
 1

Subject: Advance Architecture

Author: Dr. Deepti Mehrotra

Paper Code: MS Vetter:

Lesson: Parallel computer models Lesson No. : 01

• Objective

• Introduction

• The state of computing

o Evolution of computer system

o Elements of Modern Computers

o Flynn's Classical Taxonomy

o System attributes

• Multiprocessor and multicomputer,

o Shared memory multiprocessors

o Distributed Memory Multiprocessors

o A taxonomy of MIMD Computers

• Multi vector and SIMD computers

o Vector Supercomputer

o SIMD supercomputers

• PRAM and VLSI model

o Parallel Random Access machines

o VLSI Complexity Model

• Keywords

• Summary

1.0 Objective

The main aim of this chapter is to learn about the evolution of computer systems, various

attributes on which performance of system is measured, classification of computers on

their ability to perform multiprocessing and various trends towards parallel processing.

1.1 Introduction

From an application point of view, the mainstream of usage of computer is experiencing

a trend of four ascending levels of sophistication:

 2

• Data processing

• Information processing

• Knowledge processing

• Intelligence processing

With more and more data structures developed, many users are shifting to computer roles

from pure data processing to information processing. A high degree of parallelism has

been found at these levels. As the accumulated knowledge bases expanded rapidly in

recent years, there grew a strong demand to use computers for knowledge processing.

Intelligence is very difficult to create; its processing even more so. Todays computers are

very fast and obedient and have many reliable memory cells to be qualified for data-

information-knowledge processing.

Parallel processing is emerging as one of the key technology in area of modern

computers. Parallel appears in various forms such as lookahead, vectorization

concurrency, simultaneity, data parallelism, interleaving, overlapping, multiplicity,

replication, multiprogramming, multithreading and distributed computing at different

processing level.

1.2 The state of computing

Modern computers are equipped with powerful hardware technology at the same time

loaded with sophisticated software packages. To access the art of computing we firstly

review the history of computers then study the attributes used for analysis of performance

of computers.

1.2.1 Evolution of computer system

Presently the technology involved in designing of its hardware components of computers

and its overall architecture is changing very rapidly for example: processor clock rate

increase about 20% a year, its logic capacity improve at about 30% in a year; memory

speed at increase about 10% in a year and memory capacity at about 60% increase a year

also the disk capacity increase at a 60% a year and so overall cost per bit improves about

25% a year.

 But before we go further with design and organization issues of parallel computer

architecture it is necessary to understand how computers had evolved. Initially, man used

simple mechanical devices – abacus (about 500 BC) , knotted string, and the slide rule for

 3

computation. Early computing was entirely mechanical like : mechanical adder/subtracter

(Pascal, 1642) difference engine design (Babbage, 1827) binary mechanical computer

(Zuse, 1941) electromechanical decimal machine (Aiken, 1944). Some of these machines

used the idea of a stored program a famous example of it is the Jacquard Loom and

Babbage’s Analytical Engine which is also often considered as the first real computer.

Mechanical and electromechanical machines have limited speed and reliability because of

the many moving parts. Modern machines use electronics for most information

transmission.

Computing is normally thought of as being divided into generations. Each successive

generation is marked by sharp changes in hardware and software technologies. With

some exceptions, most of the advances introduced in one generation are carried through

to later generations. We are currently in the fifth generation.

Ist generation of computers (1945-54)

The first generation computers where based on vacuum tube technology. The first large

electronic computer was ENIAC (Electronic Numerical Integrator and Calculator), which

used high speed vacuum tube technology and were designed primarily to calculate the

trajectories of missiles. They used separate memory block for program and data. Later in

1946 John Von Neumann introduced the concept of stored program, in which data and

program where stored in same memory block. Based on this concept EDVAC (Electronic

Discrete Variable Automatic Computer) was built in 1951. On this concept IAS (Institute

of advance studies, Princeton) computer was built whose main characteristic was CPU

consist of two units (Program flow control and execution unit).

In general key features of this generation of computers where

1) The switching device used where vacuum tube having switching time between 0.1 to 1

milliseconds.

2) One of major concern for computer manufacturer of this era was that each of the

computer designs had a unique design. As each computer has unique design one cannot

upgrade or replace one component with other computer. Programs that were written for

one machine could not execute on another machine, even though other computer was also

designed from the same company. This created a major concern for designers as there

were no upward-compatible machines or computer architectures with multiple, differing

 4

implementations. And designers always tried to manufacture a new machine that should

be upward compatible with the older machines.

3) Concept of specialized registers where introduced for example index registers were

introduced in the Ferranti Mark I, concept of register that save the return-address

instruction was introduced in UNIVAC I, also concept of immediate operands in IBM

704 and the detection of invalid operations in IBM 650 were introduced.

4) Punch card or paper tape were the devices used at that time for storing the program. By

the end of the 1950s IBM 650 became one of popular computers of that time and it used

the drum memory on which programs were loaded from punch card or paper tape. Some

high-end machines also introduced the concept of core memory which was able to

provide higher speeds. Also hard disks started becoming popular.

5) In the early 1950s as said earlier were design specific hence most of them were

designed for some particular numerical processing tasks. Even many of them used

decimal numbers as their base number system for designing instruction set. In such

machine there were actually ten vacuum tubes per digit in each register.

6) Software used was machine level language and assembly language.

7) Mostly designed for scientific calculation and later some systems were developed for

simple business systems.

8) Architecture features

Vacuum tubes and relay memories

CPU driven by a program counter (PC) and accumulator

Machines had only fixed-point arithmetic

9) Software and Applications

Machine and assembly language

Single user at a time

No subroutine linkage mechanisms

Programmed I/O required continuous use of CPU

10) examples: ENIAC, Princeton IAS, IBM 701

IInd generation of computers (1954 – 64)

The transistors were invented by Bardeen, Brattain and Shockely in 1947 at Bell Labs

and by the 1950s these transistors made an electronic revolution as the transistor is

 5

smaller, cheaper and dissipate less heat as compared to vacuum tube. Now the transistors

were used instead of a vacuum tube to construct computers. Another major invention was

invention of magnetic cores for storage. These cores where used to large random access

memories. These generation computers has better processing speed, larger memory

capacity, smaller size as compared to pervious generation computer.

The key features of this generation computers were

1) The IInd generation computer were designed using Germanium transistor, this

technology was much more reliable than vacuum tube technology.

2) Use of transistor technology reduced the switching time 1 to 10 microseconds thus

provide overall speed up.

2) Magnetic cores were used main memory with capacity of 100 KB. Tapes and disk

peripheral memory were used as secondary memory.

3) Introduction to computer concept of instruction sets so that same program can be

executed on different systems.

4) High level languages, FORTRAN, COBOL, Algol, BATCH operating system.

5) Computers were now used for extensive business applications, engineering design,

optimation using Linear programming, Scientific research

6) Binary number system very used.

7) Technology and Architecture

Discrete transistors and core memories

I/O processors, multiplexed memory access

Floating-point arithmetic available

Register Transfer Language (RTL) developed

8) Software and Applications

High-level languages (HLL): FORTRAN, COBOL, ALGOL with compilers and

subroutine libraries

Batch operating system was used although mostly single user at a time

9) Example : CDC 1604, UNIVAC LARC, IBM 7090

IIIrd Generation computers(1965 to 1974)

In 1950 and 1960 the discrete components (transistors, registers capacitors) were

manufactured packaged in a separate containers. To design a computer these discrete

 6

unit were soldered or wired together on a circuit boards. Another revolution in computer

designing came when in the 1960s, the Apollo guidance computer and Minuteman

missile were able to develop an integrated circuit (commonly called ICs). These ICs

made the circuit designing more economical and practical. The IC based computers are

called third generation computers. As integrated circuits, consists of transistors, resistors,

capacitors on single chip eliminating wired interconnection, the space required for the

computer was greatly reduced. By the mid-1970s, the use of ICs in computers became

very common. Price of transistors reduced very greatly. Now it was possible to put all

components required for designing a CPU on a single printed circuit board. This

advancement of technology resulted in development of minicomputers, usually with 16-

bit words size these system have a memory of range of 4k to 64K.This began a new era

of microelectronics where it could be possible design small identical chips (a thin wafer

of silicon’s). Each chip has many gates plus number of input output pins.

Key features of IIIrd Generation computers:

1) The use of silicon based ICs, led to major improvement of computer system. Switching

speed of transistor went by a factor of 10 and size was reduced by a factor of 10,

reliability increased by a factor of 10, power dissipation reduced by a factor of 10. This

cumulative effect of this was the emergence of extremely powerful CPUS with the

capacity of carrying out 1 million instruction per second.

2) The size of main memory reached about 4MB by improving the design of magnetic

core memories also in hard disk of 100 MB become feasible.

3) On line system become feasible. In particular dynamic production control systems,

airline reservation systems, interactive query systems, and real time closed lop process

control systems were implemented.

4) Concept of Integrated database management systems were emerged.

5) 32 bit instruction formats

6) Time shared concept of operating system.

7) Technology and Architecture features

Integrated circuits (SSI/MSI)

Microprogramming

Pipelining, cache memories, lookahead processing

 7

8) Software and Applications

Multiprogramming and time-sharing operating systems

Multi-user applications

9) Examples : IBM 360/370, CDC 6600, TI ASC, DEC PDP-82

IVth Generation computer ((1975 to 1990)

The microprocessor was invented as a single VLSI (Very large Scale Integrated circuit)

chip CPU. Main Memory chips of 1MB plus memory addresses were introduced as single

VLSI chip. The caches were invented and placed within the main memory and

microprocessor. These VLSIs and VVSLIs greatly reduced the space required in a

computer and increased significantly the computational speed.

1) Technology and Architecture feature

LSI/VLSI circuits,

semiconductor memory

Multiprocessors,

vector supercomputers,

 multicomputers

Shared or distributed memory

Vector processors

Software and Applications

Multprocessor operating systems,

languages,

compilers,

parallel software tools

Examples : VAX 9000, Cray X-MP, IBM 3090, BBN TC2000

Fifth Generation computers(1990 onwards)

In the mid-to-late 1980s, in order to further improve the performance of the system the

designers start using a technique known as “instruction pipelining”. The idea is to break

the program into small instructions and the processor works on these instructions in

different stages of completion. For example, the processor while calculating the result of

the current instruction also retrieves the operands for the next instruction. Based on this

concept later superscalar processor were designed, here to execute multiple instructions

 8

in parallel we have multiple execution unit i.e., separate arithmetic-logic units (ALUs).

Now instead executing single instruction at a time, the system divide program into

several independent instructions and now CPU will look for several similar instructions

that are not dependent on each other, and execute them in parallel. The example of this

design are VLIW and EPIC.

1) Technology and Architecture features

ULSI/VHSIC processors, memory, and switches

High-density packaging

Scalable architecture

Vector processors

2) Software and Applications

Massively parallel processing

Grand challenge applications

Heterogenous processing

3) Examples : Fujitsu VPP500, Cray MPP, TMC CM-5, Intel Paragon

Elements of Modern Computers

The hardware, software, and programming elements of modern computer systems can be

characterized by looking at a variety of factors in context of parallel computing these

factors are:

• Computing problems

• Algorithms and data structures

• Hardware resources

• Operating systems

• System software support

• Compiler support

Computing Problems

• Numerical computing complex mathematical formulations tedious integer or

floating -point computation

• Transaction processing accurate transactions large database management

information retrieval

• Logical Reasoning logic inferences symbolic manipulations

 9

Algorithms and Data Structures

• Traditional algorithms and data structures are designed for sequential machines.

• New, specialized algorithms and data structures are needed to exploit the

capabilities of parallel architectures.

• These often require interdisciplinary interactions among theoreticians,

experimentalists, and programmers.

Hardware Resources

• The architecture of a system is shaped only partly by the hardware resources.

• The operating system and applications also significantly influence the overall

architecture.

• Not only must the processor and memory architectures be considered, but also the

architecture of the device interfaces (which often include their advanced

processors).

Operating System

• Operating systems manage the allocation and deallocation of resources during

user program execution.

• UNIX, Mach, and OSF/1 provide support for multiprocessors and multicomputers

• multithreaded kernel functions virtual memory management file subsystems

network communication services

• An OS plays a significant role in mapping hardware resources to algorithmic and

data structures.

System Software Support

• Compilers, assemblers, and loaders are traditional tools for developing programs

in high-level languages. With the operating system, these tools determine the bind

of resources to applications, and the effectiveness of this determines the efficiency

of hardware utilization and the system’s programmability.

• Most programmers still employ a sequential mind set, abetted by a lack of popular

parallel software support.

System Software Support

 10

• Parallel software can be developed using entirely new languages designed

specifically with parallel support as its goal, or by using extensions to existing

sequential languages.

• New languages have obvious advantages (like new constructs specifically for

parallelism), but require additional programmer education and system software.

• The most common approach is to extend an existing language.

Compiler Support

• Preprocessors use existing sequential compilers and specialized libraries to

implement parallel constructs

• Precompilers perform some program flow analysis, dependence checking, and

limited parallel optimzations

• Parallelizing Compilers requires full detection of parallelism in source code, and

transformation of sequential code into parallel constructs

• Compiler directives are often inserted into source code to aid compiler

parallelizing efforts

1.2.3 Flynn's Classical Taxonomy

Among mentioned above the one widely used since 1966, is Flynn's Taxonomy. This

taxonomy distinguishes multi-processor computer architectures according two

independent dimensions of Instruction stream and Data stream. An instruction stream is

sequence of instructions executed by machine. And a data stream is a sequence of data

including input, partial or temporary results used by instruction stream. Each of these

dimensions can have only one of two possible states: Single or Multiple. Flynn’s

classification depends on the distinction between the performance of control unit and the

data processing unit rather than its operational and structural interconnections. Following

are the four category of Flynn classification and characteristic feature of each of them.

1. Single instruction stream, single data stream (SISD)

 11

Figure 1.1 Execution of instruction in SISD processors

The figure 1.1 is represents a organization of simple SISD computer having one control

unit, one processor unit and single memory unit.

Figure 1.2 SISD processor organization

• They are also called scalar processor i.e., one instruction at a time and each

instruction have only one set of operands.

• Single instruction: only one instruction stream is being acted on by the CPU

during any one clock cycle

• Single data: only one data stream is being used as input during any one clock

cycle

• Deterministic execution

• Instructions are executed sequentially.

• This is the oldest and until recently, the most prevalent form of computer

• Examples: most PCs, single CPU workstations and mainframes

b) Single instruction stream, multiple data stream (SIMD) processors

• A type of parallel computer

• Single instruction: All processing units execute the same instruction issued by the

control unit at any given clock cycle as shown in figure 13.5 where there are

multiple processor executing instruction given by one control unit.

 12

• Multiple data: Each processing unit can operate on a different data element as

shown if figure below the processor are connected to shared memory or

interconnection network providing multiple data to processing unit

Figure 1.3 SIMD processor organization

• This type of machine typically has an instruction dispatcher, a very high-

bandwidth internal network, and a very large array of very small-capacity

instruction units.

• Thus single instruction is executed by different processing unit on different set of

data as shown in figure 1.3.

• Best suited for specialized problems characterized by a high degree of regularity,

such as image processing and vector computation.

• Synchronous (lockstep) and deterministic execution

• Two varieties: Processor Arrays e.g., Connection Machine CM-2, Maspar MP-1,

MP-2 and Vector Pipelines processor e.g., IBM 9000, Cray C90, Fujitsu VP, NEC

SX-2, Hitachi S820

Figure 1.4 Execution of instructions in SIMD processors

 13

c) Multiple instruction stream, single data stream (MISD)

• A single data stream is fed into multiple processing units.

• Each processing unit operates on the data independently via independent

instruction streams as shown in figure 1.5 a single data stream is forwarded to

different processing unit which are connected to different control unit and execute

instruction given to it by control unit to which it is attached.

Figure 1.5 MISD processor organization

• Thus in these computers same data flow through a linear array of processors

executing different instruction streams as shown in figure 1.6.

• This architecture is also known as systolic arrays for pipelined execution of

specific instructions.

• Few actual examples of this class of parallel computer have ever existed. One is

the experimental Carnegie-Mellon C.mmp computer (1971).

• Some conceivable uses might be:

1. multiple frequency filters operating on a single signal stream

2. multiple cryptography algorithms attempting to crack a single coded message.

Figure 1.6 Execution of instructions in MISD processors

 14

d) Multiple instruction stream, multiple data stream (MIMD)

• Multiple Instruction: every processor may be executing a different instruction

stream

• Multiple Data: every processor may be working with a different data stream as

shown in figure 1.7 multiple data stream is provided by shared memory.

• Can be categorized as loosely coupled or tightly coupled depending on sharing of

data and control

• Execution can be synchronous or asynchronous, deterministic or non-

deterministic

Figure 1.7 MIMD processor organizations

• As shown in figure 1.8 there are different processor each processing different

task.

• Examples: most current supercomputers, networked parallel computer "grids" and

multi-processor SMP computers - including some types of PCs.

Figure 1.8 execution of instructions MIMD processors

 15

Here the some popular computer architecture and there types

SISD IBM 701, IBM 1620, IBM 7090, PDP VAX11/ 780

SISD (With multiple functional units) IBM360/91 (3); IBM 370/168 UP

SIMD (Word Slice Processing) Illiac – IV ; PEPE

SIMD (Bit Slice processing) STARAN; MPP; DAP

MIMD (Loosely Coupled) IBM 370/168 MP; Univac 1100/80

MIMD(Tightly Coupled) Burroughs- D – 825

1.2.4 PERFORMANCE ATTRIBUTES

Performance of a system depends on

• hardware technology

• architectural features

• efficient resource management

• algorithm design

• data structures

• language efficiency

• programmer skill

• compiler technology

When we talk about performance of computer system we would describe how quickly a

given system can execute a program or programs. Thus we are interested in knowing the

turnaround time. Turnaround time depends on:

• disk and memory accesses

• input and output

• compilation time

• operating system overhead

• CPU time

 An ideal performance of a computer system means a perfect match between the machine

capability and program behavior. The machine capability can be improved by using

better hardware technology and efficient resource management. But as far as program

behavior is concerned it depends on code used, compiler used and other run time

conditions. Also a machine performance may vary from program to program. Because

there are too many programs and it is impractical to test a CPU's speed on all of them,

 16

benchmarks were developed. Computer architects have come up with a variety of metrics

to describe the computer performance.

Clock rate and CPI / IPC : Since I/O and system overhead frequently overlaps

processing by other programs, it is fair to consider only the CPU time used by a program,

and the user CPU time is the most important factor. CPU is driven by a clock with a

constant cycle time (usually measured in nanoseconds, which controls the rate of internal

operations in the CPU. The clock mostly has the constant cycle time (t in nanoseconds).

The inverse of the cycle time is the clock rate (f = 1/τ, measured in megahertz). A shorter

clock cycle time, or equivalently a larger number of cycles per second, implies more

operations can be performed per unit time. The size of the program is determined by the

instruction count (Ic). The size of a program is determined by its instruction count, Ic, the

number of machine instructions to be executed by the program. Different machine

instructions require different numbers of clock cycles to execute. CPI (cycles per

instruction) is thus an important parameter.

Average CPI

It is easy to determine the average number of cycles per instruction for a particular

processor if we know the frequency of occurrence of each instruction type.

Of course, any estimate is valid only for a specific set of programs (which defines the

instruction mix), and then only if there are sufficiently large number of instructions.

In general, the term CPI is used with respect to a particular instruction set and a given

program mix. The time required to execute a program containing Ic instructions is just T

= Ic * CPI * τ.

Each instruction must be fetched from memory, decoded, then operands fetched from

memory, the instruction executed, and the results stored.

The time required to access memory is called the memory cycle time, which is usually k

times the processor cycle time τ. The value of k depends on the memory technology and

the processor-memory interconnection scheme. The processor cycles required for each

instruction (CPI) can be attributed to cycles needed for instruction decode and execution

(p), and cycles needed for memory references (m* k).

The total time needed to execute a program can then be rewritten as

T = Ic* (p + m*k)*τ.

 17

MIPS: The millions of instructions per second, this is calculated by dividing the number

of instructions executed in a running program by time required to run the program. The

MIPS rate is directly proportional to the clock rate and inversely proportion to the CPI.

All four systems attributes (instruction set, compiler, processor, and memory

technologies) affect the MIPS rate, which varies also from program to program. MIPS

does not proved to be effective as it does not account for the fact that different systems

often require different number of instruction to implement the program. It does not

inform about how many instructions are required to perform a given task. With the

variation in instruction styles, internal organization, and number of processors per system

it is almost meaningless for comparing two systems.

MFLOPS (pronounced ``megaflops'') stands for ``millions of floating point operations

per second.'' This is often used as a ``bottom-line'' figure. If one know ahead of time how

many operations a program needs to perform, one can divide the number of operations by

the execution time to come up with a MFLOPS rating. For example, the standard

algorithm for multiplying n*n matrices requires 2n3 – n operations (n2 inner products,

with n multiplications and n-1additions in each product). Suppose you compute the

product of two 100 *100 matrices in 0.35 seconds. Then the computer achieves

(2(100)3 – 100)/0.35 = 5,714,000 ops/sec = 5.714 MFLOPS

The term ``theoretical peak MFLOPS'' refers to how many operations per second would

be possible if the machine did nothing but numerical operations. It is obtained by

calculating the time it takes to perform one operation and then computing how many of

them could be done in one second. For example, if it takes 8 cycles to do one floating

point multiplication, the cycle time on the machine is 20 nanoseconds, and arithmetic

operations are not overlapped with one another, it takes 160ns for one multiplication, and

(1,000,000,000 nanosecond/1sec)*(1 multiplication / 160 nanosecond) = 6.25*106

multiplication /sec so the theoretical peak performance is 6.25 MFLOPS. Of course,

programs are not just long sequences of multiply and add instructions, so a machine

rarely comes close to this level of performance on any real program. Most machines will

achieve less than 10% of their peak rating, but vector processors or other machines with

internal pipelines that have an effective CPI near 1.0 can often achieve 70% or more of

their theoretical peak on small programs.

 18

Throughput rate : Another important factor on which system’s performance is measured

is throughput of the system which is basically how many programs a system can execute

per unit time Ws. In multiprogramming the system throughput is often lower than the

CPU throughput Wp which is defined as

Wp = f/(Ic * CPI)

Unit of Wp is programs/second.

Ws <Wp as in multiprogramming environment there is always additional overheads like

timesharing operating system etc. An Ideal behavior is not achieved in parallel computers

because while executing a parallel algorithm, the processing elements cannot devote

100% of their time to the computations of the algorithm. Efficiency is a measure of the

fraction of time for which a PE is usefully employed. In an ideal parallel system

efficiency is equal to one. In practice, efficiency is between zero and one

s of overhead associated with parallel execution

Speed or Throughput (W/Tn) - the execution rate on an n processor system, measured in

FLOPs/unit-time or instructions/unit-time.

Speedup (Sn = T1/Tn) - how much faster in an actual machine, n processors compared to

1 will perform the workload. The ratio T1/T∞is called the asymptotic speedup.

Efficiency (En = Sn/n) - fraction of the theoretical maximum speedup achieved by n

processors

Degree of Parallelism (DOP) - for a given piece of the workload, the number of

processors that can be kept busy sharing that piece of computation equally. Neglecting

overhead, we assume that if k processors work together on any workload, the workload

gets done k times as fast as a sequential execution.

Scalability - The attributes of a computer system which allow it to be gracefully and

linearly scaled up or down in size, to handle smaller or larger workloads, or to obtain

proportional decreases or increase in speed on a given application. The applications run

on a scalable machine may not scale well. Good scalability requires the algorithm and the

machine to have the right properties

Thus in general there are five performance factors (Ic, p, m, k, t) which are influenced by

four system attributes:

• instruction-set architecture (affects Ic and p)

 19

• compiler technology (affects Ic and p and m)

• CPU implementation and control (affects p *t) cache and memory hierarchy

(affects memory access latency, k ´t)

• Total CPU time can be used as a basis in estimating the execution rate of a

processor.

Programming Environments

Programmability depends on the programming environment provided to the users.

Conventional computers are used in a sequential programming environment with tools

developed for a uniprocessor computer. Parallel computers need parallel tools that allow

specification or easy detection of parallelism and operating systems that can perform

parallel scheduling of concurrent events, shared memory allocation, and shared peripheral

and communication links.

Implicit Parallelism

Use a conventional language (like C, Fortran, Lisp, or Pascal) to write the program.

Use a parallelizing compiler to translate the source code into parallel code.

The compiler must detect parallelism and assign target machine resources.

Success relies heavily on the quality of the compiler.

Explicit Parallelism

Programmer writes explicit parallel code using parallel dialects of common languages.

Compiler has reduced need to detect parallelism, but must still preserve existing

parallelism and assign target machine resources.

Needed Software Tools

Parallel extensions of conventional high-level languages.

Integrated environments to provide different levels of program abstraction validation,

testing and debugging performance prediction and monitoring visualization support to aid

program development, performance measurement graphics display and animation of

computational results

1.3 MULTIPROCESSOR AND MULTICOMPUTERS

 Two categories of parallel computers are discussed below namely shared common

memory or unshared distributed memory.

1.3.1 Shared memory multiprocessors

 20

• Shared memory parallel computers vary widely, but generally have in common

the ability for all processors to access all memory as global address space.

• Multiple processors can operate independently but share the same memory

resources.

• Changes in a memory location effected by one processor are visible to all other

processors.

• Shared memory machines can be divided into two main classes based upon

memory access times: UMA , NUMA and COMA.

Uniform Memory Access (UMA):

• Most commonly represented today by Symmetric Multiprocessor (SMP)

machines

• Identical processors

• Equal access and access times to memory

• Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if

one processor updates a location in shared memory, all the other processors know

about the update. Cache coherency is accomplished at the hardware level.

Figure 1.9 Shared Memory (UMA)

 21

Non-Uniform Memory Access (NUMA):

• Often made by physically linking two or more SMPs

• One SMP can directly access memory of another SMP

• Not all processors have equal access time to all memories

• Memory access across link is slower

If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent

NUMA

figure 1.10 Shared Memory (NUMA)

The COMA model : The COMA model is a special case of NUMA machine in which

the distributed main memories are converted to caches. All caches form a global address

space and there is no memory hierarchy at each processor node.

Advantages:

• Global address space provides a user-friendly programming perspective to

memory

• Data sharing between tasks is both fast and uniform due to the proximity of

memory to CPUs

Disadvantages:

• Primary disadvantage is the lack of scalability between memory and CPUs.

Adding more CPUs can geometrically increases traffic on the shared memory-

 22

CPU path, and for cache coherent systems, geometrically increase traffic

associated with cache/memory management.

• Programmer responsibility for synchronization constructs that insure "correct"

access of global memory.

• Expense: it becomes increasingly difficult and expensive to design and produce

shared memory machines with ever increasing numbers of processors.

1.3.2 Distributed Memory

• Like shared memory systems, distributed memory systems vary widely but share

a common characteristic. Distributed memory systems require a communication

network to connect inter-processor memory.

Figure 1.11 distributed memory systems

• Processors have their own local memory. Memory addresses in one processor do

not map to another processor, so there is no concept of global address space

across all processors.

• Because each processor has its own local memory, it operates independently.

Changes it makes to its local memory have no effect on the memory of other

processors. Hence, the concept of cache coherency does not apply.

• When a processor needs access to data in another processor, it is usually the task

of the programmer to explicitly define how and when data is communicated.

Synchronization between tasks is likewise the programmer's responsibility.

 23

• Modern multicomputer use hardware routers to pass message. Based on the

interconnection and routers and channel used the multicomputers are divided into

generation

o 1st generation : based on board technology using hypercube architecture

and software controlled message switching.

o 2nd Generation: implemented with mesh connected architecture, hardware

message routing and software environment for medium distributed –

grained computing.

o 3rd Generation : fine grained multicomputer like MIT J-Machine.

• The network "fabric" used for data transfer varies widely, though it can be as

simple as Ethernet.

Advantages:

• Memory is scalable with number of processors. Increase the number of processors

and the size of memory increases proportionately.

• Each processor can rapidly access its own memory without interference and

without the overhead incurred with trying to maintain cache coherency.

• Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages:

• The programmer is responsible for many of the details associated with data

communication between processors.

• It may be difficult to map existing data structures, based on global memory, to

this memory organization.

• Non-uniform memory access (NUMA) times

1.4 MULTIVECTOR AND SIMD COMPUTERS

A vector operand contains an ordered set of n elements, where n is called the length of

the vector. Each element in a vector is a scalar quantity, which may be a floating point

number, an integer, a logical value or a character.

 24

A vector processor consists of a scalar processor and a vector unit, which could be

thought of as an independent functional unit capable of efficient vector operations.

1.4.1Vector Hardware

Vector computers have hardware to perform the vector operations efficiently. Operands

can not be used directly from memory but rather are loaded into registers and are put

back in registers after the operation. Vector hardware has the special ability to overlap or

pipeline operand processing.

Figure 1.12 Vector Hardware

Vector functional units pipelined, fully segmented each stage of the pipeline performs a

step of the function on different operand(s) once pipeline is full, a new result is produced

each clock period (cp).

Pipelining

The pipeline is divided up into individual segments, each of which is completely

independent and involves no hardware sharing. This means that the machine can be

working on separate operands at the same time. This ability enables it to produce one

result per clock period as soon as the pipeline is full. The same instruction is obeyed

repeatedly using the pipeline technique so the vector processor processes all the elements

of a vector in exactly the same way. The pipeline segments arithmetic operation such as

floating point multiply into stages passing the output of one stage to the next stage as

input. The next pair of operands may enter the pipeline after the first stage has processed

the previous pair of operands. The processing of a number of operands may be carried out

simultaneously.

The loading of a vector register is itself a pipelined operation, with the ability to load one

element each clock period after some initial startup overhead.

 25

1.4.2 SIMD Array Processors

The Synchronous parallel architectures coordinate Concurrent operations in lockstep

through global clocks, central control units, or vector unit controllers. A synchronous

array of parallel processors is called an array processor. These processors are composed

of N identical processing elements (PES) under the supervision of a one control unit (CU)

This Control unit is a computer with high speed registers,

local memory and arithmetic logic unit.. An array processor is basically a single

instruction and multiple data (SIMD) computers. There are N data streams; one per

processor, so different data can be used in each processor. The figure below show a

typical SIMD or array processor

Figure 1.13 Configuration of SIMD Array Processor

These processors consist of a number of memory modules which can be either global or

dedicated to each processor. Thus the main memory is the aggregate of the memory

modules. These Processing elements and memory unit communicate with each other

through an interconnection network. SIMD processors are especially designed for

performing vector computations. SIMD has two basic architectural organizations

a. Array processor using random access memory

b. Associative processors using content addressable memory.

