

SQL
The Complete Reference,

Third Edition

This page intentionally left blank

SQL
The Complete Reference,

Third Edition
Paul Weinberg

James Groff
Andrew Oppel

 New York Chicago San Francisco
Lisbon London Madrid Mexico City

Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-0-07-159256-7

MHID: 0-07-159256-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-159255-0, MHID: 0-07-159255-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-
grams. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechan-
ical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any informa-
tion and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, dis-
seminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own non-
commercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to com-
ply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages result-
ing therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the
use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

About the Authors
James R. Groff is CEO of PBworks, whose hosted collaboration software helps teams of people
work together more effectively and efficiently. Earlier, Groff was CEO of TimesTen, the leading
provider of in-memory SQL databases. He led TimesTen from its early days through eight years of
growth and a successful acquisition by Oracle in 2005, where he served as a senior vice president,
and Oracle TimesTen became Oracle’s flagship real-time database product. Groff was the
cofounder, with Paul Weinberg, of Network Innovations Corporation, a developer of SQL-based
networking software, and coauthor with him of Understanding UNIX: A Conceptual Guide as well
as this book. Groff has also held senior division management and marketing positions at Apple
Computer and Hewlett-Packard. He holds a BS in Mathematics from the Massachusetts Institute
of Technology and an MBA from Harvard University.

Paul N. Weinberg is a senior vice president at SAP, where he runs core MDM (Master Data
Management) development. Prior to working at SAP, Weinberg was president of A2i, Inc., which
was acquired by SAP in 2004 for its enterprisewide platform for product content management and
catalog publishing. Weinberg was the cofounder, with James Groff, of Network Innovations
Corporation, a pioneer in client/server database access that was acquired by Apple Computer in
1988, and coauthor with him of Understanding UNIX:
A Conceptual Guide as well as this book. He has also held software development and marketing
positions at Bell Laboratories, Hewlett-Packard, and Plexus Computers. In 1981, he collaborated
on The Simple Solution to Rubik’s Cube, the number-one best-selling book of that year, with over 6
million copies sold. He holds a BS from the University of Michigan and an MS from Stanford
University, both in Computer Science.

Andrew J. (Andy) Oppel is lead data modeler at Blue Shield of California. In addition, he has
served as a part-time instructor in database technology with the University of California at
Berkeley, Extension for more than 20 years. Andy has designed and implemented hundreds of
databases for a wide range of applications, including heath care, banking, insurance, apparel
manufacturing, telecommunications, wireless communications, and human resources. He is the
author of Databases Demystified, SQL Demystified, and Databases: A Beginner’s Guide and is coauthor
of SQL: A Beginner’s Guide. He holds a BA in Computer Science from Transylvania University
(Lexington, KY).

About the Technical Editor
Aaron Davenport has been working with SQL-based RDBMS technologies for over ten years. He
is currently a principal at LCS Technologies, Inc., a Sacramento and San Francisco Bay Area
database consulting firm specializing in performance tuning, application development, and
database architecture. Prior to joining LCS, Aaron had tenures at Yahoo!, Gap Inc., and Blue Shield
of California.

This page intentionally left blank

vii

Contents at a Glance

 Part I An Overview of SQL

 1 Introduction . 3

 2 A Quick Tour of SQL . 13

 3 SQL in Perspective . 21

 4 Relational Databases . 45

 Part II Retrieving Data

 5 SQL Basics . 63

 6 Simple Queries . 85

 7 Multitable Queries (Joins) . 119

 8 Summary Queries . 163

 9 Subqueries and Query Expressions . 187

 Part III Updating Data

 10 Database Updates . 231

 11 Data Integrity . 247

 12 Transaction Processing . 281

 Part IV Database Structure

 13 Creating a Database . 315

 14 Views . 355

 15 SQL Security . 375

 16 The System Catalog . 399

vii

 viii S Q L : T h e C o m p l e t e R e f e r e n c e

 Part V Programming with SQL

 17 Embedded SQL . 429

 18 Dynamic SQL* . 477

 19 SQL APIs . 521

 Part VI SQL Today and Tomorrow

 20 Database Processing and Stored Procedural SQL . 617

 21 SQL and Data Warehousing . 667

 22 SQL and Application Servers . 681

 23 SQL Networking and Distributed Databases . 699

 24 SQL and Objects . 735

 25 SQL and XML . 769

 26 Specialty Databases . 805

 27 The Future of SQL . 819

 Part VII Appendixes

 A The Sample Database . 835

 B DBMS Vendor Profiles . 841

 C SQL Syntax Reference . 857

 Index . 865

 C o n t e n t s ix

ix

Contents

Acknowledgments . xxiii
Introduction . xxv

 Part I An Overview of SQL

 1 Introduction . 3
The SQL Language . 4
The Role of SQL . 6
SQL Success Factors . 7

Vendor Independence . 8
Portability Across Computer Systems . 8
Official SQL Standards . 9
Early IBM Commitment . 9
Microsoft Support . 9
Relational Foundation . 9
High-Level, English-Like Structure . 10
Interactive, Ad Hoc Queries . 10
Programmatic Database Access . 10
Multiple Views of Data . 10
Complete Database Language . 10
Dynamic Data Definition . 10
Client/Server Architecture . 11
Enterprise Application Support . 11
Extensibility and Object Technology . 11
Internet Database Access . 11
Java Integration (JDBC) . 12
Open Source Support . 12
Industry Infrastructure . 12

 2 A Quick Tour of SQL . 13
A Simple Database . 13
Retrieving Data . 14
Summarizing Data . 16
Adding Data to the Database . 17
Deleting Data . 18
Updating the Database . 18
Protecting Data . 18
Creating a Database . 19
Summary . 20

ix

 x S Q L : T h e C o m p l e t e R e f e r e n c e

 3 SQL in Perspective . 21
SQL and the Evolution of Database Management . 21
A Brief History of SQL . 22

The Early Years . 22
Early Relational Products . 22
IBM Products . 24
Commercial Acceptance . 25

SQL Standards . 26
The ANSI/ISO Standards . 26
Other Early SQL Standards . 29
ODBC and the SQL Access Group . 29
JDBC and Application Servers . 30
SQL and Portability . 30

SQL and Networking . 32
Centralized Architecture . 32
File Server Architecture . 33
Client/Server Architecture . 34
Multitier Architecture . 35

The Proliferation of SQL . 36
SQL on Mainframes . 36
SQL on Minicomputers . 36
SQL on UNIX-Based Systems . 37
SQL on Personal Computers . 37
SQL and Transaction Processing . 38
SQL and Workgroup Databases . 39
SQL, Data Warehousing, and Business Intelligence 40
SQL and Internet Applications . 42

Summary . 43

 4 Relational Databases . 45
Early Data Models . 45

File Management Systems . 45
Hierarchical Databases . 47
Network Databases . 48

The Relational Data Model . 50
The Sample Database . 51
Tables . 52
Primary Keys . 53
Relationships . 55
Foreign Keys . 56

Codd’s 12 Rules for Relational Databases* . 57
Summary . 59

 C o n t e n t s xi C o n t e n t s xi

 Part II Retrieving Data

 5 SQL Basics . 63
Statements . 63
Names . 70

Table Names . 70
Column Names . 71

Data Types . 72
Constants . 77

Numeric Constants . 77
String Constants . 78
Date and Time Constants . 78
Symbolic Constants . 79

Expressions . 80
Built-In Functions . 80
Missing Data (NULL Values) . 82
Summary . 83

 6 Simple Queries . 85
The SELECT Statement . 85

The SELECT Clause . 87
The FROM Clause . 88

Query Results . 88
Simple Queries . 90

Calculated Columns . 91
Selecting All Columns (SELECT *) . 93
Duplicate Rows (DISTINCT) . 94
Row Selection (WHERE Clause) . 95
Search Conditions . 97
The Comparison Test (=, <>, <, <=, >, >=) . 97

The Range Test (BETWEEN) . 100
The Set Membership Test (IN) . 102
The Pattern Matching Test (LIKE) . 104
The Null Value Test (IS NULL) . 106
Compound Search Conditions (AND, OR, and NOT) 107

Sorting Query Results (ORDER BY Clause) . 110
Rules for Single-Table Query Processing . 112

Combining Query Results (UNION)* . 113
Unions and Duplicate Rows* . 115
Unions and Sorting* . 116
Multiple UNIONs* . 117

Summary . 118

 xii S Q L : T h e C o m p l e t e R e f e r e n c e

 7 Multitable Queries (Joins) . 119
A Two-Table Query Example . 119
Simple Joins (Equi-Joins) . 121

Parent/Child Queries . 123
An Alternative Way to Specify Joins . 125
Joins with Row Selection Criteria . 126
Multiple Matching Columns . 127
Natural Joins . 128
Queries with Three or More Tables . 129
Other Equi-Joins . 131

Non-Equi-Joins . 134
SQL Considerations for Multitable Queries . 134

Qualified Column Names . 135
All-Column Selections . 136
Self-Joins . 137
Table Aliases . 139

Multitable Query Performance . 141
The Structure of a Join . 142

Table Multiplication . 142
Rules for Multitable Query Processing . 143

Outer Joins . 144
Left and Right Outer Joins . 148
Older Outer Join Notation* . 151

Joins and the SQL Standard . 153
Inner Joins in Standard SQL . 153
Outer Joins in Standard SQL* . 154
Cross Joins in Standard SQL* . 155
Multitable Joins in Standard SQL . 157

Summary . 162

 8 Summary Queries . 163
Column Functions . 163

Computing a Column Total (SUM) . 165
Computing a Column Average (AVG) . 166
Finding Extreme Values (MIN and MAX) . 166
Counting Data Values (COUNT) . 168
Column Functions in the Select List . 169
NULL Values and Column Functions . 171
Duplicate Row Elimination (DISTINCT) . 173

Grouped Queries (GROUP BY Clause) . 173
Multiple Grouping Columns . 176
Restrictions on Grouped Queries . 179
NULL Values in Grouping Columns . 181

 C o n t e n t s xiii C o n t e n t s xiii

Group Search Conditions (HAVING Clause) . 182
Restrictions on Group Search Conditions . 185
NULL Values and Group Search Conditions . 186
HAVING Without GROUP BY . 186

Summary . 186

 9 Subqueries and Query Expressions . 187
Using Subqueries . 187

What Is a Subquery? . 188
Subqueries in the WHERE Clause . 189
Outer References . 191

Subquery Search Conditions . 192
The Subquery Comparison Test (=, <>, <, <=, >, >=) 192
The Set Membership Test (IN) . 194
The Existence Test (EXISTS) . 196
Quantified Tests (ANY and ALL)* . 198

Subqueries and Joins . 203
Nested Subqueries . 204
Correlated Subqueries* . 205
Subqueries in the HAVING Clause* . 208
Subquery Summary . 209
Advanced Queries* . 211

Scalar-Valued Expressions . 213
Row-Valued Expressions . 218
Table-Valued Expressions . 221
Query Expressions . 224

SQL Queries: A Final Summary . 227

 Part III Updating Data

 10 Database Updates . 231
Adding Data to the Database . 231

The Single-Row INSERT Statement . 232
The Multirow INSERT Statement . 235
Bulk Load Utilities . 238

Deleting Data from the Database . 238
The DELETE Statement . 239
Deleting All Rows . 240
DELETE with Subquery* . 241

Modifying Data in the Database . 242
The UPDATE Statement . 243
Updating All Rows . 245
UPDATE with Subquery* . 245

Summary . 246

 xiv S Q L : T h e C o m p l e t e R e f e r e n c e

 11 Data Integrity . 247
What Is Data Integrity? . 248
Required Data . 249
Simple Validity Checking . 250

Column Check Constraints . 251
Domains . 251

Entity Integrity . 253
Other Uniqueness Constraints . 253
Uniqueness and NULL Values . 254

Referential Integrity . 255
Referential Integrity Problems . 256
Delete and Update Rules* . 258
Cascaded Deletes and Updates* . 262
Referential Cycles* . 262
Foreign Keys and NULL Values* . 267

Advanced Constraint Capabilities . 269
Assertions . 270
SQL Constraint Types . 270
Deferred Constraint Checking . 271

Business Rules . 274
What Is a Trigger? . 275
Triggers and Referential Integrity . 277
Trigger Advantages and Disadvantages . 277
Triggers and the SQL Standard . 278

Summary . 279

 12 Transaction Processing . 281
What Is a Transaction? . 282
The ANSI/ISO SQL Transaction Model . 284

The START TRANSACTION and SET TRANSACTION Statements . . . 284
The SAVEPOINT and RELEASE SAVEPOINT Statements 286
The COMMIT and ROLLBACK Statements . 286

Transactions: Behind the Scenes* . 289
Transactions and Multiuser Processing . 290

The Lost Update Problem . 291
The Uncommitted Data Problem . 292
The Inconsistent Data Problem . 293
The Phantom Insert Problem . 294
Concurrent Transactions . 296

Locking* . 297
Locking Levels . 298
Shared and Exclusive Locks . 300
Deadlocks* . 300
Advanced Locking Techniques* . 303

 C o n t e n t s xv C o n t e n t s xv

Versioning* . 307
Versioning in Operation* . 308
Versioning Advantages and Disadvantages* . 311

Summary . 311

 Part IV Database Structure

 13 Creating a Database . 315
The Data Definition Language . 315
Creating a Database . 317
Table Definitions . 318

Creating a Table (CREATE TABLE) . 318
Removing a Table (DROP TABLE) . 327
Changing a Table Definition (ALTER TABLE) 328

Constraint Definitions . 332
Assertions . 332
Domains . 333

Aliases and Synonyms (CREATE/DROP ALIAS) . 333
Indexes (CREATE/DROP INDEX) . 335
Managing Other Database Objects . 339
Database Structure . 342

Single-Database Architecture . 343
Multidatabase Architecture . 344
Multilocation Architecture . 346
Databases on Multiple Servers . 348

Database Structure and the ANSI/ISO Standard . 348
Catalogs . 350
Schemas . 351

Summary . 354

 14 View . 355
What Is a View? . 355
How the DBMS Handles Views . 357
Advantages of Views . 357
Disadvantages of Views . 358

Creating a View (CREATE VIEW) . 358
Horizontal Views . 359
Vertical Views . 361
Row/Column Subset Views . 361
Grouped Views . 363
Joined Views . 364

Updating a View . 366
View Updates and the ANSI/ISO Standard . 367
View Updates in Commercial SQL Products . 368
Checking View Updates (CHECK OPTION) . 368

 xvi S Q L : T h e C o m p l e t e R e f e r e n c e

Dropping a View (DROP VIEW) . 371
Materialized Views* . 372
Summary . 374

 15 SQL Security . 375
SQL Security Concepts . 376

User-Ids . 376
Security Objects . 381
Privileges . 381

Views and SQL Security . 384
Granting Privileges (GRANT) . 386

Column Privileges . 388
Passing Privileges (GRANT OPTION) . 389

Revoking Privileges (REVOKE) . 391
REVOKE and the GRANT OPTION . 393
REVOKE and the ANSI/ISO Standard . 394

Role-Based Security . 396
Summary . 398

 16 The System Catalog . 399
What Is the System Catalog? . 399

The Catalog and Query Tools . 400
The Catalog and the ANSI/ISO Standard . 401
Catalog Contents . 401

Table Information . 403
Column Information . 407
View Information . 410
Remarks . 412
Relationship Information . 413
User Information . 415
Privileges Information . 417
The SQL Information Schema . 418
Other Catalog Information . 425
Summary . 426

 Part V Programming with SQL

 17 Embedded SQL . 429
Programmatic SQL Techniques . 429

DBMS Statement Processing . 431
Embedded SQL Concepts . 433
Developing an Embedded SQL Program . 434
Running an Embedded SQL Program . 437

 C o n t e n t s xvii C o n t e n t s xvii

Simple Embedded SQL Statements . 439
Declaring Tables . 441
Error Handling . 443
Using Host Variables . 451

Data Retrieval in Embedded SQL . 457
Single-Row Queries . 457
Multirow Queries . 464

Cursor-Based Deletes and Updates . 470
Cursors and Transaction Processing . 475
Summary . 476

 18 Dynamic SQL* . 477
Limitations of Static SQL . 477
Dynamic SQL Concepts . 479
Dynamic Statement Execution (EXECUTE IMMEDIATE) 480
Two-Step Dynamic Execution . 483

The PREPARE Statement . 485
The EXECUTE Statement . 486

Dynamic Queries . 493
The DESCRIBE Statement . 495
The DECLARE CURSOR Statement . 500
The Dynamic OPEN Statement . 500
The Dynamic FETCH Statement . 503
The Dynamic CLOSE Statement . 504

Dynamic SQL Dialects . 504
Dynamic SQL in Oracle* . 504

Dynamic SQL and the SQL Standard . 508
Basic Dynamic SQL Statements . 508
The Standard SQLDA . 510
The SQL Standard and Dynamic SQL Queries 515

Summary . 518

 19 SQL APIs . 521
API Concepts . 522
The dblib API (SQL Server) . 523

Basic SQL Server Techniques . 524
SQL Server Queries . 532
Positioned Updates . 539
Dynamic Queries . 540

ODBC and the SQL/CLI Standard . 549
The Call-Level Interface Standardization . 549
CLI Structures . 552
CLI Statement Processing . 557
CLI Errors and Diagnostic Information . 575
CLI Attributes . 577
CLI Information Calls . 577

 xviii S Q L : T h e C o m p l e t e R e f e r e n c e

The ODBC API . 579
The Structure of ODBC . 580
ODBC and DBMS Independence . 581
ODBC Catalog Functions . 581
Extended ODBC Capabilities . 582

The Oracle Call Interface (OCI) . 586
OCI Handles . 586
Oracle Server Connection . 588
Statement Execution . 589
Query Results Processing . 590
Descriptor Handling . 590
Transaction Management . 590

Java Database Connectivity (JDBC) . 592
JDBC History and Versions . 592
JDBC Implementations and Driver Types . 593
The JDBC API . 598

Summary . 614

 Part VI SQL Today and Tomorrow

 20 Database Processing and Stored Procedural SQL . 617
Procedural SQL Concepts . 618
A Basic Example . 620
Using Stored Procedures . 621

Creating a Stored Procedure . 622
Calling a Stored Procedure . 624
Stored Procedure Variables . 625
Statement Blocks . 627
Functions . 630
Returning Values via Parameters . 631
Conditional Execution . 634
Repeated Execution . 636
Other Flow-of-Control Constructs . 638
Cursor-Based Repetition . 639
Handling Error Conditions . 643

Advantages of Stored Procedures . 645
Stored Procedure Performance . 646
System-Defined Stored Procedures . 647
External Stored Procedures . 647
Triggers . 648

Advantages and Disadvantages of Triggers . 649
Triggers in Transact-SQL . 649
Triggers in Informix SPL . 651
Triggers in Oracle PL/SQL . 653
Other Trigger Considerations . 655

 C o n t e n t s xix C o n t e n t s xix

Stored Procedures, Functions, Triggers, and the SQL Standard 655
The SQL/PSM Stored Procedures Standard . 656
The SQL/PSM Triggers Standard . 664

Summary . 666

 21 SQL and Data Warehousing . 667
Data Warehousing Concepts . 668

Components of a Data Warehouse . 669
The Evolution of Data Warehousing . 670

Database Architecture for Warehousing . 671
Fact Cubes . 672
Star Schemas . 673
Multilevel Dimensions . 675
SQL Extensions for Data Warehousing . 676

Warehouse Performance . 678
Load Performance . 678
Query Performance . 679

Summary . 680

 22 SQL and Application Servers . 681
SQL and Web Sites: Early Implementations . 681
Application Servers and Three-Tier Web Site Architectures 682
Database Access from Application Servers . 684

EJB Types . 685
Session Bean Database Access . 686
Entity Bean Database Access . 689
EJB 2.0 Enhancements . 692
EJB 3.0 Enhancements . 693
Open Source Application Development . 695

Application Server Caching . 695
Summary . 698

 23 SQL Networking and Distributed Databases . 699
The Challenge of Distributed Data Management . 700
Distributing Data: Practical Approaches . 704

Remote Database Access . 705
Remote Data Transparency . 708
Table Extracts . 709
Table Replication . 711
Updateable Replicas . 713
Replication Trade-Offs . 715
Typical Replication Architectures . 715

Distributed Database Access . 719
Remote Requests . 720
Remote Transactions . 721
Distributed Transactions . 722
Distributed Requests . 722

 xx S Q L : T h e C o m p l e t e R e f e r e n c e

The Two-Phase Commit Protocol* . 724
Network Applications and Database Architecture . 727

Client/Server Applications and Database Architecture 728
Client/Server Applications with Stored Procedures 729
Enterprise Applications and Data Caching . 730
High-Volume Internet Data Management . 731

Summary . 733

 24 SQL and Objects . 735
Object-Oriented Databases . 735

Object-Oriented Database Characteristics . 736
Pros and Cons of Object-Oriented Databases 737
Objects and the Database Market . 738

Object-Relational Databases . 739
Large Object Support . 740
LOBs in the Relational Model . 740
Specialized LOB Processing . 742

Abstract (Structured) Data Types . 744
Defining Abstract Data Types . 746
Manipulating Abstract Data Types . 748

Inheritance . 749
Table Inheritance: Implementing Object Classes 751

Sets, Arrays, and Collections . 754
Defining Collections . 755
Querying Collection Data . 758
Manipulating Collection Data . 759
Collections and Stored Procedures . 760

User-Defined Data Types . 762
Methods and Stored Procedures . 763
Object Support in the SQL Standard . 766
Summary . 767

 25 SQL and XML . 769
What Is XML? . 769
XML Basics . 771
XML for Data . 773

XML and SQL . 774
Elements vs. Attributes . 775

Using XML with Databases . 777
XML Output . 778
XML Input . 782
XML Data Exchange . 784
XML Storage and Integration . 784

 C o n t e n t s xxi C o n t e n t s xxi

XML and Metadata . 788
Document Type Definitions (DTDs) . 790
XML Schema . 791

XML and Queries . 797
XQuery Concepts . 798
Query Processing in XQuery . 800

XML Databases . 802
Summary . 803

 26 Specialty Databases . 805
Very Low Latency and In-Memory Databases . 805

Anatomy of an In-Memory Database . 806
In-Memory Database Implementations . 808

Caching with In-Memory Databases . 808
Complex Event-Processing and Stream Databases . 810

Continuous Queries in Stream Databases . 811
Stream Database Implementations . 812
Stream Database Components . 813

Embedded Databases . 814
Embedded Database Characteristics . 815
Embedded Database Implementations . 815

Mobile Databases . 816
Mobile Database Roles . 816
Mobile Database Implementations . 817

Summary . 818

 27 The Future of SQL . 819
Database Market Trends . 820

Enterprise Database Market Maturity . 820
Market Diversity and Segmentation . 821
Packaged Enterprise Applications . 822
Software-as-a-Service (SaaS) . 823
Hardware Performance Gains . 823
Database Server Appliances . 824
SQL Standardization . 825

SQL in the Next Decade . 826
Distributed Databases . 826
Massive Data Warehousing for Business Optimization 826
Ultrahigh-Performance Databases . 827
Internet and Network Services Integration . 828
Embedded Databases . 829
Object Integration . 829
Cloud-Based and Horizontally Scalable Databases 830

Summary . 832

 xxii S Q L : T h e C o m p l e t e R e f e r e n c e

 Part VII Appendixes

 A The Sample Database . 835

 B DBMS Vendor Profiles . 841

 C SQL Syntax Reference . 857
Data Definition Statements . 858
Access Control Statements . 859
Basic Data Manipulation Statements . 859
Transaction-Processing Statements . 860
Cursor-Based Statements . 860
Query Expressions . 860
Search Conditions . 862
Expressions . 863
Statement Elements . 863
Simple Elements . 864

 Index . 865

 I n t r o d u c t i o n xxiii

xxiii

Acknowledgments

Special thanks to Andy Oppel, our new coauthor for this third edition of SQL: The
Complete Reference. His impressive high-level mastery of the subject matter coupled
with his meticulous attention to detail made this a better book, and we are fortunate

to have had his involvement.

—Jim and Paul

It’s an honor to join such an accomplished team of authors for this edition of SQL: The
Complete Reference. My thanks for the excellent support of the entire McGraw-Hill team for
their tireless support in this effort. In particular I wish to thank technical editor Aaron
Davenport and copy editor Jan Jue for their persistence and attention to detail, which
contributed so much to the overall quality of this book.

—Andy

xxiii

This page intentionally left blank

xxv

Introduction

SQL: The Complete Reference, Third Edition provides a comprehensive, in-depth
treatment of the SQL language for both technical and nontechnical users,
programmers, data processing professionals, and managers who want to understand

the impact of SQL in today’s computer industry. This book offers a conceptual framework
for understanding and using SQL, describes the history of SQL and SQL standards, and
explains the role of SQL in various computer industry segments, from enterprise data
processing to data warehousing to web site architectures. This new edition contains new
chapters specially focused on the role of SQL in application server architectures, and the
integration of SQL with XML and other object-based technologies.

This book will show you, step-by-step, how to use SQL features, with many illustrations
and realistic examples to clarify SQL concepts. The book also compares SQL products from
leading DBMS vendors—describing their advantages, benefits, and trade-offs—to help
you select the right product for your application. Most of the examples in this book are
based on the sample database described in Appendix A. The sample database contains
data that supports a simple order-processing application for a small distribution company.
Appendix A also contains instructions for downloading the SQL statements required to
create and populate the sample database tables in a DBMS of you choice, such as Oracle,
SQL Server, MySQL, and DB2. This allows you to try the examples in the book yourself
and gain actual experience writing and running SQL statements.

In some of the chapters, the subject matter is explored at two different levels—a
fundamental description of the topic, and an advanced discussion intended for computer
professionals who need to understand some of the internals behind SQL. The more
advanced information is covered in sections marked with an asterisk (*). You do not need
to read these sections to obtain an understanding of what SQL is and what it does.

xxv

 xxvi S Q L : T h e C o m p l e t e R e f e r e n c e

How This Book Is Organized
The book is divided into six parts that cover various aspects of the SQL language:

• Part I, “An Overview of SQL,” provides an introduction to SQL and a market
perspective of its role as a database language. Its four chapters describe the history
of SQL, the evolution of SQL standards, and how SQL relates to the relational data
model and to earlier database technologies. Part I also contains a quick tour of SQL
that briefly illustrates its most important features and provides you with an
overview of the entire language early in the book.

• Part II, “Retrieving Data,” describes the features of SQL that allow you to perform
database queries. The first chapter in this part describes the basic structure of the
SQL language. The next four chapters start with the simplest SQL queries and
progressively build to more complex queries, including multitable queries,
summary queries, and queries that use subqueries.

• Part III, “Updating Data,” shows how you can use SQL to add new data to a
database, delete data from a database, and modify existing database data. It also
describes the database integrity issues that arise when data is updated, and how
SQL addresses these issues. The last of the three chapters in this part discusses the
SQL transaction concept and SQL support for multiuser transaction processing.

• Part IV, “Database Structure,” deals with creating and administering a SQL-based
database. Its four chapters tell you how to create the tables, views, and indexes that
form the structure of a relational database. It also describes the SQL security scheme
that prevents unauthorized access to data, and the SQL system catalog that
describes the structure of a database. This part also discusses the significant
differences between the database structures supported by various SQL-based DBMS
products.

• Part V, “Programming with SQL,” describes how application programs use SQL for
database access. It discusses the embedded SQL specified by the ANSI standard and
used by IBM, Oracle, Ingres, Informix, and many other SQL-based DBMS products.
It also describes the dynamic SQL interface that is used to build general-purpose
database tables, such as report writers and database browsing programs. Finally,
this part describes the popular SQL APIs, including ODBC, the ISO-standard Call-
Level Interface, and JDBC, the standard call-level interface for Java, as well as
proprietary call-level interfaces such as Oracle’s OCI API.

• Part VI, “SQL Today and Tomorrow,” examines the use of SQL in several of today’s
“hottest” application areas, and the current state of SQL-based DBMS products. Two
chapters describe the use of SQL stored procedures and triggers for online
transaction processing, and the contrasting use of SQL for data warehousing. Four
additional chapters describe SQL-based distributed databases, the influence of
object technologies on SQL, specialty databases, and the integration of SQL with
XML technologies. Finally, the last chapter explores the future of SQL and some of
the most important trends in SQL-based data management.

 I n t r o d u c t i o n xxvii I n t r o d u c t i o n xxvii

Conventions Used in This Book
SQL: The Complete Reference, Third Edition describes the SQL features and functions available
in the most popular SQL-based DBMS products and those described in the ANSI/ISO SQL
standards. Whenever possible, the SQL statement syntax described in this book and used in the
examples applies to all dialects of SQL. When the dialects differ, the differences are pointed out
in the text, and the examples follow the most common practice. In these cases, you may have
to modify the SQL statements in the examples slightly to suit your particular brand of DBMS.

Throughout the book, technical terms appear in italics the first time they are used and
defined. SQL language elements, including SQL keywords, table and column names, and
sample SQL statements, appear in an UPPERCASE MONOSPACE font. SQL API function
names appear in a lowercase monospace font. Program listings also appear in
monospace font and use the normal case conventions for the particular programming
language (uppercase for COBOL and FORTRAN, lowercase for C and Java). Note that
these conventions are used solely to improve readability; most SQL implementations will
accept either uppercase or lowercase statements. Many of the SQL examples include query
results, which appear immediately following the SQL statement, as they would in an
interactive SQL session. In some cases, long query results are truncated after a few rows;
this is indicated by a vertical ellipsis (…) following the last row of query results.

Why This Book Is for You
SQL: The Complete Reference, Third Edition is the right book for anyone who wants to
understand and learn SQL, including database users, data processing professionals and
architects, programmers, students, and managers. It describes—in simple, understandable
language liberally illustrated with figures and examples—what SQL is, why it is important,
and how you use it. This book is not specific to one particular brand or dialect of SQL.
Rather, it describes the standard, central core of the SQL language and then goes on to
describe the differences among the most popular SQL products, including Oracle, Microsoft
SQL Server, IBM’s DB2 Universal Database and Informix, Sybase, and MySQL. It also
explains the importance of SQL-based standards, such as ODBC and JDBC, and the ANSI/
ISO standards for SQL and SQL-related technologies. This third edition contains new
chapters and sections that cover the latest SQL innovations, in the areas of object-relational
technologies, XML, and application server architectures.

If you are new to SQL, this book offers comprehensive, step-by-step treatment of the
language, building from simple queries to more advanced concepts. The structure of the
book will allow you to quickly start using SQL, but the book will continue to be valuable as
you begin to use the more complex features of the language. You can create the sample
database using an SQL script available on the McGraw-Hill website (see Appendix A) and
use it to try out the examples and build your SQL skills.

If you are a data processing professional, architect, or manager, this book will give
you a perspective on the impact that SQL is having across the information technology
industry—from personal computers to mainframes to data warehousing to Internet web
sites and Internet-based distributed applications. The early chapters describe the history
of SQL, its role in the market, and its evolution from earlier database technologies. Later
chapters describe the future of SQL and the development of new database technologies,
such as distributed databases, object-oriented extensions to SQL, business intelligence
databases, and database/XML integration.

 xxviii S Q L : T h e C o m p l e t e R e f e r e n c e

If you are a programmer, this book offers a very complete treatment of programming with
SQL. Unlike the reference manuals of many DBMS products, it offers a conceptual framework
for SQL programming, explaining the why as well as the how of developing a SQL-based
application. It contrasts the SQL programming interfaces offered by all of the leading SQL
products, including embedded SQL, dynamic SQL, ODBC, JDBC, and proprietary APIs
such as the Oracle Call Interface. The description and comparison of programming techniques
provides a perspective not found in any other book.

If you are selecting a DBMS product, this book offers a comparison of the SQL features,
advantages, and benefits offered by the various DBMS vendors. The differences between
the leading DBMS products are explained, not only in technical terms, but also in terms
of their impact on applications and their evolving competitive position in the marketplace.
The “sample database” can be used to try these features in a prototype of your own
application.

In short, both technical and nontechnical users can benefit from this book. It is the most
comprehensive source of information available about the SQL language, SQL features and
benefits, popular SQL-based products, the history of SQL, and the impact of SQL on the
future direction of the information technology industry.

I
An Overview of SQL

The first four chapters of this book provide a perspective and
a quick introduction to SQL. Chapter 1 describes what SQL is
and explains its major features and benefits. In Chapter 2,

a quick tour of SQL shows you many of its capabilities with simple,
rapid-fire examples. Chapter 3 offers a market perspective of SQL
by tracing its history, describing the SQL standards and the major
vendors of SQL-based products, and by identifying the reasons for
SQL’s prominence today. Chapter 4 describes the relational data
model upon which SQL is based and compares it with earlier data
models.

CHAPTER 1
Introduction

CHAPTER 2
A Quick Tour of SQL

CHAPTER 3
SQL in Perspective

CHAPTER 4
Relational Databases

PART

This page intentionally left blank

1
Introduction

The SQL language and relational database systems based on it constitute one of the
most important foundation technologies in the computer industry. Over the last three
decades, SQL has grown from its first commercial use into a computer product and

services market segment worth tens of billions of dollars per year, and SQL stands today as
the standard computer database language. Hundreds of database products now support
SQL, running on computer systems from mainframes to personal computers. A SQL-based
database may even be embedded in your mobile phone or PDA, or in the entertainment
system of your car. An official international SQL standard has been adopted and expanded
several times. Every major enterprise software product relies on SQL for its data management,
and SQL is at the core of the flagship database products from Microsoft, Oracle, and IBM,
three of the largest software companies in the world. SQL is also at the heart of open-source
database products such as MySQL and Postgres that are helping to fuel the popularity of
Linux and the open source movement. From its obscure beginnings as an IBM research project,
SQL has grown to become both an important piece of information technology and a powerful
market force.

What, exactly, is SQL? Why is it important? What can it do, and how does it work? If
SQL is really a standard, why do we have so many different versions and dialects? How do
popular SQL products like SQL Server, Oracle, MySQL, Sybase, and DB2 compare? How
does SQL relate to Microsoft standards such as ODBC and .NET? How does JDBC link SQL
to the world of Java and object technology? What role does it play in the Service-Oriented
Architecture (SOA) and web services being embraced by enterprise IT organizations? Does
SQL really scale from mainframes to handheld devices? Has it really delivered the
performance needed for high-volume transaction processing? How will SQL impact the
way you use computers, and how can you get the most out of this important data
management tool? This book answers those questions by giving you a complete perspective
and a solid working knowledge of SQL.

33

CHAPTER

 4 P a r t I : A n O v e r v i e w o f S Q L 4 P a r t I : A n O v e r v i e w o f S Q L

The SQL Language
SQL is a tool for organizing, managing, and retrieving data stored by a computer database.
The original name given it by IBM was Structured English Query Language, shortened to the
acronym SEQUEL. When IBM discovered that SEQUEL was a trademark owned by the Hawker
Siddeley Aircraft Company of the United Kingdom, they shortened the acronym to SQL. The
word “English” was then dropped from the spelled-out name to match the new acronym. To
this day, you will hear the acronym SQL pronounced as either a word (“sequel”) or as a string
of letters (“S-Q-L”), and while the latter is generally preferred, both are considered correct. As
the name implies, SQL is a computer language that you use to interact with a database. In fact,
SQL works with one specific type of database, called a relational database, which has become
the mainstream way to organize data across a very broad range of computer applications.

Figure 1-1 shows how SQL works. The computer system in the figure has a database that
stores important information. If the computer system is in a business, the database might
store inventory, production, sales, or payroll data. On a personal computer, the database
might store data about the checks you have written, lists of people and their phone numbers,
or data extracted from a larger computer system. The computer program that controls the
database is called a database management system (DBMS).

When you need to retrieve data from a database, you use the SQL to make the request.
The DBMS processes the SQL request, retrieves the requested data, and returns it to you.
This process of requesting data from a database and receiving the results is called a database
query—hence the name Structured Query Language.

“Structured Query Language” is actually somewhat of a misnomer. First of all, SQL is
far more than a query tool, although that was its original purpose, and retrieving data is still
one of its most important functions. SQL is used to control all of the functions that a DBMS
provides for its users, including

FIGURE 1-1 Using SQL for database access

 C h a p t e r 1 : I n t r o d u c t i o n 5 C h a p t e r 1 : I n t r o d u c t i o n 5
PART I

• Data definition SQL lets a user define the structure and organization of the stored
data and relationships among the stored data items.

• Data retrieval SQL allows a user or an application program to retrieve stored data
from the database and use it.

• Data manipulation SQL allows a user or an application program to update the
database by adding new data, removing old data, and modifying previously
stored data.

• Access control SQL can be used to restrict a user’s ability to retrieve, add, and
modify data, protecting stored data against unauthorized access.

• Data sharing SQL is used to coordinate data sharing by concurrent users, ensuring
that changes made by one user do not inadvertently wipe out changes made at
nearly the same time by another user.

• Data integrity SQL defines integrity constraints in the database, protecting it from
corruption due to inconsistent updates or system failures.

SQL is thus a comprehensive language for controlling and interacting with a database
management system.

Second, SQL is not really a complete computer language like COBOL, C, C++, or Java.
Instead, SQL is a database sublanguage, consisting of about 40 statements specialized for
database management tasks. These SQL statements can be embedded into another language
such as COBOL or C to extend that language for use in database access. Alternatively,
the statements can be explicitly sent to a database management system for processing,
via a call-level interface from a language such as C, C++, or Java, or via messages sent over
a computer network.

SQL also differs from other computer languages because it describes what the user
wants the computer to do rather than how the computer should do it. (In more technical
terms, SQL is a declarative or descriptive language rather than a procedural one.) SQL
contains no IF statement for testing conditions, and no GOTO, DO, or FOR statements for
program flow control. Rather, SQL statements describe how a collection of data is to be
organized, or what data is to be retrieved or added to the database. The sequence of steps
to do those tasks is left for the DBMS to determine.

Finally, SQL is not a particularly structured language, especially when compared with
highly structured languages such as C, Pascal, or Java. Instead, SQL statements resemble
English sentences, complete with “noise words” that don’t add to the meaning of the
statement but make it read more naturally. The SQL has quite a few inconsistencies and also
some special rules to prevent you from constructing SQL statements that look perfectly legal
but that don’t make sense.

Despite the inaccuracy of its name, SQL has emerged as the standard language for using
relational databases. SQL is both a powerful language and one that is relatively easy to
learn. The quick tour of SQL in Chapter 2 will give you a good overview of the language
and its capabilities.

 6 P a r t I : A n O v e r v i e w o f S Q L 6 P a r t I : A n O v e r v i e w o f S Q L

The Role of SQL
SQL is not itself a database management system, nor is it a stand-alone product. You cannot
go to a computer retailer or a web site selling computer software and buy SQL. Instead,
SQL is an integral part of a database management system, a language and a tool for
communicating with the DBMS. Figure 1-2 shows some of the components of a typical
DBMS and how SQL links them together.

The database engine is the heart of the DBMS, responsible for actually structuring, storing,
and retrieving the data in the database. It accepts SQL requests from other DBMS components
(such as a forms facility, report writer, or interactive query facility), from user-written
application programs, and even from other computer systems. As the figure shows, SQL plays
many different roles:

• SQL is an interactive query language. Users type SQL commands into an interactive
SQL program to retrieve data and display it on the screen, providing a convenient,
easy-to-use tool for ad hoc database queries.

• SQL is a database programming language. Programmers embed SQL commands into
their application programs to access the data in a database. Both user-written
programs and database utility programs (such as report writers and data entry
tools) use this technique for database access.

FIGURE 1-2 Components of a typical database management system

 C h a p t e r 1 : I n t r o d u c t i o n 7 C h a p t e r 1 : I n t r o d u c t i o n 7
PART I

• SQL is a database administration language. The database administrator responsible for
managing a minicomputer or mainframe database uses SQL to define the database
structure and to control access to the stored data.

• SQL is a client/server language. Personal computer programs use SQL to communicate
over a network with database servers that store shared data. This client/server
architecture is used by many popular enterprise-class applications.

• SQL is an Internet data access language. Internet web servers that interact with
corporate data and Internet application servers all use SQL as a standard language
for accessing corporate databases, often by embedding SQL database access within
popular scripting languages like PHP or Perl.

• SQL is a distributed database language. Distributed database management systems use
SQL to help distribute data across many connected computer systems. The DBMS
software on each system uses SQL to communicate with the other systems, sending
requests for data access.

• SQL is a database gateway language. In a computer network with a mix of different
DBMS products, SQL is often used in a gateway that allows one brand of DBMS to
communicate with another brand.

SQL has thus emerged as a useful, powerful tool for linking people, computer programs,
and computer systems to the data stored in a relational database.

SQL Success Factors
In historical terms, SQL has been an extraordinarily successful information technology.
Think about the computer market in the mid-1980s, when SQL first started to become
important. Mainframes and minicomputers dominated corporate computing. The IBM
personal computer had been introduced only a few years before, and the MS-DOS command
line was its user interface. IBM’s mainframe operating systems and minicomputer operating
systems from Digital Equipment, Data General, Hewlett-Packard, and others dominated
business computing. Proprietary networking schemes like IBM’s SNA or Digital Equipment’s
DECnet linked computers together. The Internet was still a tool for collaboration among
research labs, and the World Wide Web had not yet appeared on the scene. COBOL, C, and
Pascal were dominant computer languages; object-oriented programming was only
beginning to emerge; and Java had not been invented.

Across all of these areas of computer technology—from computer hardware to operating
systems to networking to languages—the important key technologies of the mid-1980s
have faded or become obsolete, replaced by significant new ones. But in the world of data
management, the relational database and SQL continue to dominate the landscape. They
have expanded over the years to support new hardware, operating systems, networks, and
languages, but despite many attempts to dethrone them, the core relational model and the
SQL have thrived and remain the dominant forces in data management. Here are some of the
major features and market forces that have contributed to this success over the past 25 years:

• Vendor independence

• Portability across computer systems

 8 P a r t I : A n O v e r v i e w o f S Q L 8 P a r t I : A n O v e r v i e w o f S Q L

• Official SQL standards

• Early IBM commitment

• Microsoft support

• Relational foundation

• High-level, English-like structure

• Interactive, ad hoc queries

• Programmatic database access

• Multiple views of data

• Complete database language

• Dynamic data definition

• Client/Server architecture

• Enterprise application support

• Extensibility and object technology

• Internet database access

• Java integration (JDBC)

• Open source support

• Industry infrastructure

The sections that follow briefly describe each of these and how they contributed to
SQL’s success.

Vendor Independence
SQL is offered by all of the leading DBMS vendors, and no new database product over the
last decade has been highly successful without SQL support. A SQL-based database and the
programs that use it can be moved from one DBMS to another vendor’s DBMS with
minimal conversion effort and little retraining of personnel. Database tools such as query
tools, report writers, and application generators work with many different brands of SQL
databases. The vendor independence thus provided by SQL was one of the most important
reasons for its early popularity and remains an important feature today.

Portability Across Computer Systems
SQL-based database products run on computer systems ranging from mainframes and
midrange systems to personal computers, workstations, a wide range of specialized server
computers, and even handheld devices. They operate on stand-alone computer systems, in
departmental local area networks, and in enterprisewide or Internetwide networks. SQL-
based applications that begin on single-user or departmental server systems can be moved
to larger server systems as they grow. Data from corporate SQL-based databases can be
extracted and downloaded into departmental or personal databases. Finally, economical
personal computers can be used to test a prototype of a SQL-based database application
before moving it to an expensive multiuser system.

 C h a p t e r 1 : I n t r o d u c t i o n 9 C h a p t e r 1 : I n t r o d u c t i o n 9
PART I

Official SQL Standards
An official standard for SQL was initially published by the American National Standards
Institute (ANSI) and the International Standards Organization (ISO) in 1986, and was
expanded in 1989 and again in 1992, 1999, 2003, and 2006. SQL is also a U.S. Federal
Information Processing Standard (FIPS), making it a key requirement for large government
computer contracts. Over the years, other international, government, and vendor groups
have pioneered the standardization of new SQL capabilities, such as call-level interfaces or
object-based extensions. Many of these new initiatives have been incorporated into the
ANSI/ISO standard over time. The evolving standards serve as an official stamp of
approval for SQL and have speeded its market acceptance.

Early IBM Commitment
SQL was originally invented by IBM researchers and fairly quickly became a strategic
product for IBM based on its flagship DB2 database. SQL support is available on all major
IBM product families, from personal computers through midrange systems and UNIX-based
servers to IBM mainframes. IBM’s initial work provided a clear signal of IBM’s direction for
other database and system vendors to follow early in the development of SQL and relational
databases. Later, IBM’s commitment and broad support speeded the market acceptance of
SQL. In the 1970s, IBM was the dominant force in business computing, so its early and
sustained support as the inventor and champion of SQL ensured its early importance.

Microsoft Support
Microsoft has long considered database access a key part of its Windows personal computer
software architecture. Both desktop and server versions of Windows provide standardized
relational database access through Open Database Connectivity (ODBC), a SQL-based
call-level API (application programming interface). Leading Windows software applications
(spreadsheets, word processors, databases, etc.) from Microsoft and other vendors
support ODBC, and all leading SQL databases provide ODBC access. Microsoft has
enhanced ODBC support with higher-level, more object-oriented database access layers
over the years, including data management support in .NET today. But these new
technologies could always interact with relational databases through the ODBC/SQL
layers below. When Microsoft began its effort in the late 1980s to make Windows a viable
server operating system, it introduced SQL Server as its own SQL-based offering. SQL
Server continues today as a flagship Microsoft product and as a key component of the
Microsoft .NET architecture for web services.

Relational Foundation
SQL is a language for relational databases, and it has become popular along with the
relational database model. The tabular, row/column structure of a relational database
is intuitive to users, keeping the SQL simple and easy to understand. The relational
model also has a strong theoretical foundation that has guided the evolution and
implementation of relational databases. Riding a wave of acceptance brought about by
the success of the relational model, SQL has become the database language for relational
databases.

 10 P a r t I : A n O v e r v i e w o f S Q L 10 P a r t I : A n O v e r v i e w o f S Q L

High-Level, English-Like Structure
SQL statements look like simple English sentences, making SQL relatively easy to learn and
understand. This is in part because SQL statements describe the data to be retrieved, rather
than specifying how to find the data. Tables and columns in a SQL database can have long,
descriptive names. As a result, most SQL statements “say what they mean” and can be read
as clear, natural sentences.

Interactive, Ad Hoc Queries
SQL is an interactive query language that gives users ad hoc access to stored data. Using
SQL interactively, a user can get answers even to complex questions in minutes or seconds,
in sharp contrast to the days or weeks it would take for a programmer to write a custom
report program. Because of the SQL ad hoc query power, data is more accessible and can be
used to help an organization make better, more informed decisions. SQL’s ad hoc query
capability was an important advantage over nonrelational databases early in its evolution
and more recently has continued as a key advantage over pure object-based databases.

Programmatic Database Access
SQL is also a database language used by programmers to write applications that access a
database. The same SQL statements are used for both interactive and programmatic access,
so the database access parts of a program can be tested first with interactive SQL and then
embedded into the program. In contrast, nonrelational or object-oriented databases
provided one set of tools for programmatic access and a separate query facility for ad hoc
requests, without any synergy between the two modes of access.

Multiple Views of Data
Using SQL, the creator of a database can give different users of the database different views
of its structure and contents. For example, the database can be constructed so that each user
sees data only for his or her department or sales region. In addition, data from several
different parts of the database can be combined and presented to the user as a simple row/
column table. SQL views can thus be used to enhance the security of a database and to tailor
it to the particular needs of individual users while preserving the fundamental row/column
structure of the data.

Complete Database Language
SQL was first developed as an ad hoc query language, but its powers now go far beyond
data retrieval. SQL provides a complete, consistent language for creating a database,
managing its security, updating its contents, retrieving data, and sharing data among many
concurrent users. SQL concepts that are learned in one part of the language can be applied
to other SQL commands, making users more productive.

Dynamic Data Definition
Using SQL, the structure of a database can be changed and expanded dynamically, even
while users are accessing database contents. This is a major advance over static data
definition languages, which prevented access to the database while its structure was being
changed. SQL thus provides maximum flexibility, allowing a database to adapt to changing
requirements while online applications continue uninterrupted.

 C h a p t e r 1 : I n t r o d u c t i o n 11 C h a p t e r 1 : I n t r o d u c t i o n 11
PART I

Client/Server Architecture
SQL is a natural vehicle for implementing applications using a distributed, client/server
architecture. In this role, SQL serves as the link between “front-end” computer systems
optimized for user interaction and “back-end” systems specialized for database management,
allowing each system to do what it does best. SQL also allows personal computers to
function as front-ends to network servers or to larger minicomputer and mainframe
databases, providing access to corporate data from personal computer applications.

Enterprise Application Support
The largest enterprise applications that support the daily operation of large companies and
organizations all use SQL-based databases to store and organize their data. In the 1990s, driven
by the impending deadline for supporting dates in the year 2000 and beyond (the so-called
“Y2K” problem), large enterprises moved en masse to abandon their homegrown systems and
convert to packaged enterprise applications from vendors like SAP, Oracle, PeopleSoft, Siebel,
and others. The data processed by these applications (orders, sales amounts, customers,
inventory levels, payment amounts, etc.) tends to have a structured, records-and-fields format,
which converts easily into the row/column format of SQL. By constructing their applications
to use enterprise-class SQL databases, the major application vendors eliminated the need to
develop their own data management software and benefited from existing tools and
programming skills. Because every major enterprise application requires a SQL-based database
for its operation, new sales of enterprise applications automatically generate “drag-along”
demand for new copies of database software.

Extensibility and Object Technology
The major challenge to SQL’s continued dominance as a database standard has come from
the emergence of object-based programming through languages such as Java and C++, and
from the introduction of object-based databases as an extension of the broad market trend
toward object-based technology. SQL-based database vendors have responded to this
challenge by slowly expanding and enhancing SQL to include object features. These “object/
relational” databases, which continue to be based on SQL, have emerged as a more popular
alternative to “pure object” databases and have perpetuated SQL’s dominance through the
last decade. The newest wave of object technology, embodied in the XML standard and web
services architectures, once again created a crop of “XML databases” and alternative query
languages to challenge SQL in the early 2000s. But once again, the major vendors of SQL-
based databases responded by adding XML-based extensions, meeting the challenge and
securing SQL’s continuing importance. History suggests that this “extend and integrate”
approach will be successful in warding off new challenges in the future as well.

Internet Database Access
With the exploding popularity of the Internet and the World Wide Web, and their
standards-based foundation, SQL found a new role in the late 1990s as an Internet data
access standard. Early in the development of the Web, developers needed a way to retrieve
and present database information on web pages and used SQL as a common language for
database gateways. More recently, the emergence of three-tiered Internet architectures with
distinct thin client, application server, and database server layers, has established SQL as
the standard link between the application and database tiers. The role of SQL in multitier

 12 P a r t I : A n O v e r v i e w o f S Q L

architectures is now beginning to extend beyond the back-end database layer, to include
data caching and real-time data management in or near the application tier.

Java Integration (JDBC)
A major area of SQL development over the last five to ten years has been the integration of
SQL with Java. Seeing the need to link the Java language to existing relational databases,
Sun Microsystems (the creator of Java) introduced Java Database Connectivity (JDBC), a
standard API that allows Java programs to use SQL for database access. JDBC received a
further boost when it was adopted as the data access standard within the Java2 Enterprise
Edition (J2EE) specification, which defines the operating environment provided by most of
the leading Internet application servers. In addition to the role of Java as a programming
language from which databases are used, many of the leading database vendors have also
announced or implemented Java support within their database systems, allowing Java to be
used as a language for stored procedures and business logic within the database itself. This
trend toward integration between Java and SQL will ensure the continued importance of
SQL in the new era of Java-based programming.

Open Source Support
One of the newer important developments in the computer industry is the emergence of
an “open source” approach to building complex software systems. With this approach, the
source code that defines the operation of a software system is open and freely available,
and many different programmers can contribute to it, adding features, fixing bugs, enhancing
its functionality, and providing support for its use. This community of programmers,
potentially spread across thousands of different organizations and around the globe, with
some coordination becomes the engine that drives the further development of the technology.
Open source software is generally available at very low prices (or free), adding to its appeal.
Several successful open source SQL-based databases have been built in the last decade, and
one of these, MySQL, is a standard component of the most popular open source “stack” of
software—the LAMP stack—which also includes Linux, the Apache web server, and the PHP
scripting language. The widespread availability of free SQL-based open source databases has
exposed SQL to an even broader range of programmers, continuing to build its popularity.

Industry Infrastructure
Perhaps the most important factor contributing to the growing importance of SQL is the
emergence of an entire computer industry infrastructure based on SQL. SQL-based
relational database systems are an important part of this infrastructure. Enterprise
applications that use SQL and require a SQL-based database are another important part, as
are reporting tools, data entry tools, design tools, programming tools, and a host of other
tools that simplify the use of SQL. A large pool of experienced SQL programmers is a critical
part of the infrastructure. Another important part is the training and support services that
surround SQL and help to create and perpetuate SQL expertise. An entire subindustry has
emerged around SQL consulting, optimization, and performance-tuning. All parts of this
infrastructure tend to reinforce one another and to contribute to the ongoing success of the
other parts. Simply stated, to solve data management problems, the easiest, lowest-risk,
lowest-cost solution is almost always a solution based on SQL.

2
A Quick Tour of SQL

Before we dive into the details of SQL, it’s a good idea to develop an overall
perspective on the language and how it works. This chapter contains a quick tour of
SQL that illustrates its major features and functions. The goal of the quick tour is not

to make you proficient in writing SQL statements; that’s the goal of Part II of this book.
Rather, by the time you’ve finished this chapter, you will have a basic familiarity with the
SQL and an overview of its capabilities.

A Simple Database
The examples in this quick tour are based on a simple relational database for a small
distribution company. The database, shown in Figure 2-1, stores the information needed to
implement a small order-processing application. You will find instructions for creating the
sample database in Appendix A, so you can try these queries yourself as you read.
Specifically, it stores the following information:

• The customers who buy the company’s products

• The orders placed by those customers

• The salespeople who sell the products to customers

• The sales offices where those salespeople work

This database, like most others, is a model of the “real world.” The data stored in the
database represents real entities—customers, orders, salespeople, and offices. Each different
kind of entity has a separate table of data. For example, in the SALESREPS table, each
salesperson is represented by one row, and each column holds one type of information
about salespeople, such as their name or the sales office where they are assigned. Database
requests that you make using the SQL parallel real-world activities, as customers place,
cancel, and change orders; as you hire and fire salespeople; and so on. Let’s see how you
can use SQL to manipulate data.

13

CHAPTER

 14 P a r t I : A n O v e r v i e w o f S Q L 14 P a r t I : A n O v e r v i e w o f S Q L

Retrieving Data
First, let’s list the sales offices, showing the city where each one is, its office number, and its
year-to-date sales. The SQL statement that retrieves data from the database is called SELECT.
This SQL statement retrieves the data you want:

SELECT CITY, OFFICE, SALES
 FROM OFFICES;

CITY OFFICE SALES
------------ ------- ------------
Denver 22 $186,042.00
New York 11 $692,637.00
Chicago 12 $735,042.00
Atlanta 13 $367,911.00
Los Angeles 21 $835,915.00

FIGURE 2-1 A simple relational database

 C h a p t e r 2 : A Q u i c k T o u r o f S Q L 15 C h a p t e r 2 : A Q u i c k T o u r o f S Q L 15
PART I

The SELECT statement asks for three pieces of data—the city, the office number, and the
amount of sales—for each office. It also specifies that all of this data comes from the
OFFICES table, which stores data about sales offices. The results of the query appear, in
tabular form, immediately after the request. Note that the formatting of the query results
will vary from one SQL implementation to another.

The SELECT statement is used for all SQL queries. For example, here is a query that lists
the names and year-to-date sales for each salesperson in the database. It also shows the
quota (sales target) and the office number where each person works. In this case, the data
comes from the SALESREPS table.

SELECT NAME, REP_OFFICE, SALES, QUOTA
 FROM SALESREPS;

NAME REP_OFFICE SALES QUOTA
-------------- ----------- ------------ ------------
Bill Adams 13 $367,911.00 $350,000.00
Mary Jones 11 $392,725.00 $300,000.00
Sue Smith 21 $474,050.00 $350,000.00
Sam Clark 11 $299,912.00 $275,000.00
Bob Smith 12 $142,594.00 $200,000.00
Dan Roberts 12 $305,673.00 $300,000.00
Tom Snyder NULL $75,985.00 NULL
Larry Fitch 21 $361,865.00 $350,000.00
Paul Cruz 12 $286,775.00 $275,000.00
Nancy Angelli 22 $186,042.00 $300,000.00

The NULL values for Tom Snyder represent missing or unknown data. He is new to the
company and has not yet been assigned to a sales office or been given a sales quota. However,
he has already made some sales. The data in his row of query results shows this clearly.

SQL also lets you ask for calculated results. For example, you can ask SQL to calculate
the amount by which each salesperson is over or under quota:

SELECT NAME, SALES, QUOTA, (SALES – QUOTA)
 FROM SALESREPS;

NAME SALES QUOTA (SALES–QUOTA)
-------------- ------------ ------------ --------------
Bill Adams $367,911.00 $350,000.00 $17,911.00
Mary Jones $392,725.00 $300,000.00 $92,725.00
Sue Smith $474,050.00 $350,000.00 $124,050.00
Sam Clark $299,912.00 $275,000.00 $24,912.00
Bob Smith $142,594.00 $200,000.00 –$57,406.00
Dan Roberts $305,673.00 $300,000.00 $5,673.00
Tom Snyder $75,985.00 NULL NULL
Larry Fitch $361,865.00 $350,000.00 $11,865.00
Paul Cruz $286,775.00 $275,000.00 $11,775.00
Nancy Angelli $186,042.00 $300,000.00 –$113,958.00

The requested data (including the calculated difference between sales and quota for
each salesperson) once again appears in a row/column table. Perhaps you would like to
focus on the salespeople whose sales are less than their quotas. SQL lets you retrieve that

 16 P a r t I : A n O v e r v i e w o f S Q L 16 P a r t I : A n O v e r v i e w o f S Q L

kind of selective information very easily, by adding a mathematical comparison to the
previous request:

SELECT NAME, SALES, QUOTA, (SALES – QUOTA)
 FROM SALESREPS
 WHERE SALES < QUOTA;

NAME SALES QUOTA (SALES–QUOTA)
-------------- ------------ ------------ -------------
Bob Smith $142,594.00 $200,000.00 –$57,406.00
Nancy Angelli $186,042.00 $300,000.00 –$113,958.00

You can use the same technique to list large orders in the database and find out which
customer placed the order, which product was ordered, and in what quantity. You can also
ask SQL to sort the orders based on the order amount:

SELECT ORDER_NUM, CUST, PRODUCT, QTY, AMOUNT
 FROM ORDERS
 WHERE AMOUNT > 25000.00
 ORDER BY AMOUNT;

 ORDER_NUM CUST PRODUCT QTY AMOUNT
---------- ----- -------- ---- -----------
 112987 2103 4100Y 11 $27,500.00
 113069 2109 775C 22 $31,350.00
 112961 2117 2A44L 7 $31,500.00
 113045 2112 2A44R 10 $45,000.00

Summarizing Data
SQL not only retrieves individual pieces of data from the database, but it also can
summarize the database contents. What’s the average size of an order in the database? This
request asks SQL to look at all the orders and find the average amount:

SELECT AVG(AMOUNT)
 FROM ORDERS;

 AVG(AMOUNT)

 $8,256.37

You could also ask for the average order size for a particular customer:

SELECT AVG(AMOUNT)
 FROM ORDERS
 WHERE CUST = 2103;

AVG(AMOUNT)

 $8,895.50

 C h a p t e r 2 : A Q u i c k T o u r o f S Q L 17 C h a p t e r 2 : A Q u i c k T o u r o f S Q L 17
PART I

Finally, let’s find out the total value of the orders placed by each customer. To do this,
you can ask SQL to group the orders together by customer number and then total the orders
for each customer:

SELECT CUST, SUM(AMOUNT)
 FROM ORDERS
 GROUP BY CUST;

 CUST SUM(AMOUNT)
----- ------------
 2101 $1,458.00
 2102 $3,978.00
 2103 $35,582.00
 2106 $4,026.00
 2107 $23,132.00
 2108 $7,255.00
 2109 $31,350.00
 2111 $6,445.00
 2112 $47,925.00
 2113 $22,500.00
 2114 $22,100.00
 2117 $31,500.00
 2118 $3,608.00
 2120 $3,750.00
 2124 $3,082.00

Adding Data to the Database
You also use SQL to add new data to the database. For example, suppose you just opened a
new Western region sales office in Dallas, with target sales of $275,000. Here’s the INSERT
statement that adds the new office to the database, as office number 23:

INSERT INTO OFFICES (CITY, REGION, TARGET, SALES, OFFICE)
 VALUES ('Dallas', 'Western', 275000.00, 0.00, 23);

1 row inserted.

Similarly, if Mary Jones (employee number 109) signs up a new customer, Acme
Industries, this INSERT statement adds the customer to the database as customer number
2125 with a $25,000 credit limit:

INSERT INTO CUSTOMERS (COMPANY, CUST_REP, CUST_NUM, CREDIT_LIMIT)
 VALUES ('Acme Industries', 109, 2125, 25000.00);

1 row inserted.

You may have noticed that the SQL engine returned feedback (1 row inserted) to tell
you that the statements worked. The exact wording and formatting of this feedback will
vary from one SQL implementation to another.

 18 P a r t I : A n O v e r v i e w o f S Q L 18 P a r t I : A n O v e r v i e w o f S Q L

Deleting Data
Just as the SQL INSERT statement adds new data to the database, the SQL DELETE statement
removes data from the database. If Acme Industries decides a few days later to switch to a
competitor, you can delete Acme’s customer information from the database with this statement:

DELETE FROM CUSTOMERS
 WHERE COMPANY = 'Acme Industries';

1 row deleted.

And if you decide to terminate all salespeople whose sales are less than their quotas,
you can remove them from the database with this DELETE statement:

DELETE FROM SALESREPS
 WHERE SALES < QUOTA;

2 rows deleted.

Updating the Database
You can use SQL to modify data that is already stored in the database. For example, to
increase the credit limit for First Corp. to $75,000, you would use the SQL UPDATE
statement:

UPDATE CUSTOMERS
 SET CREDIT_LIMIT = 75000.00
 WHERE COMPANY = 'First Corp.';

1 row updated.

The UPDATE statement can also make many changes in the database at once. For
example, this UPDATE statement raises the quota for all salespeople by $15,000:

UPDATE SALESREPS
 SET QUOTA = QUOTA + 15000.00;

8 rows updated.

Protecting Data
An important role of a database is to protect the stored data from access or modification by
unauthorized users. For example, suppose your assistant, Mary, has a database account but
has not been previously authorized to insert data about new customers into the database.
This SQL statement grants her that permission:

GRANT INSERT
 ON CUSTOMERS
 TO MARY;

Privilege granted.

 C h a p t e r 2 : A Q u i c k T o u r o f S Q L 19 C h a p t e r 2 : A Q u i c k T o u r o f S Q L 19
PART I

Similarly, the following SQL statement gives Mary permission to update data about
customers and to retrieve customer data with the SELECT statement:

GRANT UPDATE, SELECT
 ON CUSTOMERS
 TO MARY;

Privilege granted.

If Mary is no longer allowed to add new customers to the database, this REVOKE statement
will disallow it:

REVOKE INSERT
 ON CUSTOMERS
 FROM MARY;

Privilege revoked.

Similarly, this REVOKE statement will revoke all of Mary’s privileges to access or modify
customer data in any way:

REVOKE ALL
 ON CUSTOMERS
 FROM MARY;

Privilege revoked.

Creating a Database
Before you can store data in a database, you must first define the structure of the data.
Suppose you want to expand the sample database by adding a table of data about the
products your company sells. For each product, the data to be stored includes the
following:

• A three-character manufacturer ID code

• A five-character product ID code

• A product description of up to 30 characters

• The price of the product

• The quantity currently on hand

This SQL CREATE TABLE statement defines a new table to store the products’ data:

CREATE TABLE PRODUCTS
 (MFR_ID CHAR(3),
 PRODUCT_ID CHAR(5),
 DESCRIPTION VARCHAR(30),
 PRICE DECIMAL(9,2),
 QTY_ON_HAND INTEGER);

Table created.

 20 P a r t I : A n O v e r v i e w o f S Q L

Although more cryptic than the previous SQL statement examples, the CREATE TABLE
statement is still fairly straightforward. It assigns the name PRODUCTS to the new table and
specifies the name and type of data stored in each of its five columns. The manufacturer and
product IDs are stored as fixed-length sequences of characters, the product description is a
variable-length character string, the price is decimal data (a real number), and the quantity
is an integer.

Once the table has been created, you can fill it with data. Here’s an INSERT statement
for a new shipment of 250 size 7 widgets (product ACI-41007), which cost $225.00 apiece:

INSERT INTO PRODUCTS (MFR_ID, PRODUCT_ID, DESCRIPTION, PRICE, QTY_ON_HAND)
 VALUES ('ACI', '41007', 'Size 7 Widget', 225.00, 250);

1 row inserted.

Finally, if you discover later that you no longer need to store the products’ data in the
database, you can erase the table (and all of the data it contains) with the DROP TABLE
statement:

DROP TABLE PRODUCTS;

Table dropped.

Summary
This quick tour of SQL showed you what SQL can do and illustrated the style of the SQL by
using eight of the most commonly used SQL statements. To summarize:

• Use SQL to retrieve data from the database, by using the SELECT statement. You can
retrieve all or part of the stored data, sort it, and ask SQL to summarize the data,
using totals and averages.

• Use SQL to update the database, by adding new data with the INSERT statement,
deleting data with the DELETE statement, and modifying existing data with the
UPDATE statement.

• Use SQL to control access to the database, by granting and revoking specific
privileges for specific users with the GRANT and REVOKE statements.

• Use SQL to create/modify the database by defining the structure of new tables and
dropping tables when they are no longer needed, by using the CREATE and DROP
statements.

3
SQL in Perspective

SQL is the standard language for database management today. What does it mean
for SQL to be a standard? How did it become a standard? What role does the
official SQL standard play? How broadly adopted is it, and why are there still

dialects of SQL despite the standard? How broad is SQL’s impact on various segments
of the IT landscape? To answer these questions, this chapter traces the history of SQL
and describes its current role in the computer market.

SQL and the Evolution of Database Management
One of the major tasks of a computer system is to store and manage data. To handle this task,
specialized computer programs known as database management systems began to appear in the
late 1960s and early 1970s. A database management system, or DBMS, helped computer
users to organize and structure their data and allowed the computer system to play a more
active role in managing the data. Although database management systems were first
developed on large mainframe systems, their popularity quickly spread to minicomputers,
and then to computer workstations, personal computers, and specialized server computers.

Database management has also played a key role in the explosion of computer
networking and the Internet. Early database systems ran on large, monolithic computer
systems, where the data, the database management software, and the users or application
programs accessing the database all operated on the same system. The 1980s and 1990s saw
the explosion of a new client/server model for database access, in which a user or an
application program running on a personal computer accesses a database on a separate
computer system by using a network. In the late 1990s, the increasing popularity of the
Internet and the World Wide Web impacted the architecture of data management again.
Today, users require little more than a web browser to access and interact with databases,
not only within their own organizations, but also around the world. These Internet-based
architectures usually involve three or more computer systems—one that runs the web
browser and interacts with the user, connected over the Internet to a second system that
runs an application program or application server, which is in turn connected to a third
system that runs the database management system.

Database management has become a very big business. Independent software companies
and computer vendors ship billions of dollars’ worth of database management products
every year. Virtually all enterprise-class computer applications that support the daily operation

21

CHAPTER

 22 P a r t I : A n O v e r v i e w o f S Q L 22 P a r t I : A n O v e r v i e w o f S Q L

of large companies and other organizations use databases. These applications include some of
the fastest-growing application categories, such as Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM), Supply Chain Management (SCM), Sales Force
Automation (SFA), and financial applications. Specialized high-performance server computers
optimized to run the most popular database software constitute a multibillion-dollar market,
and low-cost servers used exclusively for data management add billions more. Databases
provide the intelligence behind most transaction-oriented web sites, and they are used to
capture and analyze user interactions with web sites. Database management thus touches
every segment of the computer market.

Since the late 1980s, a specific type of DBMS, called a relational database management
system (RDBMS), has become so popular that it is the standard database form. Relational
databases organize data in a simple, tabular form and provide many advantages over
earlier types of databases. SQL is specifically a relational database language used to work
with relational databases.

A Brief History of SQL
The history of the SQL is intimately intertwined with the development of relational databases.
Table 3-1 shows some of the early milestones in its 40-year history. The relational database
concept was originally developed by Edgar Frank “Ted” Codd, an IBM researcher. In June 1970,
Codd published an article entitled “A Relational Model of Data for Large Shared Data Banks,”
which outlined a mathematical theory of how data could be stored and manipulated using
a tabular structure. Relational databases and SQL trace their origins to this article, which
appeared in the Communications of the Association for Computing Machinery.

The Early Years
Codd’s article triggered a flurry of relational database research, including a major research
project within IBM. The goal of the project, called System/R, was to prove the workability of
the relational concept and to provide some experience in actually implementing a relational
DBMS. Work on System/R began in the mid-1970s at IBM’s Santa Teresa laboratories in
San Jose, California.

In 1974 and 1975, the first phase of the System/R project produced a minimal prototype
of a relational DBMS. In addition to the DBMS itself, the System/R project included work
on database query languages. One of these languages was called SEQUEL, an acronym for
Structured English Query Language. In 1976 and 1977, the System/R research prototype
was rewritten from scratch, and the new implementation was distributed to selected IBM
customers for evaluation in 1978 and 1979. These early customer sites provided some actual
user experience with System/R and its database language, which, for legal reasons, had
been renamed SQL, or Structured Query Language. In 1979, the System/R research project
came to an end, with IBM concluding that relational databases were not only feasible, but
also could be the basis for a useful commercial product.

Early Relational Products
The System/R project and its SQL database language were well-chronicled in technical journals
during the 1970s. Seminars on database technology featured debates on the merits of the new
and heretical relational model. By 1976, it was apparent that IBM was becoming enthusiastic
about relational database technology and that it was making a major commitment to SQL.

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 23 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 23
PART I

Year Event

1970 Codd defines relational database model

1974 IBM begins System/R project

1974 First article describing the SEQUEL language is published

1978 System/R customer tests are conducted

1979 Oracle introduces first commercial RDBMS

1981 Relational Technology introduces Ingres

1981 IBM announces SQL/DS

1982 ANSI forms SQL standards committee

1983 IBM announces DB2

1986 ANSI SQL1 standard is ratified

1986 Sybase introduces RDBMS for transaction processing

1987 ISO SQL1 standard is ratified

1988 Ashton-Tate and Microsoft announce SQL Server for OS/2

1989 First TPC benchmark (TPC-A) is published

1990 TPC-B benchmark is published

1991 SQL Access Group database access specification is published

1992 Microsoft publishes ODBC specification

1992 ANSI SQL2 standard (SQL-92) is ratified

1992 TPC-C (OLTP) benchmark is published

1993 Specialized SQL data warehousing systems are shipped for the first time

1993 ODBC products are shipped for the first time

1994 Parallel database server technology is shipped commercially

1995 Open source MySQL first released

1996 Standard API for OLAP database access and OLAP benchmark is published

1997 IBM DB2 UDB unifies DB2 architecture across IBM and other vendor platforms

1997 Major DBMS vendors announce Java integration strategies

1998 Microsoft SQL Server 7 provides enterprise-level database support for Windows NT

1998 Oracle 8i provides database/Internet integration and moves away from client/server model

1998 Commercial in-memory database products are shipped for the first time

1999 J2EE standardizes JDBC database access from application servers

1999 ANSI/ISO SQL:1999 standard ratified, adding object-oriented constructs into the language

2000 Oracle introduces application servers with integrated database caching

2000 Microsoft introduces SQL Server 2000, aimed at enterprise applications

2001 XML integration capabilities appear in mainstream RDBMS products

2001 IBM acquires Informix database business

2002 Gartner ranks IBM as #1 database vendor, passing Oracle

2003 ANSI/ISO SQL:2003 ratified, adding SQL/XML

2006 ANSI/ISO SQL:2006 ratified, significantly expanding SQL/XML and object-oriented constructs

2006 IDC and Gartner studies show Oracle leading in market share

2008 MySQL AB acquired by Sun Microsystems

2008 ANSI/ISO SQL:2008 ratified

TABLE 3-1 Milestones in SQL Development

 24 P a r t I : A n O v e r v i e w o f S Q L 24 P a r t I : A n O v e r v i e w o f S Q L

The publicity about System/R attracted the attention of a group of engineers in Menlo
Park, California, who decided that IBM’s research foreshadowed a commercial market for
relational databases. In 1977 they formed a company, Relational Software, Inc., to build a
relational DBMS based on SQL. Their product named Oracle, shipped in 1979 and became
the first commercially available relational DBMS. Oracle beat IBM’s first product to market
by a full two years, and Oracle ran on Digital’s VAX minicomputers, which were less
expensive than IBM mainframes. The company aggressively sold the merits of the new
relational style of database management and eventually renamed itself after its flagship
product. Today, Oracle Corporation is the leading vendor of relational database
management systems and a major vendor of enterprise applications based on the Oracle
database, with annual sales of tens of billions of dollars.

Professors at the University of California’s Berkeley computer laboratories were also
researching relational databases in the mid-1970s. Like the IBM research team, they built a
prototype of a relational DBMS and called their system Ingres. The Ingres project included a
query language named QUEL that, although more structured than SQL, was less English-
like. Many database pioneers, key database developers, and founders of database startup
companies trace their history back to the Berkeley Ingres project.

In 1980, several professors left Berkeley and founded Relational Technology, Inc., to
build a commercial version of Ingres, which was announced in 1981. Ingres and Oracle
quickly became bitter archrivals, but their rivalry helped to call attention to relational
database technology in this early stage. Despite its technical superiority in many areas,
Ingres became a clear second-place player in the market, competing against the SQL-based
capabilities (and the aggressive marketing and sales strategies) of Oracle. The original
QUEL query language was effectively replaced by SQL in 1986, a testimony to the market
power of the SQL standard. By the mid-1990s, the Ingres technology had been sold to
Computer Associates, a leading mainframe software vendor. (Computer Associates sold
its interest in Ingres to a private equity company in 2005.)

IBM Products
While Oracle and Ingres raced to become commercial products, IBM’s System/R project had
also turned into an effort to build a commercial product, named SQL/Data System (SQL/DS).
IBM announced SQL/DS in 1981 and began shipping the product in 1982. In 1983, IBM
announced a version of SQL/DS for VM/CMS, an operating system that was frequently
used on IBM mainframes in corporate information center applications.

In 1983, IBM also introduced Database 2 (DB2), another relational DBMS for its
mainframe systems. DB2 operated under IBM’s MVS operating system, the workhorse
operating system used in large mainframe data centers. The first release of DB2 began
shipping in 1985, and IBM officials hailed it as a strategic piece of IBM software technology.
DB2 has since become IBM’s flagship relational DBMS, and with IBM’s weight behind it,
DB2’s SQL became the de facto standard database language. DB2 technology has now
migrated across all IBM product lines, from personal computers to network servers to
mainframes. In 1997, IBM took the DB2 cross-platform strategy even further, by announcing
DB2 versions for servers from IBM hardware rivals Sun Microsystems and Hewlett-Packard.
DB2 on mainframes remains the centerpiece of IBM’s database strategy, however, and is
a vital force in enterprise computing.

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 25 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 25
PART I

Commercial Acceptance
During the first half of the 1980s, the relational database vendors struggled for commercial
acceptance of their products. The relational products had several disadvantages compared
with the traditional database architectures. The performance of relational databases was
seriously inferior to that of traditional databases. Except for the IBM products, the relational
databases came from small upstart vendors. And, except for the IBM products, the relational
databases tended to run on minicomputers rather than on IBM mainframes.

The relational products did have one major advantage, however. Their relational query
languages (SQL, QUEL, and others) allowed users to pose ad hoc queries to the database—
and get immediate answers—without writing programs. As a result, relational databases
began slowly turning up in information center applications as decision-support tools.
By May 1985, Oracle proudly claimed to have over 1000 installations. Ingres was installed
in a comparable number of sites. DB2 and SQL/DS were also being slowly accepted and
counted their combined installations at slightly over 1000 sites.

During the last half of the 1980s, SQL and relational databases were rapidly accepted as
the database technology of the future. The performance of the relational database products
improved dramatically. Ingres and Oracle, in particular, leapfrogged, with each new version
claiming superiority over the competitor and two or three times the performance of the
previous release. Improvements in the processing power of the underlying computer
hardware also helped to boost performance.

Market forces also boosted the popularity of SQL in the late 1980s. IBM stepped up
its evangelism of SQL, positioning DB2 as the data management solution for the 1990s.
Publication of the first ANSI/ISO standard for SQL (SQL1) in 1986 gave SQL official
status as a standard. SQL also emerged as a standard on UNIX-based computer systems,
whose popularity accelerated in the 1980s. As personal computers became more powerful
and were linked in local area networks (LANs), they needed more sophisticated
database management. PC database vendors embraced SQL as the solution to these needs,
and minicomputer database vendors moved down market to compete in the emerging
PC local area network market.

Through the early 1990s, steadily improving SQL implementations and dramatic
improvements in processor speeds made SQL a practical solution for transaction processing
applications. SQL became a key part of the client/server architecture that used PCs, local
area networks, and network servers to build much lower-cost information processing
systems. When the Internet and the dot-com boom burst upon the IT landscape, SQL found
a new role as the database language for Internet applications and e-commerce.

SQL’s supremacy in the database world has not gone unchallenged. Object-oriented
programming emerged in the 1990s as the method of choice for applications development,
especially for personal computers and their graphical user interfaces. The object model,
with its objects, classes, methods, and inheritance, did not fit well with the relational model
of tables, rows, and columns of data. Early “object database” products included Servio
Logic’s Gemstone, Graphael’s Gbase, and Ontologic’s Vbase. A new generation of venture
capital–backed object database companies sprang up in the early to mid-1990s, hoping to
make relational databases and their vendors obsolete, just as SQL had done to the earlier,
nonrelational vendors. These products included Itasca Systems’ ITASCA, Fujitsu’s Jasmine,
Matisse Software’s Matisse, Objectivity’s Objectivity/DB, Ontos, Inc.’s (renamed from
Ontologic) ONTOS, O2 Technology’s O2, along with perhaps a half dozen others. However,
SQL and the relational model more than withstood the challenge. A few of these products

 26 P a r t I : A n O v e r v i e w o f S Q L 26 P a r t I : A n O v e r v i e w o f S Q L

remain in the market today, but most have been acquired or simply faded away. For example,
O2 Technology merged with several companies, was acquired by Informix, and Informix was
later acquired by IBM. Total annual revenues for object-oriented databases are measured in
the low millions of dollars, while SQL and relational database systems, tools, and services
produce tens of billions of dollars of sales per year.

As SQL grew to address an ever-wider variety of data management tasks, the one-size-
fits-all approach of the earlier SQL products showed serious strain. Specialized database
systems sprang up to support different market needs. One of the fastest-growing segments
was data warehousing, where databases were used to search through huge amounts of data
to discover underlying trends and patterns. A second major trend was the incorporation
of new data types (such as multimedia data) and object-oriented principles into SQL.
A third important segment was mobile databases for portable personal computers that could
operate when sometimes connected to, and sometimes disconnected from, a centralized
database system. Another important application segment was embedded databases for
use within intelligent devices such as network equipment. In-memory databases emerged
as another segment, designed for very high levels of performance, and stream-oriented
databases focused on managing data as it flowed over a network.

Despite the emergence of subsegments of the database market, SQL has remained a
common denominator across them all. Forty years after it first emerged, SQL has broadened
tremendously, and SQL’s dominance as the database standard remains very strong. New
challenges continue to emerge—the need to incorporate XML and its hierarchical data
model and the need to support massive quantities of data to support data management on
the scale of the Internet are two of the most recent. But the history of the past 40 years
indicates that SQL and the relational model have a powerful ability to embrace and adapt
to new data management needs.

SQL Standards
One of the most important developments in the market acceptance of SQL is the emergence
of SQL standards. References to “the SQL standard” usually mean the official standard
adopted by the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO). However, there are other important SQL
standards, including the de facto standard for some parts of the SQL that have been
defined by IBM’s DB2 product family, and Oracle’s SQL dialect, which has a dominant
installed-base market share.

The ANSI/ISO Standards
Work on the official SQL standard began in 1982, when ANSI charged its X3H2
committee with defining a standard relational database language. At first, the
committee debated the merits of various proposed database languages. However, as
IBM’s commitment to SQL increased and SQL emerged as a de facto standard in the
market, the committee selected SQL as their relational database language and turned
their attention to standardizing it.

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 27 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 27
PART I

The resulting ANSI standard for SQL was largely based on DB2 SQL, although it
contained a few major differences from DB2. After several revisions, the standard was
officially adopted as ANSI standard X3.135 in 1986, and as an ISO standard in 1987. The
ANSI/ISO standard was also adopted as a Federal Information Processing Standard (FIPS)
by the U. S. government. This early SQL standard, slightly revised and expanded in 1989, is
usually called the SQL1 standard, or SQL-89.

Many of the ANSI and ISO standards committee members were representatives from
database vendors who had existing SQL products, each implementing a slightly different
SQL dialect. Like dialects of human languages, the SQL dialects were generally very similar
to one another, but were incompatible in their details. In many areas, the committee simply
sidestepped these differences by omitting some parts of the language from the standard and
specifying others as “implementer-defined.” These decisions allowed existing SQL
implementations to claim broad adherence to the resulting ANSI/ISO standard, but made
the initial standard relatively weak.

To address the holes in the original standard, the ANSI committee continued its work, and
drafts for a new, more rigorous “SQL2” standard were circulated. Unlike the 1989 standard,
the SQL2 drafts specified features considerably beyond those found in current commercial
SQL products. Even more far-reaching changes were proposed for a follow-on SQL3 standard.
In addition, the draft standards attempted to officially standardize parts of the SQL where
different proprietary standards had long since been set by the various major DBMS brands.
As a result, the proposed SQL2 and SQL3 standards were a good deal more controversial
than the initial SQL standard. The SQL2 standard weaved its way through the ANSI approval
process and was finally approved in October 1992. While the original 1986 standard had less
than 100 pages, the revised standard, officially called SQL-92, had nearly 600 pages.

The standards committee acknowledged the large step from SQL-89 to SQL-92 by
explicitly creating three levels of SQL standards compliance. The lowest compliance level
(Entry-Level) required only minimal additional capability beyond the SQL-89 standard.
The middle one (Intermediate-Level) was created as an achievable major step beyond
SQL-89, but avoided the most complex, system-dependent, and DBMS brand-dependent
issues. The third compliance level (Full) required a full implementation of all areas. Throughout
the published standard, each description of each feature includes a definition of the specific
aspects of that feature that must be supported to achieve various levels of compliance.
Today, specialized databases, such as those used in embedded applications or supported
by open source efforts, still offer lower levels of SQL standard compliance in some areas,
but all of the major enterprise-class database systems have evolved to fully support the
SQL-92 standard.

After the adoption of SQL-92, SQL standards work took a different direction. The single
standards committee broke up into a number of different committees, focused on different
extensions to the language. Some of these, such as stored procedure capabilities, were
already found in many commercial SQL products and posed the same standardization
challenges faced by SQL2. Others, such as proposed object extensions to SQL, were not yet
widely available or fully implemented, but the database vendors were under significant
pressure to address them as object-oriented technologies and XML surged in importance.
New revisions to the standard were produced in 1999 and again in 2003, 2006, and 2008.
The 2006 revision included significant extension to the XML parts of the standard.

 28 P a r t I : A n O v e r v i e w o f S Q L 28 P a r t I : A n O v e r v i e w o f S Q L

At this writing, the ANSI/ISO standard had been expanded into 14 defined “Parts.”
A few of them were dropped after some initial activity, some were merged back into other
parts, and some continue as stand-alone, parallel efforts within the overall standard:

• Part 1 – SQL/Framework contains common definitions and serves as a “table of
contents” for the other parts.

• Part 2 – SQL/Foundation is the largest part and carries the mainstream definition of
the SQL statements that define the structure of a database and manipulate data. It is
the descendant of the early SQL-89 and SQL-92 versions of the standard. It has been
significantly extended to include SQL structures for business analytics.

• Part 3 – SQL/CLI (Call Level Interface) describes the procedural call-level interface,
better known as Microsoft’s ODBC standard. It debuted in 1995.

• Part 4 – SQL/PSM (Persistent Stored Modules) describes procedural extensions
to SQL, paralleling the features found in popular SQL procedural languages like
Oracle’s PL/SQL.

• Part 5 – SQL/Bindings described how SQL is embedded in other procedural
languages. This part was merged into Part 2 – SQL/Foundations in the SQL:2003
version of the standard.

• Part 6 – SQL/Transaction was focused on extensions to the XA distributed transaction
standard, but was dropped.

• Part 7 – SQL/Temporal was focused on extending SQL to deal with time-oriented
data, but was dropped.

• Part 8 – SQL/Objects held the object-oriented extensions to SQL during the
development of SQL3. These extensions were merged back into Part2 – Foundation
in SQL:1999.

• Part 9 – SQL/MED (Management of External Data) adds facilities to allow SQL to
process non relational data sources, and appeared in SQL:2003.

• Part 10 – SQL/OLB (Object Language Bindings) describes access to SQL from Java.
It is related to JDBC and embedded SQL for Java, and appeared in SQL:2003.

• Part 11 – SQL/Schemata contains standards for the “database catalog” or system
information tables that self-describe a database. This specification was in Part 2 in
SQL:1999, but was separated out into its own part in SQL:2003.

• Part 12 – SQL/Replication was started to define standards for how replication from
one SQL database to another is specified, but was dropped.

• Part 13 – SQL/JRT (Java Routines and Types) describes routines and types used in
the Java language to access SQL databases, and first appeared in SQL:2003.

• Part 14 – SQL/XML describes how Extensible Markup Language (XML) is
integrated into the SQL language. It first appeared in SQL:2003 and has been
significantly expanded since.

From a few hundred pages describing the common core features of the SQL language
in 1986, the ANSI/ISO SQL standard has thus grown dramatically in complexity, scope and
length. The “real” SQL standard, of course, is the SQL implemented in products that are

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 29 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 29
PART I

broadly accepted by the marketplace. For the most part, programmers and users tend to
stick with those parts of the language that are the same across a broad range of products.
The innovation of the database vendors continues to drive the invention of most new SQL
extensions. Some of these fail to gain traction and fade from the language over time.
Others are introduced and remain years later only for backward compatibility; others find
commercial success and move into the mainstream and eventually find their way into the
official standard.

Other Early SQL Standards
Although it was the most widely recognized, the ANSI/ISO standard was not the only
standard in the early days of SQL. X/OPEN, a European vendor group, also adopted SQL
as part of its suite of standards for a portable application environment based on UNIX. The
X/OPEN standards played a major role in the development of the European computer market,
where portability among computer systems from different vendors was a key concern.

