

Android™	 Application	 Development	 All-in-
One®

Visit
www.dummies.com/cheatsheet/androidapplicationdevelopmentaio
to	view	this	book's	cheat	sheet.
Table	of	Contents

Introduction
How	to	Use	This	Book
Conventions	Used	in	This	Book
What	You	Don’t	Have	to	Read
Foolish	Assumptions
How	This	Book	Is	Organized

Book	I:	Android	Jump	Start
Book	II:	Android	Background	Material
Book	III:	The	Building	Blocks
Book	IV:	Programming	Cool	Phone	Features
Book	V:	The	Job	Isn’t	Done	Until	.	.	.
Book	 VI:	 Alternative	 Android	 Development
Techniques

More	on	the	Web!
Icons	Used	in	This	Book
Where	to	Go	from	Here

Book	I:	Android	Jump-Start
Book	I:	Chapter	1:	All	about	Android

http://www.dummies.com/cheatsheet/androidapplicationdevelopmentaio

The	Consumer	Perspective
The	Developer	Perspective

Java
XML
Linux

The	Business	Perspective
Book	I:	Chapter	2:	Installing	the	Software	Tools

Installing	the	Java	Development	Kit
Java	for	Windows,	Linux,	and	Solaris
Java	for	Macintosh

Installing	the	Android	SDK	Starter	Package
Installing	 the	 Eclipse	 Development
Environment

Downloading	Eclipse
Installing	Eclipse

Configuring	Eclipse
Do	 I	 have	 the	 Eclipse	 Android
Development	Kit?
Dude,	where’s	my	Android	SDK?

Fattening	Up	the	Android	SDK
Installing	platform	tools
Creating	an	Android	Virtual	Device

Book	I:	Chapter	3:	Creating	an	Android	App
Creating	Your	First	App

Starting	Eclipse
Creating	a	project
Running	your	project

What	if	.	.	.
Testing	Apps	on	a	Real	Device
Examining	a	Basic	Android	App

A	project’s	files
The	src	directory
The	gen	directory
The	res	directory
The	assets	directory
Other	files	in	an	Android	project
The	android.jar	archive
The	bin	directory

Book	 I:	Chapter	 4:	Conjuring	 and	Embellishing	 an
Android	App

Dragging,	Dropping,	 and	Otherwise	Tweaking
an	App

Creating	the	“look”
Coding	the	behavior

A	Bit	of	Debugging
Try	it!
More	than	one	way	to	skin	a	LogCat

Improving	Your	App
Improving	the	layout
Creating	a	reusable	layout
Starting	another	activity
Localizing	your	app
Responding	to	check	box	events
Displaying	images

Sending	in	your	order
Book	II:	Android	Background	Material

Book	II:	Chapter	1:	Using	the	Eclipse	Workbench
What’s	 All	 That	 Stuff	 on	 the	 Eclipse
Workbench?

Views	and	editors
Understanding	the	big	picture
Juggling	among	perspectives
Changing	the	way	a	perspective	looks
Where’s	my	view?

Some	Useful	Views
Views	 that	 normally	 live	 in	 the	 Java
perspective
Views	 that	 normally	 live	 in	 the	 DDMS
perspective

Be	Nice	to	Your	Java	Code
Making	it	pretty
Let	Eclipse	do	the	typing
Generating	getter	and	setter	methods
Renaming	things
Creating	Android	strings
Using	other	refactoring	actions
The	Organize	Imports	action
Oops!

Some	 Things	 You	 Can	 Do	 with	 Eclipse
Projects

Importing	code

Creating	a	run	configuration
Book	II:	Chapter	2:	It’s	Java!

From	Development	to	Execution	with	Java
What	is	a	compiler?
What	is	a	virtual	machine?

Grasping	Java	Code
The	Java	class
Classes	and	objects
Java	types
The	Java	method
Objects	and	their	constructors
Classes	grow	on	trees
The	Java	package
A	public	class
Other	public	things
Defying	your	parent
Java	annotations
Java	comments

Book	II:	Chapter	3:	What	Java	Does	(and	When)
Making	Decisions	(Java	if	Statements)

Testing	for	equality
Choosing	 among	many	 alternatives	 (Java
switch	statements)

Repeating	Instructions	Over	and	Over	Again
Java	while	statements
Java	for	statements
Java	do	statements

Arrays	in	Java
Java’s	enhanced	for	statements

Jumping	Away	from	Trouble
Book	 II:	 Chapter	 4:	 Object-Oriented	 Programming
in	Java

Static	Fields	and	Methods
Interfaces	and	Callbacks

Event	handling	and	callbacks
An	object	remembers	who	created	it
An	easier	way	to	handle	an	event

Classes	 That	 Must	 (And	 Must	 Not)	 Be
Extended

Java’s	final	classes
Java’s	abstract	classes

Inner	Classes
Named	inner	classes
Anonymous	inner	classes

Book	II:	Chapter	5:	A	brief	Look	at	XML
XML	Isn’t	Ordinary	Text

Of	tags	and	elements
Other	 things	 you	 find	 in	 an	 XML
document

What’s	in	a	Namespace?
The	package	attribute
The	style	attribute

Book	III:	The	Building	Blocks
Book	III:	Chapter	1:	Android	Activities

All	about	Activities
State	your	intention
The	explicit	intent
Using	a	context

The	Activity	Lifecycle
Lifecycle	methods
Taking	 an	 activity	 lifecycle	 through	 its
paces

Getting	Results	Back	from	an	Activity
Applications	Don’t	Feel	Left	Out

Book	III:	Chapter	2:	Intents	and	Intent	Filters
How	to	Make	a	Match

The	parts	of	an	intent
The	parts	of	an	intent	filter
Matching:	The	general	idea	using	a	(silly)
analogy
The	real	story

Practice,	Practice,	Practice
No	magic
Using	a	ScrollView
Defining	a	layout	in	Java	code

Activities	and	Stacks
The	activity	stack
Fly	the	flag

Book	III:	Chapter	3:	Services
A	Very	Simple	Service

The	service

A	client	activity
Services	start,	stop,	and	start	again

Running	a	Service	at	Boot	Time
Starting	and	Binding
Talking	about	the	Weather

A	service
A	client
Informing	the	user
Binding	to	the	service
Querying	the	service
Using	 shared	 preferences	 to	 restart	 a
connection

Getting	Real	Weather	Data
Dealing	with	XML
Getting	info	from	an	online	server

Talking	 to	 a	 Service	 as	 if	 You’re	 Right	 Next
Door

Using	AIDL
AIDL	and	Java	code

Book	III:	Chapter	4:	Broadcast	Receivers
Receivers	101

Creating	a	receiver	on	the	fly
Juggling	receivers	and	broadcasts
How	to	unregister	a	receiver

Beyond	the	Fundamentals
Managing	receivers
How	to	be	a	stickler

Using	receiver	intents
Ordered	broadcasts
Stopping	a	broadcast	in	its	tracks
Getting	results	from	receivers
Using	permissions	and	other	tricks

Standard	Broadcasts
Book	III:	Chapter	5:	Content	Providers

Databases:	From	 the	Stone	Age	 to	 the	Present
Day
Working	with	a	Database

Coding	for	SQLite	using	Android’s	SDK
Details	about	the	friendly	helper	class
Details	about	the	mainstream	SQLite	code

Creating	and	Using	a	Content	Provider
At	last!	A	content	provider!
The	latest	and	greatest	cursor	code

Book	IV:	Programming	Cool	Phone	Features
Book	IV:	Chapter	1:	Lay	Out	Your	Stuff

Android	Layouts
Linear	Layout
Attributes	(A	Detour)

android:layout_width	 and
android:layout_length
android:padding	and	android:margin
android:gravity	 and
android:layout_gravity
android:color

android:visibility
Relative	Layout
Table	Layout
Frame	Layout

Book	IV:	Chapter	2:	Menus,	Lists,	and	Notifications
All	about	Menus
Creating	an	Options	Menu

Defining	the	XML	file
Handling	user	actions
Creating	a	reminder
Putting	the	new	reminder	in	a	list

Creating	a	Context	Menu
Making	the	context	menu	appear
Handling	context	menu	item	selections

More	Stuff	about	Lists
Creating	a	list	activity
A	client	for	the	list	activity

Displaying	Two	(or	More)	Values	in	a	List
Notifying	the	User

Notify	the	user	on	any	device
Notify	 the	 user	 on	 Honeycomb	 and
beyond

Book	IV:	Chapter	3:	An	Android	Potpourri
Making	Phone	Calls

Two	ways	to	initiate	a	call
Oops!	No	phone
On	being	a	dialer

Keep	an	eye	on	the	phone
Sending	a	Text	Message
Working	with	Device	Sensors

Quantifying	location	and	orientation
Sending	location	and	orientation

Drawing,	Dragging,	and	Zooming
The	big	picture
The	details

On	the	Importance	of	Waiting	Patiently
Creating	an	AsyncTask
Using	a	progress	bar
Using	an	AsyncTask

Book	IV:	Chapter	4:	Apps	for	Tablets
What	Fragments	Can	Do	For	You

Programming	with	fragments
Fragments,	 more	 fragments,	 and	 even
more	fragments

Getting	the	Best	of	Both	Worlds
Book	V:	The	Job	Isn’t	Done	Until	.	.	.

Book	 V:	 Chapter	 1:	 Publishing	 Your	 App	 to	 the
Android	Market

Preparing	Your	Code
Un-testing	the	app
Choosing	Android	versions
Selecting	an	icon	and	a	label
Set	 your	 app’s	 own	 version	 code	 and
version	name

Creating	the	APK	File
Digitally	signing	your	application
Creating	a	keystore
Safeguarding	your	keystore

Creating	an	Android	Market	Account
Pricing	Your	Application

The	paid	model
The	free	model

Getting	Screen	Shots	for	Your	Application
Uploading	 Your	 Application	 to	 the	 Android
Market
Watching	the	Installs	Soar

Book	 V:	 Chapter	 2:	 Publishing	 Your	 App	 to	 the
Amazon	Appstore

Becoming	an	Amazon	Appstore	Developer
Uploading	an	App

Book	VI:	Alternative	Android	Development	Techniques
Book	 VI:	 Chapter	 1:	 Creating	 Code	 Quickly	 with
App	Inventor

Getting	Started	with	App	Inventor
Creating	a	Project
Using	the	Designer

Adding	a	component	to	your	project
Setting	component	properties
Arranging	screen	elements

Using	the	Blocks	Editor
Adding	event	handlers

Event	handlers	with	parameters
Book	VI:	Chapter	2:	More	App	Inventor	Magic

Snap	a	Photo
Send	a	Text	Message
Travel	to	the	Orient
Animate!

Make	 sprites	 bounce	 off	 the	 edges	 of	 the
screen
Make	 sprites	 bounce	 away	 from	 each
other

Using	a	Database
Starting	Another	Android	App

Activities	and	intents
Starting	an	activity	with	App	Inventor

Book	 VI:	 Chapter	 3:	 How	 to	 “Rough	 It”	 without
Eclipse

Preliminaries
Your	friend,	the	command	window
Scripting

Meet	Apache	Ant
An	Ant’s-eye	view
Installing	Apache	Ant

Getting	Ready	for	Text-Based	Development
Preparing	your	system
Creating	a	project

Android	Development	with	Ant
Android	 Development	 with	 Operating	 System

Commands
Book	VI:	Chapter	4:	Going	Native

The	Native	Development	Kit
Getting	the	NDK
Getting	a	C	compiler

Creating	an	Application
Cheat	Sheet

Android™	Application	Development	All-in-
One	For	Dummies®

by	Barry	Burd

Android™	Application	Development	All-in-One	For	Dummies®
Published	by

John	Wiley	&	Sons,	Inc.
111	River	St.
Hoboken,	NJ	07030-5774

www.wiley.com
Copyright	©	2012	by	John	Wiley	&	Sons,	Inc.
Published	by	John	Wiley	&	Sons,	Inc.,	Hoboken,	NJ

http://www.wiley.com

Published	simultaneously	in	Canada
No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval

system	or	transmitted	in	any	form	or	by	any	means,	electronic,
mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as
permitted	under	Sections	107	or	108	of	the	1976	United	States	Copyright
Act,	without	the	prior	written	permission	of	the	Publisher.	Requests	to	the
Publisher	for	permission	should	be	addressed	to	the	Permissions
Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ
07030,	(201)	748-6011,	fax	(201)	748-6008,	or	online	at
http://www.wiley.com/go/permissions.

Trademarks:	Wiley,	the	John	Wiley	&	Sons,	Inc.	logo,	For
Dummies,	the	Dummies	Man	logo,	A	Reference	for	the	Rest	of	Us!,	The
Dummies	Way,	Dummies	Daily,	The	Fun	and	Easy	Way,	Dummies.com,
Making	Everything	Easier,	and	related	trade	dress	are	trademarks	or
registered	trademarks	of	John	Wiley	&	Sons,	Inc.,	and/or	its	affiliates	in
the	United	States	and	other	countries,	and	may	not	be	used	without
written	permission.	Android	is	a	trademark	of	Google,	Inc.	All	other
trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&
Sons,	Inc.,	is	not	associated	with	any	product	or	vendor	mentioned	in	this
book.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the
author	make	no	representations	or	warranties	with	respect	to	the	accuracy
or	completeness	of	the	contents	of	this	work	and	specifically	disclaim	all
warranties,	including	without	limitation	warranties	of	fitness	for	a
particular	purpose.	No	warranty	may	be	created	or	extended	by	sales	or
promotional	materials.	The	advice	and	strategies	contained	herein	may
not	be	suitable	for	every	situation.	This	work	is	sold	with	the
understanding	that	the	publisher	is	not	engaged	in	rendering	legal,
accounting,	or	other	professional	services.	If	professional	assistance	is
required,	the	services	of	a	competent	professional	person	should	be
sought.	Neither	the	publisher	nor	the	author	shall	be	liable	for	damages
arising	herefrom.	The	fact	that	an	organization	or	Website	is	referred	to	in
this	work	as	a	citation	and/or	a	potential	source	of	further	information
does	not	mean	that	the	author	or	the	publisher	endorses	the	information
the	organization	or	Website	may	provide	or	recommendations	it	may
make.	Further,	readers	should	be	aware	that	Internet	Websites	listed	in
this	work	may	have	changed	or	disappeared	between	when	this	work	was

http://www.wiley.com/go/permissions

written	and	when	it	is	read.
For	general	information	on	our	other	products	and	services,	please

contact	our	Customer	Care	Department	within	the	U.S.	at	877-762-2974,
outside	the	U.S.	at	317-572-3993,	or	fax	317-572-4002.

For	technical	support,	please	visit	www.wiley.com/techsupport.
Wiley	also	publishes	its	books	in	a	variety	of	electronic	formats	and

by	print-on-demand.	Not	all	content	that	is	available	in	standard	print
versions	of	this	book	may	appear	or	be	packaged	in	all	book	formats.	If
you	have	purchased	a	version	of	this	book	that	did	not	include	media	that
is	referenced	by	or	accompanies	a	standard	print	version,	you	may	request
this	media	by	visiting	http://booksupport.wiley.com.	For	more
information	about	Wiley	products,	visit	us	at	www.wiley.com.

Library	of	Congress	Control	Number:	2011942366
ISBN:	978-1-118-02770-7	(pbk);	ISBN:	978-1-118-22229-4	(ebk);

ISBN:	978-1-118-23595-9	(ebk);	ISBN:	978-1-118-24501-9	(ebk)
Manufactured	in	the	United	States	of	America
10	9	8	7	6	5	4	3	2	1

http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

About	the	Author
Barry	Burd	received	an	M.S.	degree	in	Computer	Science	at

Rutgers	University	and	a	Ph.D.	in	Mathematics	at	the	University	of
Illinois.	As	a	teaching	assistant	in	Champaign-Urbana,	Illinois,	he	was
elected	five	times	to	the	university-wide	List	of	Teachers	Ranked	as
Excellent	by	their	Students.

Since	1980,	Dr.	Burd	has	been	a	professor	in	the	Department	of
Mathematics	and	Computer	Science	at	Drew	University	in	Madison,	New
Jersey.	When	he’s	not	lecturing	at	Drew	University,	Dr.	Burd	leads
training	courses	for	professional	programmers	in	business	and	industry.
He	has	lectured	at	conferences	in	the	United	States,	Europe,	Australia,
and	Asia.	He	is	the	author	of	several	articles	and	books,	including	Java
For	Dummies	and	Beginning	Programming	with	Java	For	Dummies,	both
from	John	Wiley	&	Sons,	Inc.

Dr.	Burd	lives	in	Madison,	New	Jersey	with	his	wife	and	two	kids
(both	in	their	twenties,	and	mostly	on	their	own).	In	his	spare	time,	Dr.
Burd	enjoys	being	a	workaholic.

Dedication

Acknowledgments

Publisher’s	Acknowledgments
We’re	proud	of	this	book;	please	send	us	your	comments	at

http://dummies.custhelp.com.	For	other	comments,	please	contact	our
Customer	Care	Department	within	the	U.S.	at	877-762-2974,	outside	the
U.S.	at	317-572-3993,	or	fax	317-572-4002.

Some	of	the	people	who	helped	bring	this	book	to	market	include
the	following:

Acquisitions	and	Editorial
Project	Editor:	Paul	Levesque
Acquisitions	Editor:	Kyle	Looper
Copy	Editor:	Jennifer	Riggs
Technical	Editor:	Brian	Buikema
Editorial	Manager:	Leah	Cameron
Editorial	Assistant:	Amanda	Graham
Sr.	Editorial	Assistant:	Cherie	Case
Cover	Photo:	©	iStockphoto.com	/	Cary	Westfall
Cartoons:	Rich	Tennant	(www.the5thwave.com)
Composition	Services
Project	Coordinator:	Nikki	Gee
Layout	and	Graphics:	Joyce	Haughey
Proofreaders:	Melissa	Cossell,	Kathy	Simpson
Indexer:	BIM	Indexing	&	Proofreading	Services
Publishing	and	Editorial	for	Technology	Dummies
Richard	Swadley,	Vice	President	and	Executive	Group	Publisher
Andy	Cummings,	Vice	President	and	Publisher
Mary	Bednarek,	Executive	Acquisitions	Director
Mary	C.	Corder,	Editorial	Director
Publishing	for	Consumer	Dummies
Kathy	Nebenhaus,	Vice	President	and	Executive	Publisher
Composition	Services
Debbie	Stailey,	Director	of	Composition	Services

http://dummies.custhelp.com
http://www.the5thwave.com

Introduction
Android	phones	are	everywhere.	In	January	2011,	Android	became

the	most	popular	operating	system	for	mobile	phones	in	the	United
States.1	In	that	month,	Android’s	market	share	managed	to	surpass	those
of	the	BlackBerry	and	the	iPhone.	And	a	month	later,	Android’s	presence
grew	to	include	one	of	every	three	smartphones	in	the	United	States.2

1See
www.comscore.com/Press_Events/Press_Releases/2011/3/comScore_Reports_January_2011_U.S._Mobile_Subscriber_Market_Share

	

2See
www.comscore.com/Press_Events/Press_Releases/2011/4/comScore_Reports_February_2011_U.S._Mobile_Subscriber_Market_Share

	

	

At	the	same	time,	Market	Force	Information,	Inc.,	reported	that
“Android	appears	to	be	winning	the	smartphone	popularity	contest.”3
Among	survey	respondents	in	the	United	States,	34	percent	said	they
would	purchase	an	Android	phone,	compared	with	21	percent	for	iPhone
and	12	percent	for	BlackBerry.	On	the	global	scene,	research	firm	Ovum
predicts	that	by	2016,	“We	will	see	dramatic	shifts	in	dominance	for
smartphone	software	platforms,	with	Android	storming	into	the	lead	with
38	percent	market	share.”4

3See	www.marketforce.com/2011/02/consumers-now-more-likely-to-
buy-androids-than-iphones.

http://www.comscore.com/Press_Events/Press_Releases/2011/3/comScore_Reports_January_2011_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2011/4/comScore_Reports_February_2011_U.S._Mobile_Subscriber_Market_Share
http://www.marketforce.com/2011/02/consumers-now-more-likely-to-buy-androids-than-iphones

	

4See	http://about.datamonitor.com/media/archives/5565.
	

	

	

So	if	you	read	this	book	in	a	public	place	(on	a	commuter	train,	at
the	beach,	on	the	dance	floor	at	the	Coyote	Ugly	saloon),	you	can	read
proudly,	with	a	chip	on	your	shoulder	and	with	your	chest	held	high.
Android	is	hot	stuff,	and	you’re	cool	because	you’re	reading	about	it.

How	to	Use	This	Book
You	can	attack	this	book	in	either	of	two	ways.	You	can	go	cover	to

cover,	or	you	can	poke	around	from	one	chapter	to	another.	You	can	even
do	both	(start	at	the	beginning	and	then	jump	to	a	section	that	particularly
interests	you).	I	designed	this	book	so	that	the	basic	topics	come	first	and
the	more	involved	topics	follow	the	basics.	But	you	may	already	be
comfortable	with	some	basics,	or	you	may	have	specific	goals	that	don’t
require	you	to	know	about	certain	topics.

In	general,	my	advice	is	as	follows:
•	If	you	already	know	something,	don’t	bother	reading	about	it.

	
•	If	you’re	curious,	don’t	be	afraid	to	skip	ahead.	You	can	always	sneak	a
peek	at	an	earlier	chapter	if	you	really	need	to	do	so.

	

Conventions	Used	in	This	Book
Almost	every	technical	book	starts	with	a	little	typeface	legend,	and

http://about.datamonitor.com/media/archives/5565

Android	Application	Development	All-in-One	For	Dummies	is	no
exception.	What	follows	is	a	brief	explanation	of	the	typefaces	used	in
this	book:
•	New	terms	are	set	in	italics.

	
•	If	you	need	to	type	something	that’s	mixed	in	with	the	regular	text,	the
characters	you	type	appear	in	bold.	For	example:	“Type	MyNewProject
in	the	text	field.”

	
•	You	also	see	this	computerese	font.	I	use	computerese	for	Java	code,
filenames,	web	page	addresses	(URLs),	onscreen	messages,	and	other
such	things.	Also,	if	something	you	need	to	type	is	really	long,	it	appears
in	computerese	font	on	its	own	line	(or	lines).

	
•	You	need	to	change	certain	things	when	you	type	them	on	your	own
computer	keyboard.	For	instance,	I	may	ask	you	to	type

	
public	void	Anyname

which	means	that	you	type	public	void	and	then	some	name	that	you
make	up	on	your	own.	Words	that	you	need	to	replace	with	your	own
words	are	set	in	italicized	computerese.

	

What	You	Don’t	Have	to	Read
Pick	the	first	chapter	or	section	that	has	material	you	don’t	already

know	and	start	reading	there.	Of	course,	you	may	hate	making	decisions
as	much	as	I	do.	If	so,	here	are	some	guidelines	that	you	can	follow:
•	If	you’ve	already	created	a	simple	Android	application,	and	you	have	all
the	right	software	installed	on	your	computer,	skip	Book	I	and	go	straight
to	Book	II.	Believe	me,	I	won’t	mind.

	
•	If	you	have	a	modest	amount	of	experience	developing	Android	apps,
and	you’re	looking	for	material	that	puts	things	together	and	fills	in	gaps,
start	with	Book	II.

	
•	If	you’re	thinking	about	writing	a	special	kind	of	app	(a	text-messaging
app,	a	location-based	app,	a	game,	or	something	like	that),	work	your	way
quickly	and	impatiently	through	Books	I,	II,	and	III,	and	dive	in	seriously
when	you	reach	Book	IV.

	
•	If	your	goal	is	to	publish	(and	maybe	sell)	your	apps,	set	Book	V	as
your	ultimate	goal.	No	one	can	tell	you	how	to	become	the	next	Bill
Gates,	but	Book	V	gets	you	thinking	about	the	best	ways	to	share	your
Android	applications.

	
If	you	want	to	skip	the	sidebars	and	the	Technical	Stuff	icons,	please

do.	In	fact,	if	you	want	to	skip	anything	at	all,	feel	free.

Foolish	Assumptions
In	this	book,	I	make	a	few	assumptions	about	you,	the	reader.	If	one

of	these	assumptions	is	incorrect,	you’re	probably	okay.	If	all	these
assumptions	are	incorrect	.	.	.	well,	buy	the	book	anyway.
•	I	assume	that	you	can	navigate	through	your	computer’s	common
menus	and	dialog	boxes.	You	don’t	have	to	be	a	Windows,	Linux,	or
Macintosh	power	user,	but	you	should	be	able	to	start	a	program,	find	a
file,	put	a	file	into	a	certain	directory	.	.	.	that	sort	of	thing.	Much	of	the
time,	when	you	practice	the	stuff	in	this	book,	you’re	typing	code	on	your
keyboard,	not	pointing	and	clicking	your	mouse.

	
On	those	occasions	when	you	need	to	drag	and	drop,	cut	and	paste,	or
plug	and	play,	I	guide	you	carefully	through	the	steps.	But	your	computer
may	be	configured	in	any	of	several	billion	ways,	and	my	instructions
may	not	quite	fit	your	special	situation.	So	when	you	reach	one	of	these
platform-specific	tasks,	try	following	the	steps	in	this	book.	If	the	steps
don’t	quite	fit,	consult	a	book	with	instructions	tailored	to	your	system.

	
•	I	assume	that	you	can	think	logically.	That’s	all	there	is	to	application
development	—	thinking	logically.	If	you	can	think	logically,	you	have	it
made.	If	you	don’t	believe	that	you	can	think	logically,	read	on.	You	may

be	pleasantly	surprised.
	

•	I	assume	that	you	have	some	experience	with	Java.	In	writing	this
book,	I’ve	tried	to	do	the	impossible.	I’ve	tried	to	make	the	book
interesting	for	experienced	programmers,	yet	accessible	to	people	who
don’t	write	code	for	a	living.	If	you’re	a	Java	guru,	that’s	great.	If	you’re
a	certified	Linux	geek,	that’s	great,	too.	But	I	don’t	assume	that	you	can
recite	the	names	of	the	Java’s	concurrency	methods	in	your	sleep,	or	that
you	can	pipe	together	a	chain	of	14	Linux	commands	without	reading	the
documentation	or	touching	the	Backspace	key.

	
If	you	have	a	working	knowledge	of	some	Java-like	language	(C	or	C++,
for	example),	all	you	need	is	a	little	Java	overview.	And	if	you	have	no
experience	with	an	object-oriented	language,	you	can	get	some.	Your
favorite	bookstore	has	a	terrific	book	titled	Java	For	Dummies,	5th
Edition,	by	Barry	Burd	(John	Wiley	&	Sons,	Inc.).	I	recommend	that
book	highly.

	

How	This	Book	Is	Organized
Android	Application	Development	All-in-One	For	Dummies	is

divided	into	subsections,	which	are	grouped	into	sections,	which	come
together	to	make	chapters,	which	are	lumped	finally	into	six	books.
(When	you	write	a	book,	you	get	to	know	your	book’s	structure	pretty
well.	After	months	of	writing,	you	find	yourself	dreaming	in	sections	and
chapters	when	you	go	to	bed	at	night.)	Each	of	the	six	books	is	listed
here.

Book	I:	Android	Jump	Start
This	part	is	your	complete,	executive	briefing	on	Android.	It

includes	some	“What	is	Android?”	material,	instructions	for	setting	up
your	system,	and	a	chapter	in	which	you	create	your	first	Android	app.	In
this	minibook,	you	visit	Android’s	major	technical	ideas	and	dissect	a
simple	Android	application.

Book	II:	Android	Background	Material
When	you	create	Android	apps,	you	write	Java	programs	and	work

with	XML	documents.	Book	II	provides	a	quick	look	at	the	Java
programming	language	and	at	the	XML	document	standard.	In	addition,
Book	II	has	a	chapter	on	Eclipse	—	a	tool	for	creating	Java	programs	that
you	will	be	using	every	minute	of	your	Android-development	day.

Book	III:	The	Building	Blocks
This	minibook	covers	the	big	ideas	in	Android	application

programming.	What	is	an	activity?	What	is	an	intent?	How	do	you	handle
button	presses?	How	do	you	lay	out	the	user’s	screen?	The	ideas	in	this
minibook	permeate	all	Android	programming,	from	the	simplest	app	on	a
cheapo	phone	to	a	killer	app	on	an	overpriced	Android	tablet.

Book	 IV:	 Programming	 Cool	 Phone
Features

Some	applications	do	very	ordinary	things,	such	as	displaying	lists
or	calculating	sums.	But	other	apps	make	use	of	a	mobile	device’s	unique
capabilities.	For	example,	apps	can	dial	phone	numbers,	send	text
messages,	surf	the	web,	and	track	your	travel	direction.	The	Android
platform	has	a	rich	set	of	built-in	tools	for	programming	each	of	these
special	capabilities.	So	in	this	minibook,	you	create	apps	that	make	the
most	of	a	device’s	vast	feature	set.

Book	V:	The	Job	Isn’t	Done	Until	.	.	.
Imagine	earning	a	fortune	selling	the	world’s	most	popular	Android

app,	being	named	Time	magazine’s	Person	of	the	Year,	and	having	Tom
Cruise	or	Julia	Roberts	buy	the	rights	to	star	as	you	in	a	movie	(giving
you	exclusive	rights	to	the	game	for	Android	devices	that’s	based	on	the
movie,	of	course).

Okay,	maybe	your	ambitions	aren’t	quite	that	high,	but	when	you
develop	a	good	Android	app,	you	probably	want	to	share	that	app	with
the	rest	of	the	world.	Well,	the	good	news	is,	sharing	is	fairly	easy.	And
marketing	your	app	isn’t	as	difficult	as	you	might	imagine.	This	minibook
provides	the	tips	and	pointers	to	help	you	spread	the	word	about	your
fantastic	application.

Book	 VI:	 Alternative	 Android
Development	Techniques

Deep	in	the	bowels	of	a	place	called	“computer	nerd	city,”	some
programmers	shun	the	easygoing	life	of	the	Android	Java	programmer
and	strive	toward	a	simpler,	more	primitive	existence.	These	“wonks”	(as
they’re	known	by	clinicians	and	other	professionals)	prefer	the	rugged,
macho	lifestyle	that	programming	in	C	or	C++	provides.	Along	with	this
lifestyle,	they	get	the	ability	to	reach	the	corners	of	a	mobile	device	that
are	hidden	by	Android’s	layer	of	abstraction.

At	the	other	end	of	the	spectrum,	some	people	prefer	not	to	write
code.	These	visual	learners	prefer	dragging	and	dropping	—	designing	a
solution	by	imagining	how	it	looks	and	feels.	These	people	want	a
development	technique	that	emphasizes	intuition	and	big-picture
planning.

If	you’re	a	wonk	or	an	intuition-based	learner,	please	include	Book
VI	on	your	travel	plans.

More	on	the	Web!
You’ve	read	the	Android	All-in-One	book,	seen	the	Android	All-in-

One	movie,	worn	the	Android	All-in-One	t-shirt,	and	eaten	the	Android
All-in-One	candy.	What	more	is	there	to	do?

That’s	easy.	Just	visit	this	book’s	website	—
www.allmycode.com/Android.	(You	can	also	get	there	by	visiting
www.dummies.com/go/androidapplicationaio.)	At	the	website,	you	can
find	updates,	comments,	additional	information,	and	answers	to
commonly	asked	readers’	questions.	You	can	also	find	a	small	chat
application	for	sending	me	quick	questions	when	I’m	online.	When	I’m
not	online	(or	if	you	have	a	complicated	question),	you	can	send	me	e-
mail.	I	read	messages	sent	to	android@allmycode.com.

Icons	Used	in	This	Book
If	you	could	watch	me	write	this	book,	you’d	see	me	sitting	at	my

http://www.allmycode.com/Android
http://www.dummies.com/go/androidapplicationaio

computer,	talking	to	myself.	I	say	each	sentence	in	my	head.	Most	of	the
sentences,	I	mutter	several	times.	When	I	have	an	extra	thought,	a	side
comment,	or	something	that	doesn’t	belong	in	the	regular	stream,	I	twist
my	head	a	little	bit.	That	way,	whoever’s	listening	to	me	(usually,
nobody)	knows	that	I’m	off	on	a	momentary	tangent.

Of	course,	in	print,	you	can’t	see	me	twisting	my	head.	I	need	some
other	way	of	setting	a	side	thought	in	a	corner	by	itself.	I	do	it	with	icons.
When	you	see	a	Tip	icon	or	a	Remember	icon,	you	know	that	I’m	taking
a	quick	detour.

Here’s	a	list	of	icons	that	I	use	in	this	book.

	A	tip	is	an	extra	piece	of	information	—	something	helpful
that	the	other	books	may	forget	to	tell	you.

	Everyone	makes	mistakes.	Heaven	knows	that	I’ve	made	a
few	in	my	time.	Anyway,	when	I	think	people	are	especially	prone
to	make	a	mistake,	I	mark	it	with	a	Warning	icon.

	Question:	What’s	stronger	than	a	Tip,	but	not	as	strong	as	a
Warning?
Answer:	A	Remember	icon.

	“If	you	don’t	remember	what	such-and-such	means,	see
blah-blah-blah,”	or	“For	more	information,	read	blahbity-blah-
blah.”

	This	icon	calls	attention	to	useful	material	that	you	can	find
online.	(You	don’t	have	to	wait	long	to	see	one	of	these	icons.	I	use
one	at	the	end	of	this	introduction!)

	Occasionally,	I	run	across	a	technical	tidbit.	The	tidbit	may
help	you	understand	what	the	people	behind	the	scenes	(the	people
who	developed	Java)	were	thinking.	You	don’t	have	to	read	it,	but
you	may	find	it	useful.	You	may	also	find	the	tidbit	helpful	if	you
plan	to	read	other	(more	geeky)	books	about	Android	app
development.

Where	to	Go	from	Here
If	you’ve	gotten	this	far,	you’re	ready	to	start	reading	about	Android

application	development.	Think	of	me	(the	author)	as	your	guide,	your
host,	your	personal	assistant.	I	do	everything	I	can	to	keep	things
interesting	and,	most	important,	help	you	understand.

	If	you	like	what	you	read,	send	me	a	note.	My	e-mail
address,	which	I	created	just	for	comments	and	questions	about	this
book,	is	android@allmycode.com.	And	don’t	forget	—	for	the	latest
updates,	visit	this	book’s	website.	The	site’s	address	is
www.allmycode.com/android.
Please	note	that	some	special	symbols	used	in	this	eBook	may	not

display	properly	on	all	eReader	devices.	If	you	have	trouble	determining
any	symbol,	please	call	Wiley	Product	Technical	Support	at	800-762-
2974.	Outside	of	the	United	States,	please	call	317-572-3993.	You	can
also	contact	Wiley	Product	Technical	Support	at
www.wiley.com/techsupport.

http://www.allmycode.com/android
http://www.wiley.com/techsupport

	

Chapter	1:	All	about	Android

In	This	Chapter
Your	take	on	Android	(depending	on	who	you	are)

A	tour	of	Android	technologies
	

Until	the	mid-2000s,	the	word	“Android”	stood	for	a	mechanical
humanlike	creature	—	a	root’n	toot’n	officer	of	the	law	with	built-in
machine	guns,	or	a	hyperlogical	space	traveler	who	can	do	everything
except	speak	using	contractions.	But	in	2005,	Google	purchased	Android,
Inc.	—	a	22-month-old	company	creating	software	for	mobile	phones.
That	move	changed	everything.

In	2007,	a	group	of	34	companies	formed	the	Open	Handset
Alliance.	The	Alliance’s	task	is	“to	accelerate	innovation	in	mobile	and
offer	consumers	a	richer,	less	expensive,	and	better	mobile	experience.”
The	Alliance’s	primary	project	is	Android	—	an	open,	free	operating
system	based	on	the	Linux	operating	system	kernel.

HTC	released	the	first	commercially	available	Android	phone	near
the	end	of	2008.	But	in	the	United	States,	the	public’s	awareness	of
Android	and	its	potential	didn’t	surface	until	early	2010.	Where	I’m
sitting	in	August	2011,	Canalys	reports	that	nearly	half	all	smartphones	in
the	world	run	Android.*	(I	know.	You’re	sitting	sometime	after	August
2011.	But	that’s	okay.)

*	www.canalys.com/newsroom/google’s-android-becomes-world’s-
leading-smartphone-platform

	

	

http://www.canalys.com/newsroom/google%E2%80%99s-android-becomes-world%E2%80%99s-leading-smart-phone-platform

The	Consumer	Perspective
A	consumer	considers	the	alternatives.

•	Possibility	#1:	No	mobile	phone.
	

Advantages:	Inexpensive,	no	interruptions	from	callers.
	

Disadvantages:	No	instant	contact	with	friends	and	family.	No	calls	to
services	in	case	of	an	emergency.	No	handheld	games,	no	tweeting,
tooting,	hooting,	homing,	roaming,	or	booping.	And	worst	of	all,	to	break
up	with	your	boyfriend	or	girlfriend,	you	can’t	simply	send	a	text
message.

	
•	Possibility	#2:	A	feature	phone.

	

	I	love	the	way	the	world	makes	up	fancy	names	for	less-
than-desirable	things.	A	feature	phone	is	a	mobile	phone	that’s	not	a
smartphone.	There’s	no	official	rule	defining	the	boundary	between
feature	phones	and	smartphones.	But	generally,	a	feature	phone	is	one
with	an	inflexible	menu	of	home-screen	options.	A	feature	phone’s	menu
items	relate	mostly	to	traditional	mobile	phone	functions,	such	as	dialing,
texting,	and	maybe	some	web	surfing	and	gaming.	In	contrast,	a
smartphone’s	home	screen	provides	access	to	the	underlying	file	system,
has	icons,	customizable	skins,	and	many	other	features	that	used	to	be
available	only	to	general-purpose	computer	operating	systems.

	
Advantages:	Cheaper	than	a	smartphone.

	
Disadvantages:	Not	as	versatile	as	a	smartphone.	Not	nearly	as	cool	as	a
smartphone.	Nowhere	near	as	much	fun	as	a	smartphone.

	
•	Possibility	#3:	An	iPhone.

	
Advantages:	Great	graphics.	More	apps	than	any	other	phone	platform.

	
Disadvantages:	Little	or	no	flexibility	with	the	single-vendor	iOS
operating	system.	Only	a	handful	of	different	models	to	choose	from.	No
sanctioned	“rooting,”	“modding,”	or	“jailbreaking”	the	phone.	No
hesitation	permitted	when	becoming	a	member	of	the	Mystic	Cult	of
Apple	Devotees.

	
•	Possibility	#4:	A	Windows	phone,	a	BlackBerry,	a	WebOS	phone,
or	some	other	non-Android,	non-Apple	smartphone.

	
Advantages:	Having	a	smartphone	without	belonging	to	a	crowd.

	
Disadvantages:	The	possibility	of	owning	an	orphan	product	when	the
smartphone	wars	come	to	a	climax.

	
•	Possibility	#5:	An	Android	phone.

	
Advantages:	Using	an	open	platform.	Using	a	popular	platform	with	lots
of	industry	support	and	with	powerful	market	momentum.	Writing	your
own	software	and	installing	the	software	on	your	own	phone	(without
having	to	post	the	software	on	a	company’s	website).	Publishing	software
without	facing	a	challenging	approval	process.

	
Disadvantages:	Security	concerns	when	using	an	open	platform.	Worry
over	a	number	of	lawsuits	heaped	upon	Android	manufacturers	in	2011.
Dismay	when	iPhone	users	make	fun	of	your	phone.

	
For	me,	Android’s	advantages	far	outweigh	the	possible

disadvantages.	And	you’re	reading	a	paragraph	from	Android	Application
Development	All-in-One	For	Dummies,	so	you’re	likely	to	agree	with	me.

Having	decided	to	go	with	an	Android	phone,	the	consumer	asks,
“Which	phone?”	And	the	salesperson	says,	“This	phone	comes	with
Android	4.0”	(which	means	“This	phone	comes	with	Android	2.3,	which

will	eventually	be	upgraded	to	Android	4.0,	or	so	claims	the	vendor”).	So
the	consumer	asks,	“What	are	the	differences	among	all	the	Android
versions?”

Android	comes	with	a	few	different	notions	of	“version.”	Android
has	platform	numbers,	API	levels,	codenames,	and	probably	some	other
versioning	schemes.	(The	acronym	API	stands	for	Application
Programming	Interface	—	a	library	full	of	prewritten	programs	available
for	use	by	a	bunch	of	programmers.	In	this	case,	the	“bunch”	consists	of
all	Android	developers.)

To	complicate	matters,	the	versioning	schemes	don’t	increase	in
lockstep.	For	example,	from	platform	1.5	to	1.6,	the	API	level	goes	from
3	to	4.	But	platform	2.3	sports	two	API	levels	—	level	9	for	platform
2.3.1	and	level	10	for	platform	2.3.3.	Versions	that	are	skipped	(such	as
API	level	5	and	platform	2.5)	are	lost	in	the	annals	of	Android
development	history.

An	Android	version	may	have	variations.	For	example,	plain	old
Android	2.2	has	an	established	set	of	features.	To	plain	old	Android	2.2,
you	can	add	the	Google	APIs	(thus	adding	Google	Maps	functionality)
and	still	use	platform	2.2.	You	can	also	add	a	special	set	with	features
tailored	for	the	Samsung	Galaxy	Tab.

Most	consumers	know	Android’s	versions	by	their	codenames.
Unlike	Apple	(which	names	its	operating	systems	after	ferocious	cats)	or
automakers	(who	name	their	SUVs	after	cowboys),	Google	names
Android	versions	after	desserts.	(See	Table	1-1.)	I’m	waiting	impatiently
for	a	version	codenamed	Chocolate.	(Maybe	one	will	be	released	by	the
time	you	read	this	book.)

	As	a	developer,	your	job	is	to	balance	portability	with
feature	richness.	When	you	create	an	app,	you	specify	a	target
Android	version	and	a	minimum	Android	version.	(You	can	read
more	about	this	in	Chapter	3	of	this	minibook.)	The	higher	the
version,	the	more	features	your	app	can	have.	But	the	higher	the
version,	the	fewer	devices	that	can	run	your	app.	Fortunately,	this
book	has	lots	of	tips	and	tricks	for	striking	a	happy	medium	between
whiz-bang	features	and	universal	use.

The	Developer	Perspective
Android	is	a	multi-faceted	beast.	When	you	develop	for	Android,

you	use	many	toolsets.	This	section	has	a	brief	rundown.

Java
James	Gosling	from	Sun	Microsystems	created	the	Java

programming	language	in	the	mid-1990s.	(Sun	Microsystems	has	since
been	bought	out	by	Oracle.)	Java’s	meteoric	rise	in	use	came	from	the
elegance	of	the	language	and	the	well-conceived	platform	architecture.
After	a	brief	blaze	of	glory	with	applets	and	the	web,	Java	settled	into
being	a	solid,	general-purpose	language	with	special	strength	in	servers
and	middleware.

In	the	meantime,	Java	was	quietly	seeping	into	embedded
processors.	Sun	Microsystems	was	developing	Java	ME	(Mobile	Edition)
for	creating	midlets	to	run	on	mobile	phones.	Java	became	a	major
technology	in	Blu-ray	disc	players.	So	the	decision	to	make	Java	the
primary	development	language	for	Android	apps	is	no	big	surprise.

	An	embedded	processor	is	a	computer	chip	that’s	hidden
from	the	user	as	part	of	some	special-purpose	device.	The	chips	in
today’s	cars	are	embedded	processors,	and	the	silicon	that	powers

your	photocopier	at	work	is	an	embedded	processor.	Pretty	soon,	the
flower	pots	on	you	windowsill	will	probably	have	embedded
processors.
The	trouble	is,	not	everyone	agrees	about	the	fine	points	of	Java’s

licensing	terms.	The	Java	language	isn’t	quite	the	same	animal	as	the	Java
software	libraries,	which	in	turn	aren’t	the	same	as	the	Java	Virtual
Machine	(the	software	that	enables	the	running	of	Java	programs).	So	in
marrying	Java	to	Android,	the	founders	of	Android	added	an	extra	puzzle
piece	—	the	Dalvik	Virtual	Machine.	And	instead	of	using	the	official
Sun/Oracle	Java	libraries,	Android	uses	Harmony	—	an	open-source	Java
implementation	from	the	Apache	Software	Foundation.	Several	years	and
many	lawsuits	later,	companies	are	still	at	odds	over	the	use	of	Java	in
Android	phones.

	For	more	information	about	Dalvik	(the	Virtual	Machine,
not	the	town	in	Iceland)	see	Book	II,	Chapter	2.
Fortunately	for	you,	the	soon-to-be	Android	developer,	Java	is

deeply	entrenched	in	the	Android	ecosystem.	The	time	you	invest	in
developing	mobile	Java-based	apps	will	continue	to	pay	off	for	a	long,
long	time.

If	you	already	have	some	Java	programming	experience,	great!	If
not,	you	can	find	a	fast-paced	introduction	to	Java	in	Book	II,	Chapters	2,
3,	and	4.	For	a	more	leisurely	introduction	to	Java,	buy	Java	For
Dummies,	5th	Edition.

XML
If	you	find	View	Source	among	your	web	browser’s	options,	you

see	a	bunch	of	Hypertext	Markup	Language	(HTML)	tags.	A	tag	is	some
text	enclosed	in	angle	brackets.	The	tag	describes	something	about	its
neighboring	content.

For	example,	to	create	boldface	type	on	a	web	page,	a	web	designer
writes
Look	at	this!

	

The	angle-bracketed	b	tags	turn	boldface	type	on	and	off.
The	M	in	HTML	stands	for	Markup	—	a	general	term	describing

any	extra	text	that	annotates	a	document’s	content.	When	you	annotate	a
document’s	content,	you	embed	information	about	the	document’s
content	into	the	document	itself.	So,	for	example,	in	the	line	of	code	in
the	previous	paragraph,	the	content	is	Look	at	this!	The	markup
(information	about	the	content)	consists	of	the	tags		and	.

The	HTML	standard	is	an	outgrowth	of	SGML	(Standard
Generalized	Markup	Language).	SGML	is	an	all-things-to-all-people
technology	for	marking	up	documents	for	use	by	all	kinds	of	computers
running	all	kinds	of	software,	and	sold	by	all	kinds	of	vendors.

In	the	mid-1990s,	a	working	group	of	the	World	Wide	Web
Consortium	(W3C)	began	developing	XML	—	the	eXtensible	Markup
Language.	The	working	group’s	goal	was	to	create	a	subset	of	SGML	for
use	in	transmitting	data	over	the	Internet.	They	succeeded.	Today,	XML
is	a	well-established	standard	for	encoding	information	of	all	kinds.

	For	a	technical	overview	of	XML,	see	Book	II,	Chapter	5.
Java	is	good	for	describing	step-by-step	instructions,	and	XML	is

good	for	describing	the	way	things	are	(or	the	way	they	should	be).	A
Java	program	says,	“Do	this	and	then	do	that.”	In	contrast,	an	XML
document	says,	“It’s	this	way,	and	it’s	that	way.”	So	Android	uses	XML
for	two	purposes:
•	To	describe	an	app’s	data.

	
An	app’s	XML	documents	describe	the	look	of	the	app’s	screens,	the
translations	of	the	app	into	one	or	more	languages,	and	other	kinds	of
data.

	
•	To	describe	the	app	itself.

	
Each	Android	app	comes	with	an	AndroidManifest.xml	file.	This	XML
document	describes	features	of	the	app.	The	operating	system	uses	the
AndroidManifest.xml	document’s	contents	to	manage	the	running	of	the

app.
	

For	example,	an	app’s	AndroidManifest.xml	file	describes	code	that	the
app	makes	available	for	use	by	other	apps.	The	same	file	describes	the
permissions	that	the	app	requests	from	the	system.	When	you	begin
installing	a	new	app,	Android	displays	these	permissions	and	asks	for
your	permission	to	proceed	with	the	installation.	(I	don’t	know	about	you,
but	I	always	read	this	list	of	permissions	carefully.	Yeah,	right!)

	

	For	more	information	about	the	AndroidManifest.xml	file
and	about	the	use	of	XML	to	describe	an	app’s	data,	see	almost	any
chapter	in	this	book.
Concerning	XML,	there’s	bad	news	and	good	news.	The	bad	news

is,	XML	isn’t	always	easy	to	compose.	At	best,	writing	XML	code	is
boring.	At	worst,	writing	XML	code	is	downright	confusing.

The	good	news	is,	automated	software	tools	compose	most	of	the
world’s	XML	code.	As	an	Android	programmer,	the	software	on	your
development	computer	composes	much	of	your	app’s	XML	code.	You
often	tweak	the	XML	code,	read	part	of	the	code	for	info	from	its	source,
make	minor	changes,	and	compose	brief	additions.	But	you	hardly	ever
create	XML	documents	from	scratch.

Linux
An	operating	system	is	a	big	program	that	manages	the	overall

running	of	a	computer	or	a	device.	Most	operating	systems	are	built	in
layers.	An	operating	system’s	outer	layers	are	usually	right	up	there	in	the
user’s	face.	For	example,	both	Windows	and	Macintosh	OS	X	have
standard	desktops.	From	the	desktop,	the	user	launches	programs,
manages	windows,	and	so	on.

An	operating	system’s	inner	layers	are	(for	the	most	part)	invisible
to	the	user.	While	the	user	plays	Solitaire,	the	operating	system	juggles
processes,	manages	files,	keeps	an	eye	on	security,	and	generally	does	the
kinds	of	things	that	the	user	shouldn’t	micromanage.

At	the	very	deepest	level	of	an	operating	system	is	the	system’s
kernel.	The	kernel	runs	directly	on	the	processor’s	hardware,	and	does	the
low-level	work	required	to	make	the	processor	run.	In	a	truly	layered
system,	higher	layers	accomplish	work	by	making	calls	to	lower	layers.
So	an	app	with	a	specific	hardware	request	sends	the	request	(directly	or
indirectly)	through	the	kernel.

The	best-known,	best-loved	general	purpose	operating	systems	are
Windows,	Macintosh	OS	X	(which	is	really	Unix),	and	Linux.	Windows
and	Mac	OS	X	are	the	properties	of	their	respective	companies.	But
Linux	is	open-source.	That’s	one	of	the	reasons	why	your	TiVo	runs
Linux,	and	why	the	creators	of	Android	based	their	platform	on	the	Linux
kernel.

	

Android’s	brand	of	Linux	is	an	outlier	among	Linuxes
(Linuces?).	Based	on	the	Linux	2.6.x	kernel,	Android	uses	stripped-
down	versions	of	many	commonly	-used	Linux	packages.	The
Android	shell	lacks	many	of	the	commands	sported	by	desktop
Linux	shells.	And	instead	of	glibc,	Android	uses	its	own	C-language
library	(named	Bionic).	There’s	also	some	tooth-gnashing	among
Linux	geeks	about	the	legitimacy	of	Android’s	drivers.	So	if	you
attend	a	Linux	rally	and	you	mention	Android,	be	sure	to	do	so	with
a	wry	look	on	your	face.	This	protects	you	in	case	the	person	you’re
talking	to	doesn’t	think	Android	is	“real”	Linux.

	Open-source	software	comes	in	many	shapes	and	sizes.	For
example,	there’s	the	GNU	General	Public	License	(GPL),	the
Apache	License,	the	GNU	Lesser	General	Public	License	(LGPL),
and	others.	When	considering	the	use	of	other	people’s	open-source
software,	be	careful	to	check	the	software’s	licensing	terms.	“Open-

source”	doesn’t	necessarily	mean	“do	anything	at	all	for	free	with
this	software.”
Figure	1-1	is	a	diagram	of	the	Android	operating	system.	At	the

bottom	is	the	Linux	kernel,	managing	various	parts	of	a	device’s
hardware.	The	kernel	also	includes	a	Binder,	which	handles	all
communication	among	running	processes.	(When	your	app	asks,	“Can
any	software	on	this	phone	tell	me	the	current	temperature	in	Cleveland,
Ohio?”,	the	request	for	information	goes	through	the	kernel’s	Binder.)

	

Figure	1-1:	The	Android	system	architecture.

At	the	very	top	of	Figure	1-1	are	the	applications	—	the	web
browser,	the	contacts	list,	the	games,	the	dialer,	your	own	soon-to-be-
developed	apps.	Both	developers	and	users	interact	mostly	with	this	layer.
Developers	write	code	to	run	on	this	layer,	and	users	see	the	outer	surface
of	the	apps	created	by	developers.

As	a	developer,	your	most	intimate	contact	with	the	Android
operating	system	is	through	the	command	line,	or	the	Linux	shell.	The
shell	uses	commands,	such	as	cd	to	change	to	a	directory,	ls	to	list	a
directory’s	files	and	subdirectories,	rm	to	delete	files,	and	many	others.

Google’s	Android	Market	has	plenty	of	free	terminal	apps.	A

terminal	app’s	interface	is	a	plain	text	screen	in	which	you	type	Linux
shell	commands.	And	with	one	of	Android’s	developer	tools,	the	Android
Debug	Bridge,	you	can	issue	shell	commands	to	an	Android	device
through	your	development	computer.	If	you	like	getting	your	virtual
hands	dirty,	the	Linux	shell	is	for	you.

	For	information	about	operating	systems’	command
interfaces,	see	Book	VI,	Chapter	3.	For	a	look	at	the	Android	Debug
Bridge,	see	Chapter	2	of	this	minibook.

The	Business	Perspective
I	admit	it.	I’m	not	an	entrepreneur.	I’m	a	risk-averse	person	with	a

preference	for	storing	money	in	mattresses.	My	closest	brush	with	a
startup	business	was	a	cab	ride	in	Kuala	Lumpur.	The	driver	wanted	me
to	help	finance	his	new	restaurant	idea.	“Not	Kentucky	Fried	Chicken!”
he	yelled.	“Kentucky	Fried	Duck!”

Anyway,	the	creation	and	selling	of	mobile	phone	apps	is	an
enormous	cottage	industry.	Google’s	Android	Market	had	300,000	apps
in	mid-2011.	By	the	time	you	read	this	book,	the	number	300,000	will
seem	pathetically	obsolete.	Add	the	marketing	potential	of	Amazon’s
Appstore	for	Android,	and	you	have	some	very	natural	distribution
channels	for	your	apps.

Anyone	can	post	an	app	on	Google’s	Android	Market	and	on
Amazon’s	Appstore.	You	can	post	free	apps,	paid	apps,	and	programs
with	in-app	billing.	You	can	test	an	app	with	a	select	group	of	users
before	making	your	app	available	to	everyone.	You	make	a	small	one-
time	payment	to	register	as	an	Android	developer.	Then	you	design	apps,
develop	apps,	and	post	apps	for	the	general	public.

Book	V	covers	the	business	of	posting	apps	on	Google’s	Android
Market	and	Amazon’s	Appstore	for	Android.	I	don’t	promise	that	you’ll
become	a	millionaire	selling	Android	apps,	but	I	promise	that	you’ll	have
fun	trying.

	

Chapter	2:	Installing	the	Software	Tools

In	This	Chapter
Putting	Android	tools	on	your	laptop	or	desktop

Tweaking	your	installation	settings
	

There	are	two	kinds	of	people	—	people	who	love	tools,	and	people
who	don’t	have	strong	feelings	about	tools.	(As	far	as	I	know,	no	one
dislikes	tools.)	I’m	a	tool	lover	because	I	enjoy	the	leverage	that	tools
give	me.	With	the	right	tool,	I	can	easily	do	things	that	would	otherwise
require	monumental	effort.	And	I	can	do	these	things	over	and	over	again,
getting	better	with	practice	using	the	tools	so	that	the	tasks	I’m	dealing
with	become	easier	as	time	goes	on.

Of	course,	my	tool-o-philia	isn’t	always	a	good	thing.	I’m	not	handy
with	skills	like	carpentry,	car	repair,	or	plumbing,	but	I	can’t	resist	buying
greasy	old	screwdrivers	and	other	such	tools	at	garage	sales.	Among	other
things,	I	have	what	I	think	is	the	world’s	biggest	monkey	wrench,	which	I
bought	several	years	ago	for	only	seven	dollars.	But	I’d	be	useless	(if	not
dangerous)	using	the	wrench,	so	it	sits	in	my	attic	waiting	for	my	kids	to
deal	with	it	when,	years	from	now,	they	inherit	my	house	full	of	junk.

But	software	tools	are	great.	They’re	not	greasy;	many	good	tools
are	free;	and	if	you	lose	a	tool,	you	can	usually	find	it	by	searching	your
computer’s	hard	drive.

Anyway,	this	chapter	is	about	Android	development	tools.	Enjoy!

Installing	the	Java	Development	Kit
Java	is	the	lingua	franca	of	Android	application	development.	To

write	Android	apps,	you	normally	use	Java.

	In	the	preceding	paragraph,	I	write	that	for	Android	apps,
you	normally	use	Java.	I’m	very	careful	not	to	imply	that	you	always
use	Java.	Android	enjoys	lots	of	different	development	modes.	For
example,	with	Android’s	Native	Development	Kit	(NDK),	you	can
write	code	that	runs	directly	on	a	device’s	hardware	in	C	or	C++.
You	can	develop	in	HTML	and	JavaScript	to	run	code	on	the
device’s	browser.	You	can	even	develop	in	Adobe	AIR.	And
companies	create	other	specialized	development	environments	all
the	time.	Even	so,	Java	is	the	language	of	choice	in	the	Android
community.	Google	creates	new	versions	of	Android	with	Java	in
mind.	And	in	general,	you	get	a	good	power-to-ease-of-use	ratio
when	you	develop	Android	apps	in	Java.

	For	a	closer	look	at	Android’s	Native	Development	Kit,	see
Book	VI.
To	develop	Android	apps,	you	need	the	Java	Development	Kit.	If

you	run	Windows,	Linux,	or	Solaris,	you	can	get	the	kit	at	the	Oracle.com
website	—	more	on	that	in	the	next	section.	Macintosh	users	have	a	few
other	possibilities,	which	I	detail	in	just	a	bit.

Java	for	Windows,	Linux,	and	Solaris
As	I	write	this	chapter,	the	exact	URL	for	downloading	the	Java

Development	Kit	for	Windows,	Linux,	or	Solaris	is
http://www.oracle.com/tech	network/java/javase/downloads.	I
don’t	expect	that	URL	to	work	forever	and	ever,	but	if	you	visit
http://www.oracle.com	and	poke	around	for	Java,	you’ll	certainly	reach
the	Java	Development	Kit	download	page.	One	way	or	another,	keep	a
few	things	in	mind:
•	Java	comes	in	three	separate	editions.

	

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com

A	bit	of	background	here:	A	programming	language	is	a	bunch	of	rules
describing	the	way	you	can	write	instructions	for	the	computer	to	follow.
An	application	programming	interface	(API)	is	a	bunch	of	reusable	code
for	performing	common	tasks	in	a	particular	language.	(Another	name	for
an	API	is	a	library.)

	
Now,	there’s	only	one	Java	language,	but	the	Java	language	has	three
official	APIs.	When	you	download	Java	from	www.oracle.com	you
download	some	Java	language	tools	and	one	of	the	three	Java	APIs.
Taken	together,	the	big	bundle	containing	the	language	tools	and	one	of
the	three	APIs	is	called	an	edition	of	the	Java	Software	Development	Kit
(SDK).	The	three	available	Java	SDK	editions	are	as	follows:

	
•	Java	Platform,	Standard	Edition	(Java	SE)

	
The	Standard	Edition	has	code	for	anything	you	can	imagine	doing	on	a

single	desktop	computer,	and	much	more.	This	edition	does	text-
handling,	mathematical	calculations,	input/output,	collections	of
objects,	and	much	more.

	
To	develop	Android	apps,	you	want	the	Java	Platform,	Standard	Edition.

	
•	Java	Platform,	Enterprise	Edition	(Java	EE)

	
The	Enterprise	Edition	has	code	for	things	you	do	on	an	industrial-

strength	server.	This	edition	includes	web	server	tools,	sophisticated
database	tools,	messaging	between	servers	and	clients,	management
of	systems,	and	the	entire	kitchen	sink.

	
•	Java	Platform,	Micro	Edition	(Java	ME)

	
The	Micro	Edition	has	code	for	small	devices,	such	as	phones,	TV	set-top

boxes,	and	Blu-ray	players.	This	edition	has	limited	capabilities	that
fit	nicely	into	special-purpose	devices	that	aren’t	as	powerful	as
today’s	computers.

http://www.oracle.com

	
At	first	glance,	the	Micro	Edition	seems	perfect	for	Android	app

development.	But	the	creators	of	Android	decided	to	bypass	Java	ME
and	create	their	own	micro	edition	of	sorts.	In	a	way,	the	Android
SDK	is	an	alternative	to	Java	ME.	To	be	more	precise,	the	Android
SDK	is	both	an	alternative	to	Java	ME	and	a	user	of	the	Java	SE.
(That	is,	the	Android	SDK	defers	to	Java	SE	to	perform	some
important	jobs.)

	

	The	stewards	of	Java	flip-flop	between	the	names	Java
Software	Development	Kit	and	Java	Development	Kit	(JDK).	The	two
names	are	synonymous.

	

	To	develop	Android	apps,	you	want	the	Java	Platform,
Standard	Edition.	If	you	already	have	Java’s	Enterprise	Edition	and	you
don’t	want	more	stuff	on	your	hard	drive,	the	Enterprise	Edition	is	okay.
But	the	Enterprise	Edition	has	much	more	than	you	need	for	developing
Android	apps,	and	the	extra	Enterprise	features	might	confuse	you.	(I
know	this	because	the	extra	Enterprise	features	confuse	me!)

	
•	Java	comes	in	several	different	versions,	with	several	updates	to
each	version.

	
Java’s	version	numbering	demonstrates	what	can	happen	when	the
marketing	department	disrupts	the	timeline	in	the	space-time	continuum.
Java’s	earliest	releases	were	numbered	“1.0.”	Next	came	version	“1.1”,
and	then	the	strangely	named	“Java	2,	version	1.2.”	The	extraneous	digit
2	hung	around	through	“Java	2,	version	1.3”,	“Java	2,	version	1.4”,	and
finally	“Java	2,	version	5.0.”	(The	spontaneous	jump	from	1.4	to	5.0	was

lots	of	fun.)
	

Next	up	was	“Java	6”	(with	no	extra	2	and	no	“.0”).	After	that	is	Java	7.
Each	version	is	updated	often,	so	a	visit	to	www.oracle.com	may	offer
Java	SE	7	Update	13	for	download.

	
Any	version	of	Java	starting	with	Java	2,	version	5.0	and	onward,	is	fine
for	Android	development.	Versions	like	1.4	are	not	sufficient.

	
•	Java	has	two	kinds	of	downloads.

	
When	you	visit	www.oracle.com,	you	see	two	acronyms	floating	around:
JRE	(Java	Runtime	Environment)	and	JDK	(Java	Development	Kit).	The
JRE	has	everything	you	need	in	order	to	run	existing	Java	programs.
Whether	you	know	it,	your	desktop	computer	probably	has	a	version	of
the	JRE.

	
The	JDK	has	everything	you	need	in	order	to	run	existing	Java	programs
and	everything	you	need	in	order	to	create	new	Java	programs.	The	JDK
has	the	entire	JRE	and	more.

	
As	an	Android	developer,	you	must	create	your	own	Java	programs.	So
the	download	that	you	want	is	the	JDK,	which	includes	the	JRE.	You	do
not	want	the	JRE	alone.

	

	Download	and	install	the	Java	JDK,	not	the	Java	JRE.
	

•	Java	might	come	with	other	tools.
	

A	glance	at	the	Java	download	page	shows	several	options	—	options	to
download	Java	with	NetBeans,	JavaFX,	the	Java	source	code,	the	Java	SE
documentation,	and	some	other	stuff.	You	might	find	the	Java	SE

http://www.oracle.com
http://www.oracle.com

documentation	helpful,	especially	if	you	don’t	want	to	repeatedly	visit
Oracle’s	online	Java	documentation.	But	the	rest	of	the	options
(NetBeans,	JavaFX,	and	the	others)	don’t	help	with	Android	app
development.

	

Those	pesky	filename	extensions
	On	a	Windows	computer,	the	filenames	displayed	in	My

Computer	or	in	Windows	Explorer	can	be	misleading.	You	may
visit	your	Downloads	directory	and	see	the	name	jdk-7u13-
windows-x64.	Instead	of	just	jdk-7u13-windows-x64,	the	file’s
full	name	is	jdk-7u13-windows-x64.exe.	In	other	directories	you
may	see	two	MyAndroidProgram	files.	What	you	don’t	see	is	that
one	file’s	real	name	is	MyAndroidProgram.java	and	the	other
file’s	real	name	is	MyAndroidProgram.class.
The	ugly	truth	is	that	My	Computer	and	Windows	Explorer	can
hide	a	file’s	extensions.	This	awful	feature	tends	to	confuse
people.	So	if	you	don’t	want	to	be	confused,	modify	the	Windows
Hide	Extensions	feature.	To	do	this,	you	have	to	open	the	Folder
Options	dialog	box.	Here’s	how:

In	Windows	XP	with	the	control	panel’s	default
(category)	view:	Choose	Start⇒Control	Panel⇒Appearance	and
Themes⇒Folder	Options.

In	Windows	Vista	or	Windows	7	with	the	control	panel’s
default	(category)	view:	Choose	Start⇒Control
Panel⇒Appearance	and	Personalization⇒Folder	Options.

In	Windows	XP,	Windows	Vista	or	Windows	7	with	the
control	panel’s	classic	view:	Choose	Start⇒Control
Panel⇒Folder	Options.
In	the	Folder	Options	dialog	box,	click	the	View	tab.	Then	look
for	the	Hide	Extensions	for	Known	File	Types	option.	Make	sure
that	this	check	box	is	not	selected.

	
After	you’ve	downloaded	the	Java	SE	JDK,	follow	the	instructions

at	www.oracle.com	for	installing	the	software.	On	Windows,	you
normally	double-click	a	file	with	the	.exe	extension.	On	Linux,	you

http://www.oracle.com

install	an	.rpm	file	or	run	a	self-extracting	.bin	file.	(I’ve	never	met	a
Linux	geek	who	didn’t	know	what	to	do	with	these	files.)

Java	for	Macintosh
To	develop	Android	programs	on	a	Mac,	you	need	OS	X	10.5.8	or

later,	and	your	Mac	must	have	an	Intel	processor.	(The	Android	docs	say
that	you	can’t	develop	Android	apps	on	a	PowerPC	Mac	or	on	a	Mac	with
OS	X	10.5.7.	Of	course,	for	every	hardware	or	software	requirement,
someone	tries	to	create	a	workaround,	or	hack.	Anyway,	apply	hacks	at
your	own	risk.)

To	find	out	which	version	of	OS	X	you’re	running,	do	the
following:

1.	Choose	Apple⇒About	This	Mac.
	 2.	In	the	About	This	Mac	dialog	that	appears,	look	for	the	word

Version.
	 You’ll	see	Version	10.6.4	(or	something	like	that)	in	very	light	gray

text.
	 After	deciding	that	you	have	OS	X	10.5.8	or	later,	the	next	step	is

finding	out	whether	your	system	already	has	the	Java	Development	Kit.
You	have	two	choices:
•	You	can	trust	me	on	the	subject	of	OS	X	version	numbers.

	
Macintosh	OS	X	10.5	(codenamed	Leopard)	and	OS	X	10.6	(codenamed
Snow	Leopard)	have	the	Java	Development	Kit	preinstalled.	If	you	have
either	version	of	OS	X	(possibly	with	more	dots	in	the	version	numbers,
such	as	10.6.4),	from	the	Java	point	of	view,	you’re	good	to	go.

	
Macintosh	OS	X	10.7	(codenamed	Lion)	comes	without	the	Java
Development	Kit.	So	if	you	purchased	OS	X	10.7	thinking	that	you’d
have	the	latest	and	the	best,	you	may	have	gotten	the	latest,	but
(depending	on	your	needs)	you	may	not	have	gotten	the	best.	But	don’t
despair.	Instead,	keep	reading.

	
If	you	don’t	trust	me	about	OS	X	version	numbers	(and	frankly,	you
shouldn’t	trust	everything	you	find	in	print),	you	have	the	following

alternative:
	

•	You	can	perform	tests	on	your	development	computer	to	discover
the	presence	of	a	Java	Development	Kit	and	of	a	development	kit’s
version	number.

	
You	have	several	choices	for	these	tests.	I	explore	two	of	the	choices	in
this	chapter	—	in	fact,	in	the	very	next	two	sections.

	

Run	Java	Preferences	to	determine	your	JDK
version

Here’s	how	you	run	the	utility:
1.	In	the	dock,	select	the	Finder.

	 A	Finder	window	opens.
	 2.	In	the	Finder	window’s	sidebar,	select	Applications.
	 A	list	of	applications	appears	in	the	Finder	window’s	main	panel.
	 3.	In	the	Finder	window’s	main	panel,	double-click	Utilities.
	 A	list	of	utilities	appears	in	the	Finder	window’s	main	panel.
	 4.	In	the	list	of	utilities,	look	for	a	Java	Preferences	entry.
	 If	you	don’t	find	a	Java	Preferences	entry,	don’t	fret	(.	.	.	not	yet,

anyway).	You	might	still	have	a	Java	Development	Kit.	Skip	to	the	test
described	in	the	next	section.

	 5.	If	you	have	a	Java	Preferences	entry,	double-click	that	entry.
	 After	an	uncomfortable	delay,	your	computer	displays	a	window

showing	information	about	your	computer’s	Java	Development	Kit.	My
Mac	displays	the	name	Java	SE	6	(along	with	the	more	cryptic	version
number	1.6.0_22-b04-307).	That’s	just	fine.

	

	To	develop	Android	applications,	you	need	Java	SE	5
(also	known	as	version	number	1.5.0)	or	higher.

	 If	the	Java	Preferences	utility	doesn’t	satisfy	your	needs,	you	can
poke	around	in	Macintosh’s	Unix	command	window.	The	next	session
tells	you	how.

Issue	a	Terminal	command	to	determine	your
JDK	version

To	determine	your	Mac’s	JDK	version,	follow	these	steps:
1.	In	the	Spotlight	search	field,	type	the	word	Terminal.

	 2.	When	Terminal	shows	up	as	the	Spotlight’s	top	hit,	press
Enter.

	 A	Terminal	window	opens	(usually	with	plain	black	text	on	a	plain
white	background).

	 3.	In	the	Terminal	window,	type	the	following	text	and	then
press	Enter:

	 javac	-version
On	my	computer,	the	Terminal	window	responds	with	the	following

text:
	 javac	1.6.0_22

If	your	computer	responds	with	the	number	1.5.0	or	higher,	you
can	pop	open	the	champagne	and	look	forward	to	some	good	times
developing	Android	apps.

	
	

The	Macintosh	Terminal	presents	a	strange	(sometimes
confusing)	mix	of	case-sensitivity	and	“case-unsensitivity.”	For	example,
to	see	a	list	of	users,	you	can	type	either	w	or	W	on	the	Terminal
command	line.	To	see	a	manual	page	describing	that	w	command,	you
may	type	man	w,	MAN	w,	or	even	mAn	w.	But	if	you	type	man	W,	you
get	the	unfriendly	No	manual	entry	for	W	response.	In	the	same	way,
the	javac	-version	command	requires	all	the	letters	in	version	to	be

lowercase.	Typing	the	incorrect	javac	-Version	command	gives	you	a
disappointing	invalid	flag:	-Version	message.

	 If	your	computer	responds	with	something	like	command	not	found,
you	may	be	running	Mac	OS	X	10.7.0	or	later.	If	your	computer	responds
with	a	version	number	like	1.4.2	(or	anything	else	that’s	less	than
1.5.0),	you	may	be	running	an	older	version	of	Mac	OS	X.

	
If	your	Mac	doesn’t	have	the	Java	JDK	version
1.5.0	or	greater	.	.	.

As	usual,	here	are	a	few	things	you	can	try:
•	Visit	www.oracle.com/technetwork/java/javase/downloads	and	look
for	a	version	of	the	Java	JDK	for	the	Mac.	With	the	release	of	OS	X	10.7,
Apple	agreed	to	let	Oracle	take	charge	of	the	JDK	on	the	Macintosh.	By
the	time	you	read	this	chapter,	Oracle	may	have	posted	this	software	on
its	website.	If	you	don’t	find	the	software	on	Oracle’s	site,	you	can	also
look	for	links	at	http://openjdk.org.

	
•	Visit	http://code.google.com/p/openjdk-osx-build/downloads/
list?q=label:Featured	and	look	for	a	prerelease	version	of	Java	for
Mac	OS	X	Lion.

	
•	Choose	Apple⇒Software	Update.	In	the	resulting	window,	look	for	any
update	having	to	do	with	Java.

	
•	Search	for	Java	at	http://developer.apple.com.	Poke	around	and
look	for	a	version	of	Java	for	your	version	of	Mac	OS	X.

	

Installing	the	Android	SDK	Starter	Package
The	Android	Software	Development	Kit	(SDK)	contains	the	libraries

that	you	need	for	developing	Android	applications.	The	SDK	has	code	for
drawing	forms	on	a	device’s	screen,	code	for	dialing	phone	numbers,
code	for	taking	pictures	with	the	device’s	camera,	and	a	lot	more.	The	kit
also	contains	barebones	tools	for	creating,	running,	and	testing	your

http://www.oracle.com/technetwork/java/javase/downloads
http://openjdk.org
http://code.google.com/p/openjdk-osx-build/downloads/list?q=label:Featured
http://developer.apple.com

Android	applications.	By	barebones	tools,	I	mean	tools	that	you	can	run
by	typing	instructions	in	your	development	computer’s	command	window
(in	the	Command	Prompt	on	Windows,	or	in	the	Terminal	application	on
Linux	and	on	a	Mac).	These	tools	perform	all	the	logic	required	to	do
full-fledged	Android	development,	but	the	SDK	has	no	friendly	user
interface	for	invoking	these	tools.	That	friendly	user	interface	comes	in
the	next	section,	when	you	install	Eclipse.

	

As	you	plow	through	various	pieces	of	documentation,
you’ll	see	several	uses	of	the	acronym	API.	In	the	previous	section,
the	Java	API	is	a	bunch	of	reusable	code	for	performing	common
tasks	with	the	Java	programming	language.	In	this	section,	the
libraries	in	the	Android	SDK	form	the	Android	API	—	a	bunch	of
reusable	code	for	performing	common	tasks	inside	Android	apps.	To
create	Android	apps,	you	need	both	APIs	—	the	Java	API	and	the
Android	API.
You	normally	drink	down	Android’s	SDK	in	two	separate	gulps.

First,	you	get	the	Android	SDK	starter	package	—	hence,	the	title	for	this
section.	Then	you	use	the	starter	package	to	install	the	real	Android	SDK.

	This	separation	between	the	SDK	starter	package	and	the
actual	SDK	can	be	confusing	because	the	Android	website	doesn’t
clearly	highlight	the	distinction.
To	install	the	Android	SDK	starter	package,	follow	these	steps:
1.	Visit	http://developer.android.com.

	 2.	On	the	main	page	that	appears,	click	the	link	to	download	the
Android	SDK.

	 3.	Find	a	link	appropriate	to	your	operating	system	(Windows,
Mac	OS	X,	or	Linux).

http://developer.android.com

	 4.	Click	the	link	to	begin	the	download.
	 For	Windows,	the	web	page	provides	two	download	options	—	a

.zip	file	download	and	an	.exe	file	download.	If	you’re	not	sure	which
file	you	want,	choose	the	.exe	file	download.

	Today	I	stumbled	on	a	little	bug	in	the	Android	SDK	starter
package	installation	file	for	Windows.	After	installing	the	Java
Development	Kit	and	then	launching	the	starter	package	installation
program,	I	got	a	window	telling	me	Java	SE	Development	Kit
(JDK)	not	found.	Hey,	what	gives?	I	installed	the	JDK!	Well,	I
searched	online	for	a	solution	to	the	problem.	If	I	click	the	window’s
Back	button	and	then	click	the	window’s	Next	button	again,	the	evil
JDK	Not	Found	message	goes	away.	(Actually,	if	you	encounter	this
bug,	there’s	another	way	around	it.	Forget	about	the	starter
package’s	.exe	file	and	instead	download	the	alternative	Android
SDK	starter	package	.zip	file.	Then	extract	the	.zip	file	to	a	place
on	your	computer’s	hard	drive.)
For	Mac	OS	X	and	for	Linux,	the	web	page	provides	a	compressed

archive	file	(a	.zip	file	for	Mac	OS	X	and	a	.tgz	file	for	Linux).
Whichever	file	you	download,	double-click	the	file	to	view	the	file’s
contents	and	then	drag	the	file’s	contents	to	a	convenient	place	on	your
computer’s	hard	drive.

	

If	time	has	passed	since	I	wrote	this	section	and	you	find
other	formats	for	Android	SDK	downloads	(.dmg	files,	.bin	files,
and	so	on),	close	your	eyes	and	point	to	the	screen.	If	you	select	any
file	that’s	appropriate	for	your	operating	system,	you’ll	be	okay.
Whatever	operating	system	you	run,	whichever	file	format	you

download,	make	sure	you	know	where	(among	the	folders	on	your	hard
drive)	the	Android	SDK	starter	package	gets	installed.	(That’s	where	the
entire	SDK	will	soon	be	installed.)	I	call	this	folder	the
ANDROID_HOME	directory.	You’ll	refer	back	to	this	location	to	find
files	that	you	need	and	to	tell	parts	of	your	system	where	the	Android
libraries	live.

	You	can	find	out	a	bit	more	by	browsing	your
ANDROID_HOME	directory’s	contents.	The	directory	has	folders
named	docs,	platform-tools,	platforms,	samples,	tools,	and
others.

Installing	the	Eclipse	Development
Environment

An	integrated	development	environment	(IDE)	is	a	program	that
provides	tools	to	help	you	create	software	easily	and	efficiently.	You	can
develop	software	(including	Android	apps)	without	an	IDE,	but	the	time
and	effort	you	save	using	an	IDE	makes	the	IDE	worthwhile.	(Some
hard-core	developers	disagree	with	me,	but	that’s	another	matter.)

According	to	the	Eclipse	Foundation’s	website,	Eclipse	is	“a
universal	tool	platform	—	an	open	extensible	IDE	for	anything	and
nothing	in	particular.”	Indeed,	Eclipse	is	versatile.	Most	developers	think
of	Eclipse	as	an	IDE	for	developing	Java	programs,	but	Eclipse	has	tools
for	developing	in	C++,	in	PHP,	and	in	many	other	languages.	I’ve	seen
incarnations	of	Eclipse	that	have	nothing	to	do	with	program
development.	(I’ve	even	seen	Lively	Browser	—	a	web	browser	whose
tabs	are	built	from	Eclipse	components.)

Downloading	Eclipse
Here’s	how	you	download	Eclipse:
1.	Visit	www.eclipse.org.

	 2.	Look	for	a	way	to	download	Eclipse	for	your	operating

http://www.eclipse.org

system.
	 Today,	I	visit	www.eclipse.org	and	see	a	big	button	displaying	the

words	Get	Started	Now	.	.	.	Download	Eclipse.	Tomorrow,	who	knows?
	 After	clicking	the	Download	Eclipse	button,	I	see	a	drop-down	list

with	the	names	of	three	commonly	used	operating	systems	—	Windows,
Linux,	and	Mac	OS	X.	In	this	drop-down	list,	I	select	the	operating
system	that’s	installed	on	my	development	computer.

	 3.	Choose	an	Eclipse	package	from	the	available	packages.
	 As	I	look	at	the	Eclipse	site	today,	I	see	Eclipse	IDE	for	Java

Developers,	Eclipse	IDE	for	Java	EE	Developers,	Eclipse	Classic,	Eclipse
IDE	for	C/C++	Developers,	and	others.	To	my	great	surprise,	I	also	see
MOTODEV	Studio	for	Android.

	 For	developing	Android	apps,	I	recommend	either	Eclipse	IDE	for
Java	Developers	or	MOTODEV	Studio	for	Android.	As	luck	would	have
it,	these	are	the	two	smallest	downloads	in	the	list.	(Each	is	a	mere
100MB.)

	 In	mid-2011	(where	I	live	at	the	moment,	probably	ancient	times	for
you,	the	reader),	most	of	the	Android	developer	documentation	refers	to
plain	old	Eclipse	(that	is,	Eclipse	IDE	for	Java	Developers).	So	I	hesitate
to	recommend	MOTODEV	Studio	exclusively.	But	from	what	I’ve	heard,
MOTODEV	Studio	has	all	the	Android	tools	of	Eclipse	IDE	for	Java
Developers,	plus	more.	So	if	you	don’t	mind	seeing	more	options	on	your
screen	than	the	documentation	normally	describes,	get	MOTODEV
Studio	for	Android.	If	you	want	a	plainer	environment,	select	Eclipse	IDE
for	Java	Developers.

	

	When	winds	blow	to	the	northeast,	and	the	moon	is
full,	the	Eclipse	downloads	page	doesn’t	offer	you	the	option	of	getting
MOTODEV	Studio.	In	that	case,	you	can	download	MOTODEV	Studio
directly	from	http://developer.motorola.com.

	

http://www.eclipse.org
http://developer.motorola.com

	If	you	prefer,	you	can	install	the	MOTODEV	tools	as	a
plug-in	to	your	existing	Eclipse	installation.	Visit
http://developer.motorola.com	for	details.

	 4.	Select	32-bit	or	64-bit.
	 For	most	Eclipse	packages,	you	can	choose	between	the	32-bit

version	and	the	64-bit	version.	If	you	know	that	you’re	running	a	64-bit
operating	system,	choose	the	64-bit	package.	If	you’re	running	a	32-bit
operating	system,	or	if	you’re	not	sure,	choose	the	32-bit	package.

	 5.	Follow	the	appropriate	links	to	get	the	download	to	begin.
	 The	links	you	follow	depend	on	which	of	the	many	mirror	sites	is

offering	up	your	download.	Just	wade	through	the	possibilities	and	get	the
download	going.

	
Installing	Eclipse

Precisely	how	you	install	Eclipse	depends	on	your	operating	system
and	on	what	kind	of	file	you	get	when	you	download	Eclipse.	Here’s	a
brief	summary:
•	If	you	run	Windows	and	the	download	is	an	.exe	file:

	
Double-click	the	.exe	file’s	icon.

	
•	If	you	run	Windows	and	the	download	is	a	.zip	file:

	
Extract	the	file’s	contents	to	the	directory	of	your	choice.

	
In	other	words,	find	the	.zip	file’s	icon	in	Windows	Explorer.	Then
double-click	the	.zip	file’s	icon.	(As	a	result,	Windows	Explorer	displays
the	contents	of	the	.zip	file,	which	consists	of	only	one	folder	—	a	folder
named	eclipse.)	Drag	the	eclipse	folder	to	a	convenient	place	in	your
development	computer’s	file	system.

	

http://developer.motorola.com

My	favorite	place	to	drag	the	eclipse	folder	is	directly	onto	the	C:	drive.
So	my	C:	drive	has	folders	named	Program	Files,	Windows,	eclipse,
and	others.	I	avoid	making	the	eclipse	folder	be	a	subfolder	of	Program
Files	because	from	time	to	time,	I’ve	had	problems	dealing	with	the
blank	space	in	the	name	Program	Files.

	
After	copying	the	eclipse	folder	to	a	place	on	your	hard	drive,	you	can
run	Eclipse	by	double-clicking	the	eclipse.exe	file	inside	that	folder.

	
•	If	you	run	Mac	OS	X:

	
If	you	download	a	.tar.gz	file,	find	the	file	in	your	Downloads	folder
and	double-click	it.	Double-clicking	the	file	should	extract	the	file’s
contents.	After	extraction,	your	Downloads	folder	contains	a	new	Eclipse
folder.	Drag	this	new	Eclipse	folder	to	your	Applications	folder,	and
you’re	all	set.

	
If	you	download	a	.dmg	file,	your	web	browser	may	open	the	file	for	you.
If	not,	find	the	.dmg	file	in	your	Downloads	folder	and	double-click	the
file.	Follow	any	instructions	that	appear	after	this	double-click.	If	you’re
expected	to	drag	Eclipse	or	MOTODEV	Studio	into	your	Applications
folder,	do	so.

	
•	If	you	run	Linux:

	
You	might	get	a	.tar.gz	file,	but	there’s	a	chance	you’ll	get	a	self-
extracting	.bin	file.	Extract	the	.tar.gz	file	to	your	favorite	directory,	or
execute	the	self-extracting	.bin	file.

	

Configuring	Eclipse
Your	Eclipse	installation	might	need	a	bit	of	tuning.	Here’s	what

you	do:
1.	Launch	Eclipse.

	 When	you	launch	Eclipse,	you	see	a	Workspace	Launcher	dialog

box.	The	dialog	box	asks	where,	on	your	computer’s	file	system,	you
want	to	store	the	code	that	you	will	create	using	Eclipse.

	 2.	In	the	Workspace	Launcher	dialog	box,	click	OK	to	accept
the	default.

	 Or	don’t	accept	the	default!	One	way	or	another,	it’s	no	big	deal.
	 If	this	is	your	first	time	using	a	particular	Eclipse	workspace,

Eclipse	starts	up	with	a	Welcome	screen.	Through	the	ages,	most	of	the
Eclipse	Welcome	screens	have	displayed	a	few	icons	along	with	very
little	text.

	 3.	Hover	over	the	icons	on	Eclipse’s	Welcome	screen	until	you
find	an	icon	whose	tooltip	contains	the	word	Workbench.

	 4.	Click	the	Workbench	icon	to	open	Eclipse’s	main	screen.
	 A	view	of	the	main	screen,	after	opening	Eclipse	with	a	brand	new

workspace,	is	shown	in	Figure	2-1.	If	you	downloaded	MOTODEV
Studio	for	Android	(a	particular	version	of	Eclipse),	you	see	the	main
screen	in	Figure	2-2.

	
	

Figure	2-1:	The	Eclipse	workbench	with	a	brand	new	workspace.

Eclipse	is	running.	Now	the	fun	begins.

Do	I	have	the	Eclipse	Android	Development	Kit?
Eclipse	is	a	generic	platform.	Eclipse	doesn’t	owe	its	existence	to

Android.	When	you	download	Eclipse,	you	don’t	necessarily	get	any
tools	that	are	useful	for	developing	Android	apps.

	

Figure	2-2:	The	MOTODEV	Studio	workbench	with	a	brand	new	workspace.

But	Eclipse	is	well	known	for	its	plug-ins.	Eclipse	plug-ins	add	all
kinds	of	tools	to	the	barebones	Eclipse	platform.	In	fact,	even	Eclipse’s
signature	tool,	Java	Development	Tools	(JDT),	is	a	plug-in.

To	develop	Android	apps,	you	need	Eclipse’s	ADT	—	the	Android
Development	Tools	—	plug-in.	If	you	download	Eclipse	in	the	form	of
MOTODEV	Studio	for	Android,	you	get	the	ADT	along	with	the	big
download.

To	find	out	if	your	Eclipse	installation	has	the	ADT	plug-in,	choose
File⇒New⇒Project	in	Eclipse’s	main	menu.	If	Eclipse	displays	anything
about	an	Android	project,	you’re	home	free.

If	you	already	have	Eclipse	on	your	computer,	or	if	you	download	a
non-Android-specific	version	of	Eclipse,	your	Eclipse	installation

probably	doesn’t	have	the	ADT	plug-in.	You	can	add	the	ADT	to	Eclipse
by	following	these	instructions:

1.	In	Eclipse’s	main	menu,	choose	Help⇒Install	New	Software.
	 An	Install	dialog	box	opens.
	 2.	In	the	Install	dialog	box,	click	the	Add	button.
	 An	Add	Repository	dialog	box	opens.
	 3.	In	the	Add	Repository	dialog	box,	type	a	name	(ideally,	a

name	that	reminds	you	of	the	Android	ADT)	and	a	location	URL	(see
Figure	2-3).

	 The	Add	Repository	dialog’s	Location	field	isn’t	like	your	Web
browser’s	Address	field.	You	can’t	surf	to	https://dl-
ssl.google.com/android/eclipse/	in	a	web	browser.	No	ordinary	web
page	has	this	address.	Instead,	you	must	use	the	URL	in	an	Eclipse	dialog
box,	as	I	describe	in	these	steps.	Also,	when	you	type	this	URL,	you	can’t
abbreviate	the	URL	by	omitting	the	https://	part.	(The	s	in	https
stands	for	“secure.”)

	

	The	Add	Repository	dialog	box’s	Location	field	isn’t
like	your	web	browser’s	Address	field.	You	can’t	abbreviate	the	URL	by
omitting	the	https://	part.	(And,	by	the	way,	the	s	in	https	stands	for
secure.)

	
	

Figure	2-3:	Eclipse’s	Add	Repository	dialog	box.

https://dl-ssl.google.com/android/eclipse/

4.	Click	OK	to	close	the	Add	Repository	dialog	box.
	 At	this	point	in	your	journey,	the	Install	dialog	box	displays	a	list	of

plug-ins	that	are	available	on	your	location	URL’s	server.	(See	Figure	2-
4.)	If	you’re	like	me,	you	want	everything.

	
	

Figure	2-4:	The	Install	dialog	box.

5.	Click	the	Select	All	button	and	then	click	Next.
	 At	this	point,	Eclipse	asks	for	your	acceptance	of	the	license

agreement’s	terms	(which	include	no	mention	of	your	first-born	child).
	 6.	Accept	the	agreement	and	follow	any	other	instructions	that

Eclipse	throws	at	you.
	 After	some	clicking	and	agreeing,	your	download	begins.	The	plug-

in	installs	itself	automatically	into	Eclipse.	When	the	download	is
finished,	you	have	the	Eclipse	Android	Development	Tools	plug-in.

	

Dude,	where’s	my	Android	SDK?
After	installing	Eclipse’s	Android	Development	Tools,	the	next	step

is	to	make	sure	that	Eclipse	knows	where	to	find	the	Android	SDK	(the
stuff	that	you	download	a	few	sections	back).	To	do	this,	follow	these
steps:

1.	In	Eclipse’s	main	menu,	choose	Window⇒Preferences.
	 Eclipse’s	Preferences	dialog	box	opens.
	 2.	In	the	tree	list	on	the	left	side	of	the	Preferences	dialog	box,

select	Android.
	 Don’t	expand	the	Android	branch	of	the	tree.	Simply	click	the	word

Android.
	 An	SDK	Location	field	appears	in	the	main	body	of	the	Preferences

dialog	box.	(See	Figure	2-5.)
	

	

Figure	2-5:	Telling	Eclipse	about	the	location	of	your	Android	SDK.

At	this	point,	the	installing	of	Eclipse	or	MOTODEV	Studio	may
have	automatically	filled	in	the	SDK	Location	field	(shown	in	Figure	2-
5).	If	so,	you’re	finished	with	this	set	of	instructions.	If	so,	skip	Step	3.

	 3.	Click	the	Browse	button	and	(of	course)	browse	to	the	folder
on	your	hard	drive	where	you	installed	the	Android	SDK.

	 In	a	previous	section,	I	called	this	folder	your	ANDROID_HOME
directory.

	 4.	Click	Apply,	OK,	and	all	those	good	things	to	return	to	the
main	Eclipse	workbench.

	

	After	selecting	a	location	for	the	Android	SDK,	you	may	see
a	message	saying	SDK	Platform	Tools	component	is	missing!
Please	use	the	SDK	Manager	to	install	it.	As	ferocious	as
this	message	looks,	the	message	isn’t	disastrous.	The	message
simply	warns	you	that	you	must	perform	this	chapter’s	next	set	of
steps.

	Look	again	at	Figure	2-5	and	notice	the	text	field	in	the
window’s	upper-left	corner.	That	unlabeled	text	field	is	for	filtering
the	names	of	Eclipse	preference	types.	The	tree	of	preference	types
(part	of	which	is	shown	in	Figure	2-5)	expands	to	approximately	150
branches,	and	each	branch	refers	to	its	own	set	of	choices	in	the
main	body	of	the	Preferences	window.	If	you	want	to	see	a	bunch	of
Eclipse	preferences	related	to	font	(for	example),	type	font	in	the
little	text	field.	When	you	type	font,	Eclipse	displays	only	branches
of	the	tree	containing	the	word	font.

Fattening	Up	the	Android	SDK
In	the	earlier	“Installing	the	Android	SDK	Starter	Package”	section,

you	install	the	starter	portion	of	the	Android	SDK.	At	this	point	in	your
travels,	you	install	the	rest	of	the	SDK.	The	following	section	tells	you
how.

Installing	platform	tools
Like	everything	else	in	this	world,	Android	changes.	One	month,

developers	work	with	Android	2.3,	codenamed	Gingerbread.	Later	that
year,	developers	use	Android	3.0,	codenamed	Honeycomb.	Each	version
of	Android	represents	a	new	platform	or	a	new	API	level,	depending	on
the	way	you	refer	to	the	version.

	For	more	information	about	Android	API	levels,	visit
http://developer.android.com/guide/appendix/api-

levels.html#level.

	Terms	like	platform	and	API	level	have	slightly	different
meanings	in	the	Android	world.	But	as	a	rule,	platforms	and	API
levels	change	in	lockstep.	For	example,	the	Éclair	Android	release
was	platform	2.1,	API	level	7.	The	next	release,	Froyo	(“frozen
yogurt”)	was	platform	2.2,	API	level	8.
Before	you	conclude	that	Éclair	was	once	Android’s	“flavor	of	the

month,”	I	should	point	out	that	new	Android	releases	tend	to	arrive	every
five	or	six	months.	Each	Android	release	is	installed	on	various	devices,
and	those	devices	may	keep	these	releases	a	long,	long	time.

Anyway,	the	Android	SDK	comes	with	several	developer	tools	—
tools	for	compiling,	testing,	and	debugging	Android	code.	Some	of	these
tools	don’t	change	from	one	Android	release	to	another.	For	example,	to
test	your	code,	you	usually	start	by	running	the	code	on	an	emulator.	The
emulator	program	runs	on	your	development	computer	(your	PC,	your
Mac,	or	your	Linux	computer).	The	emulator	displays	a	picture	of	a
mobile	device	(for	example,	a	phone	or	a	tablet	device).	The	emulator
shows	you	how	your	code	will	probably	behave	when	you	later	run	your
code	on	a	real	phone	or	a	real	tablet	device.

Now,	an	emulator	doesn’t	change	much	from	one	Android	platform
to	another.	After	all,	an	emulator	represents	the	general	capabilities	of
mobile	devices	in	the	marketplace.	There	are	hundreds	of	makes	and
models	of	such	devices,	and	the	engineers	who	design	all	this	hardware
don’t	sit	around	waiting	for	the	mythical	Android	7.5,	codenamed	Sugar
High,	to	be	released	in	the	year	2015.	Emulators	and	Android	platforms
don’t	change	in	lockstep.	So	when	you	download	the	Android	SDK
starter	package	(as	you	do	in	an	earlier	section)	you	get	the	emulator	tool
as	part	of	the	package.	This	emulator	tool	lives	in	a	tools	folder	inside

http://developer.android.com/guide/appendix/api-levels.html#level

your	ANDROID_HOME	directory.
As	timeless	as	the	emulator	tool	may	be,	some	of	the	SDK’s	other

tools	are	intimately	tied	to	their	respective	Android	versions.	For
example,	the	Android	Debug	Bridge	(adb)	is	a	tool	to	connect	your
development	computer	to	a	device	that’s	executing	your	new	code.	(The
adb	also	“connects”	your	development	computer	to	a	running	emulator,
even	though	the	emulator	is	running	on	your	development	computer.)	The
adb	is	an	invaluable	tool	for	testing	Android	applications.	The	creators	of
Android	revise	the	adb	with	every	new	Android	platform,	so	the	adb	isn’t
in	the	tools	folder,	and	the	adb	doesn’t	come	with	the	Android	SDK
starter	package.	Instead,	the	adb	is	destined	to	reside	in	the	platform-
tools	directory	(a	subdirectory	of	your	ANDROID_HOME	directory).
To	create	the	platform-tools	directory	and	to	populate	the	directory
with	things	like	adb,	you	run	a	program	that	comes	with	the	starter
package.	Fortunately,	you	can	do	this	by	pointing	and	clicking	within	the
Eclipse	development	environment.

1.	In	Eclipse’s	main	menu,	choose	Window⇒Android	SDK	and
AVD	Manager.

	 After	selecting	this	option,	Eclipse	opens	a	new	window.	You’ll
never	guess	what	the	window’s	name	is.

	

	After	choosing	Window⇒Android	SDK	and	AVD
Manager,	you	may	see	a	troublesome	message	that	tells	you	Location	of
the	Android	SDK	has	not	been	setup	in	the	preferences.	If	you
do,	return	to	the	section	titled	“Dude,	where’s	my	Android	SDK?”	earlier
in	this	chapter.

	 2.	In	the	left	panel	of	the	Android	SDK	and	AVD	Manager
window,	select	Available	Packages.

	 In	the	main	panel,	you	see	a	tree	with	a	branch	labeled	Android
Repository.

	 3.	Click	the	little	plus	sign	to	expand	the	Android	Repository
branch	of	the	tree.

	 When	the	branch	expands,	you	see	a	whole	bunch	of	stuff,	including

Android	SDK	Platform-Tools,	SDK	Platform	Android	2.2,	Samples	for
SDK	API	11,	and	many	others.

	 4.	Place	a	check	mark	next	to	the	Android	Repository	label.
	 When	you	do	so,	Eclipse	automatically	puts	check	marks	in	all	the

subbranches	of	the	Android	Repository	branch,	as	shown	in	Figure	2-6.
Now	you’re	ready	to	start	downloading	all	the	platform-specific	stuff.

	
	

Figure	2-6:	Choosing	from	the	list	of	available	packages.

5.	In	the	lower-right	corner	of	the	Android	SDK	and	AVD
Manager	window,	click	Install	Selected.

	 6.	Do	any	remaining	license	accepting	and	clicking	to	make	the
download	begin.

	
Creating	an	Android	Virtual	Device

You	might	be	itching	to	run	some	code,	but	first	you	must	have
something	that	can	run	an	Android	program.	By	“something,”	I	mean
either	an	Android	device	(a	phone,	a	tablet,	an	Android	enabled
refrigerator,	whatever)	or	a	virtual	device.	An	Android	Virtual	Device
(AVD)	is	a	test	bed	for	Android	code	on	your	development	computer
(your	PC,	your	Mac,	or	your	Linux	computer).

Steal	this	AVD!
	You	can	copy	an	AVD	from	someone	else’s	computer.	That	is,

you	don’t	really	have	to	create	an	AVD.	You	can	use	an	AVD

that’s	already	been	created.	On	your	development	computer’s	hard
drive,	an	AVD	is	an	.ini	file	and	a	folder	full	of	configuration
information.
For	example,	my	computer’s	C:\Users\my-user-
name\.android\avd\	folder	has	files	named	Gingerbread.ini,
Honeycomb.ini,	and	so	on.	When	I	open	Honeycomb.ini	in	a	text
editor,	I	see	this:

target=android-11
path=C:\Users\my-user-name\.android\avd\Honeycomb.avd

Don’t	let	the	dot	in	the	name	Honeycomb.avd	fool	you.	The	name
Honeycomb.avd	refers	to	a	folder.	This	folder	contains	files	like
config.ini,	which	in	turn	describes	the	emulator’s	SD	card	size,
RAM	size,	and	so	on.	Here	are	a	few	lines	from	a	config.ini	file:

hw.lcd.density=160
sdcard.size=100M
hw.ramSize=256

To	copy	an	AVD	from	someone	else’s	computer,	copy	the	.avd
folder	to	your	development	computer’s	hard	drive.	Then	create	an
.ini	file	like	my	Honeycomb.ini	file.	(Don’t	forget	to	replace	my
target	and	path	values	with	values	that	are	appropriate	for	your
computer.)	Put	all	this	stuff	in	your	user	home’s	.android\avd
folder	(or	wherever	fine	AVD	files	are	stored).

	
Based	on	the	stuff	in	the	previous	section,	you	may	think	that	you

download	AVDs	when	you	install	the	Android	SDK	starter	package.
After	all,	the	starter	package	includes	an	emulator	as	part	of	its	tools
directory.	The	problem	is,	the	SDK’s	emulator	isn’t	the	same	as	an	AVD.
The	emulator	is	a	generic	program	that	translates	Android	code	into	code
that	your	development	computer	can	execute.	But	the	emulator	doesn’t
display	a	particular	phone	or	tablet	device	on	your	screen.	The	emulator
doesn’t	know	what	kind	of	device	you	want	to	display.	Do	you	want	a

camera	phone	with	800-x-480-pixel	resolution,	or	have	you	opted	for	a
tablet	device	with	its	own	built-in	accelerometer	and	gyroscope?	All	these
choices	belong	to	a	particular	AVD.	An	AVD	is	actually	a	bunch	of
settings,	telling	the	emulator	all	the	details	about	the	device	to	be
emulated.

So	before	you	can	run	Android	apps	on	your	computer,	you	must
first	create	at	least	one	AVD.	In	fact,	you	can	create	several	AVDs	and
use	one	of	them	to	run	a	particular	Android	app.

To	create	an	AVD,	follow	these	steps:
1.	In	Eclipse’s	main	menu,	choose	Window⇒Android	SDK	and

AVD	Manager.
	 The	Android	SDK	and	AVD	Manager	window	opens.
	 2.	In	the	Android	SDK	and	AVD	Manager	window,	click	New,

as	shown	in	Figure	2-7.
	 The	Create	New	Android	Virtual	Device	(AVD)	window	opens.

That’s	nice!
	

	

Figure	2-7:	An	old	friend,	the	Android	SDK	and	AVD	Manager.

3.	Create	a	name	for	your	virtual	device.
	 You	can	name	your	device	My	Sweet	Petunia,	but	in	Figure	2-8,	I

name	my	device	Gingerbread-800by480.	The	name	serves	to	remind	me
of	this	device’s	capabilities.

	
	

Figure	2-8:	Creating	a	new	Android	virtual	device.

4.	Select	a	target	platform	for	your	virtual	device.
	 In	Figure	2-8,	I	select	the	Android	2.3.3	platform.	My	virtual	device

can	run	Android	2.3.3	programs.
	 5.	Decide	what	kind	of	secure	digital	(SD)	card	your	device	has.
	 In	Figure	2-8,	I	decide	on	an	SD	card	with	a	modest	1000	MiB,

which	is	roughly	1GB.	Alternatively,	I	could	have	selected	the	File	radio
button	and	specified	the	name	of	a	file	on	my	hard	drive.	That	file	would
be	storing	information	as	if	it	were	a	real	SD	card	on	a	real	device.

	

	Recently,	my	department	hired	a	new	person.	We
offered	a	salary	of	$50K,	which	(we	thought)	meant	$50,000	per	year.
Little	did	we	know	that	the	new	person	expected	to	be	paid	$51,200	each
year.	Computer	scientists	use	the	letter	K	(or	the	prefix	“Kilo”)	to	mean
1,024	because	1,024	is	a	power	of	2	(and	powers	of	2	are	very	handy	in
computer	science).	The	trouble	is,	the	formal	meaning	of	“Kilo”	in	the
metric	system	is	1,000,	not	1,024.	To	help	clear	things	up	(and	to	have
fun	creating	new	words)	a	commission	of	engineers	created	the	Kibibyte
(KiB)	meaning	1,024	bytes,	the	Mebibyte	(MiB)	which	is	1,048,576
bytes,	and	the	Gibibyte	(GiB)	meaning	1,073,741,824	bytes.	Most	people
(computer	scientists	included)	don’t	know	about	KiBs	or	MiBs,	and	don’t
worry	about	the	difference	between	MiBs	and	ordinary	megabytes.	I’m
surprised	that	the	developers	of	Android’s	SDK	and	AVD	Manager
thought	about	this	issue.

	 6.	Select	or	specify	a	display	resolution	for	your	virtual	device.
	 In	Figure	2-8,	I	chose	the	default	WVGA800	resolution,	which	is

800x480	pixels.
	 7.	Leave	the	other	choices	at	their	defaults	(or	don’t,	if	you	don’t

want	to)	and	click	the	Create	AVD	button.
	 Your	computer	returns	you	to	the	Android	SDK	and	AVD	Manager

window,	where	you	see	a	brand-new	AVD	in	the	list.	(See	Figure	2-9.)
	

	

Figure	2-9:	You’ve	created	an	Android	virtual	device.

	

This	section’s	steps	work	with	any	copy	of	Eclipse	that	has
the	Android	Development	Tools	plug-in.	This	includes	MOTODEV
Studio	for	Android,	which	is	an	enhanced	copy	of	Eclipse.	But
MOTODEV	Studio	provides	another	way	to	create	AVDs.	The	other
way	uses	a	wizard	interface	with	an	impressive	number	of	options.
To	start	the	wizard,	choose	MOTODEV⇒New	Android	Virtual
Device	from	the	Studio’s	main	menu.	From	then	on,	do	what	the
nice	wizard	tells	you	to	do.
And	that	does	it!	You’re	ready	to	run	your	first	Android	app.	I	don’t

know	about	you,	but	I’m	excited.	(Sure,	I’m	not	watching	you	read	this
book,	but	I’m	excited	on	your	behalf.)	Chapter	3	in	this	minibook	guides
you	through	the	run	of	an	Android	application.	Go	for	it!

Acting	like	a	phone	(when	you’re	not	a
phone)
	In	computing,	the	words	emulator	and	simulator	have	similar

meanings.	Some	people	use	the	words	interchangeably,	but	if
you’re	being	picky,	an	emulator	executes	each	program	by	doing
what	another	kind	of	processor	would	do.	In	contrast,	a	simulator
executes	a	program	any	way	that’s	handy	and	ends	up	with	the
same	result	that	an	emulator	would	get.	To	be	even	pickier,	an
emulator	mimics	your	processor’s	hardware,	and	a	simulator
mimics	your	application’s	software.
On	your	development	computer’s	screen,	a	phone	simulator	would
look	like	a	picture	of	a	phone	and	would	carry	out	your	mobile
application’s	instructions	for	testing	purposes.	But	on	the	inside,
the	simulator	would	be	executing	instructions	the	way	your	laptop
or	desktop	executes	instructions.	The	simulator	would	be
translating	instructions	meant	for	a	phone’s	processor	into
instructions	meant	for	your	laptop’s	processor.	This	juggling	act
(of	instructions	and	processors)	works	fine	on	the	whole.	But	in
some	subtle	situations,	a	simulator	doesn’t	precisely	mimic	a	real
phone’s	behavior.

The	goal	of	precise,	reliable	mimicry	is	one	reason	why	the
Android	crew	decided	on	an	emulator	instead	of	a	simulator.
Android’s	emulator	(the	emulator	that	you	download	with	the
SDK	starter	package)	is	based	on	a	very	popular	open-source
program	named	QEMU.	On	its	own,	QEMU	takes	code	written	for
a	certain	kind	of	processor	(an	Intel	chip,	for	example),	translates
this	code,	and	then	runs	the	code	on	another	kind	of	processor	(an
ARM	or	a	PowerPC,	for	example).	The	emulator	that	comes	with
Android’s	starter	package	has	add-ons	and	tweaks	to
accommodate	Android	mobile	devices.	For	more	information
about	QEMU,	visit	http://qemu.org.

	

	

http://qemu.org

Chapter	3:	Creating	an	Android	App

In	This	Chapter
Creating	an	elementary	Android	app
Troubleshooting	troublesome	apps
Testing	an	app	on	an	emulator	or	a	phone

Dissecting	an	app
	

In	a	quiet	neighborhood	in	south	Philadelphia,	there’s	a	maternity
shop	named	Hello	World.	I	stumbled	on	the	store	on	my	way	to	Pat’s	(to
get	a	delicious	Philly	cheesesteak,	of	course),	and	I	couldn’t	resist	taking
a	picture	of	the	store’s	sign.

Computer	geek	that	I	am,	I’d	never	thought	of	Hello	World	as
anything	but	an	app.	A	Hello	World	app	is	the	simplest	program	that	can
run	in	a	particular	programming	language	or	on	a	particular	platform.*
Authors	create	Hello	World	apps	to	show	people	how	to	get	started
writing	code	for	a	particular	system.

*	For	an	interesting	discussion	of	the	phrase	Hello	World,	visit
www.mzlabs.com/JMPubs/HelloWorld.pdf.

	

	

So	I	devote	this	chapter	to	an	Android	Hello	World	app.	The	app
doesn’t	do	much.	(In	fact,	you	might	argue	that	the	app	doesn’t	do
anything!)	But	the	example	shows	you	how	to	create	and	run	new
Android	projects.

http://www.mzlabs.com/JMPubs/HelloWorld.pdf

Creating	Your	First	App
A	typical	gadget	comes	with	a	manual.	The	manual’s	first	sentence

is	“Read	all	37	safety	warnings	before	attempting	to	install	this	product.”
Don’t	you	love	it?	You	can’t	get	to	the	good	stuff	without	wading
through	the	preliminaries.

Well,	nothing	in	this	chapter	can	set	your	house	on	fire	or	even
break	your	electronic	device.	But	before	you	follow	this	chapter’s
instructions,	you	need	a	bunch	of	software	on	your	development
computer.	To	make	sure	that	you	have	this	software	and	that	the	software
is	properly	configured,	return	to	Chapter	2	of	this	minibook.	(Do	not	pass
Go;	do	not	collect	$200.)

When	at	last	you	have	all	the	software	you	need,	you’re	ready	to
start	Eclipse	and	create	a	real,	live	Android	app.

Starting	Eclipse
In	this	book,	almost	everything	starts	with	the	Eclipse	integrated

development	environment.
1.	Launch	Eclipse.

	

	For	details,	see	Chapter	2	of	this	minibook.	To	read
about	hundreds	of	things	you	can	do	with	Eclipse,	see	Book	II,	Chapter	1.

	 2.	If	Eclipse	shows	you	its	Welcome	screen,	find	that	screen’s
Workbench	icon	and	then	click	it	to	open	Eclipse’s	main	workbench.

	

	For	details,	see	Chapter	2	of	this	minibook.
	 3.	In	the	Eclipse	workbench,	make	sure	that	the	Java

perspective	is	active.
	 Look	for	the	word	Java	in	the	upper-right	corner	of	the	Eclipse

workbench.	If	you	see	the	word	Java	on	an	indented	button	(as	in	Figure
3-1),	Eclipse’s	Java	perspective	is	active.

	
	

Figure	3-1:	Eclipse’s	Java	perspective	is	active.

	For	more	information	about	Eclipse	perspectives,	see

Book	II,	Chapter	1.
	 4.	If	the	Java	perspective	isn’t	active,	choose	Window⇒Open

Perspective⇒Other⇒Java	(Default).
	 As	a	result,	the	Java	perspective	opens	right	before	your	eyes.

You’re	ready	to	create	an	Android	app.
	

Creating	a	project
To	create	your	first	Android	application,	do	the	following:
1.	In	Eclipse’s	main	menu,	choose	File⇒New⇒Project.

	 The	New	Project	dialog	box	opens.
	 2.	In	the	New	Project	dialog	box,	expand	the	Android	branch.	In

that	branch,	select	Android	Project	and	then	click	Next.	(See	Figure
3-2.)

	
	

Figure	3-2:	The	New	Project	dialog	box.

As	a	result,	Eclipse	fires	up	its	New	Android	Project	dialog	box.
(The	top	half	of	the	New	Android	Project	dialog	box	is	in	Figure	3-3.)

	 3.	In	the	New	Android	Project	dialog	box,	type	a	name	for	your

project	in	the	Project	Name	field.
	 In	Figure	3-3,	I	type	My	First	Android	Project.
	 4.	In	the	dialog	box’s	Build	Target	panel,	select	a	target.
	 In	Figure	3-3,	I	select	Android	3.0.	You	can	select	any	target	that’s

listed,	as	long	as	you’ve	created	an	Android	Virtual	Device	(AVD,	for
short)	that	can	run	that	target’s	projects.	For	example,	an	Android	2.3.3
AVD	can	run	projects	targeted	to	Android	2.3.1,	Android	2.2,	Android
1.6,	and	so	on.

	

	If	you	mistakenly	select	a	target	for	which	you	have	no
AVD,	Eclipse	hollers	at	you	when	you	try	to	run	the	project.	(While	it
hollers,	Eclipse	offers	to	help	you	create	the	necessary	AVD.)

	

	For	help	creating	an	AVD,	see	Chapter	2	of	this
minibook.

	 5.	Find	the	Properties	box	of	the	New	Android	Project	dialog
box.

	 On	my	computer,	with	its	embarrassingly	low	screen	resolution,	the
New	Android	Project	dialog	box	comes	with	its	own	scroll	bar.	To	find
the	Properties	box,	I	have	to	scroll	down	to	the	lower	half	of	the	dialog
box.	(See	Figure	3-4.)

	
	

Figure	3-3:	The	top	half	of	the	New	Android	Project	dialog	box.

6.	In	the	Application	Name	field,	type	a	name	for	your	app.
	 In	Figure	3-4,	I	type	My	First	Android	App.	Whatever	name	you

type	appears	below	your	app’s	icon	in	the	device’s	Apps	screen.
	 7.	In	the	Package	Name	field,	type	a	name	with	a	valid	Java

package	name.
	 In	Figure	3-4,	I	type	stuff.of.mine.	This	isn’t	the	world’s	best

package	name,	but	it’ll	do.
	

Using	Android’s	versions
	Android	has	a	few	different	uses	for	version	numbers.	For

example,	in	Figure	3-4,	the	target	API	is	11,	and	the	minimum
SDK	version	is	also	11.	What’s	the	difference?
You	design	an	Android	app	to	run	on	a	range	of	API	versions.	You
can	think	informally	of	the	minimum	SDK	version	as	the	lowest
version	in	the	range,	and	the	target	version	as	the	highest.	So,	if
you	select	Android	2.2	as	the	target	and	select	4	as	the	minimum
SDK,	you	design	your	app	to	run	on	Android	1.6	(API	level	4),
Android	2.1,	and	Android	2.2.
But	the	“lowest	to	highest	version”	idea	needs	some	refining.
Android’s	official	documentation	reports	that	“	.	.	.	new	versions
of	the	platform	are	fully	backward-compatible.”	So	an	app	that
runs	correctly	on	Android	1.6	should	run	correctly	on	all	versions
higher	than	Android	1.6.	(I	write	“should	run	correctly”	because	in
practice,	full	backward	compatibility	is	difficult	to	achieve.
Anyway,	if	the	Android	team	is	willing	to	promise	full	backward
compatibility,	I’m	willing	to	take	my	chances.)
The	target	version	(Android	3.0,	API	11	near	the	top	in	Figure	3-
4)	is	the	version	for	which	you	test	the	app.	When	you	run	this
chapter’s	example,	Eclipse	opens	an	emulator	with	Android	3.0
installed.	To	the	extent	that	your	app	passes	your	testing,	the	app
runs	correctly	on	devices	that	run	Android	3.0.	What	about	devices
that	run	other	versions	of	Android?

	Maybe	your	app’s	target	version	is	Android	3.0,	but	your	app
uses	only	features	that	are	available	in	Android	2.2	and	earlier
versions.	In	that	case,	you	can	safely	put	the	number	8	in	Eclipse’s
Min	SDK	Version	field.

	Maybe	your	app	uses	some	features	available	only	in
Android	3.0	and	later,	but	the	app	contains	workarounds	for
devices	that	run	Android	2.2.	(Your	app’s	code	can	detect	a
device’s	Android	version	and	contains	alternative	code	for
different	versions.)	In	that	case,	you	can	safely	put	the	number	8	in
Eclipse’s	Min	SDK	Version	field.

	Maybe	your	app’s	target	version	is	Android	3.0.	In	2019,
someone	installs	your	app	on	a	device	running	Android	16.0
(codenamed	Artificial	Sweetener).	Because	of	backward
compatibility,	your	app	runs	awkwardly	but	correctly	on	the
Android	16.0	device.	The	target	version	isn’t	an	upper	limit.

When	you	select	a	target	version	and	a	min	SDK	version,	Android
stores	these	numbers	in	your	project’s	files.	The	min	SDK	version
lives	in	the	project’s	AndroidManifest.xml	file.	The	target
version	sits	inside	the	project’s	default.properties	file.	The
AndroidManifest.xml	file	guides	the	use	of	your	app	from	start	to
finish.	The	default.properties	file	is	used	mainly	to	maintain
the	integrity	of	your	app	when	you	make	modifications	and	store
newer	copies.
In	addition	to	the	min	SDK	version,	the	AndroidManifest.xml	file
may	store	a	maximum	SDK	version.	The	maximum	SDK	version
isn’t	an	option	in	Figure	3-4	because	hardly	anyone	specifies	a
maximum	SDK	version.	In	fact,	the	Android	documentation
discourages	the	use	of	a	maximum	SDK	version.	The	docs	warn
that	a	maximum	SDK	version	might	cause	an	app	to	be	uninstalled
when	the	app	is	still	usable.

	

	

Figure	3-4:	The	lower	half	of	the	New	Android	Project	dialog	box.

	For	the	lowdown	on	Java	packages	and	package
names,	see	Book	II,	Chapter	2.

	

	Your	project	and	application	names	may	contain	blank
spaces,	but	your	package	name	and	(in	the	next	step)	your	activity	name
must	not	contain	blank	spaces.	In	general,	I’m	not	a	fan	of	blank	spaces.
They	can	gum	up	the	works	when	your	software	distinguishes	the	end	of
one	name	and	the	start	of	the	next	name.	For	example,	in	Windows,	the
folder	name	Program	Files	is	a	never-ending	source	of	angst	for	me	and
other	developers.	Anyway,	my	advice	is,	use	blank	spaces	only	where	an
app’s	cosmetics	demand	blank	spaces.	If	things	go	wrong,	be	suspicious
of	any	names	with	blank	spaces.

	 8.	With	the	Create	Activity	check	box	selected,	type	a	name	for
your	application’s	main	activity.

	 In	Figure	3-4,	I	type	MyActivity.	Lazy	as	I	am,	I	use	the	name
MyActivity	quite	often.	For	your	project,	you	can	type	the	name	of	any
valid	Java	identifier.	Make	sure	to	start	with	a	letter	and	then	include	only
letters,	digits,	and	underscores	(_).

	 Your	activity	is	a	Java	class.	So,	to	adhere	to	Java’s	stylistic
conventions,	start	your	activity’s	name	with	an	uppercase	letter.	In	the
name,	don’t	include	any	exotic	characters	(such	as	dots,	blank	spaces,
dashes,	dollar	signs,	or	pictures	of	cows).

	

	For	the	truth	about	Android’s	activities,	see	Book	III,
Chapter	1.

	 9.	In	the	Min	SDK	Version	field,	type	the	number	to	the	far
right	of	whichever	target	you	selected	in	Step	4.

	 In	Figure	3-4,	I	type	11	because	I	find	the	number	11	at	the	end	of
the	Android	3.0	target	line	in	the	Build	Target	panel.	To	find	out	what
you’re	promising	when	you	check	Android	3.0	and	minimum	SDK	11,
see	the	nearby	“Using	Android’s	versions”	sidebar.

	

	For	an	overview	of	Android	versions,	see	Chapter	1	of
this	minibook.

	

	You	can	specify	a	min	SDK	version	with	a	lower
number	than	the	number	in	the	Build	Target	panel.	For	example,	you	can
pick	Build	Target	Android	2.3.1	with	Min	SDK	Version	4.	When	you	do
this,	Eclipse	warns	you	that	The	API	level	for	the	selected	SDK
target	does	not	match	the	Min	SDK	Version.	You	can	safely	ignore
this	warning.

	 10.	At	the	bottom	of	the	New	Android	Project	dialog	box,	click
Finish.

	 As	a	result,	the	New	Android	Project	dialog	box	closes,	and	the
Eclipse	workbench	comes	to	the	foreground.	Eclipse’s	Package	Explorer
tree	has	a	new	branch.	The	branch’s	label	is	the	name	of	your	new
project.	(See	Figure	3-5.)

	
	

Figure	3-5:	The	Package	Explorer	has	a	MyFirst	Android	Project	branch.

Congratulations!	You’ve	created	an	Android	application.
	

Running	your	project
To	kick	your	new	app’s	tires	and	take	your	app	around	the	block,	do

the	following:
1.	Select	your	app’s	branch	in	Eclipse’s	Package	Explorer.

	 (See	Figure	3-5.)
	 2.	In	Eclipse’s	main	menu,	choose	Run⇒Run	As⇒Android

Application.
	 As	a	result,	Eclipse’s	Console	view	displays	several	lines	of	text.

Among	these	lines,	you	might	find	the	phrases	Launching	a	new
emulator;	Waiting	for	HOME;	and	my	personal	favorite,	Success!	(See
Figure	3-6.)

	

	If	you	don’t	see	Eclipse’s	Console	view,	you	have	to
coax	this	view	out	of	hiding.	For	details,	see	Book	II,	Chapter	1.

	

	In	general	app	development	lingo,	a	console
is	 a	 text-only	 window	 that	 displays	 the	 output	 of	 a
running	program.	A	console	might	also	accept	commands
from	 the	user	 (in	 this	case,	 the	app	developer).	A	single
Android	 run	 might	 create	 several	 consoles	 at	 once,	 so
Eclipse’s	 Console	 view	 can	 display	 several	 consoles	 at
once.	If	the	stuff	you	see	in	Eclipse’s	Console	view	isn’t
anything	 like	 the	 text	 in	 Figure	 3-6,	 the	 Console	 view
may	 be	 displaying	 the	wrong	 console.	 To	 fix	 this,	 look
for	a	button	with	a	picture	of	a	computer	terminal	in	the
upper-right	corner	of	the	Console	view.	(See	Figure	3-7.)
Click	the	arrow	to	the	right	of	the	button.	In	the	resulting
drop-down	list,	choose	Android.

	

Figure	3-6:	The	Console	view	during	the	successful	launch	of	an	app.

	

Figure	3-7:	Choosing	a	console	in	Eclipse’s	Console	view.

3.	Wait	for	the	Android	emulator	to	display	a	device	locked
screen,	a	home	screen,	or	an	app’s	screen.

	 First,	you	see	the	word	ANDROID	as	if	it’s	part	of	a	scene	from	The
Matrix.	(See	Figure	3-8.)	Then	you	see	the	word	ANDROID	in	shimmering,
silvery	letters.	(See	Figure	3-9.)	Finally,	you	see	Android’s	a	device
locked	screen,	a	home	screen,	or	an	app’s	screen.	(See	Figure	3-10.)

	
	

Figure	3-8:	The	emulator	starts	running.

	

Figure	3-9:	Android	starts	running	on	the	emulator.

4.	I	can’t	overemphasize	this	point:	Wait	for	the	Android
emulator	to	display	a	device	locked	screen,	a	home	screen,	or	an
app’s	screen.

	 Android’s	emulator	takes	a	long	time	to	start.	For	example,	on	my
2GHz	processor	with	4GB	of	RAM,	the	emulator	takes	a	few	minutes	to
mimic	a	fully	booted	Android	device.	Some	people	blame	the	fact	that
it’s	an	emulator	instead	of	a	simulator.	(See	Chapter	2	of	this	minibook.)
Others	claim	that	translation	of	graphics	hog	the	emulator’s	time.	For
whatever	reason,	you	need	lots	of	patience	when	you	deal	with	Android’s
emulator.

	 5.	Keep	waiting.
	

	

Figure	3-10:	The	device	locked	screen	for	Android	3.0	appears.

While	you’re	waiting,	you	might	want	to	visit	http://youwave.com.
The	people	at	YouWave	have	created	an	alternative	to	Android’s
emulator.	The	YouWave	simulator	runs	on	a	Windows	PC	with	a
program	named	VirtualBox	(a	product	from	Oracle).	YouWave	can’t	run
all	Android	apps,	and	I	don’t	know	how	faithfully	YouWave	imitates
Android.	But	one	way	or	another,	YouWave	looks	promising.

	 Oh!	I	see	that	your	emulator	is	finally	displaying	the	device	locked

http://youwave.com

screen.	It’s	time	to	proceed	.	.	.
	 6.	If	the	emulator	displays	the	device	locked	screen,	do	whatever

you	normally	do	to	unlock	an	Android	device.
	 Normally,	you	slide	something	from	one	part	of	the	screen	to

another.	With	Android	Version	3.0	(pictured	in	Figure	3-10),	you	slide
the	lock	from	the	center	to	the	circumference	of	a	circle.

	 7.	See	your	app	on	the	emulator’s	screen.
	 Figure	3-11	shows	the	running	of	Android’s	Hello	World	app.	(The

screen	even	has	Hello	World	on	it.)	Android’s	development	tools	create
this	tiny	app	when	you	create	a	new	Android	project.

	
	

Figure	3-11:	Your	Hello	World	app	in	action.

	For	this	chapter,	you	use	Eclipse	to	create	a	project	in
the	earlier	“Creating	a	project”	section.	But	you	can	create	a	Hello	World
project	without	Eclipse.	For	details,	see	Book	VI,	Chapter	3.

	 Android’s	Hello	World	app	has	no	widgets	for	the	user	to	push,	and
the	app	doesn’t	do	anything	interesting.	But	the	appearance	of	an	app	on
the	Android	screen	is	a	very	good	start.	Following	this	chapter’s	steps,
you	can	start	creating	many	exciting	apps.

	

	Don’t	close	an	Android	emulator	unless	you	know	you
won’t	be	using	it	for	a	while.	The	emulator	is	fairly	reliable	after	it
gets	going.	(It’s	sluggish,	but	reliable.)	While	the	emulator	runs,	you
can	modify	your	Android	code	and	choose	Run⇒Run	As⇒Android
Application	yet	again.	When	you	do,	Android	reinstalls	your	app	on
the	running	emulator.	The	process	isn’t	speedy,	but	you	don’t	have
to	wait	for	the	emulator	to	start.	(Actually,	if	you	run	a	different	app
—	an	app	whose	min	SDK	version	is	higher	than	the	running
emulator	can	handle	—	Android	fires	up	a	second	emulator.	But	in
many	developer	scenarios,	jumping	between	emulators	is	the
exception	rather	than	the	rule.)

What	if	.	.	.
You	try	to	run	your	first	Android	app.	If	your	effort	stalls,	don’t

despair.	This	section	has	some	troubleshooting	tips.

Error	message:	R	cannot	be	resolved
Every	Android	app	has	an	R.java	file.	Android’s	development	tools

generate	this	file	automatically.	So	normally,	you	don’t	have	to	worry
about	R.java.	Occasionally,	the	file	takes	longer	than	average	to	be
generated.	In	that	case,	Eclipse	finds	references	to	the	R	class	in	the	rest
of	your	project’s	code	and	complains	that	your	project	has	no	R	class.	My
advice	is,	wait!

If	one	minute	of	waiting	doesn’t	bring	good	results,	follow	these
steps	to	check	your	project	settings:

1.	Highlight	your	project	in	Eclipse’s	Package	Explorer.
	 2.	In	Eclipse’s	main	menu,	choose	Project.
	 A	list	of	sub-menu	items	appears.
	 3.	Look	for	a	check	mark	next	to	the	Build	Automatically	menu

sub-item.
	 4.	If	you	don’t	see	a	check	mark,	select	the	Build	Automatically

sub-item	to	add	a	one.
	 With	any	luck	your	R.java	file	appears	almost	immediately.
	 If	your	project	is	set	to	Build	Automatically,	and	you	still	don’t	have

an	R.java	file,	try	these	steps:
1.	Highlight	your	project	in	Eclipse’s	Package	Explorer.

	 2.	In	Eclipse’s	main	menu,	choose	Project.
	 A	list	of	sub-menu	items	appears.
	 3.	In	Eclipse’s	Clean	dialog	box,	select	the	project	that’s	giving

you	trouble	along	with	the	Clean	Projects	Selected	Below	radio
button.

	 4.	Click	OK.
	 Cleaning	the	project	should	fix	the	problem.	But	if	the	problem

persists,	close	Eclipse	and	then	restart	it.	(Eclipse	occasionally	becomes
“confused.”)

Error	message:	No	compatible	targets	were
found

This	message	probably	means	that	you	haven’t	created	an	Android
Virtual	Device	(AVD)	capable	of	running	your	project.	If	Eclipse	offers
to	help	you	create	a	new	AVD,	accept	it.	Otherwise,	choose
Window⇒Android	SDK	and	AVD	Manager	to	create	a	new	AVD.

	

For	information	about	Android	Virtual	Devices,	see	Chapter
2	of	this	minibook.

The	emulator	stalls	during	startup
After	five	minutes	or	so,	you	don’t	see	Android’s	device	locked

screen	or	Android’s	home	screen.	Here	are	several	things	you	can	try:
•	Lather,	rinse,	repeat.

	
Close	the	emulator	and	launch	your	application	again.	Sometimes,	the
second	or	third	time’s	a	charm.	On	rare	occasions,	my	first	three	attempts
fail,	but	my	fourth	attempt	succeeds.

	
•	Restart	the	Android	Debug	Bridge	(adb)	server.

	
Here’s	what	you	do:

	
1.	Close	Eclipse.

	 2.	In	a	command	window,	go	to	your	ANDROID_HOME/platform-
tools	directory.

	

	To	read	about	your	computer’s	command	window,	see
Book	VI,	Chapter	3.

	 3.	In	the	ANDROID_HOME/platform-tools	directory,	type	the
following	two	commands:

	 Windows:
	 adb	kill-server

adb	start-server

Macintosh	and	Linux:
	 ./adb	kill-server

./adb	start-server

4.	Restart	Eclipse.
	

	For	help	finding	your	ANDROID_HOME/platform-tools
directory,	see	Chapter	2	of	this	minibook.

	 •	Switch	to	an	older	Android	Virtual	Device.
	

In	my	experience,	older	AVDs	consume	fewer	resources	on	your
development	computer.	To	change	a	project’s	target	AVD,	do	the
following:

	
1.	Close	any	running	emulators.

	 2.	With	your	project	selected	in	Eclipse’s	Package	Explorer,	choose
Project⇒Properties.

	 A	Properties	dialog	box	opens.	The	Properties	dialog	box	has	a	tree
in	its	left	panel.	(See	Figure	3-12.)

	 3.	In	the	Properties	dialog	box’s	tree,	select	Android.
	 A	form	full	of	options	appears	in	the	main	body	of	the	Properties

dialog	box.	Among	these	options	is	a	list	of	targets.	(See	Figure	3-12.)
	 4.	Select	a	new	target	AVD	for	your	project.
	 5.	Click	OK	to	save	the	change	and	dismiss	the	Properties	dialog

box.
	 Wait!	You’re	not	finished	yet	.	.	.
	 6.	In	your	project’s	branch	of	Eclipse’s	Package	Explorer,	double-

click	the	AndroidManifest.xml	file.
	

	

Figure	3-12:	A	project’s	Properties	dialog	box.

Eclipse	offers	several	ways	to	examine	and	edit	this	file.
	 7.	At	the	bottom	of	Eclipse’s	editor,	select	the	Manifest	tab.
	 Eclipse	displays	a	form	like	the	one	shown	in	Figure	3-13.
	 8.	In	the	form,	click	Uses	Sdk.
	 As	a	result,	a	set	of	options	appears	on	the	form.	This	set	of	options

is	labeled	Attributes	for	Uses	Sdk.	(See	Figure	3-13.)
	 9.	In	the	Min	SDK	Version	field,	type	the	number	of	your	project’s

new	API	version.
	 In	Figure	3-13,	I	type	9,	but	you	can	type	any	of	Android’s	API

version	numbers.	Just	make	sure	that	your	min	SDK	version	is	no	higher
than	the	target	you	choose	in	Step	4.

	 10.	Choose	File⇒Save	to	store	the	new	AndroidManifest.xml	file.
	

	You	can	use	these	instructions	to	lower	an	app’s	target	and
minimum	SDK	version.	But	if	your	app	requires	features	that	aren’t
available	in	the	lower	target	or	SDK	version,	you	won’t	be	happy	with	the
results.	In	the	best	case,	you	see	an	error	in	Eclipse’s	Package	Explorer	as

soon	as	you	make	the	change.	In	the	worst	case,	you	see	no	error	in	the
Package	Explorer,	but	your	app	crashes	when	it	runs.

	
	

Figure	3-13:	The	Manifest	tab	of	a	project’s	Android	Manifest.xml	file.

Continuing	with	my	list	of	things	to	try	if	the	emulator	stalls	during
startup	.	.	.

	
•	If	you	have	a	more	powerful	computer,	try	running	your	app	on	it.

	
Horsepower	matters.

	
•	Run	your	app	on	a	phone,	a	tablet,	or	some	other	real	Android
device.

	
Testing	a	brand-new	app	on	a	real	device	makes	me	queasy.	But

Android’s	sandbox	is	fairly	safe	for	apps	to	play	in.	Besides,	apps	load
quickly	and	easily	on	phones	and	tablets.

	
For	instructions	on	installing	apps	to	Android	devices,	see	the	section
“Testing	Apps	on	a	Real	Device,”	later	in	this	chapter.

	

Error	message:	The	user	data	image	is	used	by
another	emulator

If	you	see	this	message,	some	tangle	involving	the	emulator	keeps
Android	from	doing	its	job.	First	try	closing	and	restarting	the	emulator.

If	a	simple	restart	doesn’t	work,	try	the	following	steps:
1.	Close	the	emulator.

	 2.	In	Eclipse’s	main	menu,	choose	Window⇒Android	SDK	and
AVD	Manager.

	

	To	read	about	the	SDK	and	AVD	Manager,	see
Chapter	2	in	this	minibook.

	 3.	In	the	list	of	virtual	devices,	select	an	AVD	appropriate	to
your	project	and	click	Start.

	 4.	In	the	resulting	Launch	Options	dialog	box,	select	the	Wipe
User	Data	check	box	and	then	click	Launch.

	 As	a	result,	Android	launches	a	new	copy	of	the	emulator,	this	time
with	a	clean	slate.

	 If	the	preceding	set	of	steps	doesn’t	work,	take	a	firmer	approach,	as
follows:

1.	Close	the	emulator.
	 2.	Open	whatever	file	explorer	your	computer	uses	to	track

down	files.
	 3.	In	your	home	directory,	look	for	a	folder	named	.android

(starting	with	a	dot).

	 The	name	of	your	home	directory	depends	on	your	development
computer’s	operating	system.

	 •	On	Windows	7	or	Windows	Vista,	your	home	directory	is	typically
c:\Users\your-user-name.

	
•	On	Windows	XP,	your	home	directory	is	typically	c:\Documents	and

Settings\your-user-name.
	

•	On	a	Mac,	your	home	directory	is	typically	Usersyour-user-name.
	

For	example,	on	my	Windows	7	computer,	I	navigate	to	c:\Users.
From	there,	I	drill	down	into	c:\Users\bburd	(my	home	directory),	and
from	there,	I	drill	even	further	into	c:\Users\bburd\.android.

	 4.	From	the	.android	directory,	drill	down	even	further	into	the
avd	directory.

	 The	avd	directory	contains	a	folder	for	each	AVD	that	you’ve
created.

	 5.	Drill	down	one	level	more	to	the	directory	for	the	AVD	that’s
giving	you	trouble.

	 For	example,	if	you	were	running	an	AVD	named	Froyo1	when	you
saw	the	data	image	is	used	by	another	emulator	message,	navigate
to	your	Froyo1.avd	directory.

	 6.	Inside	your	AVD’s	directory,	delete	the	files	named
cache.img.lock	and	userdata-qemu.img.lock.

	 7.	Return	to	the	Eclipse	workbench	and	run	your	app	again.
	

Error	message:	Unknown	virtual	device	name
Android	looks	for	AVDs	in	your	home	directory’s	.android/avd

subdirectory,	and	occasionally	Android’s	search	goes	awry.	For	example,
one	of	my	Windows	7	computers	lists	my	home	directory	on	an	i	drive.
My	AVDs	are	in	i:\Users\bburd\.android\avd.	But	Android	ignores
the	computer’s	home	directory	advice	and	instead	looks	in
c:\Users\bburd.	When	Android	doesn’t	find	any	AVDs,	Android
complains.

You	can	devise	fancy	solutions	to	this	problem	with	junctions	or
symbolic	links.	But	solutions	of	this	kind	require	special	handling	of	their
own.	So	I	prefer	to	keep	things	simple.	I	copy	my
i:\Users\bburd\.android	directory’s	contents	to
c:\Users\bburd\.android.	That	fixes	the	problem.

Error	message:	INSTALL_PARSE_FAILED_
INCONSISTENT_CERTIFICATE

This	error	message	indicates	that	an	app	that	you	previously
installed	conflicts	with	the	app	that	you’re	trying	to	install.	So,	on	the
emulator	screen,	choose	Settings⇒Applications⇒Manage	Applications.
In	the	list	of	applications	to	be	managed,	delete	any	apps	that	you
installed	previously.

	If	you	have	trouble	finding	your	previously	installed	apps,
you	can	uninstall	using	the	adb	tool	in	your	development	computer’s
command	window.	For	example,	the	following	exchange	in	the
Windows	command	prompt	deletes	the	app	that	I	put	in	the
com.allmycode.menus	Java	package.	(The	stuff	that	I	type	is	in
boldface	type.	Other	stuff	is	the	computer’s	response.)

C:\>adb	shell

#	cd	data

cd	data

#	cd	app

cd	app

#	rm	com.allmycode.menus.apk

rm	com.allmycode.menus.apk

#	exit

Your	app	starts,	but	the	emulator	displays	a
Force	Close	or	Wait	dialog	box

The	formal	name	for	this	dialog	box	is	the	Application	Not
Responding	(ANR)	dialog	box.	Android	displays	the	ANR	dialog	box
when	an	app	takes	too	long	to	do	whatever	it’s	supposed	to	do.	When

your	app	runs	on	a	real	device	(a	phone	or	a	tablet	device),	the	app
shouldn’t	make	Android	display	the	ANR	dialog	box.	(Other	chapters	in
this	book	give	you	tips	on	how	to	avoid	the	dialog	box.)

But	on	a	slow	emulator,	a	few	Force	Close	or	Wait	messages	are	par
for	the	course.	When	I	see	the	ANR	dialog	box	in	an	emulator,	I	usually
select	Wait.	Within	about	ten	seconds,	the	dialog	box	disappears	and	the
app	continues	to	run.

Changes	to	your	app	don’t	appear	in	the
emulator

Your	app	runs	and	you	want	to	make	a	few	improvements.	So,	with
the	emulator	still	running,	you	modify	your	app’s	code.	But	after
choosing	Run⇒Run	As⇒Android	Application,	the	app’s	behavior	in	the
emulator	remains	unchanged.

When	this	happens,	something	is	clogged	up.	Close	and	restart	the
emulator.	If	necessary,	use	the	Wipe	User	Data	trick	that	I	describe	in	the
section	“Error	message:	The	user	data	image	is	used	by	another
emulator,”	earlier	in	this	chapter.

The	emulator’s	screen	is	too	big
This	happens	when	your	development	computer’s	screen	resolution

isn’t	high	enough.	(Maybe	your	eyesight	isn’t	what	it	used	to	be.)	This
symptom	isn’t	a	deal	breaker,	but	if	you	can’t	see	the	emulator’s	lower
buttons,	you	can’t	easily	test	your	app.	You	can	change	the	development
computer’s	screen	resolution,	but	adjusting	the	emulator	window	is	less
invasive.

To	change	the	emulator	window	size,	modify	the	instructions	I	gave
in	the	“Running	your	project”	section	earlier	in	this	chapter	just	a	bit:

1.	Follow	the	steps	in	Book	II,	Chapter	1	for	creating	a	run
configuration.

	 2.	In	the	Run	Configurations	dialog	box,	click	the	Target	tab.
	 3.	If	necessary,	scroll	down	to	the	bottom	of	the	Target	tab.
	 4.	In	the	Additional	Emulator	Command	Line	Options	text	field,

type	-scale	0.75.
	 With	the	fraction	0.75,	the	emulator	appears	at	three	quarters	of	its

normal	size.	If	three	quarters	isn’t	optimal,	change	0.75	to	something
more	suitable.

	
	

For	more	troubleshooting	advice,	see	my	tidbits	scattered
throughout	this	book.	Also	visit
http://developer.android.com/resources/faq/troubleshooting.html

Testing	Apps	on	a	Real	Device
You	can	bypass	emulators	and	test	your	apps	on	a	phone,	a	tablet

device,	or	maybe	an	Android-enabled	refrigerator.	To	do	so,	you	have	to
prepare	the	device,	prepare	your	development	computer,	and	then	hook
together	the	two.	This	section	describes	the	process.

1.	On	an	Android	device,	choose
Settings⇒Applications⇒Development.

	 2.	In	the	Development	list,	turn	on	USB	debugging.
	 Here’s	what	my	Honeycomb	device	displays	when	I	mess	with	this

setting:	USB	debugging	is	intended	for	development	purposes.	It
can	be	used	to	copy	data	between	your	computer	and	your

device,	install	applications	on	your	device	without

notification,	and	read	log	data.

	 On	my	device,	I	keep	USB	Debugging	on	all	the	time.	But	if	you’re
very	nervous	about	security,	turn	off	USB	Debugging	when	you’re	not
using	the	device	to	develop	apps.

	 3.	In	your	project’s	branch	of	Eclipse’s	Package	Explorer,
double-click	the	AndroidManifest.xml	file.

	 Eclipse	offers	several	ways	to	examine	and	edit	this	file.
	 4.	At	the	bottom	of	Eclipse’s	editor,	click	the	Application	tab.
	 Eclipse	displays	a	form	like	the	one	shown	in	Figure	3-14.
	 5.	In	the	Debuggable	drop-down	list,	choose	True.	(Again,	see

http://developer.android.com/resources/faq/troubleshooting.html

Figure	3-14.)
	 With	Debuggable	set	to	True,	your	app	allows	Android’s	tools	to

examine	and	change	things	during	a	run	of	the	app.
	

	The	ability	to	debug	is	the	ability	to	hack.	Debugging
also	slows	down	an	app.	Never	distribute	an	app	to	the	public	with
Debuggable	set	to	True.

	 6.	Choose	File⇒Save	to	store	the	new	AndroidManifest.xml	file.
	 7.	Set	up	your	development	computer	to	communicate	with	the

device.
	 •	On	Windows:	Visit	http://developer.android.com/sdk/	oem-

usb.html	to	download	your	device’s	Windows	USB	driver.	Install	the
driver	on	your	development	computer.

	
	

Figure	3-14:	The	Application	tab	of	a	project’s	Android	Manifest.xml	file.

http://developer.android.com/sdk/oem-usb.html

•	On	a	Mac:	/*	Do	nothing.	It	just	works.	*/
	

•	On	Linux:	Visit	http://developer.android.com/guide/
developing/device.html	and	follow	the	instructions	that	you	find	on
that	page.	(Don’t	worry.	To	connect	a	device,	you	don’t	have	to
recompile	the	Linux	kernel.)