 All N identical processors operate under the control of a single instruction stream issued

by a central control unit. The popular examples of this type of SIMD configuration is

ILLIAC IV, CM-2, MP-1. Each PEi is essentially an arithmetic logic unit (ALU) with

attached working registers and local memory PEMi for the storage of distributed data.

The CU also has its own main memory for the storage of program. The function of CU is

to decode the instructions and determine where the decoded instruction should be

executed. The PE perform same function (same instruction) synchronously in a lock step

fashion under command of CU. In order to maintain synchronous operations a global

 26

clock is used. Thus at each step i.e., when global clock pulse changes all processors

execute the same instruction, each on a different data (single instruction multiple data).

SIMD machines are particularly useful at in solving problems involved with vector

calculations where one can easily exploit data parallelism. In such calculations the same

set of instruction is applied to all subsets of data. Lets do addition to two vectors each

having N element and there are N/2 processing elements in the SIMD. The same addition

instruction is issued to all N/2 processors and all processor elements will execute the

instructions simultaneously. It takes 2 steps to add two vectors as compared to N steps on

a SISD machine. The distributed data can be loaded into PEMs from an external source

via the system bus or via system broadcast mode using the control bus.

The array processor can be classified into two category depending how the memory units

are organized. It can be

a. Dedicated memory organization

b. Global memory organization

A SIMD computer C is characterized by the following set of parameter

C= <N,F,I,M>

Where N= the number of PE in the system . For example the iliac –IV has N=64 , the

BSP has N= 16.

F= a set of data routing function provided by the interconnection network

I= The set of machine instruction for scalar vector, data routing and network

manipulation operations

M = The set of the masking scheme where each mask partitions the set of PEs into

disjoint subsets of enabled PEs and disabled PEs.

1.5 PRAM AND VLSI MODELS

1.5.1 PRAM model (Parallel Random Access Machine):

PRAM Parallel random access machine; a theoretical model of parallel computation in

which an arbitrary but finite number of processors can access any value in an arbitrarily

large shared memory in a single time step. Processors may execute different instruction

streams, but work synchronously. This model assumes a shared memory, multiprocessor

machine as shown:

 27

1. The machine size n can be arbitrarily large

2. The machine is synchronous at the instruction level. That is, each processor is

executing it's own series of instructions, and the entire machine operates at a basic time

step (cycle). Within each cycle, each processor executes exactly one operation or does

nothing, i.e. it is idle. An instruction can be any random access machine instruction, such

as: fetch some operands from memory, perform an ALU operation on the data, and store

the result back in memory.

3. All processors implicitly synchronize on each cycle and the synchronization overhead

is assumed to be zero. Communication is done through reading and writing of shared

variables.

4. Memory access can be specified to be UMA, NUMA, EREW, CREW, or CRCW with

a defined conflict policy.

The PRAM model can apply to SIMD class machines if all processors execute identical

instructions on the same cycle, or to MIMD class machines if the processors are

executing different instructions. Load imbalance is the only form of overhead in the

PRAM model.

The four most important variations of the PRAM are:

• EREW - Exclusive read, exclusive write; any memory location may only be

accessed once in any one step. Thus forbids more than one processor from reading

or writing the same memory cell simultaneously.

• CREW - Concurrent read, exclusive write; any memory location may be read any

number of times during a single step, but only written to once, with the write

taking place after the reads.

• ERCW – This allows exclusive read or concurrent writes to the same memory

location.

• CRCW - Concurrent read, concurrent write; any memory location may be written

to or read from any number of times during a single step. A CRCW PRAM model

must define some rule for resolving multiple writes, such as giving priority to the

lowest-numbered processor or choosing amongst processors randomly. The

PRAM is popular because it is theoretically tractable and because it gives

 28

algorithm designers a common target. However, PRAMs cannot be emulated

optimally on all architectures.

1.5.2 VLSI Model:

Parallel computers rely on the use of VLSI chips to fabricate the major components such

as processor arrays memory arrays and large scale switching networks. The rapid advent

of very large scale intergrated (VSLI) technology now computer architects are trying to

implement parallel algorithms directly in hardware. An AT2 model is an example for two

dimension VLSI chips

1.6 Summary

Architecture has gone through evolutional, rather than revolutional change.

Sustaining features are those that are proven to improve performance. Starting with the

von Neumann architecture (strictly sequential), architectures have evolved to include

processing lookahead, parallelism, and pipelining. Also a variety of parallel architectures

are discussed like SIMD, MIMD, Associative Processor, Array Processor,

multicomputers, Mutiprocessor. The performance of system is measured as CPI, MIPS. It

depends on the clock rate lets say t. If C is the total number of clock cycles needed to

execute a given program, then total CPU time can be estimated as

T= C * t = C / f.

Other relationships are easily observed:

CPI = C / Ic

T =Ic * CPI * t

T =Ic * CPI / f

Processor speed is often measured in terms of millions of instructions per second,

frequently called the MIPS rate of the processor. The multiprocessor architecture can be

broadly classified as tightly coupled multiprocessor and loosely coupled multiprocessor.

A tightly coupled Multiprocessor is also called a UMA, for uniform memory access,

because each CPU can access memory data at the same (uniform) amount of time. This is

the true multiprocessor. A loosely coupled Multiprocessor is called a NUMA. Each of its

node computers can access their local memory data at one (relatively fast) speed, and

 29

remote memory data at a much slower speed. PRAM and VSLI are the advance

technologies that are used for designing the architecture.

1.7 Keywords

multiprocessor A computer in which processors can execute separate instruction

streams, but have access to a single address space. Most multiprocessors are shared

memory machines, constructed by connecting several processors to one or more memory

banks through a bus or switch.

multicomputer A computer in which processors can execute separate instruction

streams, have their own private memories and cannot directly access one another's

memories. Most multicomputers are disjoint memory machines, constructed by joining

nodes (each containing a microprocessor and some memory) via links.

MIMD Multiple Instruction, Multiple Data; a category of Flynn's taxonomy in which

many instruction streams are concurrently applied to multiple data sets. A MIMD

architecture is one in which heterogeneous processes may execute at different rates.

MIPS one Million Instructions Per Second. A performance rating usually referring to

integer or non-floating point instructions

vector processor A computer designed to apply arithmetic operations to long vectors or

arrays. Most vector processors rely heavily on pipelining to achieve high performance

pipelining Overlapping the execution of two or more operations

 30

Subject: Advance Architecture

Author: Dr. Deepti Mehrotra

Paper Code: MS Vetter:

Lesson: Program & Network properties Lesson No. : 02

Lesson 2 Program & network properties

• Objective

• Introduction

• Condition of parallelism

o Data dependence and resource dependence

o Hardware and software dependence

o The role of compiler

• Program partitioning and scheduling

o Grain size and latency

o Grain packing and scheduling

• Program flow mechanism

• System interconnect architecture.

o Network properties and routing

o Static connection network

o Dynamic connection network

• Summary

• Keywords

2.0 Objective

In this lesson we will study about fundamental properties of programs how parallelism

can be introduced in program. We will study about the granularity, partitioning of

programs , program flow mechanism and compilation support for parallelism.

Interconnection architecture both static and dynamic type will be discussed.

2.1 Introduction

The advantage of multiprocessors lays when parallelism in the program is popularly

exploited and implemented using multiple processors. Thus in order to implement the

parallelism we should understand the various conditions of parallelism.

 31

What are various bottlenecks in implementing parallelism? Thus for full implementation

of parallelism there are three significant areas to be understood namely computation

models for parallel computing, interprocessor communication in parallel architecture and

system integration for incorporating parallel systems. Thus multiprocessor system poses a

number of problems that are not encountered in sequential processing such as designing a

parallel algorithm for the application, partitioning of the application into tasks,

coordinating communication and synchronization, and scheduling of the tasks onto the

machine.

2.2 Condition of parallelism

The ability to execute several program segments in parallel requires each segment to be

independent of the other segments. We use a dependence graph to describe the relations.

The nodes of a dependence graph correspond to the program statement (instructions), and

directed edges with different labels are used to represent the ordered relations among the

statements. The analysis of dependence graphs shows where opportunity exists for

parallelization and vectorization.

2.2.1 Data and resource Dependence

Data dependence: The ordering relationship between statements is indicated by the data

dependence. Five type of data dependence are defined below:

1. Flow dependence: A statement S2 is flow dependent on S1 if an execution path exists

from s1 to S2 and if at least one output (variables assigned) of S1feeds in as input

(operands to be used) to S2 also called RAW hazard and denoted as

2. Antidependence: Statement S2 is antidependent on the statement S1 if S2 follows S1 in

the program order and if the output of S2 overlaps the input to S1 also called RAW

hazard and denoted as

3. Output dependence : two statements are output dependent if they produce (write) the

same output variable. Also called WAW hazard and denoted as

4. I/O dependence: Read and write are I/O statements. I/O dependence occurs not

because the same variable is involved but because the same file referenced by both I/O

statement.

 32

5. Unknown dependence: The dependence relation between two statements cannot be

determined in the following situations:

• The subscript of a variable is itself subscribed(indirect addressing)

• The subscript does not contain the loop index variable.

• A variable appears more than once with subscripts having different coefficients

of the loop variable.

• The subscript is non linear in the loop index variable.

Parallel execution of program segments which do not have total data independence can

produce non-deterministic results.

Consider the following fragment of any program:

S1 Load R1, A

S2 Add R2, R1

S3 Move R1, R3

S4 Store B, R1

• here the Forward dependency S1to S2, S3 to S4, S2 to S2

• Anti-dependency from S2to S3

• Output dependency S1 toS3

Figure 2.1 Dependence graph

Control Dependence: This refers to the situation where the order of the execution of

statements cannot be determined before run time. For example all condition statement,

where the flow of statement depends on the output. Different paths taken after a

conditional branch may depend on the data hence we need to eliminate this data

dependence among the instructions. This dependence also exists between operations

 33

performed in successive iterations of looping procedure. Control dependence often

prohibits parallelism from being exploited.

Control-independent example:

for (i=0;i<n;i++) {

a[i] = c[i];

if (a[i] < 0) a[i] = 1;

}

Control-dependent example:

for (i=1;i<n;i++) {

if (a[i-1] < 0) a[i] = 1;

}

Control dependence also avoids parallelism to being exploited. Compilers are used to

eliminate this control dependence and exploit the parallelism.

Resource dependence:

Data and control dependencies are based on the independence of the work to be done.

Resource independence is concerned with conflicts in using shared resources, such as

registers, integer and floating point ALUs, etc. ALU conflicts are called ALU

dependence. Memory (storage) conflicts are called storage dependence.

Bernstein’s Conditions - 1

Bernstein’s conditions are a set of conditions which must exist if two processes can

execute in parallel.

Notation

Ii is the set of all input variables for a process Pi . Ii is also called the read set or domain

of Pi. Oi is the set of all output variables for a process Pi .Oi is also called write set

If P1 and P2 can execute in parallel (which is written as P1 || P2), then:

Bernstein’s Conditions - 2

 34

In terms of data dependencies, Bernstein’s conditions imply that two processes can

execute in parallel if they are flow-independent, antiindependent, and output-

independent. The parallelism relation || is commutative (Pi || Pj implies Pj || Pi), but not

transitive (Pi || Pj and Pj || Pk does not imply Pi || Pk) . Therefore, || is not an equivalence

relation. Intersection of the input sets is allowed.

2.2.2 Hardware and software parallelism

Hardware parallelism is defined by machine architecture and hardware multiplicity i.e.,

functional parallelism times the processor parallelism .It can be characterized by the

number of instructions that can be issued per machine cycle. If a processor issues k

instructions per machine cycle, it is called a k-issue processor. Conventional processors

are one-issue machines. This provide the user the information about peak attainable

performance. Examples. Intel i960CA is a three-issue processor (arithmetic, memory

access, branch). IBM RS -6000 is a four-issue processor (arithmetic, floating-point,

memory access, branch).A machine with n k-issue processors should be able to handle a

maximum of nk threads simultaneously.

Software Parallelism

Software parallelism is defined by the control and data dependence of programs, and is

revealed in the program’s flow graph i.e., it is defined by dependencies with in the code

and is a function of algorithm, programming style, and compiler optimization.

2.2.3 The Role of Compilers

Compilers used to exploit hardware features to improve performance. Interaction

between compiler and architecture design is a necessity in modern computer

development. It is not necessarily the case that more software parallelism will improve

performance in conventional scalar processors. The hardware and compiler should be

designed at the same time.

2.3Program Partitioning & Scheduling

2.3.1 Grain size and latency

The size of the parts or pieces of a program that can be considered for parallel execution

can vary. The sizes are roughly classified using the term “granule size,” or simply

“granularity.” The simplest measure, for example, is the number of instructions in a

 35

program part. Grain sizes are usually described as fine, medium or coarse, depending on

the level of parallelism involved.

Latency

Latency is the time required for communication between different subsystems in a

computer. Memory latency, for example, is the time required by a processor to access

memory. Synchronization latency is the time required for two processes to synchronize

their execution. Computational granularity and communication latency are closely

related. Latency and grain size are interrelated and some general observation are

• As grain size decreases, potential parallelism increases, and overhead also

increases.

• Overhead is the cost of parallelizing a task. The principle overhead is

communication latency.

• As grain size is reduced, there are fewer operations between communication, and

hence the impact of latency increases.

• Surface to volume: inter to intra-node comm.

Levels of Parallelism

Instruction Level Parallelism

This fine-grained, or smallest granularity level typically involves less than 20 instructions

per grain. The number of candidates for parallel execution varies from 2 to thousands,

with about five instructions or statements (on the average) being the average level of

parallelism.

Advantages:

There are usually many candidates for parallel execution

Compilers can usually do a reasonable job of finding this parallelism

Loop-level Parallelism

Typical loop has less than 500 instructions. If a loop operation is independent between

iterations, it can be handled by a pipeline, or by a SIMD machine. Most optimized

program construct to execute on a parallel or vector machine. Some loops (e.g. recursive)

are difficult to handle. Loop-level parallelism is still considered fine grain computation.

Procedure-level Parallelism

 36

Medium-sized grain; usually less than 2000 instructions. Detection of parallelism is more

difficult than with smaller grains; interprocedural dependence analysis is difficult and

history-sensitive. Communication requirement less than instruction level SPMD (single

procedure multiple data) is a special case Multitasking belongs to this level.

Subprogram-level Parallelism

Job step level; grain typically has thousands of instructions; medium- or coarse-grain

level. Job steps can overlap across different jobs. Multiprograming conducted at this level

No compilers available to exploit medium- or coarse-grain parallelism at present.

Job or Program-Level Parallelism

Corresponds to execution of essentially independent jobs or programs on a parallel

computer. This is practical for a machine with a small number of powerful processors,

but impractical for a machine with a large number of simple processors (since each

processor would take too long to process a single job).

Communication Latency

Balancing granularity and latency can yield better performance. Various latencies

attributed to machine architecture, technology, and communication patterns used.

Latency imposes a limiting factor on machine scalability. Ex. Memory latency increases

as memory capacity increases, limiting the amount of memory that can be used with a

given tolerance for communication latency.

Interprocessor Communication Latency

• Needs to be minimized by system designer

• Affected by signal delays and communication patterns Ex. n communicating tasks

may require n (n - 1)/2 communication links, and the complexity grows

quadratically, effectively limiting the number of processors in the system.

Communication Patterns

• Determined by algorithms used and architectural support provided

• Patterns include permutations broadcast multicast conference

• Tradeoffs often exist between granularity of parallelism and communication

demand.

2.3.2 Grain Packing and Scheduling

Two questions:

 37

How can I partition a program into parallel “pieces” to yield the shortest execution time?

What is the optimal size of parallel grains?

There is an obvious tradeoff between the time spent scheduling and synchronizing

parallel grains and the speedup obtained by parallel execution.

One approach to the problem is called “grain packing.”

Program Graphs and Packing

A program graph is similar to a dependence graph Nodes = { (n,s) }, where n = node

name, s = size (larger s = larger grain size).

Edges = { (v,d) }, where v = variable being “communicated,” and d = communication

delay.

Packing two (or more) nodes produces a node with a larger grain size and possibly more

edges to other nodes. Packing is done to eliminate unnecessary communication delays or

reduce overall scheduling overhead.

Scheduling

A schedule is a mapping of nodes to processors and start times such that communication

delay requirements are observed, and no two nodes are executing on the same processor

at the same time. Some general scheduling goals

• Schedule all fine-grain activities in a node to the same processor to minimize

communication delays.

• Select grain sizes for packing to achieve better schedules for a particular parallel

machine.

Node Duplication

Grain packing may potentially eliminate interprocessor communication, but it may not

always produce a shorter schedule. By duplicating nodes (that is, executing some

instructions on multiple processors), we may eliminate some interprocessor

communication, and thus produce a shorter schedule.

Program partitioning and scheduling

Scheduling and allocation is a highly important issue since an inappropriate scheduling of

tasks can fail to exploit the true potential of the system and can offset the gain from

parallelization. In this paper we focus on the scheduling aspect. The objective of

scheduling is to minimize the completion time of a parallel application by properly

 38

allocating the tasks to the processors. In a broad sense, the scheduling problem exists in

two forms: static and dynamic. In static scheduling, which is usually done at compile

time, the characteristics of a parallel program (such as task processing times,

communication, data dependencies, and synchronization requirements) are known before

program execution

A parallel program, therefore, can be represented by a node- and edge-weighted directed

acyclic graph (DAG), in which the node weights represent task processing times and the

edge weights represent data dependencies as well as the communication times between

tasks. In dynamic scheduling only, a few assumptions about the parallel program can be

made before execution, and thus, scheduling decisions have to be made on-the-fly. The

goal of a dynamic scheduling algorithm as such includes not only the minimization of the

program completion time but also the minimization of the scheduling overhead which

constitutes a significant portion of the cost paid for running the scheduler. In general

dynamic scheduling is an NP hard problem.

2.4 Program flow mechanism

Conventional machines used control flow mechanism in which order of program

execution explicitly stated in user programs. Dataflow machines which instructions can

be executed by determining operand availability.

Reduction machines trigger an instruction’s execution based on the demand for its

results.

Control Flow vs. Data Flow In Control flow computers the next instruction is executed

when the last instruction as stored in the program has been executed where as in Data

flow computers an instruction executed when the data (operands) required for executing

that instruction is available

Control flow machines used shared memory for instructions and data. Since variables are

updated by many instructions, there may be side effects on other instructions. These side

effects frequently prevent parallel processing. Single processor systems are inherently

sequential.

Instructions in dataflow machines are unordered and can be executed as soon as their

operands are available; data is held in the instructions themselves. Data tokens are passed

from an instruction to its dependents to trigger execution.

 39

Data Flow Features

No need for shared memory program counter control sequencer Special mechanisms are

required to detect data availability match data tokens with instructions needing them

enable chain reaction of asynchronous instruction execution

A Dataflow Architecture – 1 The Arvind machine (MIT) has N PEs and an N -by –N

interconnection network. Each PE has a token-matching mechanism that dispatches only

instructions with data tokens available. Each datum is tagged with

• address of instruction to which it belongs

• context in which the instruction is being executed

Tagged tokens enter PE through local path (pipelined), and can also be communicated to

other PEs through the routing network. Instruction address(es) effectively replace the

program counter in a control flow machine. Context identifier effectively replaces the

frame base register in a control flow machine. Since the dataflow machine matches the

data tags from one instruction with successors, synchronized instruction execution is

implicit.

An I-structure in each PE is provided to eliminate excessive copying of data structures.

Each word of the I-structure has a two-bit tag indicating whether the value is empty, full,

or has pending read requests.

This is a retreat from the pure dataflow approach. Special compiler technology needed for

dataflow machines.

Demand-Driven Mechanisms

Data-driven machines select instructions for execution based on the availability of their

operands; this is essentially a bottom-up approach.

Demand-driven machines take a top-down approach, attempting to execute the

instruction (a demander) that yields the final result. This triggers the execution of

instructions that yield its operands, and so forth. The demand-driven approach matches

naturally with functional programming languages (e.g. LISP and SCHEME).

Pattern driven computers : An instruction is executed when we obtain a particular data

patterns as output. There are two types of pattern driven computers

 40

String-reduction model: each demander gets a separate copy of the expression string to

evaluate each reduction step has an operator and embedded reference to demand the

corresponding operands each operator is suspended while arguments are evaluated

Graph-reduction model: expression graph reduced by evaluation of branches or

subgraphs, possibly in parallel, with demanders given pointers to results of reductions.

based on sharing of pointers to arguments; traversal and reversal of pointers continues

until constant arguments are encountered.

2.5 System interconnect architecture.

Various types of interconnection networks have been suggested for SIMD computers.

These are basically classified have been classified on network topologies into two

categories namely

� Static Networks

� Dynamic Networks

Static versus Dynamic Networks

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in interconnecting the processing elements.

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in the interconnecting the processing elements. To execute the

communication the routing function f is executed and via the interconnection network the

PEi copies the content of its Ri register into the Rf(i) register of PEf(i). The f(i) the

processor identified by the mapping function f. The data routing operation occurs in all

active PEs simultaneously.

2.5.1 Network properties and routing

The goals of an interconnection network are to provide low-latency high data transfer rate

wide communication bandwidth. Analysis includes latency bisection bandwidth data-

routing functions scalability of parallel architecture

These Network usually represented by a graph with a finite number of nodes linked by

directed or undirected edges.

Number of nodes in graph = network size .

Number of edges (links or channels) incident on a node = node degree d (also note in and

out degrees when edges are directed).

 41

 Node degree reflects number of I/O ports associated with a node, and should ideally be

small and constant.

Network is symmetric if the topology is the same looking from any node; these are easier

to implement or to program.

Diameter : The maximum distance between any two processors in the network or in

other words we can say Diameter, is the maximum number of (routing) processors

through which a message must pass on its way from source to reach destination. Thus

diameter measures the maximum delay for transmitting a message from one processor to

another as it determines communication time hence smaller the diameter better will be

the network topology.

Connectivity: How many paths are possible between any two processors i.e., the

multiplicity of paths between two processors. Higher connectivity is desirable as it

minimizes contention.

 Arch connectivity of the network: the minimum number of arcs that must be removed for

the network to break it into two disconnected networks. The arch connectivity of various

network are as follows

• 1 for linear arrays and binary trees

• 2 for rings and 2-d meshes

• 4 for 2-d torus

• d for d-dimensional hypercubes

Larger the arch connectivity lesser the conjunctions and better will be network topology.

Channel width : The channel width is the number of bits that can communicated

simultaneously by a interconnection bus connecting two processors

Bisection Width and Bandwidth: In order divide the network into equal halves we require

the remove some communication links. The minimum number of such communication

links that have to be removed are called the Bisection Width. Bisection width basically

provide us the information about the largest number of messages which can be sent

simultaneously (without needing to use the same wire or routing processor at the same

time and so delaying one another), no matter which processors are sending to which

other processors. Thus larger the bisection width is the better the network topology is

considered. Bisection Bandwidth is the minimum volume of communication allowed

 42

between two halves of the network with equal numbers of processors This is important

for the networks with weighted arcs where the weights correspond to the link width i.e.,

(how much data it can transfer). The Larger bisection width the better network topology

is considered.

Cost the cost of networking can be estimated on variety of criteria where we consider the

the number of communication links or wires used to design the network as the basis of

cost estimation. Smaller the better the cost

Data Routing Functions: A data routing network is used for inter –PE data exchange. It

can be static as in case of hypercube routing network or dynamic such as multistage

network. Various type of data routing functions are Shifting, Rotating, Permutation (one

to one), Broadcast (one to all), Multicast (many to many), Personalized broadcast (one to

many), Shuffle, Exchange Etc.

Permutations

Given n objects, there are n ! ways in which they can be reordered (one of which is no

reordering). A permutation can be specified by giving the rule for reordering a group of

objects. Permutations can be implemented using crossbar switches, multistage networks,

shifting, and broadcast operations. The time required to perform permutations of the

connections between nodes often dominates the network performance when n is large.

Perfect Shuffle and Exchange

Stone suggested the special permutation that entries according to the mapping of the k-bit

binary number a b … k to b c … k a (that is, shifting 1 bit to the left and wrapping it

around to the least significant bit position). The inverse perfect shuffle reverses the effect

of the perfect shuffle.

Hypercube Routing Functions

If the vertices of a n-dimensional cube are labeled with n-bit numbers so that only one bit

differs between each pair of adjacent vertices, then n routing functions are defined by the

bits in the node (vertex) address. For example, with a 3-dimensional cube, we can easily

identify routing functions that exchange data between nodes with addresses that differ in

the least significant, most significant, or middle bit.

Factors Affecting Performance

 43

Functionality – how the network supports data routing, interrupt handling,

synchronization, request/message combining, and coherence

Network latency – worst-case time for a unit message to be transferred

Bandwidth – maximum data rate

Hardware complexity – implementation costs for wire, logic, switches, connectors, etc.

Scalability – how easily does the scheme adapt to an increasing number of processors,

memories, etc.?

2.5.2 Static connection Networks

In static network the interconnection network is fixed and permanent interconnection

path between two processing elements and data communication has to follow a fixed

route to reach the destination processing element. Thus it Consist of a number of point-

to-point links. Topologies in the static networks can be classified according to the

dimension required for layout i.e., it can be 1-D, 2-D, 3-D or hypercube.

One dimensional topologies include Linear array as shown in figure 2.2 (a) used in some

pipeline architecture.

Various 2-D topologies are

• The ring (figure 2.2(b))

• Star (figure 2.2(c))

• Tree (figure 2.2(d))

• Mesh (figure 2.2(e))

• Systolic Array (figure 2.2(f))

3-D topologies include

• Completely connected chordal ring (figure 2.2(g))

• Chordal ring (figure 2.2(h))

• 3 cube (figure 2.2(i))

 44

Figure 2.2 Static interconnection network topologies.

 Torus architecture is also one of popular network topology it is extension of the mesh by

having wraparound connections Figure below is a 2D Torus This architecture of torus is

a symmetric topology unlike mesh which is not. The wraparound connections reduce the

torus diameter and at the same time restore the symmetry. It can be

o 1-D torus

2-D torus

3-D torus

The torus topology is used in Cray T3E

 45

Figure 2.3 Torus technology

We can have further higher dimension circuits for example 3-cube connected cycle. A D-

dimension W-wide hypercube contains W nodes in each dimension and there is a

connection to a node in each dimension. The mesh and the cube architecture are actually

2-D and 3-D hypercube respectively. The below figure we have hypercube with

dimension 4.

Figure 2.4 4-D hypercube.

2.5.3 Dynamic connection Networks

The dynamic networks are those networks where the route through which data move

from one PE to another is established at the time communication has to be performed.

Usually all processing elements are equidistant and an interconnection path is established

when two processing element want to communicate by use of switches. Such systems are

more difficult to expand as compared to static network. Examples: Bus-based, Crossbar,

Multistage Networks. Here the Routing is done by comparing the bit-level representation

 46

of source and destination addresses. If there is a match goes to next stage via pass-

through else in case of it mismatch goes via cross-over using the switch.

There are two classes of dynamic networks namely

• single stage network

• multi stage

2.5.3.1 Single Stage Networks

A single stage switching network with N input selectors (IS) and N output selectors (OS).

Here at each network stage there is a 1- to-D demultiplexer corresponding to each IS such

that 1<D<N and each OS is an M-to-1 multiplexer such that 1<M<=N. Cross bar network

is a single stage network with D=M=N. In order to establish a desired connecting path

different path control signals will be applied to all IS and OS selectors. The single stage

network is also called as recirculating network as in this network connection the single

data items may have to recirculate several time through the single stage before reaching

their final destinations. The number of recirculation depends on the connectivity in the

single stage network. In general higher the hardware connectivity the lesser is the number

of recirculation. In cross bar network only one circulation is needed to establish the

connection path. The cost of completed connected cross bar network is O(N2) which is

very high as compared to other most recirculating networks which have cost O(N log N)

or lower hence are more cost effective for large value of N.

2.5.3.2 Multistage Networks

Many stages of interconnected switches form a multistage SIMD network. It is basicaaly

consist of three characteristic features

• The switch box,

• The network topology

• The control structure

Many stages of interconnected switches form a multistage SIMD networks. Eachbox is

essentially an interchange device with two inputs and two outputs. The four possible

states of a switch box are which are shown in figure 3.6

• Straight

• Exchange

• Upper Broadcast

 47

• Lower broadcast.

A two function switch can assume only two possible state namely state or exchange

states. However a four function switch box can be any of four possible states. A

multistage network is capable of connecting any input terminal to any output terminal.

Multi-stage networks are basically constructed by so called shuffle-exchange switching

element, which is basically a 2 x 2 crossbar. Multiple layers of these elements are

connected and form the network.

Figure 2.5 A two-by-two switching box and its four interconnection states

 A multistage network is capable of connecting an arbitrary input terminal to an arbitrary

output terminal. Generally it is consist of n stages where N = 2n is the number of input

and output lines. And each stage use N/2 switch boxes. The interconnection patterns from

one stage to another stage is determined by network topology. Each stage is connected to

the next stage by at least N paths. The total wait time is proportional to the number stages

i.e., n and the total cost depends on the total number of switches used and that is Nlog2N.

The control structure can be individual stage control i.e., the same control signal is used

to set all switch boxes in the same stages thus we need n control signal. The second

control structure is individual box control where a separate control signal is used to set

the state of each switch box. This provide flexibility at the same time require n2/2 control

signal which increases the complexity of the control circuit. In between path is use of

partial stage control.

