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Introduction

The course Introduction to Intelligent Data Analysis (IDA) has been devel-
oped to fill the gap between an introductory bachelor course in probability
and statistics, and the more advanced data analysis courses, such as statis-
tical learning and data mining. IDA is a required course for the CI-track of
the ACI master program.

Basically, IDA is an introductory statistical data analysis course, but we
thought it would be a good idea marketingwise to have te word intelligent
in the title. The central topic of the course is modelling relations between
variables. We estimate (learn in AI terminology) these models from a set of
observations

T = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Here n is the number of observations in training sample T . More specifi-
cally we are looking at the relation between one or more explanatory (also
called independent) variables x = x1, x2, . . . , xp, and a response (also called
dependent) variable y.

To illustrate, we consider an example from economics. Suppose we want
to explain or predict the weekly expenditures on food (y) of households.
Common sense suggests that the number of people in the household (x1),
and the weekly household income (x2) may be relevant predictors for y:

y = f(x1, x2) + ε (1)

Here f is an as yet unspecified function: our common sense does not reveal
a functional form for the relation. Note that the relation between y and
x1, x2 is not deterministic, but contains a random component ε. What this
says is that even when we know the value of x1 and x2, the value of y is
not uniquely determined. Suppose we were to gather data on all households
with four people and weekly income of e500. We do not expect all these
households to spend exactly the same amount on food! This variation is due
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to the fact that we normally can not include all the variables that influence y.
But we want to include the important influences in the model. Equation (1)
is still not detailed enough, and to get a grip we typically (at least initially)
assume that the relation between y and its predictors is linear:

y = β0 + β1x1 + β2x2 + ε (2)

To estimate equation (2) from data we can use a technique called linear
regression. This is more or less the work horse of data analysis, and we will
be spending quite some time on it. We will also see that the assumption
of linearity is not so restrictive as it may seem at first sight. The reason to
devote quite some time to the linear regression model is that we can learn
a lot about general problems of data analysis by studying this relatively
simple model. General issues such as the problem of overfitting and model
specification can be analysed and understood more easily for linear regression
than for complex models such as neural networks or other advanced data
analysis techniques.

Linear regression is applicable when the dependent variable is numeric
and can take on a lot of different values, such as in the food expenditure
example. There are also a lot of problems where the dependent variable is a
yes/no variable. Suppose, for example, that we want to predict whether an
incoming e-mail message is spam or not. Anyone who has received spam can
think of a number of good indicators, e.g. the fraction of capital letters in
the message, or the number of occurrences of the word “free”.

We could label a number of e-mail messages “by hand”, i.e. we could
study the messages and decide whether its spam or not, and use this data
set to estimate a model

P (y = 1) = f(x1, x2) (3)

Here y = 1 denotes a spam-message, and y = 0 a non-spam message. What
we are saying in equation (3) is that the probability that we are dealing with
a spam message depends on the value of x1 (fraction of capital letters) and
x2 (number of occurrences of “free”). Again, we have not yet specified the
functional form of this relationship. A popular technique for this type of
problem is logistic regression. A different technique that can by used for the
same type of problem is called discriminant analysis. Both approaches will
be discussed in this course.

In summary then, the three main modelling techniques we discuss are:
linear regression, logistic regression and discriminant analysis. For all these
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techniques we study the important issues of: model specification, interpreta-
tion, estimation, testing, prediction, and model selection.

We conclude this introduction with an overview of the following chapters.
The first three chapters (Probability, Sampling and sampling distributions,
and Statistical Inference) do not belong to the required literature of this
course, but contain a short review of material that is assumed known in the
course. The chapters are provided as a service to the student. Chapter four
deals with linear regression, the model that will be treated in the most detail.
In chapter five we discuss logistic regression, and in chapter six statistical
discriminant analysis. In chapter seven, we discuss a number of computer
intensive techniques such as cross-validation and bootstrapping.

Most of the statistical procedures we study follow the frequentist approach
to statistical inference. In chapter eight we look at a different school of
thought called Bayesian statistics.
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Chapter 1

Probability

The most important tool in statistical inference is probability theory. This
chapter provides a short review of the important concepts.

1.1 Random Experiments

A random experiment is an experiment that satisfies the following conditions

1. all possible distinct outcomes are known in advance,

2. in any particular trial, the outcome is not known in advance, and

3. the experiment can be repeated under identical conditions.

The outcome space Ω of an experiment is the set of all possible outcomes
of the experiment.

Example 1 Tossing a coin is a random experiment with outcome space Ω
= {H,T}

Example 2 Rolling a die is a random experiment with outcome space Ω =
{1,2,3,4,5,6}

Something that might or might not happen, depending on the outcome of
the experiment, is called an event. Examples of events are “coin lands heads”
or “die shows an odd number”. An event A is represented by a subset of the
outcome space. For the above examples we have A = {H} and A = {1,3,5}
respectively. Elements of the outcome space are called elementary events.
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1.2 Classical definition of probability

If all outcomes in Ω are equally likely, the probability of A is the number
of outcomes in A, which we denote by N(A) divided by the total number of
outcomes N

P (A) =
N(A)

N

If all outcomes are equally likely, the probability of {H} in the coin tossing
experiment is 1

2
, and the probability of {5,6} in the die rolling experiment is

1
3
. The assumption of equally likely outcomes limits the application of the

concept of probability: what if the coin or die is not ‘fair’? Nevertheless there
are random experiments where this definition of probability is applicable,
most importantly in the experiment of random selection of a unit from a
population. This special and important kind of experiment is discussed in
the section 2.

1.3 Frequency definition of probability

Recall that a random experiment may be repeated under identical condi-
tions. When the number of trials of an experiment is increased indefinitely,
the relative frequency of the occurrence of an event approaches a constant
number. We denote the number of trials by n, and the number of times A
occurs by n(A). The frequency definition of probability states that

P (A) = lim
n→∞

n(A)

n

The law of large numbers states that this limit does indeed exist. For a
small number of trials, the relative frequencies may show strong fluctuation as
the number of trials varies. The fluctuations tend to decrease as the number
of trials increases.

Figure 1.1 shows the relative frequencies of heads in a sequence of 1000
coin tosses as the sequence progresses. In the beginning there is quite some
fluctuation, but as the sequence progresses, the relative frequency of heads
settles around 0.5.
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Figure 1.1: Relative frequency of heads in a sequence of 1000 coin tosses

1.4 Subjective definition of probability

Because of the demand of repetition under identical circumstances, the fre-
quency definition of probability is not applicable to every event. According
to the subjective definition, the probability of an event is a measure of the
degree of belief that the event will occur (or has occured). Degree of belief
depends on the person who has the belief, so my probability for event A may
be different from yours.

Consider the statement: “There is extra-terrestrial life”. The degree of
belief in this statement could be expressed by a number between 0 and 1.
According to the subjectivist definition we may interpret this number as the
probability that there is extra-terrestrial life.

The subjective view allows the expression of all uncertainty through prob-
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ability. This view has important implications for statistical inference (see
section 8).

1.5 Probability axioms

Probability is defined as a function from subsets of Ω to the real line IR, that
satisfies the following axioms

1. Non-negativity: P (A) ≥ 0

2. Additivity: If A ∩B = ∅ then P (A ∪B) = P (A) + P (B)

3. P (Ω) = 1

The classical, frequency and subjective definitions of probability all satisfy
these axioms. Therefore every property that may be deduced from these
axioms holds for all three interpretations of probability.

1.6 Conditional probability and independence

The probability that event A occurs may be influenced by information con-
cerning the occurrence of event B. The probability of event A, given that B
will occur or has occurred, is called the conditional probability of A given
B, denoted by P (A |B). It follows from the axioms of probability that

P (A |B) =
P (A ∩B)

P (B)

for P (B) > 0. Intuitively we can appreciate this equality by considering that
B effectively becomes the new outcome space. The events A and B are called
independent if the occurrence of one event does not influence the probability
of occurrence of the other event, i.e.

P (A |B) = P (A) , and consequently P (B |A) = P (B)

Since independence of two events is always mutual, it is more concisely ex-
pressed by the product rule

P (A ∩B) = P (A) P (B)
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1.7 Random variables

A random variable X is a function from the outcome space Ω to the real line

X : Ω → IR

Example 3 Consider the random experiment of tossing a coin twice, and
observing the faces turning up. The outcome space is

Ω = {(H, T ), (T,H), (H, H), (T, T )}

The number of heads turning up is a random variable defined as follows

X((H, T )) = X((T, H)) = 1 , X((H, H)) = 2 , X((T, T )) = 0

1.8 Probability distribution

A probability function p assigns to each possible realisation x of a discrete
random variable X the probability p(x), i.e. P (X = x). From the axioms of
probability it follows that p(x) ≥ 0 , and

∑
x p(x) = 1.

Example 4 The number of heads turning up in two tosses of a fair coin is a
random variable with the following probability function: p(1) = 1/2, p(0) =
1/4, p(2) = 1/4.

Since for continuous random variables, P (X = x) = 0, the concept of a
probability function is useless. The probability distribution is now specified
by representing probabilities as areas under a curve. The function f : IR →
IR+ is called the probability density of X if for each pair a ≤ b,

P (a < X ≤ b) =

∫ b

a

f (x) dx

It follows from the probability axioms that f (x) ≥ 0 and
∫∞
−∞ f (x) dx = 1.

Example 5 Consider the random variable X with the following density func-
tion

f (x) =

{
1
2

for 0 ≤ x ≤ 2
0 otherwise

It follows that

P (1/2 < X ≤ 5/4) =

∫ 5/4

1/2

1/2dx = 1/2x|5/4
1/2 = 3/4
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The distribution function is defined for both discrete and continuous ran-
dom variables as the function F which gives for each x ∈ IR the probability
of an outcome of X at most equal to x:

F (x) = P (X ≤ x), for x ∈ IR

1.9 Expectation

For a discrete random variable, the expected value or mean is defined as

E(X) =
∑

x

x p(x) , and E[h(X)] =
∑

x

h(x) p(x)

for arbitrary function h : IR → IR.

Example 6 Consider once more the coin tossing experiment of example 4
and corresponding probability distribution. The expected value or mean of X
is

E(X) = 1/2 · 1 + 1/4 · 2 + 1/4 · 0 = 1

The definition of expectation for a continuous random variable is analo-
gous, with summation replaced by integration.

E(X) =

∫ ∞

−∞
x f(x) dx , and E[h(X)] =

∫ ∞

−∞
h(x) f(x) dx

Example 7 (Continuation of example 5) The mean or expected value of the
random variable with probability density given in example 5 is

E(X) =

∫ 2

0

1

2
dx =

1

2
x

∣∣∣∣2
0

=
1

2
· 2− 1

2
· 0 = 1

The expected value E(X) of a random variable is usually denoted by µ. The
variance σ2 of a random variable is a measure of spread around the mean
obtained by averaging the squared differences (x− µ)2, i.e.

σ2 = V(X) = E(X − µ)2

The standard deviation σ =
√

σ2 has the advantage that it has the same
dimension as X.
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x 4 6 8 10 12
p(x |C) 1/9 2/9 1/3 2/9 1/9

Table 1.1: Conditional probability function p(x |C)

1.10 Conditional probability distributions and

expectation

For a discrete random variable X we define a conditional probability function
as follows

p(x |C) = P (X = x |C) =
P ({X = x} ∩ C)

P (C)

Example 8 Two fair dice are rolled, and the numbers on the top face are
noted. We define the random variable X as the sum of the numbers showing.
For example X((3, 2)) = 5. Consider now the event C : both dice show an
even number. We have P (C) = 1

4
and P ({X = 6} ∩ C) = 1

18
since

C = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}
{X = 6} ∩ C = {(2, 4), (4, 2)}

The probability of {X = 6} given C therefore is

P (X = 6 |C) =
P ({X = 6} ∩ C)

P (C)
=

1/18

1/4
=

2

9

The conditional probability function of X is shown in table 1.1. The condi-
tional expectation of X given C is: E(X |C) =

∑
x x p(x |C) = 8.

For continuous random variable X, the conditional density f(x |C) of X
given C is

f(x |C) =

{
f(x)/P (C) for x ∈ C

0 otherwise

13



1.11 Joint probability distributions and inde-

pendence

The joint probability distribution of a pair of discrete random variables
(X,Y ) is uniquely determined by their joint probability function p : IR2 → IR

p(x, y) = P ((X, Y ) = (x, y)) = P (X = x, Y = y)

From the axioms of probability it follows that p(x, y) ≥ 0 and
∑

x

∑
y p(x, y) =

1.
The marginal probability function pX(x) is easily derived from the joint

distribution

pX(x) = p(X = x) =
∑

y

P (X = x, Y = y) =
∑

y

p(x, y)

The conditional probability function of X given Y = y

p(x | y) =
P (X = x, Y = y)

P (Y = y)
=

p(x, y)

pY (y)

Definitions for continuous random variables are analogous with summation
replaced by integration. The function f : IR2 → IR is the probability density
of the pair of random variables (X, Y ) if for all a ≤ b and c ≤ d

P (a < X ≤ b, c < Y ≤ d) =

∫ b

a

∫ d

c

f(x, y) dx dy

From the probability axioms it follows that

1. f(x, y) ≥ 0

2.
∫∞
−∞

∫∞
−∞ f(x, y) dx dy = 1

The marginal distribution of X is obtained from the joint distribution

fX(x) =

∫ ∞

−∞
f(x, y) dy

and the conditional density of X given {Y = y} is

f(x | y) =
f(x, y)

fY (y)
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According to the product rule discussed in section 1.6, the events {X = x}
and {Y = y} are independent iff

P (X = x, Y = y) = P (X = x)P (Y = y)

We now generalize the concept of independence to pairs of random variables.
Discrete random variables X and Y are independent iff

p(x, y) = pX(x)pY (y) for all (x, y),

and as a consequence p(x | y) = pX(x), and p(y |x) = pY (y). Definitions
are completely analogous for continuous random variables, with probability
functions replaced by probability densities.

1.12 The law of total probability

In some cases the (unconditional) probability of an event may not be cal-
culated directly, but can be determined as a weighted average of various
conditional probabilities.

Let B1, B2, . . . , Bs be a partition of Ω, that is Bi ∩ Bj = ∅ for all i 6= j
and

⋃s
i=1 Bi = Ω. It follows from the axioms of probability that

P (A) =
s∑

i=1

P (A|Bi)P (Bi)

Example 9 Consider a box containing three white balls and one red ball.
First we draw a ball at random, i.e. all balls are equally likely to be drawn
from the box. Then a second ball is drawn at random (the first ball has not
been replaced in the box). What is the probability that the second draw yields a
red ball? This is most easily calculated by averaging conditional probabilities.

P (R2) = P (R2|W1)P (W1) + P (R2|R1)P (R1) = 1/3 · 3/4 + 0 · 1/4 = 1/4,

where Ri stands for “a red ball is drawn on i-th draw” and Wi for “a white
ball is drawn on i-th draw”.

15



T+ T−

D 0.95 0.05
D̄ 0.02 0.98

Table 1.2: Performance of diagnostic test

1.13 Bayes’ rule

Bayes’ rule shows how probabilities change in the light of evidence. It is
a very important tool in Bayesian statistical inference (see section 8). Let
B1, B2, . . . , Bs again be a partition of Ω. Bayes’ rule follows from the axioms
of probability

P (Bi|A) =
P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)

Example 10 Consider a physician’s diagnostic test for the presence or ab-
sence of some rare disease D, that only occurs in 0.1% of the population, i.e.
P (D) = .001. It follows that P (D̄) = .999, where D̄ indicates that a person
does not have the disease. The probability of an event before the evaluation of
evidence through Bayes’ rule is often called the prior probability. The prior
probability that someone picked at random from the population has the disease
is therefore P (D) = .001.

Furthermore we denote a positive test result by T+, and a negative test
result by T−. The performance of the test is summarized in table 1.2.

What is the probability that a patient has the disease, if the test result is
positive? First, notice that D, D̄ is a partition of the outcome space. We
apply Bayes’ rule to obtain

P (D|T+) =
P (T+|D)P (D)

P (T+|D)P (D) + P (T+|D̄)P (D̄)
=

.95 · .001

.95 · .001 + .02 · .999
= .045.

Only 4.5% of the people with a positive test result actually have the disease.
On the other hand, the posterior probability (i.e. the probability after evalu-
ation of evidence) is 45 times as high as the prior probability.
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1.14 Some named discrete distributions

A random experiment that only distinguishes between two possible outcomes
is called a Bernoulli experiment. The outcomes are usually referred to as suc-
cess and failure respectively. We define a random variable X that denotes the
number of successes in a Bernoulli experiment; X consequently has possible
values 0 and 1. The probability distribution of X is completely determined
by the probability of success, which we denote by π, and is: p(X = 0) = 1−π
and p(X = 1) = π. It easily follows that E(X) = µ = π and σ2 = π(1− π).

A number of independent, identical repetitions of a Bernoulli experiment
is called a binomial experiment. We denote the number of successes in a
binomial experiment by Y which has possible values 0, 1, . . . , n (where n is
the number of repetitions). Any particular sequence with y successes has
probability

πy(1− π)n−y

since the trials are independent. The number of distinct ways y successes
may occur in a sequence of n is(

n
y

)
=

n!

y!(n− y)!

so the probability distribution of Y is

p(y) =

(
n
y

)
πy(1− π)n−y for y = 0, 1, . . . , n.

We indicate that Y has binomial distribution with parameters n and π by
writing Y ∼ B(n, π) (∼ should be read “has distribution”). We can derive
easily that E(Y ) = µ = nπ and σ2 = nπ(1− π).

The multinomial distribution is a generalization of the binomial distribu-
tion to random experiments with m ≥ 2 possible outcomes or categories. Let
yi denote the number of results in category i, and let πi denote the probabil-
ity of a result in the ith category on each trial (with

∑m
i=1 πi = 1). The joint

probability distribution of Y1, Y2, . . . , Ym for a sequence of n trials is

P (Y1 = y1, Y2 = y2, . . . , Ym = ym) =
n!

y1! y2! . . . ym!
πy1

1 πy2

2 . . . πym
m

The product of powers of the πi represents the probability of any particular
sequence with yi results in category i for each 1 ≤ i ≤ m, and the ratio of
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factorials indicates the number distinct sequences with yi results in category
i for each 1 ≤ i ≤ m.

A random variable Y has Poisson distribution with parameter µ if it has
probability function

p(y) =
µy

y!
e−µ for y = 0, 1, 2, . . .

where the single parameter µ is a positive real number. One can easily show
that E(Y ) = V(Y ) = µ. We write Y ∼ Po(µ). Use of the Poisson distribution
as an approximation to the binomial distribution is discussed in chapter 2.

1.15 Some named continuous distributions

Continuous distributions of type

f (y) =

{
1

β−α
for α ≤ y ≤ β

0 otherwise

are called uniform distributions, denoted U(α, β). Mean and variance are
respectively

µ =
α + β

2
, and σ2 =

(β − α)2

12

Continuous distributions of type

f(y) =
e−(y−µ)2/(2σ2)

σ
√

2π
for y ∈ IR

with σ > 0 are called normal or Gaussian distributions. Mean µ and variance
σ2 are the two parameters of the normal distribution, which we denote by
N (µ, σ2). The special case with µ = 0 and σ2 = 1, is called the standard-
normal distribution. A random variable of this type is often denoted by Z,
i.e. Z ∼ N (0, 1). If the distribution of a random variable is determined by
many small independent influences, it tends to be normally distributed. In
the next section we discuss why the normal distribution is so important in
statistical inference.

The binormal distribution is a generelization of the normal distribution to
the joint distribution of pairs (X, Y ) of random variables. Its parameters are
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µx, µy, σ2
x, σ2

y , and correlation coefficient ρ, with σ2
x, σ2

y > 0 and −1 ≤ ρ ≤ 1.
We write

(X,Y ) ∼ N 2(µx, µy, σ
2
x, σ

2
y , ρ)

The parameter ρ is a measure for the linear dependence between X and Y .
Further generelization to the joint distribution of m ≥ 2 random variables
Y1, Y2, . . . , Ym yields the multivariate normal distribution. For convenience
we switch to matrix notation for the parameters

(Y1, Y2, . . . , Ym) ∼ Nm(µ, Σ)

where µ = (µ1, µ2, . . . , µm) is the vector of means and Σ is an m×m covari-
ance matrix. The diagonal elements of Σ contain the variances (σ2

1, σ
2
2, . . . , σ

2
m)

and element (i, j) with i 6= j contains the covariance between Yi and Yj.
A random variable T has exponential distribution with rate λ (λ > 0) if

T has probability density

f(t) = λ e−λ t (t ≥ 0)

We may think of T as a random time of some kind, such as a time to failure
for artifacts, or survival times for organisms. With T we associate a survival
function

P (T > s) =

∫ ∞

s

f(t)dt = e−λs

representing the probability of surviving past time s. Characteristic for the
exponential distribution is that it is memoryless, i.e.

P (T > t + s |T > t) = P (T > s) (t ≥ 0, s ≥ 0)

Given survival to time t, the chance of surviving a further time s is the same
as surviving to time s in the first place. This is obviously not a good model
for survival times of systems with aging such as humans. It is however a
plausible model for time to failure of some artifacts that do not wear out
gradually but stop functioning suddenly and unpredictably.

A random variable Y has a Beta distribution with parameters l > 0 and
k > 0 if it has probability density

f(y) =
yl−1(1− y)k−1∫ 1

0
yl−1(1− y)k−1dy

(0 ≤ y ≤ 1)

For the special case that l = k = 1 this reduces to a uniform distribution over
the interval [0, 1]. The Beta distribution is particularly useful in Bayesian
inference concerning unknown probabilities, which is discussed in chapter 8.
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Chapter 2

Sampling and sampling
distributions

In many cases we would like to learn something about a big population, with-
out actually inspecting every unit in that population. In that case we would
like to draw a sample that permits us to draw conclusions about a population
of interest. We may for example draw a sample from the population of Dutch
men of 18 years and older to learn something about the joint distribution of
height and weight in this population.

Because we cannot draw conclusions about the population from a sample
without error, it is important to know how large these errors may be, and
how often incorrect conclusions may occur. An objective assessment of these
errors is only possible for a probability sample. For a probability sample, the
probability of inclusion in the sample is known and positive for each unit in
the population. Drawing a probability sample of size n from a population
consisting of N units, may be a quite complex random experiment. The
experiment is simplified considerably by subdividing it into n experiments,
consisting of drawing the n consecutive units. In a simple random sample the
n consecutive units are drawn with equal probabilities from the units con-
cerned. In random sampling with replacement the subexperiments (drawing
of one unit) are all identical and independent: n times a unit is randomly
selected from the entire population. We will see that this property simplifies
the ensuing analysis considerably.

For units in the sample we observe one or more population variables. For
probability samples, each draw is a random experiment. Every observation
may therefore be viewed as a random variable. The observation of a popula-
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Unit 1 2 3 4 5 6
X 1 1 2 2 2 3

Table 2.1: A small population

x 1 2 3
p1(x) = p2(x) 1/3 1/2 1/6

Table 2.2: Probability distribution of X1 and X2

tion variable X from the unit drawn in the ith trial, yields a random variable
Xi. Observation of the complete sample yields n random variables X1, ..., Xn.
Likewise, if we observe for each unit the pair of population variables (X ,Y),
we obtain pairs of random variables (Xi, Yi) with outcomes (xi, yi). Consider
the population of size N = 6, displayed in table 2.1.

A random sample of size n = 2 is drawn with replacement from this
population. For each unit drawn we observe the value of X . This yields
two random variables X1 and X2, with identical probability distribution as
displayed in table 2.2. Furthermore X1 and X2 are independent, so their
joint distribution equals the product of their individual distributions,i.e.

p(x1, x2) =
2∏

i=1

pi(xi) = [p(x)]2

The distribution of the sample is displayed in the table 2.3.
Usually we are not really interested in the individual outcomes of the

sample, but rather in some sample statistic. A statistic is a function of the
sample observations X1, ..., Xn, and therefore is itself also a random variable.
Some important sample statistics are the sample mean X̄ = 1

n

∑n
i=1 Xi, sam-

ple variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2, and sample fraction Fr = 1

n

∑n
i=1 Xi

(for 0-1 variable X ). In table 2.3 we listed the values of sample statistics x̄
and s2, for all possible samples of size 2.

The probability distribution of a sample statistic is called its sampling
distribution. The sampling distribution of X̄ and S2 is calculated easily
from table 2.3; they are displayed in tables 2.4 and 2.5 respectively.

Note that E(X̄) = 11
6

= µ, where µ denotes the population mean, and
E(S2) = 17

36
= σ2, where σ2 denotes the population variance.
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(x1, x2) p(x1, x2) x̄ s2

(1,1) 1/9 1 0
(2,2) 1/4 2 0
(3,3) 1/36 3 0
(1,2) 1/6 1.5 0.5
(1,3) 1/18 2 2
(2,1) 1/6 1.5 0.5
(2,3) 1/12 2.5 0.5
(3,1) 1/18 2 2
(3,2) 1/12 2.5 0.5

Table 2.3: Probability distribution of sample of size n = 2 by sampling with
replacement from the population in table 2.1

x̄ p(x̄)

1 1/9
1.5 1/3
2 13/36

2.5 1/6
3 1/36

Table 2.4: Sampling distribution of X̄

s2 p(s2)

0 14/36
0.5 1/2
2 1/9

Table 2.5: Sampling distribution of S2

22



In the above example, we were able to determine the probability distri-
bution of the sample, and sample statistics, by complete enumeration of all
possible samples. This was feasible only because the sample size and the
number of distinct values of X was very small. When the sample is of real-
istic size, and X takes on many distinct values, complete enumeration is not
possible. Nevertheless, we would like to be able to infer something about the
shape of the sampling distribution of a sample statistic, from knowledge of
the distribution of X. We consider here two options to make such inferences.

1. The distribution of X has some standard form that allows the mathe-
matical derivation of the exact sampling distribution.

2. We use a limiting distribution to approximate the sampling distribu-
tion of interest. The limiting distribution may be derived from some
characteristics of the distribution of X.

The exact sampling distribution of a sample statistic is often hard to de-
rive analytically, even if the population distribution of X is known. As an
example we consider the sample statistic X̄. The mean and variance of the
sampling distribution of X̄ are E(X̄) = µ and V(X̄) = σ2/n, but its exact
shape can only be derived in a few special cases. For example, if the distri-
bution of X is N (µ, σ2) then the distribution of X̄ is N (µ, σ2/n). Of more
practical interest is the exact sampling distribution of the sample statistic Fr,
i.e. the fraction of successes in the sample, with X a 0-1 population variable.
The number of successes in the sample has distribution Y ∼ B(n, π) where n
is the sample size and π the fraction of successes in the population. We have
µy = nπ and σ2

y = nπ(1 − π). Since Fr = Y/n, it follows that µfr = π and
σ2

fr = π(1−π)/n. Since P (Fr = fr) = P (Y = nfr), its sampling distribution
is immediately derived from the sampling distribution of Y .

Example 11 Consider a sample of size 10 from a population with fraction
of successes π = 0.8. What is the sampling distribution of Fr , the sam-
ple fraction of successes? The distribution is immediately derived from the
distribution of the number of successes Y ∼ B(10, 0.8).

In practice, we often have to rely on approximations of the sampling dis-
tribution based on so called asymptotic results. To understand the basic
idea, we have to introduce some definitions concerning the convergence of
sequences of random variables. For present purposes we distinguish between
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convergence in probability (to a constant) and convergence in distribution
(weak convergence) of a sequence of random variables. The limiting argu-
ments below are all with respect to sample size n.

Definition 1 A sequence {Xn} of random variables converges in probability
to a constant c if, for every positive number ε and η, there exists a positive
integer n0 = n0(ε, η) such that

P ( |Xn − c | > ε) < η, n ≥ n0

Example 12 Consider the sequence of random variables {Xn} with proba-
bility distributions P (xn = 0) = 1− 1/n and P (xn = n) = 1/n. Then {Xn}
converges in probability to 0.

Definition 2 A sequence {Xn} of random variables converges in distribution
to a random variable X with distribution function F (X) if for every ε > 0,
there exists an integer n0 = n0(ε, x), such that at every point where F (X) is
continuous

|Fn(x)− F (x) | < ε, n ≥ n0

where Fn(x) denotes the distribution function of xn.

This is in fact the same as pointwise convergence of a sequence of func-
tions. If n0 = n0(ε), i.e. does not depend on x, we speak of uniform conver-
gence.

Example 13 Consider a sequence of random variables {Xn} with probability
distributions P (xn = 1) = 1/2 + 1/(n + 1) and P (xn = 2) = 1/2− 1/(n + 1),
n = 1, 2, . . .. As n increases without bound, the two probabilities converge to
1/2, and P (X = 1) = 1/2, P (X = 2) = 1/2 is called the limiting distribution
of {Xn}.

Convergence in distribution is a particularly important concept in sta-
tistical inference, because the limiting distributions of sample statistics may
be used as an approximation in case the exact sampling distribution cannot
be (or is prohibitively cumbersome) to derive. A crucial result in this re-
spect is the central limit theorem : If (x1, ..., xn) is a random sample from
any probability distribution with finite mean µ and finite variance σ2, and
x̄ = 1/n

∑
xi then

(x̄− µ)

σ/
√

n

D−→ N (0, 1)
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regardless of the form of the parent distribution. In this expression,
D−→

denotes convergence in distribution. This property explains the importance
of the normal distribution in statistical inference. Note that this theorem
doesn’t say anything however about the rate of convergence to the normal
distribution. In general, the more the population distribution resembles a
normal distribution, the faster the convergence. For extremely skewed dis-
tributions n = 100 may be required for the normal approximation to be
acceptable.

