	In	some	ways	the	mobile	computing	field
spun	out	of	work	initialized	within	the	ubiquitous	computing	area.	Likewise,	the
early	 focus	 on	wireless	 networking	 led	 to	wireless	 communication	mechanism
research.	Work	on	these	mechanisms	began	in	the	mid-1980s	and	led	up	to	the
standards	around	wireless	local	area	networks	(WiFi)	that	started	forming	in	the
late	1990s.

The	 field	 of	 mobile	 computing	 has	 benefited	 greatly	 from	 the	 technical
advances	in	computing	technology	such	as	low-power	PC	processors,	small-size
digital	memory	 technology,	and	 inexpensive	display	systems.	The	combination
of	those	technologies	has	created	the	field	of	laptop	computing,	which	has	led	to
the	creation	of	 the	new	class	of	 inexpensive	 laptops	called	netbooks.	Netbooks
are	designed	with	wireless	communication	in	mind.

Mobile	 computing	 has	 further	 permeated	 wireless	 network	 access.	 Today,
so-called	WiFi	 hot	 spots	 at	 public	 places	 such	 as	 coffee	 houses,	 libraries,	 and
airports	 are	 common.	Users	may	 connect	 to	 the	 Internet	 through	 this	wireless
network	either	gratis	or	for	a	fee.

In	 academia,	 the	 field	 of	 mobile	 computing	 also	 carried	 over	 into	 the
research	 field	 of	 Mobile	 Ad	 hoc	 NETworks	 (MANETs).	 MANET	 research
focuses	 on	 networking	mechanisms	 for	 wireless	 computers	 where	 no	 network



infrastructure	 exists.	 In	 such	 situations,	 routing	 protocols	 and	 other	 network
mechanisms	must	quickly	establish	an	ad	hoc	network.	The	network	formation	is
made	 in	a	distributed	manner	where	each	node	 that	participates	 in	 the	network
must	take	part	in	the	network’s	mechanisms	such	as	routing	and	access	control.
The	MANET	community	has	developed	several	important	routing	protocols	for
these	networks	such	as	the	standardized	AODV	and	DSR	protocols.

Just	as	with	mobile	 telephony,	 the	use	of	mobile	computing	has	permeated
the	understanding	that	network	access	is	ubiquitous.	As	WiFi	access	has	become
widespread,	we	now	take	connectivity	for	granted	anywhere,	instantly.

1.1.7	Computer	Networking
Computer	 networking	 is	 about	 connecting	 computers	 to	 allow	 them	 to

communicate	 with	 each	 other.	 Computers	 are	 connected	 using	 networks	 as
shown	in	Figure	1.6.	These	networks	were	initially	wired,	but	with	the	advent	of
mobile	computing,	wireless	networks	are	available.

Figure	 1.6	 Computer	 networking	 allows	 computers	 and	 systems	 to
communicate	with	each	other.	It	forms	the	basis	of	today’s	Internet.
	

The	 field	of	computer	networking	 is	 significantly	older	 than	 that	of	mobile
computing.	 Computer	 networking	 began	 in	 the	 early	 1960s	 when	 the
breakthrough	 concepts	 of	 packet-switched	 networking	 were	 first	 described	 by
Leonard	 Kleinrock	 at	 UCLA	 [151].	 Earlier	 telephony	 networks	 were	 circuit-
switched,	and	each	connection	(phone	call)	created	a	circuit	through	the	network



where	 all	 data	were	 transported.	With	 packet-switched	 networking,	 no	 circuits
were	constructed	through	the	network.	Instead,	each	message	was	transported	as
a	 packet	 through	 the	 network	 where	 each	 node	 would	 switch	 the	 packet
depending	on	its	destination	address.

After	Kleinrock’s	 breakthrough,	ARPANET	was	 created	 as	 the	 first	 large-
scale	 computer	 network	 built	 on	 the	 concepts	 of	 a	 packet-switched	 network.
During	the	late	1970s	and	early	1980s,	ARPANET	was	gradually	replaced	with
the	early	versions	of	the	Internet.	ARPANET	started	to	use	the	IP	protocol	suite
in	1983	before	becoming	the	Internet.

The	ARPANET	and	the	Internet	were	built	on	a	powerful	concept	called	the
end-to-end	principle	of	system	design,	named	by	an	influential	paper	by	Jerome
H.	Saltzer,	David	P.	Reed,	and	David	D.	Clark	[218].	The	end-to-end	principle
states	that	functionality	in	a	system	should	be	placed	as	long	as	possible	toward
the	end	points.	For	the	Internet,	this	meant	that	the	end	systems,	the	computers
that	 connected	 to	 the	 Internet,	 should	 perform	 most	 of	 the	 work	 in	 the
communication	over	the	network	with	the	network	acting	relatively	dumb.	Thus
the	network	would	only	provide	a	mechanism	for	sending	packets	 to	and	from
the	 end	 points.	 This	 principle	 has	 arguably	 been	 one	 of	 the	 most	 important
aspects	 of	 the	 design	 of	 the	 Internet	 system,	 because	 it	 allowed	 the	 system	 to
gracefully	support	an	ever-growing	flora	of	applications	from	simple	e-mail	and
file	transport	of	the	1980s	through	the	Web	revolution	of	the	1990s	transmission
to	high-speed,	real-time	video,	and	audio	transmissions	of	the	2000s.	The	end-to-
end	principle	allowed	the	network	to	evolve	separately	from	these	applications,
thus	making	 it	 possible	 to	 support	 an	 ever-growing	number	 of	 users	 and	uses,
without	requiring	complex	re-engineering	of	the	entire	network	and	its	protocols.

The	connection	between	computer	networking	and	smart	objects	is	evident:
communication	 is	 one	 of	 the	 defining	 characteristics	 of	 smart	 objects.	 In	 this
book,	we	argue	that	many	of	the	concepts,	protocols,	and	mechanisms	that	have
been	 developed	 in	 the	 computer	 networking	 community	 are	 suitable	 for	 smart
object	networks.

1.2	Challenges	for	Smart	Objects
As	 with	 any	 novel	 technology,	 there	 are	 technical	 and	 non-technical

challenges	 in	 the	 development	 of	 smart	 objects.	 Some	 of	 these	 challenges	 are
novel	to	the	area	of	smart	objects,	but	many	are	shared	with	existing	systems	and
other	developments,	such	as	those	outlined	in	the	previous	section.

The	technical	challenges	for	smart	objects	include	the	node-level	internals	of
each	smart	object,	such	as	power	consumption	and	physical	size,	as	well	as	the
network-level	mechanisms	and	structures	formed	by	the	smart	objects.	To	make
matters	more	complex,	the	two	aspects	often	affect	each	other.	For	example,	the



power	consumption	of	a	smart	object	is	affected	by	the	communication	patterns
of	the	network	in	which	the	smart	object	participates.	Likewise,	the	design	of	the
network	protocols	for	smart	objects	must	take	power	consumption	into	account,
when,	for	example,	deciding	when	and	where	to	send	data.

There	are	also	a	number	of	non-technical	challenges	that	need	to	be	tackled
before	 the	 widespread	 adoption	 of	 smart	 objects	 occurs.	 These	 non-technical
challenges	 may	 even	 prove	 to	 be	 more	 challenging	 than	 the	 technical	 ones.
Whereas	 the	 technical	 challenges	 revolve	 around	 how	 to	 design	 protocols	 and
mechanisms	for	smart	objects,	the	non-technical	challenges	are	about	spreading
both	 the	 technology	 and	 the	 awareness	 the	 technology.	 Without	 general
awareness	 of	 the	 technology,	 even	 the	 most	 beautifully	 engineered	 and
technically	perfect	solutions	will	fail	to	achieve	any	large-scale	impact.

The	Internet	Protocol	for	Smart	Objects	(IPSO)	Alliance	was	set	up	for	 the
purpose	of	 spreading	 the	 awareness	of	 the	 technology	 around	 smart	 objects.	 It
was	founded	around	the	 idea	 that	smart	objects	need	evolvable	 technology	and
that	 the	 technology	 around	 the	 IP,	 as	 well	 as	 the	 mechanisms	 and	 culture	 in
which	 the	 technology	 is	 developed,	 would	 provide	 just	 that	 technology.	 We
return	to	the	IPSO	Alliance	in	Chapter	18.

1.2.1	Node-level	Challenges
The	node-level	challenges	of	smart	objects	primarily	have	to	do	with	power

consumption,	physical	size,	and	cost.	Power	consumption	is	a	critical	factor	with
smart	 objects	 because	 they	 are	 often	 either	 battery-powered	or	 use	 an	 external
low-power	 energy	 source	 such	 as	 physical	 vibrations	 or	 low-power
electromagnetic	 fields.	 Physical	 size	 is	 important	 because	 the	 size	 and	 form
factor	determines	 the	potential	 applications	 for	a	given	smart	object	 system	—
smart	 objects	must	 be	 small.	 Cost	 is	 important	 with	 smart	 objects	 because	 of
large-scale	deployments.	With	deployments	of	many	thousands	of	smart	objects,
cost	savings	of	a	few	dollars	quickly	add	up	to	significant	amounts	of	money.

The	severe	power	consumption	constraints	have	design	implications	for	 the
hardware,	 software,	 the	 network	 protocols,	 and	 even	 the	 network	 architecture.
For	 the	 hardware	 designer,	 it	 is	 imperative	 to	 choose	 low-power	 hardware
components	 and	 arrange	 them	 to	 minimize	 current	 leakage	 and	 to	 provide	 a
power-efficient	 sleep	 mode.	 The	 software	 designer	 must	 be	 able	 to	 use	 the
hardware	 to	 make	 the	 most	 out	 of	 the	 limited	 resources.	 The	 software	 must
switch	off	unused	components	and	put	the	hardware	into	sleep	mode	as	often	as
possible.	To	aid	the	software	developer,	smart	objects	run	operating	systems	that
provide	mechanisms	for	low-power	operation.

Power	 efficiency	 significantly	 affects	 network	 architectures	 and	 protocol
designs	 as	 well.	 Because	 communication	 consumes	 power,	 it	 is	 important	 to



steer	the	communication	patterns	so	they	efficiently	use	available	resources.	To
help	 the	network	protocols	 to	do	 this,	 the	hardware	and	software	keep	 track	of
the	spent	energy	and	provide	this	information	to	the	network	layer.	Additionally,
to	save	power,	the	system	designer	must	put	the	device	into	sleep	mode	as	much
as	possible.	Sleep	modes	affect	the	communication	latency	of	the	system,	often
in	ways	that	are	difficult	to	predict	beforehand.

Physical	size	and	cost	have	profound	implications	for	both	the	hardware	and
software	 designer.	 For	 the	 hardware	 designer,	 the	 implications	 are	 that	 the
hardware	 must	 be	 small,	 the	 number	 of	 components	 must	 be	 low,	 and	 each
component	 must	 be	 small	 and	 inexpensive.	 The	 implications	 for	 the	 software
designer	are	less	obvious	but	equally	profound.	With	low	cost,	low	physical	size,
and	 low	 power	 consumption,	 the	microprocessors	 on	which	 the	 software	 runs
become	smaller	as	their	computational	speed	and	memory	size	are	reduced.

The	 software	 designer	 for	 a	 smart	 object	 system	 often	 has	 only	 a	 few
thousand	bytes	of	memory	to	work	with	compared	to	the	millions	or	billions	of
bytes	of	memory	that	software	designers	for	general	purpose	computing	systems
have	 at	 their	 disposal.	 Thus	 the	 software	 for	 smart	 objects	 must	 not	 only	 be
power-efficient	 but	 must	 be	 able	 to	 run	 within	 a	 severely	 resource-scarce
environment.

The	 resource	 constraints	 that	 so	 deeply	 affect	 the	 node	 level	 also	 have
implications	at	the	network	level.	With	the	limitations	on	the	amount	of	memory
in	each	smart	object,	 the	network	protocols	must	be	designed	so	 they	 limit	 the
amount	of	information	each	node	keeps	about	the	network	and	about	other	nodes
in	the	network.	Like	the	power	constraints,	the	memory	constraints	have	a	two-
way	effect:	the	network	architecture	is	affected	by	the	node-level	effects	and	the
network-level	effects	affect	the	node	level.

We	return	to	the	node-level	challenges	of	smart	objects	in	detail	in	Part	II.
	
1.2.2	Network-level	Challenges
The	 node-level	 challenges	 of	 smart	 objects	 deal	 with	 the	 small	 scale	 of

available	 resources,	 whereas	 the	 network-level	 challenges	 deal	 with	 the	 large
scale	of	 the	 smart	object	networks.	As	we	 see	 in	Part	 III	 of	 this	book,	 even	 if
there	 are	 numerous	 examples	 of	 small-scale	 smart	 object	 networks,	 many
networks	can	potentially	be	very	large—on	the	order	of	thousands	of	nodes.

Smart	object	networks	are	potentially	very	 large	 scale	both	 in	 terms	of	 the
number	of	nodes	involved	in	a	system	and	in	the	number	of	data	items	generated
by	each	node.	As	we	see	in	the	case	studies	in	Part	III,	many	of	the	situations	in
which	 smart	 objects	 are	 used	 call	 for	 a	 large	 set	 of	 individual	 data	 collection
points.	Individual	networks	consisting	of	thousands	of	nodes	are	common.



In	 each	 of	 these	 smart	 object	 networks,	 each	 node	 will	 generate	 several
millions	 of	 data	 items	 over	 its	 lifetime.	 Consider	 a	 smart	 object	 network	 that
samples	 the	 temperature	 inside	 a	 building.	 Temperature	 is	 generally	 a	 slow-
moving	 phenomenon,	 so	 the	 nodes	 do	 not	 need	 to	 sample	 very	 often.	 Still,
people	 in	 the	 building	may	 forget	 to	 close	 a	 window	 or	 leave	 the	 outer	 door
halfway	 open,	 and	 the	 system	 should	 be	 prepared	 to	 detect	 this	 within	 a
reasonable	 time	 frame.	 Considering	 these	 requirements,	 the	 building	 manager
instructs	 the	 system	 to	 sample	 the	 temperature	 twice	 every	 minute.	 With	 a
sampling	rate	of	two	readings	per	minute,	2880	readings	are	taken	each	day,	or
737,280	readings	per	year.	Because	the	system	is	designed	to	work	for	ten	years,
there	will	be	over	seven	million	readings,	from	each	node,	during	the	lifetime	of
the	 system.	 This	 example	 is	 taken	 from	 a	 situation	 with	 a	 relatively	 slow
sampling	 rate,	 but	 it	 makes	 it	 clear	 that	 smart	 object	 networks	 work	 at	 large
scales	in	terms	of	both	network	and	data	size.

The	challenges	of	network	and	data	size	are	 in	some	ways	disparate	but	 in
other	ways	entwined.

The	 network	 size	 impacts	 the	 protocol	 design	 used	 for	message	 routing	 in
smart	object	networks.	Routing	is	the	process	by	which	the	network	determines
what	 paths	 messages	 should	 take	 through	 the	 network.	 Routing	 can	 be	 made
either	 centrally,	 where	 a	 central	 server	 computes	 a	 route	 map	 for	 the	 entire
network,	or	distributed,	where	each	node	makes	individual	decisions	on	where	to
send	each	message.

The	 design	 of	 the	 routing	 protocols	 is	 important	 because	 it	 affects	 both
network	performance	in	terms	of	the	amount	of	data	the	network	can	sustain,	the
speed	of	which	these	data	can	be	successfully	transported	through	the	network,
and,	in	most	cases,	the	achievable	lifetime	of	the	network	as	a	whole.	For	most
smart	object	systems,	the	act	of	communication	requires	energy,	and	nodes	that
communicate	often	drain	their	energy	faster	 than	those	that	are	silent.	Thus	the
routing	protocol	must	make	well-informed	choices	when	planning	how	messages
are	transported	through	the	network.

For	 a	 node	 to	 make	 a	 well-informed	 routing	 choice,	 it	 typically	 requires
information	 about	 both	 the	 network	 as	 a	 whole	 and	 about	 the	 node’s	 nearest
neighbors.	This	information	requires	memory,	but	as	we	have	already	discussed,
each	 node	 has	 a	 limited	 amount	 of	 memory.	 So	 the	 routing	 protocol	 must
carefully	choose	what	information	to	keep	about	the	network	and	the	neighbors
and	what	information	to	disregard.

To	 make	 matters	 worse,	 smart	 object	 networks	 often	 run	 over	 unreliable
communication	media.	Such	communication	media	include	low-power	wireless
communication	 standards	 as	 well	 as	 Powerline	 communication,	 where	 the



communication	 takes	 place	 over	 the	 electrical	 grid.	 In	 these	 communication
media,	it	is	uncertain	if	a	message	sent	by	one	node	is	received	by	the	node	for
which	 it	 was	 intended.	 The	 message	 may	 be	 disrupted	 or	 may	 be	 entirely
blocked	on	its	way,	perhaps	because	a	large	body	of	metal	 just	happened	to	be
placed	 between	 the	 wireless	 sender	 and	 the	 wireless	 receiver.	 Even	 if	 the
message	was	not	entirely	blocked,	its	bits	may	have	been	altered	in	transit	so	that
the	receiver	cannot	make	any	sense	of	it.

The	unreliable	nature	of	smart	object	networks	is	often	referred	to	as	being
“lossy.”	 Lossyness	 is	 best	 thought	 of	 as	 an	 inherent	 property	 of	 smart	 object
networks.	 Even	 if	 smart	 objects	 use	 communication	 technologies	 that	 are	 less
lossy	 than	 others,	 by	 preparing	 for	 the	 worst	 a	 system	 can	 be	 created	 that	 is
stable	both	for	lossy	and	non-lossy	networks.

The	 lossy	 nature	 of	 smart	 object	 networks	 is	 an	 additional	 challenge	 for
routing	protocols.	Protocols	must	take	the	lossyness	into	account	when	deciding
where	to	route	messages	and	if	messages	should	be	re-sent.	Messages	should	be
routed	so	that	the	risk	of	them	getting	lost	is	lessened.	But	if	a	message	has	been
routed	over	a	path	that	happens	to	become	lossy,	the	message	may	need	to	be	re-
sent	a	few	times,	in	case	it	did	not	make	it	through	on	the	first	try.

Lossyness	 is	 an	 illusive	 property,	 particularly	 in	 wireless	 networks.
Lossyness	is	affected	by	environmental	factors	such	as	temperature	and	humidity
of	the	air	as	well	as	the	physical	surroundings	of	the	smart	object	networks.	For
example,	if	a	microwave	oven	is	switched	on,	the	electromagnetic	field	it	creates
can	interfere	with	wireless	transmissions	on	the	2.4	GHz	band.	Likewise,	a	WiFi
computer	network	may	 interfere	with	a	 smart	object	network	 so	 that	 the	 smart
object	network	sees	more	lossy	behavior	at	daytime,	when	people	are	using	the
WiFi	 network,	 than	 during	 nighttime.	 Routing	 protocols	 for	 smart	 object
networks	must	be	prepared	for	this	illusiveness.

The	 large-scale	nature	of	smart	object	networks	complicates	addressing	 the
nodes.	In	a	large-scale	network,	each	individual	node	must	be	addressable	so	that
messages	can	be	sent	 to	 it.	The	address	must	be	 long	enough	for	each	node	 to
have	an	individual	address,	even	in	a	large	network.	And	even	if	the	network	is
small,	 it	 may	 interact	 with	 external	 smart	 object	 networks.	 In	 this	 case,	 the
addresses	of	 the	nodes	 in	 the	 two	networks	must	be	unique.	As	 the	number	of
smart	 object	 networks	 that	 potentially	 can	 interact	 with	 each	 other	 grows,	 we
must	 be	 prepared	 for	 the	 scale	 to	 grow	 exponentially.	 Thus	 the	 addressing
scheme	chosen	for	smart	object	networks	must	uniquely	identify	several	millions
or	even	billions	of	individual	nodes.

Given	 the	 large	 scale	 of	 smart	 object	 networks,	 network	 management
becomes	 a	 daunting	 challenge.	 With	 smart	 object	 networks	 comprised	 of



potentially	thousands	of	nodes,	traditional	network	management	practices	are	not
immediately	applicable.	Traditional	management	requires	manual	fine-tuning	of
the	 network	 infrastructure	 by	 a	 systems	 administrator.	 With	 smart	 objects
forming	 ad	 hoc,	 the	 network	 must	 be	 prepared	 to	 manage	 itself,	 without	 any
human	network	operator	in	the	loop.	Furthermore,	in	traditional	computer-based
networks,	 each	 computer	 connected	 to	 the	 network	 requires	 manual	 or	 semi-
manual	 configuration.	 The	 person	 at	 the	 computer	may	 need	 to,	 for	 example,
enter	 a	 password	 to	 access	 the	 network.	 For	 smart	 object	 networks,	 it	 is	 not
feasible	for	a	person	to	manually	enter	a	password	into	each	smart	object	every
time	it	needs	to	access	its	network.

The	 scale	 of	 the	 smart	 object	 networks	 not	 only	 pertains	 to	 the	 number	 of
devices	and	the	amount	of	data,	but	also	to	the	amount	of	different	environments
and	 types	 of	 systems	 in	 which	 smart	 objects	 are	 used.	 For	 smart	 objects,	 no
single	communication	technology	suffices	for	all	potential	needs.	For	example,	a
smart	object	network	operating	in	a	highly	controlled	industrial	environment	has
different	requirements	and	cost	structures	than	a	smart	object	network	operating
in	an	office	or	home	environment.	Thus	smart	object	networks	must	be	prepared
to	 run	 over	 a	 set	 of	 different	 underlying	 communication	 technologies,	 both
wireless	and	wired.

Finally,	a	smart	object	network	must	provide	mechanisms	for	external	access
to	itself.	There	are	situations	where	a	smart	object	network	is	useful	in	isolation,
but	more	often	data	produced	by	the	smart	object	network	need	to	be	extracted
so	 they	 can	 be	 processed	 or	 stored	 elsewhere.	Also,	 the	 smart	 object	 network
may	need	to	be	reconfigured	or	altered	during	operation.	In	either	case,	the	smart
object	network	must	be	able	to	be	accessed	externally.

As	with	the	node-level	challenges,	we	return	to	the	network-level	challenges
later	in	this	book,	both	in	this	part	and,	in	more	detail,	in	Part	II.

1.2.3	Standardization
Standardization	 is	 a	 critical	 success	 factor	 for	 smart	 objects.	 Smart	 object

systems	are	characterized	not	only	by	large	numbers	of	devices	and	applications,
but	by	a	 significant	 amount	of	different	parties,	manufacturers,	 and	companies
interested	in	contributing	to	the	technology.	Different	technology	manufacturers
have	 different	 specializations.	 An	 equipment	 manufacturer	 that	 specializes	 in
high-precision	humidity	sensors	may	not	be	interested	in	IT	systems.	Yet,	these
two	must	 work	 together	 in	 a	 building	 automation	 system	where	 the	 humidity
sensors	produce	valuable	input	to	the	control	of	the	environment	in	the	building.
The	 environment	 control	 system	 is	 controlled	 by	 an	 advanced	 IT	 system	 that
receives	its	input	from	the	humidity	sensors.

Without	 standardization,	 equipment	 manufacturers	 and	 system	 integrators



would	need	to	build	new	systems	from	the	ground	up	on	every	installed	system.
Alternatively,	manufacturers	and	integrators	would	use	a	proprietary	technology
from	a	single	vendor.	Such	proprietary	technology	might	provide	benefits	in	the
short	 term,	 but	 it	 effectively	 creates	 vendor	 lock-in	where	 both	manufacturers
and	 integrators	 have	 difficulties	 evolving	 their	 systems	 beyond	 the	 proprietary
technology	 provided	 by	 the	 vendor.	 Furthermore,	 since	 the	 technology	 is
proprietary,	the	vendor	controls	the	future	of	the	technology	and	manufacturers
and	integrators	cannot	control	where	their	systems	are	going.

With	standardized	technology,	the	technology	is	independent	of	its	vendors,
producers,	and	users.	Any	vendor	may	choose	to	provide	systems	based	on	the
technology,	and	equipment	manufacturers	and	system	integrators	may	choose	to
base	their	systems	on	technology	from	any	vendor.

Standardized	 technology	 has	 a	 major	 advantage	 in	 terms	 of	 acceptance.
When	 the	 technology	 is	 standardized,	 vendors,	 manufacturers,	 and	 system
integrators	can	easily	adopt	the	technology	without	risks	of	vendor	lock-in.	This
level	 of	 acceptance	 is	 critical	 to	 the	 success	 of	 smart	 objects	 as	 a	 technology
because	 of	 the	 large	 number	 of	 different	 devices,	 the	 large	 number	 of
applications,	and	the	multitude	of	existing	and	potential	vendors.

Before	 continuing	 we	 must	 note	 that	 when	 we	 discuss	 standards,	 we	 are
explicitly	referring	to	the	open	standards	produced	through	established	practices
of	 international	 standardization	 organizations.	 Even	 though	 it	 is	 possible	 to
define	 a	 specification	 that	 has	 properties	 similar	 to	 a	 standard,	 such
specifications	 typically	 have	 not	 been	 thoroughly	 vetted.	 Open	 standards
reviewed	by	established	organizations	are	also	assessed	 in	 terms	of	 intellectual
property	claims.	Existing	standardization	organizations	have	policies	stating	that
any	 intellectual	 property	 claims,	 such	 as	 patents,	 for	 technology	 that	 is
standardized	 through	 them	 have	 to	 be	 openly	 published	 and	 sometimes	 freely
licensed	to	anyone	who	wishes	to	adopt	the	standard.	This	is	intended	to	provide
a	form	of	protection	against	so-called	submarine	patents,	where	a	patent	holder
keeps	 a	 patent	 a	 secret,	 only	 to	 later	 come	 forth,	 as	 the	 technology	 has	 been
widely	adopted,	to	lay	claim	to	the	technology.

Standardization	of	smart	object	 technology	is	a	challenge	not	only	 in	 terms
of	 technology	but	also	 in	 terms	of	organizations.	Smart	objects	comprise	many
different	 levels	 of	 technology	 from	 low-power	 communication	 technologies,
through	networking	and	 routing,	and	 to	application-level	access	and	 IT	system
integration.	 Each	 of	 these	 levels	 has	 their	 own	 technical	 challenges,	 but	more
important,	standardization	in	each	level	is	managed	by	different	bodies.

For	 smart	 objects,	 as	with	 any	 emerging	 technology,	 several	 standards	 and
non-standard	 specifications	 have	 been	 produced.	 These	 range	 from	 specific



specifications	for	particular	low-power	radio	protocols	to	full	protocol	families.
Although	 these	 specifications	 provide	 a	 technically	 viable	 solution	 to	 specific
applications,	their	status	as	non-standard	or	proprietary	is	problematic	for	many
vendors	and	manufacturers.

1.2.4	Interoperability
Interoperability	 is	 the	 ability	 of	 equipment	 and	 systems	 from	 different

vendors	to	operate	together.	Interoperability	is	a	must	as	smart	objects	emerge	as
a	large-scale	technology.	Interoperability	is	essential	both	between	smart	objects
from	 different	 manufacturers	 and	 between	 smart	 objects	 and	 existing
infrastructures.

For	 smart	 objects,	 interoperability	 is	 as	 multifaceted	 as	 standardization.
Smart	objects	must	interoperate	from	the	physical	layer	up	to	the	application	or
integration	 layer.	 Physical	 layer	 interoperability	 occurs	 when	 equipment	 from
different	 vendors	 physically	 communicates	 with	 each	 other.	 At	 the	 physical
level,	 smart	 objects	must	 agree	 on	matters	 such	 as	 the	 physical	 frequencies	 at
which	communication	takes	place,	what	type	of	modulation	the	physical	signals
should	 carry,	 and	 the	 rate	 at	which	 information	 is	 transferred.	At	 the	 network
level,	nodes	must	agree	on	the	format	of	the	information	that	is	sent	and	received
over	the	physical	channel	and	how	nodes	are	addressed,	as	well	as	how	messages
should	be	transported	through	a	network	of	smart	objects.	At	the	application	or
integration	level,	smart	objects	must	share	a	common	view	on	how	data	should
be	entered	or	extracted	 from	a	smart	object	network,	as	well	as	how	 the	smart
objects	should	be	reached	from	outside	systems.

The	 challenges	 of	 interoperability	 are	 in	 the	 technical	 definition	 of	 smart
objects	as	well	as	the	standardization	and	implementation	and	testing	processes.
To	 achieve	 interoperability,	 it	 is	 imperative	 that	 the	 technical	 architecture	 of
smart	 objects	 is	 defined	 to	 ease	 interoperability.	 If	 the	 architecture	 either
disallows	 interoperability	 or	 makes	 interoperability	 cumbersome,	 it	 is	 very
difficult	 to	 achieve	 interoperability	 later.	Likewise,	 the	 standardization	 process
must	make	interoperability	a	primary	concern.	To	do	this,	smart	object	standards
cannot	 be	 tied	 to	 any	particular	 hardware	 or	 communication	 technology.	After
standardization	is	complete,	a	testing	or	certification	procedure	helps	to	achieve
and	ensure	interoperability	between	different	devices	and	vendors.

As	with	 standardization,	 interoperability	poses	 several	 challenges	 for	 smart
objects.	First,	the	technical	architecture	for	smart	objects	is	still	an	open	issue.	In
this	book,	we	choose	one	such	architecture	for	smart	objects:	the	IP	architecture.
Second,	 although	 some	 of	 the	 standards	 for	 smart	 objects	 are	 still	 under
development,	those	standards	that	already	exist	can	be	reused.	We	return	to	this
ongoing	standardization	process	in	Part	II.	Third,	interoperability	test	suites	and



conformance	tests	are	still	an	open	issue.	Ideally,	such	interoperability	test	suites
should	 test	 many	 levels	 of	 interoperability	 such	 as	 physical,	 networking,	 and
application	 levels.	 There	 is	 an	 ongoing	 effort	 to	 develop	 such	 test	 suites	 for
smart	objects	by	 the	 IPSO	Alliance.	The	 IPSO	Alliance	 is	 further	discussed	 in
Chapter	18.

1.3	Conclusions
Smart	objects	can	be	defined	in	several	dimensions:	through	the	technology

on	which	each	smart	object	is	based,	on	their	operation,	or	though	their	intended
use.	Each	smart	object	consists	of	a	microprocessor,	a	communication	device,	a
sensor	or	actuator,	and	a	power	source.	The	microprocessor	provides	 the	smart
object	 with	 the	 necessary	 computational	 power	 to	 make	 it	 smart.	 The
communication	device	allows	the	smart	object	to	communicate	with	other	smart
objects	 as	 well	 as	 other	 systems.	 The	 sensors	 or	 actuators	 connect	 the	 smart
object	 with	 the	 physical	 world,	 allowing	 it	 to	 measure	 or	 affect	 the	 physical
phenomena.	A	power	source	is	needed	to	run	the	electronics	in	the	smart	object.
These	include	batteries	or	renewable	energy	such	as	solar	cells	or	piezoelectric
devices	 that	 produce	 energy	 from	 vibrations	 or	movement.	 In	 either	 case,	 the
power	source	is	severely	limited	in	terms	of	the	amount	of	energy	it	can	produce.

Smart	objects	are	defined	by	their	communication,	their	interaction	with	the
physical	 world,	 their	 relatively	 small	 physical	 size,	 and	 their	 low	 cost.	 They
communicate	with	other	smart	object	as	well	as	the	surrounding	systems	through
their	communication	device.	Interaction	with	the	physical	world,	such	as	sensing
or	actuation,	is	made	through	the	sensors	or	actuators	built	into	the	smart	objects.
Physical	size	is	important	because	smart	objects	are	typically	integrated	in	other
items	or	deployed	in	places	where	a	large	physical	size	would	be	obtrusive.	Low
cost	is	important	because	smart	objects	are	manufactured	and	deployed	in	large
numbers.	A	cost	reduction	of	a	few	dollars	 translates	 into	a	 large	saving	of	 the
system	as	a	whole.

Smart	 objects	 have	 emerged	 from	many	 different	 directions,	 yet	 they	 have
roots	both	 in	 the	computing	and	 telecommunications	 industries.	The	history	of
smart	 objects	 can	 be	 traced	 to	 ubiquitous	 and	 pervasive	 computing,	 mobile
telephony	 and	 telemetry,	 mobile	 computing	 and	 computer	 networking,	 and
embedded	systems	and	wireless	sensor	networks.

Although	 smart	 objects,	 as	 a	 technology,	 are	 quickly	 emerging,	 it	 is	 not
without	 challenges.	 These	 challenges	 are	 at	 both	 the	 node	 and	 the	 network
levels.	 At	 the	 node	 level,	 the	 restrictions	 in	 terms	 of	 physical	 size,	 cost,	 and
power	 consumption	 are	 challenges	 that	 have	 to	 be	 considered	 when
understanding	 and	 designing	 smart	 object	 systems.	 At	 the	 network	 level,	 the
scale	of	nodes	in	smart	object	networks	and	the	power	consumption	and	memory



constraints	of	the	nodes	must	be	examined.
The	 challenges	 in	 the	 base	 smart	 object	 technology	 are	 reflected	 in	 the

challenges	of	standardization	and	interoperability.	Standardization	is	essential	to
the	success	of	future	smart	object	systems,	as	the	technology	will	be	produced	by
many	 different	 parties.	 Likewise,	 interoperability	 is	 essential	 between	 smart
object	devices	and	between	smart	objects	and	the	surrounding	IT	ecosystem.

It	is	important	that	mechanisms	and	standards	for	smart	objects	evolve,	as	we
have	only	seen	a	few	glimpses	of	what	this	technology	is	able	to	do.

We	 believe	 the	 future	 for	 smart	 objects	 in	 terms	 of	 technology,
standardization,	and	 interoperability	 is	 the	 Internet	Protocol,	 IP.	When	we	 first
introduced	 the	 idea	of	using	IP	for	smart	objects	several	years	ago	[64,67],	we
were	met	by	a	healthy	skepticism.	Today,	after	a	significant	amount	of	work	by
many	different	groups	of	people[1,66,68,73,125,161,176,180,207,221,257,260],
these	 ideas	have	become	widespread	 in	 the	 industry	 as	well	 as	 in	 the	 research
community.	The	aim	of	this	book	is	to	present	the	architecture,	the	technology,
and	the	applications	of	IP	for	smart	objects.

In	Chapters	2	and	3,	we	present	arguments	for	why	IP	is	the	right	choice	for
smart	objects,	followed	by	a	discussion	of	the	details	of	the	protocols	in	the	IP
protocol	 suite,	 and	 how	 they	map	onto	 smart	 objects.	 In	Part	 II,	we	 review	 in
detail	 both	 the	 smart	 object	 technology	 and	 how	 IP	 runs	 on	 top	 of	 this
technology,	showing	the	benefits	of	the	IP	architecture	for	smart	objects.	In	Part
III,	we	discuss	case	studies	that	show	how	IP	has	successfully	been	used	in	smart
objects	in	the	past	and	how	IP	is	being	used	in	the	smart	object	systems	of	the
future.

	



Chapter	2	IP	Protocol	Architecture
	

2.1	Introduction
If	there	was	an	award	for	technical	design	excellence,	it	should	certainly

be	given	 to	Vint	Cerf	and	Robert	Kahn,	 the	original	designers	of	TCP/IP.
The	 TCP/IP	 architecture,	 designed	 about	 30	 years	 ago,	 is	 now	 used	 on
billions	 of	 devices	 around	 the	 world	 ranging	 from	 portable	 devices	 and
laptop	 to	 super	 computers.	 The	 IP	 protocol	 suite	 has	 been	 enhanced	 to
support	multicast,	Quality	 of	 Service	 (QoS),	 traffic	 engineering,	 and	 real-
time	 services	with	 the	 architecture	 fully	preserved.	This	 chapter	discusses
the	original	design	goals	and	why	this	architecture	must	be	preserved.

	
2.2	From	NCP	to	TCP/IP
Who	 has	 not	 heard	 of	 the	 ARPANET	 that	 gave	 birth	 to	 the	 Internet

Protocol?	 ARPANET	 was	 a	 project	 funded	 by	 the	 Advanced	 Research
Project	Agency	(ARPA).	One	of	the	first	protocols	developed	was	the	1822
protocol,	 which	 was	 quickly	 replaced	 by	 the	 Network	 Control	 Protocol
(NCP).	 This	 protocol	 was	 developed	 in	 1970	 with	 the	 objective	 of
interconnecting	 computers	 with	 Interface	 Message	 Processor	 (IMP)
between	various	 sites	over	a	backbone	network	provided	by	BBN.	During
this	time	IMPs	were	interconnecting	leased	lines	of	a	few	K/bits	per	second
(Kbps).	 Today,	 these	 IMPs	 are	 routers	 called	 smart	 objects	 and	 are
deployed	using	a	variety	of	link	types	on	a	much	larger	scale.

By	the	end	of	1971,	15	sites	were	interconnected	using	the	NCP	protocol,
forming	the	first	nucleus	of	the	Internet.	Robert	Kahn	and	Vint	Cerf	later
designed	TCP	 to	 replace	NCP	 (at	 that	 time	TCP/IP	was	 called	TCP	 since
both	protocols	were	not	yet	decoupled).	ARPANET	was	the	first	operational
network	 using	 the	 concept	 of	 packet	 switching,	 which	 was	 at	 that	 time	 a
revolutionary	approach	for	inter-host	communication.

The	next	generation	of	protocol,	IPv4	(Version	4	of	TCP),	was	designed
in	1981	and	the	Internet	migrated	to	it.	That	protocol	was	only	running	on	a
few	systems	at	that	time.	It	is	now	running	on	hundreds	of	millions	of	hosts.
This	is	the	result	of	technical	excellence.

The	 National	 Science	 Foundation	 (NSF)	 played	 a	 major	 role	 in	 the
development	of	the	Internet	and	the	National	Science	Foundation	Network



(NSFNET),	which	was	operational	in	1986	using	the	TCP/IP	protocol	suite
compatible	 with	 the	 ARPANET	 protocol.	 NSFNET	 started	 with	 the
interconnection	 of	 regional	 and	 academic	 networks,	 the	 starting	 point	 of
today’s	worldwide	 Internet.	Note	 that	major	protocols	 such	 as	BGP	 [212]
were	designed	during	that	period.	The	development	of	the	Internet	research
was	transferred	in	the	late	1980s	from	DARPA	to	NSFNET.	The	NSFNET
network	 was	 then	 expanded	 to	 interconnect	 all	 of	 the	 regional	 academic
networks	 in	 the	 United	 States.	 It	 is	 only	 during	 the	 mid-1990s	 that	 the
NSFNET	 regional	 networks	 further	 extended	 to	 commercial	 networks,
which	have	driven	the	exponential	growth	of	the	Internet	until	now.

Then	followed	the	emergence	of	the	new	revision	of	IP	(IPv6).	IPv6	has
not	changed	the	TCP/IP	architecture	originally	specified	for	IPv4,	it	is	just
a	 revision	 of	 IP	 that	brings	 a	 series	 of	 new	 features	 and	 enhancements	 in
addition	to	a	significantly	larger	address	space.

	
2.3	Fundamental	TCP/IP	Architectural	Design	Principles
These	were	the	original	TCP/IP	goals:

•	Internet	communication	must	continue	despite	loss	of	networks	or
gateways	(“in	presence	of	link	or	node	failures”	in	today’s	terms).
•	 The	 Internet	 must	 support	 multiple	 types	 of	 communication

services.
•	Internet	architecture	must:

•	Accommodate	 a	 variety	 of	 networks	 (“networks”	means	 link
and	physical	layers)
•	Permit	distributed	management	of	its	resources
•	Be	cost-effective
•	Permit	host	attachment	with	little	effort

	
•	Resources	used	in	the	Internet	architecture	must	be	accountable.

	
The	 original	 objective	 of	 the	 TCP/IP	 protocol	 was	 to	 design	 a	 single

protocol,	 but	 it	 quickly	 became	 evident	 that	 such	 an	 objective	 was
unrealistic.	 Indeed,	 the	 second	 goal	 of	 the	 Internet	 architecture	 was	 to
support	a	variety	of	services,	characterized	by	different	requirements	such
as	delay,	bandwidth,	and	 jitter,	 just	 to	name	a	 few.	Some	services	 such	as
file	 transfers	were	very	 tolerant	of	delays	but	required	high	bandwidth	 in
contrast	to	packetized	voice	traffic	requiring	short	delays	and	jitter	but	low



bandwidth.
It	was	evident	very	early	that	TCP	could	not	easily	accommodate	such	a

wide	 scope	 of	 requirements.	 In	 particular,	 real-time	 applications	 such	 as
digitized	voice	would	typically	not	require	high	reliability	but	would	be	very
intolerant	of	network	delays	and	jitter.	The	most	predominant	component
of	network	jitter	was	the	set	of	mechanisms	used	to	provide	high	reliability
due	to	 the	retransmission	of	 lost	packets.	 It	 is	preferable	 to	drop	a	packet
than	 to	 use	 a	 reliable	 transport	 protocol	 that	 would	 increase	 reliability
using	retransmission	of	lost	packets.

This	gave	birth	to	the	fundamental	concept	of	“layering.”	The	IP	layer
provides	a	best-effort	service	on	top	of	which	the	transport	layer	would	be
chosen	 according	 to	 the	 applications	 requirements.	 So	 it	 was	 decided	 to
decouple	 IP	and	TCP	and	design	a	new	transport	protocol	 (UDP)	with	 IP
supporting	both	UDP	and	TCP.	It	was	not	easy	to	support	this	architecture
independently	due	to	the	nature	of	the	media	used.	For	example,	by	running
UDP/IP	over	X25,	service	would	still	be	reliable	(thus	potentially	involving
network	 delays	 due	 to	 retransmission	 because	 X25	 was	 not	 designed	 to
support	a	variety	of	services).	This	observation	is	still	valid	for	existing	link
layer	protocols,	and	is	even	more	problematic	when	redundant	services	are
offered	at	multiple	 layers	 (see	multilayer	routing	architecture	discussed	 in
Chapter	5).

Another	important	goal	was	the	ability	to	operate	over	a	wide	variety	of
links	 and	 physical	 layers	 (ARPANET,	 X25,	 satellite	 links,	 packet	 radio
networks,	 serial	 links,	 etc.).	 This	was	 achieved	 by	making	 a	 very	minimal
assumption	about	lower	layers	and	the	function	they	provide.

Here	is	a	very	interesting	note	from	Dave	Clark	in	1988:	Since	Internet
does	not	 insist	 that	 lost	 packets	 be	 recovered	 at	 the	network	 level,	 it	may	 be
necessary	to	retransmit	a	lost	packet	from	one	end	of	the	Internet	to	the	other.
This	means	that	the	retransmitted	packet	may	cross	several	intervening	nets	a
second	 time,	 whereas	 recovery	 at	 the	 network	 level	 would	 not	 generate	 this
repeat	traffic.	This	is	an	example	of	the	trade-off	resulting	from	the	decision,
discussed	 above,	 of	 providing	 services	 from	 the	 end-points.	 The	 network
interface	code	is	much	simpler,	but	the	overall	efficiency	is	potentially	less.

For	further	discussion	see	[39].
Thus	 the	 objectives	 of	 the	 Internet	 were	 to	 build	 a	 highly	 flexible,

reliable	 network	 capable	 of	 supporting	 a	 variety	 of	 services	while	 using	 a
variety	of	links	and	physical	layers.

Such	flexibility	was	provided	by	the	adoption	of	a	layered	architecture.
The	TCP/IP	architecture	exceeded	these	expectations:	the	current	Internet



and	 private	 IP	 networks	 use	 a	 plethora	 of	 physical	 and	 link	 layers	 (e.g.,
SONET/SDH,	Optical,	ATM,	Ethernet,	Wireless	links	such	as	IEEE	802.11,
Powerline	communication,	Frame	Relay,	etc.).	The	number	of	applications
requiring	a	wide	set	of	services	using	either	TCP	or	UDP	is	quite	impressive
including	 e-mail	 or	 file	 transfers	 to	 real-time	 applications	 such	 as	 voice,
video,	and	other	industrial	time-critical	applications.

The	reliability	of	IP	networks	has	reached	an	extremely	impressive	level
due	 to	 a	 number	 of	 protection/restoration	 techniques	 such	 as	 IP	 Fast
Reroute,	 MPLS	 Traffic	 Engineering	 Fast	 Reroute,	 Fast	 Convergence	 of
BGP,	In-service	software	upgrade,	and	so	on.	Today’s	IP	networks	provide
a	 level	 of	 reliability	 equivalent	 to	 highly	 redundant	 networks	 such	 as
SONET/SDH	with	restoration	times	in	the	order	of	a	few	dozen	milliseconds
and	no	packet	loss	in	various	failure	cases.

Furthermore,	 the	 range	 of	 supported	 devices	 supporting	 the	 TCP/IP
protocol	suite	is	also	extremely	impressive	from	an	8-bit	microcontroller	to
powerful	servers	hosted	in	data	centers.

Last	 but	 not	 least,	 TCP/IP	 has	 proven	 to	 be	 extremely	 scalable.	 The
growth	 of	 the	 Internet	 regarding	 traffic	 and	 number	 of	 interconnected
devices	 has	 been	 remarkably	 growing	 from	 9	 computers	 in	 the	 original
ARPANET	in	1970	(note	that	the	ARPANET	migrated	to	TCP/IP	in	1983)
to	several	billion	computers	today	(see	Figure	2.1).

Figure	2.1	Level	of	penetration	of	the	Internet	regarding	user	number.
	



Note	that	some	of	the	lower	ranked	objectives	were	harder	to	reach.	For
example,	resource	management	and	accounting	were	initially	difficult	goals
due	 to	 one	 of	 the	 most	 brilliant	 inventions	 —	 the	 store-and-forward
paradigm	(in	contrast	to	telephone	circuit	switching).	But	new	mechanisms
such	as	Simple	Network	Management	Protocol	(SNMP;	[107])	and	Netflow
[38]	 dramatically	 help	 accounting.	 Network	 resources	 management	 was
handled	 by	 the	 IP-based	 signaling	 mechanism	 supporting	 call	 admission
control	 (CAC)	 using	 RSVP	 [21]	 for	 IP	 and	 RSVP-TE	 [14].	 RSVP	 was
mostly	 deployed	 at	 the	 edge	 of	 the	 network	 for	 CAC	 due	 to	 the	 limited
scalability	of	the	protocol	considering	the	millions	of	flows	handled	by	core
routers	in	the	Internet.	RSVP	was	also	widely	used	to	signal	MPLS	Traffic
Engineering	Label	Switch	Paths	(TE	LSPs)	carrying	large	chunks	of	traffic
between	pairs	of	routers.

One	of	 the	drawbacks	of	such	a	 flexible	architecture	 is	 that	 it	requires
network	engineering	to	understand	the	set	of	supported	services	since	an	IP
network	 can	 be	 deployed	 in	 many	 ways	 with	 different	 sets	 of	 services;	 a
variety	 of	 protocols	 may	 be	 used	 at	 different	 layers.	 Thus	 the	 network
design	requires	a	good	understanding	of	each	layer’s	respective	capabilities
to	make	the	appropriate	protocol	choice.

As	previously	discussed,	 the	concept	of	 layers	 is	one	of	 the	core	design
foundations	that	leads	to	an	extremely	flexible	architecture.	The	concept	of
layering	 was	 then	 extended	 to	 the	 current	 four	 layers	 of	 the	 TCP/IP
protocol	and	the	seven-layer	OSI	([OSI])	model	as	shown	in	Figure	2.2.

Figure	2.2	The	concept	of	layering	in	the	TCP/IP	and	OSI	architectures.
	



[19]	is	one	of	the	Internet	Engineering	Task	Force	(IETF)	specifications
that	introduced	the	notion	of	layers	in	TCP/IP	protocol	architecture	based
on	a	four-layer	model:

•	Link	layer:	Usually	refers	to	the	physical	and	data	link	layers	(the
use	of	 the	PHY/MAC	acronym	 is	 fairly	 common).	At	a	high	 level	 the
link	layer	is	responsible	for	forwarding	the	IP	packet	on	a	link	between
two	 devices.	 This	 involves	 several	 functions	 such	 as	 media	 access
control	 (MAC),	 error	 detection	 and	 (sometimes)	 retransmission,	 and
flow	control.	Link	layer	protocol	information	is	added	in	the	form	of	a
frame	that	carries	the	IP	packet.	Some	links	provide	a	very	limited	set
of	functions	whereas	others	implement	fairly	sophisticated	services	that
often	 include	a	 link	 layer	“routing”	 function	 (see	Chapter	5	 for	more
details).	Note	 that	 the	 link	 layer	may	offer	point-to-point	 or	point-to-
multipoint	service.
•	Internet	layer	(IP):	Responsible	for	providing	an	unreliable	service

for	 sending	 a	 packet	 between	 a	 source	 and	 a	 destination	 across	 the
network,	 where	 host	 and	 routers	 are	 uniquely	 identified	 by	 their	 IP
(IPv4	 or	 IPv6)	 address,	 using	 a	 hierarchical	 addressing	 scheme.	 The
IPv6	 addressing	 architecture	 is	 discussed	 in	 detail	 in	 Chapter	 15.
Routing	is	one	of	the	main	tasks	accomplished	by	the	IP	layers	and	is
extensively	discussed	in	Chapter	5	and	in	Chapter	17	in	the	context	of
smart	object	networks.	Protocols	such	as	ICMP,	see	[203]	and	[42])	and
IGMP	[29]for	multicast	traffic	are	both	considered	part	of	the	IP	layer.
•	 Transport	 layer:	 Responsible	 for	 end-to-end	 communication

between	two	devices	where	states	are	maintained	(as	opposed	to	within
the	network).	A	transport	protocol	such	as	TCP	(detailed	in	Chapter	6)
provides	 a	 reliable	 transport	 mechanism	 with	 error	 detection	 and
retransmission,	 flow	 control	 using	 dynamic	 windowing	 techniques,
security	mechanisms,	and	so	forth.	In	contrast	the	UDP	[202]	transport
protocol	 is	 stateless	 and	 mostly	 used	 for	 application	 addressing	 and
optional	error	detection	 (done	by	an	optional	checksum	 in	 IPv4;	note
that	 the	 UDP	 checksum	 is	 mandatory	 in	 IPv6).	 Other	 transport
protocols	 have	 been	 developed	 such	 as	 the	message	 stream	 transport
protocol	 SCTP	 (Stream	 Control	 Transmission	 Protocol,	 see	 [229])
offering	 additional	 capabilities	 such	 as	 the	 bundling	 of	multiple	 user
messages	in	a	single	SCTP	packet,	the	support	of	multi-homing,	and	so
forth.	 Real-time	 Transport	 Protocol	 (RTP,	 see	 [220])	 is	 another
transport	 protocol	 designed	 for	 real-time	 applications	 such	 as



streaming	audio	traffic	and	video.
•	Application	 layer:	Refers	 to	higher	 level	protocol(s)	 that	 supports

the	 applications.	 The	 list	 of	 application	 layer	 protocols	 is	 fairly	 long,
but	 few	 well	 known	 include	 File	 Transfer	 Protocol	 (FTP,	 see	 [205]),
Trivial	 File	Transfer	 Protocol	 (TFTP,	 see	 [224]),	 SNMP	 (see	 [108]	 to
[206]),	Hypertext	Transport	Protocol	(HTTP,	see	[149]),	and	Telnet.

	
One	of	the	key	reasons	for	the	impressive	success	of	TCP/IP	is	its	open,

non-proprietary	nature:	Dr.	Cerf	said	part	of	the	reason	their	protocols	took
hold	 quickly	 and	 widely	 was	 that	 he	 and	 Dr.	 Kahn	 made	 no	 intellectual
property	claims	to	their	invention.	They	made	no	money	from	it,	though	it	did
help	 their	 careers.	 “It	was	 an	open	 standard	 that	we	would	 allow	anyone	 to
have	access	to	without	any	constraints,”	he	said.

Dr.	Cerf	said	he	was	“pretty	amazed”	by	what	the	Internet	had	become.	He
was	 quick	 to	 add,	 “I	 suppose	 anyone	who	worked	 on	 the	 railroad,	 or	 power
generation	and	distribution,	would	have	similar	feelings	about	how	amazing	it
is	after	you	create	infrastructure.”

Dr.	 Cerf	 is	 also	 quite	 realistic	 about	 the	 recognition	 his	 contribution
deserves.	Creating	a	 tool	 is	one	 thing,	he	 said,	but	 credit	 for	what	people	do
with	it	is	something	no	inventor	can	claim.

	
2.4	The	Delicate	Subject	of	Cross-layer	Optimization
As	discussed	 in	previous	sections,	strict	 layer	 isolation	brings	a	myriad

of	 advantages	 such	 as	 flexibility	 because	 of	 the	 lack	 of	 interdependency
between	layers.

On	the	other	hand,	functions	performed	at	a	lower	layer	may	be	ignored
by	 a	 higher	 layer	 and	 vice	 versa,	 thus	 leading	 to	 potential	 redundancy
(error	 recovery	 or	 congestion	 management	 are	 typical	 examples).	 Cross-
layering	(also	called	horizontal	separation)	may	be	more	cost-effective	and
reliable	 [28],	 a	 risky	 proposition	 when	 considering	 the	 trade-off	 between
optimization	 and	 lack	 of	 flexibility.	 Indeed,	 it	 is	 fairly	 well	 known	 that	 a
lack	 of	 flexibility	 usually	 leads	 to	 frequent	 network	 protocol	 architecture
redesign,	which	is	a	very	costly	operation.

Increased	 layering	 may	 lead	 to	 costly	 operation	 where	 each	 layer
performs	duplicate	functions	(network	recovery,	QoS,	routing,	etc.).	A	good
example	is	the	IP	over	ATM	over	SONET/SH	architecture.	Such	a	network
design	was	extremely	inefficient	and	quickly	replaced	by	“IP	over	glass”	(IP
over	 optical	 link),	 but	 this	 was	 a	 network	 design	 choice,	 not	 a	 purposely



designed	 protocol	 architecture.	 These	 technologies	 were	 designed	 in
parallel,	and	the	objective	was	not	 to	specify	a	 link	 layer	 for	IP	networks.
The	same	reasoning	applies	to	SONET/SDH.	When	it	clearly	appeared	that
these	technologies	would	not	replace	TCP/IP,	network	architects	 looked	at
how	they	could	be	used	in	conjunction	with	each	other,	which	led	to	costly,
inefficient	network	architecture.

It	is	sometimes	mentioned	that	the	“everything	over	IP”	(EOIP)	model	is
not	the	most	OPEX	and	CAPEX	efficient	[28]:	An	example	of	where	EOIP
would	not	be	the	most	OPEX	and	CAPEX	efficient	transport	would	be	in	those
cases	 where	 a	 service	 or	 protocol	 needed	 SONET	—	 like	 restoration	 times
(e.g.,	 50	ms).	 It	 is	 not	 hard	 to	 imagine	 that	 it	would	 cost	more	 to	 build	 and
operate	an	IP	network	with	this	kind	of	restoration	and	convergence	property
(if	that	were	even	possible)	than	it	would	to	build	the	SONET	network	in	the
first	place.

This	was	proven	 to	be	an	 incorrect	 statement.	 IP	networks	do	provide
SONET/SDH	 restoration	 time	 for	 a	 very	 reasonable	 cost	with	OPEX	 and
CAPEX	(please	refer	to	[246]	for	a	reference	on	this	subject	matter).

Still,	 it	 might	 be	 tempting	 to	 introduce	 some	 form	 of	 cross-layer
optimizations.	 A	 notorious	 example	 of	 cross-layer	 optimization	 in	 smart
object	networks	is	known	as	“content	routing.”	This	consists	of	routing	the
traffic	 in	 the	 network	 according	 to	 the	 content	 of	 the	 packet	 at	 an
application	layer	as	opposed	to	using	the	IP	destination.	For	some	traffic	it
might	be	interesting	to	direct	the	traffic	to	its	destination,	not	according	to
the	 shortest	 (constrained)	path	 calculated	by	 the	 routing	protocol	but,	 for
example,	 to	 a	 traffic	 aggregator	 performing	data	 aggregation	 and/or	 data
fusion.	 In	 this	 case	 the	 objective	 is	 to	 limit	 the	 amount	 of	 traffic	 in	 the
network,	 which	 is	 always	 desirable	 in	 constrained	 networks.	 This	 is	 a
typical	example	where	similar	results	can	be	achieved	while	using	a	layered
architecture.	IP	packets	could	be	marked	by	the	upper	 layer	to	reflect	 the
nature	 of	 their	 content	 and	 the	 routing	protocol	 can	be	designed	 to	 route
packets	to	their	destinations	along	a	path	traversing	traffic	aggregators:	this
is	precisely	what	 the	 routing	protocol	 for	 smart	object	networks	 (Chapter
16)	does.

There	 are	 other	 circumstances	 where	 complete	 separation	 between
layers	 is	 not	 always	 achievable.	 One	 example	 is	 security	 requiring	 deep
packet	 inspection	 techniques:	upon	receiving	a	packet,	 routers/firewalls	 in
the	network	inspect	the	packet	to	detect	various	attacks.

Cross-layer	 optimization	 always	 looked	 like	 an	 appealing	 approach	 to
smart	object	network	designers	considering	the	high-constrained	nature	of



these	networks.	A	famous	example	of	its	appeal	is	the	attempt	to	mingle	the
network	 and	 the	 link	 layer.	 Several	 attempts	 were	 made	 to	 add
functionalities	 to	 the	 link	 layer	 beyond	 medium	 access	 control,	 error
recovery,	and	so	 forth	by	adding	routing	 functionality.	The	argument	was
that	maintaining	two	layers	was	too	costly	for	constrained	networks	and	a
more	 optimal	 approach	 would	 be	 to	 “collapse	 these	 layers.”	 A	 second
argument	was	to	consider	the	specifics	of	the	link	layer	when	computing	the
routes,	 which	 would	 allow	 routing	 at	 the	 link	 layer.	 Such	 a	 strong	 inter-
layer	 dependency	 led	 to	 the	 inevitable	 —	 a	 rigid	 architecture	 with	 no
flexibility.	 As	 new	 link	 layers	 emerged,	 there	 was	 a	 critical	 need	 for	 a
“convergence”	layer	(IP).

The	 solution?	 First,	 the	 a	 priori	 assumption	 that	 a	 layered	 protocol
architecture	 such	 as	 TCP/IP	 would	 be	 too	 heavy	 for	 such	 constrained
devices	was	proven	wrong.	As	discussed	 in	great	detail	 in	Chapter	12,	 the
current	 lightweight	 IPv6	 stacks	 only	 require	 a	 few	kilobytes	 of	RAM	and
few	dozen	kilobytes	of	Flash	with	limited	processing	power	and	can	run	on
low-end,	8-bit	microcontrollers.	Don’t	 forget	 that	IPv4	was	first	developed
on	computers	(called	IMP	in	the	ARPANET)	with	similar	processing	power
and	 memory	 interconnected	 by	 low	 speed	 links.	 Second,	 the	 solution	 for
routing	while	considering	the	characteristics	of	link	layers	simply	consists	of
specifying	 new	 metrics	 reflecting	 these	 characteristics	 at	 a	 higher	 layer.
Such	metrics	are	discussed	in	Chapter	16.

Other	 attempts	 at	 cross-layer	 optimizations	 were	 made	 where	 upper
layers	would	use	addresses	used	by	 lower	 layers	 thus	 introducing	another
type	 of	 inter-layer	 dependency.	 Once	 again,	 designers	 had	 to	 step	 away
from	 this	 approach	because	 the	 emergence	 of	 new	applications	 and	 lower
layers	forced	them	to	redesign	other	layers.

So	 in	 conclusion,	 there	 is	 a	 trade-off.	Layering	 provides	 a	 remarkable
level	 of	 flexibility	 but	 requires	 a	 better	 knowledge	 of	 the	 set	 of	 features
supported	by	various	 layers	during	 the	network	design	phase.	Cross-layer
optimization	may,	 in	 some	 cases,	 lead	 to	more	optimal	networking	 stacks.
What	 we	 learned	 from	 the	 past	 is	 that	 technologies	 always	 evolve	 faster
than	we	think,	requiring	a	high	level	of	flexibility.	This	is	even	more	true	for
smart	 objects	 networks.	 Cross-layer	 optimization	 is	 achievable	 without
violating	 the	principles	of	 layering	due	 to	a	 level	of	 layer	abstraction.	For
example,	 link	 layer	 properties	 may	 be	 reflected	 at	 the	 network	 layer
because	of	routing	metrics	(Chapter	16).

	
2.5	Why	is	IP	Layering	also	Important	for	Smart	Object	Networks?



Discussing	the	reasons	that	led	to	the	current	TCP/IP	architecture	shows
why	TCP/IP	has	been	so	successful.

It	 also	 demonstrates	 why	 TCP/IP	 is	 well	 suited	 for	 smart	 object
networks.	The	question	Why	IP	for	Smart	Objects?	is	addressed	in	Chapter
3,	 but	 it	 is	 worth	 spending	 more	 time	 on	 the	 adequacy	 of	 the	 TCP/IP
protocol	suite	for	smart	object	networks	from	an	architectural	standpoint.

As	 previously	 discussed,	 a	 plethora	 of	 proprietary	 or	 semi-closed
protocol	stacks	have	been	designed	over	the	past	decade	that	advocated	for
a	different	model	consisting	of	collapsing	layers	with	no	clear	demarcation
between	the	various	functions	handled	by	the	network	protocols.	The	main
motivation	for	such	an	approach	was	to	try	to	improve	the	efficiency	of	the
networks,	considering	the	high	degree	of	constraints	placed	on	smart	object
networks	 regarding	 the	 devices	 as	 well	 as	 the	 links	 interconnecting	 these
devices.

By	collapsing	the	layers,	these	architectures	proved	to	be	extremely	rigid
in	the	following	ways:

•	Link	layer	dependency:	In	most	cases,	architectures	were	tied	to	a
specific	link	layer.	Although	there	were	a	very	limited	number	of	low-
power	link	layers	designed	for	smart	object	networks	a	few	years	ago
(e.g.,	 IEEE	 802.15.4),	 the	 emergence	 of	 a	 number	 of	 new	 low-power
link	 layers	 could	 be	 easily	 predicted.	 As	 discussed	 in	 Chapter	 12,
several	 low-power	 link	 layers	are	now	used	 in	smart	object	networks,
both	wired	and	wireless.	These	 include	 link	 layers	 such	as	 low-power
WiFi	 or	 Powerline	 communication.	 These	 architectures	 could	 not
support	 the	new	 links	without	performing	protocol	 translation,	which
is	a	very	costly	and	inefficient	approach.
•	 Dependency	 between	 the	 various	 networking	 functions	 of	 the

networking	 stack:	This	was	also	a	major	 showstopper	 for	 innovation.
In	 contrast	 to	 the	 layered	 TCP/IP	 architecture,	 the	 addition	 of	 new
functionalities	had	consequences	for	a	number	of	networking	functions.
With	TCP/IP	new	applications	are	developed	on	a	daily	basis	without
having	to	change	the	transport	or	IP	layers.	If	functions	are	collapsed
into	 a	 single	 core	 component,	 this	 creates	 a	 dependency	 that
dramatically	slows	down	the	support	of	additional	functionalities.

	
	

2.6	Conclusions



The	 design	 of	 the	 TCP/IP	 architecture	 was	 a	 model	 of	 technical
excellence	with	a	degree	of	flexibility	that	allowed	the	Internet	to	grow	from
a	 few	 hosts	 to	more	 than	 a	 billion	 hosts,	 supporting	 a	myriad	 of	 services
over	a	variety	of	media.

Looking	back,	the	initial	goals	of	TCP/IP	include:

•	Internet	communication	must	continue	despite	loss	of	networks	or
gateways	 (“in	 the	presence	of	 link	or	node	 failures,”	 to	use	nowadays
terms).
•	 The	 Internet	 must	 support	 multiple	 types	 of	 communication

services.
•	Internet	architecture	must:

•	Accommodate	 a	 variety	 of	 networks	 (“networks”	means	 link
and	physical	layers)
•	Permit	distributed	management	of	its	resources
•	Be	cost-effective
•	Permit	host	attachment	with	a	little	effort

	
•	Resources	used	in	the	Internet	architecture	must	be	accountable.

	
The	main	goals	for	smart	object	networks	are	the	same	list	as	outlined

above.	 The	 additional	 requirement	 is	 the	 support	 of	 large-scale	 networks
made	 of	 billions	 of	 unattended	 and	 constrained	 devices	 for	which	 new	 IP
technologies	(detailed	in	Part	II)	have	been	developed.

The	 fundamental	 architectural	 principles	 of	 TCP/IP	 further	 illustrate
why	 the	 TCP/IP	 protocol	 architecture	 is	 extremely	 well	 suited	 for	 smart
object	networks.	Whereas	 semi-closed	or	proprietary	protocols	 that	 try	 to
collapse	layers	unavoidably	lead	to	nonviable	and	non-scalable	approaches
(leading	 to	 local	 optimum),	 TCP/IP	 seeks	 a	 global	 optimum	 and	 provides
the	required	foundations	for	smart	object	networks.

	
	



Chapter	3	Why	IP	for	Smart
Objects?

	

In	this	chapter	we	argue	that	IP	is	the	future	for	smart	object	networks.	There
is	 already	 a	 significant	momentum	 for	 IP-based	 smart	 objects	 as	 demonstrated
by	the	growing	amount	of	products	and	systems	built	upon	the	principles	laid	out
in	 this	book.	 In	 this	chapter,	we	review	the	challenges	 inherent	 to	smart	object
networks,	 as	 presented	 in	 Chapter	 1,	 and	 review	 them	 in	 light	 of	 the	 IP
architecture	discussed	in	Chapter	2.

Although	we	advocate	the	use	of	the	IP	architecture	and	protocols	for	smart
objects,	we	do	not	advocate	that	all	smart	object	networks	should	be	connected
to	the	public	Internet.	There	are	some	smart	objects	connected	to	the	Internet,	for
example,	 to	 send	 data	 to	 a	 central	 database,	 but	 this	 is	 an	 exception,	 not	 the
norm.

First,	a	brief	recap	of	the	challenges	of	smart	object	networks:

•	Evolvability:	Although	we	have	an	idea	of	where	the	application	space
of	smart	objects	is	heading,	we	cannot	know	what	direction	it	will	take	in
the	future.	Therefore,	smart	object	technology	must	inherently	support	the
notion	of	evolvability.	The	mechanisms	developed	for	smart	objects	should
not	be	constrained	by	today’s	ideas,	but	must	allow	for	the	next	generation
of	applications	to	take	full	advantage	of	the	technology	in	pursuing	its	own

application	goals.
•	Scale:	Smart	object	networks	have	a	large	number	of	nodes	per	system.

Existing	smart	object	systems	have	thousands	of	nodes,	and	they	are	likely
to	develop	into	systems	composed	of	hundreds	of	thousands	or	even
millions	of	nodes.	Thus,	smart	object	architecture	must	support	an
increasing	number	of	nodes	through	its	addressing,	routing,	and

management	mechanisms.
•	Diversity	of	applications:	The	number	of	applications	for	smart	objects

is	large,	and	so	is	the	number	of	differences	in	each	application	(as	seen	in
Part	III).	A	home	automation	application	does	not	share	all	of	the	properties
of	an	industrial	automation	application.	Smart	object	technology	tailored	to
one	specific	application	therefore	may	not	work	for	other	applications.



•	Diversity	of	communication	technologies:	Depending	on	the	application
and	the	environment	in	which	the	system	is	deployed,	smart	objects	can	use
a	wide	range	of	communication	technologies.	Wireless	communication	is
appropriate	in	many	situations	because	of	its	deployment	convenience,

whereas	wired	communication	is	more	suitable	in	other	places.	Many	smart
object	systems	use	combinations	of	disparate	technologies	in	the	same

deployment.
•	Interoperability:	Smart	object	networks	need	interoperability	between
the	smart	object	devices	and	between	the	smart	objects	and	existing

network	infrastructures.	With	the	large	base	of	existing	systems	that	smart
objects	enhance,	a	smart	object	architecture	that	makes	interoperability	and

interconnection	difficult	or	cumbersome	will	not	prevail.
•	Standardization:	Mechanisms	and	protocols	that	define	the	operation	of
smart	objects	must	be	standardized	using	open	standards	through	well-

established	standardization	practices.	Any	patents	covering	the	standardized
technology	must	be	disclosed	and	made	available	to	be	used	by	third

parties.	Open	standards	make	the	entry	barrier	low	for	manufacturers,	and
allow	them	to	freely	choose	between	different	vendors.	As	seen	in	Chapter

2,	open	standards	was	a	key	to	the	success	of	IP.
•	Potentially	lossy	communication	technology:	Many	of	the

communication	technologies	used	for	smart	objects	are	inherently	lossy
(data	sent	are	not	guaranteed	to	reach	their	destinations).	Smart	object

protocols	and	mechanisms	need	to	take	this	into	account	when	determining
where	and	how	to	send	data	as	well	as	determining	when	and	how	often.

•	Lifetime:	Because	of	the	large-scale	installations	and	demanding
applications	for	smart	objects,	smart	object	networks	are	meant	to	remain
functional	for	many	years.	This	lifetime	has	implications	both	for	the
performance	requirements	of	smart	object	mechanisms,	which	must	be
power-efficient,	and	for	the	mechanisms	as	such,	which	must	remain

operational	over	the	lifetime	of	the	system.
•	Low-power	consumption:	Smart	objects	have	severe	power	constraints.

Many	smart	objects	are	powered	by	batteries	that	cannot	easily	be	replaced
or	recharged.	Other	smart	objects	draw	their	energy	from	their

surroundings,	such	as	vibration	or	electromagnetic	energy.	In	either	case,
power	consumption	must	be	low	for	the	system	to	achieve	its	optimal

lifetime.	The	power	requirement	affects	both	the	network	protocols	and	the
construction	of	nodes.	The	memory	size	and	computational	complexity	of

the	nodes	are	limited	by	the	power	consumption	constraints.
•	Low	cost:	Smart	objects	are	deployed	in	large	numbers;	therefore	a



small	reduction	in	per-device	costs	quickly	translates	into	large	savings	in
the	cost	of	the	entire	system.	Just	as	the	power	consumption	constraints
affect	the	memory	size	and	computational	complexity	of	the	nodes,	so	do
cost	constraints.	Because	of	constrained	resources	such	as	memory,	power,

and	computation,	any	smart	object	architecture	must	be	lightweight.

	
Given	 these	 challenges,	we	 now	 investigate	 the	 IP	 architecture	 to	 find	 out

how	well	it	meets	them	and	their	implications.
3.1	Interoperability
Interoperability	 is	 a	 predominant	 characteristic	 of	 the	 IP	 architecture.	 It	 is

interoperable	because	it	runs	over	link	layers	with	very	different	characteristics,
providing	 interoperability	 among	 them	 (Figure	 3.1),	 and	 because	 IP	 provides
interoperability	with	existing	networks,	applications,	and	protocols.	We	examine
these	 two	 aspects	 beginning	 with	 how	 IP	 provides	 interoperability	 between
different	link	layers.

Figure	 3.1	 IP	 is	 interoperable	 across	 different	 platforms,	 devices,	 and
underlying	communication	mechanisms.
	

IP	was	 originally	 designed	 to	 provide	 interoperability	 at	 the	 network	 layer
because	 it	works	 on	 top	 of	 different	 types	 of	 link	 layers.	A	 single	 IP	 network



operates	across	a	variety	of	underlying	media	such	as	Ethernet	or	WiFi.	Within
the	IP	architecture,	an	IP	network	operates	across	both	wired	and	wireless	 link
layers	without	requiring	any	external	mechanisms	or	add-ons.	Operating	over	a
variety	of	media	has	always	been	the	prime	objective	of	the	IP	architecture.

Interoperability	within	and	across	different	 link	layers	 is	very	important	for
smart	 objects.	 Smart	 object	 networks	 are	 composed	 of	 a	 wide	 variety	 of	 link
layers	 and	 transmission	mechanisms.	 Smart	 object	 networks	 extend	 from	 low-
power	wireless	 nodes	 to	 high-power	 data	 coordination	 servers.	Because	 of	 the
fundamentally	different	properties	of	these	devices,	it	is	unlikely	they	will	share
a	single	link	layer.	A	low-power	wireless	node	typically	runs	a	low-power,	low-
data-rate	radio	link	layer,	whereas	the	high-power	data	coordination	server	runs
over	 a	 wired,	 high-speed	 Ethernet	 network.	 Still,	 these	 systems	 need	 to
communicate	with	 each	 other.	Because	 of	 its	 layered	 architecture,	 IP	 provides
interoperability	between	these	devices	without	any	special	servers,	gateways,	or
custom	software	that	connects	the	systems.	IP	naturally	connects	these	two.	The
interoperability	of	IP	is	not	just	an	artifact	of	IP	protocols,	but	occurs	because	of
the	architectural	choices	that	support	the	IP	architecture.

The	second	characteristic	of	interoperability	within	the	IP	architecture	is	the
widespread	 adoption	 of	 IP	 in	 today’s	 networked	 ecosystem.	 Consequently,	 an
IP-enabled	device	can	 interoperate	with	a	 large	number	of	devices,	 computers,
and	 servers.	 IP	 is	 not	 only	 the	 standard	protocol	 that	 defines	 the	 Internet,	 it	 is
also	 the	 de	 facto	 standard	 protocol	 used	 for	 networking	 computers	 outside	 the
Internet.	IP-based	smart	objects	are	able	to	communicate	with	any	given	device
without	any	additional	hardware	or	software.

IP	 is	 available	 in	 most,	 if	 not	 all,	 operating	 systems	 for	 general	 purpose
computers	and	servers,	and	there	is	an	ever-growing	body	of	software	available
for	 IP	networking	 for	 the	 type	of	microcontrollers	 used	 in	 smart	 objects.	Both
commercially	licensed	and	open	source	implementations	are	generally	available:
general	 purpose	 operating	 systems	 such	 as	 Microsoft	Windows	 and	 Linux	 or
microcontroller	 operating	 systems	 such	 as	 Contiki,	 TinyOS,	 and	 FreeRTOS.
Most	 software	 packages	 also	 provide	 the	 necessary	 device	 drivers	 for	 the
underlying	communication	hardware.

The	 ubiquity	 of	 IP	 is	 also	 evident	 in	 the	 ever-growing	 number	 of
communication	technologies,	or	link	layers	in	IP	terminology,	that	support	IP.	IP
runs	 not	 only	 high-speed,	 high-throughput	 communication	 technology	 such	 as
the	 optical	 links	 that	 provide	 swift	 communication	 between	 servers	 in	 data
centers,	 but	 also	 low-power,	 low-data-rate	 links	 such	 as	 those	 used	 for	 smart
objects.	 This	 is	 important	 for	 smart	 object	 systems	 designers.	 With	 IP,	 any
communication	 technology	 the	 designer	 chooses	 will	 interoperate	 with	 other



parts	of	the	network	infrastructure.
IP-enabled	smart	objects	interoperate	with	other	systems	and	devices	that	run

IP,	but	the	IP	architecture	contains	other	protocols	as	well.	The	IP	suite	contains
a	set	of	protocols	running	on	top	of	IP	that	include	the	transport	protocols	UDP
and	 TCP;	 application	 layer	 protocols	 such	 as	 the	 Hypertext	 Transfer	 Protocol
(HTTP),	for	web-style	interaction	and	web	service	infrastructure;	and	the	Simple
Network	Management	Protocol	(SNMP)	for	network	configuration.	Thus	a	smart
object	 that	 runs	 IP	 is	 able	 to	 interoperate	 with	 a	 large	 number	 of	 external
systems.

Interoperability	at	the	application	layer	is	as	important	for	system	builders	as
it	 is	 for	 system	 integrators.	 For	 the	 system	 builder,	 the	 ability	 to	 interoperate
with	existing	application	protocols	not	only	makes	the	act	of	building	the	system
easier,	as	existing	applications	can	be	used	when	developing	the	system,	but	also
when	 deploying	 the	 system.	 When	 existing	 applications	 are	 able	 to	 interact
without	 any	 additional	 mechanisms	 or	 heavily	 tailored	 software,	 deployment
time	 is	 significantly	 reduced.	 For	 the	 system	 integrator,	 system	 integration
becomes	 much	 easier	 when	 the	 different	 parts	 of	 the	 system	 immediately
interoperate	with	each	other.

Standardization	plays	a	large	part	in	the	success	of	IP’s	interoperability.	IP	is
standardized	 by	 an	 established	 standardization	 organization	 that	 provides
mechanisms	through	which	new	standards	are	reviewed	and	vetted.	This	process
puts	 a	 large	 amount	 of	 effort	 into	 ensuring	 that	 the	mechanisms	 and	protocols
proposed	as	standards	can	be	efficiently	implemented.	In	Part	II	of	this	book	we
describe	 this	 process	 in	 detail.	 Furthermore,	 the	 standardization	 body	 has
policies	and	practices	that	deal	with	how	patents	are	to	be	handled.

	
3.2	An	Evolving	and	Versatile	Architecture
The	IP	architecture	has	proven	to	be	evolvable	due	to	the	way	applications,

protocols,	and	mechanisms	running	on	top	of	the	architecture	have	evolved,	and
the	way	that	protocols	within	the	architecture	have	evolved.	The	ability	to	evolve
and	 the	 versatility	 in	 applications	 are	 due	 to	 the	 end-to-end	 principle	 that
provides	the	foundation	of	the	IP	architecture.

From	the	outset	 the	 IP	architecture	was	designed	 to	allow	application	 layer
protocols	 and	mechanisms	 to	 evolve	 independently	 of	 the	 underlying	 network
protocols	and	mechanisms.	The	end-to-end	principle	states	that	application	layer
functionality	 should	 be	 held	 in	 the	 end	 points	 of	 the	 network	 (computers,	 or
hosts,	 connected	 at	 the	 fringes	 of	 the	 network).	 The	 network	 does	 not	 contain
any	application-level	intelligence.	This	is	maintained	solely	by	the	network	end
points.	The	network	only	transports	data	between	the	end	points	(Figure	3.2).



Figure	 3.2	Versatility	 is	 seen	when	 the	 applications	 run	 on	 the	 end	 points
and	the	network	only	transports	data	between	them,	which	allows	the	system	to
evolve.
	

The	network	does	not	know	if	it	is	transporting	a	temperature	reading	from	a
temperature	 sensor,	 a	 piece	 of	 sound	 from	 a	 voice	 conversation,	 a	 control
command,	or	a	piece	of	a	larger	file.	It	only	knows	that	it	has	been	given	a	string
of	 bits	 to	 transport	 from	 one	 end	 of	 the	 network	 to	 another.	 It	 is	 up	 to	 the
applications	running	at	the	end	points	to	make	sense	of	the	bits.

The	 end-to-end	 principle	 is	 the	 primary	 reason	 today’s	 IP	 networks	 work
with	 a	 diverse	 number	 of	 applications.	 If	 we	 take	 the	 public	 Internet	 as	 an
example	and	look	at	its	history,	it	shows	that	the	applications	running	on	top	of
the	Internet	have	evolved	since	the	inception	of	the	Internet	in	the	early	1980s.
In	 the	 1980s,	 the	 Internet	was	mostly	 used	 for	 transporting	 text	 and	 files;	 the
main	 applications	 were	 e-mail	 and	 file	 transfer	 between	 universities.	 In	 the
1990s,	 the	World	Wide	Web	was	 deployed,	 and	 by	 the	 late	 1990s	 data	 traffic
caused	 by	 the	Web	 dominated	 the	 traffic	 on	 the	 Internet.	 In	 the	 early	 2000s,
peer-to-peer	 file	 sharing	 and	 Internet	 video	 transport	 emerged	 as	 new
applications,	and	in	2010	these	applications	constitute	the	bulk	of	Internet	traffic.

Without	 the	 end-to-end	 principle,	 designers	 might	 have	 been	 impelled	 to
push	 application	 functionality	 into	 the	 fabric	 of	 the	 network.	For	 example,	 the
World	 Wide	 Web	 could	 have	 been	 encoded	 in	 the	 routers	 that	 make	 up	 the
interconnected	network	of	 the	 Internet.	Placing	application	 functionality	within
the	network	may	have	yielded	a	slightly	higher	performance,	because	data	may
have	 needed	 to	 travel	 slightly	 shorter	 distances,	 but	 evolving	 the	 network	 to
support	new	applications	would	have	been	extremely	difficult.	 Inserting	a	new
application	into	the	network	would	have	needed	technical	cooperation	between	a
large	 number	 of	 parties,	 and	 globally	 agreeing	 what	 applications	 should	 be
supported	by	the	network	would	have	been	close	to	impossible.

In	addition	to	promoting	evolvable	applications,	the	end-to-end	principle	and
the	 resulting	 architecture	 embodied	 in	 IP	 have	 had	 a	 profound	 impact	 on	 the
interoperability	 of	 existing	 IP	 networks.	 If	 application	 functionality	 had	 been



placed	 deeply	 in	 the	 network	 fabric,	 network	 operators	would	 have	 needed	 to
negotiate	 complex	 deals	 on	 how	 to	 connect	 the	 applications.	 And	 once	 these
negotiated	 deals	were	 in	 place,	 adding	new	applications	 or	 evolving	new	ones
would	have	been	difficult.

Thus	 far	we	have	discussed	how	 the	 technical	architecture	 that	 supports	 IP
enables	applications	running	on	top	of	IP	to	evolve.	But	there	are	other	elements
in	the	mix	that	allow	the	system	as	a	whole	to	evolve.

We	have	already	 touched	upon	 the	standards	process	of	 IP	as	an	 important
factor	in	its	interoperability,	but	the	standardization	process	has	implications	for
the	 evolution	 of	 the	 architecture	 too.	 The	well-defined	 standardization	 process
for	IP	provides	mechanisms	through	which	new	features	can	be	introduced	to	the
architecture.	 The	 most	 common	 example	 of	 this	 is	 when	 a	 new	 link	 layer
technology	 is	 introduced.	 The	 standardization	 process	 provides	 a	 way	 for
vendors	to	agree	on	how	to	use	the	new	link	layer	to	transport	IP	packets	within
the	IP	architecture.

	
3.3	Stability	and	Universality	of	the	Architecture
We	 have	 been	 discussing	 how	 the	 application	 layer	 protocols	 and	 the

underlying	 link	 layer	 mechanisms	 have	 allowed	 IP	 architecture	 to	 evolve.
Although	evolvability	 is	 important,	because	 it	 shows	 that	 the	protocols	are	not
tied	to	one	particular	application	use	that	may	change	in	 the	future,	stability	of
the	 foundations	 of	 the	 architecture	 is	 also	 important.	 For	 smart	 objects,	 such
stability	is	very	important	because	individual	smart	object	systems	are	designed
to	have	a	long	lifetime,	often	up	to	ten	years.	Such	investments	require	the	base
technology	to	be	stable	enough	to	remain	available	toward	the	end	of	the	system
life	cycle.

The	IP	architecture	has	existed	for	nearly	30	years.	Although	there	is	room	in
the	IP	architecture	for	evolving	protocols	both	at	the	application	layer	and	at	the
link	 layer,	 throughout	 the	 years	 the	 architecture	 as	 a	 whole	 has	 remained
exceptionally	 stable.	 Standards	 have	 been	 updated	 several	 times	 over	 the	 30
years,	 but	 its	 foundation	 as	 a	 packet-based	 communication	 technology	 has
remained	firm.	The	network	layer,	the	core	of	the	IP	architecture,	exists	in	two
versions	—	 version	 four	 (IPv4)	 and	 version	 six	 (IPv6).	 The	 major	 difference
between	 the	 two	 is	 that	 IPv6	provides	more	addresses.	There	are,	however,	no
major	architectural	differences	between	the	two	versions.

Because	IP	forms	the	basis	of	the	public	Internet,	the	IP	architecture	and	its
surrounding	standards	will	continue	to	exist	well	into	the	future.	The	prevalence
of	the	Internet	not	only	implies	that	IP	has	a	large	installed	user	base	regarding
hardware	and	software	that	supports	it,	but	there	is	also	a	large	installed	network



infrastructure.	IP	networking	equipment	and	IP	network	access	are	both	readily
available	and	will	continue	to	be	so	as	long	as	the	Internet	exists.

The	stability	and	prevalence	of	the	IP	architecture	also	have	implications	on
the	 knowledge	 and	 education	 of	 users	 and	 network	 administrators.	 IP
architecture	 and	 its	 protocols	 are	 part	 of	 the	 core	 curriculum	 in	 courses	 and
training	material	 at	 all	 levels	of	 the	 educational	 system	 ranging	 from	day-long
network	training	courses	to	multiyear	university	programs.	Ever	year,	thousands
of	new	engineers	graduate	with	knowledge	of	IP	protocols	and	the	architecture.

The	 number	 of	 books	 and	 training	 material	 on	 IP	 architecture	 and	 its
protocols	 is	 immense,	continues	 to	 increase,	and	 is	available	 in	many	different
languages.	There	is	a	vast	amount	of	material	freely	available	online	both	as	text,
recorded	 seminars,	 and	 animated	 videos.	Again,	material	 is	 available	 in	many
different	languages	and	for	different	audiences.

	
3.4	Scalability
The	 IP	 architecture	 has	 been	 thoroughly	 field-proven	 regarding	 scalability

through	the	use	of	IP	over	the	public	Internet.	Few	communication	architectures
have	ever	seen	such	a	large-scale	deployment.	Through	the	global	deployment	of
the	Internet,	 IP	has	both	shown	that	 it	can	be	deployed	over	a	 large	number	of
systems	and	that	it	can	run	across	a	vast	variety	of	different	implementations	of
its	protocols.

But	we	need	not	go	as	far	as	to	the	public	Internet	to	witness	the	scalability
of	 IP.	 Most	 larger	 companies	 run	 internal	 networks	 to	 support	 the	 activities
within	 the	 company.	 These	 networks	 are	 often	 not	 connected	 to	 the	 public
Internet,	yet	they	can	span	many	thousands	of	individual	computers	or	servers.

	
3.5	Configuration	and	Management
Through	 its	 wide	 adoption	 and	 large-scale	 deployment,	 IP	 has	 evolved

numerous	 mechanisms	 and	 protocols	 for	 network	 configuration	 and
management.	 These	 mechanisms	 are	 a	 necessity	 when	 networks	 grow	 to
thousands	 of	 hosts.	 Network	 management	 tools	 allow	 for	 a	 single	 person	 to
manage	large	networks,	without	manual	configuration	of	each	host.

The	 IP	 architecture	 provides	 advanced	 configuration	 and	 management
mechanisms	 as	 well	 as	 automatic	 configuration	 mechanisms.	 Configuration
mechanisms	are	provided	at	many	layers	of	the	system:	from	the	network	layer,
where	managed	and	automatic	mechanisms	for	assigning	network	addresses	are
widely	used,	 to	 the	routing	protocols,	where	routing	mechanisms	are	both	self-
healing	and	automatically	configurable.

IP	 provides	 management	 mechanisms	 at	 all	 layers.	 Address	 assignment



mechanisms	 such	 as	 the	Dynamic	Host	 Configuration	 Protocol	 (DHCP)	 allow
network	 administrators	 to	 assign	 addresses	 both	 individually	 to	 singular	 nodes
and	 in	 bulk	 to	 others.	 Routing	 protocols	 allow	 management	 of	 both	 network
configuration	and	engineering.

Protocols	such	as	the	widely	used	SNMP	provide	means	by	which	a	network
administrator	can	inspect	the	network,	its	configuration,	and	its	performance.	A
plethora	of	 tools	 for	 interacting	with	SNMP-enabled	networks,	 and	visualizing
their	performance,	exist.	The	widespread	adoption	of	SNMP	also	means	there	is
a	large	body	of	knowledge	and	people	experienced	with	these	tools.	Additional
tools	 such	 as	Cisco	Netflow	 provide	 large	 amounts	 of	 data	 about	 the	 network
health	and	traffic	statistics.

For	 smart	 object	 networks,	 configuration,	 management,	 installation,	 and
commissioning	 are	 clearly	 an	 issue.	 Even	 though	 traditional	 management
mechanisms	 cannot	 be	 directly	 applied	 to	 smart	 object	 networks,	 due	 to	 their
large	scale	and	number	of	nodes,	the	ability	to	leverage	existing	mechanisms	and
tools	 is	 important.	 It	 provides	 not	 only	 technical	 advantages,	 but	 also	 non-
technical	advantages	such	as	the	availability	of	skilled	people.

	
3.6	Small	Footprint
Low	energy	consumption,	small	physical	size,	and	low	cost	are	three	of	the

node-level	 challenges	 of	 smart	 objects.	 Taken	 together,	 these	 challenges
translate	into	severe	memory	constraints	and	software	complexity	on	the	nodes.
A	network	architecture	for	smart	objects	must	be	able	 to	run	within	 these	 tight
bounds,	and	yet	perform	its	task.

The	 IP	 architecture	 was	 long	 thought	 to	 be	 a	 heavyweight	 due	 to	 its
perceived	need	 for	processing	power	and	memory.	The	protocols	were	seen	as
too	large	to	fit	into	the	constrained	environment	of	typical	smart	object	systems.
A	 typical	 smart	 object	 has	 only	 a	 few	 tens	 of	 kilobytes	 of	 memory,	 whereas
existing	 implementations	 of	 the	 IP	 protocol	 family	 for	 general	 purpose
computers	 would	 need	 hundreds	 of	 kilobytes.	 For	 this	 reason,	 several	 non-IP
stacks	were	developed	[,].

In	 the	 early	 2000s,	 however,	 this	 view	 was	 challenged	 by	 lightweight
implementations	of	the	IP	protocol	family	for	smart	objects	such	as	the	uIP	stack
[64].	 uIP	 showed	 that	 the	 IP	 architecture	 would	 fit	 nicely	 into	 the	 typical
constraints	of	smart	objects,	without	removing	any	of	the	essential	mechanisms
from	 IP.	 Note	 that	 these	 resources,	 which	 we	 consider	 constrained	 today,	 are
fairly	 close	 to	 the	 resources	 of	 general	 purpose	 computers	 that	were	 available
when	IP	was	designed.	Since	its	initial	release,	the	uIP	stack	has	become	widely
used	in	networked	embedded	and	smart	object	systems.



In	 addition	 to	 uIP,	 there	 are	many	 small	 IP	 stacks	 available,	 both	 as	 open
source	 and	 closed	 source.	 Many	 of	 the	 early	 embedded	 IP	 stacks	 were
adaptations	of	 the	 IP	stack	 from	the	open	source	BSD	UNIX	operating	system
[172].

Recently,	 a	 number	 of	 implementations	 of	 IPv6	 for	 memory-constrained
systems	 have	 appeared.	 uIP	 has	 been	 extended	 to	 support	 the	 IPv6	 protocol,
which	 is	 the	 first	 IPv6	 stack	 for	 smart	 objects	 to	 be	 certified	 under	 the	 IPv6
Ready	program	[73].	Other	independent	implementations	of	the	IPv6	stack	have
also	appeared	[,].	The	footprints	of	the	stacks	are	shown	in	Figure	3.3.	The	graph
shows	the	memory	requirements	of	the	uIP	and	uIPv6	stacks[64,73],	the	stack	by
Hui	and	Culler	 [125],	 and	 the	 lwIP	stack	 [64].	Figure	3.3	 shows	 that	 there	are
many	options	for	IP	software	that	fit	into	the	resource	constraints	in	smart	object
nodes.

Figure	 3.3	 The	 memory	 footprint	 of	 uIP,	 lwIP,	 and	 two	 commercially
available	 IPv6	 stacks:	 the	 Arch	 Rock	 stack	 (ARv6),	 and	 the	 Sensinode
NanoStack	 (NSv6).	 The	 footprint	 includes	 transport	 layer	 protocols	 UDP	 and
TCP	for	uIP	and	lwIP.
	

In	 Chapter	 13	 we	 take	 a	 detailed	 look	 at	 the	 uIP	 stack	 to	 see	 how	 it
implements	the	IP	architecture	in	a	way	that	fits	with	the	smart	object	resource
challenges.

	
3.7	What	are	the	Alternatives?
We	have	now	seen	that	the	IP	architecture	is	interoperable	across	devices	and

communication	 technologies,	 evolving	and	versatile	while	 still	 stable,	 scalable,
and	manageable,	and	simple	enough	that	a	resource-constrained	smart	object	can
easily	run	it.	We	have	painted	a	very	bright	picture	of	the	IP	architecture,	but	is	it
really	as	good	as	we	say?	What	are	the	alternatives?

The	 IP	 architecture	 was	 arguably	 not	 designed	 for	 smart	 objects.	 It	 was



designed	 in	 the	 1970s	 for	 connecting	 general	 purpose	 computers	 using	 wired
networking	 technologies	 such	as	Ethernet.	Could	we	do	 it	 better	 if	we	made	a
clean-slate	 redesign	 that	 specifically	 targets	 the	 challenges	 that	 smart	 object
networks	pose?	To	help	answer	our	question,	we	turn	to	those	who	did	this.

The	 challenges	 of	 low-power	operation	 and	 the	 large	 scale	 of	 smart	 object
networks	have	spurred	several	years	of	research	in	the	wireless	sensor	networks
research	 community.	Although	wireless	 sensor	 networks	 are	 a	 subset	 of	 smart
object	 networks,	 they	 share	 many	 of	 the	 properties	 such	 as	 the	 low-power
operation,	the	large	scale	of	the	networks,	and	the	resource	constraints.

At	 the	 outset,	 the	 wireless	 sensor	 network	 community	 rejected	 the	 IP
architecture	 based	 on	 the	 assumption	 that	 it	would	 not	meet	 the	 challenges	 of
wireless	 sensor	 network	 systems	 [110].	 For	 an	 emerging	 research	 field,	 this
clearly	 was	 the	 right	 choice.	 Consequently,	many	 novel	 network	 architectures
have	 been	 investigated,	 where	 the	 layers	 in	 the	 networking	 stack	 have	 been
turned	upside	down	[111],	where	 the	 layers	have	been	 intermingled	 [168],	and
where	 the	 network	 itself	 processes	 the	 data	 produced	 by	 the	 end	 points	 [162].
After	 several	 years,	 however,	 the	 community	 started	 to	 lean	 toward	 layered
network	 architectures,	 because	 of	 the	 benefits	 of	modularity	 and	 separation	 of
concerns[35,46,71,93].	 In	 fact,	 many	 have	 moved	 to	 IP	 because	 of	 the
interoperability	with	existing	systems	and	the	well-engineered	architecture	based
on	the	end-to-end	architecture[67,73,125,207].

The	industry	around	low-power	wireless	communication	has	made	a	similar
transition.	In	the	late	1990s,	there	was	a	strong	movement	toward	defining	a	new
network	architecture	 for	 the	networking	 system	under	 the	brand	name	ZigBee.
ZigBee	was	designed	to	perform	control	applications,	such	as	controlling	lights
and	 appliances	 in	 homes,	 over	 a	 low-power	wireless	 communication	medium.
ZigBee	 initially	 defined	 a	 networking	 stack	 that	 would	 work	 well	 over	 low-
power	wireless	links,	but	that	was	incompatible	with	existing	network	standards
such	as	IP.	In	2009,	however,	ZigBee	announced	that	they	were	moving	toward
adopting	IP	as	its	communication	mechanism.	In	Part	II	of	this	book,	we	return
to	ZigBee	to	discuss	the	choices	made	in	the	original	ZigBee	architecture.

Even	if	we	were	designing	our	own	network	architecture	for	smart	objects,	at
some	point	they	would	need	to	communicate	with	someone	outside	the	network.
Our	 electrical	 meter	 would	 need	 to	 report	 its	 data	 to	 a	 collection	 server.	 Our
industrial	 vibration	 sensor	 would	 need	 to	 send	 its	 latest	 sensor	 reading	 to	 a
database.	 Our	 radiator	 controller	 would	 need	 to	 be	 given	 instructions	 on	 how
much	 to	 turn	 up	 the	 heat	 in	 its	 room.	 To	 reach	 the	 smart	 objects,	we	 need	 to
insert	 a	 translation	 point	 between	 our	 smart	 object	 network	 and	 the	 outside
network.	This	translation	point	is	called	a	gateway,	and	it	introduces	a	number	of



problems.
	

3.8	Why	are	Gateways	Bad?
At	a	 first	 sight,	gateways	offer	an	alternative	 to	adopting	 the	 IP	end-to-end

principle,	which	allowed	for	interconnecting	non-IP-based	smart	object	networks
to	an	IP	network.

Such	gateways	were	designed	and	deployed	in	a	number	of	networks	about	a
decade	ago,	when	IP	was	not	yet	the	networking	protocol	of	choice.	At	that	time,
several	 legacy	 networking	 protocols	 such	 as	 IBM’s	 Systems	 Network
Architecture	(SNA),	and	Novell’s	Internetwork	Packet	Exchange	protocol	(IPX),
and	many	other	ones	were	deployed	mostly	in	private	networks.	As	IP	networks
were	deployed,	network	administrators	 required	gateways	 to	 interconnect	 these
networks	 by	 means	 of	 multiprotocol	 translation	 gateways	 supporting	 these
protocols,	 which	 led	 to	 several	 deployments	 models.	 Some	 protocols	 were
tunneled	over	IP	(encapsulated	in	IP	packet	to	transport	non-IP	traffic	over	an	IP
network),	while	others	were	translated.

Although	 such	 gateways	 were	 deployed,	 most	 networks	 very	 quickly
migrated	to	IP.	But	why?	There	are	two	main	reasons	for	the	move	away	from
gateways:	 the	 inherent	 complexity	 of	 gateways	 and	 the	 lack	 of	 flexibility	 and
scalability.

3.8.1	Inherent	Complexity
The	mode	of	operation	of	a	multiprotocol	 translation	gateway	is	a	complex

language	translation	mechanism	with	subtle	nuances	in	semantics	in	addition	to
the	actual	translation.	Network	protocol	translation	is	more	complex	than	just	a
packet	 format	 conversion.	Networking	protocols	use	different	mechanisms	and
logic	 for	 routing,	 Quality	 of	 Service	 (QoS),	 error	 recovery,	 transport,
management,	 troubleshooting,	 and	 security	 models.	 Trying	 to	 translate	 the
semantics	of	QoS	between	two	networking	protocols,	for	example,	is	not	limited
to	 the	setting	of	a	new	field	value	 in	a	packet	and	may	sometimes	not	even	be
possible.	 Routing	 is	 similarly	 affected:	 when	 two	 routing	 domains	 are	 using
different	 routing	 architectures,	 routing	metrics,	 and	paradigms	 the	 introduction
of	protocol	translation	gateways	introduces	several	limitations.	This	is	true	for	a
number	of	network	aspects	where	such	gateways	break	 the	networking	models
on	both	sides.

Furthermore,	 with	 gateways,	 management	 and	 troubleshooting	 become
cumbersome.	 Imagine	 traffic	 flows	 between	 three	 smart	 objects	 implementing
different	 networking	 protocols.	 This	 requires	 as	 many	 as	 six	 protocol
translations.	 Such	 a	 system	 is	 extremely	 difficult	 to	manage	 and	 troubleshoot,
especially	when	the	gateway	is	not	managed	by	a	networking	expert.



	
3.8.2	Lack	of	Flexibility	and	Scalability
The	lack	of	flexibility	and	scalability	is	undoubtedly	a	real	issue.	As	already

pointed	out,	the	evolvability	and	scalability	essential	to	all	networks	are	required
for	 smart	 object	 networks	 because	 of	 the	 myriad	 of	 future	 innovative
applications.	Protocol	 translation	gateways	 inherently	do	not	 scale	and	become
networking	 bottlenecks.	 Each	 protocol	 enhancement	 implies	 changes	 in	 the
gateways,	 which	 become	 the	 least	 common	 denominator	 factor	 of	 the
architecture.	 Furthermore,	 such	 gateways	 introduce	 an	 undesirable	 state	 in	 the
networks,	 which	 impacts	 not	 only	 the	 overall	 scalability	 but	 also	 the	 overall
reliability	with	single	points	of	failure.

The	use	of	multiprotocol	gateways	helped	integrate	disparate	networks	in	the
late	 1990s	 when	 network	 administrators	 had	 to	 deal	 with	 several	 legacy
protocols	 and	 when	 networks	 were	 significantly	 smaller.	 Now	 that	 IP	 has
become	 the	networking	protocol	of	choice,	 the	use	of	multiprotocol	 translation
gateways	would	ineluctably	lead	to	the	wrong	architectural	choice.
	
3.9	Conclusions
Smart	object	networks	and	their	applications	give	rise	 to	challenges	both	at

the	 node	 and	 the	 network	 level.	 To	meet	 these	 challenges	we	 need	 a	 network
architecture	 that	 is	 interoperable	 across	 a	 wide	 range	 of	 communication
technologies,	 that	evolves	as	 the	 field	of	smart	objects	evolves,	and	 is	scalable
enough	 to	 meet	 the	 challenges	 imposed	 by	 large-scale	 smart	 object	 networks
while	lightweight	enough	for	the	node-level	resource	constraints.	We	argue	that
the	 IP	 architecture	 meets	 these	 goals	 while	 providing	 unprecedented
interoperability	with	existing	networks,	applications,	and	services.

	



Chapter	4	IPv6	for	Smart	Object
Networks	and	the	Internet	of	Things

	

4.1	Introduction
IPv4	 has	 been	 widely	 and	 very	 successfully	 deployed	 on	 hundreds	 of

millions	 of	 hosts	 and	 routers	 in	 a	number	 of	 private	 and	public	networks
around	the	world.	Considering	that	IPv4	was	initially	designed	in	1982	[48],
such	a	growth	and	adoption	rate	is	remarkable.	Very	early	on,	considering
the	impressive	growth	of	IP	networks,	the	Internet	Engineering	Task	Force
(IETF)	 in	 charge	 of	 standardizing	 the	 IP	protocol	 suite	had	 identified	 the
need	to	specify	a	new	version	of	IP:	several	task	force	groups	were	formed
and	these	initiatives	led	to	the	specification	of	IPv6	in	1998	[53].

IPv6	 is	 an	evolution	 of	 IPv4	and	builds	on	 IPv4	with	no	 change	 in	 the
fundamental	and	architectural	principles	of	the	IP	protocol	suite	discussed
in	Chapter	2.	Some	protocols	added	to	IPv4	to	sort	out	specific	issues	have
been	 natively	 embedded	 into	 IPv6,	 the	 header	 has	 been	 modified	 in
particular	to	allow	for	a	large	address	space.	A	few	new	features	have	been
added	but	IPv6	fundamentally	preserves	the	architectural	principles	of	IP.
This	 was	 imperative	 considering	 the	 power	 of	 the	 IP	 protocol	 suite
architecture.	Many	of	the	existing	protocols	such	as	the	transport	protocols
(UDP	and	TCP)	have	not	been	modified.	Drastically	simplifying	layer	3	and
the	 overall	 architecture	 as	 well	 as	 going	 back	 to	 the	 most	 fundamental
architectural	 principle	 of	 IP	 were	 done	 in	 IPv6.	 More	 details	 on	 these
aspects	 are	 discussed	 in	Chapter	 5	 in	 the	 section	Layer	 2	 versus	 Layer	 3
Routing.

Why	 is	 IPv4	 still	 so	prevalent?	The	 answer	 is	 somewhat	 fairly	 simple:
cost	and	complexity	of	migration.	With	more	than	one	billion	devices	using
IPv4,	 the	 migration	 to	 a	 new	 version	 of	 the	 protocol	 is	 not	 entirely
straightforward	 and	usually	 requires	 a	 business	 driver.	 IPv6	undoubtedly
enhances	 many	 of	 the	 IPv4	 functionalities,	 offers	 a	 much	 larger	 address
pool,	and	provides	better	support	for	security	and	mobility	while	preserving
the	fundamental	protocol	architecture	of	IPv4,	but	the	“cost”	of	migration
has	slowed	down	the	adoption	rate	of	IPv6.



The	 question	Why	 IPv6?	 is	 now	 obsolete,	 and	 the	 IP	 community	 fully
agrees	 that	 IPv6	will	 replace	 IPv4	with	a	 smooth	 transition	 (to	 that	 end	a
number	of	technologies	and	migration	strategies	have	been	designed	by	the
IETF).

Over	 the	 past	 decade,	 several	 technologies	 have	 been	 developed	 to
postpone	 the	 migration	 of	 IPv4	 to	 IPv6	 such	 as	 Network	 Address
Translation	 (NAT),	 which	 has	 been	 used	 extensively	 (see	 Chapter	 5	 for
more	 details).	 Multiprotocol	 Label	 Switching	 Virtual	 Private	 Network
(MPLS	 VPN)	 also	 uses	 private	 addresses	 (non-routable	 over	 the	 global
Internet)	 over	 a	 common	 (usually	 service	 provider)	 infrastructure.
Basically,	 private	 networks	 are	 interconnected	 at	 the	 edge	 of	 the	 network
and,	 upon	 receiving	 an	 IP	 packet	 using	 a	 private	 IP	 address,	 the	 router
connected	to	this	network	pushes	a	(VPN)	label	that	uniquely	identifies	the
private	 address	 (using	 to	 a	 new	 address	 family	 called	 VPNv4).	 A	 second
label	 is	 then	 added	 to	 forward	 the	 packet	 to	 the	 router	 connected	 to	 the
destination	private	network	where	the	VPN	label	is	removed.	See	[217]	for
more	 details	 on	 MPLS	 VPN	 or	 [247]	 for	 more	 information	 on	 MPLS
technology.	 Note	 that	 MPLS	 not	 only	 allows	 the	 interconnection	 of
networks	using	private	 addressing	over	 a	 common	 infrastructure	but	 also
enhances	IP	networks	with	sophisticated	traffic	engineering	techniques.

But	 the	 situation	 is	 radically	 changing.	 First,	 the	 exhaustion	 rate	 of
public	IPv4	addresses	is	extremely	concerning.

Figures	 4.1	 and	 4.2	 show	 the	 evolution	 of	 the	 Internet	 in	 the	 past	 30
years	 from	 about	 a	 dozen	 devices	 to	 more	 than	 a	 billion.	 Imagine	 the
number	 of	 devices	 (not	 yet)	 connected	 to	 both	 the	 public	 Internet	 and	 a
myriad	 of	 IP	 private	 networks:	 this	 shows	 why	 IPv6	 is	 the	 only	 viable
option	for	smart	object	networks.



Figure	4.1	The	Internet	in	1972.
	

Figure	4.2	The	same	Internet	in	2007.



(Source:	Wikipedia.)
	

In	many	cases	 the	use	of	NAT	is	not	an	option	as	detailed	 later	 in	 this
chapter,	 in	 Section	 4.3.	 Even	 in	 private	 networks	 composed	 of	 a	 large
number	of	devices	the	use	of	IPv6	is	the	preferred	option.

Smart	Grid	networks	are	good	examples.	Most	of	the	devices	connected
to	the	grid	will	not	be	connected	to	the	public	Internet	for	security	reasons.
Still,	 these	 networks	 will	 likely	 contain	 hundreds	 of	 millions	 of	 devices
(please	refer	to	Chapter	20	for	more	details).	More	than	likely	in	less	than
10	 years	 such	 networks	 will	 connect	 millions	 of	 monitoring	 and	 control
devices	in	the	production	and	distribution	part	of	the	Smart	Grid	network.
Smart	meters	will	also	be	connected	to	the	network,	again	with	millions	of
devices.	To	 support	 end-to-end	applications	 such	as	demand-response,	 the
Smart	Grid	will	require	communication	with	end	devices	in	the	home	via	a
home	energy	controller.	Simple	math	shows	that	the	number	of	IP-enabled
home	 devices	 running	 IP	 in	 the	 home	 area	 network	 (HAN)	 and	 smart
objects	 in	 the	 grid	 networks	 including	 smart	 meters	 will	 quickly	 exceed
billions	 of	 devices.	 The	 Smart	 Grid	 is	 only	 one	 example	 among	 many
including	Smart	Cities,	Industrial	Automation,	and	so	forth.

It	 is	worth	noting	 that	 the	motivation	 for	 IPv6	 in	 large-scale	networks
applies	to	both	private	IP	networks	and	the	public	Internet.

Although	the	address	space	in	undoubtedly	one	of	the	main	motivations
for	 using	 IPv6	 (and	 the	 reason	 why	 a	 large	 proportion	 of	 this	 chapter	 is
devoted	 to	 IPv4	 address	 space	 exhaustion),	 it	 is	 not	 the	 only	 one.	 IPv6
provides	a	number	of	powerful	features	such	as	stateless	autoconfiguration
(discussed	 in	 detail	 in	 Chapter	 15),	 which	 allows	 the	 network	 to	 support
dynamic	address	assignment	without	requiring	heavy	state	management	in
the	network.	This	is	only	one	of	the	value-added	services	provided	by	IPv6.

IPv6	 is	 undoubtedly	 the	 only	 viable	 option	 for	 IP	 networks	 deployed
today	 and	 in	 the	 future	 with	 many	 more	 IP	 devices	 connected	 to	 both
private	and	public	networks.	This	is	why	several	IETF	Working	Groups	in
charge	 of	 standardizing	 IP	 protocols	 for	 smart	 objects	 decided	 to	 specify
these	new	protocols	for	IPv6	only.

	
4.2	The	Depletion	of	the	IPv4	Address	Space
Who	could	have	expected	that	the	32-bit	address	space	of	IPv4	would	at

some	point	be	too	restricted	and	4,294,967,296	IPv4	would	not	be	sufficient?
First,	the	address	space	is	not	totally	available	and	is	fragmented:	in	reality,



the	 number	 of	 available	 IPv4	 addresses	 is	 far	 below	 the	 theoretical
4,294,967,296	number.	The	address	space	is	divided	into	blocks	of	addresses
that	 are	 partially	 used.	 Several	 indicators	 have	 been	 specified	 to	 evaluate
the	address	space	fragmentation	ratio	(see	[72]	and	[126]).	Such	indicators
were	also	used	to	determine	the	number	of	bits	that	would	be	required	for
IPv6	addresses.

As	previously	stated,	considering	the	exponential	growth	of	the	Internet
and	the	address	allocation	rate,	the	IETF	demonstrated	admirable	foresight
by	starting	several	initiatives	in	the	early	1990s	to	design	the	next	version	of
IP,	which	led	to	the	current	IPv6	version.

Early	 predictions	 (made	 at	 the	 time	 IPv6	 was	 in	 its	 early	 phase	 of
design)	were	that	IPv4	address	depletion	would	take	place	as	early	as	2002.
This	 triggered	active	work	 from	 the	 IETF	community	 to	 find	 solutions	 to
slow	down	the	pace	at	which	IP	addresses	were	allocated	while	waiting	for
IPv6	(the	ultimate	solution	to	address	exhaustion)	to	be	widely	adopted	on
the	Internet.

Several	mitigation	strategies	were	developed:

•	 The	 first	 cure	 consisted	 of	 not	 allocating	 class	 B	 addresses	 to
companies	 without	 a	 strong	 justification	 but	 allocate	 class	 C	 address
blocks	instead.
•	Classless	 inter-domain	routing	 (CIDR)	 is	a	variable	 length	subnet

mask	 technique	 that	 specifies	 a	 prefix	 length	 of	 arbitrary	 size.
Furthermore	address	aggregation	was	used	to	reduce	the	routing	table
sizes	(see	also	[88]).
•	NAT	was	(and	is	still)	a	solution	to	temporary	mitigate	the	issues	of

address	exhaustion.

	
Although	 these	 mitigation	 strategies	 helped	 postpone	 IPv4	 address

depletion,	the	IPv4	address	pool	exhaustion	is	inexorable.
4.2.1	Current	IPv4	Address	Pool	Exhaustion	Rate
It	is	fairly	difficult	to	predict	exactly	when	IPv4	address	exhaustion	will

occur,	so	we	can	only	try	to	predict	it	based	on	statistical	analysis	according
to	the	current	IPv4	address	allocation	policy	used	by	the	Regional	Internet
Registries	 (RIR).	 Figures	 4.3	 to	 4.7	 are	 based	 on	 the	 IPv4	 address	 report
(http://www.potaroo.net/tools/ipv4/index.html)	 and	 provide	 a	 good
indication	 of	 the	 IPv4	 consumption	 rate	 and	 “prediction”	 of	 the	 IPv4
address	depletion	date.	According	to	this	model,	which	takes	into	account	a

http://www.potaroo.net/tools/ipv4/index.html


number	 of	 positive	 factors	 such	 as	 the	 use	 of	 CIDR	 and	 reclaiming	 of
addresses	 that	 have	 been	 allocated	but	 are	 not	 advertised	 in	 the	 Internet,
the	 date	 at	which	 the	 unallocated	 address	 poll	 distribution	 occurs	will	 be
March	2012.	But	bear	in	mind	that	this	date	is	an	estimated	prediction.

Figure	4.3	Address	block	allocation.
	



Figure	4.4	Pool	size	per	RIRs.
	

Figure	4.5	Proportion	of	addresses	visible	in	the	Internet	routing	table.
	



Figure	4.6	Overall	status	of	the	IPv4	address	pool.
	

Figure	4.7	Model	of	address	consumption.



	

Let’s	 take	 a	 closer	 look	at	 a	 few	 interesting	data	points	 to	understand
the	address	allocation	process.

First,	it	is	worth	reminding	how	IP	addresses	are	being	allocated.	IANA,
the	 Internet	 Assigned	 Numbers	 Authority	 (IANA;	 http://www.iana.org/)
managed	 the	 allocation	 of	 the	 address	 pool.	 Then	 it	 was	 decided	 to
decentralize	the	address	space	allocation	to	regional	entities	(RIR)	and	that
Internet	Service	Providers	(ISPs)	would	own	the	address	and	perform	route
aggregation	in	the	core	and	limit	the	size	of	the	routing	tables.	Examples	of
RIRs	 include	 AFRINIC	 (Africa),	 APNIC	 (Asia/Pacific),	 ARIN	 (North
America),	 LACNIC	 (Latin	 America),	 and	 RIPE	 NCC	 (Europe).	 IANA
allocates	8	address	blocks	to	an	RIR	as	soon	as	the	RIR	available	space	falls
below	 the	equivalent	of	a	9	address	block	or	 the	equivalent	of	9	months	of
allocation.	An	8	address	block	corresponds	to	addresses	where	the	first	8	bits
are	 allocated	 (e.g.,	 15.X.X.X).	 The	 new	 8	 block	 allocation	 then	 provides
enough	addresses	for	the	equivalent	of	18	more	months	of	allocation.	Then
the	 RIR	 allocates	 address	 blocks	 to	 the	 Local	 Internet	 Registries	 (LISPs)
and	ISPs.	The	RIRs	have	 their	own	address	allocation	policy	according	 to
the	regional	policy	forum	in	line	with	the	RIR	policy.

Not	all	of	the	256	/8	address	blocks	are	available	to	the	public	Internet.
As	 noted	 in	 [128],	 a	 number	 of	 /8	 address	 blocks	 have	 been	 reserved	 for
special	 purposes	 such	 as	 loopback,	 “reserved	 for	 some	 unspecified	 future
use,”	 private	 addressing	 (e.g.,	 10.0.0.0),	 local	 identification	 (0.0.0.0),	 and
“public	data	networks”	along	with	other	special	uses	(e.g.,	multicast).	This
is	illustrated	in	Figure	4.3,	where	the	allocated	number	pool	is	managed	by
the	RIRs.	 IANA	has	a	pool	 of	unallocated	addresses,	while	 the	 remainder
have	already	been	allocated	by	 IANA	 for	 further	downstream	assignment
by	RIRs.	The	pool	size	labeled	VARIOUS	refers	to	the	IANA	IPv4	address
registry	where	a	number	of	blocks	were	assigned	prior	 to	 the	existence	of
RIRs	(http://www.iana.org/assignments/ipv4-address-space/).

Figure	 4.4	 illustrates	 the	 allocation	 distribution	 of	 the	 256	 /8	 block
address	as	of	May	2009.

It	is	interesting	to	note	that	any	address	can	be	in	either	of	the	following
states:

•	Reserved	 for	 special	 use	 (e.g.,	 loopback	 address,	 private	 address,
etc.)
•	Available	and	not	yet	allocated	by	IANA	(IANA_Pool_Pool)

http://www.iana.org/
http://www.iana.org/assignments/ipv4-address-space/


•	Part	of	the	pool	assigned	to	an	RIR
•	Assigned	to	an	end	user	but	not	advertised	in	the	Internet	(thus	it

could	be	reclaimed	at	some	point)
•	Assigned	to	an	end	user	and	advertised	in	the	Internet

	
What	does	the	rate	at	which	IPv4	address	blocks	are	allocated	mean?
As	 shown	 in	 Figure	 4.5,	with	 the	 exception	 of	more	 recently	 allocated

address	space,	about	90%	of	allocated	address	space	is	visible	in	the	routing
tables	of	the	Internet.

Figure	 4.6	 illustrates	 a	 predictive	model	 that	 shows	 when	 the	 address
space	will	effectively	be	exhausted.	It	also	shows	the	total	amount	of	address
space	allocated	by	IANA	to	 the	various	RIRs,	 the	 total	amount	of	address
space	that	has	been	allocated	to	end	users	by	the	RIRs,	the	total	amount	of
address	 space	 effectively	 advertised	 in	 the	 Internet,	 the	 total	 amount	 of
address	space	that	has	been	allocated	but	not	advertised	in	the	Internet,	and
the	total	amount	of	address	space	still	available	in	the	RIR	pool.

Figure	4.6	was	used	to	construct	a	predictive	model	to	extend	the	series
and	 estimate	 the	 date	 at	 which	 IPv4	 address	 space	 will	 be	 exhausted.	 A
number	 of	 statistical	models	 have	 been	 used	 to	 perform	 extrapolations:	 a
linear	best	 fit,	 exponential	best	 fit,	 and	a	 second	order	polynomial	best	 fit
(derived	 from	 the	 application	 of	 a	 linear	 best	 fit	 to	 the	 first	 order
differential	of	the	data).

The	model	that	was	selected	to	predict	address	poll	exhaustion	consisted
of	 projecting	 the	 number	 of	 advertised	 addresses	 in	 the	 Internet	 forward
(observing	according	to	Figure	4.6	that	an	average	of	95%	of	the	allocated
address	were	 advertised).	Detailed	models	 have	 been	 derived	 for	 the	RIR
address	 allocation	models.	 All	 of	 the	 studies	managed	 to	 build	 an	 overall
model	of	address	consumption	as	shown	in	Figure	4.7.

In	 this	 model	 the	 point	 of	 exhaustion	 occurs	 when	 the	 RIR	 pools	 are
exhausted	but	 no	 address	 pool	 from	 IANA	 is	 available	 to	 replenish	 them.
The	best-fit	predictive	model	suggests	this	may	occur	in	March	2012.

A	word	of	caution:	this	date	is	only	“predictive.”	New	allocation	models
could	be	put	in	place	to	reduce	the	allocation	rate.	On	the	other	hand,	some
companies	may	 request	 addresses	 at	 a	 higher	 rate	 than	 expected	 to	 get	 a
public	IPv4	address	before	they	are	exhausted.
	

	
4.3	NAT:	A	(Temporary)	Solution	to	IPv4	Address	Exhaustion



NAT	 has	 been	 the	 solution	 to	 the	 IPv4	 address	 space	 exhaustion,
allowing	the	use	of	one	public	address	to	connect	private	IP	networks	[213].
In	 a	 nutshell,	 NAT	 enables	 millions	 of	 devices	 to	 hide	 behind	 one	 public
address	with	less	than	65,000	possible	addresses	since	ports	are	coded	over
16	bits.

NAT	 has	 been	 a	 useful	 technology	 and	 widely	 deployed	 over	 the
Internet.	 It	 is	 worth	 understanding	 the	 issues	 outlined	 in	 this	 section,	 in
light	of	the	ongoing	deployments	of	large-scale	IP	networks,	to	understand
why	NAT	is	not	a	long-term	solution.	This	is	specially	true	for	smart	object
networks.

Most	of	these	issues	occur	because	NATs	introduce	states	in	the	network
between	 end	points,	 since	address	 conversion	NATs	also	need	 to	maintain
various	protocol	states.

One	of	 the	key	aspects	of	 the	end-to-end	principle	 is	 that	“state	should
be	maintained	only	by	end	points,	in	such	a	way	that	the	state	can	only	be
destroyed	 when	 the	 end	 point	 itself	 breaks.”	 This	 leads	 to	 the	 notion	 of
“fate-sharing”	[32].

The	introduction	of	NATs	in	the	network	breaks	this	model	since	NAT
failures	 have	 a	major	 impact	 on	 the	 communication	 between	 end	 devices
without	fast	network	recovery	in	the	network.	This	is	in	contrast	to	router
failures.	Not	only	can	paths	be	quickly	recomputed	around	the	failed	router
because	of	fast	recovery	techniques,	but	when	the	router	recovers,	flows	can
be	 routed	 again	 through	 the	 router.	 This	 is	 not	 the	 case	 with	 a	 NAT
(because	 the	 address	 translation	 maps	 may	 have	 changed).	 The	 use	 of
alternate	NATs	 in	which	 states	would	 be	 replicated	 turns	 out	 to	 be	 fairly
difficult.

Furthermore,	 beyond	 the	 issue	 of	 impacting	 the	 end-to-end	 reliability,
the	 introduction	 of	 states	 in	 the	 network	 has	 an	 impact	 on	 the	 overall
network	scalability	 that	always	benefits	 from	pushing	states	at	 the	edge	of
the	networks	whenever	possible.

NAT	also	has	a	strong	impact	on	the	security	models	and	is	problematic
for	several	authentication	techniques	(e.g.,	for	SNMPv3).

Some	applications	using	IP	addresses	in	their	data	stream	may	not	work
through	 NATs,	 thus	 requiring	 the	 deployment	 of	 an	 application	 layer
gateway	(ALG)	coupled	with	NAT,	which	may	be	cumbersome	to	manage.
By	 intervening	 along	 the	 forwarding	 path,	 ALGs	 combined	 with	 NATs
require	 software	 updates	 as	 new	 applications	 are	 deployed	 on	 hosts.
Workarounds	 have	 been	 found	 for	 some	 updates,	 but	 this	 shows	 how	 the
introduction	 of	 NATs	 in	 the	 network	 impacts	 the	 development	 of	 new



applications.
Without	 entering	 into	detailed	 explanation,	NATs	 introduce	TCP	 state

violations.
The	objective	of	listing	the	drawbacks	of	NATs	is	to	highlight	that	NATs

are	 not	 a	 “free”	 solution.	 They	 were	 successfully	 used	 as	 a	 temporary
solution	until	a	massive	deployment	of	IPv6	and	are	still	useful.

	
4.4	Architectural	Discussion
The	 “hourglass”	 model	 proposed	 by	 Steve	 Deering	 in	 2001	 [52]

illustrates	 the	 ability	 of	 IPv6	 to	 move	 back	 to	 the	 initial	 IP	 protocol
architectural	principles	that	made	IP	successful.

The	IP	architecture	started	with	a	set	of	principles	discussed	in	detail	in
Chapter	2	that	are	illustrated	in	Figure	4.8.

Figure	4.8	The	IP	architecture	[52].
	

As	new	IP	technologies	such	as	multicast	and	Quality	of	Service	 (QoS)
mechanisms	were	added	 to	 the	 IP	 layer,	 the	model	got	 fatter	 (Figure	4.9),
but	was	still	in	line	with	the	architecture	principles	of	IP.



Figure	4.9	A	fatter	model	with	additional	protocols	at	the	network	layer
[52].
	

The	 next	 “step”	 was	 more	 problematic.	 As	 discussed	 previously,	 the
introduction	of	NATs	and	ALGs	in	the	network	temporarily	solved	the	IPv4
address	exhaustion	problem	but	also	“broke”	the	architecture,	as	illustrated
in	 Figure	 4.10.	 The	 term	 “break”	 is	 probably	 a	 bit	 too	 strong	 and	 other
technologies	 involving	 security	 mechanisms	 introduced	 by	 firewalls	 had
similar	effects.	Still,	the	introduction	of	states	in	the	network	had	a	negative
effect	on	the	architecture	with	a	serious	loss	of	network	transparency.

Figure	 4.10	 The	 negative	 impact	 of	 the	 introduction	 of	 states	 in	 the
network	[52].
	



IPv6	offers	the	possibility	of	returning	to	the	root	foundation	of	IP.	This
is	done	with	a	thin	IP	layer	(see	Figure	4.11)	in	charge	of	routing	the	traffic
across	the	network	with	full	support	of	IP	multicast	and	QoS	over	a	variety
of	link	layers	on	top	of	which	multiple	transport	protocols	and	applications
can	 be	 used	 with	 total	 transparency,	 unique	 addresses,	 and	 application
independence,	which	are	required	features	for	IP	smart	object	networks.

Figure	4.11	Back	to	the	original	IP	architectural	principles.
	

IPv6	 allows	 the	 return	 to	 main	 architectural	 principles	 of	 the	 IP
architecture	in	line	with	the	main	goals	of	the	Internet	(as	a	reminder	from
Chapter	2):

•	Internet	communication	must	continue	despite	loss	of	networks	or
gateways	(“in	the	presence	of	link	or	node	failures”).
•	 The	 Internet	 must	 support	 multiple	 types	 of	 communication

services.
•	Internet	architecture	must:

•	Accommodate	 a	 variety	 of	 networks	 (“networks”	means	 link
and	physical	layers)
•	Permit	distributed	management	of	its	resources
•	Be	cost-effective
•	Permit	host	attachment	with	a	little	effort

	
•	Resources	used	in	the	Internet	architecture	must	be	accountable.



	
	

4.5	Conclusions
IPv4	has	been	deployed	at	a	scale	unimaginable	by	its	original	designers

and	is	currently	used	by	more	than	a	billion	devices.	Early	on,	 it	was	well
understood	 that	 a	 new	 revision	 of	 IP	 would	 be	 needed	 because	 of	 the
exponential	growth	of	IP	connected	devices.	Although	the	adoption	of	IPv6
has	 been	 delayed	 because	 of	 migration	 cost,	 the	 migration	 to	 IPv6	 is
inevitable	 and	 has	 already	 started.	 The	 most	 accurate	 models	 predict	 an
exhaustion	of	the	IPv4	address	pool	by	March	2012.

The	 need	 to	 connect	 billions	 of	 IP	 smart	 objects	 makes	 IPv6	 the	 IP
protocol	version	of	choice	for	smart	object	networks.	From	an	architectural
standpoint,	IPv6	is	built	on	the	fundamental	architectural	principles	of	IP:
it	 is	not	a	new	protocol	but	an	evolution	of	IPv4	offering	address	space	an
order	 of	magnitude	 larger	 than	with	 IPv4	along	with	 very	useful	 features
for	smart	object	networks	such	as	stateless	configuration,	which	is	explored
in	detail	in	Chapter	15.

	



Chapter	5	Routing
	

5.1	Routing	in	IP	Networks
Routing	in	IP	networks	has	been	a	topic	of	great	interest	for	the	past	two

decades	and	has	led	to	the	emergence	of	several	routing	protocols.	The	main
function	of	 the	routing	protocol	 is	 to	determine	the	“best”	path	to	reach	a
destination	 according	 to	 various	 metrics	 and	 objective	 functions.	 For
example,	 RIP	 [163]	 considers	 the	 best	 path	 as	 the	 path	 with	 a	minimum
number	of	hops,	whereas	the	best	path	computed	by	OSPF	[179]	is	the	path
with	minimal	cost	where	the	path	cost	is	the	sum	of	all	link	costs	along	that
path.

Routing	tables	are	populated	in	routers	and	indicate	the	best	next	hop(s)
for	 each	 reachable	 destination	 potentially	 along	 with	 other	 parameters.
Upon	 receiving	 an	 IP	 packet,	 the	 router	 performs	 a	 routing	 lookup	 and
forwards	the	packet	to	the	best	next	hop	according	to	the	routing	table	until
the	destination	is	reached.

What	 seems	 fairly	 straightforward	 is	 not	 only	 quite	 sophisticated	 but
has	direct	consequences	on	both	 the	Quality	of	Service	 (QoS)	provided	by
the	 network	 and	 the	 overall	 network	 reliability.	 Several	 routing	protocols
have	 been	 developed	 for	 intra-domain	 (e.g.,	RIP	 [163],	 IS-IS	 [131],	OSPF
[179],	OLSR	[41],	AODV	[194])	and	inter-domain	routing	(e.g.,	BGP	[212]).
It	 is	common	for	several	routing	protocols	 to	coexist	 in	 the	same	network.
For	 example,	RIP	 can	be	used	 at	 the	 edge	 of	 the	network	 to	 interconnect
nodes	organized	in	a	(dual)	star	topology,	OSPF,	or	IS-IS	in	the	core	of	the
network	 to	 provide	 a	 higher	 degree	 of	 connectivity	 (with	 route
redistribution	 between	 the	 intra-domain	 routing	 protocols.	 Such	 routing
protocols	 are	 also	 called	 Interior	 Gateway	 Protocols	 (IGPs)	 operating
within	 an	Autonomous	System	 (AS)	 itself	 connected	 to	 the	 external	world
(either	private	or	the	public	Internet)	using	routing	protocols	such	as	BGP.

5.1.1	IP	Routing	and	QoS
QoS	is	the	network’s	ability	to	meet	certain	criteria	for	the	traffic	such

as	 network	 delays	 and	 jitter	 or	 packet	 drop	 probability.	 To	 provide
differentiated	 QoS,	 according	 to	 traffic	 requirements,	 traffic	 must	 be
marked	 at	 the	 edge	 of	 the	 network	 or	 at	 the	 source	 of	 the	 traffic	 and



perform	a	number	of	 tasks	 in	 the	network	as	packets	are	 forwarded	from
the	source	to	the	destination.	Once	the	packet	has	been	classified	(colored)
in	a	specific	Class	of	Service	(CoS),	it	will	be	processed	according	to	its	CoS
along	the	forwarding	path.	The	traffic	may	be	“shaped”	at	the	edge	of	the
network,	reservation	could	dynamically	take	place	for	a	specific	traffic	for
resource	 reservation,	 and	 should	 network	 congestion	 take	 place,	 resource
allocation	 will	 be	 performed	 according	 to	 the	 traffic	 CoS	 using	 several
sophisticated	 techniques	 such	 as	 congestion	 management	 and	 scheduling
techniques.	More	details	on	QoS	can	be	found	in	Chapter	15.

Figure	 5.1	 An	 example	 of	 the	 coexistence	 of	 intra-and	 inter-domain
routing	protocols.

	

The	role	of	the	routing	protocol	is	crucial	to	providing	appropriate	QoS
to	a	traffic	class,	since	most	of	time	there	are	several	paths	between	a	source
and	a	destination	that	may	have	very	different	characteristics	such	as	delay,
jitter,	 number	 of	 hops,	 and	 so	 forth.	 Thus	 it	 is	 the	 combination	 of	 the
routing	protocol	and	 the	QoS	mechanisms	along	 the	 forwarding	path	 that
determines	the	level	of	QoS	provided	to	the	traffic	according	to	its	CoS.

Path	 computation	 can	 either	 be	 performed	 using	 a	 centralized	 path



computation	 element	 (also	 referred	 to	 as	 off-line)	 or	 a	distributed	 routing
protocol.	 In	 the	 former	 case,	 the	 path	 computation	 element	 (also	 called
PCE)	tries	to	optimize	the	traffic	placement	taking	into	account	the	network
resources	and	topology	and	the	(estimated)	traffic	matrix	along	with	other
parameters	 and	 objectives.	 Although	 the	 problem	 of	 finding	 an	 optimal
solution	 is	 usually	 known	 as	 NP-complete,	 sophisticated	 heuristics	 have
been	 developed	 to	 get	 relatively	 close	 to	 the	 optimal	 solution.	 In	 contrast,
distributed	 routing	 protocols	 rely	 on	 a	 distributed	 control	 plane	 where
routers	 exchange	 routing	 information	 (routes,	 topological	 data,	 etc.)	 to
compute	 their	 routing	 tables.	 Off-line	 path	 computation	 is	 undoubtedly
more	 expensive	because	 of	 overhead	 (requires	 communication	between	all
nodes	and	the	PCE)	and	potentially	in-band	signaling	protocols,	and	is	less
responsive	 to	 failures	 and	 more	 difficult	 to	 manage.	 The	 Internet
Engineering	Task	Force	(IETF)	has	formed	a	Working	Group	dedicated	to
this	 work	 (http://www.ietf.org/dyn/wg/charter/pce-charter.html).	 An
alternative	is	to	involve	several	PCEs	in	the	computation	of	a	path	(referred
to	 as	 distributed	 PCE	 path	 computation);	 for	 example,	 to	 find	 the	 best
constrained	shortest	path	in	an	inter-domain	MPLS	network.	But	the	use	of
off-line	path	 computation	 technique	has	been	 limited	 to	 specific	 situations
requiring	 a	 high	 level	 of	 optimization	 that	 does	 not	 occur	 frequently	 in
relatively	 small-to-medium	 scale	 networks	 (e.g.,	 optical	 or	 multilayer
networks).	 The	 vast	 majority	 of	 IP	 networks	 use	 distributed	 routing
protocols	where	 each	 router	 computes	 its	 own	paths	based	on	 the	 routing
information	 exchanged	 with	 the	 other	 routers	 in	 the	 network.	 The
combination	 of	 off-line	 and	 distributed	 routing	 protocols	 could	 be	 an
attractive	option	in	some	cases.

Routing	 in	 large-scale	 networks	 made	 of	 highly	 constrained	 smart
objects	brings	several	interesting	technical	challenges	introduced	in	Section
5.2	and	discussed	in	detail	in	Chapter	17.
	
5.1.2	IP	Routing	and	Network	Reliability
Most	networks	have	some	level	of	redundancy	with	more	than	one	path

between	a	source	and	a	destination.	It	is	the	role	of	the	routing	protocol	to
find	 the	 best	 path	 according	 to	 metrics	 and	 objective	 functions.	 Several
routing	 protocols	 are	 able	 to	 compute	 several	 equal	 cost	 paths	 toward	 a
destination;	 this	 is	 called	 equal	 cost	 multiple	 path	 (ECMP).	With	 ECMP
routers	 distribute	 (load	 balance)	 the	 traffic	 among	 the	 paths	 of	 the	 same
cost.	 This	 load	 balancing	 function	 may	 be	 on	 a	 “per	 packet”	 basis
potentially	 unequally	 (X	 packets	 on	 path	 1,	 Y	 packet	 on	 path	 2)	 or

http://www.ietf.org/dyn/wg/charter/pce-charter.html


sometimes	 called	 “per	 destination”	 based	 on	 traffic	 flows	 that	 are	 load
balanced	with	 all	 packets	 belonging	 to	 a	 traffic	 flow	 always	 following	 the
same	path	(using	a	hash	function)	to	avoid	packet	reordering.

A	key	function	of	the	routing	protocol	is	to	find	an	alternate	path	in	the
presence	 of	 link	 or	 node	 failures.	 This	 is	 referred	 to	 as	 “rerouting.”	 The
time	required	to	find	an	alternate	path	once	a	network	element	failure	has
been	detected	is	called	the	“convergence	time.”	The	area	usually	called	“fast
convergence”	 is	very	 important	considering	the	constant	need	for	network
reliability	improvement.	This	area	has	led	to	remarkable	improvements	and
optimizations.	 New	 protocols	 and	 failure	 detection	 techniques	 have	 been
designed	 such	 as	 the	 Bidirectional	 Forwarding	 Detection	 (BFD)	 protocol
[144].	This	is	a	fast	keepalive	mechanism	used	to	quickly	detect	a	failure	or
inter-layer	 failure	 signaling	 where	 the	 link	 layer	 sends	 an	 indication	 to
upper	 layers	 upon	 detecting	 a	 failure	 at	 the	 link	 layer.	 Furthermore,	 a
number	 of	 rerouting	 techniques	 have	 been	 developed	 to	 quickly	 find	 an
alternate	path	upon	detecting	a	network	failure.	Such	alternate	path(s)	may
be	 determined	 on	 the	 fly	 or	 pre-computed	 prior	 to	 the	 failure.	 Today’s
routing	protocols	typically	offer	rerouting	times	in	a	matter	of	milliseconds
or	hundreds	of	milliseconds	depending	on	the	routing	protocol	in	use.	[246]
explores	all	of	these	techniques	and	optimizations	in	great	detail.

The	 routing	 protocol	 may	 be	 coupled	 with	 lower	 layers	 protection
restoration	mechanisms.	For	example,	an	IP	over	optical	network	may	rely
on	an	optical	 restoration	mechanism	on	 top	of	which	 the	 routing	protocol
performs	 its	 own	 rerouting	 in	 the	 presence	 of	 failures.	 In	 this	 case,
rerouting	at	multiple	layers	should	be	performed	in	a	synchronized	fashion.

Another	 well-known	 mechanism	 sometimes	 also	 used	 in	 smart	 object
networks	 consists	 of	 duplicating	 the	 traffic	 and	 sending	 two	 copies	 of	 the
same	packet	 along	 two	different	 (possibly	diverse)	 paths.	The	 challenge	 is
then	to	compute	diverse	paths	between	a	pair	of	nodes,	which	may	or	may
not	be	fully	diverse,	as	shown	in	Figure	5.2.



Figure	5.2	Degree	of	diversity	in	a	network.
	

The	paths	A-B-E-H-J	 and	A-D-C-F-I-J	 are	 said	 to	 be	 fully	 diverse.	 In
contrast,	 the	 paths	 A-B-E-H-J	 and	A-D-G-H-J	 are	 partially	 diverse	 (they
share	the	node	H	and	link	H-J).

The	computation	of	fully	diverse	paths	in	a	network	is	quite	challenging
when	 using	 a	 distributed	 routing	 protocol.	 Link	 states	 routing	 protocols
allow	 the	 computing	 engine	 to	 find	 diverse	 paths,	 but	 usually	 require	 an
additional	signaling	mechanism	to	ensure	the	paths	will	stay	diverse	end	to
end.	But	 ensuring	end-to-end	diverse	paths	with	a	distance	vector	 routing
protocol	 such	 as	 RPL	 (Routing	 for	 low-Power	 and	 Lossy	 networks,	 see
[256]),	the	routing	protocol	for	smart	object	networks,	is	significantly	more
difficult	since	the	source	cannot	see	the	entire	path.	With	RPL	node	A	joins
a	 set	 of	 parents	 along	 a	 directed	 acyclic	 graph	 (DAG)	 based	 on	 various
criteria	without	knowing	whether	the	path	along	those	parents	is	diverse	or
not.	 Route	 recording	 techniques	 are	 possible	 but	 imply	 potentially	 costly
overhead.	These	techniques	consist	of	first	setting	up	a	path	and	recording
the	 nodes	 along	 that	 path,	 then	 computing	 the	 second	 path	 avoiding	 the
nodes	traversed	by	the	first	path.	Such	a	two-step	diverse	path	computation
cannot	guarantee	finding	disjointed	paths,	even	if	they	exist	(the	well-known
“trapping”	problem).	RPL	is	described	in	great	detail	in	Chapter	17.

The	 routing	 protocol	 strongly	 impacts	 the	 overall	 network	 reliability.
Rerouting	in	Low-power	and	Lossy	Networks	(LLNs)	is	an	interesting	topic
since	 both	 the	 characteristics	 of	 these	 networks	 and	 traffic	 requirements
regarding	 the	 Service	 Level	 Agreement	 (SLA)	 significantly	 differ	 from
traditional	IP	networks,	as	discussed	in	the	next	section.
	



5.2	Specifics	of	Routing	in	LLNs
Networks	made	of	 smart	objects	 significantly	differ	 from	“traditional”

IP	 networks.	 Traditional	 IP	 networks	 are	made	 of	main-powered	 routers
with	 several	 mega-or	 even	 gigabytes	 of	 memory	 (RAM)	 for	 high-end
routers,	 extensive	 flash	 memory,	 and	 one	 or	 more	 powerful	 CPU
interconnected	 by	 highly	 stable	 links.	 Everything	 is	 relative.	 Still,	 these
networks	may	be	constrained	considering	the	amount	of	traffic	they	carry.
IP	core	networks	use	10	Gbits/s	optical	 links	(and	more	soon)	and	may	be
congested:	we	need	to	remember	than	their	routing	tables	may	be	populated
with	 more	 than	 hundreds	 of	 thousands	 of	 routes	 with	 intra-and	 inter-
domain	routes,	not	to	mention	the	complex	tasks	that	these	routers	perform.

The	 generic	 terms	 low-power	 and	 lossy	 networks	 (LLNs)	 have	 been
chosen	 to	 designate	 networks	made	 of	 (highly)	 constrained	 smart	 objects
interconnected	 by	 fairly	 unstable	 low-speed	 links,	 which	 unavoidably
impose	new	constraints	and	challenges	on	the	routing	protocol	of	choice	in
LLNs.

As	discussed	in	Chapter	17,	the	unique	set	of	characteristics	that	make
up	 LLNs	 led	 to	 the	 formation	 of	 a	 new	 IETF	 Working	 Group,	 called
Routing	 Over	 Low-power	 and	 Lossy	 networks	 (ROLL;
http://www.ietf.org/dyn/wg/charter/roll-charter.html).	 This	 group	 was
chartered	 to	 design	 a	 routing	 protocol	 for	 such	 IP	 networks.	 The	 ROLL
Working	Group	 first	 produced	 a	 detailed	 set	 of	 routing	 requirements	 for
LLNs	 for	 various	 applications	 and	 conducted	 a	 survey	 studying	 the
potential	adequacy	of	existing	IP	routing	protocols	in	light	of	these	specific
routing	 requirements.	 The	 ROLL	 Working	 Group	 quickly	 converged	 to
define	a	new	IP	routing	protocol,	called	RPL,	which	is	described	in	greater
detail	in	Chapter	17.

5.2.1	What	Makes	the	Routing	in	LLNs	Different?
Figure	5.3	is	an	overview	of	the	main	differences.

http://www.ietf.org/dyn/wg/charter/roll-charter.html


Figure	5.3	Routing	in	LLNs.
	

First,	 the	 devices	 and	 links	 used	 to	 interconnect	 smart	 objects	 are
different.

The	 constrained	 nature	 of	 smart	 objects	 is	 discussed	 in	 length	 in
Chapters	1	and	11.	Existing	routing	protocols	do	not	take	into	account	the
router	 characteristics	 in	 their	 routing	 decisions.	 There	 are	 very	 few
exceptions	to	this	rule,	but	 in	the	majority	of	cases,	routing	protocols	only
consider	 the	 set	 of	 reachable	 destinations	 along	 with	 their	 cost	 (distance
vector)	 or	 the	 entire	 network	 topology	 (link	 state).	 In	 most	 cases,	 node
characteristics	 are	not	 considered	 in	 existing	 routing	protocols.	Link	 state
routing	protocols	only	consider	static	link	attributes	and	costs.

Using	dynamic	metrics:	the	idea	of	making	the	link	metric	dynamic	(for
example,	based	on	the	average	queuing	delay)	was	studied	many	years	ago
in	the	context	of	the	ARPANET	network,	thus	some	form	of	dynamic	node
metric	 has	 been	 considered	 in	 the	 past.	 For	 a	 number	 of	 reasons	 (risk	 of
route	oscillation,	especially	in	the	presence	of	sudden	congestion	events,	etc.)
the	use	of	dynamic	metrics	was	abandoned.

Considering	 node	 characteristics	 when	 computing	 paths	 is	 a	must	 in
most	 LLNs.	 Routers	 may	 significantly	 differ	 from	 each	 other	 in	 several
ways:

•	Processing	capability:	Smart	object	resources	can	be	equipped	with



a	 low-end,	 8-bit	 microcontroller	 or	 more	 powerful	 dual	 32-bit
microcontrollers.
•	Memory	(and	non-volatile	memory,	e.g.,	Flash)	can	vary	from	a	few

hundred	bytes	to	a	few	dozen	kilobytes.
•	Energy	 is	 key	 in	most	LLNs.	Whereas	 some	nodes	may	be	main-

powered,	 battery-powered	 nodes	 must	 consume	 energy	 with	 extreme
care	to	prolong	the	life	of	the	network.

	
Considering	 the	 wide	 range	 of	 node	 capabilities,	 it	 is	 desirable	 and

sometimes	 necessary	 for	 the	 routing	 protocol	 to	 compute	 paths	 that	meet
traffic	 requirements	 according	 to	 the	 limited	 network	 resources.	 For
example,	non-critical,	pollution-monitoring	data	should	preferably	follow	a
non-optimal	 path	 but	 that	 traverse	 main-powered	 nodes,	 whereas	 more
critical	traffic	flow	must	imperatively	follow	the	path	that	provides	minimal
latency.	 Another	 example	 is	 the	 advantageous	 use	 of	 a	 traffic	 aggregator
along	 the	 path	 to	 the	 destination.	 This	 is	 used	 to	 aggregate	 traffic	 and
consequently	 free	 up	network	 resources	 in	 the	 network.	Another	 example
would	be	to	restrict	the	path	to	nodes	that	can	perform	traffic	encryption,
which	may	not	be	available	on	all	nodes	or	link	layers.

Furthermore,	 as	 discussed	 in	 Chapter	 17,	 node	 constraints	 regarding
memory,	 CPU	 power,	 and	 sometimes	 energy	 impose	 restrictions	 on	 the
routing	protocol	design.	Although	the	code	size	is	usually	not	an	issue	on	a
typical	router,	 it	 is	 imperative	 to	design	a	 lightweight	routing	protocol	 for
LLNs	that	optimizes	the	code	space	and	the	number	of	states	that	must	be
maintained	 not	 only	 to	 reduce	 the	memory	 and	 flash	 space	 requirements
but	 also	 the	 energy	 required	 to	 run	 the	 protocol	 and	 power	 the	memory
needed	 to	 maintain	 routing	 states.	 Typically	 a	 lightweight	 IPv6	 stack
requires	a	few	kilobytes	to	a	few	dozen	kilobytes	of	RAM	and	a	few	dozen
kilobytes	 of	 flash.	 The	 routing	 protocol	must	 not	 dramatically	 exceed	 the
amount	of	required	resources.

Even	more	 important,	 links	 in	LLNs	are	also	extremely	different	 from
SONET/SDH,	fiber	optics,	Ethernet,	and	other	media	used	in	“traditional”
IP	 networks.	 The	 bit	 error	 rate	 (BER)	 of	 an	 optical	 or	 Ethernet	 link	 is
usually	 extremely	 low,	 detection	 and	 error	 correction	 are	 sometimes
available,	and	protection/restoration	techniques	may	be	obtainable	at	these
layers	 (e.g.,	 with	 protected	 SONET/SDH	 VC,	 1:1,	 and	 1	 +	 1	 optical
protection,	 etc.	 making	 a	 link	 failure	 invisible	 to	 the	 IP	 layer).	 Links	 in
LLNs	 are	 usually	 low	 speed	 (from	 a	 few	 Kbits/s	 to	 several	MBits/s),	 but



even	more	important	is	the	variable	quality,	which	is	usually	unpredictable
because	 of	 a	 variety	 of	 environmental	 factors	 (interferences,	 floor	 noise,
impedance	variation	in	Powerline	communication	(PLC),	etc.).

The	 link	 failure	 profile	 of	 a	 low-power	 link	 (wireless	 or	 PLC)
significantly	differs	from	the	serial	or	optical	link.	As	shown	in	Figure	5.4,
large	 variations	 of	 the	 packet	 delivery	 ratio	 (PDR)	 on	 these	 links	 is
common.	 Different	 link	 failure	 profiles	 require	 new	 mechanisms	 for	 the
routing	 protocol	 to	 avoid	 route	 oscillations	 and	 lack	 of	 stability	 in	 the
network:	excessive	control	plane	traffic	also	affects	the	network	lifetime	in
the	presence	of	battery-operated	nodes.

Figure	5.4	A	wireless	lossy	link.
	

Figure	5.4	shows	the	PDR	variation	of	IEEE	802.15.4	links	over	time	for
several	channels.	More	details	can	be	found	in	the	[254].

Note	 that	 lossy	 links	 are	 not	 limited	 to	wireless	 links	 and	most	 of	 the
PLC	 links	 may	 also	 be	 fairly	 unstable	 because	 of	 impedance	 variation,
various	 sources	 of	 interferences,	 floor	 noise,	 and	 so	 forth.	 Furthermore,
PLC	 links	 play	 a	 critical	 role	 in	 LLN	 infrastructures	 such	 as	 smart	 grid
networks	as	discussed	in	detail	in	Chapter	20.



The	use	 of	 lossy	 links	 has	 a	 direct	 implication	 on	 the	 routing	protocol
design:	in	most	IP	routing	protocols,	one	of	the	most	critical	components	is
the	 convergence	 time	 (time	 to	 find/compute	 an	 alternate	 path	 around	 a
failed	network	component).	As	soon	as	the	failure	is	detected,	the	traffic	is
rerouted	 along	 an	 alternate	path	 to	mitigate	 the	 failure	 impact	 on	 traffic.
Adopting	 a	 similar	 approach	 in	 the	 presence	 of	 lossy	 links	 may	 lead	 to
routing	 instabilities	 and	 various	 types	 of	 oscillations	 and	 routing	 loops,
which	 unavoidably	 occur	 with	 distributed	 routing	 protocols	 during
transient	failure	(although	recent	improvements	have	considerably	reduced
the	duration	of	such	loops	for	“traditional”	IP	networks).	The	need	for	such
a	 fast	 convergence	 time	with	routing	protocols	 such	as	 IS-IS	and	OSPF	 is
also	due	 to	 the	 type	of	 traffic	 carried	 in	 these	networks	 such	as	voice	and
video	with	very	stringent	traffic	disruption	requirements.

