Principles of Compiler
Design

A. A. Puntambekar

Technical Publications Pune




Pune - 411 030, india.

Fll:
: L] » 4 L ]
I .
Principles of Compiler Design e =)
First Edition : August 2006 i H"-c-:i'_-:r;:-h
Al rights reserved with Technical Publications. No part of this book should be .
s reproduced i oany form, Electronic. Mechamcal, Photocopy or any intformation storage and
L etney el system without prior permisston in writma, from Techmeal Pubhications, Pune.
ISBN 81 - 8431 - 064 - 1
Published by : , Printer :
Technical Publications Pune s TP
#1, Amit Residency, 412, Shaniwar Peth, oty

Pune Sinhagad Road,

Phone : (020) 24495496 , Tele/Fax : (020) 24495497 Pune - 411 041

Email ; techmical@vtubooks.com

Head office

Technical Publications

# 1. Amit Ressdency, 412 Shanwwar Peth, Pune - 411030, India

(000} 24495456, 66023931 Tele/Fax - (020) 24495497

Bangalore
Pragati Book House

16i76-141h, Main Road, Prakash Magar,
Bangalore - 560021, India
Phone - (080) 23324037, Fax : 23324848

Mumbai

Pragati Books Pvt. Lid.

385, 5.V.P Road, Rasdhara,

Co-op. Scciety, Girgaum, Mumbai - 400 004
india. Phone : (022) 23869976, 23856339

Hyderabad

Nirali Book House

22 Shivam Enclave, 4-5 - 847,
Badi Chavadi, Hyderabad - 500095
india. Phane : (040) 5545313

Chennai
Pragati Books

# 9/1, Monteth Road, Behind Taas Mahal,
Egimore, Chennai - 600 008,

India. Ph. - ((044) 5518 3535 Mobile - 84440 01782

Technical Books Distributor

B - Ground floor, "QUANTA ANNAM'
241h Street, H-965/966, Opp. U C MAS
Anna Nagar (W), Chennai - 600040, India.

Phone : {044} 26161903, Mobite No. : 9840324419

Jalgaon
Pragali Books Pvt. Ltd.
34, V. V. Golani Market, Navi Peth,

Jalgaon - (02587) 425 001, India
Phone @ 220385

Nagpur
Pratibha Book Distribulors

Shop No. 3. 13l Floor Lokraina, Commarcusl Complesx,
Zansi Rani . Silab uldi,
Magpur - 440012, India. Phone - {0712) 547129

Nasik

Fragati Books Fvt. Lid.

741, Gaydhani Sankul, First Fioor,
Raviwar Karanja, Masik - 422001
India. Phone : (0253) 2506438

FPune

Pragati Books Pvt. Ltd.

119, Budhwar Peth,

Jogeshwari Mandir lane, Pune - 411 002, India
Phone : (020) 24452044

Pragati Impex (Export Division)
# 21, Amit Residency, 412, Shaniwar Peth,
Pune - 411030, India

+910B4502 1552, +019370286000

This edition can be exported from India ondy.

R I R R Y



Table of Contents

Chapter-1 IntroductiontoCompiling ~ (1-1)to(1-14)
LA dENEHOn e e s s s s e e
1.2 Why to Wrrite CompPiler 7 .........coooveeeiiiiiiiniiiiiiiiivnsinessnssssnsessnssessrsmnesnaee d = 1

1.2.1 Compiler: Analysis - SynthesisModel . . . ................ccciiiiiiiiiiiiiin... 1-1

V2.2 EXGCUNON OF PYOMRIN - oioioromniinin g s o st msm i o080 i i 1-2

L3 Compilation FIocess IN Bl uannisaaiinsinssiisivinsriieiis 1-3
1.3.1The Phases of Compiler ... ..........iuuiiutt it eaaeeaneans 1-3

1.4 Cousins of the Compiler............ et ee et eeeeeeeetba— e ttneneeeeanenasteesieaaans 1-9
1.5 CONCEDL OF PaSS i s i v e v aive 1-10
1.6 Types of COMPIIET ........o et e asaas 1-11
1.7 BOMSappING OF COMPHBE ....ccunsusmmininmsirmssinns siisiseerisaasseverssoms 1-11
1B IMBrpBIBr . ..cnuinnimimmninied it d o e S S 1-12
1.9 Comparison of Compilers and Interpreters...........c.cccccevivveiiiviceniinnnnes 1-13
110 Compiler ConSrucChon TOOIS. s sisinimiinesssnsmtesnnisiavasivdssness 1-13
Beview OUastions ... amnunnnncanaaiinmes s 1-14
Chapter2 Lexical Analysis . (2-1)t0(2-24)
T T TITTrITroTToe 2-1

2.2 Role of Lexical AnalyZer ........c.ccoocviiiiiiiiiiaiiiannns T e R 2 -1
2.2.1 Tokens Pattermns LeXBmMES. . . . ...ttt ettt et ie i ea s 2-2
L L 5 A1 T e T o——,. 2-3

o)



ey g Ty, 1. -
Y BN AN LANOIBOR . . . . v s oy S R R s

24 A Cparations Of Laneee o s I e s e e A D

243 Reqular EXPressions . . ...... ... ..t i it T

2.4.4 Notations used for Representing Reqular EXpressions. . ............c.ooiunininn.. 2-7

0 N IR I TR - e e S e e 2-8

2.9 Recognition Of TOKENS .....c..ouuivuiiiiiiiiiiiiiiiiiieiieasiniansireesaenssanasnsenesssnnnens 2-8

2.6 Block Schematic of Lexical Analyzer .............ccccevvvvrnennnenseensresneeseenenn = 10
2.7 Autumaticlcunstmctinn of Lexical Analyser..........cccceviiiveiceeeeecinnnne. 2-14
2.8 LEX Specification and Features.............coo.ueeiiiiieeerasesssasmsoensenssmnsens 2-18

2.8.1 Pattern Matching based on NFA'S. . . ..ottt tiaaaaness g 2-20

Chatper-3. ;. Syntax Analysls S SRR % - ol

% I 101 (7o T (1 Tox (o o OSSO OOT U RTROP PRSPPI 3-1
1] AR NS WY IR . o o mmrmomison s o e S A N o 3-2
ST2ROB OTPABEY .. oovvcuni s o T ——— 3-3
3.1.3 Why Lexical and Syntax Analyzer are Separated Out?. .. . .. R 3-3
R O I - e L e 3-4

St R B DTN .. oot st s S

3.3 Ambiguous GrammarS -8
250 Parsng 1BCHNIGUBE s rsrmisinn i w4
3.5 TOp-DoWN Parser ... ceee e esree e s e e s smanneee e = D

3.5.1 Probloms With TOP-DIOWN PRIBING -« cuwunivmennime s semsswinsi s v i ss v 3I-n

30 2 RecUrsive DesCent ParSar . ....c ittt s a et 3-16
3.5.2.1 Predictive LL(1)Parser-. . . . . . . . . . . . . . . . e 3-18

3.5.2.2 Construction of Predictive LL(1) Parser-. . . . . . . . . . . . . ... ... 3-20

o SR A JRETR L b e . Bt S ol R RN ot
Sl SRR ) T R e e T



3.0 BOBOD LD PEEBEE = oimisniimnms st i s e e e s s 3-28

3.6.1 Shift Reduce Parser—. . ... ... .. .. 3-31
3.6.2 Operator Precedence Parser— . ... ... ..o e 3-33
Dl LI PBIBO = . .coiinoicnisissmimmiiiminsm s s e e S e s )
3.7.1 SLR Parser ....... R R R B R R 3-37
3.7.2LR(k)Parser ........... 0 A B SN 8 M AR 3-52
SEALRLICPRIBEE . oo oo st s s e o s e A i e 3-60
3B LOmpanson of LN ParslIB —..............aiimnsannsiiiiismaisisiivats 3 -64
3.9 Using AmMDIGUOUS Gramimar —........coivuuieeiriniiinnieeiisinsesessssessssessnsssnsses 3-64
3.10 Error Recovery in LR ParSer .........cooveeeeeeiveieeeiesseceeeseessssnnnsnnssnnnnnn 3-70
3.11 Automatic Construction of Parser (YACC) ......oveeeeieeiieeieeeeeeieeeienae 3-73
JMAYACC Specificalion . . . ...t e 3-74
PRIEN LMDIBANONNE oo s i i msinid e s AR S S AR N AR RS ARS IS RS 3-80

Chapter4 ~SemanticAnalysis = (4-1)to(d-14)

4.1 Need of Semantic Analysis —..........c..coormoriiirinnnsiirisrnnsssresrsnssssassnses 4-1
4.2 Type Analysis and Type Checking.........cccccovcevereereiriserernsscsssnnssssseensenssdd = 1

B8N S OO o e s 4-2

4.3 Simple Type CheCKeTr.......... e ee e e e e e ennnens 4-4
4.3.1-Typa CHecking OF EXDISBBION ...« oo i i o e 6o o155 s s s s 4-6
3.2 VDo Chncking oF SISO i s e e e i v 4-8

4.4 Equivalence of Type EXPressionS......ccccccvviivvvineeriinisineensnreesseessnneessnens 4-9
4.4.1 Structural Equivalence of Type Expressions. . ............. .o iiiiiiiiiiiinnn. 4-9

4.4.2 Name Equivalence of Type EXpressions. . .. ........... ..ot iiiiiinnnrnnnn. 4-1

D TYDE O IO BN v e R T i R sy 4-12
Review Questions....... A A s i i e e e 4-13

(DS &



Chapter-5 Syntax Directed Translation = -« ~ (5-1)to(5-28)

5.1 Syntax Directed Definitions(SDD).......c.ooeeveiieieiiiiiiiiiiiiiiiiiiiiieiaaann. 0=
£.2 Consirichion O SYRIBK TS ... s s 5-10
5.2.1 Construction for Syntax TreeforExpression. ... ................iiiiin.s.. 5-10

9.2.2 Directed Acyclic Graph for EXDression . .........o.oveiiinn i 2-12

5.3 Bottom-Up Evaluation of S-Attributed Definitions ...........c.ccocceeeeeea... 9-15
0.3.1 Synthesized AtinbutesontheParserSlack . .........................cc0.v...85-15

5.4 | -attributed Definitions 5-19
54 1| -attributed Definition 5-19
Bl TRRNSIATON DU s s ie v Sl T R S i S P e 5-20
9.4.2.1 Guideline for Designing the Translation Scheme. . . . . . . . . . . . . . .. 9-22