	
8.	With	a	USB	cable,	connect	the	device	to	the	development

computer.
	 To	find	out	whether	your	device	is	connected	to	the	computer,	open

a	command	window	on	the	computer.	Navigate	to	the	computer’s

http://developer.android.com/guide/developing/device.html

ANDROID_HOME	directory	and	then	type	adb	devices.	(On	a	Mac	or	a
Linux	computer,	type	./adb	devices.)	If	your	computer’s	response
includes	a	very	long	hexadecimal	number,	that	number	represents	your
connected	device.	For	example,	with	my	Galaxy	Tab	connected,	my
computer’s	response	is

	 emulator-5554			device

emulator-5556			device

2885046445FF097	device

9.	In	Eclipse,	run	your	project.
	 A	connected	device	trumps	a	running	emulator.	So	if	your	device’s

Android	version	can	handle	your	project’s	minimum	SDK	version,
choosing	Run⇒Run	As⇒Android	Application	installs	your	app	on	the
connected	device.

	 If	you	need	more	control	over	your	app’s	destination,	you	can	create
a	run	configuration	for	your	project.	Book	II,	Chapter	1	describes	run
configurations.	But	if	you	don’t	want	to	jump	to	Book	II,	Chapter	1,
choose	Run	As⇒Run	Configurations.	In	the	resulting	Target	tab,	select
one	of	the	AVDs	in	the	list.

	 The	Target	tab	also	has	a	radio	button	labeled	Manual.	When	you
choose	Manual,	Eclipse	offers	you	a	choice	of	devices.	(See	Figure	3-15.)
To	make	Eclipse	display	its	Android	Device	Chooser	dialog	box,	deselect
all	the	AVDs	in	the	Run	Configurations	dialog	box’s	Target	tab.

	

	Eventually,	you	want	to	disconnect	your	device	from
the	development	computer.	If	you’re	a	Windows	user,	you	dread	reading
Windows	can’t	stop	your	device	because	a	program	is	still

using	it.	To	disconnect	your	device,	first	issue	the	adb	kill-server
command	as	described	in	the	“The	emulator	stalls	during	startup”	section,
earlier	in	this	chapter.	After	that,	you	get	the	friendly	Safe	to	Remove
Hardware	message.

	
	

Figure	3-15:	The	Android	Device	Chooser	dialog	box.

Examining	a	Basic	Android	App
If	you	want	to	examine	an	app’s	basic	building	blocks,	this	chapter’s

Hello	World	app	is	a	good	place	to	start.	So	with	your	first	project
selected	in	Eclipse’s	Package	Explorer,	take	this	section’s	tencent	tour.

A	project’s	files
Figure	3-16	shows	some	of	the	directories	and	files	in	a	simple

Android	project.	When	you	use	Eclipse	to	create	a	new	project,	Android
generates	all	this	stuff.

	

Figure	3-16:	The	structure	of	a	new	Android	project.

The	project’s	directories	are	src,	gen,	assets,	and	res	(and	some
other	stuff	that	I	cover	near	the	end	of	this	chapter).

The	src	directory
The	src	directory	contains	your	project’s	Java	source	code.	Files	in

this	directory	have	names	such	as	MyActivity.java,	MyService.java,
DatabaseHelper.java,	MoreStuff.java,	and	so	on.

You	can	cram	hundreds	of	Java	files	in	a	project’s	src	directory.
But	when	you	create	a	new	project,	Android	typically	creates	just	one	file
for	you.	In	Figure	3-4	I	type	the	name	MyActivity,	so	Android	creates	a
file	named	MyActivity.java.	Listing	3-1	shows	you	the	code	in	the

MyActivity.java	file.

Listing	3-1:	Android	Creates	This	Skeletal
Activity	Class
package	stuff.of.mine;

	

import	android.app.Activity;

import	android.os.Bundle;

	

public	class	MyActivity	extends	Activity	{

				/**	Called	when	the	activity	is	first	created.	*/

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

				}

}

An	Android	activity	is	one	“screenful”	of	components.	Think	of	an
activity	as	a	form	—	perhaps	a	form	for	entering	information	to	make	a
purchase	on	a	website.	Unlike	most	online	forms,	Android	activities	don’t
necessarily	have	text	boxes	—	places	for	the	user	to	type	credit	card
numbers	and	such.	But	Android	activities	have	a	lot	in	common	with
online	forms.	When	you	extend	the	android.app.Activity	class,	you
create	a	new	Android	activity.

	For	more	information	about	Java,	see	Book	II,	Chapters	2,
3,	and	4.
An	Android	application	can	contain	many	activities.	For	example,

an	app’s	initial	activity	could	list	the	films	playing	in	your	area.	When
you	click	a	film’s	title,	Android	would	then	cover	the	entire	list	activity
with	another	activity	(perhaps	an	activity	displaying	a	relevant	film
review).

	Having	one	activity	overlay	another	activity	is	typical	of
small	phone	screens.	But	on	larger	tablet	screens,	you	can	display	a
list	of	films	and	a	particular	film	review	side	by	side.	Having	side-
by-side	panels	is	a	job	for	fragments	rather	than	activities.	To	read
about	fragments,	see	Book	IV,	Chapter	4.
Here’s	another	(possibly	surprising)	thing	to	keep	in	mind:	An

Android	app	can	invoke	an	activity	belonging	to	a	different	app.	For
example,	your	app	might	display	a	Help	button,	and	pressing	Help	might
open	a	web	page.	With	the	web	page	housed	somewhere	on	the	Internet,
your	app’s	button	fires	up	an	activity	belonging	to	Android’s	built-in	web
browser	application.	In	the	Android	world,	applications	don’t	Bogart	their
activities.

Every	Android	activity	has	a	life	cycle	—	a	set	of	stages	that	the
activity	undergoes	from	birth	to	death	to	rebirth,	and	so	on.	I	describe	the
activity	lifecycle	in	Book	III,	Chapter	1.	But	in	this	chapter,	you	get	a
peek	at	the	activity	lifecycle	with	the	method	onCreate	in	Listing	3-1.

When	Android	creates	an	activity,	Android	calls	the	activity’s
onCreate	method.	This	happens	much	more	often	than	you’d	think,
because	Android	destroys	and	then	recreates	activities	while	the	user
navigates	from	place	to	place.	For	example,	if	your	phone	runs	low	on
memory,	Android	can	kill	some	running	activities.	When	you	navigate
back	to	a	killed	activity,	Android	recreates	the	activity	for	you.	The	same
thing	happens	when	you	turn	the	phone	from	portrait	to	landscape	mode.
If	the	developer	doesn’t	override	the	default	behavior,	Android	destroys
an	activity	before	displaying	it	in	the	other	mode.

In	Listing	3-1,	the	onCreate	method	executes	two	statements.	The
first	statement,	super.onCreate(savedInstanceState),	calls	the	parent
class’s	onCreate	method.	The	savedInstanceState	variable	stores
information	about	the	activity’s	values	the	last	time	the	activity	was
destroyed.	With	super.onCreate(savedInstanceState),	the	activity
takes	up	where	it	last	left	off.

	During	what	appears	to	the	user	to	be	a	continuous	run,
Android	might	destroy	and	re-create	an	activity	several	times.	An
activity’s	saved	InstanceState	helps	to	maintain	continuity
between	destructions	and	recreations.	But	if	the	user	closes	an
activity	(by	pressing	the	Back	button,	for	example),	the	next	time	the
activity	runs,	its	savedInstanceState	is	null.
The	second	method	call	in	Listing	3-1	is

setContentView(R.layout.main).	A	call	to	setContentView	plops	a	set
of	buttons,	text	fields,	images,	and	other	stuff	on	the	activity	screen.	The
method	parameter,	R.layout.main,	is	a	roundabout	way	of	coding	the
buttons,	text	fields,	and	the	way	they’re	all	laid	out.	For	more	about	this,
read	the	next	few	sections.

The	gen	directory
The	directory	name	gen	stands	for	“generated.”	The	gen	directory

contains	R.java.	Listing	3-2	shows	the	contents	of	R.java	when	you
create	a	brand-new	project.

Listing	3-2:	Don’t	Even	Look	at	This	File
/*	AUTO-GENERATED	FILE.		DO	NOT	MODIFY.

*

*	This	class	was	automatically	generated	by	the

*	aapt	tool	from	the	resource	data	it	found.		It

*	should	not	be	modified	by	hand.

*/

	

package	stuff.of.mine;

	

public	final	class	R	{

				public	static	final	class	attr	{

				}

				public	static	final	class	drawable	{

								public	static	final	int	icon=0x7f020000;

				}

				public	static	final	class	layout	{

								public	static	final	int	main=0x7f030000;

				}

				public	static	final	class	string	{

								public	static	final	int	app_name=0x7f040001;

								public	static	final	int	hello=0x7f040000;

				}

}

The	hexadecimal	values	in	R.java	are	the	jumping-off	points	for
Android’s	resource	management	mechanism.	Android	uses	these	numbers
for	quick	and	easy	loading	of	the	things	you	store	in	the	res	directory.
For	example,	the	code	in	Listing	3-1	sets	the	look	of	your	activity	to
R.layout.main,	and	according	to	Listing	3-2,	R.layout.main	has	the	hex
value	0x7f030000.

Android’s	documentation	tells	you	to	put	R.java	and	its	hex	values
out	of	your	mind,	and	that’s	probably	good	advice	(advice	that	I	break	in
this	section).	Anyway,	here	are	two	things	to	remember	about	the	role	of
R.java	in	an	Android	app:
•	You	cannot	edit	R.java.

	
Long	after	the	creation	of	a	project,	Android	continues	to	monitor	(and	if
necessary,	update)	the	contents	of	the	R.java	file.	If	you	delete	R.java,
Android	recreates	the	file.	If	you	edit	R.java,	Android	undoes	your	edit.
If	you	answer	Yes	in	the	Do	You	Really	Want	to	Edit	This	File?	dialog
box,	Eclipse	accepts	your	change,	but	immediately	after	that,	Android
clobbers	your	change.

	
•	Many	of	Android’s	predeclared	methods	expect	numbers	in	R.java
as	their	parameters.

	
This	can	lead	to	some	confusion.	Consider	the	following	(very	bad)
chunk	of	code:

	
//	THIS	IS	BAD	CODE!

System.out.println(“42”);

System.out.println(42);

	

TextView	textView	=

		(TextView)	findViewById(R.id.textView1);

textView.setText(“42”);

textView.setText(42);

Java’s	two	System.out.println	calls	(rarely	used	in	Android	apps)	add
text	to	a	log	file.	The	first	System.out.println	sends	the	string	“42”	to
the	file,	and	the	second	System.out.println	converts	the	integer	value
42	to	the	string	“42”	and	then	sends	the	string	“42”	to	the	log	file.	(Java’s
System.out.println	is	prepared	to	print	a	string,	an	integer,	and	various
other	types	of	values.)

	
A	call	to	findViewById	fetches	a	text	view	(a	place	to	display	text)	on
your	activity’s	screen.	So	in	the	bad	code,	textView	refers	to	a	label	on
the	user’s	screen.	A	text	view’s	setText	method	accepts	a	string
parameter	or	an	integer	parameter.	The	call	textView.	setText(“42”)	is
okay.	But	the	integer	version	of	setText	doesn’t	convert	the	integer	to	a
string.	Instead,	textView.setText(42)	looks	for	a	resource	with	code
number	42	(hex	value	0x0000002A,	that	is).	When	Android	finds	nothing
with	code	number	42	in	the	res	directory,	your	app	crashes.

	

The	res	directory
A	project’s	res	directory	contains	resources	for	use	by	the	Android

application.	If	you	look	at	Figure	3-16,	you	see	that	res	has	five
subdirectories	—	layout,	values,	and	three	drawable	directories.
•	The	drawable	directories	contain	images,	shapes,	and	other	such	things.

	
•	The	layout	directory	contains	descriptions	of	your	activities’	screens.

	
A	minimal	app’s	res/layout	directory	contains	an	XML	file

describing	an	activity’s	screen.	(See	the	main.xml	branch	in	Figure	3-16.)

Listing	3-3	shows	the	code	in	the	simple	main.xml	file.

Listing	3-3:	A	Small	Layout	File
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

								“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”

				>

<TextView		

				android:layout_width=”fill_parent”

				android:layout_height=”wrap_content”

				android:text=”@string/hello”

				/>

</LinearLayout>

An	Android	app	consists	of	Java	code,	XML	documents,	and	other
stuff.	The	document	in	Listing	3-3	describes	a	vertical	linear	layout	(a
layout	in	which	elements	appear	in	a	line,	one	beneath	another).	Because
of	its	fill_parent	attributes,	the	layout	is	large	enough	to	fill	its
surroundings.	Its	“surroundings”	are	the	entire	screen	minus	a	few
doodads.

The	only	item	inside	the	linear	layout	is	an	instance	of	TextView	—
a	place	to	display	text	on	the	screen.	The	text	view	is	wide	enough	to	fill
the	screen.	But	because	of	the	wrap_content	attribute,	the	text	view	is
only	tall	enough	to	enclose	whatever	characters	it	displays.

The	@string/hello	attribute	in	Listing	3-3	refers	indirectly	to	the
words	Hello	World,	MyActivity!	in	Figure	3-11.	Here’s	where	Android’s
resource	handling	gets	interesting.	You	don’t	hard-code	character	strings
into	your	Java	code.	Instead,	you	put	character	strings	in	XML
documents.	To	localize	your	app	for	French	you	point	to	a	res/values-
fr/strings.xml	file.	(Bonjour	tout	le	monde!)	To	localize	your	app	for
Romanian,	you	point	to	a	res/	values-ro/strings.xml	file.	(Salut
lume!)

A	bare-bones	app’s	res/values	directory	contains	a	strings.xml
file.	(See	Figure	3-16.)	Listing	3-4	shows	the	code	in	a	simple	main.xml
file.

Listing	3-4:	A	Small	strings.xml	File

<?xml	version=”1.0”	encoding=”utf-8”	standalone=”no”?>

<resources>

		<string	name=”hello”>Hello	World,	MyActivity!</string>

		<string	name=”app_name”>My	First	Android	App</string>

</resources>

Listing	3-4	describes	a	“hello”	string	containing	the	characters
Hello	World,	MyActivity!.	To	refer	to	the	“hello”	string	in	a	.java
file,	you	type	R.string.hello.	To	refer	to	the	“hello”	string	in	another
XML	file	(such	as	the	file	in	Listing	3-3),	you	type	“@string/hello”.
Either	way,	you	point	to	the	words	Hello	World,	MyActivity!	in
Listing	3-4.

	To	read	all	about	XML	documents,	see	Book	II,	Chapter	5.

The	assets	directory
When	Android	packages	an	app,	a	tool	named	aapt	(short	for

Android	Asset	Packaging	Tool)	compiles	the	stuff	in	the	app’s	res
directory.	In	other	words,	aapt	prepares	the	res	directory’s	items	for
quick	retrieval	and	use.	So	your	application’s	access	to	items	in	the	res
directory	is	highly	optimized.

But	plain	old	Java	has	its	own	ways	to	fetch	images	and	strings.
Using	Java’s	techniques,	you	generally	read	byte	by	byte	from	the
Internet	or	from	a	device’s	file	system.	To	grab	an	image	or	some	other
data	using	Java’s	standard	tricks,	put	the	image	or	data	in	the	project’s
assets	directory.

Other	files	in	an	Android	project
In	Figure	3-16,	the	tree’s	branches	include	the	files	proguard.cfg,

default.	properties,	and	AndroidManifest.xml.
The	file	proguard.cfg	contains	configuration	information	for

ProGuard,	a	Java	obfuscator	program.	Obfuscation	is	a	way	of	making
your	Java	code	difficult	to	understand	(which	makes	the	code	difficult	to
steal,	difficult	to	modify,	and	difficult	to	infect).	To	read	about
ProGuard’s	role	in	Android	app	development,	see	Book	V,	Chapter	1.

The	information	in	the	default.properties	file	helps	automated

software	keep	track	of	a	project’s	changes.	Programs	such	as	CVS
(Concurrent	Versions	System),	Subversion,	and	Git	organize	changes
when	one	or	more	developers	contribute	updates	to	a	project.

An	app’s	AndroidManifest.xml	file	describes	the	things	a	device
needs	to	run	the	app.	(See	Listing	3-5.)

Listing	3-5:	A	Little	AndroidManifest.xml
File
<?xml	version=”1.0”	encoding=”utf-8”?>

<manifest	xmlns:android=

		“http://schemas.android.com/apk/res/android”

				package=”stuff.of.mine”

				android:versionCode=”1”

				android:versionName=”1.0”>

		<uses-sdk	android:minSdkVersion=”11”/>

	

		<application	android:icon=”@drawable/icon”

															android:label=”@string/app_name”>

				<activity	android:name=”.MyActivity”

														android:label=”@string/app_name”>

						<intent-filter>

								<action	android:name=

										“android.intent.action.MAIN”	/>

								<category	android:name=

										“android.intent.category.LAUNCHER”	/>

						</intent-filter>

				</activity>

	

		</application>

</manifest>

I	cover	some	AndroidManifest.xml	elements	in	other	chapters,	and
some	of	the	elements	in	Listing	3-5	are	self-explanatory.	So	in	this
chapter,	I	cover	only	a	few	of	the	listing’s	highlights.

In	the	document’s	root	element,	the	android:versionCode	and
android:versionName	attributes	have	similar	(but	slightly	different)
meanings.	The	android:versionCode	attribute	is	an	integer.	For

publication	on	the	Android	Market,	the	android:versionCode	must
increase	from	one	version	of	your	app	to	another.	The	numbers	don’t
have	to	be	consecutive.	So	your	first	published	version	can	have
android:versionCode	47,	and	the	next	published	version	can	be	number
63.	The	app’s	user	doesn’t	see	the	android:versionCode.

The	android:versionName	can	be	any	string	of	characters,	so	this
attribute’s	value	is	largely	cosmetic.	The	user	sees	the
android:versionName.

The	application	element	in	Listing	3-5	has	two	attributes	—
android:	icon	and	android:label.	The	user	sees	the	application’s	icon
and	label	on	the	device’s	Apps	screen.	The	application’s	label	(and
sometimes	the	icon)	appears	when	one	of	the	app’s	activities	is	in	the
foreground.	(See	the	words	My	First	Android	App	and	the	Android	icon
in	Figure	3-11.)

An	app’s	activity	can	have	its	own	icon	and	label,	overriding	the
app’s	icon	and	label.	But	in	an	AndroidManifest.xml	file,	an	activity
element	must	have	an	android:name	attribute.	The	android:name
attribute	has	either	of	the	following	values:
•	The	fully	qualified	name	of	the	activity	class.

	
For	example,	the	value	of	your	activity’s	android:name	attribute	might	be
com.yourowndomainname.MyActivity.	For	Listing	3-1,	the	fully	qualified
name	is	stuff.of.mine.MyActivity.

	
•	The	abbreviated	activity	class	name,	preceded	by	a	dot.

	
The	name	.SomeClass	stands	for	“the	class	named	SomeClass	in	this
project’s	package.”	So	in	Listing	3-5,	the	name	.MyActivity	stands	for
stuff.of.mine.MyActivity.

	

	The	manifest	element’s	package	attribute	isn’t	in	the
android	namespace.	In	Listing	3-5,	I	type	package,	not
android:package.

	
Within	an	activity	element,	an	intent-filter	element	describes

the	kinds	of	duties	that	this	activity	can	fulfill	for	apps	on	the	same
device.	Intent	filters	consume	an	entire	chapter	(see	Book	III,	Chapter	2).
So	in	this	section,	I	don’t	dare	open	the	whole	intent	filter	can	of	worms.
But	to	give	you	an	idea,	action	android.intent.action.MAIN	indicates
that	this	activity’s	code	can	be	the	starting	point	for	an	app’s	execution.
And	the	category	android.intent.category.LAUNCHER	indicates	that
this	activity’s	icon	can	appear	in	the	device’s	Apps	screen.

	If	you	create	a	second	activity	for	your	app,	you	must
declare	the	new	activity	in	the	app’s	AndroidManifest.xml	file.	If
you	don’t,	your	app	will	crash	with	an
ActivityNotFoundException.

The	android.jar	archive
The	tree	in	Figure	3-16	has	an	Android	3.0	branch,	but	that	branch

isn’t	a	directory	on	your	computer’s	file	system.	In	the	Package	Explorer
view,	the	Android	3.0	branch	reminds	you	that	your	project’s
CLASSPATH	includes	Android’s	predeclared	Java	code.

	A	.jar	file	is	a	compressed	archive	containing	a	useful
bunch	of	Java	classes.	In	fact,	a	.jar	file	is	a	Zip	archive.	You	can
open	any	.jar	file	with	WinZip,	StuffIt	Expander,	or	your	operating
system’s	built-in	unzipping	utility.	(You	may	or	may	not	have	to
change	the	file’s	name	from	whatever.jar	to	whatever.zip.)
Anyway,	an	android.jar	file	contains	Android’s	Java	classes	for	a
particular	version	of	Android.	In	Figure	3-16,	a	Package	Explorer
branch	reminds	you	that	your	project	contains	a	reference	to
someplace	else	on	your	hard	drive	(to	a	place	containing	the	.jar
file	for	Android	3.0).

The	android.jar	file	contains	code	grouped	into	Java	packages,
and	each	package	contains	Java	classes.	(Figure	3-17	shows	you	the	tip	of
the	android.jar	iceberg.)	The	android.jar	file	contains	classes	specific
to	Android	and	classes	that	simply	help	Java	to	do	its	job.	Figure	3-17
shows	a	bunch	of	Android-specific	packages,	and	Figure	3-18	displays
some	all-purpose	Java	packages.

	

Figure	3-17:	Some	of	the	packages	and	classes	in	android.jar.

	

Figure	3-18:	The	android.jar	file	includes	general-purpose	Java	packages.

The	bin	directory
Each	Android	project	has	a	bin	directory,	but	Eclipse’s	Package

Explorer	doesn’t	display	the	bin	directory.	Android	puts	the	output	of	its
compiling,	packaging	and	other	“ing”s	in	the	project’s	bin	directory.	In
particular,	the	bin	directory	stores	compiled	Java	.class	files,	doubly
compiled	Dalvik	.dex	files,	packaged	resource	files,	and	complete	.apk

application	files.
An	APK	file	contains	everything	a	user’s	device	needs	to	know	in

order	to	run	your	app.	To	install	a	new	app	on	your	Android	phone,	you
download	and	install	a	new	APK	file.

	You	can	visit	a	project’s	bin	directory	with	your	operating
system’s	file	explorer.	You	can	also	see	the	bin	directory	in
Eclipse’s	Navigator	view.	For	information	on	opening	a	view	in
Eclipse,	see	Book	II,	Chapter	1.

	

Chapter	4:	Conjuring	and	Embellishing	an
Android	App

In	This	Chapter
Creating	an	app	with	check	boxes	and	other	widgets
Finding	bugs	in	your	app	(not	that	there	are	any,	of	course)

Adding	interesting	features	to	your	app
	

When	I	set	out	to	learn	something,	I	follow	a	“ready,	set,	go”
approach.	I	don’t	“go”	right	into	the	detailed	technical	manuals.	Instead,	I
get	ready	by	examining	the	simplest	example	I	can	find.	I	work	with	a
Hello	World	scenario	like	the	one	in	Chapter	3	of	this	minibook.	Then	(.
.	.	and	here’s	where	this	chapter	fits	in	.	.	.)	I	do	some	probing	and	poking;
I	explore	some	possibilities;	I	peek	around	corners;	I	try	some
experiments.	These	are	my	initial	“ready,	set”	steps.

When	I’m	firm	on	my	feet,	I	do	the	kind	of	stuff	you	do	in	Books	III
through	VI.	I	“go.”	If	you	feel	confident,	“go”	directly	to	Book	III.	But	if
you	want	more	“ready,	set”	material,	march	on	into	this	chapter.

Dragging,	Dropping,	and	Otherwise
Tweaking	an	App

A	general	guideline	in	app	development	tells	you	to	separate	logic
from	presentation.	In	less	technical	terms,	the	guideline	warns	against
confusing	what	an	app	does	with	how	an	app	looks.	The	guideline	applies
to	many	things	in	life.	For	example,	if	you’re	designing	a	website,	have
artists	do	the	layout	and	have	geeks	do	the	coding.	If	you’re	writing	a
report,	get	the	ideas	written	first.	Later,	you	can	worry	about	fonts	and
paragraph	styles.	(Jen,	this	book’s	copy	editor	.	.	.	do	you	agree?)

The	literature	on	app	development	has	specific	techniques	and
frameworks	to	help	you	separate	form	from	function.	But	in	this	chapter,
I	do	the	simplest	thing	—	I	chop	an	app’s	creation	into	two	sets	of

instructions.	The	first	set	is	about	creating	an	app’s	look;	the	second	set	is
about	coding	the	app’s	behavior.

Creating	the	“look”
To	add	buttons,	boxes,	and	other	goodies	to	your	app,	do	the

following:
1.	Launch	Eclipse,	and	create	a	new	Android	project.

	 For	details,	see	Chapter	3	of	this	minibook.
	 2.	In	the	new	project’s	res/layout	directory	(in	Eclipse’s

Package	Explorer),	double-click	main.xml.
	 As	a	result,	Eclipse’s	editor	displays	the	contents	of	main.xml.	The

bottom	of	the	editor	has	two	tabs	—	a	Graphical	Layout	tab	for	visual
editing	and	a	main.xml	tab	for	text-based	editing.

	 3.	Click	the	editor’s	Graphical	Layout	tab.
	 The	next	several	steps	guide	you	through	the	creation	of	the	stuff	in

Figure	4-1.
	

	

Figure	4-1:	Previewing	a	new	app.

	

If	you	can’t	see	the	Graphical	Layout’s	palette,	enlarge
the	layout.	Drag	the	edges	of	Eclipse’s	editor.	Better	yet,	double-click	the
main.xml	tab	at	the	top	of	Eclipse’s	editor.	Doing	so	maximizes	the	editor
within	the	Eclipse	workbench.

	 4.	From	the	palette’s	Form	Widgets	group,	drag	two	check
boxes	into	the	preview	screen.

	 5.	From	the	palette’s	Form	Widgets	group,	drag	a	button	and	a

TextView	element	into	the	preview	screen.
	 6.	In	Eclipse’s	Outline	view,	select	checkBox1.	(See	Figure	4-2.)
	 The	Outline	view	appears	on	the	right	side	of	the	Eclipse

workbench.	The	Outline	view’s	tree	depicts	the	nesting	of	objects	in
main.xml.	In	Figure	4-2,	all	widgets	are	inside	a	LinearLayout.

	
	

Figure	4-2:	The	Outline	view.

	Android’s	LinearLayout	class	arranges	visible	widgets
in	a	line	on	the	user’s	screen.	(The	line	of	widgets	grows	either	vertically
or	horizontally,	depending	on	the	way	you	set	things	up.)	For	the	full
story	on	Android’s	LinearLayout	class	and	on	Android’s	other	layout
classes,	see	Book	IV,	Chapter	1.	And,	for	more	information	on	Eclipse’s
many	views	(like	the	Outline	view	in	Figure	4-2),	see	Book	II,	Chapter	1.

	 7.	In	Eclipse’s	Properties	view,	change	the	Text	entry’s	value	to
Pepperoni.	(See	Figure	4-3.)

	 Eclipse’s	Properties	view	is	normally	in	the	bottom-right	part	of	the
Eclipse	workbench.

	
	

Figure	4-3:	The	Properties	view.

8.	Repeat	Steps	6	and	7	a	few	times.	Change	the	Text	entry	of
each	component	in	the	Graphical	Layout	screen,	so	it	looks	like	what
you	see	in	Figure	4-1.

	

	To	see	a	component’s	attributes	in	the	Properties	view,
you	must	select	that	component	in	the	Outline	view.	Selecting	the
component’s	picture	in	the	Graphical	Layout	isn’t	sufficient.

	 9.	Choose	File⇒Save	to	save	your	work	so	far.
	 With	this	section’s	steps,	you	edit	your	app	visually.	Behind	the

scenes,	Eclipse	is	editing	the	text	in	your	app’s	main.xml	document.	You
can	see	what	changes	Eclipse	has	made	to	your	app’s	main.xml	document
by	selecting	the	main.xml	tab	at	the	bottom	of	Eclipse’s	editor.	I’ve
reproduced	the	main.xml	document	in	Listing	4-1.

Listing	4-1:	The	main.xml	Document
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout

				xmlns:android=

								“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”>

	

				<TextView

								android:layout_width=”fill_parent”

								android:layout_height=”wrap_content”

								android:text=”@string/hello”	/>

				<CheckBox	android:id=”@+id/checkBox1”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:text=”Pepperoni”></CheckBox>

				<CheckBox	android:id=”@+id/checkBox2”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:text=”Extra	cheese”></CheckBox>

				<Button	android:id=”@+id/button1”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:text=”Show”></Button>

				<TextView	android:id=”@+id/textView1”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:text=”Plain”></TextView>

	

</LinearLayout>

Whenever	you	want,	you	can	change	the	look	of	your	app	by
directly	editing	the	text	in	main.xml.

Disclaimer:	In	Listing	4-1,	the	file	main.xml	has	been	modified
from	its	original	version.	It	has	been	formatted	to	fit	your	page.

Coding	the	behavior
Assuming	you’ve	followed	the	instructions	in	this	chapter’s

“Creating	the	‘look’	“	section,	what’s	next?	Well,	what’s	next	depends	on
your	app’s	minimum	SDK	version.

For	minimum	SDK	version	4	or	higher	(Android
1.6	and	beyond)

Android	1.6	introduced	a	cool	android:onClick	attribute	that
streamlines	the	coding	of	an	app’s	actions.	Here’s	what	you	do:

1.	Follow	the	steps	in	this	chapter’s	“Creating	the	‘look’”
section.

	 2.	In	Eclipse’s	Outline	view,	select	button1.	(Refer	to	Figure	4-
2.)

	 3.	In	Eclipse’s	Properties	view,	change	the	On	Click	entry’s
value	to	onButton1Click.	(See	Figure	4-4.)

	
	

Figure	4-4:	Changing	an	object’s	On	Click	property.

Actually,	you	can	change	the	entry’s	value	to	anything	you	want,	as
long	as	it	forms	a	valid	Java	method	name.

	 4.	In	the	Package	Explorer,	double-click	the	activity	that
Android	created	in	your	project’s	src	directory.

	 The	activity’s	code	appears	in	Eclipse’s	editor.
	 5.	Modify	the	activity’s	code,	as	shown	in	Listing	4-2.
	

Listing	4-2:	A	Button	Responds	to	a	Click
package	more.stuff.of.mine;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.CheckBox;

import	android.widget.TextView;

	

public	class	SecondAppActivity	extends	Activity	{

				TextView	textView;

				CheckBox	pepBox,	cheeseBox;

	

				/**	Called	when	the	activity	is	first	created.	*/

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

	

								pepBox	=

												(CheckBox)	findViewById(R.id.checkBox1);

								cheeseBox	=

												(CheckBox)	findViewById(R.id.checkBox2);

								textView	=

												(TextView)	findViewById(R.id.textView1);

				}

	

				public	void	onButton1Click(View	view)	{

								StringBuilder	str	=	new	StringBuilder(“”);

								if	(pepBox.isChecked())	{

												str.append(“Pepperoni”	+	“	“);

								}

								if	(cheeseBox.isChecked())	{

												str.append(“Extra	cheese”);

								}

								if	(str.length()	==	0)	{

												str.append(“Plain”);

								}

								textView.setText(str);

				}

}

6.	Run	the	app.
	 When	you	click	the	app’s	button,	you	see	one	of	the	screens	in

Figure	4-5.
	

	

Figure	4-5:	Running	this	section’s	app.

In	Listing	4-2,	the	statement
pepBox	=	(CheckBox)	findViewById(R.id.checkBox1);

finds	the	first	check	box	that	you	create	in	the	“Creating	the	‘look’	“
section’s	steps.

	For	info	about	the	findViewById	method,	see	Chapter	3	in
this	minibook.	To	find	out	why	I	have	(CheckBox)	in	parentheses
before	the	call	to	find	ViewById,	see	the	discussion	of	casting	in
Book	II,	Chapter	3.
The	onButton1Click	method	in	Listing	4-2	fulfills	the	promise	that

you	make	in	Step	3	of	this	section’s	instructions.	Setting	the	button’s	On
Click	property	to	onButton1Click	gets	Eclipse	to	add	the	attribute
android:onClick=”onButton1Click”	to	the	button’s	start	tag	in
main.xml.	As	a	result,	Android	calls	your	onButton1Click	method

whenever	the	user	clicks	the	button.	In	the	heading
public	void	onButton1Click(View	view)

the	method	parameter	view	is	whatever	object	the	user	clicked.	In
this	example,	you	don’t	use	the	method’s	view	parameter,	but	the
parameter	is	available	nonetheless.	In	fact,	if	you	don’t	put	a	View
parameter	in	your	click-handling	method,	Android	doesn’t	respond	to	the
click.

Android	also	fails	to	respond	if	you	don’t	declare	onButton1Click
to	be	public.	The	code	that	tries	to	call	onButton1Click	isn’t	a	subclass
of	your	activity	and	isn’t	in	the	same	package.	So	if	your	event-handling
method	isn’t	public,	your	efforts	are	thwarted.

	In	Android,	any	widget	on	the	device’s	screen,	such	as	a
button	or	a	check	box,	is	a	subclass	of	android.view.View.

	If	your	app’s	target	version	is	3,	Eclipse’s	Properties	view
doesn’t	display	an	On	Click	entry.	If	your	app’s	target	version	is	4
but	the	app’s	minimum	SDK	version	is	3,	Eclipse’s	Properties	view
displays	an	On	Click	entry,	but	the	code	doesn’t	work	on	devices
running	SDK	version	3.	The	same	kind	of	thing	applies	across	the
board	in	Android	app	development.	What	Eclipse	allows	you	to	do
doesn’t	necessarily	work	on	all	versions	of	Android.

For	any	minimum	SDK	version
No	matter	what	Android	version	you	plan	to	use,	this	section’s

instructions	get	your	app	to	respond	to	button	clicks:
1.	Follow	the	steps	in	this	chapter’s	“Creating	the	‘look’	“

section.
	 2.	Modify	the	activity’s	code,	as	shown	in	Listing	4-3.
	

Listing	4-3:	Event	Handling	(The	Traditional
Java	Way)
package	more.stuff.of.mine;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

import	android.widget.CheckBox;

import	android.widget.TextView;

	

public	class	SecondAppActivity	extends	Activity

																								implements	OnClickListener	{

				TextView	textView;

				CheckBox	pepBox,	cheeseBox;

	

				/**	Called	when	the	activity	is	first	created.	*/

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

	

								pepBox	=

												(CheckBox)	findViewById(R.id.checkBox1);

								cheeseBox	=

												(CheckBox)	findViewById(R.id.checkBox2);

								textView	=

												(TextView)	findViewById(R.id.textView1);

								

								((Button)	findViewById(R.id.button1))

																										.setOnClickListener(this);

				}

	

				public	void	onClick(View	view)	{

								StringBuilder	str	=	new	StringBuilder(“”);

								if	(pepBox.isChecked())	{

												str.append(“Pepperoni”	+	“	“);

								}

								if	(cheeseBox.isChecked())	{

												str.append(“Extra	cheese”);

								}

								if	(str.length()	==	0)	{

												str.append(“Plain”);

								}

								textView.setText(str);

				}

}

3.	Run	the	app.
	 Listing	4-3	uses	Java’s	traditional	event-handling	pattern.	The

button	registers	your	activity	as	its	click-event	listener.	Your	activity
declares	itself	to	be	an	OnClickListener	and	makes	good	on	this	click-
listener	promise	by	implementing	the	onClick	method.

You	can	program	any	of	Java’s	well-known	variations	on	the	event-
handling	pattern	in	Listing	4-3.	For	example,	you	can	create	a	separate
class	to	implement	the	OnClickListener	interface,	or	you	can	implement
the	interface	with	an	inner	class.

A	Bit	of	Debugging
In	a	perfect	world,	you	wake	up	refreshed	and	energetic	every

morning.	Every	app	you	write	runs	correctly	on	the	first	test.	Every	word
you	write	in	Android	Application	Development	All-in-One	For	Dummies

is	le	mot	juste.
But	the	world	isn’t	perfect.	And	often,	the	first	test	of	a	new

application	forms	a	disappointing	splat	on	your	emulator’s	screen.	So	the
next	few	sections	contain	some	useful	debugging	techniques.

Try	it!
To	get	a	handle	on	Android	debugging,	follow	these	instructions:
1.	In	Eclipse,	create	a	new	Android	project.

	 Don’t	be	shy.	Almost	any	new	Android	project	will	do.	To	cook	up
this	section’s	figures	and	listings,	I	named	the	project	DebugMe.

	 2.	Add	a	TextView	element	to	your	project’s	main.xml	layout.
	 For	details,	see	the	section	“Creating	the	‘look’.”
	 After	adding	a	TextView	element,	the	Graphical	Layout	screen

looks	like	the	one	in	Figure	4-6,	and	Eclipse’s	Outline	view	contains	a
textView1	branch.

	
	

Figure	4-6:	A	layout	containing	a	new	TextView	element.

3.	Open	the	new	project’s	activity	for	editing.
	 The	activity’s	onCreate	method	looks	like	this:
	 public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

}

4.	Add	two	statements	to	the	onCreate	method,	as	in	Listing	4-4.
	

Listing	4-4:	A	Misguided	Attempt	to	Add	a
TextView	to	an	Activity
//	THIS	IS	BAD	CODE!

	

public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				TextView	textView	=

												(TextView)	findViewById(R.id.textView1);

				setContentView(R.layout.main);

				textView.setText(“Oops!”);

}

5.	Run	your	app.
	 Your	app	comes	crashing	down	with	a	big	Has	Stopped

Unexpectedly	message.	You	click	the	emulator’s	Force	Close	button	and
give	up	in	despair.	Or	.	.	.

	 6.	Choose	Window⇒Open	Perspective⇒DDMS.
	 Eclipse’s	DDMS	perspective	opens.	In	the	DDMS	perspective,	the

LogCat	view	displays	the	running	emulator’s	log.	(See	Figure	4-7.)
	

	

Figure	4-7:	The	DDMS	perspective.

7.	If	the	LogCat	view	is	empty,	or	if	you’re	running	more	than
one	emulator	or	connected	device,	select	your	current	app’s	emulator
in	the	Devices	view.	(Again,	see	Figure	4-7.)

	 8.	In	the	LogCat	view,	look	for	a	Java	stack	trace.
	 The	Java	stack	trace,	plus	a	few	of	the	log’s	surrounding	lines,	looks

like	this:
	 AndroidRuntime(4821):	Shutting	down	VM

dalvikvm(4821):	threadid=1:	thread	exiting	with	uncaug

ht	exception	(group=0x4001d800)

AndroidRuntime(4821):	FATAL	EXCEPTION:	main

AndroidRuntime(4821):	java.lang.RuntimeException:	Unab

le	to	start	activity	ComponentInfo{stuff.of.mine/stuff.

of.mine.DebugMeActivity}:	java.lang.NullPointerExceptio

n

AndroidRuntime(4821):								at	android.app.ActivityTh

read.performLaunchActivity(ActivityThread.java:2663)

AndroidRuntime(4821):								at	android.app.ActivityTh

read.handleLaunchActivity(ActivityThread.java:2679)

AndroidRuntime(4821):								at	android.app.ActivityTh

read.access$2300(ActivityThread.java:125)

AndroidRuntime(4821):								at	android.app.ActivityTh

read$H.handleMessage(ActivityThread.java:2033)

AndroidRuntime(4821):								at	android.os.Handler.dis

patchMessage(Handler.java:99)

AndroidRuntime(4821):								at	android.os.Looper.loop

(Looper.java:123)

AndroidRuntime(4821):								at	android.app.ActivityTh

read.main(ActivityThread.java:4627)

AndroidRuntime(4821):								at	java.lang.reflect.Meth

od.invokeNative(NativeMethod)

AndroidRuntime(4821):								at	java.lang.reflect.Meth

od.invoke(Method.java:521)

AndroidRuntime(4821):								at	com.android.internal.o

s.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:86

8)

AndroidRuntime(4821):								at	com.android.internal.o

s.ZygoteInit.main(ZygoteInit.java:626)

AndroidRuntime(4821):								at	dalvik.system.NativeSt

art.main(Native	Method)

	

AndroidRuntime(4821):	Caused	by:	java.lang.NullPointer

Exception

AndroidRuntime(4821):								at	stuff.of.mine.DebugMeA

ctivity.onCreate(DebugMeActivity.java:16)

AndroidRuntime(4821):								at	android.app.Instrument

ation.callActivityOnCreate(Instrumentation.java:1047)

AndroidRuntime(4821):								at	android.app.ActivityTh

read.performLaunchActivity(ActivityThread.java:2627)

AndroidRuntime(4821):								...	11	more

ActivityManager(37):			Force	finishing	activity	stuf

f.of.mine/.DebugMeActivity

A	log	file	always	contains	more	information	than	you	need.	But	if
you	look	for	the	most	recent	bunch	of	at	words	(each	preceded	by	about
eight	blank	spaces),	you	find	the	trace	that	you	need.

	 9.	In	the	stack	trace,	look	for	lines	relating	directly	to	the	code	in
your	app.

	 The	stack	trace	shows	which	methods	were	calling	which	other
methods	when	your	app	crashed.	In	this	onslaught	of	details,	you	find	a
few	lines	containing	names	from	your	application	—	lines	such	as
stuff.of.mine.DebugMeActivity.onCreate(DebugMeActivity.java:16)

Above	that	line,	you	see	the	words	java.lang.Null	PointerException.
	 So	your	app	caused	a	NullPointerException	at	line	16	of	the	Debug

MeActivity.java	file.

	 10.	In	Eclipse’s	editor,	find	the	offending	line	in	your	app’s	code.
	 In	this	section’s	example,	the	guilty	line	is	textView.setText

(“Oops!”)	in	your	code’s	Activity	class.
	

	To	make	Eclipse’s	editor	display	line	numbers,	choose
Window⇒Preferences⇒General⇒Editors⇒Text	Editors.	Then,	put	a
check	mark	in	the	Show	Line	Numbers	check	box.

	 11.	Figure	out	what	part	of	the	offending	code	might	cause	the
error	shown	in	the	stack	trace.

	 Unfortunately,	this	step	isn’t	always	easy.	You	might	need	to	make
several	guesses,	try	several	possible	solutions,	or	seek	advice	on	some
online	forums.

	 Anyway,	like	a	chef	on	a	cooking	show,	I	can	quickly	whip	out	a
ready-made	solution.	When	you	call	textView.setText,	you	get	a
NullPointerException.	So	textView	is	null.	The	problem	in	Listing	4-4
is	the	placement	of	the	call	to	findViewById.

	 Until	you	set	the	activity’s	content	view,	the	app	knows	nothing
about	R.id.textView1.	So	in	Listing	4-4,	calling	findViewById	before
calling	setContentView	leads	to	disaster.	To	fix	the	problem,	swap	two
statements	as	follows:

	 setContentView(R.layout.main);

TextView	textView	=

												(TextView)	findViewById(R.id.textView1);

More	than	one	way	to	skin	a	LogCat
With	some	clever	use	of	Android’s	log,	you	can	increase	your

chances	of	finding	the	source	of	an	error.

See	the	long	lines
Eclipse’s	LogCat	view	doesn’t	wrap	long	lines.	So	in	the	LogCat

view,	you	might	see	a	truncated	line,	such	as
AndroidRuntime(4821):	Caused	by:	java.lang.	...

You	can	enlarge	the	LogCat	view’s	Message	column,	but	enlarging
the	column	gets	you	only	so	far.	If	you	need	to	see	a	very	long	line	in	the
log	file,	open	a	command	window	and	issue	the	cd	command	to	change	to
your	ANDROID_HOME/platform-tools	directory.	In	the	platform-tools
directory,	type	adb	logcat.	Your	emulator’s	log	file	appears	in	the
command	window.

	For	tips	on	using	your	development	computer’s	command
window,	see	Book	VI,	Chapter	3.

Read	your	device’s	log	file
If	you	connect	a	device	to	your	development	computer,	you	can	see

the	device’s	log	file	in	Eclipse’s	LogCat	view.	But	sometimes	it’s	more
convenient	to	view	the	log	file	right	on	the	device.	For	example,	you
might	want	to	debug	an	app	when	you’re	using	it	on	the	road.

The	Android	Market	has	apps	to	help	you	view	your	device’s	log
file.	I	use	an	app	called	CatLog,	but	other	apps	might	work	well	for	you,
too.

Filter	the	output
Android’s	logging	has	five	levels.	The	levels,	in	decreasing	order	of

seriousness,	are	ERROR,	WARN,	INFO,	DEBUG,	and	VERBOSE.	In
general,	only	an	ERROR	entry	is	a	show	stopper.	All	other	entries
(WARN,	INFO,	and	so	on)	are	just	idle	chatter.

Eclipse’s	LogCat	view	has	buttons:	V,	D,	I,	W,	and	E.	You	can	click
a	button	to	filter	entries	of	lesser	severity.	For	example,	if	you	click	the	W
button,	the	view	displays	only	entries	with	levels	W	or	E.

You	can	also	filter	entries	by	their	points	of	origin.	In	Step	8	of	the
“Try	it!”	section,	the	log	output	comes	from	two	sources.	Most	of	the
output	comes	from	AndroidRuntime(4821),	but	the	last	entry	comes
from	ActivityManager(37).	The	name	(such	as	AndroidRuntime	or
ActivityManager)	is	a	tag,	and	the	number	(such	as	4821	or	37)	is	a
process	identification	number	(PID).	As	you	see	in	the	following	section,
the	tag	and	PID	don’t	always	change	in	lockstep.

Anyway,	to	filter	by	tag	or	PID,	click	the	plus-sign	button	next	to
the	LogCat	view’s	V,	D,	I,	W,	and	E	buttons.	Doing	so	opens	a	Log	Filter
dialog	box,	where	you	can	specify	the	tag	or	PID	whose	entries	you	want
to	see.

Write	to	the	log	file
What?	You	don’t	trust	my	diagnosis	of	the	problem	in	Listing	4-4?

“Is	text	View	really	null?”,	you	ask.	You	can	peek	at	your	program’s
variables	with	Eclipse’s	Debug	perspective,	but	for	a	quick	answer	to
your	question,	you	can	write	to	Android’s	log	file.

In	Listing	4-4,	add	the	following	code	before	the
textView.setText(“Oops!”)	statement:
if	(textView	==	null)	{

				Log.i(“READ	ME!”,	“textView	is	null”);

}	else	{

				Log.i(“READ	ME!”,

												“-->”	+	textView.getText().toString());

}

The	Log	class’s	static	i	method	creates	an	entry	of	level	INFO	in
Android’s	log	file.	In	this	example,	the	entry’s	tag	is	READ	ME!,	and	the
entry’s	message	is	either	textView	is	null	or	the	characters	displayed
in	the	text	View.	When	you	run	the	app,	you	can	check	Eclipse’s	LogCat
view	to	find	out	what	this	entry	tells	you.

	By	convention,	a	log	entry’s	tag	is	the	name	of	the	class	in
which	the	log	is	created.	For	example,	if	your	class’s	name	is
DebugMeActivity,	the	first	parameter	of	Log.i	is	the	string
“DebugMeActivity”.	In	this	section,	I	don’t	follow	that	formula.	But
if	other	developers	are	involved	in	your	project,	coding	conventions
are	very	important.

Improving	Your	App
Face	it	—	the	app	in	this	chapter’s	“Dragging,	Dropping,	and

Otherwise	Tweaking	an	App”	section	is	boring!	Who	wants	to	click	a
button	to	see	the	words	Pepperoni	Extra	Cheese	on	a	device’s	screen?

I	can’t	promise	instant	excitement	in	this	section.	But	with	modest
efforts,	you	can	add	features	to	make	the	app	more	interesting.	(I	confess:
In	this	chapter,	the	real	reason	for	making	the	app	interesting	is	to	show

you	some	additional	Android	developer	tricks.	Anyway,	read	on	.	.	.)

Improving	the	layout
You	can	improve	an	app’s	look	in	two	ways	—	the	way	it	looks	to	a

user	and	the	way	it	looks	to	another	developer.	In	this	section,	you	do
both.	When	you’re	done,	you	have	a	layout	like	the	one	in	Figure	4-8.

	

Figure	4-8:	Your	mission,	should	you	decide	to	accept	it.

Creating	a	reusable	layout
1.	Launch	Eclipse,	and	create	a	new	Android	project.

	 For	details,	see	Chapter	3	of	this	minibook.
	 2.	Open	Eclipse’s	dialog	box	for	creating	a	new	XML	resource

document.
	 On	Windows,	right-click	(Control-click	on	a	Mac)	your	project’s

branch	in	the	Package	Explorer.
	 Then,	in	the	resulting	context	menu,	choose	Android	Tools⇒New

Resource	File.	Eclipse’s	New	Android	XML	File	dialog	box	appears.
(See	Figure	4-9.)

	 3.	In	the	dialog	box’s	File	field,	type	the	name	of	your	new
resource	document.

	 In	Figure	4-9,	I	type	reusable_layout.xml.
	

	The	names	of	Android’s	resource	files	must	not
contain	capital	letters.	You	can	use	lowercase	letters	and	underscores.
You	cannot	use	Java’s	customary	“camel-case”	naming	convention	with
names	like	reUsable	Layout.xml.	And,	yes,	a	layout	filename	must	end
with	the	extension	.xml.

	 4.	Select	the	Layout	button	among	the	dialog	box’s	What	Type
of	Resource	.	.	.	choices.	(Again,	see	Figure	4-9.)

	 5.	Click	Finish	to	dismiss	the	dialog	box.
	 As	a	result,	the	Graphical	Layout	editor	appears.
	 6.	Select	the	new	layout’s	LinearLayout	in	Eclipse’s	Outline

view.
	

	To	read	more	about	the	LinearLayout	class,	see	Book
IV,	Chapter	1.

	
	

Figure	4-9:	The	New	Android	XML	File	dialog	box.

7.	In	Eclipse’s	Properties	view,	set	the	layout’s	Gravity	property
to	center_horizontal.

	 A	layout’s	Gravity	property	helps	determine	the	positions	of	objects
inside	the	layout.	The	Gravity	value	center_horizontal	makes	objects
center	themselves	across	the	layout	screen.

	 8.	From	the	palette’s	Layouts	group,	drag	a	horizontal	linear
layout	to	the	preview	screen.

	 The	entire	screen	already	contains	a	linear	layout,	so	in	this	step,
you’re	putting	a	linear	layout	inside	of	the	existing	linear	layout.

	

	In	Android,	any	widget	on	the	device’s	screen	is	a
subclass	of	android.view.View.	This	includes	the	things	on	Eclipse’s
Graphical	Layout	palette.	For	example,	the	class	LinearLayout	is	a
subclass	of	android.view.ViewGroup,	which	is	in	turn	a	subclass	of
android.view.View.

	 9.	From	the	palette’s	Form	Widgets	group,	drag	two	check
boxes	into	your	horizontal	layout.

	 Because	of	what	you	did	in	Step	7,	your	layout	has	a	horizontal
orientation;	accordingly,	your	new	check	boxes	line	up	beside	one
another.

	 10.	In	Eclipse’s	Properties	view,	change	your	horizontal	layout’s
layout_width	property	to	wrap_content.

	 As	a	result,	your	horizontal	layout	shrinks	to	a	little	over	the	size	of
its	two	check	boxes	(with	their	labels).

	 11.	From	the	palette’s	Form	Widgets	group,	drag	a	button	onto
the	preview	screen	and	drop	it	below	your	horizontal	layout.

	 The	outer	layout’s	orientation	is	vertical,	so	the	button	falls	below
the	two	check	boxes.

	 12.	Change	the	text	on	the	check	boxes	and	the	button,	as	shown
in	Figure	4-8.

	 Don’t	worry	about	the	word	Plain	in	Figure	4-8.	You	work	on	that
in	the	“Reusing	a	layout”	section.

	 For	help	changing	the	text,	see	the	“Creating	the	‘look’	“	section.
	

Reusing	a	layout
In	the	“Creating	a	reusable	layout”	section,	you	create	a	layout	with

check	boxes	and	a	button.	You	can	reuse	this	layout	in	many	of	this
chapter’s	examples.	Here’s	how:

1.	Follow	the	steps	in	the	“Creating	a	reusable	layout”	section.
	 If	you’re	impatient,	you	can	skip	a	few	of	that	section’s	steps,	but

make	sure	to	create	a	reusable_layout.xml	file	and	to	populate	the	file
with	a	few	widgets.

	 2.	Open	your	project’s	res/layout/main.xml	file.
	 3.	From	the	Layouts	group	in	the	Graphical	Layout’s	palette,

drag	an	Include	Other	Layout	element	onto	your	main	layout.
	 When	you	do	this,	a	Resource	Chooser	dialog	box	appears.	(See

Figure	4-10.)
	

	

Figure	4-10:	The	Resource	Chooser	dialog	box.

4.	In	the	Resource	Chooser	dialog	box,	select	your	reusable

layout	—	the	one	you	named	reusable_layout	—	and	then	click	OK.
	 As	if	by	magic,	the	stuff	that	you	created	in	the	“Creating	a	reusable

layout”	section	appears	on	the	main	layout’s	preview	screen.	(Well,
anyway,	it	looks	like	magic	to	me.)

	 5.	Change	the	main	linear	layout’s	Gravity	property	to	center_
horizontal.

	 6.	From	the	Graphical	Layout’s	palette,	drag	a	TextView
element	onto	the	main.xml	screen.

	 7.	(Optional)	If	you’re	ambitious,	change	the	TextView
element’s	text	to	Plain.

	 8.	(Optional)	If	you’re	very	ambitious,	follow	the	steps	(starting
with	Step	2)	in	the	section	“Coding	the	behavior,”	and	run	your	app.

	 Ambitious	or	not,	you	have	a	decent-looking	layout	with	a	reusable
component.	Nice	work!

	

	To	copy	your	reusable	layout	from	one	Android	project	to
another,	do	what	you’d	normally	do	to	copy	and	paste	a	file.	In
Eclipse’s	Package	Explorer,	select	this	project’s
reusable_layout.xml	file.	In	Eclipse’s	main	menu,	choose
Edit⇒Copy.	Then,	select	another	project’s	res/layout	directory.
Finally,	choose	Edit⇒Paste.	You	can	also	use	copying	and	pasting	to
apply	your	work	from	the	“Coding	the	behavior”	section	to	this
section’s	project.

Starting	another	activity
An	Android	activity	is	one	“screenful”	of	components.	So	juggling

activities	is	a	major	endeavor	for	Android	developers.	This	section’s
example	does	the	simplest	thing	you	can	do	with	an	activity	—;	namely,
make	an	activity	run.

1.	Launch	Eclipse,	and	create	a	new	Android	project.
	 In	this	section’s	listings	and	screenshots,	I	call	the	project

FourthApp;	I	call	the	main	activity	FourthAppActivity;	and	I	use	the

package	more.stuff.of.mine.
	 2.	Copy	the	reusable_layout.xml	file	from	this	chapter’s

“Creating	a	reusable	layout”	section	to	your	new	project’s
res/layout	directory.

	 3.	Follow	Steps	2	to	5	in	the	“Reusing	a	layout”	section	to
include	reusable_layout	in	your	project’s	main.xml	file.

	 4.	Open	Eclipse’s	dialog	box	for	creating	a	new	XML	resource
document.	Here’s	how:

	 a.	On	Windows,	right-click	(Control-click	on	a	Mac)	project’s
branch	in	the	Package	Explorer.

	 b.	In	the	resulting	context	menu,	choose	Android	Tools⇒New
Resource	File.

	 Eclipse’s	New	Android	XML	File	dialog	box	appears.	(See	Figure
4-11.)

	
	

Figure	4-11:	The	New	Android	XML	File	dialog	box.

5.	In	the	dialog	box’s	File	field,	type	the	name	of	your	new
resource	document.

	 In	Figure	4-11,	I	type	other_layout.xml.
	

	The	names	of	Android’s	resource	files	must	not
contain	capital	letters.	You	can	use	lowercase	letters	and	underscores.
And	a	layout	filename	must	end	with	the	extension	.xml.	You	cannot	use
Java’s	customary	camel-case	naming	convention	with	names	like
otherLayout.xml	or	hasTwoHumps.xml.

	 6.	Select	the	Layout	button	among	the	dialog	box’s	What	Type
of	Resource	.	.	.	choices.	(Again,	see	Figure	4-11.)

	 7.	Click	Finish	to	dismiss	the	dialog	box.
	 As	a	result,	the	Graphical	Layout	editor	appears.	The	editor	displays

your	new	layout’s	screen.

	 8.	Drag	a	TextView	element	from	the	palette	to	the	Graphical
Layout’s	screen.

	 Now,	other_layout	has	a	TextView	element.
	 9.	Modify	your	main	activity’s	code,	as	shown	in	Listing	4-5.
	

Listing	4-5:	Starting	a	New	Activity
package	more.stuff.of.mine;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

import	android.widget.CheckBox;

	

public	class	FourthAppActivity	extends	Activity

																								implements	OnClickListener	{

				CheckBox	pepBox,	cheeseBox;

	

				/**	Called	when	the	activity	is	first	created.	*/

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

	

								pepBox	=

												(CheckBox)	findViewById(R.id.checkBox1);

								cheeseBox	=

												(CheckBox)	findViewById(R.id.checkBox2);

								

								((Button)	findViewById(R.id.button1))

																										.setOnClickListener(this);

				}

	

				/*	If	you	use	an	onButton1Click	method	as	in

							Listing	4-2,	change	this	method’s	name	from	onClick

							to	onButton1Click.

				*/

				public	void	onClick(View	view)	{

								Intent	intent	=

												new	Intent(this,	OtherActivity.class);

								intent.putExtra

												(“Pepperoni”,	pepBox.isChecked());

								intent.putExtra

												(“Extra	cheese”,	cheeseBox.isChecked());

								startActivity(intent);

				}

}

You	don’t	start	an	activity	by	calling	the	activity’s	methods.	Instead,
you	create	an	intent.	An	intent	is	like	an	open-ended	method	call.	In
Listing	4-5,	you	create	an	explicit	intent	—	an	intent	that	invokes	a
specific	class’s	code.

	 •	The	intent	in	Listing	4-5	invokes	the	code	in	a	class	named
OtherActivity	(or	whatever	you	name	your	app’s	second	activity).

	
•	The	intent	has	two	extra	pieces	of	information.	Each	“extra	piece”	of

information	is	a	name/value	pair.	For	example,	if	the	user	checks	the
Pepperoni	box,	pepBox.isChecked()	is	true,	so	the	intent	contains
the	extra	pair	“Pepperoni”,	true.

	
•	The	call	startActivity(intent)	invokes	the	OtherActivity	class’s

code.
	

If	you	follow	these	steps	word	for	word,	you	see	a	little	red	error	blip	in
the	main	activity’s	editor.	That’s	because	Listing	4-5	refers	to
OtherActivity,	but	you	don’t	create	the	OtherActivity	class	until
Step	12.

	

	This	section’s	explanation	of	Android’s	intent
mechanism	shows	you	the	tiniest	tip	of	the	iceberg.	To	read	all	about
activities	and	intents,	see	Book	III,	Chapter	1.

	 10.	In	Eclipse’s	Package	Explorer,	select	the	src/your.package
directory	for	your	Android	project.

	 In	Listing	4-5,	the	package	name	is	more.stuff.of.mine.	So	I
select	my	project’s	src/more.stuff.of.mine	directory.

	 11.	In	Eclipse’s	main	menu,	choose	File⇒New⇒Class.
	 Eclipse’s	New	Java	Class	dialog	box	appears.
	 12.	In	the	New	Java	Class	dialog	box,	type	a	name	for	your	new

class	and	then	click	Finish.
	 In	Listing	4-5,	I	refer	to	OtherActivity,	so	if	you’re	following

along	letter	for	letter	with	these	instructions,	name	your	new	class
OtherActivity.

	 The	New	Java	Class	dialog	box	has	all	kinds	of	options	for	getting
Eclipse	to	write	your	activity’s	code.	But	for	my	taste,	the	extra	pointing
and	clicking	in	the	New	Java	Class	dialog	box	isn’t	worth	the	effort.	I’d
rather	type	a	few	lines	myself	after	my	.java	file	appears	in	Eclipse’s
editor.

	 13.	In	your	new	OtherActivity	class,	type	the	code	in	Listing	4-
6.

	
Listing	4-6:	Another	Activity

package	more.stuff.of.mine;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.widget.TextView;

	

public	class	OtherActivity	extends	Activity	{

		TextView	textView;

	

		/**	Called	when	the	activity	is	first	created.	*/

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.other_layout);

				

				textView	=	(TextView)	findViewById(R.id.textView1);

				

				Intent	intent	=	getIntent();

				

				StringBuilder	str	=	new	StringBuilder(“”);

				if	(intent.getBooleanExtra(“Pepperoni”,	false))	{

								str.append(“Pepperoni”	+	“	“);

				}

				if	(intent.getBooleanExtra(“Extra	cheese”,	false))	{

								str.append(“Extra	cheese”);

				}

				if	(str.length()	==	0)	{

								str.append(“Plain”);

				}																						

				textView.setText(str);

		}

}

In	Listing	4-6,	the	call	to	getIntent	gets	the	stuff	that	started	this
activity	running.	So	by	calling	getIntent	and	intent.getBooleanExtra,
the	OtherActivity	discovers	the	values	of	pepBox.isChecked()	and
cheeseBox.isChecked()	from	Listing	4-5.	For	example,	the	call

	 intent.getBooleanExtra(“Pepperoni”,	false)
returns	true	if	the	value	of	pepBox.isChecked()	in	Listing	4-5	is

true.	The	call	returns	false	if	the	value	of	pepBox.isChecked()	in
Listing	4-5	is	false.	The	call’s	second	argument	is	a	default	value.	So	in
Listing	4-6,	the	call	to	intent.getBooleanExtra(“Pepperoni”,	false)
returns	false	if	the	intent	created	in	Listing	4-5	has	no	extra	named
“Pepperoni”.

	 14.	In	your	project’s	AndroidManifest.xml	document,	add	the
following	element:

	 <activity	android:name=”.OtherActivity”></activity>
Add	this	element	after	the	document’s	existing	</activity>	end

tag.
	

	For	each	activity	in	your	application,	you	must	add	an
<activity>	element	to	the	AndroidManifest.xml	file.	Failure	to	do	so
results	in	runtime	Cannot	Find	Activity	messages,	along	with	lots	of	pain
and	suffering.

	 In	an	activity	element,	the	android:name	attribute	points	to	the
name	of	the	activity’s	Java	class.	In	this	step,	the	attribute’s	value	is
“.OtherActivity”.	The	initial	dot	refers	to	the	application’s	package
name	(the	name	more.stuff.of.mine	from	Step	1).	The	rest	of	the
attribute	refers	to	the	class	name	in	Listing	4-6.

	 15.	Run	your	app.
	 When	you	click	the	app’s	button,	you	see	a	new	activity	like	the	one

pictured	in	Figure	4-12.
	

	

Figure	4-12:	A	new	activity	appears	on	the	device’s	screen.

Localizing	your	app

The	apps	in	this	chapter’s	previous	sections	have	too	many	strings.
“Pepperoni”	here;	“Extra	cheese”	there!	It’s	a	wonder	a	developer	can
keep	this	stuff	straight.	It’s	too	easy	to	type	a	string	one	way	in	one	part
of	the	code	and	misspell	the	string	in	a	different	part.

You	can	reduce	the	problem	by	creating	string	constants.	For
example,	you	can	write
public	final	String	pep	=	“Pepperoni”;

at	the	top	of	your	program.	But	then,	to	change	from	the	English
word	Pepperoni	to	the	Italian	word	Merguez,	you	have	to	mess	with	your
Java	code.	In	a	world	where	only	6	percent	of	all	mobile	phones	are	in	the
United	States*,	you	don’t	want	to	edit	Java	code	for	dozens	of	countries.

*	Source:
http://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use

	

	

The	elegant	answer	is	to	use	Android’s	string	externalization
feature.	Here’s	what	you	do:

1.	Launch	Eclipse,	and	create	a	new	Android	project.
	 In	this	section’s	listings	and	screenshots,	I	call	the	project	FifthApp;

I	call	the	main	activity	FifthAppActivity;	and	I	use	the	package
more.stuff.of.mine.

	 2.	Copy	the	reusable_layout.xml	file	from	this	chapter’s
“Creating	a	reusable	layout”	section	to	your	new	project’s
res/layout	directory.

	 3.	Include	reusable_layout	in	your	project’s	main.xml	file.
	 For	details,	see	Steps	2	to	5	in	the	“Reusing	a	layout”	section.
	 4.	Add	a	TextView	element	to	your	main	layout.
	 5.	Copy	the	text	in	Listing	4-3	to	your	project’s	activity	file.
	 If	necessary,	change	the	class	name	from	SecondAppActivity	to

FifthAppActivity	(or	to	whatever	your	main	activity’s	name	is).
	 Your	main	activity’s	code	contains	strings	“Pepperoni”,	“Extra

http://en.wikipedia.org/wiki/List_of_countries_by_number_of_mobile_phones_in_use

cheese”,	and	“Plain”.
	

	If	you	want	your	code	to	run	on	Android	1.5	or	earlier,
you	must	copy	the	code	in	Listing	4-3.	But	if	you	don’t	care	about
Android	1.5,	you	can	copy	Listing	4-2	instead.	If	you	copy	Listing	4-2,
you	must	remember	to	follow	Steps	2	and	3	in	this	chapter’s	“For
minimum	SDK	version	4	or	higher	(Android	1.6	and	beyond)”	section.

	 6.	In	the	editor,	select	the	string	“Extra	cheese”.
	 7.	In	Eclipse’s	main	menu,	choose	Refactor⇒Android⇒Extract

Android	String.
	 Well,	wha’	da’	ya’	know?!	An	Extract	Android	String	dialog	box

appears!
	 In	Figure	4-13,	Eclipse	automatically	creates	a	name	for	the

externalized	resource	—	the	name	R.string.extra_cheese.	Notice	how
Eclipse	replaces	blank	spaces	in	strings	with	underscores	in	resource
names.

	 If	you	want	Eclipse	to	replace	all	occurrences	of	Extra	cheese	with
references	to	the	new	string	resource,	select	the	dialog	box’s	Replace	in
All	Java	files	check	box	as	well	as	the	Replace	in	All	XML	files	for
Different	Configuration	check	box.	Doing	so	ensures	uniform	use	of	the
“Extra	cheese”	string	throughout	your	application.

	 8.	In	the	Extract	Android	String	dialog	box,	click	OK.
	 As	a	result,	Eclipse	replaces	some	code	in	your	Java	source	file	with

the	following	code:
	 if	(cheeseBox.isChecked())	{

				str.append(getString(R.string.extra_cheese));

}

Eclipse	also	adds	the	following	element	to	your
res/values/strings.xml	file:

	 <string	name=”extra_cheese”>Extra	cheese</string>
Finally,	Eclipse	replaces	one	of	your	layout’s	CheckBox	elements

with	the	following	element:

	 <CheckBox

				android:id=”@+id/checkBox2”

				android:layout_width=”wrap_content”

				android:layout_height=”wrap_content”

				android:text=”@string/extra_cheese”></CheckBox>

	

Figure	4-13:	The	Extract	Android	String	dialog	box.

	Eclipse’s	Android	string	replacement	tools	can	be
buggy.	After	following	this	step,	check	your	code	to	make	sure	that
Eclipse’s	code	changes	are	correct.	The	errors	that	I	find	are	mostly	in	my
XML	documents.	But	in	the	Java	code,	Eclipse	might	forget	to	add	the
call	to	getString	in	getString(R.string.extra_cheese).	You	need
this	call	because	the	append	method	doesn’t	translate	from	numbers	to

resources	on	its	own.	So	if	Eclipse	doesn’t	add	the	getString	call,	edit
your	activity’s	code	yourself.

	 9.	Repeat	Steps	3	through	5	for	the	strings	“Pepperoni”,
“Plain”,	and	(in	the	reusable_layout.xml	file)	“Show”.

	 With	your	app’s	strings	externalized,	you’re	ready	to	go
international.

	 10.	Select	your	project’s	res/values	folder	in	the	Package
Explorer.

	 11.	In	Eclipse’s	main	menu,	choose	Edit⇒Copy.
	 12.	Select	your	project’s	res	folder	in	the	Package	Explorer.
	 13.	In	Eclipse’s	main	menu,	choose	Edit⇒Paste.
	 A	Name	Conflict	dialog	box	appears.
	 14.	In	the	Name	Conflict	dialog	box’s	Enter	a	New	Name	field,

type	values-it	and	then	click	OK.
	 The	two-letter	it	code	stands	for	Italy.	For	the	full	scoop,	visit

www.iso.org/iso/country_names_and_code_elements.
	 15.	Open	the	res/values-it/strings.xml	file	in	Eclipse’s	editor.
	 16.	Modify	the	res/values-it/strings.xml	file	so	it	matches

what	is	shown	in	Listing	4-7.
	

Elenco	4-7:	Benvenuto	in	Italia!
<?xml	version=”1.0”	encoding=”utf-8”?>

<resources>

				<string	name=”hello”>

								Ciao	mondo,	la	mia	attività!</string>

				<string	name=”app_name”>

								Il	mio	secondo	progetto	Android</string>

				<string	name=”extra_cheese”>Con	più	formaggio</string>

				<string	name=”pepperoni”>Merguez</string>

				<string	name=”plain”>Semplice</string>

				<string	name=”show”>Mostra</string>

</resources>

17.	Test	your	app.
	 As	with	most	devices,	the	emulator	has	a	setting	for	Language	&

http://www.iso.org/iso/country_names_and_code_elements

Keyboard.	Change	this	setting	to	Italiano	(Italia),	and	suddenly,	your	app
looks	like	the	display	in	Figure	4-14.

	
	

Figure	4-14:	Buongiorno!

Responding	to	check	box	events
Why	click	twice	when	you	can	do	the	same	thing	by	clicking	only

once?	Think	about	the	example	in	the	“Dragging,	Dropping,	and
Otherwise	Tweaking	an	App”	section.	Your	app	responds	to	the	contents
of	check	boxes	when	the	user	clicks	a	button.	In	a	streamlined	scenario,
your	app	might	respond	as	soon	as	the	user	checks	a	box.	Listing	4-8
shows	you	how	to	make	this	happen.

Listing	4-8:	Responding	to	Check	Box	Events
package	more.stuff.of.mine;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.widget.CheckBox;

import	android.widget.CompoundButton;

import	android.widget.CompoundButton.

																													OnCheckedChangeListener;

import	android.widget.TextView;

	

public	class	MyActivity	extends	Activity

								implements	OnCheckedChangeListener	{

	

				TextView	textView;

	

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

	

								((CheckBox)	findViewById(R.id.checkBox1))

																.setOnCheckedChangeListener(this);

								((CheckBox)	findViewById(R.id.checkBox2))

																.setOnCheckedChangeListener(this);

								textView	=

																(TextView)	findViewById(R.id.textView1);

				}

	

				@Override

				public	void	onCheckedChanged(CompoundButton	box,

																																	boolean	isChecked)	{

								StringBuilder	str	=

																new	StringBuilder(textView.getText());

								CharSequence	boxText	=	box.getText();

								if	(isChecked)	{

												str.append(“	“	+	boxText);

								}	else	{

												int	start	=	str.indexOf(boxText.toString());

												int	length	=	boxText.length();

												str.replace(start,	start	+	length,	“”);

								}								

								textView.setText(str.toString().trim());

				}

}

Like	a	button,	each	check	box	listens	for	onClick	events.	So	you
can	write	this	section’s	code	very	much	like	the	code	in	Listing	4-3.	But
in	this	section’s	listing,	I	avoid	the	use	of	OnClickListener	and	illustrate
the	use	of	a	different	event	listener.

A	check	box	listens	for	changes	to	its	state	(its	“checked”	versus
“unchecked”	state).	So	when	the	user	touches	a	check	box,	Android	fires
an	onChecked	Changed	event.	By	registering	this	(the	entire	MyActivity
instance)	as	each	check	box’s	OnCheckedChangeListener,	you	make
Android	call	the	onCheckedChanged	method	in	Listing	4-8.

The	onCheckedChanged	method	has	two	parameters	—	the
component	that	was	touched	and	the	state	of	the	component	as	a	result	of
the	touch.	I’ve	contrived	the	code	in	Listing	4-8	to	make	use	of	these	two
method	parameters.

	A	CompoundButton	is	a	widget	with	checked	and	unchecked
states.	The	CheckBox	class	is	a	subclass	of	CompoundButton.	Other
subclasses	of	CompoundButton	are	RadioButton	and	ToggleButton.
A	ToggleButton	is	that	cute	little	thing	that	lights	when	it’s	checked.
In	Listing	4-8,	the	onCheckedChanged	method’s	box	parameter

refers	to	whichever	check	box	the	user	touches.	That	check	box	has	a
getText	method,	so	in	Listing	4-8,	I	use	the	getText	method	to	help	fill
the	text	View	element.	I	use	the	onCheckedChanged	method’s	isChecked
parameter	to	decide	whether	to	add	text	to	the	textView	element	or	delete
text	from	the	textView	element.

Displaying	images
After	designing	an	app	and	its	variations	in	the	previous	sections,

you	might	decide	that	your	app	needs	some	flair.	When	the	user	clicks	the

button,	display	a	picture	of	the	pizza	being	ordered.
Android	has	all	kinds	of	features	for	drawing	images	and	displaying

bitmap	files.	I	cover	many	of	these	features	in	Book	IV,	Chapter	3.	In	this
section,	I	cover	one	possible	approach:

1.	Launch	Eclipse,	and	create	a	new	Android	project.
	 In	this	section’s	listings	and	screenshots,	I	call	the	project	SixthApp;

I	call	the	main	activity	SixthAppActivity;	and	I	use	the	package
more.stuff.of.mine.

	 2.	Copy	the	reusable_layout.xml	file	from	this	chapter’s
“Creating	a	reusable	layout”	section	to	your	new	project’s
res/layout	directory.

	 3.	Include	reusable_layout	in	your	project’s	main.xml	file.
	 For	details,	see	Steps	2	to	5	in	the	“Reusing	a	layout”	section.
	 4.	Find	four	images	—	one	for	plain,	one	for	pepperoni,	one	for

extra	cheese,	and	one	for	pepperoni	with	extra	cheese.
	 Android’s	official	documentation	recommends	the	.png	format	for

images.	If	you	don’t	have	.png	images,	Android’s	docs	call	the	.jpg
format	“acceptable.”	If	you	don’t	have	.png	or	.jpg,	the	docs	tell	you	to
hold	your	nose	and	use	.gif.	But	remember,	in	this	section,	you’re
creating	a	practice	application,	not	a	work	of	art.	Your	images	don’t	have
to	look	good.	They	don’t	even	have	to	look	like	pizzas.	Besides,	you	can
download	my	silly-looking	drawings	of	pizzas	from	this	book’s	website
at	www.allmycode.com/Android.

	 In	creating	my	project,	I	use	the	names	plain.png,	pepperoni.png,
extracheese.png,	and	pep_extracheese.png.

	

	The	names	of	Android’s	resource	files	must	not
contain	capital	letters.	You	can	use	only	lowercase	letters	and
underscores.

	

http://www.allmycode.com/Android

	For	working	with	image	formats,	the	program
IrfanView	has	always	served	me	well.	You	can	get	this	Windows
program	at	www.irfanview.com.	The	program	is	free	for	noncommercial
use.

	 5.	In	Eclipse’s	Package	Explorer,	select	your	project’s	res
folder.

	 6.	In	Eclipse’s	main	menu,	choose	File⇒New⇒Folder.
	 Eclipse	prompts	you	for	the	name	of	the	new	folder.
	 7.	Name	your	folder	drawable.
	 Now	your	project	has	a	res/drawable	folder.	This	new	folder	is	the

default	for	images	and	other	image-worthy	things.
	 Your	project	already	has	folders	named	drawable-hdpi,	drawable-

ldpi,	and	drawable-mdpi.	In	a	real-life	app,	you	use	these	folders	as
alternatives	for	devices	with	high,	low,	and	medium	screen	densities.	But
in	this	practice	app,	a	default	drawable	folder	is	easier.

	

	The	letters	dpi	stand	for	dots	per	inch.	Android	senses
a	device’s	screen	density	and	uses	the	resources	in	the	most	appropriate
drawable-?dpi	folder.	To	find	out	what	Android	considers	“most
appropriate,”	visit
http://developer.android.com/guide/practices/screens_support.html

	 8.	Drag	your	four	images	from	your	development	computer’s
file	explorer	to	your	project’s	res/drawable	folder.

	 9.	Open	Eclipse’s	dialog	box	for	creating	a	new	XML	resource
document.

	 For	details	see	the	section	“Starting	another	activity.”
	 10.	Using	the	New	Android	XML	File	dialog	box,	add	a	new	file

(which	I	name	levels.xml)	to	your	res/drawable	folder.

http://www.irfanview.com
http://developer.android.com/guide/practices/screens_support.html

	 11.	Use	Eclipse’s	editor	to	populate	your	levels.xml	file	with	the
code	in	Listing	4-9.

	
Listing	4-9:	A	Level-List	Document

<?xml	version=”1.0”	encoding=”utf-8”?>

<level-list	xmlns:android=

								“http://schemas.android.com/apk/res/android”>

				<item	android:drawable=”@drawable/plain”

										android:maxLevel=”0”	/>

				<item	android:drawable=”@drawable/pepperoni”

										android:maxLevel=”1”	/>

				<item	android:drawable=”@drawable/extracheese”

										android:maxLevel=”2”	/>

				<item	android:drawable=”@drawable/pep_extracheese”

										android:maxLevel=”3”	/>

</level-list>

A	level-list	is	a	list	of	alternative	drawables	for	a	single	image
component	to	display.	At	any	moment	during	an	app’s	run,	the	image
component	has	an	integer	level.	You	set	the	component’s	level	using	the
set	ImageLevel	method.

	 When	your	app	calls	setImageLevel,	Android	starts	at	the	top	of	the
level-list	and	looks	for	the	first	item	whose	android:maxLevel	is	greater
than	or	equal	to	the	new	image	level.	You	can	also	assign	an
android:minLevel	attribute	to	an	item.	But	in	most	situations,
android:maxLevel	is	all	you	need.

	 12.	Add	an	ImageView	element	to	your	activity’s	layout.
	 You	can	drag	an	ImageView	element	from	the	Graphical	Layout’s

palette,	or	you	can	add	the	following	element	to	your	app’s	main.xml	file:
	 <ImageView	android:id=”@+id/imageView1”

											android:layout_height=”wrap_content”

											android:layout_width=”wrap_content”

											android:src=”@drawable/levels”></ImageView>

13.	Make	sure	that	your	ImageView	element’s	android:src
attribute	refers	to	your	new	levels.xml	document.

	 In	Eclipse’s	Properties	view,	this	attribute	is	called	Src.
	 14.	Code	your	project’s	activity	file	as	in	Listing	4-10.

	
Listing	4-10:	Changing	Images

package	more.stuff.of.mine;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

import	android.widget.CheckBox;

import	android.widget.ImageView;

	

public	class	SixthAppActivity	extends	Activity

								implements	OnClickListener	{

				CheckBox	pepBox,	cheeseBox;

				ImageView	imageView;

	

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

								((Button)	findViewById(R.id.button1))

												.setOnClickListener(this);

	

								pepBox	=

												(CheckBox)	findViewById(R.id.checkBox1);

								cheeseBox	=

												(CheckBox)	findViewById(R.id.checkBox2);

								imageView	=

												(ImageView)	findViewById(R.id.imageView1);

				}

	

				public	void	onClick(View	view)	{

								int	level	=	0;

								

								if	(pepBox.isChecked())	{

												level	+=	1;

								}

								if	(cheeseBox.isChecked())	{

												level	+=	2;

								}

								imageView.setImageLevel(level);

				}

}

In	Listing	4-10,	the	onClick	method	calls	the	setImageLevel
method.	The	method	parameter’s	value	depends	on	the	states	of	the
activity’s	check	boxes.

	 15.	Run	the	app.
	 The	results,	along	with	my	beautiful	drawings	of	pizza	with

toppings,	are	shown	in	Figure	4-15.
	

	

Figure	4-15:	What	lovely	drawings!

Sending	in	your	order
If	you’ve	read	any	of	this	chapter’s	previous	sections,	you’re

probably	very	hungry.	An	app	with	nothing	but	pictures	and	the	names	of
pizza	toppings	is	a	real	tease.

So	you’d	better	add	some	purchasing	power	to	this	chapter’s
example.	Real	e-commerce	functionality	is	the	subject	of	several	other
books.	But	in	this	book,	you	can	get	a	small	taste	of	the	online	pizza-
ordering	process	(pun	intended).	You	can	submit	your	choice	of	toppings
to	an	existing	web	server	—	Google’s	search	engine,	to	be	precise.	It’s
not	as	good	as	biting	into	a	tasty	pizza,	but	the	example	shows	you	one
way	to	send	information	from	a	mobile	device.

In	a	real	application,	you	might	program	your	own	server	to	respond
intelligently	to	users’	requests.	For	passing	money	back	and	forth,	you
might	use	Android	Market’s	in-app	billing	facilities.

	Programming	web	servers	isn’t	an	Android-specific	topic.
To	read	all	about	servers,	buy	Apache,	MySQL,	and	PHP	Web
Development	All-in-One	Desk	Reference	For	Dummies,	by	Jeff
Cogswell	(John	Wiley	&	Sons,	Inc.).
1.	Launch	Eclipse,	and	create	a	new	Android	project.

	 In	this	section’s	listings	and	screenshots,	I	call	the	project
SeventhApp;	I	call	the	main	activity	SeventhAppActivity;	and	I	use	the
package	more.stuff.of.mine.

	 2.	Copy	the	reusable_layout.xml	file	from	this	chapter’s
“Creating	a	reusable	layout”	section	to	your	new	project’s
res/layout	directory.

	 3.	Include	reusable_layout	in	your	project’s	main.xml	file.
	 For	details,	see	Steps	2	to	5	in	the	“Reusing	a	layout”	section.
	 4.	Add	a	WebView	element	to	your	main	activity’s	layout.
	 You	can	drag	a	WebView	element	from	the	Composite	group	of	the

Graphical	Layout’s	palette.	Alternatively,	you	can	add	the	following
element	to	your	project’s	main.xml	file:

	 <WebView	android:id=”@+id/webView1”

									android:layout_width=”match_parent”

									android:layout_height=”match_parent”>

</WebView>

A	WebView	is	a	mini	web	browser	that	you	can	add	to	an	existing
activity.

	 5.	Code	your	project’s	activity	file	as	in	Listing	4-11.
	

Listing	4-11:	Sending	Info	to	a	Server
package	more.stuff.of.mine;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.webkit.WebView;

import	android.widget.Button;

import	android.widget.CheckBox;

	

public	class	SeventhAppActivity	extends	Activity

																								implements	OnClickListener	{

		CheckBox	pepBox,	cheeseBox;

		WebView	webView;

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

				((Button)	findViewById(R.id.button1))

						.setOnClickListener(this);

	

				pepBox	=	(CheckBox)	findViewById(R.id.checkBox1);

				cheeseBox	=	(CheckBox)	findViewById(R.id.checkBox2);

				webView	=	(WebView)	findViewById(R.id.webView1);

		}

	

		public	void	onClick(View	view)	{

				StringBuilder	str	=	new	StringBuilder(“”);

				if	(pepBox.isChecked())	{

						str.append(“Pepperoni”);

				}

				if	(cheeseBox.isChecked())	{

						str.append(“\”Extra	cheese\””);

				}

				if	(str.length()	==	23)	{

						str.insert(9,	‘+’);

				}

				if	(str.length()	==	0)	{

						str.append(“Plain”);

				}

				webView.loadUrl

						(“http://www.google.com/search?q=”+str.toString());

		}

}

6.	Add	the	following	element	to	your	project’s
AndroidManifest.xml	document:

	 <uses-permission

				android:name=”android.permission.INTERNET”	/>

Make	this	uses-permission	element	a	direct	sub-element	of	the
document’s	manifest	element.

	 This	element	grants	your	app	permission	to	access	the	Internet.
Access	to	the	Internet	will	appear	in	the	list	the	user	sees	before	installing
your	app.

	

	When	you	create	an	app,	don’t	forget	to	add	the
appropriate	permissions	to	the	app’s	AndroidManifest.xml	file.	In	a

recent	survey	of	For	Dummies	book	authors,	all	respondents	reported	that
they	frequently	forget	to	add	permissions	to	their	apps’	manifest	files.
(Survey	sample	size:	one.)

	 7.	Run	your	app.
	 You	might	have	to	wait	for	the	web	page	to	load.	When	the	page

loads,	your	app	looks	something	like	the	screen	in	Figure	4-16.
	

	

Figure	4-16:	Your	app	sends	stuff	to	a	Web	server.

Chapter	1:	Using	the	Eclipse	Workbench

In	This	Chapter
Finding	your	way	around	the	Eclipse	workbench
Using	views	and	perspectives
Getting	Eclipse’s	assistance	to	type	your	code
Importing	existing	code

Working	with	configurations	and	preferences
	

When	you	develop	software,	you	have	two	options:
•	Be	tough	and	use	only	command-line	tools.

	
Never	touch	your	computer’s	mouse.	Figure	out	all	the	commands	with
all	their	options.	Edit	programs	in	primitive	text	editors,	such	as	Linux	vi,
GNU	Emacs,	Windows	Notepad,	or	Macintosh	TextEdit.

	
•	Be	wimpy	and	use	an	integrated	development	environment	(an
IDE).

	
Execute	commands	by	clicking	menu	items.	Edit	programs	with	a	full-
featured	editor	—	an	editor	customized	for	whatever	programming
language	you	use.	Change	object	values	with	code-aware	property	sheets.
Create	forms	by	dragging	widgets	from	a	palette	to	a	visual	layout.

	
I	admire	toughness,	but	wimpiness	is	more	efficient.	Being	wimpy

makes	you	more	productive	and	less	prone	to	error.	Also,	being	wimpy
helps	you	to	concentrate	on	the	app	that	you’re	creating	instead	of	having
to	focus	on	the	commands	to	create	the	app.

Don’t	get	me	wrong.	Tough	command-line	tools	are	great	in	a
pinch.	When	your	IDE	covers	up	subtle	(but	important)	details,	you	need
command-line	tools	to	show	you	what’s	going	on	behind	the	scenes.	But

for	most	developers,	most	of	the	time,	IDEs	are	great	time-savers.	That’s
why	the	official	Android	developer	docs	say	that	“Developing	in	Eclipse	.
.	.	is	highly	recommended.”

	

With	or	without	Android,	Eclipse	is	a	mature	platform,	with
tools	for	Java	development,	C/C++	development,	PHP	development,
modeling,	project	management,	testing,	debugging,	and	much	more.
So	this	chapter	introduces	Eclipse.	I	(naturally	enough)	focus	on	the

aspects	of	Eclipse	that	help	you	build	Android	apps,	but	keep	in	mind	that
Eclipse	has	hundreds	of	(non-Androidish)	features,	as	well	as	many	ways
to	access	each	feature.

What’s	All	That	Stuff	on	the	Eclipse
Workbench?

The	next	few	pages	bathe	you	in	vocabulary.	Some	of	this
vocabulary	is	probably	familiar	old	stuff.	Other	vocabulary	is	new.

Before	you	jump	into	the	next	several	paragraphs,	please	heed	my
advice:	Don’t	take	my	descriptions	of	terms	too	literally.	These	are
explanations,	not	definitions.	Yes,	they’re	fairly	precise;	but	no,	they’re
not	airtight.	Almost	every	description	in	this	section	has	hidden
exceptions,	omissions,	exemptions,	and	exclusions.	Take	the	paragraphs
in	this	section	to	be	friendly	reminders,	not	legal	contracts.
•	Workbench:	The	Eclipse	desktop	(see	Figure	1-1).

	
The	workbench	is	the	environment	in	which	you	develop	code.

	
	

Figure	1-1:	The	Eclipse	workbench	often	(but	doesn’t	always)	look	like	this.

•	Area:	A	section	of	the	workbench.
	

The	workbench	in	Figure	1-1	has	five	areas.	In	Figure	1-2	I	draw	a
rectangle	around	each	of	the	areas.

	
	

Figure	1-2:	The	workbench	is	divided	into	areas.

•	Window:	A	copy	of	the	Eclipse	workbench.
	

With	Eclipse,	you	can	have	several	copies	of	the	workbench	open	at	once.
Each	copy	appears	in	its	own	window.	(See	Figure	1-3.)

	

	To	open	a	second	window,	go	to	the	main	Eclipse	menu	bar
and	choose	Window⇒New	Window.

	
•	Action:	A	choice	that’s	offered	to	you,	typically	when	you	click
something.

	
For	instance,	when	you	choose	File⇒New	in	Eclipse’s	main	menu	bar,
you	see	a	list	of	new	things	that	you	can	create.	The	list	usually	includes
Project,	Folder,	File,	and	Other,	but	it	may	also	include	things	like
Package,	Class,	and	Interface.	Each	of	these	things	(each	item	in	the
menu)	is	an	action.

	

	

Figure	1-3:	Having	two	Eclipse	windows	open	at	the	same	time.

Views	and	editors
The	next	bunch	of	terms	deals	with	things	called	views	and	editors.

At	first,	you	may	have	difficulty	understanding	the	difference.	(A	view	is
like	an	editor,	which	is	like	a	view,	or	something	like	that.)	If	views	and
editors	seem	the	same	to	you,	and	you’re	not	sure	you	can	tell	which	is
which,	don’t	be	upset.	As	an	ordinary	Eclipse	user,	the	distinction
between	views	and	editors	comes	naturally	as	you	gain	experience	using
the	workbench.	You	rarely	have	to	decide	whether	the	thing	you’re	using
is	a	view	or	an	editor.	But	if	you	plan	to	develop	Eclipse	plug-ins,	you
eventually	have	to	figure	out	what’s	a	view	and	what’s	an	editor.
•	View:	A	part	of	the	Eclipse	workbench	that	displays	information	for
you	to	browse.

	
In	the	simplest	case,	a	view	fills	an	area	in	the	workbench.	For	instance,
in	Figure	1-1,	the	Package	Explorer	view	fills	up	the	leftmost	area.

	

Many	views	display	information	as	lists	or	trees.	For	example,	in	Figure
1-1,	the	Package	Explorer	and	Outline	views	contain	trees.

	
You	can	use	a	view	to	make	changes	to	things.	For	example,	to	delete	the
MyActivity.java	file	in	Figure	1-1,	right-click	the	MyActivity.java
branch	in	the	Package	Explorer	view.	Then,	in	the	resulting	context
menu,	choose	Delete.	(Macintosh	users	use	Control-click	in	place	of
right-click.)

	
	

When	you	use	a	view	to	change	something,	the	change	takes
place	immediately.	For	example,	when	you	choose	Delete	in	the	Package
Explorer’s	context	menu,	whatever	file	you’ve	selected	is	deleted
immediately.	In	a	way,	this	behavior	is	nothing	new.	The	same	kind	of
thing	happens	when	you	delete	a	file	using	My	Computer	or	Windows
Explorer.

	
•	Editor:	A	part	of	the	Eclipse	workbench	that	displays	information	for
you	to	modify.

	
A	typical	editor	displays	information	in	the	form	of	text.	This	text	can	be
the	contents	of	a	file.	For	example,	an	editor	in	the	middle	of	Figure	1-1
displays	the	contents	of	the	MyActivity.java	source	file.

	
Some	editors	display	more	than	just	text.	For	example,	Figure	1-4
displays	Android’s	Graphical	Layout	editor.	Like	many	other	editors,	this
Graphical	Layout	editor	displays	the	contents	of	a	file.	But	instead	of
showing	you	all	the	words	in	the	file,	the	Graphical	Layout	editor
displays	the	file’s	contents	as	they’re	rendered	on	a	mobile	device’s
screen.

	
	

Figure	1-4:	The	Graphical	Layout	editor.

	 To	 find	 out	 all	 about	 layouts	 and	 the
Graphical	Layout	editor,	see	Book	IV,	Chapter	1.

	When	you	use	an	editor	to	change	something,	the	change
doesn’t	take	place	immediately.	For	example,	look	at	the	editor	in	the
middle	of	Figure	1-1.	This	editor	displays	the	contents	of	the

MyActivity.java	source	file.	You	can	type	all	kinds	of	things	in	the
Editor	pane.	Nothing	permanent	happens	to	MyActivity.java	until	you
choose	File⇒Save	from	Eclipse’s	menu	bar.	Of	course,	this	behavior	is
nothing	new.	The	same	kind	of	thing	happens	when	you	work	in
Microsoft	Word	or	Macintosh	TextEdit.

	

	Like	other	authors,	I	occasionally	become	lazy	and	use	the
word	“view”	when	I	really	mean	“view	or	editor.”	When	you	catch	me
doing	this,	just	shake	your	head	and	move	onward.	When	I’m	being	very
careful,	I	use	the	official	Eclipse	terminology.	I	refer	to	views	and	editors
as	parts	of	the	Eclipse	workbench.	Unfortunately,	this	“parts”
terminology	doesn’t	stick	in	people’s’	minds	very	well.

	
That’s	all	I’m	going	to	say	about	the	“view	versus	editor”

distinction.	For	good	measure,	though,	I	explain	a	few	related	terms:
•	Tab	group:	A	bunch	of	views	or	editors	stacked	on	top	of	one	another.

	
For	example,	near	the	bottom	of	Figure	1-1,	the	Problems,	Javadoc,
Declaration,	and	Console	views	form	a	tab	group.

	
•	Active	view	or	active	editor:	In	a	tab	group,	the	view	or	editor	that’s	in
front.

	
In	Figure	1-1,	the	Console	view	is	the	active	view.	The	Problems,
Javadoc,	and	Declaration	views	are	inactive.

	

Understanding	the	big	picture
The	next	two	terms	deal	with	Eclipse’s	overall	look	and	feel.

•	Layout:	An	arrangement	of	certain	views.
	

The	layout	in	Figure	1-1	has	seven	views:.

	
•	At	the	far	left,	you	see	the	Package	Explorer	view.

	
•	On	the	far	right,	you	have	the	Task	List	and	Outline	views.

	
•	Near	the	bottom,	you	get	the	Problems,	Javadoc,	Declaration,	and

Console	views.
	

Along	with	all	these	views,	the	layout	contains	a	single	editor	area.	Any
and	all	open	editors	appear	inside	this	editor	area.

	
•	Perspective:	A	very	useful	layout.

	
If	a	particular	layout	is	really	useful,	someone	gives	that	layout	a	name.
And	if	a	layout	has	a	name,	you	can	use	the	layout	whenever	you	want.

	
For	instance,	the	workbench	of	Figure	1-1	displays	the	Java	perspective.
By	default,	the	Java	perspective	contains	six	views,	in	an	arrangement
very	much	like	the	one	shown	in	Figure	1-1.

	
Along	with	all	these	views,	the	Java	perspective	contains	an	editor	area.
(Sure,	the	editor	area	has	several	tabs,	but	the	number	of	tabs	has	nothing
to	do	with	the	Java	perspective.)

	
	

By	default,	the	Console	view	isn’t	visible	in	the	Java
perspective.	To	find	out	how	to	add	a	view	to	an	existing	perspective,	see
the	later	section	entitled	“Where’s	my	view?”

	

Eclipse’s	Java	perspective	is	for	writing	Java	code.	In	contrast,	the
DDMS	perspective	is	for	debugging	a	running	Android	application.	(The
acronym	DDMS	stands	for	Dalvik	Debug	Monitor	Server.	For	more
information,	see	Book	I,	Chapter	4;	Book	III,	Chapter	1;	and	other
sections	in	this	chapter.)

	
The	DDMS	perspective,	as	shown	in	Figure	1-5,	looks	very	different
from	the	Java	perspective.	The	two	perspectives	(Java	and	DDMS)	sport
different	views	and	different	area	layouts.	When	you’re	in	a	Java	mood,
you	can	go	with	the	Java	perspective;	when	you’re	feeling	DDMS,	you
can	switch	to	the	DDMS	perspective.	Eclipse	comes	with	other	ready-
made	perspectives,	including	the	Debug	perspective	and	the	appealingly
named	Pixel	Perfect	perspective.

	
The	point	here	is	that	you’re	not	forced	to	stick	with	just	one	perspective.
You	can	make	the	switch	—	the	next	section	shows	you	how.

	
	

Figure	1-5:	The	DDMS	perspective.

Juggling	among	perspectives
Eclipse	comes	with	several	different	perspectives.	As	an	Android

developer,	your	favorite	perspectives	are	the	Java	perspective,	the	DDMS
perspective,	and	the	Debug	perspective.	You	can	easily	switch	from	one
perspective	to	another.

Look	again	at	Figure	1-5,	and	notice	the	word	DDMS	in	the	upper-
right	corner.	This	DDMS	button	is	part	of	the	Perspective	bar.	Figure	1-6
shows	what	happens	to	the	Perspective	bar	when	you	click	the	bar’s	Open
Perspective	icon	(the	picture	of	a	very	tiny	perspective	with	a	plus	sign	in
the	corner).	You	see	a	short	list	of	the	available	perspectives	and	the	ever-
helpful	word	Other.	(You	see	the	same	short	list	if	you	go	Eclipse’s	main
menu	and	choose	Window⇒Open	Perspective.)

	

Figure	1-6:	Using	the	Perspective	bar’s	Open	Perspective	icon.

If	you	click	anything	except	Other,	Eclipse	switches	immediately	to
the	selected	perspective.	If	you	click	Other,	Eclipse	opens	a	new	dialog
box.	(See	Figure	1-7.)	The	dialog	box	lists	the	names	of	all	the	available
perspectives.	To	switch	to	a	perspective,	double-click	the	perspective’s
name	in	the	list.

	

Figure	1-7:	A	list	of	perspectives.

Changing	the	way	a	perspective	looks
Believe	me	—	I’m	not	big	on	cosmetic	features.	One	look	at	the

mess	in	my	office	will	convince	anyone	of	that.	But	if	you	work	with
Eclipse	as	much	as	I	have,	you	become	accustomed	to	having	things
exactly	the	way	you	want	them.

In	this	section,	you	move	things	around	within	an	Eclipse
perspective.	With	the	right	amount	of	moving,	you	make	Java	coding
much	easier.

Where’s	my	view?
You	can	add	views	to	a	perspective	and	remove	views	from	a

perspective.	For	example,	in	Figure	1-1,	I’ve	added	the	Console	view	to
my	existing	Java	perspective.	To	add	the	view,	do	the	following:

1.	In	the	main	Eclipse	menu	bar,	choose	Window⇒Show	View.
	 A	list	of	views	appears.	Many	of	the	available	views	are	in	this	list.

But	some	views	aren’t	in	the	list.
	 2.	Choose	the	view	that	you	want	to	show;	if	you	don’t	see	the

view	you	want,	choose	Other.	(See	Figure	1-8.)
	

	

Figure	1-8:	Adding	a	view.

If	you	choose	a	view,	that	view	appears	on	your	workbench.	If	you
choose	Other,	a	Show	View	dialog	box	appears.	(See	Figure	1-9.)

	 3.	Expand	whatever	branch	you	need	to	expand	in	the	Show
View	dialog	box’s	navigation	tree	to	find	the	view	that	you	want
added	to	the	workbench.

	 In	Figure	1-9,	I’ve	expanded	the	General	branch	and	hovered	over
the	Properties	view.	(The	views	in	the	General	branch	apply	to	all	kinds
of	application	development,	not	to	specific	kinds	such	as	Android,	C++,
or	Java.)

	 4.	Double-click	the	view’s	name.
	 The	view	appears	on	your	current	Eclipse	workbench.
	

	If	you	know	part	of	a	view’s	name,	you	don’t	have	to	poke
among	tree	branches	in	the	Show	View	dialog	box.	Type	the	partial
name	in	the	text	field	at	the	top	of	the	Show	View	dialog	box.	As	a
result,	only	views	whose	names	contain	your	search	text	appear	in
the	Show	View	dialog	box.

	

Figure	1-9:	The	Show	View	dialog	box.

If	you	lose	a	view	(probably	because	you	clicked	the	X	on	the
view’s	tab	and	forgot	that	you	did),	you	can	follow	this	section’s	steps	to
add	the	view	back	to	your	perspective.

Some	Useful	Views
Eclipse	comes	stocked	with	a	bunch	of	different	views.	For	your

convenience,	I	describe	about	ten	of	them	in	this	chapter.

Views	that	normally	live	in	the	Java	perspective
I	start	with	the	views	that	normally	call	the	Java	perspective	home.

Package	Explorer	view
For	me,	the	Package	Explorer	view	is	Eclipse’s	real	workhorse.	The

Package	Explorer	displays	things	in	an	Android-specific	way	—	meaning
it	displays	things	as	you	think	of	them	inside	an	Android	application.	For
example,	in	Figure	1-10	the	com.allmycode.samples	branch	represents
the	com.allmycode.samples	package	—	the	Java	package	that	houses	the
Killer	App’s	code.

	

Figure	1-10:	The	Package	Explorer	view.

Navigator	view
You	can	add	the	Navigator	view	to	any	existing	perspective.	The

view	part	of	the	Navigator	view	is	a	lot	like	the	Package	Explorer	view,
but	the	Navigator’s	tree	is	less	Android-centric	and	more	Explorer-like.
The	Navigator	view	displays	files	and	folders	almost	the	way	Windows
Explorer	and	Macintosh	Finder	display	files	and	folders.

Figure	1-11	shows	a	snapshot	of	a	Navigator	view.	(This	particular
snapshot	shows	the	files	in	my	Killer	App	project.)

Contrast	the	trees	in	Figures	1-10	and	1-11.	In	Figure	1-11,	you	see
things	that	you	don’t	normally	see	in	an	Android-specific	view.	You	see
individual	com,	allmycode,	and	samples	folders.	You	also	see	the	bin
directory,	which	contains	the	compiled	Java	class	files,	the	compiled
Android	.dex	files,	and	that	Holy	Grail	—	the	application’s	installable
.apk	file.

	

Figure	1-11:	The	Navigator	view.

Outline	view
The	Outline	view	displays	a	tree	or	list	of	whatever	is	in	the	active

editor.	In	my	mind,	I	typically	use	the	Outline	view	to	coax	information
out	of	another	view	—	the	Properties	view.	To	find	out	what	I	do,	read
on.

Properties	view
The	Properties	view	lists	the	values	of	an	object’s	attributes.	For

example,	in	Figure	1-12,	the	Graphical	Layout	editor	displays	the	main
layout	of	an	app	that	I’m	developing.	In	the	editor,	I	selected	TextView
(the	strip	of	text	that’s	surrounded	by	dotted	lines	near	the	center	of
Figure	1-12).

To	set	the	text	I	want	this	TextView	to	display,	I	look	for	the
TextView’s	text	attribute	in	the	Properties	view.	I	click	the	Value
column	of	the	text	attribute’s	row,	and	then	type	Are	you	listening?
After	pressing	Enter,	the	text	shown	in	the	Graphical	Layout	editor
changes	to	Are	you	listening?

	

Figure	1-12:	A	Graphical	Layout	editor	and	its	Properties	view.

Sometimes,	when	I	select	an	object	in	the	Graphical	Layout	editor,
the	object’s	attributes	appear	immediately	in	the	Properties	view.	But	at
other	times,	the	Properties	view	doesn’t	respond.	(I’m	sure	that	this	non-
response	is	intentional,	but	I	can’t	figure	out	why.)	To	remedy	this
situation,	I	go	to	the	Outline	view	and	select	the	object’s	branch	in	the

Outline	view’s	tree.	(Refer	to	Figure	1-12.)

	The	Properties	view	doesn’t	appear	on	its	own.	To	add	the
Properties	view	to	your	perspective,	follow	the	earlier	instructions	in
this	chapter’s	“Where’s	my	view?”	section.

Console	view
The	Console	view	displays	messages	created	by	Android’s

development	tools.	For	example,	when	I	tell	Eclipse	to	run	my	Android
application,	the	Console	view	displays	the	progress	of	the	application’s
launch.	In	Figure	1-13,	the	message	Success!	is	particularly	encouraging.

	

Figure	1-13:	The	Console	view.

Javadoc	view
The	Javadoc	view	provides	quick	access	to	both	the	Java	API

documents	and	the	corresponding	Android	API	pages.	When	you	select	a
name	in	Eclipse’s	source	code	editor,	the	Javadoc	view	displays	the
appropriate	documentation	page.	(See	Figure	1-14.)

	

Figure	1-14:	The	Javadoc	view.

Views	that	normally	live	in	the	DDMS
perspective

The	previously	mentioned	views	typically	appear	as	part	of	the	Java
perspective.	In	this	section,	I	describe	views	that	you	usually	find	in	the
DDMS	perspective.	The	DDMS	perspective	displays	information	from
Android’s	Dalvik	Debug	Monitor	Server.	The	debug	monitor	watches

your	running	emulator	or	your	connected	device	and	then	reports	useful
information	for	the	application	developer.

LogCat	view
Android’s	LogCat	tool	displays	messages	created	by	a	running

emulator	or	a	connected	device.	The	run	reports	all	kinds	of	information
—	some	relevant	to	your	application	and	some	having	mostly	to	do	with
other	running	processes.	Some	of	the	messages	may	be	a	little	scary,	but
in	many	cases,	the	errors	and	warnings	are	someone	else’s	problem.

For	example,	in	Figure	1-15,	a	log	entry	warns	me	that	no	available
voice	recognition	services	have	been	found.	But	that’s	okay	because	my
application	doesn’t	require	voice	recognition	services.	The	LogCat	view
is	simply	reporting	everything	that	happens	in	this	run	of	the	Android
operating	system,	and	Android	is	doing	much	more	than	just	worrying
about	my	little	application.

	

Figure	1-15:	The	LogCat	view.

	The	LogCat	view	is	great	for	helping	you	understand	your
application’s	behavior,	especially	because	Java	stack	traces	appear
in	the	LogCat	view.	A	Java	stack	trace	is	a	kind	of	“snapshot”	of
your	app	at	the	moment	when	an	error	occurs.	A	stack	trace	tells	you
which	methods	are	calling	which	other	methods	and	which	line	of
code	triggers	the	error.	To	read	more	about	stack	traces	and	the
LogCat	view,	see	Book	I,	Chapter	4,	and	Book	III,	Chapter	1.

Devices	view
The	Devices	view	displays	a	navigation	tree	that	includes	running

emulators	and	any	attached	phones	or	tablets.	(See	Figure	1-16.)	You	can
expand	each	device’s	branch	of	the	tree	to	show	processes	currently
running	on	that	device.

Eclipse	links	the	Devices	view	to	the	other	views	in	the	DDMS
perspective.	So,	if	I	want	to	see	logging	for	a	particular	running	emulator,
I	select	that	emulator	in	the	Devices	view.	Then	I	can	examine	that
emulator’s	LogCat	output	in	the	LogCat	view.	(In	Figure	1-16,	I	select
emulator-5554.)

	

Figure	1-16:	The	Devices	view.

File	Explorer	view
To	explore	the	file	system	on	a	running	emulator,	I	select	that

emulator	in	the	Devices	view	and	then	examine	the	emulator’s	file	system
in	the	File	Explorer	view.	(See	Figure	1-17.)

	

Figure	1-17:	The	File	Explorer	view.

The	File	Explorer	view	lets	you	do	more	than	simply	examine	a
device’s	files.	For	example,	in	Figure	1-17,	I’m	getting	ready	to	pull	a
copy	of	the	Killer	App.apk	file	from	the	emulator’s	file	system	to	a
location	on	my	laptop’s	file	system.	(Pulling	a	file	means	copying	the	file
from	an	emulator	or	phone	to	a	development	computer.	Pushing	a	file
means	copying	the	file	from	a	development	computer	to	an	emulator	or	a
phone.)

Emulator	Control	view
The	Emulator	Control	view	gives	you	limited	control	over	some

features	of	a	running	emulator,	and	affords	you	the	ability	to	trigger
certain	events	on	the	emulator.	For	example,	by	clicking	the	view’s
buttons	you	can	simulate	an	incoming	call	or	make	the	emulator	think
that	it’s	at	Longitude	–122.084095	and	Latitude	37.422006.	(See	Figure
1-18.)

	For	even	more	control	over	an	emulator,	you	can	press
certain	keys	on	your	development	computer’s	keyboard.	For	a	list	of
these	keys,	visit	the	official	documentation	at
http://developer.android.com/guide/developing/tools/emulator.html

	If	you	use	MOTODEV	Studio	for	Android,	check	out	the
cool	Android	Emulator	view	and	the	Database	Explorer	view.

	

Figure	1-18:	The	Emulator	Control	view.

http://developer.android.com/guide/developing/tools/emulator.html

Be	Nice	to	Your	Java	Code
Eclipse	has	dozens	of	features	to	help	you	write	better	code.	This

section	lists	some	of	my	favorites.

Making	it	pretty
Poorly	formatted	code	is	difficult	to	read.	Well-formatted	code	is

less	expensive.	You	spend	less	time	and	money	maintaining	easy-to-read
code.

When	you	choose	Source⇒Format	in	Eclipse’s	main	menu,	Eclipse

formats	an	entire	file	or	a	whole	bunch	of	files	at	once.	As	if	by	magic,
your	code	becomes	properly	indented	and	consistently	spaced.

Eclipse	formats	one	or	more	files	depending	on	which	part	of
Eclipse’s	workbench	has	the	focus.	Does	an	editor	have	the	focus?	If	so,
choosing	Source⇒Format	affects	code	in	whatever	file	you’re	currently
editing.

And	what	about	the	old	Package	Explorer?	Does	a	branch	of	the
Package	Explorer	have	the	focus?	If	so,	Source⇒Format	affects	all	Java
files	in	that	branch.	(For	example,	if	you	select	a	package’s	branch,
Source⇒Format	affects	all	files	in	the	package.)

Hocus-pocus!	Who	has	the	focus?
	Imagine	yourself	working	on	a	desktop	or	laptop	computer.

You’re	staring	at	a	web	page,	thinking	about	submitting	your	entry
in	a	random	drawing.	(If	you	win,	you	get	a	fully	paid,	one-week
vacation	to	Kuala	Lumpur	in	Malaysia.)	When	the	web	page	first
loaded,	you	saw	a	blinking	cursor	in	a	text	field	labeled	Name.
The	blinking	cursor	indicates	that	this	Name	field	has	the	focus.	In
other	words,	if	the	next	thing	you	do	is	start	typing	on	the
computer	keyboard,	the	characters	that	you	type	appear	in	the	web
page’s	Name	field.	The	web	page	contains	other	widgets	(in
particular,	an	Email	Address	field	and	a	Submit	button),	but	the
stuff	that	you	type	has	no	effect	on	those	widgets.	The	stuff	that
you	type	goes	directly	into	the	Name	field,	because	the	Name	field
has	the	focus.
After	typing	your	name,	you	can	change	the	focus.	To	do	this,	you
click	your	mouse	in	the	Email	Address	field.	Alternatively,	you
can	press	the	Tab	key	after	typing	your	name.	Pressing	Tab	shifts
the	focus	from	the	Name	field	to	the	Email	Address	field.	So	if
you	type	Barry	BurdTabandroid@allmycode.com,	then	Barry
Burd	goes	into	the	Name	field	and	android@allmycode.com	goes
into	the	Email	Address	field.	(As	a	pleasant	side	effect,	typing
these	keystrokes	increase	Barry’s	chances	of	winning	a	trip	to
Kuala	Lumpur!)
Pressing	Tab	once	again	shifts	the	focus	to	the	Submit	button.
Sure,	you	can	click	the	Submit	button	with	your	mouse.	But	to	get
practice	with	the	notion	of	focus,	you	can	also	press	your

keyboard’s	spacebar.	You	see,	any	keystrokes	go	directly	to
whichever	screen	widget	has	the	focus.	When	the	Submit	button
has	the	focus,	pressing	the	spacebar	sends	that	spacebar	keystroke
to	the	button.	And,	by	the	way,	a	button’s	typical	response	to
spacebar	input	is	to	“become	clicked.”
Getting	back	to	the	Eclipse	workbench,	try	the	following
experiment:
1.	Open	a	Java	source	file	in	Eclipse’s	editor.	Click	your	mouse

anywhere	in	the	editor	and	begin	typing.	The	editor	has	the	focus,
so	whatever	you	type	appears	as	text	in	the	Java	source	file.
2.	Now	click	the	name	of	a	project	in	the	Package	Explorer’s

tree.	When	you	press	Enter,	the	project	branch	expands	to	show	its
sub-branches.	Press	Enter	again	and	the	project	branch	collapses,
hiding	its	sub-branches.	The	project	in	the	Package	Explorer	has
the	focus,	so	that	project	branch	responds	to	the	Enter	key.
3.	Click	again	inside	the	editor.	The	editor	has	the	focus,	so

when	you	press	Enter,	a	line	break	appears	in	the	Java	source	file.
But	looking	back	at	the	Package	Explorer,	the	branch	that	you
selected	in	Step	2	is	still	highlighted.	The	Package	Explorer
doesn’t	have	the	focus,	so	pressing	Enter	neither	expands	nor
collapses	the	project	branch.
So	this	experiment	has	a	takeaway:	At	any	moment,	more	than	one
item	on	the	screen	can	be	highlighted.	But	at	any	moment,	only
one	item	on	the	screen	has	the	focus.

	
In	fact,	with	the	Package	Explorer,	you	can	quickly	format	a	whole

bunch	of	files.	The	files	don’t	even	have	to	live	in	the	same	project.	Just
do	whatever	you	normally	do	to	select	more	than	one	branch	of	the	tree.
In	Windows	and	in	many	flavors	of	Linux,	use	Ctrl-click	to	add	a	branch
to	your	selection.	Use	Shift-click	to	extend	your	selection	from	one
branch	to	another	(including	all	branches	in	between).	After	selecting	a
bunch	of	branches,	choose	Source⇒Format.

Let	Eclipse	do	the	typing
Like	so	many	modern	development	environments,	Eclipse	has	a

Content	Assist	feature.	With	Content	Assist,	you	type	enough	code	for

Eclipse	to	make	reasonable	guesses	about	what	you’re	trying	to	type.
Then	Eclipse’s	editor	offers	suggestions.	Figure	1-19	shows	what
happens	when	I	type	import	android	and	then	a	dot	in	the	Java	code
editor.	Eclipse	suggests	import	android.Manifest,	import	android.R,
import	android.accessibilityservice.*,	and	others.	Eclipse	even
displays	a	little	documentation	pop-up	when	it’s	feasible	to	do	so.

	

Figure	1-19:	The	Eclipse	editor	offers	to	complete	an	import	declaration	for
you.

In	Figure	1-19,	my	mouse	points	to	the	R	option.	If	I	double	click
that	R	option,	Eclipse	types	the	code	for	me,	changing	my	incomplete
import	android.	to	import	android.R;.

Eclipse’s	Content	Assist	feature	suggests	names	from	Android’s
standard	API,	but	it	can	also	suggest	other	names	—	names	that	you
define	as	part	of	your	app.	In	Figure	1-20,	Eclipse	offers	to	complete	my
statement	with	the	names	myCopyButton	and	myPasteButton	—	names
that	I	created	as	part	of	my	activity’s	main	layout.

	

Figure	1-20:	The	Eclipse	editor	is	aware	of	the	names	you	create	in	your	Java
code.

	Sometimes	Eclipse’s	Content	Assist	feature	doesn’t	want	to
come	out	of	its	shell.	To	coax	this	feature	out	of	hiding,	press
Ctrl+spacebar.

Generating	getter	and	setter	methods
Take	a	look	at	the	following	code:

textView.setText(“Boo!”);

	

StringBuilder	str	=	new	StringBuilder(textView.getText());

Android’s	TextView	class	has	its	own	private	text	variable.	My
examples	can’t	make	direct	references	to	a	private	variable	such	as	the
text	variable.	(I	get	an	error	message	if	I	write	textView.text	=	“Boo!”
or	I	write	new	StringBuilder(textView.text).)	But	my	code	can
access	the	text	variable	indirectly	using	the	TextView	class’s	getter	and
setter	methods.

The	folks	who	created	Android	coded	getter	and	setter	methods	in
the	declaration	of	the	TextView	class:
public	class	TextView	{

	

		private	CharSequence	text;

	

		public	CharSequence	getText()	{

				return	text;

		}

	

		public	void	setText(CharSequence	text)	{

				this.text	=	text;

		}

		

		//	Much	more	code	here	...

}

As	an	Android	developer,	you	create	many	of	your	own	getter	and
setter	methods.	Fortunately,	you	can	create	them	without	doing	lots	of
typing.	Eclipse	can	type	these	methods	for	you.	The	following	sections
show	you	how.

Using	Code	Assist
Eclipse’s	Code	Assist	feature	can	be	a	great	help	when	creating

getter	and	setter	methods.	Start	within	a	Java	editor	and	place	the	cursor
inside	a	class	but	outside	of	any	method.	Type	the	word	get	and	then
press	Ctrl+spacebar.	Code	Assist	offers	to	create	a	getter	method	for	any
of	your	class’s	fields.	The	method	even	includes	an	appropriate	return
statement.

In	the	getter	method	department,	Code	Assist	is	very	smart.	If	a	field
already	has	a	getter	method,	Code	Assist	doesn’t	suggest	creating	an
additional	getter.

Of	course,	everything	I	say	about	getters	holds	true	of	setters	also.
To	create	a	setter	method,	place	the	cursor	inside	a	class	but	outside	of
any	method,	type	set,	and	then	press	Ctrl+spacebar.	The	new	setter
method	has	its	own	this.field	=	field	statement.

Using	menus
If	you’re	partial	to	using	menus	rather	than	the	Code	Assist	feature

to	create	your	getter	and	setter	methods,	start	again	in	a	Java	editor	and
place	the	cursor	anywhere	inside	a	Java	class.	Then,	in	Eclipse’s	main
menu,	choose	Source⇒Generate	Getters	and	Setters.	As	a	result,	Eclipse
displays	a	dialog	box	like	the	one	in	Figure	1-21.	When	you	click	OK,
Eclipse	creates	the	getters	and	setters	whose	boxes	you’ve	checked.

	

Figure	1-21:	Selecting	getters	and	setters.

Renaming	things
To	change	the	name	of	a	variable,	a	method,	or	something	else	in	a

Java	program,	click	your	mouse	on	that	name	in	the	editor	and	then
choose	Refactor⇒Rename.	Eclipse	waits	for	you	to	edit	the	existing
name.	After	you	finish	changing	the	name,	press	Enter.	(To	cancel	the
rename	operation,	press	Esc.)

	When	you	click	a	name	in	an	editor,	you	don’t	have	to	click
the	name’s	defining	occurrence.	You	can	click	anywhere	in	your
code	where	the	name	occurs.	After	you	edit	the	name,	Eclipse
changes	all	occurrences	of	that	name	in	your	project.

	Eclipse	is	smart	enough	not	to	change	identical	names	that
have	different	meanings.	For	example,	if	a	setter	method	contains
the	statement	this.myButton	=	myButton,	renaming
this.myButton	changes	your	class’s	field	name.	But	renaming
myButton	on	the	right	side	of	the	assignment	changes	only	the	name
of	the	method-local	variable.

Creating	Android	strings
You’re	vigorously	typing	Java	code	(after	having	planned	and

designed	the	code	carefully,	of	course),	and	you	type	a	statement	that
includes	a	string	literal:
button.setText(“Click	me!”);

Then	you	remember	that	Java	code	shouldn’t	contain	hard-coded
strings.	You	should	change	“Click	me!”	to	something	like
R.string.click	and	add	a	string	tag	to	your	res/values/strings.xml
file.	Then	your	French-speaking	users	grab	data	from	a	different
strings.xml	file	—	a	file	in	which	R.string.click	refers	to	the	text
“Cliquez-moi!”

Eclipse’s	Android	Development	Tools	plug-in	provides	a	quick	and

easy	way	to	turn	a	hard-coded	string	literal	into	an	externalized	Android
string.	Select	any	part	of	the	string	literal	in	the	Java	code	editor.	Then,	in
Eclipse’s	main	menu,	choose	Refactor⇒Android⇒Extract	Android
String.	After	a	brief	encounter	with	the	options	in	the	Extract	Android
String	dialog	box,	your	string	literal	is	turned	into	an	element	in
strings.xml.

Using	other	refactoring	actions
Eclipse	comes	with	a	host	of	refactoring	actions	for	your	Java	code.

For	example,	with	a	few	menu	selections,	you	can	turn	several	lines	of
code	into	a	separate	method.	You	can	create	an	interface	from	an	existing
class.	You	can	even	add	generic	type	arguments	to	an	old-fashioned	raw
collection	type	declaration.	(Eclipse	makes	educated	guesses	about	the
generic	argument	types.)

To	experiment	with	Eclipse’s	refactoring	features,	choose	Refactor
from	Eclipse’s	main	menu	and	start	exploring.

The	Organize	Imports	action
Eclipse	has	a	cool	Source⇒Organize	Imports	action.	Many	good

things	happen	when	you	go	to	Eclipse’s	main	menu	and	choose
Source⇒Organize	Imports:
•	Eclipse	removes	any	import	declarations	that	you	don’t	use.

	

If	your	code	starts	with
	

import	android.widget.EditText;
but	you	never	use	an	EditText,	Eclipse	deletes	the	EditText	import
declaration.

	
•	Eclipse	adds	any	missing	import	declarations.

	

If	your	code	includes
	

((EditText)	findViewById(R.id.editText1))
but	you	have	no	import	declaration	for	EditText,	Eclipse	adds

	
import	android.widget.EditText;
near	the	top	of	your	code.	I’ve	even	seen	Eclipse	uncomment	a
declaration	that	I’d	commented	out	earlier.

	
•	Eclipse	sorts	your	code’s	import	declarations.

	
By	default,	Eclipse	sorts	your	declarations	so	that	java	packages	come
first,	then	the	javax	packages,	then	the	org	packages,	then	the	android
packages,	and	finally	the	com	packages.	Within	each	category,	Eclipse
sorts	declarations	alphabetically.	(That	way,	the	declarations	are	easy	to
find.)

	
Of	course,	you	can	change	the	sorting	order.	Visit	the	Java⇒Code
Style⇒Organize	Imports	page	of	the	Window⇒Preferences	dialog	box.
Move	names	up	in	the	list,	move	names	down	in	the	list,	add	names,	or
remove	names.	It’s	all	up	to	you.

	
•	Eclipse	tries	to	eliminate	import-on-demand	declarations.

	

Eclipse	changes
	

import	android.widget.*;

into	something	like
	

import	android.widget.Button;

import	android.widget.CheckBox;

import	android.widget.ListView;

import	android.widget.SimpleAdapter;

import	android.widget.Toast;

using	only	the	class	names	that	you	already	use	in	your	code.
	

Oops!
You	notice	some	tiny	icons	on	the	left	edge	of	the	Java	editor.	(See

Figure	1-22.)	Each	icon	contains	an	X	surrounded	by	a	red	shape	and
possibly	a	light	bulb.	These	icons	are	error	markers,	and	the	whole	left
edge	of	the	editor	is	a	marker	bar.	Besides	error	markers,	several	other
kinds	of	markers	can	appear	in	the	editor’s	marker	bar.

	

Figure	1-22:	Oh,	no!	An	error	marker!

Each	error	marker	represents	a	place	in	the	code	where	Eclipse	finds
a	compile-time	error.	The	error	in	Figure	1-22	is	the	use	of	word	mane	(as
opposed	to	main).	If	you	find	such	an	error,	you	can	either	retype	main,
or	you	can	use	Eclipse’s	Quick	Fix	feature.	Here’s	how:

1.	Right-click	the	error	marker,	and	in	the	resulting	context
menu,	choose	Quick	Fix.

	 A	list	with	one	or	more	alternatives	appears.	Each	alternative
represents	a	different	way	of	fixing	the	compile-time	error.	When	you
highlight	an	alternative,	another	box	shows	what	the	revised	code	(after
that	alternative	is	applied)	would	look	like,	as	shown	in	Figure	1-23.

	

	

Figure	1-23:	Eclipse	lets	you	choose	among	several	quick	fixes.

2.	Double-click	the	alternative	that	you	want	to	apply;	or	if	you
like	using	the	keyboard,	you	can	highlight	the	alternative	and	then
press	Enter.

	 Eclipse	rewrites	your	code,	and	the	error	marker	goes	away.	What	a
cool	feature!

	

	In	Figures	1-22	and	1-23,	the	error	marker	contains	a	tiny
light	bulb.	The	light	bulb	reminds	you	that	Eclipse	may	have	some
Quick	Fix	ideas.	If	you	don’t	see	the	bulb,	Eclipse	has	no	ideas.	But
occasionally,	even	though	you	see	the	little	bulb,	Eclipse	doesn’t
have	a	clue.	Okay,	I	can	live	with	that.

Some	Things	You	Can	Do	with	Eclipse
Projects

Eclipse	has	gazillions	of	features	for	managing	Java	and	Android
projects.	So	in	this	minibook,	I’ll	do	my	best,	but	I	can’t	cover	every
feature	out	there.	I	devote	about	five	pages	to	the	subject.	Here	goes!

Importing	code
Importing	code	here	means	bringing	somebody	else’s	code	into	your

own	Eclipse	project	or	bringing	your	own	code	(created	with	or	without
Eclipse)	into	an	Eclipse	project.

You	have	two	import	techniques	to	choose	between.	You	can	drag

and	drop,	or	you	can	use	the	Import	Wizard.

Using	drag	and	drop
As	an	importing	technique,	dragging	and	dropping	works	only	with

the	Windows	operating	system.	In	addition,	this	technique	is	like	a	blunt
instrument.	The	technique	imports	everything	from	a	particular	directory
on	your	hard	drive.	If	you	want	to	import	only	a	few	files	from	a
directory,	this	technique	isn’t	your	best	bet.

Of	course,	if	you	use	Windows	and	you	like	the	intuitive	feel	of
dragging	and	dropping,	this	technique	is	for	you.	Just	drag	the	folders
containing	your	code	from	your	development	computer’s	file	explorer	to
the	appropriate	project	folder	in	Eclipse’s	Package	Explorer	view.

In	the	preceding	paragraph,	I	cleverly	cover	up	my	own	clumsiness
by	instructing	you	to	drag	folders	to	“the	appropriate	project	folder.”	I
admit	it.	I	forget	which	folder	to	drag	where.	I’m	usually	off	by	one	level.
(I	drag	either	to	the	parent	or	to	the	child	of	the	appropriate	folder.)	Then
my	project’s	directory	structure	isn’t	correct,	and	I	see	all	kinds	of	red
error	markers	in	my	code.	So	I	have	to	drag	items	from	one	place	to
another	in	the	Package	Explorer,	or	delete	the	stuff	that	I	imported	and
start	dragging	and	dropping	all	over	again.	My	brain	doesn’t	process	this
particular	concept	of	dragging	and	dropping	folders	very	easily.	Who
knows?	Maybe	your	brain	does	a	better	processing	job.

Using	the	Import	Wizard
If	you	don’t	use	Microsoft	Windows	or	if	you	want	to	carefully	pick

and	choose	what	you	import,	you	can’t	use	drag	and	drop.	Instead,	you
use	the	Import	Wizard.

How	you	use	the	Import	Wizard	depends	on	the	kind	of	thing	that
you	want	to	import.	To	import	an	Eclipse	project	(perhaps	from	an	old,
currently	unused	Eclipse	workspace),	do	the	following:

1.	In	Eclipse’s	main	menu,	choose	File⇒Import.
	 Eclipse’s	Import	Wizard	(magically)	appears.
	 2.	In	the	General	branch	of	the	Import	Wizard,	click	the

Existing	Projects	into	Workspace	sub-branch.	(See	Figure	1-24.)
	

	

Figure	1-24:	Telling	Eclipse	to	import	an	existing	project.

As	a	result	of	your	clicking	the	Existing	Projects	into	Workspace
sub-branch,	another	Import	dialog	box	(the	Import	Projects	dialog	box)

appears.
	 3.	In	the	Import	Projects	dialog	box,	click	the	Select	Root

Directory	radio	button,	and	use	the	Browse	button	to	locate	a	folder
containing	one	or	more	Eclipse	projects	(projects	that	aren’t	in	your
current	Eclipse	workspace).

	 An	Eclipse	project	includes	source	code	and	other	stuff.	This	“other
stuff”	includes	the	.project	and	.classpath	files	that	you	hardly	ever
notice	inside	an	Eclipse	project’s	folder.

	

	To	be	considered	an	existing	Eclipse	project,	a	folder
must	contain	a	file	named	.project.

	 After	you	browse	to	a	folder,	Eclipse	lists	any	and	all	projects	that	it
finds	in	that	folder.	(See	Figure	1-25.)

	 4.	Put	check	marks	in	the	boxes	next	to	each	of	the	projects	that
you	want	Eclipse	to	import.	(Again,	see	Figure	1-25.)

	 5.	Put	a	check	mark	in	the	Copy	Projects	into	Workspace	box.
(Or	don’t!)

	 If	you	check	this	box,	Eclipse	creates	a	new	copy	of	your	project
inside	your	current	workspace.	Anything	you	do	to	that	new	copy	has	no
effect	on	the	original	folder	from	which	you	imported	projects.	In	other
words,	you	have	an	easily	accessible	backup	copy	of	the	project.

	
	

Figure	1-25:	Selecting	one	or	more	existing	projects.

If	you	don’t	check	this	box,	Eclipse	doesn’t	make	a	new	copy	of	the
project.	Instead,	Eclipse	works	directly	on	whatever	folder	originally
contained	the	projects.	So	whatever	changes	you	make	to	the	project’s
files	affect	the	folder	from	which	you	imported	projects.	In	other	words,
you	have	no	easily	accessible	backup	copy.

	 6.	In	the	Import	Projects	dialog	box,	click	the	Finish	button.
	 That’s	it!	Eclipse	adds	a	new	project	to	the	Package	Explorer’s	tree.
	 To	import	files	or	folders	into	your	current	Eclipse	project,	do	this:

1.	In	Eclipse’s	Package	Explorer,	select	the	destination	folder
(the	folder	that	will	contain	the	imported	files).

	 2.	In	Eclipse’s	main	menu,	choose	File⇒Import.
	 The	Import	Wizard	appears	(refer	to	Figure	1-24).
	 3.	In	the	Import	Wizard,	click	either	the	Archive	File	option	or

the	File	System	option.

	 An	Import	dialog	box	appears.
	

	Your	choice	of	Archive	File	or	File	System	depends	on
the	location	of	the	stuff	that	you	want	to	import.	Click	Archive	File	if	the
stuff	is	inside	a	compressed	file	(a	.zip	file,	a	.tar.gz	file,	or	something
like	that).	Select	File	System	if	the	stuff	you	want	to	import	isn’t	inside	a
compressed	file.

	 4.	In	the	Import	dialog	box,	browse	to	the	folder	or	to	the
archive	file	containing	things	that	you	want	to	import.

	 After	browsing,	two	large	panels	in	the	Import	dialog	box	display
the	subfolders	and	files	inside	your	selected	folder	or	archive	file.	(See
Figure	1-26.)

	

	Sometimes	you	have	to	coax	the	Import	dialog	box’s
two	large	panels	to	display	your	folder’s	or	archive	file’s	contents.	You
“coax”	the	panels	by	clicking	your	mouse	inside	the	leftmost	panel.

	 5.	In	the	lists	inside	the	large	panels,	put	a	check	mark	next	to
any	folder	or	any	file	that	you	want	to	import.

	 In	Figure	1-26,	I	put	check	marks	next	to	the	com	folder	and	most	of
the	files	in	the	res	folder.

	 6.	(Optional)	If	you	want	to	import	subfolder	names	as	well	as
files,	select	the	Create	Complete	Folder	Structure	check	box.

	 7.	Click	Finish.
	 The	Import	dialog	box	disappears.	The	tree	in	Eclipse’s	Package

Explorer	view	contains	new	entries.
	

	

Figure	1-26:	The	Import	dialog	box.

Creating	a	run	configuration
A	run	configuration	is	a	set	of	guidelines	that	Eclipse	uses	for

running	an	application.	A	particular	run	configuration	stores	the	name	of
the	project	to	be	launched,	the	target	Android	platform	(Gingerbread,
Honeycomb,	or	whatever),	and	many	other	facts	about	an	app’s
anticipated	run.

Whenever	you	run	an	app,	Eclipse	uses	one	run	configuration	or
another.	If	you	don’t	create	a	custom	run	configuration,	Eclipse	uses	a
default	configuration.	Default	is	nice,	but	sometimes	you	want	to
micromanage	the	way	your	app	runs	on	an	emulator	or	on	a	device.	So	in
this	section,	you	get	to	create	a	customized	run	configuration.	Here’s	how
you	do	it:

1.	Right-click	an	Android	project’s	branch	in	the	Package
Explorer	view	(or	if	you’re	a	Mac	user,	Control-click).

	 2.	In	the	resulting	context	menu,	choose	Run	As⇒Run
Configurations.

	 The	big	Run	Configurations	dialog	box	appears.
	 3.	Click	the	New	Launch	Configuration	button	in	the	window’s

upper-left	corner.	(See	Figure	1-27.)
	

	

Figure	1-27:	The	New	Launch	Configuration	button.

A	new	branch	(with	a	label	like	New_configuration)	appears	in	the
panel	on	the	left	side	of	the	Run	Configurations	dialog	box.

	 4.	In	the	main	body	of	the	Run	Configurations	dialog	box,	enter
an	informative	name	for	your	new	configuration	in	the	Name	field.
(See	Figure	1-28.)

	
	

Figure	1-28:	Adding	some	information	about	your	custom	configuration.

5.	In	the	Project	field	of	the	Android	tab	(again,	in	the	main
body	of	the	Run	Configurations	dialog	box),	type	the	name	of	the
project	this	configuration	applies	to.	(And	again,	see	Figure	1-28.)

	 6.	In	the	main	body	of	the	Run	Configurations	dialog	box,	click
Apply.

	 7.	Still	in	the	main	body	of	the	Run	Configurations	dialog	box,
click	the	Target	tab.

	 The	Run	Configurations	dialog	box	looks	something	like	Figure	1-
29.

	 8.	Change	any	(or	none)	of	the	default	options	in	the	Target	tab.
	 In	Figure	1-29,	I	specify	which	of	my	emulators	will	run	the

application	(the	emulator	named	GingerbreadWithSDImage).	I	also
supply	the	-no-boot-anim	option	for	the	startup	of	the	emulator.	(The	-
no-boot-anim	option	tells	the	emulator	not	to	waste	time	displaying	a
glimmering	rendition	of	the	word	Android.)

	

	For	more	emulator	options,	visit
http://developer.android.com/guide/developing/tools/emulator.html

	 9.	In	the	main	body	of	the	Run	Configurations	dialog	box,	click
Apply.

	 10.	After	doing	all	the	tinkering	you	want	to	do	with	the	Run
Configurations	dialog	box,	click	Run	or	Close.

http://developer.android.com/guide/developing/tools/emulator.html

	
	

Figure	1-29:	The	Run	Configurations	dialog	box’s	Target	tab.

The	Run	and	Close	buttons	appear	in	the	bottom-right	corner	of	the
Run	Configurations	dialog	box.	Clicking	Run	launches	your	project	with
the	newly	created	configuration.	Clicking	Close	saves	the	new
configuration	without	launching	the	project.

	 Your	custom	run	configuration	becomes	the	default	for	whichever
project	you	select	in	Step	5.	So	the	next	time	you	run	this	project,	you	can
launch	your	project	the	easy	way.	To	launch	with	your	custom

configuration,	simply	right-click	the	project’s	Package	Explorer	branch
and	choose	Run	As⇒Android	Application.

Adding	extra	stuff	to	a	project’s	build	path
In	Java,	a	.jar	file	is	a	zipped	collection	of	classes	and	other	stuff.

It’s	a	bunch	of	goodies	compressed	into	one	file	using	the	same
compression	method	that	.zip	files	use.	A	.jar	file	contains	classes	that
you	need	in	order	to	run	one	or	more	applications.	For	example,	a	file
named	junit.jar	contains	classes	for	running	Java	JUnit	tests.

Depending	on	your	mood,	.jar	stands	for	either	Java	ARchive	or
for	a	jar	full	of	Java	coffee	beans.

	JUnit	is	a	cool	software	testing	tool.	For	more	information
about	JUnit,	visit	http://Junit.org/.
As	you	might	have	guessed	already,	you	can	add	a	.jar	file	to	an

Eclipse	project.	That	way,	you	can	use	the	.jar	file’s	classes	in	your
project’s	code.	Here’s	how	you	do	it:

1.	Select	a	project	in	Eclipse’s	Package	Explorer.
	 2.	In	Eclipse’s	main	menu,	choose	Project⇒Properties.
	 Eclipse	displays	the	project’s	Properties	dialog	box.	(Big	surprise!)

You	can	see	a	Properties	dialog	box	in	Figure	1-30.
	

	

Figure	1-30:	A	project’s	Properties	dialog	box.

3.	In	the	tree	on	the	left	side	of	the	Properties	dialog	box,	click
Java	Build	Path.

	 This	tree	branch	stores	information	about	the	places	Eclipse	checks

http://junit.org/

when	it	compiles	your	project’s	code.	The	Java	Build	Path	contains	lots
of	options.	In	this	section,	I	narrow	down	the	example	to	one	place
Eclipse	can	check	—	a	.jar	file.

	 4.	In	the	main	body	of	the	Properties	dialog	box,	click	the
Libraries	tab.

	 Some	buttons	appear	on	the	right	side	of	the	dialog	box.
	 5.	Click	the	Add	External	JARs	button.
	 When	you	click	this	button,	Eclipse	displays	your	operating

system’s	“open	a	file”	dialog	box.
	 6.	In	the	“open	a	file”	dialog	box,	navigate	to	the	location	of	a

.jar	file	on	your	development	computer.
	 I	can’t	tell	you	where	to	find	all	the	.jar	files	you’ll	ever	need.	But

if	you’re	following	these	instructions	just	to	practice	adding	.jar	files,	I
have	a	suggestion	Look	for	.jar	files	in	your	JAVA_HOME	directory.	In	that
directory’s	lib	subdirectory,	you’ll	find	a	bunch	of	nice	.jar	files.

	

	For	help	finding	your	development	computer’s
JAVA_HOME	directory,	see	Book	VI,	Chapter	3.

	 7.	Double-click	the	.jar	file	of	your	choice.
	 Lo	and	behold!	The	“open	a	file”	dialog	box	closes,	and	now	your

chosen	.jar	file	appears	in	your	project’s	build	path.	(To	get	the	result	in
Figure	1-31,	I	chose	a	file	named	tools.jar.)

	
	

Figure	1-31:	An	enhanced	Java	build	path.

Chapter	2:	It’s	Java!

In	This	Chapter
How	computers,	phones	and	other	devices	run	Java	programs

The	parts	of	a	typical	Java	program
	

Before	I	became	an	Android	guy,	I	was	a	Java	guy.	A	Java	guy	is	a
person	who	revels	in	the	workings	of	Java	programs.	I	wrote	Java
programs,	read	about	Java	programs,	went	to	Java	user	group	meetings,
and	wore	Java	t-shirts.	That’s	why	I	was	thrilled	to	learn	that	Android’s
application	programming	language	is	Java.

In	the	early	1990s,	James	Gosling	at	Sun	Microsystems	created
Java.	He	used	ideas	from	many	programming	language	traditions,
including	the	object-oriented	concepts	in	C++.	He	created	an	elegant
platform	with	a	wide	range	of	uses.	In	mid-2011	(which	is	“now”	as	far
as	my	chapter-writing	goes),	Java	runs	on	more	than	1.1	billion	desktop
computers,*	and	Java	is	the	most	popular	programming	language	in	the
TIOBE	Programming	Community	Index
(www.tiobe.com/index.php/content/paperinfo/tpci).	Do	you	have	a
Blu-ray	player?	Under	the	hood,	your	player	runs	Java.

*	Source:	http://java.com/en/about
	

In	this	minibook	(Book	II),	this	chapter	and	Chapters	3	and	4
introduce	the	ins	and	outs	of	the	Java	programming	language.	But	these
chapters	don’t	offer	a	comprehensive	guide	to	Java.	(To	badly	paraphrase
Geoffrey	Chaucer,	“This	book	never	yet	no	complete	not	Java
coverage.”)	Instead,	these	chapters	hit	the	highlights	of	Java
programming.	For	a	more	complete	introduction	to	Java,	read	Java	For
Dummies,	5th	Edition	(John	Wiley	&	Sons,	Inc.).	(Yes,	I	wrote	that	book,
too.)

http://www.tiobe.com/index.php/content/paperinfo/tpci
http://java.com/en/about

From	Development	to	Execution	with	Java
Before	Java	became	popular,	most	programs	went	almost	directly

from	the	developer’s	keyboard	to	the	processor’s	circuits.	But	Java	added
an	extra	translation	layer	and	then	Android	added	yet	another	layer.	This
section	describes	the	layers.

What	is	a	compiler?
A	Java	program	(such	as	an	Android	application	program)	goes

through	several	translation	steps	between	the	time	you	write	the	program
and	the	time	a	processor	runs	it.	The	reason	for	this	is	simple:	What’s
convenient	for	processors	to	run	is	not	convenient	for	people	to	write.

People	can	write	and	comprehend	the	code	in	Listing	2-1.

Listing	2-1:	Java	Source	Code
public	void	checkVacancy(View	view)	{

				if	(room.numGuests	==	0)	{

								label.setText(“Available”);

				}	else	{

								label.setText(“Taken	:-(“);

				}				

}

The	Java	code	in	Listing	2-1	checks	for	a	vacancy	in	a	hotel.	You
can’t	run	the	code	in	Listing	2-1	without	adding	several	lines.	But	at	this
stage	of	the	game,	those	additional	lines	aren’t	important.	What’s
important	is	that	by	staring	at	the	code,	squinting	a	bit,	and	looking	past
all	the	code’s	strange	punctuation,	you	can	see	what	the	code	is	trying	to
do:
If	the	room	has	no	guests	in	it,

				then	set	the	label’s	text	to	“Available”.

Otherwise,

				set	the	label’s	text	to	“Taken	:-(“.

The	stuff	in	Listing	2-1	is	Java	source	code.
The	processors	in	computers,	phones,	and	other	devices	don’t

normally	follow	instructions	like	the	instructions	in	Listing	2-1.	That	is,
processors	don’t	follow	Java	source	code	instructions.	Instead,	processors
follow	cryptic	instructions	like	the	ones	in	Listing	2-2.

Listing	2-2:	Java	Bytecode
0	aload_0

1	getfield	#19	<com/allmycode/samples/MyActivity/room

Lcom/allmycode/samples/Room;>

4	getfield	#47	<com/allmycode/samples/Room/numGuests	I>

7	ifne	22	(+15)

10	aload_0

11	getfield	#41	<com/allmycode/samples/MyActivity/label

Landroid/widget/TextView;>

14	ldc	#54	<Available>

16	invokevirtual	#56

<android/widget/TextView/setText(Ljava/lang/CharSequence;)V>

19	goto	31	(+12)

22	aload_0

23	getfield	#41	<com/allmycode/samples/MyActivity/label

Landroid/widget/TextView;>

26	ldc	#60	<Taken	:-(>

28	invokevirtual	#56

<android/widget/TextView/setText(Ljava/lang/CharSequence;)V>

31	return

The	instructions	in	Listing	2-2	aren’t	Java	source	code	instructions.
They’re	Java	bytecode	instructions.	When	you	write	a	Java	program,	you
write	source	code	instructions	(like	the	instructions	in	Listing	2-1).	After
writing	the	source	code,	you	run	a	program	(that	is,	you	apply	a	tool)	to
your	source	code.	The	program	is	a	compiler.	The	compiler	translates
your	source	code	instructions	into	Java	bytecode	instructions.	In	other
words,	the	compiler	takes	code	that	you	can	write	and	understand	(such
as	the	code	in	Listing	2-1)	and	translates	your	code	into	code	that	a
computer	can	execute	(such	as	the	code	in	Listing	2-2).