IBM also included SQL in the specification of its bold 1990s Systems Application
Architecture (SAA) blueprint, promising that all of its SQL products would eventually move
to this SAA SQL dialect. Although SAA failed to achieve its promise of unifying the IBM
product line, the momentum toward a unified IBM SQL continued. With its mainframe DB2
database as the flagship, IBM introduced DB2 implementations for OS/2, its personal
computer operating system, and for its RS/6000 line of UNIX-based workstations and
servers. The expansion of DB2 (not only across hardware systems, but also across many
different types of data) was embodied in IBM’s naming one of its later implementations
DB2 Universal Database, or UDB.

ODBC and the SQL Access Group
An important area of database technology not addressed by the earlier official standards is
database interoperability—the methods by which data can be exchanged among different
databases, usually over a network. In 1989, a group of vendors formed the SQL Access
Group to address this problem. The resulting SQL Access Group specification for Remote
Database Access (RDA) was published in 1991. Unfortunately, the RDA specification was
closely tied to the OSI networking protocols, which lost the networking battle to the
Internet’s TCP/IP suite, so RDA was never widely implemented.

A second standard from the SQL Access Group had far more market impact. At
Microsoft’s urging and insistence, the SQL Access Group expanded its focus to include a
call-level interface for SQL. Based on a draft from Microsoft, the resulting Call-Level
Interface (CLI) specification was published in 1992. Microsoft’s own Open Database
Connectivity (ODBC) specification, based on the CLI standard, was published the same
year. With the market power of Microsoft behind it, and the “open standards” blessing of
the SQL Access Group, ODBC emerged as the de facto standard interface for PC access to
SQL databases. Apple and Microsoft announced an agreement to support ODBC on
Macintosh and Windows in the spring of 1993, giving ODBC industry standard status in
both popular graphical user interface environments. ODBC implementations for UNIX-
based systems soon followed. In 1995, the ODBC interface effectively became an ANSI/
ISO standard, with the publication of the SQL/Call-Level Interface (CLI) standard.

Over the past decade, ODBC has continued to evolve, but at a slower pace. Microsoft still
supports ODBC, but has focused major effort into building higher-level, more object-oriented

 30 P a r t I : A n O v e r v i e w o f S Q L 30 P a r t I : A n O v e r v i e w o f S Q L

interfaces for universal database access. However, ODBC still plays a major role providing
portability across databases for major enterprise applications and for database tools. It’s
quite common for a database tool or an enterprise application to support specific “drivers”
that optimize it for direct access to Oracle and DB2 and SQL Server using their proprietary
call-level interfaces. The application will typically include an additional driver that uses
ODBC as a way to support a broad range of other databases. Because so many applications
and tools adopt this approach, nearly all database vendors offer ODBC access, sometimes as
their primary call-level interface and sometimes as a supplement to a higher-performance,
proprietary interface.

JDBC and Application Servers
The explosive popularity of the Internet drove the further development of database access
standards to support the accompanying rise of the object-oriented Java programming
language. Java eventually became the standard language for building Internet-delivered
applications that ran on Java-based application servers. Sun Microsystems, the inventor of
Java, led the effort to standardize the use of Java for application servers through the Java2
Enterprise Edition (J2EE) specification. J2EE included Java Database Connectivity (JDBC)
as its standard for Java access to relational databases. Unlike database access for the C
programming language, where proprietary call-language interfaces predated ODBC by
many years, the JDBC standard was developed relatively early in the explosion of Java
popularity. As a result, proprietary Java interfaces failed to emerge, and JDBC is the
standard for SQL access from the Java language.

SQL and Portability
The existence of published SQL standards has spawned quite a few exaggerated claims
about SQL and applications portability. Diagrams such as the one in Figure 3-1 are
frequently drawn to show how an application using SQL can work interchangeably with
any SQL-based database management system. In fact, the differences between SQL dialects
are significant enough that an application must often be modified when moved from one

FIGURE 3-1 The SQL portability myth

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 31 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 31
PART I

SQL database to another. Over time, the core of the language has become more standard
and has broadened, but at the same time, new capabilities have been added by the database
vendors, often with proprietary language extensions. Examples of areas where these
differences arise include

• Data types The SQL standard has evolved to address an ever-broader set of data
types, but vendors keep adding new ones. Even older data types can cause
portability issues—Oracle’s NUMBER data type, for example, is the most widely
used to represent numeric data in an Oracle database, and its peculiarities are
completely unique to Oracle.

• Backward compatibility It’s not uncommon for enterprise applications to still be
in use 10 or 20 years after they were first written, long after the programmers who
developed them are gone. These programs tend to become “untouchable,” since the
detailed knowledge of how they work has often been lost. Large sections of these
programs may depend on older, proprietary SQL features, and database vendors
are forced to maintain backward compatibility with them or risk “breaking” the
applications. This perpetuates dialect differences that inhibit portability.

• System tables The SQL standard addressed the system tables that provide
information about the structure of the database itself starting with the SQL-92
standard. By this time, database vendors had built their own proprietary system
table structures, and they have continued to evolve them, often containing useful
information that goes well beyond the items specified in the standard. Applications
that use these proprietary system tables are not portable.

• Programmatic interface The early SQL standard specified an abstract technique
for using SQL from within an applications program written in COBOL, C, FORTRAN,
and other programming languages, which was not widely adopted. The 1995 SQL/
CLI standard finally addressed programmatic SQL access, but by then, commercial
DBMS products had popularized proprietary interfaces and deeply embedded
them in hundreds of thousands of user applications and application packages.
Although standard APIs are now widely supported, most database vendors still
maintain proprietary interfaces that offer higher performance and richer
functionality, with the side-effect of locking in applications.

• Semantic differences Because the standards specify certain details as
implementer-defined, it’s possible to run the same query against two different
conforming SQL implementations and produce two different sets of query results.
Examples of these differences can be found in areas like the handling of NULL
values, column functions, and duplicate row elimination.

• Replication and data mirroring Many production databases contain tables that
are replicated in two or more geographically separated databases, to provide high
availability or disaster recovery, to spread out processing workloads, or to reduce
network delays. The techniques for specifying and managing these replication
schemes are proprietary to each database system, and attempts to standardize
replication have been abandoned.

 32 P a r t I : A n O v e r v i e w o f S Q L 32 P a r t I : A n O v e r v i e w o f S Q L

• Error codes The SQL-92 standard introduced standard error codes to be returned
when SQL detects an error, but all of the popular database systems had long been
using their own proprietary error codes by this time. Even when used in a mode
with standard error codes, proprietary extensions can generate their own errors that
are outside the specified standard codes.

• Database structure The SQL-89 standard specified the SQL language to be used
once a particular database has been opened and is ready for processing. The details
of database naming and how the initial connection to the database is established
were already diverse and not portable by the time this initial standard was written.
The SQL-92 standard created more uniformity, but the standard cannot completely
mask these implementation details.

Despite these differences, commercial database tools boasting portability across several
different brands of SQL databases began to emerge in the early 1990s and are broadly
popular today. In practice, these tools always include specific drivers for communicating
with each of the major DBMS brands, which generate the appropriate SQL dialect, handle
data type conversion, translate error codes, and so on.

SQL and Networking
The dramatic growth of computer networking in the 1990s had a major impact on database
management and gave SQL a new prominence. As networks became more common,
applications that traditionally ran on a central minicomputer or mainframe moved to local area
networks of desktop workstations and servers. In these networks, SQL plays a crucial role as
the link between an application running on a desktop workstation with a graphical user
interface and the DBMS that manages shared data on a cost-effective server. More recently, the
exploding popularity of the Internet and the World Wide Web has reinforced the network role
for SQL. In the emerging three-tier Internet architecture, SQL once again provides the link
between the application logic (now running in the middle tier, on an application server or web
server) and the database residing in the back-end tier. The next few sections discuss the
evolution of database network architectures and the role of SQL in each one.

Centralized Architecture
Figure 3-2 shows the traditional database architecture used by DB2 and the original
minicomputer databases such as Oracle and Ingres. In this architecture, the DBMS and the
physical data both reside on a central minicomputer or mainframe system, along with
the application program that accepts input from the user’s terminal and displays data on
the user’s screen. The application program communicates with the DBMS using SQL.

FIGURE 3-2 Database management in a centralized architecture

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 33 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 33
PART I

Suppose the user types a query that requires a sequential search of a database, such as a
request to find the average order size for all orders. The DBMS receives the query, scans
through the database fetching each record of data from the disk (or memory), calculates the
average, and displays the result on the terminal screen. Both the application processing and
the database processing occur on the central computer, so execution of this type of query
(and in fact, all kinds of queries) is very efficient.

The disadvantage of the centralized architecture is scalability. As more and more users
are added, each of them adds application processing workload to the system. Because the
system is shared, each user experiences degraded performance as the system becomes more
heavily loaded.

File Server Architecture
The introduction of personal computers and local area networks led to the development of
the file server architecture, shown in Figure 3-3. In this architecture, an application running
on a personal computer can transparently access data located on a file server, which stores
shared files. When a PC application requests data from a shared file, the networking software
automatically retrieves the requested block of the file from the server. Early PC databases,
such as dBASE and later Microsoft’s Access, supported this file server approach, with each
personal computer running its own copy of the DBMS software.

For typical queries that retrieve only one row or a few rows from the database, this
architecture provides excellent performance, because each user has the full power of a
personal computer running its own copy of the DBMS. However, consider the query made
in the previous example. Because the query requires a sequential scan of the database, the
DBMS repeatedly requests blocks of data from the database, which is physically located
across the network on the server. Eventually, every block of the file will be requested and
sent across the network. Obviously, this architecture produces very heavy network traffic
and slow performance for queries of this type.

FIGURE 3-3 Database management in a file server architecture

 34 P a r t I : A n O v e r v i e w o f S Q L 34 P a r t I : A n O v e r v i e w o f S Q L

Client/Server Architecture
Figure 3-4 shows the next stage of network database evolution—the client/server database
architecture. In this scheme, personal computers are combined in a local area network with
a database server that stores shared databases. The functions of the DBMS are split into two
parts. Database front-ends, such as interactive query tools, report writers, and application
programs, run on the personal computer. The back-end database engine that stores and
manages the data runs on the server. As the client/server architecture grew in popularity
during the 1990s, SQL became the standard database language for communication between
the front-end tools and the back-end engine in this architecture.

Consider once more the query requesting the average order size. In the client/server
architecture, the query travels across the network to the database server as a SQL request. The
database engine on the server processes the request and scans the database, which also resides
on the server. When the result is calculated, the database engine sends it back across the network
as a single reply to the initial request, and the front-end application displays it on the PC screen.

The client/server architecture reduces the network traffic and splits the database workload.
User-intensive functions, such as handling input and displaying data, are concentrated on the
user’s PC. Data-intensive functions, such as file I/O and query processing, are concentrated in
the database server. Most importantly, the SQL provides a well-defined interface between the
front-end and back-end systems, communicating database access requests in an efficient manner.

By the mid-1990s, these advantages made the client/server architecture the most
popular scheme for implementing new applications. All of the most popular DBMS
products—Oracle, Informix, Sybase, SQL Server, DB2, and many more—offered client/
server capability. The database industry grew to include many companies offering tools
for building client/server applications. Some of these came from the database companies
themselves; others came from independent companies.

Like all architectures, client/server had its disadvantages. The most serious of these was
the problem of managing the applications software that was now distributed across hundreds
or thousands of desktop PCs instead of running on a central minicomputer or mainframe. To
update an application program in a large company, the information systems department had to
update thousands of PC systems, one at a time. The situation was even worse if changes to the
application program had to be synchronized with changes to other applications, or to the

FIGURE 3-4 Database management in a client/server architecture

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 35 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 35
PART I

DBMS system itself. In addition, with personal computers on user’s desks, users tended to add
new personal software of their own or to change the configuration of their systems. Such
changes often disrupted existing applications, adding to the support burden. Companies
developed strategies to deal with these issues, but by the late 1990s, there was growing concern
about the manageability of client/server applications on large, distributed PC networks.

Multitier Architecture
With the emergence of the Internet and especially the World Wide Web, network database
architecture took another step in its evolution. At first, the Web was used to access (browse)
static documents and evolved outside of the database world. But as the use of web browsers
became widespread, it wasn’t long before companies thought about using them as a simple
way to provide access to corporate databases as well. For example, suppose a company
starts using the Web to provide product information to its customers by making product
descriptions and graphics available on its web site. A natural next step is to give customers
access to current product availability information through the same web browser interface.
This requires linking the web server to the database system that stores the (constantly
changing) current product inventory levels.

The methods used to link web servers and DBMS systems evolved rapidly in the late
1990s and early 2000s, and have converged on the three-tier network architecture shown in
Figure 3-5. The user interface is a web browser running on a PC or some other thin client

FIGURE 3-5 Database management in a three-tier Internet architecture

 36 P a r t I : A n O v e r v i e w o f S Q L 36 P a r t I : A n O v e r v i e w o f S Q L

device, such as smart phone, in the front-end tier. It communicates with a web server in the
middle tier. When the user request is for something more complex than a simple web page,
the web server passes the request to an application server, whose role is to handle the
business logic required to process the request. Often the request will involve access to an
existing (legacy) application running on a mainframe system or to a corporate database.
These systems run in the back-end tier of the architecture.

As with the client/server architecture, SQL is solidly entrenched as the standard
database language for communicating between the application server and back-end
databases. All of the packaged application server products provide a SQL-based callable
API for database access. As much of the application server market has converged around
the Java2 Enterprise Edition (J2EE) standard, Java Database Connectivity (JDBC) has
emerged as the leading standard API for application server access to databases.

The Proliferation of SQL
As the standard for relational database access, SQL has had a major impact on all parts of
the computer market. IBM’s SQL-based DB2 dominates mainframe data management.
Oracle’s SQL-based database dominates the market for UNIX-based computer systems and
servers. Microsoft’s SQL Server dominates on server-oriented Windows operating systems
for workgroups and departmental applications. MySQL dominates the open-source
database market. SQL is accepted as a technology for online transaction processing (OLTP),
fully refuting the conventional wisdom of the 1980s that relational databases would never
offer performance good enough for transaction processing applications. SQL-based data
warehousing and data mining applications are the standard for helping companies to
discover customer purchase patterns and to offer better products and services. On the
Internet, SQL-based databases are the foundation of more personalized products, services,
and information services that are a key benefit of electronic commerce.

SQL on Mainframes
Although IBM’s hierarchical IMS database is still offered on IBM mainframes and still runs
many high-performance mainframe applications, IBM’s SQL-based DB2 has been its
flagship mainframe database for more than two decades. IBM offers DB2 implementations
across different computer systems architectures, but the mainframe DB2 is still the “mother
ship,” generating the vast majority of IBM’s database revenues. Any new database
development on mainframe systems today uses DB2, cementing SQL’s dominant role for
mainframe data management.

SQL on Minicomputers
Minicomputers were one of the most fertile early markets for SQL-based database systems.
Oracle and Ingres were both originally marketed on Digital’s VAX/VMS minicomputer
systems. Both products were subsequently ported to many other platforms. Sybase, a later
database system specialized for online transaction processing, also targeted the VAX as one
of its primary platforms.

Through the 1980s, the minicomputer vendors also developed their own proprietary
relational databases featuring SQL. Digital considered relational databases so important
that it bundled a runtime version of its Rdb/VMS database with every VAX/VMS system.

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 37 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 37
PART I

Hewlett-Packard offered Allbase, a database that supported both its HPSQL dialect and a
nonrelational interface. Data General’s DG/SQL database replaced its older nonrelational
databases as DG’s strategic data management tool. In addition, many of the minicomputer
vendors resold relational databases from the independent database software vendors. These
efforts helped to establish SQL as an important technology for midrange computer systems.

By the mid-1990s, the minicomputer vendors’ SQL products had largely disappeared,
beaten in the marketplace by multiplatform software from Oracle, Informix, Sybase, and
others. Oracle acquired Digital’s Rdb, and the other products were gradually dropped.
Paralleling this trend, the importance of proprietary minicomputer operating systems faded,
replaced by widespread use of UNIX on midrange systems. Yesterday’s minicomputer
SQL market has effectively become today’s market for UNIX-based database servers
based on SQL.

SQL on UNIX-Based Systems
SQL is firmly established as the data management solution of choice for UNIX-based
computer systems. Originally developed at Bell Laboratories, UNIX became very popular in
the 1980s as a vendor-independent, standard operating system. It runs on a wide range of
computer systems, from workstations to mainframes, and has become the standard
operating system for high-end server systems, including database servers.

In the early 1980s, four major databases were already available for UNIX systems. Two
of them, Ingres and Oracle, were UNIX versions of the products that ran on DEC’s
proprietary minicomputers. The other two, Informix and Unify, were written specifically for
UNIX. Neither of them originally offered SQL support, but by 1985, Unify offered a SQL
query language, and Informix had been rewritten as Informix-SQL, with full SQL support.

Today, the Oracle database dominates the UNIX-based database market and is available
on all of the leading UNIX server platforms. Informix was acquired by IBM, which still
offers the product for its own and other UNIX-based servers. UNIX-based (and increasingly,
Linux-based) database servers are a mainstream building block for both client/server and
three-tier Internet architectures. The constant search for higher SQL database performance
has driven some of the most important trends in UNIX system hardware. These include the
emergence of symmetric multiprocessing (SMP) as a mainstream server architecture, the
development of multicore microprocessors which took SMP to the chip level, and the use of
RAID (Redundant Array of Independent Disks) technology to boost I/O performance.

SQL on Personal Computers
Databases have been popular on personal computers since the early days of the IBM PC.
Ashton-Tate’s dBASE product reached an installed base of over 1 million MS-DOS-based
PCs. Although these early PC databases often presented data in tabular form, they lacked
the full power of a relational DBMS and a relational database language such as SQL. The
first SQL-based PC databases were versions of popular minicomputer products that barely
fit on personal computers. For example, Professional Oracle for the IBM PC, introduced in
1984, required two megabytes of memory—well above the typical 640KB PC configuration
of the day.

The real impact of SQL on personal computers began with the announcement of OS/2
by IBM and Microsoft in April 1987. In addition to the standard OS/2 product, IBM
announced a proprietary OS/2 Extended Edition (OS/2 EE) with a built-in SQL database

 38 P a r t I : A n O v e r v i e w o f S Q L 38 P a r t I : A n O v e r v i e w o f S Q L

and communications support. With the introduction, IBM again signaled its strong
commitment to SQL, saying in effect that SQL was so important that it belonged in the
computer’s operating system.

OS/2 Extended Edition presented Microsoft with a problem. As the developer and
distributor of standard OS/2 to other personal computer manufacturers, Microsoft needed
an alternative to the Extended Edition. Microsoft responded by licensing the Sybase DBMS,
which had been developed for VAX, and began porting it to OS/2. In January 1988, in a
surprise move, Microsoft and Ashton-Tate (the PC database leader at the time with its dBASE
product) announced that they would jointly sell the resulting OS/2-based product, renamed
SQL Server. Microsoft would sell SQL Server with OS/2 to computer manufacturers; Ashton-
Tate would sell the product through retail channels to PC users. In September 1989, Lotus
Development (the other member of the big three of PC software at the time) added its
endorsement of SQL Server by investing in Sybase. Later that year, Ashton-Tate relinquished
its exclusive retail distribution rights and sold its investment to Lotus.

SQL Server for OS/2 met with only limited success (as did the OS/2 operating system
itself). But in typical Microsoft fashion, Microsoft continued to invest heavily in SQL Server
development and ported it to its Windows NT operating system. For a while, Microsoft and
Sybase remained partners, with Sybase focused on the minicomputer and UNIX-based server
markets and Microsoft focused on PC LANs and Windows NT. As Windows NT and UNIX
systems became more and more competitive as database server operating system platforms,
the relationship became less cooperative and more competitive. Eventually, Sybase and
Microsoft went their separate ways. The common heritage of Sybase’s and Microsoft’s SQL
products can still be seen in product capabilities and some common SQL extensions
(for example, stored procedures), but the product lines have already diverged significantly.

Today, SQL Server is a major database system on Windows-based servers. It has had a
major new release every two to three years, adding major capabilities in areas as diverse as
XML processing, special data, full-text search, data warehousing and analytics, and high
availability. While UNIX-based servers and Oracle databases continue to dominate the
largest database server installations, server configurations of the Windows operating system
and the Intel architecture systems on which it runs have achieved credibility in the
midrange market.

SQL and Transaction Processing
SQL and relational databases originally had very little impact in online transaction
processing (OLTP) applications. With their emphasis on queries, relational databases were
confined to decision support and low-volume online applications, where their slower
performance was not a disadvantage. For OLTP applications, where hundreds of users
needed online access to data and subsecond response times, IBM’s nonrelational
Information Management System (IMS) reigned as the dominant DBMS.

In 1986, a new DBMS vendor, Sybase, introduced a new SQL-based database especially
designed for OLTP applications. The Sybase DBMS ran on VAX/VMS minicomputers and
Sun workstations, and focused on maximum online performance. Oracle Corporation and
Relational Technology followed shortly with announcements that they, too, would offer
OLTP versions of their popular Oracle and Ingres database systems. In the UNIX market,
Informix announced an OLTP version of its DBMS, named Informix-Turbo.

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 39 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 39
PART I

In 1988, IBM jumped on the relational OLTP bandwagon with DB2 Version 2, with
benchmarks showing the new version operating at over 250 transactions per second on
large mainframes. IBM claimed that DB2 performance was now suitable for all but the most
demanding OLTP applications and encouraged customers to consider it as a serious
alternative to IMS. OLTP benchmarks became a standard sales tool for relational databases,
despite serious questions about how well the benchmarks actually measure performance in
real applications.

The suitability of SQL for OLTP improved dramatically over the next decade, with
advances in relational technology and more powerful computer hardware both leading to
ever-higher transaction rates. DBMS vendors started to position their products based on
their OLTP performance, and for a few years database advertising focused almost entirely
on these performance benchmark wars. A vendor-independent organization, the
Transaction Processing Council, jumped into the benchmarking fray with a series of vendor-
independent benchmarks (TPC-A, TPC-B, and TPC-C), which only served to intensify the
performance focus of the vendors.

By the early 2000s, SQL-based relational databases on high-end UNIX-based database
servers evolved well past the 1000-transactions-per-second mark. Client/server systems
using SQL databases have become the accepted architecture for implementing OLTP
applications. From a position as “unsuitable for OLTP,” SQL has grown to be the industry
standard foundation for building OLTP applications.

SQL and Workgroup Databases
The dramatic growth of PC LANs through the 1980s and 1990s created a new opportunity
for departmental or workgroup database management. The original database systems
focused on this market segment ran on IBM’s OS/2 operating system. In fact, SQL Server,
now a key part of Microsoft’s Windows strategy, originally made its debut as an OS/2
database product. In the mid-1990s, Novell also made a concentrated effort to make its
NetWare operating system an attractive workgroup database server platform. From the
earliest days of PC LANs, NetWare had become established as the dominant network
operating system for file and print servers. Through deals with Oracle and others, Novell
sought to extend this leadership to workgroup database servers as well.

The arrival of Windows NT, a specialized version of Windows tuned for server use, was
the catalyst that caused the workgroup database market to really take off. While NetWare
offered a clear performance advantage over NT as a workgroup file server, NT had a more
robust, general-purpose architecture, more like the minicomputer operating systems.
Microsoft successfully positioned NT as a more attractive platform for running workgroup
applications (as an application server) and workgroup databases. Microsoft’s own SQL
Server product was marketed (and often bundled) with NT as a tightly integrated
workgroup database platform. Corporate information systems departments were at first
very cautious about using relatively new and unproven technology, but the NT/SQL Server
combination allowed departments and non-IS executives to undertake smaller-scale,
workgroup-level projects on their own, without corporate IS help. This phenomenon, like
the grassroots support for personal computers a decade earlier, fueled the early growth of
the workgroup database segment.

 40 P a r t I : A n O v e r v i e w o f S Q L 40 P a r t I : A n O v e r v i e w o f S Q L

Today, SQL is well established as a workgroup database standard. In addition to
Microsoft’s newer versions of Windows for servers, Linux has emerged as a very popular
platform for workgroup servers. Microsoft SQL Server and Oracle share the largest part of
the market, but open source databases like MySQL have emerged as a very strong and cost-
effective alternative. Postgres, another open source product developed at the University of
California at Berkeley as a follow-on to Ingres, has also gained a smaller but loyal following
in this segment.

SQL, Data Warehousing, and Business Intelligence
For several years, the effort to make SQL a viable technology for OLTP applications shifted
the focus away from the original relational database strengths of query processing and
decision making. Performance benchmarks and competition among the major DBMS brands
focused on simple transactions like adding a new order to the database or determining a
customer’s account balance. Because of the power of the relational database model, the
databases that companies used to handle daily business operations could also be used to
analyze the growing amounts of data that were being accumulated. A frequent theme of
conferences and tradeshow speeches for IS managers was that a corporation’s accumulated
data (stored in SQL databases, of course) should be treated as a valuable asset and used to
help improve the quality of business decision making.

Although relational databases could, in theory, easily perform both OLTP and decision-
making applications, there were some very significant practical problems. OLTP workloads
consisted of many short database transactions, and the response time for users was very
important. In contrast, decision-support queries could involve sequential scans of large
database tables to answer questions like “What is the average order size by sales region?”
or “How do inventory trends compare with the same time a year ago?” These queries could
take minutes or hours. If a business analyst tried to run one of these queries during a time
when business transaction volumes reached their peak, it could cause serious degradation
in OLTP performance. Another problem was that the data to answer useful questions about
business trends was often spread across many different databases, typically involving
different DBMS vendors and different computer platforms.

The desire to take advantage of accumulated business data, and the practical
performance problems it caused for OLTP applications, led to the concept of a data
warehouse, shown in Figure 3-6. Business data is extracted from OLTP systems, reformatted
and validated as necessary, and then placed into a separate database that is dedicated to
decision-making queries (the “warehouse”). The data extraction and transformation can be
scheduled for off-hours batch processing. Ideally, only new or changed data can be
extracted, minimizing the amount of data to be processed in the monthly, weekly, or daily
warehouse refresh cycle. With this scheme, the time-consuming business analysis queries
use the data warehouse, not the OLTP database, as their source of data.

SQL-based relational databases were a clear choice for the warehouse data store because
of their flexible query processing. A series of new companies was formed to build the data
extraction, transformation, and database query tools needed by the data warehouse model.
In addition, DBMS vendors started to focus on the kinds of database queries that customers
tended to run in the data warehouse. These queries tended to be large and complex—such
as analyzing tens or hundreds of millions of individual cash-register receipts looking for
product purchase patterns. They often involved time-series data—for example, analyzing

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 41 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 41
PART I

product sales or market share data over time. They also tended to involve statistical
summaries of data—total sales, average order volume, percent growth, and so on—rather
than the individual data items themselves.

To address the specialized needs of data warehousing applications (often called Online
Analytical Processing or OLAP), specialized databases began to appear. These databases were
optimized for OLAP workloads in several different ways. Their performance was tuned for
complex, read-only query access. They supported advanced statistical and other data
functions, such as built-in time-series processing. They supported precalculation of database
statistical data, so that retrieving averages and totals could be dramatically faster. Some of
these specialized databases did not use SQL, but many did (leading to the companion term
ROLAP, for Relational Online Analytical Processing).

As the market for data warehousing continued to evolve, the tools to tap the warehouse
emerged as an important market segment in their own right, often labeled business intelligence.
The lines between the vendors that supplied the warehouse databases, the tools to populate
them, and the tools to analyze data gradually blurred as the market grew. Three of the largest
business intelligence vendors became successful public companies in their own right before

FIGURE 3-6 The data warehousing concept

 42 P a r t I : A n O v e r v i e w o f S Q L 42 P a r t I : A n O v e r v i e w o f S Q L

being acquired by three of the industry giants. Business Objects was acquired by SAP, the
leading vendor of enterprise applications. Hyperion was acquired by Oracle, and Cognos
was acquired by IBM. As with so many segments of the IT market, SQL’s advantages as a
standard proved to be a powerful force, and SQL-based data warehouses and analytic tools
are firmly entrenched.

SQL and Internet Applications
During the late 1990s, the World Wide Web and the web browsing capability that it enabled
were the driving force behind the growth of the Internet. With its focus on delivering
content in the form of text and graphics, the early uses of the Web had little to do with data
management. By the mid-1990s, however, much of the content delivered from corporate
web sites had its origins in SQL-based corporate databases. For example, on a commercial
web site for a retailer, web pages that contain information about products available for sale,
their prices, product availability, special promotions, and the like are typically created on
demand, based on data retrieved from a SQL database. The vast majority of the pages
displayed by an online auction site or by an online travel site are similarly based on data
retrieved from SQL databases, transformed into the Web’s HTML page format. In the other
direction, data entered by a user into browser page forms is almost always captured into
SQL databases that form part of the web site architecture.

By the early 2000s, industry attention had turned to the next phase of the Internet, and
the role that Internet technologies can play in connecting computer applications to one
another. These distributed applications architectures received widespread trade press
coverage under the banner of web services. In the longstanding tradition of the computer
industry, competing camps emerged, championing different sets of standards and
languages for implementing them—a Microsoft-led camp under the .NET Framework, and
a rival camp focused on Java and J2EE-based application servers. Both architectures
embrace a key role for XML, a standard for exchanging structured data like the data that
resides in SQL databases.

In response to the industry attention on web services, a flurry of products has been
announced that link XML-formatted messages to SQL-based databases. Startup database
vendors and some of the object database vendors announced XML-based database
products, arguing that they provide an ideal, native match for the XML-formatted exchange
of data over the Internet. The established relational database players responded with their
own XML initiatives, adding XML input/output capabilities, and then native XML data
type support, to their products. Tighter integration between XML and SQL remains an
active area of investment by all of the major database vendors today.

The Internet approach to scalability is also having a major impact on database software
products. Many Internet software elements operate at “Internet scale” through a horizontal
scaling approach, spreading out their workload across dozens or hundreds of low-cost
commodity servers. The Google search engine is one of the most extreme examples of this
architecture, where even a single search can be distributed across dozens of servers, and the
total search volume is distributed across tens of thousands of servers, all located in the
“Internet cloud.” There are major challenges to applying this approach to database
management, but providing data management “in the cloud” is an active topic of research
and development in the database community.

 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 43 C h a p t e r 3 : S Q L i n P e r s p e c t i v e 43
PART I

Summary
This chapter described the development of SQL and its role as a standard language for relational
database management:

• SQL was originally developed by IBM researchers, and IBM’s strong support of SQL
was a key reason for its early success.

• There is an official ANSI/ISO SQL standard, which has grown tremendously in scope
and complexity since its debut in 1986.

• Despite the existence of a standard, there are many small variations among commercial
SQL dialects; no two SQL implementations are exactly the same.

• SQL has become the standard database management language across a broad range
of computer systems and applications areas, including mainframes, workstations,
personal computers, OLTP systems, client/server systems, data warehousing, and
the Internet.

This page intentionally left blank

4
Relational Databases

Database management systems organize and structure data so that it can be saved
and retrieved by users and application programs. The data structures and access
techniques provided by a particular DBMS are called its data model. A data model

determines both the “personality” of a DBMS and the applications for which it is particularly
well-suited.

SQL is a database language for databases that use the relational data model. What exactly
is a relational database? How is data stored in a relational database? How do relational
databases compare with earlier technologies, such as hierarchical and network databases?
What are the advantages and disadvantages of the relational model? This chapter describes
the relational data model supported by SQL and compares it with earlier strategies for
database organization.

Early Data Models
As database management became popular during the 1970s and 1980s, a handful of popular
data models emerged. Each of these early data models had advantages and disadvantages
that played key roles in the development of the relational data model. In many ways, the
relational data model represented an attempt to streamline and simplify the earlier data
models. To understand the role and contribution of SQL and the relational model, it is useful
to briefly examine some data models that preceded the development of SQL, some of which
are still in use today.

File Management Systems
Before the introduction of database management systems, all data permanently stored on
a computer system, such as payroll and accounting records, was stored in individual files.
A file management system, usually provided as part of the computer’s operating system,
kept track of the names and locations of the files. File management systems are still widely
used today—you are probably familiar with the files-and-folders structure provided by the
file system on Microsoft Windows or Apple’s Macintosh operating systems. Similar file
systems are used by UNIX-based servers and all commercial computer systems.

A file management system basically has no data model; it knows nothing about the
internal contents of files. At best, the file system might maintain “file type” information

45

CHAPTER

 46 P a r t I : A n O v e r v i e w o f S Q L 46 P a r t I : A n O v e r v i e w o f S Q L

along with the filename, allowing it to distinguish between a word processing document
and a file containing payroll data. But knowledge about the internal contents of a file—what
individual pieces of data it contains and how that data is organized—is embedded in the
application programs that use the file, as shown in Figure 4-1. In this payroll application,
each of the COBOL programs that processes the employee master file contains a file
description (FD) that describes the layout of the data in the file. If the structure of the data
changes—for example, if an additional item of data is to be stored for each employee—
every program that accesses the file has to be modified. This isn’t a problem for files
containing word processing documents or spreadsheets, which are usually processed by a
single program. But in corporate data processing, files are often shared among dozens or
even hundreds of programs, as in Figure 4-1. As the number of files and programs grows
over time, more and more of a data-processing department’s effort goes into maintaining
existing applications rather than developing new ones.

The problems of maintaining large file-based systems led in the late 1960s to the
development of database management systems. The idea behind these systems was simple:
move the definition of a file’s content and structure out of the individual programs, and
store it, together with the data, in a database. Using the information in the database, the
DBMS that controlled it could take a much more active role in managing both the data and
changes to the database structure. Moreover, DBMSs are an extension of file management
systems rather than a replacement for them. DBMSs use file management systems (usually
the ones supplied with the operating system) to store the database structures. The database
user then references the DBMS and the DBMS handles the physical storage details. It is this
layer of abstraction that provides physical data independence.

FIGURE 4-1 A payroll application using a file management system

 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 47 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 47
PART I

Hierarchical Databases
One of the most important applications for the earliest database management systems was
managing operations for manufacturing companies. If an automobile manufacturer decided
to produce 10,000 units of one car model and 5000 units of another model, it needed to
know how many parts to order from its suppliers. To answer the question, the product (a
car) had to be decomposed into hundreds of assemblies (engine, body, chassis), which were
decomposed into thousands of subassemblies (valves, cylinders, spark plugs), and then into
sub-subassemblies, and so on. Handling this list of parts, known as a bill of materials was a
job tailor-made for computers.

The bill of materials for a product has a natural hierarchical structure. To store this data,
the hierarchical data model, illustrated in Figure 4-2, was developed. In this model, each
record in the database represented a specific part. The records had parent/child relationships,
linking each part to its subpart, and so on.

To access the data in the database, a program could perform the following tasks:

• Find a particular part by number (such as the left door)

• Move “down” to the first child (the door handle)

• Move “up” to its parent (the body)

• Move “sideways” to the next child (the right door)

Retrieving the data in a hierarchical database thus required navigating through the records:
moving up, down, and sideways one record at a time.

FIGURE 4-2 A hierarchical bill-of-materials database

 48 P a r t I : A n O v e r v i e w o f S Q L 48 P a r t I : A n O v e r v i e w o f S Q L

One of the most popular hierarchical database management systems was IBM’s
Information Management System (IMS), first introduced in 1968. The advantages of IMS
and its hierarchical model follow.

• Simple structure The organization of an IMS database was easy to understand.
The database hierarchy paralleled that of a company organization chart or a family
tree.

• Parent/child organization An IMS database was excellent for representing
parent/child relationships, such as “A is a part of B” or “A is owned by B.”

• Performance IMS stored parent/child relationships as physical pointers from one
data record to another, so that movement through the database was rapid.

IMS is still a widely used DBMS on IBM mainframes. Its raw performance makes it ideal
for very high volume transaction-processing applications such as processing credit card
transactions or booking airline reservations. Dramatic improvements in relational database
performance over the last two decades have narrowed IMS’s performance advantage, but the
large amount of corporate data stored in IMS databases and the large number of mature
applications that process that data ensure that IMS use will continue for many years to come.

Network Databases
The simple structure of a hierarchical database became a disadvantage when the data had a
more complex structure. In an order-processing database, for example, a single order might
participate in three different parent/child relationships, linking the order to the customer
who placed it, the salesperson who took it, and the product ordered, as shown in Figure 4-3.
This type of data structure simply didn’t fit the strict hierarchy of IMS.

To deal with applications such as order processing, a new network data model was
developed. The network data model extended the hierarchical model by allowing a record
to participate in multiple parent/child relationships, called sets, as shown in Figure 4-4.

FIGURE 4-3 Multiple parent/child relationships

 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 49 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 49
PART I

In 1971, the Conference on Data Systems Languages published an official standard for
network databases, called the CODASYL model. IBM never developed a network DBMS,
but during the 1970s, independent software companies rushed to embrace the network
model, creating products such as Cullinet’s IDMS, Cincom’s Total, and the Adabas DBMS
that became very popular. However, IBM enhanced IMS to provide a workaround to the
single-parent rule in classic hierarchical structures, calling the additional parents logical
parents. The data model became known as the extended hierarchical model, and it made
IMS a direct competitor with the network DBMS products.

For a programmer, accessing a network database was very similar to accessing a
hierarchical database. An application program could do the following:

• Find a specific parent record by key (such as a customer number)

• Move down to the first child in a particular set (the first order placed by this
customer)

• Move sideways from one child to the next in the set (the next order placed by the
same customer)

• Move up from a child to its parent in another set (the salesperson who took the order)

Once again, the programmer had to navigate the database record by record, this time
specifying which relationship to navigate as well as the direction.

Network databases had several advantages:

• Flexibility Multiple parent/child relationships allowed a network database to
represent data that did not have a simple hierarchical structure.

• Standardization The CODASYL standard boosted the popularity of the network
model, making it easier for programmers to move between DBMS products.

• Performance Parent/child sets were represented by pointers to physical data
records, allowing rapid navigation through these relationships.

FIGURE 4-4 A network (CODASYL) order-processing database

 50 P a r t I : A n O v e r v i e w o f S Q L 50 P a r t I : A n O v e r v i e w o f S Q L

Network databases had their disadvantages, too. Like hierarchical databases, they were
very rigid. The set relationships and the structure of the records had to be specified in
advance. Changing the database structure typically required rebuilding the entire database.

Both hierarchical and network databases were tools for programmers. To answer a
question such as “What is the most popular product ordered by Acme Manufacturing?” or
“How many orders are there for Size 4 Widgets?” a programmer had to write a program
that navigated its way through the database, found the appropriate records, and calculated
the result. The backlog of requests for custom reports often stretched to weeks or months,
and by the time the program was written, the information it delivered was often worthless.

The disadvantages of the hierarchical and network models led to intense interest in the
new relational data model when it was first described by Ted Codd in 1970. At first the
relational model was little more than an academic curiosity. Network databases continued
to be important throughout the 1970s and early 1980s, particularly on the minicomputer
systems that were surging in popularity. However, by the mid-1980s, the relational model
was clearly emerging as the “new wave” in data management. By the early 1990s, network
and hierarchical databases were clearly declining in importance, and today they play only
a minor role in the database market.

The Relational Data Model
The relational model proposed by Codd was an attempt to simplify database structure. It
eliminated the explicit parent/child structures from the database and instead represented
all data in the database as simple row/column tables of data values. Figure 4-5 shows a
relational version of the network order-processing database in Figure 4-4.

FIGURE 4-5 A relational order-processing database

 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 51 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 51
PART I

Codd’s work produced a precise, mathematical definition of a relational database,
and a theoretical basis for the database operations that could be performed on it. However,
a more informal definition of a relational database is useful:

A relational database is a database where all data visible to the user is organized strictly
as tables of data values, and where all database operations work on these tables.

The definition is intended specifically to rule out any user-visible structures such as the
embedded pointers of a hierarchical or network database. A relational DBMS can represent
parent/child relationships, but they are visible only through the data values contained in
the database tables.

The Sample Database
Figure 4-6 shows a small relational database for an order-processing application. This sample
database is used throughout this book and provides the basis for most of the examples.
Appendix A contains a complete description of the database structure and its contents.
Figure 4-6 shows only a few rows of each table – the complete contents of each table are
included in Appendix A.

ORDERS Table

ORDER_NUM ORDER_DATE CUST REP MFR PRODUCT QTY AMOUNT

112961

113012

112989

2007-12-17 2117 106 REI 2A44L 7 $31,500.00

2008-01-11 2111 105 ACI 41003 35 $3,745.00

2008-01-03 2101 106 FEA 114X 6 $1,458.00

MFR_ID PRODUCT_ID DESCRIPTION

REI 2A45C Ratchet Link

Widget Remover

Reducer

$2,750.00

$79.00

QTY_ON_HAND

210

25

PRICE

ACI 4100Y

QSA Xk47 $355.00 38

PRODUCTS Table

CUST_NUM COMPANY CUST_REP CREDIT_LIMIT

2111

2102

2103

JCP Inc.

First Corp.

Acme Mfg.

103

101

105

$50,000.00

$65,000.00

$50,000.00

CUSTOMERS Table

EMPL_NUM NAME

Bill Adams 37 13

AGE REP_OFFICE TITLE HIRE_DATE MANAGER QUOTA SALES

Sales Rep 2006-02-12 104 $350,000.00 $367,911.00

109

102

105

Mary Jones

Sue Smith

31

48

11

21

Sales Rep

Sales Rep

2007-10-12

2004-12-10

106

108

$300,000.00

$350,000.00

$392.725.00

$474,050.00

SALESREPS Table

OFFICE CITY

Denver22

New York11

12 Chicago

REGION

Western

Eastern

Eastern

MGR

108

106

104

$300,000.00

TARGET

$186,042.00

SALES

$575,000.00 $692,637.00

$800,000.00 $735,042.00

OFFICES Table

FIGURE 4-6 The sample database (partial listing)

 52 P a r t I : A n O v e r v i e w o f S Q L 52 P a r t I : A n O v e r v i e w o f S Q L

The sample database contains five tables. Each table stores information about one
particular kind of entity:

• The SALESREPS table stores the employee number, name, age, year-to-date sales,
and other data about each salesperson.

• The PRODUCTS table stores data about each product available for sale, such as the
manufacturer, product number, description, and price.

• The ORDERS table keeps track of every order placed by a customer, identifying the
salesperson who took the order, the product ordered, the quantity and amount of
the order, and so on. For simplicity, each order is for only one product.

• The OFFICES table stores data about each of the sales offices, including the city
where the office is, the sales region it belongs to, and so on.

• The CUSTOMERS table stores data about each customer, such as the company name,
credit limit, and the salesperson who calls on the customer.

Tables
The organizing principle in a relational database is the table, a rectangular row/column
arrangement of data values. Each table in a database has a unique table name that identifies
its contents. (Actually, each user can choose his or her own table names without worrying
about the names chosen by other users, as explained in Chapter 5.)

The row/column structure of a table is shown more clearly in Figure 4-7, which is an
enlarged view of the OFFICES table. Each horizontal row of the OFFICES table represents
a single physical entity—a single sales office. Together the five rows of the table represent
all five of the company’s sales offices. All of the data in a particular row of the table applies
to the office represented by that row.

Each column of the OFFICES table represents one item of data that is stored in the
database for each office. For example, the CITY column holds the location of each office.
The SALES column contains each office’s year-to-date sales total. The MGR column shows
the employee number of the person who manages the office.

Each row of a table contains exactly one data value in each column. In the row
representing the New York office, for example, the CITY column contains the value “New
York”. The SALES column contains the value “$692,637.00 ”, which is the year-to-date sales
total for the New York office.

For each column of a table, all of the data values in that column hold the same type of
data. For example, all of the CITY column values are text, all of the SALES values are money
amounts, and all of the MGR values are integers (representing employee numbers). The set of
data values that a column can contain is called the domain of the column. The domain of the
CITY column is the set of all names of cities. The domain of the SALES column is any
money amount. The domain of the REGION column is just two data values, “Eastern ” and
“Western ”, because those are the only two sales regions the company has.

Each column in a table has a column name, which is usually written as a heading at the
top of the column. The columns of a table must all have different names, but there is no
prohibition against two columns in two different tables having identical names. In fact,
frequently used column names such as NAME, ADDRESS, QTY, PRICE, and SALES are often
found in many different tables of a production database.

 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 53 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 53
PART I

The columns of a table have a left-to-right order, which is defined when the table is first
created. A table always has at least one column. The ANSI/ISO SQL standard does not
specify a maximum number of columns in a table, but almost all commercial SQL products
do impose a limit, which is seldom less than 255 columns.

Unlike the columns, the rows in a table do not have any particular order. In fact, if you
use two consecutive database queries to display the contents of a table, there is no guarantee
that the rows will be listed in the same order twice. Of course you can ask SQL to sort the rows
before displaying them, but the sorted order has nothing to do with the actual arrangement
of the rows within the table.

A table can have any number of rows. A table of zero rows is perfectly legal and is called
an empty table (for obvious reasons). An empty table still has a structure, imposed by its
columns; it simply contains no data. The ANSI/ISO standard does not limit the number of
rows in a table, and many SQL products will allow a table to grow until it exhausts the
available storage. Other SQL products impose a limit, but it is always a very generous one—
2 billion rows or more is common.

Primary Keys
Because the rows of a relational table are unordered, you cannot select a specific row by its
position in the table. There is no “first row,” “last row,” or “13th row” of a table. How, then,
can you specify a particular row, such as the row for the Denver sales office?

In a well-designed relational database, every table has some column or combination of
columns whose values uniquely identify each row in the table. This column (or columns)
is called the primary key of the table. Look once again at the OFFICES table in Figure 4-7.

FIGURE 4-7 The row/column structure of a relational table

 54 P a r t I : A n O v e r v i e w o f S Q L 54 P a r t I : A n O v e r v i e w o f S Q L

At first glance, either the OFFICE column or the CITY column could serve as a primary key
for the table. But if the company expands and opens two sales offices in the same city, the
CITY column could no longer serve as the primary key. In practice, “ID numbers” such as
an office number (OFFICE in the OFFICES table), an employee number (EMPL_NUM in the
SALESREPS table), and customer numbers (CUST_NUM in the CUSTOMERS table) are often
chosen as primary keys. In the case of the ORDERS table, you have no choice—the only thing
that uniquely identifies an order is its order number (ORDER_NUM).

The PRODUCTS table, part of which is shown in Figure 4-8, is an example of a table
where the primary key must be a combination of columns. The MFR_ID column identifies the
manufacturer of each product in the table, and the PRODUCT_ID column specifies the
manufacturer’s product number. The PRODUCT_ID column might appear to make a good
primary key, but there’s nothing to prevent two different manufacturers from using the
same number for their products. Therefore, a combination of the MFR_ID and PRODUCT_ID
columns must be used as the primary key of the PRODUCTS table. Every product in the table
is guaranteed to have a unique combination of data values in these two columns.

The primary key has a different unique value for each row in a table, so no two rows of
a table with a primary key are exact duplicates of one another. A table where every row is
different from all other rows is called a relation in mathematical terms. The name “relational
database” comes from this term, because relations (tables with distinct rows) are at the heart
of a relational database.

Although primary keys are an essential part of the relational data model, early relational
database management systems (System/R, DB2, Oracle, and others) did not provide explicit
support for primary keys. Database designers usually ensured that all of the tables in their
databases had a primary key, but the DBMS itself did not provide a way to identify the
primary key of a table. DB2 Version 2, introduced in April 1988, was the first of IBM’s
commercial SQL products to support primary keys. The ANSI/ISO standard was
subsequently expanded to include a definition of primary key support, and today, nearly all
relational database management systems provide it.

FIGURE 4-8 A table with a composite primary key

 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 55 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 55
PART I

Relationships
One of the major differences between the relational model and earlier data models is that
explicit pointers such as the parent/child relationships of a hierarchical database are banned
from relational databases. Yet, obviously, these relationships exist in a relational database.
For example, in the sample database, each salesperson is assigned to a particular sales
office, so there is an obvious relationship between the rows of the OFFICES table and the
rows of the SALESREPS table. Doesn’t the relational model “lose information” by banning
these relationships from the database?

As shown in Figure 4-9, the answer to the question is “no.” The figure shows a close-up
of a few rows of the OFFICES and SALESREPS tables. Note that the REP_OFFICE column
of the SALESREPS table contains the office number of the sales office where each salesperson
works. The domain of this column (the set of legal values it may contain) is precisely the set
of office numbers found in the OFFICE column of the OFFICES table. In fact, you can find
the sales office where Mary Jones works by finding the value in Mary’s REP_OFFICE
column (11) and finding the row of the OFFICES table that has a matching value in the
OFFICE column (in the row for the New York office). Similarly, to find all the salespeople who
work in New York, you could note the OFFICE value for the New York row (11) and then scan
down the REP_OFFICE column of the SALESREPS table looking for matching values (in the
rows for Mary Jones and Sam Clark).

The parent/child relationship between a sales office and the people who work there
isn’t lost by the relational model; it’s just not represented by an explicit pointer visible to
the user. Instead, the relationship is represented by common data values stored in the two
tables. All relationships in a relational database are represented this way. One of the main
goals of the SQL is to let you retrieve related data from the database by manipulating these
relationships in a simple, straightforward way.

FIGURE 4-9 A parent/child relationship in a relational database

 56 P a r t I : A n O v e r v i e w o f S Q L 56 P a r t I : A n O v e r v i e w o f S Q L

Foreign Keys
A column in one table whose value matches the primary key in some other table is called a
foreign key. In Figure 4-9, the REP_OFFICE column is a foreign key for the OFFICES table.
Although REP_OFFICE is a column in the SALESREPS table, the values that this column
contains are office numbers. They match values in the OFFICE column, which is the
primary key for the OFFICES table. Together, a primary key and a foreign key create a
parent/child relationship between the tables that contain them, just like the parent/child
relationships in a hierarchical database.

Just as a combination of columns can serve as the primary key of a table, a foreign key
can also be a combination of columns. In fact, the foreign key will always be a compound
(multicolumn) key when it references a table with a compound primary key. Obviously, the
number of columns and the data types of the columns in the foreign key and the primary
key must be identical to one another.

A table can contain more than one foreign key if it is related to more than one other
table. Figure 4-10 shows the three foreign keys in the ORDERS table of the sample database:

• The CUST column is a foreign key for the CUSTOMERS table, relating each order to
the customer who placed it.

• The REP column is a foreign key for the SALESREPS table, relating each order to the
salesperson who took it.

• The MFR and PRODUCT columns together are a composite foreign key for the
PRODUCTS table, relating each order to the product being ordered.

The multiple parent/child relationships created by the three foreign keys in the ORDERS
table may seem familiar to you, and they should. They are precisely the same relationships
as those in the network database of Figure 4-4. As the example shows, the relational data
model has all of the power of the network model to express complex relationships.

FIGURE 4-10 Multiple parent/child relationships in a relational database

 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 57 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 57
PART I

Foreign keys are a fundamental part of the relational model because they create
relationships among tables in the database. As with primary keys, foreign key support was
missing from early relational database management systems. They were added to DB2
Version 2, were subsequently added to the ANSI/ISO standard, and now appear in all of
the major commercial products.

Codd’s 12 Rules for Relational Databases*
As the relational database model started to become very popular in the mid-1980s, every
DBMS vendor scrambled to describe their product as “relational.” Some of these products
had only a SQL-like query language layered on top of an underlying network or hierarchical
database. Some of them implemented only a very rudimentary table structure and no query
language at all. Soon the question of “What is a true relational database?” became a topic
of debate, and DBMS vendors began claiming that their products were “more relational”
than the competition.

In 1985, Ted Codd, whose seminal technical article 15 years earlier had defined the
relational data model, addressed this question in Computerworld, one of the leading trade
publications. In his two-part article, entitled Is Your DBMS Really Relational? (October 14, 1985)
and Does Your DBMS Run By the Rules? (October 21, 1985), Codd presented 12 rules that a
database must obey if it is to be considered truly relational:

 1. Information rule. All information in a relational database is represented explicitly at
the logical level and in exactly one way—by values in tables.

 2. Guaranteed access rule. Each and every datum (atomic value) in a relational database
is guaranteed to be logically accessible by resorting to a combination of table name,
primary key value, and column name.

 3. Systematic treatment of NULL values. NULL values (distinct from an empty character
string or a string of blank characters and distinct from zero or any other number)
are supported in a fully relational DBMS for representing missing information and
inapplicable information in a systematic way, independent of the data type.

 4. Dynamic online catalog based on the relational model. The database description is
represented at the logical level in the same way as ordinary data, so that authorized
users can apply the same relational language to its interrogation as they apply to
the regular data.

 5. Comprehensive data sublanguage rule. A relational system may support several
languages and various modes of terminal use (for example, the fill-in-the-blanks
mode). However, there must be at least one language whose statements are
expressible, per some well-defined syntax, as character strings, and that is
comprehensive in supporting all of the following items:

• Data definition

• View definition

• Data manipulation (interactive and by program)

• Integrity constraints

• Authorization

• Transaction boundaries (begin, commit, and rollback)

 58 P a r t I : A n O v e r v i e w o f S Q L 58 P a r t I : A n O v e r v i e w o f S Q L

 6. View updating rule. All views that are theoretically updateable are also updateable
by the system.

 7. High-level insert, update, and delete. The capability of handling a base relation or a
derived relation as a single operand applies not only to the retrieval of data, but
also to the insertion, update, and deletion of data.

 8. Physical data independence. Application programs and terminal activities remain
logically unimpaired whenever any changes are made in either storage
representations or access methods.

 9. Logical data independence. Application programs and terminal activities remain
logically unimpaired when information-preserving changes of any kind that
theoretically permit unimpairment are made to the base tables.

 10. Integrity independence. Integrity constraints specific to a particular relational
database must be definable in the relational data sublanguage and storable in the
catalog, not in the application programs.

 11. Distribution independence. A relational DBMS has distribution independence.

 12. Nonsubversion rule. If a relational system has a low-level (single record at a time)
language, that low level cannot be used to subvert or bypass the integrity rules
and constraints expressed in the higher-level relational language (multiple records
at a time).

Although the controversy has long since died out, the 12 rules are interesting from a
historical perspective, because they resolved the issue once and for all, and they do offer a
good informal working definition. Rule 1 is basically the single-sentence fundamental
definition presented earlier in this chapter; the others provide additional refinement and
requirements.

Rule 2 stresses the importance of primary keys for locating data in the database. The
table name locates the correct table, the column name finds the correct column, and the
primary key value finds the row containing an individual data item of interest. Rule 3
requires support for missing data through NULL values, which are described in Chapter 5.

Rule 4 requires that a relational database be self-describing, through system tables
whose columns describe the structure of the database itself. These tables are described
in Chapter 16.

Rule 5 mandates using a relational database language, such as SQL, although SQL is not
specifically required. The language must be able to support all the central functions of a
DBMS, not just database queries.

Rule 6 deals with views, which are virtual tables used to give various users of a database
different views of its structure. Views are described in Chapter 14.

Rule 7 stresses the set-oriented nature of a relational database. It requires that rows be
treated as sets in insert, delete, and update operations. It prohibits systems that support
only row-at-a-time, navigational modification of the database.

Rule 8 and Rule 9 insulate the user or application program from the low-level
implementation of the database and even from changes in the structure of the tables.

Rule 10 says that the database language should support the ability to define restrictions
on the data that can be entered and the database modifications that can be made.

 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 59 C h a p t e r 4 : R e l a t i o n a l D a t a b a s e s 59
PART I

Rule 11 says that the database language must be able to manipulate distributed data
located on other computer systems if the DBMS supports it.

Finally, Rule 12 prevents “other paths” into the database that might subvert its relational
structure and integrity.

Summary
SQL is based on the relational data model that organizes the data in a database as a
collection of tables:

• Each table has a table name that uniquely identifies it.

• Each table has one or more named columns, which are arranged in a specific, left-to-
right order.

• Each table has zero or more rows, each containing a single data value in each
column. The rows are unordered.

• All data values in a given column have the same data type and are drawn from a set
of legal values called the domain of the column.

Tables are related to one another by the data they contain. The relational data model
uses primary keys and foreign keys to represent these relationships among tables:

• A primary key is a column or combination of columns in a table whose value(s)
uniquely identify each row of the table. A table has only one primary key.

• A foreign key is a column or combination of columns in a table whose value(s) are
a primary key value for some other table. A table can contain more than one foreign
key, linking it to one or more other tables.

• A primary key/foreign key combination creates a parent/child relationship between
the tables that contain them.

This page intentionally left blank

II
Retrieving Data

Queries are the heart of SQL, and many people use SQL as a
database query tool. The next five chapters describe SQL
queries in depth. Chapter 5 describes the basic SQL structures

that you use to form SQL statements. Chapter 6 discusses simple
queries that draw data from a single table of data. Chapter 7 expands
the discussion to multitable queries. Queries that summarize data
are described in Chapter 8. Finally, Chapter 9 explains the SQL
subquery capability that is used to handle complex queries.

CHAPTER 5
SQL Basics

CHAPTER 6
Simple Queries

CHAPTER 7
Multitable Queries (Joins)

CHAPTER 8
Summary Queries

CHAPTER 9
Subqueries and Query
Expressions

PART

This page intentionally left blank

5
SQL Basics

This chapter begins a detailed description of the features of SQL. It describes the
basic structure of a SQL statement and the basic elements of the language, such as
keywords, data types, and expressions. How SQL handles missing data through

NULL values is also described. Although these are basic features of SQL, they have some
subtle differences in the way they are implemented by various popular SQL products, and
in many cases, the SQL products provide significant extensions to the capabilities specified
in the ANSI/ISO SQL standard. These differences and extensions are also described in
this chapter.

Statements
The main body of SQL consists of about 40 statements. The most important and frequently
used statements are summarized in Table 5-1. (Note that not all SQL implementations
support all these statements.) Each statement requests a specific action from the DBMS,
such as creating a new table, retrieving data, or inserting new data into the database. All
SQL statements have the same basic form, illustrated in Figure 5-1.

Every SQL statement begins with a verb, a keyword that describes what the statement
does. CREATE, INSERT, DELETE, and COMMIT are typical verbs. The statement continues
with one or more clauses. A clause may specify the data to be acted on by the statement or
provide more detail about what the statement is supposed to do. Every clause also begins
with a keyword, such as WHERE, FROM, INTO, and HAVING. Some clauses are optional;
others are required. The specific structure and content vary from one clause to another.
Many clauses contain table or column names; some may contain additional keywords,
constants, or expressions.

The ANSI/ISO SQL standard specifies a set of reserved keywords and nonreserved
keywords that are used within SQL statements. According to the standard, reserved
keywords cannot be used as the exact name of database objects, such as tables, columns,
and users. Many SQL implementations relax this restriction, but it’s generally a good idea

6363

CHAPTER

 64 P a r t I I : R e t r i e v i n g D a t a 64 P a r t I I : R e t r i e v i n g D a t a

Statement Description

Data Manipulation

SELECT Retrieves data from the database

INSERT Adds new rows of data to the database

UPDATE Modifies existing database data

MERGE Conditionally inserts/updates/deletes new and existing rows

DELETE Removes rows of data from the database

Data Definition

CREATE TABLE Adds a new table to the database

DROP TABLE Removes a table from the database

ALTER TABLE Changes the structure of an existing table

CREATE VIEW Adds a new view to the database

DROP VIEW Removes a view from the database

CREATE INDEX Builds an index for a column

DROP INDEX Removes the index for a column

CREATE SCHEMA Adds a new schema to the database

DROP SCHEMA Removes a schema from the database

CREATE DOMAIN Adds a new data value domain

ALTER DOMAIN Changes a domain definition

DROP DOMAIN Removes a domain from the database

Access Control

GRANT Grants user access privileges

REVOKE Removes user access privileges

CREATE ROLE Adds a new role to the database

GRANT ROLE Grants role containing user access privileges

DROP ROLE Removes a role from the database

Transaction Control

COMMIT Ends the current transaction

ROLLBACK Aborts the current transaction

SET TRANSACTION Defines data access characteristics of the current transaction

START TRANSACTION Explicitly starts a new transaction

SAVEPOINT Establishes a recovery point for a transaction

TABLE 5-1 Major SQL Statements

 C h a p t e r 5 : S Q L B a s i c s 65

PART II
 C h a p t e r 5 : S Q L B a s i c s 65

to avoid the keywords when you name your tables and columns. Table 5-2 lists the reserved
keywords included in the ANSI/ISO SQL:2006 standard.

It’s also best to avoid the use of nonreserved keywords in naming database objects,
because they are candidates for reserved keywords in future revisions of the standard. The
nonreserved keywords in the SQL:2006 standard are listed in Table 5-3.

Throughout this book, the acceptable forms of a SQL statement are illustrated by a syntax
diagram, such as the one shown in Figure 5-2. A valid SQL statement or clause is constructed
by “following the line” through the syntax diagram to the dot that marks the end of the
diagram. Keywords in the syntax diagram and in the examples (such as DELETE and FROM
in Figure 5-2) are always shown in UPPERCASE, but almost all SQL implementations accept
both uppercase and lowercase keywords, and it’s often more convenient to actually type
them in lowercase.

FIGURE 5-1 The structure of a SQL statement

Statement Description

Programmatic SQL

DECLARE Defines a cursor for a query

EXPLAIN Describes the data access plan for a query

OPEN Opens a cursor to retrieve query results

FETCH Retrieves a row of query results

CLOSE Closes a cursor

PREPARE Prepares a SQL statement for dynamic execution

EXECUTE Executes a SQL statement dynamically

DESCRIBE Describes a prepared query

TABLE 5-1 Major SQL Statements (continued)

 66 P a r t I I : R e t r i e v i n g D a t a 66 P a r t I I : R e t r i e v i n g D a t a

ABS ALL ALLOCATE ALTER

AND ANY ARE ARRAY

AS ASENSITIVE ASYMMETRIC AT

ATOMIC AUTHORIZATION AVG BEGIN

BETWEEN BIGINT BINARY BLOB

BOOLEAN BOTH BY CALL

CALLED CARDINALITY CASCADED CASE

CAST CEIL CEILING CHAR

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CLOB CLOSE COALESCE COLLATE

COLLECT COLUMN COMMIT CONDITION

CONNECT CONSTRAINT CONVERT CORR

CORRESPONDING COUNT COVAR_POP COVAR_SAMP

CREATE CROSS CUBE CUME_DIST

CURRENT CURRENT_DATE CURRENT_DEFAULT_
TRANSFORM_GROUP

CURRENT_PATH

CURRENT_ROLE CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TRANSFORM_
GROUP_FOR_TYPE

CURRENT_USER CURSOR CYCLE DATE

DAY DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DELETE DENSE_RANK

DEREF DESCRIBE DETERMINISTIC DISCONNECT

DISTINCT DOUBLE DROP DYNAMIC

EACH ELEMENT ELSE END

END-EXEC ESCAPE EVERY EXCEPT

EXEC EXECUTE EXISTS EXP

EXTERNAL EXTRACT FALSE FETCH

FILTER FLOAT FLOOR FOR

FOREIGN FREE FROM FULL

FUNCTION FUSION GET GLOBAL

GRANT GROUP GROUPING HAVING

HOLD HOUR IDENTITY IN

INDICATOR INNER INOUT INSENSITIVE

INSERT INT INTEGER INTERSECT

INTERSECTION INTERVAL INTO IS

JOIN LANGUAGE LARGE LATERAL

LEADING LEFT LIKE LN

TABLE 5-2 SQL:2006 Reserved Keywords

 C h a p t e r 5 : S Q L B a s i c s 67

PART II
 C h a p t e r 5 : S Q L B a s i c s 67

LOCAL LOCALTIME LOCALTIMESTAMP LOWER

MATCH MAX MEMBER MERGE

METHOD MIN MINUTE MOD

MODIFIES MODULE MONTH MULTISET

NATIONAL NATURAL NCHAR NCLOB

NEW NO NONE NORMALIZE

NOT NULL NULLIF NUMERIC

OCTET_LENGTH OF OLD ON

ONLY OPEN OR ORDER

OUT OUTER OVER OVERLAPS

OVERLAY PARAMETER PARTITION PERCENT_RANK

PERCENTILE_CONT PERCENTILE_DISC POSITION POWER

PRECISION PREPARE PRIMARY PROCEDURE

RANGE RANK READS REAL

RECURSIVE REF REFERENCES REFERENCING

REGR_AVGX REGR_AVGY REGR_COUNT REGR_INTERCEPT

REGR_R2 REGR_SLOPE REGR_SXX REGR_SXY

REGR_SYY RELEASE RESULT RETURN

RETURNS REVOKE RIGHT ROLLBACK

ROLLUP ROW ROW_NUMBER ROWS

SAVEPOINT SCOPE SCROLL SEARCH

SECOND SELECT SENSITIVE SESSION_USER

SET SIMILAR SMALLINT SOME

SPECIFIC SPECIFICTYPE SQL SQLEXCEPTION

SQLSTATE SQLWARNING SQRT START

STATIC STDDEV_POP STDDEV_SAMP SUBMULTISET

SUBSTRING SUM SYMMETRIC SYSTEM

SYSTEM_USER TABLE TABLESAMPLE THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRANSLATE TRANSLATION

TREAT TRIGGER TRIM TRUE

UESCAPE UNION UNIQUE UNKNOWN

UNNEST UPDATE UPPER USER

USING VALUE VALUES VAR_POP

VAR_SAMP VARCHAR VARYING WHEN

WHENEVER WHERE WIDTH_BUCKET WINDOW

WITH WITHIN WITHOUT YEAR

TABLE 5-2 SQL:2006 Reserved Keywords (continued)

 68 P a r t I I : R e t r i e v i n g D a t a 68 P a r t I I : R e t r i e v i n g D a t a

ABSOLUTE ACTION ADA

ADD ADMIN AFTER

ALWAYS ASC ASSERTION

ASSIGNMENT ATTRIBUTE ATTRIBUTES

BEFORE BERNOULLI BREADTH

CASCADE CATALOG CATALOG_NAME

CHAIN CHARACTER_SET_CATALOG CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA CHARACTERISTICS CHARACTERS

CLASS_ORIGIN COBOL COLLATION

COLLATION_CATALOG COLLATION_NAME COLLATION_SCHEMA

COLUMN_NAME COMMAND_FUNCTION COMMAND_FUNCTION_CODE

COMMITTED CONDITION_NUMBER CONNECTION

CONNECTION_NAME CONSTRAINT_CATALOG CONSTRAINT_NAME

CONSTRAINT_SCHEMA CONSTRAINTS CONSTRUCTOR

CONTAINS CONTINUE CURSOR_NAME

DATA DATETIME_INTERVAL_CODE DATETIME_INTERVAL_PRECISION

DEFAULTS DEFERRABLE DEFERRED

DEFINED DEFINER DEGREE

DEPTH DERIVED DESC

DESCRIPTOR DIAGNOSTICS DISPATCH

DOMAIN DYNAMIC_FUNCTION DYNAMIC_FUNCTION_CODE

EQUALS EXCEPTION EXCLUDE

EXCLUDING FINAL FIRST

FOLLOWING FORTRAN FOUND

GENERAL GENERATED GO

GOTO GRANTED IMMEDIATE

IMPLEMENTATION INCLUDING INCREMENT

INITIALLY INPUT INSTANCE

INSTANTIABLE INVOKER ISOLATION

KEY KEY_MEMBER KEY_TYPE

LAST LENGTH LEVEL

LOCATOR MAP MATCHED

MAXVALUE MESSAGE_LENGTH MESSAGE_OCTET_LENGTH

MESSAGE_TEXT MINVALUE MORE

TABLE 5-3 SQL:2006 Nonreserved Keywords

 C h a p t e r 5 : S Q L B a s i c s 69

PART II
 C h a p t e r 5 : S Q L B a s i c s 69

MUMPS NAME NAMES

NESTING NEXT NORMALIZED

NULLABLE NULLS NUMBER

OBJECT OCTETS OPTION

OPTIONS ORDERING ORDINALITY

OTHERS OUTPUT OVERRIDING

PAD PARAMETER_MODE PARAMETER_NAME

PARAMETER_ORDINAL_POSITION PARAMETER_SPECIFIC_CATALOG PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA PARTIAL PASCAL

PATH PLACING PLI

PRECEDING PRESERVE PRIOR

PRIVILEGES PUBLIC READ

RELATIVE REPEATABLE RESTART

RESTRICT RETURNED_CARDINALITY RETURNED_LENGTH

RETURNED_OCTET_LENGTH RETURNED_SQLSTATE ROLE

ROUTINE ROUTINE_CATALOG ROUTINE_NAME

ROUTINE_SCHEMA ROW_COUNT SCALE

SCHEMA SCHEMA_NAME SCOPE_CATALOG

SCOPE_NAME SCOPE_SCHEMA SECTION

SECURITY SELF SEQUENCE

SERIALIZABLE SERVER_NAME SESSION

SETS SIMPLE SIZE

SOURCE SPACE SPECIFIC_NAME

STATE STATEMENT STRUCTURE

STYLE SUBCLASS_ORIGIN TABLE_NAME

TEMPORARY TIES TOP_LEVEL_COUNT

TRANSACTION TRANSACTION_ACTIVE TRANSACTIONS_COMMITTED

TRANSACTIONS_ROLLED_BACK TRANSFORM TRANSFORMS

TRIGGER_CATALOG TRIGGER_NAME TRIGGER_SCHEMA

TYPE UNBOUNDED UNCOMMITTED

UNDER UNNAMED USAGE

USER_DEFINED_TYPE_CATALOG USER_DEFINED_TYPE_CODE USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_SCHEMA VIEW WORK

WRITE ZONE

TABLE 5-3 SQL:2006 Nonreserved Keywords (continued)

 70 P a r t I I : R e t r i e v i n g D a t a 70 P a r t I I : R e t r i e v i n g D a t a

FIGURE 5-2 A sample syntax diagram

Variable items in a SQL statement (such as the table name and search condition in
Figure 5-2) are shown in lowercase italics. It’s up to you to specify the appropriate item
value(s) each time the statement is used. Optional clauses and keywords, such as the
WHERE clause in Figure 5-2, are indicated by alternate paths through the syntax diagram.
When a choice of optional keywords is offered, the default choice (that is, the behavior of
the statement if no keyword is specified) is UNDERLINED.

Names
The objects in a SQL-based database are identified by assigning them unique names. Names
are used in SQL statements to identify the database object on which the statement should
act. The most fundamental named objects in a relational database are table names (which
identify tables), column names (which identify columns), and user names (which identify
users of the database); the original SQL1 standard specified conventions for naming these
objects. Subsequent versions of the SQL standard significantly expanded the list of named
entities to include schemas (collections of tables), constraints (restrictions on the contents of
tables and their relationships), domains (sets of legal values that may be assigned to a
column), and several other types of objects. Many SQL implementations support additional
named objects such as stored procedures, primary key/foreign key relationships, data entry
forms, and data replication schemes.

The original ANSI/ISO standard specified that SQL names must contain 1 to 18 characters,
must begin with a letter, and may not contain any spaces or special punctuation characters.
The SQL2 standard increased the maximum to 127 characters (the standard actually specifies
“less than 128”), and this remains unchanged through SQL:2006. In practice, the names
supported by SQL-based DBMS products vary significantly. It’s common to see tighter
restrictions on names that are connected to other software outside of the database (such as
user names, which may correspond to login names used by an operating system), and
looser restrictions on names that are private (internal) to the database. The various products
also differ in the special characters they permit in table names. For portability, it’s best to
keep names relatively short and to avoid the use of special characters, except of course the
underscore character (_), which is used to separate words in SQL names.

Table Names
When you specify a table name in a SQL statement, SQL assumes that you are referring to
one of your own tables (that is, a table that you created). Usually, you will want to choose
table names that are short but descriptive.

 C h a p t e r 5 : S Q L B a s i c s 71

PART II
 C h a p t e r 5 : S Q L B a s i c s 71

The table names in the sample database (ORDERS, CUSTOMERS, OFFICES, SALESREPS)
are good examples. In a personal or departmental database, the choice of table names is
usually up to the database developer or designer.

A larger, shared-use corporate database, may have corporate standards for naming
tables, to ensure that table names are consistent and do not conflict. In addition, most DBMS
brands allow different users to create tables with the same name (that is, both Joe and Sam
can create a table named BIRTHDAYS). The DBMS uses the appropriate table, depending on
which user is requesting data. With the proper permission, you can also refer to tables owned
by other users, by using a qualified table name. A qualified table name specifies both the name
of the table’s owner and the name of the table, separated by a period (.). For example, Joe
could access the BIRTHDAYS table owned by Sam by using the qualified table name:

SAM.BIRTHDAYS

A qualified table name generally can be used in a SQL statement wherever a table name
can appear.

The ANSI/ISO SQL standard generalizes the notion of a qualified table name even
further. It allows you to create a named collection of tables, called a schema. You can refer to
a table in a specific schema by using a qualified table name. For example, the BIRTHDAYS
table in the EMPLOYEE_INFO schema would be referenced as

EMPLOYEE_INFO.BIRTHDAYS

Chapter 13 provides more information about schemas, users, and other aspects of SQL
database structure. For now, keep in mind that users and schemas are not the same, and in
fact, one user can be the owner of multiple schemas.

Column Names
When you specify a column name in a SQL statement, SQL can normally determine from the
context which column you intend. However, if the statement involves two columns with the
same name from two different tables, you must use a qualified column name to unambiguously
identify the column you intend. A qualified column name specifies both the name of the table
containing the column and the name of the column, separated by a period (.). For example,
the column named SALES in the SALESREPS table has the qualified column name

SALESREPS.SALES

If the column comes from a table owned by another user, a qualified table name is used
in the qualified column name. For example, the BIRTH_DATE column in the BIRTHDAYS
table owned by the user SAM is specified by the fully qualified column name

SAM.BIRTHDAYS.BIRTH_DATE

Qualified column names can generally be used in a SQL statement wherever a simple
(unqualified) column name can appear; exceptions are noted in the descriptions of the
individual SQL statements.

 72 P a r t I I : R e t r i e v i n g D a t a 72 P a r t I I : R e t r i e v i n g D a t a

Data Types
The ANSI/ISO SQL standard specifies the various types of data that can be stored in a
SQL-based database and manipulated by SQL. The original SQL1 standard specified only
a minimal set of data types. Subsequent versions of the standard expanded this list to
include variable-length character strings, date and time data, bit strings, Extensible Markup
Language (XML), and other types. Today, commercial DBMS products can process a rich
variety of data, and there is considerable diversity in the particular data types supported
across different DBMS brands. Typical data types include the following:

• Integers Columns holding this type of data typically store counts, quantities, ages,
and so on. Integer columns are also frequently used to contain ID numbers, such as
customer, employee, and order numbers.

• Decimal numbers Columns with this data type store numbers that have fractional
parts and that must be calculated exactly, such as rates and percentages. They are
also frequently used to store money amounts.

• Floating point numbers Columns with this data type are used to store scientific
numbers that can be calculated approximately, such as weights and distances.
Floating point numbers can represent a larger range of values than decimal
numbers, but can produce round-off errors in computations.

• Fixed-length character strings Columns holding this type of data typically store
character strings that are always the same length, such as postal codes, state/
province abbreviations, short descriptions, and so on. Whenever the string to be
stored is smaller than the length defined for a fixed-length column, it is padded
with spaces so it fits the exact storage length.

• Variable-length character strings This data type allows a column to store
character strings that vary in length from row to row, up to some maximum length.
(The SQL1 standard permitted only fixed-length character strings, which are easier
for the DBMS to process but can waste considerable space.) Columns holding this
type of data typically store names of people and companies, addresses, descriptions,
and so on. Unlike fixed-length character strings, variable-length strings are not
padded with spaces—the exact number of characters provided is stored, along with
the length of the data string.

• Money amounts Some SQL products support a MONEY or CURRENCY type, which
is usually stored as a decimal or floating point number. Having a distinct money
type allows the DBMS to properly format money amounts when they are displayed.
However, the SQL Standard does not specify such a data type.

• Dates and times Support for date/time values is also common in SQL products,
although the details can vary considerably from one product to another, largely
because vendors implemented these data types before the SQL standard was
developed. Various combinations of dates, times, timestamps, time intervals, and
date/time arithmetic are generally supported. The SQL standard includes an
elaborate specification for DATE, TIME, TIMESTAMP, and INTERVAL data types,
including support for time zones and time precision (for example, tenths or
hundredths of seconds).

 C h a p t e r 5 : S Q L B a s i c s 73

PART II
 C h a p t e r 5 : S Q L B a s i c s 73

• Boolean data Some SQL products, such as Microsoft SQL Server, support logical
(TRUE or FALSE) values as an explicit type, and some permit logical operations
(comparison, AND/OR, and so on) on the stored data within SQL statements.

• Large character objects The SQL:1999 standard added the CLOB data type that
supports storing large character strings, up to a specified amount with a typical
maximum length in the multi-gigabyte range. This allows the database to store
entire documents, product descriptions, technical papers, résumés, and similar
unstructured text data. Several SQL-based databases support proprietary data types
(added before the SQL:1999 standard) capable of storing long text strings (typically
up to 32,000 or 65,000 characters, and in some cases even larger). The DBMS usually
restricts the use of large character columns in interactive queries and searches.

• Large binary objects The SQL:1999 standard also added the BLOB data type that
supports storing unstructured, variable-length sequences of bytes. Columns
containing this data are used to store compressed video images, executable code,
and other types of unstructured data. Prior to the publication of the standard,
vendors implemented their own proprietary solutions, such as SQL Server’s IMAGE
and Oracle’s LONG RAW data types, which can store up to 2 gigabytes of data.

• Non-Roman characters As databases grew to support global applications, DBMS
vendors added support for fixed-length and variable-length strings of multibyte
characters used to represent Kanji and other Asian and Arabic characters using
proprietary types such as the GRAPHIC and VARGRAPHIC data types in SQL Server.
The ANSI/ISO standard now specifies national character set versions of the various
character data types (NCHAR, NVARCHAR, and NCLOB). While most modern databases
support storing and retrieving such characters (often using the UNICODE convention
for representing them), support for searching and sorting on these types varies widely.

Table 5-4 lists the data types specified in the ANSI/ISO SQL standard.
The differences between the data types offered in various SQL implementations form

one of the practical barriers to the portability of SQL-based applications. These differences
have come about as a result of innovation as relational databases have evolved to include a
broader range of capabilities. This has been the typical pattern:

• A DBMS vendor adds a new data type that provides useful new capabilities for a
certain group of users.

• Other DBMS vendors add the same or similar data types, adding their own
innovations to differentiate their products from the others.

• Over several years, the popularity of the data type grows, and it becomes a part of
the “mainstream” set of data types supported by most SQL implementations.

• The standards bodies become involved to try to standardize the new data type and
eliminate arbitrary differences between the vendor implementations. The more
well-entrenched the data type has become, the more difficult the set of compromises
faced by the standards group. Usually, this results in an addition to the standard
that does not exactly match any of the current implementations.

 74 P a r t I I : R e t r i e v i n g D a t a 74 P a r t I I : R e t r i e v i n g D a t a

• DBMS vendors slowly add support for the new standardized data type as an option
to their systems, but because they have a large installed base that is using the older
(now “proprietary”) version of the data type, they must maintain support for this
form of the data type as well.

• Over a very long period (typically several major releases of the DBMS product),
users migrate to the new, standardized form of the data type, and the DBMS vendor
can begin the process of phasing out the proprietary version.

Data Type Abbreviation(s) Description

CHARACTER(len) CHAR Fixed-length character strings

CHARACTER VARYING(len) CHAR VARYING,
VARCHAR

Variable-length character strings

CHARACTER LARGE
OBJECT(len)

CLOB Large fixed-length character strings

NATIONAL CHARACTER(len) NATIONAL CHAR, NCHAR Fixed-length national character strings

NATIONAL CHARACTER
VARYING(len)

NATIONAL CHAR
VARYING, NCHAR

Variable-length national character strings

NATIONAL CHARACTER
LARGE OBJECT(len)

NCLOB Large variable-length national character
strings

BIT(len) Fixed-length bit strings

BIT VARYING(len) Variable-length bit strings

INTEGER INT Integers

SMALLINT Small integers

NUMERIC(precision, scale) Decimal numbers

DECIMAL(precision, scale) DEC Decimal numbers

FLOAT(precision) Floating point numbers

REAL Low-precision floating point numbers

DOUBLE PRECISION High-precision floating point numbers

DATE Calendar dates

TIME(precision) Clock times

TIME WITH TIME ZONE
(precision)

Clock times with time zones

TIMESTAMP(precision) Dates and times

TIMESTAMP WITH TIME
ZONE (precision)

Dates and times with time zones

INTERVAL Time intervals

XML(type modifier [secondary
type modifier])

Character data formatted as Extensible
Markup Language (XML)

TABLE 5-4 ANSI/ISO SQL Data Types

 C h a p t e r 5 : S Q L B a s i c s 75

PART II
 C h a p t e r 5 : S Q L B a s i c s 75

Date/time data provides an excellent example of this phenomenon and the data type
variations it creates. DB2 offered early date/time support, with three different date/time
data types:

• DATE Stores a date like June 30, 2008

• TIME Stores a time of day like 12:30:00 P.M.

• TIMESTAMP A specific instant in history, with a precision down to the nanosecond

Specific dates and times can be specified as string constants, and date arithmetic is
supported. Here is an example of a valid query using DB2 dates, assuming that the HIRE_
DATE column contains DATE data:

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE >= '05/30/2007' + 15 DAYS;

SQL Server was introduced with a single date/time data type, called DATETIME, which
closely resembles the DB2 TIMESTAMP data type. If HIRE_DATE contained DATETIME data,
SQL Server could accept this version of the query (without the date arithmetic):

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE >= '06/14/2007';

Since no specific time on June 14, 2007, is specified in the query, SQL Server defaults to
midnight on that date. The SQL Server query thus really means

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE >= '06/14/2007 12:00AM';

SQL Server also supports date arithmetic through a set of built-in functions. Thus, the
DB2-style query can also be specified in this way:

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE >= DATEADD(DAY, 15, '05/30/2007')

which is considerably different from the DB2 syntax.
Oracle has long supported date/time data with a single data type called DATE. (Note,

however, that Oracle added support for the SQL Standard DATETIME and TIMESTAMP
data types starting with Oracle 9i.) Like SQL Server’s DATETIME type, an Oracle DATE is, in
fact, a timestamp. Also as with SQL Server, the time part of an Oracle DATE value defaults to
midnight if no time is explicitly specified. The default Oracle date format is different from
the DB2 and SQL Server formats, so the Oracle version of the query becomes

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE >= '14-JUN-07';

 76 P a r t I I : R e t r i e v i n g D a t a 76 P a r t I I : R e t r i e v i n g D a t a

Oracle also supports limited date arithmetic, so the DB2-style query can also be
specified, but without the DAYS keyword:

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE >= '30-MAY-07' + 15;

Note, however, that this statement requires the DBMS to implicitly convert the string to
an appropriate date data type before adding 15 to it, and that not all SQL implementations
support such conversion. Oracle, for example, will report an error unless a function such as
TO_DATE or CAST converts the character string to an Oracle DATE or DATETIME type
before attempting date arithmetic.

Fortunately, with the advent of the year 2000 conversion, most DBMS vendors added
universal support for dates in SQL statements with four-digit years in a standard YYYY-
MM-DD format, which we use for most of the examples in this book. In Oracle’s case, the
default format is still as shown in the preceding examples, but it can be changed at either
the database or user session with a simple command. If you are using Oracle and you try
any of the examples in this book, simply enter this command to change your default date
format:

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD';

Care must be taken when forming queries that search for exact date matches using the
equal (=) operator, and the dates have time components stored in them. Consider the
following example:

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE = '06/14/2007';

If a salesperson’s hire date were stored in the database as noon on June 14, 2007, the
salesperson would not be included in the query results from Oracle or SQL Server databases.
The DBMS would assume a time of midnight for the string supplied with the SQL statement,
and since midnight is not equal to noon, the row would not be selected. On the other hand,
for a DB2 database, where the time is not stored with a DATE data type, the row would
appear in the query results.

Finally, starting with SQL2, the ANSI/ISO standard added support for date/time data
with a set of data types based on, but not identical to, the DB2 types. In addition to the DATE,
TIME, and TIMESTAMP data types, the standard specifies an INTERVAL data type, which can
be used to store a time interval (for example, a timespan measured in days, or a duration
measured in hours, minutes, and seconds). The standard also provides a very elaborate and
complex method for dealing with date/time arithmetic, specifying the precision of intervals,
adjusting for time zone differences, and so on. Most SQL implementations now have support
for these standard types. One notable exception, however, is that SQL Server has long used
the TIMESTAMP data type for an entirely different purpose, so supporting the ANSI/ISO
specification for it presents a very real challenge.

As these examples illustrate, the subtle differences in data types among various SQL
products lead to some significant differences in SQL statement syntax.

 C h a p t e r 5 : S Q L B a s i c s 77

PART II
 C h a p t e r 5 : S Q L B a s i c s 77

They can even cause the same SQL query to produce slightly different results on
different database management systems. The widely praised portability of SQL is thus true
but only at a general level. An application can be moved from one SQL database to another,
and it can be highly portable if it uses only the most mainstream, basic SQL capabilities.
However, the subtle variations in SQL implementations mean that data types and SQL
statements must almost always be adjusted somewhat if they are to be moved across DBMS
brands. The more complex the application, the more likely it is to become dependent on
DBMS-specific features and nuances, and the less portable it will become.

Constants
In some SQL statements, a numeric, character, or date data value must be expressed in text
form. For example, in this INSERT statement which adds a salesperson to the database:

INSERT INTO SALESREPS (EMPL_NUM, NAME, QUOTA, HIRE_DATE, SALES)
 VALUES (115, 'Dennis Irving', 175000.00, '2008-06-21', 0.00);

the value for each column in the newly inserted row is specified in the VALUES clause.
Constant data values are also used in expressions, such as in this SELECT statement:

SELECT CITY
 FROM OFFICES
 WHERE TARGET > (1.1 * SALES) + 10000.00;

The ANSI/ISO SQL standard specifies the format of numeric and string constants, or
literals, which represent specific data values. These conventions are followed by most SQL
implementations.

Numeric Constants
Integer and decimal constants (also called exact numeric literals) are written as ordinary
decimal numbers in SQL statements, with an optional leading plus or minus sign:

21 -375 2000.00 +497500.8778

You must not put a comma between the digits of a numeric constant, and not all SQL
dialects allow the leading plus sign, so it’s best to avoid it. For money data, most SQL
implementations simply use integer or decimal constants, although some allow the constant
to be specified with a currency symbol:

$0.75 $5000.00 $-567.89

Floating point constants (also called approximate numeric literals) are specified using the
E notation commonly found in programming languages such as C and FORTRAN. Here are
some valid SQL floating point constants:

1.5E3 -3.14159E1 2.5E-7 0.783926E21

The E is read “times ten to the power of,” so the first constant becomes “1.5 times ten to
the third power,” or 1500.

 78 P a r t I I : R e t r i e v i n g D a t a 78 P a r t I I : R e t r i e v i n g D a t a

String Constants
The ANSI/ISO standard specifies that SQL constants for character data be enclosed in single
quotes ('. . . '), as in these examples:

'Jones, John J.' 'New York' 'Western'

If a single quote is to be included in the constant text, it is written within the constant as
two consecutive single-quote characters. Thus, this constant value:

'I can''t'

becomes the seven-character string "I can't".
Some SQL implementations, such as SQL Server, accept string constants enclosed in

double quotes (". . ."):

"Jones, John J." "New York" "Western"

Unfortunately, the double quotes can pose portability problems with other SQL
products. The SQL standard provides the additional capability to specify string constants
from a specific national character set (for example, French or German) or from a user-
defined character set. The user-defined character set capabilities have typically not been
implemented in mainstream SQL products.

