

 SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

Unix & Shell Programming Lab Manual

Subject Name & Code : UNIX & Shell Programming Lab (12ACS06)

Year & Programme : II Year, 2013-14

Branch / Semester : CSE / I Semester

Week1

Session-1

a)Log into the system

Sol : Login

b)Use vi editor to create a file called myfile.txt which contains some text.

Sol : Vi mytable

c)correct typing errors during creation.

Sol: Practice vi editor commands

d)Save the file

Sol: :wq + Enter

e)logout of the system

Sol: logout

Note… Make Use of following commands:

To Get Into and Out Of vi

To Start vi

To use vi on a file, type in vi filename. If the file named filename exists, then

the first page (or screen) of the file will be displayed; if the file does not exist,

then an empty file and screen are created into which you may enter text.

* vi filename edit filename starting at line 1

 vi -r filename recover filename that was being edited when system crashed

To Exit vi

Usually the new or modified file is saved when you leave vi. However, it is also

possible to quit vi without saving the file.

Note: The cursor moves to bottom of screen whenever a colon (:) is typed. This

type of command is completed by hitting the <Return> (or <Enter>) key.

* :x<Return> quit vi, writing out modified file to file named in original invocation

 :wq<Return> quit vi, writing out modified file to file named in original invocation

 :q<Return> quit (or exit) vi

* :q!<Return> quit vi even though latest changes have not been saved for this vi call

Session-2

a)Log into the system

b)open the file created in session 1

c)Add some text

d)Change some text

e)Delete some text

f)Save the Changes

Sol : Practice the commands in Vi editor

g)Logout of the system

Note… Make Use of following commands

Inserting or Adding Text

The following commands allow you to insert and add text. Each of these

commands puts the vi editor into insert mode; thus, the <Esc> key must be

pressed to terminate the entry of text and to put the vi editor back into command

mode.

* i insert text before cursor, until <Esc> hit

 I insert text at beginning of current line, until <Esc> hit

* a append text after cursor, until <Esc> hit

 A append text to end of current line, until <Esc> hit

* o open and put text in a new line below current line, until <Esc> hit

* O open and put text in a new line above current line, until <Esc> hit

Changing Text

The following commands allow you to modify text.

* r replace single character under cursor (no <Esc> needed)

 R replace characters, starting with current cursor position, until <Esc> hit

 cw
change the current word with new text,

starting with the character under cursor, until <Esc> hit

 cNw
change N words beginning with character under cursor, until <Esc> hit;

 e.g., c5w changes 5 words

 C change (replace) the characters in the current line, until <Esc> hit

 cc change (replace) the entire current line, stopping when <Esc> is hit

 Ncc or cNc
change (replace) the next N lines, starting with the current line,

stopping when <Esc> is hit

Deleting Text

The following commands allow you to delete text.

* x delete single character under cursor

 Nx delete N characters, starting with character under cursor

 dw delete the single word beginning with character under cursor

 dNw
delete N words beginning with character under cursor;

 e.g., d5w deletes 5 words

 D delete the remainder of the line, starting with current cursor position

* dd delete entire current line

 Ndd or dNd
delete N lines, beginning with the current line;

 e.g., 5dd deletes 5 lines

Week2

a)Log into the system

b)Use the cat command to create a file containing the following data. Call it mytable use

tabs to separate the fields.

1425 Ravi 15.65

4320 Ramu 26.27

6830 Sita 36.15

1450 Raju 21.86

Sol: cat > mytable

1425 Ravi 15.65

4320 Ramu 26.27

6830 Sita 36.15

1450 Raju 21.86

c)Use the cat command to display the file, mytable.

Sol: $cat mytable

1425 Ravi 15.65

4320 Ramu 26.27

6830 Sita 36.15

1450 Raju 21.86

d) Use the vi command to correct any errors in the file, mytable.