 48

Examples of Multistage Networks

� Banyan

� Baseline

� Cube

� Delta

� Flip

� Indirect cube

� Omega

Multistage network can be of two types

• One side networks : also called full switch having input output port on the same

side

• Two sided multistage network : which have an input side and an output side. It

can be further divided into three class

o Blocking: In Blocking networks, simultaneous connections of more than

one terminal pair may result conflicts in the use of network

communication links. Examples of blocking network are the Data

Manipulator, Flip, N cube, omega, baseline. All multistage networks that

are based on shuffle-exchange elements, are based on the concept of

blocking network because not all possible here to make the input-output

connections at the same time as one path might block another. The figure

2.6 (a) show an omega network.

o Rearrangeable : In rearrangeable network, a network can perform all

possible connections between inputs and outputs by rearranging its

existing connections so that a connection path for a new input-output pair

can always be established. An example of this network topology is Benes

Network (see figure 2.6 (b) showing a 8** Benes network)which support

synchronous data permutation and a synchronous interprocessor

communication.

o Non blocking : A non –blocking network is the network which can handle

all possible connections without blocking. There two possible cases first

one is the Clos network (see figure 2.6(c)) where a one to one connection

 49

is made between input and output. Another case of one to many

connections can be obtained by using crossbars instead of the shuffle-

exchange elements. The cross bar switch network can connect every input

port to a free output port without blocking.

Figure 2.6 Several Multistage Interconnection Networks

Mesh-Connected Illiac Networks

A single stage recirculating network has been implemented in the ILLiac –IV array with

N= 64 PEs. Here in mesh network nodes are arranged as a q-dimensional lattice. The

 50

neighboring nodes are only allowed to communicate the data in one step i.e., each PEi is

allowed to send the data to any one of PE(i+1) , PE (i-1), Pe(i+r) and PE(i-r) where r=

square root N(in case of Iliac r=8). In a periodic mesh, nodes on the edge of the mesh

have wrap-around connections to nodes on the other side this is also called a toroidal

mesh.

Mesh Metrics

For a q-dimensional non-periodic lattice with kq nodes:

• Network connectivity = q

• Network diameter = q(k-1)

• Network narrowness = k/2

• Bisection width = kq-1

• Expansion Increment = kq-1

• Edges per node = 2q

Thus we observe the output of IS k is connected to inputs of OSj where j = k-1,K+1,k-

r,k+r as shown in figure below.

Figure2.7 routing function of mesh Topology

Similarly the OSj gets input from ISk for K= j-1, j+1,j-r,j+r. The topology is formerly

described by the four routing functions:

• R+1(i)= (i+1) mod N => (0,1,2…,14,15)

• R-1(i)= (i-1) mod N => (15,14,…,2,1,0)

• R+r(i)= (i+r) mod N => (0,4,8,12)(1,5,9,13)(2,6,10,14)(3,7,11,15)

• R-r(i)= (i-r) mod N => (15,11,7,3)(14,10,6,2)(13,9,5,1)(12,8,4,0)

The figure given below show how each PEi is connected to its four nearest neighbors in

the mesh network. It is same as that used for IILiac –IV except that w had reduced it for

N=16 and r=4. The index are calculated as module N.

 51

Figure 2.8 Mesh Connections

Thus the permutation cycle according to routing function will be as follows:

Horizontally, all PEs of all rows form a linear circular list as governed by the following

two permutations, each with a single cycle of order N. The permutation cycles (a b c) (d

e) stands for permutation a->b, b->c, c->a and d->e, e->d in a circular fashion with each

pair of parentheses.

R+1 = (0 1 2 ….N-1)

R–1 = (N-1 ….. 2 1 0).

Similarly we have vertical permutation also and now by combining the two permutation

each with four cycles of order four each the shift distance for example for a network of N

= 16 and r = square root(16) = 4, is given as follows:

R +4 = (0 4 8 12)(1 5 9 13)(2 6 10 14)(3 7 11 15)

R –4 = (12 8 4 0)(13 9 5 1)(14 10 6 2)(15 11 7 3)

Figure 4.9 Mesh Redrawn

 52

Each PEi is directly connected to its four neighbors in the mesh network. The graph

shows that in one step a PE can reach to four PEs, seven PEs in two step and eleven PEs

in three steps. In general it takes I steps (recirculations) to route data from PEi to another

PEj for a network of size N where I is upper –bound given by

I<= square root(N) -1

Thus in above example for N=16 it will require at most 3 steps to route data from one PE

to another PE and for Illiac –IV network with 64 PE need maximum of 7 steps for routing

data from one PE to Another.

Cube Interconnection Networks

The cube network can be implemented as either a recirculating network or as a multistage

network for SIMD machine. It can be 1-D i.e., a single line with two pE each at end of a

line, a square with four PEs at the corner in case of 2-D, a cube for 3-D and hypercube in

4-D. in case of n-dimension hypercube each processor connects to 2n neighbors. This can

be also visualized as the unit (hyper) cube embedded in d-dimensional Euclidean space,

with one corner at 0 and lying in the positive orthant. The processors can be thought of as

lying at the corners of the cube, with their (x1,x2,...,xd) coordinates identical to their

processor numbers, and connected to their nearest neighbors on the cube. The popular

examples where cube topology is used are : iPSC, nCUBE, SGI O2K.

 Vertical lines connect vertices (PEs) whose address differ in the most significant

bit position. Vertices at both ends of the diagonal lines differ in the middle bit position.

Horizontal lines differ in the least significant bit position. The unit – cube concept can be

extended to an n- dimensional unit space called an n cube with n bits per vertex. A cube

network for an SIMD machine with N PEs corresponds to an n cube where n = log2 N.

We use binary sequence to represent the vertex (PE) address of the cube. Two processors

are neighbors if and only if their binary address differs only in one digit place

 53

For an n-dimensional cube network of N PEs is specified by the following n routing

functions

Ci (An-1 …. A1 A0)= An-1…Ai+1 A’i Ai-1……A0 for i =0,1,2,…,n-1

A n- dimension cube each PE located at the corner is directly connected to n neighbors.

The addresses of neighboring PE differ in exactly one bit position. Pease’s binary n cube

the flip flop network used in staran and programmable switching network proposed for

Phoenix are examples of cube networks.

In a recirculating cube network each ISa for 0<=A+< N-1 is connected to n OSs whose

addresses are An-1…Ai+1 A’i Ai-1……A0 . When the PE addresses are considered as

the corners of an m-dimensional cube this network connects each PE to its m neighbors.

The interconnections of the PEs corresponding to the three routing function C0, C1 and

C2 are shown separately in below figure.

• Examples

 54

Figure 2.10 The recirculating Network

It takes n<= log2 N steps to rotate data from any PE to another.

Example: N=8 => n=3

Figure 2.11 Possible routing in multistage Cube network for N = 8

Figure 2.12 A multistage Cube network for N = 8

The same set of cube routing functions i.e., C0,C1, C2 can also be implemented by three

stage network. Two functions switch box is used which can provide either straight and

exchange routing is used for constructing multistage cube networks. The stages are

numbered as 0 at input end and increased to n-1 at the output stage i.e., the stage I

implements the Ci routing function or we can say at ith stage connect the input line to the

output line that differ from it only at the ith bit position.

This connection was used in the early series of Intel Hypercubes, and in the CM-2.

Suppose there are 8 process ring elements so 3 bits are required for there address. and

that processor 000 is the root. The children of the root are gotten by toggling the first

address bit, and so are 000 and 100 (so 000 doubles as root and left child). The children

 55

of the children are gotten by toggling the next address bit, and so are 000, 010, 100 and

110. Note that each node also plays the role of the left child. Finally, the leaves are gotten

by toggling the third bit. Having one child identified with the parent causes no problems

as long as algorithms use just one row of the tree at a time. Here is a picture.

Figure 2.13 A tree embedded in 3-D hypercube

Shuffle-Exchange Omega Networks

A shuffle-exchange network consists of n=2k nodes and it is based on two routing

functions shuffle (S) and exchange (E). Let A= An-1…A1A0be the address of a PE than

a shuffle function is given by:

S(A)=S(An-1…A1A0)=A.n-2…A1A0An-1, 0<A<1

The cyclic shifting of the bits in A to the left for one bit osition is performed by the S

function. Which is effectively like shuffling the bottom half of a card deck into the top

half as shown in figure below.

 56

Figure 2.14 Perfect shuffle and inverse perfect shuffle

There are two type of shuffle the perfect shuffle cuts the deck into two halves from the

centre and intermix them evenly. Perfect shuffle provide the routing connections of node

i with node 2i mod(n-1), except for node n-1 which is connected to itself. The inverse

perfect shuffle does the opposite to restore the original order it is denoted as exchange

routing function E and is defined as :

E(An-1…A1A0)= (An-1…A1A0’)

This obtained by complementing the least significant digit means data exchange

between two PEs with adjacent addresses. The E(A) is same as the cube routing function

as described earlier. Exchange routing function connects nodes whose numbers differ in

their lowest bit.

The shuffle exchange function can be implemented as either a recirculating network or

multistage network. The implementation of shuffle and exchange network through

recirculating network is shown below. Use of shuffle and exchange topology for parallel

processing was proposed by Stone. It is used for solving many parallel algorithms

efficiently. The example where it is used include FFT (fast Fourier transform), sorting,

matrix transposition , polynomial evaluations etc.

 57

Figure2.15 shuffle and exchange recirculating network for N=8

The shuffle –exchange function have been implemented as multistage Omega network by

LAwrie. An N by N omega network, consists of n identical stages. Between two adjacent

column there is a perfect shuffle interconnection. Thus after each stage there is a N/2

four-function interchange boxes under independent box control. The four functions are

namely straight exchange upper broadcast and lower broadcast. The shuffle connects

output P n-l...Pl P0 of stage i to input P n-2...PlP0Pn-l of stage i-1. Each interchange box

in an omega network is controlled by the n-bit destination tags associated with the data

on its input lines.

 58

Figure 2.16

The diameter is m=log_2 p, since all message must traverse m stages. The bisection

width is p. This network was used in the IBM RP3, BBN Butterfly, and NYU

Ultracomputer. If we compare the omega network with cube network we find Omega

network can perform one to many connections while n-cube cannot. However as far as

bijections connections n-cube and Omega network they perform more or less same.

2.6 Summary

Fine-grain exploited at instruction or loop levels, assisted by the compiler.

Medium-grain (task or job step) requires programmer and compiler support.

Coarse-grain relies heavily on effective OS support.

Shared-variable communication used at fine- and medium grain levels.

Message passing can be used for medium- and coarse grain communication, but fine -

grain really need better technique because of heavier communication requirements.

Control flow machines give complete control, but are less efficient than other approaches.

Data flow (eager evaluation) machines have high potential for parallelism and throughput

and freedom from side effects, but have high control overhead, lose time waiting for

unneeded arguments, and difficulty in manipulating data structures. Reduction (lazy

 59

evaluation) machines have high parallelism potential, easy manipulation of data

structures, and only execute required instructions. But they do not share objects with

changing local state, and do require time to propagate tokens

Summary of properties of various static network

Summary of properties of various dynamic networks

Network Characteristics Bus System Multistage Network Crossbar Switch

Minimum Latency for

unit data transfer

Constant O(log k n) Constant

Bandwidth per processor O(w/n) to O(w) O(w) to O(nw) O(w) to O(nw)

Wiring Complexity O(w) O(nw log k n) O(n2w)

Switching complexity O(n) O(n log k n) O(n2)

Connectivity and routing

capability

Only one to one

at a time

Some permutations

and broadcast , if

network unblocked

All permutations

one at a time.

Metrics of dynamic connected nework

2.7 Keywords

Dependence graph : A directed graph whose nodes represent calculations and whose

edges represent dependencies among those calculations. If the calculation represented by

 60

node k depends on the calculations represented by nodes i and j, then the dependence

graph contains the edges i-k and j-k.

data dependency : a situation existing between two statements if one statement can store

into a location that is later accessed by the other statement

granularity The size of operations done by a process between communications events. A

fine grained process may perform only a few arithmetic operations between processing

one message and the next, whereas a coarse grained process may perform millions

control-flow computers refers to an architecture with one or more program counters that

determine the order in which instructions are executed.

dataflow A model of parallel computing in which programs are represented as

dependence graphs and each operation is automatically blocked until the values on which

it depends are available. The parallel functional and parallel logic programming models

are very similar to the dataflow model.

network A physical communication medium. A network may consist of one or more

buses, a switch, or the links joining processors in a multicomputer.

Static networks: point-to-point direct connections that will not change during program

execution

Dynamic networks: switched channels dynamically configured to match user program

communication demands include buses, crossbar switches, and multistage networks

routing The act of moving a message from its source to its destination. A routing

technique is a way of handling the message as it passes through individual nodes.

Diameter D of a network is the maximum shortest path between any two nodes, measured

by the number of links traversed; this should be as small as possible (from a

communication point of view).

Channel bisection width b = minimum number of edges cut to split a network into two

parts each having the same number of nodes. Since each channel has w bit wires, the wire

bisection width B = bw. Bisection width provides good indication of maximum

communication bandwidth along the bisection of a network, and all other cross sections

should be bounded by the bisection width.

Wire (or channel) length = length (e.g. weight) of edges between nodes.

 61

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Pipelining Lesson No. : 03

3.0 Objective

3.1 Introduction

3.2 Linear pipeline

3.3 Nonlinear pipeline

3.4 Design instruction and arithmetic pipeline

3.5 Superscalar and super pipeline

3.6 Pipelining in RISC

3.6.1 CISC approach

3.6.2 RISC approach

3.6.3 CRISC

3.7 VILW architecture

3.8 Summary

3.9 Key words

3.10 Self assessment questions

3.11 References/Suggested readings

3.0 Objective

The main objective of this lesson is to known the basic properties of pipelining,

classification of pipeline processors and the required memory support. The main aim this

lesson is to learn the how pipelining is implemented in various computer architecture like

RISC and CISC etc. How the issues related to limitations of pipelining and are overcame

by using superscalar pipeline architecture.

3.1 Introduction

Pipeline is similar to the assembly line in industrial plant. To achieve pipelining one must

divide the input process into a sequence of sub tasks and each of which can be executed

concurrently with other stages. The various classification or pipeline line processor are

arithmetic pipelining, instruction pipelining, processor pipelining have also been briefly

discussed. Limitations of pipelining are discussed and shift to Pipeline architecture to

 62

Superscalar architecture is also discussed. Superscalar pipeline organization and design

are discussed.

3.2 Linear pipelining

Pipelining is a technique of that decompose any sequential process into small

subprocesses, which are independent of each other so that each subprocess can be

executed in a special dedicated segment and all these segments operates concurrently.

Thus whole task is partitioned to independent tasks and these subtask are executed by a

segment. The result obtained as an output of a segment (after performing all computation

in it) is transferred to next segment in pipeline and the final result is obtained after the

data have been through all segments. Thus it could understand if take each segment

consists of an input register followed by a combinational circuit. This combinational

circuit performs the required sub operation and register holds the intermediate result. The

output of one combinational circuit is given as input to the next segment.

The concept of pipelining in computer organization is analogous to an industrial

assembly line. As in industry there different division like manufacturing, packing and

delivery division, a product is manufactured by manufacturing division, while it is packed

by packing division a new product is manufactured by manufacturing unit. While this

product is delivered by delivery unit a third product is manufactured by manufacturing

unit and second product has been packed. Thus pipeline results in speeding the overall

process. Pipelining can be effectively implemented for systems having following

characteristics:

• A system is repeatedly executes a basic function.

• A basic function must be divisible into independent stages such that each stage

have minimal overlap.

• The complexity of the stages should be roughly similar.

The pipelining in computer organization is basically flow of information. To understand

how it works for the computer system lets consider an process which involves four steps /

segment and the process is to be repeated six times. If single steps take t nsec time then

time required to complete one process is 4 t nsec and to repeat it 6 times we require 24t

nsec.

 63

Now let’s see how problem works behaves with pipelining concept. This can be

illustrated with a space time diagram given below figure 3.1, which shows the segment

utilization as function of time. Lets us take there are 6 processes to be handled

(represented in figure as P1, P2, P3, P4, P5 and P6) and each process is divided into 4

segments (S1, S2, S3, S4). For sake of simplicity we take each segment takes equal time

to complete the assigned job i.e., equal to one clock cycle. The horizontal axis displays

the time in clock cycles and vertical axis gives the segment number. Initially, process1 is

handled by the segment 1. After the first clock segment 2 handles process 1 and segment

1 handles new process P2. Thus first process will take 4 clock cycles and remaining

processes will be completed one process each clock cycle. Thus for above example total

time required to complete whole job will be 9 clock cycles (with pipeline organization)

instead of 24 clock cycles required for non pipeline configuration.

Figure 3.1 Space –time diagram for pipeline

Speedup ratio : The speed up ratio is ratio between maximum time taken by non

pipeline process over process using pipelining. Thus in general if there are n processes

and each process is divided into k segments (subprocesses). The first process will take k

segments to complete the processes, but once the pipeline is full that is first process is

complete, it will take only one clock period to obtain an output for each process. Thus

first process will take k clock cycles and remaining n-1 processes will emerge from the

pipe at the one process per clock cycle thus total time taken by remaining process will be

(n-1) clock cycle time.

Let tp be the one clock cycle time.

The time taken for n processes having k segments in pipeline configuration will be

 1 2 3 4 5 6 7 8 9

P1 S1 S2 S3 S4

P2 S1 S2 S3 S4

P3 S1 S2 S3 S4

P4 S1 S2 S3 S4

P5 S1 S2 S3 S4

P6 S1 S2 S3 S4

 64

= k*tp + (n-1)*tp= (k+n-1)*tp

the time taken for one process is tn thus the time taken to complete n process in non

pipeline configuration will be

= n*tn

Thus speed up ratio for one process in non pipeline and pipeline configuration is

= n*tn / (n+k-1)*tp

if n is very large compared to k than

=tn / tp

if a process takes same time in both case with pipeline and non pipeline configuration

than tn = k*tp

Thus speed up ratio will Sk =k*tp/tp =k

Theoretically maximum speedup ratio will be k where k are the total number of

segments in which process is divided. The following are various limitations due to which

any pipeline system cannot operate at its maximum theoretical rate i.e., k (speed up ratio).

a. Different segments take different time to complete there suboperations, and in

pipelining clock cycle must be chosen equal to time delay of the segment with

maximum propagation time. Thus all other segments have to waste time waiting

for next clock cycle. The possible solution for improvement here can if possible

subdivide the segment into different stages i.e., increase the number of stages and

if segment is not subdivisible than use multiple of resource for segment causing

maximum delay so that more than one instruction can be executed in to different

resources and overall performance will improve.

b. Additional time delay may be introduced because of extra circuitry or additional

software requirement is needed to overcome various hazards, and store the result

in the intermediate registers. Such delays are not found in non pipeline circuit.

c. Further pipelining can be of maximum benefit if whole process can be divided

into suboperations which are independent to each other. But if there is some

resource conflict or data dependency i.e., a instruction depends on the result of

pervious instruction which is not yet available than instruction has to wait till

result become available or conditional or non conditional branching i.e., the

bubbles or time delay is introduced.

 65

Efficiency : The efficiency of linear pipeline is measured by the percentage of time when

processor are busy over total time taken i.e., sum of busy time plus idle time. Thus if n is

number of task , k is stage of pipeline and t is clock period then efficiency is given by

η = n/ [k + n -1]

Thus larger number of task in pipeline more will be pipeline busy hence better will be

efficiency. It can be easily seen from expression as n →∞, η →1.

η = Sk/k

Thus efficiency η of the pipeline is the speedup divided by the number of stages, or one

can say actual speed ratio over ideal speed up ratio. In steady stage where n>>k, η

approaches 1.

Throughput: The number of task completed by a pipeline per unit time is called

throughput, this represents computing power of pipeline. We define throughput as

W= n/[k*t + (n-1) *t] = η/t

In ideal case as η -> 1 the throughout is equal to 1/t that is equal to frequency. Thus

maximum throughput is obtained is there is one output per clock pulse.

Que 3.1. A non-pipeline system takes 60 ns to process a task. The same task can be

processed in six segment pipeline with a clock cycle of 10 ns. Determine the speedup

ratio of the pipeline for 100 tasks. What is the maximum speed up that can be achieved?

Soln. Total time taken by for non pipeline to complete 100 task is = 100 * 60 = 6000 ns

 Total time taken by pipeline configuration to complete 100 task is

= (100 + 6 –1) *10 = 1050 ns

Thus speed up ratio will be = 6000 / 1050 = 4.76

 The maximum speedup that can be achieved for this process is = 60 / 10 = 6

Thus, if total speed of non pipeline process is same as that of total time taken to complete

a process with pipeline than maximum speed up ratio is equal to number of segments.

Que 3.2. A non-pipeline system takes 50 ns to process a task. The same task can be

processed in a six segment pipeline with a clock cycle of 10 ns. Determine the speedup

ratio of the pipeline for 100 tasks. What is the maximum speed up that can be achieved?

Soln. Total time taken by for non pipeline to complete 100 task is = 100 * 50 = 5000 ns

 Total time taken by pipeline configuration to complete 100 task is

= (100 + 6 –1) *10 = 1050 ns

 66

Thus speed up ratio will be = 5000 / 1050 = 4.76

 The maximum speedup that can be achieved for this process is = 50 / 10 = 5

The two areas where pipeline organization is most commonly used are arithmetic pipeline

and instruction pipeline. An arithmetic pipeline where different stages of an arithmetic

operation are handled along the stages of a pipeline i.e., divides the arithmetic operation

into suboperations for execution of pipeline segments. An instruction pipeline operates on

a stream of instructions by overlapping the fetch, decode, and execute phases of the

instruction cycle as different stages of pipeline. RISC architecture supports pipelining

more than a CISC architecture does. There are three prime disadvantages of pipeline

architecture.

1. The first is complexity i.e., to divide the process into dependent subtask

2. Many intermediate registers are required to hold the intermediate information as

output of one stage which will be input of next stage. These are not required for

single unit circuit thus it is usually constructed entirely as combinational circuit

3. The third disadvantage is its inability to continuously run the pipeline at full

speed, i.e. the pipeline stalls for some cycle. There are phenomena called pipeline

hazards which disrupt the smooth execution of the pipeline if these hazards are

not handled properly they may gave wrong result. Often it is required insert

delays in the pipeline flow in order to manage these hazards such delays are called

bubbles. Often it is managed by using special hardware techniques while

sometime using software techniques such as compiler or code reordering, etc.

Various types of pipeline hazards include:

• structural hazards that happens due to hardware conflicts

• data hazards that happen due to data dependencies

• control hazards that happens when there is change in flow of statement like

due to branch, jump, or any other control flow changes conditions

• Exception hazard that happens due to some exception or interrupt occurred

while execution in a pipeline system.

3.3 Non linear pipeline

A dynamic pipeline can be reconfigured to perform variable function at different

times. The traditional linear pipelines are static pipeline because they used to perform

 67

fixed function. A dynamic pipeline allows feed forward and feedback connections in

addition to streamline connection. A dynamic pipelining may initiate tasks from

different reservation tables simultaneously to allow multiple numbers of initiations of

different functions in the same pipeline.

3.3.1 Reservation Tables and latency analysis

Reservation tables are used how successive pipeline stages are utilized for a specific

evaluation function. These reservation tables show the sequence in which each function

utilizes each stage. The rows correspond to pipeline stages and the columns to clock time

units. The total number of clock units in the table is called the evaluation time. A

reservation table represents the flow of data through the pipeline for one complete

evaluation of a given function. (For example, think of X as being a floating square root,

and Y as being a floating cosine. A simple floating multiply might occupy just S1 and S2

in sequence.) We could also denote multiple stages being used in parallel, or a stage

being drawn out for more than one cycle with these diagrams.

 68

We determine the next start time for one or the other of the functions by lining up the

diagrams and sliding one with respect to another to see where one can fit into the open

slots. Once an X function has been scheduled, another X function can start after 1, 3 or 6

cycles. A Y function can start after 2 or 4 cycles. Once a Y function has been scheduled,

another Y function can start after 1, 3 or 5 cycles. An X function can start after 2 or 4

cycles. After two functions have been scheduled, no more can be started until both are

complete.

Job Sequencing and Collision Prevention

Initiation the start a single function evaluation collision may occur as two or more

initiations attempt to use the same stage at the same time. Thus it is required to properly

schedule queued tasks awaiting initiation in order to avoid collisions and to achieve high

throughput. We can define collision as:

1. A collision occurs when two tasks are initiated with latency (initiation interval) equal

to the column distance between two “X” on some row of the reservation table.

2. The set of column distances F ={l1,l2,…,lr} between all possible pairs of “X” on each

row of the reservation table is called the forbidden set of latencies.

3. The collision vector is a binary vector C = (Cn…C2 C1), Where Ci=1 if i belongs to F

(set of forbidden latencies) and Ci=0 otherwise.

Some fundamental concepts used in it are:

Latency - number of time units between two initiations (any positive integer 1, 2,…)

Latency sequence – sequence of latencies between successive initiations

Latency cycle – a latency sequence that repeats itself

Control strategy – the procedure to choose a latency sequence

Greedy strategy – a control strategy that always minimizes the latency between the

current initiation and the very last initiation

Example: Let us consider a Reservation Table with the following set of forbidden

latencies F and permitted latencies P (complementation of F).

 69

It has been observed that

 70

1. The collision vector shows both permitted and forbidden latencies from the same

reservation table.

2. One can use n-bit shift register to hold the collision vector for implementing a control

strategy for successive task initiations in the pipeline. Upon initiation of the first task, the

collision vector is parallel-loaded into the shift register as the initial state. The shift

register is then shifted right one bit at a time, entering 0’s from the left end. A collision

free initiation is allowed at time instant t+k a bit 0 is being shifted at of the register after k

shifts from time t.

A state diagram is used to characterize the successive initiations of tasks in the pipeline

in order to find the shortest latency sequence to optimize the control strategy. A state on

the diagram is represented by the contents of the shift register after the proper number of

shifts is made, which is equal to the latency between the current and next task initiations.

3. The successive collision vectors are used to prevent future task collisions with

previously initiated tasks, while the collision vector C is used to prevent possible

collisions with the current task. If a collision vector has a “1” in the ith bit (from the

right), at time t, then the task sequence should avoid the initiation of a task at time t+i.

4. Closed logs or cycles in the state diagram indicate the steady – state sustainable latency

sequence of task initiations without collisions. The average latency of a cycle is the sum

of its latencies (period) divided by the number of states in the cycle.

5. The throughput of a pipeline is inversely proportional to the reciprocal of the average

latency. A latency sequence is called permissible if no collisions exist in the successive

initiations governed by the given latency sequence.

6. The maximum throughput is achieved by an optimal scheduling strategy that achieves

the (MAL) minimum average latency without collisions.

Simple cycles are those latency cycles in which each state appears only once per each

iteration of the cycle. A single cycle is a greedy cycle if each latency contained in the

cycle is the minimal latency (outgoing arc) from a state in the cycle. A good task-

initiation sequence should include the greedy cycle.

Procedure to determine the greedy cycles

1. From each of the state diagram, one chooses the arc with the smallest latency label

unit; a closed simple cycle can formed.

 71

2. The average latency of any greedy cycle is no greater than the number of latencies in

the forbidden set, which equals the number of 1’s in the initial collision vector.

3. The average latency of any greedy cycle is always lower-bounded by the

MAL in the collision vector

Two methods for improving dynamic pipeline throughput have been proposed by

Davidson and Patel these are

• The reservation of a pipeline can be modified with insertion of non complete

delays

• Use of internal buffer at each stage.

Thus high throughput can be achieved by using the modified reservation table yielding a

more desirable latency pattern such the each stage is maximum utilized. Any computation

can be delayed by inserting a non compute stage.

Reconfigurable pipelines with different function types are more desirable. This requires

an extensive resource sharing among different functions. To achieve this one need a more

complicated structure of pipeline segments and their interconnection controls like bypass

techniques to avoid unwanted stage.

A dynamic pipeline would allow several configurations to be simultaneously present like

arithmetic unit performing both addition as well as multiplication at same time. But to

achieve this tremendous control overhead and increased interconnection complexity

would be expected.

3.4 Design of Instruction pipeline

As we know that in general case, the each instruction to execute in computer undergo

following steps:

• Fetch the instruction from the memory.

• Decode the instruction.

• Calculate the effective address.

• Fetch the operands from the memory.

• Execute the instruction (EX).

• Store the result back into memory (WB).

 72

For sake of simplicity we take calculation of the effective address and fetch operand from

memory as single segment as operand fetch unit. Thus below figure shows how the

instruction cycle in CPU can be processed with five segment instruction pipeline.

While the instruction is decoded (ID) in segment 2 the new instruction is fetched (IF)

from segment 1. Similarly in third time cycle when first instruction effective operand is

fetch (OF), the 2nd instruction is decoded and the 3rd instruction is fetched. In same

manner in fourth clock cycle, and subsequent cycles all subsequent instructions can be

fetched and placed in instruction FIFO. Thus up to five different instructions can be

processed at the same time. The figure show how the instruction pipeline works, where

time is in the horizontal axis and divided into steps of equal duration. Although the major

difficulty with instruction pipeline is that different segment may take different time to

operate the forth coming information. For example if operand is in register mode require

much less time as compared if operand has to be fetched from memory that to with

indirect addressing modes. The design of an instruction pipeline will be most effective if

the instruction cycle is divided into segments of equal duration. As there can be resource

conflict, data dependency, branching, interrupts and other reasons due to pipelining can

branch out of normal sequence.

Que 5.3 Consider a program of 15,000 instructions executed by a linear pipeline

processor with a clock rate of 25MHz. The instruction pipeline has five stages and one

instruction is issued per clock cycle. Calculate speed up ratio, efficiency and throughput

of this pipelined processor?

Soln: Time taken to execute without pipeline is = 15000 * 5* (1/25) microsecs

 Time taken with pipeline = (15000 + 5 -1)*(1/ 25) microsecs

 73

 Speed up ratio = (15000*5*25) / (15000+ 5 -1)*25 = 4.99

 Efficiency = Speed up ratio/ number of segment in pipeline = 4.99/5= 0.99

 Throughput = number of task completed in unit time = 0.99 * 25 = 24.9 MIPS

Principles of designing pipeline processor

Buffers are used to speed close up the speed gap between memory access for either

instructions or operands. Buffering can avoid unnecessary idling of the processing stages

caused by memory access conflicts or by unexpected branching or interrupts. The

concepts of busing eliminates the time delay to store and to retrieve intermediate results

or to from the registers.

The computer performance can be greatly enhanced if one can eliminate unnecessary

memory accesses and combine transitive or multiple fetch-store operations with faster

register operations. This is carried by register tagging and forwarding.

Another method to smooth the traffic flow in a pipeline is to use buffers to close up the

speed gap between the memory accesses for either instructions or operands and

arithmetic and logic executions in the functional pipes. The instruction or operand buffers

provide a continuous supply of instructions or operands to the appropriate pipeline units.