Date and Time Constants
In SQL products that support date/time data, constant values for dates, times, and time
intervals are specified as string constants. The format of these constants varies from one
DBMS to the next. Even more variation is introduced by the differences in the way dates
and times are written in different countries.

IBM’s DB2 supports several different international formats for date, time, and
timestamp constants, as shown in Table 5-5. The choice of format is made when the DBMS
is installed. DB2 also supports durations specified as special constants, as in this example:

HIRE_DATE + 30 DAYS

Note that a duration can’t be stored in the database, however, because DB2 doesn’t have
an explicit DURATION data type.

SQL Server also supports date/time data and accepts a variety of different formats for
date and time constants. The DBMS automatically accepts all of the alternate formats, and you
can intermix them if you like. Here are some examples of legal SQL Server date constants:

March 15, 2008 Mar 15 2008 3/15/2008 3-15-08 2008 MAR 15

Format Name Date Format Date Example Time Format Time Example

American mm/dd/yyyy 5/19/2008 hh:mm am/pm 2:18 PM

European dd.mm.yyyy 19.5.2008 hh.mm.ss 14.18.08

Japanese yyyy-mm-dd 2008-5-19 hh:mm:ss 14:18:08

ISO yyyy-mm-dd 2008-5-19 hh.mm.ss 14.18.08

TABLE 5-5 DB2 SQL Date and Time Formats

 C h a p t e r 5 : S Q L B a s i c s 79

PART II
 C h a p t e r 5 : S Q L B a s i c s 79

and here are some legal time constants:

15:30:25 3:30:25 PM 3:30:25 pm 3 PM

Oracle dates and times are also written as string constants, using this format:

15-MAR-90

You can also use Oracle’s built-in TO_DATE() function to convert date constants written
in other formats, as in this example:

SELECT NAME, AGE
 FROM SALESREPS
 WHERE HIRE_DATE = TO_DATE('JUN 14 2007', 'MON DD YYYY');

The SQL2 standard specifies a format for date and time constants, based on the ISO
format in Table 5-5, except that time constants are written with colons instead of periods
separating the hours, minutes, and seconds. The SQL Standard TIMESTAMP type, not
shown in the table, has a format of yyyy-mm-dd-hh.mm.ss.nnnnnn—for example “1960-05-
19-14.18.08.048632” represents 5/19/60 at roughly 2:18 p.m.

Symbolic Constants
In addition to user-supplied constants, the SQL includes special symbolic constants that
return data values maintained by the DBMS itself. For example, in some DBMS brands, the
symbolic constant CURRENT_DATE yields the value of the current date and can be used in
queries such as the following, which lists the salespeople whose hire date is still in the future:

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE > CURRENT_DATE;

The SQL1 standard specified only a single symbolic constant (the USER constant
described in Chapter 15), but most SQL products provide many more. Generally, a symbolic
constant can appear in a SQL statement anywhere that an ordinary constant of the same
data type could appear. The SQL2 standard adopted the most useful symbolic constants
from current SQL implementations and provides for CURRENT_DATE, CURRENT_TIME,
and CURRENT_TIMESTAMP (note the underscores) as well as USER, SESSION_USER, and
SYSTEM_USER.

Some SQL products, including SQL Server, provide access to system values through built-in
functions rather than symbolic constants. The SQL Server version of the preceding query is

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE HIRE_DATE > GETDATE();

Built-in functions are described later in this chapter, in the section “Built-In Functions.”

 80 P a r t I I : R e t r i e v i n g D a t a 80 P a r t I I : R e t r i e v i n g D a t a

Expressions
Expressions are used in the SQL to calculate values that are retrieved from a database and to
calculate values used in searching the database. For example, this query calculates the sales
of each office as a percentage of its target:

SELECT CITY, TARGET, SALES, (SALES/TARGET) * 100
 FROM OFFICES;

and this query lists the offices whose sales are more than $50,000 over target:

SELECT CITY
 FROM OFFICES
 WHERE SALES > TARGET + 50000.00;

The ANSI/ISO SQL standard specifies four arithmetic operations that can be used in
expressions: addition (X + Y), subtraction (X – Y), multiplication (X * Y), and division (X / Y).
Parentheses can also be used to form more complicated expressions, like this one:

 (SALES * 1.05) - (TARGET * .95)

Strictly speaking, the parentheses are not required in this query because the ANSI/ISO
standard specifies that multiplication and division have a higher precedence than addition
and subtraction. However, you should always use parentheses to make your expressions
unambiguous, because different SQL dialects may use different rules. The parentheses also
increase the readability of the statement and make programmatic SQL statements easier to
maintain.

The ANSI/ISO SQL standard also specifies automatic data type conversion from integers
to decimal numbers, and from decimal numbers to floating point numbers, as required. You
can thus mix these data types in a numeric expression. Many SQL implementations support
other operators and allow operations on character and date data. The SQL standard specifies
a string concatenation operator, written as two consecutive vertical bar characters (||),
which is supported by most implementations. (A notable exception is SQL Server, which
uses the plus sign (+) instead.) If two columns named FIRST_NAME and LAST_NAME
contain the values “Jim” and “Jackson”, then this DB2 expression:

 ('Mr./Mrs. ' || FIRST_NAME || ' ' || LAST_NAME)

produces the string “Mr./Mrs. Jim Jackson”. As already mentioned, DB2 and many other
implementations also support addition and subtraction of DATE, TIME, and TIMESTAMP
data, for occasions when those operations make sense. This capability has been included
in the SQL standard.

Built-In Functions
A number of useful built-in functions are specified in SQL standard, and most SQL
implementations add many more. These facilities often provide data type conversion facilities.
For example, DB2’s built-in MONTH() and YEAR() functions take a DATE or TIMESTAMP
value as their input and return an integer that is the month or year portion of the value.
This query lists the name and month of hire for each salesperson in the sample database:

SELECT NAME, MONTH(HIRE_DATE)
 FROM SALESREPS;

 C h a p t e r 5 : S Q L B a s i c s 81

PART II
 C h a p t e r 5 : S Q L B a s i c s 81

and this one lists all salespeople hired in 2006:

SELECT NAME, MONTH(HIRE_DATE)
 FROM SALESREPS
 WHERE YEAR(HIRE_DATE) = 2006;

Built-in functions are also often used for data reformatting. Oracle’s built-in TO_CHAR()
function, for example, takes a DATE data type and a format specification as its arguments
and returns a string containing a formatted character string version of the date. (This same
function is also capable of converting numeric values to formatted character strings.) In the
results produced by this query:

SELECT NAME, TO_CHAR(HIRE_DATE,'DAY MONTH DD, YYYY')
 FROM SALESREPS;

the hire dates will all have the format “Wednesday June 14, 2007” because of the built-in function.
In general, a built-in function can be specified in a SQL expression anywhere that a

constant of the same data type can be specified. The built-in functions supported by popular
SQL dialects are too numerous to list here. The IBM DB2 SQL dialects include about two
dozen built-in functions, Oracle supports a different set of about two dozen built-in functions,
and SQL Server has several dozen. The SQL2 standard incorporated the most useful built-in
functions from these implementations, in many cases with slightly different syntax. These
functions are summarized in Table 5-6.

Function Returns

BIT_LENGTH (string) The number of bits in a bit string

CAST (value AS data_type) The value, converted to the specified data type (e.g., a date converted to a
character string)

CHAR_LENGTH (string) The length of a character string

CONVERT (string USING conv) A string converted as specified by a named conversion function

CURRENT_DATE The current date

CURRENT_TIME (precision) The current time, with the specified precision

CURRENT_TIMESTAMP (precision) The current date and time, with the specified precision

EXTRACT (part FROM source) The specified part (DAY, HOUR, etc.) from a DATETIME value

LOWER (string) A string converted to all lowercase letters

OCTET_LENGTH (string) The number of 8-bit bytes in a character string

POSITION (target IN source) The position where the target string appears within the source string

SUBSTRING (source FROM n FOR len) A portion of the source string, beginning at the nth character, for a length
of len

TRANSLATE (string USING trans) A string translated as specified by a named translation function

TRIM (BOTH char FROM string) A string with both leading and trailing occurrences of char trimmed off

TRIM (LEADING char FROM string) A string with any leading occurrences of char trimmed off

TRIM (TRAILING char FROM string) A string with any trailing occurrences of char trimmed off

UPPER (string) A string converted to all uppercase letters

TABLE 5-6 SQL Standard Built-In Functions

 82 P a r t I I : R e t r i e v i n g D a t a 82 P a r t I I : R e t r i e v i n g D a t a

Missing Data (NULL Values)
Because a database is usually a model of a real-world situation, certain pieces of data are
inevitably missing, unknown, or don’t apply. In the sample database, for example, the
QUOTA column in the SALESREPS table contains the sales goal for each salesperson.
However, the newest salesperson has not yet been assigned a quota; this data is missing for
that row of the table. You might be tempted to put a zero in the column for this salesperson,
but that would not be an accurate reflection of the situation. The salesperson does not have
a zero quota; the quota is just “not yet known.”

Similarly, the MANAGER column in the SALESREPS table contains the employee number
of each salesperson’s manager. But Sam Clark, the vice president of sales, has no manager in
the sales organization. This column does not apply to Sam. Again, you might think about
entering a zero, or a 9999 in the column, but neither of these values would really be the
employee number of Sam’s boss. No data value is applicable to this row.

SQL supports missing, unknown, or inapplicable data explicitly, through the concept of
a null value. A null value is an indicator that tells SQL (and the user) that the data is missing
or not applicable. As a convenience, a missing piece of data is often said to have the value
NULL. But the NULL value is not a real data value like 0, 473.83, or “Sam Clark.” Instead, it’s
a signal, or a reminder, that the data value is missing or unknown. Figure 5-3 shows the
contents of the SALESREPS table. Note that the QUOTA and REP_OFFICE values for Tom
Snyder’s row and the MANAGER value for Sam Clark’s row of the table all contain NULL
values. Also note that SQL tools do not display null values in query results in the same
way—while many use the string NULL as shown in Figure 5-3, others use empty space or
character strings.

In many situations, NULL values require special handling by the DBMS. For example, if
the user requests the sum of the QUOTA column, how should the DBMS handle the missing
data when computing the sum? The answer is given by a set of special rules that govern
NULL value handling in various SQL statements and clauses. Because of these rules, some
leading database authorities feel strongly that NULL values should not be used. Others,
including Ted Codd, have advocated the use of multiple NULL values, with distinct
indicators for “unknown” and “not applicable” data.

FIGURE 5-3 NULL values in the SALESREPS table

 C h a p t e r 5 : S Q L B a s i c s 83

PART II
 C h a p t e r 5 : S Q L B a s i c s 83

Regardless of the academic debates, NULL values are a well-entrenched part of the
ANSI/ISO SQL standard and are supported in virtually all commercial SQL products.
They also play an important, practical role in production of SQL databases. The special
rules that apply to NULL values (and the cases where NULL values are handled
inconsistently by various SQL products) are pointed out throughout this book.

Summary
This chapter described the basic elements of SQL. The basic structure of SQL can be
summarized as follows:

• SQL that is in common use includes about 30 statements, each consisting of a verb
and one or more clauses. Each statement performs a single, specific function.

• SQL-based databases can store various types of data, including text, integers, decimal
numbers, floating point numbers, and usually many more vendor-specific data types.

• SQL statements can include expressions that combine column names, constants, and
built-in functions, using arithmetic and other vendor-specific operators.

• Variations in data types, constants, and built-in functions make portability of SQL
statements more difficult than it may seem at first.

• NULL values provide a systematic way of handling missing or inapplicable data in
the SQL.

This page intentionally left blank

6
Simple Queries

In many ways, queries are the heart of SQL. The SELECT statement, which is used to express
SQL queries, is the most powerful and complex of the SQL statements. Despite the many
options afforded by the SELECT statement, it’s possible to start simply and then work up to

more complex queries. This chapter discusses the simplest SQL queries—those that retrieve
data from individual rows of a single table in the database. If you have not done so already, you
will learn more if you create the sample database on your own system and try the queries for
yourself as you read. Instructions for the sample database are in Appendix A.

The SELECT Statement
The SELECT statement retrieves data from a database and returns it to you in the form of
query results. As a reminder, the exact format of the query results will vary from one SQL
product to another. You have already seen many examples of the SELECT statement in the
quick tour presented in Chapter 2. Here are several more sample queries that retrieve
information about sales offices:

List the sales offices with their targets and actual sales.

SELECT CITY, TARGET, SALES
 FROM OFFICES;

CITY TARGET SALES
------------ ------------ ------------
Denver $300,000.00 $186,042.00
New York $575,000.00 $692,637.00
Chicago $800,000.00 $735,042.00
Atlanta $350,000.00 $367,911.00
Los Angeles $725,000.00 $835,915.00

85

CHAPTER

 86 P a r t I I : R e t r i e v i n g D a t a 86 P a r t I I : R e t r i e v i n g D a t a

List the Eastern region sales offices with their targets and sales.

SELECT CITY, TARGET, SALES
 FROM OFFICES
 WHERE REGION = 'Eastern';

CITY TARGET SALES
------------ ------------ ------------
New York $575,000.00 $692,637.00
Chicago $800,000.00 $735,042.00
Atlanta $350,000.00 $367,911.00

List Eastern region sales offices whose sales exceed their targets, sorted in alphabetical
order by city.

SELECT CITY, TARGET, SALES
 FROM OFFICES
 WHERE REGION = 'Eastern'
 AND SALES > TARGET
 ORDER BY CITY;

CITY TARGET SALES
------------ ------------ ------------
Atlanta $350,000.00 $367,911.00
New York $575,000.00 $692,637.00

For simple queries, the English language request and the SQL SELECT statement are
very similar. When the requests become more complex, more features of the SELECT
statement must be used to specify the query precisely.

Figure 6-1 shows the full form of the SELECT statement, which consists of six clauses.
The SELECT and FROM clauses of the statement are required. The remaining four clauses are
optional. You include them in a SELECT statement only when you want to use the functions
they provide. The following list summarizes the function of each clause:

• The SELECT clause lists the data items to be retrieved by the SELECT statement. The
items may be columns from the database, or columns to be calculated by SQL as it
performs the query. The SELECT clause is described in the next section.

• The FROM clause lists the tables and views that contain the data to be retrieved by
the query. (Views are discussed in detail in Chapter 14.) Queries that draw their data
from a single table are described in this chapter. More complex queries that combine
data from two or more tables are discussed in Chapter 7.

• The WHERE clause tells SQL to include only certain rows of data in the query results.
A search condition is used to specify the desired rows. The basic uses of the WHERE
clause are described in the “Row Selection (WHERE Clause)” section later in this
chapter. Those that involve subqueries are discussed in Chapter 9.

• The GROUP BY clause specifies a summary query. Instead of producing one row of
query results for each row of data in the database, a summary query groups
together similar rows and then produces one summary row of query results for each
group. Summary queries are described in Chapter 8.

 C h a p t e r 6 : S i m p l e Q u e r i e s 87

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 87

• The HAVING clause tells SQL to include only certain groups produced by the GROUP
BY clause in the query results. Like the WHERE clause, it uses a search condition to
specify the desired groups. The HAVING clause is described in Chapter 8.

• The ORDER BY clause sorts the query results based on the data in one or more columns.
If it is omitted, the query results are not sorted. The ORDER BY clause is described in the
“Sorting Query Results (ORDER BY Clause)” section later in this chapter.

The SELECT Clause
The SELECT clause that begins each SELECT statement specifies the data items to be
retrieved by the query. The items are usually specified by a select list, a list of select items
separated by commas. Each select item in the list generates a single column of query results,
in left-to-right order. A select item can be one of the following:

• A column name, identifying a column from the table(s) named in the FROM clause. When
a column name appears as a select item, SQL simply takes the value of that column from
each row of the database table and places it in the corresponding row of query results.

• A constant, specifying that the same constant value is to appear in every row of the
query results.

• A SQL expression, indicating that SQL must calculate the value to be placed into the
query results, as specified by the expression.

Each type of select item is described later in this chapter.

FIGURE 6-1
SELECT statement
syntax diagram

 88 P a r t I I : R e t r i e v i n g D a t a 88 P a r t I I : R e t r i e v i n g D a t a

The FROM Clause
The FROM clause consists of the keyword FROM, followed by a list of table specifications
separated by commas. Each table specification identifies a table or view containing data to be
retrieved by the query. These tables are called the source tables of the query (and of the SELECT
statement) because they are the source of all of the data in the query results. All of the queries
in this chapter have a single source table, and every FROM clause contains a single table name.

Query Results
The result of a SQL query is always a table of data, just like the tables in the database. If you
type a SELECT statement using interactive SQL, the DBMS displays the query results
(which some vendors call a result set) in tabular form on your computer screen. If a
computer program sends a query to the DBMS using programmatic SQL, the table of query
results is returned to the program for processing. In either case, the query results always
have the same tabular, row/column format as the actual tables in the database, as shown in
Figure 6-2. Usually the query results will be a table with several columns and several rows.
For example, the following query produces a table of three columns (because it asks for
three items of data) and ten rows (because there are ten salespeople):

List the names, offices, and hire dates of all salespeople.

SELECT NAME, REP_OFFICE, HIRE_DATE
 FROM SALESREPS;

NAME REP_OFFICE HIRE_DATE
-------------- ----------- ----------
Bill Adams 13 2006-02-12
Mary Jones 11 2007-10-12
Sue Smith 21 2004-12-10
Sam Clark 11 2006-06-14
Bob Smith 12 2005-05-19
Dan Roberts 12 2004-10-20
Tom Snyder NULL 2008-01-13
Larry Fitch 21 2007-10-12
Paul Cruz 12 2005-03-01
Nancy Angelli 22 2006-11-14

In contrast, the following query produces a single row because only one salesperson has
the requested employee number. Even though this single row of query results looks less
“tabular” than the multirow results, SQL still considers it to be a table of three columns and
one row.

What are the name, quota, and sales of employee number 107?

SELECT NAME, QUOTA, SALES
 FROM SALESREPS
 WHERE EMPL_NUM = 107;

NAME QUOTA SALES
-------------- ------------ ------------
Nancy Angelli $300,000.00 $186,042.00

 C h a p t e r 6 : S i m p l e Q u e r i e s 89

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 89

In some cases the query results can be a single value, as in the following example:

What are the average sales of our salespeople?

SELECT AVG(SALES)
 FROM SALESREPS;

 AVG(SALES)

$289,353.20

These query results are still a table, although it’s a very small one consisting of one column
and one row.

Finally, it’s possible for a query to produce zero rows of query results, as in this example:

List the name and hire date of anyone with sales over $500,000.

SELECT NAME, HIRE_DATE
 FROM SALESREPS
 WHERE SALES > 500000.00;

NAME HIRE_DATE
------------ ----------

Even in this situation, the query results are still a table. This one is an empty table with
two columns and zero rows.

Note that SQL’s support for missing data extends to query results as well. If a data item
in the database has a NULL value, the NULL value appears in the query results when the

FIGURE 6-2 The tabular structure of SQL query results

 90 P a r t I I : R e t r i e v i n g D a t a 90 P a r t I I : R e t r i e v i n g D a t a

data item is retrieved. For example, the SALESREPS table contains NULL values in its QUOTA
and MANAGER columns. The next query returns these NULL values in the second and third
columns of query results. Note that not all SQL products display NULL values in the same
way—Oracle and DB2, for example, display nothing when a NULL value is encountered.

List the salespeople, their quotas, and their managers.

SELECT NAME, QUOTA, MANAGER
 FROM SALESREPS;

NAME QUOTA MANAGER
-------------- ------------ --------
Bill Adams $350,000.00 104
Mary Jones $300,000.00 106
Sue Smith $350,000.00 108
Sam Clark $275,000.00 NULL
Bob Smith $200,000.00 106
Dan Roberts $300,000.00 104
Tom Snyder NULL 101
Larry Fitch $350,000.00 106
Paul Cruz $275,000.00 104
Nancy Angelli $300,000.00 108

The fact that a SQL query always produces a table of data is very important. It means
that the query results can be stored back into the database as a table. It means that the
results of two similar queries can be combined to form a larger table of query results.
Finally, it means that the query results can themselves be the target of further queries. A
relational database’s tabular structure thus has a very synergistic relationship with the
relational query facilities of SQL. Tables can be queried, and queries produce tables.

Simple Queries
The simplest SQL queries request columns of data from a single table in the database. For
example, this query requests three columns from the OFFICES table:

List the location, region, and sales of each sales office.

SELECT CITY, REGION, SALES
 FROM OFFICES;

CITY REGION SALES
------------ -------- ------------
Denver Western $186,042.00
New York Eastern $692,637.00
Chicago Eastern $735,042.00
Atlanta Eastern $367,911.00
Los Angeles Western $835,915.00

The SELECT statement for simple queries like this one includes only the two required
clauses. The SELECT clause names the requested columns; the FROM clause names the table
or view that contains them.

 C h a p t e r 6 : S i m p l e Q u e r i e s 91

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 91

Conceptually, SQL processes the query by going through the table named in the FROM
clause, one row at a time. For each row, SQL takes the values of the columns requested in
the select list and produces a single row of query results. The query results thus contain one
row of data for each row in the table.

Calculated Columns
In addition to columns whose values come directly from the database, a SQL query can
include calculated columns whose values are calculated from the stored data values. To
request a calculated column, you specify a SQL expression in the select list. As discussed in
Chapter 5, SQL expressions can involve addition, subtraction, multiplication, and division.
You can also use parentheses to build more complex expressions. Of course the columns
referenced in an arithmetic expression must have a numeric type. If you try to add, subtract,
multiply, or divide columns containing text data, SQL will report an error.

This query shows a simple calculated column:

List the city, region, and amount over/under target for each office.

SELECT CITY, REGION, (SALES - TARGET)
 FROM OFFICES;

CITY REGION (SALES-TARGET)
------------ -------- ---------------
Denver Western -$113,958.00
New York Eastern $117,637.00
Chicago Eastern -$64,958.00
Atlanta Eastern $17,911.00
Los Angeles Western $110,915.00

To process the query, SQL goes through the offices, generating one row of query results
for each row of the OFFICES table, as shown in Figure 6-3. The first two columns of query
results come directly from the OFFICES table. The third column of query results is
calculated, row by row, using the data values from the current row of the OFFICES table.

Here are other examples of queries that use calculated columns:

Show the value of the inventory for each product. (Only the first 8 rows in the result set are shown.)

SELECT MFR_ID, PRODUCT_ID, DESCRIPTION, (QTY_ON_HAND * PRICE)
 FROM PRODUCTS;

MFR_ID PRODUCT_ID DESCRIPTION (QTY_ON_HAND*PRICE)
------- ----------- --------------- --------------------
REI 2A45C Ratchet Link $16,590.00
ACI 4100Y Widget Remover $68,750.00
QSA XK47 Reducer $13,490.00
BIC 41672 Plate $0.00
IMM 779C 900-lb Brace $16,875.00
ACI 41003 Size 3 Widget $22,149.00
ACI 41004 Size 4 Widget $16,263.00
BIC 41003 Handle $1,956.00

 92 P a r t I I : R e t r i e v i n g D a t a 92 P a r t I I : R e t r i e v i n g D a t a

Show me the result if I raised each salesperson’s quota by 3 percent of their year-to-date sales.

SELECT NAME, QUOTA, (QUOTA + (.03*SALES))
 FROM SALESREPS;

NAME QUOTA (QUOTA+(.03*SALES))
-------------- ------------ --------------------
Bill Adams $350,000.00 $361,037.33
Mary Jones $300,000.00 $311,781.75
Sue Smith $350,000.00 $364,221.50
Sam Clark $275,000.00 $283,997.36
Bob Smith $200,000.00 $204,277.82
Dan Roberts $300,000.00 $309,170.19
Tom Snyder NULL NULL
Larry Fitch $350,000.00 $360,855.95
Paul Cruz $275,000.00 $283,603.25
Nancy Angelli $300,000.00 $305,581.26

As mentioned in Chapter 5, many SQL products provide additional arithmetic
operations, character string operations, and built-in functions that can be used in SQL
expressions. These can appear in select list expressions, as in the next DB2 example, which
extracts the month and year from a date.

List the name, month, and year of hire for each salesperson. (For Oracle databases, the TO_CHAR
function must be used instead of the MONTH and YEAR functions.)

SELECT NAME, MONTH(HIRE_DATE), YEAR(HIRE_DATE)
 FROM SALESREPS;

FIGURE 6-3 Query processing with a calculated column

 C h a p t e r 6 : S i m p l e Q u e r i e s 93

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 93

SQL constants can also be used by themselves as items in a select list. This can be useful
for producing query results that are easier to read and interpret, as in the next example.

List the sales for each city.

SELECT CITY, 'has sales of', SALES
 FROM OFFICES;

CITY HAS SALES OF SALES
------------ ------------- ------------
Denver has sales of $186,042.00
New York has sales of $692,637.00
Chicago has sales of $735,042.00
Atlanta has sales of $367,911.00
Los Angeles has sales of $835,915.00

The query results appear to consist of a separate “sentence” for each office, but they’re
really a table of three columns. The first and third columns contain values from the
OFFICES table. The second column always contains the same 12-character text string.

Selecting All Columns (SELECT *)
Sometimes it’s convenient to display the contents of all the columns of a table. This can be
particularly useful when you first encounter a new database and want to get a quick
understanding of its structure and the data it contains. As a convenience, SQL lets you use
an asterisk (*) in place of the select list as an abbreviation for “all columns”:

Show me all the data in the OFFICES table.

SELECT *
 FROM OFFICES;

 OFFICE CITY REGION MGR TARGET SALES
------- ------------ -------- ---- ------------ ------------
 22 Denver Western 108 $300,000.00 $186,042.00
 11 New York Eastern 106 $575,000.00 $692,637.00
 12 Chicago Eastern 104 $800,000.00 $735,042.00
 13 Atlanta Eastern 105 $350,000.00 $367,911.00
 21 Los Angeles Western 108 $725,000.00 $835,915.00

The query results contain all six columns of the OFFICES table, in the same left-to-right
order as in the table itself.

The all-columns selection is most appropriate when you are using interactive SQL
casually. It should be avoided in programmatic SQL, because changes in the database
structure can cause a program to fail. For example, suppose the OFFICES table was
dropped from the database and then re-created with its columns rearranged and a new
seventh column added. SQL automatically takes care of the database-related details of such
changes, but it cannot modify your application program for you. If your program expects a
SELECT * FROM OFFICES query to return six columns of query results with certain data
types, it will almost certainly stop working when the columns are rearranged and a new
one is added.

 94 P a r t I I : R e t r i e v i n g D a t a 94 P a r t I I : R e t r i e v i n g D a t a

These difficulties can be avoided if you write the program to request the columns
it needs by name. For example, the following query produces the same results as
SELECT * FROM OFFICES. It is also immune to changes in the database structure, as long
as the named columns continue to exist in the OFFICES table.

SELECT OFFICE, CITY, REGION, MGR, TARGET, SALES
 FROM OFFICES;

Duplicate Rows (DISTINCT)
If a query includes the primary key of a table in its select list, then every row of query
results will be unique (because the primary key has a different value in each row). If the
primary key is not included in the query results, duplicate rows can occur. For example,
suppose you made this request:

List the employee numbers of all sales office managers.

SELECT MGR
 FROM OFFICES;

 MGR

 108
 106
 104
 105
 108

The query results have five rows (one for each office), but two of them are exact
duplicates of one another. Why? Because Larry Fitch manages both the Los Angeles and
Denver offices, and his employee number (108) appears in both rows of the OFFICES table.
These query results are probably not exactly what you had in mind. If there are four
different managers, you might have expected only four employee numbers in the query
results.

You can eliminate duplicate rows of query results by inserting the keyword DISTINCT
in the SELECT statement just before the select list. Here is a version of the previous query
that produces the results you want:

List the employee numbers of all sales office managers.

SELECT DISTINCT MGR
 FROM OFFICES;

 MGR

 104
 105
 106
 108

Conceptually, SQL carries out this query by first generating a full set of query results
(five rows) and then eliminating rows that are exact duplicates of one another to form the

 C h a p t e r 6 : S i m p l e Q u e r i e s 95

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 95

final query results. The DISTINCT keyword can be specified regardless of the contents of
the SELECT list (with certain restrictions for summary queries, as described in Chapter 8).
Be aware that the SQL engine may have to apply a sort to identify the duplicate rows and
that sorts of large numbers of rows can cause performance problems.

If the DISTINCT keyword is omitted, SQL does not eliminate duplicate rows. You can
also specify the keyword ALL to explicitly indicate that duplicate rows are to be retained,
but it is unnecessary since this is the default behavior.

Row Selection (WHERE Clause)
SQL queries that retrieve all rows of a table are useful for database browsing and reports,
but for little else. Usually you’ll want to select only some of the rows in a table and include
only these rows in the query results. The WHERE clause is used to specify the rows you want
to retrieve. Here are some examples of simple queries that use the WHERE clause:

Show me the offices where sales exceed target.

SELECT CITY, SALES, TARGET
 FROM OFFICES
 WHERE SALES > TARGET;

CITY SALES TARGET
------------ ------------ ------------
New York $692,637.00 $575,000.00
Atlanta $367,911.00 $350,000.00
Los Angeles $835,915.00 $725,000.00

Show me the name, sales, and quota of employee number 105.

SELECT NAME, SALES, QUOTA
 FROM SALESREPS
 WHERE EMPL_NUM = 105;

NAME SALES QUOTA
----------- ------------ ------------
Bill Adams $367,911.00 $350,000.00

Show me the employees managed by Bob Smith (employee 104).

SELECT NAME, SALES
 FROM SALESREPS
 WHERE MANAGER = 104;

NAME SALES
------------ ------------
Bill Adams $367,911.00
Dan Roberts $305,673.00
Paul Cruz $286,775.00

The WHERE clause consists of the keyword WHERE followed by a search condition that
specifies the rows to be retrieved. In the previous query, for example, the search condition is
MANAGER = 104. Figure 6-4 shows how the WHERE clause works. Conceptually, SQL goes

 96 P a r t I I : R e t r i e v i n g D a t a 96 P a r t I I : R e t r i e v i n g D a t a

through each row of the SALESREPS table, one by one, and applies the search condition to
the row. When a column name appears in the search condition (such as the MANAGER
column in this example), SQL uses the value of the column in the current row. For each row,
the search condition can produce one of three results:

• If the search condition is TRUE, the row is included in the query results. For example,
the row for Bill Adams has the correct MANAGER value and is included.

• If the search condition is FALSE, the row is excluded from the query results. For
example, the row for Sue Smith has the wrong MANAGER value and is excluded.

• If the search condition has a NULL (unknown) value, the row is excluded from the
query results. For example, the row for Sam Clark has a NULL value for the
MANAGER column and is excluded.

Figure 6-5 shows another way to think about the role of the search condition in the
WHERE clause. Basically, the search condition acts as a filter for rows of the table. Rows that
satisfy the search condition pass through the filter and become part of the query results.
Rows that do not satisfy the search condition are trapped by the filter and excluded from
the query results.

FIGURE 6-4 Row selection with the WHERE clause

FIGURE 6-5 The WHERE clause as a filter

 C h a p t e r 6 : S i m p l e Q u e r i e s 97

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 97

Search Conditions
SQL offers a rich set of search conditions that allows you to specify many different kinds of
queries efficiently and naturally. Five basic search conditions (called predicates in the ANSI/
ISO standard) are summarized here and are described in the sections that follow:

• Comparison test Compares the value of one expression with the value of another
expression. Use this test to select offices in the Eastern region, or salespeople whose
sales are above their quotas.

• Range test Tests whether the value of an expression falls within a specified range
of values. Use this test to find salespeople whose sales are between $100,000 and
$500,000.

• Set membership test Checks whether the value of an expression matches one
of a set of values. Use this test to select offices located in New York, Chicago, or
Los Angeles.

• Pattern matching test Checks whether the value of a column containing string
data matches a specified pattern. Use this test to select customers whose names
start with the letter E.

• Null value test Checks whether a column has a NULL (unknown) value. Use
this test to find the salespeople who have not yet been assigned to a manager.

The Comparison Test (=, <>, <, <=, >, >=)
The most common search condition used in a SQL query is a comparison test. In a
comparison test, SQL computes and compares the values of two SQL expressions for each
row of data. The expressions can be as simple as a column name or a constant, or they can
be more complex arithmetic expressions. SQL offers six different ways of comparing the
two expressions, as shown in Figure 6-6.

FIGURE 6-6 Comparison test syntax diagram

 98 P a r t I I : R e t r i e v i n g D a t a 98 P a r t I I : R e t r i e v i n g D a t a

Some examples of typical comparison tests follow.

Find salespeople hired before 2006.

SELECT NAME
 FROM SALESREPS
 WHERE HIRE_DATE < '2006-01-01';

NAME

Sue Smith
Bob Smith
Dan Roberts
Paul Cruz

Note that SQL products do not handle dates in the same way, because vendors were
pressed to support a date data type before the SQL standard was written. The YYYY-MM-DD
format shown in the preceding example works for most SQL products, but you may have to
change it for some products. For example, for Oracle, you either need to change the date to the
default Oracle format ('01-JAN-88'), or you need to change the default date format for your
session using the command ALTER SESSION SET NLS_DATE_FORMAT='YYYY-MM-DD'.

List the offices whose sales fall below 80 percent of target.

SELECT CITY, SALES, TARGET
 FROM OFFICES
 WHERE SALES < (.8 * TARGET);

CITY SALES TARGET
------- ------------ ------------
Denver $186,042.00 $300,000.00

List the offices not managed by employee number 108.

SELECT CITY, MGR
 FROM OFFICES
 WHERE MGR <> 108;

CITY MGR
--------- ----
New York 106
Chicago 104
Atlanta 105

As shown in Figure 6-6, the inequality comparison test is written as A <> B according to
the ANSI/ISO SQL specification. Several SQL implementations support alternate notations,
such as A != B (supported by SQL Server, DB2, Oracle, and MySQL). In some cases, these
are alternative forms; in others, they are the only acceptable form of the inequality test.

 C h a p t e r 6 : S i m p l e Q u e r i e s 99

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 99

When SQL compares the values of the two expressions in the comparison test, three
results can occur:

• If the comparison is true, the test yields a TRUE result.

• If the comparison is false, the test yields a FALSE result.

• If either of the two expressions produces a NULL (i.e., unknown or missing) value,
the comparison yields a NULL result.

Single-Row Retrieval
The most common comparison test is one that checks whether a column’s value is equal to
some constant. When the column is a primary key, the test isolates a single row of the table,
producing a single row of query results, as in this example:

Retrieve the name and credit limit of customer number 2107.

SELECT COMPANY, CREDIT_LIMIT
 FROM CUSTOMERS
 WHERE CUST_NUM = 2107;

COMPANY CREDIT_LIMIT
------------------ -------------
Ace International $35,000.00

This type of query is the foundation of forms-based database retrieval on web pages.
The user enters a customer number into the form, and the program behind the page uses
the number to construct and execute a query. It then displays the retrieved data in the form.
Note that the SQL statements for retrieving a specific customer by number, as in this
example, and retrieving all customers with a certain characteristic (such as those with credit
limits over $25,000) both have exactly the same format.

NULL Value Considerations
The behavior of NULL values in comparison tests can reveal some “obviously true” notions
about SQL queries to be, in fact, not necessarily true. For example, it would seem that every
row of the SALESREPS table would appear in the results of one of these two queries, and
not in the other:

List salespeople who are over quota.

SELECT NAME
 FROM SALESREPS
 WHERE SALES > QUOTA;

NAME

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Dan Roberts
Larry Fitch
Paul Cruz

 100 P a r t I I : R e t r i e v i n g D a t a 100 P a r t I I : R e t r i e v i n g D a t a

List salespeople who are under or at quota.

SELECT NAME
 FROM SALESREPS
 WHERE SALES <= QUOTA;

NAME

Bob Smith
Nancy Angelli

However, the queries produce seven and two rows, respectively, for a total of nine rows,
while there are ten rows in the SALESREPS table. Tom Snyder’s row has a NULL value in the
QUOTA column because he has not yet been assigned a quota. This row is not listed by either
query; it “vanishes” in the comparison test. Logically, the database cannot determine
whether the unknown SALES value is over, under, or equal to the known QUOTA value, so
the row is absent from both query results.

As this example shows, you need to think about NULL value handling when you specify
a search condition. In SQL’s three-valued logic, a search condition can yield a TRUE, FALSE,
or NULL result. Only rows where the search condition yields a TRUE result are included in
the query results. The handling of NULL values is discussed a little later in this chapter.

The Range Test (BETWEEN)
SQL provides a different form of search condition with the range test (BETWEEN) shown in
Figure 6-7. The range test checks whether a data value lies between two specified values. It
involves three SQL expressions. The first expression defines the value to be tested; the
second and third expressions define the low and high ends of the range to be checked. The
data types of the three expressions must be comparable.

This example shows a typical range test:

Find orders placed in the last quarter of 2007.

SELECT ORDER_NUM, ORDER_DATE, MFR, PRODUCT, AMOUNT
 FROM ORDERS
 WHERE ORDER_DATE BETWEEN '2007-10-01' AND '2007-12-31';

 ORDER_NUM ORDER_DATE MFR PRODUCT AMOUNT
---------- ----------- ---- -------- -----------
 112961 2007-12-17 REI 2A44L $31,500.00
 112968 2007-10-12 ACI 41004 $3,978.00
 112963 2007-12-17 ACI 41004 $3,276.00
 112983 2007-12-27 ACI 41004 $702.00
 112979 2007-10-12 ACI 4100Z $15,000.00
 112992 2007-11-01 ACI 41002 $760.00
 112975 2007-10-12 REI 2A44G $2,100.00
 112987 2007-12-31 ACI 4100Y $27,500.00

The BETWEEN test includes the endpoints of the range, so orders placed on October 1 or
December 31 are included in the query results. Here is another example of a range test:

 C h a p t e r 6 : S i m p l e Q u e r i e s 101

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 101

Find the orders that fall into various amount ranges.

SELECT ORDER_NUM, AMOUNT
 FROM ORDERS
 WHERE AMOUNT BETWEEN 20000.00 AND 29999.99;

 ORDER_NUM AMOUNT
---------- -----------
 113036 $22,500.00
 112987 $27,500.00
 113042 $22,500.00

SELECT ORDER_NUM, AMOUNT
 FROM ORDERS
 WHERE AMOUNT BETWEEN 30000.00 AND 39999.99;

 ORDER_NUM AMOUNT
---------- -----------
 112961 $31,500.00
 113069 $31,350.00

SELECT ORDER_NUM, AMOUNT
 FROM ORDERS
 WHERE AMOUNT BETWEEN 40000.00 AND 49999.99;

 ORDER_NUM AMOUNT
---------- -----------
 113045 $45,000.00

The negated version of the range test (NOT BETWEEN) checks for values that fall outside
the range, as in this example:

List salespeople whose sales are not between 80 percent and 120 percent of quota.

SELECT NAME, SALES, QUOTA
 FROM SALESREPS
 WHERE SALES NOT BETWEEN (.8 * QUOTA) AND (1.2 * QUOTA);

NAME SALES QUOTA
-------------- ------------ ------------
Mary Jones $392,725.00 $300,000.00
Sue Smith $474,050.00 $350,000.00
Bob Smith $142,594.00 $200,000.00
Nancy Angelli $186,042.00 $300,000.00

FIGURE 6-7 Range test (BETWEEN) syntax diagram

 102 P a r t I I : R e t r i e v i n g D a t a 102 P a r t I I : R e t r i e v i n g D a t a

The test expression specified in the BETWEEN test can be any valid SQL expression, but
in practice, it’s usually just a column name, as in the previous examples.

The ANSI/ISO standard defines relatively complex rules for the handling of NULL
values in the BETWEEN test:

• If the test expression produces a NULL value, or if both expressions defining the
range produce NULL values, then the BETWEEN test returns a NULL result.

• If the expression defining the lower end of the range produces a NULL value, then
the BETWEEN test returns FALSE if the test value is greater than the upper bound,
and NULL otherwise.

• If the expression defining the upper end of the range produces a NULL value, then
the BETWEEN test returns FALSE if the test value is less than the lower bound, and
NULL otherwise.

Before relying on this behavior, it’s a good idea to experiment with your DBMS.
It’s worth noting that the BETWEEN test doesn’t really add to the expressive power of

SQL, because it can be expressed as two comparison tests. The range test

A BETWEEN B AND C

is completely equivalent to

(A >= B) AND (A <= C)

However, the BETWEEN test is a simpler way to express a search condition when you’re
thinking of it in terms of a range of values.

The Set Membership Test (IN)
Another common search condition is the set membership test (IN), shown in Figure 6-8. It
tests whether a data value matches one of a list of target values. Here are several queries
that use the set membership test:

List the salespeople who work in New York, Atlanta, or Denver.

SELECT NAME, QUOTA, SALES
 FROM SALESREPS
 WHERE REP_OFFICE IN (11, 13, 22);

NAME QUOTA SALES
-------------- ------------ ------------
Bill Adams $350,000.00 $367,911.00
Mary Jones $300,000.00 $392,725.00
Sam Clark $275,000.00 $299,912.00
Nancy Angelli $300,000.00 $186,042.00

FIGURE 6-8 Set membership (IN) syntax diagram

 C h a p t e r 6 : S i m p l e Q u e r i e s 103

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 103

Find all orders placed on a Friday in January 2008.

SELECT ORDER_NUM, ORDER_DATE, AMOUNT
 FROM ORDERS
 WHERE ORDER_DATE IN ('2008-01-04', '2008-01-11',
 '2008-01-18', '2008-01-25');

 ORDER_NUM ORDER_DATE AMOUNT
---------- ----------- ----------
 113012 2008-01-11 $3,745.00
 113003 2008-02-25 $5,625.00

Find all orders placed with four specific salespeople.

SELECT ORDER_NUM, REP, AMOUNT
 FROM ORDERS
 WHERE REP IN (107, 109, 101, 103);

 ORDER_NUM REP AMOUNT
---------- ---- -----------
 112968 101 $3,978.00
 113058 109 $1,480.00
 112997 107 $652.00
 113062 107 $2,430.00
 113069 107 $31,350.00
 112975 103 $2,100.00
 113055 101 $150.00
 113003 109 $5,625.00
 113057 103 $600.00
 113042 101 $22,500.00

You can check whether the data value does not match any of the target values by using
the NOT IN form of the set membership test. The test expression in an IN test can be any
SQL expression, but it’s usually just a column name, as in the preceding examples. If the test
expression produces a NULL value, the IN test returns NULL. All of the items in the list of
target values must have the same data type, and that type must be comparable to the data
type of the test expression.

Like the BETWEEN test, the IN test doesn’t add to the expressive power of SQL, because
the search condition

X IN (A, B, C)

is completely equivalent to

(X = A) OR (X = B) OR (X = C)

However, the IN test offers a much more efficient way of expressing the search condition,
especially if the set contains more than a few values. The ANSI/ISO SQL standard doesn’t
specify a maximum limit to the number of items that can appear in the value list, and most

 104 P a r t I I : R e t r i e v i n g D a t a 104 P a r t I I : R e t r i e v i n g D a t a

commercial implementations do not state an explicit upper limit either. For portability
reasons, it’s generally a good idea to avoid lists with only a single item, such as this one:

CITY IN ('New York')

and replace them with a simple comparison test:

CITY = 'New York'

The Pattern Matching Test (LIKE)
You can use a simple comparison test to retrieve rows where the contents of a text column
match some particular text. For example, this query retrieves a row of the CUSTOMERS table
by name:

Show the credit limit for Smithson Corp.

SELECT COMPANY, CREDIT_LIMIT
 FROM CUSTOMERS
 WHERE COMPANY = 'Smithson Corp.';

However, you might easily forget whether the company’s name was “Smith,” “Smithson,”
or “Smithsonian.” You can use SQL’s pattern matching test to retrieve the data based on a
partial match of the customer’s name.

The pattern matching test (LIKE), shown in Figure 6-9, checks to see whether the data
value in a column matches a specified pattern. The pattern is a string that may include one
or more wildcard characters. These characters are interpreted in a special way.

Wildcard Characters
The percent sign (%) wildcard character matches any sequence of zero or more characters.
Here’s a modified version of the previous query that uses the percent sign for pattern matching:

SELECT COMPANY, CREDIT_LIMIT
 FROM CUSTOMERS
 WHERE COMPANY LIKE 'Smith% Corp.';

The LIKE keyword tells SQL to compare the NAME column to the pattern Smith%
Corp. Any of the following names would match the pattern:

Smith Corp. Smithson Corp. Smithsen Corp. Smithsonian Corp.

but these names would not:

SmithCorp Smithson Inc.

FIGURE 6-9 Pattern matching test (LIKE) syntax diagram

 C h a p t e r 6 : S i m p l e Q u e r i e s 105

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 105

The underscore (_) wildcard character matches any single character. If you are sure that
the company’s name is either “Smithson” or “Smithsen,” for example, you can use this
query:

SELECT COMPANY, CREDIT_LIMIT
 FROM CUSTOMERS
 WHERE COMPANY LIKE 'Smiths_n Corp.';

In this case, any of these names will match the pattern:

Smithson Corp. Smithsen Corp. Smithsun Corp.

but these names will not:

Smithsoon Corp. Smithsn Corp.

Wildcard characters can appear anywhere in the pattern string, and several wildcard
characters can be within a single string. This query allows either the “Smithson” or
“Smithsen” spelling and will also accept “Corp.,” “Inc.,” or any other ending on the
company name:

SELECT COMPANY, CREDIT_LIMIT
 FROM CUSTOMERS
 WHERE COMPANY LIKE 'Smiths_n %';

You can locate strings that do not match a pattern by using the NOT LIKE form of the
pattern matching test. The LIKE test must be applied to a column with a string data type.
If the data value in the column is NULL, the LIKE test returns a NULL result.

If you have used computers through a command-line interface (such as the UNIX shell),
you’ve probably seen string pattern matching before. Frequently, the asterisk (*) is used
instead of the SQL percent sign (%), and the question mark (?) is used instead of the SQL
underscore (_), but the pattern matching capabilities themselves are similar in most
situations where a computer application offers the capability to match selected parts of a
word or text.

Escape Characters*
One of the problems with string pattern matching is how to match the wildcard characters
themselves as literal characters. To test for the presence of a percent sign character in a
column of text data, for example, you can’t simply include the percent sign in the pattern
because SQL will treat it as a wildcard. With some simpler SQL products, you cannot
literally match the two wildcard characters. This usually doesn’t pose serious problems,
because the wildcard characters don’t frequently appear in names, product numbers, and
other text data of the sort that is usually stored in a database.

The ANSI/ISO SQL standard does specify a way to literally match wildcard characters,
using a special escape character. When the escape character appears in the pattern, the
character immediately following it is treated as a literal character rather than as a wildcard
character. (The latter character is said to be escaped.) The escaped character can be either of
the two wildcard characters, or the escape character itself, which has now taken on a special
meaning within the pattern.

 106 P a r t I I : R e t r i e v i n g D a t a 106 P a r t I I : R e t r i e v i n g D a t a

The escape character is specified as a one-character constant string in the ESCAPE clause
of the search condition, as shown in Figure 6-9. Here is an example using a dollar sign ($) as
the escape character:

Find products whose product IDs start with the four letters “A%BC”.

SELECT ORDER_NUM, PRODUCT
 FROM ORDERS
 WHERE PRODUCT LIKE 'A$%BC%' ESCAPE '$';

The first percent sign in the pattern, which follows an escape character, is treated as a
literal percent sign; the second functions as a wildcard.

The use of escape characters is very common in pattern matching applications, which is
why the ANSI/ISO standard specified it. However, it was not a part of the early SQL
implementations, and some database systems have implemented other pattern-matching
schemes. To ensure portability, the ESCAPE clause should be avoided.

The Null Value Test (IS NULL)
NULL values create a three-valued logic for SQL search conditions. For any given row, the
result of a search condition may be TRUE or FALSE, or it may be NULL because one of the
columns used in evaluating the search condition contains a NULL value. Sometimes it’s
useful to check explicitly for NULL values in a search condition and handle them directly.
SQL provides a special NULL value test (IS NULL), shown in Figure 6-10, to handle this task.

This query uses the NULL value test to find the salesperson in the sample database who
has not yet been assigned to an office:

Find the salesperson not yet assigned to an office.

SELECT NAME
 FROM SALESREPS
 WHERE REP_OFFICE IS NULL;

NAME

Tom Snyder

The negated form of the NULL value test (IS NOT NULL) finds rows that do not contain a
NULL value:

List the salespeople who have been assigned to an office.

SELECT NAME
 FROM SALESREPS
 WHERE REP_OFFICE IS NOT NULL;

FIGURE 6-10 NULL value test (IS NULL) syntax diagram

 C h a p t e r 6 : S i m p l e Q u e r i e s 107

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 107

NAME

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Larry Fitch
Paul Cruz
Nancy Angelli

Unlike the previously described search conditions, the NULL value test cannot yield a
NULL result. It is always either TRUE or FALSE.

It may seem strange that you can’t just test for a NULL value using a simple comparison
search condition, such as this:

SELECT NAME
 FROM SALESREPS
 WHERE REP_OFFICE = NULL;

The NULL keyword can’t be used here because it isn’t really a value; it’s just a signal that
the value is unknown. Even if the comparison test

REP_OFFICE = NULL

were legal, the rules for handling NULL values in comparisons would cause it to behave
differently from what you might expect. When SQL encountered a row where the REP_
OFFICE column was NULL, the search condition would test

NULL = NULL

Is the result TRUE or FALSE? Because the values on both sides of the equal sign are
unknown, SQL can’t tell, so the rules of SQL logic say that the search condition itself must
yield a NULL result. Because the search condition doesn’t produce a true result, the row is
excluded from the query results—precisely the opposite of what you wanted to happen! As
a result of the way SQL handles NULLs in comparisons, you must explicitly use the NULL
value test to check for NULL values.

Compound Search Conditions (AND, OR, and NOT)
The simple search conditions described in the preceding sections return a value of TRUE,
FALSE, or NULL when applied to a row of data. Using the rules of logic, you can combine
these simple SQL search conditions to form more complex ones, as shown in Figure 6-11.

FIGURE 6-11 WHERE clause syntax diagram

 108 P a r t I I : R e t r i e v i n g D a t a 108 P a r t I I : R e t r i e v i n g D a t a

Note that the search conditions combined with AND, OR, and NOT may themselves be
compound search conditions.

The keyword OR is used to combine two search conditions when one or the other (or
both) must be true:

Find salespeople who are under quota or with sales under $300,000.

SELECT NAME, QUOTA, SALES
 FROM SALESREPS
 WHERE SALES < QUOTA
 OR SALES < 300000.00;

NAME QUOTA SALES
-------------- ------------ ------------
Sam Clark $275,000.00 $299,912.00
Bob Smith $200,000.00 $142,594.00
Tom Snyder NULL $75,985.00
Paul Cruz $275,000.00 $286,775.00
Nancy Angelli $300,000.00 $186,042.00

You can also use the keyword AND to combine two search conditions that must both be true:

Find salespeople who are under quota and with sales under $300,000.

SELECT NAME, QUOTA, SALES
 FROM SALESREPS
 WHERE SALES < QUOTA
 AND SALES < 300000.00;

NAME QUOTA SALES
-------------- ------------ ------------
Bob Smith $200,000.00 $142,594.00
Nancy Angelli $300,000.00 $186,042.00

Finally, you can use the keyword NOT to select rows where a search condition is false:

Find all salespeople who are under quota, but whose sales are not under $150,000.

SELECT NAME, QUOTA, SALES
 FROM SALESREPS
 WHERE SALES < QUOTA
 AND NOT SALES < 150000.00;

NAME QUOTA SALES
-------------- ------------ ------------
Nancy Angelli $300,000.00 $186,042.00

Using the logical AND, OR, and NOT keywords and parentheses to group the search
criteria, you can build very complex search criteria, such as the one in this query:

Find all salespeople who (a) work in Denver, New York, or Chicago; or (b) have no manager and were
hired since June 2006; or (c) are over quota, but have sales of $600,000 or less.

 C h a p t e r 6 : S i m p l e Q u e r i e s 109

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 109

SELECT NAME
 FROM SALESREPS
 WHERE (REP_OFFICE IN (22, 11, 12))
 OR (MANAGER IS NULL AND HIRE_DATE >= '2006-06-01')
 OR (SALES > QUOTA AND NOT SALES > 600000.00);

Exactly why you might want to see this particular list of names is a mystery, but the
example does illustrate a reasonably complex query.

As with simple search conditions, NULL values influence the outcome of compound
search conditions, and the results are subtle. In particular, the result of (NULL OR TRUE) is
TRUE, not NULL, as you might expect. Tables 6-1, 6-2, and 6-3 specify truth tables for AND,
OR, and NOT, respectively, and show the impact of NULL values.

When more than two search conditions are combined with AND, OR, and NOT, the ANSI/
ISO standard specifies that NOT has the highest precedence, followed by AND and then OR.
To ensure portability, it’s always a good idea to use parentheses and remove any possible
ambiguity.

The SQL2 (also known as SQL-92 and SQL:1992) standard added another logical search
condition, the IS test, to the logic provided by AND, OR, and NOT. Figure 6-12 shows the
syntax of the IS test, which checks to see whether the logical value of an expression or
comparison test is TRUE, FALSE, or UNKNOWN (NULL).

For example, the IS test

((SALES - QUOTA) > 10000.00) IS UNKNOWN

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

TABLE 6-1 The AND Truth Table

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

TABLE 6-2 The OR Truth Table

NOT TRUE FALSE NULL

FALSE TRUE NULL

TABLE 6-3 The NOT Truth Table

 110 P a r t I I : R e t r i e v i n g D a t a 110 P a r t I I : R e t r i e v i n g D a t a

can be used to find rows where the comparison cannot be done because either SALES or
QUOTA has a NULL value. Similarly, the IS test

((SALES - QUOTA) > 10000.00) IS FALSE

will select rows where SALES are not significantly above QUOTA. As this example shows, the
IS test doesn’t really add to the expressive power of SQL, since the test could just as easily
have been written

NOT ((SALES - QUOTA) > 10000.00)

Although the IS test has been included in the SQL Standard since 1992, very few SQL
products provide support for it. Therefore, for maximum portability, it’s a good idea to
avoid the test and to write the expressions using only AND, OR, and NOT. However, it’s not
always possible to avoid the IS UNKNOWN form of the test.

Sorting Query Results (ORDER BY Clause)
Like the rows of a table in the database, the rows of query results are not arranged in any
particular order. You can ask SQL to sort the results of a query by including the ORDER BY
clause in the SELECT statement. The ORDER BY clause, shown in Figure 6-13, consists of the
keywords ORDER BY, followed by a list of sort specifications separated by commas. For
example, the results of this query are sorted on two columns, REGION and CITY:

Show the sales for each office, sorted in alphabetical order by region, and within each region by city.

SELECT CITY, REGION, SALES
 FROM OFFICES
 ORDER BY REGION, CITY;

CITY REGION SALES
------------ -------- ------------
Atlanta Eastern $367,911.00
Chicago Eastern $735,042.00
New York Eastern $692,637.00
Denver Western $186,042.00
Los Angeles Western $835,915.00

The first sort specification (REGION) is the major sort key; those that follow (CITY, in
this case) are progressively more minor sort keys, used as “tie breakers” when two rows of
query results have the same values for the more major keys. Using the ORDER BY clause,

FIGURE 6-12 The IS test syntax diagram

 C h a p t e r 6 : S i m p l e Q u e r i e s 111

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 111

you can request sorting in an ascending or descending sequence, and you can sort on any
item in the select list of the query.

By default, SQL sorts data in ascending sequence. To request sorting in descending
sequence, the keyword DESC is included in the sort specification, as in the next example:

List the offices, sorted in descending order by sales, so that the offices with the largest sales appear
first.

SELECT CITY, REGION, SALES
 FROM OFFICES
 ORDER BY SALES DESC;

CITY REGION SALES
------------ -------- ------------
Los Angeles Western $835,915.00
Chicago Eastern $735,042.00
New York Eastern $692,637.00
Atlanta Eastern $367,911.00
Denver Western $186,042.00

As indicated in Figure 6-13, you can also use the keyword ASC to specify an ascending
sort, but because that’s the default sorting sequence, the keyword is usually omitted.

If the column of query results to be used for sorting is a calculated column, it has no
column name to be used in a sort specification. In this case, you must either specify a
column number instead of a column name, or repeat the column expression in the ORDER
BY clause, as in the following example. Note that the use of column numbers is an older
way of writing SQL, and it is no longer recommended, because it is more prone to error
when someone subsequently changes the column order in the SELECT clause, not noticing
the column number references in the ORDER BY clause.

List the offices, sorted in descending order by sales performance, so that the offices with the best
performance appear first.

SELECT CITY, REGION, (SALES - TARGET)
 FROM OFFICES
 ORDER BY 3 DESC;
-or-
SELECT CITY, REGION, (SALES – TARGET)
 FROM OFFICES
 ORDER BY (SALES – TARGET) DESC;

FIGURE 6-13 The ORDER BY clause syntax diagram

 112 P a r t I I : R e t r i e v i n g D a t a 112 P a r t I I : R e t r i e v i n g D a t a

CITY REGION (SALES-TARGET)
------------ -------- ---------------
New York Eastern $117,637.00
Los Angeles Western $110,915.00
Atlanta Eastern $17,911.00
Chicago Eastern –$64,958.00
Denver Western –$113,958.00

These query results are sorted on the third column, which is the calculated difference
between the SALES and TARGET for each office. By combining column numbers, column
names, ascending sorts, and descending sorts, you can specify quite complex sorting of the
query results, as in the following final example:

List the offices, sorted in alphabetical order by region, and within each region in descending order by
sales performance.

SELECT CITY, REGION, (SALES - TARGET)
 FROM OFFICES
 ORDER BY REGION ASC, 3 DESC;

CITY REGION (SALES-TARGET)
------------ -------- ---------------
New York Eastern $117,637.00
Atlanta Eastern $17,911.00
Chicago Eastern –$64,958.00
Los Angeles Western $110,915.00
Denver Western –$113,958.00

The SQL standard allows you to control the sorting order of the individual characters
within a character set, often called the collating sequence of the characters. This can be important
when working with international character sets (for example, to specify how diacritical marks
such as accents or umlauts or compound letters should be sorted) or to ensure portability
between ASCII and EBCDIC character set systems. However, this area of the SQL standard is
quite complex, and in practice, many SQL implementations either ignore sorting sequence
issues, or use their own proprietary scheme for user control of the sorting sequence.

Rules for Single-Table Query Processing
Single-table queries are generally simple, and it’s usually easy to understand the meaning
of a query just by reading the SELECT statement. As queries become more complex,
however, it’s important to have a more precise “definition” of the query results that will be
produced by a given SELECT statement. The following steps describe the procedure for
generating the results of a SQL query that includes the clauses described in this chapter.

As these steps show, the query results produced by a SELECT statement are specified by
applying each of its clauses, one by one. The FROM clause is applied first (selecting the table
or view containing data to be retrieved). The WHERE clause is applied next (selecting specific
rows from the table). The SELECT clause is applied next (generating the specific columns of
query results and eliminating duplicate rows, if requested). Finally, the ORDER BY clause is
applied to sort the query results.

 C h a p t e r 6 : S i m p l e Q u e r i e s 113

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 113

To generate the query results for a single-table SELECT statement, follow these steps:

 1. Start with the table named in the FROM clause.

 2. If there is a WHERE clause, apply its search condition to each row of the table,
retaining those rows for which the search condition is TRUE, and discarding those
rows for which it is FALSE or NULL.

 3. For each remaining row, calculate the value of each item in the select list to produce
a single row of query results. For each column reference, use the value of the
column in the current row.

 4. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results that
were produced.

 5. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
These “rules” for SQL query processing will be expanded several times in the next three

chapters to include the remaining clauses of the SELECT statement.

Combining Query Results (UNION)*
Occasionally, it’s convenient to combine the results of two or more queries into a single table of
query results. SQL supports this capability through the UNION feature of the SELECT statement.
Figure 6-14 illustrates how to use the UNION operation to satisfy the following request.

List all the products where the price of the product exceeds $2,000 or where more than $30,000 of
the product has been ordered in a single order.

FIGURE 6-14 Using UNION to combine query results

 114 P a r t I I : R e t r i e v i n g D a t a 114 P a r t I I : R e t r i e v i n g D a t a

The first part of the request can be satisfied with the top query in the figure:

List all the products whose price exceeds $2,000.

SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE > 2000.00;

MFR_ID PRODUCT_ID
------- -----------
ACI 4100Y
REI 2A44L
ACI 4100Z
REI 2A44R

Similarly, the second part of the request can be satisfied with the bottom query in the
figure:

List all the products where more than $30,000 of the product has been ordered in a single order.

SELECT DISTINCT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 30000.00;

MFR PRODUCT
---- --------
IMM 775C
REI 2A44L
REI 2A44R

As shown in Figure 6-14, the UNION operation produces a single table of query results
that combines the rows of the top query results with the rows of the bottom query results.
The SELECT statement that specifies the UNION operation looks like this:

List all the products where the price of the product exceeds $2,000 or where more than $30,000 of the
product has been ordered in a single order.

SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE > 2000.00
 UNION
SELECT DISTINCT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 30000.00;

ACI 4100Y
ACI 4100Z
IMM 775C
REI 2A44L
REI 2A44R

There are severe restrictions on the tables that can be combined by a UNION operation:

• The two SELECT clauses must contain the same number of columns.

 C h a p t e r 6 : S i m p l e Q u e r i e s 115

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 115

• The data type of each column selected from the first table must be the same as the
data type of the corresponding column selected from the second table.

• Neither of the two tables can be sorted with the ORDER BY clause. However, the
combined query results can be sorted, as described in the following section.

Note that the column names of the two queries combined by UNION do not have to be
identical. In the preceding example, the first table of query results has columns named MFR_
ID and PRODUCT_ID, while the second table of query results has columns named MFR and
PRODUCT. Because the columns in the two tables can have different names, the columns of
query results produced by the UNION operation are unnamed.

The original ANSI/ISO SQL standard specified a further restriction on a SELECT
statement that participates in a UNION operation. It permits only column names or an all-
columns specification (SELECT *) in the select list and prohibits expressions in the select
list. Most commercial SQL implementations relax this restriction and permit simple
expressions in the select list. However, many SQL implementations do not allow the
SELECT statements to include the GROUP BY or HAVING clauses, and some do not allow
column functions in the select list (prohibiting summary queries as described in Chapter 8).
In fact, some simple SQL implementations do not support the UNION operation at all.

Unions and Duplicate Rows*
Because the UNION operation combines the rows from two sets of query results, it would
tend to produce query results containing duplicate rows. For example, in the query of
Figure 6-14, product REI-2A44L sells for $4500.00, so it appears in the top set of query
results. There is also an order for $31,500.00 worth of this product in the ORDERS table, so it
also appears in the bottom set of query results. By default, the UNION operation eliminates
duplicate rows as part of its processing. Thus, the combined set of query results contains
only one row for product REI-2A44L.

If you want to retain duplicate rows in a UNION operation, you can specify the ALL
keyword immediately following the word UNION. This form of the query produces two
duplicate rows for product REI-2A44L:

List all the products where the price of the product exceeds $2,000 or where more than $30,000 of the
product has been ordered in a single order.

SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE > 2000.00
 UNION ALL
SELECT DISTINCT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 30000.00;

 ACI 4100Y
 REI 2A44L
 ACI 4100Z
 REI 2A44R
 IMM 775C
 REI 2A44L
 REI 2A44R

 116 P a r t I I : R e t r i e v i n g D a t a 116 P a r t I I : R e t r i e v i n g D a t a

Note that the default duplicate row handling for the UNION operation and for the
simple SELECT statement is exactly opposite. For the SELECT statement, SELECT ALL
(duplicates retained) is the default. To eliminate duplicate rows, you must explicitly specify
SELECT DISTINCT. For the UNION operation, UNION (duplicates eliminated) is the default.
To retain duplicate rows, you must explicitly specify UNION ALL.

Database experts have criticized the handling of duplicate rows in SQL and point to this
inconsistency as an example of the problems. The reason for the inconsistency is that the
SQL defaults were chosen to produce the correct behavior most of the time:

• In practice, most simple SELECT statements do not produce duplicate rows, so the
default is no duplicate elimination.

• In practice, most UNION operations would produce unwanted duplicate rows, so the
default is duplicate elimination.

Eliminating duplicate rows from query results is a very time-consuming process, especially
if the query results contain a large number of rows. If you know, based on the individual
queries involved, that a UNION operation cannot produce duplicate rows, you should
specifically use the UNION ALL operation because the query will execute much more quickly.

Unions and Sorting*
The ORDER BY clause cannot appear in either of the two SELECT statements combined
by a UNION operation. It wouldn’t make much sense to sort the two sets of query results
anyway, because they are fed directly into the UNION operation and are never visible to
the user. However, the combined set of query results produced by the UNION operation can
be sorted by specifying an ORDER BY clause after the second SELECT statement. Since the
columns produced by the UNION operation are not named, the ORDER BY clause specifies
the columns by column number. However, many SQL products, including Oracle, SQL
Server and MySQL, use the column names from the first SELECT statement, and therefore
allow you to use those column names in the ORDER BY clause.

Here is the same products query as that shown in Figure 6-14, with the query results
sorted by manufacturer and product number:

List all the products where the price of the product exceeds $2,000 or where more than $30,000 of the
product has been ordered in a single order, sorted by manufacturer and product number.

SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE > 2000.00
 UNION
SELECT DISTINCT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 30000.00
 ORDER BY 1, 2;

 ACI 4100Y
 ACI 4100Z
 IMM 775C
 REI 2A44L
 REI 2A44R

 C h a p t e r 6 : S i m p l e Q u e r i e s 117

PART II
 C h a p t e r 6 : S i m p l e Q u e r i e s 117

Multiple UNIONs*
You can use the UNION operation repeatedly to combine three or more sets of query results,
as shown in Figure 6-15. The union of Table B and Table C in the figure produces a single,
combined table. This table is then combined with Table A in another UNION operation. The
query in the figure is written this way:

SELECT *
 FROM A
 UNION (SELECT *
 FROM B
 UNION
 SELECT *
 FROM C);

 Bill
 Mary
 George
 Fred
 Sue
 Julia
 Harry

The parentheses in the query indicate which UNION operation should be performed
first. In fact, if all of the UNIONs in the statement eliminate duplicate rows, or if all of them
retain duplicate rows, the order in which they are performed is unimportant. These three
expressions are completely equivalent

A UNION (B UNION C)

(A UNION B) UNION C

(A UNION C) UNION B

FIGURE 6-15 Nested UNION operations

 118 P a r t I I : R e t r i e v i n g D a t a

and produce seven rows of query results. Similarly, the following three expressions are
completely equivalent and produce 12 rows of query results, because the duplicates are retained:

A UNION ALL (B UNION ALL C)

(A UNION ALL B) UNION ALL C

(A UNION ALL C) UNION ALL B

However, if the UNIONs involve a mixture of UNION and UNION ALL, the order of
evaluation matters. If this expression:

A UNION ALL B UNION C

is interpreted as:

A UNION ALL (B UNION C)

then it produces ten rows of query results (six from the inner UNION, plus four rows from
Table A). However, if it is interpreted as:

(A UNION ALL B) UNION C

then it produces only four rows, because the outer UNION eliminates all duplicate rows.
For this reason, it’s always a good idea to use parentheses in UNIONs of three or more tables
to specify the order of evaluation intended.

Summary
This chapter is the first of four chapters about SQL queries. It described the following query
features:

• The SELECT statement is used to express a SQL query. Every SELECT statement
produces a table of query results containing one or more columns and zero or
more rows.

• The FROM clause specifies the table(s) containing the data to be retrieved by a query.

• The SELECT clause specifies the column(s) of data to be included in the query
results, which can be columns of data from the database, or calculated columns.

• The WHERE clause selects the rows to be included in the query results by applying a
search condition to rows of the database.

• A search condition can select rows by comparing values, by checking a value against a
range or set of values, by matching a string pattern, and by checking for NULL values.

• Simple search conditions can be combined with AND, OR, and NOT to form more
complex search conditions.

• The ORDER BY clause specifies that the query results should be sorted in ascending
or descending order, based on the values of one or more columns.

• The UNION operation can be used within a SELECT statement to combine two or
more sets of query results into a single set.

7
Multitable Queries (Joins)

Most useful queries request data from two or more tables in a database. For example,
these requests for data in the sample database draw data from two, three, and four
tables respectively:

• List the salespeople and the offices where they work (SALESREPS and OFFICES
tables).

• List each order placed last week, showing the order amount, the name of the
customer who placed it, and the name of the product ordered (ORDERS,
CUSTOMERS, and PRODUCTS tables).

• Show all orders taken by salespeople in the Eastern region, showing the product
description and salesperson (ORDERS, SALESREPS, OFFICES, and PRODUCTS tables).

SQL allows you to retrieve data that answers these requests through multitable queries
that join data from two or more tables. These queries and the SQL join facility are described in
this chapter. We begin with the join capabilities that have been a part of SQL from the earliest
days and are found in all SQL products today. The later sections describe additional join
capabilities that first appeared in SQL2 standard and are found in most mainstream products.

A Two-Table Query Example
The best way to understand the facilities that SQL provides for multitable queries is to start
with a simple request that combines data from two different tables:

“List all orders, showing the order number and amount, and the name and credit limit of the
customer who placed it.”

The four specific data items requested are clearly stored in two different tables, as
shown in Figure 7-1.

• The ORDERS table contains the order number and amount of each order, but doesn’t
have customer names or credit limits.

• The CUSTOMERS table contains the customer names and credit limits, but it lacks
any information about orders.

119

CHAPTER

 120 P a r t I I : R e t r i e v i n g D a t a 120 P a r t I I : R e t r i e v i n g D a t a

There is a link between these two tables, however. In each row of the ORDERS table, the
CUST column contains the customer number of the customer who placed the order, which
matches the value in the CUST_NUM column in one of the rows in the CUSTOMERS table.
Clearly, the SELECT statement that handles the request must somehow use this link
between the tables to generate its query results.

Before examining the SELECT statement for the query, it’s instructive to think about
how you would manually handle the request, using paper and pencil. Figure 7-2 shows
what you would probably do:

 1. Start by writing down the four column names for the query results. Then move to
the ORDERS table, and start with the first order.

 2. Look across the row to find the order number (112961) and the order amount
($31,500.00), and copy both values to the first row of query results.

 3. Look across the row to find the number of the customer who placed the order
(2117), and move to the CUSTOMERS table to find customer number 2117 by
searching the CUST_NUM column.

 4. Move across the row of the CUSTOMERS table to find the customer’s name (“J.P.
Sinclair”) and credit limit ($35,000.00), and copy them to the query results table.

 5. You’ve generated a row of query results! Move back to the ORDERS table, and go to
the next row. Repeat the process, starting with Step 2, until you run out of orders.

FIGURE 7-1 A request that spans two tables

ORDERS Table

112961
113012
112989

•
•
•

•
•
•

2108
2117
2122
•
•
•

2117
2111
2101

106
105
106

7
35
6

$31,500.00
$3,745.00
$1,458.00

$55,000.00
$35,000.00
$30,000.00

109
106
105

Holm & Landis
J.P. Sinclair
Three-Way Lines

17-DEC-89
11-JAN-90
03-JAN-90

CUSTOMERS Table

Primary key/
foreign key
relationship

List each order, showing the order number and amount, and
the name and credit limit of the customer who placed it

ORDER_NUM ORDER_DATE CUST REP QTY AMOUNT

CUST_NUM COMPANY CUST_REP CREDIT_LIMIT

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 121

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 121

Of course this isn’t the only way to generate the query results, but regardless of how
you do it, two things will be true:

• Each row of query results draws its data from a specific pair of rows, one from the
ORDERS table and one from the CUSTOMERS table.

• The pairs of rows are found by matching the data values in corresponding columns
from the tables.

Simple Joins (Equi-Joins)
The process of forming pairs of rows by matching the contents of related columns is called
joining the tables. The resulting table (containing data from both of the original tables) is
called a join between the two tables. (A join based on an exact match between two columns
is more precisely called an equi-join. Joins can also be based on other kinds of column
comparisons, as described later in this chapter.)

FIGURE 7-2 Manually processing a multitable query

ORDERS Table

112961
113012
112989

•
•
•

112961
•
•
•

$31,500.00 J.P. Sinclair $35,000.00

2117
2111
2101

106
105
106

7
35
6

$31,500.00
$3,745.00
$1,458.00

17-DEC-89
11-JAN-90
03-JAN-90

ORDER_NUM

ORDER_NUM AMOUNT COMPANY CREDIT_LIMIT

ORDER_DATE CUST REP QTY AMOUNT

•
•
•

2108
2117
2122
•
•
•

$55,000.00
$35,000.00
$30,000.00

109
106
105

Holm & Landis
J.P. Sinclair
Three-Way Lines

CUSTOMERS Table

CUST_NUM COMPANY CUST_REP CREDIT_LIMIT

QUERY Results

44

212

3

 122 P a r t I I : R e t r i e v i n g D a t a 122 P a r t I I : R e t r i e v i n g D a t a

Joins are the foundation of multitable query processing in SQL. All of the data in a
relational database is stored in its columns as explicit data values, so all possible relationships
between tables can be formed by matching the contents of related columns. Joins thus provide
a powerful facility for exercising the data relationships in a database. In fact, because relational
databases do not contain pointers or other mechanisms for relating rows to one another, joins
are the only mechanism for exercising cross-table data relationships.

Because SQL handles multitable queries by matching columns, it should come as no
surprise that the SELECT statement for a multitable query contains a search condition that
specifies the column match. Here is a SELECT statement for the query that was performed
manually in Figure 7-2:

List all orders showing order number, amount, customer name (“company”), and the customer’s
credit limit.

SELECT ORDER_NUM, AMOUNT, COMPANY, CREDIT_LIMIT
 FROM ORDERS, CUSTOMERS
 WHERE CUST = CUST_NUM;

 ORDER_NUM AMOUNT COMPANY CREDIT_LIMIT
---------- ----------- ------------------ -------------
 112989 $1,458.00 Jones Mfg. $65,000.00
 112968 $3,978.00 First Corp. $65,000.00
 112963 $3,276.00 Acme Mfg. $50,000.00
 112987 $27,500.00 Acme Mfg. $50,000.00
 112983 $702.00 Acme Mfg. $50,000.00
 113027 $4,104.00 Acme Mfg. $50,000.00
 112993 $1,896.00 Fred Lewis Corp. $65,000.00
 113065 $2,130.00 Fred Lewis Corp. $65,000.00
 113036 $22,500.00 Ace International $35,000.00
 113034 $632.00 Ace International $35,000.00
 113058 $1,480.00 Holm & Landis $55,000.00
 113055 $150.00 Holm & Landis $55,000.00
 113003 $5,625.00 Holm & Landis $55,000.00
 .
 .
 .

Recall that different SQL tools format results in different ways, so your results may vary,
particularly for the dollar amounts shown in the example. This query looks just like the
queries from the previous chapter, with two new features. First, the FROM clause lists two
tables instead of just one. Second, the search condition

CUST = CUST_NUM

compares columns from two different tables. We call these two columns the matching
columns for the two tables. Like all search conditions, this one restricts the rows that appear
in the query results. Because this is a two-table query, the search condition restricts the pairs
of rows that generate the query results. In fact, the search condition specifies the same
matching columns you used in the paper-and-pencil query processing. It actually captures
the spirit of the manual column matching very well, saying:

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 123

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 123

“Generate query results only for pairs of rows where the customer number (CUST) in the
ORDERS table matches the customer number (CUST_NUM) in the CUSTOMERS table.”

Notice that the SELECT statement doesn’t say anything about how the DBMS should
execute the query. There is no mention of “starting with orders” or “starting with
customers.” Instead, the query tells the DBMS what the query results should look like and
leaves it up to the DBMS to decide how to generate them.

Parent/Child Queries
The most common multitable queries involve two tables that have a natural parent/child
relationship. The query about orders and customers in the preceding section is an example
of such a query. Each order (child) has an associated customer (parent), and each customer
(parent) can have many associated orders (children). The pairs of rows that generate the
query results are parent/child row combinations.

You may recall from Chapter 4 that foreign keys and primary keys create the parent/
child relationship in a SQL database. The table containing the foreign key is the child in the
relationship; the table with the primary key is the parent. To exercise the parent/child
relationship in a query, you specify a search condition that compares the foreign key and the
primary key. Here is another example of a query that exercises a parent/child relationship,
shown in Figure 7-3.

List each salesperson and the city and region where they work.

SELECT NAME, CITY, REGION
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE;

NAME CITY REGION
-------------- ------------ --------
Mary Jones New York Eastern
Sam Clark New York Eastern
Bob Smith Chicago Eastern
Paul Cruz Chicago Eastern
Dan Roberts Chicago Eastern
Bill Adams Atlanta Eastern
Sue Smith Los Angeles Western
Larry Fitch Los Angeles Western
Nancy Angelli Denver Western

The SALESREPS (child) table contains REP_OFFICE, a foreign key for the OFFICES
(parent) table. This relationship is used to find the correct OFFICES row for each
salesperson, so that the correct city and region can be included in the query results.

Here’s another query involving the same two tables, but with the parent and child roles
reversed, as shown in Figure 7-4.

 124 P a r t I I : R e t r i e v i n g D a t a 124 P a r t I I : R e t r i e v i n g D a t a

FIGURE 7-4 A different parent/child query with the OFFICES and SALESREPS tables

OFFICES Table

22
11
12
13
21

105
109
102
106
104
101
110
108
103
107

37
31
48
52
33
45
41
62
29
49

13
11
21
11
12
12

NULL
21
12
22

Sales Rep
Sales Rep
Sales Rep
VP Sales
Sales Mgr
Sales Rep
Sales Rep
Sales Mgr
Sales Rep
Sales Rep

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

$300,000.00
$575,000.00
$800,000.00
$350,000.00
$725,000.00

108
106
104
NULL
108

Western
Eastern
Eastern
Eastern
Western

Denver
New York
Chicago
Atlanta
Los Angeles

OFFICE CITY REGION MGR TARGET

SALESREPS Table

Query Results

EMPL_NUM NAME AGE REP_OFFICE TITLE

CITY NAME TITLE

FIGURE 7-3 A parent/child query with the OFFICES and SALESREPS tables

OFFICES Table

22
11
12
13
21

105
109
102
106
104
101
110
108
103
107

37
31
48
52
33
45
41
62
29
49

13
11
21
11
12
12

NULL
21
12
22

Sales Rep
Sales Rep
Sales Rep
VP Sales
Sales Mgr
Sales Rep
Sales Rep
Sales Mgr
Sales Rep
Sales Rep

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

$186,042.00
$692,637.00
$735,042.00
$367,911.00
$835,915.00

$300,000.00
$575,000.00
$800,000.00
$350,000.00
$725,000.00

108
106
104
NULL
108

Western
Eastern
Eastern
Eastern
Western

Denver
New York
Chicago
Atlanta
Los Angeles

OFFICE CITY REGION MGR TARGET SALES

SALESREPS Table Query Results
EMPL_NUM NAME AGE REP_OFFICE TITLE NAME CITY REGION

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 125

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 125

List the offices and the names and titles of their managers.

SELECT CITY, NAME, TITLE
 FROM OFFICES, SALESREPS
 WHERE MGR = EMPL_NUM;

CITY NAME TITLE
------------ ------------ ----------
Chicago Bob Smith Sales Mgr
Atlanta Bill Adams Sales Rep
New York Sam Clark VP Sales
Denver Larry Fitch Sales Mgr
Los Angeles Larry Fitch Sales Mgr

The OFFICES (child) table contains MGR, a foreign key for the SALESREPS (parent)
table. This relationship is used to find the correct SALESREPS row for each salesperson, so
that the correct name and title of the manager can be included in the query results.

SQL does not require that the matching columns be included in the results of a multitable
query. They are often omitted in practice, as in the two preceding examples. That’s because
primary keys and foreign keys are often ID numbers (such as the office numbers and
employee numbers in the examples), which humans find hard to remember, while the
associated names (cities, regions, names, titles) are easier to understand. It’s quite common
for ID numbers to be used in the WHERE clause to join two tables, and for more descriptive
names to be specified in the SELECT clause to generate columns of query results.

An Alternative Way to Specify Joins
The simplest way to specify the tables to be joined in a multitable query is to name them
in a comma-separated list, in the FROM clause of the SELECT statement, as shown in the
previous examples. This method for specifying joined tables appeared in the earliest IBM
SQL implementations. It was included in the original SQL standard and is supported by
all SQL-based databases.

Subsequent versions of the standard significantly expanded the join capability and
added new options to the FROM clause. Using the newer form, the previous two query
examples could also be written like this:

List each salesperson and the city and region where they work.

SELECT NAME, CITY, REGION
 FROM SALESREPS JOIN OFFICES
 ON REP_OFFICE = OFFICE;

NAME CITY REGION
-------------- ------------ --------
Mary Jones New York Eastern
Sam Clark New York Eastern
Bob Smith Chicago Eastern
Paul Cruz Chicago Eastern
Dan Roberts Chicago Eastern
Bill Adams Atlanta Eastern
Sue Smith Los Angeles Western
Larry Fitch Los Angeles Western
Nancy Angelli Denver Western

 126 P a r t I I : R e t r i e v i n g D a t a 126 P a r t I I : R e t r i e v i n g D a t a

List the offices and the names and titles of their managers.

SELECT CITY, NAME, TITLE
 FROM OFFICES JOIN SALESREPS
 ON MGR = EMPL_NUM;

CITY NAME TITLE
------------ ------------ ----------
Chicago Bob Smith Sales Mgr
Atlanta Bill Adams Sales Rep
New York Sam Clark VP Sales
Denver Larry Fitch Sales Mgr
Los Angeles Larry Fitch Sales Mgr

Instead of a comma-separated list of table names, the FROM clause in these examples uses
the JOIN keyword to specifically describe the join operation. Also, the matching columns to
be used in the join are specified in the ON clause, which occurs at the end of the FROM clause.
For these simple examples, the expanded standard SQL syntax adds very little to the older
form of the SELECT statement. But the range of joins that can be expressed using the
expanded form is much broader, as described in later sections of this chapter. Many of the
major DBMS vendors are encouraging the use of this new JOIN clause for that reason.

Joins with Row Selection Criteria
The search condition that specifies the matching columns in a multitable query can be
combined with other search conditions to further restrict the contents of the query results.
Suppose you want to rerun the preceding query, showing only offices with large sales targets:

List the offices with a target over $600,000 and their manager information.

SELECT CITY, NAME, TITLE
 FROM OFFICES, SALESREPS
 WHERE MGR = EMPL_NUM
 AND TARGET > 600000.00;

CITY NAME TITLE
------------ ------------ ----------
Chicago Bob Smith Sales Mgr
Los Angeles Larry Fitch Sales Mgr

With the additional search condition, the rows that appear in the query results are further
restricted. The first test (MGR=EMPL_NUM) selects only pairs of OFFICES and SALESREPS
rows that have the proper parent/child relationship; the second test further selects only
those pairs of rows where the office target is above $600,000. In this form of the query, the
matching condition for the join and the search condition that restricts which offices are
selected both appear in the WHERE clause. Using the newer standard SQL syntax, the
matching condition appears in the ON clause, and the search condition appears in the WHERE
clause, which makes the query slightly easier to understand:

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 127

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 127

List the offices with a target over $600,000 and their manager information.

SELECT CITY, NAME, TITLE
 FROM OFFICES JOIN SALESREPS
 ON MGR = EMPL_NUM
 WHERE TARGET > 600000.00;

CITY NAME TITLE
------------ ------------ ----------
Chicago Bob Smith Sales Mgr
Los Angeles Larry Fitch Sales Mgr

Multiple Matching Columns
The ORDERS table and the PRODUCTS table in the sample database are related by a
composite foreign key/primary key pair. The MFR and PRODUCT columns of the ORDERS
table together form a foreign key for the PRODUCTS table, matching its MFR_ID and
PRODUCT_ID columns, respectively. To join the tables based on this parent/child
relationship, you must specify both pairs of matching columns, as shown in this example:

List all the orders, showing amounts and product descriptions.

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS, PRODUCTS
 WHERE MFR = MFR_ID
 AND PRODUCT = PRODUCT_ID;

 ORDER_NUM AMOUNT DESCRIPTION
---------- ---------- ----------------
 113027 $4,104.00 Size 2 Widget
 112992 $760.00 Size 2 Widget
 113012 $3,745.00 Size 3 Widget
 112968 $3,978.00 Size 4 Widget
 112963 $3,276.00 Size 4 Widget
 112983 $702.00 Size 4 Widget
 113055 $150.00 Widget Adjuster
 113057 $600.00 Widget Adjuster
 .
 .
 .

The search condition in the query tells SQL that the related pairs of rows from the ORDERS
and PRODUCTS tables are those where both pairs of matching columns contain the same
values. The alternative form of the query specifies the matching columns in the same way:

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS JOIN PRODUCTS
 ON MFR = MFR_ID
 AND PRODUCT = PRODUCT_ID;

Multicolumn joins are usually found in queries involving compound foreign keys such as
this one. There is no SQL restriction on the number of columns that are involved in the
matching condition, but joins normally mirror the real-world relationships between entities
represented in the database tables, and those relationships are usually embodied in one or
just a few columns of the tables.

 128 P a r t I I : R e t r i e v i n g D a t a 128 P a r t I I : R e t r i e v i n g D a t a

Natural Joins
Often the matching column or columns that will be used to join two tables have the same
name in both tables. This isn’t true in the sample database, where the primary keys and
related foreign keys have been given slightly different names so that they can be easily
distinguished in our examples. But in practice, a database creator will often use the same
name for a column that contains a customer ID or an employee number across all of the
tables that contain such data.

Suppose that the manufacturer ID and product ID were called MFR and PRODUCT in both
the ORDERS table and the PRODUCTS table in the sample database. If that were true, then the
most natural join between the two tables would be an equi-join based on all of the column
names that appear in both tables. Such a join is, in fact, called a natural join in SQL standard.
The standard join syntax allows you to easily indicate that you want a natural join:

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS NATURAL JOIN PRODUCTS;

This statement tells the DBMS to join the ORDERS and PRODUCTS tables on all of the
columns that have the same names in both tables. In this example, that would be the MFR
and PRODUCT columns.

You can also explicitly name the columns to be matched in this situation with this
alternative form of the join specification:

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS JOIN PRODUCTS
 USING (MFR, PRODUCT);

The columns to be matched for the join (which have the same name in both tables) are
listed, enclosed in parentheses, in the USING clause. Note that the USING clause is a more
compact alternative to the ON clause, but the preceding query would be completely
equivalent to this one (still assuming that the columns have the same names in both tables):

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS JOIN PRODUCTS
 ON ORDERS.MFR = PRODUCTS.MFR
 AND ORDERS.PRODUCT = PRODUCTS.PRODUCT;

In many cases, the form of the join with the USING clause is preferable to specifying an explicit
NATURAL JOIN. If two different administrators are responsible for maintaining the ORDERS
and PRODUCTS table, for example (completely plausible in a large production database), it’s
possible that they might both accidentally choose the same name for a new column to be added
to their table, even though the columns have nothing to do with one another. In this situation,
the NATURAL JOIN form of the statement would pick up the new columns with matching
names and attempt to use them when joining the tables, probably resulting in an error. The
USING clause insulates the query from this type of accidental consequence of database
structure changes. In addition, the USING clause allows you to select which individual columns
are used to join the tables, while the NATURAL JOIN automatically uses all columns with
matching names. Finally, if there are no matching column names, a query using the NATURAL
JOIN might return a Cartesian product (described later in this chapter), or it might return an
error, depending on the DBMS; however, a query formed with the USING clause will always
return an error if the named columns do not appear in both tables.