Sol: Verify the file with Vi editor Commannds

e) Use the sort command to sort the file mytable according to the first field. Call the

sorted file my table

(same name)

Sol: $sort +1 mytable > mytable

f) Print the file mytable

Sol: cat mytable

1425 Ravi 15.65

1450 Raju 21.86

4320 Ramu 26.27

6830 Sita 36.15

g) Use the cut and paste commands to swap fields 2 and 3 of mytable. Call it my table

(same name)

Sol: $cut -f1 > mytab1

$ cut –f 2 > mytab 2

$cut –f 3 > my tab3

$paste mytab3 mytab2 > mytab4

$paste mytab1 mytab4 > mytable

h)Print the new file, mytable

Sol: $ cat mytable
1425 15.65 Ravi
1450 21.86 Raju
4320 26.27 Ramu
6830 36.15 Sita

i)Logout of the system.

Note… Make Use of following commands

Cat:----

cat to display a text file or to concatenate files

 cat file1 displays contents of file1 on the screen (or window)

without any screen breaks.

 cat file1 file2 displays contents of file1 followed by file2 on the

screen (or window) without any screen breaks.

 cat file1 file2 > file3 creates file3 containing file1 followed by file2

Sort :----
The "sort" command sorts information piped into it. There are several options that

let you sort information in a variety of ways.
ps -ef | sort

The most important options in Sort :

The following list describes the options and their arguments that may be used to control

how sort functions.

 - Forces sort to read from the standard input. Useful for reading from pipes and

files simultaneously.

 -c Verifies that the input is sorted according to the other options specified on the

command line. If the input is sorted correctly then no output is provided. If the

input is not sorted then sort informs you of the situation. The message resembles

this.

 sort: disorder: This line not in sorted

order.



 -m Merges the sorted input. sort assumes the input is already sorted. sort

normally merges input as it sorts. This option informs sort that the input is

already sorted, thus sort runs much faster.

 -o output Sends the output to file output instead of the standard output. The output

file may be the same name as one of the input files.

 -u Suppress all but one occurrence of matching keys. Normally, the entire line is

the key. If field or character keys are specified, then the suppressing is done based

on the keys.

 -y kmem Use kmem kilobytes of main memory to initially start the sorting. If

more memory is needed, sort automatically requests it from the operating system.

The amount of memory allocated for the sort impacts the speed of the sort

significantly. If no kmem is specified, sort starts with the default amount of

memory (usually 32K). The maximum (usually 1 Megabyte) amount of memory

may be allocated if needed. If 0 is specified for kmem, the minimum (usually

16K) amount of memory is allocated.

 -z recsz Specifies the record size used to store each line. Normally the recsz is set

to the longest line read during the sort phase. If the -c or -m options are specified,

the sort phase is not performed and thus the record size defaults to a system size.

If this default size is not large enough, sort may abort during the merge phase. To

alleviate this problem you can specify a recsz that will allow the merge phase to

run without aborting.

Week3

 Session1:

 a)Login to the system

b)Use the appropriate command to determine your login shell

Sol: $echo $SHELL

sh

c)Use the /etc/passwd file to verify the result of step b.

Sol: $cat /etc/passwd

d)Use the who command and redirect the result to a file called myfile1. Use the

more command to see the contents of myfile1.

Sol : $who > myfile1 | more

User1 pts/0 Apr 23 10:43

User2 pts/1 May 6 18:19

e)Use the date and who commands in sequence (in one line) such that the output

of date will display on the screen and the output of who will be redirected to a file

called myfile2. Use the more command to check the contents of myfile2.

Sol: $ date ; who > myfile2

Fri Aug 9 16:47:32 IST 2008

Cat myfile2 :

Note… Make Use of following commands:

User3 pts/2 Apr 25 10:43

User4 pts/3 May 8 18:19

Who :---

The "who" command lets you display the users that are currently logged into your

Unix computer system.

who
This is the basic who command with no command-line arguments. It shows the names of

users that are currently logged in, and may also show the terminal they're logged in on,

and the time they logged in.

who | more

In this example the output of the who command is piped into the more command. This is

useful when there are a lot of users logged into your computer system, and part of the

output of the who command scrolls off the screen. See the more command for more

examples.

who -a

The -a argument lists all available output of the who command for each user.