A well-known application of the central limit theorem is the approxima-
tion of the distribution of the sample proportion of successes Fr by a normal
distribution. Since a success is coded as 1, and failure as 0, the fraction of
successes is indeed a mean. This means the central limit theorem is applica-
ble and as a rule of thumb Fr ≈ N (π, π(1−π)/n) if nπ ≥ 5 and n(1−π) ≥ 5.
Even though the exact sampling distribution can be determined in this case,
as n becomes large it becomes prohibitively time-consuming to actually cal-
culate this distribution.

If π is close to 0 or 1, quite a large sample is required for the normal
approximation to be acceptable. In that case we may use the following
convergence property of the binomial distribution(

n
y

)
πy(1− π)n−y D−→ (nπ)y

y!
e−nπ

In words, the binomial distribution with parameters n and π converges to
a Poisson distribution with parameter µ = nπ as n gets larger and larger.
Moreover, it can be shown that this approximation is quite good for π ≤ 0.1,
regardless of the value of n. This explains the use of the Poisson rather than
the normal approximation to the binomial distribution when π is close to 0
or 1.

25



Chapter 3

Statistical Inference

The relation between sample data and population may be used for reasoning
in two directions: from known population to yet to be observed sample data
(as discussed in chapter 2), and from observed data to (partially) unknown
population. This last direction of reasoning is of inductive nature and is
addressed in statistical inference. It is the form of reasoning most relevant to
data analysis, since one typically has available one set of sample data from
which one intends to draw conclusions about the unknown population.

3.1 Frequentist Inference

According to frequentists, inference procedures should be interpreted and
evaluated in terms of their behavior in hypothetical repetitions under the
same conditions. To quote David S. Moore, the frequentist consistently asks
“What would happen if we did this many times?”[9]. To answer this question,
the sampling distribution of a statistic is of crucial importance. The two basic
types of frequentist inference are estimation and testing. In estimation one
wants to come up with a plausible value or range of plausible values for an
unknown population parameter. In testing one wants to decide whether a
hypothesis concerning the value of an unknown population parameter should
be accepted or rejected in the light of sample data.
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3.1.1 Point Estimation

In point estimation one tries to provide an estimate for an unknown popu-
lation parameter, denoted by θ, with one number: the point estimate. If G
denotes the estimator of θ, then the estimation error is a random variable
G− θ, which should preferably be close to zero.

An important quality measure from a frequentist point of view is the bias
of an estimator

Bθ = Eθ(G− θ) = Eθ(G)− θ,

where expectation is taken with respect to repeated samples from the popu-
lation. If Eθ(G) = θ, i.e. the expected value of the estimator is equal to the
value of the population parameter, then the estimator G is called unbiased.

Example 14 If π is the proportion of successes in some population and Fr
is the proportion of successes in a random sample from this population, then
Eπ(Fr) = π, so Fr is an unbiased estimator of π.

Another important quality measure of an estimator is its variance

Vθ(G) = Eθ(G− Eθ(G))2

which measures how much individual estimates g tend to differ from Eθ(G),
the average value of g over a large number of samples.

An overall quality measure that combines bias and variance is the mean
squared error

Mθ(G) = Eθ(G− θ)2

where low values indicate a good estimator. After some algebraic manipula-
tion, we can decompose mean squared error into

Mθ(G) = B2
θ(G) + Vθ(G)

that is mean squared error equals squared bias plus variance. It follows that
if an estimator is unbiased, then its mean squared error equals its variance.

Example 15 For the unbiased estimator Fr of π we have Mπ(Fr) = Vπ(Fr) =
π(1− π)/m.
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The so-called “plug-in” principle provides a simple and intuitively plausi-
ble method of constructing estimators. The plug-in estimate of a parameter
θ = t(F ) is defined to be θ̂ = t(F̂ ). Here F denotes the population distri-
bution function and F̂ its estimate, based on the sample. For example, to
estimate the population mean µ use its sample analogue x̄ = 1/n

∑
xi, and to

estimate population variance σ2 use its sample analogue s2 = 1/n
∑

(xi−x̄)2.
Another well-known method for finding point estimates is the method of least
squares. The least squares estimate of population mean µ is the number g
for which the sum of squared errors (xi − g)2 is at a minimum. If we take
the derivative of this sum with respect to g, we obtain

∂

∂g

n∑
i=1

(xi − g)2 =
n∑

i=1

(xi − g)(−2) = −2n(x̄− g)

When we equate this expression to zero, and solve for g we obtain g = x̄. So
x̄ is the least squares estimate of µ. A third important method of estimation
is maximum likelihood estimation, which is discussed in section 3.2.

3.1.2 Interval Estimation

An interval estimator for population parameter θ is an interval of type
(GL, GU). Two important quality measures for interval estimates are:

Eθ(GU −GL),

i.e. the expected width of the interval, and

Pθ(GL < θ < GU),

i.e. the probability that the interval contains the true parameter value.
Clearly there is a trade-off between these quality measures. If we require
a high probability that the interval contains the true parameter value, the
interval itself has to become wider. It is customary to choose a confidence
level (1− α) and use an interval estimator such that

Pθ(GL < θ < GU) ≥ 1− α

for all possible values of θ. A realisation (gL, gU) of such an interval estimator
is called a 100(1− α)% confidence interval.
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The form of reasoning used in confidence intervals is most clearly reflected
in the estimation of the mean of a normal population with variance σ2 known,
i.e. X ∼ N (µ, σ2). The distribution of the sample mean for random samples
of size n from this population is known to be X̄ ∼ N (µ, σ2/n). First X̄ is
standardized to obtain

X̄ − µ

σ/
√

n
∼ N (0, 1)

which allows us to use a table for the standardnormal distribution Z ∼
N (0, 1) to find the relevant probabilities. The probability that X̄ is more
than one standard error (standard deviation of the sampling distribution)
larger than unknown µ is

P (X̄ > µ +
σ√
n

) = P (
X̄ − µ

σ/
√

n
> 1) = P (Z > 1) = 0.1587

But we can reverse this reasoning by observing that

P (X̄ − σ√
n

< µ) = 1− 0.1587 = 0.8413

because X̄− σ√
n

< µ holds unless X̄ > µ+ σ√
n
. Therefore, the probability that

the interval (X̄ − σ/
√

n,∞) will contain the true value of µ equals 0.8413.
This is called a left-sided confidence interval because it only states a lower
bound for µ. In general a 100(1 − α)% left-sided confidence interval for µ
reads (x̄ − zα

σ√
n
,∞), where P (Z > zα) = α. Likewise, we may construct a

right-sided confidence interval (−∞, x̄ + zα
σ√
n
) and a two-sided confidence

interval
(x̄− zα/2

σ√
n

, x̄ + zα/2
σ√
n

).

If the distribution of X is unknown, i.e. X ∼ µ, σ2, then for sufficiently
large n we may invoke the central limit theorem and use X̄ ≈ N (µ, σ2/n),
and proceed as above.

In most practical estimation problems we don’t know the value of σ2, and
we have to estimate it from the data as well. A rather obvious estimator is
the sample variance

S2 =
1

n− 1

n∑
i=1

(xi − x̄)

Now we may use
X̄ − µ

S/
√

n
∼ tn−1
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where tn−1 denotes the t-distribution with n−1 degrees of freedom. This dis-
tribution has a higher variance than the standardnormal distribution, leading
to somewhat wider confidence intervals. This is the price we pay for the fact
that we don’t know the value of σ2, but have to estimate it from the data.
On the other hand we have tν ≈ N (0, 1) for ν ≥ 100, so if n is large enough
we may use the standardnormal distribution for all practical purposes.

3.1.3 Hypothesis Testing

A test is a statistical procedure to make a choice between two hypotheses
concerning the value of a population parameter θ. One of these, called the
null hypothesis and denoted by H0, gets the “benefit of the doubt”. The two
possible conclusions are to reject or not to reject H0. H0 is only rejected if the
sample data contains strong evidence that it is not true. The null hypothesis
is rejected iff realisation g of test statistic G is in the critical region denoted
by C. In doing so we can make two kinds of errors

Type I error: Reject H0 when it is true.

Type II error: Accept H0 when it is false.

Type I errors are considered to be more serious than Type II errors. Test
statistic G is usually a point estimator for θ, e.g. if we test a hypothesis
concerning the value of population mean µ, then X̄ is an obvious choice of
test statistic. As an example we look at hypothesis test

H0 : θ ≥ θ0 , Ha : θ < θ0

The highest value of G that leads to the rejection of H0 is called the critical
value cu, it is the upper bound of the so-called critical region C = (−∞, cu].
All values of G to the left of cu lead to the rejection of H0, so this is called
a left one-sided test. An overall quality measure for a test is its power β

β(θ) = Pθ(Reject H0) = Pθ(G ∈ C)

Because we would like a low probability of Type I and Type II errors, we
like to have β(θ) small for θ ∈ H0 and β(θ) large for θ ∈ Ha. It is common
practice in hypothesis testing to restrict the probability of a Type I error to
a maximum called the significance level α of the test, i.e.

maxθ∈H0β(θ) ≤ α
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Since the maximum is reached for θ = θ0 this reduces to the restriction
β(θ0) ≤ α. If possible the test is performed in such a way that β(θ0) = α
(This may not be possible for discrete sampling distributions). Common
levels for α are 0.1, 0.05 and 0.01. If in a specific application of the test, the
conclusion is that H0 should be rejected, then the result is called significant.

Consider a left one-sided test on population mean µ with X ∼ N (µ, σ2)
and the value of σ2 known. That is

H0 : µ ≥ µ0 , Ha : µ < µ0

We determine the sampling distribution of the test statistic X̄ under the
assumption that the µ = µ0, i.e. X̄ ∼ N (µ0, σ

2/n). Now

α = Pµ0(X̄ ≤ cu) = P (
X̄ − µ0

σ/
√

n
≤ cu − µ0

σ/
√

n
) = P (Z ≤ cu − µ0

σ/
√

n
)

and since P (Z ≤ −zα) = α, we obtain

cu − µ0

σ/
√

n
= −zα, and therefore cu = µ0 − zα

σ√
n

Example 16 Consider a random sample of size n = 25 from a normal popu-
lation with known σ = 5.4 and unknown mean µ. The observed sample mean
is x̄ = 128. We want to test the hypothesis

H0 : µ ≥ 130, against Ha : µ < 130

i.e. µ0 = 130. The significance level of the test is set to α = 0.05. We
compute the critical value

cu = µ0 − z0.05
σ√
n

= 130− 1.645
5.4√
25

= 128.22

where z0.05 = 1.645 was determined using a statistical package (many books
on statistics contain tables that can be used to determine the value of zα). So
the critical region is (−∞, 128.22] and since x̄ = 128 is in the critical region,
we reject H0.

Similarly, if
H0 : θ ≤ θ0 , Ha : θ > θ0
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the critical region is [cl,∞), and for a two-sided test

H0 : θ = θ0 , Ha : θ 6= θ0

it has the form (−∞, cu] ∪ [cl,∞).
As with the construction of a confidence interval for the mean, for a hy-

pothesis test concerning the mean we may invoke the central limit theorem if
X ∼ µ, σ2 and n is large. Furthermore, if σ2 is unknown, we have to estimate
it from the data and use a tn−1 distribution rather than the standardnormal
distribution to determine the critical region.

Sometimes one doesn’t want to specify the significance level α of the
test in advance. In that case it us customary to report so-called p-values,
indicating the observed significance.

Example 17 Consider the test of example 16. The p-value of the observed
outcome x̄ = 128 is

Pµ0(X̄ ≤ 128) = P (Z ≤ 128− µ0

σ/
√

n
) = P (Z ≤ −1.852) = 0.0322

Since the p-value is 0.0322, we would reject H0 at α = 0.05, but we would
accept H0 at α = 0.01.

3.2 Likelihood

The deductive nature of probability theory versus the inductive nature of
statistical inference is perhaps most clearly reflected in the “dual” concepts
of (joint) probability distribution and likelihood.

Given a particular probability model and corresponding parameter values,
we may calculate the probability of observing different samples. Consider the
experiment of 10 coin flips with probability of heads π = 0.6. The probability
distribution of random variable “number of times heads comes up” is now
the following function of the data

P (y) =

(
10
y

)
0.6y 0.410−y

We may for example compute that the probability of observing y = 7 is(
10
7

)
0.670.43 ≈ 0.215
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y π
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 .349 .107 .028 .006 .001
1 .387 .269 .121 .04 .01 .002
2 .194 .302 .234 .121 .044 .01 .002
3 .057 .201 .267 .215 .117 .043 .009 .001
4 .011 .088 .2 .251 .205 .111 .036 .005
5 .002 .027 .103 .201 .246 .201 .103 .027 .002
6 .005 .036 .111 .205 .251 .2 .088 .011
7 .001 .009 .043 .117 .215 .267 .201 .057
8 .002 .01 .044 .121 .234 .302 .194
9 .002 .01 .04 .121 .269 .387
10 .001 .006 .028 .107 .349

1 1 1 1 1 1 1 1 1

Table 3.1: Probability distributions (columns) and likelihood functions
(rows) for Y ∼ B(10, π)

In statistical inference however, we typically have one data set and want
to say something about the relative likelihood of different values of some
population parameter. Say we observed 7 heads in a sequence of ten coin
flips. The likelihood is now a function of the unknown parameter π

L(π | y = 7) =

(
10
7

)
π7(1− π)3

where the constant term is actually arbitrary, since we are not interested
in absolute values of the likelihood, but rather in ratios of likelihoods for
different values of π.

In table 3.1, each column specifies the probability distribution of Y for a
different value of π. Each column sums to 1, since it represents a probability
distribution. Each row, on the other hand, specifies a likelihood function, or
rather: it specifies the value of the likelihood function for 9 values of π. So
for example, in the third row we can read off the probability of observing 2
successes in a sequence of 10 coin flips for different values of π.

In general, if y = (y1, . . . , yn) are independent observations from a prob-
ability density f(y | θ), where θ is the parameter vector we wish to estimate,
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then

L(θ |y) ∝
n∏

i=1

f(yi| θ)

The likelihood function then measures the relative likelihood that different θ
have given rise to the observed y. We can thus try to find that particular θ̂
which maximizes L, i.e. that θ̂ such that the observed y are more likely to
have come from f(y | θ̂) than from f(y | θ) for any other value of θ.

For many parameter estimation problems one can tackle this maximiza-
tion by differentiating L with respect to the components of θ and equating
the derivatives to zero to give the normal equations

∂L

∂θj

= 0

These are then solved for the θj and the second order derivatives are examined
to verify that it is indeed a maximum which has been achieved and not some
other stationary point.

Maximizing the likelihood function L is equivalent to maximizing the
(natural) log of L, which is computationally easier. Taking the natural log,
we obtain the log-likelihood function

l(θ |y) = ln(L(θ |y)) = ln(
n∏

i=1

f(yi | θ)) =
n∑

i=1

ln f(yi | θ)

since ln ab = ln a + ln b.

Example 18 In a coin flipping experiment we define the random variable Y
with y = 1 if heads comes up, and y = 0 when tails comes up. Then we have
the following probability distribution for one coin flip

f(y) = πy(1− π)1−y

For a sequence of n coin flips, we obtain the joint probability distribution

f(y) = f(y1, y2, ..., yn) =
n∏

i=1

πyi(1− π)1−yi

which defines the likelihood when viewed as a function of π. The log-likelihood
consequently becomes

l(π |y) =
n∑

i=1

yi ln(π) + (1− yi) ln(1− π)
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In a sequence of 10 coin flips with seven times heads coming up, we obtain

l(π) = ln(π7(1− π)3) = 7 ln π + 3 ln(1− π)

To determine the maximum we take the derivative and equate to zero

dl

dπ
=

7

π
− 3

1− π
= 0

which yields maximum likelihood estimate π̂ = 0.7.

The reader may notice that the maximum likelihood estimate in this case
is simply the fraction of heads coming up in the sample, and we could have
spared ourselves the trouble of maximizing the likelihood function to obtain
the required estimate. Matters become more interesting (and complicated)
however, when we make π a function of data and parameters. Suppose that
for each yi in our sample, we observe a corresponding measure xi which we
assume is a continuous variable. We could write πi = g(xi), where g is some
function. In so-called Probit analysis [6] we assume

πi = Φ(α + βxi)

where Φ denotes the standard normal distribution function. The parameters
of the model are now α and β, and we can write the log-likelihood function
as

l(α, β) =
n∑

i=1

yi ln(Φ(α + βxi)) + (1− yi) ln(1− Φ(α + βxi))

This is the expression of the log-likelihood for the Probit model. By maxi-
mizing with respect to α and β, we obtain maximum likelihood estimates for
these parameters.

Example 19 Consider a random sample y = (y1, ..., yn) from a normal dis-
tribution with unknown mean µ and variance σ2. Then we have likelihood

L((µ, σ2)′ |y) =
n∏

i=1

e−(yi−µ)2/(2σ2)

σ
√

2π
=

1

σn(2π)m/2
exp

[
−1

2

n∑
i=1

(
yi − µ

σ

)2
]

The natural log of this expression is

l = ln(L) = −n ln σ −
(m

2

)
ln 2π − 1

2σ2

n∑
i=1

(yi − µ)2
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To determine the maximum likelihood estimates of µ and σ, we take the
partial derivative of l with respect to these parameters, and equate them to
zero

∂l

∂µ
=

n

σ2
(ȳ − µ) = 0

∂l

∂σ2
= − n

2σ2
+

n

2σ4
(s2 + (ȳ − µ)2) = 0

Solving these equations for µ and σ, we obtain maximum likelihood estimates
µ̂ = ȳ and σ̂2 = s2, where s2 = 1/n

∑
(yi − µ̂)2.

Another important aspect of the log-likelihood function is its shape in
the region near the maximum. If it is rather flat, one could say that the
likelihood contains little information in the sense that there are many values
of θ with log-likelihood near that of θ̂. If, on the other hand, it is rather
steep, one could say that the log-likelihood contains much information about
θ̂. The log-likelihood of any other value of θ is approximately given by the
Taylor expansion

l(θ) = l(θ̂) + (θ − θ̂)
dl

dθ
+

1

2
(θ − θ̂)2 d2l

dθ2
+ ...

where the differential coefficients are evaluated at θ = θ̂. At this point,
dl
dθ

is zero, so approximately

l(θ) = l(θ̂) +
1

2
(θ − θ̂)2 d2l

dθ2
.

Minus the second derivative of the log-likelihood function is known as
the (Fisher) information. When evaluated at θ̂ (the maximum likelihood
estimate of θ) it is called the observed information.

Some authors take the view that all statistical inference should be based
on the likelihood function rather than the sampling distribution used in fre-
quentist inference (see [3, 12]). In this sense likelihood inference differs from
frequentist inference.

Example 20 Figure 3.1 displays the likelihood function for π corresponding
to 7 successes in a series of 10 coin flips. The horizontal line indicates the
range of values of π for which the ratio of L(π) to the maximum L(0.7) is
greater than 1/8. The 1/8 likelihood interval is approximately (0.38, 0.92).
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Such an interval is similar in spirit to a confidence interval in the sense
that it intends to provide a range of “plausible values” for π based on the
sample data. A confidence interval for π is based however on the sampling
distribution of some sample statistic (the sample proportion of successes is
the most obvious choice) whereas a likelihood interval is based, as the name
suggests, on the likelihood function.

Probability of success

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 3.1: Likelihood function L(π | y = 7) = 120π7(1− π)3.

On the other hand, maximum likelihood estimation may be used and
evaluated from a frequentist perspective. This motivates the study of the
sampling distribution of maximum likelihood estimates. If we know the true
value of θ = θ∗, we can determine the expected log-likelihood, i.e. the mean
value of the log-likelihood conditional on θ = θ∗ (still expressed as a func-
tion of θ). The expected log-likelihood has a maximum at θ = θ∗. Minus

37



the second derivative of the expected log-likelihood evaluated at θ = θ∗, is
called the expected information. Assuming parameter vector θ with several
components the expected information matrix is defined as

I(θ) = −
{

E

(
∂2l

∂θj∂θk

)
θ∗

}
In large samples, the maximum likelihood estimate θ̂ is approximately

normally distributed with mean θ∗, and covariance matrix I(θ)−1. Unfor-
tunately, we cannot in practice determine I(θ), since θ∗ is unknown. It is
therefore set equal to θ̂ so that I(θ) can be calculated. An alternative esti-
mate for the covariance matrix is the observed information matrix

−
(

∂2l

∂θj∂θk

)
θ̂

which is easier to compute since it does not involve an expectation. For the
exponential family of distributions these two estimates are equivalent.

Example 21 Consider a sequence of n coin tosses, with heads coming up y
times. We are interested in the probability of heads π. We have seen that

l(π) = y ln(π) + (n− y) ln(1− π)

Setting the first derivative to zero and solving for π yields π̂ = y/n. The
information is

− d2l

dπ2
=

y

π2
+

(n− y)

(1− π)2

Evaluating this expression at π̂ = y/n we obtain the observed information

n

π̂(1− π̂)
.

In large samples, π̂ is approximately normally distributed with mean π∗ and
variance π∗(1 − π∗)/n, i.e. the reciprocal of the expected information. The
estimated variance of π̂ is equal to the reciprocal of the observed information,
i.e. π̂(1− π̂)/n.
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Chapter 4

Linear Regression

4.1 Fitting a straight line to data

The relation between two variables can be used to predict the value of one
when the value of the other is known. The basic idea is straightforward: draw
a curve through the points of the scatterplot to represent the relationship and
then use this curve for prediction. The simplest curve is a straight line, and
that is the case we shall consider initially. Of course it would be foolish to
draw a straight line when the pattern of the relationship is curved. The data
must show a roughly linear trend like that in figure 4.1.

Least squares fitting looks at the vertical deviations of the points in a
scatterplot from any straight line. Any line that is a good candidate for
describing the data will pass above some points and below others, rather than
miss the cloud of points entirely. So some of the deviations will be positive
and some will be negative. But we need a total that ignores the signs of the
deviations, otherwise positive and negative deviations could cancel eachother.
The squares of the deviations are all positive. The least squares line is the
line that makes the sum of the squared deviations as small as possible. Hence
the name least squares.

In writing the equation for a line, x stands as usual for the explanatory
variable and y for the response variable. The equation has the form

y = b0 + b1x (4.1)

The number b1 is the slope of the line, the amount by which y changes when
x increases by one unit. The number b0 is the intercept, the value of y when
x = 0.
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Figure 4.1: Scatterplot of weight against systolic bloodpressure

We are given a number of observations T = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
We have to find the values of b0 and b1 such that the sum of squared devia-
tions

S(b0, b1) =
n∑

i=1

(yi − (b0 + b1xi))
2 (4.2)

is minimized. The value b0 + b1xi is the fitted value of y at xi, and is
denoted by ŷi. The difference between the actual value and the fitted value
is called the error and is denoted by ei, that is ei = yi − ŷi.

Note that b0 and b1 are the variables in expression (4.2), whereas xi and
yi are fixed numbers once the data are observed.

We give a simple example to show the calculations. Suppose we have
observations as shown below
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i x y ŷ = b0 + b1x e = y − ŷ
1 0 1 b0 1− b0

2 1 3 b0 + b1 3− b0 − b1

3 2 4 b0 + 2b1 4− b0 − 2b1

4 3 3 b0 + 3b1 3− b0 − 3b1

5 4 5 b0 + 4b1 5− b0 − 4b1

Then

S(b0, b1) = (1−b0)
2+(3−b0−b1)

2+(4−b0−2b1)
2+(3−b0−3b1)

2+(5−b0−4b1)
2

To find the minimum we take the partial derivatives with respect to b0

and b1 of this expression, and equate them to zero. We start with the partial
derivative with respect to the intercept

∂S

∂b0

= [2(1− b0)(−1)] + [2(3− b0 − b1)(−1)] + [2(4− b0 − 2b1)(−1)] +

[2(3− b0 − 3b1)(−1)] + [2(5− b0 − 4b1)(−1)]

= −32 + 10b0 + 20b1

The partial derivative with respect to the slope is

∂S

∂b1

= 0 + [2(3− b0 − b1)(−1)] + [2(4− b0 − 2b1)(−2)] +

[2(3− b0 − 3b1)(−3)] + [2(5− b0 − 4b1)(−4)]

= −80 + 20b0 + 60b1

A nice feature of taking the squared error is that the derivatives are linear:
we have 2 linear equations in 2 unknowns:

10b0 + 20b1 = 32

20b0 + 60b1 = 80

which give b0 = 8/5 and b1 = 4/5. So the least squares fitted line is

ŷ =
8

5
+

4

5
x

We now derive the general expressions for the partial derivative of the
sum of squared errors with respect to intercept b0 and slope b1.
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We start with the intercept:

∂S

∂b0

=
n∑

i=1

2(yi − b0 − b1xi)(−1) = −2
n∑

i=1

(yi − b0 − b1xi) = 0 (4.3)

or equivalently
n∑

i=1

ei = 0 (4.4)

Note that it follows from this condition that the sum of the error terms
ei = yi − ŷi = yi − b0 − b1xi is zero.

The partial derivative with respect to the slope is:

∂S

∂b1

=
n∑

i=1

2(yi − b0 − b1xi)(−xi) = −2
n∑

i=1

xi(yi − b0 − b1xi) = 0 (4.5)

from which it follows that
n∑

i=1

xiei = 0 (4.6)

Expanding (4.3) and (4.5) and collection terms yields what are commonly
called the normal equations

n∑
i=1

yi = nb0 +
n∑

i=1

xib1 (4.7)

n∑
i=1

xiyi =
n∑

i=1

xib0 +
n∑

i=1

x2
i b1 (4.8)

To solve for b0 we divide both sides of (4.7) by n to obtain

ȳ = b0 + b1x̄

from which we can conclude that the least squares regression line passes
through the point of means (ȳ, x̄). Now isolate b0 on the left hand side

b0 = ȳ − b1x̄. (4.9)
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To solve for b1, multiply the equation (4.7) by
∑

xi, and multiply equation
(4.8) by n. ∑

xi

∑
yi = n

∑
xib0 +

(∑
xi

)2

b1

n
∑

xiyi = n
∑

xib0 + n
∑

x2
i b1

Subtracting the first equation from the second yields

n
∑

xiyi −
∑

xi

∑
yi = n

∑
x2

i b1 −
(∑

xi

)2

b1

= b1

(
n
∑

x2
i −

(∑
xi

)2
)

Solving for b1 gives

b1 =
n
∑

xiyi −
∑

xi

∑
yi

n
∑

x2
i − (

∑
xi)

2 (4.10)

Now we have to verify that we have, indeed, found a minimum of the
sum of squared errors. We have found a local minimum if the matrix of
second derivatives (sometimes called the Hessian matrix) is positive definite
at (b0, b1). This is the multivariable equivalent of the condition that the
second derivative of a single-variable function must be positive to identify a
minimum.

The matrix of second derivatives with respect to b0 and b1 is[
∂2S/∂b2

0 ∂2S/∂b0b1

∂2S/∂b1b0 ∂2S/∂b2
1

]
=

[
2n 2

∑
xi

2
∑

xi 2
∑

x2
i

]
To show that this matrix is positive definite, it suffices to show that all its
principal minors are positive. We start by verifying that the determinant is
positive. The determinant is

4n
∑

x2
i − 4

(∑
xi

)2

(4.11)

But
∑

xi = nx̄, so we can write (4.11) as

4n
(∑

x2
i − nx̄2

)
= 4n

(∑
(xi − x̄)2

)
(4.12)

which is positive. Since ∂2S/∂b2
0 = 2n is also positive, we know that b0 and

b1 are the minimizers of the sum of squared errors.
Let’s use these general formulas to compute the slope and intercept of

our simple example. In the table below we compute the necessary quantities:
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i x y xy x2

1 0 1 0 0
2 1 3 3 1
3 2 4 8 4
4 3 3 9 9
5 4 5 20 16∑

10 16 40 30

From the quantities in this table we compute

b1 =
5 · 40− 10 · 16

5 · 30− 102
=

4

5
b0 =

16

5
− 4

5

10

5
=

8

5

Expression (4.10) for the slope is convenient for computational purposes,
but a more insightful expression for b1 is

b1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
(4.13)

From this expression we can see immediately that the least squares solu-
tion is undefined when x has variance zero (i.e. only one value of x occurs).

We show below how to derive expression (4.13) from expression (4.10).
Divide both the numerator and denominator of (4.10) by n:

b1 =

∑
xiyi − 1/n

∑
xi

∑
yi∑

x2
i − 1/n(

∑
xi)2

(4.14)

After rewriting the numerator becomes∑
xiyi − 1/n

∑
xi

∑
yi =

∑
xiyi − x̄

∑
yi

=
∑

xiyi −
∑

x̄yi

=
∑

(xi − x̄)yi

=
∑

(xi − x̄)(yi − ȳ)

In the last step we make use of the following fact:∑
(xi − x̄)(yi − ȳ) =

∑
xiyi − xiȳ − x̄yi + x̄ȳ

=
∑

(xi − x̄)yi − ȳ(xi − x̄)

=
∑

(xi − x̄)yi − ȳ
∑

(xi − x̄)

=
∑

(xi − x̄)yi
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since
∑

(xi− x̄) = 0. Take good notice of the idea of this proof, it will prove
very useful in other proofs as well.

Rewriting the denominator we get∑
x2

i − 1/n(
∑

xi)
2 =

∑
x2

i −
∑

xix̄

=
∑

x2
i − xix̄

=
∑

(xi − x̄)xi

=
∑

(xi − x̄)2 (4.15)

You should be able to justify the last step!

4.2 The coefficient of determination

We want to use xi to explain as much of the variation in yi as possible: we
introduce the explanatory variable xi in hope that its variation will explain
the variation in yi.