5.5 Top-Down Transialion .o i 5-22
5.5.1 Construction of Syntax Tree for the Translation Scheme . ....................... 5-24

5.6 Bottom Up Evaluation of Inherited Attributes ..........c..ooeevviiieeineienne. 5-26
IO I BB HIDIE o coismisss o T S S R s SRR et 5-28
Chapter-6 Intermediate Code Generation 0 (6=1)to(6-36)
6.1 Benefits of Intermediate Code Generation.............coeeiiviiiiicciiiniieenne, 6-1
8.2 Intermediate Languages ....... . uiiiingisisais it 6-2
6.2.1 Types of Three Address Statements. .. .........o i innenns 6-3
6.2.2 Implementation of Three Address Code . ... ...ttt iiieanns 6-4

6.3 Generation of Three Address Code.............ccccciimviiiiiiniiimiiniscmissnisnssass 6-6
6.4 Declaralions ... cuimimai i s 6-6
6.5 Assignment Statements ... e, 6-6
6.5.1 Typa Convearsion . .....ocuivivviniiiivess i, R e 6-9

B AT AN s b e s s e 6-10

Sy R e ; e e e . T



0.7 BOOICEI EXDVESSIGIS «oovuuunssmmuivnsivsisne s isdiiis i i o s 6-16

6.5 NUmerical e ar O . o O R S T s 6-17
6.7.2 Flow of Control Statements. . . ........... ... . e 6-19
6.8 Case Stalemenls ... uinmnnumisa s e 6-21
8.9 BaeKDaloN s s e S R S 6-23
6.9.1 Backpalching using Boolean Expressions. . ... ... ..., 6-23
6.9.2 Backpatching using Flow of Control Statements . ... ..... ... .............. 6-29

B. 10 Procedurs Calls ...cimsaiaianunnniaimnmasinimnmanna B~ 3
6.11 Intermediate Code Generation using YACC ......ovvievvveeviviiiiiiinnnnnn. .8 - 31

REVIEW QUESTIONS ..ottt eeeeeeeseasseeseeseneseaereerarerreseeeres 6-35
Chapter-7 Run Time Storage Organization ...~ (7-1)to(7-24)
EASOWES LANGOSGEIBEBUES .. .cuvmivm smvmismsis s s sy o v s s aeiis s 7-1
7.2 Storage OrganiZation ..ot it 7-2
7.2.1 Sub Division of Run Time Memory .. ... ... e 7-2

L3 ACBVETION BRBEOIL. i cosssmmisinis o s i i i sy i psssss i R— 7-3
7.4 Storage Allocation Strategies.........c.coovvviiiiiiiiiiiici e 7-6
T4 Static AOCAIION . . ... e 7-6

T 2 ORI ORI ..o s P S A TR S TR AT 7-7

T SRR BRI -2 5o S0 B P N e S P S U S 7-7
7.5Variable Length Data ... 7-7
1.6 ACCESS 10 NON LOCEI NBMBS ...couwcirims sravanasnsa sesississsiosnsininsssssasississise 7-8
1.6.1 Static Scope Or Ledical SO0PR. . ... it e s e e i 7-9

7.6.2 Lexical Scope for Nested Procedures . . ....... . .cov e s 7-11

7.7 Parameler PassSing ..ottt e e eeee e e eeaaes 7-17

o fiw



7.8:Symbol Tables ..iinniiiininsimms
7.8.1 Symbol - Table Entries . . ... .. . i

7.8.3Symbol Table Management. .. ... ... ... ... 0 i,

REViEW QUESTIONS .o eseeseeceensersrnasnes

r PR T e R o ST T LB T B T - i 3 : AT T
Chapter-8 Code Geperation - . . = - (8.10)to(8-38)

8.1 INIOAUCHION .....vvivviieiccticaeeices i esscrs s esaa e snssnsessssseasressneeesannes 8= 1
8.2 Issues in Code Generation ............ccoovvciiiieicieccii e 8-1
8.3 Target Machine Description ..o 8 - 4
B3 Costof the InslUCBON oo i S s S 8-5
8.4 Basic Blocks and Flow Graphs ........ccccecevniiiviecnnnnn, 8-6
8.4.1 Some Terminologies used inBasicBlocks ......... . .. ... ... . . ... ... 8-7
8.4.2 Algorithm for Partitioning intoBlocks . ............ .. ... ... .. .. i, 8-7
B 3 oW AP . oot e e e e e 8-8
8.5 Next-use Information............ 8-10
8.5.1 Storage for Temporary Names. . ................ R T B R R 8-10
8.6 Register Allocation and Assignment ......c...ccoovveeeereivccvvecinveveeevevenne. 8 = 11
8.6.1 Global Register Allocation ... ........ ..o, 8-12
B G O A0 oo i S B N S R S T R 8-12
8.6.3 Register Assignment for QuterLoop ......... Pmie s T T L R 8-13
8.6.4 Graph Coloring for Register Assignment ... ....... ... .. - N 8-14
8.7 DAG Representation of Basic Blocks .........ccooovvveeeiiieivie i 8 - 14
8.8 Peephole Optimization...........c.ooooiviniiieninld S A RS S SRS 8-17
8.8.1 Characterisiics of Peephole Optimization. . . ......... ... g8-18
8.9 Generating Code from aDAG...........cceoi v TSRO 8-19
T e T T 8-20
B0 2 HaUnshc DI0eAng: -« oo m i S s S s e e s RV s 8-21
R e i e e



8.9.3 Labeling AIGOMNM . . . ...\ e 8-23

.10 DUNSIIC PIOOTEIMIINNG oo mmimuvivasetviii it 8 -28
8.10.1 Principle of Dynamic Programiming . ... ... oooeeieeeieeesieioaracsancsssnss 8-28
8.10.2 Dynamic Programming AIGOMIM. . . . ...ttt et e eaaseasienanenns 8- 28

8.11 Code Generator Generator Concept...........cccoeevveeeiieierinsirssnseemneens 8-33

9.2 Classification of Optimization...........c.cccovieiiiieiiiiiiiiiiiiiiccreeeeeee 9 = 2

9.3 Principle Sources of OptimiZation .............ccciciecniinesininsmsssnd = 3

9.4 Optimizing Transionatons ... iiiiaiiimissnssmssiiasrssassasia 9-3
9.4.1 Compile Time Evaluation. . .......... ...ttt eaennns 9-3
9.4.2 Common Sub Expression Elimination. .............. ... ..., g 9-3
O4.3Vanable Propagalion. . ... .o rin i i e e e e 9-4
9.4.4 Code MOVEMENE ... .. .ottt e e 9-4
D40 DHONOIN BBUCIION ..o v v wm i b o s iaon s 0 R RO 3 A8 R s 9-5
SA4.0 Dond Coto BIMINRHON oo s v s o i e R 9-6

9.5 Optimization of Basic BIOcks............ccoeeeeiieiiieieeiiieeevvee e reranes 9-6

0.5 LOODS W FIOW BTRNG ... .. c.covoivumimmisns sty e s 9-9

8.1 Local OplimiZation .........auisiuaasniisiasiimmiansimssiyiag = 1
9.7.1 DAG Based Local Optimization. . . .. .. PP 9-13

9.8 Global Optimization......... 0 G S e S S 9-14
$.8.1 Conlrol and Deta FIOW ARBIVEES - .o vvimuniaimmnmirmsi Tis e T e s 9-14

9.9 Computing Global Data Flow Information................oooeiiiiiiiiicieneennn., 9-15
9.9.1Data Flow Analysis . .. ...ttt 9-15
002 Dila FIOW.PIONBIIOE .. « oo vinmussavs s s e v s ey 9-15
9.9.3 Representing Data Flow Information. .. ........... ... iiiiiiiiiiiiinnnnn. 9-17



9.9:4 Meat Over PEthS oo o s ssnuissmumnisididssndsssmras e 9-18
9.95DataFlow EQUatioONS . . ... ..ottt e 9-19
9.10 Iterative Data Flow ANalysis........cccccovrireriimmrcinriricesvnsrsnsssssnssssensess 9 = 22 |
9.10.1 Available Expressions . . . .. ... . . I 9-26
9.10.2 Live Range Identification. . .................... U 9-26

ReVIEW QUESHIONS ... eeeeee e e enenrneeneenaennsnnenn D = 2T

Hu

g eSS N SRk g § i T et R
L i ' '\..::3 .-\-%f __.\_._.f-‘-_ :-__ﬁ’!"ﬁ:’ _,..._:. : £




Introduction to Compiling

1.1 Intfroduction

Compilers are basically translators. Designing a compiler for some language is a
complex and time consuming process. Since new tools for writing the compilers are
available this process has now become a sophisticated activity. While studying the
subject compiler it is necessary to understand what is compiler and how the process
of compilation can be carried out. In this chapter we will get introduced with the
basic concepts of compiler. We will see how the source program is compiled with the
help of various phases of compiler. Lastly we will get introduced with various
compiler construction tools.

1.2 Why to Write Compiler ?

Compiler is a program which takes one language (source program) as imput and
translates it into an equivalent another language (target program). During this process
of translation if some errors are encountered then compiler displays them as error
messages. The basic model of compiler can be represented as follows -

The compiler takes a source

Input .

s — G“‘”"L program as higher level languages
= L= ; i

Source 4 Target program such as C, PASCAL, FORTRAN and

i Lall converts it into low level language or

a machine level language such as

Fig. 1.1 Basic model of compiler
assembly language.

1.2.1 Compiler: Analysis - Synthesis Model

The compilation can be done in to parts: analysis and synthesis. In analysis part
the source program is read and broken down into constituent pieces. The meaning of
the source string is determined and then an intermediate code is created from the
input source program. In synthesis part this intermediate form of the source language
15 taken and converted into an equivalent target program. The analysis and synthesis
model is as shown in fig. 1.2

(1-1)



Principles of Compiler Design | 1-2 Introduction to Compiling

Compiler
Analysis I—- Synthesis

Source
program

Fig. 1.2 Analysis - Synthesis model of compiler

The analysis part is carried out in three sub parts -

1. Lexical Analysis - In this step the source program is read and then it is broken
into stream of strings. Such strings are called tokens. Hence tokens are nothing
but the collection of characters having some.meaning.

2. Syntax Analysis - In this step the tokens are arranged in hierarchical structure
that ultimately helps in finding the syntax of the source string.