Routing	 in	 LLNs	 requires	 appropriate	 reactions	 during	 network-wide
failures.	 Upon	 detecting	 the	 presence	 of	 a	 failure	 the	 traffic	 is	 locally
redirected	to	an	alternate	next	hop	without	immediately	triggering	a	global
recomputation	 of	 the	 paths	 in	 the	 network	 (a	 local	 routing	 protocol
convergence	also	referred	to	as	 local	repair).	The	failure	may	be	 transient
and	 triggering	 a	 network-wide	 protocol	 convergence	 would	 not	 only	 be
needless	but	would	trigger	the	exchange	of	routing	protocol	messages.	This
leads	 to	 consuming	 energy	 and	 network	 resources,	 which	 is	 clearly
undesirable	 in	 constrained	 environments.	 Furthermore,	 smart	 objects	 do
not	 send	 a	 large	 amount	 of	 traffic,	 and	 it	 is	 likely	 that	 the	node	will	 only
send	 a	 few	 packets,	 unlike	 voice	 and	 video	 traffic	 on	 IP	 high-speed
networks.

Last	but	not	 least,	 scalability	 is	of	a	different	order	of	magnitude.	The
number	 of	 routers	 in	 an	 IP	 core	 network	 within	 a	 single	 administrative
domain	 is	a	 few	hundred	to	a	few	thousand	routers.	Although	some	LLNs
are	 composed	 of	 a	 limited	number	 of	 nodes	 for	 a	 foreseeable	 future	 (e.g.,
home	 automation),	 other	 types	 of	 LLNs	 are	 composed	 of	 hundreds	 of
thousands	of	these	routers	(e.g.,	Smart	Metering	networks	or	Smart	Cities).
More	details	can	be	found	in	Part	III	of	this	book.

Most	of	these	routers	will	be	unattended	so	the	routing	protocol	must	be
able	 to	 work	 autonomously	 and	 appropriately	 react	 to	 all	 situations	 in
large-scale	 networks	 made	 of	 constrained	 devices	 interconnected	 by
unstable	links.

For	the	above-mentioned	reasons,	the	new	IP	routing	protocol	RPL	was
designed	to	operate	under	the	set	of	constraints	described	in	Chapter	17.
	



5.3	Layer	2	Versus	Layer	3	“Routing”
The	discussion	on	whether	routing	in	LLN	should	be	performed	at	layer

2	 (link	 layer)	 versus	 layer	 3	 (network	 layer:	 IP)	has	been	 a	 very	 sensitive
topic.

Strictly	speaking,	routing	implies	protocols	and	mechanisms	to	compute
paths	in	a	multi-hop	network	at	layer	3	(IP).	It	is	possible	to	perform	path
computation	at	 layer	2	 in	a	multi-hop	network	using	media	access	control
(MAC)	addresses.	This	 is	usually	 referred	 to	 as	 “mesh-under”	 in	 contrast
with	“router-over”	(routing,	thus	at	layer	3).

Beyond	 the	 terminology	discussion,	which	 is	of	minor	 importance,	 it	 is
worthwhile	 to	 observe	 the	 consequences	 of	 adopting	 a	multilayer	 routing
architecture	 with	 routing	 processes	 operating	 independently	 at	 multiple
layers.

Historically,	 the	 research	 community	 has	 been	 extremely	 active	 in
routing	 in	 sensor	networks.	Many	published	papers	make	no	assumptions
about	 the	 protocol	 in	 use,	 instead	 focusing	 on	 the	 algorithmic	 aspects	 of
routing	 and	 producing	 a	 large	 amount	 of	 interesting	 and	 useful	 work.
Experiments	 have	 been	 conducted	 leading	 to	 the	 deployment	 of	 test	 beds
usually	 deployed	 at	 a	 relatively	 small	 scale	 in	 real-life	 networks.	 In	most
cases,	 researchers	 implemented	 their	 protocols	 at	 layer	 2	 simply	 because
their	focus	was	more	on	algorithms	than	protocol	architecture	design.

With	 the	 extremely	 fast	 adoption	 rate	 of	 IP	 in	LLNs	 for	 a	 number	 of
applications	 (extensively	 discussed	 in	 Part	 III	 of	 the	 book),	 protocol
architecture	 design	 is	 undoubtedly	 most	 important	 when	 looking	 at	 the
global	picture	as	opposed	to	each	layer	or	component	individually.

5.3.1	Where	Should	Path	Computation	Be	Performed?
Until	a	few	years	ago,	the	number	of	low-power	links	available	for	LLNs

was	extremely	 limited	and	most	people	 thought	 that	 IEEE	802.15.4	would
be	 the	only	 low-power	 link	available	 (always	a	risky	assumption).	When	a
single	link	layer	is	in	use,	path	computation	can	either	take	place	at	the	link
layer	(layer	2)	or	IP	layer	(layer	3).

As	 clearly	 pointed	 out	 in	 Chapter	 12,	 new	 low-power	 layer	 2
technologies	emerged	thus	reinforcing	the	use	of	a	layered	architecture	such
as	 IP.	 This	 guarantees	 layer	 independency	 and,	 in	 particular,	 layer	 2
“agnosticism.”	Remember,	the	ability	to	use	multiple	link	layers	was	one	of
the	 fundamental	 building	 blocks	 of	 the	 TCP/IP	 architecture	 design
discussed	in	Chapter	2.	It	became	apparent	that	a	routing	protocol	(at	layer
3)	was	a	must,	which	led	to	the	formation	of	the	ROLL	Working	Group	and
the	design	of	RPL.



Then	the	new	question	that	emerged	was	whether	or	not	it	was	desirable
to	 adopt	 a	 multilayer	 routing	 architecture.	 Some	 paths	 computed	 by	 the
link	 layer	 would	 then	 appear	 as	 IP	 links	 at	 layer	 3	 that	 would	 perform
routing	operation	between	IP	links.	Such	a	multilayer	routing	architecture
is	depicted	in	Figure	5.5.

Figure	5.5	A	multilayer	routing	architecture	in	LLNs.
	

At	 first,	 it	 was	 thought	 that	 such	 a	 multilayer	 approach	 could	 be
designed	 and	 deployed.	 As	 discussed	 in	 Chapter	 16,	 the	 6LoWPAN
Working	Group	even	defined	a	mesh	addressing	header	 for	 its	 6LowPAN
adaptation	 layer	 that	 supported	 the	 “mesh-under”	 approach	 by	 encoding
hops	 using	 IEEE	 802.15.4	 addresses	 since	 it	 operates	 at	 the	 link	 layer.
Currently,	there	is	no	such	link	layer	“routing”	protocol	designed.

This	 is	 probably	 one	 of	 those	 times	where	 it	 is	 desirable	 to	 remember
lessons	 learned,	 such	as	multilayer	routing	architectures,	which	have	been
studied	 in	 great	detail	 and	 even	partially	deployed	 in	 specific	 contexts.	 IP
over	asynchronous	 transfer	modes	 (ATM)	 is	a	notorious	example	with	 the
ATM	layer	using	PNNI	[13]	as	a	routing	protocol	 to	compute	the	paths	of
the	 virtual	 connections	 (VCs)	 in	 the	 ATM	 domain	 and	 IP.	 VCs	 are
considered	 physical	 links	 and	 IP	 performs	 routing	 at	 layer	 3,	 a	 routing



“architecture”	that	has	shown	a	number	of	drawbacks	and	limitations.
It	 is	 important	 to	 consider	 the	 consequences	 of	 such	 a	 routing

“architecture”:
Lack	of	visibility	 is	one	consequence.	Since	 layer	3	considers	 the	paths

computed	by	layer	2	as	IP	links,	the	IP	routing	protocol	has	no	visibility	on
the	 link	 layer	path.	This	unavoidably	 leads	 to	 suboptimal	routing.	 Indeed,
the	 link	 layer	 “routing”	 protocol	 computes	 paths	 according	 to	 its	 own
metrics	 and	 constraints	 and	 the	 resulting	 path	 properties	 are	 not
communicated	 to	 the	 IP	 layer.	 Such	 links	 have	 static	 metrics	 usually
independent	 or	 inconsistent	 with	 the	 IP	 metrics.	 Various	 studies	 and
experiments	dynamically	updating	the	IP	link	costs	according	to	the	layer	2
path	costs	showed	that	such	a	strategy	led	to	IP	routing	oscillations	if	great
care	was	not	given	to	the	link	layer	routing	strategy.	This	introduced	a	great
deal	of	complexity	in	the	network.

Such	an	issue	is	illustrated	in	Figure	5.6.	In	this	example,	domain	1	is	a
set	 of	 nodes	 (routers)	 interconnected	 by	 type	 1	 links	 (e.g.,	 IEEE	 802.15.4
links),	whereas	the	nodes	in	domain	2	are	interconnected	type	2	links.	Let’s
consider	 a	 computed	 path	 between	 node	 A	 in	 domain	 1	 and	 node	 C	 in
domain	2.	When	both	domains	are	interconnected	with	IP	but	each	domain
makes	use	of	mesh-under	routing,	node	A	“sees”	a	two-hop	path	from	itself
to	 C	 (A-B-C).	 In	 reality,	 if	 the	 IP	 routing	 protocol	 is	 a	 distance	 vector
routing	protocol,	 it	may	not	even	know	the	details	of	the	path	(set	of	 links
along	 the	 path)	 but	 only	 the	 resulting	 path	 cost.	 The	 A-B-C	 path	 cost	 is
computed	 according	 to	 the	 metric	 used	 by	 the	 IP	 routing	 protocol	 (e.g.,
metric	 reflecting	 the	 path	 latency).	 Now	 consider	 each	 link	 layer	 path.
Within	domain	1,	 the	mesh-under	 routing	protocol	has	 computed	 the	 link
layer	path	between	node	A	and	node	B	as	A-N1-N4-N3-B	according	to	the
layer	2	metric,	which	may	or	may	not	be	similar	to	the	metric	used	by	the
IP	routing	protocol.	The	same	reasoning	applies	 to	domain	2.	This	clearly
shows	 that	 the	 use	 of	 multilayer	 routing	 leads	 to	 loose	 end-to-end	 path
consistency,	which	may	be	a	serious	drawback.	Even	if	similar	metrics	are
used	at	both	layers,	the	IP	routing	protocol	still	does	not	see	the	link	layer
path	computed	by	the	link	layer.	If	there	is	a	link	failure	at	the	link	layer,
the	 link	 layer	path	would	be	recomputed	(with	a	potential	new	path	cost),
but	the	IP	link	(A-B)	metric	would	not	be	updated,	which	leads	to	another
source	of	suboptimal	routing.	Although	technically	feasible,	in	practice	it	is
difficult	to	dynamically	update	the	link	layer	path	cost	at	the	network	layer
and	not	 in	multilayer	networks.	Consider	a	 link	failure	between	the	nodes
N1	and	N4.	The	link	layer	mesh-under	routing	protocol	would	recompute	a



new	path	(A-N1-N2-N3-B	in	our	example)	with	a	new	cost	that	may	not	be
reflected	at	 the	 IP	 layer.	This	 is	 illustrated	 in	Figure	 5.7.	 	Note:	A	very
common	misunderstanding	of	Multiprotocol	Label	Switching	(MPLS)	leads
to	the	conclusion	that	it	lies	between	the	link	layer	and	the	IP	routing	layer
with	its	own	routing	component.	MPLS	provides	a	mechanism	that	pushes	a
label	used	 for	 forwarding,	but	 the	MPLS	control	plane	 (including	routing
and	 signaling)	 relies	 on	 IP.	 For	 example,	 the	 Traffic	 Engineering	 Label
Switch	 Path	 (TE	 LSP)	 can	 be	 computed	 thanks	 to	 a	 traffic	 engineering
database	populated	by	IS-IS	or	OSPF.	The	signaling	protocol	used	to	signal
TE	LSP	is	RSVP-TE	[14].	In	other	words,	MPLS	traffic	engineering	is	not	a
multilayer	 routing	 architecture.	 Furthermore,	 IP	 routing	 does	 not	 “run”
over	MPLS	TE	LSPs.	There	are	a	few	instances	where	a	multilayer	routing
architecture	 is	 useful.	 For	 example,	 in	 IP	 over	 optical	 networks	 with
Generalized	Multiprotocol	Label	Switching	 (GMPLS)	 it	might	be	 efficient
to	use	path	 computation	 elements	 (PCE)	 that	would	 try	 to	 simultaneously
optimize	resources	at	both	layers	to	determine	the	most	optimal	multilayer
routing	strategy,	but	such	networks	are	extremely	different	from	LLNs.	By
all	means,	this	is	not	to	say	that	PCE-based	systems	will	not	be	applicable	to
LLNs,	but	this	discussion	applies	to	the	use	of	multilayer	routing.

Figure	 5.6	 Interconnection	 of	 two	 IP	 routing	 domains,	 each	 using	 a
mesh-under	routing	protocol.
	



Figure	5.7	Rerouting	at	the	link	layer.
	

Network	Rerouting	is	another	consequence.	One	of	the	main	properties
of	 a	 routing	 protocol	 is	 to	 find	 an	 alternate	 path	 in	 the	 network	 during
network	component	failures	(link	or	node).	When	such	a	failure	occurs,	it	is
likely	that	both	layers	detect	the	failure	and	trigger	the	recomputation	of	a
new	path	around	the	failed	network	element.	But	this	may	not	always	be	the
case.	There	are	failures	detected	by	both	layers	(e.g.,	a	link	failure	that	lasts
long	enough	for	the	routing	protocol	to	lose	a	routing	adjacency)	and	other
failures	that	are	only	detected	by	one	of	 the	two	layers.	In	the	presence	of
routing	 protocol	 at	 both	 layers,	 the	 only	 viable	 solution	 is	 using	 a	 timer-
based	bottom-up	approach	to	avoid	concurrent	rerouting	at	both	layers.	In
other	 words,	 upon	 detection	 of	 the	 failure,	 layer	 3	 must	 wait	 until	 the
expiration	 of	 a	 configurable	 timer	 before	 triggering	 a	 network	 reroute	 to
give	 a	 chance	 to	 the	 lower	 layer	 to	 restore	 the	 link.	 The	 timer	 must	 be
computed	to	be	in	the	upper	bounds	of	the	layer	2	convergence	time	and	is
usually	 quite	 difficult	 to	 estimate.	 Furthermore,	 if	 the	 failure	 cannot	 be
restored	 by	 the	 link	 layer	 and	 rerouting	must	 take	 place	 at	 the	 IP	 layer,
additional	time	will	be	needed	to	find	a	repair	path.	Such	issues	have	been
analyzed	 in	detail	 in	 [246].	The	 fact	 that	 lossy	 links	 in	LLNs	have	specific
link	 layer	profiles	 further	adds	 to	 the	 level	of	complexity,	 since	 the	simple
use	of	timers	is	unlikely	to	be	sufficient	to	coordinate	rerouting	in	multiple
layers.

Although	such	a	multilayer	routing	architecture	may	be	very	appealing
in	IP	over	GMPLS	networks	where	multilayer	optimization	is	relevant,	the
level	 of	 additional	 complexity	 and	 issues	 inherent	 to	multilayer	 routing	 is



undoubtedly	 problematic	 for	 LLNs	 made	 of	 constrained	 and	 unattended
nodes	interconnected	with	lossy	links	and	are	at	best	no	better	than	routing
at	the	IP	layer.
	
5.4	Conclusions
Routing	 is	 undoubtedly	 one	 of	 the	 key	 components	 of	 networking	 and

has	been	a	topic	of	great	interest	over	the	past	two	decades.	A	number	of	IP
routing	 protocols	 have	 been	 successfully	 designed	 that	 support	 fast
convergence,	 the	 ability	 to	 compute	 paths	 that	 meet	 specific	 QoS
requirements	in	networks	with	hundreds	or	even	thousands	of	nodes,	and	so
forth.

But	 routing	 in	 low-power	and	 constrained	networks	 (LLNs)	 imposes	 a
number	of	new	restrictions:	 links	are	highly	unstable	compared	to	optical,
SONET/SDH,	 or	 Ethernet	 links,	 constrained	 links	 and	 nodes	 must	 be
considered	 (with	 dynamic	metrics),	 and	 the	 routing	 protocol	must	 have	 a
small	 footprint	 while	 supporting	 hundreds	 and	 thousands	 of	 nodes
requiring	large	scalability.	Last	but	not	least,	there	should	be	no	overacting
while	 routing	 in	LLN	 in	 the	presence	 of	 failures	 considering	 the	potential
high	degree	of	instability	and	the	need	to	bound	the	control	traffic	in	these
networks.	 These	 specific	 constraints	 led	 to	 a	 new	 routing	 protocol	 called
RPL	(discussed	in	great	detail	in	Chapter	17).

Finally,	with	 the	 emergence	 of	multiple	 types	 of	 low-power	 link	 layers
such	 as	 IEEE	 802.15.4,	 WiFi,	 and	 PLC,	 it	 quickly	 became	 obvious	 that
routing	at	the	network	layer	(IP)	was	a	must.	Although	routing	at	the	link
layer	may	be	available	with	some	 link	 layers,	 trying	 to	adopt	a	multilayer
routing	architecture	 in	LLNs	 is	clearly	not	a	viable	option	considering	the
dramatic	increase	of	network	complexity	and	lack	of	efficiency.

	



Chapter	6	Transport	Protocols
	

In	 the	 IP	 stack,	 the	 transport	 protocols	 reside	 on	 top	 of	 the	 IP	 protocol.
Applications	 do	 not	 use	 IP	 directly,	 but	 use	 the	 transport	 protocols	 to
communicate	with	each	other.	 In	 the	 IP	protocol	 stack,	 there	are	 two	 transport
protocols	 that	 are	 by	 far	 the	 most	 widely	 used:	 the	 User	 Datagram	 Protocol
(UDP),	and	the	Transport	Control	Protocol	(TCP).	UDP	is	a	best-effort	delivery
service,	which	does	not	add	much	on	top	of	IP,	whereas	TCP	is	a	reliable	byte
stream	 that	 adds	 a	 connection	 abstraction	 on	 top	 of	 the	 connectionless	 IP.
Although	 there	 have	 been	 several	 other	 transport	 protocols	 defined,	 such	 as
SCTP	[229]	and	DCCP	[152],	they	have	as	yet	to	be	adopted	by	the	mainstream.

Before	we	discuss	other	transport	protocols,	we	must	review	the	terminology
used	around	the	transport	protocols	in	the	IP	suite.	At	the	IP	layer,	the	basic	unit
of	 transportation	 is	 called	 a	 packet.	 Although	 data	 from	 higher	 layers	 are
transported	in	these	packets,	to	avoid	confusion	other	words	are	used	to	describe
the	 unit	 of	 transportation.	 In	 UDP,	 the	 basic	 unit	 of	 transportation	 is	 called	 a
datagram.	When	we	 discuss	 datagrams,	 we	 are	 referring	 to	 a	 UDP	 datagram.
The	 TCP	 basic	 unit	 of	 transportation	 is	 called	 a	 segment.	 We	 use	 this
terminology	throughout	this	chapter.

6.1	UDP
UDP	is	the	simplest	protocol	in	the	TCP/IP	suite.	This	protocol	is	specified

in	 the	 RFC768	 document	 [202],	 which	 is	 exceptionally	 short;	 the	 full
specification	fits	on	two	printed	pages.

Many	IP	applications	run	over	UDP.	Simple	request–response	protocols	such
as	 Domain	 Name	 Service	 (DNS)	 lookups	 are	 implemented	 over	 UDP.	 Time-
sensitive	 data	 such	 as	 real-time	 audio	 or	 video	 are	 also	 often	 transported	 over
UDP.

For	 smart	 object	 networks,	 the	 simplicity	 and	 lightweight	 nature	 of	 UDP
makes	it	a	compelling	choice	for	data	that	need	to	be	quickly	transported	such	as
sensor	data.

6.1.1	Best-effort	Datagram	Delivery
UDP	 provides	 a	 best-effort	 datagram	 delivery	 service.	 This	 mechanism	 is

best-effort	 because	 the	 underlying	 IP	 network	 does	 its	 best	 to	 deliver	 the
datagram,	 but	 does	 not	 guarantee	 that	 the	 datagrams	 are	 delivered	 at	 the



destination.	There	are	also	no	guarantees	that	the	datagrams	are	delivered	in	the
same	order	as	they	were	sent.

UDP	provides	an	extra	layer	of	multiplexing	on	top	of	IP.	Where	IP	provides
addressing	of	a	specific	host	in	an	Internet,	UDP	provides	per-process	addressing
by	 the	 use	 of	 ports.	 The	 ports	 are	 16-bit	 values	 used	 to	 distinguish	 between
different	 senders	 and	 receivers	 at	 each	 end	 point.	 Each	 UDP	 datagram	 is
addressed	 to	 a	 specific	 port	 at	 the	 end	 host	 and	 incoming	UDP	datagrams	 are
demultiplexed	between	the	recipients.

UDP	 also	 calculates	 a	 checksum	over	 the	 datagram.	The	 checksum	 covers
the	UDP	header	and	data	as	well	as	a	pseudo-header	consisting	of	certain	fields
of	 the	 IP	 header,	 including	 the	 IP	 source	 and	 destination	 addresses.	 The
checksum	does	not	make	UDP	reliable;	however,	 since	UDP	datagrams	with	a
failing	checksum	are	dropped	without	notifying	the	application	process.	Delivery
of	UDP	datagrams	is	not	guaranteed	and	UDP	datagrams	may	arrive	out	of	order
and	in	any	number	of	copies	due	to	the	nature	of	IP.
	
6.1.2	The	UDP	Header
The	UDP	header	is	small	and	consists	of	only	8	bytes.	The	size	of	the	header

is	fixed:	there	are	no	variable-length	fields.
The	UDP	header	 is	 shown	 in	Figure	6.1.	 It	 contains	 four	 fields:	 the	 source

port	number,	 the	destination	port	number,	 the	 length	of	 the	data	portion	of	 the
datagram,	and	a	checksum	field.	All	fields	are	16	bits.

•	Source	port:	This	16-bit	 field	contains	 the	port	number	of	 the	process
that	sent	the	datagram.	This	is	used	by	the	receiving	process	to	know	where
to	send	a	reply	datagram.	The	source	port	field	does	not	need	to	be	filled	in
so	it	is	set	to	zero.
•	 Destination	 port:	 This	 16-bit	 field	 contains	 the	 port	 number	 of	 the

process	that	is	to	receive	the	datagram.	This	field	must	always	be	filled	in.
•	Length:	This	 contains	 the	 length,	 in	bytes,	of	 the	data	 that	 follow	 the

header.
•	 Checksum:	 This	 is	 a	 16-bit	 Internet	 checksum	 of	 the	 data	 in	 the

datagram,	 the	 UDP	 header,	 and	 the	 source	 and	 destination	 IP	 addresses
from	the	IP	header.

	



Figure	6.1	The	UDP	header	consists	of	four	fields:	source	port,	destination
port,	a	length	field,	and	a	checksum.
	

The	 source	 and	 destination	 port	 numbers	 are	 used	 when	 determining	 the
destination	of	 the	 datagram.	Typically,	 the	 process	 can	 choose	 to	 listen	 for	 all
incoming	datagrams	on	a	particular	port,	for	datagrams	that	arrive	on	a	port	but
have	 a	 specific	 source	 port	 number,	 or	 for	 datagrams	 that	 originate	 from	 a
specific	host.

The	 length	 field	contains	 the	 length	of	 the	UDP	header	and	 the	data	 in	 the
datagram.	 The	 IP	 layer	 contains	 a	 length	 field,	 which	 contains	 the	 same
information	 as	 the	 UDP	 header	 length	 field.	 Because	 the	 underlying	 IP	 layer
may	 fragment	 packets,	 the	UDP	 length	 field	 is	 a	 sanity	 check	 against	 packets
that	have	been	incorrectly	reassembled[210,228].
	
6.2	TCP
Unlike	the	best-effort	UDP,	TCP	[204]	provides	a	reliable	byte	stream	on	top

of	the	best-effort	packet	service	provided	by	the	IP	layer.	Reliability	is	achieved
by	 buffering	 data	 combined	 with	 positive	 acknowledgments	 (ACKs)	 and
retransmissions.	 TCP	 hides	 the	 packet-oriented	 IP	 network	 beneath	 a	 virtual
circuit	 abstraction,	 in	which	 each	 virtual	 circuit	 is	 called	 a	 connection.	Before
any	data	are	transported,	the	two	connection	end	points	must	explicitly	set	up	a
connection.	 A	 connection	 is	 identified	 by	 the	 IP	 addresses	 and	 TCP	 port
numbers	of	the	end	points.

TCP	 is	 the	 most	 common	 IP	 transport	 protocol.	 Many	 application	 layer
protocols	are	defined	over	TCP,	 such	as	HTTP	(Web),	SMTP	(e-mail),	SNMP
(network	management),	and	XMPP	(instant	messaging).

For	smart	objects,	the	benefits	of	using	TCP	are	both	the	reliable	service	that
TCP	provides,	and	the	interoperability	with	existing	protocols	and	systems.

Although	TCP	is	more	complex	than	UDP,	the	core	functionality	of	TCP	is
lightweight.	In	this	chapter,	we	first	give	an	overview	of	TCP,	then	turn	to	focus
on	its	core	functionality.



6.2.1	Reliable	Stream	Transport
TCP	provides	a	reliable	stream	transport	service	on	top	of	the	best-effort	IP

layer.	TCP	uses	three	mechanisms	to	achieve	a	byte-oriented	reliable	delivery:

•	 Acknowledgments	 and	 retransmissions:	 All	 data	 sent	 with	 TCP	 are
acknowledged	 by	 the	 receiver.	 If	 the	 sender	 does	 not	 receive	 an
acknowledgment	within	a	given	time	interval,	it	retransmits	the	data.
•	 Sequence	 numbers:	 Every	 byte	 in	 the	 TCP	 byte	 stream	 is	 given	 a

sequence	 number.	 The	 sequence	 numbers	 are	 used	 when	 matching
acknowledgments	with	the	corresponding	data.
•	Sliding	window:	The	receiver	advertises	how	many	bytes	it	is	currently

able	to	receive	and	the	sender	sends	only	as	much	data	as	the	receiver	can
receive.	As	 the	 receiver	 receives	 the	 data,	 it	 is	 able	 to	 receive	more	data.
This	is	known	as	a	sliding	window.

	
Each	byte	in	the	TCP	byte	stream	is	assigned	a	sequence	number.	The	stream

is	partitioned	into	segments	that	may	be	arbitrarily	sized	as	shown	in	Figure	6.2.
A	 TCP	 sender	will	 attempt	 to	 fill	 each	 segment	with	 enough	 data	 so	 that	 the
segment	is	as	large	as	the	maximum	segment	size	of	the	connection,	but	this	is
not	required.

Figure	6.2	A	segmented	TCP	byte	stream.
	

Each	segment	is	prepended	with	a	TCP	header	and	transmitted	in	separate	IP
packets.	In	theory,	for	each	received	segment	the	receiver	produces	an	ACK.	In
practice,	however,	most	TCP	implementations	send	an	ACK	only	on	every	other
incoming	 segment	 to	 reduce	 ACK	 traffic.	 ACKs	 are	 also	 piggybacked	 on
outgoing	TCP	segments.	The	ACK	contains	the	next	sequence	number	expected
in	the	continuous	stream	of	bytes.	Thus,	ACKs	do	not	acknowledge	the	reception
of	 any	 individual	 segment,	 but	 rather	 acknowledge	 the	 transmission	 of	 a
continuous	range	of	bytes.

If	a	TCP	segment	 is	 lost,	 there	 is	a	gap	in	 the	byte	stream.	TCP	provides	a



mechanism	for	receivers	to	fill	in	the	gap.	For	example,	consider	a	TCP	receiver
that	has	received	all	bytes	up	to	and	including	sequence	number	χ,	as	well	as	the
bytes	χ	+	20	to	χ	+	40	with	a	gap	between	χ	+	1	and	χ	+	19	as	seen	in	the	top	half
of	Figure	6.3.	The	ACK	contains	the	sequence	number	χ	+	1,	which	is	the	next
sequence	 number	 expected	 in	 the	 continuous	 stream.	 When	 the	 segment
containing	bytes	 χ	+	1	 to	 χ	+	19	 arrives,	 the	 next	ACK	contains	 the	 sequence
number	χ	+	41.	This	is	shown	in	the	lower	half	of	Figure	6.3.

Figure	6.3	A	TCP	byte	stream	with	a	gap	and	the	corresponding	ACKs.
	

The	sending	side	of	a	TCP	connection	keeps	track	of	all	segments	sent	that
have	not	been	acknowledged	by	the	receiver.	If	an	ACK	is	not	received	within	a
certain	time,	the	segment	is	retransmitted.	This	process	is	referred	to	as	a	time-
out	and	is	depicted	in	Figure	6.4.	Here	we	see	a	TCP	sender	sending	segments	to
a	TCP	receiver.	Segment	3	is	lost	in	the	network	and	the	receiver	will	continue
to	reply	with	ACKs	for	the	highest	sequence	number	of	the	continuous	stream	of
bytes	 that	 ended	 with	 segment	 2.	 Eventually,	 the	 sender	 will	 conclude	 that
segment	3	was	 lost	 since	no	ACK	has	been	 received	 for	 this	 segment	and	will
retransmit	 segment	 3.	 The	 receiver	 has	 now	 received	 all	 bytes	 up	 to	 and
including	 segment	 5	 and	will	 reply	with	 an	ACK	 for	 segment	 5.	Even	 though
TCP	 ACKs	 are	 not	 for	 individual	 segments,	 it	 is	 sometimes	 convenient	 to
discuss	ACKs	as	belonging	to	specific	segments.



Figure	6.4	Loss	of	a	TCP	segment	and	the	corresponding	time-out.
	

	
6.2.2	The	TCP	Header
The	TCP	header	 is	20	bytes	 long	and	has	 room	for	 a	variable-sized	option

field	between	the	header	fields	and	the	application	data.
The	TCP	header,	shown	in	Figure	6.5,	consists	of	nine	fixed	fields:

•	Source	port:	A	16-bit	 field	 that	 holds	 the	port	 number	of	 the	 sending
process.
•	 Destination	 port:	 A16-bit	 field	 that	 holds	 the	 port	 number	 of	 the

receiving	process.
•	Sequence	number:	The	32-bit	sequence	number	of	the	first	byte	of	data

contained	in	the	segment.
•	 Acknowledgment	 number:	 If	 the	 acknowledgment	 flag	 is	 set	 in	 the

flags	 field,	 the	 acknowledgment	 number	 field	 holds	 the	 32-bit	 sequence
number	of	the	next	byte	that	the	receiver	expects.
•	 Hlen:	 A	 4-bit	 field	 that	 holds	 the	 length	 of	 the	 header,	 including

options,	divided	by	four.
•	Flags:	The	6-bit	flag	field	contains	the	six	flags	FIN,	SYN,	RST,	PSH,

ACK,	and	URG.
•	Window:	The	16-bit	window	 field	holds	 the	amount	of	bytes	 that	 the

receiver	is	able	to	receive.
•	Checksum:	The	16-bit	checksum	is	 the	Internet	checksum	of	 the	data,

the	TCP	header,	and	the	IP	destination	and	source	addresses.
•	Urgent	pointer:	If	the	URG	flag	is	set,	this	16-bit	field	points	to	a	place

in	the	byte	stream	that	contains	data	that	 the	application	has	defined	to	be
urgent.	The	urgent	pointer	is	rarely	used.



	

Figure	6.5	The	TCP	header	consists	of	20	bytes	of	header	fields	followed	by
options,	if	present.	The	options	are	padded	so	the	packet	header	and	options	end
on	a	32-bit	boundary.
	

The	source	and	destination	port	numbers	hold	the	TCP	port	numbers	of	the
sending	 and	 receiving	 process	 for	 the	 TCP	 segment.	 Unlike	 UDP,	 where	 the
source	 port	 number	 is	 optional,	 both	 the	 source	 and	 destination	 ports	must	 be
present	in	the	TCP	header.

The	sequence	and	acknowledgment	number	fields	are	both	32-bit	fields	that
hold	TCP	sequence	numbers.	The	sequence	number	field	contains	the	sequence
number	of	 the	first	byte	of	data	 in	 the	TCP	segment.	 If	 the	segment	contains	a
SYN	or	a	FIN	flag,	which	both	occupy	a	position	in	the	TCP	byte	sequence,	the
sequence	number	refers	to	the	SYN	or	FIN.	The	acknowledgment	number	field
holds	 the	 sequence	 number	 of	 the	 next	 byte	 the	 receiver	 is	 expecting	 on	 this
connection.	The	acknowledgment	number	field	is	defined	only	if	the	ACK	flag
is	set.	In	practice,	most	TCP	segments,	except	for	the	initial	SYN	segment,	have
the	ACK	flag	set.

The	hlen	field	holds	the	length	of	the	header,	including	options	and	padding,
counted	in	4-byte	words.	Since	the	size	of	the	TCP	header	is	always	divisible	by
4	to	allow	for	operation	on	processor	architectures	that	require	32-bit	alignment
of	32-bit	memory	accesses,	the	header	length	field	can	be	efficiently	represented
using	only	4	bits.

The	 flags	 field	 contains	 six	 flags:	FIN,	SYN,	RST,	PSH,	ACK,	 and	URG.
The	FIN	flag	is	set	in	the	final	segment	on	a	TCP	connection	and	the	SYN	flag	is



set	in	the	first	segment.	The	RST	flag	terminates	a	connection,	and	is	used	both
to	 abort	 an	 active	TCP	 connection	when,	 for	 example,	 the	 controlling	 process
has	crashed,	and	to	indicate	that	a	TCP	port	 is	closed.	The	PSH	flag	is	used	to
indicate	 that	 a	TCP	 segment	 is	 the	 last	 in	 a	 sequence	 of	 segments	 sent	 by	 the
application	and	that	 the	receiving	TCP	should	deliver	 these	data	directly	 to	 the
application.	The	ACK	flag	 is	 set	 in	TCP	segments	where	 the	acknowledgment
sequence	 number	 field	 holds	 the	 next	 sequence	 number	 to	 be	 expected.	 The
URG	field,	which	is	rarely	used,	indicates	that	an	“urgent”	data	point	will	occur
later	in	the	byte	stream.

The	window	field	contains	a	16-bit	number	that	indicates	how	many	bytes	a
TCP	receiver	is	able	to	buffer.	This	is	used	in	the	TCP	flow	control	mechanism
described	later.	If	the	window	field	is	zero,	the	TCP	sender	should	not	send	any
more	data	until	it	has	received	a	TCP	segment	with	a	window	larger	than	zero.

The	 checksum	 field	 contains	 a	 16-bit	 Internet	 checksum	 that	 is	 computed
over	the	entire	TCP	header	including	options	and	padding,	the	data	portion	of	the
segment,	and	the	IP	destination	and	source	addresses.

The	urgent	pointer	is	a	rarely	used	TCP	feature	that	allows	an	application	to
specify	 that	one	byte	 in	 the	byte	stream	is	 to	be	considered	urgent.	The	urgent
pointer	is	set	only	if	the	URG	flag	is	set.	If	a	TCP	receiver	sees	an	urgent	byte,	it
notifies	 the	 application.	 The	 application	may	 then	 choose	 to	 discard	 data	 that
appear	before	 the	urgent	data.	 If	more	 than	one	urgent	byte	occurs	 in	 the	byte
stream,	TCP	only	considers	the	last	urgent	byte.

6.2.3	TCP	Options
TCP	options	provide	additional	control	information.	They	reside	between	the

TCP	header	and	the	data	of	a	segment.	Since	 the	original	specification	of	TCP
[204],	a	number	of	additions	have	been	defined	as	TCP	options.	These	 include
the	TCP	 selective	 acknowledgment	 (SACK)	 [170]	 and	 the	TCP	extensions	 for
high-speed	 networks	 [136]	 that	 define	 TCP	 time	 stamps	 and	 window	 scaling
options.

For	smart	objects,	the	arguably	most	important	TCP	option	is	the	maximum
segment	 size	 (MSS)	 option.	 The	 TCP	 MSS	 option	 specifies	 the	 largest	 TCP
segment	size	that	a	TCP	end	point	is	able	to	accept.	The	MSS	option	is	sent	by
both	 parties	 during	 the	 opening	 of	 a	 connection.	 The	MSS	 option	 effectively
limits	 the	 amount	 of	 data	 in	 each	 TCP	 segment.	 This	 is	 important	 for	 smart
object	networks,	which	typically	can	carry	only	small	packets.

When	opening	a	TCP	connection,	both	the	TCP	sender	and	the	TCP	receiver
indicate	 the	MSS	they	can	accept	by	placing	 the	TCP	MSS	option	 in	 the	SYN
and	 the	 SYNACK	 segments.	When	 receiving	 a	 TCP	MSS	 option,	 a	 TCP	 end
point	must	 reduce	 the	size	of	 the	segments	 it	 sends	accordingly.	This	 is	useful



for	TCP	end	points	with	 small	 amounts	 of	memory,	 because	 it	 allows	 the	 end
point	to	set	a	limit	on	the	size	of	the	packets	it	will	receive.

6.2.4	Round-trip	Time	Estimation
A	 critical	 factor	 of	 any	 reliable	 protocol	 is	 the	 round-trip	 time	 estimation,

since	 the	 round-trip	 time	 determines	 the	 time	 to	 wait	 for	 an	 ACK	 before
retransmitting	a	segment.	If	the	round-trip	time	estimate	is	much	lower	than	the
actual	 round-trip	 time	of	 the	connection,	 segments	will	be	 retransmitted	before
the	 original	 segment	 or	 its	 corresponding	 ACK	 has	 propagated	 through	 the
network.	 If	 the	 round-trip	 time	estimation	 is	 too	high,	 time-outs	will	be	 longer
than	necessary,	thus	reducing	performance.

TCP	uses	feedback	provided	by	its	acknowledgment	mechanism	to	measure
round-trip	 times.	 Round-trip	 time	 measurements	 are	 taken	 once	 per	 window,
since	 it	 is	 assumed	 that	 all	 segments	 in	 one	 window’s	 flight	 should	 have
approximately	 the	 same	 round-trip	 time.	 Taking	 round-trip	 samples	 for	 every
segment	does	not	yield	better	measurements	[7].	If	a	segment	for	which	a	round-
trip	time	was	measured	is	a	retransmission,	that	round-trip	time	measurement	is
discarded	 [143].	 This	 occurs	 because	 the	 ACK	 for	 the	 retransmitted	 segment
may	 have	 been	 sent	 either	 in	 response	 to	 the	 original	 segment	 or	 to	 the
retransmitted	 segment.	 Using	 the	 round-trip	 time	 estimate	 for	 a	 retransmitted
segment	would	make	the	round-trip	time	estimation	ambiguous.

6.2.5	Flow	Control
The	 flow	 control	 mechanism	 in	 TCP	 assures	 that	 the	 sender	 will	 not

overwhelm	the	receiver	with	data	 that	 the	receiver	 is	not	ready	to	accept.	Each
outgoing	TCP	segment	includes	an	indication	of	the	size	of	the	available	buffer
space,	 and	 the	 sender	 must	 not	 send	 more	 data	 than	 the	 receiver	 can
accommodate.	The	available	buffer	space	for	a	connection	 is	 referred	 to	as	 the
window	of	the	connection.	The	window	principle	ensures	proper	operation	even
between	two	hosts	with	drastically	different	memory	resources.

The	 TCP	 sender	 tries	 to	 have	 one	 receiver	window’s	worth	 of	 data	 in	 the
network	 at	 any	given	 time	provided	 the	 application	wishes	 to	 send	data	 at	 the
appropriate	 rate	 (this	 is	 not	 entirely	 true;	 see	 the	 next	 section,	 Congestion
Control).	It	does	this	by	keeping	track	of	the	highest	sequence	number	s	ACKed
by	the	receiver,	and	makes	sure	not	to	send	data	with	a	sequence	number	larger
than	s	+	r,	where	r	is	the	size	of	the	receiver’s	window.

Returning	 to	 Figure	 6.4,	 we	 see	 that	 the	 TCP	 sender	 stopped	 sending
segments	after	segment	5	had	been	sent.	If	we	assume	that	the	receiver’s	window
was	1000	bytes	and	that	the	individual	sizes	of	segments	3,	4,	and	5	were	exactly
1000	 bytes,	 we	 can	 see	 that	 since	 the	 sender	 had	 not	 received	 any	 ACK	 for
segments	3,	4,	and	5,	the	sender	refrained	from	sending	any	more	segments.	This



is	because	the	sequence	number	of	segment	6	would	be	equal	to	the	sum	of	the
highest	ACKed	sequence	number	and	the	receiver’s	window.

6.2.6	Congestion	Control
If	flow	control	ignores	that	the	buffer	space	will	be	overrun	at	the	end	points,

the	 congestion	 control	mechanisms[8,134]	 try	 to	 prevent	 the	 overrun	 of	 router
buffer	space.	To	achieve	this	TCP	uses	two	separate	methods:

•	Slow	start:	Probes	the	available	bandwidth	when	starting	to	send	over	a
connection.
•	 Congestion	 avoidance:	 Constantly	 adapts	 the	 sending	 rate	 to	 the

perceived	bandwidth	of	the	path	between	the	sender	and	the	receiver.

	
For	smart	object	networks,	which	may	have	only	limited	amounts	of	data	to

send,	 TCP	 congestion	 control	 is	 rarely	 invoked.	 Yet	 we	 review	 it	 here	 for
completeness.

The	congestion	control	mechanism	adds	another	constraint	on	the	maximum
number	of	outstanding,	unacknowledged	bytes	in	the	network	by	maintaining	a
congestion	 window	 for	 each	 connection.	 The	 minimum	 of	 the	 congestion
window	and	the	receiver’s	window	is	used	to	determine	the	maximum	number	of
unacknowledged	bytes	in	the	network.

TCP	uses	packet	drops	as	a	sign	of	congestion,	because	TCP	was	designed
for	 wired	 networks	 where	 the	 main	 source	 of	 packet	 drops	 (>99%)	 is	 due	 to
buffer	overruns	in	routers.	There	are	two	ways	for	TCP	to	conclude	that	a	packet
was	dropped:	waiting	for	a	time-out	or	counting	the	number	of	duplicate	ACKs
that	are	received.	If	two	ACKs	for	the	same	sequence	number	are	received,	the
packet	 was	 duplicated	 within	 the	 network	 (which	 can	 happen	 under	 certain
conditions	[193]).	It	could	also	mean	that	segments	were	reordered	on	their	way
to	 the	 receiver.	 However,	 if	 three	 duplicate	 ACKs	 are	 received	 for	 the	 same
sequence	number,	there	is	a	good	chance	that	this	indicates	a	lost	segment.	Three
duplicate	 ACKs	 trigger	 a	 mechanism	 known	 as	 fast	 retransmit	 and	 the	 lost
segment	is	retransmitted	without	waiting	for	its	time-out.

During	 slow	 start,	 the	 congestion	window	 is	 increased	with	 one	maximum
segment	 size	per	 received	ACK,	which	 leads	 to	an	exponential	 increase	of	 the
size	of	the	congestion	window.	Despite	its	name,	slow	start	opens	the	congestion
window	quite	rapidly;	the	name	was	coined	at	a	time	when	TCP	senders	started
by	 sending	 the	 entire	 data	 of	 the	 receiver’s	 window.	 When	 the	 congestion
window	reaches	a	 threshold,	known	as	 the	 slow	start	 threshold,	 the	congestion
avoidance	phase	is	entered.



When	 in	 the	 congestion	 avoidance	 phase,	 the	 congestion	 window	 is
increased	 linearly	 until	 a	 packet	 is	 dropped.	 The	 drop	 causes	 the	 congestion
window	 to	 reset	 to	 one	 segment,	 the	 slow	 start	 threshold	 is	 set	 to	 half	 of	 the
current	 window,	 and	 slow	 start	 is	 initiated.	 If	 the	 drop	 is	 indicated	 by	 three
duplicate	 ACKs,	 the	 fast	 recovery	 mechanism	 is	 triggered.	 The	 fast	 recovery
mechanism	 halves	 the	 congestion	 window	 and	 keeps	 TCP	 in	 the	 congestion
avoidance	phase,	instead	of	falling	back	to	slow	start.

Increasing	 the	 congestion	 window	 linearly	 is	 harder	 than	 increasing	 the
window	 exponentially,	 since	 a	 linear	 increase	 requires	 an	 increase	 of	 one
segment	per	round-trip	time	rather	than	one	segment	per	received	ACK.	Instead
of	using	the	round-trip	time	estimate	and	using	a	timer	to	increase	the	congestion
window,	 many	 TCP	 implementations	 increase	 the	 congestion	 window	 by	 a
fraction	of	a	segment	per	received	ACK.

6.2.7	TCP	States
TCP	not	only	provides	a	reliable	stream	transfer,	but	also	a	reliable	way	to

set	up	and	take	down	connections.	This	process	is	most	often	captured	as	a	state
diagram.	 The	 TCP	 state	 diagram	 is	 shown	 in	 Figure	 6.6,	 where	 the	 boxes
represent	 the	 TCP	 states	 and	 the	 arcs	 represent	 the	 state	 transitions	 with	 the
actions	 taken	as	a	result	of	 the	 transitions.	The	boldface	 text	shows	the	actions
taken	by	the	application	program.



Figure	6.6	TCP	state	diagram.
	

6.2.7.1	Opening	a	Connection
For	a	TCP	connection	to	be	established,	one	of	the	participating	sides	must

act	as	a	server	and	the	other	as	a	client.	The	server	enters	the	LISTEN	state	and
waits	 for	 an	 incoming	 connection	 request	 from	 a	 client.	 The	 client,	 in	 the
CLOSED	state,	 issues	an	open,	which	results	 in	a	TCP	segment	with	 the	SYN
flag	set	 to	be	sent	 to	 the	server	and	the	client	enters	 the	SYN-SENT	state.	The
server	 enters	 the	 SYN-RCVD	 state	 and	 responds	 to	 the	 client	 with	 a	 TCP
segment	with	both	the	SYN	and	ACK	flags	set.	As	the	client	responds	with	an
ACK	both	sides	are	in	the	ESTABLISHED	state	and	can	begin	sending	data.

This	process	is	known	as	the	TCP	three-way	handshake	(Figure	6.7),	and	not
only	 sets	 both	 sides	 of	 the	 connection	 in	 the	 ESTABLISHED	 state,	 but	 also
synchronizes	the	sequence	numbers	for	the	connection.



Figure	6.7	TCP	three-way	handshake.
	

Both	the	SYN	and	FIN	segments	occupy	one	byte	position	in	the	byte	stream
(refer	back	to	Figure	6.2)	and	will	reliably	deliver	to	the	other	end	point	of	the
connection	using	the	retransmission	mechanism.

6.2.7.2	Closing	a	Connection
Closing	 a	 connection	 is	 more	 complicated	 than	 opening	 one	 because	 all

segments	must	be	 reliably	delivered	before	 the	connection	can	be	 fully	closed.
Also,	 the	 TCP	 close	 function	will	 only	 close	 one	 end	 of	 the	 connection;	 both
ends	 of	 the	 connection	will	 have	 to	 close	 before	 the	 connection	 is	 completely
terminated.

When	 a	 connection	 end	 point	 issues	 a	 close	 on	 the	 connection,	 the
connection	state	on	the	closing	side	of	the	connection	traverses	the	FIN-WAIT-1
and	FIN-WAIT-2	 states,	 optionally	passing	 the	CLOSING	state,	 after	which	 it
ends	 up	 in	 the	 TIME-WAIT	 state.	 The	 connection	 is	 required	 to	 stay	 in	 the
TIME-WAIT	state	 for	 twice	 the	maximum	segment	 lifetime	 (MSL)	 to	account
for	duplicate	copies	of	segments	 that	might	still	be	in	 the	network.	The	remote
end	 goes	 from	 the	 ESTABLISHED	 state	 to	 the	 CLOSE-WAIT	 state	 where	 it
stays	until	the	connection	is	closed	by	both	sides.	When	the	remote	end	issues	a
close,	the	connection	passes	the	LAST-ACK	state	and	the	connection	is	removed
at	the	remote	end.

6.3	UDP	For	Smart	Objects
In	the	context	of	smart	object	networks,	UDP	has	many	benefits.	First,	UDP

has	a	very	low	overhead	for	both	header	size	and	protocol	logic.	This	means	that
both	 the	 packet	 transmissions	 and	 receptions	 consume	 less	 energy,	 and	 each
packet	 has	 more	 room	 for	 application	 layer	 data.	 The	 simplicity	 and	 low
complexity	 of	 the	 protocol	 logic	 may	 be	 advantageous	 for	 systems	 where
memory	footprint	is	at	a	premium.	Since	the	protocol	is	simple,	implementations
typically	have	a	very	small	code	footprint.

The	 simplicity	 of	UDP	 also	 fits	well	with	many	 smart	 object	 applications.



For	example,	in	a	smart	object	system	for	home	automation,	temperature	sensors
may	periodically	report	data.	The	sensors	can	use	UDP	to	send	the	data	and	to
achieve	 low	overhead.	 Since	 data	 are	 sent	 periodically,	 it	 does	 not	matter	 that
individual	 packets	 may	 be	 lost:	 a	 new	 temperature	 reading	 will	 be	 sent	 soon
enough	 anyway.	 Generally,	 in	 smart	 object	 networks,	 UDP	 is	 well	 suited	 to
traffic	 with	 low	 reliability	 demands.	 It	 is	 possible	 to	 provide	 reliability	 at	 the
application	layer,	but	this	increases	the	complexity	of	the	application.

UDP	 is	 also	 well	 suited	 to	 applications	 that	 require	 their	 own	 routing
mechanisms.	 For	 these	 applications,	 routing	 can	 be	 implemented	 as	 an
application	 overlay	 mechanism	 [67].	 Finally,	 if	 applications	 want	 to	 use
multicast	 delivery,	 UDP	 maps	 well	 onto	 the	 underlying	 multicast	 delivery
mechanisms.

There	are	two	drawbacks	of	UDP	for	smart	object	networks.	First,	they	often
lose	packets	 in	 transit.	UDP	does	not	provide	any	recovery	mechanism	for	 lost
packets.	It	is	up	to	the	application	to	recover	from	packet	loss,	which	increases
the	 complexity	 of	 applications	 that	 require	 reliability.	 Second,	 smart	 object
networks	 often	 have	 small	 packet	 sizes	 and	 UDP	 does	 not	 provide	 any
mechanism	for	applications	to	split	their	data	into	appropriately	sized	chunks	for
transmission.	 Thus	 the	 application	must	 figure	 out	what	 an	 appropriate	 packet
size	is	and	adjust	its	packets	accordingly.	Even	if	the	IP	layer	provides	support
for	packet	fragmentation	and	reassembly,	fragmentation	at	the	IP	layer	is	fragile,
specifically	in	lossy	networks	[147].	Unlike	UDP,	TCP	provides	both	reliability
and	a	mechanism	to	automatically	limit	the	packet	sizes	sent	by	applications.

	
6.4	TCP	for	Smart	Objects
For	 smart	 object	 networks,	 TCP	 has	 several	 compelling	 properties.	 Since

many	smart	object	networks	operate	over	links	where	packets	can	be	lost,	many
applications	may	want	to	use	a	reliable	mechanism	that	automatically	retransmits
lost	 packets.	Although	TCP	 is	 known	 to	have	performance	problems	 for	 high-
throughput	data	when	packets	are	 lost	over	wireless	 links	[15],	for	many	smart
object	 networks	 high	 throughput	 is	 not	 the	 primary	 objective,	 and	 reliable
delivery	 of	 data	 is	 more	 important.	 Furthermore,	 since	 smart	 object	 networks
often	interoperate	with	existing	systems	where	TCP	is	very	widely	adopted,	the
ability	to	directly	communicate	with	existing	systems	speaks	in	favor	of	TCP.

The	small	packet	sizes	in	many	smart	object	networks	require	the	packets	to
be	 kept	 small	 enough	 to	 fit,	 but	 large	 enough	 to	 effectively	 use	 available
resources.	 The	 TCP	MSS	 option	 is	 very	 useful	 both	 for	 memory-constrained
systems	 and	 for	 systems	 that	 are	 constrained	 by	 a	 small	 packet	 size,	 such	 as
systems	 running	 over	 wireless	 802.15.4	 networks.	 The	 TCP	 MSS	 option



provides	 a	 way	 to	 set	 a	 small	 packet	 size	 for	 all	 TCP	 packets	 sent	 over	 the
network.	This	is	in	contrast	to	UDP,	where	no	mechanism	for	limiting	the	size	of
sent	and	received	packets	exists.

Even	 though	 the	 TCP	 specification	 and	 its	 related	 additions	 make	 TCP
appear	to	be	a	complex	protocol,	the	core	of	TCP	is	quite	simple	[64].	TCP	was
originally	 defined	 for	 data	 transport	 for	 general	 purpose	 computers,	 which
require	high	throughput.	Many	of	the	complex	mechanisms	in	TCP	are	intended
to	 improve	 high-throughput	 performance.	 If	 high	 throughput	 is	 not	 a	 strict
requirement,	such	as	in	most	smart	object	networks,	several	mechanisms	in	TCP
are	not	needed	such	as	the	sliding	window	algorithm	and	congestion	control.

In	 Chapter	 13,	 we	 discuss	 uIP,	 an	 implementation	 of	 TCP	 for	 memory-
constrained	smart	objects.	Our	purpose	is	to	show	that	TCP	is	simple	enough	to
be	implemented	in	resource-constrained	smart	objects.

TCP	headers	are	large	compared	to	UDP	headers,	but	there	are	several	ways
a	TCP	header	can	be	compressed	[135].	TCP	header	compression	methods	have
not	yet	been	standardized	for	smart	object	networks,	but	this	is	likely	to	happen
as	the	field	grows.

Finally,	 many	 TCP	 implementations	 for	 smart	 objects	 are	 designed	 for
severe	 resource	 constraints.	 As	 a	 result	 of	 the	 trade-off	 between	 memory
footprint	 and	 throughput,	 such	TCP	 implementations	 do	 not	 achieve	 as	 high	 a
throughput	 as	 full-blown	 TCP	 stacks.	 There	 are	 two	 limiting	 factors.	 First,
memory-constrained	 TCPs	 do	 not	 implement	 the	 sliding	 window	 mechanism.
This	means	that	a	TCP	sender	cannot	have	more	than	one	TCP	packet	for	each
active	TCP	connection	in	the	network	at	any	given	time.	Second,	TCP	delayed
ACKs	reduce	the	throughput.

The	TCP	delayed	ACK	mechanism	is	widely	deployed	by	TCP[19,40].	It	is
intended	 to	 reduce	 the	 amount	 of	 acknowledgment	 packets	 sent	 over	 a	 TCP
connection.	 With	 delayed	 ACKs,	 incoming	 TCP	 data	 are	 not	 acknowledged
immediately.	 Instead,	 the	 host	 waits	 for	 a	 short	 time,	 usually	 200	 ms,	 before
sending	 the	 acknowledgment.	 During	 this	 time,	 another	 TCP	 segment	 may
arrive.	If	a	second	TCP	segment	arrives,	the	ACK	is	sent	immediately.	If	no	TCP
segment	 arrives,	 the	 ACK	 is	 sent	 after	 200	 ms.	 This	 effectively	 reduces	 the
amount	 of	 ACKs	 by	 half	 for	 a	 busy	 TCP	 connection.	 For	 a	 constrained	 TCP
sender,	 who	 only	 sends	 one	 TCP	 segment	 at	 a	 time,	 the	 delayed	 ACK
mechanism	may	significantly	reduce	the	throughput.	By	turning	off	the	delayed
ACK	mechanism	at	the	receiver,	this	problem	is	avoided.

	
6.5	Conclusions
The	 two	most	widely	 used	 transport	 protocols	 in	 the	 IP	 protocol	 suite	 are



UDP	and	TCP.	Transport	protocols	run	over	the	best-effort	IP	layer	to	provide	a
mechanism	 for	 applications	 to	 communicate	 with	 each	 other	 without	 directly
interacting	with	the	IP	layer.	UDP	provides	a	best-effort	datagram	service	where
applications	must	provide	their	own	reliability	and	flow	control,	if	needed.	TCP
provides	a	reliable	byte	stream	and	reduces	the	application	complexity	at	the	cost
of	a	larger	header	size	and	more	complex	transport	layer	protocol	logic.

For	 smart	 objects,	 there	 is	 still	 no	 standard	 transport	 protocol.	 UDP	 is
lightweight	and	simple.	The	benefits	of	TCP	are	built-in	reliability,	control	of	the
maximum	 size	 of	 its	 packets,	 and	 interoperability	 with	 existing	 systems.
Application	requirements	thus	dictate	the	choice	of	transport	protocol.

	



Chapter	7	Service	Discovery
	

Service	discovery	 is	 the	process	by	which	devices	on	a	network	learn	what
services	are	available.	Without	a	mechanism	for	service	discovery,	new	devices
do	 not	 function	 properly	 as	 they	 have	 no	 way	 to	 discover	 services	 they	 may
need,	and	no	way	to	announce	that	they	have	services	available.	For	example,	in
a	smart	object	network	deployed	for	building	automation,	a	light	switch	device
must	use	some	form	of	service	discovery	to	find	the	available	lights.	Similarly,
the	 lights	 need	 to	 use	 some	 form	 of	 service	 discovery	 to	 locate	 nearby	 light
switches.	For	smart	objects,	automatic	service	discovery	is	particularly	important
since	most	smart	objects	have	very	limited	ways	to	interact	with	users.

Service	 discovery	 is	 especially	 important	 in	 deployments	 where	 several
applications	 run	 simultaneously.	 Each	 application	 needs	 to	 discover	 its	 peer
devices	as	well	as	devices	to	which	they	report	or	request	data.	Service	discovery
is	 important	 also	 for	 deployments	with	 a	 single	 application	 that	 is	 hard-coded
into	 the	 system.	 For	 example,	 in	 a	 temperature	 data	 collection	 network,	 the
temperature	collection	application	typically	needs	to	locate	the	data	sink	—	the
place	the	sensor	data	should	be	sent.	Locating	this	data	sink	is	an	act	of	service
discovery.

Service	 discovery	 is	 important	 both	 for	 bootstrapping	 a	 network	 and	 for
performing	 periodic	 service	 discovery	 of	 a	 network	 in	 steady	 state.	 In	 steady
state,	new	devices	enter	and	offer	new	services	to	the	network.	Also,	the	network
may	provide	a	new	service	that	the	devices	can	use.

Service	discovery	is	closely	related	to	autoconfiguration.	Autoconfiguration
is	 the	 process	 by	which	 a	 device	 configures	 itself	with	 network	 addresses	 and
other	information	essential	to	its	operation.	Many	service	discovery	frameworks
contain	 an	 element	 of	 autoconfiguration.	 Autoconfiguration	 provides	 only
network	connectivity,	however,	and	does	not	assist	in	configuring	the	application
layer.	 It	 is	 the	 purpose	 of	 the	 service	 discovery	 mechanism	 to	 assist	 the
application	layer	in	configuring	itself	to	perform	its	purpose.

As	 yet	 there	 is	 no	 standardized	 service	 discovery	mechanism	 for	 IP-based
smart	 objects.	 in	 this	 chapter,	 we	 review	 a	 set	 of	 existing	 available	 IP-based
service	discovery	protocols	and	discuss	their	suitability	for	IP-based	smart	object
networks.	There	are	several	ongoing	efforts	to	find	appropriate	service	discovery



protocols	for	smart	objects	[190].	These	efforts	include	using	a	compressed	form
of	the	Service	Location	Protocol	(SLP)	[230]	and	coupling	service	and	neighbor
discovery	 [166].	 Some	 link	 layers	 provide	 mechanisms	 for	 a	 limited	 form	 of
service	discovery,	such	as	IEEE	802.15.4,	but	it	is	not	clear	if	these	mechanisms
can	be	efficiently	mapped	onto	high-level	service	discovery	mechanisms.

7.1	Service	Discovery	in	IP	Networks
The	IP	architecture	contains	mechanisms	for	autoconfiguration	of	addresses,

but	 it	 does	 not	 have	 any	 default	 service	 discovery	 framework.	 Address
autoconfiguration	is	done	either	with	a	centralized	protocol	such	as	the	Dynamic
Host	Configuration	Protocol	(DHCP)	[60]	or	with	a	distributed	mechanism	such
as	 IPv4	auto	address	configuration	 [36]	or	 IPv6	stateless	address	configuration
[235].

In	general	purpose	IP-based	networks,	a	common	use	for	service	discovery
has	been	to	find	printers	in	the	network.	The	printer	provides	a	service	for	others
to	 discover.	Without	 service	 discovery,	 every	 computer	 attached	 to	 a	 network
would	have	to	be	manually	configured	to	recognize	the	printers	on	the	network.
The	properties	of	all	printers,	such	as	if	they	support	color	printing,	would	also
need	 to	 be	 manually	 or	 semi-manually	 configured	 on	 every	 computer.	 With
service	 discovery,	 this	 process	 is	 automated	 so	 that	 computers	 are	 able	 to
directly	 find	 the	 printers	 in	 the	 network.	 The	 printers	 announce	 not	 only	 their
existence,	 but	 also	 their	 properties.	No	manual	 configuration	 of	 the	 individual
computers	is	needed.

The	 IP	protocol	 suite	provides	a	number	of	different	alternatives	 to	service
discovery.	 We	 review	 three:	 SLP,	 Zeroconf,	 and	 Universal	 Plug	 and	 Play
(UPnP).	 These	 service	 discovery	 mechanisms	 are	 typically	 designed	 for
traditional	 IP	 networks	 with	 general	 purpose	 computers	 and	 services	 such	 as
printers.	 Their	 functionality	 is,	 however,	 generic	 enough	 to	 be	 used	 in	 a	wide
variety	of	situations.

In	addition	 to	 the	protocols	discussed	here,	 there	are	 a	number	of	different
service	discovery	protocols	for	IP-based	systems.	The	community	that	developed
the	 concept	 of	 web	 services	 has	 devised	 a	 number	 of	 web	 service	 discovery
protocols.	 The	 most	 common	 are	 the	 Universal	 Description	 Discovery	 and
Integration	 (UDDI)	 mechanism	 and	 the	 WS-Discovery	 protocol.	 UDDI	 was
envisioned	 to	 be	 a	 global	 service	 registry	 to	 which	 applications	 and
organizations	 would	 register	 their	 online	 services.	 The	 protocol	 was	 based	 on
XML,	 service	 descriptions	 annotated	 with	 the	 Web	 Service	 Description
Language	 (WSDL),	 and	 messages	 encapsulated	 in	 Simple	 Object	 Access
Protocol	(SOAP)	objects.	The	UDDI	centralized	service	registry	never	took	off,
however,	and	is	not	used.	WS-Discovery	uses	the	same	underlying	protocols	as



UDDI,	 but	 unlike	 UDDI,	 the	 WS-Discovery	 protocol	 is	 not	 based	 on	 a
centralized	service	registry.

The	 Device	 Profile	 for	 Web	 Services	 (DPWS)	 specification	 provides
mechanisms	for	service	discovery	based	on	web	services	protocols	and	concepts.
Although	 the	 mechanisms	 are	 often	 perceived	 as	 heavyweight,	 there	 is	 initial
ongoing	work	to	bring	DPWS	service	discovery	to	smart	objects	[178].

	
7.2	Service	Discovery	Protocols
SLP,	the	Zeroconf	protocol	suite,	and	the	UPnP	protocol	suite	are	all	service

discovery	mechanisms.	 All	 three	 provide	 service	 discovery,	 but	 Zeroconf	 and
UPnP	additionally	provide	address	autoconfiguration.	SLP	does	not	do	address
configuration	by	itself,	instead	it	relies	on	the	underlying	IP	layer	to	do	it.

7.2.1	SLP
SLP	 is	 an	 Internet	 Engineering	 Task	 Force	 (IETF)	 standard	 protocol

described	 in	 RFC2608	 [101].	 SLP	 is	 a	 lightweight	 service	 announcement	 and
request	protocol	that	allows	devices	to	announce	their	services	to	other	devices
on	the	network	and	for	devices	to	query	the	network	for	services.

In	 SLP,	 devices	 have	 three	 roles:	 service	 agent	 (SA),	 user	 agent	 (UA),	 or
directory	 agent	 (DA).	SAs	are	 service	providers.	They	announce	 their	 services
and	respond	 to	service	queries.	UAs	do	not	provide	any	services	but	query	 the
network	 for	 services.	 DAs	 are	 aggregation	 points	 that	 keep	 a	 database	 of	 all
available	services	and	may	act	on	behalf	of	SAs	in	answering	service	queries.

Services	 in	 SLP	 are	 represented	 by	URLs.	When	 a	UA	 requests	 a	 service
from	the	network,	it	indicates	what	type	of	service	it	is	interested	in	by	providing
part	of	 the	URL	 that	 it	 expects	 for	 service	 responses.	For	example,	 a	UA	may
query	 the	 network	 for	 a	 printer	 by	 submitting	 a	 service	 request	with	 the	URL
service:printer.	A	printer	that	responds	will	have	a	URL	that	starts	with	printer:
In	addition	to	the	URL,	an	SA	provides	a	set	of	parameters	that	inform	the	UA
of	the	configuration	of	the	service.	For	example,	a	printer	may	indicate	whether
it	can	print	in	color	or	only	in	black	and	white.

SLP	messages	 are	 sent	 either	 using	 UDP	 or	 TCP.	Messages	 that	 are	 sent
using	multicast	 are	 always	 sent	 using	UDP,	whereas	 unicast	messages	 can	 be
sent	with	either	UDP	or	TCP.	If	a	message	is	too	large	to	fit	into	a	UDP	packet,
the	message	is	sent	over	a	TCP	connection	instead.

Figure	7.1	 shows	 the	behavior	 of	 a	 basic	SLP	 service	discovery	operation.
The	process	begins	with	the	UA	sending	a	service	request	message	as	a	multicast
to	all	SAs.	In	response	to	the	service	requests,	the	SAs	send	a	service	reply	to	the
UA.	The	service	replies	are	sent	using	unicast.	To	avoid	overwhelming	the	UA,
the	 SAs	 send	 their	 replies	 within	 a	 random	 time	 interval	 after	 receiving	 the



service	request.	The	time	interval	 is	configurable	and	is	 typically	dependent	on
the	speed	of	the	underlying	link	layer.	With	a	slow	link	layer,	a	longer	time-out
is	configured	to	avoid	overloading	the	link.

Figure	7.1	The	basic	SLP	service	discovery	exchange:	a	UA	sends	a	service
request	and	two	SAs	send	a	service	reply.
	

The	behavior	of	SLP	when	DAs	are	introduced	is	different.	DAs	provide	the
network	with	 a	way	 to	 cache	 services	 so	 that	 the	DA	 instead	of	 the	SA	 sends
service	 replies.	 This	 reduces	 the	 total	 amount	 of	 network	 traffic	 because	UAs
direct	 all	 their	 service	 requests	 to	 the	DAs	 instead	of	multicasting	 them	 to	 the
entire	network.	Furthermore,	 the	DA	can	combine	multiple	services	 into	single
replies,	avoiding	the	overhead	of	sending	individual	SLP	messages.

Figure	7.2	shows	the	behavior	of	an	SLP	network	with	a	DA.	The	purpose	of
the	DA	 is	 to	keep	 track	of	all	 the	 services	offered	 in	 the	network	and	 reply	 to
service	requests	from	UAs.	Upon	starting,	SAs	discover	DAs	by	multicasting	a
special	 service	 request	 message	 that	 only	 DAs	 reply	 to.	 If	 a	 DA	 receives	 the
message,	 the	DA	 sends	 a	 service	 reply	back	 to	 the	SA,	 informing	 it	 about	 the
availability	of	the	DA.

Figure	 7.2	 SLP	 service	 discovery	with	 a	DA.	 The	 SAs	 send	 their	 service
announcements	to	the	DA,	which	answers	service	requests	from	a	UA.
	



SAs	 explicitly	 register	 their	 services	 with	 DAs.	 This	 is	 done	 through	 a
special	service	registration	message	that	is	sent	by	the	SAs	to	the	DAs.	Service
registrations	 have	 a	 lifetime	 specified	 by	 the	 SA	when	 it	 registers	 the	 service
with	the	DA.

Before	 sending	 a	 service	 request,	 a	 UA	 always	 sends	 a	 special	 service
request	that	looks	for	a	DA.	If	a	DA	receives	the	request,	the	DA	sends	a	service
reply	 to	 the	UA.	The	UA	will	 then	send	 its	service	request	directly	 to	 the	DA.
The	 DA	 goes	 through	 its	 database	 of	 available	 services	 to	 find	 the	 one	 that
matches	 the	 service	 request.	 Those	 services	 are	 then	 collected	 into	 a	 single
service	reply	message	that	the	DA	sends	to	the	UA.

For	 smart	 objects,	 SLP	has	 several	 advantages	 over	 other	 IP-based	 service
discovery	 protocol.	 First,	 the	 messages	 are	 lightweight	 in	 terms	 of	 overhead.
Services	 are	 represented	 as	 URLs,	 which	 are	 specified	 by	 the	 participating
parties.	These	URLs	can	therefore	be	compactly	encoded	without	requiring	any
changes	 to	 the	SLP	mechanisms.	Second,	 the	use	of	DAs	makes	SLP	scalable.
This	 is	 a	 strong	 requirement	 for	 smart	 object	 networks,	which	may	 consist	 of
thousands	of	nodes.	Third,	the	SLP	mechanisms	are	simple,	which	is	important
due	to	the	limited	memory	and	processing	power	of	smart	objects.
	
7.2.2	Zeroconf,	Rendezvous,	and	Bonjour
Zeroconf	 is	 a	 set	 of	 IETF	 standard	 protocols	 for	 performing	 automatic

address	 configuration,	 hostname	 resolution	 without	 the	 presence	 of	 a	 Domain
Naming	 System	 (DNS)	 server,	 and	 service	 discovery	 using	 DNS.	 Apple’s
implementation	of	Zeroconf	is	shipped	under	the	brand	name	Bonjour.	Bonjour
was	 initially	 named	 Rendezvous,	 but	 the	 name	 was	 already	 trademarked	 by
another	company	so	the	name	was	changed	in	response	to	a	lawsuit.

The	 address	 autoconfiguration	 part	 of	 Zeroconf	 is	 exactly	 the	 same	 as	 the
automatic	 address	 configuration	 in	 IPv4	 [36].	 In	 fact,	 the	 IPv4	 address
autoconfiguration	was	initially	developed	as	part	of	the	Zeroconf	effort	and	later
fed	back	into	IP.

Service	discovery	in	Zeroconf	is	done	using	the	standard	IP	DNS	protocols,
but	with	 extensions	 to	 allow	 for	 dynamic	 operation	without	DNS	 servers.	The
protocol	is	called	mDNS,	or	multicast	DNS.	mDNS	works	by	hosts	performing
DNS	queries	over	a	multicast	group.	All	nodes	on	the	network	are	members	of
the	multicast	 group	 and	 receive	 all	 DNS	 queries.	 If	 the	 incoming	DNS	 query
matches	 the	name	of	 the	node,	 it	 replies	 to	 the	originator	of	 the	query.	Service
discovery	 in	 Zeroconf	 is	 performed	 using	multicast	DNS	 queries.	 The	 service
discovery	protocol	overloads	the	DNS	names	to	encode	service	descriptions.



The	multicast	DNS	and	service	discovery	protocols	in	the	Zeroconf	suite	are
not	 standardized.	 Microsoft’s	 implementation,	 called	 Link-Local	 Multicast
Name	Resolution	 (LLMNR)	 has	 been	 published	 as	 an	 informational	 RFC	 [3].
Apple’s	implementation	is	on	its	way	to	becoming	published	as	an	informational
RFC,	but	was	still	in	the	draft	stage	in	early	2010.

Zeroconf	 has	 several	 benefits	 for	 smart	 objects.	 The	 protocols	 are	 simple,
which	 makes	 their	 implementation	 suitable	 for	 memory-constrained
microcontrollers.	 The	 protocol	 message	 overhead	 is	 small,	 which	 makes	 the
protocols	 suitable	 for	 low-power	 radio	 links.	 The	 one	 drawback	 is	 that	 the
protocols	require	link-local	multicast	of	all	queries	and	that	the	architecture	does
not	provide	any	caching	agent,	similar	to	the	DA	in	SLP.	Thus	the	scalability	of
the	architecture	could	be	a	problem	in	large-scale	smart	object	networks.
	
7.2.3	UPnP
UPnP	 is	 a	 full	 system	 configuration	 and	 service	 discovery	 protocol	 suite

intended	 for	 both	 computers	 and	 devices.	 UPnP	 was	 originally	 developed	 by
Microsoft,	but	the	work	is	being	continued	by	the	UPnP	forum.	UPnP	runs	over
IP	and	uses	both	standard	IP	protocols	such	as	HTTP	as	well	as	extensions	such
as	HTTP-over-UDP.	UPnP	uses	the	SOAP	format	for	data	encapsulation	and	the
Extensible	 Message	 Language	 (XML)	 as	 its	 data	 format.	 UPnP	 is	 an
international	 standard	 published	 by	 the	 International	 Standards	 Organization
(ISO).	Early	versions	of	parts	of	the	UPnP	protocol	suite	were	published	within
the	IETF,	but	the	final	standardization	took	place	in	the	ISO.

The	UPnP	 protocol	 suite	 consists	 of	 service	 discovery	 as	 well	 as	 network
address	 autoconfiguration,	 device	 control,	 and	 device	 presentation.	 With	 the
device	control	mechanisms	of	UPnP,	a	system	can	send	a	request	to	a	device	to
make	 it	 perform	 actions.	With	 the	 device	 presentation	mechanism,	 a	 user	 gets
information	about	a	device	presented	as	a	web	page.	This	 is	useful	 for	devices
such	as	printers	or	cameras	whose	properties	can	be	presented	in	a	user-friendly
manner.

For	address	autoconfiguration,	UPnP	uses	the	standard	IP	autoconfiguration
features	 such	 as	 DHCP	 and	 stateless	 address	 autoconfiguration.	 For	 IPv6,
stateless	 address	 autoconfiguration	 is	 part	 of	 the	 standard	 IPv6	 features	 [235],
whereas	 it	 is	 considered	 a	 separate	 but	widely	 implemented	 standard	 for	 IPv4
[36].

UPnP	uses	a	protocol	called	Simple	Service	Discovery	Protocol	 (SSDP)	 to
perform	service	discovery.	Services	are	described	by	URLs.	SSDP	uses	HTTP
messages	 transported	 over	 best-effort	 UDP	 datagrams.	 The	 SSDP	 messages
consist	 of	 an	 HTTP	 request	 with	 data	 consisting	 of	 a	 SOAP	 message	 that



describes	the	service	to	be	discovered.	SSDP	messages	are	sent	using	multicast
to	 a	 specific	 multicast	 group.	 Nodes	 participating	 in	 the	 service	 discovery
process	join	this	group	to	receive	messages.

SSDP	supports	both	service	announcements	and	service	discovery.	A	system
may	repeatedly	announce	its	presence	and	the	services	it	provides	to	allow	new
devices	 to	 find	 it.	 New	 devices	 may	 also	 send	 out	 a	 request	 for	 all	 available
services	as	it	enters	a	network.	By	providing	both	announcement	and	discovery,
SSDP	reduces	the	overall	load	on	the	network	as	new	devices	join.

For	 smart	 objects,	 the	 UPnP	 architecture	 is	 not	 an	 ideal	match	 due	 to	 the
overhead	 inherent	 to	 the	 protocols	 used.	 Overhead	 includes	 implementation
complexity	 and	 message	 overhead.	 Smart	 objects	 are	 limited	 in	 memory,
bandwidth,	and	energy.	The	number	of	protocols	in	UPnP	may	be	overwhelming
to	 implement	 on	 a	 small	 microcontroller.	 The	 message	 overheads	 in	 the
protocols	 have	 a	 negative	 impact	 on	 power	 consumption	 and	 bandwidth
utilization.

Specifically,	the	SSDP	protocol	sends	service	data	over	UDP	in	the	verbose
XML	format	encapsulated	in	a	SOAP	envelope.	Neither	XML	nor	SOAP	were
designed	to	have	compact	data	representations,	because	compactness	often	is	not
needed	for	high-speed,	high-bandwidth	networks.	Thus	the	UPnP	messages	sent
over	UDP	often	are	large	and	the	specification	requires	that	 the	entire	message
must	be	completely	contained	within	a	single	UDP	packet.	When	running	over
an	IP-based	smart	object	network,	where	the	link	layer	maximum	packet	size	is
small,	such	packets	must	be	broken	into	fragments	that	are	sent	separately.	If	one
of	the	fragments	is	lost,	all	fragments	must	be	discarded.

7.3	Conclusions
Service	discovery	is	the	process	by	which	an	application	learns	what	services

are	available	on	the	network,	and	also	by	which	the	network	learns	what	services
the	application	can	provide.	For	smart	object	networks,	service	discovery	 is	an
important	 mechanism	 as	 it	 is	 the	 way	 smart	 objects	 learn	 about	 each	 other’s
presence	and	services.

For	 IP-based	 smart	 objects,	 a	 consensus	 around	 a	 standard	 protocol	 for
service	discovery	has	yet	to	emerge.	The	IP	architecture	provides	a	set	of	service
discovery	 mechanisms.	 In	 this	 chapter,	 we	 reviewed	 three	 of	 them:	 SLP,
Zeroconf,	and	UPnP.	SLP	is	a	promising	mechanism	for	smart	objects	due	to	its
low	 complexity	 and	 low	 overhead,	 as	 well	 as	 its	 ability	 to	 scale	 with	 large
networks.	Zeroconf	also	has	a	low	complexity	and	overhead	but	its	scalability	is
unclear.	 UPnP	 has	 a	 large	 overhead	 due	 to	 message	 overhead	 and
implementation	complexity,	 thus	 is	not	a	good	alternative	 for	 the	 requirements
and	constraints	of	smart	object	networks.



	



Chapter	8	Security	for	Smart
Objects

	

Security	 is	 important	 for	 smart	 objects	 because	 they	 are	 often	 deployed	 in
important	infrastructures	such	as	the	electrical	power	grid.

Smart	 object	 security	 is	multifaceted,	 and	 in	 this	 chapter	 we	 focus	 on	 the
communication	aspects	of	smart	object	security.	We	discuss	the	basics	of	smart
object	 security	 and	 encryption,	 and	 review	 the	 security	mechanisms	 in	 the	 IP
architecture.	For	an	in-depth	look,	read	Stajano’s	book	on	the	subject	[225].

In	addition	to	communication	security,	smart	objects	also	face	other	security-
related	problems.	They	are	often	deployed	in	places	that	make	them	amenable	to
intrusion	 attempts	 and	 in	 places	 where	 security	 breaches	 can	 be	 lethal.	 Smart
objects	 deployed	 in	 people’s	 homes	 can	 lead	 to	 intrusion	 attempts	 for
economical	benefit;	for	example,	next	generation	electrical	power	meters	can	be
tampered	with	to	reduce	the	measured	power	consumption	of	households	[183].
It	has	also	been	shown	that	the	hardware	configuration	of	smart	objects	makes	it
possible	 to	 sniff	 encryption	keys	 [96].	Smart	objects	deployed	 in	places	where
failure	 of	 operation	may	 jeopardize	 lives	 are	 particularly	 important	 to	 protect.
For	 example,	 it	 has	 been	 shown	 to	 be	 possible	 to	 remotely	 reprogram
pacemakers	 installed	 in	 patients’	 hearts	 [87].	 Physical	 security	 measures	 and
tamper	resistance	are	not	specific	to	smart	objects	but	have	been	studied	in	other
contexts	as	well[6,12,109].

In	 general,	 security	 is	 defined	 as	 protecting	 the	 system	 from	 a	 determined
adversary.	This	means	that	the	adversary	is	not	only	actively	trying	to	break	into
the	system,	but	is	determined	to	do	so.	Thus,	the	adversary	should	be	expected	to
go	to	any	length	to	try	and	find	flaws	or	holes	in	our	security	model.	Because	we
are	dealing	with	a	determined	adversary,	no	part	of	the	system	can	be	left	open
to	an	attack.	Just	as	a	chain	is	no	stronger	than	its	weakest	link,	a	system	is	no
more	 secure	 than	 the	 weakest	 part,	 and	 a	 determined	 adversary	will	 find	 the
weakest	spot.

Security	 is	 often	 confused	 with	 encryption.	 Although	 encryption	 is	 an
important	part	of	most	security	models,	encryption	alone	is	not	a	security	model.
Although	 strong	 encryption	 algorithms	 and	 keys	 do	 protect	 systems,	 most



system	breaches	happen	due	to	other	problems	than	cryptographic	failures	[11].
Today’s	 encryption	 algorithms	 are	 strong	 enough	 to	 withstand	 a	 significant
amount	of	so-called	brute	force	attacks.	A	brute	force	attack	is	when	an	attacker
does	not	try	to	guess	the	secret	encryption	keys,	but	instead	tries	every	possible
combination	of	keys.	Trying	every	key	takes	a	significant	amount	of	time,	and	a
well-designed	encryption	algorithm	ensures	that	the	required	time	is	long	enough
to	ward	off	attackers.	A	strong	encryption	mechanism	is,	however,	easily	broken
if	the	key	is	disclosed,	for	example,	by	a	human	operator.

Security	models	for	smart	objects	are	slightly	different	than	those	developed
for	 general	 purpose	 computing	 systems.	 Smart	 objects	 typically	 have	 different
threat	 models	 from	 general	 purpose	 computing	 systems	 because	 their
applications	are	vastly	different.

There	is	still	no	consensus	about	what	should	constitute	a	standard	security
architecture	for	IP-based	smart	object	systems.	In	this	chapter,	we	discuss	smart
object	 communication	 security	 concepts	 in	 general	 as	 well	 as	 the	 existing
security	mechanisms	for	IP	architecture.

8.1	The	Three	Properties	of	Security
To	 explain	 security,	 we	 use	 a	 widely	 accepted	 security	 taxonomy	 that

provides	 guidelines	 for	 what	 constitutes	 security	 [195].	 Under	 this	 model,
computer	 security	 consists	 of	 three	 parts:	 confidentiality,	 integrity,	 and
availability:

•	Confidentiality:	Data	should	be	confidential	 in	 the	sense	 that	only	 the
right	parties	should	be	able	to	view	it.
•	Integrity:	Data	should	not	be	tampered	with	or	altered	in	any	way.
•	 Availability:	 Data	 should	 be	 available	 at	 the	 right	 time	 for	 the	 right

parties.

	
We	use	the	term	party	to	denote	both	individuals	interacting	with	the	smart

objects	and	the	smart	objects	themselves.	Thus	the	parties	can	be	either	human
or	machine.

8.1.1	Confidentiality
Confidentiality	 is	 perhaps	 the	most	 evident	 notion	of	 security	 because	 it	 is

understood	 in	 the	 real	 world.	 A	 piece	 of	 data	 is	 confidential	 only	 if	 the	 right
parties	can	view	it.	If	another	party	views	the	data,	confidentiality	is	breached.

Confidentiality	 is	 not	 as	 easy	 to	 ensure	 as	 it	 may	 first	 seem.	 Before
discussing	how	to	implement	confidentiality,	two	things	must	be	decided:	what	it
means	to	view	data	and	what	parties	should	have	the	right	to	view	the	data.



Smart	 object	 networks	 often	 communicate	 over	 wireless	 channels.	 Such
channels	are	not	protected	by	any	physical	security	measures	such	as	a	protective
casing.	Because	of	this,	every	transmitted	signal	is	easily	overheard	by	attackers.
Thus	smart	object	confidentiality	mechanisms	must	be	prepared	to	deal	with	the
lack	of	physical	communication	security.

Smart	objects	 are	physically	distributed	 systems	and	are	placed	 in	physical
locations	where	they	may	be	tampered	with.	Thus	the	property	of	confidentiality
must	hold	even	for	data	stored	on	the	smart	object	devices.	For	example,	a	smart
object	system	used	in	the	Smart	Grid	may	require	devices	to	be	placed	in	homes
where	they	could	be	potentially	exposed	to	anyone	such	as	the	casually	curious
computer	communications	researcher,	the	investigative	teenage	hacker,	or	those
with	outright	criminal	intent.

Central	 to	 the	 concept	 of	 confidentiality	 is	 authentication.	 Authentication
ensures	 that	 the	 identity	 of	 the	 sender	 is	 correct.	 There	 are	 several	 ways	 to
achieve	 authentication.	One	 example	 in	 general	 purpose	 computing	 systems	 is
the	 password	 entry.	 Authentication	 is	 also	 necessary	 for	 automated	 node
interactions.

Communication	 confidentiality	 can	 be	 achieved	 in	 various	 ways,	 most	 of
which	include	encryption.	Device	data	confidentiality	is	more	difficult	because	it
requires	both	logical	and	physical	measures	to	protect	against	attackers.
	
8.1.2	Integrity
Data	keep	their	integrity	if	they	are	sent	through	a	system	and	are	not	altered

or	tampered	with	before	they	reach	the	rightful	recipient.	If	the	data	are	altered,
integrity	 is	 breached.	 Even	 though	 integrity	 and	 confidentiality	 are	 related	 to
each	other,	they	are	completely	different	concepts.

The	integrity	of	a	message	does	not	imply	confidentiality	and	confidentiality
does	not	imply	integrity.	A	message	may	be	sent	in	the	open	for	anyone	to	see,
but	still	maintain	its	integrity.	Conversely,	a	message	may	be	sent	encrypted,	so
that	the	confidentiality	is	maintained,	but	be	altered	in	transit.	The	recipient	will
have	no	way	of	knowing	that	the	data	were	altered.

For	smart	objects,	integrity	of	the	data	is	important	for	data	originating	from
the	smart	objects	and	for	data	sent	to	the	smart	objects.	The	data	originating	in
smart	objects	may	be	important	for	a	decision-making	process	that	is	external	to
the	 smart	 object	 network.	 If	 the	 integrity	 cannot	 be	 ensured,	 wrong	 decisions
may	 be	 taken.	Likewise,	 data	 sent	 to	 the	 smart	 objects	may	 contain	 important
information	 such	 as	 reconfiguring	 the	 smart	 object.	Again,	 it	 is	 important	 that
data	integrity	is	maintained.
	



8.1.3	Availability
Data	 should	 be	 available	 to	 the	 right	 party	 at	 the	 time	 they	 are	 needed.	 If

availability	 is	 breached,	 the	 system	 is	 said	 to	 be	 suffering	 from	 a	 Denial	 of
Service	(DoS)	attack.

For	 smart	 objects,	 which	 often	 use	 wireless	 radio	 communication,	 radio
jamming	 is	 a	 threat	 to	 communication	 availability.	This	 can	 be	 handled	 at	 the
radio	link	layer	and	at	higher	layers	[259].	Network	rerouting	and	secure	channel
hopping	 are	 mechanisms	 available	 for	 a	 low-power	 radio	 to	 defend	 against
jamming	 [192].	 With	 secure	 channel	 hopping,	 the	 nodes	 switch	 the	 physical
radio	 channel	 on	 which	 they	 communicate	 in	 a	 pseudo-random	 fashion.	 The
pseudo-random	 sequence	 is	 generated	 to	 be	 cryptographically	 secure:	 only
legitimate	 nodes	 know	 the	 sequence	 of	 channels	 to	 be	 used.	 Thus	 an	 attacker
cannot	 guess	 what	 channels	 the	 nodes	 will	 communicate	 on,	 which	 makes
jamming	attacks	more	difficult.

8.2	“Security”	by	Obscurity
Before	 we	 go	 any	 further,	 a	 strong	 note	 about	 the	 concept	 of	 security	 of

obscurity	must	be	made.
The	term	security	by	obscurity	is	used	to	describe	the	erroneous	notion	that

security	can	be	achieved	by	keeping	algorithms,	architectures,	and	mechanisms
secret.	The	idea	is	that	as	long	as	the	secret	is	well	kept,	intruders	and	attackers
cannot	 breach	 security.	 The	 problem	 with	 this	 model	 is	 that	 the	 moment	 the
secret	is	out,	the	system	is	wide	open	to	attacks.	In	many	cases,	it	is	impossible
to	keep	such	a	secret	for	at	least	two	reasons.	First,	anyone	who	works	with	the
system	knows	 about	 the	 secret	 and	may	 leak	 it.	 Second,	 it	may	be	possible	 to
reverse-engineer	 the	 system	 so	 that	 the	 secret	 is	 exposed.	 In	 any	 case,	 secrecy
cannot	be	relied	upon.

The	alternative	to	security	by	obscurity	is	to	publicly	publish	the	algorithms
and	protocols	used	to	achieve	security,	and	only	keep	information	such	as	keys
secret.	 This	 has	 two	 major	 advantages.	 First,	 it	 allows	 the	 algorithms	 and
mechanisms	to	be	scrutinized	by	a	large	number	of	security	experts.	This	type	of
review	is	much	better	at	detecting	flaws	than	a	single	review	by	a	small	group	of
engineers.	Second,	 if	 the	designers	of	 the	system	know	that	 the	algorithms	and
mechanisms	are	public,	they	know	what	the	real	secrets	are	—	encryption	keys.

Despite	 being	 known	 as	 a	 poor	 security	 model,	 security	 by	 obscurity	 has
been	 used	 in	 a	 large	 number	 of	 systems,	 all	 of	 which	 have	 failed.	 The	 most
striking	 example	was	 the	GSM	mobile	 telephony	 system,	which	 used	 a	 secret
encryption	algorithm	 to	 avert	 potential	 attackers.	The	 algorithm	was,	 however,
reverse-engineered	and	the	system	became	publicly	known.	Since	the	security	of
the	system	was	designed	with	the	assumption	that	certain	parts	of	the	algorithms



would	be	kept	secret,	 the	system	became	insecure	when	the	algorithms	became
public.

The	 concept	 of	 security	 by	 obscurity	 should	 not	 be	 confused	 with	 a
legitimate	 need	 to	 keep	 secrets.	 Keeping	 the	 internal	 structure	 of	 a	 system	 a
secret	 does	 improve	 security	 in	many	 situations	 because	 it	 raises	 the	 bar	 for	 a
potential	attacker,	which	may	discourage	the	casual	attacker	from	attempting	to
break	into	the	system.	The	problem	of	security	by	obscurity	occurs	when	system
designers	begin	to	rely	on	the	obscurity	to	provide	security.	The	system	designer
should	always	work	under	the	assumption	that	the	entire	structure	of	the	system,
including	algorithms	and	protocols,	 is	 fully	visible	 to	would-be	attackers.	Only
then	can	truly	secure	systems	be	built.

Even	 if	 the	 principle	 of	 security	 by	 obscurity	 is	 a	 known	 failure,	 it	 is
important	to	repeat	this	message	to	help	future	system	designers	avoid	the	same
trap.

	
8.3	Encryption
Encryption	 is	a	way	 to	hide	 the	meaning	of	a	data	message	by	 running	 the

message	through	an	encryption	mechanism.	Encryption	mechanisms,	sometimes
called	ciphers,	take	the	data	to	be	encrypted	(the	plaintext)	and	an	encryption	key
to	 form	 an	 encrypted	 form	 of	 the	 plaintext	 (the	 ciphertext).	 The	 ciphertext	 is
decrypted	 by	 running	 it	 through	 a	 decryption	mechanism.	 Like	 the	 encryption
mechanism,	 the	 decryption	mechanism	also	needs	 a	 key	 to	 be	 able	 to	 turn	 the
ciphertext	back	into	plaintext.

Encryption	 mechanisms	 can	 be	 divided	 into	 symmetric	 and	 asymmetric
mechanisms.	 Symmetric	 mechanisms	 are	 considered	 symmetric	 because	 the
same	key	used	to	encrypt	the	message	can	also	be	used	to	decrypt	it	(Figure	8.1).
Two	 parties	 that	 use	 a	 symmetric	 cipher	 to	 ensure	 confidentiality	 of	 their
communication	 thus	 require	 a	 shared	 key.	 There	 are	 a	 number	 of	 symmetric
encryption	 algorithms	 available.	 The	 most	 common	 ones	 are	 the	 American
Encryption	Standard	(AES)	and	the	Digital	Encryption	Standard	(DES).

Figure	 8.1	 Symmetric	 encryption	 mechanisms	 use	 the	 same	 key	 for
encryption	and	decryption.



	

Unlike	 symmetric	 encryption	 algorithms,	 asymmetric	 algorithms	 use
different	 keys	 for	 encryption	 and	 decryption	 (Figure	 8.2).	 Asymmetric
algorithms	 allow	 two	 communicating	 parties	 to	 use	 non-shared	 keys	 when
protecting	 the	 confidentiality	 of	 their	 communication.	 There	 are	 several
asymmetric	encryption	algorithms.	The	most	well-known	example	is	the	Rivest-
Shamir-Adleman	(RSA)	algorithm.

Figure	 8.2	 Asymmetric	 encryption	 mechanisms	 use	 different	 keys	 for
encryption	and	decryption.
	

Asymmetric	algorithms	are	used	in	so-called	public	key	encryption	systems.
In	 this	 system,	 every	 party	 keeps	 two	 keys:	 one	 private	 and	 one	 public.	 The
public	 and	 private	 keys	 are	 used	 as	 encryption	 and	 decryption	 keys	 in	 an
asymmetric	 encryption	 algorithm.	 Depending	 on	 how	 the	 messages	 are
encrypted	and	decrypted,	the	private	and	public	keys	alternate	as	encryption	and
decryption	keys.

As	a	simple	example	of	how	a	public	key	mechanism	encrypts	data	sent	from
two	nodes,	consider	nodes	A	and	B	who	want	to	securely	send	a	message	to	each
other.	To	encrypt	a	message	between	nodes	A	and	B,	node	A	first	encrypts	the
message	using	its	own	private	key.	It	then	encrypts	the	message	again,	but	with
B’s	public	 key.	 The	message	 is	 now	 encrypted	 twice.	Node	A	 now	 sends	 the
message	to	node	B.	Node	B	now	decrypts	the	message	using	its	own	private	key,
then	with	node	A’s	public	key.	The	message	is	now	available	in	plaintext	at	node
B.	 This	 may	 appear	 strange:	 How	 can	 node	 B	 decrypt	 the	 message	 without
having	 access	 to	 the	 original	 encryption	 key	 with	 which	 A	 encrypted	 the
message?	This	is	the	beauty	of	an	asymmetric	encryption	system	—	it	uses	two
different	 keys	 for	 encryption	 and	 decryption	 so	 the	message	 can	 be	 decrypted
without	requiring	the	original	encryption	key.

The	confidentiality	of	 the	message	 in	 the	previous	example	depends	on	 the
nodes	 knowing	 the	 public	 keys.	 Before	 communication	 can	 commence,	 the
nodes	need	to	have	these	keys.	This	is	done	with	a	key	distribution	mechanism.



With	 a	 public	 key	 mechanism,	 the	 public	 keys	 are	 not	 secret	 and	 can	 be
distributed	 in	 plaintext	 across	 the	 network	 and	 stored	 in	 key	 repositories.
Although	 the	 confidentiality	 of	 the	 messages	 are	 not	 affected	 by	 an	 attacker
planting	 a	 forged	 public	 key	 (because	 the	 messages	 would	 be	 impossible	 to
decrypt),	the	availability	of	the	data	is.	With	a	false	public	key,	the	nodes	would
no	 longer	 be	 able	 to	 access	 the	 data	 from	 each	 other.	 Thus	 secure	 key
distribution	mechanisms	are	needed.

For	 symmetric	 encryption	 mechanisms,	 the	 key	 distribution	 mechanism
clearly	has	to	be	secure	because	the	keys	are	secret.	Many	security	protocols	use
an	asymmetric	encryption	mechanism	to	encrypt	the	secret,	shared	key	for	use	in
symmetric	encryption	mechanisms.

Symmetric	 and	 asymmetric	 encryption	 algorithms	 are	 built	 using	 very
different	 types	 of	 mathematics.	 Symmetric	 encryption	 algorithms	 usually	 are
defined	 using	 Boolean	 logic	 operations	 and	 bit	 substitutions	 that	 are
computationally	 efficient	 and	 easy	 to	 implement	 in	 hardware.	 In	 contrast,
asymmetric	 algorithms	 depend	 on	 the	 inherent	 complexity	 of	 certain
mathematical	 functions	 and	 require	 significantly	 more	 processing	 time	 to
encrypt	 and	 decrypt	 messages	 than	 symmetric	 algorithms.	 Moreover,
asymmetric	 algorithms	 are	 not	 as	 efficient	 to	 implement	 as	 hardware	 as
symmetric	 mechanisms.	 Because	 of	 this,	 many	 security	 protocols	 may	 use
asymmetric	 algorithms	 to	 set	 up	 a	 shared	 key,	 which	 then	 is	 used	 with	 a
symmetric	algorithm	during	communication.

Cryptographic	 hash	 functions	 are	 another	 kind	 of	 cryptographic	 function.
Hash	functions	are	used	to	compute	a	value	from	a	data	message.	This	value	can
be	used	to	maintain	the	data’s	 integrity.	The	hash	function	is	defined	in	such	a
way	 that	 it	 is	 easy	 to	 compute,	 but	 it	 is	 very	 hard	 to	 compute	what	 data	were
used	to	compute	the	hash	value.	Hash	functions	are	used	for	ensuring	integrity	of
messages.	By	computing	a	hash	value	of	the	data	message	and	a	secret	key,	and
transmitting	 this	 hash	 value	 together	with	 the	message,	 the	 receiver	 can	 check
the	 integrity	of	 the	message	by	computing	 the	hash	value	with	 the	same	secret
key.	If	the	hash	values	match,	the	message	integrity	has	not	been	breached.	This
use	of	 a	hash	value	 is	 called	 a	message	 authentication	 code	 (MAC).	Note	 that
this	 use	 of	 the	 MAC	 acronym	 is	 different	 from	 the	 Medium	 Access	 Control
(MAC)	that	is	used	in	other	places	in	this	book.

	
8.4	Security	Mechanisms	for	Smart	Objects
Smart	 objects	 have	 a	 number	 of	 properties	 that	 set	 them	 apart	 from	 the

general	 purpose	 computing	 systems	 for	 which	 typical	 computer	 security
mechanisms	have	been	developed.	First,	smart	objects	have	limited	computation



abilities.	 For	 example,	 the	 microcontrollers	 used	 in	 low-power	 smart	 objects
cannot	execute	asymmetric	decryption	operations	within	a	reasonable	time.	For
this	 reason,	 security	 mechanisms	 for	 smart	 objects	 must	 be	 based	 on
computationally	 efficient	 encryption	 and	 decryption	 mechanisms	 such	 as
symmetric	encryption.	Second,	the	physical	environment	in	which	smart	objects
operate	is	different	from,	and	often	more	hostile	than,	that	of	a	general	purpose
computing	system.

In	 addition	 to	 the	 computation	 constraint,	 the	 power	 constraint	 of	 smart
objects	 can	 also	 lead	 to	 security	 issues.	 To	maintain	 low	 power	 consumption,
wireless	 smart	 objects	 need	 to	 keep	 their	 radios	 switched	 off.	An	 attacker	 can
fool	 the	 smart	 object	 into	 keeping	 its	 radio	 on	 by	 sending	 bogus	 data	 to	 the
device	 and	 depleting	 its	 battery,	 thus	 breaching	 the	 availability	 property.	 This
attack	is	sometimes	called	a	DoS	attack	or	a	sleep	deprivation	attack.

Stajano	 [225]	 presents	 a	 number	 of	 mechanisms	 that	 defend	 against	 sleep
deprivation	 attacks.	One	 example	 is	 to	 use	 a	 cryptographically	 secure	 channel
hopping	 strategy.	 This	makes	 it	 extremely	 difficult	 for	 an	 attacker	 to	 find	 the
smart	 object’s	 physical	 radio	 frequency,	which	makes	 it	 difficult	 to	 deplete	 its
battery.

8.4.1	Security	Policies	for	Smart	Objects
Smart	 objects	 require	 different	 security	 policies	 than	 general	 purpose

computer	 systems	 because	 of	 the	 widely	 differing	 applications,	 requirements,
and	physical	appearance	of	smart	objects

Authentication	in	smart	object	networks	is	a	challenging	topic	because	of	the
distributed	nature	of	 smart	object	 systems.	Not	only	are	 the	devices	physically
distributed,	 but	 the	 system	 is	 also	 noncentralized.	 Because	 the	 system	 is
noncentralized,	there	is	no	central	server	that	can	verify	identities.	Furthermore,
since	 smart	 objects	 do	 not	 have	 the	 same	 user	 interface	 as	 a	 general	 purpose
computer,	password-based	authentication	schemes	do	not	work.

With	 the	 understanding	 of	 the	 specific	 requirements	 and	 characteristics	 of
smart	 object	 networks	 and	 ubiquitous	 computing,	 Stajano	 and	 Anderson
developed	a	security	model	called	the	resurrecting	duckling	model	[226].

The	resurrecting	duckling	model	 is	based	on	a	real	duckling	and	its	mother
duck.	When	 a	 duckling	 is	 born,	 it	 is	 immediately	 imprinted	with	 the	 physical
appearance	of	its	mother	duck.	From	this	point	on,	the	duckling	blindly	follows
its	mother	duck.	The	duckling	accepts	whatever	it	sees	first	as	its	mother	duck,
so	 it	 is	 possible	 to	 imprint	 the	 duckling	 with	 another	 duck	 that	 is	 not	 its
biological	 mother.	 It	 is	 even	 possible	 to	 imprint	 the	 duckling	 with	 something
completely	different	than	a	duck,	such	as	a	box.

The	resurrecting	duckling	security	model	is	illustrated	in	Figure	8.3.	Devices



are	 in	 one	 of	 two	 states:	 imprintable	 or	 imprinted.	 The	 imprintable	 state	 is
equivalent	 to	 being	 unborn.	 In	 the	 imprinted	 state,	 only	 death	 can	 bring	 the
device	back	to	its	imprintable	state.

Figure	8.3	The	 resurrecting	duckling	model:	devices	are	either	 imprintable
or	imprinted.	After	a	device	has	been	imprinted,	only	death	can	bring	it	back	to
the	imprintable	state.
	

In	 the	 resurrecting	 duckling	model,	 a	 node	will	 be	 imprinted	with	 the	 first
encryption	key	 it	 sees	after	manufacturing.	The	device	will	use	 this	encryption
key	throughout	its	life.	To	recover	the	device	from	a	faulty	key,	or	to	restore	the
device	 in	 case	 the	key	 is	 compromised,	 the	 resurrected	duckling	model	 allows
for	the	device	to	be	“killed”	and	restored	to	life.	After	its	resurrection,	the	device
is	able	to	receive	a	new	key.	The	device	can	be	killed	either	by	its	mother	duck,
by	 old	 age,	 or	 by	 the	 completion	 of	 a	 specific	 transaction.	 Stajano	 [225]
illustrates	 how	 a	 device	 can	 be	 killed	 by	 using	 an	 example	 of	 a	 medical
thermometer	that	may	be	killed	every	time	it	is	disinfected.

The	 resurrected	 duckling	model,	 and	 indeed	 any	 security	model	 for	 smart
objects,	 requires	a	way	 to	securely	 transmit	keys	 to	 the	smart	objects.	Because
smart	 objects	 do	 not	 have	 a	 user	 interface	 and	 often	 communicate	 using	 an
insecure	 and	 easy-to-eavesdrop	 radio	 channel,	 key	 distribution	 is	 a	 challenge.
But	smart	objects	also	have	physical	properties	that	can	be	leveraged	for	making
efficient	and	secure	key	distribution.

Physical	 proximity	 can	 be	 leveraged	 to	 distribute	 keys.	 Keys	 can	 be	 sent
using	a	short-range	communication	mechanism	such	as	infrared	(IR)	light.	An	IR
light	 can	 be	 configured	 to	 require	 perfect	 line-of-sight,	 which	 makes	 the	 key
distribution	 more	 difficult	 to	 breach.	 Physical	 proximity	 can	 also	 be	 used	 for
physical	contact.	During	physical	contact,	keys	can	be	securely	transmitted.
	
8.4.2	Link	Layer	Encryption
Because	 smart	 objects	 often	 transmit	 information	 over	 insecure



communication	media,	such	as	wireless	radio,	encryption	is	necessary	to	ensure
confidentiality	and	integrity	of	the	transmitted	messages.	For	this	reason,	many
radio	 communication	 standards	 for	 smart	 objects	 include	 encryption
mechanisms.	One	 example	 is	 the	 IEEE	 802.15.4	 low-power	 and	 low-data-rate
radio	 standard	 that	 includes	 support	 for	 AES	 symmetric	 encryption	 for
confidentiality	and	integrity	of	its	messages.	The	AES	mechanism	can	be	used	to
encrypt	 the	data	 sent	across	 the	wireless	 radio	medium	as	well	as	 to	provide	a
MAC	to	the	data.

To	 assist	 the	 implementation	 of	 security	 mechanisms	 for	 smart	 objects,
several	 radio	 transceivers	 provide	 hardware	 functions	 for	 computing	 the
necessary	 encryption	 functions.	 For	 example,	 the	 popular	 Texas	 Instruments
CC2420	chip,	which	implements	the	IEEE	802.15.4	radio	standard,	includes	an
AES	co-processor	 that	encrypts	and	decrypts	messages	using	AES	so	 it	can	be
used	 for	 encrypting	over-the-air	messages.	 In	 addition	 to	 encrypting	messages,
the	co-processor	can	also	be	directly	accessed	from	software,	allowing	the	AES
hardware	to	be	used	for	other	security	processing	as	well.	This	includes	security
mechanisms	such	as	the	IP	layer,	which	we	discuss	next.

The	 link	 layer	 encryption	 provided	 by	 the	 radio	 layer	 can	 only	 ensure
confidentiality	and	integrity	over	a	single	hop.	To	provide	security	over	a	longer
path,	preferably	across	the	entire	end-to-end	communication	path,	security	at	the
IP	layer	and	above	is	needed.

8.5	Security	Mechanisms	in	the	IP	Architecture
The	 IP	 architecture	 provides	 security	 mechanism	 at	 two	 layers	 of	 the	 IP

stack:	 network	 and	 application.	 Both	 mechanisms	 are	 optional.	 These
mechanisms	 provide	 different	 types	 of	 security	 operations	 ranging	 from	 fully
encrypted	end-to-end	channels	to	end-to-end	message	authentication.	In	addition
to	 the	 security	 mechanisms	 in	 the	 IP	 architecture,	 the	 architecture	 allows
applications	to	implement	their	own	security	mechanisms	on	top	of	the	IP	stack.

Security	 in	 the	 IP	 architecture	 is	 provided	 by	 IPsec,	which	 operates	 at	 the
network	 layer,	 and	 transport	 layer	 security	 (TLS),	 which	 operates	 at	 the
application	layer.	IPsec	works	on	individual	packets,	whereas	TLS	works	on	an
application	stream	of	data	over	a	TCP	connection.

8.5.1	IPsec
IPsec	 is	 a	 network	 layer	 security	 suite	 that	 provides	 confidentiality	 and

integrity	at	 the	IP	 layer.	 IPsec	was	originally	developed	for	 IPv6,	but	has	been
retrofitted	 to	 work	 for	 IPv4	 as	 well.	 IPsec	 is	 defined	 in	 a	 number	 of	 RFC
standards	documents[118,145,148].

The	IPsec	architecture	consists	of	two	protocols:	 the	Authentication	Header
(AH)	 and	 the	Encapsulating	Security	 Payload	 (ESP).	AH	provides	 integrity	 to



messages	 and	 ESP	 provides	 confidentiality	 and	 integrity.	 Both	 mechanisms
additionally	authenticate	messages.

Keys	and	other	 information,	such	as	which	encryption	algorithms	are	used,
are	stored	at	the	end	points.	A	specific	set	of	keys	is	called	a	security	association
(SA).	Every	packet	 belongs	 to	 a	 specific	SA.	Different	SAs	may	use	 different
encryption	algorithms.	To	set	up	an	SA,	IPsec	uses	a	key	management	protocol
called	Internet	Key	Exchange	(IKE).

IPsec	makes	use	of	both	symmetric	and	asymmetric	encryption	mechanisms.
For	 smart	objects,	 symmetric	mechanisms	are	preferred	because	of	 their	 lower
computational	 complexity.	 Specifically,	 for	 smart	 objects	 equipped	 with
hardware	AES	acceleration,	which	is	common	in	many	IEEE	802.15.4	devices,
it	is	possible	to	let	IPsec	take	advantage	of	the	AES	acceleration.	By	using	AES
encryption	 as	 part	 of	 the	 IPsec	 SA,	 the	 smart	 object	 achieves	 a	 level	 of
encryption	performance	that	is	impossible	with	software-only	mechanisms.
	
8.5.2	TLS
TLS	provides	an	end-to-end	secure	channel	between	two	network	end	points.

It	provides	confidentiality	and	integrity	as	well	as	mechanisms	for	authentication
of	the	communication	end	points.	TLS	is	defined	by	RFC5246	[56].

TLS	was	originally	developed	under	 the	name	Secure	Sockets	Layer	(SSL)
by	 Netscape	 Corporation	 for	 the	 Netscape	 web	 browser,	 but	 was	 later
standardized	by	the	IETF	as	TLS.	Although	the	name	is	now	officially	TLS,	it	is
still	 widely	 known	 as	 SSL.	 Many	 will	 recognize	 TLS	 from	 its	 use	 in	 web
browsers,	where	the	“https://”	at	the	beginning	of	the	URL	signifies	that	the	data
were	transported	over	a	TLS	connection.

TLS	consists	of	several	different	layers	and	protocols.	At	the	lowest	layer,	a
symmetric	encryption	algorithm	is	used	to	provide	confidentiality	and	integrity.
To	 establish	 a	 key	 for	 use	 in	 the	 symmetric	 encryption	 algorithm,	 TLS	 first
performs	an	authentication	combined	with	a	secure	key	exchange	protocol.	The
authentication	can	be	either	unilateral,	meaning	that	only	one	of	the	connection
end	points	are	authenticated,	or	bilateral,	where	both	communication	end	points
are	authenticated.	Unilateral	authentication	is	used	in	the	typical	web	browser	to
web	 server	 communication	model,	whereas	 bilateral	 authentication	 is	 used	 for
secure	 transactions	 between	 two	 web	 servers,	 which	 is	 common	 in	 enterprise
systems.

Before	 initiating	 the	 authentication	 phase,	 the	 TLS	 end	 points	 engage	 in	 a
protocol	 negotiation	 phase.	 The	 end	 points	 use	 this	 phase	 to	 decide	 what
encryption	protocols	to	use	for	the	remainder	of	the	connection.	TLS	supports	a
number	of	different	encryption	protocols.



TLS	was	designed	to	perform	the	most	expensive	computations	on	the	server
side.	In	a	web	browsing	scenario,	 this	means	that	 the	web	server	will	carry	the
largest	burden,	which	leads	to	scalability	problems	for	TLS-enabled	web	sites.

In	 the	 authentication	 phase,	 TLS	 makes	 extensive	 use	 of	 asymmetric
cryptography.	 For	 low-end	 smart	 objects,	 this	 security	 mechanism	 is
inappropriate.	There	are,	however,	ongoing	efforts	 to	provide	more	 lightweight
cryptographic	 algorithms	 to	 achieve	 end-to-end	 security	 for	 computationally
constrained	microprocessors[99,188].

8.6	Conclusions
Smart	 object	 security	 is	 important	 because	 smart	 objects	 are	 used	 in

situations	 where	 a	 security	 breach	 can	 have	 potentially	 disastrous	 results,	 as
systems	ranging	from	critical	infrastructures	to	on-body	and	in-body	systems	are
equipped	with	smart	objects.

Computer	security	consists	of	three	properties:	confidentiality,	integrity,	and
availability.	 The	 purpose	 of	 a	 security	 architecture	 is	 to	 uphold	 all	 of	 these
properties.	To	 implement	 a	 security	 architecture,	 encryption	 is	 used	 to	 convert
messages	 from	 plaintext	 into	 ciphertext,	 which	 is	 not	 readable	 by	 potential
attackers.

Several	mechanisms	for	smart	object	communication	security	exist.	Security
models	 such	 as	 the	 resurrected	 duckling	 model	 provide	 simple	 authentication
and	 key	 distribution	 mechanisms.	 Hardware-assisted	 encryption
implementations	 enable	 strong	 encryption	 support	 even	 for	 computationally
constrained	smart	object	microprocessors.	There	is	still	no	consensus	as	to	what
the	 standard	 security	model	 for	 IP-based	 smart	 objects	 should	 be,	 but	work	 is
ongoing	in	this	area.

	



Chapter	9	Web	Services	for	Smart
Objects

	

Thus	far,	we	have	discussed	 the	use	of	 the	 IP	architecture	as	 the	means	by
which	smart	objects	are	connected.	We	have	discussed	how	the	IP	architecture	is
built,	how	IP	works	with	message	 routing,	and	how	IPv6	 fits	 the	 requirements
for	 smart	objects	exceptionally	well.	But	we	have	not	yet	discussed	how	 these
technologies	are	used	to	create	smart	object	systems,	and	how	smart	objects	can
be	 integrated	 into	 existing	 IT	 systems.	 In	 this	 chapter,	we	 take	 a	 look	 at	web
services	—	 a	 technology	 by	which	 smart	 objects	 can	 be	 efficiently	 integrated
into	existing	IT	and	enterprise	business	systems.

Web	 services	 are	 a	 framework	 for	 building	 distributed	 applications.	 They
have	 typically	 been	 used	 to	 build	 applications	 that	 either	 interact	 using	 a	web
browser,	 or	 are	 somehow	 related	 to	 the	World	Wide	Web.	But	 the	 technology
that	makes	up	web	services	is	not	tied	to	the	World	Wide	Web	or	the	particular
technology	that	typically	is	associated	with	it,	such	as	web	browsers.

Web	services	are	 typically	explained	using	examples	from	popular	services
that	 are	 used	 on	 the	Web,	 such	 as	 flight	 travel	 booking	 systems,	 online	 book
stores,	 or	 web	 searches.	 Even	 though	 those	 applications	 may	 sound	 removed
from	smart	object	systems,	their	inherent	application	properties	are	surprisingly
similar	to	those	in	smart	object	systems.	Web-style	applications	and	smart	object
applications	 share	 many	 of	 the	 basic	 communication	 properties:	 they	 are
composed	of	separate	systems	that	exchange	data.

Given	 the	 prevalence	 of	 the	 Web	 and	 its	 associated	 technologies,	 web
services	have	seen	a	tremendous	adoption	in	the	general	purpose	IT	world	in	the
past	couple	of	years.	All	major	programming	languages	provide	libraries	tailored
to	 build	web-service-oriented	 applications.	Hence,	 a	 large	 body	 of	 existing	 IT
systems	is	built	using	web	services.	There	are	numerous	online	courses	and	other
training	material	available	to	learn	how	to	build	web	service	applications.

Web	 services	 have	 traditionally	 been	 seen	 as	 a	 technology	 suitable	 for	 big
servers,	big	datasets,	and	big	systems.	This	technology	has	been	used	to	couple
database	systems	with	each	other	 in	a	framework	that	permits	an	expression	of
high-level	 concepts	 and	 dependencies,	 and	 yet	 is	 succinct	 enough	 to	 be



standardized	across	a	wide	range	of	applications.
By	using	web	service	technology	for	smart	object	applications,	existing	web-

service-oriented	systems,	programming	libraries,	and	knowledge	can	be	directly
applied	to	the	emerging	field	of	smart	object	applications.	This	provides	several
benefits.	For	businesses,	smart	object	applications	can	be	directly	integrated	with
existing	 business	 systems	 and	 use	 the	 same	 interfaces	 and	 systems	 existing
business	 systems	 use.	 This	 makes	 it	 possible	 to	 integrate	 smart	 object
applications	 into	 enterprise	 resource	 planning	 systems	 without	 any
intermediaries,	 thus	 reducing	 the	 complexity	 of	 the	 system	 as	 a	 whole.	 For
industries,	smart	object	applications	can	be	built	using	off-the-shelf	 technology
without	 any	 customized	 interfaces	 or	 translators.	 Systems	 can	be	 built	without
requiring	smart	object	specialists	in	every	step	of	the	project.

In	 this	 chapter,	 we	 discuss	 the	 use	 of	 web	 service	 technology	 for	 smart
objects.	Because	of	the	expressiveness	of	the	underlying	principles,	web	services
are	 highly	 suitable	 for	 smart	 objects.	 Despite	 the	 dominating	 belief	 that	 web
services	 are	 a	 heavyweight	 concept,	 we	 demonstrate	 that	 they	 are	 indeed
lightweight	enough	to	be	used	for	the	resource-challenged	environment	in	which
smart	objects	exist.	We	do	not	discuss	the	details	of	web	services	in	this	chapter,
however,	 as	 the	 concepts	 and	 the	 surrounding	 technology	 and	 its	 software	 are
extensive	 and	 diverse.	We	 keep	 the	 discussion	 at	 a	 relatively	 high	 level,	 and
refer	to	more	specialized	publications	for	further	details.

We	 examine	 the	 technology	 and	 principles	 behind	web	 services,	 how	 they
map	onto	 smart	object	 concepts,	 and	how	 they	can	be	efficiently	 implemented
for	 smart	objects.	To	ground	 the	discussion,	a	concrete	example	of	an	existing
web	service	for	smart	objects	is	provided:	the	Pachube	service	is	a	data-hosting
service	for	smart-object-style	applications	where	data	are	inserted	and	accessed
using	web	service	technology.

The	 performance	 of	 web	 services	 for	 smart	 objects	 has	 been	 questioned,
because	web	services	were	initially	used	for	large	server	systems.	At	the	end	of
this	 chapter,	 we	 critically	 examine	 this	 by	 discussing	 the	 performance	 of
published	web	 service	 implementations	 for	 smart	 object	 systems.	We	 find	 that
the	performance	of	web	services	for	smart	objects	is	indeed	reasonable.

9.1	Web	Service	Concepts
Web	 services	 are	 typically	 described	 as	 communication	 between	 business

servers,	 typically	 initiated	 by	 the	 interaction	 of	 a	 user	 through	 a	web	 site.	We
make	no	exception	to	this,	because	this	not	only	typifies	the	behavior	of	the	web
service	 technology,	but	also	highlights	 the	machine-to-machine	communication
aspects	of	web	services.

Figure	9.1	is	a	canonical	example	of	web	service	technology	in	action.	In	this



figure	 a	 user	 is	 interacting	with	 the	web	 site	 of	 a	 travel	 agent	 through	 a	web
browser.	 Although	 this	 part	 uses	 the	 World	 Wide	 Web,	 it	 is	 not	 where	 web
services	are	used.	Rather,	web	services	enter	where	the	interaction	between	the
user	and	the	web	site	ends.

Figure	9.1	A	traditional	example	of	a	web	service	transaction.	A	human	user
uses	the	travel	agent’s	web	site	to	look	for	flights.	The	travel	agent	server	uses
web	 service	 technology	 to	 query	multiple	 airlines	 for	 possible	 routes	 and	 gets
several	results.
	

Web	 services	 are	 used	 as	 a	 communication	mechanism	 between	 the	 travel
agent’s	 server	 and	 other	 servers	 that	 it	 communicates	with	 to	 achieve	 its	 task.
Neither	 the	 travel	 agent’s	 server	 nor	 the	 airlines’	 servers	 are	 run	 by	 the	 same
parties,	 so	web	 services	provide	an	 intermediary	 that	 allows	 them	 to	 exchange
data	without	in-between	translation,	since	all	servers	adhere	to	the	web	services
framework.

The	travel	agent’s	server	sends	a	series	of	web	service	requests	to	a	number
of	 servers	 that	 belong	 to	 airline	 companies.	 The	 travel	 agent	 server	 receives
replies	from	a	number	of	them;	in	this	case	one	from	SAS	and	one	from	KLM.
The	 travel	 agent	 server	 can	 then	 format	 these	 replies	 and	 present	 them	 to	 the
user.	The	presentation	of	the	data	is	independent	of	the	format	in	which	the	data
were	sent	between	the	airline	servers	and	the	agent	server.

The	example	 in	Figure	9.1	 illustrates	how	web	services	work,	but	not	how
they	relate	to	smart	objects.	To	shift	the	focus	back	to	smart	objects,	Figure	9.2
shows	an	example	of	a	smart	object	system	realized	through	web	services.	In	this
example,	a	building	automation	server	is	connected	to	a	network	of	temperature
sensors	 and	 radiators.	 The	 sensors	 and	 radiators	 are	 located	 in	 a	 building	 and
connected	 either	 to	 a	 wireless	 network	 or	 a	 wired	 in-house	 network.	 The



particular	communication	technology	used	does	not	matter,	because	 the	system
is	built	on	IP.

Figure	 9.2	 A	 smart	 object	 system	 implemented	 with	 web	 services.
Temperature	sensors	post	temperature	data	to	a	building	automation	server.	The
building	automation	server	configures	a	radiator	based	on	the	temperature	data.
	

The	 temperature	 sensors	 periodically	 post	 their	 temperature	 data	 to	 the
building	 automation	 server	 using	 a	 web	 services	 framework.	 This	 allows	 the
building	 automation	 server	 and	 the	 temperature	 sensors	 to	 be	 provided	 by
different	 vendors	 since	 they	 both	 agree	 on	 a	 common	 communication
mechanism	 and	data	 format.	The	 server	may	 also	 query	 the	 sensors	 to	 get	 the
current	temperature	value.

After	the	building	automation	server	has	received	the	temperature	data	from
the	house’s	temperature	sensors,	it	uses	this	information	to	control	the	radiator.
The	 radiator	has	 a	 smart	object	with	web	 service	 communication	abilities,	 and
the	building	automation	server	posts	a	configuration	request	to	the	radiator.	The
radiator	 updates	 its	 setting	 to	 match	 the	 value	 requested	 by	 the	 automation
server.

9.1.1	Common	Data	Formats
Web	 services	 are	 a	 mechanism	 for	 exchanging	 data	 between	 disparate

systems	 that	 are	 not	 developed	 by	 the	 same	 parties.	 The	 systems	 may	 be
developed	 in	 different	 programming	 languages	 and	 run	 on	 vastly	 different
hardware,	but	they	still	wish	to	exchange	data	in	a	system-independent	way.	For
this	 reason,	 system-independent	 data	 formats	 are	 central	 to	 the	 web	 services
framework.

The	Extensible	Markup	Language	 (XML)	 is	 the	most	common	data	 format
associated	with	web	services,	but	it	is	not	the	only	data	format	available.	In	fact,



the	 web	 services	 framework	 is	 not	 dependent	 on	 any	 particular	 data	 format,
because	it	can	operate	across	a	range	of	data	formats.

XML	 is	 a	 general	 purpose	 document	 format	 that	 provides	 a	 structured
mechanism	 to	 encode	 machine-readable	 information.	 In	 addition	 to	 being
machine-readable,	 XML	 documents	 are	 also	 human-readable,	 making	 them
readily	created	and	edited	by	humans	as	well	as	machines.

XML	documents	are	composed	of	a	set	of	tags,	where	each	tag	is	shown	as
the	name	of	the	tag	enclosed	in	the	<and>	characters.	A	tag	consists	of	an	open
tag	 and	 a	 close	 tag.	 The	 close	 tag	 is	 the	 same	 as	 the	 open	 tag,	 but	 with	 the
character	in	front	of	the	name.	An	example	of	a	tag	is	<data>one<data>,	where
<data>	opens	the	tag	and	</data>	closes	the	tag.	The	value	of	the	tag	is	the	text
between	the	open	and	close	tag,	which	in	this	case	is	“one”.	Tags	are	nested	to
form	a	tree	of	tags.

An	 example	 of	 an	 XML	 document	 is	 shown	 in	 Figure	 9.3.	 This	 XML
document	contains	a	temperature	value	from	a	fictional	temperature	sensor.	The
name	of	the	sensor,	“Temperature”,	is	given	in	the	<name>	tag	and	the	value	is
given	 in	 the	 <value>	 tag.	 The	 <sensor>	 tag	 contains	 information	 about	 one
particular	sensor.	In	this	document,	only	a	single	sensor	is	present	but	more	can
be	added	following	the	closing	of	the	<sensor>	tag.

Figure	9.3	An	XML	document.
	

Because	XML	is	a	relatively	verbose	format,	several	ways	to	compress	XML
have	 been	 explored.	 The	 structured	 nature	 of	 XML	 makes	 XML	 possible	 to
compress	 using	 source-specific	 techniques,	 and	 a	 number	 of	 variants	 of	XML
that	 use	 binary	 encodings	 rather	 than	 textual	 representations	 of	 the	XML	 tags
exist.	There	is,	however,	no	standard	for	binary	XML	and	none	of	the	available
formats	have	succeeded	in	achieving	a	de	facto	standard	status.

An	alternative	to	the	verbose	XML	format	is	the	JavaScript	Object	Notation
(JSON)	 format.	 JSON	 is	 specified	 in	 RFC4627	 [45]	 and	 provides	 a	 more
lightweight	markup	 than	XML.	Although	 JSON	originally	was	 designed	 to	 be



easy	to	parse	by	JavaScript	programs,	the	format	is	independent	of	any	particular
programming	 language.	Libraries	 for	parsing	and	constructing	 JSON	messages
are	available	for	most	programming	languages.

An	 example	 of	 a	 JSON	 document	 is	 shown	 in	 Figure	 9.4.	 This	 document
contains	the	same	information	as	the	XML	document	in	Figure	9.3,	but	is	much
more	 compact.	 The	 markup	 is	 more	 lightweight,	 but	 provides	 less	 means	 by
which	 the	document	can	be	automatically	 translated	between	different	 formats.
Yet,	 the	 JSON	 format	 is	 a	 good	 match	 for	 smart	 object	 systems,	 where
compactness	 of	 representation	 is	 important	 due	 to	 the	 inherent	 resource
constraints.

Figure	9.4	A	JSON	document.
	

	
9.1.2	Representational	State	Transfer
There	are	several	ways	to	realize	the	web	service	concept.	Some	realizations

are	 built	 on	 mechanisms	 that	 require	 significant	 processing	 power	 and
communication	 bandwidth,	 whereas	 others	 are	 more	 lightweight.	 In	 this
discussion,	we	do	not	go	 into	detail	 about	 the	web	 service	mechanisms	on	 the
expensive	side	of	the	spectrum.	Examples	of	mechanisms	that	we	do	not	discuss
are	 SOAP	 (originally	 defined	 as	 Simple	 Object	 Access	 Protocol,	 but	 is	 now
known	as	only	an	acronym),	the	Web	Services	Description	Language	(WSDL),
and	 the	 Universal	 Discovery	 Description	 and	 Integration	 mechanism	 (UDDI).
For	the	description	of	those	standards	and	mechanisms,	please	see	the	standards
documents	or	the	many	online	descriptions	available.

The	 resource	 constraints	 inherent	 in	 smart	 objects	 regarding	 processing
power,	energy,	and	communication	bandwidth	necessitate	the	use	of	lightweight
mechanisms.	Despite	a	reputation	as	a	heavyweight,	web	services	have	nothing
inherent	 in	 their	 interaction	 models,	 communication	 mechanisms,	 or	 concepts
that	make	them	heavyweight.

Representational	 state	 transfer	 (REST)	 is	 a	 lightweight	 instantiation	 of	 the
web	 services	 concept	 that	 is	 particularly	well	 suited	 to	 the	 properties	 of	 smart
objects.	REST	is	not	just	a	web	service	instantiation,	but	an	architectural	model
for	 how	 distributed	 applications	 are	 built.	 Systems	 built	 around	 the	 REST



architecture	are	said	to	be	RESTful.
REST	builds	on	three	concepts:	representation,	state,	and	transfer:

•	Representation:	Data	or	resources	are	encoded	as	representations	of	the
data	or	 the	 resource.	These	 representations	are	 transferred	between	clients
and	servers.	One	example	of	a	representation	of	a	resource	is	a	temperature
value	written	as	a	decimal	number,	where	the	representation	is	the	decimal
number	and	the	temperature	is	the	resource.
•	State:	All	of	the	necessary	state	needed	to	complete	a	request	must	be

provided	with	the	request.	The	clients	and	servers	are	inherently	stateless.	A
client	 cannot	 rely	 on	 any	 state	 to	 be	 stored	 in	 the	 server,	 and	 the	 server
cannot	rely	on	any	state	stored	in	the	client.	This	does	not,	however,	pertain
to	the	data	stored	by	servers	or	clients,	only	to	the	connection	state	needed
to	complete	transactions.
•	Transfer:	The	representations	and	the	state	can	be	transferred	between

client	and	servers.

	
REST,	as	an	architectural	model,	describes	the	interactions	we	have	seen	so

far	in	this	chapter.	In	the	example	of	the	travel	agent	(Figure	9.1),	the	request	for
a	 reservation	 between	Stockholm	 and	Tokyo	was	 a	 representation	 as	were	 the
replies	 from	 the	 airline	 servers.	 Likewise,	 the	 building	 automation	 system
illustrated	in	Figure	9.2	contains	temperature	data	and	radiator	configurations	as
representations.

REST	 is	 an	 architectural	 model	 that	 can	 be	 efficiently	 implemented	 as	 a
combination	of	the	Hypertext	Transfer	Protocol	(HTTP)	[83]	and	TCP/IP.	With
this	instantiation	of	REST,	HTTP	requests	are	used	to	transfer	representations	of
resources	between	clients	and	servers.	Uniform	Resource	Identifiers	(URIs)	are
used	to	encode	transaction	states.

With	this	implementation	of	the	REST	architecture	in	mind,	we	return	to	the
building	 automation	 example	 in	 Figure	 9.2.	 In	 this	 example,	 the	 temperature
sensors	submit	their	temperature	data	to	the	building	automation	server	using	the
HTTP	PUT	method.	To	query	sensors,	the	server	uses	the	HTTP	GET	method.
The	 server	 then	 sends	 its	 configuration	 request	 to	 the	 radiator	using	 the	HTTP
PUT	method.

To	make	the	discussion	concrete,	we	turn	to	a	detailed	discussion	of	how	a
REST	HTTP	transaction	for	smart	objects	looks.	Using	the	transaction	from	the
building	automation	system	in	Figure	9.2,	we	focus	on	 the	server’s	 request	 for
temperature	data	from	one	of	the	sensors.	This	request	is	implemented	by	using



the	HTTP	GET	request,	which	is	issued	by	the	server	to	one	of	the	sensors.	The
sensor	responds	with	the	temperature	data	of	the	sensor	in	JSON	format.

The	HTTP	GET	request	sent	by	the	server	is	shown	in	Figure	9.5.	The	HTTP
request,	 which	 is	 human-readable,	 consists	 of	 two	 lines	 of	 text.	 The	 first	 line
contains	 the	 HTTP	 GET	 verb,	 followed	 by	 the	 URI	 that	 represents	 the
temperature	sensor.	In	this	case	this	is	as	simple	as	sensorstemperature,	but	more
complex	URIs	are	possible.	Ending	the	first	line	is	the	name	and	version	of	the
HTTP	protocol.	HTTP	1.1	is	the	current	version	of	the	HTTP	protocol.

Figure	 9.5	An	HTTP	GET	 request	 for	 the	 data	 of	 a	 temperature	 sensor	 in
JSON	format.	The	server’s	response	is	shown	in	Figure	9.6.
	

The	second	line	of	the	server’s	request	contains	the	requested	representation
of	 the	 data	 that	 the	 client	 has	 to	 offer.	 This	 line	 contains	 the	 HTTP	 header
“Content-type”	followed	by	the	 type	“application/json”.	This	 type	is	defined	in
the	JSON	specification	as	the	content	type	to	be	used	for	JSON	data	[45].

The	client’s	response	to	 the	server’s	request	 is	shown	in	Figure	9.6.	Again,
this	HTTP	reply	is	in	a	human-readable	format.	The	reply	consists	of	two	parts,
the	HTTP	header	 and	 the	HTTP	body.	The	header	 is	 two	 lines	 long.	The	 first
line	 contains	 the	 HTTP/1.1	 keyword,	 which	 again	 tells	 the	 receiver	 that	 this
reply	 is	 in	HTTP	 version	 1.1	 format.	 This	 keyword	 is	 followed	 by	 the	HTTP
status	code	200,	which	tells	the	receiver	that	the	HTTP	request	was	successfully
processed.	 The	 “OK”	 following	 the	 status	 code	 is	 a	 human-readable
representation	of	the	status	code.

Figure	9.6	HTTP	response	for	the	HTTP	request	in	Figure	9.5.
	

The	 HTTP	 reply	 contains	 the	 same	 “Content-type”	 header	 as	 the	 request,
which	 tells	 the	 receiver	 that	 the	 data	 in	 the	 HTTP	 body	 are	 in	 JSON	 format.
Following	 the	 HTTP	 header	 is	 a	 blank	 line	 that	 divides	 the	 header	 from	 the



body.
The	 HTTP	 body	 contains	 the	 JSON	 data	 that	 represent	 the	 current

temperature	as	sensed	by	the	smart	object’s	sensor.
This	 HTTP	 request	 is	 transported	 over	 a	 TCP	 connection,	 as	 discussed	 in

Chapter	7.	Armed	with	the	knowledge	of	how	TCP	works,	we	can	now	construct
a	 detailed	 picture	 of	 how	 the	 entire	 REST	 transaction	 between	 the	 building
automation	server	and	the	smart	object	client	looks.

Figure	9.7	shows	the	full	REST	transaction	including	all	packets	that	are	sent
for	 the	 complete	 transaction.	 The	 transaction	 is	 divided	 into	 three	 phases:	 the
TCP	 connection	 open	 phase,	 the	 REST	 data	 transfer	 phase,	 and	 the	 TCP
connection	close	phase.

Figure	 9.7	 A	 full	 REST	web	 service	 transfer	 over	 HTTP/TCP/IP	with	 all
packets	indicated.
	

The	transaction	starts	with	the	TCP	connection	phase.	The	TCP	connection	is
opened	by	the	exchange	of	the	TCP	SYN	and	TCP	SYNACK	segments	between
the	server	and	 the	client.	The	server	sends	 the	TCP	SYN	to	 the	client,	and	 the
client	responds	with	the	TCP	SYNACK.	When	the	server	has	received	the	TCP
SYNACK	segment,	the	connection	enters	the	REST	data	transfer	phase.

During	 the	 REST	 data	 transfer	 phase,	 the	 server	 sends	 the	 HTTP	 request
from	Figure	9.5	as	one	or	more	TCP	segments	to	the	client.	The	HTTP	request



may	 fit	 in	 a	 single	 TCP	 segment,	 if	 the	 segment	 size	 is	 large	 enough.	 The
segment	size	for	a	connection	is	determined	by	the	client	and	server	during	the
setup	of	 the	TCP	connection.	 In	 this	case,	however,	 the	HTTP	request	 is	small
enough	to	fit	into	most	TCP	segment	sizes.	All	TCP	segments	are	acknowledged
by	the	receiver,	and	the	sender	retransmits	the	segments	if	it	does	not	receive	the
acknowledgments.	In	this	case,	however,	the	acknowledgments	are	piggybacked
on	the	data	packets	sent	in	response	to	the	reply.

The	client	responds	to	the	request	with	the	response	from	Figure	9.6.	Again,
this	is	sent	as	one	or	more	TCP	segments,	depending	on	the	size	of	the	response
and	 on	 the	 maximum	 segment	 size	 of	 the	 connection.	 The	 data	 packets	 are
acknowledged.	 If	 the	 entire	HTTP	 response	 fits	 in	 a	 single	 TCP	 segment,	 the
acknowledgment	 for	 the	 data	 is	 piggybacked	 on	 the	 TCP	 FIN	 segment	 sent
during	the	TCP	connection	close	phase.

After	 the	data	 transfer	 is	 complete,	both	 the	 server	 and	 the	client	 close	 the
connection	 by	 sending	 a	 TCP	 FIN	 segment	 to	 the	 peer.	 This	 segment	 is
acknowledged	 by	 a	 final	 TCP	 ACK	 segment,	 and	 the	 entire	 transaction	 is
complete.
	
9.2	The	Performance	of	Web	Services	for	Smart	Objects
The	performance	of	web	services	for	large-scale	servers	has	been	questioned

on	 numerous	 occasions.	 Because	 of	 this,	 the	 performance	 of	web	 services	 for
smart	 objects	 has	 to	 be	 critically	 examined.	 Compared	 to	 the	 servers	 and
networks	on	top	of	which	large-scale	web	service	applications	run,	smart	object
systems	 are	 severely	 constrained	 in	 both	 computational	 resources	 and
bandwidth.	Can	smart	objects	maintain	a	good	performance	for	web	services?

In	addition	to	the	runtime	performance	of	web	services	for	smart	objects,	the
constrained	resources	of	the	smart	object	nodes	also	require	the	implementation
complexity	of	web	services	 to	be	examined.	Can	a	 tiny	smart	object	node	bear
the	complexity	of	web	services?

To	answer	these	questions,	we	turn	to	the	literature	and	find	two	independent
studies	 of	 web	 services	 for	 smart	 objects:	 one	 by	 Priyantha	 et	 al.	 [207]	 from
Microsoft	 Research	 and	 one	 by	 Yazar	 and	 Dunkels	 [260]	 from	 the	 Swedish
Institute	 of	 Computer	 Science.	 Both	 studies	 implement	 a	 web	 services
framework	for	smart	objects,	but	the	two	studies	focus	on	different	aspects	of	the
system.	The	study	by	Priyantha	et	al.	 investigates	the	use	of	XML	transactions
enclosed	 in	 SOAP	messages	 sent	 over	HTTP	 and	 TCP,	whereas	 the	 study	 by
Yazar	 and	Dunkels	 uses	 REST	 transactions	 directly	 over	 HTTP.	 Both	 studies
have	 implemented	 web	 services	 over	 the	 uIP	 TCP/IP	 stack	 [64],	 which	 is
discussed	in	Chapter	13.



9.2.1	Implementation	Complexity
For	smart	objects,	their	limited	resources	require	a	low	software	complexity.

Smart	objects	are	resource	limited	not	only	in	energy	and	bandwidth,	but	also	in
memory.	For	web	services	 to	be	a	viable	communication	mechanism	for	smart
objects,	 implementations	 of	 web	 services	 mechanisms	 must	 have	 a	 small
footprint.

Web	 services	 for	 large-scale	 server	 systems	 have	 been	 criticized	 for	 being
too	 complex	 even	 for	 large-scale	 systems,	 so	 it	was	not	 always	 clear	 that	web
services	would	be	a	viable	alternative	for	smart	objects.	Recent	implementations,
such	as	those	by	Priyantha	et	al.	and	Yazar	and	Dunkels,	have	shown	that	web
services	 are	 indeed	 a	 viable	 mechanism	 for	 resource-constrained	 smart	 object
systems.

The	web	 services	 implementation	 by	 Priyantha	 et	 al.	 [207]	 is	 a	 simplified
variant	of	the	SOAP-based	web	services	that	provide	interoperable	functionality
with	 existing	 systems,	 but	 does	 not	 implement	 the	 full	 specification.	 Their
system	is	implemented	on	top	of	the	uIP	TCP/IP	stack	[64],	which	is	known	for
its	small	implementation	complexity.

The	code	size	and	memory	footprint	for	the	web	services	implementation	by
Priyantha	et	al.	is	shown	in	Table	9.1.	These	data	include	both	the	size	of	the	uIP
TCP/IP	 stack	 and	 the	 simplified	HTTP	 server	 and	XML	parser.	The	 uIP	 code
size	includes	the	IP	protocol	(the	part	of	the	TCP	protocol	required	for	acting	as
a	TCP	server),	but	does	not	include	the	UDP	protocol.	The	code	size	is	measured
for	 the	 MSP430	 microprocessor	 and	 the	 code	 is	 compiled	 with	 the	 gcc	 C
compiler.

Table	 9.1	 Memory	 Footprint	 for	 the	 Simplified	 SOAP	 Web	 Services
Implementationa

	
	

	

	

	

	

	



	

	

	

Module Code	size Data	footprint
TCP/IP	stack,	uIP 2964 332
HTTP	server	+	XML	parser 2380 54
	

aSource:	 B.	 Priyantha,	 A.	 Kansal,	 M.	 Goraczko,	 and	 F.	 Zhao.	 Tiny	 web	 services:	 design	 and
implementation	of	interoperable	and	evolvable	sensor	networks.	In	Proceedings	of	the	6th	ACM	conference
on	Embedded	Network	Sensory	Systems	(SenSys	’08),	pp.	253–266,	Raleigh,	NC,	USA,	2008.

	
The	 resulting	 code	 size	 is	 a	 few	kilobytes,	which	 is	well	 suited	 for	 typical

smart	object	systems.	The	system	for	which	Priyantha	et	al.	developed	their	web
service	implementation	has	48	kB	of	code	space	available.

Similarly,	 the	 code	 size	 and	data	 footprint	of	 the	 implementation	by	Yazar
and	Dunkels	[260]	is	presented	in	Tables	9.2	and	9.3.	The	two	tables	show	the
size	of	 two	different	 implementations	of	web	 services	 for	 smart	objects:	Table
9.2	 illustrates	 the	 size	 of	 the	 implementation	 of	REST-based	web	 services	 for
smart	objects,	and	Table	9.3	illustrates	the	size	of	the	implementation	of	SOAP-
based	 web	 services	 for	 smart	 objects.	 The	 code	 size	 is	 for	 the	 MSP430
microprocessor	and	the	code	was	compiled	with	the	gcc	C	compiler.

Table	9.2	Memory	Footprint	for	the	REST	Web	Services	Implementationa

	
	

	

	

	

	

	



	

	

	

	

	

	

Module Code	size Data	footprint
TCP/IP	stack,	uIP 4274 412
HTTP	server 3976 72
REST	engine 692 4
	

aSource:	D.	Yazar	and	A.	Dunkels.	Efficient	Application	Integration	in	IP-Based	Sensory	Networks.	In
Proceedings	 of	 the	 ACM	BuildSys	 2009	 workshop,	 in	 conjunction	 with	 ACM	 SenSys	 2009,	November
2009.
	

Table	9.3	Memory	Footprint	for	the	SOAP	Web	Services	Implementationa

	
	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

Module Code	size Data	footprint
TCP/IP	stack,	uIP 4274 412
HTTP	server 3976 72
XML	parser 5260 4
SOAP	engine 2354 36
	

aSource:	D.	Yazar	and	A.	Dunkels.	Efficient	Application	Integration	in	IP-Based	Sensory	Networks.	In
Proceedings	 of	 the	 ACM	BuildSys	 2009	 workshop,	 in	 conjunction	 with	 ACM	 SenSys	 2009,	November
2009.

	
Like	 the	system	by	Priyantha	et	al.,	 the	system	by	Yazar	and	Dunkels	uses

the	 uIP	 TCP/IP	 stack	 as	 the	 underlying	 IP	 communication	 layer.	 Unlike	 the
system	by	Priyantha	 et	 al.,	 the	 system	by	Yazar	 and	Dunkels	 includes	 the	 full
uIP	 stack,	 including	 the	 full	 TCP	 and	 IP	 implementations	 as	well	 as	 the	UDP
implementation.	 Thus	 the	 code	 size	 is	 larger.	 Furthermore,	 the	 Yazar	 and
Dunkels	 implementation	 contains	 additional	 functionality	 over	 the
implementation	by	Priyantha	et	al.,	making	 the	code	size	 for	 the	HTTP	server,
the	XML	parser,	and	the	SOAP	engine	larger.

Taken	together,	the	two	independent	implementations	by	Priyantha	et	al.	and
Yazar	and	Dunkels	show	that	the	implementation	complexity	of	web	services	is
low.	 The	 results	 show	 that	 web	 services	 fit	 the	 memory	 constraints	 of	 smart
object	 systems.	 Thus	 far,	 however,	 these	 data	 do	 not	 tell	 us	 whether	 the
performance	of	web	services	is	suitable	for	the	bandwidth	and	power	constraints



of	smart	objects.	We	turn	to	this	subject	next.
	
9.2.2	Performance
Smart	 objects	 are	 severely	 limited	 not	 only	 in	 memory	 size,	 but	 also	 in

bandwidth	 and	 energy.	 For	 example,	 the	 IEEE	 802.15.4	 low-power	 wireless
communication	 standard,	 which	 is	 often	 used	 for	 smart	 object	 systems,	 has	 a
maximum	data	rate	of	250	Kbits/s.	The	 limited	bandwidth	has	 implications	for
both	 data	 throughput	 and	 data	 latency.	 Furthermore,	 since	 communication
consumes	energy,	it	is	imperative	that	the	communication	is	efficient.

To	examine	the	performance	of	web	services	for	smart	objects	we	again	turn
to	the	systems	developed	by	Priyantha	et	al.	and	Yazar	and	Dunkels.	Priyantha
et	 al.	 present	 performance	 data	 at	 the	 TCP	 level,	 but	 do	 not	 provide	 any
performance	 numbers	 for	 complete	web	 services	 transfers.	Yazar	 and	Dunkels
provide	 performance	 measurements	 for	 full	 REST	 transfers	 over	 HTTP	 and
TCP/IP.	 Furthermore,	Yazar	 and	Dunkels	 have	measured	 the	 energy	 overhead
associated	with	a	web	services	transfer	on	a	smart	object	platform.	Both	studies
are	performed	over	an	802.15.4	low-power	radio	on	an	MSP430-equipped	smart
object	platform.

Table	 9.4	 contains	 the	 measurements	 of	 the	 TCP	 processing	 overhead	 as
measured	by	Priyantha	et	al.	These	data	show	that	the	processing	overhead	and
the	transmission	of	TCP	are	low.	A	full	TCP	transaction,	with	data	sent	from	the
server	to	the	sensor	and	a	reply	sent	back	to	the	sensor,	followed	by	a	reply	from
the	 sensor	 to	 the	 server,	 is	 completed	within	40	ms.	These	data	were	obtained
after	 turning	 off	 the	 delayed	 acknowledgment	 mechanism	 in	 TCP,	 which	 is
known	to	increase	the	round-trip	time	for	single-segment	TCP	exchanges	[64].

Table	9.4	TCP	Processing	Overheada

	
	

	

	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

Time	(ms) Event TCP	action
0.00 Server	Tx	start TCP	data
6.19 Server	Tx	done (74	byte	request)
9.68 Sensor	Rx	done 	
10.67 Packet	processed 	
10.68 Sensor	Tx	start TCP	ACK
11.71 Sensor	Tx	done 	
29.29 Server	Tx	start TCP	data
33.35 Server	Tx	done (27	byte	request)
35.53 Sensor	Rx	done 	
36.35 Packet	processed 	
36.36 Sensor	Tx	start TCP	data
37.78 Sensor	Tx	done (37	byte	reply)
	

aSource:	 B.	 Priyantha,	 A.	 Kansal,	 M.	 Goraczko,	 and	 F.	 Zhao.	 Tiny	 Web	 Services:	 Design	 and



Implementation	 of	 Interoperable	 and	 Evolvable	 Sensor	 Networks.	 In	 Proceedings	 of	 the	 6th	 ACM
conference	on	Embedded	Network	Sensory	Systems	(SenSys	’08),	pp.	253–266,	Raleigh,	NC,	USA,	2008.

	
Yazar	 and	 Dunkels	 present	 measurements	 of	 the	 performance	 of	 web

services	requests	over	a	network	of	smart	objects	where	the	smart	objects	route
messages	between	each	other,	thereby	extending	the	range	of	the	network.	Each
hop	 of	 the	 network	 runs	 an	 IEEE	 802.15.4	 low-power	 wireless	 link.	 To	 save
power,	the	radio	runs	a	power-saving	mechanism	where	the	radio	is	switched	off
as	often	as	possible,	only	to	periodically	wake	up	for	a	short	while	to	check	for	a
transmission	from	a	neighboring	node	[25].

The	 completion	 times	 of	 a	 full	 REST	 transaction,	 including	 the	 TCP
connection	 setup	 and	 closing	 phase,	 as	 measured	 by	 Yazar	 and	 Dunkels,	 are
shown	 in	 Figure	 9.8.	 The	 graph	 shows	 the	 completion	 time	 for	 three	 REST
transfers	with	 the	 number	 of	 network	 hops	 varied	 between	 one	 and	 four.	 The
“dummy”	transfer	is	a	minimal	REST	transfer	that	contains	only	a	few	bytes	of
data,	 and	 the	 “temperature”	 transfer	 is	 a	 complete	 temperature	 request	 with
temperature	data	sent	in	JSON	format.	The	“sensors”	transfer	contains	a	full	set
of	 sensor	 data	 from	 the	 smart	 object,	which	 in	 this	 case	 includes	 temperature,
humidity,	visible	light,	and	UV	light	data.

Figure	 9.8	 The	 completion	 time	 of	 full	 REST	 transfers	 over	 a	 multi-hop
power-saving	 IEEE	 802.15.4	 network,	 from	 Yazar	 and	 Dunkels	 [260].	 The	 y
axis	shows	the	time	in	seconds	and	the	x	axis	the	number	of	hops.
	