Piping:---

To connect the output of the one command directly to the input of the other

command. This is exactly what pipes do. The symbol for a pipe is the vertical bar |

For example, typing

% who | sort

will give the same result as above, but quicker and cleaner.

To find out how many users are logged on, type

% who | wc -l

http://www.devdaily.com/unix/edu/examples/more.shtml

Session 2:

Input File : file1.dat :

Unix is Multiuser OS

Unix was developed by Brian Kernighan and KenThomson

a)Write a sed command that deletes the first character in each line in a file.

Sol: sed 's/^./ /‟ file1.dat

nix is Multiuser OS

nix was developed by Brian Kernighan and KenThomson

b)Write a sed command that deletes the last character in each line in a file.

Sol: sed '$s/.$//' file1.dat

Unix is Multiuser O

Unix was developed by Brian Kernighan and KenThomso

c)Write a sed command that swaps the first and second words in each line in a file.
sed -e 's/\([^]\+\) *\([^]\+\)/\2 \1/'

sed 's/\([a-z]*\) \([a-z]*\)/\2 \1/' (Modified & working)

(Substrings enclosed with "\(" and "\)" can be referenced with "\n" (n is a digit
from 1 to 9))

Note : Make use of following Link to know more about sed

Ref : http://www.grymoire.com/Unix/Sed.html#uh-0

http://www.grymoire.com/Unix/Sed.html#uh-0

Week4

a)Pipe your /etc/passwd file to awk, and print out the home directory of each user.

Sol: cat /etc/passwd | awk „ { print $7}‟

b)Develop an interactive grep script that asks for a word and a file name and then tells

how many lines

contain that word.

Sol:

echo “Enter a word”

read word

echo “Enter the filename”

read file

nol=grep -c $word $file

echo “ $nol times $word present in the $file”

c)Part using awk

Sol:

echo “Enter a word”

read word

echo “Enter the filename”

read file

nol=awk „/$word/ { print NR }‟ Infile

echo “ $nol times $word present in the $file”

Note… Make Use of following commands:

Grep: ---grep is one of many standard UNIX utilities. It searches files for specified

words or patterns. First clear the screen, then type

% grep science science.txt

As you can see, grep has printed out each line containg the word science.

Or has it ????

Try typing

% grep Science science.txt

The grep command is case sensitive; it distinguishes between Science and science.

To ignore upper/lower case distinctions, use the -i option, i.e. type

% grep -i science science.txt

To search for a phrase or pattern, you must enclose it in single quotes (the

apostrophe symbol). For example to search for spinning top, type

% grep -i 'spinning top' science.txt

Some of the other options of grep are:

-v display those lines that do NOT match

-n precede each matching line with the line number

-c print only the total count of matched lines

Try some of them and see the different results. Don't forget, you can use more than

one option at a time. For example, the number of lines without the words science or

Science is

% grep -ivc science science.txt

Note: Make use of Following Link to know about Awk

Ref : http://www.grymoire.com/Unix/Awk.html

http://www.grymoire.com/Unix/Awk.html

Week5

a)Write a shell script that takes a command –line argument and reports on whether it is

directory, a file, or something else.

Sol:

echo " enter file"

read str

if test -f $str

then echo "file exists n it is an ordinary file"

elif test -d $str

then echo "directory file"

else

echo "not exists"

fi

if test -c $str

then echo "character device files"

fi

b)Write a shell script that accepts one or more file name as arguments and converts all of

them to uppercase, provided they exist in the current directory.