3. Semantic Analysis — In this step the meaning of the source string is
determined.

In all these analysis steps the meaning of the every source string should be
unique. Hence actions in lexical, syntax and semantic analysis are uniquely defined for

a given language.

1.2.2 Execution of Program

To create an executable form of your source program only a compiler program is
not sufficient. You may require several other programs to create an executable target
program. The target program generated by the compiler is processed further before it
can be run which is as shown in the Fig. 1.3 (see Fig. 1.3 on next page).

The compiler takes a source program written in high level language as an input
and converts it into a target assembly language. The assembler then takes this
assembly code as input and produces a relocatable machine code as output. Then a
program called loader is called for performing the task of loading and link editing.
The task of loader is to perform the relocation of an object code. Relocation of an
object code means allocation of load time addresses which exist in the memory and
placement of load time addresses and data in memory at proper locations. The link
editor links the object modules and prepares a single module from several files of
relocatable object modules to resolve the mutual references. These files may be library
files and these library files may be referred by any program.



Principles of Compiler Design 1-3 Introduction to Compiling

Skeleton source program

l

Preprocessor

Pre processed source program

Assembler

Relocatable
machine code

Loader/link-editor

Executable machine LIy, 1 e
I object file

Executable
Qutput

Data

Fig. 1.3 Language processing Model
1.3 Compilation Process in Brief

1.3.1 The Phases of Compiler

As we have discussed earlier the process of compilation is carried out in two
parts: analysis and synthesis. Again the analysis is carried out in three phases: Lexical
analysis, syntax analysis and semantic analysis. And the synthesis is carried out with
the help of intermediate code generation, code generahﬂn and code optimization. Let
us discuss these phases one by one.

1. Lexical Analysis -

The lexical analysis is also called scanning. It is the phase of compilation in which
the complete source code is scanned and your source program is broken up into
group of strings called token. A token is a sequence of characters having a collective
meaning. For example if some assignment statement in your source code is as follows,

%



Principles of Compiler Design 1-4 Introduction to Compiling

total = count + rate *10

Then in lexical analysis phase this statement is broken up into series of tokens as
follows- |

1. The identifier total

The assignment symbol

i

The identifier count
The plus sign

The identifier rate

al L

The multiplication sign
7. The constant number 10

The blank characters which are used in the programming statement are eliminated
during the lexical analysis phase.

2. Syntax Analysis -

The syntax analysis is also called parsing. In this phase the tokens generated by
the lexical analyser are grouped together to form a hierarchical structure. The syntax
analysis determines the structure of the source string by grouping the tokens together.
The hierarchical structure generated in this phase is called parse tree or syntax tree.
For the expression total = count + rate *10 the parse tree can be generated as follows.

N
SN

rate 10

Fig. 1.4 Parse tree for total = count + rate « 10

in the statement ‘total = count + rate *10" first of all rate*10 will be considered
because in arithmetic expression the multiplication operation should be performed
before the addition.And then the addition operation will be considered. For building
such type of syntax tree the production rules are to be designed.The rules are usually
expressed by context free grammar. For the above statement the production rules are -

(1) expression — identifier

(2) expression — number



Principles of Compiler Design 1-5§ Introduction to Compiling

(3) expression — expressionl + expression2

(4) expression - expressionl* expression2

(5) expression — (expression1)

By rule (1) count and rate are expressions and by rule(2) 10 is also an expression.
By rule (4) we get rate*10 as expression. And finally count +rate*10 is an expression,
3. Semantic Analysis

Once the syntax is checked in the syntax analyser phase the next phase ie. the
semantic analysis determines the meaning of the source string. For example meaning
of source string means matching of parenthesis in the expression, or matching of if
...else statements or performing arithmetic operations of the expressions that are type
compatible, or checking the scope of operation.

e >\

10
Fig. 1.5 Semantic analysis

For example,

Thus these three phases are performing the task of analysis. After these phases an
intermediate code gets generated.

. 4. Intermediate code generation —

The intermediate code is a kind of code which is easy to generate and this code
can be easily converted to target code. This code is in variety of forms such as three
address code, quadruple, triple, posix. Here we will consider an intermediate code in

three address code form. This is like an assembly language. The three address code
consists of instructions each of which has at the most three operands. For example,

t; : = int to float (10)
o . = rate = t,
t3: = count + t;

total : = Iy



Principles of Compiler Design 1-6 Introduction to Compiling

There are certain properties which should be possessed by the three address code
and those are,

a. Each three address instruction has at the most one operand in addition to the
assignment. Thus the compiler has to decide the order of the operations
devised by the three address code.

b. The compiler must generate a temporary name to hold the value computed by
each instruction.

¢. Some three address instructions may have fewer than three operands for
example first and last instruction of above given three address code.

5. Code optimization -

The code optimization phase attempts to improve the intermediate code. This is
necessary to have a faster executing code. Thus by optimizing the code the overall
running time of the target program can be improved.

6. Code generation -

In code generation phase the target code gets generated. The intermediate code
instructions are translated into sequence of machine instructions.

MOV rate, R,
MUL # 10.0, Ry
MOV count, R,
ADD R», Ry

- MOV R, total.

Symbol table management

To support these phases of compiler a symbol table is maintained. The task of
symbol table is to store identifiers (variables) used in the program. The symbol table
also stores information about attributes of each identifier. The attributes of identifiers
are usually its type, its scope, information about the storage allocated for it. The
symbol table also stores information about the subroutines used in the program. In
case of subroutine, the symbol table stores the name of the subroutine, number of
arguments passed to it, type of these arguments, the method of passing these
arguments(may be call by value or call by reference) return type if any. Basically
symbol table is a data structure used to store the information about identifiers. The
symbol table allows us to find the record for each identifier quickly and to store or
retrieve data from that record efficiently.

During compilation the lexical analyzer detects the identifier and makes its entry
in the symbol table. However, lexical analyzer can not determine all the attributes of
an identifier and therefore the attributes are entered by remaining phases of compiler.



Principles of Compiler Design 1-7 _Introduction to Compiling

Various phases can use the symbol table in various ways. For example while doing
the semantic analysis and intermediate code generation, we need to know what type
of identifiers are. The during code generation typically information about how much
storage is allocated to identifier is seen.

Error detection and handling

To err is human. As programs are written by human beings therefore they can not
be free from errors. In compilation, each phase detects errors. These errors must be
reported to error handler whose task is to handle the errors so that the compilation
can proceed. Normally, the errors are reported in the form of message. When' the
input characters from the input do not form the token, the lexical analyzer detects it
as error. Large number of errors can be detected in syntax analysis phase. Such errors
are popularly called as syntax errors. During semantic analysis; type mismatch kind of

error is usually detected.

Example of compilation

For statement a = b + ¢ * 60; write all compilation phases with input and output to
each phase.

Fig. 1.6 see on Next Page .
Front end back end

Front end Intermediale Back end
code
input L h:ﬂl_l Semanti Cod Code Qutput
np ex antic e
program || @natyser [~ Parser ™1 analyser 1] optimizer [~ | generator [ | Grogram

e e —

Fig. 1.6{a) Front end-Back end model

Different phases of compiler can be grouped together to form a front end and back
end. The front end consists of those phases that primarily dependant on the source
language and independent on the target language. The front end consists of analysis
part. Typically it includes lexical analysis, syntax analysis, and semantic analysis. Some
amount of code optimization can also be done at front end. The back end consists of
those phases that are totally dependent upon the target language and independent on
the source language. It includes code generation and code optimization. The front end
back end model of the compiler is very much advantageous because of following
reasons - '

1. Keeping the same front end and attaching different back ends one can produce
a compiler for same source language on different machines.



Principles of Compiler Design

1-8

Introduction to Compiling

Input processing in compiler

Output

_________

Symbol table

a=b+c+ 60

|

Lexical analyser |

id--l = Id2+id3 + 60

Syntax analyser

]

/\
/\

/\
l

| Semantic analyser |

/\
/\
7N\

id int to float

60

|

Intermediate code
generator

s : = inttofloat (60)
L i=idg*t,

, 1=idy 4ty

| Code optimizer
11 = id3 ¥ ED.U
id'l L= idz + t1

E_Cndﬂ g'!e'nmt?r"‘]
I
MOVF id,, R,
MULF #60.0, R,
MOVF id,.R,
ADDF R, R,
MOVF Ry, id,

Token stream

Syntax tree

Semantic tree

Intermediate code

Optimized code

Machine code

Fig. 1.6



Principles of Compiler Design 1-9 Introduction to Compiling

2. Keeping different front ends and same back end one can compile several
different languages on the same machine.

1.4 Cousins of the Compiler

Sometimes the output of preprocessor may be given as input to the compiler,
Cousins of compiler means the context in which the compiler typically operates. Such
contexts are basically the programs such as preprocessor, assembiers, loaders and link
editors. Let us discuss them in detail.

1. Preprocessors - The output of preprocessors may be given as the mput to
compilers. The tasks performed by the preprocessors are given as below-

* Preprocessors allow user to use macros in the program. Macro means some
set of instructions which can be used repeatedly in the program. Thus macro
preprocessing task is be done by preprocessors.

* Preprocessor also allows user to include the header files which may be
required bv the program.

For example #include<stdio.h>

By this statement the header file stdioh can be included and user can make
use of the functions defined in this header file. This task ol preprocessor is
called file inclusion.

Skeigion Preprocessor Source Compiler Machine
source program code

program

Fig. 1.7 Role of preprocessor

For a macro there are two kinds of statements macro definition and macro use.
The macro definition is given by keyword like “define” or “macro” followed by the
name of the macro.

For example :
# define P 3.14
2. Assemblers ~ Some compilers produce the assembly code as output which is
given to the assemblers as an input. The assembler is a kind of translator

which takes the assembly program as input and produces the machine code as
oubpuat,



Principle's of Compiler Design 1-10 Introduction to Compiling

Source ) I Assembly Machine
program Compiler I language Assembler e
program

Fig. 1.8 Role of assembler

An assembly code is a mnemonic version of machine code. The tvpical assembly
instructions are as given below -

MOV a, R
MUL #5.R]1
ADD #7,R1
MOV R1Lb

The assembler converts these instructions in the binary language which can be
understood by the machine. Such a binary code is often called as machine code. This
machine code is a relocatable machine code that can be passed directly to the
loader /linker for execution purpose.

The assembler converts the assembly program to low level machine language
using two passes. A pass means one complete scan of the input program. The end of
second pass is the relocatable machine code.