To develop a measure of the variation in yi that is explained by the model,
we begin by separating yi into its explained and unexplained components:

yi = ŷi + ei (4.16)

where ŷi = b0 + b1xi and ei = yi − ŷi.
In figure 4.2 the “point of means” (x̄, ȳ) is shown, with the least squares

fitted line passing through it. This is a characteristic of the least squares fit-
ted line whenever the regression model includes an intercept term. Subtract
the sample mean from both sides in equation (4.16) to obtain

yi − ȳ = (ŷi − ȳ) + ei (4.17)

In figure 4.2, the difference between yi and its mean value ȳ consists of
a part (ŷi − ȳ) that is “explained” by the fitted line, and a part ei that is
unexplained.

The breakdown in equation (4.17) leads to a useful decomposition of the
total variability in y, within an entire sample, into explained and unexplained
parts. There are many ways to measure the “total variation” in a variable.
One convenient way is to square the differences between yi and its mean
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Figure 4.2: Decomposition of deviation from mean into explained and unex-
plained parts

value ȳ and sum over the entire sample. If we square and sum both sides of
equation (4.17), we obtain∑

(yi − ȳ)2 =
∑

[(ŷi − ȳ) + ei]
2

=
∑

(ŷi − ȳ)2 +
∑

e2
i + 2

∑
(ŷi − ȳ)ei

=
∑

(ŷi − ȳ)2 +
∑

e2
i (4.18)

because the cross-product term
∑

(ŷi − ȳ)ei = 0 and drops out.
To see this substitute b0 + b1xi for ŷi in

∑
(ŷi − ȳ)ei to get∑

(b0 + b1xi − ȳ)ei =
∑

(ȳ − b1x̄ + b1xi − ȳ)ei =
∑

b1(xi − x̄)ei (4.19)

since b0 = ȳ−b1x̄. Now we make use of the fact that
∑

ei = 0 and
∑

eixi = 0.
This follows immediately from the first order conditions ∂S/∂b0 = 0 and
∂S/∂b1 = 0. Rewrite (4.19) to get∑

b1(xi − x̄)ei = b1

(∑
eixi − x̄ei

)
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= b1

(∑
eixi − x̄

∑
ei

)
= 0 (4.20)

Equation (4.18) is a decomposition of the “total sample variation” in y
into explained and unexplained components. Specifically the sums of squares
are:

1.
∑

(yi − ȳ)2 = total sum of squares = STT : a measure of the total
variation in y around its sample mean.

2.
∑

(ŷi − ȳ)2 = explained sum of squares = SSR: that part of total vari-
ation in y about its sample mean that is explained by the fitted line.

3.
∑

e2
i = error sum of squares = SSE: that part in total variation in y

about its sample mean that is not explained by the fitted line.

Thus equation (4.18) becomes

SST = SSR + SSE (4.21)

One widespread use of this decomposition is to define a measure of the
proportion of variation in y explained by x:

R2 =
SSR

SST
= 1− SSE

SST
(4.22)

The measure R2 is called the coefficient of determination. The closer R2

is to 1, the better the job we have done in explaining the variation in yi with
ŷi = b0+b1xi; and the greater is the predictive ability of our model over all the
sample observations. If R2 = 1, then all the sample data fall exactly on the
fitted least squares line, so SSE=0, and the model fits the data “perfectly”. If
the sample data for y and x are uncorrelated and show no linear association
then the least squares fitted line is horizontal and identical to ȳ, so that
SSR=0 and R2 = 0. When 0 < R2 < 1, it is interpreted as the percentage of
variation in y about its mean that is explained by the fitted model.

Let’s make the calculations for our simple example. The table below
contains all the necessary numbers to compute R2.

i x y ŷ e e2 (y − ȳ)2 (ŷ − ȳ)2

1 0 1 8/5 −3/5 9/25 121/25 64/25
2 1 3 12/5 3/5 9/25 1/25 16/25
3 2 4 16/5 4/5 16/25 16/25 0
4 3 3 20/5 −1 25/25 1/25 16/25
5 4 5 24/5 1/5 1/25 81/25 64/25∑

10 16 16 0 60/25 220/25 160/25
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First of all, we verify that the sum of the errors is zero, as it should be.
Secondly we see that

220/25 = 60/25 + 160/25
(SST ) (SSE) (SSR)

Finally, we compute R2 as

R2 =
SSR

SST
=

160

220
≈ 0.73

So about 73% of the variation in y is explained by the variation in x.

4.2.1 Example in Splus: Relation between weight and
blood pressure

This example is taken from [8]. The weight (kg) and systolic blood pressure
(mmHg) of 26 randomly selected males in the age group 25-30 are shown in
table 4.1. Assume we are interested in modeling blood pressure as a function
of weight. The scatterplot in figure 4.3 suggests that a straight line might
give a reasonable fit.

Subject Weight Systolic BP Subject Weight Systolic BP
1 75 130 14 78 153
2 76 133 15 72 128
3 82 150 16 76 132
4 70 128 17 79 149
5 96 151 18 83 158
6 79 146 19 98 150
7 86 150 20 88 163
8 95 140 21 82 156
9 91 148 22 65 124
10 68 125 23 109 170
11 72 133 24 107 165
12 77 135 25 87 160
13 77 150 26 85 159

Table 4.1: Data for bloodpressure example

We can use the lm function in Splus to fit a line by least squares.
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Figure 4.3: Scatterplot of weight against systolic bloodpressure

> bloodkg.fit <- lm(sys.bp ~ weight, data = bloodpressure.kg)

> summary(bloodkg.fit)

Call: lm(formula = sys.bp ~ weight, data = bloodpressure.kg)

Residuals:

Min 1Q Median 3Q Max

-16.84 -6.66 -2.778 9.022 12.6

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 69.3578 12.9491 5.3562 0.0000

weight 0.9209 0.1550 5.9410 0.0000

Residual standard error: 8.714 on 24 degrees of freedom

Multiple R-Squared: 0.5952
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F-statistic: 35.3 on 1 and 24 degrees of freedom,

the p-value is 3.94e-006

Correlation of Coefficients:

(Intercept)

weight -0.9913

The variable bloodkg.fit gets the result of a call to lm assigned to it.
Applying summary to bloodkg.fit gives quite some information, some of
which we will discuss later in the course. We can read of the least squares
estimates under the heading Coefficients in the Value column, so the least
squares line is

BLOODPRESSURE = 69.3578 + 0.9209×WEIGHT

The fraction of variation in bloodpressure explained by variation in weight,
R2 is 0.5952. This is fairly high for a model with only one explanatory
variable.

4.3 The Simple Linear Regression Model

So far, we have simply considered the problem of fitting a straight line to
a given dataset by the method of least squares. Now we bring the problem
within the realm of statistical inference. The data we have is in fact a sam-
ple from a larger population, and we want to draw conclusions about the
population from the sample.

We assume that each unit in the population is described by two variables
denoted by X and Y (we use calligraphic letters to denote population vari-
ables). The pair (xi, yi), i = 1, . . . , N denotes the values of element i for X
and Y .

Now for every value x of X different Y values can occur. We assume
however that the mean of these Y values is always equal to β0 + β1x:

µy.x = β0 + β1x (4.23)

where µy.x denotes the mean of the Y values at x. Equation (4.23) is called
the population regression line. The assumption is illustrated in figure 4.4. In
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this population only four different X values occur, the means of the Y values
are all on the line β0 + β1x.

x

y

my.x = b0+ b1x

Figure 4.4: The central assumption of linear regression: µy.x = β0 + β1x.

If all pairs (x1, y1), . . . , (xN , yN) were known, then it would be easy to de-
termine the value of β0 and β1. The problem of inductive statistics is to draw
conclusions concerning β0 and β1 on the basis of a sample of observations.
In doing so, it is of great importance to be able to assess the quality of those
conclusions. Therefore, we have to make a few additional assumptions.

Depending on the way the observations are obtained, we distinguish be-
tween two cases. The most usual assumption is that the observation of the
pair (X ,Y) for one unit leads to a pair of random variables (Xi, Yi). This
would for example be the case if we sample the units at random from the
population and observe their (X ,Y) values.

Another possibility is that we select values xi of X beforehand; in this
case we speak of a deterministic explanatory variable. You can think of the
x’s as values the experimenter has chosen and set in a laboratory experiment.
From the elements with value xi one unit is selected at random, and for this
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unit we observe the Y value. This case is relatively easy because we have to
deal with only one random variable (Yi). Therefore we will start with the
deterministic case; we discuss random explanatory variables in section 4.5.

In the deterministic case we have observations

(xi, Yi), i = 1, 2, . . . , n

The values y1, y2, . . . , yn are observed values of independent random vari-
ables Y1, Y2, . . . , Yn. In terms of these observations, our basic assumption
becomes

E(Yi) = β0 + β1xi, i = 1, . . . , n (4.24)

where β0 and β1 are the true yet unknown intercept and slope respectively.
Furthermore, we assume that for each value of x, the values of Y are dis-
tributed about their mean value, following probability distributions that all
have the same (unknown) variance

var(Yi) = σ2 (4.25)

Note that this assumption is not satisfied in the example of figure 4.4.
The model can also be expressed in this way. Assume that

Yi = β0 + β1xi + εi, i = 1, . . . , n (4.26)

where ε1, . . . , εn are independent random variables with

E(εi) = 0 and var(εi) = σ2

The ε1, . . . , εn are called random errors (disturbances). Since Yi depends only
on εi, and the εi are independent, it follows that the Yis are independent. It
is also easily verified that

E(Yi) = E(β0 + β1xi + εi)

= β0 + β1xi + E(εi)

= β0 + β1xi

Finally,

var(Yi) = var(β0 + β1xi + εi)

= var(εi) = σ2

For ease of reference we summarize the assumptions of the linear regres-
sion model
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SLR1: Yi = β0 + β1xi + εi

SLR2: E(εi) = 0 ⇔ E(Yi) = β0 + β1xi

SLR3: var(εi) = σ2 = var(Yi)

SLR4: εi, εj independent ⇔ Yi, Yj independent (i 6= j).

SLR5: xi is not random and must take at least two different values

4.3.1 Properties of Least Squares Estimators

How good are the least-squares estimators from a frequentist perspective?
The frequentist consistently asks: what happens if we do this a lot of times?
What happens if we sample Y1, . . . , Yn very many times and for each of those
samples compute the least squares estimates b0 and b1 of β0 and β1?

We consider a number of questions

1. Are the least squares estimators unbiased?

2. What is their variance?

3. What more can we say about their sampling distribution?

Unbiasedness of the least squares estimators

Recall that we call an estimator G of parameter θ unbiased if

Eθ(G) = θ

where the expectation is taken with repect to repeated samples of some
fixed size from the population. It is considered a desirable property that the
estimator is right on average.

To show that b1 is an unbiased estimator of β1, we start with the following
expression for b1:

b1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
(4.27)

Since ∑
(xi − x̄)(yi − ȳ) =

∑
(xi − x̄)yi
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we can write b1 as a weighted sum of the y values as follows

b1 =

∑
(xi − x̄)yi∑
(xi − x̄)2

=
∑[

(xi − x̄)∑
(xi − x̄)2

]
yi =

∑
wiyi

Taking expectations, we get

E(b1) = E
(∑

wiyi

)
=

∑
wiE(yi)

=
∑

wi(β0 + β1xi) since E(yi) = β0 + β1xi

= β0

∑
wi + β1

∑
wixi

= β1 (4.28)

In the last step we use the fact that
∑

wi = 0 (since
∑

(xi− x̄) = 0), and∑
wixi = 1.
Since we have shown that

E(b1) = β1,

so we may conclude that the least squares estimator b1 is an unbiased esti-
mator of the slope β1 of the regression line.

Likewise, one can show that b0 is an unbiased estimator of β0. First we
prove that

E(ȳ) = β0 + β1x̄

Since ȳ = 1/n
∑

yi, we get

E(ȳ) = E(1/n
∑

yi) = 1/nE
(∑

yi

)
= 1/n

∑
β0 + β1xi

= 1/n(nβ0 + β1

∑
xi)

= β0 + β11/n
∑

xi = β0 + β1x̄

Now since
b0 = ȳ − b1x̄

we get

E(b0) = E(ȳ − b1x̄) = E(ȳ)− E(b1x̄)

= β0 + β1x̄− β1x̄ = β0
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Variance and covariance of the least squares estimators

Unbiasedness is a nice property for an estimator, but on its own it doesn’t
say that much. If the estimator has a very high variance, any particular
estimate is typically far from the true value. Therefore we are also interested
in the variance of the least-squares estimators. First we present the formulas
for variance and covariance of the least squares estimators, and try to make
sense of them.

var(b0) = σ2

( ∑
x2

i

n
∑

(xi − x̄)2

)
var(b1) =

σ2∑
(xi − x̄)2

cov(b0, b1) = σ2

(
−x̄∑

(xi − x̄)2

)
(4.29)

We consider the factors that affect the variances and covariance in (4.29).

1. The variance of the random error term σ2 appears in all three expres-
sions. The larger the variance term σ2, the greater the uncertainty there
is in the statistical model, and the larger the variances and covariance
of the least squares estimators.

2. The sum of squares of the values of x about their sample mean,∑
(xi − x̄)2 appears in each of the variances and the covariance. The

larger the sum of squares, the smaller the variances of the least squares
estimators and hence the more precisely we can estimate the unknown
parameters. The intuition behind this is demonstrated in figure 4.5. In
the upper panel the x values are widely spread out along the x-axis. In
the lower panel the data are bunched together. The data in the upper
panel give more information on where the least squares line must fall,
because they are more spread out along the x axis.

3. “More data is better than less data”. The larger the sample size n, the
smaller the variances and covariance of the least squares estimators.
The sample size n appears in each of the variances and covariance,
because each of the sums consists of n terms.
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4. The term
∑

x2
i appears in var(b0). The larger this term is, the larger

the variance of the least squares estimator b0. Recall that the intercept
parameter β0 is the expected value of y at x = 0. The farther our data
are from x = 0, the more difficult it is to interpret β0, and the more
difficult it is to accurately estimate β0. The term

∑
x2

i measures the
distance of the data from the origin x = 0.

5. The sample mean of the x-values appears in cov(b0, b1). The least
squares line must pass through the point of the means (x̄, ȳ). Given
a fitted line through the data, imagine the effect of increasing the es-
timated slope b1. Since the line must pass through the point of the
means, the effect must be to lower the point where the line hits the
vertical axis, implying a reduced intercept estimate b0. Thus, when
the sample mean is positive, there is a negative covariance between the
least squares estimators of the slope and intercept.
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Figure 4.5: The influence of variation in the explanatory variable on the
precision of estimation
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As an example we show the derivation of the variance of b1. We start
from expression

b1 =
∑

wiyi,

with

wi =
xi − x̄∑
(xi − x̄)2

Taking the variance, we get

var(b1) = var
(∑

wiyi

)
=

∑
w2

i var(yi) since var(cX) = c2 var(X) and yi, yj independent

= σ2
∑

w2
i since var(yi) = σ2

=
σ2∑

(xi − x̄)2

Since ∑
w2

i =
1∑

(xi − x̄)2

The variance of b0, and covariance of b0 and b1 can be derived in a similar
manner.

The Gauss-Markov Theorem

So now we know the expected value and the variance of the least-squares
estimators. We have shown that they are unbiased, and have derived ex-
pressions for the variance. The question remains whether there perhaps are
unbiased estimators of β0 and β1 that have a smaller variance than the least
squares estimators and would therefore be preferrable. For the class of linear
estimators, the answer is given by the Gauss-Markov theorem

Under the assumptions SLR1-SLR5 of the linear regression model,
the estimators b0 and b1 have the smallest variance of all linear
and unbiased estimators of β0 and β1. They are the Best Linear
Unbiased Estimators (BLUE) of β0 and β1.

An estimator is called linear when it can be written as a linear combi-
nation of the yi. We have shown for example that b1 =

∑
wiyi so b1 is a

linear estimator of β1. Likewise, b0 is a linear estimator of β0. Some further
remarks about the significance of this theorem:
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1. Why this pre-occupation with linear estimators? The reasons are pri-
marily computational and analytic convenience.

2. Note that the theorem does not require normality of the error term εi.

3. When εi is normally distributed, then the least squares estimators are
the best of all unbiased estimators (linear or non-linear).

4. When we drop the normality assumption, there can be in some cases
non-linear (robust) estimators that are better than least squares.

As an illustration we prove the Gauss-Markov theorem for the estimator
b1 of β1. Let β̂1 =

∑
kiyi be any other linear estimator of β1. To make the

comparison we write ki = wi + ci, that is choose ci = ki − wi. We substitute
yi into this new estimator and simplify using the properties

∑
wi = 0 and∑

wixi = 1.

β̂1 =
∑

kiyi =
∑

(wi + ci)yi =
∑

(wi + ci)(β0 + β1xi + εi)

=
∑

(wi + ci)β0 +
∑

(wi + ci)β1xi +
∑

(wi + ci)εi

= β0

∑
wi + β0

∑
ci + β1

∑
wixi + β1

∑
cixi +

∑
(wi + ci)εi

= β0

∑
ci + β1 + β1

∑
cixi +

∑
(wi + ci)εi (4.30)

Take the expectation of (4.30) and use the assumption that E(εi) = 0
(SLR2)

E(β̂1) = β0

∑
ci + β1 + β1

∑
cixi +

∑
(wi + ci)E(εi)

= β0

∑
ci + β1 + β1

∑
cixi (4.31)

In order for β̂1 to be unbiased, it must be true that E(β̂1) = β1 for all
values of β0 and β1. Using (4.31) we see that this implies that∑

ci = 0 and
∑

cixi = 0 (4.32)

We use these constraints to simplify expression (4.30)

β̂1 = β1 +
∑

(wi + ci)εi (4.33)
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Using the properties of variance we can now write the variance of β̂1 as
follows

var(β̂1) = var(β1 +
∑

(wi + ci)εi) =
∑

(wi + ci)
2var(εi)

= σ2
∑

(wi + ci)
2 = σ2

∑
w2

i + σ2
∑

c2
i (since

∑
ciwi = 0)

= var(b1) + σ2
∑

c2
i

≥ var(b1) since
∑

c2
i ≥ 0 (4.34)

Probability distributions of the least squares estimators

If we make one additional assumption

SLR6: εi ∼ N(0, σ2) ⇔ Yi ∼ N(β0 + β1xi, σ
2),

then it follows that

b0 ∼ N

(
β0,

σ2
∑

x2
i

n
∑

(xi − x̄)2

)
b1 ∼ N

(
β1,

σ2∑
(xi − x̄)2

)
(4.35)

This is true because the least squares estimators are linear estimators, and
weighted sums of normal random variables are normally distributed them-
selves. If the errors are not normally distributed, but assumptions SLR1-
SLR5 hold, then if the sample size n is sufficiently large, by the central
limit theorem, the least squares estimators have a distribution that is well
approximated by the normal distributions shown in (4.35).

Unfortunately, the variance of the error term σ2 that appears in the for-
mulas for the variance of b0 and b1 is typically unknown. This means we have
to estimate it from the data. Recall that

var(εi) = σ2 = E[εi − E(εi)]
2 = E(ε2

i ) (4.36)

since E(εi) = 0 by assumption SLR2. Since the expectation is an average
value, we consider estimating σ2 as the average of the squared errors

σ̂2 =

∑
ε2

i

n
(4.37)
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The random errors
εi = yi − β0 − β1xi

are however unobservable, since we don’t know the values of β0 and β1. It
seems reasonable to replace the random errors in equation 4.37 by the least
squares residuals

ei = yi − b0 − b1xi

to obtain

σ̂2 =

∑
e2

i

n
(4.38)

If we compute the expected value of the numerator, we get

E
(∑

e2
i

)
= (n− 2)σ2,

which implies that an unbiased estimator of σ2 is

s2 =

∑
e2

i

n− 2
(4.39)

The number that is subtracted from the sample size, is the number of
regression parameters (β0, β1) in the model that we have to estimate before
we can estimate the variance of the error term. To estimate β0 and β1 we
use up two degrees of freedom, which then leaves n− 2 degrees of freedom to
estimate the error variance.

We can see the reason most clearly in case we have only n = 2 observed
data points. In that case the least squares line will always provide a perfect
fit. For any two points, a line can always be drawn that goes through them
exactly. Thus, although b0 and b1 would be easily determined in that case,
there would be no “information left over” to tell us anything about σ2, the
variance of the observations about the regression line. Only to the extent
that n exceeds 2 can we get information about σ2. That is n− 2 degrees of
freedom remain when we use s2 to estimate σ2.

Now that we have an unbiased estimator of the error variance, we can
estimate the variance of the least squares estimators b0 and b1, as well as the
covariance between them. Replace the unknown error variance σ2 in (4.29)
by its estimator to obtain

v̂ar(b0) = s2

( ∑
x2

i

n
∑

(xi − x̄)2

)
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v̂ar(b1) =
s2∑

(xi − x̄)2

ĉov(b0, b1) = s2

(
−x̄∑

(xi − x̄)2

)
(4.40)

Furthermore, we define the standard errors se(b0) and se(b1) of b0 and b1

respectively, to be the square root of the estimated variances.

4.3.2 Interval Estimation and Hypothesis Testing

If the assumptions SLR1-SLR6 are correct, then the least squares estimators
b0 and b1 are normally distributed random variables with means and variances
as follows:

b0 ∼ N

(
β0,

σ2
∑

x2
i

n
∑

(xi − x̄)2

)
b1 ∼ N

(
β1,

σ2∑
(xi − x̄)2

)
(4.41)

We can create a standard normal random variable based on the normal
distribution of the least squares estimator. A standardized random variable
is obtained from b1 by subtracting its mean and dividing by its standard
deviation

Z =
b1 − β1

sd(b1)
∼ N(0, 1) (4.42)

where sd(b1) =
√

var(b1) is called the standard deviation of b1. That is, the
standardized random variable Z is normally distributed with mean 0 and
variance 1.

When we replace the unknown parameter σ2 with its unbiased estimator
s2, then

t =
b1 − β1

se(b1)
∼ t(n−2) (4.43)

where se(b1) =
√

v̂ar(b1).
The shape of the t-distribution is completely determined by the degrees

of freedom parameter, m, and the distribution is symbolized by t(m). The
t-distribution is symmetric with mean E[t(m)] = 0 and variance var[t(m)] =
m/(m−2) As the degrees of freedom parameter m →∞, the t(m) distribution
approaches the standard normal N(0, 1). Result (4.43) is used to construct
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confidence intervals for β1 and to perform hypothesis tests concerning the
value of β1.

Interval Estimation

We have seen that if assumptions SLR1-SLR6 hold, then

t =
b1 − β1

se(b1)
∼ t(n−2) (4.44)

and similarly

t =
b0 − β0

se(b0)
∼ t(n−2) (4.45)

The random variable t in (4.44) and (4.45) will be the basis for interval
estimation and hypothesis testing in the simple linear regression model.

Using a computer or a statistical table, we can find critical values t(m);α/2

from a t(m) distribution such that

P (t ≥ t(m);α/2) = P (t ≤ −t(m);α/2) =
α

2

where α is a probability value often taken to be α = 0.01 or α = 0.05.
The critical values t(m);α/2 and −t(m);α/2 are depicted in figure 4.6. Each

of the shaded tail areas contains α/2 of the probability, so that 1− α of the
probability is contained in the center portion. Therefore, we can make the
probability statement

P (−t(m);α/2 ≤ t ≤ t(m);α/2) = 1− α (4.46)

Now, we put all these pieces together to create a procedure for interval
estimation. Substitute t from (4.44) in (4.46) to obtain

P

[
−t(n−2);α/2 ≤

b1 − β1

se(b1)
≤ t(n−2);α/2)

]
= 1− α (4.47)

Simplify the expression to obtain

P [b1 − t(n−2);α/2 se(b1) ≤ β1 ≤ b1 + t(n−2);α/2 se(b1)] = 1− α (4.48)

In the interval endpoints b1 − t(n−2);α/2 se(b1) and b1 + t(n−2);α/2 se(b1),
both b1 and se(b1) are random variables, since their values are not known
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Figure 4.6: Critical values from a t-distribution

until a sample of data is drawn. The random endpoints of the interval define
an interval estimator of β1. The probability statement in (4.48) says that
the interval

b1 ± t(n−2);α/2 se(b1),

with random endpoints, has probability 1 − α of containing the true but
unknown parameter β1. This interval estimation procudure and its properties
are established based on model assumptions SLR1-SLR6 and may be applied
to any sample of data we might obtain.

When b1 and se(b1) in (4.48) are estimated values(numbers), based on a
sample of data, then b1 ± t(n−2);α/2 se(b1) is called a (1 − α) × 100% confi-
dence interval for β1. The interpretation of interval estimators and interval
estimates requires a great deal of care. The properties of the random interval
estimator are based on the notion of repeated sampling. If we were to select
many random samples of size n, compute the least squares estimate b1, and
its standard error se(b1) for each sample, then (1−α)×100% of all the inter-
vals constructed would contain the true parameter β1. This we know before
any data are actually collected.

Any one interval estimate, based on a sample of data, may or may not
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contain the true parameter β1, and since β1 is unknown, we will never know
if it does or not. Our confidence is in the procedure used to construct the
interval estimate; it is not in any one interval estimate calculated from a
sample of data.

To illustrate, we construct a 95% confidence interval for β1 in the blood
pressure example. Here’s the output that Splus provides when we apply
linear regression to the bloodpressure data:

> summary(bloodkg.fit)

Call: lm(formula = sys.bp ~ weight, data = bloodpressure.kg)

Residuals:

Min 1Q Median 3Q Max

-16.84 -6.66 -2.778 9.022 12.6

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 69.3578 12.9491 5.3562 0.0000

weight 0.9209 0.1550 5.9410 0.0000

Residual standard error: 8.714 on 24 degrees of freedom

Multiple R-Squared: 0.5952

F-statistic: 35.3 on 1 and 24 degrees of freedom,

the p-value is 3.94e-006

Correlation of Coefficients:

(Intercept)

weight -0.9913

Since weight (kg) is the explanatory variable in this model and blood pressure
(mmHg) the response variable, the slope β1 measures the expected change in
blood pressure when the weight increases by 1 kg. The point estimate b1 of
the slope is 0.9209 (see the Value column in the Coefficient table). Next
to the point estimate we find the standard error 0.1550. Since we have 26
observations in our data set, we have to find the critical value t(24);0.025. This
critical value is computed in S-plus as follows
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> qt(0.975,df=24)

[1] 2.063899

So t(24);0.025 ≈ 2.064. The 95% confidence interval therefore becomes

0.9209± 2.064× 0.1550 = (0.60, 1.24)

Let’s compare this interval with the one we would get if we knew for a fact
that sd(b1) = 0.1550. In that case we could use (4.42) instead of (4.43)
to create the confidence interval, i.e. we can use the critical values of the
standardnormal distribution rather than the t(n−2) distribution. The 95%
confidence interval then becomes

0.9209± zα/2 × 0.1550 = 0.9209± 1.96× 0.1550 = (0.62, 1.22)

The t-distribution has fatter tails than the standardnormal, so the critical
values t(m);α/2 are larger than the corresponding critical values zα/2. This
results in a wider interval at the same confidence level. This makes sense:
because the standard deviation of b1 has to be estimated, uncertainty is
added, which results in less precise conclusions.

Hypothesis testing

Before we concern ourselves with statistical hypothesis testing, let’s look at
the simpler deterministic case. Suppose we want to consider the hypothesis:
two objects of different weights will fall at the same speed. To test this hy-
pothesis, we drop two canonballs, one large and one small, from the tower of
Pisa. The outcome of the test is that the canon balls indeed strike at nearly
the same instant, which supports our hypothesis.

The general structure of the hypothesis testing method is as follows

1. According to the hypothesis an observable quantity x should have the
value x0.

2. If we observe a value of x different from x0, we must reject the hypoth-
esis.

3. The observation that x = x0 serves to support the hypothesis.
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In a statistical hypothesis test we reason in a similar fashion. We state
some hypothesis concerning the value of a population parameter (β1 or β0

in the linear regression model) and use some observable quantity (the point
estimates b1 and b0 and their standard errors) to make a decision. The ob-
servable quantity used to make the decision is called a test statistic. The
most important difference with the deterministic case is that a statistical hy-
pothesis will usually assign a positive probability to all possible values of the
test statistic. This means that whatever value of the test statistic we observe,
we are never able to conclude with absolute certainty that the maintained
hypothesis is false. What we sometimes can say is that the observed value
of the test statistic is highly unlikely if the maintained hypothesis were true.
In that case we would reject the maintained hypothesis.

The components of a statistical hypothesis test are:

1. A null hypothesis, H0.

2. An alternative hypothesis, Ha.

3. A test statistic.

4. A rejection region.

The null hypothesis specifies a value for a population parameter, and is
stated

H0 : β1 = c

where c is a constant, and is an important value in the context of a specific
regression model. A null hypothesis is the belief we will maintain until we
are convinced by the sample evidence that it is not true, in which case we
reject the null hypothesis.

For the null hypothesis H0 : β1 = c, three possible alternatives are

• Ha : β1 6= c. Rejecting the null hypothesis that β1 = c implies the
conclusion that β1 takes some other value greater than or less than c.

• Ha : β1 > c. Rejecting the null hypothesis that β1 = c leads to the
conclusion that it is greater than c. Using this alternative completely
discounts the possibility that β1 < c. It implies that these values are
logically unacceptable alternatives to the null hypothesis.