Buffering can avoid unnecessary idling of the processing stages caused by memory

access conflicts or by unexpected branching or interrupts. Sometimes the entire loop

instructions can be stored in the buffer to avoid repeated fetch of the same instructions

loop, if the buffer size is sufficiently large. It is very large in the usage of pipeline

computers.

Three buffer types are used in various instructions and data types. Instructions are fetched

to the instruction fetch buffer before sending them to the instruction unit. After decoding,

fixed point and floating point instructions and data are sent to their dedicated buffers. The

store address and data buffers are used for continuously storing results back to memory.

Busing Buffers

The sub function being executed by one stage should be independent of the other sub

functions being executed by the remaining stages; otherwise some process in the pipeline

must be halted until the dependency is removed. When one instruction waiting to be

executed is first to be modified by a future instruction, the execution of this instruction

must be suspended until the dependency is released.

 74

Another example is the conflicting use of some registers or memory locations by

different segments of a pipeline. These problems cause additional time delays. An

efficient internal busing structure is desired to route the resulting stations with minimum

time delays.

Internal Forwarding and Register Tagging

To enhance the performance of computers with multiple execution pipelines

1. Internal Forwarding refers to a short circuit technique for replacing unnecessary

memory accesses by register -to-register transfers in a sequence of fetch-arithmetic-store

operations

2. Register Tagging refers to the use of tagged registers, buffers and reservations stations

for exploiting concurrent activities among multiple arithmetic units.

The computer performance can be greatly enhanced if one can eliminate unnecessary

memory accesses and combine transitive or multiple fetch-store operations with faster

register operations. This concept of internal data forwarding can be explored in three

directions. The symbols Mi and Rj to represent the ith word in the memory and jth fetch,

store and register-to register transfer. The contents of Mi and Rj are represented by (Mi)

and Rj

Store-Fetch Forwarding The store the n fetch can be replaced by 2 parallel operations,

one store and one register transfer.

2 memory accesses

Mi -> (R1) (store)

R2 -> (Mi) (Fetch)

Cab be replaced by only one memory access

Mi -> (R1) (store)

R2 -> (R1) (register Transfer)

Fetch-Fetch Forwarding The following fetch operations can be replaced by one fetch

and one register transfer. One memory access has been eliminated.

2 memory accesses

R1 -> (Mi) (fetch)

R2 -> (Mi) (Fetch)

Is being replaced by Only by one memory access

 75

R1 -> (Mi) (Fetch)

R2 -> (R1) (register Transfer)

Store-Store Overwriting

The following two memory updates of the same word can be combined into one; since

the second store overwrites the first. 2 memory accesses

Mi -> (R1) (store)

Mi -> (R2) (store)

Is being replaced by only by one memory access

Mi -> (R2) (store)

The above steps shows how to apply internal forwarding to simplify a sequence of

arithmetic and memory access operations in figure thick arrows for memory accesses and

dotted arrows for register transfers

Forwarding and Data Hazards

Sometimes it is possible to avoid data hazards by noting that a value that results from one

instruction is not needed until a late stage in a following instruction, and sending the data

directly from the output of the first functional unit back to the input of the second one

 76

(which is sometimes the same unit). In the general case, this would require the output of

every functional unit to be connected through switching logic to the input of every

functional unit.

Data hazards can take three forms:

Read after write (RAW): Attempting to read a value that hasn't been written yet. This is

the most common type, and can be overcome by forwarding.

Write after write (WAW): Writing a value before a preceding write has completed. This

can only happen in complex pipes that allow instructions to proceed out of order, or that

have multiple write-back stages (mostly CISC), or when we have multiple pipes that can

write (superscalar).

Write after read (WAR): Writing a value before a preceding read has completed. These

also require a complex pipeline that can sometimes write in an early stage, and read in a

later stage. It is also possible when multiple pipelines (superscalar) or out-of-order issue

are employed.

The fourth situation, read after read (RAR) does not produce a hazard.

Forwarding does not solve every RAW hazard situation. For example, if a functional unit

is merely slow and fails to produce a result that can be forwarded in time, then the

pipeline must stall. A simple example is the case of a load, which has a high latency. This

is the sort of situation where compiler scheduling of instructions can help, by rearranging

independent instructions to fill the delay slots. The processor can also rearrange the

instructions at run time, if it has access to a window of prefetched instructions (called a

prefetch buffer). It must perform much the same analysis as the compiler to determine

which instructions are dependent on each other, but because the window is usually small,

the analysis is more limited in scope. The small size of the window is due to the cost of

providing a wide enough datapath to predecode multiple instructions at once, and the

complexity of the dependence testing logic.

Out of order execution introduces another level of complexity in the control of the

pipeline, because it is desirable to preserve the abstraction of in-order issue, even in the

presence of exceptions that could flush the pipe at any stage. But we'll defer this to later.

Branch Penalty Hiding

 77

The control hazards due to branches can cause a large part of the pipeline to be flushed,

greatly reducing its performance. One way of hiding the branch penalty is to fill the pipe

behind the branch with instructions that would be executed whether or not the branch is

taken. If we can find the right number of instructions that precede the branch and are

independent of the test, then the compiler can move them immediately following the

branch and tag them as branch delay filling instructions. The processor can then execute

the branch, and when it determines the appropriate target, the instruction is fetched into

the pipeline with no penalty.

The filling of branch delays can be done dynamically in hardware by reordering

instructions out of the prefetch buffer. But this leads to other problems. Another way to

hide branch penalties is to avoid certain kinds of branches. For example, if we have

IF A < 0

 THEN A = -A

we would normally implement this with a nearby branch. However, we could instead use

an instruction that performs the arithmetic conditionally (skips the write back if the

condition fails). The advantage of this scheme is that, although one pipeline cycle is

wasted, we do not have to flush the rest of the pipe (also, for a dynamic branch prediction

scheme, we need not put an extra branch into the prediction unit). These are called

predicated instructions, and the concept can be extended to other sorts of operations, such

as conditional loading of a value from memory.

Branch Prediction

Branches are the bane of any pipeline, causing a potentially large decrease in

performance as we saw earlier. There are several ways to reduce this loss by predicting

the action of the branch ahead of time.

Simple static prediction assumes that all branches will be taken or not. The designer

decides which way is predicted from instruction trace statistics. Once the choice is made,

the compiler can help by properly ordering local jumps. A slightly more complex static

branch prediction heuristic is that backward branches are usually taken and forward

branches are not (backwards taken, forwards not or BTFN). This assumes that most

backward branches are loop returns and that most forward branches are the less likely

cases of a conditional branch.

 78

Compiler static prediction involves the use of special branches that indicate the most

likely choice (taken or not, or more typically taken or other, since the most predictable

branches are those at the ends of loops that are mostly taken). If the prediction fails in this

case, then the usual cancellation of the instructions in the delay slots occurs and a branch

penalty results.

Dynamic instruction scheduling

As discussed above the static instruction scheduling can be optimized by compiler the

dynamic scheduling is achieved either by using scoreboard or with Tomasulo’s register

tagging algorithm and discussed in superscalar processors

3.5 Arithmetic pipeline

Pipeline arithmetic is used in very high speed computers specially involved in scientific

computations a basic principle behind vector processor and array processor. They are

used to implement floating – point operations, multiplication of fixed – point numbers

and similar computations encountered in computation problems. These computation

problems can easily decomposed in suboperations. Arithmetic pipelining is well

implemented in the systems involved with repeated calculations such as calculations

involved with matrices and vectors. Let us consider a simple vector calculation like

A[i] + b[i] * c[i] for I = 1,2,3,……,8

The above operation can be subdivided into three segment pipeline such each

segment has some registers and combinational circuits. Segment 1 load contents of b[i]

and c[i] in register R1 and R2 , segment 2 load a[i] content to R3 and multiply content of

R1, R2 and store them R4 finally segment 3 add content of R3 and R4 and store in R5 as

shown in figure below.

Clock pulse

number

Segment 1 Segment 2 Segment 3

 R1 R2 R3 R4 R5

1 B1 C1 - - -

2 B2 C2 B1*C1 A1

3 B3 C3 B2*C2 A2 A1+ B1*C1

4 B4 C4 B3*C3 A3 A2+ B2*C2

5 B5 C5 B4*C4 A4 A3+ B3*C3

 79

6 B6 C6 B5*C5 A5 A4+ B4*C4

7 B7 C7 B6*C6 A6 A5+ B5*C5

8 B8 C8 B7*C7 A7 A6+ B6*C6

9 B8*C8 A8 A7+ B7*C7

10 A8+ B8*C8

To illustrate the operation principles of a pipeline computation, the design of a pipeline

floating point adder is given. It is constructed in four stages. The inputs are

A = a x 2p

B = b x 2q

Where a and b are 2 fractions and p and q are their exponents and here base 2 is assumed.

To compute the sum

C = A+ B = c x 2r = d x 2s

Operations performed in the four pipeline stages are specified.

1. Compare the 2 exponents p and q to reveal the larger exponent r =max(p,q) and to

determine their difference t =p-q

2. Shift right the fraction associated with the smaller exponent by t bits to equalize the

two components before fraction addition.

3. Add the preshifted fraction with the other fraction to produce the intermediate sum

fraction c where 0 <= c <1.

4. Count the number of leading zeroes, say u, in fraction c and shift left c by u bits to

produce the normalized fraction sum d = c x 2u, with a leading bit 1. Update the large

exponent s by subtracting s= r – u to produce the output exponent.

The given below is figure show how pipeline can be implemented in floating point

addition and subtraction. Segment 1 compare the two exponents this is done using

subtraction. Segment2 we chose the larger exponents the one larger exponent as exponent

of result also it align the other mantissa by viewing the difference between two and

smaller number mantissa should be shifted to right by difference amount. Segment 3

performs addition or subtraction of mantissa while segment 4 normalize the result for that

it adjust exponent care must be taken in case of overflow, where we had to shift the

mantissa right and increment exponent by one and for underflow the leading zeros of

 80

mantissa determines the left shift in mantissa and same number should be subtracted for

exponent. Various registers R are used to hold intermediate results.

In order to implement pipelined adder we need extra circuitry but its cost is compensated

if we have implement it for large number of floating point numbers. Operations at each

stage can be done on different pairs of inputs, e.g. one stage can be comparing the

exponents in one pair of operands at the same time another stage is adding the mantissas

of a different pair of operands.

3.6 Superpipeline and Superscalar technique

Instruction level parallelism is obtained primarily in two ways in uniprocessors: through

pipelining and through keeping multiple functional units busy executing multiple

instructions at the same time. When a pipeline is extended in length beyond the normal

five or six stages (e.g., I-Fetch, Decode/Dispatch, Execute, D-fetch, Writeback), then it

may be called Superpipelined. If a processor executes more than one instruction at a time,

it may be called Superscalar. A superscalar architecture is one in which several

instructions can be initiated simultaneously and executed independently. These two

techniques can be combined into a Superscalar pipeline architecture.

 81

3.6.1 Superpipeline

In order to make processors even faster, various methods of optimizing pipelines have

been devised. Superpipelining refers to dividing the pipeline into more steps. The more

pipe stages there are, the faster the pipeline is because each stage is then shorter. thus

Superpipelining increases the number of instructions which are supported by the pipeline

at a given moment. For example if we divide each stage into two, the clock cycle period t

will be reduced to the half, t/2; hence, at the maximum capacity, the pipeline produces a

result every t/2 s. For a given architecture and the corresponding instruction set there is

an optimal number of pipeline stages; increasing the number of stages over this limit

reduces the overall performance Ideally, a pipeline with five stages should be five times

faster than a non-pipelined processor (or rather, a pipeline with one stage). The

instructions are executed at the speed at which each stage is completed, and each stage

takes one fifth of the amount of time that the non-pipelined instruction takes. Thus, a

processor with an 8-step pipeline (the MIPS R4000) will be even faster than its 5-step

counterpart. The MIPS R4000 chops its pipeline into more pieces by dividing some steps

 82

into two. Instruction fetching, for example, is now done in two stages rather than one.

The stages are as shown:

Instruction Fetch (First Half)

Instruction Fetch (Second Half)

Register Fetch

Instruction Execute

Data Cache Access (First Half)

Data Cache Access (Second Half)

Tag Check

Write Back

Given a pipeline stage time T, it may be possible to execute at a higher rate by starting

operations at intervals of T/n. This can be accomplished in two ways:

 � Further divide each of the pipeline stages into n substages.

 � Provide n pipelines that are overlapped.

The first approach requires faster logic and the ability to subdivide the stages into

segments with uniform latency. It may also require more complex inter-stage interlocking

and stall-restart logic.

The second approach could be viewed in a sense as staggered superscalar operation, and

has associated with it all of the same requirements except that instructions and data can

be fetched with a slight offset in time. In addition, inter-pipeline interlocking is more

difficult to manage because of the sub-clock period differences in timing between the

pipelines.

Inevitably, superpipelining is limited by the speed of logic, and the frequency of

unpredictable branches. Stage time cannot productively grow shorter than the interstage

latch time, and so this is a limit for the number of stages.

The MIPS R4000 is sometimes called a superpipelined machine, although its 8 stages

really only split the I-fetch and D-fetch stages of the pipe and add a Tag Check stage.

Nonetheless, the extra stages enable it to operate with higher throughput. The

UltraSPARC's 9-stage pipe definitely qualifies it as a superpipelined machine, and in fact

it is a Super-Super design because of its superscalar issue. The Pentium 4 splits the

pipeline into 20 stages to enable increased clock rate. The benefit of such extensive

 83

pipelining is really only gained for very regular applications such as graphics. On more

irregular applications, there is little performance advantage.

3.6.2 Superscalar

A solution to further improve speed is the superscalar architecture. Superscalar pipelining

involves multiple pipelines in parallel. Internal components of the processor are

replicated so it can launch multiple instructions in some or all of its pipeline stages. The

RISC System/6000 has a forked pipeline with different paths for floating-point and

integer instructions. If there is a mixture of both types in a program, the processor can

keep both forks running simultaneously. Both types of instructions share two initial

stages (Instruction Fetch and Instruction Dispatch) before they fork. Often, however,

superscalar pipelining refers to multiple copies of all pipeline stages (In terms of laundry,

this would mean four washers, four dryers, and four people who fold clothes). Many of

today's machines attempt to find two to six instructions that it can execute in every

pipeline stage. If some of the instructions are dependent, however, only the first

instruction or instructions are issued.

Dynamic pipelines have the capability to schedule around stalls. A dynamic pipeline is

divided into three units: the instruction fetch and decode unit, five to ten execute or

functional units, and a commit unit. Each execute unit has reservation stations, which act

as buffers and hold the operands and operations.

 84

While the functional units have the freedom to execute out of order, the instruction

fetch/decode and commit units must operate in-order to maintain simple pipeline

behavior. When the instruction is executed and the result is calculated, the commit unit

decides when it is safe to store the result. If a stall occurs, the processor can schedule

other instructions to be executed until the stall is resolved. This, coupled with the

efficiency of multiple units executing instructions simultaneously, makes a dynamic

pipeline an attractive alternative

Superscalar processing has its origins in the Cray-designed CDC supercomputers, in

which multiple functional units are kept busy by multiple instructions. The CDC

machines could pack as many as 4 instructions in a word at once, and these were fetched

together and dispatched via a pipeline. Given the technology of the time, this

configuration was fast enough to keep the functional units busy without outpacing the

instruction memory.

In some cases superscalar machines still employ a single fetch-decode-dispatch pipe that

drives all of the units. For example, the UltraSPARC splits execution after the third stage

of a unified pipeline. However, it is becoming more common to have multiple fetch-

decode-dispatch pipes feeding the functional units.

The choice of approach depends on tradeoffs of the average execute time vs. the speed

with which instructions can be issued. For example, if execution averages several cycles,

and the number of functional units is small, then a single pipe may be able to keep the

units utilized. When the number of functional units grows large and/or their execution

time approaches the issue time, then multiple issue pipes may be necessary.

Having multiple issue pipes requires

• being able to fetch instructions for that many pipes at once

• inter-pipeline interlocking

• reordering of instructions for multiple interlocked pipelines

• multiple write-back stages

• multiport D-cache and/or register file, and/or functionally split register file

Reordering may be either static (compiler) or dynamic (using hardware lookahead). It can

be difficult to combine the two approaches because the compiler may not be able to

predict the actions of the hardware reordering mechanism.

 85

Superscalar operation is limited by the number of independent operations that can be

extracted from an instruction stream. It has been shown in early studies on simpler

processor models, that this is limited, mostly by branches, to a small number (<10,

typically about 4). More recent work has shown that, with speculative execution and

aggressive branch prediction, higher levels may be achievable. On certain highly regular

codes, the level of parallelism may be quite high (around 50). Of course, such highly

regular codes are just as amenable to other forms of parallel processing that can be

employed more directly, and are also the exception rather than the rule. Current thinking

is that about 6-way instruction level parallelism for a typical program mix may be the

natural limit, with 4-way being likely for integer codes. Potential ILP may be three times

this, but it will be very difficult to exploit even a majority of this parallelism.

Nonetheless, obtaining a factor of 4 to 6 boost in performance is quite significant,

especially as processor speeds approach their limits.

Going beyond a single instruction stream and allowing multiple tasks (or threads) to

operate at the same time can enable greater system throughput. Because these are

naturally independent at the fine-grained level, we can select instructions from different

streams to fill pipeline slots that would otherwise go vacant in the case of issuing from a

single thread. In turn, this makes it useful to add more functional units. We shall further

explore these multithreaded architectures later in the course.

Hardware Support for Superscalar Operation

There are two basic hardware techniques that are used to manage the simultaneous

execution of multiple instructions on multiple functional units: Scoreboarding and

reservation stations. Scoreboarding originated in the Cray-designed CDC-6600 in 1964,

and reservation stations first appeared in the IBM 360/91 in 1967, as designed by

Tomasulo.

Scoreboard

A scoreboard is a centralized table that keeps track of the instructions to be performed

and the available resources and issues the instructions to the functional units when

everything is ready for them to proceed. As the instructions execute, dependences are

checked and execution is stalled as necessary to ensure that in-order semantics are

preserved. Out of order execution is possible, but is limited by the size of the scoreboard

 86

and the execution rules. The scoreboard can be thought of as preceding dispatch, but it

also controls execution after the issue. In a scoreboarded system, the results can be

forwarded directly to their destination register (as long as there are no write after read

hazards, in which case their execution is stalled), rather than having to proceed to a final

write-back stage.

In the CDC scoreboard, each register has a matching Result Register Designator that

indicates which functional unit will write a result into it. The fact that only one functional

unit can be designated for writing to a register at a time ensures that WAW dependences

cannot occur. Each functional unit also has a corresponding set of Entry-Operand

Register Designators that indicate what register will hold each operand, whether the value

is valid (or pending) and if it is pending, what functional unit will produce it (to facilitate

forwarding). None of the operands is released to a functional unit until they are all valid,

precluding RAW dependences. In addition , the scoreboard stalls any functional unit

whose result would write a register that is still listed as an Entry-Operand to a functional

unit that is waiting for an operand or is busy, thus avoiding WAR violations. An

instruction is only allowed to issue if its specified functional unit is free and its result

register is not reserved by another functional unit that has not yet completed. Four Stages

of Scoreboard Control

1. Issue—decode instructions & check for structural hazards (ID1) If a functional

unit for the instruction is free and no other active instruction has the same destination

register (WAW), the scoreboard issues the instruction to the functional unit and updates

its internal data structure. If a structural or WAW hazard exists, then the instruction issue

stalls, and no further instructions will issue until these hazards are cleared.

2. Read operands—wait until no data hazards, then read operands (ID2) A source

operand is available if no earlier issued active instruction is going to write it, or if the

register containing the operand is being written by a currently active functional unit.

When the source operands are available, the scoreboard tells the functional unit to

proceed to read the operands from the registers and begin execution. The scoreboard

resolves RAW hazards dynamically in this step, and instructions may be sent into

execution out of order.

 87

3. Execution—operate on operands (EX) The functional unit begins execution upon

receiving operands. When the result is ready, it notifies the scoreboard that it has

completed execution.

4. Write result—finish execution (WB) Once the scoreboard is aware that the

functional unit has completed execution, the scoreboard checks for WAR hazards.

If none, it writes results. If WAR, then it stalls the instruction. Example:

DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F8,F8,F14

CDC 6600 scoreboard would stall SUBD until ADDD reads operands

Three Parts of the Scoreboard

1. Instruction status—which of 4 steps the instruction is in

2. Functional unit status—Indicates the state of the functional unit (FU). 9 fields for

each functional unit

Busy—Indicates whether the unit is busy or not

Op—Operation to perform in the unit (e.g., + or –)

Fi—Destination register

Fj, Fk—Source-register numbers

Qj, Qk—Functional units producing source registers Fj, Fk

Rj, Rk—Flags indicating when Fj, Fk are ready and not yet read. Set to

No after operands are read.

3. Register result status—Indicates which functional unit will write each register, if one

exists. Blank when no pending instructions will write that register

Scoreboard Implications

• provide solution for WAR, WAW hazards

• Solution for WAR – Stall Write in WB to allow Reads to take place; Read registers only

during Read Operands stage.

• For WAW, must detect hazard: stall in the Issue stage until other completes

• Need to have multiple instructions in execution phase

 • Scoreboard keeps track of dependencies, state or operations

– Monitors every change in the hardware.

 88

– Determines when to read ops, when can execute, when can wb.

– Hazard detection and resolution is centralized.

Reservation Stations The reservation station approach releases instructions directly to a

pool of buffers associated with their intended functional units (if more than one unit of a

particular type is present, then the units may share a single station). The reservation

stations are a distributed resource, rather than being centralized, and can be thought of as

following dispatch. A reservation is a record consisting of an instruction and its

requirements to execute -- its operands as specified by their sources and destination and

bits indicating when valid values are available for the sources. The instruction is released

to the functional unit when its requirements are satisfied, but it is important to note that

satisfaction doesn't require an operand to actually be in a register -- it can be forwarded to

the reservation station for immediate release or to be buffered (see below) for later

release. Thus, the reservation station's influence on execution can be thought of as more

implicit and data dependent than the explicit control exercised by the scoreboard.

Tomasulo Algorithm

The hardware dependence resolution technique used For IBM 360/91 about 3 years

after CDC 6600. Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue

If reservation station free, then issue instruction & send operands (renames registers).

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting units; mark reservation station available.

Here the storage of operands resulting from instructions that completed out of order is

done through renaming of the registers. There are two mechanisms commonly used for

renaming. One is to assign physical registers from a free pool to the logical registers as

they are identified in an instruction stream. A lookup table is then used to map the logical

register references to their physical assignments. Usually the pool is larger than the

logical register set to allow for temporary buffering of results that are computed but not

yet ready to write back. Thus, the processor must keep track of a larger set of register

 89

names than the instruction set architecture specifies. When the pool is empty, instruction

issue stalls.

The other mechanism is to keep the traditional association of logical and physical

registers, but then provide additional buffers either associated with the reservation

stations or kept in a central location. In either case, each of these "reorder buffers" is

associated with a given instruction, and its contents (once computed) can be used in

forwarding operations as long as the instruction has not completed. When an instruction

reaches the point that it may complete in a manner that preserves sequential semantics,

then its reservation station is freed and its result appears in the logical register that was

originally specified. This is done either by renaming the temporary register to be one of

the logical registers, or by transferring the contents of the reorder buffer to the

appropriate physical register.

Out of Order Issue

To enable out-of-order dispatch of instructions to the pipelines, we must provide at least

two reservation stations per pipe that are available for issue at once. An alternative would

be to rearrange instructions in the prefetch buffer, but without knowing the status of the

pipes, it would be difficult to make such a reordering effective. By providing multiple

reservation stations, however, we can continue issuing instructions to pipes, even though

an instruction may be stalled while awaiting resources. Then, whatever instruction is

ready first can enter the pipe and execute. At the far end of the pipeline, the out-of-order

instruction must wait to be retired in the proper order. This necessitates a mechanism for

keeping track of the proper order of instructions (note that dependences alone cannot

guarantee that instructions will be properly reordered when they complete).

3.7 RISC Pipelines

An efficient way to use instruction pipeline is one of characteristic feature of RISC

architecture. A RISC processor pipeline operates in much the same way, although the

stages in the pipeline are different. As discussed earlier, the length of the pipeline is

dependent on the length of the longest step. Because RISC instructions are simpler than

those used in pre-RISC processors (now called CISC, or Complex Instruction Set

Computer), they are more conducive to pipelining. While CISC instructions varied in

length, RISC instructions are all the same length and can be fetched in a single operation.

 90

Ideally, each of the stages in a RISC processor pipeline should take 1 clock cycle so that

the processor finishes an instruction each clock cycle and averages one cycle per

instruction (CPI). Hence RISC can achieve pipeline segments, just requiring just one

clock cycle, while CISC may use many segments in its pipeline, with longest segment

requiring two or more clock cycles.

As most RISC data manipulation operations have register to register operations and an

instruction cycle has following two phase.

1. I : Instruction fetch

2. E : Execute . Performs an ALU operation with register input and output.

The data transfer instructions in RISC are limited to Load and Store. These instructions

use register indirect addressing and require three stages in pipeline

I : Instruction fetch

E: Calculate memory address

D: Memory. Register to memory or memory to register operation.

To prevent conflicts between memory access to fetch an instruction and to load or store

operand, most RISC machine use two separate buses with two memories: one or storing

the instruction and other for storing data.

Another feature of RISC over CSIC as far as pipelining is considered is compiler support.

Instead of designing hardware to handle the data dependencies and branch penalties,

RISC relies on efficiency of compiler to detect and minimize the delay encountered with

these problems.

A RISC processor pipeline operates in much the same way, although the stages in the

pipeline are different. While different processors have different numbers of steps, lets us

consider a three segment Instruction pipeline

I: Instruction fetch

A: ALU operation

E: Execute instruction

The I segment fetches the instruction from memory and decode it. The ALU is used for

three different functions, it can be data manipulation , effective address calculation for

LOAD and STORE operations, or calculation of the branch address for a program control

instruction depending on type of instruction. The E segment directs the output of the

 91

ALU to one of three destination i.e., a destination register or effective address to a data

memory for loading or storing or the branch address to program counter, depending upon

decode instruction.

Multiplying Two Numbers in Memory

Lets consider an example of matrix multiplication here the main memory is divided into

locations numbered from (row) 1: (column) 1 to (row) 6: (column) 4. The execution unit

is responsible for carrying out all computations. However, the execution unit can only

operate on data that has been loaded into one of the six registers (A, B, C, D, E, or F).

Let's say we want to find the product of two numbers - one stored in location 2:3 and

another stored in location 5:2 - and then store the product back in the location 2:3.

The CISC Approach

The primary goal of CISC architecture is to complete a task in as few lines of assembly

as possible. This is achieved by building processor hardware that is capable of

understanding and executing a series of operations. For this particular task, a CISC

processor would come prepared with a specific instruction (we'll call it "MULT"). When

executed, this instruction loads the two values into separate registers, multiplies the

operands in the execution unit, and then stores the product in the appropriate register.

Thus, the entire task of multiplying two numbers can be completed with one instruction:
MULT 2:3, 5:2

MULT is what is known as a "complex instruction." It operates directly on the computer's

memory banks and does not require the programmer to explicitly call any loading or

storing functions. It closely resembles a command in a higher level language. For

instance, if we let "a" represent the value of 2:3 and "b" represent the value of 5:2, then

this command is identical to the C statement "a = a * b."

One of the primary advantages of this system is that the compiler has to do very little

work to translate a high-level language statement into assembly. Because the length of

the code is relatively short, very little RAM is required to store instructions. The

emphasis is put on building complex instructions directly into the hardware.

The RISC Approach

RISC processors only use simple instructions that can be executed within one clock

cycle. Thus, the "MULT" command described above could be divided into three separate

 92

commands: "LOAD," which moves data from the memory bank to a register, "PROD,"

which finds the product of two operands located within the registers, and "STORE,"

which moves data from a register to the memory banks. In order to perform the exact

series of steps described in the CISC approach, a programmer would need to code four

lines of assembly:
LOAD A, 2:3
LOAD B, 5:2
PROD A, B
STORE 2:3, A

At first, this may seem like a much less efficient way of completing the operation.

Because there are more lines of code, more RAM is needed to store the assembly level

instructions. The compiler must also perform more work to convert a high-level language

statement into code of this form.

CRICS : CISC and RISC Convergence

State of the art processor technology has changed significantly since RISC chips were

first introduced in the early '80s. Because a number of advancements (including the ones

described on this page) are used by both RISC and CISC processors, the lines between

the two architectures have begun to blur. In fact, the two architectures almost seem to

have adopted the strategies of the other. Because processor speeds have increased, CISC

chips are now able to execute more than one instruction within a single clock. This also

allows CISC chips to make use of pipelining. With other technological improvements, it

is now possible to fit many more transistors on a single chip. This gives RISC processors

enough space to incorporate more complicated, CISC-like commands. RISC chips also

make use of more complicated hardware, making use of extra function units for

superscalar execution. All of these factors have led some groups to argue that we are now

in a "post-RISC" era, in which the two styles have become so similar that distinguishing

between them is no longer relevant. This era is often called complex reduced instruction

set CRISC.

3.8 VLIW Machines

Very Long Instruction Word machines typically have many more functional units that

superscalars (and thus the need for longer – 256 to 1024 bits – instructions to provide

control for them) usually hundreds of bits long. These machines mostly use

 93

microprogrammed control units with relatively slow clock rates because of the need to

use ROM to hold the microcode. Each instruction word essentially carries multiple “short

instructions.” Each of the “short instructions” are effectively issued at the same time.

(This is related to the long words frequently used in microcode.) Compilers for VLIW

architectures should optimally try to predict branch outcomes to properly group

instructions.

Pipelining in VLIW Processors

Decoding of instructions is easier in VLIW than in superscalars, because each “region” of

an instruction word is usually limited as to the type of instruction it can contain. Code

density in VLIW is less than in superscalars, because if a “region” of a VLIW word isn’t

needed in a particular instruction, it must still exist (to be filled with a “no op”).

Superscalars can be compatible with scalar processors; this is difficult with VLIW

parallel and non-parallel architectures. “Random” parallelism among scalar operations is

exploited in VLIW, instead of regular parallelism in a vector or SIMD machine.