In	 addition	 to	 providing	 completion	 time	 data,	 the	 study	 by	 Yazar	 and
Dunkels	also	measured	 the	power	consumption	of	a	web	services	 request.	The



findings	show	that	the	power	consumption	increases	from	1	mW	when	the	smart
object	is	idle,	to	4	mW	for	the	“dummy”	call	and	5	mW	for	the	“sensors”	call.

By	examining	the	results	from	the	studies	by	Priyantha	et	al.	and	Yazar	and
Dunkels,	it	is	clear	that	the	web	services	are	indeed	reasonable	for	smart	objects
and	that	the	performance	is	suitable	for	the	constrained	resources.

9.3	Pachube:	A	Web	Service	System	for	Smart	Objects
To	 ground	 the	 discussion	 about	 web	 services	 and	 RESTful	 interfaces	 for

smart	objects,	we	investigate	Pachube,	one	particular	real-world	instantiation	of
a	RESTful	interface	for	smart	objects.	Pachube	is	a	web	site,	as	shown	in	Figure
9.9,	to	which	users	can	submit	sensor	data	from	sensor	networks	and	upload	and
store	the	data	on	the	Pachube	server.	The	sensor	data	can	later	be	retrieved	and
processed	from	the	Pachube	servers.	The	Pachube	web	site	lists	several	ideas	for
which	 Pachube	 can	 be	 used	 such	 as	 electrical	 usage	 monitoring	 and
management,	real-time	pollution	monitoring,	and	home	automation.

Figure	9.9	The	Pachube	web	site.	Data	sources	are	marked	on	a	world	map.
	

The	developers	of	Pachube	 envision	 it	 as	 the	 fabric	on	which	 smart	 object



systems	 and	 applications	 can	 be	 built.	 Smart	 objects,	 sensor	 networks,	 and
telemetry	systems	submit	data	to	the	Pachube	servers	where	the	data	are	stored
for	 later	 retrieval.	 The	 data	 can	 be	 retrieved	 by	 standalone	 applications	 that
process	the	data	to	either	visualize	the	data	for	human	users,	or	to	autonomously
operate	on	 the	data.	Examples	of	 applications	 that	may	want	 to	work	on	 these
data	without	a	human	in	the	loop	are	building	automation	systems	or	electricity
savings	 systems.	 The	 input	 to	 such	 a	 system	 consists	 of	 temperature	 data	 and
electricity	readings	from	sensors	that	submit	their	data	to	Pachube.	An	excerpt	of
the	Pachube	web	site	that	illustrates	this	concept	is	shown	in	Figure	9.10.

Figure	 9.10	 Pachube	 is	 intended	 to	 be	 an	 intermediary	 for	 smart	 object
applications.
	

We	use	Pachube	as	an	example	because	of	its	status	as	an	emerging	service
provider	 in	 the	ecosystem	 that	 is	 about	 to	 form	around	 smart	objects.	Pachube
provides	 an	 open	 Application	 Program	 Interface	 (API)	 based	 on	 the	 RESTful
architectural	model	and	allows	remote	sensors	to	send	their	data	to	the	Pachube
servers	 over	 an	 HTTP	 connection.	Where	 many	 of	 the	 applications	 for	 smart
objects	 target	 industrial	 applications,	 Pachube	 illustrates	 the	 possibility	 of	 a



consumer-oriented	service	for	smart	objects.
Figure	9.11	shows	how	data	stored	on	the	Pachube	server	can	be	displayed

directly	 in	 a	web	 browser	window,	 but	 this	 is	 only	 one	 of	 the	many	 available
alternatives	 for	 accessing	 the	 data.	 Since	 the	 data	 stored	 on	 the	 servers	 are
opaque,	the	data	can	be	retrieved	and	processed	independent	of	the	API.

Figure	9.11	A	feed	of	sensor	data	from	the	Pachube	web	site.
	

Pachube	 provides	 an	 open	API	 for	 accessing	 the	 sensor	 data	 stored	 on	 the
servers	 over	 the	 Internet.	 It	 is	 intentionally	 simple	 and	 provides	 methods	 for
uploading	and	downloading	data.	Application	complexity	is	held	outside	of	the
system.	 Applications	 only	 query	 the	 Pachube	 servers	 for	 data,	 and	 any
processing	is	performed	on	the	application	side.

Pachube	data	are	divided	into	feeds.	Roughly	speaking,	one	feed	corresponds
to	one	 instance	of	a	particular	application.	For	example,	a	building	automation
system	built	on	Pachube	may	use	one	feed	for	the	sensor	data	and	control	from
one	building.

Feeds	are	further	subdivided	into	data	streams.	A	data	stream	can	come	from
one	 particular	 sensor	 or	 one	 particular	 physical	 location	 such	 as	 a	 room.
Applications	that	work	on	the	data	can	choose	to	collect	data	from	one	stream	or
many	streams	from	the	same	feed,	depending	on	the	application.

Many	 of	 the	 sensors	 that	 serve	 their	 data	 to	 the	 Pachube	 servers	 are
connected	 to	 the	 Internet	 via	 an	 external	 device	 such	 as	 a	 PC.	As	 the	 field	 of



smart	objects	continues	to	grow,	we	are	likely	to	see	IP-based	smart	objects	that
communicate	directly	with	the	Pachube	server.

9.3.1	Interaction	Model
The	 interaction	model	 of	 the	 Pachube	API	 is	 simple.	 Clients,	 either	 smart

objects	 or	 sensors	 connected	 to	 an	 IP	 network	 through	 a	 PC,	 connect	 to	 the
Pachube	 server	 using	HTTP	 and	 send	 their	 data	 using	 the	HTTP	 request.	 The
server	responds	with	a	status	code	and	an	amount	of	data.	The	request	may	either
provide	new	data	to	be	stored	on	the	Pachube	servers	or	a	request	for	data	to	be
delivered	from	the	same	servers.	Both	types	of	requests	are	sent	using	HTTP.

When	a	client	performs	an	HTTP	request	to	a	Pachube	server,	the	client	first
sets	 up	 a	 TCP	 connection	 to	 the	 server.	 Once	 the	 TCP	 connection	 has	 been
successfully	 opened,	 the	 client	 sends	 its	 request	 using	 the	 normal	 HTTP
mechanism	where	 the	 first	 line	of	data	sent	 from	 the	client	contains	 the	HTTP
request	verb,	 followed	by	additional	 lines	of	 text	 that	contain	additional	HTTP
headers.	 If	 the	 request	 contains	 additional	 data,	 they	 follow	 after	 the	 HTTP
headers.

The	server	responds	in	standard	HTTP	by	sending	the	status	code	as	the	first
data	over	the	TCP	connection.	The	status	code	is	followed	by	the	server’s	HTTP
headers.	 If	 the	 request	 caused	 any	 data	 to	 be	 sent	 back	 from	 the	 server	 to	 the
client,	these	data	are	sent	after	the	HTTP	headers.

When	 the	HTTP	 interaction	 is	 complete,	 the	TCP	connection	can	either	be
closed	directly	or	kept	open	in	anticipation	of	another	request	at	some	later	time.
Whether	the	connection	is	closed	or	not	is	determined	via	a	negotiation	through
the	HTTP	headers.	 If	 either	 the	client	or	 the	 server	 sends	 the	connection	close
HTTP	 header,	 the	 connection	 is	 closed	 after	 the	 request	 has	 been	 completed.
Otherwise	 the	 TCP	 connection	 is	 kept	 open	 in	 anticipation	 of	 another	 request
between	the	client	and	the	server.
	
9.3.2	Pachube	Data	Formats
Pachube	 supports	 several	data	 formats	 for	 exchanging	data	between	clients

and	servers.	Providing	different	forms	of	exchanging	data	allows	integration	of
different	 types	of	 systems	with	 the	Pachube	servers.	A	simple	sensor	 that	only
wants	to	submit	data	to	Pachube	may	choose	to	send	its	data	in	a	simple	format
that	requires	low	effort	to	construct	and	transport,	whereas	a	visualization	system
that	processes	 sensed	data	 from	 the	Pachube	 server	 to	visualize	 it	 needs	meta-
information	about	 the	data	 such	as	where	 the	data	were	 sampled	and	when.	 In
the	Pachube	system,	the	clients	decide	how	they	want	their	data	to	be	formatted
as	part	of	 the	 requests	 they	pose	 to	 the	Pachube	servers.	The	 responsibility	 for
converting	the	data	between	the	formats	falls	on	the	Pachube	servers	rather	than



the	client,	as	the	clients	may	be	resource-constrained	smart	objects.
Not	all	data	 formats	contain	 the	same	amount	of	 information.	The	simplest

formats	contain	sensor	data	values,	whereas	 the	more	complex	formats	contain
metadata	such	as	where	the	sensor	data	were	obtained	and	at	what	time	the	data
were	sampled.	Pachube	supports	the	following	formats:

•	Extended	Environments	Markup	Language	(EEML):	A	custom	version
of	XML	 tailored	 to	 contain	 sensor	 data.	 The	EEML	 format	 contains	 tags
that	specify	 the	spatial	 location	at	which	the	sensor	data	were	sampled,	as
well	 as	meta-information	 about	 the	 sensor	data	 such	as	 the	minimum	and
maximum	 values	 that	 the	 sensor	 data	 can	 reach,	 and	 the	 default	 unit	 in
which	the	data	are	to	be	represented.	An	example	of	an	EEML	document	is
shown	in	Figure	9.12.
•	JSON:	The	JSON	format	contains	 the	same	amount	of	 information	as

the	EEML	 representation,	 but	 formatted	 in	 JSON	 rather	 than	EEML.	The
JSON	format	is	more	compact	than	the	EEML	format,	and	is	also	easier	to
parse	for	programs	implemented	in	JavaScript.
•	ATOM	and	RSS:	The	ATOM	and	RSS	formats	contain	less	information

than	 the	EEML	and	JSON	formats.	The	ATOM	and	RSS	 formats	contain
sensor	data,	but	include	only	a	limited	form	of	metadata	such	as	the	spatial
location	of	the	sensors	as	well	as	tags	and	titles	of	the	sensors.
•	Comma-separated	value	format	(CSV):	This	is	the	most	basic	format.	It

also	contains	the	least	amount	of	meta-information:	the	data	stream	contains
only	the	sensor	data.	The	CSV	format	is	suitable	for	use	on	tiny	units	with
limited	 processing	 power	where	 creation	 or	 parsing	 of	 the	more	 complex
formats	is	not	suitable.

	



Figure	9.12	A	document	in	EEML	format	that	contains	sensor	data.
	

9.3.3	HTTP	Requests
All	 Pachube	 requests	 between	 clients	 and	 servers	 are	 performed	 by	 using

HTTP	 requests.	 As	 previously	 discussed,	 the	 REST	 architecture	 uses	 HTTP
request	 types	 for	 different	 types	 of	 method	 invocations	 and	 Pachube	 is	 no
different.	 Pachube	 uses	 four	 different	 HTTP	 request	 types	 for	 its	 operations:
GET,	 PUT,	 POST,	 and	DELETE.	The	 different	 requests	 are	 used	 on	 different
occasions:

GET:	This	request	method	is	used	to	retrieve	sensor	data	from	a	Pachube
server.	 With	 a	 GET	 request,	 the	 URI	 provided	 as	 part	 of	 the	 request
contains	both	the	identity	of	the	data	feed	and	the	client’s	data	format.	The
URI	contains	information	about	the	type	of	data	the	client	wants	to	receive,
the	identity	of	the	feed,	and	what	data	format	the	client	wants.	The	identity
of	the	data	feed	is	given	as	the	directory	part	of	the	HTTP	URI,	whereas	the
data	format	is	provided	as	a	file	extension.
PUT:	 This	 method	 is	 used	 when	 submitting	 new	 sensor	 data	 to	 the

Pachube	 server.	 Data	 to	 be	 submitted	 from	 the	 client	 to	 the	 server	 are
provided	in	the	data	portion	of	the	HTTP	request,	which	follows	the	HTTP
header.	As	with	the	GET	request,	the	feed	identity	and	the	data	format	are
included	in	the	HTTP	URI	that	is	sent	together	with	the	HTTP	request.
POST:	This	request	method	is	used	to	create	a	feed	and	to	create	a	new

data	 stream	within	 a	 previously	 established	 feed.	 The	 body	 of	 the	HTTP
request	 sent	 by	 the	 client	 contains	 the	 definition	 of	 the	 feed	 or	 the	 data
stream.	The	 definition	 is	 provided	 in	EEML	 format.	When	 establishing	 a



stream,	the	server	creates	a	stream	into	which	the	client	may	use	the	PUT
method	to	insert	data.
DELETE:	 This	 request	method	 is	 used	 to	 delete	 a	 data	 feed	 or	 a	 data

stream.	 The	 URI	 provided	 with	 the	 request	 contains	 the	 identifier	 of	 the
feed	 or	 stream.	 Once	 a	 feed	 or	 stream	 has	 been	 deleted,	 it	 cannot	 be
restored.

	
9.3.4	HTTP	Return	Codes
On	every	HTTP	request	the	server	responds	to	the	client	with	a	return	code.

The	 return	 code	 provides	 information	 about	 the	 request,	 such	 as	 if	 the	 request
was	 successful	 or	 erroneous.	 If	 there	 was	 an	 error,	 the	 return	 code	 contains
information	about	the	cause	of	the	error.	HTTP	return	codes	are	represented	as
three-digit	 numbers.	 The	 basic	 HTTP	 return	 codes	 are	 specified	 in	 the	 base
HTTP	specification	[83],	but	many	HTTP	servers	have	added	their	own	codes.

The	Pachube	API	uses	HTTP	return	codes	to	inform	the	client	about	the	state
of	 the	 request.	 The	 return	 codes	 are	 sent	 to	 successful	 transactions	 as	well	 as
failed	 ones.	 For	 failed	 transactions,	 the	 return	 code	 provides	 insight	 into	what
caused	the	problem,	and	the	HTTP	body	contains	an	XML	document	containing
an	error	message.

The	HTTP	return	codes	used	by	the	Pachube	API	are

•	 200	 OK:	 This	 code	 is	 returned	 when	 a	 request	 is	 completed
successfully.	Unlike	 the	 other	 return	 codes,	 this	 one	 does	 not	 indicate	 an
error.
•	 401	Not	 Authorized:	 This	 return	 code	 is	 sent	 in	 response	 to	 a	 client

request	 that	 needed	 authentication,	 but	 where	 the	 authentication	 key	 was
invalid	or	not	present.
•	403	Forbidden:	This	 error	 code	 is	 returned	when	 the	Pachube	 servers

did	 not	 execute	 the	 request.	 The	 reason	 the	 server	 did	 not	 respond	 to	 the
request	is	given	in	the	body	of	the	HTTP	reply.
•	 404	Not	Found:	The	 requested	URI	was	not	 found.	Either	 the	 feed	 it

requested	could	not	be	found,	or	the	method	that	the	client	invoked	did	not
exist.
•	422	Unprocessable	Entity:	This	return	code	is	sent	in	response	to	client

requests	 that	 contain	EEML	data.	The	 return	 code	 tells	 the	 client	 that	 the
EEML	contained	semantic	errors,	even	if	it	was	syntactically	correct.
•	 500	 Internal	 Server	 Error:	 This	 return	 code	 is	 sent	 when	 there	 is	 an

internal	error	with	the	Pachube	servers.



•	 503	 No	 Server	 Error:	 This	 return	 code	 is	 sent	 when	 there	 are	 no
Pachube	servers	available	to	complete	a	request.

	
9.3.5	Authentication	and	Security
To	 determine	 who	 can	 access	 what	 data,	 the	 Pachube	 system	 provides	 a

simple	 form	of	authentication.	The	purpose	of	 the	Pachube	authentication	 is	 to
identify	 the	 client	 to	 the	 server,	 so	 that	 the	 server	 knows	 if	 it	 should	 trust
requests	 from	 the	 client.	 Clients	 that	 are	 authenticated	 can	 insert	 data	 into	 a
stream,	 create	 new	 streams	 within	 a	 feed,	 and	 retrieve	 data	 from	 a	 stream.
Clients	that	cannot	be	authenticated	are	denied	access	to	the	data	by	the	Pachube
server.

The	Pachube	authentication	mechanism	is	simple.	With	each	HTTP	request
performed	by	the	client,	 the	client	provides	a	secret	key.	The	server	checks	the
secret	 key	 with	 the	 pre-registered	 key	 for	 the	 feed	 that	 the	 client	 is	 trying	 to
access.	If	the	key	supplied	by	the	client	matches	the	key	stored	on	the	server,	the
server	allows	the	client	access	to	the	data.

The	key	for	a	particular	data	feed	is	created	when	the	feed	is	created.	When
creating	the	feed,	the	client	needs	to	remember	the	key	that	was	created	as	part
of	the	feed	since	the	key	is	needed	for	future	access	to	the	feed.

The	key	 is	sent	as	part	of	each	HTTP	request	performed	by	 the	client.	The
key	can	either	be	sent	as	part	of	the	URI	or	as	part	of	the	HTTP	headers.	Since
the	 authentication	 key	 is	 transmitted	 in	 clear	 text	 in	 every	HTTP	 request,	 it	 is
trivial	 for	 third	parties	 to	 sniff	 the	key	as	 it	 traverses	 the	network.	The	 sniffed
key	can	later	be	used	not	only	to	gain	access	to	the	data,	but	to	delete	the	entire
data	feed,	including	the	data	history.

To	 make	 it	 harder	 for	 third	 parties	 to	 gain	 unauthorized	 access	 to	 the
authorization	 key,	 Pachube	 provides	 a	 way	 to	 encrypt	 the	 data	 stream	 using
transport	layer	security	through	the	Secure	Sockets	Layer	(SSL).	With	SSL,	the
entire	HTTP	transaction	is	protected	by	encryption	so	that	third	parties	sniffing
on	the	data	cannot	read	the	key	or	the	data	transaction.

9.3.6	Triggers
The	synchronous	API	provided	by	Pachube	works	well	for	applications	that

periodically	 submit	 data	 to	 Pachube	 and	 periodically	 poll	 the	 servers	 for	 new
data,	but	it	does	not	allow	fully	reactive	applications.	Reactive	applications	react
instantly	 to	 incoming	 data.	One	 example	 of	 a	 reactive	 application	 is	 a	 burglar
alarm	that	directly	alerts	the	owner	when	the	sensors	detect	a	break-in.

To	 allow	 reactive	 applications,	 Pachube	 provides	 a	 mechanism	 called	 a
trigger.	A	trigger	is	a	small	function	that	clients	can	upload	to	the	server.	Trigger



functions	 are	 extremely	 simple	 and	 are	 only	 able	 to	 perform	 a	 threshold
comparison	 on	 a	 data	 stream.	 If	 the	 data	 values	 in	 the	 data	 stream	 become
greater	than	or	less	than	the	threshold	provided	in	the	trigger	function,	the	trigger
is	executed.

When	 a	 trigger	 is	 executed,	 the	 Pachube	 server	 performs	 an	 HTTP	 GET
request	 to	 a	 preprogrammed	 URI.	 The	 URI,	 which	 is	 provided	 by	 the	 client
when	configuring	 the	 trigger,	points	 to	an	application	hosted	by	 the	user	on	an
external	 web	 server.	 The	 HTTP	 request	 sent	 by	 the	 Pachube	 server	 contains
information	 about	what	 feed	 and	 data	 stream	 caused	 the	 trigger	 to	 execute,	 as
well	 as	 the	 current	 data	 value	 from	 the	 data	 stream.	 This	 permits	 reactive
applications	 that	 do	 not	 need	 to	 poll	 the	 Pachube	 servers	 for	 data.	 After	 the
trigger,	the	application	may	use	the	synchronous	Pachube	API	to	retrieve	further
information	about	the	event	that	caused	the	trigger	to	execute.

Trigger	functions	can	be	represented	either	in	XML	or	in	JSON	notation.	An
example	trigger	is	shown	in	Figure	9.13.	This	trigger	function	is	programmed	to
react	when	 the	data	 stream	value	exceeds	20.0.	The	“trigger_type”	keyword	 is
set	to	“>”	(abbreviation	for	greater	than).	The	stream	ID	is	0,	the	environment	ID
is	 1233,	 and	 the	 user	 name	 is	 “Pachube”.	The	 threshold	 value	 is	 given	 by	 the
“threshold_value”	parameter	and	is	set	to	20.0.	The	“url”	field	contains	the	URI
that	 the	 Pachube	 server	will	 call	 when	 the	 trigger	 is	 executed.	 The	URI	must
correspond	 to	 the	 RESTful	 API	 of	 the	 reactive	 application.	 The	 “notified_at”
field	is	updated	with	the	date	and	time	the	trigger	was	last	executed.	Finally,	the
“id”	parameter	contains	the	identity	number	of	this	particular	trigger	function.

Figure	9.13	Pachube	trigger	function	that	triggers	when	the	sensor	data	are
greater	than	20.0,	expressed	in	JSON	format.
	

9.4	Conclusions
Web	 services	 provide	 an	 established	 mechanism	 for	 exchanging	 data

between	disparate	systems.	They	are	widely	used	in	general	purpose	IT	systems



and	the	integration	benefits	of	running	web	services	on	smart	objects	are	large.
With	 web	 services	 for	 smart	 objects,	 smart	 object	 systems	 can	 be	 readily
integrated	 in	 general	 purpose	 IT	 systems	 such	 as	 enterprise	 resource	 planning
systems	and	business	systems.

Web	services	can	be	implemented	using	the	REST	principles,	which	are	an
architectural	 model	 for	 distributed	 systems.	 The	 REST	 principles	 can	 be
efficiently	run	on	top	of	an	HTTP	connection,	making	it	simple	and	compelling
for	the	resource-constrained	smart	object	devices.

Although	the	performance	of	web	services	has	been	criticized	in	the	context
of	 large-scale	 server	 systems,	 recent	 studies	 show	 that	 web	 services	 can	 be
efficiently	 implemented	 on	 smart	 objects.	Web	 services	 can	 be	 run	 over	 low-
power	radio	networks	with	good	results.

Taken	together,	the	interoperability	and	integration	benefits	of	web	services
for	 smart	 objects,	 combined	 with	 their	 low	 resource	 requirements	 and	 good
performance,	make	them	a	compelling	choice	for	smart	object	systems.

	



Chapter	10	Connectivity	Models	for
Smart	Object	Networks

	

10.1	Introduction
We	conclude	the	first	part	of	the	book	with	a	chapter	exploring	various

connectivity	models	 for	 IP-enabled	 smart	 object	 networks	 and	 the	 use	 of
application	layer	overlay	networks.

There	 are	 several	 potential	 connectivity	 models	 for	 IP	 smart	 objects
ranging	 from	 the	 “true”	 Internet	 of	 Things	where	 smart	 object	 networks
are	connected	to	the	public	Internet	like	any	other	network	to	autonomous
smart	 object	 networks	 that	 are	 not	 connected	 to	 the	 public	 Internet.	 In
between	 there	 are	 a	 myriad	 of	 models	 introduced	 in	 this	 chapter.	 One
model	consists	of	building	an	application	layer	overlay	network	that	could
be	used	to	provide	enhanced	security,	increase	the	scalability	and	efficiency
of	 smart	 object	 networks	 thanks	 to	 in-network	 processing	 while	 still
preserving	the	end-to-end	principle	of	the	Internet.

Smart	object	networks	will	undoubtedly	play	a	central	role	in	our	day-
to-day	 life	 in	 the	 near	 future,	 and	 the	 plethora	 of	 innovative	 applications
that	rely	on	these	networks	(several	of	them	are	discussed	in	Part	III)	will
ineluctably	contribute	to	the	emergence	of	new	deployment	models	and	new
architectures	because	of	the	remarkable	flexibility	of	IP.

	
10.2	Autonomous	Smart	Object	Networks	Model
In	 this	 first	 deployment	model,	 as	 shown	 in	 Figure	 10.1,	 smart	 object

networks	 are	 completely	 autonomous	 and	 not	 connected	 to	 the	 public
Internet.	 Indeed,	 there	 are	 several	 use	 cases	 that	 do	 not	 require	 any
connectivity	with	the	public	Internet.	For	example,	most	of	the	Smart	Grid
applications	just	do	not	require	Internet	connectivity	for	most	use	cases.	As
discussed	 in	 detail	 in	 Chapter	 20,	 Smart	 Grid	 networks	 are	 made	 of	 a
number	of	networks	 including	power	generation	 to	 substation	automation
and	control,	 smart	metering,	and	building/home	energy	management.	The
power	 grid	 automation	 does	 not	 require	 any	 connectivity	 to	 the	 public
Internet,	 nor	 do	 the	 smart	 meter	 networks	 in	 most	 deployment	 models.
Utilities	 may	 not	 want	 their	 network	 to	 see	 (at	 least	 some	 part	 of)	 their



networks	connected	to	the	public	Internet.	On	the	other	hand,	connection	to
the	 Internet	may	be	 required	 for	 the	power	 grid	 to	 send	dynamic	pricing
and	 load	 shedding	 information	 for	 home	 energy	 management	 to	 home
energy	controllers,	which	could	either	be	done	via	the	smart	meter	network
or	the	public	Internet.

Figure	10.1	Autonomous	smart	object	networks.
	

In	other	cases,	such	as	industrial	automation	(e.g.,	nuclear	power	plant),
the	smart	object	network	is	in	most	cases	completely	disconnected	from	the
public	Internet.	These	networks	use	the	IP	protocol	suite	(they	are	IP	smart
object	networks)	but	with	no	connection	to	the	public	Internet.

The	lack	of	Internet	connectivity	leads	to	the	question:	Is	IPv6	required
in	 autonomous	 networks	 that	 do	 not	 require	 global	 addresses?	 The	 large
address	space	provided	by	IPv6	is	still	a	must	in	most	cases,	even	if	they	are
not	used	for	global	connectivity.

	
10.3	The	Internet	of	Things
At	 the	 other	 extreme	 lies	 the	 Internet	 of	 Things,	 where	 smart	 object

networks	truly	belong	to	the	Internet	just	like	any	other	network.	There	are
applications	 that	 will	 be	 no	 different	 than	 e-mail	 and	 web	 services	 and
should	be	accessible	by	the	Internet	community.	Any	Internet	user	will	have
access	to	the	information	provided	by	smart	objects	such	as	telemetry	either



directly	accessing	the	device	or	by	means	of	intermediate	servers.	There	are
already	 very	 simple	 forms	 of	 Internet	 access	 to	 smart	 objects	 and	 the
number	of	these	applications	will	continue	to	grow.

The	connectivity	model	will	likely	have	intermediate	servers	as	shown	in
Figure	 10.2.	 The	 servers	 will	 collect	 data	 from	 smart	 objects	 and	 the
Internet	 will	 connect	 to	 these	 servers,	 as	 opposed	 to	 the	 smart	 object,	 to
preserve	scarce	resources	in	smart	object	networks	and	increase	scalability.

Figure	10.2	The	Internet	of	Things.
	

	
10.4	The	Extended	Internet
A	 myriad	 of	 new	 services	 and	 applications	 will	 be	 used	 in	 the	 near

future	 to	 extend	 the	 Internet	 to	 the	 physical	 world.	 This	 is	 sometimes
referred	to	as	the	“Physical	Internet.”

Smart	 Cities	 will	 soon	 provide	 useful	 information	 to	 their	 citizens	 to
improve	their	quality	of	life	and	help	them	make	important	daily	decisions:
environmental	 data	 such	 as	 air	 quality,	 real-time	 transportation
information,	emergency	assistance,	risk	of	attacks,	and	so	forth.	All	of	this
valuable	 information	 can	 be	 provided	 to	 citizens	 via	 the	 public	 Internet.
Other	applications	will	provide	data	exploited	by	city	departments	to	more
efficiently	manage	the	city	such	as	street	light	management,	water/gas	leak



detection,	or	traffic	management.	These	data	will	be	not	be	made	available
to	citizens	and	may	or	may	not	go	through	the	Internet.

The	 term	 “Extended	 Internet”	 refers	 to	 intermediate	 deployment
models	 between	 the	 Internet	 of	 Things	 and	 “autonomous	 smart	 object
networks”:	smart	object	networks	are	partially	or	completely	connected	to
the	 Internet	 with	 the	 appropriate	 security	 protection.	 The	 notion	 of
application	 layer	 overlay	 is	 getting	 some	 traction	 and	 is	 discussed	 in	 the
next	 section.	 The	 basic	 idea	 consists	 of	 introducing	 in-band	 (in-network)
data	processing	in	the	network	while	still	preserving	the	notion	of	an	end-to-
end	principle	between	application	servers.

Let’s	consider	Figure	10.3.	The	core	IP	infrastructure	supports	a	myriad
of	applications	and	interconnects	hundreds	of	thousands	or	even	millions	of
smart	object	networks	 that	are	 characterized	by	 their	 constrained	nature.
All	of	these	networks	will	make	use	of	the	IP	protocol	suite	and	the	network
may	 be	 connected	 to	 the	 Internet	 via	 a	 firewall	 in	 charge	 of	 securely
controlling	access	to	private	IP	networks	from	the	public	Internet.

Figure	10.3	The	Extended	Internet.
	

In	 other	 words,	 such	 architecture	 prolongs	 the	 current	 Internet	 (thus
the	 reference	 to	 the	 Extended	 Internet)	 just	 enough	 to	 provide	 access	 to



smart	objects	 that	used	 to	be	 isolated	 from	the	 Internet.	Note	 that	at	best
such	 networks	 used	 to	 be	 reachable	 from	 the	 Internet	 via	 complex	 and
difficult	to	manage	multiprotocol	translation	gateways:	they	are	now	using
IP	end	to	end.

10.4.1	The	Role	of	Proxy	Engines	and	the	Application	Overlay	Networks
As	 shown	 in	 Figure	 10.3,	 these	 architectures	 may	 require	 the	 use	 of

“proxy	 engines.”	 A	 proxy	 engine	 is	 a	 router/computer	 capable	 of
performing	 a	 number	 of	 application-level	 processing	 tasks	 to	 improve	 the
scalability	of	the	Extended	Internet.

The	 use	 of	 multiprotocol	 translation	 gateways	 has	 been	 discussed	 in
detail	 in	 Chapter	 3,	 and	 a	 number	 of	 arguments	 have	 been	 listed	 to
illustrate	why	using	these	gateways	is	highly	undesirable	compared	to	a	true
IP	end-to-end	architecture.	The	Extended	Internet	model	 is	a	true	IP	end-
to-end	 IP	 architecture	 with	 no	 protocol	 translation.	 If	 an	 application
requires	sending	information	to	an	actuator	or	receiving	data	from	a	sensor
within	 the	Low-power	and	Lossy	Network	 (LLN),	 the	 IPv6	address	 is	not
converted	along	the	data	path.	Furthermore,	since	IP	is	used	end	to	end,	the
associated	semantic	is	also	preserved	in	support	of	Quality	of	Service	(QoS),
management,	 routing,	 security,	 and	 so	 forth.	 In	 other	 words,	 IP	 is	 truly
used	end	to	end.

But	LLNs	 are	 not	 exactly	 comparable	 to	 “classic”	 IP	 networks	 due	 to
their	constrained	nature	and	their	 large	scale	with	potentially	hundreds	of
millions	of	 connected	 IP	 smart	 objects.	Thus,	 it	may	be	desirable	 in	 some
situations	to	introduce	proxy	engines	within	LLNs	to	perform	various	tasks
such	as	data	collection	and	aggregation	or	even	in-network	data	processing.

Consider	 the	 example	 of	 a	 Smart	 City	 equipped	 with	 hundreds	 of
thousands	 of	 sensors	 and	 actuators	 to	 control	 environmental	 factors.	One
model	may	 consist	 of	 collecting	 all	 data	 in	 a	 data	 center	 for	 further	 data
mining	and	processing.	Data	analysis	could	then	trigger	a	set	of	actions	and
commands	 that	would	be	sent	 to	actuators.	Although	 fairly	 simple,	 such	a
model	is	suboptimal	in	many	respects.	First,	the	data	flows	and	data	traffic
would	 significantly	 increase,	 as	 traffic	 gets	 closer	 to	 the	 sink/data	 center,
which	 may	 affect	 the	 overall	 lifetime	 of	 the	 network.	 Traffic	 congestion
would	degrade	the	QoS,	but	even	more	important,	it	would	increase	energy
consumption	 in	 the	 network,	 which	 is	 highly	 undesirable	 for	 battery-
operated	nodes.	This	 is	 illustrated	 in	Chapter	17	where	 it	 is	observed	that
the	traffic	significantly	increases	closer	to	the	sink	thus	leading	to	a	number
of	challenges	to	solve.	This	is	due	to	the	multipoint-to-point	nature	of	most
(not	all)	of	the	flows	in	LLNs.	Clearly	such	a	simple	and	naïve	model	is	not



likely	to	scale	and	provide	the	level	of	required	efficiency.
On	 the	 other	 hand,	 in-band	 data	 processing	 would	 help	 increase	 the

overall	scalability	of	the	network	by	an	order	of	magnitude.	The	idea	of	in-
band	 data	 processing	 consists	 of	 introducing	 data	 processing	 modules
(proxy	 engines)	 in	 the	 network	 that	 interpret	 the	 data	 and	 potentially
trigger	 local	 actions.	 In	 other	 words,	 distribute	 the	 “intelligence”	 in	 the
network.	The	network	of	proxy	engines	 then	 forms	an	application	overlay
network	embedded	in	smart	object	networks	and	in	the	Internet.

The	 degree	 of	 distribution	 would	 be	 determined	 by	 the	 application
characteristics	 and	 requirements.	 Figure	 10.3	 shows	 an	 example	 of	 how
such	proxy	engines	could	be	used.

In	this	model,	traffic	flows	are	localized	and	processed	by	the	network.
Data	processing	engines	are	then	responsible	for	interpreting	the	data	and
trigger	a	set	of	actions.	For	example,	in	its	simplest	form,	the	proxy	engine
could	 simply	detect	 information	duplicates	 to	 avoid	unnecessary	 traffic	 to
cross	the	network,	but	more	complex	tasks	could	also	be	performed	such	as
data	 fusion,	 computing	 correlated	 data,	 performing	 data	 storage,	 or	 even
triggering	 local	actions	on	smart	objects	according	to	policy	rules	engines.
This	mode	of	operation	is	clearly	in	contrast	with	a	purely	centralized	data
model	management	that	usually	poorly	scales	and	would	be	quite	inefficient
regarding	network	traffic,	response	times,	and	QoS.

A	 proxy	 engine	 is	 not	 necessarily	 an	 additional	 “box”	 in	 the	 network,
but	 refers	 to	 network	 functionality.	Modern	 routers	 already	 support	 this
functionality.	In	addition	to	performing	a	myriad	of	networking	tasks,	 the
router	 hosts	 an	 application	 that	 performs	 in-band	 data	 processing.	 The
router	is	thus	one	of	the	elements	of	the	overlay	application	network.

Several	 projects	 are	 exploring	 the	 ability	 to	 dynamically	 configure	 the
overlay	network	according	to	traffic	observations.	Nodes	capable	of	hosting
such	applications	could	then	join	the	network	thus	enabling	in-network	data
processing	where	appropriate.

Furthermore,	 in	 addition	 to	 increasing	 network	 scalability	 and	 the
overall	 network	 efficiency,	 the	 overlay	 network	 would	 help	 improve	 the
application	 responsiveness.	 There	 are	 several	 applications	 that	 require
immediate	actions	should	an	emergency	be	detected	in	the	network.	Instead
of	relaying	the	information	up	to	the	data	center,	a	local	proxy	engine	could
trigger	 the	 appropriate	 action	 closer	 to	 the	 actuator	 reducing	 the	 overall
reaction	delays.

Finally,	 the	use	of	 in-band	processing	 could	be	 extremely	useful	 in	 the
presence	 of	 sleeping	 nodes.	 When	 the	 node	 is	 battery-operated,	 it	 is



significantly	more	 efficient	 not	 to	 wake	 up	 a	 node	 each	 time	 a	 request	 is
issued	by	a	central	application.	The	proxy	engine	can	then	be	used	to	cache
requests	and	relay	them	when	appropriate.

Does	 that	 “break”	 the	 end-to-end	 principle?	Not	 at	 all.	 Proxy	 engines
allow	 building	 overlay	 application	 layers	 to	 perform	 in-band	 network
processing.	 In	 a	 sense,	 web	 caching	 is	 already	 a	 primitive	 form	 of
application	overlay	networks.	In	this	model	the	network	does	not	interfere
with	traffic	flows	between	end	points.	End	points	are	simply	moved	within
the	network	to	increase	its	scalability.	Manipulating	data	or	adding	complex
states	 in	 the	network	 in	between	 the	hosts	would	endanger	 the	end-to-end
principle.	In	this	model,	hosts	communicate	with	other	hosts	(proxy	engines)
that	communicate	with	data	centers.
	

	
10.5	Conclusions
In	 this	 chapter	 several	 deployment	 models	 for	 smart	 object	 networks

ranging	 from	 autonomous	 networks	 to	 the	 Internet	 of	 Things	 were
explored.	 Models	 such	 as	 the	 Extended	 Internet	 involving	 (dynamic)
application	 overlay	 networks	 will	 likely	 emerge	 allowing	 data	 processing
and	 local	 action	 in	 the	 network	 to	 further	 increase	 the	 network	 and
application	efficiency	as	opposed	to	a	naïve	less	efficient	centralized	model
unlikely	to	provide	the	required	level	of	scalability.

	



Chapter	11	Smart	Object	Hardware
and	Software

	

Smart	objects	are	defined	both	by	 their	physical	appearance	 (the	hardware)
and	 by	 their	 behavior	 (the	 software).	 In	 this	 chapter	 we	 discuss	 the	 typical
hardware	 design	 of	 a	 smart	 object,	 the	 various	 ways	 that	 the	 software	 of	 the
smart	objects	typically	is	designed,	and	the	implications	of	software	mechanisms
on	the	power	consumption	of	the	smart	objects.

11.1	Hardware
Smart	 objects	 contain	 a	 piece	 of	 hardware,	 which	 is	 a	 set	 of	 electrical

circuits.	 The	 hardware	 consists	 of	 four	main	 components,	 as	 shown	 in	 Figure
11.1:

•	Communication	device:	This	gives	the	smart	object	its	communication
capabilities.	 It	 is	 typically	 either	 a	 radio	 transceiver	with	 an	 antenna	 or	 a
wired	connection.
•	Microcontroller:	This	gives	 the	smart	object	 its	behavior.	 It	 is	a	small

microprocessor	that	runs	the	software	of	the	smart	object.
•	Set	of	sensors	or	actuators:	These	give	the	smart	object	a	way	to	interact

with	the	physical	world.
•	 Power	 source:	 This	 is	 needed	 because	 the	 smart	 object	 contains

electrical	circuits.

	



Figure	 11.1	 The	 hardware	 architecture	 of	 two	 smart	 objects:	 a	 radio-
equipped,	 wireless	 smart	 object	 (left)	 and	 a	 smart	 object	 with	 wired
communication	(right).
	

The	 communication	 device	 gives	 the	 smart	 object	 the	 ability	 to
communicate.	The	microcontroller	runs	the	software	of	the	smart	object	and	also
is	the	central	point	that	connects	the	communication	device	and	the	sensors.	The
microcontrollers	used	in	smart	objects	are	similar	to	the	microprocessors	used	in
general	purpose	computers,	but	smaller.

A	power	source	is	needed	to	provide	the	electrical	circuitry	with	power.	The
most	 common	power	 source	 is	 a	 battery,	 but	 there	 are	 other	 examples	 as	well
such	as	piezoelectric	power	sources,	that	provide	power	when	a	physical	force	is
applied,	or	small	solar	cells,	that	provide	power	when	light	shines	on	them.	The
power	source	provides	power	 for	all	components	and	 is	 therefore	connected	 to
all	of	them.

The	sensors	and	actuators	give	 the	smart	objects	a	way	 to	 interact	with	 the
physical	world.	 The	 sensors	 sense	 the	 environment	 and	 the	 actuators	 affect	 it.
The	canonical	 example	of	 a	 sensor	 is	 a	 temperature	 sensor,	 but	more	 complex
sensors	 also	 exist	 such	 as	 cameras	 or	 devices	 for	 performing	 range-
measurements	 using	 ultrasound.	 Like	 the	 sensors,	 the	 actuators	 can	 be	 very
different	 ranging	 from	 a	 small	 LED	 indicator	 to	 relays	 for	 switching	 a	 high-
voltage	power	source	on	and	off.

Figure	 11.2	 highlights	 the	 components	 of	 a	 typical	 hardware	 platform,	 the
MicaZ	 prototype	 board	 from	 Crossbow	 Technology.	 It	 shows	 the
microcontroller,	 the	 power	 source,	 the	 radio	 transceiver,	 and	 an	 extension
connector	 for	 connecting	 sensors	 or	 actuators.	 The	 power	 source	 is	 a	 battery
pack	consisting	of	two	AAA	cell	batteries.	The	radio	transceiver	is	mounted	on
the	 flip	 side	 of	 the	 board	 and	 cannot	 be	 seen.	 The	 system	 uses	 an	 external
antenna	 attached	 to	 the	 side	 of	 the	 board.	 The	 board	 does	 not	 contain	 any
sensors.	 Instead,	 sensors	 or	 actuators	 can	be	 attached	 to	 the	 board	 through	 the
extension	connector.	This	allows	 the	board	 to	be	used	as	a	prototyping	system
for	a	wide	range	of	different	applications.



Figure	11.2	A	MicaZ	prototype	board	with	a	microcontroller,	power	source,
communication	device,	and	sensor	connectors.

Photo	courtesy	of	Crossbow	Technology.
	

The	 previous	 example	 is	 a	 prototype	 board	 used	when	 experimenting	with
smart	 object	 systems.	 For	 final	 products,	 the	 smart	 object	 hardware	 usually	 is
tightly	integrated	with	the	product,	making	the	hardware	significantly	smaller.

We	 now	 turn	 our	 attention	 to	 the	 different	 components	 that	 make	 up	 the
hardware	of	a	smart	object:	 the	communication	device,	 the	microcontroller,	 the
sensors	or	actuators,	and	the	power	source.

11.1.1	Communication	Device
The	 communication	 device	 gives	 the	 smart	 object	 its	 communication

capabilities.	For	wireless	smart	objects,	the	communication	device	typically	is	a
radio	 transceiver.	 The	 word	 transceiver	 is	 a	 portmanteau	 of	 the	 two	 words
transmitted	 and	 receiver.	As	 the	 name	 indicates,	 a	 radio	 transceiver	 is	 able	 to
function	both	as	a	transmitter	and	receiver	of	radio	messages.	For	a	wired	smart
object,	the	communication	device	connects	to	a	wired	network	connection	such
as	Ethernet	or	Powerline	communication	(PLC).	In	this	section,	the	focus	is	on
radio	transceivers,	and	the	discussion	of	wired	PLC	connections	can	be	found	in
Chapter	12.

Different	 types	 of	 radio	 transceivers	 have	 different	 amounts	 of	 built-in
processing	 capabilities.	 The	 simplest	 radio	 transceivers	 only	 send	 and	 receive
individual	 bits	 of	 information	 into	 the	 air,	 whereas	 more	 capable	 transceivers
package	 the	 information	 into	 packets,	 form	 headers,	 and	 even	 encrypt	 and



decrypt	the	data	using	secure	encryption	methods.
Of	the	hardware	components	of	a	smart	object,	the	radio	is	usually	the	most

power-consuming	 component.	 Compared	 to	 the	 power	 consumption	 of	 the
microcontroller	or	the	sensors,	the	radio	transceiver	often	uses	ten	times	as	much
power.	This	is	due	to	the	processing	required	for	modulating	and	demodulating
the	 radio	 signal.	 For	 low-power	 radios,	 only	 a	 small	 portion	 of	 the	 power
consumption	is	used	to	send	the	radio	signal	into	the	air.	The	conclusion	is	that
listening	is	as	power	consuming	as	sending.

Because	the	radio	is	the	most	power-consuming	component,	and	because	idle
listening	 is	 as	 expensive	 as	 sending	 data,	 the	 radio	 must	 be	 switched	 off	 to
conserve	 power.	 When	 the	 radio	 is	 switched	 off,	 however,	 it	 is	 not	 able	 to
receive	any	data.	To	create	multi-hop	networks,	 the	radios	of	all	devices	in	the
network	must	somehow	be	synchronized	so	 they	are	able	 to	receive	data	while
conserving	 power.	 in	 Section	 11.3,	 we	 look	 into	 a	 number	 of	 duty	 cycling
mechanisms	that	keep	the	radio	off	for	most	of	the	time,	while	still	allowing	data
to	be	exchanged	between	the	nodes.

Figure	11.3	is	an	example	of	a	Radiocrafts	single-chip	radio	transceiver	for
smart	 objects.	 The	 Radiocrafts	 chip	 contains	 both	 a	 radio	 transceiver	 and	 a
microcontroller.	The	radio	 transceiver,	manufactured	by	Texas	Instruments	and
called	CC2430,	is	compatible	with	the	IEEE	802.15.4	radio	standard	and	capable
of	transmitting	and	receiving	individual	packets,	rather	than	individual	bits.	The
bit	rate	of	the	radio	transceiver	is	250	Kbits/s.

Figure	 11.3	 Texas	 Instruments	 CC2430	 single-chip	 radio	 transceiver	 with
integrated	 8051	 microcontroller	 and	 onboard	 antenna	 manufactured	 by
Radiocrafts.	The	size	of	the	board	is	1.2	×	1.0	cm2.

Photos	courtesy	of	Radiocrafts.
	



	
11.1.2	Microcontroller
The	 microcontroller	 gives	 smart	 objects	 their	 intelligence.	 It	 runs	 the

software	of	the	smart	object	and	is	also	responsible	for	connecting	the	radio	with
the	 sensors	 and	 actuators.	 A	microcontroller	 is	 a	microprocessor	 with	 built-in
memory,	timers,	and	hardware	for	connecting	external	devices	such	as	sensors,
actuators,	 and	 radio	 transceivers.	 The	 microcontroller	 looks	 like	 a	 traditional
microchip	with	a	plastic	casing	and	connectors	of	metal	as	seen	in	Figure	11.4.

Figure	11.4	An	Atmel	ATTINY	2313	smart	object	microcontroller	with	20
pins.	 The	 ATTINY	 2313	 has	 2	 kB	 of	 ROM	 and	 128	 bytes	 of	 RAM.	 This
represents	the	low	end	of	smart	object	microcontrollers.
	

Microcontrollers	 are	 widely	 used	 and	 are	 the	 most	 common	 type	 of
microprocessor.	Of	the	total	number	of	microprocessors	sold	in	2002,	over	90%
had	significantly	smaller	memory	sizes	than	a	modern	PC	[242].	Over	50%	of	all
microprocessors	were	8-bit	processors,	which	 typically	can	handle	a	maximum
of	65536	bytes	of	memory.

Due	to	cost	and	power	constraints,	the	microcontrollers	used	in	smart	objects
are	 much	 smaller	 than	 the	 microprocessors	 used	 in	 general	 purpose	 PCs.
Typically,	a	smart	object	microcontroller	has	a	few	kilobytes	of	on-chip	memory
and	is	run	at	a	clock	speed	of	a	few	megahertz.	In	comparison,	modern	PCs	have
several	gigabytes	of	memory	and	run	at	several	gigahertz.	Table	11.1	shows	four
common	 microcontrollers	 used	 in	 smart	 objects:	 the	 MSP430	 from	 Texas
Instruments,	 the	AVR	ATMega128	 from	Atmel,	 the	 8051	 from	 Intel,	 and	 the
PIC18	from	Microchip.

Table	11.1	Microcontrollers	Used	in	Smart	Objects



	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

Name Manufacturer RAM
(kB)

ROM
(kB)

Current	consumption
(active/sleep),	mA

MSP430xF168 TexasInstruments 10 48 2/0.001

AVR
ATmega128 Atmel 8 128 8/0.02

8051 Intel 0.5 32 30/0.005
PIC18 Microchip 4 128 2.2/0.001
	
Note:	Each	manufacturer	has	several	models	of	each	device.	This	table	lists

only	one	example	from	each	manufacturer.
The	prices	for	the	microcontrollers	in	Table	11.1	vary	both	with	the	amount

of	memory,	I/O	ports,	and	other	hardware	options	as	well	as	the	quantity	of	the
chips.	 Although	 the	 price	 may	 be	 over	 $10	 for	 individual	 components	 when
bought	as	single	units,	 for	bulk	sale	of	10,000	units	or	more,	 the	price	 is	often
significantly	less.

Microcontrollers	 have	 two	 types	 of	 memory:	 Read-Only	 Memory	 (ROM)
and	Random	Access	Memory	(RAM).	ROM	is	used	 to	store	 the	program	code
that	encodes	the	behavior	of	the	device	and	RAM	is	used	for	temporary	data	the
software	 needs	 to	 do	 its	 task.	 Temporary	 data	 include	 storage	 for	 program
variables	and	buffer	memory	for	handling	radio	traffic.	The	content	of	the	ROM
is	 burned	 into	 the	 device	when	 it	 is	manufactured	 and	 is	 typically	 not	 altered
after	the	device	has	been	deployed.	Nevertheless,	most	modern	microcontrollers
provide	a	mechanism	for	rewriting	the	ROM,	which	is	useful	for	in-field	updates
of	software	after	the	devices	have	been	deployed.

The	purpose	of	the	microcontroller	is	to	execute	its	software.	The	software	is
stored	 in	 the	 ROM	 of	 the	 microcontroller	 and	 is	 typically	 stored	 on	 the
microcontroller	by	the	manufacturer	when	the	device	is	manufactured.

In	 addition	 to	memory	 for	 storing	 program	 code	 and	 temporary	 variables,
microcontrollers	 contain	 a	 set	 of	 timers	 and	 mechanisms	 for	 interacting	 with
external	 devices	 such	 as	 communication	 devices,	 sensors,	 and	 actuators.	 The
timers	 can	 be	 freely	 used	 by	 the	 software	 running	 on	 the	 microcontroller.



External	devices	are	physically	connected	to	the	pins	of	the	microcontroller.	The
software	 communicates	 with	 the	 devices	 using	 mechanisms	 provided	 by	 the
microcontroller,	 typically	 in	 the	 form	 of	 a	 serial	 port	 or	 a	 serial	 bus.	 Most
microcontrollers	 provide	 a	 so-called	 Universal	 Synchronous/Asynchronous
Receiver/Transmitter	 (USART)	 for	 communication	 with	 serial	 ports.	 Some
USARTs	can	be	configured	to	work	as	a	Serial	Peripheral	Interface	(SPI)	bus	for
communicating	with	sensors	and	actuators.
	
11.1.3	Sensors	and	Actuators
Smart	 objects	 interact	 with	 the	 physical	 environment	 in	 which	 they	 are

deployed	 by	 using	 sensors	 and	 actuators.	 Sensors	 are	 used	 to	 sense	 the
environment	and	actuators	are	used	to	affect	or	change	the	environment.

The	sensors	and	actuators	attached	to	a	smart	object	range	from	very	simple
to	 very	 complex.	 A	 smart	 object	 that	 measures	 the	 temperature	 needs	 only	 a
simple	 temperature	 sensor.	Conversely,	 a	 smart	object	used	 for	 surveillance	or
detection	of	people	crossing	a	 fence	may	need	a	 set	of	 sensors	 that	 include	an
ultrasonic	range	device	or	a	camera.

Many	 sensors	 are	 simple,	 in	 both	 form	 and	 function.	 For	 example,	 most
temperature	 sensors	are	a	variable	 resistor	where	 the	 resistance	varies	with	 the
surrounding	 temperature.	 By	 applying	 a	 current	 over	 the	 temperature	 resistor,
and	by	measuring	the	resulting	voltage,	the	temperature	can	be	measured.	More
precise	temperature	sensors	use	similar,	but	more	complex,	ways	of	determining
the	temperature.

11.1.4	Power	Sources
A	 smart	 object	 is	 driven	 by	 electronics,	 and	 electronics	 need	 power.

Therefore,	every	smart	object	needs	a	power	source.	Today,	 the	most	common
power	source	is	a	battery,	but	there	are	several	other	possibilities	for	power,	such
as	 solar	 cells,	 piezoelectricity,	 radio-transmitted	 energy,	 and	 other	 forms	 of
power	 scavenging.	 Smart	 objects	 located	 close	 to	 a	 power	 grid	 can	 also	 use
power	 that	 is	 readily	 available.	These	 are,	 however,	 the	 exception	 and	 not	 the
norm.

Batteries	are	the	most	common	power	source	for	today’s	smart	objects.	They
come	 in	many	 forms	 and	 shapes.	 For	 smart	 objects,	 size	 typically	 is	 an	 issue,
which	limits	both	the	amount	of	energy	that	can	be	stored	in	the	battery,	as	well
as	 the	 options	 for	 battery	 types.	 Lithium	 cell	 batteries	 are	 currently	 the	 most
common.	With	low-power	hardware	and	proper	energy-management	software,	a
smart	object	can	have	a	lifetime	of	years	on	standard	lithium	cell	batteries.

Rechargeable	batteries,	which	are	popular	in	many	forms	of	electronics	such
as	 cell	 phones	 and	 laptop	 computers,	 are	 not	 particularly	 well-suited	 to	 smart



objects.	Unlike	cell	phones	and	laptops,	which	are	human-operated,	most	smart
objects	 are	 designed	 to	 operate	 without	 human	 control	 or	 human	 supervision.
Furthermore,	 many	 smart	 objects	 are	 located	 in	 difficult	 to	 reach	 places,	 and
many	are	embedded	in	other	objects.	Therefore,	in	most	cases	it	is	impractical	to
recharge	 the	 batteries	 used	 in	 smart	 objects.	Nevertheless,	 a	 smart	 object	may
use	rechargeable	battery	technology	with	some	other	form	of	energy	scavenging
to	charge	the	batteries	without	a	human	in	the	loop.

Instead	 of	 using	 rechargeable	 batteries,	 battery-equipped	 smart	 objects	 are
typically	designed	so	a	single	battery	should	last	the	entire	lifetime	of	the	smart
object.	 By	 using	 low-power	 electronics	 and	 power-saving	 software,	 a	 smart
object	can	have	a	 lifetime	of	many	years	on	a	single	standard	AA-size	battery.
When	the	battery	 is	depleted,	 the	smart	object	 is	simply	replaced	with	another,
newer,	version	of	the	system.	In	many	cases,	the	expected	lifetime	of	the	battery
may	be	longer	than	the	expected	lifetime	of	the	system	in	which	the	smart	object
is	used.

But	 batteries	 are	 not	 without	 problems.	 They	 are	 difficult	 to	 recycle	 and
therefore	 are	 a	 burden	 to	 the	 environment.	 For	 large	 smart	 object	 systems,
replacing	depleted	nodes	may	 incur	 large	costs.	Batteries	may	 fail	prematurely
due	to	unexpected	conditions	such	as	moisture	or	battery	leakage.	Due	to	these
challenges,	other	power	sources	for	smart	objects	are	being	explored.

Power	 scavenging	 is	 a	 technique	 that	 harvests	 power	 from	 the	 physical
environment.	Solar	cells	represent	the	most	common	form	of	power	scavenging.
They	harvest	 their	 power	 from	 the	 ambient	 and	direct	 light	 that	 hits	 the	 smart
object.	Piezoelectricity	is	another	source	for	power	scavenging.	For	this	source,
physical	movement	is	converted	into	energy	used	to	power	the	smart	object.	For
example,	EnOcean’s	 smart	 light	 switches	 are	 completely	 driven	 by	 the	 energy
harvested	from	the	act	of	pressing	the	light	switch.

The	 energy	 in	 radio	 waves	 can	 also	 be	 used	 as	 a	 power	 source.	 A	 well-
known	example	of	this	are	Radio	Frequency	Identification	(RFID)	tags	that	use
radio	energy	to	power	a	radio	transceiver	for	a	short	while.	The	energy	is	emitted
by	an	RFID	reader	device,	which	must	be	powered	by	an	external	power	source.
The	 reader	 transmits	 a	directed	 radio	beam	with	 enough	power	 to	 allow	RFID
tags	to	reflect	the	radio	signal.

The	RFID-style	radio	power	technology	can	also	be	used	to	provide	power	to
smart	objects.	The	Intel	WISP	mote	 is	a	smart	object	platform	that	uses	power
from	a	nearby	RFID	reader	to	run	a	set	of	sensors,	a	microcontroller,	and	a	radio
transceiver	[26].	The	PowerCast	RF-powered	modules,	as	shown	in	Figure	11.5,
are	 single-chip	 modules	 that	 provide	 electrical	 power	 harvested	 from	 radio
signals.	The	module	requires	an	external	antenna	that	picks	up	the	radio	signals.



A	transmitter	module	transmits	the	radio	signals	that	power	the	module.

Figure	 11.5	 PowerCast	 P2100	module	 converts	 radio	 energy	 from	 the	 air
into	electricity	that	powers	an	electrical	circuit.	The	module	requires	an	external
antenna	to	pick	up	the	radio	signals	(not	shown).

Photo	courtesy	of	PowerCast	Corporation.
	

A	comparison	of	 the	different	power	sources	 is	given	in	Table	11.2.	It	 lists
the	maximum	 current	 draw	 and	 the	 typical	 charge	 capacity	 of	 a	 set	 of	 power
sources	 for	 smart	 objects.	The	 charge	 capacity	 determines	 how	 long	 the	 smart
object	 can	 last	 with	 a	 given	 average	 current	 draw.	 A	 device	 with	 an	 average
current	draw	of	0.1	mA	can	live	for	30,000	hours,	or	about	3½	years,	on	a	charge
capacity	of	3000	mAh.	With	3	volts,	a	current	draw	of	0.1	mA	equals	a	power
consumption	of	0.3	mW.

Table	 11.2	 Different	 Power	 Sources	 for	 Smart	 Objects,	 Their	 Maximum
Current	Draw,	and	the	Amount	of	Charge	They	Store
	
	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

Power	source Typical	maximum	current	(mA) Typical	charge	(mAh)
CR2032	button	cell 20 200
AA	alkaline	battery 20 3000
Solar	cell 40 Limitless
RF	power 25 Limitless
	
Regardless	 of	 the	 power	 source	 chosen	 for	 the	 smart	 object,	 power	 is	 a

constrained	 resource.	For	battery-powered	 smart	objects,	 the	batteries	 typically
cannot	 be	 recharged.	 For	 solar-powered	 smart	 objects,	 and	 those	 powered	 by
power	scavenging,	energy	is	difficult	to	store	for	extended	periods	of	time.	For
this	 reason,	 both	 the	 hardware	 and	 the	 software	 of	 the	 smart	 object	 must	 be
designed	to	meet	stringent	power	requirements.

In	 Sections	 11.2	 and	 11.3,	 we	 look	 at	 software	 techniques	 to	 reduce	 the
power	consumption	of	smart	objects.

11.1.5	Outlook:	Systems	on	a	Chip,	Printed	Electronics,	and	Claytronics
The	hardware	 technology	used	in	 today’s	smart	objects	may	not	be	used	in



the	 future.	 There	 are	 several	 novel	 technologies	 that	 can	 be	 used	 for	 smart
objects	such	as	system-on-a-chip	techniques,	printed	circuits,	and	even	science-
fiction-like	technology	such	as	Claytronics.

Systems	on	a	chip	are	electrical	circuits	that	provide	more	than	one	function,
integrated	as	single	chips.	For	smart	objects,	systems	on	a	chip	that	combine	the
radio	transceiver,	the	microcontroller,	and	a	few	sensors	on	a	single	chip	have	a
promising	future.	Integrating	such	a	system	on	a	chip	with	an	antenna	on	a	single
board,	the	resulting	hardware	is	easily	added	onto	ordinary	objects	and	products
turning	 them	 into	 smart	 objects.	 Traditionally,	 the	 engineering	 of	 the	 antenna
onto	 a	 board	 is	 a	 problem	due	 to	 the	 sophisticated	 planning	 of	 the	 board	 area
required	 and	 because	 legal	 regulations	 of	 the	 radio	 spectrum	 have	 required
hardware	designs	to	be	certified	before	use.	By	integrating	a	single-chip	solution
with	 an	 antenna,	 the	 design	 and	 certification	 procedure	 only	 needs	 to	 be	 done
once	simplifying	the	process.

The	 Texas	 Instruments	 CC2430	 is	 an	 example	 of	 a	 system	 on	 a	 chip	 for
smart	objects	 (Figure	11.3).	The	CC2430	combines	a	 radio	 transceiver	with	an
8051	 microcontroller	 on	 a	 single	 chip.	 The	 on-chip	 8051	 microcontroller	 is
programmed	just	like	an	ordinary	microcontroller.

Ultra-thin	technology	allows	entire	hardware	designs	to	be	implemented	on
bendable	 soft	 boards.	 This	 technology	 is	 useful	 for	 developing	 smart	 objects
integrated	 in	clothes	or	worn	attached	to	 the	body,	such	as	sporting	or	medical
equipment.	 With	 ultra-thin	 technology,	 the	 hardware	 components	 are	 not
bendable,	just	the	board	on	which	they	are	soldered.	Because	the	components	are
small,	 if	 the	board	can	be	bent,	 so	can	 the	 smart	object.	Figure	11.6	 shows	an
example	of	an	ultra-thin,	bendable	circuit	board.

Figure	11.6	An	ultra-thin,	bendable	circuit	board.

Photo	courtesy	of	IMEC.
	



Printed	 electronics	 is	 a	 technology	 that	 allows	 entire	 circuit	 designs	 to	 be
printed	out	on	ordinary	paper	with	 an	ordinary	printer,	 but	with	 special	 ink	 as
shown	in	Figure	11.7.	The	circuit	boards	can	be	quite	complex	and	can	include
even	 simple	 microcontroller	 logic	 and	 sensors.	 Recent	 work	 has	 shown	 that
simple	 batteries	 and	 displays	 can	 be	 printed.	 Printed	 electronics	 can	 result	 in
drastically	 simplified	 smart	 object	 production	 processes	 and	 lower	 cost.	 The
drawbacks	 are	 low	 electronics	 performance	 and	 large	 system	 size	 when
compared	to	existing	electronics.

Figure	 11.7	 Printed	 electronics	 allow	 circuits	 and	 simple	 displays	 to	 be
printed	using	a	regular	ink-jet	printer.

Photo	courtesy	of	Acreo	AB.
	

Claytronics	 [95]	 is	 a	 futuristic	 idea	 for	 how	 smart	 objects	 should	 work,
behave,	and	be	designed.	Claytronics	are	objects	made	of	small,	programmable
particles	that	can	form	complex	objects	all	by	themselves.	Each	object	consists
of	a	large	number	of	small	particles	that	can	attach	to	each	other	in	any	direction.
The	objects	can	be	self-constructed	by	the	programmed	particles.	Each	particle
runs	a	small	program	that	tells	it	how	it	should	attach	to	its	neighbors.	So	far,	the
Claytronics	team	has	built	large-scale	prototypes	demonstrating	the	feasibility	of
the	 idea	 and	 of	 the	 programming	 models	 [51],	 but	 the	 realization	 of	 actual
Claytronics	is	still	several	years	away.

11.2	Software	for	Smart	Objects



The	 behavior	 of	 a	 smart	 object	 is	 defined	 by	 the	 software	 running	 on	 the
microcontroller	 inside	 the	smart	object.	The	software	 inside	 the	smart	object	 is
usually	written	similar	to	software	for	general	purpose	computers.	The	programs
are	written	in	a	programming	language,	such	as	C,	and	compiled	with	a	compiler
to	 machine	 code	 for	 the	 microcontroller.	 The	 machine	 code	 is	 written	 to	 the
ROM	of	 the	microcontroller	when	 the	smart	object	 is	manufactured.	When	 the
smart	object	is	switched	on,	the	microcontroller	runs	the	software.	This	process
is	illustrated	in	Figure	11.8.

Figure	11.8	The	process	of	software	development	for	a	smart	object.	Source
code	is	compiled	to	machine	code	that	is	written	to	the	ROM	of	the	smart	object
microcontroller.
	

Although	 it	 is	 possible	 to	 program	 microcontrollers	 without	 using	 an
operating	 system	 [173],	most	 smart	 objects	 use	 operating	 systems.	Because	 of
the	different	requirements	and	constraints	for	a	general	purpose	computer	and	a
smart	object,	however,	the	operating	systems	for	general	purpose	computers	and
smart	 objects	 are	 very	 different;	 smart	 object	 operating	 systems	 are	 much
smaller	and	less	resource-consuming.	Because	these	operating	systems	are	more
specialized,	they	are	also	significantly	less	complex.

Because	of	power	and	cost	constraints,	smart	objects	have	significantly	less
memory	 than	 general	 purpose	 computers.	 Memory	 size	 of	 a	 few	 kilobytes	 is
common,	compared	to	the	many	millions	of	kilobytes	(gigabytes)	of	memory	in
today’s	PCs.	See	Table	11.1	for	examples	of	typical	memory	configurations.

The	 memory	 constraints	 of	 smart	 objects	 make	 programming	 them	 a



challenge.	The	memory	 footprint	of	 the	 software	must	be	 small	 enough	 to	 run
within	 the	 given	 limitations	 and	 the	 software	must	 not	 use	 too	much	 dynamic
memory.	 In	 this	 section,	we	 discuss	 three	 operating	 systems	 for	 smart	 objects
and	show	how	they	deal	with	the	challenges	of	smart	object	programming.	We
also	 discuss	 the	 three	 programming	 models	 of	 smart	 objects:	 multi-threading,
event-driven	 programming,	 and	 protothreads.	 Finally,	 we	 look	 at	 how	 the
software	manages	the	limited	memory	in	smart	object	microcontrollers.

The	 smart	 object	 software	 must	 implement	 the	 communication	 protocols
used	 by	 the	 smart	 objects.	 Because	 these	 protocols	 are	 designed	 in	 a	 layered
style,	where	each	layer	is	stacked	on	top	of	each	other,	communication	protocols
are	typically	known	as	a	stack.	The	software	that	implements	the	protocol	is	also
called	 a	 stack.	Throughout	 this	 book,	we	 use	 the	 term	 stack	 to	mean	 both	 the
communication	protocols	and	their	implementation.

11.2.1	Operating	Systems	for	Smart	Objects
Like	general	purpose	computers,	smart	objects	use	operating	systems.	These

operating	 systems	 are	 very	 different	 from	 general	 purpose	 operating	 systems
used	 on	 PCs	 and	 mobile	 phones.	 The	 severe	 resource	 constraints	 regarding
memory	 and	 processing	 power	 make	 a	 large-scale	 operating	 system	 such	 as
Microsoft	Windows,	Mac	OS	X,	or	Linux	impossible	to	use.	Even	scaled-down
versions	such	as	Microsoft	Windows	Mobile	or	the	Linux-based	Google	Android
are	too	large.

Operating	systems	for	smart	objects	are	tailored	to	the	specific	requirements
of	 smart	 objects	 and	 to	 the	 specific	 constraints	 imposed	 by	 the	 hardware.	The
memory	 constraints	 make	 the	 programming	 model	 different	 from	 general
purpose	operating	systems.	The	processing	speed	constraints	 require	 the	use	of
low-level	programming	languages,	such	as	the	C	programming	language.

Smart	 object	 operating	 systems	 do	 not	 have	 a	 user	 interface	 like	 a	 general
purpose	operating	system	because	no	user	directly	interacts	with	the	smart	object
operating	 system.	 Instead,	 the	 operating	 system	 is	 hidden	 deep	 within	 the
microcontroller	 of	 the	 smart	 object.	Usually,	 it	 is	 only	 the	 programmer	 of	 the
smart	object	that	comes	in	contact	with	the	operating	system.

In	 this	 section,	we	 briefly	 look	 at	 three	 examples	 of	 operating	 systems	 for
smart	objects:	Contiki,	TinyOS,	and	FreeRTOS.	In	the	next	section,	we	look	at
the	 programming	 models	 used	 in	 those	 operating	 systems:	 event-driven
programming,	multi-threaded	programming,	and	protothreads.

Contiki,	TinyOS,	and	FreeRTOS	are	all	open	sources	and	their	source	code
is	available	on	the	Web.	Contiki	is	implemented	in	the	C	programming	language
and	 supports	 a	 range	 of	 different	 processors	 and	 hardware	 configurations.
Contiki	provides	full	IPv4	and	IPv6	connectivity	through	the	uIP	[64]	and	uIPv6



[73]	 protocol	 stacks.	 uIPv6	 is	 the	 only	 IPv6	 stack	 for	 smart	 objects	 that	 has
received	 the	 IPv6	 Ready	 certification	 [73].	 TinyOS	 is	 an	 operating	 system
developed	 for	 research	 into	 sensor	 networks	 and	 smart	 objects.	 It	 provides
implementations	 for	 a	 wide	 range	 of	 network	 and	 routing	 mechanisms.	 An
adaptation	 of	 the	 uIP	 stack	 for	 TinyOS	 exists	 [37],	 and	 recent	 versions	 of
TinyOS	 have	 basic	 IPv6	 support.	 FreeRTOS	 provides	 IP	 communication
capabilities	through	either	the	uIP	stack	or	the	lwIP	stack	[64].

11.2.1.1	Contiki	Operating	System
The	 Contiki	 operating	 system	 is	 an	 open	 source	 operating	 system	 for

networked	 embedded	 systems	 in	 general,	 and	 smart	 objects	 in	 particular.	 The
first	 version	 of	 Contiki	 was	 released	 in	 2003.	 It	 is	 developed	 by	 a	 team	 of
developers	from	the	industry	and	academia.	The	Contiki	project	is	lead	by	Adam
Dunkels	(one	of	the	authors	of	this	book).

Contiki	 provides	mechanisms	 that	 assist	 the	 programmer	when	 developing
software	 for	 smart	 object	 applications	 as	 well	 as	 communication	 mechanisms
that	 allow	 smart	 objects	 to	 communicate	with	 each	 other	 and	 the	 surrounding
world.	 Contiki	 provides	 libraries	 for	 memory	 allocation	 and	 linked	 list
manipulation	 as	 well	 as	 communication	 abstractions	 and	 low-power	 radio
networking	mechanisms	[71].	Contiki	has	a	file	system	called	Coffee	that	allows
programs	 to	 use	 flash	 ROMs	 as	 a	 traditional	 file	 store	 [241].	 Additionally,
Contiki	 provides	 a	 set	 of	 simulators	 that	 simplify	 the	 development	 and
experimentation	with	smart	object	networks[77,189].

Contiki	 was	 the	 first	 operating	 system	 for	 smart	 objects	 that	 provided	 IP
communication	with	 the	uIP	TCP/IP	stack[64,67].	 In	2008,	 the	Contiki	 system
incorporated	uIPv6,	 the	world’s	smallest	 IPv6	stack	 [73].	The	 footprints	of	 the
uIP	 and	 uIPv6	 stacks	 are	 small:	 less	 than	 5	 kB	 for	 the	 uIP	 stack	 and
approximately	 11	 kB	 for	 uIPv6.	 This	 makes	 them	 suitable	 for	 use	 in	 the
constrained	environment	of	a	smart	object.

Many	 components	 of	 Contiki	 are	 widely	 used	 in	 the	 industry.	 The	 uIP
TCP/IP	 stack,	 and	 its	 larger	 cousin	 lwIP,	 is	 currently	 used	 by	 hundreds	 of
companies	 in	 products	 ranging	 from	 car	 engines	 and	 airplanes	 to	 worldwide
freighter	 container	 tracking	 systems	 and	 satellite	 systems.	 The	 protothread
programming	abstraction	used	in	Contiki	[70]	is	used	in	systems	such	as	digital
TV	set-top	boxes	and	high-performance	server	clusters.

Both	the	Contiki	system	and	applications	for	the	system	are	implemented	in
the	C	programming	language.	Because	Contiki	is	implemented	in	C,	it	is	highly
portable.	Contiki	has	been	ported	to	more	than	twelve	different	microprocessor
and	microcontroller	architectures.

Figure	11.9	 shows	a	Contiki	program	waiting	until	 a	button	 is	pressed	and



then	sending	a	“Hello,	world”	message	to	the	entire	network.	The	program	uses
the	 trickle	 algorithm	 to	 reliably	 send	 the	 message	 to	 every	 node	 [159].	 The
trickle	algorithm	ensures	that	the	message	is	delivered,	even	if	there	are	packet
losses	on	the	communication	medium,	by	repeatedly	transmitting	messages	until
they	are	received.

Figure	 11.9	 Contiki	 program	waiting	 until	 a	 button	 is	 pressed	 to	 send	 the
message	“Hello,	world”	to	all	nodes	in	a	network	using	the	trickle	algorithm.
	

Because	Contiki	contains	an	IP	stack,	it	can	directly	communicate	with	other
IP-based	applications	and	web	services,	including	Internet-based	services.	Figure
11.10	 shows	 a	 Contiki	 program	 that	 posts	 a	 message	 to	 the	 Twitter
microblogging	service.



Figure	 11.10	 Contiki	 program	 sending	 a	 message	 through	 the	 Twitter
microblogging	web	service.
	

	
11.2.1.2	TinyOS	Operating	System
Like	Contiki,	TinyOS	is	an	open	source	operating	system	for	smart	objects

and	 sensor	 networks.	 It	was	 originally	 created	 at	 the	University	 of	California,
Berkeley	 [113],	 but	 is	 currently	 being	 worked	 on	 by	 a	 team	 from	 Stanford
University	 [158].	 The	 initial	 versions	 of	 TinyOS	 were	 released	 in	 2000.	 It	 is
primarily	 used	 for	 research	 into	wireless	 sensor	 networks	 and	has	 a	 large	 user
base	 from	 academia.	 TinyOS	 focuses	 on	 networking	 and	 communication
mechanisms	for	wireless	sensor	networks.

TinyOS	is	implemented	in	a	TinyOS-specific	programming	language	called
nesC	 [90].	 This	 language	 allows	 programs	 to	 be	 statically	 analyzed	 so	 certain



types	of	race-condition	bugs	can	be	found	at	compile	time.	Recent	work	has	also
added	the	ability	to	detect	bugs	relating	to	memory	safety	at	compile	time	[43].

Programs	in	TinyOS	are	written	to	resemble	the	way	hardware	is	designed.
This	 was	 originally	 intended	 to	 allow	 systems	 to	 be	 dynamically	 partitioned
between	software	and	hardware	[113].	Programs	are	event-driven	and	consist	of
callback	functions	invoked	in	response	to	events,	both	external	and	internal.

TinyOS	has	been	ported	to	a	wide	range	of	systems	and	prototyping	boards.
Figure	11.11	is	an	example	of	a	TinyOS	program.	This	program	toggles	an

LED	 once	 every	 second.	 The	 program	 runs	 on	 any	 platform	 that	 provides	 an
LED	and	a	timer.

Figure	11.11	TinyOS	program	that	blinks	an	LED	every	second.
	

TinyOS	has	previously	used	uIP	for	IP	communication	[37],	but	has	recently
incorporated	an	independent	IPv6	implementation	[1].

11.2.1.3	The	FreeRTOS	Operating	System
FreeRTOS	is	a	small,	open	source	operating	system	designed	for	embedded

systems.	Unlike	Contiki	and	TinyOS,	FreeRTOS	provides	 real-time	guarantees
to	 applications.	This	means	 that	 applications	 running	on	 top	of	FreeRTOS	can
schedule	 exactly	 when	 they	 want	 events	 in	 the	 system	 to	 occur.	 This	 is
important,	 for	 instance,	 in	 control	 applications	where	 timing	 is	 of	 the	 essence.
For	example,	an	application	that	controls	a	robotic	arm	must	be	able	to	specify
exactly	when	to	turn	the	robot	motor	on	and	off	or	else	the	arm	movements	will
be	incorrect.	FreeRTOS	uses	a	preemptive,	multi-threaded	programming	model.



FreeRTOS	 provides	 TCP/IP	 support	 through	 both	 the	 uIP	 and	 the	 lwIP
stacks.	 The	 system	 designer	 chooses	 which	 stack	 to	 use	 depending	 on	 the
application	 requirements	 and	 system	 constraints.	 For	 an	 application	 with	 high
throughput	 demands,	 lwIP	 is	 chosen.	 For	 an	 application	 with	 less	 strong
demands	on	throughput	but	with	strong	demands	on	memory	size,	uIP	is	chosen.

FreeRTOS	 has	 been	 ported	 to	 over	 50	 different	 microcontrollers	 and
microprocessors,	including	the	Texas	Instruments	MSP430	and	the	Atmel	AVR.

11.2.2	Multi-threaded	Versus	Event-driven	Programming
Multi-threading	 is	 a	 programming	 technique	 that	 allows	multiple	 programs

to	 run	at	 the	same	 time	on	a	 single	processor.	 In	multi-threaded	programming,
each	 program	 is	 given	 its	 own	 thread	 of	 control	 that	 runs	 alongside	 all	 other
threads	in	the	system.	Each	thread	is	given	time	to	run	on	the	microprocessor.	To
allow	multiple	programs	to	run	at	the	same	time,	the	operating	system	switches
the	threads	so	they	each	get	their	fair	share	of	the	microprocessor.

Multi-threaded	 programming	 is	 widely	 used	 in	 general	 purpose	 operating
systems,	 where	 the	 threads	 are	 protected	 from	 each	 other	 so	 that	 one	 thread
cannot	 reach	 another	 thread	 without	 going	 through	 well-specified	 interfaces.
When	 threads	 are	 protected	 from	 each	 other,	 they	 are	 often	 called	 processes
instead	of	threads.

For	 smart	 objects,	 the	 problem	 with	 multi-threading	 is	 that	 each	 thread
requires	 its	own	piece	of	memory	 to	hold	 the	 state	of	 the	 thread,	 the	 so-called
stack	of	the	thread.	The	stacks	contain	local	variables	the	thread	uses	and	return
values	for	the	functions	the	thread	calls,	but	also	contains	a	comparatively	large
amount	 of	 unused	 memory.	 This	 memory	 must	 be	 allocated	 because	 it	 is
unknown	in	advance	how	much	stack	memory	each	thread	needs.	Therefore	the
stack	memory	is	typically	over-provisioned.

Because	 of	 memory	 requirements,	 smart	 objects	 are	 often	 programmed
differently.	 Event-driven	 programming	 is	 a	 memory-efficient	 way	 to	 write
software	 for	 smart	 objects.	 With	 this	 type	 of	 programming,	 the	 software	 is
expressed	as	event	handlers:	short	sections	of	code	that	describe	how	the	system
responds	to	events.	Examples	of	such	events	are	an	incoming	radio	packet	from
a	neighboring	node,	a	sensor	reading	from	one	of	the	sensors,	and	a	timer.	When
the	event	occurs,	the	smart	object	responds	by	executing	a	part	of	its	software.

Event-driven	 programming	 requires	 less	 memory	 than	 multi-threaded
programming	because	there	are	no	threads	that	require	stack	memory.	The	entire
system	can	run	as	a	single	thread,	which	requires	only	one	single	stack.

The	 event-driven	 programming	 style	 is	 also	 a	 natural	match	 for	 the	 event-
driven	nature	of	many	smart	objects.	Because	the	object	typically	interacts	with
an	 event-driven	 environment,	 the	 programming	model	 captures	 the	 observable



behavior	of	the	system.
The	programming	community	has	an	ongoing	debate	about	which	of	the	two

programming	models	 (multi-threaded	 or	 event-driven)	 are	 best.	 Although	 it	 is
possible	 to	 formally	 prove	 that	 the	 two	 models	 are	 equivalent	 [157],	 the
programming	model	 has	 implications	 on	 the	 structure	 and	 performance	 of	 the
software	running	on	top	of	the	model.	There	are	several	ways	to	write	software
that	take	advantage	of	the	specific	properties	of	both	programming	models	[4].

Protothreads[65,70]	 are	 one	 way	 to	 combine	 the	 advantages	 of	 the	 event-
driven	 and	 the	 multi-threaded	 programming	 models.	 Protothreads	 are	 a
programming	 mechanism	 developed	 for	 memory-constrained	 systems	 that
combine	 the	 event-driven	 and	 multi-threaded	 programming	 models	 in	 a
memory-efficient	way.	With	protothreads,	programs	are	sequentially	structured,
just	like	in	the	multi-threaded	model,	but	use	little	memory	similar	to	the	event-
driven	 model.	 Protothreads	 can	 be	 efficiently	 implemented	 in	 the	 C
programming	 language	 without	 any	 assembly	 language	 or	 changes	 to	 the
compiler.	 The	 drawback	 is	 that	 programmers	 must	 explicitly	 store	 variables
when	protothreads	block.	Because	protothreads	are	 implemented	 in	C,	 they	are
very	 portable	 across	 different	 platforms.	 This	 has	 made	 them	 useful	 in	 other
contexts	as	well[191,211].

Figure	11.12	 shows	an	example	of	a	program	 implemented	with	 the	multi-
threaded	programming	model	and	the	event-driven	programming	model.	Figure
11.13	shows	 the	 same	program	 implemented	with	protothreads.	The	difference
between	the	models	is	not	only	how	the	code	is	structured,	but	also	the	length	of
the	 code.	 Although	 the	 event-driven	 code	 has	 more	 lines	 of	 code,	 it	 is	 more
memory-efficient	than	the	multi-threaded	model.



Figure	 11.12	 Examples	 of	 multi-threaded	 programming	 (left)	 and	 event-
driven	programming	(middle).
	

Figure	11.13	Example	of	protothread-based	programming.
	

Table	 11.3	 shows	 a	 qualitative	 comparison	 between	 multi-threaded
programming,	event-driven	programming,	and	protothreads.	It	lists	six	important
aspects	 of	 the	 programming	 model:	 memory	 requirements,	 control	 structures,



debug	stack	retention,	implicit	locking,	preemption,	and	automatic	variables.	As
discussed,	the	memory	requirements	for	multi-threaded	programming	are	higher
than	 for	 event-driven	 programming	 and	 protothreads.	 With	 multi-threaded
programming,	 the	 programmer	 can	 combine	 control	 structures,	 such	 as	 if
statements	 and	 while	 loops,	 with	 blocking	 statements.	 This	 is	 impossible	 in
event-driven	programming.	With	multi-threaded	programming	and	protothreads,
the	history	of	the	debug	stack	is	retained	when	interrupting	the	program	during
debugging,	which	 is	not	 the	case	 in	event-driven	programming	where	 the	back
trace	 of	 calls	 is	 lost	when	 each	 event	 handler	 has	 finished.	 Implicit	 locking	 is
possible	 with	 both	 event-driven	 programming	 and	 protothreads,	 because	 it	 is
certain	that	no	called	function	will	yield	the	thread.	Preemption	is,	however,	not
possible	with	event-driven	programming	and	protothreads.	Automatic	variables
—	 variables	 located	 on	 the	 stack	 —	 are	 not	 retained	 in	 event-driven
programming	or	with	protothreads.

Table	11.3	Qualitative	Comparison	Between	Multi-threading,	Event-driven
programming,	and	Protothreads
	
	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Property Multi-
threading

Event-driven
programming Protothreads

Memory
requirements Higher Lower Lower

Control	structures Yes No Yes
Debug	stack
retained Yes No Yes

Implicit	locking No Yes Yes
Preemption Yes No No
Automatic	variables Yes No No



Automatic	variables Yes No No
	
Adapted	from	Dunkels	et	al.	Protothreads:	Simplifying	event-driven	programming	of	memory-

constrained	embedded	systems.	In	Proceedings	of	the	Fourth	ACM	Conference	on	Embedded	Networked
Sensory	Systems	(SenSys	2006),	Boulder,	CO,	USA,	November	2006.

	
Each	 programming	 model	 has	 its	 benefits	 and	 drawbacks.	 Different

programming	 problems	 are	 solved	 differently	 with	 each	 programming	 model.
For	 example,	 programs	 that	 require	 high-level	 logic	 with	 multiple	 sequential
steps	may	be	better	implemented	with	multi-threading	or	protothreads,	whereas
low-level	 I/O	 behavior	 may	 be	 better	 implemented	 with	 event-driven
programming.	 Ultimately,	 the	 choice	 of	 programming	 model	 is	 up	 to	 the
software	designer.	For	this	reason,	most	smart	object	operating	systems	support
a	 range	of	different	 programming	models	 from	which	 the	 system	designer	 can
choose.

11.2.3	Memory	Management
Because	of	the	restrictions	put	on	power	consumption,	physical	size,	and	cost

of	the	microcontrollers	used	for	smart	objects,	memory	is	constrained.	Thus	the
available	memory	must	be	efficiently	managed.	There	are	several	techniques	to
make	 the	 most	 of	 the	 constrained	 memory	 in	 a	 smart	 object.	 Unlike	 general
purpose	computers,	where	memory	can	be	dynamically	swapped	to	a	hard	drive,
memory	in	a	smart	object	microcontroller	usually	cannot	be	moved	to	secondary
storage.

In	 smart	 object	 software,	 memory	 can	 be	 either	 statically	 allocated	 at
compile	 time	or	dynamically	 allocated	 at	 runtime.	Statically	 allocated	memory
allows	 the	 programmer	 to	 know	 beforehand	 if	 the	 program	 will	 fit	 in	 the
memory	of	the	microcontroller,	but	it	does	not	allow	the	system	to	dynamically
respond	 to	 the	 demands	 at	 runtime.	Dynamic	memory	 allocation,	 on	 the	 other
hand,	is	able	to	respond	to	the	actual	memory	load	the	system	requires,	but	it	is
not	possible	to	predict	how	the	system	will	behave.

Because	of	the	different	advantages	and	drawbacks	of	the	dynamic	and	static
allocation	methods,	 hybrid	methods	 are	 often	 used.	 In	 this	 section,	 we	 take	 a
look	at	three	methods:

•	 Static	 allocation:	 All	 memory	 is	 allocated	 at	 compile	 time	 and	 no
memory	is	allocated	at	runtime.
•	 Dynamic	 allocation	 from	 static	 memory	 pools:	 Memory	 can	 be

dynamically	allocated	at	 runtime	from	a	 fixed	set	of	static	memory	pools.
The	size	of	each	allocation	is	predefined	and	cannot	be	changed	at	runtime.



•	 Dynamic	 heap	 allocation:	 Memory	 can	 be	 dynamically	 allocated	 at
runtime	and	the	size	of	each	allocation	can	be	determined	at	runtime.

	
Figure	11.14	shows	how	memory	is	allocated	with	static	allocation,	dynamic

allocation	from	a	static	memory	pool,	and	dynamic	allocation	from	a	heap.	The
figure	 shows	 memory	 allocations	 A	 and	 B	 allocated	 with	 the	 three	 different
methods.	With	static	allocation,	the	two	allocations	are	present	in	memory	from
when	the	system	boots	up	until	the	system	is	switched	off.	Memory	is	reserved
for	the	two	allocations	and	cannot	be	used	for	anything	else.

Figure	 11.14	 Static	 memory	 allocation	 (left),	 dynamic	 allocation	 from	 a
static	memory	pool	(middle),	and	dynamic	allocation	from	a	heap	(right).
	

With	dynamic	allocation,	the	memory	for	the	allocations	is	not	reserved	for
just	those	allocations,	but	can	also	be	used	by	other	allocations.	When	memory	is
allocated	 dynamically	 from	 a	 static	memory	 pool,	 the	memory	 pool	 has	 been
statically	 allocated.	 This	 static	 allocation	 is	 then	 broken	 up	 into	 fixed-size
segments.	Memory	can	then	be	allocated	from	these	fixed-size	segments.	After	a
segment	has	been	allocated,	it	can	only	be	used	by	the	program	that	allocated	it.
When	the	program	is	done	with	the	segment,	the	program	returns	the	segment	to
the	memory	pool.	The	memory	allocator	marks	the	segment	as	free,	and	can	give
it	out	to	another	program	that	asks	for	it.

Dynamic	 allocation	 from	 a	 heap	 is	more	 complex	 than	 dynamic	 allocation
from	a	memory	pool.	With	dynamic	heap	allocation,	memory	is	allocated	from	a
portion	 of	 the	memory	 called	 the	 heap.	Memory	 of	 any	 size	 can	 be	 allocated
from	the	heap,	as	 long	as	 there	are	enough	free	consecutive	bytes	on	 the	heap.
Once	a	portion	of	the	heap	has	been	allocated,	this	portion	of	the	memory	cannot
be	moved	or	allocated	by	another	program.	When	the	program	is	done	with	its
memory,	it	returns	the	memory	to	the	heap.

The	benefit	of	dynamic	heap	allocation	is	that	memory	segments	of	any	size



can	 be	 allocated.	 The	 price	 for	 this	 advantage	 is	 that	 the	 heap	 can	 become
fragmented	so	that	memory	cannot	be	allocated	from	the	heap,	even	if	there	are
enough	 free	 bytes	 left.	 This	 is	 illustrated	 in	 Figure	 11.15,	 where	 memory	 for
allocation	C	cannot	be	allocated	because	there	are	not	enough	consecutive	bytes
left	on	the	heap.	Even	if	the	number	of	free	bytes	on	the	heap	is	larger	than	the
size	of	allocation	C,	the	memory	cannot	be	allocated	due	to	fragmentation.

Figure	 11.15	 The	 problem	 with	 dynamic	 heap	 allocation:	 allocation	 C
cannot	be	 allocated,	 even	 if	 there	 is	 enough	memory	on	 the	heap,	 because	 the
memory	has	been	fragmented.
	

Because	of	the	problems	of	fragmentation	in	dynamic	heap	allocation,	most
smart	objects	use	static	allocation	for	most	purposes	and	dynamic	memory	pool
allocation	when	 dynamic	memory	 allocation	 is	 needed.	Because	 smart	 objects
are	typically	designed	for	a	single	task,	static	allocation	provides	a	good	baseline
as	 a	 memory	 allocation	 strategy.	 But	 since	 the	 workload	 may	 vary,	 a	 certain
amount	of	dynamic	allocation	is	needed.

Table	 11.4	 summarizes	 the	 properties	 of	 the	 three	 different	 memory
allocation	mechanisms	previously	discussed.

Table	 11.4	 Properties	 of	 Three	 Memory	 Allocation	 Mechanisms:	 Static
Allocation,	 Dynamic	 Allocation	 From	 a	 Memory	 Pool,	 and	 Dynamic	 Heap
Allocation
	
	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

Property Static Memory	pool Heap
Runtime	allocation No Yes Yes
Dynamic	size No No Yes
Fragmentation No No Yes
	
11.2.4	Outlook:	Macroprogramming,	Java
So	 far,	 most	 smart	 objects	 are	 programmed	 as	 single	 nodes	 that	 possibly

collaborate	 to	 achieve	 a	 common	 goal.	 This	 style	 of	 programming	 does	 not
always	allow	high-level	behavior	to	be	cleanly	expressed,	but	can	require	high-
level	application	logic	to	be	manually	broken	down	into	low-level	actions.	There
has	been	research	into	the	possibility	of	programming	ensembles	of	smart	object
networks	with	a	single	program.

Macroprogramming[98,186]	is	a	way	to	program	a	network	of	smart	objects,
as	opposed	to	programming	each	individual	node.	With	macroprogramming,	the
programmer	writes	the	program	to	describe	the	behavior	of	the	system	and	lets



the	underlying	macroprogramming	system	partition	the	software	on	the	nodes	of
the	system.	The	programmer	does	not	need	to	deal	with	low-level	details	such	as
how	to	send	or	receive	radio	packets,	instead,	he	focuses	on	the	application	logic
of	the	system	to	achieve	the	application	goal.	Program	code	is	compiled	into	an
intermediate	format	 interpreted	by	 the	nodes.	The	nodes	communicate	between
each	 other	 to	 form	 networks	 on	 top	 of	 which	 the	 program	 is	 executed.	 A
prototype	system	of	the	macroprogramming	mechanism	has	been	developed.

Even	 though	 most	 smart	 objects	 are	 programmed	 in	 a	 low-level	 language
such	as	C,	 there	are	several	proposals	 to	run	high-level	 languages	such	as	Java
on	 them.	 The	 SunSpot	 nodes	 come	 with	 a	 Java	 virtual	 machine	 pre-installed
[223],	which	allows	them	to	directly	run	programs	written	in	Java.	The	SunSpot
hardware	 is,	 however,	 equipped	 with	 an	 ARM	 microprocessor,	 which	 is
significantly	 larger,	 more	 power-consuming,	 and	 more	 expensive	 than
microcontrollers	 in	 other	 smart	 objects.	 For	 the	 smaller	microcontrollers,	 Java
machines	 are	 also	 available[69,82,198],	 but	 these	 typically	 impose	 memory
constraints	on	the	programs	running	on	them.

In	 the	 foreseeable	 future,	 however,	 smart	 objects	 will	 continue	 to	 be
programmed	on	the	node	level	in	low-level	languages	such	as	C.

11.3	Energy	Management
Smart	objects	must	be	careful	about	how	they	spend	their	energy.	Energy	is

provided	either	by	a	battery	or	by	scavenging	energy	from	the	environment.	In
either	 case,	 energy	 is	 a	 constrained	 resource.	 Power	 optimization	 must	 occur
both	at	the	hardware	and	the	software	level.	Without	power-efficient	hardware,	it
is	 difficult	 to	 achieve	 low-power	 operation.	 Similarly,	 without	 power-efficient
software,	 it	 is	 impossible	 to	 achieve	 the	 low-power	operation	of	 the	hardware.
To	understand	how	to	organize	the	software	to	optimize	the	power	consumption
of	a	smart	object,	we	must	first	look	at	where	energy	is	spent.

For	radio-equipped	smart	objects,	and	indeed	most	low-power	radio	devices,
the	 radio	 transceiver	 is	 the	 most	 power-consuming	 component.	 Figure	 11.16
illustrates	the	power	consumption	breakdown	for	the	Tmote	Sky	board	[200].	It
shows	 the	 power	 consumption	 of	 the	 microcontroller	 in	 sleep	 mode,	 the
microcontroller	 in	 active	 mode,	 the	 radio	 transceiver	 in	 listen	 mode,	 and	 the
radio	 transceiver	 in	 transmit	 mode.	 The	 power	 consumption	 of	 the
microcontroller	in	sleep	mode	is	very	low.	In	fact,	it	is	so	low	that	it	is	not	even
visible	on	 the	graph.	The	radio	 transceiver	consumes	nearly	 ten	 times	as	much
power	as	the	microcontroller	in	active	mode.



Figure	11.16	Power	consumption	of	the	microcontroller	and	the	radio	on	the
Tmote	 Sky	 smart	 object	 prototyping	 board.	 The	 power	 consumption	 of	 the
microcontroller	sleep	mode	is	so	low	that	it	is	not	visible	in	the	graph.
	

The	most	striking	observation	from	Figure	11.16,	however,	is	that	the	power
consumption	 of	 the	 radio	 in	 listen	 mode	 is	 almost	 as	 high	 as	 the	 power
consumption	of	 the	 radio	 in	 transmit	mode.	This	means	 that	 it	 costs	 almost	 as
much	energy	to	receive	a	packet	as	it	does	to	transmit	it.	But	most	important,	this
means	that	the	process	of	idle	listening	for	radio	traffic	is	very	expensive.

Before	going	into	the	implications	of	expensive	radio	listening,	we	look	into
the	radio	transceiver	to	understand	why	the	cost	of	listening	and	transmission	are
almost	 equal.	 Figure	 11.17	 is	 a	 schematic	 drawing	 of	 the	 internals	 of	 a	 radio
transceiver	 as	 adapted	 from	 Wang	 and	 Sodini	 [252].	 The	 figure	 shows	 the
logical	blocks	of	the	transceiver:	transmission	circuitry	(TX),	reception	circuitry
(RX),	local	oscillator	(LO),	power	amplifier	(PA),	and	a	filter	for	the	incoming
and	outgoing	signal.	The	antenna	is	outside	of	the	box.

Figure	11.17	Schematic	drawing	of	a	radio	transceiver.
	



For	 a	 low-power	 radio,	 such	 as	 the	 IEEE	 802.15.4,	 the	 output	 power
delivered	 to	 the	 antenna	 is	 at	most	 1	mW.	However,	 the	 device	 consumes	 60
mW	in	total,	as	seen	in	Figure	11.16.	Thus	the	additional	59	mW	consumed	by
the	transceiver	is	spent	by	the	local	oscillator	and	other	parts	of	the	transceiver
circuitry.	 Because	 the	 reception	 and	 transmission	 circuitry	 are	 similar	—	 they
both	modulate	and	demodulate	the	outgoing	and	incoming	radio	signal	based	on
the	clock	coming	from	the	local	oscillator	—	it	is	clear	that	the	power	consumed
by	 the	 power	 amplifier	 is	 not	 the	 primary	 power	 consumer	 in	 this	 low-power
radio	transceiver.

For	 a	 comparatively	 high-power	 radio,	 such	 as	 a	 WiFi	 802.11	 radio,	 the
output	 power	 is	 much	 higher	 than	 1	 mW;	 therefore,	 the	 power	 spent	 on	 the
power	 amplifier	 is	 much	 higher	 (up	 to	 100	 mW)	 [80].	 Similarly,	 mobile
telephony	 radios	 such	 as	GSM	have	 an	 output	 power	 of	 1000	mW.	 For	 these
radios,	energy	is	conserved	by	avoiding	transmissions,	but	this	is	not	the	case	for
low-power	radios.

11.3.1	Radio	Power	Management	Mechanisms
The	 observation	 that	 idle	 radio	 listening	 is	 expensive	—	 as	 expensive	 as

continuously	 transmitting	packets	—	 is	 important.	This	 insight	 tells	us	 that	we
cannot	 expect	 to	 save	 energy	 by	 avoiding	 transmissions,	 but	 that	 to	 conserve
energy	 we	 must	 switch	 the	 radio	 off.	 When	 the	 radio	 is	 off	 we	 cannot	 hear
transmissions	from	other	nodes.

Not	 listening	 on	 the	 radio	 severely	 limits	 the	 type	 of	 network	 that	 can	 be
constructed	with	smart	objects.	The	only	types	of	networks	possible	are	the	star
networks,	as	shown	in	Figure	11.18.	Star	networks	are	given	this	name	because
their	structure	resembles	a	star	consisting	of	a	central	node	with	connections	to
outside	nodes.	In	a	star	network,	the	central	node	has	its	radio	turned	on	all	the
time.	This	node	has	an	external	power	source.	All	of	the	other	battery-powered
nodes	keep	 their	 radios	switched	off	 to	conserve	energy.	Only	when	 the	nodes
have	data	to	send	do	they	switch	on	their	radio	to	transmit	a	message.	The	only
node	they	can	transmit	to	is	the	central	node	because	all	of	the	other	nodes	have
their	radios	switched	off.



Figure	 11.18	 Star	 networks	 are	 the	 only	 types	 of	 networks	 possible	 if	 the
devices	never	have	the	radio	on	to	listen	for	transmissions	from	neighbors.
	

The	star	network	approach	is	simple	and	useful,	but	it	constrains	the	range	of
the	smart	object	network	to	that	of	the	physical	transmission	range	of	the	radio
transceivers.	For	some	applications,	this	is	good	enough.

To	allow	the	network	range	to	be	dynamically	extended,	the	nodes	must	be
able	 to	 receive	 transmissions	 from	 each	 other.	 With	 this	 ability,	 the	 network
topology	 also	 can	 be	 constructed	 to	 provide	 redundant	 paths	 through	 the
network,	providing	 increased	 reliability.	 If	a	node	goes	down,	 the	network	can
reroute	the	traffic	around	the	failed	node.	This	network	structure	is	called	a	mesh
network.

Figure	11.19	is	an	example	of	a	mesh	network.	In	a	mesh	network,	all	nodes
can	talk	to	each	other	and	form	a	robust	multi-hop	network.	The	network	can	be
dynamically	 extended	 as	 needed	 by	 adding	 more	 nodes.	 The	 new	 nodes
automatically	join	the	network	and	act	as	relay	nodes	that	forward	traffic.



Figure	11.19	In	a	mesh	network,	all	nodes	can	talk	to	each	other,	allowing
the	network	range	to	be	dynamically	extended	and	enabling	redundant	network
paths,	which	increase	reliability.
	

To	be	able	to	form	mesh	networks,	the	radio	transceivers	of	the	nodes	must
be	managed	so	that	they	are	switched	off	when	there	is	no	traffic	but	switched	on
when	 neighbors	 want	 to	 communicate.	 Thus,	 the	 nodes	 must	 have	 a	 way	 to
rendezvous	so	that	two	nodes	who	want	to	communicate	can	reach	each	other.

Over	 the	 last	 ten	years,	 several	ways	 to	 synchronize	 the	nodes	 so	 they	can
build	 mesh	 networks	 have	 been	 investigated[25,76,181,199,232,244,261,262].
Early	 work	 provided	 significant	 energy	 savings	 over	 an	 always-on	 radio.	 For
example,	the	S-MAC	mechanism	reduced	the	average	time	the	radio	was	turned
on	 from	 100%	 to	 35%	 [261].	 The	WiseMAC	 protocol	 reduced	 this	 further	 to
around	 20%	 [76].	 The	 B-MAC	 protocol	 showed	 an	 idle	 radio	 on-time	 of	 1%
[199].	Later	developments	even	reduced	the	idle	radio	on-time	even	further.

In	 the	 remainder	 of	 this	 chapter,	 we	 look	 at	 two	 of	 these	 methods:	 the
asynchronous	 low-power	 listening	(LPL),	as	embodied	in	 the	X-MAC	protocol
[25]	and	the	synchronous	Time	Synchronized	Mesh	Protocol	(TSMP)	[196].
	
11.3.2	Asynchronous	Duty	Cycling
LPL	 achieves	 low-power	 operation	 by	 switching	 the	 radio	 off	most	 of	 the

time	and	periodically	switching	it	on	for	a	short	while.	This	procedure	is	called
duty	 cycling.	 By	 keeping	 the	 radio	 on	 for	 a	 short	 while,	 the	 duty	 cycling
mechanism	makes	 it	possible	 to	receive	 transmissions	from	neighboring	nodes.
This	process	is	illustrated	in	Figure	11.20.	The	time	during	which	the	radio	is	on
and	off	is	configurable.	This	configuration	depends	on	the	predicted	traffic	load
of	the	network.	Example	configurations	are	an	off-time	of	half	a	second	and	on-
time	of	 a	 few	hundred	microseconds.	This	 is	 just	 enough	 to	 hear	 an	 incoming
packet	from	a	neighbor.

Figure	11.20	The	radio	duty	cycling	principle	in	LPL.	The	receiver	keeps	its
radio	off	for	most	of	the	time,	but	switches	it	on	for	a	short	while	to	listen	for	a
transmission	from	a	neighbor.
	



To	 send	 a	 packet	 to	 a	 node,	 the	 sender	 first	 sends	 a	 train	 of	 short	 packets
called	strobes.	When	the	receiver	hears	a	strobe,	 the	receiver	switches	its	radio
transceiver	on	 in	anticipation	of	 the	data	packet.	The	strobe	 train	must	be	 long
enough	for	all	neighbors	to	listen	at	least	once	within	the	period.	This	is	shown
in	Figure	11.21.

Figure	11.21	To	transmit	a	packet	with	LPL,	the	sender	first	sends	a	series
of	strobe	packets	to	wake	the	receiver	up.
	

LPL	reduces	the	power	consumption	in	the	network	by	switching	the	energy
burden	 from	 the	 receivers	 to	 the	 senders.	 The	 receivers	 can	 have	 their	 radios
switched	 off	 for	most	 of	 the	 time,	 conserving	 power,	 at	 the	 cost	 of	 increased
power	 consumption	 for	 the	 senders,	 who	 have	 to	 send	 more	 data	 on	 every
transmission.	 This	 is	 a	 reasonable	 trade-off,	 however,	 since	 smart	 object
networks	 are	 silent	 for	 most	 of	 the	 time.	 Thus	 it	 makes	 sense	 that	 the
transmission	is	more	costly	if	we	can	save	energy	for	every	other	node.

The	LPL	procedure	described	 thus	 far	 suffers	 from	a	number	of	 problems.
First,	 the	 strobes	 wake	 up	 every	 node,	 not	 only	 the	 one	 receiving	 the	 final
packet.	 This	wastes	 energy	 for	 all	 other	 receivers	who	must	 have	 their	 radios
switched	on	but	do	not	receive	any	useful	data.	Second,	each	packet	transmission
takes	 a	 considerable	 amount	 of	 time.	 If	 receivers	 are	 switched	 off	 for	 half	 a
second,	the	strobe	train	must	be	sent	during	half	a	second.

To	 remedy	 these	problems,	each	strobe	 is	provided	with	 the	address	of	 the
recipient	of	 the	data	packet.	When	another	node	hears	 the	strobe,	 it	determines
that	the	packet	is	destined	for	another	node	and	switches	its	radio	off.	When	the
node	 to	 which	 the	 data	 packet	 is	 addressed	 hears	 the	 strobe,	 it	 sends	 a	 short
packet	to	the	sender	called	a	strobe	acknowledgment	packet.	Because	the	sender
knows	that	the	receiver	has	its	radio	switched	on,	it	immediately	sends	the	data
packet	as	shown	in	Figure	11.22.



Figure	 11.22	 Strobe	 acknowledgment	 optimization	 in	 LPL.	 Each	 strobe
contains	the	address	of	the	receiver	of	the	data	packet.	When	the	receiver	hears	a
strobe,	 it	 sends	 a	 strobe	 acknowledgment	 packet	 to	 the	 sender	 who	 then
immediately	transmits	the	data	packet.
	

As	a	further	optimization,	the	sender	can	learn	the	duty	cycle	of	its	receivers.
If	the	nodes	have	a	constant	duty	cycle,	the	sender	can	start	sending	its	strobes
just	before	 it	 expects	 the	 receiver	 to	 switch	 its	 radio	on.	This	 reduces	both	 the
power	consumption	of	 the	sender,	who	does	not	need	to	send	as	many	strobes,
and	the	load	on	the	network	[76].

LPL	is	not	explicitly	synchronized.	The	sender	and	receiver	do	not	need	 to
be	explicitly	in	synch	with	each	other.	Instead,	the	strobing	process	provides	an
implicit	synchronization	mechanism	where	 the	nodes	synchronize	on	each	data
exchange.

11.3.3	Synchronous	Duty	Cycling
Although	 asynchronous,	 power-saving	 protocols	 such	 as	LPL	 are	 useful	 in

their	 simplicity,	 their	 performance	 can	 be	 improved	 by	 making	 them
synchronous.	Synchronous	protocols	are	built	on	explicit	 time	synchronization.
Asynchronous,	 power-saving	 protocols	 implicitly	 synchronize	 themselves	 on
every	 data	 transmission,	 but	 synchronous	 protocols	 explicitly	 synchronize
themselves	 before	 sending	 any	 actual	 data	 packets.	 Several	 methods	 for	 time
synchronization	exist[167,216].

With	time	synchronization,	a	synchronous	protocol	can	reduce	the	time	that
the	 protocol	 has	 to	 keep	 the	 radio	 switched	 on	 reducing	 the	 overall	 power
consumption.	 One	 example	 of	 a	 time-synchronized,	 power-saving	 protocol	 is
TSMP	[196].	TSMP	is	the	basis	of	the	two	industrial	sensor	network	standards
WirelessHART	 and	 ISA100a.	 In	 addition	 to	 providing	 a	 long	 lifetime	 by
switching	the	radio	off	as	often	as	possible,	TSMP	also	achieves	high	reliability
by	constantly	switching	the	physical	radio	frequency	on	which	packets	are	sent.
The	network	 is	centrally	managed	so	 that	 the	entire	network	 is	 scheduled	by	a
network	manager	(a	small	server	located	next	to	the	network).	TSMP	is	designed
for	 industrial	use	and	 is	not	 intended	 to	be	suitable	 for	people-or	home-centric



smart	objects	applications.
In	TSMP,	all	nodes	are	time	synchronized	within	50	μs.	Time	is	divided	into

slots	 that	 are	 10	ms	 long.	 In	 every	 slot,	 a	 node	 is	 either	 listening,	 potentially
transmitting	(if	 the	node	has	data	 to	 transmit),	or	sleeping.	When	 listening,	 the
node	listens	for	a	short	while	at	the	beginning	of	the	10	ms	time	slot.	If	a	node	is
transmitting	in	the	time	slot,	the	transmission	will	start	within	100	μs.	Thus,	the
receiver	does	not	need	to	keep	its	radio	on	for	longer	than	100	μs	every	10	ms	in
those	time	slots	it	is	able	to	receive	a	packet.

The	 time-synchronized	 process	 is	 shown	 in	 Figure	 11.23.	 The	 sender	 only
needs	 to	 send	 a	 very	 short	 synchronization	 byte	 before	 sending	 its	 packet,
because	the	receiver	can	quickly	determine	if	there	is	a	packet	transmitted	or	not.

Figure	11.23	With	a	time-synchronized	protocol	such	as	TSMP,	nodes	need
shorter	 on-times	 because	 they	 know	 exactly	 when	 the	 sender	 potentially
transmits	reducing	power	consumption.
	

11.3.4	Examples	of	Radio	On-times
The	 primary	 purpose	 of	 the	 radio	 power-saving	 mechanisms	 presented	 in

Table	 11.5	 is	 to	 reduce	 the	 power	 consumption	 by	 switching	 the	 radio	 off	 as
often	 as	 possible.	 This	 is	 particularly	 important	 when	 the	 devices	 are	 idle	 or
when	there	is	no	traffic	flowing.	Many	smart	object	networks	spend	most	of	the
time	in	idle	mode.

Table	11.5	Idle	Radio	On-time	for	Five	Different	Power-saving	Mechanisms
	
	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

Mechanism Type	of	mechanism Typical	radio	on-time	(%)
X-MAC Asynchronous 1.4
Arch	Rock Asynchronous 0.65
ContikiMAC Asynchronous 0.45
TSMP Synchronous 0.32
Dozer Synchronous 0.16
	
Table	 11.5	 compares	 the	 idle	 radio	 on-time	 for	 five	 power-saving	 radio

mechanisms:	 the	 X-MAC	 mechanism	 [25]	 as	 measured	 in	 the	 Contiki
implementation,	the	Arch	Rock	mechanism	as	reported	by	Hui	and	Culler	[125],
the	 ContikiMAC	 mechanism	 as	 measured	 in	 its	 Contiki	 implementation,	 the
TSMP	 mechanism	 as	 reported	 by	 Pister	 and	 Doherty	 [196],	 and	 the	 Dozer



mechanism	as	 reported	by	Burri	et	al.	 [27].	TSMP	and	Dozer	are	synchronous
mechanisms	whereas	the	others	are	asynchronous.	The	radio	on-time	depends	on
the	 system	 configuration	 and	 since	 different	 power	 saving	 mechanisms	 have
different	configurations,	a	direct	comparison	is	not	possible.	The	purpose	of	the
table	 is	 to	 show	 that	 several	 existing	 mechanisms	 are	 able	 to	 keep	 the	 radio
switched	off	for	approximately	99%	of	the	time.

Although	 the	 synchronous	 mechanisms	 are	 more	 efficient	 in	 reducing	 the
idle	 radio	on-time,	 this	comes	at	 the	price	of	a	higher	network	setup	 time.	For
example,	with	the	TSMP	protocol	it	may	take	several	minutes	for	a	node	to	join
the	network	[196].	Additionally,	 the	performance	latency	characteristics	for	the
different	methods	vary.	There	are	as	yet	no	comparative	studies	 that	shed	 light
on	 the	 typical	 system	 latency	 for	 the	 previously	 mentioned	 power-saving
mechanisms.

11.4	Conclusions
In	this	chapter,	we	discussed	the	hardware	and	software	for	smart	objects	as

well	 as	 the	 energy	 consumption	 of	 smart	 objects	 and	 how	 the	 hardware	 and
software	needs	 to	 cooperate	 to	 save	power.	The	hardware	 typically	 consists	of
four	 parts:	 a	 radio	 transceiver,	 a	microcontroller,	 a	 power	 source,	 and	 a	 set	 of
sensors	and	actuators.	The	software,	which	runs	on	the	microcontroller,	consists
of	an	operating	system	and	the	application	programs	that	define	the	behavior	of
the	 smart	 object.	Contiki,	 TinyOS,	 and	 FreeRTOS	 are	 three	 examples	 of	 such
operating	 systems.	 Because	 of	 the	 power,	 size,	 and	 cost	 constraints	 of	 smart
object	hardware,	there	are	severe	memory	constraints	on	smart	object	software.

The	power	consumption	of	a	smart	object	is	important	because	many	smart
objects	 have	 constrained	 power	 budgets.	 Smart	 objects	 either	 run	 on	 batteries,
which	are	difficult	to	replace	or	recharge,	or	from	environmental	sources	such	as
small	solar	cells.	In	either	case,	power	is	constrained.	To	provide	a	long	lifetime,
the	smart	object	software	must	be	smart	about	managing	its	energy	consumption.

For	 many	 smart	 objects,	 the	 communication	 device	 consumes	 the	 most
power,	 both	 for	 radio-equipped	 devices	 and	 for	 devices	 using	 other
communication	mechanisms.	For	radio-equipped	systems,	the	radio	consumes	as
much	 power	 when	 listening	 for	 radio	 traffic	 as	 it	 does	 when	 sending	 data.
Therefore,	 radio	energy	management	mechanisms	must	 switch	off	 the	 radio	as
often	 as	 possible.	 Because	 no	 communication	 can	 take	 place	 if	 the	 radio	 is
switched	off,	the	system	must	have	a	mechanism	to	synchronize	nearby	nodes	so
their	 radios	 are	 switched	 on	 simultaneously.	 Asynchronous,	 power-saving
protocols,	such	as	LPL,	provide	a	high	degree	of	power	saving	without	requiring
any	 explicit	 time	 synchronization	 between	 nodes.	 By	 adding	 explicit	 time
synchronization,	it	is	possible	to	achieve	higher	power	effectiveness,	at	the	cost



of	higher	network	setup	time,	as	well	as	the	additional	complexity	caused	by	the
required	time	synchronization.

	



Chapter	12	Communication
Mechanisms	for	Smart	Objects

	

Smart	 objects	 communicate	 with	 each	 other,	 but	 the	 choice	 of
communication	 technology	 varies	 between	 different	 applications	 and	 different
environments.	 In	 this	 chapter	 we	 look	 at	 the	 various	 ways	 in	 which
communication	 between	 smart	 objects	 works.	 The	 communication	 principles
behind	 smart	 object	 communication	 and	 how	 it	 differs	 from	 communication
between	 traditional	 computers	 are	 also	 discussed.	 We	 then	 turn	 to	 three
communication	 standards	 for	 smart	 objects:	 IEEE	 802.15.4,	 IEEE	 802.11
(WiFi),	and	Powerline	communication	(PLC).

12.1	Communication	Patterns	for	Smart	Objects
Smart	 object	 communication	 patterns	 can	 be	 divided	 into	 three	 categories:

one-to-one,	one-to-many,	and	many-to-one.	Each	communication	pattern	is	used
in	different	situations.	Many	applications	use	a	combination	of	the	patterns.

Smart	 objects	 have	 specific	 communication	 patterns	 based	 on	 their
application.	 A	 person-centric	 smart	 object	 network	 used	 to	 measure	 bodily
metrics	 of	 hospital	 patients	 differs	 greatly	 from	 an	 industrial	 smart	 object
network	used	to	monitor	vibration	of	 industrial	robots.	Yet,	 these	diverse	types
of	networks	share	many	of	 the	principles	behind	the	communication	within	the
network.

Smart	 objects	 often	 communicate	over	unreliable	 communication	 channels.
The	 radio	 transmission	 of	 a	 smart	 object	 with	 a	 radio	 transceiver	 may	 be
disturbed	by	other	radio	senders	in	the	vicinity.	Radio	signals	are	also	disturbed
by	physical	obstacles	between	 the	sender	and	 the	 receiver.	Because	 low-power
radios	 for	 smart	 objects	 use	 unlicensed	 radio	 frequency	 bands,	 where	 they
coexist	 with	 other	 radio	 technologies,	 the	 risk	 of	 radio	 disturbance	 is	 even
greater.	 For	wired	 technologies,	 the	 risk	 of	 disturbance	may	be	 smaller,	 but	 is
still	a	factor	that	the	communication	protocols	must	be	prepared	to	deal	with.

Because	 the	 communication	 channels	 are	 inherently	 unreliable,	 the
communication	protocols	 running	on	 top	of	 the	 communication	 channels	often
have	mechanisms	that	provide	reliability.	Messages	that	are	lost	because	of	radio
disturbance	 are	 retransmitted.	 Not	 all	 applications	 require	 strict	 reliability,



however,	 and	 for	 such	 applications	 the	 underlying	 best-effort	 nature	 of	 the
communication	channel	may	provide	enough	reliability.

Radio	 is	not	only	an	unreliable	medium,	 it	 is	also	a	shared	medium.	When
sending	 a	 message	 over	 radio,	 it	 is	 possible	 that	 another	 nearby	 node
simultaneously	 sends	 a	 message.	 Because	 the	 medium	 is	 shared,	 the	 two
messages	collide	in	the	air	and	a	receivermay	not	be	able	to	receive	any	of	the
sent	messages.	Communication	protocols	for	radios	must	take	this	into	account.

Different	 smart	object	applications	have	different	communication	demands.
Applications	 involving	 mobile	 objects,	 such	 as	 body-worn	 sensors,	 typically
require	 rapid	 knowledge	 of	 the	 changing	 network	 topology	 around	 them.	 In
contrast,	 highly	 static	 applications,	 such	 as	 industrial	monitoring	 of	 stationary
equipment,	 do	 not	 require	 rapid	 updates	 of	 the	 network	 topology	 because	 the
topology	rarely	changes.

The	power	consumption	of	the	radio	transceiver	affects	network	structures	as
well	as	possible	communication	patterns.	Because	the	radio	must	be	switched	off
to	 conserve	 power,	 networks	 with	 very	 low	 power	 budgets	 cannot	 expect	 to
maintain	complex	communication	patterns	over	extended	periods	of	time.

Armed	with	a	preliminary	understanding	of	reliability	concerns,	the	different
application	 requirements,	 and	 the	 effect	 of	 power	 consumption,	we	 turn	 to	 the
three	 different	 types	 of	 communication	 patterns	 for	 smart	 objects:	 one-to-one
communication,	one-to-many	communication,	and	many-to-one	communication.

12.1.1	One-to-one	Communication
The-one-to-one	 communication	 pattern	 occurs	 when	 one	 smart	 object

communicates	with	another	smart	object.	The	communication	may	involve	other
smart	objects,	however,	as	the	communication	may	be	routed	through	a	network
of	smart	objects.	In	Figure	12.1,	two	smart	objects	communicate	with	each	other,
but	two	other	smart	objects	are	involved	because	they	forward	packets	between
the	communication	end	points.



Figure	12.1	One-to-one	communication	in	a	smart	object	network.
	

	
12.1.2	One-to-many	Communication
The	 one-to-many	 communication	 pattern	 (Figure	 12.2)	 is	 used	 for	 sending

messages	from	one	node	to	several	other	nodes	and	possibly	all	other	nodes	 in
the	network.	This	can	be	used,	for	example,	for	sending	a	command	to	a	set	of
nodes	in	the	network.

Figure	12.2	One-to-many	communication	in	a	smart	object	network.
	

There	are	 several	 forms	of	one-to-many	communication.	Depending	on	 the
situation	in	which	the	communication	pattern	is	used,	the	required	reliability	of
the	 message	 delivery	 is	 different.	 If	 high	 reliability	 is	 required,	 the
communication	 protocol	 must	 be	 able	 to	 retransmit	 the	 messages	 until	 every
receiver	has	successfully	received	it.	If	reliability	is	not	a	hard	requirement,	the
protocol	may	not	need	 to	 retransmit	 any	messages:	 the	protocol	hopes	 that	 the
underlying	communication	medium	is	reliable	enough	for	the	message	to	reach
the	receivers.

Many	 mechanisms	 and	 protocols	 have	 been	 designed	 to	 perform	 one-to-
many	communication	 in	 low-power	 radio	networks.	The	simplest	 form	of	one-
to-many	communication	is	network	flooding.	This	is	done	by	having	each	node
broadcast	 the	message	 to	 be	 sent.	When	 a	 node	 hears	 a	 broadcasted	message
from	 a	 neighbor,	 the	 node	 rebroadcasts	 the	message	 to	 its	 own	 neighbors.	 To
avoid	cross-talk,	each	node	waits	for	a	random	interval	before	rebroadcasting	the
message.	The	effect	of	this	mechanism	is	that	the	message	eventually	reaches	all
nodes	in	the	network,	unless	messages	are	lost	because	of	radio	disturbances	or



radio	collisions.
Although	 a	 network	 flood	 may	 work	 well	 in	 many	 situations,	 it	 is	 not	 a

reliable	 mechanism.	 There	 are	 no	 guarantees	 that	 messages	 sent	 with	 the
mechanism	reach	their	destinations.	Messages	that	are	lost	due	to	disturbance	or
collisions	 are	 not	 retransmitted.	 To	 achieve	 reliable	 one-to-many
communication,	 the	 communication	 protocol	 must	 detect	 lost	 messages	 and
retransmit	them.

Trickle	[159]	is	a	reliable	one-to-many	communication	mechanism	explicitly
designed	 for	 low-power	 radio	 networks.	 It	 uses	 periodic	 retransmissions	 to
ensure	that	lost	messages	are	retransmitted.	To	avoid	overloading	the	radio	with
too	 many	 transmissions,	 the	 protocol	 provides	 a	 mechanism	 to	 reduce	 the
number	 of	 messages	 that	 are	 sent.	 By	 assigning	 each	 message	 a	 sequence
number,	the	protocol	knows	which	nodes	have	received	a	message.	If	a	node	is
heard	 sending	an	old	 sequence	number,	 any	of	 its	 neighbors	 can	 retransmit	 its
latest	message	to	the	node	with	the	old	sequence	number,	ensuring	that	the	latest
message	is	made	known	to	all	nodes.

One-to-many	 communication	 is	 also	 used	 in	 routing	 protocols	 to	 establish
one-to-one	communication	paths.	For	example,	 the	one-to-one	AODV	protocol
[194]	uses	a	one-to-many	phase	to	find	a	path	to	the	communication	end	point.
	
12.1.3	Many-to-one	Communication
Many-to-one	communication	(Figure	12.3)	occurs	frequently	in	smart	object

networks	 that	 collect	 data	 from	 the	 nodes.	 In	 many-to-one	 communication,
several	nodes	 send	data	 toward	a	 single	node.	This	node	 is	often	called	a	 sink
node.

Figure	12.3	Many-to-one	communication	in	a	smart	object	network.
	



Many-to-one	 communication	 can	 be	 used	 to	 collect	 sensor	 data,	 such	 as
temperature	 data,	 from	 the	 nodes	 in	 the	 network,	 but	 it	 can	 also	 be	 used	 for
network	health	 status	 information.	Nodes	send	periodic	 status	 reports	 to	a	 sink
node.	The	sink	node	 then	reports	 the	overall	performance	of	 the	network	 to	an
outside	observer.

In	many-to-one	communication,	there	may	be	more	than	one	sink	inside	the
network.	If	the	application	does	not	specify	a	specific	node	to	which	the	data	are
to	 be	 sent,	 the	 network	may	 choose	 to	 send	 the	 data	 to	 the	 sink	 closest	 to	 the
sender.	This	 allows	networks	with	multiple	 sinks	 to	 collect	 data	with	 a	 higher
efficiency	than	if	all	data	had	to	be	transported	across	the	entire	network.

To	 set	 up	 a	 many-to-one	 communication	 network,	 the	 nodes	 build	 a	 tree
structure	with	 its	 root	 at	 the	 sink.	The	 sink	 announces	 its	 presence	by	 sending
repeated	broadcast	messages	 indicating	 that	 the	sender	 is	zero	hops	away	from
the	 sink	 node.	 Its	 neighbors	 hear	 the	 transmissions	 and	 transmit	 messages
indicating	 they	 are	 one	 hop	 away	 from	 the	 sink.	 In	 turn,	 their	 neighbors	 will
broadcast	that	they	are	two	hops	away	from	the	sink,	and	so	on.	With	this	simple
method,	every	node	in	the	network	will	eventually	know	how	many	hops	away
they	are	 from	 the	sink	and	which	of	 their	neighbors	 is	closer.	When	sending	a
packet,	a	node	only	has	to	send	it	to	a	node	that	is	closer	to	the	sink.

Although	the	hop-count-based	routing	path	construction	method	is	simple,	it
is	not	without	problems.	A	node	with	a	very	 short	number	of	hops	 to	 the	 sink
may	be	located	where	there	is	very	bad	radio	coverage,	while	a	node	with	more
hops	 to	 the	 sink	may	 be	 located	where	 there	 is	 very	 good	 radio	 coverage.	 To
reach	the	sink,	it	may	be	better	to	send	to	the	node	with	better	radio	coverage	but
with	more	hops	 to	 the	 sink,	because	 the	packet	has	 a	higher	 chance	of	getting
through	without	repeated	retransmissions.

To	account	for	radio	quality	in	addition	to	hop	count,	several	cost	metrics	for
many-to-one	routing	exist.	Woo	et	al.	[258]	explored	several	metrics	and	found
that	a	metric	based	on	how	many	 transmissions	are	expected	 is	a	good	choice.
This	metric,	called	expected	transmissions	(ETX)	[50],	computes	an	estimate	of
the	amount	of	 transmissions	and	retransmissions	needed	to	reach	the	sink	for	a
given	path.	When	sending	a	packet,	the	node	chooses	the	path	with	the	smallest
number	of	ETX.	Others	have	corroborated	this	finding[85,94].

The	 idea	 of	 ETX	 is	 best	 explained	with	 an	 example.	 Figure	 12.4	 shows	 a
network	of	five	nodes,	A	to	E.	Node	A	wants	to	send	a	message	to	node	E:	What
path	 should	 be	 taken?	 The	 path	A-B-E	 is	 two	 hops,	 and	 the	 path	A-C-D-E	 is
three	hops.	If	node	A	would	use	the	hop	count	as	a	routing	metric,	path	A-B-E
would	be	chosen.	An	ETX-based	routing	metric	takes	the	ETX	of	each	path	into
consideration.	 The	 expected	 number	 of	 transmissions	 depends	 on	 the



communication	quality	between	two	neighbors	and	can	be	estimated	by	sending
probe	packets	between	the	neighbors	and	counting	how	many	made	it	 through.
In	the	previous	example,	the	ETX	for	each	neighbor	pair	on	the	paths	is	already
estimated.	 The	 routing	 protocol	 computes	 the	 sum	 of	 all	 ETX	metrics	 for	 the
paths	to	form	a	routing	metric	to	the	destination.	In	this	case,	the	path	A-B-E	has
an	ETX	of	5.3,	which	means	that	on	average,	a	packet	sent	on	this	path	requires
5.3	 transmissions	 before	 it	 reaches	 its	 destination.	 The	 path	 A-C-D-E,	 on	 the
other	 hand,	 has	 an	 ETX	 of	 4.3,	 which	 is	 less	 than	 the	 path	 A-B-E.	 Thus	 the
routing	protocol	chooses	path	A-C-D-E,	which	has	a	lower	ETX,	even	if	 it	has
more	hops	than	the	path	A-B-E.

Figure	12.4	ETX	in	a	five-node	network.
	

The	Collection	Tree	Protocol	(CTP)	is	an	example	of	a	many-to-one	protocol
that	uses	ETX	for	setting	up	a	tree	network	[94].	In	CTP,	each	node	periodically
broadcasts	 its	 ETX	 toward	 the	 nearest	 sink	 node.	 To	 avoid	 overloading	 the
network,	 the	amount	of	broadcast	 is	reduced	through	a	suppression	mechanism
similar	to	that	of	Trickle	[159].

12.2	Physical	Communication	Standards
Next,	 we	 discuss	 three	 different	 physical	 communication	 mechanisms	 for

smart	 objects:	 two	 radio	 transmission	 mechanisms,	 IEEE	 802.15.4	 and	 IEEE
802.11,	 and	 PLC.	 The	 three	 mechanisms	 are	 different	 in	 many	 aspects,	 but
similar	 in	 others.	 Both	 IEEE	 802.15.4	 and	 IEEE	 802.11	 are	 wireless	 radio
mechanisms.	 PLC	 is	 inherently	 wired,	 as	 it	 uses	 physical	 power	 lines	 as	 its
physical	 medium.	 Nevertheless,	 all	 three	 mechanisms	 operate	 over	 an
unpredictable	physical	transmission	medium	and	must	be	prepared	to	deal	with
data	loss.

From	 a	 networking	 standpoint,	 the	 most	 important	 difference	 between	 the
three	mechanisms	is	the	range	of	physical	signals.	IEEE	802.15.4	is	a	relatively
short-range	transmission	mechanism	with	individual	radio	signals	reaching	only



a	few	meters.	IEEE	802.11	has	a	 longer	physical	range,	sometimes	as	much	as
several	 hundred	 meters.	 Finally,	 PLC	 has	 a	 physical	 transmission	 range
determined	 by	 the	 length	 of	 the	 physical	 cables	 through	which	 the	 signals	 are
propagated	and	by	the	impedance	of	the	loads	connected	to	the	wire.

The	 physical	 range	 has	 implications	 for	 network	 formation.	 In	 a	 PLC
network,	 all	 nodes	 connected	 to	 the	 same	 physical	 network	 have	 the	 same
connectivity	to	other	nodes	as	long	as	no	node	is	physically	disconnected	from
the	cable.	In	contrast,	IEEE	802.15.4	nodes	must	be	prepared	for	the	network	to
dynamically	 change	 as	 nodes	 move	 or	 when	 the	 physical	 transmission
environment	 changes.	 IEEE	 802.11	 has	 similar	 properties,	 but	 they	 are	 not	 as
pronounced	because	of	its	longer	physical	range.

Because	 of	 its	 short	 range,	 IEEE	 802.15.4	 networks	 need	 a	 routing
mechanism	to	provide	a	mesh	network.	Nodes	must	be	prepared	to	relay	traffic
from	neighbor	 nodes	 to	 other	 nodes	 in	 the	 network,	 because	 the	 nodes	 cannot
directly	reach	all	other	nodes.	In	PLC,	individual	nodes	do	not	need	to	route	data
to	each	other	because	all	nodes	reach	each	other	directly,	but	nodes	may	need	to
route	data	to	nodes	on	other	networks.	For	802.11,	most	802.11	networks	have
access	points	that	are	connected	to	each	other.	Therefore,	the	nodes	themselves
do	not	have	to	relay	data	 to	each	other,	but	can	send	data	 to	nodes	with	which
they	have	no	direct	connection	to	the	nearest	access	point.

	
12.3	IEEE	802.15.4
IEEE	802.15.4	 is	 a	 standard	 radio	 technology	 for	 low-power,	 low-data-rate

applications	[100].	The	standard	has	been	developed	within	the	802.15	personal
area	 network	 (PAN)	 Working	 Group	 within	 the	 Institute	 of	 Electrical	 and
Electronics	 Engineers	 (IEEE).	 IEEE	 802.15.4	 has	 a	 maximum	 data	 rate	 of
250,000	bits/s	and	a	maximum	output	power	of	1	mW.	IEEE	802.15.4	devices
have	a	nominal	range	on	the	order	of	a	few	tens	of	meters.	The	focus	of	the	IEEE
802.15.4	 specification	 is	 to	 allow	 low-cost	 and	 low-complexity	 transceivers,
which	 has	 made	 IEEE	 802.15.4	 popular	 for	 smart	 objects.	 Many	 companies
manufacture	IEEE	802.15.4-compliant	devices.

Because	 of	 the	 ubiquity	 of	 IEEE	 802.15.4	 and	 of	 the	 availability	 of	 IEEE
802.15.4-compliant	 radio	 transceivers,	 many	 of	 the	 recently	 developed	 low-
power	radio	stacks	are	built	on	IEEE	802.15.4:	WirelessHART,	ISA100a,	IPv6,
and	ZigBee.

The	IEEE	802.15.4	standard	specifies	two	layers:

•	Physical:	Specifies	how	messages	are	transmitted	and	received	over	the
physical	radio	medium.



•	Media	access	control	(MAC):	Specifies	how	messages	coming	from	the
physical	layer	are	handled.

	
Although	 the	 IEEE	 802.15.4	 standard	 specifies	 several	mechanisms	 in	 the

physical	and	MAC	layers,	not	all	parts	of	the	specification	are	widely	used.	For
example,	 the	WirelessHART	standard	uses	 the	physical	 layer	 specification	and
the	MAC	 layer	 packet	 header	 format,	 but	 not	 the	 full	MAC	behavior.	 Instead,
WirelessHART	adds	its	own	logic	on	top	of	the	MAC	format.

The	 maximum	 packet	 size	 in	 802.15.4	 is	 127	 bytes.	 Packets	 are	 small
because	IEEE	802.15.4	is	intended	for	devices	with	low	data	rates.	Because	the
MAC	 layer	 adds	 a	 header	 to	 each	 packet,	 the	 available	 amount	 of	 data	 for	 an
upper	 layer	 protocol	 or	 application	 is	 between	 86	 and	 116	 bytes.	 Upper	 layer
protocols,	therefore,	often	add	mechanisms	to	fragment	larger	data	portions	into
multiple	802.15.4	frames	[176].

IEEE	802.15.4	 is	 typically	 implemented	 in	 a	 combination	of	 hardware	 and
software.	 The	 low-level	 parts	 —	 the	 physical	 layer	 and	 parts	 of	 the	 MAC
processing	—	are	implemented	in	hardware,	whereas	the	higher-level	parts	such
as	the	MAC	layer	logic	are	implemented	in	software.	Several	implementations	of
the	standard	exist.

IEEE	 802.15.4	 networks	 are	 divided	 into	 PANs	 as	 shown	 in	 Figure	 12.5.
Each	PAN	has	a	PAN	coordinator	and	a	set	of	PAN	members.	Packets	sent	over
a	PAN	carry	 a	 16-bit	 PAN	 identifier	 that	 specifies	 to	what	PAN	 the	 packet	 is
destined.	 A	 device	 can	 participate	 in	 one	 PAN	 as	 the	 PAN	 coordinator	 and
simultaneously	participate	as	a	PAN	member	in	another	PAN.

Figure	12.5	An	IEEE	802.15.4	network	with	FFDs	shown	as	dark	dots	and



RFDs	shown	as	hollow	dots.	Two	of	the	FFDs	are	PAN	coordinators	in	the	two
PANs,	shown	as	dotted	circles.	The	right	PAN	contains	two	FFDs,	but	only	one
is	the	PAN	coordinator.
	

The	IEEE	802.15.4	standard	specifies	two	types	of	devices:	fully	functional
devices	 (FFDs)	 and	 reduced	 function	 devices	 (RFDs).	 FFDs	 are	more	 capable
than	RFDs,	and	can	act	as	PAN	coordinators.	RFDs	are	simpler	devices	intended
to	be	 easier	 to	 implement,	making	 them	 less	 costly	 to	manufacture.	RFDs	 can
only	 communicate	 with	 FFDs.	 FFDs	 can	 communicate	 with	 both	 FFDs	 and
RFDs.

Although	the	802.15.4	specification	defines	three	types	of	network	structures
that	802.15.4	supports	—	star	topology,	mesh	topology,	and	cluster	tree	topology
—	most	of	the	protocols	that	operate	on	top	of	802.15.4	do	not	use	the	802.15.4
topologies.	 Instead,	 they	 build	 their	 own	 network	 topologies	 on	 top	 of	 the
802.15.4	MAC	layer.	For	that	reason,	we	do	not	go	into	detail	into	the	network
topologies	defined	by	802.15.4.

12.3.1	802.15.4	Addresses
Each	 node	 in	 an	 802.15.4	 network	 has	 a	 64-bit	 address	 that	 uniquely

identifies	 the	device.	Because	of	 the	 limited	packet	 size	 in	802.15.4,	 however,
the	 length	 of	 the	 64-bit	 addresses	 is	 prohibitive.	 Therefore,	 802.15.4	 allows
nodes	to	use	short	addresses	that	are	16	bits	long.	Short	addresses	are	assigned
by	the	PAN	coordinator	and	are	valid	only	within	the	context	of	a	PAN.	Nodes
may	choose	to	send	packets	using	either	of	the	two	address	formats.

Addresses	 are	 written	 as	 hexadecimal	 digits	 separated	 by	 colons.	 An
example	of	a	long	802.15.4	address	is	00:12:75:00:11:6e:cd:fb.	Figure	12.6	is	an
example	of	two	802.15.4	addresses,	one	long	and	one	short.

Figure	 12.6	 IEEE	802.15.4	 supports	 two	 addressing	 formats:	 long	 (64-bit)
addresses	and	short	(16-bit)	addresses.
	



Long	addresses	are	globally	unique	and	each	802.15.4	device	is	assigned	an
address	 when	 manufactured.	 Each	 manufacturer	 requests	 a	 24-bit,	 unique
organizational	 unique	 identifier	 (OUI)	 from	 the	 IEEE.	 For	 this,	 the	 requesting
organization	pays	a	one-time	fee	of	$1650	to	the	IEEE.	The	OUI	is	used	as	the
first	24	bits	of	the	address	of	the	device.	The	remaining	40	bits	are	assigned	by
the	manufacturer	and	must	be	unique	for	each	device.

Short	 addresses	 are	 assigned	 at	 runtime	 by	 the	 PAN	 coordinator.	 A	 short
address	is	valid	only	within	the	PAN	in	which	it	was	assigned.	Nevertheless,	it	is
possible	for	a	device	with	a	short	address	to	communicate	with	devices	outside
of	its	own	PAN	by	including	the	16-bit	PAN	identifiers	of	its	own	PAN	and	the
PAN	 of	 the	 device	 with	 which	 it	 communicates	 in	 each	 message.	 The	 IEEE
802.15.4	standard	does	not	specify	any	particular	algorithm	to	be	used	by	a	PAN
coordinator	when	assigning	unique	short	addresses	within	the	PAN.
	
12.3.2	The	802.15.4	Physical	Layer
The	 physical	 layer	 determines	 the	 physical	 radio	 frequency	 at	 which	 the

radio	 operates,	 the	 radio	 modulation,	 and	 the	 encoding	 of	 the	 signal.	 IEEE
802.15.4	operates	on	three,	license-free	radio	frequency	bands.	Because	of	local
radio	regulations,	the	exact	frequency	is	different	in	different	parts	of	the	world.
In	 the	United	 States,	 IEEE	 802.15.4	 uses	 the	 902–928	MHz	 band.	 In	 Europe,
802.15.4	uses	the	868–868.8	MHz	band.	In	the	rest	of	the	world,	802.15.4	uses
the	2400–2483.5	MHz	band.

IEEE	 802.15.4	 defines	 26	 different	 operational	 channels.	 Within	 each
frequency	 band,	 there	 are	 several	 channels	 defined,	 as	 shown	 in	 Figure	 12.7.
Channel	 0	 is	 defined	 only	 in	 Europe,	 and	 resides	 on	 the	 868	 MHz	 band.
Channels	 1	 to	 10	 are	 defined	 only	 in	 the	United	 States	 on	 the	 902–982	MHz
band.	The	channel	spacing	is	2	MHz.



Figure	12.7	IEEE	802.15.4	defines	26	physical	radio	channels.
	

Channels	 11	 to	 26	 are	 defined	 on	 the	 2.4	 GHz	 band,	 which	 makes	 them
available	everywhere.	The	channels	are	defined	with	5	MHz	channel	spacing.

IEEE	802.15.4	uses	two	types	of	radio	modulation,	depending	on	the	channel
frequency.	 Channels	 0	 to	 10	 use	 binary	 phase-shift	 keying	 (BPSK),	 whereas
channels	11	 to	26	use	quadrature	phase-shift	 keying	 (QPSK).	On	all	 channels,
IEEE	802.15.4	uses	direct-sequence	spread	spectrum	(DSSS)	modulation.

Like	the	modulation	technique,	the	bit	rate	is	dependent	on	the	radio	channel.
The	bit	 rate	of	 channel	 0	 is	 20,000	bits/s.	For	 channels	1	 to	10,	 the	bit	 rate	 is
40,000	bits/s,	and	for	channels	11	to	26	the	bit	rate	is	250,000	bits/s.

The	 IEEE	 802.15.4	 radio	 channels	 in	 the	 2.4	 GHz	 band	 share	 their	 radio
frequency	with	802.11	(WiFi)	and	have	a	considerable	overlap	with	the	802.11
channels.	 Because	 802.11	 has	 a	 significantly	 higher	 output	 power,	 802.11
disturbs	 802.15.4	 traffic.	 Figure	 12.8	 shows	 the	 overlap	 between	802.15.4	 and
802.11.	All	802.15.4	channels	except	channels	25	and	26	are	covered	by	802.11
channels.	When	the	non-overlapping	802.11	channels	1,	6,	and	11	are	used,	there
are	 two	 additional	 802.15.4	 channels	 (15	 and	 20)	 that	 do	 not	 see	 interference
from	 802.11	 traffic.	 Channel	 assignments	 are,	 however,	 subject	 to	 variations
within	different	jurisdictions	and	may	change	over	time.

Figure	 12.8	 IEEE	 802.15.4	 channels	 11–24	 overlap	 the	 802.11	 channels.
Channels	 25	 and	 26	 are	 not	 covered	 by	 802.11	 channels.	 When	 the	 non-
overlapping	 802.11	 channels	 1,	 6,	 and	 11	 are	 used,	 two	 additional	 802.15.4
channels	are	undisturbed	by	802.11.
	

The	physical	layer	also	provides	mechanisms	to	measure	the	radio	energy	for
a	 given	 radio	 channel.	This	 is	 used	by	 the	MAC	 layer	 to	 determine	 if	 another
node	may	be	transmitting	on	a	particular	channel,	and	by	the	MAC	coordinator
to	 scan	 for	 available	channels	with	a	 low	 idle	energy	 level.	A	 low	 idle	energy



level	 is	 an	 indication	 of	 low	 interference	 from	 other	 radio	 sources	 on	 the
frequency	of	the	channel.

The	radio	energy	detection	mechanism	is	also	used	to	provide	a	clear	channel
assessment	 (CCA)	mechanism,	 where	 the	 physical	 layer	 can	 assess	 if	 another
node	is	currently	transmitting	over	the	radio.	This	is	done	in	one	of	three	ways:
by	 measuring	 the	 radio	 energy	 and	 comparing	 it	 with	 a	 predefined	 energy
threshold,	 by	 demodulating	 the	 incoming	 radio	 signal	 to	 see	 if	 it	 is	 a	 valid
802.15.4	signal,	or	by	a	combination	of	 the	radio	energy	detection	method	and
the	 signal	modulation	method.	The	CCA	 is	 used	by	 the	MAC	 layer	 to	 control
access	to	the	radio	medium.

12.3.3	MAC	Layer
The	 purpose	 of	 the	MAC	 layer	 is	 to	 control	 access	 to	 the	 radio	 medium.

Because	 the	 radio	medium	 is	 shared	 between	 all	 senders	 and	 receivers	 in	 the
vicinity	 of	 each	 other,	 the	MAC	 layer	 provides	 mechanisms	 for	 the	 nodes	 to
determine	when	the	medium	is	idle	and	when	it	is	safe	to	send	messages.

The	 IEEE	 802.15.4	 MAC	 layer	 provides	 channel	 access	 management,
validation	 of	 incoming	 frames,	 and	 acknowledgment	 of	 frame	 reception.
Additionally,	 the	 802.15.4	 MAC	 provides	 optional	 mechanisms	 for	 a	 time-
division	multiple	access	(TDMA)	mechanism	for	medium	access	where	the	PAN
coordinator	assigns	time	slots	 to	PAN	devices	and	enforces	a	schedule	through
the	transmission	of	beacon	messages.	This	beacon	mode	is,	however,	not	widely
used	 by	 the	 protocols	 running	 on	 top	 of	 802.15.4,	 therefore,	 it	 warrants	 no
further	discussion.

Channel	access	management	is	done	by	using	the	CCA	mechanism	provided
by	the	physical	layer.	Before	sending	a	packet,	the	MAC	layer	asks	the	physical
layer	 to	 perform	 a	 CCA	 check.	 If	 the	 CCA	 indicates	 that	 another	 node	 is
currently	 transmitting,	 the	 MAC	 layer	 refrains	 from	 sending	 its	 own	 packet.
Instead,	 the	MAC	 layer	waits	 for	 a	 specified	 time	and	 later	 retries	 sending	 the
packet.

The	MAC	layer	performs	validation	of	incoming	frames	by	computing	a	16-
bit	cyclic	redundancy	check	(CRC)	of	the	entire	frame	[132].	The	CRC	is	used
to	check	for	 transmission	errors	 in	 the	frame	and	is	computed	by	the	sender	of
the	frame	as	the	frame	is	sent.	It	is	added	to	the	transmitted	packets.	If	the	CRC
computed	 by	 the	 receiver	 does	 not	 match	 the	 CRC	 in	 the	 frame	 footer,	 the
receiver	discards	the	frame.

The	 MAC	 layer	 provides	 a	 mechanism	 for	 automatic	 acknowledgment	 of
received	frames.	If	an	incoming	frame	has	the	acknowledgment	bit	set,	the	MAC
layer	sends	an	acknowledgment	frame	into	the	air.	The	acknowledgment	frame
is	sent	only	if	 the	destination	address	of	the	incoming	frame	is	 the	same	as	the



address	 of	 the	 device,	 and	 if	 the	 CRC	 of	 the	 incoming	 frame	 is	 valid.	 The
acknowledgment	 frame	 is	 not	 explicitly	 addressed	 to	 the	 sender	 of	 the	 data
frame,	 but	 is	 broadcast	 to	 all	 nodes.	Because	 of	 this,	many	 of	 the	 upper	 layer
protocols	 running	 on	 top	 of	 802.15.4	 implement	 their	 own	 acknowledgment
mechanisms.

12.3.4	The	802.15.4	Frame	Format
Communication	protocols	specify	a	common	packet	format	so	that	all	nodes

know	how	to	construct	and	parse	packets	from	others.	Packet	formats	consist	of
three	parts:	 a	header,	 a	data	portion,	 and	a	 footer.	The	header	 contains	 control
data	such	as	addresses,	sequence	numbers,	and	flags.	The	data	portion	contains
the	 upper	 layer	 data.	 Therefore,	 the	 structure	 of	 the	 data	 portion	 is	 typically
unspecified,	but	left	to	the	upper	layer	protocols	for	specification.	The	footer,	if
specified,	usually	contains	checksums	or	cryptographic	signatures.	Such	data	can
often	be	computed	while	the	packet	is	transmitted.	The	footer	is	then	sent	after
the	rest	of	the	packet	has	been	sent.

IEEE	802.15.4	defines	a	common	packet	format	for	all	packet	transmissions.
The	packet	format	consists	of	both	a	physical	layer	part	and	a	MAC	layer	part.
The	 physical	 layer	 adds	 a	 synchronization	 header	 and	 the	MAC	 layer	 adds	 a
header	and	a	footer.	The	header	format	is	shown	in	Figure	12.9.

Figure	 12.9	 The	 IEEE	 802.15.4	 physical	 layer	 and	 MAC	 layer	 header
formats.
	

The	 header	 added	 by	 the	 physical	 layer	 consists	 of	 a	 preamble,	 a	 start	 of
frame	delimiter	(SFD),	and	a	length	field.	The	preamble	is	used	to	synchronize
the	sender	and	the	receiver	so	the	receiver	is	able	to	correctly	receive	the	packet
that	follows.	The	SFD	indicates	to	the	receiver	that	 the	preamble	ends	and	that
the	frame	begins.	The	single-byte	length	field	tells	the	receiver	how	many	bytes
will	follow.	The	maximum	length	of	the	packet	that	follows	is	127	bytes.



The	MAC	layer	header	follows	directly	after	the	physical	layer	header.	The
MAC	 layer	 header	 contains	 two	 control	 bytes,	 called	 the	 frame	 control,	 that
contain	flags	that	tell	the	receiver	how	to	interpret	the	rest	of	the	header	as	well
as	flags	to	indicate	whether	or	not	the	frame	should	be	acknowledged.	Following
the	frame	control	bytes	is	a	single-byte	sequence	number.	The	sequence	number
is	 used	 to	 associate	 acknowledgments	with	 the	 data	 packet	 they	 acknowledge.
The	acknowledgment	carries	the	same	sequence	number	as	the	data	packet.

After	the	frame	control	and	sequence	number	bytes	are	the	addressing	fields.
They	 contain	 the	 address	 of	 the	 sender	 of	 the	 packet	 and	 the	 address	 of	 the
receiver	of	 the	packet	as	well	as	 identifiers	of	 the	sending	and	 receiving	PAN.
All	 addressing	 fields	 are	 optional.	 Their	 presence	 is	 indicated	 by	 flags	 in	 the
frame	control	field.	The	addressing	fields	are	used	by	a	receiver	to	determine	if	a
received	packet	is	destined	for	itself	or	not.	The	addressing	field	is	followed	by
an	optional	 security	 field	 that	contains	data	 for	 security	processing,	 such	as	an
optional	cryptographic	message	integrity	check	(MIC)	field.

The	data	follow	the	MAC	layer	header,	and	can	be	between	86	and	116	bytes
long.	The	maximum	size	of	the	data	is	determined	by	how	many	optional	MAC
layer	fields	are	used.	The	structure	of	 the	data	portion	of	 the	802.15.4	frame	is
not	 specified	 by	 the	 802.15.4	 standard,	 but	 defined	 by	 the	 protocols	 or
applications	running	on	top	of	802.15.4.