• Ha : β1 < c. Following the previous discussion, use this alternative
when there is no chance that β1 > c.
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The sample information about the null hypothesis is embodied in the
sample value of a test statistic. Based on the value of a test statistic, which
itself is a random variable, we decide either to reject the null hypothesis or not
to reject it. A test statistic has a very special characteristic: its probability
distribution must be completely known when the null hypothesis is true, and
it must have some other distribution if the null hypothesis is not true.

The rejection region is the range of values of the test statistic that leads
to rejection of the null hypothesis. It is possible to construct a rejection
region only if we have a test statistic whose distribution is known when
the null hypothesis is true. In practice, the rejection region is a set of test
statistic values that, when the null hypothesis is true, are unlikely and have
low probability of occurring. If a sample value of the test statistic is obtained
that falls in a region of low probability, then it is unlikely that the test
statistic has the assumed distribution, and thus it is unlikely that the null
hypothesis is true.

If the null hypothesis H0 : β1 = c is true, then it follows from (4.43) that
the test statistic

t =
b1 − c

se(b1)
∼ t(n−2)

Thus, if the hypothesis is true, then the distribution of t is that shown in
figure 4.6. If the alternative hypothesis Ha : β1 6= c is true, then values of
the test statistic will tend to be unusually “large” or unusually “small”. The
terms large and small are determined by choosing a probability α, called the
level of significance of the test, which provides a meaning for “an unlikely
event”. The rejection region is determined by finding critical values t(n−2);α/2

such that
P (t ≥ t(n−2);α/2) = P (t ≤ −t(n−2);α/2) =

α

2

Thus the rejection region consists of the two “tails” of the t-distribution.
When the null hypothesis is true, the probability of obtaining a sample

value of the test statistic that falls in either tail area is “small” and, combined,
is equal to α. Sample values of the test statistic that are in the tail areas
are incompatible with the null hypothesis and are evidence against the null
hypothesis being true. When testing the null hypothesis H0 : β1 = c against
the alternative Ha : β1 6= c we are led to the following rule: if the value of
the test statistic falls in either tail of the t-distribution, then we reject the
null hypothesis and accept the alternative. If the value of the test statistic
falls between the critical values −tα/2 and tα/2, then we do not reject the null
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hypothesis. The test decision rules are summarized in figure 4.7.

0

0

-t(m);a/2 t(m);a/2

a/2 a/2

f(t)

Do not reject H0: b= c

reject H0: b= c

accept Ha: b¹ c

reject H0: b= c

accept Ha: b¹ c

Figure 4.7: Rejection region for a test of H0 : β1 = c against Ha : β1 6= c.

Let’s use our blood pressure data to consider some examples of statistical
tests. Suppose you claim that when weight increases with one kilogram, the
systolic blood pressure is expected to rise with 1 mmHg. Your roommate
doubts this and says it must be some different value. You decide to collect
relevant data, and test the null hypothesis H0 : β1 = 1 against Ha : β1 6= 1.
You decide to select α = 0.05. The critical value t(24);0.024 is 2.064, so we
reject the null hypothesis when |t| ≥ 2.064.

The observed t-value is

t =
b1 − c

se(b1)
=

0.9209− 1

0.1550
= −0.51,

which means we do not reject H0 since the observed t-value does not fall in
the reject region. As usual you can claim you were right.

Now suppose your other roommate claims that weight has no effect at all
on blood pressure. Now you decide to test H0 : β1 = 0 against Ha : β1 6= 0.
The observed t-value is

t =
b1 − c

se(b1)
=

0.9209

0.1550
= 5.94,
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and since this is bigger than 2.064, we reject H0.
Rather than computing critical values for specific values of α, we can also

do the following. Compute the probability under H0 of observing a t-value
at least as far from zero as the t value we actually observed, i.e. compute
P (|t(n−2)| > |t|). This probability is called the observed significance or p-
value.

For the first test, we compute P (|t(24)| > 0.51) as follows in S-plus

> 2*pt(-0.51,df=24)

[1] 0.6147099

This means that if H0 is true, the probability of observing a t value at least
as far from zero as the one we actually observed is 0.615, which is pretty
high. Since the p-value is larger than α, we accept H0. For the second test
we compute P (|t(24)| > 5.94) as follows

> 2*pt(-5.94,df=24)

[1] 3.949709e-006

Since the p-value is smaller than α, we reject H0.

4.3.3 Estimation of expected value and prediction

Drawing conclusions about population parameters β0 and β1, is not the only
possible objective of regression analysis. On many occasions we want to use
the regression line for the purpose of prediction of future observations. We
consider two closely related problems

1. Point and interval estimation of the expected value E(y0) of y0 at some
point x0.

2. Point and interval prediction of y0 for a future observation with x-value
x0.

According to the assumptions the y values are drawn independently, so
y0 is independent of the earlier observations and has distribution

y0 ∼ N(β0 + β1x0, σ
2)

We start with the first problem.
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Estimation of E(y0)

Obviously, ŷ0 = b0 +b1x0 is an unbiased estimator of E(y0) = β0 +β1x0, since

E(ŷ0) = E(b0 + b1x0) = β0 + β1x0

To be able to make confidence intervals we have to know the variance of the
point estimator ŷ0.

var(ŷ0) = var(b0 + b1x0)

= var(b0) + x2
0var(b1) + 2x0cov(b0, b1)

=
σ2
∑

x2
i

n
∑

(xi − x̄)2
+

σ2x2
0∑

(xi − x̄)2
− 2σ2x0x̄∑

(xi − x̄)2

=
σ2∑

(xi − x̄)2

[
1

n

∑
x2

i + x2
0 − 2x0x̄

]
=

σ2∑
(xi − x̄)2

[
1

n

∑
x2

i − x̄2 + x̄2 + x2
0 − 2x0x̄

]
=

σ2∑
(xi − x̄)2

[
1

n

{∑
x2

i −
1

n

(∑
xi

)2
}

+ (x0 − x̄)2

]
= σ2

[
1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]

Here we use the rule that

var(aX + bY ) = a2var(X) + b2var(Y ) + 2abcov(X, Y )

In the last step we use the fact that∑
x2

i −
1

n

(∑
xi

)2

=
∑

(xi − x̄)2

as was shown in (4.15).
The formula for var(ŷ0) implies that the farther x0 is from the sample

mean, the less reliable the estimation of the mean of y0. This result is
reasonable, since we would not expect to be able to estimate the mean of
y0 very accurately for an x about which we have little sample information.
Graphically this point is illustrated in figure 4.8. This figure shows two lines
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with different slopes, both passing through the point of means (x̄, ȳ). For
values of x near the mean the change in slope results in a small change in ŷ.
The further x is from its mean, the larger the change in ŷ due to the change
in the slope of the line.

x, y

x

y

Figure 4.8: The further we get from the mean, the larger the change in ŷ due
to a change in the slope of the line.

Since ŷ0 is a linear combination of b0 and b1, it is normally distributed as
well, so we have

ŷ0 ∼ N

(
β0 + β1x0, σ

2

[
1

n
+

(x0 − x̄)2∑
(xi − x̄)2

])
As usual, we have to estimate σ2 by s2. Standardization then gives

ŷ0 − (β0 + β1x0)

se(ŷ0)
∼ t(n−2)

where
se(ŷ0) =

√
v̂ar(ŷ0)
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and

v̂ar(ŷ0) = s2

[
1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]
Analogous to the way we constructed confidence intervals for β0 and β1,

we can now conclude that

ŷ0 ± t(n−2);α/2 se(ŷ0)

is a (1− α)× 100% confidence interval for E(y0) = β0 + β1x0.
For an example, we return to our by now familiar blood pressure example.

Let’s create a 95% confidence interval for the mean blood pressure of people
who weigh 90kg. The point estimate of mean blood pressure at 90kg is

ŷ0 = 69.3578 + 0.9209× 90 = 152.24

The estimated error variance s2 is 75.9277 (S-plus gives its square root as
residual standard error), so we compute

v̂ar(ŷ0) = s2

[
1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]
= 75.93

[
1

26
+

(90− 82.81)2

3160.038

]
= 4.16

So
se(ŷ0) =

√
4.16 = 2.04

and

ŷ0 ± t(24);0.025 se(ŷ0) = 152.24± 2.064× 2.04 = (148.03, 156.45)

is a 95% confidence interval for mean blood pressure at weight=90kg.
The relationship between point and interval estimates for different values

of x0 is illustrated in figure 4.9. A point estimate is always given by the fitted
least squares line, ŷ0 = b0+b1x0. The confidence intervals take the form of two
bands around the least squares line. Since the estimation variance increases
the farther x0 is from the sample mean, the confidence bands increase in
width as |x0 − x̄| increases.

72



weight

b
lo

o
d

p
re

s
s
u
re

0 50 100 150 200

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Figure 4.9: 95% confidence intervals for the blood pressure example. The
interval we computed is indicated by the solid vertical line at weight=90kg

Prediction of y0

The least squares predictor ŷ0 of y at x0 is

ŷ0 = b0 + b1x0 (4.49)

This prediction is given by the point on the least squares fitted line at
x = x0. To evaluate the sampling properties of this predictor we examine
the prediction error ŷ0 − y0. Since

E(ŷ0) = β0 + β1x0 = E(y0)

it follows that
E(ŷ0 − y0) = 0

which means that ŷ0 = b0 + b1x0 is an unbiased predictor of y0. Now y0 is
independent of y1, . . . , yn and therefore also of b0, b1, and ŷ0 since they are
computed from y1, . . . , yn. This means we can write

var(ŷ0 − y0) = var(ŷ0) + var(y0)
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Looking at this formula we can see there are two sources of uncertainty in
the prediction of y0. The first is the uncertainty concerning the true mean
of y0 at x0, and the second is the uncertainty due to the spread of y0 around
its mean.

Since by assumption var(y0) = σ2 and var(ŷ0) was derived in the previous
section, we can write

var(ŷ0 − y0) = σ2

[
1 +

1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]
From normality of ŷ0 and y0 it follows that

ŷ0 − y0 ∼ N

(
0, σ2

[
1 +

1

n
+

(x0 − x̄)2∑
(xi − x̄)2

])
Estimation of σ2 by s2 and standardization gives

ŷ0 − y0

se(ŷ0 − y0)
∼ t(n−2)

so
ŷ0 ± t(n−2);α/2 se(ŷ0 − y0)

is a (1− α)× 100% prediction interval for y0.
As an example we create a 95% prediction interval for someone who

weighs 90kg, i.e. x0 = 90. The point prediction is

ŷ0 = b0 + b1x0 = 69.3578 + 0.9209(90) = 152.24

This means that we predict that a person who weighs 90kg, will have a
systolic bloodpressure of 152.24 mmHg. The estimated variance of the pre-
diction error is

v̂ar(ŷ0 − y0) = s2

[
1 +

1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]
= 75.9277

[
1 +

1

26
+

(90− 82.81)2

3160.038

]
= 79.02075

The standard error of the prediction is then

se(ŷ0 − y0) =
√

v̂ar(ŷ0 − y0) =
√

79.02075 = 8.8894
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Figure 4.10: 95% prediction intervals for bloodpressure example.The interval
we computed is indicated by the solid vertical line at weight=90kg

We select α = 0.05. Since t(24);α/2 = 2.064, the 95% prediction interval for y0

is

ŷ0 ± t(n−2);α/2 se(ŷ0 − y0) = 152.24± 2.064(8.8894) = (133.8924, 170.5876)

This interval is indicated by the solid vertical line in figure 4.10. Note that,
as expected, the 95% prediction interval is wider than the 95% confidence
interval for the mean. As we already indicated this is due to the additional
uncertainty caused by the spread of y0 around its mean.

4.4 Maximum likelihood estimation of the sim-

ple linear regression model

We can also apply the method of maximum likelihood to find estimates of the
unknown parameters of the linear regression model. This means we aim to
find those values of (β0, β1, σ

2) that maximize the probability of the sample
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we have actually observed. In order to do so, we have to make assumptions
about the probability distribution of εi (otherwise we can not compute the
probability of the sample). The usual assumption is that εi ∼ N(0, σ2), and
as a consequence Yi ∼ N(β0 + β1xi, σ

2).
Recall that the density function N(µ, σ2) is given by

f(y) =
1

σ
√

2π
e−

1
2
(y−µ)2/σ2

for y ∈ IR

Plugging in β0 + β1xi for µi we get

f(yi) =
1

σ
√

2π
e−

1
2
(yi−β0−β1xi)

2/σ2

The likelihood function establishes the probability of observing all the n
observations in our sample, i.e. L(β0, β1, σ

2) = f(y1, y2, . . . , yn). Assuming
the observations are independent, we get

L(β0, β1, σ
2) =

n∏
i=1

f(yi) =
n∏

i=1

1

σ
√

2π
e−

1
2
(y−β0−β1xi)

2/σ2

=

(
1

σ
√

2π

)n

e−
1

2σ2

Pn
i=1(yi−β0−β1xi)

2

Taking logs yields

lnL(β0, β1, σ
2) = n ln

(
1

σ
√

2π

)
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2 (4.50)

It can be seen from equation 4.50 that regardless of the value of σ2, the
values of β0 and β1 for which the likelihood function is a maximum will be
the values for which the following sum of squares is a minimum

n∑
i=1

(yi − β0 − β1xi)
2

In other words, the MLE’s of the regression coefficients β0 and β1 are the
same as the least squares estimators b0 and b1.

The MLE of σ2 can be found by first replacing β0 and β1 in equation 4.50
by their MLE’s β̂0 and β̂1 and then maximizing the resulting expression with
respect to σ2. Taking the derivative of

n ln

(
1

σ
√

2π

)
− 1

2σ2

n∑
i=1

(yi − β̂0 − β̂1xi)
2
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with respect to σ and equating to zero, we get

−n

σ
+

∑n
i=1(yi − β̂0 − β̂1xi)

2

σ3
= 0

Solving this expression for σ2 yields

σ̂2 =
1

n

n∑
i=1

(yi − β̂0 − β̂1xi)
2 =

∑
e2

i

n

We have already seen that this is a biased estimator of σ2 (see equation
(4.38)). As n increases however, the bias gets smaller and smaller. Hence
the maximum likelihood estimator of σ2 is asymptotically unbiased.

We have shown that the least squares estimates and maximum likelihood
estimates of β0 and β1 coincide when the error has a normal distribution. To
show that this is by no means always the case, we see what happens when
the errors have some other distribution. Assume that εi has an exponen-
tial distribution with mean µi = βxi (for ease of exposition we assume the
intercept is zero). That is

fi(y) =
1

µi

e−y/µi y ≥ 0

For observations y1, . . . , yn, the log-likelihood is

L(β) =
n∑

i=1

log
1

βxi

e−yi/βxi

=
n∑

i=1

log
1

βxi

− yi

βxi

= −
n∑

i=1

log βxi +
yi

βxi

To obtain the maximum we compute the derivative of the log-likelihood
with respect to β

∂L
∂β

= −
n∑

i=1

1

β
− yi

β2xi
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=
n∑

i=1

(
yi

β2xi

− 1

β

)
=

n∑
i=1

yi

β2xi

− n

β

and equate to zero:
n∑

i=1

yi

β2xi

− n

β
= 0

1

β2

n∑
i=1

yi

xi

− n

β
= 0

1

β

n∑
i=1

yi

xi

= n

nb =
n∑

i=1

yi

xi

So

β̂ =
1

n

n∑
i=1

yi

xi

This estimator is different from the least squares estimator wich was shown
to be

b =

∑
xiyi∑
x2

i

It is straightforward to show that β̂ is an unbiased estimator:

E(β̂) = E

(
1

n

n∑
i=1

yi

xi

)

=
1

n
E

(
n∑

i=1

yi

xi

)

=
1

n

n∑
i=1

E(yi)

xi

=
1

n

n∑
i=1

βxi

xi
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=
1

n
nβ = β

Now for the variance of β̂. Since yi has exponential distribution with
mean µi = βxi, the variance of yi is

V (yi) = µ2
i = (βxi)

2 = β2x2
i

Now

V (β̂) = V

(
1

n

∑ yi

xi

)
=

1

n2
V

(∑ yi

xi

)
=

1

n2

∑ 1

x2
i

V (yi)

=
1

n2

∑ β2x2
i

x2
i

=
β2

n

Finally, we compute the variance of the least-squares estimator:

V (b) = V

(∑ xi∑
x2

j

yi

)
=

∑(
xi∑
x2

j

)2

V (yi)

=
∑ x2

i(∑
x2

j

)2β2x2
i

= β2

∑
x4

i(∑
x2

j

)2
=

β2

n

∑
x4

i

1
n

(
∑

x2
i )

2

So the relative efficiency of b as compared to β̂ is 1
n

(
∑

x2
i )

2
/
∑

x4
i which is

always ≤ 1. This means that the maximum likelihood estimator is always
at least as good as the least squares estimator. The more spread out the xi

are, the smaller the efficiency of least squares. Since V (yi) = β2x2
i , the more

diverse the values of x, the more unequal the variances.
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4.5 When X is random

So far we have assumed that the explanatory variable x was fixed in repeated
samples, and y was the only random variable we had to deal with. This
assumption is realistic when we think of an experimenter that selects the x
values and measures the outcome y. In actual data analysis practice this
is hardly ever the case. Typically we draw a random sample of units from
a population and both x and y are observed for the units selected into the
sample. Hence they are both random variables. To what extent does this
influence the results we have obtained so far?

One cop out is to condition the entire analysis on the x values we have
actually observed. This means the results we obtained so far go through with
the added assumption that the x values are kept fixed at the values observed
in the sample (rather than actually being preselected by the experimenter).

In fact this cop out is not necessary, since most of the results derived
under deterministic x values, still go through when x is random. It is, for
example, straightforward to show that the least-squares estimators of β0 and
β1 are still unbiased when x is random. First we obtained the desired result
conditioned on arbitrary x. This is the same as the deterministic case and
so according to (4.28) we have

E(b1 | x) = β1

By the law of iterated expectations, we then have

E(b1) = Ex(E(b1 | x)) = Ex(β1) = β1

So the unbiasedness of the least squares estimators does not depend on
the probability distribution of x. It only depends on the assumption that
E(ε | x) = 0. Likewise, we can show (but we won’t) that the Gauss-Markov
theorem still holds when x is random, and that the maximum likelihood
estimators and least squares estimators still coincide.

4.6 Diagnosis/Analysis of residuals

The procedures we discussed (estimation, testing, prediction) are only correct
if the assumptions SLR1-SLR6 are satisfied. Therefore it is important to
check whether these assumptions are correct. In regression analysis we use
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the collected observations to verify whether the modelling assumptions are
likely to be correct. We will look at the following requirements of the linear
regression model:

1. E(y) = β0 + β1x: Linearity in x

2. var(εi) = σ2: Homoskedasticity

3. εi, εj independent (i 6= j)

4. εi ∼ N(0, σ2): Normality

These requirements all concern the disturbances εi. Because the least
squares residuals ei can be viewed as outcomes of the random variables εi, it
makes sense to use the residuals to check the modelling assumptions.

4.6.1 Linearity

Linearity in x means that the disturbances in the linear model

Yi = β0 + β1xi + εi

should satisfy E(εi) = 0, i = 1, . . . , n.
This implies that the residuals should fluctuate randomly around 0, irre-

spective of the value xi of the explanatory variable. By plotting ei against
xi, we can verify whether this is the case.

The following example is taken from [10]. According to economists the
need to borrow money decreases as there is more money circulating in the
economy. This will then in turn cause the interest rate to decrease.

Take as explanatory variable the liquidity quote x, which is defined as the
liquidity mass expressed as a percentage of national income. The independent
variable y is the interest rate on government loans. We have observations for
the years 1980-1989 (time series).

Using a linear specification, we obtain the following estimates

ŷ = 21.13− 0.3165x

with R2 = 0.803. The theory is supported by the data, since b1 < 0. In
figure 4.11 a scatterplot of (xi, ei) is displayed.

Note that for high and low values of x we have positive residuals, whereas
in the middle we have negative residuals. This is indicative for a curvilinear
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Figure 4.11: Plot of xi against ei for interest rate data.

relationship. Therefore we also include x2 as an explanatory variable. When
we estimate this specification, we het

ŷ = 80.22− 3.1965x + 0.0364x2

with R2 = 0.9516. Note that the explained variance increases considerably
(from 0.803 to 0.9516). Because the second model has an extra explanatory
variable (x2) included, we cannot immediately conclude from the increase in
R2 that the model is better. We return to this issue later (see 4.10).

Note furthermore that the model

y = β0 + β1xi + β2x
2 + ε

is not linear in the variables. We can however still apply linear regression
analysis, as long as the model is linear in the parameters. By linear in the
parameters we mean that the parameters are not multiplied together, divided,
squared, etc. The variables, however, can be tranformed in any convenient
way, as long as the resulting model satisfies assumptions SLR1-SLR5 of the
simple linear regression model.
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4.6.2 Homoskedasticity

This means that all disturbance terms have equal variance, i.e.

var(εi) = σ2 i = 1, . . . , n

The spread around the regression line is equally big everywhere. In practice
this assumption is regularly violated.

In the food expenditure example (taken from [7]), ei clearly increases with
xi (see figure 4.12). The data is given in table 4.2.

Household Food Weekly Household Food Weekly
Expenditure Income Expenditure Income

1 52.25 258.3 21 98.14 719.8
2 58.32 343.1 22 123.94 720.0
3 81.79 425.0 23 126.31 722.3
4 119.90 267.5 24 146.47 722.3
5 125.80 482.9 25 115.98 734.4
6 100.46 487.7 26 207.23 742.5
7 121.51 496.5 27 119.80 747.7
8 100.08 519.4 28 151.33 763.3
9 127.75 543.3 29 169.51 810.2

10 104.94 548.7 30 108.03 818.5
11 107.48 564.6 31 168.90 825.6
12 98.48 588.3 32 227.11 833.3
13 181.21 591.3 33 84.94 834.0
14 122.23 607.3 34 98.70 918.1
15 129.57 611.2 35 141.06 918.1
16 92.84 631.0 36 215.40 929.6
17 117.92 659.6 37 112.89 951.7
18 82.13 664.0 38 166.25 1014.0
19 182.28 704.2 39 115.43 1141.3
20 139.13 704.8 40 269.03 1154.6

Table 4.2: Food expenditure data

This means we have to let go of the homoskedasticity assumption

var(yi) = var(εi) = σ2
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Figure 4.12: Plot of food expenditure data: spread around the line clearly
increases with x (income).

This means the least squares estimators are no longer best; more specifi-
cally

• The least squares estimators are still unbiased, but they are no longer
BLUE.

• The standard errors computed with the least squares estimators are
incorrect. This means that confidence intervals and tests based on
these standard errors can be misleading.

The most general assumption with respect to the disturbance term

var(yi) = var(εi) = σ2
i

is not useful because this would mean we have to estimate n different vari-
ances (and β0 and β1) from n observations. We can however use the assump-
tion of proportional variance

var(εi) = σ2
i = σ2xi
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How do we fit this model to the data? The idea is to transform this model in
order to get a model with homoskedastic disturbance. This works as follows.
We start out with the model

yi = β0 + β1xi + εi

Divide left and right by
√

xi

yi√
xi

= β0

(
1
√

xi

)
+ β1

(
xi√
xi

)
+

(
εi√
xi

)
Define the following transformed variables:

y∗i =
yi√
xi

, x∗i1 =
1
√

xi

, x∗i2 =
xi√
xi

, ε∗i =
εi√
xi

Then we can write
y∗i = β0x

∗
i1 + β1x

∗
i2 + ε∗i

The point of this whole exercise is that this model is homoskedastic, since

var(ε∗i ) = var

(
εi√
xi

)
=

(
1
√

xi

)2

var(εi) =
1

xi

σ2xi = σ2

So the procedure is simply to

1. Compute the transformed variables.

2. Apply ordinary least-squares to the transformed model.

This whole procedure can be interpreted as a weighted least squares
method. The ordinary least squares method finds those values of b0 and
b1 that minimize the sum of squared errors

∑
e2

i . In this case we minimize
the transformed errors∑

e∗2i =
∑(

ei√
xi

)2

=
∑ e2

i

xi

So the squared error is weighted by 1/xi. When xi is small (large), the
data contains more (less) information about the regression function and the
observations have a bigger (smaller) weight.
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In the Splus session below, we first fit a regression model with ordi-
nary least squares using the lm function. Note that the standard errors
provided in the output are not reliable, because the errors are clearly het-
eroskedastic. To fit the model presented in this section (i.e. var(εi) = σ2

i =
σ2xi), we use the gls (for generalized least squares) function. By specifying
weights=varFixed( income) in the call, we select the proportional variance
model. Note that we get different estimates for the slope and intercept of
the regression line.

> food.ols <- lm(y~x,data=fooddata)

> summary(food.ols)

Call: lm(formula = foodexp ~ income, data = fooddata)

Residuals:

Min 1Q Median 3Q Max

-71.75 -19.67 -5.969 17.75 80.14

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 40.7676 22.1387 1.8415 0.0734

income 0.1283 0.0305 4.2008 0.0002

Residual standard error: 37.81 on 38 degrees of freedom

Multiple R-Squared: 0.3171

F-statistic: 17.65 on 1 and 38 degrees of freedom, the p-value is 0.000155

Correlation of Coefficients:

(Intercept)

income -0.9629

> food.gls <- gls(foodexp ~ income,data=fooddata,weights=varFixed(~income))

> summary(food.gls)

Generalized least squares fit by REML

Model: foodexp ~ income

Data: fooddata

AIC BIC logLik
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401.6017 406.5144 -197.8008

Variance function:

Structure: fixed weights

Formula: ~ income

Coefficients:

Value Std.Error t-value p-value

(Intercept) 31.92438 17.98608 1.774949 0.0839

income 0.14096 0.02700 5.221574 <.0001

Correlation:

(Intr)

income -0.955

Standardized residuals:

Min Q1 Med Q3 Max

-1.703248 -0.5866877 -0.1512335 0.6116881 2.016665

Residual standard error: 1.344599

Degrees of freedom: 40 total; 38 residual

4.6.3 Independence of the error terms

The assumption that the error terms are independent (cov(εi, εj) = 0, i 6= j)
for example excludes the possibility that εi is influenced by εi−1. In case
we have time series data, this assumption is usually not satisfied. The “dis-
turbing influences” that are operative at time i − 1, usually still exert their
influence at time i. If that is the case, we speak of autocorrelation: the se-
quence ε1, ε2, . . . , εn is correlated with itself because each component depends
on its predecessors. The same will be true for the residuals e1, e2, . . . , en. By
plotting ei against i or ei−1 we can check whether this is the case. The
following example is taken from [7].

It makes sense that when the price of a particular crop is high, farmers
tend to plant more of that crop than when the price is low. Let A denote
the area planted and P the output price. We assume a log-log (constant
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elasticity) functional form

ln(A) = β0 + β1 ln(P ) + ε

Now β1 is the percentage change in A arising from a one percent increase
in P . This is what economists call the elasticity of A with respect to P .
Suppose we have 34 annual observations on area and price. We fit a linear
model is Splus:

> sugar.lm <- lm(log(area) ~ log(price),data=sugar)

> summary(sugar.lm)

Call: lm(formula = log(area) ~ log(price), data = sugar)

Residuals:

Min 1Q Median 3Q Max

-0.6508 -0.1882 -0.03096 0.2491 0.6049

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 6.1113 0.1686 36.2540 0.0000

log(price) 0.9706 0.1106 8.7733 0.0000

Residual standard error: 0.3088 on 32 degrees of freedom

Multiple R-Squared: 0.7063

F-statistic: 76.97 on 1 and 32 degrees of freedom, the p-value is 5.031e-010

Correlation of Coefficients:

(Intercept)

log(price) 0.9494

The plot of ei−1 against ei suggests there is positive autocorrelation. Al-
though the least squares estimators are still unbiased, they are no longer
BLUE. There are more efficient estimators that exploit the correlation struc-
ture in the data. Furthermore, the standard errors reported by least squares
are not reliable: with positive autocorrelation, they tend to underestimate
the standard deviation of the estimators. This means, for example, that
confidence intervals tend to be narrower than they should be.
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Figure 4.13: Plot of ei−1 against ei for sugar cane data.

4.6.4 Normality of the error term

When we want to give a confidence interval, or test a hypothesis, for the slope
β1 and intercept β0 of the regression line, we invoke the assumption that the
error term ε is normally distributed. For large samples, the central limit
theorem kicks in, and we don’t have to worry about normality of the error
term too much. Usually we are a few observations shy of infinity however.

One of the ways to compare the distribution of the residuals with a nor-
mal distribution is to use a so called Q-Q plot (short for quantile-quantile
plot). For a sample x the quantile function is the inverse of the empirical
distribution function

quantile(p) = min{z | proportion p of the data ≤ z}

To check whether the residuals are approximately normally distributed,
we plot the quantiles of the residuals against the quantiles of the standard
normal distribution. When the residuals are normally distributed, the points
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should lie approximately on a straight line.
We make a normal probability plot for the food data residuals in Splus.

> qqnorm(food.lm$residuals)

> qqline(food.lm$residuals)

This yields the graph displayed in figure 4.14. The greater spread of the
extreme quantiles for the residuals is indicative for a distribution with longer
tails than the normal distribution.

Quantiles of Standard Normal

fo
od

.lm
$r
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id

ua
ls

-2 -1 0 1 2

-5
0

0
50

Figure 4.14: Normal probability plot of residuals of food expenditure model

4.7 Linear regression in matrix terms

When we go from one to several explanatory variables, it will prove useful to
use matrix notation to state the linear regression model and the least squares
solution. We start with vector/matrix notation for simple linear regression
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through the origin. This also enables us to interpret the least squares solution
geometrically.