The efficiency of the machine is entirely dictated by the success, or “goodness,” of the

compiler in planning the operations to be placed in the same instruction words.

Different implementations of the same VLIW architecture may not be binary-compatible

with each other, resulting in different latencies.

5.7 Summary

1. The job-sequencing problem is equivalent to finding a permissible latency cycle with

the MAL in the state diagram.

2. The minimum number of X’s in array single row of the reservation table is a lower

bound of the MAL.

Pipelining allows several instructions to be executed at the same time, but they have to be

in different pipeline stages at a given moment. Superscalar architectures include all

features of pipelining but, in addition, there can be several instructions executing

simultaneously in the same pipeline stage. They have the ability to initiate multiple

instructions during the same clock cycle. There are two typical approaches today, in order

to improve performance:

1. Superpipelining

2. Superscalar

 94

VLIW reduces the effort required to detect parallelism using hardware or software

techniques.

The main advantage of VLIW architecture is its simplicity in hardware structure and

instruction set. Unfortunately, VLIW does require careful analysis of code in order to

“compact” the most appropriate ”short” instructions into a VLIW word.

3.9 Keywords

pipelining Overlapping the execution of two or more operations. Pipelining is used

within processors by prefetching instructions on the assumption that no branches are

going to preempt their execution; in vector processors, in which application of a single

operation to the elements of a vector or vectors may be pipelined to decrease the time

needed to complete the aggregate operation; and in multiprocessors and multicomputers,

in which a process may send a request for values before it reaches the computation that

requires them..

scoreboard A hardware device that maintains the state of machine resources to enable

instructions to execute without conflict at the earliest opportunity.

instruction pipelining strategy of allowing more than one instruction to be in some stage

of execution at the same time.

3.10 Self assessment questions

1. Explain an asynchronous pipeline model, a synchronous pipeline model and

reservation table of a four-stage linear pipeline with appropriate diagrams.

2. Define the following terms with regard to clocking and timing control.

a) Clock cycle and throughput b) Clock skewing c) Speedup factor

3. Describe the speedup factors and the optimal number of pipeline stages for a linear

pipeline unit.

4. Explain the features of non-linear pipeline processors with feedforward and

feedbackward connections.

5. Explain the pipelined execution of the following instructions with the following

instructions:

a) X = Y + Z b) A = B X C

 95

6. What are the possible hazards that can occur between read and write operations in

an instruction pipeline?

3.11 References/Suggested readings

Advance Computer architecture: Kai Hwang

 96

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Cache memory Organization Lesson No. : 04

4.0 Objective

4.1Introduction

4.2 Cache addressing models

4.2.1 Physical addressing mode

4.2.2 Virtual addressing mode

4.3 Cache mapping

4.3.1 Direct mapping

4.3.2 Associative mapping

4.3.3 Set associative mapping

4.3.4 Sector mapping

4.3.5 Cache performance

4.4 Replacement polices

4.5 Cache Coherence and Synchronization

4.5.1 Cache coherence problem

4.5.2 Snoopy bus protocol

4.5.3 Write back vs write through

4.5.4 Directory based protocol

4.6 Summary

4.7 Key words

4.8 Self assessment questions

4.9 References/Suggested readings

4.0 Objective

In this lesson we will discuss about bus that is used for interconnections between

different processor. We will discuss about use of cache memory in multiprocessor

environment and various addressing scheme used for cache memory. The page

replacement policy and performance of cache is also measured. Also we will discuss how

shared memory concept is used in multiprocessor. Various issues regarding event

ordering specially in case of memory events that deal with shared memory creates

 97

synchronization problem we will also discuss various models designed to overcome these

issues.

4.1 Introduction

In the hierarchy memory cache memory are the fastest memory that lies between registers

and RAM . It holds recently used data and/or instructions and has a size varying from

few kB to several MB.

Figure 4.1 Memory structure for a processor

The figure 4.1 shows a cache and main memory structure. A cache consists of C slots and

each slot in the cache can hold K memory words. Here the main memory with 2n-1 words

i.e., M words with each having a unique n-bit address and cache memory having C*K

words where K is the Block size and C are the number of lines. Each word that resides in

the cache is a subset of main memory. Since there are more blocks in main memory than

number of lines in cache, an individual line cannot be uniquely and permanently

dedicated to a particular block. Therefore, each line includes a tag that identifies which

particular block of main memory is currently occupying that line of cache. The tag is

usually a portion of the main memory address. The cache memory is accessed but by

pattern matching on a tag stored in the cache.

Figure 4.2 Cache / Main memory structure

 98

For the comparison of address generated by CPU the memory controller use some

algorithm which determines whether the value currently being addressed in memory is

available in the cache. The transformation data from main memory to cache memory is

referred as a mapping process. Let us derive an address translation scheme using cache as

a linear array of entries, each entry having the following structure as shown in figure 4.3.

A Cache Storage is divided into three fields:

Data - The block of data from memory that is stored in a specific line in the cache

Tag - A small field of length K bits, used for comparison, to check the correct address of

data

Valid Bit - A one-bit field that indicates status of data written into the cache.

The N-bit address is produced by the processor to access cache data is divided into three

fields:

Tag - A K-bit field that corresponds to the K-bit tag field in each cache entry,

Index - An M-bit field in the middle of the address that points to one cache entry

Byte Offset – L Bits that finds particular data in a line if valid cache is found.

It follows that the length of the virtual address is given by N = K + M + L bits.

Cache Address Translation. As shown in Figure 4.3, we assume that the cache address

has length 32 bits. Here, bits 12-31 are occupied by the Tag field, bits 2-11 contain the

Index field, and bits 0,1 contain the Offset information. The index points to the line in

cache that supposedly contains the data requested by the processor. After the cache line is

retrieved, the Tag field in the cache line is compared with the Tag field in the cache

address. If the tags do not match, then a cache miss is detected and the comparator

outputs a zero value. Otherwise, the comparator outputs a one, which is and-ed with the

valid bit in the cache row pointed to by the Index field of the cache address. If the valid

bit is a one, then the Hit signal output from the and gate is a one, and the data in the

cached block is sent to the processor. Otherwise a cache miss is registered.

 99

Figure 4.3. Schematic diagram of cache

A cache implements several different policies for retrieving and storing information, one

in each of the following categories:

° Fetch policy—determines when information is loaded into the cache.

° Replacement policy—determines what information is purged when space is needed for

a new entry.

° Write policy—determines how soon information in the cache is written to lower levels

in the memory hierarchy.

4.2 Cache addressing models

Most multiprocessor system use private cache associated with different processor.

 100

Figure 4.4 A memory hierarchy for a shared memory multiprocessor.

Cache can be addressed either by physical address or virtual address.

Physical address cache: when cache is addressed by physical address it is called

physical address cache. The cache is indexed and tagged with physical address. Cache

lookup must occur after address translation in TLB or MMU. No aliasing is allowed

so that the address is always uniquely translated without confusion. This provides an

advantage that we need no cache flushing, no aliasing problem and fewer cache bugs

in OS kernel. The short coming is the slowdown in accessing the cache until the

MMU/TLB finishes translating the address.

Advantage of physically addressed caches:

• no cache flushing on a context switch

• no synonym problem (several different virtual addresses can span the same

physical addresses : a much better hit ratio between processes)

Disadvantage of physically addressed caches:

• do virtual-to-physical address translation on every access

• increase in hit time because must translate the virtual address before access the

cache

 VA PA PA Caption
 VA = Virtual address
 PA = Physical Address
 I = Instructions
 I or D D = Data stream

4.5 (a) A unified cache accessed by physical address

 PA PA PA

 D D

 VA D

 PA

 I I

figure 4.5 (b) A split cache accessed by physical address

CPU

MMU

Cache

Main
Memory

MMU

First level
D-Cache

Second
Level

D-Cache

Main
Memory

CPU

I-Cache

 101

Virtual Address caches: when a cache is indexed or tagged with virtual address it is

called virtual address cache. In this model both cache and MMU translation or validation

are done in parallel. The physical address generated by the MMU can be saved in tags for

later write back but is not used during the cache lookup operations.

Advantage of virtually-addressed caches

• do address translation only on a cache miss

• faster for hits because no address translation

Disadvantage of virtually-addressed caches

cache flushing on a context switch (example : local data segments will get an

erroneous hit for virtual addresses already cached after changing virtual address

space, if no cache flushing).

synonym problem (several different virtual addresses cannot span the same physical

addresses without being duplicated in cache).

 VA PA Captions:
 VA = Virtual address
 PA = Physical Address
 I = Instructions
 I or D D = Data stream
 D or I

(a) A unified cache accessed by virtual address

 32
 I 64

 I VA

 32
 PA 32

 D 32

 32
 32

 VA D 128
 128

 D
Figure 4.6(b) Virtual address for split cache

CPU

MMU

Cache

Main
Memory

I-Cache
(4K Bytes)

Main
Memory

IU

MMU

D-Cache

(8K Bytes)

FU

 102

Aliasing: The major problem with cache organization in multiprocessor is that multiple

virtual addresses can map to a single physical address i.e., different virtual address cache

logically addressed data have the same index/tag in the cache. Most processors guarantee

that all updates to that single physical address will happen in program order. To deliver

on that guarantee, the processor must ensure that only one copy of a physical address

resides in the cache at any given time.

4.3 Cache mapping

Caches can be organized according to four different strategies:

° Direct

° Fully associative

° Set associative

° Sectored

4.3.1 Direct-Mapped Caches

The easiest way of organizing a cache memory employs direct mapping that is based on a

simple algorithm to map data block i from the main memory into data block j in the

cache. There is a one-to-one correspondence between each block of data in the cache and

each memory block thus to find a memory block i, then there is one and only one place in

the cache where i is stored

 If we have 2n words in main memory and 2k words in cache memory. In cache

memory each word consists of data word and its associated tag. The n-bit memory

address is divided into three fields : low order k bits are referred as the index field and

used to address a word in the cache. The remaining n-k high-order bits are called the tag.

The index field is further divided into the slot field, which will be used find a particular

slot in the cache; and the offset field is used to identify a particular memory word in the

slot. When a block is stored in the cache, its tag field is stored in the tag field of the cache

slot.

 When CPU generates an address the index field is used to access the cache. The

tag field of CPU address is compared with the tag in word read from the cache. If the two

tags match, there is a hit and else there is a miss and the required word is read from main

memory. Whenever a ``cache miss'' occurs, the cache line will be replaced by a new line

 103

of information from main memory at an address with the same index but with a different

tag.

 Lets us understand how direct mapping is implemented with following simple

example Figure 4.7. The memory is composed of 32 words and accessed by a 5-bit

address. Let the address has a 2-bit tag (set) field, a 2-bit slot (line) field and a 1-bit word

field. The cache memory holds 22 = 4 lines each having two words. When the processor

generates an address, the appropriate line (slot) in the cache is accessed. For example, if

the processor generates the 5-bit address 111102, line 4 in set 4 is accessed. The memory

space is divided into sets and the sets into lines. The Figure 4.7 reveals that there are four

possible lines that can occupy cache line 4 lines 4 in set 0, in set 1, in set 2 and set 4. In

this example the processor accessed line 4 in set 4. Now “How does the system resolve

this issue?"

Figure 4.7 shows how a direct mapped cache resolves the contention between lines. Each

line in the cache memory has a tag or label that identifies which set this particular line

belongs to. When the processor accesses line 4, the tag belonging to line 4 in the cache is

sent to a comparator. At the same time the set field from the processor is also sent to the

comparator. If they are the same, the line in the cache is the desired line and a hit occurs.

If they are not the same, a miss occurs and the cache must be updated. Figure 4.17

provides a skeleton structure of a direct mapped cache memory system.

Figure 4.7 Resolving contention between lines in a direct-mapped cache

 104

Figure 4.8 Implementation of direct-mapped cache

The advantage of direct mapping are as follows

It’s simplicity.

Both the cache memory and the cache tag RAM are widely available devices.

The direct mapped cache requires no complex line replacement algorithm. If line x in set

y is accessed and a miss takes place, line x from set y in the main store is loaded into the

frame for line x in the cache memory and the tag set to y i.e.,, there is no decision to be

taken regarding which line has to be rejected when a new line is to be loaded.

It inherents parallelism. Since the cache memory holding the data and the cache tag RAM

are entirely independent, they can both be accessed simultaneously. Once the tag has

been matched and a hit has occurred, the data from the cache will also be valid.

The disadvantage of direct mapping are as follows

it is inflexible

 A cache has one restriction a particular memory address can be mapped into only one

cache location also, all addresses with the same index field are mapped to the same cache

location. Consider the following fragment of code:

 REPEAT

 Get_data

 Compare

 UNTIL match OR end_of_data

 105

Let the Get data routine and compare routine use two blocks, both these blocks have

same index but have different tags are repeated accessed. Consequently, the performance

of a direct-mapped cache can be very poor under above circumstances. However,

statistical measurements on real programs indicate that the very poor worst-case behavior

of direct-mapped caches has no significant impact on their average behavior.

4.3.3 Associative Mapping:

One way of organizing a cache memory which overcomes the limitations of direct

mapped cache such that there is no restriction on what data it can contain can be done

with associative cache memory. An associative memory is the fastest and most flexible

way of cache organization. It stores both the address and the value (data) from main

memory in the cache. An associative memory has an n-bit input. An address from the

processor is divided into three fields: the tag, the line, and the word.The mapping is done

with storing tag information in n-bit argument register and comparing it with address tag

in each location simultaneously. If the input tag matches a stored tag, the data associated

with that location is output. Otherwise the associative memory produces a miss output.

Unfortunately, large associative memories are not yet cost-effective. Once the associative

cache is full, a new line can be brought in only by overwriting an existing line that

requires a suitable line replacement policy. Associative cache memories are efficient

because they place no restriction on the data they hold, as permits any location of cache

to store any word from main memory.

CPU Address (argument register)

Address Data

01101001 10010100

10010001 10101010

Figure 4.9 Associative cache

 106

Figure 4.10Associative mapping

All of the comparisons are done simultaneously, so the search is performed very quickly.

This type of memory is very expensive, because each memory location must have both a

comparator and a storage element. Like the direct mapped cache, the smallest unit of data

transferred into and out of the cache is the line. Unlike the direct-mapped cache, there's

no relationship between the location of lines in the cache and lines in the main memory.

 When the processor generates an address, the word bits select a word location in

both the main memory and the cache. The tag resolves which of the lines is actually

present. In an associative cache any of the 64K lines in the main store can be located in

any of the lines in the cache. Consequently, the associative cache requires a 16-bit tag to

identify one of the 216 lines from the main memory. Because the cache's lines are not

ordered, the tags are not ordered, it may be anywhere in the cache or it may not be in the

cache.

 107

Figure 4.11 Associative-mapped cache

4.3.4 Set associative Mapping:

Most computers use set associative mapping technique as it is a compromise between the

direct-mapped cache and the fully associative cache. In a set associative cache memory

several direct-mapped caches connected in parallel. Let to find memory block b in the

cache, there are n entries in the cache that can contain b we say that this type of cache is

called n-way set associative. For example, if n = 2, then we have a two-way set

associative cache. This is the simplest arrangement and consists of two direct-mapped

cache memories. Thus for n parallel sets, a n-way comparison is performed in parallel

against all members of the set. Usually , for k = 1, 2, 4 are chosen for a set

associative cache (k = 0 corresponds to direct mapping). As n is small (typically 2 to 14),

the logic required to perform the comparison is not complex. This is a widely used

technique in practice (e.g. 80486 uses 4-way, P4 uses 2-way for the instruction cache, 4-

way for the data cache).

 Figure 4.22 describes the common 4-way set associative cache. When the

processor accesses memory, the appropriate line in each of four direct-mapped caches is

accessed simultaneously. Since there are four lines, a simple associative match can be

used to determine which (if any) of the lines in cache are to supply the data. In figure

4.22 the hit output from each direct-mapped cache is fed to an OR gate which generates a

hit if any of the caches generate a hit.

Figure 4.12 Set associative-mapped cache

4.3.4 Sector mapped cache memory

 108

The idea is to partition both the cache and memory into fixed size sectors. Thus in a

sectored cache, main memory is partitioned into sectors, each containing several blocks.

The cache is partitioned into sector frames, each containing several lines. (The number of

lines/sector frame = the number of blocks/sector.) As shown in figure below sector size is

of 16 block. Each sector can be mapped to any of the sector frame with full associative at

the sector level.

Figure 4.13 Sector mapped memory

Each sector can be placed in any of the available sector frame. The memory requests are

destined for blocks not for sectors. This can be filtered out by comparing the sector tag in

the memory address with all sector tags using fully associative search.

When block b of a new sector c is brought in,

• it is brought into line b within some sector frame f, and

• the rest of the lines in sector frame f are marked invalid.

Thus, if there are S sector frames, there are S choices of where to place a block.

4.3.5 CACHE performance Issues

As far as the performance of cache is considered the trade off exist among the cache size,

set number, block size and memory speed. Important aspect in cache designing with

regard to performance are :

a. the cycle count : This refers to the number of basic machine cycles needed for

cache access, update and coherence control. This count is affected by underlying

static or dynamic RAM technology, the cache organization and the cache hit

ratios. The write through or write back policy also affect the cycle count. The

 109

cycle count is directly related to the hit ratio, which decreases almost linearly with

increasing values of above cache parameters.

b. Hit ratio: The processor generates the address of a word to be read and send it to

cache controller, if the word is in the cache it generates a Hit signal and also

deliver it to the processor. If the data is not found in the cache, then it generates a

MISS signal and that data is delivered to the processor from main memory, and

simultaneously loaded into the cache. The hit ratio is number of hits divided by

total number of CPU references to memory (hits plus misses). When cache size

approaches

c. Effect of Block Size: With a fixed cache size, cache performance is sensitive to

the block size. This block size is determined mainly by the temporal locality in

typical program.

d. Effect of set number in set associative number.

4.4 Cache replacement algorithm

When a new block is brought into cache, one of the existing blocks must be replaced. The

obvious question arise is which page to be replaced? With direct mapping, the solution is

easy as we have not choice. But in other circumstances, we do. The three most commonly

used algorithms are Least Recently Used, First in First out and Random.

Random -- The optimal algorithm is called random replacement, whereby a location to

which a block is to be written in cache is chosen at random from the range of cache

indices. The random replacement strategy usually implemented using a random number

generator. In a 2-way set associative cache, this can be accomplished with a single

modulo 2 random variable obtained, from an internal clock

First in, first out (FIFO) -- here the first value stored in the cache is the index position

representing value to be replaced. For a 2-way set associative cache, this replacement

strategy can be implemented by setting a pointer to the previously loaded word each time

a new word is stored in the cache; this pointer need only be a single bit.

Least recently used (LRU) -- here the value which was actually used least recently is

replaced. In general, it is more likely that the most recently used value will be the one

required in the near future. This approach, while not always optimal, is intuitively

attractive from the perspective of temporal locality. That is, a given program will likely

 110

not access a page or block that has not been accessed for some time. The LRU

replacement algorithm requires that each cache or page table entry have a timestamp.

This is a combination of date and time that uniquely identifies the entry as having been

written at a particular time. Given a timestamp t with each of N entries, LRU merely

finds the minimum of the cached timestamps, as

tmin = min{ti : i = 1..N} .

The cache or page table entry having t = tmin is then overwritten with the new entry.

For a 2-way set associative cache, this is readily implemented by setting a special bit

called the ``USED'' bit for the other word when a value is accessed while the

corresponding bit for the word which was accessed is reset. The value to be replaced is

then the value with the USED bit set. This replacement strategy can be implemented by

adding a single USED bit to each cache location. The LRU strategy operates by setting a

bit in the other word when a value is stored and resetting the corresponding bit for the

new word. For an n-way set associative cache, this strategy can be implemented by

storing a modulo n counter with each data word.

4.5 Cache Coherence and Synchronization

4.5.1Cache coherence problem

An important problem that must be addressed in many parallel systems - any system that

allows multiple processors to access (potentially) multiple copies of data - is cache

coherence. The existence of multiple cached copies of data creates the possibility of

inconsistency between a cached copy and the shared memory or between cached copies

themselves.

Figure 4.14 cache coherence problem in multiprocessor

There are three common sources of cache inconsistency:

 111

• Inconsistency in data sharing : In a memory hierarchy for a multiprocessor system

data inconsistency may occur between adjacent levels or within the same level.

The cache inconsistency problem occurs only when multiple private cache are

used. Thus it is, the possible that a wrong data being accessed by one processor

because another processor has changed it, and not all changes have yet been

propagated. Suppose we have two processors, A and B, each of which is dealing

with memory word X, and each of which has a cache. If processor A changes X,

then the value seen by processor B in its own cache will be wrong, even if

processor A also changes the value of X in main memory (which it - ultimately -

should).

Figure 4.15 Cache coherence problem

In above example initially, x1 = x2 = X = 5.

P1 writes X:=10 using write-through.

P2 now reads X and uses its local copy x2, but finds that X is still 5.

Thus P2 does not know that P1 modified X.

Thus the cache inconsistency problem occurs when multiple private cache are used

and especially the problem arose by writing the shared variables.

• Process migration(even if jobs are independent): This problem occurs when a

process containing shared variable X migrates from process 1 to process2 using

the write back cache on the right. Thus another important aspect of coherence is

serialization of writes - that is, if two processors try to write 'simultaneously', then

(i) the writes happen sequentially (and it doesn't really matter who gets to write

first - provided we have sensible arbitration); and (ii) all processors see the writes

as occurring in the same order. That is, if processors A and B both write to X,

with A writing first, then any other processors (C, D, E) all see the same thing.

 112

• DMA I/O – this inconsistency problem occur during the I/O operation that bypass

the cache. This problem is present even in a uniprocessor and can be removed by

OS cache flushes)

In practice, these issues are managed by a memory bus, which by its very nature ensures

write serialization, and also allows us to broadcast invalidation signals (we essentially

just put the memory address to be invalidated on the bus). We can add an extra valid bit

to cache tags to mark then invalid. Typically, we would use a write-back cache, because

it has much lower memory bandwidth requirements. Each processor must keep track of

which cache blocks are dirty - that is, that it has written to - again by adding a bit to the

cache tag. If it sees a memory access for a word in a cache block it has marked as dirty, it

intervenes and provides the (updated) value. There are numerous other issues to address

when considering cache coherence.

One approach to maintaining coherence is to recognize that not every location needs to be

shared (and in fact most don't), and simply reserve some space for non-cacheable data

such as semaphores, called a coherency domain.

Using a fixed area of memory, however, is very restrictive. Restrictions can be reduced

by allowing the MMU to tag segments or pages as non-cacheable. However, that requires

the OS, compiler, and programmer to be involved in specifying data that is to be

coherently shared. For example, it would be necessary to distinguish between the sharing

of semaphores and simple data so that the data can be cached once a processor owns its

semaphore, but the semaphore itself should never be cached.

In order to remove this data inconsistency there are a number of approaches based on

hardware and software techniques few are given below:

• No caches is used which is not a feasible solution

• Make shared-data non-cacheable this is the simplest software solution but produce

low performance if a lot of data is shared

• software flush at strategic times: e.g., after critical sections, this is relatively

simple technique but has low performance if synchronization is not frequent

• hardware cache coherence this can be achieved by making memory and caches

coherent (consistent) with each other, in other words if the memory and other

processors see writes then without intervention of the to software

 113

• absolute coherence all copies of each block have same data at all times

• It is not necessary what is required is appearance of absolute coherence that is

done by making temporary incoherence is OK (e.g., write-back cache)

In general a cache coherence protocols consist of the set of possible states in local caches,

the state in shared memory and the state transitions caused by the messages transported

through the interconnection network to keep memory coherent. There are basically two

kinds of protocols depends on how writes is handled

4.5.2 Snooping Cache Protocol (for bus-based machines);

With a bus interconnection, cache coherence is usually maintained by adopting a "snoopy

protocol", where each cache controller "snoops" on the transactions of the other caches

and guarantees the validity of the cached data. In a (single-) multi-stage network,

however, the unavailability of a system "bus" where transactions are broadcast makes

snoopy protocols not useful. Directory based schemes are used in this case.

In case of snooping protocol processors perform some form of snooping - that is, keeping

track of other processor's memory writes. ALL caches/memories see and react to ALL

bus events. The protocol relies on global visibility of requests (ordered broadcast). This

allows the processor to make state transitions for its cache-blocks.

 Write Invalidate protocol

The states of a cache block copy changes with respect to read, write and replacement

operations in the cache. The most common variant of snooping is a write invalidate

protocol. In the example above, when processor A writes to X, it broadcasts the fact and

all other processors with a copy of X in their cache mark it invalid. When another

processor (B, say) tries to access X again then there will be a cache miss and either

(i) in the case of a write-through cache the value of X will have been updated

(actually, it might not because not enough time may have elapsed for the

memory write to complete - but that's another issue); or

(ii) in the case of a write-back cache processor A must spot the read request, and

substitute the correct value for X.

 114

Figure 6.16 Write back with cache

Figure 6. 17 Write through with cache

An alternative (but less-common) approach is write broadcast. This is intuitively a little

more obvious - when a cached value is changed, the processor that changed it broadcasts

the new value to all other processors. They then update their own cached values. The

trouble with this scheme is that it uses up more memory bandwidth. A way to cut this is

to observe that many memory words are not shared - that is, they will only appear in one

cache. If we keep track of which words are shared and which are not, we can reduce the

amount of broadcasting necessary. There are two main reasons why more memory

bandwidth is used: in an invalidation scheme, only the first change to a word requires an

invalidation signal to be broadcast, whereas in a write broadcast scheme all changes must

be signaled; and in an invalidation scheme only the first change to any word in a cache

block must be signaled, whereas in a write broadcast scheme every word that is written

must be signaled. On the other hand, in a write broadcast scheme we do not end up with a

cache miss when trying to access a changed word, because the cached copy will have

been updated to the correct value.

 115

Figure 6.18 write back with broadcast

If different processors operate on different data items, these can be cached.

1. Once these items are tagged dirty, all subsequent operations can be performed locally

on the cache without generating external traffic.

2. If a data item is read by a number of processors, it transitions to the shared state in the

cache and all subsequent read operations become local.

In both cases, the coherence protocol does not add any overhead.

4.5.3Write-through vs. Write-back

In a write-back cache, the snooping logic must also watch for reads that access main

memory locations corresponding to dirty locations in the cache (locations that have been

changed by the processor but not yet written back).

At first it would seem that the simplest way to maintain coherence is to use a write-

through policy so that every cache can snoop every write. However, the number of extra

writes can easily saturate a bus. The solution to this problem is to use a write-back policy,

but that leads to additional problems because there can be multiple writes that do not go

to the bus, leading to incoherent data.

One approach is called write-once. In this scheme, the first write is a write-through to

signal invalidation to other caches. After that, further writes can occur in write-back

mode as long as there is no invalidation. Essentially, the first write takes ownership of the

data, and another write from another processor must first deal with the invalidation and

may then take ownership. Thus, a cache line has four states:

• Invalid

• Valid unwritten (valid)

• Valid written once (reserved)

• Valid written multiple (dirty)

 116

The last two states indicate ownership. The trouble with this scheme is that if a non-

owner frequently accesses an owned shared value, it can slow down to main memory

speed or slower, and generate excessive bus traffic because all accesses must be to the

owning cache, and the owning cache would have to perform a broadcast on its next write

to signal that the line is again invalid.

One solution is to grant ownership to the first processor to write to the location and not

allow reading directly from the cache. This eliminates the extra read cycles, but then the

cache must write-through all cycles in order to update the copies.

We can change the scheme so that when a write is broadcast, if any other processor has a

snoop hit, it signals this back to the owner. Then the owner knows it must write through

again. However, if no other processor has a copy (signals snooping), it can proceed to

write privately. The processor's cache must then snoop for read accesses from other

processors and respond to these with the current data, and by marking the line as

snooped. The line can return to private status once a write-through results in a no-snoop

response.

One interesting side effect of ownership protocols is that they can sometimes result in a

speedup greater than the number of processors because the data resides in faster memory.

Thus, other processors gain some speed advantage on misses because instead of fetching

from the slower main memory, they get data from another processor's fast cache.

However, it takes a fairly unusual pattern of access for this to actually be observed in real

system performance.

Figure 6.19 write once protocol

 Disadvantages:

• If multiple processors read and update the same data item, they generate

coherence functions across processors.

 117

• Since a shared bus has a finite bandwidth, only a constant

Rather than flush the cache completely, hardware can be provided to "snoop" on the bus,

watching for writes to main memory locations that are cached.

Another approach is to have the DMA go through the cache, as if the processor is writing

it to memory. This results in all valid cache locations. However, any processor cache

accesses are stalled during that time, and it clearly does not work well in a

multiprocessor, as it would require copies being written to all caches and a protocol for

write-back to memory that avoids inconsistency.

4.5.4 Directory-based Protocols

When a multistage network is used to build a large multiprocessor system, the snoopy

cache protocols must be modified. Since broadcasting is very expensive in a multistage

network, consistency commands are sent only to caches that keep a copy of the block.

This leads to Directory Based protocols. A directory is maintained that keeps track of the

sharing set of each memory block. Thus each bank of main memory can keep a directory

of all caches that have copied a particular line (block). When a processor writes to a

location in the block, individual messages are sent to any other caches that have copies.

Thus the Directory-based protocols selectively send invalidation/update requests to only

those caches having copies—the sharing set leading the network traffic limited only to

essential updates. Proposed schemes differ in the latency with which memory operations

are performed and the implementation cost of maintaining the directory. The memory

must keep a bit-vector for each line that has one bit per processor, plus a bit to indicate

ownership (in which case there is only one bit set in the processor vector).

.figure 6.20 Directory based protocol

 118

These bitmap entries are sometimes referred to as the presence bits. Only processors that

hold a particular block (or are reading it) participate in the state transitions due to

coherence operations. Note that there may be other state transitions triggered by

processor read, write, or flush (retiring a line from cache) but these transitions can be

handled locally with the operation reflected in the presence bits and state in the directory.

If different processors operate on distinct data blocks, these blocks become dirty in the

respective caches and all operations after the first one can be performed locally.

 If multiple processors read (but do not update) a single data block, the data block gets

replicated in the caches in the shared state and subsequent reads can happen without

triggering any coherence overheads.