	You	might	put	your	source	code	in	a	file	named
HotelActivity.java.	If	so,	the	compiler	probably	puts	the	Java
bytecode	in	another	file	named	HotelActivity.class.	Normally,
you	don’t	bother	looking	at	the	bytecode	in	the
HotelActivity.class	file.	In	fact,	the	compiler	doesn’t	encode	the
HotelActivity.class	file	as	ordinary	text,	so	you	can’t	examine	the
bytecode	with	an	ordinary	editor.	If	you	try	to	open
HotelActivity.class	with	Notepad,	TextEdit,	KWrite,	or	even

Microsoft	Word,	you	see	nothing	but	dots,	squiggles,	and	other
gobbledygook.	To	create	Listing	2-2,	I	had	to	apply	yet	another	tool
to	my	HotelActivity.class	file.	That	tool	displays	a	text-like
version	of	a	Java	bytecode	file.	I	used	Ando	Saabas’s	Java	Bytecode
Editor	(www.cs.ioc.ee/~ando/jbe).

	No	one	(except	for	a	few	crazy	developers	in	some	isolated
labs	in	faraway	places)	writes	Java	bytecode.	You	run	software	(a
compiler)	to	create	Java	bytecode.	The	only	reason	to	look	at	Listing
2-2	is	to	understand	what	a	hard	worker	your	computer	is.
If	compiling	is	a	good	thing,	maybe	compiling	twice	is	even	better.

In	2007,	Dan	Bornstein	at	Google	created	Dalvik	bytecode	—	another
way	of	representing	instructions	for	processors	to	follow.	(To	find	out
where	some	of	Bornstein’s	ancestors	come	from,	run	your	favorite	Map
application	and	look	for	Dalvik	in	Iceland.)	Dalvik	bytecode	is	optimized
for	the	limited	resources	on	a	phone	or	a	tablet	device.	Listing	2-3
contains	some	sample	Dalvik	instructions.*

*	To	see	the	code	in	Listing	2-3,	I	used	the	Dedexer	program.	See
http://dedexer.sourceforge.net.

	

Listing	2-3:	Dalvik	Bytecode
.method	public	checkVacancy(Landroid/view/View;)V

.limit	registers	4

;	this:	v2	(Lcom/allmycode/samples/MyActivity;)

;	parameter[0]	:	v3	(Landroid/view/View;)

.line	30

				iget-object				

				v0,v2,com/allmycode/samples/MyActivity.room

				Lcom/allmycode/samples/Room;

;	v0	:	Lcom/allmycode/samples/Room;	,	v2	:

				Lcom/allmycode/samples/MyActivity;

				iget				v0,v0,com/allmycode/samples/Room.numGuests	I

;	v0	:	single-length	,	v0	:	single-length

http://www.cs.ioc.ee/~ando/jbe
http://dedexer.sourceforge.net

				if-nez				v0,l4b4

;	v0	:	single-length

.line	31

				iget-object				

				v0,v2,com/allmycode/samples/MyActivity.label

				Landroid/widget/TextView;

;	v0	:	Landroid/widget/TextView;	,	v2	:

				Lcom/allmycode/samples/MyActivity;

				const-string				v1,”Available”

;	v1	:	Ljava/lang/String;

				invokevirtual				

				{v0,v1},android/widget/TextView/setText

				;	setText(Ljava/lang/CharSequence;)V

;	v0	:	Landroid/widget/TextView;	,	v1	:	Ljava/lang/String;

l4b2:

.line	36

				return-void				

l4b4:

.line	33

				iget-object				

				v0,v2,com/allmycode/samples/MyActivity.label

				Landroid/widget/TextView;

;	v0	:	Landroid/widget/TextView;	,	v2	:

				Lcom/allmycode/samples/MyActivity;

				const-string				v1,”Taken	:-(“

;	v1	:	Ljava/lang/String;

				invokevirtual				

				{v0,v1},android/widget/TextView/setText	;

				setText(Ljava/lang/CharSequence;)V

;	v0	:	Landroid/widget/TextView;	,	v1	:	Ljava/lang/String;

				goto				l4b2

.end	method

	Java	bytecode	instructions	use	a	stack	machine	format.	In
contrast,	Dalvik	bytecode	instructions	use	a	register	machine	format.
The	upshot	of	this	(for	those	who	don’t	know	much	about	machine
language	formats)	is	that	a	typical	Dalvik	instruction	is	longer	and
more	complicated	than	a	Java	bytecode	instruction.	Despite	what
you	see	in	Listings	2-2	and	2-3,	a	big	Dalvik	instruction	normally
replaces	several	little	Java	bytecode	instructions.
When	you	create	an	Android	app,	Eclipse	performs	at	least	two

compilations.	The	first	compilation	creates	Java	bytecode	from	your	Java
source	files.	(Your	source	filenames	have	the	.java	extension;	the	Java
bytecode	filename	have	the	.class	extension.)	The	second	compilation
creates	Dalvik	bytecode	from	your	Java	bytecode	files.	(Dalvik	bytecode
filenames	have	the	.dex	extension.)	To	perform	the	first	compilation,
Eclipse	uses	a	program	named	javac,	or	the	Java	compiler.	To	perform
the	second	compilation,	Eclipse	uses	a	program	named	dx	(known
affectionately	as	the	dx	tool).

What	is	a	virtual	machine?
In	the	earlier	“What	is	a	compiler?”	section,	I	make	a	big	fuss	about

phones	and	other	devices	following	instructions	like	the	ones	in	Listing	2-
3.	As	fusses	go,	it’s	a	very	nice	fuss.	But	if	you	don’t	read	every	fussy
word,	you	may	be	misguided.	The	exact	wording	is	“...	processors	follow
cryptic	instructions	like	the	ones	in	Listing	blah-blah-blah.”	The
instructions	in	Listing	2-3	are	a	lot	like	instructions	that	a	phone	or	tablet
can	execute,	but	in	general,	computers	don’t	execute	Java	bytecode
instructions,	and	phones	don’t	execute	Dalvik	bytecode	instructions.
Instead,	each	kind	of	processor	has	its	own	set	of	executable	instructions,
and	each	operating	system	uses	the	processor’s	instructions	in	a	slightly
different	way.

Imagine	that	you	have	two	different	devices	—	a	smartphone	and	a
tablet	computer.	The	devices	have	two	different	kinds	of	processors.	The
phone	has	an	ARM	processor,	and	the	tablet	has	an	Intel	Atom	processor.
(The	acronym	ARM	once	stood	for	Advanced	RISC	Machine.	These	days,
ARM	simply	stands	for	ARM	Holdings,	a	company	whose	employees
design	processors.)	On	the	ARM	processor,	the	multiply	instruction	is
000000.	On	an	Intel	processor,	the	multiply	instructions	are	D8,	DC,	F6,
F7,	and	others.	Many	ARM	instructions	have	no	counterparts	in	the	Atom
architecture,	and	many	Atom	instructions	have	no	equivalents	on	an
ARM	processor.	An	ARM	processor’s	instructions	make	no	sense	to	your
tablet’s	Atom	processor,	and	an	Atom	processor’s	instructions	would	give
your	phone’s	ARM	processor	a	virtual	headache.

So	what’s	a	developer	to	do?	Does	a	developer	provide	translations
of	every	app	into	every	processor’s	instruction	set?	No.

Virtual	machines	create	order	from	all	this	chaos.	Dalvik	bytecode	is

something	like	the	code	in	Listing	2-3,	but	Dalvik	bytecode	isn’t	specific
to	one	kind	of	processor	or	to	one	operating	system.	Instead,	a	set	of
Dalvik	bytecode	instructions	runs	on	any	processor.	If	you	write	a	Java
program	and	compile	that	Java	program	into	Dalvik	bytecode,	your
Android	phone,	your	Android	tablet,	and	even	your	grandmother’s
supercomputer	can	run	the	bytecode.	(To	do	this,	your	grandmother	must
install	Android-x86,	a	special	port	of	the	Android	operating	system,	on
her	Intel-based	machine.)

	For	a	look	at	some	Dalvik	bytecode,	look	back	at	Listing	2-
3.	But	remember,	you	never	have	to	write	or	decipher	Dalvik
bytecode.	Writing	bytecode	is	the	compiler’s	job.	Deciphering
bytecode	is	the	virtual	machine’s	job.
Both	Java	bytecode	and	Dalvik	bytecode	have	virtual	machines.

With	the	Dalvik	virtual	machine,	you	can	take	a	bytecode	file	that	you
created	for	one	Android	device,	copy	the	bytecode	to	another	Android
device,	and	then	run	the	bytecode	with	no	trouble	at	all.	That’s	one	of	the
many	reasons	why	Android	has	become	popular	so	quickly.	This
outstanding	feature,	which	gives	you	the	ability	to	run	code	on	many
different	kinds	of	computers,	is	called	portability.

Imagine	that	you’re	the	Intel	representative	to	the	United	Nations
Security	Council.	(See	Figure	2-1.)	The	ARM	representative	is	seated	to
your	right,	and	the	representative	from	Texas	Instruments	is	on	your	left.
(Naturally,	you	don’t	get	along	with	either	of	these	people.	You’re	always
cordial	to	one	another,	but	you’re	never	sincere.	What	do	you	expect?	It’s
politics!)	The	distinguished	representative	from	Dalvik	is	at	the	podium.
The	Dalvik	representative	speaks	in	Dalvik	bytecode,	and	neither	you	nor
your	fellow	ambassadors	(ARM	and	Texas	Instruments)	understand	a
word	of	Dalvik	bytecode.

	

Figure	2-1:	An	imaginary	meeting	of	the	UN	Security	Council.

But	each	of	you	has	an	interpreter.	Your	interpreter	translates	from
Dalvik	bytecode	to	Intel	instructions	as	the	Dalvik	representative	speaks.
Another	interpreter	translates	from	bytecode	to	ARM-ese.	And	a	third
interpreter	translates	bytecode	into	Texas	Instruments	speak.

Think	of	your	interpreter	as	a	virtual	ambassador.	The	interpreter
doesn’t	really	represent	your	country,	but	the	interpreter	performs	one	of
the	important	tasks	that	a	real	ambassador	performs.	The	interpreter
listens	to	Dalvik	bytecode	on	your	behalf.	The	interpreter	does	what	you
would	do	if	your	native	language	was	Dalvik	bytecode.	The	interpreter
pretends	to	be	the	Intel	ambassador	and	sits	through	the	boring	bytecode
speech,	taking	in	every	word,	and	processing	each	word	in	some	way	or
other.

You	have	an	interpreter	—	a	virtual	ambassador.	In	the	same	way,
an	Intel	processor	runs	its	own	bytecode	interpreting	software.	That
software	is	the	Dalvik	virtual	machine.

A	Dalvik	virtual	machine	is	a	proxy,	an	errand	boy,	a	go-between.
The	virtual	machine	serves	as	an	interpreter	between	Dalvik’s	run-
anywhere	bytecode	and	your	device’s	own	system.	As	it	runs,	the	virtual
machine	walks	your	device	through	the	execution	of	bytecode
instructions.	The	virtual	machine	examines	your	bytecode,	bit	by	bit,	and
carries	out	the	instructions	described	in	the	bytecode.	The	virtual	machine
interprets	bytecode	for	your	ARM	processor,	your	Intel	processor,	your
Texas	Instruments	chip,	or	whatever	kind	of	processor	you’re	using.
That’s	a	good	thing.	It’s	what	makes	Java	code	and	Dalvik	code	more

portable	than	code	written	in	any	other	language.

Grasping	Java	Code
When	you	create	a	new	project,	Android’s	tools	create	a	small,	no-

nonsense	Java	class.	I’ve	copied	the	Java	class	in	Listing	2-4.

Listing	2-4:	A	Minimalistic	Android	Activity
Class
package	com.allmycode.samples;

	

import	android.app.Activity;

import	android.os.Bundle;

	

public	class	MyActivity	extends	Activity	{

				/**	Called	when	the	activity	is	first	created.	*/

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

				}

}

This	chapter	covers	the	Java	language	features	used	in	Listing	2-4.
So	in	this	chapter,	android.app.Activity	(from	the	second	line	of
Listing	2-4)	is	only	the	name	of	something	to	import	—	nothing	more.	To
read	all	about	the	listing’s	implications	for	Android,	see	Book	III,
Chapter	1.

The	Java	class
Java	is	an	object-oriented	programming	language.	So,	as	a

developer,	your	primary	goal	is	to	describe	objects.	Your	closely	related
goal	is	to	describe	objects’	close	cousins	—;	namely,	classes.

In	Java,	nothing	happens	unless	it	happens	inside	an	object	or	a
class.	The	code	in	Listing	2-4	is	a	class.	I	created	the	code,	so	I	get	to

make	up	a	name	for	my	new	class.	I	chose	the	name	MyActivity	because
the	code	in	Listing	2-4	describes	one	screen	full	of	stuff	on	an	Android
device	(and	in	Android,	a	screen	full	of	stuff	is	an	activity).	So	the	code	in
Listing	2-4	contains	the	words	public	class	MyActivity.

The	words	public	and	class	are	Java	keywords.	What	that	means	is
that	no	matter	who	writes	a	Java	program,	the	word	class	always	has	the
same	meaning.	The	same	holds	true	of	the	word	public	(although	some
classes	aren’t	declared	to	be	public).

On	the	other	hand,	the	word	MyActivity	in	Listing	2-4	is	an
identifier.	I	made	up	the	word	MyActivity	while	I	was	writing	this	chapter.
The	word	MyActivity	is	the	name	of	a	particular	class	—	the	class	that	I’m
creating	by	writing	this	program.

	tHE	jAVA	PROGRAMMING	LANGUAGE	IS	cASe-
sEnsITiVE.	iF	YOU	CHANGE	A	lowercase	LETTER	IN	A	WORD
TO	AN	UPPERCASE	LETTER,	YOU	CHANGE	THE	WORD’S
MEANING.
If	you	define	a	public	class	named	DogAndPony,	the	class’s	Java

code	must	go	in	a	file	named	DogAndPony.java,	spelled	and	capitalized
exactly	the	same	way	as	the	class	name	is	spelled	and	capitalized.	If	you
define	a	class	named	MySecretStuff,	and	if	you	write	class
MySecretStuff	instead	of	public	class	MySecretStuff,	you	can	put
the	MySecretStuff	code	in	any	file	whose	extension	is	.java.	(Go	ahead.
Call	your	file	Urkshjk98t.java.	See	if	I	care.)

Classes	and	objects
When	you	program	in	Java,	you	work	constantly	with	classes	and

objects.	Here’s	an	analogy:	A	chair	has	a	seat,	a	back,	and	legs.	Each	seat
has	a	shape,	a	color,	a	degree	of	softness,	and	so	on.	These	are	the
properties	that	a	chair	possesses.	What	I	describe	is	chairness	—	the
notion	of	something	being	a	chair.	In	object-oriented	terminology,	I’m
describing	the	Chair	class.

	In	the	preceding	paragraph,	I	refer	to	the	Chair	class,	not	to
the	chair	class.	If	you	want	to	look	like	a	very	inexperienced
developer,	start	the	names	of	your	Java	classes	with	lowercase
letters.	With	a	class	name	such	as	chair,	your	code	does	what	you
want	it	to	do,	but	you’re	committing	a	stylistic	faux	pas.	Real	Java
developers	start	the	names	of	their	classes	with	uppercase	letters.
Now	peek	over	the	edge	of	this	book’s	margin	and	take	a	minute	to

look	around	your	room.	(If	you’re	not	sitting	in	a	room	right	now,	fake
it.)

Several	chairs	are	in	the	room,	and	each	chair	is	an	object.	Each	of
these	objects	is	an	example	of	that	ethereal	thing	called	the	Chair	class.
So	that’s	how	it	works	—	the	class	is	the	idea	of	chairness,	and	each
individual	chair	is	an	object.

	A	class	isn’t	quite	a	collection	of	things.	Instead,	a	class	is
the	idea	behind	a	certain	kind	of	thing.	When	I	talk	about	the	class	of
chairs	in	your	room,	I’m	talking	about	the	fact	that	each	chair	has
legs,	a	seat,	a	color,	and	so	on.	The	colors	may	be	different	for
different	chairs	in	the	room,	but	that	doesn’t	matter.	When	you	talk
about	a	class	of	things,	you’re	focusing	on	the	properties	that	each	of
the	things	possesses.
It	makes	sense	to	think	of	an	object	as	being	a	concrete	instance	of	a

class.	In	fact,	the	official	terminology	is	consistent	with	this	thinking.	If
you	write	a	Java	program	in	which	you	define	a	Chair	class,	each	actual
chair	(the	chair	that	you’re	sitting	on,	the	empty	chair	right	next	to	you,
and	so	on)	is	called	an	instance	of	the	Chair	class.

Here’s	another	way	to	think	about	a	class.	Imagine	a	table
displaying	three	bank	accounts.	(See	Table	2-1.)

Think	of	the	table’s	column	headings	as	a	class,	and	think	of	each
row	of	the	table	as	an	object.	The	table’s	column	headings	describe	the
Account	class.

According	to	the	table’s	column	headings,	each	account	has	a	name,
an	address,	and	a	balance.	Rephrased	in	the	terminology	of	object-
oriented	programming,	each	object	in	the	Account	class	(that	is,	each
instance	of	the	Account	class)	has	a	name,	an	address,	and	a	balance.	So,
the	bottom	row	of	the	table	is	an	object	with	the	name	Jane	Dough.	This
same	object	has	address	800	Rich	Street	and	a	balance	of	247.38.	If	you
opened	a	new	account,	you	would	have	another	object,	and	the	table
would	grow	an	additional	row.	The	new	object	would	be	an	instance	of
the	same	Account	class.

Java	types
What	does	“six”	mean?	You	can	have	six	children,	but	you	can	also

be	six	feet	tall.	With	six	children,	you	know	exactly	how	many	kids	you
have.	(Unlike	the	average	American	family,	you	can’t	have	2.5	kids.)	But
if	you’re	six	feet	tall,	you	could	really	be	six	feet	and	half	an	inch	tall.	Or
you	might	be	five	feet	eleven-and-three-quarter	inches	tall,	and	no	one
would	argue	about	it.

A	value’s	meaning	depends	on	the	value’s	type.	If	you	write
int	numberOfChildren	=	6;

in	a	Java	program,	6	means	“exactly	six.”	But	if	you	write
double	height	=	6;

in	a	Java	program,	6	means	“as	close	to	six	as	you	care	to	measure.”
And	if	you	write
char	keystroke	=	‘6’;

in	a	Java	program,	‘6’	means	“the	digit	that	comes	after	the	5	digit.”
In	a	Java	program,	every	value	has	a	type.	Java	has	eight	primitive

types	(types	that	are	built	into	the	language)	and	has	as	many	reference
types	as	you	want	to	create.

Table	2-2	lists	Java’s	eight	primitive	types.

A	literal	is	an	expression	whose	value	doesn’t	change	from	one	Java
program	to	another.	For	example,	the	expression	42	means	“the	int	value
42”	in	every	Java	program.	Likewise,	the	expression	‘B’	means	“the
second	uppercase	letter	in	the	Roman	alphabet”	in	every	Java	program,
and	the	word	true	means	“the	opposite	of	false”	in	every	Java	program.

In	addition	to	its	primitive	types,	Java	has	reference	types.	The	code
in	Listing	2-4	contains	the	names	of	three	reference	types.
•	The	reference	type	android.app.Activity	is	defined	in	the	Android
API	(Android’s	enormous	library	of	ready-made	declarations).

	
•	The	reference	type	android.os.Bundle	is	also	defined	in	the
Android	API.

	
•	The	reference	type	MyActivity	is	defined	in	Listing	2-4.

	
How	about	that?	Every	class	is	a	type!

	
When	you	write	int	numberOfChildren	=	6,	you	declare	the

existence	of	a	variable	named	numberOfChildren.	The	variable
numberOfChildren	has	type	int	and	has	initial	value	6.

But	in	Listing	2-4,	android.os.Bundle	is	also	a	type	(a	reference

type).	In	fact	android.os.Bundle	is	the	name	of	a	class	that’s	declared	as
part	of	Android’s	API.	So	just	as	you	can	write	int	numberOfChildren
in	a	Java	program,	you	can	write	Bundle	savedInstanceState	in	Listing
2-4.	(You	can	abbreviate	android.os.Bundle	to	the	simpler	name	Bundle
because	of	the	import	declaration	near	the	top	of	Listing	2-4.)

Because	every	class	is	a	type,	and	because	your	newly	declared
MyActivity	type	is	a	class,	you	can	add	a	line	such	as
MyActivity	anActivity;

to	the	code	in	Listing	2-4.	This	new	line	declares	that	the	name
anActivity	is	a	placeholder	for	a	value	(a	value	whose	type	is
MyActivity).	In	case	this	idea	muddies	your	mind,	Listing	2-5	has
another	example.

Listing	2-5:	A	Class	Is	a	Type
public	class	Account	{

				String	name;

				String	address;

				double	balance;

}

	

Account	myAccount	=	new	Account();

Account	yourAccount	=	new	Account();

	

myAccount.name

yourAccount.name

myAccount.balance	=	24.02;

	Listing	2-5	doesn’t	contain	a	complete	Java	program.	If	you
try	to	run	the	code	in	Listing	2-5	(without	first	adding	some	other
stuff	to	the	code),	you	get	all	kinds	of	error	messages.
Listing	2-5	declares	a	class	named	Account.	This	blueprint	for	an

account	has	three	fields.	The	first	field	—	the	name	field	—	refers	to	a

Java	String	(a	bunch	of	characters	lined	up	in	a	row).	The	second	field
—	the	address	field	—	refers	to	another	Java	String.	The	third	field	—
the	balance	field	—	stores	a	double	value.	(See	Table	2-2.)

A	class	is	“the	idea	behind	a	certain	kind	of	thing.”	(I	quote	myself
frequently.)	An	object	is	“a	concrete	instance	of	a	class.”	So	in	Listing	2-
5,	the	variable	myAccount	refers	to	an	actual	Account	object,	and	the
variable	yourAccount	refers	to	another	Account	object.	The	last	statement
in	Listing	2-5	assigns	the	value	24.02	to	the	balance	field	of	the	object
referred	to	by	myAccount.

The	Java	method
A	method	is	a	chunk	of	code	that	performs	some	actions	and

(possibly)	produces	a	result.	If	you’ve	written	programs	in	other
languages,	you	may	know	about	functions,	procedures,	Sub	procedures,
or	other	such	things.	In	Java,	such	things	are	called	methods.

In	Listing	2-4,	the	code
public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

}

declares	the	existence	of	a	method.	The	method’s	name	is	onCreate.

	Real	Java	developers	start	the	names	of	their	methods	with
lowercase	letters.	You	can	ignore	this	convention.	But	if	you	ignore
it,	real	Java	developers	will	wince	when	they	read	your	code.
Somewhere,	buried	deep	inside	the	Dalvik	virtual	machine’s

caverns,	lives	a	line	of	code	that	looks	something	like	this:
onCreate(savedInstanceState);

That	line	of	code	calls	the	onCreate	method	of	Listing	2-4.	In	other
words,	when	the	Dalvik	virtual	machine	executes	its
onCreate(savedInstanceState)	statement,	the	flow	of	execution	jumps
to	the	first	instruction	inside	the	Listing	2-4	onCreate	method
declaration.

	A	method	declaration	goes	hand	in	hand	with	one	or	more
calls.	A	method’s	declaration	(such	as	the	onCreate	declaration	in
Listing	2-4)	defines	the	actions	that	a	method	eventually	performs.
The	method	doesn’t	perform	any	of	its	actions	until	some	other	piece
of	code	executes	a	call	to	that	method.
The	onCreate	method’s	call	hides	inside	some	unseen	Dalvik	code.

This	situation	isn’t	typical	of	methods	and	their	calling	statements.	As	an
Android	developer,	you	routinely	declare	a	method	in	one	part	of	your
program	and	then	call	your	own	method	in	another	part	of	the	program.

The	statements	inside	a	method’s	declaration	are	collectively	called
the	method	body.	The	onCreate	method’s	body	contains	two	statements
(two	instructions).	The	second	statement,
setContentView(R.layout.main),	is	a	call	to	a	method	named
setContentView.	(The	setContentView	method’s	declaration	comes	with
every	Android	implementation,	so	you	don’t	declare	the	setContentView
method	yourself.)

Like	any	method	call,	the	call	setContentView(R.layout.main)
starts	with	a	method	name.	The	stuff	in	parentheses	after	the	method’s
name	is	a	parameter	list.	For	insight	into	parameter	lists,	consider	the
code	in	Listing	2-6.

Listing	2-6:	A	Method	and	Two	Method	Calls
double	monthlyPayment(double	principal,

																						double	percentageRate,

																						int	years)	{

				

		int	numPayments	=	12	*	years;

		double	rate	=	percentageRate	/	100.00;

		double	effectiveRate	=	rate	/	12;

		return	principal	*	(effectiveRate	/

				(1	-	Math.pow(1	+	effectiveRate,	-numPayments)));

}

	

double	myPayment	=	monthlyPayment(100000.00,	5.25,	30);

	

double	yourPayment	=	monthlyPayment(100000.00,	5.00,	15);

The	code	in	Listing	2-6	isn’t	a	complete	Java	program.	You	can’t
run	the	code	without	adding	a	bunch	of	stuff	to	it.	Even	so,	the	code
illustrates	some	important	ideas	about	methods	and	their	parameters.
•	The	name	of	the	method	declared	in	Listing	2-6	is	monthlyPayment.

	
•	In	the	body	of	the	monthlyPayment	method	declaration,	the
processor	computes	the	monthly	payments	on	a	mortgage.

	
You	can	follow	this	description	of	methods	and	method	parameters
without	understanding	anything	about	the	calculations	in	Listing	2-6.

	
•	The	body	of	the	monthlyPayment	method	uses	certain	names	as
placeholders.

	
For	example,	in	the	body	of	the	montlyPayment	method,	the	name	years
stands	for	the	number	of	years	in	the	mortgage’s	term.	Likewise,	the
name	principal	stands	for	the	total	amount	borrowed.

	
•	Some	placeholders	appear	in	parentheses	at	the	beginning	of	the
method’s	declaration.

	
The	names	principal,	percentageRate	and	years	are	the	method’s
parameters.	Each	parameter	is	destined	to	stand	for	a	particular	value.
But	a	parameter	doesn’t	stand	for	a	value	until	an	app	executes	a	method
call.

	
In	Listing	2-6,	the	call	monthlyPayment(100000.00,	5.25,	30)	gives
the	method’s	first	parameter	(namely,	principal)	the	value	100000.00.
That	same	call	gives	the	method’s	second	parameter	(percentageRate)
the	value	5.25.	Finally,	that	method	call	gives	the	method’s	third
parameter	(years)	the	value	30.

	
The	next	method	call	in	Listing	2-6	gives	the	monthlyPayment	method’s
parameters	different	values	(again	100000.00	for	principal,	but	5.00	for
percentageRate	and	15	for	years).	Each	time	you	call	a	method,	you
supply	values	for	the	method’s	parameters.

	
•	The	types	of	parameters	in	a	method	call	must	match	the	types	of
the	parameters	in	a	method	declaration.

	
The	declaration	of	method	monthlyPayment	in	Listing	2-6	has	a	double
parameter	(principal),	another	double	parameter	(percentage	Rate),
and	an	int	parameter	(years).	Accordingly,	the	first	method	call	in
Listing	2-6	has	two	double	parameters	(100000.00	and	5.25)	followed	by
an	int	parameter	(30).	The	second	method	call	in	Listing	2-6	also	has	two
double	parameters	followed	by	an	int	parameter.

	

	You	can	declare	the	same	method	more	than	once,	as	long
as	each	declaration	has	a	different	parameter	list.	For	example,	another
method	declaration	in	Listing	2-6	might	have	the	same	name	monthly
Payment	but	only	two	parameters:	double	monthlyPayment(double
principal,	double	percentageRate).	To	call	this	alternative
monthlyPayment	method,	you	write	something	like	monthlyPayment
(100000.00,	5.25).	In	this	situation,	the	body	of	the	alternative
monthlyPayment	method	probably	contains	a	statement	like	years	=	30.
You	don’t	call	this	two-parameter	method	unless	you	know	that	the
mortgage’s	term	is	30	years.

	
•	A	method	call	might	stand	for	a	value.

	
The	first	method	call	in	Listing	2-6	(in	the	listing’s	next-to-last	line)
stands	for	the	double	value	552.20	(or	a	value	very	close	to	the	number
552.20).	The	value	552.20	comes	from	all	the	calculations	in	the	body	of

the	monthlyPayment	method	when	the	principal	is	100000.00,	the
percentageRate	is	5.25,	and	the	number	of	years	is	30.	Near	the	end	of
the	monthlyPayment	method’s	body,	the	formula

	
principal	*	(effectiveRate	/

				(1	-	Math.pow(1	+	effectiveRate,	-numPayments)))

has	the	value	552.20,	and	the	word	return	says	“send	552.20	back	to	the
statement	that	called	this	method.”	So,	in	Listing	2-6,	the	end	of	the
monthlyPayment	method	body	effectively	says

	
return	552.20;
and	the	next-to-last	line	in	the	listing	effectively	says

	
double	myPayment	=	552.20;
Similarly,	the	second	method	call	in	Listing	2-6	(the	listing’s	last	line)
stands	for	the	value	790.79.	Because	of	the	second	method	call’s
parameter	values,	the	end	of	the	monthlyPayment	method	body
effectively	says

	
return	790.79;
and	the	next-to-last	line	in	the	listing	effectively	says

	
double	yourPayment	=	790.79;
•	A	method’s	declaration	begins	(much	of	the	time)	with	the	name	of
the	return	type.

	
In	Listing	2-6,	the	monthlyPayment	method	declaration	begins	with	the
type	name	double.	That’s	good	because	the	value	returned	at	the	end	of
the	method’s	body	(either	552.20	or	790.79)	is	of	type	double.	Also,	the
names	myPayment	and	yourPayment	store	double	values,	so	it’s	okay	to
assign	the	value	of	the	call	monthlyPayment(100000.00,	5.25,	30)	to
myPayment,	and	to	assign	the	value	of	the	call	monthly
Payment(100000.00,	5.00,	15)	to	yourPayment.

	
•	A	method	call	doesn’t	necessarily	stand	for	a	value.

	
In	Listing	2-1,	the	word	void	in	the	first	line	of	the	checkVacancy	method
indicates	that	a	call	to	checkVacancy	doesn’t	stand	for	a	value.	That	is,	a
call	to	checkVacancy	performs	some	actions,	but	the	call	doesn’t
calculate	an	answer	of	any	kind.

	
Similarly,	the	method	onCreate	in	Listing	2-4	doesn’t	return	a	value.

	

Objects	and	their	constructors
Earlier,	I	introduce	you	to	the	Chair	class	example,	and	how	it’s	the

idea	of	chairness,	and	each	individual	chair	is	an	object	.	.	.	If	you	write	a
Java	program	in	which	you	define	a	Chair	class,	each	actual	chair	(the
chair	that	you’re	sitting	on,	the	empty	chair	right	next	to	you,	and	so	on)
is	called	an	instance	of	the	Chair	class.	I	also	encourage	you	to	think	of
the	table’s	column	headings	as	a	class,	and	think	of	each	row	of	the	table
as	an	object.

To	drive	this	point	home,	consider	the	code	in	Listing	2-7.

Listing	2-7:	What	Is	an	Account?
package	com.allmycode.samples;

	

public	class	Account	{

				public	String	name;

				public	String	address;

				public	double	balance;

				

				public	Account(String	name,

																			String	address,

																			double	balance)	{

								this.name	=	name;

								this.address	=	address;

								this.balance	=	balance;

				}

	

				public	String	infoString()	{

								return	name	+	“	(“	+	address	+

															“)	has	$”	+	balance;

				}

}

Listing	2-7	is	a	souped-up	version	of	the	code	in	Listing	2-5.	In
Listing	2-7,	an	Account	has	a	name,	an	address,	a	balance,	and	an
infoString	method.	The	infoString	method	describes	a	way	of
composing	a	readable	description	of	the	account.

	The	variables	name,	address,	and	balance	are	fields	of	the
Account	class.	In	addition,	the	variables	name,	address,	balance,
and	the	method	infoString	are	members	of	the	Account	class.
The	Account	class	also	has	something	that	looks	like	a	method,	but

isn’t	really	a	method.	In	Listing	2-7,	the	text	beginning	with	public
Account(String	name	is	the	start	of	a	constructor.	A	constructor
describes	a	way	of	creating	a	new	instance	of	a	class.

According	to	the	code	in	Listing	2-7,	each	object	created	from	the
Account	class	has	its	own	name,	its	own	address,	and	its	own	balance.
So,	in	Listing	2-7,	the	Account	constructor’s	instructions	say:
•	this.name	=	name;

	
When	creating	a	new	object	(a	new	instance	of	the	Account	class),	make
this	new	object’s	name	be	whatever	name	has	been	passed	to	the
constructor’s	parameter	list.	(See	Figure	2-2.)

	
	

Figure	2-2:	How	an	Account	instance	gets	its	name.

•	this.address	=	address;
	

When	creating	a	new	object	(a	new	instance	of	the	Account	class),	make
this	new	object’s	address	be	whatever	address	has	been	passed	to	the
constructor’s	parameter	list.

	
•	this.balance	=	balance;

	
When	creating	a	new	object	(a	new	instance	of	the	Account	class),	make
this	new	object’s	balance	be	whatever	balance	has	been	passed	to	the
constructor’s	parameter	list.

	

	You	can	tell	a	constructor	from	a	method	by	checking	two
things.	First,	the	constructor’s	name	is	the	same	as	the	class’s	name.
In	Listing	2-7,	both	the	class	and	the	constructor	have	the	name
Account.	Second,	a	constructor	has	no	return	type,	not	even	void.	In
Listing	2-7,	the	infoString	method	has	return	type	String.	But	the

Account	constructor	has	no	return	type.
Listing	2-8	shows	you	how	to	use	the	code	in	Listing	2-7.	In	Listing

2-8,	the	statement	Account	account1	=	new	Account(“Burd”,	“222
Cyberspace	Lane”,	24.02)	calls	the	constructor	from	Listing	2-7.	As	a
result,	the	app	has	a	brand-new	instance	of	the	Account	class.	The
variable	account1	refers	to	that	new	object.

Listing	2-8:	Using	the	Account	Class
package	com.allmycode.samples;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.widget.TextView;

	

public	class	MyActivity	extends	Activity	{

				TextView	textView1;

				

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

								Account	account1	=	new	Account(

																“Burd”,	“222	Cyberspace	Lane”,	24.02);

								

								textView1	=

												((TextView)	findViewById(R.id.textView1));

								textView1.setText(account1.infoString());

				}

}

Later	in	Listing	2-8,	the	text	account1.infoString()	calls	the	new
account1	object’s	infoString	method.	The	method	returns	a	handsome-
looking	string	of	characters,	which	the	activity	displays	on	its	screen.

	To	refer	to	a	member	belonging	to	an	object,	use	the	dot

notation.	For	example,	to	call	the	account1	object’s	infoString
method,	write	account1.infoString().	To	refer	to	the	account1
object’s	balance,	write	account1.balance.	Method	calls	require
parentheses,	and	field	names	don’t	use	parentheses.
When	you	run	the	code	in	Listing	2-8,	you	get	the	screen	shown	in

Figure	2-3.

	

Figure	2-3:	A	run	of	the	app	in	Listings	2-7	and	2-8.

Classes	grow	on	trees
Listing	2-4	contains	the	words	extends	Activity.	Apparently,	the

new	MyActivity	class,	declared	in	Listing	2-4,	is	some	kind	of	extension
of	something	called	Activity.	So	what’s	this	all	about?

You	can	download	the	Android	source	code	(the	Java	code	that
comprises	Android’s	many	predeclared	classes).	When	you	do,	you	can
open	the	Activity.java	file	with	your	favorite	editor.	Listing	2-9
contains	an	(admittedly	unrepresentative)	portion	of	the	code	in	that	file.

	For	more	information	about	downloading	Android’s	source
code,	visit
http://source.android.com/source/downloading.html.

http://source.android.com/source/downloading.html

Listing	2-9:	A	Seriously	Abridged	Version	of
Android’s	Activity	Class
package	android.app;

	

public	class	Activity	extends	ContextThemeWrapper	{

	

		protected	void	onCreate(Bundle	savedInstanceState)	{

				mVisibleFromClient	=

						!mWindow.getWindowStyle().getBoolean(

								com.android.internal.R.styleable.

								Window_windowNoDisplay,	false);

				mCalled	=	true;

		}

	

		protected	void	onDestroy()	{

				mCalled	=	true;

	

				//	dismiss	any	dialogs	we	are	managing.

				if	(mManagedDialogs	!=	null)	{

						final	int	numDialogs	=	mManagedDialogs.size();

						for	(int	i	=	0;	i	<	numDialogs;	i++)	{

								final	ManagedDialog	md	=

										mManagedDialogs.valueAt(i);

								if	(md.mDialog.isShowing())	{

										md.mDialog.dismiss();

								}

						}

						mManagedDialogs	=	null;

				}

	

				//	Close	any	open	search	dialog

				if	(mSearchManager	!=	null)	{

						mSearchManager.stopSearch();

				}

		}

}

The	Android	SDK	comes	with	an	Activity	class,	and	the	Activity
class	contains	methods	named	onCreate	and	onDestroy.	(Actually,	the
Android’s	Activity	class	contains	at	least	140	methods.	But	who’s
counting?)	In	Listing	2-4,	the	words	MyActivity	extends	Activity
establish	a	relationship	between	the	MyActivity	class	and	Android’s
Activity	class.	Among	other	things,	the	MyActivity	class	inherits	fields
and	methods	belonging	to	the	Activity	class.	So	without	adding	any
code	to	Listing	2-4,	you	can	rest	assured	that	MyActivity	has	an
onDestroy	method.	It’s	as	if	you	copied	the	onDestroy	method
declaration	from	Listing	2-9	and	pasted	that	declaration	into	Listing	2-4.

Aside	from	the	extends	terminology,	Java	has	several	names	for	the
relationship	between	the	MyActivity	class	and	the	Activity	class:
•	The	MyActivity	class	is	a	subclass	of	the	Activity	class.

	
•	The	MyActivity	class	is	a	child	of	the	Activity	class.

	
•	The	Activity	class	is	the	superclass	of	the	MyActivity	class.

	
•	The	Activity	class	is	the	parent	of	the	MyActivity	class.

	
If	all	this	parent/child	business	reminds	you	of	a	family	tree,	you’re

not	alone.	Java	developers	draw	upside-down	trees	all	the	time.	For
example,	a	small	part	of	the	tree	for	the	class	in	Listing	2-4	is	pictured	in
Figure	2-4.

At	the	top	of	Figure	2-4,	the	tree’s	root	is	Java’s	ancestor	of	all
classes	—	the	Object	class.	Android’s	Context	class	is	a	subclass	of	the
Object	class.	The	Context	class	has	many	subclasses,	two	of	which
(Application	and	ContextWrapper)	are	pictured	in	Figure	2-4.	From
there	on,	ContextWrapper	begets	ContextThemeWrapper,	which	begets
Activity,	which	begets	the	main	activity	class	in	a	typical	Android	app.

	A	class	can	have	many	subclasses,	but	a	class	has	only	one
superclass.	The	only	class	with	no	superclass	is	Java’s	Object	class.

	

Figure	2-4:	A	small	part	of	the	Activity	class’s	family	tree.

The	Java	package
Java	has	a	feature	that	lets	you	lump	classes	into	groups	of	classes.

Each	lump	of	classes	is	a	package.	The	class	in	Listing	2-4	belongs	to	the
com.allmycode.samples	package	because	of	the	listing’s	first	line	of
code.

In	the	Java	world,	developers	customarily	give	packages	long,	dot-
filled	names.	For	instance,	because	I’ve	registered	the	domain	name
allmycode.com,	I	name	a	package	com.allmycode.samples	or
com.allmycode.whateverIwant.	The	Java	API	is	actually	a	big	collection
of	packages.	The	API	has	packages	with	names	like	java.lang,
java.util,	java.awt,	javax.swing,	and	so	on.	The	Android	SDK	is	also
a	bunch	of	packages,	with	package	names	such	as	android.app,

android.view,	and	android.telephony.gsm.
An	import	declaration	starts	with	the	name	of	a	package	and	ends

with	either	of	the	following:
•	The	name	of	a	class	within	that	package

	
•	An	asterisk	(indicating	all	classes	within	that	package)

	
For	example,	in	the	declaration

import	android.app.Activity;

android.app	is	the	name	of	a	package	in	the	Android	SDK,	and
Activity	is	the	name	of	a	class	in	the	android.app	package.	The	dotted
name	android.app.Activity	is	the	fully	qualified	name	of	the	Activity
class.	A	class’s	fully	qualified	name	includes	the	name	of	the	package	in
which	the	class	is	defined.

With	an	import	declaration,	you	don’t	have	to	repeatedly	use	a
class’s	fully	qualified	name.	For	example,	in	Listing	2-4,	you	could	write
public	class	MyActivity	extends	android.app.Activity

but	because	of	the	Listing’s	import	declaration,	you	can	get	away
with	plain	old
public	class	MyActivity	extends	Activity

In	a	declaration	such	as
import	android.app.*;

the	asterisk	refers	to	all	classes	in	the	android.app	package.	With
this	import	declaration	at	the	top	of	your	Java	code,	you	can	use
abbreviated	names	for	all	classes	in	the	android.app	package	—	names
like	Activity,	AlertDialog,	Fragment,	ListActivity,	and	many	others.

A	public	class
A	class	can	be	either	public	or	non-public.	If	you	see	something	like

public	class	SomeClass

you’re	looking	at	the	declaration	of	a	public	class.	But,	if	you	see
plain	old
class	SomeClass

the	class	that’s	being	declared	isn’t	public.
If	a	class	is	public,	you	can	refer	to	the	class	from	anywhere	in	your

code.	The	following	example	illustrates	the	point.
In	one	file,	you	have

package	com.allmycode.somepackage;

	

public	class	SomeClass	{

	

}

And	in	another	file,	you	have
package	com.allmycode.someotherpackage;

	

import	com.allmycode.somepackage.*;

	

//You	CAN	extend	SomeClass:

class	SomeOtherClass	extends	SomeClass	{

	

				public	String	infoString()	{

	

								//This	works	too:

								SomeClass	someObject	=	new	SomeClass();

				}

}

	
If	a	class	isn’t	public,	you	can	refer	to	the	class	only	from	code

within	the	class’s	package.	The	following	code	makes	that	crystal	clear.
In	one	file,	you	have

package	com.burdbrain.somepackage;

	

class	SomeClass	{

	

}

And	in	another	file,	you	have
package	com.burdbrain.someotherpackage;

	

import	com.burdbrain.somepackage.*;

	

//You	can’t	extend	SomeClass:

class	SomeOtherClass	extends	SomeClass	{

	

				public	String	infoString()	{

								

								//This	doesn’t	work	either:

								SomeClass	someObject	=	new	SomeClass();						

				}

}

Other	public	things
The	scope	of	a	name	is	the	range	of	code	in	which	you	(the

developer)	can	use	the	name.	So,	to	sum	up	the	preceding	section’s	long-
winded	explanation:
•	The	scope	of	a	public	class’s	name	includes	all	Java	code.

	
•	The	scope	of	a	non-public	class’s	name	is	limited	to	the	package	in
which	the	class	is	declared.

	

	A	public	class’s	name	doesn’t	really	include	all	Java	code.
If	I’m	running	a	Java	program	on	a	computer	at	my	moon	base,	and
you’re	running	a	program	on	your	phone	while	vacationing	in	orbit
around	Mars,	your	phone	can’t	access	my	code’s	public	classes.	For
code	to	access	my	public	classes,	that	code	must	be	running	on	the
same	Java	virtual	machine.
A	class’s	members	(the	class’s	methods	and	fields)	can	also	be

public.	For	example,	the	class	in	Listing	2-7	has	the	public	fields	name,
address,	and	balance,	and	has	the	public	method	infoString.	In	fact,
the	story	for	class	members	is	a	bit	more	involved.	The	word	public	is	an
access	modifier,	and	a	member	of	a	class	can	be	public,	private,	or
protected,	or	have	no	access	modifier.	(For	example,	the	textView1
field	in	Listing	2-8	has	no	access	modifier.	The	onCreate	and	onDestroy
methods	in	Listing	2-9	have	protected	access.)

Your	access	modifier	choices	break	down	as	follows:
•	A	public	member’s	scope	includes	all	Java	code.

	
•	A	private	member’s	scope	includes	the	class	in	which	the	member	is

declared.
	

•	A	protected	member’s	scope	includes	the	class	in	which	the	member	is
declared.	The	scope	also	includes	any	subclasses	of	the	class	in	which	the
member	is	declared	and	all	classes	belonging	to	the	package	in	which	the
member	is	declared.

	
•	The	scope	of	a	member	with	no	access	modifier	includes	the	class	in
which	the	member	is	declared.	The	scope	also	includes	all	classes
belonging	to	the	package	in	which	the	member	is	declared.

	
I	don’t	know	about	you,	but	I	have	trouble	wrapping	my	head

around	the	idea	of	protected	access.	One	of	the	difficulties	is	that,
contrary	to	my	intuitions,	sporting	the	word	protected	is	less	restrictive
than	sporting	no	access	modifier	at	all.	Anyway,	when	I	encounter	a
member	with	protected	access,	I	stop	and	think	about	it	long	enough	for
my	queasiness	to	go	away.

Defying	your	parent
In	families,	children	often	rebel	against	their	parents’	values.	The

same	is	true	in	Java.	The	MyActivity	class	(in	Listing	2-4)	is	a	child	of
the	Activity	class	(in	Listing	2-9).	So	at	first	glance,	MyActivity	should
inherit	the	onCreate	method	declared	in	the	Activity	class’s	code.

But	both	the	Activity	and	MyActivity	classes	have	onCreate
method	declarations.	And	the	two	onCreate	declarations	have	the	same
parameter	list.	In	this	way	the	MyActivity	class	rebels	against	its	parent.
The	MyActivity	class	says	to	the	Activity	class,	“I	don’t	want	your
stinking	onCreate	method.	I’m	declaring	my	own	onCreate	method.”

So	when	you	fire	up	an	app,	and	your	phone	creates	a	MyActivity
object,	the	phone	executes	the	MyActivity	version	of	onCreate,	not	the
parent	Activity	version	of	onCreate.

	Like	all	rebellious	children,	MyActivity	can’t	break

completely	from	its	parent	class’s	code.	The	first	statement	in	the
MyActivity	class’s	onCreate	method	is	a	call	to	super.onCreate.
(My	kids	don’t	usually	refer	to	me	as	super,	but	a	class	refers	to	its
parent	that	way.)	Anyway,	the	statement	super.onCreate	calls	the
parent	class’s	onCreate	method.	So,	before	the	onCreate	method	in
Listing	2-4	does	anything	else,	the	processor	runs	the	onCreate
method	in	Listing	2-9.	(The	creators	of	Android	rigged	things	so	that
your	onCreate	method	must	call	super.onCreate.	If	you	forget	to
call	super.onCreate,	Android	displays	a	blunt,	annoying	error
message.)

Java	annotations
The	word	@Override	in	Listing	2-4	is	an	example	of	an	annotation.

An	annotation	tells	Java	something	about	your	code.	In	particular,	the
@Override	annotation	in	Listing	2-4	tells	the	Java	compiler	to	be	on	the
lookout	for	a	common	coding	error.	The	annotation	says,	“Make	sure	that
the	method	immediately	following	this	annotation	has	the	same	stuff	(the
same	name,	the	same	parameters,	and	so	on)	as	one	of	the	methods	in	the
Activity	class.	If	not,	display	an	error	message.”

So	if	I	accidentally	misspell	a	method’s	name,	as	in
@Override

public	void	nCreate(Bundle	savedInstanceState)

the	compiler	reminds	me	that	my	new	nCreate	method	doesn’t
really	override	anything	that’s	in	Android’s	predeclared	Activity	class.
Oops!

Java	comments
A	comment	is	part	of	a	program’s	text.	But	unlike	declarations,

method	calls,	and	other	such	things,	a	comment’s	purpose	is	to	help
people	understand	your	code.	A	comment	is	part	of	a	good	program’s
documentation.

The	Java	programming	language	has	three	kinds	of	comments:
•	Block	comments

	
A	block	comment	begins	with	/*	and	ends	with	*/.	Everything	between
the	opening	/*	and	the	closing	*/	is	for	human	eyes	only.	No	information

between	/*	and	*/	is	translated	by	the	compiler.
	

A	block	comment	can	span	across	several	lines.	For	example,	the
following	code	is	a	block	comment:

	
/*	This	is	my	best

			Android	app	ever!	*/

•	End-of-line	comments
	

An	end-of-line	comment	starts	with	two	slashes	and	goes	to	the	end	of	a
line	of	type.	So	in	the	following	code	snippet,	the	text	//	A	required
call	is	an	end-of-line	comment:

	
super.onCreate(savedInstanceState);	//	A	required	call
Once	again,	no	text	inside	the	end-of-line	comment	gets	translated	by	the
compiler.

	
•	Javadoc	comments

	
A	Javadoc	comment	begins	with	a	slash	and	two	asterisks	(/**).	In
Listing	2-4,	the	text	/**	Called	when	the	activity	is	first
created.	*/	is	a	Javadoc	comment.

	
A	Javadoc	comment	is	meant	to	be	read	by	people	who	never	even	look
at	the	Java	code.	But	that	doesn’t	make	sense.	How	can	you	see	the
Javadoc	comment	in	Listing	2-4	if	you	never	look	at	Listing	2-4?

	
Well,	a	certain	program	called	javadoc	(what	else?)	can	find	the	Javadoc
comment	in	Listing	2-4	and	turn	this	comment	into	a	nice-looking	web
page.	The	page	is	shown	in	Figure	2-5.

	
	

Figure	2-5:	A	web	page	created	from	Javadoc	comments.

To	generate	a	web	page	like	the	one	in	Figure	2-5,	do	the	following:
1.	In	Eclipse’s	main	menu,	choose	Project⇒Generate	Javadoc.

	 A	Generate	Javadoc	dialog	box	opens.	(See	Figure	2-6.)
	 2.	In	the	dialog	box’s	Javadoc	Command	field,	type	the	path	to

your	development	computer’s	javadoc	(or	javadoc.exe)	file.
	 Alternatively,	you	can	navigate	to	the	javadoc	or	javadoc.exe	file

by	using	the	dialog	box’s	Configure	button.
	 3.	In	the	Select	Types	pane,	check	the	projects	whose	code	you

want	to	document.
	 The	Select	Types	pane	is	actually	two	side-by-side	panes.	(See

Figure	2-6.)	The	left	pane	is	for	selecting	entire	projects	or	entire
packages;	the	right	pane	is	for	selecting	or	deselecting	.java	files	within
the	packages.

	 4.	In	the	Destination	field,	type	the	name	of	the	folder	that	will
contain	your	Javadoc	pages	(or	click	the	Browse	button	and	let	your
mouse	do	the	work).

	 5.	Click	Finish.
	

	

Figure	2-6:	Eclipse’s	Generate	Javadoc	dialog	box.

In	the	Generate	Javadoc	dialog	box,	you	can	select	Use	Custom
Doclet	instead	of	Use	Standard	Doclet.	A	doclet	determines	the	look	of	a
Java	documentation	page.	So	selecting	Use	Custom	Doclet	lets	you
change	the	appearance	of	your	documentation	pages.	For	example,	with	a
doclet	named	DroidDoc,	you	get	pages	similar	to	the	docs	at
http://developer.android.com/reference/packages.html	(Android’s
official	documentation	website).

	

http://developer.android.com/reference/packages.html

Chapter	3:	What	Java	Does	(and	When)

In	This	Chapter
Making	decisions	with	Java	statements
Repeating	actions	with	Java	statements

Adding	exception	handling
	

Human	thought	centers	on	nouns	and	verbs.	Nouns	are	the	“stuff,”
and	verbs	are	the	stuff’s	actions.	Nouns	are	the	pieces,	and	verbs	are	the
glue.	Nouns	are,	and	verbs	do.	When	you	use	nouns,	you	say,	“book,”
“room,”	or	“stuff.”	When	you	use	verbs,	you	say	“Do	this,”	“Do	that,”
“Hoist	that	barge,”	or	“Lift	that	bale.”

Java	also	has	nouns	and	verbs.	Java’s	nouns	include	String,
ArrayList,	and	JFrame,	along	with	Android-specific	things	such	as
Activity,	Application,	and	Bundle.	Java’s	verbs	involve	assigning
values,	choosing	among	alternatives,	repeating	actions,	and	other	courses
of	action.

This	chapter	covers	some	of	Java’s	verbs.	In	Chapter	4	of	this
minibook,	you	bring	in	the	nouns.

Making	Decisions	(Java	if	Statements)
When	you’re	writing	computer	programs,	you’re	constantly	hitting

forks	in	roads.	Did	the	user	correctly	type	his	or	her	password?	If	yes,	let
the	user	work;	if	no,	kick	the	bum	out.	So	the	Java	programming
language	needs	a	way	of	making	a	program	branch	in	one	of	two
directions.	Fortunately,	the	language	has	a	way:	It’s	called	an	if
statement.	The	use	of	an	if	statement	is	illustrated	in	Listing	3-1.

Listing	3-1:	A	Method	with	an	if	Statement
public	void	onClick(View	v)	{

				if	(((CheckBox)	v).isChecked())	{

								textview.setTextColor(Color.GREEN);

								textview.setText(“Thank	you!”);

				}	else	{

								textview.setTextColor(Color.RED);

								textview.setText(“No	harm	done.”);

				}

}

Android	calls	the	onClick	method	in	Listing	3-1	when	the	user
clicks	a	particular	check	box.	(Android	uses	the	parameter	v	to	pass	this
check	box	to	the	onClick	method.	That’s	how	the	onClick	method	finds
out	which	object	the	user	clicked.)	If	clicking	puts	a	check	mark	in	the
check	box,	the	text	view	displays	Thank	you!	in	green	letters.	Otherwise,
the	text	view	displays	No	harm	done.	in	red	letters.	(See	the	colorless
Figure	3-1.)

	

Figure	3-1:	Checking	and	unchecking	in	Listing	3-1.

Central	casting
	In	Listing	3-1,	the	variable	v	represents	a	View	of	some	kind	(or	so

says	the	onClick	method’s	parameter	list).	Like	all	Java	classes,
the	View	class	is	part	of	a	class	family	tree.	The	figure	below
shows	some	of	the	View	class’s	nearest	and	dearest	relatives.	The
lower	you	go	in	the	tree,	the	more	specific	the	class’s
characteristics	are.	For	example,	at	the	top	of	the	tree	you	have	the
very	nebulous	thing	called	Object.	Below	Object	you	have	the

View	class.	A	View	is	something	that	that	you	put	on	the	user’s
screen	(something	the	user	sees).	Not	all	View	instances	display
text,	so	below	View	on	the	hierarchy	are	the	more	specific
ImageView	and	TextView	classes.
The	CheckBox	class	is	at	the	very	bottom	of	the	figure.	A	CheckBox
is	a	specific	kind	of	TextView	—	a	TextView	that’s	always	in	one
of	two	states	—	checked	or	unchecked.
Meanwhile,	back	in	Listing	3-1,	the	onClick	method’s	v
parameter	is	any	kind	of	View.	This	non-specific	“any	kind	of
View”	business	comes	because	you	never	know	what	kind	of	View
the	user	will	click.	Android’s	predeclared	onClick	method	(which
you	override	in	Listing	3-1)	works	with	TextView	instances,
ImageView	instances,	Button	instances,	CheckBox	instances,	and
all	kinds	of	other	instances.
Many	kinds	of	View	instances	have	no	checked	state	and	no
unchecked	state.	For	example,	an	ordinary	TextView	(displaying	a
line	of	text)	is	neither	checked	no	unchecked.	So	in	Android’s
grand	hierarchy	of	Object	instances,	View	instances,	and	CheckBox
instances,	the	humble	View	class	has	no	isChecked	method.	If	you
replace	the	condition	in	Listing	3-1	with	the	simpler
v.isChecked()	condition,	the	modified	code	doesn’t	compile.
Java	realizes	that	v,	being	declared	as	a	parameter	of	type	View,
might	not	have	an	isChecked	method.
The	issue	in	this	example	is	the	balance	between	generality	and
specificity.	Android’s	onClick	method	must	be	prepared	to	work
with	any	View	instance,	but	for	this	particular	app,	you	(the
developer)	know	that	the	thing	being	clicked	is	a	CheckBox
instance.	And	in	the	Android	API,	every	CheckBox	instance	has	an
isChecked	method.
So	what	do	you	do?	In	Listing	3-1,	you	do	casting.	When	you	cast
a	value,	you	precede	the	value	with	a	class’s	name	in	parentheses.
The	code	(CheckBox)	v	represents	“v,	when	we	think	of	v	as	a
CheckBox.”	In	other	words,	by	writing	(CheckBox)	v,	the
developer	assures	Java	that	when	the	time	comes	to	execute	this
code,	v	will	not	only	be	a	View	of	some	kind	or	other.	The	v	object
will	be	a	CheckBox	and	will	have	an	isChecked	method.	So	the
condition	((CheckBox)	v).isChecked()	is	received	warmly	and

graciously	by	the	Java	compiler.

	
An	if	statement	has	the	following	form:

if	(condition)	{

				statements	to	be	executed	when	the	condition	is	true

}	else	{

				statements	to	be	executed	when	the	condition	is	false

}

In	Listing	3-1,	the	condition	being	tested	is
((CheckBox)	v).isChecked()

In	this	condition,	variable	v	is	the	onClick	method’s	parameter	—
the	thing	that	Android	passes	to	the	onClick	method.	Listing	3-1	is	far
from	being	a	complete	Android	app.	But	presumably,	v	is	a	check	box.
(See	the	nearby	sidebar,	“Central	casting.”)

Android’s	isChecked	method	returns	either	true	or	false	—	true
when	the	v	check	box	is	checked,;	false	when	the	v	check	box	isn’t
checked.

The	condition	in	an	if	statement	must	be	enclosed	in	parentheses.
The	condition	must	be	a	boolean	expression	—	an	expression	whose
value	is	either	true	or	false.	(See	Chapter	2	of	this	minibook	for
information	about	Java’s	primitive	types,	including	the	boolean	type.)
So,	for	example,	the	following	condition	is	okay:
if	(numberOfTries	<	17)	{

But	the	strange	kind	of	condition	that	you	can	use	in	languages,	such

as	C++,	is	not	okay:
if	(17)	{	//This	is	incorrect.

You	can	omit	curly	braces	when	only	one	statement	comes	between
the	condition	and	the	word	else.	You	can	also	omit	braces	when	only	one
statement	comes	after	the	word	else.	For	example,	the	following	code	is
right	and	proper:
if	(((CheckBox)	v).isChecked())

				textview.setText(“Thank	you!”);

else	{

				textview.setTextColor(Color.RED);

				textview.setText(“No	harm	done.”);

}

An	if	statement	can	also	enjoy	a	full	and	happy	life	without	an	else
part.	So	the	following	code	forms	a	complete	if	statement:
if	(((CheckBox)	v).isChecked())	{

				textview.setTextColor(Color.GREEN);

				textview.setText(“Thank	you!”);

}

Primitive	and	reference	types
	The	int	type	is	a	primitive	type.	When	you	declare	a	variable	to

have	type	int,	you	can	visualize	what	that	declaration	means	in	a
fairly	straightforward	way.	It	means	that,	somewhere	inside	the
computer’s	memory,	a	storage	location	is	reserved	for	that
variable’s	value.	In	that	storage	location	is	a	bunch	of	bits.	The
arrangement	of	the	bits	ensures	that	a	certain	whole	number	is
represented.
That	explanation	is	fine	for	primitive	types	like	int	or	double,	but
every	Java	class	is	a	reference	type.	If	you	declare	a	variable	to
have	some	type	that’s	not	a	primitive	type,	the	variable’s	type	is
(most	of	the	time)	the	name	of	a	Java	class.
What	does	it	mean	when	you	declare	a	variable	to	have	a	reference
type?	What	does	it	mean	to	declare	response	to	be	of	type	String
or	to	declare	v	to	be	of	type	View?
Because	String	is	a	class,	you	can	create	objects	from	that	class.
Each	such	object	(each	instance	of	the	String	class)	is	a	sequence
of	characters.	By	declaring	the	variable	response	to	be	of	type
String,	you’re	reserving	the	use	of	the	name	response.	This
reservation	tells	Java	that	response	can	refer	to	an	actual	String-

type	object.	In	other	words,	response	can	become	a	nickname	for
a	sequence	of	characters.	The	situation	is	illustrated	in	the	figure
below,	where	the	storage	story	for	primitive	types	and	reference
types	is	told.
If	you’re	familiar	with	other	programming	languages	and	you	like
talking	about	pointers,	you	can	safely	think	of	String	response
as	a	declaration	whose	meaning	is	“response	stores	a	pointer	to	a
sequence	of	characters.

	

Testing	for	equality
Java	has	several	ways	to	test	for	equality	(“Is	this	value	the	same	as

that	value?”).	None	of	these	ways	is	the	first	thing	you’d	think	of	doing.
In	particular,	to	find	out	whether	the	parameter	v	is	the	thing	you	call
checkbox1,	you	don’t	write	if	(v	=	checkbox1).	Instead,	you	use	a
double	equal	sign	(==).	You	write	if	(v	==	checkbox1).	In	Java,	the
single	equal	sign	(=)	is	reserved	for	assignment.	So	n	=	5	means	“Let	n
stand	for	the	value	5,”	and	v	=	checkbox1	means	“Let	v	stand	for	the
checkbox1	object.”

Comparing	two	strings	is	yet	another	story.	When	you	compare	two

strings	with	one	another,	you	don’t	want	to	use	the	double	equal	sign.
Using	the	double	equal	sign	would	ask,	“Is	this	string	stored	in	exactly
the	same	place	in	memory	as	that	other	string?”	That’s	usually	not	what
you	want	to	ask.	Instead,	you	usually	want	to	ask,	“Does	this	string	have
the	same	characters	in	it	as	that	other	string?”	To	ask	the	second	question
(the	more	appropriate	question),	Java’s	String	type	has	a	method	named
equals:.
if	(response.equals(“yes”))	{

The	equals	method	compares	two	strings	to	see	whether	they	have
the	same	characters	in	them.	In	this	paragraph’s	tiny	example,	the
variable	response	refers	to	a	string,	and	the	text	“yes”	refers	to	a	string.
The	condition	response.equals(“yes”)	is	true	if	response	refers	to	a
string	whose	letters	are	‘y’,	then	‘e’,	and	then	‘s’.

	Like	most	programming	languages,	Java	has	the	usual
complement	of	comparison	operators	(such	as	<	for	“less	than”)	and
logical	operators	(such	as	&&	for	“and”).	For	a	list	of	such	operators,
visit
http://download.oracle.com/javase/tutorial/java/nutsandbolts/opsummary.html

Choosing	among	many	alternatives	(Java	switch
statements)

I’m	the	first	to	admit	that	I	hate	making	decisions.	If	things	go
wrong,	I	would	rather	have	the	problem	be	someone	else’s	fault.	Writing
the	previous	sections	(on	making	decisions	with	Java’s	if	statement)
knocked	the	stuffing	right	out	of	me.	That’s	why	my	mind	boggles	as	I
begin	this	section	on	choosing	among	many	alternatives.

Consider	the	code	in	Listing	3-2.

Listing	3-2:	A	Java	switch	Statement
public	void	onClick(View	v)	{

	

http://download.oracle.com/javase/tutorial/java/nutsandbolts/opsummary.html

				String	message;

				Editable	edit	=	textfield.getText();

				if	(edit.length()	!=	0)	{

								int	number	=

														Integer.valueOf(edit.toString());

								

								switch	(number)	{

								case	0:

												message	=	“none”;

												break;

								case	1:

												message	=	“one”;

												break;

								case	2:

												message	=	“two”;

												break;

								case	3:

												message	=	“three”;

												break;

								default:

												message	=	“many”;

								}

	

								label.setText(message);

				}

}

The	code	in	Listing	3-2	is	part	of	an	app,	and	the	app’s	screen	is
pictured	in	Figure	3-2.

	

Figure	3-2:	A	TextView	object	reports	on	an	EditText	object’s	content.

The	user	clicks	something	or	other	(something	not	specified	in
Listing	3-2	or	in	Figure	3-2).	As	a	result	of	the	user’s	click,	Android	does

the	stuff	in	Listing	3-2.	Some	of	that	stuff	involves	a	Java	switch
statement.	The	switch	statement	examines	the	characters	in	a	text	field.
(In	Figure	3-2,	the	text	field	contains	011.)	To	make	sure	that	the	text
field	characters	are	all	digits,	I	included	the	following	element	in	the
app’s	layout	document:
<EditText	android:layout_height=”wrap_content”

				android:id=”@+id/editText1”

				android:layout_width=”match_parent”

				android:inputType=”number”></EditText>

In	the	first	line	of	the	switch	statement,	number	is	a	whole	number.
If	number	is	0,	the	code	makes	message	be	“none”.	If	number	is	1,	the
code	makes	message	be	“one”.	If	number	is	not	0,	1,	2,	or	3,	the	default
part	of	the	switch	statement	takes	over,	and	the	code	makes	message	be
“many”.

Each	break	statement	in	Listing	3-2	says,	“Jump	past	any	remaining
cases.”	You	can	omit	a	break	statement,	but	do	so	at	your	own	peril!	For
example,	if	you	write
case	2:

				message	=	“two”;

case	3:

				message	=	“three”;

default:

				message	=	“many”;

}

and	number	is	2,	Java	executes	three	cases,	one	after	another	—
namely,	message	=	“two”	followed	by	message	=	“three”	followed
immediately	by	message	=	“many”.	The	lack	of	break	statements	tells
Java	to	fall-through	from	one	case	to	the	next.	The	end	result	is	that	the
message	is	“many”,	and	that’s	probably	not	what	you	want.

A	switch	statement	has	the	following	form:
switch	(expression)	{

case	constant1:

				statements	to	be	executed	when	the

				expression	has	value	contstant1

case	constant2:

				statements	to	be	executed	when	the

				expression	has	value	contstant2

case	...

	

default:

				statements	to	be	executed	when	the

				expression	has	a	value	different	from

				any	of	the	constants

}

You	can’t	put	any	old	expression	in	a	switch	statement.	The
expression	that’s	tested	at	the	start	of	a	switch	statement	must	have
•	One	of	the	primitive	types	char,	byte,	short,	or	int,	or

	
•	One	of	the	reference	types	Character,	Byte,	Short,	or	Integer,	or

	
•	An	enum	type

	
An	enum	type	is	a	type	whose	values	are	limited	to	the	few	that	you

declare.	For	example,	the	code
enum	TrafficSignal	{GREEN,	YELLOW,	RED};

defines	a	type	whose	only	values	are	GREEN,	YELLOW,	and	RED.
Elsewhere	in	your	code,	you	can	write
TrafficSignal	signal;

signal	=	TrafficSignal.GREEN;

to	make	use	of	the	TrafficSignal	type.
Starting	with	Java	7,	you	can	put	a	String	type	expression	at	the

start	of	a	switch	statement.	But	until	Java	7	settles	in	a	bit,	you	may	want
to	avoid	using	this	feature	in	Android	code.

Repeating	Instructions	Over	and	Over	Again
In	1966,	the	company	that	brings	you	Head	&	Shoulders	shampoo

made	history.	On	the	back	of	the	bottle,	the	directions	for	using	the
shampoo	read,	“Lather,	rinse,	repeat.”	Never	before	had	a	complete	set	of
directions	(for	doing	anything,	let	alone	shampooing	your	hair)	been
summarized	so	succinctly.	People	in	the	direction-writing	business	hailed
this	as	a	monumental	achievement.	Directions	like	these	stood	in	stark
contrast	to	others	of	the	time.	(For	instance,	the	first	sentence	on	a	can	of
bug	spray	read,	“Turn	this	can	so	that	it	points	away	from	your	face.”
Duh!)

Aside	from	their	brevity,	the	thing	that	made	the	Head	&	Shoulders
directions	so	cool	was	that,	with	three	simple	words,	they	managed	to

capture	a	notion	that’s	at	the	heart	of	all	instruction-giving	—	the	notion
of	repetition.	That	last	word,	repeat,	took	an	otherwise	bland	instructional
drone	and	turned	it	into	a	sophisticated	recipe	for	action.

The	fundamental	idea	is	that	when	you’re	following	directions,	you
don’t	just	follow	one	instruction	after	another.	Instead,	you	take	turns	in
the	road.	You	make	decisions	(“If	HAIR	IS	DRY,	then	USE
CONDITIONER”),	and	you	go	into	loops	(“LATHER-RINSE	and	then
LATHER-RINSE	again”).	In	application	development,	you	use	decision-
making	and	looping	all	the	time.

Java	while	statements
In	an	Android	app,	a	content	provider	feeds	a	cursor	to	your	code.

You	can	think	of	the	cursor	as	a	pointer	to	a	row	in	a	table.	In	Listing	3-3,
each	table	row	has	three	entries	—	an	_id,	a	name,	and	an	amount.
Supposedly,	the	_id	uniquely	identifies	a	row,	the	name	is	a	person’s
name,	and	the	amount	is	a	huge	number	of	dollars	owed	to	you	by	that
person.

	For	the	rundown	on	content	providers,	see	Book	III,	Chapter
5.

Listing	3-3:	A	while	Loop
cursor.moveToFirst();

	

while	(!cursor.isAfterLast())	{

				String	_id	=	cursor.getString(0);

				String	name	=	cursor.getString(1);

				String	amount	=	cursor.getString(2);

				textViewDisplay.append(_id	+	“	“	+

																											name	+	“	“	+	amount	+	“\n”);

				cursor.moveToNext();

}

A	cursor’s	moveToFirst	method	makes	the	cursor	point	to	the	first

row	of	the	table.	Regardless	of	the	row	a	cursor	points	to,	the	cursor’s
moveToNext	method	makes	the	cursor	point	to	the	next	row	of	the	table.
The	cursor’s	isAfterLast	method	returns	true	when,	having	tried	to
move	to	the	next	row,	there’s	no	next	row.

In	Java,	an	exclamation	point	(!)	means	“not,”,	so	while
(!cursor.isAfterLast())	means	“while	it’s	not	true	that	the	cursor	has
reached	past	the	table’s	last	row	.	.	.”	So	the	code	in	Listing	3-3
repeatedly	does	the	following:
As	long	as	the	cursor	has	not	reached	past	the	last	row,

				get	the	string	in	the	row’s	initial	column	and

								make	_id	refer	to	that	string,

				get	the	string	in	the	row’s	middle	column	and

								make	name	refer	to	that	string,

				get	the	string	in	the	row’s	last	column	and

								make	amount	refer	to	that	string,	and

				append	these	strings	to	the	textViewDisplay,	and	then

				move	the	cursor	to	the	next	row	in	preparation

								for	returning	to	the	top	of	the	while	statement.

Imagine	that	a	particular	cursor’s	table	has	100	rows.	Then	a
processor	executes	the	statements	inside	Listing	3-3’s	while	loop	100
times.	Using	the	official	developer	lingo,	the	processor	performs	100	loop
iterations.

A	while	statement	has	the	following	form:
while	(condition)	{

				statements	to	be	executed

}

You	can	omit	the	curly	braces	when	the	loop	has	only	one	statement
to	be	executed.

	

In	Listing	3-3,	the	characters	\n	form	an	escape	sequence.
When	you	put	\n	inside	a	string,	you’re	escaping	from	the	normal
course	of	things	by	displaying	neither	a	backslash	nor	a	letter	n.
Instead,	\n	in	a	Java	string	always	means	“Go	to	the	next	line.”	So	in
Listing	3-3,	\n	puts	a	line	break	between	one	_id,	name,	amount

group	and	the	next.

Java	for	statements
Life	is	filled	with	examples	of	counting	loops.	And	app

development	mirrors	life	—	or	is	it	the	other	way	around?	When	you	tell
a	device	what	to	do,	you’re	often	telling	the	device	to	display	three	lines,
process	ten	accounts,	dial	a	million	phone	numbers,	or	whatever.

Listing	3-3	displays	all	the	rows	in	a	table	full	of	data.	Sometimes,
all	the	data	is	too	much	data.	To	get	the	idea	of	what	the	table	has	to
offer,	you	might	want	to	display	only	the	first	ten	rows	of	data.	The	code
in	Listing	3-4	does	the	job.

Listing	3-4:	A	for	Loop
cursor.moveToFirst();

	

for	(int	i	=	0;	i	<	10;	i++)	{

				String	_id	=	cursor.getString(0);

				String	name	=	cursor.getString(1);

				String	amount	=	cursor.getString(2);

				textViewDisplay.append(i	+	“:	“	+	_id	+	“	“	+

																											name	+	“	“	+	amount	+	“\n”);

				cursor.moveToNext();

}

Listing	3-4	declares	an	int	variable	named	i.	The	starting	value	of	i
is	0.	As	long	as	the	condition	i	<	10	is	true,	the	processor	executes	the
instructions	inside	the	for	statement.	In	this	example,	the	for	statement’s
instructions	include	getting	an	_id,	getting	a	name,	getting	an	amount,	and
appending	all	that	stuff	to	the	textViewDisplay.	In	addition	to	that	stuff,
the	textViewDisplay	gets	the	value	of	i	(be	it	0,	1,	2,	or	any	number	less
than	10).

To	keep	the	ball	rolling,	the	last	instruction	in	the	for	statement
moves	the	cursor	to	the	next	line.	But	wait!	What	happens	when	the
processor	goes	to	the	beginning	of	the	loop	again?	Before	starting	the
loop	anew,	the	processor	does	i++,	which	is	Java-speak	for	“Add	1	to	i.”
So	after	ten	loop	iterations,	the	value	of	i	finally	reaches	10	and	the
execution	of	the	for	loop’s	instructions	comes	to	an	end.

A	for	statement	has	the	following	form:
for	(initialization	;	condition	;	update)	{

				statements	to	be	executed

}

•	An	initialization	(such	as	int	i	=	0	in	Listing	3-4)	defines	the	action	to
be	taken	before	the	first	loop	iteration.

	
•	A	condition	(such	as	i	<	10	in	Listing	3-4)	defines	the	thing	to	be
checked	before	an	iteration.	If	the	condition	is	true,	the	processor
executes	the	iteration.	If	the	condition	is	false,	the	processor	doesn’t
execute	the	iteration	and	moves	on	to	execute	whatever	code	comes	after
the	for	statement.

	
•	An	update	(such	as	i++	in	Listing	3-4)	defines	an	action	to	be	taken	at
the	end	of	each	loop	iteration.

	
As	always,	you	can	omit	the	curly	braces	when	the	loop	has	only

one	statement	to	be	executed.
Like	the	protagonist	in	an	ancient	Greek	tragedy,	the	loop	in	Listing

3-4	has	a	fatal	flaw.	The	loop	comes	crashing	down	if	the	cursor’s	table
has	fewer	than	ten	rows.	To	remedy	this	(and	to	save	the	protagonist),
you	can	add	a	check	for	“rowlessness”	inside	the	loop:
for	(int	i	=	0;	i	<	10;	i++)	{

				if	(cursor.isAfterLast())

								break;

				String	_id	=	cursor.getString(0);

				String	name	=	cursor.getString(1);

				String	amount	=	cursor.getString(2);

				textViewDisplay.append(i	+	“:	“	+	_id	+	“	“	+

																											name	+	“	“	+	amount	+	“\n”);

				cursor.moveToNext();

}

Inside	a	loop	(a	while	loop,	a	for	loop,	or	some	other	kind	of	loop),
a	break	statement	says,	“This	looping	is	done”	and	“We’re	outta	here.”
The	processor	moves	on	to	execute	whatever	statement	comes
immediately	after	the	loop’s	code.

Java	do	statements
To	find	a	particular	row	of	a	cursor’s	table,	you	normally	do	a

query.	(For	straight	talk	about	queries,	see	Book	IV.)	You	almost	never
perform	a	do-it-yourself	search	through	a	table’s	data.	But	just	this	once,
look	at	a	loop	that	iterates	through	row	after	row	—	the	loop	is	in	Listing
3-5.

Listing	3-5:	Leap	before	You	Look
cursor.moveToFirst();

String	name;

	

do	{

				String	_id	=	cursor.getString(0);

				name	=	cursor.getString(1);

				String	amount	=	cursor.getString(2);

				textViewDisplay.append(_id	+	“	“	+

																											name	+	“	“	+	amount	+	“\n”);

				cursor.moveToNext();

}	while	(!name.equals(“Burd”)	&&	!cursor.isAfterLast());

With	a	do	loop,	the	processor	jumps	right	in,	takes	action,	and	then
checks	a	condition	to	see	whether	the	result	of	the	action	is	what	you
want.	If	the	result	is	what	you	want,	execution	of	the	loop	is	done.	If	not,
the	processor	goes	back	to	the	top	of	the	loop	for	another	go-around.

In	Listing	3-5,	you’re	looking	for	a	row	with	the	name	Burd.	(After
all,	the	bum	owes	you	lots	of	money.)	When	you	enter	the	loop,	the
cursor	points	to	the	table’s	first	row.	Before	checking	a	row	for	the	name
Burd,	you	fetch	that	first	row’s	data	and	add	the	data	to	the
textViewDisplay	where	the	user	can	see	what’s	going	on.

Before	you	march	on	to	the	next	row	(the	next	loop	iteration),	you
check	a	condition	to	make	sure	that	another	row	is	worth	visiting.	(Check
to	make	sure	that	you	haven’t	yet	found	that	Burd	guy,	and	that	you
haven’t	moved	past	the	last	row	of	the	table.)

	To	get	the	code	in	Listing	3-5	working,	you	have	to	move
the	declaration	of	name	outside	the	do	statement.	A	declaration	that’s
inside	a	pair	of	curly	braces	(such	as	the	_id,	name,	and	amount

declarations	in	Listing	3-4)	cannot	be	used	outside	curly	braces.	So,
in	Listing	3-5,	if	you	don’t	move	the	name	declaration	outside	the
loop,	Java	complains	that	!name.equals(“Burd”)	is	incorrect.

Arrays	in	Java
An	array	is	a	bunch	of	values	of	the	same	type.	Each	value	in	the

array	is	associated	with	an	index.	For	example,	the	following	code	puts
15.020999999999999	in	an	app’s	textView1:
double[]	measurements	=	new	double[3];

measurements[0]	=	5.7;

measurements[1]	=	9.32;

measurements[2]	=	0.001;

textView1.setText(Double.toString(measurements[0]

								+	measurements[1]	+	measurements[2]));

	

Arithmetic	with	float	values	and	double	values	suffers
from	the	woes	of	numeric	errors.	The	sum	5.7	+	9.32	+	0.001	is
15.021,	not	15.020999999999999.	But	computers	use	the	bits	0	and
1	(instead	of	the	digits	0	through	9)	to	store	numbers	internally.	The
use	of	zeros	and	ones,	along	with	the	fact	that	computers	can’t	store
infinitely	long	decimal	expansions,	leads	inevitably	to	arithmetic
errors.	Sorry	about	that!
The	following	code	puts	Barry	Burd	and	Jane	Dough	in	an	app’s

textView1:
String[]	names	=	new	String[3];

names[0]	=	new	String(“Barry	Burd”);

names[1]	=	new	String(“John	Public”);

names[2]	=	new	String(“Jane	Dough”);

	

textView1.setText(names[0]	+	“	and	“	+	names[2]);

You	can	step	from	value	to	value	in	an	array	using	a	for	loop.	For

example,	the	following	code	puts	Barry	Burd	John	Public	Jane	Dough	in
an	app’s	textView1:
String[]	names	=	new	String[3];

names[0]	=	new	String(“Barry	Burd	“);

names[1]	=	new	String(“John	Public	“);

names[2]	=	new	String(“Jane	Dough	“);

textView1.setText(“”);

	

for	(int	i	=	0;	i	<	3;	i++)	{

		textView1.append(names[i]);

}

Java’s	enhanced	for	statements
In	the	mid-1960s,	a	company	advertised	its	product	by	announcing,

“Our	product	used	to	be	perfect.	But	now,	our	product	is	even	better!”
In	the	mid-2000s,	the	newly	created	Java	5	specification	had	a

brand-new	kind	of	loop.	This	feature	has	been	part	of	Java	for	several
years,	but	it’s	still	called	the	enhanced	for	loop.	The	following	code	uses
an	enhanced	for	loop	to	put	Barry	Burd	John	Public	Jane	Dough	in	an
app’s	textView1:.
String[]	names	=	new	String[3];

names[0]	=	new	String(“Barry	Burd	“);

names[1]	=	new	String(“John	Public	“);

names[2]	=	new	String(“Jane	Dough	“);

textView1.setText(“”);

	

for	(String	s	:	names)	{

		textView1.append(s);

}

Here’s	another	example.	Suppose	you	have	a	cursor,	and	the	cursor
points	to	a	table’s	row.	(To	keep	this	example	simple,	I	assume	that	each
column	contains	String	data.)	You	don’t	know	the	table’s	column
names,	and	you	don’t	know	how	many	columns	the	table	has.	Java’s
enhanced	for	statement	provides	an	elegant	way	to	deal	with	this	kind	of
situation.	Listing	3-6	shows	you	the	story.

Listing	3-6:	An	Enhanced	for	Loop
cursor.moveToFirst();

	

while	(!cursor.isAfterLast())	{

	

				String[]	columnNames	=	cursor.getColumnNames();

				

				for	(String	colName	:	columnNames)	{

								int	index	=	cursor.getColumnIndex(colName);

								textViewDisplay.append(colName	+	“:”	+

																cursor.getString(index)	+	“,

“);																				

				}

	

				textViewDisplay.append(“\n”);

				cursor.moveToNext();

}

In	Listing	3-6,	a	cursor’s	getColumnNames	method	returns	an	array
of	String	values.	The	code	assigns	this	array	to	the	columnNames
variable.	Then	the	enhanced	for	loop	creates	a	variable	(colName)	that
steps	through	the	String	values	in	the	array.	The	line
for	(String	colName	:	columnNames)

says,	“Repeat	the	instructions	in	the	for	statement	once	for	each	of
the	String	values	stored	in	the	columnNames	array.	During	each	value	in
the	array,	let	the	variable	colName	stand	for	that	value	during	one	of	the
loop’s	iterations.”	So,	for	example,	if	the	columnNames	array	contains	the
strings	_id,	name,	and	amount,	the	processor	performs	three	iterations	of
the	enhanced	loop	in	Listing	3-6.	During	the	first	iteration,	colName
stands	for	“_id”.	During	the	second	iteration,	colName	stands	for	“name”.
During	the	third	iteration,	colName	stands	for	“amount”.

With	or	without	enhanced	loops,	a	cursor’s	getString	method
needs	a	column	number.	In	Listing	3-5	(and	in	previous	listings),	I	hand
column	numbers	0,	1,	and	2	to	the	getString	method.	In	Listing	3-6,	I

fetch	these	column	numbers	from	the	column	names,	using	the	cursor’s
getColumn	Index	method.

An	enhanced	for	statement	has	the	following	form:
for	(TypeName	variable	;	ArrayOrCollection)	{

				statements	to	be	executed

}

The	TypeName	is	the	type	of	each	element	in	the
ArrayOrCollection.	The	loop	performs	an	iteration	for	each	element	of
the	ArrayOrCollection.	During	each	iteration,	the	variable	refers	to	one
of	the	elements	in	the	ArrayOrCollection.

Jumping	Away	from	Trouble
The	Java	programming	language	has	a	mechanism	called	exception

handling.	With	exception	handling,	a	program	can	detect	that	things	are
about	to	go	wrong	and	respond	by	creating	a	brand-new	object.	In	the
official	terminology,	the	program	is	said	to	be	throwing	an	exception.
That	new	object,	an	instance	of	the	Exception	class,	is	passed	like	a	hot
potato	from	one	piece	of	code	to	another	until	some	piece	of	code	decides
to	catch	the	exception.	When	the	exception	is	caught,	the	program
executes	some	recovery	code,	buries	the	exception,	and	moves	on	to	the
next	normal	statement	as	if	nothing	had	ever	happened.

The	whole	thing	is	done	with	the	aid	of	several	Java	keywords.
These	keywords	are	as	follows:
•	throw:	Creates	a	new	exception	object.

	
•	throws:	Passes	the	buck	from	a	method	up	to	whatever	code	called	the
method.

	
•	try:	Encloses	code	that	has	the	potential	to	create	a	new	exception
object.	In	the	usual	scenario,	the	code	inside	a	try	clause	contains	calls	to
methods	whose	code	can	create	one	or	more	exceptions.

	
•	catch:	Deals	with	the	exception,	buries	it,	and	then	moves	on.

	
For	example,	Java’s	Integer.parseInt	method	turns	a	String

value	into	an	int	value.	The	value	of	“279”	+	1	is	“2791”,	but	the	value

of	Integer.parseInt(“279”)	+	1	is	280.	A	call	to	Integer.parseInt
throws	a	NumberFormatException	if	the	call’s	parameter	isn’t	a	whole
number.	So	if	your	code	calls	Integer.parseInt(“3.5”),	your	code	has
to	deal	with	a	NumberFormatException.	(The	String	value	“3.5”	doesn’t
stand	for	a	whole	number.)

Here’s	a	simple	method	to	add	one	to	a	number	that’s	represented	as
a	String	value:
int	increment(String	str)	{

		return	Integer.parseInt(str)	+	1;

}

If	you	call	increment(“985”),	you	get	986.	That’s	good.
But	if	you	call	increment(“2.71828”),	your	code	crashes	and	your

app	stops	running.	Java	leaves	clues	about	the	crash	in	Eclipse’s	LogCat
view.	The	clues	(which	form	a	Java	stack	trace)	look	something	like	this:
Exception	in	thread	“main”	java.lang.NumberFormatException:

For	input	string:	“2.71828”

				at	java.lang.NumberFormatException.forInputString

				at	java.lang.Integer.parseInt

If	you	add	some	exception	handling	code	to	the	increment	method,
your	code	keeps	running	with	or	without	the	increment(“2.71828”)	call.
int	increment(String	str)	{

		try	{

				return	Integer.parseInt(str)	+	1;

		}	catch	(NumberFormatException	e)	{

				return	0;

		}

}

With	the	try	and	catch	in	the	revised	method,	Java	attempts	to
evaluate	Integer.parseInt(str).	If	evaluation	is	successful,	the	method
returns	Integer.parseInt(str)	+	1.	But	if	str	has	a	weird	value,	the
call	to	Integer.parseInt	throws	a	NumberFormatException.
Fortunately,	the	revised	increment	method	catches	the
NumberFormatException,	returns	the	value	0,	and	continues	running
without	bothering	the	user.

	

Chapter	4:	Object-Oriented	Programming	 in
Java

In	This	Chapter
Using	classes	with	finesse
Working	with	Java’s	classes	and	interfaces

Being	part	of	Java’s	inner	circle
	

If	you	remember	nothing	else	about	Java,	remember	these	ideas
from	Chapter	2	of	this	minibook:
Java	is	an	object-oriented	programming	language.	So,	as	a	developer,
your	primary	goal	is	to	describe	objects.	Your	closely	related	goal	is	to
describe	objects’	close	cousins	—;	namely,	classes.	A	class	is	the	idea
behind	a	certain	kind	of	thing.	An	object	is	a	concrete	instance	of	a	class.

	
And	if	you	remember	nothing	else	about	those	ideas,	remember	the

following	two-word	summary:
Classes;	objects.

	
Chapter	2	in	this	minibook	covers	the	highlights	of	object-oriented

programming	in	Java.	This	chapter	covers	some	of	object-oriented
programming’s	finer	points.

Static	Fields	and	Methods
In	Listing	4-1,	I	reproduce	a	small	portion	of	the	source	code	of

Android’s	Toast	class.

Listing	4-1:	An	Unrepresentative	Sample	of
Android’s	Toast	Class	Code

public	class	Toast	{

	

		public	static	final	int	LENGTH_LONG	=	1;

	

		public	static	Toast	makeText(Context	context,

																															CharSequence	text,

																															int	duration)

{																																				

				Toast	result	=	new	Toast(context);

	

				LayoutInflater	inflate	=	(LayoutInflater)	context.

						getSystemService(Context.LAYOUT_INFLATER_SERVICE);

				View	v	=	inflate.inflate

						(com.android.internal.

						R.layout.transient_notification,	null);

				TextView	tv	=	(TextView)v.findViewById

						(com.android.internal.R.id.message);

				tv.setText(text);

		

				result.mNextView	=	v;

				result.mDuration	=	duration;

	

				return	result;

		}

		

		public	void	show()	{

				if	(mNextView	==	null)	{

						throw	new	RuntimeException

								(“setView	must	have	been	called”);

				}

		

				INotificationManager	service	=	getService();

		

				String	pkg	=	mContext.getPackageName();

		

				TN	tn	=	mTN;

		

				try	{

						service.enqueueToast(pkg,	tn,	mDuration);

				}	catch	(RemoteException	e)	{

						//	Empty

				}

		}

}

According	to	the	code	in	Listing	4-1,	the	Toast	class	has	a	static
field	named	LENGTH_LONG	and	a	static	method	named	makeText.	Anything
that’s	declared	to	be	static	belongs	to	the	whole	class,	not	to	any
particular	instance	of	the	class.	When	you	create	the	static	field,
LENGTH_LONG,	you	create	only	one	copy	of	the	field.	This	copy	stays	with
the	entire	Toast	class.	No	matter	how	many	instances	of	the	Toast	class
you	create	—	one,	nine,	or	none	—	you	have	just	one	LENGTH_LONG	field.

Contrast	this	with	the	situation	in	Chapter	2	of	this	minibook.	In	that
chapter,	the	Account	class	has	fields	name,	address,	and	balance.	The
fields	aren’t	static,	so	every	instance	of	the	Account	class	has	its	own
name,	its	own	address,	and	its	own	balance.	One	instance	has	name
Barry	Burd	and	balance	24.02,	and	another	instance	has	name	John	Q.
Public	with	balance	–471.03.	To	refer	to	Burd’s	balance,	you	may	write
something	like	myAccount.balance,	as	in	the	following	code
Account	myAccount	=	new	Account();

	

myAccount.name

myAccount.address	=	“222	Cyberspace	Lane”;

myAccount.balance	=	24.02;

To	refer	to	a	non-static	member	of	a	class,	you	write	the	name	of	an
object	(such	as	myAccount),	followed	by	a	dot,	and	then	the	name	of	the
member	(such	as	balance).

But	the	Toast	class’s	LENGTH_LONG	field	is	static.	When	you	create	a
Toast	instance,	you	don’t	create	a	new	LENGTH_LONG	field.	Your	Dalvik
virtual	machine’s	Toast	class	has	one	LENGTH_LONG	field,	and	that’s	that.

Accordingly,	you	refer	to	LENGTH_LONG	by	prefacing	the	field	name	with
the	Toast	class	name,	followed	by	a	dot:
Toast.LENGTH_LONG

In	fact,	a	typical	use	of	Toast	in	an	Android	app	refers	to	the	static
field	LENGTH_LONG	and	the	static	method	makeText:
Toast.makeText

		(getApplication(),	“Whoa!”,	Toast.LENGTH_LONG).show();

A	call	to	the	Toast	class’s	makeText	method	returns	an	actual	object
—	an	instance	of	the	Toast	class.	(You	can	verify	this	by	looking	at	the
first	line	of	the	makeText	method	in	Listing	4-1.)	So	in	an	Android	app,
an	expression	such	as
Toast.makeText

		(getApplication(),	“Whoa!”,	Toast.LENGTH_LONG)

stands	for	an	object.	And	(again	according	to	Listing	4-1)	each
object	created	from	the	Toast	class	has	its	own	non-static	show	method.
That’s	why	you	normally	follow	a	Toast.makeText	call	with	.show().

Here’s	one	final	word	about	Listing	4-1:	In	addition	to	being
static,	the	LENGTH_LONG	field	is	also	final.	A	final	field	is	one	whose
value	cannot	be	changed.	In	other	words,	when	you	declare	LENGTH_LONG,
you	can	initialize	its	value	to	1	(as	in	Listing	4-1).	But	elsewhere	in	the
code,	you	can’t	write	LENGTH_LONG	=	2.	(For	that	matter,	you	can’t	even
write	LENGTH_LONG	=	1	elsewhere	in	the	code.)

	

Many	programming	languages	use	the	word	constant	(or	the
abbreviation	const)	to	refer	to	a	variable	whose	value	cannot	be
changed.

Interfaces	and	Callbacks
Listing	4-2	contains	a	snippet	from	Android’s	predeclared	Java

code.	The	listing	contains	a	Java	interface.

Listing	4-2:	Android’s	OnClickListener
Interface
public	interface	OnClickListener	{

				void	onClick(View	v);

}

An	interface	is	like	a	class,	but	it’s	different.	(So,	what	else	is	new?
A	cow	is	like	a	planet,	but	it’s	quite	a	bit	different.	Cows	moo;	planets
hang	in	space.)	Anyway,	when	you	hear	the	word	interface,	you	can	start
by	thinking	of	a	class.	Then,	in	your	head,	note	the	following	things:
•	A	class	doesn’t	extend	an	interface.	Instead,	a	class	implements	an
interface.

	
Later	in	this	chapter,	you	can	see	the	following	line	of	code:

	
class	MyListener	implements	OnClickListener
•	A	class	can	extend	only	one	parent	class,	but	a	class	can	implement
more	than	one	interface.

	
For	example,	if	you	want	MyListener	objects	to	listen	for	long	clicks	as
well	as	regular	clicks,	you	can	write

	
class	MyListener	implements	OnClickListener,

																												OnLongClickListener	{
A	long	click	is	what	non-developers	would	probably	call	a	touch-and-
hold	motion.

	
•	An	interface	can	extend	another	interface.

	
For	example,	in	the	following	line	of	code,	a	homegrown	interface	named
SomeListener	extends	Android’s	built-in	OnClickListener	interface:

	
public	interface	SomeListener	extends	OnClickListener	{
•	An	interface	can	extend	more	than	one	interface.

	
•	An	interface’s	methods	have	no	bodies	of	their	own.

	
In	Listing	4-2,	the	onClick	method	has	no	body	—	no	curly	braces	and
no	statements	to	execute.	In	place	of	a	body,	there’s	just	a	semicolon.

	
	

A	method	with	no	body,	like	the	method	defined	in	Listing
4-2,	is	an	abstract	method.

	
•	When	you	implement	an	interface,	you	provide	bodies	for	all	the
interface’s	methods.

	
That’s	why	the	MyListener	class	in	Listing	4-3	has	an	onClick	method.
By	announcing	that	it	will	implement	the	OnClickListener	interface,	the
MyListener	class	agrees	that	it	will	give	meaning	to	the	interface’s
onClick	method.	In	this	situation,	giving	meaning	means	declaring	an
onClick	method	with	curly	braces,	a	body,	and	maybe	some	statements	to
execute.

	

Listing	4-3:	Implementing	Android’s
OnClickListener	Interface
package	com.allmycode.samples;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

	

public	class	MyActivity	extends	Activity	{

	

				Button	button;

				

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

								

								button	=	((Button)	findViewById(R.id.button1));

								

								button.setOnClickListener(new

MyListener(this));								

				}

}

	

class	MyListener	implements	OnClickListener	{

				Activity	activity;

				

				MyListener	(Activity	activity)	{

								this.activity	=	activity;

				}

	

				@Override

				public	void	onClick(View	arg0)	{

								((MyActivity)	activity).button.setBackgroundColor

																											(android.graphics.Color.GRAY);

				}				

}

Listing	4-3	doesn’t	illustrate	the	most	popular	way	to	implement	the
OnClickListener	interface,	but	the	listing	presents	a	straightforward	use
of	interfaces	and	their	implementations.

When	you	announce	that	you’re	going	to	implement	an	interface	(as

in	class	MyListener	implements	OnClickListener),	the	Java	compiler
takes	this	announcement	seriously.	In	the	body	of	the	class,	if	you	fail	to
give	meaning	to	any	of	the	interface’s	methods,	the	compiler	yells	at	you.

	If	you’re	really	lazy,	you	can	quickly	find	out	what	methods
need	to	be	declared	in	your	interface-implementing	code.	Try	to
compile	the	code,	and	the	compiler	lists	all	the	methods	that	you
should	have	declared	but	didn’t.

	Chapter	2	in	this	minibook	introduces	the	use	of	@Override
—	a	Java	annotation.	Normally,	you	use	@Override	to	signal	the
replacement	of	a	method	that’s	already	been	declared	in	a
superclass.	But	from	Java	6	onward,	you	can	also	use	@Override	to
signal	an	interface	method’s	implementation.	That’s	what	I	do	in
Listing	4-3.
You	can	think	of	an	interface	as	a	kind	of	contract.	When	you	write

class	MyListener	implements	OnClickListener

you’re	binding	MyListener	to	the	contract	described	in	Listing	4-2.
That	contract	states,	“You,	the	implementing	class,	hereby	agree	to
provide	a	body	for	each	of	the	abstract	methods	declared	in	the	interface
and	to	indemnify	and	hold	harmless	this	interface	for	any	damages,
mishaps,	or	embarrassments	from	wearing	pocket	protectors.”

As	a	member	of	society,	you	have	exactly	two	biological	parents,
but	you	can	enter	into	agreements	with	several	companies.	In	the	same
way,	a	Java	class	has	only	one	parent	class,	but	a	class	can	implement
many	interfaces.

The	interface-implementing	hierarchy	(if	you	can	call	it	a
“hierarchy”)	cuts	across	the	class-extension	hierarchy.	This	idea	is
illustrated	in	Figure	4-1,	where	I	display	class	extensions	vertically	and
display	interface	implementations	horizontally.	(Android’s	KeyboardView
class	lives	in	the	android.inputmethod	service	package.	Both
KeyboardView	and	the	homegrown	MyListener	class	in	Listing	4-3

implement	Android’s	OnClickListener	interface.)

	

Figure	4-1:	The	interface	hierarchy	cuts	across	the	class	hierarchy.

Event	handling	and	callbacks
The	big	news	in	Listing	4-3,	shown	in	the	preceding	section,	is	the

handling	of	the	user’s	button	click.	Anything	the	user	does	(such	as
pressing	a	key,	touching	the	screen,	or	whatever)	is	an	event.	The	code
that	responds	to	the	user’s	press	or	touch	is	the	event-handling	code.

	Some	things	that	the	user	doesn’t	do	are	also	events.	For
example,	when	you	turn	on	a	device’s	GPS	sensor	and	the	sensor
gets	its	first	fix,	Android	calls	the	onGpsStatusChanged	event
handler.
Listing	4-3	deals	with	the	click	event	with	three	parts	of	its	code:

•	The	MyListener	class	declaration	says	that	this	class	implements
OnClickListener.

	
•	The	activity’s	onCreate	method	sets	the	button’s	click	handler	to	a	new
MyListener	object.

	
•	The	code	for	the	MyListener	class	has	an	onClick	method.

	
Taken	together,	all	three	of	these	tricks	make	the	MyListener	class

handle	button	clicks.	Figure	4-2	illustrates	the	process.

	

Figure	4-2:	Handling	an	event.

When	the	user	clicks	the	button,	Android	says,	“Okay,	the	button
was	clicked.	So,	what	should	I	do	about	that?”	And	the	answer	is,	“Call
an	onClick	method.”	It’s	as	if	Android	has	code	that	looks	like	this:
OnClickListener	object1;

if	(buttonJustGotClicked())	{

				object1.onClick(infoAboutTheClick);

}

Of	course,	behind	every	answer	is	yet	another	question.	In	this
situation,	the	follow-up	question	is,	“Where	does	Android	find	onClick
methods	to	call?”	And	there’s	another	question:	“What	if	you	don’t	want
Android	to	call	certain	onClick	methods	that	are	lurking	in	your	code?”

Well,	that’s	why	you	call	the	setOnClickListener	method.	In
Listing	4-3,	the	call
button.setOnClickListener(new	MyListener(this));

creates	a	new	MyListener	object.	You	tell	Android	to	“put	the	new
object’s	onClick	method	on	your	list	of	methods	to	be	called.	Call	this
object’s	onClick	method	whenever	the	button	is	clicked.”

And	in	response	to	this	request,	Android	asks,	“Oh,	yeah?	How	do	I

know	that	your	MyListener	object	has	an	onClick	method	that	I	can
call?”	And	before	you	can	answer	the	question,	Android	notices	that	your
MyListener	class	implements	the	OnClickListener	interface.	So
(because	of	the	code	in	Listing	4-2)	your	MyListener	object	has	an
onClick	method.

	Of	course,	Android	doesn’t	really	ask,	“How	do	I	know	that
your	MyListener	object	has	an	onClick	method?”	For	one	thing,
Android	doesn’t	say	anything	because	Android	doesn’t	have	a
mouth.	And	for	another	thing,	Android’s	code	to	call	onClick
declares	the	object	containing	the	onClick	method	to	be	of	type
OnClickListener.	So	if	your	MyListener	method	doesn’t
implement	OnClickListener,	Java	notices	a	type	inconsistency	(and
Java	complains	vigorously).
So	here’s	the	sequence	of	events	(follow	along	in	Figure	4-2):	Your

app	registers	a	listener	with	Android.	Then	your	app	goes	about	its
business.	When	a	relevant	event	takes	place	(such	as	the	clicking	of	a
button)	Android	calls	back	to	your	app’s	code.	Android	calls	the	onClick
method	inside	whatever	object	you	registered.

Android	calls	back	to	your	app’s	code,	so	the	term	callback
describes	the	mechanism	that	Android	uses	to	handle	events.

An	object	remembers	who	created	it
In	the	preceding	section,	I	raise	several	questions	about	the

interaction	between	your	app	and	Android’s	callback.	But	in	that	section,
I	miss	one	of	the	questions.	The	question	is	this:	In	the	onClick	method
of	Listing	4-3,	how	does	the	code	know	what	button	means?	Listing	4-3
contains	two	classes	—	MyActivity	and	MyListener.	Without	jumping
through	some	hoops,	one	class	doesn’t	know	anything	about	another
class’s	fields.

In	Listing	4-3,	the	keyword	this	sits	inside	the	code	that	defines	the
MyActivity	class:
button.setOnClickListener(new	MyListener(this));

In	Java,	this	refers	to	“the	object	that	contains	the	current	line	of

code.”	So,	in	Listing	4-3,	the	word	this	refers	to	an	instance	of
MyActivity	—	the	activity	that’s	being	displayed	on	the	device’s	screen.
The	current	MyActivity	instance	has	a	button.	So	far,	so	good.

Later	in	Listing	4-3,	the	MyListener	constructor	tucks	a	reference	to
the	current	activity	into	one	of	its	fields.	(See	Figure	4-3.)

	

Figure	4-3:	How	a	listener	remembers	its	creator.

	For	more	information	about	constructors	and	about	the	use
of	the	word	this	inside	a	constructor,	see	Chapter	2	in	this
minibook.
Looking	again	at	Figure	4-3,	MyListener	refers	to	an	activity,	and

that	activity	contains	a	button.	When	Android	calls	the	onClick	method,
the	method	executes	an	instruction	that’s	very	much	like	this	one:
activity.button.setBackgroundColor

																											(android.graphics.Color.GRAY);

The	instruction	takes	the	referenced	activity’s	button	and	sets	the
button’s	background	color	to	gray.	(To	make	things	work	properly,	you
have	to	do	some	casting	in	the	onClick	method	of	Listing	4-3,	but	you

can	worry	about	the	casting	when	you	glance	at	Chapter	3	of	this
minibook.)

An	easier	way	to	handle	an	event
If	you	read	the	preceding	section	and	then	you	read	this	section,

you’ll	probably	want	to	send	me	a	nasty	e-mail	message.	The	preceding
section	describes	an	admittedly	convoluted	way	to	make	a	listener
remember	which	activity’s	button	to	tweak.	It’s	important	to	know	how
Listing	4-3	works,	but	if	you	modify	Listing	4-3	so	that	the	activity	is	its
own	listener,	things	become	much	simpler.	Listing	4-4	shows	you	how	to
do	it.

Listing	4-4:	An	Activity	Eats	Its	Own	Dog
Food
package	com.allmycode.samples;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

	

public	class	MyActivity	extends	Activity

																								implements	OnClickListener	{

	

				Button	button;

	

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

	

								button	=	((Button)	findViewById(R.id.button1));

	

								button.setOnClickListener(this);

				}

	

				@Override

				public	void	onClick(View	arg0)	{

								button.setBackgroundColor

																									(android.graphics.Color.GRAY);

				}

}

The	earlier	section	starts	with	a	question:	“In	the	onClick	method,
how	does	the	code	know	what	button	means?”	In	this	section,	that
question	goes	away	just	as	my	lap	goes	away	when	I	stand	up.

In	Listing	4-4,	both	the	button	and	the	onClick	method	are	members
inside	the	activity.	So	the	onClick	method	has	free	and	easy	access	to	the
button.	You	don’t	need	an	Activity	field	as	in	Listing	4-4,	and	you	don’t
need	any	fancy	casting	from	Activity	to	MyActivity.

You	have	to	remind	Android	that	MyActivity	contains	an	onClick
method;	you	do	that	by	adding	implements	OnClickListener	to	the
declaration	of	MyActivity.	You	must	also	remind	Android	to	notify	the
current	MyActivity	object	whenever	the	button	gets	clicked.	You	do	this
reminding	by	writing
button.setOnClickListener(this);

which,	roughly	speaking,	translates	to	“Hey,	Android!	When
someone	clicks	the	button,	call	the	onClick	method	that’s	inside	this
object	(a	MyActivity	object,	which	fortunately	implements
OnClickListener).”

The	pattern	in	Listing	4-4	(having	an	Activity	implement	whatever
interface	it	requires)	is	a	very	common	Java	programming	idiom.

Classes	That	Must	(And	Must	Not)	Be
Extended

If	a	Java	class	isn’t	broken,	don’t	fix	it.
Suppose	you	want	to	add	functionality	to	an	existing	Java	class.	You

like	Android’s	Activity	class,	but	the	predeclared	Activity	class
displays	nothing	on	the	screen.	Do	you	rewrite	Android’s	Activity
class?	No.

Instead	of	rewriting	an	existing	class,	you	extend	the	class.	Even	in	a
do-nothing	Android	“Hello”	application,	you	write
public	class	MyActivity	extends	Activity

Then,	in	the	MyActivity	class’s	declaration,	you	write
@Override

public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

}

Your	MyActivity	class	creates	new	functionality	by	extending	most
of	Android’s	Activity	functionality	while	overriding	the	Activity
class’s	brain-dead	onCreate	method.

Java’s	final	classes
In	object-oriented	programming,	extending	a	class	is	the	noblest

thing	you	can	do.
But	some	classes	aren’t	meant	to	be	extended.	Take,	for	example,

Java’s	String	class.	A	String	is	a	String	is	a	String.	You	don’t	want
somebody’s	MyString.length	method	to	return	the	length	of	time	it	takes
to	scramble	a	string’s	characters.	To	prevent	someone	from	doing
something	unexpected,	unconventional,	or	unusual	with	a	string’s
methods,	the	creators	of	Java	made	the	String	class	final:
public	final	class	String

Some	of	Android’s	predeclared	classes	are	also	final,	including	the
Calendar	class,	the	Telephony	class,	and	(one	of	my	favorites)	the
MathUtils	class.

Java’s	abstract	classes
Just	as	a	final	class	hates	to	be	extended,	an	abstract	class	insists	on

being	extended.	Android’s	ViewGroup	is	an	example	of	an	abstract	class.
(See	Listing	4-5.)

Listing	4-5:	A	Small	Part	of	Android’s
ViewGroup	Class
public	abstract	class	ViewGroup	{

	

				public	void	bringChildToFront(View	child)	{

								int	index	=	indexOfChild(child);

								if	(index	>=	0)	{

												removeFromArray(index);

												addInArray(child,	mChildrenCount);

												child.mParent	=	this;

								}

				}

				

				protected	abstract	void	onLayout(boolean	changed,

																int	l,	int	t,	int	r,	int	b);

}

Android’s	ViewGroup.java	file	is	more	than	3,700	lines	long.	So
Listing	4-5	has	only	a	tiny	fraction	of	the	file’s	code.	But	you	can	see
from	Listing	4-5	how	a	class	becomes	abstract.	To	no	one’s	surprise,	the
word	abstract	precedes	the	word	class.	But	the	word	abstract	also
starts	the	declaration	of	some	methods	belonging	to	the	class.

The	founders	of	Android	decided	that	the	idea	of	a	ViewGroup	is
useful.	They	were	correct	because	your	favorite	Android	layouts
(LinearLayout,	RelativeLayout,	and	so	on)	are	subclasses	of
ViewGroup.	They	also	understood	that	from	one	kind	of	ViewGroup	to
another,	some	functionality	doesn’t	change.	For	example,	Listing	4-5
defines	a	bringChildToFront	method,	and	subclasses	of	ViewGroup
inherit	this	method.

But	the	founders	also	realized	that	some	aspects	of	a	ViewGroup
make	no	sense	unless	you	work	with	a	particular	kind	of	group.	For
example,	a	LinearLayout	positions	things	one	after	another,	and	an
AbsoluteLayout	positions	things	according	to	specified	coordinates.	So
Listing	4-5	doesn’t	have	a	full-blown	onLayout	method.	The	onLayout
declaration	in	Listing	4-5	has	no	method	body.	But	Android	requires	each

subclass	of	the	ViewGroup	class	to	declare	its	own	onLayout	method.	Java
enforces	this	requirement	when	(as	in	Listing	4-5)	you	declare	method
onLayout	to	be	abstract.

As	a	developer,	you	can’t	create	an	object	from	an	abstract	class.	If
you	write
ViewGroup	group	=	new	ViewGroup();

Java	tells	you	that	you’re	behaving	badly.	To	do	something	useful
with	the	ViewGroup	class,	you	need	a	subclass	of	the	ViewGroup	class.
The	subclass	has	a	concrete	version	of	each	abstract	method	in	the
ViewGroup	class:
package	com.allmycode.samples;

	

import	android.content.Context;

import	android.view.ViewGroup;

	

public	class	MyLayout	extends	ViewGroup	{

	

				public	MyLayout(Context	context)	{

								super(context);

				}

	

				@Override

				protected	void	onLayout(boolean	changed,

																int	l,	int	t,	int	r,	int	b);								

				}

}

Inner	Classes
Here’s	big	news!	You	can	define	a	class	inside	another	class!	Most

classes	don’t	live	inside	another	class,	and	most	classes	don’t	contain

other	classes.	But	when	the	idea	behind	one	class	screams	out	to	be	part
of	another	class,	feel	free	to	create	a	class	within	a	class.

Named	inner	classes
For	the	user,	Listing	4-6	behaves	the	same	way	as	Listings	4-3	and

4-4.	But	in	Listing	4-6,	the	MyActivity	class	contains	its	own
MyListener	class.

Listing	4-6:	A	Class	within	a	Class
package	com.allmycode.samples;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

	

public	class	MyActivity	extends	Activity	{

	

				Button	button;

	

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

	

								button	=	((Button)	findViewById(R.id.button1));

	

								button.setOnClickListener(new	MyListener());

				}

	

				class	MyListener	implements	OnClickListener	{

	

								@Override

								public	void	onClick(View	arg0)	{

												button.setBackgroundColor

																									(android.graphics.Color.GRAY);

								}

				}

}

The	MyListener	class	in	Listing	4-6	is	an	inner	class.	An	inner	class
is	a	lot	like	any	other	class.	But	within	an	inner	class’s	code,	you	can
refer	to	the	enclosing	class’s	fields.	For	example,	the	onClick	method
inside	MyListener	uses	the	name	button,	and	button	is	defined	in	the
enclosing	MyActivity	class.

Listings	4-4	and	4-6	are	very	similar.	In	both	listings,	you
circumvent	the	complexities	described	in	the	section	“An	object
remembers	who	created	it,”	earlier	in	this	chapter.	For	this	chapter’s
example,	the	choice	of	Listing	4-4	or	Listing	4-6	is	largely	a	matter	of
taste.

Anonymous	inner	classes
Notice	that	the	code	in	Listing	4-6	uses	the	MyListener	class	only

once.	(The	only	use	is	in	a	call	to	button.setOnClickListener.)	So	I
ask,	do	you	really	need	a	name	for	something	that’s	used	only	once?	No,
you	don’t.	You	can	substitute	the	entire	definition	of	the	inner	class	inside
the	call	to	button.setOnClickListener.	When	you	do	this,	you	have	an
anonymous	inner	class.	Listing	4-7	shows	you	how	it	works.

Listing	4-7:	A	Class	with	No	Name	(Inside	a
Class	with	a	Name)
package	com.allmycode.samples;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

	

public	class	MyActivity	extends	Activity	{

	

				Button	button;

	

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

	

								button	=	((Button)	findViewById(R.id.button1));

	

								button.setOnClickListener(new	OnClickListener()	{

	

												@Override

												public	void	onClick(View	arg0)	{

																button.setBackgroundColor

																											(android.graphics.Color.GRAY);

												}

								});

				}

	

}

Inner	classes	are	good	for	things	like	event	handlers,	such	as	the
onClick	method	in	this	chapter’s	examples.	The	most	difficult	thing
about	an	anonymous	inner	class	is	keeping	track	of	the	parentheses,	the
curly	braces,	and	the	indentation.	So	my	humble	advice	is,	start	by
writing	code	without	any	inner	classes,	such	as	the	code	in	Listing	4-3	or
Listing	4-4.	Later,	when	you	become	bored	with	ordinary	Java	classes,
experiment	by	changing	some	of	your	ordinary	classes	into	inner	classes.

	

Chapter	5:	A	<brief>	Look	at	XML

In	This	Chapter
What	XML	can	do	for	you
What	goes	into	an	XML	document

How	XML	handles	the	names	of	things
	

Modern	software	takes	on	several	forms:
•	Some	software	is	procedural.

	
The	software	tells	the	computer	to	“Do	this,	then	do	that.”

	
•	Some	software	is	declarative.

	
The	software	says,	“Here’s	what	I	want	the	form	to	look	like”	or	“Here’s
a	list	of	things	my	application	should	be	allowed	to	do.”

	
•	Some	software	is	neither	procedural	nor	declarative.

	
The	software	lists	functions	to	be	executed	in	the	order	in	which	they
apply	or	lists	logical	rules	to	be	checked	for	validity.

	
One	way	or	another,	a	development	platform	should	use	the	best

software	for	the	job.	That’s	why	the	Android	platform	uses	both
procedural	and	declarative	software.
•	Android’s	procedural	Java	code	tells	a	device	what	to	do.

	
•	Android’s	declarative	XML	code	describes	a	layout,	an	application,	a
set	of	strings,	a	set	of	preferences,	or	some	other	information	that’s	useful
to	a	mobile	device.

	

A	typical	Android	application	is	a	mix	of	Java	code,	XML	code,	and
a	few	other	things.	So	when	you	develop	for	Android,	you	write	lots	of
Java	code	and	you	mess	with	XML	code.

What?	You	“mess	with”	XML	code?	What	does	that	mean?
The	truth	is,	XML	code	is	painful	to	type.	A	typical	XML	file

involves	many	elements,	each	requiring	very	precise	wording	and	all
looking	very	much	alike	at	first	glance.	So	in	the	Android	world,	most
XML	files	are	generated	automatically.	You	don’t	type	all	the	file’s	angle
brackets.	Instead,	you	fill	in	a	form	and	let	Eclipse’s	tools	create	the
XML	code	on	your	behalf.

So	in	many	situations,	you	don’t	have	to	compose	XML	code.	But	I
often	encounter	situations	in	which	I	want	to	bypass	Eclipse’s	forms	and
tweak	the	XML	code	myself.	Maybe	the	form	doesn’t	readily	provide	an
option	that	I	want	to	use	in	my	XML	code.	Or	maybe	my	app	isn’t
behaving	the	way	I	want	it	to	behave,	and	I	read	over	the	XML	code	to
check	for	subtle	errors.

For	these	reasons	and	others,	you’re	best	off	understanding	the
fundamentals	of	XML.	So	this	chapter	covers	XML	basics.

	If	you’re	new	to	Java,	you	may	wonder	why	this	book
doesn’t	have	a	chapter	on	Java	fundamentals.	Well,	Java	is	an
intricate	beast.	Years	ago	I	tried	to	summarize	Java	fundamentals	in
a	few	side	chapters	of	a	book,	and	the	whole	endeavor	didn’t	feel
right	to	me.	If	you	want	to	figure	out	Java,	you’re	better	off	with	a
complete	book	on	the	subject.	Fortunately,	I	have	just	the	book!	It’s
Java	For	Dummies,	5th	Edition,	by	Barry	Burd	(John	Wiley	&	Sons,
Inc.).	It’s	available	in	fine	bookstores	around	the	world.	And	when
you	buy	a	copy,	please	pay	double	the	asking	price.

XML	Isn’t	Ordinary	Text
You	may	already	be	familiar	with	Hypertext	Markup	Language

(HTML)	because	HTML	is	the	universal	language	of	the	World	Wide
Web.	Choose	View⇒Source	in	your	favorite	web	browser,	and	you’ll	see
a	bunch	of	HTML	tags	—	tags	like	<head>,	<title>,	<meta>,	and	so	on.

An	HTML	document	describes	the	look	and	layout	of	a	web	page.
An	XML	document	is	something	like	an	HTML	document.	But	an

XML	document	differs	from	an	HTML	document	in	many	ways.	The	two
most	striking	ways	are	as	follows:
•	An	XML	file	doesn’t	describe	only	look	and	layout.	In	fact,	very	few
XML	files	describe	anything	visual	at	all.	Instead,	most	XML	files
describe	data	—	a	list	of	stock	trades;	a	hierarchical	list	of	automobile
makes	and	models;	or	a	nested	list	of	movements,	measures,	and	notes	in
a	Beethoven	symphony.

	
•	Certain	rules	describe	what	you	can	and	cannot	write	in	an	HTML	or	an
XML	document.	The	rules	for	HTML	are	very	permissive.	The	rules	for
XML	are	very	strict.

	
In	HTML,	a	missing	character	or	word	often	goes	unnoticed.	In	XML,	a
missing	character	or	word	can	ruin	your	whole	day.

	
The	formal	definitions	of	an	XML	document’s	parts	can	be

daunting.	But	you	can	think	of	an	XML	document	as	a	bunch	of
elements,	with	each	element	having	one	or	two	tags.

Of	tags	and	elements
Tags	and	elements	are	the	workhorses	of	XML.	Here’s	the	scoop:

•	A	tag	is	some	text	surrounded	by	angle	brackets.
	

For	example,	Listing	5-1	contains	a	basic	AndroidManifest.xml	file.	In
this	file,	<intent-filter>	is	a	tag,	</intent-filter>	(which	comes	a
bit	later	in	the	file	is	another	tag.	Text	such	as	<application
android:icon=”@drawable/icon”

android:label=”@string/app_name”>	is	also	a	tag.
	

Listing	5-1:	An	AndroidManifest.xml	File
<?xml	version=”1.0”	encoding=”utf-8”?>

<manifest	xmlns:android=

		“http://schemas.android.com/apk/res/android”

						package=”com.allmycode.andevcon”

						android:versionCode=”1”

						android:versionName=”1.0”>

				<uses-sdk	android:minSdkVersion=”8”	/>

	

				<application	android:icon=”@drawable/icon”

						android:label=”@string/app_name”>

								<activity	android:name=”.MyActivity”

																		android:label=”@string/app_name”>

												<intent-filter>

																<action	android:name=

																		“android.intent.action.MAIN”	/>

																<category	android:name=

																		“android.intent.category.LAUNCHER”	/>

												</intent-filter>

								</activity>

	

				</application>

</manifest>

Not	everything	with	angle	brackets	qualifies	as	an	XML	tag.	For
example,	the	text	<This	is	my	application.>	violates	many	of	the
rules	of	grammatically	correct	XML.	For	more	about	what	an	XML	tag
can	and	cannot	contain,	read	on.

	

	An	XML	document	is	well	formed	when	its	text	obeys	all
the	rules	of	grammatically	correct	XML.

	
•	An	XML	document	may	have	three	different	kinds	of	tags:

	
•	A	start	tag	begins	with	an	open	angle	bracket	and	a	name.	The	start

tag’s	last	character	is	a	closing	angle	bracket.
	

In	Listing	5-1,	<intent-filter>	is	a	start	tag.	The	start	tag’s	name	is
intent-filter.

	

What	element	names	can	you	use?
	In	HTML,	the	tags		and		surround	text	that	appears	in	bold

type.	That’s	the	way	web	pages	are	encoded.
But	in	XML,	tags	like	<cat>	and	</cat>	might	represent	a
Windows	security	catalog,	catenary-shaped	wire	hanging	down
from	telephone	poles,	or	a	pet	who’s	climbing	on	your	computer
keyboard	(while	you	write	Android	Application	Development	All-
in-One	For	Dummies,	I	might	add).
How	do	you	know	whether	the	names	in	your	XML	document	are
meaningful?
The	short	answer	is,	“Meaning	is	as	meaning	does.”	(Whatever
that	means!)	An	element’s	name	is	meaningful	as	long	as	a
computer	program	can	do	the	things	that	you	intend	programs	to
do	with	that	element.	For	example,	a	program	that	checks	security
catalogues	to	distinguish	trustworthy	from	malicious	downloads
probably	does	nothing	useful	with	an	element	like

<cat	name=”Felix”	age=”7”	breed=”calico”	/>

On	the	other	hand,	a	security	catalog	program	may	include
instructions	to	deal	with	the	following	element:

<cat	name=”Firefox”	verified=”true”
publisher=”mozilla.org”	version=”7.0.1”	/>

Even	so,	the	XML	specs	provide	two	ways	to	describe	the	names
in	a	document.	The	older	way	is	with	a	DTD	(Document	Type
Definition).	A	DTD	looks	something	like	this:

<!ELEMENT	CatThoughts	(Image,	Thought+)>
<!ATTLIST	CatThoughts	frequency	CDATA	#REQUIRED>
<!NOTATION	JPEG	SYSTEM	“image/jpeg”>

<!ENTITY	CuteCat	SYSTEM	“weelie.jpg”	NDATA	JPEG>
<!ELEMENT	Image	EMPTY>
<!ATTLIST	Image	source	ENTITY	#REQUIRED>

	

<!ELEMENT	Thought	(#PCDATA)>
<!ENTITY	meow	“Feed	me”>

A	DTD	describes	the	names	that	you	can	use	in	a	particular	XML
document	(or	in	a	bunch	of	XML	documents)	and	describes	the
order	in	which	you	can	use	those	names.	But	a	DTD	doesn’t
describe	all	the	fine	points	of	element-naming	(like	the	fact	that	a
name	must	refer	to	an	integer	value,	or	to	a	date).	So	the	newer
way	to	describe	the	names	in	a	document	is	with	a	schema.	A
schema	looks	something	like	this:

<?xml	version=”1.0”?>
<!--	Children.xsd	-->

	

<xsd:schema
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element	name=“Children“	type=“xsd:integer“/>
</xsd:schema>

This	schema	says	that	a	certain	XML	document	(or	a	bunch	of
XML	documents)	uses	the	element	name	Children,	and	that	the
value	stored	in	the	Children	element	must	be	an	integer.	(A
family	can’t	have	2.5	children.)	Even	better,	a	schema	is	itself	an
XML	document	(with	start	tags,	end	tags,	and	everything	else),	so
all	the	tools	that	you	apply	to	ordinary	XML	documents	can	be
applied	to	schema	documents	as	well.	(A	DTD	may	look

something	like	an	XML	document,	but	in	a	DTD,	the	exclamation
points	and	the	lack	of	end	tags	break	the	grammar	rules	of	an
XML	document.)
Not	every	XML	document	is	connected	to	a	DTD	or	to	a	schema
—	and	even	if	an	XML	document	has	a	DTD	or	a	schema,	that
document	may	or	may	not	be	valid.	A	valid	XML	document	is	a
document	whose	names	obey	the	rules	described	in	the
document’s	DTD	or	schema.
To	test	the	validity	of	an	XML	document	use	the	online	test
application	at	www.w3schools.com/XML/xml_validator.asp.

	
•	An	end	tag	begins	with	an	open	angle	bracket	followed	by	a	forward

slash	and	a	name.	The	end	tag’s	last	character	is	a	closing	angle
bracket.

	
In	Listing	5-1,	</intent-filter>	is	an	end	tag.	The	end	tag’s	name	is

intent-filter.
	

•	An	empty	element	tag	begins	with	an	open	angle	bracket	followed	by	a
name.	The	end	tag’s	last	two	characters	are	a	forward	slash,	followed
by	a	closing	angle	bracket.

	
In	Listing	5-1,	the	text	<uses-sdk	android:minSdkVersion=”8”	/>	is	an

empty	element	tag.
	

I	rattle	on	about	tags	a	bit	more	in	the	next	several	paragraphs.	But	in	the
meantime,	I	want	to	describe	an	XML	element.

	
•	An	XML	element	either	has	both	a	start	tag	and	an	end	tag,	or	it
has	an	empty	element	tag.

	
The	document	in	Listing	5-1	contains	several	elements.	For	example,	the
document’s	intent-filter	element	has	both	a	start	tag	and	an	end	tag.
(Both	the	start	and	end	tags	have	the	same	name,	intent-filter,	so	the
name	of	the	entire	element	is	intent-filter.)

http://www.w3schools.com/XML/xml_validator.asp

	
In	Listing	5-1,	the	document’s	action	element	has	only	one	tag	—	an
empty	element	tag.

	
•	The	names	of	XML	elements	are	not	cast	in	stone.

	
In	an	HTML	document,	a	b	element	creates	boldface	text.	For	example,
the	text	Buy	this!	in	an	HTML	document	looks	like	Buy	this!
in	your	web	browser’s	window.

	
In	an	HTML	document,	the	element	name	b	is	cast	in	stone.	But	in	XML
documents,	names	like	manifest,	application,	activity,	and	intent-
filter	are	not	cast	in	stone.	An	XML	document	has	its	own	set	of
element	names,	and	these	names	are	likely	to	be	different	from	the	names
in	most	other	XML	documents.	You	can	create	your	own	well-formed
XML	document	as	follows:

	
<pets>

				<cat>

								Felix

				</cat>

				<cat>

								Sylvester

				</cat>

</pets>
If	your	goal	is	to	store	information	about	kitty	cats,	your	XML	document
is	just	fine.

	

	The	text	in	an	XML	document	is	case-sensitive.	An	element
named	APPLICATION	doesn’t	have	the	same	name	as	another	element
named	application.

	
•	A	non-empty	XML	element	may	contain	content.

	
The	content	is	stuff	between	the	start	tag	and	the	end	tag.	For	example,	in
Listing	5-1,	the	intent-filter	element’s	content	is

	
			<action	android:name=

					“android.intent.action.MAIN”	/>

			<category	android:name=

					“android.intent.category.LAUNCHER”	/>
An	element’s	content	may	include	other	elements.	(In	this	example,	the
intent-filter	element	contains	an	action	element	and	a	category
element.)

	
An	element’s	content	may	also	include	ordinary	text.	For	example,	in
Listing	5-2,	the	resources	element	contains	two	string	elements,	and
each	string	element	contains	ordinary	text.

	

Listing	5-2:	An	Android	strings.xml	File
<?xml	version=”1.0”	encoding=”utf-8”	standalone=”no”?>

<resources>

				<string	name=”hello”>Hello	World!</string>

				<string	name=”app_name”>AnDevCon	App</string>

</resources>

You	can	even	have	mixed	content.	For	example,	between	an	element’s
start	and	end	tags,	you	may	have	some	ordinary	text,	followed	by	an
element	or	two,	followed	by	more	ordinary	text.

	
•	In	some	cases,	two	or	more	elements	may	have	the	same	name.

	
In	Listing	5-2,	two	distinct	elements	have	the	name	string.	To	find	out
more	about	the	names	used	in	an	XML	file,	see	the	nearby	sidebar	“What
element	names	can	you	use?”

	
•	Elements	are	either	nested	inside	one	another,	or	they	don’t	overlap
at	all.

	
In	Listing	5-1,	the	manifest	element	contains	a	uses-sdk	element	and	an

application	element.	The	application	element	contains	an	activity
element,	which	in	turn	contains	an	intent-filter	element,	and	so	on.

	
<manifest>

					

				This	code	demonstrates	element	nesting.

				This	code	is	NOT	a	real	AndroidManifest.xml	file

				

				<uses-sdk	/>

	

				<application>

				

								<activity>

												<intent-filter>

																<action	/>

																<category	/>

												</intent-filter>

								</activity>

	

				</application>

				

</manifest>
In	Listing	5-1	(and	in	the	fake	listing	inside	this	Bullet1)	the	uses-sdk
and	application	elements	don’t	overlap	at	all.	The	action	and	category
elements	don’t	overlap	at	all.	But	whenever	one	element	overlaps
another,	one	of	the	elements	is	nested	completely	inside	the	other.

	
For	example,	in	Listing	5-1,	the	intent-filter	element	is	nested
completely	inside	the	activity	element.	The	following	sequence	of	tags,
with	overlapping	and	not	nesting,	would	be	illegal:

	
<activity>

				<intent-filter>

				This	is	NOT	well-formed	XML	code.

</activity>

				</intent-filter>

	Near	the	start	of	this	chapter,	I	announce	that	the	rules
governing	HTML	aren’t	as	strict	as	the	rules	governing	XML.	In	HTML,
you	can	create	non-nested,	overlapping	tags.	For	example,	the	code
Use	<i>irregular	fonts</i>	sparingly	appears	in	your	web
browser	as

	
Use	irregular	fonts	sparingly

	
with	“Use	irregular”	in	bold	and	“irregular	fonts”	italicized.

	
	

Microsoft	Internet	Explorer	is	a	decent	XML	viewer.	When
you	visit	an	XML	document	with	Internet	Explorer,	you	see	a	colorful,
well-indented	display	of	your	XML	code.	The	code’s	elements	expand
and	collapse	on	your	command.	And	if	you	visit	an	XML	document	that’s
not	well-formed	(for	example,	a	document	with	overlapping,	non-nested
tags),	Internet	Explorer	displays	a	blank	page.	(That’s	good.	Internet
Explorer	reminds	you	that	you’ve	goofed.)

	
•	Each	XML	document	contains	one	element	in	which	all	other
elements	are	nested.

	
In	Listing	5-1,	the	manifest	element	contains	all	other	elements.	That’s
good.	The	following	outline	would	not	make	a	legal	XML	document:

	
<manifest>

				<uses-sdk	/>

				<application>

				</application>				

				

				This	is	NOT	a	well-formed	XML	document

				because	another	element	comes	after	the

				following	manifest	end	tag:		

</manifest>

	

<manifest>

				<uses-sdk	/>

				<application>

				</application>

</manifest>
In	an	XML	document,	the	single	element	that	encloses	all	other	elements
is	the	root	element.

	
•	Start	tags	and	end	tags	may	contain	attributes.

	
An	attribute	is	a	name-value	pair.	Each	attribute	has	the	form

	
name=”value”
The	quotation	marks	around	the	value	are	required.

	
In	Listing	5-1,	the	start	tags	and	empty	element	tags	contain	many
attributes.	For	example,	in	the	manifest	start	tag,	the	text

	
xmlns:android=

		“http://schemas.android.com/apk/res/android”
is	an	attribute.	In	the	same	tag,	the	text

	
package=”com.allmycode.andevcon”
is	an	attribute.	All	in	all,	the	manifest	start	tag	has	four	attributes.	Later
in	Listing	5-1,	the	empty	element	uses-sdk	tag	has	one	attribute.

	

Other	things	you	find	in	an	XML	document
There’s	more	to	life	than	tags	and	elements.	This	section	describes

all	the	things	you	can	look	forward	to.
•	An	XML	document	begins	with	an	XML	declaration.

	
The	declaration	in	Listing	5-1	is

	
<?xml	version=”1.0”	encoding=”utf-8”?>
The	question	marks	distinguish	the	declaration	from	an	ordinary	XML
tag.

	
This	declaration	announces	that	Listing	5-1	contains	an	XML	document
(big	surprise!),	that	the	document	uses	version	1.0	of	the	XML
specifications,	and	that	bit	strings	used	to	store	the	document’s	characters
are	to	be	interpreted	with	their	meanings	as	UTF-8	codes.

	
In	practice,	you	seldom	have	reason	to	mess	with	a	document’s	XML
declaration.	For	a	new	XML	document,	simply	copy	and	paste	the
declaration	in	Listing	5-1.

	

	The	version=”1.0”	part	of	an	XML	declaration	may	look
antiquated,	but	XML	hasn’t	changed	much	since	the	initial	specs
appeared	in	1998.	In	fact,	the	only	newer	version	is	XML	1.1,	which
developers	seldom	use.	This	reluctance	to	change	is	part	of	the	XML
philosophy	—	to	have	a	universal,	time-tested	format	for	representing
information	about	almost	any	subject.

	
•	An	XML	document	may	contain	comments.

	
A	comment	begins	with	the	characters	<!--	and	ends	with	the	characters

-->.	For	example,	the	lines
	

<!--	This	application	must	be	tested

					very,	very	carefully.	-->
form	an	XML	comment.	A	document’s	comments	can	appear	between
tags	(and	in	a	few	other	places	that	aren’t	worth	fussing	about	right	now).

	

	Comments	are	normally	intended	to	be	read	by	humans.	But
programs	that	input	XML	documents	are	free	to	read	comments	and	to	act
on	the	text	within	comments.	Android	doesn’t	normally	do	anything	with
the	comments	it	finds	in	its	XML	files,	but	you	never	know.

	
•	An	XML	document	may	contain	processing	instructions.

	
A	processing	instruction	looks	a	lot	like	the	document’s	XML
declaration.	Here’s	an	example	of	a	processing	instruction:

	
<?chapter	number=”x”	Put	chapter	number	here	?>
A	document	may	have	many	processing	instructions,	and	these
processing	instructions	can	appear	between	tags	(and	in	a	few	other
places).	But	in	practice,	most	XML	documents	have	no	processing
instructions.	(For	reasons	too	obscure	even	for	a	Technical	Stuff	icon,	the
document’s	XML	declaration	isn’t	a	processing	instruction.)

	
Like	a	document’s	XML	declaration,	each	processing	instruction	begins
with	the	characters	<?	and	ends	with	the	characters	?>.	Each	processing
instruction	has	a	name.	But	after	the	processing	instruction’s	name,
anything	goes.	The	processing	instruction	near	the	start	of	this	Bullet1	has
the	name	chapter	followed	by	some	free-form	text.	Part	of	that	text	looks
like	a	start	tag’s	attribute,	but	the	remaining	text	looks	like	a	comment	of
some	sort.

	

	You	can	put	almost	anything	inside	a	processing	instruction.
Most	of	the	software	that	inputs	your	XML	document	will	simply	ignore
the	processing	instruction.	(As	an	experiment,	I	added	my	chapter
processing	instruction	to	the	file	in	Listing	5-1.	This	change	made
absolutely	no	difference	in	the	running	of	my	Android	app.)

	
So	what	good	are	processing	instructions	anyway?	Well,	if	you	stumble
into	one,	I	don’t	want	you	to	mistake	it	for	a	kind	of	XML	declaration.
Also,	certain	programs	may	read	specific	processing	instructions	and	get
particular	information	from	these	instructions.

	
For	example,	a	style	sheet	is	a	file	that	describes	the	look	and	the	layout
of	the	information	in	an	XML	document.	Typically,	an	XML	document
and	the	corresponding	style	sheet	are	in	two	different	files.	To	indicate
that	the	information	in	your	pets.xml	document	should	be	displayed
using	the	rules	in	the	animals.css	style	sheet,	you	add	the	following
processing	instruction	to	the	pets.xml	document:

	
<?xml-stylesheet	href=”animals.css”	type=”text/css”?>
•	An	XML	document	may	contain	entity	references.

	
I	poked	around	among	Android’s	official	sample	applications	and	found
the	following	elements	(spread	out	among	different	programs):

	
<Key	android:codes=”60”	android:keyLabel=”<”/>

<Key	android:codes=”62”	android:keyLabel=”>”/>

<Key	android:codes=”34”	android:keyLabel=”"”/>

<string	name=”activity_save_restore”>

				App/Activity/Save	&	Restore	State

</string>
The	first	element	contains	a	reference	to	the	<	entity.	You	can’t	use	a
real	angle	bracket	just	anywhere	in	an	XML	document.	An	angle	bracket
signals	the	beginning	of	an	XML	tag.	So	if	you	want	to	express	that	the
name	three-brackets	stands	for	the	string	“<<<”,	you	can’t	write

	
<string	name=”three-brackets”><<<</string>
The	extra	brackets	will	confuse	any	program	that	expects	to	encounter
ordinary	XML	tags.

	
So	to	get	around	XML’s	special	use	of	angle	brackets,	the	XML	specs
include	the	entities	<	and	>.	The	first,	<,	stands	for	an	opening
angle	bracket.	The	second,	>,	stands	for	the	closing	angle	bracket.	So
to	express	that	the	name	three-brackets	stands	for	the	string	“<<<”,	you
write

	
<string	name=”three-brackets”><<<</string>

	In	the	entity	<,	the	letters	lt	stand	for	“less	than.”	And
after	all,	an	opening	angle	bracket	looks	like	the	“less	than”	sign	in
mathematics.	Similarly,	in	the	entity	>,	the	letters	gt	stand	for	“greater
than.”

	

What’s	in	a	Namespace?
The	first	official	definition	of	XML	was	published	in	1998	by	the

World	Wide	Web	Consortium	(W3C).	This	first	standard	ignored	a	sticky
problem.	If	two	XML	documents	have	some	elements	or	attributes	with
identical	names,	and	if	those	names	have	different	meanings	in	the	two
documents,	how	can	you	possibly	combine	the	two	documents?

Here’s	a	simple	XML	document:
<?xml	version=”1.0”	encoding=”utf-8”?>

<banks>

				<bank>First	National	Bank</bank>

				<bank>Second	Regional	Bank</bank>

				<bank>United	Trustworthy	Trusty	Trust</bank>

				<bank>Federal	Bank	of	Fredonia	(Groucho	Branch)</bank>

</banks>

And	here’s	another	XML	document:
<?xml	version=”1.0”	encoding=”utf-8”?>

<banks>

				<bank>Banks	of	the	Mississippi	River</bank>

				<bank>La	Rive	Gauche</bank>

				<bank>La	Rive	Droite</bank>

				<bank>The	Banks	of	Plum	Creek</bank>

</banks>

An	organization	with	seemingly	limitless	resources	aims	to	collect
and	combine	knowledge	from	all	over	the	Internet.	The	organization’s
software	finds	XML	documents	and	combines	them	into	one	super	all-
knowing	document.	(Think	of	an	automated	version	of	Wikipedia.)

But	when	you	combine	documents	about	financial	institutions	with
documents	about	rivers,	you	get	some	confusing	results.	If	both	First
National	and	the	Banks	of	Plum	Creek	are	in	the	same	document’s	bank
elements,	analyzing	the	document	may	require	prior	knowledge.	In	other
words,	if	you	don’t	already	know	that	some	banks	lend	money	and	that
other	banks	flood	during	storms,	you	might	draw	some	strange
conclusions.	And	unfortunately,	computer	programs	don’t	already	know
anything.	(Life	becomes	really	complicated	when	you	reach	an	XML
element	describing	the	Red	River	Bank	in	Shreveport,	Louisiana.	This
river	bank	has	teller	machines	in	Shreveport,	Alexandria,	and	other
towns.)

To	remedy	this	situation,	members	of	the	XML	standards	committee
created	XML	namespaces.	A	namespace	is	a	prefix	that	you	attach	to	a
name.	You	separate	the	namespace	from	the	name	with	a	colon	(:)
character.	For	example	in	Listing	5-1,	almost	every	attribute	name	begins
with	the	android	prefix.	The	listing’s	attributes	include
android:versionCode,	android:versionName,	android:minSdkVersion,
android:icon,	and	more.

So	to	combine	documents	about	lending	banks	and	river	banks,	you
create	the	XML	document	in	Listing	5-3.

Listing	5-3:	A	Document	with	Two
Namespaces
<?xml	version=”1.0”	encoding=”utf-8”?>

	

<banks	xmlns:money=

														“http://schemas.allmycode.com/money”

							xmlns:river=

														“http://schemas.allmycode.com/river”>

														

				<money:bank>First	National	Bank</money:bank>

				<money:bank>Second	Regional	Bank</money:bank>

				<money:bank>

								United	Trustworthy	Trusty	Trust

				</money:bank>

				<money:bank>

								Federal	Bank	of	Fredonia	(Groucho	Branch)

				</money:bank>

				

				<river:bank>

								Banks	of	the	Mississippi	River

				</river:bank>

				<river:bank>La	Rive	Gauche</river:bank>

		 	<river:bank>La	Rive	Droite</river:bank>

				<river:bank>The	Banks	of	Plum	Creek</river:bank>

				

</banks>

	

In	a	name	such	as	android:icon,	the	word	android	is	a
prefix,	and	the	word	icon	is	a	local	name.
At	this	point,	the	whole	namespace	business	branches	into	two

possibilities:
•	Some	very	old	XML	software	is	not	namespace-aware.

	
The	original	XML	standard	had	no	mention	of	namespaces.	So	the	oldest
XML-handling	programs	do	nothing	special	with	prefixes.	To	an	old
program,	the	names	money:bank	and	river:bank	in	Listing	5-3	are
simply	two	different	names	with	no	relationship	to	each	other.	The	colons
in	the	names	are	no	different	from	the	letters.

	
•	Newer	XML	software	is	namespace-aware.

	
In	some	situations,	you	want	the	software	to	recognize	relationships
between	names	with	the	same	prefixes	and	between	identical	names	with
different	prefixes.	For	example,	in	a	document	containing	elements
named	consumer:bank,	investment:bank,	and	consumer:confidence,
you	may	want	your	software	to	recognize	two	kinds	of	banks.	You	may
also	want	your	software	to	deal	with	two	kinds	of	consumer	elements.

	
Most	modern	software	is	namespace-aware.	That	is,	the	software
recognizes	that	a	name	like	river:bank	consists	of	a	prefix	and	a	local
name.