4.7.1 Geometrical interpretation of least squares: re-
gression through the origin

In the previous sections we derived the least squares estimators

b0 = ȳ − b1x̄ b1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
(4.51)

using calculus. Recall also that the least squares estimator for the slope in
the regression through the origin model was

b =

∑
xiyi∑
x2

i

(4.52)

Another way to derive the least squares estimator uses a geometrical
argument. To view the reasoning most clearly, we consider simple linear
regression through the origin. The fitted values are then given by

ŷi = bxi

We now consider how to obtain the least squares solution for this problem.
We consider an example and then derive the general solution. To be able to
draw a picture, we assume that we only have two observations

X =

[
x1

x2

]
=

[
2
1

]
and Y =

[
y1

y2

]
=

[
5
3

]
We will also use the vector of fitted values Ŷ and the error vector e:

e =

[
e1

e2

]
and Ŷ =

[
ŷ1

ŷ2

]
We have drawn the vectors X and Y in figure 4.15. Now Ŷ has to be some
multiple of X, so Ŷ is somewhere on the line in the direction of X. The least
squares criterion states that we choose the point on the line through X such
that the length

√
e · e of the vector e = Y − Ŷ is as small as possible (Note

that the length of e is just the square root of the sum of squared errors). In
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Figure 4.15: Ŷ is the orthogonal projection of Y onto X

other words, we choose the point on the line through X that is closest to Y .
This is achieved by taking the error vector orthogonal to X, as is shown in
figure 4.15. The point Ŷ is called the orthogonal projection of Y on X.

From this observation we can derive the value of b as follows. Since e
must be perpendicular to X, we have X · e = 0. So

X · e = X · (Y − bX) = X · Y − bX ·X = 0

Therefore

b =
X · Y
X ·X

which is of course the same as the result

b =

∑
xiyi∑
x2

i

that we got before using calculus and summation rather than vector notation.
For consistency with later notation we also give the matrix notation of

this result. In matrix notation, the dot product is written as a row times a
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column vector. To make a row vector of X, we take its transpose XT . We
then get

b =
XT Y

XT X
or b = (XT X)−1XT Y

If we apply the solution to the numerical example, we get

XT Y = [2 1]

[
5
3

]
= 13 and XT X = [2 1]

[
2
1

]
= 5

which yields

b =
XT Y

XT X
=

13

5
= 2

3

5

4.7.2 Simple linear regression model in matrix terms

Next we look at simple linear regression in matrix terms. We start with the
least squares solution.

Least Squares solution

We can write the observed y values as

yi = b0 + b1xi + ei (4.53)

which is short for

y1 = b0 + b1x1 + e1

y2 = b0 + b1x2 + e2

...

yn = b0 + b1xn + en

In matrix notation we can write this system of equations much more
compact as follows Let

X =


1 x1

1 x2
...
1 xn

Y =


y1

y2
...

yn

 e =


e1

e2
...
en

 b =

[
b0

b1

]
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Then we can write
Y = Xb + e (4.54)

since 
y1

y2
...

yn

 =


1 x1

1 x2
...
1 xn


[

b0

b1

]
+


e1

e2
...
en



=


b0 + b1x1

b0 + b1x2
...

b0 + b1xn

+


e1

e2
...
en

 =


b0 + b1x1 + e1

b0 + b1x2 + e2
...

b0 + b1xn + en


The column of 1s in the X matrix may be viewed as consisting of the

dummy variable x0 ≡ 1 in the alternative model

yi = b0x0 + b1xi + ei where x0 ≡ 1 (4.55)

The fitted value Ŷ is a linear combination of the columns of X, i.e.

Ŷ = Xb

Typically, the observed values Y are not in the column space of X, but we
want to find the value of Ŷ that is closest to Y . For this to be the case, the
error vector

e = Y −Xb

must be orthogonal to all columns of X.
In other words,

XT e = XT (Y −Xb) = XT Y −XT Xb = 0,

from which it follows that
XT Xb = XT Y (4.56)

Equation (4.56) states that[
n

∑
xi∑

xi

∑
x2

i

] [
b0

b1

]
=

[ ∑
Yi∑

xiYi

]
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Figure 4.16: Ŷ is the orthogonal projection of Y onto col(X)

or [
nb0 +

∑
b1xi

b0

∑
xi + b1

∑
x2

i

]
=

[ ∑
Yi∑

xiYi

]
which are precisely the normal equations we derived using calculus.

To obtain the estimated regression coefficients from the normal equations
(4.56) by matrix methods, we premultiply both sides by the inverse of XT X
(assuming it exists):

(XT X)−1XT Xb = (XT X)−1XT Y

We then find, since (XT X)−1XT X = I and Ib = b:

b = (XT X)−1XT Y (4.57)

Simple linear regression model

In terms of population parameters, the observed y values can be written

yi = β0 + β1xi + εi (4.58)
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which is short for

y1 = β0 + β1x1 + ε1

y2 = β0 + β1x2 + ε2

...

yn = β0 + β1xn + εn

In matrix notation we can write this system of equations much more
compact as follows Let

ε =


ε1

ε2
...
εn

 β =

[
β0

β1

]

Then we can write
Y = Xβ + ε (4.59)

with Y and X as defined before.
The condition E(εi) = 0 in matrix terms is

E(ε) = 0 (4.60)

since (4.60) states that 
E(ε1)
E(ε2)

...
E(εn)

 =


0
0
...
0


The condition that the error terms have constant variance σ2 and that all
covariances cov(εi, εj) for i 6= j are zero (since the εi are independent) is
expressed in matrix terms through the variance-covariance matrix of the
error terms

var(ε) =


σ2 0 0 . . . 0
0 σ2 0 . . . 0
...
0 0 0 . . . σ2

 (4.61)

Since this is a scalar matrix, we can express it in the following simple
fashion

var(ε) = σ2I (4.62)
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Numeric example

Suppose we have observations T = {(0, 1), (1, 1), (2, 2), (3, 2)}. The relevant
data matrices are

X =


1 0
1 1
1 2
1 3

 Y =


1
1
2
2

 XT X =

[
4 6
6 14

]
XT Y =

[
6
11

]

Now, since [
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
we get

(XT X)−1XT Y =
1

20

[
14 −6
−6 4

] [
6
11

]
=

1

20

[
18
8

]
=

[
9/10
4/10

]

4.8 Multiple Linear Regression

In general, a model with a single explanatory variable is not very realistic.
The extension of linear regression to more than one explanatory variable is
straightforward.

In terms of population parameters, the observations can be written

yi = β0 + β1xi,1 + β2xi,2 + . . . + βp−1xi,p−1 + εi (4.63)

which is again short for

y1 = β0 + β1x1,1 + β2x1,2 + . . . + βp−1x1,p−1 + ε1

y2 = β0 + β1x2,1 + β2x2,2 + . . . + βp−1x2,p−1 + ε2

...

yn = β0 + β1xn,1 + β2xn,2 + . . . + βp−1xn,p−1 + εn

Here the number of explanatory variables is p−1, and the number of param-
eters p, assuming there is an intercept coefficient. In matrix notation we can
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write this system of equations much more compact as follows Let

X =


1 x1,1 x1,2 . . . x1,p−1

1 x2,1 x2,2 . . . x2,p−1
...
1 xn,1 xn,2 . . . xn,p−1

Y =


y1

y2
...

yn

 ε =


ε1

ε2
...
εn

 β =


β0

β1
...

βp−1


Then, like with simple linear regression, we can write

Y = Xβ + ε (4.64)

The least squares estimator of β still is

b = (XT X)−1XT Y (4.65)

4.8.1 Inferences about regression parameters

We start by proving that the least squares estimators of β are unbiased. This
turns out to be quite straightforward in matrix notation. We have to prove
that

E(b) = β (4.66)

Proof

E(b) = E((XT X)−1XT Y )

= (XT X)−1XT E(Y )

= (XT X)−1XT Xβ

= β

In this proof we used the fact that (XT X)−1 is a matrix of constants, and
therefore its expected value is simply the matrix itself. Secondly, we used
E(Y ) = Xβ which follows directly from the assumption that E(ε) = 0 and
Y = Xβ + ε.

The variance-covariance matrix var(b)

var(b) =


var(b0) cov(b0, b1) . . . cov(b0, bp−1)

cov(b1, b0) var(b1) . . . cov(b1, bp−1)
...

...
...

cov(bp−1, b0) cov(bp−1, b1) . . . var(bp−1)
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is given by
var(b) = σ2(XT X)−1

The proof is given below. Write

b = (XT X)−1XT Y = CY

where C is a constant matrix

C = (XT X)−1XT

Now since var(CY ) = C var(Y ) CT (This is the matrix equivalent of the rule
var(cy) = c2var(y)) we get

var(b) = C var(Y ) CT

Now var(Y ) = σ2I. Furthermore, since (XT X)−1 is symmetric, we have

CT = ((XT X)−1XT )T = (XT )T ((XT X)−1)T = X(XT X)−1

We find therefore

var(b) = (XT X)−1XT σ2IX(XT X)−1

= σ2(XT X)−1XT X(XT X)−1

= σ2(XT X)−1I

= σ2(XT X)−1

The estimated variance-covariance matrix v̂ar(b)

v̂ar(b) =


v̂ar(b0) ĉov(b0, b1) . . . ĉov(b0, bp−1)

ĉov(b1, b0) v̂ar(b1) . . . ĉov(b1, bp−1)
...

...
...

ĉov(bp−1, b0) ĉov(bp−1, b1) . . . v̂ar(bp−1)


is given by

v̂ar(b) = s2(XT X)−1

From v̂ar(b) one can obtain v̂ar(b0), v̂ar(b1), or whatever other variance or
covariance is needed.
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For the normal error regression model we have

bk − βk

se(bk)
∼ t(n−p) k = 0, 1, . . . , p− 1

Hence
bk ± t(n−p);α/2 se(bk)

is a (1− α)× 100% confidence interval for βk.
Tests for βk are set up in the usual fashion. To test

H0 : βk = 0 Ha : βk 6= 0

we use the test statistic

t =
bk

se(bk)

and the decision rule: if |t| > t(n−p);α/2 reject H0, otherwise accept H0. To
test

H0 : βk = 0 Ha : βk > 0

we use the decision rule: if t > t(n−p);α reject H0, otherwise accept H0.

4.8.2 Coefficient of multiple determination

Recall that the definition of R2 is

R2 =
SSR

SST
= 1− SSE

SST

In the context of multiple regression, R2 is called the coefficient of multiple
determination. It measures how much of the variation in y around its mean
is explained by the variation in x1, x2, . . . , xp−1 together.

To see how the sums of squares are expressed in matrix notation, we begin
with the total sum of squares

SST =
∑

(yi − ȳ)2 =
∑

(yi − ȳ)yi =
∑

y2
i −

1

n

(∑
yi

)2

We know that
Y T Y =

∑
y2

i
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The subtraction term 1/n(
∑

yi)
2 in matrix form uses an n× n matrix of 1’s

which we call J
1

n

(∑
yi

)2

=

(
1

n

)
Y T JY

For instance, if n = 2 we have(
1

2

)
[y1 y2]

[
1 1
1 1

] [
y1

y2

]
=

(y1 + y2)(y1 + y2)

2

Hence it follows that

SST = Y T Y −
(

1

n

)
Y T JY

Furthermore, we have

SSE = eT e = (Y −Xb)T (Y −Xb)

Expanding, we get

(Y −Xb)T (Y −Xb) = (Y T − (Xb)T )(Y −Xb)

= (Y T − bT XT )(Y −Xb)

= Y T Y − Y T Xb− bT XT Y + bT XT Xb

Now Y T Xb is a scalar and hence equal to its transpose bT XT Y , so we get

Y T Y − Y T Xb− bT XT Y + bT XT Xb = Y T Y − 2bT XT Y + bT XT Xb

Now to simplify the expression, replace the rightmost b by (XT X)−1XT Y to
get

Y T Y − 2bT XT Y + bT XT Xb = Y T Y − 2bT XT Y + bT XT X(XT X)−1XT Y

= Y T Y − 2bT XT Y + bT IXT Y

= Y T Y − bT XT Y

Finally, since SSR = SST - SSE, we get

SSR = (Y T Y −
(

1

n

)
Y T JY )− (Y T Y − bT XT Y ) = bT XT Y −

(
1

n

)
Y T JY
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4.8.3 Multicollinearity

Most data that are used for estimating relationships are nonexperimental:
the data are simply collected for administrative or other purposes. In con-
trolled experiments the right-hand-side variables in the statistical model can
be assigned values in such a way that their individual effects can be identi-
fied and estimated with precision. When we are dealing with observational
data, many of the variables may move together in systematic ways. Such
variables are said to be collinear, and the problem is labeled collinearity or
multicollinearity when several variables are involved. In this case there is
no guarantee that the data will be “rich in information” nor that it will be
possible to isolate the relationship or parameters of interest.

To see this point intuitively, consider the following example. Suppose you
are on the cycling team. Before some of your cycling meets your grandmother
prepares you a terrific pasta dinner and gives you one of her famous pep
talks. When you get this special treatment you invariably cycle well. Now,
would you ever be able to figure out whether it is the pasta dinner or the
pep talk that produces this wonderful result? The answer is no. The two
things (pasta dinner/pep talk) always happen together. We wouldn’t be able
to disentangle their separate effects unless we sometimes had the pep talk
with no dinner or the dinner with no pep talk. In regression terms: we
couldn’t figure out the ceteris paribus effects of the two variables since they
are perfectly correlated. Figuring out how an explanatory variable affects
the dependent variable requires that there is some independent variation in
that explanatory variable.

Consider the multiple regression model

Yi = β0 + β1xi1 + β2xi2 + εi, i = 1, 2, . . . , n

and suppose that x2 is a multiple of x1, for example

xi2 = 1
2
xi1, i = 1, 2, . . . , n

In the matrix X, the third column is half the second column. We can
write this model as

Yi = β0 + (β1 +
1

2
β2)xi1 + εi

Under the usual assumptions, the regression coefficient β1+
1
2
β2 is uniquely

determined, but this is not the case for the individual constants β1 and β2.
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y x1 x2 ŷ
10 2 1 10.6
22 4 2 20.2
28 6 3 29.8
40 8 4 39.4

100 20 10

Table 4.3: Example of exact colinearity: x2 = 1
2
x1

The least-squares estimate of β1 + 1
2
β2 is

b1,2 =
n
∑

xiyi −
∑

xi

∑
yi

n
∑

x2
i − (

∑
xi)2

=
4(596)− 20(100)

4(120)− 202
=

384

80
= 4.8

The least-squares estimate of the intercept is

b0 = ȳ − b1,2x̄ = 25− 4.8(5) = 1

So the least-squares regression line is

ŷ = 1 + 4.8x1

Now, if we regress y on x1 and x2, any pair (β̂1, β̂2) such that β̂1+
1
2
β̂2 = 4.8

will give the same solution. So (4, 1.6), (3, 3.6), (100,−190.4) all yield the
same fit. The separate influence of x1 and x2 on y can not be determined. It
is therefore pointless to try to estimate β1 and β2 separately.

Let’s consider the more general situation of a linear dependence between
the values of the explanatory variables xi, that is for some constants c0, c1, . . . , cp−1

(not all equal to zero) we have

c0 + c1xi1 + c2xi2 + . . . + cp−1xip−1 = 0, i = 1, 2, . . . , n (4.67)

In this case we speak of exact collinearity. The columns of matrix X are
linearly dependent: each column can be written as a linear combination of
the others.

Since n ≥ p dependence between the columns means that X is not of full
rank p. From linear algebra we know the rule

rank(XT X) = rank(X)
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so XT X is not of full rank p either. This means matrix XT X is not invertible
(the inverse of a matrix exists only if it is of full rank). So in case of exact
collinearity the inverse of XT X does not exist: the regression coefficients
βk are not uniquely determined, and can not be estimated separately. In
case of simple linear regression exact collinearity means that the explanatory
variable x is constant. In that case the denominator of the equation for b1 is
0, which does indeed make it useless.

Exact collinearity rarely occurs in practice and if it occurs it usually is
because the analyst has made a mistake in constructing the data matrix.
However, a mild form of the problem also occurs when there is a high corre-
lation between the explanatory variables. As an example (taken from [11]),
table 4.4 contains the data for a study of the relation of amount of body fat
to several possible predictor variables, based on a sample of 20 healthy fe-
males 25-34 years of age. The possible predictor variables are triceps skinfold
thickness, thigh circumference and midarm circumference. The amount of
bodyfat in table 4.4 for each of the 20 persons was obtained by a cumbersome
and expensive procedure requiring the immersion of the person in water. It
would therefore be very helpful if a regression model with some or all of these
predictor variables could provide reliable predictions of the amount of body
fat, since the measurements needed for the predictor variables are easy to
obtain.

Figure 4.17 contains the scatterplot matrix of the dependent and predictor
variables. Table 4.5 contains the correlation matrix.

It is evident from the scatterplot matrix that the predictor variables tri-
ceps skinfold thickness and thigh circumference are highly correlated; the
correlation matrix shows that their coefficient of simple correlation is 0.924.
On the other hand midarm circumference is not so highly correlated to triceps
skinfold thickness and thigh circumference individually; the correlation ma-
trix shows that the correlation coefficients are 0.458 and 0.085 respectively.
But midarm circumference is highly correlated with triceps skinfold thickness
and thigh circumference together; the coefficient of multiple determination
when midarm circumference is regressed on triceps skinfold thickness and
thigh circumference is 0.998.

> summary(bodyfat.fit)

Call: lm(formula = body.fat ~ ., data = bodyfat)

104



subject triceps thigh midarm body.fat
1 19.5 43.1 29.1 11.9
2 24.7 49.8 28.2 22.8
3 30.7 51.9 37.0 18.7
4 29.8 54.3 31.1 20.1
5 19.1 42.2 30.9 12.9
6 25.6 53.9 23.7 21.7
7 31.4 58.5 27.6 27.1
8 27.9 52.1 30.6 25.4
9 22.1 49.9 23.2 21.3

10 25.5 53.5 24.8 19.3
11 31.1 56.6 30.0 25.4
12 30.4 56.7 28.3 27.2
13 18.7 46.5 23.0 11.7
14 19.7 44.2 28.6 17.8
15 14.6 42.7 21.3 12.8
16 29.5 54.4 30.1 23.9
17 27.7 55.3 25.7 22.6
18 30.2 58.6 24.6 25.4
19 22.7 48.2 27.1 14.8
20 25.2 51.0 27.5 21.1

Table 4.4: Data for bodyfat example

Residuals:

Min 1Q Median 3Q Max

-3.726 -1.611 0.3923 1.466 4.128

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 117.0847 99.7824 1.1734 0.2578

triceps 4.3341 3.0155 1.4373 0.1699

thigh -2.8568 2.5820 -1.1064 0.2849

midarm -2.1861 1.5955 -1.3701 0.1896

Residual standard error: 2.48 on 16 degrees of freedom

Multiple R-Squared: 0.8014
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triceps thigh midarm body.fat
triceps 1.000 0.924 0.458 0.843
thigh 0.924 1.000 0.085 0.878

midarm 0.458 0.085 1.000 0.142
body.fat 0.843 0.878 0.142 1.000

Table 4.5: Correlation matrix for bodyfat example

Variables in model b1 b2

x1 0.8572 −
x2 − 0.8565
x1, x2 0.2224 0.6594
x1, x2, x3 4.3341 −2.8568

Table 4.6: Value of coefficients b1, b2 for different models

Note from table 4.6 that the regression coefficient for x1, triceps skinfold
thickness, varies markedly depending on which other variables are included in
the model. The regression coefficient b2 even changes sign when x3 is added to
the model that includes x1 and x2. When predictor variables are correlated,
the regression coefficient of any one variable depends on which other predictor
variables are included in the model. Thus, a regression coefficient does not
reflect any inherent effect of the particular predictor variable on the response
variable but only a marginal or partial effect, given whatever other correlated
predictor variables are included in the model.

The consequences of collinear relationships among explanatory variables
may be summarized as follows:

1. Whenever there are one or more exact linear relationships among the
explanatory variables, then the condition of exact collinearity, or exact
multicollinearity exists. In this case the least squares estimator is not
defined.

2. When nearly exact linear dependencies exist among the explanatory
variables, some of the variances, standard errors and covariances of the
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Figure 4.17: Pairwise scatterplots for bodyfat example

least squuares estimators may be large. Large standard errors for the
least squares estimators imply: high sampling variability, coefficient
estimates that are unstable to small changes in the sample or model
specification, interval estimates that are wide, and relatively imprecise
information provided by the sample data about the unknown parame-
ters.

3. When estimator standard errors are large, it is likely that the usual
t-tests will lead to the conclusion that parameter estimates are not
significantly different from zero. This outcome occurs despite possibly
high R2 indicating “significant” explanatory power of the model as a
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whole. The problem is that collinear variables do not provide enough
information to estimate their separate effects, even though theoretical
considerations may indicate their importance in the relationship.

4. Despite the difficulties in isolating the effects of individual variables
from such a sample, accurate predictions may still be possible if the
nature of the collinear relationship remains the same within the new
(future) sample observations.

4.8.4 Omitted variable bias

Suppose we inadvertently omit a variable from the regression model. Suppose
the true model is

y = β0 + β1x + β2h + ε (4.68)

but we estimate the model

y = β0 + β1x + ε (4.69)

omitting h from the model.
Then we use the estimator

b∗1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=

∑
(xi − x̄)yi∑
(xi − x̄)2

=

∑
(xi − x̄)(β0 + β1xi + β2hi + εi)∑

(xi − x̄)2

=
β0

∑
(xi − x̄)∑

(xi − x̄)2
+

β1

∑
(xi − x̄)xi∑

(xi − x̄)2
+

β2

∑
(xi − x̄)hi∑

(xi − x̄)2
+

∑
(xi − x̄)εi∑
(xi − x̄)2

= β1 + β2

∑
wihi +

∑
wiεi

where

wi =
xi − x̄∑
(xj − x̄)2

So,

E(b∗1) = β1 + β2

∑
wihi 6= β1

We can write ∑
wihi =

(xi − x̄)hi∑
(xi − x̄)2
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=
(xi − x̄)(hi − h̄)∑

(xi − x̄)2

=
(xi − x̄)(hi − h̄)/(n− 1)∑

(xi − x̄)2/(n− 1)

=
ĉov(xi, hi)

v̂ar(xi)

so

E(b∗1) = β1 + β2
ĉov(xi, hi)

v̂ar(xi)

The sign of β2 and the sign of the covariance between xi and hi tells us the
direction of the bias. If the sample covariance, or sample correlation, between
xi and the omitted variable hi is zero, then the least squares estimator in the
misspecified model is still unbiased.

4.9 Binary explanatory variables

Binary variables allow us to construct models in which some or all of the
regression parameters, including the intercept, change for some observations
in the sample. To illustrate the different uses of binary variables, we consider
an example from real estate economics: the prediction of the value of a house.
We assume the price of a house is explained by its characteristics, such as its
size, location, number of bedrooms, age, etc.

We begin with a simple model where the price P of the house only depends
on its size S

Pi = β0 + β1Si + εi

In this model, β1 is the value of an additional square meter of living area, and
β0 is the value of the land alone. How can we take into account the effect of
a property being in a desirable neighborhood such as one near a university?
Binary variables are used to account for such qualitative factors. We usually
code a binary variable as 0 or 1, to indicate the presence or absence of a
characteristic. That is a binary variable B is

B =

{
1 if characteristic is present
0 if characteristic is absent
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For the house price model, we can define a binary variable to account for
a desirable neighborhood as

Bi =

{
1 if house is in a desirable neighborhood
0 if house is not in a desirable neighborhood

If we add this variable and corresponding parameter δ to the model we
obtain

Pi = β0 + δBi + β1Si + εi

The effect of inclusion of a binary variable Bi into the regression model is
best seen by examining the regression function E(Pi), in the two locations.

If the model is correctly specified then E(εi) = 0 and

E(Pi) =

{
(β0 + δ) + β1Si when Bi = 1
β0 + β1Si when Bi = 0

The two situations are depicted in figure 4.18, assuming δ > 0.

d

S

P

b0

b0 + d
E(P) = b0 + b1 S

E(P) = (b0 + d) + b1 S

Figure 4.18: An intercept binary variable
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In the context of the house price model, the interpretation of δ is that of
a location premium: the difference in house price due to being located in a
desirable neighborhood.

It is also reasonable to assume that the effect of location on house price
causes a change in the slope of the regression equation, instead of the in-
tercept. We can allow for a change in the slope by including in the model
an additional explanatory variable that is equal to the product of a binary
variable and a numeric variable. In the house price model, the slope of the
relationship is the value of an additional square foot of living area. If we
assume this is one value for homes in a desirable neighborhood and another
value for homes in other neighborhoods, then the correct specification is

Pi = β0 + β1Si + γ(SiBi) + εi

Examining the regression function for the two different locations best illus-
trates the effect of the inclusion of the interaction variable into the model

E(Pi) =

{
β0 + (β1 + γ)Si when Bi = 1
β0 + β1Si when Bi = 0

In the desirable neighborhood per square meter of a home is (β1 + γ), in
other locations it is β1.

4.10 Model Selection for Linear Regression

In many cases we want to use the linear regression model to predict for new
observations the value of Y , when the value of X is known. If we have
many potential explanatory variables, we have to consider many different
model specifications. In this section we address the problem how to select
the model with the best predictive performance from the space of potential
regression models.

4.10.1 Prediction and the danger of overfitting

We first show why the naive approach doesn’t work. The naive approach
would be to select the model with the lowest error (highest R2) on the sample
we use to fit the model. We consider a simple regression example to illustrate
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P

b0

E(P) = b0 + b1 S

E(P) = b0 + (b1+ g) S

g

slope = b1

slope = b1 + g

Figure 4.19: A slope binary variable

why this doesn’t work. Suppose that Yi ∼ N(µ = 2.0 + 0.5xi, σ
2 = 1), i.e.

the true relation between E(Y ) and x is

E(Y ) = 2.0 + 0.5x.

We have a sample T of ten (x, y) observations, which is displayed in the
scatterplot of Fig. 4.20(a). Note that x is not a random variable but its values
are chosen by us to be 1, 2, . . . , 10. Although E(Y ) is a linear function of x,
the observations do not lie on a straight line due to the inherent variability
of Y . We pretend we don’t know the relation between x and y, but only have
T at our disposal, as would be the case in most data analysis settings. We
consider three classes of models to describe the relation between x and y

Linear Model: E(Y ) = f1(x) = β0 + β1x

Quadratic Model: E(Y ) = f2(x) = β0 + β1x + β2x
2

Cubic Model: E(Y ) = f3(x) = β0 + β1x + β2x
2 + β3x

3
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Note that (2) encompasses (1) in the sense that if β2 = 0, (2) reduces to
the linear function (1). Likewise, (3) encompasses (2), and consequently also
(1). The βj are the parameters of the model, whose estimates are chosen
in such a way that the sum of squared vertical distances from the points
(xi, yi) to the fitted equation is minimized. For example, for the simple
linear regression model we choose the estimates b0 and b1 of β0 and β1 such
that

n∑
i=1

[yi − (b0 + b1 xi)]
2

is minimal. The expression b0 + b1 xi denotes the predicted value for yi, so
one effectively minimizes the sum of squared differences between predicted
values and realisations of y. The estimates bj of the βj thus obtained are
called the least squares estimates.

The equations obtained by least squares estimation for the respective
models are displayed in Fig. 4.20 (b) to (d). Without performing the actual
calculations, one can easily see that the linear model gives the worst fit, even
though the true (population) relation is linear. The quadratic model gives a
somewhat better fit, and the cubic model gives the best fit of the three. In
general, the more parameters the model has, the better it is able to adjust to
the data in T . Does this mean that the cubic model gives better predictions
than the linear model? It does on T , but how about on data that were not
used to fit the equation? We drew a second random sample, denoted by T ′,
and looked at the fit of the equations to T ′ (see Fig. 4.21). The fit of the
cubic model is clearly worse than that of the linear model. The reason is that
the cubic model has adjusted itself to the random variations in T , leading on
average to bad predictive performance on new samples. This phenomenon is
called overfitting.

In the next section we discuss the decomposition of prediction error into
its components to gain a further understanding of the phenomenon illustrated
by the above example.

4.10.2 Decomposition of prediction error in regression

Once we have obtained estimates bj by estimation from some training set T ,
we may use the resulting function to make predictions of y when we know the
corresponding value of x. Henceforth we denote this prediction by f̂(x). The
difference between prediction f̂(x) and realisation y is called prediction error.
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Figure 4.20: Equations fitted by least squares to the data in T

It should preferrably take values close to zero. A natural quality measure of
f̂ as a predictor of Y is the mean squared error. For fixed T and x

E (Y − f̂(x |T ))2

where the expectation is taken with respect to p(Y |x), the probability distri-
bution of Y at x. We may decompose this overall error into a reducible part,
and an irreducible part that is due to the variability of Y at x, as follows

E (Y − f̂(x |T ))2 = [f(x)− f̂(x |T )]2 + E(y − f(x))2

where f(x) ≡ E[Y |x]. The last term in this expression is the mean square
error of the best possible (in the mean squared error sense) prediction E[Y |x].
Since we can’t do much about it, we focus our attention on the other source
of error [f(x) − f̂(x |T )]2. This tells us something about the quality of the
estimate f̂(x |T ) for a particular realisation of T . To say something about the
quality of the estimator f̂ , we take its expectation over all possible training
samples (of fixed size) and decompose it into its bias and variance components
as follows:

ET (f(x)− f̂(x |T ))2 = (f(x)− ET f̂(x |T ))2 + ET (f̂(x |T )− ET f̂(x |T ))2
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Figure 4.21: Fit of equations to new sample T ′

The first component is the squared bias, where bias is the difference between
the best prediction f(x) and its average estimate over all possible samples
of fixed size. The second component, variance, is the expected squared dif-
ference between an estimate obtained for a single training sample and the
average estimate obtained over all possible samples.