Various directory-based protocols differ mainly in how the directory maintains

information and what information is stored. Generally speaking the directory may be

central or distributed. Contention and long search times are two drawbacks in using a

central directory scheme. In a distributed-directory scheme, the information about

memory blocks is distributed. Each processor in the system can easily "find out" where to

go for "directory information" for a particular memory block. Directory-based protocols

fall under one of three categories:

Full-map directories, limited directories, and chained directories.

This full-map protocol is extremely expensive in terms of memory as it store enough data

associated with each block in global memory so that every cache in the system can

simultaneously store a copy of any block of data.. It thus defeats the purpose of leaving a

bus-based architecture.

A limited-map protocol stores a small number of processor ID tags with each line in main

memory. The assumption here is that only a few processors share data at one time. If

there is a need for more processors to share the data than there are slots provided in the

directory, then broadcast is used instead.

Chained directories have the main memory store a pointer to a linked list that is itself

stored in the caches. Thus, an access that invalidates other copies goes to memory and

then traces a chain of pointers from cache to cache, invalidating along the chain. The

actual write operation stalls until the chain has been traversed. Obviously this is a slow

process.

 119

Duplicate directories can be expensive to implement, and there is a problem with keeping

them consistent when processor and bus accesses are asynchronous. For a write-through

cache, consistency is not a problem because the cache has to go out to the bus anyway,

precluding any other master from colliding with its access.

But in a write-back cache, care must be taken to stall processor cache writes that change

the directory while other masters have access to the main memory.

On the other hand, if the system includes a secondary cache that is inclusive of the

primary cache, a copy of the directory already exists. Thus, the snooping logic can use

the secondary cache directory to compare with the main memory access, without stalling

the processor in the main cache. If a match is found, then the comparison must be passed

up to the primary cache, but the number of such stalls is greatly reduced due to the

filtering action of the secondary cache comparison.

A variation on this approach that is used with write-back caches is called dirty inclusion,

and simply requires that when a primary cache line first becomes dirty, the secondary line

is similarly marked. This saves writing through the data, and writing status bits on every

write cycle, but still enables the secondary cache to be used by the snooping logic to

monitor the main memory accesses. This is especially important for a read-miss, which

must be passed to the primary cache to be satisfied.

The previous schemes have all relied heavily on broadcast operations, which are easy to

implement on a bus. However, buses are limited in their capacity and thus other

structures are required to support sharing for more than a few processors. These

structures may support broadcast, but even so, broadcast-based protocols are limited.

The problem is that broadcast is an inherently limited means of communication. It

implies a resource that all processors have access to, which means that either they

contend to transmit, or they saturate on reception, or they have a factor of N hardware for

dealing with the N potential broadcasts.

Snoopy cache protocols are not appropriate for large-scale systems because of the

bandwidth consumed by the broadcast operations

In a multistage network, cache coherence is supported by using cache directories to store

information on where copies of cache reside.

 120

A cache coherence protocol that does not use broadcast must store the locations of all

cached copies of each block of shared data. This list of cached locations whether

centralized or distributed is called a cache directory. A directory entry for each block of

data contains a number of pointers to specify the locations of copies of the block.

Distributed directory schemes

 In scalable architectures, memory is physically distributed across processors. The

corresponding presence bits of the blocks are also distributed. Each processor is

responsible for maintaining the coherence of its own memory blocks. Since each memory

block has an owner its directory location is implicitly known to all processors. When a

processor attempts to read a block for the first time, it requests the owner for the block.

The owner suitably directs this request based on presence and state information locally

available. When a processor writes into a memory block, it propagates an invalidate to

the owner, which in turn forwards the invalidate to all processors that have a cached copy

of the block. Note that the communication overhead associated with state update

messages is not reduced. Distributed directories permit O(p) simultaneous coherence

operations, provided the underlying network can sustain the associated state update

messages. From this point of view, distributed directories are inherently more scalable

than snoopy systems or centralized directory systems. The latency and bandwidth of the

network become fundamental performance bottlenecks for such systems.

4.6 Keywords

cache A high-speed memory, local to a single processor , whose data transfers are carried

out automatically in hardware. Items are brought into a cache when they are referenced,

while any changes to values in a cache are automatically written when they are no longer

needed, when the cache becomes full, or when some other process attempts to access

them. Also To bring something into a cache.

cache consistency The problem of ensuring that the values associated with a particular

variable in the caches of several processors are never visibly different.

associative memory: Memory that can be accessed by content rather than by address;

content addressable is often used synonymously. An associative memory permits its user

to specify part of a pattern or key and retrieve the values associated with that pattern.

 121

direct mapping :A cache that has a set associativity of one so that each item has a unique

place in the cache at which it can be stored.

4.7 Summary

In this lesson we had learned how cache memory in multiprocessor is organized and how

its address are generated both for physical and virtual address. Various techniques of

cache mapping are discussed.

Mapping

technique

Advantage disadvantage

Direct
Mapping

Fast lookup (only one
comparison needed).
Cheap hardware (no associative
comparison).
Easy to decide

Contention for lines

Fully
associative

Minimal contention for lines.
Wide variety of replacement
algorithms feasible.

The most expensive of all
organizations, due to the high
cost of associative-comparison
hardware.

Set associative mapping trade off advantage and disadvantage of direct and fully

associative mapping.

We had discussed about the shared memory organization and how consistency is

maintained in it. There are various issues of synchronization and event handling on which

various consistency models are designed. Various techniques through which cache

coherence is maintained are discussed. Bus based systems are not scalable and not

efficient for the processor to snoop and handle the traffic. Directories based system is

used in cache coherence for large MPs Cache coherency protocols maintain exclusive

writes in a multiprocessor. Memory consistency policies determine how different

processors observe the ordering of reads and writes to memory. Snoopy caches are

typically associated with multiprocessor systems based on broadcast interconnection

networks such as a bus or a ring. All processors snoop on (monitor) the bus for

transactions. Directory based systems the global memory is augmented with a directory

that maintains a bitmap representing cache-blocks and the processors at which they are

cached.

4.8 Self assessment questions

 122

1. With diagram, explain the interconnection structures in a generalized multiprocessor

system with local memory, private caches, shared memory and shared peripherals.

2. Discuss advantage and disadvantage of various cache mapping techniques

3. Discuss different page replacement polices.

4. Describe the Cache coherence problems in data sharing and in process migration.

5. Draw and explain 2 state-transition graphs for a cache block using write-invalidate

snoopy protocols.

6. Explain the Goodman’s write-once cache coherence protocol using the write-

invalidate policy on write-back caches.

7. Discuss the basic concept of a directory-based cache coherence scheme.

8. Mention and explain the three types of cache directory protocols.

4.9 References/Suggested readings

Advance Computer architecture: Kai Hwang

 123

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Multithread and Data flow architecture Lesson No. : 05

5.0 Objective

5.1 Introduction

5.2 Multithreading

5..2.1 multiple context processor

5.2.2 multidimensional processor

5.3 Data flow architecture

5.3.1Data flow graph

5.3.2 Static dataflow

5.3.3 Dynamic dataflow

5.4 Self assignment questions

5.5 Reference.

5.0 Objective

In this lesson we will study about advance concepts of improving the performance of

multiprocessor. The techniques studied is multithreading , multiple context processor and data

flow architecture.

5.1 Introduction

The computers are basically designed for execution of instructions, which are stored as

programs in the memory. These instructions are executed sequentially and hence are

slow as the next instruction can be executed only after the output of pervious instruction

has been obtained. As discussed earlier to improve the speed and through put the

concept of parallel processing was introduced. To execute the more than one instruction

simultaneously one has to identify the independent instruction which can be passed to

separate processors. The parallelism in multiprocessor can be implemented on principle

in three ways:

 Instruction Level Parallelism
The potential of overlap among instructions is called instruction-level parallelism (ILP) since

the instructions can be evaluated in parallel. Instruction level parallelism is obtained primarily in

 124

two ways in uniprocessors: through pipelining and through keeping multiple functional units

busy executing multiple instructions at the same time.

Data Level Parallelsim
The simplest and most common way to increase the amount of parallelism available among

instructions is to exploit parallelism among iterations of a loop. This type of parallelism is often

called loop-level parallelism as an example of it vector processor.

Difficult to continue to extract instruction-level parallelism (ILP) or data-level parallelism (DLP)

from a single sequential thread of control. Many workloads can make use of thread-level

parallelism (TLP)

Thread Level Parallelism
Thread level parallelism (TLP) is the act of running multiple flows of execution of a single

process simultaneously. TLP is most often found in applications that need to run independent,

unrelated tasks (such as computing, memory accesses, and IO) simultaneously. These types of

applications are often found on machines that have a high workload, such as web servers. TLP is

a popular ground for current research due to the rising popularity of multi-core and multi-

processor systems, which allow for different threads to truly execute in parallel. The TLP can be

implemented either through multiprogramming (i.e., run independent sequential jobs) or from

multithreaded applications (i.e., run one job faster using parallel threads). Thus Multithreading

uses TLP to improve utilization of a single processor

As a designers perspective there are various possible ways in which one can design a system

depending on the way we execute the instructions. Four possible ways are

Control flow computers : The next instruction is executed when the last instruction as stored in the

program has been executed

Data flow computers An instruction executed when the data (operands) required for executing that

instruction is available

Demand driven computers : An instruction is executed when the results of the instruction which is

required as input by other instruction is available.

Pattern driven computers : An instruction is executed when we obtain a particular data patterns as

output.

5.2 Multi-Threading

 125

In the multithreaded execution model, a program is a collection of partially ordered

threads, and a thread consists of a sequence of instructions which are executed in the

conventional von Neumann model. Multithreading is the process of executing multiple

threads concurrently on a processor. It takes the idea of processes sharing the CPU to a

lower level, and allows threads to be switched off and on the processor without any

latency. Multithreading processors technology developed by Intel that enables

multithreaded software applications to execute threads in parallel on a single multi-core

processor instead of processing threads in a linear fashion i.e., thus Multi-Threading, a

microprocessor's "core" processor can execute two (rather than one) concurrent streams

(or threads) of instructions sent by the operating system. Having two streams of execution

units to work on allows more work to be done by the processor during each clock cycle.

To the operating system, the multi-Threading microprocessor appears to be two separate

processors. It is a feature of Intel's IA-32 processor.

Multithreading demands that the processor be designed to handle multiple contexts

simultaneously on a context switching basis. Firstly let’s study the multithread

computation model. Let us consider the system where memories are distributed to form

global address space. The machine parameter on which machine is analyzed are

a. the latency (L) this include network delay, cache miss penalty, and delay caused

by contention in split transaction

b. the number of thread the number of thread that can be interleaved in each

processor. A thread is represented by a context consisting a program counter,

register set and required context status word.

c. The context switching overhead: this refer to cycle lost in performing context

switching in processor. This depends on the switching mechanism and the amount

of processor state devoted to maintaining the active thread.

d. The interval between switches: this refer to cycle between switches triggered by

remote reference. This inverse of rate of request.

There are a number of ways that multithreading can be implemented, including: fine-

grained multithreading, coarse-grained multithreading, and simultaneous multithreading.

 126

Fine-Grained Multithreading
Fine-grained multithreading involves instructions from threads issuing in a round-robin

fashion--one instruction from process A, one instruction from process B, another from A,

and so on (note that there can be more than two threads). This type of multithreading

applies to situations where multiple threads share a single pipeline or are executing on a

single-issue CPU.

Coarse-Grained Multithreading
The next type of multithreading is coarse-grained multithreading. Coarse-grained

multithreading allows one thread to run until it executes an instruction that causes a

latency (cache miss), and then the CPU swaps another thread in while the memory access

completes. If a thread doesn't require a memory access, it will continue to run until its

time limit is up. As with fine-grained multithreading, this applies multiple threads sharing

a single pipeline or executing on a single-issue CPU.

Simultaneous Multithreading (SMT)
Simultaneous multithreading is a refinement on coarse-grained multithreading. The

scheduling algorithm allows the active thread to issue as many instructions as it can (up

to the issue-width) to keep the functional units busy. If a thread does not have sufficient

ILP to do this, other threads may issue instructions to fill the empty slots. SMT only

applies to superscalar architectures which are characterized by multiple-issue CPUs. With

the advent of multithreaded architectures, dependence management has become easier

due to availability of more parallelism. But, the demand for hardware resources has

increased. In order for the processor to cater efficiently to multiple threads, it would be

useful to consider resource conflicts between instructions from different threads. This

need is greater for simultaneous multithreaded processors, since they issue instructions

from multiple threads in the same cycle. Similar to the operating system’s interest in

maintaining a good job mix, the processor is now interested in maintaining a good mix of

instructions. One way to achieve this is for the processor to exploit the choice available

during instruction fetch. To aid this, a good thread selection mechanism should be in

place. Dependences - data and control - limit the exploitation of instruction level

parallelism (ILP) in processors. This is especially so in superscalar processors, where

multiple instructions are issued in a single cycle. Hence, a considerable amount of

 127

research has been carried out in the area of dependence management to improve

processor performance.

Data dependences are of two types: true and false. False data dependences: anti and

output dependences are removed using register renaming, a process of allocating different

hardware registers to an architectural register. True data dependences are managed with

the help of queues where instructions wait for their operands to become available. The

same structure is used to wait for FUs. Control dependences are managed with the help of

branch prediction.

Multithreaded processors add another dimension to dependence management by bringing

in instruction fetch from multiple threads. The advantage in this approach is that the

latencies of true dependences can be covered more effectively. Thus thread-level

parallelism is used to make up for lack of instruction-level parallelism.

Simultaneous multithreading (SMT) combines the best features of multithreading and

superscalar architectures. Like a superscalar, SMT can exploit instruction-level

parallelism in one thread by issuing multiple instructions each cycle. Like a

multithreaded processor, it can hide long latency operations by executing instructions

from different threads. The difference is that it can do both at the same time, that is, in the

same cycle.

The main issue in SMT is effective thread scheduling and selection. While scheduling of

threads from the job mix may be handled by the operating system, selection of threads to

be fetched is handled at the microarchitecture level. One technique for job scheduling

called Symbiotic Job scheduling collects information about different schedules and

selects a suitable schedule for different threads.

 A number of techniques have been used for thread selection. The Icount feedback

technique gives the highest priority to the threads that have the least number of

instructions in the decode, renaming, and queue pipeline stages. Another technique

minimizes branch mispredictions by giving priority to threads with the fewest

outstanding branches. Yet another technique minimizes load delays by giving priority to

threads with the fewest outstanding on-chip cache misses. Of these the Icount technique

has been found to give better results.

Costs occurred in implementing Multithreading

 128

• Each thread requires its own user state

– PC

– GPRs

• Also, needs its own system state

– virtual memory page table base register

– exception handling registers

• Other overheads:

– Additional cache/TLB conflicts from competing threads

– (or add larger cache/TLB capacity)

– More OS overhead to schedule more threads (where do all

these threads come from?)

5.2.1 Multiple context processor

Multithreaded systems are constructed with multiple context processors. Multiple context

processors have been proposed as an architectural technique to mitigate the effects of

large memory latency in multiprocessors. It allows multiple instructions to issue into

pipeline from each context. This could lead to pipeline hazards, so other safe instructions

could be interleaved into the execution. For example the Horizon & Tera the compiler

detects such data dependencies and the hardware enforces it by switching to another

context if dependency is being detected. This is implemented by inserting into each

instruction a field which indicates its minimum number of independent successors over

all possible control flows.

Context switching policies.

Switching from one thread to another is performed according to one of the following

policies :

l Switching on every instruction: the processor switches from one thread to another every

cycle. In other words, it interleaves the instructions from different threads on a cycle-by-

cycle basis.

2 Switching on block of instructions: blocks of instructions from different threads are

interleaved.

 129

3. Switching on every load: whenever a thread encounters a load instruction, the

processor switches to another thread after that load instruction is issued. The context

switch is irrespective of whether the data is local or remote.

4. Switching on remote load: processor switches to another thread only when current

thread encounters a remote access.

5. Switch on cache miss: This policy correspond the case where a context is preempted

when it causes a cache miss.

Multithreaded distributed-memory multiprocessor architectures are composed of a

number of (multithreaded) processors, each with its memory, and an interconnection

network. The long memory latencies and unpredictable synchronization delays are

tolerated by context switching, i.e., by suspending the current thread and switching the

processor to another ‘ready’ thread provided such a thread is available.

Lets assume that the context switching takes place on every load. That is, if the executed

instruction issues an operation for accessing either a local or a remote memory location,

the execution of the current thread suspends, the thread changes its state to waiting, and

another ready thread is selected for execution. When the long latency operation for which

a thread was waiting is satisfied, the thread becomes ready and joins the pool of ready

threads waiting for execution. The thread that is being executed is said to be executing.

There are two schemes for implementing multiple-context processors. The first scheme

switches between contexts only on a cache miss, while the other interleaves the contexts

on a cycle-by-cycle basis. Both schemes provide the capability for a single context to

fully utilize the pipeline. We show that cycle-by-cycle interleaving of contexts provides a

performance advantage over switching contexts only at a cache miss. This advantage

results from the context interleaving hiding pipeline dependencies and reducing the

context switch cost. In addition, we show that while the implementation of the

interleaved scheme is more complex, the complexity is not overwhelming. As pipelines

get deeper and operate at lower percentages of peak performance, the performance

advantage of the interleaved scheme is likely to justify its additional complexity.

5.2.3 Multidimensional architecture

The architecture of massively parallel processors has evolved from 1-D rings to 2-D and

3-D meshes or tori. The USC orthogonal multiprocessor (OMP) can be extended to

 130

higher dimensions. Here instead of using hierarchical busses or switched network

architecture in one dimension, multiprocessor architecture can be extended to a higher

dimensionality or multiplicity along each dimension. A example of is Orthogonal

multiprocessor (OMP architecture) with n processor simultaneously access n rows or

columns of interleaved memory modules. The N*N memory mesh is interleaved in both

dimensions. In other words each row is n-way interleaved and so is each column of

memory modules. There are 2n logical buses spanning in two orthogonal directions. The

memory controller synchronizes the row and column access of shared memory.

5.3 Data flow computers

 In this lesson we also will study about data flow model. Data flow machines is an alternative of

designing a computer that can store program systems. The aim of designing parallel architecture is

to get high performing machines. The designing of new computer is based on following three

principles:

• To achieve high performance

• To match technological progress

• To offer better programmability in application areas

Data flow is one of the technique that meet the above requirement and hence are found

useful for designing the future supercomputer. Before we study in detail about these data

flow computers lets revise the drawbacks of processors based on pipeline architecture.

The major hazards are

o Structural hazards

o Data hazards due to

 true dependences which happens in case of WAR or

 false dependences also called name dependencies : anti and output

dependences (RAW or WAW)

o Control hazards

Among these the Data hazards due to true dependences and care is required to avoid it

while the control hazards can be handled if next instructions in the pipeline to be

executed is basically from different contexts Hence if data dependency can be removed

the performance of the system will definitely improve. It can removed by one of the

followings techniques:

 131

o By renaming the data this will lead to extra burden to complier as this

operation is performed by compiler

o By renaming hardware as done in advanced superscalars computers

o By following the single-assignment rule as done in the dataflow

computers

Data flow computers are based on the principle of data driven computation which is very

much different from the von Neumann architecture which is basically based on the

control flow while where the data flow architecture is designed on availability of data

hence also called data driven computers. There are various types data flow model are

static dynamic, VLSI, Hybrid we will discussing about them in this module. The concept

of data flow computing was originally developed in 1960’s by Karp and Miller. They

used a graphical means of representing computations. Later in the early 1970’s Dennis

and later other developed the computer architectures based on data flow systems.

Concept of dataflow computing finds its application in specialized architectures for

Digital Signal Processing (DSP) and specialized architectures for demanding

computation in the fields of graphics and virtual reality.

Data driven computing and languages

In order to under how Dataflow is different from Control-Flow. Lets see the working of

von Neumann architecture which is based on the control flow computing model. Here

each program is sequence of instructions which are stored in memory. These a series of

addressable instructions store the information about the an operation along with the

information about the with memory locations that store the operand or in case of interrupt

or some function call it store the address of the location where control has to transferred

or in case of conditional transfer it specifies the status bits to be checked and location

where the control has to transferred.

The next instruction to be executed depends on what happened during the execution of

the current instruction. Thus accordingly the address of next instruction to be executed is

transferred to PC. And on next clock pulse the instruction is executed, the operands are

fetched from the desired memory location as required in the instruction. Here the

instruction is also executed even if some of its operands are not available yet (e.g.

uninitialized). The fetching of data and instruction from memory becomes bottleneck in

 132

exploiting the parallelism to its maximum possible utility. The key features of control

flow model are

• Data is passed between instructions via reference to shared memory cells

• Flow of control is implicitly sequential but special control operators can be used

for explicit parallelism

• Program counter are used to sequence the execution of instruction in centralized

control environment

However the data driven model accept the execution of any instruction only on

availability of the operand. Data flow programs are represented by directed graphs which

show the flow of data between instructions. Each instruction consists of an operator, one

or two operands and one or more destinations to which the result is to be transferred. The

key features of data driven model are as follows:

• Intermediate results as well as final result are passed directly as data token

between instruction.

• There is no concept of shared data storage as used in traditional computers

• In contrast to control driven computers where the program has complete control

over the instruction sequencing here the data driven computer the program

sequencing is constrained only by data dependency among the instructions.

• Instructions are examined to check the operand availability and if functional unit

and operand both are available the instruction is immediately executed.

As the fetching of data every time from memory which is part of instruction cycle of von

Neumann model is overcome by transferring the available data the bottleneck in

exploiting parallelism are missing or we can say parallelism is better implemented in data

driven system. This is because there is no concept of shared memory cells and one can

say that data flow diagram are free from side effects as in data driven computers the

operands are directly transferred as token value instead of address variable as in case of

control flow model. There is always a chance of side effect as the change of memory

words in case of control flow computers.

 The data driven concept means asynchrony which means that many instructions can be

executed simultaneously no PC and global updateable store is required. Information

required in a data flow computer are operation packets that are composed of opcode,

 133

operand and destinations of its successor instructions and data token which is formed

with a result value and its destinations. Many of these packets are passed among various

resource sections in a data flow machine. One basic rules involved in computation are in

data flow computer are :

• Enabling rule which states that an instruction is enabled (i.e. executable) if all

operands are available however in control flow computer as in case of von

Neumann model, an instruction is enabled if it is pointed to by PC.

• The computational rule or firing rule , specifies when an enabled instruction is

actually executed. Thus when an instruction is fired (i.e. executed) when it

becomes enabled and effect of firing of an instruction is the consumption of its

input data (operands) and generation of output data (results).

Data Flow graph

Data flow computing as required to implement the parallelism hence it is required to

analysis the data dependency . Data flow computational model uses directed graph G =

(V ,E), which is also called as data dependency graph or DataFlow Graph (DFG). An

important characteristic of dataflow graph is its ability to detect parallelism of

computation by finding various types of dependency among the data. This graph consists

of nodes that represent the operations (opcode) and an arc connects the two node and it

indicates how the data flow between these nodes or we can say arcs are pointers for

forwarding the data tokens. DFG is used for the description of behavior of data driven

computer. Vertex v _ V is an actor, a directed edge e _ E describes precedence

relationships of source actor to sink actor and is guarantee of proper execution of the

dataflow program. This assures proper order of instructions execution with

contemporaneous parallel execution of instructions. Tokens are used to indicate presence

of data in DFG. Actor in dataflow program can be executed only in case there is a

presence of a requisite number of data values (tokens) on input edges of an actor. When

firing an actor execution, the defined number of tokens from input edges is consumed and

defined number of tokens is produced to the output edges.

The figure below represent a data flow graph which is basically is a directed graph

consist of arcs (edges) which represent data flow, and nodes, which represent operations.

 134

These graphs demonstrate the data dependency among the instructions. In data flow

computers the machine level program is represented by data flow graphs.

In conventional computer the only focus while designing program is for assignment

of control flow. To implement the parallel computing in this architecture if we need many

processing elements (electronic chips like ALU) working in parallel simultaneously.

Now designing a prospect of programming for each chip individually becomes

unthinkable. Researchers have designed various computer architects based on the von

Neumann principle i.e., to create a single large machine from many processors like Illiac

IV, Cmmp, etc. The major problem for implementing implicit parallelism in these

machine (based on von Neumann architecture) is

• (Centralized) sequential control

• Shared mernory cells

Data flow languages make a clean break from the von Neumann framework, giving a

new definition to concurrent programming languages. They manage to make optimal use

of the implicit parallelism in a program. Consider the following segment:

l . P = X + Y (waits for availability of input value for X and Y)

2. Q = P I Y (as P is required input it must waits for instruction 1 to finish)

3. R = X * P (as P is required input it must waits for instruction 1 to finish)

4. S = R - Q(as R and Q are required as input it must waits for instruction 2 and 3 to

finish)

+ nodes

arcs

 Add

[]

[]

 135

5. T = R * P (as R is required input it must waits for instruction 3 to finish)

6. U = S I T (as S and T are required as input it must waits for instruction 4 and 5 to

finish)

Permissible computation sequences of the above program for the conventional von

Neumann machine are

(1,2.3.4,5,6)

(1,3,2,5,4,6)

(1,3,5,2,4,6)

(1,2,3,5,4,6) and

(1,3,2,4.5,6)

On parallel computer it is possible to perform these 6 operations in three steps by

performing 2,3 instruction simultaneously and 4,5 also simultaneously. Thus sequence of

instruction can be [1, (2,3) and (4,5)} The above program is shown as data flow graph. A

 136

dataflow program is a graph, where nodes represent operations and edges represent data

paths

Various notations used to construct a data flow diagram with help of operators (nodes)

and links (arcs)

The above Figure show various commonly used symbols in a data flow graph. Data links

are used to transmit all types of data whether it is integer or float except for Boolean

values, for which special links are used as shown in the figure. Any operator is stored in

node and has two or more input and one output except for the identity operator that has

one input arc and it transfer the value of data token unchanged. For conditional and

iterative computations deciders, gates and merge operators are used in data flow graphs.

A decider requires a value from each of its input arcs and test the condition and according

to the condition it satisfies it transmit a truth value. Control tokens bearing boolean

values control the flow of data tokens by means of the gates namely T gates, the F gates,

and the merge operators where the T gate will transmit a data token from its input arc to

its output arc if the value on its control input is true. It will absorb a data token from its

data input arc and place nothing on its output ARC IF IT RECIEVES A False value. The

F gate also have similar behavior except now the control test for false condition. A merge

 137

operator has T and F input arcs and a truth-value control arc. When a true value is

received on its control arc, the data token on the T input is transmitted.

The token on the other unused input arc is discarded. Similary the false input is passed to

the output when the control arc is false.

As said earlier in data flow graphs the tokens flow through the graph. When a node

receives the tokens from the incoming edge it will execute and put the result as tokens on

its output edges. Unlike control flow computer there is no predetermined sequence of the

execution of a data flow computer rather here the data drives the order of execution. Once

a node is activated and operation stored in its node is performed, this process s also called

“fired” and the output of the operation is passed along the arc to waiting node. This

process is repeated until all of the nodes are fired and the final result is created. The

parallelism is implemented as simultaneously more than one node can be fired.

Lets see the data flow diagram for an equation x2 -2x + 3

Data flow diagram for the equation

Lets take another example of implementing a simple problem of finding the root of a

quadratic equation (algorithm assumes real roots) using the data flow graph. For

calculating the roots function quad(a,b,c) performs the following steps:

quad(a, b, c)

 138

{

t1 = a*c;

t2 = 4*t1;

t3 = b*b;

t4 = t3 - t2;

t5 = sqrt(t4);

t6 = -b;

t7 = t6 - t5;

t8 = t7 + t5;

t9 = 2*a;

r1 = t7/t9;

r2 = t8/t9;

}

In the control flow computer this algorithm is implemented line by line. In order to

implement it through data flow computr one should first note the dependancies between

each operation. For example t2 can not be computed before t1, but t3 could be computed

before t1 or t2.

Lets consider example of iterative computation z = x" and represent it by the data flow

graph Figure 5. 3. using the symbols shown in Fig.2. The input reuired are for inputs x,n:

Variable used are y,i

 139

y= 1 :i=n

while i>0 do

begin y= y*x , i= i-1 end

z=y

output z

The computation involve successive calculation of loop variable values i.e., y and I and

these value will pass through the links and test the condition. The initial values of the

control arcs are labeled false to initiate computation. The result z will be obtained when

the decider’s output is false.

Two important characteristics of dataflow graphs are

• Functionality: The evaluation of a dataflow graph is equivalent to evaluation of

the corresponding mathematical function on the same input data.

• Composability: Dataflow graphs can be combined to form new graphs.

Major design issues in implementing Data flow computers

Although the data flow computers as far as theoretical aspect is considered is proved

to very good and appears it should generate the desired results but when it comes

toward the practical realization of a data flow computer, we identify below a number

of important technical problems that remain to be solved:

 140

1. The development of efficient data flow languages which are easy to use and to be

interpreted by machine hardware

2. The decomposition of programs and the assignment of program modules to data

flow processors

3. Controlling and supporting large amounts of interprocessor communication with

cost-effective packet-switched networks

4. Developing intelligent data-driven mechanisms for either static or dynamic data

flow machines

5. Efficient handling of complex data structures, such as arrays, in a data flow

environment

6. Developing a memory hierarchy and memory allocation schemes for supporting

data flow computations

7. A large need for user acquaintance of functional data flow languages, software

supports, data flow compiling, and new programming methodologies

8. Performance evaluation of data flow hardware in a large variety of application

domains, especially in the scientific areas

Disadvantage of dataflow model

o Data flow programs tends to waste lot of memory space for increased

code length due to single assignment rule and excessive copying of

data array.

o The data driven at instruction level cause excessive pipeline overhead

per instruction which may destroy the benefits of parallelism specially

in case where program involve the iterative computing.

o When data flow computer become large with high number of

instruction cells and processing elements, the packet switched

network used becomes cost prohibitive to the entire system.

o Data hazards due to

 true dependences ← dataflow principle

 name (false) dependences ← not present due to single assignment

rule in dataflow languages

o Control hazards ← transformed into data dependences

 141

Data Flow Computer architecture

The data flow computer architecture can be classified as pure data flow computers and

hybrid data flow computers. Earlier the researchers designed pure data flow computers

based on data flow computation principles later researchers observed the shortcoming of

pure data flow computer and combine the principle of conventional computer and data

flow computer to design hybrid data flow computers

• The Pure dataflow computers are further classified as the :

o static,

o dynamic

o Very Large Scale Integration (VSLI) Dataflow

o and the explicit token store architecture.