At	the	end	of	the	802.15.4	packet	is	the	frame	check	sequence	(FCS)	footer,
which	contains	the	CRC	that	the	MAC	layer	uses	to	check	if	incoming	packets
should	be	discarded	due	to	bit	errors.

12.3.5	Power	Consumption
The	power	consumption	of	IEEE	802.15.4	is	determined	by	the	current	draw

of	 the	electrical	circuits	 that	 implement	 the	physical	communication	 layer,	 and
by	the	amount	of	time	during	which	the	radio	is	turned	on.	As	shown	in	Chapter
11,	 there	 are	 several	 ways	 a	 radio	 can	 be	 switched	 off	 while	 maintaining
communication	 abilities.	 Figure	 12.10	 shows	 the	 power	 consumption	 of	 the
electrical	circuitry	of	the	CC2420	IEEE	802.15.4	transceiver,	as	reported	by	the
CC2420	 data	 sheet.	 It	 shows	 that	 the	 idle	 power	 consumption	 is	 significantly
lower	than	both	the	listen	and	the	transmit	power	consumption.	In	the	idle	mode,
however,	the	transceiver	is	not	able	to	receive	any	data.	The	power	consumption
in	the	transmit	modes	is	lower	than	the	power	consumption	in	listen	mode.	The
power	consumption	of	the	transmit	mode	depends	on	the	output	power,	which	is
configurable	via	software	on	a	per-packet	basis.



Figure	12.10	The	power	consumption	of	 the	CC2420	 IEEE	802.15.4	 radio
transceiver.
	

12.4	IEEE	802.11	and	WiFi
IEEE	802.11	is	a	wireless	communication	standard	originally	designed	as	a

high-speed,	 short-range	 communication	 mechanism	 for	 laptops	 and	 general
purpose	PCs.	IEEE	802.11	was	introduced	in	the	late	1990s	and	several	versions
of	the	standard	have	been	released	since	its	 inception.	Each	new	version	of	the
standard	has	enabled	a	higher	transmission	rate.	The	first	version	of	the	standard,
which	was	released	in	1997,	has	a	maximum	transmission	rate	of	1	Mbit/s.	The
latest	version	of	the	standard,	802.11g,	has	a	maximum	transmission	rate	of	54
Mbits/s.

WiFi	is	a	brand	name	of	the	WiFi	Alliance.	The	purpose	of	the	WiFi	brand	is
to	 identify	 equipment	 and	 software	 that	 is	 compatible	 with	 other	 WiFi	 and
802.11	 systems.	 With	 early	 802.11	 equipment,	 it	 was	 not	 certain	 that	 this
equipment	from	different	vendors	would	interoperate	with	each	other.	With	the
WiFi	brand,	this	is	no	longer	an	issue.	In	this	book,	we	use	the	name	802.11	to
distinguish	 that	 we	 are	 discussing	 the	 underlying	 technology	 and	 not	 the
interoperability	aspects.

IEEE	 802.11	 and	 WiFi	 are	 used	 in	 many	 homes	 and	 offices	 to	 provide
wireless	 Internet	 connectivity.	Today’s	 laptops	have	 integrated	802.11	circuits.
802.11	 base	 stations	 are	 low	 cost	 and	 available	 worldwide.	 Many	 home
broadband	 routers	 and	 DSL	 modems	 contain	 an	 802.11	 base	 station.
Smartphones	 such	 as	 the	 iPhone	 contain	 802.11	 transceivers.	 It	 has	 been
estimated	that	the	number	of	802.11	devices	worldwide	by	2012	will	be	counted
in	billions.

For	 smart	 objects,	 802.11	 has	 many	 positive	 aspects.	 The	 widespread



adoption	of	802.11	makes	deployment	of	smart	objects	easy.	In	locations	where
an	 802.11	 network	 exists,	 no	 additional	 infrastructure	 is	 needed	 to	 support	 an
802.11	 smart	object	network.	Also,	 the	availability	of	802.11	chipsets,	 routers,
and	network	access	cards	reduces	the	cost	of	hardware	for	802.11-enabled	smart
objects.	Furthermore,	the	widespread	adoption	and	availability	of	802.11	has	led
to	 a	 widespread	 knowledge	 and	 understanding	 of	 802.11.	 For	 smart	 object
businesses,	 this	 provides	 a	 large	 market	 of	 skilled	 network	 architects	 and
engineers.

Because	802.11	was	designed	for	high-speed	transport	for	laptops	and	PCs,	it
has	 had	 a	 reputation	 for	 being	 power-hungry.	 Compared	 to	 802.15.4
transceivers,	 802.11	 transceivers	 typically	 have	 an	 order	 of	 magnitude	 higher
power	consumption.

For	 smart	 objects,	 power	 consumption	 is	 a	 critical	 issue.	 Traditionally,
802.11	has	been	seen	as	a	power-hungry	 technology	and	 therefore	not	deemed
useful	 for	 smart	 objects.	 Recently,	 however,	 a	 new	 generation	 of	 low-power
802.11	transceivers	has	emerged.	They	are	optimized	for	systems	that,	like	smart
objects,	spend	most	of	their	time	in	sleep	mode.	By	providing	significantly	lower
power	consumption	in	sleep	mode,	these	transceivers	extend	the	life	of	standard
AA	cell	batteries.

12.4.1	Network	Topology	and	Formation
IEEE	802.11	supports	two	modes	of	network	topology:	infrastructure	and	ad

hoc,	 also	 called	 independent	 (IBSS)	 mode.	 In	 infrastructure	 mode,	 all	 802.11
transceivers	 are	 in	 the	 direct	 range	 of	 an	 access	 point	 that	 handles	 all	 nodes
within	its	range.	In	ad	hoc	mode,	802.11	transceivers	can	communicate	directly
with	each	other,	without	 the	need	 for	 an	access	point	 in	 range.	Although	most
802.11	transceivers	support	the	ad	hoc	mode,	infrastructure	mode	is	mostly	used.

Figure	12.11	 is	 an	example	 topology	of	 an	802.11	network	 in	 access	point
mode.	 The	 network	 has	 two	 access	 points	 connected	 to	 a	 wired	 backbone
network.	 The	 access	 point	 is	 connected	 to	 mains	 power.	 Every	 802.11
transceiver	is	associated	with	one	of	the	access	points.	Communication	between
nodes	goes	through	the	access	points	or	directly	over	the	radio	medium.	If	nodes
are	in	range	of	each	other,	they	directly	communicate	with	each	other;	otherwise,
they	communicate	by	sending	their	packets	to	the	access	point	to	which	they	are
associated.	 Communication	 with	 outside	 networks	 always	 goes	 through	 the
access	point.



Figure	 12.11	 A	 network	 topology	 of	 802.11	 in	 access	 point	 mode.	 Each
802.11	transceiver	is	associated	with	an	access	point.	A	network	may	be	served
by	more	than	one	access	point.	The	access	points	typically	have	wired	network
access.
	

Before	 communication	 takes	 place	 in	 an	 infrastructure	 mode	 network,	 the
nodes	must	associate	themselves	with	the	access	point.	A	set	of	nodes	and	their
access	point	are	called	a	basic	service	set	(BSS).	If	more	than	one	access	point	is
involved,	 the	 set	of	nodes	and	access	points	are	called	an	extended	service	 set
(ESS).	A	service	 set	has	a	 service	 set	 identifier	 (SSID)	associated	with	 it.	The
SSID	is	typically	a	human-readable	textual	string.	The	string	is	typically	called
the	network	name	or	the	network	ID.

To	join	a	network,	a	node	first	probes	for	available	SSIDs.	The	scan	can	be
either	active	or	passive.	With	an	active	scan,	the	node	broadcasts	a	probe	request
packet.	The	probe	request	can	contain	an	SSID,	in	case	the	node	wants	to	join	a
particular	 network,	 or	 it	 can	 contain	 a	 blank	 SSID,	 in	 case	 the	 node	wants	 to
probe	any	available	network.	The	access	points	 reply	 to	 the	node	with	a	probe
response	packet.	 It	contains	 the	configuration	parameters	for	 the	network,	such
as	what	channels	 the	network	uses.	When	a	node	has	found	a	suitable	network
with	which	to	associate,	the	node	first	must	authenticate	itself	to	the	network.	If
the	 authentication	 request	 is	 accepted	 by	 the	 access	 point,	 the	 node	 sends	 an
association	request	frame	to	it.	The	access	point	replies	with	an	association	reply
frame,	and	the	node	is	associated	with	the	network.
	
12.4.2	Physical	Layer
Most	 IEEE	 802.11	 networks	 use	 the	 license-free	 2.4	GHz	 band,	 but	 other

radio	frequencies	are	defined	by	the	standards.	The	original	802.11	specification,
first	 published	 in	 1997,	 provided	 two	 versions	 of	 the	 radio	 layer:	 one	 for
frequency	hopping	and	one	for	DSSS.	Later,	other	physical	layers	emerged	such
as	 802.11a,	 802.11b,	 and	 802.11g,	 which	 use	 more	 elaborate	 modulation



mechanisms	and	achieve	higher	speeds.
In	 the	 2.4	GHz	band,	 IEEE	802.11	operates	 on	 14	 different	 physical	 radio

channels	as	shown	in	Figure	12.12.	Channels	12,	13,	and	14	are	not	available	in
every	country,	most	notably	Japan,	because	a	larger	part	of	the	2.4	GHz	band	is
available	due	to	radio	frequency	licensing.	The	14	channels	are	not	completely
separated,	 but	 have	 considerable	 overlaps.	 Channels	 1,	 6,	 and	 11	 are	 non-
overlapping	 and	 current	 best	 practice	 for	 802.11	 networks	 says	 that	 those
channels	should	be	used	whenever	possible.

Figure	12.12	IEEE	802.11	operates	on	14	different	channels	in	the	2.4	GHz
band.	 Channels	 1,	 6,	 and	 11	 do	 not	 overlap.	 Channels	 12,	 13,	 and	 14	 are	 not
available	in	every	country	due	to	radio	frequency	licensing	restrictions.
	

Several	bit	rates	are	supported	by	802.11.	Each	802.11	packet	is	sent	with	a
fixed	bit	rate,	but	the	bit	rate	may	differ	between	packets.	Transmitter–receiver
pairs	 with	 a	 good	 physical	 connection	 may	 negotiate	 a	 higher	 bit	 rate	 when
sending	packets	between	each	other.	To	be	compatible	with	older	versions	of	the
standard,	broadcast	packets	are	sent	with	a	lower	bit	rate	than	packets	addressed
to	a	specific	host.	This	ensures	that	even	older	transceivers	are	able	to	participate
in	a	network	of	802.11	devices,	but	also	allows	newer	devices	to	make	use	of	the
higher	speed	of	newer	transceivers.

12.4.3	MAC	Layer
The	 purpose	 of	 the	 802.11	 MAC	 layer	 is	 to	 control	 access	 to	 the	 radio

medium	to	ensure	that	 transmissions	from	different	nodes	do	not	 interfere	with
each	other.	The	802.11	MAC	 layer	 is	based	on	a	carrier	 sense	multiple	 access
with	 collision	 avoidance	 (CSMA/CA)	 scheme.	 Before	 sending	 a	 packet,	 each
node	listens	for	transmissions	from	other	nodes.	If	a	transmission	from	another
node	is	heard,	the	node	defers	its	own	transmission	for	a	random	period	to	allow
the	transmitting	node	to	complete	its	transmission.

The	802.11	MAC	layer	uses	positive	acknowledgments:	a	node	that	receives
a	 packet	 from	 another	 node	 must	 reply	 with	 the	 transmission	 of	 an



acknowledgment	packet.	The	purpose	of	the	acknowledgment	packet	is	to	let	the
sending	node	know	 that	 the	packet	was	 received.	 If	 the	sending	node	does	not
receive	the	acknowledgment	packet,	the	data	packet	is	perceived	to	be	lost.	Even
if	the	data	packet	was	successfully	received,	but	the	acknowledgment	packet	was
lost,	 the	data	packet	 is	deemed	 lost.	The	acknowledgment	process	 is	 shown	 in
Figure	12.13.

Figure	 12.13	 The	 IEEE	 802.11	MAC	 layer	 uses	 acknowledgment	 packets
that	inform	the	sender	that	a	packet	was	successfully	received	by	the	receiver.
	

In	wireless	communication,	the	so-called	hidden	node	problem	occurs	when
a	node	is	in	range	of	two	other	nodes,	but	the	two	other	nodes	are	not	in	range	of
each	 other.	 Because	 of	 this,	 these	 nodes	 may	 unknowingly	 interfere	 with
communication	of	the	first	node.

To	avoid	the	hidden	node	problem,	the	802.11	MAC	layer	offers	a	request	to
send/clear	 to	 send	 (RTS/CTS)	 mechanism.	 When	 a	 node	 is	 about	 to	 send	 a
packet,	 it	 broadcasts	 a	 request	 to	 send	 (RTS)	 message.	 The	 RTS	 message
contains	the	address	of	the	node	to	which	the	data	packet	is	to	be	sent.	When	the
receiving	node	hears	this	message,	it	replies	with	a	clear	to	send	(CTS)	message,
if	it	currently	is	possible	for	the	node	to	send	its	packet.	If	the	node	knows	that
another	 transmission	 is	 about	 to	 take	 place,	 the	 node	 does	 not	 send	 its	 CTS
message.	 The	 sending	 node	 sends	 its	 data	 packet	 only	 after	 hearing	 a	 CTS
message.	This	process	is	illustrated	in	Figure	12.14.



Figure	12.14	The	RTS/CTS	mechanism	of	the	802.11	MAC	layer.	To	send	a
packet,	a	node	first	sends	an	RTS	packet.	If	the	access	point	grants	the	request,	it
sends	a	CTS	packet	and	the	node	can	send	its	packet.
	

The	RTS	message	serves	a	dual	purpose.	First,	it	is	used	as	a	request	to	the
receiver	to	check	if	the	medium	is	clear	to	use.	Second,	it	tells	all	nearby	nodes
that	 a	message	 transmission	 is	 about	 to	 take	 place,	 and	 they	 should	 not	 try	 to
send	any	packet	before	this	transmission	has	ended.

12.4.4	Low-power	WiFi
The	widespread	adoption	and	the	low	cost	of	802.11	equipment	and	modules

make	802.11	a	compelling	choice	for	smart	objects.	Until	recently,	however,	the
power	consumption	of	802.11	components	has	been	prohibitive.	Because	802.11
was	designed	 for	 laptops	and	general	purpose	PCs,	where	 the	power	budget	 is
less	 restrictive	 than	 for	 a	 smart	 object,	 existing	 802.11	modules	 have	 required
too	much	power	to	be	usable	in	battery-powered	smart	objects.

Recently,	 however,	 a	 number	 of	 low-power	 802.11	 circuits	 have	 emerged
that	 enable	 battery-operated	 802.11	 devices.	 The	 low-power	 consumption	 of
these	devices	adds	several	years	of	operation	to	traditional	AA	cell	batteries.

Low-power	802.11	devices	not	only	improve	the	power	consumption	of	data
transmission	and	 reception,	but	more	 important,	 they	 significantly	 improve	 the
power	 consumption	 of	 the	 802.11	 device	 in	 sleep	 mode.	 Since	 smart	 objects
spend	most	of	their	time	in	sleep	mode,	even	a	small	improvement	to	the	sleep
mode	power	consumption	means	a	longer	battery	life.

In	 addition	 to	 reducing	 the	 power	 consumption	 of	 existing	 modes	 of	 the
802.11	module,	 low-power	802.11	modules	also	add	a	 low-power	mode	 that	 is
not	available	in	existing	802.11	modules.	This	mode	allows	the	device	to	switch



most	of	its	parts	off,	but	still	be	able	to	quickly	resume	operation	when	needed.
Figure	 12.15	 compares	 the	 power	 consumption	 of	 a	 conventional	 802.11

module	and	a	low-power	802.11	module.	Although	there	are	significant	savings
regarding	 transmission	 and	 reception	 power,	 the	 most	 important	 reduction	 in
power	 consumption	 is	 during	 sleep	 mode.	 Table	 12.1	 compares	 the	 power
consumption	 of	 the	 standby	 and	 sleep	 modes	 of	 a	 conventional	 802.11
transceiver	and	a	low-power	802.11	transceiver.	This	comparison	shows	that	the
power	consumption	in	sleep	mode	is	one	order	of	magnitude	lower	than	that	of	a
conventional	 802.11	 transceiver.	 In	 addition	 to	 the	 sleep	 node,	 the	 low-power
802.11	transceiver	also	has	a	standby	mode	where	the	transceiver	uses	one	tenth
of	the	power	it	does	in	sleep	mode.

Figure	 12.15	 Comparison	 of	 power	 consumption	 in	 transmit,	 receive,	 and
processing	mode	for	conventional	802.11	and	low-power	802.11.
	

Table	 12.1	 Power	 Consumption	 of	 Standby	 and	 Sleep	 Modes	 of	 a
Conventional	802.11	Transceiver	and	of	a	Low-power	802.11	Transceiver
	
	

	

	

	

	



	

	

	

	

	 Conventional	802.11	(mW) Low-power	802.11	(mW)
Standby	mode N/A 0.018
Sleep	mode 13 0.2
	
Note:	Conventional	802.11	transceivers	do	not	have	a	standby	mode.
The	difference	between	the	sleep	mode	and	the	standby	mode	is	how	fast	the

transceiver	 is	 able	 to	 wake	 up.	 In	 standby	 mode,	 most	 of	 the	 transceiver	 is
switched	off.	The	only	circuitry	that	is	switched	on	is	the	wake-up	module	and
the	rest	of	the	transceiver	is	switched	off,	consuming	no	power.

12.5	PLC
Smart	 objects	 do	not	 necessarily	need	 to	 communicate	over	 radio.	When	 a

wired	 infrastructure	 is	 available,	 it	 can	 also	 be	 used	 for	 smart	 object
communication.	 Even	 though	 a	 wireless	 system	 has	 many	 benefits	 regarding
extendibility,	range,	and	ease	of	deployment,	a	fixed	wired	infrastructure	can	be
more	economical.	This	is	particularly	true	if	the	fixed	infrastructure	is	already	in
place.

PLC	is	a	way	to	send	data	over	power	lines.	It	has	many	uses	ranging	from
long-range,	 high-speed	 broadband	 provisioning	 to	 homes	 and	 offices	 to	 home
automation.	For	 smart	objects,	PLC	 is	an	attractive	communication	 technology
because	of	the	widespread	availability	of	power	lines.	Moreover,	because	smart
objects	 need	 power	 to	 function,	 PLC	 has	 the	 potential	 to	 provide	 the	 smart
objects	with	power	and	communication.

Figure	12.16	shows	how	a	home	is	connected	with	PLC	over	its	power	lines.
Each	device	connected	 to	 the	 same	power	 line	can	also	use	 the	power	 line	 for
data	communication.	A	home	automation	system	can	use	the	network	to	switch
house	lights	on	and	off	and	to	send	a	message	to	the	home	owner	if	the	stove	is
turned	 on	 for	 an	 unusual	 amount	 of	 time.	 The	 TV	 can	 use	 the	 network	 to
download	movies	from	the	computer.



Figure	12.16	PLC	network	within	a	home.
	

With	PLC,	data	are	transported	across	the	50	or	60	Hz	electrical	distribution
network.	Because	 the	electrical	distribution	network	was	not	designed	 to	 carry
high-frequency	 data	 signals,	 the	 electrical	 equipment	 may	 add	 significant
amounts	of	noise	to	any	data	signals	transported	across	the	network.	Thus	PLC
transceivers	and	protocols	must	be	able	to	manage	data	loss.

PLC	 can	 be	 used	 to	 send	 data	 over	 long	 haul	 links	 such	 as	 for	 providing
broadband	 to	 homes,	 or	 over	 shorter	 distances,	 such	 as	 within	 a	 home	 or	 an
office	building.	Additionally,	PLC	has	been	used	for	automated	meter	reading	of
power	meters	in	homes.	PLC	can	also	be	used	to	control	street	lights	and	other
large-scale	electrical	networks.	PLC	for	short-range	communication	is	designed
only	to	communicate	within	one	electrical	domain	such	as	a	home	or	an	office
building,	because	the	modulated	data	signal	cannot	traverse	the	electrical	voltage
transformers	outside	the	electrical	domain.

There	are	several	specifications	and	standards	for	PLC,	both	for	broadband
connectivity	and	for	smart	object	applications.	Homeplug	[234]	is	a	specification
for	 PLC	 specifically	 targeted	 to	 home	 environments.	 It	 provides	 a	 15	Mbits/s
data	rate.	The	resulting	transmission	rate	is	similar	to	that	of	10	Mbits/s	802.11
[234].

X10	[227]	is	an	older	home	automation	mechanism	that	uses	power	lines	for
communication.	 It	 was	 developed	 in	 1975	 and	 today	 there	 are	many	 types	 of
X10	devices	available	ranging	from	light	bulbs	and	power	outlets	to	automated
vacuum	 cleaners	 and	 burglar	 alarms.	 X10	 devices	 communicate	 with	 a
transmission	rate	of	100–120	bits/s	and	a	resulting	data	rate	of	20	bits/s.	Bits	are
sent	 during	 the	 zero-crossings	 of	 the	 current	 on	 the	 alternating	 current	 (AC)



power	 lines.	 The	 X10	 protocol	 consists	 of	 short	 commands	 that	 can	 switch
devices	on	and	off,	dim	lights,	and	do	slightly	more	complex	processing	such	as
timer-based	 commands.	 Because	 of	 its	 low	 data	 rate,	 however,	 X10	 is	 not	 a
viable	communication	mechanism	for	general	smart	object	networks.

12.5.1	Physical	Layer
PLC	uses	the	copper	wire	in	the	power	lines	as	its	physical	medium.	Because

the	copper	wires	are	also	used	to	carry	a	high-power	AC	signal,	 they	are	noisy
for	 a	 physical	 medium	 for	 communication.	 To	 make	 matters	 worse,	 other
devices,	such	as	lamps,	household	appliances,	computers,	and	TV	sets,	 that	are
attached	to	the	same	power	distribution	network	interfere	in	unpredictable	ways.

Because	the	underlying	physical	medium	is	unreliable,	the	physical	layer	in
PLC	 communication	 stacks	 must	 provide	 a	 substantial	 amount	 of	 reliability.
Most	PLC	standards	use	combinations	of	error-robust	modulation,	strong	error-
detection	mechanisms,	 and	 automatic	 packet	 loss	 detection	 and	 retransmission
schemes.

Different	 PLC	 standards	 use	 different	 forms	 of	 modulation	 and	 carrier
frequencies	depending	on	 the	desirable	data	 rate.	Subsequently,	data	 rates	vary
from	hundreds	of	bits	per	second	to	millions	of	bits	per	second.	Higher	data	rates
typically	imply	shorter	distances.
	
12.5.2	MAC	Layer
Even	 though	PLC	 is	 a	wired	 technology,	 the	PLC	MAC	 layer	has	more	 in

common	with	wireless	MAC	layers	 than	with	wired	MAC	layers.	Wired	MAC
layers	 such	 as	 Ethernet	 often	 use	 CSMA/CD	 where	 packet	 collisions	 are
detected	and	handled	via	a	back-off	mechanism.	Such	collision	detection	builds
on	the	fact	that	Ethernet	transceivers	are	able	to	listen	to	incoming	signals	while
transmitting	their	own	signal.

PLC	transceivers	are	similar	to	wireless	radio	transceivers	in	that	they	cannot
listen	for	incoming	signals	while	transmitting	their	own	signals.	Therefore,	PLC
uses	CSMA/CA,	which	is	similar	to	IEEE	802.15.4	and	IEEE	802.11.	The	RPL
MAC	layer	also	provides	automatic	repeat	request	(ARQ)	mechanisms.

12.5.3	Power	Consumption
PLC	networks	always	have	access	to	power	because	they	are	connected	to	a

power	 source.	 Thus	 power	 consumption	 of	 the	 devices	 is	 not	 of	 the	 same
concern	 as	 for	 wireless	 radio	 devices.	 Nevertheless,	 achieving	 low-power
consumption	is	still	important	for	several	reasons.	First,	low-power	consumption
means	low	heat	emissions.	A	PLC	chip	embedded	in	a	device	should	not	heat	up
the	surrounding	system.	Second,	and	more	 important,	many	of	 the	applications
for	 PLC	 and	 smart	 object	 technology	 reduce	 power	 consumption	 of	 other



devices.	 An	 example	 of	 this	 is	 Smart	 Grid	 applications,	 where	 smart	 object
technology	 is	used	 to	 lower	 the	electricity	 consumption	of	homes,	offices,	 and
industrial	settings.	In	such	applications,	it	is	important	that	the	power	consumed
by	 the	 smart	 object	 devices	 is	 so	 low	 that	 the	 power	 savings	 incurred	 by	 the
smart	 object	 technology	 significantly	 outweighs	 the	 power	 consumed	 by	 the
smart	object	devices	themselves.

Modern	 PLC	 chipsets	 have	 a	 power	 consumption	 on	 the	 same	 order	 of
magnitude	as	wireless	 low-power	 radios.	For	example,	 the	Watteco	WPC	PLC
modem	chip	has	an	average	power	consumption	of	 less	 than	10	mW,	which	 is
similar	to	802.15.4	transceivers	and	lower	than	low-power	802.11	transceivers.

12.6	Conclusions
Smart	 objects	 communicate	 with	 each	 other,	 but	 the	 choice	 of

communication	 technology	 varies	 between	 different	 applications	 and	 different
environments.	 PLC	 is	 a	 viable	 communication	 technology	 for	 smart	 objects
deployed	 in	 environments	where	 power	 lines	 are	 present,	 such	 as	 homes,	 and
where	the	smart	objects	can	be	directly	connected	to	the	power	lines.	For	smart
objects	deployed	in	environments	without	a	fixed	infrastructure	of	network	links
or	power	lines,	low-power	radios	are	the	most	convenient	technology.

Both	radio	communication	and	PLC	suffer	from	communication	channels	of
varying	and	unpredictable	quality.	Communication	protocols	 running	on	 top	of
such	channels	must	be	able	to	repair	lost	packets	through	retransmissions.	Smart
object	 communication	 can	 be	 divided	 into	 three	 patterns:	 one-to-one,	 one-to-
many,	and	many-to-one.	Communication	protocols	may	employ	a	combination
of	patterns.

IEEE	 802.15.4	 is	 a	 low-power	 radio	 standard	 designed	 for	 low-data-rate
applications	such	as	smart	objects.	It	has	a	maximum	data	rate	of	250,000	bits/s
and	operates	over	a	set	of	 license-free	 radio	bands	 in	 the	868	MHz,	918	MHz,
and	2.4	GHz	ranges.	Packets	have	a	maximum	size	of	127	bytes.	Many	emerging
standards	 and	 specifications	 are	 built	 on	 top	 of	 802.15.4	 including
WirelessHART,	 ISA100a,	 6LoWPAN,	 and	 ZigBee.	 There	 are	 several
implementations	of	802.15.4	available,	both	in	hardware	and	as	a	combination	of
hardware	and	software.

Low-power	WiFi	 is	 emerging	 as	 a	 contender	 to	 IEEE	 802.15.4	 for	 smart
objects.	 The	 advantage	 of	 WiFi	 is	 the	 abundant	 availability	 of	 infrastructure.
Traditionally,	power	consumption	has	been	an	issue	for	WiFi,	but	with	the	latest
low-power	 chipsets,	 the	 power	 consumption	 of	 the	 sleep	mode	 is	 significantly
reduced.	 By	 applying	 mechanisms	 for	 radio	 duty	 cycling,	 the	 power
consumption	of	WiFi	may	soon	be	in	low	enough	for	smart	object	applications.

PLC	allows	data	 to	be	 transported	over	a	fixed	power	 line	 infrastructure.	 It



has	 several	 applications	 ranging	 from	 long	 haul	 broadband	 connectivity	 for
homes	to	home	automation.	Many	PLC	standards	exist,	with	data	rates	varying
from	a	few	bits	per	second	to	multi-megabit	per	second	transmissions.	For	smart
objects,	 PLC	 is	 a	 promising	 technology	 when	 smart	 objects	 are	 deployed	 in
homes,	 offices,	 and	 other	 places	 where	 a	 fixed	 power	 line	 infrastructure	 is
present.

	



Chapter	13	uIP	—	A	Lightweight	IP
Stack

	

IP	 was	 long	 believed	 to	 be	 too	 complex	 and	 heavyweight	 to	 be	 usable	 in
smart	 objects.	 The	 microcontrollers	 used	 in	 smart	 objects	 are	 constrained
regarding	memory	size	and	processing	power.	In	this	chapter,	we	dispel	the	myth
that	the	IPs	are	heavyweight	by	studying	the	open	source	uIP	IP	stack,	the	first
IP	stack	for	smart	objects.

To	communicate	using	the	IP,	a	device	needs	an	IP	stack.	This	is	a	software
system	 that	 implements	 the	 IP	 protocols	 enabling	 IP	 communication.	 Every
computer	on	the	Internet	runs	an	IP	stack.	They	are	part	of	all	general	purpose
operating	 systems	 such	 as	 Microsoft	 Windows,	 Linux,	 and	 Mac	 OS.	 Smart
objects	are,	however,	severely	memory-constrained	and	the	IP	stacks	in	general
purpose	 computers	 require	 comparatively	 large	 amounts	 of	 memory.	 For
example,	 the	 IP	 stack	 in	 Linux	 requires	 at	 least	 one	 megabyte	 of	 memory	 to
maintain	 memory	 buffers	 for	 incoming	 and	 outgoing	 data.	 In	 contrast,	 as	 we
discuss	 in	 Chapter	 11,	 a	 smart	 object	 typically	 has	 only	 a	 few	 kilobytes	 of
memory	available.

At	a	high	level,	the	activities	of	the	IP	stack	are	simple:	it	sends	and	receives
packets	from	the	communication	device	driver.	Applications	communicate	with
the	 IP	 stack	 either	 through	 the	 operating	 system	 or	 directly	with	 the	 IP	 stack.
When	a	packet	arrives	from	the	communication	device	driver,	the	IP	stack	parses
the	packet	headers	 in	 the	packet,	extracts	any	application	data	from	the	packet,
and	sends	the	data	up	to	the	application.	When	an	application	wants	to	send	data,
the	application	sends	 its	data	 to	 the	 IP	stack.	The	 IP	stack	puts	 the	application
data	into	a	packet,	creates	the	necessary	packet	headers,	and	sends	the	packet	to
the	 communication	 device	 driver	 for	 transmission	 over	 the	 communication
device.	 In	addition	 to	responding	 to	direct	 requests	from	the	application	and	 to
incoming	packets,	the	IP	stack	also	deals	with	periodic	protocol	processing	such
as	performing	retransmissions.

The	 uIP	 TCP/IP	 stack	 is	 an	 implementation	 of	 the	 IP	 stack	 specifically
designed	 to	 meet	 the	 strict	 memory	 requirements	 of	 smart	 objects	 and	 other
networked	 embedded	 systems	 [64].	 The	 first	 version	 of	 uIP	 was	 released	 in



September	 2001.	 It	 was	 released	 under	 a	 permissive	 open	 source	 license	 that
allows	the	software	to	be	used	freely	in	commercial	and	noncommercial	systems.
Since	its	first	release,	the	uIP	stack	has	seen	a	significant	industrial	adoption,	and
the	software	is	now	used	in	systems	and	products	such	as	oil	pipeline	monitoring
systems,	global	container	tracking	systems,	car	engines,	and	pico	satellites.

uIP	 is	 the	 principal	 IP	 communication	 component	 of	 the	Contiki	 operating
system.	Although	 the	uIP	 stack	can	be	used	as	a	 standalone	 software	package,
and	often	is	used	this	way,	its	continued	development	is	done	within	Contiki.

uIP	 has	 very	 low	 memory	 requirements.	 In	 its	 default	 configuration,	 it
requires	 only	 about	 one	 kilobyte	 of	 RAM	 and	 a	 few	 kilobytes	 of	 ROM.	 This
includes	the	IP,	ICMP,	UDP,	and	TCP	protocols.	The	specific	code	size	depends
on	 the	 processor	 on	which	 the	 uIP	 is	 used.	 It	 is	 possible	 to	 reduce	 the	 RAM
footprint	 further,	 but	 at	 the	 expense	 of	 standard	 compliancy.	 The	 smallest
configuration	requires	only	about	100	bytes	of	RAM,	but	such	a	configuration	is
not	 necessarily	 standard	 compliant.	 Also,	 the	 size	 of	 the	 memory	 footprint
affects	 the	 achievable	data	 throughput.	For	many	applications,	 however,	 a	 low
memory	footprint	is	more	important	than	a	high	throughput.

The	 uIP	 stack	was	 developed	 about	 one	 year	 after	 the	 release	 of	 the	 lwIP
stack	 [64].	The	 lwIP	stack	 is	designed	for	slightly	 larger	systems	 than	uIP	and
requires	 a	 larger	 amount	 of	 memory	 both	 for	 buffering	 and	 for	 storing	 the
executable	 code.	An	 lwIP	 installation	 typically	 requires	 about	 40	 kB	 of	RAM
and	20	kB	of	ROM.	The	benefit	of	 the	 lwIP	stack	is	 the	higher	performance	it
achieves	when	compared	to	the	uIP	stack.

The	uIP	stack	was	originally	designed	to	be	used	both	with	and	without	an
operating	system,	as	shown	in	Figure	13.1.	Today,	many	operating	systems	use
the	uIP	stack	for	IP	communication.	The	most	prominent	example	is	the	Contiki
operating	 system,	 which	 is	 also	 the	 current	 development	 platform	 for	 uIP.
FreeRTOS	provides	 a	 choice	 of	 either	 the	 uIP	 stack	 or	 its	 larger	 cousin	 lwIP.
TinyOS	 uses	 uIP	 for	 IPv4	 communication,	 but	 recently	 has	 included	 a
standalone	implementation	for	IPv6.



Figure	13.1	The	IP	stack	takes	care	of	the	communication.	Applications	can
either	use	 the	 IP	 stack	 through	 the	operating	 system	 (left)	 or	 directly	 interface
with	 the	 IP	 stack	 (right).	 The	 IP	 stack	 sends	 and	 receives	 packets	 from	 the
communication	device	driver.

	

The	uIP	stack	implements	the	network	and	transport	layer	protocols	of	the	IP
protocol	 family:	 IP,	 ICMP,	 UDP,	 and	 TCP.	 It	 was	 the	 first	 IP	 stack	 for
embedded	systems	to	fully	implement	the	TCP	protocol	 in	a	way	that	makes	it
fully	compatible	with	the	standards.

The	first	versions	of	the	uIP	stack	featured	only	IPv4	communication,	but	in
2008	Cisco	Systems	 extended	uIP	with	 IPv6	 capabilities.	 It	was	 developed	by
Julien	 Abeillé	 and	 Mathilde	 Durvy.	 The	 uIPv6	 stack	 was	 the	 first	 stack	 to
comply	with	all	the	IPv6	requirements,	which	enabled	it	to	use	the	IPv6	Ready
logo,	as	shown	in	Figure	13.2	[73].	The	uIPv6	extensions	were	also	released	as
open	 source	 software	 and	 added	 to	 the	 Contiki	 operating	 system,	 making	 it
widely	available.



Figure	 13.2	 uIP	 was	 the	 first	 IPv6	 stack	 for	 smart	 objects	 to	 be	 certified
under	the	IPv6	Ready	program.	Because	it	is	certified	as	IPv6	Ready,	it	may	use
the	IPv6	Ready	logo.

	

uIP	 uses	 three	methods	 to	 reduce	 code	 size	 and	memory	 usage:	 an	 event-
driven	 programming	 interface,	 an	 intentionally	 simple	 buffer	 management
scheme,	 and	 a	 memory-efficient	 TCP	 implementation.	 We	 return	 to	 these
mechanisms	after	looking	at	how	uIP	processes	incoming	and	outgoing	packets.

13.1	Principles	of	Operation
The	 principle	 of	 operation	 for	 the	 uIP	 stack	 is	 simple,	 as	 shown	 in	 Figure

13.3.	The	uIP	stack	does	 three	 things:	 it	processes	packets	 that	arrive	 from	the
communication	device	driver,	 it	processes	 requests	 from	the	application,	and	 it
does	periodic	processing.	The	uIP	forwarding	module	is	responsible	for	relaying
traffic	to	other	nodes.	The	forwarding	module	queries	a	routing	protocol	module
to	find	out	to	where	packets	should	be	relayed.

Figure	13.3	The	principle	of	operation	for	uIP.	Incoming	packets	are	passed
to	uIP	from	the	communication	device	driver.	After	uIP	has	finished	processing
the	data,	if	any,	the	packet	is	passed	to	the	corresponding	application.	Outgoing
data	pass	through	uIP,	which	adds	protocol	headers,	before	the	packet	is	passed
to	the	communication	device	driver	for	transmission.
	

Input	processing	starts	when	the	communication	device	driver	has	received	a
packet.	The	driver	calls	the	input	processing	function	of	uIP,	which	processes	the
headers	 of	 the	 incoming	 packet,	 determines	 if	 the	 packet	 contains	 application
data,	and	if	so	passes	the	data	to	the	application.	The	application	may	produce	a



reply	to	the	incoming	data,	which	then	is	handled	by	the	output	processing	part
of	uIP.

Output	processing	 is	 simple.	Output	processing	occurs	after	 the	application
has	been	called	from	uIP,	and	only	when	the	application	has	produced	data	for
the	uIP	stack	 to	send.	The	output	processing	code	adds	protocol	headers	 to	 the
packet	that	is	to	be	sent	and	hands	the	packet	over	to	the	communication	device
for	transmission.

Periodic	 processing	 is	 done	 to	 perform	 timer-based	 actions	 such	 as
retransmissions.	 The	 periodic	 processing	 mechanisms	 in	 uIP	 are	 intentionally
simple.	 The	 uIP	 periodic	 processing	 function	 is	 invoked	 regularly	 to	 check	 if
there	 are	 any	 retransmissions	 needed.	 If	 so,	 it	 produces	 the	 packet	 to	 be
retransmitted	and	gives	it	to	the	communication	device	driver	which	sends	it	out.

Forwarding	 and	 routing	 are	 done	 separately.	 Forwarding	 is	 the	 process	 of
resending	 a	 received	 packet	 to	 a	 neighbor,	 whereas	 routing	 is	 the	 process	 of
determining	 to	 which	 neighbors	 packets	 should	 be	 forwarded.	 The	 uIP
forwarding	module	maintains	a	 table	of	destinations	and	addresses	of	 the	next-
hop	 neighbor.	 Routing	 protocols,	 which	 typically	 are	 implemented	 on	 top	 of
either	UDP	or	TCP,	populate	the	forwarding	table	based	on	data	received	from
the	routing	protocol.

13.1.1	Input	Processing
When	the	communication	device	driver	receives	a	packet	from	the	network,

it	 calls	 the	uIP	 input	processing	 function	 to	deliver	 the	packet	 to	uIP.	The	uIP
input	processing	code	parses	the	packet	headers	and	determines	if	the	application
should	be	called.	If	so,	uIP	delivers	the	application	data	to	the	application.

The	 uIP	 input	 processing	 starts	 at	 the	 IP	 header.	 The	 flow	 of	 the	 input
processing	functionality	is	shown	in	Figure	13.4.	Packet	headers	are	parsed	from
top	 to	bottom,	 starting	with	 the	 IP	header.	The	uIP	 input	processing	code	 first
checks	the	first	byte	of	the	IP	header	to	make	sure	that	the	incoming	packet	is	an
IP	 packet	 and	 that	 the	 version	 of	 the	 IP	 protocol	 matches	 one	 that	 uIP	 can
handle.	uIP	can	currently	handle	both	IPv4	and	IPv6	data,	but	can	only	handle
one	of	them	at	a	time.



Figure	13.4	Input	processing	in	uIP.	All	incoming	packets	pass	through	the
IP	and	transport	layers	before	reaching	the	application.
	

After	making	sure	that	the	packet	has	the	right	IP	version	header,	uIP	checks
the	validity	of	the	IP	header.	It	checks	the	length	that	is	reported	in	the	IP	header
with	the	length	of	the	packet	it	received	from	the	underlying	layer.	If	the	length
in	the	IP	header	is	longer	than	the	packet	in	the	buffer,	the	packet	is	deemed	to
be	malformed	and	is	discarded.	If	the	length	of	the	packet	in	the	buffer	is	longer
than	reported	in	the	IP	header,	the	packet	is	assumed	to	be	well	formed,	but	with
garbage	 data	 in	 the	 end,	 and	 uIP	 continues	 to	 process	 the	 packet	 anyway.	 For
IPv4,	 the	 fragment	 flag	 of	 the	 IPv4	 header	 is	 checked.	 If	 the	 packet	 is	 an	 IP
fragment,	 it	 is	 copied	 into	 the	 defragmentation	 buffer.	 If	 the	 fragment	 buffer
contains	a	full	IP	packet	because	of	the	incoming	fragment,	the	reassembled	IP
packet	is	seen	as	the	incoming	IP	packet	and	the	input	processing	continues.	For
IPv6,	 IP	 fragment	 reassembly	 is	 performed	 as	 part	 of	 the	 extension	 header
processing.

Next,	 the	 source	 and	 destination	 addresses	 of	 the	 packet	 are	 inspected.
Packets	 with	 an	 illegal	 IP	 source	 address	 are	 dropped.	 Examples	 are	 packets
where	 the	 source	 address	 is	 a	 broadcast	 or	 multicast	 address.	 Packets	 with	 a
destination	 IP	address	 that	does	not	match	any	of	 the	 IP	addresses	of	 the	node
are	either	discarded	or	delivered	to	the	uIP	packet-forwarding	module.	The	uIP
packet-forwarding	 module	 may	 choose	 to	 forward	 the	 packets	 to	 a	 next-hop
neighbor,	depending	on	the	destination	IP	address.

Packets	with	a	destination	IP	address	that	matches	one	of	the	IP	addresses	of
the	node	are	processed	further.	Here,	 the	processing	code	differs	between	IPv4
and	 IPv6.	 For	 IPv4,	 the	 IP	 header	 checksum	 is	 computed	 to	make	 sure	 that	 it



matches.	For	IPv6,	no	header	checksum	is	defined.	For	IPv6	packets,	uIP	checks
the	packet	for	the	existence	of	any	extension	headers	and	processes	them.	If	uIP
found	 errors	 in	 the	 IPv6	 extension	 headers,	 an	 ICMPv6	 error	 message	 is
generated	and	sent	back	to	the	sender.

When	 uIP	 has	 verified	 that	 the	 IP	 header	 is	 correct,	 that	 the	 length	 of	 the
packet	 is	 correct,	 and	 that	 the	 destination	 address	 matches	 the	 address	 of	 the
node,	 the	 packet	 is	 given	 to	 the	 correct	 transport	 layer	 protocol.	 uIP	 supports
three	 such	protocols:	 ICMP,	UDP,	 and	TCP.	 ICMP	 is,	 strictly	 speaking,	 not	 a
transport	layer	protocol	but	it	is	implemented	as	such	in	uIP.

The	 packet	 is	 processed	 differently	 depending	 on	 its	 upper	 layer	 protocol.
TCP	is	the	most	complex	of	the	protocols	that	uIP	implements.	UDP	processing
is	 very	 simple.	 ICMP	 processing	 is	 very	 simple	 for	 IPv4	 but	 slightly	 more
complex	for	IPv6.

13.1.1.1	ICMP	Input	Processing
For	IPv4,	the	ICMP	processing	consists	of	a	single	piece	of	functionality	—

to	respond	 to	 incoming	ICMP	echo	messages.	When	a	node	receives	an	ICMP
echo	message,	 it	 responds	by	sending	an	ICMP	echo	reply.	The	reply	message
contains	a	copy	of	the	data	in	the	ICMP	echo	message.	ICMP	echo	messages	are
sent	by	the	“ping”	program	present	in	most	general	purpose	operating	systems.
The	ping	utility	sends	 ICMP	echo	messages	 to	check	 if	a	particular	 IP	node	 is
alive	and	for	measuring	the	round-trip	time	to	the	node.	When	the	ping	program
receives	an	ICMP	echo	reply	that	matches	the	ICMP	echo	message	it	previously
sent,	the	program	prints	out	the	round-trip	time	to	the	screen.

ICMP	processing	for	IPv6	is	more	complex	than	IPv4	because	ICMP	has	a
more	significant	role	in	IPv6	than	in	IPv4.	In	addition	to	the	echo	functionality,
ICMP	in	IPv6	is	used	for	neighbor	discovery	(ND),	router	discovery,	duplicate
address	 detection,	 and	 other	 mechanisms.	 uIP	 supports	 ICMP	 neighbor
solicitation	 messages,	 neighbor	 advertisement	 messages,	 router	 solicitation
messages,	 and	 router	 advertisement	 messages.	 In	 IPv6,	 ICMP	 neighbor
solicitation	messages	are	also	used	to	perform	duplicate	address	detection,	which
is	supported	by	uIP.
	
13.1.1.2	UDP	Input	Processing
UDP	 input	 processing	 in	 uIP	 is	 simple.	 The	 input	 processing	 code	 first

recalculates	 the	UDP	checksum	 to	make	 sure	 that	 the	packet	 is	 valid.	Then,	 it
uses	 the	UDP	port	 numbers	 in	 the	 packet	 to	 find	 the	 application	 to	which	 the
packet	 data	 should	 be	 delivered.	 uIP	maintains	 a	 list	 of	 applications	 and	what
UDP	port	numbers	they	use.	An	application	may	specify	the	remote	end	point	by
providing	 the	 IP	address	and	UDP	port	number	of	 the	 remote	peer,	or	 it	 could



leave	 them	 blank.	 Applications	 with	 blank	 remote	 IP	 address	 and	 UDP	 port
numbers	 receive	 all	 packets	 that	 arrive	 for	 the	 application’s	 UDP	 port.
Otherwise,	only	packets	from	the	specific	IP	address	and	UDP	port	number	are
delivered	to	the	application.
	
13.1.1.3	TCP	Input	Processing
The	 most	 complex	 protocol	 implementation	 in	 uIP	 is	 TCP.	 Still,	 the

implementation	 is	 significantly	 simpler	 than	 the	TCP	 implementations	 in	other
IP	stacks	such	as	the	BSD	UNIX	stack	[172].	This	occurs	because	the	uIP	TCP
performs	only	 the	necessary	mechanisms	needed	 for	 standards	compliance	and
host-to-host	 interoperability.	 Because	 uIP	 is	 optimized	 for	 a	 small	 memory
footprint	 and	 not	 for	 high	 performance,	 the	 uIP	 TCP	 implementation	 refrains
from	 implementing	 a	 number	 of	 performance-optimizing	mechanisms	 that	 are
present	in	other	IP	stacks.	We	return	to	this	later	in	the	chapter	in	Section	13.4.2.

TCP	processing	begins	by	validating	the	TCP	checksum.	The	TCP	checksum
is	 computed	 over	 the	 TCP	 header,	 the	 application	 data,	 and	 parts	 of	 the	 IP
header.	After	validating	the	checksum,	the	TCP	port	numbers	of	the	packet	are
checked	against	the	list	of	active	TCP	connections.	If	the	packet	does	not	match
any	 of	 the	 current	 connections,	 uIP	 checks	 the	 list	 of	 listening	TCP	ports,	 but
only	if	the	incoming	packet	has	the	TCP	SYN	flag	set.	If	the	packet	is	not	for	an
active	connection	or	 is	not	a	TCP	SYN	packet	for	a	 listening	port,	uIP	sends	a
TCP	RST	packet	to	the	IP	address	that	sent	the	packet.

If	 the	 incoming	 packet	was	 a	TCP	SYN	packet	 for	 a	 listening	 connection,
uIP	creates	a	new	entry	 in	 the	 table	of	active	TCP	connections	and	 fills	 in	 the
correct	TCP	sequence	number	from	the	incoming	TCP	SYN	packet.	If	the	TCP
SYN	 packet	 contains	 a	 TCP	 maximum	 segment	 size	 (MSS)	 option,	 uIP
remembers	the	MSS	it	can	send	over	this	connection.	Next,	uIP	produces	a	TCP
SYN	packet	with	the	ACK	flag	set	and	sends	it	back	to	the	remote	peer.

If	 the	 incoming	 packet	 was	 destined	 for	 an	 active	 connection,	 uIP	 first
ensures	 that	 the	 TCP	 sequence	 number	 of	 the	 incoming	 segment	 is	 what	 uIP
expects.	 If	 the	 sequence	 number	 is	 higher	 than	 expected,	 it	 indicates	 that	 a
packet	has	been	lost.	If	so,	uIP	discards	the	packet,	knowing	that	the	remote	end
will	retransmit	the	packet	some	time	later.	Although	it	would	be	possible	for	uIP
to	buffer	the	incoming	packet	so	that	it	would	be	immediately	available	once	the
missing	 packet	 has	 been	 retransmitted,	 this	 would	 require	 buffer	 memory
unavailable	in	the	memory-constrained	systems	for	which	uIP	is	designed.

After	 verifying	 the	 TCP	 sequence	 number,	 uIP	 performs	 a	 round-trip	 time
(RTT)	estimation	mechanism.	The	purpose	of	 the	RTT	estimation	 is	 for	uIP	 to
have	a	suitable	value	for	the	retransmission	timer.	For	a	TCP	connection	with	a



long	RTT,	the	retransmission	timer	must	be	set	to	a	high	value,	and	conversely,	a
TCP	 connection	with	 a	 short	 RTT	 requires	 a	 low	 value	 on	 the	 retransmission
timer.	 uIP	 performs	 RTT	 estimation	 by	 keeping	 a	 counter	 for	 each	 TCP
connection.	The	 counter	 is	 incremented	 as	part	 of	 the	periodic	uIP	processing.
When	a	TCP	packet	arrives,	uIP	uses	the	value	of	the	counter	as	an	estimate	for
the	RTT	of	 the	packet.	An	averaging	filter	 is	used	to	provide	a	smoothed	RTT
estimate	for	the	TCP	connection	[134].

Next,	 uIP	 takes	 different	 actions	 depending	 on	 the	 state	 of	 the	 TCP
connection.	If	the	TCP	connection	is	established,	the	application	is	invoked	and
passes	the	application	data	present	in	the	incoming	TCP	packet.	The	application
consumes	the	data	and	may	produce	a	reply	and	uIP	sends	it	back	to	the	remote
peer.	 If	 the	TCP	 connection	 for	which	 the	 incoming	 packet	 is	 destined	 is	 in	 a
state	 where	 it	 is	 about	 to	 be	 opened	 or	 closed,	 the	 TCP	 connection	 switches
states	as	described	in	the	TCP	specification	[204].

When	a	TCP	connection	is	opened	or	closed,	uIP	informs	the	application	of
the	 event	 by	 calling	 it.	 Depending	 on	 the	 state	 of	 the	 TCP	 connection,	 the
application	may	choose	 to	 send	data	 in	 response	 to	 the	event.	The	packet	 then
makes	its	way	through	the	output	processing	code	of	uIP.

13.1.2	Output	Processing
Output	processing	in	uIP	is	simpler	than	input	processing.	Output	processing

starts	when	 uIP	 calls	 the	 application.	When	 called	 by	 uIP,	 the	 application	 can
choose	 to	produce	 a	packet.	 uIP	adds	 the	necessary	packet	headers	 and	passes
the	packet,	with	headers,	 to	 the	communication	device	driver	 for	 transmission.
The	structure	of	the	uIP	output	processing	is	shown	in	Figure	13.5.

Figure	13.5	uIP	output	processing	is	simpler	than	input	processing.	For	TCP
connections	 (left),	 all	 output	 processing	 starts	with	uIP	 calling	 the	 application.



For	UDP	connections	(right),	applications	may	send	UDP	data	directly	but	can
also	send	data	when	called	from	the	uIP	input	processing	code.
	

For	TCP	connections,	an	application	cannot	send	data	unsolicited,	but	must
wait	for	uIP	to	call	the	application.	uIP	calls	the	application	not	only	when	new
data	arrive	on	 the	connection,	but	 also	as	part	of	 the	periodic	processing.	This
gives	the	application	the	opportunity	to	send	data	even	when	no	data	are	arriving
on	 the	connection.	Applications	 that	use	UDP	may	choose	 to	 send	data	 at	 any
time	and	do	not	need	to	wait	for	uIP	to	call	them.

TCP	output	processing	starts	when	the	application	has	been	called	either	as
part	of	the	input	processing	or	during	periodic	processing.	If	called	as	part	of	the
input	processing,	uIP	either	delivers	 a	packet	 to	 the	 application	or	 informs	 the
application	that	a	connection	is	opened	or	closed.	In	either	case,	the	application
may	want	to	send	data	to	the	remote	host.	If	so,	uIP	updates	the	connection	state
for	 the	TCP	 connection,	 adds	 the	 necessary	 headers	 to	 the	 data,	 computes	 the
necessary	checksums,	and	sends	the	packet.	The	state	of	the	connection	needs	to
be	updated	because	the	application	data	will	increase	the	TCP	sequence	number
for	 the	 connection.	 The	 application	 may	 also	 want	 to	 close	 or	 abort	 the
connection,	and	uIP	will	respond	accordingly.

UDP	output	processing	may	start	either	when	uIP	has	called	an	application
because	of	incoming	data,	or	because	the	application	calls	uIP	directly.	uIP	adds
the	UDP	header	to	the	application	data,	with	the	necessary	UDP	port	numbers,
and	computes	the	UDP	checksum	before	passing	the	packet	to	the	IP	layer	to	add
the	IP	header.	The	IP	layer	adds	its	header	and	computes	the	IP	checksum.	The
packet	is	then	sent	by	the	communication	device	driver.

13.1.3	Periodic	Processing
The	purpose	of	the	uIP	periodic	processing	is	to	update	timer-based	counters,

perform	retransmissions,	and	remove	connections	 that	have	timed	out.	Periodic
processing	 is	 typically	 invoked	 once	 or	 twice	 every	 second,	 depending	 on	 the
configuration	of	the	system	in	which	uIP	runs.

Periodic	 processing	 starts	 with	 updating	 the	 status	 of	 the	 IP	 fragment
reassembly	 buffer.	 If	 a	 packet	 is	waiting	 to	 be	 reassembled,	 the	 periodic	 code
updates	 the	 counter	 that	 keeps	 track	 of	 the	 age	 of	 the	 packet.	 If	 the	 packet	 is
older	than	30	seconds,	the	packet	is	removed	from	the	reassembly	buffer.

Next,	 the	 periodic	 processing	 code	 goes	 through	 every	 active	 TCP
connection	to	check	if	there	are	any	packets	that	should	be	retransmitted.	If	there
is	a	pending	retransmission,	and	if	the	retransmission	includes	application	data,
uIP	 calls	 the	 application	 to	 reproduce	 the	 data	 it	 previously	 produced	 for	 the



original	 transmission	 of	 the	 packet.	 The	 application,	 or	 an	 application	 library
provided	by	uIP,	may	have	buffered	the	packet	in	an	external	memory	buffer	in
preparation	 for	 a	 retransmission,	 in	 which	 case	 the	 application	 can	 copy	 the
buffered	 packet	 back	 to	 uIP.	 To	 save	 memory,	 however,	 the	 application	 may
have	chosen	not	to	buffer	the	packet,	but	to	regenerate	it	instead.	The	contents	of
the	packet	may,	for	example,	have	originated	in	a	ROM	buffer	from	which	it	can
be	quickly	copied	 into	 the	 retransmission	packet,	or	 the	contents	of	 the	packet
are	 easily	 regenerated.	 In	 either	 case,	 once	 the	 application	 has	 produced	 its
packet,	 uIP	 constructs	 the	 necessary	 headers	 and	 sends	 out	 the	 retransmission.
uIP	 also	 updates	 the	 retransmission	 timer	 by	 doubling	 its	 value,	 the	 so-called
exponential	back-off	procedure	of	TCP.

The	periodic	TCP	code	also	checks	for	connections	that	should	be	timed	out.
Connections	 that	 have	 retransmitted	 too	 many	 packets	 without	 receiving	 an
acknowledgment	are	examples	of	this.	Such	connections	are	discarded	by	uIP.

13.1.4	Packet	Forwarding
Packet	forwarding	is	done	when	uIP	receives	a	packet	that	has	a	destination

IP	 address	 that	 does	 not	 match	 any	 of	 the	 IP	 addresses	 of	 the	 node.	 A	 node
typically	has	multiple	addresses:	one	or	more	unicast	addresses	and	at	least	one
broadcast	or	multicast	address.	Packets	 that	do	not	match	 the	addresses	should
be	forwarded	to	a	neighboring	node,	either	because	the	address	matches	that	of
the	neighbor	or	because	the	neighbor	has	a	route	to	the	destination	address.

Packet	forwarding	occurs	only	when	uIP	has	been	configured	to	be	a	router.
The	 packet	 forwarding	 mechanism	 is	 then	 invoked	 as	 part	 of	 the	 output
processing.

The	 packet	 forwarding	 mechanism	 is	 modular	 and	 does	 not	 specify	 any
particular	 routing	 mechanism	 to	 be	 used.	 Rather,	 a	 routing	 mechanism	 will
register	 itself	with	 the	 forwarding	module	 upon	 startup.	 For	 every	 packet,	 the
forwarding	mechanism	 asks	 the	 routing	 module	 to	 look	 up	 the	 destination	 IP
address	 and	 return	 the	 address	 to	 the	 next-hop	 neighbor.	 The	 routing	 module
may	implement	this	any	way	it	wants	by	using	a	table	of	destination	addresses,	a
table	of	network	prefixes,	a	hash	table	of	addresses,	a	cache	of	the	recently	used
routes,	or	 any	other	way	 it	 finds	 suitable.	The	 routing	protocol	may	perform	a
route	discovery	for	each	address	not	found	in	its	cache.

By	 separating	 packet	 forwarding	 and	packet	 routing,	 uIP	 can	 adapt	 a	wide
range	of	requirements	such	as	routing	performance	and	memory	requirements,	as
well	 as	 take	 advantage	 of	 future	 development	 in	 routing	 protocols.	 A	 system
with	strict	memory	requirements	and	low	routing	performance	requirements	may
use	 a	 cache	 configuration	 that	 prompts	 frequent	 network	 route	 discoveries,
whereas	 a	 system	 with	 strict	 requirements	 on	 routing	 performance	 but	 lax



memory	requirements	may	choose	a	larger	cache	setting.
13.2	uIP	Memory	Buffer	Management
Buffer	management	 is	 a	 critical	 operation	 in	 any	 protocol	 stack.	 Incoming

and	outgoing	data	packets	are	buffered	 in	memory	and	 the	buffer	management
system	ensures	that	there	is	enough	memory	available	for	the	data	packets.	In	a
general	 purpose	 protocol	 stack,	 poor	 buffer	 management	 strategy	 can	 lead	 to
suboptimal	performance.	In	a	smart	object,	where	the	memory	requirements	are
exceptionally	 strict,	 buffer	management	has	 a	 critical	 function	 in	 ensuring	 that
the	protocol	stack	is	able	to	function	even	when	memory	is	scarce.

To	 provide	 high	 throughput,	 traditional	 IP	 stacks	 use	 buffer	 management
strategies	 of	 varying	 complexity	 [172].	 Buffers	 need	 to	 be	 allocated	 and
deallocated	quickly	to	keep	up	with	the	large	amounts	of	data	coming	from	the
network	and	sent	by	applications.	For	smart	objects,	where	data	 rates	 typically
are	 much	 lower	 than	 for	 general	 purpose	 computers,	 the	 buffer	 management
strategy	does	not	need	to	be	optimized	for	high	throughput.	Instead,	memory	is	a
scarce	resource	so	the	buffer	management	mechanism	must	work	efficiently	with
small	amounts	of	memory.

The	 buffer	 management	 strategy	 of	 uIP	 is	 intentionally	 simple.	 To	 keep
memory	size	and	code	complexity	down,	all	packets	in	uIP	are	kept	in	a	single
memory	 buffer.	 Incoming	 packets	 are	 copied	 to	 this	 buffer	 when	 the
communication	 device	 driver	 has	 received	 them.	Outgoing	 packets	 are	 created
directly	into	the	same	buffer.

Using	a	single	memory	buffer	has	several	advantages.	First,	there	is	no	need
for	 any	 complex	 buffer	 management	 mechanisms	 to	 be	 implemented.	 Such
mechanisms	 require	 code	 space	 and	 buffer	 memory,	 both	 of	 which	 are	 at	 a
premium	 in	 a	 memory-constrained	 system.	 Second,	 the	 protocol
implementations	become	 simpler	when	 they	do	not	 need	 to	 deal	with	multiple
buffers.	Third,	because	 the	buffer	 is	 at	 a	 single	place	 in	memory	and	does	not
move,	the	C	compiler	is	often	able	to	make	better	optimizations	at	the	machine
code	level,	which	leads	to	more	efficient	use	of	the	scarce	code	memory.

The	packet	buffer	 is	 large	enough	 to	contain	one	packet	of	maximum	size.
When	a	packet	arrives	from	the	network,	the	device	driver	places	it	in	the	global
buffer	and	calls	the	uIP	input	processing	code.	If	the	packet	contains	application
data,	 uIP	 calls	 the	 corresponding	 application	 with	 the	 application	 data	 in	 the
packet	 buffer.	 Because	 the	 data	 in	 the	 buffer	 will	 be	 overwritten	 by	 the	 next
incoming	packet,	the	application	will	either	have	to	act	immediately	on	the	data
or	copy	the	data	into	a	secondary	buffer	for	later	processing.	The	packet	buffer
will	 not	 be	 overwritten	 by	 new	 packets	 before	 the	 application	 has	 finished
processing	the	data.



To	ensure	that	the	packet	buffer	is	not	overwritten	while	uIP	is	processing	a
packet,	uIP	does	not	allow	the	communication	device	driver	to	write	directly	into
the	buffer,	except	when	uIP	explicitly	asks	it	to	do	so.	If	a	packet	arrives	when
uIP	is	processing	data	in	the	buffer,	the	packet	is	queued	either	in	the	hardware
of	 the	 communication	 device	 or	 by	 the	 communication	 device	 driver.	 Most
communication	devices	have	a	hardware-implemented	buffer	memory	in	which
they	store	incoming	packets	as	they	arrive.

The	 size	 of	 the	 packet	 buffer	 is	 configurable	 at	 compile	 time.	 The	 total
amount	of	memory	usage	 for	uIP	depends	on	 the	applications	of	 the	particular
system	in	which	 the	 implementations	are	 to	be	run.	The	memory	configuration
determines	both	 the	amount	of	 traffic	 the	 system	should	be	able	 to	handle	and
the	 maximum	 amount	 of	 simultaneous	 connections.	 A	 system	 sending	 and
receiving	 large	 amounts	 of	 data	 to	 multiple	 simultaneous	 clients	 typically	 is
configured	 to	 use	 more	 memory	 than	 a	 system	 that	 occasionally	 sends	 a	 few
bytes.	It	is	possible	to	run	the	uIP	with	as	little	as	100	bytes	of	RAM,	but	such	a
configuration	 provides	 extremely	 low	 throughput	 and	 only	 allows	 a	 small
number	of	simultaneous	connections.

	
13.3	uIP	Application	Program	Interface
The	 Application	 Program	 Interface	 (API)	 defines	 the	 way	 the	 application

program	interacts	with	the	TCP/IP	stack.	The	most	common	API	for	IP	stacks	is
the	BSD	socket	API.	The	BSD	socket	API	 is	used	 in	most	UNIX	systems	and
has	heavily	influenced	the	Microsoft	Windows	WinSock	API.	The	socket	API	is,
however,	 designed	 around	 a	 multi-threaded	 programming	 model.	 This	 model
incurs	 a	 memory	 overhead,	 which	 is	 not	 ideal	 for	 smart	 objects	 and	 their
constrained	memory.

Instead	of	the	multi-threaded	socket	API,	uIP	provides	an	event-driven	API.
Having	 an	 event-driven	 API	 has	 several	 advantages	 in	 the	 context	 of	 smart
objects.	 First,	 event-driven	 mechanisms	 have	 a	 lower	 memory	 overhead	 than
multi-threaded	mechanisms.	Second,	the	event-driven	API	does	not	need	to	use
additional	 buffers	 between	 the	 uIP	 stack	 and	 the	 application,	 something	 that	 a
traditional	 BSD	 socket	 API	 requires.	 This	 further	 reduces	 the	 memory
requirements.	Third,	the	event-driven	API	has	a	higher	execution	time	efficiency
than	 a	 multi-threaded	 API,	 which	 is	 beneficial	 because	 of	 the	 low	 processor
speeds	used	 in	 smart	objects.	Because	applications	are	able	 to	act	 immediately
on	incoming	data	and	connection	requests,	low	response	times	can	be	achieved
even	in	low-end	systems.

The	 event-driven	API	 is	 used	 primarily	 for	TCP	 connections,	 even	 though
UDP-based	applications	can	also	use	it.	The	use	of	an	event-driven	API	for	TCP



has	later	been	used	by	other	IP	stacks	for	smart	objects	[1].
Although	 the	event-driven	API	works	well	 for	many	applications,	 there	are

applications	 that	 benefit	 from	 a	 sequential	 API.	 Therefore,	 uIP	 optionally
provides	 a	 sequential	 BSD	 socket-like	 API	 based	 on	 protothreads.	 The
sequential	API	is	called	protosockets	and	allows	programs	to	be	written	in	a	top-
down	fashion.	The	protosockets’	API	also	provides	buffers	for	retransmissions,
relieving	 the	 programmer	 of	 the	 potential	 burden	 of	 regenerating	 data	 for
retransmission	at	the	price	of	higher	memory	requirements.

13.3.1	The	Event-driven	API
The	 event-driven	 uIP	 API	 uses	 an	 event-driven	 interface	 where	 the

application	is	invoked	in	response	to	events	that	occur	on	TCP	connections.	uIP
calls	 applications	 when	 data	 are	 received,	 when	 data	 have	 been	 successfully
delivered	to	the	other	end	of	the	connection,	when	a	new	connection	has	been	set
up,	or	when	data	have	 to	be	 retransmitted.	The	application	 is	 also	periodically
polled	for	new	data.

Applications	 provide	 a	 callback	 function	 to	 uIP.	 uIP	 calls	 the	 callback
function	 for	 every	 event	 that	 occurs	 on	 a	TCP	connection.	When	 invoked,	 the
callback	function	must	return	quickly	to	uIP,	and	if	the	callback	function	blocks,
uIP	cannot	respond	to	incoming	packets.

To	 reduce	 the	memory	 size,	 uIP	 requires	 applications	 to	 participate	 in	 the
process	of	 retransmitting.	 IP	 stacks	 for	general	purpose	computers	or	high-end
servers	 buffer	 the	 transmitted	 data	 in	memory	 until	 the	 data	 are	 known	 to	 be
successfully	delivered	to	the	remote	end	of	the	connection.	If	the	data	need	to	be
retransmitted,	 the	 stack	 takes	 care	 of	 the	 retransmission	 without	 notifying	 the
application.	With	 this	approach,	 the	data	have	 to	be	buffered	 in	memory	while
waiting	for	an	acknowledgment	even	if	the	application	might	be	able	to	quickly
regenerate	the	data	if	a	retransmission	has	to	be	made.

When	the	application	callback	function	is	invoked,	uIP	passes	it	a	number	of
flags	 that	 tell	 the	 application	 why	 it	 was	 invoked.	 Each	 event	 has	 a
corresponding	 test	 function	 used	 to	 distinguish	 between	 different	 events.	 The
functions	 evaluate	 to	 either	 zero	 or	 non-zero,	 depending	 on	 what	 event	 has
occurred.	Some	events	happen	in	conjunction	with	each	other	and	the	application
must	test	for	the	existence	of	each	such	event	separately.	For	example,	new	data
can	arrive	at	the	same	time	as	data	are	acknowledged.

Applications	are	informed	by	the	reception	of	data	using	a	reception	event.	If
the	 uIP	 test	 function	 uip_newdata()	 is	 non-zero,	 the	 remote	 host	 of	 the
connection	 has	 sent	 new	 data.	 The	 application	 data	 are	 placed	 in	 the	 packet
buffer.	After	the	application	invocation,	the	data	are	not	retained	by	uIP,	but	are
overwritten	 after	 the	 application	 function	 returns,	 and	 the	 application	 has	 to



either	act	directly	on	the	incoming	data	or	copy	the	incoming	data	into	a	buffer
for	later	processing.

Sending	data	 is	 done	during	 an	 application	 invocation	by	 copying	 the	 data
into	the	packet	buffer	before	returning	to	uIP.	uIP	adjusts	the	length	of	the	data
sent	 by	 the	 application	 according	 to	 the	 available	 buffer	 space	 and	 the	 current
TCP	window	advertised	by	the	receiver.	The	amount	of	buffer	space	is	dictated
by	the	memory	configuration	and	by	the	current	MSS	used	over	the	connection.
Applications	can	send	only	one	packet	of	data	at	 a	 time	and	must	wait	 for	 the
data	to	be	successfully	acknowledged	by	the	remote	peer	before	sending	the	next
packet.

When	a	connection	is	idle,	uIP	invokes	the	application	function	as	part	of	the
uIP	periodic	processing	with	the	poll	flag	set.	The	application	tests	for	the	poll
flag	to	check	if	it	was	invoked	due	to	periodic	processing.

Polling	has	two	purposes.	The	first	is	to	let	the	application	periodically	know
that	a	connection	is	idle,	which	allows	the	application	to	close	connections	that
have	been	idle	for	too	long.	The	other	purpose	is	to	let	the	application	send	new
data	that	have	been	produced.	The	application	can	only	send	data	when	invoked
by	 uIP,	 therefore	 polling	 is	 the	 only	 way	 to	 send	 data	 on	 an	 otherwise	 idle
connection.

13.3.1.1	Retransmitting	Data
Retransmissions	 are	 driven	 by	 the	 periodic	 TCP	 timer.	 Every	 time	 the

periodic	 timer	 is	 invoked,	 the	 retransmission	 timer	 for	 each	 connection	 is
decremented.	If	the	timer	reaches	zero,	a	retransmission	should	be	made.	As	uIP
does	not	keep	 track	of	packet	contents	after	 they	have	been	sent	by	 the	device
driver,	 uIP	 requires	 that	 the	 application	 takes	 an	 active	 part	 in	 performing	 the
retransmission.	When	 uIP	 decides	 that	 a	 segment	 should	 be	 retransmitted,	 the
application	 function	 is	 called	with	 the	 retransmission	 flag	 set,	 indicating	 that	 a
retransmission	is	required.

The	application	checks	 the	 retransmission	 flag	 and	produces	 the	 same	data
that	 were	 previously	 sent.	 From	 the	 application’s	 standpoint,	 performing	 a
retransmission	is	no	different	from	how	the	data	were	originally	sent.	Therefore,
the	application	can	be	written	in	such	a	way	that	the	same	code	is	used	both	for
sending	and	retransmitting	data.	Even	though	the	actual	retransmission	operation
is	 carried	 out	 by	 the	 application,	 it	 is	 the	 responsibility	 of	 the	 stack	 to	 know
when	the	retransmission	should	be	made.	Thus	the	complexity	of	the	application
does	not	necessarily	increase	because	it	takes	an	active	part	in	retransmitting.
	
13.3.1.2	Closing	Connections
The	application	closes	 the	current	connection	by	calling	 the	uIP	TCP	close



function	 during	 an	 application	 invocation.	 This	 causes	 the	 connection	 to	 be
cleanly	closed.	To	indicate	a	fatal	error,	the	application	might	want	to	abort	the
connection	and	does	so	by	calling	the	uIP	TCP	abort	function.

If	 the	 connection	 has	 been	 closed	 by	 the	 remote	 end,	 the	 application	 is
invoked	 with	 the	 closed	 flag	 set.	 The	 application	 may	 then	 do	 any	 necessary
cleanups,	 such	 as	 freeing	 memory	 that	 was	 allocated	 as	 part	 of	 the	 TCP
connection.

13.3.1.3	Reporting	Errors
There	are	two	fatal	errors	that	can	happen	to	a	connection:	the	connection	is

aborted	 by	 the	 remote	 host,	 or	 the	 connection	 retransmitted	 the	 last	 data	 too
many	 times	and	has	been	aborted.	uIP	 reports	 this	by	 invoking	 the	application
function	with	either	the	aborted	or	the	timed	out	flag	set.	The	application	checks
for	the	existence	of	these	flags	to	find	out	if	a	connection	was	aborted	or	timed
out.

13.3.1.4	Listening	Ports
uIP	maintains	a	list	of	listening	TCP	ports.	A	new	port	is	opened	for	listening

with	the	uip_listen()	function.	When	a	connection	request	arrives	on	a	listening
port,	 uIP	 creates	 a	 new	connection	 and	 calls	 the	 application	 function.	The	 test
function	uip_connected()	 is	 true	 if	 the	 application	was	 invoked	because	 a	 new
connection	was	created.

The	application	can	check	the	lport	field	in	the	uip_conn	structure	to	check
to	which	port	the	new	connection	was	connected.

13.3.1.5	Opening	Connections
New	 connections	 can	 be	 opened	 from	 within	 uIP	 by	 the	 function

uip_connect().	 This	 function	 allocates	 a	 new	 connection	 and	 sets	 a	 flag	 in	 the
connection	 state	 that	 opens	 a	 TCP	 connection	 to	 the	 specified	 IP	 address	 and
port	 the	next	 time	 the	connection	 is	polled	by	uIP.	The	uip_connect()	 function
returns	a	pointer	to	the	uip_conn	structure	for	the	new	connection.	If	there	are	no
free	connection	slots,	the	function	returns	NULL.

The	function	uip_ipaddr()	may	be	used	 to	pack	an	IP	address	 into	 the	 two-
element,	16-bit	array	used	by	uIP	to	represent	IP	addresses.

13.4	uIP	Protocol	Implementations
To	 optimize	memory	 and	 code	 space,	 the	 protocol	 implementations	 in	 uIP

implement	 only	 the	 necessary	 mechanisms	 for	 compliance	 with	 the	 standards
and	interoperability.	Many	of	the	mechanisms	in	the	TCP/IP	protocol	suite	were
designed	to	improve	protocol	performance.	In	general,	uIP	does	not	 implement
such	 mechanisms	 that	 provide	 a	 better	 performance	 at	 the	 expense	 of	 higher
memory	requirements.

13.4.1	IP	Fragment	Reassembly



IP	fragment	reassembly	is	implemented	using	a	separate	buffer	that	holds	the
packet	to	be	reassembled.	An	incoming	fragment	is	copied	into	the	right	place	in
the	 buffer	 and	 a	 bit	map	 is	 used	 to	 keep	 track	 of	which	 fragments	 have	 been
received.	 Because	 the	 first	 byte	 of	 an	 IP	 fragment	 is	 aligned	 on	 an	 8-byte
boundary,	the	bit	map	requires	a	small	amount	of	memory.	When	all	fragments
have	been	reassembled,	the	resulting	IP	packet	is	passed	to	the	transport	layer.	If
all	fragments	have	not	been	received	within	a	specified	time	frame,	the	packet	is
dropped.

uIP	 maintains	 a	 single	 buffer	 for	 holding	 packets	 to	 be	 reassembled.	 The
buffer	is	separate	from	the	packet	buffer	used	by	the	test	of	uIP	to	avoid	being
overwritten	 by	 other	 packets.	 Because	 uIP	 only	 maintains	 a	 single	 buffer	 for
reassembling	fragments,	uIP	does	not	support	simultaneous	reassembly	of	more
than	 one	 packet.	 The	 reason	 for	 this	 design	 decision	 is	 that	 IP	 fragments	 are
relatively	uncommon	in	today’s	networks.
	
13.4.2	TCP
The	 TCP	 implementation	 in	 uIP	 is	 designed	 to	 be	 as	 simple	 as	 possible

without	 removing	 any	 of	 the	 required	 TCP	 mechanisms.	 There	 are	 several
mechanisms	 in	 TCP	 intended	 to	 provide	 a	 high	 throughput.	 Many	 of	 these
mechanisms	are	not	needed	in	a	system	that	has	only	small	amounts	of	data	to	be
sent.	uIP	therefore	makes	the	trade-off	that	memory	efficiency	is	more	important
than	high	data	throughput.	If	high	data	throughput	is	required,	then	uIP	is	not	a
suitable	choice.

The	 TCP	 implementation	 in	 uIP	 is	 driven	 by	 incoming	 packets	 and	 the
periodic	 processing.	 Incoming	 packets	 are	 parsed	 by	 TCP	 and	 if	 the	 packet
contains	data	to	be	delivered	to	the	application,	the	application	is	invoked	by	the
application	 function	call.	 If	 the	 incoming	packet	 acknowledges	previously	 sent
data,	the	connection	state	is	updated	and	the	application	is	informed,	allowing	it
to	send	out	new	data.

TCP	allows	a	connection	to	listen	for	incoming	connection	requests.	In	uIP,	a
listening	 connection	 is	 identified	 by	 the	 16-bit	 port	 number	 and	 incoming
connection	requests	are	checked	against	the	list	of	listening	connections.	This	list
of	listening	connections	is	dynamic	and	can	be	altered	by	the	applications	in	the
system.

13.4.2.1	Sliding	Window
Most	TCP	implementations	use	a	sliding	window	mechanism	when	sending

data.	 Multiple	 data	 segments	 are	 sent	 in	 succession	 without	 waiting	 for	 an
acknowledgment	for	each	segment.	This	is	intended	to	provide	a	high	throughput
because	the	entire	network	pipe	between	the	sender	and	the	receiver	can	be	filled



with	packets	without	waiting	for	the	receiver	to	acknowledge	the	reception	of	the
packets.

An	 implementation	 of	 the	 sliding	 window	 mechanism	 uses	 a	 significant
amount	 of	 32-bit	 additions	 and	 subtractions	 because	 of	 the	 32-bit	 sequence
numbers	 used	 by	 TCP.	Because	 32-bit	 arithmetic	 is	 expensive	 regarding	 code
size	on	many	8-and	16-bit	microcontrollers,	uIP	does	not	implement	the	sliding
window	 mechanism.	 Also,	 uIP	 does	 not	 buffer	 sent	 packets	 and	 a	 sliding
window	 implementation	 that	 does	 not	 buffer	 sent	 packets	 will	 have	 to	 be
supported	by	a	complex	application	layer.	Instead,	uIP	allows	only	a	single	TCP
segment	per	connection	to	be	unacknowledged	at	any	given	time.

It	 is	 important	 to	note	 that	even	 though	most	TCP	implementations	use	 the
sliding	window	 algorithm,	 it	 is	 not	 required	 by	TCP	 specifications.	Removing
the	 sliding	 window	 mechanism	 does	 not	 affect	 interoperability	 or	 standards
compliance	in	any	way.

13.4.2.2	Retransmissions	and	RTT	Estimation
Retransmissions	 are	 driven	 by	 the	 periodic	 TCP	 timer.	 Every	 time	 the

periodic	 timer	 is	 invoked,	 the	 retransmission	 timer	 for	 each	 connection	 is
decremented.	If	the	timer	reaches	zero,	a	retransmission	should	be	made.

To	 find	 a	 suitable	value	 for	 the	 retransmission	 time-out,	TCP	continuously
estimates	 the	 current	 RTT	 of	 every	 active	 connection.	 The	RTT	 estimation	 in
uIP	 is	 implemented	 using	 TCP’s	 periodic	 timer.	 Each	 time	 the	 periodic	 timer
fires,	it	increments	a	counter	for	each	connection	that	has	unacknowledged	data
in	 the	network.	When	an	acknowledgment	 is	 received,	 the	current	value	of	 the
counter	is	used	as	a	sample	of	the	RTT.	This	sample	is	used	together	with	Van
Jacobson’s	standard	TCP	RTT	estimation	function	to	calculate	an	estimate	of	the
RTT	 [134].	 The	 Karn	 and	 Partridge	 algorithm	 is	 used	 to	 ensure	 that
retransmissions	do	not	skew	the	estimates	[143].

13.4.2.3	Flow	Control
The	purpose	of	the	TCP	flow	control	mechanisms	is	to	allow	communication

between	hosts	with	wildly	varying	memory	dimensions.	 In	each	TCP	segment,
the	 sender	 of	 the	 segment	 indicates	 its	 available	 buffer	 space.	 A	 TCP	 sender
must	not	send	more	data	than	the	buffer	space	indicated	by	the	receiver.

In	 uIP,	 the	 application	 cannot	 send	more	 data	 than	 the	 receiving	 host	 can
buffer,	and	an	application	cannot	send	more	data	than	the	amount	of	bytes	it	 is
allowed	to	send	by	the	receiving	host.	If	the	remote	host	cannot	accept	any	data
at	all,	the	stack	initiates	the	zero-window	probing	mechanism.

13.4.2.4	Congestion	Control
The	congestion	control	mechanisms	 limit	 the	number	of	 simultaneous	TCP

segments	 in	 the	 network.	 From	 the	 outset,	 the	 algorithms	 used	 for	 congestion



control	 are	 designed	 to	 be	 simple	 to	 implement	 and	 their	 implementation
requires	only	a	few	lines	of	code	[134].

Since	 uIP	 only	 handles	 one	 in-flight	 TCP	 segment	 per	 connection,	 the
amount	 of	 simultaneous	 segments	 cannot	 be	 further	 limited,	 thus	 the	 TCP
congestion	control	mechanisms	are	not	needed.

13.4.2.5	Urgent	Data
TCP’s	 urgent	 data	 mechanism	 provides	 an	 application-to-application

notification	mechanism,	which	can	be	used	by	an	application	to	mark	parts	of	the
data	 stream	 as	 more	 urgent	 than	 the	 normal	 stream.	 It	 is	 up	 to	 the	 receiving
application	to	interpret	the	meaning	of	the	urgent	data.

In	 many	 TCP	 implementations,	 including	 the	 BSD	 implementation,	 the
urgent	 data	 feature	 increases	 the	 complexity	 of	 the	 implementation	 because	 it
requires	 an	 asynchronous	 notification	mechanism	 in	 an	 otherwise	 synchronous
API.	As	uIP	already	uses	an	asynchronous	event-based	API,	the	implementation
of	the	urgent	data	feature	does	not	lead	to	increased	complexity.

13.4.3	Checksum	Calculations
The	TCP	and	 IP	protocols	 implement	 a	 checksum	 that	 covers	 the	data	 and

header	 portions	 of	 the	 TCP	 and	 IP	 packets.	 Since	 the	 calculation	 of	 this
checksum	 is	 made	 over	 all	 bytes	 in	 every	 packet	 sent	 and	 received,	 it	 is
important	that	the	function	that	calculates	the	checksum	is	efficient.	Most	often,
this	means	 that	 the	 checksum	calculation	must	 be	 fine-tuned	 for	 the	 particular
architecture	on	which	the	uIP	stack	runs.

While	 uIP	 includes	 a	 generic	 checksum	 function,	 it	 is	 also	 open	 to	 an
architecture-specific	 implementation	 of	 the	 two	 functions	 uip_ipchksum()	 and
uip_tcpchksum().	The	checksum	calculations	in	those	functions	can	be	written	in
highly	optimized	assembler	rather	than	generic	C	code.

13.5	Memory	Footprint
The	memory	footprint	of	uIP	is	very	small	compared	to	existing	IP	stacks	for

general	purpose	computers.	The	IP	stack	in	Linux,	for	example,	requires	several
hundred	 thousand	 bytes	 of	 memory.	 For	 the	 memory-constrained
microcontrollers	used	in	smart	objects,	such	an	IP	stack	does	not	fit.

The	code	footprint	of	uIP	is	a	few	kilobytes	and	the	memory	footprint	is	less
than	 2	 kB.	The	 code	 footprint	 is	 slightly	 higher	 for	 IPv6	 than	 for	 IPv4.	Table
13.1	 shows	 the	 breakdown	 in	 code	 and	 memory	 footprint	 for	 the	 different
functions	 in	 uIPv6.	 The	 footprint	 is	 measured	 for	 the	 Atmel	 ATmega128
processor	and	the	code	is	compiled	with	the	gcc	C	compiler	[73].

Table	13.1	Memory	Footprint	of	the	Individual	Functions	in	the	uIPv6	Stack



	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

	

Function ROM RAM
IPv6	ND	input/output 4800 20
IPv6	ND	structures 2128 238
IPv6	network	interface	management 1348 118
IPv6	address	autoconfiguration 372 16
IPv6	input	processing 1434 44
Packet	buffer 0 1296
UDP 1345 0
TCP 4192 240
Total 15,619 1972
	
Note:	The	data	are	given	in	bytes.	As	a	comparison,	the	memory	footprint	IP

stack	 in	 a	 modern	 general	 purpose	 operating	 system	 is	 several	 hundreds	 of
thousands	of	bytes.

As	shown	in	Table	13.1	about	half	of	the	code	footprint	is	used	by	the	IPv6
and	the	rest	by	TCP	and	UDP.	For	IPv6,	the	ND	is	the	largest	part,	whereas	the
IPv6	input	processing	is	small.

	
13.6	Conclusions
A	 common	 belief	 has	 been	 that	 the	 IP	 stack	 is	 too	 complex	 to	 efficiently

implement	 for	 the	microcontrollers	used	 in	 smart	objects.	This	belief	has	been
shown	to	be	false	by	several	memory-efficient	implementations	of	the	IP	stack.



In	this	chapter,	we	investigated	the	widely	used	open	source	uIP	stack,	the	first
IP	 stack	 for	 smart	 objects,	 to	 see	 how	 it	 achieves	 its	 low	 code	 and	 memory
footprint.	uIP	was	first	released	in	2001.	In	2008,	uIP	was	the	first	IP	stack	for
smart	objects	to	be	certified	under	the	IPv6	Ready	program.

uIP	 implements	 the	 most	 important	 protocols	 in	 the	 IP	 stack:	 IP,	 ICMP,
UDP,	 and	 TCP.	 It	 contains	 both	 an	 IPv4	 and	 an	 IPv6	 implementation.
Application	layer	protocols	such	as	HTTP	and	SNMP	are	implemented	on	top	of
uIP.

The	code	and	memory	footprint	of	uIP	is	very	small	compared	to	that	of	IP
stacks	for	general	purpose	operating	systems.	uIP	requires	only	a	few	kilobytes
of	 code	 to	 implement	 a	 full	 IPv6	 stack.	To	achieve	 such	a	 small	 footprint,	 the
design	 of	 uIP	 is	 intentionally	 simple.	 Packets	 are	 processed	 in	 sequence,	 the
buffer	 management	 mechanism	 is	 simple,	 and	 the	 application	 API	 is	 event-
driven.	 The	 uIP	 stack	 is	 not	 unique	 in	 its	 efficient	memory.	 The	mechanisms
from	uIP	have	been	adopted	by	several	other	IP	stacks	for	smart	objects.

	



Chapter	14	Standardization
	

14.1	Introduction
Standardization	 is	 in	 many	 ways	 synonymous	 with	 openness	 and

interoperability.	 It	 is	 also	 because	 IP	 has	 always	 been	 an	 open	 standard
with	 no	 royalties	 that	 a	 plethora	 of	 new	 applications	 emerged	 in	 the	 past
few	decades	while	ensuring	interoperability	between	devices	from	different
manufacturers.	Standardization	is	not	used	just	to	produce	documents	that
define	protocol	 specifications,	 but	 rather	 to	 ensure	 that	 implementers	will
be	able	to	develop	systems	that	smoothly	interoperate.

Conversely,	 the	 lack	 of	 standardization	 has	 many	 undesirable	 effects.
Over	 the	 past	 15	 years,	 a	 plethora	 of	 proprietary	 technologies	 and
architectures	 have	 been	 developed	 to	 address	 the	 requirements	 of	 Low-
power	and	Lossy	Networks	(LLNs)	for	highly	specific	environments.	At	first
such	an	approach	may	satisfy	the	specific	requirements	for	that	application
and	 is	 supposedly	 “optimized”	 for	 that	 environment,	 but	 proprietary
solutions	suffer	from	severe	limitations:

•	Limited	evolution	and	innovation:	There	are	very	few	examples	of
proprietary	solutions	that	have	survived.	This	means	that	proprietary
solutions	are	tied	to	a	particular	organization,	thus	limiting	the	chances
for	 other	 organizations	 and	 individuals	 to	 contribute	 new	 innovative
ideas.	The	evolution	of	the	solution	is	driven	by	the	business	priorities
of	 that	 organization,	 not	 the	 willingness	 to	 design	 innovative
applications	and	solutions.
•	 Absence	 of	 interoperability:	 More	 important	 is	 the	 lack	 of

interoperability	 with	 non-proprietary	 solutions.	 Although	 the
proprietary	 solution	may	not	 require	 interoperability	with	 the	 rest	 of
the	world	at	first,	such	a	situation	rarely	lasts	for	a	long	period	of	time
and	it	quickly	becomes	necessary	to	connect	that	proprietary	“island”
with	 other	 standardized	 networks.	 As	 discussed	 in	 length	 in	 Part	 I,
connecting	 the	 two	 “worlds”	 by	 a	 gateway	 is	 not	 only	 technically
challenging	 but	 usually	 an	 expensive	 and	 difficult	 “solution”	 to
manage.	This	also	means	that	the	overall	architecture	is	now	based	on
the	 least	common	denominator,	 thus	reinforcing	 the	 lack	of	 flexibility



and	evolution.

	
The	world	of	“smart	objects”	(sometimes	also	called	“sensor	networks”)

is	 not	 an	 exception	 and	 has	 been	 remarkably	 driven	 by	 proprietary
solutions	until	a	 few	years	ago.	Dozens	of	proprietary	 solutions	have	been
developed.	 The	 lack	 of	 standardization	 explains	 the	 limited	 scope	 of
deployment	in	light	of	the	unlimited	number	of	opportunities.

The	use	of	an	open	standard	such	as	IP	for	smart	objects	is	crucial	and	a
must	to	build	a	scalable	architecture	for	the	next	Internet	and	other	private
IP	networks.	IP	has	largely	demonstrated	its	flexibility	and	ability	to	evolve
to	support	new	applications.

It	must	be	noted	that	although	IP	 is	used	 in	 the	Internet,	 its	use	 is	not
limited	to	the	Internet	and	has	been	deployed	in	networks	with	no	relation
to	 the	 Internet.	 The	 standardization	 body	 in	 charge	 of	 IP	 is	 the	 Internet
Engineering	Task	Force	(IETF).

	
14.2	The	IETF
The	 IETF	 is	 the	 international	 open	 standardization	 body	 in	 charge	 of

specifying	 the	 IP	 protocol	 suite.	 It	 was	 formed	 in	 1986	 and	 is	 exclusively
made	of	individuals,	not	companies.	The	IETF	motto	(quote	by	David	Clark
in	 1992)	 “We	 reject	 kings,	 presidents	 and	 voting.	 We	 believe	 in	 rough
consensus	and	running	code”	has	been	driving	the	IETF	and	has	led	to	the
specification	of	a	number	of	IP-based	protocols	over	the	past	two	decades.

The	 first	 IETF	 meeting	 took	 place	 in	 January	 1986	 in	 San	 Diego,
California,	with	21	attendees.	The	IETF	now	meets	three	times	a	year	with
several	thousands	of	attendees	from	all	continents	(see	Figure	14.1).



Figure	14.1	Evolution	of	the	IETF	attendance	over	the	past	20	years.
	

14.2.1	The	IETF	Mission
The	 mission	 of	 the	 IETF,	 as	 referenced	 in	 [10]	 is	 “to	 produce	 high

quality,	 relevant	 technical	 and	 engineering	 documents	 that	 influence	 the
way	people	design,	use,	and	manage	the	Internet	in	such	a	way	as	to	make
the	Internet	work	better.”

Documents	 are	produced	 in	 the	 form	of	RFCs	 (request	 for	 comments)
by	Working	Groups	(see	the	section	IETF	Organization	for	more	details	on
the	IETF	process).

The	number	of	published	RFCs	has	significantly	grown	over	the	past	20
years	as	shown	in	Figure	14.2.

Figure	14.2	Number	of	published	RFC	since	1970,	RFC	Editor,	 IETF-
74.
	

The	IETF	is	governed	by	these	fundamental	principles:

•	Open	 process:	Anyone	 is	 free	 to	 participate	 in	 the	 IETF	with	 no
conditions	 (e.g.,	 no	 fees)	 via	Working	 Group	mailing	 lists	 and	 IETF
meetings	organized	three	times	a	year.
•	Technical	competence:	The	IETF	only	works	on	technical	issues	in

which	 it	 has	 the	 required	 competence	 and	 is	 willing	 to	 receive	 input
from	any	technically	competent	sources.
•	Volunteer	core:	Each	participant	and	leader	volunteers	in	the	IETF



to	make	the	Internet	better.
•	Rough	consensus	and	running	code:	This	is	one	of	the	fundamental

rules	of	operation	of	 the	 IETF.	Standards	are	produced	based	on	 the
combined	 engineering	 judgment	 of	 its	 participants	 and	 real-life
experience	of	 implementations.	There	 is	no	 formal	voting	or	counting
and	 no	 requirement	 of	 unanimity.	 This	 helps	 when	 there	 is	 no
unanimity	 but	 still	 a	 rough	 consensus	 determined	 by	 the	 Working
Group	chairs.

	
Each	Working	Group	has	a	bounded	scope	defined	in	its	charter.
	
14.2.2	The	IETF	Organization
The	 IETF	 is	made	up	of	Working	Groups	 encompassing	 the	 following

areas:

•	 Applications	 (APP):	 Protocols	 seen	 by	 user	 programs,	 such	 as	 e-
mail	 and	 the	Web.	 Examples	 include	 application	 layer	 optimization,
Calendaring	 and	 Scheduling	 Standards	 Simplification,	 Hypertext
Transfer	 Protocol	 Bis,	 and	 Internationalized	 Domain	 Names	 in
Applications	(Revised).
•	General	 (GEN):	Catch-all	 for	Working	Groups	 that	 do	 not	 fit	 in

other	areas	(there	are	very	few).
•	 Internet	 (INT):	 Different	 ways	 of	 moving	 IP	 packets	 and	 DNS

information.	 Examples	 include	 IP	 over	 IEEE	 802.16	 Networks,	 IPv6
over	Low-power	WPAN,	IPv6	Maintenance,	DNS	Extensions,	Dynamic
Host	 Configuration,	 Network	 Time	 Protocol,	 Timing	 over	 IP
Connection	 and	 Transfer	 of	 Clock,	 Mobility	 EXTensions	 for	 IPv6,
Mobility	for	IPv4,	and	so	forth.
•	Operations	and	Management	(OPS):	Operational	aspects,	network

monitoring,	 and	 configuration.	 Examples	 include	 Benchmarking
Methodology,	 Global	 Routing	 Operations,	 IP	 Flow	 Information
Export,	MBONE	Deployment,	Performance	Metrics	for	Other	Layers,
RADIUS	EXTensions,	and	so	forth.
•	 Real-time	 applications	 and	 infrastructure	 (RAI):	 Delay-sensitive

interpersonal	 communications.	 Examples	 include	 audio/video
transport,	 telephone	 number	 mapping,	 basic	 level	 of	 interoperability
for	 SIP	 Services,	 SIP	 for	 instant	 messaging	 and	 presence	 leveraging
extensions,	and	so	forth.



•	 Routing	 (RTG):	 Getting	 packets	 to	 their	 destinations.	 Examples
include	 Multiprotocol	 Label	 Switching	 (MPLS),	 Open	 Shortest	 Path
First	 IGP,	 IS-IS	 for	 IP	 Internets,	 Path	Computation	 Element	 (PCE),
routing	over	low-power	and	lossy	networks,	and	so	forth.
•	Security	 (SEC):	Authentication	and	privacy.	Examples	 include	 IP

security	maintenance	and	 extensions,	provisioning	of	 symmetric	keys,
multicast	security,	and	transport	layer	security.
•	 Transport	 (TSV):	 Special	 services	 for	 special	 packets.	 Examples

include	 Datagram	 Congestion	 Control	 Protocol,	 congestion	 and	 pre-
congestion	 notification,	 robust	 header	 compression,	 Transport	 Area
Working	Group,	TCP	maintenance	and	minor	extensions,	and	so	forth.

	
The	Internet	Engineering	Steering	Group	(IESG)	is	responsible	for	the

direct	operation	of	the	IETF	and	the	overall	quality	of	the	work	it	produces.
A	 detailed	 description	 of	 its	 charter	 can	 be	 found	 in	 [9].	 The	 IESG	 is
composed	 of	 the	 IETF	 chair	 and	 all	 of	 the	 area	 directors.	 The	 Internet
Architecture	Board	 (IAB)	 chair	 and	 the	 IETF	 executive	 director	 are	 also
part	of	the	IAB	as	ex-officio	members	of	the	IESG.
	
14.2.3	IETF	Standard	Tracks
When	 working	 on	 standardization	 it	 is	 necessary	 to	 have	 a	 good

understanding	of	the	Internet	standard	process	described	in	[22].	Producing
a	high-quality	standard	is	not	an	easy	task.	The	goals	of	the	standardization
process	are

•	Technical	excellence
•	Prior	implementation	and	testing
•	Clear,	concise,	and	easily	understood	documentation
•	Openness	and	fairness	(a	cardinal	principle	of	the	IETF)
•	Timeliness

	
Finding	 the	 right	 compromise	 between	 technical	 excellence,	 prior

implementation	 and	 testing,	 giving	 a	 chance	 for	 all	 interested	 parties	 to
comment	 and	 contribute,	 and	 timeliness	 in	 the	 fast	moving	world	 of	 high
technology	is	somewhat	challenging.

Internet	standard	specifications	fall	into	one	of	these	two	categories:

•	 Technical	 specification	 (TS):	 Technical	 description	 of	 a	 protocol,



services,	procedure,	convention,	or	format.
•	 Applicability	 statement	 (AS):	 As	 mentioned	 in	 [22],	 “An

applicability	 statement	 specifies	 how,	 and	 under	what	 circumstances,
one	 or	 more	 TSs	 may	 be	 applied	 to	 support	 a	 particular	 Internet
capability.”	For	example,	an	AS	may	specify	the	circumstances	under
which	one	or	more	technical	specifications	may	(or	may	not)	be	utilized
or	 parameterized	 (e.g.,	 timer	 values,	 activation	 of	 a	 particular
subfunction).	An	AS	may	have	different	requirement	levels:

•	Required:	Implementation	of	the	referenced	TS	as	specified	in
the	AS	is	a	must	to	be	conformant	to	the	standard.
•	 Recommended:	 Although	 the	 implementation	 of	 the

referenced	TS	 is	not	 a	must	 for	 conformity,	 it	 is	desirable	 in	 the
domain	 of	 applicability	 of	 the	 AS.	 In	 other	 words,	 vendors	 are
strongly	 encouraged	 to	 implement	 the	 referenced	 TS	 in	 their
products	and	omission	should	be	carefully	justified.
•	Elective:	Implementation	of	the	TS	is	optional.
•	Limited	use:	Use	of	the	TS	is	appropriate	under	very	specific

circumstances.	 A	 good	 example	 is	 the	 use	 of	 a	 TS	 in	 the
experimental	 track,	which	 should	be	 limited	 to	 those	 involved	 in
the	experiment.
•	Not	recommended:	When	a	TS	is	considered	as	inappropriate

for	general	use.
	

	
Note	 that	 each	 TS	 and	 AS	 is	 conceptually	 separate	 and	 could	 be

combined	 in	 a	 single	 document.	 In	 other	 cases	 it	 is	 preferable	 to	 have
separate	documents.	For	example,	the	Routing	Over	Low-power	and	Lossy
networks	(ROLL)	Working	Group	in	charge	of	the	routing	issues	in	LLNs
chose	to	develop	a	generic	routing	protocol	(TS)	that	contains	some	AS	but
is	also	accompanied	by	a	 series	of	AS	 to	provide	recommendations	on	 the
use	of	the	TS	in	specific	environments	(e.g.,	parameterization).

The	 IETF	 standardization	 defines	 several	 categories	 of	 specification:
standard	track,	experimental,	and	informational.

Let’s	first	focus	on	the	standard	track.	Each	document	that	follows	the
standard	track	can	have	three	levels	of	maturity.

14.2.3.1	Level	of	Maturity	of	Standard	Track	Documents
The	 first	 level	of	maturity	 is	known	as	 the	Proposed	Standard	 (PS).	A

TS	 reaches	 this	 level	 of	maturity	when	 the	 specification	 is	 stable	 and	 has



been	 extensively	 reviewed	 by	 the	 community,	 and	 known	 design	 choices
have	been	resolved	and	are	well	understood.	Although	it	is	not	required	to
have	implementations	to	reach	this	maturity	level,	it	is	highly	encouraged	to
get	implementations	for	a	TS	to	become	a	PS.	This	may	also	be	required	by
the	IESG	when	the	protocol	affects	the	core	of	the	Internet.	PSs	are	subject
to	changes	based	on	experience	if	issues	are	found.

The	 second	 level	 of	 maturity	 is	 called	 Draft	 Standard	 and	 is	 reached
when	 at	 least	 two	 independent	 and	 interoperable	 implementations	 exist
(from	different	code	bases)	that	have	demonstrated	sufficient	and	successful
operational	 experience.	 Note	 that	 this	 applies	 to	 all	 of	 the	 options	 and
features	specified	by	the	specification.

The	last	level	of	maturity	is	the	Internet	Standard.	A	specification	may
be	 elevated	 to	 this	 level	 when	 significant	 implementations	 and	 successful
operation	have	been	obtained	and	the	specification	has	reached	a	high	level
of	maturity.

There	 are	 about	 80	 Full	 Standards,	 90	 Draft	 Standards,	 and	 1532
Proposed	 Standards.	 Unlike	 other	 standardization	 bodies,	 the	 IETF
considers	a	specification	to	be	deployable	when	 it	reaches	the	PS	maturity
level.

14.2.3.2	Non-standard	Track	Specifications
There	are	other	categories	(non-standard	track)	for	documents	that	are

not	intended	or	ready	to	become	standards.

•	 Experimental	 track:	 This	 is	 used	 for	 specification	 resulting	 from
research	 or	 development	 efforts.	 It	 is	 not	 uncommon	 for	 some
specification	to	move	to	the	standard	track	once	more	experience	in	the
field	has	been	acquired.
•	 Informational:	 This	 type	 of	 RFC	 is	 a	 documentation	 made

available	to	the	general	community	that	does	not	represent	an	Internet
community	consensus	or	recommendation.	Requirement	documents	for
the	 specification	 of	 a	 protocol	 are	 usually	 published	 as	 informational
and	 used	 to	 provide	 some	 guidance	 during	 the	 protocol	 specification
cycle.	For	 example	 (as	 discussed	 in	Chapter	 17),	 the	ROLL	Working
Group	has	produced	four	application-specific	requirement	documents
that	have	been	used	to	design	a	routing	protocol.

	
Informational	 and	 experimental	 specification	may	 either	 be	 submitted

directly	 to	 the	RFC	 editor	 (in	which	 case	 the	RFC	 editor	will	 consult	 the



IESG	for	review)	or	may	be	the	product	of	a	Working	Group.
Note	that	some	specifications	may	be	marked	as	historic	when	they	are

considered	obsolete	or	have	been	superseded	by	a	more	recent	specification.
For	example,	the	RFC1863	(a	BGP/IDRP	Route	Server	alternative	to	a	full
mesh	 routing)	 has	 been	 reclassified	 as	 historic	 since	 implementations	 of
RFC1863	route	servers	do	not	exist	and	are	not	used	as	an	alternative	to	full
mesh	routing.	The	current	technologies	are	the	BGP	route	reflectors,	BGP
confederations,	or	private	autonomous	systems	(AS)	numbers.

14.2.3.3	The	Best	Current	Practice	Series
The	best	current	practice	 (BCP)	 series	 is	used	 to	 standardize	practices

and	 is	 the	result	of	community	deliberation.	Note	that	BCPs	do	not	 follow
the	 three-stage	 standard	 track	 process	 and	 once	 approved	 are	 published.
BCPs	are	useful	in	many	ways,	both	for	implementers	and	end	users.

14.2.4	The	IETF	Standard	Process
The	first	stage	of	the	life	cycle	is	the	posting	of	an	individual	submission

document	 in	 the	 IETF	directory.	Note	 that	 this	process	 is	 open	 to	 anyone
and	does	not	require	any	approval.	The	name	of	the	document	should	be	of
the	form	draft-X-rev.txt	where	X	is	generally	the	author	name	followed	by	a
concise	 description	 of	 the	 document	 content	 (e.g.,	 draft-johnson-dns-
extensions-multicast-00.txt)	 and	 rev	 is	 a	 number	 corresponding	 to	 the
revision	number	of	the	document.

It	 is	 very	 common	 to	 follow	 the	 document	 name	 by	 the	 targeted
Working	Group	where	the	document	will	be	discussed.

Note	 that	 each	 document	 (except	 once	 recommended	 by	 the	 IESG	 for
publication)	 automatically	 expires	 after	 six	 months	 and	 can	 be	 simply
refreshed	by	reposting	the	document	after	having	incremented	the	revision
number.

As	shown	in	Figure	14.3,	at	this	stage	the	document	is	being	discussed	in
the	 appropriate	 Working	 Group.	 If	 the	 document	 addresses	 one	 of	 the
Working	Group	 items	 listed	 in	 its	 charter	 and	 there	 is	 a	Working	Group
consensus	to	adopt	the	document	as	a	Working	Group	document,	then	the
document	 becomes	 “officially”	 adopted	 by	 the	 Working	 Group.	 Some
documents	 may	 directly	 be	 elected	 to	 the	 status	 of	 Working	 Group
documents.



Figure	14.3	Life	cycle	of	an	IETF	document	(IETF	submission).
	

Following	our	previous	example,	the	document	name	becomes	draft-ietf-
dns-extensions-multicast-00.txt	 and	 effectively	 becomes	 the	 “property”	 of
the	Working	Group.	All	changes	and	evolutions	of	the	document	must	then
be	discussed	and	agreed	upon	by	 the	community	 involved	 in	 the	Working
Group.	Once	 the	 document	 comes	 through	 a	 number	 of	 iterations	 and	 is
considered	mature	and	stable,	a	Working	Group	Last	Call	is	issued	by	the
Working	Group	chairs.	All	comments	received	during	that	period	must	be
addressed	by	the	authors,	at	which	point	a	publication	request	is	sent	to	the
Area	Director	by	a	Working	Group	chair.

Note	that	the	process	is	different	for	an	individual	submission	that	is	not
the	product	of	the	Working	Group.	In	this	case,	the	document	is	discussed
with	the	RFC	editor	and	the	IESG	that	reviews	it.

The	 IESG	 determines	 whether	 or	 not	 the	 document	 satisfies	 the
applicable	criteria	for	recommendation	action	and	also	decides	whether	or
not	the	technical	quality	and	clarity	is	consistent	with	the	required	maturity
level	 to	 which	 the	 specification	 is	 recommended.	 In	 some	 cases	 the	 IESG
may	 issue	 a	 general	 IETF	 last	 call	 period	 (between	 two	 and	 four	 weeks)
during	which	anybody	can	send	comments.	The	IESG	may	decide	to	change
the	 publication	 category.	 During	 review,	 IESG	 members	 may	 send
comments	 on	 the	 specification	 or	 “DISCUSS”	 positions.	 The	 DISCUSS
position	 identifies	 one	 or	 more	 issues	 with	 the	 document	 that	 must	 be
addressed	by	 the	 authors	 in	 coordination	with	 the	Working	Group	 chairs
and	 (if	 needed)	 reviewed	 by	 the	 Working	 Group.	 A	 DISCUSS	 is	 a



“blocking”	 position	 that	 prevents	 the	 publication	 of	 the	 document	 until
resolved.	It	may	be	stated	for	a	number	of	reasons:	specification	impossible
to	implement	due	to	technical	or	lack	of	clarity	issues,	technical	flaws	in	the
protocol	 design,	 likelihood	 that	 multiple	 implementations	 will	 not
interoperate	due	to	lack	of	clarity	of	the	specification,	risk	of	damaging	the
Internet	if	the	specification	was	widely	deployed,	existence	of	security	holes
in	 the	 specification,	 a	 normative	 reference	 necessary	 to	 implement	 the
document	has	been	omitted,	and	so	forth.	DISCUSS	must	be	resolved	by	the
authors	 of	 the	 specification	 with	 the	 help	 of	 the	 Working	 Chairs	 and
potentially	the	Working	Group.	Once	each	DISCUSS	is	resolved	the	IESG
approves	the	publication	of	the	specification.

If	 approved	 for	 publication,	 a	 notification	 is	 sent	 to	 the	 IETF	and	 the
RFC	editor.

14.2.5	The	IAB
The	IAB	(http://www.iab.org/)	is	made	up	of	twelve	sitting	members	and

the	 IETF	 chair	 who	 serve	 as	 individuals	 and	 not	 representatives	 of
companies.	Six	of	the	twelve	members	are	appointed	each	year	for	a	period
of	two	years.

The	IAB	is	chartered	to	perform	the	following	tasks:

•	IESG	appointment:	The	IAB	reviews	IESG	candidates	consenting
to	 some,	 all,	 or	 none	 of	 the	 candidates	 provided	 by	 the	 IETF
nominating	candidates	(Nomcom)	for	vacant	IESG	seats.
•	Architectural	 oversight:	This	 is	 undoubtedly	 a	key	mission	of	 the

IAB.	The	IAB	pays	particular	attention	 to	 the	 long-term	issues	of	 the
Internet.	 Such	 issues	 are	 brought	 to	 the	 attention	 of	 the	 groups	 that
address	them,	when	the	groups	are	already	in	place.	IAB	members	also
participate	in	“Birds	of	Feather”	(BOF)	and	help	the	IESG	determine
whether	a	new	IETF	Working	Group	or	IRTG	Research	Group	should
be	formed.	The	IAB	also	reviews	the	charter	of	newly	formed	Working
Groups	 for	 review	of	 the	architectural	 consistency	and	 integrity.	 IAB
also	organizes	the	Internet	Research	Task	Force	(IRTF)	and	is	involved
in	 the	 formation	 of	 new	 Research	 Groups.	 The	 IAB	 also	 convenes
workshops	 on	 specific	 topics.	 For	 example,	 workshops	 have	 been
organized	 in	 the	 past	 on	 “Internet	 Information	 Infrastructure”
(October	1994),	“Routing	and	Addressing”	(October	2006),	“Unwanted
Traffic”	(March	2006),	“Social	Networking”	(June	2008),	and	so	forth.
The	 IAB	 is	 free	 to	 invite	 any	 relevant	 parties	 of	 the	 IETF	 or	 other
organizations;	the	outcome	of	such	workshops	is	a	report	destined	for

http://www.iab.org/


the	IETF	community	and	IESG.
•	 The	 IAB	 also	 provides	 oversight	 of	 the	 process	 used	 to	 produce

Internet	 Standards.	 Appeals	 to	 handle	 complaints	 of	 improper
execution	of	standards	processes	are	also	handled	by	the	IAB.
•	The	IAB	is	the	representative	of	the	IETF	community	for	technical

liaisons	 with	 other	 organizations.	 Such	 liaisons	 are	 as	 informal	 as
possible	 with	 the	 objective	 of	 improving	 the	 quality	 of	 the	 IETF
standards.	 Examples	 of	 liaisons	 with	 other	 standardization	 bodies
include:	 ISO	 (http://www.iso.org/iso/home.htm),	 ITU
(http://www.itu.int/net/home/index.aspx),	 IEEE
(http://www.ieee.org/portal/site),	 3	 GPP	 (http://www.3gpp.org/),	 and
IP/MPLS	Forum	(http://www.ipmplsforum.org/).
•	The	IAB	also	approves	the	appointment	of	an	organization	to	act	as

RFC	 editor	 (in	 charge	 of	 the	 editorial	management	 of	RFCs)	 and	 an
organization	 to	 act	 as	 the	 Internet	 Assigned	 Numbers	 Authority
(IANA)	 that	 is	 responsible	 for	 the	 assignment	 of	 the	 various	protocol
parameters	specified	by	the	IETF.

	
More	details	can	be	found	in	[33].
14.2.5.1	IRTF
The	mission	of	the	IRTF	is	to	“to	promote	research	of	importance	to	the

evolution	 of	 the	 future	 Internet	 by	 creating	 focused,	 long-term	 and	 small
Research	 Groups	 working	 on	 topics	 related	 to	 Internet	 protocols,
applications,	architecture	and	technology.”

The	IRTF	is	organized	into	Research	Groups	(RGs)	to	focus	on	various
topics	 related	 to	 protocols,	 application	 architecture,	 and	 technologies.
Similar	to	the	IETF,	IRTF	members	are	individual	contributors	as	opposed
to	 company	 representatives.	 RGs	 are	 expected	 to	 have	 long-term
membership	 to	 promote	 the	 development	 of	 research	 collaboration	 and
teams	for	research-related	topics.

The	 IRTF	 is	 managed	 by	 the	 IRTF	 chair	 (appointed	 by	 the	 IAB)	 in
consultation	 with	 the	 Internet	 Research	 Steering	 Group	 (IRSG),	 which
includes	the	IRTF	chairs,	 the	RG	chairs	(appointed	by	the	IRTF	chairs	 in
consultation	 with	 the	 IRSG	 and	 approval	 of	 the	 IAB),	 and	 potential
individuals	from	the	research	community.

There	are	twelve	RGs:

•	Anti-Spam	Research	Group	(ASRG)

http://www.iso.org/iso/home.htm
http://www.itu.int/net/home/index.aspx
http://www.ieee.org/portal/site
http://www.3gpp.org/
http://www.ipmplsforum.org/


•	Routing	Research	Group	(RRG)
•	Delay-Tolerant	Networking	Research	Group	(DTNRG)
•	Peer-to-Peer	Research	Group	(P2PRG)
•	Host	Identity	Protocol	(HIP)	Research	Group	(HIPRG)
•	 IP	 Mobility	 Optimizations	 (Mob	 Opts)	 Research	 Group

(MOBOPTS)
•	Network	Management	Research	Group	Charter	(NMRG)
•	Transport	Modeling	Research	Group	(TMRG)
•	Scalable	Adaptive	Multicast	Research	Group	(SAMRG)
•	Crypto	Forum	Research	Group	(CFRG)
•	End-to-End	Research	Group	Charter	(END2END)
•	Internet	Congestion	Control	Research	Group	(ICCRG)

	
More	details	on	the	IRTF	can	be	found	in	[255].
14.3	IETF	Working	Groups	Related	to	IP	for	Smart	Objects
Until	2007	the	IETF	had	not	paid	any	particular	attention	to	the	world

of	smart	objects.	It	was	extremely	important	to	quickly	stop	the	emergence
of	proprietary	protocols	and	pay	the	required	level	of	attention	and	energy
to	 specify	 IP-based	 protocols	 for	 smart	 objects.	A	 presentation	was	made
during	the	Routing	Area	Plenary	session	during	the	IETF-69	in	Chicago	on
July	 2007	 to	 highlight	 the	 need	 for	 specific	 work	 in	 this	 area	 (see	 Figure
14.4).



Figure	14.4	Presentation	during	the	Routing	Plenary	Session	IETF	2007.
	

The	 intent	 has	 always	 been	 to	 reuse	 existing	 IP	 protocols	 whenever
possible	with	a	 strong	 incentive	 to	not	“reinvent	 the	wheel.”	The	world	of
smart	objects	is	not	an	exception.	Many	of	the	existing	IP	protocols	can	be
reused	without	change	such	as	the	UDP	(User	Datagram	Protocol;	see	[202])
or	TCP	(Transport	Connection	Protocol;	see	[204]).

There	were	other	areas	that	required	specific	solutions.	The	use	of	IPv6
over	 IEEE	 802.15.4	 handled	 by	 the	 6LoWPAN	Working	 Group	 requires
protocol	 enhancement	 and	 some	 protocol	 adaptations	 to	 optimize	 the
transport	of	 IPv6	packets	 in	an	 IEEE	802.15.4	 frame.	Another	example	 is
routing.

This	section	provides	a	description	of	the	two	IETF	Working	Groups	(so
far)	 that	 are	 focusing	 on	 issues	 specific	 to	 IP-based	 smart	 objects:
6LoWPAN	 and	 ROLL.	 New	 IETF	 Working	 Groups	 devoted	 to	 smart
objects	are	likely	to	emerge.

14.3.1	The	IPv6	over	Low-power	WPAN	Working	Group
The	 IPv6	 over	Low-power	WPAN	 (6LowWPAN)	Working	Group	was

formed	in	2004	to	work	on	protocol	specifications	to	optimize	the	operation
of	 IPv6	 over	 networks	 made	 of	 IEEE	 802.15.4	 [129]	 links	 in	 LoWPAN
(Low-power	Wireless	 Personal	 Area	Networks).	 The	 6LoWPAN	Working



Group	belongs	to	the	Internet	area	(INT)	of	the	IETF.
Note	 that	 the	 6LoWPAN	 Working	 Group	 uses	 the	 term	 LoWPAN

whereas	 the	 ROLL	Working	Group	 prefers	 the	more	 generic	 term	 Low-
power	and	Lossy	Networks	(LLNs).	The	two	terms	are	somewhat	equivalent
when	 referring	 to	 networks	made	 of	 constrained	 devices	 regarding	 CPU,
memory,	or	energy	(some	of	these	nodes,	especially	when	battery-operated,
may	be	in	sleep	mode	for	long	periods	of	time)	and	usually	interconnected
by	means	of	unstable	 links	(qualified	as	“lossy”	 links).	Furthermore,	 these
networks	may	be	deployed	on	a	large	scale.	As	discussed	in	Chapter	2,	the
major	distinction,	though,	is	that	LLNs	are	not	restricted	to	IEEE	802.15.4
links	 but	 also	 occur	 in	 other	 low-power	 links	 such	 as	 WiFi,	 Powerline
communication	(PLC),	and	so	forth.	In	other	words,	a	LoWPAN	is	an	LLN
where	devices	are	interconnected	by	IEEE	802.15.4-compliant	links.

The	key	characteristics	of	LoWPANs	include:

•	 Small	 packet	 size	 imposed	 by	 the	 IEEE	 802.15.4	 standard:	 The
maximum	 packet	 size	 at	 the	 physical	 layer	 is	 127	 bytes	 minus	 a
maximum	of	control	fields	of	25	bytes,	which	leaves	102	bytes	available
at	 the	media	 access	 control	 (MAC)	 layer.	 Depending	 on	 the	 security
mechanism	 in	 place,	 this	 only	 leaves	 81	 bytes	 available	 (21	 octets	 of
overhead	in	the	AES-CCM-128	case,	9	octets	for	AES-CCM-32,	and	13
octets	 for	AES-CCM-64),	which	 is	 far	below	 the	minimum	maximum
transmission	 unit	 (MTU)	 size	 of	 the	 IPv6	 packet	 imposed	 by	 [53].
According	to	 [53],	“IPv6	requires	 that	every	 link	 in	 the	Internet	have
an	 MTU	 of	 1280	 octets	 or	 greater.”	 Consequently,	 this	 requires	 a
fragmentation	 and	 reassembly	 adaptation	 layer.	 The	 second
consequence	is	the	need	for	compression	header	techniques	considering
the	 header	 size	 of	 an	 IPv6	 packet	 (40	 bytes).	 Both	 the
fragmentation/reassembly	and	compression	techniques	specified	by	the
6LoWPAN	Working	Group	are	detailed	in	Chapter	16.
•	 Support	 of	 both	 the	 16-bit	 short	 address	 and	 the	 IEEE	 64-bit

extended	MAC	addresses.
•	As	 in	most	LLNs,	 links	 are	 inherently	 “low”	bandwidth:	 250,	 40,

and	20	kbps	for	each	of	the	currently	defined	physical	layers	(2.4	GHz,
915	MHz,	and	868	MHz,	respectively)	of	the	IEEE	802.15.4	standard.

	
[156]	 provides	 a	 6LoWPAN	 problem	 statement	 and	 lists	 some	 of	 the

goals	of	the	Working	Group	such	as	fragmentation	and	reassembly,	header



compression,	 address	 autoconfiguration	 (a	 key	 requirement	 for	 LoWPAN
and	 LLNs	 in	 general),	 network	 management,	 implementation
considerations,	and	security.

The	 6LoWPAN	Working	Group	was	 re-chartered	 in	 2008	 to	work	 on
the	following	items:

•	6LoWPAN	bootstrapping	and	6LoWPAN	IPv6	ND	Optimizations:
the	 objective	 is	 to	 define	 minor	 extensions	 to	 the	 IPv6	 ND	 process
defined	 in	 [185]	 for	 the	 specific	 environments	 of	 LoWPAN.	 This
document	is	still	in	progress	(proposed	standard	track).
•	 Produce	 6LoWPAN	 header	 compression	 techniques	 that	 are

improved	 forms	 of	 those	 defined	 in	 [176]	 known	 as	 HC1	 and	 HC2;
furthermore,	the	document	will	describe	compression	of	non-link	local
addresses.	 This	 document	 will	 be	 a	 proposed	 standard	 likely	 to
deprecate	some	of	the	mechanisms	defined	in	RFC4944.
•	Produce	a	6LoWPAN	architecture:	This	document	will	help	design

and	implement	6LoWPAN	networks	and	it	will	be	informational.
•	 Use	 cases	 for	 6LoWPAN:	 This	 document	 will	 show	 several

application	 scenarios	 and	 the	 list	 of	 dominant	 parameters	 of	 each
scenario	regarding	deployment,	mobility,	network	size,	power	(battery-
or	main-powered	nodes),	security	level,	routing	connectivity,	criticality
to	 support	differentiated	Quality	 of	 Service	 (QoS),	 and	 typical	 traffic
patterns	 (point-to-point,	point-to-multipoint,	multipoint-to-point,	etc.).
This	document	will	be	informational.
•	 6LoWPAN	 security	 analysis	 defining	 the	 thread	 model	 of

6LoWPAN:	This	document	discusses	the	suitability	of	key	management
mechanisms	as	well	as	bootstrapping,	installation,	commissioning,	and
setup	issues.	It	will	be	informational.
•	The	 final	Working	Group	 item	 is	related	 to	routing	requirements

that	are	6LoWPAN	specific.	This	document	will	be	informational.
•	 	Confusion	between	LLNs	and	6LoWPAN	networks:	6LoWPAN

has	 sometimes	 been	 used	 as	 a	 generic	 term	 for	 LLN	 or	 sensor
networks.	 6LoWPAN	 is	 the	 work	 devoted	 to	 IPv6	 optimization
techniques	and	protocol	adaptation	for	smart	objects	interconnected	by
IEEE	802.15.4	links.	LLNs	are	made	of	a	variety	of	 links	that	are	not
limited	 to	 IEEE	 802.15.4	 and	 where	 the	 techniques	 for	 header
compression	and	ND	defined	by	 the	6LoWPAN	Working	Group	may
not	apply	at	all.



	
	
14.3.2	The	ROLL	Working	Group
Routing	has	always	been	a	central	component	of	networking	and	several

IP	 routing	 protocols	 have	 been	 defined	 over	 the	 past	 two	 decades,	 both
Interior	Gateway	Protocols	 (IGPs)	such	as	IS-IS	 [30]	and	OSPF	[179],	 for
use	 within	 an	 Autonomous	 System	 (AS)	 or	 Exterior	 Gateway	 Protocols
(EGPs)	such	as	BGP	[212]	between	AS.

Several	of	these	protocols	in	their	early	stages	were	designed	for	routers
with	 very	 limited	 resources	 supporting	 low-speed	 interfaces	 with
capabilities	 similar	 to	 smart	 objects,	 but	 the	 properties	 of	 these	 networks
differed	 significantly	 from	 LLNs.	 Most	 of	 the	 main	 differences	 are
highlighted	in	Figure	14.5.

•	Scalability:	Although	some	LLNs	may	only	have	a	few	dozen	nodes
(e.g.,	 in	 a	 home),	 there	 are	 environments	 that	may	 have	 hundreds	 of
thousands	 of	 nodes.	 As	 further	 discussed	 in	 Part	 III,	 some	 urban	 or
smart	 grid	 networks	 will	 undoubtedly	 reach	 such	 numbers	 so
scalability	 is	 very	 important.	 Large	 enterprises	 or	 service	 provider
networks	using	OSPF	or	 IS-IS	as	 IGPs	 rarely	 exceed	a	 few	 thousand
nodes	 in	a	single	area/level.	The	number	of	nodes	 in	 large	LLNs	does
exceed	the	size	of	current	IP-based	networks	by	an	order	of	magnitude.
•	Network	stability:	This	is	another	difficult	challenge	for	routing	in

LLNs.	 Both	 nodes	 and	 links	 in	 the	 Internet	 and	 private	 IP-based
networks	are	extremely	stable.	Not	only	have	modern	routers	became
extremely	 powerful	 regarding	 number	 of	 interfaces	 and	 software
richness,	 but	 their	 reliability	 has	 also	 remarkably	 increased.
Furthermore,	 modern	 routers	 are	 equipped	 with	 a	 high	 level	 of
redundancy	and	support-enhanced	software	allowing	for	fast	recovery
in	 case	 of	 hardware	 or	 software	 failure.	 It	 is	 now	 possible	 on	 these
routers	 to	 perform	 in	 service	 software	 upgrades	 (ISSUs),	 and	 many
control	plane	protocols	are	capable	of	failure	recovery	with	no	impact
on	 traffic	 forwarding.	 Unfortunately,	 such	mechanisms	 often	 require
node	resources	not	always	available	on	smart	objects	that	usually	have
no	 redundancy	 and	 a	 failure	 rate	 significantly	 higher	 than	 Internet
routers.	 In	 some	 cases,	 they	 simply	 “die”	without	being	 replaced	and
redundancy	is	in	the	network	itself.	Alternatively,	some	nodes	may	not
be	operational	for	a	period	of	time	(e.g.,	battery-operated	devices	that
ran	out	of	energy).	But	the	most	critical	factor	of	network	instability	in



LLNs	is	ineluctably	due	to	link	error	rates	and	“flaps.”	In	the	Internet
optical	 fibers	 provide	 very	 low	 bit	 error	 rates	 (BER)	 of	 the	 order	 of
10−8,	 but	 low-power	 links	 such	 as	 IEEE	 802.15.4,	 low-power	WiFi,	 or
PLC	are	characterized	by	high	error	rates	and	link	instability.	It	is	not
uncommon	 for	 a	 link	 to	 “flap”	 because	 of	 various	 kinds	 of
interferences.	Several	examples	are	provided	in	Chapter	17.
•	 Link	 and	 node	 instability	 in	 LLNs:	 This	 is	 difficult	 for	 routing

protocols	 to	 overcome.	The	 usual	 trade-off	 between	 network	 stability
and	 convergence	 time	 is	 particularly	 challenging.	 In	 any	 routing
protocol	 design,	 it	 is	 desirable	 to	 support	 fast	 convergence	 (ability	 to
find	 an	 alternate	 path	 after	 a	 network	 failure).	 This	 implies	 quick
detection	 of	 the	 failures	 and	 recomputing	 alternate	 paths	 around	 the
failed	 network	 component.	 Unfortunately,	 there	 is	 a	 serious	 risk	 of
network	 instability,	 oscillations,	 and	 routing	 loops	 in	 the	 presence	 of
frequent	failures,	especially	with	distributed	routing	protocols.	This	 is
why	the	compromise	between	fast	failure	recovery	(convergence	time)
and	 network	 stability	 is	 quite	 challenging	 in	 LLNs.	 Such	 issues	 are
discussed	in	great	detail	in	Chapters	5	and	17.
•	 Degree	 of	 constraints:	 Routers	 in	 IP	 networks	 are	 typically	 not

constrained.	Core	routers	have	several	gigabytes	of	RAM	and	powerful
CPUs.	As	explained	in	detail	in	Chapter	1,	although	smart	objects	are
now	equipped	with	a	reasonable	amount	of	memory	and	CPU	power,
these	 are	 an	 order	 of	 magnitude	 more	 constrained	 that	 routers	 in
“traditional”	 IP	 networks.	 Another	 critical	 and	 very	 common	 node
constraint	 is	 energy.	 It	 is	 fairly	 common	 for	 nodes	 in	 LLNs	 to	 be
battery-operated,	 in	 which	 case	 energy	 consumption	 is	 a	 major
constraint.	Some	of	these	constraints	can	be	used	for	constraint-based
routing	or	as	a	metric	(see	Chapter	17).
•	Application	 aware	 routing:	 IP	 packets	 are	 routed	 in	 the	 Internet

according	to	their	destination	and	IGPs	are	responsible	for	computing
shortest	paths	according	to	fixed	metrics.	QoS	allows	packet	coloring	to
assign	different	priorities	to	traffic	flows.	In	the	presence	of	congestion,
packet	 processing	 is	 handled	 by	 sophisticated	 queuing	 algorithms
according	to	 the	 traffic	priority	 to	provide	the	required	Service	Level
Agreement	(SLA).	Multi-topology	routing	(MTR)	has	been	introduced
to	 support	multiple	 virtual	 topologies	 over	 a	 given	 physical	 topology.
The	 traffic	 can	 then	 be	 forwarded	 on	 a	 specific	 virtual	 topology
according	to	its	class	of	service.	Not	only	does	the	routing	protocol	for
LLN	require	the	support	of	MTR	and	QoS	routing	in	the	network,	but



it	may	also	be	necessary	to	support	application	aware	routing,	which	is
the	 ability	 to	 route	 the	 traffic	 according	 to	 the	 packet	 content.	 This
must	not	be	performed	at	each	hop	since	it	would	require	deep	packet
inspection	and	would	also	imply	“layer	violation,”	but	it	could	be	done
either	at	the	edge	of	the	network	(by	the	source)	or	along	the	path	(on
data	 traffic	 concentrators/aggregators).	 The	 packet	 content
(application)	 could	 then	 be	 abstracted	 using	 the	 diffserv	 code	 point
(DCP)	or	Flow	Label	field	of	the	IPv6	packet	to	avoid	packet	inspection
along	the	path	(refer	to	Chapter	15	for	an	IPv6	Technology	overview).
A	specific	capability	of	a	node	that	could	act	as	a	data	aggregator	could
be	 advertised	 by	 the	 routing	 protocol,	 which	 would	 then	 directly
influence	the	routing	decision.
•	 Technical	 challenges:	 Routing	 in	 LLN	 is	 extremely	 challenging

because	 of	 the	 high	 degree	 of	 network	 constraints	 (constrained	 links
and	 devices,	 instability,	 scalability,	 etc.),	 but	 also	 because	 of	 the
remarkable	 diversity	 of	 the	 requirements	 and	 environments	 where
LLNs	 are	 deployed.	 The	 design	 of	 a	 routing	 solution	 addressing	 all
requirements	 is	 a	 truly	multidimensional	 issue.	Three	dimensions	 are
presented	in	Figure	14.6	highlighting	the	diversity	of	the	requirements
and	 constraints	 in	 each	 dimension	 for	 several	 applications.	 In	 a
connected	 home	 network,	 the	 degree	 of	 link/node	 constraint	 is
relatively	 low	 (reasonably	 low	 level	 of	 interference,	 most	 devices	 are
main-powered,	just	a	few	devices	are	mobile	nodes).	At	the	other	end	of
the	 spectrum	 industrial	 environments	 are	 significantly	 more
constrained:	 most	 of	 the	 devices	 are	 battery-operated,	 their	 number
can	 be	 relatively	 large,	 and	 such	 networks	 are	 usually	 deployed	 in
harsh	environments.

	



Figure	14.5	Routing	in	the	Internet	versus	LLNs.
	

Figure	 14.6	 Technical	 challenges	 of	 LLNs.	 Light	 gray:	 Technical
challenge	difficulty:	Low,	dark	gray:	Technical	Challenge	difficulty	is	high.
	

There	are	many	environments	with	“middle	ground”-level	constraints	in
all	 dimensions.	 Narrowing	 the	 scope	 to	 the	 four	 applications	 previously
mentioned	(industrial,	urban	networks,	home	and	building	automation)	was



meant	to	avoid	a	too	disparate	set	of	constraint	levels.	One	approach	when
designing	a	protocol	 that	must	address	such	a	wide	set	of	constraints	 is	 to
simply	 consider	 the	 superset	 of	 all	 requirements	 driven	 by	 all	 of	 these
constraint	dimensions.	Although	satisfactory	in	its	functionality,	this	would
unavoidably	 lead	 to	 a	 routing	 protocol	 not	 optimized	 for	 any	 of	 the
environments	 and	 certainly	 too	 “heavy”	 for	 the	 constrained	 devices
deployed	 in	 these	 networks.	 The	 approach	 taken	 by	 the	 designers	 of	 the
routing	 protocol	 for	 LLN	 (as	 discussed	 in	 Chapter	 17)	 was	 to	 adopt	 a
modular	approach	that	consisted	of	a	defining	a	core	of	basic	functionalities
satisfying	 the	 set	 of	 common	 requirements	 augmented	 with	 optional
capabilities	 activated	when	 and	where	 needed.	This	 is	where	 applicability
statement	documents	come	into	play.

14.3.2.1	The	Formation	of	a	New	Working	Group:	ROLL
The	 unique	 characteristics	 of	 the	 LLNs	 justified	 the	 formation	 of	 the

ROLL	Working	Group.	 It	was	 formed	 in	March	 2008	 and	belongs	 to	 the
Routing	 Area	 Group	 (RTG).	 Detailed	 information	 about	 ROLL	 can	 be
found	at	http://www.ietf.org/html.charters/roll-charter.html.

ROLL	was	initially	chartered	to	produce	detailed	routing	requirements
and	evaluate	whether	or	not	 existing	routing	protocols	already	defined	by
other	IETF	Working	Groups	would	meet	its	unique	set	of	requirements.

The	 set	 of	 applications	 of	 LLNs	 is	 vast:	 smart	 cities,	 transportation,
assets	 tracking,	 home	 automation,	 healthcare,	 building	 automation,
industrial	 automation,	 energy	 savings,	 smart	 grids,	 military	 applications,
environmental	studies,	agriculture,	and	so	forth.	To	stay	focused	and	avoid
building	 a	 routing	 solution	 that	 could	 not	 accommodate	 all	 requirements,
the	decision	was	made	to	 limit	 the	scope	of	 the	requirements	 to	 four	main
applications:	 industrial	 automation,	 urban	 networks,	 and	 home	 and
building	automation.	The	superset	of	all	of	the	requirements	driven	by	the
aforementioned	applications	also	covers	many	of	the	other	areas	previously
mentioned.	 Furthermore,	 the	 goal	 was	 not	 to	 exclude	 any	 other	 area	 but
rather	to	focus	on	some	of	the	applications,	knowing	that	these	applications
would	also	cover	the	requirements	of	many	other	ones.

The	 ROLL	 Working	 Group	 has	 produced	 four	 corresponding
application-specific	routing	requirements	documents:	Urban	WSNs	Routing
Requirements	 in	 Low-Power	 and	 Lossy	 Networks,	 Industrial	 Routing
Requirements	 in	 Low-Power	 and	 Lossy	 Networks,	 Home	 Automation
Routing	 Requirements	 in	 Low-Power	 and	 Lossy	 Networks,	 and	 Building
Automation	Routing	Requirements	in	Low-Power	and	Lossy	Networks.

The	most	recent	versions	of	the	requirement	documents	can	be	found	at

http://www.ietf.org/html.charters/roll-charter.html


http://www.ietf.org/html.charters/roll-charter.html.
The	 ROLL	 Working	 Group	 extensively	 discussed	 whether	 or	 not	 an

existing	 protocol	 (with	 no	 change)	 could	 satisfy	 the	 specific	 routing
requirements.	 To	 that	 end,	 several	 criteria	 were	 selected	 to	 evaluate
whether	or	not	existing	protocols	would	satisfy	the	requirements	of	ROLL:

•	Routing	state:	Scalability	of	the	protocol	regarding	required	states
and	the	number	of	links	and	nodes	in	the	network
•	Loss	 response:	That	 criteria	was	used	 to	 study	 the	 impact	of	 link

churn	(fairly	common	in	LLN)	on	the	routing	protocol	to	make	sure	of
local	response	without	triggering	global	reoptimization
•	Control	 cost:	Ability	 for	 the	 routing	 protocol	 to	 limit	 the	 control

cost	 (routing	 control	plane	“overhead”)	by	 the	data	 rate	plus	a	 small
constant
•	 Link	 and	 node	 cost:	 Requirement	 for	 the	 routing	 protocol	 to

consider	link	and	node	metrics/constraints	in	route	computation

	
The	 criteria	 previously	 listed	 have	 been	 studied	 in	 a	 series	 of	 existing

protocols;	 namely	 OSPF	 (Open	 Shortest	 Path	 First;	 [179]),	 IS-IS
(Intermediate	System	to	Intermediate	System;	[131]	and	[238]),	OLSR	[41],
TBRPF	 (Topology	 Dissemination	 Based	 on	 Reverse	 Path	 Forwarding;
[187]),	 RIP	 (Routing	 Information	 Protocol;	 [163]),	 AODV	 (Ad-hoc	 On
Demand	 Vector	 Routing;	 [194]),	 DYMO	 (Dynamic	 Mobile	 On-Demand
routing),	and	DSR	(Dynamic	Source	Routing;	[141]).	After	six	months,	the
Working	Group	reached	a	consensus	that	no	existing	protocol	could	satisfy
the	 routing	 requirements	 spelled	 out	 in	 the	 series	 of	 application-specific
routing	requirements	previously	 listed.	Consequently,	 the	ROLL	Working
Group	was	successfully	re-chartered	to	specify	a	routing	solution	to	finalize
the	protocol	specification	by	February	2010.	Here	are	the	ROLL	Working
Group	items:

•	 Protocol	 work:	 The	 Working	 Group	 will	 either	 specify	 a	 new
routing	protocol	or	extend	an	existing	routing	protocol	that	satisfies	the
list	 of	 requirements	 listed	 in	 the	 application-specific	 routing
requirement	documents.11	The	ROLL	Working	Group	chose	to	specify
a	new	routing	protocol	discussed	in	detail	in	Chapter	17.
•	Routing	metrics:	Those	specified	for	IGPs	such	as	OSPF	and	IS-IS

are	 fairly	 straightforward	 and	 can	 be	 used	 by	 the	 network

http://www.ietf.org/html.charters/roll-charter.html


administrator	 to	 reflect	 bandwidth,	 delays,	 cost,	 or	 any	 combination.
Other	RFCs	 such	 as	 [249]	 have	 introduced	 the	 ability	 to	 specify	 new
link	 attributes	 (e.g.,	 link	 protected	 by	 a	 fast	 reroute	 mechanism).
Technologies	such	as	MPLS	Traffic	Engineering	introduced	a	new	set
of	 link	 metrics	 such	 as	 Affinities	 (administrative	 flag),	 Reservable
Bandwidth,	and	so	forth.	But	LLNs	have	other	specific	characteristics
that	 require	 the	 specification	 of	 new	 link	 and	 node	 routing
metrics/constraints.	Producing	a	 set	of	 routing	metrics/constraints	 for
the	routing	protocol	of	ROLL	is	a	key	Working	Group	item.
•	 Security:	 This	 is	 critical	 for	 a	 majority	 of	 the	 applications

supported	by	LLNs.	ROLL	is	producing	a	security	framework	for	that
purpose.	 Security	 requirements	 have	 been	 covered	 in	 detail	 in	 the
routing	 requirement	 documents	 and	 special	 attention	 is	 given	 to
security	in	the	routing	protocol	design.
•	 Management:	 Most	 LLNs	 are	 made	 of	 nodes	 that	 must	 support

minimal	configuration	 (such	networks	are	usually	 installed	by	non-IT
experts).	 Furthermore,	 the	 number	 of	 nodes	 can	 be	 very	 large.	 It	 is
thus	paramount	to	support	0-config	setup	mode	of	operation	where	the
nodes	 can	 be	 installed	 in	 the	 field	 without	 requiring	 any	 complex	 (if
any)	configuration	tasks.
•	 Architectural	 framework:	 The	 Working	 Group	 will	 produce	 an

architecture	document	for	routing	and	path	selection	in	LLN	whether
to	 use	 a	 distributed	 versus	 centralized	 routing,	 use	 of	 routing
hierarchy,	and	so	forth.
•	 Applicability	 statements:	 The	 Working	 Group	 will	 also	 produce

several	 application	 statement	 documents.	 An	 applicability	 statement
documents	 the	 use	 of	 protocols	 and	 mechanisms	 specified	 by	 the
Working	Group	 in	 a	 particular	 context	 (e.g.,	 how	 to	 use	 the	 routing
protocol	 in	 an	 urban	 network	 with	 battery-operated	 devices	 under
certain	conditions	of	traffic	pattern).

	
14.4	Conclusions
As	stated	 in	the	Introduction,	standardization	 is	absolutely	critical	and

synonymous	 of	 openness	 and	 interoperability.	 IP	 is	 by	 excellence	 an	 open
standardized	 technology.	 Anybody	 willing	 to	 contribute	 to	 IP
standardization	is	free	to	participate	in	the	IETF.	The	IETF	has	produced
an	impressive	number	of	extremely	high-quality	standards	over	the	past	few
decades	 ensuring	 interoperability	 between	 billions	 of	 devices.	 As	 IP



networks	 (private	 IP	 networks	 and	 the	 Internet)	 continue	 to	 grow
interconnecting	 several	 billions	 and	most	 likely	 trillions	 of	 smart	 objects,
standardization	 will	 continue	 to	 be	 crucial	 to	 ensure	 interoperability,
manageability,	 and	 innovation	while	 continuing	 to	 lower	 the	 cost	 of	 these
networks	in	contrast	with	proprietary	solutions.

This	 chapter	 provided	 a	 fairly	 detailed	 description	 of	 the	 IETF,	 IAB,
and	IRTF	regarding	organization	and	mode	of	operation.	It	was	shown	that
the	 IETF	 continues	 to	 quickly	 evolve	 and	 form	 new	 Working	 Groups
standardizing	new	IP	protocols	for	smart	objects.	New	Working	Groups	are
formed	when	needed	since	most	of	the	existing	IP	protocols	can	be	used	in
smart	object	networks.	IETF	will	undoubtedly	continue	to	be	a	fast	moving
and	central	standardization	body	for	IP	smart	objects	for	years	to	come.

	



Chapter	15	IPv6	for	Smart	Object
Networks	—	A	Technology	Refresher

	

15.1	IPv6	for	Smart	Object	Networks?
A	number	of	books	have	been	published	on	IPv6.	This	chapter	provides

a	technology	refresher	to	show	how	IPv6	is	used	for	IP	smart	objects.	More
details	on	IPv6	that	are	 less	applicable	to	Low-power	and	Lossy	Networks
(LLNs)	are	not	covered	in	this	chapter.	For	more	information	the	reader	is
referred	to	[104],	[49],	[201],	[17],	[243],	[164],	and	the	IPv6	RFCs	produced
by	the	Internet	Engineering	Task	Force	(IETF)	for	more	details.

As	discussed	in	Part	I,	IPv6	plays	a	fundamental	role	in	the	“Internet	of
Things/IP	smart	objects”	for	many	reasons	that	are	briefly	examined	in	this
chapter.	By	 reviewing	 the	 key	motivations	 for	 IPv6	 contained	 in	 [53],	 the
choice	of	IPv6	for	smart	object	networks	will	become	quite	obvious.

IPv6	strictly	follows	the	fundamental	architectural	principles	of	IP,	it	is
just	 the	 next	 revision	 of	 IP	 solving	 several	 limitations	 of	 IPv4.	 Even	with
these	 limitations,	 IPv4	 has	 been	 a	 tremendous	 success	 and	 is	 still	 in
operation	 after	 25	 years.	 IPv4	 will	 undoubtedly	 remain	 in	 operation	 for
years	 to	 come,	 and	 the	 IPv6	 designers	 have	 developed	 a	 plethora	 of
mechanisms	 allowing	 for	 a	 smooth	 transition	 to	 IPv6;	 for	 example,	 to
interconnect	native	 IPv6	clouds	over	an	 IPv4	core	network	 to	 support	 the
transition	to	IPv6.

Let’s	now	briefly	focus	on	some	key	functionalities	of	IPv6.

•	Larger	address	space	required	for	large-scale	networks:	Although
some	LLNs	such	as	home	automation	networks	may	only	consist	of	a
few	dozen	nodes,	in	many	other	cases,	the	number	of	these	nodes	may
be	an	order	of	magnitude	larger	than	in	conventional	IP	networks.	This
will	be	discussed	in	great	detail	in	Part	III,	but	urban	networks,	smart
grids,	 and	 industrial	 automation	 networks	 are	 examples	 where	 IP
smart	object	networks	will	potentially	comprise	hundreds	of	thousands
of	nodes.	With	the	IPv4	address	depletion	at	the	horizon	of	2012,	IPv6
is	 the	 obvious	 choice.	By	 extending	 the	 address	 space	 from	32	 to	 128
bits,	 there	 are	 a	 significantly	 larger	 number	 of	 addressable	 nodes	 as



well	as	many	more	levels	of	addressing	hierarchy	(key	for	routing	table
efficiency)	and	autoconfiguration	 features.	Note	 that	 the	 scalability	of
multicast	has	been	enhanced	due	to	a	new	scope	field	and	the	notion	of
anycast	 address	 will	 be	 introduced	 later	 in	 section	 15.3.1	 of	 this
chapter.	Scoped	addresses	 allow	better	 support	 of	 ad	hoc	networking
and	are	 also	discussed	 in	 section	15.3.3	 of	 this	 chapter.	But	 these	 are
not	the	only	reasons	for	choosing	IPv6.
•	Autoconfiguration:	With	networks	of	very	large	scale,	management

at	large	(provisioning,	configuration,	management	of	faults,	inventory,
performance	analysis)	quickly	becomes	very	challenging.	Thus,	the	set
of	 autoconfiguration	 features	 natively	 supported	 by	 IPv6	 is	 another
reason	to	use	it	in	smart	object	networks.
•	 Header	 change:	 Several	 unused	 IPv4	 header	 fields	 have	 been

removed	(e.g.,	 fragmentation,	checksum,	etc.)	and	a	simpler	structure
with	a	fixed	header	potentially	augmented	with	optional	daisy-chained
extended	headers	has	been	adopted.	New	 fields	have	also	been	added
(e.g.,	flow	label).
•	 Authentication	 and	 privacy:	 Extensions	 have	 been	 defined	 in

support	 of	 authentication,	 data	 integrity,	 and	 (potentially)
confidentiality.
•	Security:	IPSec	(optional	in	IPv4)	is	mandatory	in	IPv6.

	
	

15.2	The	IPv6	Packet	Headers
15.2.1	IPv6	Fixed	Header
A	 good	way	 to	 start	 learning	 a	 protocol	 is	 to	 first	 observe	 the	 packet

header	field.	The	IPv6	packet	header	format	is	shown	in	Figure	15.1.

Figure	15.1	IPv6	packet	header	format.



	

Description	of	the	fields	include:

•	Version	(4	bits):	IP	versions	number	=	6.
•	Traffic	class	(8	bits):	8-bit	field	used	to	indicate	the	Class	of	Service

(CoS)	 of	 the	 packet.	 Quality	 of	 Service	 (QoS)	 is	 discussed	 in	 Section
15.9.
•	Flow	label	(20	bits):	A	label	may	be	used	by	a	source	node	to	refer

to	 a	 sequence	 of	 packets	 identifying	 a	 flow	 that	 requires	 specific
handling	of	the	packet	by	routers	along	the	path	to	its	destination.	The
flow	label	should	be	randomly	generated	to	help	with	hash	key	function
implementation	on	the	intervening	router.	It	is	expected	that	the	source
node	does	not	use	the	same	flow	label	value	for	two	different	flows	at
any	time.	Note	that	the	use	of	this	field	is	still	mostly	experimental.
•	 Payload	 length	 (16	 bits):	 This	 field	 indicates	 the	 length	 of	 the

payload	 (excluding	 the	 packet	 header).	 Note	 that	 the	 length	 of	 the
extended	 headers	 (described	 in	 Section	 15.2.2)	 is	 included	 in	 the
payload	length.
•	Next	header	(8	bits):	This	field	identifies	the	header	that	follows	the

IPv6	packet	header.	This	provides	a	very	flexible	way	to	add	optional
headers	using	a	daisy	chain.
•	Hop	limit	(8	bits):	This	field	is	decremented	each	time	the	packet	is

forwarded	by	a	node.	When	the	hop	limit	field	is	equal	to	0,	the	packet
is	discarded.
•	Source	address:	128-bit	IPv6	source	address	of	the	packet.
•	Destination	address:	128-bit	IPv6	destination	address	of	the	packet.

	
This	leads	to	the	observation	that	the	fixed	IPv6	header	(with	no	option)

is	 40	 bytes	 long	 compared	 to	 the	 20-byte	 header	 of	 an	 IPv4	 packet.	 Such
extra	 overhead	 may	 be	 an	 issue	 for	 LLNs	 composed	 of	 low-speed	 links,
especially	when	the	 link	 layer	maximum	transmission	unit	 (MTU)	and	the
data	 payload	 are	 small	 (a	 fairly	 common	 situation	 in	 LLNs).	 That	 is
precisely	 the	 case	 of	 the	 IEEE	 802.15.4	 links	 described	 in	 Chapter	 12,	 a
fairly	 popular	 link	 in	 LLN.	 This	 is	 why	 the	 6LoWPAN	Working	 Group
specified	 various	 header	 compression	 schemas	 to	 reduce	 the	 header
overhead.	These	mechanisms	are	described	in	detail	in	Chapter	16.