Sol:

get filename

echo -n "Enter File Name : "

read fileName

make sure file exits for reading

if [! -f $fileName]

then

echo "Filename $fileName does not exists"

exit 1

fi

convert uppercase to lowercase using tr command

tr '[A-Z]' '[a-z]' < $fileName

c)Write a shell script that determines the period for which a specified user is working on

the system.

Sol:

echo “enter the login of the user”

read name

logindetails=`who|grep –w “$name” | grep “tty”

if [$? –ne 0]

then

echo “$name has not logged in yet”

exit

fi

loginhours=`echo “$logindetails” | cut –c 26,27`

loginminuts=`echo “$logindetails” | cut –c 29-30`

hoursnow=‟date | cut –c 12,13`

minnow =`date | cut –c 15,16`

hour=`expr $loginhours - $hoursnow`

min=`expr $loginminuts - $minnow`

echo “ $name is working since $hour Hrs - $min Minuts”

Week6

a)Write a shell script that accepts a file name starting and ending line numbers as

arguments and displays all the lines between the given line numbers.

Sol:

If [$# -ne 3]

then

echo “chech the arguments once”

lastline=‟wc –l < $1‟

if [$2 –lt $lastline –a $3 -le $lastline]

then

nline=‟expr $3 -$2 + 1‟

echo “‟tail +$2 $1 | head -$nline‟”

else

echo “invalid range specification”

fi

fi

b) Write a shell script that deletes all lines containing a specified word in one or more

files supplied as arguments to it.

Sol:

if [$# -lt 1]

then

echo “ Chech the arguments once”

exit

fi

echo “Enter a word”

read word

for file in $*

do

grep –iv “$word” $file | tee 1> /dev/null

done

echo “ lines containing given word are deleted”

Week7

a)Write a shell script that computes the gross salary of a employee according to the

following rules:

i)If basic salary is < 1500 then HRA =10% of the basic and DA =90% of the basic.

ii)If basic salary is >=1500 then HRA =Rs500 and DA=98% of the basic

The basic salary is entered interactively through the key board.

Sol:

echo enter basic salary

read sal

a=0.1

b=0.8

echo $a

echo "hra is"

hra=`echo 0.1 * $sal|bc`

echo da is

da=`echo 0.8*$sal|bc`

gsal=‟expr $hra + $da + $sal‟

echo $gsal

b)Write a shell script that accepts two integers as its arguments and computers the value

of first number raised to the power of the second number.

Sol:

If [$# -ne 2]

then

echo “chech the number of arguments”

count=1

result=1

if [$2 –ge 0]

then

while [$count –le $2]

do

result=`expr $result * $1`

count=`expr $count + 1`

done

fi

fi

Week8

a)Write an interactive file-handling shell program. Let it offer the user the choice of

copying, removing, renaming, or linking files. Once the user has made a choice, have the

program ask the user for the necessary information, such as the file name, new name and

so on.

b)Write shell script that takes a login name as command – line argument and reports

when that person logs in

Sol:

#Shell script that takes loginname as command line arg and reports when that person logs

in.

if [$# -lt 1]

then

echo improper usage

echo correct usage is: $0 username

exit

fi

logname=$1

while true

do

who|grep "$logname">/dev/null

if [$? = 0]

then

echo $logname has logged in

echo "$logname">>sh01log.txt

date >>sh01log.txt

echo "Hi" > mesg.txt

echo "$logname" >> mesg.txt

echo "Have a Good Day" >> mesg.txt

mail "$logname" < mesg.txt

exit

else

sleep 60 fi done

c)Write a shell script which receives two file names as arguments. It should check

whether the two file contents are same or not. If they are same then second file should be

deleted.

Sol:

echo “enter first file name”

read file1

echo “ enter second file name”

read file2

cmp file1 file2 > file3

if [-z $file1] rm file2

fi

echo “duplicate file deleted successfully”

Week9

a)Write a shell script that displays a list of all the files in the current directory to which

the user has read, write and execute permissions.