• Hybrid dataflow computers:

These computers are designed by augmenting the dataflow computation model

with control-flow mechanisms, such as

 RISC approach,

 complex machine operations,

 multithreading,

 large-grain computation,

 etc.

 142

Let begin the study about the Pure Dataflow computer. The basic principle of any

Dataflow computer is data driven and hence it executes a program by receiving,

processing and sending out token.

These token consist of some data and a tag. These tags are used for representing all types

of dependences between instructions. Thus dependencies are handled by translating them

into tag matching and tag transformation. The processing unit is composed of two parts

matching unit that is used for matching the tokens and execution unit used for actual

implementation of instruction. When the processing element gets a token the matching

unit perform the matching operation and when a set of matched tokens the processing

begins by execution unit. The type of operation to be performed by the instruction has to

be fetched from the instruction store which is stored as the tag information. This

information contains details about

o what operation has be performed on the data

o how to transform the tags.

The matching unit and the execution unit are connected through an asynchronous

pipeline, with queues added between the stages. To perform fast token matching some

form of fast associative memories are used. The various possible solution for the

associative memory used to support token matching are.

o a real memory with associative access,

o a simulated memory based on hashing,

o or a direct matched memory.

Jack deniss and his associates at MIT have pioneered the area of data flow research and

they came forward with two models called Dennis machine and Arvind machine. The

Dennis machine has static architecture while Arvind used tagged token and colored

activities and was designed for dynamic architecture.

There are variety of static, dynamic and also hybrid dataflow computing models.

In static model, there is possibility to place only one token on the edge at the same time.

When firing an actor, no token is allowed on the output edge of an actor. It is called static

model because token arms are not labeled and control tokens must be used to

acknowledge the proper timing in the transferring data token from one node to another.

 143

Disadvantage of the static model is impossibility to use dynamic forms of parallelism,

such a loops and recursive parallelism. Computer with static dataflow computer

architecture was designed by Denis and Misunas.

Dynamic model of dataflow computer architecture allows placing of more than one token

on the edge at the same time. To allow implementation of this feature of the architecture,

the concept of tagging of tokens was used. Each token is tagged and the tag identifies

conceptual position of token in the token flow i.e., the label attached in each tag uniquely

identify the context in which particular token is used. For firing an actor execution, a

condition must be fulfilled that on each input edge of an actor the token with the same tag

must be identified. After firing of an actor, those tokens are consumed and predefined

amount of tokens is produced to the output edges of an actor.

There is no condition for firing an actor that no tokens must be on output edge of an

actor. The architecture of dynamic dataflow computer was first introduced at

Massachusetts Institute of technology (MIT) as a Tagged Token Dataflow Architecture.

Both static and dymnaic data flow architecture have a pipelined ring structure with ring

having four resource sections

The memories used for storing the instruction

The processors unit that form the task force for parallel execution of enabled instruction

The routing network the routing network is used to pass the result data token to their

destined instruction

The input output unit serves as an interface between data flow computer and outside

world.

Hybrid dataflow architecture is a combination of control flow and data flow computation

control mechanisms. Research in the field of computing with dataflow control of

computation is predominantly limited to research laboratories where software simulations

or hardware prototypes of dataflow computers are built.

Dataflow computers have yet a little impact in commercial computing, especially because

of problematic design of optimal communication architecture and control of computing

process. Although for example in 1985 Nippon Electronics Corporation (NEC)

commercializes first dataflow processor μpd7281.

Static Dataflow

 144

The static architecture was proposed by Dennis and Misunas [1975]. The static data flow

computer data tokens are assumed to move along the arcs of the data flow program graph

to the operator nodes. The nodal operations gets executed only when all its input are

present at the input arc. Data flow graph used in the Dennis machine must follow the

static execution rule that only one token is allowed to exist on any arc at any given time,

otherwise successive sets of tokens cannot be distinguished thus instead of FIFO design

of string token at arc is replace by simple design where the arc can hold at most one data

token. This is called static because here tokens are not labeled and control token are used

for acknowledgement purpose so that proper timing in the transferring data tokens from

node to node can take place. Here the complete program is loaded into memory before

execution begins. Same storage space is used for storing both the instructions as well as

data. In order to implement this, acknowledge arcs are implicitly added to the dataflow

graph that go in the opposite direction to each existing arc and carry an acknowledgment

token Some example of static data flow computers are MIT Static Dataflow, DDM1 Utah

Data Driven, LAU System, TI Distributed Data Processor, NEC Image Pipelined

Processor

The graph itself is stored in the computer as a collection of activity templates,

such that each template represents a node of the graph. The template as shown in the

figure below holds opcode specifying operation to be performed by the node; a memory

space to hold the value of the data token i.e., address of operand on each input arc, with a

presence flag for each one; and a list of destination addresses for the output tokens

referring to the operand slots in sub-sequent activity templates that need to receive the

result value.

The instruction stored in memory cell is represented as in figure below

 145

Processing elements receive the operation packets as the following form:

The advantage of this approach is that operands can only be affected by one selected

node at a time. On the other hand, complex data structures, or even simple arrays could

not reasonably be carried in the instruction and hence cannot be handles in the

mechanism.

Opcode Operands Destinations

 146

The resulting packet or token consist only of a value and a destination address and it has

the following form:

 Value Destination

The output from an instruction cell generated when all of the input packets (tokens) have

been received. Thus Static dataflow has the following firing rules:

1) Nodes are fire when all input tokens is released and the previous output token

have been consumed.

2) Input tokens are then removed and new output tokens are generated.

The major drawback of this scheme is if different tokens are destined for the same

destination data flow computer cannot be distinguished between them. However Static

dataflow overcome this problem by allowing at most one token on any one arc which

extends the basic firing rule as follows:

o An enabled node is fired if there is no token on any of its output arcs.

This rule allow pipeline computations and loops but does not allow the computation that

involve the code sharing and recursion.

The static data flow adopts a handshaking acknowledgement mechanism which can take

the form of special control tokens set from processors once they respond to a fired node.

In order to implement this, acknowledge arcs are implicitly added to the dataflow graph

that go in the opposite direction to each existing arc and carry an acknowledgment

token. Thus additional acknowledge signals (tokens), travel along additional arcs from

consuming to producing nodes. As acknowledgement concept is used we can redefine

the firing rule in its original form:

o A node is fired at the moment when it becomes enabled.

Some example of dynamic dataflow computers are Manchester Dataflow, MIT Tagged

Token, CSIRAC II , NTT Dataflow Processor Array, Distributed Data Driven Processor,

Stateless Dataflow Architecture , SIGMA-1, Parallel Inference Machine (1984) (17)

Case study of MIT Static dataflow computer

The static dataflow mechanism was the first one to receive attention for hardware

realization at MIT. MIT Static Dataflow Machine

 147

 It consist of five major sections connected by channels through which information is

sent in the form of discrete tokens (packet):

• Memory section consist of instruction cells which hold instructions and their

operands. The memory section is a collection of memory cells, each cell

composed of three memory words that represent an instruction template. The first

word of each instruction cell contains op-code and destination address(es), and the

next two words represent the operands

• Processing section consists of processing units that units perform functional

operations on data tokens . It consist of many pipelined functional units, which

perform the operations, form the result packet(s), and send the result token(s) to

the memory section.

• Arbitration network delivers operation packets from the memory section to the

processing section. Its purpose is to establish a smooth flow of enabled

instructions (i.e., instruction packet) from the memory section to the processing

section. An instruction packet contains the corresponding op-code, operand

value(s), and destination address(es).

 148

• Control network delivers a control token from the processing section to the

memory section. The control network reduces the load on the distribution network

by transferring the Boolean tokens and the acknowledgement signals from the

processing section to the memory section.

• Distribution network delivers data tokens from the processing section to the

memory section.

Instruction stored in the memory section are enabled for execution by the arrival of their

operands in data token from the distributed network and control token from the control

network. The instruction together with data and control are sent as operation packets to

the processing section through arbitration network. The results of the instruction are sent

through the distribution network and the control network to the memory section where

they become input data for the other instruction.

Deficiencies of static dataflow

• Consecutive iterations of a loop can only be pipelined In certain cases, the single-

token-per-arc limitation means that a second loop iteration cannot begin executing

until the present loop has completed its execution

• The additional acknowledgment arcs increase data traffic by a factor of 1.5 to 2 in

the system, without benefiting the computation. This is because here a node has to

wait for acknowledgment tokens to arrive before it can execute again as a result ,

the time between two successive firings of a node increases.

• Lack of support for programming constructs that are essential to modern

programming language

o no procedure calls,

 149

o no recursion.

Advantage:

The static architecture’s main strength is that it is very simple it does not require a data

structure like queue or stack to hold the list of tokens as only one token is allowed at a

node. The static architecture is quickly able to detect whether or not a node is fireable.

Additionally, it means that memory can be allocated for each arc at compile-time as each

arc will only ever hold 0 or 1 data token. This implies that there is no need to create

complex hardware for managing queues of data tokens: each arc can be assigned to a

particular piece of memory store.

Dynamic Dataflow

In Dynamic machine data tokens are tagged (labeled or colored) to allow multiple tokens

to appear simultaneously on any input arc of an operator. No control tokens are needed to

acknowledge the transfer of data tokens among the instructions. The tagging is achieve

by attaching a label with each token which uniquely identifies the context of that

particular token. This dynamically tagged data flow model suggests that maximum

parallelism is exploited from the program graph. However here the matching of token

tags (labels or colors) is performed to merge them for instructions requiring more than

one operand token. Thus the dynamic model, it exposed to an additional parallelism by

allowing multiple invocations of a subgraph that is for implementation of an iterative

loop by performing dynamically unfolding of the iterative loop. While this is the

conceptual view of the tagged token model, in reality only one copy of the graph is kept

in memory and tags are used to distinguish between tokens that belong to each

invocation. A general format for instruction has opcode, the number of constants stored

in instruction and number of destination for the result token. Each destination is identified

by four fields namely the destination address, the input port at the destination instruction,

number of token needed to enable the destination and the assignment function used in

selecting processing element for the execution of destination instruction. The dynamic

architecture has following characteristic different from static architecture. Here Program

nodes can be instantiated at run time unlike in static architecture where it is loaded in the

beginning. Also in dynamic architecture Several instances of an data packet are enabled

and also Separate storage space used for instructions and data

 150

Dynamic dataflow refer to a system in which the dataflow graph being executed is not

fixed and can be altered through such actions as code sharing and recursion. Tags could

be attached to the packets to identify tokens with particular computations.

Dynamic dataflow has the following firing rules:

1) A node fires when all input tokens with the same tag appear.

2) More than one token is allowed on each arc and previous output tokens need not

be consumed before the node can be fired again.

The dynamic architecture requires storage space for the unmatched tokens. First in first

out token queue for storing the tokens is not suitable. A tag contains a unique subgraph

invocation ID, as well as an iteration ID if the subgraph is a loop. These pieces of

information, taken together, are commonly known as the color of the token However no

acknowledgement mechanism is required. The term “coloring” is used for the token

labeling operations and tokens with the same color belong together.

Each field will hold a number. Iteration level identifies the particular activation for loop

body, activation name represents the particular function call and index describe the

particular element of an array.

Thus instead of the single-token-per-arc rule of the static model, the dynamic model

represents each arc as a large queue that can contain any number of tokens, each with a

different tag. In this scenario, a given node is said to be fireable whenever the same tag is

found in a data token on each input arc. It is important to note that, because the data

tokens are not ordered in the tagged-token model, processing of tokens does not

necessarily proceed in the same order as they entered the system. However, the tags

ensure that the tokens do not conflict, so this does not cause a problem. The tags

themselves are generated by the system. Tokens being processed in a given invocation

of a subgraph are given the unique invocation ID of that subgraph. Their iteration

ID is set to zero. When the token reaches the end of the loop and is being fed

back into the top of the loop, a special control operator increments the iteration ID.

Whenever a token finally leaves the loop, another control operator sets its iteration

 Iteration
level

Activation
name

Index

 151

ID back to zero.

A hardware architecture based on the dynamic model is necessarily more complex

than the static architecture . Additional units are required

to form tokens and match tags. More memory is also required to store the

extra tokens that will build up on the arcs. The key advantage of the tagged-token

model is that it can take full advantage of pipelining effects and can even execute

separate loop iterations simultaneously. It can also execute out-of-order, bypassing

any tokens that require complex execution and that delay the rest of the computation.

It has been shown that this model offers the maximum possible parallelism

in any dataflow interpreter.

• Each loop iteration or subprogram invocation should be able to execute in parallel

as a separate instance of a reentrant subgraph.

• The replication is only conceptual.

• Each token has a tag:

o address of the instruction for which the particular data value is destined

o and context information

• Each arc can be viewed as a bag that may contain an arbitrary number of tokens

with different tags.

• The enabling and firing rule is now:

 A node is enabled and fired as soon as tokens with identical tags are

present on all input arcs.

Advantages and Deficiencies of Dynamic Dataflow

Dynamically tagged data flow model suggest the maximum parallelism can be exploited

from the program graph,

• Major advantage of the dynamic data flow computers is its better performance as

compared with static data flow computer as this architecture allows existence of

multiple tokens on each arc which thereby lead to unfold iterative program

leading to more parallelism.

Deficiencies of dynamic dataflow computers

• efficient implementation of the matching unit that collects tokens with matching

tags.

 152

o Associative memory would be ideal.

o Unfortunately, it is not cost-effective since the amount of memory needed

to store tokens waiting for a match tends to be very large.

o As a result, all existing machines use some form of hashing techniques

that are typically not as fast as associative memory.

• bad single thread performance (when not enough workload is present)

• dyadic instructions lead to pipeline bubbles when first operand tokens arrive

• no instruction locality → no use of registers

The main disadvantage of the tagged token model is the extra overhead required

to match tags on tokens, instead of simply their presence or absence. More memory is

also required and, due to the quantity of data being stored, an associative memory is not

practical. Thus, memory access is not as fast as it could be . Nevertheless, the tagged-

token model does seem to offer advantages over the static model. A number of computers

using this model have been built and studied.

Case study of Dynamic Data Flow Computers

Three dynamic data flow projects are introduced below. In dynamic machines, data

tokens are tagged (labeled or colored) to allow multiple tokens to appear simultaneously

on any input are of an operator node. No control tokens are needed to acknowledge the

transfer of data tokens among instructions. Instead, the matching of token tags (labes or

colors) is performed to merge them for instructions requiring more than one operand

token. Therefore, additional hardware is needed to attach tags onto data tokens and to

 153

perform tag matching. We shall present the Arvind machine. These machine was

designed with following objectives:

1) Modularity: The machine should be constructed from

only a few different component types, regularly interconnected, but internally these

components will probably be quite complex (e.g., a processor).

2) Reliability and Fault- Tolerance: Components should be pooled, so removal of a failed

component may lower speed and capacity but not the ability to complete a computation.

The development of the Irvine data flow machine was motivated by the desire to

exploit the potential of VLSI and to provide a high-level, highly concurrent program

organization. This project originated at the University of California at Irvine and now

continues at the Massachusetts Institute of Technology by Arvind and his associates. The

architectecture of the original Irvine machine is conceptually shown in Figure 10.15. The

ID programming language was developed for this machine. This machine has not been

built; but extensive simulation studies have been performed on its projected performance.

 154

The Irvine machine was proposed to consist of multiple PE clusters. All PE clusters

(physical domains) can operate concurrently. Here a PE organized as

a pipelined processor. Each box in the figure is a unit that performs work on one item at a

time drawn from FIFO input queue(s).

 The physical domains are interconnected by two system buses. The token bus is

a pair of bidirectional shift-register rings. Each ring is partitioned into as many slots as

there are PEs and each slot is either empty or holds one data token. Obviously, the token

rings are used to transfer tagged tokens among the PEs.

Each cluster of PEs (four PEs per cluster, as shown in Figure 10.15) shares a local

memory through a local bus and a memory controller. A global bus is used to transfer

data structures among the local memories. Each PE must accept all tokens that are sent

to it and sort those tokens into groups by activity name. When all input tokens for an

activity have arrived (through tag matching), the PE must execute that activity. The U-

interpreter can help implement interative or procedure computation by mapping the loop

or procedure instances into the PE clusters for parallel executions

The Arvind machine at MIT is modified from the Irvine machine, but still based

on the ID Language. Instead of using token rings, the Arvind machine has chosen to use

an N x N packet switch network for inter-PE communications as demonstrated in

Figure 10.16a. The machine consists of N PEs, where each PE is a complete computer

with an instruction set, a memory, tag-matching hardware, etc. Activities are divided

among the PEs according to a mapping from tags to PE numbers. Each PE uses a

statistically chosen assignment function to determine the destination PE number.

5.4 Keywords

context switching Saving the state of one process and replacing it with that of another

that is time sharing the same processor. If little time is required to switch contexts,

processor overloading can be an effective way to hide latency in a message passing

system

data flow graph (1) machine language for a data flow computer; (2) result of data flow

analysis.

dataflow A model of parallel computing in which programs are represented as

dependence graphs and each operation is automatically blocked until the values on which

 155

it depends are available. The parallel functional and parallel logic programming models

are very similar to the dataflow model.

thread a lightweight or small granularity process.

5.5 Summary

The Multithreading paradigm has become more popular as efforts to further exploit

instruction level parallelism have stalled since the late-1990s. This allowed the concept of

Throughput Computing to re-emerge to prominence from the more specialized field of

transaction processing:

• Even though it is very difficult to further speed up a single thread or single

program, most computer systems are actually multi-tasking among multiple

threads or programs.

• Techniques that would allow speed up of the overall system throughput of all

tasks would be a meaningful performance gain.

The two major techniques for throughput computing are multiprocessing and

multithreading.

Advantages :
• If a thread gets a lot of cache misses, the other thread(s) can continue, taking

advantage of the unused computing resources, which thus can lead to faster

overall execution, as these resources would have been idle if only a single thread

was executed.

• If a thread can not use all the computing resources of the CPU (because

instructions depend on each other's result), running another thread permits to not

leave these idle.

• If several threads work on the same set of data, they can actually share their

cache, leading to better cache usage or synchronization on its values.

We had studied how multihtreading improves the perfromance of procesor. We also

dicussed various techniques by which we can implement multiple contest processors.

Dataflow has had a fairly long development time, starting from 1960’s with a few groups

studying the technique without it is becoming widespread in commercial use.

In dataflow architecture the flow of computation is not instructions flow driven, like it is

in control flow architecture. There is no concept of program counter implemented in this

 156

architecture. Control of computation is realized by data flow. Instruction is executed

immediately in condition there are all operands of this instruction presented. When

executed, instruction produces output operands, which are input operands for other

instructions. The most important drawback was compitability issue. Compitability with

existing system inhibit the introduction of a radically different computer system requiring

a different style of programming and different programming languages.

5.5 Self assignment questions

1. What is cocnept of thread? How use of multithread can improve the computer performance.

2. What is difference between control flow and data flow computer

3. What are static dataflow computer

4. Explain working of dynamic data flow computer

5.6 reference.

Advance computer architecture by Kai HWang

Self assceesed questions

1.

.

 157

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Concurrent Processors Lesson No. : 06

6.0 Objective

6.1 Introduction

6.2 Vector Processors

6.2.1 functional units,

6.2.2 vector instruction,

6.2.3 processor implementation,

6.3 Vector memory

6.3.1 modeling vector memory performance,

6.3.2 Gamma Binomial model.

6.4 Vector processor speedup

6.5 Multiple issue processors

6.6 Self assignment questions

6.7 Reference.

6.0 Objective

In this lesson we will about various types of concurrent processor. To study vector

processor how pipelining is implemented in vector processor through the instruction

format, functional unit. To provides a general overview of the architecture of a vector

computer which includes an introduction to vectors and vector arithmetic, a discussion of

performance measurements used to evaluate this type of machine. Various models for

memory organization for the vector processor are also discussed. We will also study

about multiple instruction issue machine which include VLIW, EPIC etc .

6.1 Introduction

The Concurrent Processors must be able to execute multiple instructions at the same time.

Concurrent processors must be able to make simultaneous accesses to memory and to

simultaneously execute multiple operations. Concurrent processors depend on

sophisticated compilers to detect various types of instruction level parallelism that exist

within a program. They are classified as

 158

• Vector processors

• SIMD and small clustered MIMD

• Multiple instruction issue machines

Superscalar (run time schedule)

VLIW (compile time schedule)

EPIC

Hybrids

A Vector processor is a processor that can operate on an entire vector in one instruction.

The operands to the instructions are complete vectors instead of one element.

Vector processors reduce the fetch and decode bandwidth as the numbers of instructions

fetched are less.

They also exploit data parallelism in large scientific and multimedia applications. Based

on how the operands are fetched, vector processors can be divided into two categories - in

memory-memory architecture operands are directly streamed to the functional units from

the memory and results are written back to memory as the vector operation proceeds. In

vector-register architecture, operands are read into vector registers from which they are

fed to the functional units and results of operations are written to vector registers.

Many performance optimization schemes are used in vector processors. Memory banks

are used to reduce load/store latency. Strip mining is used to generate code so that vector

operation is possible for vector operands whose size is less than or greater than the size of

vector registers.

Various techniques are used for fast accessing these include

— Vector chaining - the equivalent of forwarding in vector processors - is used

in case of data dependency among vector instructions.

— Special scatter and gather instructions are provided to efficiently operate on

sparse matrices.

 159

Instruction set has been designed with the property that all vector arithmetic instructions

only allow element N of one vector register to take part in operations with element N

from other vector registers. This dramatically simplifies the construction of a highly

parallel vector unit, which can be structured as multiple parallel lanes. As with a traffic

highway, we can increase the peak throughput of a vector unit by adding more lanes.

Adding multiple lanes is a popular technique to improve vector performance as it requires

little increase in control complexity and does not require changes to existing machine

code. The reason behind the declining popularity of vector processors is their cost as

compared to multiprocessors and superscalar processors. The reasons behind high cost of

vector processors are

• Vector processors do not use commodity parts. Since they sell very few copies, design

cost dominates overall cost.

• Vector processors need high speed on-chip memories which are expensive.

• It is difficult to package the processors with such high speed. In the past, vector

manufactures have employed expensive designs for this.

• There have been few architectural innovations compared to superscalar processors to

improve performance keeping the cost low.

Vector processing has the following semantic advantages.

• Programs size is small as it requires less number of instructions. Vector instructions also

hide many branches by executing a loop in one instruction.

• Vector memory access has no wastage like cache access. Every data item requested by

the processor is actually used.

• Once a vector instruction starts operating, only the functional unit(FU) and the register

buses feeding it need to be powered. Fetch unit, de-code unit, ROB etc can be powered

off. This reduces the power usage.

6.2 Vector processor

The vector computer or vector processor is a machine designed to efficiently handle

arithmetic operations on elements of arrays, called vectors. Such machines are especially

useful in high-performance scientific computing, where matrix and vector arithmetic are

quite common. The Cray Y-MP and the Convex C3880 are two examples of vector

processors used today.

 160

Vectors and vector arithmetic

A vector, v, is a list of elements

v = (v1, v2, v3, ..., vn),

transposed. The length of a vector is defined as the number of elements in that vector; so

the length of v is n. As far as a vector to a computer program, we declare it as an 1-D

array. In Fortran, we declare v by the statement

 DIMENSION V(N)

where N is an integer variable holding the value of the length of the vector.

Arithmetic operations may be performed on vectors. Two vectors are added by adding

corresponding elements:

s = x + y = (x1+y1, x2+y2, ..., xn+yn).

In Fortran, vector addition could be performed by the following code

 DO I=1,N

 S(I) = X(I) + Y(I)

 ENDDO

where s is the vector representing the final sum and S, X, and Y have been declared as

arrays of dimension N. This operation is sometimes called elementwise addition.

Similarly, the subtraction of two vectors, x - y, is an elementwise operation.

The stages of a floating-point operation
Consider the steps or stages involved in a floating-point addition on a sequential machine

with IEEE arithmetic hardware: s = x + y.

• [A:] The exponents of the two floating-point numbers to be added are compared

to find the number with the smallest magnitude.

• [B:] The significand of the number with the smaller magnitude is shifted so that

the exponents of the two numbers agree.

• [C:] The significands are added.

• [D:] The result of the addition is normalized.

• [E:] Checks are made to see if any floating-point exceptions occurred during the

addition, such as overflow.

• [F:] Rounding occurs.

 161

Ste

p
A B C D E F

x
0.1234E

4

0.12340E

4

y

-

0.5678E

3

-

0.05678E

4

s
0.066620E

4

0.66620E

3

0.66620E

3

0.6662E

3

Figure 6.2 : An example showing the stages of a floating-point addition: s = x + y.

Figure 6.2 shows the step-by-step example of such an addition. The numbers to be added

are x = 1234.00 and y = -567.8. Now consider this scalar addition performed on

all the elements of a pair of vectors (arrays) of length n. Each of the six stages needs to

be executed for every pair of elements. If each stage of the execution takes t units of

time, then each addition takes 6*t units of time (not counting the time required to fetch

and decode the instruction itself or to fetch the two operands). So the number of time

units required to add all the elements of the two vectors in a serial fashion would be Ts

= 6*n*t. These execution stages are shown in figure 6.3 with respect to time.

Time: t 2 t 3 t 4 t 5 t 6 t 7 t 8 t

Step

A
x1 +

y1

x2 +

y2

 162

B
x1 +

y1

x2 +

y2

C
x1 +

y1

D
x1 +

y1

E
x1 +

y1

F
x1 +

y1

Figure 6.3 : Scalar floating-point addition of vector elements.

An arithmetic pipeline
Suppose the addition operation described in the last subsection is pipelined; that is, one of

the six stages of the addition for a pair of elements is performed at each stage in the

pipeline. Each stage of the pipeline has a separate arithmetic unit designed for the

operation to be performed at that stage. Once stage A has been completed for the first

pair of elements, these elements can be moved to the next stage (B) while the second pair

of elements moves into the first stage (A). Again each stage takes t units of time. Thus,

the flow through the pipeline can be viewed as shown in figure 6.4

Time: t 2 t 3 t 4 t 5 t 6 t 7 t 8 t

Step

A
x1 +

y1

x2 +

y2

x3 +

y3

x4 +

y4

x5 +

y5

x6 +

y6

x7 +

y7

x8 +

y8

 163

B
x1 +

y1

x2 +

y2

x3 +

y3

x4 +

y4

x5 +

y5

x6 +

y6

x7 +

y7

C
x1 +

y1

x2 +

y2

x3 +

y3

x4 +

y4

x5 +

y5

x6 +

y6

D
x1 +

y1

x2 +

y2

x3 +

y3

x4 +

y4

x5 +

y5

E
x1 +

y1

x2 +

y2

x3 +

y3

x4 +

y4

F
x1 +

y1

x2 +

y2

x3 +

y3

Figure 6.4: Pipelined floating-point addition of vector elements.

Observe that it still takes 6*t units of time to complete the sum of the first pair of

elements, but that the sum of the next pair is ready in only t more units of time. And this

pattern continues for each succeeding pair. This means that the time, Tp, to do the

pipelined addition of two vectors of length n is

Tp = 6*t + (n-1)*t = (n + 5)*t.

The first 6*t units of time are required to fill the pipeline and to obtain the first result.

After the last result, xn + yn, is completed, the pipeline is emptied out or flushed.

Comparing the equations for Ts and Tp, it is clear that

(n + 5)*t < 6*n*t, for n > 1.

Thus, this pipelined version of addition is faster than the serial version by almost a factor

of the number of stages in the pipeline. This is an example of what makes vector

processing more efficient than scalar processing. For large n, the pipelined addition for

this sample pipeline is about six times faster than scalar addition.

6.2.1 Vector Functional unit
Vector Processing Requirements

 164

A vector operand contains an ordered set of n elements, where n is called the length of

the vector. Each element in a vector is a scalar quantity, which may be a floating point

number, an integer, a logical value or a character. A vector processor consists of a scalar

processor and a vector unit, which could be thought of as an independent functional unit

capable of efficient vector operations.

Vector Hardware

Vector computers have hardware to perform the vector operations efficiently. Operands

can not be used directly from memory but rather are loaded into registers and are put

back in registers after the operation. Vector hardware has the special ability to overlap or

pipeline operand processing.

Figure 6.5 Vector Hardware

Vector functional units pipelined, fully segmented each stage of the pipeline performs a

step of the function on different operand(s) once pipeline is full, a new result is produced

each clock period (cp).

Pipelining

The pipeline is divided up into individual segments, each of which is completely

independent and involves no hardware sharing. This means that the machine can be

working on separate operands at the same time. This ability enables it to produce one

result per clock period as soon as the pipeline is full. The same instruction is obeyed

repeatedly using the pipeline technique so the vector processor processes all the elements

of a vector in exactly the same way. The pipeline segments arithmetic operation such as

floating point multiply into stages passing the output of one stage to the next stage as

input. The next pair of operands may enter the pipeline after the first stage has processed

 165

the previous pair of operands. The processing of a number of operands may be carried out

simultaneously.

The loading of a vector register is itself a pipelined operation, with the ability to load one

element each clock period after some initial startup overhead.

Chaining

Theoretical speedup depends on the number of segments in the pipeline so there is a

direct relationship between the number of stages in the pipeline you can keep full and the

performance of the code. The size of the pipeline can be increased by chaining thus the

Cray combines more than one pipeline to increase its effective size. Chaining means that

the result from a pipeline can be used as an operand in a second pipeline as illustrated in

the next diagram

S(I) = A * X(I) + Y(I)

 166

Figure Pipeline Chaining

This example shows how two pipelines can be chained together to form an effectively

single pipeline containing more segments. The output from the first segment is fed

directly into the second set of segments thus giving a resultant effective pipeline length of

8. Speedup (over scalar code) is dependent on the number of stages in the pipeline.

Chaining increases the number of stages

Most vector architectures have more than one pipeline; they may also contain different

types of pipelines. Some vector architectures provide greater efficiency by allowing the

output of one pipeline to be chained directly into another pipeline. This feature is called

chaining and eliminates the need to store the result of the first pipeline before sending it

into the second pipeline. Figure 14.5 demonstrates the use of chaining in the computation

of a saxpy vector operation:

a*x + y,

where x and y are vectors and a is a scalar constant.

Vector Chaining used to compute a*x + y

Figure 6.9 Vector chaining used to compute a scalar value a times a vector x, adding the

elements the resultant vector to the elements of a second vector y (of the same length).