3. Loaders and Link Editors - Loader is a program which performs two functions:
loading and link editing. Loading is a process in which the relocatable machine
code is read and the relocatable addresses are altered. Then that code with
altered instructions and data is placed in the memory at proper location. The
job of link editor is to make a single program from several files of relocatable
machine code. If code in one file refers the location in another file then such a
reference is called external reference. The link editor resolves such external
references also,

1.5 Concept of Pass

One complete scan of the source language is called pass. It includes reading an
input file and writing to an output file. Many phases can be grouped one pass. It is
ditticult to compile the source program into a single pass, because the program may
have some forward references. It is desirable to have relatively few passes, because it
takes time to read and write intermediate file. On the other hand if we group several
phases into one pass we may be forced to keep the entire program in the memory.
Therefore memory requirement may be large.

In the first pass the source program is scanned completely and output will be an
easy to use form which is equivalent to the source program along with the additional



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principies iof Compiler Design 1-13 introduction to Compiling

1.9 Comparison of Compilers and Interpreters

In interpreter the analysis phase is same as compiler i.e. lexical, syntactic and
semantic analysis is also performed in interpreter. In compiler the object code needs to
be generated whereas in interpreter the object code needs not to be generated. During
the process of interpretation the interpreter exists along with the source program.
Binding and type checking is dynamic in case of interpreter.

The interpretation is less efficient than compilation. This is because the source
program has to be interpreted every time it is to be executed and every time it
requires analysis of source program. The interpreter can be made portal as they do not
produce the object code which is not possible in case of compiler. Interpreters save
time in assembling and linking. Self modifying program can be interpreted but can not
be compiled. Design of interpreter is simpler than the compiler. Interpreters give us
improved debugging environment as it can check the errors like out of bound array
indexing at run time. Interpreters are most useful in the environment where dynamic
program modification is required.

1.10 Compiler Construction Tools

Writing a compiler is tedious and time consuming task. There are some specialized
tools for helping in implementation of various phases of compilers. These tools are
called compiler construction tools. These tools are also called as compiler-compiler,

compiler-generators, or translator writing system. Various compiler construction tools
are given as below-

1. Scanner generator - These generators generate lexical analysers. The
specification given to these generators are in the form of regular expressions.

The UNIX has utility for a scanner generator called LEX. The specification
given to the LEX consists of regular expressions for representing various
tokens.

2. Parser generators — These produce the syntax analyzer. The specification given

to these generators is given in the form of context free grammar. Typically
UNIX has a tool called YACC which is a parser generator.

3. Syntax-directed translation engines - In this tool the parse tree is scanned
completely to generate an intermediate code. The translation is done for each
node of the tree.

4. Automatic code generator — These generators take an intermediate code as
input and converts each rule of intermediate language into equivalent machine
language. The template matching technique is used. The intermediate code
statements are replaced templates that represent the corresponding sequence of
machine instructions.



Principles of Compiler Design 1-14 Introduction to Compiling

5. Data flow engines - The data flow analysis is required to perform good code
optimization. The data flow engines are basically useful in code optimization.

In this chapter we have discussed the fundamental concept of compiler. Now we
will discuss every phase of compiler in detail in further chapters.

Review Questions

What 15 compiler?
Explain analysis -synthesis model of compiler?
With a neat block diagram, explain various phases of compiler.

What are the advantages of front-end and back end of compiler ?

Mok W e

Explain Hie concept of compiler-compiler,

aad



5,

Lexical Analysis

2.1 Introduction

The process of compilation starts with the first phase called lexical analysis. In this
phase the input is scanned completely in order to identify the tokens. The token
structure can be recognized with the help of some diagrams. These diagrams are
popularly known as finite automata. And to construct such finite automata regular
expressions are used. These diagrams can be translated into a program for identifying
tokens. In this chapter we will see what the role of lexical analyzer in compilation
process is. We will also discuss the method of identifying tokens from source
program. Finally we will learn a tool, LEX which automates the construction of lexical
analyzer.

2.2 Role of Lexical Analyzer

Lexical analyzer is the first phase -of compiler. The lexical analyzer reads the input
source program from left to right one character at a time and generates the sequence
of tokens. Each token is a single logical cohesive unit such as identifier, keywords,
operators and punctuation marks. Then the parser to determine the syntax of the
source program can use these tokens. The role of lexical analyzer in the process of
compilation is as shown below -

Demands

Rest of
compiler

string

Returns
tokens

Fig. 2.1 Role of lexical analyzer

As the lexical analyzer scans the source program to recognize the tokens it is also
called as scanner. Apart from token identification lexical analyzer also performs
following functions.

(2 -1)



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 2-7 Lexical Analysis

* L*1s a set of strings hfwing all the strings including &.

e L"is a set of strings except &.

2.4.3 Regular Expressions

Regular are mathematical symbolisms which describe the set of strings of specific
language. It provides convenient and useful notation for representing tokens. Here are
some rules that describe define the regular expressions over the input set denoted by
-

—

=

. £ 15 a regular expression that denotes the set containing empty string.

I

If Rl and R2 is_regular expression then R = R1 + R2 (same can also be
represented as R = R1|R2 ) is also regular expression which represents union
operation,

3. 1f R1 and R2 is regular expression the R = R1.R2 is also a regular expression
which represents concatenation operation,

4. If R1 is a regular expression then R = R1* is also a regular expression which
represents kleen closure.

A language denoted by regular expressions is said to be a regular set or a regular
language. Let us see some examples of regular expressions.
mmp Example 2.1 : Write a Regular Expression (R.E.} for a language containing the
strings of length tive over 2 = (0, 11,
Solution : R.E. = (0+1) (0+1)

mmp Example 2.2 :  Write a reqular expression for a language containing stings which
end with “abb” over ? = [, b]

Solution : R.E. = (a+b)*abb
ey Example 2.3 : Write a reqular expression for a recoginzing wdentifier. |

Solution : For denoting identifier we will consider a set of letters and digits because

identifier is a combination of letters or letter and digits but having first character as
letter always. Hence R.E. can be denoted as,

R.E = letter (letter+digit)*
Where letter = (A, B,...Z, a, b,...z} and digit = (0,1,2,...9).

2.4.4 Notations used for Representing Regular Expressions

Regular expressions are tiny units, which are useful for representing the set of
strings belonging to some specific language. Let us see notations used for writing the
regular expressions.



Principles of Compiler Design = 2-8 Lexical Analysis

1. One or more instances - To represent one or more instances + sign is used. If r
is a regular expression then r ¥ denotes one or more occurrences of r. For
example set of strings in which there are one or more occurrences of ‘a” over
the input set {a} then the regular expression can be written as a™. It basically
denotes the set of |a,aa.aaa,aaaa,...).

2. Zero or more instances — To represent zero or more instances * sign is used. If
r is a regular expression then r* denotes zero or more occurrences of r. For
example, set of strings in which there are zero or more occurrences of ‘a” over
the input set {a] then the regular expression can be written as a*. It basically
denotes the set of g, a, aa, aaa,...}.

o

Character classes — A class of symbols can be denoted by [ ]. For example [012]
means 0 or 1 or 2. Similarly a complete class of a small letters from a to z can
be represented by a regular expression [a-z]. The hyphen indicates the range.
We can also write a regular expression for representing any word of small
letters as [a-z]*.

2.4.5 Non Reqular Language

A language which can not be described by a regular expression is called a non
regular language and the set denoted by such language is called non regular set.

There are some languages which can not be described by regular expressions. For
example we cannot write a regular expression to check whether the given language is
palindrome or not. Similarly we cannot write a regular expression to check whether
the string is having balanced parenthesis.

Thus regular expressions can be used to denote only fixed number of repetitions.
Unspecific information cannot be represented by regular expression.

2.5 Recognition of Tokens

For a programming language there are various types of tokens such as identifier,
keywords, constants, and operators and so on. The token is usually represented by a
pair token type and token value.

Token type Token value

Fig. 2.7 Token representation
The token type tells us the category of token and token value gives us the
information regarding token. The token value is also called token attribute. During
lexical analysis process the symbol table is maintained. The token value can be a
pointer to symbol table in case of identifier and constants. The lexical analyzer reads
the input program and generates a symbol table for tokens.



Principles of Compiler Design 2-9 Lexical Analysis

For example -
We will consider some encoding of tokens as follows.

Token Code Value
if 1 -
else 2 -
while 3 -
for 4 -~
igentifier 5 Ptr to symboal table
constant 6 Ptr to symbaol table
< 7 1
<= 7 2
> 7 3
>= 7 4
1= 7 5
( 8 1
) 8 2
+ 9 1
— g 2
= 10 !

Consider, a program code as
1if(a<l0)
1=3+2;
else
i=1=2;
Our lexical analyzer will generate following token stream.

1,(8.1), (5,100), (7,1), (6,105), (8,2), (5,107), 10, (5,107), (9,1), (6,110), 2,(5,107), 10,
(5,107}, (9,2), (6,110).

The corresponding symbol table for identifiers and constants will be,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 2-18 : Lexical Analysis

1

printf ("Usage:"s radius\n", argv[0]);
exitil);
-2
double radius = atof(argv[l]);
double area = area of circle(radius):
printf{"Area of circle with radius %f = %f\n",radius,area);
return 0://Returning 0O

The program Area.C can be taken as input test program. This program can be
scanned by generated lex.yy.C (We have now generated lex.yy.C using LEX tool).
Hence the output obtained using following commands.
irunt@localhost]# lex lexprog.l

[rvot@.ocalhost]# cc lex.yy.c
lroot@localhost]# ./a.0Out Area.c

2.8 LEX Specification and Features

To generate the lexical analyzer the automation tool like LEX is the efficient way.
The specification file for LEX is based on the pattern-action structure as shown below :

R; jaction,}
K- faction,!

Ry, {factiong,}

Where each R; is a regular expression and each action ; is a program fragment
describing what action is to be taken for corresponding regular expression. Each action
is a piece of program code that is to be executed whenever lexeme is matched by R; .

Regular expression Meaning

A Matches with zero or more occurrences of preceeding
expression.
For example 1* occurrence of 1 for any number of times.

Malches any single character other than new line character.

[ ] A character class which matches any character within the
bracket.

For example [a-z] maches with any alphabet in lower case.

() Group of regular expressions together put into a new regular
expression.
s The string written in quotes maitches literally. For example

"Hanumaan" matches with the string Hanumaan.