	
To	make	it	easier	for	software	to	sort	out	an	XML	document’s

namespaces,	every	namespace	must	be	defined.	In	Listing	5-3,	the
attributes
xmlns:money=

							“http://schemas.allmycode.com/money”

xmlns:river=

							“http://schemas.allmycode.com/river”

define	the	document’s	two	namespaces.	The	attributes	associate	one
URL	with	the	money	namespace	and	another	URL	with	the	river
namespace.	The	special	xmlns	namespace	doesn’t	get	defined	because	the
xmlns	namespace	has	the	same	meaning	in	every	XML	document.	The
xmlns	prefix	always	means,	“This	is	the	start	of	an	XML	namespace
definition.”

In	Listing	5-3,	each	namespace	is	associated	with	a	URL.	So	if
you’re	creating	a	new	XML	document,	you	may	ask,	“What	if	I	don’t
have	my	own	domain	name?”	You	may	also	ask,	“What	information	must
I	post	at	a	namespace’s	URL?”	And	the	surprising	answers	are	“Make	up
one”	and	“Nothing.”

The	string	of	symbols	doesn’t	really	have	to	be	a	URL.	Instead,	it
can	be	a	URI	—	a	Universal	Resource	Identifier.	A	URI	looks	like	a
URL,	but	a	URI	doesn’t	have	to	point	to	an	actual	network	location.	A
URI	is	simply	a	name,	a	string	of	characters	“full	of	sound	and	fury”	and
possibly	“signifying	nothing.”	Some	XML	developers	create	web	pages
to	accompany	each	of	their	URIs.	The	web	pages	contain	useful
descriptions	of	the	names	used	in	the	XML	documents.

But	most	URIs	used	for	XML	namespaces	point	nowhere.	For
example,	the	URI	http://schemas.android.com/apk/res/android	in
Listing	5-1	appears	in	almost	every	Android	XML	document.	If	you	type
that	URI	into	the	address	field	of	your	favorite	web	browser,	you	get	the
familiar	cannot	display	the	webpage	or	Server	not	found	message.

	An	unbound	prefix	message	indicates	that	you	haven’t
correctly	associated	a	namespace	found	in	your	XML	document	with
a	URI.	Some	very	old	software	(software	that’s	not	namespace-
aware)	doesn’t	catch	errors	of	this	kind,	but	most	modern	software
does.

The	package	attribute
In	Listing	5-1,	the	attribute	name	package	has	no	prefix.	So	you

might	say,	“What	the	heck!	I’ll	change	the	attribute’s	name	to
android:package	just	for	good	measure.”	But	this	change	produces	some
error	messages.	One	message	reads	<manifest>	does	not	have	a
package	attribute.	What’s	going	on	here?

In	an	AndroidManifest.xml	file,	the	package	attribute	has	more	to
do	with	Java	than	with	Android.	(The	package	attribute	points	to	the	Java
package	containing	the	application’s	Java	code.)	So	the	creators	of
Android	decided	not	to	make	this	package	attribute	be	part	of	the
android	namespace.	The	creators	coded	the	android	namespace	words
(such	as	android:versionCode	and	android:versionName)	in	some	of
the	Android	SDK	files.

When	you	create	an	AndroidManifest.xml	file,	Eclipse	starts
building	parts	of	your	project	immediately.	The	Android	software
compares	the	names	in	your	AndroidManifest.xml	file	with	the	words	in
the	android	namespace.	As	soon	as	the	Android	software	encounters	the
evil	android:package	(the	android	prefix	followed	by	a	non-android
name),	the	software	sounds	the	alarms.

	Each	Android	platform,	from	Cupcake	onward,	has	a	file
named	public.xml	among	the	files	you	get	when	you	download	the
Android	SDK.	If	you	open	a	public.xml	file	in	a	text	editor,	you	see
a	list	of	names	in	the	android	namespace.

The	style	attribute
The	same	business	about	not	being	an	android	name	holds	for

style	and	package.	A	style	is	a	collection	of	items	(or	properties)
describing	the	look	of	something	on	the	mobile	device	screen.	A	style’s
XML	document	might	contain	Android-specific	names,	but	the	style	itself
is	simply	a	bunch	of	items,	not	an	Android	property	in	its	own	right.

To	see	how	this	works,	imagine	creating	a	very	simple	app.	The
XML	file	describing	the	app’s	basic	layout	may	look	like	the	code	in
Listing	5-4.

Listing	5-4:	Using	the	style	Attribute
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

		“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”

				>

<TextView		

				android:layout_width=”fill_parent”

				android:layout_height=”wrap_content”

				android:text=”@string/callmom”

				style=”@style/bigmono”

				/>

</LinearLayout>

In	Listing	5-4,	all	attribute	names	except	style	(and	the	name
android	itself)	are	in	the	android	namespace.	The	value
“@style/bigmono”	points	Android	to	an	XML	file	in	your	app’s
res/values	folder.	Listing	5-5	contains	a	very	simple	file	named
styles.xml.

Listing	5-5:	A	File	with	Style
<?xml	version=”1.0”	encoding=”utf-8”?>

<resources>

				<style	name=”bigmono”>

								<item	name=”android:textSize”>50dip</item>

								<item	name=”android:typeface”>monospace</item>

				</style>

</resources>

Again,	notice	the	mix	of	words	that	are	inside	and	outside	of	the
android	namespace.	The	words	android:textSize	and
android:typeface	are	in	the	android	namespace,	and	the	other	words	in
Listing	5-5	are	not.

The	style	in	Listing	5-5	specifies	a	whopping	50	device-independent
pixels	for	the	size	of	the	text	and	monospace	(traditional	typewriter)	font
for	the	typeface.	When	Android	applies	the	style	in	Listing	5-5	to	the
layout	in	Listing	5-4,	you	see	the	prominent	message	in	Figure	5-1.

	

Figure	5-1:	Be	a	good	son	or	daughter.

	For	more	information	about	styles,	layouts,	device-

independent	pixels,	and	the	use	of	XML	to	describe	these	things,	see
Book	IV,	Chapter	1.

	

Chapter	1:	Android	Activities

In	This	Chapter
Launching	an	activity
Going	through	an	activity’s	lifecycle

Getting	information	from	an	activity
	

On	a	desktop	computer,	everything	starts	with	a	window.	Open	a
window,	and	run	a	word	processor.	Open	another	window,	and	read	your
e-mail.	Move	a	window,	minimize	a	window,	resize	a	window.	It’s	a	very
familiar	story.

But	mobile	devices	aren’t	desktop	computers.	A	smartphone	has	a
relatively	small	screen,	and	if	by	chance	you	could	open	several	windows
at	once,	the	phone’s	processor	would	fall	over	from	exhaustion.	On	a
mobile	phone,	the	“window”	metaphor	would	lead	to	nothing	but	trouble.

Tablet	devices	have	larger	screens	and	better	processors	than	their
telephone	cousins.	You	can	probably	squeeze	a	few	windows	on	a	tablet
screen,	but	the	power	that	you	would	allocate	to	window-handling	could
be	put	to	better	use.

So	where	does	that	leave	you?	The	earliest	computers	had	no
windows	and	no	multi-tasking.	You	can’t	have	that.	Without	some	kind
of	multi-tasking,	“smartphones”	wouldn’t	be	smart.

Along	comes	Android’s	solution	—	namely,	the	activity.	In	other
chapters,	I	refer	to	an	activity	as	“one	‘screenful’	of	components.”	I	liken
activities	to	online	forms,	such	as	“a	form	for	entering	information	to
make	a	purchase	on	a	website.”	I	write,	“Unlike	most	online	forms,
Android	activities	don’t	necessarily	have	text	boxes	—	places	for	the	user
to	type	credit	card	numbers	and	such.	But	Android	activities	have	a	lot	in
common	with	online	forms.”	I	love	quoting	myself.

All	about	Activities

Here’s	what	the	official	Android	docs	say	about	an	activity:
“An	activity	is	a	single,	focused	thing	that	the	user	can	do.	Almost	all
activities	interact	with	the	user,	so	the	Activity	class	takes	care	of
creating	a	window	for	you	in	which	you	can	place	your	UI	with
setContentView(View).	.	.	.	Activities	are	often	presented	to	the	user	as
full-screen	windows	.	.	.”

	
The	android.app.Activity	class’s	code	is	a	complete,	official

definition	describing	what	an	activity	is	and	what	an	activity	isn’t.	But
from	an	app	designer’s	point	of	view,	no	formal	definition	of	activity
paints	the	complete	picture.	So	maybe	the	way	to	describe	an	activity	is
behaviorally.	Here’s	my	informal	description:

At	some	point	during	the	run	of	an	app,	an	app	designer	fills	up	the
screen	with	stuff.	At	that	point,	the	designer	thinks,	“I	have	to	move	all
this	stuff	out	of	the	way	so	the	user	can	deal	sensibly	with	whatever	has
become	most	important.”	So	the	designer	creates	a	new	screen	layout,
codes	the	layout’s	behavior,	and	refers	to	the	whole	business	(the	layout
and	its	behavior)	as	a	new	activity.

At	that	(newer)	point,	the	designer	has	two	different	activities	—	the
original	activity	that	filled	up	the	screen	with	stuff	and	the	new	activity
that	deals	with	whatever	has	become	most	important.	On	a	smaller	device
(or	on	a	device	running	anything	earlier	than	Honeycomb),	each	activity
fills	the	entire	screen.	The	original	activity	invokes	the	new	activity	and
then	the	new	activity	covers	the	original	activity.

Under	normal	circumstances,	the	two	activities	form	part	of	a	stack
—	a	first	in,	last	out	structure.	Imagine	that	Activity	A	invokes	Activity
B,	which	in	turn	invokes	Activity	C.	Then	the	activities	A,	B,	and	C	form
a	stack,	with	Activity	C	being	on	top	of	the	stack	(and	visible	to	the	user).
When	the	user	presses	the	Back	button,	Activity	C	pops	off	the	stack	to
reveal	Activity	B.	When	the	user	presses	the	Back	button	again,	Activity
B	pops	off	the	stack	to	reveal	Activity	A.

A	stack	of	Android	activities	is	called	a	task.	So	now	you	have	apps,
activities,	and	tasks.	Unfortunately,	these	words	have	different	meanings
for	Android	developers	than	they	have	for	the	rest	of	the	world.

An	application	is	a	collection	of	things	meant	to	accomplish	a
particular	user	goal.	Some	of	the	things	belonging	to	an	app	are	activities.

	The	other	things	belonging	to	an	app	are	services,	broadcast
receivers,	and	content	providers.	I	cover	these	things	in	Chapters	3,	4
and	5	of	this	minibook.

Applications	and	processes
	A	typical	operating	system	(Android	included)	has	users,

processes,	and	threads.
Each	person	who	logs	onto	the	system	is	a	user.	But	the

system	may	also	create	virtual	users	—	things	that	the
operating	system	treats	as	separate	users,	but	that	don’t
correspond	to	people	using	keyboards.
With	users	who	aren’t	real	people,	a	system	can	create

specialized	pathways	for	access	to	resources.	For	example,	a
database	might	be	the	only	“user”	with	permission	to	access
certain	data.	A	real,	human	user	gets	the	data	indirectly.	The
human	user	logs	in	to	the	database	and	asks	the	database	to	fetch
the	data	on	his	or	her	behalf.
Each	user	on	a	system	(a	session	conducted	by	a	real	person	or	a

virtual	user)	has	a	user	identification	number	(UID).
Throughout	most	of	this	book,	I	refer	to	the	person	who	touches

the	device’s	screen	as	“the	user.”	I	don’t	worry	too	much	about
virtual	users.

The	operating	system	divides	its	work	into	processes.
Each	process	has	its	own	memory	space,	separate	from	the

space	belonging	to	other	processes.	Processes	interact	with	one
another	only	through	narrow,	well-policed	pathways.
The	system	schedules	the	running	of	processes.	To	do	this,	the

system	executes	a	sequence	of	statements	in	one	process,	then	a
sequence	of	statements	in	another	process,	then	a	sequence	in	a
third,	eventually	returning	to	the	place	where	the	first	process	left
off.
Each	process	has	a	process	identification	number	(PID).
A	process	may	divide	its	work	into	threads.

The	operating	system	schedules	threads	in	an	interleaved
fashion.	In	this	respect,	a	thread	is	a	lot	like	a	process.	But	a	single
process’s	threads	share	the	process’s	memory	space.	So	a	single
process’s	threads	can	communicate	freely	with	one	another.
With	Android,	each	app	runs	in	its	own	process	as	well	as	bearing
its	own	PID	and	its	own	UID.	(Apps	don’t	hold	onto	their	PIDs	or
UIDs	from	one	run	to	another.	The	operating	system	assigns	these
numbers	at	the	start	of	a	run	and	then	dumps	them	at	the	end	of	the
run.	The	system	assigns	new	numbers	for	the	app’s	next	run.)
Android	assigns	PIDs	incrementally	as	new	processes	are	created.
So	when	your	app	starts	running,	it	may	have	PID	1900.	Later,
your	device	may	be	running	low	on	memory.	Android	might
notice	that	none	of	your	app’s	components	are	needed	in	the	short
term.	(For	example,	the	device	is	displaying	a	different	app’s
activity,	and	your	app	contains	no	long-running	services.)	To	save
space,	Android	might	kill	your	app’s	process.	Poof!	The	process	is
gone.
Of	course,	the	user	knows	nothing	of	this	process	assassination.
(I’m	referring	to	the	human	user,	not	some	virtual	figment	of	the
system’s	imagination.)	The	user	simply	wanders	away	from	your
app’s	activities	by	invoking	another	activity,	by	pressing	Home,
by	answering	a	phone	call,	or	some	other	way.	So	at	some	point,
the	user	says,	“Hey,	wait!	I	want	to	get	back	to	what	I	was	doing	a
few	minutes	ago.”	The	user	navigates	back	to	one	of	your
process’s	activities.	So	Android	(clever	operating	system	that	it	is)
starts	a	new	process	to	run	your	application,	re-creates	your	app’s
activity	as	it	was	before	the	murder,	and	displays	the	activity	as	if
nothing	unusual	happened.	Now	your	application	has	a	new	PID
(maybe	1921)	because	Android	created	several	other	processes
between	the	time	of	your	app’s	murder	and	the	time	of	your	app’s
rebirth.

	
Each	application	runs	in	its	own	Android	Linux	process,	with	its

own	user	ID.	This	is	one	of	Android’s	security	strengths.	Separate
processes	don’t	share	any	memory.	So	in	effect,	each	application	is
sandboxed	from	the	rest	of	the	system,	with	very	narrowly	defined
(tightly	guarded)	paths	of	communication	between	one	application	and

another.	If	an	application	does	something	wrong	(either	maliciously	or
unintentionally),	the	chance	of	that	wrongdoing	affecting	the	rest	of	the
system	is	limited.	As	a	developer,	you	create	an	application	using	the
XML	<application>	element	in	the	app’s	AndroidManifest.xml	file.

An	activity	can	(and	frequently	does)	invoke	activities	belonging	to
other	apps.	(For	example,	an	e-mail	message	might	contain	a	link.	So	an
e-mail	app’s	activity	might	invoke	a	web	browser	app’s	activity.)	That
means	that	a	particular	task	might	contain	activities	from	several
applications.	(See	Figure	1-1.)

	

Figure	1-1:	Activities,	apps,	and	tasks.

The	scenario	often	works	this	way:
1.	The	user	starts	an	app.	(Call	it	Application	1.)

	 Android	creates	a	new	process	for	the	app,	creates	an	instance	of	the
app’s	main	activity,	and	puts	the	main	activity	onto	a	brand-new	task
stack.	(Call	it	Task	1.)

	 2.	From	the	app’s	main	activity,	the	user	invokes	another	activity
(say,	a	secondary	activity	belonging	to	the	same	app).

	 Android	creates	a	new	instance	of	the	secondary	activity.	Android
pushes	the	secondary	activity	onto	the	task	stack.	(See	Figure	1-2.)	The
device’s	screen	displays	only	the	secondary	activity.	(Think	of	the	app’s
main	activity	as	being	hidden	underneath	the	secondary	activity.	Call	the
main	activity	Activity	1;	call	the	secondary	activity	Activity	2.)

	
	

Figure	1-2:	The	user	launches	Activities	1	and	2.

3.	The	user	presses	Home.
	 Android	moves	Task	1	off	the	screen	and	displays	the	Home	screen,

as	shown	in	Figure	1-3.
	 4.	The	user	starts	a	second	app.	(How	about	calling	it	Application

2?)
	 With	the	Task	1	still	waiting	in	the	wings,	Android	creates	a	second

task	(Task	2)	with	the	second	app’s	main	activity.
	 5.	The	user	presses	Home	again	and	presses	the	icon	for	Application

1.
	 See	Figure	1-4.	Android	displays	the	top	of	the	Task	1	stack.

Activity	2	is	still	at	the	top	of	Task	1.	So	the	user	sees	Activity	2.
Happily,	Activity	2	is	in	the	same	state	as	it	was	when	the	user	first
pressed	Home.	Any	text	fields	still	have	whatever	text	the	user	previously
entered,	and	so	on.

	 6.	The	user	presses	the	Back	button.
	 Android	pops	Activity	2	off	the	Task	1	stack	and	destroys	this

instance	of	Activity	2.	The	user	sees	Activity	1,	which	is	in	the	same	state
as	it	was	immediately	before	Android	covered	up	Activity	1	with	Activity

2.
	 7.	From	Activity	1,	the	user	again	invokes	the	secondary	activity

belonging	to	Application	1.
	 Android	creates	a	brand-new	instance	of	the	secondary	activity.

Android	pushes	the	secondary	activity	onto	the	task	stack.	The	device’s
screen	displays	only	the	secondary	activity.	This	new	instance	is	not	in
the	same	state	that	Activity	2	was	in	when	Activity	2	was	destroyed.	This
new	instance	is	initialized	with	new	values	(which	is	normal	for	brand-
new	objects).

	
	

Figure	1-3:	After	invoking	Application	2,	the	user	returns	home.

	

Figure	1-4:	The	user	dismisses	Activity	2	and	then	invokes	Activity	2.

	

The	scenario	in	these	steps	can	have	many	variations.	For
starters,	the	user	doesn’t	necessarily	press	buttons	and	icons	in	the
order	described	in	the	steps.	For	another	thing,	a	developer	can
change	the	way	in	which	activities	pile	onto	tasks.	(See	Chapter	2	in
this	minibook.)	And	from	Honeycomb	onward,	Android	has
fragments,	which	are	like	activities	but	take	up	only	part	of	a	tablet
device’s	screen.	(See	Chapter	4	in	minibook	IV.)

State	your	intention
The	Android	programming	model	is	based	on	the	use	of	scarce

resources.	Compared	to	a	desktop	or	laptop	computer,	a	smartphone	has	a
small	screen,	limited	memory,	and	a	wimpy	processor.	With	that	in	mind,
the	original	creators	of	Android	focused	on	reuse.

Imagine	that	my	app	includes	a	link	to	my	website.	When	the	user
clicks	the	link,	Android	opens	a	web	browser.	But	which	browser	does
Android	open?	Android	comes	with	its	own	browser	(based	on	Apple’s
WebKit	engine).	But	the	user	might	have	also	installed	Firefox	for
Android,	Opera	Mini,	or	any	number	of	other	web	browsers.

In	Microsoft	Windows,	the	choice	of	browser	depends	on	filename
extensions	and	protocol	associations.	But	in	Android,	the	developer
invokes	a	browser	by	issuing	an	intent.

In	Android	development,	an	intent	is	like	an	open-ended	method
call.	Instead	of	coding	something	like
firefox(“http://www.google.com”);

or
android_built_in_browser(“http://android.allmycode.com”);

you	code	the	following:
String	url	=	“http://android.allmycode.com”;

Intent	intent	=	new	Intent(Intent.ACTION_VIEW);

intent.setData(Uri.parse(url));

startActivity(intent);

In	this	example,	calling	startActivity(intent)	is	like	throwing	an
I-want-to-browse	ball	into	the	air	and	expecting	another	app’s	activity	to
catch	it.	Another	app	announces	its	intentions	to	catch	the	I-want-to-
browse	ball	by	putting	an	element	of	the	following	kind	in	the	app’s
AndroidManifest.xml	file:
<activity	android:name=”.Catcher”

										android:label=”Catcher”>

		<intent-filter>

				<action

						android:name=”android.intent.action.VIEW”	/>

				<category

						android:name=”android.intent.category.DEFAULT”	/>

				<category

						android:name=”android.intent.category.BROWSABLE”	/>

				<data	android:scheme=”http”	/>

		</intent-filter>

</activity>

Again,	I	quote	Android’s	official	documentation:
“An	intent	is	an	abstract	description	of	an	operation	to	be	performed.	It
can	be	used	with	startActivity	to	launch	an	Activity,	An	Intent
provides	a	facility	for	performing	late	runtime	binding	between	the	code
in	different	applications.	Its	most	significant	use	is	in	the	launching	of
activities,	where	it	can	be	thought	of	as	the	glue	between	activities.	It	is
basically	a	passive	data	structure	holding	an	abstract	description	of	an
action	to	be	performed.”

	
In	truth,	Android	has	two	kinds	of	intents	—	implicit	and	explicit

intents.
•	The	kind	of	intent	that	I	describe	in	the	previous	paragraphs	(to	start	any
activity	claiming	to	be	a	web	browser)	is	an	implicit	intent.	An	implicit
intent	doesn’t	call	for	a	particular	activity	to	be	launched.	Instead,	an
implicit	intent	names	an	action	to	be	taken,	along	with	other	information
required	to	fulfill	the	intent.

	

The	intent
	

Intent	intent	=	new	Intent(Intent.ACTION_VIEW);

intent.setData(Uri.parse(url));
is	an	implicit	intent.

	

	I	cover	implicit	intents	in	Chapter	2	of	this	minibook.
	

•	An	explicit	intent	actually	names	an	activity	class	whose	instance	is	to
be	launched.

	
In	this	chapter’s	examples,	I	use	explicit	intents	to	launch	activities.	So
the	next	section	covers	explicit	intents.

	

The	explicit	intent
To	use	an	explicit	intent,	you	can	write	something	like	code	in

Listing	1-1.

Listing	1-1:	Calling	Your	Own	App’s	Activity
Using	an	Explicit	Intent
package	my.pack;

	

import	android.app.Activity;

import	android.os.Bundle;

	

public	class	SomeActivity	extends	Activity	{

		//	...	code	of	some	sort	belongs	here

				

		Intent	intent	=	new	Intent();

		intent.setClassName(“my.pack”,	“my.pack.OtherActivity”);

		startActivity(intent);

}

In	Listing	1-1,	the	intent’s	setClassName	method	takes	two	String
parameters.	The	first	parameter	is	the	name	of	the	package	containing	the
target	activity,	and	the	second	parameter	is	the	activity’s	fully	qualified
class	name.	So	in	Listing	1-1,	the	call	to	setClassName	has	two	strings
containing	“my.pack”.	(There	may	be	a	reasonable	way	to	avoid
repetition,	where	you’d	write	something	like	setClassName(“my.pack”,
“OtherActivity”).	But	if	there	is	one,	no	one’s	told	me	about	it.)

To	invoke	another	app’s	activity,	you	can	write	something	like	the
code	in	Listing	1-2.

Listing	1-2:	Calling	another	App’s	Activity
Using	an	Explicit	Intent
package	my.pack;

	

import	android.app.Activity;

import	android.os.Bundle;

	

public	class	SomeActivity	extends	Activity	{

		//	...	code	of	some	sort	belongs	here

				

		intent	=	new	Intent();

		intent.setClassName(“other.pack”,

																						“other.pack.OtherAppActivity”);

		startActivity(intent);

}

Listing	1-2	is	almost	exactly	like	Listing	1-1.	The	only	difference	is
that	in	Listing	1-2,	the	two	activities	(the	invoking	and	the	invoked
activities)	belong	to	two	different	applications.	Different	applications
means	different	packages.	So	Listing	1-1	has	“my.pack”,	and	Listing	1-2
has	“other.pack”.

	

For	each	activity	in	your	application,	you	must	add	an
<activity>	element	to	the	AndroidManifest.xml	file.	If	one
project’s	activity	invokes	another	project’s	activity,	you	must	make
Eclipse	aware	of	the	connection	between	the	two	projects.	In	the
Package	Explorer,	select	the	project	that	contains	the	startActivity
call.	Then	choose	Project⇒Properties.	In	the	resulting	Properties
dialog	box,	choose	Java	Build	Path⇒Projects.	Add	the	target
activity’s	project	and	then	click	OK.	Failure	to	do	any	of	this	stuff
results	in	a	runtime	Cannot	Find	Activity	message.	And	when	you
see	such	a	message,	screaming	“Whadaya	mean,	Cannot	Find
Activity?”	won’t	solve	the	problem.

Using	a	context
Another	way	to	start	a	specific	activity	is	with	a	context.	In	Listing

1-3,	an	activity	calls	another	activity	within	the	same	application.

Listing	1-3:	Calling	Your	Own	App’s	Activity
Using	an	Explicit	Intent	with	a	Context
package	my.pack;

	

import	android.app.Activity;

import	android.os.Bundle;

	

public	class	SomeActivity	extends	Activity	{

		//	...	code	of	some	sort	belongs	here

				

		Intent	intent	=

				new	Intent(this,	OtherActivity.class);

		startActivity(intent);

}

In	Listing	1-3,	the	last	two	statements	are	really	saying,	“With	this
activity’s	own	context,	start	running	an	instance	of	OtherActivity.”	(If
all	goes	well,	the	class	OtherActivity	extends	Android’s	Activity	class,
and	you’re	good	to	go.)

In	Listing	1-3,	the	Intent	class’s	constructor	takes	two	parameters
—	a	context	and	a	Java	class.	The	word	this	represents	the	enclosing
SomeActivity	instance.	That’s	good,	because	the	constructor’s	first
parameter	is	of	type	Context,	and	Android’s	Activity	class	is	a	subclass
of	the	abstract	Context	class.

A	Context	object	is	an	“interface	to	global	information	about	an
application	environment.”	(Again,	I’m	quoting	the	Android	docs.)	An
activity	is	a	context	because	(aside	from	being	a	subclass	of	Context)	an
activity	has	a	bunch	of	files,	a	package	name,	a	bunch	of	resources,	a
theme,	wallpaper,	and	other	things.	All	this	stuff	is	available
programmatically	by	way	of	the	activity’s	context.	In	Listing	1-3,	the
Intent	constructor	gets	the	OtherActivity’s	package	name	from	this
—	the	SomeActivity	object’s	context.

Each	activity	is	part	of	an	application,	and	an	Application	instance
is	also	a	context.	So	in	many	programs,	you	can	use	any	of	the	following
method	calls	(instead	of	this)	to	obtain	a	Context	instance:
getContext()

getApplicationContext()

getBaseContext()

	The	getApplicationContext	and	getBaseContext	methods
have	limited,	specialized	uses	in	Android	programs.	In	this	book’s
examples,	you’ll	never	need	to	call	getApplicationContext	or
getBaseContext.
In	Listing	1-4,	an	activity	from	one	app	uses	a	context	to	call

another	app’s	activity.

Listing	1-4:	Calling	another	App’s	Activity

Using	an	Explicit	Intent	with	a	Context
package	my.pack;

	

import	android.app.Activity;

import	android.os.Bundle;

	

public	class	SomeActivity	extends	Activity	{

		//	...	code	of	some	sort	belongs	here

				

		try	{

				otherContext	=

						createPackageContext(“other.pack”,

						Context.CONTEXT_IGNORE_SECURITY	|

						Context.CONTEXT_INCLUDE_CODE);

		}	catch	(NameNotFoundException	e)	{

				e.printStackTrace();

		}

		Class<?>	otherClass	=	null;

		try	{

				otherClass	=	otherContext.getClassLoader().

						loadClass(“other.pack.OtherAppActivity”);

		}	catch	(ClassNotFoundException	e)	{

				e.printStackTrace();

		}

		Intent	intent	=	new	Intent(otherContext,	otherClass);

		startActivity(intent);

}

Listing	1-4	is	more	complicated	than	Listing	1-3.	But	most	of	the
complexity	comes	from	the	way	Java	loads	classes.	One	way	or	another,
Listing	1-4	creates	an	intent	from	a	context	and	a	class	name,	and	then
starts	the	intent’s	activity.

The	Activity	Lifecycle
“...	And	one	man	in	his	time	plays	many	parts,	His	acts	being	seven
ages.”

	

—	from	As	You	Like	It,	by	William	Shakespeare
	

The	human	lifecycle	is	infancy,	childhood,	adolescence,	young
adulthood,	middle	age,	old	age,	and	finally,	the	end.

Android	activities	have	a	lifecycle,	too.	Here	are	the	stages:
•	Active	(or	Running):	The	activity	is	in	the	foreground	on	the	device’s
screen	at	the	top	of	a	task	stack.	The	user	can	interact	with	the	activity.

	
•	Stopped:	The	activity	is	on	a	task	stack,	but	the	activity	isn’t	visible.
Maybe	the	activity	isn’t	at	the	top	of	its	stack	and	other	activities	on	the
stack	are	covering	up	that	activity.	Alternatively,	the	activity	isn’t	visible
because	the	device’s	screen	displays	something	that’s	not	part	of	this
activity’s	stack.

	
•	Paused:	The	Paused	state	is	a	kind	of	limbo	between	Active	and
Stopped.	Officially,	an	activity	is	paused	if	it’s	on	the	currently	active
stack	but	it’s	partially	obscured	by	another	activity	(such	as	a	transparent
activity	or	a	non-full-screen	activity	that’s	at	the	top	of	the	stack).

	
In	practice,	an	activity	that’s	transitioning	from	Active	to	Stopped	goes
through	a	brief	period	of	being	Paused,	even	if	the	user	doesn’t	see	a
“partially	obscured”	phase.

	
•	Destroyed:	How	sad!	But	wait!	Destroyed	doesn’t	mean	“dead	and
gone	forever.”	Android	might	destroy	an	activity	in	order	to	revive	it	with
a	different	configuration.	Or	Android	might	temporarily	clobber	an
activity	while	the	user	isn’t	actively	using	that	activity.

	

Lifecycle	methods
Most	cultures	have	rites	of	passage.	A	rite	of	passage	is	something

that	you	do	when	you	transition	from	one	life	stage	to	another.	For
example,	where	I	come	from,	a	child	does	the	following	when
transitioning	to	adolescence:	“Ye	shall	stand	at	the	highest	point	in	all	of
thy	land	(which	is	normally	the	Dauphin	Street	station	of	the	Frankford	El

train)	and	swing	a	raw	fish	thrice	over	thy	head.	All	the	while,	thou	shalt
exclaim,	‘I	shall	be	a	troublesome,	raving	lunatic	for	the	next	few	years.’
“

Android	activities	have	their	own	rites	of	passage,	dubbed	lifecycle
methods.	Figure	1-5	illustrates	the	methods.

Unlike	people,	activities	don’t	step	predictably	from	one	stage	to	the
next.	For	example,	a	typical	activity	goes	back	and	forth	from	being
Active	to	Stopped	and	back	to	Active	again,	with	several	interludes	of
being	Paused.	And	when	Destroyed,	an	activity	can	unceremoniously	be
revived.	For	an	activity,	destruction	and	reconstruction	are	parts	of	the
normal	course	of	events.

An	Android	activity	has	seven	lifecycle	methods	—	namely,
onCreate,	onRestart,	onStart,	onResume,	onPause,	onStop,	and
onDestroy.	In	addition,	an	activity	has	a	few	onSomething	methods	(such
as	onSave	InstanceState)	that	aren’t	formally	part	of	the	lifecycle	and
aren’t	guaranteed	to	be	called.	Anyway,	Listing	1-5	contains	a	bunch	of
these	methods.

	

Figure	1-5:	The	life,	death,	and	rebirth	of	an	Android	activity.

Listing	1-5:	Add	Some	Logging	to	Your
Activity
package	com.allmycode.demo1;

	

import	android.app.Activity;

import	android.content.res.Configuration;

import	android.os.Bundle;

import	android.view.View;

	

public	abstract	class	MyActivity	extends	Activity	{

				

				abstract	void	logStuff(String	message);

				

				public	void	addBreak(View	view)	{

								logStuff(“------”);

				}

							

				/**	Called	when	the	activity	is	created	(either

					*		for	the	first	time	or	after	having	been

					*		Destroyed.	*/

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								logStuff(“onCreate”);

				}

				/**	Called	when	the	activity	transitions	to

					*		Paused	(on	its	way	to	Active)	after	having

					*		been	Stopped.

					*/

				@Override

				public	void	onRestart()	{

								super.onRestart();

								logStuff(“onRestart”);

				}

	

				/**	Called	when	the	activity	transitions	to

					*		Paused	(on	its	way	to	Active),	either	for

					*		the	first	time	or	after	the	activity	has

					*		been	Stopped.

					*/

				@Override

				public	void	onStart()	{

								super.onStart();

								logStuff(“onStart”);

				}

	

				/**	Called	when	the	activity	transitions

					*		from	Paused	to	Active.

					*/

				@Override

				public	void	onResume()	{

								super.onResume();

								logStuff(“onResume”);

				}

	

				/**	Never	called	unless	you	set

					*	android:configChanges	in	the

					*	AndroidManifest.xml	file.

					*/

				@Override

				public	void	onConfigurationChanged

																															(Configuration	config)	{

								super.onConfigurationChanged(config);

								logStuff(“onConfigurationChanged”);

				}

				

				/**	Usually	(but	not	always)	called	during	the

					*		transition	from	Active	to	Paused,	or	during

					*		the	transition	from	Paused	to	Stopped.

					*/

				@Override

				public	void	onSaveInstanceState(Bundle	state)	{

								super.onSaveInstanceState(state);

								logStuff(“onSaveInstanceState”);

				}

	

				/**	Called	when	the	activity	transitions	from

					*		Active	to	Paused.

					*/

				@Override

				public	void	onPause()	{

								super.onPause();

								logStuff(“onPause”);

				}

	

				/**	Called	when	the	activity	transitions	from

					*		Paused	to	Stopped.

					*/

				@Override

				public	void	onStop()	{

								super.onStop();

								logStuff(“onStop”);

				}

	

				/**	Called	when	the	activity	transitions	from

					*		Stopped	to	Destroyed.

					*/

				@Override

				public	void	onDestroy()	{

								super.onDestroy();

								logStuff(“onDestroy”);

				}

}

My	goal	in	creating	Listing	1-5	is	to	provide	logging	that	helps	you
see	the	lifecycle	methods	in	action.	You	can	drop	Listing	1-5	into	almost
any	app	to	get	a	Burd’s-eye	view	of	your	activities	and	their	transitions.
To	this	end,	I’ve	created	an	app	that	lets	you	bounce	back	and	forth
among	different	kinds	of	activities.	Listings	1-6,	1-7,	and	1-8	describe	the
app’s	main	activity,	and	Figure	1-6	shows	the	main	activity’s	screen.

Listing	1-6:	The
com.allmycode.demo1.Demo1Activity	Class
package	com.allmycode.demo1;

	

import	android.content.Intent;

import	android.os.Bundle;

import	android.util.Log;

import	android.view.View;

	

public	class	Demo1Activity	extends	MyActivity	{

			

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

				}

				

				@Override

				void	logStuff(String	message)	{

								Log.i(“Demo1Activity”,	message);

				}

				

				public	void	startOtherActivity(View	view)	{

								Intent	intent	=	new	Intent();

								intent.setClassName(“com.allmycode.demo1”,

												“com.allmycode.demo1.OtherActivity”);

								startActivity(intent);

				}

				

				public	void	startOtherAppActivity(View	view)	{

								Intent	intent	=	new	Intent();

								intent.setClassName(“com.allmycode.demo1A”,

												“com.allmycode.demo1A.OtherAppActivity”);

								startActivity(intent);

				}

				

				public	void	startTransparentActivity(View	view)	{

								Intent	intent	=	new	Intent();

								intent.setClassName(“com.allmycode.demo1”,

												“com.allmycode.demo1.TranslucentActivity”);

								startActivity(intent);

				}

}

Listing	1-7:	The	main.xml	File
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

								“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”>

				

				<TextView	android:layout_width=”fill_parent”

														android:layout_height=”wrap_content”

														android:text=”@string/hello”	/>

														

				<Button	android:layout_width=”wrap_content”

												android:id=”@+id/button1”

												android:onClick=”startOtherActivity”

												android:layout_height=”wrap_content”

												android:text=”@string/start_this_app_other”>

				</Button>

				

				<EditText	android:layout_height=”wrap_content”

														android:id=”@+id/editText1”

														android:layout_width=”match_parent”

														android:hint=”Type	anything	here”>

								<requestFocus></requestFocus>

				</EditText>

	

				<include	android:id=”@+id/include1”

													android:layout_width=”wrap_content”

													layout=”@layout/add_break”

													android:layout_height=”wrap_content”>

				</include>

				

				<Button	android:id=”@+id/button2”

												android:layout_width=”wrap_content”

												android:layout_height=”wrap_content”

												android:onClick=”startOtherAppActivity”

												android:text=”@string/start_other_app”>

				</Button>

				

				<Button	android:id=”@+id/button3”

												android:layout_width=”wrap_content”

												android:layout_height=”wrap_content”

												android:onClick=”startTransparentActivity”

												android:text=”@string/start_translucent”>

				</Button>

	

</LinearLayout>

Listing	1-8:	The	add_break.xml	File
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

								“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”

				android:gravity=”center”>

				

				<Button	android:id=”@+id/button1”

												android:layout_width=”wrap_content”

												android:layout_height=”wrap_content”

												android:onClick=”addBreak”

												android:text=”@string/add_break”>

				</Button>

	

</LinearLayout>

	

Figure	1-6:	The	main	activity’s	screen.

I	cover	most	of	the	Android	coding	tricks	in	Listings	1-6,	1-7,	and	1-
8	in	Book	I,	Chapters	3	and	4.	But	these	listings	form	the	basis	for	an	app
that	lets	you	experiment	with	the	activity	lifecycle.	The	next	section
describes	what	the	widgets	in	Figure	1-6	(and	a	few	other	buttons)	do.

	The	next	section	describes	a	number	of	experiments
involving	the	code	in	Listings	1-6,	1-7,	1-8,	and	1-9,	and	some	other
Android	code.	To	try	the	experiments	yourself,	download	all	the
code	from	this	book’s	website.

Taking	an	activity	lifecycle	through	its	paces
No	two	lives	are	the	same,	so	it	would	make	sense	that	there	is	an

infinite	variety	as	well	to	the	lifecycles	of	individual	activities.	If	you

dutifully	followed	my	advice	about	downloading	the	code	from	Listings
1-6,	1-7,	1-8,	and	1-9	from	this	book’s	website,	you	can	follow	along	as	I
demonstrate	the	kinds	of	curveballs	I	can	throw	at	an	activity	lifecycle.

Starting	another	activity	in	the	same	app
In	Figure	1-6,	you	can	click	the	Start	This	App’s	Other	Activity

button	to	cover	up	the	main	activity	with	another	activity	from	the	same
application.	When	you	click	the	button,	Eclipse’s	LogCat	view	displays
the	following	entries:
INFO/Demo1Activity(4526):	onSaveInstanceState

INFO/Demo1Activity(4526):	onPause

WARN/OtherActivity(4526):	onCreate

WARN/OtherActivity(4526):	onStart

WARN/OtherActivity(4526):	onResume

INFO/Demo1Activity(4526):	onStop

An	OtherActivity	instance	goes	from	not	existing	to	being	Active,
and	the	Demo1Activity	instance	goes	from	being	Active	to	being
Stopped.

	In	Listing	1-6,	I	code	Demo1Activity’s	logStuff	method
with	an	i	for	INFO.	And	in	the	OtherActivity	(which	can
download	from	this	book’s	website),	I	code	logStuff	with	a	w	for
WARN.	I	don’t	mean	to	imply	that	OtherActivity’s	methods	are
more	important	than	Demo1Activity’s	methods.	I	use	INFO	and
WARN	because	Eclipse’s	LogCat	view	displays	different	levels
(such	as	INFO	and	WARN)	with	different	colors.	So	on	your
computer	screen,	you	can	distinguish	one	activity’s	entries	from
another	with	a	casual	glance.	In	this	book,	instead	of	asking	for	four-
color	printing,	I	set	some	of	the	entries	in	boldface	type.

	You	can	filter	the	LogCat	view	to	see	only	your	own	app’s
entries.	Your	app	and	all	its	activities	run	in	one	process.	So	with	the
filtering	trick	from	Book	I,	Chapter	4,	create	a	filter	with	your	app’s

PID.	In	the	LogCat	output	shown	a	few	paragraphs	above,	both
activities	run	in	the	process	with	PID	4526.

Taking	a	break
In	Figure	1-6,	you	can	click	the	Add	Break	in	Log	File	button	to	add

an	entry	whose	message	is	a	dashed	line.	Press	this	button	to	help	you
keep	track	of	the	parts	in	a	long	log	file.

The	Back	button
Your	device’s	Back	button	pops	an	activity	off	the	task	stack.
Imagine	that	with	Demo1Activity	and	OtherActivity	on	the	stack,

you	press	the	Back	button.	As	a	result,	Eclipse’s	LogCat	view	displays
the	following	entries:
WARN/OtherActivity(4526):	onPause

INFO/Demo1Activity(4526):	onRestart

INFO/Demo1Activity(4526):	onStart

INFO/Demo1Activity(4526):	onResume

WARN/OtherActivity(4526):	onStop

WARN/OtherActivity(4526):	onDestroy

Notice	that	pressing	the	Back	button	destroys	the	OtherActivity
instance.

Saving	(and	not	saving)	an	activity’s	state
In	Figure	1-6,	the	Type	Anything	Here	text	field	helps	you

understand	when	an	activity’s	state	is	preserved	(and	when	it’s	not).
Try	this	experiment:
1.	Type	something	in	the	text	field	and	then	click	the	Start	This

App’s	Other	Activity	button.
	 OtherActivity	obscures	Demo1Activity,	and	Demo1Activity	is

Stopped.
	 2.	Dismiss	OtherActivity	with	the	Back	button.
	 The	Demo1Activity	reappears	with	your	typed	characters	still	in	the

text	field.	In	spite	of	Demo1Activity’s	being	stopped,	Android	has
preserved	the	state	of	Demo1Activity.

	 Try	another	experiment:
1.	Type	something	in	the	text	field	and	then	click	the	Home

button.
	 The	Home	screen	appears,	and	Demo1Activity	is	Stopped.
	 2.	Find	the	Demo1	icon	and	touch	the	icon	to	invoke

Demo1Activity.
	 The	Demo1Activity	reappears	with	your	typed	characters	still	in	the

text	field.	Android	has	preserved	the	state	of	the	Demo1Activity.

	 Here’s	another	experiment:
1.	Type	something	in	the	text	field	and	then	click	the	Back

button.
	 The	Demo1Activity’s	screen	goes	away.	In	the	LogCat	view,	you

see	Demo1Activity	execute	its	onPause,	onStop,	and	onDestroy	methods.
	 2.	Find	the	Demo1	icon	and	touch	the	icon	to	invoke

Demo1Activity.
	 The	Demo1Activity	reappears,	but	the	Type	Anything	Here	text

field	has	been	re-initialized.	Android	hasn’t	preserved	the
Demo1Activity’s	state.

	 3.	(Optional)	To	preserve	a	state	between	Back-button	clicking
and	an	activity’s	next	invocation,	add	the	following	code	to	your
activity’s	onPause	method:

	 SharedPreferences	prefs	=

																				getPreferences(MODE_PRIVATE);

SharedPreferences.Editor	editor	=	prefs.edit();

editor.putString(“EditTextString”,

																		editText.getText().toString());

editor.commit();
4.	Add	the	following	code	to	your	activity’s	onResume	method:

	 SharedPreferences	prefs	=

																				getPreferences(MODE_PRIVATE);

String	str	=	prefs.getString(“EditTextString”,	“”);

editText.setText(str);

	5.	Save	an	activity’s	relevant	information	in	your
override	of	the	onPause	method.

	 Don’t	wait	to	save	the	information	in	the	onStop	or	onDestroy
method.

	

	The	code	in	Step	4	uses	SharedPreferences.	For	more
about	SharedPreferences,	see	Chapter	3	in	this	minibook.

	 Here’s	your	next	experiment:
1.	Type	something	in	the	text	field.

	 2.	Turn	your	device	sideways.
	 If	you’re	running	an	emulator,	you	can	do	a	virtual	turn	by	pressing

Ctrl+F11.	Your	activity’s	screen	adjusts	(from	portrait	to	landscape	or
vice	versa)	and	your	typed	characters	are	still	in	the	text	field.

	 But	when	you	look	at	Eclipse’s	LogCat	view,	you	see	the	following
entries:

	 INFO/Demo1Activity(4526):	onSaveInstanceState

INFO/Demo1Activity(4526):	onPause

INFO/Demo1Activity(4526):	onStop

INFO/Demo1Activity(4526):	onDestroy

INFO/Demo1Activity(4526):	onCreate

INFO/Demo1Activity(4526):	onStart

INFO/Demo1Activity(4526):	onResume
Surprise!	In	order	to	rotate	your	activity’s	screen,	Android	destroys

and	then	re-creates	the	activity.	And	between	destruction	and	subsequent
creation,	Android	preserves	your	activity	instance’s	state.	The	text	field’s
content	is	restored.

	 This	leads	you	to	one	more	experiment:
1.	Add	the	following	attribute	to	the	Demo1Activity’s

<activity>	element	in	the	AndroidManifest.xml	file:
	 android:configChanges=”orientation”

2.	Turn	the	app	and	change	the	orientation	of	the	emulator	or
the	device.

	 You	see	the	following	entries	in	Eclipse’s	LogCat	view:
	 INFO/Demo1Activity(4588):	onSaveInstanceState

INFO/Demo1Activity(4588):	onPause

INFO/Demo1Activity(4588):	onStop

INFO/Demo1Activity(4588):	onDestroy

INFO/Demo1Activity(4588):	onCreate

INFO/Demo1Activity(4588):	onStart

INFO/Demo1Activity(4588):	onResume

INFO/Demo1Activity(4588):	onConfigurationChanged

The	android:configChanges=”orientation”	attribute	tells
Android	to	notify	the	activity	about	orientation	changes.	So	Android	calls
the	activity’s	onConfigurationChanged	method	which,	in	Listing	1-5,
logs	the	event.	Under	normal	circumstances,	you’d	use	the	attribute	to

intercept	the	default	actions	when	the	user	tilts	the	device	so	you	could
then	handle	the	event	with	your	own	code.

	
Starting	another	app’s	activity

In	Figure	1-6,	you	can	click	the	Start	Other	App’s	Activity	button	to
cover	up	the	main	activity	—	you	essentially	cover	the	main	activity	with
an	activity	from	a	different	application.	When	you	click	the	button,
Eclipse’s	LogCat	view	displays	the	following	entries:
INFO/Demo1Activity(4688):	onSaveInstanceState

INFO/Demo1Activity(4688):	onPause

VERBOSE/OtherAppActivity(4697):	onCreate

VERBOSE/OtherAppActivity(4697):	onStart

VERBOSE/OtherAppActivity(4697):	onResume

INFO/Demo1Activity(4688):	onStop

The	only	difference	between	these	entries	and	the	entries	in	previous
examples	is	that	these	entries	use	two	PID	numbers.	In	this	example,	the
Demo1Activity	has	PID	4688,	and	the	OtherAppActivity	has	PID	4697.
As	promised,	two	different	apps	run	in	two	different	operating	system
processes,	and	each	process	has	its	own	PID.	You	can	get	independent
verification	of	this	fact	by	examining	Eclipse’s	Devices	view	(in	the
DDMS	perspective).	Figure	1-7	shows	you	the	Devices	view.

	

Figure	1-7:	The	Devices	view.

In	Figure	1-7,	the	process	running	Demo1Activity	(in	package

com.allmy	code.demo1)	has	PID	4688.	And	the	process	running
OtherAppActivity	(in	package	com.allmycode.demo1A)	has	PID	4697.

Overloading	the	system
As	the	sun	sets	on	the	“Starting	another	app’s	activity”	section,

you’re	running	two	com.allmycode	processes.	(Refer	to	Figure	1-7.)	On
your	emulator’s	screen,	the	com.allmycode.demo1.Demo1Activity	is
obscured	by	the	com.allmycode.demo1A.OtherAppActivity.

So	you	can	conduct	another	experiment:
1.	Get	your	emulator	(or	device)	in	the	state	described	at	the	end

of	the	“Starting	another	app’s	activity”	section.
	 To	do	so,	start	the	app	whose	main	activity	is	in	Listing	1-6.	Then

click	the	Start	Other	App’s	Activity	button.
	 2.	Press	the	emulator’s	Home	button.
	 See	Figure	1-8.	You’re	not	pressing	the	Back	button,	so	you’re	not

backing	out	of	the	OtherAppActivity	or	the	Demo1Activity.	Those	two
activities	are	Stopped,	not	Destroyed.	(You	can	verify	this	by	looking	at
the	Eclipse’s	LogCat	view.)

	
	

Figure	1-8:	As	the	user	browses,	a	task	hides	in	the	shadows.

3.	With	your	eye	on	Eclipse’s	Devices	and	LogCat	views,	start
several	of	the	emulator’s	built-in	apps.

	 Start	apps	such	as	the	browser,	e-mail,	contacts,	and	maybe	more.	In
each	case,	keep	the	current	activity	alive	by	pressing	Home	instead	of
Back.

	 At	some	point,	you	see	the	com.allmycode.demo1	process	disappear
from	Eclipse’s	Devices	view.	(See	Figure	1-9.)	Android	has	reclaimed
memory	by	killing	off	a	process.	After	all,	the
com.allmycode.demo1.Demo1Activity	instance	is	Stopped,	so	Android
figures	it	can	destroy	that	activity.	The
com.allmycode.demo1A.OtherAppActivity	is	also	Stopped.	But	the	last
time	you	saw	OtherAppActivity,	that	activity	was	at	the	top	of	a	task
stack.

	
	

Figure	1-9:	The	package	com.allmycode.demo1	has	disappeared.

Android	kills	a	process	in	order	to	reclaim	space,	and	the	user	has	no
clue	that	the	process	has	been	killed.	This	is	business	as	usual	for	the
Android	operating	system.

	 At	this	point	in	the	experiment,	the	Demo1Activity	is	Stopped,	the
activity’s	process	has	been	killed,	and	the	activity	isn’t	on	top	of	its
current	task.

	 4.	Return	to	the	emulator’s	Apps	screen	and	click	the	Demo1
icon	(the	icon	for	the	com.allmycode.demo1.Demo1Activity
instance).

	 The	OtherAppActivity	reappears	on	the	screen.	(See	Figure	1-10.)
Android	interprets	your	click	as	a	wish	to	return	to	the	top	of	the	task
stack	containing	Demo1Activity,	and	not	to	Demo1Activity	itself.	In	the
LogCat	view,	OtherAppActivity	has	restarted,	started,	and	resumed.	In
Eclipse’s	Devices	view,	you	still	don’t	see	com.allmycode.demo1.

	 5.	Press	the	emulator’s	Back	button.
	 Android	remembers	that	com.allmycode.demo1.Demo1Activity

was	hidden	(conceptually)	underneath	OtherAppActivity	on	the	task
stack.	Because	the	com.allmycode.demo1	process	no	longer	exists,
Android	creates	a	new	process	with	a	new	PID	to	run	the	com.allmy
code.demo1.Demo1Activity	code.

	 As	a	result,	Demo1Activity	appears	on	your	emulator’s	screen,
com.allmycode.demo1	reappears	in	Eclipse’s	devices	view	with	a	new
PID,	and	the	following	entries	appear	in	Eclipse’s	LogCat	view:

	
	

Figure	1-10:	Returning	to	a	task.

VERBOSE/OtherAppActivity(4697):	onPause

INFO/Demo1Activity(4783):	onCreate

INFO/Demo1Activity(4783):	onStart

INFO/Demo1Activity(4783):	onResume

VERBOSE/OtherAppActivity(4697):	onStop

VERBOSE/OtherAppActivity(4697):	onDestroy
Unbeknownst	to	the	user,	Android	has	restored	the	Demo1Activity

in	a	new	process.
	

Partially	covering	an	activity
In	Figure	1-6,	clicking	the	Start	Translucent	Activity	button	does

what	you	think	it	should	do.	The	button	makes	Android	invoke	a	see-
through	activity.	(App	development	terminology	tends	to	blur	the
difference	between	“translucent”	and	“transparent.”	Get	it?	“Blur”	the
difference?)	Of	course,	you	can’t	invoke	a	translucent	activity	unless	you
have	a	translucent	activity	to	invoke.	So	Listing	1-9	shows	you	how	to
create	a	translucent	activity.

Listing	1-9:	The	AndroidManifest.xml	File
for	One	of	This	Chapter’s	Big	Projects
<?xml	version=”1.0”	encoding=”utf-8”?>

<manifest	xmlns:android=

								“http://schemas.android.com/apk/res/android”

				package=”com.allmycode.demo1”

				android:versionCode=”1”

				android:versionName=”1.0”>

				<uses-sdk	android:minSdkVersion=”8”	/>

	

				<application	android:icon=”@drawable/icon”

																	android:label=”@string/app_name”

																	android:name=”.Demo1App”>

																	

								<activity	android:name=”.Demo1Activity”

																		android:label=”@string/app_name”	>

												<intent-filter>

																<action	android:name=

																				“android.intent.action.MAIN”	/>

																<category	android:name=

																				“android.intent.category.LAUNCHER”	/>

												</intent-filter>

								</activity>

								

								<activity	android:name=”.OtherActivity”	/>

								<activity	android:name=”.TranslucentActivity”

																		android:theme=

																					“@android:style/Theme.Translucent”	/>

				</application>

				

</manifest>

To	create	a	translucent	activity,	create	a	Java	class	that	extends
Android’s	Activity	class.	Then,	in	your	AndroidManifest.xml	file,
declare	the	activity’s	theme	to	be	Android’s	predefined
Theme.Translucent	style.

My	TranslucentActivity	class	has	only	one	button	—	an	Add
Break	in	Log	File	button	in	the	center	of	the	activity.	So	after	pressing	the
Start	Translucent	Activity	button	in	Figure	1-6,	I	see	the	stuff	in	Figure	1-
11.	True	to	its	word,	Android	superimposes	the	Translucent	Activity’s
button	on	top	of	the	next	activity	on	the	stack.

Referring	to	the	list	of	activity	states	in	the	“The	Activity	Lifecycle”
section,	one	of	the	Paused	state’s	duties	is	to	house	activities	that	are
partially	obscured.	So	if	you	look	at	Eclipse’s	LogCat	view	after	clicking
the	Start	Translucent	Activity	button,	you	see	the	following	entries:

	

Figure	1-11:	A	translucent	activity	on	top	of	another	activity.

INFO/Demo1Activity(4783):	onSaveInstanceState

INFO/Demo1Activity(4783):	onPause

WARN/TranslucentActivity(4783):	onCreate

WARN/TranslucentActivity(4783):	onStart

WARN/TranslucentActivity(4783):	onResume

Demo1Activity	pauses	but	doesn’t	stop.

Getting	Results	Back	from	an	Activity
Earlier	in	this	book,	I	compare	an	intent	to	a	method	call.	To	start	an

activity,	you	don’t	call	a	method.	Instead,	you	fire	up	an	intent.
So	far,	so	good.	But	what	feature	of	an	intent	takes	the	place	of	a

method	call’s	return	value?	Listings	1-10	and	1-11	have	the	answer.

Listing	1-10:	An	Activity	Asks	for	a	Result
package	com.allmycode.results;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

import	android.widget.TextView;

	

public	class	GetResultActivity	extends	Activity

																												implements	OnClickListener	{

		final	int	MY_REQUEST_CODE	=	42;				

		TextView	textView;

		Button	button;

		

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

				textView	=	(TextView)	findViewById(R.id.textView1);

				button	=	(Button)	findViewById(R.id.button1);

				button.setOnClickListener(this);

		}

			

		@Override

		public	void	onClick(View	v)	{

				Intent	intent	=	new	Intent();

				intent.setClassName(“com.allmycode.results”,

						“com.allmycode.results.GiveResultActivity”);

				startActivityForResult(intent,	MY_REQUEST_CODE);				

		}		

		

		@Override

		protected	void	onActivityResult(int	requestCode,

																																		int	resultCode,

																																		Intent	intent)	{

																																		

				if	(requestCode	==	MY_REQUEST_CODE	&&

																														resultCode	==	RESULT_OK)	{

						textView.setText(intent.getStringExtra(“text”));

				}

		}

}

Listing	1-11:	An	Activity	Provides	a	Result
package	com.allmycode.results;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.view.KeyEvent;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.view.View.OnKeyListener;

import	android.widget.Button;

import	android.widget.EditText;

	

public	class	GiveResultActivity	extends	Activity

										implements	OnKeyListener,	OnClickListener	{

	

		Button	button;

		EditText	editText;

		StringBuffer	buffer	=	new	StringBuffer();

	

		@Override

		public	void	onCreate(Bundle	state)	{

				super.onCreate(state);

	

				setContentView(R.layout.giver);

				editText	=	(EditText)	findViewById(R.id.editText1);

				editText.setOnKeyListener(this);

				

				button	=	(Button)	findViewById(R.id.button2);

				button.setOnClickListener(this);

		}

	

		@Override

		public	boolean	onKey(View	v,	int	keyCode,

																															KeyEvent	event)	{

				buffer.append(keyCode);

				return	false;

		}

	

		@Override

		public	void	onClick(View	arg0)	{

				Intent	intent	=	new	Intent();

				intent.putExtra

						(“text”,	editText.getText().toString());

				setResult(RESULT_OK,	intent);

				finish();

		}

}

The	action	of	Listings	1-10	and	1-11	takes	place	in	three	stages.
First,	the	user	sees	the	GetResultActivity	in	Listing	1-10.	(See	Figure
1-12.)

	

Figure	1-12:	The	activity	in	Listing	1-10.

When	the	user	clicks	the	Get	a	Result	button,	Android	calls
startActivity	ForResult(intent,	MY_REQUEST_CODE).

The	startActivityForResult	method	takes	an	intent	and	a	request
code.	In	Listing	1-10,	the	intent	points	explicitly	to	the	activity	being
started.	The	request	code	is	any	int	value.	The	request	code	identifies	the
return	result	when	the	result	arrives.	(You	can	call
startActivityForResult	more	than	once	before	you	get	any	results.
When	results	arrive,	you	use	the	request	code	to	distinguish	one	result
from	another.)

After	clicking	the	button	in	Figure	1-12,	the	user	sees	the
GiveResult	Activity	in	Listing	1-11.	(See	Figure	1-13.)

	

Figure	1-13:	The	activity	in	Listing	1-11.

The	user	types	text	into	the	text	field	in	Figure	1-13	and	then	clicks
the	Go	Back	button.	The	button	click	causes	the	code	in	Listing	1-11	to
create	an	intent.	The	intent	has	extra	information	—	namely,	the	user’s
text	input.

The	call	to	setResult	sends	a	result	code	(RESULT_OK,
RESULT_CANCELED,	or	any	positive	int	value	that’s	meaningful	to	the
receiver)	along	with	the	intent	full	of	useful	information.

At	the	end	of	Listing	1-11,	the	finish	method	call	ends	the	run	of
the	activity	shown	in	Figure	1-13.	The	screen	returns	to	the
GetResultActivity.	(See	Figure	1-14.)

	

Figure	1-14:	The	activity	in	Listing	1-10	after	getting	a	result.

At	this	point,	Android	calls	the	onActivityResult	method	in
Listing	1-10.	The	method	uses	the	result	in	some	way	or	other.	(In	this
example,	the	onActivityResult	method	simply	displays	the	result	in	a
TextView	element.)

Applications	Don’t	Feel	Left	Out
In	any	operating	system,	things	come	and	things	go.	Users	log	on

and	log	off,	and	activities	are	created	and	destroyed.	But	what	about
applications?	Applications	are	created	and	terminated.

If	you	check	Listing	1-9,	you	see	an	application	element	with	an
android:	name=”.Demo1App”	attribute.	An	app	doesn’t	need	an
android:name	attribute,	but	if	it	has	one,	you	must	create	a	class	with	the
name	that	you	specify.	You	can	keep	track	of	an	app’s	global	values
(values	that	transcend	the	app’s	individual	activities)	with	this	class.

Calls	to	an	Application	class’s	methods	aren’t	predictable.	Listing
1-12	sheds	light	on	the	situation.

Listing	1-12:	An	Android	Application
package	com.allmycode.demo1;

	

import	android.app.Application;

import	android.content.res.Configuration;

import	android.util.Log;

	

public	class	Demo1App	extends	Application	{

				private	static	final	String	CLASSNAME	=	“Demo1App”;

	

				@Override

				public	void	onCreate()	{

								Log.v(CLASSNAME,	“onCreate”);

				}

				

				@Override

				public	void	onConfigurationChanged

																															(Configuration	config)	{

								Log.v(CLASSNAME,	“onConfigurationChanged”);

				}

				

				@Override

				public	void	onLowMemory()	{

								Log.v(CLASSNAME,	“onLowMemory”);

				}

				

				@Override

				public	void	onTerminate()	{

								Log.v(CLASSNAME,	“onTerminate”);

				}

}

	Android’s	Application	class	has	only	four	of	its	own
methods	—	the	methods	declared	in	Listing	1-12.	In	previous
sections,	I	didn’t	show	you	the	log	entries	from	Listing	1-12.	So	if
you	rerun	the	experiment	in	the	“Overloading	the	system”	section
and	you	don’t	hide	the	app’s	log	entries,	you	see	slightly	enhanced
results.
When	you	first	launch	the	Demo1	app,	you	see	the	following	log

entries:

VERBOSE/Demo1App(638):	onCreate

INFO/Demo1Activity(638):	onCreate

INFO/Demo1Activity(638):	onStart

INFO/Demo1Activity(638):	onResume

VERBOSE/Demo1App(638):	onConfigurationChanged

Android	creates	the	app	and	notifies	the	app	that	its	configuration
has	changed	(from	not	existing	to	existing).

When	you	click	the	Start	Other	App’s	Activity	button,	you	see	these
entries:
INFO/Demo1Activity(638):	onSaveInstanceState

INFO/Demo1Activity(638):	onPause

VERBOSE/OtherApp(645):	onCreate

VERBOSE/OtherAppActivity(645):	onCreate

VERBOSE/OtherAppActivity(645):	onStart

VERBOSE/OtherAppActivity(645):	onResume

VERBOSE/OtherApp(645):	onConfigurationChanged

INFO/Demo1Activity(638):	onStop

Android	has	created	your	other	app	and	has	notified	the	other	app	to
get	its	configuration	act	together.

Next,	you	launch	some	of	Android’s	built-in	apps	(the	browser,	e-
mail,	and	so	on).	You	see	none	of	the	log	messages	from	Listing	1-12
(not	even	when	Android	kills	your	apps’	processes).	If	you	read	the	fine
print	in	Android’s	docs,	you	see	the	following:
“While	the	exact	point	at	which	this	[onLowMemory	method]	will	be	called
is	not	defined,	generally	it	will	happen	around	the	time	all	background
process	have	[sic]	been	killed	.	.	.	[The	onTerminate	method]	will	never
be	called	on	a	production	Android	device,	where	processes	are	removed
by	simply	killing	them;	no	user	code	(including	this	callback)	is	executed
when	doing	so.”

	
During	my	run	of	this	chapter’s	apps,	Android	never	calls	either

onLow	Memory	or	onTerminate.

	Some	of	Android’s	doc	entries	are	concisely	worded.	This
makes	the	docs	easy	to	misinterpret.	Your	confidence	in	a	doc
entry’s	interpretation	should	be	proportional	to	your	experience
using	and	testing	that	entry’s	claims.

When	you	return	to	your	original	app’s	task	(as	in	Step	4	of	the
“Overloading	the	system”	section),	you	see	the	OtherApp	startup	entries:
VERBOSE/OtherApp(698):	onCreate

VERBOSE/OtherAppActivity(698):	onCreate

VERBOSE/OtherAppActivity(698):	onStart

VERBOSE/OtherAppActivity(698):	onResume

VERBOSE/OtherApp(698):	onConfigurationChanged

One	of	your	“other”	app’s	activities	is	on	top	of	the	stack.	So
Android	creates	a	new	process	(with	a	new	PID)	for	your	other	app.

	

Chapter	2:	Intents	and	Intent	Filters

In	This	Chapter
Making	a	match
Getting	the	lowdown	on	intents	and	intent	filters
Practicing	with	intents	on	an	emulator	or	device

Stacking	up	your	activities	and	tasks
	

You	can	judge	people’s	mental	ages	by	the	kinds	of	foods	they	eat.
For	example,	one	of	my	friends	seeks	out	new	tastes	from	strange	and
exotic	lands.	Mentally,	he’s	a	mature	adult.	As	for	me,	I	like
cheeseburgers	and	chocolate.	Mentally,	I’m	12	years	old.

So	here’s	an	experiment:	Put	a	meal	on	a	table	and	then	put	a	bunch
of	people	in	the	room.	Each	person	has	a	list	of	foods	that	he	is	willing	to
eat.	Now	use	the	people’s	lists	to	figure	out	who	is	(and	who	isn’t)
willing	to	eat	the	meal.

Things	can	become	complicated.	I	love	cheeseburgers	.	.	.	but	no
toppings,	please!	.	.	.	unless	the	topping	is	mayonnaise.	Yes,	I	want	fries
with	that,	but	not	if	they’re	sweet	potato	fries.	And	above	all,	if	the	food’s
slimy,	or	if	you	have	to	explain	where	it	comes	from,	I’m	not	eating	it.

How	to	Make	a	Match
Android	has	two	kinds	of	intents	—	explicit	and	implicit:

•	An	explicit	intent	names	an	activity	class	whose	instance	is	to	be
launched.

	
•	An	implicit	intent	doesn’t	call	for	a	particular	activity	to	be	launched.
Instead,	an	implicit	intent	describes	some	work	to	be	done.	An	implicit
intent	names	an	action	to	be	taken,	along	with	other	information	required
to	perform	the	action.

	

	I	cover	explicit	intents	in	Chapter	1of	this	minibook.
Android’s	use	of	implicit	intents	is	like	the	meal-in-a-room

experiment	in	this	chapter’s	introduction.	An	intent	is	like	a	meal.	An
intent	filter	is	like	a	person’s	list	of	acceptable	foods.

First,	an	activity	sends	an	intent.	Then	the	system	compares	that
intent	with	other	activities’	intent	filters	to	find	out	which	activities	have
filters	that	match	the	intent	(which	activities	can	perform	the	desired
action).	See	Figure	2-1.

	

Figure	2-1:	Finding	an	activity	(or	other	component)	to	match	an	intent.

In	Figure	2-1,	Android	checks	for	a	match	between	the	intent	and
the	first	of	Activity	P’s	filters.	If	the	intent	doesn’t	match	Activity	P’s
first	filter,	Android	checks	for	a	match	between	the	intent	and	the	second
Activity	P	filter.	If	Android	finds	a	match	in	one	of	Activity	P’s	filters,

Android	marks	Activity	P	as	one	possible	way	to	fulfill	the	intent	(one
possible	component	that	may	perform	the	work	described	by	the	intent).

Still	in	Figure	2-1,	Android	proceeds	to	test	Activity	Q’s,	Activity
R’s,	and	Activity	S’s	filters.	Android	keeps	a	list	of	all	the	activities	that
have	at	least	one	matching	filter.
•	If	exactly	one	activity	has	a	matching	intent	filter,	that	activity	starts
running.

	
•	If	no	activities	have	any	matching	intent	filters,	the	system	throws	an
exception.

	
•	If	more	than	one	activity	has	a	matching	intent	filter,	the	system	chooses
among	the	matching	activities,	or	the	system	displays	a	menu	asking	the
user	to	choose	among	the	matching	activities.

	

	Android’s	startActivity,	bindService,	and
sendBroadcast	methods	all	take	arguments	of	type	Intent.	So	a
component	that	matches	an	intent	can	be	an	activity,	a	service,	or	a
broadcast	receiver.	For	most	of	this	chapter’s	examples,	you	can
safely	think	activity	when	you	read	the	word	component.	Sometimes
I	blur	the	terminology	and	use	activity	as	an	example,	even	though	a
more	complete	explanation	would	use	the	word	component.

	In	this	minibook,	I	cover	services	in	Chapter	3	and
broadcast	receivers	in	Chapter	4.

The	parts	of	an	intent
Figure	2-2	shows	you	the	parts	of	an	implicit	intent.	An	intent	has	an

action,	data,	categories,	extras,	and	flags.	Some	of	these	things	might	be
omitted,	but	Android	sets	stiff	restrictions	about	what	may	or	may	not	be

omitted,	and	when.
Each	item	in	Figure	2-2	consists	of	one	or	more	Java	strings.	Some

typical	sample	values	are	in	italics.	So	the	string
“android.intent.action.MAIN”	is	a	sample	action	value,	and	the
predeclared	android.content.Intent.FLAG_ACTIVITY_NO_HISTORY
constant	is	a	sample	flag	value.

	The	conventions	surrounding	Android	intents	make	it
difficult	to	distinguish	between	strings	and	predeclared	constants.	In
Figure	2-2,	“android.intent.action.MAIN”	is	a	string	and
android.content.Intent.FLAG_ACTIVITY_NO_HISTORY	is	a
predeclared	constant	(a	static	final	field	named
FLAG_ACTIVITY_NO_HISTORY	in	the	android.content.Intent	class).
Oddly,	the	dots	in	the	string	“android.content.intent.MAIN”
don’t	mean	very	much.	There’s	no	member	named	MAIN	in	any
android.content.intent	class.

	You	can	use	strings,	constants,	or	references	to	string
resources	in	Java	source	files,	but	you	can	use	only	strings	in	XML
documents.

	

Figure	2-2:	An	Android	intent.

Figure	2-2	indicates	that	an	intent’s	data	parts	come	in	two	flavors
—	URI	and	MIME	type.	An	intent	may	have	neither	of	these,	one	of	the
two,	or	both.

Still	looking	at	Figure	2-2,	the	MIME	in	MIME	type	stands	for
Multipurpose	Internet	Mail	Extensions.	The	original	MIME	standard
describes	the	kinds	of	data	that	can	be	encoded	and	sent	in	e-mail
messages.	For	example,	when	your	e-mail	program	receives	a	message
with	Content-Type:	text/	html,	your	program	interprets	the	message
as	an	HTML	document	and	displays	the	content	the	way	web	browsers
display	web	pages.	When	a	program	receives	bits	declared	with	MIME
type	audio/mp3,	image/jpeg,	or	application/zip,	the	program
interprets	the	bits	as	sounds,	images,	or	ZIP	files.	In	each	case,	the	word
before	the	slash	is	a	top-level	type,	and	the	word	after	the	slash	is	a
subtype.	Familiar	top-level-type/subtype	pairs	include	text/plain,
text/html,	text/xml,	image/png,	image/jpeg,	and	image/gif.

	Many	of	the	names	in	Android’s	SDK	use	the	shortened
term	type	instead	of	the	full	name	MIME	type.

	

Unlike	the	use	of	MIME	types	in	ordinary	e-mail	handling,
the	matching	of	Android’s	MIME	types	is	case-sensitive.	So,	for
example,	TEXT/PLAIN	in	an	intent	doesn’t	match	text/plain	in	a
filter.	Android’s	developer	guidelines	recommend	using	only
lowercase	letters	in	the	names	of	MIME	types.
A	Uniform	Resource	Locator	(URL)	is	any	familiar	web	address	that

you	dictate	when	someone	asks,	“Where	can	I	find	that	on	the	web?”	A
Uniform	Resource	Identifier	(URI)	looks	like	a	URL,	but	URIs	describe
more	than	just	web	pages.	Every	URL	is	a	URI,	but	a	URI	isn’t
necessarily	a	URL.

In	Android,	a	URI	has	from	one	to	four	parts,	depending	on	how
you	count	and	on	what	you	choose	to	omit.	Figure	2-3	has	some
examples.

	

Figure	2-3:	Uniform	Resource	Identifiers.

	The	kind	of	URI	that	I	illustrate	in	Figure	2-3	is	a
hierarchical	URI.	The	alternative	to	a	hierarchical	URI	is	an	opaque
URI.	An	opaque	URI,	such	as	tel:6502530000	or
mailto:android@allmycode.com,	has	a	single	colon	instead	of	://.
Also,	in	an	opaque	URI,	what	comes	after	the	colon	varies	widely
depending	on	the	scheme.	In	fact,	what	comes	after	the	colon	in	an
opaque	URI	is	the	URI’s	scheme-specific	part.	So,	for	example,	in
the	URI	mailto:android@allmycode.com,	the	scheme	is	mailto	and
the	scheme-specific	part	is	android@allmycode.com.	An	opaque
URI	has	neither	an	authority	nor	a	path.

What	r	u?
	If	you	don’t	live	under	a	rock,	you’ve	used	hundreds	of	URLs

(Uniform	Resource	Locators).	As	the	name	suggests,	a	URL
locates	something.	For	example,	the	URL
www.panynj.gov:80/path	locates	the	main	page	of	the	website	for
the	Port	Authority	Trans-Hudson	Corporation	—	the	organization
in	charge	of	trains	that	run	between	New	Jersey	and	New	York
City.	This	URL’s	scheme	is	http.	Its	host	is	www.panynj.gov.	Its
port	is	80.	Its	authority	is	www.panynj.gov:80.	Its	path	happens	to
be	/path.
Every	URL	is	a	URI	(Uniform	Resource	Identifier),	but	a	URI
isn’t	necessarily	a	URL.	Some	URIs	don’t	locate	anything.	For
example,	every	AndroidManifest.xml	document	contains	the
attribute
xmlns:android=”http://schemas.android.comapkres/android”

The	URI’s	scheme	is	http.	Both	the	host	and	authority	are
schemas.android.com.	(This	URI	has	no	port.)	The	URI’s	path	is
apkres/android.
If	you	type	http://schemas.android.comapkres/android	into
your	web	browser’s	address	field,	your	browser	goes	nowhere.
The	URI	http://schemas.android.comapkres/android	doesn’t
locate	anything.	Like	the	URIs	that	start	many	XML	documents,
this	URI	is	nothing	but	a	name.	This	URI	is	a	URN	(Uniform
Resource	Name).	According	to	the	Internet	Engineering	Task
Force	document	RFC	3986,	URNs	“are	required	to	remain
globally	unique	and	persistent	even	when	the	resource	ceases	to
exist	or	becomes	unavailable	.	.	.”	In	other	words,	a	URN	names
something	—	something	whose	name	always	applies	—	something
that	might	never	need	to	be	found.
Here’s	another	example.	The	Android	SDK	comes	with	a	folder
full	of	sample	apps.	One	of	the	apps	(the	SearchableDictionary
example)	uses	the	URI
content://com.example.android.searchable

dict.DictionaryProvider/	dictionary.	The	URI’s	scheme	is
content,	and	so	on.	This	URI	doesn’t	work	in	a	web	browser’s
address	field.	But	within	Android’s	SearchableDictionary
example,	the	URI	locates	a	particular	content	provider	(in	this

http://www.panynj.gov:80/path

case,	a	provider	of	dictionary	words	and	definitions).	The	things
that	a	URI	locates	don’t	have	to	be	web	pages.
The	World	Wide	Web	Consortium	is	currently	working	on	IRIs
(Internationalized	Resource	Identifiers).	An	IRI	is	like	a	URI
except	that	an	IRI’s	characters	aren’t	restricted	to	characters	in	the
Roman	alphabet.	The	following	figure	has	an	example	of	an	IRI.

	

The	parts	of	an	intent	filter
Your	app	creates	an	intent	and	then	calls	startActivity(intent).

Then	what	happens?	Android	has	a	list	of	activities	installed	on	the
device,	and	each	activity	has	its	intent	filters.	Android	tries	to	match	the
intent	with	each	intent	filter.	If	an	activity	has	any	matching	intent	filters,
that	activity	goes	on	the	list	of	possible	responders	to	the	startActivity
method	call.

An	activity’s	non-matching	filters	don’t	harm	the	activity’s	chances
of	going	on	the	list.	Even	if	only	one	of	an	activity’s	filters	matches,	the
activity	still	goes	on	the	list	of	possible	responders.

So	what	constitutes	a	match	between	an	intent	and	an	intent	filter?
Funny	you	should	ask!	The	answer	is	far	from	simple.

An	intent	filter	can	have	actions,	data	entries,	and	categories.
(Unlike	an	intent,	an	intent	filter	can	have	more	than	one	action	and	more
than	one	data	entry.	Like	an	intent,	an	intent	filter	can	have	more	than	one
category.)	Intent	filters	don’t	have	extras	or	flags.	(See	Figure	2-4.)

	

Figure	2-4:	The	parts	of	an	intent	filter.

To	find	a	match	between	an	implicit	intent	and	an	intent	filter,
Android	performs	three	tests:
•	Android	tests	the	intent’s	action	for	a	match	with	the	filter’s	actions.

	
•	Android	tests	the	intent’s	categories	for	a	match	with	the	filter’s
categories.

	
•	Android	tests	the	intent’s	data	for	a	match	with	the	filter’s	data.

	
Android’s	rules	for	matching	an	intent’s	action	with	a	filter’s	action

are	fairly	straightforward.	And	the	rules	for	matching	the	intent’s
categories	with	the	filter’s	categories	are	okay.	But	neither	of	these	rules
is	a	memorable,	one-sentence	slogan.	And	the	rules	for	matching	the
intent’s	data	with	the	filter’s	data	are	quite	complicated.	Unfortunately,
the	official	documentation	about	filter	matching
(http://developer.android.com/guide/topics/intents/intents-
filters.html)	is	ambiguous	and	contains	some	errors.

So	to	help	you	understand	how	intents	match	intent	filters,	I	take	a
multifaceted	approach.	(That’s	a	fancy	way	to	say	that	I	explain	matching
a	few	times	in	a	few	different	ways.)

Matching:	The	general	idea	using	a	(silly)
analogy

Two	kinds	of	people	sign	up	to	participate	in	a	speed-dating	event.
On	one	side	of	the	room,	each	participant	represents	a	part	of	an	Android

http://developer.android.com/guide/topics/intents/intents-filters.html

intent.	(So	one	person	is	an	action,	the	next	two	people	are	categories,	and
so	on.	I	warned	you	that	this	analogy	would	be	silly!)	On	the	other	side	of
the	room,	each	participant	represents	a	part	of	a	filter.	(See	Figure	2-5.)

	

Figure	2-5:	Intent	elements	and	filter	elements	in	a	speed-dating	event.

Like	all	dating	situations,	the	room	might	be	imbalanced.	The	filter
might	have	more	actions	or	more	categories.	The	intent	might	have	more
data.	It’s	almost	never	a	fairy	tale,	one-to-one	mix	of	people.

In	this	arena,	some	people	are	needier	than	others.	For	example,	on
the	intent	side,	you	have	an	action	that	absolutely	insists	on	finding	a
match	among	the	filters.	On	the	filter	side,	you	have	a	category	that’s
speed	dating	only	to	keep	a	friend	company.	This	nonchalant	category
doesn’t	need	to	find	a	match	among	the	intent’s	categories.

As	a	quick	(and	not	entirely	accurate)	rule,	the	entire	intent	matches
the	entire	filter	if	and	only	if	each	needy	person	finds	a	match.	Anyone
who	isn’t	needy	doesn’t	have	to	be	matched.	That	is,	the	whole	speed-

dating	event	is	successful	even	if	no	one	who’s	along	only	for	the	ride
finds	a	match.	Non-needy	parts	don’t	derail	the	overall	match	between	the
intent	and	the	filter.

So	who’s	needy	and	who	isn’t?	Figure	2-5	gives	you	a	rough	idea.

	The	matching	rules	in	Figures	2-5,	2-6,	and	2-7	are	general
guidelines.	The	official	rules	include	some	important	exceptions.	For
more	info,	see	the	next	few	sections.

The	real	story
An	intent	filter	has	three	parts	—	actions,	categories,	and	data.

Android	tests	each	part	to	determine	whether	a	particular	intent	matches	a
particular	filter.	Each	part	consists	of	one	or	more	Java	strings.	So,
roughly	speaking,	an	intent’s	part	matches	a	filter’s	part	if	and	only	if
intent_part.equals(filter_part).	In	this	situation,	equals	is	Java’s
String	comparison	method.

In	the	preceding	paragraph	I	write	“roughly	speaking”	because
Android’s	rules	for	matching	actions	aren’t	quite	the	same	as	the	rules	for
matching	categories,	which	in	turn	are	different	from	the	rules	for
matching	data	entries.	How	do	you	decide	whether	the	one	action	in	an
intent	matches	the	many	actions	in	a	filter?	And	what	do	you	do	with
each	part	of	a	URI?	Stay	tuned,	because	the	next	several	sections	answer
these	questions.

	In	the	next	few	sections,	be	aware	of	the	many	kinds	of
matching	—	an	intent	with	a	filter,	an	intent	with	an	activity,	an
intent	action	with	a	filter	action,	a	scheme	with	an	entire	URI,	and
several	other	kinds	of	matching.

Java	methods	and	XML	elements
An	intent’s	Java	methods	include	the	following:

•	setAction:	Sets	the	intent’s	action.
	

•	addCategory:	Adds	a	category	to	the	intent.
	

•	setData:	Sets	the	intent’s	URI	and	removes	the	intent’s	MIME	type	(if
the	intent	has	a	MIME	type).

	
•	setType:	Sets	the	intent’s	MIME	type	and	removes	the	intent’s	URI	(if
the	intent	has	a	URI).

	
•	setDataAndType:	Sets	both	the	intent’s	URI	and	the	intent’s	MIME
type.	According	to	the	docs,	“This	method	should	very	rarely	be	used.”

	
You	can	describe	an	intent	filter	in	an	AndroidManifest.xml

document	or	in	Java	code.	In	an	AndroidManifest.xml	document,	the
<intent-filter>	element	has	<action>,	<category>,	and	<data>
subelements.
<action	android:name=”string”	/>

	

<category	android:name=”string”	/>

	

<data	android:scheme=”string”

						android:host=”string”

						android:port=”string”

						android:path=”string”

						android:pathPattern=”string”

						android:pathPrefix=”string”

						android:mimeType=”string”	/>

The	intent	methods	and	the	data	element’s	attributes	aren’t	parallel.
For	example,	with	an	intent’s	setAction	method,	you	set	an	intent’s

action	(if	you	want	the	intent	to	have	an	action).	But	with	a	filter’s
<action>	element,	you	add	one	of	possibly	many	actions	to	the	filter.
With	an	intent’s	setData	method,	you	set	an	intent’s	URI	(if	you	want
the	intent	to	have	a	URI).	But	with	a	filter’s	<data>	elements,	you	add
individual	pieces	of	a	URI.

You	typically	set	a	filter’s	values	in	the	AndroidManifest.xml	file.
But	in	Java	code,	the	android.content.IntentFilter	class	has	lots	of
useful	methods.	I	list	a	few	here:
•	addAction:	Adds	an	action	to	the	filter.

	
•	addCategory:	Adds	a	category	to	the	filter.

	
•	addDataScheme:	Adds	a	scheme	to	the	filter.

	
•	addDataAuthority:	Adds	an	authority	to	the	filter.

	
•	addDataPath:	Adds	a	path	to	the	filter.

	
•	addDataType:	Adds	a	MIME	type	to	the	filter.

	
As	was	the	case	with	the	intent	methods	and	the	data	element’s

attributes,	the	intent	methods	and	the	filter	methods	aren’t	parallel.	An
intent’s	set	Action	method	does	the	obvious	—	it	sets	an	intent’s	action
(if	you	want	the	intent	to	have	an	action).	A	filter’s	addAction	method,
however,	lets	you	add	one	of	possibly	many	actions	to	the	filter.	An
intent’s	setData	method	sets	an	intent’s	URI	(if	you	want	the	intent	to
have	a	URI).	A	filter’s	addDataScheme,	addDataAuthority,	and
addDataPath	methods,	on	the	other	hand,	let	you	separately	add	pieces	of
a	URI.

Matching	actions
According	to	Figure	2-5,	an	intent’s	action	must	be	matched	with

one	of	the	filter’s	actions.	That	makes	sense	because	an	intent’s	action
says,	“I	want	a	component	that	can	do	such-and-such.”	And	the	filter’s
action	says,	“I	can	do	such-and-such.”	The	filter	might	have	other	actions
(be	able	to	do	other	things),	but	having	additional	filter	actions	doesn’t
prevent	an	intent	from	matching	with	a	filter.

Exactly	what	is	an	action?	The	simplest	answer	is	that	an	action	is	a
string.	You	can	create	your	own	action	string	“thisismyaction”	or
“allmy	code.intent.action.DO_THIS”	—	Android’s	docs	recommend
the	latter	form.	But	Android	also	has	a	bunch	of	standard	actions	—
actions	reserved	for	certain	kinds	of	work.	For	example,	when	a
developer	creates	an	activity	that	can	display	something	(a	document,	a
web	page,	an	image,	or	whatever)	the	developer	includes
“android.intent.action.VIEW”	in	the	activity’s	filter.	Then,	when	you
want	someone	else’s	activity	to	display	something,	you	put
“android.intent.action.VIEW”	(or	the	constant
android.content.Intent.ACTION_VIEW	whose	value	is
“android.intent.action.VIEW”)	in	your	intent.

Table	2-1	lists	some	of	my	favorite	standard	actions.

	

For	a	complete	list	of	Android’s	standard	actions,	visit
http://developer.android.com/reference/android/content/Intent.html

Here’s	a	useful	experiment:
1.	Create	a	new	Android	project	with	two	activities	—	the	main

activity	created	by	Eclipse	and	a	second	OtherActivity.java	activity.

http://developer.android.com/reference/android/content/Intent.html

	 2.	Add	the	following	activity	element	to	the	project’s
AndroidManifest.xml	file:

	 <activity	android:name=”.OtherActivity”>

		<intent-filter>

				<action

						android:name=”com.allmycode.action.MY_ACTION”	/>

				<category

						android:name=”android.intent.category.DEFAULT”	/>

		</intent-filter>

</activity>
3.	In	the	main	activity,	add	the	following	code:

	 final	String	THE_ACTION	=

				“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

startActivity(intent);
4.	Using	Eclipse’s	Graphical	Layout	editor,	change	the	layout	of

the	other	activity.
	 Any	change	is	okay.	The	only	reason	for	changing	the	other

activity’s	layout	is	to	help	you	recognize	which	of	the	two	activities	(the
main	activity	or	the	other	activity)	is	on	the	emulator’s	screen.

	 5.	Run	the	project.
	 As	soon	as	your	emulator	executes	the	code	in	Step	3,	Android

launches	the	other	activity.	The	intent’s
“com.allmycode.action.MY_ACTION”	matches	the	filter’s
“com.allmycode.action.MY_ACTION”,	so	the	other	activity	starts
running.

	

	Real	Android	developers	use	a	standard	action	(such	as
the	actions	in	Table	2-1),	or	they	make	up	dotted	action	names,	such	as
“com.allmy	code.action.MY_ACTION”.	Real	developers	type	that
“com.allmy	code.action.MY_ACTION”	string	in	the
AndroidManifest.xml	file	(because	they	must).	But	in	the	Java	code,	real
developers	create	a	constant	value	to	represent	the	string	(because	it’s
good	programming	practice).

	

	The	category	element	in	Step	2	of	this	section’s
instructions	is	an	anomaly	that	I	cover	in	the	later	section	“The	fine
print.”	If	you	don’t	want	to	skip	to	that	section,	simply	add	the	category
“android.	intent.category.DEFAULT”	to	each	filter	in	your
Android}Manifest.xml	file.

	 Continuing	the	experiment	.	.	.
	 6.	Comment	out	(or	delete)	the	following	element	from	your

project’s	AndroidManifest.xml	file:
	 				<action

						android:name=”com.allmycode.action.MY_ACTION”	/>
7.	Run	your	project	again.

	 When	your	emulator	executes	the	Java	code	in	Step	3,	your	app
crashes.	The	filter	has	no	action	matching	your	intent’s
“com.allmycode.action.MY_ACTION”,	and	(in	all	likelihood)	no	other
activity	on	your	emulator	has	a	filter	containing
“com.allmycode.action.MY_ACTION”.

	

	In	Step	7,	your	app	intentionally	crashes.	Crashes	make
good	learning	experiences,	but	users	don’t	appreciate	such	learning
experiences.	To	avoid	the	kind	of	disaster	you	see	in	Step	7,	call	the
PackageManager	class’s	queryIntentActivities	method	before
attempting	to	call	startActivity.	Alternatively,	you	can	put	your
startActivity	call	in	a	try/catch	block	with	the
ActivityNotFoundException:

	 try	{								

		startActivity(intent);

}	catch	(ActivityNotFoundException	e)	{

		e.printStackTrace();

}
This	code	tells	Java	to	call	startActivity.	If	Android	can’t	start	an

activity	(that	is,	if	Android	can’t	find	an	activity	to	match	the	intent),

Java	jumps	to	the	statement	e.printStackTrace(),	which	displays	error
information	in	Eclipse’s	LogCat	view.	After	displaying	the	information,
Java	marches	on	to	execute	whatever	code	comes	after	the	attempt	to	call
startActivity.	Therefore,	the	app	doesn’t	crash.

	

	For	more	on	try/catch	blocks,	see	Book	II,	Chapter	3.
	 8.	Uncomment	the	element	that	you	commented	out	in	Step	6.
	 9.	Modify	the	other	activity’s	element	in	the

AndroidManifest.xml	file	as	follows:
	 <activity	android:name=”.OtherActivity”>

		<intent-filter>

				<action

						android:name=”com.allmycode.action.MY_ACTION”	/>

				<action

						android:name=”com.allmycode.action.X_ACTION”	/>

				<category

						android:name=”android.intent.category.DEFAULT”	/>

		</intent-filter>

</activity>
10.	Run	the	project	again.

	 When	your	emulator	executes	the	Java	code	in	Step	3,	Android
launches	the	other	activity.	The	intent’s
“com.allmycode.action.MY_ACTION”	matches	the	filter’s
“com.allmycode.action.MY_ACTION”,	and	the	filter’s	additional
“com.allmycode.action.X_ACTION”	doesn’t	require	a	match.

	

	Following	this	example’s	steps	for	each	intent	and	filter	that
you	want	to	test	can	become	very	tedious.	So	to	help	you	test
matches,	I’ve	created	a	special	Android	app.	For	details,	see	the
“Practice,	Practice,	Practice”	section,	later	in	this	chapter.

Matching	categories
According	to	Figure	2-5,	each	of	an	intent’s	categories	must	be

matched	with	one	of	the	filter’s	categories.	That	makes	sense	because	an
intent’s	category	says,	“I	want	a	component	of	such-and-such	kind.”	And
the	filter’s	category	says,	“I’m	a	such-and-such	kind	of	component.”	The
filter	might	have	other	categories,	but	having	additional	filter	categories
doesn’t	prevent	an	intent	from	matching	with	a	filter.

Exactly	what	is	a	category?	Like	an	action,	a	category	is	a	string.
You	can	create	your	own	category	string	“thisismycategory”	or
“allmycode.intent.category.THIS_KIND”,	and	Android’s	docs
recommend	the	latter	form.	But	Android	also	has	a	bunch	of	standard
categories	—	categories	reserved	for	certain	kinds	of	components.	Table
2-2	lists	some	of	my	favorites.

Consider	the	kitty-cat	intent	created	with	the	following	Java	code:
final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

final	String	THE_CATEGORY	=

								“com.allmycode.category.KITTY”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.addCategory(THE_CATEGORY);

startActivity(intent);

This	kitty-cat	intent	matches	a	filter	with	the	following	XML	code:
<activity	android:name=”.OtherActivity”>

		<intent-filter>

				<action

						android:name=”com.allmycode.action.MY_ACTION”	/>

				<category

						android:name=”com.allmycode.category.KITTY”	/>

				<category

						android:name=”android.intent.category.DEFAULT”	/>

		</intent-filter>

</activity>

The	kitty-cat	intent	also	matches	the	following	intent	because	(in	the
language	of	speed	dating)	filter	categories	aren’t	needy.
<activity	android:name=”.OtherActivity”>

		<intent-filter>

				<action

						android:name=”com.allmycode.action.MY_ACTION”	/>

				<category

						android:name=”com.allmycode.category.KITTY”	/>

				<category

						android:name=”Otto.Schmidlap”	/>

				<category

						android:name=”android.intent.category.DEFAULT”	/>

		</intent-filter>

</activity>

The	kitty-cat	intent	does	not	match	the	following	intent	because	an
intent’s	categories	are	needy:
\<activity	android:name=”.OtherActivity”>

		<intent-filter>

				<action

						android:name=”com.allmycode.action.MY_ACTION”	/>

				<category

						android:name=”Otto.Schmidlap”	/>

				<category

						android:name=”android.intent.category.DEFAULT”	/>

		</intent-filter>

</activity>

Matching	data
Figure	2-5	illustrates	an	interesting	relationship	between	an	intent’s

data	and	a	filter’s	data:
•	If	an	intent	has	a	URI	or	if	a	filter	has	a	URI,	one	of	the	filter’s	URIs
must	match	the	intent’s	URI.

	
•	If	an	intent	has	a	MIME	type	or	if	a	filter	has	a	MIME	type,	one	of	the
filter’s	MIME	types	must	match	the	intent’s	MIME	type.

	
These	rules	have	some	corollaries:

•	An	intent	without	a	URI	cannot	match	a	filter	without	a	URI.	A	filter
without	a	URI	cannot	match	an	intent	without	a	URI.

	
•	An	intent	without	a	MIME	type	cannot	match	a	filter	without	a	MIME
type.	A	filter	without	a	MIME	type	cannot	match	an	intent	without	a
MIME	type.

	
How	does	all	this	stuff	about	URIs	and	MIME	types	make	sense?

The	deal	is,	data	doesn’t	perform	the	same	role	as	an	action	or	a	category
in	matching	a	filter	with	an	intent.	Imagine	that	an	intent	announces,	“I
want	a	component	to	perform	android.intent.action.VIEW,”	and	a
certain	activity’s	filter	announces,	“I	can	perform
android.intent.action.VIEW.”	The	intent	doesn’t	care	if	the	filter
announces	that	it	can	perform	other	actions.

But	what	if	an	intent	announces,	“I	want	a	component	to	handle	the
URI	tel:6502530000”?	(The	URI	tel:6502530000	places	a	call	to
Google’s	corporate	headquarters	in	Mountain	View,	California.)	An
appropriate	filter	contains	the	tel	scheme.	(See	Figure	2-6.)	Now
imagine	another	intent	with	no	tel:	URI	and	a	filter	whose	only	scheme
is	the	tel	scheme.	(Again,	see	Figure	2-6.)	In	this	case,	the	filter	says,	“I
can	do	something	useful	with	a	telephone	number,	and	when	I’m
invoked,	I	expect	to	receive	a	telephone	number.”	If	the	intent	has	no
tel:	URI,	a	match	isn’t	appropriate.

So	the	coupling	between	an	intent’s	and	a	filter’s	data	is	stronger
than	the	coupling	between	actions	or	the	coupling	between	categories.

With	the	URI	part	of	the	data,	both	the	intent	and	the	filter	are	needy.	The
same	is	true	of	the	data’s	MIME	types.

	

Figure	2-6:	Matching	the	tel	scheme.

The	following	intent	and	filter	form	a	match:
final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.setData(Uri.parse(“http:”));

startActivity(intent);

	

<intent-filter>

		<action

				android:name=”com.allmycode.action.MY_ACTION”	/>

		<category

				android:name=”android.intent.category.DEFAULT”	/>

		<data	android:scheme=”http”	/>

		<data	android:scheme=”mymadeupscheme”	/>

</intent-filter>

The	same	intent	with	a	slightly	modified	filter	does	not	form	a
match	because	the	set	of	MIME	types	in	a	filter	is	needy:
<intent-filter>

		<action

				android:name=”com.allmycode.action.MY_ACTION”	/>

		<category

				android:name=”android.intent.category.DEFAULT”	/>

		<data	android:scheme=”http”	/>

		<data	android:scheme=”mymadeupscheme”	/>

		<data	android:mimeType=”text/html”	/>

</intent-filter>

To	match	this	modified	filter,	you	need	either	of	the	following
intents:
final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.setDataAndType(Uri.parse(“http:”),	“text/html”);

startActivity(intent);

final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.setDataAndType

				(Uri.parse(“mymadeupscheme:”),	“text/html”);

startActivity(intent);

Finally,	the	following	intent	and	filter	form	a	match	because	the
MIME	type	in	the	intent	matches	one	of	the	MIME	types	in	the	filter:
final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.setType(“text/html”);

startActivity(intent);

	

<intent-filter>

		<action

				android:name=”com.allmycode.action.MY_ACTION”	/>

		<category

				android:name=”android.intent.category.DEFAULT”	/>

		<data	android:mimeType=”abc/xyz”	/>

		<data	android:mimeType=”text/html”	/>

</intent-filter>

Matching	parts	of	the	data
The	“Java	methods	and	XML	elements”	section,	earlier	in	this

chapter,	lists	methods	and	XML	elements.	With	an	intent’s	setData
method,	you	set	an	intent’s	URI	(if	you	want	the	intent	to	have	a	URI).
With	a	filter’s	<data>	elements,	you	add	individual	pieces	of	a	URI.	The
filter’s	pieces	don’t	have	to	fit	together.	For	example,	the	following	intent
and	filter	form	a	match:
final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.setData(Uri.parse(“abc://example.com:2222”));

startActivity(intent);

	

<intent-filter>

		<data	android:scheme=”xyz”	android:host=”example.com”	/>

		<data	android:port=”2222”	/>

		<action

				android:name=”com.allmycode.action.MY_ACTION”	/>

		<category

				android:name=”android.intent.category.DEFAULT”	/>

		<data	android:scheme=”abc”	/>

</intent-filter>

A	filter	can	have	schemes	“abc”	and	“xyz”,	and	authority
“example.com”.	Then	the	filter’s	data	matches	both	intent	data
“abc://example.com”	and	intent	data	“xyz://example.com”.	This	works
even	if	you	lump	“xyz”	and	“example.com”	in	the	same	<data>	element.

With	a	filter’s	addDataScheme,	addDataAuthority,	and
addDataPath	methods,	you	separately	add	pieces	of	a	URI.	For	example,
the	following	intent	and	filter	form	a	match:
final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.setData(Uri.parse(“abc://example.com:2222”));

	

final	IntentFilter	filter	=	new	IntentFilter();

filter.addAction(THE_ACTION);

//	Constant	com.content.Intent.CATEGORY_DEFAULT	has

//			value	“android.intent.category.DEFAULT”

filter.addCategory(Intent.CATEGORY_DEFAULT);

filter.addDataScheme(“abc”);

filter.addDataScheme(“xyz”);

filter.addDataAuthority(“example.com”,	“2222”);

At	this	point,	a	few	observations	are	in	order.
•	An	intent	has	three	similar	methods	—	setData,	setDataAndType,	and
setType.	You	call	setData	for	an	intent	with	a	URI	but	no	MIME	type.
You	call	setType	for	an	intent	with	a	MIME	type	but	no	URI.	You	call
setDataAndType	only	for	an	intent	with	both	a	URI	and	a	MIME	type.

	
•	You	don’t	pass	a	string	to	the	setData	method	or	to	the	first	parameter
of	the	setDataAndType	method.	Instead,	you	pass	an	instance	of	the
android.net.Uri	class.	You	do	this	by	applying	the	method	Uri.parse
to	a	string	of	characters.

	
•	Here’s	a	silly	but	important	detail:	A	call	to
intent.setData(Uri.parse(“http:”))	with	a	colon	after	http	matches
the	filter	element	<data	android:scheme=”http”	/>	without	a	colon
after	the	http.	Other	combinations	of	colon/no-colon	for	a	URI	scheme
fail	to	make	a	match.

	

Matching	URIs
Figure	2-5	illustrates	an	imaginary	speed-dating	event	for	the	parts

of	an	intent	and	an	intent	filter.	The	figure	doesn’t	address	the	matching
of	one	URI	with	another.	So	imagine	that	the	URIs	in	Figure	2-5	bring
their	darling	little	children	(their	schemes,	authorities,	and	paths)	to	the
speed-dating	event.	As	the	evening	begins,	the	kids	go	off	to	a	separate
room	for	a	speed-dating	event	of	their	own.	(Sure,	they’re	too	young	to
date.	But	it’s	good	practice	for	adolescence.)	Figure	2-7	illustrates	the
neediness	situation	in	the	kids’	event.

The	situation	with	the	URI’s	kids	is	similar	to	the	situation	with	all
data.	Everybody’s	happy	as	long	as	each	thing	on	the	intent	side	matches
something	on	the	filter	side.	For	example,	the	following	intent	and	filter
form	a	match:
final	String	THE_ACTION	=

								“com.allmycode.action.MY_ACTION”;

Intent	intent	=	new	Intent();

intent.setAction(THE_ACTION);

intent.setData(Uri.parse(“abc://example.com:2222”));

startActivity(intent);

<intent-filter>

		<action

				android:name=”com.allmycode.action.MY_ACTION”	/>

		<category

				android:name=”android.intent.category.DEFAULT”	/>

		<data	android:scheme=”abc”	/>

</intent-filter>

	

Figure	2-7:	Among	the	parts	of	a	URI,	who	needs	to	meet	someone?

But	with	the	same	intent,	the	following	filter	isn’t	a	match:
<intent-filter>

		<action

				android:name=”com.allmycode.action.MY_ACTION”	/>

		<category

				android:name=”android.intent.category.DEFAULT”	/>

		<data	android:scheme=”abc”	/>

		<data	android:host=”example.com”	/>

		<data	android:port=”2222”	/>

		<data	android:path=”/some/stuff”	/>

</intent-filter>

The	fine	print
With	all	the	fuss	about	filter	matching	in	the	previous	sections,

you’d	think	the	issue	was	covered	and	done	with.	But	the	work	is	never
done.	Here’s	a	list	of	filter	matching’s	most	important	gotchas	and
exceptions:
•	Android	treats	activities	differently	from	other	components	(such	as
services	and	broadcast	receivers).

	
You	can	create	an	implicit	intent	with	no	actions.	If	you	do,	a	call	to
startActivity(intent)	doesn’t	find	a	match	among	any	activity	filters.
However,	calls	to	sendBroadcast(intent)	or	to	bindService(intent,
...)	may	find	matches.

	
	

According	to	the	Android	docs,	“...	an	Intent	object	that
doesn’t	specify	an	action	automatically	passes	the	test	—	as	long	as	the
filter	contains	at	least	one	action.”	As	far	as	I	can	tell,	this	statement	in
the	docs	is	incorrect.

	
•	With	respect	to	categories,	Android	treats	activities	differently	from
other	components.

	
When	you	try	to	start	an	activity,	Android	behaves	as	if	the	intent
contains	the	“android.intent.category.DEFAULT”	category.	(Android
does	this	even	if	you	don’t	execute	code	to	add	that	category	to	the
intent.)	Because	of	this,	an	activity	filter	without	the
“android.intent.category.DEFAULT”	category	never	matches	an	intent.
Broadcast	receivers	and	services	don’t	suffer	from	this	anomaly.

	

	The	activity	that	starts	when	the	user	first	presses	an	app’s
icon	is	the	app’s	main	activity.	A	main	activity’s	filter	normally	contains
the	action	“android.intent.action.MAIN”	and	the	category
“android.intent.category.LAUNCHER”.	If	you	want	an	activity	to
function	only	as	a	main	activity	(and	never	be	started	by	an	app’s	call	to
startActivity),	you	can	safely	omit
“android.intent.category.DEFAULT”	from	the	activity’s	filter.

	
•	Flip	back	to	Figure	2-3	to	see	the	kinds	of	URIs	you	can	create.	A	URI
with	an	authority	must	have	a	scheme,	and	a	URI	with	a	path	must	have
an	authority	and	a	scheme.	Also,	a	port	without	a	host	is	ignored.	So	the
following	strings	are	not	valid	URIs:

	
•	example.com	—	has	an	authority	but	no	scheme.

	
•	http:///folder/subfolder	—	has	a	path	but	no	authority.

	

	The	official	Android	docs	provide	the	following	loophole:	“
.	.	.	if	a	host	is	not	specified,	the	port	is	ignored.”	So	a	URI	like
http://:2000/folder	is	strange	but	valid.	I’ve	created	such	URIs	in
captivity,	but	I’ve	never	encountered	one	in	the	wild.

	
•	A	filter	URI	with	nothing	but	a	scheme	matches	any	intent	URI	with	the
same	scheme.	Take,	for	example,	the	intent	URI	to	call	Google’s
corporate	headquarters,	tel:6502530000.	An	appropriate	filter	probably
contains	the	tel	scheme	but	not	the	number	6502530000.	(A	filter	whose
sole	URI	is	tel:6502530000	can	call	only	Google’s	corporate
headquarters.	The	filter	would	be	useful	only	for	an	Unsatisfied	Google
Customer	app.)

	
In	the	same	way,	a	filter	URI	with	a	scheme,	an	authority,	and	no	path
matches	any	intent	filter	with	the	same	scheme	and	the	same	authority.

	
•	The	schemes	content	and	file	get	special	treatment.	If	the	intent’s	URI
has	scheme	content	or	scheme	file,	and	the	intent	has	a	MIME	type,
you	can	omit	the	scheme	from	the	filter.	(You	must	still	have	a	match
between	the	intent’s	MIME	type	and	one	of	the	filter’s	MIME	types.)
Someday	this	rule	will	make	sense	to	me.

	
•	Certain	parts	of	the	data	may	contain	wildcards	or	simplified	regular
expressions.	Here	are	a	few	examples:

	
•	The	type	text/*	matches	text/plain.	The	type	text/*	also	matches

text/html	and	text/whatever.	The	type	text/*	matches	text/	(with
a	slash	and	no	subtype)	but	does	not	match	text	(with	no	slash	and	no
subtype).

	
•	The	type	/	matches	text/plain.	The	type	/	also	matches	image/jpeg,

and	so	on.
	

•	The	type	*	(one	wildcard	with	no	slash)	and	*/html	don’t	seem	to
match	anything.

	
•	The	type	text/ht*	doesn’t	match	text/html.	(With	a	top-level	type	or

a	subtype,	the	wildcard	must	be	“all	or	nothing.”)
	

•	Paths	use	a	simplified	regular	expression	form.	(In	other	words,	paths
can	include	wildcards	and	other	funky	symbols.)	For	example,	the
intent	URI	http://example.com/folder	matches	the	filter	URI	with
scheme	http,	authority	example.com,	and	path	pattern	/fol.*.	In	the
AndroidManifest.xml	file,	the	data	element’s	android:path,
android:pathPrefix,	and	android:pathPattern	attributes
distinguish	among	the	various	possibilities.

	

	For	more	information	about	path	expressions,	visit
http://developer.android.com/guide/topics/manifest/data-

element.html.
	

•	With	the	exception	of	the	host	name,	the	strings	in	an	intent	and	its	filter
are	case-sensitive.	So	text/html	doesn’t	match	TEXT/HTML,	and	HTTP
doesn’t	match	http.	But	http://example.com	matches
http://EXAMPLE.com.	Android’s	docs	recommend	using	mostly
lowercase	letters.

	

Practice,	Practice,	Practice
If	I	had	a	nickel	for	every	time	I	misinterpreted	something	in

Android’s	Intent	Filters	documentation,	I’d	have	enough	to	fill	my	tank
with	gas.	(That’s	pretty	impressive,	isn’t	it?)	I	want	to	believe	that	this
chapter’s	sections	on	intent	and	filter	matching	are	clear	and
unambiguous.	But	in	my	heart,	I	know	that	almost	all	spoken-language
sentences	are	moving	targets.	Take,	for	example,	the	following	sentences:
Put	Mommy	in	the	car	behind	us.

	
I	want	David	Copperfield	to	read.

	
I’ll	put	the	bandage	on	myself.

	
Everything	shouldn’t	be	blue.

	
Chew	one	tablet	three	times	a	day	until	finished.

	
I	saved	everyone	five	dollars.

	
Cars	towed	at	owner’s	expense.

http://developer.android.com/guide/topics/manifest/data-element.html

	
Our	cream	is	so	gentle	that	it	never	stings	most	people,	even	after
shaving.

	
I	hope	someday	that	you	love	me	as	much	as	Amy.

	
If	he	were	to	learn	that	wild	bears	are	related	to	dogs,	and	never	hurt
people,	then	he’d	be	happier.

	
The	best	test	of	your	understanding	is	not	the	way	you	nod	while

you	read	this	book’s	paragraphs.	Instead,	the	best	test	is	when	you	try
your	own	examples	on	an	emulator	or	a	device.	If	you	can	accurately
predict	the	results	much	of	the	time,	you	understand	the	subject.

Unfortunately,	testing	intent	and	filter	matching	can	be	tedious.	For
every	change,	you	have	to	edit	Java	code,	then	edit	the
AndroidManifest.xml	file,	and	then	reinstall	your	app.	Some	time	ago,
after	many	hours	of	such	testing,	I	was	“mad	as	hell	and	I	wasn’t	going	to
take	it	anymore.”	I	wrote	an	app	to	test	filter	matches	one	after	another
without	modifying	files	or	reinstalling	anything.	I	named	it	the	Intentsity
app	(because,	as	an	author,	I’m	tired	of	worrying	about	things	being
spelled	correctly).	Needless	to	say,	the	app	is	available	for	your	use
through	this	book’s	website	—	www.allmycode.com/android.	(You	can
thank	me	later.)

The	upper	half	of	the	app’s	main	screen	is	shown	in	Figure	2-8.

	

Figure	2-8:	A	screen	for	entering	intent	and	intent	filter	strings.

http://www.allmycode.com/android

The	Intentsity	app’s	screen	has	an	Intent	part	and	a	Filter	part.	Both
parts	have	EditText	fields	for	filling	in	String	values.	Each	EditText
field	represents	an	Intent	instance	method	or	an	IntentFilter	instance
method.	(For	a	list	of	such	methods,	see	the	“Java	methods	and	XML
elements”	section,	earlier	in	this	chapter.)

	Android	has	no	features	for	setting	an	activity’s	intent	filter
using	Java	code.	But	you	can	create	another	component	—	a
broadcast	receiver	—	and	set	the	broadcast	receiver’s	filter	using

Java	code.	(You	use	the	IntentFilter	method	calls	described	in	the
“Java	methods	and	XML	elements”	section.)	Accordingly,	my
Intentsity	app	tests	the	values	you	type	in	the	EditText	fields	by
attempting	to	communicate	with	a	broadcast	receiver.	The	fields	in
the	lower	part	of	the	app	(the	Filter	fields)	match	with	the	Java
methods	for	creating	an	IntentFilter	object,	not	with	the	attributes
in	the	AndroidManifest.xml	document.	To	keep	things	as	faithful	as
possible	to	Android’s	real	behavior,	my	app	respects	the	fact	that	a
broadcast	receiver’s	filter	can	do	without	the	category
“android.intent.category.DEFAULT”.	So	when	you	move	from
the	Intentsity	app	to	your	own	project,	remember	to	add
“android.intent.category.DEFAULT”	to	your	activities’	filters.
The	“Java	methods	and	XML	elements”	section,	earlier	in	this

chapter,	lists	methods	like	setAction	and	addCategory.	Methods
beginning	with	the	set	are	for	things	like	an	intent’s	action	because	an
intent	can’t	have	more	than	one	action.	Methods	beginning	with	the	add
are	for	things	like	an	intent’s	category	because	an	intent	can	have	more
than	one	category.

Figure	2-8	shows	a	New	Intent	Category	button.	When	you	click
this	button,	the	app	creates	an	additional	addCategory	row.

Figure	2-9	shows	the	bottom	of	the	Intentsity	app’s	scrolling	screen.

	

Figure	2-9:	Press	Test	to	check	for	a	match.

After	filling	in	some	EditText	fields,	click	the	Test	button,	and	the
app	does	what	it	does	best:
•	The	app	calls	the	Intent	class’s	methods	to	compose	an	intent	from
your	Intent	fields’	entries.

	
•	The	app	calls	the	IntentFilter	class’s	methods	to	compose	a	filter
from	your	Filter	fields’	entries.

	
•	The	app	calls	registerReceiver(myReceiver,	filter)	to	create	a
broadcast	receiver	with	the	new	filter.

	
•	The	app	calls	sendBroadcast(intent)	to	shout	out	to	all	the	system’s
broadcast	receivers.

	
If	the	receiver’s	filter	matches	your	intent,	the	receiver	displays	a

screen	like	the	one	in	Figure	2-10.

	

Figure	2-10:	It’s	a	match!

With	or	without	a	match,	the	app	displays	toString	versions	of
your	intent	and	intent	filter.	Figure	2-11	shows	the	display	for	a	failed
attempt	to	match.

	

Figure	2-11:	The	app	displays	the	values	in	an	intent	and	a	filter.

	

The	Intentsity	app	doesn’t	want	you	to	type	variables	in	the
EditText	fields.	In	your	own	Java	code,	the	call
setAction(Intent.ACTION_VIEW)	sets	the	intent’s	action	to	the
string	“android.intent.action.VIEW”.	But	in	the	Intentsity	app,
typing	Intent.ACTION_VIEW	in	the	topmost	field	sets	the	intent’s
action	to	the	string	“Intent.ACTION_VIEW”,	which	is	not	equal	to
(and	therefore	doesn’t	match)	a	filter	string
“android.intent.action.VIEW”.
With	the	Intentsity	app,	you	can	test	your	understanding	of	intents

and	intent	filters.	But	you	can	also	examine	the	app’s	source	code	for
some	tips	and	tricks.	The	following	sections	have	a	few	highlights.

No	magic
I	keep	things	as	simple	as	possible	in	order	to	turn	your	EditText

entries	into	an	intent	and	a	filter.	The	simplicity	guards	against
discrepancies	between	the	Intentsity	app’s	behavior	and	the	behavior	you

get	when	you	code	your	own	app.	In	the	following	code	snippet,	I	grab
text	from	EditText	fields	and	plug	that	text	into	Android’s	set	and	add
methods.	To	grab	text	from	the	addCategory	fields,	I	loop	through	the
fields	that	the	user	has	created.
private	Intent	createIntentFromEditTextFields()	{

		String	theAction	=

										actionText.getText().toString().trim();

	

		Intent	intent	=	new	Intent();

		if	(theAction.length()	!=	0)	{

				intent.setAction(theAction);

		}

	

		if	(intentCategoriesLayout	!=	null)	{

				int	count	=

												intentCategoriesLayout.getChildCount();

				for	(int	i	=	0;	i	<	count;	i++)	{

						String	cat	=

								((EditText)	((ViewGroup)	intentCategoriesLayout

										.getChildAt(i))...	//	More	code	goes	here

										.getText().toString().trim();

						if	(cat.length()	!=	0)	{

								intent.addCategory(cat);

						}

				}

		}

	

		//	Et	cetera,	et	cetera,	...

	

		return	intent;

}

Using	a	ScrollView

The	app’s	main	screen	takes	up	more	space	than	is	typically
available	on	a	mobile	phone.	So	I	enclose	the	whole	screen	in	a
ScrollView.	As	its	name	suggests,	a	ScrollView	lets	the	user	slide	things
onto	the	screen	as	other	things	slide	off.	The	big	restriction	on	a
ScrollView	is	that	a	ScrollView	may	contain	only	one	direct	child.	So	in
the	following	code,	you	can’t	put	another	View	element	between	the	end
tags	</LinearLayout>	and	</ScrollView>:
<?xml	version=”1.0”	encoding=”utf-8”?>

<ScrollView	xmlns:android=

			“http://schemas.android.comapkres/android”

		android:id=”@+id/scrollView1”

		android:layout_width=”match_parent”

		android:layout_height=”wrap_content”>

		

		<LinearLayout	android:orientation=”vertical”

				android:layout_width=”match_parent”>

	

						<!--	More	layout	stuff	within

											the	LinearLayout	goes	here.

											This	stuff	may	include

											additional	view	elements.	-->

	

		</LinearLayout>

				<!--	No	additional	view	elements	may	appear	here.	-->

</ScrollView>

Defining	a	layout	in	Java	code
With	my	Intentsity	app,	a	user	can	add	new	elements	to	an	existing

layout.	Android	has	a	ListView	class	that	handles	runtime	additions	to	a
layout.	With	the	Intentsity	app,	though,	I	found	Android’s	addView	and
removeView	methods	easier	to	wield.	The	addView	and	removeView
methods	allow	you	to	manipulate	layouts	dynamically	in	Java	code	rather
than	statically	in	XML	resource	files.	The	following	excerpt	gives	you	a
taste	of	this	technique:
void	addRow(final	LinearLayout	layout,

								String	label,	String	hintStr,

								boolean	addRadioGroup)	{

				LinearLayout.LayoutParams	rowLayoutParams	=

												new	LinearLayout.LayoutParams(

												LinearLayout.LayoutParams.FILL_PARENT,

												ViewGroup.LayoutParams.WRAP_CONTENT);

				LinearLayout.LayoutParams	editTextLayoutParams	=

												new	LinearLayout.LayoutParams(

												180,	LinearLayout.LayoutParams.WRAP_CONTENT);

	

				LinearLayout	row	=	new	LinearLayout(this);

				row.setOrientation(LinearLayout.HORIZONTAL);

				row.setGravity(Gravity.CENTER_VERTICAL);

	

				TextView	textView	=	new	TextView(this);

				textView.setText(label);

				row.addView(textView);

				EditText	editText	=	new	EditText(this);

				editText.setTextSize(TypedValue.COMPLEX_UNIT_SP,	12);

				editText.setHint(hintStr);

				editText.setLayoutParams(editTextLayoutParams);

				if	(!isFirstTime)	{

								editText.requestFocus();

				}

				row.addView(editText);

	

				//	Blah,	blah,	blah,...

	

				Button	button	=	new	Button(this);

				button.setTextSize(10);

				button.setTypeface(null,	Typeface.BOLD);

				button.setText(“X”);

				button.setTypeface(

												Typeface.SANS_SERIF,	Typeface.BOLD);

				button.setOnClickListener(new	OnClickListener()	{

								public	void	onClick(View	view)	{

												layout.removeView(

																				(LinearLayout)	view.getParent());

								}

				});

				row.addView(button);

				row.setLayoutParams(rowLayoutParams);

				layout.addView(row);

}

Activities	and	Stacks
The	activity	that	starts	when	the	user	first	presses	an	app’s	icon	is

the	app’s	main	activity.	When	the	user	first	presses	the	app’s	icon,	this
main	activity	becomes	the	root	activity	in	a	new	task	stack.	(At	first,	the
root	activity	is	the	only	activity	on	the	task	stack.	As	the	stack	grows,	the
root	activity	normally	remains	at	the	bottom	of	the	stack.)

	To	learn	more	about	tasks,	see	Chapter	1	of	this	minibook.
A	call	to	startActivity	in	Activity	A’s	code	can	launch	an	activity

(Activity	B)	belonging	to	a	different	app.	When	this	happens,	Android
launches	Activity	B	by	pushing	Activity	B	onto	Activity	A’s	task	stack.
So	one	task	may	contain	activities	belonging	to	more	than	one
application.

But	each	task	is	associated	with	a	single	application	—	namely,	the
app	containing	the	task’s	root	activity.	And	typically,	that	single
application	has	an	icon	on	the	device’s	Home	screen	or	Apps	screen.	(See
Figure	2-12.)

	

Figure	2-12:	Each	task	has	an	app,	which	(in	turn)	has	an	icon.

The	user	can	switch	between	tasks	by	pressing	the	Home	button	and
then	pressing	the	icon	whose	app	is	associated	with	the	desired	task.	In
this	sense,	the	user	has	task-level	control	over	the	device’s	behavior.	The
user	doesn’t	have	activity-level	control.	(For	example,	the	user	can’t
routinely	return	to	an	activity	that’s	in	the	middle	[rather	than	the	top]	of
a	task	stack.)

The	activity	stack
In	most	of	Android’s	documentation,	stack	doesn’t	refer	to	a	task

stack.	Instead,	the	docs	refer	to	the	activity	stack	(or	the	back	stack).	The
activity	stack	is	the	system’s	ever-changing,	last-in/first-out	history	list.

You	can	think	of	the	activity	stack	as	a	list	of	activities.	But	more
precisely,	the	items	in	the	activity	stack	are	tasks,	and	the	tasks
themselves	contain	the	activities.

When	the	user	presses	the	Back	button,	Android	pops	an	activity	off
the	activity	stack.	(That	is,	Android	pops	an	activity	off	whatever	task	is
at	the	top	of	the	activity	stack.)

When	the	user	presses	Home	and	then	presses	an	icon	to	return	to	an

older	task,	Android	reorders	the	activity	stack	so	that	the	task	being
revisited	is	on	top	of	the	activity	stack.	(Because	of	this	reordering,	the
activity	stack	isn’t	strictly	a	last-in/first-out	list.	For	that	matter,	an
individual	task	doesn’t	always	behave	like	a	last-in/first-out	list	either.)

Imagine	starting	an	emulator	by	running	an	application	in	Eclipse.
(Call	this	application	App	A.)	With	App	A	showing	in	the	emulator,
pressing	Home	brings	you	to	Android’s	own	launcher	task	(the	Home
screen).	Then,	when	you	press	a	second	application’s	icon	(the	icon
representing	App	B),	the	activity	stack	contains	three	tasks,	as	shown	at
the	start	of	Figure	2-13.

	

Figure	2-13:	Tasks	on	the	activity	stack.

Because	the	activity	stack	is	normally	a	last-in/first-out	list,
Android’s	own	launcher	task	is	sandwiched	between	the	two	application
tasks.

With	three	tasks	on	the	emulator’s	activity	stack,	run	another	app
(App	C)	in	Eclipse.	Starting	an	app	from	Eclipse	doesn’t	involve
Android’s	launcher,	so	the	emulator’s	activity	stack	now	contains	four
tasks,	as	shown	in	Figure	2-13.

Pressing	the	Back	button	pops	App	C	off	the	stack	and	returns	you
to	App	B.	Pressing	the	Back	button	a	second	time	pops	App	B	off	the

stack	and	returns	you	to	the	launcher.	(Again,	see	Figure	2-13.)
Pressing	the	Back	button	a	third	time	keeps	you	at	the	launcher

because	you	can’t	back	up	beyond	the	Home	screen.

Fly	the	flag
An	intent	can	contain	six	kinds	of	information:

•	The	name	of	a	component	to	be	invoked	(making	the	intent	an	explicit
intent	rather	than	an	implicit	intent)

	
•	A	set	of	extras

	
•	One	action

	
•	A	set	of	categories

	
•	Some	data	(one	URI	and/or	one	MIME	type)

	
•	A	set	of	flags

	
I	cover	the	first	two	kinds	of	information	in	Chapter	1	of	this

minibook,	and	I	beat	the	third,	fourth,	and	fifth	kinds	of	information	to
death	in	this	chapter’s	previous	sections.	So	this	section	deals	with	the
sixth	kind	of	information	—	namely,	flags.

A	flag	tells	Android	how	to	deal	with	a	component.	In	most	cases,
the	component	is	an	activity	that	you’re	launching	by	calling
startActivity	or	startActivityForResult.	A	typical	programming
pattern	is	as	follows:
Intent	intent	=	new	Intent();

intent.setAction(someActionString);

intent.addCategory(someCategoryString);

intent.addFlags(int_value_representing_one_or_more_flags);

startActivity(intent);

Examples	of	Android’s	standard	flags	include	the	following:
•	Intent.FLAG_ACTIVITY_NO_ANIMATION:	When	starting	the	new	activity,
don’t	animate	the	activity’s	entrance.	That	is,	if	the	norm	is	to	slide	the
new	activity	over	the	existing	activity,	don’t	slide	it.	Just	make	the	new

activity	“poof”	onto	the	screen.
	

•	Intent.FLAG_ACTIVITY_NO_HISTORY:	Start	the	new	activity,	but	destroy
this	new	activity	as	soon	as	the	user	navigates	away	from	it.	For	example,
if	the	user	presses	Home	and	then	returns	to	this	task,	restore	the	task	as	if
this	new	activity	had	never	been	added.	(See	Figure	2-14.)

	
•	Intent.FLAG_ACTIVITY_SINGLE_TOP:	If	an	instance	of	the	activity	is
already	on	top	of	the	activity	stack,	don’t	start	another	instance	of	that
activity.	Instead,	use	the	instance	that’s	already	on	top	of	the	stack.	(See
Figure	2-15.)

	
•	Intent.FLAG_ACTIVITY_CLEAR_TOP:	If	the	activity	being	started	already
has	an	instance	somewhere	on	the	task	stack,	don’t	add	a	new	instance	at
the	top	of	the	task	stack.	Instead,	grab	all	activities	above	the	existing
instance,	and	pop	them	off	the	stack.	(Yes,	destroy	them.)	See	Figure	2-
16.

	
•	Intent.FLAG_ACTIVITY_NEW_TASK:	Each	task	is	associated	with	an
application.	Imagine	that	you	have	two	applications	—	App	A	and	App	B
—	and	that	the	currently	active	task	is	associated	with	App	A.	Inside	this
task,	you	call	startActivity	to	launch	an	activity	in	the	other	app	—
App	B.	What	happens?

	
Without	the	FLAG_ACTIVITY_NEW_TASK	flag,	Android	pushes	the	newly
starting	activity	on	top	of	the	current	stack.	(See	Figure	2-17.)	But	with
the	FLAG_ACTIVITY_NEW_TASK	flag,	Android	looks	for	a	task	associated
with	App	B.

	
	

Figure	2-14:	The	effect	of	adding	FLAG_ACTIVITY_NO_HISTORY.

	

Figure	2-15:	The	effect	of	adding	FLAG_ACTIVITY_SINGLE_TOP.

	

Figure	2-16:	The	effect	of	adding	FLAG_ACTIVITY_CLEAR_TOP.

•	If	Android	finds	such	a	task,	Android	pushes	the	newly	starting	activity
onto	that	task.

	
•	If	Android	doesn’t	find	such	a	task,	Android	creates	a	task	associated

with	App	B.	(See	Figure	2-17.)
	

With	or	without	a	previously	existing	App	B	task,	Android	displays	the
newly	started	activity	on	the	user’s	screen.

	
	

Figure	2-17:	The	effect	of	adding	FLAG_ACTIVITY_NEW_TASK.

•	Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS:	Don’t	display	this
activity’s	app	when	the	user	holds	down	the	Home	button.

	
Android	creates	a	“Recents”	item	when	you	create	a	new	task.
Combining	FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS	with
FLAG_ACTIVITY_NEW_TASK	suppresses	the	creation	of	a	new	“Recents”
item.

	
•	Intent.FLAG_ACTIVITY_CLEAR_TASK:	When	used	with
FLAG_ACTIVITY_NEW_TASK	and	the	new	activity	is	already	part	of	a	task,
make	the	task	containing	the	activity	be	the	active	task	and	obliterate	all
other	activities	currently	on	that	task.	(See	Figure	2-18.)

	

	The	FLAG_ACTIVITY_CLEAR_TASK	feature	joined	Android’s
SDK	with	the	release	of	Honeycomb.	If	your	target	is	older	than
Honeycomb,	don’t	try	to	use	FLAG_ACTIVITY_CLEAR_TASK.

	
•	Intent.FLAG_ACTIVITY_REORDER_TO_FRONT:	If	an	instance	of	the
activity	being	started	is	already	part	of	the	current	task,	reorder	the	task’s

activities	so	that	the	instance	is	on	top.	(See	Figure	2-19.)
	

•	Intent.FLAG_EXCLUDE_STOPPED_PACKAGES:	When	searching	for	an
activity	to	start,	consider	only	activities	that	are	currently	active	or
paused.

	
Each	of	these	flags	has	a	Java	int	value,	and	you	can	combine	two

or	more	flags	with	Java’s	bitwise	OR	operator	(|).	For	example,	you	can
write
intent.addFlags(FLAG_ACTIVITY_NEW_TASK	|

																FLAG_ACTIVITY_CLEAR_TASK);

The	result	is	0x10000000	|	0x00008000,	which	is	0x10008000.

	The	FLAG_ACTIVITY_CLEAR_TASK	feature	joined	Android’s
SDK	with	the	release	of	Honeycomb.	If	you	try	to	use	this	flag’s
numeric	value	(0x00008000)	on	a	pre-Honeycomb	system,	you	don’t
get	a	compile-time	error.	After	all,	the	compiler	thinks	0x00008000
is	a	perfectly	good	hexadecimal	number,	even	when	you	pass	the
number	to	the	addFlags	method.	But	at	runtime,	a	pre-Honeycomb
system	says,	“I	can’t	do	addFlags(0x00008000),	so	I	think	I’ll
display	a	rude	application	has	stopped	unexpectedly	message.”
So	to	catch	such	errors	before	runtime,	always	use	the	constant	name
FLAG_ACTIVITY_CLEAR_TASK	as	well	as	other	SDK	constants.

	Needless	to	say,	I’ve	created	an	app	to	help	you	experiment
with	intent	flags.	My	flag-testing	app	is	very	much	like	the	Intentsity
app	that	I	describe	previously	in	this	chapter.	I	haven’t	given	my
flag-testing	app	a	fancy	name,	but	you	can	download	the	app	and	its
source	code	from	this	book’s	website	—
www.allmycode.com/android.

http://www.allmycode.com/android

	To	test	your	intent	flags,	you	must	keep	track	of	the	apps,
tasks,	and	activities	as	they	run	on	your	emulator	or	device.	This
isn’t	always	straightforward.	Fortunately,	Android’s	dumpsys
command	can	show	you	a	snapshot	of	the	current	state	of	affairs.	To
see	an	up-to-date	list	of	your	emulator’s	activity	stack	and	its	tasks,
type	adb	shell	dumpsys	activity	in	your	development	computer’s
command	window.	Alternatively,	you	can	log	on	to	the	emulator’s
shell	(by	typing	adb	shell)	and	then	issue	the	dumpsys	activity
command	within	the	emulator’s	own	command	window.

	

Figure	2-18:	The	effect	of	adding	FLAG_ACTIVITY_CLEAR_TASK.

	

Figure	2-19:	The	effect	of	adding
FLAG_ACTIVITY_REORDER_TO_FRONT.

Chapter	3:	Services

In	This	Chapter
Running	code	without	bothering	the	user
Running	code	when	a	device	starts
Starting,	binding,	and	querying

Sending	messages	from	one	process	to	another
	

Some	things	are	of	no	concern	to	the	user	of	an	Android	device.	“A
process	on	your	phone	is	checking	for	e-mail	right	now	.	.	.	Nope,	no	new
e-mail.	Sorry	about	the	interruption.	Get	back	to	what	you	were	doing.
You’ll	hear	from	me	again	in	exactly	one	minute.”	Such	notices	are
intrusive	and	unnecessary,	especially	on	a	device	with	limited	screen	real
estate.

To	do	something	behind	the	scenes,	you	don’t	want	an	Android
activity.	An	activity	normally	has	a	layout	file,	and	the	user	deals	with	the
layout’s	gizmos	on	the	screen.	Instead,	you	want	the	kind	of	component
that	runs	quietly	in	the	background.	In	other	words,	you	want	an	Android
service.

A	Very	Simple	Service
I	start	this	chapter	with	an	embarrassingly	simple	example	—	a

service	that	doesn’t	do	anything.	This	lazy	service	simply	illustrates	the
minimum	service	source	code	requirements.

The	service
Listing	3-1	contains	the	good-for-nothing	service.

Listing	3-1:	An	Un-Weather	Service
package	com.allmycode.services;

	

import	android.app.Service;

import	android.content.Intent;

import	android.os.IBinder;

import	android.widget.Toast;

	

public	class	MyWeatherService	extends	Service	{

	

				@Override

				public	IBinder	onBind(Intent	intent)	{

								Toast.makeText(this,	R.string.service_bound,

																							Toast.LENGTH_SHORT).show();

								return	null;

				}

	

				@Override

				public	int	onStartCommand(Intent	intent,

																														int	flags,	int	startId)	{

								Toast.makeText(this,	R.string.service_started,

																							Toast.LENGTH_SHORT).show();

								return	START_STICKY;

				}

	

				@Override

				public	void	onDestroy()	{

								Toast.makeText(this,	R.string.service_destroyed,

																							Toast.LENGTH_SHORT).show();

				}

}

In	truth,	the	service	in	Listing	3-1	has	more	code	than	is	absolutely
necessary.	As	a	subclass	of	the	abstract	android.app.Service	class,	the
only	required	method	in	Listing	3-1	is	onBind.	Still,	the	listing’s	onStart

Command	and	onDestroy	methods	are	a	bit	more	useful	than	the	methods
that	would	be	inherited	from	the	android.app.Service	class.

The	required	onBind	method	in	Listing	3-1	returns	null.	Normally,
the	object	returned	by	an	onBind	method	implements	the
android.os.IBinder	interface,	and	an	object	that	implements	IBinder
allows	one	process	to	exchange	information	with	another	process.	That’s
nice,	but	in	this	simple	example,	the	service	doesn’t	exchange
information.

I	put	the	service	from	Listing	3-1	in	its	own	Eclipse	project,	with	its
own	package	name.	So	this	service	runs	as	its	own	application	in	its	own
process	on	an	emulator	or	a	device.	The	service	has	no	user	interface
(and,	therefore,	no	layout	file).	The	application’s	AndroidManifest.xml
file	has	no	<activity>	element	but	instead	has	the	<service>	element
shown	in	Listing	3-2.

Listing	3-2:	An	Element	in	the	Un-Weather
Service’s	AndroidManifest.xml	File
<service	android:name=”.MyWeatherService”>

				<intent-filter>

								<action	android:name=”com.allmycode.WEATHER”	/>

				</intent-filter>

</service>

A	client	activity
To	start	the	service	in	Listing	3-1,	other	components	refer	to	the

action	named	in	Listing	3-2.	Listing	3-3	shows	you	how.

Listing	3-3:	A	Client	for	the	Un-Weather
Service
package	com.allmycode.demos;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.view.View;

	

public	class	ServiceConsumerActivity	extends	Activity	{

				Intent	intent	=	new	Intent();

	

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

								intent.setAction(“com.allmycode.WEATHER”);

				}

	

				public	void	onStartClick(View	view)	{

								startService(intent);

				}

	

				public	void	onStopClick(View	view)	{

								stopService(intent);

				}

}

The	activity	in	Listing	3-3	has	two	buttons	—	a	Start	button	and	a
Stop	button.	(See	Figure	3-1.)

	

Figure	3-1:	Start	and	stop	a	service.	How	simple	is	that?

In	creating	the	layout,	I	took	the	liberty	of	assigning	listener	method
names	to	the	two	buttons:
<Button	android:text=”Start”

								android:onClick=”onStartClick”

								android:id=”@+id/button1”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”>

</Button>

<Button	android:text=”Stop”

								android:onClick=”onStopClick”

								android:id=”@+id/button4”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”>

</Button>

So	clicking	the	Start	button	calls	startService(intent),	and
clicking	the	Stop	button	calls	stopService(intent).	In	addition	to
starting	and	stopping	the	service,	each	click	displays	a	Toast	view.

	For	a	brief	treatise	on	Android’s	Toast	class,	see	the
“Informing	the	user”	section,	later	in	this	chapter.
A	service’s	primary	purposes	are	to	run	in	the	background

(independent	of	any	obvious	user	interaction)	and	to	offer	help	to	other
apps.	So	if	the	code	in	Listing	3-1	represented	a	useful	service,	this	code
would	be	doing	something	about	the	weather.	(For	code	that	does
something	useful,	see	this	chapter’s	“Talking	about	the	Weather”
section.)

Here’s	what	happens	when	you	play	with	the	buttons	in	Figure	3-1:
•	Press	Start	and	then	press	Stop.

	
After	pressing	Start,	you	see	the	Service	Started	toast.	Then,	after
pressing	Stop,	you	see	the	Service	Destroyed	toast.	No	surprises	here!

	
•	Press	Stop	twice	in	a	row.

	
If	the	service	is	running,	the	first	call	to	stopService	(in	Listing	3-3)
destroys	the	service.	The	second	call	to	stopService	doesn’t	display	a
Service	Destroyed	toast	because	a	component	that’s	not	running	can’t	be

destroyed.
	

•	Press	Start	twice	in	a	row	and	then	press	Stop	twice	in	a	row.
	

As	a	result,	you	see	two	Service	Started	toasts	followed	by	only	one
Service	Destroyed	toast.	Each	startService	call	(from	Listing	3-3)
triggers	a	call	to	onStartCommand	in	Listing	3-1.	But	the	first	stop
Service	call	(again,	from	Listing	3-3)	destroys	the	service.	Subsequence
stopService	calls	have	no	effect.

	
•	Press	Start	and	then	press	the	emulator’s	Back	button.

	
When	you	press	the	Back	button,	you	don’t	see	a	Service	Destroyed	toast.
And	that’s	the	essence	of	an	Android	service.	A	service	can	live	on	after
the	activity	that	started	the	service	has	been	destroyed.

	

Services	start,	stop,	and	start	again
A	service	has	no	user	interface,	and	it	may	continue	to	run	after	you

destroy	the	service’s	starting	activity.	That	can	be	a	dangerous
combination	of	traits.	Services	without	interfaces	can	hang	around
indefinitely	like	Rasputin	—	the	mad	monk	of	czarist	Russia	that	no	one
could	kill.	If	developers	don’t	include	code	to	manage	their	services,	the
services	clog	up	the	system.	No	one’s	happy.

Of	course,	Android	can	kill	services	in	order	to	reclaim	needed
memory.	The
http://developer.android.com/reference/android/app/Service.html

page	lists	all	the	situations	in	which	Android	kills	or	doesn’t	kill	a
service,	and	it	doesn’t	make	light	reading.

One	insight	about	the	lifetime	of	a	service	comes	from	the
onStartCommand	method	in	Listing	3-1.	The	onStartCommand	method
takes	an	Intent	parameter.	The	parameter’s	value	points	to	whatever
Intent	object	the	startService	method	sends.	(See	Listing	3-3.)	The
onStartCommand	method	returns	an	int	value.	In	Listing	3-1,	the	int
value	is	Service.START_STICKY.	This	constant	value	tells	Android	how
to	restart	the	service	at	some	time	interval	after	killing	it.	The	alternative

http://developer.android.com/reference/android/app/Service.html

int	values	are	as	follows:
•	START_STICKY:	If	Android	kills	the	service,	Android	waits	for	a	certain
time	interval	and	then	restarts	the	service.	Upon	restart,	Android	feeds	the
service	the	intent	from	whatever	startService	call	is	next	in	the	queue
of	such	commands.	If	no	startService	calls	are	waiting	to	start	this
particular	service,	Android	feeds	null	to	the	onStartCommand	method’s
Intent	parameter.

	
•	START_REDELIVER_INTENT:	If	Android	kills	the	service,	Android	waits
for	a	certain	time	interval	and	then	restarts	the	service.	Upon	restart,
Android	feeds	the	service	the	intent	that	came	as	a	parameter	in	the
current	call	to	onStartCommand.

	
•	START_NOT_STICKY:	If	Android	kills	the	service,	Android	doesn’t
automatically	restart	the	service.	Android	restarts	the	service	if	and	when
the	next	startService	call	queues	up	to	start	this	particular	service.

	
•	START_STICKY_COMPATIBILITY:	If	Android	kills	the	service,	Android
tries	to	restart	the	service	the	way	START_STICKY	restarts	services.	But
Android	doesn’t	promise	to	restart	the	service.

	

Services,	threads,	and	processes
	When	you	were	a	child,	resting	happily	on	your	mother’s	knee,

she	told	you	that	an	Android	service	runs	in	its	own	separate
thread.	Unfortunately,	your	mother	was	wrong.	A	service	runs	in
its	app’s	main	thread.	You	can	verify	this	fact	by	displaying	the
value	of	Thread.currentThread().getName()	from	the	service’s
code.	When	you	do,	you	see	the	name	main.	A	service	runs	in	its
app’s	main	thread,	also	known	(somewhat	misleadingly)	as	the
app’s	UI	thread.
An	app’s	activities	also	run	in	the	app’s	main	thread.	So	another
way	to	verify	a	service’s	behavior	is	to	do	something	nasty	—
time-consuming	work	in	a	service’s	code.	Time-consuming	work
includes	such	things	as	retrieving	data	from	a	network	connection
or	computing	several	elements’	positions	in	a	graphic	scene.

Doing	heavy	lifting	in	the	main	thread	makes	you	vulnerable	to
ANR	(application	not	responding)	conditions.	An	ANR	dialog	box
appears	after	five	seconds	of	inactivity	and	offers	the	user	a	Force
Close	option.
An	app	has	its	own	package	name	and	runs	in	its	own	process.	A
process	has	several	threads,	but	a	thread	belongs	to	one	and	only
one	process.	So	the	components	in	Listings	3-1	and	3-3	belong	to
separate	processes	and	don’t	clash	with	one	another’s	runs.	But
you	can	combine	activities	and	services	in	the	same	app.	When
you	do,	the	activities	and	services	run	in	the	same	thread	—
meaning	that	the	run	of	a	service	isn’t	as	independent	as	Mom
once	claimed.
You	can	force	an	activity	or	a	service	to	run	in	its	own	process.	To
do	so,	add	the	attribute	android:process=”other.process.name”
to	a	<service>	element	or	an	<activity>	element	in	an	app’s
AndroidManifest.xml	file.	The	other.process.name	can	be
anything	you	want	as	long	as	it	includes	at	least	one	dot.
(Normally,	the	other.process.name	is	a	package	name,	such	as
com.example.mystuff,	but	the	name	doesn’t	have	to	be	part	of	an
existing	package	name.)	As	a	bonus,	you	can	start	the	process
name	with	a	colon	(as	in
android:process=”:other.process.name”).	In	true	Unix/Linux
geek	fashion,	the	keystroke-efficient	colon	symbol	indicates	that
this	additional	process	is	private	to	the	component’s	own
application.	Other	apps	can’t	communicate	with	this	coveted
process.

	
The	bottom	line	is,	you	should	be	proactive	in	starting	and	stopping

your	own	service.	Don’t	be	a	memory	hog	by	relying	on	the	system	to
clean	up	after	you.	Be	aware	of	your	service’s	lifespan,	and	destroy	your
service	when	it’s	no	longer	needed.	Add	a	stopService	call	to	your
activity’s	onPause	or	onDestroy	method	if	it	makes	sense	to	do	so.	And	if
a	service	knows	that	it’s	no	longer	useful,	have	the	service	call	its	own
stopSelf	method.

	Android	calls	an	activity’s	onDestroy	method	whenever	the
user	turns	the	device	(from	portrait	to	landscape,	for	example).	If
you	put	a	stopService	call	in	an	activity’s	onDestroy	method,	you
must	deal	with	all	possible	situations	in	which	the	service	halts.	For
details,	see	this	chapter’s	“Talking	about	the	Weather”	section.

Running	a	Service	at	Boot	Time
How	important	is	your	service?	Does	your	service	start	on	rare

occasions	when	the	user	presses	a	certain	button?	Or	does	your	service
start	when	the	device	powers	up?

If	Android	users	can’t	survive	without	running	your	service,	you	can
start	the	service	at	boot	time.	To	do	so,	you	create	another	kind	of
component	—	a	broadcast	receiver.

A	broadcast	receiver	responds	to	intents	that	you	fling	into	the	air
using	the	sendBroadcast	or	sendOrderedBroadcast	method.	Android
provides	special	treatment	for	an	intent	sent	with	either	of	these	methods.
•	When	you	call	startActivity	or	startService,	Android	looks	for
one	component	to	satisfy	the	intent.