We illustrate these concepts by a simple simulation study using the models
introduced in the previous section. The expectations in the above decom-
position are taken over all possible training samples, but this is a little bit
too much to compute. Instead we use the computer to draw a large number
of random samples to obtain an estimate of the desired quantities. In the
simulation we sampled 1000 times from

Yi ∼ N(µ = 2 + 0.5xi, σ
2 = 1)

with xi = 1, 2, . . . , 10. In other words we generated 1000 random samples,
T1, T2, . . . , T1000 each consisting of 10 (x, y) pairs. For each sample, the least
squares parameter estimates for the three models were computed. Using
the estimated models we computed the predicted values f̂(x). From the
1000 predicted values we computed the mean to estimate the expected value
Ef̂(x) and variance to estimate V(f̂(x)). The results of this simulation study
are summarized in Table 4.7. Consider the fourth row of this table for the

115



x f(x) E(f̂1) E(f̂2) E(f̂3) V(f̂1) V(f̂2) V(f̂3)
1 2.50 2.48 2.48 2.49 0.34 0.61 0.84
2 3.00 2.99 2.98 2.98 0.25 0.27 0.29
3 3.50 3.49 3.49 3.48 0.18 0.18 0.33
4 4.00 3.99 4.00 3.99 0.13 0.20 0.32
5 4.50 4.50 4.50 4.50 0.10 0.23 0.25
6 5.00 5.00 5.00 5.01 0.10 0.22 0.23
7 5.50 5.50 5.51 5.52 0.13 0.19 0.28
8 6.00 6.01 6.01 6.02 0.17 0.18 0.31
9 6.50 6.51 6.51 6.51 0.24 0.28 0.30

10 7.00 7.01 7.01 7.00 0.33 0.62 0.80

Table 4.7: Expected value and variance of f̂j

moment. It contains the simulation results of the predictions of the different
models for x = 4. The expected value is f(4) = E(Y |x = 4) is 2 + 0.5 · 4 = 4.
From the first three columns we conclude that all models have no or negligable
bias; in fact we can prove they are unbiased since all three models encompass
the correct model. But now look at the last three columns of table 4.7. We
see that the linear model has lowest variance, the cubic model has highest
variance, and the quadratic model is somewhere inbetween. This is also
illustrated by the histograms displayed in Fig. 4.22. We clearly see the larger
spread of the cubic model compared to the linear model. Although all three
models yield unbiased estimates, the linear model tends to have a lower
prediction error because its variance is smaller than that of the quadratic
and cubic model.

The so-called bias/variance dillema lies in the fact that there is a trade-off
between the bias and variance components of error. Incorrect models lead to
high bias, but highly flexible models suffer from high variance.

For a fixed bias, the variance tends to decrease when the training sample
gets larger and larger. Consequently, for very large training samples, bias
tends to be the most important source of prediction error. This phenomenon
is illustrated by a second simulation. We generated the training sets by
drawing from

Yi ∼ N(µ = 2 + 0.5xi + 0.02x2
i , σ

2 = 1).

The true model is quadratic, so the linear model is biased whereas the
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Figure 4.22: Histograms of f̂j(4) based on 1000 samples

Squared bias Variance Mean square error
n 10 100 1000 10 100 1000 10 100 1000
Linear (f1) .021 .022 .022 .197 .022 .002 .218 .043 .024
Quadratic (f2) .000 .000 .000 .299 .037 .004 .299 .037 .004
Cubic (f3) .001 .000 .000 .401 .054 .006 .401 .054 .006

Table 4.8: Bias, variance and mean squared estimation error for different
sample sizes

quadratic and cubic model are unbiased. We generated 1000 training samples
of size 10, 100 and 1000 respectively. The first three columns of Table 4.8
summarize the estimated squared bias for the different models and sample
sizes.

The results confirm that the linear model is biased, and furthermore in-
dicate that the bias component of error does not decrease with sample size.
Now consider the variance estimates shown in the middle three columns of
Table 4.8. Looking at the rows, we observe that variance does decrease with
the size of the sample. Taking these two phenomena together results in the
summary of mean square error given in the last three columns of Table 4.8.
The linear model outperforms the other models for small sample size, de-
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spite its bias. Because variance is a substantial component of overall error
the linear model profits from its smaller variance. As the sample size gets
larger, variance becomes only a small part of total error, and the linear model
becomes worse due to its bias.

4.10.3 Model Selection

The discussion in the previous section has shown that there are two reasons
why we obtain a better fit of the data when we move from simple to more
complex models

1. The more complex models generally have a smaller bias; their average
tends to be closer to the population regression curve than for simple
models.

2. Overfitting: the higher the number of adjustable parameters, the more
prone the model is to fit to noise in the data.

We want to favour more complex models if the SSE goes down because of
factor (1), but not if its decline is largely due to (2). If only we could correct
the SSE value for overfitting, then the corrected SSE value would be a good
indication of what we are interested in, the mean squared error of the fitted
model.

Many suggestions have been made for estimating the size of the overfitting
factor. We discuss here a result due to Akaike, called the Akaike Information
Criterion (AIC). For linear regression models it looks like this:

AIC = SSE + 2σ2p

where SSE is the sum of squared errors of the fitted model, p is the number
of adjustable parameters of the fitted model, and σ2 is the variance of the
error term.

Let’s see if the different components of this expression are intuitively
plausible. The SSE indicates the goodness-of-fit of the fitted model and
clearly for models of the same complexity low values of SSE are desireable.
The second term corrects for the average degree of overfitting for the family.
Since overfitting has the effect of reducing SSE, any correction should be
positive. That this correction is proportional to p, the number of adjustable
parameters, reflects the intuition that overfitting will increase as the models
become more flexible, allowing them to fit to the noise in the data.
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That the expected degree of overfitting is also proportional to σ2 is plau-
sible as well. The bigger the error deviations from the population regression
curve, the greater the potential for misleading fluctuations in the data. Also
note that if there is no error (σ2 = 0), then AIC reduces to SSE. If there is no
error then simplicity of the model (as measured by p) is no longer relevant,
and any model that fits the data perfectly scores equally well.

Let’s look at some consequences of using AIC to select a model. It is clear
that a simple model is preferrable if it fits the data about as well as a more
complex model. AIC describes how much of an improvement in goodness-of-
fit the move to a more complex model must provide for it to make sense to
prefer the more complex model. The improvement must be large enough to
overcome the penalty for complexity (represented by p).

Another feature of AIC is that the relative weight we give to simplicity
declines as the number of data points increases. As the number of data points
increases, the SSE becomes the dominant component of AIC, since SSE is
the squared error summed over all data points. On the other hand, with
small amounts of data, simplicity plays a more determining role. This is
consistent with our earlier observation that with large amounts of data, the
bias component of error starts to dominate, whereas the variance component
gets smaller and smaller as the amount of data increases.

A problem with the practical application of AIC is that σ2 is of course
unknown, and has to be estimated. We return to this issue when we discuss
the possibilities of model selection in Splus.

Model selection in Splus

The problem of model selection has now been reduced to finding the model
with the lowest AIC score. We now look at the problem of how to search
the space of possible models. If the pool of potential explanatory variables is
small, one can use exhaustive search (all possible subsets regression) but since
the number of possible subsets is 2k for k potential explanatory variables,
this strategy has its limitations. Therefore, often hill-climbing algorithms are
used. We give an example to illustrate how model selection can be performed
in Splus.

We use the bodyfat example for illustration. We start the search with the
model that includes triceps, thigh and midarm as explanatory variables.
With the command drop1 we can inspect the AIC value of models that
can be obtained from the current model by removing a single variable. In
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computing the AIC value, σ2 is estimated by the s2 of the current model.
We apply drop1 to the bodyfat model:

> drop1(bodyfat.fit)

Single term deletions

Model:

body.fat ~ triceps + thigh + midarm

Df Sum of Sq RSS Cp

<none> 98.4049 147.6073

triceps 1 12.70489 111.1098 148.0116

thigh 1 7.52928 105.9342 142.8360

midarm 1 11.54590 109.9508 146.8526

The column labeled Cp contains the AIC values. It turns out that we can
reduce the AIC value the most by dropping thigh from the model. We drop
it from the model, and obtain the new model:

> bodyfat.fit2 <- lm(body.fat ~ triceps + midarm, data=bodyfat)

> summary(bodyfat.fit2)

Call: lm(formula = body.fat ~ triceps + midarm, data = bodyfat)

Residuals:

Min 1Q Median 3Q Max

-3.879 -1.963 0.3811 1.269 3.894

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 6.7916 4.4883 1.5132 0.1486

triceps 1.0006 0.1282 7.8029 0.0000

midarm -0.4314 0.1766 -2.4428 0.0258

Residual standard error: 2.496 on 17 degrees of freedom

Multiple R-Squared: 0.7862

Now we consider dropping yet another term:

> drop1(bodyfat.fit2)
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Single term deletions

Model:

body.fat ~ triceps + midarm

Df Sum of Sq RSS Cp

<none> 105.9342 143.3227

triceps 1 379.4037 485.3379 510.2636

midarm 1 37.1855 143.1197 168.0454

Notice that the AIC value of the current model is different from its value
in the previous table. This is because a different estimate s2 of σ2 is used.
We see that there is no single term deletion that reduces the AIC value, so
our search stops here.

We can also start with the model that only contains the intercept term,
and start adding variables:

> bodyfat.fit0 <- lm(body.fat ~ 1, data=bodyfat)

> summary(bodyfat.fit0)

Call: lm(formula = body.fat ~ 1, data = bodyfat)

Residuals:

Min 1Q Median 3Q Max

-8.495 -3.145 1.005 4.08 7.005

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 20.1950 1.1418 17.6873 0.0000

Residual standard error: 5.106 on 19 degrees of freedom

Multiple R-Squared: 5.86e-031

The 1 in the formula

body.fat ~ 1

denotes the intercept term. Now we look at the effect of adding a single term:

> add1(bodyfat.fit0, ~ triceps + thigh + midarm)

Single term additions
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Model:

body.fat ~ 1

Df Sum of Sq RSS Cp

<none> 495.3895 547.5358

triceps 1 352.2698 143.1197 247.4122

thigh 1 381.9658 113.4237 217.7162

midarm 1 10.0516 485.3379 589.6304

In the second argument of add1 we specify the terms that can be added.
Adding thigh gives the most reduction of AIC so the new model becomes:

> bodyfat.fit3 <- lm(body.fat ~ thigh,data=bodyfat)

> summary(bodyfat.fit3)

Call: lm(formula = body.fat ~ thigh, data = bodyfat)

Residuals:

Min 1Q Median 3Q Max

-4.495 -1.567 0.1241 1.336 4.408

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -23.6345 5.6574 -4.1776 0.0006

thigh 0.8565 0.1100 7.7857 0.0000

Residual standard error: 2.51 on 18 degrees of freedom

Multiple R-Squared: 0.771

We consider adding yet another term:

> add1(bodyfat.fit3, ~ triceps + thigh + midarm)

Single term additions

Model:

body.fat ~ thigh

Df Sum of Sq RSS Cp

<none> 113.4237 138.6289

triceps 1 3.472892 109.9508 147.7587

midarm 1 2.313901 111.1098 148.9177
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There is no single term addition that would reduce the AIC value, so we
stop here.

We can also do a fully atomatic search using the step function. Again
we start with the full model.

> bodyfat.step1 <- step(bodyfat.fit,trace=F)

> bodyfat.step1$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

body.fat ~ triceps + thigh + midarm

Final Model:

body.fat ~ triceps + midarm

Step Df Deviance Resid. Df Resid. Dev AIC

1 16 98.4049 147.6073

2 - thigh 1 7.529278 17 105.9342 142.8360

Let’s try starting with the empty model again.

> bodyfat.step2 <- step(bodyfat.fit0, scope = ~ triceps+thigh+midarm)

...

> bodyfat.step2$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

body.fat ~ 1

Final Model:

body.fat ~ thigh

Step Df Deviance Resid. Df Resid. Dev AIC
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1 19 495.3895 547.5358

2 + thigh -1 -381.9658 18 113.4237 217.7162

In both cases we end up with the same result as with the manual search.
In starting from the empty model, the estimate of σ2 used by step is way

too big, which might discourage the addition of variables. Therefore we retry
with what we consider to be a more reasonable estimate of σ2, namely the
estimate based on the full model. This estimate is passed as the parameter
scale to the step function:

> bodyfat.step3 <- step(bodyfat.fit0, scope = ~ triceps+thigh+midarm,

scale=2.48^2)

> bodyfat.step3$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

body.fat ~ 1

Final Model:

body.fat ~ thigh

Step Df Deviance Resid. Df Resid. Dev AIC

1 19 495.3895 507.6903

2 + thigh -1 -381.9658 18 113.4237 138.0253

In this case the result is the same, but we can see that the AIC values are
considerably lower because of the smaller scaling value used.

4.11 Monte Carlo simulation

According to the frequentist viewpoint, statistical procedures (estimation,
testing, prediction) should be evaluated on the basis of their properties when
they are repeated many times. We have seen that sometimes we can use
theoretical analysis to determine these properties. For example, under the
assumptions SLR1-SLR6, we were able to derive the distributions of the
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least squares estimators in the linear regression model. When we drop SLR6
(normality of the error term), we can invoke the Central Limit Theorem to
approximate the distribution of the least squares estimators for large sam-
ple sizes. To determine at what sample size this approximation becomes
reasonable is much harder however.

Another possibility is to use the computer to actually perform these many
repetitions and to study the behaviour of an estimator or test procedure in
that way. This technique is often called Monte Carlo simulation because we
use the computer to simulate random draws from some population. Let’s
look at a simple example.

Suppose we draw a sample of size n from a distribution which is uniform
on [0, u], where u is unknown and has to be estimated from the data. One
way to reason is as follows. Since the sample points x1, x2, . . . , xn are drawn
from a uniform distribution over the range 0 to u, their average

x̄ =
x1 + x2 + . . . + xn

n

should be nearly u/2. So we estimate u as 2x̄.
We could also apply the maximum likelihood principle: find that value

of u for which the observed sample has higher probability than for any other
possible value of u. Obviously, we should estimate u by the sample maximum
in that case. Even more obviously, this estimator is downward biased.

Which of these estimators do you think is better (let’s say in terms of
mean square error)? This is far less obvious. We can use computer simula-
tion to find out. We just mimic the repeated sampling from U(0, u) on the
computer. For each sample we compute the two proposed estimators, and
compare their mean and variance. Here’s a small S program to do that

function(m, n, u)

{

# m : number of samples

# n : sample size

# u : max of uniform distribution

call <- match.call()

uhat.1 <- uhat.2 <- vector(length = m)

for(i in 1:m) {

# draw sample of size n from uniform distribution U(0,u)
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x <- runif(n, min = 0, max = u)

# compute first estimator

uhat.1[i] <- 2 * mean(x)

# compute second estimator

uhat.2[i] <- max(x)

}

m1 <- mean(uhat.1)

m2 <- mean(uhat.2)

v1 <- var(uhat.1)

v2 <- var(uhat.2)

list(call = call, m1 = m1, m2 = m2, v1 = v1, v2 = v2,

uhat.1 = uhat.1, uhat.2 = uhat.2)

}

The program is self-explanatory as usual. The last expression of a func-
tion definition is returned as a result of a call. In this case it is a list with com-
ponents enumerated between parentheses. We can call the function, which
we named mcunif as follows:

> mc.1 <- mcunif(50,20,5)

> mc.1[2:5]

$m1:

[1] 4.950275

$m2:

[1] 4.75027

$v1:

[1] 0.4080421

$v2:

[1] 0.04212668

We assign the result of the call to mcunif to the variable (“object”) mc.1.
Then we select list components 2 to 5 for printing. We can see that the mean
m1 of the first estimator (based on drawing 50 samples of size 20) is 4.95. This
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0.05 below the true value of u, but it is easy to show that it is in fact an
unbiased estimator. The mean of the second estimator is 4.75 which is 0.25
below the true value. This confirms our intuition that this estimator must be
downward biased. The most interesting result however is that the computed
variance of the first estimator is about ten times as high as the computed
variance of the second estimator.
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Figure 4.23: Plot of 50 estimates of u using first estimator (top panel) and
second estimator (bottom panel)

Combining squared bias + variance into mean squared error, we get a
mean squared error of 0.052 + 0.41 = 0.4125 for the first estimator and
0.252 + 0.042 = 0.1045 for the second estimator. So we should prefer the
second estimator despite its bias.

Let’s look at a second example from linear regression. We have stated
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that OLS is BLUE under the standard assumptions of the linear regression
model. In case of heteroskedastic error this is no longer the case: we can get
an estimator with smaller variance by downweighting the unreliable observa-
tions, i.e. some form of weighted least squares. The simplest model was to
assume that

var(εi) = σ2
i = σ2xi

We did however not prove that the weighted least squares estimator indeed
has lower variance. We perform a small simulation study to illustrate that
this is indeed the case. We generate the data according to the simple het-
eroskedastic model given above.

function(m, n, beta0, beta1, sigma.square)

{ # m: number of samples

# n: sample size

# beta0: intercept of population regression line

# beta1: slope of population regression line

# sigma.square: common factor of variance

b1.ls <- vector(length = m)

b1.gls <- vector(length = m)

x <- 1:n

# draw m samples and compute slopes

for(i in 1:m) {

# generate heteroskedastic sample of size n

y <- beta0 + beta1 * x + rnorm(n, sd = sqrt(sigma.square * x))

# ordinary least squares fit

ls.fit <- lsfit(x, y)

# weighted least squares fit

gls.fit <- gls(y ~ x, data = data.frame(y, x), weights = varFixed( ~ x))

# extract slope

b1.ls[i] <- ls.fit$coef[2]

b1.gls[i] <- gls.fit$coef[2]

}

list(b1.ls = b1.ls, b1.gls = b1.gls)

}

Note that x is kept fixed in repeated samples: it is outside the sampling
loop. We called this function mclinregr. Here’s a small example simulation:
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> mclin.1 <- mclinregr(100,20,1,3,9)

> var(mclin.1$b1.gls)

[1] 0.1064367

> var(mclin.1$b1.ls)

[1] 0.1562418

> mean(mclin.1$b1.gls)

[1] 3.047714

> mean(mclin.1$b1.ls)

[1] 3.027393

On the basis of this simulation we would estimate the bias of ordinary
least squares to be about 0.03 (for this sample size and parameter values)
and of weighted least squares 0.05 (of course we know they are both unbi-
ased). The variance of OLS is estimated at about 0.16, and of WLS at 0.11.
Combining the two into mean square error, we get 0.032 + 0.16 = 0.161 for
OLS and 0.052 + 0.11 = 0.113. Hence we should prefer WLS on the basis of
this simulation.

Proof of bias-variance decomposition

In this section we prove the decomposition of mean square estimation error
into its bias and variance components. To save space, we write f for f(x), f̂
for f̂(x|T ) and drop the subscript T from the expectations.

The mean square error of f̂ as an estimator of f is defined as

M(f̂) = E(f̂ − f)2

The bias of f̂ as an estimator of f is defined as

B(f̂) = E(f̂ − f)

The variance of f̂ is defined as

V (f̂) = E(f̂ − E(f̂))2

We prove that
M(f̂) = B2(f̂) + V (f̂),
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i.e., mean square error equals squared bias + variance.
Proof: we can write f̂ − f as

f̂ − f = (f̂ − E(f̂)) + (E(f̂)− f)

Square on the left and on the right

(f̂ − f)2 = (f̂ − E(f̂))2 + (E(f̂)− f)2 + 2(f̂ − E(f̂))(E(f̂)− f)

We take expectations left and right. Since E(f̂ − E(f̂)) = E(f̂)− E(f̂) = 0
and E(f̂)− f is a constant, the cross term then drops out. So we get

E(f̂ − f)2 = E(f̂ − E(f̂))2 + (E(f̂)− f)2 = V (f̂) + B2(f̂)

Proof that E(Y |X) minimizes mean square pre-

diction error

The problem here is to predict the value of Y by a function of X, call it
f(X). We pick a point X = x.

One measure of the goodness of the predictor f(x) of Y at x is its mean
square error

M(f(x)) = E(Y − f(x))2

It is a measure of, on average, how far off the prediction is. We show that
f(x) = E(Y |x) minimizes the mean square error.

E(Y − f(x))2 = E(Y 2 − 2f(x)Y + f(x)2)

= E(Y 2|x)− 2f(x)E(Y |x) + f(x)2

So
d

df
= −2E(Y |x) + 2f(x),

which is zero when f(x) = E(Y |x). Since this is true for any value of X,
f(X) = E(Y |X) minimizes the mean square error.
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4.12 Exercises

1. Prove that
∑

(xi − x̄)xi =
∑

(xi − x̄)2.

2. Fitting a line through the origin. Suppose we know that the fitted line
must go through the origin, i.e. when x is zero, y must be zero as well.
Use least squares to find a general expression for the slope of the fitted
line.

3. Suppose we know for a fact that the slope of the fitted line must be
zero. What kind of relationship is there between x and y? What value
would you now predict for y if you want to minimize the sum of squared
errors?

4. (Refresher) Use the properties of expectations and variances to show
that if X is a random variable with expectation E(X) = µ, and variance
V (X) = σ2, then

Z =
X − µ

σ

has expectation E(Z) = 0 and variance V (Z) = 1.

5. (Regression through the origin). We have observations (xi, yi), i =
1, . . . , n where the yi are the observed values of random variables Y1, . . . , Yn.
The xi are fixed by the experimenter. Assume that

E(Yi) = βxi

Show that the least squares estimator of β it is unbiased.

6. Show that
∑

ciwi = 0 in the proof of the Gauss-Markov theorem for
b1 (Hint: use the constraints

∑
ci = 0 and

∑
cixi = 0).

7. (Regression through the origin continued) Suppose the usual assump-
tions of the linear regression model apply, but the true value of the
intercept is zero. We have already derived the least squares estimator
for the slope of this model. Compare the variance of this estimator
to that of the slope estimator computed with an unnecessary intercept
term.

131



8. Suppose you are estimating a linear regression model. If you multiply
all the xi values by 10, but not the yi values, what happens to the pa-
rameter values β0 and β1? What happens to the least squares estimates
b0 and b1? What happens to the variance of the error term?

9. We have the following 6 observations on x and y and want to fit a linear
regression model.

i 1 2 3 4 5 6
xi 4 1 2 3 3 4
yi 16 5 10 15 13 22

a) Compute Y T Y , XT X and XT Y .

b) Find (XT X)−1.

c) Find the vector of estimated regression coefficients, the vector of
residuals (errors),SSR,SSE, and the estimated variance-covariance
matrix of b. Give a point estimate of E(y) for x = 4.

d) From the estimated variance-covariance matrix in c) obtain the
following: ĉov(b0, b1), v̂ar(b0), and v̂ar(b1). Test the null hypothe-
sis that β1 = 0 against a two-sided alternative at α = 0.05.

10. (Taken from [11]) A substance that is used in biological and medical
research is shipped by airfreight to users in cartons of 1000 ampules.
The data below, involving 10 shipments, were collected on the number
of times the carton was transferred from one aircraft to another over
the shipment route (x), and the number of ampules found to be broken
on arrival (y).

i 1 2 3 4 5 6 7 8 9 10
xi 1 0 2 0 3 1 0 1 2 0
yi 16 9 17 12 22 13 8 15 19 11

Using these observations, we estimate the model

yi = β0 + β1xi + εi
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Assume that the usual assumptions of the linear regression model are
appropriate.

a) Compute the least-squares estimates of β0 and β1.

b) Obtain a point estimate of the expected number of broken am-
pules when one transfer is made. Estimate the increase in the
expected number of broken ampules when there are two transfers
as compared to one transfer.

c) Compute a 95% confidence interval for β1. Interpret this interval
estimate.

d) Perform a test to decide whether or not there is a linear asso-
ciation between number of times a carton is transferred (x) and
the number of broken ampules (y), at α = 0.05. State the null
hypothesis, the alternative hypothesis, the decision rule and the
conclusion. What is the P-value of the test?

e) A consultant claims, based on previous experience, that the mean
number of broken ampules should not exceed 9.0 when no transfers
are made. Conduct an appropriate test to verify this claim at
α = 0.025. State the null hypothesis, the alternative hypothesis,
the decision rule and the conclusion. What is the P-value of the
test?

f) What percentage of the variation in y is explained by the variation
in x ?

g) The next shipment will entail two transfers. Compute a 99% pre-
diction interval for the number of broken ampules of this shipment.
Interpret this prediction interval.

11. Analysis of the food expenditure data with Splus yields the following
output:

> food.fit <- lm(foodexp ~ income,data=food)

> summary(food.fit)

Call: lm(formula = foodexp ~ income, data = food)

Residuals:
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Min 1Q Median 3Q Max

-71.75 -19.67 -5.969 17.75 80.14

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 40.7676 22.1387 1.8415 0.0734

income 0.1283 0.0305 4.2008 0.0002

Residual standard error: 37.81 on 38 degrees of freedom

Multiple R-Squared: 0.3171

F-statistic: 17.65 on 1 and 38 degrees of freedom,

the p-value is 0.000155

Correlation of Coefficients:

(Intercept)

income -0.9629

a) Write down the estimated regression function.

b) Construct a 95% confidence interval for β0 and explain what it
means.

c) Test the null hypothesis that β0 is zero against the alternative that
it is not, at the 5% level of significance without using the reported
p-value. What is your conclusion?

d) Draw a sketch showing the p-value 0.0734 given in the Splus out-
put, the critical value from the t-distribution used in (c) and how
the p-value could have been used to answer (c).

e) Test the null hypothesis that β0 is zero, against the alternative
that it is positive, at the 5% level of significance. Draw a sketch
of the rejection region. What is your conclusion? Repeat for β1.

12. (Taken from [7]) Suppose you wish to estimate the slope of the regres-
sion model Yi = β0 + β1xi + εi. The problem you have is threefold:

1) you are stranded on a desert island and have no computer or
calculator, and

2) you have only three observations and
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3) you don’t remember the formulas for the least squares estimators

Recalling that 2 points determine a line, you form an average of obser-
vations 2 and 3 as follows

y∗ =
y2 + y3

2
x∗ =

x2 + x3

2

The slope of the line connecting the points is b∗ = (y∗ − y1)/(x
∗ − x1).

a) Show that this estimator of β1 is a linear estimator.

b) Show that this estimator of β1 is unbiased.

c) Determine the variance of b∗.

d) Is b∗ just as good as the least squares estimator? Explain.

e) Write a simulation program in Splus to doublecheck your theoret-
ical results.

13. (Taken from [10]) Extensive studies have shown that the performance
of employees depends on the temperature of the working environment
according to the following model

Y = 230− 2x + ε

Here x denotes the temperature in degrees Celcius and Y the perfor-
mance of an employee (according to some measure); the relationship
holds for 20 ≤ x ≤ 35.

An employer suspects that in his company temperature has an even
stronger negative influence on performance. He decides to make some
observations, with the following outcomes:

i 1 2 3 4 5 6 7
xi 31 25 27 23 32 22 29
yi 80 105 120 105 70 120 100

Using these observations we estimate the model

Y = β0 + β1x + ε

Assume that the usual assumptions of the linear regression model apply.
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a) Compute the least squares estimates of β0 and β1.

b) What percentage of the variation in performance is explained by
the variation in temperature ?

c) Use a test to check whether the suspicion of the employer is con-
firmed by the data. Use α = 0.05. State the null hypothesis,
alternative hypothesis, decision rule and conclusion.

d) To present the results on a conference in the US the temperature
has to be expressed in degrees Fahrenheit. Give the regression
equation that you will present at the conference (You can con-
vert from degrees Celsius to degrees Fahrenheit by multiplying
the number of degrees Celsius by 9/5 and adding 32 to the result-
ing figure).
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Chapter 5

Logistic Regression

5.1 Introduction

In many regression problems, the response variable of interest has only two
possible qualitative outcomes, and therefore can be represented by a binary
indicator variable taking on values 0 and 1. For example:

1. In a model for credit scoring, the response variable may be defined to
have two possible outcomes: the loan defaulted (1) or it didn’t (0).
Explanatory variables may be income of the applicant, his or her oc-
cupation and so on.

2. In building a SPAM filter, we would like to determine whether an e-mail
message is SPAM (1) or not (0). Among the variables that discriminate
SPAM from non-SPAM are word counts (e.g. relative frequency of the
word “free”), number of CAPITAL LETTERS, and so on.

In section 5.2 we explain why linear regression does not work very well
for this kind of problem. In section 5.3 we presented a model that is more
appropriate for binary classification problems.

5.2 The linear probability model

Consider the simple linear regression model

Yi = β0 + β1xi + εi Yi = 0, 1 (5.1)

137



where the outcome Yi is binary taking on the value of either 0 or 1. Since
by assumption, E(εi) = 0 we have

E(Yi) = β0 + β1xi (5.2)

Now Yi is a Bernoulli random variable with probability distribution

Yi Probability
1 P (Yi = 1) = πi

0 P (Yi = 0) = 1− πi

Thus, πi is the probability that Yi = 1, and 1 − πi is the probability that
Yi = 0. The expected value of Yi then is

E(Yi) = 1(πi) + 0(1− πi) = πi (5.3)

Equating (5.2) and (5.3) we get

E(Yi) = β0 + β1xi = πi (5.4)

The mean response E(Yi) = β0 + β1xi as given by the response function is
therefore simply the probability that Yi = 1 when the level of the predictor
variable is xi.