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 129

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 129

Queries with Three or More Tables
SQL can combine data from three or more tables using the same basic techniques used for
two-table queries. Here is a simple example of a three-table join:

List orders over $25,000, including the name of the salesperson who took the order and the name of
the customer who placed it.

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME
 FROM ORDERS, CUSTOMERS, SALESREPS
 WHERE CUST = CUST_NUM
 AND REP = EMPL_NUM
 AND AMOUNT > 25000.00;

 ORDER_NUM AMOUNT COMPANY NAME
---------- ----------- ---------------- --------------
 112987 $27,500.00 Acme Mfg. Bill Adams
 113069 $31,350.00 Chen Associates Nancy Angelli
 113045 $45,000.00 Zetacorp Larry Fitch
 112961 $31,500.00 J.P. Sinclair Sam Clark

This query uses two foreign keys in the ORDERS table, as shown in Figure 7-5. The CUST
column is a foreign key for the CUSTOMERS table, linking each order to the customer who
placed it. The REP column is a foreign key for the SALESREPS table, linking each order to
the salesperson who took it. Informally speaking, the query links each order to its associated
customer and salesperson.

The alternative form of this query specifies each join and its matching columns more
explicitly:

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME
 FROM ORDERS JOIN CUSTOMERS ON CUST = CUST_NUM
 JOIN SALESREPS ON REP = EMPL_NUM
 WHERE AMOUNT > 25000.00;

FIGURE 7-5 A three-table join

105
109
102
•
•
•

37
31
48

13
11
21

Bill Adams
Mary Jones
Sue Smith

SALESREPS Table
EMPL_NUM NAME AGE REP_OFFICE

ORDERS Table

112961
113012
112989

•
•
•

2117
2111
2101

106
105
106

7
35
6

$31,500.00
$3,745.00
$1,458.00

17-DEC-89
11-JAN-90
03-JAN-90

ORDER_NUM ORDER_DATE CUST REP

REI
ACI
FEA

MFR QTY AMOUNT

2111
2102
2103

•
•
•

$55,000.00
$35,000.00
$30,000.00

103
101
105

JCP Inc.
First Corp.
Acme Mfg.

CUSTOMERS Table
CUST_NUM COMPANY CUST_REP CREDIT_LIMIT

ORDER_NUM AMOUNT COMPANY NAME

Query Results

……

 130 P a r t I I : R e t r i e v i n g D a t a 130 P a r t I I : R e t r i e v i n g D a t a

Here is another three-table query that uses a different arrangement of parent/child
relationships:

List the orders over $25,000, showing the name of the customer who placed the order and the name of
the salesperson assigned to that customer.

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME
 FROM ORDERS, CUSTOMERS, SALESREPS
 WHERE CUST = CUST_NUM
 AND CUST_REP = EMPL_NUM
 AND AMOUNT > 25000.00;

 ORDER_NUM AMOUNT COMPANY NAME
---------- ----------- ---------------- ------------
 112987 $27,500.00 Acme Mfg. Bill Adams
 113069 $31,350.00 Chen Associates Paul Cruz
 113045 $45,000.00 Zetacorp Larry Fitch
 112961 $31,500.00 J.P. Sinclair Sam Clark

Figure 7-6 shows the relationships exercised by this query. The first relationship again
uses the CUST column from the ORDERS table as a foreign key to the CUSTOMERS table.

FIGURE 7-6 A three-table join with cascaded parent/child relationships

•
•
•
108
103
107

62
29
49

21
12
22

Larry Fitch
Paul Cruz
Nancy Angelli

SALESREPS Table
EMPL_NUM NAME AGE REP_OFFICE

2111
2102
2103
•
•
•

$50,000.00
$65,000.00
$50,000.00

103
101
105

JCP Inc.
First Corp.
Acme Mfg.

CUSTOMERS Table
CUST_NUM COMPANY CUST_REP CREDIT_LIMIT

ORDERS Table

112961
113012
112989

•
•
•

2117
2111
2101

106
105
106

7
35
6

$31,500.00
$3,745.00
$1,458.00

17-DEC-89
11-JAN-90
03-JAN-90

ORDER_NUM ORDER_DATE CUST REP QTY AMOUNT

Query Results

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 131

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 131

The second uses the CUST_REP column from the CUSTOMERS table as a foreign key to the
SALESREPS table. Informally speaking, this query links each order to its customer, and
each customer to their salesperson.

Note that the order of the joins in these multitable queries doesn’t matter. The DBMS
can join the ORDERS table to the CUSTOMERS table, and then join the result to the
SALESREPS table. Alternatively, it can join the CUSTOMERS table to the SALESREPS table
first, and then join the result to the ORDERS table. Either way, the results will be exactly the
same, so the DBMS can perform the joins in the order that is most efficient. However, some
of the more advanced joins described later in this chapter are sensitive to the sequence of
the individual joins. One of the advantages of the newer standard SQL join syntax is that it
allows you to specify the join order in these cases.

It’s not uncommon to find queries that join three or more tables in production SQL
applications, and business intelligence queries against a large data warehouse can easily
grow to involve at least a dozen tables. Even within the confines of the small, five-table
sample database, it’s not too hard to find a four-table query that makes sense:

List the orders over $25,000, showing the name of the customer who placed the order, the customer’s
salesperson, and the office where the salesperson works.

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME, CITY
 FROM ORDERS, CUSTOMERS, SALESREPS, OFFICES
 WHERE CUST = CUST_NUM
 AND CUST_REP = EMPL_NUM
 AND REP_OFFICE = OFFICE
 AND AMOUNT > 25000.00;

 ORDER_NUM AMOUNT COMPANY NAME CITY
---------- ----------- ---------------- ----------- ------------
 112987 $27,500.00 Acme Mfg. Bill Adams Atlanta
 113069 $31,350.00 Chen Associates Paul Cruz Chicago
 113045 $45,000.00 Zetacorp Larry Fitch Los Angeles
 112961 $31,500.00 J.P. Sinclair Sam Clark New York

Figure 7-7 shows the parent/child relationships in this query. Logically, it extends the
join sequence of the previous example one more step, linking an order to its customer, the
customer to their salesperson, and the salesperson to their office.

Other Equi-Joins
The vast majority of multitable queries are based on parent/child relationships, but SQL
does not require that the matching columns be related as a foreign key and primary key.
Any pair of columns from two tables can serve as matching columns, provided they have

 132 P a r t I I : R e t r i e v i n g D a t a 132 P a r t I I : R e t r i e v i n g D a t a

comparable data types (or data types that can be converted to compatible types). This
example shows a query that uses a pair of dates as matching columns:

Find all orders received on a day when a new salesperson was hired.

SELECT ORDER_NUM, AMOUNT, ORDER_DATE, NAME
 FROM ORDERS, SALESREPS
 WHERE ORDER_DATE = HIRE_DATE;

 ORDER_NUM AMOUNT ORDER_DATE NAME
---------- ----------- ----------- ------------
 112968 $3,978.00 12-OCT-07 Mary Jones
 112979 $15,000.00 12-OCT-07 Mary Jones
 112975 $2,100.00 12-OCT-07 Mary Jones
 112968 $3,978.00 12-OCT-07 Larry Fitch
 112979 $15,000.00 12-OCT-07 Larry Fitch
 112975 $2,100.00 12-OCT-07 Larry Fitch

FIGURE 7-7 A four-table join

•
•
•
108
103
107

62
29
49

21
12
22

Larry Fitch
Paul Cruz
Nancy Angelli

SALESREPS Table
EMPL_NUM NAME AGE REP_OFFICE

2111
2102
2103
•
•
•

$50,000.00
$65,000.00
$50,000.00

103
101
105

JCP Inc.
First Corp.
Acme Mfg.

CUSTOMERS Table
CUST_NUM COMPANY CUST_REP CREDIT_LIMIT

ORDERS Table

112961
113012
112989

•
•
•

2117
2111
2101

$31,500.00
$3,745.00
$1,458.00

17-DEC-89
11-JAN-90
03-JAN-90

ORDER_NUM ORDER_DATE CUST AMOUNT

Query Results

…

…

…

Sales Mgr
Sales Rep
Sales Rep

TITLE

OFFICES Table

22
11
12
13
21

108
106
104
NULL
108

Western
Eastern
Eastern
Eastern
Western

Denver
New York
Chicago
Atlanta
Los Angeles

OFFICE CITY REGION MGR

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 133

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 133

The results of this query come from pairs of rows in the ORDERS and SALESREPS tables
where the ORDER_DATE happens to match the HIRE_DATE for the salesperson, as shown in
Figure 7-8. Neither of these columns is a foreign key or a primary key, and the relationship
between the pairs of rows is admittedly a strange one—the only thing the matched orders
and salespeople have in common is that they happen to have the same dates. However, SQL
happily joins the tables anyway.

Matching columns like the ones in this example generate a many-to-many relationship
between the two tables. Many orders can share a single salesperson’s hire date, and more
than one salesperson may have been hired on the same date. For example, note that three
different orders (112968, 112975, and 112979) were received on October 12, 2007, and two
different salespeople (Larry Fitch and Mary Jones) were hired that same day. The three
orders, each matched to both of the two salespeople, produce six rows of query results.

This many-to-many relationship is different from the one-to-many relationship created
by primary key/foreign key matching columns. The situation can be summarized as follows:

• Joins that match primary keys to foreign keys always create one-to-many, parent/
child relationships.

• Other joins may also generate one-to-many relationships if the matching column in
at least one of the tables has unique values for all rows of the table.

• In general, joins on arbitrary matching columns generate many-to-many relationships.

Note that these three different situations have nothing to do with how you write the
SELECT statement that expresses the join. All three types of joins are written the same
way—by including a comparison test for the matching column pairs in the WHERE clause or
in the ON clause. Nonetheless, it’s useful to think about joins in this way to understand how
to turn an English-language request into the correct SELECT statement.

FIGURE 7-8 A join not involving primary and foreign keys

ORDERS Table

•
•
•

113051
112978
113076

•
•
•

113062
112379
113027

•
•
•

112992
112875
113055

•
•
•

2118
2102
2107

2124
2114
2103

2118
2111
2108

10-FEB-90
12-OCT-89
30-JAN-90

24-FEB-90
12-OCT-89
22-JAN-90

04-NOV-89
12-OCT-89
15-FEB-90

ORDER_NUM ORDER_DATE CUST

105
109
102
106
104
101
110
108
103
107

12-FEB-88
12-OCT-89
10-DEC-86
14-JUN-88
19-MAY-88
20-OCT-86
13-JAN-90
12-OCT-89
01-MAR-87
14-NOV-89

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

SALESREPS Table
EMPL_NUM NAME HIRE_DATE

 134 P a r t I I : R e t r i e v i n g D a t a 134 P a r t I I : R e t r i e v i n g D a t a

Non-Equi-Joins
The term join applies to any query that combines data from two tables by comparing the
values in a pair of columns from the tables. Although joins based on equality between
matching columns (equi-joins) are by far the most common joins, SQL also allows you to
join tables based on other comparison operators. Here’s an example where a greater-than
(>) comparison test is used as the basis for a join:

List all combinations of salespeople and offices where the salesperson’s quota is more than that office’s
target, regardless of whether the salesperson works there.

SELECT NAME, QUOTA, CITY, TARGET
 FROM SALESREPS, OFFICES
 WHERE QUOTA > TARGET;

NAME QUOTA CITY TARGET
------------ ------------ ------- ------------
Bill Adams $350,000.00 Denver $300,000.00
Sue Smith $350,000.00 Denver $300,000.00
Larry Fitch $350,000.00 Denver $300,000.00

As in all two-table queries, each row of the query results comes from a pair of rows, in
this case from the SALESREPS and OFFICES tables. The search condition

QUOTA > TARGET

selects pairs of rows where the QUOTA column from the SALESREPS row exceeds the
TARGET column from the OFFICES row. Note that the pairs of SALESREPS and OFFICES
rows selected are related only in this way; it is specifically not required that the SALESREPS
row represent someone who works in the office represented by the OFFICES row.
Admittedly, the example is a bit farfetched, and it illustrates why joins based on inequalities
are not very common. However, they can be useful in decision-support applications and
other applications that explore more complex interrelationships in the database.

SQL Considerations for Multitable Queries
The multitable queries described thus far have not required any special SQL syntax or
language features beyond those described for single-table queries. However, some multitable
queries cannot be expressed without some additional SQL features. Specifically:

• Qualified column names are sometimes needed in multitable queries to eliminate
ambiguous column references.

• All-column selections (SELECT *) have a special meaning for multitable queries.

• Self-joins can be used to create a multitable query that relates a table to itself.

• Table aliases can be used in the FROM clause to simplify qualified column names and
to allow unambiguous column references in self-joins.

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 135

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 135

Qualified Column Names
The sample database includes several instances where two tables contain columns with the
same name. The OFFICES table and the SALESREPS table, for example, both have a column
named SALES. The column in the OFFICES table contains year-to-date sales for each office;
the one in the SALESREPS table contains year-to-date sales for each salesperson. Normally,
there is no confusion between the two columns, because the FROM clause determines which
of them is appropriate in any given query, as in these examples:

Show the cities where sales exceed target.

SELECT CITY, SALES
 FROM OFFICES
 WHERE SALES > TARGET;

Show all salespeople with sales over $350,000.

SELECT NAME, SALES
 FROM SALESREPS
 WHERE SALES > 350000.00;

However, here is a query where the duplicate names cause a problem:

Show the name, sales, and office for each salesperson.

SELECT NAME, SALES, CITY
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE;

Error: Ambiguous column name "SALES"

Although the English description of the query implies that you want the SALES column in
the SALESREPS table, the SQL query is ambiguous. The DBMS has no way of knowing
whether you want the SALES column from the SALESREPS table or the one from the OFFICES
table, since both tables are contributing data to the query results. To eliminate the ambiguity,
you must use a qualified column name to identify the column. Recall from Chapter 5 that a
qualified column name specifies the name of a column and the table containing the column.
The qualified names of the two SALES columns in the sample database are

OFFICES.SALES and SALESREPS.SALES

A qualified column name can be used in a SELECT statement anywhere that a column
name is permitted. The table specified in the qualified column name must, of course,
match one of the tables specified in the FROM list. Here is a corrected version of the previous
query that uses a qualified column name:

 136 P a r t I I : R e t r i e v i n g D a t a 136 P a r t I I : R e t r i e v i n g D a t a

Show the name, sales, and office for each salesperson.

SELECT NAME, SALESREPS.SALES, CITY
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE;

NAME SALESREPS.SALES CITY
-------------- ---------------- ------------
Mary Jones $392,725.00 New York
Sam Clark $299,912.00 New York
Bob Smith $142,594.00 Chicago
Paul Cruz $286,775.00 Chicago
Dan Roberts $305,673.00 Chicago
Bill Adams $367,911.00 Atlanta
Sue Smith $474,050.00 Los Angeles
Larry Fitch $361,865.00 Los Angeles
Nancy Angelli $186,042.00 Denver

Using qualified column names in a multitable query is always a good idea. The disadvantage,
of course, is that they make the query text longer. When using interactive SQL, you may want
to first try a query with unqualified column names and let SQL find any ambiguous columns.
If SQL reports an error, you can edit your query to qualify the ambiguous columns.

All-Column Selections
As discussed in Chapter 6, SELECT * can be used to select all columns of the table named in
the FROM clause. In a multitable query, the asterisk selects all columns of all tables in the FROM
clause. The following query, for example, would produce 15 columns of query results—the
nine columns from the SALESREPS table followed by the six columns from the OFFICES table:

Tell me all about salespeople and the offices where they work.

SELECT *
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE;

Obviously, the SELECT * form of a query becomes much less practical when there are
two, three, or more tables in the FROM clause.

Many SQL dialects treat the asterisk as a special kind of wildcard column name that is
expanded into a list of columns. In these dialects, the asterisk can be qualified with a table name,
just like a qualified column reference. In the following query, the select item SALESREPS.* is
expanded into a list containing only the columns found in the SALESREPS table:

Tell me all about salespeople and the places where they work.

SELECT SALESREPS.*, CITY, REGION
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE;

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 137

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 137

The query would produce 11 columns of query results—the nine columns of the SALESREPS
table, followed by the two other columns explicitly requested from the OFFICES table. This
type of “qualified all-columns” select item was introduced in the SQL2 version of the ANSI/ISO
standard. It is supported in the mainstream SQL products, but not in some low-end systems.

Self-Joins
Some multitable queries involve a relationship that a table has with itself. For example,
suppose you want to list the names of all salespeople and their managers. Each salesperson
appears as a row in the SALESREPS table, and the MANAGER column contains the employee
number of the salesperson’s manager. It would appear that the MANAGER column should be
a foreign key for the table that holds data about managers. In fact it is—it’s a foreign key for
the SALESREPS table itself!

If you tried to express this query like any other two-table query involving a foreign
key/primary key match, it would look like this:

SELECT NAME, NAME
 FROM SALESREPS, SALESREPS
 WHERE MANAGER = EMPL_NUM;

This SELECT statement is illegal because of the duplicate reference to the SALESREPS
table in the FROM clause. You might also try eliminating the second reference to the
SALESREPS table:

SELECT NAME, NAME
 FROM SALESREPS
 WHERE MANAGER = EMPL_NUM;

This query is legal, but it won’t do what you want it to do! It’s a single-table query, so
SQL goes through the SALESREPS table one row at a time, applying the search condition:

MANAGER = EMPL_NUM

The rows that satisfy this condition are those where the two columns have the same
value—that is, rows where a salesperson is their own manager. There are no such rows, so
the query would produce no results—which is quite different from the data that the
English-language statement of the query requested.

To understand how SQL solves this problem, imagine there were two identical copies of
the SALESREPS table, one named EMPS, containing employees, and one named MGRS,
containing managers, as shown in Figure 7-9. The MANAGER column of the EMPS table
would then be a foreign key for the MGRS table, and the following query would work:

List the names of salespeople and their managers.

SELECT EMPS.NAME, MGRS.NAME
 FROM EMPS, MGRS
 WHERE EMPS.MANAGER = MGRS.EMPL_NUM;

Because the columns in the two tables have identical names, all of the column references
are qualified. Otherwise, this looks like an ordinary two-table query.

 138 P a r t I I : R e t r i e v i n g D a t a 138 P a r t I I : R e t r i e v i n g D a t a

SQL uses exactly this “imaginary duplicate table” approach to join a table to itself.
Instead of actually duplicating the contents of the table, SQL lets you simply refer to it by
a different name, called a table alias. Here’s the same query, written using the aliases EMPS
and MGRS for the SALESREPS table:

List the names of salespeople and their managers.

SELECT EMPS.NAME, MGRS.NAME
 FROM SALESREPS EMPS, SALESREPS MGRS
 WHERE EMPS.MANAGER = MGRS.EMPL_NUM;

EMPS.NAME MGRS.NAME
-------------- ------------
Tom Snyder Dan Roberts
Bill Adams Bob Smith
Dan Roberts Bob Smith
Paul Cruz Bob Smith
Mary Jones Sam Clark
Bob Smith Sam Clark
Larry Fitch Sam Clark
Sue Smith Larry Fitch
Nancy Angelli Larry Fitch

FIGURE 7-9 A self-join of the SALESREPS table

105
109
102
106
104
101
110
108
103
107

37
31
48
52
33
45
41
62
29
49

13
11
21
11
12
12

NULL
21
12
22

Sales Rep
Sales Rep
Sales Rep
VP Sales
Sales Mgr
Sales Rep
Sales Rep
Sales Mgr
Sales Rep
Sales Rep

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

EMPS (copy of SALESREPS) Table
EMPL_NUM NAME AGE REP_OFFICE TITLE

12-JAN-88
12-OCT-89
10-DEC-86
14-JUN-88
19-MAY-87
20-OCT-86
13-JAN-90
12-OCT-89
01-MAR-87
14-NOV-88

HIRE_DATE

105
109
102
106
104
101
110
108
103
107

37
31
48
52
33
45
41
62
29
49

13
11
21
11
12
12

NULL
21
12
22

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

MGRS (copy of SALESREPS) Table
EMPL_NUM NAME AGE REP_OFFICE

104
106
108

NULL
106
104
101
106
104
108

MANAGER

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 139

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 139

The FROM clause assigns a different alias to each of the two “virtual copies” of the
SALESREPS table that are involved in the query by specifying the alias name immediately
after the actual table name. As the example shows, when a FROM clause contains a table
alias, the alias must be used to identify the table in qualified column references. Of course,
it’s really only necessary to use an alias for one of the two table occurrences in this query. It
could just as easily have been written

SELECT SALESREPS.NAME, MGRS.NAME
 FROM SALESREPS, SALESREPS MGRS
 WHERE SALESREPS.MANAGER = MGRS.EMPL_NUM;

Here the alias MGRS is assigned to one “virtual copy” of the table, while the table’s own
name is used for the other copy.

Here are some additional examples of self-joins:

List salespeople with a higher quota than their manager.

SELECT SALESREPS.NAME, SALESREPS.QUOTA, MGRS.QUOTA
 FROM SALESREPS, SALESREPS MGRS
 WHERE SALESREPS.MANAGER = MGRS.EMPL_NUM
 AND SALESREPS.QUOTA > MGRS.QUOTA;

SALESREPS.NAME SALESREPS.QUOTA MGRS.QUOTA
--------------- ---------------- ------------
Bill Adams $350,000.00 $200,000.00
Dan Roberts $300,000.00 $200,000.00
Paul Cruz $275,000.00 $200,000.00
Mary Jones $300,000.00 $275,000.00
Larry Fitch $350,000.00 $275,000.00

List salespeople who work in different offices than their manager, showing the name and office where
each works.

SELECT EMPS.NAME, EMP_OFFICE.CITY, MGRS.NAME, MGR_OFFICE.CITY
 FROM SALESREPS EMPS, SALESREPS MGRS,
 OFFICES EMP_OFFICE, OFFICES MGR_OFFICE
 WHERE EMPS.REP_OFFICE = EMP_OFFICE.OFFICE
 AND MGRS.REP_OFFICE = MGR_OFFICE.OFFICE
 AND EMPS.MANAGER = MGRS.EMPL_NUM
 AND EMPS.REP_OFFICE <> MGRS.REP_OFFICE;

EMPS.NAME EMP_OFFICE.CITY MGRS.NAME MGR_OFFICE.CITY
-------------- ---------------- ------------ ----------------
Bob Smith Chicago Sam Clark New York
Bill Adams Atlanta Bob Smith Chicago
Larry Fitch Los Angeles Sam Clark New York
Nancy Angelli Denver Larry Fitch Los Angeles

Table Aliases
As described in the previous section, table aliases are required in queries involving self-joins.
However, you can use an alias in any query. For example, if a query refers to another user’s
table, or if the name of a table is very long, the table name can become tedious to type as a

 140 P a r t I I : R e t r i e v i n g D a t a 140 P a r t I I : R e t r i e v i n g D a t a

column qualifier. This query, which references the BIRTHDAYS table owned by the user
named SAM:

List names, quotas, and birthdays of salespeople.

SELECT SALESREPS.NAME, QUOTA, SAM.BIRTHDAYS.BIRTH_DATE
 FROM SALESREPS, SAM.BIRTHDAYS
 WHERE SALESREPS.NAME = SAM.BIRTHDAYS.NAME;

becomes easier to read and type when the aliases S and B are used for the two tables:

List names, quotas, and birthdays of salespeople.

SELECT S.NAME, S.QUOTA, B.BIRTH_DATE
 FROM SALESREPS S, SAM.BIRTHDAYS B
 WHERE S.NAME = B.NAME;

Figure 7-10 shows the basic form of the FROM clause for a multitable SELECT statement,
complete with table aliases. The clause has two important functions:

• The FROM clause identifies all of the tables that contribute data to the query results.
Any columns referenced in the SELECT statement must come from one of the tables
named in the FROM clause. (There is an exception for outer references contained in a
subquery, as described in Chapter 9.)

• The FROM clause specifies the tag that is used to identify the table in qualified
column references within the SELECT statement. If a table alias is specified, it
becomes the table tag; otherwise, the table’s name, exactly as it appears in the FROM
clause, becomes the tag.

The only requirement for table tags in the FROM clause is that all of the table tags in a
given FROM clause must be distinct from each other. Even if you don’t use table aliases in
SQL queries that you write, you are likely to encounter them if you examine the SQL
generated by report-writing or business analysis tools. These tools typically present a
graphical interface that allows you to easily choose the columns, tables, matching columns,
search conditions, and other elements of your query, and they automatically generate the
corresponding SQL statements that are passed to the DBMS. The tool will almost always use
table tags (typically using tags like T1, T2, T3, etc.) in the FROM clause of the generated SQL,
allowing it to easily and unambiguously specify the rest of the query, regardless of the
actual names of the tables, columns, and other database elements.

The SQL standard optionally allows the keyword AS to appear between a table name
and table alias. It also uses the term correlation name to refer to what we have called a
table alias. The function and meaning of a correlation name are exactly as described here;

FIGURE 7-10 The FROM clause syntax diagram

FROM table-name

table-alias

,

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 141

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 141

many SQL products use the term alias, and it is more descriptive of the function that a
table alias performs. The SQL standard specifies a similar technique for designating
alternate column names, and in that situation the column alias name is actually called an
alias in the standard.

Multitable Query Performance
As the number of tables in a query grows, the amount of effort required to carry out the query
increases rapidly. The SQL itself places no limit on the number of tables joined by a query.
Some low-end and embedded SQL products do limit the number of tables, with a limit of
about eight tables being fairly common. The high processing cost of queries that join many
tables imposes an even lower practical limit in many applications.

In online transaction processing (OLTP) applications, it’s common for a query to involve
only one or two tables. In these applications, response time is critical—the user typically
enters one or two items of data and needs a response from the database within a second or
two. Here are some typical OLTP queries for the sample database:

• The user enters a customer number into a form, and the DBMS retrieves the
customer’s credit limit, account balance, and other data (a single-table query).

• A cash register scans a product number from a package and retrieves the product’s
name and price from the database (a single-table query).

• The user enters a salesperson’s name, and the program lists the current orders for
that salesperson (a two-table inquiry).

In decision-support applications, by contrast, it’s common for a query to involve many
different tables and to exercise complex relationships in the database. In these applications,
the query results are often used to help make expensive decisions, so a query that requires
several minutes or even many hours to complete is perfectly acceptable. Here are some
typical decision-support queries for the sample database:

• The user enters an office name, and the program lists the 25 largest orders taken by
salespeople in that office (a three-table query).

• A report summarizes sales by product type for each salesperson, showing which
salespeople are selling which products (a three-table query).

• A manager considers opening a new Seattle sales office and runs a query analyzing
the impact on orders, products, customers, and the salespeople who call on them
(a four-table query).

In the small tables of the sample database, even these queries would require only seconds to
complete on low-cost computer hardware. But if the tables contained tens of millions of
rows, the time to execute the queries would likely be much longer. The performance of
multitable joins can be highly dependent on the index structures and other internal data
structures that the DBMS uses to organize the data that it stores. In general, queries that
exercise primary/foreign key relationships will perform fairly well, because the DBMS
tends to optimize for those.

 142 P a r t I I : R e t r i e v i n g D a t a 142 P a r t I I : R e t r i e v i n g D a t a

The Structure of a Join
For simple joins, it’s fairly easy to write the correct SELECT statement based on an English-
language request or to look at a SELECT statement and figure out what it does. When many
tables are joined or when the search conditions become complex, however, it becomes very
difficult just to look at a SELECT statement and figure out what it means. For this reason,
it’s important to define more carefully and just a bit more formally what a join is, what
query results are produced by a given SELECT statement, and to understand just a little bit
of the theory of relational database operation that underlies joins.

Table Multiplication
A join is a special case of a more general combination of data from two tables, known as the
Cartesian product (or just the product) of two tables. The product of two tables is another table
(the product table), which consists of all possible pairs of rows from the two tables. The
columns of the product table are all the columns of the first table, followed by all the
columns of the second table. Figure 7-11 shows two small sample tables and their product.

If you specify a two-table query without a WHERE clause, SQL produces the product of
the two tables as the query result. For example, this query:

Show all possible combinations of salespeople and cities.

SELECT NAME, CITY
 FROM SALESREPS, OFFICES;

would produce the product of the SALESREPS and OFFICES tables, showing all possible
salesperson/city pairs. There would be 50 rows of query results (5 offices × 10 salespeople =
50 combinations). Notice that the preceding SELECT statement is exactly the same as the
following one you would naturally use to join the two tables, but without the specification
of the matching columns:

Show all salespeople and the cities where they work.

SELECT NAME, CITY
 FROM SALESREPS JOIN OFFICES
 ON REP_OFFICE = OFFICE;

FIGURE 7-11 The product of two tables

Mary
Susan
Betty
Mary
Susan
Betty

Product Table

Girls Table

GIRLS.NAME

Mary
Susan
Betty

NAME

Boston
Chicago
Chicago

CITY

Boys Table

Sam
James

NAME

Chicago
Dallas

CITY

Boston
Chicago
Chicago
Boston
Chicago
Chicago

GIRLS.CITY

Sam
Sam
Sam
James
James
James

BOYS.NAME

Chicago
Chicago
Chicago
Dallas
Dallas
Dallas

BOYS.CITY

Product

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 143

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 143

These two queries point out an important relationship between joins and products:
A join between two tables is just the product of the two tables with some of the rows removed.
The removed rows are precisely those that do not meet the matching column condition for
the join. Products are important because they are part of the formal definition of how SQL
processes a multitable query, described in the next section.

Rules for Multitable Query Processing
The steps after the code that follows restate the rules for SQL query processing originally
introduced in the Rules for Single-Table Query Processing topic in Chapter 6 and expands
them to include multitable queries. The rules define the meaning of any multitable SELECT
statement by specifying a procedure that always generates the correct set of query results.
To see how the procedure works, consider this query:

List the company name and all orders for customer number 2103.

SELECT COMPANY, ORDER_NUM, AMOUNT
 FROM CUSTOMERS JOIN ORDERS
 ON CUST_NUM = CUST
 WHERE CUST_NUM = 2103
 ORDER BY ORDER_NUM;

COMPANY ORDER_NUM AMOUNT
---------- ---------- -----------
Acme Mfg. 112963 $3,276.00
Acme Mfg. 112983 $702.00
Acme Mfg. 112987 $27,500.00
Acme Mfg. 113027 $4,104.00

To generate the query results for a SELECT statement:

 1. If the statement is a UNION of SELECT statements, apply Steps 2 through 5 to each
of the statements to generate their individual query results.

 2. Form the product of the tables named in the FROM clause. If the FROM clause names
a single table, the product is that table.

 3. If there is an ON clause, apply its matching-column condition to each row of the
product table, retaining those rows for which the condition is TRUE (and discarding
those for which it is FALSE or NULL).

 4. If there is a WHERE clause, apply its search condition to each row of the resulting
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

 5. For each remaining row, calculate the value of each item in the select list to produce
a single row of query results. For each column reference, use the value of the
column in the current row.

 6. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

 144 P a r t I I : R e t r i e v i n g D a t a 144 P a r t I I : R e t r i e v i n g D a t a

 7. If the statement is a UNION of SELECT statements, merge the query results for the
individual statements into a single table of query results. Eliminate duplicate rows
unless UNION ALL is specified.

 8. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
Following the previous steps:

 1. The FROM clause generates all possible combinations of rows from the CUSTOMERS
table (21 rows) and the ORDERS table (30 rows), producing a product table of 630
rows.

 2. The ON clause selects only those rows of the product table where the customer numbers
match (CUST_NUM = CUST), reducing the 630 rows to only 30 (one for each order).

 3. The WHERE clause selects only those rows of the resulting table where the customer
number is the one specified (CUST_NUM = 2103). Only four rows are selected; the
other 26 rows are eliminated.

 4. The SELECT clause extracts the three requested columns (COMPANY, ORDER_
NUM, and AMOUNT) from each remaining row of the resulting table to generate four
rows of detailed query results.

 5. The ORDER BY clause sorts the four rows on the ORDER_NUM column to generate the
final query results.

Obviously no SQL-based DBMS would actually carry out the query this way, but the
purpose of the previous definition is not to describe how the query is carried out by a
DBMS. Instead, it constitutes a definition of how to figure out exactly what a particular
multitable query “means”—that is, the set of query results that it should produce.

Outer Joins
The SQL join operation combines information from two tables by forming pairs of related
rows from the two tables where the matching columns in each of the tables have the same
values. If one of the rows of a table is unmatched in this process, the join can produce
unexpected results, as illustrated by these queries:

List the salespeople and the offices where they work.

SELECT NAME, REP_OFFICE
 FROM SALESREPS;

NAME REP_OFFICE
-------------- -----------
Bill Adams 13
Mary Jones 11
Sue Smith 21
Sam Clark 11
Bob Smith 12
Dan Roberts 12
Tom Snyder NULL

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 145

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 145

Larry Fitch 21
Paul Cruz 12
Nancy Angelli 22

Recall that not all SQL tools display NULL values in the manner shown.

List the salespeople and the cities where they work.

SELECT NAME, CITY
 FROM SALESREPS JOIN OFFICES
 ON REP_OFFICE = OFFICE;

NAME CITY
-------------- ------------
Mary Jones New York
Sam Clark New York
Bob Smith Chicago
Paul Cruz Chicago
Dan Roberts Chicago
Bill Adams Atlanta
Sue Smith Los Angeles
Larry Fitch Los Angeles
Nancy Angelli Denver

Based on the English-language descriptions of these two queries, you would probably
expect them to produce ten rows, one for each salesperson. The first query indeed produces
ten rows, but the second query produces only nine rows. Why? Because Tom Snyder is
currently not assigned to an office. His row has a NULL value in the REP_OFFICE column
(which is the matching column for the join). This NULL value doesn’t match any of the office
numbers in the OFFICES table, so Tom’s row in the SALESREPS table is unmatched. As a
result, it “vanishes” in the join, whether the join is specified using the ON clause or the
WHERE clause. The standard SQL join thus has the potential to lose information if the tables
being joined contain unmatched rows.

Based on the English-language version of the request, you would probably expect the
second query to produce results like these:

List the salespeople and the cities where they work.

SELECT NAME, CITY
 FROM SALESREPS LEFT OUTER JOIN OFFICES
 ON REP_OFFICE = OFFICE;

NAME CITY
-------------- ------------
Tom Snyder NULL
Mary Jones New York
Sam Clark New York
Bob Smith Chicago
Paul Cruz Chicago
Dan Roberts Chicago
Bill Adams Atlanta
Sue Smith Los Angeles
Larry Fitch Los Angeles
Nancy Angelli Denver

 146 P a r t I I : R e t r i e v i n g D a t a 146 P a r t I I : R e t r i e v i n g D a t a

These query results are generated by a different type of join operation, called an outer join,
as indicated by the additional keywords in the FROM clause. The outer join is an extension of
the standard join described earlier in this chapter, which is technically called an inner join. The
original SQL standard specified only the inner join, and the early IBM SQL products also
supported only the inner join. However, the outer join is a well-understood, useful, and
increasingly important part of the relational database model. It was implemented in many
non-IBM SQL products, including the flagship database products from Microsoft, Sybase, and
Oracle. Outer joins were included in the SQL standard starting with SQL2 and are now
broadly supported in mainstream products, although many entry-level SQL implementations
such as those for embedded device applications still support only inner joins.

To understand the outer join well, it’s useful to move away from the sample database
and consider the two simple tables at the top of Figure 7-12. (A script to create these tables
and insert the sample rows can be found on the download site as described in Appendix A.)
The GIRLS table lists five girls and the cities where they live; the BOYS table lists five boys
and the cities where they live. To find the girl/boy pairs who live in the same city, you
could use this query, which forms the inner join of the two tables:

List the girls and boys who live in the same city.

SELECT *
 FROM GIRLS INNER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

GIRLS.NAME GIRLS.CITY BOYS.NAME BOYS.CITY
----------- ----------- ---------- ----------
Mary Boston John Boston
Mary Boston Henry Boston
Susan Chicago Sam Chicago
Betty Chicago Sam Chicago

This query explicitly requests the inner join of the two tables and produces four rows of
query results. The inner join is the default, so exactly the same results would be produced if the
optional keyword INNER had been omitted from the FROM clause. Notice that two of the girls
(Anne and Nancy) and two of the boys (James and George) are not represented in the query
results. These rows cannot be paired with any row from the other table, and so they are missing
from the inner join results. Two of the unmatched rows (Anne and James) have valid values in
their CITY columns, but they don’t match any cities in the opposite table. The other two
unmatched rows (Nancy and George) have NULL values in their CITY columns, and by the rules
of SQL NULL handling, the NULL value doesn’t match any other value (even another NULL value).

Suppose you wanted to list the girl/boy pairs who share the same cities and include the
unmatched girls and boys in the list. The full outer join of the GIRLS and BOYS tables
produces exactly this result. The following list shows the procedure for constructing the full
outer join, and the process is shown graphically in Figure 7-12.

 1. Begin with the inner join of the two tables, using matching columns in the normal
way. (This produces the first four rows of the results table in the figure.)

 2. For each row of the first table that is not matched by any row in the second table,
add one row to the query results, using the values of the columns in the first table,
and assuming a NULL value for all columns of the second table. (This produces the
fifth and sixth rows of results in the figure.)

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 147

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 147

 3. For each row of the second table that is not matched by any row in the first table,
add one row to the query results, using the values of the columns in the second
table, and assuming a NULL value for all columns of the first table. (This produces
the seventh and eighth rows of results in the figure.)

 4. The resulting table is the outer join of the two tables. (All eight rows of query results
in the figure.)

Here is the SQL statement that produces the outer join:

List girls and boys in the same city, including any unmatched girls or boys.

SELECT *
 FROM GIRLS FULL OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

GIRLS.NAME GIRLS.CITY BOYS.NAME BOYS.CITY
----------- ----------- ---------- ----------
Mary Boston John Boston
Mary Boston Henry Boston
Susan Chicago Sam Chicago
Betty Chicago Sam Chicago
Anne Denver NULL NULL
Nancy NULL NULL NULL
NULL NULL James Dallas
NULL NULL George NULL

FIGURE 7-12 Anatomy of an outer join

Mary
Mary
Susan
Betty
Anne
Nancy
NULL
NULL

Outer Join Table

GIRLS Table

GIRLS.NAME

Mary
Nancy
Susan
Betty
Anne

NAME

Boston
NULL
Chicago
Chicago
Denver

CITY
BOYS Table

John
Henry
George
Sam
James

NAME

Boston
Boston
NULL
Chicago
Dallas

CITY

Boston
Boston
Chicago
Chicago
Denver
NULL
NULL
NULL

GIRLS.CITY

John
Henry
Sam
Sam
NULL
NULL
James
Jeorge

BOYS.NAME

Boston
Boston
Chicago
Chicago
NULL
NULL
Dallas
NULL

BOYS.CITY

INNER
JOIN

Unmatched
rows

Unmatched
rows

 148 P a r t I I : R e t r i e v i n g D a t a 148 P a r t I I : R e t r i e v i n g D a t a

As this example shows, the full outer join is an “information-preserving” join. (Some
DBMS products, such as MySQL 5.0, do not yet support full outer joins.) Every row of the
BOYS table is represented in the query results (some more than once). Similarly, every row
of the GIRLS table is represented in the query results (again, some more than once).

Left and Right Outer Joins
The full outer join of two tables, illustrated in the previous query, treats both of the joined
tables symmetrically. Two other useful and well-defined outer joins do not.

The left outer join between two tables is produced by following Step 1 and Step 2 in the
previous numbered list but omitting Step 3. The left outer join thus includes NULL-extended
copies of the unmatched rows from the first (left) table, but does not include any unmatched
rows from the second (right) table. Here is a left outer join between the GIRLS and BOYS tables:

List girls and boys in the same city and any unmatched girls.

SELECT *
 FROM GIRLS LEFT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

GIRLS.NAME GIRLS.CITY BOYS.NAME BOYS.CITY
----------- ----------- ---------- ----------
Mary Boston John Boston
Mary Boston Henry Boston
Susan Chicago Sam Chicago
Betty Chicago Sam Chicago
Anne Denver NULL NULL
Nancy NULL NULL NULL

The query produces six rows of query results, showing the matched girl/boy pairs and
the unmatched girls. The unmatched boys are missing from the results.

Similarly, the right outer join between two tables is produced by following Step 1 and
Step 3 in the previous numbered list but omitting Step 2. The right outer join thus includes
NULL-extended copies of the unmatched rows from the second (right) table, but does not
include the unmatched rows of the first (left) table. Here is a right outer join between the
GIRLS and BOYS tables:

List girls and boys in the same city and any unmatched boys.

SELECT *
 FROM GIRLS RIGHT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

GIRLS.NAME GIRLS.CITY BOYS.NAME BOYS.CITY
----------- ----------- ---------- ----------
Mary Boston John Boston
Mary Boston Henry Boston
Susan Chicago Sam Chicago
Betty Chicago Sam Chicago
NULL NULL James Dallas
NULL NULL George NULL

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 149

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 149

This query also produces six rows of query results, showing the matched girl/boy pairs
and the unmatched boys. This time the unmatched girls are missing from the results.

As noted before, the left and right outer joins do not treat the two joined tables
symmetrically. It is often useful to think about one of the tables being the “major” table (the one
whose rows are all represented in the query results) and the other table being the “minor” table
(the one whose columns contain NULL values in the joined query results). In a left outer join,
the left (first-mentioned) table is the major table, and the right (later-named) table is the minor
table. The roles are reversed in a right outer join (the right table is major, the left table is minor).

In practice, the left and right outer joins are more useful than the full outer join, especially
when joining data from two tables using a parent/child (primary key/foreign key) relationship.
We have already seen one example involving the SALESREPS and OFFICES table in the sample
database. The REP_OFFICE column in the SALESREPS table is a foreign key to the OFFICES
table; it tells the office where each salesperson works, and it is allowed to have a NULL value for
a new salesperson who has not yet been assigned to an office, such as Tom Snyder. Any join
that exercises this SALESREPS-to-OFFICES relationship and expects to include data for Tom
Snyder must be an outer join, with the SALESREPS table as the major table. Here is the example
used earlier:

List the salespeople and the cities where they work.

SELECT NAME, CITY
 FROM SALESREPS LEFT OUTER JOIN OFFICES
 ON REP_OFFICE = OFFICE;

NAME CITY
-------------- ------------
Tom Snyder NULL
Mary Jones New York
Sam Clark New York
Bob Smith Chicago
Paul Cruz Chicago
Dan Roberts Chicago
Bill Adams Atlanta
Sue Smith Los Angeles
Larry Fitch Los Angeles
Nancy Angelli Denver

Note in this case (a left outer join), the “child” table (SALESREPS, the table with the
foreign key) is the major table, and the “parent” table (OFFICES) is the minor table. The
objective is to retain rows containing NULL foreign key values (like Tom Snyder’s) from the
child table in the query results, so the child table becomes the major table. It doesn’t matter

 150 P a r t I I : R e t r i e v i n g D a t a 150 P a r t I I : R e t r i e v i n g D a t a

whether the query is actually expressed as a left outer join (as just shown) or if it is flipped
to become a right outer join like this:

List the salespeople and the cities where they work.

SELECT NAME, CITY
 FROM OFFICES RIGHT OUTER JOIN SALESREPS
 ON OFFICE = REP_OFFICE;

NAME CITY
-------------- ------------
Tom Snyder NULL
Mary Jones New York
Sam Clark New York
Bob Smith Chicago
Paul Cruz Chicago
Dan Roberts Chicago
Bill Adams Atlanta
Sue Smith Los Angeles
Larry Fitch Los Angeles
Nancy Angelli Denver

What matters is that the child table is the major table in the outer join.
There are also useful joined queries where the parent is the major table and the child

table is the minor table. For example, suppose the company in the sample database opens a
new sales office in Dallas, but initially the office has no salespeople assigned to it. If you
want to generate a report listing all of the offices and the names of the salespeople who
work there, you might want to include a row representing the Dallas office. Here is the
outer join query that produces those results:

List the offices and the salespeople who work in each one.

SELECT CITY, NAME
 FROM OFFICES LEFT OUTER JOIN SALESREPS
 ON OFFICE = REP_OFFICE;

CITY NAME
------------ --------------
New York Mary Jones
New York Sam Clark
Chicago Bob Smith
Chicago Paul Cruz
Chicago Dan Roberts
Atlanta Bill Adams
Los Angeles Sue Smith
Los Angeles Larry Fitch
Denver Nancy Angelli
Dallas NULL

In this case, the parent table (OFFICES) is the major table in the outer join, and the child
table (SALESREPS) is the minor table. The objective is to ensure that all rows from the
OFFICES table are represented in the query results, so it plays the role of major table. The
roles of the two tables are precisely reversed from the previous example. Of course, the
row for Tom Snyder, which was included in the query results for the earlier example

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 151

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 151

(when SALESREPS was the major table), is missing from this set of query results because
SALESREPS is now the minor table.

Older Outer Join Notation*
Because the outer join was not part of the original SQL standard and was not implemented
in early IBM SQL products, the DBMS vendors who pioneered support for the outer join
each invented their own notation for expressing outer joins. Users of these products began
to develop programs that used these proprietary outer join capabilities, creating an installed
base of user-written programs that depended on the specific Oracle or SQL Server notation.
The writers of the SQL2 standard wanted to add outer join support in a way that would not
“break” these existing programs, so they could coexist with new, standards-based
programs. All of the major vendors now support some or all of the SQL standard outer join
notation, and they encourage its use. However, you may encounter older programs that use
the older proprietary forms, so they are described here.

SQL Server supported outer joins in its early implementations from Sybase and
continued to support outer joins after it was adopted by Microsoft. The SQL Server notation
appends an asterisk (*) to the equal sign in the comparison test in the WHERE clause that
defines the join condition. So this full outer join between the GIRLS and BOYS tables,
expressed using the SQL standard notation:

List girls and boys in the same city, including any unmatched girls or boys.

SELECT *
 FROM GIRLS FULL OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

becomes this query using the SQL Server notation:

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY *=* BOYS.CITY;

To indicate the full outer join between the two tables, an asterisk (*) is placed before and
after the equal sign that defines the join. To indicate a left outer join, only the leading
asterisk is specified, producing this query:

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY *= BOYS.CITY;

which is equivalent to this standards-based form:

SELECT *
 FROM GIRLS LEFT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

Similarly, a right outer join is indicated by an asterisk following the equal sign:

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY =* BOYS.CITY;

 152 P a r t I I : R e t r i e v i n g D a t a 152 P a r t I I : R e t r i e v i n g D a t a

The asterisk may also be used in conjunction with other comparison operators, such as the
greater-than or less-than signs, to specify outer non-equi-joins. This older SQL Server
notation is still supported by current versions of the product, if the appropriate
compatibility level is set, but as of SQL Server 2005, it is considered a deprecated feature. It
may also be found in stored procedures written using SQL Server’s Transact-SQL language.

Oracle also provided early support for outer joins, but uses a different notation from
SQL Server. This notation indicates the outer join in the WHERE clause by including a
parenthesized plus sign following the column whose table is to have the imaginary NULL row
added (that is, the minor table in the outer join). The left outer join of the GIRLS and BOYS
tables produces an Oracle query that looks like this:

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY = BOYS.CITY (+);

which is once again equivalent to this standards-based form:

SELECT *
 FROM GIRLS LEFT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

Note that the plus sign appears on the opposite side of the comparison from where the
asterisk appears in the SQL Server notation. Similarly, a right outer join is indicated on the
opposite side of the equal sign:

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY (+) = BOYS.CITY;

Oracle did not support a proprietary form of the full outer join, but as noted earlier, this did
not diminish the practical usefulness of Oracle’s outer joins, and you will find the older
notation in existing programs written for use with Oracle.

Both, SQL Server and Oracle notations have some significant limitations compared with
the standard form. For example, when three or more tables are combined using an outer
join, the order in which the tables are joined affects the query results. The results of

(TBL1 OUTER-JOIN TBL2) OUTER-JOIN TBL3

will in general be different from the results of

TBL1 OUTER-JOIN (TBL2 OUTER-JOIN TBL3)

Using either the SQL Server or Oracle notations, it’s impossible to specify the evaluation
order of the outer joins. Because of this, the results produced by the outer join of three or
more tables depend upon the specifics of the DBMS implementation. For this and other
reasons, you should always write new programs using the SQL standard outer join
notation. It’s also usually a good idea to convert existing programs to the standard notation
when they are being revised.

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 153

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 153

Joins and the SQL Standard
The SQL2 revision dramatically expanded the support for joins in the ANSI/ISO SQL standard,
through a new, expanded form of the FROM clause that can express even the most complex
of joins. At this writing, all of the major SQL products have support for all, or nearly all, of
the SQL2 expanded join capability. The expanded join support comes at the expense of some
significant added complexity for what had previously been one of the simpler parts of SQL.
In fact, the expanded join support is part of a much larger expansion of query capabilities in
SQL2 and subsequent versions of the SQL standard, which add even more capability and
complexity. The other expanded features include set operations on query results (union,
intersection, and differences of tables) and much richer query expressions that manipulate
rows and tables and allow them to be used in subqueries. These capabilities are described in
the next chapter, after the discussion of basic subqueries.

Inner Joins in Standard SQL
Figure 7-13 shows a simplified form of the extended standard SQL syntax for the FROM clause.
It’s easiest to understand all of the options provided by considering each type of join, one by
one, starting with the basic inner join and then moving to the various forms of outer join. The
standard inner join of the GIRLS and BOYS tables, expressed in the original SQL notation:

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY = BOYS.CITY;

is still an acceptable statement in the latest version of the standard. The standard writers
really couldn’t have made it illegal without “breaking” all of the millions of multitable SQL
queries that had already been written by the early 1990s. But the modern SQL standard
allows these alternative ways of expressing an inner join, which we have already seen in
earlier examples:

SELECT *
 FROM GIRLS INNER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

SELECT *
 FROM GIRLS INNER JOIN BOYS
 USING (CITY);

SELECT *
 FROM GIRLS NATURAL INNER JOIN BOYS;

The INNER keyword is optional; an inner join is the default. The NATURAL JOIN form
of the statement can be used if all of the identically named columns in the two tables are
matching columns; otherwise, the USING clause must be used to indicate specific matching
columns. In this case, the matching columns are NAME and CITY, and since none of the boys
has the same name as one of the girls, that NATURAL JOIN form of the query returns no
rows. If the matching columns do not have identical names in the two tables, or if a non-
equi-join is needed, then the full ON clause or WHERE clause must be used to specify the
matching column conditions. The ON and WHERE clauses are also more widely supported
than the NATURAL and USING variations.

 154 P a r t I I : R e t r i e v i n g D a t a 154 P a r t I I : R e t r i e v i n g D a t a

Outer Joins in Standard SQL*
We have already seen how the expanded SQL standard supports outer joins, such as the
full, left, and right outer joins specified by these queries:

SELECT *
 FROM GIRLS FULL OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

SELECT *
 FROM GIRLS LEFT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

FIGURE 7-13 Extended FROM clause in the SQL standard

FROM table-specification

natural-join-expression
join-expression
cross-product-expression
union-expression

,

natural-join expression:

join expression:

cross-product expression:

union-expression:

table1 NATURAL

table1

table1 table2

table1 table2

JOIN table2

JOIN table2

INNER

FULL

LEFT OUTER

RIGHT

INNER

FULL

LEFT OUTER

CROSS JOIN

UNION JOIN

RIGHT

ON sends condition
USING (column list)

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 155

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 155

SELECT *
 FROM GIRLS RIGHT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

The use of the OUTER keyword is optional; the DBMS can infer from the keyword FULL,
LEFT, or RIGHT that an outer join is required. The results of the examples shown will all be
different—the FULL OUTER JOIN will return all the rows from both tables, the LEFT
OUTER JOIN will return all the rows from the left (GIRLS) table plus matching rows from
the right table (BOYS), and the RIGHT OUTER JOIN will return all the rows from the right
(BOYS) table plus matching rows from the left (GIRLS) table. As for INNER joins, a natural
join can be specified with the NATURAL keyword, eliminating the need to explicitly name
the matching columns. Similarly, the matching columns can be named in a USING clause.

Cross Joins in Standard SQL*
The support for extended joins includes two other methods for combining data from two
tables. A cross join is another name for the Cartesian product of two tables, as described
earlier in this chapter. Here is a query that generates the complete product of the GIRLS and
BOYS tables:

SELECT *
 FROM GIRLS CROSS JOIN BOYS;

By definition, the Cartesian product (also sometimes called the cross product, hence the
name “CROSS JOIN”) contains every possible pair of rows from the two tables. It
“multiplies” the two tables, turning tables of, for example, three girls and two boys into a
table of six (3×2 = 6) boy/girl pairs. No “matching columns” or “selection criteria” are
associated with the cross products, so the ON clause and the USING clause are not allowed.
Note that the cross join really doesn’t add any new capabilities to the SQL language. Exactly
the same query results can be generated with an inner join that specifies no matching
columns. So the preceding query could just as well have been written as

SELECT *
 FROM GIRLS, BOYS;

The use of the keywords CROSS JOIN in the FROM clause simply makes the cross join
more explicit. In most databases, the cross join of two tables by itself is of very little practical
use. Its usefulness really comes as a building block for more complex query expressions that
start with the cross product of two tables and then use summary query capabilities
(described in the next chapter) or set operations to further manipulate the results. At this
writing, DB2 does not support the cross join syntax, but the same effect can be achieved
with the older SQL syntax.

The union join combines some of the features of the UNION operation (described in the
previous chapter) with some of the features of the join operations described in this chapter.
However, the UNION JOIN was deprecated in the SQL:1999 standard and removed entirely
from the SQL:2003 standard. So, if you are using a DBMS that supports a newer version of
the standard, it’s likely that it has no support for the UNION JOIN syntax. In fact, none of
the current versions of Oracle, SQL Server, MySQL, and DB2 supports it.

 156 P a r t I I : R e t r i e v i n g D a t a 156 P a r t I I : R e t r i e v i n g D a t a

Recall that the UNION operation effectively combines the rows of two tables, which must
have the same number of columns and the compatible data types for each corresponding
column. This query, which uses a simple UNION operation:

SELECT *
 FROM GIRLS
 UNION ALL
SELECT *
 FROM BOYS;

when applied to a five-row table of girls and a five-row table of boys, yields a ten-row table
of query results. Each row of query results corresponds precisely to either a row of the GIRLS
table or a row of the BOYS table from which it was derived. The query results have two
columns, NAME and CITY, because the GIRLS and BOYS tables each have these two columns.

The union join of the GIRLS and BOYS tables is specified by this query:

SELECT *
 FROM GIRLS
 UNION JOIN BOYS;

The query results again have five rows, and again each row of results is contributed by
exactly one of the rows in the GIRLS table or the BOYS table. But unlike the simple union,
these query results have four columns—all of the columns of the first table plus all of the
columns of the second table. In this aspect, the union join is like all of the other joins. For each
row of query results contributed by the GIRLS table, the columns that come from the GIRLS
table receive the corresponding data values; the other columns (those that come from the
BOYS table) have NULL values. Similarly, for each row of query results contributed by the
BOYS table, the columns that come from the BOYS table receive the corresponding data values;
the other columns (this time, those that come from the GIRLS table) have NULL values.

Another way of looking at the results of the union join is to compare them to the results
of a full outer join of the GIRLS and BOYS tables. The union join results include the NULL-
extended rows of data from the GIRLS table and the NULL-extended rows of data from the
BOYS table, but they do not include any of the rows generated by matching columns.
Referring back to the definition of an outer join, in Figure 7-14 the union join is produced by
omitting Step 1 and following Steps 2 and 3.

Finally, it’s useful to examine the relationships between the sets of rows produced by
the cross join, the various types of outer joins, and the inner join shown in Figure 7-14.
When joining two tables, TBL1 with m rows and TBL2 with n rows, the figure shows that

• The cross join will contain m×n rows, consisting of all possible row pairs from the
two tables.

• TBL1 INNER JOIN TBL2 will contain some number of rows, r, which is less than
m×n. The inner join is strictly a subset of the cross join. It is formed by eliminating
those rows from the cross join that do not satisfy the matching condition for the
inner join.

• The left outer join contains all of the rows from the inner join, plus each unmatched
row from TBL1, NULL-extended.

• The right outer join also contains all of the rows from the inner join, plus each
unmatched row from TBL2, NULL-extended.

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 157

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 157

• The full outer join contains all of the rows from the inner join, plus each unmatched
row from TBL1, NULL-extended, plus each unmatched row from TBL2, NULL-
extended. Roughly speaking, its query results are equal to the left outer join “plus”
the right outer join.

• The union join contains all of the rows of TBL1, NULL-extended, plus all of the rows
of TBL2, NULL-extended. Roughly speaking, its query results are the full outer join
“minus” the inner join.

Multitable Joins in Standard SQL
An important advantage of the standard SQL notation is that it allows very clear
specification of three-table or four-table joins. To build these more complex joins, any of the
join expressions shown in Figure 7-13 and described in the preceding sections can be
enclosed in parentheses. The resulting join expression can itself be used in another join
expression, as if it were a simple table. Just as SQL allows you to combine mathematical
operations (+, −, *, and /) with parentheses and build more complex expressions, the SQL
standard allows you to build more complex join expressions in the same way.

To illustrate multitable joins, assume that a new PARENTS table has been added to the
database containing the GIRLS and BOYS example we have been using. The PARENTS table
has three columns:

CHILD Matches the NAME column in the GIRLS or BOYS table

TYPE Specifies FATHER or MOTHER

PNAME First name of the parent

FIGURE 7-14 Relationships among join types

Full Outer Join

Inner Join

Cross Join

Union Join

Left Outer Join Right Outer Join

Matched
TBL1 rows

with NULL values
for TBL2 columns

Matched
TBL2 rows

with NULL values
for TBL1 columns

Unmatched
TBL2 rows

with NULL values
for TBL1 columns

Matched
TBL1/TBL2

row pairs

Unmatched
TBL1/TBL2

row pairs
Unmatched
TBL1 rows

with NULL values
for TBL2 columns

TBL1, NULL-extended
(m rows)

TBL2, NULL-extended
(n rows)

All TBL1 × TBL2 pairs
(m × n rows)

 158 P a r t I I : R e t r i e v i n g D a t a 158 P a r t I I : R e t r i e v i n g D a t a

A row in the GIRLS or BOYS table can have two matching rows in the PARENTS table,
one specifying a MOTHER and one a FATHER, or it can have only one of these rows, or it can
have no matching rows if no data on the child’s parents is available. The GIRLS, BOYS, and
PARENTS tables together provide a rich set of data for some multitable join examples.

Suppose you wanted to make a list of all of the girls, along with the names of their
mothers and the names of the boys who live in the same city. Here is one query that
produces the list:

SELECT GIRLS.NAME, PNAME, BOYS.NAME
 FROM ((GIRLS JOIN PARENTS
 ON PARENTS.CHILD = NAME)
 JOIN BOYS
 ON (GIRLS.CITY = BOYS.CITY))
 WHERE TYPE = 'MOTHER';

Because both of these joins are inner joins, any girl who does not have a boy living in the
same city or any girl who does not have a mother in the database will not show up in the
query results. This may or may not be the desired result. To include those girls without a
matching mother in the database, you would change the join between the GIRLS and the
PARENTS table to a left outer join, like this:

SELECT GIRLS.NAME, PNAME, BOYS.NAME
 FROM ((GIRLS LEFT JOIN PARENTS
 ON PARENTS.CHILD = NAME)
 JOIN BOYS
 ON (GIRLS.CITY = BOYS.CITY))
 WHERE (TYPE = 'MOTHER') OR (TYPE IS NULL);

This query will include all of the girl/boy pairs, regardless of whether the girls have
a mother in the database, but it will still omit girls who do not live in a city with any of
the boys. To include these girls as well, the second join must also be converted to a left
outer join:

SELECT GIRLS.NAME, PNAME, BOYS.NAME
 FROM ((GIRLS LEFT JOIN PARENTS
 ON PARENTS.CHILD = NAME)
 LEFT JOIN BOYS
 ON (GIRLS.CITY = BOYS.CITY))
 WHERE (TYPE = 'MOTHER') OR (TYPE IS NULL);

Note that the NULL-extension of the GIRLS rows by the outer join with their mothers
also creates some additional complication in the WHERE clause. The girls without matching
mothers will generate rows with not only a NULL mother’s name (PNAME) column, but also
a NULL value in the TYPE column. The simple selection criterion

WHERE (TYPE = 'MOTHER')

would generate an “unknown” result for these rows, and they will not be included in the
query results. But the entire reason for using the left outer join was to make certain they
were included! To solve this problem, the WHERE clause is expanded to also test for, and
allow, rows where the parent type is NULL.

 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 159

PART II
 C h a p t e r 7 : M u l t i t a b l e Q u e r i e s (J o i n s) 159

As one final example, suppose you want to generate a girl/boy listing again, but this
time you want to include the name of the boy’s father and the girl’s mother in the query
results. This query requires a four-table join (BOYS, GIRLS, and two copies of the
PARENTS table, one for joining to the boys’ information to get father names and one for
joining to the girls’ information to obtain mother names). Again the potential for
unmatched rows in the joins means there are several possible “right” answers to the
query. Suppose, as before, that you want to include all girls and boys in the boy/girl
pairing, even if the boy or girl does not have a matching row in the PARENTS table. You
need to use outer joins for the (BOYS join PARENTS) and (GIRLS join PARENTS) parts of
the query, but an inner join for the (BOYS join GIRLS) part of the query. This query yields
the desired results:

SELECT GIRLS.NAME, MOTHERS.PNAME, BOYS.NAME, FATHERS.PNAME
 FROM GIRLS LEFT JOIN PARENTS AS MOTHERS
 ON ((MOTHERS.CHILD = GIRLS.NAME) AND (MOTHERS.TYPE = 'MOTHER'))
 JOIN BOYS ON (GIRLS.CITY = BOYS.CITY) LEFT JOIN PARENTS AS FATHERS
 ON ((FATHERS.CHILD = BOYS.NAME) AND (FATHERS.TYPE = 'FATHER'));

This query solves the WHERE-clause test problem in a different way—by moving the test
for the TYPE of parent into the ON clause of the join specification. In this position, the test for
appropriate TYPE of parent will be performed when the DBMS finds matching columns to
construct the join, before the NULL-extended rows are added to the outer join results.
Because the PARENTS table is being used twice in the FROM clause, in two different roles, it’s
necessary to give it two different table aliases so that the correct names can be specified in
the select list.

As this example shows, even a four-join query like this one can become quite
complex with the expanded standard SQL join syntax. Syntax can vary across SQL
implementations. For example, Oracle doesn’t accept the AS keyword between the table
name and alias in the JOIN clause. However, despite the complexity, the query does
specify precisely the query that the DBMS is to carry out. There is no ambiguity about the
order in which the tables are joined, or about which joins are inner or outer joins.
Overall, the added capability is well worth the added complexity introduced by the
extended standard SQL FROM clause.

Although none of the query examples included in this section had WHERE or ORDER BY
clauses, they can be freely used with the extended join support. The relationship among the
clauses is simple and remains as described earlier in this chapter. The processing specified
in the FROM clauses generally occurs first, including any joins or unions. The join criteria
specified in a USING or ON clause are applied as a part of the particular join specification
where they appear. When processing of the FROM class is complete, the resulting table is
used to apply the selection criteria in the WHERE clause. Thus, the ON clause specifies search
criteria that apply to specific joins; the WHERE clause specifies search criteria that apply to
the entire table resulting from these joins.

Table 7-1 summarizes SQL join syntax, showing both old and new (SQL standard)
variants using many of the examples from this chapter.

160 Type Old Syntax Standard SQL Syntax Description

Inner Joins1

Simple equi-join

SELECT NAME, CITY
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE;

SELECT NAME, CITY
 FROM SALESREPS JOIN OFFICES
 ON REP_OFFICE = OFFICE;

Forms pairs of rows by matching the contents of
related columns based on an exact match between
pairs of columns.

Explicit equi-join n/a

SELECT NAME, CITY
 FROM SALESREPS INNER JOIN OFFICES
 ON REP_OFFICE = OFFICE;

Syntax variation using INNER JOIN keywords
instead of simply JOIN.

Parent/child query

SELECT CITY, NAME, TITLE
 FROM OFFICES, SALESREPS
 WHERE MGR = EMPL_NUM;

SELECT CITY, NAME, TITLE
 FROM OFFICES JOIN SALESREPS
 ON MGR = EMPL_NUM;

An equi-join that matches the primary key in one
table with the corresponding foreign key in the other.

Row selection
criteria

SELECT CITY, NAME, TITLE
 FROM OFFICES, SALESREPS
 WHERE MGR = EMPL_NUM
 AND TARGET > 600000.00;

SELECT CITY, NAME, TITLE
 FROM OFFICES JOIN SALESREPS
 ON MGR = EMPL_NUM
 WHERE TARGET > 600000.00;

Unwanted rows are filtered out from the query
results by adding a WHERE predicate.

Multiple matching
columns

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS, PRODUCTS
 WHERE MFR = MFR_ID
 AND PRODUCT = PRODUCT_ID;

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS JOIN PRODUCTS
 ON MFR = MFR_ID
 AND PRODUCT = PRODUCT_ID;

Multicolumn primary and foreign keys require
multiple column matching in the join predicate.

Three-table join

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME
 FROM ORDERS, CUSTOMERS, SALESREPS
 WHERE CUST = CUST_NUM
 AND REP = EMPL_NUM
 AND AMOUNT > 25000.00;

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME
 FROM ORDERS JOIN CUSTOMERS
 ON CUST = CUST_NUM
 JOIN SALESREPS
 ON REP = EMPL_NUM
 WHERE AMOUNT > 25000.00;

More than two tables are joined together by
adding additional JOIN clauses.

Non-equi-join

SELECT NAME, QUOTA, TARGET
 FROM SALESREPS, OFFICES
 WHERE QUOTA > TARGET;

SELECT NAME, QUOTA, TARGET
 FROM SALESREPS JOIN OFFICES
 ON QUOTA > TARGET;

The comparison operator in the join predicate is
other than equal (=).

Natural join

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS, PRODUCTS
 WHERE MFR = MFR_ID
 AND PRODUCT = PRODUCT_ID;

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS NATURAL JOIN PRODUCTS;4

An equi-join that matches rows based on all the
columns that share the same name between the
joined tables.

Join
with USING clause n/a

SELECT ORDER_NUM, AMOUNT, DESCRIPTION
 FROM ORDERS JOIN PRODUCTS
 USING (MFR, PRODUCT);5

An equi-join based on the explicitly identified
column names that share the same name in the
joined tables.

Self-join

SELECT EMPS.NAME, MGRS.NAME
 FROM SALESREPS EMPS, SALESREPS MGRS
 WHERE EMPS.MANAGER = MGRS.EMPL_NUM;

SELECT EMPS.NAME, MGRS.NAME
 FROM SALESREPS EMPS JOIN SALESREPS MGRS
 ON EMPS.MANAGER = MGRS.EMPL_NUM;

An equi-join of a table to itself with each row
matched with other rows in the same table.

Outer Joins2,3

Full outer join

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY = BOYS.CITY(+)
UNION
SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY(+) = BOYS.CITY;

SELECT *
 FROM GIRLS FULL OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

Adds a NULL-extended row to the query results
for each unmatched row of each joined table.

PART II

161

Natural
full outer join n/a

SELECT *
 FROM GIRLS NATURAL FULL OUTER JOIN
BOYS;

A full outer join that matches rows based on all
the columns that share the same name between
the joined tables.

Full outer join
with USING clause n/a

SELECT *
 FROM GIRLS FULL OUTER JOIN BOYS
 USING (CITY);

A full outer join based on the explicitly identified
column names that share the same name in the
joined tables.

Full outer join
with keyword
OUTER implied n/a

SELECT *
 FROM GIRLS FULL JOIN BOYS
 USING (CITY);

Many SQL implementations allow the keyword
OUTER to be left out because it is implied by the
keyword FULL.

Left outer join

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY = BOYS.CITY(+);

SELECT *
 FROM GIRLS LEFT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

Adds a NULL-extended row to the query results
for each unmatched row of the first (left) table.

Outer Joins2,3

Left outer join
with USING clause n/a

SELECT *
 FROM GIRLS LEFT OUTER JOIN BOYS

 USING (CITY);

A left outer join based on the explicitly identified
column names that share the same name in the
joined tables.

Right outer join

SELECT *
 FROM GIRLS, BOYS
 WHERE GIRLS.CITY(+) = BOYS.CITY;

SELECT *
 FROM GIRLS RIGHT OUTER JOIN BOYS
 ON GIRLS.CITY = BOYS.CITY;

Adds a NULL-extended row to the query results
for each unmatched row of the second (right)
table.

Right outer join
with USING clause n/a

SELECT *
 FROM GIRLS RIGHT OUTER JOIN BOYS
 USING (CITY);

A right outer join based on the explicitly identified
column names that share the same name in the
joined tables.

Other Joins

Cross join
SELECT *
 FROM GIRLS, BOYS;

SELECT *
 FROM GIRLS CROSS JOIN BOYS;

Explicitly requests the Cartesian product, which
is the product consisting of all possible pairs of
rows from the two tables.

Union “join”

SELECT *
 FROM GIRLS
 UNION ALL
SELECT *
 FROM BOYS;

SELECT *
 FROM GIRLS
 UNION ALL
SELECT *
 FROM BOYS;

Technically not a join; the SELECTs process
independently and the result sets are then
concatenated by the UNION operator.

TABLE 7-1 Join Summary

1 Inner joins have the potential to lose information if the tables being joined contain unmatched rows.
2 Outer joins do not lose information because they “add back” the unmatched rows.
3 Oracle syntax used in Old Syntax examples.
4 This query is for illustration only because no columns share the same name in the ORDERS and PRODUCTS tables of the sample database. If you run this or any query that

performs a natural join on two tables with no matching column names between them, many brands of SQL DBMS will return the Cartesian product.
5 This query is for illustration only and will not run on the sample database because the PRODUCTS table does not contain columns named MFR and PRODUCT.

 162 P a r t I I : R e t r i e v i n g D a t a

Summary
This chapter described how SQL handles queries that combine data from two or more tables:

• In a multitable query (a join), the tables containing the data are named in the FROM
clause.

• Each row of query results is a combination of data from a single row in each of the
tables, and it is the only row that draws its data from that particular combination.

• The most common multitable queries use the parent/child relationships created by
primary keys and foreign keys.

• In general, joins can be built by comparing any pair(s) of columns from the two
joined tables, using either a test for equality or any other comparison test.

• A join can be thought of as the product of two tables from which some of the rows
have been removed.

• A table can be joined to itself; self-joins require the use of a table alias.

• Outer joins extend the standard (inner) join by retaining unmatched rows of one or
both of the joined tables in the query results, and using NULL values for data from
the other table.

• The SQL standard provides comprehensive support for inner and outer joins, and
for combining the results of joins with other multitable operations such as unions,
intersections, and differences.

8
Summary Queries

Many requests for information don’t require the level of detail provided by the
SQL queries described in the last two chapters. For example, each of the following
requests asks for a single value or a small number of values that summarizes the

contents of the database:

• What is the total quota for all salespeople?

• What are the smallest and largest assigned quotas?

• How many salespeople have exceeded their quota?

• What is the size of the average order?

• What is the size of the average order for each sales office?

• How many salespeople are assigned to each sales office?

SQL supports these requests for summary data through column functions and the
GROUP BY and HAVING clauses of the SELECT statement, which are described in this chapter.

Column Functions
SQL lets you summarize data from the database through a set of column functions. A SQL
column function takes an entire column of data as its argument and produces a single data
item that summarizes the column. For example, the AVG() column function takes a column
of data and computes its average. Here is a query that uses the AVG() column function to
compute the average value of two columns from the SALESREPS table:

What are the average quota and average sales of our salespeople?

SELECT AVG(QUOTA), AVG(SALES)
 FROM SALESREPS;

 AVG(QUOTA) AVG(SALES)
------------ ------------
 $300,000.00 $289,353.20

163

CHAPTER

 164 P a r t I I : R e t r i e v i n g D a t a 164 P a r t I I : R e t r i e v i n g D a t a

Figure 8-1 graphically shows how the query results are produced. The first column
function in the query takes values in the QUOTA column and computes their average;
the second one averages the values in the SALES column. The query produces a single row
of query results summarizing the data in the SALESREPS table.

The SQL standard specifies a number of column functions, and DBMS vendors have
added many more to their products. The six most commonly supported column functions
are shown in Figure 8-2. These column functions offer different kinds of summary data:

• SUM()computes the total of a column.

• AVG()computes the average value in a column.

• MIN()finds the smallest value in a column.

• MAX()finds the largest value in a column.

• COUNT()counts the number of values in a column. (NULL values are not counted.)

• COUNT(*)counts rows of query results. (This is actually an alternate form of the
COUNT() function.)

The argument to a column function can be a simple column name, as in the previous
example, or it can be a SQL expression, as shown here:

What is the average sales performance across all of our salespeople?

SELECT AVG(100 * (SALES/QUOTA))
 FROM SALESREPS;

 AVG(100*(SALES/QUOTA))

 102.60

FIGURE 8-1 A summary query in operation

SALESREPS Table

 C h a p t e r 8 : S u m m a r y Q u e r i e s 165

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 165

To process this query, SQL constructs a temporary column containing the value of the
expression (100 * (SALES/QUOTA)) for each row of the SALESREPS table and then
computes the averages of the temporary column.

Computing a Column Total (SUM)
The SUM() column function computes the sum of a column of data values. The data in the
column must have a numeric type (such as integer, decimal, floating point, or money).
The result of the SUM() function has the same basic data type as the data in the column,
but the result may have a higher precision. For example, if you apply the SUM() function
to a column of 16-bit integers, it may produce a 32-bit integer as its result.

Here are some examples that use the SUM() column function:

What are the total quotas and sales for all salespeople?

SELECT SUM(QUOTA), SUM(SALES)
 FROM SALESREPS;

 SUM(QUOTA) SUM(SALES)
-------------- --------------
 $2,700,000.00 $2,893,532.00

FIGURE 8-2 Column functions syntax diagram

SUM (

AVG (

MIN (expression)

MAX (expression)

)

)

COUNT (

COUNT (*)

column-name)

DISTINCT column-name

expression

expression

DISTINCT column-name

DISTINCT

 166 P a r t I I : R e t r i e v i n g D a t a 166 P a r t I I : R e t r i e v i n g D a t a

What is the total of the orders taken by Bill Adams?

SELECT SUM(AMOUNT)
 FROM ORDERS, SALESREPS
 WHERE NAME = 'Bill Adams'
 AND REP = EMPL_NUM;

 SUM(AMOUNT)

 $39,327.00

Computing a Column Average (AVG)
The AVG() column function computes the average of a column of data values. As with the
SUM() function, the data in the column must have a numeric type. Because the AVG()
function adds the values in the column and then divides by the number of values, its result
may have a different data type than that of the values in the column. For example, if you
apply the AVG() function to a column of integers, the result will be either a decimal or a
floating point number, depending on the brand of DBMS you are using.

Here are some examples of the AVG() column function:

Calculate the average price of products from manufacturer ACI.

SELECT AVG(PRICE)
 FROM PRODUCTS
 WHERE MFR_ID = 'ACI';

 AVG(PRICE)

 $804.29

Calculate the average size of an order placed by Acme Mfg. (customer number 2103).

SELECT AVG(AMOUNT)
 FROM ORDERS
 WHERE CUST = 2103;

 AVG(AMOUNT)

 $8,895.50

Finding Extreme Values (MIN and MAX)
The MIN() and MAX() column functions find the smallest and largest values in a column,
respectively. The data in the column can contain numeric, string, or date/time information.
The result of the MIN() or MAX() function has exactly the same data type as the data in the
column.

Here are some examples that show the use of these column functions:

What are the smallest and largest assigned quotas?

SELECT MIN(QUOTA), MAX(QUOTA)
 FROM SALESREPS ;

 C h a p t e r 8 : S u m m a r y Q u e r i e s 167

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 167

 MIN(QUOTA) MAX(QUOTA)
------------ ------------
 $200,000.00 $350,000.00

What is the earliest order date in the database?

SELECT MIN(ORDER_DATE)
 FROM ORDERS;

MIN(ORDER_DATE)

2007-01-04

What is the best sales performance of any salesperson?

SELECT MAX(100 * (SALES/QUOTA))
 FROM SALESREPS;

 MAX(100*(SALES/QUOTA))

 135.44

When the MIN() and MAX() column functions are applied to numeric data, SQL
compares the numbers in algebraic order (large negative numbers are less than small
negative numbers, which are less than zero, which is less than all positive numbers). Dates
are compared sequentially. (Earlier dates are smaller than later ones.) Durations are
compared based on their length. (Shorter durations are smaller than longer ones.)

When using MIN() and MAX() with string data, the comparison of two strings depends
on the character set being used. On a personal computer or a typical server, both of which
use the ASCII character set, digits come before the letters in the sorting sequence, and all of
the uppercase characters come before all of the lowercase characters. On mainframes, which
use the EBCDIC character set, the lowercase characters precede the uppercase characters,
and digits come after the letters. Here is a comparison of the ASCII and EBCDIC collating
sequences of a list of strings, from smallest to largest:

ASCII EBCDIC

1234ABC acme mfg.

5678ABC zeta corp.

ACME MFG. Acme Mfg.

Acme Mfg. ACME MFG.

ZETA CORP. Zeta Corp.

Zeta Corp. ZETA CORP.

acme mfg. 1234ABC

zeta corp. 5678ABC

The difference in the collating sequences means that a query with an ORDER BY clause
can produce different results on two different systems.

 168 P a r t I I : R e t r i e v i n g D a t a 168 P a r t I I : R e t r i e v i n g D a t a

International characters (for example, accented characters in French, German, Spanish,
or Italian, or the Cyrillic alphabet letters used in Greek or Russian, or the Kanji symbols
used in Japanese) pose additional problems. Some brands of DBMS use special international
sorting algorithms to sort these characters into their correct position for each language.
Others simply sort them according to the numeric value of the code assigned to the
character. To address these issues, the SQL standard includes elaborate support for national
character sets, user-defined character sets, and alternate collating sequences. Unfortunately,
support for these SQL features varies widely among popular DBMS products. If your
application involves international text, you will want to experiment with your particular
DBMS to find out how it handles these characters.

Counting Data Values (COUNT)
The COUNT() column function counts the number of data values in a column. The data in
the column can be of any type. The COUNT() function always returns an integer, regardless
of the data type of the column. Here are some examples of queries that use the COUNT()
column function:

How many customers are there?

SELECT COUNT(CUST_NUM)
 FROM CUSTOMERS;

 COUNT(CUST_NUM)

 21

How many salespeople are over quota?

SELECT COUNT(NAME)
 FROM SALESREPS
 WHERE SALES > QUOTA;

 COUNT(NAME)

 7

How many orders for more than $25,000 are on the books?

SELECT COUNT(AMOUNT)
 FROM ORDERS
 WHERE AMOUNT > 25000.00;

 COUNT(AMOUNT)

 4

Note that the COUNT() function that includes a column name does not count NULL
values in that column, but COUNT(*) counts all rows regardless of column values. Aside
from NULL values, however, COUNT() ignores the values of the data items in the column; it
simply counts how many data items there are. As a result, it doesn’t really matter which

 C h a p t e r 8 : S u m m a r y Q u e r i e s 169

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 169

column you specify as the argument of the COUNT() function. The last example could just
as well have been written this way:

SELECT COUNT(ORDER_NUM)
 FROM ORDERS
 WHERE AMOUNT > 25000.00;

 COUNT(ORDER_NUM)

 4

In fact, it’s awkward to think of the query as “counting how many order amounts” or
“counting how many order numbers”; it’s much easier to think about “counting how many
orders.” For this reason, SQL supports a special COUNT(*) column function, which counts
rows rather than data values. Here is the same query, rewritten once again to use the
COUNT(*) function:

SELECT COUNT(*)
 FROM ORDERS
 WHERE AMOUNT > 25000.00;

 COUNT(*)

 4

If you think of the COUNT(*) function as a “rowcount” function, it makes the query
easier to read. In practice, the COUNT(*) function is almost always used instead of the
COUNT() function to count rows.

Column Functions in the Select List
Simple queries with a column function in their select list are fairly easy to understand.
However, when the select list includes several column functions, or when the argument to a
column function is a complex expression, the query can be harder to read and understand.
The following steps show the rules for SQL query processing expanded once more to
describe how column functions are handled. As before, the rules are intended to provide a
precise definition of what a query means, not a description of how the DBMS actually goes
about producing the query results.

To generate the query results for a SELECT statement:

 1. If the statement is a UNION of SELECT statements, apply Steps 2 through 5 to each
of the statements to generate their individual query results.

 2. Form the product of the tables named in the FROM clause. If the FROM clause names
a single table, the product is that table.

 3. If there is a WHERE clause, apply its search condition to each row of the product
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

 4. For each remaining row, calculate the value of each item in the select list to produce a
single row of query results. For a simple column reference, use the value of the column
in the current row. For a column function, use the entire set of rows as its argument.

 170 P a r t I I : R e t r i e v i n g D a t a 170 P a r t I I : R e t r i e v i n g D a t a

 5. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

 6. If the statement is a UNION of SELECT statements, merge the query results for the
individual statements into a single table of query results. Eliminate duplicate rows
unless UNION ALL is specified.

 7. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
One of the best ways to think about summary queries and column functions is to imagine

the query processing broken down into two steps. First, you should imagine how the query
would work without the column functions, producing many rows of detailed query results.
Then you should imagine SQL applying the column functions to the detailed query results,
producing a single summary row. For example, consider the following complex query:

Find the average order amount, total order amount, average order amount as a percentage of the
customer’s credit limit, and average order amount as a percentage of the salesperson’s quota.

SELECT AVG(AMOUNT), SUM(AMOUNT), (100 * AVG(AMOUNT/CREDIT_LIMIT)),
 (100 * AVG(AMOUNT/QUOTA))
 FROM ORDERS, CUSTOMERS, SALESREPS
 WHERE CUST = CUST_NUM
 AND REP = EMPL_NUM;

 AVG(AMOUNT) SUM(AMOUNT) (100*AVG(AMOUNT/CREDIT_LIMIT))
------------ ------------ -------------------------------
 $8,256.37 $247,691.00 24.45

 (100*AVG(AMOUNT/QUOTA))

 2.51

Note that the row size in the query results is rather large because of the very long column
headings. If you are using an SQL client that restricts query result rows to 80 characters or
less, each row will wrap to multiple lines and it won’t be nearly as readable as what is shown
here. You will later learn how to add a column alias to the query results to eliminate the long
column headings generated by the DBMS when column functions are used.

Without the column functions, it would look like this:

SELECT AMOUNT, AMOUNT, AMOUNT/CREDIT_LIMIT, AMOUNT/QUOTA
 FROM ORDERS, CUSTOMERS, SALESREPS
 WHERE CUST = CUST_NUM AND
 AND REP = EMPL_NUM;

and would produce one row of detailed query results for each order. The column functions
use the columns of this detailed query results table to generate a single-row table of
summary query results.

A column function can appear in a SQL statement anywhere that a column name can
appear. It can, for example, be part of an expression that adds or subtracts the values of
two column functions. However, in some SQL implementations, particularly older ones
based on the SQL1 standard, the argument of a column function cannot contain another

 C h a p t e r 8 : S u m m a r y Q u e r i e s 171

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 171

column function, because the resulting expression doesn’t make sense. This rule is
sometimes summarized as “it’s illegal to nest column functions.”

It’s also illegal to mix column functions and ordinary column names in a select list
(except in grouped queries and subqueries as described in the “Grouped Queries” section
later in this chapter), again because the resulting query doesn’t make sense. For example,
consider this query:

SELECT NAME, SUM(SALES)
 FROM SALESREPS;

The first select item asks SQL to generate a multirow table of detailed query results—one
row for each salesperson. The second select item asks SQL to generate a one-row column of
summary query results containing the total of the SALES column. The two SELECT items
contradict each other, producing an error. For this reason, either all column references in the
select list must appear within the argument of a column function (producing a summary
query), or the select list must not contain any column functions (producing a detailed query),
except as described in the “Grouped Queries” section later in this chapter.

NULL Values and Column Functions
The SUM(), AVG(), MIN(), MAX(), and COUNT() column functions each take a column of
data values as their argument and produce a single data value as a result. What happens if
one or more of the data values in the column is a NULL value? The ANSI/ISO SQL standard
specifies that NULL values in the column are ignored by the column functions.

This query shows how the COUNT() column function ignores any NULL values in a
column:

SELECT COUNT(*), COUNT(SALES), COUNT(QUOTA)
 FROM SALESREPS;

 COUNT(*) COUNT(SALES) COUNT(QUOTA)
--------- ------------- -------------
 10 10 9

The SALESREPS table contains ten rows, so COUNT(*) returns a count of ten. The
SALES column contains ten non-NULL values, so the function COUNT(SALES) also returns a
count of ten. The QUOTA column is NULL for the newest salesperson. The COUNT(QUOTA)
function ignores this NULL value and returns a count of nine. Because of these anomalies,
the COUNT(*) function is almost always used instead of the COUNT() function, unless you
specifically want to exclude NULL values in a particular column from the total.

Ignoring NULL values has little impact on the MIN() and MAX() column functions.
However, it can cause subtle problems for the SUM() and AVG() column functions, as
illustrated by this query:

SELECT SUM(SALES), SUM(QUOTA), (SUM(SALES) − SUM(QUOTA)), SUM(SALES−QUOTA)
 FROM SALESREPS;

 SUM(SALES) SUM(QUOTA) (SUM(SALES)−SUM(QUOTA)) SUM(SALES−QUOTA)
-------------- -------------- ------------------------ -----------------
 $2,893,532.00 $2,700,000.00 $193,532.00 $117,547.00

 172 P a r t I I : R e t r i e v i n g D a t a 172 P a r t I I : R e t r i e v i n g D a t a

You would expect the two expressions

(SUM(SALES) − SUM(QUOTA)) AND SUM(SALES−QUOTA)

in the select list to produce identical results, but the example shows that they do not. The
salesperson with a NULL value in the QUOTA column is again the reason. The expression

SUM(SALES)

totals the sales for all ten salespeople, while the expression

SUM(QUOTA)

totals only the nine non-NULL quota values. The expression

SUM(SALES) − SUM(QUOTA)

computes the difference of these two amounts. However, the column function

SUM(SALES−QUOTA)

has a non-NULL argument value for only nine of the ten salespeople. In the row with a NULL
quota value, the subtraction produces a NULL, which is ignored by the SUM() function.
Thus, the sales for the salesperson without a quota, which are included in the previous
calculation, are excluded from this calculation.

Which is the “correct” answer? Both are! The first expression calculates exactly what it
says: “the sum of SALES, less the sum of QUOTA.” The second expression also calculates
exactly what it says: “the sum of (SALES – QUOTA).” When NULL values occur, however, the
two calculations are not quite the same.