Sol:

ls –l | grep “^.rwx” | cut –f 9

b)Develop an interactive script that ask for a word and a file name and then tells how

many times that word occurred in the file.

c)Write a shell script to perform the following string operations:

i)To extract a sub-string from a given string.

ii)To find the length of a given string.

Note: Make use of Following Link to know about Shell Programming

Ref : http://www.freeos.com/guides/lsst/ch02.html

http://www.freeos.com/guides/lsst/ch02.html

Week10

Write a C program that takes one or more file or directory names as command line input

and reports the following information on the file:

i)File type

ii)Number of links

iii)Read, write and execute permissions

iv)Time of last access

Sol:

#include<stdio.h>

#include<unistd.h>

#include<sys/stat.h>

#include<sys/types.h>

#include<fcntl.h>

void main()

{ int fd;

struct stat buf;

fd=open("f5.txt",O_RDONLY|O_CREAT,600);

if(fd!=-1)

{ if(fstat(fd,&buf)==0)

{ printf("mode of fileis %u",buf.st_mode);

printf("\n size of the file is %u",buf.st_size);

printf("\n device name %u",buf.st_dev);

printf("\n inode of file is %u",buf.st_ino);

printf("\n no. of links are %u",buf.st_nlink);

printf("\n owner oof a file is %u",buf.st_uid);

printf("\n no.of blocks is %u",buf.st_blocks);

printf("\n group owner is %u",buf.st_gid);

printf("\n blocks size of the file is %u",buf.st_blksize);

printf("\n time of last modifiedis %u",buf.st_ctime);

}

else

printf("error in fstat() syscall");

}

else

printf("error in open() sys call");

}

Note Make Use of following Description on stat system call

Stat : --

NAME

stat - get file status

SYNOPSIS

#include <sys/stat.h>

int stat(const char *restrict path, struct stat *restrict buf);

DESCRIPTION

The stat() function shall obtain information about the named file and write it to the

area pointed to by the buf argument. The path argument points to a pathname

naming a file. Read, write, or execute permission of the named file is not required.

An implementation that provides additional or alternate file access control

mechanisms may, under implementation-defined conditions, cause stat() to fail. In

particular, the system may deny the existence of the file specified by path.

If the named file is a symbolic link, the stat() function shall continue pathname

resolution using the contents of the symbolic link, and shall return information
pertaining to the resulting file if the file exists.

The buf argument is a pointer to a stat structure, as defined in the <sys/stat.h>
header, into which information is placed concerning the file.

The stat() function shall update any time-related fields (as described in the Base

Definitions volume of IEEE Std 1003.1-2001, Section 4.7, File Times Update), before
writing into the stat structure.

Unless otherwise specified, the structure members st_mode, st_ino, st_dev, st_uid,

st_gid, st_atime, st_ctime, and st_mtime shall have meaningful values for all file

types defined in this volume of IEEE Std 1003.1-2001. The value of the member

st_nlink shall be set to the number of links to the file.

RETURN VALUE

Upon successful completion, 0 shall be returned. Otherwise, -1 shall be returned and
errno set to indicate the error

<sys/stat.h> : ---

The stat structure shall contain at least the following members:

dev_t st_dev Device ID of device containing file.

ino_t st_ino File serial number.

mode_t st_mode Mode of file (see below).

nlink_t st_nlink Number of hard links to the file.

uid_t st_uid User ID of file.

gid_t st_gid Group ID of file.

dev_t st_rdev Device ID (if file is character or block

special).

off_t st_size For regular files, the file size in bytes.

For symbolic links, the length in bytes of the

pathname contained in the symbolic link.

http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap04.html#tag_04_07
http://www.opengroup.org/onlinepubs/000095399/basedefs/sys/stat.h.html

For a shared memory object, the length in

bytes.

For a typed memory object, the length in

bytes.

For other file types, the use of this field is

unspecified.

time_t st_atime Time of last access.

time_t st_mtime Time of last data modification.

time_t st_ctime Time of last status change.

blksize_t st_blksize A file system-specific preferred I/O block

size for this object. In some file system

types, this may vary from file to file.

blkcnt_t st_blocks Number of blocks allocated for this object.