When the response variable is binary, assumption SLR3 (constant vari-
ance of the error term) of the linear regression model is false. To see this, we
derive the variance of Yi for the simple linear regression model in (5.1).

var(Yi) = E[(Yi − E(Yi))
2]

= (1− πi)
2πi + (0− πi)

2(1− πi)

= πi(1− πi) = E(Yi)(1− E(Yi))

= (β0 + β1xi)(1− β0 − β1xi)

Note that var(Yi) depends on xi, hence the error variances will be different
for different levels of x and ordinary least squares will no longer be best.

A more serious problem is that the linear response function does not
necessarily satisfy the constraint

0 ≤ E(Y ) = π ≤ 1

For example, in the credit scoring example with a linear response function,
some applicant with an extremely high income may be predicted to have a

138



negative probability of defaulting. If this probability is then set to zero (which
seems reasonable), this would have the effect that all low (i.e. below a certain
threshold) income applicants are assigned probability 1 of being defaulters,
and all high income applicants get probability 0. As a consequence, there may
be defaulters in the sample that have probability zero of being a defaulter
according to the model. This problem is illustrated in figure 5.1.

b0 + b1 x

1

E(Y)

0 1

Figure 5.1: Linear response function

Such a model would often be considered unreasonable. Instead, a model
where the probabilities 0 and 1 are reached asymptotically, as illustrated in
figure 5.2, would usually be more appropriate.

5.3 Simple logistic regression

The response function plotted in figure 5.2 is called the logistic response
function and is of the form

E(Y ) =
eβ0+β1x

1 + eβ0+β1x
(5.5)
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Figure 5.2: Logistic response function

or (divide numerator and denominator by eβ0+β1x)

E(Y ) =
1

1 + e−β0−β1x
(5.6)

An interesting property of the logistic response function is that it can
be linearized easily. Let us denote E(Y ) by π, since the mean response is a
probability when the response variable is a 0,1 indicator variable. Then if we
make the transformation (we substitute z for β0 + β1x)

π′ = ln

(
π

1− π

)
= ln

(
(1 + e−z)−1

1− (1 + e−z)−1

)
= ln

(
1

(1 + e−z)− 1

)
= ln

(
1

e−z

)
= ln(ez) = z = β0 + β1x

140



Where in the second step, we divided the numerator and the denominator
by (1 + e−z)−1. This transformation is called the logit transformation of the
probability π. The ratio π/(1− π) is called the odds.

5.3.1 Maximum likelihood estimation of logistic regres-
sion model

We state the simple logistic regression model as follows: the Yi are indepen-
dent Bernoulli random variables with expected values E(Yi) = πi, where

E(Yi) = πi =
eβ0+β1xi

1 + eβ0+β1xi
(5.7)

Since each Yi observation is a Bernoulli random variable, where

P (Yi = 1) = πi

P (Yi = 0) = 1− πi

we can represent its probability distribution as follows

pi(yi) = πyi

i (1− πi)
1−yi yi = 0, 1; i = 1, . . . , n (5.8)

Note that pi(1) = πi, pi(0) = 1− πi as required.
Since the yi observations are independent (e.g. random sampling), their

joint probability is simply the product of their individual probabilities

p(y1, . . . , yn) =
n∏

i=1

pi(yi) =
n∏

i=1

πyi

i (1− πi)
1−yi (5.9)

For convenience we work with the loglikelihood, since products become
sums, and if we take the natural log, we can get rid of some powers of e.

ln p(y1, . . . , yn) = ln
n∏

i=1

πyi

i (1− πi)
1−yi

=
n∑

i=1

yi ln

(
πi

1− πi

)
+

n∑
i=1

ln(1− πi)

=
n∑

i=1

yi(β0 + β1xi)−
n∑

i=1

ln(1 + eβ0+β1xi)
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In the last step we use the fact that

ln

(
π

1− π

)
= β0 + β1xi

and
1− πi = (1 + eβ0+β1xi)−1

Hence the loglikelihood function is

L(β0, β1) =
n∑

i=1

yi(β0 + β1xi)−
n∑

i=1

ln(1 + eβ0+β1xi) (5.10)

The maximum likelihood estimates of β0 and β1 are those values β̂0 and
β̂1 that maximize the log-likelihood in (5.10). Unfortunately, there are no
formulas that give us the values of β̂0 and β̂1, as there are in least squares
estimation of the linear regression model. Computer intensive numerical
search procedures are required to find the maximum likelihood estimates.
Once they are found, we substitute these values into the response function
in (5.7) to obtain the fitted response function

π̂ =
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
(5.11)

5.3.2 Example

Suppose we want to model the probability of succesfully completing a pro-
gramming assignment within a limited amount of time. The explanatory
variable is “number of months programming experience”. Below we give the
data used to estimate the regression equation, as well as the fitted response
for each observation. In the Value column of the Coefficients table we
find β̂0 = −3.0597 and β̂1 = 0.1615. This means that

π̂i =
e−3.0597+0.1615xi

1 + e−3.0597+0.1615xi

So for example, if someone has 14 months of programming experience, we
would estimate his probability of successfully completing the task to be

π̂i =
e−3.0597+0.1615(14)

1 + e−3.0597+0.1615(14)
≈ 0.31
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> summary(programming.fit)

Coefficients:

Value Std. Error t value

(Intercept) -3.0596954 1.2589852 -2.430287

month.exp 0.1614859 0.0649625 2.485833

month.exp success fitted month.exp success fitted

1 14 0 0.310262 16 13 0 0.276802

2 29 0 0.835263 17 9 0 0.167100

3 6 0 0.109996 18 32 1 0.891664

4 25 1 0.726602 19 24 0 0.693379

5 18 1 0.461837 20 13 1 0.276802

6 4 0 0.082130 21 19 0 0.502134

7 18 0 0.461837 22 4 0 0.082130

8 12 0 0.245666 23 28 1 0.811825

9 22 1 0.620812 24 22 1 0.620812

10 6 0 0.109996 25 8 1 0.145815

11 30 1 0.856299

12 11 0 0.216980

13 30 1 0.856299

14 5 0 0.095154

15 20 1 0.542404

Now let’s look at the interpretation of the coefficient β̂1. Unfortunately
it is not as simple as in the linear regression model. There β̂1 indicated the
expected change in y when x increased with one unit.

Let’s see what happens to the fitted logit respons when x increases with
one unit. Pick any value of x, say x = xj. Then the fitted logit response is

π̂′(xj) = β̂0 + β̂1xj

The fitted logit response for x = xj + 1 is

π̂′(xj + 1) = β̂0 + β̂1(xj + 1)

The difference between the two is

π̂′(xj + 1)− π̂′(xj) = β̂1
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If we write ln(odds1) for π̂′(xj) and ln(odds2) for π̂′(xj + 1) then

ln(odds2)− ln(odds1) = ln

(
odds2

odds1

)
= β̂1

From which it follows that

ÔR =
odds2

odds1
= eβ̂1

Here ÔR is short for the estimated odds ratio.
We continue our programming task example to illustrate the interpreta-

tion of β̂1. We found that β̂1 = 0.1615, so

ÔR = e0.1615 = 1.175

This means the odds increase with 17.5% with every extra month of experi-
ence. The estimated odds ratio for an increase with c months is simply ecβ̂1 .
So if we compare someone with 10 months of experience to someone with
twenty-five months of experience (c = 15), then

ÔR = e15(0.1615) = 11.3

so the odds for the programmer with 25 months of experience are about 11
times as high as for the programmer with only 10 months of experience.

5.4 Multiple Logistic Regression

Like in linear regression, we usually want to include more than one explana-
tory variable in a logistic regression model. Basically we just replace

β0 + β1x

by
β0 + β1x1 + β2x2 + . . . + βp−1xp−1

in all formulas. So we get, for example

E(yi) = πi =
exp(β0 + β1x1 + β2x2 + . . . + βp−1xp−1)

1 + exp(β0 + β1x1 + β2x2 + . . . + βp−1xp−1)
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It is more convenient to use vector notation. We define the vectors

β =


β0

β1
...

βp−1

 X =


1
x1
...

xp−1

 Xi =


1

xi,1
...

xi,p−1


so we get

βT X = β0 + β1x1 + β2x2 + . . . + βp−1xp−1

and
βT Xi = β0 + β1xi,1 + β2xi,2 + . . . + βp−1xi,p−1

The response function can now be written as

E(y) = π =
exp(βT X)

1 + exp(βT X)

and the logit transformation of the response is

π′ = ln

(
π

1− π

)
= βT X

The parameters are estimated by maximizing the log-likelihood

L(β) =
n∑

i=1

yi(β
T Xi)−

n∑
i=1

ln(1 + exp(βT Xi))

Again we have to resort to numeric methods to determine the maximum
likelihood estimate β̂ of β. Once we have computed β̂, we can determine the
fitted response function

π̂i =
exp(β̂T Xi)

1 + exp(β̂T Xi)

In order to be able to compute confidence intervals and to perform hypoth-
esis tests concerning the parameters, we have to know something about the
distribution of β̂, the maximum likelood estimator of β. This is somewhat
harder to determine than in the case of the least-squares estimators for linear
regression. In fact the only results we have are so-called asymptotic results,
i.e. they only apply if we have enough observations. Simply put, if we have
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enough observations, then β̂ is nearly unbiased, and also nearly normally
distributed. We will not discuss the variance-covariance matrix of β̂. If this
matrix is given, we can use it together with the standard normal distribution
to compute confidence intervals and perform hypothesis tests in the usual
fashion.

5.5 Discrete choice models

We can arrive at the logistic regression and similar models via another path
as well. We view the outcome (y = 0, 1) as a discretization of an underly-
ing regression. Consider for example the decision to make a large purchase.
Micro-economic theory states that the consumer makes a cost-benefit cal-
culation. Since benefit is obviously not observable, we model the difference
between cost and benefit as an unobserved variable y∗, such that

y∗ = β0 + β1x + ε

We typically assume that ε has a logistic or standard normal distribution.
We do not observe the net benefit of the purchase, only whether it is made
or not. Therefore, our observation is

y =

{
1 if y∗ > 0
0 if y∗ ≤ 0

Now the probability that y = 1 is

P (y = 1) = P (y∗ > 0)

= P (β0 + β1x + ε > 0)

= P (ε > −β0 − β1x)

If the distribution of ε is symmetric (e.g. normal or logistic), then

P (ε > −β0 − β1x) = P (ε < β0 + β1x)

= F (β0 + β1x)

Here F is the distribution function of ε.
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5.5.1 The probit model

In the probit model we assume ε ∼ N(0, 1). The assumption of unit variance
is a harmless normalization. Suppose we assume that ε ∼ N(0, σ2) Then

P (ε < β0 + β1x) = P

(
ε

σ
<

β0 + β1x

σ

)
Clearly, ε/σ ∼ N(0, 1), so we can divide β0 and β1 by σ and get exactly the
same probabilities as in the other model. Since we only observe whether y is
0 or 1 (and not the value of y∗), these models are observationally equivalent.
The assumption of zero for the threshold is likewise innocent if the model
contains a constant term β0.

So for the probit model

P (y = 1) = Φ(β0 + β1x)

where Φ(·) is the standard normal distribution function.
And for the logit model

P (y = 1) = Λ(β0 + β1x) =
eβ0+β1x

1 + eβ0+β1x

where Λ(·) indicates the cumulative logistic distribution function.

5.6 Model Selection for Logistic Regression

Like in linear regression we may be confronted with the problem of finding
the model with the best predictive performance from a large set of potential
models. As a measure of model fit we use the value of the log-likelihood
function evaluated at β̂ (the maximum likelihood estimate of β)

L(β̂) =
n∑

i=1

yi ln(π̂i) + (1− yi) ln(1− π̂i)

The larger this value, the better the fit of the model. This makes sense,
because the likelihood gives the probability of the data given the model, and
the higher this probability the better the fit. A measure that is comparable
with SSE in the linear regression model is

Deviance = −2L(β̂)
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The model with the smallest deviance gives the best fit. Of course we have
to beware of overfitting, so just picking the model with the smallest deviance
would be a bad strategy. Again we have to balance the fit against the model
complexity as measured by the number of parameters. The Akaike Informa-
tion Criterion for logistic regression models is

AIC(model) = Deviance(model) + 2p

The lower the AIC value the better. The term 2p is a penalty for the com-
plexity of the model: if we move from a simple to a more complex model then
the reduction of deviance it achieves must be more than twice the number
of additional parameters for the complex model to be preferred.

The strategies to search the space of possible models for the lowest AIC
value are essentially the same as those discussed for the linear regression
model.

5.7 Exercises

1. A health clinic in Utrecht sent flyers to inhabitants to encourage every-
one, but especially older persons, to get a flu shot in time for protection
against an expected flu epidemic. In a small pilot study, 50 inhabitants
were randomly selected and asked whether they actually received a
flu shot. In addition, data were collected on their age (x1) and their
health awareness. The latter data were combined into a health aware-
ness index (x2), for which higher values indicate greater awareness.
An inhabitant who received a flu shot was coded y = 1, and and an
inhabitant who did not receive a flu shot was coded y = 0.

Initially, we estimate the model

E(y) = P (y = 1) =
exp(β0 + β1x1 + β2x2)

1 + exp(β0 + β1x1 + β2x2)

using maximum likelihood. This give the following results

Coefficients:

Value Std. Error

(Intercept) -21.5821259 6.33965854
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age 0.2217512 0.07359717

index 0.2034849 0.06206469

Deviance: 32.41631 on 47 degrees of freedom

a) We compute exp(β̂1) = exp(0.2217512) ≈ 1.25. Does this number
have a simple interpretation? Explain.

Somebody claims that the influence of age on whether or not some-
one gets a flu shot depends on the health awareness of this person.
Therefore we estimate the alternative model

E(y) = P (y = 1) =
exp(β0 + β1x1 + β2x2 + β3x1x2)

1 + exp(β0 + β1x1 + β2x2 + β3x1x2))

with maximum likelihood. This yields the following results

Coefficients:

Value Std. Error

(Intercept) 26.75512936 23.2458565

age -0.88140146 0.5399075

index -0.82228216 0.4948594

age:index 0.02365021 0.0117723

Deviance: 24.28312 on 46 degrees of freedom

Here the row age:index contains the results for the interaction term
x1x2.

b) We compute exp(β̂1) = exp(−0.88140146) ≈ 0.4. Does this num-
ber have a simple interpretation? Explain.

c) Compute the AIC score for both models. Which model is pre-
ferred?

d) Test the claim that the influence of age on whether or not someone
gets a flu shot depends on health awareness at α = 0.05. (Assume
that the sample is big enough for the asymptotic distribution of
the maximum likelihood estimators to give a good approximation).
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e) What is the estimated probability that inhabitants aged 55 with
a health awareness index of 60 will receive a flu shot?

2. (Taken from [8]) The table below presents the test-firing results for 25
surface-to-air anti aircraft missiles at targets of varying speed. The
result of each test is either a hit (y = 1) or a miss (y = 0). The
explanatory variable x gives the speed of the target in knots.

Target speed Target speed
Test (x) in knots y Test (x) in knots y

1 400 0 14 330 1
2 220 1 15 280 1
3 490 0 16 210 1
4 210 1 17 300 1
5 500 0 18 470 1
6 270 0 19 230 0
7 200 1 20 430 0
8 470 0 21 460 0
9 480 0 22 220 1

10 310 1 23 250 1
11 240 1 24 200 1
12 490 0 25 390 0
13 420 0

We estimate the model

E(y) = P (y = 1) =
exp(β0 + β1x)

1 + exp(β0 + β1x)

using maximum likelihood. This gives the following results:

Coefficients:

Value Std. Error

(Intercept) 6.07086259 2.105830002

target.speed -0.01770463 0.006065314

Model Deviance: 20.36366 on 23 degrees of freedom
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a) We compute exp(50 × β̂1) = exp(−0.89) ≈ 0.41. Interpret this
number.

b) Test whether an increase in target speed has a negative influence
on the probability of a hit, at α = 0.05. (Assume the sample
size is sufficient for the asymptotic distribution of the maximum
likelihood estimators to give a reasonable approximation). State
the null hypothesis, alternative hypothesis, decision rule and con-
clusion.

Someone claims that a quadratic term in target speed should be in-
cluded in the model. We estimate the alternative model

E(y) = P (y = 1) =
exp(β0 + β1x + β2x

2)

1 + exp(β0 + β1x + β2x2)

using maximum likelihood. This gives the following results:

Coefficients:

Value Std. Error

(Intercept) 6.192757e+000 9.01877932046

target.speed -1.846563e-002 0.05505815155

target.speed.2 1.100548e-006 0.00007910137

Model Deviance: 20.36346 on 22 degrees of freedom

Here the row target.speed.2 contains the estimated coefficient and
standard error for the quadratic term.

c) Compute the AIC score for the linear and quadratic model and
indicate which one is preferred on the basis of this score.
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Chapter 6

Statistical Discriminant
Analysis

6.1 Introduction

In this chapter we are concerned with the interconnected problems of

a) Assigning/allocating an object to a class, on the basis of a number of
variables that describe the object.

b) Estimating the probability that a particular object belongs to a specific
class.

The problems are interconnected, since an allocation rule is usually based on
the estimated probabilities.

In this kind of classification problem there is an output/dependent vari-
able y that assumes values in an unordered discrete set. An important
special case is when there are only two classes, in which case we usually
assume y ∈ {0, 1}. The goal of a classification procedure is to predict
the output value given a set of input/independent/explanatory variables
x = {x1, . . . , xp} measured on the same object.

At a particular point x the value of y is not uniquely determined. It
can assume both its values with respective probabilities that depend on the
location of the point x in the input space. We write

P (y = 1|x) = 1− P (y = 0|x) = f(x). (6.1)
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Here f(x) is a single-valued deterministic function that at every point x
specifies the probability that y = 1. We assume the goal of a classification
procedure is to produce an estimate f̂(x) of f(x) at every input point.

There are two basic approaches to producing such an estimate, sometimes
called function estimation and density estimation respectively. We have al-
ready encountered an example of the function estimation approach: logistic
regression. In the next sections we give a general description of the two
approaches. For simplicity we assume there are only two classes.

6.2 Function estimation

In the usual function estimation setting, one assumes that the output variable
y is related to a set of input variables x by

y = f(x) + ε (6.2)

where f(x) (target function) is a single-valued deterministic function of p
arguments and ε is a random variable distributed according to some proba-
bility distribution. By definition its average is E(ε|x) = 0 for all x so that
the target function is defined by

f(x) = E(y|x), (6.3)

the expected value of y at x.
The goal is to obtain an estimate

f̂(x|T ) = Ê(y|x, T ) (6.4)

using some training set T . The classification problem can be cast in the
function estimation setting by observing that (6.3) holds for y and f(x) in
(6.1) so that they can be related by (6.2) where ε has a binomial distribution
with variance σ2 = f(x)(1 − f(x)). Thus, regular function estimation tech-
nology (6.4) can be applied to obtain the estimate f̂(x|T ). This paradigm
is used by many popular classification methods, including logistic regression,
neural networks, and classification trees. Notice that we only model the con-
ditional distribution of y given x, the probability distribution of x itself is
not modeled. This means we either assume the x values are chosen by the
experimenter, or that we condition our inferences on the observed x values.
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6.3 Density estimation

An alternative paradigm for estimating f(x) in the classification setting is
based on density estimation. Here Bayes’ theorem

f(x) =
π1p1(x)

π0p0(x) + π1p1(x)
(6.5)

is applied where pi(x) = p(x|y = i) are the class conditional probability den-
sity functions and πi = P (y = i) are the unconditional (“prior”) probabilities
of each class. The training data are partioned into subsets T = {T0, T1} with
the same class label. The data in each subset are separately used to estimate
its respective probability density p̂i(x|Ti), and prior probabilities π̂i. These
estimates are plugged into (6.5) to obtain an estimate f̂(x|T ). Examples
of this approach are discriminant analysis, mixture modeling and bayesian
networks. A general expression to compute the probability of group i at x is
given by

P (y = i|x) =
pi(x)πi∑g

j=1 pj(x)πj

(6.6)

where g denotes the number of groups/classes.

6.4 Density estimation: example

We start with a simple example of how the density estimation approach
works. Many companies send so called test mailings to potential customers,
and record whether or not a person responds to such a mailing. Since at-
tributes such as age, income etc. are also recorded, this allows us to analyse
which groups of customers have a high probability of responding.

Suppose we send a mailing to 300 potential customers, and only record
the age of the customer, and whether or not he or she responded. The results
are given in table 6.1.

We have divided age into a number of categories. We estimate the dis-
tribution of age within the group of respondents simply by calculating the
relative frequency of each age category within the group. So for example:

p(age=36-50|respondent) =
20

100
= 0.2
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age respondents p(age) non-respondents p(age)
18-25 25 0.25 10 0.05
26-35 35 0.35 20 0.1
36-50 20 0.20 30 0.15
51-64 15 0.15 80 0.4
65+ 5 0.05 60 0.3
Total 100 1 200 1

Table 6.1: Distribution of age within the two groups

We do the same for the non-respondents. Estimation of the group prior
probabilities is also straightforward. There are 300 mailings in total, and
100 respondents, so the prior probability of the respondent group is 1/3, and
for the non-respondent group 2/3. Now let’s see how we would use Bayes
rule to calculate the probability that someone in age category 18-25 belongs
to the group of respondents.

P (respondent|age=18-25) =
P (age=18-25|respondent)P (respondent)

P (age=18-25)

=
1/4× 1/3

1/4× 1/3 + 1/20× 2/3
= 5/7

When asked for an outright assignment to one of the two groups, we would
assign this person to the group of respondents because this is the group with
the highest probability at age=18-25.

In order to estimate the probability distributions of age within each group,
we simply constructed 5 age categories and estimated the probability of each
category by computing its relative frequency. This means we have to estimate
4 probabilities per group (the fifth is determined by the other four since they
must add to one). This approach is not easily extended to the case where we
have many input variables. For example, if we have a second variable income,
also divided into 5 categories, then we have to estimate the probability of each
age-income combination which means estimating 52 − 1 = 24 probabilities
per group. In general, if we have p variables with k possible values each, we
would have to estimate kp−1 probabilities per group. With p = 10 and k = 5
this means estimating 510 − 1 = 9765624 probabilities. We would have to
have an enormous amount of data to do this reliably. For example, if we have
a 1000 observations, almost all cells are empty, i.e. we have 0 observations
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for almost all possible value combinations of the 10 variables. This problem
is sometimes called the curse of dimensionality: in high dimensions almost
all of the input space is empty.

One way to tackle this problem is to introduce additional assumptions
that allow us to reduce the number of parameters to be estimated. A rather
drastic approach is the so called naive Bayes assumption: assume that the x
variables are independent within each group, i.e.

P (x | y) = P (x1 | y)P (x2 | y) . . . P (xp | y)

This means that instead of kp−1 parameters, we only have to estimate kp−1
parameters per group. So with p = 10 and k = 5, we only have to estimate
49 probabilities per group. Although the naive Bayes assumption is almost
always demonstrably false, it may perform quite well as a classifier. This is
because the performance of a classifier is usually evaluated by looking at the
fraction of cases it assigns to the wrong class. So as long as the classifier’s
estimate of P (y | x) is at the right side of 0.5 (for a two-class problem) its bias
goes unpunished. In terms of the bias-variance decomposition of prediction
error: its bias may be harmless whereas the variance component of prediction
error will be relatively low for naive Bayes.

Another way to reduce the number of parameters to be estimated for
each group (which may also be motivated by theoretical considerations) is
to assume that the input variables can be modeled by a multivariate normal
distribution. We explore the consequences of this assumption in the next
section.

6.5 Density estimation: normal distribution

If within each group the variables that make up the input vector x have a
multivariate normal distribution, then the form of pi(x) is known, that is

pi(x) =
1

(2π)p/2|Σi|1/2
exp[−1

2
(x− µi)

T Σ−1
i (x− µi)] (6.7)

In this case, estimating pi(x) comes down to estimating two parameters
for each group, the group mean vector µi, and the group covariance matrix
Σi. If there are p variables in x, then there are p means in the mean vector
and p(p+1)/2 elements in the covariance matrix, making a total of (p2+3p)/2
parameters to be estimated for each group.
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6.5.1 The multivariate normal distribution

We start with the bivariate normal distribution, i.e. suppose

x =

[
x1

x2

]
x ∼ N(µ, Σ) µ =

[
µ1

µ2

]
Σ =

[
σ2

1 σ12

σ21 σ2
2

]
The bivariate normal distribution has two parameters, denoted by µ and Σ.
The vector of means µ specifies the means of x1 and x2; it determines the
location of the distribution.

Warning: In this section µ1 denotes the mean or expected value of x1,
not the mean vector of group 1!

The covariance matrix Σ contains the variance of x1 and x2 on the main
diagonal, and the covariance between x1 and x2 in the off-diagonal entries.
Notice that σ12 = σ21, i.e. the covariance matrix is symmetric. The covari-
ance matrix determines the shape and orientation of the distribution. Instead
of the covariance, it is also common to report the correlation coefficient

ρ12 =
σ12

σ1σ2

The advantage of the correlation coefficient is that it is a dimensionless num-
ber between -1 and 1, where ρ12 = 1 means there is a perfect positive linear
relation between x1 and x2, and ρ12 = 0 means that x1 and x2 are not lin-
early related at all. To get a feeling for the influence of the parameters on
the location and shape of the distribution, it is insightfull to look at so called
contour plots. In such a plot, we connect the points of equal probability den-
sity. Figure 6.1 contains a contour plot of a bivariate normal density with
µ1 = µ2 = 0, ρ = 0 and σ2

1 = σ2
2 = 1. Because there is no correlation and

equal variance in both directions, the contours have the shape of a circle.
In figure 6.2 we see a contour plot of a distribution with µ1 = 10, µ2 = 25,

σ2
1 = σ2

2 = 1 and ρ12 = 0.7. The contours now have the shape of an ellipse.
Because ρ12 > 0, the principle axis of the ellipse has a positive slope. In
figure 6.3 we see a contour plot of a distribution with µ1 = 15, µ2 = 5,
σ2

1 = σ2
2 = 1 and ρ12 = −0.6. Because ρ12 < 0, the principle axis of the

ellipse has a negative slope.
In general, if we have p variables, i.e. x = [x1, . . . , xp]

T that follow a
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Figure 6.1: Contour plot with µ = [0 0]T , ρ12 = 0,σ2
1 = σ2

2 = 1

multivariate normal distribution, then the relevant parameters are

µ =


µ1

µ2
...

µp

 Σ =


σ2

1 σ12 σ13 . . . σ1p

σ21 σ2
2 σ23 . . . σ2p

...
σp1 σp2 σp3 . . . σ2

p


6.5.2 Allocation rule for normal densities

When the outright assignment of an object x to one of the classes/groups
is required, then the rule that gives the smallest overall error is to assign to
group i if P (y = i|x) is larger than P (y = j|x) for all j 6= i. That is, assign x
to the group with the highest probability at x. Via Bayes formula this leads
to the rule to assign to group i if

pi(x)πi > pj(x)πj for all j 6= i

Notice that we ignore the denominator of equation 6.6, since it is equal for
all groups. It merely acts as a normalising constant.
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Figure 6.2: Contour plot with µ = [10 25]T , ρ12 = 0.7,σ2
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Application of the normal distribution leads to the following assignment
rule. Assign to group i if

πi

(2π)p/2|Σi|1/2
exp[−1

2
(x− µi)

T Σ−1
i (x− µi)] >

πj

(2π)p/2|Σj|1/2
exp[−1

2
(x− µj)

T Σ−1
j (x− µj)] for allj 6= i

Taking the natural logarithm of both sides of the inequality preserves the
order, since all quantities are positive, and ln is strictly increasing on (0,∞).
This gives the rule: assign to group i if

−1/2p ln(2π)− 1/2 ln(|Σi|)− 1/2(x− µi)
T Σ−1

i (x− µi) + ln(πi) >

−1/2p ln(2π)− 1/2 ln(|Σj|)− 1/2(x− µj)
T Σ−1

j (x− µj) + ln(πj) for all j 6= i

Cancelling all the terms that are common to both sides gives:

− ln(|Σi|)− (x− µi)
T Σ−1

i (x− µi) + 2 ln(πi) >

− ln(|Σj|)− (x− µj)
T Σ−1

j (x− µj) + 2 ln(πj) for all j 6= i
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Figure 6.3: Contour plot with µ = [15 5]T , ρ12 = −0.6,σ2
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2 = 1

Multiplication of both sides by −1 and reversal of the inequality gives:

ln(|Σi|) + (x− µi)
T Σ−1

i (x− µi)− 2 ln(πi) <

ln(|Σj|) + (x− µj)
T Σ−1

j (x− µj)− 2 ln(πj) for all j 6= i

The quantity

ln(|Σi|) + (x− µi)
T Σ−1

i (x− µi)− 2 ln(πi)

is often referred to as the discriminant score of x for group i, and

di(x) = ln(|Σi|) + (x− µi)
T Σ−1

i (x− µi)

is called a discriminant function.
Summarizing, normal class distributions lead to the allocation rule: assign

to group i if

di(x)− 2 ln(πi) < dj(x)− 2 ln(πj) for all j 6= i

It is interesting to consider how this allocation rule divides the feature
space. Considering a case with only two groups and two variables simplifies
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the situation and loses nothing of the principles involved. The region of the
feature space that belongs to group 1 is characterized by the values x1 and
x2 such that

d1(x1, x2)− 2 ln(π1) < d2(x1, x2)− 2 ln(π2)

The dividing line between the region “belonging” to group 1 and the region
“belonging” to group 2 is given by

d1(x1, x2)− 2 ln(π1) = d2(x1, x2)− 2 ln(π2)

It can be shown by matrix algebra or geometry that this dividing line has
the form of a quadratic curve. This fact can also be seen from an inspec-
tion of a picture of the equal probability contours for the two groups (see
figure 6.4). If the prior probabilities π1 and π2 are assumed to be equal, then
the classification rule is equivalent to

p1(x) > p2(x)

and the dividing line between the two regions is given by

p1(x) = p2(x)

In other words, the dividing line between the two groups passes through the
intersection of the equal probability contours of the two groups.