In	contrast	with	IPv4,	there	is	no	checksum	in	the	IPv6	header.	Thus	all



the	 transport	 layer	 protocols	 are	 required	 to	 compute	 a	 checksum	 taking
into	 account	 the	 IPv6	 header.	 This	 is	 also	 true	 for	 UDP.	 Thus,	 the	 UDP
checksum	 (optional	 in	 IPv4)	 is	 mandatory	 in	 IPv6	 and	 all	 higher-level
protocols	that	use	the	32-bit	IPv4	address	to	compute	their	checksum.	They
must	be	modified	to	use	the	128-bits	IPv6	addresses.
	
15.2.2	Extended	Headers
IPv6	has	a	fixed	header	optionally	followed	by	a	daisy	chain	of	headers

called	 extended	 headers.	 Optional	 headers	 follow	 the	 fixed	 header	 and
precede	the	transport	header.

The	next	header	value	simply	identifies	the	type	of	the	following	header.
Consider	Figure	15.2.	In	the	first	example,	the	next	header	value	is	equal	to
6,	 thus	 identifying	a	TCP	header	 (there	 is	no	extended	header	 in	 this	case
and	 the	 transport	 packet	 data	 unit	 (PDU)	 immediately	 follows	 the	 fixed
header).	 In	 the	 third	 example,	 there	 is	 a	 series	 of	 three	 extended	 headers
following	the	fixed	IPv6	that	are	daisy-chained.	The	IPv6	next	header	value
is	 equal	 to	 43,	 indicating	 that	 the	 next	 header	 (first	 extended	 header	 is	 a
routing	header)	 is	composed	of	a	next	header	 field	with	a	value	of	51	 that
indicates	the	presence	of	an	authentication	header.	The	transport	header	is
specified	by	the	value	of	6	 (referring	to	a	TCP)	 in	the	next	header	field	of
the	authentication	header.	This	provides	a	very	flexible	architecture,	adding
header	only	when	needed.

Figure	15.2	An	IPv6	extended	header.
	

Note	that	headers	must	appear	in	a	specific	order	and	are	not	processed



by	 intermediate	 routers	along	 the	data	path	except	 the	hop-by-hop	option
header.	 Indeed,	 the	 hop-by-hop	 header	 is	 the	 only	 header	 that	 must	 be
processed	 by	 all	 the	 routers	 along	 the	 path	 including	 the	 source	 and	 the
destination,	 which	 is	 why,	 when	 present,	 it	 must	 immediately	 follow	 the
fixed	header	(its	presence	is	indicated	by	a	value	of	0	in	the	next	header	field
of	the	fixed	header).

As	specified	in	[53],	all	IPv6	implementation	must	support	the	following
extended	headers:

•	Hop-by-hop	options	[53]
•	Routing	(type	0)	[53]
•	Fragment	[53]
•	Destination	options	[53]
•	Authentication	(specified	in	[146]	and	[155])
•	Encapsulating	security	payload	(specified	in	[145])

	
[53],	 [145],	 [146],	 and	 [155]	 define	 each	 of	 the	 extended	 headers

including	the	format,	processing	rules,	error	handling,	and	so	on.	Since	the
objective	 of	 this	 chapter	 is	 not	 to	 be	 an	 IPv6	 reference	 book,	 a	 brief
description	 of	 the	 extended	 headers	 relevant	 to	 LLNs	 is	 provided	 and
implementers	should	refer	to	the	RFCs	for	implementation	details.

Options	 in	 headers:	 there	 are	 two	 extension	 headers	 (hop-by-hop
options	 header	 and	 the	 destination	 options	 header)	 that	 carry	 a	 variable
number	of	 type-length-values	 (TLVs)	 that	allow	specification	of	a	number
of	 options	 for	 the	 header.	The	 option	 type	 identifier	 (T	 value)	 defines	 the
option	type	and	the	two	higher	order	bits	specify	what	the	node	is	expected
to	do	if	the	option	is	not	recognized	such	as	ignore,	silently	discard,	discard
and	 send	 an	 Internet	 Control	 Message	 Protocol	 (ICMP)	 packet,	 and	 so
forth.	The	 third	higher	 order	bit	 specifies	whether	 or	not	 the	 option	data
can	be	changed	en	route	along	the	data	path.
	
15.2.3	The	Hop-by-hop	Option	Header
The	 hop-by-hop	 option	 header	 is	 used	 to	 carry	 extra	 information	 and

must	be	processed	by	all	 routers	along	 the	data	path	 including	 the	 source
and	 destination	 of	 the	 IP	 packet.	 Its	 structure	 is	 depicted	 in	 Figure	 15.3,
which	shows	the	first	8-bit	identifying	the	next	header,	followed	by	an	8-bit
field	specifying	the	payload	length	not	including	the	first	8	bits,	followed	by
the	payload	of	variable	length	carrying	the	set	of	TLVs.



Figure	15.3	Hop-by-hop	and	routing	headers.
	

15.2.4	The	Routing	Header
The	 routing	 header	 is	 used	 to	 identify	 a	 set	 of	 nodes	 that	 must	 be

traversed	 by	 the	 packet	 along	 its	 path	 to	 the	 destination,	 also	 known	 as
“source	routing.”	This	does	not	require	listing	all	the	nodes	along	the	paths:
a	subset	of	some	nodes	along	the	path	can	be	listed	as	opposed	to	all	nodes
(a	source	routing	technique	referred	to	as	loose	source	routing).

The	first	two	fields	are	identical	to	the	first	two	fields	of	the	hop-by-hop
option	header.	The	routing	option	is	a	routing	variant	and	the	segment	left
field	indicates	the	number	of	remaining	route	segments	before	reaching	the
destination.	The	 type-specific	data	 field	 is	a	variable	 length	 field	of	a	 type
defined	by	the	routing	type	field	value.

For	example,	a	particular	instantiation	of	the	routing	header	is	shown	in
Figure	15.3	 for	 the	routing	header	of	 type	0.	The	routing	header	 is	 type	0
and	only	carries	unicast	addresses.

The	processing	of	the	routing	header	is	interesting	because	it	is	used	not
only	to	list	the	set	of	nodes	that	must	be	traversed	but	also	to	record	the	set
of	nodes	that	have	been	traversed.

Next	is	an	important	note	on	security.	When	a	node	needs	to	reply	to	a
packet	 that	was	received	with	a	 routing	header,	 the	response	packet	must



not	include	a	routing	header	that	was	automatically	computed	by	reversing
the	route	 specified	 in	 the	routing	header	of	 the	received	packet	unless	 the
integrity	 and	 the	 authenticity	 of	 the	 received	 source	 address	 and	 routing
header	have	been	verified.

A	 drawback	 to	 routing	 header	 subtype	 0	 (RH0)	 is	 the	 introduction	 of
security	issues	that	have	been	documented	in	[2]	that	lead	to	its	deprecation.
Indeed,	a	single	RH0	may	contain	multiple	intermediate	routers/hosts	and	it
is	 legal	 to	 include	 the	 same	 address	 more	 than	 once.	 This	 means	 that	 a
single	 packet	 may	 circle	 and	 be	 processed	 multiple	 times	 by	 the	 same
routers/hosts,	 leading	 to	 a	 Denial	 of	 Service	 (DoS)	 attack.	 Note	 that	 the
same	 attack	 exists	 with	 IPv4	 but	 is	 exemplified	 in	 the	 case	 of	 IPv6	 since
many	addresses	could	be	listed	in	the	header.

Consequently,	 other	 routing	 header	 subtypes	 have	 been	 used.	Routing
header	subtype	1	has	been	experimented	with	and	routing	header	subtype	2
is	defined	for	IPv6	Mobility	in	[140]	(see	Figure	15.4).

Figure	15.4	Routing	header	subtype	2.
	

15.2.5	The	Fragment	Header
In	 contrast	 with	 IPv4,	 the	 routers	 along	 the	 data	 path	 never	 perform

any	 form	of	 fragmentation.	 IPv6	mandates	 that	 each	 link	must	be	able	 to
carry	1280-byte	packets,	which	is	not	always	the	case	in	LLN.	In	particular,
the	MTU	 of	 IEEE	 802.15.4	 links	 is	 equal	 to	 127	 bytes.	 In	 this	 case,	 it	 is
required	to	handle	packet	 fragmentation	and	reassembly	at	 the	 link	 layer.
This	 is	 specified	 in	 [176]	 and	 [124]	 as	 a	 result	 of	 a	 work	 item	 from	 the
6LoWPAN	Working	Group.	 These	mechanisms	 are	 described	 in	Chapter
16.

This	 implies	 that	 IPv6	 should	 support	 mechanisms	 to	 discover	 the
minimum	MTU	 supported	 on	 each	 link	 along	 the	 path	 to	 the	 destination.
This	 is	 performed	 using	 a	 procedure	 called	 path	 maximum	 transmission
discovery	 (PMTU)	 defined	 in	 [171].	 It	 uses	 a	 sequence	 of	 ICMP	 packets
along	 the	 path	 until	 it	 discovers	 the	minimum	MTU	 along	 the	 path.	 This



value	 is	 then	 cached	on	 the	host	 in	 a	 table	 on	 a	per-destination	basis	 and
must	be	rediscovered	on	a	regular	basis	since	IP	paths	may	change	due	to
rerouting	 from	 network	 element	 failures.	 An	 implementation	 not
supporting	PMTU	may	simply	decide	 to	send	packets	no	 larger	 than	1280
octets.

An	IPv6	source	node	fragments	a	packet	each	time	its	size	is	larger	than
the	minimum	MTU	along	the	path	to	the	destination.

The	 format	 of	 the	 fragment	 header	 is	 shown	 in	 Figure	 15.5.	 The
fragment	 header	 is	 identified	 by	 the	 value	 44	 present	 in	 the	 next	 header
field	of	the	previous	header	(which	could	either	be	the	IPv6	fixed	header	or
the	 routing	 header,	 if	 present).	 The	 next	 header	 value	 is	 identical	 to	 the
original	 next	 header	 type	 of	 the	 fragmented	 packet.	 The	 fragment	 offset
simply	 indicates	 the	offset	of	 the	 fragment	 (in	8-octet	units)	relative	 to	 the
start	of	the	fragmentable	part	of	the	original	packet.	The	identification	field
is	 a	 32-bit	 encoded	 value	 chosen	 by	 the	 source	 node	 to	 identify	 the
fragmented	packet	 that	will	be	reassembled	by	 the	destination	node.	Each
time	 a	 source	 node	 fragments	 a	 packet	 it	 uses	 a	 different	 identification
number	for	each	fragmented	packet	destined	to	a	specific	node.	The	source
is	expected	to	use	an	identification	number	different	from	any	already	sent
packet	for	the	expected	lifetime	of	a	packet.	A	simple	wraparound	counter
considering	 the	 32-bit	 encoding	 scheme	 for	 the	 identification	 number	 is
assumed	to	be	perfectly	reasonable.	The	2-bit	“reserved”	field	is	set	to	0	and
the	M-bit	 is	used	to	indicate	whether	the	fragment	is	the	last	one	(1:	more
fragment,	0:	last	fragment).



Figure	15.5	Fragment	headers.
	

Now	let’s	 illustrate	the	fragmentation	process	of	a	packet.	The	original
packet	 has	 an	 unfragmentable	 part	made	 of	 the	 original	 header	 and	 any
extended	header	that	must	be	processed	by	the	nodes	along	the	path	to	the
destination	(all	headers	up	to	and	including	the	routing	header	if	present).
The	rest	of	the	packet	makes	the	fragmentable	part	of	the	packet.

The	format	of	each	fragment	is	shown	in	Figure	15.5.	Each	fragment	is
made	 of	 the	 unfragmentable	 part	 of	 the	 original	 packet,	 the	 fragment
header,	and	the	payload	of	the	fragment.	Note	that	the	unfragmentable	part
of	each	packet	has	a	payload	size	equal	to	the	size	of	the	fragment	excluding
the	length	of	the	IPv6	header.	The	next	header	field	of	the	last	header	of	the
unfragmentable	 part	 is	 set	 to	 44.	 Now	 looking	 at	 the	 fragment	 header,	 it
contains	 a	 next	 header	 value	 that	 identifies	 the	 first	 header	 of	 the
fragmentable	part	of	the	original	packet.

Fragments	may	be	lost,	especially	in	LLNs	where	bit	error	ratios	(BERs)
are	fairly	high	and	links	are	potentially	quite	unstable.	IPv6	mandates	that
all	fragments	are	to	be	received	within	60	seconds	after	the	reception	of	the
first	 fragment	 (which	may	 or	may	 not	 be	 fragment	 number	 1).	 After	 the
time	 expires,	 and	 not	 all	 fragments	 have	 been	 received,	 the	 procedure	 is
simply	stopped	and	all	fragments	are	discarded.	An	ICMP	error	message	is
then	 sent	 to	 the	 source	 of	 the	 packet.	 Other	 error	 cases	 (e.g.,	 incorrect
packet	length,	etc.)	are	also	covered	and	illustrated	in	[53].



15.2.6	The	Destination	Option	Header
The	 destination	 option	 header	 is	 used	 to	 carry	 optional	 information

processed	by	the	destination	node,	and	is	identified	in	the	next	header	field
of	the	previous	header	by	a	value	of	60.	The	format	of	the	destination	option
header	is	quite	straightforward:	an	8-bit	next	header	field	followed	by	an	8-
bit	 header	 extension	 length	 field	 indicating	 the	 length	 of	 the	 header	 in	 8-
octet	units,	 excluding	 the	 first	8	octets.	The	payload	contains	one	or	more
TLVs.

Optional	 information	 is	 encoded	 in	 two	 different	ways:	 (1)	 by	 using	 a
TLV	carried	within	the	destination	option	header	or	(2)	by	defining	a	new
extended	 header.	 The	 highest	 two	 order	 bits	 are	 used	 to	 indicate	 the
expected	behavior	of	the	destination	that	does	not	recognize	the	option.

15.2.7	The	No	Next	Header
This	 header	 (value	 =	 59)	 is	 used	 to	 indicate	 that	 nothing	 follows	 this

header.
15.3	IPv6	Addressing	Architecture
Needless	to	say,	IPv6	addressing	deserves	a	chapter	on	its	own.
Its	addressing	architecture	is	described	in	[116].
This	section	will	help	understand	Chapter	16	where	header	compression

mechanisms	 specified	 by	 the	 6LoWPAN	 Working	 Group	 for	 IPv6	 over
IEEE	802.15.4	and	the	routing	operation	in	general	will	be	discussed.	This	is
not	a	data	format,	but	a	true	addressing	architecture	instead.

128-bit	 addresses	 allow	 3.4	 1038	 addresses,	 in	 other	 words,	 4.8	 1023

addresses	per	person	on	earth	or	6.6	1023	addresses	per	square	meter,	which
should	leave	enough	addresses	for	years	to	come.

15.3.1	Notion	of	Unicast,	Anycast,	and	Multicast
A	unicast	address	uniquely	identifies	a	single	interface	by	its	address.	An

interface	 can	 have	multiple	 unicast	 addresses	 and	must	 have	 at	 least	 one
link-local	address.	A	link-local	address	is	an	address	used	on	a	link	between
two	nodes.	In	some	cases,	link-local	addresses	are	sufficient	if	the	node	does
not	need	to	send	packets	beyond	a	local	link.	Note	that	a	node	may	assign	a
unicast	address	(or	a	set	of	unicast	addresses)	to	more	than	one	interface	if
and	only	 if	 it	 treats	 them	as	one	 interface	when	presenting	to	 the	network
layer.	 This	 could	 be	 useful	 to	 load	 balance	 traffic	 over	 a	 set	 of	 physical
interfaces.

An	anycast	address	is	an	identifier	for	a	set	of	interfaces:	a	packet	sent
to	 an	 anycast	 address	 is	 only	 delivered	 to	 one	 of	 the	 interfaces	 of	 the	 set,
typically	the	closest	one	according	to	routing	metrics.

In	 contrast,	 a	 packet	 sent	 to	 a	 multicast	 address	 is	 delivered	 to	 all



interfaces	identified	by	the	multicast	address.	There	is	no	broadcast	in	IPv6,
so	 multicast	 addresses	 are	 used.	 For	 example,	 routing	 control	 packets	 in
IPv4	use	broadcast	addresses	whereas	specific	multicast	addresses	are	used
in	IPv6.
	
15.3.2	Representation	of	IPv6	Addresses
32-bit	IPv4	addresses	are	represented	in	the	following	form:	x.y.z.t	(e.g.,

124.4.12.3).	A	portion	 of	 the	 address	 represents	 the	network	part	 and	 the
rest	of	the	address	represents	the	host	part.

128-bit	 IPv6	 addresses	 are	 usually	 represented	 in	 the	 form
x:x:x:x:x:x:x:x	where	 each	x	 is	 a	hexadecimal	 value	 (thus	 representing	 16
bits);	for	example,	2020:CA28:0000:0000:0023:0222:0000:2900.

Since	these	addresses	can	be	rather	long,	there	is	a	way	to	simplify	text
representation.	For	example,	0000	can	be	represented	as	0	or	even	nothing.
A	sequence	of	16	bits	all	equal	to	0	can	be	represented	as	::,	which	can	only
be	present	once	in	an	address.

Back	 to	 the	 previous	 examples,	 the	 address	 can	 be	 represented	 as
2020:CA28::23:222:0:29.

The	 ::1	address	 represents	 the	 loopback	address	 (the	equivalent	of	 the
127.0.0.1	address	for	IPv4	addresses)	and	::	is	the	unspecified	address.	This
must	 not	 be	 addressed	 to	 any	 node	 and	 simply	 specifies	 an	 absence	 of
address;	for	example,	::	can	be	used	as	the	source	address	of	the	node	that
has	 not	 yet	 learned	 its	 own	 unicast	 address,	 and	 must	 not	 be	 used	 as	 a
destination	address	or	in	the	routing	header.

IPv6	 does	 not	 impose	 any	 specific	 boundary	 for	 the	 network	 part
similarly	to	classless	inter-domain	routing	(CIDR)	used	in	IPv4.

In	a	mixed	environment	 (IPv4	and	 IPv6)	 it	 is	 sometimes	 convenient	 to
use	the	following	format:	2020:CA28::222:124.4.12.3	(see	Table	15.1).

Table	15.1	Initial	Allocation	of	Prefix	Ranges
	
	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Allocation Prefix
(binary)

Fraction	of	address
space

Reserved 0000	0000 1/256
Unassigned 0000	0001 1/256
Reserved	for	NSAP	allocation 0000	001 1/128
Reserved	for	IPX	allocation 0000	010 1/128
Unassigned 0000	011 1/128



Unassigned 0000	011 1/128
Unassigned 0000	1 1/32
Unassigned 0001 1/16
Aggregatable	global	unicast
addresses 001x	xxxx 1/8

Unassigned 010x	xxxx 1/8
Unassigned 011x	xxxx 1/8
Unassigned 100x	xxxx 1/8
Unassigned 101x	xxxx 1/8
Unassigned 110x	xxxx 1/8
Unassigned 1110	xxxx 1/16
Unassigned 1111	0xxx 1/32
Unassigned 1111	10xx 1/64
Unassigned 1111	110x 1/128
Unassigned 1111	1110	0 1/512
Link-local	unicast	addresses 1111	1110	10 1/1024
Site-local	unicast	addresses 1111	1110	11 1/1024
Multicast	addresses 1111	1111 1/256
	
Table	15.1	shows	the	initial	allocation	of	prefix	range.	The	IPv6	address

type	 is	 conditioned	 by	 the	 values	 of	 the	 leading	 bits	 of	 the	 address.	 For
example,	 multicast	 addresses	 always	 start	 with	 11111111	 (FF).	 Anycast
addresses	are	part	of	the	unicast	address	space.

15.3.3	Unicast	Addresses
A	unicast	address	is	made	of	a	subnet	prefix	and	an	interface	identifier

(interface	ID).	Interface	IDs	are	used	to	identify	an	interface	on	a	link	and
thus	must	be	unique	on	that	link;	it	is	very	common	for	the	interface	ID	to
be	 identical	 to	 the	 link	 layer	 address	 of	 the	 interface.	 As	 discussed	 in
Chapter	 16,	 this	 interesting	 property	 is	 exploited	 for	 header	 compression
when	carrying	IPv6	packets	over	IEEE	802.15.4	links.

15.3.3.1	Global	Unicast	IPv6	Addresses
As	 shown	 in	 Table	 15.1,	 global	 unicast	 addresses	 have	 their	 three

leftmost	bits	 set	 to	 001.	Consequently,	 a	 global	unicast	 address	belongs	 to
the	 2000::	 to	 3FFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF	 range.	 In
most	cases,	the	leftmost	64	bits	are	used	to	identify	the	network	portion	of



the	address	(thus	implying	a	/64	prefix	length)	and	the	rightmost	64	bits	are
used	to	identify	the	host	portion	of	the	address.

To	 allow	 for	 address	 aggregation	 to	 reduce	 routing	 table	 sizes	 in	 the
Internet,	 IPv6	 mandates	 using	 addresses	 provided	 by	 Service	 Providers.
The	network	portion	of	the	address	is	subdivided	into	a

•	 48-bit	 field	 corresponding	 to	 the	 prefix	 provided	 by	 the	 Service
Provider
•	16-bit	 field	used	by	 the	network	administrator	 to	allocate	 subnets

within	a	site	(thus	resulting	in	216	available	subnets)
•	64-bit	 field	corresponding	to	 the	host	part	 (the	 interface	ID);	 that

large	 a	 field	 allows	 for	 embedding	 the	 48-bit	 media	 access	 control
(MAC)	 address,	 which	 is	 extremely	 convenient	 for	 address
autoconfiguration	as	explained	in	Section	15.7

	
The	process	of	building	the	interface	ID	is	detailed	in	Section	15.7.
15.3.3.2	Local	Unicast	IPv6	Addresses
There	are	two	types	of	local	unicast	IPv6	addresses:	link-local	and	site-

local.
Link-local	 unicast	 addresses	 are	 used	 on	 a	 single	 link	 for

autoconfiguration,	neighbor	discovery,	or	in	the	absence	of	router.	Since	the
scope	 is	 local,	 packets	 with	 link-local	 scope	 are	 never	 forwarded	 by	 the
router	beyond	the	scope	of	the	link.

The	 site-local	 address	 was	 initially	 introduced	 in	 [114].	 The	 site-local
address	is	an	address	forwarded	within	a	site	that	does	not	need	to	reach	in
the	 Internet	 (thus	 no	 need	 for	 a	 global	 routable	 prefix).	 Consequently,
packets	with	 such	addresses	were	not	 forwarded	by	routers	outside	of	 the
site.	Site-local	addresses	have	been	deprecated	by	[127]	and	must	no	longer
be	 supported	 by	 new	 implementations.	 New	 implementations	 must	 treat
site-local	addresses	as	global	unicast	addresses.

The	format	of	the	link-and	site-local	unicast	IPv6	addresses	is	depicted
in	Figure	15.6.



Figure	15.6	Format	of	the	link-and	site-local	unicast	IPv6	addresses.
	

Thus	 a	 link-local	 scope	 unicast	 address	 always	 starts	 with	 FE80:0:0:0
followed	by	the	interface	ID.

15.3.3.2.1	Unique	Local	Unicast	Addresses
[117]	 defines	 the	 concept	 of	 unique	 local	 addresses	 that	 are	 globally

unique	and	intended	for	local	communication	(not	routable	in	the	Internet).
A	unique	local	unicast	address	has	the	format	shown	in	Figure	15.7.

Figure	15.7	Format	of	the	unique	local	unicast	addresses.
	

By	default,	 the	 scope	of	unique	 local	unicast	addresses	 is	global.	These
addresses	may	be	used	within	a	site	or	even	between	sites,	although	they	are
not	routable	in	the	Internet.

The	choice	was	made	to	choose	a	7-bit	prefix	length	providing	about	2.2
trillion	addresses	while	only	using	0.781%	of	the	IPv6	addressing	space.	The
allocation	of	the	Global	ID	must	use	a	pseudo-random	algorithm	consistent
with	 [75].	 Assignments	 are	 self-generated	 with	 an	 extremely	 high
probability	 of	 uniqueness.	 [117]	proposes	 the	use	 of	 the	 following	pseudo-
random	algorithm:



1.	Obtain	 the	current	 time	of	day	 in	64-bit	Network	Time	Protocol
(NTP)	format	(see	[175]	for	the	specification).
2.	 Obtain	 an	 EUI-64	 identifier	 from	 the	 system	 running	 this

algorithm.	If	an	EUI-64	does	not	exist,	one	can	be	created	from	a	48-bit
MAC	 address	 as	 specified	 in	 Section	 15.7.1.	 If	 an	 EUI-64	 cannot	 be
obtained	 or	 created,	 a	 suitably	 unique	 identifier,	 local	 to	 the	 node,
should	be	used	(e.g.,	system	serial	number).
3.	Concatenate	the	time	of	day	with	the	system-specific	 identifier	to

create	a	key.
4.	 Compute	 an	 SHA-1	 digest	 on	 the	 key	 as	 specified	 in[74,79];	 the

resulting	value	is	160	bits.
5.	Use	the	least	significant	40	bits	as	the	Global	ID.
6.	Concatenate	FC00::/7,	the	L	bit	set	to	1,	and	the	40-bit	Global	ID

to	create	a	local	IPv6	address	prefix.

	
Collisions	 still	 exist	 but	 with	 an	 extremely	 low	 probability.	 Good

approximations	give	a	probability	of	collision	of	1.81	10−12	for	2	connections,
4.54	10−9	for	100	connections,	and	4.54	10−5	for	10,000	connections.

15.3.4	Anycast	Addresses
An	 anycast	 address	 is	 an	 address	 allocated	 to	 a	 set	 of	 interfaces	 that

typically	 belong	 to	 different	 routers.	 When	 a	 packet	 is	 destined	 to	 an
anycast	address,	it	is	delivered	to	the	closest	interface	that	has	this	anycast
address,	where	the	term	“closest”	is	determined	by	the	routing	protocol.	An
anycast	address	must	be	assigned	to	a	router	not	a	host	and	cannot	be	used
as	a	source	address.

Since	 anycast	 addresses	 are	 unicast	 addresses,	 when	 an	 interface	 is
configured	with	an	anycast	address	 it	must	be	explicitly	configured	on	the
router	owning	that	interface.	This	is	done	because	anycast	addresses	cannot
be	distinguished	from	any	other	unicast	addresses.

One	example	of	an	anycast	address	is	the	subnet-router	anycast	address.
This	address	format	is	formed	by	a	subnet	prefix	of	n	bits	that	identifies	a
specific	link	followed	by	128-n	bits	all	set	to	0.	So	in	this	example,	a	packet
sent	to	the	subnet-router	anycast	address	is	delivered	to	one	of	the	routers
on	that	subnet	link.

15.3.5	Multicast	Addresses
Multicast	addresses	are	used	 in	many	contexts	and	are	very	 important

(remember	 that	 IPv6	 does	 not	 use	 broadcast	 addresses).	 A	 multicast
address	identifies	a	group	of	nodes	called	a	multicast	group	and	must	not	be



used	as	a	source	address	or	in	a	routing	header.	The	format	of	a	multicast
address	is	shown	in	Figure	15.8.

Figure	15.8	Format	of	an	IPv6	multicast	address.
	

All	 multicast	 addresses	 start	 with	 FF	 (first	 8	 bits	 of	 the	 address),
followed	by	a	4-bit	flag	field,	a	4-bit	scope	field,	and	a	112-bit	group	ID.

15.3.5.1	Flags
The	 R	 flag	 is	 used	 to	 embed	 a	 rendezvous	 point	 in	 the	 address	 (see

[219]).	 The	 P	 flag	 identifies	 a	 unicast	 prefix-based	 multicast	 address,	 as
defined	 in	 [103].	 The	 T	 flag	 determines	 whether	 the	 multicast	 address	 is
permanent	 (T	 =	 0)	 and	 assigned	 by	 the	 Internet	 Assigned	 Numbers
Authority	(IANA;	what	is	considered	a	well-known	address)	or	a	transient
address	 (T	 =	 1).	 Then	 a	 second	 4-bit	 field	 identifies	 the	 scope	 of	 the
multicast	address	(e.g.,	link-local,	node-local,	site-local,	etc.).

Some	 multicast	 addresses	 are	 reserved	 such	 as	 FF00:0:0:0:0:0:0:0,
FF01:0:0:0:0:0:0:0,	 FF02:0:0:0:0:0:0:0,	 FF03:0:0:0:0:0:0:0,
FF03:0:0:0:0:0:0:0,	 FF05:0:0:0:0:0:0:0,	 FF06:0:0:0:0:0:0:0,
FF07:0:0:0:0:0:0:0,	 FF08:0:0:0:0:0:0:0,	 FF09:0:0:0:0:0:0:0,
FF0A:0:0:0:0:0:0:0,	 FF0B:0:0:0:0:0:0:0,	 FF0C:0:0:0:0:0:0:0,
FF0D:0:0:0:0:0:0:0,	FF0E:0:0:0:0:0:0:0,	and	FF0F:0:0:0:0:0:0:0.

Other	predefined	addresses	that	are	used	often	include:



•	Multicast	 address	 for	 all	 node-local	 (scope	 restricted	 to	 the	node)
IPv6	nodes:	FF01:0:0:0:0:0:0:1
•	Multicast	address	for	all	link-local	IPv6	nodes:	FF02:0:0:0:0:0:0:1
•	 Multicast	 address	 for	 all	 node-local	 IPv6	 routers:

FF01:0:0:0:0:0:0:2
•	Multicast	address	for	all	link-local	IPv6	routers:	FF02:0:0:0:0:0:0:2
•	Multicast	address	for	all	site-local	IPv6	routers:	FF05:0:0:0:0:0:0:2

	
Well-known	 multicast	 addresses	 have	 also	 been	 defined	 for	 routing

protocols:

•	Multicast	address	for	all	link-local	RIP	routers:	FF02:0:0:0:0:0:0:9
•	 Multicast	 address	 for	 all	 link-local	 OSPF	 routers:

FF02:0:0:0:0:0:0:5
•	 Multicast	 address	 for	 all	 link-local	 OSPF	 DR	 routers:

FF02:0:0:0:0:0:0:6
•	 Multicast	 address	 for	 all	 link-local	 PIM	 routers:

FF02:0:0:0:0:0:0:D

	
The	 solicited-node	 address	 is	 a	 multicast	 address	 that	 has	 the	 format

FF02:0:0:0:0:1:FFXX:XXXX	and	is	computed	from	the	node’s	unicast	and
anycast	addresses.	The	24	lower	order	bits	of	the	unicast	or	anycast	address
are	appended	to	the	prefix	FF02:0:0:0:0:1:FF00::/104.

Each	 node	 must	 compute	 and	 join	 (to	 use	 multicast	 terminology)	 the
solicited-node	 address	 for	 each	 of	 its	 unicast	 and	 anycast	 addresses,	 thus
making	the	node	listen	and	process	packets	sent	to	that	multicast	address.

The	 solicited	 node	 address	 is	 used	 during	 the	 address	 resolution
procedure	 detailed	 later	 in	 section	 15.5.1.	 In	 IPv4,	 when	 a	 node	 needs	 to
obtain	the	link	layer	address	(MAC	address)	of	a	node	it	uses	a	procedure
known	 as	 Address	 Resolution	 Protocol	 (ARP),	 which	 sends	 a	 broadcast
message	on	the	link	that	disturbs	all	of	the	nodes	including	the	ones	that	do
not	 run	 IPv4.	 With	 IPv6	 one	 could	 use	 a	 link-local	 all-node	 multicast
address	 but	 a	 further	 optimization	 consists	 of	 using	 the	 solicited-node
address	instead	in	the	neighbor	solicitation	message.

15.4	The	ICMP	for	IPv6
ICMP	has	been	used	in	the	Internet	for	a	long	time	for	error	reporting

and	diagnostics,	supporting	a	variety	of	features	such	as	echo	request/reply,



notification	of	various	errors	(TTL	exceeded,	destination	unreachable,	etc.),
redirection,	and	so	forth.

ICMPv6	 is	 a	 key	 component	 of	 the	 IPv6	 architecture	 and	 not	 only
supports	most	of	 the	 features	available	with	IPv4	but	was	also	augmented
with	several	features	supported	by	other	non-ICMP	protocols	such	as	ARP
and	 the	 Internet	Group	Membership	Protocol	 (IGMP)	as	well	 as	new	key
functionalities	 used	 in	 support	 of	 useful	 IPv6	 features	 such	 as
autoconfiguration	 (see	 Section	 15.7).	 RPL,	 the	 routing	 protocol	 for	 smart
objects	(discussed	in	great	detail	in	Chapter	17),	also	makes	use	of	ICMPv6.
ICMPv6	 is	 identified	 by	 a	 new	 protocol	 type	 (type	 58)	 specified	 in	 the
immediately	preceding	header	field.

Most	of	the	ICMPv6	features	are	specified	in	[42],	but	some	have	been
defined	in	other	RFCs.

ICMPv6	specifies	two	categories	of	messages:	error	and	informational.
Each	ICMP	message	has	the	following	structure:

•	8-bit	type	field:	Indicates	the	type	of	message	(and	thus	the	format
of	the	remaining	data).
•	8-bit	code	field:	Used	to	provide	additional	granularity	for	a	given

ICMP	message	type.
•	 16-bit	 checksum:	 The	 reason	 for	 adding	 a	 checksum	 is	 that	 (by

contrast	with	IPv4)	the	IPv6	header	does	not	have	any	checksum.	The
checksum	is	the	16-bit	complement	sum	of	the	entire	ICMPv6	message
starting	with	the	ICMPv6	message	type	field	prepended	with	a	pseudo-
header	of	IPv6	header	field.
•	Variable	length	data	field.

	
[42]	 specifies	 the	 rules	 used	 to	 determine	 the	 source	 address	 for	 the

ICMP	message.	For	example,	if	the	message	is	a	response	to	a	message	sent
to	a	unicast	address	the	node	belongs	to,	the	source	must	be	this	address.	If
the	message	is	a	response	to	an	error	(e.g.,	the	forwarding	failed),	even	if	the
original	message	was	sent	to	an	address	that	does	not	belong	to	the	node,	the
source	 must	 be	 a	 unicast	 address	 belonging	 to	 the	 node.	 It	 must	 follow
standard	 source	 address	 selection	 rules	 unless	 another	 unicast	 address
belonging	to	the	node	can	give	more	information	about	the	destination.	For
example,	the	node	can	use	a	source	address	in	the	reply	message	that	can	be
useful	for	diagnostics.

Refer	to	[42]	for	a	detailed	set	of	messages	and	processing	rules.



15.4.1	ICMPv6	Error	Messages
The	type	field	of	error	messages	is	a	value	between	0	and	127.
Table	15.2	 lists	 ICMPv6	 informational	messages	defined	 in	 [42]	with	a

short	description.

Table	15.2	ICMPv6	Error	Messages
	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	 Type Code Description

Destination	unreachable 1

0
No	route	to	destination	(no	routing	entry
for	the	packet).	This	does	not	include
packet	drop	error	due	to	congestion.

1

Communication	with	destination
administratively	prohibited	(e.g.,	case	of
a	firewall	that	cannot	forward	the	packet
because	of	filtering	action	triggered	by
policy).

3 Address	unreachable	for	other	reasons
than	the	reasons	listed	above.

4 Port	unreachable.

Packet	too	big 2 0
The	packet	size	exceeds	the	MTU	of	the
outgoing	link	(used	by	the	PMTU
discovery	process).
Sent	when	the	hop	limit	field	(after	being
decremented)	is	equal	to	0	or	the



Time	exceeded 3 0 decremented)	is	equal	to	0	or	the
received	packet	has	a	hop	limit	field
equal	to	0.

Parameter	problem
(problem	with	the	field
of	the	IPv6	header	or
extended	headers)

4

0 Erroneous	header	field	encountered.

1 Unrecognized	next	header	type
encountered.

2 Unrecognized	IPv6	option	encountered.
	
All	 packets	 received	with	 an	 error	 in	 the	 IPv6	 header	 or	 an	 extended

header	must	be	discarded	and	an	ICMP	error	message	sent.	Some	firewalls
do	not	send	ICMP	error	messages	to	dissimulate	their	presence,	which	can
be	an	issue	for	troubleshooting	or	protocols	such	as	PMTU.

15.4.2	ICMP	Informational	Messages
The	type	field	of	informational	messages	is	a	value	between	128	and	255.
Table	 15.3	 lists	 some	 of	 the	 ICMPv6	 error	 messages	 with	 a	 short

description.

Table	15.3	ICMPv6	Informational	Messages
	
	

	

	

	

	

	

	

	

	

	

	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 Type Code Description
Echo	request 128 0 	



Echo	reply 129 0 	
Router	solicitation	(RS) 133 	 See	Section	15.5.4
Router	advertisement	(RA) 134 	 See	Section	15.5.3
Neighbor	solicitation	(NS) 135 	 See	Section	15.5.1
Neighbor	advertisement	(NA) 136 	 See	Section	15.5.2
Redirect 137 	 	
	
As	 IPv6	 continues	 to	 evolve,	 new	 functionalities	 are	 added	 and

additional	ICMP	codes	are	specified.
RS,	 RA,	 NS,	 and	 NA	 ICMPv6	 messages	 are	 very	 important	 for

autoconfiguration	and	described	in	great	details	in	Section	15.7.
A	number	of	other	ICMPv6	messages	were	defined	in	other	RFCs.	For

instance,	major	protocols	 such	as	multicast	 listener	discovery	 (MLD;	 [92])
and	 Mobile	 IPv6	 [140]	 make	 extensive	 use	 of	 existing	 and	 new	 ICMPv6
messages.

15.5	Neighbor	Discovery	Protocol
The	Neighbor	Discovery	Protocol	(ND;	specified	in	[185])	provides	a	set

of	 key	 autoconfiguration	 features	 for	 IPv6	 such	 as	 the	 discovery	 of	 the
presence	 of	 neighbors	 on	 a	 link,	 discovery	 of	 routers	 on	 the	 link	 that
provide	 important	 information	 like	 the	 network	 prefix,	 discovery	 of	 link
layer	addresses,	or	maintenance	of	reachability	information	about	paths	to
active	neighbors.

Needless	to	say,	ND	plays	an	important	role	in	IP	smart	object	networks.
ND	offers	a	number	of	services	that	include:

•	 Router	 discovery:	 Discovery	 of	 a	 router	 capable	 of	 forwarding
packets	destined	to	off-link	addresses.
•	Prefix	discovery:	Discovery	of	the	set	of	addresses	that	are	on-link

for	the	attached	link	using	the	network	prefix.
•	Parameter	discovery:	Discovery	of	MTU,	hop	limits,	and	so	forth.
•	Address	autoconfiguration:	Process	by	which	the	node	can	compute

its	unique	global	address.
•	 Address	 resolution:	 Discovery	 of	 the	 link	 layer	 address.	 ARP	 is

used	in	IPv4	to	discover	the	link	layer	address	for	a	node	knowing	its
IPv4	address.	In	IPv6,	such	function	is	performed	by	the	ND,	which	is
also	used	to	detect	if	a	node	has	a	new	link	layer	address.
•	Next-hop	determination:	Algorithm	to	find	the	IP	next	hop	to	use	to



forward	a	packet	for	a	specific	destination.
•	 Neighbor	 unreachability	 detection	 (NUD):	 Process	 by	 which	 a

router	determines	that	a	neighbor	is	no	longer	reachable.
•	Duplicate	 address	 detection	 (DAD):	Verification	 process	 ensuring

that	 the	 address	 a	 node	 is	 intending	 to	 use	 is	 not	 already	 in	 use	 by
another	node.
•	Redirect:	Process	allowing	a	node	to	find	a	better	next	hop	to	reach

a	specific	destination.

	
ND	 specifies	 five	 new	 ICMP	 message	 types.	 The	 following	 sections

describe	 a	 packet	 format	 type	 and	 describe	 the	 processing	 rules	 for	 each
packet	along	with	the	associated	services.

The	ND	protocols	define	a	series	of	options	that	may	appear	in	the	ND
messages	 such	 as	 the	 source/target	 link	 layer	 address	 option,	 the	 prefix
information	option,	and	redirect	header	or	the	MTU	option.	In	this	section
we	provide	more	details	on	 the	prefix	 information	option	since	 this	option
plays	an	important	role	in	the	stateless	autoconfiguration	feature	described
later	in	Section	15.7	of	this	chapter.

15.5.1	The	Neighbor	Solicitation	Message
The	format	of	the	neighbor	solicitation	(NS)	message	is	shown	in	Figure

15.9.



Figure	 15.9	 Format	 of	 the	 neighbor	 solicitation	 (NS)	 and	 neighbor
advertisement	(NA)	messages.
	

The	NS	message	is	used	for	address	resolution,	neighbor	unreachability
detection	(NUD),	and	DAD.	An	NS	message	 is	 sent	by	a	node	to	obtain	or
confirm	 the	 link	 layer	 address	 of	 a	 neighbor	 for	 which	 it	 knows	 the	 IP
address.	 The	 NS	 messages	 are	 multicast	 packets	 using	 the	 solicited-node
multicast	address	of	 the	 target	address	 for	 the	destination	address	and	an
address	of	the	requesting	node	or	the	unspecified	address	during	the	DAD
process	 for	 the	 source	 address.	 Upon	 receiving	 the	 NS	 packet,	 the	 target
replies	 with	 a	 neighbor	 advertisement	 (NA)	 message,	 if	 appropriate.	 The
choice	 of	 source	 and	 destination	 addresses	 depends	 on	 the	 service
performed	and	will	be	detailed	later.

NS	may	 include	 a	 link	 layer	 address	 option.	 It	 allows	 the	 receiver	 to
learn	the	link	layer	address	of	the	sender	without	having	to	perform	address
resolution.	The	receiver	will	still	be	required	to	perform	NUD	if	he	wants	to
confirm	 the	 reachability	 of	 the	 initial	 sender	 of	 the	 NS	 message.	 The
presence	 of	 this	 option	 is	 not	 always	 allowed,	 for	 instance,	 a	 node
performing	DAD	procedure	must	not	include	it	in	an	NS	message.

Finally,	 NS	 messages	 are	 also	 used	 to	 detect	 that	 a	 neighbor	 is



unreachable.
	
15.5.2	The	NA	Message
The	 neighbor	 advertisement	 (NA)	 is	 used	 to	 provide	 the	 link	 layer

address	 to	 a	 requesting	node	or	 to	 inform	of	 a	 link	 layer	 address	 change.
NA	messages	are	used	for	address	resolution,	NUD,	and	DAD	procedures	in
response	to	an	NS	message,	but	they	may	also	be	used	for	other	purposes,
usually	 in	 such	 as	 an	 unsolicited	 way	 for	 instance	 to	 inform	 of	 relate	 an
address	change	or	a	mobility	event.

The	source	address	is	the	address	of	the	sender.	The	destination	address
is	 the	 address	 of	 the	 requester	 present	 in	 the	 received	NS	message.	 If	 the
source	 address	 of	 the	 NS	 message	 is	 an	 unspecified	 address,	 then	 the
destination	address	 is	 the	all-nodes	multicast	address.	As	 shown	 in	Figure
15.9,	the	format	of	the	NA	message	is	very	similar	to	the	format	of	the	NS
message	with	the	addition	of	three	bits:

•	R-bit:	When	set,	 this	 indicates	 that	 the	 sender	 is	a	router.	This	 is
used	to	detect,	via	the	unreachability	process,	that	a	router	changes	to	a
host.
•	S-bit:	When	set,	 the	solicited	flag	 indicates	that	the	advertisement

was	sent	in	response	to	the	reception	of	an	NS	message.	This	bit	is	used
as	a	reachability	confirmation	for	NUD.
•	O-bit:	 The	 override	 flag	 is	 set	 to	 indicate	 that	 the	 advertisement

should	override	an	existing	cache	entry.

	
Note	 that	 the	 target	 address	 is	 the	 target	 address	 present	 in	 the	 NS

message.
If	there	is	an	unsolicited	message,	the	target	address	corresponds	to	the

IP	address	of	the	node	for	which	the	link	layer	address	has	changed.	In	this
case,	the	destination	address	is	the	all-nodes	multicast	address.

NA	messages	typically	carry	a	target	link	layer	address	option.
15.5.3	The	Router	Advertisement	Messages
Router	 advertisement	 (RA)	 messages	 are	 periodically	 sent	 by	 routers

and	 serve	 multiple	 purposes:	 they	 are	 used	 by	 routers	 to	 advertise	 their
presence	in	addition	to	various	link	and	Internet	parameters,	including	the
network	 prefix	 information	 used	 by	 the	 host	 to	 configure	 their	 unicast
global	address.

RA	messages	can	either	be	sent	by	routers	unsolicited	 (periodically)	as



well	as	solicited	in	response	to	an	RS	message	sent	by	a	host	that	does	not
want	to	wait	for	the	reception	of	an	unsolicited	RA	message	(e.g.,	especially
useful	for	mobile	nodes).	With	periodic	timers	they	are	slightly	randomized
to	avoid	global	synchronization	of	all	routers	on	the	link.

RA	 messages	 contain	 information	 about	 prefixes	 used	 for	 on-link
determination	and/or	autonomous	address	configuration.	RA	messages	also
inform	 nodes	whether	 they	 should	 use	 a	 stateful	 (DHCP)	 and/or	 stateless
autonomous	address	configuration	(see	Section	15.7).

Figure	15.10	shows	the	format	of	the	RA	message.

Figure	15.10	Format	of	the	RA	and	RS	messages.
	

Next	is	a	description	of	the	various	fields	of	an	RA	message.
IP	fields:

•	Source	address:	Local-link	address	assigned	 to	 the	 interface	 from
which	the	packet	is	sent.
•	Destination	address:	Typically	the	source	address	of	the	sender	of

the	RS	message	 (solicited	message)	 or	 the	 all-nodes	multicast	 address
(FF02::1;unsolicited	message).	In	the	case	of	a	solicited	message,	when



the	source	address	is	not	provided	in	the	RS	message,	the	RA	message
is	also	sent	using	the	all-nodes	multicast	address.

	
RA	message:

•	Current	hop	limit:	The	default	value	that	should	be	used	in	the	hop
count	field	of	an	IPv6	header	for	outgoing	IP	packets.
•	 The	M-bit	 or	managed	 address	 configuration	 bit:	When	 set,	 this

indicates	to	the	host	that	it	must	use	the	administered	stateful	protocol
for	 address	 autoconfiguration	 in	 addition	 to	 the	 stateless	 address
autoconfiguration	mode.
•	 The	 O-bit	 (other	 stateful	 configuration)	 flag:	 Indicates	 whether

configuration	 information	 other	 than	 addresses	 can	 be	 obtained	 via
DHCPv6.
•	Router	 lifetime:	 This	 field	 indicates	 the	 lifetime	 of	 the	 associated

default	 route	 in	 seconds.	 When	 set	 to	 0,	 the	 router	 should	 not	 be
considered	a	default	router.
•	 Reachable	 time:	 This	 value	 is	 used	 by	 the	 NUD	 process	 and

indicates	 in	milliseconds	 the	 time	 that	 a	 node	 assumes	 a	 neighbor	 is
reachable	after	having	received	reachability	confirmation.
•	 Retransmission	 timer:	 Time	 in	 milliseconds	 between	 the

retransmission	 of	 NS	 messages.	 This	 timer	 is	 used	 by	 the	 address
resolution	and	the	NUD	processes.

	
The	most	notable	options	that	a	RA	message	may	contain	are

•	Source	link	layer	address:	This	field	indicates	the	link	layer	address
of	the	interface	from	which	the	RA	message	was	sent.	The	router	may
omit	this	option	if	load	balancing	across	a	set	of	link	layer	addresses	is
desired.
•	MTU:	Maximum	transmission	unit	on	the	link.
•	Prefix	 information:	This	 important	optional	field	 indicates	the	 list

of	prefixes	used	for	on-link	determination	and	autoconfiguration.	The
router	 should	 provide	 all	 of	 its	 on-link	 prefixes	 (for	 multi-homed
hosts).
•	DNSS:	Provides	the	address	of	a	recursive	DNS	server	available	on

the	network.



	
15.5.3.1	Options	Prefixes	Advertised	in	the	RA	Messages
The	prefix	information	is	used	in	RA	messages	to	provide	hosts	with	on-

link	prefixes	and	prefixes	for	address	autoconfiguration.	The	format	of	the
prefix	information	option	is	shown	in	Figure	15.11.

Figure	15.11	Prefix	information	option.
	

Description	of	the	prefix	information	option	fields:

•	Prefix	 length:	Number	of	 leading	bits	 in	 the	prefix	 that	 are	 valid
(from	0	to	128	bits).
•	L-flag:	When	set,	this	indicates	that	the	prefix	can	be	used	for	on-

link	 determination.	 Conversely,	 when	 the	 L-flag	 is	 cleared,	 no
statement	can	be	made	on	whether	the	prefix	is	on-or	off-link.
•	A-flag	 (autonomous):	When	set,	 this	 indicates	 that	 this	prefix	can

be	used	for	autonomous	address	configuration.
•	Valid	lifetime:	This	indicates	in	seconds	the	length	of	time	that	the

prefix	is	valid.
•	 Preferred	 lifetime:	 Length	 of	 time	 in	 seconds	 that	 the	 address

generated	 from	 the	 prefix	 via	 stateless	 autoconfiguration	 remains	 in
the	“preferred”	state.

	
The	notion	of	valid	and	preferred	lifetimes	offers	an	efficient	mechanism

for	smooth	renumbering,	which	may	happen,	for	example,	when	migrating
from	 one	 Service	 Provider	 to	 another.	 The	 valid	 lifetime	 is	 simply	 the



lifetime	of	a	prefix,	where	the	preferred	lifetime	indicates	the	period	of	time
during	 which	 a	 host	 should	 use	 the	 prefix.	 After	 the	 expiration	 of	 the
preferred	lifetime,	if	the	valid	lifetime	has	not	expired,	a	host	only	uses	the
address	for	already	established	communications.

15.5.3.2	Recursive	DNSS	Option	Advertised	in	the	RA	Messages
[138]	 specifies	 an	 RA	 option	 allowing	 a	 router	 to	 advertise	 recursive

DNS	 server	 (RDNSS)	 addresses	 in	 RA	 messages.	 This	 provides	 a	 useful
alternative	to	DHCP	to	locate	DNS	servers.	This	is	particularly	interesting
for	 smart	 objects	 using	 stateless	 autoconfiguration	 that	 retrieves	 DNS
information	 processing	 the	 unique	 RA	 message,	 thus	 saving	 potentially
scarce	energy	resources.

The	RDNSS	option	(see	Figure	15.12)	uses	the	regular	ND	messages	such
as	RA	and	RS	previously	described.

Figure	15.12	RDNSS	information	option.
	

All	addresses	share	the	same	lifetime	value	that	indicates	the	maximum
time	 in	 seconds	 over	which	 a	 node	 can	 use	 the	RDNSS	 address	 for	 name
resolution.	A	node	may	send	an	RS	message	to	refresh	the	state	before	the
expiration	of	that	time.	It	is	recommended	to	set	the	lifetime	values	between
MaxRtrAdvInterval	and	2*	MaxRtrAdvInterval	where	MaxRtrAdvInterval
is	 defined	 as	 the	 maximum	 time	 in	 seconds	 allowed	 between	 sending
unsolicited	 multicast	 RA	 messages	 from	 the	 interface.	 A	 value	 of
0xFFFFFFFF	 represents	 infinity,	 and	 a	 value	 of	 0	 indicates	 that	 the
addresses	must	no	longer	be	used.

15.5.4	The	Router	Solicitation	Message
The	 router	 solicitation	 (RS)	 message	 is	 sent	 by	 a	 host	 to	 get	 an	 RA



message	in	reply	(if	at	least	one	router	is	present	on	the	link)	without	having
to	wait	for	the	expiration	of	the	RA	periodic	timer.

The	RS	message	structure	is	very	simple	(a	32-bit	field	set	to	0).	The	IP
fields	are:

•	 Source	 address:	 IP	 address	 of	 the	 interface	 used	 to	 send	 the	 RS
message	 or	 unspecified	 address	 during	 autoconfiguration	 (see	 section
15.7).
•	 Destination	 address:	 Typical	 all-routers	 multicast	 address

(FF02::2).

	
The	ICMP	type	is	equal	to	10.
15.5.5	The	Redirect	Message
Redirect	 packets	 are	 sent	 by	 routers	 to	 inform	 a	 host	 of	 a	 better	 first

node	on	the	path	to	the	destination.
15.5.6	Neighbor	Unreachability	Detection	(NUD)
NUD	 is	 a	 powerful	mechanism	used	 for	 unicast	 destination	 allowing	 a

node	(a	host	or	a	router)	to	verify	the	reachability	of	a	neighbor.	When	the
path	 to	 the	 neighbor	 seems	 to	 fail,	 if	 the	 destination	 is	 the	 ultimate
destination,	the	address	resolution	should	be	performed	again.	On	the	other
hand,	 if	 the	neighbor	is	a	router,	 it	might	be	appropriate	to	select	another
router.	The	procedure	used	 in	 this	case	 is	 the	next-hop	determination	(the
neighbor	cache	entry	is	then	deleted).

First,	 how	 does	 a	 node	 determine	 whether	 a	 neighbor	 is	 reachable?
Positive	confirmation	that	a	neighbor	is	reachable	can	either	be	the	receipt
of	an	NA	message	 in	response	to	an	NS	message	or	a	hint	 from	the	upper
layer	(e.g.,	receipt	of	a	TCP	ACK	or	new	non-duplicate	data	from	the	peer
via	the	neighbor).	When	the	transport	protocol	cannot	provide	a	hint	(e.g.,
UDP),	 then	 the	 node	 sends	 a	 probe	 to	 the	 neighbor	 (solicited	 unicast	 NS
message).	Receipt	of	an	unsolicited	message	such	as	an	RA	or	NA	message
with	the	“solicited”	flag	set	to	0	cannot	be	used	for	a	neighbor	reachability
confirmation	(only	confirms	one	way	path	integrity).

Neighbor	 cache	 entries	 are	 found	 in	 various	 states.	For	 example,	 if	 no
reachability	 confirmation	 has	 been	 received	 from	 a	 neighbor	 after
Reachabletime	milliseconds	(configuration	timer),	the	neighbor	cache	entry
is	 flagged	 as	 “stale.”	 If	 the	 node	must	 send	 a	 packet	 to	 that	 neighbor,	 it
starts	 another	 timer	 after	 the	 expiration.	 If	 no	 neighbor	 reachability	 has
been	received,	it	starts	an	active	probing	procedure.	The	probing	procedure



(at	 this	 stage	 the	cache	entry	 is	 in	 the	PROBE	state)	 consists	of	 sending	a
unicast	NS	message	to	the	neighbor	using	the	cached	link	 layer	address	of
that	 neighbor.	 NS	 messages	 are	 retransmitted	 every	 RetransTimer
millisecond	 until	 an	NA	message	 in	 received	 in	 response.	 If	 after	 sending
MAX_UNICAST_SOLICIT	 messages	 no	 NA	 message	 has	 been	 received,
the	cache	entry	is	deleted.

Link	layer	information	reporting	link	failures	can	be	used	to	trigger	the
cache	 entry	 deletion,	 but	 the	 indication	 that	 the	 link	 layer	 is	 operational
cannot	serve	as	a	neighbor	reachability	confirmation	(the	link	layer	may	be
operational,	although	the	neighbor	is	not	reachable).

15.6	Load	Balancing
There	are	several	circumstances	where	it	is	useful	for	a	router	to	make

use	 of	 input	 load	 balancing	 (reception	 of	 traffic	 from	 different	 interfaces
that	share	the	same	IPv6	address).

This	 is	 achieved	 by	 not	 including	 any	 link	 layer	 addresses	 in	 the	 RA
messages.	Consequently,	this	forces	the	host	to	send	NS	messages	to	get	the
router	 link	 layer	address	 to	which	the	router	will	reply	with	NA	messages
using	different	link	layer	addresses,	depending	on	which	host	issued	the	NS
message.

	
15.7	IPv6	Autoconfiguration
The	 ability	 for	 a	node	 to	 support	 autoconfiguration	 is	 very	 important,

especially	when	the	number	of	nodes	 is	extremely	 large	and	the	nodes	are
unattended,	which	 is	precisely	 the	 case	 in	 smart	object	networks.	 In	 these
networks,	 for	 example,	 in	 a	 city	 where	 the	 number	 of	 smart	 objects	 can
easily	be	on	the	order	of	hundreds	of	thousands	or	even	millions,	one	cannot
expect	 each	 node	 to	 be	 manually	 configured.	 In	 several	 requirement
documents	 the	 term	 0-config	 was	 even	mentioned.	 This	 is	 why	 the	 set	 of
autoconfiguration	features	supported	by	IPv6	is	particularly	well	suited	to
smart	 object	 networks.	 Although	 some	 of	 these	 features	 were	 supported
with	 IPv4,	 several	 new	 features	 have	 been	 added	 to	 IPv6	 that	 are
particularly	useful	for	smart	objects.

15.7.1	Building	the	Link-local	Address
When	 an	 interface	 is	 first	 initialized	 the	 node	 builds	 its	 link-local

address	by	prepending	the	well-known	link-local	prefix	FE80::0/10	(the	first
10	 leftmost	 bits	 are	 1111	 1110	 10)	 followed	 by	 54	 bits	 set	 to	 0	 and	 the
interface	ID.	Note	that	the	interface	ID	may	be	of	any	length	(less	than	118
bits,	 otherwise	 the	 autoconfiguration	 process	 fails),	 but	 generally	 64-bit
addresses	(EUI-64	identifier)	are	used.



Let’s	take	a	node	with	a	48-bit	MAC	address	to	 illustrate	how	such	an
address	 is	 converted	 into	an	EUI-64	address	 to	build	 the	 interface	 ID	 (see
Figure	15.13).

Figure	15.13	Building	an	interface	ID.
	

The	 process	 is	 fairly	 straightforward:	 the	 16	 bits	 (FFFE)	 are	 simply
inserted	in	the	middle	of	the	48-bit	MAC	address	to	produce	the	64-bit	EUI-
64	 format	 address.	 The	 interface	 ID	 is	 then	 created	 from	 the	 EUI-64
address	 by	 complementing	 the	 universal/local	 bit	 in	 the	 EUI-64	 address,
which	is	the	next	to	lowest	order	bit	of	the	first	octet	of	EUI-64.

The	 link-local	 address	 has	 an	 infinite	 preferred	 and	 valid	 lifetime	 and
never	times	out.

In	 our	 previous	 example	 the	 link-local	 address	 would	 be
FE:80:0:0:0:0:0:0:0:14:B1:FF:FE:CA:8E:47.	 At	 this	 stage,	 the	 node	 can
communicate	with	any	other	node	on	the	same	link.	These	packets	will	not
be	forwarded	by	routers	on	other	links.
	
15.7.2	The	Stateless	Autoconfiguration	Process
The	autoconfiguration	process	consists	of	several	steps:

•	Creation	of	a	link-local	address	and	uniqueness	on	a	link
•	Determination	of	what	should	be	autoconfigured
•	 Determination	 of	 whether	 addresses	 should	 be	 obtained	 using	 a

stateless	or	a	stateful	procedure



	
The	 stateless	 autoconfiguration	 process	 (described	 in	 [235])	 allows	 a

node	 to	 generate	 its	 link-local,	 site-local,	 and	 global	 addresses	 using	 a
combination	 of	 local	 information	 and	 information	 advertised	 by	 routers
with	 no	 configuration	 on	 the	 host,	 minimal	 (if	 any)	 configuration	 on	 the
router,	and	no	external	server	(in	contrast	with	stateful	configuration).	Both
stateless	and	stateful	autoconfiguration	mechanisms	may	be	combined	and
complement	each	other.	As	discussed	in	Section	15.5.3,	the	M-bit	of	the	RA
message	indicates	whether	to	use	a	stateless	or	a	stateful	autoconfiguration
mechanism.

Autoconfiguration	 is	 only	 supported	 on	 multicast	 capable	 links	 (and
links	that	emulate	multicast).

15.7.2.1	Building	Unicast	IPv6	Addresses
As	discussed	earlier,	 a	global	address	 is	 obtained	by	concatenating	 the

prefix	information	with	the	interface	ID.	The	stateless	mechanism	is	used	by
hosts	only	and	not	routers,	with	the	exception	of	the	link-local	address	that
is	generated	by	a	router	and	the	support	of	the	DAD	mechanism,	which	is
also	supported	by	routers.

The	 first	 step	 of	 the	 process	 is	 building	 the	 link-local	 address	 by
prepending	the	interface	ID	with	FE80:0:0:0.	The	link-local	address	allows
local	communication	between	all	nodes	residing	on	the	local	link.

Before	assigning	a	unicast	address	(link-local	or	global),	 the	node	must
first	 verify	 the	 uniqueness	 of	 the	 address	 with	 the	 DAD	 procedure.	 This
does	not	apply	to	anycast	addresses.	The	DAD	procedure	uses	 the	NS	and
NA	 messages,	 and	 if	 the	 address	 is	 already	 in	 use	 by	 another	 node,	 the
procedure	 stops	 and	 a	 new	 interface	 ID	must	 be	 configured	 on	 the	 node.
DAD	 is	 not	 completely	 reliable	 so	 it	 is	 possible	 that	 duplicate	 addresses
exist.	 All	 packets	 received	 before	 the	 completion	 of	 the	 DAD	 process
destined	to	the	address	under	verification	must	be	silently	discarded.

15.7.2.2	DAD	Process
The	 DAD	 process	 verifies	 the	 uniqueness	 of	 an	 address	 prior	 to

assigning	 it	 to	 an	 interface.	 This	 process	 must	 be	 used	 regardless	 of	 the
address	allocation	technique	(stateless,	stateful,	or	manual	configuration).

The	node	first	starts	by	computing	the	EUI-64	address	if	needed.	It	then
assigns	 the	 all-nodes	 multicast	 address	 to	 the	 interface	 and	 the	 solicited-
node	multicast	address	of	the	tentative	address.	To	verify	the	uniqueness	of
the	 address,	 the	 node	 sends	 a	 (configurable)	 number	 of	NS	messages	 (see
Section	 5.1	 of	 [235]).	 NS	 messages	 must	 be	 separated	 by	 RetransTimer
milliseconds.	This	parameter	 is	advertised	 in	 the	RA	messages	sent	by	 the



routers.	The	target	address	present	in	the	NS	message	must	be	equal	to	the
address	checked.	In	this	case,	the	IP	source	of	the	NS	message	is	sent	to	the
unspecified	address,	and	the	destination	address	is	sent	to	the	solicited-node
multicast	 address	 of	 the	 target	 address.	 The	 DAD	mechanism	 allows	 for
jittering	when	NS	messages	are	first	sent	to	avoid	the	race	condition	should
a	set	of	nodes	try	to	simultaneously	run	the	procedure	—	for	example,	after
a	power	outage.

When	a	node	receives	an	NS	message,	it	does	the	following:

•	If	the	target	address	has	already	been	assigned	to	the	node,	this	is	a
duplicate	address	(therefore	it	cannot	be	used).
•	If	the	target	address	is	in	a	“tentative”	state	(the	receiving	node	is

also	trying	to	assign	that	same	address	to	itself)	and	the	source	address
is	 unicast,	 then	 the	 sending	 node	 is	 not	 trying	 to	 run	 the	 DAD
procedure	but	is	in	fact	trying	to	obtain	the	link	layer	address.	In	this
case,	the	NS	message	should	simply	be	discarded.	On	the	other	hand,	if
the	source	address	of	the	NS	message	is	not	unicast	but	is	equal	to	the
unspecified	address,	the	NS	message	is	from	a	node	running	the	DAD
procedure	 that	 is	 trying	 to	 assign	 the	 same	 address	 to	 one	 of	 its
interfaces	(this	address	cannot	be	used).

	
If	an	NS	message	for	a	tentative	address	is	received	prior	to	having	sent

an	NS	for	the	same	address,	the	tentative	address	is	a	duplicate	(it	is	about
to	 start	DAD	for	an	address	 that	another	node	 is	also	 trying	 to	use).	This
occurs	when	two	nodes	are	trying	to	run	the	DAD	procedure	for	the	same
address,	but	one	of	them	has	sent	the	NS	message	before	the	other	(by	using
random	 timers).	There	 is	 also	a	mechanism	 that	 covers	 the	 case	of	 an	NS
message	sent	approximately	at	the	same	time.

In	short,	if	the	node	does	not	receive	an	NA	for	the	target	address,	it	is
free	 to	 assign	 it	 to	 the	 interface,	 otherwise	 there	 is	 a	 duplicate	 and	 the
address	cannot	be	used.	When	this	happens	the	DAD	process	is	stopped	and
an	 error	 message	 must	 be	 generated.	 The	 DAD	 process	 is	 not	 entirely
reliable;	for	example,	when	a	packet	drops	because	of	some	unreliable	links
(pretty	common	in	lossy	environments)	or	if	the	links	were	partitioned	when
the	DAD	process	took	place.

15.7.2.3	Optimistic	DAD
[177]	 has	 defined	 a	 modification	 to	 the	 DAD	 procedure	 called

“optimistic	 DAD”	 to	 reduce	 the	 address	 configuration	 delays	 in	 the



successful	 cases	 while	 reducing	 disruption	 in	 the	 failure	 cases.	 [183]
introduces	 addresses	 called	 “optimistic”	 assigned	 to	 an	 address	 that	 is
available	for	use,	but	whose	DAD	procedure	has	not	yet	been	completed.	In
a	 nutshell,	 an	 optimistic	 address	 is	 equivalent	 to	 a	 deprecated	 address
because	 it	 is	 available	 for	 use	 but	 should	 not	 be	 used	 if	 another	 suitable
address	is	available.	Note	that	optimistic	DAD	should	be	used	for	addresses
based	 on	 unique	 identifiers	 (e.g.,	 typically	 not	 for	 manually	 configured
addresses).

15.7.2.4	Creation	of	the	Unicast	Global	and	Site-local	Addresses
Building	 the	 unicast	 global	 and	 site-local	 addresses	 requires	 obtaining

the	prefix	information	from	the	RA	messages	sent	by	routers.	The	node	may
either	 wait	 until	 it	 received	 a	 periodic	 RA	 message	 or	 may	 send	 an	 RS
message	 to	 the	all-routers	address	 to	receive	a	solicited	RA	message.	 If	no
RA	 message	 is	 received,	 the	 node	 must	 attempt	 to	 use	 stateful
autoconfiguration.

Once	 the	 set	 of	 prefixes	 has	 been	 received,	 the	 node	 assigns	 these
addresses	 to	 the	 interfaces	 after	 completing	 the	 DAD	 process	 previously
detailed.	 Figure	 15.14	 provides	 an	 example	 of	 stateless	 auto	 configuration
process.

Figure	15.14	Stateless	autoconfiguration.



	

15.7.3	 Privacy	 Extensions	 for	 Stateless	 Address	 Autoconfiguration	 in
IPv6

[184]	specifies	extensions	for	autoconfigured	stateless	addresses	derived
from	non-changing	 addresses	 (typically	 IEEE	 addresses).	 This	may	 be	 an
issue	if	privacy	must	be	preserved;	indeed,	a	packet	sniffer	could	infer	the
host	 activity	 fairly	 easily.	 Thus	 changing	 the	 address	 of	 a	 host	 over	 time
could	help	preserve	privacy.	This	may	be	of	particular	interest	for	strategic
smart	 objects	 reporting	 sensitive	 data.	 An	 eavesdropper	 may	 be	 able	 to
track	the	movement	of	a	mobile	smart	object	because	of	its	address	(a	case
where	encryption	would	not	help	since	the	address	is	not	encrypted).

Even	with	DHCP	IPv4	addresses	would	not	change	that	often.	The	issue
becomes	 more	 apparent	 with	 IPv6	 since	 the	 interface	 ID	 would	 never
change	 (with	 permanent	 link	 layer	 address	 use)	 even	 if	 the	 node	 joins
another	network	thus	inheriting	a	new	prefix	ID.

[184]	proposes	a	set	of	mechanisms	in	order	to	create	additional	global
scope	addresses	based	on	a	randomly	generated	interface	identifier.	It	must
be	 noted	 that	 the	 stateless	 address	 autoconfiguration	mechanisms	 remain
unchanged.	These	addresses	are	only	used	for	outgoing	sessions	and	would
be	used	for	short	periods	of	 time	(hours	 to	days)	before	being	deprecated.
The	 actual	 value	 of	 the	 randomized	 identifier	 changes	 over	 time,	 but	 a
unique	identifier	can	be	used	to	generate	more	than	one	address.

Two	 approaches	 are	 proposed	 for	 the	 generation	 of	 randomized	 IDs
depending	on	whether	stable	storage	 is	available	on	the	node.	In	this	case,
historical	data	can	be	recorded	and	used	as	input	for	the	algorithm	after	a
system	restart.

When	 stable	 storage	 is	 available,	 the	 algorithm	 assumes	 that	 a	 64-bit
“history	 value”	 is	 available.	 The	 very	 first	 time	 the	 system	 boots	 up,	 a
pseudo-random	algorithm	such	as	[75]	can	be	used	to	generate	the	history
value.	The	history	value	changes	as	new	random	identifiers	are	generated.
Here	are	the	proposed	algorithms	specified	in	[184]:

1.	 Take	 the	 history	 value	 from	 the	 previous	 iteration	 of	 this
algorithm	(or	a	random	value	if	there	is	no	previous	value)	and	append
the	interface	identifier	generated	to	it.
2.	Compute	the	MD5	message	digest	[215]	over	the	quantity	created

in	the	previous	step.
3.	 Take	 the	 leftmost	 64	 bits	 of	 the	 MD5	 digest	 and	 set	 bit	 6	 (the



leftmost	bit	is	numbered	0)	to	zero.	This	creates	an	interface	identifier
with	 the	universal/local	bit	 indicating	 local	 significance	only.	Save	 the
generated	identifier	as	the	associated	randomized	interface	identifier.
4.	Take	the	rightmost	64	bits	of	the	MD5	digest	computed	in	step	2

and	save	 them	 in	stable	 storage	as	 the	history	value	 to	be	used	 in	 the
next	iteration	of	the	algorithm.

	
Without	 stable	 storage	 there	 is	 no	 history	 value	 and	 pseudo-random

algorithms	such	as	[75]	can	be	used.
The	 DAD	 procedure	 must	 be	 triggered	 for	 the	 newly	 computed

temporary	address.
One	 drawback	 of	 using	 randomized	 temporary	 addresses	 is	 the

increased	complexity	when	troubleshooting.
15.8	DHCPv6
15.8.1	Stateful	Autoconfiguration
DHCPv6	specified	in	[62]	and	DHCP	for	IPv4	provide	similar	services:	a

centralized	mechanism	to	configure	node	addresses	(including	the	host	part
of	 the	 node	 address)	 and	 obtain	 other	 useful	 information	 such	 as	 DNS
addresses.	Compared	to	its	IPv4	counterpart	some	changes	have	been	made
in	IPv6	 (some	message	 types	have	been	removed,	others	have	been	added,
the	ability	to	request	more	than	one	address	has	been	added,	etc.).

As	discussed	in	Section	15.5.3,	if	the	M-bit	(managed	configuration	flag
of	 the	RA	message)	 is	 set,	 the	 requesting	 node	must	 use	 the	 administered
stateful	 protocol	 for	 address	 autoconfiguration	 (DHCP)	 in	 addition	 to	 the
stateless	address	autoconfiguration	mode.

The	discovery	process	of	the	DHCP	server	consists	of	sending	a	message
to	the	well-known	link-local	address	(FF02::1:2)	used	to	address	all	DHCP
agents	 on	 the	 local	 link	 in	 contrast	 with	 DHCPv4	 that	 uses	 broadcast
addresses.	 If	 it	 turns	out	 that	 the	DCHP	server	 is	not	 located	on	the	same
link,	routers	can	be	configured	to	relay	 these	messages	or	 to	send	a	direct
reply	to	the	requesting	node	if	the	router	knows	the	DCHP	address.	When
relaying	 the	 request,	 the	 relaying	 routers	 use	 all	DHCP	 address	 site-local
multicast	addresses:	FF05::1:3.

Once	 the	 DHCP	 server	 has	 been	 located,	 messages	 are	 exchanged
between	the	requesting	node	and	the	DHCP	server	to	gather	the	requested
data.

Another	mechanism	known	 as	 prefix	 delegation	 and	 specified	 in	 [240]
can	be	used	in	some	cases	to	automate	the	delegation	of	IPv6	using	DHCP.



Prefix	delegation	is	typically	used	by	Service	Providers:	the	customer	router
acts	 as	 a	 DHCP	 client	 requesting	 prefixes	 to	 the	 Service	 Provider	 router
that	acts	as	a	DHCP	server	 (and	does	not	have	 to	know	 the	 topology	of	a
customer’s	network).
	
15.8.2	Stateless	DHCP
Once	 the	 IPv6	 global	 address	 has	 been	 obtained	 by	 manual

configuration	 or	 the	 stateless	 autoconfiguration	 process	 previously
described,	 stateless	 DHCPv6	 services	 (specified	 in	 [61])	 allow	 a	 node	 to
obtain	 various	 information	 such	 as	 DNS	 recursive	 name	 servers	 or	 SIP
servers.	In	contrast	with	stateful	DHCP,	stateless	DHCP	does	not	perform
address	 assignment	 but	 is	 limited	 to	 providing	 configuration	 information.
Such	 a	 stateless	 DHCP	 server	 does	 not	 maintain	 any	 dynamic	 state	 for
DHCP	clients.

Stateless	 DHCP	 servers	 only	 support	 a	 subset	 of	 the	 DHCP	messages
specified	 in	 [63].	 The	 DHCP	 client	 uses	 a	 DHCP	 information-request
message	 to	 obtain	 configuration	 information	 to	which	 the	 stateless	DHCP
server	 replies	with	a	 reply	message	 that	 carries	 configuration	 information
such	as	DNS	recursive	name	servers	or	SIP	servers.

The	simplicity	of	stateless	DHCP	makes	it	a	very	appealing	functionality
for	smart	object	networks.

15.9	IPv6	QoS
This	 section	does	not	provide	a	complete	description	of	 the	wide	 set	of

mechanisms	and	protocols	designed	over	the	past	decade	to	provide	QoS	in
IP	networks,	but	rather	highlights	the	fact	that	QoS	in	IPv6	is	very	similar
to	 QoS	 in	 IPv4.	 This	 is	 excellent	 news	 considering	 the	 number	 of
mechanisms	and	protocols	that	have	been	successfully	designed	for	IPv4	to
provide	 very	 tight	 Service	 Level	 Agreements	 (SLAs)	 to	 IP	 traffic.	 As	 a
reminder,	 IP	 networks	 do	 carry	 traffic	 such	 as	 voice	 and	 high-definition
video	that	are	very	sensitive	to	delays,	jitter,	and	packet	loss.

QoS	is	undoubtedly	a	key	architectural	component	of	IP	networks	and
has	been	approached	in	many	ways.	The	first	and	most	simple	approach	is
to	throw	more	bandwidth	 in	the	network,	 increasing	the	network	capacity
by	 using	 higher	 speed	 links	 and/or	 new	 links	 to	 avoid	 any	 potential
congestion.	 As	 traffic	 increases,	 upon	 crossing	 some	 link	 utilization
thresholds,	 the	 network	 is	 upgraded	 to	 “try”	 to	 avoid	 congestion	 in	 the
network	 and	minimize	 queuing	 delays	 and	 jitter.	Although	 very	 effective,
such	an	approach	(usually	referred	to	as	an	over-provisioning	policy)	may
be	 very	 expensive,	 especially	 when	 SLAs	 must	 be	 maintained	 in	 the



presence	of	link	and/or	node	failures.	This	topic	is	discussed	in	great	detail
in	[246].

In	most	cases,	congestion	cannot	be	avoided	and	may	occasionally	take
place	 for	 a	 period	 of	 time	 in	 parts	 of	 the	 network	 because	 of	 a	 burst	 of
traffic,	a	network	element	failure,	and	so	forth.

The	objective	of	QoS	mechanisms	is	to	assign	different	priorities	to	the
traffic,	 consequently,	 providing	 a	 differentiated	 treatment	 to	 packets
according	 to	 their	Class	 of	Service	 (CoS).	QoS	does	not	 create	bandwidth
but	does	provide	a	preferential	treatment	to	the	most	important	or	sensitive
traffic,	 where	 the	 notion	 of	 “most	 important”	 is	 defined	 by	 the	 user
according	to	configurable	parameters.

15.9.1	The	Diffserv	Model
Diffserv,	 specified	 in	 [16],	basically	relies	on	 the	ability	 to	mark	traffic

(usually	at	the	edge	of	the	network)	and	uses	a	per-hop	behavior	(PHB)	on
each	node	along	 the	path	where	resources	are	appropriately	assigned	 to	a
limited	number	of	CoS	identified	by	the	packet	marking.

The	first	step,	“classification/marking,”	is	usually	performed	at	the	edge
of	 the	 network	 and	 consists	 of	 “coloring”	 the	 packets	 according	 to	 user-
specified	 rules.	 Coloring	 (marking)	 refers	 to	 setting	 the	 traffic	 class	 (TC)
field	of	the	IPv6	header	(or	the	ToS	field	with	IPv4).	Such	rules	are	based
on	 the	 source/destination	 address,	 higher-level	 protocol,	 nature	 of	 the
applications,	 or	 other	 sophisticated	 rules.	 Some	 routers	 can	 even	 support
deep	 packet	 inspection	 techniques	 to	 perform	 on-the-fly	 classification
(typically	not	available	on	a	smart	object,	at	least	for	now).

The	TC	field	is	divided	in	two	subfields:

•	Diffserv	Code	Point	(DCP)	—	6	bits	identifies	the	PHB.	Several	of
them	 have	 been	 standardized	 including	 best	 effort,	 expedited
forwarding	 (EF,	 specified	 in	 [137]),	 and	 assured	 forwarding	 (AF,
specified	in	[112]	and	[97])	with	several	levels	of	drop	preference.
•	 The	 Explicit	 Congestion	 Notification	 (ECN)	 specified	 in	 [208]

explicitly	 notifies	 the	 presence	 of	 a	 congestion	 instead	 of	 the	 implicit
notification	by	dropping	packets.	Although	initially	 targeted	for	TCP,
the	ECN	could	be	used	by	other	 transport	protocols	 including	 future
transport	protocols	under	investigation	for	smart	object	networks.

	
Once	the	packet	has	been	marked	with	the	appropriate	CoS,	each	router

along	the	path	can	process	the	packet	accordingly	using	a	PHB	defined	for



its	CoS.	This	basically	involves	two	categories	of	mechanisms:

•	Traffic	management:	This	refers	to	the	use	of	queuing	mechanisms.
A	 plethora	 of	 queuing	 mechanisms	 have	 been	 defined,	 implemented,
and	 deployed	 over	 the	 past	 decade	 that	 can	 be	 used	 to	 provide	 very
fine-grained	QoS	according	to	the	CoS.
•	 Congestion	 avoidance:	 When	 queues	 are	 getting	 full,	 instead	 of

simply	 dropping	 packets,	 several	 mechanisms	 can	 be	 used	 to	 start
dropping	packets	using	a	probabilistic	approach	when	the	queue	length
crosses	specified	thresholds.	The	rate	at	which	packets	are	dropped	can
be	a	 function	of	 the	CoS	within	 the	same	queue,	 should	multiple	CoS
share	a	queue.	The	most	common	congestion	avoidance	mechanism	 is
the	 “weighted	 random	 early	 detection”	 algorithm	 called	WRED	 (see
[84]).

	
Queuing	 mechanisms	 are	 usually	 fairly	 simplistic	 on	 smart	 objects

considering	 the	 memory	 and	 CPU	 constraints,	 but	 the	 mechanisms	 are
supported	by	IPv6.
	
15.9.2	The	IntServ	Model
The	 integrated	 service	 (IntServ)	 model	 was	 defined	 in	 1994	 ([20])	 to

support	 real-time	 and	 non-real-time	 services.	 It	 relies	 on	 resources
reservation	mechanisms	to	effectively	reserve	resources	 in	the	network	for
critical	flows.	Resources	reservation	is	performed	using	the	RSVP	protocol
[21].

IntServ	 has	 not	 been	 as	 popular	 as	 Diffserv	 in	 core	 networks	 mainly
because	of	its	limited	scalability,	but	it	is	being	used	more	often	at	the	edge
of	the	network	for	call	admission	control	(CAC).

The	use	of	 the	 IntServ	model	 in	 smart	object	networks	 is	not	 likely	 to
take	 place	 in	 the	 near	 future,	 because	 it	 requires	 non-negligible	 control
plane	 overhead	 and	 state	 maintenance,	 unless	 a	 lightweight	 version	 is
designed	that	could	be	combined	with	the	routing	functions.

15.10	IPv6	Over	an	IPv4	Backbone	Network
Although	most	 networks	will	 likely	migrate	 to	 IPv6	 in	 the	 next	 3	 to	 5

years,	IPv4	will	undoubtedly	be	used	in	many	networks	for	decades	to	come.
This	 raises	 the	 legitimate	 question:	 How	 should	 IPv6	 “islands”	 of	 smart
objects	 be	 interconnected	 if	 the	 backbone	 network	 is	 not	 natively
supporting	IPv6?	Indeed,	a	Service	Provider,	a	city,	or	large	enterprise	may



want	 to	 deploy	 an	 IPv6	 smart	 object	 network	 without	 having	 to
immediately	migrate	its	IPv4	backbone	network	to	IPv6.	This	is	achievable
because	of	tunneling	mechanisms	that	have	been	in	used	in	the	Internet	for
many	purposes	for	a	long	time.	These	tunneling	mechanisms	are	convenient
but	 require	 some	 extra	 configuration	 on	 the	 edge	 routers	 supporting	 the
tunnels	 and	may	 not	 always	 offer	 the	most	 optimal	 path	 in	 the	 network.
Still,	 they	 are	 useful	 mechanisms	 to	 enable	 an	 IPv4	 network	 with	 IPv6
capabilities.

One	 solution	 may	 be	 to	 run	 dual	 stacks	 on	 routers	 and	 hosts	 in	 the
network,	 thus	 supporting	 native	 IPv6	 and	 IPv4	 for	 the	 applications	 that
have	not	yet	migrated	to	IPv6	[91].	But	let’s	focus	on	the	situation	where	the
backbone	network	does	not	support	IPv6	natively.

Several	 mechanisms	 have	 been	 defined.	 This	 section	 provides	 a	 brief
overview	 of	 a	mechanism	 referred	 to	 as	 6to4	 and	 specified	 in	 [34].	 If	 the
network	 is	MPLS	 enabled,	 other	 approaches	 such	 as	 6PE	 (IPv6	 Provider
Edge)	 can	 be	 used	where	 the	 customer	 PE-CE	 (Provider	 Edge–Customer
Edge)	links	are	IPv6	enabled	and	the	core-facing	interface	of	the	PE	routers
is	 IP/MPLS	 enabled.	 Details	 on	 this	 technology	 and	 deployments	 can	 be
found	in	[247].

6to4	uses	dynamic	tunnels	to	interconnect	IPv6	islands	over	an	IPv4	core
network,	 effectively	 making	 the	 IPv4	 network	 a	 collection	 of	 link	 layer
point-to-point	links.

Figure	15.15	 illustrates	 the	6to4	router	 to	 router,	but	6to4	host-to-host
tunneling	also	exists,	although	it	is	much	less	relevant	to	smart	objects.



Figure	15.15	6to4	tunnels.
	

This	is	how	the	site	prefix	(/48)	is	formed:

•	 IANA	 assigns	 a	 permanent	 13-bit	 top-level	 aggregator	 equal	 to
0x0002	under	the	IPv6	format	prefix	001	for	6to4.	Thus	the	first	16	bits
of	the	address	are	2002.
•	The	next	32	bits	correspond	to	the	IPv4	address	of	the	relay	router

(R1	in	as	depicted	in	Figure	15.15).
•	The	next	16	bits	are	the	SLA	ID	(site	level	aggregation	identifier).
•	The	next	64	bits	of	the	address	correspond	to	the	interface	ID.

	
Let’s	consider	the	example	in	Figure	15.15.

•	 The	 IPv4	 addresses	 of	 R1	 and	 R2	 used	 for	 the	 6to4	 tunnel	 are,
respectively,	192.100.1.1	and	192.100.2.2.
•	The	IPv6	prefix	address	for	site	1	is	2002:<IPv4	address	of	R1>/48

or	2002:c064:101	in	hexadecimal	notation.
•	The	IPv6	prefix	address	of	site	2	 is	2002:<IPv4	address	of	R2>/48

or	2002:c064:202.
•	S	 is	an	IPv6	sensor	sending	an	IPv6	packet	to	a	host	H.	The	IPv6

address	of	S	is	2002:c064:101:10::10.



•	 H	 is	 a	 host	 collecting	 sensor	 data.	 The	 IPv6	 address	 of	 H	 is
2002:c064:202:20::20.

	
Now	 let’s	 consider	 the	 process	 of	 sending	 a	 packet	 from	 S

(2002:c064:101:10::10)	 to	 H	 (2002:c064:202:20::20).	 Upon	 receiving	 the
packet,	 R1	 extracts	 the	 IPv4	 tunnel	 end	 point,	 which	 is
c064:202=192.100.2.2.	 Then	 it	 adds	 an	 IPv4	 packet	 header	 to	 the	 IPv6
packet	 (tunneling)	 where	 the	 IPv4	 source	 and	 destination	 address	 are,
respectively,	 192.100.1.1	 and	 192.100.2.2.	 Upon	 receiving	 the	 packet	 R2
performs	a	similar	operation	and	forwards	the	corresponding	IPv6	packet
to	H.

This	shows	a	simple	and	dynamic	mechanism	to	 interconnect	two	IPv6
islands	 across	 an	 IPv4	 core	 network.	 There	 are	 more	 complex	 scenarios
when	the	destination	site	does	not	have	a	router	supporting	this	mechanism.
In	this	case,	it	is	also	possible	to	use	relays	that	can	be	autodiscovered.

	
15.11	IPv6	Multicast
IP	multicast	is	a	key	functionality	of	IP.	In	the	past	two	decades,	many

protocols	 and	 features	 have	 been	 developed	 to	 support	multicast	 services,
and	a	number	of	applications	used	in	the	Internet	and	private	IP	networks
make	 use	 of	 IP	 multicast	 (e.g.,	 content	 distribution,	 video,	 etc.)	 to	 save
network	 resources	 and	 avoid	 traffic	 duplication	when	 sending	 a	 flow	 to	 a
number	of	recipients.

Smart	object	networks	consisting	of	a	sink	sending	data	to	a	number	of
sensors	or	actuators	is	another	example	where	multicast	can	be	used	to	send
commands	to	a	set	of	devices	or	perform	a	software	upgrade	while	avoiding
unnecessary	traffic	duplication.

IPv6	has	greatly	benefited	 from	the	IPv4	past	experience:	many	of	 the
IPv4	 multicast	 features	 and	 protocols	 have	 been	 reused	 with	 minimal
changes	 other	 than	 the	 addressing	 scheme	 and	 some	 IPv4	 multicast
protocols	have	been	not	been	adopted	for	IPv6,	while	other	ones	have	been
redesigned.

As	previously	discussed,	multicast	 is	 used	by	 IPv6	by	 the	ND	protocol
(e.g.,	 unsolicited	 RA	 messages	 are	 sent	 to	 all-nodes	 multicast	 address
FF02::1)	 and	 for	 IPv6	 autoconfiguration.	 Beyond	 link-local	 scope,	 IP
multicast	supports	the	building	of	multicast	distribution	trees	(MDT)	using
various	routing	protocols	and	a	protocol	for	multicast	group	management.

IPv6	 uses	 MLD	 (multicast	 listener	 discovery)	 for	 multicast	 group



management	 in	 order	 to	 discover	 local	 multicast	 listeners	 and	 which
multicast	addresses	are	of	interest	on	the	local	link.	The	information	is	then
provided	 to	 the	 multicast	 routing	 protocol	 to	 ensure	 that	 the	 multicast
traffic	of	 interest	 is	distributed	 to	 links	with	 interested	multicast	 listeners.
MLD	 is	 in	 many	 ways	 similar	 to	 IGMPv2	 [81]	 used	 for	 IPv4.	 MLD	 is
specified	 in	 [92].	 A	 second	 version	 called	 MLDv2	 [251]	 is	 equivalent	 to
IGMPv3	for	IPv4	[29].

The	main	difference	between	MLD	and	IGMP	is	that	MLD	uses	ICMP
(the	next	header	field	value	of	the	preceding	header	is	equal	to	58),	whereas
IGMP	packets	are	encapsulated	in	IP	packets	(Protocol	Number	2).

MLD	packets	are	sent	using	the	local	link	address	as	the	source	address
with	 a	hop	 limit	 field	 equal	 to	 1,	 since	 they	 are	not	 forwarded	by	 routers
beyond	the	local	link.	All	MLD	messages	are	sent	with	an	IPv6	Router	Alert
option	in	a	hop-by-hop	option	header	to	make	sure	that	routers	examine	the
messages	even	if	they	are	sent	to	a	multicast	group	that	is	of	no	interest	to
the	routers.

Routers	 connected	 to	multicast-enabled	 links	 listen	packets	 sent	 to	 the
all	 link	 layer	multicast	 address	 (e.g.,	 addresses	 that	 start	 with	 0x3333	 on
Ethernet	links).

Three	types	of	MLD	messages	are	defined:

•	 Multicast	 listener	 report:	 These	 are	 messages	 sent	 by	 a	 node
expressing	its	interest	in	joining	a	multicast	group.	The	report	message
is	sent	to	the	multicast	address	of	interest.	If	the	router	already	receives
traffic	for	that	multicast	group,	it	only	resets	a	timer,	otherwise	it	joins
the	 relevant	 MDT.	 Reports	 are	 sent	 periodically	 by	 each	 interested
listener	 (note	 that	a	 listener	does	not	 resend	a	 report	 if	 another	node
has	sent	a	similar	report	since	the	router	is	only	interested	in	knowing
that	there	is	at	least	one	interested	listener	for	that	multicast	group).
•	Multicast	 listener	 done:	These	messages	 are	 sent	 to	 the	 link-local

all-routers	 address	 to	 inform	 routers	 that	 the	 node	 is	 no	 longer
interested	by	a	multicast	group.
•	 Multicast	 listener	 query	 (with	 two	 subtypes,	 known	 as	 general

query	 and	 multicast-address-specific	 query):	 Queries	 are	 sent	 by
routers	 requesting	 multicast	 listeners	 to	 send	 reports.	 This	 happens
when	 a	Done	message	 is	 received	 in	 order	 to	 know	 if	 there	 is	 still	 at
least	one	listener	interested	by	a	specific	multicast	group.	If	no	report
for	this	multicast	group	is	received,	the	router	knows	that	it	no	longer
needs	 to	 forward	multicast	 traffic	 for	 that	 group.	 The	 general	 query



messages	are	periodically	sent	to	all	nodes	on	the	local	link	(IP	address
link-local	 all-routers	FF02::2)	 requesting	 them	 to	 report	 all	multicast
groups	they	are	interested	in.

	
MLD	makes	use	of	an	elected	router,	which	 is	 the	only	router	 sending

queries.	 This	 is	 only	 to	 minimize	 the	 number	 of	 queries.	 Since	 all	 MLD
packets	are	sent	to	multicast	addresses,	they	are	received	by	all	routers	on
the	link,	not	just	the	elected	router.

A	number	of	multicast	 routing	protocols	have	been	designed	 for	 IPv4:
Distance	Vector	Multicast	Protocol	 (DVMRP),	Multicast	OSPF	 (MOSPF),
Protocol	Independent	Multicast	(PIM),	Core	Based	Trees	(CBT),	Pragmatic
General	Multicast	(PGM),	and	so	forth.

Learning	 from	 deployment	 experience,	 IPv6	 chose	 to	 only	 keep	 a	 few
variants	 of	 PIM	 and	 the	 IPv6	 implementation	 is	 very	 similar	 to	 the	 IPv4
version:

•	PIM-SM	(PIM	Sparse	Mode)	[78]
•	PIM-SSM	(PIM	Source	Specific	Multicast)	[119]
•	PIM-Bidir	(Birectional)	[106]

	
15.11.1	IPv6	Multicast	Addressing
IPv6	 addressing	 and	 multicast	 addressing	 were	 discussed	 in	 Section

15.3.	 [102]	 provides	 multicast	 allocation	 guidelines	 for	 permanent	 and
dynamic	multicast	addresses.

The	general	approach	consists	of	mapping	 the	 low	order	32	bits	of	 the
IPv6	multicast	 address	 (called	 the	 group	 ID)	 into	 a	 link	 layer	 destination
address:	[102]	specifies	how	the	group	IDs	are	assigned.

There	 are	 several	 types	 of	 multicast	 addresses:	 permanent	 IPv6
multicast	 addresses,	 permanent	 IPv6	 multicast	 group	 IDs,	 and	 dynamic
IPv6	multicast	addresses.

The	permanent	IPv6	multicast	addresses	are	assigned	with	group	IDs	in
the	range	of	0x00000001	to	0x3FFFFFFF	(see	[115]	for	examples).

Permanent	 group	 IDs	 are	 allocated	 in	 the	 range	 0x40000000	 to
0x7FFFFFFF.

Dynamic	addresses	can	either	be	allocated	by	a	server	or	by	the	host	and
must	have	their	T-bit	set	(see	Figure	15.8).	Allocation	servers	use	the	group
ID	 range	 0x80000000	 to	 0xFFFFFFFF.	 When	 allocated	 by	 a	 host,	 the



generated	 group	 ID	must	 also	 belong	 to	 the	 0x80000000	 to	 0xFFFFFFFF
range	 and	 a	 pseudo-random	 algorithm	 must	 be	 used	 to	 generate	 that
number.
	
15.12	Conclusions
As	 discussed	 in	 the	 beginning	 of	 the	 chapter,	 a	 number	 of	 reference

books	 have	 been	 released	 and	 the	 aim	 of	 this	 chapter	 was	 to	 provide	 a
technology	refresher	needed	to	better	understand	the	key	functionalities	of
IPv6	 in	 smart	 object	 networks.	A	 particular	 focus	was	made	 on	 the	 IPv6
addressing	 architecture	 (key	 for	 smart	 object	 networks)	 and	 the	 auto
configuration	 features	provided	by	IPv6	 for	auto	configuration,	which	are
much	needed	to	manage	a	large	number	of	(unattended)	smart	objects.	The
number	of	enhancements	provided	by	IPv6	made	it	the	natural	protocol	of
choice	for	IP	smart	object	networks.

	



Chapter	16	The	6LoWPAN
Adaptation	Layer

	

16.1	Terminology
Before	 digging	 into	 the	 IP	 protocols	 developed	 for	 smart	 object

networks,	 several	 terms	 that	 may	 be	 confusing	 need	 to	 be	 defined.
According	 to	 [156]	 a	 LoWPAN	 is	 Low-power	 Wireless	 Personal	 Area
Networks	 (LoWPANs)	 composed	 of	 devices	 conforming	 to	 the	 IEEE
802.15.4-2003	 standard	 defined	 by	 the	 IEEE	 [129].	 IEEE	 802.15.4	 devices
are	characterized	by	short	range,	low	bit	rate,	low	power,	and	low	cost.

IEEE	80.15.4	networks	have	the	following	characteristics:

•	 Small	 packet	 size	 (the	 maximum	 transmission	 unit	 or	 MTU	 on
IEEE	 802.15.4	 links	 is	 127	 bytes),	which	 provides	 even	 less	 room	 for
data	 when	 including	 other	 headers	 (as	 discussed	 in	 detail	 in	 Section
16.2).
•	Support	for	both	16-bit	short	or	IEEE	64-bit	extended	media	access

control	(MAC)	addresses.
•	Low	data	rates;	the	IEEE	802.15.4	specification	allows	various	data

rates	from	20	Kbits/s	(868	MHz)	to	250	Kbits/s	(2.45	GHz).
•	Support	of	star	and	mesh	topologies.
•	 Constrained	 devices	 regarding	 power	 (e.g.,	 battery-operated

devices),	 memory,	 and	 CPU.	Most	 of	 the	 time	 these	 devices	 are	 low
cost.
•	 Large	 number	 of	 deployed	 devices	 in	 the	 network	 requiring

scalable	technologies.
•	 IEEE	 802.15.4	 networks	 are	 usually	 ad	 hoc	 networks	 since	 their

location	 is	 usually	 not	 predetermined.	 Furthermore,	 some	 locations
(e.g.,	mobile	 smart	 objects	 used	 for	 asset	 tracking,	wearable	 sensors)
may	be	moving	devices.
•	The	nodes	within	a	LoWPAN	are	interconnected	by	IEEE	802.15.4

links,	which	are	usually	unreliable,	especially	when	compared	to	wired
links	 such	 as	 Ethernet	 or	 fiber-optic	 links.	 This	 key	 aspect	 of	 such
smart	object	networks	has	been	discussed	in	Chapter	12.



•	It	is	very	common	for	nodes	to	be	in	sleep	mode	for	long	periods	of
time.	Depending	on	 the	device,	 it	 can	be	 in	 various	 sleep	mode	 states
that	have	a	different	impact	on	the	energy	consumption	while	in	sleep
mode	and	the	speed	at	which	the	node	can	wake	up	(see	Chapter	11	for
more	details).

	
A	LoWPAN	is	a	Low-power	and	Lossy	Network	(LLN)	where	the	links

interconnecting	 the	 nodes	 are	 IEEE	 802.15.4	 links.	 When	 the	 Internet
Engineering	Task	Force	(IETF)	6LoWPAN	Working	Group	was	formed,	it
was	 decided	 to	 exclusively	work	 on	 the	 required	 IPv6	 protocol	 extensions
for	LoWPAN	(such	as	fragmentation	and	reassembly,	header	compression,
neighbor	 discovery	 adaptation,	 etc.)	 where	 the	 nodes	 were	 exclusively
interconnected	by	IEEE	802.15.4	links.

Then	 the	 Routing	 Over	 Low-power	 and	 Lossy	 network	 (ROLL)
Working	Group	was	 formed	 to	 deal	with	 routing	 issues	 in	 networks	with
similar	characteristics	at	the	IP	layer	thus	alleviating	the	restriction	of	using
IEEE	 802.15.4	 links,	 since	 by	 definition	 routing	 operates	 at	 the	 network
layer.	This	 led	 to	 the	use	of	 the	more	generic	 term	Low-power	and	Lossy
Network	(LLN).

Note	 that	 the	 terms	 “nodes,”	 “routers”	 (when	 discussing	 a	 routing-
related	 item),	 and	 even	 “devices”	 (since	 most	 smart	 objects	 performing
sensing	or	actuating	are	usually	routers)	are	used	interchangeably.

	
16.2	The	6LoWPAN	Adaptation	Layer
Since	 IPv6	 mandates	 supporting	 links	 with	 an	 MTU	 (Maximum

Transmission	Unit)	of	1280	bytes,	it	was	necessary	for	IEEE	802.15.4	links
that	 have	 an	MTU	 of	 127	 bytes	 to	 specify	 an	 adaptation	 layer	 below	 IP
responsible	for	handling	packet	fragmentation	and	reassembly.

The	MTU	size	of	IEEE	802.15.4	links	was	purposely	small	to	cope	with
limited	buffering	capabilities	and	to	limit	the	packet	error	rate	since	the	bit
error	rate	(BER)	is	relatively	high.	Various	header	compression	techniques
have	 been	 added	 to	 the	 adaptation	 layer	 that	 are	 specified	 in	 [176]	 and
[124].	The	compression	header	techniques	originally	specified	in	[176]	were
improved	in	[124]	in	many	ways:	individual	compression	on	the	traffic	class
(TC)	 and	 flow	 label	 field,	 use	 of	 share	 contexts	 that	 is	 particularly	 useful
when	 using	 non-link-local	 addresses,	 and	 optimizations	 for	 multicast
addresses.

The	 IEEE	 802.15.4	 frame	 MTU	 is	 127	 bytes	 minus	 a	 set	 of	 protocol



fields:

•	 Maximum	 MAC	 frame	 overhead:	 Frame	 control	 (2	 bytes)	 +
sequence	number	 (1	byte)	+	addressing	 field	 (up	 to	20	bytes	with	 the
source	and	destination	PAN	ID	and	 the	 source	and	destination	64-bit
extended	addresses)	+	FCS	(2	bytes)	=	25	bytes.
•	MAC	 security	 header:	 21	 bytes	 (AES-CCM-128),	 13	 bytes	 (AES-

CCM-64),	and	9	bytes	(AES-CCM-32).

	
In	the	worst	case	this	only	leaves	81	bytes	(127	bytes	−	25	−	21	=	81)	for

the	data	payload	(IPv6	packets).	After	removing	the	size	of	the	IPv6	header
(40	bytes),	there	are	41	bytes	left.	Next,	we	must	deduct	the	transport	layer
protocol	header	(8	bytes	for	UDP	and	20	bytes	for	TCP),	thus	leading	to	a
very	short	payload	for	the	application	layer.

This	shows	that	an	adaptation	 layer	 is	needed	to	comply	with	the	IPv6
requirement	 to	 support	 a	minimum	MTU	 size	 of	 1280	 bytes	 as	well	 as	 to
support	compression	techniques	to	reduce	protocol	overhead.

The	6LoWPAN	adaptation	layer	provides	three	main	services:

•	Packet	fragmentation	and	reassembly
•	Header	compression
•	Link	layer	(layer	2)	forwarding	when	multi-hop	is	used	by	the	link

layer

	
In	most	 cases	 the	 use	 of	 efficient	 compression	 techniques	 allows	most

applications	to	send	their	data	within	a	single	IPv6	packet.
As	 previously	 discussed	 in	Chapter	 12,	 IEEE	 802.15.4	 frames	 support

the	 use	 of	 16-bit	 short	 addresses	 (temporary	 addresses	 allocated	 by	 the
personal	area	network	or	PAN	coordinator	or	64-bit	long	addresses	(24	bits
are	used	for	the	organizational	unique	identifier;	OUI	+	40	bits	assigned	by
the	chipset	manufacturer).

Similar	 to	 IPv6,	 the	 6LoWPAN	 adaptation	 layer	makes	 use	 of	 header
stacking	(headers	are	added	only	when	needed).

The	 6LoWPAN	 adaptation	 currently	 supports	 three	 headers:	 a	 mesh
addressing	header,	the	fragment	header,	and	the	IPv6	header	compression
header	(they	must	appear	in	that	order	when	present).

The	 6LoWPAN	 adaptation	 layer	 defines	 what	 is	 called	 the



“encapsulation	 header	 stack,”	 which	 precedes	 each	 IPv6	 datagram.	 The
encapsulation	header	stack	is	shown	in	Figure	16.1.

Figure	16.1	6LoWPAN	encapsulation	header	stack.
	

As	 shown	 in	 Figure	 16.2,	 the	 first	 byte	 of	 the	 encapsulation	 header
identifies	the	next	header.	For	example,	if	the	first	2	bits	are	equal	to	11,	the
next	header	is	a	fragmentation	header.



Figure	16.2	Dispatch	byte	of	the	IPv6	header	compression	header.
	

If	 the	 first	 8	 bits	 are	 equal	 to	 01000001,	 what	 follows	 is	 an	 IPv6
uncompressed	packet.	 In	contrast,	a	value	of	01000010	 indicates	 that	what
follows	is	a	header	related	to	a	compressed	header	using	HC1	compression
(see	Section	16.2.3	for	details	on	6LoWPAN	header	compression	techniques).

16.2.1	The	Mesh	Addressing	Header
The	mesh	addressing	header	 is	used	 in	conjunction	with	a	mesh-under

“routing”	 approach	 where	 nodes	 that	 are	 not	 in	 direct	 communication
make	use	of	multi-hop	“routing”	at	the	link	layer	using	link	layer	addresses.
According	 to	 IEEE	 802.15.4,	 only	 full	 function	 devices	 (FFDs)	 perform
mesh-under	 operation.	 Reduced	 function	 devices	 (RFDs)	 systematically
send	all	of	their	traffic	to	FFDs.

The	source	and	destination	nodes	are	then	referred	to	as	the	originator
and	final	destination,	respectively.

As	shown	in	Figure	16.2,	the	first	2	bits	of	the	dispatch	byte	identify	the
presence	of	a	mesh-header	and	are	equal	to	10.

Figure	16.4	shows	the	various	bits	of	mesh	addressing	type	and	header:

•	Bit	2	(V,	Very	first	bit):



Figure	16.4	6LoWPAN	mesh	and	fragmentation	headers.
	

0:	The	originator	address	is	an	IEEE	extended	64-bit	address	(EUI-
64).

1:	The	originator	address	is	a	short	16-bit	address.
•	Bit	3	(F,	Final	destination):
0:	The	final	address	is	an	IEEE	extended	64-bit	address	(EUI-64).
1:	The	final	address	is	a	short	16-bit	address.

Figure	16.3	Value	of	the	6LoWPAN	dispatch	byte.



	

•	Bits	4	through	7	(HopLeft):	The	HopLeft	field	value	is	decremented
by	 each	 node	 before	 sending	 the	 packet	 to	 its	 next	 hop.	 When	 the
HopLeft	 field	 reaches	 the	 value	 of	 0,	 the	 packet	 is	 simply	 discarded.
When	 equal	 to	 15,	 an	 additional	 byte	 (called	 the	 deep	 hops	 left)
immediately	follows	when	forwarding	along	a	path	with	more	than	14
hops	is	needed.
•	The	originator	and	final	link	layer	address	fields	then	follow	(16	or

64	bits).

	
It	 is	 possible	 to	 use	 short	 16-bit	 addresses	 for	 broadcast	 and	 64-bit

addresses	as	a	source	address	since	the	V	and	F	permit	the	use	of	different
link	layer	address	formats.

With	mesh-under	 routing	 it	 is	 necessary	 to	provide	 the	 originator	 and
final	destination	as	well	as	the	hop-by-hop	source	and	destination	addresses.



Thus	the	set	of	link	layer	addresses	is	as	follows.	When	a	node	A	sends	a
frame	to	a	final	destination	C	via	the	node	B:

•	The	originator	address	of	 the	mesh	header	 is	 set	 to	 the	 link	 layer
address	of	A.
•	The	final	destination	address	of	 the	mesh	header	 is	set	 to	 the	 link

layer	address	of	C.
•	The	source	address	of	the	IEEE	802.15.4	frame	is	the	address	of	the

node	sending	the	frame	(A).

	
The	 destination	 address	 of	 the	 IEEE	 802.15.4	 frame	 is	 the	 link	 layer

address	 of	 the	 next-hop	 node	 as	 determined	 by	 the	 mesh-under	 routing
protocol	 (B	 in	 this	 example).	 Upon	 receiving	 the	 frame,	 B	 performs	 the
following	process:

•	The	hop	left	field	is	decremented.
•	 If	 the	 hop	 left	 field	 is	 not	 equal	 to	 0	 (if	 equal	 to	 0,	 the	 frame	 is

discarded),	then	B	determines	that	the	next	hop	is	C.
•	The	originator	and	final	destination	address	of	the	mesh	header	are

unchanged.
•	 The	 source	 address	 of	 the	 IEEE	 802.15.4	 frame	 is	 set	 to	 the	 link

layer	address	of	B.
•	 The	 destination	 address	 of	 the	 IEEE	 802.15.4	 frame	 is	 set	 to	 the

link	layer	address	of	C.

	
This	is	similar	to	the	mode	of	operation	with	IP	routing	over	a	link	layer

where	 the	 source	 and	 destination	 addresses	 of	 the	 IP	 packet	 are	 never
changed,	and	the	source	and	destination	addresses	present	in	the	link	layer
frame	 correspond	 to	 the	 address	 of	 two	 adjacent	 nodes	 (connected	 by	 a
common	link	layer).

As	 previously	 discussed,	 there	 is	 no	mesh-under	 protocol	 defined.	 For
further	discussion	about	routing	at	multiple	layers	see	Chapter	5.
	
16.2.2	Fragmentation
Fragmentation	 may	 be	 required	 at	 the	 6LoWPAN	 adaptation	 layer

when	 the	 IPv6	 payload	 cannot	 be	 carried	 within	 a	 single	 IEEE	 802.15.4
frame	because	it	exceeds	the	MTU	size.	In	this	case,	the	link	frame	is	broken
into	 multiple	 link	 fragments	 using	 the	 fragment	 header	 shown	 in	 Figure



16.4.	All	fragment	sizes	are	expressed	in	units	of	8	bytes.	The	first	fragment
does	not	contain	a	datagram	offset,	which	makes	 it	 slightly	different	 from
the	subsequent	fragment.

Description	of	the	fragment	fields	(see	Figure	16.4):

•	datagram_size:	This	11-bit	field	is	used	to	indicate	the	size	in	8-byte
units	 of	 the	 original	 IPv6	 packet	 (or	 IPv6	 fragmentation	 also	 taking
place	at	 the	 IP	 layer).	Link	 layer	 fragmentation	 supports	a	1280-byte
packet	as	mandated	by	the	IPv6	specification	[51].	The	datagram_size
may	only	be	needed	in	the	first	link	fragment	and	then	elided	in	other
link	fragments.	The	drawback	of	this	approach	is	that	subsequent	link
fragments	 (other	 than	 the	 first	 link	 fragment)	 may	 arrive	 first,
especially	in	the	presence	of	multi-hop	routing.	In	this	case	the	receiver
would	not	know	how	much	memory	should	be	allocated	for	the	entire
frame.
•	 datagram_tag:	 This	 field	 is	 used	 in	 conjunction	 with	 the	 IEEE

802.15.4	 source	 address	 (or	 originator	 address	 if	 a	 mesh	 header	 is
present),	the	IEEE	802.15.4	destination	address	(or	the	final	destination
address	if	a	mesh	header	is	present),	and	the	datagram_size	to	uniquely
identify	 the	 fragmented	 frame	 and	 must	 be	 identical	 for	 all	 link
fragments.	 It	 is	 recommended	 to	 increment	 the	 datagram_tag	 for
successive	fragmented	frames.
•	 datagram_offset:	The	 8-bit	 datagram_offset	 field	 is	 present	 in	 all

link	 fragments	except	 the	 first	 fragment	and	 indicates	 the	offset	 in	8-
byte	units	from	the	beginning	of	the	payload	datagram.

	
[176]	 specifies	 the	 use	 of	 a	 reassembly	 timer	 that	 is	 started	 when

receiving	the	first	link	fragment	and	upon	the	expiration	of	which,	if	not	all
link	 fragments	 have	 been	 received,	 all	 fragments	must	 be	 discarded.	 The
maximum	value	of	the	reassembly	timer	is	60	seconds.
	
16.2.3	6LoWPAN	Header	Compression
16.2.3.1	 Header	 Compression	 Using	 LOWPAN_HC1	 and

LOWPAN_HC2
A	plethora	 of	 IP	 compression	 techniques	 have	 been	 designed	 over	 the

past	decade	(e.g.,	ROHC,	see	 [18]).	These	 techniques	rely	on	stateful	 flow-
based	compression	optimized	for	long-lived	flows.	The	basis	of	this	principle
consists	of	suppressing	common	values	within	a	long-lived	flow,	which	is	a



very	 efficient	 approach	 for	 long-lived	 flow	 between	 two	 nodes.
Unfortunately	 these	 compression	 techniques	 are	 less	 suited	 to	 6LoWPAN
networks	 with	 typically	 short-lived	 flows	 (often	 these	 devices	 send	 a	 few
packets	and	then	go	back	into	sleep	mode	with	the	exception	of	infrequent
firmware	upgrades	that	may	require	large	flows	to	be	exchanged).	Thus	the
whole	 idea	 of	 header	 stateless	 compression	 techniques	 in	 6LoWPAN
consists	 of	 avoiding	 information	 redundancy	 across	 layers	 as	 opposed	 to
between	IP	packets	that	belong	to	the	same	long-lived	flow	as	ROCH.

The	general	 idea	of	the	6LoWPAN	header	compression	is	to	derive	the
IP	 address	 from	 link	 layer	 addresses	 to	 avoid	 needless	 information
duplication	 and	 suppression	 of	 IPv6	 headers	 that	 have	 common	 values
(typically	 elide	 the	 fields	 that	 have	 a	 value	 of	 0).	 Furthermore,	 the	 use	 of
shared	 contexts	 such	 as	 the	 use	 of	 a	 common	 network	 prefix	 for	 the
LoWPAN	allows	address	compression	of	IPv6	global	addresses.

6LoWPAN	header	compression	can	either	be	stateless	or	stateful	and	is
flow	independent.	Several	of	the	IPv6	headers	have	common	values	and	are
easily	compressed;	for	example,	the	IP	version	(v6),	the	flow	label,	TC,	and
so	 on.	 Furthermore,	 information	 such	 as	 the	 IPv6	 interface	 ID	 can	 be
derived	 from	 the	 link	 layer	 frame	 when	 using	 extended	 64-bit	 802.15.4
addresses.

[176]	 first	 focused	 on	 highly	 optimizing	 the	 compression	 unicast	 link-
local	addresses.	A	new	encoding	technique	(IPHC)	was	 then	 introduced	 in
[124]	 to	 cope	with	multicast	 addresses	 and	 non-link-local	 addresses	 along
with	 other	 optimizations	 such	 as	 the	 individual	 compression	 of	 the	 IPv6
flow	label	and	TC	field.

	 More	 than	 likely,	 the	 header	 compression	 part	 of	 [176]	 will	 be
deprecated	at	some	point	to	only	support	one	header	compression	technique
such	 as	 IPHC.	 There	 has	 been	 no	 decision	 to	 deprecate	 the	 header
compression	 defined	 in	 [176],	 so	 both	 header	 compression	 techniques	 are
described	in	the	following	section.

16.2.3.1.1	The	HC1	Compression	Technique
The	HC1	compression	technique	relies	on	the	following	observations:

•	IP	version	is	always	6.
•	Since	HC1	is	optimized	for	link-local	addresses,	the	IPv6	interface

ID	(bottom	64	bits	of	 the	IPv6	address)	can	be	 inferred	from	the	 link
layer	MAC	address.
•	The	packet	length	can	be	inferred	from	the	frame	length	field	of	the

IEEE	802.15.4	frame	(or	from	the	datagram	size	field	of	the	fragment



header	when	present).
•	Common	 value	 for	 the	TC	 and	 flow	 label	 is	 0	 (as	 shown	 later	 in

Section	 16.2.3.3,	 IPHC	 allows	 for	 individual	 compression	 of	 these
fields).
•	Next	header	is	UDP,	TCP,	or	ICMP.

	
These	 observations	 allow	 a	 considerable	 reduction	 of	 the	 protocol

overhead.	The	only	IPv6	header	field	that	cannot	be	compressed	and	must
be	 carried	 in	 full	 is	 the	 1-byte	 hop	 limit	 field.	 This	 leads	 to	 only	 3	 bytes
instead	of	 the	 40-byte	 IPv6	header:	 1	byte	 for	 the	dispatch	byte	 (equal	 to
01000010),	followed	by	a	1-byte	HC1	byte,	and	1	byte	for	the	hop	limit	field,
as	shown	in	Figure	16.5.

Figure	16.5	6LoWPAN	HC1	byte.
	

When	set,	bit	7	of	the	HC1	byte	allows	for	the	compression	of	the	next
header	of	the	original	IPv6	header.

The	non-compressed	fields	must	 follow	the	HC1	byte	 in	 this	particular
order:	 source	 address	 prefix	 (64	 bits)	 and/or	 interface	 ID	 (64	 bits),
destination	address	prefix	(64	bits)	and/or	interface	ID	(64	bits),	TC	(8	bits),



flow	label	(20	bits),	and	next	header	(8	bits).
16.2.3.2	The	HC_UDP	Compression	Technique	(HC2	Byte)
When	bit	7	of	the	HC1	byte	is	set,	it	indicates	more	header	compression

according	to	the	HC2	encoding	format.	If	bits	5	and	6	of	the	HC1	byte	are
equal	 to	 0	 and	 1,	 respectively,	 this	 indicates	 the	 compression	 of	 the	 UDP
header	(called	HC_UDP	encoding).	In	this	case,	the	HC2	byte	immediately
follows	 the	 HC1	 byte	 (thus	 before	 the	 IP	 hop	 limit	 field)	 and	 provides
information	 on	 the	 UDP	 header	 compression	 scheme.	 The	 HC_UDP
compression	 technique	 allows	 compression	 of	 the	 UDP	 header	 to	 various
degrees.	When	 non-compressed,	 the	 UDP	 fields	must	 appear	 in	 the	 same
order	as	the	original	UDP	header	(source	port,	destination	port,	length,	and
checksum).

HC_UDP	 encoding	 allows	 compression	 of	 the	 source	 and	 destination
UDP	ports	 in	addition	 to	 the	 length	 field.	The	 length	 field	can	be	 inferred
from	 the	 length	 field	 of	 the	 IEEE	802.15.4	 frame.	According	 to	 [176],	 the
UDP	 checksum	 is	 never	 compressed	 and	 always	 carried	 in	 full,	 but
improvements	have	been	added	to	allow	UDP	checksum	compression	[124]
and	are	described	later	in	Section	16.2.3.6.

The	 main	 idea	 for	 compressing	 the	 source	 and	 destination	 UDP	 port
uses	a	short_value	4-bit	field	instead	of	the	original	16-bit	field.	The	original
16-bit	field	is	simply	obtained	by	the	formula	short_value+61616	(0xF0B0).

Bit	values	of	the	HC2	byte:

•	Bit	0	(UDP	source	port):	When	cleared,	this	indicates	that	the	UDP
source	 port	 is	 not	 compressed	 and	 thus	 carried	 in	 full.	 Conversely,
when	set,	the	compressed	short_value	is	carried	in	line.
•	Bit	1	(UDP	destination	port):	When	cleared,	this	indicates	that	the

UDP	 destination	 port	 is	 not	 compressed	 and	 thus	 carried	 in	 full.
Conversely,	when	set,	the	compressed	short_value	is	carried	in	line.
•	Bit	2	 (length):	When	cleared	 this	 indicates	 that	 the	 length	 field	of

the	UDP	header	 is	 carried	 in	 line.	Conversely,	when	set,	 the	 length	 is
computed	 from	 the	 IPv6	 header	 (this	 can	 be	 derived	 from	 the	 IEEE
802.15.4	frame).	The	value	of	the	UDP	length	field	in	this	case	is	equal
to	the	payload	length	of	the	IPv6	field	minus	the	length	of	all	headers
present	between	the	IPv6	header	and	the	UDP	header.
•	Bits	3	through	7	are	reserved.

	
Figures	 16.6,	 16.7	 and	 16.8	 provide	 different	 examples	 of	 header



compression.	 As	 shown	 in	 Figure	 16.8,	 HC1+HC2	 header	 compression
allows	a	very	efficient	compression	 technique	 for	reducing	 the	header	 size
from	40	bytes	(IPv6	header)	+	8	bytes	(UDP	header)	down	to	7	bytes.

Figure	16.6	Header	compression	using	HC1	and	HC2	bytes.
	



Figure	 16.7	 Compression	 of	 the	 IPv6	 HC1	 link-local	 IPv6	 addresses
without	UDP	header	compression.
	



Figure	 16.8	 Maximized	 compression	 of	 IPv6	 and	 UDP	 headers	 using
HC1	and	HC2	with	link-local	IPv6	addresses.
	

16.2.3.3	The	6LoWPAN	Improved	Compression	Technique	and	Stateful
Shared	Context-based	Compression

The	 compression	 techniques	 defined	 in	 [176]	 are	 quite	 efficient	 for
unicast	 link-local	 addresses	 (used	 in	 many	 circumstances	 such	 as	 ND,
DHCP,	 and	 other	 local	 protocols	 as	 discussed	 in	Chapter	 15),	 but	 have	 a
very	limited	effect	on	global	and	multicast	addresses.	Efficient	compression
techniques	 for	 global	 IPv6	 addresses	 are	 needed	 for	 communication
between	 nodes	 residing	 in	 different	 IP	 subnetworks	 (typically	 nodes	 in
different	PANs	 in	 the	context	of	 IEEE	802.15.4	networks),	where	routable
addresses	 are	 required.	 In	 this	 case	 the	 HC1	 compression	 technique
requires	 carrying	 the	 sources	and	destination	 IPv6	addresses	 in-line	 (non-
compressed).

Improvements	defined	in	[124]	are	presented	in	this	section,	specifically
new	 compression	 techniques	 referred	 to	 as	 LOWPAN_IPHC	 and
LOWPAN_NHC	 (called	 IPHC	 and	 NHC	 for	 simplicity).	 As	 already
discussed,	 IPHC	 will	 more	 than	 likely	 become	 the	 header	 compression
technique	used	by	the	6LoWPAN	adaptation	layer	and	HC1	and	HC2	will
undoubtedly	be	deprecated.



The	IPHC	encoding	is	depicted	in	Figure	16.9.	IPHC	requires	13	bits,	5
bits	of	which	are	taken	from	the	rightmost	part	of	the	dispatch	byte	and	an
optional	additional	byte	is	added.

Figure	16.9	IPHC	encoding:	traffic	and	flow	label	compression.
	

All	 non-compressed	 header	 fields	 always	 appear	 in	 the	 same	 order	 as
the	 non-compressed	 IPv6	 header	 as	 specified	 in	 [53].	 The	 version	 field	 is
always	elided	and	the	IPv6	payload	length	field	is	inferred	from	the	length
field	 of	 the	 IEEE	 802.15.4	 field	 or	 from	 the	 6LoWPAN	 fragmentation
header	when	present.

Description	of	the	IPHC	byte	includes:

•	 Bits	 3	 and	 4	 (TF:	 Traffic	 Class):	 These	 bits	 allow	 for	 more
granular	compression	of	the	TC	and	flow	label	IPv6	header	fields.

00:	Both	the	TC	and	flow	label	fields	are	carried	in	line	as	shown	in
Figure	16.9.	Note	that	4	bits	have	been	added	for	byte	alignment.

01:	The	TC	field	is	compressed	to	2	bits	(ECN),	as	defined	in	[209]



and	 the	 flow	 label	 field	 is	 uncompressed.	 Since	 the	 ECN	 bits	 are
encoded	using	2	bits	and	the	flow	label	field	is	uncompressed,	this	leads
to	22	bits	to	which	2	bits	of	padding	are	added	for	byte	alignment.

10:	The	flow	label	field	is	compressed	(fully	elided)	and	the	TC	field
is	carried	in-line.

11:	The	TC	and	flow	label	fields	are	compressed.
•	Bit	5	(next	header):
0:	The	full	8-bit	header	of	the	next	header	is	carried	in-line.
1:	 The	 IPv6	 next	 header	 field	 is	 elided	 and	 another	 encoding

mechanism	(called	next	header	coding;	NHC)	defined	later	is	added.
•	 Bits	 6	 and	 7	 (HLIM,	 hop	 limit):	 In	 contrast	 with	 the	 HC1

compression	technique,	IPHC	allows	compression	of	the	hop	limit	field
of	the	IPv6	header.

00:	The	hop	limit	field	of	the	IPv6	packet	is	carried	in-line.
01:	The	hop	limit	field	is	elided	and	the	hop	limit	is	equal	to	1.
10:	The	hop	limit	field	is	elided	and	the	hop	limit	is	equal	to	64.
11:	The	hop	limit	field	is	elided	and	the	hop	limit	is	equal	to	255.
•	Bit	8	(context	identifier	extension;	CID).
0:	There	is	no	use	of	additional	context	information.
1:	An	additional	1-byte	CID	is	added	that	 immediately	follows	the

destination	address	mode	(DAM)	field.
•	Bit	9	(source	address	compression;	SAD).
0:	Address	compression	is	stateless.
1:	Address	compression	is	stateful	based	on	context.
•	Bits	10	and	11	(source	address	mode;	SAM).
If	SAC=0
00:	The	full	128-bit	address	is	carried	in-line.
01:	The	first	64	bits	of	the	IPv6	address	are	elided	and	the	value	of

the	64	bits	is	the	link-local	prefix,	padded	with	zeros.	The	remaining	64
bits	are	carried	in-line.

10:	The	first	112	bits	of	the	IPv6	address	are	elided	and	the	value	of
those	bits	is	the	link-local	prefix,	padded	with	zeros.	The	remaining	16
bits	are	carried	in-line.

11:	The	 address	 is	 fully	 elided.	The	 first	 64	bits	 are	 the	 link-local
prefix.	 The	 remaining	 64	 bits	 are	 inferred	 from	 the	 IEEE	 802.15.4
frame,	similarly	to	HC1.

If	SAC=1
00:	The	address	is	the	unspecified	address	(::).
01:	 64	 bits.	 The	 64-bit	 prefix	 address	 is	 derived	 from	 the	 context



information	(see	Section	16.2.3.4)	and	the	remaining	64	bits	are	carried
in-line.

10:	 16-bits.	 The	 64-bit	 prefix	 address	 is	 derived	 from	 the	 context
information	(see	Section	16.2.3.4)	and	the	remaining	16	bits	are	carried
in-line.

11:	0	bits.	The	address	is	derived	from	the	context	information	and
potentially	the	link	layer	and	no	bits	are	carried	in-line.

•	Bit	12	(	multicast	compression;	M).
0:	The	destination	address	is	not	a	multicast	address.
1:	The	destination	address	is	a	multicast	address.
•	Bit	13	(destination	address	compression;	DAC).
0:	The	compression	of	the	destination	address	is	stateless.
1:	The	compression	of	the	destination	address	 is	stateful,	based	on

the	context.
•	Bits	14	and	15	(DAM).
If	DAC=0
00:	128	bits.	The	full	128-bit	address	is	carried	in-line.
01:	64	bits.	The	first	64	bits	of	the	IPv6	address	are	elided	and	the

value	 of	 the	 64	 bits	 is	 the	 link-local	 prefix,	 padded	 with	 zeros.	 The
remaining	64	bits	are	carried	in-line.

10:	16	bits.	The	first	112	bits	of	the	IPv6	address	are	elided	and	the
value	 of	 the	 112	 bits	 is	 the	 link-local	 prefix,	 padded	 with	 zeros.	 The
remaining	16	bits	are	carried	in-line.

11:	The	 address	 is	 fully	 elided.	The	 first	 64	bits	 are	 the	 link-local
prefix	and	the	remaining	64	bits	are	 inferred	from	the	IEEE	802.15.4
frame,	similarly	to	HC1.

If	DAC=1
00:	Reserved.
01:	 64	 bits.	 The	 prefix	 address	 is	 derived	 from	 the	 context

information	and	the	64	bits	are	carried	in-line.
10:	 16	 bits.	 The	 prefix	 address	 is	 derived	 from	 the	 context

information	and	the	16	bits	are	carried	in-line.
11:	 The	 address	 is	 derived	 from	 the	 context	 information	 and

potentially	the	link	layer	and	no	bits	are	carried	in-line.
If	M=1	and	DAC=0
00:	128	bits.	The	full	address	is	carried	in-line.
01:	 48	 bits.	 The	 address	 is	 coded	 using	 48	 bits	 and	 has	 the	 form

FFXX::00XX:XXXX:XXXX.
10:	 32	 bits.	 The	 address	 is	 coded	 using	 32	 bits	 and	 has	 the	 form



FFXX::00XX:XXXX.
11:	 8	 bits.	 The	 address	 is	 coded	 using	 8	 bits	 and	 has	 the	 form

FF02::00XX.
If	M=1	and	DAC=1
00:	 48	 bits.	 The	 address	 is	 coded	 using	 48	 bits	 and	 has	 the	 form

FFXX::XXLL:PPPP:PPPP:PPPP:PPPP:XXXX:XXXX.	 X	 denotes
nibbles	 carried	 in-line,	 P	 denotes	 nibbles	 to	 encode	 the	 prefix	 (i.e.,
given	by	the	specific	context),	and	L	denotes	nibbles	used	to	encode	the
prefix	 length.	 The	 prefix	 information	 P	 and	 L	 is	 derived	 from	 the
context	 itself.	 This	 format	 is	 compliant	 with	 the	 unicast-prefix-based
IPv6	multicast	addresses	defined	in	[103]	and	[219].

01:	Reserved
10:	Reserved
11:	Reserved

	
16.2.3.4	The	Context	Identifier	(CID)
IPHC	relies	 on	 the	notion	of	 shared	 context	between	 the	 sending	node

compressing	the	IPv6	packet	and	the	receiving	node	expanding	the	received
packet.	The	current	specification	does	not	describe	how	contexts	are	shared
or	maintained.	At	some	point	 there	might	be	protocol	extensions	or	a	new
protocol	for	dynamic	setup	and	negotiation	of	shared	contexts.	As	indicated
previously,	the	CID	field	in	the	LOWPAN_IPHC	encoding	indicates	that	an
additional	 bit	 is	 added	 that	 follows	 the	 IPHC	 byte	 and	 precedes	 the	 IP
header	fields	that	are	carried	in-line.

That	byte	is	used	to	identify	the	context	used	to	identify	the	source	and
destination,	respectively	(the	first	4	bits	called	the	source	context	identifier
or	 SCI	 is	 used	 for	 the	 source	 address	 and	 the	 following	 4	 bits	 called	 the
destination	 context	 identifier	 or	 DCI	 is	 used	 for	 the	 destination	 address).
Since	4	bits	are	used	to	identify	the	context,	up	to	16	contexts	are	allowed.

16.2.3.5	The	IPv6	Next	Header	Compression
As	 seen	 in	 Chapter	 15,	 IPv6	makes	 use	 of	 stacked	 headers	 where	 the

next	 header	 field	 is	 used	 to	 indicate	 the	 header	 type	 that	 immediately
follows.	Similar	to	HC1	where	the	next	header	information	is	encoded	in	the
HC1	byte	(bits	5	and	6),	IPHC	specifies	a	compression	mechanism	to	elide
the	 IPv6	 next	 header	 field.	 IPv6	 next	 header	 compression	 is	 indicated	 by
setting	 bit	 5	 of	 the	 IPHC	 byte	 and	 by	 adding	 a	 new	 byte	 called	 the
LOWPAN_NHC	 byte.	 This	 immediately	 follows	 the	 non-compressed
(carried	in-line)	IPv6	header	field,	as	show	in	Figure	16.10.



Figure	16.10	IPv6	packet	using	LOWPAN_IPHC	and	LOWPAN_NHC
compression.
	

The	NHC	byte	is	of	variable	length	depending	on	the	next	header	type,
which	allows	a	more	efficient	and	flexible	compression	technique.	As	shown
in	Figure	16.10,	the	first	7	bits	of	the	NHC	byte	are	used	to	identify	the	next
header	 that	 follows.	 The	 extension	 header	 ID	 (EID)	 field	 indicates	 which
extended	IPv6	header	immediately	follows.

•	0:	IPv6	hop-by-hop	options
•	1:	IPv6	routing
•	2:	IPv6	fragment
•	3:	IPv6	destination	options
•	4:	IPv6	mobility	header	(defined	in	[140])
•	5:	Reserved
•	6:	Reserved
•	7:	IPv6	header

	
The	 hop-by-hop	 option	 header,	 routing	 header,	 fragment	 header,	 and

destination	option	header	are	described	in	Chapter	15.
The	last	bit	of	the	NHC	byte	is	used	to	indicate	whether	the	next	header

is	compressed	using	the	LOWPAN-NHC	technique	(bit	set)	or	whether	the
next	header	is	carried	in	full	(bit	cleared).



When	using	the	NHC	compression	technique,	the	IPv6	extended	header
is	kept	unchanged	with	two	exceptions:

•	 The	 next	 header	 field	 is	 simply	 elided	 when	 the	 NH	 field	 of	 the
NHC	byte	is	set	(to	avoid	redundancy	of	the	information).
•	The	length	field	of	an	extended	IPv6	header	such	as	the	hop-by-hop

option	or	routing	header	(see	Chapter	15)	is	used	to	indicate	the	length
of	the	IPv6	extension	header	not	including	the	LOWPAN_NHC	byte.

	
16.2.3.6	Compression	of	the	UDP	Header	Using	LOWPAN_NHC
Section	16.2.3.2	described	the	use	of	the	HC_UDP	byte	to	compress	the

UDP	 source	 port,	 destination	 port,	 and	 length	 field	 headers.	 The
compression	 technique	 indicates	a	4-bit	 short	value	 that	 is	used	 to	 extract
the	original	UDP	port	using	the	formula	61616	(0xF0B0)	+	short_value.

NHC	 introduces	 another	 UDP	 header	 compression	 technique	 with
several	improvements.

A	 range	 of	 16	 contiguous	 well-known	 ports	 is	 specified	 in	 the	 form
0xF0Bx,	 thus	 identical	 to	 the	 HC_UDP	 compression	 technique	 for	 UDP
ports.	This	 introduces	 compatibility	 issues	with	applications	already	using
these	ports.	This	 is	why	the	specification	recommends	using	the	Transport
Layer	Security	Message	Integrity	Check	(TLS	MIC;	see	[55])	to	validate	the
content	and	its	integrity.

Although	 [53]	 mandates	 the	 use	 of	 UDP	 checksum,	 the	 [124]
specification	 allows	 bypassing	 this	 rule	 if	 and	 only	 if	 the	 upper	 layer
permits.	 Although	 the	 [124]	 specification	 allows	 an	 intermediate	 node	 to
elide	the	UDP	checksum	even	if	the	received	packet	has	the	UDP	checksum
in-line,	 it	 also	 clearly	 states	 that	 this	 should	 not	 be	 done	 without	 the
confirmation	that	the	operation	is	authorized	by	the	sender.	Conversely,	an
intermediate	node	may	decide	 to	 insert	a	UDP	checksum	after	receiving	a
packet	without	a	UDP	checksum	after	having	computed	its	value	according
to	the	rules	specified	in	[202]	and	[53].

Figure	16.11	shows	the	format	of	the	NHC	byte	for	the	UDP	header.

•	Bit	5	(Checksum;	C).



Figure	 16.11	 IPv6	 packet	 using	 LOWPAN_IPHC	 and
LOWPAN_NHC	 compression	 for	 extended	 IPv6	 header	 compression
and	UDP	header	compression.
	

0:	The	16-bit	UDP	checksum	field	is	not	compressed	and	carried	in-
line.

1:	 The	 16-bit	 UDP	 checksum	 is	 elided	 and	 recovered	 and
recomputed	by	the	6LoWPAN	termination	point.

•	Bits	6	and	7	(Ports;	P).
00:	Both	the	source	and	destination	16-bit	ports	are	carried	in-line.
01:	The	16	bits	of	 the	source	port	are	not	compressed	and	carried

in-line.	The	first	8	bits	of	the	destination	port	are	elided	(and	equal	to
F0)	and	the	remaining	8	bits	are	carried	in-line.

10:	The	first	8	bits	of	 the	source	port	are	elided	(and	equal	 to	F0)
and	 the	 remaining	 8	 bits	 are	 carried	 in-line.	 The	 16	 bits	 of	 the
destination	port	are	not	compressed	and	carried	in-line.

11:	The	first	12	bits	of	 the	source	and	destination	ports	are	elided
and	equal	to	0xF0B0.	The	remaining	4	bits	of	both	ports	are	carried	in-
line.



	
Figure	16.11	shows	a	complete	example	where:

•	IPHC	is	used	for	header	compression.
•	NHC	is	used	to	compress	an	extended	IPv6	fragment	header.

	
NHC	 is	 used	 to	 compress	 the	 UDP	 header	 with	 maximum	 level	 of

compression	 (the	 checksum	 is	 elided	 and	 both	 the	 source	 and	 destination
ports	are	compressed).

So	in	the	very	best	case

•	With	link-local	unicast	address,	HC1	encoding	allows	compression
of	 the	 IPv6	 header	 to	 two	 octets	 (the	 dispatch	 byte	 +	 the	HC1	 byte).
When	routing	over	multiple	hops,	the	compression	still	performs	quite
well	 compressing	 the	 IPv6	header	 to	7	octets	 (the	dispatch	byte	+	 the
HC1	byte	+	1	byte	for	the	IP	hop	 limit	 field	+	2	bytes	 for	the	sources
address	+	2	bytes	for	the	destination	address).
•	 With	 the	 use	 of	 global	 addresses,	 the	 IPv6	 header	 can	 be

compressed	 to	 4	 bytes	 (2	 bytes	 for	 the	 IPHC	 encoding	 +	 1	 byte	 for
context	identifier	extension	+	1	byte	for	the	IP	hop	limit	field	+	0	bytes
for	the	source	and	destination	addresses	with	the	interface	IDs	derived
from	the	IEEE	802.15.4	link	layer	address).	When	using	Context	0,	the
1	 byte	 for	 the	 context	 identifier	 is	 not	 needed.	 Potentially,	 additional
bytes	may	be	added	if	the	TC	and	flow	label	field	of	the	IPv6	field	are
not	compressed.

	
In	 the	 best	 case,	 the	 compressed	UDP	header	 only	 requires	 2	 bytes	 (1

byte	for	the	NHC	header	+	1	byte	for	the	compressed	source	and	destination
UDP	ports)	when	the	UDP	checksum	field	is	elided.

16.2.3.7	Header	Compression	of	Multicast	Address
The	 LOWPAN_HC1	 encoding	 technique	 specified	 in	 [176]	 does	 not

allow	 compression	 of	 multicast	 addresses,	 consequently,	 128-bit	 multicast
addresses	 must	 be	 carried	 in-line,	 uncompressed.	 [124]	 specifies	 an
encoding	 technique	 for	 efficient	 compression	 of	 IPv6	 multicast	 addresses
using	shared	contexts.

The	first	mode	of	operation	is	based	on	stateless	compression.	The	M-bit
and	the	DAC	bit	of	the	IPHC	bytes	must	be	set	to	1	and	0,	respectively.

As	a	reminder,	each	node	is	assigned	a	solicited	multicast	address	used



in	 IPv6	 ND	 messages	 during	 the	 duplicated	 address	 detection	 (DAD)
process.	The	solicited-node	address	has	the	form	FF02::1:FFXX:XXXX	and
is	 computed	 from	 the	 node’s	 unicast	 and	 anycast	 address.	 The	 24	 lower
order	 bits	 of	 the	 unicast	 or	 anycast	 address	 are	 appended	 to	 the	 prefix
FF02::1:FF00::/104.

The	 multicast	 stateless	 compression	 supports	 the	 compression	 of	 the
solicited-node	multicast	 address	 in	 addition	 to	 any	 IPv6	multicast	 address
where	 the	upper	bits	of	 the	multicast	group	 identifier	are	zeros.	The	 least
significant	bits	identify	the	multicast	group	and	the	multicast	scope	in-line.
The	flag	bits	are	carried	in-line	except	when	the	DAM	flag	is	set	(address	in
the	 form	 FF0X::0XXX)	 in	 which	 case	 the	 flags	 are	 not	 carried	 in-line.
Figure	16.12	shows	the	format	of	the	compression	multicast	address.

Figure	16.12	Stateless	and	stateful	multicast	address	compression.
	

The	 second	 mode	 is	 based	 on	 a	 stateful	 context-based	 address
compression.	In	this	case	both	the	M-bit	and	the	SAC	bit	of	the	IPHC	bytes
are	 set.	The	SAM	 is	 set	 to	 01,	which	 indicates	 that	 the	 address	 is	 derived
using	 context	 information	 and	 the	 64	 bits	 identifying	 the	multicast	 group
are	 carried	 in-line	 for	 unicast-prefix-based	 IPv6	multicast	 addresses.	 The
prefix	length	and	network	prefix	are	derived	from	the	context.	In	contrast
with	 the	 IPv6	 multicast	 addressing	 architecture	 defined	 in	 [54],	 [103]



specifies	a	multicast	address	format	that	carries	unicast	prefix	information
in	 the	 IPv6	 multicast	 address:	 the	 112-bit	 field	 is	 replaced	 by	 an	 8-bit
reserved	 field	 +	 an	 8-bit	 flag	 field	 +	 a	 64-bit	 prefix	 information	 field
(identifying	the	network	prefix	of	the	unicast	subnet	that	owns	the	multicast
address)	+	a	32-bit	group	ID.

Thus,	 for	 a	 unicast-prefix-based	 IPv6	 multicast	 address	 the	 IPHC
encoding	only	requires	6	bytes:	4	bits	for	the	flags,	4	bits	for	the	scope,	an	8-
bit	reserved	field,	and	the	32-bit	group	identifier.	As	specified	in	[219],	the
address	of	 the	rendezvous	point	can	be	encoded	 in	 the	 IP	multicast	group
address	to	simplify	the	deployment	of	intra-domain	multicast	configuration
and	help	in	the	inter-domain	case.	The	reserved	field	is	then	used	to	encode
the	Rendezvous	Point	Interface	ID	(RIID).

16.2.4	Stateless	Configuration
As	explained	in	Chapter	15,	the	IPv6	interface	ID	may	be	derived	from

the	EIU-64	that	is	computed	by	converting	a	48-bit	MAC	address.	In	IEEE
802.15.4,	all	devices	have	a	64-bit	EUI	address,	but	 the	use	of	 short	16-bit
addresses	 is	 also	 allowed.	 When	 using	 a	 short	 address,	 a	 pseudo	 48-bit
address	is	computed	using	the	following	algorithm:

•	The	first	16	bits	correspond	to	the	PAN	ID.
•	The	next	16	bits	are	all	zeros.
•	The	remaining	16	bits	correspond	to	the	short	address.

	
This	48-bit	address	 is	then	used	according	to	the	“IPv6	over	Ethernet”

encapsulation	technique	[44].
Note:	 Multicast	 IPv6	 packets	 are	 transmitted	 as	 broadcast	 IEEE

802.15.4	frames	(IPv6	only	supports	multicast,	whereas	IEEE	802.15.4	only
supports	 broadcast).	 A	 multicast	 IPv6	 packet	 is	 transmitted	 using	 IEEE
802.15.4	 frames	with	 the	 required	 destination	 PAN	 ID	 and	 the	 broadcast
address	0xFFFF.

16.3	Conclusions
In	 this	 chapter,	we	 reviewed	 in	 detail	 the	 6LoWPAN	adaptation	 layer

that	 optimized	 the	 transport	 of	 IPv6	 packets	 in	 IEEE	 802.15.4	 frames.
6LoWPAN	 allows	 the	 support	 of	 the	 necessary	 fragmentation	 and
reassembly	 mechanisms	 considering	 the	 limited	 MTU	 of	 IEEE	 802.15.4.
Furthermore,	 the	 6LoWPAN	 adaptation	 layer	 provides	 efficient	 header
compression	mechanisms	avoiding	information	redundancy	to	dramatically
reduce	 the	 IP	 overhead	 headers	 to	 a	 few	 bytes,	 which	 is	 particularly



interesting	on	links	that	only	support	small	frame	sizes.	6LoWPAN	is	not	a
generic	term	referring	to	smart	object	networks	but	an	adaptation	layer	to
carry	IPv6	packets	over	IEEE	802.15.4	frames.

	



Chapter	17	RPL	Routing	in	Smart
Object	Networks

	

17.1	Introduction
As	 already	 discussed	 in	 Chapter	 14,	 the	 Internet	 Engineering	 Task

Force	 (IETF)	 formed	a	new	Working	Group	 called	ROLL	 (Routing	Over
Low-power	 and	 Lossy	 networks;	 http://www.ietf.org/dyn/wg/charter/roll-
charter.html)	 in	2008	with	 the	objective	of	specifying	routing	solutions	 for
Low-power	 and	 Lossy	 Networks	 (LLNs).	 The	 first	 objectives	 of	 the
Working	Group	were	to	produce	a	set	of	routing	requirements	(discussed	in
Section	 17.2),	 determine	 whether	 or	 not	 existing	 IETF	 routing	 protocols
would	 satisfy	 the	 requirements	 spelled	 out	 in	 the	 routing	 requirement
documents,	 and	 establish	 a	 routing	 security	 framework	 and	 define	 new
routing	 metrics	 for	 routing	 in	 LLNs.	 The	 Working	 Group	 quickly
converged	 on	 the	 fact	 that	 none	 of	 the	 existing	 routing	 protocols	 would
satisfy	the	fairly	unique	set	of	routing	requirements	for	LLNs.	Thus	ROLL
was	 re-chartered	 to	 design	 a	 new	 routing	 protocol	 called	 RPL	 (Routing
Protocol	 for	 Low-power	 and	 Lossy	 Networks)	 explained	 in	 detail	 in	 this
chapter.	 Note	 that	 the	 terminology	 used	 in	 ROLL	 specifications	 can	 be
found	in	[248].

	
17.2	What	is	a	Low-power	and	Lossy	Network?
When	 not	 familiar	with	 the	 environment	 of	 IP	 smart	 object	 networks

interconnected	by	lossy	links,	one	may	wonder:	How	lossy	is	lossy?	Ethernet
and	Optical	links	have	remarkably	low	BERs.	A	lossy	link	is	not	just	a	link
with	higher	BER	uniformly	distributed	errors.	Packet	drops	on	lossy	links
are	extremely	frequent,	and	the	links	may	become	completely	unusable	for
quite	 some	 time	 for	 a	 number	 of	 reasons	 such	 as	 interference.	 This
observation	 has	 strong	 consequences	 on	 the	 protocol	 design.	 Indeed,
knowing	 that	 link	 failures	 are	 frequent	 and	 usually	 transient	 also	 means
that	 the	routing	protocol	 should	not	overreact	 to	 failures	 in	an	attempt	 to
stabilize	under	unstable	conditions.	For	example,	if	node	A	selected	node	B
as	its	preferred	next-hop,	and	as	a	result	of	temporary	lack	of	connectivity
between	A	and	B,	node	A	chooses	an	alternate	next-hop	C	and	immediately

http://www.ietf.org/dyn/wg/charter/roll-charter.html


triggers	a	recomputation	of	 the	routing	 table.	This	would	not	only	 lead	 to
routing	 instabilities	 but	 would	 generate	 a	 significant	 amount	 of	 control
plane	traffic	impacting	the	entire	network.

It	 is	worth	 pointing	 out	 that	 by	 lossy	 link	what	 immediately	 comes	 to
mind	 are	 wireless	 links,	 but	 remember	 that	 Powerline	 communication
(PLC)	links	are	also	lossy.

Figure	 17.1	 shows	 the	 packet	 delivery	 ratio	 (PDR)	 for	 two	 low-power
IEEE	 802.15.4	 links	 as	 a	 function	 of	 time	 (in	 seconds).	 The	 PDR
significantly	varies	from	60	to	100%.

Figure	17.1	Packet	Delivery	Ratio	for	two	IEEE	802.15.4	links.
	

	
17.3	Routing	Requirements
When	defining	a	new	protocol,	it	is	always	tempting	to	start	right	away

with	 the	protocol	 specification,	processing	 rules,	 packet	 encoding,	etc.	But
without	a	clear	understanding	of	 the	requirements,	 this	unavoidably	 leads
to	 further	 difficulties	 when	 trying	 to	 adapt	 the	 protocol	 as	 new
requirements	are	added.	To	avoid	 such	 situations,	 IETF	Working	Groups
usually	 produce	 requirement	 documents	 that	 follow	 the	 “informational”
track	 (please	 refer	 to	 Chapter	 14	 for	 more	 details	 on	 standardization
tracks).	In	the	case	of	the	ROLL	Working	Group	one	of	the	main	challenges
was	 to	 determine	 the	 scope	 of	 the	 work.	 In	 contrast	 with	 traditional	 IP



networks	 (e.g.,	 a	 core	 Service	 Provider	 network),	 LLNs	 can	 greatly	 vary
from	 each	 other.	 A	mobile	 Delay	 Tolerant	 Network	 (DTN)	 used	 to	 study
wildlife	does	not	have	much	in	common	with	a	dense	“always	on”	network
used	for	industrial	automation.	Thus	the	choice	was	made	to	limit	the	scope
to	 four	 main	 applications:	 urban	 networks	 (including	 Smart	 Grid
applications),	 building	 automation,	 industrial	 automation,	 and	 home
automation.	 These	 applications	 are	 representative	 of	 other	 types	 of
networks	and	there	was	an	urgent	need	to	design	routing	solutions	for	them.
Thus	 it	was	believed	 that	by	addressing	 the	routing	requirements	of	 these
applications,	a	routing	protocol	for	LLN	would	address	the	vast	majority	of
routing	requirements	of	smart	object	networks.

Requirement	documents	usually	use	normative	language	in	IETF	terms
(see	[23]):	the	MUST,	SHOULD,	and	MAY	in	these	documents	indicate	if	a
feature	 is	mandated	or	 simply	desirable.	MUST,	SHOULD,	and	MAY	are
used	 in	 protocol	 specifications.	 For	 example,	 if	 a	 protocol	 document
specifies	that	a	feature	MUST	be	supported	then	an	implementation	is	not
compliant	with	the	RFC	if	it	does	not	support	the	feature	in	question.

The	 ROLL	Working	 Group	 has	 produced	 the	 following	 four	 routing
requirements:	 [169],	 [24],	 [197],	 and	 [57].	 These	 sections	 provide	 an
overview	of	the	major	routing	requirements	spelled	out	in	these	documents
(the	MUST).