The ANSI/ISO SQL standard specifies these precise rules for handling NULL values in
column functions:

• If any of the data values in a column are NULL, they are ignored for the purpose of
computing the column function’s value.

• If every data item in the column is NULL, then the SUM(), AVG(), MIN(), and MAX()
column functions return a NULL value; the COUNT() function returns a value of zero.

• If no data items are in the column (that is, the column is empty), then the SUM(),
AVG(), MIN(), and MAX() column functions return a NULL value; the COUNT()
function returns a value of zero.

• The COUNT(*) counts rows and does not depend on the presence or absence of
NULL values in a column. If there are no rows, it returns a value of zero.

Although the standard is very clear in this area, commercial SQL products may produce
results different from the standard, especially if all of the data values in a column are NULL
or when a column function is applied to an empty table. Before assuming it will behave as
specified by the standard, you should test your particular DBMS.

 C h a p t e r 8 : S u m m a r y Q u e r i e s 173

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 173

Duplicate Row Elimination (DISTINCT)
Recall from Chapter 6 that you can specify the DISTINCT keyword at the beginning of the
select list to eliminate duplicate rows of query results. You can also ask SQL to eliminate
duplicate values from a column before applying a column function to it. To eliminate
duplicate values, the keyword DISTINCT is included before the column function argument,
immediately after the opening parenthesis.

Here are two queries that illustrate duplicate row elimination for column functions:

How many different titles are held by salespeople?

SELECT COUNT(DISTINCT TITLE)
 FROM SALESREPS;

 COUNT(DISTINCT TITLE)

 3

How many sales offices have salespeople who are over quota?

SELECT COUNT(DISTINCT REP_OFFICE)
 FROM SALESREPS
 WHERE SALES > QUOTA;

 COUNT(DISTINCT REP_OFFICE)

 4

The DISTINCT keyword can be specified only once in a query. If it appears in the
argument of one column function, it can’t appear in any other. If it is specified before the
select list, it can’t appear in any column functions. The only exception is that DISTINCT
may be specified a second time inside a subquery (contained within the query). Subqueries
are described in Chapter 9.

Grouped Queries (GROUP BY Clause)
The summary queries described thus far are like the totals at the bottom of a report. They
condense all of the detailed data in the report into a single, summary row of data. Just as
subtotals are useful in printed reports, it’s often convenient to summarize query results at a
“subtotal” level. The GROUP BY clause of the SELECT statement provides this capability.

The function of the GROUP BY clause is most easily understood by example. Consider
these two queries:

What is the average order size?

SELECT AVG(AMOUNT)
 FROM ORDERS;

 AVG(AMOUNT)

 $8,256.37

 174 P a r t I I : R e t r i e v i n g D a t a 174 P a r t I I : R e t r i e v i n g D a t a

What is the average order size for each salesperson?

SELECT REP, AVG(AMOUNT)
 FROM ORDERS
 GROUP BY REP;

 REP AVG(AMOUNT)
---- ------------
 101 $8,876.00
 102 $5,694.00
 103 $1,350.00
 105 $7,865.40
 106 $16,479.00
 107 $11,477.33
 108 $8,376.14
 109 $3,552.50
 110 $11,566.00

The first query is a simple summary query like the previous examples in this chapter.
The second query produces several summary rows—one row for each group, summarizing
the orders taken by a single salesperson. Figure 8-3 shows how the second query works.
Conceptually, SQL carries out the query as follows:

 1. SQL divides the orders into groups of orders, with one group for each salesperson.
Within each group, all of the orders have the same value in the REP column.

FIGURE 8-3 A grouped query in operation

112961
112989

112975
113057

•
•
•

113051
113045
113013
113024
113007
112992
113049

GROUPED Table

QUERY Results

ORDER_NUM

$31,500.00
$1,458.00

$2,100.00
$600.00

$1,420.00
$45,000.00

$652.00
$7,100.00
$2,925.00
$760.00
$776.00

AMOUNT

106
106

103
103

108
108
108
108
108
108
108

REP

106
103
•
•
•

108

REP

$16,479.00
$1,350.00

$8,376.14

AVG (AMOUNT)

GROUP
BY

ORDERS Table

•
•
•

 C h a p t e r 8 : S u m m a r y Q u e r i e s 175

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 175

 2. For each group, SQL computes the average value of the AMOUNT column for all of
the rows in the group and generates a single, summary row of query results. The
row contains the value of the REP column for the group and the calculated average
order size.

A query that includes the GROUP BY clause is called a grouped query because it groups
the data from its source tables and produces a single summary row for each row group. The
columns named in the GROUP BY clause are called the grouping columns of the query, because
they determine how the rows are divided into groups. Here are some additional examples
of grouped queries:

What is the range of assigned quotas in each office?

SELECT REP_OFFICE, MIN(QUOTA), MAX(QUOTA)
 FROM SALESREPS
 GROUP BY REP_OFFICE;

 REP_OFFICE MIN(QUOTA) MAX(QUOTA)
----------- ------------ ------------
 NULL NULL NULL
 11 $275,000.00 $300,000.00
 12 $200,000.00 $300,000.00
 13 $350,000.00 $350,000.00
 21 $350,000.00 $350,000.00
 22 $300,000.00 $300,000.00

How many salespeople are assigned to each office?

SELECT REP_OFFICE, COUNT(*)
 FROM SALESREPS
 GROUP BY REP_OFFICE;

 REP_OFFICE COUNT(*)
----------- ---------
 NULL 1
 11 2
 12 3
 13 1
 21 2
 22 1

How many different customers are served by each salesperson?

SELECT COUNT(DISTINCT CUST_NUM), 'customers for salesrep', CUST_REP
 FROM CUSTOMERS
 GROUP BY CUST_REP;

 COUNT(DISTINCT CUST_NUM) CUSTOMERS FOR SALESREP CUST_REP
------------------------- ----------------------- ---------
 3 customers for salesrep 101
 4 customers for salesrep 102
 3 customers for salesrep 103
 1 customers for salesrep 104

 176 P a r t I I : R e t r i e v i n g D a t a 176 P a r t I I : R e t r i e v i n g D a t a

 2 customers for salesrep 105
 2 customers for salesrep 106
 .
 .
 .

There is an intimate link between the SQL column functions and the GROUP BY clause.
Remember that the column functions take a column of data values and produce a single
result. When the GROUP BY clause is present, it tells SQL to divide the detailed query results
into groups and to apply the column function separately to each group, producing a single
result for each group. The following steps show the rules for SQL query processing,
expanded once again for grouped queries.

To generate the query results for a SELECT statement:

 1. If the statement is a UNION of SELECT statements, apply Steps 2 through 7 to each
of the statements to generate their individual query results.

 2. Form the product of the tables named in the FROM clause. If the FROM clause names
a single table, the product is that table.

 3. If there is a WHERE clause, apply its search condition to each row of the product
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

 4. If there is a GROUP BY clause, arrange the remaining rows of the product table into
row groups, so that the rows in each group have identical values in all of the
grouping columns.

 5. If there is a HAVING clause, apply its search condition to each row group, retaining
those groups for which the search condition is TRUE (and discarding those for
which it is FALSE or NULL).

 6. For each remaining row (or row group), calculate the value of each item in the select
list to produce a single row of query results. For a simple column reference, use the
value of the column in the current row (or row group). For a column function, use
the current row group as its argument if GROUP BY is specified; otherwise, use the
entire set of rows.

 7. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

 8. If the statement is a UNION of SELECT statements, merge the query results for the
individual statements into a single table of query results. Eliminate duplicate rows
unless UNION ALL is specified.

 9. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.

Multiple Grouping Columns
SQL can group query results based on the contents of two or more columns. For example,
suppose you want to group the orders by salesperson and by customer. This query groups
the data based on both criteria:

 C h a p t e r 8 : S u m m a r y Q u e r i e s 177

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 177

Calculate the total orders for each customer of each salesperson.

SELECT REP, CUST, SUM(AMOUNT)
 FROM ORDERS
 GROUP BY REP, CUST;

 REP CUST SUM(AMOUNT)
---- ----- ------------
 101 2102 $3,978.00
 101 2108 $150.00
 101 2113 $22,500.00
 102 2106 $4,026.00
 102 2114 $15,000.00
 102 2120 $3,750.00
 103 2111 $2,700.00
 105 2103 $35,582.00
 105 2111 $3,745.00
 .
 .
 .

Even with multiple grouping columns, older SQL versions provide only a single level of
grouping. The query produces a separate summary row for each salesperson/customer
pair. To produce more than one level of subtotals in more modern SQL, you can use the
WITH ROLLUP and WITH CUBE operators in combination with the GROUP BY operator.
WITH ROLLUP causes the GROUP BY operation to display a subtotal for each level of
grouping working left to right across the list of grouping columns. WITH CUBE goes further
by showing subtotals for every possible combination of grouping columns. WITH CUBE and
WITH ROLLUP also provide a grand total in the result set, but the grand total might not
always appear at the end of the result set. Oracle’s CUBE option, for example, displays the
grand total first. You can spot the subtotal rows because grouping columns that don’t apply
are NULL. Similarly, the grand total line will have NULL values in all of the grouping
columns.

Calculate the total orders for each customer of each salesperson with subtotals for each salesperson.

SELECT REP, CUST, SUM(AMOUNT)
 FROM ORDERS
GROUP BY REP, CUST WITH ROLLUP;

 REP CUST SUM(AMOUNT)
---------- ---------- -----------
 101 2102 3978
 101 2108 150
 101 2113 22500
 101 26628
 102 2106 4026
 102 2114 15000
 102 2120 3750
 102 22776
 103 2111 2700
 103 2700

 178 P a r t I I : R e t r i e v i n g D a t a 178 P a r t I I : R e t r i e v i n g D a t a

 105 2103 35582
 105 2111 3745
 105 39327
 .
 .
 .
 110 2107 23132
 110 23132
 247691

Calculate the total orders for each customer of each salesperson with subtotals for each salesperson
and each customer.

SELECT REP, CUST, SUM(AMOUNT)
 FROM ORDERS
GROUP BY REP, CUST WITH CUBE;

 REP CUST SUM(AMOUNT)
---------- ---------- -----------
 101 26628
 101 2102 3978
 101 2108 150
 101 2113 22500
 102 22776
 102 2106 4026
 102 2114 15000
 102 2120 3750
 103 2700
 103 2111 2700
 105 39327
 105 2103 35582
 105 2111 3745
 .
 .
 .
 247691
 2101 1458
 2102 3978
 2103 35582
 2106 4026
 2107 23132
 2108 7255
 2109 31350
 2111 6445
 2112 47925
 2113 22500
 2114 22100
 2117 31500
 2118 3608
 2120 3750
 2124 3082

 C h a p t e r 8 : S u m m a r y Q u e r i e s 179

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 179

The syntax for WITH ROLLUP and WITH CUBE varies somewhat from one SQL product to
another, so check your vendor’s documentation. The SQL standard syntax, which is supported
by SQL Server, DB2 Universal Database (UDB), and MySQL, is shown in the preceding
examples. (However, as of version 5.1, MySQL does not yet support WITH CUBE.) Oracle
requires the keywords GROUP BY ROLLUP or GROUP BY CUBE followed by the grouping
column list, which must be enclosed in parentheses, such as: GROUP BY CUBE (REP,
CUST). DB2 UDB supports both the standard syntax and the variation required by Oracle.

If your SQL implementation does not support ROLLUP or CUBE, the best you can do is
sort the data so that the rows of query results appear in the appropriate order. In many SQL
implementations, the GROUP BY clause will automatically have the side-effect of sorting the
data, but you can override this sort with an ORDER BY clause, as shown next:

Calculate the total orders for each customer of each salesperson, sorted by customer, and within each
customer by salesperson.

SELECT CUST, REP, SUM(AMOUNT)
 FROM ORDERS
 GROUP BY CUST, REP
 ORDER BY CUST, REP;

 CUST REP SUM(AMOUNT)
----- ---- ------------
 2101 106 $1,458.00
 2102 101 $3,978.00
 2103 105 $35,582.00
 2106 102 $4,026.00
 2107 110 $23,132.00
 2108 101 $150.00
 2108 109 $7,105.00
 2109 107 $31,350.00
 2111 103 $2,700.00
 2111 105 $3,745.00
 .
 .
 .

Restrictions on Grouped Queries
Grouped queries are subject to some rather strict limitations. The grouping columns must
be actual columns of the tables named in the FROM clause of the query. However, some
implementations also permit column expressions and even allow you to group on
expressions by simply repeating the column expression in the GROUP BY clause.

There are also restrictions on the items that can appear in the select list of a grouped
query. All of the items in the select list must have a single value for each group of rows.
Basically, this means that a select item in a grouped query can be

• A column (provided it is one of the grouping columns)

• A constant

• A column function, which produces a single value summarizing the rows in the group

 180 P a r t I I : R e t r i e v i n g D a t a 180 P a r t I I : R e t r i e v i n g D a t a

• A grouping column, which by definition has the same value in every row of the group

• An expression involving combinations of these

In practice, a grouped query will always include both a grouping column and a column
function in its select list. If no column function appears, the query can be expressed more
simply using SELECT DISTINCT, without GROUP BY. Conversely, if you don’t include a
grouping column in the query results, you won’t be able to tell which row of query results
came from which group!

Another limitation of grouped queries is that SQL ignores information about primary
keys and foreign keys when analyzing the validity of a grouped query. Consider this query,
which produces an error:

Calculate the total orders for each salesperson.

SELECT EMPL_NUM, NAME, SUM(AMOUNT)
 FROM ORDERS, SALESREPS
 WHERE REP = EMPL_NUM
 GROUP BY EMPL_NUM;

Error: "NAME" not a GROUP BY expression

Given the nature of the data, the query makes perfectly good sense, because grouping
on the salesperson’s employee number is in effect the same as grouping on the salesperson’s
name. More precisely, EMPL_NUM, the grouping column, is the primary key of the
SALESREPS table, so the NAME column must be single-valued for each group. Nonetheless,
SQL reports an error because the NAME column is not explicitly specified as a grouping
column. (The exact error message will vary from one DBMS product to another.) To correct
the problem, you can simply include the NAME column as a second (redundant) grouping
column:

Calculate the total orders for each salesperson.

SELECT EMPL_NUM, NAME, SUM(AMOUNT)
 FROM ORDERS, SALESREPS
 WHERE REP = EMPL_NUM
 GROUP BY EMPL_NUM, NAME;

 EMPL_NUM NAME SUM(AMOUNT)
--------- -------------- ------------
 101 Dan Roberts $26,628.00
 102 Sue Smith $22,776.00
 103 Paul Cruz $2,700.00
 105 Bill Adams $39,327.00
 106 Sam Clark $32,958.00
 107 Nancy Angelli $34,432.00
 108 Larry Fitch $58,633.00
 109 Mary Jones $7,105.00
 110 Tom Snyder $23,132.00

Of course, if the salesperson’s employee number is not needed in the query results, you
can eliminate it entirely from the select list:

 C h a p t e r 8 : S u m m a r y Q u e r i e s 181

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 181

Calculate the total orders for each salesperson.

SELECT NAME, SUM(AMOUNT)
 FROM ORDERS, SALESREPS
 WHERE REP = EMPL_NUM
 GROUP BY NAME;

NAME SUM(AMOUNT)
-------------- ------------
Bill Adams $39,327.00
Dan Roberts $26,628.00
Larry Fitch $58,633.00
Mary Jones $7,105.00
Nancy Angelli $34,432.00
Paul Cruz $2,700.00
Sam Clark $32,958.00
Sue Smith $22,776.00
Tom Snyder $23,132.00

NULL Values in Grouping Columns
A NULL value poses a special problem when it occurs in a grouping column. If the value of
the column is unknown, into which group should the row be placed? In the WHERE clause,
when two different NULL values are compared, the result is NULL (not TRUE), that is, the
two NULL values are not considered to be equal. Applying the same convention to the
GROUP BY clause would force SQL to place each row with a NULL grouping column into a
separate group by itself.

In practice, this rule proves too unwieldy. Instead, the ANSI/ISO SQL standard
considers two NULL values to be equal for purposes of the GROUP BY clause. If two rows
have NULLs in the same grouping columns and identical values in all of their non-NULL
grouping columns, they are grouped together into the same row group. The small sample
table in Figure 8-4 illustrates the ANSI/ISO handling of NULL values by the GROUP BY
clause, as shown in this query:

SELECT HAIR, EYES, COUNT(*)
 FROM PEOPLE
 GROUP BY HAIR, EYES;

HAIR EYES COUNT(*)
------ ------ ---------
Brown Blue 1
NULL Blue 2
NULL NULL 2
Brown NULL 3
Brown Brown 2
Brown Brown 2

Although this behavior of NULLs in grouping columns is clearly specified in the ANSI/
ISO standard, it is not implemented in all SQL dialects. It’s a good idea to build a small test
table and check the behavior of your DBMS brand before counting on a specific behavior.

 182 P a r t I I : R e t r i e v i n g D a t a 182 P a r t I I : R e t r i e v i n g D a t a

Group Search Conditions (HAVING Clause)
Just as the WHERE clause can be used to select and reject the individual rows that participate in
a query, the HAVING clause can be used to select and reject row groups. The format of the
HAVING clause parallels that of the WHERE clause, consisting of the keyword HAVING followed
by a search condition. The HAVING clause thus specifies a search condition for groups.

An example provides the best way to understand the role of the HAVING clause.
Consider this query:

What is the average order size for each salesperson whose orders total more than $30,000?

SELECT REP, AVG(AMOUNT)
 FROM ORDERS
 GROUP BY REP
HAVING SUM(AMOUNT) > 30000.00;

 REP AVG(AMOUNT)
---- ------------
 105 $7,865.40
 106 $16,479.00
 107 $11,477.33
 108 $8,376.14

Figure 8-5 shows graphically how SQL carries out the query. The GROUP BY clause first
arranges the orders into groups by salesperson. The HAVING clause then eliminates any
group where the total of the orders in the group does not exceed $30,000. Finally, the
SELECT clause calculates the average order size for each of the remaining groups and
generates the query results.

The search conditions you can specify in the HAVING clause are the same ones used in
the WHERE clause, as described in Chapters 6 and 9. Here is another example of the use of a
group search condition:

FIGURE 8-4 The PEOPLE table

Cincly
Louise
Harry
Samantha
Joanne
George
Mary
Paula
Kevin
Joel
Susan
Marie

NAME

Brown
NULL
NULL
NULL
NULL
Brown
Brown
Brown
Brown
Brown
Blonde
Blonde

HAIR

Blue
Blue
Blue
NULL
NULL
NULL
NULL
NULL
NULL
Brown
Blue
Blue

EYES

 C h a p t e r 8 : S u m m a r y Q u e r i e s 183

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 183

For each office with two or more people, compute the total quota and total sales for all salespeople who
work in the office.

SELECT CITY, SUM(QUOTA), SUM(SALESREPS.SALES)
 FROM OFFICES, SALESREPS
 WHERE OFFICE = REP_OFFICE
 GROUP BY CITY
HAVING COUNT(*) >= 2;

CITY SUM(QUOTA) SUM(SALESREPS.SALES)
------------ ------------ ---------------------
Chicago $775,000.00 $735,042.00
Los Angeles $700,000.00 $835,915.00
New York $575,000.00 $692,637.00

The following steps show the rules for SQL query processing, expanded once again to
include group search conditions.

To generate the query results for a SELECT statement:

 1. If the statement is a UNION of SELECT statements, apply Steps 2 through 7 to each
of the statements to generate their individual query results.

 2. Form the product of the tables named in the FROM clause. If the FROM clause names
a single table, the product is that table.

 3. If there is a WHERE clause, apply its search condition to each row of the product
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

FIGURE 8-5 A grouped search condition in operation

112961
112989

112975
113057

•
•
•

113051
113045
113013
113024
113007
112992
113049

•
•
•

GROUPED Table QUERY Results
ORDER_NUM

$31,500.00
$1,458.00

$2,100.00
$600.00

$1,420.00
$45,000.00

$652.00
$7,100.00
$2,925.00

$760.00
$776.00

AMOUNT

106
106

103
103

108
108
108
108
108
108
108

REP

106

•
•
•

REP

$16,479.00

AVG (AMOUNT)

GROUP
BY

ORDERS Table

•
•
•

SUM(AMOUNT)
> $30,000?

SUM(AMOUNT)
> $30,000?

FALSE

TRUE

 184 P a r t I I : R e t r i e v i n g D a t a 184 P a r t I I : R e t r i e v i n g D a t a

 4. If there is a GROUP BY clause, arrange the remaining rows of the product table into
row groups, so that the rows in each group have identical values in all of the
grouping columns.

 5. If there is a HAVING clause, apply its search condition to each row group, retaining
those groups for which the search condition is TRUE (and discarding those for
which it is FALSE or NULL).

 6. For each remaining row (or row group), calculate the value of each item in the select
list to produce a single row of query results. For a simple column reference, use the
value of the column in the current row (or row group). For a column function, use
the current row group as its argument if GROUP BY is specified; otherwise, use the
entire set of rows.

 7. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

 8. If the statement is a UNION of SELECT statements, merge the query results for the
individual statements into a single table of query results. Eliminate duplicate rows
unless UNION ALL is specified.

 9. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
Following this procedure, SQL handles the query in the previous example as follows:

 1. Joins the OFFICES and SALESREPS tables to find the city where each salesperson
works.

 2. Groups the resulting rows by office.

 3. Eliminates groups with two or fewer rows—these represent offices that don’t meet
the HAVING clause criterion.

 4. Calculates the total quota and total sales for each group.

Here is one more example, which uses all of the SELECT statement clauses:

Show the price, quantity on hand, and total quantity on order for each product where the total
quantity on order is more than 75 percent of the quantity on hand.

SELECT DESCRIPTION, PRICE, QTY_ON_HAND, SUM(QTY)
 FROM PRODUCTS, ORDERS
 WHERE MFR = MFR_ID
 AND PRODUCT = PRODUCT_ID
 GROUP BY MFR_ID, PRODUCT_ID, DESCRIPTION, PRICE, QTY_ON_HAND
HAVING SUM(QTY) > (.75 * QTY_ON_HAND)
 ORDER BY QTY_ON_HAND DESC;

DESCRIPTION PRICE QTY_ON_HAND SUM(QTY)
---------------- ---------- ------------ ---------
Reducer $355.00 38 32
Widget Adjuster $25.00 37 30
Motor Mount $243.00 15 16
Right Hinge $4,500.00 12 15
500-lb Brace $1,425.00 5 22

 C h a p t e r 8 : S u m m a r y Q u e r i e s 185

PART II
 C h a p t e r 8 : S u m m a r y Q u e r i e s 185

To process this query, SQL conceptually performs the following steps:

 1. Joins the ORDERS and PRODUCTS tables to find the description, price, and quantity
on hand for each product ordered.

 2. Groups the resulting rows by manufacturer and product ID.

 3. Eliminates groups where the quantity ordered (the total of the QTY column for all
orders in the group) is less than 75 percent of the quantity on hand.

 4. Calculates the total quantity ordered for each group.

 5. Generates one summary row of query results for each group.

 6. Sorts the query results so that products with the largest quantity on hand appear first.

As described previously, DESCRIPTION, PRICE, and QTY_ON_HAND must be specified
as grouping columns in this query solely because they appear in the select list. They actually
contribute nothing to the grouping process, because the MFR_ID and PRODUCT_ID
completely specify a single row of the PRODUCTS table, automatically making the other
three columns single-valued per group.

Restrictions on Group Search Conditions
The HAVING clause is used to include or exclude row groups from the query results, so the
search condition it specifies must be one that applies to the group as a whole rather than to
individual rows. This means that an item appearing within the search condition in a
HAVING clause can be

• A constant

• A column function, which produces a single value summarizing the rows in the group

• A grouping column, which by definition has the same value in every row of the group

• An expression involving combinations of these

In practice, the search condition in the HAVING clause will always include at least one
column function. If it did not, the search condition could be moved to the WHERE clause and
applied to individual rows. The easiest way to figure out whether a search condition
belongs in the WHERE clause or in the HAVING clause is to remember how the two clauses
are applied:

• The WHERE clause is applied to individual rows, so the expressions it contains must
be computable for individual rows.

• The HAVING clause is applied to row groups, so the expressions it contains must be
computable for a group of rows.

 186 P a r t I I : R e t r i e v i n g D a t a

NULL Values and Group Search Conditions
Like the search condition in the WHERE clause, the HAVING clause search condition can
produce one of three results:

• If the search condition is TRUE, the row group is retained, and it contributes a
summary row to the query results.

• If the search condition is FALSE, the row group is discarded, and it does not
contribute a summary row to the query results.

• If the search condition is NULL, the row group is discarded, and it does not
contribute a summary row to the query results.

The anomalies that can occur with NULL values in the search condition are the same as
those for the WHERE clause and have been described in Chapter 6.

HAVING Without GROUP BY
The HAVING clause is almost always used in conjunction with the GROUP BY clause, but the
syntax of the SELECT statement does not require it. If a HAVING clause appears without a
GROUP BY clause, SQL considers the entire set of detailed query results to be a single group.
In other words, the column functions in the HAVING clause are applied to one, and only one,
group to determine whether the group is included or excluded from the query results, and
that group consists of all the rows. The use of a HAVING clause without a corresponding
GROUP BY clause is seldom seen in practice.

Summary
This chapter described summary queries, which summarize data from the database:

• Summary queries use SQL column functions to collapse a column of data values
into a single value that summarizes the column.

• Column functions can compute the average, sum, minimum, and maximum values
of a column, count the number of data values in a column, or count the number of
rows of query results.

• A summary query without a GROUP BY clause generates a single row of query
results, summarizing all the rows of a table or a joined set of tables.

• A summary query with a GROUP BY clause generates multiple rows of query results,
each summarizing the rows in a particular group.

• The HAVING clause acts as a WHERE clause for groups, selecting the row groups that
contribute to the summary query results.

9
Subqueries and Query

Expressions

The SQL subquery feature lets you use the results of one query as part of another query.
The ability to use a query within a query was the original reason for the word
“structured” in the name Structured Query Language. The subquery feature is less

well-known than SQL’s join feature, but it plays an important role in SQL for three reasons:

• A SQL statement with a subquery is often the most natural way to express a query,
because it most closely parallels the English-language description of the query.

• Subqueries make it easier to write SELECT statements, because they let you break
a query down into pieces (the query and its subqueries) and then put the pieces
back together.

• Some queries cannot be expressed in SQL without using a subquery.

The first several sections of this chapter describe subqueries and show how they are
used in the WHERE and HAVING clauses of a SQL statement. The later sections of this chapter
describe the advanced query expression capabilities that have been added to the SQL
standard, which substantially expands the power of SQL to perform even the most complex
of database operations.

Using Subqueries
A subquery is a query within a query. The results of the subquery are used by the DBMS to
determine the results of the higher-level query that contains the subquery. In the simplest
forms of a subquery, the subquery appears within the WHERE or HAVING clause of another
SQL statement. Subqueries provide an efficient, natural way to handle query requests that
are themselves expressed in terms of the results of other queries. Here is an example of such
a request:

List the offices where the sales target for the office exceeds the sum of the salespeople’s quotas.

187

CHAPTER

 188 P a r t I I : R e t r i e v i n g D a t a 188 P a r t I I : R e t r i e v i n g D a t a

The request asks for a list of offices from the OFFICES table, where the value of the
TARGET column meets some condition. It seems reasonable that the SELECT statement that
expresses the query should look something like this:

SELECT CITY FROM OFFICES WHERE TARGET > ???

The value “???” needs to be filled in and should be equal to the sum of the quotas of
the salespeople assigned to the office in question. How can you specify that value in the
query? From Chapter 8, you know that the sum of the quotas for a specific office (say, office
number 21) can be obtained with this query:

SELECT SUM(QUOTA)
 FROM SALESREPS
 WHERE REP_OFFICE = 21;

But it would be inefficient to have to type in this query, write down the results, and then
type in the previous query with the correct amount. How can you put the results of this
query into the earlier query in place of the question marks? It would seem reasonable to
start with the first query and replace the “???” with the second query, as follows:

SELECT CITY
 FROM OFFICES
 WHERE TARGET > (SELECT SUM(QUOTA)
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE);

In fact, this is a correctly formed SQL query. For each office, the inner query (the subquery)
calculates the sum of the quotas for the salespeople working in that office. The outer query
(the main query) compares the office’s target with the calculated total and decides whether to
add the office to the main query results. Working together, the main query and the subquery
express the original request and retrieve the requested data from the database.

SQL subqueries typically appear as part of the WHERE clause or the HAVING clause. In
the WHERE clause, they help to select the individual rows that appear in the query results. In
the HAVING clause, they help to select the row groups that appear in the query results.

What Is a Subquery?
Figure 9-1 shows the form of a SQL subquery. The subquery is enclosed in parentheses, but
otherwise it has the familiar form of a SELECT statement, with a FROM clause and optional
WHERE, GROUP BY, HAVING, and ORDER BY clauses. The form of these clauses in a subquery
is identical to that in a SELECT statement, and they perform their normal functions when
used within a subquery. There are, however, a few differences between a subquery and an
actual SELECT statement:

• In the most common uses, a subquery must produce a single column of data as its
query results. This means that a subquery almost always has a single select item in
its SELECT clause.

• While the ORDER BY clause can be specified in a subquery, it is rarely used there.
The subquery results are used internally by the main query and are never visible

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 189

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 189

to the user, so it makes little sense to sort them. Moreover, sorting large numbers of
rows can adversely affect performance.

• Column names appearing in a subquery may refer to columns of tables in the main
query. These outer references are described in detail later in the “Outer References”
section.

• In most implementations, a subquery cannot be the UNION of several different
SELECT statements; only a single SELECT is allowed. (The SQL standard allows
much more powerful query expressions and relaxes this restriction, as described
later in the section “Advanced Queries.”)

Subqueries in the WHERE Clause
Subqueries are most frequently used in the WHERE clause of a SQL statement. When a subquery
appears in the WHERE clause, it works as part of the row selection process. The very simplest
subqueries appear within a search condition and produce a value that is used to test the search
condition. The following is an example of a simple subquery.

FIGURE 9-1
Basic subquery
syntax diagram

(SELECT

ALL

DISTINCT

,

,

,

,

*

FROM

GROUP BY

ORDER BY

WHERE search-condition

HAVING search-condition

order-column

group-column

table-specification

select-item

)

 190 P a r t I I : R e t r i e v i n g D a t a 190 P a r t I I : R e t r i e v i n g D a t a

List the salespeople whose quota is less than 10 percent of the companywide sales target.

SELECT NAME
 FROM SALESREPS
 WHERE QUOTA < (.1 * (SELECT SUM(TARGET) FROM OFFICES));

NAME

Bob Smith

In this case, the subquery calculates the sum of the sales targets for all of the offices to
determine the companywide target, which is multiplied by 10 percent to determine the
cutoff sales quota for the query. That value is then used in the search condition to check
each row of the SALESREPS table and find the requested names. In this simple case, the
subquery produces the same value for every row of the SALESREPS table; the QUOTA value
for each salesperson is compared with the same companywide number. Of course, the
query could also be written to perform the multiplication within the subquery like this:

SELECT NAME
 FROM SALESREPS
 WHERE QUOTA < (SELECT (SUM(TARGET) * .1) FROM OFFICES);

In this case it’s more convenient to use the subquery, but it’s not essential. We could
have simply run the query contained in the subquery by itself to return the cutoff quota
amount ($275,000 in the sample database) and then keyed that amount into the WHERE
clause of the main query as shown here:

SELECT (SUM(TARGET) * .1) FROM OFFICES;

(SUM(TARGET) * .1)

 275000

SELECT NAME
 FROM SALESREPS
 WHERE QUOTA < 275000;

However, subqueries are usually not this simple. For example, consider once again the
query from the previous section:

List the offices where the sales target for the office exceeds the sum of the salespeople’s quotas.

SELECT CITY
 FROM OFFICES
 WHERE TARGET > (SELECT SUM(QUOTA)
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE);

CITY

Chicago
Los Angeles

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 191

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 191

In this (more typical) case, the subquery cannot be calculated once for the entire query.
The subquery produces a different value for each office, based on the quotas of the
salespeople in that particular office. Figure 9-2 shows conceptually how SQL carries out the
query. The main query draws its data from the OFFICES table, and the WHERE clause selects
which offices will be included in the query results. SQL goes through the rows of the
OFFICES table one by one, applying the test stated in the WHERE clause. To test the TARGET
value, SQL carries out the subquery, finding the sum of the quotas for salespeople in the
current office. The subquery produces a single number, and the WHERE clause compares the
number with the TARGET value, selecting or rejecting the current office based on the
comparison. As the figure shows, SQL carries out the subquery repeatedly, once for each
row tested by the WHERE clause of the main query.

Outer References
Within the body of a subquery, it’s often necessary to refer to the value of a column in the
current row of the main query. Consider once again the query from the previous sections:

List the offices where the sales target for the office exceeds the sum of the salespeople’s quotas.

SELECT CITY
 FROM OFFICES
 WHERE TARGET > (SELECT SUM(QUOTA)
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE);

FIGURE 9-2 Subquery operation in the WHERE clause

OFFICES Table

SALESREPS Table

22
11
12
13
21

•
•
•

$300,000.00
$575,000.00
$800,000.00
$350,000.00
$725,000.00

Denver
New York
Chicago
Atlanta
Los Angeles

OFFICE CITY TARGET

Subquery

SELECT SUM (QUOTA)
FROM SALESREPS

WHERE REP_OFFICE=22
>?

SALESREPS Table
Subquery

SELECT SUM (QUOTA)
FROM SALESREPS

WHERE REP_OFFICE=21
>?

 192 P a r t I I : R e t r i e v i n g D a t a 192 P a r t I I : R e t r i e v i n g D a t a

The role of the subquery in this SELECT statement is to calculate the total quota for
those salespeople who work in a particular office—specifically, the office currently being
tested by the WHERE clause of the main query. The subquery does this by scanning the
SALESREPS table. But notice that the OFFICE column in the WHERE clause of the subquery
doesn’t refer to a column of the SALESREPS table; it refers to a column of the OFFICES
table, which is a part of the main query. As SQL moves through each row of the OFFICES
table, it uses the OFFICE value from the current row when it carries out the subquery.

The OFFICE column in this subquery is an example of an outer reference, which is a
column name that does not refer to any of the tables named in the FROM clause of the
subquery in which the column name appears. Instead, the column name refers to a column
of a table specified in the FROM clause of the main query. As the previous example shows,
when the DBMS examines the search condition in the subquery, the value of the column in
an outer reference is taken from the row currently being tested by the main query.

Subquery Search Conditions
A subquery usually appears as part of a search condition in the WHERE or HAVING clause.
Chapter 6 described the simple search conditions that can be used in these clauses. In
addition, most SQL products offer these subquery search conditions:

• Subquery comparison test Compares the value of an expression with a single
value produced by a subquery. This test resembles the simple comparison test.

• Subquery set membership test Checks whether the value of an expression
matches one of the set of values produced by a subquery. This test resembles the
simple set membership test.

• Existence test Tests whether a subquery produces any rows of query results.

• Quantified comparison test Compares the value of an expression with each of the
sets of values produced by a subquery.

The Subquery Comparison Test (=, <>, <, <=, >, >=)
The subquery comparison test is a modified form of the simple comparison test, as shown
in Figure 9-3. It compares the value of an expression with the value produced by a subquery

FIGURE 9-3
Subquery
comparison test
syntax diagram

expression =

<>

<

<=

>

>=

subquery

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 193

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 193

and returns a TRUE result if the comparison is true. You use this test to compare a value
from the row being tested with a single value produced by a subquery, as in this example:

List the salespeople whose quotas are equal to or higher than the target of the Atlanta sales office.

SELECT NAME
 FROM SALESREPS
 WHERE QUOTA >= (SELECT TARGET
 FROM OFFICES
 WHERE CITY = 'Atlanta');

NAME

Bill Adams
Sue Smith
Larry Fitch

The subquery in the example retrieves the sales target of the Atlanta office. The value is
then used to select the salespeople whose quotas are higher than the retrieved target.

The subquery comparison test offers the same six comparison operators (=, <>, <, <=, >,
>=) available with the simple comparison test. The subquery specified in this test must
produce a single value of the appropriate data type—that is, it must produce a single row of
query results containing exactly one column. If the subquery produces multiple rows or
multiple columns, the comparison does not make sense, and SQL reports an error condition.
If the subquery produces no rows or produces a NULL value, the comparison test returns
NULL (unknown).

Here are some additional examples of subquery comparison tests:

List all customers served by Bill Adams.

SELECT COMPANY
 FROM CUSTOMERS
 WHERE CUST_REP = (SELECT EMPL_NUM
 FROM SALESREPS
 WHERE NAME = 'Bill Adams');

COMPANY

Acme Mfg.
Three-Way Lines

List all products from manufacturer ACI where the quantity on hand is above the quantity on hand
of product ACI-41004.

SELECT DESCRIPTION, QTY_ON_HAND
 FROM PRODUCTS
 WHERE MFR_ID = 'ACI'
 AND QTY_ON_HAND > (SELECT QTY_ON_HAND
 FROM PRODUCTS
 WHERE MFR_ID = 'ACI'
 AND PRODUCT_ID = '41004');

 194 P a r t I I : R e t r i e v i n g D a t a 194 P a r t I I : R e t r i e v i n g D a t a

DESCRIPTION QTY_ON_HAND
-------------- ------------
Size 3 Widget 207
Size 1 Widget 277
Size 2 Widget 167

The subquery comparison test specified by the original SQL standard (SQL1) and
supported by all of the leading DBMS products allows a subquery only on the right side of
the comparison operator. This comparison:

A < (subquery)

is allowed, but this comparison:

(subquery) > A

is not permitted. This doesn’t limit the power of the comparison test, because the operator
in any unequal comparison can always be turned around so that the subquery is put on the
right side of the inequality. However, it does mean that you must sometimes turn around
the logic of an English-language request to get a form of the request that corresponds to a
legal SQL statement.

Subsequent versions of the SQL standard eliminated this restriction and allow the
subquery to appear on either side of the comparison operator. In fact, the current SQL standard
goes considerably further and allows a comparison test to be applied to an entire row of
values instead of to a single value. This and other more advanced query expression features
of the SQL standard are described in the latter sections of this chapter. However, they are not
uniformly supported by the current versions of the major SQL products. For portability, it’s
best to write subqueries that conform to the SQL1 restrictions, as described previously.

The Set Membership Test (IN)
The subquery set membership test (IN) is a modified form of the simple set membership
test, as shown in Figure 9-4. It compares a single data value with a column of data values
produced by a subquery and returns a TRUE result if the data value matches one of the
values in the column. You use this test when you need to compare a value from the row
being tested with a set of values produced by a subquery. Here is a simple example:

List the salespeople who work in offices that are over target.

SELECT NAME
 FROM SALESREPS
 WHERE REP_OFFICE IN (SELECT OFFICE
 FROM OFFICES
 WHERE SALES > TARGET);

NAME

Mary Jones
Sam Clark
Bill Adams
Sue Smith
Larry Fitch

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 195

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 195

The subquery produces a set of office numbers where the sales are above target. (In the
sample database, there are three such offices, numbered 11, 13, and 21.) The main query
then checks each row of the SALESREPS table to determine whether that particular
salesperson works in an office with one of these numbers. Here are some other examples of
subqueries that test set membership:

List the salespeople who do not work in offices managed by Larry Fitch (employee 108).

SELECT NAME
 FROM SALESREPS
 WHERE REP_OFFICE NOT IN (SELECT OFFICE
 FROM OFFICES
 WHERE MGR = 108);

NAME

Bill Adams
Mary Jones
Sam Clark
Bob Smith
Dan Roberts
Paul Cruz

List all of the customers who have placed orders for ACI Widgets (manufacturer ACI, product
numbers starting with 4100) between January and June 2008.

SELECT COMPANY
 FROM CUSTOMERS
 WHERE CUST_NUM IN (SELECT DISTINCT CUST
 FROM ORDERS
 WHERE MFR = 'ACI'
 AND PRODUCT LIKE '4100%'
 AND ORDER_DATE BETWEEN '2008-01-01'
 AND '2008-06-30');

COMPANY

Acme Mfg.
Ace International
Holm & Landis
JCP Inc.

FIGURE 9-4
Subquery set
membership test
(IN) syntax
diagram

test-expression IN

NOT

subquery

 196 P a r t I I : R e t r i e v i n g D a t a 196 P a r t I I : R e t r i e v i n g D a t a

Note that the use of DISTINCT in the subquery isn’t strictly necessary. If the same
customer appears multiple times in the subquery results instead of only once, the outer
query yields the same results. Often there is a performance trade-off between the overhead
the DBMS requires to eliminate duplicates (usually a sort is required) and the overhead of
processing additional rows in the subquery results when processing the WHERE clause of the
main query. Usually the larger intermediate result set is a lot more efficient than the sort
required to eliminate duplicates. And there are often other considerations. For example, in
Oracle, a GROUP BY is usually more efficient than a DISTINCT. As you can see, writing the
most efficient SQL possible requires some detailed knowledge about how the particular
DBMS being used processes SQL statements.

In each of these examples, the subquery produces a column of data values, and the
WHERE clause of the main query checks to see whether a value from a row of the main query
matches one of the values in the column. The subquery form of the IN test thus works
exactly like the simple IN test, except that the set of values is produced by a subquery
instead of being explicitly listed in the statement.

The Existence Test (EXISTS)
The existence test (EXISTS) checks whether a subquery produces any rows of query results,
as shown in Figure 9-5. No simple comparison test resembles the existence test; it is used
only with subqueries.

Here is an example of a request that can be expressed naturally using an existence test:

List the products for which an order of $25,000 or more has been received.

The request could easily be rephrased as:

List the products for which there exists at least one order in the ORDERS table (a) that is for the
product in question and (b) that has an amount of at least $25,000.

The SELECT statement used to retrieve the requested list of products closely resembles
the rephrased request:

SELECT DISTINCT DESCRIPTION
 FROM PRODUCTS
 WHERE EXISTS (SELECT ORDER_NUM
 FROM ORDERS
 WHERE PRODUCT = PRODUCT_ID
 AND MFR = MFR_ID
 AND AMOUNT >= 25000.00);

DESCRIPTION

500-lb Brace
Left Hinge
Right Hinge
Widget Remover

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 197

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 197

Conceptually, SQL processes this query by going through the PRODUCTS table and
performing the subquery for each product. The subquery produces a column containing the
order numbers of any orders for the “current” product that are over $25,000. If there are any
such orders (that is, if the column is not empty), the EXISTS test is TRUE. If the subquery
produces no rows, the EXISTS test is FALSE. The EXISTS test cannot produce a NULL value.

You can reverse the logic of the EXISTS test using the NOT EXISTS form. In this case,
the test is TRUE if the subquery produces no rows, and FALSE otherwise.

Notice that the EXISTS search condition doesn’t really use the results of the subquery at
all. It merely tests to see whether the subquery produces any results. For this reason, SQL
relaxes the rule that “subqueries must return a single column of data” and allows you to use
the SELECT * form in the subquery of an EXISTS test. The previous subquery could thus
have been written as:

List the products for which an order of $25,000 or more has been received.

SELECT DESCRIPTION
 FROM PRODUCTS
 WHERE EXISTS (SELECT *
 FROM ORDERS
 WHERE PRODUCT = PRODUCT_ID
 AND MFR = MFR_ID
 AND AMOUNT >= 25000.00);

In practice, the subquery in an EXISTS test is usually written using the SELECT *
notation.

Here are some additional examples of queries that use EXISTS:

List any customers assigned to Sue Smith who have not placed an order for over $3000.

SELECT COMPANY
 FROM CUSTOMERS
 WHERE CUST_REP = (SELECT EMPL_NUM
 FROM SALESREPS
 WHERE NAME = 'Sue Smith')
 AND NOT EXISTS (SELECT *
 FROM ORDERS
 WHERE CUST = CUST_NUM
 AND AMOUNT > 3000.00);

COMPANY

Carter & Sons
Fred Lewis Corp.

FIGURE 9-5
Existence test
(EXISTS) syntax
diagram

EXISTS

NOT

subquery

 198 P a r t I I : R e t r i e v i n g D a t a 198 P a r t I I : R e t r i e v i n g D a t a

List the offices where there is a salesperson whose quota represents more than 55 percent of the office’s
target.

SELECT CITY
 FROM OFFICES
 WHERE EXISTS (SELECT *
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE
 AND QUOTA > (.55 * TARGET));

CITY

Denver
Atlanta

Note that in each of these examples, the subquery includes an outer reference to a
column of the table in the main query. In practice, the subquery in an EXISTS test will
always contain an outer reference that links the subquery to the row currently being tested
by the main query.

Quantified Tests (ANY and ALL)*
The subquery version of the IN test checks whether a data value is equal to some value in a
column of subquery results. SQL provides two quantified tests, ANY and ALL, that extend
this notion to other comparison operators, such as greater than (>) and less than (<). Both of
these tests compare a data value with the column of data values produced by a subquery, as
shown in Figure 9-6.

FIGURE 9-6 Quantified comparison tests (ANY and ALL) syntax diagrams

test-expression =

<>

<

<=

>

>=

subqueryANY

ALL

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 199

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 199

The ANY Test*
The ANY test is used in conjunction with one of the six SQL comparison operators (=, <>, <, <=,
>, >=) to compare a single test value with a column of data values produced by a subquery.
To perform the test, SQL uses the specified comparison operator to compare the test value with
each data value in the column, one at a time. If any of the individual comparisons yields a TRUE
result, the ANY test returns a TRUE result.

Here is an example of a request that can be handled with the ANY test:

List the salespeople who have taken an order that represents more than 10 percent of their quota.

SELECT NAME
 FROM SALESREPS
 WHERE (.1 * QUOTA) < ANY (SELECT AMOUNT
 FROM ORDERS
 WHERE REP = EMPL_NUM);

NAME

Sam Clark
Larry Fitch
Nancy Angelli

Conceptually, the main query tests each row of the SALESREPS table, one by one. The
subquery finds all of the orders taken by the current salesperson and returns a column
containing the order amounts for those orders. The WHERE clause of the main query then
computes 10 percent of the current salesperson’s quota and uses it as a test value,
comparing it with every order amount produced by the subquery. If any order amount
exceeds the calculated test value, the ANY test returns TRUE, and the salesperson is included
in the query results. If not, the salesperson is not included in the query results. The keyword
SOME is an alternative for ANY specified by the ANSI/ISO SQL standard. Either keyword
generally can be used, but some DBMS brands do not support SOME.

The ANY test can sometimes be difficult to understand because it involves an entire set
of comparisons, not just one. It helps if you read the test in a slightly different way than it
appears in the statement. If this ANY test appears:

WHERE X < ANY (SELECT Y …)

instead of reading the test like this:

"where X is less than any select Y…"

try reading it like this:

"where, for some Y, X is less than Y"

When you use this trick, the preceding query becomes

Select the salespeople where, for some order taken by the salesperson, 10 percent of the
salesperson’s quota is less than the order amount.

If the subquery in an ANY test produces no rows of query results, or if the query results
include NULL values, the operation of the ANY test may vary from one DBMS to another.

 200 P a r t I I : R e t r i e v i n g D a t a 200 P a r t I I : R e t r i e v i n g D a t a

The ANSI/ISO SQL standard specifies these detailed rules describing the results of the ANY
test when the test value is compared with the column of subquery results:

• If the subquery produces an empty column of query results, the ANY test returns
FALSE—no value is produced by the subquery for which the comparison test holds.

• If the comparison test is TRUE for at least one of the data values in the column, then
the ANY search condition returns TRUE—indeed some value is produced by the
subquery for which the comparison test holds.

• If the comparison test is FALSE for every data value in the column, then the ANY
search condition returns FALSE. In this case, you can conclusively state that no
value is produced by the subquery for which the comparison test holds.

• If the comparison test is not TRUE for any data value in the column, but it is NULL
(unknown) for one or more of the data values, then the ANY search condition returns
NULL. In this situation, you cannot conclusively state whether a value is produced
by the subquery for which the comparison test holds; it may or may not be,
depending on the “actual” (but currently unknown) values for the NULL data.

The ANY comparison operator can be very tricky to use in practice, especially in conjunction
with the inequality (<>) comparison operator. Here is an example that shows the problem:

List the names and ages of all the people in the sales force who do not manage an office.

It’s tempting to express this query as shown in this example:

SELECT NAME, AGE
 FROM SALESREPS
 WHERE EMPL_NUM <> ANY (SELECT MGR
 FROM OFFICES);

The subquery:

SELECT MGR
 FROM OFFICES;

obviously produces the employee numbers of the managers, and therefore the query seems
to be saying

Find each salesperson who is not the manager of any office.

But that’s not what the query says! What it does say is this:

Find each salesperson who, for some office, is not the manager of that office.

Of course for any given salesperson, it’s possible to find some office where that
salesperson is not the manager. The query results would include all the salespeople and
therefore fail to answer the question that was posed! The correct query is

SELECT NAME, AGE
 FROM SALESREPS
 WHERE NOT (EMPL_NUM = ANY (SELECT MGR
 FROM OFFICES));

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 201

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 201

NAME AGE
-------------- ----
Mary Jones 31
Sue Smith 48
Dan Roberts 45
Tom Snyder 41
Paul Cruz 29
Nancy Angelli 49

You can always turn a query with an ANY test into a query with an EXISTS test by
moving the comparison inside the search condition of the subquery. This is usually a very
good idea because it eliminates errors like the one just described. Here is an alternative form
of the query, using the EXISTS test:

SELECT NAME, AGE
 FROM SALESREPS
 WHERE NOT EXISTS (SELECT *
 FROM OFFICES
 WHERE EMPL_NUM = MGR);

NAME AGE
-------------- ----
Mary Jones 31
Sue Smith 48
Dan Roberts 45
Tom Snyder 41
Paul Cruz 29
Nancy Angelli 49

The ALL Test*
Like the ANY test, the ALL test is used in conjunction with one of the six SQL comparison
operators (=, <>, <, <=, >, >=) to compare a single test value with a column of data values
produced by a subquery. To perform the test, SQL uses the specified comparison operator to
compare the test value with each data value in the column, one at a time. If all of the
individual comparisons yield a TRUE result, the ALL test returns a TRUE result.

Here is an example of a request that can be handled with the ALL test:

List the offices and their targets where all of the salespeople have sales that exceed 50 percent of the
office’s target.

SELECT CITY, TARGET
 FROM OFFICES
 WHERE (.50 * TARGET) < ALL (SELECT SALES
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE);

CITY TARGET
------------ ------------
Denver $300,000.00
New York $575,000.00
Atlanta $350,000.00

 202 P a r t I I : R e t r i e v i n g D a t a 202 P a r t I I : R e t r i e v i n g D a t a

Conceptually, the main query tests each row of the OFFICES table, one by one. The
subquery finds all of the salespeople who work in the current office and returns a column
containing the sales for each salesperson. The WHERE clause of the main query then
computes 50 percent of the office’s target and uses it as a test value, comparing it with every
sales value produced by the subquery. If all of the sales values exceed the calculated test
value, the ALL test returns TRUE, and the office is included in the query results. If not, the
office is not included in the query results.

Like the ANY test, the ALL test can be difficult to understand because it involves an
entire set of comparisons, not just one. Again, it helps if you read the test in a slightly
different way than it appears in the statement. If this ALL test appears:

WHERE X < ALL (SELECT Y …)

instead of reading it like this:

"where X is less than all select Y…"

try reading the test like this:

"where, for all Y, X is less than Y"

When you use this trick, the preceding query becomes

Select the offices where, for all salespeople who work in the office, 50 percent of the office’s target
is less than the salesperson’s sales.

If the subquery in an ALL test produces no rows of query results, or if the query results
include NULL values, the operation of the ALL test may vary from one DBMS to another.
The ANSI/ISO SQL standard specifies these detailed rules describing the results of the ALL
test when the test value is compared with the column of subquery results:

• If the subquery produces an empty column of query results, the ALL test returns
TRUE. The comparison test does hold for every value produced by the subquery;
there just aren’t any values.

• If the comparison test is TRUE for every data value in the column, then the ALL
search condition returns TRUE. Again, the comparison test holds true for every
value produced by the subquery.

• If the comparison test is FALSE for any data value in the column, then the ALL
search condition returns FALSE. In this case, you can conclusively state that the
comparison test does not hold true for every data value produced by the query.

• If the comparison test is not FALSE for any data value in the column, but it is NULL
for one or more of the data values, then the ALL search condition returns NULL. In
this situation, you cannot conclusively state whether a value is produced by the
subquery for which the comparison test does not hold true; there may or may not
be, depending on the “actual” (but currently unknown) values for the NULL data.

The subtle errors that can occur when the ANY test is combined with the inequality (<>)
comparison operator also occur with the ALL test. As with the ANY test, the ALL test can
always be converted into an equivalent EXISTS test by moving the comparison inside the
subquery.

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 203

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 203

Subqueries and Joins
You may have noticed as you read through this chapter that many of the queries that were
written using subqueries could also have been written as multitable queries, or joins. This is often
the case, and SQL allows you to write the query either way. This example illustrates the point:

List the names and ages of salespeople who work in offices in the Western region.

SELECT NAME, AGE
 FROM SALESREPS
 WHERE REP_OFFICE IN (SELECT OFFICE
 FROM OFFICES
 WHERE REGION = 'Western');

NAME AGE
-------------- ----
Sue Smith 48
Larry Fitch 62
Nancy Angelli 49

This form of the query closely parallels the stated request. The subquery yields a list of
offices in the Western region, and the main query finds the salespeople who work in one of
the offices in the list. Here is an alternative form of the query, using a two-table join:

List the names and ages of salespeople who work in offices in the Western region.

SELECT NAME, AGE
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE
 AND REGION = 'Western';

NAME AGE
-------------- ----
Sue Smith 48
Larry Fitch 62
Nancy Angelli 49

This form of the query joins the SALESREPS table to the OFFICES table to find the
region where each salesperson works, and then eliminates those who do not work in the
Western region. Another way to write this query is with the EXISTS operator:

List the names and ages of salespeople who work in offices in the Western region.

SELECT NAME, AGE
 FROM SALESREPS
 WHERE EXISTS (SELECT *
 FROM OFFICES
 WHERE REGION = 'Western'
 AND REP_OFFICE = OFFICE);

NAME AGE
-------------- ----
Sue Smith 48
Larry Fitch 62
Nancy Angelli 49

 204 P a r t I I : R e t r i e v i n g D a t a 204 P a r t I I : R e t r i e v i n g D a t a

Any of the three queries will find the correct salespeople, and none of them is right or
wrong. Many people will find the first form (with the subquery) more natural, because the
English request doesn’t ask for any information about offices, and because it seems a little
strange to join the SALESREPS and OFFICES tables to answer the request. Of course if the
request is changed to ask for some information from the OFFICES table:

List the names and ages of the salespeople who work in offices in the Western region and the
cities where they work.

the subquery form will no longer work, and the two-table query must be used. Conversely,
many queries with subqueries cannot be translated into an equivalent join. Here is a simple
example:

List the names and ages of salespeople who have above average quotas.

SELECT NAME, AGE
 FROM SALESREPS
 WHERE QUOTA > (SELECT AVG(QUOTA)
 FROM SALESREPS);

NAME AGE
------------- ----
Bill Adams 37
Sue Smith 48
Larry Fitch 62

In this case, the inner query is a summary query and the outer query is not, so there is
no way the two queries can be combined into a single join.

Nested Subqueries
All of the queries described thus far in this chapter have been two-level queries, involving a
main query and a subquery. Just as you can use a subquery inside a main query, you can
use a subquery inside another subquery. Here is an example of a request that is naturally
represented as a three-level query, with a main query, a subquery, and a sub-subquery:

List the customers whose salespeople are assigned to offices in the Eastern sales region.

SELECT COMPANY
 FROM CUSTOMERS
 WHERE CUST_REP IN (SELECT EMPL_NUM
 FROM SALESREPS
 WHERE REP_OFFICE IN (SELECT OFFICE
 FROM OFFICES
 WHERE REGION = 'Eastern'));

COMPANY

First Corp.
Smithson Corp.
AAA Investments
JCP Inc.
Chen Associates

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 205

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 205

QMA Assoc.
Ian & Schmidt
Acme Mfg.
 .
 .
 .

In this example, the innermost subquery:

SELECT OFFICE
 FROM OFFICES
 WHERE REGION = 'Eastern';

produces a column containing the office numbers of the offices in the Eastern region. The
next subquery:

SELECT EMPL_NUM
 FROM SALESREPS
WHERE REP_OFFICE IN (subquery);

produces a column containing the employee numbers of the salespeople who work in one
of the selected offices. Finally, the outermost query:

SELECT COMPANY
 FROM CUSTOMERS
 WHERE CUST_REP IN (subquery);

finds the customers whose salespeople have one of the selected employee numbers.
The same technique used in this three-level query can be used to build queries with four

or more levels. The ANSI/ISO SQL standard does not specify a maximum number of
nesting levels, but in practice, a query becomes much more time-consuming as the number
of levels increases. The query also becomes more difficult to read, understand, and maintain
when it involves more than one or two levels of subqueries. Many SQL implementations
restrict the number of subquery levels to a relatively small number.

Correlated Subqueries*
In concept, SQL performs a subquery over and over again—once for each row of the main
query. For many subqueries, however, the subquery produces the same results for every row
or row group. Here is an example:

List the sales offices whose sales are below the average target.

SELECT CITY
 FROM OFFICES
 WHERE SALES < (SELECT AVG(TARGET)
 FROM OFFICES);

CITY

Denver
Atlanta

 206 P a r t I I : R e t r i e v i n g D a t a 206 P a r t I I : R e t r i e v i n g D a t a

In this query, it would be silly to perform the subquery five times (once for each
office). The average target doesn’t change with each office; it’s completely independent
of the office currently being tested. As a result, SQL can handle the query by first
performing the subquery, yielding the average target ($550,000), and then converting
the main query into:

SELECT CITY
 FROM OFFICES
 WHERE SALES < 550000.00;

Commercial SQL implementations automatically detect this situation and use this shortcut
whenever possible to reduce the amount of processing required by a subquery. However, the
shortcut cannot be used if the subquery contains an outer reference, as in this example:

List all of the offices whose targets exceed the sum of the quotas of the salespeople who work in them

SELECT CITY
 FROM OFFICES
 WHERE TARGET > (SELECT SUM(QUOTA)
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE);

CITY

Chicago
Los Angeles

For each row of the OFFICES table to be tested by the WHERE clause of the main query,
the OFFICE column (which appears in the subquery as an outer reference) has a different
value. Thus, SQL has no choice but to carry out this subquery five times—once for each
row in the OFFICES table. A subquery containing an outer reference is called a correlated
subquery because its results are correlated with each individual row of the main query.
For the same reason, an outer reference is sometimes called a correlated reference.

A subquery can contain an outer reference to a table in the FROM clause of any query
that contains the subquery, no matter how deeply the subqueries are nested. A column
name in a fourth-level subquery, for example, may refer to one of the tables named in the
FROM clause of the main query, or to a table named in the FROM clause of the second-level
subquery or the third-level subquery that contains it. Regardless of the level of nesting, an
outer reference always takes on the value of the column in the current row of the table
being tested.

Because a subquery can contain outer references, there is even more potential for
ambiguous column names in a subquery than in a main query. When an unqualified
column name appears within a subquery, SQL must determine whether it refers to a table
in the subquery’s own FROM clause, or to a FROM clause in a query containing the subquery.
To minimize the possibility of confusion, SQL always interprets a column reference in

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 207

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 207

a subquery using the nearest FROM clause possible. To illustrate this point, in this example,
the same table is used in the query and in the subquery:

List the salespeople who are over 40 and who manage a salesperson who is over quota.

SELECT NAME
 FROM SALESREPS
 WHERE AGE > 40
 AND EMPL_NUM IN (SELECT MANAGER
 FROM SALESREPS
 WHERE SALES > QUOTA);

NAME

Sam Clark
Larry Fitch

The MANAGER, QUOTA, and SALES columns in the subquery are references to the
SALESREPS table in the subquery’s own FROM clause; SQL does not interpret them as outer
references, and the subquery is not a correlated subquery. SQL can perform the subquery
first in this case, finding the salespeople who are over quota and generating a list of the
employee numbers of their managers. SQL can then turn its attention to the main query,
selecting managers whose employee numbers appear in the generated list.

If you want to use an outer reference within a subquery like the one in the previous
example, you must use a table alias to force the outer reference. This request, which adds
one more qualifying condition to the previous one, shows how:

List the managers who are over 40 and who manage a salesperson who is over quota and who does
not work in the same sales office as the manager.

SELECT NAME
 FROM SALESREPS MGRS
 WHERE AGE > 40
 AND MGRS.EMPL_NUM IN (SELECT MANAGER
 FROM SALESREPS EMPS
 WHERE EMPS.QUOTA > EMPS.SALES
 AND EMPS.REP_OFFICE <> MGRS.REP_OFFICE);

NAME

Sam Clark
Larry Fitch

The copy of the SALESREPS table used in the main query now has the tag MGRS, and
the copy in the subquery has the tag EMPS. The subquery contains one additional search
condition, requiring that the employee’s office number does not match that of the manager.
The qualified column name MGRS.REP_OFFICE in the subquery is an outer reference, and
this subquery is a correlated subquery.

 208 P a r t I I : R e t r i e v i n g D a t a 208 P a r t I I : R e t r i e v i n g D a t a

Subqueries in the HAVING Clause*
Although subqueries are most often found in the WHERE clause, they can also be used in the
HAVING clause of a query. When a subquery appears in the HAVING clause, it works as part of
the row group selection performed by the HAVING clause. Consider this query with a subquery:

List the salespeople whose average order size for products manufactured by ACI is higher than the
overall average order size.

SELECT NAME, AVG(AMOUNT)
 FROM SALESREPS, ORDERS
 WHERE EMPL_NUM = REP
 AND MFR = 'ACI'
 GROUP BY NAME
HAVING AVG(AMOUNT) > (SELECT AVG(AMOUNT)
 FROM ORDERS);

NAME AVG(AMOUNT)
----------- ------------
Sue Smith $15,000.00
Tom Snyder $22,500.00

Figure 9-7 shows conceptually how this query works. The subquery calculates the overall
average order size. It is a simple subquery and contains no outer references, so SQL can calculate
the average once and then use it repeatedly in the HAVING clause. The main query goes through

FIGURE 9-7 Subquery operation in the HAVING clause

112968
113055

•
•
•

112963
112983
112987
113012
113027

•
•
•

GROUPED Table
ORDER_NUM

$3,978.00
$150.00

$3,276.00
$702.00

$27,500.00
$3,745.00
$4,104.00

AMOUNT

ACI
ACI

ACI
ACI
ACI
ACI
ACI

MFR

SALESREPS Table

ORDERS Table

ORDERS Table

Dan Roberts
Dan Roberts

Bill Adams
Bill Adams
Bill Adams
Bill Adams
Bill Adams

NAME

JOIN

GROUP
BY

AVG

AVG

>?

>?

•
•
•

•
•
•

•
•
•

•
•
•

Subquery

SELECT
AVG (AMOUNT)

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 209

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 209

the ORDERS table, finding all orders for ACI products, and groups them by salesperson. The
HAVING clause then checks each row group to see whether the average order size in that group
is bigger than the average for all orders, calculated earlier. If so, the row group is retained; if not,
the row group is discarded. Finally, the SELECT clause produces one summary row for each
group, showing the name of the salesperson and the average order size for each.

You can also use a correlated subquery in the HAVING clause. Because the subquery is
evaluated once for each row group, however, all outer references in the correlated subquery
must be single-valued for each row group. Effectively, this means that the outer reference
must either be a reference to a grouping column of the outer query or be contained within
a column function. In the latter case, the value of the column function for the row group
being tested is calculated as part of the subquery processing.

If the previous request is changed slightly, the subquery in the HAVING clause becomes
a correlated subquery:

List the salespeople whose average order size for products manufactured by ACI is at least as big as
that salesperson’s overall average order size.

SELECT NAME, AVG(AMOUNT)
 FROM SALESREPS, ORDERS
 WHERE EMPL_NUM = REP
 AND MFR = 'ACI'
 GROUP BY NAME, EMPL_NUM
HAVING AVG(AMOUNT) >= (SELECT AVG(AMOUNT)
 FROM ORDERS
 WHERE REP = EMPL_NUM);

NAME AVG(AMOUNT)
----------- ------------
Bill Adams $7,865.40
Sue Smith $15,000.00
Tom Snyder $22,500.00

In this new example, the subquery must produce the overall average order size for the
salesperson whose row group is currently being tested by the HAVING clause. The subquery
selects orders for that particular salesperson, using the outer reference EMPL_NUM. The outer
reference is legal because EMPL_NUM has the same value in all rows of a group produced by
the main query.

Subquery Summary
This chapter so far has described subqueries, which allow you to use the results of one
query to help define another query. Before moving on to the advanced query facilities of the
SQL specification, let’s summarize subqueries:

• A subquery is a “query within a query.” Subqueries appear within one of the
subquery search conditions in the WHERE or HAVING clause.

• When a subquery appears in the WHERE clause, the results of the subquery are used
to select the individual rows that contribute data to the query results.

• When a subquery appears in the HAVING clause, the results of the subquery are
used to select the row groups that contribute data to the query results.

• Subqueries can be nested within other subqueries.

 210 P a r t I I : R e t r i e v i n g D a t a 210 P a r t I I : R e t r i e v i n g D a t a

• The subquery form of the comparison test uses one of the simple comparison
operators to compare a test value with the single value returned by a subquery.

• The subquery form of the set membership test (IN) matches a test value to the set of
values returned by a subquery.

• The existence test (EXISTS) checks whether a subquery returns any values.

• The quantified tests (ANY and ALL) use one of the simple comparison operators to
compare a test value with all of the values returned by a subquery, checking to see
whether the comparison holds for some or all of the values.

• A subquery may include an outer reference to a table in any of the queries that
contains it, linking the subquery to the current row of that query.

Figure 9-8 shows the final version of the rules for SQL query processing, extended to
include subqueries. It provides a complete definition of the query results produced by a
SELECT statement.

FIGURE 9-8 SQL query processing rules (final version)

To generate the query results for a SELECT statement:

1. If the statement is a UNION of SELECT statements, apply Steps 2 through 7 to each of the
 statements to generate their individual query results.

2. Form the product of the tables named in the FROM clause. If the FROM clause names a single
 table, the product is that table.

3. If there is a WHERE clause, apply its search condition to each row of the product table,
 retaining those rows for which the search condition is TRUE (and discarding those for which
 it is FALSE or NULL). If the WHERE clause contains a subquery, the subquery is performed for
 each row as it is tested.

4. If there is a GROUP BY clause, arrange the remaining rows of the product table into row
 groups, so that the rows in each group have identical values in all of the grouping columns.

5. If there is a HAVING clause, apply its search condition to each row group, retaining those
 groups for which the search condition is TRUE (and discarding those for which it is FALSE or
 NULL). If the HAVING clause contains a subquery, the subquery is performed for each row
 group as it is tested.

6. For each remaining row (or row group), calculate the value of each item in the select list to
 produce a single row of query results. For a simple column reference, use the value of the
 column in the current row (or row group). For a column function, use the current row group
 as its argument if GROUP BY is specified; otherwise, use the entire set of rows.

7. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results that were
 produced.

8. If the statement is a UNION of SELECT statements, merge the query results for the individual
 statements into a single table of query results. Eliminate duplicate rows unless UNION ALL
 is specified.

9. If there is an ORDER BY clause, sort the query results as specified.

 The rows generated by this procedure comprise the query results.

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 211

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 211

Advanced Queries*
The SQL queries described thus far in Chapters 6 through 9 are the mainstream capabilities
provided by most SQL implementations. The combination of features they represent—
column selection in the SELECT clause, row selection criteria in the WHERE clause,
multitable joins in the FROM clause, summary queries in the GROUP BY and HAVING clauses,
and subqueries for more complex requests—give the user a powerful set of data retrieval
and data analysis capabilities. However, database experts have pointed out many
limitations of these mainstream query capabilities, including these:

• No decision making within queries Suppose you wanted to generate a two-
column report from the sample database showing the name of each sales office and
either its annual sales target or its year-to-date sales, whichever is larger. With the
mainstream SQL query features, this is hard to do. Or suppose you had a database
that kept track of sales by quarter (four columns of data for each office) and wanted
to write a program that displayed offices and their sales for a specific (user-
supplied) quarter. Again, this program is more difficult to write using mainstream
SQL queries. You must include four separate SQL queries (one for each quarter),
and the program logic must select which query to run, based on user input. This
simple case isn’t too difficult, but in a more general case, the program could become
much more complex.

• Limited use of subqueries The simplest example of this limitation is the SQL1
restriction that a subquery can appear only on the right side of a comparison test in a
WHERE clause. The database request “List the offices where the sum of the salespeople’s
quotas is less than the office target.” is most directly expressed as this query:

SELECT OFFICE
 FROM OFFICES
 WHERE (SELECT SUM(QUOTA)
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE) < TARGET;

While this isn’t a legal SQL1 statement, it is supported in subsequent versions of the
SQL standard. Nonetheless, most people understand it more readily if you turn the
inequality around:

SELECT OFFICE
 FROM OFFICES
 WHERE TARGET > (SELECT SUM(QUOTA)
 FROM SALESREPS
 WHERE REP_OFFICE = OFFICE);

In this simple example, it isn’t hard to turn the logic around, but the restriction is a
nuisance at best, and it does prevent you from comparing the results of two subqueries,
for example.

 212 P a r t I I : R e t r i e v i n g D a t a 212 P a r t I I : R e t r i e v i n g D a t a

• Limited-row expressions Suppose you wanted to list the suppliers, item numbers,
and prices for a set of products that are substitutes for one another. Conceptually,
these are a set of products whose identification (a manufacturer-ID/product-ID pair)
matches one of a set of values, and it would be natural to write the query using a set
membership test:

SELECT MFR_ID, PRODUCT_ID, PRICE
 FROM PRODUCTS
 WHERE (MFR_ID, PRODUCT_ID) IN (('ACI',41003),('BIC',41089), …);

The SQL1 standard doesn’t permit this kind of set membership test. Instead, you
must construct the query as a long set of individual comparisons, connected by
ANDs and ORs.

• Limited-table expressions SQL allows you to define a view like this one for large
orders:

SELECT *
 FROM ORDERS
 WHERE AMOUNT > 10000;

and then to use the view as if it were a real table in the FROM clause of a query to
find out which products, in which quantities, were ordered in these large orders:

SELECT MFR, PRODUCT, SUM(QTY)
 FROM BIGORDERS
 GROUP BY MFR, PRODUCT;

Conceptually, SQL should let you substitute the view definition right into the query,
like this:

SELECT MFR, PRODUCT, SUM(QTY)
 FROM (SELECT * FROM ORDERS WHERE AMOUNT > 10000) A
 GROUP BY MFR, PRODUCT;

But the SQL1 standard doesn’t allow a subquery in this position in the WHERE clause.
Yet clearly, the DBMS should be able to determine the meaning of this query, since it must
basically do the same processing to interpret the BIGORDERS view definition.

As these examples show, the SQL1 standard and DBMS products that implement to this
level of the standard are relatively restrictive in their permitted use of expressions involving
individual data items, sets of data items, rows, and tables. Subsequent versions of the SQL
standard include a number of advanced query capabilities that are focused on removing
these restrictions and making the SQL language more general. The spirit of these capabilities
tends to be that a user should be able to write a query expression that makes sense and
have the query expression be a legal SQL query. Because these capabilities constitute major
expansions of the language over the original SQL1 standard, most of them are required
only at a full level of the standard.

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 213

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 213

Scalar-Valued Expressions
The simplest extended query capabilities in SQL are those that provide more data manipulation
and calculation power involving individual data values (called scalars in the SQL standard).
Within the SQL language, individual data values tend to have three sources:

• The value of an individual column within an individual row of a table

• A literal value, such as 125.7 or ABC

• A user-supplied data value, entered into a program

In this SQL query:

SELECT NAME, EMPL_NUM, HIRE_DATE, (QUOTA * .9)
 FROM SALESREPS
 WHERE (REP_OFFICE = 13) OR TITLE = 'VP Sales';

the column names NAME, EMPL_NUM, HIRE_DATE, and QUOTA generate individual data
values for each row of query results, as do the column names REP_OFFICE and TITLE in
the WHERE clause. The numbers .9 and 13 and the character string “VP Sales” similarly
generate individual data values. If this SQL statement were to appear within an embedded
SQL program (described in Chapter 17), the program variable office_num might contain
an individual data value, and the query might appear as:

SELECT NAME, EMPL_NUM, HIRE_DATE, (QUOTA * .9)
 FROM SALESREPS
 WHERE (REP_OFFICE = :office_num) OR TITLE = 'VP SALES';

As this query and many previous examples have shown, individual data values can be
combined in simple expressions, like the calculated value QUOTA * .9. To these basic
expressions, the SQL standard adds the CAST operator for explicit data type conversion, the
CASE operator for decision making, the COALESCE operator for conditionally creating non-
NULL values, and the NULLIF operation for conditionally creating a NULL value.

The CAST Expression
The SQL standard has fairly restrictive rules about combining data of different types in
expressions. It specifies that the DBMS shall automatically convert among very similar data
types, such as 2-byte and 4-byte integers. However, if you try to compare numbers and
character data, for example, the standard says that the DBMS should generate an error. The
standard considers this an error condition even if the character string contains numeric
data. You can, however, explicitly ask the DBMS to convert among data types using the
CAST expression, which has the syntax shown in Figure 9-9.

FIGURE 9-9
CAST expression
syntax diagram

CAST ()AS

domain-name

data-type

NULL

value-expression

 214 P a r t I I : R e t r i e v i n g D a t a 214 P a r t I I : R e t r i e v i n g D a t a

The CAST expression tends to be of little importance when you are typing SQL
statements directly into an interactive SQL interface. However, it can be critical when using
SQL from within a programming language where data types don’t match the data types
supported by the SQL standard. For example, the CAST expression in the SELECT clause of
this query converts the values for REP_OFFICE (integers in the sample database) and HIRE_
DATE (a date in the sample database) into character strings for the returned query results:

SELECT NAME, CAST (REP_OFFICE AS CHAR), CAST (HIRE_DATE AS CHAR)
 FROM SALESREPS;

Support for the CAST expression varies across SQL implementations. For example,
Oracle requires that CHAR and VARCHAR data types used in a CAST expression include a
length specification, while MySQL and DB2 UDB do not support the DATE data type in a
CAST expression.

The CAST expression can generally appear anywhere that a scalar-valued expression can
appear within a SQL statement. In this example, it’s used in the WHERE clause to convert a
character-string customer number into an integer, so that it can be compared with the data
in the database:

SELECT PRODUCT, QTY, AMOUNT
 FROM ORDERS
 WHERE CUST = CAST ('2107' AS INTEGER);

Instead of specifying a data type in the CAST expression, you can specify a domain.
Domains are specific collections of legal data values that can be defined in the database.
They are fully described in Chapter 11 because of the role they play in SQL data integrity.
Note that you can also generate a NULL value of the appropriate data type for use in SQL
expressions using the CAST expression.

The most common uses for the CAST expression are

• To convert data from within a database table where the column is defined with the
wrong data type, for example, when a column is defined as a character string, but
you know it actually contains numbers (that is, strings of digits) or dates (strings
that can be interpreted as a calendar date).

• To convert data from data types supported by the DBMS that are not supported by a
host programming language. For example, most host programming languages do
not have explicit date and time data types and require that date/time values be
converted into character strings for handling by a program.

• To eliminate differences between data types in two different tables. For example, if
an order date is stored in one table as DATE data, but a product availability date is
stored in a different table as a character string, you can still compare the columns
from the two tables by CASTing one of the columns into the data type of the other.
Similarly, if you want to combine data from two different tables with a UNION
operation, their columns must have identical data types. You can achieve this by
CASTing the columns of one of the tables.

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 215

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 215

The CASE Expression
The CASE expression provides for limited decision-making within SQL expressions. Its basic
structure, shown in Figure 9-10, is similar to the IF…THEN…ELSE statement found in many
programming languages. When the DBMS encounters a CASE expression, it evaluates the
first search condition, and if it is TRUE, then the value of the CASE expression is the value of
the first result expression. If the result of the first search condition is not TRUE, the DBMS
proceeds to the second search condition and checks whether it is TRUE. If so, the value of
the CASE expression is the value of the second result expression, and so on.

Here is a simple example of the use of the CASE expression. Suppose you want to do an
A/B/C analysis of the customers from the sample database according to their credit limits.
The A customers are the ones with credit limits over $60,000, the B customers are those with
limits over $30,000, and the C customers are the others. Without the CASE expression, you
would have to retrieve customer names and credit limits from the database and then rely
on an application program to look at the credit limit values and assign an A, B, or C rating.
Using a CASE expression, you can have the DBMS do the work for you:

SELECT COMPANY,
 CASE WHEN CREDIT_LIMIT > 60000 THEN 'A'
 WHEN CREDIT_LIMIT > 30000 THEN 'B'
 ELSE 'C'
 END AS CREDIT_RATING
 FROM CUSTOMERS;

For each row of query results, the DBMS evaluates the CASE expression by first
comparing the credit limit with $60,000, and if the comparison is TRUE, returning an A in the
second column of query results. If that comparison fails, the comparison to $30,000 is made
and a B is returned if this second comparison is TRUE. Otherwise, the third column of query
results returns a C.

This is a very simple example of a CASE expression. The results of the CASE
expression are all literals here, but in general, they can be any SQL expression. Similarly,
there is no requirement that the tests in each WHEN clause be similar, as they are here.
The CASE expression can also appear in other clauses of a query provided the SQL
implementation supports such use. Here is an example of a query where the CASE
expression is useful in the WHERE clause. Suppose you want to find the total of the
salespeople’s sales, by office. If a salesperson is not yet assigned to an office, that person

FIGURE 9-10 CASE expression syntax diagram

CASE WHEN search-condition THEN END

result-expressionNULL ELSE

result-expression

NULL

 216 P a r t I I : R e t r i e v i n g D a t a 216 P a r t I I : R e t r i e v i n g D a t a

should be included in the total for his or her manager’s office. Here is a query that
generates the appropriate office groupings:

SELECT CITY, SUM(SALESREPS.SALES)
 FROM OFFICES, SALESREPS
 WHERE OFFICE =
 CASE WHEN (REP_OFFICE IS NOT NULL) THEN REP_OFFICE
 ELSE (SELECT REP_OFFICE
 FROM SALESREPS MGRS
 WHERE MGRS.EMPL_NUM = MANAGER)
 END
GROUP BY CITY;

The SQL standard provides a shorthand version of the CASE expression for the common
situation where you want to compare a test value of some kind with a sequence of data
values (usually literals). This version of the CASE syntax is shown in Figure 9-11. Instead of
repeating a search condition of the form:

test_value = value1

in each WHEN clause, it lets you specify the test_value calculation once. For example,
suppose you wanted to generate a list of all of the offices, showing the names of their
managers and the cities and states where they are. The sample database doesn’t include
state names, so the query must generate this information itself. Here is a query, with a CASE
expression in the SELECT list, that does the job:

SELECT NAME, CITY, CASE OFFICE WHEN 11 THEN 'New York'
 WHEN 12 THEN 'Illinois'
 WHEN 13 THEN 'Georgia'
 WHEN 21 THEN 'California'
 WHEN 22 THEN 'Colorado'
 END AS STATE
 FROM OFFICES, SALESREPS
 WHERE MGR = EMPL_NUM;

The COALESCE Expression
One of the most common uses for the decision-making capability of the CASE expression is
for handling NULL values within the database. For example, it’s frequently desirable to have
a NULL value from the database represented by some literal value (such as the word
“missing”) or by some default value when using SQL to generate a report. Here is a report
that lists the salespeople and their quotas. If a salesperson has not yet been assigned a
quota, assume that the salesperson’s actual year-to-date sales should be listed instead. If for

FIGURE 9-11 CASE expression alternate syntax

CASE WHEN value THEN

result-expressionNULL ELSE

result-expressiontest-value

NULL

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 217

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 217

some reason the actual year-to-date sales are also NULL (unknown), then a zero amount
should be listed. The CASE statement generates the desired IF…THEN…ELSE logic:

SELECT NAME, CASE WHEN (QUOTA IS NOT NULL) THEN QUOTA
 WHEN (SALES IS NOT NULL) THEN SALES
 ELSE 0.00
 END AS ADJUSTED_QUOTA
 FROM SALESREPS;

This type of NULL-handling logic is needed frequently, so the SQL standard includes
a specialized form of the CASE expression, the COALESCE expression, to handle it. The
syntax for the COALESCE expression is shown in Figure 9-12. The processing rules for
the COALESCE expression are very straightforward. The DBMS examines the first value
in the list. If its value is not NULL, it becomes the value of the COALESCE expression. If
the first value is NULL, the DBMS moves to the second value and checks to see whether
it is NULL. If not, it becomes the value of the expression. Otherwise, the DBMS moves to
the third value, and so on. Here is the same example just given, expressed with the
COALESCE expression instead of a CASE expression:

SELECT NAME, COALESCE(QUOTA, SALES, 0.00)
 FROM SALESREPS;

As you can see by comparing the two queries, the simplicity of the COALESCE syntax
makes it easier to see, at a glance, the meaning of the query. However, the operation of the
two queries is identical. The COALESCE expression adds simplicity, but no new capability,
to SQL.

The NULLIF Expression
Just as the COALESCE expression is used to eliminate NULL values when they are not desired
for processing, sometimes you may need to create NULL values. In many data processing
applications (especially older ones that were developed before relational databases were
popular), missing data is not represented by NULL values. Instead, some special code value
that is otherwise invalid is used to indicate that the data is missing.

For example, suppose that in the sample database, the situation where a salesperson had
not yet been assigned a manager was indicated by a zero (0) value in the MANAGER column
instead of a NULL value. In some circumstances, you will want to detect this situation within
a SQL query and substitute the NULL value for the zero “code.” The NULLIF expression,
shown in Figure 9-13, is used for this purpose. When the DBMS encounters a NULLIF
expression, it examines the first value (usually a column name) and compares it with the

FIGURE 9-12
COALESCE
expression syntax
diagram

COALESCE ()

,

value-expression

FIGURE 9-13
NULLIF
expression syntax
diagram

NULLIF ()

,

value-expression

 218 P a r t I I : R e t r i e v i n g D a t a 218 P a r t I I : R e t r i e v i n g D a t a

second value (usually the code value used to indicate missing data). If the two values are equal,
the expression generates a NULL value. Otherwise, the expression generates the first value.

Here is a query that handles the case where missing office numbers are represented by
a zero:

SELECT CITY, SUM(SALESREPS.SALES)
 FROM OFFICES, SALESREPS
 WHERE OFFICE = NULLIF(REP_OFFICE, 0)
 GROUP BY CITY;

Together, the CASE, COALESCE, and NULLIF expressions provide a solid decision-
making logic capability for use within SQL statements. They fall far short of the complete
logical flow constructs provided by most programming languages (looping, branching, and
so on), but do provide for much greater flexibility in query expressions. The net result is
that more processing work can be done by the DBMS and reflected in query results, leaving
less work to be done by the human user or the application program.

Row-Valued Expressions
Although columns and the scalar data values they contain are the atomic building blocks of a
relational database, the structuring of columns into rows that represent real-world entities,
such as individual offices or customers or orders, is one of the most important features of the
relational model. The SQL1 standard, and most mainstream commercial database products,
certainly reflect this row/column structure, but they provide very limited capability to
actually manipulate rows and groups of rows. Basically, SQL1 operations allow you to insert
a row into a table, or to retrieve, update, or delete groups of rows from a database (using the
INSERT, SELECT, UPDATE, or DELETE statements).

Newer versions of the SQL standard go well beyond these capabilities, allowing you to
generally use rows in SQL expressions in much the same way that you can use scalar values.
They provide syntax for constructing rows of data. They allow row-valued subqueries. And
they define row-valued meanings for the SQL comparison operators and other SQL structures.

The Row-Value Constructor
SQL allows you to specify a row of data values by using a row-value constructor expression,
whose syntax is shown in Figure 9-14. In its most common form, the row constructor is a
comma-separated list of literal values, or expressions. For example, here is a row-value
constructor for a row of data whose structure matches the OFFICES table in the sample database:

(23, 'San Diego', 'Western', NULL, DEFAULT, 0.00)

FIGURE 9-14
Row-value
constructor syntax
diagram

()

,

value-expression

DEFAULT

NULL

value-expression

DEFAULT

NULL

row-valued subquery

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 219

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 219

The result of this expression is a single row of data with six columns. The NULL keyword in
the fourth column position indicates that the fourth column in the constructed row should
contain a NULL (unknown) value. The DEFAULT keyword in the fifth column position indicates
that the fifth column in the constructed row should contain the default value for the column.
This keyword may appear in a row-value constructor only in certain situations—for example,
when the row-value constructor appears in an INSERT statement to add a new row to a table.

When a row constructor is used in the WHERE clause of a SQL statement, column names
can also appear as individual data items within the row constructor, or as part of an
expression within the row constructor. For example, consider this query:

List the order number, quantity, and amount of all orders for ACI-41002 widgets.

SELECT ORDER_NUM, QTY, AMOUNT
 FROM ORDERS
 WHERE (MGR, PRODUCT) = ('ACI', '41002');

Note that while this syntax is specified in the SQL standard, very few SQL implementations
support it. Under the normal rules of SQL query-processing, the WHERE clause is applied to
each row of the ORDERS table, one by one. The first row-value constructor in the WHERE clause
(to the left of the equal sign) generates a two-column row, containing the manufacturer code
and the product number for the current order being considered. The second row-value
constructor (to the right of the equal sign) generates a two-column row, containing the (literal)
manufacturer code ACI and product number 41002. The equal sign is now comparing two
rows of values, not two scalar values. The SQL standard defines this type of row-valued
comparison for equality, which is processed by comparing, pairwise, each of the columns in the
two rows. The result of the comparison is TRUE only if all of the pairwise column comparisons
are TRUE. Of course, it’s possible to write the query without the row-value constructors, like this:

List the order number, quantity, and amount of all orders for ACI-41002 widgets.

SELECT ORDER_NUM, QTY, AMOUNT
 FROM ORDERS
 WHERE (MFR = 'ACI') AND (PRODUCT = '41002');

and in this simple example, the meaning of the query is probably equally clear with either
form. However, row-value constructors can be very useful in simplifying the appearance of
more complex queries, and they become even more useful when combined with row-valued
subqueries.

Row-Valued Subqueries
As described throughout the earlier parts of this chapter, the SQL1 standard provides a
subquery capability for expressing more complex database queries. The subquery takes the
same form as a SQL query (that is, a SELECT statement), but a SQL1 subquery must be
scalar-valued—that is, it must produce a single data value as its query results. The value
generated by the subquery is then used as part of an expression within the main SQL
statement that contains the subquery. This use of subqueries is supported by the major
enterprise-class relational database systems today.

Subsequent versions of the SQL standard dramatically expand the subquery facility,
including support for row-valued subqueries. A row-valued subquery returns not just a single
data item, but a row of data items, which can be used in SQL expressions and compared

 220 P a r t I I : R e t r i e v i n g D a t a 220 P a r t I I : R e t r i e v i n g D a t a

with other rows. For example, suppose you wanted to show the order numbers and dates
for all of the orders placed against the highest-priced product in the sample database.
A logical way to start building the appropriate SQL query is to find an expression that will
give you the identity (manufacturer ID and product ID) of the high-priced product in
question. Here is a query that finds the right product:

Find the manufacturer ID and product ID of the product with the highest unit price.

SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE = (SELECT MAX(PRICE)
 FROM PRODUCTS);

Ignoring the possibility of a tie for the most expensive product for a moment, this query
will generate a single row of query results, consisting of two columns. Using SQL’s row-valued
subquery capability, you can embed this entire query as a subquery within a SELECT statement
to retrieve the order information, as shown in the next example.

List the order numbers and dates of all orders placed for the highest-priced product.

SELECT ORDER_NUM, ORDER_DATE
 FROM ORDERS
 WHERE (MFR, PRODUCT) = (SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE = (SELECT MAX(PRICE)
 FROM PRODUCTS));

The top-level WHERE clause in this query contains a row-valued comparison. On the left
side of the equal sign is a row-value constructor consisting of two column names. Each time
the WHERE clause is examined to carry out the top-level query, the value of this row-valued
expression is a manufacturer-ID/product-ID pair from a row of the ORDERS table. On the
right side of the equal sign is the subquery that generates the identity of the product with the
highest dollar value. The result of this subquery is again a row value, with two columns,
whose data types match those of the row-valued expression on the left side of the equal sign.

It’s possible to express this query without the row-valued subquery, but the resulting
query will be much less straightforward:

List the order numbers and dates of all orders placed for the highest-priced product(s).

SELECT ORDER_NUM, ORDER_DATE
 FROM ORDERS
 WHERE (MFR IN (SELECT MFR_ID
 FROM PRODUCTS
 WHERE PRICE = (SELECT MAX(PRICE)
 FROM PRODUCTS)))
 AND (PRODUCT IN (SELECT PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE = (SELECT MAX(PRICE)
 FROM PRODUCTS)));

Instead of a single row-valued comparison in the WHERE clause, the resulting query has
two separate scalar-valued comparisons, one for the manufacturer ID and one for the
product ID. Because the comparison must be split, the lower-level subquery to find the

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 221

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 221

maximum price must be repeated twice as well. Overall, the form of the query using the
row-valued expression is a more direct translation of the English-language request, and it’s
easier to read and understand.

Row-Valued Comparisons
The most common use of row-valued expressions in the WHERE or HAVING clause is within a
test for equality, as illustrated by the last few examples. A constructed row (often consisting
of column values from a candidate row of query results) is compared with another
constructed row (perhaps a row of subquery results or a row of literal values), and if the
rows are equal, the candidate row is included in the query results. The SQL standard also
provides for row-valued forms of the inequality comparison tests and the range test. When
comparing two rows for inequality, SQL uses the same rules that it would use if the columns
were being used to sort the rows. It compares the contents of the first column in the two
rows, and if they are unequal, uses them to order the rows. If they are equal, the comparison
moves to the second column, and then the third, and so on. Here are the resulting
comparisons for some three-column constructed rows derived from the ORDERS table:

('ACI','41002',54) < ('REI','2A44R',5)—based on first column
('ACI','41002',54) < ('ACI','41003',35)—based on second column
('ACI','41002',10) < ('ACI','41002',54)—based on third column

Table-Valued Expressions
In addition to its extended capabilities for expressions involving simple scalar data values
and row values, the SQL standard dramatically extends the SQL capabilities for table-
processing. It provides a mechanism for constructing a table of data values in place within
a SQL statement. It allows table-valued subqueries and extends the SQL1 subquery tests to
handle them. It also allows subqueries to appear in many more places within a SQL
statement—for example, a subquery can appear in the FROM clause of a SELECT statement
as one or more of its source tables. Finally, it provides expanded capabilities for combining
tables, including the UNION, INTERSECTION, and DIFFERENCE operations.

The Table-Value Constructor
SQL allows you to specify a table of data values within a SQL statement by using a table-
value constructor expression, whose syntax is shown in Figure 9-15. In its simplest form, the
table-value constructor is a comma-separated list of row-value constructors, each of which
contains a comma-separated set of literals that form individual column values. For example,
the SQL INSERT statement uses a table-value constructor as the source of the data to be
inserted into a database. While the SQL1 INSERT statement (described in Chapter 10)
allows you to insert only a single row of data, the SQL2 (and beyond) standard INSERT

FIGURE 9-15
Table-value
constructor syntax
diagram

VALUES

,

row-value constructor

 222 P a r t I I : R e t r i e v i n g D a t a 222 P a r t I I : R e t r i e v i n g D a t a

statement inserts three rows into the OFFICES table. However, not all SQL implementations
support this syntax.

Add three offices to the OFFICES table.

INSERT INTO OFFICES (OFFICE,CITY,REGION,MGR,SALES)
 VALUES (23, 'San Diego', 'Western', 108, 0.00),
 (24, 'Seattle', 'Western', 104, 0.00),
 (14, 'Boston', 'Eastern', NULL, 0.00);

Note that the individual rows in the table-value constructor are not restricted to contain
only literal values. The source of a data value can be a scalar-valued subquery, or an entire
row can be the result of a row-valued subquery. Although it doesn’t make much sense in the
sample database, and the syntax isn’t supported by any of the leading DBMS brands, this is
a legal SQL standard INSERT statement that illustrates these capabilities:

Add three offices to the OFFICES table.

INSERT INTO OFFICES (OFFICE,CITY,REGION,MGR,SALES)
 VALUES (23, 'San Diego', 'Western', 108, 0.00),
 (24, 'Seattle', 'Western', (SELECT MANAGER
 FROM SALESREPS
 WHERE EMPL_NUM = 105), 0.00),
 (SELECT 14, 'BOSTON', REGION, MGR, 0.00
 FROM OFFICES
 WHERE OFFICE = 12);

As in the preceding example, the VALUES clause in this INSERT statement generates a
three-row table to be inserted. The first row is specified with literal values. In the second
row, the fourth column is specified as a scalar-valued subquery that retrieves the manager
of employee number 105. In the third row, the entire row is generated by a row-valued
subquery. In this case, three of the column values in the subquery’s SELECT clause are
actually literal values, but the third and fourth columns are produced by the subquery,
which retrieves the manager and region for the New York office (number 12).

Table-Valued Subqueries
Just as newer versions of the SQL standard expand the use of scalar subqueries into row-
valued subqueries, they also extend the SQL subquery facility to support table-valued
subqueries—that is, subqueries that return a full table of results. (Note that SQL Server does
not support this syntax, but Oracle, MySQL, and DB2 UDB do.) One useful role for table-
valued subqueries is within the WHERE or HAVING clause, where the table-valued subquery
is combined with extended forms of the subquery tests. For example, suppose you wanted
to list the descriptions and prices of all products with orders exceeding $20,000 in the
sample database. Perhaps the most straightforward way to express this request is in this
SQL statement that uses a table-valued subquery:

List the description and price of all products with individual orders over $20,000.

SELECT DESCRIPTION, PRICE
 FROM PRODUCTS
 WHERE (MFR_ID,PRODUCT_ID) IN (SELECT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 20000.00);

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 223

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 223

The top-level query is a straightforward statement of the English-language request—it
asks for the description and price of those products whose identification (as in previous
examples, a manufacturer-ID/product-ID pair) matches some set of products. This is
expressed as a subquery set membership test in the WHERE clause. The subquery generates a
two-column table of subquery results, which are the identifications of the products that
meet the stated order size criterion.

It’s certainly possible to express this query in other ways. From the discussion in
Chapter 7, you probably recognize that it can be stated as a join of the PRODUCTS and
ORDERS tables with a compound search condition:

List the description and price of all products with individual orders over $20,000.

SELECT DISTINCT DESCRIPTION, PRICE
 FROM PRODUCTS, ORDERS
 WHERE (MFR_ID = MFR)
 AND (PRODUCT_ID = PRODUCT)
 AND (AMOUNT > 20000.00);

Note that we had to add the DISTINCT keyword because there are two orders over
$20,000 for the “Right Hinge” product. This is an equally valid statement of the query, but
it’s a lot further removed from the English-language request, and therefore more difficult to
understand for most people. As queries become more complex, the ability to use table-
valued subqueries becomes even more useful to simplify and clarify SQL requests.

The SQL Query Specification
The SQL standard formalizes the definition of what we have loosely been calling a SELECT
statement or a query in the last three chapters into a basic building block called a query
specification. For a complete understanding of the SQL table expression capabilities in the
next section, it’s useful to understand this formal definition. The form of a SQL query
specification is shown in Figure 9-16. Its components should be familiar from the earlier
chapters:

• A select list specifies the columns of query results. Each column is specified by an
expression that tells the DBMS how to determine its value. The column can be
assigned an optional alias with the AS clause.

• The keywords ALL or DISTINCT control duplicate-row elimination in the query
results.

• The FROM clause specifies the tables that contribute to the query results.

• The WHERE clause describes how the DBMS should determine which rows are
included in the query results and which should be discarded.

• The GROUP BY and HAVING clauses together control the grouping of individual
query results rows in a grouped query, and the selection of row groups for inclusion
or exclusion in the final results.

• The ORDER BY clause specifies the desired sequence of the rows in the query results.

 224 P a r t I I : R e t r i e v i n g D a t a 224 P a r t I I : R e t r i e v i n g D a t a

The query specification is the basic query building block in the SQL standard.
Conceptually, it describes the process of combining data from the tables in the FROM clause
into a row/column table of query results. The value of the query specification is a table of
data. In the simplest case, a SQL query consists of a simple query specification. In a slightly
more complex case, a query specification is used to describe a subquery, which appears
within another (higher-level) query specification. Finally, query specifications can be
combined using table-valued operations to form general-purpose query expressions, as
described in the next section.

Query Expressions
The SQL standard defines a query expression as the full, general-purpose way that you can
specify a table of query results in SQL. The basic building blocks you can use to create a
query expression are the following:

• A query specification, as described in the preceding section (SELECT…FROM…). Its
value is a table of query results.

• A table-value constructor, as previously described (VALUES …). Its value is a table
of constructed values.

• An explicit table reference (TABLE tblname). Its value is the contents of the named
table.

FIGURE 9-16 SQL query specification: formal definition

SELECT

DISTINCT

ALL

AS

FROM

WHERE search-condition GROUP BY grouping-column-list

HAVING search-condition ORDER BY order-column-list

*

table-name.*

value-expression

column-name

,

table-specification

,

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 225

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 225

Using these building blocks, SQL lets you combine their table values using the
following operations:

• JOIN SQL provides explicit support for full cross-product joins (cross joins),
natural joins, inner joins, and all types of outer joins (left, right, and full), as
described in Chapter 7. A JOIN operation takes two tables as its input and produces
a table of combined query results according to the join specification.

• UNION The SQL UNION operation provides explicit support for merging the rows
of two compatible tables (that is, two tables having the same number of columns
and with corresponding columns having the same data types). The UNION operation
takes two tables as its input and produces a single merged table of query results.

• EXCEPT The SQL EXCEPT operation takes two tables as its input and produces as
its output a table containing the rows that appear in the first table but that do not
appear in another table—that is, the rows that are missing from the second table.
Conceptually, the EXCEPT operation is like table subtraction. The rows of the second
table are taken away from the rows of the first table, and the answer is the
remaining rows of the first table.

• INTERSECT The SQL INTERSECT operation takes two tables as its input and
produces as its output a table containing the rows that appear in both input tables.

UNION, INTERSECT, and EXCEPT Operations
The UNION, INTERSECT, and EXCEPT operations provide set operations for combining two
input tables to form an output table. Nearly all vendors support UNION, but support for
INTERSECT and EXCEPT is inconsistent across vendors. For example, Oracle uses the
keyword MINUS instead of EXCEPT. All three of the operations require that the two input
tables be union-compatible—they must have the same number of columns, and the
corresponding columns of each table must have identical data types. Here are some simple
examples of SQL query expressions involving UNION, INTERSECT, and EXCEPT operations
based on the sample database:

Show all products for which there is an order over $30,000 or more than $30,000 worth of inventory
on hand.

 (SELECT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 30000.00)
 UNION
(SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE (PRICE * QTY_ON_HAND) > 30000);

Show all products for which there is an order over $30,000 and more than $30,000 worth of
inventory on hand.

(SELECT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 30000.00)
INTERSECT
(SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE (PRICE * QTY_ON_HAND) > 30000);

 226 P a r t I I : R e t r i e v i n g D a t a 226 P a r t I I : R e t r i e v i n g D a t a

Show all products for which there is an order over $30,000 except for those products that sell for
under $100.

 (SELECT MFR, PRODUCT
 FROM ORDERS
 WHERE AMOUNT > 30000.00)
 EXCEPT
(SELECT MFR_ID, PRODUCT_ID
 FROM PRODUCTS
 WHERE PRICE < 100.00);

By default, the UNION, INTERSECT, and EXCEPT operations eliminate duplicate rows
during their processing. This is usually the desired result, as it is in these examples, but
occasionally you may need to suppress the elimination of duplicate rows. You can do this
by specifying the UNION ALL, INTERSECT ALL, or EXCEPT ALL forms of the operations.

Note each of these examples produces a two-column table of query results. The
results come from two different source tables within the database—the ORDERS table and
the PRODUCTS table. However, the columns selected from these tables have the same
corresponding data types, so they can be combined using these operations. In the
sample database, the corresponding columns have different names in the two tables.
(The manufacturer-ID column is named MFR in the ORDERS table but named MFR_ID in
the PRODUCTS table.)

Query Expressions in the FROM Clause
SQL query expressions provide a much more powerful and flexible method for generating
and combining tables of query results than the simple subquery and UNION operations
provided by the SQL1 standard. To make query expressions even more useful and more
general purpose, the SQL standard now allows them to appear almost anywhere that a table
reference could appear in a SQL1 query. In particular, a query expression can appear in
place of a table name in the FROM clause. Here is a simple example of a query for the sample
database that uses this feature:

Show the names and total outstanding orders of all customers with credit limits over $50,000.

 SELECT COMPANY, TOT_ORDERS
 FROM CUSTOMERS, (SELECT CUST, SUM(AMOUNT) AS TOT_ORDERS
 FROM ORDERS
 GROUP BY CUST) A
 WHERE (CREDIT_LIMIT > 50000.00)
 AND (CUST_NUM = CUST);

The second “table name” in the FROM clause of the main query is not a table name at all,
but a full-blown query expression. In fact, the expression could have been much more
complex, involving UNION or JOIN operations. When a query expression appears in the FROM
clause, as it does here, the DBMS conceptually carries it out first, before any other processing
of the query, and creates a temporary table of the query results generated by the query
expression. In this case, this temporary table consists of two columns, listing each customer
number and the total of orders for that customer number. This temporary table then acts as
one of the source tables for the main query. In this example, its contents are joined to the
CUSTOMER table to obtain the company name and generate the answer to the main question.

 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 227

PART II
 C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 227

There are many other ways in which this query could be written. The entire query could
be written as one top-level grouped query that joins the CUSTOMER and ORDERS table. The
join operation could be made explicit with a JOIN operator, and then the results of the join
could be grouped in the top-level query. As this example shows, one of the benefits of the
SQL query expression capabilities is that they typically provide several different ways to
obtain the same query results.

The general philosophy behind the capabilities in this area is that SQL should provide the
flexibility to express a query in the most natural form. The underlying DBMS must be able to
take the query, however expressed, break it down into its fundamentals, and then determine
the most efficient way to carry out the query. This internal query execution plan may be quite
different from the apparent plan called for by the actual SQL statement, but as long as it
produces the same query results, the net effect is to shift the optimization workload from the
human user or programmer to the DBMS.

SQL Queries: A Final Summary
This concludes the discussion of the SQL queries and the SELECT statement that began in
Chapter 6. As described in Chapters 6 through 9, the clauses of the SELECT statement
provide a powerful, flexible set of capabilities for retrieving data from the database. Each
clause plays a specific role in data retrieval:

• The FROM clause specifies the source tables that contribute data to the query results.
Every column name in the body of the SELECT statement must unambiguously
identify a column from one of these tables, or it must be an outer reference to a
column from a source table of an outer query.

• The WHERE clause, if present, selects individual combinations of rows from the
source tables to participate in the query results. Subqueries in the WHERE clause are
evaluated for each individual row.

• The GROUP BY clause, if present, groups the individual rows selected by the WHERE
clause into row groups.

• The HAVING clause, if present, selects row groups to participate in the query results.
Subqueries in the HAVING clause are evaluated for each row group.

• The SELECT clause determines which data values actually appear as columns in the
final query results.

• The DISTINCT keyword, if present, eliminates duplicate rows of query results.

• The UNION operator, if present, merges the query results produced by individual
SELECT statements into a single set of query results.

• The ORDER BY clause, if present, sorts the final query results based on one or more
columns.

• The SQL query expression capabilities add row-valued and table-valued
expressions and INTERSECT and EXCEPT operations to the SQL1 capabilities. The
fundamental flow of query processing is not changed, but the capability to express
queries within queries is greatly enhanced.

This page intentionally left blank

III
Updating Data

SQL is not only a query language, but it’s also a complete
language for retrieving and modifying data in a database.
Chapters 10–12 focus on database updates. Chapter 10

describes SQL statements that add data to a database, remove data
from a database, and modify existing database data. Chapter 11
describes how SQL maintains the integrity of stored data when the
data is modified. Chapter 12 describes the SQL transaction-processing
features that support concurrent database updates by many different
users.

CHAPTER 10
Database Updates

CHAPTER 11
Data Integrity

CHAPTER 12
Transaction Processing

PART

This page intentionally left blank

10
Database Updates

SQL is a complete data manipulation language that is used not only for database
queries, but also to modify and update data in the database. Compared with the
complexity of the SELECT statement, which supports SQL queries, the SQL statements

that modify database contents are extremely simple. However, database updates pose some
challenges for a DBMS beyond those presented by database queries. The DBMS must
protect the integrity of stored data during changes, ensuring that only valid data is
introduced into the database, and that the database remains self-consistent, even in the
event of system failures. The DBMS must also coordinate simultaneous updates by multiple
users, ensuring that the users and their changes do not interfere with one another.

This chapter describes the three SQL statements that are used to modify the contents of
a database:

• INSERT Adds new rows of data to a table

• DELETE Removes rows of data from a table

• UPDATE Modifies existing data in the database

In Chapter 11, SQL facilities for maintaining data integrity are described. Chapter 12
covers SQL support for multiuser concurrency.

Adding Data to the Database
A new row of data is typically added to a relational database when a new entity represented
by the row appears in the outside world. For example, in the sample database:

• When you hire a new salesperson, a new row must be added to the SALESREPS
table to store the salesperson’s data.

• When a salesperson signs a new customer, a new row must be added to the
CUSTOMERS table, representing the new customer.

• When a customer places an order, a new row must be added to the ORDERS table to
contain the order data.

231231

CHAPTER

 232 P a r t I I I : U p d a t i n g D a t a 232 P a r t I I I : U p d a t i n g D a t a

In each case, the new row is added to maintain the database as an accurate model of the
real world. The smallest unit of data that can be added to a relational database is a single row.
In general, a SQL-based DBMS provides three ways to add new rows of data to a database:

• Single-row INSERT A single-row INSERT statement adds a single new row of data to
a table. It is commonly used in daily applications—for example, data entry programs.

• Multirow INSERT A multirow INSERT statement extracts rows of data from
another part of the database and adds them to a table. It is commonly used, for
example, in end-of-month processing when old rows of a table are moved to an
inactive table, or when monthly results are summarized into a table that has been
set up to hold them.

• Bulk load A bulk load utility adds data to a table from a file that is outside of the
database. It is commonly used to initially load the database or to incorporate data
downloaded from another computer system or collected from many sites.

The Single-Row INSERT Statement
The single-row INSERT statement, shown in Figure 10-1, adds a new row to a table. The
INTO clause specifies the table that receives the new row (the target table), and the VALUES
clause specifies the data values that the new row will contain. The column list indicates
which data value goes into which column of the new row.

Suppose you just hired a new salesperson, Henry Jacobsen, with the following
personal data:

Name: Henry Jacobsen

Age: 36

Employee Number: 111

Title: Sales Manager

Office: Atlanta (office number 13)

Hire Date: July 25, 2008

Quota: Not yet assigned

Year-to-Date Sales: $0.00

FIGURE 10-1 Single-row INSERT statement syntax diagram

INSERT INTO table-name

VALUES ()

()column-name

,

constant

,
NULL

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 233
PART III

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 233

Here is the INSERT statement that adds Mr. Jacobsen to the sample database:

Add Henry Jacobsen as a new salesperson.

INSERT INTO SALESREPS (NAME, AGE, EMPL_NUM, SALES, TITLE,
 HIRE_DATE, REP_OFFICE)
 VALUES ('Henry Jacobsen', 36, 111, 0.00, 'Sales Mgr',
 '2008-07-25', 13);

1 row inserted.

Figure 10-2 graphically illustrates how SQL carries out this INSERT statement.
Conceptually, the INSERT statement builds a single row of data that matches the column
structure of the table, fills it with the data from the VALUES clause, and then adds the new
row to the table. The rows of a table are unordered, so there is no notion of inserting the
row at the top, at the bottom, or between two rows of the table. After the INSERT
statement, the new row is simply a part of the table. A subsequent query against the
SALESREPS table will include the new row, but it may appear anywhere among the rows
of query results.

Suppose Mr. Jacobsen now receives his first order, from InterCorp, a new customer
who is assigned customer number 2126. The order is for 20 ACI-41004 widgets, for a total

FIGURE 10-2 Inserting a single row

INSERT INTO SALESREPS (NAME, AGE, EMPL_NUM, SALES, QUOTA, TITLE, ...)
VALUES (‘Henry Jacobsen’, 36, 111, 0.00, NULL, ‘Sales Mgr’, NULL, ‘2008-07-25’, 13);

EMPL_NUM NAME

Nancy Angelli

Bill Adams

AGE REP_OFFICE TITLE HIRE_DATE MANAGER QUOTA SALES

Sales Rep 2006-02-12 104 $350,000.00 $367,911.00

109

102

106

104

101

110

108

103

107

105

Mary Jones

Sue Smith

Bob Smith

Dan Roberts

Tom Snyder

Larry Fitch

Paul Cruz

Sam Clark

37

31

48

52

33

45

41

62

29

49

13

11

21

11

12

12

NULL

21

12

22

Sales Rep

Sales Rep

Sales Rep

Sales Rep

Sales Rep

Sales Rep

VP Sales

Sales Mgr

Sales Mgr

2007-10-12

2004-12-10

2006-06-14

2005-05-19

2004-10-20

2008-01-13

2007-10-12

2005-03-01

2006-11-14

106

108

NULL

106

104

101

106

104

108

$300,000.00

$350,000.00

$275,000.00

$200,000.00

$300,000.00

NULL

$350,000,00

$275,000.00

$300,000.00

$392.725.00

$474,050.00

$299,912.00

$142,594.00

$305,673.00

$75,985.00

$361,865.00

$286,775.00

$186,042.00

Henry Jacobson 36 13 Sales Mgr 2008-07-25 NULL NULL 0.00111

SQL Statement

New Row

SALESREPS Table

 234 P a r t I I I : U p d a t i n g D a t a 234 P a r t I I I : U p d a t i n g D a t a

price of $2340, and has been assigned order number 113069. Here are the INSERT statements
that add the new customer and the order to the database:

Insert a new customer and order for Mr. Jacobsen.

INSERT INTO CUSTOMERS (COMPANY, CUST_NUM, CREDIT_LIMIT, CUST_REP)
 VALUES ('InterCorp', 2126, 15000.00, 111);

1 row inserted.

INSERT INTO ORDERS (AMOUNT, MFR, PRODUCT, QTY, ORDER_DATE,
 ORDER_NUM, CUST, REP)
 VALUES (2340.00, 'ACI', '41004', 20, CURRENT_DATE, 113069,
 2126, 111);

1 row inserted.

As this example shows, the INSERT statement can become lengthy if there are many
columns of data, but its format is still very straightforward. The second INSERT statement
uses the system constant CURRENT DATE in its VALUES clause, causing the current date to
be inserted as the order date. This system constant is specified in the SQL standard and is
supported by many of the popular SQL products, including Oracle and MySQL. Other
brands of DBMS such as SQL Server and DB2 UDB provide other system constants or built-
in functions to obtain the current date and time.

You can use the INSERT statement with interactive SQL to add rows to a table that
grows very rarely, such as the OFFICES table. In practice, however, data about a new
customer, order, or salesperson is almost always added to a database through a data entry
program that presents a form to the user to collect the data. When the data entry is
complete, the application program inserts the new row of data using programmatic SQL.
Regardless of whether interactive or programmatic SQL is used, however, the INSERT
statement is the same.

The table name specified in the INSERT statement is normally an unqualified table
name, specifying a table that you own. To insert data into a table owned by another user,
you can specify a qualified table name. Of course, you must also have permission to insert
data into the table, or the INSERT statement will fail. The SQL security scheme and
permissions are described in Chapter 15.

The purpose of the column list in the INSERT statement is to match the data values in
the VALUES clause with the columns that are to receive them. The list of values and the list
of columns must both contain the same number of items, and the data type of each value
must be compatible with the data type of the corresponding column, or an error will occur.
The ANSI/ISO standard mandates unqualified column names in the column list, but many
implementations allow qualified names. Of course, there can be no ambiguity in the column
names anyway, because they must all reference columns of the target table.

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 235
PART III

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 235

Inserting NULL Values
When SQL inserts a new row of data into a table, it automatically assigns a NULL value to
any column whose name is missing from the column list in the INSERT statement. In this
INSERT statement, which added Mr. Jacobsen to the SALESREPS table, the QUOTA and
MANAGER columns were omitted:

INSERT INTO SALESREPS (NAME, AGE, EMPL_NUM, SALES, TITLE,
 HIRE_DATE, REP_OFFICE)
 VALUES ('Henry Jacobsen', 36, 111, 0.00, 'Sales Mgr',
 '2008-07-25', 13);

As a result, the newly added row has a NULL value in the QUOTA and MANAGER
columns, as shown in Figure 10-2. You can make the assignment of a NULL value more
explicit by including these columns in the column list and specifying the keyword NULL in
the values list. This INSERT statement has exactly the same effect as the previous one:

INSERT INTO SALESREPS (NAME, AGE, EMPL_NUM, SALES, QUOTA, TITLE,
 MANAGER, HIRE_DATE, REP_OFFICE)
 VALUES ('Henry Jacobsen', 36, 111, 0.00, NULL, 'Sales Mgr',
 NULL, '2008-07-25', 13);

Inserting All Columns
As a convenience, SQL allows you to omit the column list from the INSERT statement.
When the column list is omitted, SQL automatically generates a column list consisting of all
columns of the table, in left-to-right sequence. This is the same column sequence generated
by SQL when you use a SELECT * query. Using this shortcut, the previous INSERT
statement could be rewritten equivalently as:

INSERT INTO SALESREPS
 VALUES (111, 'Henry Jacobsen', 36, 13, 'Sales Mgr',
 '2008-07-25', NULL, NULL, 0.00);

When you omit the column list, the NULL keyword must be used in the values list to
explicitly assign NULL values to columns, as shown in the example. In addition, the
sequence of data values must correspond exactly to the sequence of columns in the table.

Omitting the column list is convenient in interactive SQL because it reduces the length of
the INSERT statement you must type. For programmatic SQL, the column list should always
be specified because it makes the program easier to read and understand. In addition, table
structures often change over time to include new columns or to drop columns that are no
longer used. A program that contains an INSERT statement without an explicit column list
may work correctly for months or years, and then suddenly begin producing errors when the
number of columns or data types of columns is changed by a database administrator.

The Multirow INSERT Statement
The second form of the INSERT statement, shown in Figure 10-3, adds multiple rows of
data to its target table. In this form of the INSERT statement, the data values for the new
rows are not explicitly specified within the statement text. Instead, the source of new rows is
a database query, specified in the statement.

 236 P a r t I I I : U p d a t i n g D a t a 236 P a r t I I I : U p d a t i n g D a t a

Adding rows whose values come from within the database itself may seem strange at
first, but it’s very useful in some special situations. For example, suppose you want to copy
the order number, date, and amount of all orders placed before January 1, 2008, from the
ORDERS table into another table, called OLDORDERS. The multirow INSERT statement
provides a concise, efficient way to copy the data:

Copy old orders into the OLDORDERS table.

INSERT INTO OLDORDERS (ORDER_NUM, ORDER_DATE, AMOUNT)
 SELECT ORDER_NUM, ORDER_DATE, AMOUNT
 FROM ORDERS
 WHERE ORDER_DATE < '2008-01-01';

9 rows inserted.

This INSERT statement looks complicated, but it’s really very simple. The statement
identifies the table to receive the new rows (OLDORDERS) and the columns to receive the
data, just like the single-row INSERT statement. The remainder of the statement is a query
that retrieves data from the ORDERS table. Figure 10-4 graphically illustrates the operation
of this INSERT statement. Conceptually, SQL first performs the query against the ORDERS
table and then inserts the query results, row by row, into the OLDORDERS table.

Here’s another situation where you could use the multirow INSERT statement. Suppose
you want to analyze customer buying patterns by looking at which customers and
salespeople are responsible for big orders—those over $15,000. The queries that you will be
running will combine data from the CUSTOMERS, SALESREPS, and ORDERS tables. These
three-table queries will execute fairly quickly on the small sample database, but in a real
corporate database with many millions of rows, they would take a long time. Rather than
running many long, three-table queries, you could create a new table named BIGORDERS to
contain the required data, defined as follows:

Column Information

AMOUNT Order amount (from ORDERS)

COMPANY Customer name (from CUSTOMERS)

NAME Salesperson name (from SALESREPS)

PERF Amount over/under quota (calculated from SALESREPS)

MFR Manufacturer ID (from ORDERS)

PRODUCT Product ID (from ORDERS)

QTY Quantity ordered (from ORDERS)

FIGURE 10-3 Multirow INSERT statement syntax diagram

()column-name

,

INSERT INTO table-name query

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 237
PART III

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 237

Once you have created the BIGORDERS table, this multirow INSERT statement can be
used to populate it:

Load data into the BIGORDERS table for analysis.

INSERT INTO BIGORDERS (AMOUNT, COMPANY, NAME, PERF, PRODUCT, MFR, QTY)
 SELECT AMOUNT, COMPANY, NAME, (SALES - QUOTA), PRODUCT, MFR, QTY
 FROM ORDERS, CUSTOMERS, SALESREPS
 WHERE CUST = CUST_NUM
 AND REP = EMPL_NUM
 AND AMOUNT > 15000.00;

6 rows inserted.

In a large database, this INSERT statement may take a while to execute because it
involves a three-table query. When the statement is complete, the data in the BIGORDERS
table will duplicate information in other tables. In addition, the BIGORDERS table won’t be
automatically kept up to date when new orders are added to the database, so its data may
quickly become outdated. Each of these factors seems like a disadvantage. However, the
subsequent data analysis queries against the BIGORDERS table can be expressed very
simply—they become single-table queries.

Furthermore, each of those queries will run much faster than if it were a three-table join.
Consequently, this is probably a good strategy for performing the analysis, especially if the
three original tables are large. In this situation, it’s likely that the BIGORDERS table will be
used as a temporary table for doing the analysis. It will be created and populated with data,
representing a snapshot of the order status in time, the analysis programs will be run, and
then the table will be emptied or dropped.

FIGURE 10-4 Inserting multiple rows

ORDER_NUM ORDER_DATE CUST REP MFR PRODUCT QTY AMOUNT

112961

113012

112989

.

113049

112987

113057

113042

2007-12-17 2117 106 REI 2A44L 7 $31,500.00

2008-01-11 2111 105 ACI 41003 35 $3,745.00

2008-01-03

2008-02-10

2008-02-10

2007-12-31

2008-02-18

2008-02-02

2101

2118

2118

2103

2111

2113

106

108

108

105

103

101

FEA

QSA

QSA

ACI

ACI

REI

114X

Xk47

Xk47

4100Y

4100X

2A44R

6

2

2

11

24

5

$1,458.00

$1,420.00

$776.00

$27,500.00

$600.00

$22,500.00

..
113051

.

..
.
..

.

..
.
..

.

..
.
..

.

..

ORDERS Table

SELECT ORDER_NUM, ORDER_DATE, AMOUNT
 FROM ORDERS
WHERE ORDER_DATE <‘2008-01-01’;

ORDER_NUM ORDER_DATE AMOUNT

112961

112963

112983

112987

112992

112993

2007-12-17 $31,500.00

2007-12-17 $3,276.00

2007-12-27

2007-12-31

2007-11-04

2007-01-04

$702.00

$27,500.00

$760.00

$1,896.00

Query Results

112979 2007-10-12 $15,000.00

112968 2007-10-12 $3,978.00

112975 2007-10-12 $2,100.00

ORDER_NUM ORDER_DATE AMOUNT

OLDORDERS Table

 238 P a r t I I I : U p d a t i n g D a t a 238 P a r t I I I : U p d a t i n g D a t a

The SQL standard specifies several logical restrictions on the query that appears within
the multirow INSERT statement:

• The query cannot contain an ORDER BY clause. It’s useless to sort the query results
anyway, because they’re being inserted into a table that is, like all tables, unordered.

• The query results must contain the same number of columns as the column list in
the INSERT statement (or as the entire target table, if the column list is omitted),
and the data types must be compatible, column by column.

Bulk Load Utilities
Data to be inserted into a database is often downloaded from another computer system or
collected from other sites and stored in a sequential file. To load the data into a table, you could
write a program with a loop that reads each record of the file and uses the single-row INSERT
statement to add the row to the table. However, the overhead of having the DBMS repeatedly
execute single-row INSERT statements may be quite high. If inserting a single row takes half a
second under a typical system load, it’s probably acceptable performance for an interactive
program. But that performance quickly becomes unacceptable when applied to the task of bulk
loading 50,000 rows of data. In this case, loading the data would require over six hours.

For this reason, most commercial DBMS products include a bulk load feature that loads
data from a file into a table at high speed. The ANSI/ISO SQL standard does not address
this function, and it is usually provided as a stand-alone utility program rather than as part
of the SQL language. Each vendor’s utility provides a slightly different set of features,
functions, and commands.

When SQL is used from within an application program, another technique is frequently
provided for more efficiently inserting a large amount of data into a database. The standard
programmatic INSERT statement inserts a single row of data, just like the interactive single-
row INSERT statements in the preceding examples. But many commercial DBMS products
allow data from two or more rows (often up to hundreds of rows) to be supplied as part of a
single bulk INSERT statement. All of the supplied data must be for new rows of the single
table that is the target of the INSERT statement, and named in the INTO clause.

Executing a bulk INSERT statement for 100 rows of data has exactly the same effect as
executing 100 individual single-row INSERT statements. However, it is usually much more
efficient, because it involves only one call to the DBMS. When thousands of rows are
loaded, the performance gain can be an order of magnitude or more.

Deleting Data from the Database
A row of data is typically deleted from a database when the entity represented by the row
disappears from the outside world. For example, in the sample database:

• When a customer cancels an order, the corresponding row of the ORDERS table must
be deleted.

• When a salesperson leaves the company, the corresponding row of the SALESREPS
table must be deleted.

• When a sales office is closed, the corresponding row of the OFFICES table must be
deleted. If the salespeople in the office are terminated, their rows should be deleted
from the SALESREPS table as well. If they are reassigned, their REP_OFFICE
column values must be updated.

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 239
PART III

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 239

In each case, the row is deleted to maintain the database as an accurate model of the real
world. The smallest unit of data that can be deleted from a relational database is a single row.

The DELETE Statement
The DELETE statement, shown in Figure 10-5, removes selected rows of data from a single
table. The FROM clause specifies the target table containing the rows. The WHERE clause
specifies which rows of the table are to be deleted.

Suppose Henry Jacobsen, the new salesperson hired earlier in this chapter, has just
decided to leave the company. The DELETE statement that removes his row from the
SALESREPS table is shown next.

Remove Henry Jacobsen from the database.

DELETE FROM SALESREPS
 WHERE NAME = 'Henry Jacobsen';

1 row deleted.

The WHERE clause in this example identifies a single row of the SALESREPS table, which
SQL removes from the table. The WHERE clause should have a familiar appearance—it’s
exactly the same WHERE clause that you would specify in a SELECT statement to retrieve the
same row from the table. The search conditions that can be specified in the WHERE clause of
the DELETE statement are the same ones available in the WHERE clause of the SELECT
statement, as described in Chapters 6 through 9.

Recall that search conditions in the WHERE clause of a SELECT statement can specify a
single row or an entire set of rows, depending on the specific search condition. The same is
true of the WHERE clause in a DELETE statement. Suppose, for example, that Mr. Jacobsen’s
customer, InterCorp (customer number 2126) has called to cancel all its orders. Here is the
DELETE statement that removes the orders from the ORDERS table:

Remove all orders for InterCorp (customer number 2126).

DELETE FROM ORDERS
 WHERE CUST = 2126;

2 rows deleted.

In this case, the WHERE clause selects two rows of the ORDERS table, and SQL removes
both of them from the table. Conceptually, SQL applies the WHERE clause to each row of the
ORDERS table, deleting those where the search condition yields a TRUE result and retaining
those where the search condition yields a FALSE or NULL result.

Because this type of DELETE statement searches through a table for the rows to be deleted,
it is sometimes called a searched DELETE statement. This term is used to contrast it with

FIGURE 10-5 DELETE statement syntax diagram

DELETE FROM table-name

WHERE search-condition

 240 P a r t I I I : U p d a t i n g D a t a 240 P a r t I I I : U p d a t i n g D a t a

another form of the DELETE statement, called the positioned DELETE statement, which always
deletes a single row. The positioned DELETE statement applies only to programmatic SQL
and is described in Chapter 17.

Here are some additional examples of searched DELETE statements:

Delete all orders placed before November 15, 2007.

DELETE FROM ORDERS
 WHERE ORDER_DATE < '2007-11-15';

5 rows deleted.

Delete all rows for customers served by Bill Adams, Mary Jones, or Dan Roberts (employee numbers
105, 109, and 101).

DELETE FROM CUSTOMERS
 WHERE CUST_REP IN (105, 109, 101);

7 rows deleted.

Delete all salespeople hired before July 2006 who have not yet been assigned a quota.

DELETE FROM SALESREPS
 WHERE HIRE_DATE < '2006-07-01'
 AND QUOTA IS NULL;

0 rows deleted.

Deleting All Rows
The WHERE clause in a DELETE statement is optional, but it is almost always present. If the
WHERE clause is omitted from a DELETE statement, all rows of the target table are deleted, as
in this example:

Delete all orders.

DELETE FROM ORDERS;

30 rows deleted.

Although this DELETE statement produces an empty table, it does not erase the ORDERS
table from the database. The definition of the ORDERS table and its columns is still stored in
the database. The table still exists, and new rows can still be inserted into the ORDERS table
with the INSERT statement. To erase the definition of the table from the database, the DROP
TABLE statement (described in Chapter 13) must be used.

Because of the potential damage from such a DELETE statement, be careful to always
specify a search condition, and be sure that it actually selects the rows you want. When
using interactive SQL, it’s a good idea first to use the WHERE clause in a SELECT statement
to display the selected rows. Make sure they are the ones you want to delete, and only then
use the WHERE clause in a DELETE statement.

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 241
PART III

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 241

DELETE with Subquery*
DELETE statements with simple search conditions, such as those in the previous examples, select
rows for deletion based solely on the contents of the rows themselves. Sometimes the selection
of rows must be made based on data from other tables. For example, suppose you want to delete
all orders taken by Sue Smith. Without knowing her employee number, you can’t find the orders
by consulting the ORDERS table alone. To find the orders, you could use a two-table query:

Find the orders taken by Sue Smith.

SELECT ORDER_NUM, AMOUNT
 FROM ORDERS, SALESREPS
 WHERE REP = EMPL_NUM
 AND NAME = 'Sue Smith';

 ORDER_NUM AMOUNT
---------- -----------
 112979 $15,000.00
 113065 $2,130.00
 112993 $1,896.00
 113048 $3,750.00

But you can’t use a join in a DELETE statement. The parallel DELETE statement is illegal:

DELETE FROM ORDERS, SALESREPS
 WHERE REP = EMPL_NUM
 AND NAME = 'Sue Smith';

Error: More than one table specified in FROM clause

The way to handle the request is with one of the subquery search conditions. Here is a
valid form of the DELETE statement that handles the request:

Delete the orders taken by Sue Smith.

DELETE FROM ORDERS
 WHERE REP = (SELECT EMPL_NUM
 FROM SALESREPS
 WHERE NAME = 'Sue Smith');

4 rows deleted.

The subquery finds the employee number for Sue Smith, and the WHERE clause then
selects the orders with a matching value. As this example shows, subqueries can play an
important role in the DELETE statement because they let you delete rows based on
information in other tables. Here are two more examples of DELETE statements that use
subquery search conditions:

Delete customers served by salespeople whose sales are less than 80 percent of quota.

DELETE FROM CUSTOMERS
 WHERE CUST_REP IN (SELECT EMPL_NUM
 FROM SALESREPS
 WHERE SALES < (.8 * QUOTA));

2 rows deleted.

 242 P a r t I I I : U p d a t i n g D a t a 242 P a r t I I I : U p d a t i n g D a t a

Delete any salesperson whose current orders total less than 2 percent of their quota.

DELETE FROM SALESREPS
 WHERE (.02 * QUOTA) > (SELECT SUM(AMOUNT)
 FROM ORDERS
 WHERE REP = EMPL_NUM);

1 row deleted.

Subqueries in the WHERE clause can be nested just as they can be in the WHERE clause of
the SELECT statement. They can also contain outer references to the target table of the
DELETE statement. In this respect, the FROM clause of the DELETE statement functions like
the FROM clause of the SELECT statement. Here is an example of a deletion request that
requires a subquery with an outer reference:

Delete customers who have not ordered since November 10, 2007.

DELETE FROM CUSTOMERS
 WHERE NOT EXISTS (SELECT *
 FROM ORDERS
 WHERE CUST = CUST_NUM
 AND ORDER_DATE < '2007-11-10');

16 rows deleted.

Conceptually, this DELETE statement operates by going through the CUSTOMERS table,
row by row, and checking the search condition. For each customer, the subquery selects any
orders placed by that customer before the cutoff date. The reference to the CUST_NUM
column in the subquery is an outer reference to the customer number in the row of the
CUSTOMERS table currently being checked by the DELETE statement. The subquery in this
example is a correlated subquery, as described in Chapter 9.

Outer references will often be found in subqueries of a DELETE statement, because they
implement the join between the table(s) in the subquery and the target table of the DELETE
statement. The SQL standard specifies that the DELETE statement should treat such a
subquery as applying to the entire target table, before any rows have been deleted. This
places more overhead on the DBMS (which must handle the subquery processing and row
deletion more carefully), but the behavior of the statement is well defined by the standard.

Modifying Data in the Database
Typically, the values of data items stored in a database are modified when corresponding
changes occur in the outside world. For example, in the sample database:

• When a customer calls to change the quantity on an order, the QTY column in the
appropriate row of the ORDERS table must be modified.

• When a manager moves from one office to another, the MGR column in the OFFICES
table and the REP_OFFICE column in the SALESREPS table must be changed to
reflect the new assignment.

• When sales quotas are raised by 5 percent in the New York sales office, the QUOTA
column of the appropriate rows in the SALESREPS table must be modified.

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 243
PART III

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 243

In each case, data values in the database are updated to maintain the database as an
accurate model of the real world. The smallest unit of data that can be modified in a
database is a single column of a single row.

The UPDATE Statement
The UPDATE statement, shown in Figure 10-6, modifies the values of one or more columns
in selected rows of a single table. The target table to be updated is named in the statement,
and you must have the required permission to update the table as well as each of the
individual columns that will be modified. The WHERE clause selects the rows of the table to
be modified. The SET clause specifies which columns are to be updated and calculates the
new values for them.

Here is a simple UPDATE statement that changes the credit limit and salesperson for a
customer:

Raise the credit limit for Acme Manufacturing to $60,000 and reassign the company to Mary Jones
(employee number 109).

UPDATE CUSTOMERS
 SET CREDIT_LIMIT = 60000.00, CUST_REP = 109
 WHERE COMPANY = 'Acme Mfg.';

1 row updated.

In this example, the WHERE clause identifies a single row of the CUSTOMERS table, and
the SET clause assigns new values to two of the columns in that row. The WHERE clause is
exactly the same one you would use in a DELETE or SELECT statement to identify the row.
In fact, the search conditions that can appear in the WHERE clause of an UPDATE statement
are exactly the same as those available in the SELECT and DELETE statements.

Like the DELETE statement, the UPDATE statement can update several rows at once with
the proper search condition, as in this example:

Transfer all salespeople from the Chicago office (number 12) to the New York office (number 11), and
lower their quotas by 10 percent.

UPDATE SALESREPS
 SET REP_OFFICE = 11, QUOTA = .9 * QUOTA
 WHERE REP_OFFICE = 12;

3 rows updated.

FIGURE 10-6 UPDATE statement syntax diagram

UPDATE table-name SET column-name = expression
,

WHERE search-condition

 244 P a r t I I I : U p d a t i n g D a t a 244 P a r t I I I : U p d a t i n g D a t a

In this case, the WHERE clause selects several rows of the SALESREPS table, and the
value of the REP_OFFICE and QUOTA columns are modified in all of them. Conceptually,
SQL processes the UPDATE statement by going through the SALESREPS table row by row,
updating those rows for which the search condition yields a TRUE result and skipping over
those for which the search condition yields a FALSE or NULL result.

Because it searches the table, this form of the UPDATE statement is sometimes called a
searched UPDATE statement. This term distinguishes it from a different form of the UPDATE
statement, called a positioned UPDATE statement, which always updates a single row. The
positioned UPDATE statement applies only to programmatic SQL and is described in Chapter 17.

Here are some additional examples of searched UPDATE statements:

Reassign all customers served by employee numbers 105, 106, or 107 to employee number 102.

UPDATE CUSTOMERS
 SET CUST_REP = 102
 WHERE CUST_REP IN (105, 106, 107);

5 rows updated.

Assign a quota of $100,000 to any salesperson who currently has no quota.

UPDATE SALESREPS
 SET QUOTA = 100000.00
 WHERE QUOTA IS NULL;

1 row updated.

The SET clause in the UPDATE statement is a list of assignments separated by commas.
Each assignment identifies a target column to be updated and specifies how to calculate the
new value for the target column. Each target column should appear only once in the list;
there should not be two assignments for the same target column. The ANSI/ISO specification
mandates unqualified names for the target columns, but some SQL implementations allow
qualified column names. There can be no ambiguity in the column names anyway, because
they must refer to columns of the target table.

The expression in each assignment can be any valid SQL expression that yields a value
of the appropriate data type for the target column. The expression must be computable
based on the values of the row currently being updated in the target table. In most DBMS
implementations, the expression may not include any column functions or subqueries.

If an expression in the assignment list references one of the columns of the target table,
the value used to calculate the expression is the value of that column in the current row
before any updates are applied. The same is true of column references that occur in the
WHERE clause. For example, consider this (somewhat contrived) UPDATE statement:

UPDATE SALESREPS
 SET QUOTA = 400000.00, SALES = QUOTA
 WHERE QUOTA < 400000.00;

Before the update, Bill Adams had a QUOTA value of $350,000 and a SALES value of
$367,911. After the update, his row has a SALES value of $350,000, not $400,000. The order
of the assignments in the SET clause is thus immaterial; the assignments can be specified
in any order.

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 245
PART III

 C h a p t e r 1 0 : D a t a b a s e U p d a t e s 245

Updating All Rows
The WHERE clause in the UPDATE statement is optional. If the WHERE clause is omitted,
then all rows of the target table are updated, as in this example:

Raise all quotas by 5 percent.

UPDATE SALESREPS
 SET QUOTA = 1.05 * QUOTA;

10 rows updated.

Unlike the DELETE statement, in which the WHERE clause is almost never omitted, the
UPDATE statement without a WHERE clause performs a useful function. It basically performs
a bulk update of the entire table, as demonstrated in the preceding example.

UPDATE with Subquery*
As with the DELETE statement, subqueries can play an important role in the UPDATE
statement because they let you select rows to update based on information contained in
other tables. Here are several examples of UPDATE statements that use subqueries:

Raise by $5000 the credit limit of any customer who has placed an order for more than $25,000.

UPDATE CUSTOMERS
 SET CREDIT_LIMIT = CREDIT_LIMIT + 5000.00
 WHERE CUST_NUM IN (SELECT DISTINCT CUST
 FROM ORDERS
 WHERE AMOUNT > 25000.00);

4 rows updated.

Reassign all customers served by salespeople whose sales are less than 80 percent of their quota.

UPDATE CUSTOMERS
 SET CUST_REP = 105
 WHERE CUST_REP IN (SELECT EMPL_NUM
 FROM SALESREPS
 WHERE SALES < (.8 * QUOTA));

11 rows updated.

Have all salespeople who serve over three customers report directly to Sam Clark (employee number 106).

UPDATE SALESREPS
 SET MANAGER = 106
 WHERE 3 < (SELECT COUNT(*)
 FROM CUSTOMERS
 WHERE CUST_REP = EMPL_NUM);

1 row updated.

 246 P a r t I I I : U p d a t i n g D a t a

As in the DELETE statement, subqueries in the WHERE clause of the UPDATE statement
can be nested to any level and can contain outer references to the target table of the UPDATE
statement. The column EMPL_NUM in the subquery of the preceding example is such an
outer reference; it refers to the EMPL_NUM column in the row of the SALESREPS table
currently being checked by the UPDATE statement. The subquery in this example is a
correlated subquery, as described in Chapter 9.

Outer references will often be found in subqueries of an UPDATE statement, because they
implement the join between the table(s) in the subquery and the target table of the UPDATE
statement. The SQL standard specifies that a reference to the target table in a subquery is
evaluated as if none of the target table had been updated.

Summary
This chapter described the SQL statements that are used to modify the contents of a database:

• The single-row INSERT statement adds one row of data to a table. The values for
the new row are specified in the statement as constants.

• The multirow INSERT statement adds zero or more rows to a table. The values for
the new rows come from a query, specified as part of the INSERT statement.

• The DELETE statement deletes zero or more rows of data from a table. The rows to
be deleted are specified by a search condition.

• The UPDATE statement modifies the values of one or more columns in zero or
more rows of a table. The rows to be updated are specified by a search condition.
The columns to be updated, and the expressions that calculate their new values,
are specified in the UPDATE statement.

Unlike the SELECT statement, which can operate on multiple tables, the INSERT,
DELETE, and UPDATE statements work on only a single table at a time. The search condition
used in the DELETE and UPDATE statements has the same form as the search condition for
the SELECT statement.

11
Data Integrity

The term data integrity refers to the correctness and completeness of the data in a
database. When the contents of a database are modified with the INSERT, DELETE,
or UPDATE statements, the integrity of the stored data can be lost in many different

ways. For example:

• Invalid data may be added to the database, such as an order that specifies a
nonexistent product.

• Existing data may be modified to an incorrect value, such as reassigning a
salesperson to a nonexistent office.

• Changes to the database may be lost due to a system error or power failure.

• Changes may be partially applied, such as adding an order for a product without
adjusting the quantity available for sale.

One of the important roles of a relational DBMS is to preserve the integrity of its stored
data to the greatest extent possible. This chapter describes the SQL language features that
assist the DBMS in this task.

247

CHAPTER

 248 P a r t I I I : U p d a t i n g D a t a 248 P a r t I I I : U p d a t i n g D a t a

What Is Data Integrity?
To preserve the consistency and correctness of its stored data, a relational DBMS typically
imposes one or more data integrity constraints. These constraints restrict the data values that
can be inserted into the database or that result from a database update. Several different
types of data integrity constraints are commonly found in relational databases, including

• Required data Some columns in a database must contain a valid data value in
every row; they are not allowed to contain missing or NULL values. In the sample
database, every order must have an associated customer who placed the order.
Therefore, the CUST column in the ORDERS table is a required column. The DBMS can
be asked to prevent NULL values in this column.

• Validity checking Every column in a database has a domain, a set of data values
that are legal for that column. The sample database uses order numbers that begin
at 100,001, so the domain of the ORDER_NUM column is positive integers greater than
100,000. Similarly, employee numbers in the EMPL_NUM column must fall within the
numeric range of 101 to 999. The DBMS can be asked to prevent other data values in
these columns.

• Entity integrity The primary key of a table must contain a unique value in each row,
which is different from the values in all other rows. For example, each row of the
PRODUCTS table has a unique set of values in its MFR_ID and PRODUCT_ID columns,
which uniquely identifies the product represented by that row. Duplicate values are
illegal, because they wouldn’t allow the database to distinguish one product from
another. The DBMS can be asked to enforce this unique value constraint.

• Referential integrity A foreign key in a relational database links each row in the
child table containing the foreign key to the row of the parent table containing the
matching primary key value. In the sample database, the value in the REP_OFFICE
column of each SALESREPS row links the salesperson represented by that row to
the office where he or she works. The REP_OFFICE column must contain a valid
value from the OFFICE column of the OFFICES table, or the salesperson will be
assigned to an invalid office. The DBMS can be asked to enforce this foreign key/
primary key constraint.

• Other data relationships The real-world situation modeled by a database will
often have additional constraints that govern the legal data values that may appear
in the database. For example, in the sample database, the sales vice president may
want to ensure that the quota target for each office does not exceed the total of the
quota targets for the salespeople in that office. The DBMS can be asked to check
modifications to the office and salesperson quota targets to make sure that their
values are constrained in this way.

• Business rules Updates to a database may be constrained by business rules
governing the real-world transactions that are represented by the updates. For
example, the company using the sample database may have a business rule that
forbids accepting an order for which there is an inadequate product inventory.
The DBMS can be asked to check each new row added to the ORDERS table to
make sure that the value in its QTY column does not violate this business rule.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 249
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 249

• Consistency Many real-world transactions cause multiple updates to a database.
For example, accepting a customer order may involve adding a row to the ORDERS
table, increasing the SALES column in the SALESREPS table for the person who
took the order, and increasing the SALES column in the OFFICES table for the office
where that salesperson is assigned. The INSERT and both UPDATEs must all take
place in order for the database to remain in a consistent, correct state. The DBMS
can be asked to enforce this type of consistency rule or to support applications that
implement such rules.

The ANSI/ISO SQL standard specifies some of the simpler data integrity constraints. For
example, the required data constraint is supported by the ANSI/ISO standard and implemented
in a uniform way across almost all commercial SQL products. More complex constraints, such
as business rules constraints, are not specified by the ANSI/ISO standard, and there is a wide
variation in the techniques and SQL syntax used to support them. The SQL features that support
the first five integrity constraints are described in this chapter. The SQL transaction mechanism,
which supports the consistency constraint, is described in Chapter 12.

Required Data
The simplest data integrity constraint requires that a column contain a non-NULL value. The
ANSI/ISO standard and most commercial SQL products support this constraint by allowing
you to declare that a column is NOT NULL when the table containing the column is first created.
The NOT NULL constraint is specified as part of the CREATE TABLE statement, described in
Chapter 13.

When a column is declared NOT NULL, the DBMS enforces the constraint by ensuring the
following:

• Every INSERT statement that adds one or more new rows to the table must specify
a non-NULL data value for the column. An attempt to insert a row containing a
NULL value (either explicitly or implicitly) results in an error.

• Every UPDATE statement that updates the column must assign it a non-NULL data
value. Again, an attempt to update the column to a NULL value results in an error.

One disadvantage of the NOT NULL constraint is that some SQL implementations require
that it be specified only when a table is first created. Typically, you can go back to a previously
created table and change a column to allow or disallow NULL values for a column. However,
there is a potential logical problem with adding the NOT NULL constraint to an existing table
column. If one or more rows of that table already contain NULL values, then what should the
DBMS do with those rows? They represent valid real-world objects, but they now violate the
(new) required data constraint.

When the DBMS does not support adding a NOT NULL constraint to an existing table,
the restriction is often at least partially the result of the way the DBMS implements NULL
values internally. Some DBMSs reserve an extra byte in every stored row of data for each
column that permits NULL values. The extra byte serves as a null indicator for the column
and is set to some specified value to indicate a NULL value. When a column is defined as
NOT NULL, the indicator byte is not present, saving disk storage space. Dynamically adding
and removing NOT NULL constraints would thus require on-the-fly reconfiguration of the
stored rows on the disk, which may not be practical in a large table.

 250 P a r t I I I : U p d a t i n g D a t a 250 P a r t I I I : U p d a t i n g D a t a

Simple Validity Checking
The most rudimentary support for restricting the legal values that can appear in a column
comes from the data types specified in the SQL standard. When a table is created, each column
in the table is assigned a data type, and the DBMS ensures that only data of the specified type
is introduced into the column. For example, the EMPL_NUM column in the SALESREPS table is
defined as an INTEGER, and the DBMS will produce an error if an INSERT or UPDATE
statement tries to store a character string or a decimal number in the column.

However, the first version of the SQL standard (SQL1) and many early commercial
SQL products did not provide a way to restrict a column to certain specific data values.
The DBMS would happily insert a SALESREPS row with an employee number of 12345,
even though employee numbers in the sample database have three digits by convention.
A hire date of December 25 would also be accepted, even though the company is closed
on Christmas.

Prior to the introduction of check constraints and domains in the SQL2 standard
(covered in subsequent topics), some commercial SQL implementations provide extended
features to check for legal data values. For compatibility, many of these extended features
are still supported by their vendors. In DB2, for example, each table in the database can be
assigned a corresponding validation procedure, a user-written program to check for valid
data values. DB2 invokes the validation procedure each time a SQL statement tries to
change or insert a row of the table, and gives the validation procedure the proposed
column values for the row. The validation procedure checks the data and indicates by its
return value whether the data is acceptable. The validation procedure is a conventional
program (written in S/370 assembler or PL/I, for example), so it can perform whatever
data value checks are required, including range checks and internal consistency checks
within the row. However, the validation procedure cannot access the database, so it cannot
be used to check for unique values or foreign key/primary key relationships.

SQL Server also provides a data validation capability by allowing you to create a rule
that determines what data values can legally be entered into a particular column. SQL
Server checks the rule each time an INSERT or UPDATE statement is attempted for the table
that contains the column. Unlike DB2’s validation procedures, SQL Server rules are written
in the Transact-SQL dialect that is used by SQL Server. For example, here is a Transact-SQL
statement that establishes a rule for the QUOTA column in the SALESREPS table:

CREATE RULE QUOTA_LIMIT
 AS @VALUE BETWEEN 0.00 AND 500000.00;

This rule prevents you from inserting or updating a quota to a negative value or to a
value greater than $500,000. As shown in the example, SQL Server allows you to assign the
rule a name (QUOTA_LIMIT, in this example). Like DB2 validation procedures, however,
SQL Server rules may not reference columns or other database objects.

Beginning with SQL2, the SQL standard provides extended support for validity
checking through two different features—column check constraints and domains. Both
give the database creator a way to tell the DBMS how to determine whether a data value
is valid. The check-constraint feature specifies the data validity test for a single column.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 251
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 251

The domain feature lets you specify the validity test once, and then reuse it in the definition
of many different columns whose legal data values are the same.

Column Check Constraints
A check constraint is a search condition, like the search condition in a WHERE clause, that
produces a true/false value. When a check constraint is specified for a column, the DBMS
automatically checks the value of that column each time a new row is inserted or a row is
updated to ensure that the search condition is true. If not, the INSERT or UPDATE statement
fails. A column check constraint is specified as part of the column definition within the
CREATE TABLE statement, described in Chapter 13. Check constraints may also be added to
existing tables as part of an ALTER TABLE statement (also described in Chapter 13).

Consider this excerpt from a CREATE TABLE statement, modified from the definition of
the demo database to include three check constraints:

CREATE TABLE SALESREPS
 (EMPL_NUM INTEGER NOT NULL
 CHECK (EMPL_NUM BETWEEN 101 AND 199),
 AGE INTEGER
 CHECK (AGE >= 21),
 .
 .
 .
 QUOTA DECIMAL(9,2)
 CHECK (QUOTA >= 0.0)
 .
 .
 .

The first constraint (on the EMPL_NUM column) requires that valid employee numbers be
three-digit numbers between 101 and 199. The second constraint (on the AGE column)
similarly prevents hiring of minors. The third constraint (on the QUOTA column) prevents a
salesperson from having a quota target less than $0.00.

All three of these column check constraints are very simple examples of the capability
specified by the SQL standard. In general, the parentheses following the keyword CHECK
can contain any valid search condition that makes sense in the context of a column
definition. With this flexibility, a check constraint can compare values from two different
columns of the table, or even compare a proposed data value against other values from the
database. These capabilities are more fully described in the “Advanced Constraint
Capabilities” section later in this chapter.

Domains
A domain generalizes the check-constraint concept and allows you to easily apply the same
check constraint to many different columns within a database. A domain is a collection of
legal data values. Although domains have been specified in the SQL standard since SQL2,
there is sparse support for them in current SQL implementations. As of this writing, DB2,
Oracle, SQL Server, and MySQL all lack support for domains, although some proprietary
extensions come close, such as Oracle’s CREATE TYPE statement.

 252 P a r t I I I : U p d a t i n g D a t a 252 P a r t I I I : U p d a t i n g D a t a

You specify a domain and assign it a domain name by using the CREATE DOMAIN
statement, described in Chapter 13. As with the check-constraint definition, a search
condition is used to define the range of legal data values. For example, here is a CREATE
DOMAIN statement to create the domain VALID_EMPLOYEE_ID, which includes all legal
employee numbers:

CREATE DOMAIN VALID_EMPLOYEE_ID INTEGER
 CHECK (VALUE BETWEEN 101 AND 199);

After the VALID_EMPLOYEE_ID domain has been defined, it may be used instead of a
data type to define columns in database tables. Using this capability, the example CREATE
TABLE statement for the SALESREPS table would appear as:

CREATE TABLE SALESREPS
 (EMPL_NUM VALID_EMPLOYEE_ID,
 AGE INTEGER
 CHECK (AGE >= 21),
 .
 .
 .
 QUOTA DECIMAL(9,2)
 CHECK (QUOTA >= 0.0)
 .
 .
 .

The advantage of using the domain is that if other columns in other tables also contain
employee numbers, the domain name can be used repeatedly, simplifying the table
definitions. The OFFICES table contains such a column:

CREATE TABLE OFFICES
 (OFFICE INTEGER NOT NULL,
 CITY VARCHAR(15) NOT NULL,
 REGION VARCHAR(10) NOT NULL,
 MGR VALID_EMPLOYEE_ID,
 TARGET DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL
 .
 .
 .

Another advantage of domains is that the definition of valid data (such as valid
employee numbers, in this example) is stored in one central place within the database. If the
definition changes later (for example, if the company grows and employee numbers in the
range 200–299 must be allowed), it is much easier to change one domain definition than to
change many column constraints scattered throughout the database. A large enterprise
database may have hundreds of defined domains, and the benefits of SQL domains for
change management can be very substantial.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 253
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 253

Entity Integrity
A table’s primary key must have a unique value for each row of the table, or the database
will lose its integrity as a model of the outside world. For example, if two rows of the
SALESREPS table both had value 106 in their EMPL_NUM column, it would be impossible to
tell which row really represented the real-world entity associated with that key value—Bill
Adams, who is employee number 106. For this reason, the requirement that primary keys
have unique values is called the entity integrity constraint.

The first commercial SQL databases did not support primary keys, but support is now
common. It was added to DB2 in 1988 and was added to the original ANSI/ISO SQL
standard in an intermediate update, before the full SQL2 standard appeared. You specify
the primary key as part of the CREATE TABLE or ALTER TABLE statement, described in
Chapter 13. The sample database definition in Appendix A includes primary key definitions
for all of its tables, following the ANSI/ISO standard syntax.

When a primary key is specified for a table, the DBMS automatically checks the
uniqueness of the primary key value for every INSERT and UPDATE statement performed
on the table. An attempt to insert a row with a duplicate primary key value or to update a
row so that its primary key would be a duplicate will fail with an error message.

Other Uniqueness Constraints
It is sometimes appropriate to require a column that is not the primary key of a table to
contain a unique value in every row. For example, suppose you wanted to restrict the data
in the SALESREPS table so that no two salespeople could have exactly the same name in the
table. You could achieve this goal by imposing a uniqueness constraint on the NAME column.
The DBMS enforces a uniqueness constraint in the same way that it enforces the primary
key constraint. Any attempt to insert or update a row in the table that violates the
uniqueness constraint will fail.

While both uniqueness and primary key constraints prevent duplicate values from
appearing in a set of columns in a table, there are two fundamental differences:

• A table may have only one primary key constraint defined on it, while a table can
have any number of unique constraints defined.

• Columns named in a primary key constraint must be defined as NOT NULL, while
columns included in a unique constraint may be defined as either NULL or NOT NULL.

The ANSI/ISO SQL standard uses the CREATE TABLE and ALTER TABLE statements to
specify uniqueness constraints for columns or combinations of columns. However,
uniqueness constraints were implemented in DB2 long before the publication of the ANSI/
ISO standard, and DB2 made them a part of its CREATE INDEX statement. This statement is
one of the SQL database administration statements that deals with physical storage of the
database on the disk. Normally, the SQL user doesn’t have to worry about these statements
at all; they are used only by the database administrator.

Many commercial SQL products followed the original DB2 practice rather than the
ANSI/ISO standard for uniqueness constraints and required the use of a CREATE INDEX
statement. Subsequent versions of DB2 added a uniqueness constraint to the CREATE
TABLE and ALTER TABLE statements. Most of the other commercial vendors have followed
the same path and now support the ANSI/ISO syntax for the uniqueness constraint.

 254 P a r t I I I : U p d a t i n g D a t a 254 P a r t I I I : U p d a t i n g D a t a

Uniqueness and NULL Values
NULL values would pose a problem if they were to occur in the primary key of a table or in a
column that is specified in a uniqueness constraint. Suppose you tried to insert a row with a
primary key that was NULL (or partially NULL, if the primary key is composed of more than
one column). Because of the NULL value, the DBMS cannot conclusively decide whether the
primary key duplicates one that is already in the table. The answer must be “maybe,”
depending on the “real” value of the missing (NULL) data. For this reason, the SQL standard
requires that every column that is part of a primary key must be declared NOT NULL.

The SQL standard does not impose the same restriction for columns named in a
uniqueness constraint, although some SQL implementations such as DB2 forbid them.
However, there is considerable variation in how various SQL implementations enforce
unique constraints involving columns containing NULL values, particularly when a unique
constraint involves multiple columns that allow NULL values. To illustrate these differences,
consider the following table that might be used to assign students to advisors:

CREATE TABLE ADVISOR_ASSIGNMENTS
 (STUDENT_NAME VARCHAR(25),
 ADVISOR_NAME VARCHAR(25),
 UNIQUE (STUDENT_NAME, ADVISOR_NAME));

The following table illustrates the results of running a series of INSERT statements for
the ADVISOR_ASSIGNMENTS table. The first column shows the value for the STUDENT_
NAME column, the second column shows the value for the ADVISOR_NAME column, and the
remaining three columns show the results for current versions of Oracle, SQL Server, and
MySQL, respectively. (DB2 was not included because it does not allow unique constraints
on columns that allow NULL values.) Remarkably, no two DBMSs yield the same results for
all rows.

Row
Number STUDENT_NAME ADVISOR_NAME Oracle Result

SQL Server
Result

MySQL
Result

1 NULL NULL OK OK OK

2 NULL NULL OK Duplicate of
row 1

OK

3 Bill NULL OK OK OK

4 Bill NULL Duplicate of
row 3

Duplicate of
row 3

OK

5 Sue Harrison OK OK OK

6 Sue Harrison Duplicate of
row 5

Duplicate of
row 5

Duplicate
of row 5

 C h a p t e r 1 1 : D a t a I n t e g r i t y 255
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 255

Referential Integrity
Chapter 4 discussed primary keys, foreign keys, and the parent/child relationships that
they create between tables. Figure 11-1 shows the SALESREPS and OFFICES tables and
illustrates once again how foreign keys and primary keys work. The OFFICE column is the
primary key for the OFFICES table, and it uniquely identifies each row. The REP_OFFICE
column in the SALESREPS table is a foreign key for the OFFICES table. It identifies the
office where each salesperson is assigned.

The REP_OFFICE and OFFICE columns create a parent/child relationship between the
OFFICES and SALESREPS rows. Each OFFICES (parent) row has zero or more SALESREPS
(child) rows with matching office numbers. Similarly, each SALESREPS (child) row has
exactly one OFFICES (parent) row with a matching office number.

Suppose you tried to insert a new row into the SALESREPS table that contained an
invalid office number, as in this example:

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE, AGE,
 HIRE_DATE, SALES)
 VALUES (115, 'George Smith', 31, 37, '2008-04-01', 0.00);

On the surface, there’s nothing wrong with this INSERT statement. In fact, some SQL
implementations will successfully add the row. The database will show that George Smith
works in office number 31, even though no office number 31 is listed in the OFFICES table.
The newly inserted row clearly breaks the parent/child relationship between the OFFICES
and SALESREPS tables. In fact, the office number in the INSERT statement is probably an
error—the user may have intended office number 11, 21, or 13.

FIGURE 11-1 A foreign key/primary key reference

 256 P a r t I I I : U p d a t i n g D a t a 256 P a r t I I I : U p d a t i n g D a t a

It seems clear that every legal value in the REP_OFFICE column should be forced to
match some value that appears in the OFFICE column. This rule is known as a referential
integrity constraint. It ensures the integrity of the parent/child relationships created by
foreign keys and primary keys.

Referential integrity has been a key part of the relational model since it was first
proposed by E. F. Codd. However, referential integrity constraints were not included in
IBM’s prototype System/RDBMS, nor in early releases of DB2 or SQL/DS. IBM added
referential integrity support to DB2 in 1989, and referential integrity was added to the SQL
standard after the release of the initial (SQL1) version. Most DBMS vendors today support
referential integrity constraints.

Referential Integrity Problems
Four types of database updates can corrupt the referential integrity of the parent/child
relationships in a database. Using the OFFICES and SALESREPS tables in Figure 11-1 as
illustrations, the four update situations are the following:

• Inserting a new child row When an INSERT statement adds a new row to the
child (SALESREPS) table, its foreign key (REP_OFFICE) value must match one of
the primary key (OFFICE) values in the parent table (OFFICES). If the foreign key
value does not match any primary key, inserting the row will corrupt the database,
because there will be a child without a parent (an orphan). Note that inserting a
row in the parent table never poses a problem; it simply becomes a parent without
any children.

• Updating the foreign key in a child row This is a different form of the previous
problem. If the foreign key (REP_OFFICE) is modified by an UPDATE statement, the
new value must match a primary key (OFFICE) value in the parent (OFFICES)
table. Otherwise, the updated row will be an orphan.

• Deleting a parent row If a row of the parent table (OFFICES) that has one or more
children (in the SALESREPS table) is deleted, the child rows will become orphans.
The foreign key (REP_OFFICE) values in these rows will no longer match any
primary key (OFFICE) value in the parent table. Note that deleting a row from the
child table never poses a problem; the parent of this row simply has one less child
after the deletion.

• Updating the primary key in a parent row This is a different form of the previous
problem. If the primary key (OFFICE) of a row in the parent table (OFFICES) is
modified, all of the current children of that row become orphans because their
foreign keys no longer match a primary key value.

The referential integrity features of the ANSI/ISO SQL standard handle each of these
four situations. The first problem (INSERT into the child table) is handled by checking the
values of the foreign key columns before the INSERT statement is permitted. If they don’t
match a primary key value, the INSERT statement is rejected with an error message. In
Figure 11-1, this means that before a new salesperson can be added to the SALESREPS table,
the office to which the salesperson is assigned must already be in the OFFICES table. As
you can see, this restriction makes sense in the sample database.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 257
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 257

The second problem (UPDATE of the child table) is similarly handled by checking the
updated foreign key value. If there is no matching primary key value, the UPDATE
statement is rejected with an error message. In Figure 11-1, this means that before a
salesperson can be reassigned to a different office, that office must already be in the
OFFICES table. Again, this restriction makes sense in the sample database.

The third problem (DELETE of a parent row) is more complex. For example, suppose
you closed the Los Angeles office and wanted to delete the corresponding row from the
OFFICES table in Figure 11-1. What should happen to the two child rows in the SALESREPS
table that represent the salespeople assigned to the Los Angeles office? Depending on the
situation, you might want to:

• Prevent the office from being deleted until the salespeople are reassigned.

• Automatically delete the two salespeople from the SALESREPS table as well.

• Set the REP_OFFICE column for the two salespeople to NULL, indicating that their
office assignment is unknown.

• Set the REP_OFFICE column for the two salespeople to some default value, such as
the office number for the headquarters office in New York, indicating that the
salespeople are automatically reassigned to that office.

The fourth problem (UPDATE of the primary key in the parent table) has similar
complexity. For example, suppose for some reason you wanted to change the number of the
Los Angeles office from 21 to 23. As with the previous example, the question is what should
happen to the two child rows in the SALESREPS table that represent salespeople from the
Los Angeles office. Again, there are four logical possibilities:

• Prevent the office number from being changed until the salespeople are reassigned.
In this case, you should first add a new row to the OFFICES table with the new
office number for Los Angeles, then update the SALESREPS table, and finally delete
the old OFFICES row for Los Angeles.

• Automatically update the office number for the two salespeople in the SALESREPS
table, so that their rows are still linked to the Los Angeles row in the OFFICES table,
via its new office number.

• Set the REP_OFFICE column for the two salespeople to NULL, indicating that their
office assignment is unknown.

• Set the REP_OFFICE column for the two salespeople to some default value, such as
the office number for the headquarters office in New York, indicating that the
salespeople are automatically reassigned to that office.

Although some of these alternatives may seem more logical than others in this particular
example, it’s relatively easy to come up with examples where any one of the four possibilities
is the right thing to do, if you want the database to accurately model the real-world situation.
The original SQL1 standard provided only the first possibility for the preceding examples—it
prohibited the modification of a primary key value that was in use and prohibited the deletion
of a row containing such a primary key. DB2, however, permitted other options through its
concept of delete rules. Starting with SQL2, the SQL standard expanded these delete rules into
delete and update rules that cover both deleting of parent rows and updating of primary keys.

 258 P a r t I I I : U p d a t i n g D a t a 258 P a r t I I I : U p d a t i n g D a t a

Delete and Update Rules*
For each parent/child relationship created by a foreign key in a database, the SQL standard
allows you to specify an associated delete rule and an associated update rule. The delete
rule tells the DBMS what to do when a user tries to delete a row of the parent table. These
four delete rules can be specified:

• RESTRICT delete rule The RESTRICT delete rule prevents you from deleting a row
from the parent table if the row has any children. A DELETE statement that attempts
to delete such a parent row is rejected with an error message. Deletions from the
parent table are thus restricted to rows without any children. Applied to Figure 11-1,
this rule can be summarized as “You can’t delete an office if any salespeople are
assigned to it.”

• CASCADE delete rule The CASCADE delete rule tells the DBMS that when a parent
row is deleted, all of its child rows should also automatically be deleted from the
child table. For Figure 11-1, this rule can be summarized as “Deleting an office
automatically deletes all the salespeople assigned to that office.”

• SET NULL delete rule The SET NULL delete rule tells the DBMS that when a parent
row is deleted, the foreign key values in all of its child rows should automatically be
set to NULL. Deletions from the parent table thus cause a “set to NULL” update on
selected columns of the child table. For the tables in Figure 11-1, this rule can be
summarized as “If an office is deleted, indicate that the current office assignment of
its salespeople is unknown.”

• SET DEFAULT delete rule The SET DEFAULT delete rule tells the DBMS that
when a parent row is deleted, the foreign key values in all of its child rows should
automatically be set to the default value for that particular column. Deletions from
the parent table thus cause a “set to DEFAULT” update on selected columns of the
child table. For the tables in Figure 11-1, this rule can be summarized as “If an office
is deleted, indicate that the current office assignment of its salespeople is the default
office specified in the definition of the SALESREPS table.”

The SQL standard actually calls the previously described RESTRICT rule, NO ACTION.
The SQL standard naming is somewhat confusing. It means “If you try to delete a parent
row that still has children, the DBMS will take no action on the row.” The DBMS will,
however, generate an error code. Intuitively, the name that DB2 and others use for the rule,
restrict, seems a better description of the situation—the DBMS will restrict the DELETE
operation from taking place and generate an error code. Recent releases of DB2 support
both a RESTRICT and a NO ACTION delete rule. The difference between them is the timing
of the enforcement of the rule. The RESTRICT rule is enforced before any other constraints;
the NO ACTION rule is enforced after other referential constraints. Under almost all
circumstances, the two rules operate identically.

As you can imagine, support for the delete rules varies among SQL implementations.
Table 11-1 shows which rules are supported in current versions of popular DBMS products.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 259
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 259

From the ORDERS table in the sample database, here are three foreign key constraint
definitions that use various delete rules:

CREATE TABLE ORDERS
 (.
 .
 .
 FOREIGN KEY PLACEDBY (CUST)
 REFERENCES CUSTOMERS(CUST_NUM)
 ON DELETE CASCADE,
FOREIGN KEY TAKENBY (REP)
 REFERENCES SALESREPS(EMPL_NUM)
 ON DELETE SET NULL,
FOREIGN KEY ISFOR (MFR, PRODUCT)
 REFERENCES PRODUCTS(MFR_ID, PRODUCT_ID)
 ON DELETE RESTRICT);

Just as the delete rule tells the DBMS what to do when a user tries to delete a row of
the parent table, the update rule tells the DBMS what to do when a user tries to update the
value of one of the primary key columns in the parent table. Again, there are four possibilities,
paralleling those available for delete rules:

• RESTRICT update rule The RESTRICT update rule prevents you from updating the
primary key of a row in the parent table if that row has any children. An UPDATE
statement that attempts to modify the primary key of such a parent row is rejected
with an error message. Changes to primary keys in the parent table are thus restricted
to rows without any children. Applied to Figure 11-1, this rule can be summarized as
“You can’t change an office number if salespeople are assigned to the office.”

• CASCADE update rule The CASCADE update rule tells the DBMS that when a
primary key value is changed in a parent row, the corresponding foreign key value
in all of its child rows should also automatically be changed in the child table, to
match the new primary key. For Figure 11-1, this rule can be summarized as
“Changing an office number automatically changes the office number for all the
salespeople assigned to that office.”

Delete Rule Oracle DB2 SQL Server MySQL

RESTRICT
(NO ACTION)

Yes, by default
(cannot be explicitly specified)

Yes Yes Yes

CASCADE Yes Yes Yes Yes

SET NULL Yes Yes Yes Yes

SET DEFAULT No No Yes Yes

TABLE 11-1 Delete Rule Support in Popular DBMSs

 260 P a r t I I I : U p d a t i n g D a t a 260 P a r t I I I : U p d a t i n g D a t a

• SET NULL update rule The SET NULL update rule tells the DBMS that when a
primary key value in a parent row is updated, the foreign key values in all of its
child rows should automatically be set to NULL. Primary key changes in the parent
table thus cause a “set to NULL” update on selected columns of the child table. For
the tables in Figure 11-1, this rule can be summarized as “If an office number is
changed, indicate that the current office assignment of its salespeople is unknown.”

• SET DEFAULT update rule The SET DEFAULT update rule tells the DBMS that
when a primary key value in a parent row is updated, the foreign key values in all
of its child rows should automatically be set to the default value for that particular
column. Primary key changes in the parent table thus cause a “set to DEFAULT”
update on selected columns of the child table. For the tables in Figure 11-1, this rule
can be summarized as “If an office number is changed, automatically change the
office assignment of its salespeople to the default office specified in the definition of
the SALESREPS table.”

The RESTRICT update rule is a naming convention used by DB2 and a few other
implementations; the SQL2 standard again calls this update rule NO ACTION.

As with the update rules, support for the delete rules varies among SQL implementations.
Table 11-2 shows which rules are supported in current versions of popular DBMS products.

You can specify two different rules as the delete rule and the update rule for a parent/
child relationship, although in most cases, the two rules will be the same. If you do not
specify a rule, the RESTRICT rule is the default, because it has the least potential for
accidental destruction or modification of data. Each of the rules is appropriate in different
situations. If, for example, we wanted to set the delete rule to SET NULL and the update
rule to CASCADE for the HASMGR constraint between the SALESREPS and OFFICES table,
we could use this ALTER TABLE statement to create the constraint instead of the one shown
in Appendix A:

ALTER TABLE OFFICES
 ADD CONSTRAINT HASMGR
 FOREIGN KEY (MGR) REFERENCES SALESREPS(EMPL_NUM)
 ON UPDATE CASCADE
 ON DELETE SET NULL;

Update Rule Oracle DB2 SQL Server MySQL

RESTRICT
(NO ACTION)

Yes, by default
(cannot be explicitly specified)

Yes Yes Yes

CASCADE No No Yes Yes

SET NULL No No Yes Yes

SET DEFAULT No No Yes Yes

TABLE 11-2 Update Rule Support in Popular DBMSs

 C h a p t e r 1 1 : D a t a I n t e g r i t y 261
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 261

Usually, the real-world behavior modeled by the database will indicate which rule is
appropriate. In the sample database, the ORDERS table contains three foreign key/primary
key relationships, as shown in Figure 11-2. These three relationships link each order to:

• The product that was ordered

• The customer who placed the order

• The salesperson who took the order

For each of these relationships, different rules seem appropriate:

• The relationship between an order and the product that is ordered should probably
use the RESTRICT rule for delete and update. It shouldn’t be possible to delete
product information from the database if there are still current orders for that
product, or to change the product number.

• The relationship between an order and the customer who placed it should probably
use the CASCADE rule for delete and update. You probably will delete a customer
row from the database only if the customer is inactive or ends the customer’s
relationship with the company. In this case, when you delete the customer, any
current orders for that customer should also be deleted. Similarly, changes in a
customer number should automatically propagate to orders for that customer.

FIGURE 11-2 The delete rules in action

2108
2117
2122

Holm & Landis
J.P. Sinclair
Three-Way Lines

CUSTOMERS Table
CUST_NUM COMPANY

113055
113048
112993

15-FEB-90
10-FEB-90
04-JAN-89

ORDERS Table
ORDER_NUM ORDER_DATE

2108
2120
2106

CUST

101
102
102

REP

ACI
IMM
REI

MFR

4100X
779C
2A45C

PROD

ACI
ACI
BIC

41003
41004
41003

PRODUCTS Table
MFR_ID PRODUCT_ID

Size 3 Widget
Size 4 Widget
Handle

DESCRIPTION

106
104
101

Sam Clark
Bob Smith
Dan Roberts

SALESREPS Table
EMPL_NUM NAME

RESTRICT
(prohibit deletion
of parent)

SET NULL
(set child to NULL
when parent
deleted)CASCADE

(delete child when
parent deleted)

 262 P a r t I I I : U p d a t i n g D a t a 262 P a r t I I I : U p d a t i n g D a t a

• The relationship between an order and the salesperson who took it should probably
use the SET NULL rule. If the salesperson leaves the company, any orders taken by
that salesperson become the responsibility of an unknown salesperson until they are
reassigned. Alternatively, the SET DEFAULT rule could be used to automatically
assign these orders to the sales vice president. This relationship should probably use
the CASCADE update rule, so that employee number changes automatically
propagate to the ORDERS table.

Cascaded Deletes and Updates*
The RESTRICT rule for deletes and updates is a single-level rule—it affects only the parent
table in a relationship. The CASCADE rule, on the other hand, can be a multilevel rule, as
shown in Figure 11-3.

Assume for this discussion that the OFFICES/SALESREPS and SALESREPS/ORDERS
relationships shown in the figure both have CASCADE rules. What happens when you delete
Los Angeles from the OFFICES table? The CASCADE rule for the OFFICES/SALESREPS
relationship tells the DBMS to automatically delete all of the SALESREPS rows that refer to
the Los Angeles office (office number 21) as well. But deleting the SALESREPS row for Sue
Smith brings into play the CASCADE rule for the SALESREPS/ORDERS relationship. This
rule tells the DBMS to automatically delete all of the ORDERS rows that refer to Sue
(employee number 102). Deleting an office thus causes cascaded deletion of salespeople,
which causes cascaded deletion of orders.

As the example shows, CASCADE delete rules must be specified with care because they
can cause widespread automatic deletion of data if they’re used incorrectly. Cascaded
update rules can cause similar multilevel updates if the foreign key in the child table is also
its primary key. In practice, this is not very common, so cascaded updates typically have
less far-reaching effects than cascaded deletes.

The SET NULL and SET DEFAULT update and delete rules are both two-level rules; their
impact stops with the child table. Figure 11-4 shows the OFFICES, SALESREPS, and
ORDERS tables again, with a SET NULL delete rule for the OFFICES/SALESREPS
relationship. This time, when the Los Angeles office is deleted, the SET NULL delete rule
tells the DBMS to set the REP_OFFICE column to NULL in the SALESREPS rows that refer to
office number 21. The rows remain in the SALESREPS table, however, and the impact of the
delete operation extends only to the child table.

Referential Cycles*
In the sample database, the SALESREPS table contains the REP_OFFICE column, a foreign
key for the OFFICES table. The OFFICES table contains the MGR column, a foreign key for
the SALESREPS table. As shown in Figure 11-5, these two relationships form a referential
cycle. Any given row of the SALESREPS table refers to a row of the OFFICES table, which
refers to a row of the SALESREPS table, and so on. This cycle includes only two tables, but
it’s also possible to construct cycles of three or more tables.

Regardless of the number of tables that they involve, referential cycles pose special
problems for referential integrity constraints. For example, suppose that NULL values were
not allowed in the primary or foreign keys of the two tables in Figure 11-5. (This is not, in
fact, the way the sample database is actually defined, for reasons that will become obvious
in a moment.) Consider this database change request and the INSERT statements that
attempt to implement it:

 C h a p t e r 1 1 : D a t a I n t e g r i t y 263
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 263

You have just hired a new salesperson, Ben Adams (employee number 115), who is the manager of
a new sales office in Detroit (office number 14).