	
If	the	system	finds	more	than	one	suitable	activity	(two	installed	web
browsers,	for	example),	Android	displays	a	dialog	box	prompting	the	user
to	choose	among	the	alternatives.

	
•	When	you	call	sendBroadcast	or	sendOrderedBroadcast,	Android
fires	up	all	the	receivers	whose	filters	satisfy	the	intent.

	
With	sendOrderedBroadcast,	Android	runs	receivers	one	after	the	other.
Each	receiver	can	pass	the	intent	on	to	the	next	receiver	in	line	or	can
break	the	chain	by	calling	its	abortBroadcast	method.

	
With	sendBroadcast,	Android	may	interleave	the	running	of	several
receivers.	In	this	scenario,	having	a	receiver	abort	a	broadcast	doesn’t

make	sense.
	

Consider	the	Weather	service	in	Listing	3-1.	In	the	same	application,
create	a	Java	class	with	the	code	from	Listing	3-4.

Listing	3-4:	A	Simple	Broadcast	Receiver
package	com.allmycode.services;

	

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

	

public	class	MyBootReceiver	extends	BroadcastReceiver	{

		@Override

		public	void	onReceive(Context	context,	Intent	intent)	{

				Intent	serviceIntent	=	new	Intent();

				serviceIntent.setClass(context,

																											MyWeatherService.class);

				context.startService(serviceIntent);

		}

}

When	MyBootReceiver	runs,	it	starts	an	instance	of	the	MyWeather
Service	class.	The	not-too-difficult	trick	is	to	make	MyBootReceiver	run
when	the	emulator	or	device	starts.

Listing	3-5	shows	you	the	mechanics	of	launching	the	receiver	in
Listing	3-4.

Listing	3-5:	Manifest	Elements	for	the
Receiver	in	Listing	3-4
<uses-permission	android:name=

		“android.permission.RECEIVE_BOOT_COMPLETED”/>

	

<application	android:icon=”@drawable/icon”

													android:label=”@string/app_name”>

													

		<service	android:name=”.MyWeatherService”>

				<intent-filter>

						<action	android:name=”com.allmycode.WEATHER”	/>

				</intent-filter>

		</service>

		

		

		<receiver	android:name=”.MyBootReceiver”>

				<intent-filter>

						<action	android:name=

								“android.intent.action.BOOT_COMPLETED”	/>

						<category	android:name=

								“android.intent.category.HOME”	/>

				</intent-filter>

		</receiver>

		

</application>

The	<uses-permission>	element	in	Listing	3-5	grants	this	app
permission	to	receive	BOOT_COMPLETED	broadcasts.	In	the	receiver’s
<action>	element,	the	android:name	attribute	says,	“Wake	me	up	if
anyone	hollers	android.intent.action.BOOT_COMPLETED.”	When	you
launch	your	emulator	or	you	turn	on	your	device,	Android	runs	through
its	normal	boot	sequence	and	then	sends	an	intent	containing	the
BOOT_COMPLETED	action.	At	that	point,	Android	finds	the	receiver	in
Listing	3-4	and	calls	the	receiver’s	onReceive	method.	In	turn,	the
onReceive	method	in	Listing	3-4	gooses	the	Weather	service	in	Listing	3-
1.

	A	broadcast	receiver	lives	long	enough	to	run	its	onReceive
method	and	then	the	receiver	stops	running.	A	receiver	doesn’t	have
any	onCreate	or	onDestroy	methods,	or	any	of	the	lifecycle
methods	belonging	to	other	kinds	of	components.	A	broadcast
receiver	does	its	work	and	then	hides	in	the	shadows	until	the	next
relevant	broadcast	comes	along.
You	can	download	this	section’s	example	from	the	book’s	website.

To	test	the	code,	install	the	code,	shut	down	the	emulator,	and	then	restart

the	emulator.	Ay,	there’s	the	rub!	Starting	an	emulator	once	is	annoying
enough.	Starting	it	several	times	(because	you	got	some	detail	wrong	the
first	few	times)	is	a	pain	in	the	class.

Your	code	can’t	test	Listing	3-4	by	creating	an
ACTION_BOOT_COMPLETED	intent.	Android	reserves
ACTION_BOOT_COMPLETED	for	system-level	code	only.	By	using	the
Android	Debug	Bridge,	though,	you	can	launch	an	intent	as	a	Linux	shell
superuser.	Here’s	how:

1.	Install	this	section’s	code	onto	an	emulator.
	 2.	On	your	development	computer,	launch	a	command	window.
	 For	details,	see	Book	VI,	Chapter	3.
	 3.	In	the	command	window,	issue	the	cd	command	to	make	the

ANDROID_HOME/platform-tools	directory	your	working	directory.
	 Again,	see	Book	VI,	Chapter	3	for	details.
	 4.	Type	the	following	command,	all	on	one	line:
	 adb	shell	am	broadcast

											-a	android.intent.action.BOOT_COMPLETED
Using	Android’s	am	command,	you	can	call	startActivity,

startService,	and	sendBroadcast	as	if	you	were	Android	itself	(or
himself,	or	herself,	or	whoever).	When	you	issue	the	command	in	Step	4,
Android	behaves	as	if	the	system	has	just	finished	booting.

	

	You	can	see	all	the	am	command’s	options	by	typing	adb
shell	am	in	your	development	computer’s	command	window.

	For	more	information	about	the	Android	Debug	Bridge,	see
Book	I,	Chapter	2.	For	more	information	about	broadcast	receivers,
see	Chapter	4	in	this	minibook.

Starting	and	Binding

You	can	do	two	kinds	of	things	with	a	service:
•	You	can	start	and	stop	a	service.

	
You	do	this	by	calling	the	Context	class’s	startService	and	stop
Service	methods.	Also,	a	service	can	take	the	bull	by	the	horns	and	call
its	own	stopSelf	or	stopSelfResult	method.

	
When	you	call	startService,	you	create	only	a	momentary	relationship
with	the	service.	Android	creates	an	instance	of	the	service	if	no	instances
are	already	running.	In	addition,	Android	calls	the	service’s
onStartCommand	method.	(See	Listing	3-1.)

	
Calls	to	startService	don’t	pile	up.	To	illustrate	the	point,	consider	this
sequence	of	method	calls,	along	with	their	resulting	Android	responses:

	
Activity	A	calls	startService	to	start	MyService.

				Android	instantiates	MyService	and

								calls	the	instance’s	onStartCommand	method.

	

Activity	B	calls	startService	to	start	MyService.

				Android	calls	the	existing	instance’s

								onStartCommand	method.

	

Activity	A	calls	stopService	to	stop	MyService.

				Android	destroys	the	MyService	instance.

	

Activity	B	calls	stopService	to	stop	MyService.

				Android	says	“The	joke’s	on	you.”	There’s	no

								instance	of	MyService	to	stop.

•	You	can	bind	to,	and	unbind	from,	a	service.
	

You	do	this	by	calling	the	Context	class’s	bindService	and

unbindService	methods.	Between	binding	and	unbinding,	you	have	an
ongoing	connection	with	the	service.	Through	this	connection,	you	can
send	messages	to	the	service	and	receive	messages	from	the	service.
That’s	useful!

	
When	you	call	bindService,	Android	creates	an	instance	of	the	service	if
no	instances	are	running	already.	In	addition,	Android	calls	the	service’s
onBind	method.	(For	an	example,	skip	ahead	to	Listings	3-6	and	3-7.)

	

	When	you	call	bindService,	Android	doesn’t	call	the
service’s	onStartCommand	method.

	
Calls	to	bindService	pile	up.	A	service	can	have	many	bindings	at	once,
each	to	a	different	activity.	Your	service’s	code	can	keep	track	of	all	this
hubbub	by	maintaining	a	collection	of	binding	objects	(an	ArrayList,	or
whatever).	When	you	call	unbindService,	you	don’t	destroy	the	service
instance.	Android	keeps	the	service	alive	as	long	as	any	activities	are
bound	to	the	service.

	

	Services	can	receive	Start	requests	and	Bind	requests	all	at
the	same	time.	When	all	bound	activities	unbind	themselves	from	a
particular	service,	the	system	checks	whether	anybody	started	the	service
this	time	around.	If	so,	the	system	waits	for	somebody	to	call
stopService	before	destroying	the	service.

	

	Android	can	terminate	activities	to	reclaim	memory.	If	I

were	a	service	and	Android	terminated	the	activities	that	were	bound	to
me,	I’d	be	afraid	for	my	own	survival.	Test	your	apps	for	unwanted
results	from	the	untimely	termination	of	activities	and	their	services.	If,	in
testing,	you	experience	any	unexpected	behavior	due	to	the	early
termination	of	a	service,	please	fix	the	code.

	
The	previous	sections’	examples	started	and	stopped	a	service.	The

rest	of	this	chapter	binds	and	unbinds	with	a	service.

Talking	about	the	Weather
Every	Android	book	needs	a	Weather	Service	example,	and	this

book	is	no	exception.	In	this	section,	your	activity	binds	to	a	service,
which	in	turn	reaches	out	for	weather	information	over	the	Internet.

A	service
I	build	the	example	in	stages.	The	first	stage	is	essence	de	service.

An	activity	binds	to	the	service,	gets	back	some	fake	responses	to
nonsense	queries,	and	then	unbinds.	Listing	3-6	contains	the	service.

Listing	3-6:	A	Weather	Service	with	a	Fear	of
Commitment
package	com.allmycode.services;

	

import	android.app.Service;

import	android.content.Intent;

import	android.os.Bundle;

import	android.os.Handler;

import	android.os.IBinder;

import	android.os.Message;

import	android.os.Messenger;

import	android.os.RemoteException;

import	android.widget.Toast;

	

public	class	MyWeatherService	extends	Service	{

	

		Messenger	messengerToClient	=	null;

	

		MyIncomingHandler	myIncomingHandler	=

						new	MyIncomingHandler();

		Messenger	messengerToService	=

						new	Messenger(myIncomingHandler);

		@Override

		public	IBinder	onBind(Intent	intent)	{

				doToast(R.string.service_bound);

				return	messengerToService.getBinder();

		}

	

		class	MyIncomingHandler	extends	Handler	{

				@Override

				public	void	handleMessage(Message	incomingMessage)	{

						messengerToClient	=	incomingMessage.replyTo;

	

						Bundle	reply	=	new	Bundle();

						reply.putString(“weather”,	“It’s	dark	at	night.”);

						Message	replyMessage	=	Message.obtain();

						replyMessage.setData(reply);

						try	{

								messengerToClient.send(replyMessage);

						}	catch	(RemoteException	e)	{

								e.printStackTrace();

						}

						doToast(R.string.message_handled);

				}

		}

	

		@Override

		public	boolean	onUnbind(Intent	intent)	{

				doToast(R.string.service_stopped_itself);

				stopSelf();

				return	false;

		}

	

		@Override

		public	void	onDestroy()	{

				myIncomingHandler	=	null;

				doToast(R.string.service_destroyed);

		}

		

		void	doToast(int	resource)	{

				Toast.makeText(this,	resource,

								Toast.LENGTH_SHORT).show();

		}

}

The	flow	of	control	in	Listing	3-6	isn’t	simple,	so	I’ve	created
Figure	3-2	to	help	you	understand	what’s	going	on.	The	first	thing	to
notice	in	Figure	3-2	is	that	the	service	doesn’t	interact	directly	with	a
client	application.	Instead,	the	service	gets	calls	indirectly	through	the
Android	operating	system.

	

Figure	3-2:	Binding	and	messaging.

Like	many	other	communication	regimens,	the	talk	between	a	client
and	a	service	has	two	phases:
•	The	first	phase	(the	binding	phase)	establishes	a	line	of	communication.

	
•	In	the	second	phase,	the	client	and	the	service	exchange	useful
information	via	messages.	In	general,	the	client	sends	a	request	for
information	and	the	service	sends	a	reply.

	
To	bind	to	a	service,	a	client	sends	an	intent.	Android	hands	this

intent	to	the	service’s	onBind	method.	In	response,	the	onBind	method
returns	a	binder	—	an	object	that	implements	the	IBinder	interface.	(See
Listing	3-6	and	Figure	3-2.)	The	binder	is	like	a	business	card.	By
returning	a	binder,	the	service	says,	“Android,	tell	the	client	application
that	it	can	reach	me	at	this	address.”	That’s	why,	in	Listing	3-6,	the
service	creates	the	binder	from	an	instance	of	MyIncomingHandler.	(It’s
the	same	as	printing	a	business	card	from	an	instance	of	“my	answering
machine’s	phone	number.”)

Android	delivers	the	binder	to	the	client	app.	Eventually,	the	client
app	queries	the	service.	The	query	contains	a	request	for	specific
information.	But	the	query	also	contains	a	replyTo	field.	The	service’s
inner	class	(in	this	example,	MyIncomingHandler)	uses	the	replyTo
information	to	send	an	answer	back	to	the	client	app.	In	Listing	3-6,	I

keep	things	simple	by	replying	It’s	dark	at	night	no	matter	what
query	the	client	sends.	(A	weather	report	like	this	is	always	correct.)

A	client
Listing	3-7	contains	a	client	for	the	service	in	Listing	3-6.

Listing	3-7:	A	Client	for	the	Service	in	Listing
3-6
package	com.allmycode.demos;

	

import	android.app.Activity;

import	android.content.ComponentName;

import	android.content.Context;

import	android.content.Intent;

import	android.content.ServiceConnection;

import	android.content.SharedPreferences;

import	android.os.Bundle;

import	android.os.Handler;

import	android.os.IBinder;

import	android.os.Message;

import	android.os.Messenger;

import	android.os.RemoteException;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

import	android.widget.EditText;

import	android.widget.TextView;

import	android.widget.Toast;

	

public	class	ServiceConsumerActivity	extends	Activity

				implements	OnClickListener	{

	

		Messenger	messengerToService	=	null;

		

		MyIncomingHandler	myIncomingHandler	=

						new	MyIncomingHandler();

		Messenger	messengerFromService	=

						new	Messenger(myIncomingHandler);

		

		ServiceConnection	connection	=

						new	MyServiceConnection();

		SharedPreferences	prefs;

		boolean	isBound	=	false;

	

		void	bind()	{

				Intent	intent	=	new	Intent();

				intent.setAction(“com.allmycode.WEATHER”);

				isBound	=

								bindService(intent,	connection,

												Context.BIND_AUTO_CREATE);

		}

	

		public	void	queryService()	{

				if	(isBound)	{

						Bundle	bundle	=	new	Bundle();

						bundle.putString(“location”,	“Philadelphia”);

	

						Message	message	=	Message.obtain();

						message.replyTo	=	messengerFromService;

						message.setData(bundle);

						try	{

								messengerToService.send(message);

						}	catch	(RemoteException	e)	{

								e.printStackTrace();

						}

				}	else	{

						textView1.setText(R.string.service_not_bound);

				}						

		}

		

		class	MyIncomingHandler	extends	Handler	{

				@Override

				public	void	handleMessage(Message	msg)	{

						Bundle	bundle	=	msg.getData();

						textView1.setText(bundle.getString(“weather”));

				}

		}

		

		void	unbind()	{

				if	(isBound)	{

						unbindService(connection);

						isBound	=	false;

				}

		}

		

		class	MyServiceConnection	implements	ServiceConnection	{

				public	void	onServiceConnected(

								ComponentName	className,	IBinder	binder)	{

						messengerToService	=	new	Messenger(binder);

						doToast(R.string.service_connected);						

				}

	

				public	void	onServiceDisconnected(ComponentName	n)	{

						messengerToService	=	null;

						doToast(R.string.service_crashed);

				}

		}

	

		void	doToast(int	resource)	{

				Toast.makeText(this,	resource,

								Toast.LENGTH_SHORT).show();

		}

		@Override

		public	void	onDestroy()	{

				super.onDestroy();

				prefs	=	getSharedPreferences(“PREFS”,	MODE_PRIVATE);

				SharedPreferences.Editor	editor	=	prefs.edit();

				editor.putBoolean(“isBound”,	isBound);

				editor.putString(“report”,	textView1.getText()

								.toString());

				editor.commit();

	

				unbind();

		}

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

				prefs	=	getSharedPreferences(“PREFS”,	MODE_PRIVATE);

				if	(prefs	!=	null)	{

						textView1	=	(TextView)	findViewById(R.id.textView1);

	

						textView1.setText(prefs.getString(“report”,

								getString(R.string.report_appears_here)));

						if	(prefs.getBoolean(“isBound”,	false))	{

								bind();

						}

				}

				

		//	The	rest	of	the	code	is	boilerplate	stuff

		//	such	as	onCreate.

}

The	first	several	lines	of	Listing	3-7	are	parallel	to	the	code	in
Listing	3-6.	Like	the	service	in	Listing	3-6,	the	client	in	Listing	3-7	has
messengers	and	an	incoming	handler	class.

Figure	3-3	shows	a	layout	that	I	created	for	the	activity	in	Listing	3-
7.	The	bind,	queryService,	and	unbind	methods	in	Listing	3-7	handle
the	button	clicks	in	Figure	3-3.	(This	section’s	service	doesn’t	care	what
city	you’re	in,	so	the	EditText	view	set	up	for	a	city	name	or	zip	code	in
Figure	3-3	doesn’t	serve	any	purpose.	It’s	a	placeholder	for	user	input	in
subsequent	examples.)

Informing	the	user
Near	the	bottom	of	Figure	3-3,	there’s	a	rounded	rectangle

containing	the	words	Message	handled.	The	rectangle	illustrates	the	use

of	Android’s	Toast	class.	A	toast	is	an	unobtrusive	little	view	that
displays	some	useful	information	for	a	brief	period	of	time.	A	toast	view
pops	up	on	the	screen,	the	way	a	hot	piece	of	bread	pops	up	from	a
toaster.	(Rumor	has	it	that	the	Android	class	name	Toast	comes	from	this
goofy	analogy.)

	

Figure	3-3:	A	user	interface	for	the	activity	in	Listing	3-7.

	A	toast	view	typically	displays	a	message	for	the	user	to
read.	So	Android	developers	often	talk	about	toast	messages.	In
principle,	there’s	nothing	wrong	with	the	term	toast	message.	But
much	of	this	chapter	deals	with	instances	of	the
android.os.Message	class	—	messages	sent	between	a	service	and
its	client.	And	near	the	bottom	of	Figure	3-3,	the	words	Message
handled	refer	to	a	message	between	a	service	and	its	client,	not	to	a
toast	message.	So	in	Figure	3-3,	a	toast	message	informs	the	user
about	a	completely	different	kind	of	message.	What’s	an	author	to
do?	In	this	chapter,	I	use	the	word	message	to	refer	to
communication	between	a	service	and	its	client.	In	other	chapters,	I
throw	around	the	words	toast	message	without	worrying	about	the
problem.
The	Toast	class	has	two	extremely	useful	methods:	makeText	and

show.
•	The	static	Toast.makeText	method	creates	an	instance	of	the	Toast
class.

	
The	makeText	method	has	three	parameters.

	
•	The	first	parameter	is	a	context	(the	word	this	in	Listing	3-7).

	
•	The	second	parameter	is	either	a	resource	or	a	sequence	of	characters	(a

String,	for	example).
	

If	you	call	makeText	with	a	String,	the	user	sees	the	String	when
Android	displays	the	toast.	If	you	call	makeText	with	a	resource,
Android	looks	for	the	resource	in	your	app’s	res	directory.	In	Listing
3-7,	the	code	calls	makeText	twice	—	once	with	resource
R.string.service_connected	and	once	with	R.string.
service_crashed.

	

	If	you	use	an	int	value	(42,	for	example)	for	the	second
parameter	of	the	makeText	method,	Android	doesn’t	display	the
characters	42	in	the	toast	view.	Instead,	Android	looks	for	a	resource
whose	value	in	R.java	is	42.	Your	R.java	file	probably	doesn’t
contain	the	number	42.	So	instead	of	a	toast	view,	you	get	a
ResourceNotFound	exception.	Your	app	crashes,	and	you	groan	in
dismay.

	
•	The	makeText	method’s	third	parameter	is	either	Toast.LENGTH_LONG	or

Toast.LENGTH_SHORT.	With	LENGTH_LONG,	the	toast	view	appears	for
about	four	seconds.	With	LENGTH_SHORT,	the	toast	view	appears	for
approximately	two	seconds.

	
•	The	show	method	tells	Android	to	display	the	toast	view.

	
In	Listing	3-7,	notice	that	I	call	both	makeText	and	show	in	one	Java
statement.	If	you	forget	to	call	the	show	method,	the	toast	view	doesn’t
appear.	You	stare	in	disbelief	wondering	why	you	don’t	see	the	toast
view.	(“Who	stole	my	toast?”	you	ask.)	When	you	finally	figure	out	that
you	forgot	to	call	the	show	method,	you	feel	foolish.	(At	least	that’s	the
way	I	felt	when	I	forgot	earlier	today.)

	

Binding	to	the	service
In	Listing	3-7,	the	call	to	bindService	takes	three	parameters	—	an

intent,	a	service	connection,	and	an	int	value	representing	flags.
•	The	intent	helps	determine	which	service	to	invoke.

	
In	Listing	3-7,	the	intent	has	action	“com.allmycode.WEATHER”.	That’s
good	because	my	service’s	AndroidManifest.xml	file	contains	the
following	elements:

	

<application	android:icon=”@drawable/icon”

		android:label=”@string/app_name”>

		

		<service	android:name=”.MyWeatherService”>

				<intent-filter>

						<action	android:name=”com.allmycode.WEATHER”	/>

				</intent-filter>

		</service>

	

</application>
(Only	a	snippet	from	the	AndroidManifest.xml	file	appears	in	this
chapter.)

	
•	The	connection	is	the	virtual	rope	between	the	client	and	the
service.

	
The	connection	parameter	in	Listing	3-7	implements	the
android.content.ServiceConnection	interface.	I	define	the
MyServiceConnection	class	later	in	Listing	3-7.

	
Notice	that	in	one	of	the	MyServiceConnection	class’s	methods,	Android
hands	the	service’s	business	card	(the	binder)	to	the	client.	This	is	a	bit
different	from	the	code	in	Listing	3-6,	where	the	service	gets	replyTo
information	from	each	incoming	message.	The	difference	stems	from	the
way	the	client	and	the	service	talk	to	each	other.	The	client	initiates
communications,	and	the	service	twiddles	its	virtual	thumbs	waiting	for
communications.

	
Another	thing	to	notice	about	MyServiceConnection	is	the	peculiar	role
of	the	onServiceDisconnected	method.	As	the	toast	implies,	Android
doesn’t	call	onServiceDisconnected	unless	the	service	takes	a	dive
prematurely.

	
•	The	flags	provide	additional	information	about	the	run	of	the
service.

	
When	Android	needs	more	memory,	Android	terminates	processes.	In
Listing	3-7,	the	flag	BIND_AUTO_CREATE	tells	Android	to	avoid
terminating	the	service’s	process	while	your	activity	runs.	An	alternative,
BIND_NOT_FOREGROUND,	tells	Android	not	to	consider	your	activity’s	needs
when	deciding	whether	to	terminate	the	service’s	process.

	

Querying	the	service
In	Listing	3-7,	the	queryService	method	asks	the	service	for	the

answer	to	a	question.	Here’s	what	the	queryService	method	does:
1.	The	queryService	method	obtains	a	blank	message	from	the

android.os.Message	class.
	 2.	The	queryService	method	adds	a	question	(the	bundle)	to	the

message.
	 3.	The	queryService	method	tells	a	messenger	to	send	the	message

to	the	service.
	 A	bundle	(an	instance	of	android.os.Bundle)	is	something	that	a

process	can	write	to	and	that	another	process	can	read	from.	You	see	a
bundle	in	every	activity’s	onCreate	method.	In	the	world	of	data
communications,	sending	a	message	is	likened	to	writing	data.	So	in
Listing	3-7,	the	code	juggles	bundles.
•	The	queryService	method	puts	a	bundle	on	a	message	and	then
“writes”	the	message	to	an	Android	message	queue.

	
•	The	handleMessage	method	in	the	MyIncomingHandler	class	“reads”	a
message	from	an	Android	message	queue	and	then	gets	the	message’s
bundle	for	display	on	the	device’s	screen.

	

Using	shared	preferences	to	restart	a	connection
Listing	3-7	contains	an	important	lesson	about	the	life	of	a	service.

A	service	that’s	bound	to	another	component	(an	activity,	for	example)
tends	to	stay	alive.	If	developers	don’t	explicitly	unbind	from	services,
the	services	build	up	and	start	clogging	Android’s	pipes.	So	a	good

citizen	does	the	housekeeping	to	unbind	services.
So	in	Listing	3-7,	the	onDestroy	method	unbinds	the	service.	So	far,

so	good.	But	what	happens	when	the	user	turns	the	device	sideways?
Chapter	1	of	this	minibook	reminds	you	what	happens	when	the	user
reorients	the	device	—	Android	destroys	the	current	activity	and	re-
creates	the	activity	in	the	new	orientation.	So	if	you’re	not	careful,	the
user	loses	the	service	just	by	moving	the	device.	That’s	probably	not	what
you	want.

To	defend	against	this	problem,	use	shared	preferences.	With	shared
preferences,	you	can	store	information.	Later,	your	app	(or,	if	you	want,
someone	else’s	app)	can	retrieve	the	information.

Here’s	how	you	wield	a	set	of	shared	preferences:
•	To	create	shared	preferences,	call	the	android.content.Context
class’s	getSharedPreferences	method.

	
For	parameters,	feed	a	name	and	a	mode	to	the	method	call.	In	Listing	3-
7,	the	name	is	the	string	“PREFS”	and	the	mode	is	the	int	value
android.content.Context.MODE_PRIVATE.	The	alternatives	are

	
•	MODE_PRIVATE:	No	other	process	can	read	from	or	write	to	these

preferences.
	

•	MODE_WORLD_READABLE:	Other	processes	can	read	from	these
preferences.

	
•	MODE_WORLD_WRITEABLE:	Other	processes	can	write	to	these	preferences.

	
•	MODE_MULTI_PROCESS:	Other	processes	can	write	to	these	preferences

even	while	a	process	is	in	the	middle	of	a	read	operation.	Weird	things
can	happen	with	this	much	concurrency.	So	watch	out!

	
You	can	combine	modes	with	Java’s	bitwise	or	operator.	So	a	call	such
as

	
getSharedPreferences(“PREFS”,

				MODE_WORLD_READABLE	|	MODE_WORLD_WRITEABLE);

makes	your	preferences	both	readable	and	writable	for	all	other
processes.

	
•	To	add	values	to	a	set	of	shared	preferences,	use	an	instance	of	the
android.content.SharedPreferences.Editor	class.

	
In	Listing	3-7,	the	onDestroy	method	creates	a	new	editor	object.	Then
the	code	uses	the	editor	to	add	a	name/value	pair	(“isBound”,	isBound)
to	the	shared	preferences.	The	Editor	class	has	methods	such	as	putInt,
putString,	putStringSet,	and	so	on.

	
•	To	finish	the	job,	call	the	editor’s	commit	method.

	
Again,	see	Listing	3-7.

	
•	To	retrieve	an	existing	set	of	shared	preferences,	call
getSharedPreferences,	using	the	same	name	as	the	name	you	used	to
create	the	preferences.

	
Can	you	guess	which	listing	contains	an	example	of	this	code?	Yes!
Listing	3-7.	Look	at	the	listing’s	onCreate	method.

	
•	To	read	values	from	an	existing	set	of	shared	preferences,	call
getBoolean,	getInt,	getFloat,	or	one	of	the	other	get	methods
belonging	to	the	SharedPreferences	class.

	
In	Listing	3-7,	the	call	to	getBoolean	takes	two	parameters.	The	first
parameter	is	the	name	in	whatever	name/value	pair	you’re	trying	to	get.
The	second	parameter	is	a	default	value.	So	when	you	call
prefs.getBoolean(“isBound”,	false),	if	prefs	has	no	pair	with	name
“isBound”,	the	method	call	returns	false.

	
In	Listing	3-7,	the	onDestroy	method	saves	the	value	of	isBound.

Then,	when	Android	revives	the	activity,	the	onCreate	method	retrieves
the	isBound	value.	In	effect,	the	onCreate	method	“finds	out”	whether

the	service	was	bound	before	the	activity	was	destroyed.	If	the	service
was	bound,	the	code	renews	its	connection,	making	another	call	to	the
bindService	method.

	Using	attributes	in	an	app’s	AndroidManifest.xml
document,	you	can	keep	Android	from	destroying	an	activity	when
the	user	reorients	the	device.	For	information,	see	Chapter	1	of	this
minibook.

Getting	Real	Weather	Data
In	this	section,	you	do	something	about	the	weather.	You

supplement	the	code	in	Listings	3-6	and	3-7	so	that	your	app	retrieves
real	weather	data.	Fortunately,	the	code	changes	don’t	require	major
surgery.	Here’s	what	you	do:
•	In	the	client	app,	get	the	user’s	input	from	the	EditText	widget	and
send	this	input	to	the	service.

	
That	is,	change	the	statement

	
bundle.putString(“location”,	“Philadelphia”);
in	Listing	3-7	to	a	statement	such	as

	
bundle.putString(“location”,	locationText.getText()

				.toString().trim());
•	In	the	service,	send	the	incoming	message’s	text	to	the	Google’s
weather	server.

	
That	is,	change	the	statement

	
reply.putString(“weather”,	“It’s	dark	at	night.”);
in	Listing	3-6	to	a	statement	such	as

	
reply.putString(“weather”,

				getWeatherString(incomingMessage));
Google’s	weather	server	takes	a	city	name	or	a	zip	code	and	returns	an
XML	document	describing	the	weather	at	that	location.	Here’s	an
abridged	version	of	a	response	from	Google’s	weather	API:

	
<xml_api_reply	version=”1”>

		<weather	module_id=”0”	tab_id=”0”	mobile_row=”0”

						mobile_zipped=”1”	row=”0”	section=”0”>

				<forecast_information>

						<city	data=”San	Francisco,	CA”	/>

						<postal_code	data=”San	Francisco”	/>

						<latitude_e6	data=””	/>

						<longitude_e6	data=””	/>

						<forecast_date	data=”2011-08-07”	/>

						<current_date_time

								data=”2011-08-07	18:56:00	+0000”	/>

						<unit_system	data=”US”	/>

				</forecast_information>

				<current_conditions>

						<condition	data=”Overcast”	/>

						<temp_f	data=”59”	/>

						<temp_c	data=”15”	/>

						<humidity	data=”Humidity:	77%”	/>

						<icon	data=”/ig/images/weather/cloudy.gif”	/>

						<wind_condition	data=”Wind:	W	at	10	mph”	/>

				</current_conditions>

				<forecast_conditions>

						<day_of_week	data=”Sun”	/>

						<low	data=”54”	/>

						<high	data=”63”	/>

						<icon

								data=”/ig/images/weather/mostly_sunny.gif”	/>

						<condition	data=”Mostly	Sunny”	/>

				</forecast_conditions>

		</weather>

</xml_api_reply>

	You	can	get	a	similar	XML	response	by	typing
http://www.google.com/ig/api?weather=San%20Francisco	in	your
web	browser’s	address	field.	In	this	address,	the	characters	%20	are	the

web’s	way	of	encoding	a	blank	space.
	

•	In	the	service,	submit	Google’s	response	to	an	XML	parser.
	

An	XML	parser	is	a	program	that	sifts	information	from	XML	files.
This	section’s	code	contains	a	parser	that	ferrets	out	the	Fahrenheit
temperature	and	the	weather	condition	from	Google’s	response.	(I
apologize	in	advance	to	non-U.S.,	non-Belize	readers	for	the	use	of	the
Fahrenheit	scale.	Bad	habits	are	difficult	to	break.)

	

	In	the	old	days,	before	XML	was	commonly	used,	your	app
would	be	screen	scraping.	Screen	scraping	refers	to	the	practice	of	fishing
for	data	in	an	ordinary	web	page.	In	the	pre-XML	era,	your	code	had	to
eliminate	the	page’s	colors,	font	tags,	advertisements,	and	any	other
irrelevant	material.	Then	your	code	had	to	search	the	page	for	the	current
Fahrenheit	temperature,	making	every	effort	to	avoid	grabbing	next
week’s	forecast	or	the	cost	of	a	subscription	to	Weather	and	Wine
Weekly.	Then	you	hoped	that	any	future	changes	in	the	website’s	layout
didn’t	spoil	the	correctness	of	your	code.	Undoubtedly,	parsing	XML	is
more	reliable.

	
•	As	a	final	step,	your	service	gets	the	result	returned	from	the	XML
parser	and	forwards	that	result	to	the	client	app.

	

Dealing	with	XML
Listing	3-8	contains	a	harmless-looking	Weather	class,	and	Listing

3-9	contains	an	XML	parser.

Listing	3-8:	A	Weather	Class
package	com.allmycode.services;

	

public	class	Weather	{

	

		private	int	temperature	=	0;

		private	String	condition	=	“”;

	

		public	Weather()	{

		}

	

		public	Integer	getTemperature()	{

				return	temperature;

		}

	

		public	void	setTemperature(Integer	temperature)	{

				this.temperature	=	temperature;

		}

	

		public	String	getCondition()	{

				return	condition;

		}

	

		public	void	setCondition(String	condition)	{

				this.condition	=	condition;

		}

	

}

Listing	3-9:	What	to	Do	When	You	Find
XML	Elements
package	com.allmycode.services;

	

import	org.xml.sax.Attributes;

import	org.xml.sax.SAXException;

import	org.xml.sax.helpers.DefaultHandler;

	

public	class	MySaxHandler	extends	DefaultHandler	{

	

		private	static	final	String	CURRENT_CONDITIONS	=

						“current_conditions”;

		private	static	final	String	DATA	=	“data”;

		private	static	final	String	CONDITION	=	“condition”;

		private	static	final	String	TEMP_F	=	“temp_f”;

	

		private	Weather	weather	=	new	Weather();

	

		private	boolean	current_conditions	=	false;

	

		public	Weather	getWeather()	{

				return	weather;

		}

	

		@Override

		public	void	startElement(String	namespaceURI,

						String	localName,	String	qName,

						Attributes	attributes)	throws	SAXException	{

	

				if	(localName.equals(CURRENT_CONDITIONS))	{

						current_conditions	=	true;

				}	else	{

						if	(current_conditions)	{

								if	(localName.equals(TEMP_F))	{

										String	dataAttribute	=

														attributes.getValue(DATA);

										weather.setTemperature(Integer

														.parseInt(dataAttribute));

								}	else	if	(localName.equals(CONDITION))	{

										String	condAttribute	=

														attributes.getValue(DATA);

										weather.setCondition(condAttribute);

								}

						}

				}

		}

	

		@Override

		public	void	endElement(String	namespaceURI,

						String	localName,	String	qName)	throws	SAXException	{

				if	(localName.equals(CURRENT_CONDITIONS))	{

						current_conditions	=	false;

				}

		}

}

The	code	in	Listing	3-9	has	more	to	do	with	XML	than	with
Android,	so	I	don’t	go	into	detail	about	the	code	in	Listing	3-9.	Briefly,
XML	parsers	come	in	two	popular	flavors:	SAX	parsers	and	DOM
parsers.	The	acronym	SAX	stands	for	Simple	API	for	XML,	and	the
acronym	DOM	stands	for	Document	Object	Model.	Listing	3-9	uses	SAX
because	SAX	parsers	have	a	smaller	memory	footprint	than	DOM
parsers.

A	DOM	parser	picks	apart	an	entire	XML	document,	loads	all	this

information	into	memory,	and	then	lets	you	query	the	parser	for	values
anywhere	in	the	document.	“What’s	the	value	of	the	data	attribute	inside
the	<temp_f>	element	in	the	<current_conditions>	element?”,	you	ask.
The	DOM	parser	answers,	but	only	after	analyzing	the	entire	document.

A	SAX	parser	scans	an	XML	document	one	piece	at	a	time,	keeping
only	the	current	piece	in	memory.	At	every	step,	the	parser	offers	to
report	its	findings.	“I	found	a	start	tag”	or	“I	found	an	attribute,”	says	the
parser.	The	code	in	Listing	3-9	monitors	parser	findings	for	relevant	data
and	adds	any	useful	data	to	an	instance	of	the	Weather	class.

	For	some	tips	on	deciphering	the	contents	of	XML
documents,	see	Book	II,	Chapter	5.

Getting	info	from	an	online	server
Listing	3-10	contains	the	code	to	submit	a	location	to	Google’s

weather	API,	to	call	an	XML	parser,	and	to	turn	the	parser’s	result	into	a
usable	string.	Simply	add	Listing	3-10’s	code	to	the	code	in	Listing	3-7.

Listing	3-10:	Getting	Weather	Information
from	Google
		String	getWeatherString(Message	message)	{

				Bundle	query	=	message.getData();

				String	location	=	query.getString(“location”);

				String	weatherString;

				if	(location	!=	null	&&	!location.equals(“”))	{

						Weather	weather	=	getWeather(location);

						weatherString	=

										Integer.toString(weather.getTemperature())

														+	(char)	0x00B0	+	“F	“

														+	weather.getCondition();

				}	else	{

						weatherString	=	“It’s	dark	at	night.”;

				}

				return	weatherString;

		}

	

		private	static	final	String	GOOGLE_WEATHER_URL	=

						“http://www.google.com/ig/api?weather=”;

		public	Weather	getWeather(String	location)	{

				URL	url;

				Weather	weather	=	null;

				try	{

						url	=

										new	URL(GOOGLE_WEATHER_URL

														+	location.replace(“	“,	“%20”));

						SAXParser	parser	=

										SAXParserFactory.newInstance().newSAXParser();

						XMLReader	reader	=	parser.getXMLReader();

						MySaxHandler	saxHandler	=	new	MySaxHandler();

						reader.setContentHandler(saxHandler);

						reader.parse(new	InputSource(url.openStream()));

	

						weather	=	saxHandler.getWeather();

	

				}	catch	(Exception	e)	{

						e.printStackTrace();

				}

				return	weather;

		}

In	Listing	3-10,	the	getWeatherString	method	extracts	the	user’s
input	from	the	message	sent	to	the	service.	The	method	then	submits	the
user’s	input	to	the	getWeather	method	(also	in	Listing	3-10).	In	Listing
3-10,	the	only	other	excitement	comes	from	the	(char)	0x00B0	value.
The	hex	value	B0	(decimal	value	176)	is	the	Unicode	representation	for
the	degree	symbol.	(See	the	text	view	in	Figure	3-4.)

	

Figure	3-4:	Displaying	weather	information.

The	getWeather	method	in	Listing	3-10	does	what	Java	programs
do	when	they	get	a	response	from	a	web	server	and	submit	the	response
to	a	SAX	parser.	I	review	the	steps	briefly	because	the	code	is	mostly
boilerplate.	You	can	paste	it	into	your	own	app	with	barely	any	changes.

1.	Create	a	URL	pointing	to	Google’s	weather	server.
	 2.	Create	a	SAXParser	instance	and	then	use	the	parser	to	get	an

XMLReader	instance	(whatever	an	XMLReader	instance	is).
	 3.	Create	a	MySaxHandler	instance	(see	Listing	3-9)	and	feed	the

MySaxHandler	instance	to	the	XMLReader	instance.
	 4.	Connect	to	Google	by	creating	new	InputSource(url.open

Stream()).

	 5.	Call	the	reader’s	parse	method,	feeding	Google’s	response	to
the	reader.

	 6.	Get	a	Weather	instance	from	the	SAX	handler.
	 Whew!

Talking	to	a	Service	as	if	You’re	Right	Next
Door

Where	I	come	from,	you’re	thought	to	be	sophisticated	if	you’re
multilingual.	Do	you	speak	a	foreign	language?	If	so,	you’re	cool.

Learning	a	second	language	is	easy.	Just	find	something	whose
acronym	ends	with	the	letter	L,	and	learn	how	to	use	it.	In	this	section,
you	read	about	AIDL	—	the	Android	Interface	Definition	Language.

Aside	from	being	a	language,	AIDL	is	a	programming	idiom.	AIDL
is	a	way	of	rewriting	some	of	your	Java	code	to	make	it	more	natural	and
more	straightforward.

In	Listings	3-6	and	3-7,	a	service	and	its	client	pass	messages	back
and	forth.	The	message-passing	paradigm	is	nice,	but	wouldn’t	life	be
simpler	if	the	client	could	simply	call	one	of	the	service’s	methods?
That’s	exactly	what	AIDL	does	for	your	code.

Using	AIDL
Here’s	how	AIDL	works:
1.	Start	with	a	service	and	a	client,	such	as	the	code	in	Listings

3-6	and	3-7,	and	create	an	.aidl	file.
	 The	.aidl	file	describes	the	kind	of	information	to	be	passed

between	the	service	and	the	client.
	 2.	Put	copies	of	the	.aidl	file	in	both	the	service’s	and	the

client’s	projects.
	 The	.aidl	file	belongs	to	the	service’s	package.	So	to	place	a	copy

of	the	.aidl	file	in	the	client’s	project,	you	create	a	version	of	the
service’s	package	in	the	client	project.	See	Figure	3-5,	in	which,	with	the
help	of	some	fancy	photo-editing	software,	the	source	folders	for	both
projects	are	visible.

	 When	you	add	.aidl	files	to	the	two	projects,	Eclipse	automatically
generates	new	Java	code.	You	see	evidence	of	this	in	Figure	3-5	in	the
projects’	gen	folders.

	 3.	In	the	client,	remove	the	message-sending	code	and	add	code
that	(at	least	in	appearance)	calls	the	service’s	methods	directly.

	 4.	In	the	service,	remove	references	to	the	Messenger	class	and
the	incoming	handler	class.

	 With	AIDL,	neither	the	client	nor	the	service	needs	an	explicit
messenger.	In	addition,	a	method	inside	the	service	is	being	called
directly	(at	least	in	appearance),	so	the	service	no	longer	needs	an
incoming	handler	class.	(Well,	that’s	almost	true.)

	
	

Figure	3-5:	The	source	folders	in	the	server	and	client	projects.

AIDL	and	Java	code
Listing	3-11	shows	my	WeatherInterface.aidl	file.	The	file	is

almost	a	plain	old	Java	source	file.	The	big	difference	is	the	use	of	the
non-Java	keyword	in.	This	in	keyword	tells	the	world	that	the	service’s

code	receives	a	String	value	(rather	than	sends	a	String	value).

Listing	3-11:	The	WeatherInterface.aidl	File
package	com.allmycode.services;

	

interface	WeatherInterface

{

				String	fetchWeather(in	String	location);

}

Eclipse	automatically	generates	a	WeatherInterface.java	file
based	on	the	information	you	supply	in	the	WeatherInterface.aidl	file.
The	WeatherInterface.java	code	defines	a	Java	interface	that	extends
Android’s	own	android.os.IInterface.	(You	see?	You	don’t	write
WeatherInterface.java	because	WeatherInterface.java	belongs	to
one	of	Android’s	packages	—	not	to	your	package.)	You	can	peek	at	the
gen	folder’s	WeatherInterface.java	file,	but	you’ll	be	just	as	happy	if
you	don’t.

Listing	3-12	contains	the	AIDL	version	of	the	service	in	Listing	3-6.
For	your	reading	pleasure,	I’ve	set	the	AIDL-specific	code	in	bold.

Listing	3-12:	A	Service	That	Uses	AIDL
package	com.allmycode.services;

	

import	java.net.URL;

	

import	javax.xml.parsers.SAXParser;

import	javax.xml.parsers.SAXParserFactory;

	

import	org.xml.sax.InputSource;

import	org.xml.sax.XMLReader;

	

import	android.app.Service;

import	android.content.Intent;

import	android.os.Bundle;

import	android.os.IBinder;

import	android.os.Message;

import	android.widget.Toast;

public	class	MyWeatherService	extends	Service	{

	

		@Override

		public	IBinder	onBind(Intent	intent)	{

				doToast(R.string.service_bound);

				return	new	WeatherFetcher();

		}

	

		class	WeatherFetcher	extends	WeatherInterface.Stub	{

				public	String	fetchWeather(String	city)	{

						String	weatherString	=	null;

						if	(city	!=	null)	{

								Weather	weather	=	getWeather(city);

								weatherString	=

												Integer.toString(weather.getTemperature())

																+	(char)	0x00B0	+	“F	“

																+	weather.getCondition();

						}

						return	weatherString;

				}

		}

	

		String	getWeatherString(Message	message)	{

				Bundle	query	=	message.getData();

				String	location	=	query.getString(“location”);

				String	weatherString;

				if	(location	!=	null	&&	!location.equals(“”))	{

						Weather	weather	=	getWeather(location);

						weatherString	=

										Integer.toString(weather.getTemperature())

														+	(char)	0x00B0	+	“F	“

														+	weather.getCondition();

				}	else	{

						weatherString	=	“It’s	dark	at	night.”;

				}

				return	weatherString;

		}

	

		private	static	final	String	GOOGLE_WEATHER_URL	=

						“http://www.google.com/ig/api?weather=”;

	

		public	Weather	getWeather(String	location)	{

				URL	url;

				Weather	weather	=	null;

				try	{

						url	=

										new	URL(GOOGLE_WEATHER_URL

														+	location.replace(“	“,	“%20”));

						SAXParser	parser	=

										SAXParserFactory.newInstance().newSAXParser();

						XMLReader	reader	=	parser.getXMLReader();

						MySaxHandler	saxHandler	=	new	MySaxHandler();

						reader.setContentHandler(saxHandler);

						reader.parse(new	InputSource(url.openStream()));

	

						weather	=	saxHandler.getWeather();

	

				}	catch	(Exception	e)	{

						e.printStackTrace();

				}

				return	weather;

		}

	

		@Override

		public	boolean	onUnbind(Intent	intent)	{

				doToast(R.string.service_stopped_itself);

				stopSelf();

				return	false;

		}

	

		@Override

		public	void	onDestroy()	{

				doToast(R.string.service_destroyed);

		}

	

		void	doToast(int	resource)	{

				Toast.makeText(this,	resource,	Toast.LENGTH_SHORT)

								.show();

		}

}

The	code	in	Listing	3-6	has	a	messenger	and	an	incoming	message
handler.	The	message	handler	sends	a	message	to	be	delivered	to	the
client.	In	contrast,	the	code	in	Listing	3-12	has	a	fetchWeather	method,
which	simply	returns	a	String	value.	The	class	in	Listing	3-12	can’t
shoot	the	messenger	because	the	class	doesn’t	even	see	the	messenger.

Listing	3-13	contains	the	AIDL	version	of	the	stuff	in	Listing	3-7.
Once	again,	I’ve	set	the	AIDL-specific	code	in	bold.

Listing	13-13:	A	Client	That	Uses	AIDL
package	com.allmycode.demos;

	

import	android.app.Activity;

import	android.content.ComponentName;

import	android.content.Context;

import	android.content.Intent;

import	android.content.ServiceConnection;

import	android.content.SharedPreferences;

import	android.os.Bundle;

import	android.os.IBinder;

import	android.os.RemoteException;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

import	android.widget.EditText;

import	android.widget.TextView;

import	android.widget.Toast;

	

import	com.allmycode.services.WeatherInterface;

	

public	class	ServiceConsumerActivity	extends	Activity

				implements	OnClickListener	{

	

		WeatherInterface	reporter;

	

		ServiceConnection	connection	=

						new	MyServiceConnection();

		SharedPreferences	prefs;

		boolean	isBound	=	false;

	

		void	bind()	{

				Intent	intent	=	new	Intent();

				intent.setAction(“com.allmycode.WEATHER”);

				isBound	=

								bindService(intent,	connection,

												Context.BIND_AUTO_CREATE);

		}

	

		public	void	queryService()	{

				if	(isBound)	{

						try	{

								String	report	=

												reporter.fetchWeather(locationText.getText()

																.toString());

								textView1.setText(report);

						}	catch	(RemoteException	e)	{

								e.printStackTrace();

						}

				}	else	{

						textView1.setText(R.string.service_not_bound);

				}

		}

	

		void	unbind()	{

				if	(isBound)	{

						unbindService(connection);

						isBound	=	false;

				}

		}

	

		class	MyServiceConnection	implements	ServiceConnection	{

				public	void	onServiceConnected(

								ComponentName	className,	IBinder	binder)	{

	

						reporter	=

										WeatherInterface.Stub.asInterface(binder);

	

						doToast(R.string.service_connected);

				}

	

				public	void	onServiceDisconnected(ComponentName	n)	{

						doToast(R.string.service_crashed);

				}

		}

	

		void	doToast(int	resource)	{

				Toast.makeText(this,	resource,	Toast.LENGTH_SHORT)

								.show();

		}

	

		@Override

		public	void	onDestroy()	{

				super.onDestroy();

				prefs	=	getSharedPreferences(“PREFS”,	MODE_PRIVATE);

				SharedPreferences.Editor	editor	=	prefs.edit();

				editor.putBoolean(“isBound”,	isBound);

				editor.putString(“report”,	textView1.getText()

								.toString());

				editor.commit();

				unbind();

		}

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

				prefs	=	getSharedPreferences(“PREFS”,	MODE_PRIVATE);

				if	(prefs	!=	null)	{

						textView1	=	(TextView)	findViewById(R.id.textView1);

	

						textView1.setText(prefs.getString(“report”,

								getString(R.string.report_appears_here)));

						if	(prefs.getBoolean(“isBound”,	false))	{

								bind();

						}

				}

	

		//	The	rest	of	the	code	is	boilerplate	stuff

		//	such	as	onCreate.

}

Upon	connecting	to	the	service,	the	client	in	Listing	3-13	creates	an
instance	of	the	AIDL-generated	code.	The	client	does	this	by	executing
reporter	=	WeatherInterface.Stub.asInterface(binder).	Then,
with	this	new	reporter	object,	the	client	makes	what	appears	to	be	an
ordinary	call	to	the	reporter	object’s	fetchWeather	method.

In	Listings	3-12	and	3-13,	the	developer	is	free	of	the	messy
messaging	business	when	one	process	communicates	with	another.	So	the
developer	—	that’s	you!	—	can	concentrate	instead	on	the	underlying
application	logic.	Nice	stuff!

Chapter	4:	Broadcast	Receivers

In	This	Chapter
Creating	broadcast	receivers
Organizing	data	from	broadcast	receivers

Restricting	a	receiver’s	access
	

Chapter	3	of	this	minibook	introduces	a	broadcast	receiver	for	the
purpose	of	running	code	at	boot	time.	Here’s	a	summary	of	that	chapter’s
broadcast	receiver	news:
•	When	you	send	a	broadcast,	Android	fires	up	all	the	receivers	whose
filters	satisfy	the	intent.

	
•	A	broadcast	receiver	runs	long	enough	to	execute	the	code	in	the
receiver’s	onReceive	method.	A	receiver	has	no	onCreate,	on	Destroy,
or	onAnythingElse	methods	—	only	onReceive.	After	Android	finishes
executing	the	onReceive	method’s	code,	the	broadcast	receiver	becomes
dormant,	doing	nothing	until	an	app	sends	another	matching	broadcast.

	
This	chapter	describes	broadcast	receivers	in	more	detail.

Receivers	101
This	chapter’s	first	example	contains	the	world’s	simplest	broadcast

receiver.	To	be	precise,	Listing	4-1	contains	the	receiver	class
(MyReceiver,	which	extends	BroadcastReceiver),	Listing	4-2	contains
code	to	broadcast	to	the	receiver,	and	Listing	4-3	contains	the	example’s
AndroidManifest.xml	file.

Listing	4-1:	A	Simple	Broadcast	Receiver
package	com.allmycode.rec1;

	

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

import	android.util.Log;

	

public	class	MyReceiver	extends	BroadcastReceiver	{

	

		@Override

		public	void	onReceive(Context	arg0,	Intent	arg1)	{

				Log.i(“MyRecevier”,	“Received	a	broadcast”);

		}

}

A	class	that	extends	android.content.BroadcastReceiver	must
implement	the	onReceive	method.	The	class	in	Listing	4-1	says,	“When	I
receive	a	broadcast,	I’ll	write	an	entry	in	Android’s	log	file.”

Listing	4-2:	A	Simple	Broadcaster
package	com.allmycode.rec1;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.view.View;

	

public	class	MyActivity	extends	Activity	{

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

		}

	

		public	void	onButtonClick(View	view)	{

				Intent	intent	=	new	Intent();

				intent.setAction(“com.allmycode.ACTION”);

				sendBroadcast(intent);

		}

}

In	Listing	4-2,	the	onButtonClick	method	sends	a	broadcast.	The
method	creates	an	intent	and	then	feeds	the	intent	to	the	sendBroadcast
broadcast	method.

Listing	4-3:	Declaring	a	Broadcast	Receiver
<?xml	version=”1.0”	encoding=”utf-8”?>

<manifest	xmlns:android=

				“http://schemas.android.com/apk/res/android”

		package=“com.allmycode.rec1“

		android:versionCode=“1“

		android:versionName=“1.0“>

		<uses-sdk	android:minSdkVersion=“8“	/>

	

		<application	android:icon=“@drawable/icon“

															android:label=“@string/app_name“>

															

				<activity	android:name=“.MyActivity“

														android:label=“@string/app_name“>

						<intent-filter>

								<action	android:name=

										„android.intent.action.MAIN“	/>

								<category	android:name=

										„android.intent.category.LAUNCHER“	/>

						</intent-filter>

				</activity>

				

				<receiver	android:name=”.MyReceiver”>

						<intent-filter>

								<action	android:name=”com.allmycode.ACTION”	/>

						</intent-filter>

				</receiver>

	

		</application>

</manifest>

In	Listing	4-3,	the	receiver’s	action	is	“com.allmycode.ACTION”.
And,	sure	enough,	in	Listing	4-2,	the	broadcast	intent’s	action	is	also
“com.allmycode.ACTION”.	With	no	other	constraints	in	either	listing,	the
broadcast	matches	the	receiver.	So	when	you	run	the	code	in	Listings	4-1,
4-2,	and	4-3,	Android	calls	the	receiver’s	onReceive	method.	The	method
writes	an	entry	to	Android’s	log	file.

Creating	a	receiver	on	the	fly
Of	Android’s	four	components	(Activity,	Service,

BroadcastReceiver,	and	ContentProvider),	the	BroadcastReceiver	is
the	only	component	that	doesn’t	require	its	own	AndroidManifest.xml
element.	Instead	of	creating	a	<receiver>	element	the	way	I	do	in	Listing
4-3,	you	can	register	a	broadcast	receiver	on	the	fly	in	your	code.	Listing
4-4	shows	you	how.

Listing	4-4:	Registering	a	New	Broadcast
Receiver
public	void	onButtonClick(View	view)	{

		IntentFilter	filter	=	new	IntentFilter();

		filter.addAction(“com.allmycode.ACTION”);

		registerReceiver(new	MyReceiver(),	filter);

	

		Intent	intent	=	new	Intent();

		intent.setAction(“com.allmycode.ACTION”);

		sendBroadcast(intent);

}

With	the	bold	code	in	Listing	4-4,	you	eliminate	the	need	for	the
<receiver>	element	in	Listing	4-3.

Juggling	receivers	and	broadcasts

You	can	create	several	instances	of	a	broadcast	receiver	and	send
several	broadcasts.	Listings	4-5	and	4-6	illustrate	the	situation.

Listing	4-5:	Registering	Several	Receivers
public	void	onButtonClick(View	view)	{

		IntentFilter	filter	=	new	IntentFilter();

		filter.addAction(“com.allmycode.ACTION”);

		MyReceiver	receiver	=	new	MyReceiver();

	

		registerReceiver(receiver,	filter);

		registerReceiver(receiver,	filter);

		registerReceiver(new	MyReceiver(),	filter);

	

		Intent	intent	=	new	Intent();

		intent.setAction(“com.allmycode.ACTION”);

		sendBroadcast(intent);

	

		Log.i(“MyActivity”,

						“Sent	a	broadcast;	about	to	send	another...”);

	

		sendBroadcast(intent);

}

Listing	4-6:	Entries	in	the	Log
MyActivity(280):	Sent	a	broadcast;	about	to	send	another...

MyRecevier(280):	Received	a	broadcast

MyRecevier(280):	Received	a	broadcast

MyRecevier(280):	Received	a	broadcast

MyRecevier(280):	Received	a	broadcast

Listing	4-5	contains	an	alternative	to	the	onButtonClick	method	in
Listing	4-2,	and	Listing	4-6	shows	the	output	(using	the	MyReceiver	class

from	Listing	4-1).	Here’s	how	it	all	works:
•	Listing	4-5	registers	two	instances	of	MyReceiver.

	
Sure,	the	code	in	Listing	4-5	calls	registerReceiver	three	times.	But	the
second	call	is	redundant	because	it	contains	the	same	MyReceiver
instance	as	the	first	registerReceiver	call.

	
•	Listing	4-5	sends	two	broadcasts.

	
No	argument	about	that.

	
•	After	sending	the	first	of	the	two	broadcasts,	the	activity	logs	the
words	Sent	a	broadcast;	about	to	send	another....

	
But	in	Listing	4-6,	you	see	log	entries	in	a	different	order.	In	Listing	4-6,
you	see	the	activity	bragging	about	having	sent	one	broadcast.	Then	you
see	two	broadcasts	landing	on	two	receivers	(for	a	total	of	four	log
entries).

	
Remember	that	a	broadcast	isn’t	a	method	call.	Sending	a	broadcast
means	flinging	a	message	to	the	Android	operating	system.	The	system
then	calls	onReceive	methods	in	its	own	good	time.	So	calls	to	on
Receive	(and	their	corresponding	log	entries)	arrive	out	of	sync	with	the
sender’s	code.	That	asynchronous	affect	happens	even	if	the	sender	and
receiver	classes	belong	to	the	same	app.

	

How	to	unregister	a	receiver
You	can	unregister,	reregister,	and	re-unregister	broadcast	receivers.

You	can	even	un-re-un-re-unregister	broadcast	receivers.	Listings	4-7	and
4-8	illustrate	all	this	with	some	code.

Listing	4-7:	Registering	and	Unregistering
public	void	onButtonClick(View	view)	{

		IntentFilter	filter	=	new	IntentFilter();

		filter.addAction(“com.allmycode.ACTION”);

		filter.addDataScheme(“letter”);

		MyReceiver	receiver1	=	new	MyReceiver(1);

		MyReceiver	receiver2	=	new	MyReceiver(2);

	

		registerReceiver(receiver1,	filter);

		registerReceiver(receiver2,	filter);

	

		Intent	intent	=	new	Intent();

		intent.setAction(“com.allmycode.ACTION”);

		intent.setData(Uri.parse(“letter:A”));

		sendBroadcast(intent);

		unregisterReceiver(receiver1);

	

		sendBroadcast(intent);

		

		intent.setData(Uri.parse(“letter:B”));

		sendBroadcast(intent);

		

		registerReceiver(receiver1,	filter);

}

In	Listing	4-7,	I	give	each	receiver	its	own	int	value	in	the
receiver’s	constructor	call.	This	helps	the	receiver	identify	itself	in	a	log
entry.	I	also	add	identifying	letters	to	the	code’s	intents.	But	I	break	my
bad	habit	of	pasting	extras	onto	intents.	Instead,	I	create	my	own	URI
scheme	(the	Letter	scheme)	and	send	an	opaque	URI	along	with	each
intent.

	An	opaque	URI	is	a	URI	that	has	no	particular	structure	to
the	right	of	the	first	colon.	I	describe	opaque	URIs	in	Chapter	2	of
this	minibook.
Listing	4-8	contains	the	receiver’s	code.	The	receiver	writes	its

number	and	the	broadcast’s	letter	to	each	log	entry.

Listing	4-8:	A	More	Verbose	Broadcast
Receiver
package	com.allmycode.rec1;

	

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

import	android.util.Log;

	

public	class	MyReceiver	extends	BroadcastReceiver	{

		private	int	number;

	

		public	MyReceiver(int	number)	{

				this.number	=	number;

		}

	

		@Override

		public	void	onReceive(Context	context,	Intent	intent)	{

				String	letter	=

								intent.getData().getSchemeSpecificPart();

				Log.i(“MyRecevier”,	number	+	“	Received	a	broadcast	“

								+	letter);

		}

}

What’s	the	log	output	of	the	code	in	Listings	4-7	and	4-8?	Listing	4-
9	has	the	answer.

Listing	4-9:	Entries	in	the	Log
MyRecevier(278):	1	Received	a	broadcast	A

MyRecevier(278):	2	Received	a	broadcast	A

MyRecevier(278):	2	Received	a	broadcast	A

MyRecevier(278):	2	Received	a	broadcast	B

Here’s	what	happens	when	you	run	the	code	in	Listing	4-7:
•	The	code	registers	two	instances	of	MyReceiver,	numbered	1	and	2.

	
•	The	code	sends	a	broadcast	with	letter	A.

	
Both	receivers	get	the	broadcast.	(See	the	first	two	lines	in	Listing	4-9.)

	
•	The	code	unregisters	receiver1.

	
At	this	point,	only	receiver2	is	registered.

	
•	The	code	sends	another	broadcast	with	letter	A.

	
Only	receiver2	gets	the	broadcast.	(See	the	third	line	in	Listing	4-9.)

	
•	The	code	sends	another	broadcast	with	letter	B.

	
Again,	receiver2	gets	the	broadcast.	(See	the	last	line	in	Listing	4-9.)

	
•	The	code	reregisters	receiver1.

	
Too	late.	All	the	broadcasts	have	propagated	through	the	system,	and
each	broadcast	has	died	its	own	quiet	death.	So	receiver1	doesn’t	get	a
broadcast,	and	nothing	new	appears	in	Listing	4-9.

	
A	receiver	can	continue	to	receive	until	you	unregister	the	receiver.

(Notice	how	receiver2	gets	all	three	broadcasts	in	this	section’s
example.)

In	contrast,	Android	wipes	away	a	broadcast	after	the	broadcast
reaches	all	currently	registered	receivers.	(At	the	end	of	this	section’s
example,	reregistering	receiver1	has	no	visible	affect	because	all	the
code’s	broadcasts	have	run	their	course.)

	The	preceding	paragraph	says,	“Android	wipes	away	a
broadcast	after	the	broadcast	reaches	all	currently	registered
receivers.”	That’s	a	half-truth.	You	can	send	a	broadcast	that	sticks
around	on	the	system	long	after	the	broadcast	has	finished	reaching
all	currently	registered	receivers.	In	other	words,	you	can	create	a
sticky	broadcast.	To	find	out	more	about	it,	skip	ahead	to	the	“How
to	be	a	stickler”	section.

	When	I	write	“registered	receivers,”	I	include	any	receivers
declared	in	the	AndroidManifest.xml	file.	You	don’t	call
registerReceiver	to	start	these	manifest	file	broadcast	receivers.
Android	registers	an	instance	of	each	manifest	file	receiver	when
you	install	the	file’s	app.	If	you	happen	to	call	registerReceiver
for	a	receiver	that	you’ve	declared	in	the	AndroidManifest.xml	file,
Android	responds	by	registering	an	additional	instance	of	your
broadcast	receiver	class.

Broadcast	receivers	and	contexts
	Like	the	startActivity	and	start	Service	methods,	the

sendBroadcast	method	belongs	to	the	class	android.
content.Context.	The	familiar	Activity	class	is	a	subclass	of	the
Context	class,	so	an	activity’s	code	can	call	start	Activity,
startService,	and	send	Broadcast.	Android’s	Service	class	is
also	a	subclass	of	the	Context	class.	But	the	BroadcastReceiver
class	isn’t	a	subclass	of	the	Context	class.	So	a	broadcast
receiver’s	code	can’t	directly	call	start	Activity	or	any	of	the
other	methods	that	require	a	context.	For	a	workaround,	have	the
broadcast	receiver	use	the	context	parameter	in	its	onReceive
method:

@Override
public	void	onReceive(Context	context,	Intent	intent)	{

Intent	newIntent	=	new	Intent();
newIntent.setClassName(“com.allmycode.rec3”,
“com.allmycode.rec3.OtherActivity”);
newIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
context.startActivity(newIntent);
}

Another	way	to	hack	the	code	is	to	code	the	receiver	as	an	inner
class	of	a	component	with	a	context:

package	com.allmycode.rec3;

	

import	android.app.Activity;
import	android.content.BroadcastReceiver;
import	android.content.Context;
import	android.content.Intent;
import	android.content.IntentFilter;
import	android.os.Bundle;

	

public	class	ReceiverContextActivity	extends	Activity	{

	

@Override
public	void	onCreate(Bundle	savedInstanceState)	{
super.onCreate(saved	InstanceState);
setContentView(R.layout.main);

	

IntentFilter	filter	=	new	IntentFilter();
filter.addAction(“MY_ACTION”);

registerReceiver(new	MyReceiver(),	filter);

	

Intent	intent	=	new	Intent();
intent.setAction(“MY_ACTION”);
sendBroadcast(intent);
}

	

class	MyReceiver	extends	BroadcastReceiver	{

	

@Override
public	void	onReceive(Context	context,	Intent	intent)	{
Intent	newIntent	=	new	Intent();
newIntent.setClassName(“com.allmycode.rec3”,
“com.allmycode.rec3.OtherActivity”);
ReceiverContextActivity.this
.startActivity	(newIntent);
}
}
}

	

Beyond	the	Fundamentals
The	earlier	section	deals	with	some	minimalist,	no-nonsense

broadcast	receiver	examples.	This	section	covers	some	additional
broadcast	receiver	features.

Managing	receivers
The	previous	section’s	code	is	nice	and	simple.	At	least	I	think	it’s

nice	because	I’m	a	teacher,	both	by	profession	and	in	spirit.	I	like	the

little	examples,	even	if	they’re	not	sturdy	enough	to	survive	real-world
use.

But	some	hard-core	developers	don’t	agree	with	me.	They’d	call
Listings	4-4,	4-5,	and	4-7	“bad	and	simple”	because	(and	I’m	being
painfully	honest)	the	code	in	these	listings	can’t	take	a	beating	in	the	real
world.	In	fact,	the	code	in	these	listings	probably	wouldn’t	survive	gentle
petting.	To	find	out	why,	try	this	experiment:

1.	Create	a	brand-new	Android	project	with	target	API	8	or
greater.

	 Actually,	APIs	earlier	than	API	8	are	okay.	But	with	earlier	APIs,
views	don’t	have	the	nice	android:onClick	attribute.	So	with	an	earlier
API	you	extend	OnClickListener	and	do	some	other	boring	stuff.

	 2.	Start	with	the	activity	code	in	Listing	4-2.
	 3.	Change	the	activity’s	onButtonClick	method	to	match	the

code	in	Listing	4-4.
	 4.	In	the	main.xml	layout,	add	a	button	whose	click-handler	is

the	activity’s	onButtonClick	method.
	 5.	Use	the	AndroidManifest.xml	document	in	Listing	4-3.
	 6.	Run	the	app.
	 7.	While	you	wait	for	the	app	to	load,	switch	to	Eclipse’s	DDMS

perspective.
	 For	details	on	switching	between	Eclipse	perspectives,	see	Book	II,

Chapter	1.
	 When	the	app	finishes	loading,	you	see	a	button	on	the	emulator’s

screen.	It’s	the	button	that	you	created	in	Step	4.
	 8.	Click	the	button,	and	look	at	the	resulting	entries	in	Eclipse’s

LogCat	view.
	 You	see	two	MyReceiver	Received	a	broadcast	entries	because

Android	is	running	two	MyReceiver	instances.	One	instance	comes	from
the	<receiver>	element	in	the	AndroidManifest.xml	document.	The
other	receiver	comes	from	the	registerReceiver	method	call	in	Listing
4-4.

	 Having	two	MyReceiver	instances	isn’t	bad.	But	in	most	cases,	it’s
probably	not	what	you	want.	Observing	these	two	instances	is	a	side
benefit	that	comes	from	performing	this	experiment.

	 9.	While	the	app	is	still	running,	press	the	emulator’s	Back
button,	and	look	again	at	Eclipse’s	LogCat	view.

	 In	Eclipse’s	LogCat	view,	you	see	a	big,	ugly	activity	has
leaked	IntentReceiver	error	message.	The	message	tells	you	that
Android	has	destroyed	your	activity	and	(because	you	forgot	to	do	it	.	.	.)
Android	has	also	unregistered	one	of	your	MyReceiver	instances.

	 If	you	call	registerReceiver,	Android	wants	you	to	unregister	the
receiver	before	terminating	your	activity.	When	you	press	the	Back
button,	Android	calls	your	activity’s	onPause,	onStop,	and	onDestroy
methods.	In	this	experiment’s	code,	you	don’t	override	the	inherited
onPause,	onStop,	and	onDestroy	methods,	so	Android	calls	these
inherited	methods.

	 In	this	experiment,	Android	finds	the	inherited	onDestroy	method
particularly	painful.	You’re	getting	rid	of	your	activity	and	leaving	your
registered	receiver	in	limbo.	If	lots	of	developers	do	the	same	thing,	the
user’s	Android	device	experiences	the	Night	of	the	Living	Broadcast
Receivers.

	 So	Android	says,	“If	you	refuse	to	clean	up	after	yourself,	I’ll	clean
up	for	you.	I’ll	terminate	your	broadcast	receiver.	And	just	like	your
mother,	I’ll	show	my	disapproval	by	writing	an	entry	to	the	log	file.”	(If
only	Mom	had	been	so	even-tempered!)

	 Android	doesn’t	like	the	MyReceiver	instance	that	I	register	and
don’t	unregister	in	Listing	4-4.	But	Android	isn’t	upset	about	the
MyReceiver	instance	from	the	AndroidManifest.xml	file	(see	Listing	4-
3).	Android	expects	receivers	declared	this	way	to	have	a	life	of	their
own,	surviving	past	the	lifetime	of	any	activities	in	the	application.

	

	The	error	message	activity	has	leaked
IntentReceiver	hints	that	the	SDK	has	an	IntentReceiver	class.	But
that’s	misleading.	The	name	IntentReceiver	is	an	artifact	from
Android’s	early	history.	What	used	to	be	called	an	IntentReceiver	is
now	a	BroadcastReceiver.

	 You	might	not	be	impressed	by	Step	9’s	activity	has	leaked

IntentReceiver	message.	After	all,	Android	doesn’t	alert	the	user,	so
your	app	doesn’t	look	bad.	And	when	the	user	clicks	the	Back	button,	you
probably	don’t	mind	that	Android	terminates	your	broadcast	receiver.	So
what’s	the	big	deal?	Well,	try	the	next	few	steps	.	.	.

	 10.	Restart	this	section’s	app.
	 11.	Again,	press	the	button	on	the	activity’s	screen	to	invoke	the

code	in	Listing	4-4.
	 12.	While	the	app	is	still	running,	turn	the	emulator	sideways	by

pressing	Ctrl+F11.
	 Of	course,	if	you’re	testing	on	a	real	device,	simply	turn	the	device

sideways.
	 In	Eclipse’s	LogCat	view,	look	again	for	the	insulting	activity	has

leaked	IntentReceiver	error	message.	Unless	you	override	the	default
behavior,	Android	destroys	and	re-creates	your	activity	when	the	device’s
orientation	changes.	As	far	as	the	user	is	concerned,	the	activity	is	still
alive	and	well.	But	unbeknownst	to	the	user,	Android	killed	the	broadcast
receiver	and	hasn’t	revived	it.

	 This	anomaly	makes	little	difference	in	Listing	4-4,	where	you
register	the	receiver	and	send	a	broadcast	using	the	same	button.	But	the
state	of	your	process	has	changed	considerably.	In	a	real-life	app,	you’ve
lost	a	broadcast	receiver	just	by	tilting	the	device.	It’s	difficult	to	imagine
a	scenario	in	which	you	want	that	to	happen.

	 In	most	of	this	chapter’s	simple	examples,	I	register	and	unregister
receivers	in	an	onButtonClick	method.	That’s	okay	if	I	include	logic	to
deal	with	the	nastiness	in	this	section’s	example.	Of	course,	the	logic	can
become	complicated,	and	it’s	easy	to	make	mistakes.

In	general,	the	easiest	way	to	deal	with	runtime	receiver
registrations	is	to	register	and	unregister	in	the	activity’s	complementary
lifecycle	methods.	Listing	4-10	shows	you	what	to	do.

Listing	4-10:	Dealing	with	the	Component
Lifecycle
package	com.allmycode.rec1;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.content.IntentFilter;

import	android.os.Bundle;

import	android.view.View;

	

public	class	MyActivity	extends	Activity	{

		MyReceiver	receiver	=	new	MyReceiver();

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

		}

	

		@Override

		public	void	onResume()	{

				super.onResume();

				IntentFilter	filter	=	new	IntentFilter();

				filter.addAction(“com.allmycode.ACTION”);

				registerReceiver(receiver,	filter);

		}

	

		@Override

		public	void	onPause()	{

				super.onPause();

				unregisterReceiver(receiver);

		}

	

		public	void	onButtonClick(View	view)	{

				Intent	intent	=	new	Intent();

				intent.setAction(“com.allmycode.ACTION”);

				sendBroadcast(intent);

		}

}

I	can	state	the	big	message	in	Listing	4-10	very	simply:	Make	things
in	an	activity’s	onResume	method	and	then	get	rid	of	these	things	in	the
activity’s	onPause	method.	If	you	want	things	to	live	longer,	make	things
in	the	activity’s	onCreate	method	and	get	rid	of	these	things	in	the
activity’s	on	Destroy	method.	That’s	it.	(And	yes,	I’m	aware	that	I	wrote
this	three-page	section	to	pontificate	about	something	that	I	can
summarize	at	the	end	in	only	two	sentences.	Thanks	for	noticing!)

How	to	be	a	stickler
An	ordinary	broadcast	disintegrates	after	it’s	sent	to	all	the

matching,	currently	running	receivers.	But	another	kind	of	broadcast	—	a
sticky	broadcast	—	hangs	on	until	someone	or	something	explicitly
removes	the	broadcast.	To	remove	a	sticky	broadcast,	you	can	call
removeStickyBroadcast.	Alternatively,	you	can	turn	off	your	device,	hit
your	device	with	a	hammer,	or	do	other	unpleasant	things.	Listing	4-11
contains	some	informative	code.

Listing	4-11:	Sending	a	Sticky	Broadcast
public	void	onButtonClick(View	view)	{

		IntentFilter	filter	=	new	IntentFilter();

		filter.addAction(“com.allmycode.ACTION”);

		filter.addDataScheme(“letter”);

		MyReceiver	receiver1	=	new	MyReceiver(1);

		MyReceiver	receiver2	=	new	MyReceiver(2);

		MyReceiver	receiver3	=	new	MyReceiver(3);

	

		Intent	intent	=	new	Intent();

		intent.setAction(“com.allmycode.ACTION”);

		intent.setData(Uri.parse(“letter:A”));

	

		registerReceiver(receiver1,	filter);

		

		sendStickyBroadcast(intent);

								

		registerReceiver(receiver2,	filter);

		

		removeStickyBroadcast(intent);

		

		registerReceiver(receiver3,	filter);

}

With	the	sending	and	registering	business	in	Listing	4-11	and	the
receiver	I	set	up	back	in	Listing	4-8,	Android	logs	the	entries	shown	in
Listing	4-12.

Listing	4-12:	Log	File	Entries
MyRecevier(282):	1	Received	a	broadcast	A

MyRecevier(282):	2	Received	a	broadcast	A

In	Listing	4-11,	I	register	receiver1	before	sending	the	broadcast.
So	receiver1	receives	the	broadcast.	No	big	deal	here.

At	this	point	in	the	run	of	Listing	4-11,	receiver1	is	the	only
currently	registered	receiver,	and	receiver1	has	received	the	broadcast.
But	the	broadcast	is	sticky,	so	the	broadcast	lives	on.	On	the	next	line	of
code,	when	I	register	receiver2	in	Listing	4-11,	receiver2	receives	the
broadcast.	That’s	what	stickiness	does.

In	the	last	two	statements	of	Listing	4-11,	I	remove	the	sticky
broadcast	(with	a	method	call,	not	with	turpentine),	and	I	register
receiver3.	Because	I’ve	removed	the	only	matching	broadcast,
receiver3	receives	nothing.

	A	component	that	calls	sendStickyBroadcast	(or	calls	the
closely	related	sendStickyOrderedBroadcast	method)	must	have
the	<uses-permission
android:name=”android.permission.BROADCAST_STICKY”	/>

element	in	its	app’s	AndroidManifest.xml	document.	A	component
that	calls	sendBroadcast	(or	its	friend,	the	sendOrderedBroadcast
method)	doesn’t	need	permission	to	do	so.

Using	receiver	intents

At	some	point,	you	might	have	several	receivers	and	several	sticky
broadcasts	vying	for	attention	in	a	multiprocess,	nondeterministic	fashion.
Sounds	like	fun,	doesn’t	it?	You	may	also	be	dealing	with	broadcasts
from	other	apps	and	from	the	system	itself.	To	help	you	keep	track	of	the
comings	and	goings,	the	registerReceiver	method	returns	an	intent.
This	intent	comes	from	one	of	the	(possibly	many)	broadcasts	that	the
newly	registered	receiver	catches.

In	Listing	4-13,	I	register	two	receivers	and	fling	two	sticky
broadcasts	(“letter:A”	and	“letter:O”)	into	the	air.	For	each	receiver
registration,	Listing	4-13	logs	an	intent	caught	by	the	receiver.

Listing	4-13:	Getting	an	Intent	from	a
Receiver’s	Registration
public	void	onButtonClick(View	view)	{

		IntentFilter	filter	=	new	IntentFilter();

		filter.addAction(“com.allmycode.ACTION”);

		filter.addAction(“com.allmycode.OTHER_ACTION”);

		filter.addDataScheme(“letter”);

		MyReceiver	receiver1	=	new	MyReceiver(1);

		MyReceiver	receiver2	=	new	MyReceiver(2);

		

		Intent	returnedIntent	=

				registerReceiver(receiver1,	filter);

		

		Log.i(“MyActivity”,	getStatus(returnedIntent));

	

		Intent	intentAct	=	new	Intent();

		intentAct.setAction(“com.allmycode.ACTION”);

		intentAct.setData(Uri.parse(“letter:A”));

		sendStickyBroadcast(intentAct);

	

		Intent	intentOth	=	new	Intent();

		intentOth.setAction(“com.allmycode.OTHER_ACTION”);

		intentOth.setData(Uri.parse(“letter:O”));

		sendStickyBroadcast(intentOth);

	

		returnedIntent	=	registerReceiver(receiver2,	filter);

		Log.i(“MyActivity”,	getStatus(returnedIntent));

}

	

private	String	getStatus(Intent	returnedIntent)	{

		if	(returnedIntent	==	null)	{

				return	“null”;

		}	else	{

				return	returnedIntent.toString();

		}

}

Listing	4-14	shows	the	results	of	a	run	of	Listing	4-13’s	code	(using
the	receiver	in	Listing	4-8).	The	first	registration	returns	null	rather	than
an	actual	intent.	This	happens	because	no	broadcast	is	alive	when	the
code	executes	this	first	registration.

Listing	4-14:	Log	This!
MyActivity(313):	null

MyActivity(313):

		Intent	{	act=com.allmycode.ACTION	dat=letter:A	}

MyRecevier(313):	1	Received	a	broadcast	A

MyRecevier(313):	1	Received	a	broadcast	O

MyRecevier(313):	2	Received	a	broadcast	A

MyRecevier(313):	2	Received	a	broadcast	O

The	second	receiver	registration	returns	the
“com.allmycode.ACTION”	intent.	The	receiver’s	filter	has	both
“com.allmycode.ACTION”	and	“com.allmycode.OTHER_ACTION”,	and
both	of	these	actions	belong	to	active	sticky	broadcasts.	But	the	call	to
registerReceiver	returns	only	one	of	the	broadcasts’	intents.

One	way	or	another,	two	receivers	catch	two	broadcasts.	The	final
four	entries	in	Listing	4-14	contain	reports	from	the	receivers	themselves.
Notice	how,	in	its	typical	asynchronous	flurry,	Android	logs	all	the
receivers’	steps	after	returning	from	the	second	registerReceiver	call.
Without	concurrent	processing,	Android	would	complete	a	receiver’s
onReceive	method	before	returning	from	the	second	registerReceiver

call.	You’d	see	lines	in	Listing	4-14	in	a	different	order.

Ordered	broadcasts
Android	takes	a	regular	broadcast	and	throws	it	into	the	air.	Then

the	receivers	with	matching	filters	jump	like	basketball	players,	catching
the	broadcast	in	no	particular	order.	This	“no	particular	order”	behavior
can	be	nice	because	it	frees	up	the	system	to	make	the	most	of	any
available	processing	time.

But	occasionally	you	want	a	predictable	sequence	of	onReceive
calls.	To	achieve	such	behavior,	you	assign	priorities	to	the	receivers’
intent	filters	and	then	send	an	ordered	broadcast.

	In	this	chapter’s	log	listings,	receivers	seem	to	form	a	first-
come/first-served	waiting	line	to	catch	broadcasts.	That’s	fine.	But
in	general,	Android	makes	no	promises	about	this	polite	behavior.	In
fact,	Android	might	run	two	receivers	at	once.	You	never	know.
Listing	4-15	prioritizes	receivers	and	sends	an	ordered	broadcast.

Listing	4-15:	Set	Your	Priorities
public	void	onButtonClick(View	view)	{

		IntentFilter	filter	=	new	IntentFilter();

		filter.addAction(“com.allmycode.ACTION”);

		filter.addDataScheme(“letter”);

	

		IntentFilter	filter1	=	new	IntentFilter(filter);

		IntentFilter	filter2	=	new	IntentFilter(filter);

		IntentFilter	filter3	=	new	IntentFilter(filter);

	

		filter1.setPriority(17);

		filter2

						.setPriority(IntentFilter.SYSTEM_HIGH_PRIORITY	-	1);

		filter3.setPriority(-853);

		MyReceiver	receiver1	=	new	MyReceiver(1);

		MyReceiver	receiver2	=	new	MyReceiver(2);

		MyReceiver	receiver3	=	new	MyReceiver(3);

	

		registerReceiver(receiver1,	filter1);

		registerReceiver(receiver2,	filter2);

		registerReceiver(receiver3,	filter3);

	

		Intent	intent	=	new	Intent();

		intent.setAction(“com.allmycode.ACTION”);

		intent.setData(Uri.parse(“letter:A”));

		

		sendOrderedBroadcast(intent,	null);

		Log.i(“MyActivity”,

						“Now	watch	the	log	entries	pour	in...”);

}

From	a	single	intent	filter,	Listing	4-15	stamps	out	three	copies.
Then	the	code	assigns	a	priority	to	each	copy.	Priorities	are	int	values,
ranging	from	@nd999	to	999.	Android	reserves	the	values	–1000
(IntentFilter.SYSTEM_LOW_PRIORITY)	and	1000
(IntentFilter.SYSTEM_HIGH_PRIORITY)	for	its	own	private	use.

	You	can	set	an	intent	filter’s	priority	in	an	app’s
AndroidManifest.xml	document.	Do	so	with	an	attribute,	such	as
android:priority=”17”.
After	registering	three	receivers	(one	for	each	of	the	three	filters),

Listing	4-15	sends	an	ordered	broadcast	and	lets	the	chips	fall	where	they
may.	The	chips	fall	in	Listing	4-16.

Listing	4-16:	Yet	Another	Log
MyActivity(284):	Now	watch	the	log	entries	pour	in...

MyRecevier(284):	2	Received	a	broadcast	A

MyRecevier(284):	1	Received	a	broadcast	A

MyRecevier(284):	3	Received	a	broadcast	A

Listing	4-16	confirms	that	receiver2	—	the	receiver	with	highest
priority	—	receives	the	broadcast	first.	Poor	receiver3	—	the	receiver
with	the	lowest	priority	—	receives	the	broadcast	last.

Stopping	a	broadcast	in	its	tracks
In	the	preceding	section,	an	ordered	broadcast	travels	from	one

receiver	to	another.	The	sequence	of	receivers	depends	on	their	relative
priorities.

In	this	section,	you	play	a	nasty	trick	on	all	but	one	of	the	receiver
instances.	Change	the	MyReceiver	class’s	code,	as	in	Listing	4-17.

Listing	4-17:	Aborting	a	Broadcast
package	com.allmycode.rec1;

	

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

import	android.util.Log;

	

public	class	MyReceiver	extends	BroadcastReceiver	{

		private	int	number;

	

		public	MyReceiver(int	number)	{

				this.number	=	number;

		}

	

		@Override

		public	void	onReceive(Context	context,	Intent	intent)	{

				String	letter	=

								intent.getData().getSchemeSpecificPart();

				Log.i(“MyRecevier”,	number	+	“	Received	a	broadcast	“

								+	letter);

				abortBroadcast();

		}

}

With	the	call	to	abortBroadcast	in	Listing	4-17,	a	run	of	the	code
in	Listing	4-15	creates	only	two	log	entries:
MyActivity(281):	Now	watch	the	log	entries	pour	in...

MyRecevier(281):	2	Received	a	broadcast	A

The	second	log	entry	comes	from	an	instance	of	the	receiver	in
Listing	4-17.	The	listing’s	call	to	abortBroadcast	stops	the	ordered
broadcast	in	its	tracks.	Other	instances	of	MyReceiver	never	see	the
broadcast.

The	abortBroadcast	method	works	only	with	ordered	broadcasts.
Normally,	you	have	a	MyReceiver	instance	abort	a	broadcast	so	that	some
other	receiver	(maybe	a	YourReceiver	instance)	doesn’t	get	the
broadcast.	But	in	this	chapter’s	examples,	I	keep	things	simple	by
creating	only	one	MyReceiver	class	and	several	instances	of	the	class.

Getting	results	from	receivers
What	will	they	think	of	next?	You	have	sticky	broadcasts	and

ordered	broadcasts.	Why	not	have	a	broadcast	that’s	both	sticky	and
ordered?	Developers	typically	use	sticky,	ordered	broadcasts	to	collect
results	from	several	broadcast	receivers.

Listing	4-18	contains	a	receiver	on	steroids.

Listing	4-18:	A	Receiver	Manages	Data
package	com.allmycode.rec1;

	

import	java.util.ArrayList;

	

import	android.app.Activity;

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

import	android.os.Bundle;

import	android.util.Log;

	

public	class	MyReceiver	extends	BroadcastReceiver	{

		private	int	number;

		private	boolean	INTENTIONALLY_FAIL	=	false;

	

		public	MyReceiver(int	number)	{

				this.number	=	number;

		}

	

		@Override

		public	void	onReceive(Context	context,	Intent	intent)	{

				String	letter	=

								intent.getData().getSchemeSpecificPart();

				Log.i(“MyRecevier”,	number	+	“	Received	a	broadcast	“

								+	letter);

				

				if	(INTENTIONALLY_FAIL)	{

						setResultCode(Activity.RESULT_CANCELED);

						return;

				}

	

				if	(getResultCode()	==	Activity.RESULT_OK)	{

						Bundle	bundle	=	getResultExtras(true);

						ArrayList<Integer>	receiverNums	=

										bundle.getIntegerArrayList(“receiverNums”);

						if	(receiverNums	!=	null)	{

								receiverNums.add(new	Integer(number));

						}

						setResultExtras(bundle);

				}

		}

}

An	ordered	broadcast	goes	to	an	ordered	chain	of	receiver	instances.
Along	with	the	broadcast,	each	receiver	instance	gets	result	extras	from
the	previous	receiver	in	the	chain.	These	result	extras	take	the	form	of	a
bundle.

	For	the	lowdown	on	bundles,	see	Chapter	3	of	this
minibook.
An	instance	of	the	receiver	in	Listing	4-18	gets	a	bundle	containing

an	ArrayList	of	integers.	This	ArrayList	happens	to	contain	the
numbers	of	all	the	previous	receiver	instances	in	the	ordered	broadcast’s
chain.	The	instance	in	Listing	4-18	adds	its	own	number	to	the	ArrayList
and	then	sets	its	own	result	to	be	the	newly	enhanced	ArrayList.	The
next	receiver	instance	in	the	chain	gets	this	newly	enhanced	ArrayList.

An	ordered	broadcast	also	comes	with	an	int	valued	code.	In
Listing	4-18,	the	call	to	getResultCode	checks	for	the
android.app.Activity.RESULT_OK	code.	Any	receiver	instance	in	the
chain	can	mess	up	the	works	with	a	result	code	that’s	not	OK.

In	Listing	4-18,	I	add	an	extra	INTENTIONALLY_FAIL	constant	to	test
undesirable	situations.	Changing	the	constant’s	value	to	true	forces
Listing	4-18	to	set	the	result	code	to
android.app.Activity.RESULT_CANCELED.	After	that,	any	result	from
the	ordered	broadcast	can’t	be	trusted.

	Always	remove	testing	and	debugging	code	(such	as	the
INTENTIONALLY_FAIL	code	in	Listing	4-18)	before	you	publish	your
app.
Listing	4-19	puts	the	receiver	in	Listing	4-18	through	its	paces.

Listing	4-19:	Dealing	with	the	Result	from	a

Chain	of	Receivers
package	com.allmycode.rec1;

	

import	java.util.ArrayList;

	

import	android.app.Activity;

import	android.content.BroadcastReceiver;

import	android.content.Context;

import	android.content.Intent;

import	android.content.IntentFilter;

import	android.net.Uri;

import	android.os.Bundle;

import	android.util.Log;

import	android.view.View;

	

public	class	MyActivity	extends	Activity	{

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

		}

	

public	void	onButtonClick(View	view)	{

				IntentFilter	filter	=	new	IntentFilter();

				filter.addAction(“com.allmycode.ACTION”);

				filter.addDataScheme(“letter”);

				IntentFilter	filter1	=	new	IntentFilter(filter);

				IntentFilter	filter2	=	new	IntentFilter(filter);

				IntentFilter	filter3	=	new	IntentFilter(filter);

	

				MyReceiver	receiver1	=	new	MyReceiver(1);

				MyReceiver	receiver2	=	new	MyReceiver(2);

				MyReceiver	receiver3	=	new	MyReceiver(3);

	

				registerReceiver(receiver1,	filter1);

				registerReceiver(receiver2,	filter2);

				registerReceiver(receiver3,	filter3);

	

				Intent	intent	=	new	Intent();

				intent.setAction(„com.allmycode.ACTION“);

				intent.setData(Uri.parse(„letter:A“));

	

				MyEndResultReceiver	resultReceiver	=

								new	MyEndResultReceiver();

				ArrayList<Integer>	receiverNums	=

								new	ArrayList<Integer>();

				Bundle	bundle	=	new	Bundle();

				bundle.putIntegerArrayList(“receiverNums”,

								receiverNums);

	

				sendStickyOrderedBroadcast(intent,	resultReceiver,

								null,	Activity.RESULT_OK,	null,	bundle);

		}

}

	

class	MyEndResultReceiver	extends	BroadcastReceiver	{

	

		final	static	String	CLASSNAME	=	“MyEndResultReceiver”;

	

		@Override

		public	void	onReceive(Context	context,	Intent	intent)	{

				if	(getResultCode()	==	Activity.RESULT_OK)	{

						Bundle	bundle	=	getResultExtras(true);

						ArrayList<Integer>	receiverNums	=

										bundle.getIntegerArrayList(“receiverNums”);

						Log.i(CLASSNAME,	receiverNums.toString());

				}	else	{

						Log.i(

										CLASSNAME,

										“Result	code:	“

														+	Integer.toString(getResultCode()));

				}

		}

}

In	Listing	4-19,	the	call	to	sendStickyOrderedBroadcast	takes	a
boatload	of	parameters.	The	official	signature	of	method
sendStickyOrderedBroadcast	is	as	follows:
public	void

sendStickyOrderedBroadcast(Intent	intent,

																											BroadcastReceiver	resultReceiver,

																											Handler	scheduler,

																											int	initialCode,

																											String	initialData,

																											Bundle	initialExtras)

•	The	intent	parameter	plays	the	same	role	as	any	other	broadcast’s
intent.

	
The	intent	presents	a	list	of	criteria	to	test	against	receivers’	filters.

	
•	The	resultReceiver	is	the	last	instance	in	the	ordered	broadcast’s
calling	chain.

	
By	specifying	the	result	receiver,	you	know	where	to	look	for	the
accumulated	results.

	
•	The	scheduler	(if	it’s	not	null)	handles	messages	coming	from	the

resultReceiver.
	

•	The	initialCode	is	the	starting	value	for	the	sequence	of	result
codes	passed	from	one	receiver	to	the	next.

	
In	most	apps,	the	initialCode’s	value	is	Activity.RESULT_OK.	You	give
the	initialCode	a	different	value	only	when	you’re	making	up	your	own
custom	result	code	values.	When	you	do	such	a	thing,	you	program	your
app	to	respond	sensibly	to	each	of	the	made-up	values.

	
•	The	initialData	(if	it’s	not	null)	is	a	starting	value	for	a	string
that’s	passed	from	receiver	to	receiver	in	the	chain.

	
An	ordered	broadcast	carries	a	bundle	(the	result	extras)	and	a	code	(an
int	value,	such	as	Activity.RESULT_OK).	In	addition,	an	order	broadcast
carries	result	data	—	a	String	value	that	can	be	examined	and	modified
by	each	receiver	instance	in	the	chain.

	
•	The	initialExtras	is	a	starting	value	for	the	broadcast’s	bundle	of
extra	stuff.

	
In	Listing	4-19,	the	initialExtras	bundle	is	an	empty	ArrayList.	Each
receiver	instance	that	gets	the	broadcast	adds	its	number	to	this
ArrayList.

	
Listing	4-20	shows	the	output	of	the	code	in	Listings	4-18	and	4-19.

Listing	4-20:	More	Log	Entries
MyRecevier(3602):	1	Received	a	broadcast	A

MyRecevier(3602):	2	Received	a	broadcast	A

MyRecevier(3602):	3	Received	a	broadcast	A

MyEndResultReceiver(3602):	[1,	2,	3]

The	broadcast	ends	its	run	at	an	instance	of	MyEndResultReceiver
—	the	instance	named	last	in	the	chain	by	the
sendStickyOrderedBroadcast	call	in	Listing	4-19.	When	this	last
receiver	does	it	stuff,	the	receiver	logs	[1,	2,	3]	—	the	accumulated

ArrayList	of	receiver	numbers.

Using	permissions	and	other	tricks
To	send	a	broadcast,	you	toss	an	intent	into	the	ether.	A	broadcast

receiver	gets	the	intent	if	the	receiver’s	filter	matches	the	intent.	And
that’s	the	whole	story.	Or	is	it?

When	you	send	a	broadcast,	you	can	also	specify	a	permission.
Permissions	come	from	those	<uses-permission>	elements	that	you	put
in	your	AndroidManifest.xml	document	(after	first	forgetting	to	do	it	and
getting	an	error	message).	In	Listing	4-21,	the	sendBroadcast	call’s
second	parameter	is	a	permission.

Listing	4-21:	Requiring	a	Permission
public	void	onButtonClick(View	view)	{

		Intent	intent	=	new	Intent();

		intent.setAction(“THIS_ACTION”);

	

		sendBroadcast(intent,

						android.Manifest.permission.INTERNET);

}

The	receiver	declared	in	Listing	4-22	catches	the	broadcast	in
Listing	4-21.

Listing	4-22:	Declaring	That	an	App	Has	a
Permission
<?xml	version=”1.0”	encoding=”utf-8”?>

<manifest	xmlns:android=

				“http://schemas.android.com/apk/res/android”

										package=”com.allmycode.receiver2”

										android:versionCode=”1”

										android:versionName=”1.0”>

		

		<uses-sdk	android:minSdkVersion=”8”	/>

	

		<uses-permission

				android:name=”android.permission.INTERNET”	/>

	

		<application	android:icon=”@drawable/icon”

															android:label=”@string/app_name”>

	

				<receiver	android:name=

						“com.allmycode.receiver2.MyReceiverWithPermission”>

	

						<intent-filter>

								<action	android:name=”THIS_ACTION”	/>

						</intent-filter>

				</receiver>

				

		</application>

</manifest>

Another	receiver,	in	an	app	whose	manifest	doesn’t	have	the	<uses-
permission>	element,	can’t	receive	the	broadcast	from	Listing	4-21.

	Android’s	built-in
android.Manifest.permission.INTERNET	constant	(used	in	Listing
4-21)	has	String	value	“android.permission.INTERNET”.	At	the
risk	of	being	gauche,	you	can	use	the	quoted	string
“android.permission.INTERNET”	in	the	Java	code	of	Listing	4-21.
But	you	can’t	use	the	android.Manifest.permission.INTERNET
constant	in	Listing	4-13	or	in	any	other	AndroidManifest.xml
document.

	Android	has	all	kinds	of	mechanisms	for	shielding
components	from	other	components.	For	example,	you	can	add	an
attribute	to	the	<receiver>	start	tag	in	Listing	4-22:

<receiver	android:name=

		“com.allmycode.receiver2.MyReceiverWithPermission”

		android:exported=”false”>

If	you	do,	no	component	outside	the	receiver’s	app	can	send	a
broadcast	to	this	receiver.

Standard	Broadcasts
Chapter	2	of	this	minibook	contains	a	list	of	some	standard	actions

for	starting	activities.	Android’s	SDK	also	contains	standard	actions	for
sending	broadcasts.	Table	4-1	has	a	list	of	some	actions	that	your	app	can
broadcast.

The	actions	in	Table	4-1	are	both	libre	and	gratis.	Or,	to	paraphrase
Richard	Stallman,	the	actions	are	free	as	in	“free	speech”	and	free	as	in
“free	beer.”*	Whatever	metaphor	you	prefer,	you	can	broadcast	or	receive
intents	with	the	actions	in	Table	4-1.

*	From	“The	Free	Software	Definition,”

www.gnu.org/philosophy/free-sw.html.
	

The	actions	in	Table	4-2	resemble	beer	more	than	they	resemble
speech.	In	your	app’s	code,	a	broadcast	receiver’s	filter	can	include	these
actions.	But	your	app	can’t	broadcast	an	intent	having	any	of	these
actions.	Only	the	operating	system	can	broadcast	intents	that	include	the
actions	in	Table	4-2.

http://www.gnu.org/philosophy/free-sw.html

	As	an	Android	developer,	you	can	test	the	effect	of
broadcasting	any	of	the	actions	in	Table	4-2.	To	do	so,	you	become
superuser	on	the	Android	shell	and	issue	an	am	command.	(In	Linux,
a	superuser	has	administrative	privileges.	A	consumer	becomes
superuser	when	he	or	she	roots	a	device.)	For	an	example	of	the	use
of	the	am	command,	see	Chapter	3	of	this	minibook.

	For	a	complete	list	of	Android’s	standard	actions,	visit
http://developer.

android.com/reference/android/content/Intent.html.

http://developer.android.com/reference/android/content/Intent.html

Chapter	5:	Content	Providers

In	This	Chapter
A	primer	on	databases
Database	processing	in	Android

Sharing	data	using	a	content	provider
	

In	his	introduction	to	Napalm	&	Silly	Putty	(Hyperion	Books),
George	Carlin	wrote,	“For	the	next	few	hundred	pages,	I	will	be	your
content	provider.”	Carlin	was	poking	fun	at	business-speak	phrases	and
other	phrases	that	seem	artificially	lofty	or	commercially	sanitized.	Little
did	he	know	that	a	few	years	later,	the	introduction	to	his	book	would
compare	him	to	an	Android	SDK	component.

Databases:	From	the	Stone	Age	to	the	Present
Day

A	database	is	a	place	to	store	lots	of	data.	Nobody’s	surprised	about
that.	A	database	management	system	is	a	bunch	of	software	for	creating
the	data,	finding	the	data,	and	doing	other	useful	things	with	the	data.

Until	the	mid-1970s,	people	didn’t	agree	on	the	best	structure	for
storing	data	in	a	database.	Some	argued	for	hierarchical	structures,
whereas	others	swore	that	networked	structures	were	the	only	way	to	go.
But	in	the	1970s,	Edgar	Codd	(working	at	IBM)	published	papers	on
relational	structures	for	storing	data.	Since	the	mid-1980s,	the	relational
database	has	been	the	all-around	favorite.

A	relational	database	is	of	a	bunch	of	tables.	Like	a	table	in	this
book,	a	database	table	has	rows	and	columns.	Each	row	represents	an
instance	(a	customer,	an	employee,	an	appointment,	or	whatever),	and
each	column	represents	a	property	of	some	kind	(such	as	the	customer’s
name,	the	employee’s	salary,	or	the	appointment’s	time).	Table	5-1	is	a

table	in	this	book,	but	it	might	as	well	be	a	table	in	a	relational	database.

A	Java	programmer	might	compare	a	database	table	to	a	Java	class.
Each	instance	is	a	row,	and	each	public	field	is	column.	In	fact,	this
similarity	between	tables	and	classes	has	been	apparent	to	people	for
quite	a	while.	Many	software	frameworks	specialize	in	object-relational
mapping	(ORM),	in	which	the	software	automatically	manages	the
correspondence	between	Java	objects	and	relational	database	tables.

A	database	management	system	(DBMS)	stores	database	data	and
provides	access	to	the	data	for	administrators	and	users.	A	database
administrator	(DBA)	is	a	person	who	keeps	the	DBMS	software	running.
A	user	is	a	person	who	gets	information	from	the	database	and	(with	the
right	privileges)	modifies	values	stored	in	the	database.	A	user	might
directly	or	indirectly	add	rows	to	a	table,	but	a	user	doesn’t	add	columns
to	a	table	or	change	a	table’s	structure	in	any	way.

A	database	management	system	uses	sophisticated	data	structures
and	algorithms	to	efficiently	store	and	retrieve	data.	So	the	data	in	a
database	seldom	lives	in	a	flat	file.

	A	flat	file	is	an	ordinary	bunch	of	data	on	a	hard	drive,	with
no	special	pointers	or	indices	to	important	places	inside	the	file.
Database	management	systems	offer	the	option	to	store	data	in	flat
files,	but	only	as	a	necessary	evil	for	quick-and-dirty	data	storage.
With	database	tables	in	a	flat	file,	the	DBMS	has	to	chug	slowly	and
inefficiently	through	the	file	for	any	data	that	you	need.
Database	management	systems	come	from	many	different	vendors,

with	many	different	price	ranges	and	many	different	feature	sets.	The	big
commercial	players	are	IBM	(with	its	DB2	software),	Microsoft	(with	its
Access	and	SQL	Server	products),	and	Oracle	(with	its	aptly	named
Oracle	Database).	Some	popular	noncommercial	products	include

MySQL	(owned	by	Oracle),	PostgreSQL,	and	SQLite.	Each	Android
device	comes	with	SQLite	software.

In	general,	you	communicate	with	a	database	in	the	following	way:
•	You	connect	to	the	database	(whatever	that	means).

	
•	You	query	the	database,	asking	for	rows	and	columns	matching	criteria
that	you	specify.

	
In	response,	the	database	management	system	hands	you	a	cursor.	A
cursor	is	a	minitable;	it’s	a	table	of	the	rows	and	columns	that	match	your
query.	The	database	management	system	distills	the	information	in	the
database	in	order	to	deliver	the	cursor	to	you.

	
Like	a	regular	database	table,	a	cursor	consists	of	rows	and	columns.	At
any	point	in	time,	the	cursor	points	to	one	of	the	rows	in	the	table	(or	to
the	never-never	land	after	the	table’s	last	row).

	
•	You	step	from	row	to	row	with	the	cursor,	doing	whatever	you	need	to
do	with	each	row	of	data.

	
•	Finally	(and	not	unimportantly),	you	close	the	connection	to	the
database.

	
Depending	on	your	permissions,	you	can	also	create	a	table,	modify

the	values	in	rows	of	the	table,	insert	rows	into	the	table,	and	do	other
things.	The	four	major	table	operations	go	by	the	name	CRUD,	which
stands	for	Create,	Read,	Update,	and	Delete.

The	most	common	way	of	issuing	commands	to	a	DBMS	is	with
SQL	—	the	Structured	Query	Language.	(Depending	on	your	mood,	you
can	pronounce	the	SQL	acronym	ess-kyoo-el	or	sequel.)	An	SQL
statement	looks	something	like	this:
SELECT	*	FROM	CUSTOMER_TABLE	WHERE	COMMENT=’Deadbeat’;

Each	database	management	system	has	its	own	dialect	of	SQL,	so
the	only	way	to	study	SQL	in	detail	is	to	work	exclusively	with	one
DBMS.	With	Android’s	SDK,	you	can	add	strings	containing	SQL
commands	to	your	code.	But	you	can	also	call	methods	that	compose

SQL	commands	on	your	behalf.

	For	the	rules	governing	SQLite’s	use	of	SQL,	visit
http://sqlite.org/lang.html.

Working	with	a	Database
With	Android’s	SDK,	an	app	has	two	ways	to	access	a	database:

•	An	app	can	access	its	own	database	directly	with	commands	to	SQLite.
(See	Figure	5-1.)

	
	

Figure	5-1:	An	app	accesses	its	own	database.

http://sqlite.org/lang.html

•	An	app	can	access	another	app’s	database	indirectly	with	commands	to
the	other	app’s	content	provider.	(See	Figure	5-2.)

	
	

Figure	5-2:	An	app	accesses	another	app’s	database.

A	content	provider	is	one	of	Android’s	four	big	component	types.
(The	four	types	are	activities,	services,	broadcast	receivers,	and	content
providers.)

In	the	interest	of	full	disclosure,	I	must	write	that	content	providers
don’t	work	exclusively	with	databases.	A	content	provider	is	a	bridge
between	an	app’s	code	and	another	app’s	data.	The	other	app’s	data
doesn’t	have	to	be	part	of	a	database.	But	the	content	provider’s	publicly
exposed	methods	look	like	database	calls.	So	to	anyone	living	outside	the
provider’s	app,	the	provider’s	data	looks	like	database	data.	(See	Figure
5-3.)	The	provider	creates	an	abstract	database-like	view	of	whatever	data
lives	underneath	it.

	

Figure	5-3:	An	app	accesses	another	app’s	data.

The	rest	of	this	chapter	consists	of	three	examples.	The	first	example
demonstrates	an	app	creating	its	own	SQLite	database	and	making	calls
directly	to	that	database.	In	the	second	example,	an	app	exposes	data
using	a	content	provider,	and	another	app	accesses	the	first	app’s	data
through	the	provider.	(The	third	example	illustrates	some	newer	Android
API	features.)

As	you	compare	the	first	and	second	examples,	you’ll	notice	some
striking	similarities.	The	second	example	is	very	much	like	the	first.	To
get	the	second	example,	I	(figuratively)	tear	the	first	example	in	half,
giving	half	of	the	first	example’s	code	to	the	new	content	provider	and
giving	the	other	half	of	the	first	example’s	code	to	a	brand-new	app.

Coding	for	SQLite	using	Android’s	SDK
Listing	5-1	contains	code	to	access	an	SQLite	database.	When	the

activity	begins	running,	the	code	inserts	data,	then	modifies	the	data,	and
then	deletes	the	data.	To	keep	things	simple,	I	intentionally	omit	much	of
the	fail-safe	checking	that	database	code	normally	has.	I	also	have	a	dirt-
simple	user	interface.	The	activity’s	screen	has	only	one	widget	—	a	text

view	for	displaying	data	at	various	stages	of	processing.

Headaches	involving	concurrency
	Any	computing	device	worth	its	salt	runs	several	processes

simultaneously.	In	other	words,	the	processes	are	concurrent.
Concurrency	is	great	for	taking	full	advantage	of	device’s
resources,	but	if	two	or	more	processes	write	to	a	database	at	the
same	time,	nasty	things	can	happen.	For	example,	I	might	discover
that	Table	5-1	has	three	rows	and	decide	to	add	a	fourth	row.	In
the	meantime,	you	might	discover	the	same	thing	and	issue	your
own	command	to	add	a	fourth	row.	In	the	end,	the	table	has	only
one	additional	row,	and	the	row	contains	a	mix	of	your	data	and
my	data.	Ouch!
To	combat	the	two-process-writing	problem,	database
management	systems	have	locks.	A	lock	enforces	read-only	status
for	all	but	one	process	at	a	time.	So	two	processes	can’t	perform
write	operations	at	the	same	time.	The	trick	for	the	database
management	system	(and	sometimes	for	the	developer)	is	to
choose	options	that	maintain	the	data’s	integrity	while	locking	the
smallest	chunk	of	data	for	the	smallest	amount	of	time.	Long-
lived,	widely	applied	locks	tend	to	slow	down	the	system.
Another	possible	pitfall	with	database	handling	is	the	danger	of
incomplete	write	operations.	Imagine	that	my	rich	uncle	calls	the
company	to	pay	my	bill	in	Table	5-1.	A	representative	keys	in	the
new	information	for	account	number	002	—	my	rich	uncle’s
name;	the	new	0.00	balance;	and	the	Valued,	long-time	customer
comment.	The	DBMS	changes	the	name	and	the	new	balance,	but
the	network	connection	fails	before	the	DBMS	receives	the
request	to	change	the	comment.	Then	account	number	002	has
values	Rich	Burd,	0.00,	Deadbeat.	You	may	not	think	much	of
my	uncle,	but	he’s	certainly	not	a	deadbeat!
To	fight	against	incomplete	write	operations,	database
management	systems	perform	transactions.	A	transaction	is	a
collection	of	operations	to	be	performed	in	all-or-nothing	fashion.
“Either	do	them	all,	or	do	none	of	them,”	says	the	DBMS.	The
collection	of	operations	in	a	transaction	is	atomic;	the	collection	of
operations	cannot	be	subdivided.

As	you	might	guess,	enforcing	atomicity	isn’t	easy.	How	does	a
DBMS	ensure	all-or-nothing	writing	when	some	heinous	network
error	gums	up	the	whole	system?
Fortunately,	the	mechanisms	used	to	enforce	atomicity	aren’t	your
problem	if	you	are	a	database	user.	If	your	app	requires	atomicity
(and	if	the	database	management	system	doesn’t	automatically
enforce	atomicity),	you	simply	write	a	sequence	of	regular
database	commands.	At	the	end	of	an	all-or-nothing	sequence,	you
issue	a	special	commit	command	or	a	special	rollback	command.
A	commit	command	says,	“Cast	all	the	changes	in	this	sequence	of
operations	stone,”	and	a	rollback	command	says,	“Discard	all	the
changes	in	this	sequence.”	The	database	management	system
implements	the	special	commit	and	rollback	commands	cleanly
and	reliably.
(In	case	you’re	wondering,	these	commit	and	rollback	commands
normally	belong	in	alternative	branches	within	your	code.	You
don’t	just	issue	a	bunch	of	commands	and	then	roll	them	back	for
the	fun	of	it.)

	

Listing	5-1:	Sending	Commands	to	a
Database
package	com.allmycode.db1;

	

import	android.app.Activity;

import	android.content.ContentValues;

import	android.database.Cursor;

import	android.database.sqlite.SQLiteDatabase;

import	android.os.Bundle;

import	android.widget.TextView;

	

public	class	MyActivity	extends	Activity	{

	

		TextView	textView;

		Cursor	cursor	=	null;

		DBHelper	helper	=	null;

		SQLiteDatabase	db	=	null;

		ContentValues	values	=	null;

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

	

				textView	=	(TextView)	findViewById(R.id.textView1);

	

				helper	=	new	DBHelper(this,	“simple_db”,	null,	1);

				db	=	helper.getWritableDatabase();

				values	=	new	ContentValues();

	

				values.put(“name”,	“Barry”);

				values.put(“amount”,	“100”);

				db.insert(“simpletable”,	“”,	values);

				values.clear();

				values.put(“name”,	“Harriet”);

				values.put(“amount”,	“300”);

				db.insert(“simpletable”,	“”,	values);

	

				addToTextView();

	

				values.clear();

				values.put(“amount”,	“500”);

				db.update(“simpletable”,	values,	“name=’Barry’”,	null);

	

				addToTextView();

	

				db.delete(“simpletable”,	“1”,	null);

	

				addToTextView();

		}

		@Override

		public	void	onDestroy()	{

				super.onDestroy();

				helper.close();

		}

	

		void	addToTextView()	{

				cursor	=

								db.rawQuery(“SELECT	*	FROM	simpletable;”,	null);

	

				if	(cursor	!=	null	&&	cursor.moveToFirst())	{

	

						String	name;

						do	{

								String	_id	=	cursor.getString(0);

								name	=	cursor.getString(1);

								int	amount	=	cursor.getInt(2);

								textView.append(_id	+	“	“	+	name	+	“	“	+	amount

												+	“\n”);

						}	while	(cursor.moveToNext());

				}

				textView.append(“-----------\n”);

		}

}

The	first	new	and	exciting	statement	in	Listing	5-1	is	the	call	to	a
DBHelper	constructor.	My	DBHelper	class	(to	be	unveiled	in	Listing	5-2)
extends	the	abstract	android.database.sqlite.SQLiteOpenHelper
class.	The	purpose	of	such	a	class	is	to	manage	the	creation	and
modification	of	an	SQLite	database.	In	particular,	the	code	in	Listing	5-1
uses	the	helper	to	grab	hold	of	an	actual	database.

Details	about	the	friendly	helper	class
Listing	5-2	contains	my	DBHelper	code.

Listing	5-2:	A	Subclass	of	the
SQLiteOpenHelper	Class
package	com.allmycode.db1;

	

import	android.content.Context;

import	android.database.sqlite.SQLiteDatabase;

import	android.database.sqlite.SQLiteOpenHelper;

	

public	class	DBHelper	extends	SQLiteOpenHelper	{

	

		public	DBHelper(Context	context,	String	dbName,

						SQLiteDatabase.CursorFactory	factory,	int	version)	{

				super(context,	dbName,	factory,	version);

		}

	

		@Override

		public	void	onCreate(SQLiteDatabase	db)	{

				String	createString	=

								“CREATE	TABLE	IF	NOT	EXISTS	simpletable	“

												+	“(_id	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	“

												+	“name	TEXT	NOT	NULL,	“

												+	“amount	INTEGER	NOT	NULL);”;

				db.execSQL(createString);

		}

	

		@Override

		public	void	onUpgrade(SQLiteDatabase	db,

						int	oldVersion,	int	newVersion)	{

				String	dropString	=

								“DROP	TABLE	IF	EXISTS	simpletable;”;

				db.execSQL(dropString);

				onCreate(db);

		}

}

In	Listing	5-2,	I	implement	the	parent	class’s	abstract	methods	(as	I
must).	I	also	create	a	constructor	that	takes	the	lazy	way	out,	passing	all
its	parameters	to	the	parent	constructor.

The	most	important	part	of	Listing	5-2	is	the	onCreate	method.	You
never	call	this	method	directly.	Instead,	Android	calls	the	method	on	your
behalf	when	you	set	up	a	helper	the	way	I	do	in	Listing	5-1.

	Android	delays	the	call	to	the	helper’s	onCreate	method
until	your	code	actually	uses	the	database.	That	bodes	well	for	your
app’s	performance.
Android	hands	the	onCreate	method	an	SQLite	database	(a	database

belonging	to	the	app	in	which	the	helper	is	located).	That	SQLite
database	(called	db	in	the	onCreate	method’s	parameter	list)	has	an
execSQL	method.	Listing	5-2	calls	the	database’s	execSQL	method,
feeding	the	method	an	ordinary	Java	string.	Luckily	for	me,	this	ordinary
Java	string	happens	to	be	an	SQL	command.

In	Listing	5-2’s	onCreate	method,	lots	of	good	things	happen

without	much	fanfare.	If	the	database	doesn’t	already	exist,	Android
creates	one.	If	the	database	doesn’t	already	have	a	table	named
simpletable,	SQLite	creates	one.	If	the	database	already	exists	and	has	a
simpletable,	the	onCreate	method	doesn’t	rock	the	boat.

	Databases	normally	live	on	after	the	hosting	process
terminates.	If	you	run	this	example’s	code	in	March	and	then	turn
off	your	device	for	three	months,	the	database	still	exists	(along	with
any	data	that	you	added	in	March)	when	you	turn	on	the	device
again	in	June.

	I	don’t	cover	SQL	commands	in	this	book.	I’d	go	crazy
trying	to	cover	them	all.	But	fortunately,	other	authors	have	covered
SQL	without	going	crazy.	So	to	read	all	about	SQL	commands,	buy
either	the	standard	SQL	For	Dummies	or	the	supersize	version	SQL
All-in-One	For	Dummies,	both	by	Allen	G.	Taylor	(John	Wiley	&
Sons,	Inc.).
SQL	is	more	readable	than	some	other	languages,	so	with	or	without

a	thorough	introduction,	you	can	probably	make	sense	of	most	of	the
SQL	commands	in	this	book.	The	SQL	command	midway	through
Listing	5-2,	for	example,	says	the	following:
If	the	database	doesn’t	have	a	table	named	simpletable,

		create	simpletable	with	three	columns,	called

		_id,	name,	and	amount.

				The	_id	column	stores	an	integer	value,

								which	serves	to	identify	its	row,

								and	is	incremented	by	1	for	each	newly	added	row,

				The	name	column	stores	a	string	value

								which	cannot	be	null,	and

				The	amount	column	stores	an	integer	value

								which	cannot	be	null.

	Android’s	SDK	wants	you	to	use	the	name	_id	for	a	table’s
auto-incremented	primary	key.	I	haven’t	experimented	with	other
column	names,	but	from	what	I’ve	read,	something	will	break	if	I	try
it.

	An	SQLiteOpenHelper’s	onUpgrade	method	deals	with	new
versions	of	the	database.	For	example,	when	I	modify	the	database
in	Listing	5-2	so	that	each	row	has	an	additional	column	(a	comment
column,	perhaps),	I’m	changing	the	table’s	structure.	A	change	of
this	kind	requires	me	to	obliterate	the	existing	table	(that	is,	to	drop
the	table)	and	to	create	another	table	as	if	from	scratch.	In	a	helper’s
onUpgrade	method,	you	manage	this	(admittedly	delicate)	procedure.

Details	about	the	mainstream	SQLite	code
In	Listing	5-1,	after	the	call	to	getWritableDatabase,	the	code

performs	some	fairly	commonplace	operations	—	namely,	inserting,
updating,	deleting,	and	querying.

Inserting
Each	call	to	db.insert	adds	a	row	of	values	to	the	simpletable.

Each	value	is	actually	a	name/value	pair,	the	name	being	a	database
column	name	and	the	value	being	something	to	stuff	into	that	column.

	The	put	method	belonging	to	the	ContentValues	class	takes
two	String	parameters.	In	the	call	values.put(“amount”,	“100”),
the	first	parameter	is	a	column	name.	The	second	parameter	is	the
value	to	be	placed	into	that	column	in	the	current	row.	Notice	that

the	second	parameter	“100”	is	a	Java	String	even	though	the
database’s	amount	column	stores	an	integer.	That’s	just	the	way	it
works.	Oh,	and	while	you’re	remembering	things,	don’t	forget	to
call	values.clear()	between	using	one	set	of	values	and
assembling	another.

	In	Listing	5-1,	the	insert	method	takes	three	parameters	—
a	table	name,	a	null	column	hack,	and	a	set	of	values	constituting	the
newly	created	row.	The	null	column	hack	is	a	value	that	you	add	to
deal	with	the	possibility	of	a	completely	empty	insert.	SQLite
behaves	badly	if	you	try	to	insert	a	row	containing	no	data.
As	a	result	of	the	calls	to	insert	in	Listing	5-1,	the	activity’s	screen

contains	the	first	two	lines	in	the	text	view	of	Figure	5-4.

	

Figure	5-4:	Running	the	code	in	Listing	5-1.

Updating
In	Listing	5-1,	the	call	to	db.update	takes	four	parameters.	The	first

two	parameters	—	a	table	name	and	a	set	of	values	—	are	old	hat.	The
update	method’s	third	parameter	is	part	of	an	SQL	WHERE	clause.	A	WHERE
clause	tells	SQLite	which	rows	should	be	chosen	for	processing.	For
example,	the	WHERE	clause	in	the	“Databases:	From	the	Stone	Age	to	the
Present	Day”	section	tells	SQLite	to	select	only	those	rows	whose

Comment	column	contains	the	value	Deadbeat.
For	the	third	parameter	in	an	update	method	call,	you	supply	a

string	containing	the	entire	WHERE	clause,	but	you	omit	the	word	WHERE.
So	in	Listing	5-1,	the	update	method	call	generates	an	SQL	statement
containing	WHERE	name	=	‘Barry’.	At	this	point	in	the	game,	it’s	easy	to
become	confused	with	nested	single	quotes	and	double	quotes.	The	SQL
command	rules	require	a	value	such	as	‘Barry’	to	be	quoted,	and	a	Java
string	must	be	double-quoted.	If	things	become	more	complicated,	you
have	to	use	escape	sequences	and	other	tricks.

	In	Listing	5-1,	the	update	method’s	last	parameter	is	a	set	of
WHERE	arguments	—	values	to	plug	into	the	holes	in	your	WHERE
clause.	For	example,	you	can	gain	some	flexibility	(and	in	some
cases,	slightly	better	performance)	by	substituting	the	following	two
statements	for	the	update	call	in	Listing	5-1:

String[]	whereArgs	=	{“Barry”};

db.update(“simpletable”,	values,	“name=?”,	whereArgs);

Deleting
The	delete	method	call	in	Listing	5-1	takes	three	parameters	—	a

table	name,	a	WHERE	clause,	and	a	set	of	WHERE	arguments.	The	WHERE
clause	is	normally	something	like	“name=’Barry’”.	(Get	rid	of	that
deadbeat!)	But	in	Listing	5-1,	the	WHERE	clause	is	“1”	—	the	SQL	code
for	everything.	In	Listing	5-1,	the	delete	method	removes	every	row	in
the	database	table.

Querying
After	each	change	to	the	database,	the	code	in	Listing	5-1	adds	text

to	the	activity’s	text	view.	To	do	this,	the	code	executes	a	query.	The
database’s	rawQuery	method	takes	two	parameters	—	an	SQL	command
string	and	a	(possibly	null)	set	of	WHERE	arguments.

In	Listing	5-1,	the	call	to	rawQuery	returns	a	cursor.	The
cursor.moveTo	First	call	returns	true	as	long	as	the	attempt	to	reach
the	cursor	table’s	first	row	is	successful.	(Failure	typically	means	that	the

table	has	no	rows.)

	For	an	introduction	to	database	cursors,	see	the	“Databases:
From	the	Stone	Age	to	the	Present	Day”	section,	earlier	in	this
chapter.
From	that	point	on,	the	code	in	Listing	5-1	loops	from	row	to	row,

moving	the	cursor	to	the	next	table	row	each	time	through	the	loop.	The
cursor.moveToNext	call	returns	false	when	there’s	no	next	row	to	move
to.

Every	time	through	the	loop,	the	code	uses	the	cursor	to	get	the
values	in	each	of	the	table’s	three	columns.	The	columns’	indices	start	at
0	and	increase	in	the	order	in	which	I	declare	the	columns	in	Listing	5-2.
Notice	how	I	call	get	methods	particular	to	the	types	of	data	in	the
database.	Nothing	good	can	happen	if,	for	one	column	or	another,	I	use	a
get	method	with	the	wrong	type.

As	the	code	in	Listing	5-1	takes	its	last	breath,	the	activity’s
onDestroy	method	closes	the	helper	instance.	Doing	so	shuts	down	the
entire	database	connection	and	frees	up	resources	for	use	by	other	apps.
As	is	the	case	with	all	onDestroy	methods,	you	should	eschew	my	overly
simple	code.	Before	calling	the	helper’s	close	method,	make	sure	that	the
helper	isn’t	null.	Also	include	code	to	handle	the	possibility	that	the
Android	is	temporarily	destroying	(and	later	re-creating)	the	activity.	For
some	help	with	that,	see	Chapter	3	of	this	minibook.

How	to	find	out	what’s	really	going	on
	SQLite	expects	each	SQL	command	to	end	with	a	semicolon.	So,

for	example,	near	the	end	of	the	onCreate	method	in	Listing	5-2,	a
line	contains	two	semicolons	—	one	to	end	the	SQL	command	and
another	to	end	the	Java	statement.	Android’s	methods	let	you	omit
an	SQL	command’s	ending	semicolon.	So	the	line	in	Listing	5-2
works	just	as	well	if	you	write	“amount	INTEGER	NOT	NULL)”;
with	only	one	semicolon.	But	I	like	to	include	the	extra	semicolon.
That	way,	I	remember	SQLite’s	punctuation	rules	when	I’m	not
composing	Java	code.

And	when	do	I	write	SQL	commands	without	Java	code?	I’m	glad
you	asked!	Imagine	that	I’m	testing	some	of	this	section’s	code.
I’m	using	an	emulator	or	a	real,	Android-powered	device	attached
to	my	development	computer.	Before	installing	this	section’s	code,
I	comment	out	the	delete	method	call	in	Listing	5-1.	(That	way,
the	database	has	two	rows	when	the	code	finishes	its	run.)
The	figure	nearby	shows	a	session	in	my	development	computer’s
command	window.

I	invoke	Android’s	adb	command	with	the	shell	option.
This	deposits	me	into	the	emulator’s	Linux	command	interface.

On	the	emulator,	the	prompt	is	the	pound	sign	(#).
I	issue	the	Linux	cd	command	four	times.

As	a	result,	my	working	directory	is
datadata/com.allmycode.db1/databases.	Notice	that	my
humble	little	app	has	a	directory	for	its	own	databases.

The	Linux	ls	command	lists	files	in	my	working
directory.
The	directory	contains	a	file	that	stores	the	simple_db	database

(the	database	created	by	the	code	in	Listing	5-1).
I	invoke	the	sqlite3	executable	a	program	to	help	me

explore	and	modify	an	SQLite	database.
The	sqlite3	program	displays	the	sqlite>	prompt.	My	next

several	commands	are	specific	to	the	simple_db	database.
Commands	that	start	with	a	dot	are	instructions	to	the	sqlite3
program.	(These	may	include	instructions	such	as	.help,	.log	and
.exit.)
Commands	that	don’t	start	with	a	dot	are	actual	SQL

commands.	These	SQL	commands	read	and	update	the	simple_db
database.

Two	times	during	the	session,	I	type	the	SELECT	*	FROM
simpletable;	SQL	command.
When	I	issue	this	command,	I	see	exactly	what’s	in	the

simple_db	database.	I	can	use	this	information	to	help	me	debug
my	Java	code.	(Not	that	my	Java	code	ever	needs	debugging	.	.	.)

In	the	nearby	figure,	when	I	type	an	SQL	INSERT
command,	I	forget	to	end	the	command	with	a	semicolon.

As	a	result,	the	sqlite3	program	prompts	me	with	...>.	To
complete	the	command,	I	type	the	required	semicolon	and	press
Enter.	(Is	it	time	for	me	to	say,	“I	told	you	so?”)

I	type	.exit	to	terminate	the	sqlite3	program	and	then
type	exit	to	end	the	emulator’s	shell	session.
All	things	considered,	it’s	a	very	enlightening	session.
Communicating	directly	with	the	database	management	system
can	be	extremely	helpful.

	

Creating	and	Using	a	Content	Provider
A	content	provider	is	a	gateway	to	an	app’s	data.	Other	apps

approach	the	gateway	as	if	it’s	a	database.	But	under	the	hood,	the	data
can	take	many	different	forms.

This	section’s	example	involves	two	apps	—	an	app	with	a	content
provider	and	a	separate	client	app.	(Refer	to	Figures	5-2	and	5-3.)	The
client	app’s	code	looks	very	much	like	the	code	in	Listing	5-1.

This	section’s	client	code	is	in	Listing	5-3.	(The	result	of	executing
the	code	is	in	Figure	5-5.)

Listing	5-3:	Getting	Data	from	a	Content
Provider
package	a.b.c;

	

import	android.app.Activity;

import	android.content.ContentResolver;

import	android.content.ContentValues;

import	android.database.Cursor;

import	android.net.Uri;

import	android.os.Bundle;

import	android.widget.TextView;

	

public	class	ClientActivity	extends	Activity	{

		TextView	textView;

		Cursor	cursor	=	null;

		ContentValues	values	=	null;

		ContentResolver	resolver	=	null;

	

		public	static	final	Uri	CONTENT_URI	=	Uri

						.parse(“content://com.allmycode.db/names_amounts”);

	

		public	static	final	Uri	SILLY_URI	=	Uri

						.parse(“content://com.allmycode.db/silly_stuff”);

	

		@Override

		public	void	onCreate(Bundle	b)	{

				super.onCreate(b);

				setContentView(R.layout.main);

	

				textView	=	(TextView)	findViewById(R.id.textView1);

	

				values	=	new	ContentValues();

				resolver	=	getContentResolver();

	

				values.put(“name”,	“Sam”);

				values.put(“amount”,	“100”);

				resolver.insert(CONTENT_URI,	values);

				values.clear();

				values.put(“name”,	“Jennie”);

				values.put(“amount”,	“300”);

				resolver.insert(CONTENT_URI,	values);

	

				addToTextView(CONTENT_URI);

	

				values.clear();

				values.put(“amount”,	“500”);

				resolver.update(CONTENT_URI,	values,

								“name=’Sam’”,	null);

				addToTextView(CONTENT_URI);

	

				resolver.delete(CONTENT_URI,	“1”,	null);

	

				addToTextView(CONTENT_URI);

	

				addToTextView(SILLY_URI);

		}

	

		void	addToTextView(Uri	uri)	{

				cursor	=	resolver.query(uri,	null,	“1”,	null,	null);

				startManagingCursor(cursor);

	

				if	(cursor	!=	null	&&	cursor.moveToFirst())	{

	

						String	name;

						do	{

								String	_id	=	cursor.getString(0);

								name	=	cursor.getString(1);

								int	amount	=	cursor.getInt(2);

								textView.append(_id	+	“	“	+	name	+	“	“	+	amount

												+	“\n”);

						}	while	(cursor.moveToNext());

				}

				textView.append(“-----------\n”);

		}

}

	

Figure	5-5:	A	run	of	the	code	in	Listing	5-3.

Many	of	the	differences	between	Listings	5-1	and	5-3	are	cosmetic.
The	big	noncosmetic	difference	is	the	use	of	a	content	resolver	instead	of
a	helper	and	a	database.	In	Listing	5-3,	the	client	app	has	no	direct
communication	with	the	provider’s	database.	Instead,	the	client	app	talks
to	the	database	through	a	content	resolver.

Each	content	resolver	method	takes	a	URI	—	a	reference	to	some
data	offered	by	a	content	provider.	Here’s	what	happens	when	your	code
calls	a	content	resolver	method:
•	Android	examines	the	URI’s	scheme	and	finds	the	content:	scheme.

	
The	content:	scheme	tells	Android	to	look	for	a	matching	content
provider.

	
•	Android	compares	the	URI’s	authority	with	the	authorities	in	the
intent	filters	of	available	content	providers.	(See	Figure	5-6.)

	
A	content	provider	must	declare	one	or	more	authorities	in	its	app’s
AndroidManifest.xml	document.	Listing	5-4	has	the
AndroidManifest.xml	document	for	this	section’s	example.	Notice	that
in	this	example,	the	app	containing	the	content	provider	has	no	activity.
The	app	has	no	direct	interface	to	the	user.

	

Listing	5-4:	A	Content	Provider’s	XML
Element
<?xml	version=”1.0”	encoding=”utf-8”?>

<manifest	xmlns:android=

								“http://schemas.android.com/apk/res/android”

				package=”com.allmycode.db”	android:versionCode=”1”

				android:versionName=”1.0”>

				<uses-sdk	android:minSdkVersion=”10”	/>

	

				<application	android:icon=”@drawable/icon”

								android:label=”@string/app_name”>

	

								<provider	android:name=”.MyContentProvider”

												android:authorities=”com.allmycode.db”>

								</provider>

								

				</application>

</manifest>

If	an	android:authorities	attribute	contains	more	than	one	authority,
you	separate	authorities	from	one	another	using	semicolons:

	
android:authorities=”this.is.one;this.is.another”
So	far,	so	good.	Here’s	what	happens	when	Android	finds	a	matching
content	provider:

	
•	Android	hands	the	client’s	database-like	call	(URI	and	all)	to	the
matching	content	provider.

	
After	Android	hands	the	call	to	a	content	provider,	the	ball	is	in	the
content	provider’s	court.

	
•	The	content	provider	parses	the	URI’s	path	to	further	refine	the
client	app’s	request.

	
•	The	content	provider	uses	its	own	app’s	data	to	fulfill	the	client
app’s	request.

	

	

Figure	5-6:	Android	matches	an	authority	with	a	content	provider’s	filter.

Listing	5-3	has	another	special	feature.	The
startManagingCursor(cursor)	call	tells	the	activity	to	automatically
deactivate	the	cursor	when	the	activity	stops	and	to	automatically	query
the	cursor	when	the	activity	starts	again.	This	handy	method	call
eliminates	the	need	for	elaborate	housekeeping	in	the	activity’s	lifecycle
methods.

	In	Listing	5-1,	I	make	a	meager	attempt	to	be	tidy	by	closing
the	helper	in	the	activity’s	onDestroy	method.	But	in	practice,
manually	closing	and	reopening	database	resources	can	be	much
more	complicated.	That’s	why	methods	like	startManagingCursor

are	so	handy.

At	last!	A	content	provider!
Listing	5-5	contains	a	content	provider	for	this	section’s	ongoing

example.

Listing	5-5:	Look;	It’s	a	Content	Provider
package	com.allmycode.db;

	

import	android.content.ContentProvider;

import	android.content.ContentUris;

import	android.content.ContentValues;

import	android.content.UriMatcher;

import	android.database.Cursor;

import	android.database.MatrixCursor;

import	android.database.sqlite.SQLiteDatabase;

import	android.net.Uri;

	

public	class	MyContentProvider	extends	ContentProvider	{

		public	static	final	Uri	CONTENT_URI	=	Uri

						.parse(“content://com.allmycode.db/names_amounts”);

		public	static	final	Uri	SILLY_URI	=	Uri

						.parse(“content://com.allmycode.db/silly_stuff”);

	

		private	static	final	String	SIMPLE_DB	=	“simple_db”;

		private	static	final	String	SIMPLETABLE	=	“simpletable”;

	

		Cursor	cursor	=	null;

		DBHelper	helper	=	null;

		SQLiteDatabase	db	=	null;

		ContentValues	values	=	null;

		UriMatcher	uriMatcher	=	null;

		{

				uriMatcher	=	new	UriMatcher(UriMatcher.NO_MATCH);

				uriMatcher.addURI(“com.allmycode.db”,

																																	“names_amounts”,	1);

				uriMatcher.addURI(“com.allmycode.db”,

																																			“silly_stuff”,	2);

		}

	

		@Override

		public	boolean	onCreate()	{

				try	{

						helper	=

										new	DBHelper(getContext(),	SIMPLE_DB,	null,	1);

						db	=	helper.getWritableDatabase();

						values	=	new	ContentValues();

						return	true;

				}	catch	(Exception	e)	{

						return	false;

				}

		}

	

		@Override

		public	Uri	insert(Uri	ure,	ContentValues	values)	{

				long	id	=	db.insert(SIMPLETABLE,	“”,	values);

				return	ContentUris.withAppendedId(CONTENT_URI,	id);

		}

		@Override

		public	int	update(Uri	uri,	ContentValues	values,

						String	whereClause,	String[]	whereArgs)	{

	

				int	numOfChangedRows	=

								db.update(SIMPLETABLE,	values,	whereClause,

												whereArgs);

	

				return	numOfChangedRows;

		}

	

		@Override

		public	int	delete(Uri	uri,	String	whereClause,

						String[]	whereArgs)	{

				int	numOfChangedRows	=

								db.delete(SIMPLETABLE,	whereClause,	whereArgs);

				return	numOfChangedRows;

		}

	

		@Override

		public	Cursor	query(Uri	uri,	String[]	columns,

						String	whereClause,	String[]	whereArgs,

						String	sortOrder)	{

				Cursor	cursor	=	null;

				int	code	=	uriMatcher.match(uri);

				if	(code	==	1)	{

	

						cursor	=

										db.query(SIMPLETABLE,	columns,	whereClause,

														whereArgs,	null,	null,	sortOrder);

	

				}	else	if	(code	==	2)	{

						String[]	columnNames	=	{	“_id”,	“name”,	“amount”	};

						String[]	rowValues	=	{	“Table	“,	“4	“,	“2”	};

						MatrixCursor	matrixCursor	=

										new	MatrixCursor(columnNames);

						matrixCursor.addRow(rowValues);

						cursor	=	matrixCursor;

				}

				return	cursor;

		}

	

		@Override

		public	String	getType(Uri	uri)	{

				return	null;

		}

}

Listing	5-5	implements	the	six	abstract	methods	declared	in	the
android.content.ContentProvider	class.	The	implementation	code
bears	a	striking	resemblance	to	some	of	the	code	in	Listing	5-1.
•	Both	onCreate	methods	use	DBHelper	(which	extends	Android’s
SQLiteOpenHelper	class)	to	get	a	writable	database.

	
•	Both	listings	call	the	database’s	insert,	update,	and	delete	methods.

	
•	Both	listings	issue	a	query	to	the	database.

	
Actually,	Listing	5-1	uses	the	rawQuery	method	and	an	SQL	command
string.	In	contrast,	Listing	5-5	uses	the	query	method	with	a	bunch	of
parameters.	The	difference	has	nothing	to	do	with	content	providers.	It’s
just	my	whim	in	using	different	methods	to	illustrate	different	ways	of
issuing	a	query.

	
The	bottom	line	is	this:	A	content	provider	does	with	its	app’s	data

what	an	ordinary	activity	does	with	its	own	app’s	data.
Listing	5-5	has	some	features	that	I	choose	not	to	use	in	Listing	5-1.

For	example,	Android’s	update	and	delete	methods	return	int	values.	In
Listing	5-1,	I	simply	ignore	the	return	values.	But	in	Listing	5-5,	I	pass
each	method’s	return	value	back	to	the	client	code.	(Don’t	congratulate
me	on	my	diligence.	I	pass	on	each	value	because	the	content	provider’s
abstract	update	and	delete	methods	must	have	int	return	values.)

Listing	5-5	also	has	some	features	that	are	unique	to	content
providers.	For	example,	to	effectively	dish	out	data,	a	content	provider
must	manage	URIs.	Normally,	a	content	provider	examines	each
method’s	incoming	URI	and	uses	the	information	to	decide	on	its	next
move.	In	Listing	5-5,	I	keep	things	simple	with	only	a	minor	bit	of	URI
handling	in	the	query	method.

	Outside	the	Android	world,	the	use	of	URIs	to	connect	to
databases	is	commonplace.	For	example,	in	a	Java	JDBC	program,
you	may	connect	to	a	database	with	a	statement,	such	as
DriverManager.getConnection(“jdbc:

derby:AccountDatabase”).	In	this	statement’s	opaque	URI,	the
scheme	jdbc:	forwards	a	request	to	another	scheme	—	namely,	the
derby:	scheme.
In	Listing	5-5,	the	query	method	calls	on	a	UriMatcher	instance	to

distinguish	one	path	from	another.	As	it’s	defined	near	the	start	of	Listing
5-5,	the	UriMatcher	instance	returns	1	for	the	names_amounts	path	and
returns	2	for	the	silly_stuff	path.

A	return	value	of	1	makes	the	query	method	do	its	regular	old
database	query.	But	a	return	value	of	2	does	something	entirely	different.
To	show	that	I	can	do	it,	I	respond	to	a	URI’s	silly_stuff	path	without
consulting	a	real	database.	Instead,	I	use	arrays	to	concoct	something	that
looks	like	a	simpletable	row.	I	squish	the	arrays	into	a	MatrixCursor	(a
cursor	built	from	an	array	rather	than	a	database),	and	I	send	the	cursor
back	to	the	client.

The	insert	method	in	Listing	5-5	returns	a	URI.	What’s	that	all
about?	Each	row	associated	with	the	content:	scheme	has	its	own
individual	URI.	For	example,	in	a	run	of	this	section’s	code,	the	first	two
row	insertions	have	URIs
content://com.allmycode.db/names_amounts/1	and
content://com.allmycode.db/names_amounts/2.	The	android.
content.ContentUris	class’s	withAppendedId	method	fetches	the	URI
for	a	particular	database	row.	The	client	can	use	this	row-specific	URI	to
refer	to	one	database	row	at	a	time.

The	latest	and	greatest	cursor	code
With	the	arrival	of	Honeycomb	(Android	3.0),	managing	cursors	is	a

whole	new	ballgame.	In	particular,	the	startManagingCursor	method
from	Listing	5-3	is	deprecated.	As	horrible	as	it	sounds	for	something	to
be	“deprecated,”	you	can	still	run	the	code	from	Listing	5-3	on	devices

running	Honeycomb.	Deprecated	simply	means	“the	creators	of	Android
recommend	that	you	don’t	continue	to	use	this	method	because	they
might	not	continue	to	support	it	in	future	Android	releases.”	Fair	enough.

To	replace	things	like	managed	cursors,	Honeycomb	has	a
CursorLoader	class.	Like	a	teenager	off	to	college,	a	CursorLoader
instance	manages	itself	by	leaving	its	parent	thread,	going	out	on	its	own,
and	eventually	returning	with	the	desired	result.	And	like	any	real
teenager,	a	CursorLoader	instance,	with	all	its	asynchronous	behavior,
can	behave	in	strange	and	surprising	ways.

Anyway,	you	can	get	a	head	start	with	the	CursorLoader	class	by
looking	at	a	simple	example	of	its	use.	Listing	5-6	has	just	such	an
example.

Listing	5-6:	A	Simple	CursorLoader	Example
package	a.b.c;

	

import	android.app.Activity;

import	android.content.ContentResolver;

import	android.content.ContentValues;

import	android.content.CursorLoader;

import	android.content.Loader;

import	android.content.Loader.OnLoadCompleteListener;

import	android.database.Cursor;

import	android.net.Uri;

import	android.os.Bundle;

import	android.widget.TextView;

	

public	class	ClientActivity	extends	Activity	{

		TextView	textView;

		Cursor	cursor	=	null;

		ContentValues	values	=	null;

		ContentResolver	resolver	=	null;

	

		public	static	final	Uri	CONTENT_URI	=	Uri

						.parse(“content://com.allmycode.db/names_amounts”);

	

		@Override

		public	void	onCreate(Bundle	b)	{

				super.onCreate(b);

				setContentView(R.layout.main);

	

				textView	=	(TextView)	findViewById(R.id.textView1);

	

				values	=	new	ContentValues();

				resolver	=	getContentResolver();

	

				values.put(“name”,	“Sam”);

				values.put(“amount”,	“100”);

				resolver.insert(CONTENT_URI,	values);

				values.clear();

				values.put(“name”,	“Jennie”);

				values.put(“amount”,	“300”);

				resolver.insert(CONTENT_URI,	values);

	

				addToTextView(CONTENT_URI);

		}

	

		CursorLoader	loader	=	null;

	

		void	addToTextView(Uri	uri)	{

				loader	=

								new	CursorLoader(this,	uri,	null,	“1”,	null,	null);

				loader.registerListener(42,

								new	MyOnLoadCompleteListener());

				loader.startLoading();

				textView.append(“Here	it	comes...”);

		}

	

		class	MyOnLoadCompleteListener	implements

						OnLoadCompleteListener<Cursor>	{

	

				@Override

				public	void	onLoadComplete(Loader<Cursor>	loader,

								Cursor	cursor)	{

						if	(cursor	!=	null	&&	cursor.moveToFirst())	{

								String	name;

								do	{

										String	_id	=	cursor.getString(0);

										name	=	cursor.getString(1);

										int	amount	=	cursor.getInt(2);

										textView.append(_id	+	“	“	+	name	+	“	“	+	amount

														+	“\n”);

								}	while	(cursor.moveToNext());

						}

						textView.append(“-----------\n”);

				}

		}

}

The	result	of	running	the	code	in	Listing	5-6	is	shown	in	Figure	5-7.