These	 routing	 requirements	 make	 no	 assumption	 on	 the	 link	 layer	 in
use;	they	specify	a	list	of	routing	requirements	for	networks	made	of	LLNs.

•	Unicast/anycast/multicast:	Several	requirement	documents	 list	 the
support	 of	 unicast,	 anycast,	 and	multicast	 traffic	 as	 mandatory.	 The
support	 of	 the	 multicast	 traffic	 is	 explicitly	 listed	 in	 the	 ROLL
Working	Group	charter.
•	Adaptive	routing:	Most	requirements	specify	the	need	for	adaptive

routing	 where	 new	 paths	 are	 dynamically	 and	 automatically
recomputed	as	conditions	change	in	the	network	(e.g.,	link/node	failure,
mobility,	 etc.).	 Furthermore,	 the	 routing	 protocol	 must	 be	 able	 to
compute	routes	optimized	for	different	metrics	(e.g.,	minimize	latency,
maximize	reliability,	etc.).	[169]	also	specifies	that	the	routing	protocol
must	 be	 able	 to	 find	 a	 path	 that	 satisfies	 specific	 constraints	 such	 as
providing	a	path	with	a	latency	lower	than	a	specified	value.
•	Constraint-based	routing:	All	documents	mention	that	the	routing

protocol	has	 to	 support	 constraint-based	 routing	 to	 take	 into	 account
various	node	characteristics	used	as	constraints	 such	as	energy,	CPU,



and	memory	as	well	as	link	attributes	([197])	such	as	link	latency.
•	Traffic	characteristics:	There	are	a	number	of	LLNs	highly	focused

on	data	collection	(e.g.,	telemetry)	where	most	of	the	traffic	is	from	leaf
nodes	 such	as	 sensors	 to	 a	data	 collection	 sink.	This	 type	 of	 traffic	 is
also	 referred	 to	 as	 multipoint-to-point	 (MP2P)	 traffic.	 It	 is	 often
necessary	in	these	networks	to	also	support	point-to-multipoint	(P2MP)
traffic;	 for	example,	when	the	sink	sends	a	request	 to	all	nodes	 in	the
network,	 acknowledgments	 in	 the	 context	 of	 reliable	 messaging	 are
necessary	 or	 a	 central	management	 tool	 performs	 a	 software	 update.
Furthermore,	 as	 pointed	 out	 in	 [169]	 and	 [24],	 the	 routing	 protocol
must	 support	 point-to-point	 (P2P)	 communication	 between	 devices	 in
the	network.	The	routing	protocol	must	also	support	 the	computation
of	 parallel	 paths	 (not	 necessarily	 disjoint)	 to	 absorb	 bursts	 of	 traffic
more	 efficiently.	 In	 some	 cases	 ([197])	 it	 was	 required	 to	 not	 just
support	 Equal	 Cost	 Multiple	 Path	 (ECMP).	 Note	 that	 other	 routing
protocols	 such	 as	 ISIS	 or	OSPF	 only	 support	 ECMP	 (avoiding	 loops
with	non	equal	load	balancing	is	somewhat	challenging).
•	 Scalability:	 As	 discussed	 throughout	 the	 entire	 book,	 LLNs	 are

composed	 of	 a	 very	 large	 number	 of	 nodes,	 thus	 scalability	 is	 very
important.	 The	 routing	 protocol	 requirement	 documents	 indicate	 a
number	of	nodes	between	250	[24]	to	1000	[169]	and	up	to	104	 in	[57].
There	 are	 deployments	 that	 even	 require	 the	 support	 of	 millions	 of
nodes	 (see	 Part	 III);	 in	 this	 particular	 case,	 the	 deployment	 of	 the
routing	protocol	may	follow	specific	rules	(e.g.,	network	partitioning).
•	Configuration	and	management:	As	expected,	there	is	a	long	list	of

requirements	related	to	configuration.	In	most	documents,	it	is	clearly
spelled	out	that	the	routing	protocol	must	be	able	to	autoconfigure	with
minimal	or	even	0-configuration.	In	other	words,	the	end	user	must	be
able	 to	 place	 the	 node	 in	 its	 environment	 without	 intervening	 in	 the
configuration	and	the	routing	protocol	must	be	able	to	join	the	routing
domain	and	start	functioning	from	a	routing	perspective	(see	[197]	for
a	detailed	 example).	 [24]	also	 specifies	 that	 the	 routing	protocol	must
be	 able	 to	 isolate	 a	misbehaving	node	 to	 limit/eliminate	 its	 impact	 on
other	nodes.	[169]	mentions	that	an	application	should	not	require	any
reconfiguration	even	after	replacement	of	the	devices	(in	other	words,	a
new	IP	address	must	not	be	reassigned	to	the	node).
•	Node	attribute:	[169]	mentions	that	when	there	are	sleeping	nodes

in	the	network	(a	frequent	situation	with	battery-operated	nodes),	 the
routing	 protocol	 must	 discover	 the	 capability	 of	 a	 node	 to	 act	 as	 a



proxy.	 A	 packet	 could	 be	 delivered	 to	 a	 proxy	 that	 could	 relay	 the
packet	to	the	destination	once	awakened.
•	 Performance:	 Indicating	 performance	 numbers	 in	 requirement

documents	 is	 always	 a	 risky	 proposition.	 Performance	 may	 not	 only
greatly	 vary	 between	 implementations	 but	 is	 subject	 to	 potential
changes	 as	 new	 applications	 emerge.	 A	 protocol	 should	 never	 be
designed	with	hard	numbers	 in	mind	 to	preserve	 its	 future	use.	Thus
performance	numbers	in	requirement	documents	should	not	be	seen	as
“hard”	 numbers	 or	 bounds	 but	 simple	 indications	 providing	 some
order	 of	 magnitude.	 For	 example,	 [197]	 mentions	 that	 the	 routing
protocol	must	 find	routes	and	report	 success	or	 failure	within	several
minutes.	 In	 [24],	 the	 routing	 protocol	 must	 provide	 mobility	 with	 a
convergence	 time	below	0.5	 s	 and	 it	must	 converge	within	 0.5	 s	 if	 no
nodes	 have	 moved	 and	 within	 2	 s	 if	 the	 destination	 has	 moved.	 But
again,	 these	numbers	 should	be	 seen	as	 indicative	as	opposed	 to	hard
performance	targets	or	bounds.
•	Security:	As	discussed	in	Chapter	8	and	shown	in	Part	III,	security

is	 very	 important	 in	 most	 LLNs.	 There	 are	 some	 LLNs	 (e.g.,	 Smart
Cities	 telemetry	networks)	where	minimal	 security	 is	 required,	but	 in
most	 cases	 (e.g.,	 Smart	 Grid,	 building	 automation,	 industrial
automation,	etc.)	security	is	absolutely	critical.	Authentication	is	listed
as	 an	 absolute	must	 in	 all	 documents.	 Encryption	 is	 also	 an	 absolute
must.	 Note	 that	 [169]	 mentions	 that	 “the	 routing	 protocol	 must
gracefully	 handle	 routing	 temporal	 security	 updates	 (e.g.,	 dynamic
keys)	to	sleeping	devices	on	their	‘awake’	cycle	to	assure	that	sleeping
devices	can	readily	and	efficiently	access	the	network.”

	
How	should	conflicting	objectives	be	dealt	with?	It	is	always	challenging

to	 consider	 a	 set	 of	 requirements	 dictated	 by	 several	 applications	 that
significantly	differ	from	each	other.	The	first	naïve	approach	is	to	consider
the	 union	 of	 all	 of	 the	 requirements.	 Unfortunately,	 such	 an	 approach	 is
usually	unrealistic	or	undesirable.	The	union	of	all	requirements	may	not	be
possible	considering	the	constrained	nature	of	smart	objects	and	the	need	to
bound	the	complexity	of	the	protocol.	There	are	even	cases	where	some	of
these	requirements	are	contradictory.	Even	if	all	of	these	requirements	were
satisfied	by	a	single	routing	protocol,	the	results	may	not	be	beneficial.	Why
would	a	 routing	protocol	operating	 in	a	building	have	 to	 support	 features
needed	for	urban	networks?	It	may	be	more	advantageous	to	only	support



the	required	features	to	limit	the	resource	(node	and	network)	consumption
in	 the	 network.	 The	 other	 approach	 adopted	 by	 RPL	 was	 to	 design	 a
modular	 routing	 protocol	 where	 the	 core	 component	 of	 the	 application
would	be	specified	by	the	RPL	specification	with	optional	features	activated
only	where	 and	when	needed.	 For	 example,	RPL	 specifies	 how	 to	 build	 a
destination	 oriented	 directed	 acyclic	 graph	 (DODAG),	 but	 the
characteristics	 of	 the	DODAG	 are	 specified	 by	 an	 objective	 function.	 For
the	 time	 being,	 think	 of	 a	 DODAG	 as	 a	 logical	 routing	 topology	 over	 a
physical	 network	 that	 is	 built	 by	 the	 routing	 protocol	 to	 meet	 specific
criteria.	How	RPL	builds	DODAGs	is	further	explored	in	detail	in	the	rest
of	 this	chapter.	It	 is	even	possible	 for	a	node	to	 join	multiple	DODAGs	(if
the	application	requires	different	objectives	 that	must	be	realized	 through
the	 use	 of	 multiple	 DODAGs)	 and	 mark	 the	 traffic	 according	 to	 the
DODAG	characteristics	 in	 support	 of	Quality	 of	 Service	 (QoS)	 awareness
and	 constrained-based	 routing.	 Then	 applicability	 documents	 will	 be
produced	to	provide	guidance	on	how	the	core	RPL	protocol	could	be	used,
in	 conjunction	 with	 specific	 objective	 functions,	 and	 configured	 to	 meet
specific	requirements	supporting	the	application	and	environment.

	
17.4	Routing	Metrics	in	Smart	Object	Networks
Routing	 metrics	 are	 a	 critical	 component	 of	 the	 routing	 strategy	 and

have	 been	 studied	 for	 decades.	 Most	 of	 the	 IP	 routing	 protocols	 used	 in
today’s	networks	such	as	OSPF	[179]	or	IS-IS	[131]	use	static	link	metrics.
The	network	administrator	 is	responsible	 for	configuring	 the	 link	metrics,
which	may	 reflect	 the	 link	 bandwidth,	 delay,	 or	 combine	 several	metrics.
Some	 Service	 Providers	 are	 combining	 up	 to	 three	 metrics	 (e.g.,	 delays,
bandwidth,	cost)	in	the	link	metric.	Then	the	routing	protocol	computes	the
shortest	path	taking	into	account	these	static	link	metrics.

Several	attempts	were	made	to	use	dynamic	link	metrics.	For	example,
extensive	 studies	 were	made	 in	 ARPANET-2	 to	 dynamically	 compute	 the
link	 metric	 based	 on	 the	 averaged	 queue	 length	 to	 reflect	 the	 level	 of
congestion.	 These	 strategies	 were	 abandoned	 due	 to	 the	 difficulty	 in
designing	stable	systems.	One	of	the	main	challenges	with	dynamic	metrics
is	 to	 carefully	 control	 the	 rate	 at	 which	 new	 metrics	 are	 advertised.
Frequent	 link	metric	 refreshers	 provide	 a	 high	 level	 of	 accuracy	but	may
also	 lead	 to	routing	oscillation.	For	example,	when	 the	 link	metric	reflects
the	link	utilization,	increasing	the	metric	discourages	traffic	from	traversing
the	link	and	triggers	the	rerouting	of	traffic	in	other	parts	of	the	network.
As	 the	 link	 utilization	 decreases,	 the	 link	 metric	 also	 decreases	 thus



attracting	 more	 traffic.	 If	 not	 controlled	 carefully,	 such	 strategies
unavoidably	 lead	 to	 traffic	 oscillation	 and	 thus	 to	 jitter,	 potential	 packet
reordering,	 and	 so	 on.	 Extreme	 care	 must	 be	 taken	 to	 limit	 the	 control
traffic	 overhead	 in	 LLN	where	 bandwidth	 and	 energy	 are	 usually	 scarce
resources.	In	addition	to	the	potential	traffic	oscillation,	routing	updates	too
frequently	create	congestion	in	the	network	that	would	drain	energy,	which
may	be	a	real	issue	for	battery-operated	nodes.

Another	characteristic	of	 the	current	routing	protocol’s	metrics	 is	 that
they	 are	 only	 related	 to	 links,	 which	 makes	 perfect	 sense	 in	 the	 current
Internet	because	most	core	routers	are	not	traffic	bottlenecks.

In	 contrast,	 routing	 in	 LLN	 does	 require	 more	 sophisticated	 routing
metrics	strategies.

Let’s	 clarify	 the	 distinction	 between	 routing	metric	 and	 constraint.	 A
metric	 is	 a	 scalar	 used	 to	 determine	 the	 best	 path	 according	 to	 some
objective	 function.	For	 example,	 if	 the	 link	metric	 is	 representative	 of	 the
link	propagation	delay,	the	path	cost	represents	the	total	propagation	delay
to	 the	 destination	 and	 the	 objective	 function	 may	 specify	 finding	 the
shortest	 path	 based	 on	 the	 propagation	 delay.	 Some	 metrics	 may	 not	 be
additive;	for	example,	the	objective	function	may	be	to	find	the	path	where
the	minimum	link	quality	 is	maximized.	A	constraint	 is	used	to	 include	or
eliminate	 links	 or	 nodes	 that	 do	 not	meet	 specific	 criteria	 (this	 is	 usually
referred	to	as	constraint-based	routing).	For	example,	the	objective	function
may	not	select	any	path	that	traverses	a	node	that	is	battery-operated	or	a
link	that	does	not	provide	link	layer	encryption.	The	objective	function	may
combine	 link/node	metrics	and	constraints	such	as	“find	the	path	with	the
minimum	delay	that	does	not	traverse	any	non-encrypted	link.”	An	example
is	provided	in	Section	17.5.

The	 set	 of	 link	 and	 nodes	metrics/constrained	 for	 RPL	 are	 defined	 in
[250]	 and	 discussed	 in	 the	 next	 section.	 [250]	 allows	 routing	 objects	 to	 be
defined	 as	 constraints	 or	 metrics	 with	 a	 great	 deal	 of	 flexibility.	 Let’s
consider	the	link	quality	level	(LQL).	The	LQL	is	an	integer	between	0	and
3	 that	 characterizes	 the	 link	 quality	 (poor,	 fair,	 good).	 The	 objective
function	(OF)	may	stipulate	to	prune	links	with	a	“poor”	quality	level	(LQL
is	 used	 as	 a	 constraint)	 or	 to	 find	 the	 path	 that	 provides	 the	 minimum
number	of	links	with	poor	quality	(LQL	is	used	as	a	metric).	This	applies	to
all	routing	objects	that	can	be	used	as	a	metric	or	constraint.

17.4.1	Aggregated	Versus	Recorded	Routing	Metrics
The	path	cost	is	defined	as	the	sum	of	the	cost	of	all	links	along	the	path.

This	implicitly	makes	use	of	aggregated	metrics.	For	example,	if	the	metric



reflects	the	link’s	throughput	where	the	metric	is	inversely	proportional	to
it,	the	best	path	is	the	path	with	the	lowest	cost	(the	path	cost	is	the	sum	of
all	link	metrics	along	the	path).	On	the	other	hand,	in	some	cases	it	might	be
useful	 to	 record	 each	 individual	 link	metric	 as	 opposed	 to	 an	 aggregated
value.	In	the	reliability	metric,	one	approach	adds	the	link’s	LQL	along	the
path	(aggregated	metric),	but	this	comes	with	a	loss	of	information	in	which
case	it	might	be	useful	to	record	the	LQL	of	all	links	along	the	path.	[250]
supports	both	aggregated	and	recorded	metrics.
	
17.4.2	Local	Versus	Global	Metrics
A	 metric	 is	 said	 to	 be	 local	 when	 it	 is	 not	 propagated	 along	 the

DODODAG.	In	other	words,	a	node	would	indicate	its	local	cost	(in	contrast
with	a	global	metric),	but	the	cost	will	not	be	propagated	any	further.
	
17.4.3	The	Routing	Metrics/Constraints	Common	Header
[250]	 specifies	 a	 common	 header	 for	 all	 metrics	 and	 constraints	 with

several	flags	used	to	indicate	whether	the	routing	object	refers	to	a	routing
metric	 or	 a	 constraint,	 if	 the	 routing	 object	 is	 local	 versus	 global,	 if	 the
global	metric	 is	 aggregated	 versus	 recorded,	 if	 a	 constraint	 is	 optional	 or
mandatory,	and	if	a	metric	is	additive	or	reports	a	maximum/minimum.

17.4.4	The	Node	State	and	Attributes	Object
The	node	state	and	attribute	(NSA)	object	is	used	to	report	various	node

state	information	and	node	attributes.
Nodes	 may	 act	 as	 traffic	 aggregators.	 Knowing	 that	 a	 node	 can

aggregate	traffic	may	influence	the	routing	decision	in	an	attempt	to	reduce
the	amount	of	 traffic	 in	 the	network.	 It	 is	 likely	 that	a	 single	 flag	will	not
suffice	and	additional	information	will	have	to	be	specified.

Nodes	may	have	limited	available	resources.	Extensive	discussions	took
place	in	the	ROLL	Working	Group	to	define	which	node	parameters	should
be	 provided.	 One	 scheme	 would	 have	 been	 to	 report	 the	 available	 CPU
processing	power,	available	memory,	etc.	But	this	would	become	extremely
bandwidth	 intensive	 and	 irrelevant	 considering	 how	 quickly	 such	metrics
vary.	It	was	thus	decided	to	simply	make	use	of	a	1-bit	flag	set	when	a	node
sustainably	 experiences	 some	 level	 of	 congestion.	 It	 is	 the	 responsibility	of
the	node	to	determine,	according	to	local	policy,	when	the	flag	should	be	set
potentially	triggering	traffic	rerouting	to	avoid	that	node.

17.4.5	Node	Energy	Object
Energy	is	a	critical	metric	in	LLNs,	especially	in	the	presence	of	battery-

operated	 nodes.	 The	 approach	 taken	 by	 [250]	 provided	 several	 levels	 of



granularity	 to	characterize	 the	node	energy:	 (1)	 the	node	power	mode,	 (2)
estimated	 remaining	 lifetime	 and	 potentially,	 and	 (3)	 potentially	 some
detailed	set	of	power-related	metrics	and	attributes.

1.	The	node	power	mode:	Three	 flags	are	used	 to	 indicate	whether
the	node	is	main-powered,	battery-powered,	or	if	the	node	is	powered
by	energy	scavenging	(solar	panels,	mechanical,	etc.).

2.	 The	 approach	 to	 estimated	 remaining	 lifetime	 provides	 some
indication	of	the	power	level	for	both	battery-operated	and	scavenging
nodes.	With	the	battery-operated	node,	the	unit	is	the	current	expected
lifetime	 divided	 by	 the	 desired	minimum	 lifetime.	 [250]	 provides	 two
examples	of	how	to	compute	this	value.

If	the	node	can	measure	its	average	power	consumption,	then	H	can
be	 calculated	 as	 the	 ratio	 of	 desired	 max	 power	 (initial	 energy	 E_0
divided	 by	 desired	 lifetime	 T)	 to	 actual	 power	 H	 =	 P_max/P_now.
Alternatively,	if	the	energy	in	the	battery	E_bat	can	be	estimated,	and
the	total	elapsed	lifetime,	t,	is	available,	then	H	can	be	calculated	as	the
total	stored	energy	remaining	versus	the	target	energy	remaining:	H	=
E_bat/[E_0	(T-t)/T].

In	 the	 latter	 case	 (scavenger),	 the	 unit	 is	 a	 percentage	 (power
provided	 by	 the	 scavenger	 divided	 by	 the	 power	 consumed	 by	 the
application).
3.	 The	 detailed	 set	 of	 power-related	 metrics	 and	 attributes	 may

potentially	be	used	and	is	to	be	defined	in	the	future.

	
17.4.6	Hop-count	Object
The	hop-count	object	simply	reports	the	number	of	hops	along	the	path.
17.4.7	Throughput	Object
The	throughput	object	is	used	to	report	the	link	throughput.	When	used

as	a	metric,	the	throughput	can	be	used	as	an	additive	metric	or	to	report	a
maximum	or	a	minimum.

17.4.8	Latency	Object
The	 latency	 object	 is	 used	 to	 report	 the	 path	 latency.	 Similar	 to	 the

throughput,	latency	can	be	used	as	a	metric	or	a	constraint.	When	used	as	a
metric	 the	 latency	 object	 expresses	 the	 total	 latency	 (additive	metric)	 and
the	 maximum	 or	 minimum	 latency	 along	 the	 path.	 When	 used	 as	 a
constraint,	 the	 latency	 can	 be	 used	 to	 exclude	 links	 that	 provide	 greater
latency	than	predefined	values.



17.4.9	Link	Reliability	Object
Routing	protocols	such	as	OSPF	or	IS-IS	do	not	use	reliability	metrics

simply	 because	 links	 used	 in	 the	 Internet	 such	 as	 SONET/SDH,	 Optical
links,	and	Ethernet	are	extremely	reliable	with	low	error	rates.	They	do	fail
and	a	plethora	of	fast	recovery	mechanisms	have	been	defined,	but	the	link
quality	usually	expressed	as	BER	for	these	types	of	links	is	not	used	for	path
selection.	The	situation	is	radically	different	in	LLNs	where	links	are	lossy
and	 not	 only	 can	 the	 BER	 be	 high,	 but	 the	 link	 states	 can	 vary	 quite
significantly	over	time.	Figure	17.1	illustrates	the	PDR	for	two	links	(indoor
and	 outdoor)	 over	 time.	 This	 stresses	 the	 importance	 of	 considering	 the
“lossyness”	of	a	 link	when	computing	 the	best	path	 to	a	destination.	Very
similar	lossy	characteristics	can	be	shown	in	PLC	links.

Many	research	papers	have	 investigated	a	 set	 of	 reliability	metrics	 for
lossy	 links	 such	 as	 low	 power	 links	 (e.g.,	 [50],	 [85]).	 The	 most	 popular
reliability	metric	thus	far	is	the	expected	transmission	(ETX)	count	metric,
which	 characterizes	 the	 average	number	of	packet	 transmissions	 required
to	successfully	transmit	a	packet.	The	ETX	is	consequently	tightly	coupled
to	 the	 throughput	along	a	path.	Several	 techniques	have	been	proposed	 to
compute	ETX.

One	method	described	in	[50]	sends	regular	probes	in	each	direction	 to
compute	the	delivery	ratio	for	a	specific	link.	ETX	is	defined	as	1/(Df	*	Dr)
where	 Df	 is	 the	 measured	 probability	 that	 a	 packet	 is	 received	 by	 the
neighbor	 and	 Dr	 is	 the	 measured	 probability	 that	 the	 acknowledgment
packet	 is	 successfully	 received.	One	way	 to	 compute	Df	 and	Dr	 is	 to	 send
probes	at	regular	time	intervals,	since	both	end	points	of	the	link	know	the
frequency	 at	which	probes	 are	 sent.	By	 reporting	 the	 number	 of	 received
probes	in	the	opposite	direction,	each	node	can	easily	compute	both	values.
Other	proposals	have	been	made	in	[85]	and	[150].

It	 is	 important	 not	 to	 specify	 at	 the	 IETF	 the	 method	 for	 computing
ETX	values.	The	ETX	is	a	link-specific	quantity	and	the	technique	used	to
compute	 the	 ETX	 value	 should	 be	 independent	 of	 the	 link	 layer	 and	 not
specified	 by	 the	 network	 layer	 that	 only	 carries	 it	 for	 routing	 protocol
decisions.	 Some	 links	may	 use	 link	 layer	mechanisms,	 and	 in	 other	 cases
probing	 techniques	 and	 the	ETX	value	may	be	derived	 from	one	 of	 these
techniques	or	any	combination.

The	ETX	 for	a	path	 is	 computed	as	 the	 sum	of	 the	ETX	 for	 each	 link
along	the	path	(e.g.,	RPL	reports	cumulative	path	ETX	as	discussed	next).

17.4.10	Link	Colors	Attribute
There	 are	 circumstances	 where	 it	 may	 be	 useful	 to	 “color”	 a	 link	 to



report	 a	 specific	 property.	 Such	 mechanisms	 have	 been	 defined	 in	 other
protocols	such	as	IS-IS,	for	example,	to	indicate	that	a	link	is	protected	with
lower	 layer	recovery	mechanisms.	A	similar	approach	 is	adopted	by	RPL.
The	link	color	is	encoded	using	a	bit	vector	and	the	meaning	of	each	color	is
left	 to	 the	 implementer.	As	 described	 later	 in	 this	 section,	RPL	 computes
paths	 over	 a	 dynamically	 built	 DODAG.	 The	 DODAG	 root	 uses	 an	 OF
required	for	each	node	along	the	path	reporting	path	metrics	to	also	report
the	set	of	colors	of	each	link	along	the	path.	For	example,	suppose	that	the
color	blue	is	used	to	indicate	the	support	of	the	link	layer	encryption.	Upon
receiving	the	path	metric,	if	link	colors	are	recorded,	a	node	may	decide	to
elect	as	a	parent	the	parent	reporting	paths	with	encrypted	links	(blue	links)
or	 with	 the	 maximum	 number	 of	 blue	 links	 in	 the	 absence	 of	 a	 path
exclusively	made	of	blue	links.

17.5	The	Objective	Function
The	routing	metric	is	insufficient	for	the	routing	protocol	to	compute	the

“best”	 path.	 The	 OF	 may	 be	 so	 simple	 that	 it	 could	 be	 implicit.	 For
example,	the	OF	of	RIP	[163]	is	to	select	the	path	with	minimal	hop	count.
OSPF	 or	 IS-IS	 would	 compute	 the	 paths	 that	 provide	 the	minimum	 cost
where	the	path	cost	is	simply	the	sum	of	the	static	link	cost	along	the	path.
In	 other	 cases	 such	 as	MPLS	 TE	 the	OF	may	 be	 slightly	more	 complex:
“find	 the	 shortest	 path	 according	 to	 some	metric	 such	 as	 the	OSPF/IS-IS
metric	or	the	Traffic	Engineering	metric	that	satisfies	some	constraint	such
as	 the	 available	 reservable	 bandwidth	 or	 the	 type	 of	 recovery	 protection
provided	by	the	link.”	This	is	known	as	constraint-based	routing.	Still,	the
objective	may	be	significantly	more	complicated.	It	is	supported	by	the	path
computation	 element	 (PCE)	 architecture
(http://www.ietf.org/dyn/wg/charter/pce-charter.html)	 to	 compute
sophisticated	MPLS	Traffic	Engineering	Label	Switch	Paths	(TE	LSP).	For
example,	the	request	might	be	to	compute	the	shortest	constraint	path	with
multi-metric	 optimization	 (a	 Nondeterministic	 Polynomial	 (NP)-complete
problem).

With	 LLNs	 there	 is	 strong	 interest	 in	 using	 several	 OFs	 because
deployments	 greatly	 vary	 with	 different	 objectives	 and	 a	 single	 network
may	 support	 traffic	 with	 very	 different	 requirements	 in	 terms	 of	 path
quality.	 Consider	 the	 case	 of	 a	 mixed	 network	 with	 battery-and	 main-
powered	nodes,	 a	 variety	 of	 high	and	 low	bandwidth	 links,	 and	 two	main
applications	 (telemetry	 and	 critical	 alarms).	 This	 is	 a	 situation	 where	 it
might	be	extremely	useful	for	each	node	supporting	both	applications	to	be
able	 to	 use	 two	 paths.	 These	 would	 include	 one	 “time	 sensitive”	 path	 for

http://www.ietf.org/dyn/wg/charter/pce-charter.html


alarms	where	 the	 objective	 is	 to	 have	 a	 short	 delay	 and	 a	 highly	 reliable
path	 with	 no	 constraint	 on	 the	 type	 of	 nodes	 along	 the	 path	 to	 the
destination,	and	another	“not	time	sensitive	path”	for	the	telemetry	traffic
where	it	is	beneficial	to	not	traverse	any	battery-operated	node	to	preserve
energy	and	where	the	objective	would	be	to	minimize	hops	to	avoid	traffic
congestion	 in	 the	network.	RPL	addresses	 these	 requirements	by	building
two	 DODAGs	 with	 each	 one	 having	 its	 own	 OF.	 The	 OF	 is	 used	 in
conjunction	with	the	routing	metric	to	compute	the	path.

Consider	Figure	17.2	which	depicts	an	LLN.	In	this	network,	the	link’s
LQLs	are	provided	in	addition	to	the	latency	and	availability	of	 link	layer
encryption.	In	addition,	node	11	 is	battery-operated.	The	arrow	shows	the
best	 computed	path	 from	 the	 low-power	and	 lossy	network	border	 router
(LBR)	 to	 node	 34	 for	 two	 different	 OFs,	 OF1	 and	 OF2,	 defined	 in	 the
following:

OF1:	“Use	the	LQL	as	a	global	recorded	metric	and	favor	paths	with
the	minimum	number	of	low	and	fair	quality	links,	use	the	link	color	as
a	link	constraint	to	avoid	non-encrypted	links.”	Note	that	two	paths	are
available	 with	 an	 equivalent	 aggregated	 LQL	 metric:	 34-35-24-13-1
and	 34-33-23-22-12-1.	 But	 because	 the	OF	 specifies	 using	 a	 recorded
metric,	the	path	34-33-23-22-12-1	is	chosen	since	it	only	has	two	links	of
“fair”	quality.
OF2:	“Find	the	best	path	in	terms	of	latency	(link	latency	is	used	as	a

global	 aggregated	 metric),	 while	 avoiding	 poor	 quality	 links	 and
battery-operated	nodes.”	Several	paths	have	been	pruned	because	they
traverse	 battery-operated	 nodes	 (node	 11)	 and	 traverse	 poor	 quality
links	(link	12-23).	The	best	path	(lowest	latency)	is	34-24-13-1.

	



Figure	17.2	Examples	with	two	different	OFs.
	

	
17.6	RPL:	The	New	Routing	Protocol	for	Smart	Object	Networks
This	section	describes	RPL	(IPv6	Routing	Protocol	for	Low-power	and

Lossy	Networks),	 the	newly	 specified	 IP	routing	protocol	 for	 smart	object
networks,	 in	 detail.	 RPL	 is	 still	 a	 work	 in	 progress	 and	 the	 IETF	 RFC
should	 be	 used	 as	 the	 final	 reference.	 Various	 aspects	 may	 change	 or	 be
added	to	the	specification.

17.6.1	Protocol	Overview
Similar	 to	 IETF	 specifications	 (see	 [214]),	 this	 section	 provides	 an

overview	of	the	RPL	mode	of	operation.
Considering	 the	 wide	 set	 of	 routing	 requirements	 spelled	 out	 in	 the

application-specific	 documents	 and	 discussed	 in	 Section	 17.3,	 RPL	 was
designed	 to	 be	 highly	 modular.	 The	 main	 specification	 [256]	 covers	 the
intersection	of	these	requirements.	The	prime	objective	is	to	design	a	highly



modular	protocol	where	the	core	of	the	routing	protocol	would	address	the
intersection	of	the	application-specific	routing	requirements,	and	additional
modules	would	be	added	as	needed	to	address	specific	requirements.

RPL	 was	 designed	 for	 LLNs	 where	 constrained	 devices	 are
interconnected	 by	 (wireless	 and	 wired)	 lossy	 links.	 Many	 of	 the	 routing
protocol	design	decisions	were	strictly	driven	by	the	unique	characteristics
of	these	networks.	When	observing	the	link	failure	profiles	of	the	link	layers
in	the	Internet	or	private	IP	networks	(Ethernet,	Optical	 links,	etc.),	error
rates	 are	 relatively	 low	 and	 the	 link	 error	 profiles	 show	 uniform
distribution.	Thus	routing	protocols	designed	for	such	link	profiles	quickly
react	 to	 link	 failure	 with	 no	 risk	 of	 oscillation	 since	 link	 flaps	 are	 rare
events.	 When	 failures	 do	 occur,	 various	 dampening	 techniques	 are	 used.
This	drove	 the	design	principles	of	various	“fast	reroute”	mechanisms.	As
soon	as	the	link	failure	is	detected	(thanks	to	link	layer	notification	or	fast
keepalive	 mechanisms	 such	 as	 Bidirectional	 Forwarding	 Detection;	 BFD
[144]	 or	 link	 layer	 triggers),	 the	 traffic	 is	 immediately	 rerouted	 onto	 a
backup	 path	 to	 minimize	 the	 traffic	 disruption.	 The	 situation	 in	 LLN	 is
rather	different.	Figure	17.1	shows	the	packet	delivery	ratio	(PDR)	for	two
wireless	links	and	the	situation	is	extremely	similar	to	PLC	links.	Such	link
failure	profiles	are	not	uncommon	and	demonstrate	that	it	is	imperative	to
handle	link	failure	in	a	very	different	manner	in	LLN.	First,	a	node	should
try	to	determine	whether	or	not	the	link	should	be	considered	as	down	(not
an	 easy	 decision	 in	 LLNs)	 and,	 consequently,	 inadequate	 for	 traffic
forwarding.	 The	 same	 reasoning	 applies	 to	 determining	whether	 or	 not	 a
link	 should	 be	 considered	 as	 usable	 in	 the	 first	 place	 (known	 as	 “local
confidence”).	This	means	 that	 a	 node	 should	 carefully	 observe	 a	 link	 and
start	using	it	or	determine	whether	to	stop	using	it	(thus	triggering	a	global
path	recomputation	in	the	network).

The	 lossy	nature	 of	 these	 links	 is	 not	 the	 only	LLN	characteristic	 that
drove	the	design	decisions	of	RPL.	Because	resources	are	scarce,	the	control
traffic	must	be	 as	 tightly	bounded	as	possible.	 In	 these	networks	 the	data
traffic	is	usually	limited	and	the	control	traffic	should	be	reduced	whenever
possible	to	save	bandwidth	and	energy.	Using	a	fast	probing	mechanism	as
with	 many	 other	 routing	 protocols	 is	 just	 not	 an	 option,	 and	 ideally	 the
control	traffic	should	decrease	as	the	routing	topology	stabilizes.	Nodes	are
constrained	 in	 nature,	which	 implies	 that	 the	 routing	 protocol	 should	 not
require	heavy	state	maintenance.

Bearing	in	mind	the	lossy	nature	of	 links	 in	LLN	helps	understand	the
RPL	design	choices	made	during	the	specification	design.



RPL	is	a	distance	vector	protocol	that	builds	a	DODAG	where	paths	are
constructed	from	each	node	in	the	network	to	the	DODAG	root	(typically	a
sink	or	an	LBR).	There	are	a	number	of	reasons	why	it	was	decided	to	use	a
distance	 vector	 routing	 protocol	 as	 opposed	 to	 a	 link	 state	 protocol.	 The
main	 reason	was	 the	 constrained	nature	 of	 the	nodes	 in	LLNs.	Link	 state
routing	protocols	are	more	powerful	(the	detailed	topology	is	known	by	all
nodes)	but	require	a	significant	amount	of	resources	such	as	memory	(Link
State	Database;	 LSDB)	 and	 control	 traffic	 to	 synchronize	 the	LSDBs.	An
example	of	DODAG	is	shown	in	Figure	17.2.	Various	procedures	described
in	 Section	 17.6.2	 govern	 how	 the	 DODAG	 is	 constructed	 and	 how	 nodes
attach	 to	 each	other	according	 to	 an	OF.	 In	 contrast	with	 tree	 topologies,
DODAGs	offer	redundant	paths,	which	is	a	MUST	requirement	for	LLNs.
Thus	 if	 the	 topology	 permits,	 RPL	 may	 provision	 more	 than	 one	 path
between	a	node	and	the	DODAG	root	and	even	other	nodes	in	the	network.

Before	 digging	 into	 the	 protocol	 specification,	 a	 high-level	 overview	 of
the	protocol	is	in	order.	First,	one	or	more	nodes	are	configured	as	DODAG
roots	by	the	network	administrator.	A	node	discovery	mechanism	based	on
newly	defined	ICMPv6	messages	is	used	by	RPL	to	build	the	DODAG.	RPL
defines	 two	 new	 ICMPv6	 messages	 called	 DODAG	 information	 object
(DIO)	messages	and	destination	advertisement	object	(DAO)	messages.	DIO
messages	 (simply	 referred	 to	 as	 DIO)	 are	 sent	 by	 nodes	 to	 advertise
information	about	 the	DODAG,	 such	as	 the	DODAGID,	 the	OF,	DODAG
rank	 (detailed	 in	 the	 next	 section),	 the	 DODAGSequenceNumber,	 along
with	 other	 DODAG	 parameters	 such	 as	 a	 set	 of	 path	 metrics	 and
constraints	 discussed	 in	 the	 previous	 section.	 When	 a	 node	 discovers
multiple	 DODAG	 neighbors	 (that	 could	 become	 parents	 or	 sibling),	 it
makes	 use	 of	 various	 rules	 to	 decide	 whether	 (and	 where)	 to	 join	 the
DODAG.	This	allows	the	construction	of	the	DODAG	as	nodes	join.	Once	a
node	has	joined	a	DODAG,	it	has	a	route	toward	the	DODAG	root	(which
may	be	a	default	 route)	 in	 support	of	 the	MP2P	traffic	 from	the	 leaves	 to
the	DODAG	root	(in	the	up	direction).

RPL	uses	“up”	and	“down”	directions	terminology.	The	up	direction	is
from	a	 leaf	toward	the	DODAG	root,	whereas	down	refers	to	the	opposite
direction.	 The	 usual	 terminology	 of	 parents/children	 is	 used.	 RPL	 also
introduces	the	“sibling”;	two	nodes	are	siblings	if	they	have	the	same	rank
in	the	DODAG	(note	that	they	may	or	may	not	have	a	common	parent).	The
parent	 of	 a	 node	 in	 the	 DODAG	 is	 the	 immediate	 successor	 within	 the
DODAG	in	the	up	direction,	whereas	a	DODAG	sibling	refers	to	a	node	at
the	same	rank.	Back	to	the	example	in	Figure	17.2,	13	is	a	parent	of	24,	22,



and	23	are	siblings,	and	43	and	44	are	children	of	33.	A	DODAG	is	said	to
be	grounded	 if	 it	 is	connected	to	what	RPL	calls	a	“goal,”	which	can	be	a
node	connected	to	an	external	(non-LLN)	private	IP	network	or	the	public
Internet.	A	non-grounded	DODAG	is	called	a	floating	DODAG.

RPL	 uses	 iterations	 controlled	 by	 the	 DODAG	 root	 to	 maintain	 the
DODAG;	 the	 DODAGSequenceNumber	 is	 a	 counter	 incremented	 by	 the
DODAG	root	to	specify	the	iteration	number	of	the	DODAG.

A	mechanism	is	now	needed	to	provide	routing	information	in	the	down
direction	(for	the	traffic	from	the	route	to	the	leaf)	and	for	the	P2P	direction
since	 the	DODAG	provides	defaults	routes	 to	 the	DODAG	root	 from	each
node	 in	 the	 network.	 For	 this	 mechanism,	 RPL	 has	 defined	 another
ICMPv6	message	called	the	DAO	message.	DAO	messages	(simply	referred
to	 as	 DAO)	 are	 used	 to	 advertise	 prefix	 reachability	 toward	 the	 leaves.
DAOs	 carry	 prefix	 information	 along	 with	 a	 lifetime	 (to	 determine	 the
freshness	 of	 the	 destination	 advertisement)	 and	 depth	 or	 path	 cost
information	 to	determine	how	 far	 the	destination	 is.	Note	 that	 the	path	 in
this	direction	is	dictated	by	the	DODAG	built	by	RPL	in	the	other	direction.
In	 some	 cases	 DAOs	 may	 also	 record	 the	 set	 of	 visited	 nodes.	 This	 is
particularly	 useful	when	 the	 intermediate	 nodes	 cannot	 store	 any	 routing
states,	 which	 is	 discussed	 later	 in	 Section	 17.6.6.	 If	 a	 parent	 receives
destination	advertisements	 that	 can	be	aggregated	 from	multiple	 children,
local	 policy	 may	 be	 used	 to	 perform	 prefix	 aggregation	 in	 an	 attempt	 to
reduce	 routing	 table	 and	 the	 size	 of	DAO	messages.	 Note	 that	 redundant
DAO	 messages	 are	 aggregated	 along	 the	 DODAG.	 An	 OF	 may	 be
specifically	designed	to	maximize	prefix	aggregation.

What	about	P2P	traffic?	RPL	supports	P2P	traffic.	When	node	A	sends
a	 packet	 destined	 to	 node	 B,	 if	 B	 is	 not	 in	 direct	 reach,	 it	 forwards	 the
packet	 to	 its	 DODAG	 parent.	 From	 there,	 if	 the	 destination	 is	 reachable
from	one	of	its	children,	the	packet	is	forwarded	in	the	down	direction.	In
other	words,	the	packet	travels	up	to	a	common	ancestor	at	which	point	it	is
forwarded	 in	 the	 down	 direction	 toward	 the	 destination.	 An	 interesting
optimization	periodically	emits	link-local	multicast	IPv6	DAOs.	Thus	if	the
destination	 is	 in	direct	 range	 (one	hop	away),	 a	node	 can	 send	 the	packet
directly	 to	 the	 destination	 without	 following	 the	 DODAG.	 The	 degree	 of
optimality	for	P2P	traffic	is	discussed	in	Section	17.6.10.

Sending	 DIO	 and	 DAO	 messages	 is	 governed	 by	 the	 use	 of	 trickle
timers.	 The	 trickle	 timers	 use	 dynamic	 timers	 that	 govern	 the	 sending	 of
RPL	 control	 messages	 in	 an	 attempt	 to	 reduce	 redundant	 messages	 as
discussed	 in	detail	 later	 in	Section	 17.6.10.	When	 the	DODAG	 is	 unstable



(e.g.,	 the	 DODAG	 is	 being	 rebuilt)	 RPL	 control	 messages	 are	 sent	 more
frequently	 (the	DODAG	becomes	 inconsistent).	On	 the	 other	hand,	 as	 the
DODAG	stabilizes	messages	are	sent	 less	often	to	reduce	the	control	plane
overhead,	which	is	very	important	in	LLNs.

Once	 the	DODAG	 is	built	and	routing	 tables	are	populated,	 routing	 is
fully	operational.	As	links	and	nodes	fail,	paths	are	repaired	using	local	and
global	repair	mechanisms.	Local	repairs	quickly	find	a	backup	path	without
an	 attempt	 to	 globally	 reoptimize	 the	 DODAG	 entirely,	 whereas	 global
repairs	rely	on	a	reoptimization	process	driven	by	the	DODAG	root.

RPL	 also	 supports	 the	 concept	 of	 DODAG	 instances	 identified	 by	 an
Instance	ID	called	the	RPLInstanceID.	It	might	be	useful	to	form	different
topologies	according	 to	various	sets	of	constraints	and	OFs.	An	RPL	node
may	join	multiple	DODAG	instances;	 for	example,	one	DODAG	optimizes
for	 high	 reliability	 and	 another	 DODAG	 optimizes	 for	 low	 latency.	 Data
packets	are	then	forwarded	along	the	appropriate	DODAG	according	to	the
application	requirements.
	
17.6.2	Use	of	Multiple	DODAG	and	the	Concept	of	RPL	Instance
As	 previously	 discussed,	 a	 DODAG	 is	 a	 set	 of	 vertices	 connected	 by

directed	edges	with	no	directed	cycles.	As	shown	in	Figure	17.2,	RPL	builds
DODAGs	 forming	 a	 set	 of	 paths	 from	 each	 leaf	 to	 the	 DODAG	 root
(typically	 an	 LBR).	 In	 contrast	 with	 tree	 topologies,	 DODAGs	 offer
redundant	 paths,	 a	 MUST	 requirement	 for	 LLNs.	 Thus	 if	 the	 topology
permits,	there	is	always	more	than	one	path	between	a	leaf	and	the	DODAG
root.

The	notion	of	DODAG	instance	 is	quite	straightforward	and	similar	to
the	 concept	 of	 multi-topology	 routing	 (MTR)	 supported	 by	 other	 routing
protocols	such	as	OSPF	and	IS-IS.	The	idea	is	to	support	the	construction	of
multiple	 DODAGs	 over	 a	 given	 physical	 topology.	 Why	 more	 than	 one
DODAG?	This	is	done	to	steer	traffic	to	different	paths	optimized	according
to	 the	 requirements.	 Consider	 the	 case	 of	 a	 physical	 network	 made	 of	 a
series	of	 links	with	different	qualities	(e.g.,	reliability,	throughput,	 latency)
and	 nodes	 with	 different	 attributes	 (e.g.,	 battery-powered	 vs.	 main-
powered).	If	the	network	carries	traffic	with	different	QoS	requirements,	it
might	be	useful	to	build	one	DODAG	optimized	for	low	latency	and	another
DODAG	 optimized	 to	 provide	 high	 reliability	 while	 avoiding	 battery-
operated	nodes.	In	this	case,	RPL	can	build	two	DODAGs	according	to	two
different	OFs.	If	a	node	carries	both	types	of	traffic	it	may	then	decide	to	join
both	DODAGs	 (DODAG	 instance).	When	 a	 delay-sensitive	 packet	must	 be



sent	 along	 the	 DODAG,	 it	 is	 flagged	 (in	 the	 packet	 header)	 with	 the
appropriate	 DODAG	 instance	 and	 forwarded	 along	 the	 appropriate
DODAG.	This	decision	is	made	by	the	application.

Figure	 17.3	 shows	 how	 two	 DODAGs	 are	 built	 from	 a	 given	 physical
topology.	 DODAG	 1	 (instance	 1)	 is	 built	 to	 optimize	 the	 path	 reliability
while	 avoiding	 battery-operated	 nodes,	whereas	DODAG	 2	 (instance	 2)	 is
optimizing	 the	 latency.	 Depending	 on	 the	 sequence	 event,	 RPL	 may	 not
compute	 the	 exact	 same	 routing	 topology.	 Also	 note	 that	 only	 preferred
parents	are	depicted	on	the	picture	along	with	siblings.

Figure	17.3	RPL	DODODAG	and	instance.
	

A	destination-oriented	DODAG	(DODODAG)	is	a	DODAG	rooted	at	a
single	 destination.	 Within	 an	 instance,	 the	 LLN	 routing	 topology	 can	 be
partitioned	 among	 multiple	 DODAGs	 for	 a	 number	 of	 reasons	 such	 as
providing	 a	 greater	 scalability.	 Figure	 17.4	 shows	multiple	DODAGs	 in	 a
specific	DODAG	instance.



Figure	17.4	RPL	multiple	DODAGs	within	a	DODAG	instance.
	

A	node	can	only	join	a	single	DODODAG	within	a	DODAG	instance.
A	DODAG	is	 identified	by	 its	 instance	 (RPLInstanceID).	A	DODAG	is

uniquely	 identified	 by	 the	 combination	 of	 the	 DODAG	 instances
(RPLInstanceID)	 and	 the	 DODAGID	 (the	 identifier	 of	 the	 DODAG	 that
must	 be	 unique	 within	 the	 scope	 of	 a	 DODAG	 instance	 in	 the	 LLN).	 A
DODAG	 iteration	 is	 uniquely	 identified	 by	 the	 tuple	 {RPLInstanceID,
DODAGID,	DODAGSequenceNumber}.

17.6.3	RPL	Messages
A	 good	 way	 to	 gain	 further	 insight	 into	 a	 protocol	 after	 a	 protocol

overview	 is	 to	 look	 at	 the	 protocol	 packet	 formats.	 RPL	 specifies	 three
messages	 (using	 the	 same	 ICMPv6	 codepoint):	 the	 DODAG	 Information
Object	 (DIO),	 the	DODAG	Destination	Advertisement	Object	 (DAO),	and
the	DODAG	information	solicitation	message	(DIS).

17.6.3.1	DIO	Messages
DIO	messages	 are	 sent	 by	 RPL	 nodes	 to	 advertise	 a	 DODAG	 and	 its

characteristics,	 thus	DIOs	are	used	for	DODAG	discovery,	 formation,	and
maintenance.	DIOs	carry	a	 set	of	mandatory	 information	augmented	with
options.

The	DIO	base	 option	 is	mandatory	 and	may	 carry	 several	 suboptions.
The	following	flags	and	fields	are	currently	defined:



•	 Grounded	 (G):	 Indicates	 whether	 the	 DODAG	 is	 grounded,	 in
other	words,	 the	DODAG	root	 is	a	goal	 for	the	OF	(e.g.,	 the	DODAG
root	is	connected	to	a	non-LLN	IP	network	such	as	a	private	network
or	the	public	Internet).
•	Destination	Advertisement	Trigger	(T):	The	T	bit	is	used	to	trigger

a	 complete	 refresh	 of	 the	 routes	 in	 the	 down	 direction	 (downward
routes).
•	Destination	Advertisement	Stored	(S):	The	S	bit	is	used	to	indicate

that	 a	non-root	 ancestor	 is	 storing	 routing	 table	 entries	 learned	 from
DAO	messages.
•	 Destination	 advertisement	 supported	 (A	 flag):	 The	 A	 flag	 is	 set

when	the	DODAG	root	supports	the	collection	of	prefix	advertisements
and	enables	the	advertisement	of	prefixes	in	the	DODAG.
•	DODAGPreference	(Prf):	The	Prf	is	a	3-bit	field	set	by	the	DODAG

root	 to	 report	 its	 preference.	 It	 can	 be	 used	 to	 engineer	 the	 network
and	make	some	DODAGs	more	attractive	to	join.

	
The	DODAGSequenceNumber	 is	 the	 sequence	number	of	 the	DODAG

that	characterizes	the	DODAG	iteration	and	is	exclusively	controlled	by	the
DODAG	root.

The	 RPLInstanceID	 is	 used	 to	 identify	 the	 DODAG	 instance	 and	 is
provisioned	at	the	DODAG	root.

The	Destination	Advertisement	Trigger	Sequence	Number	(DTSN)	is	an
8-bit	 integer	 set	 by	 the	 node	 sending	 the	 DIO.	 The	 DTSN	 is	 used	 by	 the
procedure	to	maintain	the	downward	routes	as	discussed	in	Section	17.6.6.

The	DODAGID	 is	 a	 128-bit	 integer	 set	 by	 the	 DODAG	 root	 and	 that
uniquely	identifies	the	DODAG.

The	DODAG	Rank	is	the	rank	of	the	node	sending	the	DIO	message.
The	rank	determines	the	relative	position	of	a	node	in	the	DODAG	and

is	used	primarily	for	loop	avoidance.	The	rank	is	computed	according	to	the
OF	 and	 is	 potentially	 subject	 to	 local	 node	 policy.	 The	 rank	 (although
potentially	 derived	 from	 routing	metrics)	 is	 not	 a	metric.	 For	 example,	 a
node	that	first	joins	a	DODAG	may	not	select	the	node	with	the	lowest	rank
as	a	parent	(closer	to	the	DODAG	root)	should	there	be	an	alternate	node
with	a	deeper	rank	advertising	a	path	with	a	lower	cost.	Once	the	rank	has
been	 computed,	 the	 node	 cannot	 join	 a	 new	 parent	 with	 deeper	 rank	 for
loop	 avoidance	 except	 under	 specific	 circumstances	 discussed	 in	 Section
17.6.7.



When	two	nodes	have	 the	 same	rank,	 the	nodes	are	 said	 to	be	 siblings
(they	are	located	at	a	similar	level	of	optimality	in	the	DODAG).	It	is	highly
desirable	 to	make	 the	 rank	 a	 coarse	 value	 to	 favor	 the	 use	 of	 siblings.	 A
sibling	is	a	node	that	has	the	same	rank	and	is	used	to	increase	connectivity.
If	 the	OF	 chooses	 to	 use	 the	 path	ETX	 as	 the	 rank,	more	 than	 likely	 the
nodes	will	 all	 have	 a	 different	 rank	 and	 thus	 the	 probability	 of	 finding	 a
sibling	will	 be	 very	 low.	A	 rounded	ETX	 (a	 coarse-grained	 value	 derived
from	the	ETX)	helps	to	increase	the	probability	of	finding	siblings.	A	node
may	forward	a	packet	to	one	of	its	siblings,	if	the	link	to	its	most	preferred
parent	 is	 not	 viable,	 at	 the	 risk	 of	 forming	 a	 loop	 (loop	 detection
mechanisms	can	then	be	used	to	detect	such	a	loop).

17.6.3.1.1	Use	of	the	Rank	for	DODAG	Parent	Selection
If	 Rank	 (A)	 <	 Rank	 (B),	 then	 node	 A	 is	 located	 in	 a	 more	 optimal

location	 than	node	B	 and	 it	 is	 safe	 for	B	 to	 select	A	 as	 a	DODAG	parent
with	no	risk	of	forming	loops.

On	the	other	hand,	if	Rank(A)	>	Rank(B),	it	is	not	safe	for	B	to	select	A
as	a	parent	(unless	B	joins	the	DODAG	for	the	first	time)	since	A	may	be	in
B’s	sub-DODAG.	Selecting	A	as	a	parent	would	potentially	form	a	routing
loop.	This	may	be	allowed	in	a	limited	manner	according	to	the	max_depth
rule	explained	in	Section	17.6.7	to	allow	for	local	repair.

Note	that	the	rank	is	a	monotonic	scalar.	The	rank	of	a	node	is	always
higher	than	the	rank	of	any	of	its	parents.

The	rank	is	a	16-bit	value	used	for	the	number	of	purposes	described	in
detail	in	this	chapter.	At	the	time	of	writing,	[256]	suggests	to	consider	the
rank	 as	 a	 fixed	 point	 number,	 where	 the	 position	 of	 the	 decimal	 point	 is
determined	 by	 value	 advertised	 by	 the	 DODAG	 root	 called	 the
MinHopRankIncrease.	The	MinHopRankIncrease	represents	the	minimum
amount	that	a	rank	can	increase	on	each	hop	and	is	used	to	detect	siblings.
The	 integer	 portion	 of	 the	 rank	 is	 called	 floor
(Rank/MinHopRankIncrease).

A	 node	 A	 has	 a	 rank	 less	 than	 the	 rank	 of	 a	 node	 B	 if	 floor
(Rank(A)/MinHopRankIncrease)	 is	 less	 than	 floor
(Rank(B)/MinHopRankIncrease).
A	 node	 A	 has	 a	 rank	 greater	 than	 the	 rank	 of	 a	 node	 B	 if	 floor

(Rank(A)/MinHopRankIncrease)	 is	 greater	 than	 floor
(Rank(B)/MinHopRankIncrease).
Two	 nodes	 A	 and	 B	 are	 siblings	 if:	 floor

(Rank(A)/MinHopRankIncrease)	 ==	 floor



(Rank(B)/MinHopRankIncrease).	In	other	words,	A	and	B	are	siblings
if	the	integer	portion	of	their	rank	is	equal.
This	 can	 be	 better	 illustrated	 with	 an	 example.	 If

MinHopRankIncrease	is	equal	to,	say,	25	=	32	and	the	rank	is	equal	to
953,	then	the	integer	portion	of	the	rank	is	equal	to	int(953/32)	=	29.	All
the	nodes	with	a	rank	between	928	and	959	will	have	the	same	integer
part	for	their	rank,	so	they	will	be	siblings.
Note	 that	 this	 may	 still	 change	 but	 this	 would	 not	 affect	 how	 the

notion	of	rank	is	used	in	[256].

	
The	DODAGID	is	a	128-bit	integer	that	uniquely	identifies	the	DODAG

and	 is	 set	by	 the	DODAG	root.	 If	 the	DODAG	root	uses	an	IPv6	address,
the	 same	 IPv6	 address	 must	 not	 be	 used	 by	 any	 other	 uncoordinated
DODAG	root	within	the	LLN	for	the	same	DODAG	instance.

Several	suboptions	are	defined	for	DIOs.	One	of	 the	most	 important	 is
the	 DODAG	metric	 container	 suboption	 used	 to	 report	 the	 path	 metrics
described	in	the	previous	section.

A	 second	 important	 suboption	 is	 the	destination	prefix	 suboption	used
for	 prefix	 advertisement	 in	 the	 down	 direction	 (thus	 to	 provision	 state	 to
route	a	packet	in	the	up	direction)	for	prefixes	other	than	the	default	route.
This	may	be	useful	 to	advertise	prefixes	other	 than	 the	default	 route.	The
prefix	is	accompanied	by	a	preference	field	compliant	with	[59]	and	a	prefix
lifetime.

The	 third	 important	 suboption	 is	 the	DODAG	configuration	suboption
used	to	advertise	several	DODAG	configuration	parameters	such	as	trickle
timers.	 Sending	 of	 RPL	 messages	 is	 governed	 by	 trickle	 timers	 and	 a
detailed	description	 of	 the	 trickle	 algorithm	 can	be	 found	 later	 in	 Section
17.6.10.	 To	 ensure	 consistency	 across	 the	 DODAG,	 the	 trickle	 timer’s
configuration	 is	 advertised	 by	 the	 DODAG	 root.	 Since	 these	 timers	 are
unlikely	 to	 change	 in	 the	DODAG,	 a	 node	may	 decide	 not	 to	 include	 the
DODAG	timer	suboption	in	every	DIO,	except	if	the	DIO	is	sent	in	reply	to
a	DIS.	The	three	parameters	advertised	in	the	DODAG	timer	configuration
suboption	 include	 DIOIntervalDoubling,	 DIOIntervalMin,	 and
DIORedundancyConstant.	 These	 are	 discussed	 in	 detail	 in	 Section	 17.6.9.
Other	DODAG	parameters	such	as	the	DAGMaxRankIncrease	used	by	the
local	 repair	 mechanism	 (specified	 in	 Section	 17.6.7)	 and	 the
MinHopRankIncrease	 are	 also	 advertised.	Other	 parameters	 are	 likely	 to
be	added	in	further	revisions	of	RPL	to	support	additional	features.



17.6.3.2	DAO	Messages
DAO	messages	are	used	to	propagate	destination	information	along	the

DODAG	in	the	up	direction	to	populate	the	routing	tables	of	ancestor	nodes
in	 support	 of	 P2MP	 and	 P2P	 traffic.	 The	 DAO	 message	 includes	 the
following	information:

•	 DAO	 sequence:	 A	 counter	 incremented	 by	 the	 node	 owning	 the
advertised	prefix	each	time	a	new	DAO	message	is	sent.
•	 RPLInstanceID:	 The	 topology	 instance	 ID	 as	 learned	 from	 the

DIO.
•	 DAO	 rank:	 Corresponds	 to	 the	 rank	 of	 the	 node	 that	 owns	 the

prefix.
•	 DAO	 lifetime:	 It	 is	 expressed	 in	 seconds	 and	 corresponds	 to	 the

prefix	lifetime.
•	Route	 tag:	 8-bit	 integer	 that	 can	 be	 used	 to	 tag	 “critical”	 routes.

The	 priority	 could	 be	 used	 to	 indicate	 whether	 the	 route	 should	 be
stored	 by	 the	 nodes	 with	 a	 lower	 rank	 (closer	 to	 the	 DODAG	 root),
which	 could	 be	 useful	 if	 nodes	 have	 limited	 memory	 capacities	 and
must	 be	 selective	 about	which	 destination	 information	 to	 cache.	Note
that	the	size	of	that	field	has	been	changed	several	times	and	is	subject
to	further	changes.
•	Destination	Prefix:	The	Prefix	Length	field	contains	the	number	of

valid	leading	bits	in	the	prefix.
•	 Reverse	 Route	 Stack:	 The	 RRS	 is	 discussed	 in	 detail	 in	 Section

17.6.6,	and	contains	a	number	of	RRCount	(another	field	of	the	DAO
message)	 IPv6	 addresses	 used	 in	 LLNs	 with	 nodes	 that	 cannot	 store
routing	tables.

	
17.6.3.3	DIS	Messages
DIS	messages	 are	 similar	 to	 the	 IPv6	 router	 solicitation	 (RS)	message,

and	used	to	discover	DODAGs	in	the	neighborhood	and	solicit	DIOs	from
RPL	nodes	in	the	neighborhood.	A	DIS	has	no	additional	message	body.

17.6.4	RPL	DODAG	Building	Process
In	 this	 section,	 the	 DODAG	 building	 mode	 of	 operation	 for	 RPL	 is

discussed.	 The	 DODAG	 formation	 is	 governed	 by	 several	 rules:	 the	 RPL
rules	used	for	loop	avoidance	(based	on	the	DODAG	ranks),	the	advertised
OF,	the	advertised	path	metrics,	and	the	policies	of	the	configured	nodes.	A
node	 may	 be	 part	 of	 several	 DODAG	 instances,	 and	 within	 a	 DODAG



instance	there	may	be	several	DODAGs	rooted	by	different	nodes.
DIO	 messages	 are	 sent	 upon	 the	 expiration	 of	 the	 trickle	 timer	 (see

Section	 17.6.10	 for	 more	 details).	 The	 basic	 idea	 is	 to	 send	 DIOs	 more
frequently	when	 a	DODAG	 inconsistency	 is	 detected	 (e.g.,	 when	 the	 node
receives	a	modified	DIO	with	new	DODAG	parameters	such	as	a	new	OF,
new	 DODAGSequenceNumber,	 or	 the	 parent	 advertises	 a	 new	 DODAG
Rank,	etc.),	a	loop	is	detected	(e.g.,	the	node	receives	a	packet	from	a	child
that	is	intended	to	move	down	along	the	same	child	according	to	its	routing
table),	 or	 the	 node	 joins	 a	DODAG	with	 a	 new	DODAGID	or	 has	moved
within	a	DODAG.	When	a	DODAG	inconsistency	is	detected	the	node	resets
its	trickle	timer	to	cause	the	advertisement	of	DIO	messages	more	often.	As
the	DODAG	stabilizes	and	no	 inconsistency	 is	detected,	DIO	messages	are
sent	less	frequently	to	limit	the	control	traffic.

When	 a	 node	 starts	 its	 initialization	 process	 it	 may	 decide	 to	 remain
silent	 until	 it	 hears	 a	DIO	 advertising	 an	 existing	DODAG.	Alternatively,
the	node	may	 issue	a	DIS	message	 to	probe	 the	neighborhood	and	receive
DIO	messages	 from	 its	neighbors	more	quickly.	Another	option	 is	 to	 start
its	 own	 floating	 DODAG	 and	 to	 begin	multicasting	 DIO	messages	 for	 its
own	 floating	 DODAG	 (note	 that	 this	 may	 be	 desired	 if	 it	 is	 required	 to
establish	 and	 maintain	 inner	 connectivity	 between	 a	 set	 of	 nodes	 in	 the
absence	 of	 a	 goal/grounded	 DODAG).	 Unicast	 DIOs	 are	 sent	 in	 reply	 to
unicast	 DIS	 messages	 and	 also	 include	 a	 complete	 set	 of	 DODAG
configuration	options.

The	G-bit	is	only	set	if	the	DODAG	root	is	a	goal.	If	the	advertising	node
is	 the	 DODAG	 root,	 the	 rank	 is	 equal	 to	 the	 RPL	 variable	 called	 the
ROOT_RANK	(equal	to	1).

Upon	receiving	a	DIO	message,	a	node	must	first	determine	whether	or
not	the	DIO	message	should	be	processed.	If	the	DIO	message	is	malformed,
it	 is	 silently	 discarded.	 If	 not,	 the	 node	must	 then	 determine	whether	 the
DIO	was	sent	by	a	candidate	neighbor.	The	notion	of	a	candidate	neighbor
is	 tightly	 coupled	with	 the	 notion	 of	 local	 confidence,	 and	 that	 important
notion	is	implementation	specific	and	used	to	determine	if	a	node	is	eligible
for	parent	selection.	For	example,	when	a	node	first	hears	about	a	neighbor
it	may	choose	to	wait	for	a	period	of	time	to	make	sure	that	the	connecting
link	is	sufficiently	reliable.

Then	the	node	determines	whether	the	DIO	is	related	to	a	DODAG	it	is
already	a	member	of.

If	the	rank	of	the	node	advertising	the	DIO	is	less	than	the	node’s	rank
plus	some	RPL	configurable	value	called	the	DAGMaxRankIncrease,	 then



the	 DIO	 is	 processed.	 This	 rule	 is	 called	 the	 max_depth	 rule	 and	 is
explained	in	detail	in	Section	17.6.7.

If	 the	DIO	message	 is	 sent	 by	 a	 node	with	 a	 lesser	 rank	 and	 the	DIO
message	 advertises	 a	 (different)	 DODAG	 that	 provides	 a	 better	 path
according	to	the	OF,	then	the	DIO	message	must	be	processed.

The	DIO	must	also	be	processed	if	it	is	originated	by	a	DODAG	parent
for	a	different	DODAG	than	the	node	belongs	to	since	the	DODAG	parent
may	have	jumped	to	another	DODAG.

A	 collision	may	 occur	 if	 two	 nodes	 simultaneously	 send	DIOs	 to	 each
other	 and	 decide	 to	 join	 each	 other.	 This	 is	 why	 DIO	messages	 received
during	 the	 risk	window	are	 simply	 not	 processed.	Because	 of	 the	 random
effect	of	the	trickle	timers,	it	is	expected	that	the	next	DIO	messages	are	not
likely	to	collide	again.

For	 the	 DODAG	 root	 operation	 on	 the	 DODAGSequenceNumber	 the
DODAGSequenceNumber	is	only	incremented	by	the	DODAG	root.	It	may
be	incremented	upon	the	expiration	of	a	configurable	timer,	upon	a	manual
command	 on	 the	 DODAG	 root,	 or	 upon	 the	 reception	 of	 a	 signal	 from
downstream	(yet	 to	be	determined	by	 the	RPL	specification).	A	node	may
safely	attach	to	a	parent	regardless	of	 the	advertised	rank	 if	 the	parent	 in
the	next	DODAG	iteration	(the	DODAGSequenceNumber	is	higher	than	the
node’s	 current	 one)	 since	 that	 parent	 cannot	 possibly	 belong	 to	 the	 sub-
DODAG	of	that	node.	This	is	further	discussed	in	Section	17.6.8.

17.6.4.1	A	Step-by-step	Example
The	DODAG	building	process	is	illustrated	by	Figure	17.5,	which	shows

the	 physical	 network	 topology	 and	 how	 the	 DODAG	 is	 built.	 The	 link
metric	 is	 the	 ETX	 and	 the	 OF	 finds	 the	 path	 minimizing	 the	 path	 ETX
where	the	path	ETX	is	defined	as	the	sum	of	the	ETX	for	all	traversed	links.
The	 OF	 specifies	 an	 additional	 constraint	 of	 avoiding	 battery-operated
nodes	and	the	rank	is	based	on	the	hop	count.	Note	that	the	OF	could	have
been	different;	 for	 example,	 it	 could	have	been	computed	as	a	 function	of
the	ETX	(e.g.,	Rank	=	int(ETX*10)/10).

Step	 1:	 The	 DODAG	 root	 starts	 sending	 link-local	 multicast	 DIO
messages.	This	 is	one	possible	event	sequence.	One	of	 the	nodes	could
also	 decide	 to	 send	 a	 DIS	 message,	 in	 which	 case	 the	 DODAG	 root
(LBR)	would	immediately	send	the	DIO	in	reply	to	the	DIS	message.
Step	2:	Nodes	11,	12,	and	13	receive	the	LBR	DIO.	Upon	processing

the	DIO	 (which	 comes	 from	 a	 lower	 ranked	 node	 thus	 a	 lower	 rank
value),	nodes	11,	12,	and	13	select	LBR	as	their	DODAG	parent	(note



that	nodes	12	and	13	may	have	waited	for	some	period	of	time	to	build
enough	 local	confidence).	At	 this	point,	nodes	11,	12,	and	13	compute
their	 new	 rank	 based	 on	 the	 hop	 count	 and	 the	 path	 ETX	 value	 is
computed.	 Node	 11	 also	 selects	 node	 12	 as	 a	 sibling	 and	 vice	 versa
(same	rank).
Step	 3:	 Shows	 the	 resulting	 DODAG	 after	 another	 round	 of

iteration.	Note	that	link	22-11	has	been	pruned	from	the	DODAG	since
node	12	is	a	better	parent	considering	the	OF	(minimize	the	path	ETX).
Node	23	has	selected	two	parents	offering	equal	cost	paths	(ETX	=	3.3).
Step	4:	Shows	the	final	DODAG.	Node	46	has	not	selected	node	35	as

a	best	parent	 since	 the	OF	specifies	 the	constraint	of	not	 traversing	a
battery-operated	 node.	Local	 policy	may	 be	 used	 to	 indicate	whether
constraints	 also	 apply	 to	 siblings	 (in	 this	 example,	 node	 34	 did	 select
node	35	as	a	sibling).	A	potential	 sibling	 loop	33-34-35-33	has	 formed
(discussed	in	Section	17.6.7).

	



Figure	17.5	Example	of	DODAG	formation.
	

The	 shape	 of	 the	 resulting	 DODAG	 depends	 on	 the	 event	 sequence
ordering.

17.6.5	Movements	of	a	Node	Within	and	Between	DODAGs
There	 are	 a	 few	 fundamental	 rules	 that	 govern	 movements	 within	 a

DODAG:

1.	A	node	 is	 free	 to	 jump	 to	any	position	 in	any	other	DODODAG
that	has	not	been	previously	visited	at	any	 time.	For	example,	a	node
may	 decide	 to	 select	 a	 new	 node	 as	 a	 parent	 that	 belongs	 to	 a	 new
DODAG	 regardless	 of	 the	 rank.	 The	 new	DODAG	may	 be	 the	 same
DODAG	 (same	 DODAGID,	 same	 RPLInstanceID)	 but	 with	 a	 higher
DAGSequenceNumber	 or	 it	 may	 be	 a	 different	 DODAG	 (different
DODAGID	 and/or	 different	 RPLInstanceID).	 It	 is	 recommended	 to



jump	 to	 another	 DODAG	 only	 when	 all	 queued	 packets	 have	 been
transmitted	along	 the	previous	DODAG.	Jumping	back	 to	a	previous
DODAG	 is	 similar	 to	 moving	 inside	 a	 DODAG.	 This	 is	 why	 a	 node
should	 remember	 its	 DODAG	 identified	 by	 the	 RPLInstanceID,
DODAGID,	and	DODAGSequenceNumber	along	with	 its	 rank	within
that	DODAG.	Jumping	 (moving)	back	should	 then	honor	 the	rules	of
the	previous	position	so	as	not	to	potentially	create	a	loop	(max_depth
rule).
2.	 A	 node	 may	 advertise	 a	 lower	 rank	 at	 any	 time	 when	 it	 has

jumped	to	another	DODAG.
3.	Within	a	DODODAG	iteration	a	node	must	not	advertise	a	rank

deeper	than	L+DAGMaxRankIncrease	where	L	is	the	lowest	rank.	The
DAGMaxRankIncrease	is	an	RPL	variable	advertised	by	the	DODAG
root,	and	a	value	of	0	has	the	effect	of	disabling	this	rule.	There	is	one
exception	 to	 this	 rule;	 the	 poison-and-wait	 rule	 where	 the	 node
advertises	an	infinite	rank	that	is	described	right	after.	The	reasons	for
this	rule	are	further	discussed	in	Section	17.6.7.

	
When	a	node	prepares	to	move	to	a	new	DODAG	iteration	it	may	decide

to	defer	the	movement	to	see	if	it	could	join	another	node	with	a	better	path
(even	if	the	rank	is	higher)	cost	according	to	the	OF.

It	is	perfectly	safe	for	a	node	to	move	up	in	the	DODAG	and	select	new
parents	with	a	 lower	rank	than	 its	current	parents’	rank.	In	this	case,	 the
node	must	 abandon	 all	 prior	 parents	 and	 siblings	 that	 have	 now	 become
deeper	than	the	node	in	the	DODAG	and	potentially	select	new	ones.

If	 a	 node	wants	 to	move	 down	 in	 its	 DODODAG	 causing	 the	 rank	 to
increase,	it	may	use	the	poison-and-wait	rule	discussed	in	Section	17.6.7.

What	if	a	node	receives	a	DIO	message	specifying	an	OF	that	it	does	not
support	or	recognize?	The	two	options	are	either	not	to	join	the	DODAG	or
to	join	as	a	leaf.	Such	a	node	may	not	join	as	a	router	since	the	node	would
then	be	incapable	of	propagating	an	appropriate	metric,	which	may	lead	to
a	DODAG	using	an	 inconsistent	metric.	Thus	when	a	node	 joins	as	 a	 leaf
node,	it	can	receive	and	process	DIO	messages	and	send	DAO	messages.	But
it	should	not	send	DIO	messages	and	thus	cannot	act	as	an	RPL	router.

17.6.6	 Populating	 the	 Routing	 Tables	 Along	 the	 DODAG	 Using	 DAO
Messages

As	 the	DODAG	 is	 being	 built,	 the	 next	 task	 is	 populating	 the	 routing
tables	along	the	DODAG	in	support	of	the	down	traffic	(toward	the	leaves).



DAO	messages	are	used	to	propagate	prefix	reachability	along	the	DODAG.
DAO	operation	is	still	being	discussed	within	the	IETF	ROLL	Working

Group.	 More	 than	 likely	 several	 changes	 will	 take	 place	 and	 the
mechanisms	described	in	this	section	reflect	the	DAO	mode	of	operation	at
the	time	of	writing:	the	reference	should	be	the	final	RFC	for	RPL.

A	sequence	number	is	included	to	detect	the	freshness	of	the	information
and	 outdated	 or	 duplicate	 messages	 are	 simply	 discarded.	 The	 sequence
number	 is	 incremented	 by	 the	 node	 that	 owns	 the	 prefix.	 A	 node	 sends
unicast	DAO	to	its	preferred	parent	only	(note	that	this	is	the	option	taken
by	 RPL	 at	 the	 time	 of	 writing;	 further	 revisions	 of	 RPL	 may	 suggest
sending	 the	 DAO	 messages	 to	 a	 set	 of	 parents,	 which	 would	 require
extensions	 to	 the	 DAO	message	 propagation	 rules).	 Allowing	 for	 sending
DAO	messages	to	more	than	one	parent	would	enable	load	balancing	in	the
down	direction	of	the	DODAG.

The	DAO	message	contains	the	rank	of	the	node	owning	the	advertised
prefix.	That	rank	may	be	used	by	a	node	who	received	multiple	DAO	from
different	 children	 for	 the	 same	destination	prefix	 as	 a	 selection	 criteria	 to
select	the	next-hop	that	provides	the	more	optimal	route,	although	the	rank
may	 not	 reflect	 the	 actual	 path	 cost	 to	 the	 advertising	 node.	 RPL	 also
supports	 the	 inclusion	 of	 the	DAG	Metric	Container	 in	DAO	messages	 to
provide	the	path	cost.

Note	that	RPL	supports	the	ability	to	prune	a	route	by	sending	a	prefix
with	a	lifetime	set	to	0.	This	is	also	called	a	“no-DAO”	message.

17.6.6.1	Use	of	the	Reverse	Route	Stack	in	DAO	Message
Some	nodes	 in	 the	network	may	have	 significant	constraints	 regarding

memory	 and	 may	 be	 incapable	 of	 storing	 routing	 entries	 for	 downward
routes.	Although	 not	 an	 issue	 in	 support	 of	 the	MP2P	 traffic,	 such	 nodes
cannot	 store	 routing	 states	 upon	 receiving	 DAO	 messages	 from	 their
children	 and,	 consequently,	 the	 P2MP	 traffic	 or	 P2P	 traffic	 cannot	 be
routed	 to	 the	 destination	 leaf.	 Thus	 RPL	 has	 specified	 extensions	 to
accommodate	this	type	of	node	(also	called	non-storing	nodes)	in	LLNs.	The
mechanism	 records	 paths	 traversing	memory-less	 nodes	when	 forwarding
the	DAO.	Let’s	 consider	Figure	 17.6	where	 nodes	 22	 and	 32	 cannot	 store
any	routing	updates.	P1	and	P2	are	 two	 IPv6	prefixes	owned	by	nodes	42
and	 43,	 respectively,	 and	 advertised	 to	 node	 32	 by	means	 of	 DAO.	 Upon
receiving	 the	 unicast	 DAO	 message,	 node	 32	 appends	 the	 IPv6	 prefix	 of
node	42	to	the	reverse	route	stack	of	the	received	DAO.	Upon	receiving	the
DAO	from	node	32,	node	22	(which	is	also	memory-less)	performs	a	similar
operation	 and	 appends	 the	 IPv6	 address	 of	 node	 32.	 Each	 time,	 the



RRCount	 counter	 is	 incremented.	Once	 the	DAO	message	 reaches	 a	node
capable	of	 storing	routing	states	 (node	12),	 the	node	detects	 that	 the	DAO
has	 traversed	 a	 region	 with	 nodes	 incapable	 of	 storing	 routing	 states	 by
observing	the	presence	of	the	reverse	route	stack	in	the	DAO.	Then	node	12
simply	extracts	the	set	of	hops	associated	with	the	advertised	prefix,	stores
them	 locally	 in	 its	 routing	 table,	 and	 then	 clears	 the	 reverse	 stack	header
and	the	RRCount	counter.	Upon	receiving	a	packet	destined	to,	say,	prefix
P1,	node	12	consults	in	the	routing	table	and	makes	use	of	source	routing	to
send	the	packet	to	node	42.	This	allows	reaching	the	final	destination	with
intermediate	 nodes	 incapable	 of	 storing	 states.	 This	 mechanism	 can	 be
generalized	 to	 a	 network	 exclusively	 made	 of	 memory-less	 nodes	 thus
leading	to	a	situation	where	all	node-to-node	communication	would	transit
via	the	DODAG	root.

Figure	17.6	Use	of	reverse	route	stack	in	DAO	message.
	

Thus	DAO	message	can	be	used	 to	propagate	reachability	 information
and	also	 to	record	routes	 for	regions	comprising	non-storing	nodes.	These
two	mechanisms	could	also	be	decoupled.

The	source	routing	mechanisms	used	by	RPL	have	not	yet	been	defined.
They	 could	 be	 based	 on	 IPv6	 source	 routing,	which	would	 require	 a	 new
extended	 header	 (potentially	 with	 compressed	 IPv6	 addresses)	 or	 labels.



Furthermore,	the	mechanism	described	here	is	subject	to	change	and	RPL
may	evolve	to	not	allow	for	the	mix	of	storing	and	non	storing	nodes	in	the
same	network	in	an	attempt	to	simplify	the	specification.

17.6.6.2	Routing	Table	Maintenance
If	 a	 node	 loses	 routing	 adjacency	 with	 a	 child	 for	 which	 it	 has	 an

associated	 prefix,	 it	 should	 clean	 up	 the	 corresponding	 routing	 entry	 and
report	 the	 lost	 route	 to	 it	 parents	 by	 sending	 a	 no-DAO	message	 for	 the
corresponding	entry.

Prefixes	may	 be	 in	 three	 different	 states:	 (1)	 connected	 (prefix	 locally
owned	 by	 the	 node),	 (2)	 reachable	 (prefix	 with	 a	 non-0	 lifetime	 received
from	a	child),	and	(3)	unreachable	(prefix	that	has	timed	out	for	which	a	no-
DAO	message	will	be	sent	to	the	parent	the	node	had	previously	advertised
that	prefix	to).

Two	timers	have	been	specified	for	the	processing	of	DAO	messages:

•	DelayDAO	timer:	This	timer	is	armed	each	time	there	is	a	trigger
to	 send	 a	 new	 DAO	message	 (e.g.,	 reception	 of	 a	 DIO	 message	 that
requests	 to	 receive	 new	 DAO	messages).	 At	 the	 time	 of	 writing,	 the
DelayDAO	 timer	 is	 set	 to	 a	 random	 value	 between	 [DEF_DAO-
LATENCY/Rank(Node)]	 and	 [DEF_DAO_LATENCY/Rank	 (parent’s
node)]	for	nodes	deeper	in	the	DODAG	to	advertise	their	prefixes	first.
By	 attempting	 to	 order	 the	 sequencing	 of	 DAO,	 the	 chances	 to
aggregate	 prefixes	 along	 the	 DODAG	 in	 an	 attempt	 to	 reduce	 the
number	of	DAO	messages	and	routing	table	size	increase.
•	RemoveTimer:	This	timer	is	used	to	remove	stale	prefixes	that	are

no	 longer	 advertised	 by	 nodes	 in	 the	 sub-DODAG.	 There	 is	 a
mechanism	that	allows	a	node	to	request	DAO	to	be	sent	to	refresh	the
states.	 In	 the	 absence	 of	 replies	 after	 n	 requests,	 the	 timer	 is	 started
and	 upon	 its	 expiration	 routes	 are	 removed	 in	 the	 absence	 of	 DAO
advertising	 these	 routes.	 The	 node	 then	 also	 informs	 its	 own	 parent
with	a	no-DAO.

	
One	 event	 that	 triggers	 the	 sending	 of	 a	 DAO	 message	 (or	 more

precisely	 arming	 the	 DelayDAO	 timer)	 is	 the	 reception	 of	 a	 new	 DIO
message	from	a	parent.

All	 routes	 learned	 through	 DAO	 messages	 are	 removed	 if	 the
corresponding	 interface	 or	 the	 routing	 adjacency	 for	 these	 prefixes	 is
determined	as	down.



DAOs	 are	 sent	 as	 unicast	 messages	 to	 DODAG	 parents,	 but	 they	 can
also	be	sent	to	the	link-local	scope	all-nodes	multicast	address	(FF02::1).	In
the	 case	 of	 multicast	 messages,	 the	 node	 only	 advertises	 its	 own	 local
prefixes,	and	these	prefixes	can	also	be	advertised	by	a	node	to	its	DODAG
parent	 using	 a	 unicast	 DAO.	 A	 node	 is	 not	 allowed	 to	 advertise	 prefixes
learned	from	one	of	its	children	using	multicast	DAO.	The	main	purpose	of
multicast	DAO	is	to	help	with	the	“one-hop”	P2P	traffic	between	two	nodes
that	can	communicate	directly	with	each	other	even	when	the	link	does	not
belong	to	the	DODAG.

As	 illustrated	 in	Figure	17.7,	 a	multicast	DAO	 is	 received	by	 the	node
from	node	23	advertising	prefix	P1.	Thus	if	a	packet	received	or	originated
by	 node	 32	 is	 destined	 to	 prefix	 P1,	 it	 is	 sent	 directly	 to	 node	 23	without
having	 to	 follow	 the	 DODAG.	 In	 the	 absence	 of	 multicast	 DAO,	 such	 a
packet	would	first	be	sent	to	the	parent	of	node	32	(node	22),	which	would
relay	the	packet	to	 its	parent	(node	12).	At	this	point,	node	12	would	have
P1	in	its	routing	table	due	to	the	DAO	message	received	from	its	child,	node
23.	Thus	the	path	would	have	been	32-22-12-23.

Figure	17.7	P2P	routing	in	a	DODAG	with	multicast	DAO.
	

In	its	current	form	there	is	exactly	one	prefix	per	DAO	message.	But	as
prefixes	 travel	 along	 the	 DODAG,	 a	 node	 can	 factor	 out	 some	 of	 their
common	attributes.	For	example,	prefixes	advertised	at	the	same	rank	could



be	packed	in	the	same	DAO	message	with	a	unique	rank	without	needing	to
repeat	the	same	rank	for	each	prefix.	The	same	reasoning	applies	to	many
other	prefix	attributes.	Thus	by	packing	prefixes	into	the	same	message	and
factoring	 out	 their	 common	 attributes,	 the	 control	 traffic	 overhead	 is
reduced	and	wasting	bandwidth	is	avoided.	More	than	likely	DAO	packing
will	be	added	to	the	RPL	specification.

17.6.7	Loop	Avoidance	and	Loop	Detection	Mechanisms	in	RPL
Routing	 loops	 are	 always	 undesirable	 and	 one	 of	 the	 objectives	 of

routing	protocols	is	to	avoid	the	formation	of	loops	whenever	possible.
In	high-speed	networks,	the	packet	TTL	is	decremented	at	each	hop	so	a

looping	packet	 is	 quickly	 destroyed	 even	 if	 the	 loop	has	 a	 short	 duration.
Even	with	link	state	routing	protocols	such	as	OSPF	and	IS-IS,	temporary
loops	(often	called	micro-loop	due	to	their	limited	lifetime)	may	form	during
network	topology	changes	due	to	the	temporary	lack	of	synchronization	of
the	node’s	LSDB.	At	high	data	rates,	even	a	short	duration	loop	can	lead	to
packet	drops	and	link	congestion.	Various	mechanisms	have	been	proposed
to	avoid	such	loops.

In	 LLNs,	 the	 situation	 is	 somewhat	 different.	 First	 the	 traffic	 rate	 is
generally	very	low,	thus	a	temporary	loop	may	have	a	very	limited	impact.
Second,	 it	 is	 extremely	 important	 not	 to	 overreact	 in	 the	 presence	 of
instability.	 In	 contrast	with	 “traditional”	 IP	networks	where	 fast	 reaction
(reconvergence)	 is	 very	 important,	 it	 is	 crucial	 not	 to	 react	 too	quickly	 in
LLNs.	Thus	 loops	may	exist;	 they	must	be	avoided	whenever	possible	and
detected	 when	 they	 occur.	 RPL	 does	 not	 fundamentally	 guarantee	 the
absence	of	temporary	loops,	which	would	imply	expensive	mechanisms	for
the	 control	 plane	 and	 may	 not	 be	 appropriate	 to	 lossy	 and	 unstable
environments.	 RPL	 instead	 tries	 to	 avoid	 loops	 by	 using	 a	 loop	 detection
mechanism	via	data	path	validation.

17.6.7.1	Loop	Avoidance
One	 of	 the	RPL’s	 rules,	 the	max_depth	 rule,	 states	 that	 a	 node	 is	 not

allowed	 to	 select	 as	 a	 parent	 a	 node	 with	 a	 rank	 higher	 than	 the	 node’s
rank+DAGMaxRankIncrease.	 Let’s	 explain	 why	 this	 rule	 exists	 by
considering	the	network	depicted	in	Figure	17.5.

The	 first	 reason	 is	 simply	 to	 reduce	 the	 risk	 of	 a	 node	 attaching	 to
another	 node	 that	 belongs	 to	 its	 own	 sub-DODAG,	 thus	 leading	 to	 a	 loop
that	may	require	counting	to	infinity.	For	example,	in	Figure	17.5	if	node	24
loses	all	 of	 its	parents	and	decides	 to	 select	node	46	as	a	parent,	 since	 the
path	to	the	root	from	node	46	is	via	node	24,	a	loop	would	form	and	node	24
has	no	way	to	learn	that	node	46	actually	belongs	to	its	own	sub-DODAG.



As	explained	 in	Section	17.6.8,	 the	max_depth	rule	does	not	prevent	 loops
from	occurring,	but	it	limits	the	loop	sizes	and	allows	the	detection	of	such	a
loop	without	having	to	count	to	infinity.

Another	RPL	rule	requires	that	the	rank	to	 increase	the	set	of	 feasible
parents	 should	 not	 be	 increased	 to	 avoid	 a	 “greediness”	 effect.	 Consider
again	Figure	17.5.	Suppose	that	nodes	22	and	23	are	both	at	rank	3,	share	a
common	parent	(node	12),	and	there	is	a	viable	link	between	them	(nodes	22
and	23	are	siblings).	Suppose	that	both	nodes	22	and	23	try	to	increase	their
set	of	feasible	successors	to	have	alternate	routes	in	case	of	link	failure	with
their	preferred	DODAG	parent	 (e.g.,	by	detaching	and	moving	down	 in	a
controlled	manner).	 Suppose	 that	 node	 22	 first	 decides	 to	 select	 nodes	 23
and	12	as	DODAG	parents	(the	new	rank	is	now	4,	the	highest	rank	of	both
parents).	 Suppose	 now	 that	 node	 23	 does	 not	 follow	 the	 RPL	 rule	 and
processes	 the	DIO	from	node	22	(which	now	has	a	deeper	rank	than	node
23).	Node	 23	may	 then	 decide	 to	 select	 both	 nodes	 12	 and	 22	 as	DODAG
parents,	 thus	 increasing	 its	 rank	 to	 5.	 Then	 node	 22	 may	 reiterate	 the
process	until	counting	to	infinity	and	restarting	the	process.

This	 explains	 two	 fundamental	 loop	avoidance	rules	of	RPL	 (except	 in
specific	conditions	such	as	attempts	to	perform	a	 local	repair	as	explained
next):	 (1)	 a	 first	 node	 is	 not	 allowed	 to	 select	 as	 a	 DODAG	 parent	 a
neighboring	 node	 that	 is	 deeper	 in	 the	DODAG	 than	 the	 first	 node’s	 self
rank+DAGMaxRankIncrease	and	(2)	a	node	is	not	allowed	to	be	greedy	and
attempt	to	move	deeper	in	the	DODAG	to	increase	the	selection	of	DODAG
parents	(possibly	creating	loops	and	instability).	Indeed,	suppose	that	node
23	is	now	allowed	to,	and	for	some	reason	(temporary	better	metric)	decides
to,	select	node	43	as	a	DODAG	parent.	This	leads	to	a	loop	…

Still,	even	with	the	loop	avoidance	mechanisms	stated	earlier,	loops	may
take	place	in	a	number	of	circumstances	within	a	DODAG.	DODAG	loops
can	 take	place	when	a	DIO	message	 is	 lost	 (examples	are	given	 in	Section
17.6.8),	but	these	are	not	the	only	type	of	RPL	loops.	DAO	loops	may	occur
when	 a	 node	 fails	 to	 inform	 its	 parents	 that	 a	 destination	 is	 no	 longer
reachable.	If	the	DAO	message	is	lost,	the	parent	may	keep	the	route	to	that
destination	 in	 its	 routing	 table.	 If	 the	child	wants	 to	 send	a	packet	 to	 that
destination,	the	parent	would	send	it	back	to	the	child	thus	leading	to	a	loop.
One	proposal	 is	 to	use	acknowledgments	 for	DAO	messages,	which	would
dramatically	reduce	the	risk	of	DAO	loops.	Another	possible	type	of	loop	is
a	 sibling	 loop.	 Consider	 again	 Figure	 17.5.	 In	 case	 of	multiple	 failures	 of
links	toward	the	root	(e.g.,	 links	35-24,	34-24,	and	33-23),	a	packet	sent	by
node	35	to	the	LBR	may	very	well	 loop	(35-34-33-35)	since	siblings	are	by



definition	 at	 the	 same	 rank.	 If	 one	 link	 fails	 (e.g.,	 35-24)	 and	 node	 35
reroutes	 a	 packet	 destined	 to	 the	 root	 to	 node	 34,	 the	packet	will	 then	be
forwarded	 to	 the	 root	 by	 node	 34	 with	 no	 loop,	 but	 in	 a	 multi-failure
scenario	like	the	one	described	above	a	sibling	loop	may	form.	In	most	cases
routing	protocols	may	experience	similar	issues	during	multiple	failures	and
do	not	even	try	to	solve	the	problem.

How	about	loops	between	RPL	DODAG	instances?	When	a	host	sends	a
packet	for	a	destination	it	also	selects	an	RPL	DODAG	instance	according
to	the	path	objectives.	RPL	states	that	once	a	packet	is	forwarded	along	an
RPL	instance	(specified	by	the	RPLInstanceID	in	its	header),	it	should	not
be	 rerouted	 along	 another	 DODAG	 instance	 even	 if	 the	 corresponding
DODAG	is	“broken,”	which	is	precisely	to	avoid	such	loops.	RPL	might	be
extended	at	some	point	to	allow	defaulting	to	a	“wide”	connectivity	DODAG
with	minimal	constraints	to	increase	the	chance	of	at	least	one	valid	path	to
the	root,	 in	which	case,	 it	will	be	necessary	to	specify	a	rule	to	avoid	loops
between	DODAG	instances.

17.6.7.2	RPL	Loop	Detection	Mechanism
In	 the	 previous	 section	 we	 showed	 that	 routing	 loops	 are	 hardly

avoidable,	 thus	 loop	 detection	 mechanisms	 must	 be	 available.	 The	 loop
detection	 mechanism	 piggybacks	 routing	 control	 data	 in	 data	 packets	 by
setting	flags	in	the	packet	header	(this	is	sometimes	referred	to	as	data	path
validation).	 The	 exact	 location	 where	 these	 flags	 are	 carried	 is	 not	 yet
defined	 (e.g.,	 flow	 label,	 existing,	or	even	new	IPv6	extended	header).	The
idea	is	to	set	a	flag	in	the	packet	header	that	is	used	to	verify	that	the	packet
is	making	forward	progress	in	order	to	detect	loops,	or	to	detect	a	DODAG
inconsistency.

For	example,	when	a	packet	 is	rerouted	to	a	sibling,	a	flag	is	set	 in	the
packet	header	 to	 indicate	 that	 the	packet	has	been	 forwarded	to	a	sibling.
When	 it	 reaches	 the	next	 hop,	 if	 the	packet	 has	 to	 be	 forwarded	 again	 to
another	sibling	because	there	is	no	available	link	toward	the	root,	then	the
packet	is	dropped.	In	its	current	revision,	RPL	allows	for	a	one-hop	sibling
path	 (only	 1	 bit	 is	 used)	 since	 it	 is	 believed	 that	 in	most	 cases	 a	 one-hop
sibling	will	provide	a	viable	path	to	 the	root	but	 that	a	single	bit	could	be
extended	 to	 a	 counter.	 The	 idea	 is	 to	 limit	 the	 number	 of	 hops	 along	 a
sibling	path	to	avoid	sibling	loops.	Similarly,	DAO	loops	can	be	detected	by
using	a	“down”	bit.	When	a	packet	is	sent	in	the	down	direction,	the	bit	is
set.	Upon	receiving	a	packet	with	the	“down”	bit	set,	if	the	routing	table	of
the	node	indicates	to	send	it	in	the	up	direction,	the	DODAG	is	inconsistent
(there	may	be	a	loop)	and	the	packet	may	be	discarded.	Such	inconsistency



triggers	the	resetting	of	the	DIO	trickle	timers.	As	further	optimization,	the
child	 that	has	 received	 the	packet	 in	 error	 can	 send	 it	 back	 to	 the	parent
with	an	“error”	bit	set	to	trigger	the	cleanup	of	the	route	by	the	parent	that
will	in	turn	send	the	packet	again	to	another	child	or	sibling.	That	process
allows	recursive	routing	table	cleanup.	The	same	mechanism	could	be	used
for	other	types	of	loop	detection	and	routing	table	cleanup.

17.6.8	Global	and	Local	Repair
Repair	 mechanisms	 are	 key	 components	 of	 routing	 protocols.	 As	 the

network	 topology	 changes	 because	 of	 link	 and	 node	 failures	 or	 link/node
metric	changes,	it	is	imperative	to	dynamically	update	the	routing	decision
to	adapt	to	topological	changes.	To	that	end,	various	mechanisms	have	been
defined	 to	 rebuild	 the	DODAG	upon	network	 topology	 changes.	The	 first
case	to	handle	is	DODAG	repair	when	a	network	element	(e.g.,	such	as	a	link
or	 a	 node)	 fails.	 RPL	must	 then	 rebuild	 a	 new	DODAG	 according	 to	 the
new	topology.	Repairs	must	be	handled	with	care	in	lossy	environments	to
avoid	 rebuilding	 a	 DODAG	 upon	 a	 transient	 failure,	 since	 rebuilding	 a
DODAG	 has	 a	 global	 impact	 on	 the	 network	 and	 nodes	 resources.
Overreacting	would	potentially	compromise	routing	stability.

RPL	 specifies	 two	 complementary	 repair	 mechanisms:	 a	 global	 and	 a
local	 repair	 technique.	 There	 are	 many	 other	 routing	 protocols	 that	 use
local	 repair	 strategies	 to	 quickly	 find	 an	 alternate	 path	 (which	 may
momentarily	 not	 be	 optimal)	 deferring	 the	 global	 repair	 of	 the	 entire
topology.	 This	 is	 the	 approach	 taken	 by	 RPL:	 when	 a	 link	 is	 considered
nonviable	 and	 an	 alternate	 path	 must	 be	 found	 (as	 opposed	 to	 being	 a
transient	failure	that	does	not	require	any	action),	the	node	triggers	a	local
repair	 to	 quickly	 find	 an	 alternate	 path,	 even	 if	 the	 alternate	 path	 is	 not
optimum	 (local	 optimum).	Then	 in	a	 second	 step,	which	may	be	deferred,
the	DODAG	is	rebuilt	for	all	the	nodes	in	the	network	(global	optimum).

•	 Local	 repair:	 To	 quickly	 find	 an	 alternate	 path	 when	 the	 most
preferred	path	or	all	other	alternate	paths	are	no	longer	available	with
a	minimal	attempt	to	find	an	optimal	path.
•	Max_depth	rule:	A	node	cannot	advertise	a	rank	less	than	or	equal

to	any	of	its	parents.	It	may	advertise	a	rank	lower	than	in	a	previous
advertisement	 if	 the	 node	 has	 jumped	 in	 the	DODAG	 to	 improve	 its
position.	 The	 max_depth	 rule	 also	 states	 that	 within	 a	 DODAG
iteration	 a	 node	 must	 not	 advertise	 a	 rank	 deeper	 than
L+DAGMaxRankIncrease,	 where	 L	 is	 the	 lowest	 rank	 that	 the	 node
has	 advertised	 within	 the	 DODAG	 iteration.	 Note	 that	 the



DAGMaxRankIncrease	is	an	RPL	variable	advertised	by	the	DODAG
root	and	a	value	of	0	has	the	effect	of	disabling	this	rule.	There	is	one
exception	 to	 this	 rule:	 the	 poison-and-wait	 rule	 where	 the	 node
advertises	an	infinite	rank.

	
Although	 this	 has	 already	been	discussed,	 let’s	 re-explain	why	 such	 as

rule	was	introduced:	one	of	the	main	risks	when	joining	a	parent	is	to	be	on
the	path	of	that	node	to	the	DODAG	root	(in	other	words,	to	attach	to	one
of	a	 children).	Should	 that	happen,	a	 loop	would	be	 formed	and	 the	 rank
would	 then	 continuously	 increment	 until	 reaching	 the	 “infinite”	 value	 for
the	 rank	 at	which	 point	 the	 nodes	would	 detach	 from	 each	 other.	 This	 is
also	referred	to	as	the	“count-to-infinity”	problem	that	also	exists	 in	other
distance	vector	routing	protocols	because	with	this	type	of	routing	protocol
a	node	does	not	have	global	visibility	of	the	network	topology.	Thus	the	idea
is	 to	 introduce	 a	 mechanism	 that	 reduces	 the	 number	 of	 iterations	 of
successive	 increments,	 in	 other	 words,	 avoid	 waiting	 to	 count	 until
“infinity.”	A	node	triggering	a	local	repair	is	allowed	to	choose	as	a	parent	a
node	 whose	 rank	 is	 less	 than	 L+DAGMaxRankIncrease	 where	 L	 is	 the
lowest	 rank	 value	 that	 has	 been	 advertised	 within	 the	 DODAG	 iteration.
Once	again,	the	DODAG	root	may	decide	to	set	the	DAGMaxRankIncrease
value	 to	 0.	 If	 at	 some	 point	 the	 rank	 of	 the	 node	 exceeds
L+DAGMaxRankIncrease,	the	rank	is	considered	equal	to	infinity	and	the
loop	is	broken.	This	mechanism	is	illustrated	using	Figure	17.8.



Figure	17.8	Illustration	of	the	use	of	the	DAGMaxRankIncrease	value.
	

Suppose	 that	 the	 link	 between	 node	 12	 and	 the	 root	 fails	 and
DAGMaxRankIncrease	 =	 5.	 In	 this	 example	 suppose	 that	 node	 12	 has	 a
rank	of	2.	That	means	node	12	can	join	any	node	with	a	maximum	rank	of
(rank_of_node	12)	+	5	=	7.	This	 includes	all	nodes	 in	 the	network	 (in	 this
simple	 example).	 In	 the	 best	 case,	 node	 12	 selects	 a	 node	 that	 does	 not
belong	to	its	sub-DODAG	and	no	loop	is	formed	(e.g.,	if	node	12	decides	to
join	node	21).	Let’s	now	suppose	that	node	12	attaches	to	a	node	in	its	sub-
DODAG,	say	node	32	(note	that	the	line	between	node	12	and	32	is	oriented
in	 the	 12->32	 direction).	 What	 happens	 next	 is	 that	 node	 12	 sends	 an
updated	DIO	reflecting	its	new	rank	5.	Node	22	in	turn	updates	its	rank	to
6,	node	32	updates	 its	rank	to	7,	and	node	12	updates	 its	rank	to	8,	which
exceeds	the	maximum	allowed	value.	At	 this	point	 the	 loop	will	be	broken
and	 the	 node	 will	 detach.	 This	 illustrates	 how	 the	 use	 of	 the
DAGMaxRankIncrease	avoids	counting	to	infinity	(0xFFFF).

In	addition,	RPL	has	defined	another	mechanism	known	as	“poisoning,”



which	is	useful	when	performing	local	repair	while	trying	to	avoid	loops.
The	 poison-and-wait	 mechanism	 considers	 the	 situation	 of	 a	 node

running	 out	 of	 parents	 after	 a	 network	 element	 failure.	 According	 to	 the
local	policy	 the	node	may	simply	decide	 to	root	a	new	“floating”	DODAG
(in	this	case	the	G-bit	of	the	DIO	must	be	cleared)	after	having	set	its	rank
to	 1	 (it	 is	 the	 DODAG	 root)	 and	 the	 DODAGPreference	 (the	 node	 may
decide	to	lower	its	preference).	Alternatively,	the	node	may	decide	to	try	to
rejoin	the	DODAG	by	selecting	a	new	parent.	According	to	the	RPL	rules	it
cannot	 join	 a	 node	 if	 that	 makes	 its	 rank	 higher	 than
L+DAGMaxRankIncrease	 in	 the	 DODAG	 iteration	 that	 it	 has	 left.	 Note
that	if	the	DAGMaxRankIncrease	value	is	set	to	0	by	the	DODAG	root,	the
node	 cannot	 join	 any	 node	 that	would	 increase	 its	 rank.	The	 “poisoning”
mechanism	sends	a	poisoning	DIO	message	to	all	children	to	be	removed	as
a	parent	and	trigger	a	new	parent	selection	so	the	node	is	not	an	ancestor	of
any	of	the	nodes	in	its	sub-DODAG.	This	mechanism	is	illustrated	in	Figure
17.9.



Figure	17.9	Illustration	of	the	Poison-And-Wait	Approach.
	

Suppose	link	24-13	fails.	Node	24	does	not	have	any	alternate	parent	or
sibling.	In	this	case,	it	resets	its	trickle	timer	to	trigger	the	sending	of	a	new
DIO,	and	upon	expiration	of	the	trickle	timer	it	sends	a	DIO	with	Rank	=
Infinite	 (value	 =	 0xFFFF).	 As	 the	 new	 DIO	 travels	 in	 the	 sub-DODAG,
nodes	 act	 to	 potentially	 select	 another	 parent.	 For	 example,	 node	 36
becomes	isolated,	node	35	starts	using	node	23	as	a	new	parent,	so	does	node
34,	etc.	The	end	result	is	that	the	former	children	of	node	24	no	longer	use
node	 24	 as	 an	 ancestor.	Note	 that	 an	 implementation	may	 choose	 to	 send
multiple	 DIO	 poisoning	 messages	 should	 one	 of	 them	 get	 lost.	 After	 the
expiration	of	a	local	timer	(to	give	a	better	chance	for	all	nodes	in	the	sub-
DODAG	to	change	their	next-hop	decision),	 it	becomes	safe	for	node	24	to
call	 the	 OF	 and	 select	 a	 new	 parent	 regardless	 of	 its	 rank	 as	 long	 as	 the
max_depth	rule	is	respected.	The	poisoning	message	may	be	lost	resulting	in



attaching	 to	 a	 child,	 which	 may	 lead	 to	 a	 loop	 (but	 the	 max_depth	 rule
would	avoid	counting	to	infinity).	Step	2	in	Figure	17.9	shows	node	24	then
joining	the	DODAG	via	node	34	before	advertising	its	new	rank.

	Although	the	poisoning	node	advertises	an	infinite	rank,	it	retains	its
original	rank	to	be	compliant	with	the	max_depth	rule	exposed	earlier.

The	poisoning	approach	is	not	“guaranteed”;	the	poisoning	DIO	may	be
lost	resulting	 in	 loop	formation	that	could	be	broken	faster	because	of	 the
max-depth	rule	without	having	to	count	to	infinity.

Global	 repair	 is	 achieved	 by	RPL	when	 the	DODAG	 root	 generates	 a
new	DODAGSequenceNumber.	As	the	DIO	messages	are	propagated	down
the	DODAG,	each	node	detects	the	new	DODAGSequenceNumber,	the	OF
function	is	reevaluated,	and	nodes	potentially	select	new	parents.

Note:	This	allows	bypassing	 the	RPL	rule	 that	 states	a	 first	node	must
not	process	the	DIO	and	select	as	a	parent	a	second	node	that	would	result
in	 the	 first	node	 increasing	 its	 rank	above	L+DAGMaxRankIncrease.	 If	 a
node	 using	 the	 old	 DODAGSequenceNumber	 receives	 a	 DIO	 with	 a	 new
DODAGSequenceNumber	 from	 a	 second	 node	 with	 a	 rank	 too	 high
according	to	the	max_depth	rule,	there	is	no	risk	that	the	second	node	lies	in
the	 sub-DODAG	 of	 the	 first	 node,	 because	 the	 second	 node	 is	 in	 the	 new
DODAG	 iteration	 and,	 consequently,	 there	 is	 no	 risk	 of	 loop.	 Thus	 the
DODAG	 is	 recomputed	 entirely	 according	 to	 the	OF	 creating	 an	 entirely
new	DODAG	iteration.	Such	a	global	repair	 is	not	only	used	to	effectively
“repair”	 a	 DODAG	 but	 also	 to	 reoptimize	 it.	 Indeed,	 once	 a	 node	 has
selected	a	parent,	it	continues	to	ignore	DIO	from	other	nodes	in	its	current
iteration	 resulting	 in	 an	 increase	 in	 its	 rank	 above
L+DAGMaxRankIncrease.	 But	 what	 if	 one	 of	 these	 nodes	 effectively
advertises	 a	 more	 optimal	 route	 according	 to	 the	 OF?	 That	 better	 path
would	 then	 be	 ignored	 until	 a	 new	 DODAGSequenceNumber	 was
originated	 by	 the	DODAG	 root.	Thus	 the	 global	 repair	mechanism	 is	 not
only	used	to	repair	a	DODAG	but	also	to	reoptimize	it.

Global	 repair	 rebuilds	 the	 DODAG.	 As	 such	 it	 is	 not	 only	 used	 as	 a
repair	mechanism	but	also	a	reoptimization	 technique	 for	 the	DODAG.	 It
requires	 extra	 cost	 regarding	 control	 traffic	 and	 is	 driven	 by	 the	 root.
Mechanisms	 could	 be	 added	 to	 request	 the	 DODAG	 root	 to	 trigger	 the
global	repair.	Still,	local	repair	is	useful	since	the	effect	is	localized	and	may
occur	 more	 rapidly.	 As	 with	 any	 distance	 vector	 protocol,	 the	 risk	 of
reattaching	anywhere	in	the	DODAG	is	forming	loops.	Thus	the	max_depth
rule	 has	 been	 defined	 to	 limit	 the	 impact	 of	 forming	 loops,	 and	 to	 avoid
counting	 to	 infinity	 should	 a	 loop	 be	 formed.	Additionally,	RPL	 supports



the	poisoning	mechanism	triggered	by	a	node	with	no	parent	to	avoid	any
node	 in	 its	 sub-DODAG	to	use	 it	as	an	ancestor.	At	 this	point	 it	would	be
safe	for	the	node	to	locally	repair	by	joining	any	node	regardless	of	its	rank
as	 long	 as	 the	 max_depth	 rule	 is	 honored	 for	 that	 DODAG	 iteration.
Finally,	 the	ability	of	 forming	a	 floating	DODAG	upon	 losing	connectivity
with	parents,	in	an	attempt	to	preserve	inner	connectivity	between	a	set	of
nodes	in	the	network,	is	supported	by	RPL.

17.6.9	Routing	Adjacency	with	RPL
Routing	 adjacency	 in	 RPL	 definitely	 deserves	 its	 own	 section.	 With

routing	protocols	such	as	OSPF	or	IS-IS	a	routing	adjacency	between	two
neighbors	is	established	once	the	neighbors	have	exchanged	and	agreed	on
various	 routing	 protocol	 parameters	 (e.g.,	 protocol	 version,	 frequency	 of
hellos,	 dead-timers)	 and	 once	 the	 LSDBs	 have	 been	 synchronized.	 From
that	 point,	 routing	 adjacencies	 are	maintained	 thanks	 to	 the	 exchange	 of
“hello”	packets	 sent	every	X	seconds	 (X	being	configurable).	 If	no	hello	 is
received	after	n	*	X	seconds	(n	configurable)	then	the	routing	adjacency	is
considered	 as	 down,	 which	 triggers	 a	 routing	 protocol	 convergence.	 The
situation	 in	 LLNs	 is	 radically	 different	 since	 the	 exchange	 of	 “hellos”
between	 nodes	 would	 drain	 energy	 from	 the	 nodes	 as	 well	 as	 potentially
cause	 congestion	 on	 limited	 bandwidth	 links	 in	 LLNs,	 which	 is	 highly
undesirable	when	energy	and	bandwidth	are	scarce	resources.

The	 approach	 taken	 by	 RPL	 recommends	 using	 a	 probing	 technique
based	on	IPv6	Neighbor	Discovery	(ND);	namely	sending	IPv6	solicitations
messages	 (see	 Chapter	 15).	 The	 use	 of	 ND	 implies	 neighbor	 reachability
verification	when	data	 traffic	 is	 to	 be	 sent.	The	 routing	 adjacency	 is	 then
considered	valid	upon	receiving	a	neighbor	advertisement	message	with	the
“solicited”	 flag	 set.	 Other	 probing	 techniques	 could	 also	 be	 used.
Alternatively	 and/or	 additionally	 other	 types	 of	 active	 probing	 are	 used
according	to	the	network	characteristics	and	design.

If	 the	most	preferred	parent	 is	 temporarily	unavailable,	 then	 the	node
forwards	the	packet	to	an	alternate	parent	(if	available).	In	the	absence	of
an	alternate	parent	the	node	selects	a	sibling	(if	there	is	a	sibling	available).

Some	implementations	may	choose	to	use	algorithms	to	keep	track	of	the
number	 of	 recorded	 failed	 probes	 within	 a	 specific	 time	 window.	 It	 is
important	not	only	to	consider	the	percentage	of	failed	probes	but	also	the
time	 period	 during	 which	 the	 percentage	 of	 failed	 probes	 has	 been
calculated	 in	 the	 presence	 of	 lossy	 links.	 It	 is	 not	 rare	 for	 a	 failure	 to	 be
transient,	which	should	not	disqualify	the	parent.	Thus	an	implementation
should	obverse	the	percentage	of	failed	probes	against	the	time	frame.	The



reception	of	 any	message	 such	as	 a	DIO	 from	a	neighbor	may	be	used	as
probes	(failed	or	successful)	if	the	link	can	be	trusted	to	be	symmetrical.

17.6.10	RPL	Timer	Management
Timer	management	is	an	important	component	of	any	protocol	and	RPL

is	no	exception.	The	DIO	timers	used	by	RPL	rely	on	the	trickle	algorithm
proposed	by	[160],	and	other	RPL	timers	may	use	the	same	algorithm	in	the
future.	 Most	 routing	 protocols	 send	 keepalives	 to	 maintain	 routing
adjacency	and	any	other	control	packets	necessary	to	update	their	routing
tables	without	explicitly	trying	to	limit	the	control	protocol	overhead.	This
is	done	because	the	required	bandwidth	is	negligible	compared	to	the	data
traffic	 in	 “classic”	 IP	 networks.	 But	 such	 an	 approach	 would	 be
problematic	 in	LLNs	where	 links	 are	unstable	 and	network	 resources	 are
scarce.	The	issue	is	that	limiting	the	control	traffic	also	impacts	the	ability
to	maintain	synchronization,	the	ability	to	quickly	react	to	network	changes,
and	so	forth.

The	trickle	algorithm	uses	an	adaptive	mechanism	to	control	the	sending
rates	 of	 control	 plane	 traffic	 such	 that	 nodes	 hear	 just	 enough	packets	 to
stay	 consistent	 under	 various	 circumstances.	 In	 the	 presence	 of	 change
nodes	send	protocol	control	packets	more	often	and	control	traffic	rates	are
reduced	when	the	network	stabilizes.	The	trickle	algorithm	does	not	require
complex	 code	 and	 states	 in	 the	 network.	 This	 is	 an	 important	 property
considering	the	constrained	resources	on	the	nodes	(some	implementations
only	require	4–7	bytes	of	RAM	for	state	maintenance).

RPL	 treats	 the	 DODAG	 construction	 as	 a	 consistency	 problem	 and
makes	 use	 of	 trickle	 timers	 to	 decide	 when	 to	 multicast	 DIO	 messages.
When	an	inconsistency	is	detected	RPL	messages	are	sent	more	often,	and
then	as	the	network	stabilizes	RPL	messages	are	sent	less	often.

Trickle	behavior	is	controlled	by	several	parameters:

•	I:	Current	length	of	the	communication	interval.
•	T:	Timer	value;	T	is	in	the	range	[I,	I/2].
•	C:	Redundancy	counter.
•	K:	Redundancy	constant	(learned	from	the	DODAG	root).
•	Imin:	Smallest	value	of	I	learned	via	the	DIO	message.	Imin	=	2DIOIntervalMin

ms	where	DIOIntervalMin	 is	 advertised	by	 the	DODAG	root	 in	DIO
messages.
•	Idoubling:	The	number	of	times	I	may	be	doubled	before	maintaining	a

constant	multicast	rate.	Idoubling	 is	advertised	as	DIOIntervalDoubling	by
the	DODAG	root	in	DIO	messages.



•	Imax:	Largest	value	of	Imax	=	Imin	*	2	Idoubling.

	
In	RPL	trickle	a	node	sets	the	trickle	variable	Imin	and	Idoubling	to	the	original

values	learned	from	the	DIO	messages,	C	=	0,	I	=	Imin,	and	a	random	value	is
chosen	for	T	in	the	range	[I/2,I].	Each	time	a	node	receives	a	consistent	DIO
message	 from	a	DODAG	parent,	 the	C	 counter	 is	 incremented.	When	 the
timer	 expires,	 C	 is	 compared	 to	 the	 RPL	 constant	 (K	 =
DEFAULT_DIO_REDUNDANCY_CONSTANT)	 to	decide	whether	 or	not
to	multicast	a	DIO	message.	When	the	communication	interval	I	expires,	I	is
doubled,	 the	 C	 counter	 is	 reset,	 and	 a	 new	 value	 of	 T	 is	 chosen	 until	 I
reaches	 the	maximum	value	 of	 Imax.	The	RPL	 specification	 explicitly	 states
that	the	variable	C	may	not	be	incremented.	Indeed	in	some	cases	it	may	be
beneficial	not	to	increment	C	to	avoid	the	suppression	of	some	RPL	control
messages	(this	aspect	is	still	under	consideration).

When	 is	 the	RPL	trickle	 timer	reset?	The	 trickle	 timer	has	 to	be	reset
each	time	a	DODAG	inconsistency	is	detected	to	 increase	the	frequency	at
which	DIO	messages	are	sent	 to	quickly	update	 the	DODAG:	when	a	new
node	 joins	 the	 DODAG,	 when	 it	 receives	 a	 multicast	 DIS	 message	 from
another	node,	when	the	node	moves	within	a	DODAG,	when	a	node	receives
a	modified	DIO	message	from	a	DODAG	parent	reflecting	some	changes	in
the	 DODAG,	 when	 a	 potential	 loop	 is	 detected	 (e.g.,	 a	 DODAG	 parent
receives	a	packet	that	it	would	have	forwarded	inward),	when	the	rank	of	a
DODAG	parent	has	changed,	and	so	forth.

By	 tuning	 the	values	of	 Imin	and	Imax	 it	becomes	possible	 to	achieve	some
trade-off	 between	 the	 need	 for	 consistent	 DODAG,	 speed	 to	 propagate
changes,	 and	 the	 protocol	 overhead.	 Some	 simulations	 indicate	 that	 by
setting	Imin	and	Imax	to	a	few	dozen	milliseconds	and	1	hour,	respectively,	the
control	 traffic	 could	 be	 reduced	 to	 up	 to	 75%	 compared	 to	 a	 fix	 beacon
value	 of	 30	 s.	 Knowing	 this,	 applicability	 statement	 documents	 combined
with	 the	 specifics	 of	 the	 network	 where	 RPL	 is	 deployed	 should	 provide
further	guidance.	For	example,	in	some	cases	it	may	not	be	advantageous	to
set	 the	 Imin	 value	 too	 small	 (e.g.,	 with	 low	 power	 MAC	 layers)	 to	 avoid
simultaneous	 sending	 of	 DIO	 messages.	 The	 expected	 effect	 of	 using	 the
trickle	 algorithm	 on	 control	 traffic	 is	 shown	 via	 simulation	 in	 the	 next
section.

17.6.11	Simulation	Results
Although	 only	 real-life	 deployments	 provide	 actual	 data	 on	 the



efficiency	of	a	protocol,	there	are	a	number	of	tools	that	a	protocol	designer
can	use	during	the	design	process,	and	simulation	is	undoubtedly	one	of	the
most	 useful.	 Although	 simulators	 are	 not	 “formal”	 mathematical	 proofs,
they	do	provide	useful	data	and	help	improve	the	level	of	confidence	on	the
design	choices.	Furthermore,	in	most	cases,	there	is	no	mathematical	model
that	can	be	used	to	simulate	the	level	of	complexity	of	the	protocol	and	real-
life	conditions.

During	 the	 design	 process	 of	 RPL,	 a	 number	 of	 simulations	 were
performed.	[239]	is	undoubtedly	one	of	the	major	contributions	in	this	area.
A	discrete	 event	 simulator	has	been	developed	based	on	OMNET++	 [254]
and	the	Castalia	module	for	Wireless	Sensor	Networks	within	OMNET++.

One	 of	 the	major	 challenges	when	 developing	 a	 smart	 object	 network
simulator	 is	 model	 link	 behavior.	 With	 lossy	 links	 such	 as	 low-power
wireless	 links	 or	 PLC	 links,	 none	 of	 the	 mathematical	 models	 such	 as
Markov	Chains	are	applicable.	Thus	the	approach	taken	in	[239]	uses	real-
life	 link	 traces	 as	 input	 to	 get	 high-fidelity	 results	 representative	 of	 real
networks.	 Hundreds	 of	 link	 traces	 were	 gathered	 to	 build	 a	 link	 failure
model	 database	 for	 both	 indoor	 and	 outdoor	 low-power	 lossy	 links.	 Each
trace	 provided	 the	 PDR	 at	 different	 times.	 For	 some	 links,	 the	 received
signal	 strength	 indication	 (RSSI)	was	 available	 and	due	 to	 the	 correlation
between	 the	 RSSI	 and	 the	 PDR	 [254],	 it	 was	 possible	 to	 derive	 the	 PDR
from	the	RSSI.

The	simulator	reads	a	topology	database	and	randomly	selects	real-life
traces	when	simulating	RPL,	thus	providing	very	useful	results	that	can	be
trusted.	When	a	packet	is	to	be	transmitted	by	a	node,	the	PDR	of	the	link	is
read	from	the	database	and	the	packet	is	dropped	with	a	probability	equal
to	 1-PDR	 (different	 random	 number	 generators	 are	 used	 for	 all	 links	 to
avoid	link	correlation).

Several	 networks	 have	 been	 simulated	 with	 consistent	 results	 and	 the
results	for	one	of	them	are	provided	in	this	section	(the	simulated	network	is
depicted	in	Figure	17.10).



Figure	17.10	Topology	of	the	simulated	network.
	

Data	 traffic	 is	 “constant	 bit	 rate”	 with	 a	 configurable	 rate.	 In	 the
simulation	run,	the	constant	data	traffic	rate	was	set	to	5	packets	per	second
(a	fairly	high	traffic	rate	for	LLNs,	but	the	idea	was	to	stress	the	network	to
exacerbate	some	protocol	characteristics).

Link	failures	are	directly	read	from	the	link	behavior	database	to	which
random	failures	were	added	according	to	an	M/M/1	Markov	Chain	model
(the	interarrival	times	were	set	to	a	mean	of	1	per	hour).

In	these	simulations,	25%	of	packets	were	destined	to	the	root	and	75%
to	other	nodes.	In	most	networks	a	good	proportion	of	the	traffic	is	sent	to
the	 root	 or	 sink	 behind	 the	 root.	 In	 these	 simulations	we	 chose	 to	 have	 a
fairly	high	proportion	of	P2P	traffic	to	study	the	efficiency	of	P2P	routing
with	RPL.

The	objective	was	 to	observe	RPL	behavior	 in	a	number	of	 conditions
(steady	 state,	 high	 stress)	 regarding	 several	 metrics	 for	 a	 single	 DODAG



instance	computed	using	the	network	topology	shown	in	Figure	17.11.	The
RPL	 metric	 is	 the	 ETX	 (as	 described	 earlier)	 and	 the	 OF	 consists	 of
minimizing	the	ETX	path	cost.

Figure	17.11	RPL	control	versus	data	traffic.
	

Several	RPL	characteristics	were	studied:	control	 traffic,	 routing	 table
size,	path	efficiency,	and	failure	handling.

17.6.11.1	Control	Traffic
In	 “classic”	 IP	 networks,	 the	 control	 traffic	 overhead	 (the	 routing

protocol	 in	 this	 case)	 is	 generally	 not	 problematic	 considering	 the
bandwidth	available	on	high-speed	 links	and	 is	negligible	compared	to	 the
data	 traffic.	 This	 is	 in	 contrast	 with	 LLNs	 where	 it	 is	 imperative	 to
minimize	the	control	traffic	overhead	and	try	to	bound	the	control	traffic	to
the	data	traffic.	It	is	also	imperative	to	reduce	the	traffic	control	load	as	the
network	stabilizes,	which	 is	 the	main	motivation	for	using	dynamic	trickle
timers.	The	values	of	the	trickle	timers	for	Imin	and	Idoubling	in	these	simulations
were	1	and	16	seconds,	respectively.	Figure	17.11	shows	how	the	data	and
control	traffic	varies	over	time.

The	 first	 observation	 is	 that	 the	 control	 traffic	 is	 clearly	 negligible
compared	to	the	data	traffic	(for	that	data	traffic	assumption,	which	is	more
true	 as	 we	 get	 closer	 to	 the	 DODAG	 root),	 but	 more	 importantly	 as	 the
DODAG	stabilizes	the	control	traffic	decreases	significantly.	This	illustrates
the	desired	effect	of	the	trickle	timers.	We	can	observe	waves	of	the	control
traffic.	Each	time	an	inconsistency	is	detected	in	the	DODAG	such	as	a	path



cost	 change,	 new	 parent	 after	 a	 failure,	 or	 a	 global	 repair	 mechanism
triggered	 by	 the	 DODAG	 root	 (the	 DODAG	 root	 increments	 the
DODAGSequenceNumber),	 the	 DIO	 changes	 and	 the	 trickle	 timers	 are
reset.	 These	 factors	 explain	 the	 waves	 of	 control	 traffic.	 As	 expected	 and
desired,	 when	 the	 DODAG	 stabilizes	 the	 traffic	 control	 is	 reduced
accordingly	as	expected	because	of	the	trickle	timers.

17.6.11.2	Routing	Table	Size
Nodes	in	LLNs	have	constrained	memory.	In	extreme	cases,	some	nodes

cannot	even	store	a	routing	table.	RPL	supports	the	insertion	of	such	nodes
in	the	network	as	discussed	in	the	previous	sections.	In	other	cases	routing
tables	 may	 potentially	 contain	 dozens	 of	 entries,	 but	 nodes	 have	 limited
memory	 for	 the	 storage	 of	 the	 routing	 table	 compared	 to	 IP	 core	 routers
that	 can	 easily	 store	 hundreds	 of	 thousands	 of	 BGP	 routes.	 Thus,	 it	 is
interesting	to	observe	the	memory	requirements	of	RPL	regarding	routing
table	sizes.	Figure	17.12	shows	the	Cumulative	Distribution	Function	(CDF)
for	 the	 number	 of	 required	 routing	 table	 entries	 (the	 number	 of	 routing
entries	increases	as	we	get	closer	to	the	sink).	Note:	these	results	are	in	the
absence	of	route	aggregation	 in	 the	network.	There	 is	 tremendous	 interest
in	coupling	RPL	with	route	aggregation	to	limit	the	routing	table	sizes,	and
this	work	is	currently	in	progress.

Figure	17.12	RPL	routing	table	sizes.
	

17.6.11.3	Path	Efficiency
The	 DODAG	 computed	 by	 RPL	 is	 a	 sub-topology	 of	 the	 physical

connectivity	 graph	 just	 like	 any	 other	 routing	 protocol.	 In	 other	 words,



there	are	paths	that	the	traffic	has	to	follow	along	the	DODAG	although	a
more	 optimal	 path	 may	 actually	 exist	 (outside	 of	 the	 DODAG)	 in	 the
physical	 connectivity.	 This	 is	 particularly	 true	 for	 P2P	 traffic	 where	 the
traffic	from	node	A	to	node	B	must	meet	a	common	ancestor	before	being
redirected	down	to	 the	DODAG	toward	the	destination	 (node	B),	with	 the
exception	 of	 the	 P2P	 traffic	 between	 two	 nodes	 that	 are	 in	 direct	 range
because	 of	 the	 use	 of	 multicast	 DAO.	 Thus	 the	 idea	 is	 to	 see	 how
“suboptimal”	 the	 path	 computed	 by	 the	 DODAG	 for	 P2P	 traffic	 is
compared	to	an	“ideal”	routing	protocol	that	would	systematically	compute
the	best	available	path	between	A	and	B	based	on	the	actual	connectivity.

	Note:	it	is	critical	to	remember	that	although	RPL	builds	a	DODAG
this	 is	 not	 a	 P2MP	 or	 MP2P	 routing	 protocol:	 RPL	 fully	 supports	 P2P
routing.	RPL	has	 even	been	 enhanced	with	mechanisms	 such	as	multicast
DAO	 to	 provide	 shortcuts	 for	 nodes	 in	 direct	 range	 and	 optimized	 P2P
routing.

RPL	 provides	 a	 good	 quality	 path	 for	 the	 majority	 of	 cases.	 Still
additional	 mechanisms	 may	 be	 added	 in	 the	 future	 with	 regards	 to	 P2P
routing.	As	a	reminder,	these	are	simulations	results	and	as	such	cannot	be
generalized.	 The	 results	 are	 shown	 in	 Figure	 17.13.	Other	 simulations	 on
that	particular	subject	are	in	progress.

Figure	17.13	Path	efficiency.
	

17.6.11.4	Failure	Handling
The	 ability	 of	 a	 routing	 protocol	 to	 compute	 an	 alternate	 path	 in	 the



presence	 of	 network	 element	 failures	 has	 always	 been	 a	 critical
characteristic	of	a	routing	protocol.	Unfortunately,	 there	 is	always	 tension
between	the	control	traffic	cost,	the	environment,	and	the	ability	to	quickly
reroute	the	traffic.	In	a	highly	stable	high-speed	network,	routing	protocols
use	fast	failure	detection	mechanisms	to	quickly	detect	a	failure	and	reroute
the	 traffic	 along	 a	 backup	 path.	 In	 contrast,	 in	 lossy	 environments	 in	 the
presence	 of	 frequent	 failures	 the	 routing	 protocol	 should	 not	 constantly
recompute	 paths	 (thus	 leading	 to	 high	 control	 traffic,	 oscillations,	 etc.),
which	 is	what	RPL	achieves	 as	 explained	 in	 detail	 earlier	 in	 this	 chapter.
RPL	 makes	 use	 of	 two	 different	 repair	 mechanisms	 that	 have	 been
discussed	in	Section	17.6.8:	global	repair	triggered	by	the	DODAG	root	and
local	 repair	 where	 nodes	 locally	 handle	 the	 failure.	 We	 provide	 several
simulation	results	 showing	both	mechanisms.	The	metric	used	 to	 illustrate
the	effect	of	RPL	repair	mechanisms	is	the	amount	of	time	during	which	no
path	was	available	when	having	 to	 send	a	packet	during	 the	course	of	 the
simulation.	For	 example,	Figure	 17.14	 shows	 that	 in	 80%	of	 the	 cases	 the
period	 of	 time	 without	 path	 was	 around	 20	 s	 for	 the	 specific	 RPL
parameters	 used	 in	 these	 simulations,	 of	 course.	 In	 Figure	 17.14	 we	 also
show	the	CDF	for	the	failure	period	when	first	using	global	repair	only.



Figure	17.14	Time	without	service	with	global	repair	only.
	

Figure	 17.14	 shows	 the	 failure	 time	 for	 two	 different	 frequencies	 of
global	 repair:	 in	 the	 first	 case,	 global	 repair	 (generation	 of	 new
DODAGSequenceNumber)	 is	 set	 to	 1	 hour	 and	 in	 the	 second	 case	 it	 is
reduced	to	1	mn.	As	expected,	this	allows	reduction	in	the	failure	time	at	the
cost	of	increasing	the	control	traffic	cost	(we	can	observe	an	increase	of	the
control	 traffic,	 looking	 at	 node	 11	 in	 the	 middle	 of	 the	 network).	 As
discussed	earlier,	it	was	decided	to	add	a	local	repair	mechanism	to	reduce
the	failure	time.	This	way,	the	local	repair	mechanism	quickly	provides	an
alternate	path	followed	by	global	repair	to	further	reoptimize	the	DODAG.



This	is	shown	in	Figure	17.15	where	the	global	repair	mechanism	is	set	to	1
hour	 and	 local	 repair	 is	 activated.	 We	 observe	 that	 the	 failure	 time	 is
reduced	 dramatically.	 The	 traffic	 control	 is	 slightly	 increased	 with	 local
repair	but	localized	(not	even	visible	on	the	simulation	run).

Figure	17.15	Time	without	service	with	global	and	local	repair.
	

17.7	Conclusions
This	chapter	was	entirely	devoted	to	RPL,	the	new	routing	protocol	for

IP	smart	object	networks	developed	by	the	IETF	ROLL	Working	Group.	A



series	 of	 novel	mechanisms	 have	 been	 designed	 to	make	RPL	 an	 efficient
distance	 vector	 routing	 protocol	 for	 smart	 object	 networks	 in	 support	 of
P2P,	MP2P,	and	P2MP	traffic	designed	for	LLNs.	RPL	has	been	designed
as	highly	modular,	with	a	very	small	footprint,	and	able	to	support	a	wide
range	of	metrics	and	constraints	according	to	the	environments	of	 interest
while	 operating	 in	 constrained	 environments	 thus	 reducing	 the	 control
traffic	 whenever	 possible.	 RPL	 can	 even	 be	 deployed	 to	 support	multiple
routing	 topologies	 according	 to	 the	 objective	 function	 (e.g.,	 optimize
reliability,	 minimize	 latency,	 etc.).	 Furthermore,	 several	 mechanisms
referred	 to	 as	 global	 and	 local	 repair	 have	 been	 designed	 to	 provide
alternate	 paths	 in	 the	 presence	 of	 failures	 and	 to	 reoptimize	 the	 routing
topology	 on	 a	 configurable	 periodic	 basis	while	 ensuring	 a	 high	degree	 of
robustness	and	 flexibility.	Early	 implementations	 show	that	RPL	will	only
require	a	few	kilobytes	of	Flash	and	a	very	few	KB	of	RAM	in	its	current
specification.

	



Chapter	18	The	IP	for	Smart	Object
Alliance

	

18.1	Mission	and	Objectives	of	the	IPSO	Alliance
As	discussed	in	Chapter	14,	the	Internet	Engineering	Task	Force	(IETF

—	http://www.ietf.org/)	is	the	standardization	body	in	charge	of	producing
the	technical	specification	for	the	IP	protocol	suite.

Companies	 such	as	Cisco,	ArchRock,	Proto6,	 SICS,	Atmel,	 and	others
that	 from	 the	 beginning	 believed	 in	 the	 benefits	 of	 an	 end-to-end	 IPv6
solution	 to	 make	 the	 “Internet	 of	 Things”	 a	 reality	 were	 faced	 with	 the
following	realities:

•	 The	 only	 available	 technical	 documents	 were	 related	 to	 protocol
designs	or	detailed	technical	requirements	produced	by	the	IETF.	They
were	difficult	for	engineers	not	involved	in	the	IETF	on	a	daily	basis	to
read.	 There	 was	 clearly	 an	 absence	 of	 white	 papers	 and	 tutorials
showing	 how	 the	 IP	 protocol	 suite	 specified	 by	 the	 IETF	 and,	 in
particular	for	smart	objects	networks,	could	be	used	and	deployed	in	a
variety	of	environments	such	as	building	automation,	Smart	Cities,	and
Smart	Grids,	just	to	mention	a	few.
•	 There	 was	 no	 interoperability	 event	 showing	 how	 a	 network	 of

smart	 objects	 could	be	built	 using	 a	 variety	 of	 devices	 from	different
vendors	thus	demonstrating	the	benefit	of	using	an	open	standard	such
as	 IP.	 Other	 existing	 alliances	 (sometime	 specifying	 semi-closed
protocols)	were	organizing	events	to	certify	products.	Furthermore,	the
IETF	 considered	 the	 existence	 of	 interoperable	 and	 independent
implementations	in	the	Internet	as	a	necessary	condition	to	promote	an
RFC	to	a	high	level	of	standard,	as	discussed	in	Chapter	14.
•	Building	an	IP	ecosystem	for	smart	objects	considering	the	number

of	companies	 involved	in	building	solutions	for	smart	object	networks
such	 as	 chipset	 suppliers,	 integrators,	 automation	 systems	 (home,
building,	 etc.),	 telecommunication	 companies,	 software	 vendors,	 and
also	 end	 users	 (utilities,	 large	 companies,	 telecommunication	 service
providers)	 and	 research	 institutions	 was	 paramount	 to	 collectively

http://www.ietf.org/


contribute	to	such	a	new	alliance,	gather	input	from	all	members	to	fill
the	 potential	 gaps,	 and	 quickly	 increase	 the	 number	 of	 members
speaking	with	a	common	voice.

	
Thus	 it	 quickly	 became	 necessary	 to	 form	 a	 new	 open,	 worldwide

industry	 alliance	 to	 promote	 the	 use	 of	 IP	 as	 the	 open	 and	 interoperable
standard	 for	 smart	 objects.	This	 led	 to	 the	 formation	of	 the	 IP	 for	Smart
Objects	alliance	(IPSO	—	www.ipso-alliance.org).

The	 IPSO	 alliance	 was	 formed	 in	 September	 2008	 by	 the	 founding
members	shown	in	Figure	18.1	and	has	been	growing	at	an	impressive	rate
since	its	formation	with	about	50	members	as	of	October	2009.

Figure	18.1	Initial	founding	members	of	the	IPSO	alliance.
	

The	mission	of	IPSO	is	not	to	specify	protocols	(this	is	done	at	the	IETF)
but	to	promote	the	use	of	IP	for	smart	objects:

•	 Create	 awareness	 of	 existing	 and	 new	 IP-based	 technologies
designed	for	smart	objects.	How	many	times	have	we	heard	“Yes,	IP	is
a	great	 technology	 that	could	be	used	 in	smart	objects	 such	as	sensor
and	actuators	 in	 the	 future…”?	No,	 it	 is	 there	and	 the	key	mission	of
the	 IPSO	 alliance	 is	 to	 show	 that	 sophisticated	 interoperable	 systems
composed	 of	 IP-enabled	 smart	 objects	 can	 be	 built	 today,	 using	 the

http://www.ipso-alliance.org


same	 protocol	 as	 in	 existing	 IP	 networks	 with	 no	 compromise	 on
performance	 and	 efficiency	 compared	 to	 existing	 proprietary
approaches.

•	White	 papers	 and	 tutorial	 are	 needed.	 Indeed,	 IETF	RFCs	 and
Working	Group	 documents	 are	 not	 always	 easy	 to	 read	 so	 the	 IPSO
alliance	produces	white	papers	and	webinars	focusing	on	technologies
(tutorial)	 and	 use	 cases.	 To	 date,	 the	 alliance	 has	 produced	 the
following	white	papers:

•	 IP	 for	Smart	Objects:	This	white	paper	provides	a	high-level
overview	 on	 why	 IP	 is	 the	 protocol	 of	 choice	 for	 smart	 object
networks.
•	Lightweight	IPv6	Stacks	for	Smart	Objects:	The	Experience	of

Three	 Independent	 and	 Interoperable	 Implementations:	 This
white	 paper	 covers	 key	 implementation	 aspects	 based	 on	 the
experience	of	three	implementations	of	IPv6	stacks.
•	 6LoWPAN:	 Incorporating	 IEEE	 802.15.4	 into	 the	 IP

Architecture:	This	white	paper	introduces	the	key	concepts	of	the
6LoWPAN	 adaptation	 layer	 (support	 of	 IPv6	 on	 IEEE	 802.15.4
links)	and	provides	a	good	overview	of	several	of	its	functionalities
such	 as	 header	 compression	 and	 fragmentation	 as	 well	 as	 the
6LoWPAN	adaption	layer	overall	architecture.
•	Neighbor	Discovery	 in	IPv6:	This	document	discusses	several

optimization	mechanisms	to	the	IPv6	Neighbor	Discovery	Protocol
for	efficient	usage	of	IPv6	in	the	low-power	networks	that	may	or
may	not	support	multicast	at	the	link	layer.
•	Security	in	Low-power	and	Lossy	Networks	(LLNs):	A	survey

of	the	security	issues	encountered	in	LLNs	along	with	the	existing
IP-based	security	mechanisms	that	can	be	used	in	LLNs.
•	Low-Power	Technologies	in	Smart	Object	Networks:	Provides

the	 general	 characteristics	 of	 three	 low-power	 technologies	 for
smart	 objects:	 IEEE	802.15.4,	 low-power	WiFi,	 and	a	 low-power
Powerline	 communication	 (PLC)	 technology	 (Homeplug,	 WPC).
Further	 revisions	 of	 this	 white	 paper	 will	 cover	 additional	 low-
power	 technologies	 that	 will	 be	 defined	 for	 smart	 objects	 in	 the
future.
•	Several	new	white	papers	are	 in	progress	such	as	“embedded

web	services,”	“smart	cities,”	etc.
	
•	 Link	 companies	 that	 provide	 IP-based	 smart	 objects	 for	 control



and	actuation	(hardware	and	software).
•	 Support	 and	 organize	 interoperability	 events,	 which	 is	 a	 key

activity	of	the	IPSO	alliance.

	
The	 IPSO	 alliance	 is	 also	 actively	 working	 on	 an	 IP	 for	 smart	 object

certification	and	more	details	will	be	available	in	the	near	future.
	

18.2	IPSO	Organization
The	 IPSO	alliance	 is	 very	 lightweight	 and	 straightforward	 (see	Figure

18.2),	with	an	objective	to	be	similar	to	IETF	by	being	open	and	having	low
subscription	fees.

Figure	18.2	Structure	of	the	IPSO	alliance.
	

To	date,	the	IPSO	Board	of	Directors	is	composed	of	nine	members	(one
member	 per	 company)	 and	 each	 company	 has	 to	 be	 an	 IPSO	 promoter
member.	In	contrast	to	the	IETF,	IPSO	members	represent	companies,	not
individuals.	 Half	 of	 the	 Board	 of	 Directors	 is	 renewed	 every	 year.	 The
Board	 of	 Directors	 is	 responsible	 for	 defining	 the	 strategy	 of	 the	 alliance
and	also	defines	the	goals	and	objectives	as	well	as	controlling	the	operation
of	the	alliance	(budget,	meeting,	press	release,	etc.).	The	Board	of	Directors
is	helped	in	its	mission	by	several	committees	and	the	Technology	Advisory
Board	(TAB).

IPSO	committees	are	formed	when	a	specific	task	has	to	be	performed
under	 the	 governance	 of	 the	 Board	 of	Directors	 and	with	 the	 help	 of	 the
TAB.	 Each	 committee	 has	 a	 charter	 along	 with	 milestones	 to	 help	 track



deliverables.	 The	 target,	 set	 of	 deliverables,	 and	 duration	 greatly	 vary
between	 committees.	 For	 example,	 the	Marcom	 committee	 is	 a	 long-lived
committee	 that	 drives	 the	 communication	 strategy	 of	 the	 alliance.	 Other
committees	can	be	formed	to	perform	a	specific	 task	before	disbanding.	A
security	 committee	 and	 a	 building	 automation	were	 formed	 to	 exclusively
focus	 on	 the	 security	 aspects	 to	 show	 that	 many	 well-proven	 IP	 security
mechanisms	 are	 already	 available	 that	 can	 be	 implemented	 on	 smart
objects.

The	TAB,	whose	objective	it	is	to	be	the	“technology	arm”	of	the	IPSO
alliance,	 is	 nominated	 by	 the	 Board	 of	 Directors.	 It	 can	 produce	 white
papers	 and	 tutorials	 in	 the	 form	 of	 webinars	 on	 request	 or	 decide	 to
produce	 its	 own	white	 papers.	 In	 addition,	 the	TAB	 oversees	 some	 of	 the
technical	 white	 papers	 produced	 by	 the	 different	 committees.	 TAB
members	 also	 represent	 IPSO	 in	 various	 technology	 conferences	 and
support	alliance	liaisons	with	other	technology	standardization	bodies.

	
18.3	A	Key	Activity	of	the	IPSO	Alliance:	Interoperability	Testing
Fostering	 interoperability	 between	 native	 IP	 smart	 objects	 around	 the

IP	 protocol	 specifications	 produced	 by	 IETF	 is	 one	 of	 the	 most	 critical
missions	 of	 the	 IPSO	 alliance.	 Showing	 large	 test	 beds	 with	 a	 variety	 of
smart	objects	communicating	with	each	other	using	IP	without	any	protocol
translation	gateway	is	a	key	activity	of	IPSO.

A	first	series	of	tests	including	several	media	(such	as	IEEE	802.15.4	or
IEEE	802.11)	was	 completed	 in	March	2009	 in	Palo	Alto,	California.	The
objective	 of	 that	 first	 interoperability	 event	 was	 to	 show	 a	 global	 system
composed	of	a	number	of	IP-native	devices	communicating	with	each	other.
The	 interoperability	 committee	 will	 organize	 further	 events	 with	 more
complex	scenarios	 involving	all	 the	 layers	on	the	IP	protocol	stack	beyond
IP	connectivity,	but	that	first	interoperability	event	was	a	key	milestone.

As	 shown	 in	 Figure	 18.3,	 the	 test	 bed	 included	 the	 following
components:

•	IPv6	web	server
•	A	 set	 of	 IPv4	 and	 IPv6	network	 clouds	 connected	 to	 the	 Internet

composed	of	several	types	of	smart	objects

	



Figure	18.3	Interop	test	specification.
	

Note	 that	 “border	 routers”	 are	 not	 performing	 any	 form	 of	 protocol
translation.	The	traffic	is	IP	end-to-end.	The	IPv6	network	did	communicate
with	the	web	server	natively	whereas	IPv6	clouds	were	interconnected	using
6to4	tunnels	(see	Chapter	15	for	a	description	of	6to4	tunnel	mechanisms).

A	series	of	 tests	was	made	up	of	 the	following	steps,	strictly	complying
with	the	IPv6	specification:

Step	1:	Autoconfiguration	of	an	IPv6	link	local	address.
Step	 2:	Discovery	 of	 the	default	 router	by	 the	 IP	 smart	 object	 and

autoconfiguration	of	the	global	IPv6	address	(due	to	the	RA	messages
sent	by	the	router).
Step	 3:	 Direct	 communication	 between	 smart	 objects	 using	 ICMP

Echo	 Request/Reply	 messages	 to	 demonstrate	 inter	 smart	 object
connectivity.	Such	ICMP	packets	were	exchanged	within	subnetworks,
between	 smart	 objects	 lying	 in	 different	 subnetworks	 across	 the
Internet,	and	finally	with	the	IPv6	web	server	connected	to	the	Internet
(all	communication	flows	are	depicted	by	the	arrows	in	Figure	18.3).
Step	4:	Data	communication.	Each	smart	object	sent	data	to	the	web

server.	 In	 this	 case	 it	 was	 temperature	 reading,	 but	 the	 type	 of	 data
could	 be	 vibration,	 humidity,	 gas	 detection,	 light,	 temperature,	 etc.
Note	that	the	protocol	transport	used	in	this	experiment	was	UDP	and
a	simple	application	running	over	UDP	was	designed	for	that	purpose.
Step	 5:	 Consisted	 of	 sending	 command/response	 between	 smart

objects	effectively	enabling	native	inter-device	IP	communication.



	
Figure	 18.4	 illustrates	 the	 displays	 of	 data	 received	 on	 the	 IPv6	 web

server.	Note	that	not	all	smart	objects	were	using	the	same	link	layer.	This
is	 the	 beauty	 of	 IP:	 media	 agnosticism.	 In	 this	 particular	 case,	 two	 link
layers	were	used:	IEEE	802.11	and	IEEE	802.15.4	(900	MHz	and	2.4	GHz).
It	 is	expected	 that	other	 link	 layers	 (such	as	 the	PLC	link)	will	be	used	 in
further	interoperability	events.

Figure	18.4	First	public	Interop	event	of	IPSO,	March	2009.
	

In	 May	 2009,	 IPSO	 announced	 the	 world’s	 first	 interoperability	 test
event	 between	 IP	 smart	 objects	 with	 11	 participants	 at
NETWORLD+INTEROP	 2009.	 The	 test	 bed	 included	 four	 different
wireless	physical	layers	and	media	access	communication	protocols:	Primex
wireless,	 Gainspan	 Low	 power	 WiFi,	 Nivis	 6LoWPAN	 (IPv6	 over	 IEEE
802.15.4),	 and	 Sigma	Design’s	wireless	 home	 control	 technology	 based	 on
the	 Zwave	 chipset	 radio.	 Note	 that	 all	 stacks	 were	 native	 IP	 stacks	 over
various	PHY/MAC	with	no	layer	3	protocol	translation.

One	 company,	 SAP,	 had	 developed	 software	 for	 data	 gathering
displaying	all	 the	data	gathered	 from	 the	various	 smart	objects	 connected
around	 the	 world	 through	 the	 Internet,	 as	 shown	 in	 Figure	 18.5	 (in	 this
figure	the	smart	object	was	a	temperature	sensor	but	other	types	of	sensors



and	 actuators	 were	 connected	 to	 the	 network).	 In	March	 2008,	 the	 IPSO
alliance	 announced	 the	 first	 interop	 demonstration	 of	 the	 RPL	 routing
protocol	discussed	in	Chapter	17.

Figure	18.5	IPSO	demonstrator	at	NETWORLD+INTEROP	2009.
	

IPSO	 was	 even	 listed	 as	 one	 of	 the	 best	 inventions	 of	 2008	 by	 TIME
magazine	(Figure	18.6).



Figure	18.6	IPSO	—	Best	Invention	of	2008	by	TIME	magazine.
	

	
18.4	Conclusions
Without	 a	 doubt,	 the	 IPSO	 alliance	 will	 continue	 to	 grow	 at	 an

impressive	 rate	 and	 its	 success	 clearly	 demonstrates	 the	 unanimous
momentum	for	the	use	of	IP	for	smart	object	networks.	By	providing	white
papers,	 tutorials,	and	webinars	and	organizing	 interoperability	events,	 the
IPSO	alliance	shows	that	the	use	of	IP	for	smart	objects	is	not	a	futuristic	or
idealistic	vision	of	what	is	sometimes	referred	to	as	the	“Internet	of	Things,”
but	a	 technology	 that	 can	be	used	 today	using	open	 standards	without	 the
need	for	costly	proprietary	solutions.

	
	



Chapter	19	Non-IP	Smart	Object
Technologies

	

Before	the	consensus	to	adopt	IP	for	smart	objects	became	a	reality,	several
non-IP	 solutions	 were	 developed	 and	 deployed,	 and	 are	 still	 being	 deployed.
Until	recently,	 the	IP	architecture	was	often	considered	too	heavyweight	to	use
for	 low-power	 short-range	 networks.	 Therefore,	 a	 number	 of	 custom	 protocol
stacks	and	architectures	were	developed.	In	this	chapter,	we	provide	a	high-level
overview	of	 two	 such	protocol	 specifications:	ZigBee	 and	Z-Wave.	Both	have
been	developed	for	specific	low-power,	short-range,	and	low-bit-rate	radios,	and
smart	objects	are	their	main	application	areas.