Chaining can double the number of floating-point operations that are done in x

units of time. Once both the multiplication and addition pipelines have been filled,

one floating-point multiplication and one floating-point addition (a total of two

floating-point operations) are completed every x time units. Conceptually, it is

possible to chain more than two functional units together, providing an even

greater speedup. However this is rarely (if ever) done due to difficult timing

problems.

 167

6.2.2 Vector instruction /operation
Vector Instructions

The ISA of a scalar processor is augmented with vector instructions of the following

types:

Vector-vector instructions:

f1: Vi -> Vj (e.g. MOVE Va, Vb)

f2: Vj x Vk -> Vi (e.g. ADD Va, Vb, Vc)

Vector-scalar instructions:

f3: s x Vi -> Vj (e.g. ADD R1, Va, Vb)

Vector-memory instructions:

f4: M -> V (e.g. Vector Load)

f5: V -> M (e.g. Vector Store)

Vector reduction instructions:

f6: V -> s (e.g. ADD V, s)

f7: Vi x Vj ->s (e.g. DOT Va, Vb, s)

Scatter and gather operations
Sometimes, only certain elements of a vector are needed in a computation. Most vector

processors are equipped to pick out the appropriate elements (a gather operation) and put

them together into a vector or a vector register. If the elements to be used are in a

regularly-spaced pattern, the spacing between the elements to be gathered is called the

stride. For example, if the elements

x1, x5, x9, x13, ..., x[4*floor((n-1)/4)+1]

are to be extracted from the vector

(x1, x2, x3, x4, x5, x6, ..., xn)

for some vector operation, we say the stride is equal to 4. A scatter operation reformats

the output vector so that the elements are spaced correctly. Scatter and gather operations

may also be used with irregularly-spaced data.

f8: M x Va -> Vb (e.g. gather)

f9: Va x Vb -> M (e.g. scatter)

Gather and scatter are used to process sparse matrices/vectors. The gather operation, uses

a base address and a set of indices to access from memory "few" of the elements of a

 168

large vector into one of the vector registers. The scatter operation does the opposite. The

masking operations allows conditional execution of an instruction based on a

"masking" register.

Masking instructions:

fa: Va x Vm->Vb (e.g. MMOVE V1, V2, V3)

Gather and scatter are used to process sparse matrices/vectors. The gather operation, uses

a base address and a set of indices to access from memory "few" of the elements of a

large vector into one of the vector registers. The scatter operation does the opposite. The

masking operation allows conditional execution of an instruction based on a "masking"

register.

• A Boolean vector can be generated as a result of comparing two vectors, and can

be used as a masking vector for enabling and disabling component operations in a

vector instruction.

• A compress instruction will shorten a vector under the control of a masking of

vector.

• A merge instruction combines two vectors under the control of a masking vector.

In general machine operation suitable for pipelining should have the following properties:

• Identical Processes (or functions) are repeatedly invoked many times, each of

which can be subdivided into subprocesses (or sub functions)

• Successive Operands are fed through the pipeline segments and require as few

buffers and local controls as possible.

• Operations executed by distinct pipelines should be able to share expensive

resources, such as memories and buses in the system.

• The operation code must be specified in order to select the functional unit or to

 reconfigure a multifunctional unit to perform the specified operation.

• For a memory reference instruction, the base addresses are needed for both

source operands and result vectors. If the operands and results are located in the

vector register file, the designated vector registers must be specified.

• The address increment between the elements must be specified.

• The address offset relative to the base address should be specified. Using the

base address and the offset the relative effective address can be calculated.

 169

• The Vector length is needed to determine the termination of a vector instruction.

• The Relative Vector/Scalar Performance and Amdahl Law

The major hurdle for designing a vector unit is to ensure that the flow of data from

memory to the vector unit will not pose a bottleneck. In particular, for a vector unit to be

effective, the memory must be able to deliver one datum per clock cycle. This is usually

achieved using pipelining using the C-access memory organization (concurrent access) or

the S-access memory organization (simultaneous access), or a combination thereof.

Vector-register vector processors
If a vector processor contains vector registers, the elements of the vector are read from

memory directly into the vector register by a load vector operation. The vector result of a

vector operation is put into a vector register before it is stored back in memory by a store

vector operation; this permits it to be used in another computation without needing to be

reread, and it allows the store to be overlapped by other operations. On these machines,

all arithmetic or logical vector operations are register-register operations; that is, they are

only performed on vectors that are already in the vector registers. For this reason, these

machines are called vector-register vector processors.

Memory-memory vector processors
Another type of vector processor allows the vector operands to be fetched directly from

memory to the different vector pipelines and the results to be written directly to memory;

these are called memory-memory vector processors. Because the elements of the vector

need to come from memory instead of a register, it takes a little longer to get a vector

operation started; this is due partly to the cost of a memory access. One example of a

memory-memory vector processor is the CDC Cyber 205.

Because of the ability to overlap memory accesses and the possible reuse of vector

processors, vector-register vector processors are usually more efficient than memory-

memory vector processors. However as the length of the vectors in a computation

increase, this difference in efficiency between the two types of architectures is

diminished. In fact, the memory-memory vector processors may prove more efficient if

the vectors are long enough. Nevertheless, experience has shown that shorter vectors are

more commonly used.

Comparison - Vector and Scalar Operations

 170

A scalar operation works on only one pair of operands from the S register and returns the

result to another S register whereas a vector operation can work on 64 pairs of operands

together to produce 64 results executing only one instruction. Computational efficiency is

achieved by processing each element of a vector identically eg initializing all the

elements of a vector to zero.

A vector instruction provides iterative processing of successive vector register elements

by obtaining the operands from the first element of one or more V registers and

delivering the result to another V register. Successive operand pairs are transmitted to a

functional unit in each clock period so that the first result emerges after the start up time

of the functional unit and successive results appear each clock cycle.

Vector overhead is larger than scalar overhead, one reason being the vector length which

has to be computed to determine how many vector registers are going to be needed (i.e.,

the number of elements divided by 64).

Each vector register can hold up to 64 words so vectors can only be processed in 64

element segments. This is important when it comes to programming as one situation to be

avoided is where the number of elements to be processed exceeds the register capacity by

a small amount e.g., a vector length of 65. What happens in this case is that the first 64

elements are processed from one register, the 65th element must then be processed using

a separate register, after the first 64 elements have been processed. The functional unit

will process this element in a time equal to the start up time instead of one clock cycle

hence reducing the computational efficiency.

There is a sharp decrease in performance at each point where the vector length spills over

into a new register.

The Cray can receive a result by a vector register and retransmit it as an operand to a

subsequent operation in the same clock period. In other words a register may be both a

result and an operand register which allows the chaining of two or more vector operations

together as seen earlier. In this way two or more results may be produced per clock cycle.

Parallelism is also possible as the functional units can operate concurrently and two or

more units may be co-operating at once. This combined with chaining, using the result of

one functional unit as the input of another, leads to very high processing speeds.

Scalar and vector processing examples

 171

DO 10 I = 1, 3

JJ(I) = KK(I)+LL(I)

10 CONTINUE

 A generic vector processor

Vector registers
Some vector computers, such as the Cray Y-MP, contain vector registers. A general

purpose or a floating-point register holds a single value; vector registers contain several

elements of a vector at one time. For example, the Cray Y-MP vector registers contain 64

elements while the Cray C90 vector registers hold 128 elements. The contents of these

registers may be sent to (or received from) a vector pipeline one element at a time.

Scalar registers
Scalar registers behave like general purpose or floating-point registers; they hold a single

value. However, these registers are configured so that they may be used by a vector

pipeline; the value in the register is read once every tau units of time and put into the

pipeline, just as a vector element is released from the vector pipeline. This allows the

elements of a vector to be operated on by a scalar. To compute

y = 2.5 * x,

the 2.5 is stored in a scalar register and fed into the vector multiplication pipeline every

tau units of time in order to be multiplied by each element of x to produce y.

6.2.4 Vector computing performance

For typical vector architectures, the value of tau (the time to complete one pipeline

stage) is equivalent to one clock cycle of the machine On some machines, it may be equal

to two or more clock cycles.. Once a pipeline like the one shown in figure 3 has been

filled, it generates one result for each t units of time, that is, for each clock cycle. This

means the hardware performs one floating-point operation per clock cycle.

Let k represent the number of t time units the same sequential operation would take (or

the number of stages in the pipeline). Then the time to execute that sequential operation

on a vector of length n is

Ts = k*n*t,

and the time to perform the pipelined version is

 172

Tp = k*t + (n-1)*t = (n + k - 1)*t.

Again for n > 1, Ts > Tp.

A startup time is also required; this is the time needed to get the operation going. In a

sequential machine, there may some overhead required to set up a loop to repeat the same

floating-point operation for an entire vector; the elements of the vector also need to be

fetched from memory. If we let Ss be the number of t time units for the sequential

startup time, then Ts must include this time:

Ts = (Ss + k*n)*t.

In a pipelined machine, the flow from the vector registers or from memory to the pipeline

needs to be started; call this time quantity Sp. Another overhead cost, k*t time units, is

the time needed to initially fill the pipeline. Hence, Tp must include the startup time for

the pipelined operation; thus,

Tp = (Sp + k)*t + (n - 1)*t

or

Tp = (Sp + k + n - 1)*t.

As the length of the vector gets larger (as n goes to infinity), the startup time becomes

negligible in both cases. This means that

Ts --> k*n*t

while

Tp --> n*t.

Thus, for large n, Ts is k times larger than Tp.

There are a number of other terms to describe the performance of vector processors or

vector computers. The following list introduces some of these:

• Rn: For a vector processor, the number of Mflops obtainable for a vector of length

n.

• R_infinity: The asymptotic number of Mflops for a given vector computer as

the length of the vectors gets large. This means that the startup time would be

completely negligible. When the vectors are very long, there should be a result

from the pipeline at every tau units of time or every clock cycle. So the number

 173

of floating-point operations that can be completed in one second is 1.0/tau;

dividing this result by one million produces the result in Mflops.

• n_1/2: The length, n, of a vector such that Rn is equal to R_infinity / 2.

Again for very large vectors, there should be a result from the pipeline at every

tau units of time. So, n_1/2 represents the vector length needed to get a result

at every 2*tau units of time or every two clock cycles.

• n_v: The length, n, of a vector such that performing a vector operation on the n

elements of that vector is more efficient than executing the n scalar operations

instead.

Vector Computer Performance

Performance Year Clock Peak R_infinity n_1/2

Characteristics Cycle Perf (x * y) (x * y)

 (nsec) (Mflops) (Mflops)

Cray-1 1976 12.5 160 22 18

CDC Cyber 205 1980 20.0 100 50 86

Cray X-MP 1983 9.5 210 70 53

... with 4 Procs --- --- 840 --- ---

Cray-2 1985 4.1 488 56 83

... with 4 Procs --- --- 1951 --- ---

IBM 3090 1985 18.5 108 54 high 20's

... with 8 Procs --- --- 432 --- ---

ETA 10 1986 10.5 1250 --- ---

... with 8 Procs --- --- 10,000 --- ---

Alliant FS/8 1986 170.0 6 1 151

... with 8 Procs --- --- 47 1 23

Cray C90 1990 4.2 952 --- ---

... with Procs --- --- 15,238 --- 650

Convex C3880 --- --- 960 --- ---

 174

Performance Year Clock Peak R_infinity n_1/2

Characteristics Cycle Perf (x * y) (x * y)

 (nsec) (Mflops) (Mflops)

Cray 3-128 1993 2.1 948 --- ---

... with 4 Procs --- --- 3972 --- ---

Table 1: Performance characteristics of vector processing computers using 64-bit
floating-point numbers. The expression (x * y) refers to the element wise multiplication
of two vectors, x and y

Table 1 provides some performance characteristics for some of the vector computers

discussed later in this section. The values of R_infinity and n_1/2 are for the

elementwise multiplication of two vectors.

The pipeline vector computers can be divided into 2 architectural configurations

according to where the operands are received in a vector processor. They are :

• Memory -to- memory Architecture, in which source operands, intermediate and

final results are retrieved directly from the main memory.

• Register-to-register architecture, in which operands and results are retrieved

indirectly from the main memory through the use of large number of vector or

scalar registers.

Pipelined Vector Processing Methods

Vector computations are often involved in processing large arrays of data. By ordering

successive computations in the array, the vector array processing can be classified into

three types :

� Horizontal Processing, in which vector computations are performed horizontally from

left to right in row fashion.

� Vertical processing, in which vector computations are carried out vertically from top

to bottom in column fashion.

� Vector looping, in which segmented vector loop computations are performed from left

to right and top to bottom in a combined horizontal and vertical method.

A simple vector summation computation illustrate these vector processing methods

 175

Let { ai for 1 <= i<= n) be n scalar contstants, Xj = (X1j,X2j…… Xmj)T for j = 1,2,3

….n be n column vectors and Yj = (Y1j,Y2j…… Ym)T be a column vector of m

components. The computation to be performed is

Y = ai.x1 + a2.x2 + …. an.xn

Y1 = Z11 + Z12 + …..Z1n

Y2 = Z21 + Z22 + …..Z2n

.

.

. Ym = Zm1 +Zm2+…..Zmn

Horizontal Vector Processing

In this method all components of the vector y are calculated in sequential order, yi for i =

1,2,….m. Each summation involving n-1 additions must be completed before switching

to the evaluation the next summation.

Vertical Vector Processing :

The sequence of additions in this method are, compute the partial sum sequentially

through the pipeline (in row wise z11+z12…)

Computer the partial sum in the column format repeatedly.

Vector Looping Method:

It combines the horizontal and vertical approaches into a block approach.

 176

The Relative Vector/Scalar Performance and Amdahl Law

Let r be the vector/scalar speed ratio and f be the vectorization ratio. For example, if the

time it takes to add a vector of 64 integers using the scalar unit is 10 times the time it

takes to do it using the vector unit, then r = 10. Moreover, if the total number of

operations in a program is 100 and only 10 of these are scalar (after vectorization), then

f=90 (i.e. 90% of the work is done by the vector unit). It follows that the achievable

speedup is:

 Time without the vector unit

 Time with the vector unit

For our example, assuming that it takes one unit of time to execute one scalar operation,

this ratio will be:

 100x1

 ------------- = 100/19 (approx 5).

 10x1 + 90x0.1

In general, the speedup is:

 177

 r

 (1-f)r + f

So even if the performance of the vector unit is extremely high (r = oo) we get a speedup

less than 1/(1-f), which suggests that the ratio f is crucial to performace since it poses a

limit on the attainable speedup. This ratio depends on the efficiency of the compilation,

etc... This also suggests that a scalar unit with a mediocre performance (even if coupled

with the fastest vector unit), will yield mediocre speedup.

Strip-mining

If a vector to be processed has a length greater than that of the vector registers, then strip-

mining is used, whereby the original vector is divided into equal size segments (equal to

the size of the vector registers) and these segments are processed in sequence. The

process of strip-mining is usually performed by the compiler but in some architectures

(like the Fujitsu VP series) it could be done by the hardware.

Compound Vector Processing

A sequence of vector operation may be bundled into a "compound" vector function

(CVF), which could be executed as one operation (without having to store intermediate

results in register vectors, etc..) using a technique called chaining, which is an extension

of bypassing (used in scalar pipelines). The purpose of "discovering" CVFs is to explore

opportunities for concurrent processing of linked vector operations.

Notice that the number of available vector registers and functional units imposes

limitations on how many CVFs can be executed simulataneously (e.g. Cray 1 CVP of

SAXPY code leads to a speedup of 5/3. The X-MP results in a speadup of 5).

6.3 Vector memory

 Interleaved memory banks
To allow faster access to vector elements stored in memory, the memory of a vector

processor is often divided into memory banks. Interleaved memory banks associate

successive memory addresses with successive banks cyclically; thus word 0 is stored in

bank 0, word 1 is in bank 1, ..., word n-1 is in bank n-1, word n is in bank 0, word

n+1 is in bank 1, ..., etc., where n is the number of memory banks. As with many other

computer architectural features, n is usually a power of 2:

 178

n = 2^k,

where k = 1, 2, 3, or 4.

One memory access (load or store) of a data value in a memory bank takes several clock

cycles to complete. Each memory bank allows only one data value to be read or stored in

a single memory access, but more than one memory bank may be accessed at the same

time. When the elements of a vector stored in an interleaved memory are read into a

vector register, the reads are staggered across the memory banks so that one vector

element is read from a bank per clock cycle. If one memory access takes n clock cycles,

then n elements of a vector may be fetched at a cost of one memory access; this is n

times faster than the same number of memory accesses to a single bank.

The figure below is an interleaved memory as it can be seen it places consecutive words

of memory in different memory modules:

Since a read or write to one module can be started before a read/write to another module

finishes, reads/writes can be overlapped. Only the leading bits of the address are used to

determine the address within the module. The least-significant bits (in the diagram above,

the two least-significant bits) determine the memory module. Thus, by loading a single

address into the memory-address register (MAR) and saying “read” or “write”, the

processor can read/write M words of memory. We say that memory is M-way interleaved.

Low-order interleaving distributes the addresses so that consecutive addresses are located

within consecutive modules. For example, for 8-way interleaving:

The Low end machine use the interleaved memory

• Memory banks take turns being connect to bus

 179

• Interleaved memory access improves available bandwidth and may reduce latency for

concurrent accesses.

High end machine use the multiple concurrent banks

• Might use crossbar switch (instead of bus, not instead of VDS) to connect several

memory banks to the VDS simultaneously

• Might be interleaved and assume different subsets of banks connected each clock

Interleaved-memory designs: Interleaved memory divides an address into two portions:

one selects the module, and the other selects an address within the module.

Each module has a separate MAR and a separate MDR.

· When an address is presented, a decoder determines which MAR should be loaded with

this address. It uses the low-order m — log2M bits to decide this.

· The high-order n–m bits are actually loaded into the MAR. They select the proper

location within the module.

An alternative to feeding a vector processor directly from external storage is to provide a

hierarchical memory system similar to cache memory. Memory on the processor chip is

called register storage rather than L1 cache, and is managed directly by the programmer

rather than automatically by the hardware.

A vector processor with high-speed register storage:

 180

The vector registers are large – 64 to 256 floating point numbers each. 256 floating point

numbers at 64 bits each times 8 registers is equivalent to a 16k byte internal data cache.

6.3.1 Vector Memory Modeling

In vector processor when vector operate the parallel execution the memory access can be

overlapped with vector execution the problem arise if the memory cannot keep up with

vector execution rate.

Gamma (γ) − Βinomial model

This model request is based on the principal to use vector request buffer to bypass

waiting requests. An associated issue is the degree of bypassing or out-of-order requests

that a source can make to the memory system. Suppose a conflict arises: a request is

directed to a busy module. How many subsequent requests can the source make before it

must wait? Assume each of s access ports to memory has a buffer of size T BE / s (Fig

7.19). This buffer holds requests (element addresses) to memory that are being held due

to a conflict. For each source, the degree of bypassing is defined as the allowable number

of requests waiting before stalling of subsequent requests occurs.

From a modeling point of view, this is different from the simple binomial or the

δ-binomial models. The basis difference is that the queue awaiting service from a

module is larger by an amount لا, where لا is the man queue size of bypassed requests

awaiting service. Note that the average queue size (لا) is always less than or equal to the

buffer size:

 ,TBF / s ≥لا

 181

Since r cannot exceed the size of the physically implemented buffer. (Although,

depending on the organization of the TBF, one source buffer could “borrow” from

another)

With or without request bypassing, there ids a buffer between the s request sources and

the m memory modules (Figure 7.19). This must be large enough to accommodate

denied requests (no bypassing) i.e.:

Buffer = TBF. mQc

Where Qc is the expected number of denied requests per module, and m is the number of

modules. The m . Qc = n –B, as discussed in chapter 6. If we allow bypassing, we will

require additional buffer entries and additional control. Typically, an entry could include:

• Request source id.

• Request source tag (i.e., VR number).

• Module id.

• Address for request to a module

• Entry priority id (assuming more than one request can be bypassed).

While some optimization is possible, it is clear that large bypassed request buffers can be

complex.

7.3.3 Gamma(لا)-Binomial Model

We now develop the لا -binomial model of bypassed vector memory behavior. Assume

that each vector sources issues a request each cycle (δ = 1), and that each physical

requestor in the vector processor has the same buffer capacity and characteristic. If the

vector processor can make s requests per cycle, and there are t cycles per Tc, we have:

Total requests per Tc = t . s = n.

This is the same as our n requests per Tc in the simple binominal model, but the situation

in the vector processor is more complex. We assume that each of the sources s makes a

request each cycle and each of its لا -buffered requests also makes a request.

Depending on the buffer control, these buffer requests are made only implicitly. The

controller “knows” when a target module will be free and therefore schedules the actual

request for that time. From a memory modeling point of view, this is equivalent to the

buffer requesting service each cycle until the module is free.

Thus, we now have:

 182

Total requests per Tc = t . s + t . s. لا

 = t . s (1 +لا)

 = n(1 +لا)

Vector computation model not as compelling as it once was

• Multi-issue, latency-tolerant architectures reduce cost of loop overhead

– Instruction concurrency is available, and can substitute for data concurrency

• Improved compiler technology reduces value of programmer using vectors to give hints

to hardware

– Improved algorithms to exploit cache

– Smart pre-fetching hardware, cache bypass, latency tolerance

• Commodity networked computing can often achieve comparable performance to a

supercomputer

– Single-chip CPUs now have very high clock rates

– Improved infrastructure for parallel computing makes it accessible

But, desktop CPUs can benefit from supercomputer tricks

• Strided prefetching to reduce latency and better use memory bandwidth

• Selective bypassing of cache to avoid cache pollution

• Intel i860 was an experiment in this direction; but it was a poor compiler target

6.4 Multiple issue machines
The alternative to vector processors is multiple-issue machine. There are two broad

classes of multiple-issue machines: statically scheduled and dynamically scheduled. In

principle, these two classes are quite similar. Dependencies among groups of instructions

are evaluated, and groups found to be independent are simultaneously dispatched to

multiple execution units. For statically scheduled processors, this detection process is

done by the compiler, and Instructions are assembled into instruction packets, which are

decoded and executed at run time. For dynamically scheduled processors, the detection

of independent instructions may also be done at compiler time and the code suitably

arranged to optimize execution patterns, but the ultimate selection of instructions (to be

executed or dispatched) is done by the hardware in the decoder at run time. In principle,

the dynamically scheduled processor may have an instruction representation and form

 183

that is indistinguishable from slower pipeline processors. Statically scheduled processors

must have some additional information either implicitly or explicitly indicating

instruction packet boundaries.

 The extensive use of register ports provides simultaneous access to data as required by a

VLIW processor. This suggests the register set as a processor bottleneck. Dynamic

multiple-issue processors usually use multiple buses connecting the register set and

functional units, and each bus services multiple functional units. This may limit the

maximum degree of concurrency, but it can also significantly reduce the required number

of register ports.

6.4.1 Very Long Instruction Words
Another approach to the parallelism problem is to exploit instruction level parallelism by

having the compiler create bundles of instructions that take advantage of the chip's

known functional units. For instance, if the processor is capable of executing 2 ALU

operations, 1 load/store operation, and one multiply operation simultaneously, the

compiler can do its best to arrange the instructions in such a way that groups consisting of

all these elements will be formed. Together, the group will be issued as a very long

instruction.

This technique is not as popular as superscalar because of the high dependency on

compiler support, and the initial lack thereof. VLIW avoids the chip complexity issues

that are present in superscalar, but it is hindered by the fact that if there is no compiler

capable of efficiently created very long instructions, the architecture is basically useless.

The VLIW technique is probably most useful in certain implementations of high-

performance computers where the types of programs that will be executed are known in

advance and that extensive compiler support is not needed.

VLIW Machines

As superscalar machines become more complex, the difficulties of scheduling instruction

issue become more complex. The on-chip hardware devoted to resolving dependencies

and deciding on instruction issue is growing as a proportion of the total. In some ways,

the situation is reminiscent of the trend towards more complex CISC processors -

eventually leading to the radical change to RISC machines.

 184

Another way of looking at superscalar machines is as dynamic instruction schedulers -

the hardware decides on the fly which instructions to execute in parallel, out of order, etc.

An alternative approach would be to get the compiler to do it beforehand - that is, to

statically schedule execution. This is the basic concept behind Very Long Instruction

Word, or VLIW machines.

VLIW machines have, as you may guess, very long instruction words - in which a

number of 'traditional' instructions can be packed. (Actually for more recent examples,

this is arguably not really true but it's a convenient mental model for now.) For example,

suppose we have a processor which has two integer operation units; a floating point unit;

a load/store unit; and a branch unit. An 'instruction' for such a machine would consist of

[up to] two integer operations, a floating point operation, a load or store, and a branch. It

is the compilers responsibility to find the appropriate operations, and pack them together

into a very long instruction - which the hardware can execute simultaneously without

worrying about dependencies (because the compiler has already considered them).

Pros and Cons
VLIW has both advantages and disadvantages. The main advantage is the saving in

hardware - the compiler now decides what can be executed in parallel, and the hardware

just does it. There is no need to check for dependencies or decide on scheduling - the

compiler has already resolved these issues. (Actually, as we shall see, this may not be

entirely true either.) This means that much more hardware can be devoted to useful

computation, bigger on-chip caches etc., meaning faster processors.

Not surprisingly, there are also disadvantages.

• Compilers. First, obviously compilers will be harder to build. In fact, to get the

best out of current, dynamically scheduled superscalar processors it is necessary

for compilers to do a fair bit of code rearranging to 'second guess' the hardware,

so this technology is already developing. It is observed that building good

compilers for VLIW is non-trival.

• Code Bigger. Secondly, programs will get bigger. If there are not enough

instructions that can be done in parallel to fill all the available slots in an

instruction (which will be the case most of the time). There will consequently be

empty slots in instructions. It is likely that the majority of instructions, in typical

 185

applications, will have empty code slots, meaning wasted space and bigger code.

(It may well be the case that to ensure that all scheduling problems are resolved at

compiler time, we will need to put in some completely empty instructions.)

Memory and disk space is cheap - however, memory bandwidth is not. Even with

the large and efficient caches, we would prefer not to have to fetch large, half-

empty instructions.

• One Stalls, all Stall. Unfortunately, it is not possible at compile time to identify

all possible sources of pipeline stalls and their durations. For example, suppose a

memory access causes a cache miss, leading to a longer than expected stall. If

other, parallel, functional units are allowed to continue operating, sources of data

dependency may dynamically emerge. For example, consider two operations

which have an output dependency. The original scheduling by the compiler would

ensure that there is no consequent WAW hazard. However, if one stalls and the

other 'runs ahead', the dependency may turn into a WAW hazard. In order to get

the compiler to do all dependency resolution, it is required to stall all pipeline

elements together. This is another performance problem.

• Hardware Shows Through A significant issue is the break in the barrier between

architecture and implementation which has existed since the IBM 360 in the

early/mid 60s. It will be necessary for compilers to know exactly what the

capabilities of the processor are - for example, how many functional units are

there?

• VLIW instruction sets are not backward compatible between implementations. As

wider implementations (more execution units) are built, the instruction set for the

wider machines is not backward compatible with older, narrower

implementations.

• Load responses from a memory hierarchy which includes CPU caches and

DRAM do not give a deterministic delay of when the load response returns to the

processor. This makes static scheduling of load instructions by the compiler very

difficult.

6.4.2 Moving beyond VLIW
EPIC architectures add several features to get around the deficiencies of VLIW:

 186

• Each group of multiple software instructions is called a bundle. Each of the

bundles has information indicating if this set of operations is depended upon by

the subsequent bundle. With this capability, future implementations can be built

to issue multiple bundles in parallel. The dependency information is calculated by

the compiler, so the hardware does not have to perform operand dependency

checking.

• A speculative load instruction is used as a type of data prefetch. This prefetch

increases the chances for a primary cache hit for normal loads.

• A check load instruction also aids speculative loads by checking that a load was

not dependent on a previous store.

The EPIC architecture also includes a grab-bag of architectural concepts to increase ILP:

• Predicated execution is used to decrease the occurrence of branches and to

increase the speculative execution of instructions. In this feature, branch

conditions are converted to predicate registers which are used to kill results of

executed instructions from the side of the branch which is not taken.

• Delayed exceptions (using a Not-A-Thing bit within the general purpose registers)

also allow more speculative execution past possible exceptions.

• Very large architectural register files avoid the need for register renaming.

• Multi-way branch instructions

The IA-64 architecture also added register rotation - a digital signal processing concept

useful for loop unrolling and software pipelining.

6.5 Summary

Vector supercomputers are not viable due to cost reason, but vector instruction set

architecture is still useful. Vector supercomputers are adapting commodity technology

like SMT to improve their price-performance. Superscalar microprocessor designs have

begun to absorb some of the techniques made popular in earlier vector computer systems

(Ex - Intel MMX extension). Vector processors are useful for embedded and multimedia

applications which require low power, small code size and high performance.

Vector Processor vs Multiple Issue processor

Advantage of Vector Processor

— good Sp on large scientific problems

 187

— mature compiler technology.

Disadvantage of Vector Processor

— limited to regular data and control structures

— Vector Registers and buffers

— memory BW

Advantage of multiple issue processor

— general-purpose

— good Sp on small problems

— developing compiler technology

Advantage of multiple issue processor

— instruction decoder H/W

— large D cache

— inefficient use of multiple ALUs

6.6 Keywords

vector an ordered list of items in a computer's memory. A simple vector is defined as

having a starting address, a length, and a stride. An indirect address vector is defined as

having a relative base address and a vector of values to be applied as indices to the base.

vector processor A computer designed to apply arithmetic operations to long vectors or

arrays. Most vector processors rely heavily on pipelining to achieve high performance.

vector register a storage device that acts as an intermediate memory between a

computer's functional units and main memory

interleaved memory memory divide into a number of modules or banks that can be

accessed simultaneously.

VLIW Very Long Instruction Word; the use of extremely long instructions (256 bits or

more) in a computer to improve its ability to chain operations together.

6.7 Self assessment Question

1. What are vector?

2. Why vector processors popular in scientific calculations

3. Drawback of vector processor

4. Drawback of VILW processor

5. Write problems in implementing VILW processor?

 188

6.8 Reference:

Advance computer architecture by Kai Hwang

Computer Architecture by Michael J. Flynn