	

Figure	5-7:	A	run	of	the	code	in	Listing	5-6.

Listing	5-6	simply	adds	two	rows	to	a	database	table	and	displays
the	results	in	the	activity’s	text	view.	The	call	to	the	CursorLoader
constructor	looks	very	much	like	the	call	to	resolver.query	in	Listing	5-
3.	(In	fact,	I	copied	and	pasted	code	to	create	the	CursorLoader
constructor’s	parameter	list.)	The	big	difference	between	the
CursorLoader	constructor	and	a	resolver.query	call	is	that	the
CursorLoader	constructor	requires	a	context	parameter.	In	Listing	5-6,
the	context	is	this	activity	itself.

From	the	constructor	call	onward,	the	activity’s	thread	registers	a
callback	listener	and	calls	the	loader’s	startLoading	method.	As	in	most
of	Java’s	listener	scenarios,	the	loader’s	callback	listener	(the
MyOnLoadCompleteListener)	is	a	class	whose	methods	sit	and	wait	for	a
holler	from	another	thread.

In	Listing	5-6,	the	listener’s	onLoadComplete	method	does	nothing
while	it	waits	for	a	result	from	the	loader.	In	the	meantime,	the	rest	of	the
activity’s	code	(namely,	the	appending	of	Here	it	comes	to	the	text
view)	continues	on	its	merry	way.

When	at	last	the	loading	of	the	data	is	complete,	the
onLoadComplete	method	does	what	you	want	it	to	do	with	the	data	from
the	cursor.	In	Listing	5-6,	the	method	follows	the	lead	from	this	chapter’s
previous	examples	and	displays	the	data	in	the	activity’s	text	view.

Chapter	1:	Lay	Out	Your	Stuff

In	This	Chapter
Organizing	the	widgets	on	the	device’s	screen
Dealing	with	colors,	sizes,	and	positions

Working	with	various	layouts
	

Which	description	do	you	prefer?

	

•	In	my	entire	line	of	sight,	I	see	a	polygon	with	convex	vertices	at	the
points	(1.5,	0),	(0,	1.2),	(3,	1.2),	(0.6,	3),	(2.4,	3),	and	with	concave
vertices	at	the	points	(1.15,	1.2),	(1.85,	1.2),	(0.95,	1.8),	(2.05,	1.8),	(1.5,
2.2).	The	units	are	in	inches.

	
•	In	my	entire	line	of	sight,	I	see	a	five-pointed	star.

	
The	first	description	is	more	precise,	but	the	first	is	also	more	brittle.

As	I	type	this	introduction,	I	anticipate	the	e-mail	messages	from	readers:
“You	got	one	of	the	numbers	wrong	in	the	first	description.”

The	second	description	is	also	more	versatile.	The	second
description	makes	sense	whether	you	describe	an	image	on	a	laptop
screen	or	on	a	highway	billboard.	In	a	world	with	all	kinds	of	mobile
devices,	all	kinds	of	screen	sizes,	screen	resolutions,	display	qualities,
refresh	rates,	and	who-knows-what-other	variations,	the	big	picture	is
often	more	useful	than	the	picky	details.	When	you	describe	your	app’s
screen,	you	should	avoid	measurements	in	favor	of	concepts.

Android	supports	four	basic	layout	concepts	—	linear	layout,
relative	layout,	table	layout,	and	frame	layout.	In	many	cases,	choosing
one	kind	of	layout	over	another	is	a	matter	of	taste.	A	table	layout	with

only	one	row	looks	like	a	horizontal	linear	layout.	A	set	of	nested	linear
layouts	may	look	exactly	like	a	complicated	relative	layout.	The
possibilities	are	endless.

Android	Layouts
The	game	with	Android’s	layouts	is	to	place	visible	things	into	a

container	in	an	orderly	way.	In	a	typical	scenario,	one	of	these	“visible
things”	is	a	view,	and	one	of	these	“containers”	is	a	view	group.

The	formal	terminology	is	a	bit	hazy.	But	fortunately,	the	fine
distinctions	between	the	terms	aren’t	terribly	important.	Here’s	some
formal	terminology:
•	A	view	appears	on	the	user’s	screen	and	(either	directly	or	indirectly)
involves	user	interaction.	The	word	view	often	refers	to	an	instance	of	the
android.view.View	class.	A	broader	use	of	the	word	view	includes	any
class	or	interface	in	the	android.view	package.

	
•	A	widget	appears	on	the	user’s	screen	and	(either	directly	or	indirectly)
involves	user	interaction.	(Sounds	a	lot	like	a	view,	doesn’t	it?)	The	word
widget	commonly	refers	to	a	class	or	interface	in	the	android.widget
package.

	
Views	can	be	widgets,	and	widgets	can	be	views.	As	long	as	your	import
declarations	work	and	your	method	parameter	types	match,	the	distinction
between	widgets	and	views	is	unimportant.

	
Commonly	used	widgets	and	views	include	buttons,	check	boxes,	text
views,	toasts,	and	more	exotic	things	such	as	digital	clocks,	sliding
drawers,	progress	bars,	and	other	good	junk.

	
(Android	or	no	Android,	I	think	widget	is	a	wonderful	word.	The
playwrights	George	S.	Kaufman	and	Marc	Connelly	made	up	the	word
“widget”	for	dialogue	in	their	1924	comedy	Beggar	on	Horseback.	I
learned	about	widgets	from	the	fictitious	Universal	Widgets	company	—
an	enterprise	featured	in	The	Wheeler	Dealers	from	1963.)

	

•	A	view	group	(an	instance	of	android.view.ViewGroup)	is	a	view	that
contains	other	views	(including	other	view	groups).	The	views	contained
in	a	view	group	are	the	view	group’s	children.

	
Examples	of	view	groups	are	the	linear	layouts,	relative	layouts,	table
layouts,	and	frame	layouts	mentioned	at	the	beginning	of	this	chapter,	as
well	as	some	more	special-purpose	things	such	as	the	list	view	and	the
scroll	view.

	
One	way	or	another,	I	usually	write	about	putting	a	“view”	on	a

“layout.”

Linear	Layout
Linear	layouts	have	either	vertical	or	horizontal	orientation.	When

you	create	a	new	Android	project,	Eclipse	fills	your	main.xml	file	with	a
vertically	orientated	linear	layout.

Views	in	a	vertical	linear	layout	line	up	one	beneath	the	other.
Views	in	a	horizontal	linear	layout	line	up	one	beside	the	other.	(See
Figure	1-1.)

	

Figure	1-1:	Four	buttons	in	a	horizontal	linear	layout.

You	can	create	the	layout	in	Figure	1-1	with	the	XML	code	in
Listing	1-1.

Listing	1-1:	A	Horizontal	Linear	Layout
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”

				android:orientation=”horizontal”>

				

				<Button	android:text=”Button1”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”

								android:id=”@+id/button1”>

				</Button>

								

				<Button	android:text=”Button2”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”

								android:id=”@+id/button2”>

				</Button>

	

				<Button	android:text=”Button3”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”

								android:id=”@+id/button3”>

				</Button>

	

				<Button	android:text=”Button4”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”

								android:id=”@+id/button4”>

				</Button>

	

</LinearLayout>

You	can	also	create	the	layout	in	Figure	1-1	by	dragging	and
dropping	views	in	Eclipse’s	Graphical	Layout	editor.

Linear	layouts	don’t	wrap,	and	they	don’t	scroll.	So	if	you	add	six

buttons	to	a	horizontal	layout,	and	the	user’s	screen	is	wide	enough	for
only	five	of	the	buttons,	the	user	sees	only	five	buttons.	(See	Figure	1-2.)

	

Figure	1-2:	Six	(yes,	six)	buttons	in	a	horizontal	linear	layout.

Attributes	(A	Detour)
Using	XML	attributes,	you	can	change	a	layout’s	default	behavior.

This	section	has	several	examples.

android:layout_width	and	android:layout_length
You	can	tweak	the	size	of	a	view	using	the	android:layout_width

and	android:layout_length	attributes.	Listing	1-2	has	some	code,	and
Figure	1-3	shows	the	resulting	layout.

Listing	1-2:	Setting	a	View’s	Width	and
Height
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

				“http://schemas.android.com/apk/res/android”

		android:orientation=”vertical”

		android:layout_width=”match_parent”

		android:layout_height=”match_parent”>

		

		<Button

				android:layout_width=”match_parent”

				android:layout_height=”wrap_content”

				android:text=’1.	android:layout_height=”wrap_content”

						android:layout_width=”match_parent”’>

				android:id=”@+id/button1”

		</Button>

		

		<Button

				android:layout_width=”wrap_content”

				android:layout_height=”wrap_content”

				android:text=”2.	wrap/wrap”>

				android:id=”@+id/button2”

		</Button>

		

		<Button

				android:layout_width=”60dp”

				android:layout_height=”wrap_content”

				android:text=”3.	width	60dp”>

				android:id=”@+id/button3”

		</Button>

		

		<Button

				android:layout_width=”160dp”

				android:layout_height=”wrap_content”

				android:text=’4.	android:layout_width=”160dp”’>

				android:id=”@+id/button4”

		</Button>

		

		<Button

				android:layout_width=”wrap_content”

				android:layout_height=”match_parent”

				android:text=”5.	width	wrap_content,

						height	match_parent”

				android:id=”@+id/button5”>

		</Button>

	

</LinearLayout>

	

Figure	1-3:	Buttons	of	various	widths	and	lengths.

You	can	describe	a	view’s	size	using	general	guidelines	or	numbers
of	units,	as	spelled	out	in	the	next	two	sections.

Using	general	size	guidelines
To	create	general	guidelines,	use	the	“wrap_content”,

“match_parent”,	or	“fill_parent”	value.	(See	Listing	1-2.)	With
“wrap_content”,	Android	shrinks	a	view’s	width	or	length	so	that	the
view	tightly	encloses	whatever	it	contains.	With	“match_parent”	and
“fill_parent”,	Android	expands	a	view’s	width	or	length	so	that	the
view	fits	tightly	inside	its	container.

	What	it	means	to	“tightly	enclose”	something	or	“fit	tightly
inside”	something	depends	on	the	amount	of	breathing	room	you
specify	for	the	boundaries	around	things.	This	breathing	room	comes
in	two	forms	—	padding	and	margins.	(If	you	want,	you	can	look
ahead	to	this	chapter’s	section	on	padding	and	margins.)

	The	strings	“match_parent”	and	“fill_parent”	have	the
same	meaning.	Before	API	Level	8,	only	“fill_parent”	works.
Starting	with	API	Level	8,	the	string	“fill_parent”	is	deprecated	in
favor	of	“match_parent”.	According	to	Java’s	official	documents,
deprecated	features	are	obsolete	and	“are	supported	only	for
backwards	compatibility.”	In	the	Java	world,	a	feature	that’s
deprecated	might	be	unavailable	in	future	software	versions.	But
Java’s	deprecated	features	tend	to	linger	on	for	years.	Both
“fill_parent”	and	“match_parent”	work	up	to	(and	possibly
beyond)	API	Level	13	(Honeycomb).
In	Listing	1-2,	the	first	button	has	attributes

android:layout_width=	”match_parent”	and
android:layout_height=”wrap_content”.	So	in	Figure	1-3,	the	top
button	is	as	wide	as	it	can	be	and	only	tall	enough	to	contain	the	words
displayed	on	the	button’s	face.

	In	Listing	1-2,	the	first	button’s	android:text	attribute
illustrates	two	out-of-the-way	features.	First,	I	enclose	the	attribute’s
value	in	single	quotation	marks.	I	do	this	because	the	value	itself
contains	double	quotation	marks.	Next,	the	attribute’s	value
straddles	two	lines.	As	a	result,	Android	breaks	the	content	on	the
top	button	into	two	lines	of	text.	(See	Figure	1-3.)

Using	numbers	of	units
In	Listing	1-2,	I	describe	the	third	button’s	width	in	units.	The	value

60dp	stands	for	60	density-independent	pixels.	A	density-independent
pixel	is	a	measurement	based	on	a	160	pixels-per-inch	benchmark.

“And	what,”	you	ask,	“is	a	160	pixels-per-inch	benchmark?”	A	pixel
is	a	single	dot	on	a	device’s	screen.	A	pixel	can	be	invisible,	glow
brightly,	or	anything	in	between.

Different	devices	have	different	pixel	densities.	For	example,	a	low-
density	screen	might	have	120	pixels	per	inch,	and	a	high-density	screen
might	have	260	pixels	per	inch.	To	adjust	for	these	differences,	each
Android	screen	has	several	metrics.	Each	metric	is	a	numeric	value
describing	some	characteristic	of	the	display:
•	widthPixels	(an	int	value):	The	number	of	pixels	from	the	left	edge	to
the	right	edge	of	the	screen.

	
•	heightPixels	(an	int	value):	The	number	of	pixels	from	the	top	to	the
bottom	of	the	screen.

	
•	xdpi	(an	int	value):	The	number	of	pixels	from	left	to	right	along	one
inch	of	the	screen.

	
•	ydpi	(an	int	value):	The	number	of	pixels	from	top	to	bottom	along
one	inch	of	the	screen.	(In	a	square	inch,	some	screens	stuff	more	pixels
across	than	up	and	down,	so	xdpi	isn’t	necessarily	the	same	as	ydpi.)

	
•	densityDpi	(an	int	value):	A	general	measure	of	the	number	of	pixels
per	inch.	For	screens	with	equal	xdpi	and	ydpi	values,	densityDpi	is	the
same	as	xdpi	and	ydpi.	For	screens	with	unequal	xdpi	and	ydpi	values,
somebody	figures	out	what	the	screen’s	densityDpi	is	(but	they	don’t	tell
me	how	they	figure	it	out).

	
•	density	(a	float	value):	The	number	of	pixels	per	inch,	divided	by
160.

	
•	scaledDensity	(a	float	value):	The	density	measure,	but	with	some
extra	stretching	or	squeezing	to	account	for	any	default	font	size	chosen

by	the	user.	(Some	versions	of	Android	don’t	let	the	user	adjust	the
default	font	size.	Other	versions	have	font	size	options	in	the	Spare	Parts
application.	If	all	else	fails,	it	never	hurts	to	look	at	the	Settings	app.)

	
When	you	specify	160dp	(as	in	Listing	1-2),	you’re	telling	Android

to	display	density	×	160	pixels.	So	on	my	tiny	screen,	a	width	of	160dp
is	one	inch,	and	on	the	Android	home	theater	that	you	transport	through
time	from	the	year	2055,	a	width	of	160dp	is	one	inch.	Everybody	gets
the	inch	that	they	want.

	The	letters	dpi	stand	for	dots	per	inch.	Your	Android	project
has	folders	named	res/drawable-hdpi,	res/drawable-ldpi,	and
res/drawable-mdpi.	At	runtime,	Android	senses	a	device’s	or
emulator’s	screen	density	and	uses	the	resources	in	the	most
appropriate	res/drawable-dpi	folder.	To	find	out	what	Android
considers	“most	appropriate”	for	various	screen	densities,	visit
http://developer.android.com/guide/practices/screens_support.html

Another	handy	unit	of	measurement	is	sp	—	scale-independent
pixels.	Like	the	dp	unit,	the	size	of	an	sp	unit	adjusts	nicely	for	different
screens.	But	the	size	of	an	sp	unit	changes	in	two	ways.	In	addition	to
changing	based	on	the	screen’s	pixel	density,	the	sp	unit	changes	based
on	the	user’s	font	size	preference	settings.

	The	abbreviations	dp	and	dip	are	interchangeable.	Both
stand	for	device-independent	pixels.	But	sp	is	always	sp.	Android
has	no	unit	named	sip.
If	you	want	to	be	ornery,	you	can	use	physical	units.	For	example,

value	1	in	stands	for	one	inch.	Other	unsavory	physical	units	include	mm
(for	millimeters),	pt	(for	points,	with	1	point	being	1/72	of	an	inch),	and
px	(for	pixels	—	actual	dots	on	the	device’s	screen).	In	almost	all
situations,	you	should	avoid	physical	units.	Use	dp	to	specify	a	view’s
size,	and	use	sp	to	specify	a	text	font	size.

http://developer.android.com/guide/practices/screens_support.html

Figures	1-4	and	1-5	illustrate	the	relationship	between	pixels	and
density-independent	pixels.	The	screen	in	Figure	1-4	has	density	0.75.	So
an	inch-wide	button	consumes	0.75	×	160	=	120	pixels.	You	can	confirm
this	by	comparing	the	sizes	of	the	160dp	and	160px	buttons.	The	160dp
button	is	roughly	three	quarters	the	width	of	the	160px	button.

	

Figure	1-4:	A	low-density	display.

	

Figure	1-5:	A	high-density	display.

	This	book’s	figures	might	have	stretched	or	shrunk	in
printing.	Objects	may	be	larger	than	they	appear.	What	measures	an
inch	across	in	this	book’s	pages	or	on	your	e-reader’s	screen	isn’t
necessarily	an	inch	on	an	Android	device’s	screen.
The	screen	in	Figure	1-5	has	a	density	1.5,	so	in	Figure	1-5,	a	160dp

button	is	1.5	times	as	wide	as	a	160px	button.
The	XML	document	describing	the	layout	in	Figures	1-4	and	1-5	is

shown	in	Listing	1-3.

Listing	1-3:	Using	Size	Units
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”>

				

				<TextView	android:textSize=”30sp”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:textColor=”#FFFF”

								android:id=”@+id/textView1”></TextView>

	

				<Button	android:layout_width=”160dp”

								android:text=”160dp”

								android:layout_height=”wrap_content”

								android:id=”@+id/button1”></Button>

	

				<Button	android:layout_width=”160px”

								android:text=”160px”

								android:layout_height=”wrap_content”

								android:id=”@+id/button2”></Button>

	

</LinearLayout>

Notice	the	metric	information	in	the	text	view	in	Figures	1-4	and	1-
5.	To	display	this	information,	I	use	the	android.util.DisplayMetrics
class	in	my	app’s	main	activity:
package	com.allmycode.screen;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.util.DisplayMetrics;

import	android.widget.TextView;

	

public	class	ScreenActivity	extends	Activity	{

		TextView	textView;

		DisplayMetrics	metrics;

		String	densityDpiConstant;

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

	

				textView	=	(TextView)	findViewById(R.id.textView1);

	

				metrics	=	new	DisplayMetrics();

				getWindowManager().getDefaultDisplay().

						getMetrics(metrics);

	

				switch	(metrics.densityDpi)	{

				case	DisplayMetrics.DENSITY_LOW:

						densityDpiConstant	=	“DENSITY_LOW”;

						break;

				case	DisplayMetrics.DENSITY_MEDIUM:

						densityDpiConstant	=	“DENSITY_MEDIUM”;

						break;

				case	DisplayMetrics.DENSITY_HIGH:

						densityDpiConstant	=	“DENSITY_HIGH”;

						break;

				default:

						densityDpiConstant	=	“Huh?”;

						break;

				}

	

				textView.setText(metrics.toString()

								+	“,	“	+	densityDpiConstant);

		}

}

android:padding	and	android:margin
Objects	on	a	screen	need	room	to	breathe.	You	can’t	butt	one	text

field	right	up	against	another.	If	you	do,	the	screen	looks	horribly
cluttered.	So	Android	has	things	called	padding	and	margin:
•	A	view’s	padding	is	space	between	the	view’s	border	and	whatever	is
contained	inside	the	view.

	
•	A	view’s	margin	is	space	between	the	view’s	border	and	whatever	is
outside	the	view.

	
In	Figure	1-6,	I	superimpose	labels	onto	a	screen	shot	from	Eclipse’s

Graphical	Layout	editor.	The	rectangle	with	eight	little	squares	along	its
perimeter	is	the	text	view’s	border.	Think	of	the	border	as	the	text	view’s
clothing.	The	padding	keeps	the	clothing	from	being	too	tight,	and	the
margins	determine	how	much	“personal	space”	the	text	view	wants.

	

Figure	1-6:	Padding	versus	margin.

Listing	1-4	contains	the	code	that	generates	the	layout	in	Figure	1-6.

Listing	1-4:	Using	Margin	and	Padding
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”

				android:gravity=”center”>

				

				<LinearLayout	android:id=”@+id/LinearLayout1”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”

								android:background=”@color/opaque_white”>

								

								<TextView	android:text=”Dummies”

												android:layout_margin=”30dip”

												android:padding=”30dip”

												android:textSize=”30sp”

	

												android:layout_height=”wrap_content”

												android:layout_width=”wrap_content”

	

												android:id=”@+id/textView1”

												android:textColor=”@color/opaque_black”>

								</TextView>

								

				</LinearLayout>

	

</LinearLayout>

android:gravity	and	android:layout_gravity
I	once	asked	a	button	what	it	wanted	to	be	when	it	grows	up.	The

button	replied,	“I	want	to	be	an	astronaut.”	So	I	placed	the	button	inside	a
layout	with	attribute	android:layout_gravity=”center”.	A	layout	with
this	attribute	is	like	the	International	Space	Station.	Things	float	in	the

middle	of	it.	(Well,	they	don’t	actually	bob	to	and	fro	the	way	things	do
in	the	space-station	videos,	but	that’s	beside	the	point.)

Android	has	two	similarly	named	attributes,	and	it’s	very	easy	to
confuse	them	with	one	another.	The	android:gravity	attribute	tells	a
layout	how	to	position	the	views	within	it.	The	android:layout_gravity
attribute	tells	a	view	how	to	position	itself	within	its	layout.	Figure	1-7
illustrates	the	idea.

The	screen	in	Figure	1-7	contains	a	shortened	linear	layout	and	a
button.	The	linear	layout	is	only	220dip	tall,	and	its
android:layout_gravity	is	center_vertical.	(See	Listing	1-5.)	So	the
gray	linear	layout	floats	downward	to	the	center	of	the	screen.	But	the
layout’s	android:gravity	attribute	is	center_horizontal.	So	the	button
within	the	layout	shimmies	horizontally	to	the	layout’s	center.	The	button
hangs	along	the	top	edge	of	the	layout	because,	by	default,	things	rise	to
the	top	and	hug	the	left.

	

Figure	1-7:	The	gray	layout	gravitates	to	the	center	of	the	screen;	the	button
gravitates	to	the	top	of	the	gray	layout.

Listing	1-5:	Using	layout_gravity	and	gravity
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

	

				android:layout_gravity=”center_vertical”

				android:gravity=”center_horizontal”

	

				android:background=”#F999”

				android:orientation=”vertical”

				android:layout_width=”match_parent”

				android:layout_height=”220dip”>

				

				<Button	android:text=”Button”

								android:id=”@+id/button1”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”>

				</Button>

	

</LinearLayout>

Figures	1-8	through	1-11	illustrate	some	other	android:gravity
attribute	values.

	

Figure	1-8:	<Linear	Layout	android:	gravity=	”center_	vertical”	.	.	.

	

Figure	1-9:	<Linear	Layout	android:	gravity=	”center”	.	.	.

	

Figure	1-10:	<Linear	Layout	android:	gravity=	”bottom|	right”	.	.	.

	

Figure	1-11:	Linear	Layout	with	no	explicit	android:	gravity	attribute.

Figure	1-10	shows	what	you	can	do	by	combining	gravity	values
using	Java’s	bitwise	or	operator	(|).

android:color
You	can	apply	colors	to	all	kinds	of	things	—	things	such	as	text,

backgrounds,	shadows,	links,	and	other	stuff.	In	Listing	1-5,	I	use	the
attribute	android:background=”#F999”,	making	a	layout’s	background	a
quiet,	dignified	shade	of	gray.

As	an	Android	developer,	the	most	grown-up	way	to	create	a	color
is	to	declare	it	in	a	res/values/colors.xml	file.	The	file	looks
something	like	the	stuff	in	Listing	1-6.

Listing	1-6:	A	colors.xml	File
<?xml	version=”1.0”	encoding=”utf-8”?>

<resources	xmlns:android=

				“http://schemas.android.com/apk/res/android”>

		<color	name=”bright_red”>#F00</color>

		<color	name=”bright_red2”>#FF00</color>

		<color	name=”bright_red3”>#FF0000</color>

		<color	name=”translucent_red”>#7F00</color>

		<color	name=”invisible_good_for_nothing_red”>

				#00FF0000

		</color>

		<color	name=”white”>#FFF</color>

		<color	name=”black”>#000</color>

		<color	name=”puce”>#CC8898</color>

</resources>

A	color	value	begins	with	a	pound	sign	(#)	and	then	has	three,	four,
six,	or	eight	hexadecimal	digits.	With	three	digits,	the	leftmost	digit	is	an
amount	of	redness,	the	middle	digit	is	an	amount	of	greenness,	and	the
rightmost	digit	is	an	amount	of	blueness.	(The	colors	always	come	in	that
order	—	red,	then	green,	and	then	blue.	It’s	called	RGB	color.)	So,	for
example,	the	color	value	#F92	stands	for	a	decent-looking	orange	color	—
15	units	of	red,	9	units	green,	and	2	units	of	blue,	each	out	of	a	possible
16	units.

With	only	three	hexadecimal	digits	you	can’t	express	fine	color
differences.	So	Android	permits	you	to	express	a	color	as	a	sequence	of
six	hex	digits.	For	example,	the	value	#FEF200	is	a	good	approximation	to
the	yellow	on	this	book’s	cover.	It’s	254	units	of	red,	242	units	of	green,
and	no	blue,	each	out	of	a	possible	255	units.

With	three	RGB	digits,	you	can	add	a	fourth	alpha	digit
immediately	after	the	pound	sign.	And	with	six	RGB	digits,	you	can	add
two	additional	alpha	digits	immediately	after	the	pound	sign.	The	alpha
value	is	the	amount	of	opaqueness,	with	15	being	fully	opaque	and	0
being	completely	transparent.	So	the	value	#7F00	in	Listing	1-6	is
partially	transparent	red	(“translucent	red,”	if	you	will).	Against	a	black
background,	the	value	#7F00	is	a	dull,	depressing	reddishness.
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

				“http://schemas.android.com/apk/res/android”

		android:background=”@color/black”

		android:id=”@+id/linearLayout1”

		android:layout_height=”wrap_content”

		android:layout_width=”match_parent”

		android:orientation=”vertical”>

		

		<Button	android:background=”@color/translucent_red”

					android:layout_width=”match_parent”

					android:layout_height=”wrap_content”

					android:text=”Button”

					android:id=”@+id/button8”></Button>

</LinearLayout>

Against	a	white	background,	the	value	#7F00	looks	like	elementary-

school	pink.

	A	hexadecimal	digit	is	an	ordinary	decimal	digit	or	one	of
the	letters	A,	B,	C,	D,	E,	or	F.	(Either	uppercase	or	lowercase	letters
are	okay.)	The	letter	A	stands	for	10,	B	stands	for	11,	and	so	on	up	to
F,	which	stands	for	15.	A	two-digit	hex	number	stands	for	“the	right
digit,	plus	16	times	the	left	digit.”	For	example,	A5	stands	for	5	+
(16	×	10),	which	is	165.	With	only	one	hex	digit,	you	can	represent
the	int	values	from	0	to	15,	inclusive.	With	two	hex	digits,	you	can
represent	the	int	values	from	0	to	255,	inclusive.

android:visibility
An	Android	view	has	one	of	three	visibility	values	—

android.view.View.VISIBLE,	android.view.View.INVISIBLE,	or
android.view.View.GONE.	The	first	value	—	VISIBLE	—	is	self-
explanatory.	The	difference	between	INVISIBLE	and	GONE	is	as	follows:
An	INVISIBLE	view	takes	up	space;	a	view	that’s	GONE	takes	up	no	space.
For	example,	in	Figure	1-12,	an	INVISIBLE	view	(Button2)	separates
Button1	from	Button3.	If	I	change	Button2’s	visibility	to	GONE,	Button1
butts	up	against	Button3.	(See	Figure	1-13.)

	

Figure	1-12:	Button2	is	INVISIBLE.

	

Figure	1-13:	Button2	is	GONE.

In	Figure	1-13,	Button2	is	gone	but	not	forgotten.	See	this	chapter’s
“Frame	Layout”	section	for	more	details.

Relative	Layout
A	relative	layout	describes	the	placement	of	each	view	compared

with	other	views.	For	example,	in	a	relative	layout,	you	might	place
Button2	beneath	Button1	and	place	Button3	to	the	right	of	Button1.
Listing	1-7	has	some	code,	and	Figure	1-14	shows	the	resulting	screen.

Listing	1-7:	Using	a	Relative	Layout
<?xml	version=”1.0”	encoding=”utf-8”?>

<RelativeLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_height=”match_parent”

				android:layout_width=”match_parent”>

	

				<Button	android:layout_alignParentTop=”true”

												android:layout_alignParentLeft=”true”

	

								android:text=”Button1”	android:id=”@+id/button1”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”></Button>

	

				<Button	android:layout_alignParentLeft=”true”

												android:layout_below=”@+id/button1”

								

								android:text=”Button2”	android:id=”@+id/button2”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”></Button>

	

				<Button	android:layout_alignParentTop=”true”

												android:layout_toRightOf=”@+id/button1”

								

								android:text=”Button3”	android:id=”@+id/button3”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”></Button>

								

				<Button	android:layout_below=”@+id/button2”

												android:layout_alignLeft=”@+id/button3”

													

								android:text=”Button4”	android:id=”@+id/button4”

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”></Button>

	

</RelativeLayout>

	

Figure	1-14:	Buttons	in	a	relative	layout.

Coding	Android’s	relative	layouts	can	be	complicated.	I	have
trouble	remembering	which	android:id	goes	with	which	view’s
android:layout_	toRightOf.	I	can	easily	goof	up	by	creating	a	circular
reference.

But	don’t	give	up	on	relative	layouts!	For	complicated	designs,
people	try	creating	vast	nests	of	linear	layouts	within	other	linear	layouts.
Things	go	well	until	someone	runs	the	code.	Excessive	nesting	of	linear
layouts	slows	down	a	processor.

Android	has	two	tools	to	help	wean	you	away	from	nested	linear
layouts.	One	is	the	hierarchy	viewer.	The	hierarchy	viewer	is	an
executable	file	in	your	SDK’s	tools	directory.	The	hierarchy	viewer’s	tree
displays	the	nesting	of	your	layout’s	objects.

Figure	1-15	contains	an	embarrassing	hierarchy	viewer	analysis	of
one	of	my	recent	projects.	Each	rounded	rectangle	represents	a	view,	and
the	length	of	the	tree	(from	left	to	right)	shows	how	deep	the	nesting	goes
for	this	particular	project.	Some	of	the	tree’s	branches	are	seven	levels
deep,	and	the	processor	can’t	draw	a	view	without	first	calculating	the

views	to	its	left	along	the	tree’s	branches.	So	the	processor	chugs	slowly
as	it	tries	to	render	the	whole	scene.

	

Figure	1-15:	The	hierarchy	viewer.

A	run	of	the	hierarchy	viewer	tells	you	how	deeply	nested	your
layouts	are.	With	the	viewer’s	tree	in	mind,	you	can	look	for	ways	to
eliminate	some	of	the	nesting.

Another	tool	that’s	useful	in	the	fight	against	nested	layouts	is	a
refactoring	tool	in	Eclipse.	Here’s	how	you	use	it:

1.	Use	Eclipse’s	Graphical	Layout	editor	to	create	a	horrible
collection	of	linear	layouts	within	linear	layouts.

	 2.	In	the	Graphical	Layout	editor,	select	the	outermost	linear
layout.

	 3.	In	Eclipse’s	main	menu,	choose	Refactor⇒Android⇒Change
Layout.

	 The	Change	Layout	dialog	box	appears.
	 4.	In	the	Change	Layout	dialog	box’s	drop-down	list,	choose

Relative	Layout.

	 5.	Just	for	fun,	click	Preview.
	 Eclipse	shows	you	all	the	ways	it	plans	to	change	your	XML	code.

(See	Figure	1-16.)
	 6.	Click	OK.
	 Voilá!	You	have	an	efficient	relative	layout.	The	new	relative	layout

looks	exactly	like	your	old	network	of	linear	layouts.	But	unlike	a	bunch
of	nested	linear	layouts,	the	relative	layout	is	computationally	efficient.

	
	

Figure	1-16:	Eclipse	compares	your	old	code	to	your	new	code.

Table	Layout
A	table	layout	has	rows,	and	each	row	contains	some	views.	If	you

do	nothing	to	override	the	defaults,	the	views	line	up	to	form	columns.
For	example,	the	table	layout	in	Figure	1-17	has	three	table	rows.

Each	table	row	contains	buttons.
<TableLayout	...	>

				<TableRow	...>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Button”>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Button”>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Button”>

				</TableRow>

	

				<TableRow	...>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Button”>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Wide	button”>

				</TableRow>

	

				<TableRow	...>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Button”>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Btn.”>

								<Button	...	android:layout_width=”wrap	content”

																...	android:text=”Button”>

				</TableRow>

	

</TableLayout>

	

Figure	1-17:	Buttons	in	a	table	layout.

Frame	Layout
A	frame	layout	displays	one	view.	What	good	is	that?
Well,	to	be	more	precise	(and	less	sensational),	a	frame	layout

displays	views	one	in	front	of	another.	(Put	on	your	3D	glasses	and	think
of	a	frame	layout	as	an	outward-pointing	linear	layout.)	Because	views
tend	to	cover	the	stuff	behind	them,	a	frame	layout	normally	displays
only	one	view	—	namely,	whatever’s	in	front.

Frame	layouts	usually	serve	one	of	two	purposes:
•	A	frame	layout	might	display	a	small	view	superimposed	on	a	larger
view	(such	as	text	on	an	image).

	
•	A	frame	layout	might	store	several	views,	only	one	of	which	is	visible	at
any	point	in	time.	Using	the	frame	layout,	you	change	what	appears	in	a
certain	place	on	the	screen.

	
This	section’s	example	illustrates	both	ideas.	You	start	with	a	word

superimposed	on	an	image,	which	is	in	turn	superimposed	on	top	of
another	image.	(See	Figure	1-18.)

	

Figure	1-18:	Three	widgets	on	a	frame	layout.

When	the	user	touches	the	screen,	two	of	the	three	items	disappear.
(See	Figure	1-19.)	The	screen	cycles	through	the	three	images,	changing
the	image	whenever	the	user	touches	the	screen.	(See	Figures	1-20	and	1-
21.)

	

Figure	1-19:	Meow!

	

Figure	1-20:	The	largest	of	three	images.

	

Figure	1-21:	The	midsize	image.

(I	know	what	you’re	thinking:	“The	author	looks	for	excuses	to
show	pictures	of	his	cats.”	That’s	only	partly	true.	I	include	lots	of
illustrations	to	help	you	visualize	the	code’s	behavior.	Anyway,	pictures
of	cats	make	perfect	clip	art.	Cats	don’t	complain	when	you	use	their	least
favorite	profiles.	Pictures	of	cats	are	better	than	pictures	of	your	family
members	because	readers	seldom	stalk	cats.	Best	of	all,	no	one’s	figured
out	how	to	patent	the	domestic	cat.	I	can’t	be	sued	for	putting	cat	pictures
in	my	book.	Not	yet,	anyway.)

Listing	1-8	shows	you	the	XML	code	for	the	app	in	Figures	1-18	to
1-21.

Listing	1-8:	Creating	a	Frame	Layout
<?xml	version=”1.0”	encoding=”utf-8”?>

	

<FrameLayout	xmlns:android=

								“http://schemas.android.com/apk/res/android”

				android:id=”@+id/mainlayout”

				android:layout_height=”fill_parent”

				android:layout_width=”fill_parent”

				android:orientation=”vertical”

				android:onClick=”rotate”>

				

				<ImageView	android:src=”@drawable/calico”

				

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”

								android:padding=”5px”

								android:layout_gravity=”center”

								android:id=”@+id/imageViewCalico”/>

				

				<ImageView	android:src=”@drawable/burmese”

								

								android:layout_height=”wrap_content”

								android:layout_width=”wrap_content”

								android:padding=”5px”									

								android:layout_gravity=”center”

								android:id=”@+id/imageViewBurmese”/>

	

				<TextView	android:text=”@string/meow”

				

								android:textColor=”#FFF”

								android:textSize=”15sp”								

								android:layout_width=”wrap_content”								

								android:layout_height=”wrap_content”

								android:layout_gravity=”center”

								android:id=”@+id/textView”/>

	

</FrameLayout>

The	only	important	business	in	Listing	1-8	is	the	order	in	which	I
declare	the	views.	The	largest	image	(the	Calico)	is	the	FrameLayout
element’s	first	child.	So	in	Figure	1-18,	the	Calico	appears	behind	the
other	images.	If	the	Burmese’s	image	was	as	large	as	the	Calico’s	image,
you	wouldn’t	see	the	edges	of	the	Calico’s	image	in	Figure	1-18.	The	last
element	in	Listing	1-8	is	the	text	view,	so	in	Figure	1-18,	the	text	is
superimposed	on	top	of	the	other	elements.

Listing	1-9	has	the	code	that	rotates	from	image	to	image.

Listing	1-9:	Coding	Java	with	a	Frame
Layout
package	com.allmycode.layouts;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.ImageView;

import	android.widget.TextView;

	

public	class	LayoutTesterActivity	extends	Activity	{

		ImageView	imageCalico,	imageBurmese;

		TextView	textView;

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.frame);

				imageCalico	=

								(ImageView)	findViewById(R.id.imageViewCalico);

				imageBurmese	=

								(ImageView)	findViewById(R.id.imageViewBurmese);

				textView	=	(TextView)	findViewById(R.id.textView);

		}

	

		int	count	=	0;

	

		public	void	rotate(View	view)	{

				switch	(count++	%	3)	{

				case	0:

						textView.setVisibility(View.VISIBLE);

						imageCalico.setVisibility(View.INVISIBLE);

						imageBurmese.setVisibility(View.INVISIBLE);

						break;

				case	1:

						textView.setVisibility(View.INVISIBLE);

						imageCalico.setVisibility(View.VISIBLE);

						imageBurmese.setVisibility(View.INVISIBLE);

						break;

				case	2:

						textView.setVisibility(View.INVISIBLE);

						imageCalico.setVisibility(View.INVISIBLE);

						imageBurmese.setVisibility(View.VISIBLE);

						break;

				}

		}

}

When	the	app	starts	running,	all	three	views	(the	two	images	and	the
text	view)	are	visible.	But	then	Listing	1-9	cycles	from	one	view	to
another.	Each	call	to	the	rotate	method	makes	one	view	visible	and
makes	the	other	two	views	invisible.

Chapter	2:	Menus,	Lists,	and	Notifications

In	This	Chapter
Building	options	menus	and	context	menus
Using	lists	in	activities	as	well	as	stand-alone	activities

Adding	notifications	to	the	status	bar
	

Sure,	I	wish	I	were	down	at	my	favorite	cheap	restaurant,	ordering
something	that	a	gourmet	would	never	eat.	Alas,	I	am	not.	As	much	as	I
would	prefer	to	talk	about	menus	dealing	with	food,	I’m	actually	going	to
talk	about	menus	inside	an	Android	application!

All	about	Menus
Android	provides	a	simple	mechanism	for	you	to	add	menus	to	your

applications.	With	Android’s	help,	you	can	add	the	following	types	of
menus:
•	Options	menu:	An	options	menu	is	the	menu	that	appears	when	a	user
presses	the	Menu	key	on	a	pre-Honeycomb	device.	(See	Figure	2-1.)	On	a
device	running	Android	3.0	or	greater,	an	options	menu	appears	when	a
user	presses	a	little	menu	icon.	(Figure	2-2	illustrates	this	with	my
development	computer’s	emulator.	Instead	of	a	finger	touching	the	icon,
you	see	my	mouse	cursor.)

	
In	addition,	Honeycomb	has	an	action	bar.	The	action	bar	appears	in	the
upper-right	corner	of	the	screen.	(See	Figure	2-3.)

	
•	Context	menu:	A	context	menu	is	floating	list	of	menu	items	that	is
presented	when	a	user	longpresses	a	view.	(See	Figure	2-4.)

	
•	Submenu:	A	submenu	is	a	floating	list	of	menu	items	that	the	user
opens	by	clicking	a	menu	item	on	an	options	menu	or	on	a	context	menu.
A	submenu	item	cannot	support	nested	submenus.

	
	

Figure	2-1:	An	options	menu	on	Gingerbread	(or	earlier).

	

Figure	2-2:	An	options	menu	on	Honeycomb	(or	later).

	

Figure	2-3:	An	options	menu	in	the	action	bar	(Honeycomb	or	later).

	

Figure	2-4:	A	context	menu.

Within	an	options	menu,	you	find	two	groups:
•	Icon:	These	are	the	menu	items	that	are	available	at	the	bottom	of	the
screen	on	a	pre-Honeycomb	device.	The	device	supports	up	to	six	icon-
type	menu	items.	(Again,	see	Figure	2-1.)

	
•	Expanded:	The	expanded	menu	is	a	list	of	menu	items	that	goes
beyond	the	original	six	icon-type	menu	items.

	
On	pre-Honeycomb	devices,	Android	automatically	adds	a	More	item
when	you	put	more	than	six	items	on	an	options	menu.	(See	Figure	2-5.)
When	the	user	clicks	the	More	item,	an	expanded	menu	appears.	(See
Figure	2-6.)

	
In	a	post-Honeycomb	world,	items	can	stack	up	in	the	action	bar	and	in
the	action	bar’s	overflow	bin.	(See	Figure	2-7.)	You	control	this	behavior
with	an	android:showAsAction=”ifRoom|withText”	attribute.

	

In	this	chapter,	you	create	an	options	menu	and	a	context	menu.

	

Figure	2-5:	An	options	menu	with	a	More	item.

	

Figure	2-6:	An	expanded	menu.

	

Figure	2-7:	An	action	bar.

Creating	an	Options	Menu
You	can	use	Java	code	or	an	XML	document	to	create	a	menu.	If

you	use	XML,	your	document	lives	in	a	res/menu	directory.	The
preferred	method	of	creating	menus	is	to	define	menus	through	XML.
This	helps	separate	the	menu	definition	from	the	actual	application	code.

Defining	the	XML	file
To	define	an	XML	menu,	follow	these	steps:
1.	Create	a	menu	folder	in	the	res	directory.

	 2.	Add	a	list_menu.xml	file	to	the	menu	directory.
	 3.	Type	the	code	here	into	the	list_menu.xml	file:
	 <?xml	version=”1.0”	encoding=”utf-8”?>

<menu	xmlns:android=

						“http://schemas.android.com/apk/res/android”>

				<item	android:id=”@+id/menu_insert”

										android:icon=”@android:drawable/ic_menu_add”

										android:title=”@string/menu_insert”	/>

				<item	android:id=”@+id/make_noise”

										android:icon=”@android:drawable/ic_media_play”

										android:title=”@string/honk”	/>

</menu>

The	values	@android:drawable/ic_menu_add	and
@android:drawable/	ic_media_play	are	built-in	Android	icons.	You
don’t	have	to	provide	these	bitmaps	in	your	res/drawable	folders.	The
ldpi,	mdpi,	and	hdpi	versions	of	this	icon	are	all	built	into	the	Android
platform.

	

	All	resources	in	the	android.R	class	are	available	for
you	to	use	in	your	application	and	are	recommended	because	they	give
your	application	a	common	and	consistent	user	interface	and	user
experience	with	the	Android	platform.	To	view	other	resources	available
to	you,	view	the	android.R.drawable	documentation	here:
http://developer.android.com/reference/android/R.drawable.html

	 4.	Create	new	string	resources	with	the	names	menu_insert	and
honk.

	 5.	Add	the	code	shown	in	bold	here	to	your	project’s	main
activity	class:

	 @Override

public	boolean	onCreateOptionsMenu(Menu	menu)	{

				super.onCreateOptionsMenu(menu);

http://developer.android.com/reference/android/R.drawable.html

				MenuInflater	inflater	=	getMenuInflater();

				inflater.inflate(R.menu.list_menu,	menu);

				return	true;

}

When	you	inflate	an	XML	document,	Android	turns	the	XML	code
into	something	resembling	Java	code	(a	Java	object,	perhaps).

	 In	the	preceding	code,	I	get	a	MenuInflater	that’s	capable	of
inflating	menus	from	XML	resources.	Then	I	inflate	the	XML	code	to	get
a	real	live	Java	object.

	

	When	you	implement	the	onCreateOptionsMenu
method,	you	must	return	either	true	or	false.	If	you	return	false,
Android	doesn’t	display	your	menu!	How	rude!

	 6.	Run	the	application.
	 Depending	on	the	current	wind	direction,	you	see	the	stuff	in	Figure

2-2	or	Figure	2-8	when	you	click	the	Menu	button	or	menu	icon.	You
might	even	see	the	action	bar	items	in	Figure	2-3	(without	having	to	click
anything).

	
	

Figure	2-8:	Menu	items	in	the	action	bar.

Handling	user	actions
The	menu	has	been	created,	and	now	you	want	to	perform	some

type	of	action	when	it’s	clicked.	To	do	this,	add	the	method	in	Listing	2-1
to	your	app’s	main	activity.

Listing	2-1:	Responding	to	a	Menu	Item	Click
@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{

	

		switch	(item.getItemId())	{

		

		case	R.id.menu_insert:

				createReminder();

				return	true;

				

		case	R.id.make_noise:

				MediaPlayer	mediaPlayer	=

								MediaPlayer.create(this,	R.raw.honk);

				mediaPlayer.start();

				return	true;

				

		}

		return	super.onOptionsItemSelected(item);

}

In	your	onOptionsItemSelected	method,	you	do	the	old	switcheroo
to	find	out	exactly	which	item	the	user	clicks.	You	match	the	clicked
item’s	ID	with	the	ID	of	the	items	in	your	list_menu.xml	document.	In
this	example,	your	menu	has	two	items.	One	item	creates	a	reminder,	and
the	other	plays	a	sound.

You	still	have	to	define	the	createReminder	method,	but	in	the
meantime,	you	can	add	a	sound	to	your	project.	To	add	a	sound,	first
create	a	res/raw	folder	and	then	copy	an	MP3	file	into	that	res/raw
folder.	After	renaming	the	file	honk.mp3,	you’re	ready	to	make	some
noise.

The	method	in	Listing	2-1	returns	true.	This	true	value	tells
Android	that	you’ve	finished	handling	the	user’s	selection.	If	you	return
false,	Android	passes	the	selection	event	to	whatever	other	code	might
be	waiting	for	it.

Creating	a	reminder
The	method	in	Listing	2-2	responds	to	a	call	in	Listing	2-1.	Add

Listing	2-2’s	code	to	your	project’s	main	activity.

Listing	2-2:	Calling	an	Activity	to	Create	a
New	Reminder
private	static	final	int	ACTIVITY_CREATE	=	0;

	

private	void	createReminder()	{

		Intent	intent	=

						new	Intent(this,	ReminderEditActivity.class);

		startActivityForResult(intent,	ACTIVITY_CREATE);

}

The	createReminder	method	starts	an	instance	of
ReminderEditActivity.	The	startActivityForResult	call	allows	you
to	get	a	result	back	from	the	ReminderEditActivity.	In	this	app,	you	use
the	result	to	repopulate	a	list	with	the	newly	added	reminder.

	For	straight	talk	about	the	startActivityForResult
method,	see	Book	III,	Chapter	1.
Listing	2-3	contains	an	embarrassingly	simple

ReminderEditActivity	class.

Listing	2-3:	Creating	a	Reminder
package	com.allmycode.menus;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.EditText;

	

public	class	ReminderEditActivity	extends	Activity	{

		EditText	editText;

	

		@Override

		public	void	onCreate(Bundle	b)	{

				super.onCreate(b);

				setContentView(R.layout.reminder_edit);

				editText	=	(EditText)	findViewById(R.id.editText1);

		}

	

		public	void	onPostButtonClick(View	view)	{

				Intent	intent	=	new	Intent();

				intent

								.putExtra(“text”,	editText.getText().toString());

				setResult(Activity.RESULT_OK,	intent);

				finish();

		}

}

When	the	user	clicks	a	button,	the	ReminderEditActivity	sets	its
result	and	finishes	its	run.	The	result	comes	from	the	activity’s	EditText
widget.

	When	you	create	a	new	Android	project,	Eclipse
automatically	adds	an	<activity>	element	to	the	project’s
AndroidManifest.xml	document.	But	when	you	add	an	additional
activity	to	an	existing	project,	you	must	manually	add	an
<activity>	element.	And	yes,	I	made	this	mistake	for	the
thousandth	time	when	I	first	created	this	section’s	example.
My	no-nonsense	layout	for	the	activity	in	Listing	2-3	is	shown	in

Listing	2-4.	The	activity’s	screen	is	shown	in	Figure	2-9.

Listing	2-4:	A	Layout	for	the	Activity	in
Listing	2-3
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”

				android:gravity=”center_horizontal”>

				

				<EditText	android:layout_height=”wrap_content”

														android:id=”@+id/editText1”

														android:layout_width=”match_parent”

														android:hint=”Type	a	reminder	here.”>

								<requestFocus></requestFocus>

				</EditText>

				

				<Button	android:layout_height=”wrap_content”

												android:id=”@+id/button1”

												android:layout_width=”wrap_content”

												android:text=”@string/post”

												android:onClick=”onPostButtonClick”></Button>

	

</LinearLayout>

	

Figure	2-9:	Adding	a	reminder.

Putting	the	new	reminder	in	a	list

To	do	what	is	spelled	out	in	this	section’s	title	—	putting	the	new
reminder	in	a	list	—	add	the	code	in	Listing	2-5	to	your	project’s	main
activity.

Listing	2-5:	Using	another	Activity’s	Result
ListView	listView;

ArrayList<String>	listItems	=	new	ArrayList<String>();

ArrayAdapter<String>	adapter;

	

@Override

public	void	onCreate(Bundle	savedInstanceState)	{

		super.onCreate(savedInstanceState);

		setContentView(R.layout.main);

		listView	=	(ListView)	findViewById(R.id.listView1);

		adapter	=

						new	ArrayAdapter<String>(this,

										R.layout.my_list_layout,	listItems);

		listView.setAdapter(adapter);

}

	

@Override

protected	void	onActivityResult(int	requestCode,

				int	resultCode,	Intent	intent)	{

		if	(resultCode	==	RESULT_OK)	{

				listItems.add(intent

								.getStringExtra(“reminder_text”));

				adapter.notifyDataSetChanged();

		}

}

The	code	in	Listing	2-5	refers	to	two	new	resources	—	namely,
R.id.listView1	and	R.layout.my_list_layout.	The	first	is	a	ListView
widget.	You	create	it	by	adding	a	<ListView>	element	to	your	main.xml
layout	file.	The	following	element	works	just	fine:
<ListView	android:id=”@+id/listView1”

										android:layout_height=”wrap_content”

										android:layout_width=”match_parent”>

</ListView>

The	R.layout.my_list_layout	resource	in	Listing	2-5	is	new	and

different.	This	layout	describes	an	item	in	the	list	view.	Android	uses	this
layout	many	times	(as	many	times	as	there	are	items	in	the	list	view).	So
create	a	res/layout/my_list_layout.xml	file,	and	put	the	code	from
Listing	2-6	into	the	file.

Listing	2-6:	The
res/layout/my_list_layout.xml	Document
<?xml	version=”1.0”	encoding=”utf-8”?>

<TextView	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:id=”@+id/identView”

				android:layout_width=”wrap_content”

				android:layout_height=”wrap_content”>

</TextView>

According	to	the	code	in	Listing	2-6,	each	list	view	item	has	its	own
text	view.	That’s	all!

With	the	Android	SDK,	you	don’t	add	an	item	directly	to	an
onscreen	list.	Instead,	you	add	items	to	a	Java	list	(an	ArrayList,	for
example).	Then	you	tie	the	Java	list	to	the	onscreen	list	using	an	adapter.
An	adapter	separates	your	code’s	business	logic	from	the	app’s	visible
presentation.	The	adapter	also	smooths	the	look	of	changes	in	the
onscreen	list.

In	Listing	2-5,	I	create	a	new	adapter	using	three	parts:
•	The	ever-present	context	—	namely,	this

	
•	The	list	view’s	layout	—	namely,	R.layout.my_list_layout

	
•	An	ArrayList	of	items

	
The	ArrayList	of	items	contains	Java	String	objects,	each	of

which	is	a	reminder	for	me	to	do	something	(such	as	Pay	your	taxes,
Take	out	the	trash,	or	Come	up	for	air).	The	new	adapter	contains
enough	information	to	connect	the	ArrayList	with	the	visible	listView
object.	Then,	still	in	Listing	2-5,	I	marry	the	ArrayList	to	the	listView
by	calling	listView.setAdapter(adapter).

When	the	code	in	Listing	2-3	finishes	running,	Android	calls	the
onActivity	Result	method	in	Listing	2-5.	The	onActivityResult

method	grabs	the	newly	created	result	and	adds	that	result	to	the	code’s
ArrayList	(the	listItems	object).	Finally,	to	make	sure	that	the	screen
knows	about	this	addition,	the	code	calls
adapter.notifyDataSetChanged().

	Calling	setAdapter	(as	in	Listing	2-5)	binds	a	Java	list	to	an
onscreen	list.	The	call	does	not	bind	one	variable	name	to	another.
So,	for	example,	in	Listing	2-5,	if	you	follow	the
listView.setAdapter(adapter)	call	with	a	second	adapter	=	new
ArrayAdapter	statement,	the	second	assignment	has	no	effect.

	The	code	in	Listing	2-5	overrides	an	onActivityResult
method.	For	several	nice	paragraphs	about	Android’s
onActivityResult	method,	see	Book	III,	Chapter	1.
After	all	is	said	and	done	(or	after	all	is	written	and	read;	or	all	is

developed,	published,	and	then	downloaded)	the	user	sees	a	screen	like
the	one	in	Figure	2-10.

	

Figure	2-10:	A	list	of	items	created	by	this	section’s	example.

Figure	2-10	illustrates	the	result	of	a	few	of	the	Add	Reminder	menu
item	selections.	(Refer	to	Figure	2-8.)	I	thought	for	a	while	about
illustrating	a	Honk	item	selection.	My	only	idea	was	to	ask	Wiley	to	add
a	little	speaker	to	this	page,	like	one	of	those	greeting	cards	that	plays

“Somewhere	My	Love”	when	you	open	it.	But	in	the	end,	I	didn’t	have
the	nerve	to	make	that	request.	What	do	you	think?	It’s	a	very	practical
idea,	isn’t	it?

Creating	a	Context	Menu
When	the	user	longpresses	a	view,	Android	displays	a	context	menu.

The	context	menu	hovers	above	the	current	activity	and	allows	users	to
choose	various	options.	(Refer	to	Figure	2-4.)

Making	the	context	menu	appear
Listing	2-7	contains	the	XML	document	describing	this	section’s

context	menu.

Listing	2-7:	The
res/menu/list_menu_item_longpress.xml
Document
<?xml	version=”1.0”	encoding=”utf-8”?>

<menu	xmlns:android=

						“http://schemas.android.com/apk/res/android”>

				<item	android:id=”@+id/menu_delete”										

										android:title=”@string/menu_delete”	/>

				<item	android:id=”@+id/make_noise2”										

										android:title=”Make	a	quacking	sound”	/>

</menu>

Notice	that	I	don’t	put	any	icon	attributes	in	this	menu.	Context
menus	don’t	have	icons.	They’re	simply	lists	of	menu	options	that	float
above	the	current	activity.

You	want	Android	to	inflate	Listing	2-7’s	menu	when	the	user
longpresses	a	list	view	item.	To	achieve	this,	you	make	two	connections:
•	Connect	the	listView	object	(declared	in	Listing	2-5)	with	context
menus	in	general.	You	do	this	by	adding	one	statement	to	Listing	2-5’s
onCreate	method.

	
registerForContextMenu(listView);

•	Connect	context	menus	in	general	with	the	menu	in	Listing	2-7.	Listing
2-8	shows	you	how.

	

Listing	2-8:	Handling	a	Long	Click
@Override

public	void	onCreateContextMenu(ContextMenu	menu,

				View	view,	ContextMenuInfo	menuInfo)	{

		super.onCreateContextMenu(menu,	view,	menuInfo);

		MenuInflater	inflater	=	getMenuInflater();

		inflater.inflate(R.menu.list_menu_item_longpress,

						menu);

}

Listing	2-8	is	very	much	like	the	code	used	in	Step	5	earlier	in	the
“Defining	the	XML	file”	section.	The	method	name	is	different,	and	the
method	in	Listing	2-8	doesn’t	return	a	boolean	value.	Other	than	that,	it’s
the	same	old	stuff.

Handling	context	menu	item	selections
To	handle	the	selection	of	a	context	menu	item,	add	the	code	from

Listing	2-9	to	your	main	activity.

Listing	2-9:	Responding	to	a	Context	Menu
Click
@Override

public	boolean	onContextItemSelected(MenuItem	item)	{

		

		switch	(item.getItemId())	{

		

		case	R.id.menu_delete:

				deleteReminder(item);

				return	true;

				

		case	R.id.make_noise2:

				MediaPlayer	mediaPlayer	=

								MediaPlayer.create(this,	R.raw.quack);

				mediaPlayer.start();

				return	true;

				

		}

		return	super.onContextItemSelected(item);

}

	

void	deleteReminder(MenuItem	item)	{

		AdapterContextMenuInfo	info	=

						(AdapterContextMenuInfo)	item.getMenuInfo();

		listItems.remove(info.position);

		adapter.notifyDataSetChanged();

}

Listing	2-9	looks	a	lot	like	Listings	2-1	and	2-2.	The	most
significant	difference	is	in	the	code	to	delete	a	list	view	item.	Listing	2-9
doesn’t	start	a	secondary	activity,	so	you	don’t	need	an	intent,	and	you
don’t	need	an	onActivityResult	method	like	the	one	in	Listing	2-5.

Grabbing	information	about	the	selected	list	view	item	is	one	step
more	complicated	that	you	might	expect.	The	reason	for	this	is	that
you’re	dealing	with	two	different	items	—	the	list	view	item	that	the	user
longpressed	and	the	context	menu	item	that	the	user	clicked.

In	Listing	2-9,	I	call	getMenuInfo	to	create	an
AdapterContextMenuInfo	instance.	Then	I	use	the	instance’s	public
position	field	to	tell	me	which	list	view	item	the	user	longpressed.	I
remove	the	list	view	item	corresponding	to	the	info.position	value.

More	Stuff	about	Lists
The	previous	sections	describe	list	views,	but	there	are	tons	more	to

lists	than	list	views.	This	section	covers	Android’s	ListActivity	class
and	shows	more	tricks	you	can	do	with	lists.

Creating	a	list	activity
On	a	typical	phone	screen,	you	might	not	have	room	to	add	a	list

view	to	an	existing	activity’s	layout.	An	alternative	is	to	create	a	separate
activity	containing	nothing	but	the	list.	This	strategy	is	so	commonly	used
that	the	makers	of	Android	created	a	special	class	for	it.	A	ListActivity
instance	is	an	activity	whose	sole	purpose	is	to	display	a	list.

And	speaking	of	lists,	Listing	2-10	lists	a	ListActivity’s	code.

Listing	2-10:	An	Activity	That’s	Also	a	List
package	com.allmycode.lists;

	

import	java.util.ArrayList;

	

import	android.app.ListActivity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.widget.ArrayAdapter;

	

public	class	MyListActivity	extends	ListActivity	{

	

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				Intent	intent	=	getIntent();

				String	isChecked	=

								intent.getData().getSchemeSpecificPart();

	

				ArrayList<Integer>	listItems	=

								new	ArrayList<Integer>();

				for	(int	i	=	0;	i	<	5;	i++)	{

						if	(isChecked.charAt(i)	==	’1’)	{

								listItems.add(i);

						}

				}

	

				setListAdapter(new	ArrayAdapter<Integer>(this,

								R.layout.my_list_layout,	listItems));

		}

}

The	code	in	Listing	2-10	extends	android.app.ListActivity,
which	is	a	subclass	of	Activity.	So	the	listing’s	MyListActivity	class	is
an	Android	activity.	But	notice	that	Listing	2-10	has	no	setContentView
call.	Instead,	a	ListActivity	instance	gets	its	layout	from	the	call	to
setListAdapter.	This	setListAdapter	call	is	strikingly	similar	to	some
code	in	Listing	2-5,	and	that’s	no	accident.	After	all,	a	list	is	a	list	is	a	list
(whatever	that	means).

Anyway,	Listings	2-5	and	2-10	even	use	the	same
R.layout.my_list_layout	resource	—	the	layout	described	in	Listing	2-
6.	Like	a	ListView	instance’s	layout,	a	ListActivity	instance’s	layout
describes	only	one	list	item.

	This	section’s	example	works	best	if	you	start	a	brand-new
project	for	Listing	2-10.	That	being	the	case,	copy	the
res/layout/my_list_layout.xml	file	from	Listing	2-6	to	this
section’s	project.
The	code	in	Listing	2-10	isn’t	the	project’s	main	activity.	So	to	get

information	about	the	list’s	contents,	the	main	activity	passes	an	intent
containing	a	URI	of	the	following	kind:
checked:01011

I	made	up	this	opaque	URI	format	in	order	to	pass	five	yes-or-no
values	from	the	main	activity	to	the	list	activity.	With	the	01011	URI,	the
list	activity’s	screen	looks	like	the	stuff	in	Figure	2-11.

	

Figure	2-11:	The	result	of	sending	checked:	01011	to	this	section’s	list	activity.

The	sequence	01011	is	my	way	of	representing	“no”	0,	“yes”	1,	“no”
2,	“yes”	3,	and	“yes”	4.	So	the	numbers	1,	3,	and	4	appear	as	items	in	the
list.	The	loop	in	Listing	2-10	picks	the	0s	and	1s	out	of	the	incoming
intent’s	URI.

Here’s	one	more	thing	to	remember	about	this	section’s	list	activity.
The	activity’s	incoming	intent	has	my	made-up	checked	data	scheme.	So
in	the	project’s	AndroidManifest.xml	document,	I	specify	the	checked
scheme	in	the	list	activity’s	intent	filter:
<activity	android:name=”.MyListActivity”>

				<intent-filter>

								<data	android:scheme=”checked”	/>

				</intent-filter>

</activity>

A	client	for	the	list	activity
Listing	2-11	contains	the	code	for	a	main	activity.	This	main	activity

gives	the	user	a	way	to	fire	up	the	app’s	list	activity.

Listing	2-11:	Code	to	Trigger	the	List	Activity
package	com.allmycode.lists;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.net.Uri;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.CheckBox;

	

public	class	MainActivity	extends	Activity	{

				CheckBox[]	checkBoxes	=	new	CheckBox[5];

		

				@Override

				public	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								setContentView(R.layout.main);

								checkBoxes[0]	=	(CheckBox)	findViewById(R.id.a);

								checkBoxes[1]	=	(CheckBox)	findViewById(R.id.b);

								checkBoxes[2]	=	(CheckBox)	findViewById(R.id.c);

								checkBoxes[3]	=	(CheckBox)	findViewById(R.id.d);

								checkBoxes[4]	=	(CheckBox)	findViewById(R.id.e);

				}

				

				public	void	onShowListClick(View	view)	{

						Intent	intent	=

										new	Intent(this,	MyListActivity.class);

	

						StringBuffer	isChecked	=	new	StringBuffer(“”);

	

						for	(CheckBox	box	:	checkBoxes)	{

								isChecked.append(box.isChecked()	?	“1”	:	“0”);

						}

						intent.setData(Uri.parse(“checked:”

										+	isChecked.toString()));

	

						startActivity(intent);

				}

}

Listing	2-11	maintains	an	array	of	CheckBox	instances.	A	loop
composes	a	string	of	0s	and	1s	from	the	states	of	the	five	boxes.	Then
Listing	2-11	wraps	these	0s	and	1s	in	an	intent’s	URI,	and	passes	the
intent	to	the	list	activity.

Listing	2-12	describes	the	main	activity’s	layout,	and	Figure	2-12
shows	the	layout	as	it	appears	on	the	user’s	screen.

Listing	2-12:	The	res/layout/main.xml
Document
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:orientation=”vertical”

				android:layout_width=”fill_parent”

				android:layout_height=”fill_parent”

				android:gravity=”center_horizontal”>

				

				<CheckBox	android:id=”@+id/a”

														android:text=”@string/box0”

														android:layout_height=”wrap_content”

														android:layout_width=”wrap_content”>

				</CheckBox>

				<CheckBox	android:id=”@+id/b”

														android:text=”@string/box1”

														android:layout_height=”wrap_content”

														android:layout_width=”wrap_content”>

				</CheckBox>

				<CheckBox	android:id=”@+id/c”

														android:text=”@string/box2”

														android:layout_height=”wrap_content”

														android:layout_width=”wrap_content”>

				</CheckBox>

				<CheckBox	android:id=”@+id/d”

														android:text=”@string/box3”

														android:layout_height=”wrap_content”

														android:layout_width=”wrap_content”>

				</CheckBox>

				<CheckBox	android:id=”@+id/e”

														android:text=”@string/box4”

														android:layout_height=”wrap_content”

														android:layout_width=”wrap_content”>

				</CheckBox>

														

				<Button	android:text=”@string/show_list”

												android:onClick=”onShowListClick”

												android:layout_height=”wrap_content”

												android:id=”@+id/button1”

												android:layout_width=”wrap_content”>

				</Button>

				

</LinearLayout>

	

Figure	2-12:	The	user	selects	values	to	send	to	the	list	activity.

Displaying	Two	(or	More)	Values	in	a	List
When	you	display	a	list	on	the	user’s	screen,	you	often	display	more

than	one	value	per	entry.	Maybe	each	entry	has	a	title	and	a	subtitle,	or	a
keyword	and	an	icon.	Anyway,	the	preceding	section’s	list	has	only	one
value	in	each	list	entry.	Displaying	more	than	one	value	is	both	easy	and
difficult.	(Huh?)

It’s	easy	because	switching	from	single-value	entries	to	multi-value
entries	doesn’t	involve	any	large	strategy	changes	in	your	code.	You	still
have	a	Java	list,	an	onscreen	list,	and	an	adapter.	Whatever	tricks	you	use

to	pass	data	to	a	list	activity	work	equally	well	with	both	single-and
multi-value	entries.

Displaying	more	than	one	value	is	difficult	because	you	have	to
wield	a	complicated	data	structure	in	which	the	Java	list	meshes	with	the
onscreen	list.	Figure	2-13	describes	the	situation.

A	Java	map	is	a	list	of	key/value	pairs.	To	create	an	adapter,	you
create	a	Java	list	of	maps.	Each	map	in	the	Java	list	represents	one	entry
in	the	onscreen	list.

So	now	the	trick	is	to	tell	Android	how	one	map	turns	into	one
onscreen	entry.	To	do	this,	you	create	two	arrays	—	an	array	containing
the	map	key	names	and	an	array	containing	an	entry’s	views.	Android
associates	the	key	names	with	the	views	as	if	they’re	partners	in	a	contra
dance.	Listing	2-13	contains	the	code.

	

Figure	2-13:	An	adapter	for	the	list	in	this	section’s	code.

Listing	2-13:	Putting	Two	Values	in	Each	List

Entry
package	com.allmycode.lists;

	

import	java.util.ArrayList;

import	java.util.HashMap;

	

import	android.app.ListActivity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.widget.SimpleAdapter;

	

public	class	MyListActivity	extends	ListActivity	{

	

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				Intent	intent	=	getIntent();

				String	isChecked	=

								intent.getData().getSchemeSpecificPart();

	

				ArrayList<HashMap<String,	String>>	data	=

								new	ArrayList<HashMap<String,	String>>();

	

				for	(int	i	=	0;	i	<	5;	i++)	{

						if	(isChecked.charAt(i)	==	‘1’)	{

								HashMap<String,	String>	map	=

												new	HashMap<String,	String>();

								map.put(“number”,	Integer.toString(i));

								map.put(“letter”,

												(new	Character((char)	(i	+	65))).toString());

								data.add(map);

						}

				}

	

				String[]	columnNames	=	{	“number”,	“letter”	};

				int[]	textViews	=	new	int[2];

				textViews[0]	=	R.id.numberView;

				textViews[1]	=	R.id.letterView;

	

				setListAdapter(new	SimpleAdapter(this,	data,

								R.layout.my_list_layout,	columnNames,	textViews));

		}

	

		static	final	String

						letterToIntegerString(String	letter)	{

				return	Integer

								.toString((int)	(letter.charAt(0)	-	65));

		}

}

This	section’s	example	uses	the	main	activity	from	Listing	2-11.
Other	than	the	enhanced	list	activity	in	Listing	2-13,	the	only	other
change	from	single-valued	to	double-valued	entries	is	the	use	of	a	new
layout.	The	new	layout	for	a	list	entry	(see	Listing	2-14)	has	two	text
views	instead	of	one.

Listing	2-14:	A	res/layout/my_list_layout.xml
Document	with	Two	Text	Views
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”

				android:orientation=”horizontal”>

				

				<TextView	android:id=”@+id/numberView”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”></TextView>

				<TextView	android:id=”@+id/letterView”

								android:layout_width=”wrap_content”

								android:layout_height=”wrap_content”

								android:padding=”20dp”></TextView>

								

</LinearLayout>

Listing	2-13	puts	into	code	what	Figure	2-13	illustrates	with	a
drawing.	The	most	noteworthy	feature	in	Listing	2-13	is	the	use	of	a
SimpleAdapter.	Unlike	the	ArrayAdapter	of	Listing	2-10,	a
SimpleAdapter	can	handle	multi-value	list	entries.

	To	connect	an	onscreen	list	with	the	rows	in	a	database
table,	use	the	android.widget.SimpleCursorAdapter.
Figure	2-14	shows	the	result	of	sending	the	numbers	1,	3,	and	4	to

this	section’s	list	activity.	To	keep	the	example	tidy,	I	don’t	do	anything
fancy	to	associate	a	second	value	with	each	number.	Instead,	I	call	my
letterTo	IntegerString	method.	The	method	converts	from	int	values
0,	1,	2,	3,	and	4	to	char	values	‘A’,	‘B’,	‘C’,	‘D’,	and	‘E’.

	

Figure	2-14:	A	list	with	two	values	in	each	entry.

Notifying	the	User
One	of	Android’s	cool	features	is	its	status	bar.	On	a	small-screen

phone,	the	status	bar	appears	at	the	top	of	the	screen.	The	user	drags	the
bar	downward	to	see	all	the	current	notifications.	(See	Figure	2-15.)	On	a
big-screen	tablet,	the	status	bar	appears	near	the	lower-right	corner.	The
user	taps	the	lower-right	corner	to	make	notifications	appear.	(See	Figure
2-16.)

In	this	section,	you	add	notifications	to	the	device’s	status	bar.	In
addition	to	its	visual	elements,	a	notification	can	have	its	own	intent.	The
intent	triggers	an	activity	when	the	user	clicks	the	notification.

	

Figure	2-15:	Notifications	on	a	small-screen	phone.

	

Figure	2-16:	Notifications	on	a	tablet	device.

Notify	the	user	on	any	device
In	the	previous	sections,	you	create	a	list	activity	from	a	bunch	of

check	boxes.	But	in	those	sections,	the	list	items	are	passive.	If	the	user
clicks	an	item,	nothing	happens.	(Well,	the	user	smudges	the	screen	at	bit,
but	that	doesn’t	count.)

This	section	adds	code	to	the	activity	in	Listing	2-10.	The	new	code,
which	responds	to	the	clicking	of	a	list	item,	is	in	Listing	2-15.

Listing	2-15:	Using	the	onListItemClick
Method
package	com.allmycode.lists;

	

import	java.util.ArrayList;

	

import	android.app.ListActivity;

import	android.app.Notification;

import	android.app.NotificationManager;

import	android.app.PendingIntent;

import	android.content.Context;

import	android.content.Intent;

import	android.net.Uri;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.ArrayAdapter;

import	android.widget.ListView;

	

public	class	MyListActivity	extends	ListActivity	{

		int	notificationNumber	=	0;

		NotificationManager	notificationMgr;

	

		/*	Code	copied	from	Listing	2-10...	*/

	

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				Intent	intent	=	getIntent();

				String	isChecked	=

								intent.getData().getSchemeSpecificPart();

	

				ArrayList<Integer>	listItems	=

								new	ArrayList<Integer>();

				for	(int	i	=	0;	i	<	5;	i++)	{

						if	(isChecked.charAt(i)	==	’1’)	{

								listItems.add(i);

						}

				}

	

				setListAdapter(new	ArrayAdapter<Integer>(this,

								R.layout.my_list_layout,	listItems));

		}

	

		/*	Code	to	respond	to	a	list	item	click...	*/

	

		@Override

		public	void	onListItemClick(ListView	listView,

						View	view,	int	position,	long	id)	{

	

				makeNewNotification(listView,	position);

		}

	

		/*	Code	to	create	a	status	bar	notification...	*/

	

		private	void	makeNewNotification(ListView	listView,

						int	position)	{

	

				String	numberValue	=

								((Integer)	listView.getItemAtPosition(position))

												.toString();

	

				Notification	notification	=	new	Notification();

				notification.icon	=

								android.R.drawable.ic_menu_info_details;

				notification.flags	=	Notification.FLAG_AUTO_CANCEL;

	

				Intent	intent	=

								new	Intent(this,	YetAnotherActivity.class);

				intent.setData(Uri.parse(“number:”	+	numberValue));

				intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

				PendingIntent	pendingIntent	=

								PendingIntent.getActivity(this,	0,	intent,	0);

	

				notification.setLatestEventInfo(this,	“Look!”,

								numberValue,	pendingIntent);

	

				notificationMgr	=	(NotificationManager)

								getSystemService(Context.NOTIFICATION_SERVICE);

	

				notificationMgr.notify(notificationNumber++,

								notification);

		}

	

		@Override

		public	void	onDestroy()	{

				super.onDestroy();

				for	(int	i	=	0;	i	<=	notificationNumber;	i++)	{

						notificationMgr.cancel(i);

				}

		}

}

To	respond	to	a	list	item	click,	simply	add	an	onListItemClick
method	to	your	code.	This	section’s	example	uses	two	of	the	method’s

four	parameters	—	namely,	the	list	view	that	the	user	clicked	and	the
position	number	of	the	clicked	entry.	In	Listing	2-15,	I	pass	those
parameters’	values	to	my	homegrown	makeNewNotification	method.

All	the	excitement	surrounding	the	status	bar	is	inside	my	makeNew
Notification	method.	Here’s	what	happens	inside	the	method:
•	Using	the	list	view’s	getItemAtPostion	method,	I	find	the	number
value	of	the	list	item	that	the	user	clicked.	I	store	this	value	for	safe-
keeping	in	my	numberValue	string.

	
•	I	create	a	new	android.app.Notification	instance,	and	assign	values
to	the	instance’s	icon	and	flags	fields:

	
•	The	icon	field’s	int	value	refers	to	one	of	Android’s	standard	icons.

	
•	The	flags	field’s	FLAG_AUTO_CANCEL	value	tells	Android	to	remove	the

notification	after	the	user	clicks	the	notification.
	

	This	example	has	several	kinds	of	things	for	the	user	to
click.	The	user	clicks	a	list	item	to	create	a	notification	in	the	status	bar.
The	user	can	also	click	one	of	the	notifications.	That	is,	the	user	can	click
one	of	the	Look!	entries	in	Figure	2-15	or	Figure	2-16.

	

	In	the	Android	SDK,	you	don’t	often	assign	values	directly
to	an	object’s	fields.	That’s	why,	in	Listing	2-15,	the	direct	assignments
to	notification.	icon	and	to	notification.flags	might	look	strange.
In	fact,	they	are	strange!	Object-oriented	programmers	don’t	like	messing
with	public	fields	from	other	people’s	classes.	Public	fields	that	aren’t
final	don’t	shield	the	object’s	data.	Anyway,	if	these	assignments	in
Listing	2-15	give	you	the	willies,	just	be	patient.	Everything’s	better	in

this	chapter’s	final	section.
	

•	Continuing	on	the	tour	of	Listing	2-15,	the	next	step	in	displaying	a
notification	is	to	create	an	intent:

	
•	The	intent’s	purpose	is	to	invoke	YetAnotherActivity.

	
•	The	intent	has	a	URI,	such	as	number:3,	indicating	that	the	user	clicked

either	the	topmost	or	bottommost	notification	in	Figure	2-15.
	

	The	code	in	Listing	2-15	does	not	start	an	instance	of
YetAnotherActivity.

	
•	The	code	in	Listing	2-15	turns	the	YetAnotherActivity	intent	into	a
pending	intent.	A	pending	intent	is	an	intent	that	one	component	asks
another	component	to	execute.

	
•	With	the	call	to	notification.setLatestEventInfo,	the	code	attaches
the	pending	intent	to	a	new	status	bar	notification.

	
The	setLatestEventInfo	method	has	four	parameters:

	
•	The	first	parameter	(this)	is	a	context.	(So	what	else	is	new?)

	
•	The	second	parameter	(“Look!”)	is	the	title	to	be	displayed	on	the	new

notification.	(See	Figures	2-15	and	2-16.)
	

•	The	third	parameter	(numberValue)	is	the	text	to	be	displayed	on	the
new	notification	(for	example,	the	number	1	or	the	number	3	shown	in
Figure	2-15).

	
•	The	fourth	parameter	is	the	pending	intent	—	the	intent	that	Android

executes	if	and	when	the	user	clicks	the	notification.
	

•	Finally,	the	code	grabs	hold	of	a	notification	manager	and	calls	the
manager’s	notify	method.	Calling	the	notify	method	places	the
notification	in	the	device’s	status	bar.

	
The	notify	method	has	two	parameters:

	
•	After	all	the	fuss	in	this	section	about	creating	a	notification	object,

the	method’s	second	parameter	(the	notification	itself)	is	old	news.
	

•	The	notify	method’s	first	parameter	is	an	int	value.	This	int	value	—
a	notification’s	ID	number	—	identifies	the	notification	for	future
reference.	For	example,	the	onDestroy	method	in	Listing	2-15	uses	ID
numbers	to	cancel	all	the	notifications.

	

	Notifications’	ID	numbers	don’t	cross	application
boundaries.	If	two	different	applications	create	notifications	with	ID
number	1,	there’s	no	conflict.	But	within	an	application,	ID	numbers
shouldn’t	conflict.	If	you	call	notificationMgr.notify	twice	with
the	same	ID	number,	Android	replaces	the	first	notification	with	the
second.	Only	one	of	the	two	notifications	appears	in	the	status	bar.

	

	By	the	time	Android	calls	the	onDestroy	method	in	Listing
2-15,	some	of	the	original	notifications	may	have	already	been
canceled.	(The	notification’s	FLAG_AUTO_CANCEL	value	does	some	of
that	housekeeping.)	Fortunately,	nothing	bad	happens	when	you	try	to
cancel	a	nonexistent	notification.

	

In	case	you’re	wondering,	Listing	2-16	contains	my
YetAnotherActivity	code.	In	the	YetAnotherActivity	class,	I	grab	the
notification’s	number	and	display	it	on	the	screen.

Listing	2-16:	Using	the	Result	of	the	Pending
Intent
package	com.allmycode.lists;

	

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.widget.TextView;

	

public	class	YetAnotherActivity	extends	Activity	{

		TextView	textView;

	

		@Override

		public	void	onCreate(Bundle	b)	{

				super.onCreate(b);

				setContentView(R.layout.yet_another_layout);

				textView	=	(TextView)	findViewById(R.id.textView1);

	

				Intent	intent	=	getIntent();

	

				String	numberValue	=

								intent.getData().getSchemeSpecificPart();

	

				textView.setText(“You	selected	“	+	numberValue	+	“.”);

		}

}

Notify	the	user	on	Honeycomb	and	beyond
The	preceding	section’s	code	works	on	almost	any	version	of

Android.	But	the	code	is	a	bit	clunky.	So	Android’s	overseers	recommend
that	you	chuck	some	of	the	clunky	code	in	favor	of	Honeycomb’s
Notification.Builder	class.

	The	Builder	class	is	an	inner	class	of	the	Notification
class.
So	if	your	target	device	runs	Honeycomb	or	better,	don’t	create

notifications	the	way	your	grandparents	did.	Instead,	use	the	code	in
Listing	2-17.

Listing	2-17:	The	Modern	Way	to	Create	a
Status	Bar	Notification
		private	void	makeNewNotification(ListView	listView,

						int	position)	{

	

				String	numberValue	=

								((Integer)	listView.getItemAtPosition(position))

												.toString();

	

				Notification.Builder	builder	=

								new	Notification.Builder(this);

				builder.setSmallIcon

								(android.R.drawable.ic_menu_info_details);

				builder.setAutoCancel(true);

	

				Intent	intent	=

								new	Intent(this,	YetAnotherActivity.class);

				intent.setData(Uri.parse(“number:”	+	numberValue));

				intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

				PendingIntent	pendingIntent	=

								PendingIntent.getActivity(this,	0,	intent,	0);

	

				builder.setContentIntent(pendingIntent);

				builder.setContentTitle(“Look!”);

				builder.setContentText(numberValue);

	

				notificationMgr	=	(NotificationManager)

								getSystemService(Context.NOTIFICATION_SERVICE);

	

				notificationMgr.notify(notificationNumber++,

								builder.getNotification());

		}

In	Listing	2-17,	I	set	the	new	Notification.Builder	statements	in
boldface	type.	The	new	statements	are	cleaner	and	safer	because	they
don’t	rely	on	a	notification	instance’s	public	fields.	What	a	relief!

	

Chapter	3:	An	Android	Potpourri

In	This	Chapter
Programming	Android	to	make	phone	calls
Working	with	text	messages	and	device	sensors
Responding	to	multitouch	events
Drawing	things
Distracting	the	user	with	a	progress	bar

Putting	Java	threads	to	good	use
	

A	potpourri	is	an	assortment	—	a	little	of	this	and	a	little	of	that.	It’s
a	mixture	of	pleasant	things	related	in	one	way	or	another,	but	not
dependent	on	one	another.	It’s	a	medley	of	songs	or	a	bunch	of	nice-
smelling	dried	plants.	It’s	a	salmagundi	with	meats,	eggs,	vegetables,
fruits,	and	nuts.	It’s	a	pastiche	such	as	Queen’s	“Bohemian	Rhapsody.”
It’s	a	plate	of	gefilte	fish	with	a	mix	of	carp,	pike,	perch,	salmon,	mullet,
whitefish,	and	other	things	whose	odors	form	an	orange	haze	that	spreads
throughout	the	house.	But	in	this	book,	a	potpourri	is	a	collection	of
useful	programming	goodies.

Making	Phone	Calls
Before	smartphones	came	along,	the	most	techno-savvy	people

around	carried	personal	digital	assistants	(PDAs).	A	PDA	(a	PalmPilot	or
an	iPAQ	with	Windows	CE)	did	many	of	the	things	that	today’s
smartphones	do.	But	the	early	PDAs	didn’t	make	phone	calls.	So	they
didn’t	catch	on	with	the	general	public.

An	explosion	in	mobile	device	usage	came	when	companies	merged
computing	with	telephony.	In	retrospect,	it’s	not	surprising.	After	all,
communication	is	a	“killer	app.”	People	need	to	share.	People	talk	to
friends,	arrange	meetings,	send	photos,	and	post	recommendations.
Exchanging	ideas	is	one	of	humanity’s	greatest	strengths.

This	section	puts	the	phone	in	smartphone.

Two	ways	to	initiate	a	call
Making	a	phone	call	requires	two	steps:
1.	Dial	a	phone	number.

	 2.	Press	the	Call	button.
	 Accordingly,	Android	has	two	intent	actions	—	one	for	dialing	and

another	for	calling.	This	section’s	code	in	Listing	3-1	illustrates	both
situations.

Listing	3-1:	Dialing	and	Calling
package	com.allmycode.samples;

	

import	android.app.Activity;

import	android.app.AlertDialog;

import	android.content.Context;

import	android.content.DialogInterface;

import	android.content.Intent;

import	android.net.Uri;

import	android.os.Bundle;

import	android.telephony.TelephonyManager;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

	

public	class	MyActivity	extends	Activity	implements

				OnClickListener	{

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

	

				((Button)	findViewById(R.id.dialButton))

								.setOnClickListener(this);

				((Button)	findViewById(R.id.callButton))

								.setOnClickListener(this);

		}

	

		@Override

		public	void	onClick(View	view)	{

				boolean	isOk	=	true;

				Intent	intent	=	new	Intent();

	

				if	(!deviceIsAPhone())	{

						displayAlert();

						isOk	=	false;

				}

	

				if	(isOk)	{

						switch	(view.getId())	{

						case	R.id.dialButton:

								intent.setAction(Intent.ACTION_DIAL);

								break;

						case	R.id.callButton:

								intent.setAction(Intent.ACTION_CALL);

								break;

						default:

								isOk	=	false;

						}

						intent.setData(Uri.parse(“tel:234-555-6789”));

				}

	

				if	(isOk)	{

						startActivity(intent);

				}

		}

	

		boolean	deviceIsAPhone()	{

				TelephonyManager	manager	=	(TelephonyManager)

								getSystemService(Context.TELEPHONY_SERVICE);

				return	manager.getPhoneType()	!=

																			TelephonyManager.PHONE_TYPE_NONE;

		}

	

		void	displayAlert()	{

				AlertDialog.Builder	alertBuilder	=

								new	AlertDialog.Builder(this);

				alertBuilder

						.setTitle(”Not	a	telephone!”)

						.setMessage(”This	device	can’t	phone	make	calls!”)

						.setPositiveButton(”OK”,	new	MyDialogListener())

						.show();

		}

	

		class	MyDialogListener	implements

						DialogInterface.OnClickListener	{

				public	void	onClick(DialogInterface	dialog,

								int	whichButton)	{

				}

		}		

}

Before	testing	the	code	in	Listing	3-1,	I	lay	out	the	main	activity’s
screen	as	shown	in	Figure	3-1.

When	I	run	the	code	and	press	the	activity’s	Dial	button,	I	see	my
phone’s	familiar	dialer.	The	dialer	has	my	fake	phone	number	234-555-
6789	at	the	top	of	the	screen,	just	waiting	for	me	to	press	the	little	phone
icon.	(See	Figure	3-2.)

	

Figure	3-1:	The	main	layout	for	the	code	in	Listing	3-1.

	

Figure	3-2:	The	result	of	clicking	the	Dial	button.

(If	your	ego	needs	a	lift,	dialing	a	phone	number	with	the	fake	555
exchange	makes	you	feel	like	an	actor	in	a	Hollywood	movie.)

Pressing	the	activity’s	Call	button	is	another	story.	Pressing	the	Call
button	in	Figure	3-1	takes	me	immediately	to	the	calling	screen	in	Figure
3-3.

	To	start	an	activity	with	Intent.ACTION_CALL,	your	app
must	have	“android.permission.CALL_PHONE”.	(You	need	no
special	permission	for	Intent.ACTION_DIAL.)

The	basic	strategy	in	Listing	3-1	isn’t	complicated.	You	create	an
intent	with	action	Intent.ACTION_DIAL	(or	Intent.ACTION_CALL).	You
add	a	tel	URI	to	the	intent	and	then	call	startActivity.

In	Listing	3-1,	you	can	modify	the	tel	URI	so	that	the	URI	has	no
scheme-specific	part:
intent.setData(Uri.parse(“tel:”));

	

Figure	3-3:	The	result	of	clicking	the	Call	button.

	To	read	more	than	you	ever	wanted	to	know	about	URIs	and
scheme-specific	parts,	see	Book	III,	Chapter	2.

intent.setData(Uri.parse(“tel:”));

Modifying	the	tel	URI	in	this	fashion	changes	the	way
Intent.ACTION_DIAL	works.	Now	the	phone	launches	the	dial	screen
with	no	phone	number.	(See	Figure	3-4.)	The	user	enters	a	phone	number
and	then	presses	the	Call	button.

	

Figure	3-4:	A	blank	dialer.

If	you	combine	“tel:”	with	Intent.ACTION_CALL,	Android	tries	to
place	a	call	with	no	phone	number.	(It’s	a	call	to	“nowhere”	—	the	stuff
science-fiction	plots	are	made	of.)	The	result	on	my	phone	is	a	dialog	box
warning	me	that	something’s	very	wrong.	(See	Figure	3-5.)

	

Figure	3-5:	Trying	to	dial	no	one	in	particular.

Oops!	No	phone
Some	Android	devices	aren’t	phones.	Running	the	preceding

section’s	example	on	a	ten-inch	tablet	is	like	trying	to	call	Paris	using	a
can	opener.	You	might	expect	users	to	know	this,	but	life	is	complicated,
and	users	have	other	things	to	think	about.	(Doesn’t	everyone?)

It’s	best	to	anticipate	the	worst	and	to	remind	users	when	they	press
the	wrong	buttons.	So	in	Listing	3-1,	I	add	code	to	check	for	“phone-
ness.”	I	display	an	alert	if	the	user	tries	to	make	a	call	from	an	Android-
based	dishwasher.

What	kind	of	phone	is	this?
In	Listing	3-1,	the	deviceIsAPhone	method	gets	a

TelephonyManager.	Then	the	method	uses	the	TelephonyManager	to
check	the	device’s	phone	type.

The	phone	type	options	are	PHONE_TYPE_GSM,	PHONE_TYPE_CDMA,
PHONE_TYPE_SIP,	and	PHONE_TYPE_NONE.
•	Global	System	for	Mobile	Communications	(GSM):	It’s	used	by	most
of	the	world’s	carriers,	including	AT&T	and	T-Mobile	in	the	United

States.
	

•	Code	Division	Multiple	Access	(CDMA):	It’s	used	in	the	United	States
by	carriers	Sprint	and	Verizon.

	
•	Session	Initiation	Protocol	(SIP):	It’s	a	telephone	standard	based	on
Internet	packets.	SIP	isn’t	commonly	used	on	commercial	mobile	phones.

	
•	The	value	PHONE_TYPE_NONE	applies	to	devices	with	no	telephony
capabilities.	It’s	the	telephone	standard	used	by	tablet	devices,	rocks,
table	lamps,	ham	sandwiches,	and	other	things	that	neither	place	nor
receive	phone	calls.

	

I	need	your	attention
In	Listing	3-1,	the	displayAlert	method	creates	the	dialog	box

shown	in	Figure	3-6.

	

Figure	3-6:	An	alert	dialog	box.

An	alert	dialog	box	can	have	one,	two,	or	three	buttons.	If	you	use
the	AlertDialog.Builder	class	to	construct	an	alert	dialog	box,	the
buttons’	names	are	positive,	negative,	and	neutral.	(So,	for	example,

to	create	a	NO	button,	you	call	alertBuilder.setNegativeButton.)
If	you	skip	the	AlertDialog.Builder	class	and	instead	call	the

Alert	Dialog	class’s	methods,	the	corresponding	method	calls	are
setButton,	setButton2,	and	setButton3.

The	displayAlert	method	in	Listing	3-1	illustrates	an	interesting
feature	of	Android’s	builder	classes.	A	builder	has	setter	methods,	and
each	setter	method	returns	a	newly	modified	builder.	For	example,	you
start	with	a	vanilla	new	AlertDialog.Builder(this).	You	assign	the
new	builder	to	your	alertBuilder	variable.	Then	you	call
alertBuilder.setTitle,	which	returns	a	builder	whose	title	is	“Not	a
telephone!”	To	this	enhanced	builder	you	apply	setMessage,	returning	a
builder	with	title	“Not	a	telephone!”	and	message	“This	device
can’t	make	phone	calls!”

The	chain	continues	until	you	feed	a	builder	to	the	show	method.
The	show	method	displays	the	dialog	box	created	by	the	builder.

	An	example	in	Chapter	2	of	this	minibook	uses	the
Notification.Builder	class.	In	that	example,	I	don’t	use	the	result
returned	by	each	of	the	builder’s	setter	methods.	The	choice	to	use
(or	not	use)	a	builder’s	return	results	is	simply	a	matter	of	taste.

	In	Listing	3-1,	I	check	for	the	presence	of	telephony
hardware	using	Android’s	TelephonyManager.	In	the	first	draft	of
this	section’s	code,	I	relied	on	the	PackageManager	class	as	follows:

PackageManager	manager	=	getPackageManager();

ComponentName	name	=	intent.resolveActivity(manager);

return	name	!=	null;

As	strategies	go,	this	first	draft	wasn’t	a	bad	one.	An	intent’s
resolveActivity	method	tells	you	which	activity,	if	any,	has	an	intent
filter	matching	the	intent.	But	the	plan	stumbled	when	I	learned	that	my
device’s	Contacts	app	matches	the	phone	intents.	When	I	ran	the	code	on
a	tablet	device,	I	expected	to	see	the	“Not	a	telephone!”	dialog	box.
Instead,	the	device	offered	to	add	the	new	phone	number	to	my	Contacts

list.	Okay.	No	harm	done.

On	being	a	dialer
In	Listing	3-1,	you	call	startActivity	to	invoke	the	default

Android	dialer.	You	can	also	become	a	dialer	by	adding	stuff	to	your
activity’s	intent	filter.	(See	Listing	3-2.)	A	quick	search	on	the	Android
shows	that	many	developers	create	alternatives	to	the	standard	system
dialer.	I	see	dialers	integrated	with	enhanced	contacts	lists,	dialers
customized	for	particular	businesses,	old-style	rotary	dialers,	dialers
designed	for	sliding	your	fingers	across	the	keys,	dialers	that	play	music,
and	many	more.

Listing	3-2:	Responding	to	a	Dial	Intent
<activity	android:name=”.DialerActivity”>

		<intent-filter>

				<action	android:name=”android.intent.action.DIAL”	/>

				<category

						android:name=”android.intent.category.DEFAULT”	/>

				<data	android:scheme=”tel”	/>

		</intent-filter>

</activity>

The	value	of	the	constant	Intent.ACTION_DIAL	(used	in	Listing	3-1)
is	the	string	“android.intent.action.DIAL”.

	In	Java	code,	you	can	use	either	the	constant
Intent.ACTION_DIAL	or	the	string	“android.intent.action.DIAL”.
But	in	the	AndroidManifest.xml	document,	you	must	use	the	string.
Listing	3-2	also	contains	a	<data>	element,	and	without	this	<data>

element,	the	code	is	worthless.	Any	app	that	invokes	a	dialer	sends
dialing	information	(empty	or	not)	as	part	of	the	intent.	The	dialing
information	is	a	URI	with	the	tel	scheme.	If	an	intent’s	data	has	a
scheme,	a	matching	intent	filter	must	have	the	same	scheme.

	To	read	all	about	the	matching	of	intents	and	intent	filters,
see	Book	III,	Chapter	2.

Keep	an	eye	on	the	phone
The	android.telephony	package	has	a	useful	PhoneStateListener

class.	With	this	class,	you	can	“listen	in”	on	a	phone’s	state	transitions.
Here’s	a	code	snippet:
PhoneStateListener	listener	=	new	PhoneStateListener()	{

		private	static	final	String	CLASSNAME	=

						“PhoneStateListener”;

	

		@Override

		public	void	onCallStateChanged(int	state,

						String	incomingNumber)	{

				String	stateString	=	“N/A”;

				switch	(state)	{

				case	TelephonyManager.CALL_STATE_IDLE:

						stateString	=	“Idle”;

						break;

				case	TelephonyManager.CALL_STATE_OFFHOOK:

						stateString	=	“Off	Hook”;

						break;

				case	TelephonyManager.CALL_STATE_RINGING:

						stateString	=	“Ringing”;

						break;

				}

				Log.i(CLASSNAME,	stateString);

		}

};

Android	calls	the	listener’s	onCallStateChanged	method	when	an
incoming	call	arrives.

	With	an	emulator,	you	can	simulate	an	incoming	call	using

Eclipse’s	Emulator	Control	view.	The	view	is	visible	by	default	in
the	DDMS	perspective.
The	listener’s	other	useful	methods	include

onCellLocationChanged,	onDataActivity,
onDataConnectionStateChanged,	and	onSignal	StrengthsChanged.	To
use	any	of	these	methods,	you	must	add	the	following	element	to	your
AndroidManifest.xml	document:
<uses-permission

				android:name=”android.permission.READ_PHONE_STATE”>

</uses-permission>

Sending	a	Text	Message
Where	I	come	from,	people	send	“text	messages”	to	one	another.

Apparently,	the	rest	of	the	world	calls	this	SMS	(Short	Messaging
Service).	Whatever	you	call	it,	the	business	of	sending	brief,	phone-to-
phone	messages	is	an	important	feature	of	today’s	communications.

Listing	3-3	shows	you	how	an	Android	program	sends	a	text
message.

What’s	an	SMS	service	center?
	When	you	send	a	text	message,	the	message	goes	first	to	a	service

center.	The	service	center	stores	the	message	before	forwarding	it
to	the	desired	recipient.
This	store	and	forward	mechanism	might	sound	cumbersome.	But
the	reality	is,	text	messages	aren’t	synchronous.	When	you	talk	on
the	phone,	you	interact	in	real	time	with	another	voice.	But	when
you	send	a	text	message,	the	other	person	might	not	read	the
message	immediately.	Indeed,	the	recipient’s	phone	might	be
turned	off.
Because	of	this	gap	in	timing,	text	messaging	requires	a	buffer	—
a	service	center.	If	it	weren’t	for	this	buffer,	messages	that	weren’t
processed	immediately	would	never	be	delivered.	Text	messaging
would	require	careful	coordination	between	the	sender	and	the
receiver.

	

Listing	3-3:	Sending	Text
SmsManager	smsMgm	=	SmsManager.getDefault();

	

smsMgm.sendTextMessage(“2345556789”,	null,

				“Hello	world”,	null,	null);

The	sendTextMessage	method	has	five	parameters:
•	The	first	parameter,	a	Java	string,	is	the	destination’s	phone
number.

	
•	The	second	parameter,	a	Java	string,	is	a	service	center	address	(see
the	nearby	sidebar).

	
The	value	null	in	Listing	3-3	says,	“I	don’t	care	how	the	message	gets	to
its	destination.	Just	send	it!”

	
•	The	third	parameter,	also	a	Java	string,	is	the	message	content.

	
•	The	fourth	and	fifth	parameters	are	pending	intents.

	
Android	uses	both	intents	to	send	broadcasts.	The	fourth	parameter’s
broadcast	notifies	the	system	when	the	message	is	sent.	The	fifth
parameter’s	broadcast	notifies	the	system	when	the	message	is	received.

	

	For	an	introduction	to	pending	intents,	see	Chapter	2	in	this
minibook.

	To	run	the	code	in	Listing	3-3,	your	app	must	have
android.permission.SEND_SMS	“.

Working	with	Device	Sensors
A	full-featured	Android	device	is	more	than	just	a	telephone.	To

emphasize	this	point,	I	include	a	list	of	constants	from	the
android.content.PackageManager	class:
FEATURE_BLUETOOTH

FEATURE_CAMERA

FEATURE_CAMERA_AUTOFOCUS

FEATURE_CAMERA_FLASH

FEATURE_CAMERA_FRONT

FEATURE_FAKETOUCH

FEATURE_FAKETOUCH_MULTITOUCH_DISTINCT

FEATURE_FAKETOUCH_MULTITOUCH_JAZZHAND

FEATURE_LIVE_WALLPAPER

FEATURE_LOCATION

FEATURE_LOCATION_GPS

FEATURE_LOCATION_NETWORK

FEATURE_MICROPHONE

FEATURE_NFC

FEATURE_SCREEN_LANDSCAPE

FEATURE_SCREEN_PORTRAIT

FEATURE_SENSOR_ACCELEROMETER

FEATURE_SENSOR_BAROMETER

FEATURE_SENSOR_COMPASS

FEATURE_SENSOR_GYROSCOPE

FEATURE_SENSOR_LIGHT

FEATURE_SENSOR_PROXIMITY

FEATURE_SIP

FEATURE_SIP_VOIP

FEATURE_TELEPHONY

FEATURE_TELEPHONY_CDMA

FEATURE_TELEPHONY_GSM

FEATURE_TOUCHSCREEN

FEATURE_TOUCHSCREEN_MULTITOUCH

FEATURE_TOUCHSCREEN_MULTITOUCH_DISTINCT

FEATURE_TOUCHSCREEN_MULTITOUCH_JAZZHAND

FEATURE_USB_ACCESSORY

FEATURE_USB_HOST

FEATURE_WIFI

Some	of	these	constants	are	self-explanatory,	but	others	need	some
clarification.	For	example,	with	FAKETOUCH,	a	device	without	a	real
touchscreen	has	some	support	for	touch	events.	(For	the
FAKETOUCH_MULTITOUCH	constants,	DISTINCT	stands	for	simulation	of
two-finger	touches,	and	JAZZHAND	stands	for	simulation	of	five-finger

touches.)
A	device	can	sense	LOCATION	in	several	ways.	A	crude	method	is	to

guess	location	using	the	known	locations	of	nearby	cellphone	towers.
Using	GPS	(Global	Positioning	System)	is	much	more	accurate.

Among	all	the	PackageManager’s	FEATURE	constants,	my	favorite	is
FEATURE_	SENSOR_BAROMETER.	I	can’t	imagine	shopping	for	a	phone	and
thinking,	“That	model	isn’t	good	enough.	I	can’t	use	it	to	measure
barometric	pressure.”

Anyway,	when	you	start	programming	a	device’s	sensors,	you
grapple	with	new	kinds	of	problems.	What’s	the	underlying	physics	of	the
sensor	measurement?	How	do	you	handle	the	necessary	mathematics?
How	do	you	deal	with	tiny	adjustments	in	an	inherently	analog	world?
The	GPS	sensor	notices	a	location	change.	Should	my	code	do	processing
in	its	onLocationChanged	method,	or	is	the	change	so	small	that	I	should
call	it	background	noise	and	ignore	it?

Quantifying	location	and	orientation
You’re	probably	familiar	with	the	terms	latitude	and	longitude,	but

just	in	case:
•	Latitude	is	0	on	the	Earth’s	equator,	90	degrees	at	the	North	Pole,	and	–
90	degrees	at	the	South	Pole.

	
•	Longitude	is	0	at	the	Royal	Observatory	in	Greenwich,	UK.	Longitude
is	negative	to	the	west	of	Greenwich	and	positive	to	the	east	of
Greenwich.	Longitude	is	180	degrees	at	the	International	Date	Line	in	the
Pacific	Ocean.

	
In	the	Android	world,	the	term	orientation	has	two	different	(but

closely	related)	meanings:
•	The	screen’s	orientation	can	be	either	portrait	or	landscape.

	
•	The	device’s	orientation	is	a	measurement	consisting	of	three	numbers
—	yaw,	pitch,	and	roll.

	
Usually,	when	people	talk	about	orientation	(or	write	about

orientation),	they	don’t	say	“screen	orientation”	or	“device	orientation.”

They	simply	say,	“orientation.”	Fortunately,	you	can	distinguish	the	two
kinds	of	orientation	from	the	surrounding	terminology:
•	If	you	hold	the	device	so	that	the	screen’s	height	is	greater	than	the
screen’s	width,	the	screen’s	orientation	is	portrait.

	
If	you	hold	the	device	so	that	the	screen’s	width	is	greater	than	the
screen’s	height,	the	screen’s	orientation	is	landscape.

	

	You	can	use	most	Android	devices	in	either	portrait	or
landscape	mode.	So	as	a	developer,	you	must	design	your	app’s	interface
with	both	modes	in	mind.	True,	users	tend	to	hold	phones	in	portrait
mode	and	hold	tablets	in	landscape	mode.	But	when	you	define	an
activity’s	layouts,	you	must	consider	all	possibilities.	Does	your	app	look
good	when	a	user	lies	flat	on	a	couch	and	looks	up	at	the	device?

	
•	If	you	lay	the	device	flat	on	the	ground	so	that	the	top	of	the	device
points	to	the	Earth’s	magnetic	North	Pole,	the	device’s	yaw,	pitch,	and
roll	values	are	all	0.	(This	assumes	that	the	ground	is	perfectly
horizontal.)

	
Android	doesn’t	use	degrees	to	measure	yaw,	pitch,	and	roll.

Instead,	Android’s	methods	return	radian	measure.	A	half	turn	of	the
device	is	Π	radians.	A	full	360-degree	turn	is	2Π	radians.	The	easiest	way
to	convert	between	degrees	and	radians	is	as	follows:
•	To	change	degrees	into	radians,	multiply	the	number	of	degrees	by
0.01745327777777777778.

	
•	To	change	radians	into	degrees,	multiply	the	number	of	radians	by
57.2958279087977743754.

	
Don’t	fret	at	the	number	of	digits	in	each	of	the	conversion	factors.

Use	fewer	digits	if	you	want.	No	matter	how	many	digits	you	use,	the
numbers	aren’t	completely	accurate.

	For	a	more	detailed	description	of	yaw,	pitch,	and	roll,	see
Book	VI,	Chapter	2.

Sending	location	and	orientation
The	program	in	Listing	3-4	displays	a	device’s	location	and

orientation.	The	program’s	run	is	shown	in	Figure	3-7.

Listing	3-4:	Sensing	Device	Orientation
package	com.allmycode.sensor;

	

import	static	android.hardware.Sensor.TYPE_ACCELEROMETER;

import	static	android.hardware.Sensor.TYPE_MAGNETIC_FIELD;

import	android.app.Activity;

import	android.content.Context;

import	android.hardware.Sensor;

import	android.hardware.SensorEvent;

import	android.hardware.SensorEventListener;

import	android.hardware.SensorManager;

import	android.location.Location;

import	android.location.LocationListener;

import	android.location.LocationManager;

import	android.os.Bundle;

import	android.widget.TextView;

import	android.widget.Toast;

	

public	class	MyActivity	extends	Activity	{

		SensorManager	sensorManager;

		Sensor	magFieldSensor,	accelerometer;

		SensorEventListener	sensorListener;

		LocationListener	locationListener;

		LocationManager	locationManager;

		TextView	orientationView,	locationView;

	

		private	float[]	gravityValues	=	new	float[3];

		private	float[]	geoMagnetValues	=	new	float[3];

		private	float[]	orientation	=	new	float[3];

		private	float[]	rotationMatrix	=	new	float[9];

	

		@Override

		protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

	

				setContentView(R.layout.main);

				sensorManager	=	(SensorManager)

								getSystemService(Context.SENSOR_SERVICE);

				magFieldSensor	=	sensorManager

												.getDefaultSensor(TYPE_MAGNETIC_FIELD);

				accelerometer	=	sensorManager

												.getDefaultSensor(TYPE_ACCELEROMETER);		

				

				sensorListener	=	new	MySensorEventListener();

				

				locationListener	=	new	MyLocationListener();

				locationManager	=	(LocationManager)

								getSystemService(Context.LOCATION_SERVICE);		

				

				orientationView	=

								(TextView)	findViewById(R.id.orientationView);

				locationView	=

								(TextView)	findViewById(R.id.locationView);

		}

	

		@Override

		protected	void	onResume()	{

				super.onResume();

				sensorManager.registerListener(sensorListener,

								magFieldSensor,	SensorManager.SENSOR_DELAY_UI);

				sensorManager.registerListener(sensorListener,

								accelerometer,	SensorManager.SENSOR_DELAY_UI);

				

				locationManager.requestLocationUpdates

				(LocationManager.GPS_PROVIDER,

								0,	0,	locationListener);

		}

	

		@Override

		protected	void	onPause()	{

				super.onPause();

				sensorManager.unregisterListener(sensorListener);

				locationManager.removeUpdates(locationListener);

		}

		

		class	MySensorEventListener	implements	SensorEventListener

{

	

				@Override

				public	void	onSensorChanged(SensorEvent	event)	{

	

						int	sensorEventType	=	event.sensor.getType();

						

						if	(sensorEventType	==	Sensor.TYPE_ACCELEROMETER)	{

								System.arraycopy

										(event.values,	0,	gravityValues,	0,	3);

								

						}	else	if	(sensorEventType	==

																												Sensor.TYPE_MAGNETIC_FIELD)	{

								System.arraycopy

										(event.values,	0,	geoMagnetValues,	0,	3);

								

						}	else	{

								return;					

						}

	

						if	(SensorManager.getRotationMatrix(rotationMatrix,

										null,	gravityValues,	geoMagnetValues))	{

	

								SensorManager.getOrientation(rotationMatrix,

												orientation);

	

								orientationView.setText

													(“Yaw:			“	+	orientation[0]	+	“\n”

												+	“Pitch:	“	+	orientation[1]	+	“\n”

												+	“Roll:		“	+	orientation[2]);

						}

				}			

				

				@Override

				public	void	onAccuracyChanged(Sensor	sensor,

								int	accuracy)	{

						if	(accuracy	<=	1)	{

								Toast.makeText(MyActivity.this,	“Please	shake	the	“	+

										“device	in	a	figure	eight	pattern	to	“	+

										“improve	sensor	accuracy!”,	Toast.LENGTH_LONG)

										.show();

						}

				}

		}

		

		class	MyLocationListener	implements	LocationListener	{

	

				@Override

				public	void	onLocationChanged(Location	location)	{

						locationView.setText

										(“Latitude:		“	+	location.getLatitude()	+	“\n”

									+	“Longitude:	“	+	location.getLongitude());				

				}

	

				@Override

				public	void	onProviderDisabled(String	provider)	{						

				}

	

				@Override

				public	void	onProviderEnabled(String	provider)	{						

				}

	

				@Override

				public	void	onStatusChanged(String	provider,

								int	status,	Bundle	extras)	{						

				}				

		}

}

	

Figure	3-7:	Displaying	orientation	and	location.

Listing	3-4	illustrates	a	bunch	of	sensor	features	—	some	that	are
specific	to	location	and	orientation,	and	others	that	apply	to	sensors	in
general.	One	way	or	another,	most	sensors	use	the	same	programming

constructs:
•	Instances	of	the	Manager	classes	connect	your	code	to	the	device’s
hardware	sensors.

	
In	Listing	3-4,	calling	getSystemService	provides	access	to	sensor
managers.	The	managers	belong	to	android.hardware.SensorManager
and	android.location.LocationManager.

	

	The	LocationManager	isn’t	in	the	android.hardware
package	because	sensing	location	is	abstracted	for	various	sensing
techniques.	The	LocationManager	class	represents	GPS	readings,	cell
tower	usage,	and	other	things.	The	LocationManager	deals	generically
with	places	on	Earth,	not	specifically	with	GPS	hardware.

	
•	Instances	of	android.hardware.Sensor	represent	the	sensors
themselves.

	
In	Listing	3-4,	calls	to	the	getDefaultSensor	method	return	values	for
magFieldSensor	and	for	accelerometer.

	
•	Objects	that	implement	Listener	interfaces	receive	notice	of	changes	to
sensor	values.

	
In	Listing	3-4,	instances	of	MySensorEventListener	and	MyLocation
Listener	fill	these	rolls.	I	register	the	listeners	in	the	activity’s	onResume
method	and	unregister	the	listeners	in	the	activity’s	onPause	method.

	

	Your	app	should	stop	listening	when	the	activity	pauses.	If
you	forget	to	unregister,	the	user’s	battery	might	die	of	exhaustion.

	
The	code	to	get	useful	values	from	sensor	events	depends	on	the

kind	of	event.	In	Listing	3-4,	getting	location	information	means	simply
calling	location.getLatitude()	and	location.getLongitude().	For
orientation,	the	story	is	more	complicated.	One	way	or	another,	you	feed
values	from	the	device’s	level	gravity	sensor	or	the	device’s
magnetometer	into	the	SensorManager.getRotationMatrix	method.

A	few	miscellaneous	tidbits	in	Listing	3-4	are	worth	noting:
•	To	sense	the	device’s	location,	your	app	must	have	“android.
permission.ACCESS_FINE_LOCATION”.	Sensing	orientation	requires	no
particular	permission.	(Hackers	rarely	benefit	from	knowing	the	tilt	of	the
user’s	device.)

	
•	When	you	test	this	section’s	app,	you	probably	tilt	your	device	in
several	directions.	By	default,	this	tilting	can	change	the	display	from
portrait	to	landscape	and	back.	Oddly	enough,	these	display	changes	can
be	very	annoying.	(With	most	apps,	your	mind	zones	out	while	you’re
turning	the	device.	But	with	this	app,	the	turning	motion	is	the	app’s
raison	d’être.)

	
To	keep	changes	in	screen	orientation	from	driving	you	crazy,	add	either
android:screenOrientation=”landscape”	or	android:
screenOrientation=”portrait”	to	the	<activity>	element	in	the
AndroidManifest.xml	document.

	
•	Calls	to	registerListener	in	Listing	3-4	have	delay	parameters.	The
delay	parameter’s	value	tells	the	device	how	often	to	check	the	sensor’s
value.	The	choices	are	SENSOR_DELAY_FASTEST,	SENSOR_DELAY_GAME,
SENSOR_DELAY_NORMAL,	and	SENSOR_DELAY_UI.	The	SENSOR_DELAY_GAME
value	is	appropriate	for	game	playing,	and	the	SENSOR_DELAY_UI	value	is
best	for	displaying	the	information.	Of	course,	to	figure	out	what’s	best
for	your	app,	ignore	the	guidelines	and	do	lots	of	testing.

	
•	When	you	implement	the	SensorEventListener	interface,	you	must
create	an	onAccuracyChanged	method.	The	predefined	accuracy	values
are	SENSOR_STATUS_UNRELIABLE	with	int	value	0,

SENSOR_STATUS_ACCURACY_LOW	with	int	value	1,
SENSOR_STATUS_ACCURACY_MEDIUM	with	int	value	2,	and
SENSOR_STATUS_ACCURACY_HIGH	with	int	value	3.	For	some	reason,
shaking	the	device	in	a	figure-eight	pattern	tends	to	improve	orientation
sensitivity.

	
Finally,	notice	the	austere-looking	typeface	in	Figure	3-7.	I	added

android:	typeface=”monospace”	to	each	of	the	TextView	start	tags	in
the	app’s	AndroidManifest.xml	document.	A	font	that’s	monospace
reserves	the	same	width	for	each	character.	So,	for	example,	with	a
monospace	font,	the	letter	i	consumes	as	much	width	as	the	letter	m,	and
each	blank	space	is	as	wide	as	the	letter	m.

In	this	section’s	example,	I	use	monospace	to	help	align	the	numeric
values.	So	in	Figure	3-7,	the	three	orientation	numbers	form	a	column,
and	the	two	location	numbers	form	a	column.	Without	a	monospace	font,
the	display	would	have	the	jagged	look	in	Figure	3-8.

	

Figure	3-8:	The	display	from	this	section’s	app	without	a	monospace	font.

I	could	have	aligned	the	numbers	by	creating	separate	text	views
and	specifying	the	width	of	each	text	view.	Alternatively,	I	could	try
adding	tabs	to	my	single	text	view:
locationView.setText

										(“Latitude:\t\t”	+	location.getLatitude()	+	“\n”

									+	“Longitude:\t”	+	location.getLongitude());

The	escape	sequence	\t	tells	Java	to	space	to	the	next	tab	stop.	If
you	use	tabs,	the	display	looks	like	the	stuff	in	Figure	3-9.

	When	I’m	tempted	to	use	tabs,	I	stop	and	remember	how
flakey	tabs	can	be.	For	example,	in	Figure	3-9	the	word	Latitude	is
narrower	than	the	word	Longitude.	So	my	code	snippet	compensates
by	having	two	tabs	after	the	word	Latitude	and	only	one	tab	after	the
word	Longitude.	The	extra	tab	works	fine	on	my	test	device,	but
with	different	font	settings	on	another	user’s	device,	the	same	tabs
might	throw	the	numbers	out	of	alignment.

	

Figure	3-9:	The	display	from	this	section’s	app	using	tabs.

Drawing,	Dragging,	and	Zooming
No	doubt	about	it	—	touchscreens	are	cool.	You	press	plain	old

glass,	and	the	device	responds!	(Okay.	It’s	not	plain	old	glass.	But	it’s
still	mysterious.)	When	you	slide	your	finger,	a	drawing	of	some	kind
moves!	And	with	multitouch	screens,	you	can	zoom	things,	rotate	things,
and	reshape	things.

Android’s	software	supports	events	involving	up	to	256	fingers.
That’s	about	two-and-a-half	centipedes	walking	on	the	screen	at	the	same
time.	Of	course,	humans	seldom	apply	more	than	two	fingers	to	a
device’s	screen.

The	big	picture
Listing	3-5	demonstrates	the	handling	of	touch	events.	A	touch

event	is	a	lot	like	a	click.	The	most	important	difference	is	that	touch
events	may	involve	motion	—	the	sliding	of	your	finger	(or	stylus)	along
the	screen’s	surface.

Listing	3-5:	Handling	Touch	Events
package	com.allmycode.draw;

	

import	android.app.Activity;

import	android.content.Context;

import	android.graphics.Canvas;

import	android.graphics.Color;

import	android.graphics.Paint;

import	android.graphics.Rect;

import	android.os.Bundle;

import	android.util.DisplayMetrics;

import	android.view.MotionEvent;

import	android.view.View;

import	android.view.View.OnTouchListener;

	

public	class	DrawStuffActivity	extends	Activity	implements

				OnTouchListener	{

	

		MyView	myView;

		int	numberOfFingers	=	0;

		float	oldX[]	=	new	float[2],	oldY[]	=	new	float[2];

		Rect	rectangle	=	new	Rect(0,	0,	100,	100);

		DisplayMetrics	metrics	=	new	DisplayMetrics();

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

	

				myView	=	new	MyView(this);

				setContentView(myView);

				myView.setOnTouchListener(this);

	

				getWindowManager().getDefaultDisplay().

						getMetrics(metrics);

		}

	

@Override		

public	boolean	onTouch(View	view,	MotionEvent	event)	{

				switch	(event.getActionMasked())	{

				case	MotionEvent.ACTION_DOWN:

						numberOfFingers	=	1;

						oldX[0]	=	event.getX(0);

						oldY[0]	=	event.getY(0);

						break;

				case	MotionEvent.ACTION_POINTER_DOWN:

						numberOfFingers	=	2;

						oldX[1]	=	event.getX(1);

						oldY[1]	=	event.getY(1);

						break;

				case	MotionEvent.ACTION_MOVE:

						handleMove(event);

						break;

				case	MotionEvent.ACTION_POINTER_UP:

				case	MotionEvent.ACTION_UP:

						numberOfFingers--;

						break;

				}

	

				view.invalidate();

				return	true;

		}

		

		//	The	handleMove	method	is	in	Listing	3-6.

	

		class	MyView	extends	View	{

				Paint	whitePaint	=	new	Paint();

	

				MyView(Context	context)	{

						super(context);

						whitePaint.setColor(Color.WHITE);

				}

	

				@Override

				public	void	onDraw(Canvas	canvas)	{

						canvas.drawRect(rectangle,	whitePaint);

				}

		}

}

Figure	3-10	has	an	unexciting	screen	shot	from	a	run	of	this
section’s	example.

	

Figure	3-10:	Believe	me!	You	can	move	and	resize	the	white	rectangle.

Listing	3-5	has	the	basic	outline	of	most	other	Android	activity
classes.	The	onCreate	method	sets	the	activity’s	content	view	and
registers	a	listener.	But	unlike	most	of	the	examples	scattered	through	this
book’s	various	minibooks,	the	content	view	in	Listing	3-5	isn’t	a
resource.	Instead,	Listing	3-5	gets	its	content	view	from	an	object
constructed	in	the	code.

The	content	view	is	an	instance	of	the	MyView	class,	which	I	define
at	the	end	of	Listing	3-5.	The	MyView	class	isn’t	fancy.	The	class’s
primary	purpose	is	to	override	the	View	class’s	onDraw	method.	When
Android	draw’s	a	MyView	instance,	Android	places	a	white	rectangle	on	a
canvas.	The	rectangle	itself	(an	instance	of	Android’s	Rect	class)	has	four
properties:	left,	top,	right,	and	bottom.	(See	Figure	3-11.)	Each
property	is	a	number	of	pixels.

In	Listing	3-5,	the	onTouch	method	responds	to	motion	events.	The
motion	event’s	getActionMasked	method	returns	the	type	of	motion:
•	Android	fires	MotionEvent.ACTION_DOWN	when	the	user	places	one
finger	on	the	screen.

	
•	Android	fires	MotionEvent.ACTION_POINTER_DOWN	when	the	user	places
a	second	finger	on	the	screen.

	
	

Figure	3-11:	The	properties	of	a	Rect	instance.

•	Android	fires	MotionEvent.ACTION_UP	when	the	user	lifts	the	first
finger	off	the	screen.

	
•	Android	fires	MotionEvent.ACTION_POINTER_UP	when	the	user	lifts	the
second	finger	off	the	screen.

	
•	Android	fires	MotionEvent.ACTION_MOVE	when	the	user	drags	one	or
more	fingers	along	the	screen’s	surface.

	

	Android	has	constants,	such	as	ACTION_POINTER_2_UP	and
ACTION_POINTER_3_DOWN,	but	these	names	are	deprecated.	To
distinguish	among	three	or	more	fingers,	look	for	MotionEvent.
ACTION_POINTER_INDEX_MASK	in	Android’s	SDK	documentation.
The	onTouch	method	in	Listing	3-5	records	the	pixel	coordinates

where	the	user’s	fingers	land	on	the	screen:
•	The	getX	method	returns	the	number	of	pixels	from	the	screen’s	left
edge.

	
•	The	getY	method	returns	the	number	of	pixels	from	the	top	of	the
screen.

	
•	In	the	calls	to	getX	and	getY,	the	0	parameter	represents	the	first	finger
that	the	user	places	on	the	screen.

	
•	The	1	parameter	represents	the	second	finger	that	the	user	places	on	the
screen.

	
Aside	from	this	quick	bookkeeping,	the	onTouch	method	defers	to

the	handleMove	method	for	most	of	the	code’s	calculations.	(The
handleMove	method	in	Listing	3-6	—	shown	later	in	this	chapter	—
computes	the	white	rectangle’s	new	size	and	position.)

Near	the	end	of	the	onTouch	method,	I	call	view.invalidate().
This	tells	Android	that	the	rendering	of	this	view	on	the	screen	is	no
longer	valid.	Thus,	Android	must	redraw	the	view.	That	is,	Android	must

call	the	view’s	onDraw	method.
At	the	end	of	the	onTouch	method,	the	return	value	true	indicates

that	the	method	has	handled	the	motion	event	once	and	for	all.	Any	other
methods	that	think	they’re	going	to	handle	the	motion	event	can	go	fly	a
kite.

	This	section’s	app	shouldn’t	respond	to	a	tilt	of	the	screen.
To	keep	the	screen	in	landscape	mode,	add
android:screenOrientation=”landscape”	to	the	activity’s	start	tag
in	the	AndroidManifest.xml	document.

The	details
Moving	gizmos	on	a	screen	can	involve	some	interesting	math.	In

fact,	most	graphics	packages	use	matrix	transformations	to	adjust	items’
shapes	and	sizes.	But	in	this	section,	I	compromise.	Instead	of	using	the
concise	mathematical	tools	in	Android’s	SDK,	I	do	some	simpler	(and
maybe	more	intuitive)	measurements.	Listing	3-6	has	the	code.

Listing	3-6:	Dragging	and	Zooming
float	newX[]	=	new	float[2],	newY[]	=	new	float[2];

int	xChange[]	=	new	int[2],	yChange[]	=	new	int[2];

int	diffX,	diffY;

int	newLeft	=	rectangle.left,	newTop	=	rectangle.top,

				newRight	=	rectangle.right,

				newBottom	=	rectangle.bottom;

	

void	handleMove(MotionEvent	event)	{

		newX[0]	=	Math.round(event.getX(0));

		newY[0]	=	Math.round(event.getY(0));

		xChange[0]	=	Math.round(newX[0]	-	oldX[0]);

		yChange[0]	=	Math.round(newY[0]	-	oldY[0]);

		oldX[0]	=	newX[0];

		oldY[0]	=	newY[0];

	

		switch	(numberOfFingers)	{

		case	1:

	

				newLeft	=	rectangle.left	+	xChange[0];

				newTop	=	rectangle.top	+	yChange[0];

				newRight	=	rectangle.right	+	xChange[0];

				newBottom	=	rectangle.bottom	+	yChange[0];

				if	(newLeft	<	0	||	newRight	>	metrics.widthPixels)	{

						newLeft	=	rectangle.left;

						newRight	=	rectangle.right;

				}

				if	(newTop	<	0	||	newBottom	>	metrics.heightPixels)	{

						newTop	=	rectangle.top;

						newBottom	=	rectangle.bottom;

				}

				rectangle	=

								new	Rect(newLeft,	newTop,	newRight,	newBottom);

	

				break;

	

		case	2:

				newX[1]	=	Math.round(event.getX(1));

				newY[1]	=	Math.round(event.getY(1));

	

				diffX	=

								Math.abs(Math.round(newX[1]	-	newX[0]))

												-	Math.abs(Math.round(oldX[1]	-	oldX[0]));

				diffY	=

								Math.abs(Math.round(newY[1]	-	newY[0]))

												-	Math.abs(Math.round(oldY[1]	-	oldY[0]));

	

				oldX[1]	=	newX[1];

				oldY[1]	=	newY[1];

	

				newLeft	=	rectangle.left	-	diffX	/	2;

				newTop	=	rectangle.top	-	diffY	/	2;

				newRight	=	rectangle.right	+	diffX	/	2;

				newBottom	=	rectangle.bottom	+	diffY	/	2;

				rectangle	=

								new	Rect(newLeft,	newTop,	newRight,	newBottom);

				break;

		}

}

The	code	in	Listing	3-6	compares	the	most	recent	motion	event’s
coordinates	with	the	previous	event’s	coordinates.	With	this	information,
the	code	computes	the	distances	and	directions	of	the	user’s	finger
movements.	The	code	uses	these	values	to	calculate	the	change	in	the
rectangle’s	position,	size,	and	shape.	With	this	information	(and	with	the
rectangle’s	current	left,	top,	right,	and	bottom	properties),	the	code
computes	new	values	for	the	rectangle’s	four	properties.

Finally,	if	you	do	nothing	to	constrain	the	rectangle’s	motion,	it
could	happen	that	you	slide	the	rectangle	away	from	the	screen’s	visible
area.	To	keep	this	from	happening,	I	add	a	few	if	statements	to	the	one-
finger	code.	In	those	if	statements,	the	metrics	variable	tells	me	the
screen’s	width	and	height	in	pixels.	(The	metrics	variable	gets	its	values
in	the	onCreate	method	in	Listing	3-5.)

	Notice	the	use	of	float	values	in	Listing	3-6.	Android’s
MotionEvent	methods	work	with	all	kinds	of	devices,	and	some
devices	report	touch-event	locations	as	fractions	of	a	pixel.	After	all,
the	touch-sensing	hardware	on	a	screen’s	surface	is	different	from
the	light-producing	hardware	in	the	screen’s	guts.	If	the	touch-
sensing	hardware	has	higher	resolution	than	the	light-producing

hardware,	the	device	can	report	movement	in	fractions	of	a	pixel.

On	the	Importance	of	Waiting	Patiently
This	section	deals	with	an	important	multitasking	issue.	Suppose

your	app	has	a	feature	that	can	take	a	long	time	to	complete.	For	example,
you	create	an	app	that	displays	an	image	on	the	screen.	The	image
normally	lives	on	a	website,	so	your	app	reaches	out	with	a	URL.

While	the	user	waits	for	a	response	from	the	website,	your	app	must
not	appear	to	be	frozen.	The	user	doesn’t	want	an	interface	that’s
unresponsive	until	the	image	appears	on	the	screen.

Almost	any	part	of	your	app’s	code	can	open	an	HTTP	connection
and	request	an	image	from	the	web.	But	if	you’re	not	careful,	the	request
takes	place	in	your	app’s	main	thread	(the	so-called	UI	thread).	Like	any
other	thread,	the	main	thread	is	a	one-lane	road.	While	your	HTTP
request	waits	at	a	stoplight,	none	of	your	app’s	other	features	can	move
forward.	Parts	of	the	display	don’t	get	updated,	buttons	are	unresponsive,
and	all	the	while	the	user	dreams	up	nasty	things	to	write	on	the	Android
Market’s	app	ratings	page.

You	may	be	familiar	with	the	use	of	Java	threads.	A	piece	of	code
can	spawn	a	new	thread.	With	two	threads	of	execution	(the	main	thread
and	the	newly	spawned	thread),	your	code	can	do	two	things	at	once.	One
thread	waits	for	a	web	page	while	the	other	thread	handles	button	clicks
and	other	user-related	events.	The	new	thread	is	like	a	side	road.	While	a
big	truck	clogs	up	this	side	road,	cars	continue	to	flow	along	the	main
highway.

But	spawning	new	Java	threads	doesn’t	entirely	solve	the	problem.
Android’s	threading	rules	dictate	that	no	thread	other	than	the	main
thread	can	update	an	application’s	user	interface.	So,	for	example,	your
secondary	thread	can	wait	to	get	an	image	from	the	web.	But	after	the
image	has	been	downloaded,	the	secondary	thread	can’t	easily	display	the
image.

To	fix	this	problem	once	and	for	all,	Android	has	an	abstract
AsyncTask	class.	An	AsyncTask	does	your	app’s	time-consuming	work	in
a	separate	thread	and	returns	useful	results	to	your	app’s	main	thread.	In
addition,	an	AsyncTask	has	methods	that	structure	the	code	in	a	sensible,
fill-in-the-blanks	way.

Of	course,	the	kinds	of	work	that	you	do	with	an	AsyncTask	come	in
many	forms	and	flavors.	That’s	why	the	AsyncTask	class	has	generic	type
parameters.

	In	spite	of	the	naming,	Android’s	AsyncTask	class	has	little
in	common	with	a	stack	of	activities	that	form	a	task.	True,	I
sometimes	use	the	word	task	for	either	a	stack	of	activities	or	an
AsyncTask	instance.	But	the	two	kinds	of	tasks	are	quite	different.
For	a	refresher	course	on	activity	stacks,	see	Book	III,	Chapters	1
and	2.

Creating	an	AsyncTask
The	AsyncTask	in	Listing	3-7	fetches	an	image	from	the	web.	In	the

meantime,	the	code	updates	a	progress	bar	that	appears	on	the	device’s
screen.

Listing	3-7:	Getting	an	Image	from	a	Website
class	MyAsyncTask	extends

				AsyncTask<String,	Integer,	Bitmap>	{

		

		int	progress;

		

		@Override

		protected	void	onPreExecute()	{

				progress	=	0;

				button.setClickable(false);

		}

	

		@Override

		protected	Bitmap	doInBackground(String...	urlArray)	{

				try	{

						URL	url	=	new	URL(urlArray[0]);

						HttpURLConnection	connection	=

										(HttpURLConnection)	url.openConnection();

						connection.setDoInput(true);

						connection.connect();

						

						progress	+=	50;

						publishProgress(progress);

						

						InputStream	input	=	connection.getInputStream();

						Bitmap	bitmap	=	BitmapFactory.decodeStream(input);

						

						progress	+=	50;

						publishProgress(progress);

				

						return	bitmap;

				}	catch	(IOException	e)	{

						e.printStackTrace();

						return	null;

				}

		}

		

		@Override

		protected	void	onProgressUpdate(Integer...	progressArray)	{

				progressBar.setProgress(progressArray[0]);

		}

	

		@Override

		protected	void	onPostExecute(Bitmap	result)	{

				imageView.setImageBitmap(result);

				button.setClickable(true);

		}

}

The	code	in	Listing	3-7	is	an	inner	class;	it	should	be	nestled	inside
an	app’s	main	activity	(or	inside	some	other	class	in	your	app).

When	you	extend	AsyncTask,	you	must	supply	three	generic
parameters	(<String,	Integer,	Bitmap>)	and	four	methods:
•	The	first	generic	parameter	(String	in	Listing	3-7)	describes	the
type	of	input	to	the	task’s	doInBackground	method.

	
Think	of	this	as	the	type	of	input	that	the	task	needs	in	order	to	do	its
work.	In	Listing	3-7,	the	doInBackground	method’s	parameter	is	a
variable-length	array	of	strings.	The	method	body	uses	only	one	string
(the	value	stored	in	the	urlArray’s	initial	element).	The	code	uses	this
string	the	way	you’d	use	any	web	address	—	to	fetch	a	web	page	(or	in

this	example,	an	image).
	

•	The	second	generic	parameter	(Integer	in	Listing	3-7)	describes	the
type	of	input	to	the	task’s	onProgressUpdate	method.

	
Think	of	this	as	the	type	of	information	that	describes	the	state	of	the
progress	bar.	In	Listing	3-7,	the	onProgressUpdate	method’s	parameter
is	a	variable-length	array	of	Integer	values.	The	method	body	uses	only
one	integer	(the	value	stored	in	the	progressArray’s	initial	element).	The
code	calls	the	progress	bar’s	setProgress	method	to	make	the	progress
bar	display	the	current	status.

	
•	The	third	generic	parameter	(Bitmap	in	Listing	3-7)	describes	the
result	type	of	the	task’s	doInBackground	method,	which	is	also	the
type	of	input	to	the	task’s	onPostExecute	method.

	
Think	of	this	as	the	type	of	information	that’s	created	by	a	run	of	the	task.
In	Listing	3-7,	the	onPostExecute	method	feeds	a	bitmap	(the	bitmap
obtained	from	a	website)	to	the	activity’s	imageView	object.

	

	When	you	create	an	AsyncTask,	any	or	all	of	the	three
generic	parameters	can	be	Void.	(Java’s	Void	class	stores	the
primitive	void	type	—	the	type	that	refers	to	nothing.)	When	a
parameter	is	Void,	the	AsyncTask	doesn’t	use	the	corresponding
information.	For	example,	an	AsyncTask	with	no	progress	bar	has	a
middle	parameter	that’s	Void.
Multithreaded	code,	with	its	threads	and	its	callbacks,	can	be	very

complicated.	The	AsyncTask	class	is	nice	because	it	provides	preinstalled
plumbing	code.	This	plumbing	code	relieves	the	developer	of	much	of	the
multithreaded	programming	burden.

Using	a	progress	bar

I	heard	a	story	a	long	time	ago.	I	don’t	know	where	I	heard	it.	So	if
you’re	the	story’s	originator,	please	contact	me	via	e-mail,	and	I’ll	give
you	credit	in	the	next	edition.	(And	whatever	you	do,	please	don’t	sue	me
for	using	the	story.)

Anyway,	the	story	takes	place	in	a	tall	office	building	with	too	few
elevators.	People	would	wait	impatiently	to	go	from	the	lobby	to	one	of
the	higher	floors.	The	building’s	owner	got	estimates	for	the	cost	of
adding	more	elevators,	and	the	price	was	staggering.

So	to	solve	the	problem,	the	owner	installed	wall-to-wall	mirrors
beside	each	of	the	elevators.	As	a	result,	people	didn’t	get	faster	service.
But	everyone	stopped	to	check	their	appearance	in	the	mirrors.	So	from
then	on,	no	one	complained	about	the	elevators’	being	too	slow.

Clearly,	this	story	has	an	important	moral.	The	moral	is,	you	don’t
necessarily	have	to	speed	up	a	process.	But	you	must	keep	the	user	busy
while	the	process	chugs	along.

That’s	what	progress	bars	are	for.	Figure	3-12	displays	the	progress
bar	in	this	section’s	example.

I	define	this	example’s	progress	bar	with	the	following	code:
<ProgressBar	android:id=”@+id/progressBar1”

			style=”?android:attr/progressBarStyleHorizontal”

			android:max=”100”

												

			android:layout_width=”fill_parent”

			android:layout_height=”wrap_content”/>

Android’s	built-in	android.R.attr.progressBarStyleHorizontal
resource	describes	the	progress	bar	in	Figure	3-12.	The
android:max=”100”	attribute	tells	your	app	to	display	a	completed
progress	bar	when	you	call	progressBar.setProgress(100),	and	to
display	a	partially	completed	progress	bar	for	values	between	0	and	100.

	

Figure	3-12:	A	horizontal	progress	bar.

For	this	section’s	example,	I	might	have	done	better	using	style=”?
android:	attr/progressBarStyleLarge”,	which	displays	a	spinning
circle	with	no	progress	percentage.	But	I	chose	the	horizontal	style	to
illustrate	the	usage	of	progress	updates.	In	Listing	3-7,	I	start	with
progress	value	0	in	the	task’s	onPreExecute	method.	Then,	at	certain
points	in	the	task’s	doInBackground	method,	I	call	publishProgress.	A
call	to	publishProgress	automatically	triggers	a	call	to	the
onProgressUpdate	method.	And	in	Listing	3-7,	my	onProgressUpdate
method	refreshes	the	progress	bar’s	display.

	In	Listing	3-7,	I	select	two	points	in	the	doInBackground
method	to	change	the	progress	value	and	update	the	progress	bar’s
display.	I	do	this	to	illustrate	the	usage	of	a	horizontal	progress	bar.
But	in	truth,	the	progress	bar	in	Listing	3-7	might	easily	annoy	the
user.	A	bar	with	only	three	values	(0,	50,	100)	doesn’t	give	the	user
much	useful	information.	And	besides,	the	timing	of	the	work	in
Listing	3-7’s	doInBackground	method	probably	isn’t	a	50/50	split.
When	you	create	a	real	app,	think	carefully	about	updates	to	the
progress	bar.	Try	as	hard	as	you	can	to	make	them	reflect	the	task’s
expected	timing.	And	if	the	timing	is	unpredictable,	use
progressBarStyleSmall,	progressBarStyleLarge,	or	one	of	the
other	percentage-free	types	in	the	android.R.attr	class.

Using	an	AsyncTask

Listing	3-8	contains	the	code	to	use	the	task	in	Listing	3-7.	To	form
a	complete	code	example,	paste	the	task	from	Listing	3-7	into	the
MyActivity	class	of	Listing	3-8.	(That	is,	make	MyAsyncTask	be	an	inner
class	of	the	MyActivity	class.)

Listing	3-8:	The	Main	Activity	Uses	an
AsyncTask
package	com.allmycode.samples;

	

import	java.io.IOException;

import	java.io.InputStream;

import	java.net.HttpURLConnection;

import	java.net.URL;

	

import	android.app.Activity;

import	android.graphics.Bitmap;

import	android.graphics.BitmapFactory;

import	android.os.AsyncTask;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

import	android.widget.ImageView;

import	android.widget.ProgressBar;

	

public	class	MyActivity	extends	Activity	implements

				OnClickListener	{

	

		Button	button;

		ImageView	imageView;

		ProgressBar	progressBar;

	

		@Override

		public	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

	

				button	=	((Button)	findViewById(R.id.button1));

				button.setOnClickListener(this);

				

				imageView	=	(ImageView)	findViewById(R.id.imageView1);

				progressBar	=

								(ProgressBar)	findViewById(R.id.progressBar1);

				progressBar.setProgress(0);

		}

	

		public	void	onClick(View	view)	{

				new	MyAsyncTask().execute

						(“http://allmycode.com/JavaForDummies/”

																				+	“JavaForDummies5thEdition.jpg”);

		}

	

		//	The	MyAsyncTask	class	is	in	Listing	3-7.

		

}

When	the	user	clicks	a	button,	the	code	in	Listing	3-8	executes	a
new	MyAsyncTask	instance.	The	result	(a	shameless	plug	for	one	of	my
Java	books)	is	shown	in	Figure	3-13.

	

Figure	3-13:	The	completion	of	the	task.

	This	section’s	example	gets	a	bitmap	from	the	web.	So	to
run	this	section’s	code,	add	<uses-permission
android:name=”android.permission.INTERNET”></uses-

permission>	to	the	application’s	AndroidManifest.xml	document.

Chapter	4:	Apps	for	Tablets

In	This	Chapter
Adjusting	for	screen	size	and	screen	orientation

Managing	multipanel	activities
	

Don’t	think	about	an	elephant.
Okay,	now	that	you’re	thinking	about	an	elephant,	think	about	an

elephant’s	legs.	The	diameter	of	an	elephant’s	leg	is	typically	about	40
centimeters	(more	than	four	tenths	of	a	yard).

And	think	about	spiders	of	the	Pholcidae	family	(the	“daddy
longlegs”)	with	their	hair-like	legs.	And	think	about	Gulliver	with	his
Brobdingnagian	friends.	Each	Brobdingnagian	was	about	72	feet	tall,	but
a	Brobdingnagian	adult	had	the	same	physical	proportions	as	Gulliver.

Gulliver’s	Travels	is	a	work	of	fiction.	An	animal	whose	height	is
12	times	a	human’s	height	can’t	have	bone	sizes	in	human	proportions.	In
other	words,	if	you	increase	an	object’s	size,	you	have	to	widen	the
object’s	supports.	If	you	don’t,	the	object	will	collapse.

This	unintuitive	truth	about	heights	and	widths	comes	from	some
geometric	facts.	An	object’s	bulk	increases	as	the	cube	of	the	object’s
height.	But	the	ability	to	support	that	bulk	increases	only	as	the	square	of
the	object’s	height.	That’s	because	weight	support	depends	on	the	cross-
sectional	area	of	the	supporting	legs,	and	a	cross-sectional	area	is	a	square
measurement,	not	a	cubic	measurement.

Anyway,	the	sizes	of	things	make	important	qualitative	differences.
Take	an	activity	designed	for	a	touchscreen	phone.	Zoom	that	activity	to
a	larger	size	without	making	any	other	changes.	Then	display	the
enlarged	version	on	a	ten-inch	tablet	screen.	What	you	get	on	the	tablet
looks	really	bad.	A	tiny,	crisp-looking	icon	turns	into	a	big,	blurry	blob.
An	e-book	page	adapts	to	display	longer	line	lengths.	But	with	lines	that
are	40	words	long,	the	human	eye	suffers	from	terrible	fatigue.

The	same	issue	arises	with	Android	activities.	An	activity	contains

enough	information	to	fill	a	small	phone	screen.	When	the	user	needs
more	information,	your	app	displays	a	different	activity.	The	new	activity
replaces	the	old	activity,	resulting	in	a	complete	refresh	of	the	screen.

If	you	slap	this	activity	behavior	onto	a	larger	tablet	screen,	the	user
feels	cheated.	You’ve	replaced	everything	on	the	screen	even	though
there’s	room	for	both	the	old	and	new	information.	The	transition	from
one	activity	to	the	next	is	jarring,	and	both	the	old	and	new	activities	look
barren.

No	doubt	about	it	.	.	.	Android	needs	a	new	look	for	tablet	devices.
And	to	implement	this	look,	Android’s	Honeycomb	release	had
fragments.

What	Fragments	Can	Do	For	You
A	fragment	is	halfway	between	a	view	and	an	activity.	Like	a	view,

a	fragment	can’t	survive	on	its	own.	A	view	lives	within	an	activity’s
context.	You	don’t	display	a	view	except	to	set	it	as	an	activity’s	content.

Yes,	a	fragment	is	something	like	a	view.	But	like	an	activity	(and
unlike	a	view),	a	fragment	has	a	lifecycle.	Table	4-1	lists	the	fragment
lifecycle	methods.