In	general,	custom	protocol	stacks	are	incompatible	with	the	IP	architecture.
As	 discussed	 in	 Chapter	 3,	 there	 are	 a	 number	 of	 disadvantages	 with	 these
architectures	 when	 they	 are	 to	 be	 connected	 to	 IP	 networks.	 For	 this	 reason,
many	of	the	custom	low-power	radio	specifications	are	currently	moving	toward
an	 IP-based	 model.	 In	 the	 summer	 of	 2009,	 ZigBee	 announced	 that	 the
specification	would	be	amended	with	IP	for	the	smart	energy	profile.

In	 addition	 to	 ZigBee	 and	 Z-Wave,	 there	 are	 a	 number	 of	 protocol
specifications	 for	 the	 smart	 object	 domain	 that	 we	 do	 not	 cover	 here.	 The
WirelessHART	 stack	 is	 designed	 for	 low-power	 and	 high-reliability	 industrial
monitoring	 networks.	WirelessHART	 is	 defined	 on	 top	 of	 the	 IEEE	 802.15.4
radio	standard	and	uses	a	time-synchronized	protocol	to	provide	very	low	power
consumption	 as	 well	 as	 a	 channel	 hopping	 mechanism	 to	 maintain	 low	 radio
interference	[196].	WirelessHART	networks	are	controlled	by	a	central	network
manager	 that	 computes	 the	channel	hopping,	 timing	schedules,	 and	 routing	 for
the	 entire	 network.	 The	 ISA100a	 standard	 is	 also	 designed	 for	 low-power
industrial	 wireless	 monitoring.	 ISA100a	 is	 similar	 to	WirelessHART	 in	 many
aspects,	but	is	built	on	the	network	layer	of	IPv6.

19.1	ZigBee
ZigBee	 is	 a	 proprietary	 specification	 for	 wireless	 communication	 between

smart	objects	based	on	the	specific	IEEE	802.15.4	radio	link	layer.	The	ZigBee
specification	is	owned	by	the	ZigBee	Alliance.	For	noncommercial	projects,	the
ZigBee	 Alliance	 provides	 the	 specification	 for	 download	 from	 their	 web	 site



[263].	 For	 commercial	 projects,	 a	 membership	 in	 the	 ZigBee	 Alliance	 is
required.

The	 ZigBee	 Alliance	 was	 formed	 in	 2002	 as	 a	 nonprofit	 organization.
ZigBee	Alliance	membership	 is	 open	 to	 any	 company.	 The	 alliance	 has	 three
membership	 levels:	 promoter,	 participant,	 and	 adopter.	The	membership	 fee	 is
higher	for	promoter	members	and	participants,	but	lower	for	adopter	members.

Implementations	 of	 the	 ZigBee	 protocols	 stack	 have	 been	 developed	 as
standalone	 libraries	 that	 are	 intended	 to	 be	 used	without	 an	 operating	 system,
and	 for	 smart	 object	 operating	 systems	 such	 as	 Contiki	 and	 TinyOS[50,231].
Independent	open	source	implementations	also	exist	[5].

There	 are	 four	 versions	 of	 the	 ZigBee	 specification:	 ZigBee	 2004,	 ZigBee
2006,	ZigBee	2007,	 and	ZigBee	Pro.	Both	ZigBee	2004	 and	ZigBee	2006	 are
considered	 deprecated	 and	 are	 not	 used	 in	 new	 products.	 ZigBee	 2007	 is
currently	 the	most	used	version	of	 the	specification,	and	 is	often	simply	called
“ZigBee.”	ZigBee	2007	adds	a	number	of	 features	 that	were	not	present	 in	 the
2006	 version	 such	 as	 support	 for	 packet	 fragmentation	 and	 the	 ability	 to
dynamically	switch	physical	radio	channels.	ZigBee	Pro	increases	the	amount	of
devices	 in	each	network	from	31,101	 to	65,540	and	adds	a	number	of	network
mechanisms	such	as	multicasting	and	source	routing.	Finally,	an	extension	to	the
ZigBee	2006	specification,	called	ZigBee	residential,	is	also	available	but	is	not
widely	used.

ZigBee	 is	 based	 on	 the	 IEEE	 802.15.4	 standard	 and	 does	 not	 provide	 any
alternatives	as	underlying	 radios.	The	ZigBee	protocols	are	defined	around	 the
concepts	and	addressing	modes	provided	by	the	underlying	IEEE	802.15.4	radio,
making	it	difficult	to	adapt	the	ZigBee	protocols	to	other	radios.

19.1.1	ZigBee	Device	Types
ZigBee	specifies	three	different	device	types:	the	ZigBee	Coordinator	(ZC),

the	ZigBee	Router	(ZR),	and	the	ZigBee	End	Device	(ZED).	These	three	devices
play	different	roles	in	a	ZigBee	network	as	shown	in	Figure	19.1.



Figure	 19.1	A	ZigBee	 network	 consists	 of	 three	 device	 types:	 the	 ZigBee
Coordinator,	of	which	there	is	exactly	one	in	each	network,	ZigBee	Routers,	and
ZigBee	End	Devices.
	

A	 ZigBee	 network	 has	 exactly	 one	 ZC	 device.	 The	 ZC	 coordinates	 the
actions	 of	 the	 network	 as	 a	 whole	 and	 is	 responsible	 for	 bootstrapping	 the
network.	 The	 ZRs	 build	 a	 network	 between	 themselvesthrough	which	 packets
are	 exchanged.	 The	 ZEDs	 are	 logically	 attached	 to	 a	 ZR.	 ZEDs	 communicate
only	with	their	ZR,	but	cannot	communicate	between	each	other.

Each	 of	 the	 ZigBee	 device	 types	 has	 been	 designed	 for	 a	 specific
deployment.	 ZCs	 and	 ZRs	 have	 a	 higher	 power	 requirement	 than	 ZEDs	 and
cannot	 be	 battery-powered.	 The	 ZED	 has	 a	 lower	 power	 requirement	 and
achieves	a	long	lifetime	on	batteries.	Regarding	IEEE	802.15.4,	ZC	and	ZR	are
fully	functional	devices	(FFDs),	whereas	the	ZEDs	are	reduced	function	devices
(RFDs).

The	 ZC	 is	 responsible	 for	 bootstrapping	 the	 network.	 During	 the
bootstrapping	 process,	 the	 ZC	 chooses	 the	 personal	 area	 network	 (PAN)
identifier	that	will	be	used	by	the	network,	as	well	as	the	physical	radio	channel
on	which	the	network	will	operate.	After	bootstrapping,	the	ZC	acts	as	a	normal
ZR	device.

ZEDs	are	off	most	of	 the	 time,	 thus	 they	are	not	able	 to	receive	any	traffic
sent	 to	 them.	Instead,	 they	periodically	wake	up	and	check	for	messages	at	 the
ZR	with	which	they	are	associated.	The	ZR	buffers	data	sent	to	their	ZED	nodes
and	 sends	 these	 data	whenever	 they	 get	 a	 poll	 request	 from	 a	ZED.	The	ZED
transmits	data	to	the	ZR	at	any	time,	since	the	ZR	is	always	awake.	The	wake-up
schedule	 for	 ZED	 is	 defined	 by	 the	 application	 developer,	 not	 by	 the	 ZigBee
specification.	 The	 number	 of	 ZEDs	 associated	 with	 a	 ZR	 is	 limited.	 In	 the
ZigBee	2007	specification,	a	ZR	can	handle	a	maximum	of	14	ZEDs.
	



19.1.2	Layers	in	the	ZigBee	Stack
The	ZigBee	specification	is	divided	into	five	layers,	as	shown	in	Figure	19.2:

the	physical	(PHY)	layer,	the	medium	access	control	(MAC)	layer,	the	network
(NWK)	 layer,	 the	 application	 support	 (APS)	 layer,	 and	 the	 application
framework	(AF)	 layer.	 In	addition	 to	 the	five	 layers,	a	cross-layer	entity	called
the	 ZigBee	Device	Object	 (ZDO)	 is	 also	 present	 in	 the	 architecture.	 Of	 these
layers,	PHY	and	MAC	are	not	part	of	 the	ZigBee	specification;	 they	are	 taken
from	the	IEEE	802.15.4	radio	standard.	The	NWK,	APS,	and	AF	layers	are	part
of	the	ZigBee	specification,	as	is	the	ZDO.

Figure	 19.2	 The	 ZigBee	 protocol	 stack	 builds	 upon	 the	 MAC	 and	 PHY
layers	 from	 the	 IEEE	802.15.4	 radio	standard.	The	NWK,	APS,	AF,	and	ZDO
are	part	of	the	ZigBee	specification.
	

The	layering	of	the	ZigBee	stack	is	reminiscent	of	the	layers	in	the	IP	stack.
Just	 like	 in	 the	 IP	 architecture,	 each	 layer	 in	 the	 ZigBee	 stack	 has	 a	 specific
purpose.	There	is,	however,	one	major	difference	between	the	layering	in	the	IP
architecture	and	the	layering	in	the	ZigBee	stack:	in	the	ZigBee	stack,	the	layers
cannot	be	changed.	The	IP	architecture	is	built	to	allow	multiple	types	of	MAC
and	 PHY	 layers.	 The	 same	 protocols	 can	 be	 used	 even	 if	 the	 specific	 radio
standard	changes.	 In	 contrast,	 the	ZigBee	 specification	 is	designed	 specifically
for	 the	 IEEE	 802.15.4	MAC	 and	 PHY	 layers.	Also,	 the	 upper	 layer	 protocols
make	 explicit	 use	 of	 mechanisms	 provided	 by	 the	 radio	 layer.	 For	 example,
instead	of	providing	its	own	NWK	layer	addressing	scheme,	ZigBee	uses	IEEE
802.15.4	MAC	layer	addresses	even	at	the	NWK	layer.

We	will	now	discuss	the	ZigBee	layers	in	more	detail.
	
19.1.3	PHY	and	MAC	Layers



The	PHY	layer	transports	bits	across	the	physical	radio	medium.	The	MAC
layer	mediates	access	to	the	medium	so	that	multiple	transmitters	do	not	transmit
at	the	same	time.

Because	ZigBee	uses	IEEE	802.15.4	for	its	MAC	layer,	ZigBee	also	uses	the
same	addressing	format	at	802.15.4.	ZigBee	supports	the	short	addressing	mode
in	which	addresses	are	16	bits	wide.	This	allows	each	ZigBee	network	to	support
at	 most	 65,536	 nodes.	 In	 practice,	 the	 number	 of	 possible	 nodes	 is	 reduced
because	 a	 number	 of	 addresses	 are	 reserved.	 In	 ZigBee	 2004	 and	 2006,	 a
network	 includes	 a	 maximum	 of	 31,101	 nodes,	 whereas	 in	 ZigBee	 2007	 and
ZigBee	Pro,	the	maximum	number	of	nodes	in	a	network	is	65,540.

The	 ZigBee	 stack	 uses	 IEEE	 802.15.4	 for	 the	MAC	 and	 PHY	 layers,	 but
does	not	use	every	aspect	of	the	standard;	most	notably,	ZigBee	does	not	make
use	of	its	beacon	mode.	The	beacon	mode	builds	a	time-synchronized	schedule
of	all	nodes.	Avoiding	the	beacon	mode	helps	reduce	the	complexity	of	ZigBee
implementations.

ZigBee	 uses	 a	 carrier	 sense	 multiple	 access	 with	 collision	 avoidance
(CSMA/CA)	 scheme	 for	 its	 MAC	 layer.	 Before	 a	 packet	 is	 sent,	 the	 MAC
queries	 the	 PHY	 for	 other	 current	 radio	 transmissions.	 If	 another	 node	 is
currently	 sending	 a	 packet,	 the	 node	 refrains	 from	 sending	 its	 own	 packet.
Instead,	it	sets	a	timer	and	tries	to	resend	the	packet	at	a	later	time.

The	MAC	 layer	does	hop-by-hop	 acknowledgments	 for	 all	ZigBee	packets
except	broadcast	packets.	The	acknowledgment	uses	the	standard	IEEE	802.15.4
acknowledgment	mechanism.	If	an	acknowledgment	is	not	received,	the	packet
is	 retransmitted	 up	 to	 three	 times.	 ZigBee	 also	 performs	 end-to-end
acknowledgments	at	the	application	support	sublayer,	as	described	next.

ZigBee	 does	 not	 use	 any	 duty	 cycling	 mechanisms	 at	 the	 MAC	 layer.
Instead,	nodes	have	either	their	radio	turned	on	all	the	time	or	turned	off	all	the
time,	 except	when	 sending	data.	ZRs	and	ZCs	have	 their	 radios	constantly	on,
whereas	ZDEs	may	keep	their	radio	off	all	the	time.	Nodes	that	have	their	radio
turned	 on	 all	 the	 time	 have	 a	 significantly	 higher	 energy	 consumption	 and
therefore	cannot	be	battery-operated.	Only	nodes	that	keep	their	radios	turned	off
have	a	low	enough	power	consumption	to	be	battery-operated.

The	IEEE	802.15.4	standard	is	described	in	more	detail	in	Chapter	12.
19.1.4	NWK
The	NWK	layer	performs	addressing	and	routing	and	is	the	equivalent	of	the

IP	layer	in	the	IP	architecture.	The	ZigBee	network	layer	provides	two	forms	of
data	 delivery:	 broadcast	 and	unicast.	Multicast	 is	 also	 supported,	 but	multicast
data	 are	 delivered	 using	 broadcast	 with	 software	 filtering	 of	 the	 incoming
packets	at	the	receiver.	Broadcast	delivery	is	a	form	of	network	flooding,	which



sends	 a	 packet	 to	 all	 nodes	 on	 the	 network.	 The	 packet	 can	 be	 tagged	with	 a
maximum	 hop	 count	 that	 determines	 how	 far	 the	 packet	 can	 travel	 in	 the
network.	 Because	 the	 broadcast	 packet	 reaches	 every	 node	 in	 the	 network,	 a
broadcast	is	an	expensive	operation.	Unicasts,	on	the	other	hand,	are	sent	only	to
the	node	to	which	they	are	addressed.	Both	broadcasts	and	unicasts	can	travel	up
to	30	hops.

The	 ZigBee	 stack	 has	 two	 schemes	 for	 routing	 unicast	 packets:	 network
routing	and	source	routing.	In	network	routing,	the	network	takes	care	of	finding
the	best	route	for	the	packet	to	take	through	the	network.	In	source	routing,	the
sender	 must	 explicitly	 state	 through	 which	 nodes	 the	 message	 should	 pass	 to
reach	 its	 destination.	 Source	 routing	 is	 useful	 for	 large	 networks	 where	 each
node	 in	 the	 network	 may	 not	 be	 able	 to	 maintain	 large	 routing	 tables	 for	 all
nodes.	 Instead,	 the	 ZC	 node,	 which	 is	 assumed	 to	 have	 significantly	 more
memory	than	the	other	nodes,	can	maintain	all	routing	information	for	all	nodes.
This	 reduces	 the	 memory	 load	 for	 the	 network	 at	 the	 expense	 of	 a	 slight
overhead	 in	 each	 packet.	 But	 as	 node	 addresses	 are	 short	 in	 ZigBee,	 this
overhead	 is	 small.	To	keep	 the	overhead	 to	a	bounded	value,	 source	 routing	 is
limited	to	five	hops.	Source	routing	is	available	only	in	the	ZigBee	Pro	version.

There	are	two	types	of	network	routing:	mesh	and	tree	routing.	Mesh	routing
builds	a	connected	mesh	between	the	ZR	devices	and	transports	data	in	a	point-
to-point	fashion.	The	tree	routing	scheme	builds	a	tree	where	the	ZC	is	the	root
of	the	tree	and	ZEDs	are	the	leaf	nodes.	Tree	routing	is	not	available	in	ZigBee
Pro.

The	 ZigBee	 mesh	 routing	 algorithm	 is	 an	 adaptation	 of	 the	 Internet
Engineering	Task	Force	(IETF)	standard	protocol	Ad	hoc	On-demand	Distance
Vector	(AODV)	Protocol	[194].	AODV	is	a	reactive	on-demand	protocol,	which
means	that	routes	are	not	established	until	they	are	needed;	that	is,	nodes	do	not
know	about	each	other	until	 the	first	packet	 is	sent.	When	a	packet	 is	sent,	 the
originating	 node	 broadcasts	 a	 routing	 request	 packet.	 This	 routing	 request
reaches	all	nodes	in	the	network.

Nodes	 set	 up	 a	 reverse	 path	 to	 the	 originating	 node	 as	 part	 of	 the	 route
request	 procedure.	When	 a	 node	 receives	 a	 routing	 request	 packet,	 it	 adds	 an
entry	for	the	originating	node	in	its	routing	table.	The	routing	table	entry	is	filled
with	the	address	of	the	originating	node	as	well	as	the	address	of	the	node	from
which	the	route	request	came.	This	packet	should	be	sent	 to	 this	node	to	reach
the	originator.	Thus	a	reverse	path	is	built	in	the	network.

When	the	route	request	reaches	the	requested	node,	this	node	sends	a	unicast
route	reply	back	to	the	originator	of	the	request.	Since	the	nodes	in	the	network
have	built	a	reverse	path,	the	network	knows	how	to	reach	the	originator	node.



As	the	nodes	on	the	path	forward	the	unicast	route	reply,	they	add	the	destination
node	 to	 their	 routing	 tables	 along	with	 the	node	 from	which	 they	 received	 the
route	reply.	When	the	route	reply	reaches	the	originator,	the	route	is	set	up	and
the	originator	and	the	destination	begin	exchanging	packets.

The	network	 routing	mechanism	works	well	 for	 small	networks,	but	as	 the
network	grows,	the	amount	of	state	each	node	has	to	maintain	increases.	In	large
networks	with	hundreds	or	thousands	of	nodes,	the	routing	tables	in	the	memory-
constrained	nodes	begin	 to	overflow.	Additionally,	 the	network	flooding	of	 the
route	request	packets	becomes	problematic.	In	such	situations,	the	source	routing
mechanism	can	be	used	instead.

19.1.5	APS	Sublayer
The	APS	sublayer	is	equivalent	to	the	transport	layer	in	the	IP	architecture.	It

is	 a	 thin	 layer	 that	 acts	 as	 an	 intermediary	 between	 the	 NWK	 layer	 and	 the
application	layer.	The	purpose	of	the	APS	is	to	do	end-to-end	acknowledgments
and	to	filter	out	duplicate	packets.

The	 APS	 layer	 has	 a	 connection	 between	 two	 nodes	 called	 a	 binding.	 A
binding	is	unidirectional	—	a	node	is	bound	to	another	node,	but	the	other	node
is	not	necessarily	bound	back	to	the	first	node.

19.1.6	AF
The	ZigBee	application	layer	is	called	application	framework	(AF)	and	runs

on	 top	 of	 the	 APS	 layer.	 The	 AF	 supports	 multiple	 applications	 and
demultiplexes	 incoming	 data	 between	 the	 registered	 applications.	 Some	 of	 the
applications	 are	 defined	 by	 the	 ZigBee	 specification,	 whereas	 others	 are
implemented	 independently	 by	 vendors.	 In	 ZigBee,	 an	 application	 is	 called	 a
profile.

ZigBee	profiles	are	 identified	with	an	integer	between	0	and	240,	called	an
end	point.	This	is	the	equivalent	of	the	port	number	in	the	IP	architecture.	When
the	AF	 layer	 processes	 a	 packet,	 it	 demultiplexes	 the	 packet	 based	 on	 the	 end
point	identifier.	Applications	register	with	an	end	point	identifier	at	the	AF	layer.
If	a	packet	arrives	for	an	end	point	identifier	that	is	not	registered,	the	packet	is
silently	dropped.	 If	 the	application	has	been	 registered,	 the	packet	 is	passed	 to
the	application	layer.

ZigBee	 profiles	 are	 used	 in	 cases	 for	 which	 the	 ZigBee	 technology	 is
intended.	 For	 example,	 the	 ZigBee	 Alliance	 has	 defined	 a	 profile	 for	 home
automation,	smart	energy	management,	building	automation,	and	toys.

There	are	two	types	of	application	profiles:	public	and	vendor-specific.	Each
application	profile	is	identified	by	an	integer	between	1	and	240.	This	integer	is
called	a	profile	end	point.	The	profile	with	end	point	zero	is	 the	ZDO	and	it	 is
used	 for	 network	 configuration	 and	 setup.	 Profile	 identifiers	 are	 allocated	 and



managed	by	the	ZigBee	Alliance.	Public	profiles	are	intended	to	be	interoperable
across	 different	 vendors,	 whereas	 vendor-specific	 profiles	 are	 intended	 to	 be
used	only	by	products	from	one	specific	vendor.

The	 ZDO	 profile	 is	 responsible	 for	 network	 maintenance.	 It	 provides
mechanisms	for	interacting	with	the	NWK	and	APS	layers,	which	is	done	during
network	 configuration.	The	ZDO	 is	 therefore	 drawn	 as	 a	 prolonged	 horizontal
box	as	seen	in	Figure	19.2.

19.1.7	Network	Setup
The	ZigBee	network	 setup	process	 involves	 all	 layers	of	 the	ZigBee	 stack.

This	process	establishes	a	physical	communication	link	between	the	nodes	in	the
network,	distributes	address	information	between	the	nodes	in	the	network,	and
discovers	and	binds	the	services	on	the	nodes.

The	 network	 setup	 process	 begins	 at	 the	 PHY	 layer.	 The	 ZC	 starts	 by
scanning	the	16	available	physical	radio	channels	of	the	IEEE	802.15.4	radio	to
find	the	channel	that	has	the	least	current	radio	energy.	This	channel	is	assumed
to	 be	 the	 one	 with	 the	 least	 interference	 from	 other	 equipment.	 Since	 IEEE
802.15.4	 runs	 on	 the	 unlicensed	 2.4	 GHz	 band,	 there	 are	 several	 sources	 of
interference	 such	 as	 WiFi	 networks	 and	 microwave	 ovens.	 The	 channel	 scan
samples	each	channel	for	0.5	s.	Thus	the	process	takes	eight	seconds	and	gives
only	 a	 snapshot	 of	 the	 channel	 activity.	 When	 the	 scan	 is	 complete,	 the	 ZC
chooses	 the	 channel	 with	 the	 least	 activity	 for	 the	 network.	 This	 channel	 is
retained	through	the	lifetime	of	the	network.

After	the	PHY	layer	channel	selection	is	complete,	the	MAC	layer	creates	a
new	PAN	ID	for	the	network.	The	PAN	ID	is	a	16-bit	integer	selected	at	random
by	 the	 ZC.	 Once	 the	 ZC	 has	 selected	 a	 PAN	 ID,	 it	 begins	 to	 announce	 its
presence	on	the	selected	channel	and	with	the	selected	PAN	ID	through	repeated
beacon	messages.	When	 the	physical	channel	and	PAN	ID	have	been	selected,
the	network	formation	is	said	to	be	complete.

Once	the	ZC	has	formed	the	network,	ZRs	and	ZEDs	begin	to	join	it.	Nodes
join	a	network	by	sending	out	their	own	beacon	messages.	If	a	ZR	or	ZC	hears	a
beacon	from	a	node	that	is	not	part	of	a	network,	it	responds	by	sending	a	beacon
message	 back.	 The	 node	 collects	 all	 answers	 it	 receives	 and	 decides	 which
network	and	ZR	it	should	try	to	associate	with.	The	process	by	which	the	node
chooses	 its	 network	 and	 parent	 is	 application-specific.	 If	 network	 security	 is
enabled,	after	a	node	has	selected	a	network	and	a	parent,	it	authenticates	itself
with	the	parent.	Now	the	node	is	fully	part	of	the	network.

19.1.8	ZigBee	Is	Migrating	to	IP
The	 layers	 of	 the	 ZigBee	 stack	 loosely	 correspond	 to	 the	 layers	 of	 the	 IP

stack.	The	ZigBee	stack	is,	however,	incompatible	with	the	IP	architecture.	This



causes	 severe	 problems	 when	 ZigBee	 networks	 are	 deployed	 together	 with
existing	 IP-based	 services	 and	 applications.	 There	 is	 no	 way	 for	 the	 ZigBee
network	 and	 the	 IP-based	 services	 to	 communicate	 except	 through	 custom
gateways.	A	gateway	needs	 to	 run	both	 the	 full	ZigBee	 stack	and	an	 IP	 stack,
which	 effectively	 doubles	 the	 memory	 requirement	 for	 the	 gateway	 device.
Additionally,	 these	gateways	require	installation,	custom	hardware,	and	custom
software,	inducing	significant	costs.	These	problems	are	not	specific	to	ZigBee,
however;	we	discuss	these	generic	problems	at	length	in	Chapter	3.

To	 reduce	 the	 costs	 and	 trouble	 of	 integrating	 ZigBee	 networks	 with	 IP-
based	networks	and	services,	 the	ZigBee	Alliance	announced	 in	mid-2009	 that
ZigBee	 will	 move	 toward	 an	 IP-based	 infrastructure	 for	 the	 latest	 application
profile	 for	 smart	 energy	 metering.	 By	 incorporating	 IP	 into	 the	 ZigBee
architecture,	 the	 hope	 is	 that	 existing	 ZigBee	 applications	 will	 be	 able	 to	 run
over	 IP	 instead	 of	 over	 the	 custom	 NWK	 layer	 in	 the	 current	 ZigBee
specification.	This	reduces	the	cost	of	 integrating	with	existing	IP	networks.	In
addition,	 there	 is	 ongoing	 work	 outside	 of	 the	 ZigBee	 Alliance	 to	 adopt	 the
existing	ZigBee	 application	 profiles	 to	 run	 over	 a	UDP/IP	 [237],	 allowing	 the
ZigBee	 application	 profiles	 to	 become	 applications	 running	 on	 top	 of	 the	 IP
architecture.	How	the	ZigBee	Alliance	will	progress	with	 the	migration	 toward
IP	was	not	decided	at	the	writing	of	this	book.

19.2	Z-Wave
Z-Wave	 is	 an	 alliance	 that	 developed	 its	 own	 patented	 low-power	 RF

technology	for	home	automation	and	small	residential	environment.	The	Z-wave
technology	 is	 not	 IP-based	 and	 has	 its	 own	 physical,	 MAC,	 networking,
transport,	and	application	 layers.	The	application	 layer	makes	use	of	command
classes	 that	describe	devices	and	the	 language	used	 to	communicate	with	 these
devices.	 The	 information	 discussed	 next	 is	 based	 on	 the	 public	 information
available	on	the	Z-Wave/Zensys	web	site.

The	 main	 application	 of	 Z-Wave	 products	 is	 home	 automation	 such	 as
garage	 doors,	 alarm	 systems,	 door	 locks,	 sensors	 for	 HVAC	 and	 energy
management,	 lighting	 and	 windows,	 home	 healthcare,	 sprinklers,	 and	 other
home	applications.	Z-Wave	provides	a	developer	kit	that	allows	developers	and
original	 equipment	 manufacturers	 (OEMs)	 to	 develop	 products	 using	 the	 Z-
Wave	 technology	 due	 to	 the	 use	 of	 an	 API	 and	 handles	 its	 own	 certification
program.

Z-Wave	 technology	 has	 been	 designed	 to	 be	 plug	 and	 play,	 requiring
minimal	 manual	 intervention	 to	 connect	 new	 devices	 that	 expand	 the	 meshed
network.	 The	Z-Wave	 technology	 has	 been	 designed	 to	 be	 low	 power	 so	 it	 is
used	on	both	main-powered	and	battery-operated	nodes	such	as	smoke	detectors



or	other	types	of	sensors.
The	 RF	 Z-Wave	 technology	 uses	 binary	 frequency	 shift	 keying	 (B-FSK)

modulation	and	operates	in	the	sub-1	GHz	band.	Since	2008	it	also	supports	the
2.5	 GHz	 band	 for	 a	 throughput	 between	 9.6	 and	 40	 Kilobits/s	 (performances
indicated	 by	 Zensys).	 The	 MAC	 layer	 uses	 link	 layer	 acknowledgment	 and
retransmission	with	collision	avoidance	and	checksum	for	error	detection.

The	ZM3102	Z-Wave®	Module	is	an	integrated	RF	communication	module
using	 the	unlicensed	short-range	 frequency	band	902—928	MHz	 in	 the	United
States	and	868.0–868.6	MHz	in	Europe.	The	Z-W0301	Single	Chip	is	a	chipset
made	 of	 the	 following	 components:	 an	 RF	 transceiver,	 the	 8-bit	 8051
microcontroller	unit	(MCU)	core	from	Texas	Instruments	equipped	with	32	K	of
flash	 memory,	 2	 K	 of	 RAM	 for	 the	 Z-Wave	 protocol,	 and	 OEM	 application
software.	The	Zensys	300	series	power	consumption	is	2.5	μA	in	sleep	mode,	21
mA	in	receive	mode,	5	mA	(MCU	“on”	and	radio	“off”),	transmission	of	23	mA
(at	−5	dBm),	and	37	mA	(at	0	dBm).

Z-Wave	 products	 support	 the	 basic	 device	 class	 protocol	 libraries	 and
command	 classes	 that	 reference	 the	 command	 exchanges	 between	 the	 devices.
Home	automation	can	be	performed	via	an	Internet	connection	through	an	IP/Z-
Wave	protocol	 translation	gateway	since	Z-Wave	does	not	natively	support	 the
IP	protocol.	The	role	of	the	gateway	is	then	to	connect	the	Z-Wave	world	to	the
Internet.

The	 technology	 is	 supported	 and	 promulgated	 by	 the	 Z-Wave	 Alliance
(www.z-wave.com).

	
19.3	Conclusions
Several	 non-IP	 protocol	 specifications	 for	 smart	 objects	 have	 been

developed.	 The	 ZigBee	 specification,	 developed	 by	 the	 ZigBee	 Alliance,	 is
based	on	the	IEEE	802.15.4	radio	standard	and	provides	a	set	of	mechanisms	for
creating	networks	of	nodes	as	well	as	the	establishment	of	applications	on	top	of
the	 network.	 The	 ZigBee	 specification	 is	 owned	 by	 the	 ZigBee	 Alliance	 and
vendors	need	to	join	the	alliance	to	commercialize	ZigBee	technology.

Z-Wave	 is	 another	 specification	 for	 low-power	 communication	 in	wireless
smart	object	systems.	It	is	patented	and	owned	by	the	Z-Wave	Alliance.	Z-Wave
specifies	an	entire	network	stack	from	the	physical	layer	to	the	application	layer.
The	 application	 layers	 are	 tailored	 to	 specific	 market	 segments	 such	 as	 home
automation	or	energy	management.

Neither	ZigBee	nor	Z-Wave	 are	 compatible	with	 IP,	which	 is	 a	 significant
problem	for	emerging	systems	that	need	to	integrate	with	IP-based	networks	and
services.	 To	 alleviate	 these	 problems,	 the	 ZigBee	Alliance	 announced	 in	mid-

http://www.z-wave.com


2009	that	 it	would	work	towards	allowing	ZigBee	to	use	IP,	enabling	seamless
integration	between	ZigBee	networks	and	IP	networks.

	



Chapter	20	Smart	Grid
	

20.1	Introduction
The	power	grid	is	the	electrical	network	delivering	electricity	to	houses,

offices,	and	industrial	users.	As	shown	in	Figure	20.1,	electricity	is	produced
by	plants	(nuclear,	coal,	solar,	geothermal,	wind)	and	transported	through	a
hierarchical	 power	 grid	 network	 where	 electricity	 flows	 from	 power
generation	 sources	 to	 homes	 after	 a	 succession	 of	 voltage	 transformations
performed	 by	 substations.	 Electricity	 is	 generated	 and	 transported	 over
long	distances	at	high	voltage	(between	110	and	400	kV)	to	reduce	line	loss.
The	line	voltage	is	then	stepped	down	by	transformers	located	in	a	primary
substation	 (typically	 to	 40–60	 kV)	 until	 it	 reaches	 pole	 top	 transformers
(United	 States)	 or	 a	 secondary	 substation	 (Europe)	 where	 the	 voltage	 is
further	stepped	down	to	110/220	V	(see	Figure	20.2).	Power	lines	may	either
be	overhead	or	underground	depending	on	the	voltage	and	country.

Figure	20.1	Current	grid	infrastructure.
	



Figure	20.2	US	power	grid.

(Source:	FEMA.)
	

The	 approximate	 number	 of	 primary	 substations	 in	 Europe	 is	 several
thousands	 and	 the	 number	 of	 secondary	 substations	 is	 as	 large	 as	 several
hundreds	of	thousands	in	the	largest	countries.

Since	there	is	one	smart	meter	per	house	and	several	per	building,	there
are	hundreds	of	millions	of	meters	in	the	world.

Thus	 far,	 the	 power	 grid	 has	 been	 mostly	 managed	 and	 designed
according	 to	 power	 consumption	 forecasts	 using	 monodirectional
information	flows.	In	the	past	few	decades	power	demand	was	highly	stable
and	 predictable.	 With	 increasing	 environmental	 concerns	 to	 reduce	 CO2

emission	 and	 the	 cost	 of	 energy,	 the	 end	 user	 has	 changed	 its	 power
consumption	 behavior,	 thus	 making	 the	 power	 demand	 less	 predictable.
Additionally	more	users	have	access	to	electricity	leading	to	an	increase	in
energy	 consumption.	 Even	 more	 important	 is	 the	 change	 of	 power
production	 in	 the	 grid	 with	 the	 generation	 of	 power	 from	 distributed
renewable	 energy	 sources	 referred	 to	 as	 “distributed	 generation”	 both



within	 the	 grid	 or	 downstream	 of	 the	 smart	 meter	 (at	 medium	 and	 low
voltage).	 Distributed	 generation	 refers	 to	 solar	 panels,	 wind	 turbines,	 or
micro	combined	heat	and	power	 (CHP)	equipment	 that	can	convert	waste
heat	with	gas	micro-turbines	or	fuel	cells	 (significantly	more	efficient	than
combustion-based	generation).

It	 is	 predicted	 that	 20%	 of	 produced	 power	 will	 be	 from	 renewable
sources	 in	Europe	by	2020.	 In	some	countries	 that	proportion	has	already
exceeded	40%.	Power	generation	from	unpredictable	distributed	generation
sources	and	user	power	consumption	behavior	changes	 increased	 the	 level
of	unpredictability.	This	requires	fine-grained	monitoring	and	management
of	the	grid	to	maintain	a	high	level	of	reliability	and	reduce	the	number	of
network	 outages.	 This	 type	 of	 management	 is	 not	 always	 deployed	 in
today’s	grid	networks.	Furthermore,	power	 is	 injected	 in	parts	of	 the	grid
that	are	not	always	monitored,	 such	as	 the	medium	voltage	 (MV)	and	 low
voltage	(LV)	areas,	which	adds	to	the	requirement	for	widespread	advanced
monitoring	and	control	systems	in	the	grid.

Power	grid	operators	(also	called	utilities)	are	facing	difficult	challenges
when	managing	 the	 grid	 for	 the	 previously	mentioned	 reasons	 as	 well	 as
governmentally	imposed	restrictions	on	greenhouse	gas	emission.	There	is	a
strong	requirement	to	design	the	next	generation	of	the	“greener”	grid	with
a	 reduced	 carbon	 footprint	 in	 an	 increasingly	more	 complex	 environment
with	increasing	demand,	power	consumption	changing	patterns,	and	in	the
presence	of	a	distributed	sources	generation	 that	considerably	reduces	 the
level	of	predictability.

The	introduction	of	a	potentially	 large	number	of	electric	cars	(plug-in
hybrid	electric	vehicles;	PHEV)	is	undoubtedly	a	unique	opportunity,	but	it
brings	 its	 own	 challenges	 to	 the	 grid	 network.	 Smart	mechanisms	will	 be
required	to	smooth	out	the	energy	consumption	and	draw	power	from	the
grid	when	it	is	appropriate	according	to	power	production.	Note	that	it	may
also	be	interesting	to	use	the	millions	of	car	batteries	as	a	future	electricity
storage	buffer	for	peak	shaving.

Figure	20.3	 shows	 the	number	of	minutes	of	outage	 in	 the	distribution
grid.



Figure	20.3	Yearly	outages	in	the	transmission/distribution	grid.
	

Each	 minute	 of	 network	 outage	 has	 economical	 consequences.	 The
current	 grid	 “consists	 of	 more	 than	 9,200	 electric	 generating	 units	 with
more	 than	 1,000,000	MW	 of	 generating	 capacity	 connected	 to	more	 than
300,000	miles	of	transmission	lines….	Today’s	electricity	system	is	99.97%
reliable,	 yet	 still	 allows	 for	 power	 outages	 and	 interruptions	 that	 cost
Americans	 at	 least	 $150	 billion	 each	 year	—	 about	 $500	 for	 every	 man,
woman	and	child.”11	See	The	Smart	Grid:	An	Introduction,	US	Department
of	Energy,	at	http://www.oe.energy.gov/1165.htm.

The	 consequence	 of	 these	 outages	 is	 the	 need	 for	 an	 advanced
networking	 infrastructure	 in	 the	 Smart	 Grid	 from	 generation	 to
distribution	 and	 finally	 homes	 and	 buildings.	 Such	 an	 infrastructure	 is
made	of	billions	of	 smart	 objects	performing	 sensing	and	actuating	 in	 the
grid	to	provide	“real-time”	information	about	the	grid	health	and	consumer
demand	 to	 optimize	 the	 grid	 operation.	 Based	 on	 this	 set	 of	 data,	 the
network	will	be	able	to	adjust	in	“real	time”	to	perform	load	shedding	and
accurate	grid	management	with	 the	objective	of	 increasing	grid	 reliability
by	reducing	grid	outages	while	reducing	carbon	footprint	and	cost.

Smart	objects	such	as	sensors	and	actuators	will	collect	data	across	the
network	 to	 feed	analytical	 tools	 to	better	manage	 the	network	and	also	 to
trigger	 various	 actions	 within	 the	 network	 (e.g.,	 power	 consumption
regulation	based	on	dynamic	interaction	between	the	end	user	and	the	grid,
fault	 isolation,	etc.).	Several	scenarios	are	 further	analyzed	 in	Section	20.3

http://www.oe.energy.gov/1165.htm


of	 this	 chapter.	 Some	 of	 these	 actions	 will	 be	 triggered	 from	 within	 the
network	 (using	 distributed	 in-network	 intelligence)	 while	 others	 will	 be
managed	using	centralized	systems	(e.g.,	SCADA	applications).

Thus	grid	reliability	is	one	of	the	most	critical	priorities	for	utilities.	The
grid	 should	be	managed	by	an	extremely	reliable	 communication	network
that	 provides	 the	 necessary	 infrastructure	 of	 real-time	 monitoring	 and
distributed	grid	management	 to	 reduce	network	outages:	without	 a	doubt
IP	networks	have	demonstrated	their	ability	to	meet	these	requirements.

The	 forecast	 of	 investments	 from	 utilities	 in	 Smart	 Grid	 networks
exceeds	$42	billion,	and	some	forecasts	are	significantly	higher.

Power	grid	networks	are	designed	for	future	use,	thus	providing	a	great
deal	of	flexibility	with	extremely	high	reliability	and	security.

Security	is	undoubtedly	another	priority	for	Smart	Grid	designers	since
advanced	 networks	 supporting	 critical	 infrastructure	 may	 be	 prone	 to
various	 forms	 of	 attacks.	 The	 good	 news	 is	 that	 a	 plethora	 of	 existing	 IP
security	 technologies	 are	 used	 to	 safeguard	 the	 overall	 networking
infrastructure.

20.1.1	How	Can	We	Define	the	Smart	Grid?
There	is	no	single	definition	of	the	Smart	Grid.	Instead,	there	is	a	set	of

expectations	that	must	be	met	to	face	the	wide	range	of	new	requirements
exposed	in	the	previous	section.	The	Smart	Grid	must	enhance	the	current
grid	 network	 with	 advanced	 sensing	 actuators	 and	 a	 highly	 secure
networking	 infrastructure	 to	 improve	 grid	 efficiency,	 performance,	 and
reliability	 as	well	 as	 to	 support	 a	wide	 range	 of	 new	 services	 (e.g.,	 better
knowledge	of	power	consumption	profiles,	use	of	PHEV,	distributed	sources
such	 as	 solar	 panel	 and	 residential	 power	 generation,	 and	 smart	 home
appliances).

The	 Smart	 Grid	 is	 one	 of	 the	 major	 applications	 for	 smart	 object
networks,	and	the	IP	protocol	will	be	central	to	them.	As	described	through
several	 use	 cases	 explored	 in	 this	 chapter,	 most	 of	 the	 expectations	 and
requirements	 for	 the	 Smart	 Grid	 involve	 smart	 object	 networks:	 sensors
(e.g.,	 measuring	 the	 current,	 voltage,	 phase,	 or	 reactive	 power)	 and
actuators	(e.g.,	circuit	breakers,	etc.)	to	efficiently	monitor	and	control	the
power	grid,	sensing	in	smart	meters	to	measure	power	consumption,	and	a
number	 of	 smart	 devices	 used	 in	 homes,	 buildings,	 and	 factories	 that
communicate	via	specialized	energy	management	devices	with	 the	grid	 for
efficient	energy	management.

A	 typical	 power	 grid	 architecture	 from	 power	 generation	 to	 the
home/building	is	depicted	in	Figure	20.4:	power	is	generated	by	plants	and



then	 distributed	 to	 the	 end	 user	 through	 a	 distribution	 network.	 The
particularity	 of	 the	 grid	 network	 lies	 in	 its	 hierarchical	 structure.	 High
voltage	(HV)	lines	are	connected	to	(primary)	substations	where	the	voltage
is	reduced	to	MV	before	being	even	further	reduced	to	LV	using	pole	tops
(United	 States)	 or	 secondary	 substations	 (Europe).	 Finally,	 electricity	 is
delivered	 to	 the	 end	 user	where	 a	 smart	meter	 is	 used	 to	monitor	 energy
usage	(and	to	perform	many	other	functions).

Figure	20.4	Overview	of	the	Smart	Grid	network.
	

In	each	part	of	the	network,	smart	objects	are	used	to	provide	a	myriad
of	services	that	are	described	in	Section	20.3.

In	this	chapter	we	outline	several	use	cases	for	smart	object	networks	in
Smart	Grid	networks:

•	Substation	monitoring	and	control
•	Smart	metering
•	Home	energy	management



	
	

	
20.2	Terminology
There	 are	 several	 common	 terms	 used	 when	 referring	 to	 Smart	 Grid

architectures:

•	 Substation	 automation/integration	 (SA/I):	 The	 core	 grid	 network
from	power	generation	 to	power	distribution.	 It	 includes	 the	primary
and	secondary	substations.
•	Neighbor	area	network	(NAN):	Refers	to	the	network	between	the

substations	 and	 the	 homes.	 It	 includes	 the	 concentrators	 and	 smart
meters.
•	 Home	 area	 network	 (HAN):	 The	 home	 network	 including	 smart

appliances,	home	energy	controller	(HEC),	etc.

	
	

20.3	Core	Grid	Network	Monitoring	and	Control
This	 first	 use	 case	 shows	 the	 role	 of	 sensors	 and	 actuators	 in	 the	 core

grid	for	monitoring	and	control.
Monitoring	and	control	undoubtedly	deserves	its	own	book	considering

the	number	of	applications	involving	smart	objects	that	utilities	need	to	use
to	 effectively	 monitor	 and	 control	 the	 power	 grid.	 The	 objective	 of	 this
section	is	to	provide	an	overview	of	three	applications:

•	Substation	monitoring	and	control
•	Substation	condition-based	maintenance	(CBM)
•	Line	dynamic	rating

	
20.3.1	Use	Case	1:	Secondary	Substation	Monitoring	and	control
As	discussed	previously,	secondary	substations	are	used	to	step	down	the

power	 voltage	 from	 medium	 (40–60	 kV)	 to	 low	 voltage	 (110/220	 V).	 As
shown	in	Figure	20.4,	a	substation	hosts	transformers	as	well	as	a	number
of	 devices	 called	 intelligent	 end	 devices	 (IEDs)	 such	 as	 circuit	 breakers,
voltage	sensors,	reclosers,	and	surge	protectors.	IEDs	are	currently	mostly
managed	 by	 a	 centralized	 system	 located	 at	 the	 network	 control	 center
(NCC)	 called	 the	 Supervisory	 Control	 and	 Data	 Acquisition	 (SCADA)
application.



As	shown	in	Figure	20.5,	in	Europe	secondary	substations	are	equipped
with	transformers	and	remote	terminal	units	(RTUs)	that	receive	data	from
sensors	and	trigger	 local	actions	(referred	to	as	substation	monitoring	and
control).	 In	 addition,	 the	 substation	 may	 also	 host	 a	 smart	 meter
concentrator	 that	 collects	 data	 from	 the	 meters	 and	 performs	 local
processing	 to	 report	 information	 back	 to	 the	 SCADA	 system	 as	 discussed
later	 in	 Section	 20.4.	 Substations	 are	 connected	 to	 a	 data	 network	 using
various	types	of	networking	technologies.

Figure	20.5	A	typical	secondary	substation.
	

Sensed	data	can	trigger	local	actions	performed	within	the	substation	or
they	 can	 alternatively	 be	 reported	 to	 the	 SCADA	 application	 where	 the
appropriate	 action	 is	 taken.	 Smart	 Grid	 networks	 tend	 to	 introduce
distributed	 intelligence	 in	 the	 grid	 in	 contrast	 with	 a	 purely	 centralized
system.

Smart	objects	such	as	sensors	are	primarily	used	to	monitor	the	MV	and
LV	power	lines	and	report	a	number	of	quality	metrics	such	as	the	voltage
and	current	levels	for	each	phase.	Other	metrics	of	interest	for	utilities	can
then	be	derived	such	as	the	active	and	reactive	power	(known	as	the	P	and
Q	values).	Such	metrics	can	either	be	computed	by	the	sensor,	the	RTU,	a
smart	router	located	in	the	substation,	or	the	SCADA	application.	Sensors



also	 report	 ground	 faults,	 fuse	 status,	 cable	 temperature,	 and	 voltage	 or
current	values	exceeding	some	preconfigured	thresholds	that	are	sent	to	the
SCADA	application.	They	 are	 also	 potentially	 stored	 in	 equipment	within
the	substation	(e.g.,	smart	routers).

Smart	objects	in	a	substation	are	not	limited	to	sensors:	circuit	breakers
(actuators)	are	also	used	for	substation	control	and	can	either	be	controlled
by	the	RTU	or	by	the	operator	in	charge	of	the	SCADA	application.

In	 some	 grid	 networks,	 distributed	 algorithms	 can	 be	 used	 between
substations	(primary	and	secondary)	to	perform	automatic	failure	recovery.
Upon	detecting	a	 fault,	 the	distributed	algorithm	automatically	 locates	 the
fault	 and	 isolates	 the	 faulty	 line	 thus	 providing	 a	 fully	 automatic	 error
recovery	mechanism.

The	RTU	has	 historically	 been	 using	 protocols	 defined	 by	 IEC22	 IEC:
International	 Electrotechnical	 Commission	 —	 http://www.iec.ch/.	 such	 as
IEC	 60870-5-101	 and	 IEC	 60870-5-105	 (mostly	 in	 Europe),	 or	 DNP3
(Distributed	Network	Protocol)	and	Modbus	 in	primary	substations	 in	 the
United	 States,	 but	 there	 is	 clearly	 a	 trend	 toward	 a	 truly	 end-to-end	 IP
architecture	 from	 smart	 objects	 such	 as	 sensors	 and	 actuators	 to	 the
SCADA	 application.	 Such	 smart	 objects	 already	 exist	 and	 could	 then
directly	be	connected	to	a	smart	router	that	performs	various	tasks	(such	as
hosting	distributed	algorithms	to	trigger	local	actions	by	sending	orders	to
actuators	such	as	circuit	breakers)	in	addition	to	routing	the	IPv6	traffic	to
the	SCADA	application	and	between	substations.	This	is	represented	by	the
“direct”	 lines	 between	 the	 sensor	 and	 the	 router,	 thus	 replacing	 the
traditional	(usually	analog)	connection	between	sensors	and	RTUs	and	thus
opening	the	door	to	a	myriad	of	new	services.

In	 addition	 to	providing	 critical	 information	 to	utilities	 regarding	grid
health,	 these	 smart	 objects	 greatly	 contribute	 to	 the	 reduction	 of	 the
number	of	grid	network	outages.	As	shown	by	the	secondary	substation	in
Figure	20.5,	smart	objects	are	an	integral	part	of	the	central	nervous	system
of	the	power	grid.
	
20.3.2	Use	Case	2:	Substation	CBM
The	 use	 of	 sensors	 to	 proactively	 determine	 the	 need	 for	 equipment

maintenance	based	on	the	health	condition	of	the	device	is	one	of	the	most
prevalent	 uses	 of	 smart	 objects	 in	 industrial	 networks;	 substation
automation	 and	 control	 is	 not	 an	 exception.	 By	 monitoring	 the	 device,
utilities	 can	perform	maintenance	 before	 a	 failure	 occurs,	 thus	 saving	 the
cost	 of	 the	 device	 but	 also	 indirect	 costs	 due	 to	 network	 outages.	 The

http://www.iec.ch/


alternative	 approach	 based	 on	 preventive	 maintenance	 with	 regular
preplanned	maintenance	is	not	only	usually	less	effective	but	more	costly.

CBM	 includes	 the	 periodic	 sending	 of	 health	 reports	 (from	 a	 few
minutes	to	hours)	by	a	smart	object,	such	as	a	sensor,	to	a	central	system	in
addition	to	sending	alarms	triggered	by	specific	events.	The	number	of	such
smart	objects	used	 for	CBM	in	a	 substation	 is	 impressive.	Here	 is	a	 small
subset	of	the	wide	set	of	sensors	used	in	today’s	environments:

•	Partial	discharge	detectors
•	Infrared	thermographic	imaging	monitors
•	Vibration	sensor	on	rotating	equipment
•	Acoustic	emission	defect	sensors
•	Moisture	in	oil	sensors
•	Load	current	measurement	sensors
•	Backscatter	sensors
•	Wind	speed	sensors
•	Temperature	sensors
•	Humidity	sensors
•	Dissolved	gas	analysis	sensors
•	 Self-reporting	 distribution	 transformer	 (health	 metric	 life

odometer)
•	Liquid	leaks
•	Low	oil	levels
•	Overhead	cable	ice	load,	swing,	and	tilt	sensors

	
The	analysis	of	a	 set	of	 reported	values	by	 sensors	 (due	 to	well-known

equations)	 is	used	to	detect	anomalies.	For	example,	knowing	the	load	and
other	 parameters,	 utilities	 can	 determine	 the	 expected	 temperature	 of	 the
system.	 When	 exceeding	 a	 threshold,	 an	 indication	 that	 maintenance	 is
required	 is	 triggered,	 thus	 potentially	 avoiding	 expensive	 failures	 in
equipment	 such	 as	 transformers.	 Another	 typical	 example	 is	 the	 use	 of
dissolved	 gas	 analysis	 sensors	 to	 monitor	 transformers.	 The	 analysis	 of
various	dissolved	gases	in	transformers	such	as	oxygen	hydrogen,	methane,
ethane,	 ethylene,	 carbon	 monoxide,	 and	 dioxide	 can	 help	 identify	 a
transformer	failure.	Smart	objects	(sensors)	allow	for	very	regular	(once	a
day	 or	 even	 every	 hour)	 analysis	 in	 contrast	 to	 the	 usual	 yearly	 on-site
samplings	that	were	sent	to	a	laboratory	for	further	analysis.

The	benefits	 of	CBM	are	 clear.	Not	 only	will	CBM	prolong	 the	 life	 of



expensive	devices	and	in	some	cases	even	increase	their	effectiveness,	it	will
also	avoid	catastrophic	failures	that	lead	to	costly	grid	network	outages.	The
use	 of	 smart	 objects	 for	 CBM	 also	 reduces	 the	 cost	 of	 preventive
maintenance	and	increases	workforce	effectiveness	in	many	ways.	Whereas
CBM	solutions	have	been	 in	use	for	years	for	 local	purposes	usually	using
proprietary	 solutions,	 the	 need	 to	 generalize	 their	 use	 across	 the	 network
involving	extended	communication	between	a	myriad	of	devices	 shows	 the
need	 for	 using	 a	 unified	 communication	 infrastructure	 to	 support	 the
required	 level	 of	 services.	 IP	 is	 undoubtedly	 the	 ideal	 candidate	 for	 that
purpose	supporting	a	wide	range	of	devices:	from	large	computers	to	smart
objects.

20.3.3	Use	Case	3:	Line	Dynamic	Rating
Line	dynamic	rating	is	yet	another	use	case	where	IP	smart	objects	can

significantly	 improve	 the	 effectiveness	 of	 the	 power	 grid.	 With	 the
emergence	of	distributed	generation,	 it	 is	common	to	face	situations	where
power	generation	exceeds	the	grid	transmission	capacity.	For	example,	in	a
region	 of	 New	 York	 1200	MW	 of	 generation	 is	 already	 operational	 with
8000	MW	of	generation	planned	for	the	future.

Transmission	line	capacity	is	limited.	Resistive	heating	melts	conductors
at	too	high	a	current	and	voltage	cannot	be	increased	infinitely.	If	the	power
line	 load	 is	 increased,	 the	conductor	 temperature	also	 increases	 leading	 to
sagging	through	thermal	expansion.	This	may	cause	line	damage	in	addition
to	 affecting	 the	 transformer	 efficiency.	 The	 grid	 transmission	 capacity	 is
usually	expressed	in	static	ratings	using	worst-case	weather	scenarios	(high
air	 temperature	 and	 minimal	 wind:	 typically	 full	 sun	 with	 a	 high
temperature	 of	 40°C	 (104°F)	 and	 wind	 speed	 perpendicular	 to	 the
conductor	of	1.4	mph).	Utilities	may	decide	to	increase	the	static	ratings	by
10	to	20%	during	extreme	situations	for	a	short	period	of	time	on	the	basis
of	 weather	 reports.	 But	 static	 ratings	 do	 not	 take	 into	 account	 real-time
conditions,	 thus	 imposing	 static	 bounds	 to	 the	 power	 flows	 even	 when
weather	conditions	allow	for	an	increase	in	the	grid	capacity.

Unlike	 static	 rating,	 dynamic	 rating	 makes	 use	 of	 real-time
measurements	 of	 parameters	 such	 as	 temperature.	 It	 has	been	 found	 that
during	high	wind	conditions,	conductor	thermal	capacity	could	be	increased
for	a	period	of	time	thus	leading	to	more	efficient	use	of	wind	generation.

Dynamic	rating	makes	use	of	various	techniques.	First,	 it	can	be	based
on	weather	because	of	equations	using	air	 temperature,	solar	heating,	and
wind	speed.	This	technique	does	not	require	sensors	mounted	on	the	power
line,	 thus	 it	 does	 not	 consider	 the	 effective	 line	 load.	 The	 weather



monitoring	equipment	must	be	appropriately	placed	to	reflect	the	weather
parameters	of	the	line.	Other	dynamic	rating	techniques	involve	the	use	of
several	sensors	on	the	line.	For	example,	real-time	conductor	temperatures
can	 be	 converted	 to	 an	 equivalent	wind	 speed	 used	with	 a	 series	 of	 other
parameters	 to	 compute	 the	 dynamic	 line	 rating.	 To	 be	 effective	 this
technique	 requires	 the	 use	 of	 several	 sensors	 along	 the	 power	 line	 that
communicate	 with	 each	 other,	 which	 is	 another	 piece	 of	 smart	 object
networks.	 Another	 dynamic	 rating	 technique	 is	 based	 on	 sag/tension
monitoring	that	provides	real-time	data	converted	to	equivalent	wind	speed.

The	 Electric	 Power	 Research	 Institute	 (EPRI)	 has	 developed	 monitor
sagometers	and	backscatter	conductor	temperature	sensors	in	addition	to	a
new	rating	calculation	equation	(dynamic	thermal	circuit	rating;	DTCR)	to
optimize	the	power	transmission	capacity	of	existing	lines	at	moderate	cost.
The	New	York	Power	Authority	 (NYPA)	has	 been	working	with	EPRI	 to
use	 real-time	 or	 historical	 weather	 and	 electrical	 load	 data	 to	 compute
dynamic	ratings.	Required	real-time	data	involve	a	variety	of	smart	objects:
temperature/backscatter	 sensors,	 video	 sagometers,	 and	 tension	 sensors
installed	on	HV	lines	exposed	to	high	wind	capacity	connected	to	the	line.

Depending	 on	 the	 study,	 it	 was	 shown	 that	 the	 gain	 in	 power
transmission	capacity	can	vary	between	10	and	20%	and	even	up	to	30%	in
some	cases.	The	Electric	Reliability	Council	of	Texas	(ERCOT),	who	started
to	 use	 dynamic	 rating	 in	 2005,	 reported	 significant	 power	 transmission
gains:	during	a	typical	winter	day,	 improvement	ranged	from	10%	(South
Houston)	 to	 30%	 (North	West)	 and	 even	 reached	128%	 in	a	South	North
region.

Most	 of	 the	 smart	 objects	 (sensors)	 used	 for	 dynamic	 rating	 are
equipped	 with	 radio	 communication	 and	 when	 not	 main-powered,	 solar
panels	can	be	used	as	a	local	source	of	energy	power.	Power	supply	typically
is	 provided	 by	 solar	 panels,	 but	 emerging	 alternatives	 include	 contactless
power	scavenging	from	the	electromagnetic	(EM)	field	around	high	voltage,
high	current	cables.

20.3.4	Technical	Characteristics	and	Challenges
Most	 core	 grid	 monitoring	 and	 control	 applications	 have	 common

characteristics	and	present	similar	technical	challenges.
20.3.4.1	The	Networking	Environment
Most	 of	 these	 smart	 object	 networks	 operate	 in	 fairly	 harsh

environments	 due	 to	 high	 temperature	 or	 strong	 electromagnetic
interferences	(EMI),	especially	in	HV	and	MV	substations,	due	to	inductive
load	 switching,	 lightning	 strikes,	 electrostatic	 discharges,	 and	 radio



frequency	 interferences.	Furthermore,	 the	power	grid	covers	vast	areas	of
operation	 including	many	outdoor	networks	that	have	their	own	source	of
disturbance.	This	means	that	the	plethora	of	smart	object	networks	used	in
the	core	grid	for	monitoring	and	control	are	operating	in	harsh	conditions
but	must	still	provide	a	very	high	level	of	reliability,	thus	imposing	difficult
challenges	to	software	and	hardware	engineers.

20.3.4.2	Traffic	Flows	and	Network	Topologies
20.3.4.2.1	Substation	Monitoring	and	Control
Historically	most	of	the	traffic	flows	have	been	between	sensors	and	the

RTU	 that	 communicates	 with	 the	 centralized	 SCADA	 application.	 Local
traffic	 flows	 are	 typically	 between	 IEDs	 and	 RTUs	 in	 both	 directions
(sensors	 reporting	 various	 metrics	 and	 RTUs	 or	 smart	 routers	 sending
orders	to	actuators	such	as	circuit	breakers).

With	 the	 emergence	 of	 new	 standards	 such	 as	 IEC	 61850	 and
distributed	intelligence	in	the	Smart	Grid,	we	can	clearly	anticipate	a	strong
increase	 of	 the	 traffic	 between	 smart	 objects	 residing	 within	 substations
(smart	object	to	smart	object	communication).

Consequently,	 traffic	 flows	 tend	 to	move	 from	a	hub	and	 spoke	model
(between	 substations	 and	 the	 SCADA	 application)	 to	 a	 more	 distributed
model	 (between	 smart	 objects	 and	 local	 processing	 devices	 and	 between
smart	objects	residing	in	different	substations).

20.3.4.2.2	CBM	Applications
CBM	 reports	 can	 be	 sent	 as	 often	 as	 every	minute	 for	 highly	 critical

equipment	monitoring	and	up	to	hours	or	even	weeks	for	less	critical	or	less
stressed	 devices.	 In	 some	 circumstances	 critical	 alarms	may	 be	 sent	 upon
detecting	an	anomaly	requiring	immediate	action.	For	example,	a	dissolved
gas	analysis	sensor	is	expected	to	send	data	to	the	data	concentrator	in	the
substation	once	a	day,	but	this	transmission	rate	could	be	increased	to	once
every	hour	if	the	transformer	exceeds	its	static	rating.

Data	are	usually	collected	by	a	central	system	that	stores	all	reports	and
alarms	 for	 immediate	processing	 to	 identify	 the	 set	of	 immediate	required
actions	 and	 also	 for	 further	 processing	 for	 failure	 profile	 analysis,	 assets
management,	and	so	forth.

Although	 most	 of	 the	 flows	 are	 multipoint	 to	 point	 (from	 the	 smart
objects	to	the	central	system),	some	of	them	may	be	locally	processed	within
a	 substation	 for	 immediate	 local	 processing.	 An	 alarm	 may	 require	 an
immediate	local	action	on	an	actuator	(another	smart	object).

Finally,	some	scenarios	may	involve	point-to-point	traffic	between	smart
objects	to	collectively	determine	the	required	set	of	actions.



20.3.4.2.3	Dynamic	Ratings
Two	 main	 applications	 hosted	 in	 the	 Network	 Operating	 Center	 are

involved	 in	 dynamic	 rating	 operations:	 the	 Dynamic	 Line	 Rating	 System
(DLRS)	and	the	Dynamic	Transformer	Rating	System	(DTRS).

•	DLRS:	Receives	data	from	the	sensors	in	the	field	and	computes	the
dynamic	rating	of	the	power	line.	It	then	compares	the	calculated	line
dynamic	 rating	 to	 the	 current	 loading	 information	 gathered	 from
sensors	in	the	substation.
•	DTRS:	Receives	data	from	the	sensors	 in	the	field	to	compute	the

dynamic	 transformer	 rating.	 It	 then	 compares	 the	 calculated
transformer	 dynamic	 rating	 to	 the	 current	 load	 information	 to
determine	if	the	transformer	has	exceeded	its	capacity.

	
Dynamic	line	rating	sensors	send	reports	to	the	data	concentrator	every

minute	 that	 it	 transmits	 data	 to	 the	 DLRS.	 Note	 that	 other	 substation
sensors	(switch,	circuit	breakers)	also	send	data	to	the	DLRS	to	compute	the
dynamic	rating	since	they	could	bottleneck	if	their	rating	is	below	the	line’s
rating.

Dissolved	 gas	 analysis	 sensors	 typically	 send	data	 to	 the	DLRS	 once	 a
day,	 but	 this	 frequency	 may	 be	 increased	 to	 once	 per	 hour	 if	 the
transformer	exceeds	its	static	rating.

20.3.4.3	Smart	Object	and	Link	Characteristics
As	 in	most	 industrial	networks,	 smart	objects	designed	 for	power	grid

automation	 are	 usually	 ruggedized	 and	 must	 be	 highly	 reliable	 to	 the
critical	 nature	 of	 the	 applications.	 Sensors	 and	actuators	 vary	 from	 fairly
simple	to	highly	sophisticated	devices	that	have	fairly	constrained	resources
(CPU,	memory,	etc.).

Links	 interconnecting	 the	 smart	 objects	 are	both	wired	 (in	 substation)
and	wireless	 (for	 some	 outdoor	 applications),	 usually	 with	 low	 speed	 and
with	a	relatively	high	error	rate	(also	qualified	as	lossy	links).

20.3.4.4	Quality	of	Service	and	Network	Reliability
As	 with	 most	 industrial	 applications,	 Quality	 of	 Service	 (QoS)	 is	 a

critical	component	of	the	overall	architecture.	Although	some	data	are	not
critical,	others	such	as	critical	alarms	have	real-time	requirements	and	the
networking	 infrastructure	 must	 guarantee	 reliable	 delivery,	 minimized
delays,	 and	 bounded	 jitters,	 which	 makes	 IP	 highly	 suitable	 to	 these
environments.	 IP	 supports	 high	 QoS	 due	 to	 a	 number	 of	 techniques



discussed	 in	 Chapter	 15	 (traffic	 classification,	 shaping,	 scheduling,
congestion	avoidance,	traffic	engineering,	etc.).

With	CBM,	the	level	of	required	QoS	significantly	varies	with	the	nature
of	the	report.	Some	data	are	clearly	non-critical	and	a	packet	loss	may	not
be	a	problem,	whereas	a	critical	alarm	requires	 low	networking	delay	and
high	network	 reliability.	Most	 of	 the	alarms	 in	 substation	monitoring	and
control	 applications	 are	 critical.	 Similarly,	 dynamic	 rating	 is	 yet	 another
example	where	QoS	is	vitally	important.	In	many	cases,	the	data	sent	every
minute	to	the	DLRS	and	DTRS	must	be	reliably	transmitted	with	moderate
tolerance	to	delays.

IP	networks	also	provide	a	wide	range	of	QoS	that	make	it	attractive	for
these	types	of	networks.

20.3.4.5	Scalability
The	number	of	smart	objects	in	Smart	Grid	networks	is	extremely	high.

As	pointed	out	 in	the	Introduction	of	this	chapter,	a	single	power	network
can	 be	 made	 up	 of	 hundreds	 of	 thousands	 of	 secondary	 substations/pole
tops.	With	at	 the	very	 least	a	 few	dozen	 smart	objects	per	 substation/pole
top,	in	addition	to	thousands	of	sensors	located	on	power	lines,	the	number
of	 smart	 objects	 could	 be	 several	 millions.	 Thus	 scalability	 is	 a	 prime
concern,	 which	 again	 supports	 the	 use	 of	 protocols	 such	 as	 IP	 (and	 in
particular	IPv6)	that	largely	proved	their	scalability.	As	discussed	in	detail
in	Chapter	17,	IP	protocols	such	as	routing	(RPL)	for	these	types	of	smart
object	networks	have	been	designed	to	be	highly	scalable.

20.3.4.6	Reliability	requirement
Reliability	 of	 the	 control	network	 for	 the	Smart	Grid	 is	highly	 critical

and	 tightly	 coupled	 with	 the	 support	 of	 QoS.	 Not	 only	 must	 these	 smart
object	 networks	 be	 operational	 at	 all	 times,	 they	 must	 also	 be	 able	 to
recover	various	types	of	failures	within	usually	bounded	times.

20.3.4.7	Mobility
Mobility	in	Smart	Grid	networks	is	generally	low	to	moderate.	With	the

exception	of	the	human	workforce	having	to	perform	on-site	maintenance,
most	of	the	smart	objects	are	fixed	powered	devices.

20.3.4.8	Security
Security	is	undoubtedly	one	of	the	most	critical	concerns	in	Smart	Grid

networks	 considering	 the	 high	 criticality	 of	 power	 grid	 networks.	 As
discussed	 in	 Part	 I,	 Chapter	 8,	 IP	 has	 been	 enhanced	 with	 a	 number	 of
security	mechanisms	and	its	degree	of	exposure	through	the	public	Internet
helped	 reach	 a	 very	 high	 degree	 of	 security	 because	 of	 authentication,
encryption,	and	non-repudiation	techniques.



20.3.4.9	Network	management
Considering	 the	 number	 of	 smart	 objects	 and	 other	 devices	 and	 their

critical	 concerns,	 network	 management	 is	 key	 and	 the	 grid	 has	 a	 long
history	 of	 sophisticated	 network	 management	 with	 SCADA	 applications.
Substation	 automation	 requires	 network	 management	 considering	 the
number	of	devices,	autoconfiguration,	and	device/service	discovery	is	highly
desirable.

20.4	Smart	Metering	(NAN)
20.4.1	Applications	and	Use	Cases
Electrical	 meters	 have	 been	 greatly	 enhanced	 with	 added	 features

whereas	 not	 so	 long	 ago	 (and	 this	 is	 still	 the	 case	 in	 many	 countries)
metering	management	was	 limited	 to	manual	 reading	 of	 electrical	meters
requiring	periodic	trips	to	each	physical	location.

The	 first	 set	 of	 enhancements,	 automatic	 meter	 reading	 (AMR),
consisted	of	 adding	 communication	 functionality	 to	 the	meters	 to	perform
an	 automatic	 collection	 of	 power	 consumptions,	 load	 curves,	 alarms,	 and
status	 from	the	NCC	for	automatic	billing	as	well	as	device	monitoring	of
the	 meters.	 Moreover,	 real-time	 power	 consumption	 helped	 provide
accurate	 billing	 instead	 of	 using	 historical	 data	 coupled	 with	 predictions
(the	 requirement	 is	 usually	 to	 provide	 meter	 reading	 every	 15	 minutes,
although	the	data	may	only	be	downloaded	once	a	day).

The	 next	 step	 consisted	 of	 equipping	 meters	 with	 more	 advanced
functionalities	 such	 as	 sensing	 for	 power-quality	 monitoring	 and	 power
fault	 reports,	 thus	 leading	 to	 the	 concept	 of	 Advanced	 Metering
Infrastructure	(AMI).

Communication	 between	 a	 central	 system	 and	 smart	 meters	 became
truly	 two-way	 in	 support	 of	 a	 myriad	 of	 new	 and	 advanced	 applications
such	as	dynamic	pricing,	demand-response	(DR),	and	grid	monitoring	due
to	advanced	sensing	capabilities.

Dynamic	pricing	and	demand-response	allow	the	utility	to	perform	load
shedding,	thus	optimizing	their	infrastructure.	Although	dynamic	pricing	is
likely	to	be	provided	by	the	smart	meters	to	the	end	user	(most	likely	to	an
HEC	 residing	 in	 the	 home),	 dynamic	 signals	 supporting	 DR	may	 also	 be
sent	by	other	means	such	as	the	Internet.

Two-way	 communication	 is	 fundamental	 for	 the	 support	 of	 advanced
services	 in	 AMI	 networks.	 The	 following	 list	 provides	 a	 subset	 of	 the
information	 exchanged	 between	 smart	 meters	 and	 the	 central	 SCADA
application:



•	Dynamic	pricing	(new	hour	tariff)
•	Load	curves
•	Actuation	of	a	circuit	breaker
•	Closing	delay	on	metrological	fault
•	Alarm	reset
•	Communication	time	out	before	circuit	breaker	opens

	
Data	retrieved	by	the	SCADA	application	from	smart	meters:

•	 Power	 consumption	 per	 hour	 tariff	 (kilowatt	 consumed	 for	 each
tariff)
•	Active	alarms
•	Logs	of	historical	alarms
•	Power	supply	remaining	battery	life
•	Nominal	battery	life
•	Circuit	breaker	state
•	 Smart	 meter	 parameters	 such	 as	 serial	 number,	 manufacturer

identification,	meter	type,	etc.

	
Furthermore,	 smart	 meters	 can	 also	 be	 used	 for	 several	 additional

services	that	are	of	great	interest	for	utilities:

•	 Geographic	 information	 system	 that	 keeps	 track	 of	 the	 meter
location,	 phase	 the	meter	 is	 connected	 to,	 automatic	 detection	 of	 any
change	 in	 the	 LV	 network,	 and	 automatic	 data	 upload	 for	 newly
connected	meters.
•	Grid	monitoring	where	the	smart	meter	is	part	of	the	grid	and	as

such	 can	 be	 used	 for	 grid	 monitoring.	 For	 example,	 it	 could	 report
alarms	 and	 help	 localize	 faults	 along	MV	 feeders	 or	 could	 detect	 an
absence	of	voltage	on	a	phase	that	is	not	detected	by	the	feeder	breaker.
•	Report	power	outage	in	near	real	time	with	the	ability	to	perform

fault	location	(grid	vs.	private	installation	side).
•	 Since	 the	 smart	meter	 is	 also	 a	 sensing	 device,	 it	 can	 be	 used	 to

provide	 load	 curves	 on	 any	 single	 phase	 to	 perform	 grid	 network
engineering	and	reduce	losses	and	voltage	drops.

	
Several	large-scale	deployments	of	smart	meters	already	took	place	and



many	 are	 planned	 in	 the	 future.	 For	 example,	 in	 one	 of	 the	 largest
deployments	the	entire	customer	base	(over	27	million)	was	equipped	with
smart	meters	 supporting	a	wide	range	of	 services	 such	as	real-time	power
consumption,	the	ability	to	change	the	maximum	amount	of	power	available
at	any	given	time,	the	ability	to	turn	power	on	and	off,	automatic	detection
of	power	outage,	and	so	forth.

In	Japan,	smart	meters	are	equipped	with	various	sensing	capabilities.
In	 the	United	States	Duke	Energy,	PGE,	and	several	other	utilities	are

deploying	millions	of	smart	meters	with	advanced	AMI	functionalities	such
as	 near	 real-time	 power	 consumption,	 dynamic	 pricing,	 etc.	 Several	 other
countries	also	started	similar	deployments	on	very	large	scales	(e.g.,	France,
UK,	Ireland,	Nordic	countries,	Germany,	Australia,	New	Zealand,	Turkey,
etc.).

Smart	metering	is	not	limited	to	electrical	meters,	it	also	applies	to	water
and	gas	meters	 (since	 this	 chapter	 is	devoted	 to	Smart	Grid	networks,	we
focus	mainly	on	electrical	meters).
	
20.4.2	Technical	Challenges	and	Network	Characteristics
20.4.2.1	The	Networking	Environment
Although	 the	 networking	 environment	 is	 not	 as	 harsh	 as	 substations

with	HV	or	MV	 lines,	 smart	meter	 networks	 are	mostly	 outdoors	 and,	 as
discussed	 in	 the	 next	 section,	 connectivity	 between	 smart	 meters	 may	 be
greatly	affected	by	the	nature	of	the	links	used	in	these	environments.

20.4.2.2	Traffic	Flows	and	Network	topologies
Smart	meter	networks	may	have	different	topologies:	star	topologies	up

to	 a	 concentrator,	 meshed	 topologies	 made	 of	 routers,	 and	 smart	 meters
acting	as	routers	or	a	mix	of	both.	These	networks	are	usually	hierarchical
and	concentrators	are	interconnected	via	a	backbone	network.	The	current
trend	is	to	migrate	these	networks	to	IP	end	to	end.

20.4.2.3	Smart	Object	and	Link	Characteristics
In	contrast	with	gas	meters,	 electrical	 smart	meters	are	main	powered

devices	(equipped	with	a	battery	for	redundancy	purposes).	Still,	 this	does
not	 mean	 that	 power	 consumption	 is	 not	 an	 issue.	 Furthermore,	 smart
meters	 usually	 have	 moderate	 constraints	 in	 CPU	 processing	 and	 are
required	 to	 have	 enough	 storage	 capacity	 not	 only	 to	 store	 information
related	to	power	consumption	that	could	be	less	frequently	downloaded	by
utilities,	but	also	to	store	a	detailed	log	of	power	outages.	Regulation	varies
between	 countries,	 but	 it	 is	 common	 to	 require	 the	 storage	 of	 several
months	of	historical	faults,	alarms,	and	power	consumption.



Smart	 meters	 are	 thus	 smart	 objects	 forming	 a	 complex	 multi-hop
network	and	act	as	end	devices	and	routers.	Meters	are	 interconnected	by
wireless	 links	 (mostly	 in	 the	 United	 States)	 or	 Powerline	 communication
(PLC)	technology	(in	Europe	although	some	meters	are	also	using	wireless
technologies	in	Europe	too).	These	networks	are	a	perfect	example	of	smart
object	 networks	 and,	 more	 precisely,	 Low-power	 and	 Lossy	 Networks
(LLNs).	Indeed,	smart	meters	are	constrained	in	CPU	power	and	memory
as	 well	 as	 power	 consumption	 since	 utilities	 require	 drastically	 reduced
energy	 consumption.	Moreover,	 smart	meters	 are	 interconnected	 by	 lossy
links.	When	using	wireless	links,	 link	reliability	is	usually	quite	low	with	a
large	 amount	 of	 link	 flaps.	 This	 also	 applies	 to	 PLC	 links	 where	 the
reliability	 can	 greatly	 vary	 for	 a	 number	 of	 reasons	 such	 as	 impedance
variation,	 floor	 noise,	 and	 so	 forth,	 as	 discussed	 in	 Chapter	 12.	 Link
bandwidth	 is	 also	 fairly	 limited,	 from	a	 few	Kbits/s	 in	 the	worst	 case	 to	a
few	hundreds	of	Kbits/s	in	the	very	best	case.	The	myriad	of	link	layers	in
use	 also	 explains	 the	 suitability	 of	 IP	 as	 the	 convergence	 layer	 in	 smart
meter	networks,	which	allows	for	the	use	of	PLC,	high	and	low	bandwidth
wireless	technologies,	or	a	combination	of	both.

20.4.2.4	Quality	of	Service	and	Network	Reliability
QoS	 and	 network	 reliability	 requirements	 are	 relatively	 low	 in	 smart

metering	networks.	Meter	reading	 is	usually	not	a	critical	application	and
network	 outage	 of	 a	 few	 hours	 is	 usually	 not	 a	 major	 issue.	 With	 the
emergence	 of	new	applications	 such	as	dynamic	pricing	 and	DR	QoS	and
reliability,	requirements	tend	to	increase	but	are	not	likely	to	be	very	high.

20.4.2.5	Scalability
Smart	meters	are	made	of	millions	of	devices,	 thus	 scalability	must	be

extremely	 high.	 Once	 again,	 this	 is	 another	 compelling	 reason	 to	 use	 IP.
New	IP	protocols	such	as	RPL	(discussed	in	Chapter	17)	have	been	designed
to	support	a	large	number	of	IP	smart	objects	in	a	single	network.

20.4.2.6	Mobility
There	is	no	mobility	requirement	in	smart	metering	networks.
20.4.2.7	Security
Smart	 metering	 networks	 is	 another	 area	 of	 the	 Smart	 Grid	 where

security	is	a	paramount	concern,	since	the	hacking	of	a	smart	meter	could
lead	 to	 cutting	 power	 to	 potentially	 thousands	 of	 homes.	 Smart	 meter
vendors	 actively	 work	 on	 the	 use	 of	 sophisticated	 authentication	 and
encryption	technologies.

20.4.2.8	Longevity
Smart	meters	 are	 required	 to	 last	 for	 at	 least	 two	 decades,	 preferably



with	no	human	intervention.	This	requires	the	support	of	dynamic	software
upgrades	 but,	 more	 important,	 flexible	 hardware	 and	 software
functionalities	 capable	 of	 supporting	 features	 that	will	 be	 required	 in	 the
next	two	decades.

20.5	HAN
20.5.1	Applications	and	Use	Cases
As	 previously	 noted,	 solutions	 for	 energy	 management	 are	 currently

extremely	 rudimentary.	 The	 only	 sensing	 device	 available	 for	 energy
monitoring	is	the	electrical	meter	reporting	the	total	energy	consumption	in
the	home	with	no	granularity.

Figure	20.6	shows	a	typical	HAN	configuration.	The	HEC	is	connected
to	 the	 HAN	 on	 one	 side	 and	 to	 the	 grid	 on	 the	 other	 side	 either	 via	 the
Internet	 or	 the	 smart	meter.	The	HAN	 is	 composed	 of	 a	 variety	 of	 smart
objects	connected	via	both	wireless	(e.g.,	IEEE	802.11,	IEEE	802.15.4)	and
PLC	links	forming	a	low-speed	control	command	network.	Note	that	some
HANs	will	be	wireless	only,	others	will	exclusively	use	PLC,	and	others	will
be	made	of	a	mix	of	wireless	and	PLC	links.

Figure	20.6	HAN.
	

20.5.1.1	The	role	of	Smart	Objects



Smart	objects	are	at	the	heart	of	the	HAN	and	provide	efficient	energy
management	solutions:

•	 Smart	 appliance:	 An	 appliance	 equipped	 with	 a	 smart	 object(s)
capable	of	 sensing,	actuating,	and	communicating	with	 the	HEC.	The
smart	 appliance	 typically	 reports	 energy	 consumption	 to	 the	 HEC
(sensing)	and	could	also	be	controlled	by	the	HEC	according	to	the	DR
signals	(discussed	 later	 in	Section	20.5.1.1.2)	and	to	user-defined	rules
on	the	HEC.	In	some	cases,	a	dialog	could	even	take	place	between	the
smart	appliance	and	the	HEC	to	make	appropriate	decisions	according
to	 the	 situation.	 For	 example,	 it	 might	 not	 be	 wise	 to	 interrupt	 a
washing	machine	 cycle	 if	 the	 cycle	 is	 about	 to	 end.	Restarting	 a	 new
cycle	 after	 pausing	 for	 several	 hours	 may	 end	 up	 consuming	 more
energy.
•	 Smart	 plugs:	 It	 may	 take	 some	 time	 before	 all	 appliances	 are

equipped	with	smart	objects.	Thus	an	intermediate	solution	is	to	use	an
electrical	 wall-plug	 adaptor	 equipped	 with	 a	 sensor	 to	 measure	 the
energy	consumption	in	near	real	 time	and	allow	for	appliance	control
(on/off	action).	Such	smart	plugs	(or	alternative	form	factor	like	a	DIN
rail	mounting	design)	could	be	used	for	a	variety	of	devices	such	as	a
pool	pump,	heater,	HAVC,	and	so	forth	and	can	communicate	with	the
HEC	using	PLC	or	wireless	communication.
•	 Smart	 thermostats:	 Could	 control	 the	 temperature	 setting	 of	 the

room	based	on	the	received	DR	signal	from	the	HEC	and	could	lower
the	 temperature	 by	 several	 degrees	 for	 a	 period	 of	 time	 and	 report
energy	savings.

	
As	 discussed	 in	 the	 Introduction,	 the	 Smart	Grid	 enables	 a	myriad	 of

new	services	 from	power	generation	 to	home	and	buildings.	Although	 this
section	 is	 mainly	 devoted	 to	 home	 energy	 management,	 it	 is	 fairly
straightforward	 to	 figure	 out	 how	 similar	 services	 can	 be	 supported	 for
building	 energy	management	 (further	 discussed	 in	Chapter	 24	 devoted	 to
the	Building	Automation	Use	case).

There	are	two	main	applications	of	interest	to	the	end	user	discussed	in
this	section:

•	Home	energy	management
•	Demand-response



	
20.5.1.1.1	Home	Energy	Management
Many	studies	have	shown	that	user	energy	saving	ranges	between	5	and

15%	 if	 the	 users	 were	 given	 the	 appropriate	 tools	 to	 accurately	 monitor
their	energy	consumption	at	home.	There	 is	very	 limited	data	provided	 to
the	 user	who	 does	 not	 have	 access	 to	 accurate	 billing	 and	 does	 not	 know
which	 devices	 in	 the	 home	 are	 the	 main	 sources	 of	 energy	 consumption.
Thus	it	 is	imperative	to	provide	user-friendly	tools	that	allow	access	to	the
power	usage	in	the	home	via	a	simple	display	as	well	as	other	forms	of	data
access	(PDA,	Web	Interface).

In	 addition	 to	 (real-time	 and	 historical)	 power	 usage,	 other	 useful
information	could	be	provided	such	as	tips	from	utilities	to	help	save	energy
and	main	 sources	 of	 energy	 consumption	 in	 the	 home	 (HVAC,	 swimming
pools,	etc.).	For	example,	the	following	set	of	data	could	be	provided	to	the
user:	energy	usage	in	kWh	(total	and	per	device),	energy	cost	(total	and	per
device),	 and	CO2	 consumption.	These	 data	 could	be	 provided	 in	 real	 time
and	 also	 with	 historical	 statistics	 over	 the	 past	 few	 hours,	 days,	 or	 even
months.

Another	service	could	be	to	detect	a	malfunctioning	device	by	observing
the	power	 consumption	and	 compare	 it	 to	 energy	 consumption	profiles	 of
similar	 devices.	 In	 some	 cases,	 it	 might	 even	 be	 useful	 to	 correlate	 the
energy	consumption	and	other	external	data	such	as	weather.	Observing	the
heat	energy	consumption	and	correlating	the	data	with	weather	information
could	 detect	 that	 the	 heater	 does	 not	 perform	 at	 its	 maximum	 level	 of
efficiency	or	provide	some	indication	of	the	level	of	thermal	isolation	of	the
home.

Furthermore,	 users	 should	 have	 the	 ability	 to	 act	 upon	 devices
according	to	their	consumption	based	on	a	series	of	rules	such	as	time	of	the
consumption,	real-time	energy	pricing,	and	so	forth.

Finally,	 it	 is	 envisioned	 that	 other	 services	will	 emerge	 such	 as	micro-
generation	 management	 (information	 related	 to	 the	 energy	 produced	 by
renewable	 energy	 sources	 such	as	 solar	panels	and	wind	 locally	generated
by	 the	 home)	 and	 PHEV	 (indication	 of	 energy	 consumption	 by	 a	 car,
charging	level,	etc.).
	
20.5.1.1.2	Demand-Response
One	 of	 the	 main	 challenges	 utilities	 are	 facing	 is	 adapting	 the	 grid

capacity	to	user	demand	and	in	particular	handling	peak	loads.	Peak	load
shaving	can	only	be	performed	in	two	ways:



•	Over-provisioning	the	grid	capacity	(clearly	not	a	viable	option)
•	Spot	purchase	energy	on	the	market,	which	turns	out	to	be	a	costly

option	 since	 energy	 bought	 “on	 the	 fly”	 is	 usually	 significantly	more
expensive	than	the	normal	price

	
The	 concept	 of	 DR	 is	 based	 on	 the	 ability	 of	 the	 grid	 to	 dynamically

interact	 with	 the	 home	 (or	 a	 building)	 to	 regulate	 the	 power	 demand
according	to	the	grid	capacity	with	some	pricing	incentive	for	the	end	user.
Upon	peak	load	on	the	grid,	the	utility	sends	a	signal	to	the	end	user	via	the
HEC	requesting	power	consumption	reduction	to	perform	load	shedding	at
peak	times.	Simplified	DR	programs	have	been	in	place	in	several	countries
for	 years;	 a	 signal	 is	 sent	 to	 the	 smart	meter	 at	 specific	 times	 of	 the	 day
(known	 by	 the	 end	 user)	 to	 indicate	 the	 energy	 price.	 By	 knowing	 that
electricity	 costs	 X	 cents	 between	 7:00	 a.m.	 and	 11:00	 p.m.	 and	 Y	 cents
during	11:00	p.m.	and	7:00	a.m.,	there	is	a	strong	incentive	for	the	end	user
to	use	high-impact	appliances	during	 low	price	periods	whenever	possible.
Such	 static	 pricing	 shifts	 occurring	 at	 the	 same	 time	 are	 a	 bit	 more
controversial	since	there	is	a	tendency	for	all	demanding	energy	appliances
to	simultaneously	start	thus	leading	to	peak	load	on	the	grid.	Some	utilities
then	 improved	 the	 system	 by	 shifting	 low	 price	 periods	 on	 a	 per	 region
basis.

The	 concept	 of	 DR	 goes	 one	 step	 beyond	 with	 several	 additional
features:

•	 Dynamic	 pricing:	 In	 accordance	 with	 the	 grid	 load,	 the	 energy
price	is	dynamically	adjusted	and	communicated	to	the	HEC.
•	Critical	alarms:	Such	signals	can	be	sent	at	any	time	to	cope	with

unexpected	 events	 in	 the	 grid	 that	 require	 lower	 energy	 consumption
(e.g.,	 network	 outage).	 Such	 signals	 could	 also	 be	 sent	 in	 specific
conditions	for	an	entire	day	when	price	is	at	a	maximum.	Such	signals
have	a	higher	priority	than	dynamic	pricing	signals.

	
DR	is	two-way	communication:	signals	are	sent	to	the	HEC	and	energy

consumption	reduction	reports	(potentially	validated	due	to	meter	readings)
are	provided	back	to	the	power	grid.	Such	reports	are	then	used	for	energy
bill	 discounts.	 It	 is	 even	 envisioned	 for	 the	 HEC	 to	 be	 able	 to	 provide
proactive	 information	 to	 the	grid	about	energy	consumption	 that	could	be



off-loaded	 from	 the	 grid,	 should	 the	 grid	 run	 into	 peak	 load.	 Such
information	enables	the	grid	to	take	appropriate	actions	upon	peak	loads.

Does	 that	 mean	 that	 utilities	 will	 control	 end-user	 appliances?	 No.
Fortunately	 full	 control	 is	 given	 to	 the	 end	 user	 who	may	 even	 decide	 to
ignore	near	real-time	pricing	indications.	This	is	where	the	HEC	comes	into
play.	As	 shown	 in	 Figure	 20.5,	 the	HEC	 controls	 the	HAN	 and	 all	 of	 the
connected	 devices	 and	 smart	 objects	 in	 general	 in	 the	 home.	 Functionally
the	HEC	is	connected	to	both	the	HAN	where	smart	objects	are	connected
(sensors,	actuators)	and	the	grid	via	either	the	smart	meter	or	the	Internet.
DR	signals	are	received	from	the	grid	to	report	dynamic	energy	pricing	that
is	 then	 processed	 by	 the	 HEC	 according	 to	 user-configured	 rules.	 For
example,	an	end	user	may	decide	to	reduce	by	X	degree	the	temperature	of
a	 room	 if	 the	 energy	 price	 exceeds	 Y	 cents	 per	 kWh.	 It	 might	 also	 be
possible	to	interact	with	the	device	to	postpone	a	specific	action	(e.g.,	start	a
washing	machine	 cycle)	 by	 several	 hours	 to	 avoid	 peak	 times.	 A	 friendly
user	 interface	 can	 then	 be	 used	 by	 end	 users	 to	 control	 their	 devices	 and
appliances	in	the	home	according	to	real-time	energy	pricing.

Needless	 to	 say,	 such	 an	 architecture	 opens	 the	 door	 to	 non-energy-
related	 applications:	 appliance	 monitoring	 for	 health	 management,
simulation	 using	 lighting	 management	 scenarios,	 and	 so	 forth.	 These
applications	 fall	 into	 the	 category	 of	 home	 automation	 and	 are	 further
discussed	in	Chapter	23.

20.5.2	Technical	Challenges	and	Network	Characteristics
20.5.2.1	The	Networking	Environment
The	 HAN	 environment	 is	 significantly	 less	 challenging	 than	 an	 HV

substation	environment.	That	being	 said,	 low-power	wireless	 links	 such	as
IEEE	802.15.4	may	also	be	subject	to	all	sorts	of	 interference	due	to	other
wireless	radios	 (e.g.,	 IEEE	802.11)	and	appliances.	Similarly,	 the	electrical
wiring	 system	 may	 be	 of	 variable	 quality	 with	 noises	 creating	 various
perturbations	of	the	low-speed	PLC,	not	to	mention	the	issue	of	coexistence
with	 other	 high-speed	 PLC	 technologies	 used	 for	 other	 purposes	 than
control/command.

20.5.2.2	Traffic	Flows	and	Network	Topologies
The	 HAN	 topology	 is	 fairly	 straightforward.	 PLC	 should	 be	 able	 to

reach	out	to	almost	all	devices	in	the	home	(there	are	systems	that	provide
connectivity	 across	 multiple	 phases	 while	 offering	 several	 Kbits/s	 of
bandwidth).	 Smart	 objects	 could	 also	 be	 connected	 in	 a	mesh	wireless	 IP
network.	Home	automation	has	been	one	of	the	targeted	applications	for	the
routing	protocol	in	LLNs,	which	are	discussed	in	great	detail	in	Chapter	17.



Most	of	the	traffic	flow	for	energy	management	in	the	HAN	is	between
smart	 devices	 and	 the	 HEC.	 There	 may	 be	 a	 few	 point-to-point	 flows
between	 smart	 devices	 and	 the	 meter	 or	 the	 HEC	 and	 the	 meter.	 In	 the
future,	 distributed	 energy	 management	 applications	 may	 require
communication	 between	 smart	 objects	 to	 better	 optimize	 energy
management	in	the	home.

20.5.2.3	Smart	Object	and	Link	Characteristics
Smart	 objects	 in	 the	 HAN	 such	 as	 smart	 plugs,	 thermostats,	 or

microcontrollers	embedded	in	smart	appliances	are	all	fairly	inexpensive	(a
few	 dollars	 for	 the	 communication	 engine	 and	 in	 the	 near	 future	 a	 few
dozen	cents),	which	also	means	limited	CPU	and	memory.	There	is	a	mix	of
main-and	 battery-powered	 devices	 usually	 equipped	 with	 low	 bandwidth
communication	capabilities	(a	few	dozen	Kbits/s).	The	degree	of	constraints
varies	 with	 cost,	 but	 simple	 devices	 such	 as	 light	 bulbs	 equipped	 with
sensor/actuator	capability	are	envisioned.	 In	such	a	case	where	costs	must
be	as	low	as	possible,	resources	are	likely	to	be	extremely	scarce.	Note	that
resource	constraints	also	have	an	 impact	on	software	design;	 for	example,
the	 routing	 protocol	 designed	 by	 the	 Internet	 Engineering	 Task	 Force
(IETF;	 RPL)	 supports	 devices	 with	 extremely	 limited	 memory	 and	 new
mechanisms	have	been	designed	to	allow	routing	in	a	home	network	where
nodes	may	not	have	any	routing	table	storage	capability.

20.5.2.4	Quality	of	Service	and	Network	Reliability
The	HAN	for	energy	management	is	unlikely	to	be	a	multi-QoS	network

where	 packet	 prioritization	 is	 required	 in	 case	 of	 network	 congestion.
Indeed,	 in	 contrast	 with	 applications	 such	 as	 substation	 or	 industrial
automation,	all	messages	have	similar	QoS	requirements.	Requirements	for
reliability	are	not	high.	A	temporary	HAN	failure	has	limited	consequences.
The	 smart	 appliance	 or	 smart	 plug	may	be	 out	 of	 control	 for	 a	 period	 of
time	with	no	dramatic	consequences.

20.5.2.5	Scalability
Scalability	 is	 not	 a	 primary	 concern,	 since	 in	 the	 foreseeable	 future

HANs	are	expected	to	be	limited	to	a	few	dozen	smart	objects,	although	that
number	may	be	higher	(a	few	hundred)	for	multidwelling	units.

20.5.2.6	Mobility
Mobility	in	the	HAN	is	required	but	moderate.	Most	devices	are	fixed.
20.5.2.7	Security
Security	 requirements	 are	 high.	 Such	 networks	 must	 be	 secure.

Authentication	and	encryption	technologies	are	an	absolute	must.
20.5.2.8	Network	Management



The	HAN	is	a	typical	example	of	a	network	that	must	be	self-managed
and	requires	minimal	configuration	from	the	end	user.	Smart	devices	must
be	self-configured	with	autodiscovery,	and	several	IP	protocols	are	already
available	 to	 perform	 this	 discovery	 (e.g.,	 Bonjour	 protocol	 developed	 by
Apple).	Once	 installed	 the	 smart	 object	 starts	 to	discover	 the	network,	 be
part	of	the	routing	protocol,	and	announce	itself	to	the	HEC	that	discovers
the	device’s	capabilities.	Several	powerful	HAN	management	solutions	with
a	very	friendly	user	interface	are	already	available.

20.5.3	Summary	of	the	Technical	Challenges
For	each	use	case,	we	provided	an	overview	of	the	technical	challenges.

Figure	 20.7	 provides	 a	 summary	 of	 the	 technical	 challenges	 and
characteristics	for	the	Smart	Grid	use	cases	discussed	in	this	chapter.	Note
that	the	ranking	may	slightly	vary	between	applications.



Figure	20.7	Summary	of	the	technical	challenges	and	characteristics	for
the	use	cases	presented	in	this	chapter.
	

20.6	Conclusions
The	worldwide	Smart	Grid	initiative	involves	a	complete	transformation

of	 the	 networking	 infrastructure	 used	 to	 manage	 the	 power	 grid	 with
billions	of	connected	devices	to	achieve	better	energy	management,	reduced
carbon	 footprint,	 support	 of	 new	 sources	 of	 renewable	 energy	 with	 an
extremely	 high	 level	 of	 reliability,	 and	 reduction	 of	 cost.	 The	 number	 of
applications	where	smart	objects	will	play	a	key	role	 in	our	 future	 is	only
bounded	by	our	imagination.	Smart	Grid	networks	are	an	area	where	smart
objects	will	definitely	play	a	major	role.

Sensors	 and	 actuators	 have	 been	 used	 in	 the	 current	 grid	 for	 years.
Their	number	will	dramatically	increase	over	the	next	few	years	in	all	areas
of	 the	 Smart	 Grid	 from	 distribution	 to	 homes	 and	 buildings.	 Their
communication	models	will	be	based	on	IP,	end	to	end,	which	undoubtedly
meets	all	of	the	stringent	requirements	of	Smart	Grid	networks.

Although	a	power	grid	managed	by	isolated/standalone	communication
control	grid	networks	was	a	viable	option	a	few	years	ago,	the	emergence	of
innovative	 applications	 for	 grid	 monitoring	 and	 control,	 DR,	 and	 many
other	 applications	 makes	 the	 need	 for	 an	 end-to-end	 standardized-based
communication	protocol	a	must.

The	 adoption	 of	 IP	 end	 to	 end	 has	 a	 direct	 consequence	 on	 cost	 and
manageability.	 The	 use	 of	 multiprotocol	 gateways	 interconnecting
proprietary	protocols	is	a	non-starter	considering	the	complexity	of	such	a
network,	the	scalability	requirements,	and	cost	pressure.	IP-enabled	smart
objects	connected	to	multiservice	IP	networks	is	a	core	component	of	Smart
Grid	 networks,	 and	 these	 new	 generations	 of	 grid	 networks	 will
dramatically	 change	 the	 way	 power	 is	 consumed	 for	 the	 better	 of	 our
planet.

	



Chapter	21	Industrial	Automation
	

Industrial	automation	 is	 the	automation	of	 industrial	processes	by	means	of
modern	computer-assisted	technology.	It	is	a	broad	industry	comprised	of	many
segments	 and	 application	 domains.	 A	 common	 way	 to	 divide	 the	 industrial
automation	market	is	according	to	the	type	and	characteristics	of	the	process:

•	Process	manufacturing	(continuous	processes)	is	the	branch	of
manufacturing	that	deals	with	formulas	and	raw	material.	The	output	cannot
be	distilled	back	to	its	basic	components,	for	example,	food,	paper,	steel,

ore.
•	Discrete	manufacturing	(manufacturing	of	discrete	units)	is	the	branch

that	deals	with	orders	and	parts.	The	output	is	easily	identifiable	things,	for
example,	cars,	toys,	computers.

	
The	 opportunities	 for	 wireless	 communication	 within	 the	 industrial

automation	market	are	growing	at	a	rapid	rate	for	several	reasons.	One	reason	is
the	available	access	 to	difficult	 locations	and	hazardous	areas	 in	 the	plant.	For
these	applications,	maintenance	and	diagnostic	tasks	can	be	accomplished	more
quickly,	 effectively,	 and	 safely	 using	 a	 wireless	 connection.	 Process
manufacturing	has	an	estimated	growth	rate	of	32%	per	year,	and	is	expected	to
become	 a	 $1.1	 billion	 business	 by	 2012	 (see	 Figure	 21.1).	 For	 discrete
manufacturing	the	growth	rate	is	estimated	to	be	almost	as	high	and	is	expected
to	 grow	 from	 $400	 million	 to	 over	 $800	 million	 by	 2012.11	 ARC	 Advisory
Group,	http://www.arcweb.com.

http://www.arcweb.com


Figure	 21.1	 Worldwide	 market	 for	 wireless	 in	 discrete	 and	 process
manufacturing.

	

21.1	Opportunities
Industrial	 automation	 has	 always	 lagged	 behind	 telecommunications	 and

consumer	 applications	 when	 it	 comes	 to	 adopting	 wireless	 communication
technologies.	This	originates	from	the	more	stringent	performance	and	reliability
requirements	 in	 industrial	automation,	and	also	 from	the	conservative	mindsets
in	 these	 industries.	 Wireless	 communication	 is,	 however,	 becoming	 more
widespread	 in	 industry,	 especially	 since	 the	 recent	 ratifications	 of	 standards
designed	with	industrial	automation	requirements	in	mind.22	WirelessHART	was
ratified	 in	 September	 2007	 and	 ISA100.11a-2009	 was	 ratified	 in	 September
2009.

During	recent	years,	industrial	automation	vendors	have	moved	forward	and
are	now	talking	about	wireless	infrastructure	as	an	important	goal.	The	trend	is
to	 connect	 more	 than	 just	 sensors;	 the	 intention	 now	 is	 to	 provide	 a	 wireless
backbone	for	everything	in	the	plant	from	sensor	information	to	portable	human
machine	 interfaces	 (HMIs)	 to	mobile	phones.	However,	 it	 is	 important	 to	note
that	most	vendors	currently	see	wireless	technology	as	complementary	to	wired,
and	not	as	a	replacement.

Discrete	 manufacturers	 are	 mainly	 focused	 on	 planning	 and	 deploying
wireless	 infrastructures	 within	 their	 factories	 and	 assembly	 lines	 for
measurement	 and	 service	 applications.	 In	 contrast,	 process	 manufacturers	 are
focused	more	on	 cable	 replacement	 and	mesh	 sensor	 networking	 technologies.
Almost	 all	 standardization	 organizations	 have	 also	 made	 a	 clear	 distinction
between	these	two	industry	segments	and	have	created	separate	working	groups
to	propose	solutions	that	match	their	different	requirements.

The	 use	 of	 wireless	 technologies	 in	 industrial	 automation	 provides	 new



possibilities	 and	 advantages	 compared	 to	 the	 existing	 wired	 solutions.	 These
technologies	will	enable	easier	access	to	more	information	related	to	the	process
and	 the	 equipment	 used	 in	 the	 process.	 Today,	 many	 plant	 automation
installations	 only	 provide	 the	 basic	 process	 values,	 for	 example,	 temperature,
flow,	and	pressure.	There	is	a	lot	of	valuable	information	such	as	the	status	and
condition	of	the	equipment	and	the	addition	of	more	process	measurement	points
that	 offer	 a	 significant	 opportunity	 to	 increase	 the	 productivity	 of	 industrial
installations.	 It	 is	 possible	 to	 access	 this	 information	 with	 wired	 sensors;
however,	 the	 cost	 is	 prohibitive	 due	 to	 the	 required	 redesign,	 installation,	 and
wiring.	 For	 some	 applications	 wiring	 is	 extremely	 expensive	 due	 to	 limited
availability	of	space	and	hazardous	areas,	which	puts	requirements	on	the	cables
and	 connectors.	 This	 is	 where	 wireless	 technology	 provides	 a	 very	 attractive
solution	due	to	its	nonintrusive	nature.	It	is	easier	to	retrofit	wireless	equipment
on	 existing	 installations;	 they	 require	 no	 (or	 very	 little)	 wiring,	 which	 makes
planning,	design,	and	installation	easier	and	more	cost-effective.

Wireless	technology	also	provides	flexibility	regarding	scalability;	it	is	easier
to	extend	a	network	with	more	sensors	than	using	wired	technologies.	Mobility
is	another	attractive	feature,	which	makes	it	easier	 to	reconfigure	a	network	by
moving	 sensors	 to	 different	 positions	 if	 the	 application	 process	 is	 altered	 thus
requiring	sensors	mounted	in	different	locations.

Besides	providing	easy	access	to	information,	easier	installation,	and	scaling,
wireless	technology	opens	up	a	range	of	new	applications.	It	is	now	possible	to
mount	 sensors	on	 rotating	 equipment	 such	as	 rolling	mills	 for	paper	 and	 steel,
robot	 swivels,	 and	moving	 equipment.	 It	 is	 even	more	 reliable	 to	 use	wireless
technologies	 since	 there	will	 never	be	any	cable	or	 connector	problems	due	 to
wear	and	tear,	which	often	causes	problems	for	swiveling	equipment	using	wired
solutions.	Wireless	also	offers	a	cost-effective	way	to	use	temporary	installations
to	 fine-tune	 a	 process	 during	 a	 few	months	 or	 collect	 statistical	 data	 and	 then
remove	the	installation.

Recently	 the	 trend	 of	 industrial	 automation	 is	 to	 provide	 remote	 access
possibilities	to	plants,	or	at	least	parts	of	plants	(e.g.,	to	remote	control	vehicles),
and	collect	condition	monitoring	 information.	Wireless	 technology	provides	an
easy	way	to	connect	to	these	industrial	automation	sites,	especially	sites	located
in	remote	parts	of	the	world	such	as	mines	and	onshore	and	offshore	oil	and	gas
fields.	With	wireless	access,	the	control	room	no	longer	has	to	be	located	on	site;
instead	 it	 can	 be	 located	 in	 or	 near	 population	 centers	where	 people	 prefer	 to
work	 and	 live.	 Actual	 personnel	 only	 need	 to	 travel	 to	 the	 site	 location	 for
maintenance	or	if	problems	arise.

Wireless	technology	also	enables	a	new	field	called	the	mobile	workforce.	In



different	 vertical	 industries	 there	 are	 many	 areas	 where	 mobility	 can	 be
leveraged	 to	 benefit	 a	 mobile	 workforce;	 for	 example,	 field	maintenance,	 site
survey,	and	localization.	A	wireless	localization	application	makes	it	possible	to
find	and	track	inventory	and	valuable	assets	and	workers	that	are	moving	inside
and	outside	of	 the	plant.	The	ability	 to	 locate	each	worker	quickly	or	 to	allow
remote	 access	 to	 a	 site	 and	 the	 information	 it	 contains	 offers	 safety	 and
productivity	benefits.

All	in	all,	wireless	technology	will	open	up	many	new	possibilities	within	the
industrial	automation	area.

	
21.2	Challenges
For	 wireless	 communication	 technology	 to	 become	 successful	 in	 the

industrial	automation	market	there	are	many	challenges	that	must	be	overcome.
These	 challenges	 range	 from	 issues	 arising	 from	 the	 wireless	 communication
technology,	 related	 technologies	 such	 as	 batteries	 and	 security,	 and	 plant
automation	control	systems	to	the	general	mindset	of	people	in	the	business.

One	of	 the	biggest	hurdles	wireless	communication	 technology	 faces	 is	 the
misconception	of	how	easy	the	wireless	communication	is	to	compromise.	This
is	 because	 it	 is	 possible	 to	 sit	 outside	 the	 fence	 surrounding	 the	 plant	 site	 and
eavesdrop	 on	 the	 plant	 traffic,	 inject	 fake	 traffic,	 or	 even	 jam	 the	 wireless
signals.	Therefore,	all	wireless	communication	technologies	used	in	a	plant	must
employ	 security	 mechanisms	 (e.g.,	 encryption,	 authentication,	 integrity
checking)	to	ensure	unmolested	communications.

The	 environment	 in	which	 the	wireless	 technology	 solution	will	 operate	 is
considered	very	harsh.	A	plant	 typically	consists	of	metal	constructions	 (pipes,
walls,	 floors,	 machines,	 etc.)	 and	 moving	 equipment	 (forklifts),	 which	 create
fading	 problems	 for	wireless	 signals.	 In	 addition,	 there	 is	 electrical	machinery
(drives,	 welding),	 which	 affects	 the	 radio	 by	 causing	 electromagnetic
interference	(EMI)	in	the	frequency	spectrum.

Another	 important	 aspect	 is	 that	 the	 physical	 location	 of	 the	 wireless
equipment	is	determined	by	the	process	that	it	monitors	or	controls,	and	not	by
where	the	radio	communication	environment	is	best.

In	 the	 face	of	 these	 challenges	 it	 is	 important	 that	wireless	 technology	 can
deliver	 data	 reliably.	 Furthermore,	 many	 wireless	 industrial	 automation
applications	have	very	tough	requirements	for	reliability	such	as	wireless	control
and	 localization	 in	 safety	 critical	 areas.	 In	 wireless	 communication	 several
different	approaches	for	reliable	communication	exist.	One	solution	is	to	employ
mesh	network	topology;	another	approach	is	to	add	error	control	techniques.

As	 discussed	 in	 Section	 21.1,	 industrial	 automation	 is	 a	 wide	 area	 that



contains	many	 applications	 and	 use	 cases,	which	 in	 turn	 puts	 a	wide	 range	 of
requirements	 on	 the	 wireless	 communication.	 It	 is	 quite	 obvious	 that	 a	 single
radio	 communication	 technology	 cannot	 satisfy	 all	 of	 the	 requirements	 on	 the
physical	layer;	however,	using	a	unified	technology	on	a	higher	layer	(IP)	could
be	an	advantage	for	many	parts	of	the	automation	network,	since	there	is	a	trend
for	wired	communication	(i.e.,	field	buses)	to	use	IP-based	protocols.

Table	 21.1	 summarizes	 some	 of	 the	 important	 attributes	 of	 industrial
automation	 processes.	 These	 attributes	 differ	 widely	 between	 the	 process	 and
discrete	manufacturing	areas.

Table	21.1	Generic	Requirements	for	Industrial	Automation	Processes
	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	

	

	

Process	attribute Process	manufacturing Discrete	manufacturing
Sensor	types	(data	type) Predominantly	analog Predominantly	discrete
Production	cycle	length 100	days Few	hours	to	1	day
Typical	control	loop	times 1	to	1000	s 1	to	500	ms
Device	density Low High
Devices	per	plant 10,000 10,000
	
In	 the	 following	 list	 are	 some	 generic	 requirements	 that	 are	 important	 in

industrial	automation	settings:

•	Global	availability:	Industrial	automation	solutions	have	a	requirement
to	 be	 globally	 available,	 thus	 requiring	 the	 use	 of	 globally	 available
frequency	 bands.	 Solutions	 are	 therefore	 operating	 in	 the	 unlicensed	 2.4
GHz	ISM	band.33	ISM	—	Industrial,	Scientific,	and	Medical,	defined	by	the
International	Telecommunication	Unit	(ITU).	Unfortunately,	this	frequency
band	is	used	by	many	different	communication	technologies	which	in	turn
could	cause	potential	interference	problems.
•	 Coexistence:	 Industrial	 plants	 often	 contain	 many	 different	 wireless

communication	 technologies	 that	 operate	 in	 the	 same	 frequency	band,	 for
example,	IEEE	802.11-and	IEEE	802.15-based	technologies	both	operate	in
the	2.4	GHz	ISM	band.	Thus,	it	is	very	important	that	a	solution	can	coexist
in	a	radio	environment	with	a	large	amount	of	interference	as	well	as	limit
its	own	disturbance.
•	Lifetime:	Most	 industrial	automation	systems	have	lifetimes	measured

in	tens	of	years.	During	this	lifetime	equipment	is	expected	to	provide	good
availability	 and	 require	 a	 minimum	 of	 maintenance.	 Battery-powered
wireless	equipment	 is	not	expected	to	require	a	battery	change	more	often
than	a	few	years,	however,	longer	intervals	are	preferred.
•	 Security:	 As	 for	 all	 general	 wireless	 networking	 the	 security,

authenticity	 (making	 sure	 data	 come	 from	 the	 correct	 sensor	 node),	 and
integrity	 (making	 sure	 no	 one	 has	 tampered	 with	 the	 data)	 are	 very
important.



•	 Interoperability:	Using	 standardized	 equipment	 and	 communication	 is
very	important	for	most	process	plant	owners.	They	want	to	be	able	to	use
equipment	 from	 different	 vendors,	 and	 they	 want	 it	 to	 work	 together
seamlessly.

	
Preferably	 the	 new	 wireless	 technology	 should	 integrate	 into	 the	 existing

plant	 automation	 system	 similar	 to	 wired	 technology.	 The	 challenge	 is	 that
wireless	 technology	will	be	used	 in	new	applications	 that	 take	advantage	of	 its
features	 such	 as	 mobility	 and	 temporary	 installations.	 This	 is	 something	 that
current	plant	automation	systems	cannot	handle,	so	to	capitalize	on	the	wireless
advantages	these	systems	must	be	upgraded.

Different	 industrial	 applications	 will	 have	 very	 different	 requirements	 and
will	set	different	solutions,	values,	or	bounds	for	each	of	these	requirements.	The
solution	developer	must	focus	intently	on	what	the	application	requires.	Then	the
challenge	is	to	choose	a	set	of	network	properties	that	will	satisfy	all	application
requirements	 (see	 Figure	 21.2).	 The	 real	 objectives	 for	 any	wireless	 industrial
product	are	determined	by	the	application	in	which	it	must	perform,	not	by	the
technology	deployed.

Figure	21.2	Key	challenges	in	industrial	automation.
	

In	industrial	automation	plants	wireless	technologies	are	deployed	on	a	large
scale,	 and	 the	 complexity	 of	 the	wireless	 infrastructure	 is	 increasing.	A	major
challenge	 is	 how	 to	 plan,	 deploy,	 and	 manage	 this	 in	 a	 cost-effective	 way.



Multiple	 wireless	 technologies	must	 be	 able	 to	 coexist	 in	 the	 same	 frequency
band.	 One	 technology	 should	 preferably	 support	 multiple	 applications	 —	 for
example,	VoIP,	 video,	 and	 process	 data	—	 on	 the	 same	wireless	 network.	 To
support	this	it	must	be	possible	to	engineer	and	manage	the	infrastructure	as	well
as	 guarantee	 minimum	 requirements	 on	 Quality	 of	 Service,	 coexistence,
positioning	 services,	 roaming,	 and	 security.	 The	 automation	 process	 in	 most
cases	is	too	costly	to	stop	if	a	retrofit	wireless	installation	is	planned;	therefore	it
should	be	possible	to	integrate	it	into	the	automation	system	without	disturbing
the	running	process.

	
21.3	Use	Cases
With	 the	 use	 of	 wireless	 communication	 in	 industrial	 automation	 it	 is

possible	to	access	more	information	about	the	process	and	the	devices	connected
to	it.	Furthermore,	new	use	cases	and	applications	arise	that	will	improve	the	life
cycle	of	the	plant.	This	section	describes	three	use	cases	in	industrial	automation
with	 different	 requirements	 for	 latency,	 reliability,	 and	 data	 rate	 (see	 Figure
21.3).

Figure	21.3	Three	wireless	use	cases	and	their	varying	requirements.
	

21.3.1	Condition	Monitoring
Condition	monitoring	is	the	first	use	case	in	which	wireless	technologies	will

be	used	for	industrial	automation.	Condition	monitoring	is	a	very	wide	use	case
that	contains	many	different	applications.	 In	general,	 it	can	be	described	as	 the
collection	of	data	related	to	the	condition	and	status	of	machinery,	which	is	used
to	 predict	 failures,	 generate	 alarms,	 and	 schedule	 maintenance.	 Condition
monitoring	 tasks	 are	 sometimes	performed	 as	manual	 labor;	 personnel	 have	 to



travel	to	the	site	and	manually	collect	data	from	the	equipment	or	even	visually
inspect	the	condition.

A	 major	 driver	 for	 wireless	 condition	 monitoring	 is	 the	 ability	 to	 easily
install	 a	 condition	monitoring	 solution	 in	an	existing	plant	and	hook	 it	up	 to	a
condition	 analysis	 system.	 The	 condition	 monitoring	 system	 can	 be	 installed
without	 interfering	with	 the	plant	 control	 system	as	 a	 kind	of	 add-on	 solution.
Wireless	 technologies	 also	 make	 remote	 condition	 monitoring	 easier,	 as	 the
condition	information	can	be	accessed	from	anywhere	in	the	world.

There	 are	 many	 different	 parameters	 to	 monitor	 on	 the	 wide	 array	 of
equipment	 and	machinery	 used	 in	 industrial	 automation.	 It	 is	 very	 common	 to
monitor	the	condition	of	rotating	or	swiveling	equipment	such	as	motors,	pumps,
fans,	 and	 robots	 that	 contain	 bearings.	 These	 are	 usually	 monitored	 using
vibration	analysis,	but	acoustic	analysis	is	also	used.	Vibration	is	very	common
in	 industrial	 settings.	 Almost	 everything	 in	 a	 plant	 vibrates	 (machines,	 pipes,
structures),	 which	 makes	 it	 a	 very	 good	 case	 for	 condition	 monitoring.
Temperature	is	also	a	good	indicator	of	the	condition	of	the	equipment,	where	a
high	 temperature	 usually	 indicates	 a	 problem.	 Oil	 can	 be	 monitored	 to	 detect
wear	debris	or	even	to	detect	release	of	certain	gases	detectable	in	the	oil	through
gas	chromatography,	which	is	used	to	indicate	equipment	condition.

The	 following	 requirements	 are	 important	 for	 condition	 monitoring
applications:

•	Latency:	The	 time	delay	 from	when	data	 are	 produced	 (measured)	 to
when	they	are	available	to	the	automation	system,	for	example,	distributed
control	or	asset	monitoring	systems.	The	importance	of	latency	varies,	but	it
is	 not	 considered	 to	 be	 the	 most	 important	 requirement	 for	 condition
monitoring.	When	 it	 comes	 to	 actual	 latency	 requirements	 it	 is	 usually	 in
the	range	of	seconds	or	minutes.
•	Duty	cycle:	The	 rate	 (period)	with	which	new	data	are	 required	 to	be

produced	 and	 made	 available	 to	 the	 plant	 automation	 system.	 The	 duty
cycle	 requirement	varies	 from	a	few	milliseconds	 to	seconds	 to	weeks	(or
even	months)	depending	on	the	application.	In	some	cases	there	is	no	strict
cycle;	 instead	 the	 condition	 monitoring	 system	 or	 personnel	 determines
(randomly)	when	measurements	should	be	performed.
•	Throughput:	The	bandwidth	required	to	transport	the	data	according	to

the	 duty	 cycle	 and	 latency	 requirements.	 The	 amount	 of	 data	 sent	 varies
from	application	to	application,	ranging	from	sending	a	single	temperature
value	 once	 every	 few	 minutes	 to	 sending	 a	 full	 vibration	 time	 series
collected	over	a	few	seconds	every	few	seconds.



•	Range:	The	range	requirement	for	condition	monitoring	within	a	plant
is	usually	a	few	hundred	meters	with	line-of-sight	to	less	than	100	m	with
no	 line-of-sight.	 For	 remote	 condition	monitoring	 the	 range	 can	 be	much
longer.	 A	 range	 of	 several	 miles	 is	 required	 to	 connect	 to	 an	 offshore
platform.

	
	
21.3.2	Wireless	Control
Industrial	automation	control	applications	can	be	divided	into	two	categories:

real-time	 and	 event-based.	 For	 real-time	 control	 applications,	 process	 signals
must	 be	 received	 within	 a	 specified	 amount	 of	 time	 to	 correctly	 operate	 the
process.	To	support	real-time	control	applications,	networks	often	must	be	able
to	 guarantee	 end-to-end	 communication	 deadlines.	 On	 the	 other	 hand,	 event-
based	control	applications	are	more	relaxed	and	wait	until	the	signal	is	received
(no	deadline)	before	making	any	decisions.

For	more	 than	30	years	wired	communication	networks	have	been	used	for
distributed	 control,	 but	 recent	 advances	 in	wireless	 technologies	 have	 enabled
wireless	 control	 to	 be	 used	 in	 industrial	 automation.	 The	 main	 benefits	 of
introducing	 wireless	 networking	 in	 industrial	 control	 applications	 are	 cost,
flexibility,	 and	 reliability.	 In	 many	 sites	 (chemical	 plants,	 refineries,	 oil
platforms)	 distributed	 control	 systems	 are	 installed	 and	 a	 large	 number	 of
controllers	and	instruments	are	distributed	over	the	site	and	either	connected	by
wired	or	wireless	communication.

In	 process	 automation	 (i.e.,	 chemicals,	 metals,	 and	 minerals)	 there	 are
relatively	slow-moving	processes	and	the	time	constants	range	from	seconds	to
minutes.	One	example	is	the	flotation	process.	Flotation	is	a	separation	technique
used	in	minerals,	the	paper	industry,	de-inking,	and	water	treatment.	The	control
program	 of	 the	 controller,	 for	 this	 kind	 of	 process,	 has	 a	 loop	 time	 of
approximately	 0.5	 to	 1	 s,	 but	 the	 scan	 rate	 of	 analog	 or	 digital	 input/output
devices	(I/Os)	is	faster	(in	the	range	of	20	ms).	The	control	is	based	on	several
measurements	 and	 control	 actions.	The	measured	 entities	 include	 conductivity,
airflow,	 water	 flow,	 pH	 measurements,	 and	 tank	 levels.	 The	 control	 actions
include	 air	 valves	 and	 water	 pumps	 and	 control	 loops	 such	 as	 level	 control,
pump	 control	 (before	 and	 after	 the	 flotation	 series),	 and	 air-and	 slurry-flow
control.	 A	more	 challenging	 scenario	 is	 the	metallurgy	 process	 of	 hot	 rolling,
which	must	have	control	requirements	in	milliseconds.	The	rolling	speed	varies
between	passes:	 slow	 in	 the	beginning	and	 faster	 as	 the	 strip	gets	 thinner.	The
speed	 may	 be	 as	 fast	 as	 10	 m/s	 and	 to	 reach	 the	 desired	 performance	 in	 the



thickness	control	a	sampling	rate	of	10	to	20	ms	is	usually	needed.
Wireless	 control	 in	 discrete	manufacturing	 differs	 quite	 substantially	when

compared	 to	 process	 automation,	 since	 the	 requirements	 at	 machine	 level	 are
mission-critical	 and	 considerably	 more	 stringent	 than	 typical	 requirements	 for
other	areas.	In	an	automotive	assembly	plant,	up	to	100,000	I/O	points	may	be
present	in	a	dense	area	and	small	roundtable	production	machines	can	have	up	to
ten	 devices	 per	 m3	 machine	 volume	 (300	 per	 machine).	 Furthermore,	 fast
response	times	are	generally	less	than	15	ms,	and	it	is	important	that	coexistence
is	permitted	in	multiple	cells;	up	to	300	devices	in	a	single	machine	have	to	be
supported.	 Most	 of	 the	 existing	 wireless	 systems/standards	 do	 not	 satisfy	 the
needed	 balance	 of	 requirements	 such	 as	 latency	 versus	 data	 rate,	 reliability,
power	consumption,	and	node	density.	Some	technologies	are	designed	for	high
throughput	 applications	 between	 small	 numbers	 of	 terminals	 and	 have	 less
stringent	latency	and	power	requirements.

Wireless	communication	systems	for	industrial	automation	and	control	must
fulfill	the	following	requirements:

•	Device	mounting:	The	orientation	of	 the	 sensor	 and	actuator	nodes	 is
very	 important	 and	 has	 a	 clear	 impact	 on	 reliability	 and	 latency.	 A
misplaced	device	can	cause	decreased	throughput	or	increased	delay.
•	 Latency:	 Ranges	 from	 milliseconds	 to	 minutes	 depending	 on	 the

specific	application.
•	Duty	cycle:	The	 rate	 (period)	with	which	new	data	are	 required	 to	be

produced	and	made	available	 to	 the	control	system.	As	mentioned,	 typical
duty	 cycle	 requirements	 for	 control	 applications	 range	 from	 a	 few
milliseconds	to	seconds.

	
	
21.3.3	Mobile	Workforce
Information	and	Communication	Technology	(ICT)	has	a	dramatic	impact	on

the	 productivity	 of	 industrial	 installations.	 With	 the	 advent	 of	 wireless
technologies,	engineering	tasks	carried	out	through	portable	or	detachable	HMI
units	are	now	very	common	in	all	industries.	Wireless	technologies	can	improve
productivity	by	effectively	supporting	more	flexible	work	processes	that	are	not
hindered	or	limited	by	the	location	of	plant	personnel	relative	to	the	process	and
control	 equipment	 they	 need	 to	 install,	 configure,	 operate,	 and	 maintain.	 The
main	objective	 of	 the	mobile	workforce	 area	 is	 to	 optimize	 the	workflow	of	 a
plant	throughout	its	life	cycle.



Asset	 tracking	 and	 local	 access	 to	 devices	 enable	 a	 faster	 installation	 and
commissioning	 procedure.	 In	 addition,	 direct	 access	 to	 the	 maintenance	 and
control	systems	while	in	the	field	can	streamline	the	process	even	further,	such
as	 effectively	 supporting	 checkin/check-out	 processes	where	 physical	 presence
in	 the	 plant	 is	 required.	 Error-prone	 off-line	 work	 can	 be	 moved	 to	 online
updates	with	support	for	automated	validation	and	verification.

As	a	way	to	lower	operation	costs	and	improve	product	quality,	the	level	of
plant	automation	is	 increasing.	This	means	that	fewer	operators	(personnel)	are
required	 to	 run	 the	 plants,	 and	 that	 the	 role	 and	 scope	 of	 the	 operator	 are
expanding	to	cover	a	larger	part	of	the	plant’s	operation.	To	support	this,	mobile
access	to	plant	information	is	essential	as	one	person	will	need	to	handle	device
specifics	 while	 controlling	 the	 total	 system.	 If	 specific	 information	 or	 control
actions	 are	 restricted	 to	 the	 control	 room,	 this	 type	of	 operation	 is	 impossible.
Also,	as	the	number	of	dedicated	people	for	specific	process	sections	decreases,
asset	tracking	and	localization	will	play	an	important	role	to	help	guide	operators
and	service	personnel	 to	 the	 right	place	within	 the	plant.	Collaborative	support
functions	will	also	become	more	important,	as	the	experts	will	not	necessarily	be
available	 on	 site	when	 a	 problem	occurs.	 Support	 for	 streaming	 (video,	 voice,
and	data)	to	a	remote	expert	can	help	solve	critical	issues	in	a	timely	manner	and
avoid	expensive	emergency	service	calls	(especially	important	for	plants	located
in	remote	locations	where	travel	is	prohibitive).

The	main	benefits	of	asset	monitoring	and	service	come	from	two	aspects:

•	 The	 mobility	 aspect	 is	 access	 to	 any	 information,	 at	 any	 time,	 from
anywhere.	It	enables	online	integrated	access	to	computerized	maintenance
systems	(CMMS).	This	eliminates	error-prone	off-line	double	work	as	 the
data	can	be	updated	and	validated	during	a	service	or	maintenance	task.
•	The	ability	 to	automatically	 identify	and	 locate	devices	supports	asset

tracking	and	audit	tasks.	Location-dependent	services	help	speed	up	routine
maintenance	as	well	as	 troubleshooting	 tasks.	 Information	and	actions	can
be	dynamically	adapted	based	on	the	service	person’s	location	in	the	plant,
and	 the	 location-dependent	 service	 can	 highlight	 that	 a	 device	 in	 close
proximity	needs	a	maintenance	check.

	
The	 ability	 to	 precisely	 locate	 a	 person	within	 a	 plant	 can	 also	 be	 used	 to

improve	 the	 safety	 of	 the	 workforce.	 Proximity	 to	 a	 potentially	 dangerous
situation	 on	 the	 plant	 floor	 can	 be	 signaled	 to	 the	 worker.	 Virtual	 safety
functions	can	be	implemented	so	that	the	mobile	worker	is	able	to	safely	stop	the



operation	of	the	plant	within	a	defined	proximity.	This	improves	productivity	as
the	shutdown	can	be	limited	(in	a	dynamic	manner)	and	improves	safety	as	the
worker	always	has	an	emergency	stop	on	hand.

Sensors	carried	by	workers	can	be	used	to	monitor	their	health	and	signal	if
an	 emergency	 situation	 occurs	 (notify	 other	 plant	 personnel,	 or	 even	 initiate	 a
shutdown	in	the	area	where	the	worker	is	located).

The	following	requirements	are	important	to	mobile	workforce	applications:

•	Latency:	This	 is	 important	 to	certain	aspects	of	 the	mobile	workforce
such	 as	 localization	 to	 warn	 personnel	 when	 entering	 dangerous	 areas	 or
performing	 emergency	 shutdowns.	 On	 the	 other	 hand,	 accessing	 system
documents	 when	 inspecting	 faulty	 equipment	 does	 not	 require	 minimum
latency.
•	Throughput:	For	the	mobile	workforce	it	is	important	to	have	access	to

all	 data	 in	 the	 system	 such	 as	voice,	 video,	 and	 sensor	 data.	High-quality
video	streaming	could	have	a	fairly	high	requirement	on	the	throughput	(as
well	as	latency).
•	 Range:	 The	 range	 for	 a	 localization	 service	 within	 a	 plant	 usually

requires	 coverage	 of	 the	 plant	 size	 (tens	 of	 thousands	 of	 square	 meters),
while	remote	maintenance	range	requirements	are	several	miles,	or	possibly
even	global	access.
•	 Multiprotocol:	 When	 plant	 operators	 move	 around	 in	 the	 plant	 it	 is

important	that	they	have	access	to	the	plant	information	wherever	they	are
using	 whatever	 wireless	 technology	 is	 operating	 in	 the	 vicinity.	 It	 is	 not
feasible	to	have	to	change	equipment	(PDA,	phone,	laptop)	just	to	be	able
to	 communicate;	 the	 portable	 communication	 equipment	 must	 be	 able	 to
seamlessly	switch	between	different	technologies.

	
21.4	Conclusions
Industrial	 automation	has	 traditionally	been	performed	with	wired	 systems.

Wireless	communication	is	rapidly	emerging	in	industrial	communication	due	to
the	increased	ease	of	installation	with	wireless	systems	as	well	as	the	ability	to
install	systems	in	locations	where	wired	systems	are	cumbersome	or	impossible.
Examples	of	such	places	are	rotating	machinery	or	highly	mobile	systems.

Industrial	 automation	 systems	 are	 used	 for	 condition	 monitoring,	 control
applications,	 and	 the	 mobile	 workforce.	 Common	 to	 all	 industrial	 automation
applications	 are	 the	 requirements	 for	 global	 availability	 of	 components,
coexistence	 between	 wired	 and	 wireless	 technologies,	 lifetime,	 security,	 and



interoperability.	Wireless	technology	is	rapidly	emerging	to	meet	these	needs.
	



Chapter	22	Smart	Cities	and	Urban
Networks

	

22.1	Introduction
In	1900,	only	13%	of	the	world’s	population	lived	in	cities.	By	2050,	that

number	will	have	risen	to	70%.	Vibrant	and	creative	cities	drive	economic,
social,	 and	 cultural	 development.	This	 urbanization	 is	 both	 an	 emblem	of
our	economic	and	 societal	progress	and	a	 challenging	 strain	on	 the	urban
infrastructure.

The	 integration	 of	 Information	 and	Communication	Technology	 (ICT)
with	development	projects	 can	 change	 the	urban	 landscape	by	developing
Smart	Cities.	Smart	Cities	can	dramatically	improve	their	citizens’	quality
of	 life,	 encourage	 business	 to	 invest,	 and	 create	 a	 sustainable	 urban
environment.	As	illustrated	throughout	this	chapter	by	means	of	several	use
cases,	smart	object	networks	will	play	a	critical	role	in	making	Smart	Cities
a	reality.

A	 number	 of	 cities	 have	 started	 to	 enable	 smart	 object	 networks	 in
support	 of	 a	 number	 of	 new	 services.	 Transport	 officials	 in	 Singapore,
Brisbane,	and	Stockholm	are	using	smart	systems	to	reduce	congestion	and
pollution.	Public	safety	officials	in	major	cities	like	New	York	are	not	only
able	 to	 solve	 crimes	 and	 respond	 to	 emergencies,	 but	 also	 to	help	prevent
them.	City	managers	in	Albuquerque,	New	Mexico,	have	achieved	a	2000%
improvement	 in	efficiency	 in	 sharing	 information	across	agencies,	keeping
citizens	informed,	and	providing	critical	municipal	services	from	residential
and	 commercial	 development	 to	 water	 to	 public	 safety.	 A	 large	 hospital
organization	 in	 Paris	 is	 implementing	 an	 integrated	 patient-care-
management	 solution	 to	 facilitate	 seamless	 communication	 across	 its
business	applications	enabling	them	to	track	every	stage	of	a	patient’s	stay
in	 the	 hospital.	 Many	 cities	 in	 the	 world	 have	 deployed	 smart	 object
networks	to	efficiently	manage	outdoor	lighting	management	systems,	thus
performing	 proactive	 maintenance	 and	 significantly	 reducing	 energy
consumption.	 Personal	 Travel	 Assistant,	 a	 company	 launched	 in	 Seoul,
South	Korea,	helps	residents	reduce	personal	carbon	footprint,	transit	costs,



and	 travel	 time	 via	 their	 new,	 web-based	 service.	 Furthermore,	 this
company	 is	 developing	 a	metropolitan	 area	 sensor	 network	 in	Beijing	 for
high-resolution	 monitoring	 of	 urban	 environments.	 These	 are	 just	 a	 few
examples	of	new	 services	 improving	 the	quality	of	 life	 of	 citizens	 in	 cities,
reducing	the	carbon	footprint,	and	contributing	to	green	initiatives	because
of	innovative	smart	object	networks.

Smart	 Cities	 require	 a	 large	 ubiquitous	 IP	 network	 interconnecting	 a
myriad	 of	 devices	 via	 various	 links	 (fixed	 and	 wireless)	 in	 support	 of	 a
number	 of	 new	 services11	 See	 Smart	 City,	 PA	 Consulting	 Group	 at
http://www.paconsulting.com/.	such	as

•	 Transport:	 Traffic	 flow	 management,	 speed	 control,	 congestion
charging,	 information	 systems,	 vehicle	 tracking,	 onboard	 safety,
parking	management
•	 Public	 safety	 and	 security:	 Access	 control	 systems,	 alarm

monitoring,	emergency	warning,	and	situation	management
•	 Public	 services:	 Remote	 patient	 monitoring,	 patient	 records

management,	education/learning	networks
•	Identity:	Biometric/smart	card	systems
•	 Utilities:	 Facilities	 management	 (e.g.,	 energy,	 water),	 climate

control,	 energy	 generation	 and	 storage	 management,	 water/gas	 leak
detection,	and	network	management
•	Environment:	Data	collection	and	monitoring	(noise,	pollution,	etc.)
•	Social	networking

	
This	 chapter	 specifically	 focuses	on	 smart	object	networks;	needless	 to

say	that	high-speed	networks	are	also	needed	to	support	other	services	such
as	video,	telephony,	etc.

Smart	object	networks	will	consist	of	smart	objects	of	a	different	nature
such	 as	 magnetic,	 thermal,	 visual,	 seismic,	 infrared,	 acoustic,	 and	 radar,
which	are	able	to	monitor	a	wide	variety	of	ambient	conditions	that	include
temperature,	 humidity,	 sunlight,	 soil	 makeup,	 air	 makeup,	 noise	 levels,
pollution,	 energy,	 presence	 or	 absence	 of	 certain	 kinds	 of	 objects,
mechanical	stress	levels,	and	so	on.

In	the	rest	of	this	chapter,	three	use	cases	for	smart	object	networks	in
Smart	 Cities	 are	 considered:	 urban	 environmental	 monitoring,	 social
networking,	and	intelligent	transport	systems.

	

http://www.paconsulting.com/


22.2	Urban	Environmental	Monitoring
Pervasive	computing	(in	particular,	sensing	and	actuation)	can	be	used

to	 monitor	 and	 control	 various	 natural	 and	 infrastructure	 systems	 that
affect	the	urban	environment.	The	following	use	cases	provide	an	overview
of	 several	 pervasive	 sensing	 applications	 and	 their	 use	 in	 the	 context	 of
urban	environmental	monitoring.

22.2.1	Urban	Ecosystem	Monitoring
We	are	 living	 in	an	 increasingly	urbanized	world.	Further	 increases	 in

size	and	rates	of	population	growth	will	no	doubt	increase	the	stress	on	the
environment.	While	urbanization	 is	 an	 important	driver	of	 environmental
changes,	it	is	not	the	only	urban-related	influence.	The	conversion	of	land	to
urban	 uses,	 the	 extraction	 and	 depletion	 of	 natural	 resources,	 and	 the
disposal	 of	 urban	 wastes	 as	 well	 as	 urbanization	 in	 general	 are	 having	 a
global	 impact.22	World	Resources	 Institute,	 1997.	 To	 provide	 a	 “healthy”
environment	both	for	citizens	and	for	the	natural	ecosystem,	the	city	should
be	 viewed	 as	 an	 organic	 body	 with	 metabolic	 processes.33	 Abe	 Wolman,
1965.	Inputs	and	outputs	should	be	measured	by	pervasive	sensing,	and	this
information	can	help	determine	the	source	of	pollution	and	the	appropriate
action	to	preserve	the	environment.

This	requires	the	deployment	of	a	dense	smart	object	network	across	the
city	to	implement	pervasive	and	multifunctional	monitoring.	Such	networks
are	 comprised	 of	 various	 sensors	 (temperature,	 humidity,	 radiation,	 light
intensity,	etc.)	deployed	in	cities	to	enable	real-time	monitoring	of	the	urban
ecosystem.	 These	 smart	 objects,	 mounted	 on	 buildings,	 streetlights,	 and
cars,	gather	data	autonomously	transmitted	to	data	centers	via	a	private	IP
network	 or	 the	 Internet	 for	 further	 analysis.	 As	 discussed	 in	Chapter	 10,
data	 may	 also	 be	 interpreted	 by	 the	 network	 (referred	 to	 as	 “local
processing”).	 Note	 that	 in	 some	 cases,	 mobile	 sensors	 and	 actuators	 may
require	location-positioning	systems.

There	are	many	implemented	systems	and	ongoing	research	projects	of
environmental	 smart	 object	 networks.	 The	 US	 Department	 of	 Natural
Resources	 and	 Parks	 has	 built	 water-quality	 monitoring	 systems	 in	 King
County,	 Washington.44	 http://www.kingcounty.gov/environment/data-and-
trends/monitoring-data.aspx.	 The	 UK	 government	 supports	 an	 urban
pollution	 monitoring	 project	 comprised	 of	 a	 number	 of	 mobile	 sensing
systems	 that	 give	 a	 broader	 and	 denser	 picture	 of	 how	 pollution	 affects
urban	 spaces	 and	 the	 people	 within	 them.55
http://www.equator.ac.uk/index.php/articles/563.	 In	 Singapore,	 the
Singapore-MIT	Alliance	 for	Research	and	Technology	 (SMART)	has	been

http://www.kingcounty.gov/environment/data-and-trends/monitoring-data.aspx
http://www.equator.ac.uk/index.php/articles/563


working	 on	 the	 use	 of	 a	 wireless	 sensor	 network	 for	 the	 continuous
monitoring	of	water	distribution	systems.	This	research	includes	a	low-cost
wireless	sensor	network	for	high	data	rate	collection	and	online	monitoring
of	 hydraulic	 parameters	 within	 large	 urban	 water	 distributed	 systems.
Water-quality	 parameters	 (i.e.,	 pH,	 chlorine	 residual,	 turbidity,
conductivity,	and	dissolved	oxygen)	are	also	monitored.	The	system	can	use
high-frequency	 pressure	 measurements	 of	 hydraulic	 transient	 events	 to
detect	 leaks	 and	 predict	 pipe	 bursts	 remotely.66
http://censam.mit.edu/research/res2/index.html#s1.

The	 amount	 of	 environmental	 data	 of	 interest	 is	 very	 large	 and	 fast
growing:	 air-quality	 monitoring,	 water-quality	 monitoring,	 temperature
and	 humidity	 monitoring,	 microenvironmental	 sunlight	 monitoring,
weather	condition	monitoring,	environmental	pollution	monitoring,	exhaust
emission	 monitoring,	 waste	 discharge	 monitoring,	 and	 soil	 pollution
monitoring.

Information	can	be	accessible	to	citizens	or	may	exclusively	be	used	by
the	 city.	 This	 highlights	 the	 need	 for	 various	 information	 management
models	that	have	different	security	requirements.

22.2.1.1	Resource	Management
Energy	and	water	management	(see	examples	illustrated	in	Figure	22.1

and	 22.2)	 are	 critical	 resources	 that	must	 be	managed	with	 great	 care	 in
large	cities.

Figure	 22.1	 Prototype	 monitoring	 system	 for	 water	 distribution
network.
	

http://www.censam.mit.edu/research/res2/index.html#s1


Figure	22.2	Integrated	hydraulic	and	water-quality	monitoring	system.
	

Home	and	building	energy	management	is	absolutely	critical	and	Smart
Grids	will	play	a	key	role	in	energy	saving	and	carbon	footprint	reduction.
Efficient	energy	management	systems	developed	for	homes	in	the	context	of
the	Smart	Grid	also	apply	 to	buildings	 in	 cities	 (see	Chapters	 20	and	22).
Additionally,	 public	 infrastructures	 such	 as	 road	 lighting	 can	 be	 more
efficiently	 managed	 due	 to	 the	 deployment	 of	 IP	 smart	 object	 networks.
Networks	where	each	light	is	equipped	with	a	sensor	have	been	deployed	to
perform	 proactive	 maintenance	 and	 even	 dynamic	 lighting	 management
according	 to	 several	 external	 factors	 such	 as	 the	 local	 environment,	 the
presence	of	cars	or	citizens	in	the	areas,	etc.,	with	the	objective	of	reducing
cost	but	also	providing	a	better	lighting	service	to	citizens.	Systems	such	as
ROAM	[122]	provide	a	complete	 lighting	management	system	as	shown	in
Figure	22.3.



Figure	22.3	ROAM	lighting	management	networks.
	

Water	 management	 in	 large	 cities	 is	 also	 a	 key	 component	 and	 an
important	 expense.	 Similar	 to	 the	 energy	 management	 systems,	 smart
object	networks	can	be	used	to	optimize	water	consumption	in	the	city	and
detect	water	leaks	in	the	ground,	which	is	a	fairly	frequent	source	of	water
wastage.

Such	networks	are	usually	static,	with	mostly	multipoint-to-point	traffic
patterns	with	moderate	Quality	of	Service	(QoS)	requirements.	One	of	their
prime	 characteristics	 is	 to	 be	 large	 scale.	 Such	 road	 lighting	management
networks	have	been	deployed	with	millions	of	nodes.
	
	
22.2.2	Natural	Hazards	Monitoring	and	Early	Detection
Natural	 hazards	 monitoring	 and	 forecasting	 is	 another	 important

application	 for	 smart	 object	 networks.	 In	 contrast	 with	 urban	 ecosystem
monitoring,	natural	hazards	monitoring	needs	 to	meet	more	stringent	and
complicated	design	requirements.	The	monitoring	network	must	cover	large
geographical	 regions	 in	 which	 natural	 hazards	may	 occur	 while	 avoiding
“blind	 zones.”	 The	 system	 must	 operate	 throughout	 long	 disaster-free
periods,	 measure	 a	 variety	 of	 variables	 contributing	 to	 the	 hazard,	 and
communicate	 over	 potentially	 large	 geographical	 regions.	When	 the	 event



damages	 the	 environment,	 such	 as	with	 floods	 or	 hurricanes,	 this	 further
complicates	the	requirements.	This	system	must	withstand	the	event,	which
usually	poses	a	hazard	to	network	survival	and	survival	of	the	smart	objects
directly	 measuring	 the	 event.	 Typical	 smart	 objects	 used	 in	 hazard
monitoring	 include	 volcano	 monitoring	 sensors,	 seismic	 sensors,	 tsunami
early	warning	systems,	slope	deformation	monitoring	sensors,	and	so	forth.

Early	warning	flood	detection	is	one	type	of	natural	hazard	monitoring.
In	many	developing	countries,	current	systems	for	flood	detection	still	rely
on	human	observations.	People	read	the	river	level	off	of	markings	and	the
rain	 level	 from	water	 collecting	 gauges	 several	 times	 a	 day	 and	manually
send	 their	 reports.	 Comparison	 with	 previous	 records	 provides	 some
indication	 of	 potential	 hazards	 that	 may	 occur.	 Overall,	 this	 detection
system	is	not	very	reliable,	because	there	is	a	lack	of	enough	measurements,
quick	 aggregation,	 and	 accurate	 prediction.	 More	 sophisticated	 smart
object	 networks	 performing	 continuous	 measurements	 are	 required	 to
improve	the	level	of	prediction.

Forest	 fire	modeling	 and	 early	 detection	 are	 important	 to	 control	 and
prevent	 this	 natural	 hazard.	 Traditionally,	 forest	 fires	 are	 detected	 using
fire	 lookout	 towers	 located	at	high	points.	Charged	 coupled	device	 (CCD)
cameras	and	infrared	(IR)	detectors	are	installed	on	top	of	towers.	In	case
of	 fire	 or	 detection	 of	 smoke,	 the	 system	 alerts	 local	 fire	 departments,
residents,	 and	 industries.	 But	 the	 accuracy	 of	 these	 systems	 is	 largely
affected	by	weather	conditions,	and	it	is	difficult	to	avoid	blind	zones	with	a
small	 number	 of	 towers.	 Smart	 object	 networks	 are	 critical	 for	 building
near	 real-time	 forest	 fire	 detection	 systems.	 Large-scale	 wireless	 sensor
networks	 can	 be	 easily	 deployed	 with	 good	 coverage	 using	 airplanes.
Sensors	 can	 then	 monitor	 a	 variety	 of	 variables	 including	 temperature,
relative	 humidity,	 and	 smoke	 that	 help	 to	 precisely	 detect	 fire.	 The
communication	 range	 of	 the	 sensor	 node	 is	 usually	 limited	 to	 save	 power
and	increase	lifetime.	Similar	to	the	other	examples,	such	distributed	smart
object	networks	can	be	 self-formed	using	 IPv6	as	 the	networking	protocol
and	RPL	(see	Chapter	17)	as	the	routing	protocol.

Figure	22.4	shows	a	typical	forest	fire	detection	system.	Nodes	are	self-
organized	into	“clusters”	where	cluster	heads	aggregate	collected	data	and
report	 to	 a	 data	 processing	 center.	 Some	 sensor	 nodes	 are	 kept	 in	 idle	 or
sleep	mode	 to	 save	 energy.	The	 shaded	area	 represents	 a	 forest	 zone	with
higher	 fire	 potential	 that	 needs	 to	 be	 monitored	 by	 more	 active	 sensors.
Smart	object	networks	can	make	use	of	the	Internet	or	any	other	private	IP
networks	 to	 send	 their	 report	 to	 data	 centers.	 This	 can	 be	 seen	 as	 an



example	of	overlay	network	as	discussed	in	Chapter	10.

Figure	22.4	Architecture	of	a	typical	forest	fire	detection	system.

(Source:	MOHAMED	HEFEEDA.	Forest	Fire	Modeling	and	Early	Detection	Using	Wireless
Sensor	Networks.	Simon	Fraser	University,	Canada.)
	

22.2.3	Technical	Characteristics	and	Challenges
Smart	 object	 networks	 used	 for	 urban	 ecosystem	 monitoring	 and

natural	hazards	monitoring	present	a	series	of	technical	challenges.
22.2.3.1	The	Networking	Environment
Urban	 environmental	 networks	 are	 mostly	 outdoor	 networks	 and	 the

connectivity	between	smart	objects	may	be	greatly	affected	by	the	nature	of
the	 links	used	 in	 these	 environments.	Multipath	 effect	 and	 channel	 fading
vary	significantly	with	the	environment.	For	example,	a	wireless	channel	on
a	rainy	day	is	much	worse	than	on	sunny	days.	Moreover,	the	shielding	of
buildings	 and	 other	 spatial	 factors	 will	 cause	 significant	 asymmetry	 in	 a
wireless	channel.	This	 is	one	of	the	reasons	why	Powerline	communication
(PLC)	is	used	in	some	cases.

22.2.3.2	Traffic	Flows	and	Network	Topologies
In	 general,	 traffic	 flows	 are	 between	 nodes	 and	 information	 collectors

(that	may	be	distributed	in	the	network	for	local	data	processing)	and	data
centers.	 The	 up-streaming	 traffic	 flows	 are	 significantly	 higher	 than	 the
downstreaming	 ones.	 There	 are	 also	 scenarios	 where	 data	 are	 exchanged
directly	 between	 sensors	 and	 actuators	 for	 immediate	 actions.	 Networks
have	different	topologies,	but	mesh	network	topologies	are	very	frequent.



22.2.3.3	Smart	Object	and	Link	Characteristics
As	 discussed	 in	 length	 in	 Chapters	 11	 and	 12,	 sensor	 technology	 has

dramatically	 progressed	 over	 the	 past	 decade	 regarding	 size,	 power
consumption,	and	reliability.	However,	miniaturization,	cost	reduction,	and
low-power	consumption	are	still	necessary	for	environmental	sensors,	which
will	undoubtedly	be	developed	soon.	The	additional	requirement	for	natural
hazard	monitoring	applications	is	the	high	level	of	sensitivity,	stability,	and
accuracy	of	sensors	even	in	extremely	harsh	environments.

Environmental	 smart	 object	 networks	 are	 complex	 wireless	 multi-hop
networks.	 Sensor	 nodes	 are	 usually	 deployed	 in	 harsh	 environments,	 and
these	 networks	 are	 usually	 unattended	 in	 remote	 geographic	 areas;	 thus
links	may	be	unstable	and	vulnerable	to	interferences.

22.2.3.4	QoS	and	Network	Reliability
QoS	 and	 network	 reliability	 requirements	 greatly	 vary	 with

applications.	Urban	environment	monitoring	is	usually	delay-tolerant	and	a
network	 outage	 of	 a	 few	 hours	 is	 usually	 not	 a	 major	 issue.	 In	 contrast,
natural	 hazard	 monitoring	 requires	 low	 latency	 and	 a	 high	 level	 of
reliability.

22.2.3.5	Scalability
The	number	of	sensor	nodes	deployed	in	monitoring	environments	may

be	 of	 the	 order	 of	 hundreds	 or	 thousands	 or	 even	 millions	 of	 nodes.
Moreover,	 the	 network	 used	 in	 urban	 sensing	 must	 be	 scalable	 from
medium	scale	(district	area)	to	large	scale	(metropolitan	area).