Week11

Write C programs that simulate the following unix commands:

a)mv

Sol:

#include<stdio.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<fcntl.h>

#include<unistd.h>

void main()

{

int fd1,fd2;

char buf[60];

char *p="/f2";

fd1=open("f2",O_RDWR);

fd2=open("f6",O_RDWR);

read(fd1,buf,sizeof(buf));

write(fd2,buf,sizeof(buf));

remove(p);

}

b)cp

Sol:

#include<stdio.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<fcntl.h>

#include<unistd.h>

void main()

{

int fd1,fd2;

char buf[60];

fd1=open("f2",O_RDWR);

fd2=open("f6",O_RDWR);

read(fd1,buf,sizeof(buf));

write(fd2,buf,sizeof(buf));

close(fd1);

close(fd2);

}

Note Make Use of following Description on File related system calls

System calls for File Processing :----

FreeBSD (4.4) has six file-related system calls. The following table briefly describe the

function of each.

System calls Function

open open an existing file or create a new file

read Read data from a file

write Write data to a file

lseek Move the read/write pointer to the specified location

close Close an open file

unlink Delete a file

chmod Change the file protection attributes

stat Read file information from inodes

Files to be included for file-related system calls.

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/uio.h>

#include <sys/stat.h>

Open files

The open system call can be used to open an existing file or to create a new file if it does

not exist already. The syntax of open has two forms:

int open(const char *path, int flags); and

int open(const char *path, int flags, mode_t modes);

The first form is normally used to open an existing file, and the second form to open a

file and to create a file if it does not exist already. Both forms returns an integer called the

file descriptor. The file descriptor will be used for reading from and writing to the file. If

the file cannot be opened or created, it returns -1. The first parameter path in both forms

sPecifies the file name to be opened or created. The second parameter (flags) specifies

how the file may be used. The following list some commonly used flag values.

http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#open#open
http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#read#read
http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#write#write
http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#lseek#lseek
http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#close#close
http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#unlink#unlink
http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#chmod#chmod
http://www.cs.uofs.edu/~bi/2008f-html/cs352/syscalls-file.htm#stat#stat

Flag Description

O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing

O_NONBLOCK do not block on open

O_APPEND append on each write

O_CREAT create file if it does not exist

O_TRUNC truncate size to 0

O_EXCL error if create and file exists

O_SHLOCK atomically obtain a shared lock

O_EXLOCK atomically obtain an exclusive lock

O_DIRECT eliminate or reduce cache effects

O_FSYNC synchronous writes

O_NOFOLLOW do not follow symlinks

The flag (O_CREAT) may be used to create the file if it does not exist. When this flag is

used, the third parameter (modes) must be used to specify the file access permissions for

the new file. Commonly used modes (or access permissions) include

Constant Name
Octal

Value
Description

S_IRWXU 0000700
/* RWX mask for owner

*/

S_IRUSR 0000400 /* R for owner */

S_IWUSR 0000200 /* W for owner */

S_IXUSR 0000100 /* X for owner */

S_IRWXO 0000007
/* RWX mask for other

*/

S_IROTH 0000004 /* R for other */

S_IWOTH 0000002 /* W for other */

S_IXOTH 0000001 /* X for other */

R: read, W: write, and X:

executable

For example, to open file "tmp.txt" in the current working directory for reading and

writing:

fd = open("tmp.txt", O_RDWR);

To open "sample.txt" in the current working directory for appending or create it, if it does

not exist, with read, write and execute permissions for owner only:

fd = open("tmp.txt", O_WRONLY|O_APPEND|O_CREAT, S_IRWXU);

A file may be opened or created outside the current working directory. In this case, an

absolute path and relative path may prefix the file name. For example, to create a file in

/tmp directory:

open("/tmp/tmp.txt", O_RDWR);