A	fragment	has	a	lifecycle.	Your	first	response	to	this	news	might	be
“Oh,	no!	More	onSuchAndSuch	methods	to	manage!”	But	the	reality	is,
components’	lifecycle	methods	are	your	friends.	Lifecycle	methods
coordinate	the	comings	and	goings	of	individual	components.	Sure,	it
means	you’re	going	to	have	to	manage	your	own	app’s	interface.	But
without	lifecycle	methods,	you’d	have	to	micromanage	your	own	app’s
interaction	with	other	apps	and	with	the	Android	operating	system.

Programming	with	fragments
The	user	interface	in	this	section’s	example	has	three	panels	—	a	list

of	items,	a	detail	pane	describing	whichever	item	is	selected	in	the	list,
and	a	details-in-more-depth	pane.	On	a	small	smartphone	screen,	each
panel	would	be	a	separate	activity.	But	a	tablet	screen	in	landscape	mode
has	room	for	more	than	one	panel.

Figure	4-1	shows	this	section’s	app	with	two	of	the	three	panels.
The	panel	on	the	left	displays	a	list	of	traditional	Android	SDK
components.	The	panel	on	the	right	displays	a	description	of	whatever
component	is	chosen	in	the	list	on	the	left.	(The	description	is	actually	the
first	few	sentences	of	the	component’s	SDK	documentation.)	This	details-
on-the-right	pattern	is	part	of	many	user	interfaces.

	

Figure	4-1:	Two	fragments	attached	to	one	activity.

To	create	the	display	in	Figure	4-1,	you	build	one	activity.	The
activity	has	two	fragments	—	a	fragment	on	the	left	and	another	on	the
right.	The	left	pane	displays	the	same	fragment	throughout	the	run	of	the
app,	so	you	can	declare	that	fragment	in	the	AndroidManifest.xml
document.	The	right	pane	displays	one	fragment	at	a	time,	but	the
fragment	changes	during	the	app’s	run.	So	you	declare	a	frame	layout	in
the	right	pane.	Listing	4-1	has	the	code.

Listing	4-1:	The	main.xml	Document
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:orientation=”horizontal”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”>

	

				<fragment	class=

										“com.allmycode.frag.ComponentNamesFragment”

								android:id=”@+id/component_names”

								android:layout_height=”match_parent”

								android:layout_width=”0px”

								android:layout_weight=”1”	/>

	

				<FrameLayout	android:id=”@+id/docs”

								android:layout_height=”match_parent”

								android:layout_width=”0px”

								android:layout_weight=”1”

								android:background=

										“?android:attr/detailsElementBackground”	/>

	

</LinearLayout>

The	app’s	main	activity	code	is	impressively	uninteresting.	(See
Listing	4-2.)

Listing	4-2:	The	Main	Activity
package	com.allmycode.frag;

	

import	android.app.Activity;

import	android.os.Bundle;

	

public	class	AllPurposeActivity	extends	Activity	{

	

		@Override

		protected	void	onCreate(Bundle	savedInstanceState)	{

				super.onCreate(savedInstanceState);

				setContentView(R.layout.main);

		}

}

Listing	4-3	contains	the	ComponentNamesFragment	class.	By	virtue
of	the	layout	in	Listing	4-1,	Android	plants	a	ComponentNamesFragment
on	the	left	side	of	the	device’s	screen	(refer	to	Figure	4-1).

Listing	4-3:	A	Fragment	Containing	a	List	of
Items
package	com.allmycode.frag;

	

import	android.app.FragmentManager;

import	android.app.FragmentTransaction;

import	android.app.ListFragment;

import	android.os.Bundle;

import	android.view.View;

import	android.widget.ArrayAdapter;

import	android.widget.ListView;

	

public	class	ComponentNamesFragment	extends	ListFragment	{

	

		final	static	String[]	COMPONENTS	=	{	“Activity”,

						“Service”,	“BroadcastReceiver”,	“ContentProvider”	};

	

		@Override

		public	void	onActivityCreated

																													(Bundle	savedInstanceState)	{

				super.onActivityCreated(savedInstanceState);

				setListAdapter(new	ArrayAdapter<String>(

								getActivity(),

								android.R.layout.simple_list_item_activated_1,

								COMPONENTS));

		}

	

		@Override

		public	void	onListItemClick(ListView	l,	View	v,

						int	index,	long	id)	{

	

				getListView().setItemChecked(index,	true);

				DocsFragment	docsFragment	=

								DocsFragment.newInstance(index);

				FragmentManager	fragmentManager	=

								getFragmentManager();

				FragmentTransaction	fragmentTransaction	=

								fragmentManager.beginTransaction();

				fragmentTransaction.replace(R.id.docs,	docsFragment);

				int	backStackEntryCount	=

								fragmentManager.getBackStackEntryCount();

				for	(int	i	=	0;	i	<	backStackEntryCount;	i++)	{

						fragmentManager.popBackStackImmediate();

				}

				fragmentTransaction.addToBackStack(null);

	

				fragmentTransaction.commit();

		}

}

A	ListFragment	is	a	fragment	that	displays	a	list.	Early	on	in	the
fragment’s	lifecycle,	the	code	in	Listing	4-3	sets	a	list	adapter	(more
specifically,	an	ArrayAdapter)	for	the	fragment.	So	how	early	is	“early
on?”

As	in	the	examples	from	Chapter	2	(of	this	minibook),	the
ArrayAdapter	constructor’s	first	parameter	is	a	context.	But	wait!	Unlike
an	activity,	a	fragment	isn’t	a	context.	So	you	can’t	use	the	keyword	this
for	the	constructor’s	first	parameter.

Fortunately,	a	fragment	has	a	getActivity	method.	A	call	to	get
Activity	grabs	the	activity	to	which	the	fragment	is	attached.	So	for	the
ArrayAdapter	constructor’s	first	parameter,	you	can	call	getActivity.
Of	course,	you	can’t	call	getActivity	until	the	fragment	is	attached	to	an
existing	activity.	That’s	why,	in	Listing	4-3,	I	override	the	fragment’s	on
ActivityCreated	method.	Android	calls	onActivityCreated	after
attaching	the	fragment	and	calling	the	activity’s	onCreate	method.	So
everything	works	as	planned.

	The	android.app.Activity	class’s	great-grandparent	class
is	android.content.Context.	But	the	android.app.Fragment
class’s	parent	class	is	plain	old	java.lang.Object.	So	in	an
activity’s	code,	the	keyword	this	refers	to	a	context.	But	in	a
fragment’s	code,	the	keyword	this	doesn’t	refer	to	a	context.

	A	ListFragment	is	like	a	ListActivity	—	except	that	it’s	a
fragment,	not	an	activity.	Many	of	the	ListActivity	class’s
concepts	apply	as	well	to	the	ListFragment	class.	To	read	about
Android’s	ListActivity	class,	see	Chapter	2	in	this	minibook.
Like	a	ListActivity,	a	ListFragment	has	an	onListItemClick

method.	In	Listing	4-3,	I	respond	to	a	click	by	working	with	a
DocsFragment,	a	FragmentTransaction,	and	a	FragmentManager:
•	The	DocsFragment	instance	in	Listing	4-3	represents	the	right	side	of
Figure	4-1.

	
•	A	fragment	transaction	is	a	bunch	of	things	you	do	with	fragments.	For
example,	setting	up	to	replace	one	fragment	with	another	(as	in	Listing	4-
3)	is	a	transaction.

	
•	A	fragment	manager	does	what	its	name	suggests.	It	manages
fragments’	arrivals	and	departures.

	

The	fragment
You	don’t	get	to	see	the	DocsFragment’s	code	until	Listing	4-4.	So

for	now,	the	actual	fragment	created	by	calling
DocsFragment.newInstance	is	a	black	box.	(I	shouldn’t	build	up	the
suspense	this	way.	I	just	don’t	want	you	to	get	sidetracked.)

What	Listing	4-3	tells	you	about	the	new	DocsFragment	instance	is
that	the	instance	knows	about	the	current	index	—	the	position	of	the	list
item	selected	by	the	user.	(The	list	is	on	the	left	side	of	Figure	4-1.)	The
DocsFragment	class’s	code	should	use	this	index	value	(0,	1,	2,	or	3)	to
decide	which	component’s	documentation	to	display.

The	fragment	transaction
The	term	transaction	comes	from	the	world	of	databases.	A

transaction	is	a	bunch	of	operations.	These	operations	live	inside	an	all-

or-nothing	bubble.	That	is,	either	all	the	operations	in	the	transaction	take
place,	or	none	of	the	operations	in	the	transaction	takes	place.

In	Listing	4-3,	you	turn	a	bunch	of	statements	into	a	transaction.	In
particular,	you	sandwich	a	bunch	of	statements	between	calls	to	begin
Transaction	and	commit.	One	of	these	statements,	fragment
Transaction.replace(R.id.docs,	docsFragment),	prepares	to	replace
whatever’s	currently	in	the	docs	frame	layout	(in	Listing	4-1)	with	a	new
fragment.	The	replacement	occurs	when	Android	executes	the
fragmentTransaction.commit	method	call.

The	fragment	manager
An	instance	of	the	android.app.FragmentManager	class	takes	care

of	your	app’s	fragments.	For	example,	in	Listing	4-3	the	manager’s	begin
Transaction	method	starts	a	fragment	transaction.	The	manager	also
helps	you	fiddle	with	your	activity’s	stack.

Book	III,	Chapter	1	describes	the	way	activities	pile	up	on	top	of
one	another	with	successive	startActivity	calls.	When	the	user	presses
Back,	Android	pops	an	activity	off	the	stack.	The	most	recently	added
activity	is	the	first	to	be	popped.	It’s	as	if	Android,	the	boss,	has	an
agreement	with	members	of	the	Activities	Union.	Android	fires	activities
in	reverse	order	of	seniority.

With	the	introduction	of	fragments	in	Android	3.0,	an	activity	can
have	its	own	private	stack.	You	can	display	fragment	A	and	then	call
fragment	Transaction.replace	and
fragmentTransaction.addToBackStack.	The	combination	of	method
calls	makes	fragment	B	overwrite	fragment	A.	When	the	user	presses
Back,	fragment	B	goes	away,	and	fragment	A	returns	to	its	place	on	the
activity’s	screen.	Android	doesn’t	destroy	an	entire	activity	until	the
activity	has	no	fragments	that	it	can	jettison.

With	the	for	loop	in	Listing	4-3,	the	fragment	manager	does	some
quick	housekeeping	of	the	activity’s	fragment	stack.	To	read	more	about
this	housekeeping,	cast	your	eyes	to	the	next	section.

Fragments,	more	fragments,	and	even	more
fragments

The	right	pane	in	Figure	4-1	has	a	More	button.	When	the	user

presses	this	More	button,	the	app	displays	a	more	verbose	description	of
the	selected	component.	To	find	out	how	this	happens,	stare	thoughtfully
(but	joyfully)	at	the	code	in	Listing	4-4.

Listing	4-4:	Code	to	Create	the	Fragment	on
the	Right	Side	of	Figure	4-1
package	com.allmycode.frag;

	

import	android.app.Fragment;

import	android.app.FragmentTransaction;

import	android.os.Bundle;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.view.ViewGroup;

import	android.widget.Button;

import	android.widget.LinearLayout;

import	android.widget.TextView;

	

public	class	DocsFragment	extends	Fragment	{

	

		int	index;

	

		public	static	DocsFragment	newInstance(int	index)	{

				DocsFragment	docsFragment	=	new	DocsFragment();

				docsFragment.index	=	index;

				return	docsFragment;

		}

	

		@Override

		public	View	onCreateView(LayoutInflater	inflater,

						ViewGroup	container,	Bundle	savedInstanceState)	{

	

				LinearLayout	layout	=	new	LinearLayout(getActivity());

				layout.setOrientation(LinearLayout.VERTICAL);

				TextView	textView1	=	new	TextView(getActivity());

				textView1.setTextSize(30);

				textView1

								.setText(ComponentNamesFragment.COMPONENTS[index]);

				layout.addView(textView1);

				TextView	textView2	=	new	TextView(getActivity());

				textView2.setTextSize(20);

				textView2.setText(DOCS[index]);

				layout.addView(textView2);

	

				Button	button	=	new	Button(getActivity());

				button.setText(“More”);

				button

								.setOnClickListener(new	MyButtonListener(index));

				layout.addView(button);

	

				return	layout;

		}

	

		public	class	MyButtonListener	implements

						OnClickListener	{

				int	index;

	

				public	MyButtonListener(int	index)	{

						this.index	=	index;

				}

	

				@Override

				public	void	onClick(View	view)	{

						DocsFragmentVerbose	docsFragmentVerbose	=

										DocsFragmentVerbose.newInstance(index);

						FragmentTransaction	fragmentTransaction	=

										getFragmentManager().beginTransaction();

						fragmentTransaction.replace(R.id.docs,

										docsFragmentVerbose);

						fragmentTransaction.setTransition

										(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);

						fragmentTransaction.addToBackStack(null);

						fragmentTransaction.commit();

				}

		}

	

		final	static	String[]	DOCS	=

				{“An	activity	is	a	single,	focused	thing	that	the”

					+	“	user	can	do.	Almost	all	activities	interact”

					+	“	with	the	user,	so	the	Activity	class	takes”

					+	“	care	of	creating	a	window	for	you	in	which	you”

					+	“	can	place	your	UI	with	setContentView(View).”,

							“A	Service	is	an	application	component”

					+	“	representing	either	an	application’s	desire”

					+	“	to	perform	a	longer-running	operation	while”

					+	“	not	interacting	with	the	user	or	to	supply”

					+	“	functionality	for	other	applications	to	use.”,

							“Base	class	for	code	that	will	receive	intents”

					+	“	sent	by	sendBroadcast().	You	can	either”

					+	“	dynamically	register	an	instance	of	this	class”

					+	“	with	Context.registerReceiver()	or	statically”

					+	“	publish	an	implementation	through	the”

					+	“	<receiver>	tag	in	your	AndroidManifest.xml.”,

							“Content	providers	are	one	of	the	primary”

					+	“	building	blocks	of	Android	applications,”

					+	“	providing	content	to	applications.	They”

					+	“	encapsulate	data	and	provide	it	to	applications”

					+	“	through	the	single	ContentResolver	interface.”

					+	“	A	content	provider	is	only	required	if	you	need”

					+	“	to	share	data	between	multiple	applications.”

				};

}

Table	4-1	lists	onCreateView	as	one	of	Fragment	class’s	lifecycle
methods.	In	Listing	4-4,	the	onCreateView	method	uses	Java	code	to
compose	a	layout	—	the	layout	on	the	right	side	in	Figure	4-1.	The
listing’s	onCreate	View	method	returns	a	linear	layout,	which	is	a	view
group,	which	is	a	view.	And	that	view	becomes	the	fragment’s	visible
presence	on	the	tablet	screen.

	In	Listing	4-4,	I	define	a	fragment’s	layout	using	Java	code
instead	of	a	res/layout	XML	document.	Book	III,	Chapter	2	goes
into	more	detail	on	the	usage	of	Java	code	to	define	views	and
layouts.

Building	the	fragment	stack
In	Listing	4-4,	the	button’s	OnClickListener	replaces	the	right	side

of	Figure	4-1	with	a	brand-new	fragment	—	an	instance	of	my
DocsFragment	Verbose	class.	And	clever	guy	that	I	am,	I	programmed
the	DocsFragment	Verbose	class	to	display	a	page	from	the	official
Android	documentation	website.	Listing	4-5	contains	the	code.

Listing	4-5:	A	Fragment	Containing	a	Web
View
package	com.allmycode.frag;

	

import	android.app.Fragment;

import	android.os.Bundle;

import	android.view.LayoutInflater;

import	android.view.View;

import	android.view.ViewGroup;

import	android.webkit.WebView;

	

public	class	DocsFragmentVerbose	extends	Fragment	{

		

		int	index;

	

		public	static	DocsFragmentVerbose

						newInstance(int	index)	{

				DocsFragmentVerbose	docsFragmentVerbose	=

								new	DocsFragmentVerbose();

				docsFragmentVerbose.index	=	index;

				return	docsFragmentVerbose;

		}

	

		@Override

		public	View	onCreateView(LayoutInflater	inflater,

						ViewGroup	container,	Bundle	savedInstanceState)	{

	

				WebView	webView	=	new	WebView(getActivity());

	

				webView.loadUrl(

								“http://developer.android.com/reference/android/”

												+	((index	<	2)	?	“app/”	:	“content/”)

												+	ComponentNamesFragment.COMPONENTS[index]

												+	“.html”);

				

				return	webView;

		}

}

At	this	point,	I	can	describe	the	whole	storyboard	for	this	section’s
grand	example:
•	The	user	sees	a	list	—	namely,	the	list	of	component	names	in	the
left	fragment	in	Figure	4-1.

	
•	The	user	selects	an	item	in	the	list.

	
In	response,	the	app	displays	a	brief	description	of	the	selected	item.	In
Figure	4-1,	the	description	is	the	first	few	sentences	of	Android’s
BroadcastReceiver	documentation.

	
To	display	the	description,	the	code	in	Listing	4-3	calls
replace(R.id.docs,	docsFragment).	That	is,	the	code	places	a
fragment	into	the	R.id.docs	view.

	
•	The	newly	displayed	fragment	contains	a	brief	description	and	a
button.	(Refer	to	Figure	4-1.)	If	the	user	clicks	the	button,	the	app
covers	this	fragment	with	an	even	newer	fragment.

	
In	Figure	4-2,	the	new	fragment	displays	the	BroadcastReceiver’s	online
documentation	page.

	
	

Figure	4-2:	A	fragment	contains	a	web	view.

	To	load	a	page	from	the	Internet,	your	app’s
AndroidManifest.xml	document	must	have	a	<uses-permission
android:name=”android.permission.INTERNET”	/>	element.

Trimming	the	fragment	stack

When	I	created	the	first	draft	of	the	code	in	Listing	4-3,	I	didn’t
include	anything	about	getBackStackEntryCount	or
popBackStackImmediate.	“Whew!	I’m	done!”	I	said	to	myself.	But	then	I
tested	the	code.	What	I	discovered	in	testing	was	that	a	user’s	attention
shifts	abruptly	with	the	selection	of	a	new	list	item.

Imagine	selecting	BroadcastReceiver	and	then	clicking	the	More
button.	After	a	look	at	the	BroadcastReceiver’s	documentation	page	(in
Figure	4-2),	you	turn	your	attention	leftward	to	the	list	of	components.	As
soon	as	you	select	a	different	component,	you	tend	to	forget	all	about
broadcast	receivers.	So	if	you	click	the	Back	button,	you	probably	don’t
want	to	rummage	back	through	your	old	selections.	In	other	words,
selecting	an	item	in	the	list	of	components	represents	a	fresh	start.	When
you	select	an	item	in	the	list	of	components,	the	app	should	clear
whatever	fragment	stack	you	created	previously.

The	for	loop	in	Listing	4-3	does	the	desired	stack	cleanup.	The	code
calls	the	fragment	manager’s	getBackStackEntryCount	method	to	find
out	how	many	fragments	you	have	on	the	stack.	Then	the	for	loop	uses
the	entry	count	to	decide	how	many	fragments	to	pop	off	the	stack.	When
the	loop	finishes	its	work,	the	stack	of	fragments	is	empty,	so	you	can
safely	call	the	current	transaction’s	addToBackStack	method.	The
strategy	works	very	nicely.

Getting	the	Best	of	Both	Worlds
The	previous	sections	in	this	chapter	describe	an	app	that	uses

fragments.	The	app	works	very	nicely	but	has	one	tiny	limitation.	You
must	not	let	the	user	turn	the	tablet	sideways.	If	the	tablet	device	is	in
portrait	mode,	the	app	looks	silly.	(Yes,	I’m	being	sarcastic	if	I	call	this
problem	a	“tiny	limitation.”)

Figure	4-3	shows	the	app	on	a	display	that’s	taller	than	it	is	wide.
You	have	lots	of	wasted	space	on	the	left	side,	and	you	have	no	room	for
the	page	heading	(BroadcastReceiver)	on	the	right	side.

	

Figure	4-3:	Screen	orientation	matters	a	lot!

I’m	the	first	to	admit	that	this	book’s	other	examples	vary	from
plain-looking	to	ugly.	But	with	other	examples,	the	fault	is	with	my	lack
of	artistic	flair.	In	this	chapter’s	example,	the	fault	is	in	the	code.	(“The
fault,	dear	Brutus,	is	not	in	our	arts,	But	in	our	code	.	.	.”)

To	remedy	the	visual	faux	pas	in	Figure	4-3,	you	create	an
additional	activity.	The	new	DocsActivityVerbose	activity	has	only	one
view	—	namely,	a	view	to	display	the	web	page	fragment	from	Listing	4-
5.	Unlike	the	narrow	fragment	in	Figure	4-3,	the	new	activity	consumes
the	entire	screen.	(See	Figure	4-4.)	You	tweak	the	rest	of	the	app’s	code
to	display	either	the	DocsFragmentVerbose	or	the	DocsActivityVerbose
depending	on	the	screen’s	orientation.

To	adapt	this	chapter’s	app	for	both	portrait	and	landscape	mode,
follow	these	steps:

1.	Start	with	the	project	that’s	described	in	Listings	4-1	to	4-5.
	 You	can	download	the	code	from	this	book’s	website	(www.allmy

code.com/android).
	

	

Figure	4-4:	The	web	page	fragment	takes	up	the	entire	screen.

2.	Add	a	new	Java	class	to	your	project.
	 In	Listing	4-6,	I	call	the	class	DocsActivityVerbose.
	

Listing	4-6:	An	Activity	That’s	a	Wrapper	for
a	Fragment
package	com.allmycode.frag;

	

import	android.app.Activity;

import	android.app.FragmentTransaction;

import	android.os.Bundle;

	

http://www.allmycode.com/android

public	class	DocsActivityVerbose	extends	Activity	{

	

		@Override

		public	void	onCreate(Bundle	bundle)	{

				super.onCreate(bundle);

				setContentView(R.layout.docs_verbose);

	

				int	index	=	getIntent().getIntExtra(“index”,	0);

	

				DocsFragmentVerbose	docsFragmentVerbose	=

								DocsFragmentVerbose.newInstance(index);								

				FragmentTransaction	fragmentTransaction	=

								getFragmentManager().beginTransaction();

				fragmentTransaction.replace(R.id.docs_verbose_frame,

								docsFragmentVerbose);

				fragmentTransaction.setTransition

								(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);

				fragmentTransaction.commit();

		}

}

The	new	DocsActivityVerbose	class	performs	the	same	fragment
transaction	that’s	performed	by	the	MyButtonListener	in	Listing	4-4.

	

	Notice	that	the	code	in	Listing	4-6	doesn’t	call	the
addToBackStack	method.	If	you	called	addToBackStack	in	Listing	4-6,
Android	would	push	the	web	page	fragment	on	top	of	an	initially	empty
fragment.	Then,	when	the	user	pressed	the	Back	button,	Android	would
pop	the	web	page	fragment	off	the	stack.	The	user	would	see	an	empty
fragment	that	consumes	the	entire	screen.

	 3.	Before	you	forget,	add	an	<activity>	element	to	the	project’s
AndroidManifest.xml	document.

	 The	new	<activity>	element	looks	like	this:
	 <activity	android:name=

		“com.allmycode.frag.DocsActivityVerbose”	/>
Like	many	activity	classes,	the	new	DocsActivityVerbose	class

uses	its	own	layout	resource.	And	sure	enough,	the	onCreate	method	in
Listing	4-6	refers	to	an	R.layout.docs_verbose	resource.	So	in	the	next
several	steps,	you	tweak	the	app’s	layouts	and	create	the
docs_verbose.xml	document.

	 4.	Right-click	(Control-click	on	a	Mac)	the	project’s	res/layout
folder	in	Eclipse’s	Package	Explorer	view	and	then	choose	Copy.

	 5.	Right-click	(or	Control-click	on	a	Mac)	the	project’s	res
folder	in	the	Package	Explorer	view	and	then	choose	Paste.

	 Eclipse	doesn’t	want	you	to	create	a	second	folder	with	the	name
layout.	So	Eclipse	prompts	you	with	a	Name	Conflict	dialog	box.

	 6.	In	the	Name	Conflict	dialog	box,	enter	the	name	layout-land
and	click	OK.

	 When	your	device	is	in	landscape	mode,	Android	looks	for	a	res
folder	named	layout-land.	And	when	your	device	is	in	portrait	mode,
Android	looks	for	a	res	folder	named	layout-port.	In	either	case,	if	the
desired	folder	doesn’t	exist,	Android	falls	back	on	the	old-fashioned
res/layout	folder.	(This	section’s	example	has	a	layout-land	folder
but	no	layout-port	folder.)

	 Now,	with	folders	named	res/layout	and	res/layout-land,	your
app’s	resources	can	be	different	for	the	two	screen	orientations.

	 7.	Add	a	docs_verbose.xml	document	to	the	project’s
res/layout	folder.

	 The	code	is	in	Listing	4-7.
	

Listing	4-7:	A	Layout	for	the	New
DocsActivityVerbose	Class
<?xml	version=”1.0”	encoding=”utf-8”?>

<LinearLayout	xmlns:android=

						“http://schemas.android.com/apk/res/android”

				android:layout_width=”match_parent”

				android:layout_height=”match_parent”>

				<FrameLayout	android:id=”@+id/docs_verbose_frame”

								android:layout_height=”match_parent”

								android:layout_width=”match_parent”

								android:layout_weight=”1”	/>

</LinearLayout>

	The	R.layout.docs_verbose	resource	helps	you
when	the	device	is	in	portrait	mode.	So	the	new	docs_verbose.xml
document	belongs	in	the	res/layout	folder,	not	in	the	res/layout-land
folder.

	 Having	created	the	new	DocsActivityVerbose	class	and	its	required
layout	resource,	you’re	ready	to	integrate	these	files	into	the	rest	of	the
app’s	code.	To	do	this,	consider	two	situations:

	 •	When	the	user	presses	the	More	button,	you	either	replace	the	existing
fragment	or	start	your	new	DocsActivityVerbose,	depending	on	the
screen’s	orientation.

	
•	When	the	user	turns	the	device	sideways,	you	check	whether	the	new

orientation	will	cause	the	awkward	crunch,	as	shown	in	Figure	4-3.	If
so,	back	away	from	displaying	the	web	page	fragment.

	
The	next	few	steps	finish	the	job.

	 8.	Modify	the	DocsFragment	code’s	onClick	method	(see	Listing
4-8).

	
Listing	4-8:	Deciding	What	to	Do	When	the

User	Clicks	a	Button
@Override

public	void	onClick(View	view)	{

		if	(getResources().getConfiguration().orientation

												==	Configuration.ORIENTATION_LANDSCAPE)	{

	

				DocsFragmentVerbose	docsFragmentVerbose	=

								DocsFragmentVerbose.newInstance(index);

				FragmentTransaction	fragmentTransaction	=

								getFragmentManager().beginTransaction();

				fragmentTransaction.replace(R.id.docs,

								docsFragmentVerbose);

				fragmentTransaction.setTransition

								(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);

				fragmentTransaction.addToBackStack(null);

				fragmentTransaction.commit();

		}	else	{

				Intent	intent	=	new	Intent();

				intent.setClass(getActivity(),

								DocsActivityVerbose.class);

				intent.putExtra(“index”,	index);

				startActivity(intent);

		}

}

The	original	DocsFragment	class	in	Listing	4-4	doesn’t	check	the
screen’s	orientation.	But	the	code	in	Listing	4-8	responds	in	different
ways,	depending	on	the	orientation.	If	the	orientation	is	landscape,	the
code	in	Listing	4-8	mimics	the	code	in	Listing	4-4.	But	if	the	orientation
is	portrait,	Listing	4-8	starts	an	instance	of	the	new
DocsActivityVerbose	class.

	 9.	Add	the	method	in	Listing	4-9	to	the	AllPurposeActivity
class’s	code.

	
Listing	4-9:	Intercepting	a	Change	in	the

Screen’s	Orientation
@Override

public	void

				onConfigurationChanged(Configuration	config)	{

	

		super.onConfigurationChanged(config);

	

		if	(config.orientation	==

						Configuration.ORIENTATION_PORTRAIT)	{

				FragmentManager	fragmentManager	=

								getFragmentManager();

				if	(fragmentManager.getBackStackEntryCount()	>	1)	{

						fragmentManager.popBackStackImmediate();

				}

		}

}

The	original	AllPurposeActivity	class	is	in	Listing	4-2.	Here	in
Listing	4-9,	the	newly	added	onConfigurationChanged	method	checks
for	danger.	And	by	“danger,”	I	mean	being	in	portrait	mode	and
displaying	the	web	page	fragment.

	 To	be	precise,	the	code	in	Listing	4-9	asks	how	many	fragments	are
currently	on	the	activity’s	stack	of	fragments.	If	the	count	is	more	than
one,	the	most	recently	created	fragment	is	the	dreaded	web	page
fragment.	So	to	eliminate	the	danger,	the	code	pops	the	web	page
fragment	off	the	stack.

	 10.	In	the	AndroidManifest.xml	document,	add	the	following
attribute	to	the	AllPurposeActivity’s	start	tag:

	 android:configChanges=”orientation”
This	attribute	tells	Android	not	to	destroy	and	re-create	AllPurpose

Activity	whenever	the	user	turns	the	device	sideways.	Instead,	Android
calls	the	activity’s	onConfigurationChanged	method.	That’s	good
because	without	this	attribute,	Step	9	is	a	waste	of	time.

	

	Android	calls	an	activity’s	onConfigurationChanged
method	only	if	you	add	the	android:configChanges=”orientation”
attribute	in	the	AndroidManifest.xml	document.

	 With	the	changes	that	you	make	in	this	section’s	steps,	the	user	can
turn	the	device	sideways,	upside-down,	or	whatever.	When	the	user	wants
to	see	a	web	page,	the	app	displays	the	page	in	a	fragment	or	in	an	entire
activity,	whichever	is	best.

	

Book	V

The	Job	Isn’t	Done	Until	.	.	.

Contents	at	a	Glance
Chapter	 1:	 Publishing	 Your	 App	 to	 the	 Android

Market	Preparing	Your	Code
Creating	the	APK	File

Creating	 an	 Android	 Market	 Account	 Pricing	 Your
Application	 Getting	 Screen	 Shots	 for	 Your	 Application
Uploading	 Your	 Application	 to	 the	 Android	 Market
Watching	 the	 Installs	 Soar	 Chapter	 2:	 Publishing	 Your
App	 to	 the	 Amazon	 Appstore	 Becoming	 an	 Amazon
Appstore	Developer	Uploading	an	App

	

Chapter	1:	Publishing	Your	App	to	the
Android	Market

In	This	Chapter
Prepping	your	code
Building	an	Android	package	file
Opening	an	account	in	the	Android	Market
Picking	a	price	for	your	app
Illustrating	your	app	with	a	screen	shot
Uploading	and	publishing	your	application

Monitoring	downloads
	

The	Honeymooners	aired	from	1955	to	1956	on	the	CBS	television
network	in	the	United	States.	Comedian	Jackie	Gleason	played	Ralph
Kramden,	a	bus	driver	living	in	a	small	Brooklyn,	New	York,	apartment
with	his	wife,	Alice.	(In	earlier	sketches,	actress	Pert	Kelton	had	played
the	role	of	Alice.	But	Kelton	was	blacklisted	by	McCarthy’s	House
Committee	on	Un-American	Activities,	so	actress	Audrey	Meadows
assumed	the	role	of	Alice.)

One	of	Ralph	Kramden’s	fatal	flaws	was	his	affinity	for	get-rich-
quick	schemes.	In	a	hilarious	Honeymooners	episode,	Ralph	and	his
buddy	Ed	Norton	(played	by	Art	Carney)	did	a	live	television	infomercial
for	their	Handy	Housewife	Helper	gadgets.	(Visit
www.youtube.com/watch?v=yB5a6y3okeo	to	check	it	out.)	Ralph’s
sudden	stage	fright	made	him	stumble	and	shake	instead	of	effectively
showing	off	his	product.

While	I’m	on	the	subject	of	getting	rich	quickly,	I	can	segue
seamlessly	to	the	Android	Market.	The	Android	Market	is	the	official
application	distribution	mechanism	behind	Android.	Publishing	your
application	to	the	market	enables	your	application	to	be	downloaded,
installed,	and	run	by	millions	of	users	across	the	world.	Users	can	also
rate	and	leave	comments	about	your	application,	which	helps	you	identify

http://www.youtube.com/watch?v=yB5a6y3okeo

possible	usage	trends	as	well	as	problematic	areas	that	users	might	be
encountering.

The	Android	Market	also	provides	a	set	of	valuable	statistics	that
you	can	use	to	track	the	success	of	your	application,	as	I	show	you	in	the
last	section	of	this	chapter.

In	this	chapter,	I	show	you	how	to	publish	your	application	to	the
Android	Market.	I	also	show	you	how	to	provide	a	couple	of	screen	shots,
a	promo	screen	shot,	and	a	short	description	of	your	application.	To	get
your	app	into	the	Android	Market,	you	have	to	package	it	in	a
distributable	format	first.

Preparing	Your	Code
You	had	a	great	idea,	you	developed	the	next	hit	application	and/or

game	for	the	Android	platform,	and	now	you’re	ready	to	get	the
application	into	the	hands	of	end	users.	The	first	thing	you	need	to	do	is
test	your	application.	When	you’ve	finished	testing,	test	some	more.

After	thoroughly	testing	your	app,	ask	yourself	what	sequences	of
buttons	you	avoided	clicking	when	you	did	your	“thorough”	testing.	Then
muster	the	courage	to	click	the	buttons	and	use	the	widgets	in	that	strange
sequence.	And	while	you’re	at	it,	tilt	the	device	sideways,	turn	the	device
upside	down,	hold	the	device	above	your	head,	and	try	using	the	app.	If
your	device	is	a	phone,	interrupt	the	app	with	an	incoming	call.

Are	you	finished	testing?	Not	yet.	Have	your	friends	test	the	app	on
their	devices.	Whatever	you	do,	don’t	give	them	any	instructions	other
than	the	instructions	you	intend	to	publish.	Ask	them	about	their
experiences	running	your	app.

	You	can	“publish”	your	app	on	the	Android	Market	so	that
only	your	designated	friends	can	install	the	app.	For	more
information,	skip	ahead	to	the	“More	testing”	section.
Can	I	overemphasize	the	need	for	testing?	I	don’t	think	so.	When

you	test	your	app,	be	your	app’s	worst	enemy.	Try	as	hard	as	you	can	to
break	your	app.	Be	overly	critical.	Be	relentless.	If	your	app	has	a	bug
and	you	don’t	find	it,	your	users	will.

Un-testing	the	app
When	you	test	an	app,	you	find	features	that	don’t	quite	work.	You

check	the	logs,	and	you	probably	add	code	to	help	you	diagnose
problems.	As	you	prepare	to	publish	your	app,	remove	any	unnecessary
diagnostic	code,	remove	extra	logging	statements,	and	remove	any	other
code	whose	purpose	is	to	benefit	the	developer	rather	than	the	user.

In	developing	your	app,	you	might	have	created	some	test	data.	(Is
there	a	duck	named	“Donald”	in	your	app’s	contact	list?)	If	you’ve
created	test	data,	delete	the	data	from	your	app.

Check	your	project’s	AndroidManifest.xml	file.	If	the
<application>	element	has	an	android:debuggable=”true”	attribute,
remove	that	attribute.	(The	attribute’s	default	value	is	false.)

Choosing	Android	versions
To	distribute	an	application,	you	create	an	Android	Package	(APK)

file.	An	APK	file	contains	everything	a	user’s	device	needs	to	know	in
order	to	run	your	app.	You	can	think	of	an	APK	file	as	a	compressed
copy	of	the	stuff	displayed	for	a	particular	project	in	Eclipse’s	Package
Explorer	view.

Each	APK	file’s	name	ends	with	the	.apk	extension.	When	you	get
Eclipse	to	run	your	application,	Eclipse	creates	an	APK	file	and	installs
the	APK	file	on	an	emulator	or	a	device.	If	your	app	has	an	activity	with
“android.intent.action.MAIN”	and
“android.intent.category.LAUNCHER”,	Eclipse	goes	one	step	further
and	actually	launches	your	app.

Before	you	jump	in	and	create	the	distributable	APK	file,	make	sure
that	your	application	is	available	to	as	many	users	as	possible.	Do	this	by
tweaking	the	android:minSdkVersion	in	the	AndroidManifest.xml	file:
<uses-sdk	android:minSdkVersion=”4”	/>

The	minSdkVersion	property	identifies	which	versions	of	the
Android	platform	can	install	this	application.	The	Android	platform,	for
the	most	part,	is	backward-compatible.	Most	of	the	features	in	API
version	4	are	also	in	API	versions	8	and	9.	Yes,	small	changes	and
sometimes	new	large	components	are	released	in	each	new	version,	but
for	the	most	part,	everything	else	in	the	platform	remains	backward-
compatible.	Therefore,	stating	that	this	application	needs	a	minimum	of

API	version	4	(Donut)	signifies	that	any	Android	operating	system
version	4	or	greater	can	run	the	application.

Using	the	minSdkVersion	information,	the	Android	Market	can
determine	which	applications	to	show	each	user	of	each	device.	If	you
were	to	release	the	application	right	now	with	minSdkVersion	set	to	the
value	of	4,	and	you	opened	the	Android	Market	on	an	Android	device
running	version	3	(Cupcake),	you	wouldn’t	find	your	application.	Why?
The	Android	Market	filters	it	out	for	you.	You,	the	developer,	told	the
Android	Market,	“Hey!	This	app	can	run	only	on	devices	that	are	of	API
level	4	or	greater!”	If	you	were	to	open	the	Android	Market	on	a	device
running	API	level	4	or	above,	you	could	find	and	install	your	application.

	If	you	don’t	provide	a	minSdkVersion	value	in	the	uses-sdk
element	of	the	application’s	manifest,	the	Android	Market	defaults
the	minSdkVersion	to	0,	which	means	that	this	application	is
compatible	with	all	Android	versions.	If	your	application	happens	to
use	a	component	not	available	in	older	versions	of	the	platform
(such	as	the	Bluetooth	technology	in	Android	2.0),	and	a	user
installs	your	application,	he	receives	a	run-time	error	informing	the
user	that	the	application	could	not	continue	because	an	exception
occurred.

	For	information	about	minimum	SDK	versions	and	target
SDK	versions,	see	Book	I,	Chapter	3.

Selecting	an	icon	and	a	label
When	you	create	a	new	Android	project,	Eclipse	puts	some	default

attributes	in	your	<application>	element’s	start	tag:
<application	android:icon=”@drawable/icon”			

													android:label=”@string/app_name”>

Before	publishing	your	app,	replace	these	defaults	with	your	own
values.	Create	nice-looking	icons	starting	with	Android’s	Icon	Templates

Pack	(available	for	download	at
http://developer.android.com/shareables/icon_	templates-

v2.3.zip).	Also	check	Android’s	Icon	Design	Guidelines	at
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Choose	a	label	(an	app	name)	that	grabs	a	customer’s	attention.

Set	your	app’s	own	version	code	and	version
name

When	you	create	a	new	Android	project,	Eclipse	puts	some	default
attributes	in	your	<manifest>	element’s	start	tag:
<manifest	android:versionCode=”1”

										android:versionName=“1.0“	...	(more	attributes)>

The	version	code	must	be	an	integer,	and	your	app’s	code	numbers
must	increase	over	time.	For	example,	if	your	first	published	version	has
version	code	42,	your	second	published	version	must	have	a	version	code
higher	than	42.

Users	never	see	the	version	code.	Instead,	users	see	your	app’s
version	name.	You	can	use	any	string	for	your	app’s	version	name.	Many
developers	use	the	major-release.minor-release.point	system.	For
example,	a	typical	version	name	might	be	1.2.2.	But	there	are	no
restrictions.	Android	has	all	the	dessert	names,	and	Apple	has	all	the
jungle-cat	names,	so	I	add	something	like
android:versionName=”sea	squirt”

to	my	<manifest>	start	tag.	(Look	it	up!)

Creating	the	APK	File
When	you	create	an	app	that	runs	on	an	emulator	or	a	device,

Eclipse	packages	your	app	in	an	APK	file	—	one	file	specially	formatted
to	contain	all	your	app’s	code	and	all	your	app’s	data.	Here’s	what	you
need	to	do	for	the	packaging	process	to	go	smoothly:

1.	Open	Eclipse,	if	it	is	not	already	open.
	 2.	Right-click	(Windows)	or	Control-click	(Mac)	your	project

and	then	choose	Android	Tools⇒Export	Signed	Application	Package
from	the	resulting	contextual	menu.

	 Doing	so	displays	the	Export	Android	Application/Project	Checks
dialog	box,	as	shown	in	Figure	1-1,	with	the	current	project	name	filled	in

http://developer.android.com/shareables/icon_templates-v2.3.zip
http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

for	you.
	 3.	Click	the	Next	button.
	 The	Export	Android	Application/Keystore	Selection	dialog	box

opens,	as	shown	in	Figure	1-2.
	

	For	more	information	about	keystores,	skip	to	the
“Digitally	signing	your	application”	section.

	 4.	You	haven’t	created	a	keystore	yet,	so	select	the	Create	New
Keystore	option.

	 5.	Choose	the	location	of	your	keystore.
	 In	Figure	1-2,	notice	that	I	don’t	put	the	new	keystore	in	my

project’s	directory.	As	I	publish	more	apps,	I’ll	probably	use	this	keystore
to	sign	other	projects’	APK	files.

	 6.	Choose	and	enter	a	password	that	you’ll	remember;	reenter	it
in	the	Confirm	field.

	
	

Figure	1-1:	The	Export	Android	Application/Project	Checks	dialog	box.

	

Figure	1-2:	The	Export	Android	Application/Keystore	Selection	dialog	box.

7.	Click	the	Next	button.
	 The	Export	Android	Application/Key	Creation	dialog	box	opens.
	 8.	Fill	out	the	following	fields:
	 •	Alias:	This	is	the	alias	that	you	will	use	to	identify	the	key.
	

•	Password	and	Confirm:	This	is	the	password	that	will	be	used	for	the
key.

	
•	Validity	(Years):	This	indicates	how	long	this	key	will	be	valid	for.

Your	key	must	expire	after	October	22,	2033.	(I	can’t	imagine	how
the	creators	of	Android	came	up	with	this	date!	I’m	wondering	what
kind	of	party	I	should	throw	when	October	22,	2033,	finally	rolls
around.	Anyway,	I	normally	insert	a	value	of	30	years	into	this	field	to
be	safe.)

	
9.	Complete	the	bottom	half	of	the	dialog	box	(called	the

Certificate	Issuer	section),	filling	in	at	least	one	of	these	fields:
	 •	First	and	Last	Name
	

•	Organizational	Unit

	
•	Organization

	
•	City	or	Locality

	
•	State	or	Province

	
•	Country	Code	(XX)

	

	The	items	First	and	Last	Name,	Organizational	Unit,
and	so	on	are	part	of	the	X.500	Distinguished	Name	standard.	The
probability	of	two	people	having	the	same	name	and	working	in	the	same
unit	of	the	same	organization	in	the	same	locality	is	close	to	zero.

	 When	you	finish,	your	dialog	box	resembles	Figure	1-3.
	

	

Figure	1-3:	The	Export	Android	Application/Key	Creation	dialog	box.

10.	Click	the	Next	button.
	 The	final	screen	you	encounter	is	the	Export	Android

Application/Destination	and	Key/Certificate	Checks	dialog	box,	as	shown
in	Figure	1-4.

	 11.	Enter	a	name	and	location	for	a	file	with	an	.apk	extension.
	 As	you	develop	a	project,	Eclipse	puts	APK	files	in	the	project’s	bin

subdirectory.	So	that’s	where	I	put	the	APK	file	in	Figure	1-4.
	 12.	Click	the	Finish	button.
	 This	creates	the	APK	file	in	your	chosen	location.	If	you	open	this

location,	you	see	the	APK	file	and	a	few	other	goodies.	(See	Figure	1-5.)
	

	

Figure	1-4:	Choosing	a	name	and	destination	for	your	APK	file.

	

Figure	1-5:	Verifying	the	destination	of	the	APK	file.

Congratulations!	You’ve	created	a	distributable	APK	file	and	a
reusable	keystore	for	future	updates.

Digitally	signing	your	application
Android	requires	that	all	installed	applications	be	digitally	signed:

•	No	ifs,	ands	or	buts:	All	Android	applications	must	be	signed.	The
system	will	not	install	an	application	that	is	not	signed.

	
When	you	test	an	app	on	an	emulator	or	on	your	own	device,	one	of
Android’s	development	tools	quietly	signs	your	app	with	a	simple	key
from	a	debug.keystore	file.

	

	For	bedtime	reading	about	the	debug.keystore	file	and
other	aspects	of	digital	signing,	see	the	nearby	“Understanding	digital
signatures”	sidebar.

	
•	You	can	use	self-signed	certificates	to	sign	your	applications;	a
certificate	authority	is	not	needed.

	
To	read	all	about	certificate	authorities,	see	the	nearby	sidebar.

	
•	When	you	are	ready	to	release	your	application	to	the	market,	you	must
sign	it	with	a	private	key.	You	cannot	publish	the	application	with	the
debug	key	that	signs	the	APK	file	when	debugging	the	application	during
development.

	
•	The	certificate	has	an	expiration	date,	and	that	expiration	date	is	verified
only	at	install	time.	If	the	certificate	expires	after	the	application	has	been
installed,	the	application	continues	to	operate	normally.

	
•	Eclipse’s	Android	tools	can	do	much	of	the	work	in	signing	your	app.
For	finer	control,	you	can	use	standard	Java	tools	such	as	keytool	or
jarsigner	to	sign	your	APK	files.

	
For	more	information	on	do-it-yourself	signing,	see	Book	VI,	Chapter	3.

	

Understanding	digital	signatures
	When	you	digitally	sign	something,	you	add	a	sequence	of	bits

that	only	you	can	add.	You	use	sophisticated	software	to	create	the
sequence	and	to	embed	the	sequence	in	your	APK	file.	The
software	to	create	this	sequence	uses	techniques	from	number
theory.	(Sometime	between	1777	and	1855,	Carl	Friedrich	Gauss
called	number	theory	“the	queen	of	mathematics,”	and	he	wasn’t

kidding!)
Digital	signing	actually	involves	two	sequences	of	bits:

A	private	key:	A	sequence	that	you	don’t	share	with	others.
A	public	key:	A	sequence	that	you	do	share	with	others.

The	private	key	never	leaves	your	office,	but	you	can	display	the
public	key	on	a	neon	sign	in	Times	Square.	If	you	tell	someone
your	private	key,	you’d	have	to	.	.	.	(well,	you	know).	But	you	can
hire	a	pilot	to	write	your	public	key	with	white	smoke	in	the	sky
over	the	Golden	Gate	Bridge.
To	sign	an	app,	you	run	software	that	adds	a	certificate	to	your
app.	A	certificate	is	a	bunch	of	information,	which	includes	your
private	key,	your	public	key,	some	information	to	identify	you,
and	some	other	information.	Like	your	signature	on	a	contract,	a
certificate’s	private	key	is	difficult	to	fake.	But	with	the
certificate’s	public	key,	a	program	on	the	user’s	device	verifies
that	your	app	is	authentic.
A	user	gets	keys	from	your	app’s	certificate.	But	as	a	developer,
you	store	keys	apart	from	any	certificate.	You	keep	public	and
private	keys	in	a	place	where	your	software	can	retrieve	them	—	a
keystore	file.	When	you	digitally	sign	an	app,	software	grabs	keys
from	your	keystore	file,	uses	the	keys	to	create	a	certificate,	and
melds	the	certificate	into	your	APK	file.	If	you	visit	your
development	computer’s	home	directory,	and	drill	down	to	an
.android	directory	(starting	with	a	dot),	you	probably	find	the
debug.keystore	file.	This	debug.keystore	file	contains	the	keys
for	signing	draft	versions	of	your	apps.	(For	help	finding	your
home	directory,	see	Book	I,	Chapter	3.)
A	keystore	file	contains	sensitive	information,	so	every	keystore
file	is	password-protected.	Android’s	debug.keystore	file	is
password-protected.	But	unlike	most	keystore	files,	the
debug.keystore	file’s	password	is	freely	available.	The	password
is	android.	With	Java’s	keytool	program,	anyone	can	sign	any	app
using	keys	from	the	debug.keystore	file.	That’s	okay	because	the
debug.keystore	file’s	keys	don’t	work	for	apps	that	you	publish
on	the	Android	Market	(or	anywhere	else,	for	that	matter).	So
before	publishing	your	app,	run	software	to	add	your	own	keys	to
your	app.

After	downloading	your	app,	a	user’s	software	applies	a	public
key	to	verify	that	your	app	is	signed	properly.	And	what	does	that
prove?	Well,	if	a	hacker	tampers	with	your	app	somewhere
between	publication	and	the	user’s	downloading,	the	test	for
proper	signing	detects	the	tampering.	“Sorry,”	says	Android,	“I
refuse	to	install	this	app.”
But	what	about	a	malicious	hacker	who	creates	a	damaging	app
and	uses	Android’s	freely	available	tools	to	sign	it?	To	the	world
in	general,	the	app	looks	fine.	Signing	doesn’t	verify	that	an	app’s
developer	has	good	intentions.
The	weak	link	in	the	chain	is	the	fact	that	Android	apps	are	self-
signed.	When	you	add	a	digital	signature	to	your	app,	no	one	else
signs	with	you.
For	scenarios	that	require	more	security	(scenarios	not	normally
associated	with	mobile	devices),	a	developer	can	get	help	from	a
certificate	authority.	A	certificate	authority	is	an	organization	that
issues	special	digital	signatures	—	signatures	that	the	world
recognizes	as	very	trustworthy.	To	get	such	a	signature,	you
convince	a	certificate	authority	that	you’re	a	good	person,	and	you
pay	some	money	to	the	certificate	authority.	Some	certificate
authorities	issue	signatures	for	free.	These	free	signatures	are
okay,	but	they	aren’t	as	trusted	as	the	paid	signatures,	and	they
don’t	have	the	same	clout	as	the	paid	signatures.

	

	You	can	create	modular	applications	that	can	communicate
with	one	another	if	the	applications	were	signed	with	the	same
certificate.	This	allows	the	applications	to	run	within	the	same
process,	and	if	requested,	the	system	can	treat	them	as	a	single
application.	With	this	methodology,	you	can	create	your	application
in	modules,	and	users	can	update	each	module	as	they	see	fit.	A
great	example	of	this	would	be	to	create	a	game	and	then	release
update	packs	to	upgrade	the	game.	Users	can	decide	to	purchase	the
updates	that	they	want.

	The	certificate	process	is	outlined	in	detail	in	the	Android
documentation.	The	documentation	describes	how	to	generate
certificates	with	various	tools	and	techniques.	You	can	find	more
information	about	APK	signing	at
http://d.android.com/guide/publishing/app-signing.html.

Creating	a	keystore
A	keystore	in	Android	(as	well	as	in	Java)	is	a	container	in	which

your	personal	certificates	reside.	You	can	create	a	keystore	file	with	a
couple	of	tools	in	Android:
•	Eclipse’s	Export	Wizard:	This	tool	is	installed	with	the	Android
Development	Tools	(ADT)	and	allows	you	to	export	a	self-signed	APK
file	that	can	digitally	sign	the	application,	as	well	as	create	the	certificate
and	keystore	(if	needed)	through	a	wizard-like	process.

	
You	use	the	Export	Wizard	in	Steps	4–9	of	the	“Creating	the	APK	File”
section.

	
•	Java’s	keytool	application:	The	keytool	application	allows	you	to
create	a	self-signed	keystore	via	the	command	line.	This	tool	is	located	in
the	Android	SDK	tools	directory	and	provides	many	options	via	the
command	line.

	
The	sections	that	follow	describe	the	use	of	Eclipse’s	Export

Wizard.	(For	an	example	of	the	use	of	Java’s	keytool	application,	see
Book	VI,	Chapter	3.)

Safeguarding	your	keystore
The	keystore	file	contains	your	private	certificate	that	Android	uses

to	identify	your	application	in	the	Android	Market.	Back	up	your	keystore
in	a	safe	location	because	if	you	happen	to	lose	your	keystore,	you	cannot
sign	the	application	with	the	same	private	key.	Therefore,	you	cannot

http://d.android.com/guide/publishing/app-signing.html

upgrade	your	application	because	the	Android	Market	platform
recognizes	that	the	application	is	not	signed	by	the	same	key	and	restricts
you	from	upgrading	it;	the	Market	sees	the	file	as	a	new	Android
application.	This	also	happens	if	you	change	the	package	name	of	the
app;	Android	does	not	recognize	it	as	a	valid	update	because	the	package
and/or	certificate	are	the	same.

Don’t	wait!	Obfuscate!
	Nestled	quietly	inside	your	project’s	directory	is	a	proguard.cfg

file.	This	proguard.cfg	file	contains	configuration	information	for
a	program	that	obfuscates	your	code.	When	you	obfuscate
something,	you	make	it	difficult	to	read.	You	scramble	stuff	and
generally	do	the	opposite	of	what	you’re	supposed	to	do	when	you
write	clear,	maintainable	code.
Why	do	this?	An	obfuscated	program	can	be	executed	without
modification	by	an	appropriate	device.	The	device	doesn’t	need	a
password	and	doesn’t	have	to	decrypt	anything	in	order	to	run	the
code.	In	fact,	an	obfuscated	program	contains	nothing	unusual	as
far	the	Dalvik	Virtual	Machine	is	concerned.	But	for	a	person
trying	to	reverse-engineer	your	code,	the	obfuscation	is	a
nightmare.	That’s	because	the	human	mind	doesn’t	process	code
mechanically.	Instead,	humans	get	the	big	picture;	humans	have	to
understand	things	in	order	to	work	with	them;	humans	feel	stress
when	they	work	with	things	that	are	terse,	circuitous,	and	highly
compressed.
So	with	obfuscated	code,	evil	people	can’t	easily	figure	out	how
your	code	works.	They	have	trouble	stealing	your	tricks	and	(more
important)	they	can’t	easily	add	viruses	to	your	published	code.
Before	publishing	on	the	Android	Market,	you	must	obfuscate
your	app’s	code.	Fortunately,	the	steps	in	this	chapter’s	“Creating
the	APK	File”	section	do	the	obfuscation	for	you.	Eclipse’s
wizards	apply	ProGuard	tools	to	your	code,	turning	your	code	into
a	dizzying	mess	for	anyone	trying	to	tinker	with	it.
ProGuard	is	an	open-source	project;	its	website	lives	at
http://proguard.source	forge.net.

	

http://proguard.sourceforge.net

Creating	an	Android	Market	Account
Now	that	you	have	your	APK	file	created,	you	can	release	the

application	on	the	Android	Market.	To	do	so,	you	need	to	create	an
Android	Market	account.	To	create	such	an	account,	you	need	a	Google
account.	Any	Google-based	account,	such	as	a	Gmail	account,	is	fine.	If
you	don’t	have	a	Google	account,	you	can	get	a	free	account	by
navigating	to	www.google.com/accounts.

	This	is	the	last	exit	before	you	enter	a	toll	road.	For	an
Android	Market	account,	you	pay	a	one-time	$25	developer	fee	with
a	credit	card.
To	create	the	Android	Market	account,	follow	these	steps:
1.	Open	your	web	browser	and	navigate	to

http://market.android.com/publish.
	 2.	On	the	right	side	of	the	screen,	sign	in	with	your	Google

account,	as	shown	in	Figure	1-6.
	

	

Figure	1-6:	The	http://market.android.com/publish	page.

3.	Fill	out	the	following	fields:
	 •	Developer	Name:	The	name	that	appears	as	the	developer	of	the

applications	you	release.	This	could	be	your	company	name	or	your

http://www.google.com/accounts
http://market.android.com/publish

personal	name.	You	can	change	this	later,	after	you’ve	created	your
account.

	
•	Email	Address:	This	is	the	e-mail	address	users	can	send	e-mails	to.

They	normally	send	questions	and	or	comments	about	your
application	if	they	are	interested	in	it.

	
•	Web	Site	URL:	The	URL	of	your	website.	If	you	don’t	have	a	website,

you	can	get	a	free	Blogger	account	that	provides	a	free	blog	to	suffice
as	a	website.	You	can	get	a	free	Blogger	account	from
www.blogger.com.

	
•	Phone	Number:	A	valid	phone	number	at	which	to	contact	you	in	case

problems	arise	with	your	published	content.
	

When	you	finish,	your	form	resembles	Figure	1-7.
	 4.	Click	the	Continue	link.
	 On	the	next	page,	you’re	informed	that	you	need	to	pay	the	$25

developer	fee,	as	shown	in	Figure	1-8.
	 5.	Click	the	Continue	link	to	pay	the	developer	fee	with	Google

Checkout.
	

	

Figure	1-7:	Developer	listing	details.

http://www.blogger.com

	

Figure	1-8:	Developer	registration	fee.

6.	On	the	secure	checkout	page	(see	Figure	1-9),	fill	in	your
credit	card	details	and	billing	information;	then	click	the	Agree	and
Continue	button.

	
	

Figure	1-9:	Personal	and	billing	information.

If	you	already	have	a	credit	card	on	file	with	Google,	you	may	see	a
page	listing	that	credit	card	as	a	payment	option	rather	than	what	you	see
in	Figure	1-9.	If	so,	select	that	credit	card	and	continue.

	 7.	On	the	resulting	confirmation	page	(see	Figure	1-10),	type
your	password,	and	click	the	Sign	In	and	Continue	button.

	 8.	On	the	order	confirmation	page	(see	Figure	1-11),	click	the
Place	Your	Order	Now	button.

	 Depending	on	how	fast	your	Internet	connection	is	and	how	fast
your	order	is	placed,	you	may	or	may	not	see	a	loading	screen.

	 When	the	process	is	complete,	you	see	a	message	confirming	that
you’re	an	Android	developer	(see	Figure	1-12).

	
	

Figure	1-10:	The	sign-in	confirmation	page	for	registering	as	a	developer.

	

Figure	1-11:	Order	confirmation.

	

Figure	1-12:	Confirmation	of	your	registration.

9.	Click	the	Android	Market	Developer	Site	link	in	the	middle	of
the	message.

	 The	Android	Market	Developer	Distribution	Agreement	page
appears.	(See	Figure	1-13.)

	 10.	(Optional)	To	have	a	paid	application	on	the	Android
Market,	you	must	set	up	a	Google	Checkout	merchant	account.	To
start	setting	up	an	account,	look	for	the	Setup	Merchant	Account	link
on	the	Android	Market	Developer	Distribution	Agreement	page.
When	you	set	up	an	account,	you	provide

	
	

Figure	1-13:	The	agreement	terms.

•	Personal	and	business	information
	

•	Tax	identity	information	(personal	or	corporation)
	

•	Expected	monthly	revenue	($1	billion,	right?)
	

I	provide	more	details	in	the	next	section	of	this	chapter.
	 11.	Read	the	terms	and	then	click	the	I	Agree,	Continue	link	in

the	bottom	left	of	the	screen.
	 You	arrive	at	the	Android	Developer	home	page	(see	Figure	1-14).

You’ve	created	your	own	Android	Market	account,	and	you	can	start
uploading	your	apps.

	
	

Figure	1-14:	The	Android	developer	home	page.

Pricing	Your	Application
You	have	your	APK	file,	and	you’re	a	registered	Android	developer.

Now	you’re	ready	to	get	your	app	into	users’	hands,	finally.	But	you	need
to	ask	yourself	one	last	important	question	—	is	my	app	a	free	app	or	a
paid	app?

This	decision	should	be	made	before	you	release	your	app	because	it
has	psychological	consequences	with	potential	customers/users	and
monetary	ones	for	you.	If	your	application	is	a	paid	application,	you	have
to	decide	what	your	price	point	is.	Look	at	similar	applications	in	the
Market.	Most	apps	seem	to	sell	from	the	$0.99	value	range	up	to	the
$9.99	range.	I	rarely	see	an	app	for	more	than	the	$10	threshold.	Keeping
your	pricing	competitive	with	your	product	is	a	game	of	economics	that
you	have	to	play	to	determine	what	works	for	your	application.

The	paid-versus-free	discussion	is	an	evergreen	debate,	with	both
sides	stating	that	either	can	be	profitable.	I’ve	done	both,	and	I’ve	found
that	both	make	decent	income.	(Yes,	“free”	apps	can	make	money	—
check	out	“The	free	model”	section	a	bit	later	in	this	chapter	if	you	don’t
believe	me.)	Neither	model	is	a	sure	thing	—	you	have	to	figure	out	what
works	best	for	your	application	given	your	situation.

The	paid	model
If	you	go	with	a	paid	model,	you	start	getting	money	in	your	pocket

within	24	hours	of	the	first	sale	(barring	holidays	and	weekends,	in	which
case,	you’d	receive	funds	the	following	business	day).	But	from	my

experience,	your	application	won’t	receive	many	active	installs	because
it’s	a	paid	application.	You’re	your	own	marketing	team	for	your	app,	and
if	no	one	knows	about	your	app,	how	is	she	going	to	know	to	buy	it?	This
is	a	similar	problem	for	free	apps,	but	users	can	install	them	for	free,	and
the	mental	weight	of	the	app	remaining	on	their	device	is	little	to	none.
With	paid	apps,	this	works	a	little	differently.

All	Android	Market	users	get	a	free	24-hour	trial	period	of	your	paid
application	upon	initial	purchase.	This	means	a	user	can	purchase	the	app
and	install	it,	Google	Checkout	will	authorize	the	user’s	credit	card	on
file,	and	the	charge	remains	in	an	authorization	state	until	24	hours	from
the	original	purchase	time.	You	can	monitor	this	in	your	Google
Checkout	panel.

During	those	24	hours,	the	user	can	use	the	fully	functional
application.	If	the	user	uninstalls	the	application	within	24	hours,	Google
issues	a	full	refund.	If	the	user	doesn’t	uninstall	the	app	within	24	hours,
the	credit	card	authorization	turns	into	a	charge,	and	you	receive	the
funds	the	following	day.

Becoming	a	merchant
When	you	sell	an	app	on	the	Android	Market,	Google	takes	a	30

percent	commission.	Considering	Google’s	enormous	visibility,	having
you	get	70	percent	of	the	revenue	is	a	pretty	good	deal.

To	send	your	app,	you	must	first	create	a	merchant	account	—	as
opposed	to	the	Android	Market	account	you	created	in	the	last	section.	To
create	a	merchant	account:

1.	Follow	the	steps	in	this	chapter’s	“Creating	an	Android
Market	Account”	section.

	 2.	With	your	Android	Market	account	created,	point	your
browser	to	https://market.android.com/publish/Home.

	 3.	When	you	arrive	at	your	Android	Market	home	page,	click
the	Setup	Merchant	Account	link.

	 Clicking	this	link	brings	you	to	a	page	with	a	big	form	to	fill	out.
(See	Figure	1-15.)

	
	

Figure	1-15:	Enter	your	private	contact	information.

4.	Tell	Google	your	innermost	secrets.
	 .	.	.	but	don’t	display	them	in	Figure	1-15	of	Android	Application

Development	All-in-One	For	Dummies.

https://market.android.com/publish/Home

	 5.	On	the	next	section	of	the	form,	fill	in	your	publicly	available
contact	information.

	 See	Figure	1-16.
	 6.	In	the	Financial	Information	section	of	the	form,	show	them

the	money.
	 See	Figure	1-17.
	 7.	Agree	to	the	Terms	of	Service	(if	you	so	choose),	and	click	the

Complete	Sign	Up	button.
	 After	doing	all	this,	you’re	cleared	to	sell	apps	on	Google’s	Android

Market.
	

	

Figure	1-16:	Enter	your	public	contact	information.

	

Figure	1-17:	Where	the	rubber	meets	the	road.

Licensing	your	app
To	charge	money	for	your	app,	you	must	add	a	license	to	it.	Do	this

with	Android’s	Licensing	Verification	Library	(LVL).	You	can	download
the	LVL	using	Android’s	SDK	and	AVD	Manager.	In	Figure	1-18,	the
LVL	goes	by	the	name	Google	Market	Licensing	package,	revision	1.

	

Figure	1-18:	Getting	the	Licensing	Verification	Library.

	To	conjure	up	the	SDK	and	AVD	Manager,	choose
Window⇒Android	SDK	and	AVD	Manager	from	Eclipse’s	main
menu.	Or,	in	your	development	computer’s	command	window,
navigate	to	the	Android	SDK’s	tools	directory	and	type	./android
or	android.bat.
With	the	LVL	on	your	development	computer,	you	incorporate	the

library’s	code	into	your	own	project’s	code.	As	part	of	this	process,	you
select	a	licensing	policy.	You	have	three	choices:

•	Strict	policy:	Whenever	the	user	tries	to	launch	your	app,	the	device
asks	the	Android	Market	server	for	its	approval.	If	the	user	tries	to	launch
your	app	when	the	device	has	no	connectivity,	the	user	is	out	of	luck.
Life’s	tough.

	
•	Server-managed	policy:	The	user’s	device	stores	a	copy	of	the	user’s
license.	The	device	uses	the	copy	when	network	connectivity	is
unavailable.	The	license	is	obfuscated	(so	it’s	tamper-resistant),	and	the
license	keeps	track	of	trial	periods,	expiration	dates,	and	other	stuff.	This
is	the	default	policy,	and	it’s	the	policy	that	Google	highly	recommends.

	
•	Custom	policy:	Create	your	own	policy	with	Java	code	in	your	app.	As
a	developer,	this	choice	would	make	me	nervous.	But	for	very	sensitive
situations,	this	choice	might	be	the	best.

	

	For	all	the	details	about	the	LVL,	visit
http://developer.android.com/guide/publishing/licensing.html

http://developer.android.com/guide/publishing/licensing.html

More	testing
When	testing	your	app	with	friends	in	your	apartment	building,	you

don’t	always	get	reliable	results.	So	your	acquaintances	living	on	other
continents	should	test	your	app,	too.	In	fact,	test	so	much	that	you’d	have
trouble	mailing	your	APK	file	to	all	your	testers.

That’s	why	the	Android’s	LVL	allows	you	to	publish	an	app	with
invitation-only	access.	Figure	1-19	shows	the	screen	in	which	you	list
your	test	users’	Google	accounts.	The	Test	Response	drop-down	box	lets
you	choose	the	Android	Market’s	response	to	a	request.

For	example,	in	Figure	1-19,	I	chose	LICENSED	in	the	drop-down
box.	When	one	of	my	test	users	(user1@gmail.com,	for	example)	tries	to
launch	my	app,	the	Market	responds,	“Yes,	you’re	licensed.”	But	notice
the	extent	to	which	you	can	test	your	licensing	code.	If	you	choose
NOT_LICENSED	in	the	drop-down	box,	does	the	Market’s	server
correctly	deny	the	test	user	access	to	your	app?	And	what	happens	if	the
Market	responds	LICENSED_OLD_KEY?	Can	the	user	launch	the	app?
Do	you	want	the	user	to	be	able	to	launch	the	app?	All	these	choices	help
you	test	the	robustness	of	your	app’s	licensing	code.

	

Figure	1-19:	Listing	test	users	and	selecting	a	response.

The	free	model
If	you	choose	to	go	the	free	route,	users	can	install	the	application

free	of	charge.	From	my	experience,	50–80	percent	of	the	users	who
install	your	free	app	will	keep	the	application	on	the	device,	while	the
others	uninstall	it.	The	elephant	in	the	room	at	this	point	is,	how	do	you
make	money	with	free	apps?

As	the	age-old	saying	goes,	nothing	in	life	is	free.	The	same	goes	for
making	money	on	free	apps.	Fortunately,	you	have	some	choices:
•	Advertising

	
Various	mobile	advertising	agencies	can	provide	you	with	a	third-party
library	to	display	ads	on	your	mobile	application.	The	top	mobile
advertising	companies	are	Google	AdSense,	AdMob	(which	was	recently
acquired	by	Google),	and	Quattro	Wireless	(recently	acquired	by	Apple).

	
Obtaining	a	free	account	from	one	of	these	companies	is	fairly
straightforward.	They	offer	great	SDKs	and	walk	you	through	how	to	get
ads	running	on	your	native	Android	application.	Most	of	these	companies

pay	on	a	net-60-day	cycle,	so	it	will	be	a	few	months	before	you	receive
your	first	check.

	
•	In-app	billing

	
As	a	bona	fide	Android	Market	developer,	you	can	sell	goods	and
services	directly	through	your	application.	You	can	sell	subscriptions,
kitchen	utensils,	and	advice	for	the	lovelorn.	Users	make	purchases	by
filling	in	fields	and	clicking	buttons	within	your	application.	As	with	the
paid	model,	Google	takes	a	30	percent	commission.

	
To	set	up	in-app	billing,	you	have	to	make	significant	additions	to	your
app’s	code.	You	create	a	service,	a	broadcast	receiver,	an	AIDL	file,	and
some	other	stuff.	For	all	the	gory	details,	visit
http://developer.android.com/guide/market/billing/billing_integrate.html

	

Getting	Screen	Shots	for	Your	Application
Screen	shots	are	a	very	important	part	of	the	Android	Market

ecosystem	because	they	allow	users	to	preview	your	application	before
installing	it.	Allowing	users	to	view	a	couple	of	running	shots	of	your
application	can	be	the	determining	factor	in	whether	a	user	installs	your
application.	Imagine	if	you	created	a	game	and	wanted	users	to	play	it.	If
you	spent	weeks	(or	months,	for	that	matter)	creating	detailed	graphics,
you’d	want	the	potential	users/buyers	of	the	game	to	see	them	so	that	they
can	see	how	great	your	app	looks.

To	grab	real-time	shots	of	your	application,	you	need	an	emulator	or
physical	Android	device.	To	grab	the	screen	shots,	perform	the	following:

1.	Open	the	emulator	and	then	navigate	to	the	screen	you	want
to	capture.

	 2.	In	Eclipse,	open	the	DDMS	perspective.
	 3.	Choose	the	emulator	in	the	Devices	panel,	as	shown	in	Figure

1-20.
	 4.	Click	the	Screen	Shot	button	to	capture	a	screen	shot.

http://developer.android.com/guide/market/billing/billing_integrate.html

	 The	Device	Screen	Capture	dialog	box	appears.	At	first,	you	see	the
word	Capturing	instead	of	a	screen	shot.	After	a	few	seconds,	the	screen
shot	appears.

	 5.	In	the	Device	Screen	Capture	dialog	box,	click	the	Save
button.

	 Your	operating	system	prompts	you	for	a	filename,	a	destination
folder,	and	all	that	good	stuff.

	 6.	Finish	saving	the	screen	shot	by	navigating	to	a	Save	Location
folder	as	prompted,	typing	a	filename,	and	clicking	Save	(or
whatever	else	you	normally	do	when	you	save	a	file	on	your	system).

	 7.	To	dismiss	the	Device	Screen	Capture	dialog	box,	click	the
box’s	Done	button.

	 You	can	make	changes	on	the	emulator	or	device	and	refresh	the
screen	shot	dialog	box	using	the	aptly	named	Refresh	button,	as	shown	in
Figure	1-20.	After	this	screen	shot	is	taken,	you	can	publish	it	to	the
Android	Market.

	

Figure	1-20:	The	DDMS	perspective	with	the	emulator	screen	shot	taken.

Uploading	Your	Application	to	the	Android
Market

You’ve	finally	reached	the	apex	of	the	Android	application
development	—	the	point	when	you	publish	the	application.	Publishing
an	application	is	easy;	just	follow	these	steps:

1.	On	the	Android	developer	home	page	(refer	to	Figure	1-14),
click	the	Upload	Application	button.

	 The	Upload	an	Application	page	opens,	as	shown	in	Figure	1-21.
	 2.	For	the	Upload	an	.apk	File	field,	browse	to	the	bin	directory

of	the	project	containing	your	app;	in	that	bin	directory,	select	the
APK	file	that	you	concocted	in	the	“Creating	an	APK	File”	section;
then	click	Upload.

	

	If	you	navigate	to	a	project’s	bin	directory,	and	you

don’t	see	an	APK	file	in	the	directory,	your	operating	system	might	be
hiding	things	such	as	the	letters	apk	at	the	ends	of	filenames.	For	a
solution	to	this	problem,	see	the	sidebar	titled	“Those	pesky	filename
extensions”	in	Book	I,	Chapter	2.

	
	

Figure	1-21:	The	first	section	of	the	upload	page.

	The	Android	Market	uses	the	Java	package	name	as	the
identifier	inside	of	the	market.	No	two	applications	can	have	the	same
package	name.	So	if	your	first	published	app	is	in	the
com.example.earnMeAMillion	package,	put	your	second	app	in	a
com.example.secondTimeIsACharm	package.

	

	Your	package	name	should	help	to	identify	you	or	your
company.	If	you	have	a	domain	name,	start	the	package	name	with	the

domain	name’s	parts	reversed.	For	example,	I’m	the	proud	owner	of	the
domain	name	allmy	code.com,	so	I	publish	an	app	with	the	package
name	com.allmycode.clicks.	(If	you	publish	an	app	with	package	name
com.allmycode.clicks,	you’ll	hear	from	my	lawyer!)

	 3.	In	the	Add	a	Screenshot	field,	add	two	screen	shots	of	your
application.

	 The	sizes	of	these	screen	shots	need	to	be	320	pixels	wide	x	480
pixels	high	or	480	pixels	wide	x	854	pixels	high.	These	screen	shots
allow	users	to	preview	your	application	in	a	running	state	without
installing	your	application.	If	you’re	wondering	whether	providing	screen
shots	is	worth	the	hassle,	consider	this	simple	fact:	Apps	with	screen
shots	have	higher	install	rates	than	apps	without	screen	shots.	Screen
shots	are	not	required	to	publish	the	app,	but	not	having	them	will
negatively	impact	your	app’s	install	rate.

	 4.	Add	a	high-resolution	application	icon.
	 A	high-resolution	icon	is	512	pixels	wide	and	512	pixels	high.	With

newer	Android	devices	having	bigger	and	better	screens,	high-resolution
icons	are	becoming	an	absolute	necessity.

	 5.	(Optional)	Add	a	promotional	graphic,	a	feature	graphic,	and
a	promotional	video.

	 Google	might	use	these	to	showcase	your	app.
	 6.	Scroll	down	the	page	to	the	Listing	Details	section	(see	Figure

1-22),	and	fill	in	the	title	of	your	application.
	 This	text	is	indexed	for	the	Android	Market	search.
	

	In	my	experience,	a	great	title	can	jump	start	an	app’s
popularity.

	 7.	Set	the	description	for	your	application	(refer	to	Figure	1-22).
	 This	is	the	description	that	the	user	sees	when	she	inspects	your

application	to	determine	whether	she	wants	to	install	it.	All	this	text	is
indexed	for	the	Android	Market	search.

	 8.	Set	the	promo	text	of	your	application.

	 Promo	text	is	used	when	your	application	is	featured	or	promoted	on
the	market.	The	process	of	getting	your	application	featured	is	fairly
muddy	at	this	point	and,	from	what	I	can	tell,	is	based	upon	the	popularity
of	your	application.	If	your	application	gets	chosen	to	be	featured	in	the
promo	area	of	the	market	(usually	the	top	part	of	the	screen	of	each
category	in	the	Android	Market),	the	promo	text	is	what	appears	as	the
promotional	component	for	it.

	 9.	Set	the	application	type.
	 The	choices	are	Applications	and	Games.
	

	

Figure	1-22:	The	upload	page’s	Listing	Details	section.

10.	Set	the	category	for	the	app.
	 The	choices	for	type	Applications	include	Business,	Comics,

Communication,	Education,	and	many	others.	The	choices	for	type
Games	include	Arcade	&	Action,	Brain	&	Puzzle,	Cards	&	Casino,	and	a

host	of	others.
	 11.	Scroll	down	the	page	to	the	Publishing	Options	section	(see

Figure	1-23),	and	select	your	Copy	Protection	option.
	 I	always	choose	Off.	When	you	choose	On,	the	file	footprint	on	the

device	is	usually	doubled.	If	your	app	is	2MB,	and	you	turn	on	copy
protection,	your	new	file	footprint	when	installed	on	the	device	is	around
4MB.	I	keep	my	files	at	the	lowest	possible	setting.	The	reason	for	this	is
simple	—	if	a	user	runs	out	of	space	on	his	phone,	he	is	most	likely	to
uninstall	the	largest	applications	in	order	to	free	up	more	space.

	

	Older	devices,	prior	to	Android	2.2,	could	not	install
applications	to	the	SD	card.	Therefore,	internal	space	was	limited,	and
when	users	ran	out	of	space,	they	would	tend	to	uninstall	the	heavyweight
apps	first	to	free	the	most	space.	If	your	app	is	very	heavyweight,	it	will
probably	be	removed	to	save	space.	Keeping	the	file	small	and	leaving
copy	protection	set	to	Off	keeps	you	out	of	the	crosshairs	in	this	issue.

	 12.	Select	the	list	of	locations	that	the	application	needs	to	be
visible	in.

	 For	example,	if	your	application	is	an	Italian	application,	deselect
All	Locations	and	select	Italy	as	the	destination	location.	This	ensures
that	only	devices	in	the	Italy	region	can	see	this	in	the	Market.	If	you
leave	All	Locations	enabled,	you	guessed	it	—	all	locations	can	see	your
app	in	the	Market.

	
	

Figure	1-23:	The	upload	page’s	Publishing	Options	section.

13.	Scroll	down	the	page	to	the	Contact	Information	section	(see
Figure	1-24),	and	fill	out	the	Web	Site	and	Email	fields	(and	Phone,	if
you	want).

	 I	never	fill	out	the	Phone	field	because,	well,	users	will	call	you!
Yes,	they	will	call	at	midnight	asking	you	questions,	giving	feedback,	and
so	on.	I	prefer	to	communicate	with	customers	via	e-mail.	If	you’re
writing	an	app	for	a	different	company	yet	publishing	it	under	your
developer	account,	you	can	change	the	Web	Site,	Email,	and	Phone	fields
so	that	the	users	do	not	contact	you.	Users	use	these	fields	to	contact	you
for	various	reasons.	The	most	common	correspondence	that	I	receive	is
app	feature	requests	and	bug	reports.

	 14.	Verify	that	your	application	meets	the	Android	content
guidelines	and	that	you	complied	with	applicable	laws	by	selecting
the	pertinent	check	boxes.

	 15.	Choose	one	of	the	following	options:
	 •	Publish:	Saves	and	publishes	the	app	to	the	Market	in	real	time.
	

•	Save:	Saves	the	changes	made	but	does	not	publish	the	app.
	

•	Delete:	Deletes	all	the	work	up	until	now.	Don’t	do	this.
	

You	can	find	these	buttons	either	at	the	very	top	or	the	very	bottom
of	the	current	page.	(Look	in	both	places.	These	buttons	are	moving

targets.)
	 For	this	exercise,	click	the	Save	button.	This	saves	your	application

and	returns	you	to	the	Android	Developer	home	page,	where	an	icon
states	that	the	app	is	in	a	saved	state.	(See	Figure	1-25.)	You	can	use	this
as	a	staging	area	until	you’re	ready	to	release	your	app.

	
	

Figure	1-24:	The	upload	page’s	Contact	Information	and	Consent	sections.

	

Figure	1-25:	The	saved	app	on	your	Android	Developer	home	page.

16.	When	you’re	ready	to	release	the	app,	select	the	title	of	the
app	on	the	Android	Developer	home	page.

	 The	Upload	an	Application	page	opens.	(Refer	to	Figure	1-21.)	On
this	page,	some	of	your	app	information	is	already	filled	in.

	 17.	Scroll	to	the	bottom	of	the	page,	and	click	the	Publish
button.

	 This	publishes	your	application	to	the	Android	Market.
	 You	probably	noticed	one	bonus	of	how	Android	handles

application	uploads:	no	app-approval	process!	Amazon’s	Appstore	for

Android	has	an	approval	process.	And	Apple’s	App	Store	has	a	rigorous
screening	process	with	a	$99	yearly	fee.

But	with	Android	Market,	you	can	create	an	app	right	now	and
publish	it,	and	then	users	can	install	it	right	away.	This	means	that	you
can	perform	a	quick	release	cycle	and	get	new	features	out	the	door	as
quickly	as	you	can	get	them	done,	which	is	very	cool.

By	the	way,	if	you	search	for	this	section’s	app	on	the	Android
Market,	you	won’t	find	it.	I	published	the	app	and	then	removed	it	from
the	Market.	To	remove	the	app,	I	chose	the	app	title	from	the	Android
Developer	home	page,	scrolled	to	the	bottom,	and	clicked	the	Unpublish
button.	Goodbye,	app!

Watching	the	Installs	Soar
You’ve	finally	published	your	first	application.	Time	to	watch	the

millions	start	rolling	in,	right?	Well,	kind	of.	You	might	be	an
independent	developer	who’s	releasing	the	next	best	first-person	shooter
game,	or	you	might	be	a	corporate	developer	who’s	pushing	out	your
company’s	Android	application.	Regardless,	you	need	to	be	aware	of	the
end-user	experience	on	various	devices.	You	have	various	ways	of
identifying	how	your	application	is	doing:
•	Five-star	rating	system:	The	higher	average	rating	you	have,	the
better.

	
•	Comments:	Read	them!	People	take	the	time	to	leave	them,	so	provide
them	the	courtesy	of	reading	them.	You’d	be	surprised	at	the	great	ideas
that	people	provide	to	you	for	free.	Most	of	the	time,	I’ve	found	if	I
implement	the	most	commonly	requested	feature,	users	get	excited	about
it,	and	come	back	and	update	their	comments	with	a	much	more	positive
boost	in	ratings.

	
•	Error	reports:	Users	who	were	gracious	enough	to	submit	error	reports
want	to	let	you	know	that	the	app	experienced	a	run-time	exception	for	an
unknown	reason.	Open	these	reports,	look	at	the	error,	review	the	stack
trace,	and	try	to	fix	the	error.	An	app	that	gets	a	lot	of	force-close	errors
receives	a	lot	of	really	bad	reviews,	really	quickly.	Stack	traces	are
available	only	for	devices	that	run	Android	2.2	and	above.

	
•	Installs	versus	active	installs:	Although	this	isn’t	the	best	metric	for
identifying	user	satisfaction,	it	is	an	unscientific	way	to	determine
whether	users	who	install	your	app	tend	to	keep	it	on	their	phones.	If
users	keep	your	app,	they	probably	like	it!

	
•	Direct	e-mails:	Users	will	return	to	the	Android	Market	to	find	your	e-
mail	address	and/or	website	address.	They	will	e-mail	you	to	ask
questions	about	features	and	send	comments	to	you	about	their	user
experience.	They	may	also	send	you	ideas	about	how	to	improve	your
app,	or	they	may	ask	you	to	create	another	app	that	does	something	they
cannot	find	on	the	Market.	People	love	to	be	part	of	something.	I’ve
found	if	I	personally	reply	within	24	hours	(less	than	4	hours	is	really
what	I	aim	for),	users	become	really	happy	with	the	response	time.
Although	this	is	difficult	to	sustain	if	your	app	has	a	million	active	users,
it	does	make	users	very	happy	to	know	that	they	can	get	hold	of	you	if
they	run	into	an	issue	with	your	app	that	they	love	so	much.

	
Keeping	in	touch	with	your	user	base	is	a	large	task	in	itself,	but

doing	so	can	reap	rewards	of	dedicated,	happy	customers	who	will
recommend	your	application	to	their	friends	and	family.

	

Chapter	2:	Publishing	Your	App	to	the
Amazon	Appstore

In	This	Chapter
Getting	your	app	in	Amazon	Appstore

Publishing	your	app
	

This	chapter	parallels	Chapter	1	in	this	minibook,	in	which	I
describe	the	process	of	publishing	an	app	on	Google’s	Android	Market.
Amazon’s	procedure	is	similar	in	some	ways,	and	a	bit	different	in	others.
(So	what	did	you	expect?)

In	this	chapter,	I	summarize	the	steps	for	publishing	on	Amazon
Appstore	for	Android.	I	don’t	cover	the	steps	in	great	detail	for	three
reasons:
•	The	steps	for	publishing	with	Amazon	resemble	the	steps	for	publishing
with	Google.	You	might	not	mind	my	copying	and	pasting	text	from
Chapter	1	of	this	minibook,	but	to	me,	it	wouldn’t	seem	right.

	
•	I’d	go	crazy	if	I	had	to	reword	ideas	from	Chapter	1	of	this	minibook	to
make	them	sound	fresh	and	new	in	this	chapter.

	
•	(This	one	is	a	secret.	It’s	just	between	you	and	me.	Okay?)	The	editors
at	Wiley	will	go	ballistic	(and	rightfully	so)	if	I	delay	this	book’s
publication	by	writing	too	much	more	material.

	
So	time	to	get	started!	Here’s	Chapter	1	from	this	minibook	written

from	an	Amazon	Appstore	developer’s	point	of	view:
The	Honeymooners	aired	from	1955	to	1956	on	the	CBS	television

network	in	the	United	States	.	.	.

Becoming	an	Amazon	Appstore	Developer

Developing	for	the	Amazon	store	costs	a	bit	more	than	developing
for	Google’s	Android	Market.	To	submit	apps	to	the	Amazon	Appstore,
you	have	to	pay	$99	each	year.	Of	course,	if	you	have	a	great	idea	for	an
app	and	you’re	serious	about	marketing	the	app,	the	$99	price	of
admission	is	well	worth	it.

So	grab	your	credit	card,	and	follow	these	steps:
1.	Visit	https://developer.amazon.com/welcome.html.

	 A	friendly	looking	page	invites	you	to	click	the	Get	Started	button.
	 2.	Go	ahead;	click	the	button.
	 Doing	so	takes	you	to	a	login	page.	(See	Figure	2-1.)
	 3.	Log	in	with	your	e-mail	address	and	password,	and	then	click

the	Sign	In	Using	Our	Secure	Server	button.
	 A	page	for	submitting	contact	information	—	your	name,	address,

phone,	and	so	on	—	appears.
	

	It	goes	without	saying	that	if	you	do	not	have	an
Amazon	password	—	as	unlikely	as	that	may	be	—	you	need	to	get	one
by	registering	with	Amazon	before	you	can	submit	an	app	to	the	Amazon
Appstore.

	 4.	Fill	in	your	contact	information	and	then	click	Save.
	 Next	comes	the	page	with	the	Developer	License	Agreement.
	 5.	Accept	the	agreement	if	you’re	so	inclined.
	 Like	Google’s	Android	Market,	the	Amazon	Appstore	takes	a	30

percent	commission	for	each	sale	of	your	app.
	 Unlike	Google’s	Android	Market,	Amazon’s	developer	registration

form	asks	whether	you	intend	to	charge	for	your	apps.	(Your	answer	isn’t
binding	because	the	form	for	uploading	an	individual	app	has	its	own
free-versus-paid	entry.)

	 6.	At	the	end	of	the	registration	form,	click	Save.
	 You’re	ready	to	start	uploading	apps.
	

	

https://developer.amazon.com/welcome.html

Figure	2-1:	Logging	in	with	your	regular	Amazon	password.

Where	to	publish?
	By	the	time	you	read	this	book,	there	may	be	other	prominent

Android	app	stores.	Even	now,	as	I	write	these	words	in	2011,
there	are	several	sites	that	look	like	alternative	app	stores.	Some	of
them	simply	advertise	and	rate	apps,	and	then	link	to	Google’s
Android	Market	for	real	downloads.	As	a	developer,	your	greatest
concern	is	making	your	app	visible	on	such	sites.
Some	hardware	vendors	have	their	own	exclusive	app	stores.	For
example,	owners	of	Samsung	products	can	visit	Samsung	Apps
(http://samsungapps.com).	Owners	of	older	Archos	products
don’t	have	access	to	the	Google	Android	Market,	but	they	can
download	apps	from	the	AppsLib	(http://appslib.com).
Some	time-honored	websites	started	out	by	housing	apps	for
PDAs	—	personal	digital	assistants,	such	as	the	Palm	and	the
iPAQ.	With	the	move	to	smartphones	and	tablets,	these	sites	now
distribute	Android	apps.	Sites	of	this	ilk	include	Handango,
PocketGear.com,	GetJar.com,	and	others.
In	addition,	most	telephone	carriers	allow	users	to	install	apps
from	any	website.	(The	mobile	device’s	web	browser	visits	an
ordinary	web	page;	a	link	on	the	web	page	points	directly	to	an
APK	file.)	But	these	days	John	Q.	Consumer	tends	not	to	trust
apps	that	don’t	come	from	well-known	app	stores,	so	this	kind	of
self-publishing	doesn’t	hold	a	lot	of	promise.

http://samsungapps.com/
http://appslib.com

	

Uploading	an	App
Uploading	an	app	starts	with	a	URL.	To	begin	uploading	an	app:
1.	Log	in	at

https://developer.amazon.com/application/info.html.
	 After	signing	in,	you	see	a	form	like	the	one	in	Figure	2-2.
	 2.	Fill	in	the	fields	on	the	form	—	including	the	Supported

Languages	field	—	and	then	click	Save.
	 In	the	form	in	Figure	2-2,	the	Application	SKU	field	is	for	your	own

product	number,	whatever	that	might	be.	If	you	sell	enough	different	apps
or	other	items	to	require	your	own	product	numbers,	more	power	to	you!
(You	can	afford	to	pay	retail	for	this	book,	so	I	hope	you	did!)

	 Next	up	is	the	Merchandizing	part	of	the	form.	(See	Figure	2-3.)
	 3.	Enter	all	the	information	about	the	category,	the	price,	the

dates,	and	other	stuff;	then	click	Save.
	

	

Figure	2-2:	General	information	about	your	app.

	

https://developer.amazon.com/application/info.html

Figure	2-3:	Merchandizing	info	about	your	app.

Figure	2-3	illustrates	some	important	merchandizing	tips	from
Amazon’s	developer	pages.	In	my	first	draft	of	Figure	2-3,	the	description
field	contained	only	one	sentence:	This	app	helps	Android
developers	learn	about	intents	and	intent	filters.	What	a
mistake!	Fortunately,	the	people	who	wrote	Amazon’s	Help	pages	looked
into	their	crystal	ball	and	knew	in	advance	that	I’d	write	a	one-sentence
description	starting	with	This	app.	The	Help	pages	advise	explicitly
against	using	the	words	This	app	and	against	single-sentence
descriptions.	It’s	as	if	the	Help	pages	say,	“Barry,	we	know	that	you’re
going	to	be	lazy	about	merchandising,	so	here’s	some	important	advice	.	.
.”

	 Amazon’s	Help	pages	also	advise	against	making	false	claims.	As
Shakespeare	once	wrote,	“	.	.	.	false	advertising	of	your	app	cannot	be	hid
long;	.	.	.	at	the	length,	truth	will	out.”

	 Depending	on	your	cultural	orientation,	the	next	form	(see	Figure	2-
4)	is	either	an	embarrassment	or	a	badge	of	honor.

	 4.	Make	your	selections	in	the	form’s	drop-down	boxes	and	then
click	Save.

	 The	page	that	appears	next	asks	for	icons	and	screen	shots.	(See
Figure	2-5.)

	 5.	Upload	icons,	screen	shots,	and	other	multimedia;	then	click
Save.

	 I’m	not	the	artistic	type.	So	for	me,	the	screen	in	Figure	2-5	is	the
most	challenging.	But	after	conquering	the	art	world,	I’m	finally	ready	to
upload	my	app.	The	Upload	Binary	page	appears	(see	Figure	2-6).

	 6.	You	can	apply	(or	not	apply)	Amazon’s	digital	rights
management	(DRM)	to	your	app,	as	shown	in	Figure	2-6.

	 Like	the	DRM	for	Amazon	Kindle	books,	the	Appstore’s	DRM
electronically	grants	permission	to	run	each	app	on	a	device-by-device
basis.	And	like	any	other	scheme	for	managing	users’	privileges,	the
Appstore’s	DRM	inspires	vast	waves	of	controversy	in	blogs	and	online
forums.

	
	

Figure	2-4:	Describing	your	app’s	content.

	

Figure	2-5:	The	multimedia	page.

	

Figure	2-6:	Uploading	an	APK	file.

Amazon	doesn’t	publish	a	lot	of	information	about	the	workings	of
its	DRM	scheme.	But	if	you	click	the	Why?	link	in	Figure	2-6,	you	see
the	following	tip:	“Without	the	DRM,	your	application	can	be	used
without	restrictions	by	any	user.”	So	when	you	publish	a	paid	app,	DRM
is	the	way	to	go.

	 Chapter	1	in	this	minibook	describes	the	steps	in	adding	a	digital
certificate	to	a	Google	Market	app.	Amazon’s	certificate	procedure	isn’t
as	nuanced.	By	default,	Amazon	applies	its	own	certificate	to	each	app
published	on	the	Amazon	Appstore.	The	certificate	is	unique	to	your
account.	But	otherwise,	it’s	a	boilerplate	certificate.

	 If	your	legal	situation	or	your	technical	requirements	impose	special
demands	on	the	kind	of	certificate	that	accompanies	your	app,	stop
checking	boxes	and	fall	back	on	ordinary	e-mail.	Submit	a	question	with
the	app	store’s	Contact	Us	form,	and	begin	a	dialogue	with	the	store’s
administrators.

	 7.	Click	the	Choose	File	button	to	select	your	app’s	APK	file	and
then	click	the	Upload	File	button.

	 8.	Click	the	Done	button	to	move	to	the	next	page.
	 The	questions	on	the	next	page	are	more	important	than	they	look.

(See	Figure	2-7.)
	 9.	After	some	careful	thought	and	a	few	rewrites,	fill	in	the	big

text	areas	in	Figure	2-7.
	 Unlike	Google’s	Android	Market,	apps	submitted	to	the	Amazon

Appstore	go	through	an	approval	process	before	they	can	be	published.
To	qualify	for	publication,	an	app	must	meet	Amazon’s	technical
specifications.	(Visit	https://developer.amazon.com/help/	faq.html
for	more	info.)

	
	

Figure	2-7:	Helping	the	folks	at	Amazon	to	test	your	app.

https://developer.amazon.com/help/faq.html

In	addition,	an	app	must	meet	Amazon’s	nontechnical
specifications.	These	include	things	like	the	clarity	of	images,	your	right
to	use	the	images,	the	presence	or	absence	in	in-app	advertising,	the	app’s
appropriateness	for	various	audiences,	and	other	things.	(Again,	visit
https://developer.amazon.com/help/faq.html.)

	 Imagine,	for	a	moment,	that	you	work	for	Amazon.	You	normally
enjoy	testing	apps	that	developers	submit,	but	today	you’re	a	little
grumpy.	All	the	apps	that	you	evaluate	are	beginning	to	look	alike.	And
besides,	the	office’s	coffee	machine	isn’t	working!

	 Along	comes	an	app	that	a	developer	has	submitted.	The	app	looks
good,	but	it’s	merchandised	as	an	update.	As	a	tester,	you	want	to	focus
on	the	app’s	new	features	and	pay	a	little	less	attention	to	the	previous
version’s	features.	(Yes,	you	want	to	make	sure	that	new	features	don’t
break	any	of	the	old	features,	but	that	kind	of	testing	requires	a	certain
mindset.)

	 The	problem	is,	the	developer	hasn’t	written	enough	in	the	Release
Notes	part	of	Figure	2-7.	Without	pulling	up	an	older	version	of	this	app,
you	can’t	distinguish	the	new	version’s	features	from	the	old	version’s
features.	Maybe	the	new	version	looks	the	same	as	the	old	version,	and
the	new	features	lurk	under	the	hood.	At	best,	you	have	to	dig	up	an	older
version	and	compare	it	with	the	newly	submitted	app.	At	worst,	you	have

https://developer.amazon.com/help/faq.html

to	do	some	reverse	engineering	to	figure	out	what	has	changed	from	one
version	to	another.

	 But	remember	.	.	.	The	office	coffee	machine	isn’t	working	today.
That	settles	it.	This	app	is	rejected.

	 The	same	thinking	applies	to	the	Testing	Instructions	part	in	Figure
2-7.	As	the	app’s	developer,	you’re	intensely	aware	of	the	app’s
requirements	and	of	all	your	presuppositions	in	creating	the	app.	But	the
person	who	tests	your	app	knows	none	of	this.	If	the	lack	of	a	simple
testing	prerequisite	turns	your	app	from	a	lifesaving	utility	into	a	useless
waste	of	kilobytes,	you	must	describe	the	prerequisite	clearly	in	the
Testing	Instructions	field.

	

	Extra	advertising,	good	marketing,	and	useful	features
make	the	difference	between	1,000,000	downloads	and	1,000	downloads.
But	presenting	roadblocks	or	inconveniences	in	the	approval	process
makes	the	difference	between	downloads	and	no	downloads.

	 10.	When	you’ve	added	all	the	necessary	information,	click	Save
at	the	bottom	of	the	page.

	 From	that	point	on,	the	ball	is	in	Amazon’s	court.	You	can	check	the
status	of	your	app’s	approval	by	visiting	the	Developer	Portal	and
checking	the	portal’s	Dashboard.	(Visit
https://developer.amazon.com/home.html.)	Amazon	sends	you	an	e-
mail	if	any	questions	arise	during	the	testing	process.	You	also	receive	an
e-mail	when	your	app	is	approved.

	
	

https://developer.amazon.com/home.html

Chapter	1:	Creating	Code	Quickly	with	App
Inventor

In	This	Chapter
Designing	a	user	interface
Building	program	logic	using	visual	tools

Creating	an	Android	app	without	typing	any	code
	

Life	is	a	long	sequence	of	tradeoffs.	You	enjoy	a	big	gooey	dessert,
but	the	dessert	isn’t	healthy.	You	love	playing	in	a	band,	but	most	band
members	don’t	earn	a	decent	living.	You’re	blessed	with	the	ability	to
sleep	10	or	12	hours	a	day,	but	with	all	that	lost	time,	you	get	behind
writing	Android	Application	Development	All-in-One	For	Dummies.

And	so	it	goes.	Application	development	also	involves	tradeoffs.	To
use	the	full	richness	of	Android’s	feature	set,	you	write	Java	code	using
Eclipse	and	the	Android	API.	But	if	you	can	forgo	some	of	Android’s
fancier	features,	you	can	save	time	and	effort	using	Google’s	App
Inventor.

App	Inventor	is	the	GUI	dessert	that	I	describe	in	the	first
paragraph.	App	Inventor	makes	Android	development	easy,	using	a	drag-
and-drop	paradigm	for	both	the	visual	interface	and	for	an	application’s
logic.	With	App	Inventor,	you	can’t	fine-tune	your	work	the	way	you	can
with	Java	code.	You	can’t	make	your	application	do	some	of	the	trickier
things	that	Android	programs	do.	But	App	Inventor	hides	many	of	the
messy	technical	details	involved	in	developing	mobile	code.	For	a	quick,
easy	way	to	develop	basic	Android	applications,	give	App	Inventor	a	try.
(In	fact,	for	a	quick,	easy	way	to	develop	not-so-basic	applications,	App
Inventor	is	worth	a	look.)

Getting	Started	with	App	Inventor
To	begin	your	App	Inventor	experience,	do	the	following:

1.	Visit	http://java.com.
	 During	your	visit,	you	can	check	to	make	sure	that	your	computer

has	the	Java	Runtime	Environment	(JRE).	To	use	App	Inventor,	you
don’t	need	the	full	Java	Development	Kit	(JDK).	But	you	do	need	the
Java	Runtime	Environment	(JRE).

	 If	you’ve	already	followed	the	steps	in	Book	I,	Chapter	2,	your
computer	has	the	JRE.	Or	if	you	know,	for	one	reason	or	another,	that
your	computer	has	the	JRE,	you	can	skip	this	step	and	go	immediately	to
Step	4.

	

	To	develop	Android	apps	with	Eclipse,	you	need	the
Java	Development	Kit.	In	particular,	you	need	Java	SE	(the	development
kit’s	Standard	Edition).	For	more	information	about	the	Java
Development	Kit	and	the	Java	Runtime	Environment,	see	Book	I,
Chapter	2.

	 2.	At	the	Java	website,	follow	the	steps	to	check	whether	Java	is
installed	on	your	computer.

	 The	website’s	terminology	differs	from	the	official	terminology.
The	website	offers	to	check	whether	you	have	“Java”	on	your	computer.
To	be	precise,	the	website	checks	whether	your	computer	has	the	Java
Runtime	Environment	(JRE)	and	whether	the	JRE	is	enabled	in	your	web
browser.

	 Most	computers	come	with	the	JRE	preinstalled.	So	if	you	run	the
site’s	“Does	my	computer	have	Java?”	test,	and	if	the	Java	web	page
responds	with	a	Java	is	not	working	message,	check	to	make	sure	that
Java	is	enabled	in	your	web	browser.

	 3.	Follow	the	instructions	at	http://java.com	to	install	Java	on
your	computer.

	 Do	this	if	your	computer	doesn’t	have	Java,	or	if	you	don’t	want	to
fiddle	with	your	web	browser’s	settings,	or	if	you	may	already	have	Java
but	you	don’t	care	if	you	install	Java	again.

	 With	the	JRE	installed	on	your	computer,	you	can	proceed	to	Step	4.

http://java.com
http://java.com

	 4.	Visit	www.appinventorbeta.com.
	 By	the	time	you	read	this	book,	the	URL	for	App	Inventor	may	have

changed.	If	so,	try	poking	around	at	www.media.mit.edu	for	a	pointer	to
App	Inventor.	(The	MIT	Media	Lab	took	over	stewardship	of	App
Inventor	from	Google	in	August	2011.)

	 5.	Sign	in	with	your	Google	account	(or	create	an	account	if	you
don’t	already	have	one).

	 6.	Find	the	link	to	download	and	install	App	Inventor’s	Setup
software	on	your	computer.

	 Download	links	appear	in	several	places	on	the	App	Inventor	site.
	 7.	Download	and	install	App	Inventor’s	Setup	software.
	 In	Windows,	the	Setup	software	installs	itself	in	the	c:\Program

Files\AppInventor	directory	(or	on	64-bit	systems,	in	the	C:\Program
Files	(x86)\AppInventor	directory).	On	a	Mac,	the	Setup	software	sits
comfortably	in	the	ApplicationsAppinventor	folder.	In	Linux,	the	Setup
software	normally	nestles	inside	the	usrgoogle/appinventor	directory.

	
What	manner	of	beast	is	the	App	Inventor?

	App	Inventor	is	really	three	things	—	a	Designer,	a	Blocks	Editor,
and	some	Setup	software:

	With	the	Designer,	you	specify	the	appearance	of	your
Android	application’s	user	interface.

	With	the	Blocks	Editor,	you	develop	your	Android
application’s	behavior.	(“Here’s	what	happens	in	this	text	box
when	the	user	clicks	that	button.”)
Both	the	Designer	and	Blocks	Editor	programs	live	on	the	web.

Each	time	you	use	App	Inventor,	you	download	the	code	for	these
programs	from	Google’s	servers	to	your	computer’s	hard	drive.
While	you	run	these	programs,	the	programs	communicate
frequently	with	Google’s	servers.

	The	Setup	software	lives	locally	on	your	computer’s	hard
drive.	This	code	includes	some	Android	Software	Development
Kit	(SDK)	tools	and	an	Android	device	emulator.
The	Designer	runs	in	a	web	browser,	and	the	Blocks	Editor	runs	in
a	Java	Web	Start	window.	A	Java	Web	Start	window	is	like	a	Java

http://www.appinventorbeta.com/
http://www.media.mit.edu

applet	running	outside	a	web	browser.	A	run	of	the	Blocks	Editor
looks	very	much	like	any	ordinary	program	running	on	your
desktop.	But	unlike	most	other	programs,	you	download	the
Blocks	Editor’s	code	each	time	you	use	App	Inventor.
When	you	download	App	Inventor’s	Setup	software,	you
download	and	install	a	small	portion	of	the	Android	SDK	with	an
emulator	and	a	few	other	gizmos.	But	the	parts	of	App	Inventor
that	you	see	most	often	(the	Designer	and	the	Blocks	Editor)	live
on	Google’s	servers,	not	on	your	computer’s	hard	drive.
(P.S.:	By	the	time	you	read	this	book,	someone	will	have
explained	to	me	why	the	folks	at	Google	split	up	App	Inventor
into	a	browser-based	part	and	a	Java	Web	Start	part.	When	I	find
out,	I’ll	probably	be	embarrassed	for	not	having	known	sooner.)

	

	Everything	changes.	Or,	as	the	French	say,	“The	more
things	change,	the	more	things	in	Barry’s	books	become	out	of
date.”	I’m	guessing	that	Google’s	App	Inventor	will	change	quickly
while	this	book	is	in	print,	so	don’t	take	this	chapter’s	instructions	as
gospel.	Google’s	software	people	designed	App	Inventor	from	the
ground	up	to	be	friendly	and	intuitive.	So	if	my	instructions	don’t
match	precisely	what	you	see	on	your	computer	screen,	poke	around
a	bit.	If	you	really	get	stuck,	send	me	an	e-mail.	(My	address	is	in
this	book’s	introduction.)

Creating	a	Project
Follow	these	steps	to	create	and	test	a	bare-bones	App	Inventor

project:
1.	Visit	www.appinventorbeta.com.

	 A	visit	to	this	site	brings	you	to	one	of	several	possible	web	pages.
Which	page	you	see	depends	on	the	amount	of	App	Inventor	stuff	that
you’ve	already	done.	If	you’ve	already	downloaded	and	installed	App
Inventor,	the	site	takes	you	to	either	App	Inventor’s	Projects	page	or	to

http://www.appinventorbeta.com/

App	Inventor’s	Designer	page.
	 The	Projects	page	lists	the	projects	that	you’ve	created.	(See	Figure

1-1.)
	 The	Designer	page	is	the	main	interface	to	App	Inventor’s	Designer

program.	On	the	Designer	page,	you	lay	out	your	Android	application’s
screen,	drag	components	onto	the	application’s	screen,	and	set	the
components’	properties.	(See	Figure	1-2.)

	 You	can	navigate	between	the	Projects	page	and	the	Designer	page.
When	you’re	on	the	Projects	page,	clicking	the	main	toolbar’s	New
button	(to	create	a	new	project)	brings	you	to	the	Designer	page.
Alternatively,	you	can	select	the	name	of	one	of	your	existing	projects.

	
	

Figure	1-1:	The	Projects	page.

	

Figure	1-2:	The	Designer	page.

When	you’re	on	the	Designer	page,	select	the	My	Projects	link	to
return	to	the	Projects	page.

	 Remember:	Neither	Ralph	Lauren	nor	Christian	Dior	has	anything
to	do	with	the	App	Inventor’s	Designer	page.

	 2.	If	you’re	not	already	on	the	Projects	page,	click	the	My
Projects	link	to	go	to	the	Projects	page.

	 In	Figure	1-2,	the	My	Projects	link	is	at	the	top	of	the	page	on	the
right	side.

	 3.	On	the	Projects	page,	click	the	New	button.
	 The	New	App	Inventor	for	Android	Project	dialog	box	opens.
	 4.	Type	a	project	name,	and	click	OK.
	 The	Designer	page	opens.	(See	Figure	1-2.)
	 At	this	point,	App	Inventor	creates	a	skeletal	Android	project.	You

can	do	a	quick	reality	check	by	running	this	project.
	 5.	On	the	Designer	page,	click	the	Open	the	Blocks	Editor

button	in	the	upper-right	corner	(see	Figure	1-2).
	 After	you	click	the	Open	the	Blocks	Editor	button,	your	computer

downloads	and	launches	the	Blocks	Editor	program	from	Google’s
servers.

	 The	Blocks	Editor	screen	contains	lots	of	interesting	thingamajigs,

but	for	this	section’s	minimal	app,	you	can	ignore	everything	except	two
of	the	buttons	near	the	top	of	the	screen.	(See	Figure	1-3.)

	 6.	Click	the	New	Emulator	button.	(See	the	top	of	the	screen	in
Figure	1-3.)

	 Clicking	New	Emulator	starts	the	run	of	an	Android	virtual	device.
	 7.	Wait	for	the	emulator’s	startup	screen	to	appear.
	

	Android’s	emulator	takes	a	long	time	to	start	running.
(On	my	2GHz	Intel	CoreTM	2	Duo,	the	emulator’s	startup	takes	minutes,
not	seconds.)	Sometimes,	during	startup,	the	emulator	stalls,	and	you
have	to	close	the	emulator	and	try	launching	it	again.	But	after	the
emulator	is	fully	started,	it’s	usually	quite	reliable.

	 8.	In	the	emulator’s	screen,	do	whatever	you	normally	do	to
unlock	a	phone	or	a	tablet.

	 With	your	mouse,	slide	something	from	one	place	on	the	screen	to
another.	That’s	usually	how	it’s	done.

	 9.	In	the	Blocks	Editor,	click	the	Connect	to	Device	button.
(Again,	see	the	top	of	the	screen	in	Figure	1-3.)

	 A	list	of	running	devices	appears	in	a	drop-down	list.	(See	Figure	1-
4.)

	
	

Figure	1-3:	The	Blocks	Editor.

	

Figure	1-4:	The	list	of	running	devices	(emulators,	phones,	and	tablets).

10.	Choose	a	device	from	the	drop-down	list.
	 In	Figure	1-4,	the	only	running	devices	are	emulators.
	 11.	Wait	for	your	Android	application	to	appear	on	the

emulator	screen.
	

	Launching	an	Android	emulator	requires	the	patience
of	a	saint.

	 App	Inventor’s	skeletal	application	is	bland	as	any	application	can
be.	The	only	items	on	the	emulator’s	screen	are	the	status	bar	and	the	title
bar.	(See	Figure	1-5.)

	
What’s	so	special	about	the	number	5554?

	When	you	launch	an	Android	device	emulator,	the	new	emulator’s
name	is	something	like	emulator-5554	or	emulator-5556.	The
name	stems	from	the	fact	that	each	run	of	an	Android	emulator
uses	two	port	numbers	(two	channels	for	communicating	with	the
development	computer).	As	you	may	already	know,	your	web
browser	normally	uses	port	number	80	to	request	a	web	page.
Your	e-mail	program	probably	uses	port	110,	port	143,	port	585,
port	993,	or	port	995	to	retrieve	e-mail.
When	you	launch	an	emulator	on	your	development	computer,	you
can	specify	several	port	numbers	for	several	of	the	emulator’s
networking	needs.	But	in	most	of	this	book’s	examples,	you	start
an	emulator	without	explicitly	specifying	port	numbers.	When	you
don’t	specify	port	numbers,	your	emulator	relies	on	default	values.
If	you	ever	specify	a	port	number	other	than	the	default,	you	do	so
because	you	don’t	want	the	emulator’s	communications	to	conflict
with	some	other	program’s	use	of	a	particular	port	number.	Who
knows?	Maybe	your	favorite	computer	game	talks	to	the	web	over
port	5228,	the	port	number	Android	uses	to	obtain	apps	from	the
Android	Market.
Now	imagine	that	you	have	no	emulators	running	on	your
development	computer,	and	you	start	an	emulator	without
specifying	any	port	numbers.	Then	the	new	emulator	uses	two
default	port	numbers	—	5554	and	5555.

	The	emulator	uses	port	5554	to	relay	its	console	messages
(the	text	that	appears	in	Eclipse’s	Console	view).

	The	emulator	uses	port	5555	to	talk	to	the	Android	Debug

Bridge	(adb).	For	example,	when	you	type	adb	install
myApp.apk	in	your	development	computer’s	command	window,
the	Android	Debug	Bridge	installs	myApp.apk	onto	your	running
emulator	using	port	5555	to	handle	the	communications.
If	you	type	the	command	adb	devices	in	your	development
computer’s	command	window,	you	see	a	list	of	running	emulators.
(The	list	also	includes	any	actual	devices	that	are	plugged	into
your	computer	via	USB	or	some	other	fancy	connection.)	The	list
probably	includes	emulator-5554	because	5554	is	the	default
console	port	number,	and	an	emulator’s	name	comes	from	the
emulator’s	console	port	number	(not	from	emulator’s	adb	port
number	which	in	this	example	is	5555).
Time	to	raise	the	ante.	Imagine	that	with	emulator-5554	running,
you	go	back	to	your	development	computer	and	start	a	second
emulator	(again,	without	explicitly	specifying	any	port	numbers).
Then	Android	launches	a	new	emulator	with	console	port	5556
and	adb	port	5557.	The	adb	port	number	is	always	one	more	than
the	console	port	number.	To	install	myApp.apk	on	the	second	of
the	two	running	emulators,	you’d	type	adb	-s	emulator-5556
install	myApp.apk	in	your	development	computer’s	command
window.	If	you	close	the	first	emulator,	the	second	emulator’s	port
numbers	don’t	change.	So	after	closing	the	first	of	the	two
emulators,	when	you	type	adb	devices,	the	list	of	devices	includes
emulator-5556	and	no	longer	includes	emulator-5554.
The	allowable	console	port	numbers	for	Android	emulators	are	the
even	numbers	from	5554	to	5584	inclusive.	So	you	can
simultaneously	run	emulators	named	emulator-5554,	emulator-
5556,	emulator-5558,	and	so	on	up	to	emulator-5584.	I’ve	never
tried	to	run	more	than	16	emulators	at	once,	but	I’m	sure	that	if	I
tried,	nothing	good	would	come	of	it.

	

	

Figure	1-5:	An	emulator	runs	your	empty	App	Inventor	project.

Sure,	this	section’s	Android	app	is	dull	as	dirt.	But	don’t	slam	your
laptop’s	lid	shut	in	frustration!	Keep	everything	running	while	you	step
through	the	next	section’s	instructions.

Using	the	Designer
The	Designer	consists	of	five	main	panels,	plus	a	few	additional

menus	and	buttons.	Naturally,	each	of	the	main	panels	has	a	specific
purpose.	(For	a	gander	at	each	of	the	panels,	refer	to	Figure	1-2.)	The	five
main	panels	are	as	follows:
•	The	Designer	palette	contains	items	for	you	to	drag	into	your
Android	application’s	screen.	The	items	in	the	Designer	palette	are

called	components.	Some	of	the	components	are	visible	thingies	(Android
views	and	such),	but	other	components	(such	as	a	LocationSensor)	are
functional	rather	than	visible.

	
•	The	Designer	viewer	is	a	preview	of	your	target	device’s	screen.	You
drag	components	from	the	Designer	palette	to	the	Designer	viewer.

	
•	The	Components	tree	has	a	branch	for	each	component	that	you’ve
dropped	into	the	Designer	viewer.	Selections	in	the	Designer	viewer
and	the	Components	tree	stay	in	sync	with	one	another.	That	is,	when	you
select	a	component	in	the	Designer	viewer,	App	Inventor	automatically
selects	the	corresponding	branch	of	the	Components	tree.	And	when	you
select	a	branch	of	the	Components	tree,	App	Inventor	automatically
selects	the	corresponding	component	in	the	Designer	viewer.

	
The	bottom	of	the	Components	tree’s	panel	has	buttons	for	renaming	and
deleting	components	in	the	tree.

	

	If	you’re	working	on	a	serious	project	(instead	of	goofing
around	with	instructions	in	this	book),	rename	each	component	that	you
drag	into	the	Designer	viewer.	If	you	don’t	do	any	renaming,	App
Inventor	assigns	default	names	to	your	components	—	names	such	as
Button1,	Button2,	and	so	on.	Later	on,	when	you	work	with	these
randomly	named	components	in	the	Blocks	Editor,	you’ll	have	trouble
remembering	each	component’s	role.

	
•	The	Media	panel	displays	any	images	or	other	media	that	you’ve
added	to	your	project.	In	Figure	1-2,	the	Media	panel	is	sitting	quietly
below	the	Components	tree.

	
•	The	Properties	sheet	lists	the	properties	of	whatever	component	you
select	in	the	Designer	viewer	or	the	Components	tree.	You	can	set	a

component’s	properties	using	the	Properties	sheet’s	text	fields,	drop-
downs,	and	other	gizmos.

	

Adding	a	component	to	your	project
With	the	Designer,	the	Blocks	Editor,	and	the	emulator	from	the

previous	section	still	running,	try	the	following	trick:
1.	The	Designer	palette’s	components	are	divided	into

categories,	so	locate	the	Basic	category.
	 Refer	to	Figure	1-2.	The	Basic	category	is	in	the	upper-left	section

of	the	figure.
	 2.	In	the	Basic	category,	locate	my	favorite	component	—	the

Button.
	 3.	Drag	the	Button	component	from	the	Designer	palette	to	the

Designer	viewer.
	 The	result	is	shown	in	Figure	1-6.
	 Now	the	real	fun	begins!
	

	

Figure	1-6:	A	new	Button	component	in	the	Designer	viewer.

4.	Look	back	at	the	emulator	that	you	launched	in	Step	6	of
“Creating	a	Project,”	earlier	in	this	chapter.

	 Lo	and	behold!	The	emulator	displays	your	modified	Android	app
—	an	app	with	a	button	(See	Figure	1-7.)

	 In	Step	9	of	“Creating	a	Project,”	you	forge	a	connection	between
App	Inventor	and	an	emulator.	Later,	when	you	add	a	button	to	the
Designer	viewer,	the	emulator’s	screen	changes	automatically.	You	don’t
reload	your	modified	project	onto	the	emulator.	The	App	Inventor	reloads
for	you.	Hey!	When	you	connect	App	Inventor	to	a	device,	you	really
connect	App	Inventor	to	the	device!

	 5.	Create	a	checkpoint!
	 The	Designer	doesn’t	have	an	Undo	feature.	Instead,	you	create

checkpoints.	When	you	create	a	checkpoint,	you	create	a	new	project
containing	all	the	changes	you	made	since	the	last	Save,	Save	As,	or
Checkpoint	operation.	After	you	create	a	checkpoint,	the	Designer
continues	to	display	whatever	project	it	displayed	before	you	created	the
checkpoint.

	 The	Checkpoint	button	appears	above	the	Designer	viewer	in	the
Designer	page.	(See	Figure	1-2.)	Click	this	button	to	open	the	Checkpoint
dialog	box.

	 6.	In	the	Checkpoint	dialog	box,	type	a	name	for	your
checkpoint	and	then	click	OK.

	 The	buttons	above	the	Designer	viewer	have	the	labels	Save,	Save
As,	and	Checkpoint:

	 •	When	you	click	Save,	you	commit	the	changes	you	made	since	the
previous	Save	or	Save	As	operation.	The	Designer	continues	to
display	whatever	project	you	save.

	
•	When	you	click	Save	As,	you	create	a	new	project	containing	all	the

changes	you	made	since	the	previous	Save	or	Save	As	operation.
After	the	Save	As	operation,	the	Designer	displays	the	new	project.

	
•	When	you	click	Checkpoint,	you	create	a	new	project	containing	all	the

changes	you	made	since	the	last	Save,	Save	As,	or	Checkpoint
operation.	After	you	create	a	checkpoint,	the	Designer	continues	to

display	whatever	project	it	displayed	before	you	created	the
checkpoint.

	
To	undo	changes	that	you	made	to	your	project,	return	to	the	Projects

page	(by	clicking	My	Projects	on	the	Designer	page).	From	the	list	on
the	Projects	page,	select	a	project	that	you	created	previously.	(You
created	projects	using	the	Designer’s	Save,	Save	As,	and	Checkpoint
buttons.)

	

	With	App	Inventor	(as	with	any	other	tool	that	you
use),	save	your	work	often.

	
	

Figure	1-7:	The	emulator	stays	in	sync	with	changes	in	the	Designer.

Setting	component	properties
Using	Designer’s	Properties	sheet,	you	can	examine	or	change	all

kinds	of	things	about	each	component	that	you’ve	placed	in	the	Designer
viewer.	Try	this:

1.	Follow	the	previous	instructions	in	this	chapter.
	 I	understand.	Asking	you	to	follow	all	the	previous	instructions	in

this	chapter	is	a	lot	to	ask.	But	believe	me,	it’s	worth	the	effort.
	 As	a	result	of	following	those	instructions,	you	have	a	Button	on	the

Designer	viewer.	(“Big	deal!”	you	say.	Well,	you’re	on	your	way	to
bigger	and	better	things.)

	 2.	With	Screen1	selected	in	the	Components	tree,	find	the
Screen-Orientation	drop-down	in	the	Properties	sheet,	and	change
the	selection	from	Unspecified	or	Portrait	to	Landscape.

	 As	a	result,	the	Designer	viewer’s	screen	orientation	changes	to
Landscape.	Congratulations!	You’ve	just	turned	your	phone	sideways.

	 3.	With	Screen1	still	selected,	find	the	BackgroundImage	field	in
the	Properties	sheet,	and	select	it	to	reveal	a	small	BackgroundImage
dialog	box.

	 See	Figure	1-8.
	

	

Figure	1-8:	The	Background-	Image	dialog	box.

4.	In	the	BackgroundImage	dialog	box,	click	Add.

	 The	Upload	File	dialog	box	appears.	(See	Figure	1-9.)
	 5.	In	the	Upload	File	dialog	box,	click	Choose	File.
	 As	a	result,	your	operating	system’s	Open	dialog	box	appears.
	 6.	Using	your	operating	system’s	Open	dialog	box,	look	for	an

image	file	on	your	computer’s	hard	drive.
	 7.	After	choosing	an	image	file,	click	OK	a	few	times	(or

whatever	you	need	to	click)	to	back	out	of	the	Open	dialog	box	and
the	Upload	File	dialog	box.

	 As	a	result,	the	BackgroundImage	field	contains	the	name	of	your
image	file,	and	the	Designer	viewer’s	screen	displays	your	image	in	the
background.	Figure	1-10	shows	the	Designer	viewer’s	screen	with	a
background	image	displaying	the	Stockton	Street	Tunnel	in	San
Francisco.	I	took	the	photo	with	my	Android	phone	after	attending
Google	I/O	2011.

	

	Because	of	the	stuff	you	did	in	Steps	3–7,	your	image
file	appears	as	an	option	in	the	Designer’s	small	Media	panel.	The	Media
panel	is	located	below	the	Components	tree.

	
	

Figure	1-9:	The	Upload	File	dialog	box.

	

Figure	1-10:	There’s	an	image	to	the	Android	application’s	background.

8.	In	the	Designer	viewer	(or	in	the	Components	tree),	select	the
button	that	you	created	previously.

	 In	Figure	1-10,	the	text	on	the	button’s	face	is	Text	for	Button1.
Select	the	corresponding	button	in	your	own	project.

	 9.	In	the	Properties	sheet,	find	the	Text	field,	change	the	words
in	that	field,	and	then	press	Enter.

	 In	the	Designer	viewer,	the	text	on	the	face	of	the	button	changes.
(See	Figure	1-11.)

	
	

Figure	1-11:	You’ve	changed	the	text	on	the	face	of	the	button.

Arranging	screen	elements
The	App	Inventor	doesn’t	provide	all	the	layout	facilities	of

Android’s	SDK.	For	example,	the	Designer	palette	has	no	Relative
layout.	And	in	general,	the	Designer’s	options	aren’t	as	feature-rich	as	the
SDK’s	layouts.	But	with	the	Designer	palette’s	Screen	Arrangement
components,	you	can	go	a	long	way	in	customizing	the	look	of	your
Android	app.

	It’s	natural	to	wonder	if	you	can	enjoy	the	best	of	both
worlds.	You	can	create	an	Android	app	in	minutes	with	the	App
Inventor.	Then	can	you	import	your	app	into	Eclipse	and	tweak	the
code	with	the	Android	SDK’s	high-precision	tools?	The	answer	(as
of	the	day	I	write	this	sentence)	is	no.	Google	doesn’t	provide	a	way
to	translate	App	Inventor	code	into	ordinary	Android	SDK	code.
I’ve	tried	one	or	two	third-party	translation	tools,	but	none	of	these
tools	is	reliable.	(And	for	all	I	know,	these	tools	might	not	be	legal.)
I	want	to	keep	this	chapter’s	ongoing	example	from	becoming

cluttered.	So	the	next	set	of	instructions	starts	without	the	changes	from
the	“Setting	component	properties”	section.

If	you	followed	Steps	5	and	6	in	the	“Adding	a	component	to	your

project”	section,	you	can	return	to	your	checkpoint.	In	doing	so,	you
return	to	the	project	as	it	was	before	changing	orientation,	adding	a
background	image,	and	setting	the	button’s	text.	But	if	you	didn’t	create	a
checkpoint	(or	if	you	didn’t	do	anything	beyond	starting	a	new	project),
don’t	worry.	The	steps	in	this	section	don’t	build	on	the	steps	from
previous	sections.	(Besides,	the	apps	that	you	create	in	this	chapter	are
practice	apps.	You	can	experiment	all	you	want	and	not	hurt	anything.)

	For	details	about	using	checkpoints,	see	the	“Adding	a
component	to	your	project”	section,	earlier	in	this	chapter.
To	arrange	components	on	the	Designer	viewer	screen,	do	the

following:
1.	In	the	Designer	palette’s	Screen	Arrangement	list,	find	the

VerticalArrangement.
	 See	Figure	1-12.
	 2.	Drag	a	VerticalArrangement	from	the	palette	to	the	Designer

viewer’s	screen.
	 An	empty	rectangle	appears	in	the	Designer	viewer	screen.	(See

Figure	1-13.)
	

	

Figure	1-12:	The	Designer	palette’s	VerticalArrangement	component.

	

Figure	1-13:	The	screen	contains	an	empty	VerticalArrangement.

3.	If	you	have	a	button	on	your	Designer	viewer’s	screen,	drag
that	button	into	the	VerticalArrangement	square;	if	you	don’t
already	have	a	button,	drag	a	new	button	from	the	Designer	palette
into	the	VerticalArrangement	square.

	 The	VerticalArrangement	square	shrinks	(and	maybe	moves)	to
fully	enclose	the	button.

	 4.	Drag	a	second	button	from	the	Designer	palette	into	the
VerticalArrangement	square.

	 The	VerticalArrangement	square	grows	to	accommodate	the
additional	button.	The	buttons	inside	the	arrangement	appear	one	above
the	other	because	this	arrangement	is	a	VerticalArrangement.	(See	Figure
1-14.)

	 Look	at	the	quick-and-dirty	layout	in	Figure	1-14.	An	Android	app
looks	so	crude	if	its	buttons	are	tucked	in	the	upper-left	corner!	Unlike
Android’s	SDK,	the	App	Inventor	doesn’t	let	you	change	a	view’s
gravity.	So	to	center	the	components	in	your	application’s	screen,	you
need	a	hack.	I	describe	this	hack	in	the	next	several	steps.

	 5.	In	the	Designer	viewer	or	the	Component	tree,	select	the
VerticalArrangement.

	 6.	In	the	Properties	sheet,	select	the	Width	field.
	 A	small	Width	dialog	box	appears.	(See	Figure	1-15.)
	

	

Figure	1-14:	Two	components	inside	a	VerticalArrangement.

	

Figure	1-15:	The	Width	dialog	box.

7.	In	the	Width	dialog	box,	select	the	Fill	Parent	option.
	 Again,	see	Figure	1-15.
	 8.	In	the	Width	dialog	box,	click	OK.
	 As	a	result,	the	VerticalArrangement	stretches	across	the	entire

Designer	viewer	screen.	(See	Figure	1-16.)
	 So	far,	so	good.	But	here	comes	the	embarrassing	part	of	the	layout

hack.
	 9.	Drag	two	HorizontalArrangement	components	from	the

Designer	palette	into	the	VerticalArrangement.
	 10.	Drag	the	buttons	on	the	Designer	viewer	screen	into	the

HorizontalArrangement	components.
	 That	is,	drag	one	button	into	one	HorizontalArrangement,	and	drag

the	other	button	into	the	other	HorizontalArrangement.	(See	Figure	1-17.)
	 11.	Drag	four	new	labels	from	the	palette	into	the

HorizontalArrangement	components,	and	surround	each	button	with
two	of	the	labels.	(See	Figure	1-18.)

	 12.	Set	each	label’s	Width	property	to	the	Fill	Parent	option.
	 For	details	on	setting	a	component’s	Width	property,	see	Steps	5–8.
	 13.	Set	both	HorizontalArrangement	components’	properties	to

(yes)	the	Fill	Parent	option.
	 At	this	point,	everything	stretches	across	the	entire	Designer	viewer

screen.	The	only	sore	spot	is	the	text	in	each	of	the	labels.
	

	

Figure	1-16:	The	VerticalArrangement	fills	its	parent.

	

Figure	1-17:	A	button	in	each	HorizontalArrangement.

	

Figure	1-18:	Each	button	is	surrounded	by	labels.

14.	Delete	the	text	in	each	of	the	labels,	leaving	behind	just	your
button	text.

	 For	help	setting	a	component’s	text,	see	the	“Setting	component
properties”	section.

	

	App	Inventor	doesn’t	treat	strings	the	way	Java	treats
strings.	In	App	Inventor,	the	notation	“”	doesn’t	stand	for	the	empty
string.	Instead,	“”	stands	for	the	two-character	string	containing	two
double	quotation	marks.	To	put	an	empty	string	in	one	of	App	Inventor’s
label	components,	go	to	the	Properties	sheet	and	delete	all	characters	in
the	component’s	Text	field.

	 In	the	Designer	viewer,	the	final	result	appears	in	Figure	1-19.	The
(beautiful)	display	that	you	see	in	an	emulator	is	pictured	in	Figure	1-20.

	
	

Figure	1-19:	At	last!	The	buttons	are	centered.

	

Figure	1-20:	Nice!

Using	the	Blocks	Editor
Google’s	App	Inventor	has	two	major	parts	—	a	Designer	and	a

Blocks	Editor.	The	Blocks	Editor	has	two	big	panels.	These	panels	don’t
seem	to	have	names	to	speak	of.	So	for	the	sake	of	clarity,	I	hereby
christen	these	panels	the	Blocks	palette	and	the	Blocks	viewer.	(In	some

tutorials,	I’ve	seen	the	Blocks	viewer	called	the	editor,	but	that
terminology	confuses	me.)

	The	Blocks	Editor	has	a	palette	and	a	viewer,	and	the
Designer	has	a	palette	and	a	viewer	(along	with	other	panels).	For
the	Designer’s	panels,	I	use	the	names	Designer	palette	and
Designer	viewer;	for	the	Blocks	Editor’s	panels,	I	use	the	names
Blocks	palette	and	Blocks	viewer.	My	terminology	isn’t	standard.
But	as	far	as	I’m	concerned,	the	standard	terminology	isn’t	very
helpful.	In	fact,	in	the	official	App	Inventor	documentation,	many
parts	of	the	interface	are	unnamed.
You	can	see	the	Blocks	palette	and	the	Blocks	viewer	in	Figure	1-3.

•	The	Blocks	palette	on	the	left	side	contains	building	blocks	for
actions	—	the	actions	to	be	performed	by	your	Android	application.

	
The	Blocks	palette	has	two	tabs	—	Built-In	and	My	Blocks:

	
•	Most	items	on	the	My	Blocks	tab	represent	the	components	that	you’ve

added	to	the	Designer’s	viewer	—	buttons,	labels,	screen
arrangements,	and	other	such	things.

	
•	The	items	on	the	Built-In	tab	are	fundamental	elements	of	programming

logic.	This	includes	text	strings,	mathematical	operators,	comparison
operators,	loops,	if-then	constructs,	and	other	stuff.

	
•	The	Blocks	viewer	is	a	preview	of	your	application’s	actions.	The
Blocks	viewer,	initially	empty,	consumes	most	of	the	Blocks	Editor’s
area.	As	you	might	already	have	guessed,	you	drag	items	from	the	Blocks
palette	to	the	Blocks	viewer.

	

	The	programming	model	for	App	Inventor’s	Blocks	Editor
is	the	Scratch	development	environment.	Visit
http://scratch.mit.edu	for	details.

Adding	event	handlers
In	previous	sections,	I	describe	the	kinds	of	things	that	most	visual

editors	can	do.	In	fact,	Eclipse’s	Graphical	Layout	has	the	same	kinds	of
drag-and-drop	facilities	as	App	Inventor’s	Designer,	and	the	Graphical
Layout	has	an	added	advantage.	With	Eclipse’s	Graphical	Layout,	you
have	access	to	most	of	the	Android	SDK	features.

So	what	makes	the	App	Inventor	different?	Why	use	the	App
Inventor	instead	of	Eclipse	and	the	Android	SDK?	With	the	App
Inventor’s	Blocks	Editor,	you	can	create	Android	application	logic	by
dragging	and	dropping	things	and	by	fitting	things	together.	Absolutely
no	coding	required!

Okay,	what’s	an	advantage	in	one	setting	is	a	disadvantage	in
another.	Along	with	the	Blocks	Editor’s	“no	coding	required”	feature
comes	the	“no	coding	allowed”	limitation.	Anyway,	App	Inventor	isn’t	a
magic	bullet.	To	create	elaborate	Android	applications,	you	still	need	an
IDE,	such	as	Eclipse,	and	the	full	Android	SDK.

In	this	section,	you	experiment	with	some	Blocks	Editor	techniques:
1.	On	the	App	Inventor’s	Projects	page,	create	a	new	project.

	 For	details,	see	the	section	“Creating	a	Project,”	earlier	in	the
chapter.

	 2.	Drag	a	button	from	the	Designer	palette	and	drop	it	onto	the
Designer	viewer.

	 For	details,	see	the	section	“Adding	a	component	to	your	project”	—
again,	earlier	in	the	chapter.

	 3.	Drag	a	label	from	the	Designer	palette	and	drop	it	onto	the
Designer	viewer.

	 Now	your	Application	has	a	button	(named	Button1)	and	a	label
(named	Label1).

http://scratch.mit.edu/

	 4.	Open	the	Blocks	Editor.
	 For	details,	see	the	“Creating	a	Project”	section.	(You	know	where	it

is.)
	 5.	In	the	Blocks	palette,	click	the	My	Blocks	tab.	(See	Figure	1-

21.)
	

	

Figure	1-21:	The	My	Blocks	tab	in	the	Blocks	palette.

6.	In	the	My	Blocks	tab,	click	Button1.	(See	Figure	1-22.)
	

	Here’s	where	some	of	my	earlier	advice	shows	its	real
value.	Previously	in	this	chapter,	I	advise	you	to	rename	each	component
that	you	drag	into	the	Designer	viewer.	Oddly	enough,	if	you	don’t	follow
my	advice,	life	is	easier	for	me.	In	Step	6,	you	click	Button1,	and	sure
enough,	your	application	has	something	with	the	default	name	Button1.
But	in	practice,	a	Blocks	palette	with	names	such	as	Button1,	Label1,

Button2,	and	Button3	is	very	confusing.	Which	of	your	buttons	is
Button2?	Is	it	the	Send	Mail	button	or	the	Receive	Mail	button?	Instead
of	living	with	the	default	Button2	name,	change	the	name	to	SendMail,	or
PlaySong,	or	whatever	name	reminds	you	of	the	button’s	purpose.

	 Anyway,	in	this	set	of	steps,	you’ve	selected	Button1.	As	a	result,
the	expanded	Blocks	palette	contains	a	bunch	of	puzzle	pieces.	Each
puzzle	piece	(each	block)	has	something	to	do	with	Button1.	(See	Figure
1-22.)	Now	what?

	 7.	Click	the	Button1.Click	block.
	 (If	you	read	the	fine	print,	the	block’s	label	is	actually	When

Button1.Click	Do.)
	

	

Figure	1-22:	The	Blocks	palette	expands	when	you	select	Button1.

When	you	click	the	Button1.Click	block,	the	other	blocks	on	the
expanded	palette	disappear.	The	Button1.Click	block	stands	on	its	own	in
the	Blocks	viewer.	(See	Figure	1-23.)

	

	Everybody	does	it.	At	one	time	or	another,	you’ll	reach
into	the	expanded	palette	and	click	the	wrong	block.	No	problem.	Simply
drag	the	unwanted	block	to	the	trash	can	in	the	Blocks	viewer’s	lower-
right	corner.	(Refer	to	Figure	1-3.)

	 The	Button1.Click	block	is	an	example	of	an	event	handler:
	 •	An	event	is	something	that	your	application	might	respond	to,	such	as	a

button	click,	the	pressing	of	a	key,	a	change	in	GPS	location,	or	the
arrival	of	a	text	message.

	
•	An	event	handler	(such	as	the	Button1.Click	block)	is	the	part	of	your

app	that	responds	to	the	occurrence	of	an	event.
	

•	When	an	event	occurs,	your	device	automatically	invokes	the
instructions	contained	in	the	event	handler.

	
In	this	example,	an	event	occurs	when	the	user	clicks	Button1.	In	the

Block1.Click	event	handler,	you’ll	add	instructions	to	put	text	in	the
application’s	other	component	(the	Label1	component).	(In	fact,	you’ll
spend	the	remainder	of	this	step	list	doing	precisely	that.)

	 8.	In	the	Blocks	palette,	click	Label1.
	 Now	the	expanded	Blocks	palette	contains	a	bunch	of	Label1	puzzle

pieces.	Notice	that	some	of	the	pieces	(the	blocks)	come	in	pairs.	The
expanded	palette	has	a	Label1.Text	block	and	a	Set	Label1.Text	To
block.

	 •	The	Label1.Text	block	is	a	getter.
	

•	The	Set	Label1.Text	To	block	is	a	setter.
	

A	getter	gives	you	access	to	an	existing	value.	A	setter	changes	an
existing	value	(or	sets	the	value	for	the	first	time).	Taken	together,	a
getter	and	a	setter	allow	you	to	examine	and	change	the	value	of	a
component’s	property.

	
	

Figure	1-23:	The	Button1.Click	block	in	the	Blocks	viewer.

9.	Click	the	Label1.Text	setter	block.
	 The	Label1.Text	setter	sits	along	with	the	Button1.Click	event

handler	in	the	Blocks	viewer.
	 It’s	time	for	some	jigsaw-puzzle	fun!	Like	two	drifting	tectonic

plates,	the	two	pieces	in	the	Blocks	viewer	look	as	if	they	belong
together.	The	Labe1.Text	setter	can	fit	snugly	inside	the	Button1.Click
event	handler.

	 10.	Drag-and-drop	the	Labe1.Text	setter	block	into	the	gap	of
the	Button1.Click	event	handler	block	(see	Figure	1-24).

	 To	be	painfully	precise,	the	name	for	one	of	these	gaps	is	actually	a
socket.

	 If	you	drop	the	label	block	in	the	right	place,	your	computer	speaker
plays	a	snap	sound,	and	the	combination	of	blocks	changes	in	appearance
just	a	bit.	These	responses	indicate	that	you’ve	successfully	associated
one	block	with	the	other.	In	terms	of	programming	logic,	you’ve	said,
“When	the	user	clicks	Button1,	set	Label1’s	text	to	.	.	.”,	and	you	haven’t
yet	specified	Label1’s	new	text.

	

	Near	the	top	of	the	Button1.Click	block,	App	Inventor
displays	an	exclamation	point	inside	a	little	box.	If	you	hover	over	the
box,	a	popup	bubble	says,	Warning:	This	clump	contains	an	empty
socket	and	won’t	be	sent	to	the	phone.	That	empty	socket	is	the
gap	in	the	To	part	of	the	Label1.Text	setter	block.	The	effortless	emulator

update	that	I	describe	in	the	“Adding	a	component	to	your	project”
section,	earlier	in	this	chapter,	can’t	take	place.

	 11.	Click	the	Built-In	tab	of	the	Blocks	palette.
	 12.	In	the	Built-In	tab,	click	the	Text	item.
	 A	bunch	of	text-related	blocks	appears	in	the	expanded	Blocks

palette.	(See	Figure	1-25.)
	 13.	In	the	expanded	Blocks	palette,	click	the	Text	item.
	 As	a	puzzle	piece,	this	item	has	only	one	part	that	connects	to

another	piece.	That	part	is	a	little	knob	that	fits	nicely	into	the
Label1.Text	setter	block’s	empty	socket.

	
	

Figure	1-24:	The	label	block	snaps	into	the	button	block.

14.	Drag	and	drop	the	Text	block	into	the	gap	of	the	Label1.Text
setter	block	(see	Figure	1-26).

	 You’re	instructing	your	app	to	set	the	Label1’s	text	to	something-or-
other.	The	only	remaining	work	is	to	specify	what	that	something-or-
other	is.

	 15.	Click	the	bold	Text	word	in	the	newly	dropped	Text	piece.
	 The	word	changes	appearance,	like	the	branch	whose	file	you’re

renaming	on	an	Explorer	or	Finder	tree.
	

	

Figure	1-25:	The	expanded	Blocks	palette	displays	blocks	related	to	text.

	

Figure	1-26:	A	clump	of	blocks	with	no	empty	socket.

16.	Type	a	few	characters	in	place	of	the	word	Text	and	then
press	Enter	(see	Figure	1-27).

	 17.	If	necessary,	start	an	emulator	and	connect	App	Inventor	to
the	emulator.

	 For	details,	see	the	earlier	section	“Creating	a	Project.”
	 Wait	for	the	emulator	to	receive	the	newest	changes	to	your	Android

application.	And	then	.	.	.
	 18.	Click	the	button	on	the	emulator’s	screen.
	 The	emulator	responds	by	changing	the	label’s	text.	(See	Figure	1-

28.)
	

	

Figure	1-27:	The	block	grows	to	hold	a	longer	string	of	characters.

	

Figure	1-28:	Voilà!

Event	handlers	with	parameters
The	preceding	section’s	event	handler	is	very	stubborn.	Whenever

you	click	the	button,	you	get	the	same	message:	This	is	easy!	If	you	click
again,	you	see	the	same	message	again.	This	persistent	behavior	is	a
result	of	the	work	shown	in	Figure	1-27.	In	that	figure,	you	type	This	is
easy!	on	a	block.

This	section’s	event	handler	isn’t	nearly	so	stubborn.	In	this	section,
you	do	something	like	the	stuff	shown	in	Figure	1-27.	But	instead	of
typing	This	is	easy!	or	some	other	specific	text,	you	add	a	parameter	to
the	Label1.Text	setter	block.	A	parameter	is	a	placeholder	for	any	text
that	the	user	types.	Here’s	how	it	works:

1.	On	the	App	Inventor’s	Projects	page,	create	a	new	project.
	 For	details	see	the	“Creating	a	Project”	section	in	this	chapter.
	 2.	Drag	a	button	from	the	Designer	palette	and	drop	it	onto	the

Designer	viewer.
	 3.	Drag	a	label	from	the	Designer	palette	and	drop	it	onto	the

Designer	viewer.
	 Now	your	Application	has	a	button	(named	Button1)	and	a	label

(named	Label1).
	 4.	Drag	a	Notifier	component	from	the	Other	Stuff	category	of

the	Designer	palette	and	then	drop	the	Notifier	onto	the	Designer
viewer.

	 A	Notifier	is	initially	invisible.	(It’s	invisible	until	something
interesting	happens	—	something	worth	notifying	the	user	about.)	So	you
don’t	see	your	new	Notifier	in	the	Designer	viewer’s	screen.	But	in	the
Components	tree,	you	see	a	branch	labeled	Notifier1.	And	if	you’re
lucky,	you	might	peek	below	the	Designer	viewer’s	screen	and	find	an
icon	representing	Notifier1.