3 Matches with the end of line as last character.




Principles of Compiler Design 2-19 Lexical Analysis

+ Matches with one or more occurrences of preceeding
expression.

For example [(-9]+ any number bul not empty string.

? Malches zero or one occurrence of preceding regular expression.
For example [+-]7[0-9}+ a number with unary operator.

i Matches the beginning of a line as first character.

[ Used as for negation. For example {“verb] means except verb
match with anything else.

\ Used as escape metacharacter,
For example \n is a newline character.
\# prints the # literally

| To represent the or i.e. another alternative.
For example a | b means match with either a or b,

We have to construct recognizer that looks for the lexemes stored in the input
bufter. It works using these two rules -

1. It more than one pattern matches then recngnixer has to choose the lnngest
lexeme matched.

2. If there are two or more patterns that match the longest lexeme, the first listed
matching pattern is chosen.

Lexical analysis is essentially a process of recognizing different tokens from the
source program. This process of recognition can be accomplished by building a
classical model called Finite State Machine (FSM) or a Finite Automaton (FA). The
characteristics ot token can be represented by certain mathematical notation called
“regular expressions”. We have already discussed how to describe the strings
belonging to certain language using regular expressions. We will see shortly that the
finite state machines can be built for the regular expressions describing certain
languages. The design of lexical analyzer involves three tasks-

(i}  Representation of tokens by regular expression.

(ii} Representation of regular expressions by finite state machines.

(1) Simulation of the behavior of finite state machine.

These three steps lead to the design of lexical analyzer. The LEX compiler
constructs a transition table for a finite state machine from regular expression patterns
in the LEX specification. The lexical analyzer itself consists of finite automaton
simulator that uses the transition table. This transition table basically looks for the

regular expression patterns from the input string stored in the input buffer. The finite
automata can be deterministic or non-deterministic in nature.

A deterministic automaton is said to be deterministic if for each state S for every
mput a € X at the most one edge is labeled a.



Principles of Compiler Design 2-20 ! Lexical Analysis

For example :

Fig. 2.18 DFA

A non deterministic finite automaton (NFA) is a set of states including start state
and few or more final state and for a single input there can be multiple transitions.

For example:

Start

Fig. 2.19 NFA

To design the lexical analyzer generator first design the patterns of regular
expressions for the tokens and then from these patterns it is easy to design a
non-deterministic finite automata. But it is always easy to simulate the behavior of a
DFA with a program; hence we have to convert the NFA drawn from the patterns to

DFA.
The design of lexical analyzer generator is based on two approaches —
« [Pattern matching using NFA.
* Using DFA for lexical analyzer.

Let us discuss these approaches one by one.

2.8.1 Pattern Matching based on NFA’s

In this method the transition table for each NFA can be drawn and each NFA is
designed based on the pattern mentioned in the specification file of LEX. Hence there
can be n number of NFA’s for n number of patterns. A start state is taken and with ¢
transitions all these NFAs can be connected together as shown below :



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 2-22 Lexical Analysis

Fig. 2.21 (a)

Fig. 2. 21 (b)

0 1
a
ama U o O O

Fig. 2.21 (c)

Pattern 1 ;

Pattern 2 :

Pattern 3 :

The NFA can be drawn as a combination of pattern 1, pattern 2 and pattern 3
transition diagrams.

Fig. 2.21 (d) NFA with patterns for matching of input string

To summarize this one can say that LEX tries to match the input string with help
of patterns one by one and it tries to match the longest lexeme.



Principles of Compiler Design 2-23 Lexical Analysis

2.8.2 DFA for Lexical Analyzers

In this method the DFA is constructed from the NFAs drawn from patterns of
regular expressions. Then we try to match the input string with each of the DFA. The
accepting states are recorded and we go on moving on the transitions until the input
string terminates. If there are two patterns matching with the input string then the
pattern which is mentioned first in the LEX specification file is always considered. For
example consider the LEX specification file consists of

U L

011 [

01" | |

Now we have already built a NFA in earlier discussion for the above pattern. Let
us design the DFA from NFA.

State Input Pattern matched
0 1
0137 | 248 - =
248 8 59 0
8 8 9 -
56 | - | 69 0%1"
9 | - 9 0"1"
69 ~ 9 011

For constructing DFA from the given NFA we begin with all the ¢ reachable states
from state (. These £ reachable states are grouped together to form a state 0137. Then
we obtain the a and b transition for state 0137 then we obtain state 248 and NIL
respectively. Thus we proceed with newly generated states. And the complete DFA
can be designed.

To match the string 011 we get two matched pattern and those are 011 and 0717,

But the pattern 011 will be considered as the matched pattern because it appears
before 0%17 in the translation rules of the specification file.

As we have seen in the input buffer is used to store the input string. To recognize
the lexeme actually two pointers are used: beginning pointer and forward pointer. The
forward pointer moves in search of end of the current string (that can be white spaces
or tabs or newline characters or some delimiters). This forward pointer when reaches
to such termination mark it retracts and return the string between beginming pointer
and forward pointer as token value. Thus the forward pointer is very much useful for



Principles of Compiler Design 2-24 Lexical Analysis

identifying the token. This pointer is also called as lookahead pointer. In the lexical
analysis the lookahead operators are used in order to search the token from the input

Strings.

Review Questions
1. What are the tasks of lexical analyzer?

(S

Write a short note on : input buffering.

Wiat is Hhe role of requdar expressions in lexical analyzer.

| SR

Gitwe Hhe Block schematic q,*' lexical analyzer?

o

Explain, how lexical analyzer is generated using LEX,

6. Write a LEX program to count number of characters, number of words and total number of lines
from mput text.

7. Write a LEX progrimm to reverse e given input string.

QA



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 3-4 Syntax Analysis

3.1.4 Types of Grammar
The context free grammar G is a collection of following things

1. Vis a set of non terminals

2. 1 is a set of terminals

3.5 is a start symbol

4. " is a set of production rules,

Thus G can be represented as G=(V,T,5.P)

The production rules are given in following form-

Non Terminal — (V U T)*

nmp Example 3.1 @ Lef the language L = a"'b" where n = 1

Lot G=({V,T.5F )
Where V=S,
= |ab)

Anmd S is a start symbol then

, S Bt )
—% Al

The production rules actually defines the language a"b"

The non terminal symbol occurs at the left hand side . These are the symbols
which need to be expanded.The terminal symbols are nothing but the tokens used in
the language. Thus any language construct can be defined by the context free
grammar. For example if we want to define the declarative sentence using context free
grammar then it could be as follows-

State — Type List Terminator
Type — int | float
List — List,id
List — id
Terminator — ;

Using above rules we can derive,



Principles of Compiler Design 3-5 Syntax Analysis

State
Type List Terminator
int List ' g .

Fig. 3.4 Parse tree for derivation of int id, id, id;

Hence int id, id, id; can be defined by means of above Context Free Grammar.
Following rules to be followed while writing a CFG-
1} A single Non terminal should be at LHS.

2) The rule should be always in the form of LH5 — RHS where RHS may be the
combination of non terminal and terminal symbols.

3) The NULL derivation can be specified as NT — ¢,

4) One of the non terminals should be start symbol and conventionally we should
write the rules for this non terminal.

3.2 Concept of Derivation

Derivation from S means generation of string w from S. For constructing
derivation two things are important.

1) Choice of Non terminal from several others.
1) Choice of rule from production rules for corresponding non terminai.
Instead of choosing the arbitrary Non terminal one can choose either

1V Either lettmost Non termmal o inoa osentential fonm then b i caliesd 1efbhrost

uverivahion.

1) Or rightmost Non terminal in a sentential form. "hen it is called rightmaost
derivation.

For example:

Let G be a context free grammar for which the production rules are given as
below-



Principles of Compiler Design || ~ 3-6 Syntax Analysis

S — aB | bA
A — a|aS|bAA
B - b|bS|aBB
We have to derive the string aaabbabbba using above grammat.

Leftmost Derivation
cl B

L
4

aaBB
aaabBBB
aaabSBB
aaabbABB
aaabbaBB
aaabbabB
aaabhaEbS
aaabbabbbA
aaabbabbba

Rightmost Derivation
S5 - aB

aaBB

aaBbSs
aaBbbA
aaBbba
aaaBBba
aaaBbbba
aaabSbbba
aaabbAbbba
aaabbabbba

The Parse Tree for the above derivations is as given below



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 3-14 Syntax Analysis

We can eliminate left recursion as

[ = FT
T -+ FT' | ¢
The grammar for arithmatic expression can be equivalently written as -
E—-E+T|T E - TE
E' -+ TE | &
T = FT
T—-T=F|F = T —-=FT |&
F - CE = F-o(E)|id

3) Left factoring

[f the grammar is left factored then it becomes suitable for the use. Basically left
factoring is used when it is not clear that which of the two alternatives is used to
expand the non terminal. By left factoring we may be able to re-write the production
in which the decision can be deferred until enough of the input is seen to make the

right choice.
In general it
A = aplups
is a production then it is not possible for us to take a decision whether to choose
first rule or second. In such a situation the above grammar can be left factored as

A —saA
A = Bilp:

For example consider the following grammar -
S —» iEtS | iEtSe5 | a
E— b

The left factored grammar becomes
S — iEtS5'|a
S' = eS|e
E-— b

4) Ambiguity

The ambiguous grammar is not desirable in top down parsing. Hence we need to
remove the ambiguity from the grammar if it is present.

For example :
E—-E+ | ExE |id



Principles ¢f Compiler Design 3-15 Syntax Analysis

is an ambiguous grammar. We will design the parse tree for id+id#id as follows

(a) Parse tree 1 (b) Parse tree 2

Fig. 3.12 Ambiguous grammer

For removing the ambiguity we will apply one rule :if the grammar has left
associative operator( such as +, -* /) then induce the left recursion and if the
graommar has right associative operator (exponential operator) then induce the right
recursion.

The unambiguous grammar is
E — E+T

E->T

T —» T*F

T—F

F—id

Note one thing that the grammar is unambiguous but it is left recursive and
elimination of such left recursion is again a must.

Top down parsers

Backtracking Predictive parsers |

Recursive

‘ LL{1) Parser ‘
descent _

Fig. 3.13 Types Top-down parsers



Principles of Compiler Design 3-16 : Synﬁﬁ Analysis

There are two types by which the top down parsing can be performed |
1. Backtracking

2. Predictive Parsing

A backtracking parser will try different production rules to find the match for the
input string by back tracking each time. The backtracking is powerful than predictive
parsing. But this technique is slower and it requires exponential time in general.
Hence Backtracking is not preferred for practical compilers.