Read from files

The system call for reading from a file is read. Its syntax is

ssize_t read(int fd, void *buf, size_t nbytes);

The first parameter fd is the file descriptor of the file you want to read from, it is

normally returned from open. The second parameter buf is a pointer pointing the memory

location where the input data should be stored. The last parameter nbytes specifies the

maximum number of bytes you want to read. The system call returns the number of bytes

it actually read, and normally this number is either smaller or equal to nbytes. The

following segment of code reads up to 1024 bytes from file tmp.txt:

int actual_count = 0;

int fd = open("tmp.txt", O_RDONLY);

void *buf = (char*) malloc(1024);

actual_count = read(fd, buf, 1024);

Each file has a pointer, normally called read/write offset, indicating where next read will

start from. This pointer is incremented by the number of bytes actually read by the read

call. For the above example, if the offset was zero before the read and it actually read

1024 bytes, the offset will be 1024 when the read returns. This offset may be changed by

the system call lseek, which will be covered shortly.

Write to files

The system call write is to write data to a file. Its syntax is

ssize_t write(int fd, const void *buf, size_t nbytes);

It writes nbytes of data to the file referenced by file descriptor fd from the buffer pointed

by buf. The write starts at the position pointed by the offset of the file. Upon returning

from write, the offset is advanced by the number of bytes which were successfully

written. The function returns the number of bytes that were actually written, or it returns

the value -1 if failed.

Week12

Write a C program that simulates ls Command

Sol:

#include<stdio.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<fcntl.h>

#include<unistd.h>

#include<dirent.h>

void main()

{

DIR *dp;

struct dirent *dirp;

dp=opendir(".");

while(dirp=(readdir(dp)!=NULL))

{

if(dirp->d_ino==0)

continue;

else

printf("%s \n",dirp->d_name);

}

}

Note Make Use of following Description on directory related system calls

Opendir():----

NAME

opendir - open a directory

SYNOPSIS

#include <dirent.h>

DIR *opendir(const char *dirname);

DESCRIPTION

The opendir() function shall open a directory stream corresponding to the directory

named by the dirname argument. The directory stream is positioned at the first

entry. If the type DIR is implemented using a file descriptor, applications shall only
be able to open up to a total of {OPEN_MAX} files and directories.

http://www.opengroup.org/onlinepubs/009695399/basedefs/dirent.h.html

RETURN VALUE

Upon successful completion, opendir() shall return a pointer to an object of type

DIR. Otherwise, a null pointer shall be returned and errno set to indicate the error.

Ref : http://www.opengroup.org/onlinepubs/009695399/functions/opendir.html

readdir():---

NAME

readdir, readdir_r - read a directory

SYNOPSIS

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

int readdir_r(DIR *restrict dirp, struct dirent *restrict entry,

 struct dirent **restrict result);

DESCRIPTION

The type DIR, which is defined in the <dirent.h> header, represents a directory

stream, which is an ordered sequence of all the directory entries in a particular

directory. Directory entries represent files; files may be removed from a directory or
added to a directory asynchronously to the operation of readdir().

The readdir() function shall return a pointer to a structure representing the directory

entry at the current position in the directory stream specified by the argument dirp,

and position the directory stream at the next entry. It shall return a null pointer upon

reaching the end of the directory stream. The structure dirent defined in the
<dirent.h> header describes a directory entry.

The readdir() function shall not return directory entries containing empty names. If

entries for dot or dot-dot exist, one entry shall be returned for dot and one entry
shall be returned for dot-dot; otherwise, they shall not be returned.

The pointer returned by readdir() points to data which may be overwritten by

another call to readdir() on the same directory stream. This data is not overwritten
by another call to readdir() on a different directory stream.