	 5.	Open	the	Blocks	Editor.
	 6.	Create	the	group	shown	in	Figure	1-29.
	 For	help	grouping	blocks,	see	the	preceding	section.
	 The	blocks	in	Figure	1-29	instruct	your	app	to	display	a	text	dialog

box.	A	text	dialog	box	gets	text	from	the	user.	(See	Figure	1-30.)
	 In	the	next	few	steps,	you	create	a	second	group	of	blocks.
	 7.	In	the	Blocks	palette’s	My	Blocks	tab,	click	the	Notifier1	item.
	

	

Figure	1-29:	When	the	user	clicks	the	button,	the	notifier	displays	a	dialog	box.

	

Figure	1-30:	A	text	dialog	box.

8.	In	the	expanded	Blocks	palette,	select	the
Notifier1.AfterTextInput	event	handler	block.

	 When	you	make	the	selection,	App	Inventor	adds	two	pieces	to	your
Blocks	viewer.	(Yes,	it	adds	two	pieces.)	Along	with	the	event	handler
block,	App	Inventor	adds	a	block	displaying	Name	and	Response.	(See
Figure	1-31.)

	 The	extra	Name	Response	block	is	a	parameter,	or	placeholder.	A
user	enters	OK,	I’m	typing	into	the	field	in	Figure	1-30.	Then,	when	the
user	clicks	OK,	the	user’s	text	(OK,	I’m	typing,	or	whatever	else	the	user
entered)	has	a	name.	That	text’s	name	is	Response.

	 Because	the	user’s	input	text	has	a	name,	you	can	use	that	name	in
the	rest	of	the	handler	block.	You	use	the	name	to	help	describe	an	action
—	the	action	to	be	taken	in	response	to	the	AfterTextInput	event.

	

	Why	does	the	text	OK,	I’m	typing	need	a	name?	The
user’s	input	text	needs	a	name	because	you	can’t	assume	that	the	user
always	enters	OK,	I’m	typing	in	the	field	of	Figure	1-30.	Somehow,	you
have	to	instruct	the	app	to	do	something	with	whatever	the	user	types.	In
Figure	1-31,	the	name	for	whatever	the	user	types	is	Response.

	 Whatever	text	the	user	enters	in	Figure	1-30	goes	by	Response.
That’s	fine,	but	how	do	you	use	Response?	Here’s	how:

	
	

Figure	1-31:	Two	blocks	for	the	price	of	one.

9.	In	the	My	Blocks	tab,	click	the	My	Definitions	category.
	 A	Value	Response	block	appears	(as	if	by	magic)	in	the	extended

Blocks	palette.
	 10.	Click	the	Value	Response	block,	but	for	now,	don’t	attach

the	block	to	anything	else	in	the	Blocks	viewer.
	 You	make	use	of	the	parameter	Response	by	plugging	this	Value

Response	block	into	a	socket.	But	first,	I	want	to	show	you	another	trick
or	two.

	 11.	Add	blocks	to	the	Notifier1.AfterTextInput	event	handler
block	to	form	the	incomplete	group	shown	in	Figure	1-32.

	 The	Join	block	in	Figure	1-32	comes	from	the	Text	category	in	the
Blocks	palette’s	Built-In	tab.	When	you	join	two	pieces	of	text,	you	turn
the	two	pieces	into	one	combined	piece.	(That	is,	you	concatenate	the	two
pieces.)

	 In	this	example,	you	plan	to	join	three	pieces	of	text.	So	in	the	next

step,	you	join	stuff	to	an	existing	Join	block.
	 12.	Add	another	block	to	the	Notifier1.AfterTextInput	handler

to	form	the	incomplete	group	shown	in	Figure	1-33.
	

	

Figure	1-32:	An	incomplete	(but	interesting)	group	of	blocks.

	

Figure	1-33:	A	Join	block	within	a	Join	block.

13.	Fill	the	empty	sockets	in	the	Notifier1.AfterTextInput	block
as	follows:

	 •	Into	the	leftmost	socket	—	the	remaining	empty	socket	of	your	first	Join
block	—	put	the	Label1.Text	getter	block.

	
•	Into	the	middle	socket	—	the	first	empty	socket	on	your	second	Join

block	—	put	a	Text	block	containing	a	backslash	(\)	followed	by	a
lowercase	letter	n.

	
In	many	modern	programming	languages,	\n	stands	for	an	instruction	to

“go	to	the	next	line.”
	

•	Into	the	rightmost	socket	—	the	remaining	empty	socket	on	your	second
Join	block	—	put	the	Value	Response	block	that	you	selected	in	Step
10.

	
The	resulting	group	of	blocks	is	shown	in	Figure	1-34.

	 When	the	user	finishes	typing	text,	the	combination	of	blocks	in
Figure	1-34	instructs	your	app	to	do	the	following:

	 a.	Get	whatever	text	is	already	on	Label1.
	

b.	Join	a	line	break	onto	that	text.
	

c.	Join	the	user’s	response	onto	that	bundle	of	text.
	

d.	Put	the	whole	bunch	of	joined	text	back	into	Label1.
	

Now	you	have	two	groups	of	blocks	—	a	group	to	handle	button
clicks	(in	Figure	1-29)	and	a	group	to	handle	text	input	(in	Figure	1-34).
You	can	connect	to	an	emulator	and	try	the	app.	Some	screen	shots	from
a	run	of	the	app	appear	in	Figure	1-35.

	 This	chapter	covers	the	general	concepts	behind	App	Inventor.
Chapter	2	of	this	minibook	describes	specific	App	Inventor	projects.

	

Figure	1-34:	At	last!	A	complete	event	handler!

	

Figure	1-35:	Each	encounter	with	the	text	dialog	box	adds	a	line	of	text	to	the
label.

Chapter	2:	More	App	Inventor	Magic

In	This	Chapter
Taking	pictures	and	sending	messages
Measuring	a	device’s	tilt
Making	things	move	on	the	screen
Storing	and	accessing	data

Starting	another	app
	

Chapter	1	of	this	minibook	introduces	you	to	the	wonderful	world	of
Google’s	App	Inventor.	“Nice	to	meet	you,”	you	say	to	App	Inventor.	As
in	any	new	relationship,	the	first	getting-to-know-you	encounter	ends	and
then	the	let’s-learn-more-about-each-other	phase	begins.	So	in	this
chapter,	you	relax	with	App	Inventor	over	an	espresso	at	lunch	and	find
out	more	about	creating	Android	applications.

Snap	a	Photo
App	Inventor	can	access	a	device’s	camera.	To	check	it	out,	try	this:
1.	Create	a	new	App	Inventor	project.

	 For	details,	see	Chapter	1	of	this	minibook.
	 2.	Onto	the	Designer	viewer,	drop	a	button.
	 3.	(Optional)	Put	the	words	Start	the	Camera	on	the	face	of	the

button.
	 4.	In	the	Designer	palette’s	Media	category,	find	the	Camera

component.
	 5.	Drag	a	camera	from	the	Designer	palette	to	the	Designer

viewer.
	 A	camera	component	isn’t	visible,	so	you	don’t	see	your	new

camera	component	in	the	Designer	viewer’s	screen.	But	in	the

Components	tree,	you	see	a	branch	labeled	Camera1.	And	if	you’re	lucky,
you	might	peek	below	the	Designer	viewer’s	screen	and	find	an	icon
representing	Camera1.

	

	Do	as	I	say,	not	as	I	do.	To	make	these	instructions
easy	to	follow,	don’t	rename	Camera1	to	anything	else	(such	as
MyEightyMegapixelDream).	But	in	real-life	development,	your
components	(and	other	things)	should	have	consistent,	informative	names
instead	of	the	default	names	(such	as	Camera1)	that	App	Inventor	assigns.

	 6.	Open	the	Blocks	Editor.
	 For	details,	see	Chapter	1	of	this	minibook.
	 7.	In	the	Blocks	viewer,	align	blocks,	as	shown	in	Figure	2-1.
	 For	details,	blah-blah-blah,	Chapter	1	of	this	minibook,	yada-yada.
	 8.	Fire	up	an	emulator	or	connect	a	phone	to	your	development

computer;	then	test	your	Android	application.
	 For	a	look	at	the	app	in	action,	see	Figures	2-2	and	2-3.
	

	To	get	this	app	running,	you	might	have	to	restart	the
Blocks	Editor	and	the	emulator.	Sure,	restarting	takes	time.	But	it’s	worth
the	wait.

	 If	you’re	curious,	Figure	2-3	is	a	picture	of	a	picture	of	a	picture.	My
phone	takes	a	snapshot	of	my	computer	screen,	which	displays	a	copy	of
the	screen	on	my	phone,	which	takes	a	snapshot	of	my	computer	screen,
and	so	on.	I’ve	always	been	curious	about	this	kind	of	thing.

	

Figure	2-1:	When	the	user	clicks	the	button,	have	the	camera	take	a	picture.

	

Figure	2-2:	The	screen	arrangement	created	in	Steps	2	and	3.

	

Figure	2-3:	The	result	of	clicking	the	button	shown	in	Figure	2-2.

Send	a	Text	Message
The	acronym	SMS	stands	for	Short	Messaging	Service	—	the

technology	that	enables	text	messaging	from	one	mobile	device	to
another.	This	section’s	example	uses	App	Inventor	to	send	such	a
message:

1.	Create	a	new	App	Inventor	project.
	 2.	Onto	the	Designer	viewer,	drop	two	TextBox	components	and

a	Button	component.
	 One	text	box	is	for	a	telephone	number;	the	other	text	box	is	for	a

brief	message	body.	Clicking	the	button	starts	the	message	transmission.
	 3.	(Optional)	Add	a	hint	to	each	text	box.
	 A	hint	appears	faintly	inside	a	text	box,	but	only	when	the	user

leaves	the	text	box	empty.	(See	Figure	2-4.)	To	place	a	hint	in	a	TextBox
component,	select	that	component	in	the	Designer	viewer	or	the
Components	tree.	Then	type	the	stuff	you	want	to	appear	ghost-like	in	the
text	box	(again,	see	Figure	2-4)	into	the	Properties	sheet’s	Hint	field.

	
	

Figure	2-4:	The	screen	arrangement	created	in	Steps	2	to	4.

4.	(Optional)	Put	the	words	Send	a	message	on	the	face	of	the
button	(see	Figure	2-4).

	 5.	On	the	Properties	sheet,	put	a	check	mark	in	the
NumbersOnly	check	box	belonging	to	the	phone	number	text	box.

	 When	the	user	selects	a	text	box,	NumbersOnly	tells	the	keyboard	to
pop	up	in	numeric	mode.	Also,	NumbersOnly	prevents	the	user	from
entering	letters	and	other	goofy	characters	into	a	text	box.

	 6.	In	the	Designer	palette’s	Social	category,	find	the	Texting
component,	and	drag	it	from	the	Designer	palette	to	the	Designer
viewer.

	 You	don’t	see	your	new	Texting	component	in	the	Designer
viewer’s	screen.	But	in	the	Components	tree,	you	see	a	branch	labeled
Texting1.

	 7.	Open	the	Blocks	Editor.
	 8.	In	the	Blocks	viewer,	add	and	align	blocks,	as	shown	in	Figure

2-5.
	 In	Figure	2-5,	the	second	setter	block	is	for	Texting1.Message.	What

I	call	a	brief	message	body	in	Step	2	is	simply	called	Message	in	this
setter	block.	So	this	block	takes	whatever	is	in	the	second	text	box	and
sends	it	as	the	body	of	a	text	message.

	

	You	can	squeeze	several	blocks,	one	after	another,	into
a	handler	block’s	socket.	In	Figure	2-5,	I	put	two	setter	blocks	followed
by	a	Call	Texting1.SendMessage	block	into	the	Button1.Click	socket.
That’s	fine.	When	the	user	clicks	Button1,	the	device	executes	the
handling	blocks’	instructions	in	sequence.	First,	the	device	sets	a
PhoneNumber.	Next,	the	device	sets	a	Message	(a	message	body,	that	is).
Finally,	the	device	executes,	Texting1.SendMessage.

	 9.	Test	your	app	on	a	real	phone.
	 Type	a	telephone	number	and	a	brief	message	body.	When	you	press

the	Send	a	Message	button,	your	phone	sends	the	text	message.	(If	you
test	the	app	on	an	emulator,	nothing	happens	when	you	press	the	Send	a
Message	button.	That’s	disappointing,	but	at	least	nothing	bad	happens!)

	

	For	help	connecting	a	phone	or	tablet	device	to	your
development	computer,	see	Book	I,	Chapter	3.

	
	

Figure	2-5:	When	the	user	clicks	the	button,	send	a	text	message.

Travel	to	the	Orient
A	device’s	orientation	sensor	keeps	track	of	the	direction	the	device

faces.	A	phone	whose	screen	faces	the	sky	and	whose	top	faces	north	has
zero	yaw,	zero	pitch,	and	zero	roll.	If	you	turn	the	phone	clockwise
(keeping	it	flat	on	the	ground),	the	yaw	increases.	(See	Figure	2-6.)	A
quarter	turn	represents	90	degrees.	So,	for	example,	a	phone	whose	top
faces	east	has	yaw	90.	A	phone	whose	top	faces	west	has	yaw	270.

To	use	orientation	settings	in	an	App	Inventor	project,	try	the
following:

1.	Create	a	new	App	Inventor	project.
	 2.	Drop	three	Label	components	onto	the	Designer	viewer.
	 One	label	is	for	your	device’s	yaw,	another	label	is	for	the	pitch,	and

the	third	label	is	for	roll.
	

	

Figure	2-6:	Yaw,	pitch,	and	rock-and-roll.

Angles	and	directions
	Android’s	orientation	and	object	movement	functions	use

geometric	angles	to	describe	direction.	If	you’ve	taken	a	geometry
course,	and	if	you	haven’t	suppressed	the	memory,	you	may
remember	the	following	facts:

	A	0-degree	angle	points	to	the	right.	(Think	of	an	analog
clock	whose	only	hand	points	to	3.)	See	the	figure	below.

	A	90-degree	angle	points	upward.	(Think	of	an	analog	clock
whose	only	hand	points	to	12.)

	As	the	hand	turns	counterclockwise,	the	number	of	degrees

increases.
	A	180-degree	angle	points	to	the	left	(to	9	o’clock).
	A	360-degree	angle	has	gone	counterclockwise	all	the	way

around	in	a	circle.	Like	a	0-degree	angle,	a	360-degree	angle
points	to	the	right.
These	facts	(and	a	few	others)	are	illustrated	in	the	figure	below.
To	relate	this	stuff	to	a	phone’s	orientation,	you	set	a	vantage
point.	For	example,	if	you	perform	a	certain	(admittedly	silly)
experiment,	your	phone’s	yaw	changes	exactly	the	way	the
degrees	change	in	the	figure	below.	Here’s	the	experiment:
First,	put	your	phone	on	a	glass	table,	with	the	phone’s	screen
facing	the	ceiling	and	the	phone’s	top	facing	north.	The	phone’s
yaw,	pitch,	and	roll	are	all	zero.	Then,	creep	underneath	the	table
and	look	up	through	the	glass	at	the	back	of	your	phone.	Position
your	head	so	that	the	tip	of	your	head	faces	east.	Now	the	phone’s
yaw	changes	exactly	as	the	angles	in	the	figure	below.
To	finish	the	experiment,	get	up	and	explain	to	everyone	why	you
were	lying	on	your	back	under	a	table.

	

3.	Drop	an	OrientationSensor	component	onto	the	Designer
viewer.

	 You	can	find	the	OrientationSensor	in	the	Designer	palette’s

Sensors	category.	(What	a	surprise!)	An	OrientationSensor	component
isn’t	visible,	so	you	don’t	see	your	new	sensor	in	the	Designer	viewer’s
screen.

	 4.	Drop	a	Clock	component	onto	the	(very	same)	Designer
viewer.

	 You	can	find	the	Clock	component	in	the	Designer	palette’s	Basic
category.

	

	The	component	name	Clock	is	slightly	misleading.	The
name	suggests	a	display	showing	the	time.	But	an	App	Inventor	Clock
component	isn’t	visible.	A	Clock	component	keeps	track	of	milliseconds
and	sends	events	to	your	device’s	operating	system.	(A	typical	event
notification	is	something	like	this:	“Hey,	operating	system!	One	half	a
second	has	passed	since	the	last	time	I	notified	you.”)

	 5.	Select	your	Clock	component	in	the	Components	tree.
	 6.	In	the	Properties	sheet,	set	the	TimerInterval	property	to	500.
	 The	number	500	stands	for	500	milliseconds,	which	is	half	of	a

second.
	 7.	Open	the	Blocks	Editor.
	 8.	In	the	Blocks	viewer,	align	the	blocks	until	they	look	like	what

you	see	in	Figure	2-7.
	 9.	Attach	your	phone	to	your	computer,	and	let	’er	rip!
	

	For	help	connecting	a	phone	or	tablet	device	to	your
development	computer,	see	Book	I,	Chapter	3.

	 A	typical	run	of	this	section’s	example	looks	like	the	display	in
Figure	2-8.	(Well,	it	stays	that	way	for	half	a	second,	anyway.)

	
	

Figure	2-7:	Every	half	second,	refresh	the	yaw,	pitch,	and	roll	values	on	the
labels.

	

Figure	2-8:	Your	app	displays	the	device’s	orientation.

Animate!
What’s	more	fun	than	making	things	move	on	a	screen?	(Well,	I	can

think	of	a	few	things,	but	this	book	is	about	Android	app	development.)
Anyway,	App	Inventor	has	some	cool	features	for	helping	you	animate
objects.	Follow	these	instructions	for	a	simple	(but	helpful)	example:

1.	Create	a	new	App	Inventor	project.
	 2.	Drop	a	Canvas	component	onto	the	Designer	viewer’s	screen.
	 You	can	find	the	Canvas	component	in	the	Designer	palette’s	Basic

category.
	

	App	Inventor	doesn’t	let	you	drop	an	Animation
component	onto	the	bare	Designer	viewer	screen.	Instead,	you	must	place
a	canvas	on	the	screen	and	then	drop	an	Animation	component	onto	the
canvas.

	 3.	Select	the	canvas	(in	the	Designer	viewer	or	in	the
Components	tree),	and	then,	in	the	Properties	sheet,	set	the	canvas’s
width	to	Fill	Parent.

	 4.	In	the	Designer	palette’s	Animation	category,	find	the
ImageSprite	component.

	 An	ImageSprite	component	is	nice	because	it	can	display	an	image,
and	you	can	quickly	program	the	sprite’s	movements	on	a	canvas.

	

	In	computer	animation,	a	sprite	is	a	small	animated
image	that’s	added	to	a	larger	scene.

	 5.	Drag	two	ImageSprite	components	to	the	canvas	(the	canvas
that	you	created	in	Step	2).

	 Try	to	position	the	two	sprites	so	that	they’re	both	the	same	distance
from	the	top	of	the	canvas.	If	you	have	trouble	getting	this	right,	you	can
adjust	the	sprites’	Y	values	in	the	Properties	sheet.

	 6.	Use	the	Properties	sheet	to	put	a	picture	on	each	of	the
sprites.

	 Each	sprite	has	a	Picture	property.	For	the	two	sprites,	use	two
different	pictures.	That	way,	when	you	crank	up	the	emulator,	you	can
tell	the	two	sprites	apart.

	

	For	help	putting	a	picture	on	a	sprite	(or	on	anything

else,	for	that	matter)	see	Chapter	1	of	this	minibook.
	 Now	you	have	two	side-by-side	sprites.
	 7.	Select	the	leftmost	sprite	(in	the	Designer	viewer	or	in	the

Components	tree);	then,	in	the	Properties	sheet,	set	the	sprite’s
properties	as	follows:

	 •	Enabled:	Checked
	

Animation	is	enabled	for	this	object.	That	is,	the	object	moves.
	

•	Heading:	0
	

The	object	starts	moving	in	direction	0.	To	find	out	what	“direction	0”	is,
see	the	sidebar	“Angles	and	directions”	in	this	chapter.

	
•	Interval:	100

	
The	object	moves	once	every	100	milliseconds.	(In	other	words,	the

object	moves	every	tenth	of	a	second.)
	

•	Speed:	5
	

Each	time	the	object	moves,	it	moves	in	its	heading	direction	by	five
pixels.

	
•	Visible:	Checked

	
The	object	appears	on	the	device’s	screen.

	
You	can	leave	this	sprite’s	other	properties	at	their	default	values.

	

	Any	values	that	you	set	with	the	Properties	sheet	are
the	components’	initial	values.	During	the	run	of	an	app,	the	behavior	that

you	configure	in	the	Blocks	Editor	can	change	these	initial	values.
	 8.	Select	the	rightmost	sprite	(in	the	Designer	viewer	or	in	the

Components	tree);	then,	in	the	Properties	sheet,	set	the	sprite’s
properties	as	follows:

	 •	Enabled:	Checked
	

•	Heading:	180
	

The	object	starts	moving	in	direction	180	(the	opposite	of	the	other
sprite’s	starting	direction).

	
•	Interval:	100

	
•	Speed:	10

	
Each	time	the	object	moves,	it	moves	in	its	heading	direction	by	ten

pixels	—	twice	as	fast	as	the	other	sprite.
	

•	Visible:	Checked
	

•	Y:	Same	as	the	other	sprite’s	Y	value	(see	Step	5)
	

You	can	leave	this	sprite’s	other	properties	at	their	default	values.
	

	Depending	on	your	screen	resolution,	the	sizes	of	your
images,	and	the	phase	of	the	moon,	your	animation	might	look	crummy
when	you	view	the	animation	in	an	emulator.	If	so,	try	adjusting	some	of
the	numbers	in	Steps	7	and	8.

	 9.	That’s	it!	Open	the	Blocks	Editor,	connect	to	an	emulator,
and	watch	your	app	in	action.

	 Figure	2-9	does	the	best	it	can	to	show	you	the	movement	of	sprites
on	an	emulator’s	screen.	The	Calico	starts	on	the	left	and	moves

rightward.	The	Burmese	starts	on	the	right	and	moves	leftward.	The	two
kitty	cats	cross	past	one	another	near	the	middle	of	the	screen.	When	a	cat
reaches	the	screen’s	edge,	it	stops.

	

	To	make	things	move,	you	always	have	a	second	option.
You	can	create	a	clock	with	a	timer	and	change	a	sprite’s	position
whenever	the	timer	fires.	(See	Figure	2-10.)	If	you	try	this	approach,
don’t	forget	to	put	your	sprite	inside	a	Canvas	component.	(Refer	to
Steps	2	and	3.)	Outside	a	Canvas	component,	you	have	no	explicit
control	over	an	object’s	X	position	or	its	Y	position.	For	information
about	clocks	and	timers,	see	the	“Travel	to	the	Orient”	section,
earlier	in	the	chapter.

	

Figure	2-9:	Moving	sprites.

	

Figure	2-10:	Moving	a	sprite	.	.	.	one	click	at	a	time.

Make	sprites	bounce	off	the	edges	of	the	screen
You	can	expand	on	the	preceding	section’s	example	to	make	the

sprites	bounce	off	the	screen’s	edges.	Here’s	how:
1.	If	you	haven’t	already	done	all	the	preceding	stuff	for	this

example	—	in	the	“Animate!”	section	—	do	it.
	

	When	placing	your	sprites,	make	sure	that	neither	one
touches	the	top	or	the	bottom	of	the	enclosing	canvas.

	 As	the	sprites	move	from	side	to	side,	the	sprites	should	bounce	off
the	screen’s	left	and	right	edges.	To	do	all	this,	you	need	an	EdgeReached
event	handler.	Fortunately,	you	make	yourself	an	EdgeReached	event
handler	in	the	next	few	steps.

	 Now	what	happens	if	a	sprite	scrapes	along	the	bottom	of	the	canvas
while	sliding	sideways?	Then	each	of	the	sprite’s	tiny	sideways
movements	fires	an	unwanted	EdgeReached	event.	(The	EdgeReached
handler	fires	when	a	sprite	bumps	against	an	edge.	But	the	handler	also
fires	when	a	sprite	scrapes	against	an	edge,	such	as	the	top	or	the	bottom
of	the	canvas.)	So	the	bottom	line	is,	in	this	example,	don’t	let	either
sprite	touch	the	canvas’s	bottom	line.

	 If	your	images	are	as	tall	as	the	enclosing	canvas,	you	can	do	any	of
the	following:

	 •	Put	a	smaller	image	on	each	sprite.
	

•	Start	with	large	images,	but	shrink	each	image	using	an	image-editing
program	before	putting	the	images	on	the	sprites.

	
•	Enlarge	the	canvas	by	setting	its	Height	property	to	a	certain	number	of

pixels.
	

•	Enlarge	the	canvas	by	setting	its	Height	property	to	Fill	Parent.
	

•	Use	some	other	clever	trick	(an	idea	that	strikes	you	in	a	flash	of

inspiration).
	

2.	In	the	Blocks	palette’s	My	Blocks	tab,	find	(and	select)
ImageSprite1.

	 The	Blocks	palette	expands	to	reveal	several	blocks.	One	of	these
new	blocks	is	the	ImageSprite1.EdgeReached	event	handler.

	 3.	Select	the	ImageSprite1.EdgeReached	event	handler	block.
	 When	you	select	the	EdgeReached	handler	block,	App	Inventor	adds

two	pieces	to	your	Blocks	viewer.	Along	with	the
ImageSprite1.EdgeReached	block,	App	Inventor	adds	a	second	block
displaying	the	words	Name	and	Edge.	(See	Figure	2-11.)	The	second
block	is	a	parameter.	The	parameter	represents	whichever	edge	the	sprite
has	reached.

	

	To	be	precise,	the	Edge	parameter’s	value	is	a	number,
and	the	number	stands	for	one	of	the	edges	of	your	device’s	screen.

	 For	the	scoop	about	parameters,	see	Chapter	1	of	this	minibook.
	 4.	Drag	an	ImageSprite1.Bounce	block	and	(from	the	My

Definitions	category)	a	Value	Edge	block	into	the	Blocks	viewer,	as
shown	in	Figure	2-11.

	 Now	your	Blocks	viewer	contains	an	instruction	you	could
summarize	thusly:

	 When	ImageSprite1	reaches	an	edge	of	the	screen,	whichever	edge
the	sprite	reached	has	a	temporary	name.	That	edge’s	temporary	name	is
Edge.	So	do	the	following:	Have	ImageSprite1	bounce	off	of	Edge.

	 Yesss!
	 5.	Repeat	Steps	2–4	with	ImageSprite2.	(See	Figure	2-12.)
	 When	you	add	a	new	block	to	the	Blocks	viewer,	App	Inventor

automatically	creates	new	(previously	unused)	default	names	for	any
parameters	in	the	block.	So	the	default	name	of	the	ImageSprite2	event
handler	block’s	parameter	is	Edge1.	When	you	tell	the	ImageSprite2
handler	which	edge	to	bounce	away	from,	you	use	the	Value	Edge1	block

from	the	Blocks	palette’s	My	Definitions	category.
	

	App	Inventor’s	parameter	names	are	a	bit	different
from	the	parameters	in	Java	and	other	programming	languages.	You	can’t
use	the	same	parameter	name	in	both	the	ImageSprite1.EdgeReached	and
ImageSprite2.EdgeReached	event	handlers.	So	App	Inventor	makes	up
different	default	names,	Edge	and	Edge1,	for	this	example’s	two	event
hander	parameters.

	
	

Figure	2-11:	Handling	the	event	in	which	a	sprite	reaches	the	screen’s	edge.

	

Figure	2-12:	The	event	handler	for	the	second	sprite.

	You	can	change	a	parameter’s	name.	For	example,
imagine	that	you	want	to	change	a	parameter	from	its	default	name	Edge
to	the	informative	name	WallReached.	To	make	the	change,	click	your
mouse	on	the	word	Edge	in	the	parameter	block	and	type	the	word
WallReached	in	place	of	the	word	Edge.	And	don’t	forget	to	look	for	any
blocks	in	which	you	referred	to	your	old	Edge	parameter.	Change	from
Edge	to	WallReached	on	those	blocks,	too.

	 You’re	done	setting	up	the	bouncing	experiment.
	 6.	In	the	Blocks	Editor,	connect	to	a	device	or	an	emulator,	and

watch	those	sprites	bounce!
	

Make	sprites	bounce	away	from	each	other
If	you	test	the	preceding	section’s	example,	you	see	two	sprites

passing	each	other	like	strangers	in	the	night.	But	in	a	game	app,	you
probably	don’t	want	good	guys	and	bad	guys	passing	each	other	without
some	kind	of	fracas	taking	place.	So	in	this	section,	you	handle	the
collision	of	two	sprites:

1.	If	you	haven’t	already	done	the	stuff	in	the	preceding	section,
do	it.

	 As	a	result,	you	have	two	sprites	moving	from	side	to	side,	bouncing
off	the	screen’s	edges	as	they	travel.

	 2.	To	the	stuff	already	in	the	Blocks	viewer,	add	the	group
shown	in	Figure	2-13.

	

	For	details	about	creating	groups	in	the	Blocks	viewer,
see	Chapter	1	of	this	minibook.

	 The	big	group	of	blocks	in	Figure	2-13	illustrates	a	few	techniques
that	don’t	appear	in	previous	sections:

	 •	You	can	create	a	variable.

	
A	variable	is	a	place	to	store	a	number,	a	string,	or	whatever.	In	App

Inventor	lingo,	a	variable	is	like	a	parameter,	except	that	a	parameter
belongs	to	a	particular	event	handler,	and	a	variable	can	live	on	its
own.

	
In	Figure	2-13,	a	variable’s	definition	hovers	independently	above	the

other	blocks.	I	created	this	variable	by	dragging	a	block	from	the
Built-In	tab’s	Definition	category.	To	give	the	variable	an	initial
value,	I	fetched	a	number	block	from	the	Built-In	tab’s	Math	category.
Each	variable	has	a	name,	and	App	Inventor	automatically	creates	the
default	names	Variable,	Variable1,	Variable2,	and	so	on.	In	Figure	2-
13,	I	don’t	mess	with	the	default	name,	which	is	Variable.

	
	

Figure	2-13:	When	Sprites	Collide.

•	You	can	test	a	condition	and	execute	code	if	that	condition	is	true.
	

In	Figure	2-13,	I	use	an	If	block	from	the	Control	category	of	the	Built-In
tab.	The	If	block	has	two	parts	—	a	condition-testing	part	and	a	what-
to-do-when-the-condition-is-true	part.

	
•	You	can	use	a	block	to	refer	to	an	entire	component.

	
In	Figure	2-13,	the	top	of	the	If	block	tests	to	determine	whether	the

Other	thing	that	ImageSprite1	collided	with	is	ImageSprite2.	You	can
fetch	the	ImageSprite2	block	from	the	ImageSprite2	category	in	the
My	Blocks	tab.	(The	block	that	you	want	has	the	label	Component
ImageSprite2.)

	
The	condition	in	Figure	2-13	also	contains	a	block	with	a	little	equal	sign

on	it.	You	grab	this	block	from	the	Logic	category	in	the	Built-In	tab.
	

•	You	can	set	a	variable’s	value	and	get	a	variable’s	value.
	

In	Figure	2-13,	I	use	my	variable	to	temporarily	store	information	about
ImageSprite1	while	I	swap	the	values	of	ImageSprite1’s	and
ImageSprite2’s	motion	properties.	When	the	dust	settles,
ImageSprite1	has	what	used	to	be	ImageSprite2’s	heading	and	speed,
and	ImageSprite2	has	what	used	to	be	ImageSprite1’s	heading	and
speed.

	
The	justification	for	swapping	the	sprites’	heading	and	speed	values	is	the

Conservation	of	Linear	Momentum	law	for	two	objects	of	equal	mass.
Several	years	ago,	I	taught	introductory	college	physics	for	a	year.
(Was	I	qualified	to	teach	introductory	college	physics?	Well,	it’s	a
long	story.)

	
After	creating	the	blocks	shown	in	Figure	2-13,	you’re	ready	to	test

your	app.
	

	Only	one	of	your	app’s	sprites	has	a	group	of	blocks
like	the	group	shown	in	Figure	2-13.	If	you	have	an
ImageSprite1.CollidedWith	event	handler,	you	don’t	have	an
ImageSprite2.CollidedWith	handler.	If	you	mistakenly	add	a	similar
ImageSprite2.CollidedWith	handler	to	your	app,	whenever	the	two	sprites
collide,	your	device	calls	both	handlers,	and	the	swapping	of	motion
properties	happens	twice	during	one	collision.	That’s	not	what	you	want
to	happen.

	 3.	Test	your	app.
	 The	sprites	should	move	back	and	forth,	bouncing	off	the	edges	of

the	screen	and	bouncing	off	each	other	when	they	meet	near	the	middle	of
the	screen.

	
Using	a	Database

Up	to	this	point,	my	App	Inventor	examples	tend	to	be	visual.	You
send	a	photo,	animate	an	object,	or	something	like	that.	Well,	this
section’s	example	is	different.	This	section	covers	the	austere	world	of
databases.

App	Inventor’s	collection	of	components	includes	an	elementary
database.	This	section	shows	you	how	to	use	that	database:

1.	Create	a	new	App	Inventor	project.
	 2.	Add	two	TextBox	components	to	the	project’s	Designer

viewer.
	 3.	(Optional)	In	the	Properties	sheets	for	each	TextBox

component,	delete	all	characters	from	the	Text	fields;	while	you’re
being	finicky,	arrange	the	TextBox	components	nicely	across	the
screen.

	 4.	Add	a	ListPicker	component	to	the	Designer	viewer.
	 You	can	find	the	ListPicker	component	in	the	Designer	palette’s

Basic	category.
	

	At	the	end	of	this	section,	when	you	see	the	finished
app,	you	may	argue	that	ListPicker	isn’t	the	best	component	for	the	work
that	this	app	does.	Maybe	a	check	box	would	be	more	user-friendly.	But
(darn	it)	I	want	to	illustrate	the	use	of	the	ListPicker	somewhere	in	this
chapter.

	 5.	Select	ListPicker1	in	the	Designer	viewer	or	the	Components
tree.

	 As	a	result,	the	Properties	sheet	has	a	field	labeled
ElementsFromString.

	 6.	Go	to	the	newly	created	ElementsFromString	field	on	the
Properties	sheet,	and	type	store,	retrieve.

	 It	should	come	as	no	surprise	that	ListPicker1	has	something	to	do
with	a	list	of	things.	The	text	store,	retrieve	tells	App	Inventor	that
ListPicker1’s	list	contains	two	items	—	the	first	being	store	and	the
second	being	retrieve.

	 7.	(Optional)	Change	the	text	on	the	face	of	ListPicker1.
	 This	step	is	optional,	but	seriously,	the	default	text	(Text	for

ListPicker1)	is	too	ugly.	Surely	you	can	do	better.	In	Figure	2-14,	I	put
store	or	retrieve	on	the	picker’s	face.

	 The	ListPicker	component	in	Figure	2-14	looks	like	a	button.	This	is
surprising	because	on	a	big,	fat	desktop	computer	screen,	a	“picker”
wouldn’t	look	like	a	button.	Instead,	a	picker	would	be	a	thingie	that
expands	to	display	lots	of	alternatives.	(Imagine	a	drop-down	list
displaying	the	months	of	the	year	or	the	countries	of	the	world.)

	 But	on	a	mobile	device’s	small	screen,	the	best	way	to	display
alternatives	is	to	overlay	a	separate	panel.	So	when	a	user	presses	this
example’s	ListPicker	component,	the	device’s	entire	screen	changes	to
display	the	choices	in	Figure	2-15.

	
	

Figure	2-14:	The	arrangement	of	visible	components	in	this	section’s	app.

	

Figure	2-15:	A	list	of	alternatives	appears	on	the	device’s	screen.

	In	official	Android	terminology,	the	separate	panel
pictured	in	Figure	2-15	is	a	separate	activity.	My	claim	that	this	new
activity	takes	over	the	entire	screen	may	be	outdated	by	the	time	you	read
this	book.	App	Inventor	will	probably	be	able	to	create	apps	for	larger
tablet	screens.	In	that	case,	the	ListPicker’s	alternatives	will	appear	in	a
fragment	alongside	the	app’s	text	boxes.	For	a	word	or	two	about
activities,	see	the	“Starting	Another	Android	App”	section,	later	in	this
chapter.	For	more	chatter	about	fragments,	see	Chapter	4	of	minibook	IV.

	 8.	Drop	a	TinyDB	component	onto	the	Designer	viewer.
	 You	can	find	a	TinyDB	component	in	the	Basic	category	of	the

Designer	palette.
	 You	don’t	see	TinyDB1	on	the	Designer	viewer’s	screen,	but

TinyDB1	is	now	part	of	your	app.
	

	The	name	TinyDB	stands	for	Tiny	Database.	The	name
is	a	bit	misleading	because	a	TinyDB	component	has	very	few	of	the
characteristics	belonging	to	a	real	database.	In	fact,	a	TinyDB

component’s	only	similarity	to	a	real	database	is	this:	Both	a	database	and
a	TinyDB	component	control	persistent	storage,	which	is	the	saving	(and
retrieving)	of	values	from	one	run	of	an	app	to	the	next.	Without	a
TinyDB	component,	none	of	the	data	that	you	create	during	one	run	is
available	to	any	subsequent	runs.

	 9.	Open	the	Blocks	Editor.
	 10.	In	the	Blocks	viewer,	create	the	group	of	blocks	shown	in

Figure	2-16.
	

	For	details	about	creating	groups	in	the	Blocks	viewer,
see	Chapter	1	of	this	minibook.

	
	

Figure	2-16:	Blocks	for	simple	control	of	an	App	Inventor	database.

The	group	comes	about	when	you	do	the	kind	of	clicking,	dragging,
and	dropping	described	previously	in	this	chapter.	But	the	group	in	Figure
2-16	involves	a	few	new	tricks.

	 •	The	outermost	block	in	Figure	2-16	is	an	event	handler.
	

When	the	user	clicks	ListPicker1,	Android	displays	a	list	containing	the

choices	store	and	retrieve.	Then,	when	the	user	clicks	an	item	in	the
list,	Android	calls	the	ListPicker1.AfterPicking	event	handler.

	
•	The	choice	made	by	the	user	(in	this	example,	either	store	or	retrieve)

becomes	the	value	of	ListPicker1.Selection.
	

In	Figure	2-16,	I	compare	ListPicker1.Selection	with	the	word	store.
(That	is,	I	test	whether	the	value	of	ListPicker1.Selection	is	the	word
store.)	Unless	something	goes	horribly	wrong,	the	only	other
alternative	for	the	value	of	ListPicker1.Selection	is	the	word	retrieve.

	
•	The	TinyDB1	component	has	items.

	
Each	item	has	two	parts	—	a	Tag	and	a	Value.	Think	of	TinyDB1	as	a

table	with	two	columns.	(See	Table	2-1.)
	

The	first	item’s	tag	in	the	table	is	Barry;	the	first	item’s	value	is	10.	The
second	item’s	tag	is	Harriet;	the	second	item’s	value	is	14.	And	so	on.

	

	If	you’re	familiar	with	real	databases,	you	might	understand
how	tiny	App	Inventor’s	TinyDB	component	really	is.	A	TinyDB
component	has	only	one	table,	and	that	table	has	only	two	columns.	If
you	put	two	TinyDB	components	into	an	app,	both	components	work
with	the	same	table.	(So	there’s	no	reason	to	put	more	than	one
TinyDB	component	into	an	app	after	all.)	Apps	don’t	share	their
TinyDB	tables	with	other	apps.	But	fortunately,	TinyDB	data	is

persistent.	That	is,	the	items	stored	in	the	table	during	one	run	can	be
retrieved	by	the	same	app	during	a	later	run.

	
•	The	Control	category	of	the	Built-In	tab	contains	an	Ifelse	block.

	
This	book’s	editors	tell	me	that	the	word	Ifelse	is	ugly.	But	being	a

computer	geek,	I	like	the	word	Ifelse.	Anyway,	the	Ifelse	block	in
Figure	2-16	says,	“If	the	user	selected	store	in	ListPicker1,	do	one
sequence	of	actions;	otherwise,	do	another	action.”	More	specifically,
that	Ifelse	block	says	the	following:

	
If	the	user	selected	store,	then

				store	the	text	boxes’	values	as	a	new	item

								in	the	database,(with	TextBox1’s	text	being

								the	item’s	tag,	and	TextBox2’s	text	being

								the	item’s	value),	and	then

				clear	both	text	boxes	(by	putting	no	characters

								in	each	box).

Otherwise	(else)

				search	TinyDB1	for	an	item	whose	tag	matches

								whatever	is	currently	in	TextBox1,	and

								if	you	find	such	an	item,	then

								put	that	item’s	value	into	TextBox2.

	The	user	might	try	to	search	for	Fred	even	though	TinyDB1
has	no	item	tagged	Fred.	If	TinyDB1	doesn’t	have	an	item	whose	tag
matches	whatever	is	in	TextBox1,	the	call	to	TinyDB1.GetValue
yields	nothing.	So	in	that	case,	Android	clears	away	any	characters	in
TextBox2.	That’s	good,	but	for	an	app	with	a	bit	more	finesse,	you
can	perform	a	test	like	the	one	shown	in	Figure	2-17.	In	that	test,	you
look	for	an	item	whose	tag	matches	whatever	is	in	TextBox1.	If	you
find	nothing,	put	(Not	Found)	in	TextBox2.

	
11.	Run	this	section’s	app.

	 Figures	2-18	to	2-20	illustrate	steps	in	a	run	of	this	section’s	app.	To
save	some	trees,	these	figures	don’t	show	steps	like	the	one	in	Figure	2-

15	(steps	in	which	the	user	chooses	between	store	and	retrieve).
	

	

Figure	2-17:	Failing	to	find,	but	failing	with	a	flourish.

	

	

Figure	2-18:	Store	Barry’s	info	and	Harriet’s	info.

	

Figure	2-19:	Retrieve	Harriet’s	info.

	

Figure	2-20:	Look	for	Rhonda’s	info	but	find	nothing.

Starting	Another	Android	App
One	of	the	nice	features	of	Android	development	is	the	ability	to

reuse	code	from	existing	applications.	For	example,	if	you	want	your	app
to	view	a	web	page,	you	don’t	have	to	create	your	own	web	browser.	All
you	do	is	make	a	request	to	another	app’s	activity.

Activities	and	intents
An	activity	is	one	“screenful”	of	components.	Think	of	an	activity	as

a	form	—	perhaps	a	form	for	entering	information	to	make	a	purchase	on
a	website.	Unlike	most	online	forms,	Android	activities	don’t	necessarily
have	text	boxes	—	places	for	the	user	to	type	credit	card	numbers	and
such.	But	Android	activities	have	a	lot	in	common	with	online	forms.
When	you	put	together	an	app’s	components	in	the	Designer	viewer,
you’re	creating	an	Android	activity.

Each	activity	has	its	own	look	—	the	initial	layout	of	the	form’s
components.	After	an	activity	first	appears	on	the	device	screen,	the
layout	of	the	activity’s	components	might	change	because	of	certain
users’	actions	or	because	of	the	data	being	displayed,	the	animation	being
used,	or	for	other	reasons.

An	Android	app	can	have	several	of	its	own	activities	—	several
different	screens	to	display	on	the	device’s	screen.	In	addition,	an
Android	app	can	request	the	start	of	some	other	app’s	activities.	For
example,	my	game	application	can	make	a	request	to	a	web	app	—
namely,	that	the	web	app	run	a	page	browser	activity.

To	start	another	app’s	activity,	you	typically	don’t	use	the	app’s
name	or	the	activity’s	name.	For	example,	the	official	name	of	Android’s
built-in	web	browser	is	android.webkit.webView.	But	to	display	a	web
page,	your	app	doesn’t	say,	“Start	running	android.webkit.webView.”

Instead,	your	app	creates	an	intent.
An	intent	is	an	ability	—	the	ability	to	display	information,	for

example,	or	the	ability	to	edit	documents,	or	the	ability	to	answer	phone
calls.	To	display	a	web	page,	your	app	says,	“Start	an	activity	that	has	the
android.intent.action.VIEW	ability.”	Android’s	built-in
android.intent.action.VIEW	is	the	ability	to	display	information,	such
as	web	pages	and	possibly	other	things.

Android’s	use	of	intents	is	a	very	good	thing.	Without	intents,	your
app	would	have	to	include	an	instruction	that	says,	“Start	running	the
built-in	web	browser	—	you	know,	the	browser	named
android.webkit.webView.”	But	that	instruction	wouldn’t	be	fair	to
org.mozilla.firefox	—	another	web	browser	that	you’ve	installed	on	your
device.	So	instead	of	naming	a	particular	web	browser,	your	app	says,
“Start	running	an	activity	whose	abilities	include	displaying	information
(more	formally	known	as	the	android.intent.action.VIEW	ability).	I
leave	it	to	the	Android	operating	system	to	choose	among	the	able
activities.”

For	example,	assume	that	the	user	has	installed	Firefox	in	addition
to	Android’s	built-in	web	browser.	When	an	app	issues	a	request	to	start
an	android.intent.action.VIEW	activity,	the	device	looks	for	apps	and
activities	that	can	display	information	—	activities	with	the
android.intent.action.VIEW	ability.	If	the	user	has	already	set	Firefox
to	be	the	default	web	viewing	activity,	the	device	starts	the	Firefox	web
browser.	But	if	the	user	hasn’t	specified	a	default	web	browser,	Android
displays	a	list	asking	which	web	browser	the	user	wants	to	open.	That’s
how	intents	work.

Starting	an	activity	with	App	Inventor
This	section’s	example	fires	up	a	web	browser	with	a	predetermined

URL.	In	the	example,	you	don’t	refer	directly	to	a	particular	browser.
Instead,	you	refer	indirectly	to	a	browser	by	requesting	an	activity	that
can	fulfill	an	android.intent.action.VIEW	intent.	Here’s	how	it	works:

1.	Create	a	new	App	Inventor	project.
	 2.	Add	two	Button	components	to	the	project’s	Designer	viewer.
	 3.	(Optional)	Using	the	component’s	Properties	sheet,	put	some

informative	text	on	the	face	of	each	button.

	 In	Figure	2-21,	I	put	Barry’s	Android	Page	and	Barry’s	Java	Page	(a
shameless	plug).

	 4.	Add	an	ActivityStarter	component	to	the	Designer	viewer.
	 You	can	find	the	ActivityStarter	component	in	the	Other	Stuff

category	of	the	Designer	palette.
	 The	new	component,	ActivityStarter1,	is	invisible.	So	you	don’t	see

ActivityStarter1	on	the	Designer	viewer’s	screen.
	 5.	Select	ActivityStarter1	in	the	Components	tree.
	 As	a	result,	the	Properties	sheet	has	an	Action	field.
	 6.	Go	to	the	newly	created	Action	field	on	the	Properties	sheet,

and	type	android.intent.action.VIEW.
	 The	text	android.intent.action.VIEW	describes	an	intent	—	the

ability	to	display	information.	For	the	gory	details,	see	the	preceding
section.

	 7.	Open	the	Blocks	Editor.
	 8.	In	the	Blocks	viewer,	create	the	stuff	shown	in	Figure	2-22.
	

	

Figure	2-21:	The	look	of	the	Designer	viewer	for	this	section’s	example.

	

Figure	2-22:	The	Blocks	viewer	for	this	section’s	example.

	For	details	about	creating	groups	in	the	Blocks	viewer,
see	Chapter	1	of	this	minibook.

	 Yes,	you	can	use	URLs	of	your	own	choosing.	But	to	keep	this
example	simple,	use	URLs	that	begin	with	http://.

	 The	ActivityStarter1	component	has	several	properties.	In	Step	6,
you	set	the	component’s	Action	property.	And	in	Figure	2-22,	you	make
the	component’s	request	more	specific	by	assigning	a	URL	to
ActivityStarter1.	Which	URL	you	assign	depends	on	which	button	the
user	clicks.

	

	In	Figure	2-22,	notice	the	letters	Uri	in	the	property
name	DataUri.	The	letters	URI	(usually	all	capitalized)	stand	for
Universal	Resource	Identifier.	A	URI	is	like	a	URL,	except	that	a	URI	is
more	versatile.	For	a	painfully	correct	description	of	URIs,	visit
www.w3.org/Addressing/URL/uri-spec.html.

	 9.	Run	the	app.
	 When	the	app	starts	running,	you	see	the	buttons	in	Figure	2-23.

Then,	when	you	click	a	button,	you	see	one	of	two	web	pages	(such	as	the

http://www.w3.org/Addressing/URL/uri-spec.html

pages	in	Figure	2-24).
	

	

Figure	2-23:	Pick	a	page.

	

Figure	2-24:	A	web	page	for	each	button.

Chapter	3:	How	to	“Rough	It”	without
Eclipse

In	This	Chapter
Using	the	command	window
Thinking	like	an	ant
Gearing	up	for	text-based	development

Developing	with	Ant	and	operating	system	commands
	

It’s	time	to	celebrate!	You’re	near	the	end	of	Android	Application
Development	All-in-One	For	Dummies.	Sure,	you	may	have	skipped
directly	to	this	chapter,	but	that	doesn’t	matter.	This	chapter	contains	no
spoilers.	This	isn’t	where	you	learn	that	the	butler	murdered	the	heiress
and	that	Larry	Page	is	innocent.

Anyway,	you’ll	be	an	expert	Android	developer	in	no	time	at	all,	so
please	rejoice	in	your	future	success	by	throwing	a	big	party.

To	prepare	for	the	party,	I’ll	bake	a	cake.	I’m	lazy,	so	I’ll	use	a
ready-to-bake	cake	mix.	Let	me	see	.	.	.	add	water	to	the	mix,	and	then
add	butter	and	eggs	.	.	.	Hey,	wait	a	minute!	I	just	looked	at	the	list	of
ingredients.	What’s	MSG?	And	what	about	propylene	glycol?	That’s	used
in	antifreeze,	isn’t	it?

I’ll	change	plans	and	make	the	cake	from	scratch.	Sure,	it’s	a	little
harder.	But	that	way,	I	get	exactly	what	I	want.

Application	development	works	the	same	way.	You	can	use	ready-
made	tools,	or	you	can	get	more	control	by	doing	things	from	scratch.
Eclipse	reduces	many	routine	tasks	to	simple	pointing	and	clicking.	I
highly	recommend	Eclipse	for	almost	all	your	day-to-day	Android
development.	But	once	in	a	while,	Eclipse	hides	details	that	you’d	rather
see	clearly.	When	that	situation	arises,	you’re	better	off	using	your
operating	system’s	command	window.

Preliminaries
Our	story	begins	with	an	operating	system.	The	system	might	be

Windows,	Macintosh	OS	X,	Linux,	or	some	other	system.	You	use	this
operating	system	to	develop	Android	applications.

The	operating	system	provides	facilities	for	getting	work	done.
Among	these	facilities	are
•	The	ability	to	log	onto	the	computer

	
•	The	ability	to	store	data	and	code

	
•	The	ability	to	launch	programs	(that	is,	to	execute	code)

	
Along	with	these	vague	“abilities,”	the	operating	system	provides

one	or	more	interfaces.	In	this	context,	an	interface	is	a	way	of
communicating	with	the	computer	—	a	way	of	saying,	“Computer,	run
my	e-mail	program	right	now	(or	run	the	program	whenever	you	stop
displaying	your	annoying	‘busy’	icon).”

One	of	the	oldest	and	most	basic	interfaces	is	a	command	language.
A	command	language	is	a	set	of	instructions	that	you	type	on	your
computer	keyboard,	along	with	rules	for	varying	and	combining	those
instructions.	Each	operating	system	has	several	command	languages:
•	Windows	has	its	Command	Prompt	(called	MS-DOS	by	those	who	blur
the	difference	between	the	command	language	and	the	old	text-based
operating	system).	Windows	also	has	fancier	languages	named	Windows
Script	Host,	PowerShell,	and	some	others.

	
•	Linux	and	Mac	OS	X	have	the	Bourne	shell	(abbreviated	sh),	the
Bourne-again	shell	(abbreviated	bash),	the	Korn	shell	(ksh),	the	C	shell
(csh),	and	other	command	languages	with	amusing	names.

	
In	this	book,	most	of	my	examples	use	the	Windows	Command

Prompt	or	Linux/Macintosh	bash.

Your	friend,	the	command	window
Normally	you	don’t	simply	turn	on	your	computer	and	start	typing

commands.	Instead,	your	computer	starts	a	nice-looking	windowing
environment	(its	graphical	user	interface,	also	known	as	its	GUI),	and
you	start	pointing	and	clicking	with	your	mouse.	Before	the	computer
will	respond	to	commands,	you	must	launch	a	command	window,	an
application	whose	purpose	is	to	accept	your	commands.

Here’s	how	you	launch	your	operating	system’s	command	window:
•	In	Windows,	choose	Start⇒All	Programs⇒Accessories⇒Command
Prompt.

	
•	In	a	Mac	OS	X	Finder	window,	choose
Applications⇒Utilities⇒Terminal.

	
•	In	Linux,	do	whatever	works	for	your	distribution	and	your	windowing
environment.	You	poke	around	among	the	desktop’s	menus	for
something	named	Terminal.

	
After	launching	a	command	window,	you’re	ready	to	start	typing

commands.	Figures	3-1	and	3-2	display	command	windows	on	Windows
and	Macintosh	computers.

	

Figure	3-1:	The	command	window	on	a	computer	running	Microsoft	Windows.

	

Figure	3-2:	The	command	window	on	a	Mac.

	When	you	use	Eclipse	to	create	an	application,	Eclipse
quietly	translates	your	mouse	clicks	into	commands	and	executes	the
commands	on	your	behalf.	For	example,	in	Eclipse,	choose
File⇒New⇒Project⇒Android	Project	and	then	fill	in	the	fields	of
the	New	Android	Project	dialog	box.	When	you	click	Finish,	Eclipse
effectively	executes	a	command	of	the	following	kind:

android	create	project	-t	10	-p	MyProject

																							-a	MyActivity	-k	com.allmycode.samples

Under	the	hood,	Android	application	development	is	a	bunch	of
commands.

Scripting
In	show	biz,	a	script	is	a	bunch	of	utterances	prepared	in	advance	for

actors	to	say.	In	computing,	a	script	is	a	sequence	of	commands,	prepared
in	advance	for	the	computer	to	execute.

Each	operating	system	provides	ways	for	you	to	collect	commands
into	a	file	and	then	to	execute	the	commands	in	that	file.	Typically,	you
open	a	plain	text	editor,	type	the	commands,	save	the	file,	and	then	type
the	file’s	name	in	a	command	window.
•	In	Windows,	you	can	use	Notepad	and	save	the	file	with	the	.bat
extension.

	
•	On	a	Mac,	you	can	use	TextEdit	and	choose	Format⇒Make	Plain	Text.

	
•	In	Linux,	you	can	use	gedit	or	KEDIT	and	save	the	file	with	the	.sh
extension.

	
The	trouble	with	this	scenario	is	portability.	A	script	written	for	a

Mac	has	little	chance	of	working	correctly	in	Linux,	and	a	script	written
for	Windows	has	almost	no	chance	of	working	on	a	Mac.

Meet	Apache	Ant
To	solve	the	preceding	section’s	portability	problem,	folks	at	The

Apache	Software	Foundation	came	up	with	the	Ant	project.	Ant	is	a	tool
for	saving	and	re-running	sequences	of	commands.	Ant	simplifies	what
would	otherwise	be	an	enormous	job	of	typing	one	command	after
another	in	order	to	create,	code,	and	deploy	an	Android	application.

The	creators	of	Android	have	written	Ant	scripts	to	streamline	the
work	of	creating	applications.	And	best	of	all,	Ant	isn’t	specific	to	one
operating	system	or	another.	You	can	use	Ant	scripts	on	Windows,	Mac,
and	Linux	without	making	any	significant	changes.

	Like	Eclipse,	Apache	Ant	hides	details	from	the	developer.
With	Android’s	pre-cooked	Ant	scripts,	you	don’t	have	to	type	all
the	commands	you’d	normally	type	in	the	command	window.	The
people	who	create	Android	have	written	portable	commands	and
embedded	them	in	Ant	scripts.	But	Ant	hides	fewer	details	than
Eclipse,	so	you’re	still	roughing	it	a	bit	when	you	use	Ant.	And
besides,	you	can	have	it	both	ways.	You	can	use	Ant	to	perform
some	tasks	and	use	your	operating	system’s	command	language	to
perform	others.

An	Ant’s-eye	view
At	its	heart,	Ant	is	just	another	computer	program.	In	fact,	Ant	is	a

Java	program.	When	you	run	the	Ant	program,	Ant	interprets	whatever
instructions	are	coded	in	whatever	Ant	script	you	specify.	For	example,	in
an	Ant	script,	the	element
<mkdir	dir=”${out.classes.absolute.dir}”	/>

tells	Ant	to	make	a	new	directory	regardless	of	the	underlying
operating	system.	In	the	element’s	dir	attribute,	the	placeholder
${out.classes.absolute.dir}	stands	for	a	directory	name.	The	exact

characters	in	the	name	are	determined	on	the	fly	during	a	run	of	the	Ant
script.	Because	Ant	scripts	have	placeholders	(and	other	features),	an	Ant
script	is	flexible	and	highly	programmable.

	For	some	background	information	about	XML	documents,
see	Book	II,	Chapter	5.
Listing	3-1	contains	a	small	Ant	script.	If	you	don’t	specify

otherwise,	the	Ant	program	looks	for	its	script	in	a	build.xml	file.

Listing	3-1:	An	Ant	Script	(A	build.xml	File)
<?xml	version=”1.0”	encoding=”UTF-8”?>

<project>

		<target	name=”compile”>

				<mkdir	dir=”classes”	/>

				<javac	srcdir=”src”	destdir=”classes”	/>

		</target>

		

		<target	name=”run”	depends=”compile”>

				<java	classpath=”classes”	classname=”Hello”	/>

		</target>

		

		<target	name=”clean”>

				<delete	dir=”classes”	/>

		</target>

</project>

As	an	Android	developer,	you	seldom	(if	ever)	write	Ant	scripts.
But	it	helps	to	be	able	to	decipher	the	highlights	of	other	developers’
scripts.

A	basic	Ant	script	has	a	project	element,	target	elements	within	the
project	element,	and	task	elements	within	the	target	elements:
•	The	project	element	is	the	Ant	script’s	root	element.

	
•	Within	the	project	element,	each	target	element	describes	a	starting
point	for	execution.

	
In	Listing	3-1,	the	compile	target	creates	a	classes	directory	to	contain
bytecode	files,	compiles	source	code	files,	and	puts	the	resulting	bytecode

files	in	the	newly	created	classes	directories.	The	run	target	executes	the
compiled	bytecode	files.	The	clean	target	deletes	the	bytecode	files	and
their	directories	in	preparation	for	another	compilation.

	
•	Within	a	target,	each	task	element	describes	a	step	to	be	performed.

	
Within	the	compile	target	in	Listing	3-1,	one	task	creates	a	classes
directory	and	another	task	invokes	javac	(the	Java	compiler).

	
You	launch	Ant	by	starting	the	Ant	Java	program	and	adding	the

name	of	a	target.	For	example,	to	execute	the	task	inside	the	compile
target	in	Listing	3-1,	you	type	something	like
ant	compile

in	your	operating	system’s	command	window.	For	more	detailed
instructions,	see	the	section	“Android	Development	with	Ant,”	later	in
this	chapter.

One	other	tidbit	in	Listing	3-1	is	worth	a	moment	of	your	attention.
An	Ant	target’s	execution	can	depend	on	the	execution	of	other	targets.	In
Listing	3-1,	the	run	target’s	depends	attribute	indicates	that	running	is
futile	without	previously	having	compiled.	So	if	you	invoke	Ant	with	a
command	like
ant	run

Ant	executes	the	compile	target	and	then	executes	the	run	target.	(If
no	source	files	need	compiling,	the	compile	target	simply	tips	its	virtual
hat	and	bids	you	good	day.)

Installing	Apache	Ant
To	download	and	install	Ant,	do	the	following:
1.	Visit	http://ant.apache.org,	and	find	the	Binary

Distributions	download	page.
	 2.	Pick	one	of	the	links	on	the	Binary	Distributions	download

page.
	 The	.zip	archive	link	should	work	for	most	systems,	but	if	you’re	a

die-hard	Linux	user,	you	may	want	the	.tar.gz	archive	or	the	.tar.bz2
archive	instead.

	

http://ant.apache.org/

	Android’s	Ant	scripts	require	Apache	Ant	version	1.8.0
or	later.	If	you	find	Ant	1.7,	or	some	earlier	version,	ignore	that	version
and	visit	http://ant.apache.org	for	the	latest	and	greatest	Ant.

	 When	your	computer	has	finished	downloading	the	archive,	move
on	to	Step	3.

	 3.	Do	whatever	you	normally	do	to	extract	archive’s	contents.
	 Generally,	I	create	an	ant	folder	and	extract	the	archive’s	contents

to	that	ant	folder.	Of	course,	you	may	not	name	your	new	folder	ant,	or
your	ant	folder	may	be	a	subdirectory	of	your	Applications	folder.	In
this	chapter,	I	use	the	name	ANT_HOME	for	whatever	folder	contains	your
Ant	stuff	(the	files	that	you	extract	from	the	archive).

	 One	way	or	another,	your	ANT_HOME	directory	should	have	a	bin
subdirectory.	Inside	the	bin	directory,	you	can	find	files	for	different
operating	systems.	For	example,	a	file	named	ant.bat	can	tell	a
Windows	computer	to	run	Ant.	Another	file,	named	ant	(without	the
.bat	part)	can	tell	a	Mac	to	run	Ant.	One	way	or	another,	you	fall	back
on	a	command	that’s	specific	to	your	operating	system	in	order	to	launch
Ant.

The	rest	of	this	chapter	describes	the	Android	development	cycle
without	Eclipse.

Getting	Ready	for	Text-Based	Development
Everything	has	to	start	somewhere.	In	this	section,	you	start

developing	an	Android	app.	You	use	operating	system	commands	and
Ant	instead	of	fancier	Eclipse	tools.

The	entire	process,	from	start	to	finish,	isn’t	very	complicated.	But
the	picky	details	(which	operating	system	you	have,	where	your	Android
SDK	files	are	stored,	how	your	computer	is	pre-configured,	and	so	on)
can	drive	you	crazy.	So	before	you	take	arms	against	a	sea	of	semicolons,
slashes,	tildes,	and	other	symbols,	you	should	see	the	big	picture.	With
that	in	mind,	I	present	this	overview	of	Android	development	using
command	line	tools:

http://ant.apache.org/

1.	Create	an	Android	project.
	 Do	this	by	typing	a	command.	The	command	starts	with	android

create	project.	In	this	context,	android	is	the	name	of	a	program,	and
create	project	is	one	of	the	android	program’s	options.

	 2.	Edit	the	project’s	code.
	 With	your	favorite	plain	text	editor	(Notepad,	TextEdit,	or

whatever),	hunt	and	peck	until	you’ve	created	the	perfect	Java	code	and
the	ideal	XML	documents.

	 3.	Run	a	program	that	creates	an	Ant	script.
	 Again,	type	a	command	to	invoke	the	android	program.	But	this

time,	add	the	update	project	option.
	 4.	Run	the	Ant	script.
	 Type	ant	along	with	an	option	or	two.	The	Ant	script	compiles	and

packages	your	code,	and	installs	your	code	on	an	emulator	or	an	attached
device.

	 With	this	outline	in	mind,	I	invite	you	to	delve	a	bit	more	deeply.
The	rest	of	this	chapter	is	details,	details,	details.

Preparing	your	system
Several	of	my	wife’s	relatives	are	named	Chris.	So	with	identical

first	names	and	family	names,	it’s	difficult	to	talk	about	Chris’s	work	or
Chris’s	favorite	dessert.	Instead,	I	have	to	identify	people	by	location.	I
say	“Chris	from	California”	or	“Chris	from	Boston.”	If	I	mistakenly	say
“Chris	from	Bavaria,”	I’m	in	a	bit	of	trouble	because	my	wife	has	no
relatives	in	Bavaria.

The	same	thing	happens	when	you	type	android	in	your
development	computer’s	command	window.	Your	computer	may	have
several	files	named	android,	each	in	a	different	directory.	And	many
directories	have	nothing	to	do	with	Android	and	have	no	android	file.	So
typing	android	in	a	command	window	might	be	like	yelling	for	Chris	in
the	streets	of	Bavaria.

To	help	sort	all	this	out,	your	operating	system	keeps	track	of	a
PATH.

Your	PATH	is	a	list	of	directories	containing	programs	that	you
execute	frequently.	When	you	type	a	program’s	name	on	a	line	in	a

command	window,	your	operating	system	looks	for	files	with	that	name
in	each	of	the	PATH	list’s	directories.	With	your	PATH	set	correctly,	you
can	launch	a	program	by	typing	the	program’s	name.	You	don’t	have	to
type	the	(possibly	long)	name	of	whatever	directory	houses	the	program.

In	my	household,	our	unspoken	PATH	includes	California.	So
instead	of	saying	“Chris	in	California,”	I	can	simply	say	“Chris.”	To	refer
to	a	different	relative	I	have	to	say	“Chris	in	Boston”	or	“Chris	in
Schenectady.”

In	this	section’s	steps,	adjust	your	PATH:
1.	Launch	a	command	window.

	 For	details,	see	the	section	“Your	friend,	the	command	window,”
earlier	in	this	chapter.

	 2.	In	the	command	window,	type	cd	/	and	then	press	Enter
(that’s	the	letters	cd,	followed	by	a	space,	a	slash,	and	Enter).

	

	This	command	brings	you	to	your	computer’s	root
directory.	The	root	directory	is	a	neutral	place	from	which	you	can	safely
follow	the	instructions	in	Step	3.

	 3.	Discover	which	software	tools	are	in	your	development
computer’s	PATH.

	 For	this	chapter’s	examples,	your	PATH	should	contain	Java	tools,
Android	tools,	and	Ant	tools.

	 •	To	find	out	whether	your	PATH	includes	Java	development	tools,	type
javac	-version	in	a	command	window.

	
If	the	computer	responds	with	something	like

	
javac	1.7.0
your	PATH	includes	Java	development	tools.	If,	instead,	your	computer

responds	with	something	like
	

‘javac’	is	not	recognized	as	a	command

or	with	something	like
	

javac:	command	not	found
your	PATH	doesn’t	include	Java	development	tools.	Either	way,	make

note	of	the	result.
	

•	To	find	out	whether	your	PATH	includes	Android	development	tools,
type	android	in	a	command	window.

	
If	your	computer	responds	by	opening	an	Android	SDK	and	AVD

Manager	window,	your	PATH	includes	the	Android	development
tools.	You	can	close	the	Android	SDK	and	AVD	Manager	window
and	move	on	with	your	tests.

	
If	your	computer	responds	with	a	no	such	command	message,	your	PATH

doesn’t	include	the	Android	development	tools.
	

•	To	find	out	whether	your	PATH	includes	Ant	tools,	type	ant	-version	in
a	command	window.

	
If	your	computer	responds	with	something	like

	
Apache	Ant(TM)	version	1.8.2
your	PATH	includes	Ant	tools.	If,	instead,	your	computer	responds	with	a

no	such	command	message,	your	PATH	doesn’t	include	Ant	tools.
	

4.	Find	the	home	directories	for	any	software	tools	that	aren’t	in
your	PATH.

	 For	each	software	tool	that	gives	you	a	no	such	command	message
in	Step	3,	search	your	hard	drive	for	the	directory	containing	the	tool.

	 •	Your	JAVA_HOME	directory	has	a	name	such	as	jdk1.7.0	(or	with	some
variation	on	that	name).

	
Your	JAVA_HOME	directory	contains	a	subdirectory	named	bin,	and	the

bin	subdirectory	contains	a	javac.exe	file,	or	simply	javac.	(This

javac	file	is	the	Java	compiler.	For	more	info,	see	Chapter	2	of
minibook	II.)

	
When	you	find	a	directory	that	qualifies	as	a	JAVA_HOME	directory,	make

note	of	that	directory’s	name.	For	example,	on	my	Windows
computer,	that	directory’s	full	name	is	C:\Program	Files
(x86)\java\jdk1.6.0_25.

	

	In	a	few	cases,	your	hard	drive	might	have	two	or	more
directories	containing	Java	tools.	This	business	seldom	causes	trouble.
If	you	find	more	than	one	JDK	directory	on	your	hard	drive,	simply
choose	one	of	the	directories	to	be	your	JAVA_HOME	directory.	The
same	holds	for	directories	containing	Android	tools,	and	for
directories	containing	Ant	tools.

	
•	Your	ANDROID_HOME	directory	has	android	in	its	name.

	
This	home	directory	has	subdirectories:	tools	and	platform-tools.	The

tools	and	platform-tools	folders	contain	programs	to	help	you
develop	Android	apps.	For	details,	see	Book	I,	Chapter	2.

	
•	You	create	the	ANT_HOME	directory	in	this	chapter’s	“Installing	Apache

Ant”	section.
	

The	ANT_HOME	directory	contains	a	bin	subdirectory.	The	bin
subdirectory	has	several	files:	ant,	antRun,	and	so	on.	Each	of	these
files	plays	a	role	(on	one	operating	system	or	another)	in	launching
Apache	Ant.

	
5.	For	any	software	tools	that	aren’t	in	your	PATH,	add

subdirectories	of	the	corresponding	home	directories	to	your	PATH.
	 When	you	type	javac,	you	want	your	computer	to	execute	the	javac

program	in	the	bin	subdirectory	of	your	JAVA_HOME	directory.	In	other
words,	you	want	the	JAVA_HOME	directory’s	bin	subdirectory	in	your
PATH.	The	ANDROID_HOME	directory	has	two	subdirectories	containing
programs	—	the	tools	directory	and	the	platform-tools	directory.	So
you	want	both	of	those	subdirectories	in	your	PATH.

	 Your	work	for	this	step	depends	on	your	development	computer’s
operating	system.

	 •	Windows
	

On	my	Windows	computer,	my	JAVA_HOME	directory	is	C:\Program
Files	(x86)\java\jdk1.6.0_25,	my	ANDROID_HOME	directory	is
C:\Program	Files	(x86)\Android\android-sdk,	and	my	ANT_HOME
directory	is	C:\ant.	So	to	add	software	directories	to	my	PATH,	I
type	the	commands	in	Listing	3-2.

	

Listing	3-2:	Modifying	Your	PATH	on	a
Windows	Computer
set	JAVA_HOME=C:\Program	Files	(x86)\java\jdk1.6.0_25

set	ANDROID_HOME=^

C:\Program	Files	(x86)\Android\android-sdk

set	ANT_HOME=C:\ant

set	PATH=%PATH%;%JAVA_HOME%\bin;%ANDROID_HOME%\tools;^

%ANDROID_HOME%\platform-tools;%ANT_HOME%\bin

Listing	3-2	contains	four	commands.	Each	command	begins	with	set.
But	Listing	3-2	has	six	lines	because	two	of	the	commands	in	the
listing	are	very	long.	Neither	of	these	long	commands	fits	between	the
book’s	margins.

	
With	each	long	command,	I	type	part	of	the	command	on	one	line;	then	I

end	that	line	with	the	Windows	line-continuation	character	(^);	then	I
continue	the	command	on	the	next	line.	When	you	type	your
commands,	you	can	break	a	command	into	two	or	more	lines	with	the
^	character.	Alternatively,	you	can	type	each	long	command	as	if
you’re	typing	past	the	edge	of	the	window.	A	long	command	wraps
automatically	onto	the	next	line	whenever	you	reach	the	edge	of	the

window.
	

	After	typing	the	stuff	in	Listing	3-2,	you	can	check	your
work	by	typing	echo	%PATH%	and	then	pressing	Enter.	When	you
do,	you	see	a	long	list	of	directories	ending	with	the	names	or	your
JAVA_HOME,	ANDROID_HOME,	and	ANT_HOME	directories.	A	semicolon
separates	each	directory	in	the	list	from	the	next	directory	in	the	list.

	

	When	you	type	the	stuff	from	Listing	3-2	in	a	particular
command	window,	the	set	commands	have	no	effect	on	the	PATH	in
any	other	command	windows.	For	example,	imagine	that	you	have
two	command	windows	open	—	Window	1	and	Window	2.	Type	the
commands	in	Listing	3-2	in	Window	1.	Then	the	PATH	in	Window	1
includes	your	JAVA_HOME,	ANDROID_HOME,	and	ANT_HOME	directories,
but	the	PATH	in	Window	2	might	not	include	those	directories.	After
doing	all	that,	open	a	third	window	—	Window	3.	This	third
window’s	PATH	might	not	include	the	HOME	directories.	The	moral	of
this	story	is,	if	you	switch	to	a	different	command	window,	type	the
stuff	in	Listing	3-2	in	the	new	command	window.

	
•	Macintosh

	
The	stuff	in	Step	3	tells	me	that	my	Mac’s	PATH	already	includes	Java

tools	and	Ant	tools.	And	in	Step	4,	I	find	that	my	Mac’s
ANDROID_HOME	directory	is	/Applications/android-sdk.	So	to	add
software	directories	to	my	PATH,	I	type	the	commands	in	Listing	3-3.

	

Listing	3-3:	Modifying	Your	PATH	on	a

Macintosh
export	ANDROID_HOME=/Applications/android-sdk/

export	PATH=${PATH}:\

${ANDROID_HOME}/tools:${ANDROID_HOME}/platform-tools

Listing	3-3	contains	two	commands.	Each	command	begins	with	export.
But	Listing	3-3	has	three	lines	because	one	of	the	commands	in	the
listing	is	very	long.	Neither	of	these	long	commands	fits	between	the
book’s	margins.

	
With	each	long	command,	I	type	part	of	the	command	on	one	line;	then	I

end	that	line	with	the	Unix	line-continuation	character	(\);	then	I
continue	the	command	on	the	next	line.	When	you	type	your
commands,	you	can	break	a	command	into	two	or	more	lines	with	the
\	character.	Alternatively,	you	can	type	each	long	command	as	if
you’re	typing	past	the	edge	of	the	window.	A	long	command	wraps
automatically	onto	the	next	line	whenever	you	reach	the	edge	of	the
window.

	

	After	typing	the	stuff	in	Listing	3-3,	you	can	check	your
work	by	typing	echo	${PATH}	and	then	pressing	Enter.	When	you
do,	you	see	a	long	list	of	directories	ending	with	the	names	of	any
directories	that	you	add	in	your	version	of	Listing	3-3.	A	colon
separates	each	directory	in	the	list	from	the	next	directory	in	the	list.

	

	When	you	type	the	stuff	from	Listing	3-3	in	a
particular	command	window,	the	set	commands	have	no	effect	on	the
PATH	in	any	other	command	windows.

	
Creating	a	project

With	your	PATH	set	correctly,	you	can	proceed	to	create	a	new
Android	project:

1.	Set	your	PATH.
	 For	more	detailed	instructions	than	you	ever	wanted,	see	the

preceding	section.	Use	the	same	command	window	as	you	march	through
the	rest	of	this	section’s	steps.

	 2.	Create	a	directory	to	store	this	chapter’s	Android	projects,
and	change	your	directory	to	be	that	new	directory.

	 On	a	Windows	computer,	I	type	the	following	two	commands:
	 md	%HOMEPATH%\MyAndroidProjects

cd	%HOMEPATH%\MyAndroidProjects
On	a	Mac,	I	type	these	two	commands:

	 mkdir	~/MyAndroidProjects

cd	~/MyAndroidProjects
The	notion	of	changing	your	directory	isn’t	difficult	to	understand,

but	that	same	notion	is	difficult	to	describe	rigorously.	When	you	use	a
command	window,	you’re	always	positioned	in	one	directory	or	another.
For	example,	when	you	first	open	a	command	window,	you	may	be
positioned	at	C:\Users\yourname	or	Usersyourname.	You	can	change	the
place	where	you’re	positioned	by	typing	the	cd	command,	along	with	the
name	of	the	directory	where	you	want	to	land.

	 At	any	point	in	time,	the	directory	in	which	you’re	positioned	is
your	working	directory.	In	this	step,	you	make	a	new	directory	(with	the
md	or	mkdir	command).	Then,	with	the	cd	command,	you	change
directories	(so	that	the	newly	created	directory	is	your	working	directory).

	

	On	a	typical	computer,	each	user	has	her	own	directory
(a	place	to	store	settings,	documents,	data,	and	other	stuff).	On	a
Windows	computer,	%HOMEPATH%	stands	for	your	user	directory.
(Normally,	%HOMEPATH%	stands	for	C:\Documents	and	Settings\your-
user-name	or	C:\Users\	your-user-name.)	On	a	Mac,	the	tilde	symbol
(~)	stands	for	your	user	directory.	(Normally,	~	stands	for	Usersyour-
user-name.)

	

	As	you	jump	from	one	directory	to	another	(using	the
cd	command),	you	can	check	to	make	sure	that	you’ve	landed	where	you
want	to	land.	On	a	Windows	computer,	the	two-letter	cd	command	(with
nothing	after	the	letters	cd)	tells	the	computer	to	display	your	working
directory’s	name.	On	a	Mac,	the	corresponding	command	is	pwd.

	 3.	At	last,	create	an	Android	project!
	 If	you	run	Windows,	type	the	command	in	Listing	3-4.	If	you	use	a

Mac,	type	the	same	command	with	backslashes	(\)	instead	of	hooks	(^)	at
the	ends	of	the	first	four	lines.

	
Listing	3-4:	Creating	an	Android	Project,

Windows	Style
android	create	project	--target	“android-8”	^

																							--name	MyProject	^

																							--path	MyProject	^

																							--activity	MyActivity	^

																							--package	com.allmycode.samples

	In	Listing	3-4,	the	hook	(^)	is	the	Windows	line-
continuation	character.	Similarly,	the	backslash	(\)	is	the	Macintosh	line-
continuation	character.	To	read	more	about	line-continuation	characters
(and	why	my	fanatical	book	authoring	habits	compel	me	to	use	them),	see
the	section	“Preparing	your	system,”	earlier	in	this	chapter.

	 The	android	tool	(which	comes	with	your	download	of	Android’s
SDK)	has	many	uses.	One	use	of	this	tool	is	to	create	a	brand-new
Android	project.	In	Listing	3-4,	you	follow	the	tool	name	android	with
the	action	name	create	project.	(No	mystery	about	the	action	name!)

	 Following	create	project,	you	have	some	options.
	 •	In	the	--target	option,	“android-8”	represents	Froyo,	also	known	as

Android	2.2.

	
To	see	a	list	of	acceptable	target	names,	type	android	list	targets	in	the

command	window.	Then	replace	“android-8”	with	whatever	target
name	works	for	you.

	

	When	I	type	android	list	targets,	the	computer	displays
a	list	that	includes	lines	like	id:	7	or	“android-8”.	Accordingly,	I
can	use	the	number	7	in	place	of	“android-8”	in	each	of	my
commands.	But	be	careful.	The	string	“android-8”	refers	to	Froyo	on
all	computers.	But	the	number	7	means	“the	seventh	target	installed
on	this	computer.”	On	another	development	computer,	the	seventh
installed	target	might	not	be	Froyo.

	
•	In	the	--name	option,	I	use	the	boring,	old	MyProject	name.

	
As	with	each	of	these	options,	try	not	to	duplicate	the	hum-drum	stuff	that

I	do	in	Listing	3-4.	Instead,	use	a	project	name	that	meets	your	needs.
	

•	The	--path	option	gives	the	computer	a	name	for	a	new	directory	(the
directory	that	contains	your	new	Android	project).

	
I’m	lazy,	so	I	reuse	the	name	MyProject.	The	new	MyProject	directory

becomes	a	subdirectory	of	your	working	directory.	(In	Step	2,	I	named
my	working	directory	MyAndroidProjects.)

	
•	The	--activity	option	tells	your	computer	to	create	a	bare-bones

Android	activity.
	

Again,	in	Listing	3-4,	laziness	compels	me	to	create	MyActivity.java.
And	no,	I	never	choose	the	word	password	for	any	of	my	passwords.

	
•	The	--package	option	supplies	a	package	name	for	the	project’s	Java

code.
	

I’m	selfish	about	sharing	my	package	name.	So	please	use	your	own
package	name.

	
Having	created	an	Android	project,	you’re	almost	ready	to	package

your	application.	But	of	course,	you’re	not	completely	ready.	Here	are	a
few	more	steps:

	 4.	Edit	your	project’s	Java	code	and	your	project’s	XML	files.
	 No	big	deal,	right?	Yes,	this	step	is	a	big	deal,	but	this	chapter	isn’t

about	writing	Java	code	and	tweaking	XML	files.
	 If	you’re	avoiding	Eclipse,	I	recommend	the	TextPad	editor	on	a

Windows	computer.	(For	a	look	at	the	TextPad	editor,	visit
http://textpad.com.)	On	a	Mac,	I	recommend	TextEdit,	but	before
saving	a	JAVA	file	or	an	XML	file	for	the	first	time,	choose
Format⇒Make	Plain	Text.

	 5.	In	the	command	window,	type	the	following	command:
	 android	update	project	--path	MyProject

The	android	tool’s	update	project	action	customizes	your
project’s	build.xml	file	(your	project’s	Ant	script).

	

	Your	computer	interprets	the	--path	name	MyProject
as	being	relative	to	your	working	directory.	The	command	in	this	step
works	only	if	your	working	directory	is	the	same	as	the	working	directory
in	Step	3.

	 6.	Start	an	emulator.
	 It’s	never	too	soon	to	start	an	Android	emulator.	(You	never	know

how	long	the	emulator	will	take	to	start	itself	up.)
	 To	launch	an	emulator,	you	have	several	alternatives:
	 •	You	can	run	the	android	script.
	

Typing	android	with	no	other	words	on	the	command	line	causes

http://textpad.com/

Android	to	launch	its	SDK	and	AVD	Manager.	(See	Book	I,	Chapter
2.)	From	the	SDK	and	AVD	Manager,	you	can	start	the	emulator	of
your	choice.

	
•	You	can	run	the	emulator	program.

	
For	example,	imagine	that	you’ve	already	created	an	AVD	named

Froyo1.	You	can	type	emulator	-avd	Froyo1	to	start	an	emulator
based	on	your	Froyo1	AVD.

	
•	You	can	run	Eclipse	and	start	an	emulator	the	way	you	normally	do

with	an	Eclipse	project.
	

One	way	or	another,	get	an	emulator	running.
	
Android	Development	with	Ant

Having	done	the	stuff	in	this	chapter’s	“Creating	a	project”	section,
you’re	ready	to	compile	and	test	your	Android	app.	You	can	do	all	the
heavy	lifting	in	one	step.	But	for	finer	control,	you	may	prefer	a	multi-
step	approach:

1.	Follow	the	preceding	section’s	instructions	.	.	.
	 .	.	.	which	means	also	following	the	instructions	from	two	sections

back,	which	in	turn	means	following	instructions	from	the	beginning	of
time,	and	so	on.

	 2.	In	the	command	window,	go	to	the	directory	containing	your
Android	project.

	 Here’s	a	quick	recap:	In	the	preceding	section,	I	go	to	my	own	user
directory,	%HOMEPATH%	in	Windows,	and	called	~	(the	tilde	symbol)	on	a
Mac.	From	there	I	travel	to	a	subdirectory	which	I	call
MyAndroidProjects.	Then,	in	Listing	3-4,	I	create	a	MyProject	directory
(a	subdirectory	of	MyAndroidProjects).	In	this	MyProject	directory,	I
whip	up	all	the	ingredients	of	an	Android	project	(the	src	files,	the	res
files,	and	all	that	other	good	stuff).

	 So	if	you	do	exactly	as	I	do	in	the	preceding	section,	you	have	an

Android	project	in	a	MyProject	directory.	You	want	your	working
directory	to	be	that	MyProject	directory.

	 On	a	Windows	computer,	type	the	following	command:
	 cd	%HOMEPATH%\MyAndroidProjects\MyProject

On	a	Mac,	type	this	command:
	 cd	~/MyAndroidProjects/MyProject

3.	(Optional)	Run	an	Ant	script	by	typing
	 ant	compile

In	Step	5	of	the	preceding	section,	you	create	an	Ant	script	for	your
project.	As	luck	would	have	it,	that	Ant	script	contains	a	compile	target.
When	you	invoke	Ant	with	that	compile	target,	your	computer	generates
your	project’s	R.java	file	and	compiles	all	the	Java	source	files
associated	with	your	project.

	 This	ant	compile	step	is	optional.	If	you	skip	this	step,	the	run	of
Ant	in	Step	4	will	invoke	the	compile	target	on	your	behalf.

	 4.	(Optional)	Run	an	Ant	script	by	typing
	 ant	debug

The	Ant	script	from	Step	5	of	the	preceding	section	contains	a	debug
target.	When	you	invoke	Ant	with	that	debug	target,	your	computer
performs	all	the	tasks	in	the	script’s	compile	target	and	packages	your
project	into	an	APK	file.

	 This	ant	debug	step	is	optional.	If	you	skip	this	step,	the	run	of	Ant
in	Step	5	will	invoke	the	compile	and	debug	targets	on	your	behalf.

	 5.	Run	an	Ant	script	by	typing
	 ant	install

The	Ant	script	from	Step	5	of	the	preceding	section	contains	an
install	target.	When	you	invoke	Ant	with	that	install	target,	your
computer	performs	all	the	tasks	in	the	script’s	compile	and	debug	targets
and	loads	the	APK	file	onto	an	emulator	(or	to	an	Android	device
connected	to	your	development	computer).

	 6.	Test	your	app.
	 In	some	cases,	your	app	starts	immediately	on	the	emulator	or	the

device.	In	other	cases,	you	have	to	click	the	app’s	icon	to	make	the	app
run.	One	way	or	another,	pat	yourself	on	the	back.	You’ve	created	an
Android	app	without	help	from	Eclipse	or	from	any	other	IDE.

	

	You	can	examine	Ant’s	action	in	detail.	For	example,	to	find
out	what	Ant	does	when	it	runs	the	compile	target,	type	ant	-
verbose	-logfile	myLog.txt	compile.	Then	view	the	myLog.txt	file.

	To	read	about	Ant-based	Android	development	straight
from	the	horse’s	mouth,	visit
http://developer.android.com/guide/developing/building/index.html#detailed-

build.

Android	Development	with	Operating	System
Commands

Many	years	ago	I	took	a	car	repair	course.	I	wanted	to	save	money
on	maintenance,	but	I	didn’t	have	a	natural	talent	for	mechanical	matters.
During	one	class	session,	I	got	stuck	under	a	car	while	I	was	testing	the
transmission	fluid	level.	The	teacher	threatened	to	push	the	car	out	to	the
parking	lot	(with	me	underneath	the	car)	if	I	wasn’t	out	from	under	the
vehicle	by	the	end	of	the	day’s	class.

Anyway,	I	wasn’t	good	at	repairing	things,	so	I	gave	up	pretty
quickly.	But	a	year	later,	I	was	cruising	along	I-94	on	my	way	to	the
Milwaukee	airport.	I	had	just	enough	time	to	catch	my	flight.	But
between	the	35th	Street	and	26th	Street	exits,	my	car	turned	itself	off.	As
I	coasted	to	the	highway’s	shoulder,	I	wondered	if	I	could	catch	a	later
flight.

When	my	panic	eased	off	a	bit,	I	got	out	of	the	car	and	lifted	the
hood.	My	eyes	gravitated	immediately	toward	a	wire	that	was
disconnected	from	its	thingamabob.	A	few	other	parts	were	dangling	in
suspicious	ways,	but	from	my	experience	in	the	car	repair	course,	I	knew
that	this	particular	wire	had	to	be	reconnected	to	its	thingamabob.	I
connected	the	wire,	started	up	my	car,	and	got	to	the	airport	in	time	to
catch	my	flight.

http://developer.android.com/guide/developing/building/index.html#detailed-build

So	that’s	my	story.	Understanding	the	inner	workings	of	things	may
seem	esoteric	at	first.	But	in	the	long	run,	very	little	knowledge	goes	to
waste.	You’re	always	better	off	knowing	more	than	you	absolutely	need
to	know.

The	story	about	car	repair	gives	me	an	excuse	for	writing	this
section.	Hardly	anyone	develops	Android	apps	without	Eclipse	and
without	Ant	scripts.	But	seeing	the	underlying	process	(which	part	of	the
application	comes	from	which	step	on	the	development	computer)	helps
you	understand	how	Android	apps	tick.

So	in	this	section,	I	present	a	batch	of	Windows	commands	(that	is,
a	Windows	BAT	file)	to	create,	compile,	and	install	an	Android	app.	I’ve
made	a	reasonable	effort	to	make	the	batch	file	portable	so	that	the	file
runs	correctly	on	any	up-to-date	Windows	computer.	But	I	make	no
promises.	If	the	commands	in	Listing	3-5	don’t	work	on	your	computer,
don’t	beat	your	head	against	the	wall	trying	to	make	the	commands	work.
Connect	the	car’s	wire	back	onto	the	thingamabob,	but	don’t	get	stuck
checking	transmission	fluid	under	the	car.

So	much	for	the	apologies	.	.	.	Listing	3-5	contains	the	commands.

Listing	3-5:	Creating	an	Android	App	with
Your	Bare	Hands
set	JAVA_HOME=C:\Program	Files	(x86)\java\jdk1.6.0_25

	

set	JRE_HOME=C:\Program	Files	(x86)\java\jre6

	

set	ANDROID_HOME=^

C:\Program	Files	(x86)\Android\android-sdk

	

set	ANT_HOME=C:\ant

	

set	PATH=%PATH%;%JAVA_HOME%\bin;%ANDROID_HOME%\tools;^

%ANDROID_HOME%\platform-tools;%ANT_HOME%\bin

	

rem	Uncomment	the	next	command	if	you

rem	want	to	start	an	emulator

rem

rem	start	“Starting	the	emulator...”	emulator	^

rem	-scale	0.75	-avd	Froyo1

	

cd	“%HOMEPATH%\MyAndroidProjects”

	

call	android	create	project	^

		--target	“android-8”	^

		--name	MyNextProject	^

		--path	MyNextProject	^

		--activity	MyActivity	^

		--package	com.allmycode.samples

	

set	MY_PROJECTS=%HOMEPATH%\MyAndroidProjects

	

set	THISPROJ=%MY_PROJECTS%\MyNextProject

	

cd	“%THISPROJ%”

	

mkdir	gen

	

mkdir	bin\classes

	

aapt	package	-f	-m	-M	AndroidManifest.xml	-S	res	^

		-I	“%ANDROID_HOME%\platforms\android-8\android.jar”	^

		-J	gen

	

set	CLASSPATH=”%THISPROJ%\bin\classes”;^

“%THISPROJ%”;^

C:\ant\lib\ant-launcher.jar;^

C:\ant\lib\ant-antlr.jar;^

C:\ant\lib\ant-apache-bcel.jar;^

C:\ant\lib\ant-apache-bsf.jar;^

C:\ant\lib\ant-apache-log4j.jar;^

C:\ant\lib\ant-apache-oro.jar;^

C:\ant\lib\ant-apache-regexp.jar;^

C:\ant\lib\ant-apache-resolver.jar;^

C:\ant\lib\ant-apache-xalan2.jar;^

C:\ant\lib\ant-commons-logging.jar;^

C:\ant\lib\ant-commons-net.jar;^

C:\ant\lib\ant-jai.jar;^

C:\ant\lib\ant-javamail.jar;^

C:\ant\lib\ant-jdepend.jar;^

C:\ant\lib\ant-jmf.jar;^

C:\ant\lib\ant-jsch.jar;^

C:\ant\lib\ant-junit.jar;^

C:\ant\lib\ant-junit4.jar;^

C:\ant\lib\ant-netrexx.jar;^

C:\ant\lib\ant-swing.jar;^

C:\ant\lib\ant-testutil.jar;^

C:\ant\lib\ant.jar;^

“%JAVA_HOME%\lib\tools.jar”

	

set	CLASSPATH=%CLASSPATH%;”%JRE_HOME%\lib\ext\QTJava.zip”

	

set	SOURCEPATH=”%THISPROJ%\src”;”%THISPROJ%\gen”

	

set	BOOTCLASSPATH=^

“%ANDROID_HOME%\platforms\android-8\android.jar”

	

javac	-d	“%THISPROJ%\bin\classes”	^

		-classpath	%CLASSPATH%	^

		-sourcepath	%SOURCEPATH%	^

		-target	1.5	^

		-bootclasspath	%BOOTCLASSPATH%	^

		-encoding	UTF-8	^

		-g	^

		-source	1.5	^

		“%THISPROJ%\src\com\allmycode\samples*.java”

	

call	dx	--dex	--output=%THISPROJ%\bin\classes.dex	^

		%THISPROJ%\bin\classes

	

aapt	package	-f	--debug-mode	^

		-M	“%THISPROJ%\AndroidManifest.xml”	^

		-S	“%THISPROJ%\res”	^

		-I	“%ANDROID_HOME%\platforms\android-8\android.jar”	^

		-F	“%THISPROJ%\bin\MyActivity-debug-unaligned.ap_”

	

call	apkbuilder	^

		%THISPROJ%\bin\MyActivity-debug-unaligned.apk	^

		-v	^

		-u	^

		-z	“%THISPROJ%\bin\MyActivity-debug-unaligned.ap_”	^

		-f	“%THISPROJ%\bin\classes.dex”

	

keytool	-genkey	-v	^

		-keystore	“%MY_PROJECTS%\my-keystore.keystore”	^

		-alias	my-alias	-keyalg	RSA	-validity	10000

	

“%JAVA_HOME%\bin\jarsigner“	-verbose	^

		-certs	^

		-keystore	„%MY_PROJECTS%\my-keystore.keystore“	^

		„%THISPROJ%\bin\MyActivity-debug-unaligned.apk“	my-alias

	

„%JAVA_HOME%\bin\jarsigner“	-verify	^

		-keystore	„%MY_PROJECTS%\my-keystore.keystore“	^

		„%THISPROJ%\bin\MyActivity-debug-unaligned.apk“

	

zipalign	-f	4	^

		“%THISPROJ%\bin\MyActivity-debug-unaligned.apk”	^

		“%THISPROJ%\bin\MyActivity-debug.apk”

	

rem	Uncomment	the	next	command	if	you	get	an

rem	INSTALL_PARSE_FAILED_INCONSISTENT_CERTIFICATES	error

rem

rem	adb	uninstall	com.allmycode.samples

	

adb	install	-r	“%THISPROJ%\bin\MyActivity-debug.apk”

	Google’s	official	documentation	is	vague	on	the	subject	of
command-line	Android	development,	and	unofficial	web	postings
aren’t	much	better.	To	figure	out	how	to	create	Listing	3-5,	I	ran
Android’s	Ant	scripts	with	verbose	output	and	logged	the	output	to
a	text	file.	The	output	of	ant	-verbose	-logfile	myLog.txt
install	displays	a	detailed	list	of	the	commands	that	Ant	executes,
along	with	the	options	used	in	each	command.
Here’s	what	happens	in	Listing	3-5:
1.	The	first	several	commands	set	some	variables.

	 Commands	that	come	later	in	Listing	3-5	refer	back	to	these
variables.

	 2.	In	Windows,	rem	denotes	a	comment.
	 The	computer	doesn’t	execute	commented	text.	If	you	remove	some

rems	near	the	beginning	of	Listing	3-5,	the	computer	executes	the
command	to	launch	an	Android	emulator.

	 3.	The	command	android	create	project	builds	the	skeletal
outline	of	an	Android	project.

	 Using	android-8	(also	known	as	Froyo),	the	android	program
creates	a	MyNextProject	directory.	In	that	directory,	android	creates	a
project	and	a	MyActivity.java	file.	In	addition,	the	program	creates
main.xml,	strings.xml,	AndroidManifest.xml,	and	other	good	stuff.

	 4.	In	Listing	3-5,	the	first	invocation	of	the	aapt	program	generates
R.java.

	 aapt	stands	for	Android	Asset	Packaging	Tool.
	 5.	The	javac	command	compiles	your	project’s	Java	source	files.
	 After	executing	javac,	you	have	several	newly	created	Java

bytecode	(.class)	files.
	 6.	The	dx	command	goes	one	step	further	in	translating	your	code.
	 The	dx	command	turns	your	.class	files	(and	other	project	stuff)

into	a	.dex	file	—	a	Dalvik	executable	file.
	

	For	the	scoop	about	Dalvik	executables,	see	Book	II,
Chapter	2.

	 7.	In	Listing	3-5,	the	second	invocation	of	the	aapt	program
packages	your	project’s	resources	into	a	single	file.

	 The	single	file’s	name	is	something-or-other.ap_.	The	underscore
in	the	ap_	extension	reminds	you	that	this	file	isn’t	ready	for	prime	time.
This	.ap_	file	contains	the	stuff	in	your	project’s	res	folder	but	not	the
executable	.dex	files.

	 8.	The	apkbuilder	creates	a	real	live	Android	app	package	(an	APK
file).

	 In	Listing	3-5,	apkbuilder	creates	a	file	named	MyActivity-debug-
unaligned.apk.	The	file	MyActivity-debug-unaligned.apk	is	an
Android	app	package	—	an	APK	file	with	executables	and	all.	But	you
can’t	run	this	APK	file	on	a	phone	or	an	emulator.	Your	package	still
needs	some	tweaking.

	 9.	The	keytool	program	with	the	-genkey	option	creates	a
cryptographic	signature;	the	jarsigner	program	adds	the	cryptographic
signature	to	your	Android	project	file.

	 In	order	to	run	(on	a	device	or	an	emulator),	an	Android	project	file
must	be	signed.	You	must	add	proof	that	the	file	comes	from	you	and	not
from	a	malicious	hacker.	But	a	project	file	isn’t	like	a	contract	or	a	work
of	art.	You	can’t	autograph	a	project	file	with	a	felt-tip	pen.

	 Instead,	you	“sign”	a	file	by	adding	your	own	sequence	of	bits	—	a
sequence	that	belongs	only	to	you.	One	algorithm	that	helps	to	create
such	bit	sequences	is	RSA	encryption.	(That’s	Rivest,	Shamir,	and
Adleman	encryption,	if	you	want	to	know.)

	 Before	you	sign	a	file,	you	need	a	key	—	a	big	number	that	you
apply	to	the	bits	in	your	file.	For	example,	imagine	encrypting	a	secret
message	by	changing	As	to	Cs,	changing	Bs	to	Ds,	changing	Cs	to	Es,	and
so	on.	The	word	Android	becomes	Cpftqkf.	Then	the	“big”	number	that
you	apply	to	your	file’s	letters	is	2.	If,	instead	of	applying	2,	you	applied
the	number	3,	you	would	change	As	to	Ds,	Bs	to	Es,	and	so	on.

	 Anyway,	the	run	of	keytool	in	Listing	3-5	creates	a	key	with	617
digits.	Then	a	run	of	jarsigner	applies	the	key	to	your	Android	app	file.

	 When	keytool	runs,	your	computer	prompts	you	for	some
identifying	information.	Each	piece	of	information	is	part	of	the	X.500
Distinguished	Name	standard.	For	example,	here’s	a	snippet	from	a	run	of
keytool	on	my	development	computer:

	 Enter	keystore	password:	(I	make	up	a	password.)

Re-enter	new	password:	(I	repeat	the	password.)

What	is	your	first	and	last	name?

		[Unknown]:		Barry	Burd

What	is	the	name	of	your	organizational	unit?

		[Unknown]:		Global	Headquarters

What	is	the	name	of	your	organization?

		[Unknown]:		Burd	Brain	Consulting

What	is	the	name	of	your	City	or	Locality?

		[Unknown]:		Madison

What	is	the	name	of	your	State	or	Province?

		[Unknown]:		NJ

What	is	the	two-letter	country	code	for	this	unit?

		[Unknown]:		US

Is	CN=Barry	Burd,	OU=Global	Headquarters,

O=Burd	Brain	Consulting,	L=Madison,	ST=NJ,

C=US	correct?

		[no]:		yes
10.	The	zipalign	program	aligns	bytes	in	Android	app	file	(see	the

nearby	sidebar).
	 You	always	align	after	you	sign.	Aligning	can’t	mess	up	a	previous

signing.	But	if	you	do	it	in	reverse	order,	signing	can	mess	up	a	previous
aligning.

	 11.	A	run	of	adb	with	the	install	option	copies	your	Android
application	onto	an	emulator	or	a	connected	device.

	 If	adb	has	a	choice	of	running	emulators	or	connected	devices,	you
can	specify	a	particular	emulator	or	device.	For	example,	to	install	onto
emulator-5556	instead	of	emulator-5554,	add	the	-s	emulator-5556
option	to	the	adb	command.

	
Byte	off	more	than	you	can	view

	The	Android	operating	system	(along	with	all	other	Unix-like
systems)	has	a	mmap	program.	The	letters	mm	in	mmap	stand	for

memory-mapped	input	and	output.	The	mmap	program	grabs	data
from	a	file	and	makes	the	data	available	to	applications.	The	mmap
program	is	a	real	workhorse,	providing	quick	and	efficient	data
access	for	many	apps	at	once.
The	nimbleness	of	mmap	doesn’t	come	entirely	for	free.	For	mmap	to
do	its	work,	certain	values	must	be	stored	so	they	start	at	four-byte
boundaries.	To	understand	four-byte	boundaries,	think	about	a
chunk	of	data	in	your	application’s	APK	file.	A	byte	is	eight	bits
of	data	(each	bit	being	a	0	or	a	1).	So	four	bytes	is	32	bits.	Now
imagine	two	values	(Value	A	and	Value	B)	stored	one	after	the
other	in	your	APK	file.	(See	the	figure	here.)	Value	A	consumes
three	bytes,	and	Value	B	consumes	four	bytes.
Without	four-byte	alignment,	the	computer	might	store	the	first
byte	of	Value	B	immediately	after	the	last	byte	of	Value	A.	If	so,
Value	B	starts	on	the	last	byte	of	a	four-byte	group.	But	mmap
works	only	when	each	value	starts	at	the	beginning	of	a	four-byte
group.	So	Android’s	zipalign	program	moves	data	as	shown	in
the	lower	half	of	the	figure	below.	Instead	of	using	every	available
byte,	zipalign	wastes	a	byte	in	order	to	make	Value	B	easy	to
locate.

	

Chapter	4:	Going	Native

In	This	Chapter
Connecting	C	code	to	Java	code

Creating	an	Android	app	with	native	code
	

Sometimes,	you	have	to	get	your	hands	dirty.	You	have	to	pop	the
hood	and	figure	out	why	smoke	comes	out	of	your	car.	You	have	to	bake
a	cake	for	that	special	friend	who’s	allergic	to	the	ingredients	in	store-
bought	cakes.	Or,	in	order	to	build	the	perfect	mobile	app,	you	must
bypass	Android’s	comfortable	Java	coating	and	dig	deep	to	find	your	true
inner	geek.	You	must	create	part	of	an	app	in	the	primitive,	nuts-and-
bolts,	down-and-dirty	language	called	C.

Book	II,	Chapter	2	explains	how	Java	puts	a	virtual	machine
between	your	processor’s	hardware	and	a	running	application.	Java
programs	don’t	turn	directly	into	sets	of	instructions	that	your	processor
can	then	run.	Instead,	your	processor	runs	a	set	of	instructions,	or	a	virtual
machine.	(Your	Android	device	runs	the	Dalvik	Virtual	Machine;	your
laptop	computer	runs	the	Java	Virtual	Machine.)	The	virtual	machine
interprets	a	Java	program’s	instructions	and	carries	out	these	instructions
on	your	processor’s	behalf.

Anyway,	this	added	layer	of	software	(between	the	Java	instructions
and	your	processor’s	circuits)	has	both	benefits	and	drawbacks.	Isolation
from	the	hardware	enhances	portability	and	security.	But	the	added
software	layer	might	slow	down	a	program’s	execution.	The	layer	also
prevents	Java	from	micromanaging	the	processor.

Imagine	solving	your	allergic	friend’s	problem	by	ordering	a	cake
directly	from	a	local	bakery.	“My	friend	has	a	wheat	allergy.	Can	you
make	the	cake	without	using	any	wheat	products?”	At	a	classy
establishment,	the	baker	knows	how	to	avoid	wheat	gluten.	But	your
friend	is	also	allergic	to	carrageenan	polysorbate	80,	an	emulsifier	found
in	many	commercial	food	products.	“Please	don’t	use	any	carrageenan

polysorbate	80,”	you	say.	And	the	person	behind	the	bakery	counter	says,
“We’ll	try	our	best.	We	can’t	check	for	every	chemical	in	every
ingredient	that	we	use.”

So	you	leave	the	bakery	without	completing	the	order.	For	the	sake
of	your	friend’s	health,	you	need	complete	control	over	the	baking
process.	Delegating	some	of	the	work	to	a	baker	in	the	back	room	(or	to	a
virtual	machine	executing	instructions	on	behalf	of	your	device’s
processor)	just	isn’t	good	enough.

Another	potent	reason	for	using	non-Java	code	is	to	avoid	rewriting
code	that	you	already	have	—	code	written	in	another	programming
language.	Imagine	having	a	thousand-line	C	program	that	reliably
computes	a	decent	daily	investment	strategy.	(No,	I	don’t	have	such	a
program,	in	case	you’re	wondering.)	The	program	does	lots	of	fancy
calculations,	but	the	program	has	no	user-friendly	interface.	The	code	has
no	windows,	no	buttons,	and	nothing	nice	for	the	user	to	click.	You	want
to	package	this	program	inside	an	Android	application.	The	app	presents
choices	to	the	user,	computes	today’s	investment	strategy	with	its
complicated	formulas,	and	then	displays	details	of	the	strategy	(in	a
friendly,	colorful	way)	on	the	user’s	screen.

You	can	try	rewriting	the	C	program	in	Java.	But	translating
between	two	closely	related	languages	(such	as	C	and	Java)	is	a	virtual
rat’s	nest.	The	translation	is	often	messy	and	unreliable.	A	better	plan	is
to	write	the	user	interface	as	an	Android	Java	app	and	let	your	Java	app
defer	to	your	existing	C	program	only	for	the	intricate	investing	strategy
calculations.	All	you	need	is	a	way	to	exchange	information	between	a
Java	program	and	a	C	program.

The	Native	Development	Kit
The	creators	of	Android	realized	that	developers	would	want	to	use

non-Java	code.	So	Android	has	a	framework	that	mediates	between	Java
and	other	languages.	As	you	might	have	guessed	from	this	section’s	title,
that	framework	is	NDK	—	Native	Development	Kit.	With	Android’s
NDK,	you	can	write	code	that	executes	directly	on	a	mobile	device’s
processor	without	relying	on	a	virtual	machine	to	carry	out	the
instructions.

Getting	the	NDK
The	NDK	doesn’t	come	as	part	of	Android’s	standard	software

development	kit	—	its	SDK.	In	fact,	you	don’t	get	the	NDK	by	checking
for	available	packages	in	the	Android	SDK	and	AVD	Manager.	The	NDK
is	a	separate	archive	file,	available	for	download	at
http://developer.android.com.	(If	I’m	lucky,	the	particular	URL	will
still	be	http://developer.android.com/sdk/ndk	when	you	read	this
chapter.)	On	Windows,	the	NDK	archive	is	usually	a	.zip	file.	For	Mac
or	Linux,	the	NDK	archive	is	usually	a	.tar.bz2	file.

After	downloading	the	NDK	archive,	double-click	this	archive	file
to	display	the	file’s	contents.	Then	drag	the	file’s	contents	(not	the	file
itself	—	the	stuff	inside	the	archive	file)	to	a	handy	place	on	your
development	computer’s	hard	drive.	(On	my	Windows	computer,	I	see
only	one	item,	a	folder	named	android-ndk	inside	the	downloaded
archive.	I	drag	this	folder	to	the	root	of	my	C:	drive.	As	a	result,	I	have	a
folder	named	c:\android-ndk.)

	Make	note	of	the	folder	containing	your	unzipped	NDK
materials	(or	your	“un-bz2ed”	and	“untared”	NDK	materials).	I
refer	to	this	folder	in	later	sections.	I	call	it	your	NDK_HOME	directory.

Getting	a	C	compiler
In	this	chapter’s	big	example,	a	C	program	performs	a	portion	of	an

application’s	work.	So	to	run	this	chapter’s	big	example,	you	need	a	C
compiler.	If	you	run	Mac	OS	X	or	Windows,	you	may	or	may	not	have	a
C	compiler.	If	you	run	Linux	on	your	development	computer,	you	can
gloat	because	you	already	have	everything	set	up	correctly.	(Actually,
don’t	gloat.	Simply	skip	this	“Getting	a	C	compiler”	section.)

Getting	a	C	compiler	for	Windows
Windows	users	can	get	a	C	compiler	by	following	these	steps:
1.	Visit	http://cygwin.com.

	 2.	At	the	Cygwin	website,	look	for	the	Cygwin	installation	file.

http://developer.android.com
http://developer.android.com/sdk/ndk
http://cygwin.com

	 The	file	that	I	found	is	tastefully	named	setup.exe.	But	remember,
your	filename	mileage	may	vary.

	 3.	Download	the	Cygwin	installation	file	and	then	double-click
the	installation	file	to	begin	running	it.

	 The	names	setup.exe	and	“installation	file”	are	slightly	deceiving.
When	you	run	this	file,	the	computer	starts	a	program	that	offers	to
download	more	code	from	the	web.

	 4.	Click	Next	to	page	through	the	installation’s	initial	dialog
boxes.

	 After	clicking	Next	to	go	from	one	dialog	box	to	another,	you	reach
the	Select	Packages	dialog	box.	(See	Figure	4-1.)

	
	

Figure	4-1:	Cygwin’s	setup	program	offers	you	some	packages.

In	Figure	4-1,	the	word	Default	next	to	each	category	(next	to
Accessibility,	Admin,	and	so	on)	indicates	that	you	intend	to	download
the	minimal	amount	of	Cygwin	software	in	each	of	these	categories.
Cygwin’s	documentation	recommends	running	the	installation	file	twice.
The	first	time	you	run	this	installation,	you	accept	all	the	defaults	shown

in	Figure	4-1.
	 5.	With	the	defaults	on	the	Select	Packages	dialog	box,	click

Next.
	 The	installation	of	Cygwin	(with	a	minimum	set	of	components)

proceeds	on	your	computer.
	 To	do	Android	NDK	development,	you	need	a	bit	more	than

Cygwin’s	minimum	toolset.
	 6.	Run	the	Cygwin	installation	file	a	second	time.
	 7.	Again,	click	Next	to	page	through	the	initial	dialog	boxes.
	 When	at	last	you	see	the	Select	Packages	dialog	box,	you	see	a	list

of	categories,	each	displaying	the	word	Default.
	 8.	Expand	the	Devel	branch	of	the	list	(see	Figure	4-2).
	

	

Figure	4-2:	Expanding	the	Devel	category’s	branch.

Why	label	this	branch	Development	when	a	simple	Devel	tells	the
whole	story?

	 9.	Within	the	Devel	branch,	look	for	a	make	item	(see	Figure	4-3).
	 Somewhere	on	that	make	item’s	row,	you	see	the	word	Skip.
	 10.	Repeatedly	click	the	place	where	you	see	Skip	until	you	see	a

version	number	instead	of	Skip.
	

	

Figure	4-3:	Installing	the	make	utility.

In	Figure	4-3,	I	click	the	same	place	until	I	see	3.81-2	instead	of
Skip.	As	you	click	that	place,	you	may	see	Source	instead	of	Skip,	or	you
may	see	other	version	numbers.	If	you	have	a	choice	of	different	version
numbers,	choose	the	highest.	(That’s	the	safest	thing	to	do.)

	 11.	In	the	lower-right	corner	of	the	Select	Packages	dialog	box,
click	Next.

	 When	the	installation	is	finished,	you	have	all	the	Cygwin	tools	that
you	need.

	
Getting	a	C	compiler	for	Macintosh

Mac	users	must	install	Xcode	in	order	to	compile	C	programs.	In
addition,	Mac	users	must	install	the	Unix	development	support	that
comes	optionally	with	Xcode.

Check	to	see	whether	you	already	have	what	you	need:
1.	Open	a	Terminal	window.

	 You	find	the	Terminal	app	in	the	Utilities	subfolder	of	your
Mac’s	Applications	folder.

	 2.	In	the	Terminal	windows,	type	the	words	which	make	and
then	press	Return.

	 The	computer	should	respond	with	something	like
	 usrbin/make

If	you	see	this	response	(or	a	line	closely	resembling	this	response),
you	already	have	make	installed	on	your	Mac.	(Or	maybe	you	have	Mac
installed	on	your	make!	I	don’t	know.)	If	instead,	the	computer	responds
with	nothing	but	another	prompt,	you	have	to	install	the	make	tool	on	your
Mac.

	 Here’s	how	you	install	the	make	tool	on	your	computer:
1.	Locate	your	Macintosh	OS	X	installation	materials.

	 I	use	the	generic	word	materials	because	Apple	is	moving	quickly
toward	downloads	instead	of	DVDs.	Anyway,	if	you	have	OS	X	on	a
DVD,	search	high	and	low	for	the	DVD.	If	you	paid	for	an	OS	X
download,	do	whatever	you	do	to	access	the	Mac	OS	X	operating	system
installation	download.

	 2.	Visit	your	installation	materials	in	a	Finder	window.
	 3.	In	the	window’s	search	field,	type	Xcode.
	 A	bunch	of	items	appears	in	the	Finder	window’s	main	panel.
	 4.	Look	for	an	item	named	Xcode.mpkg	(or	something	very	close

to	that	name)	and	double-click	the	item.
	 Welcome	to	the	Xcode	Installer,	says	your	Macintosh.
	 5.	Click	Continue	and	agree	to	everything	until	you	see	a	list	of

options	to	install	(see	Figure	4-4).
	

	

Figure	4-4:	Xcode	installation	options.

6.	Make	sure	that	the	UNIX	Dev	Support	option	is	selected.
	 Again,	see	Figure	4-4.	The	UNIX	Dev	Support	option	contains	the

make	utility	that	you	need	in	order	to	create	Android	NDK	code.	This
make	utility	is	not	installed	by	default.	(Well,	anyway,	it	wasn’t	installed
the	first	time	I	installed	Xcode.)

	 7.	Click	Continue	to	proceed	with	the	installation.
	 When	the	installation	is	completed,	you	have	the	C	tools	that	you

need.
	

	Eclipse	has	some	very	nice	plug-ins	to	help	you	work	with
C/C++	code	and	with	Android’s	NDK.	For	this	chapter’s	example,	I
don’t	describe	these	tools.	(I	don’t	want	you	to	trudge	through	two
hours	of	downloading	to	prepare	for	half	an	hour	of	application
developing.)	But	if	you	plan	to	make	extensive	use	of	Android’s
NDK,	check	out	Eclipse’s	CDT	(the	C/C++	Development	Tooling
project).	Also	visit	the	Sequoyah	project’s	web	pages
(www.eclipse.org/sequoyah).	Sequoyah	is	a	set	of	tools	to	help	you
debug	your	Android	NDK	code.

Creating	an	Application
An	NDK-enabled	application	is	almost	exactly	like	an	ordinary

Android	application,	except	it’s	different!	(That’s	a	joke,	by	the	way.)	To
create	a	simple	NDK-enabled	application,	do	the	following:

1.	Use	Eclipse	to	create	a	new	Android	project	(see	Figure	4-5).
	 You	can	choose	any	project	name	you	want,	but	if	you	want	to

follow	along	with	the	steps	in	my	example,	name	the	project
MyNDKProject.	Also,	select	the	Android	2.2	target	with	application	name
My	NDK	App	and	activity	name	MyActivity.	For	the	package	name,	select
com.allmycode.examples.ndk.

	 Books	I	and	II	have	all	the	information	you’d	need	to	create	an
“ordinary”	simple	Android	application.

	
	

http://www.eclipse.org/sequoyah

Figure	4-5:	Creating	your	new	project.

2.	With	the	Graphical	Layout	editor,	add	an	EditText	view	to
main.xml	(the	main	layout).

	

	For	details	about	adding	an	EditText	view	and	for
details	about	some	of	the	next	several	steps,	see	Book	II,	Chapter	1	and
Book	III,	Chapter	2.

	 3.	Using	the	Graphical	Layout	editor,	add	a	button	to	main.xml
(the	main	layout).

	 4.	Assign	a	name	to	the	button’s	Click	Event	listener.
	 If	you’re	following	along	at	home,	I	give	the	button’s	Click	Event

listener	the	name	onButtonClick.	That	is,	I	use	the	Properties	view	to	set
the	button’s	onClick	property	to	onButtonClick.

	 5.	Add	Event	Listener	code	to	your	app’s	activity.
	 I	don’t	know	about	your	activity,	but	my	activity	contains	the

following	Event	Listener	code:
	 public	void	onButtonClick(View	v)	{

	

			Editable	name	=	((EditText)	findViewById(R.id.editText1)).getText();
			Toast.makeText(getApplication(),	getString()	+	name,
																																													Toast.LENGTH_LONG).show();
}

	Most	of	this	Event	Listener	code	is	fairly	harmless.	But
please	remember	that	the	names	in	the	code	must	correspond	to	names	in
your	project.	For	example,	the	method	name	(in	my	example,
onButtonClick)	must	be	the	same	as	the	name	you	assigned	as	the
button’s	onClick	listener	in	Step	4.	Also,	the	ID	editText1	must	be
same	as	the	ID	of	the	view	that	you	created	in	Step	2.

	 The	only	unusual	thing	about	the	Event	Listener	code	is	the	call	to	a
method	named	getString.	You	don’t	declare	getString	the	way	you
declare	most	Java	methods.

	 6.	To	your	activity	class	(named	MyActivity	in	Step	1)	add	the
following	code:

	 public	native	String	getString();

	

static	{

				System.loadLibrary(“my-jni-app”);

}

With	or	without	Android,	the	Java	technology	suite	comes	with	a
JNI	—	the	Java	Native	Interface	—	framework.	The	purpose	of	JNI	is	to
help	Java	programs	communicate	with	code	written	in	other
programming	languages.	This	step’s	code	is	the	way	JNI	tells	your
program	to	expect	the	getString	method’s	body	to	be	written	in	a
language	other	than	Java.

	 The	first	line
	 public	native	String	getString();

tells	Java	to	look	for	the	body	of	getString	somewhere	else
(outside	the	Java	class	in	which	the	line	appears).	The	rest	of	the	code

	 static	{

				System.loadLibrary(“my-jni-app”);

}

tells	your	program	to	look	for	method	bodies	in	a	place	called	my-
jni-app.	And	wha’ddaya	know?	This	section’s	example	includes	some
C-language	code	in	a	file	named	my-jni-app.c.

	 Listing	4-1	pulls	together	all	the	code	in	your	MyActivity.java	file.
	

Listing	4-1:	Your	Project’s	Main	Activity
package	com.allmycode.examples.ndk;

	

import	android.app.Activity;

import	android.os.Bundle;

import	android.text.Editable;

import	android.view.View;

import	android.widget.EditText;

import	android.widget.Toast;

	

public	class	MyActivity	extends	Activity	{

			/**	Called	when	the	activity	is	first	created.	*/

			@Override

			public	void	onCreate(Bundle	savedInstanceState)	{

						super.onCreate(savedInstanceState);

						setContentView(R.layout.main);

			}

				

			public	native	String	getString();

	

			static	{

						System.loadLibrary(“my-jni-app”);

			}

	

			public	void	onButtonClick(View	v)	{

	

						Editable	name	=

								((EditText)	findViewById(R.id.editText1)).getText();

						Toast.makeText(getApplication(),	getString()	+	name,

									Toast.LENGTH_LONG).show();

			}

}

7.	In	Eclipse’s	Package	Explorer	tree,	right-click	the
MyNDKProject	branch	and	choose	New⇒Folder.	(On	a	Mac,	use
Control-click	in	place	of	right-click.)

	 Eclipse	displays	a	New	Folder	dialog	box.
	 8.	In	the	New	Folder	dialog	box’s	Folder	Name	field,	type	jni

and	then	click	Finish.
	 The	Package	Explorer’s	tree	has	a	new	branch	labeled	jni.	At	this

point,	it	helps	to	check	the	location	of	the	jni	folder.	In	Figure	4-6,	the
jni	folder	is	an	immediate	subdirectory	of	MyNDKProject	(the	main
project	folder).	The	jni	folder	is	on	a	level	parallel	with	res,	assets,
Android	2.2,	and	so	on.	This	location	is	important	because	a	folder	in	the
wrong	location	means	that	Java	can’t	find	your	code.	(Besides,	it’s	really

easy	to	mess	up	a	new	folder’s	location	in	Eclipse’s	Package	Explorer.)
	

	

Figure	4-6:	Your	project	contains	a	jni	folder.

In	Figure	4-6,	notice	that	the	MyActivity.java	branch	displays	an
ugly	red	blotch	(an	X	inside	a	red	rectangle).	This	blotch	reminds	you	that
you	haven’t	yet	created	the	getString	method’s	body.

	 9.	In	Eclipse’s	Package	Explorer,	right-click	the	new	jni
folder’s	branch	and	then	choose	New⇒File.

	 Eclipse	opens	its	New	File	dialog	box.
	 10.	In	the	New	File	dialog’s	File	Name	field,	type	Android.mk

and	then	click	Finish.
	 An	.mk	file	is	like	a	C-language	make	file,	except	it’s	shorter.	For

more	information,	see	the	“Android.mk	files”	sidebar.
	 11.	Repeat	Steps	9	and	10	to	create	yet	another	file	in	the	jni

folder.
	 12.	In	the	New	File	dialog	box’s	File	Name	field,	type	my-jni-

app.c	and	then	click	Finish.
	 This	new	file	is	destined	to	contain	code	written	in	C.	You	can	give

the	file	any	name	you	want,	as	long	as	that	name	matches	the	name	in	the
loadLibrary	call	in	Step	6.	Also,	in	this	example,	you’re	creating	C	code,
so	the	filename	should	end	with	the	.c	extension.

	 13.	Using	Eclipse’s	editor,	type	the	following	code	into	the
Android.mk	file:

	 LOCAL_PATH	:=	$(call	my-dir)

include	$(CLEAR_VARS)

LOCAL_MODULE	:=	my-jni-app

LOCAL_SRC_FILES	:=	my-jni-app.c

include	$(BUILD_SHARED_LIBRARY)

This	code	tells	the	computer	how	to	put	the	parts	of	your	project
together	into	an	Android	application.	For	more	details,	see	the
“Android.mk	files”	sidebar.

	
Android.mk	files

	An	Android.mk	file	tells	your	computer	where	your	project’s	files
are	located.	The	computer	uses	this	information	to	build	your
project	(that	is,	to	combine	your	files	into	a	full-fledged	Android
application).	I	copied	the	Android.mk	file	in	Step	13	from
Android’s	documentation	pages	(with	only	minor	changes	of	my
own).	This	Android.mk	file	provides	five	pieces	of	information:

The	starting	point	for	relative	filenames	inside	this
Android.mk	file:	In	this	case,	the	starting	point	(the	LOCAL_PATH)	is
the	directory	containing	the	Android.mk	file	(the	$(call	my-dir)

directory).
That	all	instructions	stored	in	the	$(CLEAR_VARS)	file	must

be	included	as	part	of	the	project:	These	instructions	initialize
things	like	LOCAL_MODULE,	LOCAL_SRC_FILES,	LOCAL_C_INCLUDES,
LOCAL_CFLAGS,	and	others.	(By	initialize,	I	mean	“set	as
undefined.”)	Two	of	these	variables	become	defined	by
subsequent	lines	in	the	Android.mk	file.

The	LOCAL_MODULE	name:	In	this	case,	the	LOCAL_MODULE
name	is	my-jni-app.	This	means	that	the	library	file	containing
the	compiled	C	code	is	stored	in	a	file	whose	name	has	my-jni-
app	in	the	middle.
Android	always	puts	lib	before	the	middle	and	puts	.so	after

the	middle.	So	the	full	name	of	the	library	file	is	libmy-jni-
app.so.	(This	lib	and	.so	business	comes	from	naming
conventions	in	Unix	and	Linux.)	Sure	enough,	when	you	finish
this	chapter’s	instructions,	you	have	a	file	named	libmy-jni-
app.so	in	your	Eclipse	project.

The	location	for	your	stored	C	source	code	(that	is,
LOCAL_SRC_FILES):	Here,	the	C	source	code	is	stored	in	a	file
named	my-jni-app.c.	(You	create	a	new,	empty	my-jni-app.c
file	in	Step	12.	You	put	a	C	program	in	that	file	in	Step	14.)

That	all	instructions	stored	in	the
$(BUILD_SHARED_LIBRARY)	file	must	be	included	as	part	of	the
project:	This	file	contains	instructions	to	scoop	up	all	the
available	information	and	then	build	an	Android	project	from	the
Java	code,	the	C	code,	the	binary	files,	and	all	the	other	useful
things	in	your	project	directories.
For	more	information,	including	a	list	of	available	variables	and
commands,	see	the	file	named	ANDROID-MK.html	in	your	NDK_HOME
folder’s	docs	subfolder.

	
14.	Using	Eclipse’s	editor,	type	the	code	from	Listing	4-2	into

the	my-jni-app.c	file.
	

Listing	4-2:	Your	C	Program
#include	<string.h>

#include	<jni.h>

	

jstring

Java_com_allmycode_examples_ndk_MyActivity_getString

		(JNIEnv*	env,	jobject	obj)

{

				return	(*env)->NewStringUTF(env,	“Hello,	“);

}

If	you’re	not	a	seasoned	C	programmer,	you	may	be	wondering
what	the	code	in	my-jni-app.c	means.	Well,	you’re	in	luck.	There’s	a
sidebar	for	that!	(The	sidebar’s	name	is	“C	programming	in	600	words	or
less.”)

	 For	the	next	several	steps,	you	jump	from	Eclipse	to	your
development	computer’s	command	line	windows.

	
C	programming	in	600	words	or	less

	You	won’t	become	a	C	programmer	by	reading	this	chapter,	but
you	might	want	to	know	something	about	the	C	code	in	Listing	4-
2.
First	of	all,	C	code	doesn’t	normally	run	on	a	virtual	machine.	You
compile	your	C	program	into	a	native	executable	file	—	a	low-
level	binary	file	that	runs	only	on	an	Intel	x86	processor,	an	ARM
processor,	or	some	other	kind	of	processor.	This	absence	of	a
virtual	machine	makes	C	much	more	dependent	on	exotic	binary
file	types.	When	you	finish	this	chapter’s	steps,	you	have	the	.c
file	in	Step	14,	but	you	also	have	an	.o	object	file,	an	.o.d	file,
and	some	.so	library	files,
I’ll	be	criticized	by	the	purists	for	trying	to	translate	Listing	4-2
into	Java.	Even	so,	you	can	use	my	fake	Java	code	to	understand
the	C	program:

/*
*	Disclaimer:
*	This	is	a	rough	translation	of	the
*	C	program	in	Listing	4-2.	This	code
*	illustrates	the	meaning	of	the

*	my-jni-app.c	program.	But	this	Java
*	code	cannot	replace	the	my-jni-app.c
*	program	in	Listing	4-2.
*/
package	com.allmycode.examples.ndk;

	

import	java.lang.String;
import	java.lang.Runtime;

	

public	class	MyActivity	{

	

public	String	getString()	{
return	“Hello,	“;
}
}

The	actual	my-jni-app.c	program	in	Listing	4-2	defines	a	single
method	—	the	method
Java_com_allmycode_examples_ndk_MyActivity_getString.
The	long	method	name	follows	JNI	rules	to	implement	the
getString	method	in	Listing	4-1.	The	MyActivity	class	in	Listing
4-1	declares	a	native	method	whose	fully	qualified	name	is
com.allmycode.examples.ndk.MyActivity.getString.	To	form
the	C-language	JNI	name	in	Listing	4-2,	you	replace	the	dots	with
underscores	and	preface	the	whole	business	with	Java_.
The	C	programming	language	doesn’t	sweep	pointers	under	the
rug.	In	C,	you	use	asterisks	and	arrows	to	refer	explicitly	to
pointers,	and	you	can	use	pointers	to	pass	objects	to	functions.	For
example,	the	name	JNIEnv	refers	to	a	class	whose	objects	have

about	200	fields.	Each	JNIEnv	field	is	a	pointer	to	a	function.
When	you	call	the	method	in	Listing	4-2,	you	pass	a	pointer	to	a
JNIEnv	object.	(That	is,	you	pass	something	of	type	JNIEnv*.)	The
parameter	env	stores	that	pointer	to	a	JNIEnv	object.	(See	the
nearby	figure.)
In	a	C	program,	when	you	type	*env,	you’re	dereferencing	the
pointer	stored	in	env.	In	other	words,	*env	stands	for	whatever
object	env	points	to.	So	in	Listing	4-2,	(*env)	stands	for	a	JNIEnv
object.
In	C,	an	expression	like	x->y	is	shorthand	for	“the	thing	pointed	to
by	the	y	field	of	the	x	object.”	In	Listing	4-2,	the	text	(*env)->
NewStringUTF	stands	for	the	function	that’s	pointed	to	by	the
NewStringUTF	field	of	*env.	In	other	words,	(*env)->
NewStringUTF	stands	for	the	current	JNI	environment’s	version	of
the	NewStringUTF	function.
The	return	statement	in	Listing	4-2	creates	a	new
java.lang.String	object	(which	is	called	a	jstring	object	in	a
JNI	C	program).	The	new	String	object	becomes	part	of	the	Java
calling	environment,	and	the	Java	calling	environment	gets	the
return	value	“Hello,	“.
And	if	this	isn’t	complicated	enough,	the	whole	thing	works	a	bit
differently	when	you	shun	plain	old	C	and	write	your	native	code
in	C++	instead.	Whew!

	

15.	Open	a	command	window	on	your	computer.
	 •	Windows:	Choose	Start⇒All	Programs⇒Accessories⇒Command

Prompt.
	

•	Macintosh:	Double-click	the	Terminal	app,	which	is	in	the	Utilities
subfolder	of	your	Mac’s	Applications	folder.

	
•	Linux:	Well	.	.	.	er	.	.	.	it	depends	on	your	Linux	distribution.	If	you’re	a

Linux	user,	you’re	probably	laughing	right	now	because	you	know
how	to	launch	a	Terminal	window	(or	the	Shell)	and	you	use	it	all	the
time.

	
16.	In	the	command	window,	use	the	Change	Directory

command	(cd)	to	navigate	to	the	directory	containing	your	Android
project.

	 If	you’re	not	sure	where	your	Android	project	lives,	return	to
Eclipse	and	choose	File⇒Switch	Workspace⇒Other.	Eclipse’s	Select	a
Workspace	dialog	box	pops	up,	showing	you	the	name	of	your	current
workspace.	On	a	Windows	computer,	you	see	something	like
c:\Users\your-user-name\workspace.	Copy	the	text	from	the	leftmost
slash	onward.	In	the	command	window,	type

	 cd	\Users\your-user-name\workspace\MyNDKProject

and	then	press	Enter.	(I’m	assuming	that	you	followed	my	lead	in
Step	1	by	naming	your	project	MyNDKProject.	If	not,	substitute	your
own	project’s	name	here.)

	 17.	Recall	the	location	of	the	Android	SDK	on	your	development
computer.

	 In	Book	I,	Chapter	2,	I	call	this	location	your	ANDROID_HOME
directory.	On	my	computer,	the	ANDROID_HOME	directory	is	c:\android-
sdk-windows,	but	on	your	computer,	the	directory	may	be	different.

	

	Don’t	navigate	away	from	your	Android	project’s
directory.	Or	if	you	do	navigate	away	in	order	to	find	the	ANDROID_HOME
directory,	navigate	back	to	the	Android	project’s	directory	before
proceeding	to	the	next	step.

	 18.	In	the	command	window,	type	the	following	command	and
then	press	Enter:

	 •	Windows	users:
	 ANDROID_HOME\tools\android	update	project	--path	.

•	Mac	and	Linux	users:
	 ANDROID_HOME/tools/android	update	project	--path	.

The	only	difference	between	the	Windows	command	and	everyone
else’s	command	is	that	Windows	uses	backslashes.

	 So,	for	example,	on	my	computer,	I	type	the	following:
	 c:\android-sdk-windows\tools\android

update	project	--path	.

	I	begged	the	people	at	John	Wiley	&	Sons,	Inc.,	to
publish	a	book	whose	pages	are	two	feet	wide,	but	they	didn’t	do	it!
When	you	type	this	step’s	command,	you	don’t	intentionally	start	a	new
line	anywhere	in	the	middle	of	the	command.	The	command	that	I	type
on	my	computer	looks	like	it’s	two	lines	long	here,	but	that’s	only
because	this	book’s	page	is	too	narrow.	Normally	you	just	keep	typing

along	one	line.	(And	if	your	computer’s	command	window	takes	its	own
initiative	to	wrap	your	typing	to	a	new	line,	you’re	okay.)

	

	This	is	a	well-kept	secret:	The	Windows	command	line
accepts	forward	slashes	(as	well	as	backslashes)	as	file	separators.	The
command	for	Mac	and	Linux	works	on	Windows,	too!

	 This	step’s	android	update	project	command	creates	a
build.xml	file.	This	build.xml	file	contains	a	set	of	instructions	telling
Java	how	to	bundle	your	application.	This	project	needs	a	build.xml	file
because	of	the	special	NDK	stuff	in	the	project.

	 If	all	goes	well,	your	command	window	responds	to	your	command
with	text	like

	 Updated	local.properties

Updated	file	MyNDKProject\build.xml

Updated	file	MyNDKProject\proguard.cfg
The	next	part	of	the	process	involves	running	a	Unix/Linux	shell

script.	To	do	this	on	a	Windows	computer,	use	Cygwin.
	 19.	(Windows	only)	Launch	Cygwin.
	 The	Cygwin	command	window	opens.	It	looks	a	lot	like	the

ordinary	Windows	command	box.	But	Cygwin	understands	Unix/Linux
commands.

	 20.	(Windows	only)	Type	the	following	command	into	the
Cygwin	command	window	and	then	press	Enter:

	 cd	cygdrivec
In	the	Cygwin	world,	this	command	gets	you	to	the	root	of	your

Windows	C:	drive.	If	your	project	is	on	some	other	drive	(say,	your	X:
drive),	type	the	command	cd	cygdrivex	instead.

	 21.	(Windows	only)	In	the	Cygwin	window,	use	the	familiar
Change	Directory	command	(cd)	to	navigate	to	the	directory
containing	your	Android	project.

	 In	other	words,	repeat	the	stuff	you	did	in	Step	16,	but	when	you
type	the	directory’s	full	path	name,	use	forward	slashes	and	omit	the
leftmost	slash.	On	my	computer,	I	type

	 cd	Users/bburd/workspace/MyNDKProject/
In	general,	you	type	something	like

	 cd	Users/your-user-name/workspace/MyNDKProject/
22.	Type	the	following	command	and	then	press	Enter:

	 NDK_HOME/ndk-build
On	my	Windows	computer,	I	unzipped	the	NDK	materials	to	a

C:\android-ndk-r5b	folder.	So	in	this	step,	I	type
	 cygdrivec/android-ndk-r5b/ndk-build

The	extra	cydrivec	stuff	is	to	make	Cygwin	happy.
	 On	my	Macintosh,	I	was	lazy	enough	to	leave	the	archived	NDK	in

my	Downloads	folder.	So	I	type
	 Usersmy-user-name/Downloads/android-ndk-r5b/ndk-build

	By	default,	the	ndk-build	command	operates	on
whatever	folder	you’re	sitting	in	when	you	issue	the	command.	So	before
issuing	this	step’s	command,	navigate	to	your	Android	project’s
directory.	Windows	users:	Follow	Steps	19	through	21.	Mac	and	Linux
users:	You’re	already	positioned	at	the	project’s	directory	by	virtue	of
Step	16.	Don’t	drift	away	while	the	Windows	users	take	time	to	get	their
ducks	in	a	row.

	 After	issuing	the	ndk-build	command,	your	computer	responds
with	a	message	like	this:

	 Compile	thumb		:	my-jni-app	<=	my-jni-app.c

SharedLibrary		:	libmy-jni-app.so

Install								:	libmy-jni-app.so	=>

																				libs/armeabi/libmy-jni-app.so
Congratulations!	The	message	indicates	that	your	C	code	has	been

translated	into	a	usable	library	for	ARM	processors.
	 23.	In	Eclipse’s	Package	Explorer,	right-click	the	MyNDKProject

branch,	and	in	the	resulting	contextual	menu,	choose	Refresh.
	 As	usual,	Macintosh	users	should	Control-click	instead	of	right-

click.
	 Here’s	what’s	going	on:	In	Steps	15	through	22,	you	march	away

from	your	Eclipse	window	and	work	in	one	or	more	command	windows.
In	doing	so,	you	create	some	new	files	inside	your	MyNDKProject
directory.	That’s	all	well	and	good	as	far	as	you’re	concerned,	but	in	Step
1,	you	use	Eclipse	to	create	the	MyNDKProject	directory.	So	you’ve
modified	an	Eclipse	project	without	using	Eclipse	to	make	the
modification.

	 You	have	to	tell	Eclipse	to	wake	up,	look	around,	and	figure	out
what	changed	while	Eclipse	wasn’t	watching.	In	other	words,	Eclipse
must	update	its	notion	of	what	files	are	in	its	MyNDKProject	directory.	To
do	this,	you	right-click	and	choose	Refresh.

	

	With	all	the	stuff	you	have	to	do	to	create	an	NDK	app,
you	can	easily	forget	to	refresh	your	Eclipse	project.	(I	forget	all	the
time.)	Make	yourself	a	mental	note	reminding	yourself	about	this	refresh
step.

	 After	refreshing	your	project,	Eclipse’s	Package	Explorer	displays
three	folders	that	you	don’t	normally	see	in	an	Android	project:	jni,
libs,	and	obj.	(See	Figure	4-7.)

	
	

Figure	4-7:	You	have	jni,	libs,	and	obj	folders.

24.	Run	your	Android	project.
	 After	some	delay	(and	much	anticipation),	you	see	a	screen	like	the

one	in	Figure	4-8.
	 25.	Type	your	name	in	the	EditText	view	and	then	click	the

button.
	 A	toast	notification	appears	on	your	emulator’s	screen.	In	Figure	4-

9,	the	name	Barry	comes	from	the	activity’s	EditText	view.	(It’s	no	big
deal.)	But	initial	text	in	the	notification	comes	from	a	C-language
program	—	namely,	the	program	in	Listing	4-2.

	
	

Figure	4-8:	Your	app	starts	running.

	

Figure	4-9:	You’ve	made	toast!

Sure!	Fetching	a	“Hello”	string	from	a	C	program	isn’t	the	most
useful	app	you’ve	ever	seen.	But	the	ability	to	call	C	code	to	help	with	an
Android	app’s	work	has	lots	of	potential.

	 The	most	common	hurdle	for	new	NDK	programmers	involves
correctly	connecting	a	method	call	with	its	method.	In	Listing	4-1,	for
example,	your	Java	program	calls	getString(),	but	with	all	the	naming
conventions	and	linking	tricks,	the	system	may	not	see	the	connection	to
the	C-language	method
Java_com_allmycode_examples_ndk_MyActivity_getString	in	Listing
4-2.	Your	application	crashes,	and	Eclipse’s	LogCat	view	displays	an
UnsatisfiedLinkError.

If	this	happens	to	you,	retrace	your	steps.	The	connection	between	a
Java	method	and	its	corresponding	C/C++	method	can	be	very	brittle.
Check	the	spelling	of	names,	check	the	messages	you	receive	when	you
invoke	ndk-build,	and	check	your	folder	structure.	If	you’re	patient	and
persistent,	you	can	get	the	stars	and	planets	to	align	beautifully.

ARM	alphabet	soup
	A	run	of	the	ndk-build	command	creates	a	folder	named	armeabi.

What’s	that	all	about?
The	acronym	ARM	comes	originally	from	the	term	Advanced
RISC	Machines,	which	in	turn	comes	from	Advanced	Reduced
Instruction	Set	Computing	Machines.	(I	love	these	multilevel
acronyms!)	The	company	named	ARM,	Ltd.,	designs	and	licenses
its	ARM	processors	for	use	in	mobile	devices	around	the	world.
(ARM,	Ltd.,	doesn’t	build	processors.	Instead,	the	company	does
all	the	thinking	and	sells	ideas	to	processor	manufacturers.)
The	acronym	ABI	stands	for	Application	Binary	Interface.	An	ABI
is	like	an	API,	except	that	an	ABI	describes	the	way	one	piece	of
software	communicates	with	another	on	a	binary	level.	For
example,	in	an	API	you’d	say,	“To	create	a	string	that	represents
an	object,	call	the	object’s	toString	method.”	In	an	ABI,	you
might	say,	“A	signed	double	word	consists	of	8	bytes	and	has
byte-alignment	8	[whatever	that	means].”
The	ARM	EABI	is	ARM’s	Embedded	Application	Binary
Interface.	Embedded	refers	to	the	tendency	of	ARM	processors	to
appear	in	specialized	devices	—	devices	other	than	general-
purpose	computers.	For	example,	the	main	processor	inside	your
laptop	isn’t	an	embedded	processor.	Your	laptop’s	main	processor
does	general-purpose	computing	—	word	processing	one	minute
and	playing	music	the	next.	In	contrast,	an	embedded	processor
sits	quietly	inside	a	device	and	processes	bits	according	to	the
device’s	specialized	needs.	Your	car	is	loaded	with	embedded
processors.
You	may	argue	that	the	processor	inside	your	mobile	device	isn’t	a
special-purpose	processor.	Thus,	the	E	in	ARM	EABI	doesn’t
apply	to	mobile	development.	Well,	argue	all	you	want.	This
terminology’s	usage	can	wobble	in	many	directions,	and

regardless	of	what	you	think	is	inside	your	phone,	many	phones
use	ARM	processors,	and	the	ndk-build	command	creates	code
according	to	ARM	EABI	specifications.

	

To	access	the	cheat	sheet	specifically	for	this
book,	go	to
www.dummies.com/cheatsheet/androidapplicationdevelopmentaio

Find	out	"HOW"	at	Dummies.com

http://www.dummies.com/cheatsheet/androidapplicationdevelopmentaio
http://www.dummies.com

	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Book I: Android Jump Start
	Book II: Android Background Material
	Book III: The Building Blocks
	Book IV: Programming Cool Phone Features
	Book V: The Job Isn’t Done Until . . .
	Book VI: Alternative Android Development Techniques

	More on the Web!
	Icons Used in This Book
	Where to Go from Here

	Book V: The Job Isn’t Done Until . . .
	Book V: Chapter 1: Publishing Your App to the Android Market
	Preparing Your Code
	Un-testing the app
	Choosing Android versions
	Selecting an icon and a label
	Set your app’s own version code and version name

	Creating the APK File
	Digitally signing your application
	Creating a keystore
	Safeguarding your keystore

	Creating an Android Market Account
	Pricing Your Application
	The paid model
	The free model

	Getting Screen Shots for Your Application
	Uploading Your Application to the Android Market
	Watching the Installs Soar

	Book V: Chapter 2: Publishing Your App to the Amazon Appstore
	Becoming an Amazon Appstore Developer
	Uploading an App

	Cheat Sheet