22.2.3.6	Mobility
Recent	 advances	 in	mobile	 communications	 trigger	 research	 in	mobile

wireless	sensor	networks,	and	hybrid	structures	provide	more	effective	and
flexible	 networks	with	 a	mix	 of	 fixed	 and	mobile	 nodes.	Fixed	nodes	with
higher	 computational	 and	 power	 resources	 can	 be	 deployed	 as	 urban
infrastructure	 in	 some	 hot	 spots,	 whereas	 mobile	 nodes	 (usually	 more
constrained)	are	used	to	augment	the	sensing	coverage.

22.2.3.7	Security
Security	 requirements	 are	 very	 high.	 Such	 networks	 must	 be	 highly

secured	 to	 prevent	 tampering,	 both	 at	 the	 hardware	 level	 as	well	 as	 data
and	 management	 levels.	 Authentication	 and	 encryption	 technologies	 are
mandatory.

22.2.3.8	Network	Management
Because	 of	 the	 large	 networking	 scale	 and	 its	 vital	 function	 to	 the

population,	 network	 management	 is	 a	 key	 concern.	 Most	 systems	 today
have	 been	 produced	 as	 research	 platforms	 and	 require	 considerable



technical	expertise	to	be	deployed	and	managed.	There	are	ongoing	efforts
in	 self-management	 and	 self-configuration	 to	 evolve	 toward	 remote	 and
unattended	usability.

22.3	Social	Networks
In	the	 first	decade	of	 the	 twenty-first	century,	Social	Network	Services

(SNSs)	 have	 captured	 the	 attention	 of	 millions	 of	 people	 and	 millions	 of
dollars	from	investors	all	over	the	world.	They	have	encouraged	new	ways
to	 communicate	 and	 share	 information.	 Until	 now,	 most	 SNSs	 were	 web
based	 and	 offered	 similar	 basic	 functions	 such	 as	 a	 network	 of	 friends,
blogging,	 e-mail,	 instant	 messaging,	 discussion	 forums	 or	 communities,
commenting,	and	media	uploading.	Facebook,	MySpace,	Twitter,	LinkedIn,
Tagged,	as	well	as	content-sharing	web	sites	 like	YouTube	and	Flickr,	are
all	fast	growing	social	networks	that	provide	a	variety	of	ways	for	users	to
interact	for	various	social	and	professional	purposes,	transforming	the	Web
into	a	social	platform.

Smart	 objects	 performing	 a	 variety	 of	 tasks	 (e.g.,	 activity	 recognition,
location,	condition	sensing)	are	now	available	by	the	millions	embedded	in
mobile	 devices	 (e.g.,	 cellphones,	 PDAs,	 laptops,	 devices	 on	 personal
vehicles).	 Considering	 the	 increasing	 popularity	 of	 SNSs,	 along	 with	 the
increasing	 usage	 of	 instant	 messages	 as	 a	 replacement	 to	 e-mails	 in	 the
business	world	 and	 otherwise,	 there	 is	 undoubtedly	 a	 strong	 incentive	 for
sharing	 information	 learned	 from	 sensed	 data	 as	 well.	 Recently,
applications	that	integrated	social	networks	and	smart	object	networks	such
as	Wireless	 Sensor	Networks	 (WSNs)	 that	 enabled	 novel	 developments	 in
communications	have	been	a	high	topic	of	 interest.	A	few	key	applications
of	 successful	 integration	 of	 SNSs	 and	 smart	 object	 networks	 are	 the
extension	of	web-based	SNSs	for	monitoring	the	elderly	and	kids.	There	are
many	 other	 examples	 such	 as	 a	 mobile	 sensing	 system	 for	 outdoor	 game
communities.

22.3.1	Extension	of	Web-based	SNSs
Online	 SNSs	 have	 been	 extensively	 used	 by	millions	 of	 people	 and	 the

extension	 of	 web-based	 SNSs	 that	 take	 advantage	 of	 smart	 objects	 (e.g.
sensors)	 is	 definitely	 appealing.	 In	 this	 section,	 we	 introduce	 two
applications	to	show	how	WSNs	bring	the	SNSs	from	the	Internet	into	daily
lives.	 CenceMe	 and	 the	 identification	 of	 social	 acquaintances	 in	 localized
areas	are	examples	of	WSNs.

CenceMe	 is	 a	 component	 of	 the	 MetroSense	 Project	 [174],	 a
collaborative	 project	 sponsored	 by	Dartmouth	College,	NSF,	 Intel,	Nokia,
and	Motorola,	that	is	developing	new	applications,	classification	techniques,



privacy	approaches,	and	sensing	paradigms	for	mobile	phones	to	establish	a
global	mobile	sensor	network	capable	of	societal-scale	sensing.	CenceMe	is	a
personal	 sensing	 system	 that	 enables	members	of	 social	networks	 to	 share
their	 sensing	 presence	 with	 their	 friends	 in	 a	 secure	 manner.	 A	 sensing
presence	 captures	 a	 user’s	 status	 regarding	 activity	 (e.g.,	 sitting,	walking,
meeting	 friends),	 disposition	 (e.g.,	 happy,	 sad,	doing	okay),	 habits	 (e.g.,	 at
the	 gym,	 coffee	 shop	 today,	 at	 work),	 and	 surroundings	 (e.g.,	 noisy,	 hot,
bright,	high	ozone).	CenceMe	injects	a	sensing	presence	into	popular	social
networking	 applications	 such	 as	 Facebook,	 MySpace,	 and	 IM	 (Skype,
Pidgin)	 allowing	 new	 levels	 of	 “connection”	 and	 implicit	 communication
(albeit	nonverbal)	between	friends	in	social	networks.	The	CenceMe	system
is	 implemented,	 in	 part,	 as	 a	 thin-client	 on	 a	 number	 of	 standard	 and
sensor-enabled	 cell	 phones	 and	 offers	 a	 number	 of	 services	 that	 can	 be
activated	 on	 a	 per	 “buddy”	 basis	 to	 expose	 different	 degrees	 of	 a	 user’s
sensing	 presence	 including:	 life	 patterns,	 presence,	 friend	 feeds,	 social
interaction,	significant	places,	buddy	search,	and	buddy	beacon.

Currently,	 a	 number	 of	 mobile	 devices	 have	 been	 integrated	 into	 the
CenceMe	system:	 the	Nokia	N800	Internet	Tablet,	Nokia	N95,	Nokia	5500
Sport,	 Moteiv	 Tmote	 Mini	 (above	 the	 N95),	 and	 the	 prototype	 BlueCel
accessory	(above	the	5500).	Each	sensing	client	is	configured	to	periodically
push	its	sensed	data	to	the	CenceMe	core.	All	of	a	user’s	processed	sensor
data	can	be	viewed	via	a	web	browser	by	logging	into	the	user’s	account	on
the	CenceMe	portal.	Additionally,	a	subset	of	the	user’s	status	information
is	made	 available	 to	 the	 user’s	 buddies	 (subject	 to	 his	 configured	 sharing
policies)	 through	 their	 CenceMe	 portal	 pages,	 and	 through	 plug-ins	 to
popular	 social	networking	applications.	Figure	22.5	 shows	a	 snapshot	of	a
user’s	data	page	on	the	CenceMe	portal.	Figure	22.6	shows	the	architecture
of	the	CenceMe	system.



Figure	22.5	Snapshot	of	the	CenceMe	portal.
	

Figure	22.6	Architecture	of	CenceMe.
	



Identifying	 social	 acquaintances	 in	 localized	 areas	 was	 an	 idea	 put
forward	 by	 the	W3C	workshop	 on	 the	 future	 of	 social	 networking	 [123].
Today	at	conferences	a	social	network	site	or	forum	is	often	supplied	by	the
organizers	 to	 let	 attendees	 define	 and	 maintain	 their	 social	 network	 and
discuss	particular	 topics.	When	an	attendee	 finds	someone	sharing	similar
interests,	 there	 is	 no	 other	 way	 to	 have	 a	 face-to-face	 conversation	 apart
from	 sending	 e-mails	 and	 organizing	 a	 meeting	 at	 a	 certain	 place	 at	 a
certain	time.	Equipped	with	smart	devices	integrating	WSNs	and	SNSs,	the
attendees	 can	 make	 the	 experience	 much	 more	 efficient	 and	 convenient.
Benefiting	from	the	system,	which	can	indentify	users’	precise	locations	and
define	 information	 from	 the	 social	 network	 sites,	 people	 can	 be	 reminded
when	they	come	across	someone	special.	For	instance,	one	might	receive	an
alert	on	his	mobile	phone	as	soon	as	someone	he	wants	to	meet	or	exchange
messages	with	on	a	forum	appears	in	a	shared	place.
	
22.3.2	Monitoring	the	Elderly	and	Kids
Applications	 in	 this	 section	 show	 another	 usage	 of	 smart	 objects	 for

monitoring	 the	 elderly	 and	 kids,	 which	 helps	 with	 family	 healthcare	 and
communications.	Without	a	doubt	such	applications	will	grow	very	quickly.

Social	 networks	 and	 WSNs	 can	 also	 be	 combined	 to	 support
independent	 living	 and	 healthcare	 for	 the	 elderly	 [130].	 By	 deriving	 a
semantic	presence	based	on	context	from	sensor-enabled	social	networking
devices,	 useful	 tasks	 can	 be	 carried	 out	 for	 the	 elderly.	 For	 example,	 for
daily	 living	purposes	 the	network	can	check	 the	 status	of	 friends	and	 find
shopping	 or	 walking	 buddies	 to	 promote	 mobility.	 By	 using	 semantic
representations	 of	 information	 from	 smart	 objects,	 one	 can	 build	 on	 the
idea	 of	 connecting	 people	 through	 shared	 activities	 and	 interests.	 More
important,	 the	system	can	send	alerts	based	on	abnormal	activity	patterns
or	a	change	in	 life	dynamics.	Through	sensor	readings	of	body	position	or
health	 measurements,	 requests	 can	 be	 issued	 for	 attention	 not	 just	 to
clinicians	but	to	nearby	friends	in	the	elderly	person’s	social	network.	Social
science	and	medical	research	have	consistently	pointed	to	social	engagement
as	an	important	indicator	and	predictor	of	health	status.

Monitoring	kids	is	another	important	application.	The	new	num8	watch
by	 Lok8u	 has	 a	 GPS	 tracking	 device	 and	 satellite	 positioning	 system
concealed	 inside	so	that	parents	can	locate	the	wearer	to	within	10	feet	on
Google	maps.	The	watch	can	be	tightly	fastened	to	a	kid’s	wrist	and	it	can
send	an	alert	if	forcibly	removed.	Parents	can	see	the	location	of	their	child



on	Google	maps	by	clicking	“where	r	you”	on	a	secure	web	site	or	texting
“wru”	 to	 a	 special	 number.	 Safe	 zones	 can	 also	 be	 programmed	 with
parents	alerted	if	their	kids	stray	outside	this	zone.	The	makers	of	the	num8
watch	 claim	 it	 gives	 peace	 of	 mind	 to	 parents	 and	 makes	 children	 more
independent.

22.3.3	Technical	Characteristics	and	Challenges
Most	of	the	smart	object	networks	integrated	with	social	networks	share

common	characteristics	and	present	similar	technical	challenges.
22.3.3.1	The	Networking	Environment
Most	smart	object	networks	operate	in	fairly	harsh	environments	due	to

the	channel	uncertainty	and	complex,	strong	interferences	in	the	ISM	band.
In	indoor	networks,	the	prediction	for	transmission	fading	is	rather	difficult
while	 the	 power	 decay	 is	 considerable.	 Considering	 common	 urban	 use
cases,	a	variety	of	disturbances	 (i.e.,	other	radios	used	for	other	purposes)
exist	 in	 personal	 areas	 and	 the	 multipath	 effects	 are	 obvious	 due	 to	 the
reflection	 and	 shelter	 of	 obstacles	 (e.g.,	 buildings,	 vehicles).	 In	 outdoor
networks,	link	quality	is	highly	dependent	on	the	environment.

22.3.3.2	Traffic	Flows	and	Network	Topologies
For	social	network	communications,	most	traffic	flows	are	burst	traffic

embedded	 with	 audio,	 video,	 or	 SMS	 services.	 Traffic	 flows	 greatly	 vary
from	 point-to-multipoint	 (P2MP),	 multipoint-to-point	 to	 point-to-point
(P2P),	and	P2P	traffic	is	certainly	very	common.

22.3.3.3	Smart	Objects	and	Link	Characteristics
Smart	 objects	 used	 in	 these	 networks	 share	 the	 same	 characteristics:

cheap,	 flexible,	 spatially	 distributed,	 and	 autonomous.	 The	 smart	 objects
used	in	social	networks	are	mostly	embedded	in	users’	portable	devices	such
as	 mobile	 phones	 and	 laptops,	 thus	 they	 can	 be	 recharged	 periodically.
However,	 this	 does	 not	 mean	 that	 power	 consumption	 is	 not	 an	 issue.
Sensors	 used	 for	 social	 communication	 are	 highly	 information-rich	 and
should	monitor	 various	 types	 of	 quantities	 including	 temperature,	 sound,
slope,	healthy	parameters,	images,	and	so	on.

22.3.3.4	QoS
The	 social	 wireless	 network	 is	 a	multi-QoS	 system.	 The	 required	QoS

varies	with	the	application.	Real-time	data	(e.g.,	 sounds,	 images,	 texts)	are
usually	quite	demanding	regarding	throughput,	delay,	jitter,	and	so	on.	At
the	other	end	of	 the	spectrum,	short	messages	and	 location	reports	do	not
require	high	QoS.

22.3.3.5	Scalability
Scalability	 is	 not	 a	 pivotal	 characteristic	 in	 social	 applications.	 The



scalability	of	these	smart	object	networks	is	usually	limited	to	a	few	dozen
or	a	few	hundred	smart	objects.

22.3.3.6	Reliability	Requirement
As	 for	 requirement	 on	 reliability,	 it	 is	 not	 as	 high	 as	 that	 of	 public

applications.	 But	 the	 requirement	 of	 security,	 especially	 privacy,	 is	 quite
essential	for	human-involved	systems.

22.3.3.7	Mobility
In	social	sensing,	 the	support	of	 tracking	and	sensing	of	mobile	targets

with	mobile	sensing	devices	is	essential.	Mobility	is	one	of	the	keys	to	success
for	the	integration	of	smart	object	networks	and	SNSs.	With	the	exception
of	a	few	fixed	sensors	such	as	smart	objects	equipped	at	the	checkpoints	in
orienteering	 resorts,	 most	 of	 the	 sensors	 keep	 moving	 together	 with	 the
users.	 Thus	 it	 is	 a	 real	 challenge	 to	 build	 and	 maintain	 mobile	 sensing
systems	in	both	complex	urban	environments	and	outdoor	terrains.

To	improve	the	ability	of	spatial	network	organization	and	management,
it	 is	essential	 to	model	 the	mobility	of	an	ad	hoc	network.	Seeing	the	 tight
link	 between	 the	 mobility	 of	 an	 ad	 hoc	 network	 and	 human	 movement,
research	 focusing	 on	 modeling	 users’	 movement	 patterns	 has	 been
performed	(see	[182]).	This	research	reported	that	movement	of	humans	is
strongly	impacted	by	the	need	to	socialize	in	one	form	or	another.	Humans
are	 known	 to	 associate	 in	 particular	 ways	 that	 can	 be	 mathematically
modeled.	Research	also	proposed	a	new	mobility	model	 founded	on	 social
network	 theory.	 [139]	 studies	 the	 internal	 relation	 between	 the	 relative
movement	of	mobile	users	and	users’	social	attributes.	By	quantizing	users’
social	attributes,	the	studies	created	the	Attractor	Matrix,	which	described
the	relationship	of	human	relative	movements	as	a	guide	 for	modeling	 the
user	mobility	for	ad	hoc	networks.

22.3.3.8	Security
Needless	 to	 say,	 security	 is	 another	 priority	 of	 social	 applications.	 As

social	 networks	 become	 increasingly	 smarter,	 great	 concerns	 about	 the
privacy	of	 the	 information	shared	among	peers	on	social	network	services
arise.	Indeed,	people	want	to	keep	a	clear	view	and	total	control	on	what	is
shared	and	with	whom.	With	the	ability	to	set	sensing	presence	information
on	 user	 profiles	 dynamically	 on	 these	 services	 from	 mobile	 applications
directly,	 users	 are	 more	 concerned	 about	 what	 the	 system	 really	 knows
about	 them	and	 shares	with	others.	Note	 that	 location	 tracking	 is	 already
possible	with	existing	cell	phones,	but	the	amount	of	shared	data	is	further
increased	 in	 this	 case.	 These	 concerns	 tend	 to	 inhibit	 innovation	 in	 social
network	services	because	most	new	usages	allowed	by	location	techniques	or



context-aware	 information	 retrieval	 give	 users	 the	 impression	 of	 a	 loss	 of
control	[86].

22.3.3.9	Network	Management
WSNs	in	social	applications	are	a	typical	example	of	networks	that	must

be	 self-managed	 and	 require	 minimal	 configuration	 from	 the	 end	 user.
Smart	 devices	 must	 be	 self-configured	 with	 autodiscovery	 and	 automatic
computing.

22.4	Intelligent	Transport	Systems
As	the	demand	of	transportation	increases,	traffic	congestion	becomes	a

major	concern	in	most	large	cities.	Thus	Intelligent	Transportation	System
(ITS)	is	one	of	the	key	challenges	for	the	future.	ITS	varies	in	technologies
applied	from	basic	management	systems	such	as	car	navigation	to	dynamic
traffic	 signal	 control	 systems,	 variable	message	 signs,	 automatic	 car	 plate
recognition,	and	speed	cameras	to	monitoring	applications	such	as	security
CCTV	systems	to	even	more	advanced	applications	that	integrate	live	data
and	feedback	from	a	number	of	other	sources	such	as	parking	guidance	and
information	 systems,	 weather	 information,	 and	 bridge	 deicing	 systems.
Smart	 object	 networks	 play	 an	 important	 role	 in	 most	 of	 those	 systems.
Most	ITSs	rely	on	smart	object	networks	for	communication;	for	example,
the	 dynamic	 traffic	 light	 sequence	 system	 relies	 on	 the	 sensor	 nodes
distributed	 both	 on	 roadside	 and	 vehicles	 to	 define	 the	 traffic	 flow
condition.	The	car	navigation	system	relies	on	the	wireless	sensor	network
established	 among	 vehicles	 and	 control	 center	 to	monitor	 and	 control	 the
traffic	 condition,	 and	 most	 automatic	 road	 enforcement	 and	 charging
systems	identify	the	vehicles	with	RFID.

The	following	use	cases	provide	an	overview	of	the	applications	of	smart
object	networks	in	traffic	monitoring	and	automatic	charging	systems.

22.4.1	Traffic	Monitoring	and	Controlling
22.4.1.1	Dynamic	Traffic	Light	Sequence
Traffic	congestion	and	tidal	flow	management	were	recognized	as	major

problems	 in	 modern	 urban	 areas	 and	 have	 caused	much	 frustration	 and
loss	 of	 man	 hours.	 Several	 technologies	 have	 been	 developed	 to	 ease	 the
frustration.	The	image	processing	system	gives	the	quantitative	description
of	 traffic	 flow	 by	 processing	 the	 image	 of	 vehicles	 captured	 by	 roadside
cameras.	The	major	problem	with	 this	 system	 is	 the	high	 false	acceptance
rate	(FAR)	and	high	false	rejection	rate	(FRR)	under	the	situation	of	jam-
packed	traffic	due	to	 the	aliasing	between	the	 images	of	different	vehicles.
The	 second	 technique	 is	 called	 the	 beam	 interruption	 technique,	 which
determines	 the	 number	 of	 vehicles	 by	 counting	 the	 times	 the	 beam	 is



interrupted	 and	 sends	 it	 from	 one	 side	 of	 the	 road	 and	 receives	 it	 on	 the
other	side.	The	problem	with	this	 technique	 is	 that	parallel	vehicles	would
be	 counted	 only	 once;	 furthermore,	 in	 a	 multi-driveway	 road,	 the
interruption	 caused	 by	 the	 vehicle	 closer	 to	 the	 beam	 sender	 could	 be
possibly	 continued	 by	 vehicles	 on	 the	 driveway	 relatively	 far	 from	 the
sender	 without	 interval.	 This	 makes	 a	 long-lasting	 interruption	 so	 the
system	 struggles	 to	 determine	 exactly	 how	many	 vehicles	 passed	 by.	 The
WSN	solution	suffers	none	of	these	problems.

New	technologies	based	on	smart	objects	have	been	developed.	In	one	of
these	systems,	each	vehicle	is	identified	by	a	WiFi	Access	Point	(WAP)	from
an	 RFID	 tag,	 thus	 forming	 a	 wireless	 sensor	 network.	 The	 WAP	 then
collects	and	relays	the	information	through	the	wireless	network	to	the	data
center,	which	analyzes	and	processes	it	for	optimized	traffic	light	sequence.
Dynamic	 traffic	 light	 sequence	has	 circumvented	or	avoided	 the	problems
that	 came	 with	 previous	 systems	 that	 used	 image	 processing	 and	 beam
interruption	techniques.	RFID	technology	with	appropriate	algorithms	and
databases	were	applied	to	multi-vehicle,	multi-lane,	and	multi-road	junction
areas	 to	 provide	 an	 efficient	 time	 management	 scheme.	 A	 dynamic	 time
schedule	was	worked	out	for	each	car	lane.

RFID	 together	 with	 WSN	 technologies	 are	 anticipated	 to	 create	 a
revolution	 in	 traffic	 management	 and	 control	 systems.	 The	 database
contains	online	statistical	information,	which	can	be	used	by	operators	and
planners	to	develop	better	models	in	the	future.

This	 system	 relies	 on	 algorithms	 based	 on	 the	 traffic	 flow	 model.
Simulations	show	that	a	proper	strategy	makes	a	remarkable	improvement.
However,	 it	 is	 difficult	 to	 find	 a	 general	 model	 that	 performs	 well	 in	 all
traffic	conditions,	especially	when	traffic	conditions	change	throughout	the
day.	Ideally	the	system	should	be	self-adaptive,	which	means	that	historical
data	should	be	memorized	and	taken	into	account.
	
22.4.1.2	Traffic	Condition	Monitoring	and	Control
One	 of	 the	 main	 objectives	 of	 ITS	 is	 to	 monitor	 and	 control	 traffic

conditions.	One	of	the	well-known	approaches	is	a	system	called	COOPERS
in	 which	WSNs	 play	 an	 important	 role	 (see	 [121]	 for	 further	 reference).
COOPERS	 is	 an	 acronym	 for	 COOPerative	 systEms	 for	 intelligent	 Road
Safety	and	is	a	European	research	and	development	and	innovation	activity
within	 the	 Call	 4	 (Cooperative	 Systems	 and	 in	 vehicle	 integrated	 safety
systems)	 of	 the	 6th	 Framework	 Program	 by	 the	 European	 Commission–
Information	 Society	 and	 Media.	 The	 COOPERS	 approach	 extends	 the



concepts	 of	 in-vehicle	 autonomous	 systems	 and	 vehicle-to-vehicle
communication	 (V2V)	 with	 tactical	 and	 strategic	 traffic	 information
provided	 in	 real	 time	 by	 the	 infrastructure	 operator.	 Infrastructure	 to
vehicle	 communication	 (I2V)	 in	 this	 respect	 will	 significantly	 improve
traffic	control	and	safety	via	effective	and	reliable	transmission	of	data	fully
adapted	to	the	local	situation	of	the	vehicle	(ensemble	of	vehicles).	I2V	will
extend	the	responsibility	of	 the	 infrastructure	operator	compared	to	today
regarding	 accuracy	 and	 reliability	 of	 information	 to	 drivers.	 The	 highest
effect	of	I2V	communication	will	be	achieved	in	areas	of	dense	traffic	areas
where	risk	of	accidents	and	traffic	jams	is	extremely	high.	Conversely,	the
real-time	 communication	 link	between	 infrastructure	 and	 vehicle	 can	 also
be	used	for	V2I	(vehicle	to	infrastructure)	communication	utilizing	vehicles
as	floating	sensors	to	verify	infrastructure	sensor	data	as	a	primary	source
for	traffic	control	measures.

Given	 that	 traffic	 condition	 monitoring	 and	 control	 requires	 high
accuracy	 and	 real-time	 information,	 the	 networking	 infrastructure	 is
essential.	 A	 pure	 noncentralized	 network	 can	 hardly	 meet	 the	 demand
because	 of	 stability,	 delays,	 and	 accuracy.	 However,	 the	 V2V
communication	as	a	supplement	 to	 the	system	shows	 the	characteristics	of
self-organizing	networks,	which	makes	it	a	typical	smart	object	network.

22.4.1.3	Vehicle	Coordination	Calculating	and	Sharing
The	ideal	solution	to	traffic	condition	informing	is	a	coordination	system

in	which	vehicles	are	able	to	calculate	and	share	their	own	coordination	and
velocity	by	communicating	with	other	vehicles	or	a	fixed	facility	through	a
wireless	network.	As	soon	as	the	coordination	system	is	established,	drivers
become	 aware	 of	 the	 traffic	 condition	 of	 a	 certain	 area	 by	 the	 density	 of
vehicles	with	the	coordination	within	the	area.

There	are	three	types	of	nodes	 installed	in	this	system:	the	vehicle	unit
on	the	individual	vehicle;	the	roadside	unit	along	both	sides	of	a	road,	and
the	intersection	unit	on	the	intersection.	The	vehicle	unit	(installed	in	every
vehicle)	 measures	 the	 vehicle	 parameters	 and	 transfers	 the	 data	 to	 the
roadside	units.	The	roadside	unit	gathers	the	information	of	the	vehicles	in
the	neighborhood	and	 transfers	 it	 to	 the	 intersection	unit.	 (Roadside	units
are	 installed	on	 the	 lampposts	along	both	 sides	of	 the	 road	approximately
every	50	to	200	m	according	to	 the	wireless	cover	range.)	The	 intersection
unit	receives	and	analyzes	the	information	from	other	units	and	passes	them
to	 the	 strategy	 subsystem.	Such	a	 system	 is	depicted	 in	Figure	22.7	where
the	intersection	unit,	roadside	units,	and	vehicle	units	are	denoted	as	A,	B,
and	 C.	 Roadside	 units	 broadcast	 messages	 every	 second.	 The	 message



includes	 its	 identifier	 (ID)	and	 its	 relative	 location	 to	 the	 intersection.	The
vehicle	 unit	 is	 put	 in	 the	 listening	 mode.	 When	 a	 vehicle	 receives	 the
broadcast	message,	the	vehicle	unit	switches	to	active	mode.	If	a	vehicle	unit
receives	messages	from	more	than	three	nodes,	it	can	calculate	the	location
(x,	y)	and	velocity	v.	Then,	the	vehicle	unit	sends	the	information	(x,	y,	v)	to
the	 roadside	 unit	 nearby.	 The	 roadside	 units	 collect	 and	 compute	 the
information	from	the	vehicle	nodes	around,	and	pass	on	the	information	to
the	intersection	unit	one	by	one	remotely.	Since	a	massive	amount	of	data	is
received	 from	 the	 vehicles,	 the	 roadside	 units	 aggregate	 the	 data	 before
transferring	 them.	 The	 intersection	 unit	 is	 connected	 to	 the	 strategy
subsystem	 directly.	 Then	 the	 strategy	 subsystem	 calculates	 an	 optimized
scheme	 to	 control	 and/or	 guide	 the	 execution	 subsystem.	 This	 subsystem
provides	 information	 such	 as	 signal	 light,	 variable	 message	 sign,	 GPS
navigation	system,	and	so	on.	The	roadside	unit	distributes	on	both	sides	of
a	road.	A	roadside	unit	only	collects	vehicle	information	in	one	direction.

Figure	22.7	Vehicle	coordination	calculating	and	sharing	systems.

(Source:	From	Wenjie	Chen	et	al.	WITS:	A	Wireless	Sensor	Network	for	Intelligent	Transportation
System.)
	

22.4.1.4	Parking	Lot	Monitoring
Many	 existing	 systems	 that	 monitor	 parking	 lot	 occupancy	 require

installation	during	the	construction	of	 the	structure.	Systems	 implemented
in	 existing	 lots	 typically	 require	 complex	 installation.	 Furthermore,	 the
information	captured	by	these	systems	is	typically	confined	to	the	structure
in	which	 it	 is	 captured.	A	 smart	 object	 network	 such	 as	 a	WSN	 typically
provides	 a	 cheap	 infrastructure	 that	 can	 be	 easily	 installed	 after



construction.	 For	 example,	 UCLA	 implemented	 a	 low-cost,	 easy-to-install
parking	 lot	 occupancy	 monitoring	 system	 that	 integrates	 with	 an	 online
database	 to	 provide	 parking	 space	 information	 locally	 and	 remotely.	This
system	provides	incoming	cars	with	information	about	parking	availability
with	online	access	using	computers	and	cell	phones.	 It	provides	an	overall
occupancy	 count	 for	 the	 parking	 structure	 as	well	 as	more	 detailed	 zone-
level	 information.	Sensors	are	placed	at	each	entrance,	exit,	and	transition
points	between	the	zones.	Sensors	at	the	entrance	and	exit	points	wirelessly
transmit	data	 on	 entering	 and	 exiting	 vehicles	 to	 a	 central	 base	 station	 at
the	exit	kiosk.	Sensors	monitoring	the	transition	points	between	zones	detect
traffic	and	direction	to	determine	if	vehicles	are	moving	between	zones.	The
sensors	 send	 these	 data	 to	 the	 central	 base	 station,	 which	 analyzes	 all
incoming	data	to	give	a	real-time	count	of	total	available	parking	spots	and
counts	 for	 each	 zone.	After	 the	 initial	 installation,	 the	designers	 enhanced
the	 system	 so	 that	 the	 base	 stations	 can	 upload	 information	 as	 well	 as
download	 data	 from	 other	 “linked”	 parking	 lots	 to	 help	 drivers	 choose	 a
parking	lot	 if	 the	one	they	are	 in	 is	fully	occupied.	The	primary	target	for
expanded	 deployment	 would	 be	 the	 same	 parking	 level	 of	 the	 medical
building	as	well	as	the	adjacent	parking	structure.	LED	display	signs	in	the
parking	 structures	 are	 another	 improvement	 of	 the	 system.	 The	 displays
automatically	provide	availability	information	to	the	incoming	cars.

22.4.2	Automatic	Charging	and	Fining
22.4.2.1	Automatic	Road	Enforcement
The	prime	objective	of	the	Automatic	Electronic	Enforcement	Project	is

to	 reduce	 the	 number	 of	 road	 accident	 victims	 by	 deploying	 automatic
electronic	 enforcement	 mechanisms	 to	 detect	 traffic	 law	 violations.	 This
project	 includes	 a	 comprehensive	 survey	 of	 the	 published	 literature,	 a
research	 study	 evaluating	 driver	 behavior,	 a	 mapping	 of	 junctions	 and
roads	where	cameras	and	other	equipment	might	potentially	be	sited,	and
an	 analysis	 to	 establish	 the	 cameras’	 optimum	 distribution	 among	 many
other	criteria.

Statistics	 showed	 that	 from	2002–2003	 18%	of	 all	 fatal	 accidents	were
caused	by	excessive	speed;	speed	that	was	either	 illegally	high	or	excessive
given	 the	 circumstances	 or	 conditions	 on	 the	 road.	A	number	 of	 research
studies	have	demonstrated	that	speed	cameras	or	traffic	 light	cameras	can
significantly	 reduce	 the	 number	 of	 accidents.	 Digital	 speed-limit
enforcement	 cameras	 that	 detect	 and	 identify	 speeding	 motorists	 have
already	 been	 found	 efficient	 and	 effective	 in	 the	 United	 States,	 England,
Scotland,	 Australia,	 New	 Zealand,	 and	 Spain.	 Such	 systems	 have	 been



deployed	 in	 a	 number	 of	 countries	 on	 roads	 and	 traffic	 light	 junctions
subject	to	frequent	accidents.	Data	collected	by	the	devices	are	then	sent	to
the	database	of	the	administrator	wirelessly	in	a	direct	or	indirect	way	(i.e.,
relayed	 by	 other	 nodes).	 The	 objective	 is	 to	 reduce	 the	 number	 of	 people
killed	 and	 injured	 on	 the	 roads	 by	 altering	 driving	 norms	 by	 inducing
drivers	to	be	more	observant	of	the	traffic	laws,	chiefly	speed	limits,	and	of
traffic	lights.

22.4.2.2	Automatic	Congestion	Pricing	for	Cordon	Zones
Congestion	 pricing	 is	 considered	 an	 effective	 way	 to	 improve

transportation	 system	 performance.	 Many	 transportation	 experts	 believe
that	 congestion	 pricing	 offers	 promising	 opportunities	 to	 cost-effectively
reduce	 traffic	 congestion,	 improve	 the	 reliability	 of	 highway	 system
performance,	 and	 improve	 the	 quality	 of	 life	 for	 residents.	 However,	 the
low-efficiency	 of	 manual-toll	 facilities	 would	 be	 intolerable	 during	 rush
hour,	 which	 may	 overwhelm	 the	 benefit	 delivered	 by	 the	 strategy.	 Thus
automatic	charging	technology	is	crucial	to	the	effectiveness	of	the	strategy.
Automatic	License	Plate	Recognition	(ALPR)	is	one	of	the	solutions.	ALPR
technology	is	used	on	most	electronic	tolling	facilities	around	the	world	both
in	 free-flow	 and	 toll-lane-based	 situations	 (some	 lanes	 are	 not	 free	 of	 use
and	 subject	 to	 charge,	 thus	 less	 congested).	 ALPR	 is	 based	 on	 captured
images	 of	 vehicle	 license	 plates,	which	 are	 then	processed	 through	 optical
character	 recognition	 software	 to	 identify	 the	 vehicle	 by	 its	 license	 plate.
Some	systems	use	front-and	rear-located	cameras	to	capture	the	images	to
improve	identification	rates.	Once	identified,	the	facility	sends	the	data	to	a
data	 center	 and	 the	 required	 charge	 or	 permit-checking	 processes	 are
undertaken.

22.4.3	Technical	Characteristics	and	Challenges
22.4.3.1	The	Networking	Environment
Most	 of	 these	 smart	 object	 networks	 operate	 in	 open	 roadside

environments,	 which	means	 the	 shelter	 effect	 of	 buildings	 is	 low,	 but	 the
interference	is	reasonably	high.

For	on-vehicle	nodes,	the	mobility	causes	other	problems.	One	problem
is	 the	Doppler	 effect,	which	 is	 caused	 by	 rapid	movement	 of	 transmitters
and/or	 receivers.	 The	 other	 problem	 is	 transient	 connectivity,	 which
requires	very	efficient	interactions	among	mobile	nodes.

22.4.3.2	QoS	and	Network	Reliability
Generally,	 the	 requirement	of	QoS	 in	 ITS	 is	 relatively	high	due	 to	 the

need	for	real-time	traffic	information.	For	example,	real-time	data	such	as
images,	video	streams,	and	short	messages	are	quite	demanding	regarding



throughput,	delay,	and	jitter.	In	contrast,	some	data	like	statistical	reports
do	not	have	stringent	QoS	requirements.

22.4.3.3	Scalability
The	 scale	 of	 the	 network	 depends	 primarily	 on	 the	 scale	 of	 the	 urban

area,	 which	 makes	 networks	 in	 large	 cities	 like	 Beijing	 and	 New	 York
harder	to	establish.

22.4.3.4	Reliability	Requirement
Reliability	requirement	in	ITS	is	moderate.	Many	experiments	of	WSN

for	ITS	have	been	done	by	universities	and	companies	all	around	the	world,
however,	 the	 reliability	 of	 most	 of	 these	 networks	 is	 far	 from	 the	 level
needed	 for	 business	 application.	 The	 value	 of	 the	 intelligent	 transport
system	depends	on	its	reliability	though.

22.4.3.5	Mobility
As	mentioned	before,	the	WSN	for	ITS	is	a	mixture	of	both	mobile	and

fixed	nodes	where	fixed	nodes	are	used	to	collect	and	relay	the	information
generated	by	the	on-vehicle	sensors.

22.4.3.6	Security
Because	of	urban	 critical	 infrastructure,	 the	 security	 level	 required	by

ITS	 is	 relatively	 high,	 although	 security	 issues	 have	 not	 been	 a	 primary
concern	 thus	 far.	 However,	 it	 is	 predictable	 that	 methods	 to	 protect	 a
person’s	 privacy	 and	 defend	 the	 attack	 of	 malicious	 nodes	 will	 quickly
become	a	prime	concern.

22.4.3.7	Network	Management
Management	of	such	large-scale	networks,	whether	in	a	centralized	or	a

distributed	manner,	 is	 essential	 for	 a	 successful	 ITS.	The	deployment	 and
maintenance	of	such	systems	may	be	costly	but	it	is	a	necessity.	There	are	a
number	 of	 projects	 currently	 working	 on	 the	management	 of	 such	 large-
scale	networks.

22.5	Conclusions
Smart	Cities	will	 significantly	 improve	 the	quality	of	 life	 in	 large	cities

due	 to	 a	 wide	 range	 of	 innovative	 services.	 This	 chapter	 showed	 several
examples	of	such	applications.	Environmental	monitoring,	increased	public
safety	 and	 security,	 efficient	 resources	 management	 such	 as	 energy	 and
water,	 ITS,	 and	 the	 development	 of	 new	 social	 networks	 are	 just	 a	 few
examples.

All	of	these	new	applications	rely	on	the	deployment	of	IP	smart	object
networks	 offering	 a	 high	 degree	 of	 scalability,	 reliability,	 and	 security	 in
(most	of	the	time)	harsh	and	unattended	environments.	This	is	why	the	use
of	IP	technologies	is	central	to	the	successful	deployment	of	such	networks.



There	is	a	strong	need	for	the	support	of	a	variety	of	media	and	a	true	end-
to-end	IP	architecture	avoiding	complex	and	hard	to	manage	multiprotocol
gateways.	This	wide	spectrum	of	applications	requires	the	deployment	of	IP
multiservice	 networks	 with	 differentiated	 services	 regarding	 QoS,
reliability,	and	security	while	ensuring	a	great	deal	of	flexibility	considering
the	number	of	future	applications.	In	some	cases,	Virtual	Private	Network
(VPN)	technologies	can	be	deployed	to	logically	separate	the	flows	if	needed.

The	 hardware	 and	 software	 technologies	 are	 available	 and	 the
deployment	of	 IP	 smart	object	networks	 in	Smart	Cities	will	undoubtedly
take	place	on	a	large	scale	in	the	near	future.

	



Chapter	23	Home	Automation
	

23.1	Introduction
Home	 automation	 is	 not	 a	 novel	 subject.	 Instead,	 home	 automation

products	(such	as	X10	products)	have	been	on	the	market	for	more	than	25
years.	 Nonetheless,	 home	 automation	 has	 not	 yet	 reached	 the	 mass
consumer	market.	A	large	and	growing	market	for	home	control	solutions
has	 emerged	 for	 high-end	 solutions,	 especially	 in	 the	 United	 States.	 Such
solutions	 cost	 $20,000–30,000,	with	 typical	 projects	 easily	 costing	 between
$50,000	 and	 100,000.	With	 the	Custom	Electronic	Design	 and	 Installation
Association	 (CEDIA;	 a	 largely	 American	 trade	 organization	 leads	 this
segment)	 certifying	 over	 2000	 professionals	 and	 conducting	 a	 large	 trade
show	 on	 an	 annual	 basis,	 the	 significance	 of	 this	 market	 segment	 is
undisputed.	However,	homes	in	this	high-end	market	segment	typically	cost
more	 than	 $1–2	 million.	 Attempts	 to	 shift	 from	 this	 segment	 toward	 the
mass	 market	 thus	 far	 have	 yielded	 only	 a	 limited	 market	 segment
expansion.

On	 the	 other	 end	 of	 the	 spectrum,	 there	 is	 a	 market	 segment	 largely
driven	by	enthusiasts.	Most	of	them	are	buying	the	corresponding	products
through	the	Internet	or	“historically”	through	mail	order.	With	products	in
this	 segment	 significantly	 cheaper	 than	 in	 the	 high-end	 market	 and	 with
installations	typically	performed	by	skilled	customers,	total	solution	cost	 is
an	 order	 of	magnitude	 lower.	 However,	 it	 is	 obvious	 that	 the	 size	 of	 this
market	segment	is	strongly	limited	by	the	number	of	skilled	customers	who
are	willing	to	perform	their	own	integration	work.

The	overall	market	opportunity	has	been	estimated	by	various	industry
analysts	 (OnWorld,	 Parks	 Associates,	 and	 InStat)	 to	 be	 huge.	 Typical
calculations	set	the	potential	number	of	devices	in	the	long	term	as	high	as
50–100	 per	 home	 then	 multiply	 this	 number	 with	 a	 number	 of	 target
households	 in	 the	 range	 of	 200–300	 million	 worldwide.	 Slightly	 more
conservative	approaches	estimate	the	need	for	one	device	for	every	80–100
square	feet	 (or	approximately	one	device	for	every	8–10	square	meters)	 in
the	home	and	still	reach	the	market	potential	of	several	billion	devices.

Standardization	 plays	 a	 pivotal	 role	 in	 approaching	 the	mass	market,



and	 the	 lack	 of	 standardization	 thus	 far	 is	 one	 of	 the	 main	 reasons	 why
systems	were	so	costly.	Several	initiatives	have	attempted	to	set	the	standard
for	home	control	and	unlock	access	to	the	mass	consumer	market.	X10,	one
of	 the	 earliest	 to	 try	 and	 set	 an	 industry	 standard	 based	 on	 Powerline
communication	 (PLC),	 has	 arguably	 been	 closest	 to	 succeeding	 with
products	 in	 mass	 retail	 outlets	 such	 as	 Radio	 Shack.	 Today,	 from	 the
perspectives	 of	 feature	 set,	 manufacturer	 support,	 and	 robustness,	 X10
must	be	seen	as	outdated.	Members	of	the	Electronics	Industry	Association
have	built	CEBus,	a	standard	for	home	automation	with	a	spread	spectrum
modulation-based	power	line	technology	providing	more	features	than	X10.
However,	finally	released	in	1992,	CEBus	failed	to	play	a	visible	role	in	the
market.

KNX,	 which	 goes	 back	 to	 the	 Instabus	 or	 EIB,	 Batibus,	 and	 the
European	 Home	 Systems	 Protocol	 (EHS),	 is	 well	 accepted	 for	 building
control	 and	 leads	 the	 wireline	 home	 automation	 market	 in	 the	 high-end
segment	in	Europe.	However,	its	wireless	variant	KNX	RF	has	failed	to	gain
any	significant	market	momentum.

	
23.2	Main	Applications	and	Use	Cases
Home	 automation	 is	 an	 area	 of	multiple	 and	 diverse	 applications	 that

include	 lighting	 control,	 security	 and	 access	 control,	 comfort	 and
convenience,	 energy	 management,	 remote	 home	 management,	 and	 aging
independently	 and	 assisted	 living	 (see	 Figure	 23.1).	 Note	 that	 the	 term
“home	 automation”	 appears	 to	 be	 used	 more	 frequently	 than	 “home
control.”	However,	most	customers	are	not	drawn	toward	a	fully	automated
home	 in	 the	“Jetson’s”	style.	 Instead	most	consumers	clearly	 indicate	 that
they	 want	 solutions	 that	 help	 them	 easily	 and	 conveniently	 control	 their
home.



Figure	23.1	An	overview	of	some	home	control	devices.

(Source:	ELV/eQ3	group.)
	

23.2.1	Lighting	Control
Lighting	automation	was	probably	the	first	application	area	in	the	home

automation	 space.	 In	 terms	 of	 sales	 it	 is	 still	 the	 largest	 segment.	 With
future	growth,	 it	may	be	expected	 that	 lighting	control	devices	will	be	 the
device	types	with	the	largest	number	of	units	deployed.	The	types	of	lighting
control	 devices	 in	 the	market	 are	 as	 diverse	 as	 the	 application	 scenarios.
Key	differentiations	in	lighting	control	device	types	include:

Type	of	device:

•	Controllers:	Handheld	controls,	key	fobs,	in-wall	controllers,	room
occupancy	sensors,	movement	sensors,	etc.
•	 Actuators:	 Switches,	 dimmers	 (leading	 edge,	 trailing	 edge,

universal	dimmers),	LED	lighting	actuators

	
Key	differentiations:



•	Mounting	location:	Switch	panel	(e.g.,	in	DIN	rail	form);	gang	box,
wall-mount	box
•	 Number	 of	 channels:	 Single	 channel,	 dual	 channel,	 multichannel

actuators	and	controllers
•	 Power	 source:	 Main-powered,	 battery-operated,	 energy

“scavenger”

	
	
23.2.2	Safety	and	Security
Alarm	systems	may	immediately	come	to	one’s	mind	when	considering

this	 solution	 area.	 In	 fact,	 the	 integration	 of	 alarm	 systems	 with	 home
automation	 is	 one	potential	 path	 the	 industry	may	 take.	However,	 “safety
and	 security”	 in	 home	 automation	 is	 often	 seen	 from	 a	 slightly	 different
angle.	Instead	of	focusing	on	burglar	alarms	and	adding	protection	against
other	 risks,	 the	 actual	 and	 perceived	 safety	 are	 moved	 to	 the	 center	 of
attention.	 Key	 use	 cases	 include	 situations	 like	 wirelessly	 turning	 on	 the
lights	before	opening	the	garage	and/or	leaving	the	car,	creating	a	safe	path
of	 light	 into	 the	 home,	 providing	 a	 panic	 button	 to	 turn	 on	 all	 lights,	 or
creating	a	lived-in	look	for	a	home	when	traveling.

Devices	for	safety	and	security	include	movement	sensors	and	door	and
window	 contacts	 as	 well	 as	 RF-based	 smoke	 detectors,	 gas	 sensors,	 and
water	leakage	sensors.

Access	 control	 is	 sometimes	 seen	 as	 an	 application	 space	 in	 home
automation	on	its	own,	yet	 is	sometimes	seen	as	an	extension	of	safety	and
security.	Key	devices	 include	garage	door	openers	 as	 control	 solutions	 for
garage	door	drives	and	electronic	door	locks.	With	electronic	door	locks	one
key	 challenge	 in	 the	 consumer	 market	 is	 how	 devices	 can	 be	 retrofit,
especially	when	no	wires	can	be	installed	and	when	the	door	is	not	going	to
be	changed.
	
23.2.3	Comfort	and	Convenience
“Comfort	and	convenience”	is	often	used	as	a	term	in	home	automation

for	a	solution	area.	This	is	also	an	area	where	home	automation	can	bring
significant	 value.	 It	 usually	 encompasses	 devices	 from	 multiple	 areas
starting	with	 lighting	 control,	 adding	 energy	 conservation,	 access	 control,
and	safety	and	security.	Actuators	to	control	motorized	blinds,	shutters,	and
curtains	are	often	counted	in	this	area,	although	the	devices	are	also	used	in
various	use	cases;	for	example,	window	actuators	can	be	seen	as	devices	that



increase	comfort	and	convenience	for	home	owners.	However,	such	devices
also	have	a	strong	use	case	for	conserving	energy	and	protecting	buildings
from	mold	and	mildew.	In	energy-efficient	houses,	the	buildup	of	humidity
and	 subsequent	 problems	 with	 mold	 are	 on	 the	 rise.	 This	 is	 not	 only	 a
concern	because	it	 is	very	expensive	to	repair,	but	even	more	so	as	a	large
health	risk	for	the	occupants.

23.2.4	Energy	Management
With	 energy	 prices	 increasing	 and	 the	 attention	 for	 CO2	 reduction

growing	 both	 on	 a	 public	 and	 private	 level,	 efficient	 energy	management
has	become	the	main	focus	for	home	automation.	See	Chapter	20	for	more
details.

As	 a	 brief	 reminder,	 solutions	 typically	 focus	 on	 controlling	 heating,
ventilation,	 and	air	 conditioning	 (HVAC)	 in	homes.	The	primary	use	 case
here	 is	 to	 integrate	the	control	of	 the	HVAC	thermostat	 into	overall	home
automation.	Examples	 include	switching	the	thermostat	 into	setback	mode
when	the	house	is	not	occupied	and	to	turn	it	back	into	comfort	mode	just
before	 family	 members	 return.	 Another	 driver	 is	 the	 convenience	 of
programming	 the	 (typically	 weekly)	 temperature	 profile	 with	 a	 graphical
user	interface	in	a	PC	or	web	browser.	As	pointed	out	in	Chapter	20,	such
control	could	be	driven	by	the	home	energy	controller	(HEC)	according	to
the	dynamic	pricing	information	provided	by	the	power	utility.

Usually	 lighting	 control	 is	 added	 from	 an	 energy	 conservation
perspective.	Controlling	the	entry	of	sunlight	into	buildings	with	shades	and
blinds	 and	 controlling	 heat	 dissipation	 with	 roller	 shutters	 are	 additional
examples	of	home	automation	used	to	conserve	energy.

In	Europe,	one	 type	of	heating	control	plays	a	pivotal	 role:	more	 than
one	billion	mechanical	radiator	thermostats	are	installed	in	both	residential
and	 commercial	 environments.	 Water-based	 heating	 with	 radiators	 is
regulated	with	valves	that	are	controlled	by	these	radiator	thermostats.	The
thermostat	head	can	be	exchanged	without	changing	the	valve,	allowing	for
installation	 by	 end	 users	 without	 requiring	 a	 professional	 installer.
Electronic	 thermostats	with	 timed	programs	 can	 save	 as	much	 as	 30%	of
the	 heating	 energy.	 Wireless	 communication	 enables	 remote	 control	 of
thermostats	 and	 allows	 integrating	 window	 contacts,	 providing	 further
opportunities	 for	 energy	 savings.	While	mechanical	 thermostats	 act	 based
on	 the	 temperature	 next	 to	 the	 radiator,	 a	 wall-mounted	 wireless	 room
thermostat	can	 improve	the	regulation	by	measuring	the	temperature	 in	a
more	 relevant	 location	 to	 actual	 room	 usage.	 Furthermore,	 wireless
electronic	 thermostats	 enable	 the	 added	 convenience	 of	 using	 remote



controls	 to	set	all	 thermostats	 in	a	room	or	 in	the	home	without	having	to
walk	up	to	every	individual	unit.

This	application	area	is	highly	challenging	with	its	demand	for	battery-
to-battery	 communication	 (see	 Figure	 23.2).	Unlike	 thermostats	 in	HVAC
applications	 in	 the	 United	 States,	 the	 room	 thermostat,	 plus	 the	 valve
actuator,	window	sensors,	and	remote	controls	need	to	be	battery-operated.
This	 is	 creating	 a	 strong	 need	 for	 battery-to-battery	 communication	 on	 a
regular	basis	that	is	typically	not	found	in	home	automation	applications	in
the	United	States.

Figure	23.2	Battery-to-battery	communication.

(Source:	ELV/eQ3	group.)
	

23.2.5	Remote	Home	Management
Remote	home	management	puts	another	angle	on	the	other	types	of	use

cases	 in	 home	 automation	 and	 is	 seen	 by	 several	 Service	 Providers	 as	 an
interesting	 opportunity	 to	 enrich	 their	 services	 portfolio.	 It	 typically
describes	 the	 ability	 to	 control	 home	 automation	devices	 from	outside	 the
home.	With	access	to	the	Internet	so	ubiquitous,	remote	home	management
can	be	provided	at	very	 low	cost,	 creating	a	 simple,	yet	powerful	business
case.	 Applications	 include	 checking	 on	 the	 home	 from	 abroad,	 receiving
alarms	 from	 smoke	 sensors,	 door	 contacts,	 movement	 detectors	 or	 water
leakage	 sensors,	 controlling	 heating	 and	 HVAC	 before	 returning	 back



home,	and	use	cases	in	aging	independently	and	assisted	living.
23.2.6	Aging	Independently	and	Assisted	Living
With	 the	 demographics	 rapidly	 changing	 in	 North	 America,	 Europe,

and	even	more	so	 in	countries	such	as	Japan	and	China,	 supporting	older
people	through	home	automation	quickly	becomes	an	important	application
for	 emergency	 assistance	 or	 monitoring	 changes	 in	 life	 dynamics.	 The
objective	is	for	people	to	stay	longer	in	their	private	residences	with	the	help
of	 home	 automation	 applications,	 thus	 reducing	 the	 burden	 on	 public
funding	of	retirement	homes	and	increasing	the	quality	of	life	for	the	people
involved.

Home	 automation	 sensors	 can	 also	 be	 used	 for	 assistance	 applications
that	monitor	 activity	 and	health	 of	 people,	 providing	 for	 added	 safety	 for
elderly	 people	 in	 homes.	 More	 complex	 systems	 can	 also	 be	 used	 to
aggregate	a	set	of	data	to	detect	any	change	in	the	life	dynamics.

23.3	Technical	Challenges	and	Network	Characteristics
At	 first	 the	 technical	 requirements	and	network	characteristics	appear

straightforward	 for	 home	 automation.	 Compared	 to	 other	 applications
fields	 such	 as	 building	 control	 or	 industrial	 sensor	 applications,	 home
automation	 appears	 significantly	 less	 demanding.	 The	 key	 success	 factor
will	 be	 the	 emergence	 of	 a	 universally	 accepted	 standard	 for	 home
automation	such	as	IP.

23.3.1	Type	of	Topology	and	Traffic	Matrix
From	 a	 home	 automation	 user’s	 perspective,	 the	 paramount

requirement	is	that	devices	can	be	installed	anywhere	in	the	home.	With	the
advent	of	mesh	networking	 solutions	 in	 the	 early	2000s,	home	automation
was	 seen	as	an	 easy	 field	 for	 its	 application.	Unfortunately	 several	non-IP
solutions	 designed	 for	 home	 devices	 underestimated	 several	 technical
challenges.	On	 the	 other	hand,	 solutions	 such	 as	HomeMatic	 have	proven
that	a	 full	 scale	mesh	networking	solution	may	not	be	required	to	provide
RF	coverage	for	an	entire	home.	The	same	is	true	for	early	implementations
of	 the	868	MHz	modes	of	 the	2006	version	of	 the	IEEE	802.15.4	standard,
most	 notably	 the	 so-called	 Parallel	 Sequence	 Spread	 Spectrum	 (PSSS)
communication	modes.	Also	true	is	that	direct	communication	only	appears
not	to	be	sufficient	in	all	circumstances.	It	is	also	expected	to	see	the	use	of
mixed	media	such	as	wireless	and	PLC.	Communication	topologies	in	home
automation	 are	 mixed.	 On	 one	 hand,	 many	 use	 cases	 require
communication	 between	 a	 central	 controller	 and/or	 gateways	 device	 from
and	to	sensor	and	actuator	devices.	On	the	other	hand,	sensor	and	actuator
devices	are	required	to	communicate	directly	with	each	other.	Both	need	to



be	easily	and	reliably	accommodated.
Communication	occurs	infrequently	on	a	per-device	basis.	Practically	no

home	 automation	 application	 requires	 more	 than	 a	 single	 message	 per
minute	 per	 device	when	wireless	 communication	 is	 used.	Remote	 controls
may	 be	 used	 to	 rapidly	 conduct	 multiple	 settings	 and	 also	 to	 control
dimming	 of	 the	 device	 by	 holding	 buttons	 for	 longer	 periods	 of	 time.
However,	remote	controls	in	home	automation	are	not	expected	to	be	used
for	 “zapping”	 like	 TV	 remotes.	 Even	 with	 the	 low	 number	 of	 per-device
messages,	traffic	may	concentrate	at	gateway	and	central	controller	devices.
	
23.3.2	Number	of	Devices
The	majority	of	deployments	is	expected	to	be	in	the	range	of	50	to	100

nodes.	 Larger	 homes	 and	more	 advanced	 solutions	 scenarios	 may	 see	 an
increase	 of	 up	 to	 150	 to	 200	 nodes.	 Although	 not	 yet	 common,	 there	 are
already	deployments	with	over	200	nodes	in	a	single	home.	It	is	obvious	that
IP	 provides	 all	 of	 the	 necessary	 ingredients	 and	 is	 proven	 for	 just	 these
types	of	networks.

23.3.3	Degree	of	Mobility
The	vast	majority	of	devices	are	stationary	in	home	automation.	Devices

such	as	remote	controls	can	be	considered	as	portable	devices.	 In	contrast
with	 truly	 mobile	 devices,	 remote	 controls	 do	 not	 need	 to	 support
communication	 while	 being	 moved	 (it	 may	 be	 assumed	 that	 devices	 that
have	sent	a	command	will	typically	stay	in	the	same	location	until	they	have
received	responses).

23.3.4	Robustness	and	Reliability
Hard	real-time	requirements	basically	do	not	exist	in	home	automation

and	 individual	 packets	 may	 be	 lost	 and	 retransmitted	 in	 most
circumstances.	 However,	 robustness	 and	 reliability	 of	 the	 overall
communication	are	paramount	to	consumer	acceptance	and	market	success.
Furthermore,	note	that	typical	installations	will	not	be	performed	by	skilled
and	 trained	 installers,	which	means	 that	home	automation	networks	must
be	easy	to	install	and	extremely	reliable.

For	 reasons	 of	 reliability,	 robustness,	 and	 ease	 of	 configuration,
confirmed	 two-way	 communication	 is	 strongly	 preferred	 over
unidirectional	links.

23.3.5	Requirements	for	Quality	of	Service
Requirements	 for	 fine-grained	 control	 of	Quality	 of	 Service	 (QoS)	 are

relatively	 rare	 in	 home	 automation.	 One	 could	 distinguish	 immediate
control	 commands	 where	 response	 time	 is	 observed	 by	 a	 user	 from



background	 control	 algorithms,	 status	 reporting,	 and	 setup	 functions	 that
could	 operate	 with	 longer	 round-trip	 delay	 and	 more	 jitter	 in	 response
times.	However,	based	on	the	concurrent	requirement	for	low	cost	and	low
complexity,	 functions	 for	 QoS	 may	 be	 traded	 in	 favor	 of	 meeting	 other
requirements.

23.3.6	Battery	Operation
Long-term	battery	operation	is	a	key	requirement	in	home	automation.

This	 includes	 initiating	 and	 accepting	 communication	 to,	 from,	 and	 also
between	 battery-based	 devices.	 Battery-to-battery	 communication	 was
added	 later	 in	 some	 proprietary	 solutions.	 However,	 the	 solution	 was
optimized	for	 infrequent,	ad	hoc	use	by	remote	controls	 to	switch	battery-
operated	devices.	This	key	application	was	designed	mainly	for	door	locks.
However,	 adding	 such	 battery-to-battery	 communication	 late	 has	 resulted
in	most	remote	controls	on	 the	market	 implemented	on	earlier	versions	of
the	technology	without	these	modes.

Battery-less	operation	in	devices	on	a	long-term	basis	would	be	desirable
for	home	automation	devices.	The	vision	is	that	energy	could	be	collected	at
a	 device	 and	 used	 for	 device	 operation	 communication.	 Examples	 include
devices	from	EnOcean	that	use	piezo	elements	in	wall	switches	to	generate
electricity	 or	 thermostats	 and	other	 sensor	devices	with	photovoltaic	 cells.
Note	that	PLC	is	also	an	interesting	option	for	this	type	of	device.	However,
for	residential	home	automation,	several	challenges	remain	to	be	solved	for
battery-less	devices	to	become	more	attractive	such	as	cost,	limited	amount
of	 energy	 available	 via	 scavengers,	 and	 product	 lifetime	 (still	 limited	 for
currently	available	battery-less	devices).

23.3.7	Operating	Environment
The	operating	environment	for	home	control	is	in	several	aspects	much

less	 demanding	 than,	 for	 example,	 the	 environments	 in	 which	 industrial
controls	are	deployed.	This	is,	for	example,	true	for	operating	temperature
ranges,	 dust	 and	 dirt,	 chemicals	 in	 the	 environment,	 electromagnetic
interferers,	 or	 vibration.	However,	 there	may	 be	 one	 exception	where	 the
environment	for	home	automation	is	very	challenging.	In	densely	populated
areas	the	use	of	licensed	RF	bands	is	rapidly	growing.	This	is	especially	the
case	for	the	2.4	GHz	band	where	WLAN	has	reached	a	level	of	deployment
that	already	saturates	the	spectrum	in	certain	regions.	For	devices	that	need
to	operate	on	batteries	on	a	multiyear	basis,	 this	 is	a	very	serious	concern
since	it	is	practically	impossible	to	predict	the	development	of	the	use	of	the
2.4	GHz	band	even	 for	 the	 lifetime	of	 the	 first	 set	of	batteries	 in	a	device.
Depending	 on	 the	 crowdedness	 of	 the	 2.4	 GHz	 band,	 frequent



retransmissions	in	a	battery	lifetime	may	be	affected.	It	may	be	noted	that
practically	all	significant	wireless	home	control	technologies	 in	Europe	are
using	 the	 868	 MHz	 band,	 where	 the	 risk	 of	 interference	 is	 much	 lower
because	it	is	less	crowded.

23.3.8	Security
Originally,	 the	 level	 of	 security	 required	 in	 home	 control	 applications

was	seen	as	low.	As	a	matter	of	fact,	none	of	the	home	control	solutions	or
industry	standards	in	the	market	provides	security	in	all	devices.	Even	most
wireless	 alarm	 systems	 do	 not	 use	 security	 technologies	 in	 their	 protocol
stacks.	Security	 is	provided	 today	 in	home	automation	 typically	 in	devices
for	 access	 control	 only.	 This	 is	 the	 case	 in	 dedicated	 garage	 door	 opener
solutions	 with	 both	 rolling	 code	 systems	 and	 bidirectional	 authentication
solutions.	 In	 some	 technology	 platforms	 security	 has	 been	 added	 just
recently.	 There	 are	 a	 few	 products	 that	 currently	 provide	 the
implementation	 of	 AES-128-based	 authentication.	 Even	 a	 plug-in	 switch
device	can	be	configured	to	require	authentication.

It	remains	to	be	seen	how	market	and	customer	requirements	regarding
security	will	develop	 in	 the	home	automation	space.	While	 the	operational
needs	remain	much	lower	than	for	industrial	applications,	building	control,
or	 smart	 meter	 and	 Smart	 Grid	 applications,	 it	 can	 be	 expected	 that
products	without	security	will	be	unsuccessful.

23.3.9	Ease	of	Installation	and	Setup
Especially	 in	 the	 consumer	 market,	 easy	 setup	 and	 configuration	 are

critical	 for	 success,	 and	 the	 solution	must	 truly	 be	 plug	 and	 play.	 This	 is
very	different	from	the	main	market	segments	for	home	automation.

23.4	Conclusions
The	 lack	of	 a	universally	 accepted	 standard	 that	 can	meet	 all	 relevant

market	and	customer	requirements	is	among	the	key	obstacles	for	adoption
of	 home	 automation	with	 its	 associated	 application	 fields	 in	 the	 consumer
market.	 Compared	 to	 analyst	 predictions	 just	 4–6	 years	 ago,	 the
development	of	this	market	is	disappointing.

The	 IP	 protocol	 suite	 and	 especially	 IPv6	 provide	 many	 of	 the
ingredients	that	could	prove	essential	for	success	in	home	automation.	The
IP	 protocol	 work	 conducted	 by	 the	 6LoWPAN,	 ROLL	 IETF	 Working
Groups	 (as	 discussed	 in	 detail	 in	Chapter	 17),	 and	 other	working	 groups
fully	applies	to	home	automation	smart	object	networks.

	



Chapter	24	Building	Automation
	

With	 ever-increasing	 energy	 costs,	 energy	 savings	 have	 become	 critical	 in
buildings.	Building	automation	is	a	way	to	save	energy	in	buildings	and	provide
critical	 functions	 such	 as	 fire	 emergency	 evacuation.	Smart	 objects	 are	 rapidly
entering	 this	 market	 because	 of	 the	 reduced	 installation	 costs	 that	 wireless
systems	provide.

Building	 automation	 is	 the	 instrumentation,	 mechanization,	 and	 data
aggregation	 of	 a	 variety	 of	 discrete	 building	 systems	 to	make	monitoring	 and
controlling	of	building	equipment	more	efficient.	Building	Automation	Systems
(BAS)	automatically	adjust	heating	ventilation	and	air	conditioning	(HVAC)	and
lighting	systems	to	meet	the	targeted	environmental	conditions	for	the	building,
while	minimizing	 energy	 cost.	Building	 automation	 also	 increases	 the	 security
and	 safety	 of	 the	 building	 environment	 by	 monitoring	 and	 controlling	 the
installed	physical	security	and	fire	systems.	BAS	is	often	interchangeably	called
Facility	Management	 Systems	 (FMS),	 Building	Management	 Systems	 (BMS),
Energy	Management	Systems	(EMS),	or	Intelligent	Building	Systems	(IBS).

Traditionally,	BAS	and	enterprise	network	systems	were	separately	installed
and	maintained	 by	 the	 facility	 and	 IT	 organizations,	 respectively.	 The	 cost	 of
supporting	 two	 complex	 pervasive	 networks	 within	 a	 building	 has	 led	 to	 the
integration	of	the	facility	equipment	onto	the	IT	network.	This	convergence	has
brought	 about	 economic	 advantages	 but	 also	 highlighted	 differences	 in	 the
performance,	 latency,	 and	 other	 operational	 characteristics	 of	 mission-critical
systems	with	that	of	office	networks.

BAS	 is	 deployed	 in	 a	 variety	 of	 commercial	 vertical	 markets	 including
universities,	 hospitals,	 government,	 lower	 education	 (K–12),	 hospitality,	 and
manufacturing.	 The	 building	 types	 serving	 these	markets	 include	 single	 tenant
and	multi-tenant	owner	occupied	and	leased	buildings;	multi-building	single	site
environments	such	as	university	campuses,	and	widely	dispersed	multi-building
multi-site	environments	such	as	franchise	operations.	Full-blown	BAS	typically
target	 buildings	 ranging	 in	 size	 from	 100	 K	 square	 feet	 structures	 (five-story
office	buildings),	 to	multimillion	square	 feet	 skyscrapers.	Buildings	sized	 from
50	 to	100	K	square	 feet	 fall	 into	 the	 “mid-market”	 sector.	These	buildings	are
typically	 instrumented	 with	 preconfigured	 HVAC,	 lighting,	 and	 security



solutions	using	either	residential	or	commercial	grade	sensors	and	controllers.
Smart	 objects	 have	 a	 clear	 place	 in	 the	 building	 automation	 ecosystem	 by

providing	 both	 the	 sensors	 that	 the	 BAS	 needs,	 as	 well	 as	 the	 actuators	 that
affect	the	physical	environment.	Smart	object	networks	installed	as	part	of	BAS
can	 be	 either	 wireless	 using	 radio	 communication,	 or	 wired	 using	 Powerline
communication	(PLC)	or	Ethernet.

To	accomplish	this	spectrum	of	building	topologies	and	sizes,	the	BAS	must
be	able	 to	meet	 the	nuances	of	 each	 specific	 facility.	This	 chapter	provides	 an
overview	 of	 the	 BAS	 architecture	 for	 larger	 buildings	 describing	 the	 various
components,	 systems,	 and	 their	 interrelationship	 giving	 context	 to	 the	 needed
technical,	networking,	and	performance	requirements.

24.1	BAS	Reference	Model
Before	 discussing	 the	 applications	 of	 building	 automation,	 we	 present	 a

common	 reference	 model	 that	 we	 use	 throughout	 this	 chapter.	 This	 reference
model	 describes	 the	 BAS	 from	 the	 lowest	 layer	 to	 the	 highest	 layers	 in	 the
hierarchy.	 Each	 section	 describes	 the	 basic	 functionality	 of	 the	 layer,	 its
networking	 model,	 power	 requirements,	 and	 a	 brief	 description	 of	 the
communication	 requirements.	 The	 entire	 section	 references	 the	 block	 diagram
seen	in	Figure	24.1.

Figure	24.1	BAS	functional	domains.
	

Figure	24.1	 shows	 the	 five	major	 logical	 subsystems	 that	make	up	 a	BAS.
These	 subsystems	 have	 layered	 solutions	 starting	 at	 the	 sensor	 layer	 moving



upward	 in	 complexity	 toward	 the	 enterprise.	While	 these	 five	 subsystems	 are
common	 to	 most	 facilities,	 they	 are	 by	 no	 means	 the	 exhaustive	 list	 —	 a
chemical	 facility	 may	 require	 a	 complete	 fume	 hood	 management	 system,	 a
manufacturing	 facility	 may	 require	 interfacing	 to	 the	 programmable	 logic
controllers	subsystems,	or	a	multi-tenant	facility	might	require	a	comprehensive
power	management	subsystem.	The	objective	in	the	overall	design	is	to	integrate
all	common	functions	into	the	system	yet	allow	maximum	flexibility	to	modify
these	systems	and	add	other	systems	as	dictated	by	the	job	requirements.

To	understand	the	network	systems	requirements	of	a	BAS	in	a	commercial
building,	 there	 is	 a	 framework	 for	 the	 basic	 functions	 and	 composition	 of	 the
system.	 A	 BAS	 is	 a	 horizontally	 layered	 system	 of	 sensors	 and	 controllers.
Additionally,	 a	 BAS	may	 also	 be	 divided	 vertically	 across	 alike	 but	 different
building	subsystems	as	noted	next.

Other	than	the	sensors	and	actuators	layers,	much	of	a	BAS	is	optional	and
all	 upper	 layers	 have	 standalone	 functionality.	 These	 devices	 can	 be	 tethered
together	 to	 form	 a	 more	 synergistically	 robust	 system.	 The	 customer	 decides
how	 much	 of	 this	 vertical	 “silo”	 should	 be	 integrated	 to	 perform	 the	 needed
application	 within	 the	 facility.	 This	 approach	 also	 provides	 excellent	 fault
tolerance	since	each	node	is	designed	to	operate	in	an	independent	mode	if	 the
higher	layers	are	unavailable.

As	shown	in	Figure	24.1,	HVAC,	fire,	security,	lighting,	and	shutter	control
are	 components	 that	 can	 be	 woven	 together	 into	 applications	 tailored	 to	 the
customer’s	 requirements.	 Shutter	 control	 is	 an	 emerging	 application	 domain
prevalent	 in	 the	 European	 market.	 These	 major	 subsystems	 are	 connected
logically	 through	 application	 software	 called	 building	 applications.	 This
horizontal	 stack	 follows	 the	 vertical	 stack	 design	 in	 that	 each	 silo	 is	 optional.
The	customer	can	integrate	all	the	subsystems	at	once	or	add	them	as	the	facility
or	budget	dictates.

	
24.2	Emerging	Building	Automation	Applications
In	addition	to	HVAC	applications,	there	are	numerous	emerging	applications

of	 building	 automations	 technology.	 Such	 applications	 are	 encoded	 by	 the
building	 application	 layer,	 which	 is	 a	 software	 layer	 that	 binds	 the	 various
system	 silos	 into	 a	 cohesive	 systemic	 application.	 This	 discussion	 is	meant	 to
show	a	snapshot	of	emerging	use	cases	and	describe	how	these	diverse	systems
can	be	coordinated	with	holistic	building	automation	applications.

24.2.1	Occupancy	and	Shutdown
A	major	energy	saving	technique	in	commercial	buildings	is	to	automatically

commence	 HVAC	 and	 lighting	 operations	 prior	 to	 building	 occupancy.



Conversely,	 building	 shutdown	 allows	 the	 systematic	 reduction	 in	HVAC	 and
lighting	operations	as	the	building	goes	unoccupied.

The	 HVAC	 system	 is	 usually	 charged	 with	 defining	 occupied	 and
unoccupied	 times.	 The	 fire	 and	 security	 operations	 are	 always	 operable	 and
lighting	 is	 most	 often	 subservient	 to	 the	 HVAC.	 These	 times	 are	 typically
programmed	into	the	system	by	facility	operations;	however,	it	could	be	learned
adaptively	 by	 the	 security’s	 access	 control	 system.	 The	 target	 occupancy	 time
drives	 the	HVAC	subsystem	to	 turn	on	all	ventilation	equipment	at	an	optimal
time	 so	 that	 each	 space	 is	 ready	 for	 occupancy	 at	 the	 prescribed	 time.	 These
algorithms	will	be	adaptive	over	time	but	also	include	systemic	instrumentation
such	 as	 outdoor	 air	 and	 relative	 humidity	 to	 turn	 on	 the	 equipment	 at	 the	 last
possible	 moment	 yet	 still	 meet	 the	 target	 environmental	 needs	 just	 before
occupancy.	The	lighting	systems	will	also	be	turned	on	just	prior	to	occupancy.

Conversely,	the	HVAC	systems	will	also	determine	the	earliest	possible	time
it	 can	 shut	 down	 heating/cooling	 yet	 still	 control	 the	 set	 points	 to	 meet	 the
requisite	parameters.	Lighting	again	is	easier	since	the	lights	can	be	extinguished
as	 soon	 as	 they	 are	 no	 longer	 needed.	 Building	 owners	 may	 use	 the	 lighting
systems	to	pace	the	janitorial	service	providers	by	defining	a	strict	timetable	that
the	lights	will	be	on	in	a	given	area;	the	janitorial	service	providers	will	need	to
keep	in	step	to	complete	their	work	prior	to	the	lights	being	turned	off.

The	system	may	also	 include	a	 telephone	or	computer	 interface	 that	allows
any	late	workers	to	override	the	normal	HVAC	and	lighting	schedules	simply	by
dialing	into	the	system	and	specifying	their	locale.	The	lights	and	fan	system	will
continue	 to	 operate	 for	 a	 few	extra	 hours	 in	 the	 immediate	 vicinity.	The	 same
applies	to	occupancy	sensors	in	meeting	rooms.	Either	by	automatic	sensing	or	a
simple	 push	 of	 the	 occupied	 switch,	 the	 HVAC	 and	 lighting	 schedules	 will
extend	the	normal	schedule	for	the	meeting	room.
	
24.2.2	Energy	Management
The	occupancy/shutdown	applications	noted	above	optimize	 the	 runtime	of

large	 equipment.	 This	 is	 a	 major	 energy	 saving	 component.	 However,	 even
during	 occupancy	 large	 equipment	 can	 be	 modulated	 or	 shut	 off	 temporarily
without	 affecting	environmental	 comfort.	This	 suite	of	 applications	 runs	 in	 the
HVAC	domain;	however,	 the	HVAC	silo	will	 interact	with	 the	 lighting	system
to	reduce	the	lighting	load	to	help	in	the	overall	reduction	of	energy.

The	load-rolling	and	demand-limiting	applications	permit	the	sequencing	of
equipment	 to	 reduce	 the	 overall	 energy	 profile	 or	 to	 shave	 off	 peak	 energy
demands	in	the	facility.	The	BAS	will	constantly	monitor	real-time	energy	usage
and	automatically	turn	off	unneeded	equipment	(or	reduce	the	control	set	point)



to	 stave	 off	 peaking	 the	 facility’s	 electrical	 profile.	 Demand	 peaks	 set	 by
commercial	 facilities	 are	 frowned	 upon	 heavily	 by	 utilities	 and	 are	 often
accompanied	by	huge	energy	charge	increases	for	one	year.
	
24.2.3	Demand	Response
Recently	real-time	pricing	has	furthered	the	 incentives	 to	save	energy.	This

allows	a	 facility	 to	proactively	use	or	curtail	energy	based	on	 its	current	price.
Again,	 the	 HVAC	 subsystem	 takes	 the	 lead	 in	 this	 application	 by	 polling	 the
current	and	future	pricing	structures	from	the	electrical	utility	company	via	 the
Internet.	 The	 array	 of	 data	 is	 automatically	 analyzed	 and	 energy	 strategies	 are
executed	to	defer	or	reduce	energy	use	until	the	price	rate	drops.

24.2.4	Fire	and	Smoke	Abatement
In	 the	 United	 States,	 most	 local	 building	 codes	 now	 require	 commercial

buildings	 to	 incorporate	 comprehensive	 fire	 and	 life/safety	 systems	 into	 a
building.	It	is	well	documented	that	loss	of	life	in	a	building	is	mainly	caused	by
smoke	 inhalation	 and	 not	 the	 actual	 fire.	 The	 product	 safety	 standardization
organization,	 Underwriters	 Laboratories	 (UL),	 has	 a	 fire	 certification	 program
(UL-864)	that	governs	fire	and	smoke	operations	in	commercial	buildings.	This
program	requires	rigorous	interactive	testing	with	UL	to	obtain	certification.	In
addition	 to	 the	 obvious	 need	 to	 minimize	 life/safety	 situations	 in	 a	 building,
facility	operators	are	highly	encouraged	 to	 implement	 these	 systems	 to	 receive
insurance	cost	reductions.

The	 UL	 fire	 and	 smoke	 systems	 operate	 in	 either	 a	 manual	 or	 automatic
mode.	 The	 manual	 mode	 provides	 critical	 fire	 and	 smoke	 information	 on	 a
display	 to	 be	 controlled	 by	 a	 Fire	 Marshal.	 The	 automatic	 mode	 is	 a
preprogrammed	set	of	events	that	automatically	control	the	fire.	In	practice,	the
fire	system	will	be	set	to	automatic	mode	and	operate	accordingly	until	the	Fire
Marshal	arrives.	At	that	point	the	system	is	normally	overridden	to	manual	mode
so	 that	 the	 Fire	 Marshal	 can	 control	 operations	 from	 the	 command	 center	 as
deemed	necessary.

The	fire	certification	program	UL-864	is	comprised	of	fire	system	operations
(UOJZ)	 and	 smoke	 control	 (UUKL).	 UOJZ	 certification	 allows	 all	 fire	 and
smoke	operations,	events,	and	alarms	to	be	controlled	from	a	Fire	Workstation.
Local	 fire	panels	can	only	be	accessed	and	commanded	 from	 this	workstation.
Operator	 authentication	 and	 command	 authorization	 are	 required	 for	 all
operations.	Alarms	 can	only	be	 acknowledged	 from	 this	 device.	One	 and	only
one	 Fire	 Workstation	 can	 ever	 govern	 a	 given	 area	 at	 a	 time	 to	 assure	 that
destructive	 control	 operations	 cannot	 inadvertently	 occur	 by	 two	 operators
simultaneously	controlling	a	space.



The	smoke	abatement	certification,	UUKL,	is	an	adjunct	function	of	the	fire
system	that	automatically	or	manually	purges	 the	 fire	and	directs	smoke	safely
out	 of	 the	 building.	 This	 is	 done	 by	 exhausting	 smoke	 from	 exit	 passageways
and	 refuge	 areas	 by	 judicially	 adjusting	 pressures	 and	 dampers	 in	 the	 affected
areas.	Furthermore,	 it	will	actually	assist	 in	putting	out	 the	 fire	by	starving	 the
fire	of	oxygen	 in	 the	affected	area	while	simultaneously	routing	smoke	out	 the
building	in	the	adjacent	areas.

While	 the	 smoke	 abatement	 operation	 could	 be	 the	 province	 of	 the	 fire
system	 alone,	 economics	 dictates	 that	 the	 fire	 system	 off-load	 the	 smoke
abatement	 operation	 to	 the	 HVAC	 system.	 In	 practice,	 the	 fire	 system	 will
receive	 the	 initial	 fire	 indication	by	one	or	more	of	 its	smoke	detectors.	 It	will
then	 inform	 the	 HVAC	 system	 of	 the	 physical	 locale	 of	 the	 fire.	 The	 HVAC
system	will	then	take	charge	of	the	smoke	abatement	operation	by	automatically
adjusting	 the	air	handlers	and	dampers.	The	HVAC	system	must	 incorporate	a
comprehensive	 prioritization	 scheme	 throughout	 its	 system.	 This	 prioritization
scheme	 must	 allow	 all	 smoke	 operations	 to	 take	 control	 precedence	 over	 all
other	control	operations	including	manual	operator	control.	All	affected	devices
must	support	a	supervision	policy	that	assures	that	all	operations	requested	were
executed	 properly.	 The	 system	 will	 automatically	 return	 to	 normal	 operation
once	the	smoke	situation	has	abated.

Many	buildings	also	trigger	the	evacuation	application	(see	the	next	section)
coincidentally	with	a	smoke	control	situation.	The	evacuation	application	assists
building	 inhabitants	 in	 safely	 leaving	a	building.	Elevator	control	policies	may
restrict	 inhabitants	 from	 calling	 for	 the	 elevators	while	 simultaneously	 posting
the	elevators	to	the	ground	floor	for	use	by	fire	personnel.

24.2.5	Evacuation
Evacuation	 is	 a	 systemic	 operation	 that	 may	 be	 activated	 as	 part	 of	 the

fire/smoke	 control	 application,	 or	 may	 be	 activated	 for	 other	 reasons	 such	 as
terrorist	threats.	Evacuation	requirements	most	often	activate	subsystems	of	the
fire,	security,	and	lighting	silos.	The	fire	system	normally	supports	the	intercom
subsystem	 in	 the	 facility.	 The	 intercom	 system	 will	 then	 trigger	 the	 recorded
voice	evacuation	instructions.	This	may	be	in	concert	with	the	fire	system	audio
indications	if	a	fire	situation	is	active	or	standalone.	The	lighting	subsystem	will
be	activated	to	turn	on	the	lights	and	evacuation	paths	to	aid	in	the	evacuation.
The	security	system	coincidentally	opens	all	doors	to	allow	a	smooth	safe	egress
from	 the	 building.	 If	 the	 building	 also	 supports	 elevator	 control,	 the	 elevators
operate	as	directed	by	a	preprogrammed	evacuation	policy.

24.3	Existing	Building	Automation	Systems
Existing	BAS	is	typically	installed	using	wired	connections.	Although	wired



connections	 provide	 good	 efficiency	 when	 the	 system	 is	 deployed,	 wired
systems	are	difficult	and	expensive	to	install	and	update	if	the	building	changes.
For	 this	 reason,	wireless	mechanisms	are	emerging.	Before	discussing	wireless
technology,	we	review	existing	BAS.

EIA-485	 and	 Ethernet	 are	 the	 dominant	 media	 used	 in	 BAS.	 Sensors,
actuators,	 area	 controllers,	 zone	 controllers,	 and	 building	 controllers	 are
connected	via	EIA-485	three-wire	twisted	pair	serial	media	operating	nominally
at	38,400	to	76,800	baud.	This	will	run	to	5000	ft	without	a	repeater.	With	the
maximum	 of	 two	 repeaters,	 a	 single	 communication	 trunk	 could	 serpentine
15,000	 feet	 dropping	 as	 many	 as	 255	 control	 devices	 along	 its	 path.	 Wired
sensing	 devices	 that	 typically	 had	 been	 hardwired	 to	 the	 controller	 are
increasingly	placed	on	an	EIA-485	sensor	bus.

The	HVAC,	 fire,	 access,	 intrusion,	 lighting,	 and	 shuttering	 subsystems	 are
often	integrated	using	LAN-based	Ethernet	technology.	These	enterprise	devices
connect	to	standard	CAT-5	through	workgroup	switches.

In	 the	 past	 five	 years,	 wireless	 technologies	 such	 as	 802.15.4,	 WiFi,	 and
Powerline	communication	 (PLC)	have	been	deployed	 for	 sensor	and	controller
networks.	 Figure	 24.2	 depicts	 a	 wired	 network	 and	 an	 equivalent	 wireless
network.	 WiFi	 is	 deployed	 to	 extend	 the	 enterprise	 layer	 for	 portable	 user
interface	 communications.	 WiFi	 communications	 replace	 the	 Ethernet
connection	 if	 the	 application	 operates	 within	 the	 WiFi	 performance
characteristics.	Multi-building	sites	also	connect	onto	the	facility	intranet	or	over
the	Internet	if	the	available	performance	matches	the	application	requirements.



Figure	 24.2	 BAS	 wired	 and	 wireless	 topological	 hierarchy	 including
controller	types	and	networks.
	

24.3.1	Existing	Control	Protocols
Sensors,	actuators,	area	controllers,	zone	controllers,	and	building	controllers

all	 typically	 coexist	 on	 an	EIA-485	multi-drop	network.	EIA-485	provides	 the
proper	 communication	 speed	 and	 flexibility	 at	 a	 reasonable	 cost.	 Through	 the
early	1990s	the	protocols	running	on	these	networks	were	proprietary.	However,
in	 mid-1990	 the	 Building	 Automation	 Control	 Network	 (BACnet)	 and	 Local
Operating	 Network	 (LON)	 protocols	 were	 developed	 by	 the	 HVAC	 industry
consortia	 that	 defined	 electrical	 interfaces	 as	well	 as	 a	 standard	 set	 of	 objects,
properties,	 and	 services	 for	 sensing	and	controlling	devices.	The	emergence	of



these	 protocols	 allowed	 vendor	 interoperability	 of	 these	 devices.	 Since	 their
inception	these	protocols	have	been	augmented	to	include	energy	management,
lighting,	security,	and	fire	support.	Other	protocols	such	as	Digital	Addressable
Lighting	Interface	(DALI)	have	also	been	developed	to	increase	interoperability
for	targeted	markets.

24.3.1.1	BACnet
BACnet	 is	 an	 ISO	 standard	protocol	 designed	 to	maximize	 interoperability

across	many	products,	 systems,	 and	vendors	 in	 commercial	buildings.	BACnet
was	conceived	in	1987	and	first	released	in	1995	as	an	HVAC	protocol.	Standard
objects,	 properties,	 and	 services	 were	 defined	 supporting	 device	 and	 object
discovery,	 object	 creation,	 the	 reading	 and	writing	 properties	 of	 objects,	 event
notification,	 network	 security,	 and	 routing.	Since	 its	 first	 release	 fire,	 security,
and	 lighting	 functionalities	 have	 been	 added.	 BACnet	 currently	 supports	 six
media	 types	 including	 Ethernet	 (802.3	 and	 UDP/IP),	 EIA-485,	 Arcnet,	 LON,
RS-232,	 and	ZigBee.	The	BACnet	object	 set	 is	 very	generic	 supporting	object
types	such	as	analog	input	and	binary	input.	The	definition	maximizes	flexibility
but	 obfuscates	 semantic	 meaning.	 Hence,	 the	 system	 integrator	 must	 have	 a
priori	 knowledge	 of	 the	 object’s	 use.	 Without	 it,	 the	 integrator	 could	 easily
reference	 the	 boiler	 temperature	 point	 instead	 of	 the	 outdoor	 air	 temperature
point.
	
24.3.1.2	LON
LON	competes	with	BACnet	most	often	at	 the	 sensor	and	 field	bus	 layers.

LON	 is	 an	 ISO/IEC	 standard	 that	 was	 originally	 developed	 by	 the	 Echelon
Corporation	and	that	typically	is	used	with	ISO/IEC	14908.2.	Whereas	BACnet
is	 purely	 a	 software	 protocol	 that	 runs	 on	 standard	 communication	 hardware,
many	LON	implementations	use	specialized	chips	 that	 implement	 the	protocol.
Unlike	BACnet,	which	has	very	loose	binding,	LON	has	defined	standard	device
profiles	 with	 rich	 semantic	 meaning.	 This	 assures	 interoperability	 albeit	 at	 a
slight	decrease	in	flexibility.

24.3.1.3	DALI
DALI	 is	 a	 lighting	 protocol	 standard	 defined	 within	 IEC	 62386.	 This

protocol	was	created	 to	allow	interoperable	control	of	digital	 lighting	for	small
areas	 and	 applications.	 It	 provides	 for	 multiple	 types	 of	 lights	 including
fluorescent,	 emergency,	 HID,	 low	 voltage	 halogen,	 incandescent,	 and	 LEDs.
Commands	 include	 ON/OFF	 and	 UP/DOWN.	 Predefined	 scenes	 can	 be
configured	 and	 saved	 for	 later	 recall.	 Communication	 occurs	 over	 a	 two-
conductor	cable	(no	shield	 is	 required).	The	effective	 transmission	rate	 is	1200
bps	for	longer	distance	and	reliability.



24.4	Building	Automation	Sensors	and	Actuator	Characteristics
Sensor	 and	 actuator	 performance	 is	 dictated	 by	 the	 class	 of	 device.	 Table

24.1	illustrates	examples	of	the	real-time	performance	required	of	the	sensor	and
controller	network.	As	noted,	the	sensor	to	actuation	time	can	be	as	short	as	100
ms	for	some	applications.	Many	applications	such	as	smoke	detection	and	smoke
purge	actuation	must	occur	within	a	few	seconds.	Less	critical	applications	such
as	 room	 temperature	 control	 can	 take	 minutes.	 Application	 performance
requirements	 span	 many	 orders	 of	 magnitude.	 The	 mission-critical	 nature	 of
these	applications	is	the	reason	that	the	control	networks	and	IP	networks	have
yet	to	completely	merge	onto	the	enterprise	network.

Table	24.1	Sensor	Expected	Performance	Characteristics
	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

Sensor	type Expected	response	time



Sensor	type Expected	response	time
Space	temperature 10	min
Duct	temperature 1	min
Fire	detection 3	s
Occupancy 1	s
Door	access 1	s
Static	pressure 100	ms
	
Fire	sensing	and	response	is	considered	the	highest	priority	function	in	BAS.

Security	 systems	 rank	 second	 followed	 by	 HVAC	 and	 lighting	 applications.
Historically,	fire	and	safety	subsystems	have	been	hardwired	or	implemented	on
completely	dedicated	infrastructures	to	ensure	that	the	fire	and	security	systems
are	 not	 affected	 by	 the	HVAC	 and	 lighting	 subsystems.	Market	 and	 customer
pressure,	however,	 is	 changing	 this	 approach	 since	customers	want	 application
interaction	across	these	systems	with	the	HVAC	and	lighting	subsystems.

24.4.1	Area	Control
An	 area	 describes	 a	 small	 physical	 locale	 (300–500	 ft2)	 within	 a	 building,

typically	a	 room.	Room	and	area	control	are	 terms	often	used	 interchangeably,
although	the	former	is	confined	to	the	application	set	defined	within	a	room;	the
latter	 encompasses	 areas	 outside	 a	 room	 such	 as	 auditoriums,	 atria,	 and
stairways.	 Common	 sensors	 feeding	 area	 controllers	 include	 temperature,
occupancy,	 ambient	 lighting	 load,	 and	 smoke	 detectors.	 Sensors	 found	 in
specialized	areas	(such	as	chemistry	labs)	might	also	include	air	flow,	pressure,
CO2,	and	CO	particle	sensors.	Actuation	includes	temperature	set	point,	airflow
adjustment,	lights,	and	blinds/curtains.

The	 controllers	 deployed	within	 an	 area	 are	most	 often	 standalone	 devices
that	provide	the	necessary	functionality	without	further	assistance	by	the	higher
layers	 of	 the	 architecture.	 However,	 when	 these	 devices	 are	 connected	 to	 the
higher	 layers,	 these	 layers	 provide	 additional	 functionality	 including	 manual
override	 and	 time	 series	 and	 event	 data	 for	 further	 analysis.	 Likewise,	 the
enterprise	 level	can	 then	override	 the	 local	control	 from	a	centralized	 location.
When	connected	to	the	higher	layers,	the	controllers	deploy	a	fail-soft	algorithm
that	reverts	to	local	control	if	the	higher	order	communication	is	lost.

Room	 temperature	 controllers	 are	 soft	 real-time	 devices	 implementing
nominally	60	s	control	loops.	Environmental	data	are	provided	to	the	controller
by	 its	 sensors	 each	 minute	 in	 either	 a	 polled	 or	 event-driven	 fashion.	 The
controller	 then	 analyzes	 the	 data	 and	 modulates	 the	 actuators	 accordingly	 to
meet	the	application	requirements.



Ambient	 lighting	 sensors	 and	 solar	 sensors	 periodically	 sample	 the	 room’s
light	load.	This	information	is	forwarded	to	the	lighting	panel.	The	lighting	panel
then	automatically	adjusts	the	light	level	to	the	desired	set	point	by	modulating
the	 external	 solar	 light	 load	 with	 the	 interior	 lighting,	 typically	 minimizing
electrical	 demand.	When	 available	 a	 room	 occupancy	 sensor	will	 override	 the
algorithm	whenever	the	room	is	unoccupied.	The	solar	sensor	may	also	forward
radiant	 heat	 infiltration	 to	 the	 HVAC	 control.	 The	 HVAC	 controller	 then
includes	these	data	in	the	heating	or	cooling	load	requirement.

Room	lighting	control	also	requires	real-time	performance.	Room	lights	need
to	 have	 near	 instantaneous	 response	 to	 a	 light	 switch	 activation.	 The	 lighting
operator	expects	to	see	some	change	in	the	scene	within	300	ms	after	a	complex
lighting	command	has	been	executed.

Door	control	 requires	much	higher	performance.	Persons	entering	a	 facility
will	expect	a	latency	of	no	more	than	300	ms	between	swiping	the	access	card
and	entry	approval.	Camera	pan-tilt-zoom	commands	need	to	execute	with	less
than	250	ms	latency.

24.4.1.1	Area	Controller	Communications
Area	 and	 room	 controllers	 need	 to	 communicate	 to	 higher	 order	 (zone)

controllers	as	well	as	subordinate	sensors	and	actuators.	The	controllers	operate
on	a	field	bus.	Although	the	field	bus	is	often	implemented	with	the	same	EIA-
485	physical	 network	 as	 the	 sensor	 bus,	 the	 communication	 rates,	 packet	 size,
buffering,	 and	 fragmentation	 are	 increased	 to	 handle	 the	 larger	 packet
transmissions.	The	protocol	on	the	field	bus	is	most	often	a	peer-to-peer	protocol
to	ease	sharing	controller	data	across	the	controllers.
	
24.4.2	Zone	Control
Zone	 control	 supports	 a	 similar	 set	 of	 characteristics	 as	 the	 area	 control,

albeit	to	an	extended	space.	A	zone	is	normally	a	logical	grouping	or	functional
division	 of	 a	 commercial	 building	 that	 also	 coincidentally	maps	 to	 a	 physical
locale	 such	 as	 a	 floor.	 Table	 24.2	 illustrates	 zones	 for	 the	 various	 functional
domains	within	a	commercial	building.

Table	24.2	Examples	of	Commercial	Zones
	
	

	

	



	

	

	

	

	

	

	

Functional
domain Zone

HVAC Air	handler	is	the	area	served	by	a	single	fan	system;	typically	a
floor	or	adjacent	floors	in	a	building.

Lighting A	bank	of	lights	that	all	operate	consistently.

Fire

An	area	of	a	facility	that	operates	consistently	when	fed	by	the
same	fan	system	or	covered	by	the	same	set	of	smoke	detectors	or
follows	the	same	pressurization	and	alarm	annunciation	rules.	The
zone	may	also	be	a	functional	grouping	when	a	certain	area	is
governed	by	a	set	of	fire	dampers.

Security A	subset	of	the	building	operating	in	a	similar	fashion	such	as	a
logical	collection	of	lockable	doors.

	
Zone	 control	 may	 have	 direct	 sensor	 inputs	 (smoke	 detectors	 for	 fire),

controller	 inputs	 (room	 controllers	 for	 air	 handlers	 in	 HVAC),	 or	 both	 (door
controllers	 and	 tamper	 sensors	 for	 security).	 Like	 area/room	 controllers,	 zone
controllers	are	standalone	devices	that	operate	independently	or	may	be	attached
to	the	larger	network	for	more	synergistic	control.

Zone	 controllers	 may	 have	 some	 onboard	 sensor	 inputs	 and	 also	 provide
direct	 actuation;	 however,	 they	 also	 direct	 the	 actions	 of	 their	 underlings	 via
commands	as	well	as	respond	to	environmental	changes	reported	by	those	same
underlings.	For	example,	an	air	handler	controller	might	directly	sample	the	duct
pressure,	the	supply	air	temperature,	and	return	air	temperature.	However,	it	may
also	 send	 commands	 to	 other	 networked	 devices	 querying	 the	 outdoor	 air
temperature	and	relative	humidity.	Similarly,	a	fire	panel	may	have	all	the	smoke



detectors	 directly	 wired,	 yet	 send	 commands	 to	 other	 adjacent	 fire	 panels	 to
request	 their	 status	 if	 a	 fire	 condition	 arises.	 A	 list	 of	 zone	 controller
characteristics	is	defined	in	Figure	24.2.

24.4.3	Building	Control
Building	 controllers	 (BCs)	 provide	 the	 overall	 orchestration	 of	 the	 system.

While	the	sensor	and	area	controllers	provide	real-time	focused	applications;	the
BCs	provide	broad	systemic	functionality.	The	BCs	also	provide	the	view	ports
into	the	embedded	real-time	systems	for	the	operator,	integrators,	and	enterprise
applications.	The	BCs	cache	and	archive	important	real-time	data	from	the	area
controllers	and	act	as	an	agent	 to	Enterprise	Application	Servers	 for	 long-term
data	archival	and	retrieval.

BCs	 are	 completely	 field	 programmable	 devices	 that	 are	 designed	 to
integrate	into	all	system	control	operations.	HVAC	BCs	often	must	map	a	wide
variety	of	legacy	protocols	into	a	single	object	model	for	a	single	representation
of	 the	 building’s	 data	 to	 the	 user.	 HVAC	 BCs	 also	 provide	 sophisticated
applications	 such	 as	 energy	 management,	 alarm	 annunciation,	 trending	 time
series	data,	and	scheduling	all	activities	during	the	week.

The	fire	subsystem	application	 is	standalone	and	in	many	cases	dictated	by
the	fire	codes.	However,	the	BCs	may	monitor	the	fire	subsystem	as	a	secondary
reporting	device.	Here	the	smoke	detectors,	pull	boxes,	strobes,	and	evacuation
subsystems	 that	 are	 under	 the	 control	 of	 the	 fire	 controller	 are	 also	 integrated
into	 the	 HVAC	 BC	 for	 viewing	 and	 monitoring	 by	 building	 operations.	 By
regulation,	the	HVAC	system	cannot	affect	changes	to	the	fire	system.

The	 fire	 subsystem	may	 be	 further	 integrated	 into	 the	HVAC	BC	 in	 cases
where	the	HVAC	system	operates	in	concert	with	the	fire	subsystem	to	provide	a
smoke	abatement	application.

From	 a	 control	 point	 of	 view,	 the	 security	 subsystems	 are	 standalone.	 As
noted	earlier,	 local	door	controllers	support	building	entry	algorithms.	Cameras
may	 be	 controlled	 from	 a	 centralized	 location.	 An	 optional	 centralized	 video
server	is	deployed	to	allow	remote	wireless	viewing	of	cameras.	This	server	also
supports	motion	alerts	on	unexpected	changes	in	the	camera’s	view.	The	security
system	 can	 also	 be	 tied	 into	 the	HVAC	 system	 to	 facilitate	 the	 experience	 of
someone	entering	a	facility.	This	application	is	discussed	in	Section	24.2.

Lighting	 applications	 are	most	 often	 localized	 to	 a	 room	 or	 area.	 Lighting
manufacturers	 do	 not	 deploy	 server-level	 devices	 to	 control	 the	 entire	 facility;
they	provide	application	“hooks”	into	the	lighting	panels	that	allow	the	BAS	to
monitor	and	override	the	local	lighting	algorithms.

Emerging	 shuttering	 systems	 are	 often	 extensions	 of	 the	 lighting	 system,
which	works	 in	concert	with	 the	shuttering	system	to	control	 the	required	 light



levels	while	reducing	overall	energy.	Since	energy	management	is	the	province
of	the	HVAC	silo,	the	HVAC	BC	monitors	and	overrides	both	of	these	systems
as	needed	to	meet	the	needed	energy	savings	targets.

24.5	Emerging	Smart-Object-Based	BAS
Wireless	 communication	 and	 smart	 object	 technology	have	 the	potential	 to

significantly	reduce	installation	costs	for	BAS.	This	is	increasingly	important	for
modern	 buildings	 in	 which	 rooms	 and	walls	 are	 reconfigurable	 by	 customers.
With	 a	 wireless	 BAS,	 the	 reconfiguration	 of	 walls	 is	 easily	 managed	 without
requiring	reinstallation	of	a	wired	BAS.

Wireless	networks	have	recently	become	economically	feasible	for	building
control	applications.	Wireless	communication	reduces	installation	cost	by	easing
sensor	 installation	 and	 eliminating	 wiring	 material	 and	 labor	 costs.	 Since	 the
sensors	monitor	 the	environment	and	 inject	 status	data	onto	 the	network,	 these
devices	can	be	deployed	using	battery	power.	This	is	not	true	for	their	actuator
counterparts.	 Actuators	 change	 the	 environment	 by	 modulating	 dampers	 and
opening	and	closing	doors	as	well	as	other	similar	activities.	The	very	nature	of
these	devices	most	often	deems	battery	power	insufficient	to	perform	the	task.

A	recent	addition	to	sensor	technology	is	battery-less	sensors.	These	devices
use	 power	 scavenging	 from	 the	 environment	 such	 as	 mechanical	 activation,
ambient	 light,	 or	 vibration	 to	 create	 enough	 energy	 to	 transmit	 its	 packets.	As
this	technology	matures	it	will	surely	become	a	required	addition	to	BAS.

24.5.1	Emerging	Sensors,	Actuators,	and	Protocols
Sensors	and	actuators	are	often	the	leaves	of	the	network	tree	structure.	The

actuators	 are	 the	 sensors’	 counterparts	 modifying	 the	 characteristics	 of	 the
system	 based	 on	 the	 input	 sensor	 data	 and	 the	 application	 control	 deployed.
Traditionally,	sensors	were	hardwired	devices	deployed	on	proprietary	networks.
Lately,	economics	have	allowed	sensors	to	be	connected	using	a	wireless	smart
object	network.	Installing	addressable	sensors	on	its	own	network	eliminates	the
need	for	homerun	wiring	from	the	sensor	to	the	controller,	reducing	installation
cost.	Addressable	sensors	also	allow	applications	to	readily	accept	many	sensor
inputs	rather	than	a	few	providing	better	environmental	control	and	comfort.

24.5.1.1	EnOcean
EnOcean	is	an	emerging	wireless	communication	device	and	communication

protocol	 that	 allows	 point-to-point	 communication	 without	 the	 use	 of
conventional	power	sources.	EnOcean	devices	scavenge	the	power	necessary	to
communicate	 by	 means	 of	 mechanical	 activation,	 temperature	 differentials,
vibration,	or	solar	load.
	
24.5.2	IP-based	Enterprise	Protocols



Multiple	protocols	are	supported	at	the	enterprise	level	of	the	BAS	since	this
layer	 supports	 not	 only	 the	 embedded	 control	 operation	 but	 also	 the	 user
interface	and	end	user	enterprise	applications.

24.5.2.1	Peer-to-peer	Controller	Communication
BCs,	 often	 called	 supervisory	 controllers,	 orchestrate	 the	 overall	 BAS

operation.	Control	and	data	access	functions	implemented	on	the	enterprise	level
typically	 use	 BACnet	 or	 LON.	 DALI	 and	 EnOcean	 protocols	 are	 room-level
protocols	 that	 do	 not	 surface	 at	 the	 enterprise	 layer.	 BACnet	 supports	 IP
intrinsically,	 hence,	 controller	 and	 enterprise	 communication	 is	 seamless	 via
BACnet	 routing.	LON	utilizes	 IP	 gateways	 to	move	LON	controller	 data	 onto
the	enterprise	network.

24.5.2.2	Enterprise	Communication
The	control	protocols	used	on	the	control	and	sensor	networks	typically	are

not	viable	for	user	access	at	the	enterprise	layer.	Web	services	and	SNMP	have
been	 added	 to	 the	 enterprise	 layer	 in	 many	 implementations	 to	 assist	 in
integration	 with	 end	 user	 applications	 and	 Network	 Management	 Systems,
respectively.

Some	 vendors	 have	 developed	 public	 web	 services	 to	 allow	 third-party
application	access	to	the	building	data.	BACnet	has	recently	defined	a	set	of	web
services	 that	 cleanly	 map	 the	 BACnet	 object	 model	 data	 to	 standard	 web
services.	 Other	 groups,	 such	 as	 Open	 Building	 Information	 Exchange	 oBIX),
have	developed	other	sets	of	web	services	and	are	working	with	standards	bodies
such	 as	 the	 Organization	 for	 the	 Advancement	 of	 Structured	 Information
Standards	(OASIS)	toward	standardization.

24.6	Conclusions
BAS	use	sensors	and	actuators	dispersed	in	buildings	to	control	their	heating,

ventilation,	and	air	conditioning.	With	more	efficient	integration	techniques,	new
applications	have	emerged	such	as	advanced	energy	management	and	intelligent
fire	and	evacuation	control.

Existing	BAS	is	typically	deployed	using	wired	communication	technology.
With	 the	 advent	 of	 efficient	 wireless	 communication	 and	 smart	 object
technology,	 this	 is	 changing.	Due	 to	 the	 reduced	 installation	 costs	 of	wireless
technology,	 BAS	 is	 moving	 in	 the	 direction	 of	 wireless	 smart	 object	 network
systems.	Wireless	sensors	can	be	deployed	with	battery-less,	power-scavenging
technology.

	



Chapter	25	Structural	Health
Monitoring

	

25.1	Introduction
The	 world	 is	 full	 of	 stationary	 structures	 —	 some	 small,	 some	 huge,

others	new,	most	of	them	very	old	—	such	as	buildings,	damns,	or	bridges.
Buildings	 include	 office	 complexes,	 apartment	 buildings,	 or	 power	 plants.
The	commonality	between	these	large	structures	is	that	they	are	critical	in
everyone’s	 day-to-day	 life:	 bridges	 are	 used	 by	 pedestrians,	 cars,	 trucks,
and	 trains	 and	millions	 of	 people	 live	 in	 buildings.	 Any	 damage	 in	 these
structures	 may	 result	 in	 life-threatening	 situations	 and	 serious	 financial
loss.	 Thus,	 monitoring	 the	 health	 of	 these	 structures	 with	 smart	 object
networks	 is	 imperative	to	detect	any	irregularities	or	anomalies	that	could
be	a	sign	of	damage	and	lead	to	problems	in	the	future.

Structural	health	monitoring	(SHM)	defines	an	abstract	condition	for	a
physical	structure	such	as	a	bridge,	crane,	tower,	or	other	physical	object	or
even	 heavy	 machinery.	 Measurement	 data	 are	 used	 to	 monitor	 physical
quantities	 and	 computer	models	 are	 used	 to	 analyze	 the	data	 and	 classify
the	 current	 state	 of	 the	 structure	 and	 trigger	 alerts	 if	 necessary.	 SHM
typically	 becomes	 a	 part	 of	 the	 structure	 for	 its	 entire	 lifetime,	 and	 the
structure’s	condition	will	be	inferred	from	its	physical	measurements.	Due
to	 the	 lifetime	requirements	and	physical	 size	of	 the	objects,	wiring	of	 the
sensors	 recording	 physical	 quantities	 is	 not	 a	 preferred	 solution	 or	 even
possible,	 especially	 for	 existing	 structures	 not	 equipped	 with	 wiring.
Enabling	SHM	on	such	structures	would	be	a	major	investment	and	effort.
In	 most	 cases,	 smart	 objects	 are	 interconnected	 via	 low-power	 wireless
links,	 a	 solution	 that	 avoids	 costly	 and	 error-prone	 wiring	 within	 the
structure.

The	 bridge	 shown	 in	 Figure	 25.1	 is	 used	 for	 research	 purposes.	 The
acceleration	sensors	transmit	the	acceleration	measurements	using	a	wired
network.



Figure	25.1	Experimental	bridge	used	for	SHM	studies.
	

One	of	the	main	challenges	with	SHM	is	that	the	structure	health	is	not
determined	 by	 a	 single	measured	 quantity.	 There	 is	 no	 single	 sensor	 that
tells	directly	 if,	 for	 example,	a	bridge	 is	going	 to	collapse.	The	only	viable
methodology	 consists	 of	 periodically	 measuring	 a	 series	 of	 physical
quantities	and	then	using	various	data	analysis	and	data	mining	techniques
to	analyze	the	data	and	find	irregularities	or	changes	that	could	be	a	sign	of
an	emerging	problem.

The	 structure’s	 condition	must	be	described	by	 the	physical	quantities
measured	 from	 the	 structure.	 Typical	 physical	 quantities	 include
accelerations,	 strains,	 pressure,	 temperature,	 wind	 speed,	 flow,	 position,
orientation,	 chemical	 quantities,	 and	wave	 propagation	 quantities.	 Timely
availability	of	the	measurements	has	a	large	effect	on	the	delay	of	detection,
therefore	 near	 real-time	 measurements	 are	 used.	 This	 also	 sets
requirements	 on	 the	 transmission	 bandwidths	 of	 the	 network.	 While
monitoring	 the	 structure,	 only	 the	 output	 measurements	 are	 available,
without	knowing	the	state	 (or	condition)	of	 the	structure	or	 the	 input	 that
caused	 the	 damage.	 In	 the	 subsequent	 analysis	 phase,	 it	 is	 assumed	 that
these	 measurements	 are	 representative	 of	 the	 normal	 condition	 of	 the
structure.

In	 civil	 engineering	 studies,	 a	 typical	 sampling	 frequency	 is	 often	 less
than	 or	 equal	 to	 100	 Hz.Nyquist	 theorem	 states	 that	 to	 detect	 signal
frequencies	 up	 to	 a	 frequency	 f,	 the	 sampling	 frequency	has	 to	 be	 double
that	 frequency	 (2*f).	 A	 typical	 SHM	 application	 includes	 vibration
measurements	(accelerometer)	sampled	at	100	Hz	for	10	minutes	at	a	time.
With	existing	hardware,	it	is	possible	to	sample	at	up	to	8	kHz,	which	could
lead	to	nearly	5	million	samples	per	sensor	for	one	measurement	event;	this
repeats	 once	 or	 a	 few	 times	 per	 day.	 If	 each	 sample	 uses	 16-bit	 encoding
that	means	9.6	MB.	Yet,	new	sensors	are	already	moving	to	kHz	sampling
frequencies,	which	 produce	 10	 times	more	 data.	 In	 this	 case	 the	 data	 are
stored	in	flash	memory.

Even	for	a	standalone	sensor	with	memory	to	store	measurements,	this



many	 samples	 is	 a	 real	 issue.	 With	 1	 kHz	 sampling	 frequency,	 existing
hardware	stores	measurements	 for	a	30	s	period;	 for	example,	with	16-bit
samples	 the	 overall	 main	 memory	 needed	 is	 60	 KB,	 but	 storing
measurements	 for	 a	 10	minute	 period	 is	 not	 yet	 possible	within	 the	main
memory.	 Thus,	 the	 data	 often	 need	 to	 be	 stored	 in	 an	 external	 flash
memory,	 which	 increases	 processing	 and	 energy	 consumption	 overhead.
Typically	 a	 wireless	 sensor	 node	 cannot	 sample,	 process,	 transmit,	 and
receive	simultaneously;	it	executes	one	of	these	functions	at	a	time.

For	many	 applications	 of	 the	measured	 data	 (e.g.,	 data	 analysis)	 time
synchronization	is	required.	The	accuracy	of	timing	after	synchronization	is
in	 the	 scale	 of	microseconds,	 but	 due	 to	 clock	 drifts,	 the	 synchronization
needs	 to	 be	 done	 regularly	 (maybe	 every	 half	 a	 minute).	 Due	 to	 local
processing	 of	 the	 data,	 the	 sampling	 is	 done	 in	 an	 asynchronous	way	 (no
continuous	 sampling),	 but	 at	 least	 the	 neighbor	 nodes	 should	 perform
synchronized	 measurements.	 This	 can	 be	 achieved	 by	 running	 a	 time
synchronization	 algorithm	 in	 the	 network	 requiring	 communication	 from
sensors/cluster	heads	to	sensors.

There	are	two	distinct	methods	for	analyzing	the	sensor	data:	online	and
off-line	applications,	where	the	data	are	either	processed	at	the	scene	or	off-
line.	The	choice	of	mode	greatly	affects	 the	networking	solutions.	There	 is
also	an	obvious	trade-off	in	local	data	processing	versus	data	transmission.
The	rule	of	thumb	is	that	energy-wise	transmitting	one	byte	is	as	expensive
as	running	8000	CPU	cycles.	This	means	that	computation	should	be	done
as	close	to	the	measurement	point	as	possible,	such	as	locally	on	the	nodes.
Only	the	fused	information	should	be	transmitted	to	those	nodes	that	need
the	 information	 (e.g.,	 certain	 covariance	 information	 might	 be	 needed	 in
another	node	to	be	able	to	perform	Kalman-filtering,	etc.).	The	computing
capabilities	of	the	nodes	are	very	constrained.	The	microprocessor	in	many
sensor	 products	 is	 a	 TI	 MSP430	 with	 10	 kB	 of	 RAM	 and	 256	 kB	 flash
memory	 running	 at	 8	MHz.	The	 node	 also	 has	 a	 4	Mbit	 serial	 data	 flash
memory.	 The	 nodes	 are	 typically	 equipped	 with	 a	 6LoWPAN	 (IPv6	 over
IEEE	802.15.4	links,	as	discussed	in	Chapter	16)	protocol	stack.

A	study	performed	for	one	sensor	type	showed	that	the	power	required
to	transmit	1	bit	roughly	corresponded	to	74	CPU	cycles	of	computing.	Such
a	number	cannot	be	generalized	but	provides	a	good	sense	of	the	cost	ratio
between	data	transmission	and	CPU	cycle	cost	for	existing	sensors.

Often	the	positions	of	sensors	needs	to	be	known.	Sometimes	they	need
to	be	very	accurately	fixed	in	advance,	and	sometimes	the	sensors	need	to	be
installed	 exactly	 in	 the	 same	 locations	as	was	done	previously.	Location	 is



not	 only	 important	 for	 data	 analysis,	 but	 also	 for	 networking.	 Hence
localization	 support	might	 be	 needed,	 which	means	 that	 the	 nodes	 would
have	 to	 be	 equipped	 with	 GPS	 or	 ultrasound	 sensors,	 because	 the	 radio
signal	strength-based	localization	results	in	low	accuracy	if	the	device	does
not	have	direct	and	constant	line-of-sight	to	satellites.

Sensors	used	to	measure	physical	quantities	of	the	structure	are	located
in	different	physical	locations	in	the	structure.	To	have	a	holistic	view	on	the
entire	structure,	the	detector	(software	and	model	used	to	analyze	the	data)
must	 have	 access	 to	 all	 of	 the	 data.	 Two	 alternative	 architectures	 are
possible:	 centralized	 and	 decentralized.	With	 centralized	 architecture	 the
data	 are	mediated	 through	 the	wireless	 sensor	network	 to	 a	 central	 node.
The	 centralized	 node	 is	 then	 responsible	 for	 assessing	 the	 structure’s
condition	based	on	the	measurements.	In	a	decentralized	architecture,	there
is	more	analysis	local	to	the	sensors.

Two	 modes	 of	 measurement	 can	 be	 differentiated:	 periodic	 and
continuous.	In	a	periodic	type	of	a	measurement,	a	fixed	period	of	time	(e.g.,
10	 minutes)	 is	 dedicated	 to	 the	 measurements	 after	 which	 the	 data	 are
mediated	to	a	central	location	and	analyzed.	In	a	continuous	measurement
mode,	the	condition	of	the	structure	is	continually	measured	parallel	to	the
data	 mediation	 and	 its	 analysis.	 This	 sets	 stringent	 requirements	 on	 the
throughput	of	the	network	as	well	as	the	response	time	for	the	detector.	For
example,	 consider	 a	 sensor	 network	with	 50	 sensors	measuring	 vibrations
with	1	kHz	frequency	and	16-bit	samples.	Each	of	the	50	sensors	produces	2
bytes	of	data	1000	 times	per	 second.	Overall,	 this	 results	 in	100	kB/s	data
traffic.	 Taking	 a	media	 access	 control	 (MAC)	 layer	 payload	 of	 100	 bytes,
each	sensor	would	need	to	send	20	packets	per	second	or	1000	packets	per
second	in	the	whole	network.	Again,	if	we	have	only	a	couple	of	data	sinks,
each	sink	would	need	to	handle	hundreds	of	packets	per	second.

Two	 modes	 of	 analysis	 can	 be	 used.	 The	 databased	 mode	 uses
measurement	data	to	estimate	a	model	of	the	normal	behavior	and	use	it	to
assess	the	condition	of	the	structure.	Statistical	time-series	models	are	well
suited	for	this	task.	The	model-based	approach	relies	on	a	computer-based
model	of	the	physical	structure	and	finite	element	method	to	derive	results
on	 the	 behavior	 of	 the	 structure.	 Such	 complex	 calculations	 can	 only	 be
performed	on	high-performance	servers.

	
25.2	Main	Applications	and	Use	Case
In	 this	 section,	a	use	case	 is	presented	 to	 illustrate	 the	use	of	network-

based	monitoring	 techniques	 in	 civil	 structures.	 This	 use	 case	monitors	 a



bridge	using	a	smart	object	network.
The	 smart	 object	 network	 is	 made	 of	 sensors	 measuring	 the	 desired

physical	 phenomena,	 based	 on	 which	 the	 damage	 detection	 of	 the	 bridge
structure	is	accomplished.	One	of	the	approaches	uses	acceleration	sensors
to	 record	 acceleration,	 or	 vibration,	 of	 the	 structure.	 Temperature	 could
also	 be	 recorded,	 since	 there	 are	 known	 connections	 between	 vibration
profiles	 and	 the	 temperature,	 although	 these	may	be	 structure-dependent.
As	mentioned	 in	 the	 Introduction,	other	quantities	 that	 could	be	recorded
include	 strains,	 pressure,	 temperature,	 wind	 speed,	 flow,	 position,
orientation,	chemical	quantities,	and	wave	propagation	quantities.	Pinning
down	a	specific	set	of	features	requires	 interaction	with	domain	specialists
who	 know	 the	 theory	 of	 structures,	 or	 an	 extensive	 set	 of	 redundant
measurements	 and	 an	 empirical	 work	 in	 data	 analysis	 to	 select	 what
measurements	are	useful	 in	practice	 [236].	While	 the	 latter	approach	may
be	interesting	to	researchers,	it	is	too	costly	to	be	used	in	practical	use	case
scenarios.

Data	 acquisition	 and	data	 analysis	 are	 discussed	 in	 Section	 25.4.	Let’s
now	 assume	 that	 we	 have	 a	 model	 that	 supplied	 the	 data	 to	 estimate	 or
approximate	 the	 probability	 of	 the	 damage	 present	 in	 the	 bridge.	 For
estimating	 the	 global	 probability	 of	 the	 damage,	 all	 the	 data	must	 arrive
where	 the	 model	 probability	 computation	 takes	 place.	 Alternatively,	 the
computation	 may	 be	 performed	 in	 a	 distributed	 fashion,	 since	 the
probability	 computation	 is	 decomposable	 due	 to	 the	 conditonal
independence	assertion	done	in	the	model.	This	is	a	basic	building	block	in
constructing	Bayesian	networks.

Once	 the	 probability	 computation	 is	 realized,	 a	 cut-off	 point	 for	 a
decision	must	be	set.	All	the	probabilities	exceeding	the	threshold	cause	an
alarm.	What	to	do	with	the	alarms	is	essentially	a	question	of	business	logic
and	at	best	 should	be	separated	 from	making	 the	best	possible	decision	 in
the	model.

	
25.3	Technical	Challenges
Based	 on	 the	 previous	 description	 of	 the	 functionalities	 required	 for

SHM,	 this	 section	 highlights	 the	 functional	 requirements	 and	 technical
challenges	required	of	 smart	object	networks.	A	Wireless	Sensor	Network
(WSN)	is	required	in	this	case,	but	some	structures	may	be	monitored	with
wired	smart	object	networks.

There	are	two	fundamental	properties	of	the	SHM	that	put	pressure	on
how	 the	 smart	 object	 network	 must	 work.	 First,	 the	 WSN	 for	 SHM



produces	large	amounts	of	data	at	various	intervals.	Typical	applications	do
not	 produce	 a	 small	 amount	 of	 continuous	 data	 or	 frequent	 small	 bursts,
rather	every	8	hours	a	relatively	large	amount	of	data	must	be	transferred
from	 the	 sources	 to	 one	 or	more	 sinks.	This	 does	not	 happen	 all	 over	 the
network	at	one	time,	but	a	certain	section	of	the	network	needs	to	transfer
the	data	at	a	given	time.	Secondly,	SHM	is	used	in	many	areas	where	lives
could	be	 lost.	Thus,	once	a	section	of	 the	sensor	network	starts	to	transfer
data,	the	data	must	get	to	their	destination	with	a	high	reliability.

An	 SHM	 WSN	 is	 not	 only	 about	 periodic	 one-way	 transmission	 of
measurement	 data.	 If	 the	 data	 mining	 reveals	 a	 possible	 problem	 in	 the
structure,	 advanced	 applications	 would	 control	 the	 sensors	 to	 continue
measuring	the	structure	at	a	redefined	frequency	and	data	delivery	interval.
Additional	functionality	of	an	SHM	smart	object	(sensor)	network	includes
service	 discovery;	 sensors	 need	 to	 find	 sinks,	 or	 nodes	 performing	 data
fusion,	and	the	sinks	must	be	able	to	find	the	sensors.

As	 discussed	 in	 the	 previous	 section,	 there	 are	 two	 types	 of	modes	 for
data	mining,	off-line	and	online.	In	this	section	we	mainly	focus	on	the	off-
line	 mode,	 where	 data	 are	 not	 analyzed	 within	 the	 sensor	 network	 but
instead	 are	 transmitted	 to	 sinks/gateways	 and	 from	 there	 onto	 servers.
Online	mode	makes	similar	requirements	on	the	network:	large	amounts	of
data	 must	 be	 periodically	 sent	 to	 an	 entity,	 either	 a	 sink	 or	 gateway	 to
external	networks,	or	a	place	for	data	fusion	and	online	data	mining.

Designing	 the	network	 structures	 and	data	 routing	 is	 ultimately	 about
choices,	one	performance	aspect	rules	out	another	one,	all	functional	design
decisions	affect	performance	in	some	way.	SHM	is	about	static	deployments
and	use	cases.	Thus,	support	for	highly	dynamic	networks	is	not	needed.	We
can	expect	the	network	to	bootstrap	itself	in	a	matter	of	hours	or	even	days,
rather	 than	 seconds.	 Also,	 once	 the	 network	 routing	 has	 started,	 changes
include	nodes	just	dying	out	and	nodes	replaced	at	a	very	modest	frequency.

We	 can	 also	 consider,	 sometime	 in	 the	 distant	 future,	 that	 structures
could	be	built	with	the	wireless	sensors	already	embedded	into	the	building
materials.	 Such	 a	 network	 would	 need	 to	 bootstrap	 itself,	 configure	 each
node’s	role	(e.g.,	by	elections),	and	be	able	to	run	for	a	very	long	time.

SHM	applications	do	not	require	extremely	large	sensor	networks.	One
network	might	 consist	 of	 up	 to	 a	 few	 hundred	 nodes.	 If	 larger	 structures
need	to	be	monitored,	multiple	independent	sensor	networks	could	be	used.

25.3.1	Autoconfiguration
The	 network	 should	 be	 able	 to	 automatically	 configure	 itself	 and	 the

routing	 paths.	 There	 are	 usually	 no	 strict	 requirements	 on	 timeliness.	 To



make	 accurate	 measurements	 from	 multiple	 sensors	 at	 the	 exact	 same
instance,	time	synchronization	with	accuracy	in	the	order	of	milliseconds	is
usually	required,	possibly	over	multiple	hops.
	
25.3.2	Multicast	Support
To	 create	 the	 bootstrapping	 function,	 and	 also	 save	 energy,	 routing

should	 support	 multicast	 (as	 in	 the	 case	 of	 RPL,	 the	 routing	 protocol
developed	 by	 the	 IETF	ROLL	Working	Group	 discussed	 in	Chapter	 17).
This	is	especially	needed	for	the	service/node	discovery.
	
25.3.3	Routing
Since	 SHM	 produces	 large	 amounts	 of	 data	 at	 one	 time,	 the	 routing

protocol	 should	be	able	 to	 support	more	 than	one	routing	path	between	a
data	producer	and	the	sinks.	This	requirement	is	not	mandatory,	since	the
use	of	multiple	paths	can	be	simulated	on	a	higher	layer	by	a	sensor	sending
its	data	to	multiple	sinks.	This	helps	 to	use	different	paths	 if	 the	sinks	are
carefully	placed,	for	example,	each	sensor	would	send	every	second	packet
to	 a	 different	 data	 sink	 or	 sensors	 are	 configured	 to	 use	 different	 sinks.
Reliability	is	key	in	SHM	networks:	when	a	group	of	sensors	provides	their
data	 for	 further	 processing	 (data	 mining),	 these	 data	 must	 be
routed/transported	 in	 a	 reliable	 way.	 If	 one	 part	 of	 the	 data	 is	 lost,	 the
entire	 sampled	 data	may	 be	 useless.	 This	 requirement	 is	more	 important
than	real-time	operation.	Also,	bandwidth	problems	can	be	partly	solved	by
using	multiple	data	sinks.	In	such	a	case,	the	routing	metric	used	by	RPL	is
likely	 to	 be	 the	 reliability	 metric	 (see	 Chapter	 17).	 The	 routing	 protocol
should	be	aware	of	the	energy	levels	of	the	sensor	nodes	and	seek	to	balance
the	energy	consumption	of	the	whole	network.	Note	that	RPL	also	supports
energy	 awareness	 in	 its	 routing	 decision.	 It	 is	 required	 for	 the	 routing
protocol	to	find	alternate	routes	in	case	of	link	and	node	failures	as	well	as
to	compute	new	routes	as	new	links	and	nodes	are	added	in	the	network.	It
is	 desirable	 for	 the	 change	 to	 be	 localized	 and	 not	 visible	 all	 around	 the
sensor	network.	RPL	addresses	this	requirement	by	relying	on	local	repair
combined	with	global	repair	(reoptimization).	There	are	no	tight	constraints
on	the	time	for	repairing	the	network	unlike	in	the	bootstrapping	phase.

25.3.3.1	Coupling	with	Radio	Resource	Management	(RRM)
Since	the	sensor	nodes	need	to	save	power,	they	will	sleep	most	of	their

lifetime.	 Because	 the	 hardware	 typically	 only	 supports	 one	 function	 at	 a
time	(measuring	or	data	transmission/reception),	nodes	are	not	always	able
to	 receive	 data.	 Thus,	 the	 routing	 protocol	 should	 consider	 the	 node



availability	regarding	the	radio	interface	and	each	node’s	ability	to	further
forward	or	route	packets.	It	is	of	little	use	to	send	data	on	a	certain	path	if
that	path	will	be	truncated	as	hops	down	the	path	will	be	sleeping.

25.3.4	Network	Topology
Typically	 a	 sensor	 network	 deployed	 for	 an	 SHM	 application	 would

follow	 a	DAG	 (directed	 acyclic	 graph)-like	 topology	with	multiple	 routes.
For	 example,	 there	 could	 be	 a	 set	 of	 sensors	 around	 one	 pole	 of	 a	 bridge
connected	over	multiple	paths	and	hops	to	sinks.

25.3.5	Network	Scalability
An	SHM	application	 typically	 requires	 tens	 or	 at	most	 a	 few	hundred

nodes.	Most	of	these	would	be	running	the	measurement	applications,	while
the	rest	are	used	for	routing	only	purposes.

25.3.6	Degree	of	Mobility
Bridges	 and	 buildings	 typically	 do	 not	 move,	 neither	 do	 the	 sensors.

Thus,	support	for	mobility	is	not	required.
25.3.7	Link	and	Device	Characteristics
SHM	 requires	 reliable	 data	 delivery.	 If	 the	 links	 are	 lossy,	 per-hop

acknowledgments	 and	 retransmissions,	 forward-error	 correction,	 or	 other
reliability	 mechanisms	 such	 as	 bi-casting	 are	 required	 at	 the	 link	 layer.
Wireless	 sensor	 networks	 are	 usually	 required	 because	 of	 the	 absence	 of
wiring	 infrastructure.	 This	 also	 means	 that	 there	 are	 no	 power	 cables
either.	Conversely,	in	the	presence	of	wiring	infrastructure	to	supply	power
to	the	sensors,	it	is	possible	to	also	install	wired	communications.	A	common
setup	 requires	 that	 the	 sensors	 are	 battery-operated,	 but	 the	 sinks,	 or
gateways	to	external	networks,	are	main-powered.	Sinks	pass	so	much	data,
they	 would	 need	 huge	 batteries	 to	 last	 any	 sensible	 time	 period.	 As	 the
sensors	 are	 wireless,	 the	 power	 source	 must	 be	 local	 as	 well.	 To	 avoid
frequent	 servicing	 of	 the	 nodes,	 energy	 levels	 should	 be	 sustained	 at	 an
operating	level	of	the	sensor	and	the	associated	radio	as	long	as	possible.	To
alleviate	 the	 problem,	 energy	 harvesting	 could	 be	 used.	 Energy	 can	 be
harvested	 from	 solar	 radiation	 using	 solar	 cells,	 vibration	 scavengers,	 or
even	 from	 radio	 waves,	 as	 is	 done	 in	 some	 environmental	 monitoring
applications.

25.3.8	Traffic	Profile
As	 discussed	 earlier,	 SHM	 produces	 a	 large	 amount	 of	 traffic	 bursts.

Thus,	once	sensors	have	collected	enough	data,	they	need	to	transfer	those
data	to	the	sinks.	This	event	may	take	a	very	long	time.

25.3.9	Quality	of	Service
SHM	does	 not	 have	 any	 particular	 need	 for	Quality	 of	 Service	 (QoS).



The	 issue	 is	 mainly	 about	 reliable	 data	 delivery	 when	 monitoring
information	needs	to	be	transmitted	to	a	sink.

25.3.10	Security
Monitoring	 the	 health	 of	 structures	 saves	 lives	 and	 allows	 timely

response	to	emerging	problems.	The	data	provided	by	sensors	are	thus	very
important.	Not	only	must	the	network	provide	reliable	data	delivery,	but	it
also	must	support	the	ability	to	verify	the	data	source.	When	measurement
data	of	a	structure	are	collected,	one	must	be	able	to	trust	the	data.	Thus,
data	 origin	 authentication	 is	 a	 security	 feature	 that	 must	 be	 available.
Encryption	 of	 the	 transmitted	 data	 and	 eavesdropping	 is	 not	 a	 primary
concern.	The	sensor	data	are	mostly	public	information.

25.3.11	Deployment	Environment
The	 environment	 where	 SHM	 applications	 are	 deployed	 may

significantly	 vary	 from	 harsh	 outdoor	 environments	 to	 less	 demanding
indoor	 locations.	Both	cases	still	demand	unattended	operation	for	as	 long
as	 possible.	 Device	 failure	 is	 the	 only	 reason	 for	 a	 serviceman	 to	 appear.
Unrelated	 to	 the	 sensor	 network,	 if	 the	 data	 mining	 of	 the	 sensor	 data
reveals	potential	damage	to	the	structure	a	full-blown	investigation	will	be
carried	out.

25.4	Data	Acquisition	and	Analysis
As	 mentioned	 in	 the	 Introduction,	 two	 modes	 can	 be	 characterized

according	 to	 the	 analysis	 model	 used.	 In	 the	 off-line	 mode,	 data	 are
gathered	from	sensors	without	any	guarantee	of	the	timeliness	of	the	sensor
data	 samples.	 Usually,	 this	 type	 of	 solution	 is	 used	 when	 developing	 the
actual	algorithms	to	detect	novelty	or	 to	characterize	 the	sensor	signals	as
normal	 or	 faulty.	 The	 sole	 purpose	 in	 the	 off-line	 mode	 is	 to	 gather
representative	 data	 from	 the	 structure	 under	 observation.	These	 data	 are
then	analyzed	to	learn	how	to	detect	damages	from	observed	data	or	how	to
classify	states	of	normal	or	faulty	conditions.	This	research	phase	may	take
months	to	two	years.

If	 the	experimental	conditions	can	be	manipulated,	such	as	 in	research
structures	 in	 a	 laboratory	 environment,	 then	 these	 conditions	 need	 to	 be
stored	 with	 the	 time	 information.	 The	 time	 information	 is	 particularly
necessary	 when	 the	 conditions	 are	 aligned	 with	 the	 measurement	 time
series.	 This	 is	 a	 prerequisite	 for	 simulating	 an	 online	 detection	 system,
where	the	detection	decisions	take	place	as	soon	as	data	are	available	(real-
time	or	near-real-time	detection).	The	online	mode	would	be	the	preferred
mode	in	a	real	environment,	although	practical	considerations	may	hinder
making	real-time	or	near-real-time	decisions.



There	is	an	interesting	trade-off	between	the	computation	accomplished
in	 nodes	 and	 the	 communication	 needs	 between	 the	 sensor	 nodes.	 If	 data
analysis	can	be	performed,	even	at	a	low	level,	the	amount	of	communicated
data	 sent	 from	 a	 node	 may	 be	 reduced.	 For	 example,	 some	 form	 of
compression	may	be	used	to	summarize	data	before	sending	the	data	over	to
the	 central	 node.	 The	 form	 of	 compression	 may	 vary	 depending	 on	 the
models	 used	 in	 detection.	 Recent	 results	 with	 compressive	 sampling	 [31]
suggest	 that	 lower	 sampling	 frequencies	 may	 be	 used	 without	 losing
essential	information.

Assuming	that	a	database	of	sensor	network	measurements	is	available,
the	estimation	of	the	model	may	proceed.	Once	the	data	analyst	has	decided
what	 model	 class	 to	 use,	 he	 can	 learn	 or	 estimate	 the	 parameters	 of	 the
model	from	the	database.	The	detection	model	must	be	assessed	according
to	 two	criteria:	 the	probability	of	 false	alarms	and	 the	probability	of	 true
detection.	Estimating	 these	measures	 requires	 the	 truth	of	 the	 state	of	 the
bridge	 at	 the	 same	 time	 as	 decisions	 are	 made.	 As	 mentioned	 earlier,
damages	 can	 be	 simulated	 in	 laboratory	 conditions	 to	 create	 labeled	 data
(data	where	the	operating	condition,	damage	or	no	damage,	 is	known).	To
assess	 the	 overall	 diagnostic	 accuracy,	 Receiver	 Operating	 Characteristic
(ROC)	analysis	can	be	used	[233].	In	ROC	analysis,	the	true	positive	rate	is
compared	with	the	false-positive	rate	for	varying	decision	cut-off	points.	To
optimize	 the	 decisions	 for	 unseen	 data,	 so-called	 generalization	 must	 be
achieved.	 It	 is	 then	 possible	 to	 estimate	 generalization	 accuracy	 by
simulation	using	cross-validation	 techniques.	 In	cross-validation,	data	 that
have	 not	 been	 a	 part	 of	 the	 training	 set	 will	 be	 used	 to	 measure	 the
detector’s	ability	to	alert	alarming	situations	outside	the	training	data,	and
therefore	 the	model	 building	 effort	 as	 a	whole.	The	 best	model	 is	 the	 one
that	has	the	best	generalization	ability	among	all	models.

	
25.5	Future	Applications	and	Outlook
One	 can	 expect	 a	 growing	 body	 of	 applications	 around	 networked

monitoring	of	structures,	both	small	and	large.	Interesting	applications	can
be	seen	in	ski	lifts,	ferris	wheels,	roller	coasters,	etc.	The	key	factor	in	these
applied	 use	 cases	 is	 the	 health	 and	 safety	 of	 humans	 in	 man-made
structures.

	
25.6	Conclusions
SHM	 is	 yet	 another	key	area	where	 smart	 object	networks	will	 play	a

central	 role.	 Structures	 such	 as	 buildings,	 bridges,	 dams,	 or	 heavy



machinery	are	 expensive	and	used	by	millions	of	people	 in	 their	 everyday
life,	 thus	monitoring	 their	 health	 is	 critical.	 Various	models	 to	 sense	 and
process	the	data	have	been	presented	(off-line	vs.	distributed)	to	carry	large
amounts	 of	 bursty	 traffic	 with	 a	 high	 level	 of	 reliability;	 a	 must	 have	 in
these	networks.

Although	 sensors	 may	 be	 retrofitted	 in	 existing	 infrastructures	 using
wireless	sensor	networks,	sensors	will	more	than	likely	become	part	of	 the
structure	and	be	powered	by	energy	harvesting.

	



Chapter	26	Container	Tracking
	

In	the	information	age,	it	is	easy	to	forget	that	global	trade	is	as	much	about
physical	 items	 being	moved	 across	 the	world	 as	 it	 is	 about	 information	 being
transferred	across	the	Internet.	Every	day	there	are	over	6	billion	tons	of	goods
transported	in	over	12	million	containers	across	the	world.	In	the	United	States
alone	over	17,000	containers	are	loaded	and	unloaded	every	day.

Approximately	90%	of	the	world’s	traded	goods	are	shipped	inside	so-called
intermodal	 containers	 used	 for	 loading	 goods	 onto	 ships,	 trains,	 and	 freighter
airplanes.	 Intermodal	 containers	 come	 in	 several	 formats,	 some	 of	 which	 are
specified	by	 ISO	standards.	For	 intermodal	 container	 shipping,	 there	 is	 a	 large
installed	 base	 infrastructure	 of	 loading	 cranes,	 shipping	 docks,	 and	 freighter
ships.

Smart	object	technology	is	increasingly	being	used	to	track	the	movement	of
containers	as	they	are	transported	on	ships,	at	ports,	and	through	exchange	points
at	places	around	 the	world.	Smart	objects	can	be	 installed	 in	 the	containers,	 in
container	 locks,	 or	 in	 devices	 that	 are	 attached	 to	 the	 inside	 or	 outside	 of	 the
containers.	The	ability	to	retrofit	existing	containers	with	smart	objects	is	a	key
requirement,	as	the	predicted	lifetime	of	a	container	is	many	years.

The	 ability	 to	 track	 the	 goods	 as	 they	 are	 shipped	 across	 the	 world	 is
tremendously	beneficial	for	both	the	shipping	company	as	well	as	its	customers.
The	shipping	companies	are	able	to	verify	that	the	location	of	the	goods	is	what
the	company	expects	it	to	be,	as	well	as	to	gauge	the	time	delay,	should	there	be
problems	with	the	shipment.	Likewise,	customers	are	able	to	track	their	goods	as
they	are	 transported	by	 the	 shipping	company	providing	an	added	value	 to	 the
customer.

Container	tracking	is	not	only	about	tracking	the	location	of	the	containers,
however.	With	the	ability	to	track	goods	and	containers,	additional	services	can
be	added.	Container	 security	 is	perhaps	 the	most	 apparent	one.	With	container
security	tracking,	the	shipping	company	is	informed	instantly	when	the	integrity
of	its	container	is	breached.	Thus	the	shipment	can	be	immediately	stopped	and
inspected	at	the	next	port	or	exchange	point.

Security	 tracking	 is	 not	 the	 only	 application	 of	 smart	 object	 container
tracking.	 The	 goods	 inside	 the	 containers	 can	 be	 monitored	 using	 sensor-



equipped	smart	objects	placed	inside	the	containers.	These	sensors	can	monitor
temperature,	humidity,	and	vibration	conditions	for	the	goods	in	the	containers.
This	 information	 helps	 the	 customers	 assess	 the	 status	 of	 their	 goods	 after
shipment	is	complete.	This	is	of	particular	interest	for	the	shipment	of	foodstuffs
and	other	goods	that	are	sensitive	to	the	transportation	environment.	The	sensor
information	can	be	stored	by	 the	smart	object	and	 transmitted	as	 the	goods	are
unloaded,	or	transmitted	in	real	time	to	the	shipping	company.

Container	tracking	has	previously	been	implemented	using	bar	codes	and	bar
code	readers	allowing	a	coarse-grained	tracking	of	the	goods.	Bar	codes	require
a	 substantial	 amount	 of	 human	 labor,	 however,	 increasing	 the	 cost	 of	 the
solution.	 Subsequently,	RFID	 tags	 have	 been	 used	 for	 similar	 purposes.	RFID
readers	 are	 available	 at	 ports	 and	unloading	points	 and	 can	 automatically	 scan
large	numbers	of	RFID	tags,	reducing	the	handling	costs.

Bar	codes	and	RFID	tags	can	only	be	used	to	track	the	location	of	containers
at	 each	 unloading	 location.	 They	 cannot	 be	 used	 for	 real-time	 tracking	 or	 for
additional	 services	 such	 as	 lock	 security	 or	 sensor	 monitoring.	 For	 these
services,	smart	objects	are	needed.

Two	commercially	deployed	smart	object-based	container	tracking	systems,
the	GE	CommerceGuard	 system	 and	 the	 IBM	Secure	 Trade	 Lane	 system,	 are
discussed	next.

26.1	GE	CommerceGuard
The	GE	CommerceGuard	 system	provides	 global	 tracking	 of	 containers	 as

well	as	 immediate	notification	 if	 the	security	of	 the	container	 is	breached.	The
system	 is	 semi-IP-based	 where	 the	 end	 devices	 are	 not	 IP	 end	 points,	 but
communicate	 with	 fixed	 readers	 that	 are	 IP	 end	 points.	 The	 CommerceGuard
system	was	developed	in	2002	by	the	company	AllSet	Marine	Security	AB	and
sold	to	General	Electric	in	2005.	Its	container	security	device	and	attachment	to
an	intermodal	container	are	shown	in	Figure	26.1.

Figure	 26.1	 The	 CommerceGuard	 container	 security	 device	 (left)	 and	 the
lock	installed	in	an	intermodal	container	(right).
	



The	CommerceGuard	system	consists	of	two	components:	container	security
devices	and	readers.	The	container	security	devices	are	placed	on	the	containers
and	 communicate	 with	 the	 readers.	 Readers	 are	 placed	 both	 at	 ports	 and
reloading	locations	as	well	as	on	the	ships.	There	are	also	mobile	readers	that	are
attached	to	mobile	phones	or	laptops.

The	 readers	 communicate	 with	 the	 container	 security	 device	 using	 a	 low-
power	radio	and	a	proprietary	protocol.	The	readers	are	connected	to	the	Internet
and	 communicate	 using	 TCP/IP	 over	 an	 Inmarsat	 satellite	 connection.	 The
readers	have	contact	with	a	database	that	maintains	the	location	of	all	container
security	devices	in	the	system.	Customers	and	users	can	interact	with	the	system
through	the	database.	The	CommerceGuard	architecture	is	shown	in	Figure	26.2.

Figure	 26.2	 CommerceGuard	 architecture:	 container	 security	 devices
communicate	 either	 with	 dedicated,	 fixed	 readers,	 or	 with	 a	 phone,	 and	 the
reader	 or	 phone	 sends	 the	 packets	 over	 the	 Internet	 to	 a	 database	 from	which
customers	download	tracking	data.
	

The	 container	 security	 device	 consists	 of	 a	 microprocessor,	 a	 radio
transceiver,	 a	 power	 source	 in	 the	 form	 of	 a	 battery,	 and	 a	 set	 of	 sensors.
Different	container	security	devices	have	different	configurations	of	the	sensors,
but	 all	 container	 security	 devices	 have	 a	 sensor	 that	 detects	 the	 opening	 and
closing	of	the	door.	The	door	sensor	can	also	detect	if	someone	is	trying	to	open
the	door,	but	fails.

Container	security	devices	can	be	equipped	with	additional	sensors	such	as
temperature,	 humidity,	 vibration,	 radioactivity,	 and	motion.	A	particular	 set	 of
sensors	 is	configured	depending	on	the	goods	transported	in	 the	container.	The



sensors	 collect	 data	 for	 storage	 and	 act	 on	 the	 data	 according	 to	 a	 set	 of
application-specific	rules.

The	 radio	 transceiver	 on	 the	 container	 security	 device	 is	 duty	 cycled	 to
provide	 a	 long	 lifetime	 when	 running	 on	 batteries.	 The	 reader	 and	 security
device	communicate	using	an	out-of-band	protocol	to	establish	a	duty	cycle	that
fits	 the	activities	of	 the	 location	at	which	 the	 reader	 is	deployed.	Readers	on	a
ship,	where	containers	are	likely	to	be	present	for	a	longer	time	and	where	there
is	no	container	mobility,	announce	a	duty	cycle	that	allows	the	security	devices
to	keep	the	radio	off	most	of	the	time.	In	contrast,	readers	placed	at	a	busy	sea
port	 with	 high	 container	 mobility	 announce	 a	 high	 duty	 cycle.	 Thus	 security
devices	 keep	 their	 radio	 on	 for	 longer	 amounts	 of	 time,	 allowing	 for	 more
frequent	 communication	with	 readers.	This	 allows	 the	 readers	 to	 communicate
with	security	devices	as	they	are	moved	between	ships	and	freighter	trucks	while
maintaining	low-power	consumption	for	the	security	devices.

Readers	 are	 either	 standalone	 fixed	 readers	 as	 shown	 in	 Figure	 26.3	 or
implemented	 as	 an	 add-on	 to	 a	 phone.	 The	 purpose	 of	 the	 reader	 is	 to
communicate	with	the	container	security	device	using	the	short-range	radio.	The
readers	run	the	uIP	IP	stack	[64].	The	IP	stack	enables	IP-based	communication
with	 the	 device.	 This	 reduces	 the	 need	 for	 custom	 communication	 software,
leading	to	lower	deployment	costs.

Figure	26.3	Fixed	reader.
	

Users	and	customers	interact	with	the	CommerceGuard	system	using	a	web
browser,	 as	 shown	 in	 Figure	 26.4.	 The	 user	 interacts	 with	 the	 database	 that
contains	information	about	the	security	device’s	location	and	physical	conditions
inside	the	containers	to	which	they	are	attached.



Figure	26.4	The	user	interface	of	the	CommerceGuard	system	running	on	a
laptop.
	

	
26.2	IBM	Secure	Trade	Lane
The	 IBM	 Secure	 Trade	 Lane	 (STL)	 system	 was	 recently	 developed	 for

container	 tracking	and	secure	management	 for	 IBM	by	ETH	in	Zürich	 in	2006
[58].	The	STL	system	consists	of	a	container	security	device	called	the	tamper-
resistant	embedded	controller	(TREC),	which	communicates	with	a	database	that
tracks	the	movement	of	the	container	to	which	the	TREC	is	attached.

Similar	 to	 the	 CommerceGuard	 system,	 the	 TREC	 device	 contains	 a
microprocessor,	 sensors,	 and	 several	 communication	 options.	 Unlike	 the
CommerceGuard	 system,	which	 required	 a	 reader	device	 to	 communicate	with
the	security	devices,	the	TREC	is	able	to	directly	communicate	with	the	Internet
using	its	onboard	General	Packet	Radio	System	(GPRS)	communication	device.
A	block	diagram	of	the	TREC	is	shown	in	Figure	26.5.



Figure	26.5	A	block	diagram	of	the	TREC	and	its	connections.
	

The	 TREC	 contains	 three	 different	 communication	 devices:	 a	 GPRS
interface	that	provides	Internet	connectivity	when	the	device	is	within	range	of	a
mobile	telephony	system;	a	satellite	communication	system	that	allows	Internet
connectivity	 when	 the	 device	 is	 at	 sea,	 where	 there	 is	 little	 or	 no	 GPRS
coverage;	and	an	802.15.4	low-power	radio	transceiver,	which	is	used	for	short-
range	 communication	 such	 as	with	 a	mobile	 reader	 terminal.	Additionally,	 the
802.15.4	device	can	be	used	for	communicating	with	a	gateway	device,	which	in
turn	connects	to	the	Internet.

All	communication	devices	are	used	to	send	information	about	the	system	to
a	 database	 server	 over	 the	 Internet.	The	 ability	 to	 use	 the	 Internet	 to	 transport
information	 significantly	 reduces	management	 overhead	 due	 to	 the	 ubiquitous
presence	of	Internet	connectivity.

The	CommerceGuard	system	and	 the	 IBM	STL	system	show	 the	 transition
from	 semi-IP-based	 systems	 to	 fully	 IP-based	 systems.	 The	 CommerceGuard
system	used	IP	at	the	readers	but	did	not	fully	run	IP	to	the	end	points.	The	more
recent	 IBM	 STL	 system	 runs	 IP	 all	 the	 way	 into	 the	 containers,	 making
management	of	the	system	easier.

	
26.3	Conclusions
Global	trade	relies	on	the	efficient	shipment	of	goods	since	90%	of	all	goods

are	shipped	in	containers.	The	ability	to	track	the	location	of	such	containers	and
to	continuously	and	remotely	inspect	their	status	helps	both	shipping	companies
and	 their	 customers.	 Because	 of	 its	 success,	 smart	 object	 technology	 is
increasingly	being	used	for	global	container	tracking.

We	 provide	 an	 overview	 of	 two	 container	 tracking	 systems:	 the	 GE



CommerceGuard,	 developed	 in	 2002,	 and	 the	 IBM	 Secure	 Trade	 Lane,
developed	 in	 2006.	 The	 GE	 CommerceGuard	 is	 semi-IP-based	 where	 IP	 end
points	are	located	at	ships	and	ports,	but	the	containers	are	not	IP	end	points.	The
IBM	STL	system	places	the	IP	end	points	at	every	container,	relying	on	the	now-
established	 infrastructure	 of	 Internet	 connectivity	 through	 satellite	 and	 GPRS
connections.	 These	 are	 both	 examples	 of	 IP-based	 smart	 object	 systems	 that
show	the	trend	of	pushing	IP	further	into	the	actual	devices.
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