If a file is removed from or added to the directory after the most recent call to

opendir() or rewinddir(), whether a subsequent call to readdir() returns an entry for
that file is unspecified.

http://www.opengroup.org/onlinepubs/009695399/functions/opendir.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/dirent.h.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/dirent.h.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/dirent.h.html
http://www.opengroup.org/onlinepubs/009695399/functions/opendir.html
http://www.opengroup.org/onlinepubs/009695399/functions/rewinddir.html

The readdir() function may buffer several directory entries per actual read operation;

readdir() shall mark for update the st_atime field of the directory each time the

directory is actually read.

After a call to fork(), either the parent or child (but not both) may continue

processing the directory stream using readdir(), rewinddir(),or seekdir().If both the
parent and child processes use these functions, the result is undefined.

If the entry names a symbolic link, the value of the d_ino member is unspecified.

The readdir() function need not be reentrant. A function that is not required to be
reentrant is not required to be thread-safe.

The readdir_r() function shall initialize the dirent structure referenced by entry to

represent the directory entry at the current position in the directory stream referred

to by dirp, store a pointer to this structure at the location referenced by result, and
position the directory stream at the next entry.

The storage pointed to by entry shall be large enough for a dirent with an array of
char d_name members containing at least {NAME_MAX}+1 elements.

Upon successful return, the pointer returned at *result shall have the same value as

the argument entry. Upon reaching the end of the directory stream, this pointer shall

have the value NULL.

The readdir_r() function shall not return directory entries containing empty names.

If a file is removed from or added to the directory after the most recent call to

opendir() or rewinddir(), whether a subsequent call to readdir_r() returns an entry
for that file is unspecified.

The readdir_r() function may buffer several directory entries per actual read

operation; the readdir_r() function shall mark for update the st_atime field of the

directory each time the directory is actually read.

Applications wishing to check for error situations should set errno to 0 before calling
readdir(). If errno is set to non-zero on return, an error occurred.

RETURN VALUE

Upon successful completion, readdir() shall return a pointer to an object of type

struct dirent. When an error is encountered, a null pointer shall be returned and

errno shall be set to indicate the error. When the end of the directory is encountered,
a null pointer shall be returned and errno is not changed.

If successful, the readdir_r() function shall return zero; otherwise, an error number shall

be returned to indicate the error.

http://www.opengroup.org/onlinepubs/009695399/functions/fork.html
http://www.opengroup.org/onlinepubs/009695399/functions/rewinddir.html
http://www.opengroup.org/onlinepubs/009695399/functions/seekdir.html
http://www.opengroup.org/onlinepubs/009695399/functions/opendir.html
http://www.opengroup.org/onlinepubs/009695399/functions/rewinddir.html

<dirent.h> Structure :----

The <dirent.h> header shall define the following type:

DIR A type representing a directory stream.

It shall also define the structure dirent which shall include the following members:

ino_t d_ino File serial number.

char d_name[] Name of entry.

The type ino_t shall be defined as described in <sys/types.h>.

The character array d_name is of unspecified size, but the number of bytes
preceding the terminating null byte shall not exceed {NAME_MAX}.

The following shall be declared as functions and may also be defined as macros.
Function prototypes shall be provided.

int closedir(DIR *);

DIR *opendir(const char *);

struct dirent *readdir(DIR *);

int readdir_r(DIR *restrict, struct dirent *restrict,

struct dirent **restrict);

void rewinddir(DIR *);
[void seekdir(DIR *, long);

long telldir(DIR *);

Ref: http://www.opengroup.org/onlinepubs/009695399/functions/readdir.html

http://www.opengroup.org/onlinepubs/009695399/basedefs/sys/types.h.html
http://www.opengroup.org/onlinepubs/009695399/functions/readdir.html

	tag_03_716_01
	tag_03_716_02
	tag_03_716_03
	tag_03_716_04
	open
	read
	write
	tag_03_411_01
	tag_03_411_02
	tag_03_411_03
	tag_03_411_04
	tag_03_595_01
	tag_03_595_02
	tag_03_595_03
	tag_03_595_04
	tag_03_595_05