As the name suggests the predictive parser tries to predict the next construction
using one or more lookahead symbols from input string. There are two types of
Predictive parsers :

. Recursive Descent
2. LL{1) Parser.

Let us discuss these types along with some example

3.5.2 Recursive Descent Parser

A parser that uses collection of recursive procedures for parsing the given input
string is called Recursive Descent (RD) Parser. In this type of parser the CFG is used
to build the recursive routines. The RHS of the production rule is directly converted to
a program. For each non terminal a separate procedure is written and body of the

procedure (code) is RHS of the corresponding non terminal.

Basic Steps for construction of RD parser
The RHS of the rule is directly converted into program code symbol by symbol.

1. If the input symbol is non terminal then a call to the procedure corresponding
to the non terminal is made.

2. If the input symbol is terminal then it is matched with the lookahead from
input. The lookahead pointer has to be advanced on matching of the input
symbol.

3. If the production rule has many alternates then all these alternates has to be
combined into a single body of procedure.

4. The Parser should be activated by a procedure corresponding to the start
symbol.

Let us take one example to understand the construction of RD parser.Consider the
grammar having start symbol E,

E =-»numT

T =>*numT | ¢



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 3- 26 Syntax Analysis

FIRST(FT")=FIRST(F)={(,id|
Hence M[F,(]= T—FT’
And M[F,id]= T—FT’

T = *FT’

A —=u
A=T.a ="FI"
FIRST(*FT')=]*

Hence M[T,*] = T — *FT"

T'—e

A—-a

A=T", a =&
FOLLOW(T" )={+,).%]
Hence M[T',+] = T'— e
MI[T' )] = T'—e
MIT 8] = T'—e

F —(E)

Ao

A=F, a=(E)
FIRST((E)={ ( |
Hence M[F,(]= F=(E)

F - id

A—=a

A=Faoa=id

FIRST(id)=| id |

Hence M[F,id]= F — id

The complete table can be as shown below -



Principles of Compiler Design 3- 27 Syntax Analysis
id » ¥ ( ) $
E |E—-TE Error Ermor |E —»TE | Ermor Error
_E‘ E —++TE'| Emor Error E'—g E'—-c
T E = FT Error Error T— FT Error Error
T Error T—e |T->"FT Error T—e T
F F —»id Error Error F -»(E) { Error Error

Now the input string id + id * id $ can be parsed using above table. At the initial
configuration the stack will contain start symbol E, in the input buffer input string is

placed

Stack

Input

Action

$E

id +id *id $

Now symbol E is at top of the stack and input pointer is at first id ,hence M{E,id]

is referred. This entry tells us E — TE', so we will push E’ first then T.

Stack Input Action
$E'T id+id"id 3 E - TE
SETF id +id “id $ E - FT
SE'T'id id+id *id § F - id
SE'T +id " id §

SE' +id*id $ T >
SE'T+ +id"id § E' — +TE'
SE'T id " id %

SE'TF id"id$ | T-»FT
SE'T'id id*id $ F—id
SET "id s

SETF* *"d$ | TFT
SETF id 3

SET'id id § F —id

SET 3

$E | T

$ $| B =




Brinciples: afG@mpiler Design 3-28 Syntax Analysis

Thus it is observed that the input is scanned from left to right and we always
follow left most derivation while parsing the input string. Also at a time only one
input symbol is referred to taking the parsing action. Hence the name of this parser is
LL(1).The LL(1) Parser is a table driven predictive parser. The left recursion and
ambiguous grammar is not allowed for LL(1) parser.

3.6 Bottom Up Parser —

In bottom up parsing method, the input string is taken first and we try to reduce
this string with the help of grammar and try to obtain the start symbol. The process of
parsing halts successfully as soon as we reach to start symbol.

The parse tree is constructed from bottom to up that is from leaves to root. In this
process, the input symbols are placed at the leaf nodes after successful parsing.The
bottom up parse trec is created starting from leaves, the leaf nodes together are
reduced turther to internal nodes, these internal nodes are further reduced and
eventually a root node is obtained. The internal nodes are created from the list of
Terminal and non terminal symbols. This involves -

Non Terminal for internal node = Non terminal |J terminal

In this process, basically parser is tries to identify RHS of production rule and
replace it by corresponding LHS. This activity is called reduction. Thus the crucial but
prime task in bottom up parsing is to find the productions that can be used for
reduction. The bottom up parse tree construction process indicates that the tracing of
derivations are to be done in reverse order,

For example

Consider the grammar for declarative statement ,

S - TL;
T — int | float
L— Lid | id

The input string is float id,id,id;
Step 1 : We will start from leaf node

Parse Tree

Step 1:



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 3- 31 Syntax Analysis

“Handle of right sentential form y is a production A =} and a position of y where
the string p may be found and replaced by A to produce the previous right sentential
form in rightmost derivation of y"

For example

Consider the grammar
E — E+E
E —id
Now consider the string id+id+id and the rightmost derivation is

= E+ E

rim

E
E =E+ E+E
k
E

I

= E + E+ id

i

— E+ id + id

rim

E = id +id + id

]

The underlined strings are called handles.

Right sentential Form Handie Production
id + id + id | ia E - id
E+id~+id id E — id
E+E+id Id E —id
E+E+E E+FE E-E+E
E+E E+E E—-E+E
E

Thus bottom parser is essentially a process of detecting handles and using them in
reduction.

3.6.1 Shift Reduce Parser —

Shift reduce parser attempts to construct parse tree from leaves to root. Thus it
works on the same principal of bottom up parser. A shift reduce parser requires
following data structures -

1. The input buffer storing the input string.
2. A stack for storing and accessing the LHS and RHS of rules.

The initial configuration of Shift reduce parser is as shown below



Principles of Compiler Design

3- 32

Syntax Analysis

Slack

Input buffer

The

$5

w

Fig. 3.17 Initial Configuraiton

1. Shift :

2. Reduce :

3. Accept :

4, Error

Moving of the symbols from input buffer onto the stack, this action is

called shift.

If the handle appears on the top of the stack then reduction of it by
appropriate rule is done. That means RHS of rule is popped of and LHS is

parser performs
basic operations

pushed in. This action is called Reduce action.

If the stack contains start symbol only and input buffer is empty at the
same time then that action is called accept. When accept state is obtained
in the process of parsing then it means a successful parsing is done.

A situation in which parser can not either shift or reduce the symbols, it

can not even perform the accept action is called as error.

Let us take some examples to learn the shift-reduce parser

mmp Example 3.3 :

E - E-E
E - E'E
E —id

Perform Shift-Reduce parsing of the input string “id1-id2*id3"

Solution :

Consider the grammar

Stack Input Buffer Parsing Action
3 id1-id2*id3% Shift
Sid1 -id2*id3% Reduce by E— id
$E -id2%id3% Shift
$E- id2%id3% Shift
$E-id2 “id3% Reduce by E-» id
$E-E “id3% Shift
SE-E* id3% Shift
SE-E*id3 $ Reduce by E-» id
$E-E'E $ Reduce by E— E"E
$E-E $ Reduce by E— E-E
SE b Accept

following




Principles of Compiler Design 3-33 Syntax Analysis

Here we have followed two rules

1. If the incoming operator has more priority than in stack operator then perform
shitt.

2. If in stack operator has same or less priority than the priority of incoming
operator then perform reduce.

mmp Example 3.4 :  Consider the following grammar —

5= JU

T — int | float

L—Lid | id

Parse the input string int id,id; using shift reduce parser.

Solution :
Stack Input Buffer Parsing Action

] int id id;$ Shift
Sint id.id;3 Reduce by T-» int
§T id,id;$ Shift
£Tid id;$ Reduce by L— id
$TL id;$ Shift
$TL, id.$ Shift
$TL.id ¢ Reduce by L —» L, id
STL S Shift
$TL; B Reduce by S—» TL;
£S5 $ Accept

3.6.2 Operator Precedence Parser -

A grammar G is said to be operator precedence if it posses following properties -
1. No production on the right side is &

2. There should not be any production rule possessing two adjacent non terminais
at the right hand side.

Consider the grammar for arithmetic expressions
E—- EAE | (E) | -E | id
Ao+ | - /A



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design - 3-39 Syntax Analysis

goto operation —
The function goto can be defines as follows -

It there is a production A -« »Bj then goto(A —»a *BBB) = A »aBep .That
means simply shifting of e one position ahead over the grammar symbol(may be
terminal or non terminal). The rule A -« «Bf is in | then the same goto function can
be written as goto(l,B).

Jomp Example 3.5 1 Consider the grammar

X — Xbla

Compute closure(l) and goto(l).
Solution: Let |

|: X —>eXb

Closure(l) = X« Xb

= X—> 83
The goto function can be computed as

goto(LX) = X — Xeb

X - Xeb
Similarly goto (I, a) gives X — ae
Construction of canonical collection of set of item -
l. For the grammar G initially add 5 — 5 in the set of item C.

2. For each set of items I, in C and for each grammar symbol X(may be terminal
or non terminal) add closure(l;, X).This process should be repeated by applying
goto(l;,X) for each X in I; such that goto(l,,X) is not empty and not in C_The set
of items has to constructed until no more set of items can be added to C.

Now we will consider one grammar and construct the set of items by applying
closure and goto functions.

Example :
E — E+T

E—-T
T - T*F
T—F
F—(E)

F - id



Principles of Compiler Design 3- 40 Syntax Analysis

In this grammar we will add the augmented grammar E' 5« E in the | then we
have to apply closure(l)

I :
E" > E
E > e E+T
E—eT
T —eT*F
T —>eF

F — e (E)
F —eid

The item Ip is constructed starting from the grammar E'-» e E. Now iinmediately
right to e is E. Hence we have applied closure(ly) and thereby we add E-productions
with » at the left end of the rule.That means we have added E— e E+T and E— T in
Iy .But again as we can see that the rule E—+ T which we have added, contains non
terminal T immediately right to « So we have to add T-productions in Iy T— «T*F and
T—eF.