6.5.3 Equal Covariances

In many cases the correlations between the variables are the same within each
group, and this property can be used to simplify the classifier yet further.
When all groups have the same covariance matrix Σ, terms involving this
constant can be cancelled from both sides of the inequality. Recall that we
defined the discriminant function:

di(x) = ln(|Σi|) + (x− µi)
T Σ−1

i (x− µi)

Since by assumption Σi = Σ, we can write

di(x) = ln(|Σ|) + (x− µi)
T Σ−1(x− µi)
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Figure 6.4: Intersection points of the contours are connected by a quadratic
curve if the group covariance matrices are different

Since ln(|Σ|) is the same for each group, it can be dropped. Then we have

di(x) = (x− µi)
T Σ−1(x− µi)

= xT Σ−1x− 2µT
i Σ−1x + µT

i Σ−1µi

Since the quadratic term xT Σ−1x is now the same for each group, it can be
dropped as well and we get (after division by 2):

di(x) = −µT
i Σ−1x +

1

2
µT

i Σ−1µi

Due to cancelling constants, the classification function has become neg-
ative again, and so for convenience it is usual to multiply both sides of the
inequality by −1 and define a new function fi(x) = −di(x). We then get the
rule to assign to group i if

fi(x) + ln(πi) > fj(x) + ln(πj) for all j 6= i

where

fi(x) = µT
i Σ−1x− 1

2
µT

i Σ−1µi
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The second term in fi(x) doesn’t involve x and so it can be written as a
constant c0i for each group. The matrix multiplication in the first term can
be worked out in advance to give a single vector ci, that is

cT
i = µT

i Σ−1

and
fi(x) = cT

i x + c0i

Or, in summation notation

fi(x) =

p∑
k=1

ckixk + c0i

For example, in the case of two variables (p = 2), fi(x) becomes

fi(x) = c1ix1 + c2ix2 + c0i

This looks pretty much like the all-familiar linear regression equation, except
that there is a different fi(x) for each group, and this means that there are
p + 1 parameters to be estimated for each group.

Once again, it is worth asking how the input space is divided by the
classification rule. Considering the two group/two variable case for simplicity
it is clear that the dividing line between the two areas of the input space (one
“belonging” to group 1, and the other to group 2) is given by the values of
x1, x2 satisfying (assuming π1 = π2):

f1(x1, x2) = f2(x1, x2)

Clearly, this is a straight line. This also fits in with what would be expected
from an examination of the way the equal probability lines intersect (see fig-
ure 6.5). The linear form of fi(x) and the “straight line” division of the input
space has resulted in fi(x) being known as a linear discriminant function.

The most often encountered classification problem involves assignment to
one of two groups. In the two group case with equal covariance we get the
following assigment rule. Assign to group 1 if

f1(x) + ln(π1) > f2(x) + ln(π2)

and otherwise assign to group 2. Taking f2(x) and ln(π1) from both sides
gives the rule: assign to group 1 if

f1(x)− f2(x) > ln(π2)− ln(π1)
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Figure 6.5: Intersection points of the contours are connected by a straight
line when the group covariance matrices are equal

and to group 2 otherwise. The difference between the two linear discriminant
functions can be written as a single new function:

w(x) = f1(x)− f2(x)

In other words, in the two group case only one function is required for classi-
fication. Values greater than ln(π2/π1) implying assignment to group 1 and
values less than this implying assignment to group 2.

6.6 Plug-in estimates for normal densities

Estimation of the discriminant functions is pretty straightforward. We simply
estimate the µi, Σi and πi from the data and plug these estimates into the
discriminant functions. We consider the heteroscedastic case (i.e. groups
have different covariance matrices) and the homoscedastic case (covariance
matrix the same for all groups).
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6.6.1 Heteroscedastic Normal Model: Quadratic Dis-
criminant Analysis

For ease of notation, we define

zij =

{
1 if observation j belongs to group i
0 otherwise

The maximum likelihood estimates of µi and Σi are given by the sample
mean x̄i and the sample covariance matrix Σ̂i, respectively, where

x̄i =
1

ni

n∑
j=1

zijxj

and

Σ̂i =
1

ni

n∑
j=1

zij(xj − x̄i)(xj − x̄i)
T

for i = 1, . . . , g. Furthermore

ni =
n∑

j=1

zij

denotes the number of observations from group i in the training data. The
usual practice is to estimate Σi by the unbiased estimator

Si =
ni

ni − 1
Σ̂i (i = 1, . . . , g)

6.6.2 Homoscedastic Normal Model: Linear Discrimi-
nant Analysis

The maximum likelihood estimate Σ̂ of the common group-covariance matrix
Σ is the pooled (within-group) sample covariance matrix

Σ̂ =

g∑
i=1

(ni/n)Σ̂i

= 1/n

g∑
i=1

n∑
j=1

zij(xj − x̄i)(xj − x̄i)
T
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Again, it is customary to use the unbiased estimator

S =
n

n− g
Σ̂

instead of Σ̂.

6.7 Linear Discriminant analysis vs. Logistic

Regression

It is interesting to compare the first-order logistic regression model with the
linear discriminant model, since both result in a straight line division of the
input space into areas belonging to the different groups.

For ease of comparison we assume there are only two groups, labeled 0
and 1. We have seen that for logistic regression

ln

(
P (y = 1|x)

P (y = 0|x)

)
= βTx

This leads to the allocation rule that we assign to group 1 if βTx > 0, and
to group 0 otherwise.

The homoscedastic normal model also gives a linear boundary between
the groups, i.e.

ln

(
P (y = 1|x)

P (y = 0|x)

)
= ln(p1(x)π1)− ln(p0(x)π0) = αTx

This follows easily from our derivation of the linear discriminant function.
Does this mean that logistic regression and linear discriminant analysis

give exactly the same solution? No it does not, but usually they are close.
In logistic regression we assume that

ln

(
P (y = 1|x)

P (y = 0|x)

)
= βTx

which is exactly true when

a) x is normally distributed in all groups, and the groups have the same
covariance matrix.
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b) x consists of binary variables that are independent within each group.

c) some other cases as well.

Linear discriminant analysis (LDA) assumes that

x ∼ N(µi, Σ) for i = 0, 1

from which it follows that

ln

(
P (y = 1|x)

P (y = 0|x)

)
= αTx

where α is some function of µ0, µ1, Σ, π0, π1. This assumption is more specific
than the assumption of logistic regression (LR). When the LDA assumption
is exactly true, then it will do better than LR in the sense that it has a
smaller asymptotic variance (it is more efficient). On the other hand, when
the LR assumption is true but the LDA assumption is not (e.g. the case
under b) above) then LR is consistent and LDA is not. However, these are
all highly theoretical comparisons, and as it turns out, LDA has proven to be
quite robust against violations of the normality assumption. This means that
when the group distributions are not exactly normal, or even no where near
normal, linear discriminant analysis may still give reasonable results. This
is especially true if we are only interested in the allocation of x to a group,
and not in the group probabilities at x. For example, in the two goup case
with y ∈ {0, 1}, we assign to group 1 if

P̂ (y = 1|x) > 0.5

and to group 0 otherwise. If P (y = 1|x) = 0.8 in reality, then any estimate
P̂ (y = 1|x) > 0.5 will give the proper allocation.

6.8 Exercises

1. Suppose random variable x has a normal distribution with variance 4.
If x is from group 1, its mean is 10; if it is from group 2 its mean is 14.
Assume equal group prior probabilities, i.e. π1 = π2. We decide that
we shall allocate (classify) x to group 1 if x ≤ c and to group 2 if x > c,
for some c to be determined. Let A1 denote the event that x is from
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group 1, and A2 that x is from group 2. Likewise, let B1 be the event
that x is classified to group 1, and B2 that x is classified to group 2.
Make a table showing the following: P (B1|A2), P (B2|A1), P (A1, B2),
P (A2, B1) and P (misclassification).

c P (B1|A2) P (B2|A1) P (A1, B2) P (A2, B1) P (misclassification)
10
...
14

2. Suppose we have the following training sample:

X1 =

 2 12
4 10
3 8

 X2 =

 5 7
3 9
4 5


where X1 contains three observations of x = [x1 x2]

T for group 1,
and X2 contains three observations of x = [x1 x2]

T for group 2. For
example: the first observation from group 1 has values x1 = 2 and
x2 = 12. We assume the covariance matrix is the same in group 1 and
2.

a) Estimate the group means, covariance matrix, and group prior
probabilities from this training sample.

b) Estimate the linear discriminant functions f1(x) and f2(x) for
groups 1 and 2 respectively.

c) Give one linear classification function for this problem and con-
struct a confusion matrix for this classification function by apply-
ing it to the training sample. What is the in-sample or apparent
error rate of the classification function?

d) Draw the border between the areas that (according to the clas-
sification function computed under c) belong to group 1 and 2
respectively, in a scatterplot of the data. Can you find a straight
line that has a lower apparent error rate ?

e) Based on the training sample, do you think the assumption of
equal covariance matrices for both groups is justified ?
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3. Suppose we have the following training sample:

X1 =

 −2 5
0 3

−1 1

 X2 =

 0 6
2 4
1 2

 X3 =

 1 −2
0 0

−1 −4


where X1 contains three observations of x = [x1 x2]

T for group 1, X2

contains three observations of x for group 2, and X3 contains three
observations of x for group 3. For example: the first observation from
group 1 has values x1 = −2 en x2 = 5. We assume the covariance
matrix is the same in all three groups.

a) Estimate the group means, covariance matrix, and group prior
probabilities from this training sample.

b) Estimate the linear discriminant functions f1(x), f2(x) and f3(x)
for the three groups.

c) Classify the new observation x0 = [−2 − 1]T using the result
obtained under b).

d) Use the training sample to compute S1 (the unbiased estimator
of the covariance matrix of group 1) and S2. Does it seem the
assumptions of linear discriminant analysis are met ? Explain.
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Chapter 7

Resampling

7.1 Introduction

Resampling techniques are computationally expensive techniques that reuse
the available sample to make statistical inferences. Because of their computa-
tional requirements these techniques were infeasible at the time that most of
“classical” statistics was developed. With the availability of ever faster and
cheaper computers, their popularity has grown very fast in the last decade.
In this section we provide a brief introduction to some important resampling
techniques.

7.2 Cross-Validation

Cross-Validation is a resampling technique that is often used for model se-
lection and estimation of the prediction error of a classification- or regression
function. We have seen already that squared error is a natural measure of
prediction error for regression functions:

PE = E(y − f̂)2

Estimating prediction error on the same data used for model estimation
tends to give downward biased estimates, because the parameter estimates
are “fine-tuned” to the peculiarities of the sample. For very flexible methods,
e.g. neural networks or tree-based models, the error on the training sample
can usually be made close to zero. The true error of such a model will usually
be much higher however: the model has been “overfitted” to the training
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sample. One way of dealing with this problem is to include a penalty term
for model complexity (e.g. AIC, BIC) as we have seen in section 4.10.

An alternative is to divide the available data into a training sample and
a test sample, and to estimate the prediction error on the test sample. If
the available sample is rather small, this method is not preferred because the
test sample may not be used for model estimation in this scenario. Cross-
validation accomplishes that all data points are used for training as well as
testing. The general K-fold cross-validation procedure works as follows

1. Split the data into K roughly equal-sized parts.

2. For the kth part, estimate the model on the other K − 1 parts, and
calculate its prediction error on the kth part of the data.

3. Do the above for k = 1, 2, . . . , K and combine the K estimates of
prediction error.

If K = n, we have the so-called leave-one-out cross-validation: one ob-
servation is left out at a time, and f̂ is computed on the remaining n − 1
observations.

Now let k(i) be the part containing observation i. Denote by f̂
−k(i)
i the

value predicted for observation i by the model estimated from the data with
the k(i)th part removed. The cross-validation estimate of mean squared error
is now

P̂Ecv =
1

n

n∑
i=1

(yi − f̂
−k(i)
i )2

We consider a simple application of model selection using cross-validation,
involving the linear, quadratic and cubic model introduced in section 4.10.1.
In a simulation study we draw 50 (x, y) observations from the probability
distributions

X ∼ U(0, 10) and Y ∼ N (µ = 2 + 3x + 1.5x2, σε = 5),

i.e. E(Y ) is a quadratic function of x. For the purposes of this example, we
pretend we don’t know the true relation between x and y, as would usually be
the case in a practical data analysis setting. We consider a linear, quadratic
and cubic model as the possible candidates to be selected as the model with
lowest prediction error, and we use leave-one-out cross validation to compare
the three candidates.
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in-sample leave-one-out
linear 150.72 167.63
quadratic 16.98 19.89
cubic 16.66 20.66

Table 7.1: Mean square error of candidate models: in-sample and leave-one-
out

The first column of Table 7.1 contains the “in-sample” estimate of the
mean square error of all three models. Based on the in-sample comparison
one would select the cubic model as the best model since it has the lowest
prediction error. We already noted however that this estimate tends to be
too optimistic, and the more flexible the model the more severe the optimism
tends to be. In the second column the cross-validation estimates of prediction
error are listed. As one would expect they are higher than their in-sample
counterparts. Furthermore, we see that the quadratic model (the true model)
has the lowest cross-validation prediction error of the three. The lower in-
sample prediction error of the cubic was apparently due to a modest amount
of overfitting.

7.3 Bootstrapping

In chapter 2 we saw that in some special cases we can derive mathematically
the exact distribution of a sample statistic, and in some other cases we can
rely on limiting distributions as an approximation to the sampling distribu-
tion for a finite sample. For many statistics that may be of interest to the
analyst, such exact or limiting distributions cannot be derived analytically.
In yet other cases the asymptotic approximation may not provide a good fit
for a finite sample. In such cases an alternative approximation to the sam-
pling distribution of a statistic t(x) may be obtained using just the data at
hand, by a technique called bootstrapping [4, 2]. To explain the basic idea of
the non-parametric bootstrap, we first introduce the empirical distribution
function

F̂ (z) =
1

n

n∑
i=1

I (xi ≤ z) −∞ < z < ∞
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where I denotes the indicator function and x = (x1, x2, ..., xn) is a random
sample from population distribution function F . We now approximate the
sampling distribution of t(x) by repeated sampling from F̂ . This is achieved
by drawing samples x(r) of size n by sampling independently with replacement

from (x1, x2, ..., xn). If all observations are distinct, there are

(
2n− 1

n

)
distinct samples in

B = {x(r), r = 1, ...,

(
2n− 1

n

)
}

with respective multinomial probabilities (see section 1.14)

P (x(r)) =
m!

j
(r)
1 ! j

(r)
2 ! ... j

(r)
n !

(
1

n
)n

where j
(r)
i is the number of copies of xi in x(r). The bootstrap distribution

of t(x) is derived by calculating the realisation t(x(r)) for each of the resam-
ples and assigning each one probability P (x(r)). As n → ∞, the empirical
distribution F̂ converges to the underlying distribution F , so it is intuitively
plausible that the bootstrap distribution is an asymptotically valid approxi-
mation to the sampling distribution of a statistic.

We can in principle compute all

(
2n− 1

n

)
values of the statistic to ob-

tain its “ideal” bootstrap distribution, but this is computationally infeasible
even for moderate n. For n = 15 there are already 77558760 distinct samples.
The usual alternative is to use Monte-Carlo simulation, by drawing a number
B of samples and using them to approximate the bootstrap distribution.

If a parametric form is adopted for the underlying distribution, where θ
denotes the vector of unknown parameters, then the parametric bootstrap
uses an estimate θ̂ formed from x in place of θ. If we write Fθ to signify its
dependence on θ, then bootstrap samples are generated from F̂ = Fθ̂.

The non-parametric bootstrap makes it unneccesary to make parametric
assumptions about the form of the underlying distribution. The parametric
bootstrap may still provide more accurate answers than those provided by
limiting distributions, and makes inference possible when no exact or limiting
distributions can be derived for a sample statistic.

We present an elementary example to illustrate the parametric and non-
parametric bootstrap. The population parameter of interest is the correlation
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coefficient, denoted by ρ. We first discuss this parameter before we show how
to use bootstrapping to make inferences about it.

The linear dependence between population variables X and Y is measured
by the covariance

σxy =
1

N

N∑
i=1

(xi − µx)(yi − µy)

A term (xi−µx)(yi−µy) from this sum is positive if both factors are positive
or both are negative, i.e. if xi and yi are both above or both below their mean.
Such a term is negative if xi and yi are on opposite sides of their mean. The
dimension of σxy is the product of the dimensions of X and Y; division by both
σx and σy yields a dimensionless number called the correlation coefficient, i.e.

ρxy =
σxy

σxσy

Evidently ρ has the same sign as σxy, and always lies between −1 and +1. If
ρ = 0 there is no linear dependence: the two variables are uncorrelated. The
linear dependence increases as |ρ| gets closer to 1. If all pairs (x, y) are on a
straight line with positive slope, then ρ = 1; if all pairs are on a straight line
with negative slope then ρ = −1.

To make inferences about ρ we use the sample correlation coefficient

rxy =
sxy

sxsy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

The sampling distribution of this statistic can’t be mathematically derived
in general, in fact there is no general expression for the expected value of rxy.
Therefore it makes sense to use the bootstrap to make inferences concerning
ρ.

In our study, we draw 30 (x, y) pairs from a standard binormal distribu-
tion with ρ = 0.7, i.e.

(X, Y ) ∼ N 2(µx = 0, µy = 0, σ2
x = 1, σ2

y = 1, ρ = 0.7)

Based on this dataset, bootstrapping proceeds as follows

Non-parametric: Draw samples of 30 (x, y) pairs (with replacement) from
the data. For each bootstrap sample, compute r, to obtain an empirical
sampling distribution.
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Parametric: Make appropriate assumptions about the joint distribution of
X and Y . In our study we assume

(X, Y ) ∼ N 2(µx, µy, σ
2
x, σ

2
y , ρ)

which happens to be correct. In a practical data analysis situation
we would evidently not know that, and it would usually be hard to
ascertain that our assumptions are appropriate. We build an empirical
sampling distribution by drawing samples of size 30 from

N 2(x̄, ȳ, s2
x, s

2
y, r)

In both cases we draw 1000 samples to generate the empirical sampling dis-
tribution of r. To construct 100(1−α)% confidence intervals for ρ, we simply
take the 100(α/2) and 100(1− α/2) percentiles of this distribution.

In order to determine whether the bootstrap provides reliable confidence
intervals with the right coverage, we repeated the following procedure 100
times

1. Draw a sample of size 30 from the population.

2. Build a bootstrap distribution for r, and construct 90% confidence
intervals for ρ. (both parametric and non-parametric)

3. Determine whether the true value of ρ is inside the confidence interval.

Like any conventional method for constructing confidence intervals, the boot-
strap will sometimes miss the true value of the population parameter. This
happens when the data is not representative for the population. For exam-
ple, in 1 of the 100 samples the sample correlation coefficient was 0.36. This
is highly unlikely to occur when sampling from a population with ρ = 0.7
but it will occur occasionally. In such a case the bootstrap distribution of
r is bound to be way off as well. In Fig. 7.1 the non-parametric bootstrap
distribution for this particular sample is displayed. The 90% confidence in-
terval computed from this distribution is (0.064, 0.610). Not surprisingly it
does not contain the true value of ρ.

On average, one would expect a 90% confidence interval to miss the true
value in 10% of the cases; that’s why it’s called a 90% confidence interval.
Furthermore the narrower the confidence intervals, the more informative they
are. Both the parametric and non-parametric bootstrap missed the true value
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Figure 7.1: Bootstrap distribution for r. Observed value of r is 0.36.

of ρ 13 times out of 100, where one would expect 10 misses. Now we may
test whether the bootstrap confidence intervals have the right coverage:

H0 : α = 0.1 against Ha : α 6= 0.1

We observed 13 misses out of 100, so the observed value of our test statistic
is a = 0.13. The distribution of α̂ under H0 (the null-hypothesis) may be
approximated by

α̂ ≈H0 N (µ = α, σ2 = α(1− α)/n)

which yields α̂ ≈ N (0.1, 0.0009). We may now compute the p-value of the
observed value under the null-hypothesis as follows

PH0(α̂ > a) = PH0(α̂ > 0.13) = P (Z >
0.13− 0.1√

0.0009
) = P (Z > 1) = 0.1587
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where the value 0.1587 was looked-up in a table for the standardnormal
distribution. Since we are performing a two-sided test this probability should
be doubled, so we obtain a p-value of 2 × 0.1587 = 0.3174. This means we
would not reject the null-hypothesis under any conventional significance level.
The probability under the null-hypothesis of obtaining a result at least as far
from α0 = 0.1 (to either side) as the one we observed is “pretty high”.

The mean length of the confidence intervals is 0.31 for the non-parametric
bootstrap, and 0.32 for the parametric bootstrap. Even though the assump-
tions of the parametric bootstrap were correct it did not give shorter confi-
dence intervals on average.
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Chapter 8

Bayesian Statistics

In this section we briefly consider the principal idea of Bayesian inference.
In [1, 5], Bayesian inference is discussed in greater detail.

Consider the following three claims

1. An English lady claims that she can taste whether the milk or tea has
been poured first into the cup.

2. A music expert claims that he can distinguish a page from a Haydn
score from a page of a Mozart score.

3. A drunk friend of yours claims that he can predict whether a fair coin
will land heads or tails.

Suppose that we set up suitable experiments to test their claims, and in all
three cases the persons make 9 correct predictions out of 10. What would be
your opinion concerning the three claims after observing the outcome of the
experiments? Probably you would still think your friend cannot predict the
whether the coin lands heads or tails, but was simply extremely lucky in this
particular experiment. The outcome of the experiment is not the only factor
that influences your opinion: it also depends on how plausible you think the
claim is a priori. This idea is at the heart of Bayesian statistical inference:
our posterior beliefs are not just determined by the sample data, but also by
what we believed before seeing the data.

How would this combination of prior belief and sample data into posterior
belief work technically? Consider again the coin tossing experiment. We
stated that the probability of heads, denoted by π, is a fixed yet unknown
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Prior Likelihood Posterior
P (Mi) P (y = 5 | Mi) P (Mi | y = 5)

M1: π = 0.8 0.7 0.027 0.239
M2: π = 0.4 0.3 0.201 0.761

Table 8.1: Prior and posterior probabilities of M1 and M2

quantity. From a relative frequency viewpoint, it makes no sense to talk
about the probability distribution of π since it is not a random variable. In
Bayesian inference one departs from this strict interpretation of probability.
We may express prior, yet incomplete, knowledge concerning the value of
π through the construction of a prior distribution. This prior distribution
is then combined with sample data (using Bayes rule, see section 1.13) to
obtain a posterior distribution. The posterior distribution expresses the new
state of knowledge, in light of the sample data. We reproduce Bayes’ rule
using symbols that are more indicative for the way it is used in Bayesian
inference:

P (Mi|D) =
P (D|Mi)P (Mi)∑
j P (D|Mj)P (Mj)

where the Mi specify different models for the data, i.e. hypotheses concerning
the parameter value(s) of the probability distribution from which the data
were drawn. Note that in doing so, we actually assume that this probability
distribution is known up to a fixed number of parameter values.

Example 22 Consider the somewhat artificial situation where two hypothe-
ses concerning the probability of heads of a particular coin are entertained,
namely M1: π = 0.8 and M2: π = 0.4 (see table 8.1). Prior knowledge con-
cerning these models is expressed through a prior distribution as specified in
the first column of table 8.1. Next we observe 5 times heads in a sequence of
10 coin flips, i.e. y = 5. The likelihood of this outcome under the different
models is specified in the second column of table 8.1 (the reader can also find
them in table 3.1). The posterior distribution is obtained via Bayes’ rule,
and is specified in the last column of table 8.1. Since the data are more likely
to occur under M2, the posterior distribution has clearly shifted towards this
model.

In general, the probability distribution of interest is indexed by a number
of continuous valued parameters, which we denote by parameter vector θ.
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Replacing probabilities by probability densities and summation by integra-
tion, we obtain the probability density version of Bayes’ rule

f(θ |y) =
f(y | θ) f(θ)∫

Ω
f(y | θ) f(θ) dθ

where y denotes the observed data and Ω denotes the parameter space, i.e.
the space of possible values of θ.

Consider the case where we have no prior knowledge whatsoever concern-
ing the probability of heads π. How should this be reflected in the prior
distribution? One way of reasoning is to say that all values of π are con-
sidered equally likely, which can be expressed by a uniform distribution over
Ω = [0, 1]: the range of possible values of π. Let’s consider the form of the
posterior distribution in this special case.

f(π |y) =
f(y |π)f(π)∫ 1

0
f(y |π)f(π)dπ

If we observe once again 7 times heads in a sequence of 10 coin flips, then
f(y |π) = π7(1−π)3. Since f(π) = 1 , the denominator of the above fraction
becomes ∫ 1

0

π7(1− π)3dπ =
1

1320

and so the posterior density becomes

f(π |y) = 1320 π7(1− π)3

It is reassuring to see that in case of prior ignorance the posterior dis-
tribution is proportional to the likelihood function of the observed sample.
Note that the constant of proportionality merely acts to make the integral
of the expression in the numerator equal to one, as we would expect of a
probability density.

In general, the computationally most difficult part of obtaining the pos-
terior distribution is the evaluation of the (multiple) integral in the denom-
inator of the expression. For this reason, a particular class of priors, called
conjugate priors, have received special attention in Bayesian statistics. As-
sume our prior knowledge concerning the value of π may be expressed by a
Beta(4,6) distribution (see section 1.15), i.e.

f(π) =
π3(1− π)5∫ 1

0
π3(1− π)5dπ
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Since
∫ 1

0
π3(1− π)5dπ = 1

504
, we get f(π) = 504 π3(1− π)5.

Multiplied with the likelihood this results in 504 π3(1− π)5π7(1− π)3 =
504π10(1− π)8, so the denominator becomes∫ 1

0

504 π10(1− π)8 =
28

46189

and the posterior density becomes

f(π |y) = 831402 π10(1− π)8

which is a Beta(11,9) distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

Beta(4,6)
Prior:

Likelihood

Posterior:
Beta(11,9)

Figure 8.1: Prior, likelihood and posterior for coin tossing experiment.

In general, when we have a binomial sample of size n with r successes,
and we combine that with a Beta(l, k) prior distribution, then the posterior
distribution is Beta(l + r, k + n − r). Loosely speaking, conjugate priors
allow for simple rules to update the prior with sample data to arrive at the
posterior distribution. Furthermore, the posterior distribution belongs to the
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same family as the prior distribution. Since the uniform distribution over the
interval [0, 1] is the same as a Beta(1,1) distribution (see section 1.15), we
could have used this simple update rule in the “prior ignorance” case as
well: combining a Beta(1,1) prior with a binomial sample of size 10 with 7
successes yields a Beta(8,4) posterior distribution.

Once we have calculated the posterior distribution, we can extract all
kinds of information from it. We may for example determine the mode of the
posterior distribution which represents the value of π for which the posterior
density is maximal. When asked to give a point estimate for π, it makes
sense to report this value. When asked for a range of plausible values for π
we may use the posterior distribution to determine a so-called 100(1− α)%
probability interval, which is an interval [gl, gu] such that P (π < gl) = α/2
and P (π > gu) = α/2 where the relevant probabilities are based on the
posterior distribution for π.

The following example is taken from [1]. A study was designed to eval-
uate the effectiveness of a chemotherapeutic agent, called 6-mercaptopurine
(6MP), for the treatment of acute leukemia. Patients were randomized into
the therapy or placebo group by coin tosses. The first patient was assigned to
the 6MP group if the coin landed heads and to the placebo group otherwise.
The second patients was then assigned to the other group, and so on. For
each pair of patiens the investigators recorded whether the 6MP patient or
the placebo patient stayed in remission longer. There were 21 pairs of pa-
tients in the study, and 6MP was more effective on 18 of the 21 (≈ 86%) pairs
of patients. Let π denote the probability that a randomly selected patient
will stay in remission longer if treated with 6MP than if not treated. We
observe 18 out of 21 cases for which this is true, so the likelihood function
is π18(1 − π)3. Suppose there are two doctors, say A and B, with different
prior probability distributions for π. Their prior distributions are displayed
in figure 8.2 and figure 8.3 respectively.

Combination of these priors with the sample likelihood gives a Beta(19,4)
posterior for A, and a Beta(20,4) posterior for B. Although the doctors
had quite different opinions before the experiment, they almost agree after
seeing the outcome of the experiment. For example, the posterior predictive
probability that the next patient will benefit from treatment with 6MP is
equal to the expected value of the posterior distribution, which is

l + r

l + k + n
=

1 + 18

1 + 1 + 21
=

19

23
= 0.826
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Figure 8.2: Prior distribution for π of dr. A: Beta(1,1).

for A, and 20/24=0.833 for B. Hence, after seeing the data they almost agree
on this.

A 95% posterior probability interval for π is constructed as follows. The
posterior distribution of doctor A is Beta(19,4). This is approximately equal
to a normal distribution with mean

π∗ =
19

23
= 0.826

and standard deviation√
π∗(1− π∗)

n∗ + 1
=

√
0.826(0.174)

24
≈ 0.0774

where n∗ = l + k + n. So a 95% probability interval for π is given by

π∗ ± z0.05/2

√
π∗(1− π∗)

n∗ + 1
= 0.826± 1.96× 0.0774 ≈ [0.67, 0.98]
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Figure 8.3: Prior distribution for π of dr. B: Beta(2,1).
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