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE,
 HIRE_DATE, SALES)
 VALUES (115,'Ben Adams', 14, '2008-04-01', 0.00);

INSERT INTO OFFICES (OFFICE, CITY, REGION, MGR, TARGET, SALES)
 VALUES (14,'Detroit', 'Eastern', 115, 0.00, 0.00);

FIGURE 11-3 Two levels of CASCADE rules

2008-02-15

2007-01-04
2008-02-10

A delete of this row

Causes this row to be deleted

Which in turn causes
these rows to be deleted

Relationship defined with
ON DELETE CASCADE

Relationship defined with
ON DELETE CASCADE

 264 P a r t I I I : U p d a t i n g D a t a 264 P a r t I I I : U p d a t i n g D a t a

Unfortunately, the first INSERT statement (for Ben Adams) will fail. Why? Because the
new row refers to office number 14, which is not yet in the database! Of course, reversing
the order of the INSERT statements doesn’t help:

INSERT INTO OFFICES (OFFICE, CITY, REGION, MGR, TARGET, SALES)
 VALUES (14,'Detroit', 'Eastern', 115, 0.00, 0.00);

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE,
 HIRE_DATE, SALES)
 VALUES (115,'Ben Adams', 14, '2008-04-01', 0.00);

FIGURE 11-4 A combination of delete rules

2008-02-15

2007-01-04
2008-02-10

Relationship defined with
ON DELETE CASCADE

Relationship defined with
ON DELETE SET NULL

A delete of this row

Causes REP_OFFICE to
be set to NULL in this row

Which has no effect
on these rows

 C h a p t e r 1 1 : D a t a I n t e g r i t y 265
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 265

The first INSERT statement (for Detroit this time) will still fail, because the new row
refers to employee number 115 as the office manager, and Ben Adams is not yet in the
database! To prevent this insertion deadlock, at least one of the foreign keys in a referential
cycle must permit NULL values. In the actual definition of the sample database, the MGR
column does not permit NULLs, but the REP_OFFICE does. The two-row insertion can then
be accomplished with two INSERTs and an UPDATE, as shown here:

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE,
 HIRE_DATE, SALES)
 VALUES (115,'Ben Adams', NULL, '2008-04-01', 0.00);

INSERT INTO OFFICES (OFFICE, CITY, REGION, MGR, TARGET, SALES)
 VALUES (14,'Detroit', 'Eastern', 115, 0.00, 0.00);

UPDATE SALESREPS
 SET REP_OFFICE = 14
 WHERE EMPL_NUM = 115;

FIGURE 11-5 A referential cycle

22
11
12
13
21

$186,042.00
$692,637.00
$735,042.00
$367,911.00
$835,915.00

Denver
New York
Chicago
Atlanta
Los Angeles

OFFICES Table
OFFICE CITY SALES

108
106
104
NULL
108

MGR

Western
Eastern
Eastern
Eastern
Western

REGION

$300,000.00
$575,000.00
$800,000.00
$350,000.00
$725,000.00

TARGET

105
109
102
106
104
101
110
108
103
107

Bill Adams
Marry Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

SALESREPS Table
EMPL_NUM NAME

37
31
48
52
33
45
41
62
29
49

AGE

Sales Rep
Sales Rep
Sales Rep
VP Sales
Sales Mgr
Sales Rep
Sales Rep
Sales Mgr
Sales Rep
Sales Rep

TITLE

13
11
21
11
12
12

NULL
21
12
22

REP_OFFICE

Foreign
key

Primary
key

Primary
key

Foreign
key

Reference
Reference

 266 P a r t I I I : U p d a t i n g D a t a 266 P a r t I I I : U p d a t i n g D a t a

As the example shows, sometimes it would be convenient if the referential integrity
constraint were not checked until after a series of interrelated updates are performed. Some
deferred checking capabilities are specified by the SQL standard starting with SQL2, as
described later in the “Deferred Constraint Checking” section.

Referential cycles also restrict the delete and update rules that can be specified for the
relationships that form the cycle. Consider the three tables in the referential cycle shown in
Figure 11-6. The PETS table shows three pets and the boys they like, the GIRLS table shows
three girls and the pets they like, and the BOYS table shows four boys and the girls they like,
forming a referential cycle. All three of the relationships in the cycle specify the RESTRICT
delete rule. Note that George’s row is the only row you can delete from the three tables.
Every other row is the parent in some relationship and is therefore protected from deletion
by the RESTRICT rule. Because of this anomaly, you should not specify the RESTRICT rule
for all of the relationships in a referential cycle.

The CASCADE rule presents a similar problem, as shown in Figure 11-7. This figure
contains exactly the same data as in Figure 11-6, but all three delete rules have been changed
to CASCADE. Suppose you try to delete Bob from the BOYS table. The delete rules force the
DBMS to delete Rover (who likes Bob) from the PETS table, which forces you to delete Betty

FIGURE 11-6
A cycle with all
RESTRICT rules PETS Table

Fluffy
Rover
Skippy

NAME

Sam
Bob
Joe

LIKES

GIRLS Table

Sue
Jill
Betty

NAME

Fluffy
Skippy
Rover

LIKES

BOYS Table

Bob
Sam
Joe
George

NAME

Jill
Betty
Sue
Jill

LIKES

Primary
key

Primary
key

Foreign
key

Foreign
key

Foreign
key

Primary
key RESTRICT

RESTRICT

RESTRICT

 C h a p t e r 1 1 : D a t a I n t e g r i t y 267
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 267

(who likes Rover) from the GIRLS table, which forces you to delete Sam (who likes Betty),
and so on, until all of the rows in all three tables have been deleted. For these small tables
this might be practical, but for a production database with thousands of rows, it would
quickly become impossible to keep track of the cascaded deletions and to retain the integrity
of the database. For this reason, DB2 enforces a rule that prevents referential cycles of two or
more tables where all of the delete rules are CASCADE. At least one relationship in the cycle
must have a RESTRICT or SET NULL delete rule to break the cycle of cascaded deletions.

Foreign Keys and NULL Values*
Unlike primary keys, foreign keys in a relational database are allowed to contain NULL
values. In the sample database, the foreign key REP_OFFICE in the SALESREPS table
permits NULL values. In fact, this column does contain a NULL value in Tom Snyder’s row,
because Tom has not yet been assigned to an office. But the NULL value poses an interesting
question about the referential integrity constraint created by the primary key/foreign key
relationship. Does the NULL value match one of the primary key values, or doesn’t it? The
answer is “maybe”—it depends on the real value of the missing or unknown data.

FIGURE 11-7
An illegal cycle with
all CASCADE rules PETS Table

Fluffy
Rover
Skippy

NAME

Sam
Bob
Joe

LIKES

GIRLS Table

Sue
Jill
Betty

NAME

Fluffy
Skippy
Rover

LIKES

BOYS Table

Bob
Sam
Joe
George

NAME

Jill
Betty
Sue
Jill

LIKES

Primary
key

Primary
key

Foreign
key

Foreign
key

Foreign
key

Primary
key CASCADE

CASCADE

CASCADE

 268 P a r t I I I : U p d a t i n g D a t a 268 P a r t I I I : U p d a t i n g D a t a

The ANSI/ISO SQL standard automatically assumes that a foreign key that contains a
NULL value satisfies the referential integrity constraint. In other words, it gives the row the
benefit of the doubt and allows it to be part of the child table, even though its foreign key
value doesn’t match any row in the parent table. Interestingly, the referential integrity
constraint is assumed to be satisfied if any part of the foreign key has a NULL value. This can
produce unexpected and unintuitive behavior for compound foreign keys, such as the one
that links the ORDERS table to the PRODUCTS table.

Suppose for a moment that the ORDERS table in the sample database permitted NULL
values for the PRODUCT column, and that the PRODUCTS/ORDERS relationship had a SET
NULL delete rule. (This is not the actual structure of the sample database, for the reasons
illustrated by this example.) An order for a product with a manufacturer ID (MFR) of ABC
and a NULL product ID (PRODUCT) can be successfully inserted into the ORDERS table
because of the NULL value in the PRODUCT column. Following the ANSI/ISO standard,
the DBMS assumes that the row meets the referential integrity constraint for ORDERS
and PRODUCTS, even though no product in the PRODUCTS table has a manufacturer
ID of ABC.

The SET NULL delete rule can produce a similar effect. Deleting a row from the
PRODUCTS table will cause the foreign key value in all of its child rows in the ORDERS
table to be set to NULL. Actually, only those columns of the foreign key that accept NULL
values are set to NULL. If there were a single row in the PRODUCTS table for manufacturer
DEF, deleting that row would cause its child rows in the ORDERS table to have their
PRODUCT column set to NULL, but their MFR column would continue to have the value
DEF. As a result, the rows would have an MFR value that did not match any row in the
PRODUCTS table.

To avoid creating this situation, you should be very careful with NULL values in
compound foreign keys. An application that enters or updates data in the table that contains
the foreign key should usually enforce an “all NULLs or no NULLs” rule on the columns of
the foreign key. Foreign keys that are partially NULL and partially non-NULL can easily
create problems.

The SQL standard addresses this problem by giving the database administrator more
control over the handling of NULL values in foreign keys for integrity constraints. The
integrity constraint in the CREATE TABLE statement provides two options, but support for
them is sparse among current SQL implementations:

• MATCH FULL option The MATCH FULL option requires that foreign keys in a child
table fully match a primary key in the parent table. With this option, no part of the
foreign key can contain a NULL value, so the issue of NULL value handling in delete
and update rules does not arise.

• MATCH PARTIAL option The MATCH PARTIAL option allows NULL values in parts
of a foreign key, so long as the non-NULL values match the corresponding parts of
some primary key in the parent table. With this option, NULL value handling in
delete and update rules proceeds as previously described.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 269
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 269

Advanced Constraint Capabilities
Primary key and foreign key constraints, uniqueness constraints, and restrictions on
missing (NULL) values all provide data integrity checking for very specific structures and
situations within a database. Starting with SQL2, the SQL standard goes beyond these
capabilities to include a much more general capability for specifying and enforcing data
integrity constraints. The complete scheme includes four types of constraints:

• Column constraints Specified as part of a column definition when a table is
created, or added later when a table is altered. Conceptually, they restrict the legal
values that may appear in the column. Column constraints appear in the individual
column definitions within the CREATE TABLE and ALTER TABLE statements.

• Domains A specialized form of column constraints. They provide a limited
capability to define new data types within a database. In effect, a domain is one of
the predefined database data types plus some additional constraints, which are
specified as part of the domain definition. Once a domain is defined and named,
the domain name can be used in place of a data type to define new columns. The
columns inherit the constraints of the domain. Domains are defined outside of the
table and column definitions of the database by using the CREATE DOMAIN
statement. As already mentioned, very few SQL implementations provide support
for this statement.

• Table constraints Specified as part of the table definition when a table is created.
Conceptually, they restrict the legal values that may appear in rows of the table.
Table constraints are specified in the CREATE TABLE statement that defines a table.
Usually, they appear as a group after the column definitions, but the SQL standard
allows them to be interspersed with the column definitions.

• Assertions The most general type of SQL constraint. Like domains, they are
specified outside of the table and column structure of the database. Conceptually,
an assertion specifies a relationship among data values that crosses multiple tables
within the database. Unfortunately, also like domains, very few current SQL
implementations support assertions.

Each of the four different types of constraints has its own conceptual purpose, and each
appears in a different part of SQL statement syntax. However, the distinctions between
them are somewhat arbitrary. Any column constraint that appears for an individual column
definition can just as easily be specified as a table constraint. Similarly, any table constraint
can be specified as an assertion. In practice, it’s probably best to specify each database
constraint where it seems to most naturally fit, given the real-world situation that the
database is trying to model. Constraints that apply globally to the entire situation (business
processes, interrelationships among customers and products, and so on) should appear as
assertions. Constraints that apply to a specific type of entity (a customer or an order) should
appear as table constraints or column constraints within the appropriate table that describes
that type of entity. When the same constraint applies to many different columns in the
database that all refer to the same type of entity, then a domain is appropriate.

 270 P a r t I I I : U p d a t i n g D a t a 270 P a r t I I I : U p d a t i n g D a t a

Assertions
Examples of the first three types of constraints have previously appeared in earlier sections
of this chapter. An assertion is specified using the SQL CREATE ASSERTION statement. Here
is an assertion that might be useful in the demo database:

Ensure that an office’s target does not exceed the sum of the quotas for its salespeople.

CREATE ASSERTION target_valid
 CHECK ((OFFICES.TARGET <= SUM(SALESREPS.QUOTA)) AND
 (SALESREPS.REP_OFFICE = OFFICES.OFFICE));

Because it is an object in the database (like a table or a column), the assertion must be
given a name (in this case, it’s target_valid). The name is used in error messages
produced by the DBMS when the assertion is violated. The assertion causing an error may
be obvious in a small demo database, but in a large database that might contain dozens or
hundreds of assertions, it’s critical to know which of the assertions was violated.

Here is another example of an assertion that might be useful in the sample database:

Ensure that the total of the orders for any customer does not exceed their credit limit.

CREATE ASSERTION credit_orders
 CHECK (CUSTOMERS.CREDIT_LIMIT <=
 SELECT SUM(ORDERS.AMOUNT)
 FROM ORDERS
 WHERE ORDERS.CUST = CUSTOMERS.CUST_NUM);

As these examples show, a SQL assertion is defined by a search condition, which is
enclosed in parentheses and follows the keyword CHECK. Every time an attempt is made to
modify the contents of the database through an INSERT or UPDATE or DELETE statement,
the search condition is checked against the (proposed) modified database contents. If the
search condition remains TRUE, the modification is allowed. If the search condition would
become untrue, the DBMS does not carry out the proposed modification, and an error code
is returned, indicating an assertion violation.

In theory, assertions could cause a large amount of database processing overhead as
they are checked for each statement that might modify the database. In practice, the DBMS
will analyze the assertion and determine which tables and columns it involves. Only
changes that involve those particular tables or columns will actually trigger the search
condition. Nonetheless, assertions should be defined with great care to ensure that they
impose a reasonable amount of overhead for the benefit they provide.

SQL Constraint Types
The types of constraints that can be specified in the SQL standard starting with SQL2, and
the role played by each, can be summarized as follows:

• NOT NULL constraint The NOT NULL constraint can appear only as a column
constraint. It prevents the column from being assigned a NULL value.

• PRIMARY KEY constraint A PRIMARY KEY constraint can appear as a column
constraint or a table constraint. If the primary key consists of a single column, the
column constraint may be more convenient. If it consists of multiple columns, it
should be specified as a table constraint.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 271
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 271

• UNIQUE constraint A UNIQUE constraint can appear as a column constraint or a
table constraint. If the unique values restriction is being enforced only for a single
column, the column constraint is the easiest way to specify it. If the unique values
restriction applies to a set of two or more columns (that is, the combination of values
for those columns must be unique for all rows in the table), then the table constraint
form should be used.

• Referential (FOREIGN KEY) constraint A referential (FOREIGN KEY) constraint can
appear as a column constraint or a table constraint. If the foreign key consists of a
single column, the column constraint may be more convenient. If it consists of
multiple columns, it should be specified as a table constraint. If a table has many
foreign key relationships to other tables, it may be most convenient to gather all of
its foreign key constraints together at one place in the table definition, rather than
having them scattered throughout the column definitions.

• Check constraint A check constraint can appear as a column constraint or a table
constraint. It is also the only kind of constraint that forms part of the definition of a
domain or an assertion. The check constraint is specified as a search condition, like
the search condition that appears in the WHERE clause of a database query. The
constraint is satisfied if the search condition has a TRUE value.

Each individual constraint within a database (no matter what its type) may be assigned
a constraint name to uniquely identify it from the other constraints. It’s probably unnecessary
to assign constraint names in a simple database where each constraint is clearly associated
with a single table, column, or domain, and where there is little potential for confusion. In a
more complex database involving multiple constraints on a single table or column, it can be
very useful to be able to identify the individual constraints by name (especially when errors
start to occur!). Also, default names assigned by the DBMS are often confusing and meaningless,
so it’s always better to assign your own constraint names. Note that the check constraint in an
assertion must have a constraint name; this name effectively becomes the name of the assertion
containing the constraint.

Deferred Constraint Checking
In their simplest form, the various constraints that are specified within a database are
checked every time an attempt is made to change the database contents—that is, during the
execution of every attempted INSERT, UPDATE, or DELETE statement. For database systems
claiming only Intermediate-level or Entry-level conformance to the SQL standard, this is the
only mode of operation allowed for database constraints. The Full-level SQL standard
specifies an additional capability for deferred constraint checking.

When constraint checking is deferred, the constraints are not checked for each individual
SQL statement. Instead, constraint checking is held in abeyance until the end of a SQL
transaction. (Transaction processing and the associated SQL statements are described in detail
in Chapter 12.) When the completion of the transaction is signaled by the SQL COMMIT
statement, the DBMS checks the deferred constraints. If all of the constraints are satisfied, then
the COMMIT statement can proceed, and the transaction can complete normally. At this point,
any changes made to the database during the transaction become permanent. If, however, one
or more of the constraints would be violated by the proposed transaction, then the COMMIT
statement fails, and the transaction is rolled back—that is, all of the proposed changes to the
database are reversed, and the database goes back to its state before the transaction began.

 272 P a r t I I I : U p d a t i n g D a t a 272 P a r t I I I : U p d a t i n g D a t a

Deferred constraint checking can be very important when several updates to a database
must all be made at once to keep the database in a consistent state. For example, suppose
the demo database contained this assertion:

Ensure that an office’s target is exactly equal to the sum of the quotas for its salespeople.

CREATE ASSERTION quota_totals
 CHECK ((OFFICES.TARGET = SUM(SALESREPS.QUOTA)) AND
 (SALESREPS.REP_OFFICE = OFFICES.OFFICE));

Without the deferred constraint checking, this constraint would effectively prevent you
from ever adding a salesperson to the database. Why? Because to keep the office target and
the salespersons’ quotas in the right relationship, you must both add a new salesperson row
with the appropriate quota (using an INSERT statement) and increase the target for the
appropriate office by the same amount (using an UPDATE statement). If you try to perform
the INSERT statement on the SALESREPS table first, the OFFICES table will not yet have
been updated, the assertion will not be TRUE, and the statement will fail.

Similarly, if you try to perform the UPDATE statement on the OFFICES table first, the
SALESREPS table will not yet have been updated, the assertion will not be TRUE, and the
statement will fail. The only solution to this dilemma is to defer constraint checking until
both statements have completed, and then check to make sure that both operations, taken
together, have left the database in a valid state.

The SQL deferred constraint mechanism provides for this capability, and much more.
Each individual constraint (of all types) within the database can be identified as either
DEFERRABLE or NOT DEFERRABLE when it is first created or defined:

• DEFERRABLE constraint A DEFERRABLE constraint is one whose checking can be
deferred to the end of a transaction. The assertion in the previous example is one that
should be deferrable. When updating quotas or adding new salespeople to the database,
you certainly want to be able to defer constraint checking, as the example showed.

• NOT DEFERRABLE constraint A NOT DEFERRABLE constraint is one whose
checking cannot be deferred. A primary key constraint, a uniqueness constraint, and
many column check constraints would usually fall into this category. These data
integrity checks typically don’t depend on other database interactions. They can and
should be checked after every SQL statement that tries to modify the database.

Because it provides the most stringent integrity checking, NOT DEFERRABLE is the
default. You must explicitly declare a constraint to be DEFERRABLE if you want to defer its
operation. Note also that these constraint attributes define only the deferability of a
constraint—that is, whether its operation can be deferred. The constraint definition may
also specify the initial state of the constraint:

• INITIALLY IMMEDIATE constraint An INITIALLY IMMEDIATE constraint is one
that starts out as an immediate constraint; that is, it will be checked immediately for
each SQL statement.

• INITIALLY DEFERRED constraint An INITIALLY DEFERRED constraint is one
that starts out as a deferred constraint; that is, its checking will be deferred until the
end of a transaction. Of course, this option cannot be specified if the constraint is
defined as NOT DEFERRABLE.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 273
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 273

The constraint is put into the specified initial state when it is first created. It is also reset
into this initial state at the beginning of each transaction. Because it provides the most
stringent integrity checking, INITIALLY IMMEDIATE is the default. You must explicitly
declare a constraint to be INITIALLY DEFERRED if you want it to automatically start out
each transaction in a deferred state.

The SQL standard adds one more mechanism to control the immediate or deferred
processing of constraints. You can dynamically change the processing of a constraint during
database operation using the SET CONSTRAINTS statement. For example, suppose the
sample database contains this assertion:

CREATE ASSERTION quota_totals
 CHECK ((OFFICES.TARGET = SUM(SALESREPS.QUOTA)) AND
 (SALESREPS.REP_OFFICE = OFFICES.OFFICE))
 DEFERRABLE INITIALLY IMMEDIATE;

The initially immediate checking causes the constraint to be processed, statement by
statement, for all normal database processing. For the special transaction that adds a new
salesperson to the database, however, you will need to temporarily defer constraint
processing. This sequence of statements accomplishes the goal:

SET CONSTRAINTS quota_totals DEFERRED;

 INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE, HIRE_DATE,
 QUOTA, SALES)
 VALUES (:num, :name, :office_num, :date, :amount, 0);

 UPDATE OFFICES SET TARGET = TARGET + :amount
 WHERE (OFFICE = :office_num);

 COMMIT;

After the COMMIT statement ends the transaction, the quota_totals constraint is reset
back into IMMEDIATE mode because of the INITIALLY IMMEDIATE specification. If there
were more work to be done after the UPDATE statement before the end of the transaction,
you could manually set the constraint back into IMMEDIATE mode using this statement:

SET CONSTRAINTS quota_totals IMMEDIATE;

You can set the same mode for several different constraints by including the constraint
names in a comma-separated list:

SET CONSTRAINTS quota_totals, rep_totals IMMEDIATE;

Finally, you can set the processing mode for all constraints with a single statement:

SET CONSTRAINTS ALL DEFERRED;

The SQL capabilities for deferred constraint checking form a very comprehensive facility
for managing the integrity of a database. As with many capabilities in the SQL standard,
individual pieces of the SQL capability were taken from existing SQL implementations,

 274 P a r t I I I : U p d a t i n g D a t a 274 P a r t I I I : U p d a t i n g D a t a

and individual pieces have found their way into other implementations since the publication
of the standard. IBM’s DB2, for example, includes deferred constraint checking capability
and supports SQL-style deferability options. Its SET CONSTRAINTS statement, however,
differs from the SQL standard. It operates on individual tables in the database, turning on
and off the deferral of constraint checking associated with the table contents.

Business Rules
Many of the data integrity issues in the real world have to do with the rules and procedures
of an organization. For example, the company that is modeled by the sample database
might have rules like these:

• No customer is allowed to place orders that would exceed the customer’s credit limit.

• The sales vice president must be notified whenever any customer is assigned a
credit limit higher than $50,000.

• Orders may remain on the books for only six months; orders older than six months
must be canceled and reentered (assuming the customer still wants them).

In addition, there are often accounting rules that must be followed to maintain the
integrity of totals, counts, and other amounts stored in a database. For the sample database,
these rules probably make sense:

• Whenever a new order is taken, the SALES column for the salesperson who took the
order and for the office where that salesperson works should be increased by the
order amount. Deleting an order or changing the order amount should also cause
the SALES columns to be adjusted.

• Whenever a new order is taken, the QTY_ON_HAND column for the product being
ordered should be decreased by the quantity of products ordered. Deleting an order,
changing the quantity, or changing the product ordered should also cause
corresponding adjustments to the QTY_ON_HAND column.

These rules fall outside the realm of SQL as defined by the SQL standard and as
implemented by many SQL-based DBMS products today. The DBMS takes responsibility for
storing and organizing data and ensuring its basic integrity, but enforcing the business rules
is the responsibility of the application programs that access the database.

Placing the burden of enforcing business rules on the application programs that access
the database has several disadvantages:

• Duplication of effort If six different programs deal with various updates to the
ORDERS table, each must include code that enforces the rules relating to ORDERS
updates.

• Lack of consistency If several programs written by different programmers handle
updates to a table, they will probably enforce the rules somewhat differently.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 275
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 275

• Maintenance problems If the business rules change, the programmers must identify
every program that enforces the rules, then locate the code and modify it correctly.

• Complexity There are often many rules to remember. Even in the small sample
database, a program that handles order changes must worry about enforcing credit
limits, adjusting sales totals for salespeople and offices, and adjusting the quantities
on hand. A program that handles simple updates can become complex very quickly.

The requirement that application programs enforce business rules is not unique to SQL.
Application programs have had that responsibility since the earliest days of COBOL
programs and file systems. However, there has been a steady trend over the years to put
more “understanding” of the data and more responsibility for its integrity into the database
itself. In 1986, the Sybase DBMS introduced the concept of a trigger as a step toward
including business rules in a relational database. The concept proved to be very popular, so
support for triggers began to appear in many SQL DBMS products in the early 1990s,
including those of the mainstream enterprise DBMS vendors. Triggers and the enforcement
of business rules that they provide have been especially useful in enterprise database
environments. When hundreds of application programs are being developed or modified
every year by dozens of application programmers, the ability to centralize the definition
and administration of business rules can be very useful.

What Is a Trigger?
The concept of a trigger is relatively straightforward. For any event that causes a change in the
contents of a table, a user can specify an associated action that the DBMS should carry out.
The three events that can trigger an action are attempts to INSERT, DELETE, or UPDATE rows
of the table. The action triggered by an event is specified by a sequence of SQL statements.

To understand how a trigger works, let’s examine a concrete example. When a new order
is added to the ORDERS table, these two changes to the database should also take place:

• The SALES column for the salesperson who took the order should be increased by
the amount of the order.

• The QTY_ON_HAND amount for the product being ordered should be decreased by
the quantity ordered.

This Transact-SQL statement defines a SQL Server trigger, named NEWORDER, that
causes these database updates to happen automatically:

CREATE TRIGGER NEWORDER
 ON ORDERS
 FOR INSERT
 AS UPDATE SALESREPS
 SET SALES = SALES + INSERTED.AMOUNT
 FROM SALESREPS, INSERTED
 WHERE SALESREPS.EMPL_NUM = INSERTED.REP
 UPDATE PRODUCTS
 SET QTY_ON_HAND = QTY_ON_HAND - INSERTED.QTY
 FROM PRODUCTS, INSERTED
 WHERE PRODUCTS.MFR_ID = INSERTED.MFR
 AND PRODUCTS.PRODUCT_ID = INSERTED.PRODUCT;

 276 P a r t I I I : U p d a t i n g D a t a 276 P a r t I I I : U p d a t i n g D a t a

The first part of the trigger definition tells SQL Server that the trigger is to be invoked
whenever an INSERT statement is attempted on the ORDERS table. The remainder of the
definition (after the keyword AS) defines the action of the trigger. In this case, the action is a
sequence of two UPDATE statements, one for the SALESREPS table and one for the PRODUCTS
table. The row being inserted is referred to using the pseudo–table name inserted within the
UPDATE statements. As the example shows, SQL Server extends the SQL language
substantially to support triggers. Other extensions not shown here include IF/THEN/ELSE
tests, looping, procedure calls, and even PRINT statements that display user messages.

Triggers were added to the SQL:1999 version of the ANSI/ISO SQL standard, well after the
time when the most popular DBMS brands added support for them. As with other SQL features
whose popularity has preceded standardization, this has led to a considerable divergence in
trigger support across various DBMS brands. Some of the differences between brands are
merely differences in syntax. Others reflect real differences in the underlying capability.

DB2’s trigger support provides an instructive example of the differences. Here is the
same trigger definition shown previously for SQL Server, this time using the DB2 syntax:

CREATE TRIGGER NEWORDER
 AFTER INSERT ON ORDERS
 REFERENCING NEW AS NEW_ORD
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 UPDATE SALESREPS
 SET SALES = SALES + NEW_ORD.AMOUNT
 WHERE SALESREPS.EMPL_NUM = NEW_ORD.REP;
 UPDATE PRODUCTS
 SET QTY_ON_HAND = QTY_ON_HAND – NEW_ORD.QTY
 WHERE PRODUCTS.MFR_ID = NEW_ORD.MFR
 AND PRODUCTS.PRODUCT_ID = NEW_ORD.PRODUCT;
 END

The beginning of the trigger definition includes the same elements as the SQL Server
definition, but rearranges them. It explicitly tells DB2 that the trigger is to be invoked after a
new order is inserted into the database. DB2 also allows you to specify that the trigger is to
be carried out before a triggering action is applied to the database contents. This doesn’t
make sense in this example, because the triggering event is an INSERT operation, but it
does make sense for UPDATE or DELETE operations.

The DB2 REFERENCING clause specifies a table alias (NEW_ORD) that will be used to refer
to the row being inserted throughout the remainder of the trigger definition. The alias
created by the REFERENCING clause (NEW_ORD) serves the same purpose as the INSERTED
keyword in the SQL Server trigger. The statement references the new values in the inserted
row because this is an INSERT operation trigger. For a DELETE operation trigger, the old
values would be referenced. For an UPDATE operation trigger, DB2 gives you the ability to
refer to both the old (pre-UPDATE) values and new (post-UPDATE) values.

BEGIN ATOMIC and END serve as brackets around the sequence of SQL statements that
define the triggered action. The two searched UPDATE statements in the body of the trigger
definition are straightforward modifications of their SQL Server counterparts. They follow
the standard SQL syntax for searched UPDATE statements, using the table alias specified by
the REFERENCING clause to identify the particular row of the SALESREPS table and the
PRODUCTS table to be updated. The row being inserted is referred to using the pseudo–table
name inserted within the UPDATE statements.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 277
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 277

Triggers and Referential Integrity
Triggers provide an alternative way to implement the referential integrity constraints
provided by foreign keys and primary keys. In fact, advocates of the trigger feature point
out that the trigger mechanism is more flexible than the strict referential integrity provided
by the ANSI/ISO standard. However, opponents of the trigger feature point out that trigger
behavior varies greatly from one DBMS to another, particularly in the way transactions are
rolled back, how failed triggers are cleaned up, and how locking works during the duration
of trigger execution. For example, here is a SQL Server trigger that enforces referential
integrity for the OFFICES/SALESREPS relationship and displays a message when an
attempted update fails:

CREATE TRIGGER REP_UPDATE
 ON SALESREPS
 FOR INSERT, UPDATE
 AS IF ((SELECT COUNT(*)
 FROM OFFICES, INSERTED
 WHERE OFFICES.OFFICE = INSERTED.REP_OFFICE) = 0)
 BEGIN
 PRINT 'Invalid office number specified.'
 ROLLBACK TRANSACTION
 END;

Triggers can also be used to provide extended forms of referential integrity. For
example, DB2 initially provided cascaded deletes through its CASCADE delete rule, but
did not support cascaded updates if a primary key value is changed. This limitation need
not apply to triggers, however. The following SQL Server trigger cascades any update of
the OFFICE column in the OFFICES table down into the REP_OFFICE column of the
SALESREPS table:

CREATE TRIGGER CHANGE_REP_OFFICE
 ON OFFICES
 FOR UPDATE
 AS IF UPDATE (OFFICE)
 BEGIN
 UPDATE SALESREPS
 SET SALESREPS.REP_OFFICE = INSERTED.OFFICE
 FROM SALESREPS, INSERTED, DELETED
 WHERE SALESREPS.REP_OFFICE = DELETED.OFFICE
 END;

As in the previous SQL Server example, the references DELETED.OFFICE and
INSERTED.OFFICE in the trigger refer, respectively, to the values of the OFFICE column
before and after the UPDATE statement. The trigger definition must be able to differentiate
between these before and after values to perform the appropriate search and update actions
specified by the trigger.

Trigger Advantages and Disadvantages
Over the last several years, the trigger mechanisms in many commercial DBMS products
have expanded significantly. In many commercial implementations, the distinctions
between triggers and stored procedures (described in Chapter 20) have blurred, so the

 278 P a r t I I I : U p d a t i n g D a t a 278 P a r t I I I : U p d a t i n g D a t a

action triggered by a single database change may be defined by hundreds of lines of stored
procedure programming. The role of triggers has thus evolved beyond the enforcement of
data integrity into a programming capability within the database.

A complete discussion of triggers is beyond the scope of this book, but even these
simple examples show the power of the trigger mechanism. The major advantage of triggers
is that business rules can be stored in the database and enforced consistently with each
update to the database. This can dramatically reduce the complexity of application
programs that access the database. Triggers also have some disadvantages, including these:

• Database complexity When the rules are moved into the database, setting up the
database becomes a more complex task. Users who could reasonably be expected to
create small ad hoc applications with SQL will find that the programming logic of
triggers makes the task much more difficult.

• Hidden rules With the rules hidden away inside the database, programs that
appear to perform straightforward database updates may, in fact, generate an
enormous amount of database activity. The programmer no longer has total control
over what happens to the database. Instead, a program-initiated database action
may cause other, hidden actions.

• Hidden performance implications With triggers stored inside the database, the
consequences of executing a SQL statement are no longer completely visible to the
programmer. In particular, an apparently simple SQL statement could, in concept,
trigger a process that involves a sequential scan of a very large database table,
which could take a long time to complete. These performance implications of any
given SQL statement are invisible to the programmer.

Triggers and the SQL Standard
Triggers were one of the most widely praised and publicized features of Sybase SQL Server
when it was first introduced, and they have since found their way into many commercial
SQL products. Although the SQL2 standard provided an opportunity to standardize the
DBMS implementation of triggers, the standards committee included check constraints
instead, leaving triggers for a subsequent version (SQL:1999, also known as SQL3). As the
trigger and check-constraint examples in the preceding sections show, check constraints can
be effectively used to limit the data that can be added to a table or modified in a table.
However, unlike triggers, they lack the ability to cause an independent action in the
database, such as adding a row or changing a data item in another table.

Some experts have argued that triggers are a pollution of the data management function
of a database, and that the functions performed by triggers belong in fourth generation
languages (4GLs) and other database tools, rather than in the DBMS itself. While the debate
continues, DBMS products have experimented with new trigger capabilities that extend
beyond the database itself. These extended trigger capabilities allow modifications to
data in a database to automatically cause actions such as sending mail, alerting a user, or
launching another program to perform a task. This makes triggers even more useful and
will add to the debate over how extensively they should be used. However, there is no
doubt that triggers have become a more and more important part of SQL in enterprise
applications over the last several years.

 C h a p t e r 1 1 : D a t a I n t e g r i t y 279
PART III

 C h a p t e r 1 1 : D a t a I n t e g r i t y 279

Summary
The SQL language provides a number of features that help to protect the integrity of data
stored in a relational database:

• Required columns can be specified when a table is created, and the DBMS will
prevent NULL values in these columns.

• Data validation is limited to data type checking in standard SQL, but many DBMS
products offer other data validation features.

• Entity integrity constraints ensure that the primary key uniquely identifies each
entity represented in the database.

• Referential integrity constraints ensure that relationships among entities in the
database are preserved during database changes (inserts, updates, and deletes).

• The SQL standard and newer implementations provide extensive referential
integrity support, including delete and update rules that tell the DBMS how to
handle the deletion and modification of rows that are referenced by other rows.

• Business rules can be enforced by the DBMS through the trigger mechanism
popularized by Sybase and SQL Server and later included in the SQL:1999 standard.
Triggers allow the DBMS to take complex actions in response to events such as
attempted INSERT, DELETE, or UPDATE statements. Check constraints provide a
more limited way to include business rules in the definition of a database and have
the DBMS enforce them.

This page intentionally left blank

12
Transaction Processing

Database updates are usually triggered by real-world events, such as the receipt of a
new order from a customer. In fact, receiving a new order would generate not just
one, but this series of four updates to the sample database:

• Add the new order to the ORDERS table.

• Update the sales total for the salesperson who took the order.

• Update the sales total for the salesperson’s office.

• Update the quantity-on-hand total for the ordered product.

To leave the database in a self-consistent state, all four updates must occur as a unit. If a
system failure or another error creates a situation where some of the updates are processed
and others are not, the integrity of the database will be compromised. Similarly, if another
user calculates totals or ratios partway through the sequence of updates, the calculations
will be incorrect. The sequence of updates must thus be an all-or-nothing proposition in the
database. SQL provides precisely this capability through its transaction-processing features,
which are described in this chapter.

281

CHAPTER

 282 P a r t I I I : U p d a t i n g D a t a 282 P a r t I I I : U p d a t i n g D a t a

What Is a Transaction?
A transaction is a sequence of one or more SQL statements that together form a logical unit
of work. The SQL statements that form the transaction are typically closely related and
perform interdependent actions. Each statement in the transaction performs some part of a
task, but all of them are required to complete the task. Grouping the statements as a single
transaction tells the DBMS that the entire statement sequence should be executed in a
manner that passes what is known as the ACID test. ACID is an acronym commonly used
when referring to four characteristics of a transaction:

• Atomic A transaction has an all-or-nothing nature. Either all operations in a
transaction are performed or none of them are performed. If some statements are
executed and the transaction fails, the results of the statements that executed must
be rolled back. Only when all statements are executed properly can a transaction be
considered complete and the results of the transaction applied to the database.

• Consistent A transaction must transform the database from one consistent state
to another. The database must be consistent at the end of each transaction, meaning
that all rules that define and constrain the data must be adhered to before the
transaction can end. Also, no user should see inconsistent data because of changes
made by transactions that have not yet completed.

• Isolated Each transaction must execute on its own without interference from other
transactions. To be isolated, no transaction can act upon changes made by other
transactions until those transactions are complete.

• Durable Once a transaction is complete, all changes made by it should be preserved.
The data should be in a consistent state, even if a hardware or application error occurs
after completion of the transaction. In object-oriented programming, the term persistence
is used for this property.

Here are some examples of typical transactions for the sample database, along with the
SQL statement sequence that comprises each transaction:

• Add-an-order To accept a customer’s order, the order-entry program should
(a) query the PRODUCTS table to ensure that the product is in stock, (b) insert the
order into the ORDERS table, (c) update the PRODUCTS table, subtracting the quantity
ordered from the quantity-on-hand of the product, (d) update the SALESREPS table,
adding the order amount to the total sales of the salesperson who took the order, and
(e) update the OFFICES table, adding the order amount to the total sales of the office
where the salesperson works.

• Cancel-an-order To cancel a customer’s order, the program should (a) delete the
order from the ORDERS table, (b) update the PRODUCTS table, adjusting the
quantity-on-hand total for the product, (c) update the SALESREPS table, subtracting
the order amount from the salesperson’s total sales, and (d) update the OFFICES
table, subtracting the order amount from the office’s total sales.

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 283
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 283

• Reassign-a-customer When a customer is reassigned from one salesperson to
another, the program should (a) update the CUSTOMERS table to reflect the change,
(b) update the ORDERS table to show the new salesperson for all orders placed by
the customer, (c) update the SALESREPS table, reducing the quota for the
salesperson losing the customer, and (d) update the SALESREPS table, raising the
quota for the salesperson gaining the customer.

In each of these cases, a sequence of four or five actions, where each action consists of a
separate SQL statement, is required to handle the single logical transaction.

The transaction concept is critical for programs that update a database, because it
ensures the integrity of the database. A SQL-based DBMS makes this commitment about the
statements in a transaction:

The statements in a transaction will be executed as an atomic unit of work in the database.
Either the results of all of the statements will be applied to the database, or none of the statements
will have results posted to the database.

The DBMS is responsible for keeping this commitment even if the application program
aborts or a hardware failure occurs in the middle of the transaction, as shown in Figure 12-1.
In each case, the DBMS must make sure that when failure recovery is complete, the database
never reflects a partial transaction.

FIGURE 12-1 The SQL transaction concept

SAVEPOINT

back to
savepoint

 284 P a r t I I I : U p d a t i n g D a t a 284 P a r t I I I : U p d a t i n g D a t a

The ANSI/ISO SQL Transaction Model
The ANSI/ISO SQL standard defines a SQL transaction model and seven statements that
support transaction processing:

• START TRANSACTION Sets the properties of a new transaction and starts that
transaction.

• SET TRANSACTION Sets the properties of the next transaction to be executed. It
has no effect, however, on any currently executing transaction.

• SET CONSTRAINTS Sets the constraint mode within a current transaction. The
constraint mode controls whether a constraint is applied immediately to data as it is
modified or whether enforcement of the constraint is to be deferred until later in the
transaction. SET CONSTRAINTS is presented in Chapter 11.

• SAVEPOINT Creates a savepoint within a transaction. A savepoint is a place within
a transaction’s sequence of events that can act as an intermediate recovery point.
A current transaction can be rolled back to the savepoint instead of to the beginning
of the transaction.

• RELEASE SAVEPOINT Releases a savepoint, freeing up any resources it may be
holding.

• COMMIT Terminates a successful transaction and commits all changes to the database.

• ROLLBACK When used without a savepoint, terminates an unsuccessful transaction
and rolls back any changes to the beginning of a transaction, essentially restoring
the database to its consistent state before the transaction (as if the transaction had
never executed). When used with a savepoint, rolls back the transaction to the named
savepoint, but allows it to continue.

The first version of the SQL standard (SQL1) defined an implicit transaction mode, based
on the transaction support in the early releases of DB2. In implicit mode, only the COMMIT
and ROLLBACK statements are supported. A SQL transaction automatically begins with the
first SQL statement executed by a user or a program and ends when a COMMIT or ROLLBACK
is executed. The end of one transaction implicitly starts a new one. In programmatic SQL,
successful termination of a program is handled as if a COMMIT was issued, and abnormal
termination of a program is handled as if a ROLLBACK was issued. Many commercial products,
notably DB2 and Oracle, still default to implicit transaction mode when you first connect to
the database.

The SQL2 and SQL:1999 versions of the ANSI/ISO SQL standard introduced the other
statements shown in the preceding list. Most modern commercial products support them;
however, there are exceptions. For example, Sybase ASE and SQL SERVER support a BEGIN
TRANSACTION statement instead of START TRANSACTION, and a SAVE TRANSACTION
statement instead of SAVEPOINT.

The START TRANSACTION and SET TRANSACTION Statements
The syntax diagrams for the START TRANSACTION and SET TRANSACTION statements
are shown in Figure 12-2. The fundamental difference between the two is that START
TRANSACTION starts a new transaction with an option to set certain properties of the

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 285
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 285

transaction, while the SET TRANSACTION statement sets properties that will be used by
the next transaction—it cannot be used within an existing transaction, and therefore can
have no effect on any existing transaction. One other difference is that the SET TRANSACTION
statement has a LOCAL option, which can be used to set options for local server execution of
a transaction that spans multiple servers.

The three properties that may be set by these statements (in any order desired) are

• Isolation level Defines how isolated a transaction will be from the actions of other
transactions. The specific options (READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ, and SERIALIZABLE) are presented in detail in the “Isolation
Levels” topic later in this chapter. If no isolation level is specified, the default is
SERIALIZABLE.

• Access level Defines whether the transaction can contain statements that modify the
database (READ WRITE) or not (READ ONLY). The default depends on the isolation
level selected, but if no isolation level is specified, the default is READ WRITE.

• Diagnostics size Defines the size of the diagnostics area used for conditions that
can be raised by SQL statements as they execute. A condition is a warning, exception,
or other type of message generated by SQL statement execution. For example, if
diagnostics size is set to 10, then up to 10 conditions can be stored for an executed
statement. Note that as of this writing, the diagnostics size option is not supported
by SQL Server, Sybase ASE, Oracle, MySQL, DB2, or most other current SQL
implementations.

FIGURE 12-2 The START TRANSACTION and SET TRANSACTION statements

START TRANSACTION

ISOLATION LEVEL READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

[,] READ ONLY

READ WRITE

[,] DIAGNOSTICS SIZE number-of-conditions

ISOLATION LEVEL READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

[,] READ ONLY

READ WRITE

[,] DIAGNOSTICS SIZE number-of-conditions

SET [LOCAL] TRANSACTION

 286 P a r t I I I : U p d a t i n g D a t a 286 P a r t I I I : U p d a t i n g D a t a

Here is an example of a START TRANSACTION statement that sets an isolation level of
READ UNCOMMITTED, an access level of READ ONLY, and a diagnostics size of 5:

START TRANSACTION
 ISOLATION LEVEL READ UNCOMMITTED,
 READ ONLY,
 DIAGNOSTICS SIZE 5;

The SAVEPOINT and RELEASE SAVEPOINT Statements
As stated earlier, the SAVEPOINT statement establishes a point within a transaction to
which the transaction can be rolled back using a subsequent ROLLBACK statement. The
syntax is quite simple, with the only parameter being a unique name for the savepoint
within the transaction:

SAVEPOINT savepoint-name;

The obvious advantage of using a savepoint is the ability to roll back part of a
transaction when a minor and potentially recoverable error condition is encountered. The
rightmost transaction in Figure 12-1 shows such an example. In most implementations,
transactions can have as many savepoints as necessary, provided each is given a unique
name within the transaction. For example, an order-entry application might create a
savepoint after each line item is entered on the order. Should the addition of a new line item
exceed the credit limit of the customer, the application can roll back to the savepoint just
before the current line item. The rollback would reverse the line item that caused the
problem, allowing the application to present an error message to the person entering the
order, and then to proceed from that point (perhaps with a less expensive item that would
not exceed the limit).

The disadvantage of savepoints is that they potentially require a lot of resources (storage
and/or memory). While termination of the transaction releases all the savepoints
automatically, sometimes it is wise to explicitly release savepoints that are no longer
necessary. This can be done with the RELEASE SAVEPOINT statement, which has syntax
that is equally simple:

RELEASE SAVEPOINT savepoint-name;

The COMMIT and ROLLBACK Statements
SQL supports two SQL transaction-processing statements for explicitly ending transactions,
shown in Figure 12-3. Options include the following:

• WORK This keyword has no effect, but is included in the standard for compatibility
with some SQL implementations that require it.

• AND [NO] CHAIN Specifies whether a new transaction is to be automatically
started with the same properties as the one that just ended. As of this writing, this
option is not supported by Oracle, SQL Server, DB2 UDB, or MySQL.

• TO SAVEPOINT For the ROLLBACK statement only, this option specifies rollback
to a savepoint that was previously created within the transaction instead of to the
beginning of the transaction.

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 287
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 287

The COMMIT and ROLLBACK statements are executable SQL statements, just like
SELECT, INSERT, UPDATE, and DELETE. Here is an example of a successful update
transaction that changes the quantity and amount of an order and adjusts the totals for the
product, salesperson, and office associated with the order. A change like this would
typically be handled by a forms-based change-order program, which would use
programmatic SQL to execute the statements shown here.

Change the quantity on order number 113051 from 4 to 10, which raises its amount from $1458 to
$3550. The order is for QSA-XK47 reducers and was placed with Larry Fitch (employee number
108) who works in Los Angeles (office number 21).

UPDATE ORDERS
 SET QTY = 10, AMOUNT = 3550.00
 WHERE ORDER_NUM = 113051;

UPDATE SALESREPS
 SET SALES = SALES - 1458.00 + 3550.00
 WHERE EMPL_NUM = 108;

UPDATE OFFICES
 SET SALES = SALES - 1458.00 + 3550.00
 WHERE OFFICE = 21;

UPDATE PRODUCTS
 SET QTY_ON_HAND = QTY_ON_HAND + 4 - 10
 WHERE MFR_ID = 'QSA'
 AND PRODUCT_ID = 'XK47';

. . . confirm the change one last time with the customer . . .

COMMIT WORK;

Here is the same transaction, but this time assume that the user makes an error entering
the product number. To correct the error, the transaction is rolled back, so that it can be
reentered correctly:

Change the quantity on order number 113051 from 4 to 10, which raises its amount from $1458 to
$3550. The order is for QAS-XK47 reducers and was placed with Larry Fitch (employee number
108), who works in Los Angeles (office number 21).

FIGURE 12-3 The COMMIT and ROLLBACK statement syntax diagrams

COMMIT

WORK AND [NO] CHAIN

ROLLBACK

WORK AND [NO] CHAIN TO SAVEPOINT savepoint-name

 288 P a r t I I I : U p d a t i n g D a t a 288 P a r t I I I : U p d a t i n g D a t a

UPDATE ORDERS
 SET QTY = 10, AMOUNT = 3550.00
 WHERE ORDER_NUM = 113051;

UPDATE SALESREPS
 SET SALES = SALES - 1458.00 + 3550.00
 WHERE EMPL_NUM = 108;

UPDATE OFFICES
 SET SALES = SALES - 1458.00 + 3550.00
 WHERE OFFICE = 21;

UPDATE PRODUCTS
 SET QTY_ON_HAND = QTY_ON_HAND + 4 - 10
 WHERE MFR_ID = 'QAS'
 AND PRODUCT_ID = 'XK47';

. . . oops! the manufacturer is “QSA,” not “QAS” . . .

ROLLBACK WORK;

Figure 12-4 shows typical transactions that illustrate common conditions.

FIGURE 12-4 Committed and rolled back transactions

SAVEPOINT

Error
detected

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 289
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 289

Recall that the ANSI/ISO SQL standard is primarily focused on a programmatic SQL
language for use in application programs. Transactions play an important role in
programmatic SQL, because even a simple application program often needs to carry out a
sequence of two or three SQL statements to accomplish its task. Because users can change
their minds and other conditions can occur (such as being out of stock on a product that a
customer wants to order), an application program must be able to proceed partway through
a transaction and then choose to abort or continue. The COMMIT and ROLLBACK statements
provide precisely this capability.

The COMMIT and ROLLBACK statements can also be used in interactive SQL, but in
practice, they are rarely seen in this context. Interactive SQL is generally used for database
queries; updates are less common, and multistatement updates are almost never performed
by typing the statements into an interactive SQL facility. As a result, transactions are
typically a minor concern in interactive SQL. In fact, many interactive SQL products default
to an autocommit mode, where a COMMIT statement is automatically executed after each
SQL statement typed by the user. This effectively makes each interactive SQL statement its
own transaction.

Transactions: Behind the Scenes*
The all-or-nothing commitment that a DBMS makes for the statements in a transaction
seems almost like magic to a new SQL user. How can the DBMS possibly back out the
changes made to a database, especially if a system failure occurs during the middle of a
transaction? The actual techniques used by brands of DBMS vary, but almost all of them are
based on a transaction log, as shown in Figure 12-5. Although the term log is commonly used,
some DBMS products use more elaborate mechanisms to store database change information
needed for recovery. Oracle, for example, stores database changes in special database
segments.

Here is how the transaction log works, in simplified, conceptual form. When a user
executes a SQL statement that modifies the database, the DBMS automatically writes a
record in the transaction log showing two copies of each row affected by the statement. One
copy shows the row before the change, and the other copy shows the row after the change.
Only after the log is written does the DBMS actually modify the row on the disk. If the user
subsequently executes a COMMIT statement, the end-of-transaction is noted in the
transaction log. If the user executes a ROLLBACK statement, the DBMS examines the log to
find the “before” images of the rows that have been modified since the transaction began.
Using these images, the DBMS restores the rows to their earlier state, effectively backing out
all database changes made during the transaction.

In older database systems, when a system failure occurred, the system operator
typically recovered the database by running a special recovery utility supplied with the
DBMS. In newer database systems, the recovery operation normally runs automatically at
the first available opportunity. The recovery utility examines the end of the transaction log,
looking for transactions that were not committed before the failure. The utility rolls back
each of these incomplete transactions, so that only committed transactions are reflected in
the database; transactions in process at the time of the failure have been rolled back.

The use of a transaction log obviously imposes an overhead on updates to the database.
In practice, the mainstream commercial DBMS products minimize this overhead by using

 290 P a r t I I I : U p d a t i n g D a t a 290 P a r t I I I : U p d a t i n g D a t a

much more sophisticated logging techniques than the simple scheme described here. In
addition, the transaction log is usually stored on a disk storage system, different from the
one that stores the database, to minimize disk access contention. Some DBMS brands allow
you to disable transaction logging for specific database objects or for particular database
operations such as bulk loading a table, to increase the performance of the DBMS.

Specialized databases, such as in-memory databases or cached database copies, may
also use this log-free architecture. This may also be an acceptable alternative in specialized
production databases, for example, where the database contents are replicated on a
duplicate computer system. In most common production databases, however, a logging
scheme and its overhead are an integral part of the database operation.

Transactions and Multiuser Processing
When two or more users concurrently access a database, transaction processing takes on a
new dimension. Now the DBMS must not only recover properly from system failures or
errors, but it must also ensure that the users’ actions do not interfere with one another.
Ideally, each user should be able to access the database as if he or she had exclusive access
to it, without worrying about the actions of other users. The SQL transaction model allows a
SQL-based DBMS to insulate users from one another in this way.

FIGURE 12-5
The transaction log

SQL statement sequence Transaction log
•
•
•

12:01

12:04

12:05

12:06

Row location: _
Before: _, _, _, _, _, _, _
After: _, _, _, _, _, _, _

Row location: _
Before: _, _, _, _
After: (Empty)

Row location: _
Before: _, _, _, _
After: (Empty)

Row location: _
Before: (Empty)
After: _, _, _, _, _

Transaction committed

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

UPDATE
OFFICES

DELETE FROM
CUSTOMERS

INSERT INTO
PRODUCTS

COMMIT

DBMS

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 291
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 291

The best way to understand how SQL handles concurrent transactions is to look at the
problems that result if transactions are not handled properly. Although they can show up in
many different ways, four fundamental problems can occur. The next four sections give a
simple example of each problem.

The Lost Update Problem
Figure 12-6 shows a simple application where two users accept telephone orders from
customers. The order-entry program checks the PRODUCTS table for adequate inventory
before accepting the customer’s order. In the figure, Joe starts entering an order for 100 ACI-
41004 widgets from his customer. At nearly the same time, Mary starts entering her
customer’s order for 125 ACI-41004 widgets. Each order-entry program does a query on the
PRODUCTS table, and each finds that 139 widgets are in stock—more than enough to cover
the customer’s request. Joe asks his customer to confirm the order, and his copy of the
order-entry program updates the PRODUCTS table to show (139 – 100) = 39 widgets

FIGURE 12-6 The lost update problem

PRODUCTS Table

UPDATE PRODUCTS
 SET QTY_ON_HAND = 39...

SELECT QTY_ON_HAND
 FROM PRODUCTS...

Answer: 139

12:01

SELECT QTY_ON_HAND
 FROM PRODUCTS...

Answer: 139

12:02

12:00

12:04

UPDATE PRODUCTS
 SET QTY_ON_HAND = 14...

12:05

Mary’s ProgramJoe’s Program

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

139

QTY_ON_HAND

12:04

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

39

QTY_ON_HAND

12:05

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

14

QTY_ON_HAND

Accept order for 125Accept order for 100

 292 P a r t I I I : U p d a t i n g D a t a 292 P a r t I I I : U p d a t i n g D a t a

remaining for sale and inserts a new order for 100 widgets into the ORDERS table. A few
seconds later, Mary asks her customer to confirm the order. Her copy of the order-entry
program updates the PRODUCTS table to show (139 – 125) = 14 widgets remaining in stock
and inserts a new order for 125 widgets into the ORDERS table.

The handling of the two orders has obviously left the database in an inconsistent state.
The first of the two updates to the PRODUCTS table has been lost! Both customers’ orders
have been accepted, but not enough widgets are in inventory to satisfy both orders. Further,
the database shows that there are still 14 widgets remaining for sale. This example illustrates
the lost update problem that can occur whenever two programs read the same data from the
database, use the data as the basis for a calculation, and then try to update the data.

The Uncommitted Data Problem
Figure 12-7 shows the same order-processing application as Figure 12-6. Joe again begins
taking an order for 100 ACI-41004 widgets from his customer. This time, Joe’s copy of the

FIGURE 12-7 The uncommitted data problem

PRODUCTS Table

UPDATE PRODUCTS
 SET QTY_ON_HAND = 39...

SELECT QTY_ON_HAND
 FROM PRODUCTS...

Answer: 139

12:01

SELECT QTY_ON_HAND
 FROM PRODUCTS

Answer: 39

12:05

12:00

12:04

12:06

Mary’s ProgramJoe’s Program

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

139

QTY_ON_HAND

12:04

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

39

QTY_ON_HAND

12:06

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

139

QTY_ON_HAND

ROLLBACK

Refuse order for 125

Note: Buy more!!!

Accept order for 100

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 293
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 293

order-processing program queries the PRODUCTS table, finds 139 widgets available, and
updates the PRODUCTS table to show 39 widgets remaining after the customer’s order. Then Joe
begins to discuss with the customer the relative merits of the ACI-41004 and ACI-41005 widgets.

In the meantime, Mary’s customer tries to order 125 ACI-41004 widgets. Mary’s copy of
the order-processing program queries the PRODUCTS table, finds only 39 widgets available,
and refuses the order. It also generates a notice telling the purchasing manager to buy more
ACI-41004 widgets, which are in great demand. Now Joe’s customer decides not to order
the size 4 widgets after all, and Joe’s order-entry program does a ROLLBACK to abort its
transaction.

Because Mary’s order-processing program was allowed to see the uncommitted update
of Joe’s program, the order from Mary’s customer was refused, and the purchasing manager
will order more widgets, even though 139 of them are still in stock. The situation would
have been even worse if Mary’s customer had decided to settle for the 39 available widgets.
In this case, Mary’s program would have updated the PRODUCTS table to show zero units
available. But when the ROLLBACK of Joe’s transaction occurred, the DBMS would have set
the available inventory back to 139 widgets, even though 39 of them are committed to
Mary’s customer.

The problem in this example is that Mary’s program has been allowed to see the
uncommitted updates from Joe’s program and has acted on them, producing the erroneous
results. The SQL standard refers to this as problem P1, also known as the dirty read problem.
In the parlance of the standard, the data that Mary’s program has seen is dirty because it
has not been committed by Joe’s program.

The Inconsistent Data Problem
Figure 12-8 shows the order-processing application once more. Again, Joe begins taking an
order for 100 ACI-41004 widgets from his customer. A short time later, Mary also begins
talking to her customer about the same widgets, and her program does a single-row query
to find out how many are available. This time Mary’s customer inquires about the ACI-
41005 widgets as an alternative, and Mary’s program does a single-row query on that row.

Meanwhile, Joe’s customer decides to order the widgets, so his program updates that
row of the database and does a COMMIT to finalize the order in the database. After
considering the ACI-41005 widgets as an alternative, Mary’s customer decides to order the
ACI-41004 widgets that Mary originally proposed. Her program does a new single-row
query to get the information for the ACI-41004 widgets again. But instead of showing the
139 widgets that were in stock just a moment ago, the new query shows only 39 in stock.

In this example, unlike the preceding two, the status of the database has remained an
accurate model of the real-world situation. There are only 39 ACI-41004 widgets left because
Joe’s customer has purchased 100 of them. There is no problem with Mary having seen
uncommitted data from Joe’s program—the order was complete and committed to the
database. However, from the point of view of Mary’s program, the database did not remain
consistent during her transaction. At the beginning of the transaction, a row contained
certain data, and later in the same transaction, it contained different data, so external events
have interfered with her consistent view of the database. This inconsistency can cause
problems even if Mary’s program never tries to update the database based on the results of
the first query.

 294 P a r t I I I : U p d a t i n g D a t a 294 P a r t I I I : U p d a t i n g D a t a

For example, if the program is accumulating totals or calculating statistics, it cannot be
sure that the statistics reflect a stable, consistent view of the data. The problem in this case is
that Mary’s program has been allowed to see committed updates from Joe’s program that
affect rows that Mary’s program has already examined. The SQL standard refers to this
problem as P2, also known as the nonrepeatable read problem. The name comes from the fact
that Mary’s program can’t repeat the same read access to the database and obtain the same
results.

The Phantom Insert Problem
Figure 12-9 shows an order-processing application once more. This time, the sales manager
runs a report program that scans the ORDERS table, printing a list of the orders from
customers of Bill Adams and computing their total. In the meantime, a customer calls Bill to
place an additional order for $5000. The order is inserted into the database, and the
transaction is committed. A short time later, the sales manager’s program (still operating
within its initial transaction) again scans the ORDERS table, running the very same query.
This time, there is an additional order, and the total is $5000 higher than for the first query.

FIGURE 12-8 The inconsistent data problem

PRODUCTS Table

UPDATE PRODUCTS
 SET QTY_ON_HAND = 39...

SELECT QTY_ON_HAND
 FROM PRODUCTS...

Answer: 139

12:01

SELECT QTY_ON_HAND
 FROM PRODUCTS...
 ...ID = 41004

Answer: 139

12:02

12:00

12:04

Mary’s ProgramJoe’s Program

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

139

QTY_ON_HAND

12:04

•
•
•
ACI
•
•
•

MFR_ID

41004

PRODUCT_ID

39

QTY_ON_HAND

SELECT QTY_ON_HAND
 FROM PRODUCTS
 ...ID = 41004

Answer: 39

SELECT QTY_ON_HAND
 FROM PRODUCTS...
 ...ID = 41005

12:03

12:05

Accept order for 100

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 295
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 295

As in the previous example, the problem here is inconsistent data. The database remains
an accurate model of the real-world situation, and its integrity is intact, but the same query
executed twice during the same transaction yielded two different results. In the previous
example, the query was a single-row query, and the inconsistency in the data was caused by
a committed UPDATE statement. A committed DELETE statement could cause the same kind
of problem.

In the example of Figure 12-9, the problem is caused by a committed INSERT statement.
The additional row did not participate in the first query, but it shows up as a phantom row,
out of nowhere, in the second query. As with the inconsistent data problem, the consequences
of the phantom insert problem can be inconsistent and incorrect calculations. The SQL standard
refers to this as P3, and also uses the name phantom to describe it.

FIGURE 12-9 The phantom insert problem

ORDERS Table

INSERT INTO ORDERS VALUES
(118102,......5,000.00)

12:04

SELECT *
FROM ORDERS

12:0012:00

Report ProgramUpdate Program

112961
113012

•
•
•

ORDER_NUM

$31,500.00
$3,745.00

AMOUNT

12:04

112961
118102
113012

•
•
•

ORDER_NUM

$31,500.00
$5,000.00
$3,745.00

AMOUNT

COMMIT

12:05

Answer:
112961, $31,500

12:01

Answer:
113012, $3,745

12:02

SELECT *
FROM ORDERS

12:10

Answer:
112961, $31,500

12:11

Answer:
118102, $5,000

12:12

Answer:
113012, $3,745

12:13

•
•
•

•
•
•

 296 P a r t I I I : U p d a t i n g D a t a 296 P a r t I I I : U p d a t i n g D a t a

Concurrent Transactions
As the three multiuser update examples show, when users share access to a database and
one or more users is updating data, there is a potential for database corruption. SQL uses its
transaction mechanism to eliminate this source of database corruption. In addition to the
all-or-nothing commitment for the statements in a transaction, a SQL-based DBMS makes
this commitment about transactions:

During a transaction, the user will see a completely consistent view of the database. The user
will never see the uncommitted changes of other users, and even committed changes made by
others will not affect data seen by the user in mid transaction.

Transactions are thus the key to both recovery and concurrency control in a SQL
database. The preceding commitment can be restated explicitly in terms of concurrent
transaction execution:

If two transactions, A and B, are executing concurrently, the DBMS ensures that the results
will be the same as they would be if either (a) Transaction A were executed first, followed by
Transaction B, or (b) Transaction B were executed first, followed by Transaction A.

This concept is known as the serializability of transactions. Effectively, it means that each
database user can access the database as if no other users were concurrently accessing the
database. In practice, dozens or hundreds of transactions may be concurrently executing
within a large production database. The serializability concept can be directly extended to
cover this situation. Serializability guarantees that, if some number, N, concurrent
transactions are executing, the DBMS must ensure that its results are the same as if they had
been executed in some sequence one at a time. The concept does not specify which sequence
of transactions must be used, only that the results must match the results of some sequence.

The fact that a DBMS insulates you from the actions of other concurrent users doesn’t
mean, however, that you can forget all about the other users. In fact, the situation is quite
the opposite. Because other users want to concurrently update the database, you should
keep your transactions as short and simple as possible, to maximize the amount of parallel
processing that can occur.

Suppose, for example, that you run a program that performs a sequence of three large
queries. Since the program doesn’t update the database, it might seem that it doesn’t need
to worry about transactions. It certainly seems unnecessary to use COMMIT statements. But
in fact, if the current session is in implicit transaction mode, the program should use a
COMMIT statement after each query. Why? Recall that SQL in implicit transaction mode
automatically begins a transaction with the first SQL statement in a program. Without a
COMMIT statement, the transaction continues until the program ends. Further, SQL
guarantees that the data retrieved during a transaction will be self-consistent, unaffected by
other users’ transactions. This means that once your program retrieves a row from the
database, no other user can modify the row until your transaction ends, because you might
try to retrieve the row again later in your transaction, and the DBMS must guarantee that
you will see the same data. Thus, as your program performs its three queries, it will prevent
other users from updating larger and larger portions of the database.

The moral of this example is simple: you must always worry about transactions when
writing programs for a production SQL database. Transactions should always be as short as
possible. “COMMIT early and COMMIT often” is good advice when you are using

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 297
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 297

programmatic SQL. Also keep in mind that there is great variety in the way DBMS products
handle transactions, so always consult your product documentation.

In practice, implementing a strict multiuser transaction model can impose a substantial
overhead on the operation of a database with dozens, hundreds, or thousands of concurrent
users. In addition, the specifics of the application may not require the absolute isolation
among the user programs that the SQL transaction model implies. For example, maybe the
application designer knows that an order inquiry program has been designed so that it will
never attempt to read and then reread a row of the database during a single transaction. In
this case, the inconsistent data problem can’t occur because of the program structure.
Alternatively, maybe the application designer knows that all of a program’s access to
particular tables of a database is read-only. If the programmer can convey information like
this to the DBMS, some of the overhead of SQL transactions can be eliminated.

The original SQL1 standard did not address this database performance issue, and most
of the major DBMS brands implemented proprietary schemes for enhancing the
performance of SQL transactions. The SQL2 standard specified a new SET TRANSACTION
statement, and the SQL:1999 standard introduced a new START TRANSACTION statement,
both shown in Figure 12-2, whose function is to specify the level of SQL transaction-model
support that an application needs. You don’t need the SET TRANSACTION or START
TRANSACTION statements for casual use of SQL or for relatively simple or low-volume SQL
transaction processing. To fully understand its operation, it’s useful to understand the
locking and other techniques used by commercial DBMS products to implement multiuser
SQL transactions. The remainder of this chapter discusses locking, the performance-
optimizing capabilities of SQL, and the various DBMS brands that depend on it.

Locking*
Most major DBMS products use sophisticated locking techniques to handle concurrent SQL
transactions for many simultaneous users. However, the basic concepts behind locking and
transactions are very simple. Figure 12-10 shows a simple locking scheme and how it
handles contention between two concurrent transactions.

As Transaction A in the figure accesses the database, the DBMS automatically locks each
piece of the database that the transaction retrieves or modifies. Transaction B proceeds in
parallel, and the DBMS also locks the pieces of the database that it accesses. If Transaction B
tries to access part of the database that has been locked by Transaction A, the DBMS blocks
Transaction B, causing it to wait for the data to be unlocked. The DBMS releases the locks
held by Transaction A only when it ends in a COMMIT or ROLLBACK operation. The DBMS
then unblocks Transaction B, allowing it to proceed. Transaction B can now lock that piece
of the database on its own behalf, protecting it from the effects of other transactions.

As the figure shows, the locking technique temporarily gives a transaction exclusive
access to a piece of a database, preventing other transactions from modifying the locked
data. Locking thus solves all of the concurrent transaction problems. It prevents lost
updates, uncommitted data, and inconsistent data from corrupting the database. However,
locking introduces a new problem—it may cause a transaction to wait for a very long time
while the pieces of the database that it wants to access are locked by other transactions.

 298 P a r t I I I : U p d a t i n g D a t a 298 P a r t I I I : U p d a t i n g D a t a

Locking Levels
Locking can be implemented at various levels of the database. In its most basic form, the
DBMS could lock the entire database for each transaction. This locking strategy would be
simple to implement, but it would allow processing of only one transaction at a time. If the
transaction included any think time at all (such as time to discuss an order with a customer),
all other access to the database would be blocked during that time, leading to unacceptably
slow performance. However, database-level locking may be appropriate for certain types of

FIGURE 12-10 Locking with two concurrent transactions

Transaction A Transaction BDBMS

UPDATE ORDERS

UPDATE PRODUCT

SELECT ...
 FROM OFFICES

UPDATE ORDERS

UPDATE OFFICES

SELECT ...
 FROM OFFICES

COMMIT

COMMITUnlocked

Unlocked

Unlocked

12:08

12:07

12:04

12:02

Unlocked

Locked
for B

Locked
for A

OFFICES
Unlocked

ORDERS
Unlocked

PRODUCTS
Unlocked

Locked
for A

12:01

12:03

12:05

12:06

12:07

Locked
for B

OK

OK

OK

OK

OK

OK

OK

OK

WAIT

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 299
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 299

transactions, such as those that modify the structure of the database, or for complex queries
that must sequentially scan many large tables. In these cases, it may be more efficient to
rapidly do a single locking operation, quickly execute the database operation, and then
quickly unlock the database, than to individually lock dozens of tables.

An enhanced form of locking is table-level locking. In this scheme, the DBMS locks only
the tables accessed by a transaction. Other transactions can concurrently access other tables.
This technique permits more parallel processing, but can still lead to unacceptably slow
performance in applications such as order entry, where many users must share access to the
same table or tables.

Many older DBMS products implement locking at the page level. In this scheme, the
DBMS locks individual blocks of data (pages) from the disk as they are accessed by a
transaction. Other transactions are prevented from accessing the locked pages but may
access (and lock for themselves) other pages of data. Page sizes of 2KB, 4KB, and 16KB are
commonly used. Since a large table will be spread out over hundreds or thousands of pages,
two transactions trying to access two different rows of a table will usually be accessing two
different pages, allowing the two transactions to proceed in parallel. However, tables with
short rows increase the odds that individual rows needed by different transactions will
happen to be in the same page.

Over the last decade, most of the major commercial DBMS systems have moved beyond
page-level locking to row-level locks. Row-level locking allows two concurrent transactions
that access two different rows of a table to proceed in parallel, even if the two rows fall in
the same disk block. While this may seem a remote possibility, it can be a real problem with
small tables containing small records, such as the OFFICES table in the sample database.

Row-level locking provides a high degree of parallel transaction execution. Unfortunately,
keeping track of locks on variable-length pieces of the database (in other words, rows) rather
than fixed-size pages is a much more complex task, so increased parallelism comes at the cost
of more sophisticated locking logic and increased overhead. In fact, for certain transactions or
applications, the overhead of row-level locking might be greater than the performance gains
of permitting more parallel operation within the database.

Some DBMS products address this situation by automatically promoting many individual
row-level locks into a page-level or table-level lock when the number of row-level locks
for a given transaction rises above a certain limit. It’s not always the case that a more granular
(smaller) level of lock implementation is better; the best scheme heavily depends on the specific
transactions and the SQL operations that they contain.

It’s theoretically possible to move beyond row-level locking to locking at the individual
data-item level. In theory, this would provide even more parallelism than row-level locks,
because it would allow concurrent access to the same row by two different transactions,
provided they were accessing different sets of columns. The overhead in managing item-level
locking, however, has thus far outweighed its potential advantages. No commercial SQL
DBMS uses item-level locking. In fact, locking is an area of considerable research in database
technology, and the locking schemes used in commercial DBMS products are much more
sophisticated than the fundamental scheme described here. The most straightforward of
these advanced locking schemes, using shared and exclusive locks, is described in the
next section.

 300 P a r t I I I : U p d a t i n g D a t a 300 P a r t I I I : U p d a t i n g D a t a

Shared and Exclusive Locks
To increase concurrent access to a database, most commercial DBMS products use a locking
scheme with more than one type of lock. A scheme using shared and exclusive locks is quite
common:

• Shared lock Used by the DBMS when a transaction wants to read data from the
database. Another concurrent transaction can also acquire a shared lock on the same
data, allowing the other transaction to also read the data.

• Exclusive lock Used by the DBMS when a transaction wants to update data in the
database. When a transaction has an exclusive lock on some data, other transactions
cannot acquire any type of lock (shared or exclusive) on the data.

Figure 12-11 shows the rules for this locking scheme and the permitted combinations of
locks that can be held by two concurrent transactions. Note that a transaction can acquire an
exclusive lock only if no other transaction currently has a shared or an exclusive lock on the
data. If a transaction tries to acquire a lock not permitted by the rules in Figure 12-11, it is
blocked until other transactions unlock the data that it requires.

Figure 12-12 shows the same transactions shown in Figure 12-10, this time using shared
and exclusive locks. If you compare the two figures, you can see how the new locking
scheme improves concurrent access to the database. Mature and complex DBMS products,
such as DB2, have more than two types of locks and use different locking techniques at
different levels of the database. Despite the increased complexity, the goal of the locking
scheme remains the same: to prevent unwanted interference between transactions while
providing the greatest possible concurrent access to the database, all with minimal locking
overhead.

Deadlocks*
Unfortunately, the use of any locking scheme to support concurrent SQL transactions leads
to a problem called a deadlock. Figure 12-13 illustrates a deadlock situation. Program A
updates the ORDERS table, thereby locking part of it. Meanwhile, Program B updates the
PRODUCTS table, locking part of it. Now Program A tries to update the PRODUCTS table, and
Program B tries to update the ORDERS table, in each case trying to update a part of the table
that has been previously locked by the other program (the same row or the same page,
depending on the type of locking implemented). Without DBMS or outside intervention,

FIGURE 12-11 Rules for shared and exclusive locks

Transaction B

Transaction A

OK OK OK

OK OK NO

OK NO NO

Unlocked

Unlocked

Shared lock

Shared lock

Exclusive lock

Exclusive lock

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 301
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 301

each program will wait forever for the other program to commit or roll back its transaction,
unlocking the data. The situation in the figure is a simple deadlock between two programs,
but more complex situations can occur where three, four, or more programs are in a cycle of
locks, each waiting for data that is locked by one of the other programs.

To deal with deadlocks, a DBMS typically includes logic that periodically (for example,
once every five seconds) checks the locks held by various transactions. When it detects a
deadlock, the DBMS chooses one of the transactions as the deadlock loser and rolls back the
transaction. This frees the locks held by the losing transaction, allowing the deadlock
winner to proceed. The losing program receives an error code informing it that it has lost a
deadlock and that its current transaction has been rolled back.

FIGURE 12-12 Locking with shared and exclusive locks

Transaction A Transaction BDBMS

UPDATE ORDERS

UPDATE PRODUCT

SELECT...
 FROM OFFICES

UPDATE ORDERS

UPDATE OFFICES

SELECT ...
 FROM OFFICES

COMMIT

COMMIT

UnlockedUnlocked

12:05

12:04

12:02

Exclusive
lock
for A

Shared
lock
for A

Shared
lock

for A, B

Shared
lock
for A

OFFICES
unlocked

ORDERS
unlocked

PRODUCTS
unlocked

Exclusive
lock
for A

12:01

12:03

12:05

12:06

12:07

Exclusive
lock
for B

OK

OK

OK

OK

OK

OK

OK

OK

Unlocked

 302 P a r t I I I : U p d a t i n g D a t a 302 P a r t I I I : U p d a t i n g D a t a

This scheme for breaking deadlocks means that any SQL statement can potentially
return a deadlock loser error code, even if nothing is wrong with the statement per se. Thus,
even though COMMIT and ROLLBACK are the SQL transaction-processing statements, it’s
possible for other SQL statements—an INSERT statement, for example, or even a SELECT
statement—to be a deadlock loser. The transaction attempting the statement is rolled back
through no fault of its own, but because of other concurrent activity in the database. This
may seem unfair, but in practice, it’s much better than the other two alternatives—eternal
deadlock or database corruption. If a deadlock loser error occurs in interactive SQL, the user

FIGURE 12-13 A transaction deadlock

Transaction A Transaction BDBMS

UPDATE ORDERS

UPDATE PRODUCT

UPDATE ORDERS

12:04

12:02

ORDERS
unlocked

PRODUCTS
unlocked

Exclusive
lock
for A

12:01

12:03

Exclusive
lock
for B

WAIT

OK

OK

WAIT

UPDATE PRODUCT

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 303
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 303

can simply retype the SQL statement(s). In programmatic SQL, the application program
must be prepared to handle the deadlock loser error code. Typically, the program will
respond by either alerting the user or automatically retrying the transaction.

The probability of deadlocks can be dramatically reduced by carefully planning
database updates. All programs that update multiple tables during a transaction should,
whenever possible, update the tables in the same sequence. This allows the locks to flow
smoothly across the tables, minimizing the possibility of deadlocks. In addition, some of the
advanced locking features described in later sections of this chapter can be used to further
reduce the number of deadlocks that occur.

Advanced Locking Techniques*
Many commercial database products offer advanced locking facilities that go well beyond
those provided by standard SQL transactions. These include

• Explicit locking A program can explicitly lock an entire table or some other part of
the database if it will be repeatedly accessed by the program.

• Isolation levels You can tell the DBMS that a specific program will not re retrieve
data during a transaction, allowing the DBMS to release locks before the transaction
ends.

• Locking parameters The database administrator can manually adjust the size of
the lockable piece of the database and other locking parameters to tune locking
performance.

These facilities tend to be nonstandard and product-specific. However, several of them,
particularly those initially introduced in mainframe versions of DB2 years ago, have been
implemented in several commercial SQL products and have achieved the status of common,
if not standard, features. In fact, the isolation-level capabilities introduced in DB2 have
found their way into the SQL standard.

Explicit Locking*
If a transaction repeatedly accesses a table, the overhead of acquiring small locks on many
parts of the table can be very substantial. A bulk update program that walks through every
row of a table, for example, will lock the entire table, piece by piece, as it proceeds. For this
type of transaction, the program should explicitly lock the entire table, process the updates,
and then unlock the table. Locking the entire table has three advantages:

• It eliminates the overhead of row-by-row (or page-by-page) locking.

• It eliminates the possibility that another transaction will lock part of the table,
forcing the bulk update transaction to wait.

• It eliminates the possibility that another transaction will lock part of the table and
deadlock the bulk update transaction, forcing it to be restarted.

Of course, locking the table has the disadvantage that all other transactions attempting
to access the table must wait while the update is in process. However, because the bulk
update transaction can proceed much more quickly, the overall throughput of the DBMS
can be increased by explicitly locking the table.

 304 P a r t I I I : U p d a t i n g D a t a 304 P a r t I I I : U p d a t i n g D a t a

In the IBM databases, the LOCK TABLE statement, shown in Figure 12-14, is used to
explicitly lock an entire table. It offers two locking modes:

• EXCLUSIVE mode acquires an exclusive lock on the entire table. No other
transaction can access any part of the table for any purpose while the lock is held.
This is the mode you would request for a bulk update transaction.

• SHARE mode acquires a shared lock on the entire table. Other transactions can read
parts of the table (that is, they can also acquire shared locks), but they cannot update
any part of it. Of course, if the transaction issuing the LOCK TABLE statement now
updates part of the table, it will still incur the overhead of acquiring exclusive locks
on the parts of the table that it updates. This is the mode you would request if you
wanted a snapshot of a table, accurate at a particular point in time.

Oracle also supports a DB2-style LOCK TABLE statement, and MySQL supports similar
capability with LOCK TABLES and UNLOCK TABLES statements. Several other database
management systems such as SQL Server do not support explicit locking at all, choosing
instead to optimize their implicit locking techniques.

Isolation Levels*
Under the strict definition of a SQL transaction, no action by a concurrently executing
transaction is allowed to impact the data visible during the course of your transaction. If
your program performs a database query during a transaction, proceeds with other work,
and later performs the same database query a second time, the SQL transaction mechanism
guarantees that the data returned by the two queries will be identical (unless your
transaction acted to change the data). This ability to reliably re-retrieve a row during a
transaction is the highest level of isolation that your program can have from other programs
and users. The level of isolation is called the isolation level of your transaction.

This absolute isolation of your transaction from all other concurrently executing
transactions is very costly in terms of database locking and loss of database concurrency. As
your program reads each row of query results, the DBMS must lock the row (with a shared
lock) to prevent concurrent transactions from modifying the row. These locks must be held
until the end of your transaction, just in case your program performs the query again. In
many cases, the DBMS can significantly reduce its locking overhead if it knows in advance
how a program will access a database during a transaction.

To gain this efficiency, the major IBM mainframe databases added support for the concept
of a user-specified isolation level that gives the user control over the trade-off between
isolation and processing efficiency. The SQL specification formalized the IBM isolation-level
concept and expanded it to include four isolation levels, shown in Figure 12-15. The isolation
levels are linked directly to the fundamental multiuser update problems discussed earlier in
this chapter. As the level of isolation decreases (moving down the rows of the table), the
DBMS insulates the user from fewer of the multiuser update problems.

FIGURE 12-14 The LOCK TABLE statement syntax diagram

EXCLUSIVE

SHARE MODELOCK TABLE table-name IN

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 305
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 305

The SERIALIZABLE isolation level is the highest level provided. At this level, the DBMS
guarantees that the effects of concurrently executing transactions are exactly the same as if
they executed in sequence. This is the default isolation level specified in the ANSI/ISO SQL
standard, because it is the way SQL databases are supposed to work. If your program needs
to perform the same multirow query twice during a transaction and be guaranteed that the
results will be identical regardless of other activity in the database, then it should use the
SERIALIZABLE isolation level.

The REPEATABLE READ isolation level is the second-highest level. At this level, your
transaction is not allowed to see either committed or uncommitted updates from other
transactions, so the lost update, uncommitted data, and modified data problems cannot
occur. However, a row inserted into the database by another concurrent transaction may
become visible during your transaction. As a result, a multirow query run early in your
transaction may yield different results than the same query run later in the same transaction
(the phantom insert problem). If your program does not depend on the capability to repeat
a multirow query during a single transaction, you can safely use the REPEATABLE READ
isolation level to improve DBMS performance without sacrificing data integrity. This is one
of the isolation levels supported in the IBM mainframe database products.

The READ COMMITTED isolation level is the third-highest level. In this mode, your
transaction is not allowed to see uncommitted updates from other transactions, so the lost
update and the uncommitted data problems cannot occur. However, updates that are
committed by other concurrently executing transactions may become visible during the
course of your transaction. Your program could, for example, perform a single-row SELECT
statement twice during the course of a transaction and find that the data in the row had
been modified by another user. If your program does not depend on the capability to reread
a single row of data during a transaction, and it is not accumulating totals or doing other
calculations that rely on a self-consistent set of data, it can safely use the READ COMMITTED
isolation level. Note that if your program attempts to update a row that has already been
updated by another user, your transaction will automatically be rolled back to prevent the
lost update problem from occurring.

FIGURE 12-15 Isolation levels and multiuser updates

Multiuser Update Problem

Isolation Level Lost Update Uncommitted
Data

Inconsistent
Data

Phantom
Insert

SERIALIZABLE Prevented by
DBMS

Prevented by
DBMS

Prevented by
DBMS

Prevented by
DBMS

REPEATABLE
READ

Prevented by
DBMS

Prevented by
DBMS

Prevented by
DBMS

Can occur

READ
COMMITTED

Prevented by
DBMS

Prevented by
DBMS

Can occur Can occur

READ
UNCOMMITTED

Prevented by
DBMS

Can occur Can occur Can occur

 306 P a r t I I I : U p d a t i n g D a t a 306 P a r t I I I : U p d a t i n g D a t a

The READ UNCOMMITTED isolation level is the lowest level specified in the SQL
standard. In this mode, your transaction may be impacted by committed or uncommitted
updates from other transactions, so the uncommitted data, modified data, and phantom
insert problems can occur. The DBMS still prevents the lost update problem. Generally, the
READ UNCOMMITTED level is appropriate only for certain ad hoc query applications where
the user can tolerate the fact that the query results may contain dirty data. (Some DBMS
brands call this isolation mode a dirty read capability because of this possibility.) If it is
important that query results contain only information that has, in fact, been committed to
the database, your program should not use this mode.

Recall that the SQL standard specifies SET TRANSACTION and START TRANSACTION
statements, shown in Figure 12-2, which can be used to set the isolation level of transactions.
These statements also allow you to specify whether the transaction is READ ONLY (that is, it
will only query the database) or READ WRITE (it may query or update the database). The
DBMS can use this information, along with the isolation level, to optimize its database
processing. The default isolation level is SERIALIZABLE. If the READ UNCOMMITTED
isolation level is specified, then READ ONLY is assumed, and you may not specify a READ
WRITE transaction. Otherwise, a READ WRITE transaction is the default. These defaults
provide for the maximum safety of transactions, at the expense of database performance,
but they prevent inexperienced SQL programmers from inadvertently suffering one of the
multiuser transaction-processing problems.

Note that the SET TRANSACTION and START TRANSACTION statements specified in the
SQL standard are executable SQL statements. It’s possible, in fact sometimes very desirable,
to have one transaction of a program execute in one mode and have the next transaction
execute in a different mode. However, you can’t switch isolation levels or read/write modes
in the middle of a transaction. The standard effectively requires that the SET TRANSACTION
statement be the first statement of a transaction. This means it must be executed as the first
statement after a COMMIT or ROLLBACK, or as the first statement of a program, before any
other statement affecting the content or structure of a database.

As noted earlier in the “Advanced Locking Techniques” section, many of the commercial
DBMS products implemented their own locking and performance enhancement schemes long
before these features were added to the SQL standard, and these locking strategies affect the
heart of the internal database architecture and logic. It’s not surprising that the adoption of the
SQL standard in this area has been relatively slow compared with some other areas where
implementation was much easier. For example, the IBM mainframe databases (DB2 and
SQL/DS) historically offered a choice of two isolation levels—REPEATABLE READ or READ
COMMITTED (called CURSOR STABILITY mode in IBM terminology). In the IBM
implementations, the choice is made during the program development process, in the BIND step
described in Chapter 17. Although the modes are not strictly part of the SQL language, the choice
of mode strongly impacts how the application performs and how it can use retrieved data.

The Ingres DBMS offers a capability similar to the isolation modes of the IBM databases,
but provides it in a different form. Using the SET LOCKMODE statement, an application
program can tell Ingres which type of locking to use when handling a database query. The
options are the following:

• No locking Similar to the IBM CURSOR STABILITY mode just described

• Shared locking Similar to the IBM REPEATABLE READ mode just described

• Exclusive locking Provides exclusive access to the table during the query and
offers a capability like the IBM LOCK TABLE statement

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 307
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 307

The Ingres default is shared locking, which parallels the repeatable read default in the IBM
scheme. Note, however, that the Ingres locking modes are set by an executable SQL statement.
Unlike the IBM modes, which must be chosen at compile time, the Ingres modes can be chosen
when the program executes and can even be changed from one query to the next.

Locking Parameters*
A mature DBMS such as DB2, SQL/DS, Oracle, Sybase ASE, or SQL Server employs much
more complex locking techniques than those described here. The database administrator
can improve the performance of these systems by manually setting the locking parameters.
On the other hand, the vendors of current major DBMS products typically discourage
attempts to control locking manually because things have become so complex that
seemingly simple changes can make things worse instead of better. Older systems, however,
might benefit from some tuning. Typical parameters that can be tuned include these:

• Lock size Some DBMS products offer a choice of table-level, page-level, row-level,
and other lock sizes. Depending on the specific application, a different size lock may
be appropriate.

• Number of locks A DBMS typically allows each transaction to have some finite
number of locks. The database administrator can often set this limit, raising it to
permit more complex transactions, or lowering it to encourage earlier lock
escalation.

• Lock escalation A DBMS will often automatically escalate locks, replacing many
small locks with a single larger lock (for example, replacing many page-level locks
with a table-level lock). The database administrator may have some control over
this escalation process.

• Lock timeout Even when a transaction is not deadlocked with another transaction,
it may wait a very long time for the other transaction to release its locks. Some
DBMS brands implement a timeout feature, where a SQL statement fails with a SQL
error code if it cannot obtain the locks it needs within a certain period. The timeout
period can usually be set by the database administrator.

Versioning*
The locking techniques described in the preceding sections are the most widely used
techniques for supporting concurrent multiuser transaction processing in relational DBMS
products. Locking is sometimes called a pessimistic approach to concurrency, because by
locking parts of the database, the DBMS is implicitly assuming that concurrent transactions
will probably interfere with one another. In recent years, a different approach to concurrency,
called versioning, has been implemented in some DBMS products and has been increasing in
popularity. Versioning is sometimes called an optimistic approach to concurrency because in
this approach, the DBMS implicitly assumes that concurrent transactions will not interfere
with one another.

With a locking (pessimistic) architecture, the DBMS internally maintains one and only
one copy of the data for each row in the database. As multiple users access the database, the
locking scheme arbitrates the access to this row of data among the users (more precisely,
among their concurrent transactions). In contrast, with a versioning (optimistic) architecture,

 308 P a r t I I I : U p d a t i n g D a t a 308 P a r t I I I : U p d a t i n g D a t a

the DBMS will create two or more copies of the data for a row in the database when a user
attempts to update the row. One copy of the row will contain the old data for the row, before
the update; the other copy of the row will contain the new data for the row, after the update.
The DBMS internally keeps track of which transactions should see which version of the row,
depending on their isolation levels.