In T-productions after » comes T and F respectively. But since we have already
added T productions so we will not add those. But we will add all the F-productions
having dots. The F— e (E) and F— e id will be added. Now we can see that after dot
(and id are coming in these two productions. The ( and id are terminal symbols and
are not deriving any rule. Hence our closure function terminates over here. Since there
is no rule further we will stop creating I

Now apply goto(ly,E)

E'aseE Shift dot lo E'sE=«
EseE+T right E-» Ee+T

Thus [} becomes

goto(lp, E)
Iyt E'> E »
E—>E«*«+T

Since in I; there is no non terminal after dot we can not apply closure(l;)

By applying goto on T of I



Principles of Compiler Design 3- 41 Syntax A;nalysis

goto(ly T)
[ E 2T
T—=Te*F

Since in I, there is no non terminal after dot we can not apply closure(l;)

By applying goto on F of I

goto(ly T)
13: T Fe

Since after dot in I3 there is noting hence we can not apply closure(l3).

By applying goto on ( of Iy But after dot E comes hence we will apply closure on
E,then on T,then on F.

goto(lp.( )
[4:T— (= E}
E —» e E+T
E—eT
T -« T*F
T—eF
F— « (E)
F—eid

By applying goto on id of Iy

goto(ly,id)
Is: F = id e

Since in I5 there is no non terminal to the right of dot we can not apply closure
function here. Thus we have completed applying gotos on I;. We will consider 1; for
applying goto. In 1, there are two productions E'= Ee and E — E e + T.There is no
point applying goto on E'— E s, hence we will consider E'—> E e +T for application of
goto.



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 3-45 Syntax Analysis
We can design a DFA for above set of items as follows -
E + T To
by Iy lg Ig state
I7
_F... To
3
( Toly
. state
i To g
= state
—( (D))
7
( To state
id To state
Is
F @
=
{
{ E )
s g 44
1 To state
L ———— IE
1 To slate
]
F o To state
id I3

Fig. 3.22 DFA for set of items



Principles of Compiler Design % 3-46 Syntax Analysis

In the given DFA every state is final state. The state I, is initial state. Note that the
DFA recognizes viable prefixes.

For example - For the item

1, - goto (i.E) I

E~E-

E-+ Es+T

lg - goto (13,+) = .

EVvE+eT . E . + . T .
Ig : goto (15, T)

E>E+Te

The viable prefixes E, E+ and E+T are recognized here continuing in this fashion
The DFA can be constructed for set of items. Thus DFA helps in recognizing valid
viable prefixes that can appear on the top of the stack.

Now we will also prepare a FOLLOW set for all the non terminal as we need
FOLLOW according to rule 2.b of parsing table algorithm.

[Note for readers: Below is a manual method of obtaining FOLLOW. We have
already discussed the method of obtaining FOLLOW by using rules.This manual
method can be used for getting FOLLOW quickly]

- FOLLOW(E'} =As E’ is a start symbol $ will be placed
=|$|

FOLLOW(E) :

E'—> E that means E'=E =start symbol. . we will add 5.
E — E+T the + is following E .. we will add +.

F - (E) the)is following E .we will add )

- FOLLOW(E) = [+,).5]

FOLLOW(T) :

As E' 5 E, E - T the E'=E=T=start symbol. ..we will add 5.
E = E+T

E-T+T “E->T

The + is following T hence we will add +.



Principles of Compiler Design 3- 47 Syntax Analysis

T— T *F

As * is following T we will add *
F — (E)

F— (T) vE—=T

As ) is following T we will add )

- FOLLOW(T) ={+%).%]

FOLLOW(F) :

As E'—> E, E-» T and T — F the E'=E=T=F=start symbol. We will add $.
E —» E+T

E - T+T vE-T

E - F+T Wik F

The + is following F hence we will add +.
T->T?*

T - F*T T—F

As * is following F we will add *

F—» (E)

F — (T) E—->T

F — (F) T—>F

As ) is following F we will add )
FOLLOW(F) =(+,%,).%}

Building of parsing table
Now From canonical collection of set of items Consider I




You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principtes of Compiler Design

3-49

Syntax Analysis

FOLLOW(E)={+,).9])

Hence add rulé E — T in the row of state 2 and in the column of +,) and $. In the
given example of grammar E — T is rule number 2.

action|2,))=r2,action[2,$]=r2.

Similarly, Now in state I3

T+ Fe
A—=ae
A=T,a=F

FGLLDW{ F}= l + .r*r }:ﬁ}

rule 2b

. action[2,+4] = 12,

Hence add rule T— F in the row of state 3 and in the column of +,*,) and $. In the
given example of grammar T —F is rule number 4.Therefore action[3,+]=r4,
action][3,)]=r4, action|3,$]=r4.Thus we can find the match for the rule A— o » from
remaining states I to I;; and fill up the action table by respective “reduce” rule. The
table with all the action| | entries will be

State action goto
id + " ( } $ T F

0 S5 54

1 S6 Accept

2 r2 S7 r2 r2

3 r4 rd r4 rd

4 S5 S4

5 G ré r6 r6

B 55 S4

7 S5 54

8 S6 S11

9 r1 S7 r1 r1

10 r3 r3 r3

11 rs S rS




Principles of Compiler Design 3-50 Syntax Analysis

Now we will till up the goto table for all the non terminals. In state Iy
goto(ly E)=1; Hence gotol[0,E]=1,similarly goto(l; T)=I; Hence gotol0,T]=2.Continuing
in this fashion we can fill up the goto entries of SLR parsing table.

Finally the SLR(1) parsing table will look as -

State action goto

id | + . { ) % E T F
0 S5 S4 1 2 3
1 S6 Accept
2 re S7 r2 re
3 r4 rd r4 r4
4 | 85 S4 8 2 3
5 ri G G o
6 S5 54 g 3
7 S5 sS4 10
8 S6 S11
9 r1 ST ri ri
10 r3 r3 r3 r3
1 | rs r5 rs s

Remaining blank entries in the table are considered as syntactical errors.

Parsing the Input using parsing table -
Now it's the time to parse the actual string using above parsing table. Consider
the parsing algorithm

Input: The input string w that is to be parsed and parsing table.

Output: Parse w if w & L{G) using bottom up. If w ¢ L{G) then report syntactical
error.

Algorithm:
1. Initially push 0 as initial state onto the stack and place the input string with $
as end marker on the input tape.

2. If s is the state on the top of the stack and a is the symbol from input buffer
pointed by a lookahead pointer then

a) If action[s,aj=shift j then push athen push j onto the stack.Advance the input
lookahead pointer.



Principles of Compiler Design 3 - 51 Syntax Analysis

b) If actionfs,aj=reduce A—p then pop 2*{B| symbols.If i is on the top of the
stack then push A,then push gotol[i,A] on the top of the stack.

c) If action|s,a]=accept then halt the parsing process. It indicates the successful
parsing.

Let us take one valid string for the grammar

(1) E - E+T

(2YE—->T

(3) T - T*F

4 T—>F

(5) F = (E)

(6) F — id

Input string : id*id+id

We will consider two data structures while taking the parsing actions and those
are — stack and input buffer

Stack input buffer action table | goto table Parsing action
50 id*id+id'$ [0,id]=s5 Shift
$0id5 *id+id$ [ 5,%}=r6 [0.F1=3 Reduce by F —» id
$OF3 *id+id$ [ 3,*)=r4 [0,T)=2 Reduce by T —» F
$0T2 *id+id$ [ 2,']=s7 Shift
$0T2'7 id+id$ [ 7.id)=s5 Shift
$0T2*7id5 +id$ [ 5.+]=r6 [7.F]=10 Reduce by F —» id
30 T2'7F10 +id$ [ 10,+]=r3 [0,T]=2 Reduce by T — T°F
$0T2 ~ +id§ | 2.+]=r2 [0,E}=1 Reduce by E —» T
SOE1 +id$ [ 1.+]=s6 Shift
$0E1+6 id$ [ 6,id]=s5 Shift
S0E1+6id5 5 [ 5,8)=r6 [6,F]=3 Reduce by F — id
$O0E1+6F3 3 [ 3,%)=rd [6,T}=2 Reduce by T —» F

_$ﬂE1+ET§ $ [ 9.%)=r1 [0,E]=1 E — E+T

S0E1 $ accept Accept

In the above table at first row we get action[0,id]=s5,that means shift id from input
uffer onto the stack and then push the state number 5. On the second row we get
action|5,*] as r6 that means reduce by rule 6,F— id, hence in the stack id is replaced
oy F. By referring goto[0,F] we get state number 3 hence 3 is pushed onto the stack.



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design 3-56 Syntax Analysis

Ig:zoto(l5,C)
C > aCe a/d

For I and I5 there is no point in applying gotos. Applying gotos on a and d of Ig
gives I, and I; respectively. Hence we will apply goto on [ for C for the rule.

Coae, %

Itjlgﬂtﬂ“ﬁ,(:}
C—aCe, §

For the remaining states lI7,lg and Iy we can not apply goto.Hence the process of
construction of set of LR(1) items is completed.Thus the set of LR(1) items consists of

Iy to lg states,

Construction of canonical LR parsing Table -

To construct the Canonical LR Parsing table first of all we will see the actual
algorithm and then we will learn how to apply that algorithm on some example. The
parsing table is similar to SLR parsing table comprised of action and goto parts.

Input : n Augmented grammar G'.

OQutput :  The canonical LR parsing table.

Algorithm:
1. Intially construct set of items C={lp,Iy,I5...1,} where C is a collection of set of
LR(1) items for the input grammar G'.

2. The parsing actions are based on each item [; The actions are as given below-

a) If [ A ->a eaf, b] isin I and goto(]; a)= I; then create an entry in the action
table action[l,a]=shift .

b) If there is a production [A— o , a] in I; then in the action table
action[]; a] = reduce by A — «. Here A should not be S".
¢) If there is a production §' — Se, § in [; then action[i,$] = accept.

3. The goto part of the LR table can be filled as :The goto transitions for state i is
considered for non terminals only. If goto(I;,A)=l; then goto[I;,A]=j.

4. All the entries not defined by rule 2 and 3 are considered to be “error”,

mmp Example 3.8 :  Construct the LR(1) parsing table for the following grammar -



Principles of Compiler Design

- Syntax Analysis

(1) 5 =CC
(2) C — aC
(3) C—od

Solution: First we will construct the set of LR(1) 1tems -

Iy

S'-»e838
S-+eCCS
C--» e aC, ald
C-—ed, ald

I-I'. gﬂtﬂ "u.s}
S+ 5%

I-: goto (1,,C)

S+CeC5%
C—+eaC$
CoedB

I4: goto (15.a)
C—aeC, ad
C—e«aC, ald
C—ed, aid

I4: goto (iy,d)
C—»de, ald

ls: goto (1,.C)
S—>CCe 3

lg:goto (15,a)
C'-» ae C.5
C-—»+aC3
C—ed$

l7:goto (1..d)
Code §

lg-goto (15,C)
C— aCs, a/d

lg:goto (15.C)
C— aCe, 5

The DFA tor the set of items can be drawn as follows.

See Fig. 3.23 on next page

Now consider I in which there is a rule matching with [A -« ea,b] as

C— e aC, a/d and if the goto is applied on a then we get the state I3 Hence we

will create entry action|[0,a]=shift 3. Similarly,

]Tllu
C—oed a/d
A—a eafl b

A=C, a =g, a=d, p=¢, b=a/d

f.,"l.".ltﬂ“l]:d }=14

hence action]0,d]=shift 4

For state 1,



Principles of Compiler Design 3-58 Syntax Analysis

Fig. 3.23 DFA [goto graph]
C— dea/d

A—=ae.,a

A=C,a = d, a=a/d

action[4,a] = reduce by C— d ie. rule 3

S'— Se, $in [

So we will create action[1,$]=accept.

The goto table can be filled by using the goto functions.



Principles of Compiler Design 3.59 Eilax Analysis

For instance goto(ly,S)=I;.Hence goto[0,5]=1. Continuing in this fashion we can fill
up the LR(1) parsing table as follows -

action . goto

a d $ S c
0 S3 S4 1 2
1 Accepl
2 56 S7 S
3 S3 54 8
4 r3 r3
& r
6 S6 57 9
7 r3
8 r2 ré
9 re

The remaining blank entries in the table are considered as syntactical error.

Parsing the Input using LR(1) parsing table -
Using above parsing table we can parse the input string”aadd” as

Stack Input buffer action table goto table Parsing action
$0 aadd$ action| 0,a ]=s3
$0a3 add$ action[3,a]=53 Shift
$0a3a3 dd$ action[3,d]=s4 Shift
$0a3a3d4 | d$ actionf4,d]=r3 [3.C)=8 Reduce by C-» d
$0a3a3C8 | d$ action{B,dj=r2 [3,C]=8 Reduce by C— aC
$0a3C8 d$ action[8,d])=r2 [0,C)=2 Reduce by C-» aC
$0C2 d$ action[2,d]=s7 Shift
$0C247 L3 action[7,%]=r3 [2,C)=5 Reduce by C— d
$0C2C5 - action[5.$}=r1 [0,8)=1 Reduce by S —» CC
$081 $ accept

Thus the given input string is successfully parsed using LR parser or canonical LR
parser.



Principles ofiCompiler Design 3 -60 Syntax Analysis

3.7.3 LALR Parser

In this type of parser the lookahead symbol is generated for each set of item. The
table obtained by this method are smaller in size than LR(k) parser. In fact the states
of SLR and LALR parsing are always the same. Most of the programming languages
use LALR parsers.

~ We follow the same steps as discussed in SLR and canonical LR parsing
techniques and those are

l. Construction of canonical set of items along with the lookahead.
2. Building LALR Parsing table

3. Parsing the input string using canonical LR Parsing tabie

Construction set of LR({1) items along with the lookahead.

The construction LR(1) items is same as discussed in section 3.7.2. But the only
difference is that: in construction of LR(1) items for LR parser, we have differed the
two states if the second component is different but in this case we will merge the two
states by merging of first and second components from both the states.

For example in section 3.7.2 we have got I3 and Iy because of different second
components, but for LALR parser we will consider these two states as same by
merging these states.i.e.

I3 + g = 13

Hence

I :gotoll a)

CoaeC a/d/$

C—oeaC, a/d/$

C—oed,a/d/$

Let us take one example to understand the construction of LR(1) items for LALR
parscr.
nmp Example 3.8 :

S - CC

C —aC

C—d

Construct sct of LR(1) items for LALR parser



Principles of Compiler Design 3-61 SyntaxiAnalysis

Iy Is: goto (1,,C)
S'5e57% 5CC» §
S—»+CC.H

C-» »aC, a/d lag:goto (13,C)
C— e d, aid C— aC « a/d/$

[y goto (I, S)
S+ S}

I5: gato (15.C)

S—>CeCS
C— «aC.}
Csed$

15: QOtO (I5,a)
C-sasC, a/di}
C—#aC, a/d®
C— od, aldl®

47" 9Ot {15,d)
C—ds, aldl/$

We have merged two states I3 and I and made the second component as a or d
or $. The production rule will remain as it is. Similarly in Iy and I; .The set of items
consist of states { Iy 1 Ir I3 Iy7 Is Igel.

Construction of LALR Parsing Table -
The algorithm for construction of LALR parsing table is as given below —
1. Construct the LR(1) set of items.
2. Merge the two states I; and [ if the first component (i.e. the production rules

with dots) are matching and create a new state replacing one of the older state
such as [ii=[i U Il

3. The parsing actions are based on each item [; The actions are as given below-
a)lf [ A —»a eaf,b] isin I and goto(l; a)= [ then create an entry in the
action table action[l,a]=shift j.

b) If there is a production [A—a e, a] in [; then in the action table action[l;a] =
reduce by A-»a. Here A should not be 5.

c¢) If there is a production S'= § ¢, § in [; then action[i,$] = accept .

4. The goto part of the LR table can be filled as :The goto transitions for state i is
considered for non terminals only. If goto(l;,A)=[; then gotof[I;, Al=j.



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Principles of Compiler Design . 3-64 Syntax Analysis

$0a36a36CHE9 d3 action[89,d]=r2 [36,C)=89 Reduce by C— aC
$0a36CR9 d$ action[89,d]=r2 [0,C]=2 Reduce by C— aC
socz2 d$ action[2,d]=s47 Shift

$0C2d47 $ action[47,8]=r36 [2,C]=5 Reduce by C— d
$0C2C5 $ action[5,$]=r1 [0.5]=1 Reduce by S — CC
$051 $ accepl

Thus the LALR and LR parser will mimic one another on the same input.

3.8 Comparison of LR Parsers —

It's the time to compare SLR, LALR and LR parser for the common factors such as
size, class of CFG, efficiency and cost in terms of time and space.

1. SLR parser is smallest in size. It is easiest method of LR parsers. This method
is based on FOLLOW function.

The LALR and SLE have the same size.

P

e

Canonical LR parser or LR parser is largest in size.

LALR is applicable to a wider class of context free grammar than that of SLE.

M

LR parsers are most powerful then LALR and then SLR in the LR family. But
most of the syntactic features can be expressed in the grammar of LALR.

6. LALR reacts differently than LR on erroneous inputs. Error detection is
immediate in LR but not immediate in LALR.

7. The time and space complexity in LALR and LR is more. But efficient methods
exist for constructing LALR parsers directly.

3.9 Using Ambiguous Grammar -

As we have seen various parsing methods in which if at all the grammar is
ambiguous then it creates the conflicts and we can not parse the input string with
such ambiguous grammar. But for some languages in which arithmetic expressions are
given ambiguous grammar are most compact and provide more natural specification
as compared to equivalent unambiguous grammar. Secondly using ambiguous
grammar we can add any new productions for special constructs.

While using ambiguous grammar for parsing the input string we will use all the
disambiguating rules so that each time only one parse tree will be generated for that
specific input. Thus ambiguous grammar can be used in controlled manner for parsing
the input. We will consider some ambiguous grammar and let us try to parse some

input string.



Principles of Compiler Design

3-65

i

Syntax Analysis

Using precedence and associativity to resolve parsing action conflicts

Consider an ambiguous grammar for arithmetic expression —

E —» E+E
E - E*E
E— (E)
E —id

Now we will build the set of LR(0) items for this grammar.

IEI:
E'-+»E
E—-*E+E
E—»+E"E
E-— = (E)
E—eid

14:90to {1;.E)

E'-+E »
E-s+ E«+E
E—-» E«"E

12 :goto “D'“
E'—+(=E)
E—»eE+E
E—-+s«E'E
E-—+ = (E)
E-—»eid

I :goto (lg,id)
E-—seid

14 :goto (1,,+)
E—+E+E
E-»sE+E
E—+«EE
E-—+«(E)
E-—» »id

Here FOLLOW(E)={+",).%].
We have computed FOLLOW (E) as it will be required while processing.

Is:goto {14.")
E+E"<E
E++E+E
Eo «E'E
E—+ «{E)
E-eid

lg:goto (15,E)

E—+(Ew»)
E—» Ee«+E
E-» E«"E

I;:goto (14.E)

E-+E+Ee»
EsEe+E
E—>E«"E

lg:goto (15.E)
E—+E'Es=
E+E=+E
E—+E«"E

lg:goto (1.))
E-—(E)e

Now using the same rules of building SLR(0) parsing table we will generate the
parsing table for above set of items



Principles of Compiler Design 3-66 Syntax Analysis
—
State action
id + . ( ) $
0 53 S2
1 54 35 Accepl
2 53 52
3 r4 r4 r4 rd
4 S3 52
] S3 52
6 S4 S5 S9
"' (84 or (i) | (85 or |
: o | God K
9 r3 r3 r3

As we can see in the parsing table the shift/reduce conflicts occure at state 7 and
8. We will try to resolve it,how? Let us consider one string “id+id*id”.

Stack Input Action with conflict resolution
30 id+id"id$ Shift
$0id3 +Hd*id3 Reduce by E -» id
$0E1 +id"id$ Shift
S0E1+4 id*id$ Shift
$0 E1+4id3 *id$ Reduce by E-» id
$OE1+4E7 *id$ The conflict can be resolved by shift 5
$0 E1+4ET7"5 id$ Shift I
$0 E1+4E7*5id3 % Reduce by E -» id
$0 E1+4E7'5EB $ Reduce by E — E'E
SOE1+4E7 3 Reduce by E — E+E
soe s peoo i

-+

As * has precedence over + we have to perform multiplication operation first. And
for that it is necessary to push * on the top of the stack.The stack position will be




You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



Technical Publications pune

# 1, Amit Residency, 412 Shaniwar Peth, Pune - 411030
= (020) 24495496/97, Email : technical@vtubooks.com

Visit us at : www.vtubooks.com

Rs. 230/-

ISBN %1 -8431-064 -

I
Q7T 8 8 1 R4 11310641 l