Versioning in Operation*
Figure 12-16 shows a simple versioning architecture in action. Transaction A starts the action,
reading a row of the PRODUCTS table, and finding 139 units of ACI-41004 size 4 widgets
available. Transaction B comes along next and updates the same row, reducing the quantity

FIGURE 12-16 Concurrent transactions in a versioning architecture

One copy

One copy

One copy

Before

Before

Before

After

After

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 309
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 309

available to 39 units. In response, the DBMS internally creates a new copy of the row. From
this point on, if Transaction B rereads the contents of the row, the contents will come from
this new copy, since it reflects Transaction B’s updated quantity on hand (39 units). Next,
Transaction C comes along and tries to read the same row. Because Transaction B’s update
has not yet been committed, the DBMS gives Transaction C the data from the old copy of
the row, showing 139 units available. The same thing happens a few seconds later for
Transaction D; it will also see 139 units available. Now Transaction B performs a COMMIT
operation, making its update of the row permanent. A short time later, Transaction E
attempts to read the row. With Transaction B’s update now committed, the DBMS will give
Transaction E the data from the new copy, showing 39 units. Finally, Transactions C, D, and
E end their database activity with a COMMIT operation.

The activity shown in Figure 12-16 meets the serializability requirement for proper
DBMS operation. The sequential transaction series A-C-D-B-E would produce the same
results shown in the figure. (In fact, the series A-D-C-B-E would also produce these results.)
Furthermore, the versioning implementation delivers the correct operation without causing
any of the transactions to wait. This is not true of the typical locking implementation, as
shown in Figure 12-17.

In Figure 12-17, Transaction A again starts the action, finding 139 units of ACI-41004
widgets available. Internally, the DBMS places a shared lock on the row. Transaction B next
tries to update the row, reducing quantity on hand to 39 units. If Transaction A is operating
at a strict isolation level (such as REPEATABLE READ), Transaction B will be held at this point,
because it cannot acquire the required exclusive lock. If Transaction A is operating at a less
strict isolation level, the DBMS can allow Transaction B to proceed, giving it an exclusive lock
on the row and actually updating the data. The internal row in the database (recall that there
is only a single copy of the row in this locking architecture) now shows 39 units available.
When Transaction C comes along, it must wait for Transaction B to release its lock unless
Transaction C is operating at a very low (READ UNCOMMITTED) isolation level. The same is
true of Transaction D. Only after Transaction B has committed its changes can Transactions
C and D proceed.

Comparing the operations in Figures 12-16 and 12-17, two differences are worth noting.
First, and more fundamentally, the versioning approach in Figure 12-16 allows more
concurrent transactions to proceed in parallel. The locking approach in Figure 12-17 will,
under most circumstances, cause two or more transactions to wait for others to complete
and free their locks. The second, and more subtle, difference is that the effective order of
serial transaction execution is different between the two figures. As noted, in Figure 12-16,
the transaction sequence A-C-D-B-E produces the results. In Figure 12-17, the sequence A-B-
C-D-E produces the results. Note that neither sequence is considered correct or incorrect;
the serializability principle states only that the results produced by the DBMS must match
some sequence of serial transactions.

The example in Figure 12-16 includes only one updating transaction, so only two copies
of the updated row are required (before and after the update). The versioning architecture
is easily extended to support more concurrent updates. For each attempt to update the row,
the DBMS can create another new row, reflecting the update. With this multiversioned
approach, the task of keeping track of which transaction should see which version of the row
obviously becomes more complex. In practice, the decision about which version of the row
should be visible to each concurrent transaction depends not only on the sequence of database
operations, but also on the isolation levels requested by each of the transactions.

 310 P a r t I I I : U p d a t i n g D a t a 310 P a r t I I I : U p d a t i n g D a t a

Versioning does not completely eliminate the possibility of deadlocks within the
database. The two transactions in Figure 12-13, with their interleaved attempts to update
two different tables, each in a different order, will still produce problems, even for a
versioning scheme. However, for workloads with a mix of database READ operations and
database UPDATE operations, versioning can significantly reduce the locking and lock
timeouts or deadlocks associated with shared locks.

FIGURE 12-17 Concurrent transactions in a locking architecture

Exclusive
lock

Share
lock

Wait for
lock

Wait for
lock

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 311
PART III

 C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 311

Versioning Advantages and Disadvantages*
The advantage of a versioning architecture is that, under the right circumstances, it can
significantly increase the number of concurrent transactions that can execute in parallel.
Concurrent execution is becoming more and more important in large DBMS installations,
especially those that support web sites that may have thousands or tens of thousands of
concurrent users. Versioning is also becoming more useful as the number of processors on
typical DBMS server computer systems increases. Servers containing 16 or more processors are
becoming increasingly common, and large DBMS servers may support 64 or more processors
in a symmetric multiprocessing (SMP) configuration. These servers can actually execute many
database-access applications in parallel by spreading the workload out over many processors.

The disadvantage of a versioning architecture is the internal DBMS overhead that it
creates. One obvious overhead is the added memory and disk requirement of storing two or
more copies of rows that are being updated. In practice, a more serious overhead is the
memory management required to allocate memory for each temporary copy of a row as it is
needed (potentially thousands of times per second), and then releasing the memory to be
reused when the older copies of the row are no longer needed. An additional overhead is
keeping track of which transactions should see which copies of which rows.

Implicitly, a versioning architecture is based on the underlying assumption that most
concurrent transactions will tend not to interfere with one another. If this assumption
proves accurate (i.e., if concurrently executing transactions mostly access and update
different rows, or if the transaction workload is dominated by READ operations rather than
UPDATEs), then the added overhead of the versioning scheme will be more than offset by a
significant boost in the amount of parallel work that can be performed. If the assumption
proves inaccurate (i.e., if concurrently executing transactions tend to access and update the
same rows), then the overhead of the versioning technique will tend to become very high,
swamping the concurrency gains.

Summary
This chapter described the transaction mechanism provided by the SQL language:

• A transaction is a logical unit of work in a SQL-based database. It consists of a
sequence of SQL statements that are effectively executed as a single unit by the DBMS.

• The SET TRANSACTION and START transaction statements can be used to set the
isolation level and access level of transactions.

• The SAVEPOINT statement creates an intermediate recovery point within a transaction.

• The RELEASE SAVEPOINT statement removes a savepoint and releases any
resources it is holding.

• The COMMIT statement signals successful completion of a transaction, making all of
its database modifications permanent.

• The ROLLBACK statement asks the DBMS to abort a transaction, backing out all of its
database modifications.

 312 P a r t I I I : U p d a t i n g D a t a

• Transactions are the key to recovering a database after a system failure; only
transactions that were committed at the time of failure remain in the recovered
database.

• Transactions are the key to concurrent access in a multiuser database. A user or
program is guaranteed that its transaction will not be interfered with by other
concurrent transactions.

• Occasionally, a conflict with another concurrently executing transaction may cause
the DBMS to roll back a transaction through no fault of its own. An application
program that uses SQL must be prepared to deal with this situation if it occurs.

• The subtleties of transaction management, and their impact on DBMS performance,
are one of the more complex areas of using and operating a large production
database. This is also an area where major DBMS brands diverge in their capabilities
and tuning options.

• Many DBMS brands use locking techniques to handle concurrent transactions.
For these products, adjustments to the locking parameters and explicit locking
statements allow you to tune transaction-processing performance.

• An alternative versioning technique for handling concurrent transactions is
supported by some current products. For DBMS products that use versioning,
adjustments to the depth of the versioning scheme and to the transaction mix
itself are the keys to performance tuning.

IV
Database Structure

An important role of SQL is to define the structure and
organization of a database. Chapters 13–16 describe the
SQL features that support this role. Chapter 13 describes

how to create a database and its tables. Chapter 14 describes views,
an important SQL feature that lets users see alternate organizations
of database data. The SQL security features that protect stored data
are described in Chapter 15. Finally, Chapter 16 discusses the system
catalog, a collection of system tables that describe the structure of
a database.

CHAPTER 13
Creating a Database

CHAPTER 14
Views

CHAPTER 15
SQL Security

CHAPTER 16
The System Catalog

PART

This page intentionally left blank

13
Creating a Database

Many SQL users don’t have to worry about creating a database; they use interactive
or programmatic SQL to access a database of corporate information or to access
some other database that has been created by someone else. In a typical corporate

database, for example, the database administrator may give you permission to retrieve and
perhaps to update the stored data. However, the administrator will not allow you to create
new databases or to modify the structure of the existing tables.

As you grow more comfortable with SQL, you will probably want to start creating your
own private tables to store personal data such as engineering test results or sales forecasts.
If you are using a multiuser database, you may want to create tables or even entire
databases that will be shared with other users. If you are using a personal computer
database, you will certainly want to create your own tables and databases to support your
personal applications.

This chapter describes the SQL language features that let you create databases and
tables and define their structure.

The Data Definition Language
The SELECT, INSERT, DELETE, UPDATE, COMMIT, and ROLLBACK statements described in
Parts II and III of this book are all concerned with manipulating the data in a database.
These statements collectively are called the SQL Data Manipulation Language, or DML. The
DML statements can modify the data stored in a database, but they cannot change its
structure. None of these statements creates or deletes tables or columns, for example.

315315

CHAPTER

 316 P a r t I V : D a t a b a s e S t r u c t u r e 316 P a r t I V : D a t a b a s e S t r u c t u r e

Changes to the structure of a database are handled by a different set of SQL statements,
usually called the SQL Data Definition Language, or DDL. Using DDL statements, you can

• Define and create a new table

• Remove a table that’s no longer needed

• Change the definition of an existing table

• Define a virtual table (or view) of data

• Establish security controls for a database

• Build an index to make table access faster

• Control the physical storage of data by the DBMS

For the most part, the DDL statements insulate you from the low-level details of how
data is physically stored in the database. They manipulate abstract database objects, such as
tables and columns. However, the DDL cannot avoid physical storage issues entirely, and by
necessity, the DDL statements and clauses that control physical storage vary from one
DBMS to another.

The core of the Data Definition Language is based on three SQL verbs:

• CREATE Defines and creates a database object

• DROP Removes an existing database object

• ALTER Changes the definition of a database object

In all major SQL-based DBMS products, these three DDL verbs can be used while the
DBMS is running. The database structure is thus dynamic. The DBMS can be creating,
dropping, or changing the definition of the tables in the database, for example, while it is
simultaneously providing access to the database for its users. This is a major advantage of
SQL and relational databases over earlier systems, where the DBMS had to be stopped
before you could change the structure of the database. It means that a relational database
can grow and change easily over time. Production use of a database can continue while new
tables and applications are added.

Although the DDL and DML are two distinct parts of SQL, in most SQL-based DBMS
products, the split is only a conceptual one. Usually, the DDL and DML statements are
submitted to the DBMS in exactly the same way, and they can be freely intermixed in both
interactive SQL sessions and programmatic SQL applications. If you need a table to store
temporary results, you can create the table, populate it, manipulate the data, and then delete
the table. Again, this is a major advantage over earlier data models, in which the structure
of the database was fixed when the database was created.

Although virtually all commercial SQL products support the DDL as an integral part of
the SQL language, the original SQL standard (SQL1) did not require it. In fact, the SQL1
standard implies a strong separation between the DML and the DDL, allowing vendors to
achieve compliance with the DML part of the standard through a SQL layer on top of a non-
SQL underlying database. Subsequent versions of the SQL standard still differentiate
between different types of SQL statements. (The standard calls the DDL statements “SQL-
schema statements,” and the DML statements “SQL-data statements” and “SQL-transaction
statements.”) However, the standard was brought into alignment with the actual

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 317
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 317

implementation of popular SQL products by requiring that DDL statements be executed
interactively and by a program.

The SQL standard specifies only the parts of the DDL that are relatively independent of
physical storage structures, operating system dependencies, and other DBMS brand-specific
capabilities. In practice, all DBMS brands include significant extensions to the standard
DDL to deal with these issues and other enhanced database capabilities. The differences
between the ANSI/ISO standard and the DDL as implemented in popular SQL products are
described for each SQL statement through the remainder of this chapter.

Creating a Database
In a large mainframe or enterprise-level network DBMS installation, the corporate database
administrator is solely responsible for creating new databases. On smaller workgroup DBMS
installations, individual users may be allowed to create their own personal databases, but it’s
much more common for databases to be created centrally and then accessed by individual
users. If you are using a personal computer DBMS, you are probably both the database
administrator and the user, and you will have to create the database(s) that you use personally.

The SQL1 standard specified the SQL language used to describe a database structure,
but it did not specify how to create databases, because each DBMS brand had taken a
slightly different approach. Those differences persist in present-day mainstream DBMS
products. The techniques used by these SQL products illustrate the differences:

• IBM’s DB2 has a simple default database structure. A DB2 database is associated
with a running copy of the DB2 server software, and users access the database by
connecting to the DB2 server. A DB2 “database” is thus effectively defined by an
installation of the DB2 software on a particular computer system.

• Oracle, by default, can create a database as part of the Oracle software installation
process, like DB2 does. However, rarely does an Oracle administrator allow the
installer to create the database, opting instead to use Oracle’s CREATE DATABASE
command, or a GUI tool supplied by Oracle, to create the database with parameter
settings customized for the expected use of the database. For the most part, each
copy of the Oracle DBMS software manages a single database, which is named in
an Oracle configuration file; user tables are placed within schemas in that database.
Note that multiple Oracle databases can be managed on a given server or mainframe,
but in those arrangements, each has its own copy of the DBMS software running on
that computer system.

• Microsoft SQL Server and Sybase include a CREATE DATABASE statement as part of
their Data Definition Language. A companion DROP DATABASE statement destroys
previously created databases. These statements can be used with interactive or
programmatic SQL. The names of these databases are tracked in a special master
database that is associated with a single installation of SQL Server. While the
architecture is different from DB2 and Oracle, a Sybase or SQL Server database is
similar in concept to an Oracle or DB2 schema. Database names must be unique
within this SQL Server installation. Options to the CREATE DATABASE statement
specify the physical I/O device on which the database is to be located.

 318 P a r t I V : D a t a b a s e S t r u c t u r e 318 P a r t I V : D a t a b a s e S t r u c t u r e

• Informix Universal Server (now an IBM product) supports CREATE DATABASE and
DROP DATABASE SQL statements as well. An option in the CREATE DATABASE
statement allows the database to be created in a specific dbspace, which is a named
area of disk storage controlled by the Informix software. Another option controls the
type of database logging to be performed for the new database, with trade-offs
between performance and data integrity during system failures.

• MySQL also supports CREATE DATABASE and DROP DATABASE SQL statements.
Options in the CREATE DATABASE control storage parameters and the choice of
database engines used to manage the database. Each database is placed in its own
directory under the root directory for the MySQL installation.

The SQL standard specifically avoids a specification of the term database, because it is
overloaded with contradictory meanings from DBMS products. The standard uses the term
catalog to describe a named collection of tables that is called a database by most popular
DBMS brands. (Additional information about the database structure specified by the SQL
standard is provided later in the section “Database Structure and the ANSI/ISO Standard.”)
The standard does not specify how a catalog is created or destroyed, and specifically says
that creation or destruction is implementation-dependent. It also indicates how many
catalogs there are, and whether individual SQL statements that can access data from
different catalogs are implementation-defined. In practice, as shown by the preceding
examples, many of the major DBMS vendors have moved toward the use of a CREATE
DATABASE/DROP DATABASE statement pair.

Table Definitions
The most important structure in a relational database is the table. In a multiuser production
database, the major tables are typically created once by the database administrator and then
used day after day. As you use the database, you will often find it convenient to define your
own tables to store personal data or data extracted from other tables. These tables may be
temporary, lasting for only a single interactive SQL session, or more permanent, lasting
weeks or months. In a personal computer database, the table structure is even more fluid.
Because you are both the user and the database administrator, you can create and destroy
tables to suit your own needs, without worrying about other users.

Creating a Table (CREATE TABLE)
The CREATE TABLE statement, shown in Figure 13-1, defines a new table in the database
and prepares it to accept data. The various clauses of the statement specify the elements of
the table definition. The syntax diagram for the statement appears complex because there
are so many parts of the definition to be specified and so many options for each element. In
addition, some of the options are available in some DBMS brands or in the SQL standard,
but not in other brands. In practice, creating a new table is relatively straightforward.

When you execute a CREATE TABLE statement, you become the owner of the newly
created table, which is given the name specified in the statement. Alternatively, if you have
the privilege to do so, you may create tables for other users by qualifying the table name
with the identifier of a different owner. The table name must be a legal SQL name, and it
must not conflict with the name of one of your existing tables. The newly created table is
empty, but the DBMS prepares it to accept data added with the INSERT statement.

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 319
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 319

FIGURE 13-1 Basic CREATE TABLE syntax diagram

 320 P a r t I V : D a t a b a s e S t r u c t u r e 320 P a r t I V : D a t a b a s e S t r u c t u r e

Column Definitions
The columns of the newly created table are defined in the body of the CREATE TABLE
statement. The column definitions appear in a comma-separated list enclosed in
parentheses. The order of the column definitions determines the left-to-right order of the
columns in the table. In the CREATE TABLE statements supported by the major DBMS
brands, each column definition specifies the following:

• Column name Used to refer to the column in SQL statements. Every column in the
table must have a unique name, but the names may duplicate those of columns in
other tables.

• Data type or domain Identifies the kind of data that the column stores. Data types
were discussed in Chapter 5. Domains (described in Chapter 11) are specified in the
SQL standard, but very few DBMS products support them. Some data types, such as
VARCHAR and DECIMAL, require additional information, for example, the length or
number of decimal places in the data. This additional information is enclosed in
parentheses following the keyword that specifies the data type.

• Required data Determines whether the column contains required data and prevents
NULL values from appearing in the column; otherwise, NULL values are allowed.

• Default value Uses an optional default value for the column when an INSERT
statement for the table does not specify a value for the column.

The SQL standard allows several additional parts of a column definition, which can be
used to require that the column contains unique values, to specify that the column is a
primary key or a foreign key, or to restrict the data values that the column may contain.
These are single-column versions of capabilities provided by other clauses in the CREATE
TABLE statement and are described as part of that statement in the following sections.

Here are some simple CREATE TABLE statements for the tables in the sample database:

Define the OFFICES table and its columns.

CREATE TABLE OFFICES
 (OFFICE INTEGER NOT NULL,
 CITY VARCHAR(15) NOT NULL,
 REGION VARCHAR(10) NOT NULL,
 MGR INTEGER,
 TARGET DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL);

Define the ORDERS table and its columns.

CREATE TABLE ORDERS
 (ORDER_NUM INTEGER NOT NULL,
 ORDER_DATE DATE NOT NULL,
 CUST INTEGER NOT NULL,
 REP INTEGER,
 MFR CHAR(3) NOT NULL,
 PRODUCT CHAR(5) NOT NULL,
 QTY INTEGER NOT NULL,
 AMOUNT DECIMAL(9,2) NOT NULL);

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 321
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 321

The CREATE TABLE statement for a given table can vary slightly from one DBMS brand
to another, because each DBMS supports its own set of data types and uses its own
keywords to identify them in the column definitions. In addition, the SQL standard allows
you to specify a domain instead of a data type within a column definition. (Domains are
described in Chapter 11.) A domain is a specific collection of valid data values, which is
defined within the database and assigned a name. The domain definition is based on one of
the DBMS’ supported data types but performs additional data-value checking that restricts
the legal values. For example, if this domain definition appeared in a SQL-compliant
database:

CREATE DOMAIN VALID_OFFICE_ID INTEGER
 CHECK (VALUE BETWEEN 11 AND 99);

then the OFFICES table definition could be modified to:

Define the OFFICES table and its columns.

CREATE TABLE OFFICES
 (OFFICE VALID_OFFICE_ID NOT NULL,
 CITY VARCHAR(15) NOT NULL,
 REGION VARCHAR(10) NOT NULL,
 MGR INTEGER,
 TARGET DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL);

and the DBMS would automatically check any newly inserted rows to ensure that their
office numbers fall in the designated range. Domains are particularly effective when the
same legal data value restrictions apply to many different columns within the database. In
the sample database, office numbers appear in the OFFICES and the SALESREPS table, and
the VALID_OFFICE_ID domain would be used to define the columns in both of these
tables. A real-world database may have dozens or hundreds of such columns whose data is
drawn from the same domain.

Missing and Default Values
The definition of each column within a table tells the DBMS whether the data for the
column is allowed to be missing—that is, whether the column is allowed to have a NULL
value. In most of the major DBMS brands and in the SQL standard, the default is to allow
missing data for a column. If the column must contain a legal data value for every row of a
table, then its definition must include the NOT NULL clause. The Sybase ASE and Microsoft
SQL Server DBMS products use the opposite convention, assuming that NULL values are not
allowed unless the column is explicitly declared NULL or unless the default nullability mode
defined for the database is set to allow NULLs by default.

The SQL standard and many of the major SQL DBMS products support default values
for columns. If a column has a default value, it is specified within the column definition. For
example, here is a CREATE TABLE statement for the OFFICES table that specifies default values:

 322 P a r t I V : D a t a b a s e S t r u c t u r e 322 P a r t I V : D a t a b a s e S t r u c t u r e

Define the OFFICES table with default values (ANSI/ISO syntax).

CREATE TABLE OFFICES
 (OFFICE INTEGER NOT NULL,
 CITY VARCHAR(15) NOT NULL,
 REGION VARCHAR(10) NOT NULL DEFAULT 'Eastern',
 MGR INTEGER DEFAULT 106,
 TARGET DECIMAL(9,2) DEFAULT NULL,
 SALES DECIMAL(9,2) NOT NULL DEFAULT 0.00);

With this table definition, only the office number and the city need to be specified when
you insert a new office. The region defaults to Eastern, the office manager to Sam Clark
(employee number 106), the sales to zero, and the target to NULL. Note that the target would
default to NULL even without the DEFAULT NULL specification.

Primary and Foreign Key Definitions
In addition to defining the columns of a table, the CREATE TABLE statement can identify a
primary key for the table and for relationships to other tables in the database. The PRIMARY
KEY and FOREIGN KEY clauses handle these functions. These clauses have been supported
by the IBM SQL databases for some time and have been added to the ANSI/ISO specification.
Most major SQL products support them.

The PRIMARY KEY clause specifies the column or columns that form the primary key for
the table. Recall from Chapter 4 that this column (or column combination) serves as a
unique identifier for each row of the table. The DBMS automatically requires that the
primary key value be unique in every row of the table. In addition, the column definition
for every column in the primary key must specify that the column is NOT NULL.

The FOREIGN KEY clause specifies a foreign key in the table and the relationship that it
creates to another (parent) table in the database. The clause specifies

• The column or columns that form the foreign key, all of which are columns of the
table being created.

• The table that is referenced by the foreign key. This is the parent table in the
relationship; the table being defined is the child.

• An optional list of the column names in the parent table that are to be matched with
the foreign key columns in the table being defined. If the column names are omitted,
then column names identical to the foreign key columns must exist in the parent table.

• An optional name for the relationship. The name is not used in any SQL data
manipulation statements, but it may appear in error messages and is required if you
want to be able to drop the foreign key later.

• How the DBMS should treat a NULL value in one or more columns of the foreign
key, when matching it against rows of the parent table.

• An optional delete rule for the relationship (CASCADE, SET NULL, SET DEFAULT, or
NO ACTION as described in Chapter 11), which determines the action to take when a
parent row is deleted.

• An optional update rule for the relationship as described in Chapter 11, which
determines the action to take when part of the primary key in a parent row is updated.

• An optional check constraint, which restricts the data in the table so that its rows
meet a specified search condition.

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 323
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 323

Here is an expanded CREATE TABLE statement for the ORDERS table, which includes a
definition of its primary key and the three foreign keys that it contains:

Define the ORDERS table with its primary and foreign keys.

CREATE TABLE ORDERS
 (ORDER_NUM INTEGER NOT NULL,
 ORDER_DATE DATE NOT NULL,
 CUST INTEGER NOT NULL,
 REP INTEGER,
 MFR CHAR(3) NOT NULL,
 PRODUCT CHAR(5) NOT NULL,
 QTY INTEGER NOT NULL,
 AMOUNT DECIMAL(9,2) NOT NULL,
 PRIMARY KEY (ORDER_NUM),
 CONSTRAINT PLACEDBY
 FOREIGN KEY (CUST)
 REFERENCES CUSTOMERS
 ON DELETE CASCADE,
 CONSTRAINT TAKENBY
 FOREIGN KEY (REP)
 REFERENCES SALESREPS
 ON DELETE SET NULL,
 CONSTRAINT ISFOR
 FOREIGN KEY (MFR, PRODUCT)
 REFERENCES PRODUCTS
 ON DELETE RESTRICT);

Figure 13-2 shows the three relationships created by this statement and the names it
assigns to them. In general, it’s a good idea to assign a relationship name, because it helps to
clarify the relationship created by the foreign key. For example, each order was placed by
the customer whose number appears in the CUST column of the ORDERS table. The
relationship created by this column has been given the name PLACEDBY.

When the DBMS processes the CREATE TABLE statement, it checks each foreign key
definition against the definition of the table that it references. The DBMS makes sure that
the foreign key and the primary key of the referenced table agree in the number of columns
they contain and in their data types. The referenced table must already be defined in the
database for this checking to succeed.

Note that the FOREIGN KEY clause also specifies the delete and update rules that are to
be enforced for the parent/child table relationship that it creates. Delete and update rules,
and the actions that can trigger them, are described in Chapter 11. The DBMS enforces the
default rules (NO ACTION) if no rule is explicitly specified.

If you want to create two or more tables from a referential cycle (like the OFFICES and
SALESREPS tables in the sample database), you cannot include the foreign key definition in
the first CREATE TABLE statement because the referenced table does not yet exist. The
DBMS will reject the attempted CREATE TABLE statement with an error saying that the table
definition refers to an undefined table. Instead, you must create the first table without its
foreign key definition and add the foreign key later by using the ALTER TABLE statement.
(The SQL standard and several of the major DBMS products offer a different solution to this
problem with the CREATE SCHEMA statement, which creates an entire set of tables at once.
This statement and the other database objects included within a SQL schema are described
later in the “Schemas” section.)

 324 P a r t I V : D a t a b a s e S t r u c t u r e 324 P a r t I V : D a t a b a s e S t r u c t u r e

Uniqueness Constraints
The SQL standard specifies that uniqueness constraints are also defined in the CREATE
TABLE statement, using the UNIQUE clause shown in Figure 13-1. Here is a CREATE TABLE
statement for the OFFICES table, modified to require unique CITY values:

Define the OFFICES table with a uniqueness constraint.

CREATE TABLE OFFICES
 (OFFICE INTEGER NOT NULL,
 CITY VARCHAR(15) NOT NULL,
 REGION VARCHAR(10) NOT NULL,
 MGR INTEGER,
 TARGET DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL,
 PRIMARY KEY (OFFICE),
 CONSTRAINT HASMGR
 FOREIGN KEY (MGR)
 REFERENCES SALESREPS
 ON DELETE SET NULL,
 UNIQUE (CITY));

FIGURE 13-2 Relationship names in the CREATE TABLE statement

2007-12-17

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 325
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 325

If a primary key, foreign key, uniqueness constraint, or check constraint involves a
single column, the ANSI/ISO standard permits a shorthand form of the definition. The
primary key, foreign key, uniqueness constraint, or check constraint is simply added to the
end of the column definition, as shown in this example:

Define the OFFICES table with a uniqueness constraint (ANSI/ISO syntax).

CREATE TABLE OFFICES
 (OFFICE INTEGER NOT NULL PRIMARY KEY,
 CITY VARCHAR(15) NOT NULL UNIQUE,
 REGION VARCHAR(10) NOT NULL,
 MGR INTEGER REFERENCES SALESREPS,
 TARGET DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL);

Several of the major DBMS brands, including SQL Server, Informix, Sybase, and DB2,
support this shorthand.

Check Constraints
Another SQL data integrity feature, the check constraint (described in Chapter 11) is also
specified in the CREATE TABLE statement. A check constraint specifies a check condition
(identical in form to a search condition in a SQL query) that is checked every time an
attempt is made to modify the contents of the table (with an INSERT, UPDATE, or DELETE
statement). If the check condition remains TRUE after the modification, it is allowed;
otherwise, the DBMS disallows the attempt to modify the data and returns an error. The
following is a CREATE TABLE statement for the OFFICES table, with a very simple check
condition to make sure the TARGET for the office is greater than $0.00.

Define the OFFICES table with a uniqueness constraint.

CREATE TABLE OFFICES
 (OFFICE INTEGER NOT NULL,
 CITY VARCHAR(15) NOT NULL,
 REGION VARCHAR(10) NOT NULL,
 MGR INTEGER,
 TARGET DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL,
 PRIMARY KEY (OFFICE),
 CONSTRAINT HASMGR
 FOREIGN KEY (MGR)
 REFERENCES SALESREPS
 ON DELETE SET NULL,
 CHECK (TARGET >= 0.00));

You can optionally specify a name for the check constraint, which will be used by the
DBMS when it reports an error if the constraint is violated. Here is a slightly more complex
check constraint for the SALESREPS table to enforce the rule “Salespeople whose hire date

 326 P a r t I V : D a t a b a s e S t r u c t u r e 326 P a r t I V : D a t a b a s e S t r u c t u r e

is later than January 1, 2006, shall not be assigned quotas higher than $300,000.” The
CREATE TABLE statement names this constraint QUOTA_CAP:

CREATE TABLE SALESREPS
 (EMPL_NUM INTEGER NOT NULL,
 NAME VARCHAR (15) NOT NULL,
 .
 .
 .
 CONSTRAINT WORKSIN
 FOREIGN KEY (REP_OFFICE)
 REFERENCES OFFICES
 ON DELETE SET NULL
 CONSTRAINT QUOTA_CAP CHECK ((HIRE_DATE < '2006-01-01') OR
 (QUOTA <= 300000)));

This check constraint capability is supported by many of the major DBMS brands.

Physical Storage Definition*
The CREATE TABLE statement typically includes one or more optional clauses that specify
physical storage characteristics for a table. Generally, these clauses are used only by the
database administrator to optimize the performance of a production database. By their nature,
these clauses are very specific to a particular DBMS. Although they are of little practical
interest to most SQL users, the different physical storage structures provided by various
DBMS products illustrate their different intended applications and levels of sophistication.

Most of the personal computer databases provide very simple physical storage
mechanisms. Many personal computer database products store an entire database within a
single Windows file, or use a separate Windows file for each database table. They may also
require that the entire table or database be stored on a single physical disk volume.

Multiuser databases typically provide more sophisticated physical storage schemes to
support improved database performance. For example, Ingres allows the database
administrator to define multiple named locations, which are physical directories where
database data can be stored. The locations can be spread across multiple disk volumes to
take advantage of parallel disk input/output operations. You can optionally specify one or
more locations for a table in the Ingres CREATE TABLE statement:

CREATE TABLE OFFICES (table-definition)
 WITH LOCATION = (AREA1, AREA2, AREA3);

By specifying multiple locations, you can spread a table’s contents across several disk
volumes for greater parallel access to the table.

Sybase ASE offers a similar approach, allowing the database administrator to specify
multiple named logical database devices that are used to store data. The correspondence
between Sybase’s logical devices and the actual physical disk drives of the computer system
is handled by a Sybase utility program, and not within the SQL. The Sybase CREATE
DATABASE statement can then specify that a database should be stored on one or more
database devices:

CREATE DATABASE OPDATA
 ON DBFILE1, DBFILE2, DBFILE3;

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 327
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 327

Within a given database device, Sybase then allows the database administrator to define
logical segments, using one of the Sybase system-provided stored procedures. Finally, a
Sybase CREATE TABLE statement can specify the segment where a table’s data is to be stored:

CREATE TABLE OFFICES (table-definition)
 ON SEGMENT SEG1A;

DB2 offers a similarly comprehensive scheme for managing physical storage, based on
the concepts of tablespaces and nodegroups. A tablespace is a logical-level storage container,
whereas nodegroups are defined more specifically in terms of physical storage. When you
create a DB2 table, you can optionally assign it to a specific tablespace:

CREATE TABLE OFFICES (table-definition)
 IN ADMINDB.OPSPACE;

Unlike Sybase, DB2 puts most of the management of these storage entities within the
SQL itself, through the CREATE TABLESPACE and CREATE NODEGROUP statements. A
consequence is that these statements include operating system–dependent specifications of
filenames and directories, which vary from one supported DB2 operating system to another.
Other clauses specify the DB2 buffer pool to be used, the overhead and transfer rate of the
storage medium, and other characteristics closely related to the physical storage medium.
DB2 uses this information in its performance optimization algorithms.

SQL Server supports the creation of filegroups, which are logical equivalents to
tablespaces. Each filegroup has one or more physical files assigned to it. A default filegroup
is assigned to each database when it is created, and tables created in that database are stored
in that filegroup unless otherwise specified in the CREATE TABLE statement like this:

CREATE TABLE OFFICES (table-definition)
 ON filegroup-name;

Oracle supports the creation of tablespaces in a manner similar to DB2. A tablespace has
one or more physical files assigned to it. A default tablespace can be assigned globally or for
each user schema. When a table is created, the tablespace and various physical storage
attributes, such as an initial size allocation, the incremental amount to be added when more
space is needed, and a percentage to increase each additional allocation, can be specified:

CREATE TABLE OFFICES (table-definition)
 TABLESPACE tablespace-name
 STORAGE (INITIAL initial-size NEXT incremental-size
 PCTINCREASE growth-percent);

Removing a Table (DROP TABLE)
Over time, the structure of a database grows and changes. New tables are created to represent
new entities, and some old tables are no longer needed. You can remove an unneeded table
from the database with the DROP TABLE statement, shown in Figure 13-3.

FIGURE 13-3 DROP TABLE statement syntax diagram

RESTRICT

CASCADE

DROP TABLE table-name

 328 P a r t I V : D a t a b a s e S t r u c t u r e 328 P a r t I V : D a t a b a s e S t r u c t u r e

The table name in the statement identifies the table to be dropped. Normally, you will
be dropping one of your own tables and will use an unqualified table name. With proper
permission, you can also drop a table owned by another user by specifying a qualified table
name. Here are some examples of the DROP TABLE statement:

The CUSTOMERS table has been replaced by two new tables, CUST_INFO and ACCOUNT_INFO,
and is no longer needed.

DROP TABLE CUSTOMERS;

Sam has given you permission to drop his table, named BIRTHDAYS.

DROP TABLE SAM.BIRTHDAYS;

When the DROP TABLE statement removes a table from the database, its definition and
all of its contents are lost. In most SQL products, there is no way to recover the data, and
you would have to use a new CREATE TABLE statement to re-create the table definition.
(However, Oracle now allows dropped tables to be recovered from the Recycle Bin, and
other vendors may soon follow suit.) Because of its serious consequences, you should use
the DROP TABLE statement with care.

The SQL standard requires that a DROP TABLE statement include either CASCADE or
RESTRICT, which specifies the impact of dropping a table on other database objects (such as
views, described in Chapter 14) that depend on the table. If CASCADE is specified, the DROP
TABLE statement fails if other database objects reference the table. Most commercial DBMS
products accept the DROP TABLE statement with no option specified. Here are some exceptions:

• MySQL allows RESTRICT or CASCADE to be specified for compatibility, but as of
version 5.0 they have no effect.

• Oracle defaults to RESTRICT (which cannot be explicitly specified) and requires the
keywords CASCADE CONSTRAINTS instead of CASCADE.

• SQL Server and DB2 do not support the RESTRICT or CASCADE options.

Changing a Table Definition (ALTER TABLE)
After a table has been in use for some time, users often discover that they want to store
additional information about the entities represented in the table. In the sample database,
for example, you might want to:

• Add the name and phone number of a key contact person to each row of the
CUSTOMERS table, as you begin to use it for contacting customers

• Add a minimum inventory-level column to the PRODUCTS table, so the database can
automatically alert you when stock of a particular product is low

• Make the REGION column in the OFFICES table a foreign key for a newly created
REGIONS table, whose primary key is the region name

• Drop the foreign key definition linking the CUST column in the ORDERS table to the
CUSTOMERS table, replacing it with two foreign key definitions linking the CUST
column to the newly created CUST_INFO and ACCOUNT_INFO tables

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 329
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 329

Each of these changes, and some others, can be handled with the ALTER TABLE
statement, shown in Figure 13-4. As with the DROP TABLE statement, you will normally use
the ALTER TABLE statement on one of your own tables. With proper permission, however,
you can specify a qualified table name and alter the definition of another user’s table. As
shown in the figure, the ALTER TABLE statement can

• Add a column definition to a table

• Drop a column from a table

• Change the default value for a column

• Add or drop a primary key for a table

• Add or drop a new foreign key for a table

• Add or drop a uniqueness constraint for a table

• Add or drop a check constraint for a table

The clauses in Figure 13-4 are specified in the SQL standard. Many DBMS brands lack
support for some of these clauses, support somewhat different syntax, or offer clauses unique
to the DBMS, which alters other table characteristics. The SQL standard restricts each ALTER
TABLE statement to a single table change. Adding a column and defining a new foreign key,
for example, require two separate ALTER TABLE statements. Several DBMS brands relax this
restriction and allow multiple action clauses in a single ALTER TABLE statement.

Adding a Column
The most common use of the ALTER TABLE statement is to add a column to an existing
table. The column definition clause in the ALTER TABLE statement is just like the one in the
CREATE TABLE statement, and it works the same way. The new column is added to the end
of the column definitions for the table, and it appears as the rightmost column in subsequent
queries. The DBMS normally assumes a NULL value for a newly added column in all existing
rows of the table. If the column is declared to be NOT NULL with a default value, the DBMS
instead assumes the default value.

FIGURE 13-4 ALTER TABLE statement syntax diagram

 330 P a r t I V : D a t a b a s e S t r u c t u r e 330 P a r t I V : D a t a b a s e S t r u c t u r e

Note that you cannot simply declare the new column NOT NULL, because the DBMS
would assume NULL values for the column in the existing rows, immediately violating the
constraint! (When you add a new column, the DBMS may not actually go through all of the
existing rows of the table adding a NULL or default value. Instead, some DBMS products
detect the fact that an existing row is too short for the new table definition when the row is
retrieved, and extend it with a NULL or default value before displaying it or passing it to
your program.)

Some sample ALTER TABLE statements that add new columns are

Add a contact name and phone number to the CUSTOMERS table.

ALTER TABLE CUSTOMERS
 ADD CONTACT_NAME VARCHAR(30);

ALTER TABLE CUSTOMERS
 ADD CONTACT_PHONE CHAR(10);

Add a minimum inventory-level column to the PRODUCTS table.

ALTER TABLE PRODUCTS
 ADD MIN_QTY INTEGER NOT NULL DEFAULT 0;

In the first example, the new columns will have NULL values for existing customers. In
the second example, the MIN_QTY column will have the value zero (0) for existing products,
which is appropriate.

When the ALTER TABLE statement first appeared in SQL implementations, the only
major structures within a table were the column definitions, and it was very clear what the
ADD clause meant. Since then, tables have grown to include primary and foreign key
definitions and constraints, and the ADD clauses for these types of objects specify which type
of object is being added. For consistency with these other ADD/DROP clauses, the SQL
standard includes the optional keyword COLUMN after the keyword ADD. With this addition,
the preceding example becomes

Add a minimum inventory-level column to the PRODUCTS table.

ALTER TABLE PRODUCTS
 ADD COLUMN MIN_QTY INTEGER NOT NULL DEFAULT 0;

Dropping a Column
The ALTER TABLE statement can be used to drop one or more columns from an existing
table when they are no longer needed. Here is an example that drops the HIRE_DATE
column from the SALESREPS table:

Drop a column from the SALESREPS table.

ALTER TABLE SALESREPS
 DROP HIRE_DATE;

The SQL standard forces you to issue a separate ALTER TABLE statement if you want to
drop several columns, but several of the major DBMS brands allow you to drop multiple
columns with a single statement.

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 331
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 331

Note that dropping a column can pose the same kinds of data-integrity issues that were
described in Chapter 11 for database update operations. For example, if you drop a column
that is a primary key in some relationship, the foreign key columns that refer to the dropped
column become invalid. A similar problem can arise if you drop a column that is referenced in
a check constraint—the column that provides the data value for checking the constraint is now
gone. A similar problem is created in views that are defined based on the dropped column.

The SQL standard deals with these issues the same way it handled the potential data-
integrity problems posed by DELETE and UPDATE statements—with a drop rule (actually
called a drop behavior in the standard) that operates just like the delete rules and update
rules. You can specify one of two drop rules:

• RESTRICT If any other objects in the database (foreign keys, constraints, and so
on) depend on the column to be dropped, the ALTER TABLE statement fails with an
error and the column is not dropped.

• CASCADE Any other objects in the database (foreign keys, constraints, and so on)
that depend on the column are also dropped as a cascaded effect of the ALTER
TABLE statement.

The CASCADE effect can cause quite dramatic changes in the database; therefore, use it
with care. It’s usually a better idea to use the RESTRICT mode (explicitly drop the dependent
foreign keys and constraints, using the appropriate ALTER or DROP statements) before
dropping the column.

Changing Primary and Foreign Keys
The other common use for the ALTER TABLE statement is to change or add primary key and
foreign key definitions for a table. Many find this form of the ALTER TABLE statement is
particularly useful. It can be used to inform the DBMS about intertable relationships that
already exist in a database, but which have not been explicitly specified before.

Unlike column definitions, primary key and foreign key definitions can be added and
dropped from a table with the ALTER TABLE statement. The clauses that add primary key and
foreign key definitions are exactly the same as those in the CREATE TABLE statement, and they
work the same way. The clauses that drop a primary key or foreign key are straightforward, as
shown in the following examples. Note that you can drop a foreign key only if the relationship
that it creates was originally assigned a name. If the relationship was unnamed and the DBMS
is not one of those that assigns default names to unnamed constraints, there is no way to
specify it in the ALTER TABLE statement. In this case, you cannot drop the foreign key unless
you drop and re-create the table, using the procedure described for dropping a column.

Here is an example that adds a foreign key definition to an existing table:

Make the REGION column in the OFFICES table a foreign key for the newly created REGIONS
table, whose primary key is the region name.

 ALTER TABLE OFFICES
ADD CONSTRAINT INREGION
 FOREIGN KEY (REGION)
 REFERENCES REGIONS;

 332 P a r t I V : D a t a b a s e S t r u c t u r e 332 P a r t I V : D a t a b a s e S t r u c t u r e

Here is an example of an ALTER TABLE statement that modifies a primary key. Note
that the foreign key corresponding to the original primary key must be dropped because it
is no longer a foreign key for the altered table:

Drop the primary key of the OFFICES table.

ALTER TABLE SALESREPS
 DROP CONSTRAINT WORKSIN;

ALTER TABLE OFFICES
 DROP PRIMARY KEY;

Constraint Definitions
The tables in a database define its basic structure, and in most early commercial SQL
products, the table definitions were the only specification of database structure. With the
advent of primary key/foreign key support in DB2 and in the SQL standard, the definition of
database structure was expanded to include the relationships among the tables in a database.
More recently, through the evolution of the SQL standard and commercial products, the
definition of database structure has expanded to include a new area—database constraints
that restrict the data that can be entered into the database. The types of constraints, and the
role that they play in maintaining database integrity, are described in Chapter 11.

Four types of database constraints (uniqueness constraints, primary and foreign key
constraints, and check constraints) are closely associated with a single database table. They
are specified as part of the CREATE TABLE statement and can be modified or dropped using
the ALTER TABLE statement. The other two types of database integrity constraints,
assertions and domains, are created as stand-alone objects within a database, independent
of any individual table definition.

Assertions
An assertion is a database constraint that restricts the contents of the database as a whole. Like a
check constraint, an assertion is specified as a search condition. But unlike a check constraint,
the search condition in an assertion can restrict the contents of multiple tables and the data
relationships among them. For that reason, an assertion is specified as part of the overall
database definition, via a SQL CREATE ASSERTION statement. Suppose you wanted to restrict
the contents of the sample database so that the total orders for any given customer may not
exceed that customer’s credit limit. You can implement that restriction with the statement:

CREATE ASSERTION CREDLIMIT
 CHECK ((CUSTOMERS.CUST_NUM = ORDERS.CUST) AND
 (SUM (AMOUNT) <= CREDIT_LIMIT));

With the assertion named CREDLIMIT as part of the database definition, the DBMS is
required to check that the assertion remains true each time a SQL statement attempts to
modify the CUSTOMER or ORDERS tables. If you later determine that the assertion is no
longer needed, you can drop it using the DROP ASSERTION statement:

DROP ASSERTION CREDLIMIT;

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 333
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 333

There is no SQL ALTER ASSERTION statement. To change an assertion definition, you
must drop the old definition and then specify the new one with a new CREATE ASSERTION
statement.

Although the specification for assertions has been in the SQL standard since 1992, very
few SQL implementations support it. In fact, as of this writing, it is not yet supported by
Oracle, DB2 UDB, SQL Server, or MySQL.

Domains
The SQL standard implements the formal concept of a domain as a part of a database
definition. As described in Chapter 11, a domain is a named collection of data values that
effectively functions as an additional data type for use in database definitions. A domain is
created with a CREATE DOMAIN statement. Once created, the domain can be referenced as if it
were a data type within a column definition. Here is a CREATE DOMAIN statement to define a
domain named VALID_EMPL_IDS, which consists of valid employee identification numbers in
the sample database. These numbers are three-digit integers in the range 101 to 999, inclusive:

CREATE DOMAIN VALID_EMPL_IDS INTEGER
 CHECK (VALUE BETWEEN 101 AND 199);

If a domain is no longer needed, you can drop it using one of the forms of the SQL DROP
DOMAIN statement:

DROP DOMAIN VALID_EMPL_IDS CASCADE;

DROP DOMAIN VALID_EMPL_IDS RESTRICT;

The CASCADE and RESTRICT drop rules operate just as they do for dropped columns. If
CASCADE is specified, any column defined in terms of the dropped domain will also be
automatically dropped from the database. If RESTRICT is specified, the attempt to drop the
domain will fail if any column definitions are based on it. You must first drop or alter the
column definitions so that they no longer depend on the domain before dropping it. This
provides an extra margin of safety against accidentally dropping columns (and more
importantly, the data that they contain).

Like assertions, domain definitions have been specified in the SQL standard since 1992,
but there are very few implementations of them in commercial products. SQL Server and
Oracle have CREATE TYPE statements that are similar in some ways, but there is no such
support in DB2 UDB, MySQL, or any other mainstream DBMS product.

Aliases and Synonyms (CREATE/DROP ALIAS)
Production databases are often organized like the copy of the sample database shown in
Figure 13-5, with all of their major tables collected together and owned by an application
ID or database administrator. The database administrator gives other users permission to
access the tables, using the SQL security scheme described in Chapter 15. Recall, however,
that you must use qualified table names to refer to another user’s tables. In practice,

 334 P a r t I V : D a t a b a s e S t r u c t u r e 334 P a r t I V : D a t a b a s e S t r u c t u r e

this means that every query against the major tables in Figure 13-5 must use qualified table
names, which makes queries like the following one long and tedious to type:

List the name, sales, office, and office sales for everyone.

SELECT NAME, OP_ADMIN.SALESREPS.SALES, OFFICE, OP_ADMIN.OFFICES.SALES
 FROM OP_ADMIN.SALESREPS, OP_ADMIN.OFFICES;

To address this problem, many SQL DBMS products provide an alias or synonym
capability. A synonym is a name that you define that stands for the name of some other
table. In DB2, you create an alias using the CREATE ALIAS statement. (Older versions of
DB2 actually used a CREATE SYNONYM statement, and Oracle and SQL Server still use this
form of the statement, but it has the same effect as the CREATE ALIAS statement.) If you
were the user named George in Figure 13-5, for example, you might use this pair of CREATE
ALIAS statements:

Create aliases for two tables owned by another user.

CREATE ALIAS REPS
 FOR OP_ADMIN.SALESREPS;

CREATE ALIAS OFFICES
 FOR OP_ADMIN.OFFICES;

Once you have defined a synonym or alias, you can use it just like a table name in SQL
queries. The previous query thus becomes

SELECT NAME, REPS.SALES, OFFICE, OFFICES.SALES
 FROM REPS, OFFICES;

The use of aliases doesn’t change the meaning of the query, and you must still have
permission to access the other users’ tables. Nonetheless, synonyms simplify the SQL
statements you use and make it appear as if the tables were your own. If you decide later
that you no longer want to use the synonyms, they can be removed with the DROP ALIAS
statement:

FIGURE 13-5 Typical organization of a production database

Database

DBA’s tablesGeorge’s tables Sam’s tables

OFFICES
PRODUCTS

ORDERS
SALESREPS

CUSTOMERS

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 335
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 335

Drop the aliases created earlier.

DROP ALIAS REPS;

DROP ALIAS OFFICES;

Synonyms or aliases are supported by DB2, Oracle, SQL Server, and Informix. However,
they are not specified by the ANSI/ISO SQL standard.

Indexes (CREATE/DROP INDEX)
One of the physical storage structures provided by most SQL-based database management
systems is an index, which is a structure that provides rapid access to the rows of a table
based on the values of one or more columns. Figure 13-6 shows the PRODUCTS table and
two indexes that have been created for it. One of the indexes provides access based on the

FIGURE 13-6 Two indexes on the PRODUCTS table

•
•
•

IMM
ACI
ACI
•
•
•

MFR_ID

PRODUCTS Table

INDEX

ACI 41003

ACI 41004

IMM 779C

779c
41003
41004

PRODUCT_ID

900-1b Brace
Size 3 Widget
Size 4 Widget

DESCRIPTION

$1,875.00
$107.00
$117.00

PRICE

9
207
139

QTY_ON_HAND

INDEX

900-1b Brace

Size 4 Widget

Size 3 Widget

 336 P a r t I V : D a t a b a s e S t r u c t u r e 336 P a r t I V : D a t a b a s e S t r u c t u r e

DESCRIPTION column. The other provides access based on the primary key of the table,
which is a combination of the MFR_ID and PRODUCT_ID columns.

The DBMS uses the index as you might use the index of a book. The index stores data
values and pointers to the rows where those data values occur. In the index the data values
are arranged in ascending or descending order, so that the DBMS can quickly search the index
to find a particular value. It can then follow the pointer to locate the row containing the value.

The presence or absence of an index is completely transparent to the SQL user who
accesses a table. For example, consider this SELECT statement:

Find the quantity and price for size 4 widgets.

SELECT QTY_ON_HAND, PRICE
 FROM PRODUCTS
 WHERE DESCRIPTION = 'Size 4 Widget';

The statement doesn’t say whether there is an index on the DESCRIPTION column, and
the DBMS will carry out the query in either case.

If there were no index for the DESCRIPTION column, the DBMS would be forced to
process the query by sequentially scanning the PRODUCTS table, row by row, examining the
DESCRIPTION column in each row. To make sure it had found all of the rows that satisfied
the search condition, it would have to examine every row in the table. For a large table with
millions of rows, the scan of the table could take minutes or hours.

With an index for the DESCRIPTION column, the DBMS can locate the requested data
with much less effort. It searches the index to find the requested value (“Size 4 Widget”)
and then follows the pointer to find the requested row(s) of the table. The index search is
very rapid because the index is sorted and its rows are very small. Moving from the index
to the row(s) is also very rapid because the index tells the DBMS where on the disk the
row(s) are located.

As this example shows, the advantage of having an index is that it greatly speeds the
execution of SQL statements with search conditions that refer to the indexed column(s). One
disadvantage of having an index is that it consumes additional disk space. Another
disadvantage is that the index must be updated every time a row is added to the table and
every time the indexed column is updated in an existing row. This imposes additional
overhead on INSERT and UPDATE statements for the table.

In general, it’s a good idea to create an index for columns that are used frequently in
search conditions. In addition, an index on foreign key columns can often enhance the
performance of joins. Indexing is also more appropriate when queries against a table are
more frequent than inserts and updates. Most DBMS products always establish an index for
the primary key of a table, because they anticipate that access to the table will most
frequently be via the primary key. The primary key index also helps the DBMS quickly
check for duplicate values as new rows are inserted into the table.

Most DBMS products also automatically establish an index for any column (or column
combination) defined with a uniqueness constraint. As with the primary key, the DBMS
must check the value of such a column in any new row to be inserted, or in any update to
an existing row, to make certain that the value does not duplicate a value already contained
in the table. Without an index on the column(s), the DBMS would have to sequentially
search through every row of the table to check the constraint. With an index, the DBMS can
simply use the index to find a row (if it exists) with the value in question, which is a much
faster operation than a sequential search.

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 337
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 337

In the sample database, these columns are good candidates for additional indexes:

• The COMPANY column in the CUSTOMERS table should be indexed if customer data
is often retrieved by company name.

• The NAME column in the SALESREPS table should be indexed if data about
salespeople is often retrieved by salesperson name.

• The REP column in the ORDERS table should be indexed if orders are frequently
retrieved based on the salesperson who took them.

• The CUST column in the ORDERS table should similarly be indexed if orders are
frequently retrieved based on the customer who placed them.

• The MFR and PRODUCT columns, together, in the ORDERS table should be indexed if
orders are frequently retrieved based on the product ordered.

The SQL standard doesn’t mention indexes or how to create them. It treats database
indexes as an implementation detail, which is outside of the core, standardized SQL.
However, the use of indexes is essential to achieve adequate performance in any sizeable
enterprise-class database.

In practice, most popular DBMS brands (including Oracle, Microsoft SQL Server, MySQL,
Informix, Sybase, and DB2) support indexes through some form of the CREATE INDEX
statement, shown in Figure 13-7. The statement assigns a name to the index and specifies the
table for which the index is created. The statement also specifies the column(s) to be indexed
and whether they should be indexed in ascending or descending order. The DB2 version of
the CREATE INDEX statement, shown in Figure 13-7, is the most straightforward. Its only
option is the keyword UNIQUE, which is used to specify that the combination of columns
being indexed must contain a unique value for every row of the table.

The following is an example of a CREATE INDEX statement that builds an index for the
ORDERS table based on the MFR and PRODUCT columns and that requires combinations of
columns to have a unique value:

Create a unique index for the OFFICES table.

CREATE UNIQUE INDEX OFC_MGR_IDX
 ON OFFICES (MGR);

FIGURE 13-7 Basic CREATE INDEX statement syntax diagram

ASC

DESC

INDEX index-name ON table-name

column-name

CREATE

UNIQUE

()

,

 338 P a r t I V : D a t a b a s e S t r u c t u r e 338 P a r t I V : D a t a b a s e S t r u c t u r e

Create an index for the ORDERS table.

CREATE INDEX ORD_PROD_IDX
 ON ORDERS (MFR, PRODUCT);

In most major DBMS products, the CREATE INDEX statement includes additional
DBMS-specific clauses that specify the disk location for the index and for performance-
tuning parameters. Typical performance parameters include the size of the index pages, the
percentage of free space that the index should allow for new rows, the type of index to be
created, whether it should be clustered (an arrangement that places the table’s physical data
rows on the disk medium in the same sequence as the index), and so on. These options
make the CREATE INDEX statement quite DBMS-specific in actual use.

Some DBMS products support two or more different types of indexes, which are
optimized for different types of database access. For example, a B-tree index uses a tree
structure of index entries and index blocks (groups of index entries) to organize the data
values that it contains into ascending or descending order. This type of index, which is the
default type in nearly all DBMS products, provides efficient searching for a single value or
for a range of values, such as the search required for an inequality comparison operator or a
range test (BETWEEN) operation.

A different type of index, a hash index, uses a randomizing technique to place all of the
possible data values into a moderate number of buckets within the index. For example, if
there are 10 million possible data values, an index with 500 hash buckets might be
appropriate. Since a given data value is always placed into the same bucket, the DBMS can
search for that value simply by locating the appropriate bucket and searching within it.
With 500 buckets, the number of items to be searched is reduced, on average, by a factor of
500. This makes hash indexes very fast when searching for an exact match of a data value.
But the assignment of values to buckets does not preserve the order of data values, so a
hash index cannot be used for inequality or range searches.

Other types of indexes are appropriate for other specific DBMS situations, including

• T-tree index A variation of the B-tree index that is optimized for in-memory
databases

• Bitmap index Useful when there is a relatively small number of possible data values

• Index-organized table A relatively new option that stores the entire table in the
index. This is useful for tables that have few columns other than the primary key,
such as code lookup tables that typically have only a code (such as a department
code) and a description (such as a department name).

When a DBMS supports multiple index types, the CREATE INDEX statement not only
defines and creates the index, but also defines its type.

If you create an index for a table and later decide that it is not needed, the DROP INDEX
statement removes the index from the database. The statement removes the index created in
the previous example:

Drop the index created earlier.

DROP INDEX ORD_PROD_IDX;

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 339
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 339

Managing Other Database Objects
The CREATE, DROP, and ALTER verbs form the cornerstone of the SQL Data Definition
Language. Statements based on these verbs are used in all SQL implementations to
manipulate tables, indexes, and views (described in Chapter 14). Most of the popular SQL-
based DBMS products also use these verbs to form additional DDL statements that create,
destroy, and modify other database objects unique to that particular brand of DBMS.

The Sybase DBMS, for example, pioneered the use of triggers and stored procedures,
which are treated as objects within a SQL database, along with its tables, assertions, indexes,
and other structures. Sybase added the CREATE TRIGGER and CREATE PROCEDURE
statements to its SQL dialect to define these new database structures, and added the
corresponding DROP statements to delete them when no longer needed. As these features
became popular, other DBMS products added the capabilities, along with their own variants
of the CREATE TRIGGER and CREATE PROCEDURE statements.

The common conventions across DBMS brands are (a) the use of the CREATE/ALTER/
DROP verbs, (b) the next word in the statement is the type of object being managed, and
(c) the third word is the name of the object, which must obey SQL naming conventions.
Beyond the first three words, the statements become very DBMS-specific and nonstandard.
Nonetheless, this commonality gives a uniform feel to the various SQL dialects. At the very
least, it tells you where to look in the reference manual for a description of a new capability.
If you encounter a new SQL-based DBMS and know that it supports an object known as a
BLOB, the odds are that it uses CREATE BLOB, DROP BLOB, and ALTER BLOB statements.
Table 13-1 shows how some of the popular SQL products use the CREATE, DROP, and ALTER
verbs in their expanded DDL. The SQL standard adopts this same convention to deal with
the creation, destruction, and modification of all objects in a SQL database.

SQL DDL Statements Managed Object

Supported by almost all DBMS brands

CREATE/ALTER/DROP TABLE Table

CREATE/ALTER/DROP VIEW View

CREATE/ALTER/DROP INDEX Index

Specified by the ANSI/ISO SQL standard

CREATE/DROP ASSERTION Schemawide check constraint

CREATE/DROP CHARACTER SET Extended character set

CREATE/DROP COLLATION Sorting sequence for character set

CREATE/ALTER/DROP DOMAIN Specification of valid data values

CREATE/DROP SCHEMA Database schema

CREATE/DROP TRANSLATION Conversion between character sets

TABLE 13-1 DDL Statements in Popular SQL-Based Products

 340 P a r t I V : D a t a b a s e S t r u c t u r e 340 P a r t I V : D a t a b a s e S t r u c t u r e

SQL DDL Statements Managed Object

Supported by DB2

CREATE/DROP ALIAS Alias for a table or view

CREATE/ALTER/DROP BUFFERPOOL Collection of I/O buffers used by DB2

CREATE/DROP DISTINCT TYPE Distinct user-defined data type

CREATE/DROP FUNCTION User-defined function

CREATE/ALTER/DROP NODEGROUP Group of database partitions or nodes

DROP PACKAGE DB2 program access module

CREATE/DROP PROCEDURE User-defined DB2 stored procedure

CREATE/DROP SCHEMA Database schema

CREATE/ALTER/DROP TABLESPACE Tablespace (storage area for DB2 data)

CREATE/DROP TRIGGER Database trigger

Supported by Informix

CREATE/DROP CAST Cast for converting data types

CREATE/DROP DATABASE Named Informix database

CREATE/DROP DISTINCT TYPE Distinct user-defined data type

CREATE/DROP FUNCTION User-defined function

CREATE/DROP OPAQUE TYPE User-defined opaque data type

CREATE/DROP OPCLASS User-defined disk storage access method

CREATE/DROP PROCEDURE User-defined Informix stored procedure

CREATE/DROP ROLE User role within the database

CREATE/DROP ROUTINE User-defined Informix stored procedure

CREATE/DROP ROW TYPE Named row type (object extension)

CREATE SCHEMA Database schema

CREATE/DROP SYNONYM Synonym (alias) for table or view

CREATE/DROP TRIGGER Database trigger

Supported by Microsoft SQL Server

CREATE/ALTER/DROP DATABASE Database

CREATE/DROP DEFAULT Default column value (deprecated as of SQL
Server 2005)

CREATE/ALTER/DROP FULLTEXT CATALOG SQL Server text search catalog

CREATE/ALTER/DROP FULLTEXT INDEX SQL Server text search index

CREATE/ALTER/DROP FUNCTION SQL Server function

CREATE/ALTER/DROP LOGIN SQL Server login

TABLE 13-1 DDL Statements in Popular SQL-Based Products (continued)

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 341
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 341

SQL DDL Statements Managed Object

CREATE/ALTER/DROP PROCEDURE SQL Server stored procedure

CREATE/ALTER/DROP ROLE Role

CREATE/DROP RULE Column integrity rule

CREATE SCHEMA Database schema

CREATE/DROP SYNONYM Synonym (alias)

CREATE/ALTER/DROP TRIGGER Stored trigger

CREATE/DROP TYPE User-defined data type

CREATE/ALTER/DROP USER SQL Server user account

CREATE/ALTER/DROP XML Schema Collection XML Schema

Supported by Oracle

CREATE/DROP CLUSTER Cluster of tables for performance tuning

CREATE/ALTER/DROP DATABASE Named Oracle database

CREATE/DROP DATABASE LINK Network link for remote table access

CREATE/DROP DIRECTORY O/S directory for large object storage

CREATE/ALTER/DROP FUNCTION User-defined function

CREATE/DROP LIBRARY External functions callable from PL/SQL

CREATE/ALTER/DROP MATERIALIZED VIEW View that physically stores the results of a query

CREATE/ALTER/DROP PACKAGE Group of sharable PL/SQL procedures

CREATE/DROP PACKAGE BODY Contents of a package

CREATE/ALTER/DROP PROCEDURE User-defined Oracle stored procedure

CREATE/ALTER/DROP PROFILE Limits on database resource usage

CREATE/ALTER/DROP ROLE User role within the database

CREATE/ALTER/DROP ROLLBACK SEGMENT Storage area used for database recovery

CREATE SCHEMA Database schema

CREATE/ALTER/DROP SEQUENCE User-defined value sequence

CREATE/ALTER/DROP SNAPSHOT Table of read-only query results

CREATE/DROP SYNONYM Synonym (alias) for table or view

CREATE/ALTER/DROP TABLESPACE Tablespace (storage area for Oracle data)

CREATE/ALTER/DROP TRIGGER Database trigger

CREATE/DROP TYPE User-defined abstract data type

CREATE/DROP TYPE BODY Methods for an abstract data type

CREATE/ALTER/DROP USER Oracle user account

TABLE 13-1 DDL Statements in Popular SQL-Based Products (continued)

 342 P a r t I V : D a t a b a s e S t r u c t u r e 342 P a r t I V : D a t a b a s e S t r u c t u r e

Database Structure
The SQL1 standard specified a simple structure for the contents of a database, shown in
Figure 13-8. Each user of the database has a collection of tables owned by that user. Virtually
all major DBMS products support this scheme, although some (particularly those focused
on special-purpose or embedded applications or personal computer usage) do not support
the concept of table ownership. In these systems, all of the tables in a database are part of
one large collection.

Although different brands of SQL-based DBMSs provide the same structure within a single
database, there is wide variation in how they organize and structure the various databases on
a particular computer system. Some brands assume a single systemwide database that stores
all of the data on that system. Other DBMS brands support multiple databases on a single
computer, with each database identified by name. Still other DBMS brands support multiple
databases within the context of the computer’s directory system.

These variations don’t change the way you use SQL to access the data within a database.
However, they do affect the way you organize your data—for example, do you mix order
processing and accounting data in one database, or do you divide it into two databases?
They also affect the way you initially gain access to the database—for example, if there are
multiple databases, you need to tell the DBMS or client application which one you want to
use. To illustrate how various DBMS brands deal with these issues, suppose the sample
database were expanded to support a payroll and an accounting application, in addition to
the order-processing tasks it now supports.

SQL DDL Statements Managed Object

Supported by Sybase

CREATE/ALTER/DROP DATABASE Database

CREATE/DROP DEFAULT Default column value

CREATE EXISTING TABLE Local copy of existing remote table

CREATE/DROP PROCEDURE Sybase stored procedure

CREATE/ALTER/DROP ROLE User role within the database

CREATE/DROP RULE Column integrity rule

CREATE SCHEMA Database schema

CREATE/DROP TRIGGER Stored trigger

Supported by MySQL

CREATE/ALTER/DROP DATABASE Database

CREATE/ALTER/DROP FUNCTION MySQL function

CREATE/ALTER/DROP PROCEDURE MySQL stored procedure

CREATE/DROP TRIGGER Stored trigger

CREATE/ALTER/DROP SCHEMA Database schema

CREATE/DROP USER MySQL user account

TABLE 13-1 DDL Statements in Popular SQL-Based Products (continued)

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 343
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 343

Single-Database Architecture
Figure 13-9 shows a single-database architecture where the DBMS supports one systemwide
database. Mainframe and minicomputer databases (such as the mainframe versions of DB2)
have historically tended to use this approach. (Note that the mainframe versions of DB2 are
an entirely different product than DB2 UDB, which runs on Linux, Unix, and Windows.)
Order processing, accounting, and payroll data are all stored in tables within the database.
The major tables for each application are gathered together and owned by a single user,
who is probably the person in charge of that application on this computer.

An advantage of this architecture is that the tables in the various applications can easily
reference one another. The TIMECARDS table of the payroll application, for example, can
contain a foreign key that references the OFFICES table, and the applications can use that
relationship to calculate commissions. With proper permission, users can run queries that
combine data from the various applications.

FIGURE 13-8 SQL1 organization of a database

Database

Sam’s tablesJoe’s tables Mary’s tables

OFFICES PRODUCTS

ORDERSPETS

PETS

PEOPLE

FRIENDS

BIRTHDAYS

FIGURE 13-9 A single-database architecture

Single, Systemwide Database

George’s tablesJoe’s tables Mary’s tables

OFFICES

PRODUCTS

ORDERS
WAGES

JOURNAL

ACCOUNTS TIMECARDS

 344 P a r t I V : D a t a b a s e S t r u c t u r e 344 P a r t I V : D a t a b a s e S t r u c t u r e

A disadvantage of this architecture is that the database will grow huge over time as
more and more applications are added to it. A mainframe DB2 database with several
thousand tables is common. The problems of managing a database of that size—performing
backups, recovering data, analyzing performance, and so on—usually require a full-time
database administrator.

In the single-database architecture, gaining access to the database is very simple—
there’s only one database, so no choices need to be made. In fact, in this architecture, the
database is usually associated with a single running copy of the DBMS software, so in a
very real sense, the user is connecting to the DBMS. Mainframe DB2 installations frequently
do run two separate databases, one for production work and one for testing. Fundamentally,
however, all production data is collected into a single database.

Oracle uses a single database architecture in that each database is associated with a
single copy of the DBMS software. Typically Oracle databases are organized by application
or major function, and thus multiple Oracle databases are often running on a single host
computer. Oracle provides a CONNECT command that provides the combination of user
login and an identifier of the database with which the user wishes to connect. There are
several methods for identifying and locating the database during the connection process,
and under most circumstances the user does not have to know where the database is
located on the network.

Multidatabase Architecture
Figure 13-10 shows a multidatabase architecture where each database is assigned a unique
name. Sybase, Microsoft SQL Server, MySQL, Ingres, and many others use this scheme. As
shown in the figure, each of the databases in this architecture is usually dedicated to a
particular application. When you add a new application, you will probably create a new
database.

Note that we have used individual user names as owners of sets of tables for illustration
purposes; however, in production commercial databases, the owners of the tables would
most likely be database accounts set up by the DBA for applications to use. In essence, the
databases would be owned by an application system such as payroll or order entry instead
of an individual.

The main advantage of the multidatabase architecture over the single-database architecture
is that it divides the data management tasks into smaller, more manageable pieces. Each
person responsible for an application can now be the database administrator of his or her own
database, with less worry about overall coordination. When it’s time to add a new application,
it can be developed in its own database, without disturbing the existing databases. Users and
programmers are also more likely to remember the overall structure of their own databases.

The main disadvantage of the multidatabase architecture is that the individual databases
may become islands of information, unconnected to one another. Typically, a table in one
database cannot contain a foreign key reference to a table in a different database. Often, the
DBMS does not support queries across database boundaries, making it impossible to relate
data from two applications. If cross-database queries are supported, they may impose
substantial overhead or require the purchase of additional distributed DBMS software from
the DBMS vendor.

If a DBMS uses a multidatabase architecture and supports queries across databases, it
must extend the SQL table- and column-naming conventions. A qualified table name must

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 345
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 345

specify not only the owner of the table, but also which database contains the table. Typically,
the DBMS extends the dot notation for table names by prefixing the database name to the
owner name, separated by a period (.). For example, in a Sybase or SQL Server database,
this table reference:

OP.JOE.OFFICES

FIGURE 13-10
A multidatabase
architecture

Joe’s tables

OFFICES

PRODUCTS

ORDERS

Mary’s tables

JOURNAL

ACCOUNTS

George’s tables

WAGES

TIMECARDS

PAYROLL database

ACCTG database

OP database

 346 P a r t I V : D a t a b a s e S t r u c t u r e 346 P a r t I V : D a t a b a s e S t r u c t u r e

refers to the OFFICES table owned by the user JOE in the order-processing database named
OP, and the following query joins the SALESREPS table in the payroll database with that
OFFICES table:

SELECT OP.JOE.OFFICES.CITY, PAYROLL.GEORGE.SALESREPS.NAME
 FROM OP.JOE.OFFICES, PAYROLL.GEORGE.SALESREPS
 WHERE OP.JOE.OFFICES.MGR = PAYROLL.GEORGE.SALESREPS.EMPL_NUM;

Fortunately, such cross-database queries are the exception rather than the rule, and
default database and user names can normally be used.

With a multidatabase architecture, gaining access to a database becomes slightly more
complex because you must tell the DBMS which database you want to use. The DBMS’
interactive SQL program will often display a list of available databases or ask you to enter the
database name along with your user name and password to gain access. For programmatic
access, the DBMS generally extends the embedded SQL with a statement that connects the
program to a particular database. The Ingres form for connecting to the database named OP is

CONNECT 'OP'

For Sybase, Microsoft SQL Server, and MySQL the parallel statement is

USE 'OP'

Multilocation Architecture
Figure 13-11 shows a multilocation architecture that supports multiple databases and uses the
computer system’s directory structure to organize them. Several of the earlier minicomputer
databases (including Rdb/VMS and Informix) used this scheme for supporting multiple
databases. As with the multidatabase architecture, each application is typically assigned to its
own database. As Figure 13-11 shows, each database has a name, but it’s possible for two
different databases in two different directories to have the same name.

The major advantage of the multilocation architecture is flexibility. It is especially
appropriate in applications such as engineering and design, where many sophisticated
users of the computer system may all want to use several databases to structure their own
information. The disadvantages of the multilocation architecture are the same as those of
the multidatabase architecture. In addition, the DBMS typically doesn’t know about all of
the databases that have been created, which may be spread throughout the system’s
directory structure. There is no master database that keeps track of all the databases, which
makes centralized database administration very difficult.

The multilocation architecture makes gaining access to a database more complex once
again, because both the name of the database and its location in the directory hierarchy
must be specified. The VAX SQL syntax for gaining access to an Rdb/VMS database is the
DECLARE DATABASE statement. For example, this DECLARE DATABASE statement
establishes a connection to the database named OP in the VAX/VMS directory named
SYS$ROOT:[DEVELOPMENT.TEST]:

DECLARE DATABASE
 FILENAME 'SYS$ROOT:[DEVELOPMENT.TEST]OP';

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 347
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 347

If the database is in the user’s current directory (which is often the case), the statement
simplifies to:

DECLARE DATABASE
 FILENAME 'OP';

Some of the DBMS brands that use this scheme allow you to have access to several
databases concurrently, even if they don’t support queries across database boundaries. Again,
the most common technique used to distinguish among the multiple databases is to use a
superqualified table name. Since two databases in two different directories can have the same
name, it’s also necessary to introduce a database alias to eliminate ambiguity. These VAX SQL
statements open two different Rdb/VMS databases that happen to have the same name:

DECLARE DATABASE OP1
 FILENAME 'SYS$ROOT:[PRODUCTION\]OP'
DECLARE DATABASE OP2
 FILENAME 'SYS$ROOT:[DEVELOPMENT.TEST]OP';

The statements assign the aliases OP1 and OP2 to the two databases, and these aliases
are used to qualify table names in subsequent VAX SQL statements.

As this discussion shows, there can be a tremendous variety in the way various DBMS
brands organize their databases and provide access to them. This area of SQL is one of the
most nonstandard, and yet it is often the first one that a user encounters when trying to access
a database for the first time. The inconsistencies also make it impossible to transparently move
programs developed for one DBMS to another, although the conversion process is usually
tedious rather than complex.

FIGURE 13-11 A multilocation architecture

Top-level directory

DEVELOPMENT directory

TEST directory

PRODUCTION directory

ACCTG
database

OP
database

ACCTG
database

PAYROLL
database

OP
database

PAYROLL
database

 348 P a r t I V : D a t a b a s e S t r u c t u r e 348 P a r t I V : D a t a b a s e S t r u c t u r e

Databases on Multiple Servers
With the rise of database servers and local area networks, the notion of database location
embodied in the multilocation architecture is naturally extended to the notion of a physical
database server. In practice, most DBMS products today appear to be converging on a
multidatabase architecture implemented within a physical server. At the highest level, a
database is associated with a named server on the network. Within the server, there can be
multiple named databases. The mapping of server names to physical server locations is
handled by the networking software. The mapping of database names to physical files or
file systems on a server is handled by the DBMS software.

Database Structure and the ANSI/ISO Standard
The ANSI/ISO SQL1 standard made a very strong distinction between the SQL Data
Manipulation Language and Data Definition Language, defining them effectively as two
separate languages. The standard did not require that the DDL statements be accepted by
the DBMS during its normal operation. One of the advantages of this separation of the DML
and DDL was that the standard permitted a static database structure like that used by older
hierarchical and network DBMS products, as shown in Figure 13-12.

The database structure specified by the SQL1 standard was fairly straightforward.
Collections of tables were defined in a database schema, associated with a specific user. The
simple database shown in Figure 13-12 has two schemas. One schema is associated with
(the common terminology is owned by) a user named Joe, and the other is owned by Mary.
Joe’s schema contains two tables, named PEOPLE and PLACES. Mary’s schema also contains
two tables, named THINGS and PLACES. Although the database contains two tables named
PLACES, it’s possible to tell them apart because they have different owners.

Starting with SQL2, the SQL standard significantly extends the notion of database definition
and database schemas. As previously noted, the SQL standard now requires that data definition
statements be executable by an interactive SQL user or by a SQL program. With this capability,
changes to the database structure can be made at any time, not just when the database is
created. In addition, the SQL1 concepts of schemas and users (officially called authorization-ids
in the standard) has been significantly expanded. Figure 13-13 shows the high-level database
structure specified by current versions of the SQL standard.

The highest-level database structure described by the SQL standard is the SQL-environment.
This is a conceptual collection of the database entities associated with a DBMS implementation
that conforms to the SQL standard. The standard doesn’t specify how a SQL-environment is
created; that depends on the particular DBMS implementation. The standard defines these
components of a SQL-environment:

• DBMS software that conforms to the SQL standard.

• Named users (called authorization-ids in the standard) who have the privileges to
perform specific actions on the data and structures within the database.

• Program modules that are used to access the database. The SQL standard specifies
the actual execution of SQL statements in terms of a module language, which in
practice is not used by most major commercial SQL products. No matter how the
SQL programs are actually created, however, the standard says that, conceptually,
the SQL-environment includes the program’s database access code.

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 349
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 349

• Catalogs that describe the structure of the database. SQL1-style database schemas
are contained within these catalogs.

• Database data, which is managed by the DBMS software, accessed by the users
through the programs, and whose structure is described in the catalogs. Although
the standard conceptually describes the data as outside of the catalog structure, it’s
common to think of data as being contained in a table that is in a schema, which is
in a catalog.

FIGURE 13-12
A DBMS with
static DDL

Phase I: Build database Phase II: Use database

Database schema Application
program

DDL
statements Application

program

Application
program

DML
statements

Database
builder

program
DBMS

Database Database

Joe’s tables Mary’s tables Joe’s tables Mary’s tables

PEOPLE THINGS

PLACESPLACES

PEOPLE THINGS

PLACESPLACES

 350 P a r t I V : D a t a b a s e S t r u c t u r e 350 P a r t I V : D a t a b a s e S t r u c t u r e

Catalogs
Within a SQL-environment, the database structure is defined by one or more named
catalogs. The word “catalog” in this case is used in the same way that it has historically
been used on mainframe systems—to describe a collection of objects (usually files).
On minicomputer and personal computer systems, the concept is roughly analogous to
a directory. In the case of a SQL standard database, the catalog is a collection of named
database schemas. The catalog also contains a set of system tables (confusingly, often called
the system catalog) that describes the structure of the database. The catalog is thus a self-
describing entity within the database. This characteristic of catalogs (which is provided by
all major SQL products) is described in detail in Chapter 16.

The SQL standard describes the role of the catalog and specifies that a SQL-environment
may contain one or more (actually zero or more) catalogs, each of which must have a
distinct name. It explicitly says that the mechanism for creating and destroying catalogs is
implementation-defined. The standard also says that the extent to which a DBMS allows
access across catalogs is implementation defined. Specifically, whether a single SQL
statement can access data from multiple catalogs, whether a single SQL transaction can span
multiple catalogs, or even whether a single user session with the DBMS can cross catalog
boundaries are all implementation-defined characteristics.

The standard says that when a user or program first establishes contact with a
SQL-environment, one of its catalogs is identified as the default catalog for the session.
(Again, the way in which this catalog is selected is implementation-defined.) During the
course of a session, the default catalog can be changed with the SET CATALOG statement.

FIGURE 13-13 SQL standard database structure

Catalog ABC

Schema X

Schema Y

Catalog DEF

Schema X

Schema Z

DBMS Software

Users

Program modules

• • •

• • •

Joe Mary

Bill

Tables

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 351
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 351

Schemas
The schema is the key high-level container for objects in a SQL database structure. A schema
is a named entity within the database and includes the definitions for the following:

• Tables Along with their associated structures (columns, primary and foreign keys,
table constraints, and so on), tables remain the basic building blocks of a database in
a schema.

• Views These are virtual tables, derived from the actual tables defined in the
schema, as described in Chapter 14.

• Domains These function like extended data types for defining columns within the
tables of the schema, as described in Chapter 11.

• Assertions These database integrity constraints restrict the data relationships
across tables within the schema, as described earlier in the section “Assertions.”

• Privileges Database privileges control the capabilities that are given to various
users to access and update data in the database and to modify the database
structure. The SQL security scheme created by these privileges is described in
Chapter 14.

• Character sets Databases support international languages and manage the
representation of non-Roman characters in those languages (for example, the
diacritical accent marks used by many European languages or the 2-byte
representations of the word-symbols used in many Asian languages) through
character sets defined by the schema.

• Collations These work hand-in-hand with character sets, defining the sorting
sequence for a character set.

• Translations These control how text data is converted from one character set to
another and how comparisons are made of text data from different character sets.

A schema is created with the CREATE SCHEMA statement, shown in Figure 13-14.
Here is a simple schema definition for the basic two-table schema for Joe shown in
Figure 13-12:

CREATE SCHEMA JSCHEMA AUTHORIZATION JOE
 CREATE TABLE PEOPLE
 (NAME VARCHAR(30),
 AGE INTEGER)
 CREATE TABLE PLACES
 (CITY VARCHAR(30),
 STATE VARCHAR(30))
 GRANT ALL PRIVILEGES
 ON PEOPLE
 TO PUBLIC
 GRANT SELECT
 ON PLACES
 TO MARY;

 352 P a r t I V : D a t a b a s e S t r u c t u r e 352 P a r t I V : D a t a b a s e S t r u c t u r e

The schema defines the two tables and gives certain other users permission to access
them. It doesn’t define any additional structures, such as views or assertions. Note that the
CREATE TABLE statements within the CREATE SCHEMA statement are legitimate SQL
statements in their own right. If you type them into an interactive SQL program, the DBMS
will create the specified tables in the current default schema for your interactive SQL session,
according to the standard.

Note that the schema structure is related to, but independent of, the user-id structure.
A given user can be the owner of several different named schemas. For backward compatibility
with the SQL1 standard, however, the current SQL standard allows you to create a schema with:

• Both a schema name and a user-id (as in the last example).

• Only a schema name. In this case, the user who executes the CREATE SCHEMA
statement automatically becomes the owner of the schema.

• Only a user-id. In this case, the schema name becomes the user-id. This conforms to
the SQL1 standard, and to the practice of many commercial DBMS products where
there was conceptually one schema per user.

A schema that is no longer needed can be dropped using the DROP SCHEMA statement,
shown in Figure 13-15. The statement requires that you specify one of the drop rules
previously described for dropping columns—either CASCADE or RESTRICT. If you specify
CASCADE, then all of the structures within the schema definition (tables, views, assertions,

FIGURE 13-14 CREATE SCHEMA statement syntax diagram

CREATE SCHEMA schema-name

DEFAULT CHARACTER SET charset-name

CREATE TABLE remainder of table definition

CREATE VIEW remainder of view definition

CREATE DOMAIN remainder of domain definition

CREATE ASSERTION remainder of assertion definition

CREATE CHARACTER SET remainder of character set definition

CREATE COLLATION remainder of collation definition

CREATE TRANSLATION remainder of translation definition
GRANT privilages remainder of privilege definition

AUTHORIZATION user-name

AUTHORIZATION user-name

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 353
PART IV

 C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 353

and so on) are automatically dropped. If you specify RESTRICT, the statement will not
succeed if any of these structures remains within the schema. Effectively, the RESTRICT rule
forces you to first drop the individual tables, views, and other structures within the schema
before dropping the schema itself. This is a protection against accidentally dropping a
schema that contains data or database definitions of value. No ALTER SCHEMA table is
specified by the SQL standard. Instead, you can individually alter the definitions of the
structures within a schema, using statements like ALTER TABLE.

At any time while a user or program is accessing a database, one of its schemas is
identified as the default schema. Any DDL statements that you execute to create, drop, or
alter schema structures implicitly apply to this schema. In addition, all tables named in SQL
data manipulation statements are assumed to be tables defined within this default schema.
The schema name implicitly qualifies the names of all tables used in the SQL statements. As
noted in Chapter 5, you can use a qualified table name to refer to tables from other schemas.
According to the SQL standard, the name used to qualify the table name is the schema
name. For example, if the sample database were created as part of a schema named SALES,
the qualified table name for the OFFICES table would be

SALES.OFFICES

If a schema is created with just a user-id as the schema name, then the table qualification
scheme becomes exactly the simple one described in Chapter 5. The schema name is the
user name, and the qualified table name specifies this name before the dot.

The CREATE SCHEMA statement has one other nonobvious advantage. You may recall
from the earlier discussion of the CREATE TABLE statement that you could not easily create
a referential cycle (two or more tables that refer to one another using foreign key/primary
key relationships). Instead, one of the tables had to be created first without its foreign key
definition, and then the foreign key definition had to be added (with the ALTER TABLE
statement) after the other table(s) had been created. The CREATE SCHEMA statement avoids
this problem, since the DBMS does not check the referential integrity constraints specified
by the schema until all of the tables it defines have been created. In practice, the CREATE
SCHEMA statement is generally used to create a new set of interrelated tables for the first
time. Subsequently, individual tables are added, modified, or dropped using the CREATE/
ALTER/DROP TABLE capabilities.

Many of the major DBMS brands have moved to adopt some form of the CREATE
SCHEMA statement, although there are significant variations across the brands. Oracle’s
CREATE SCHEMA statement allows you to create tables, views, and privileges, but not the
other SQL structures, and it requires that the schema name and the user name be one and
the same. Informix Universal Server follows a similar pattern, requiring a user-id as the
schema name and extending the objects within the schema to include indexes, triggers, and
synonyms. Sybase provides similar capabilities. In each case, the offered capabilities
conform to the SQL entry-level implementation requirements.

FIGURE 13-15 DROP SCHEMA statement syntax diagram

CASCADE

RESTRICTDROP SCHEMA schema-name

 354 P a r t I V : D a t a b a s e S t r u c t u r e

Summary
This chapter described the SQL Data Definition Language features that define and change
the structure of a database:

• The CREATE TABLE statement creates a table and defines its columns. It can also be
used to define primary key, foreign key (referential), and CHECK constraints as the
table is created.

• The DROP TABLE statement removes a previously created table from the database.

• The ALTER TABLE statement can be used to add, change, or remove a column or a
constraint on an existing table.

• The CREATE INDEX and DROP INDEX statements define indexes, which speed
database queries but add overhead to database updates.

• Most DBMS brands support other CREATE, DROP, and ALTER statements used with
DBMS-specific objects.

• The SQL standard specifies a database schema containing a collection of tables, and
the database schema is manipulated with CREATE SCHEMA and DROP SCHEMA
statements.

• Various DBMS brands use very different approaches to organizing the one or more
databases that they manage, and these differences affect the way you design your
databases and gain access to them.

14
Views

The tables of a database define the structure and organization of its data. However,
SQL also lets you look at the stored data in other ways by defining alternative views
of the data. A view is a SQL query that is permanently stored in the database and

assigned a name. The results of the stored query are visible through the view, and SQL lets
you access these query results as if they were, in fact, a real table in the database.

Views are an important part of SQL for several reasons:

• Views let you tailor the appearance of a database so that different users see it from
different perspectives.

• Views let you restrict access to data, allowing different users to see only certain rows
and/or certain columns of a table.

• Views simplify database access by presenting the structure of the stored data in the
way that is most natural for each user, including hiding complexities such as joins.

This chapter describes how to create views and how to use views to simplify processing
and enhance the security of a database.

What Is a View?
A view is a virtual table in the database whose contents are defined by a query, as shown in
Figure 14-1. To the database user, the view appears just like a real table, with a set of named
columns and rows of data. But unlike a real table, a view does not exist in the database as a
stored set of data values. Instead, the rows and columns of data visible through the view are
the query results produced by the query that defines the view. SQL creates the illusion of
the view by giving the view a name like a table name and storing the definition of the view
in the database.

The view shown in Figure 14-1 is typical. It has been given the name REPDATA and is
defined by this two-table query:

SELECT NAME, CITY, REGION, QUOTA, SALESREPS.SALES
 FROM SALESREPS, OFFICES
 WHERE REP_OFFICE = OFFICE;

355

CHAPTER

 356 P a r t I V : D a t a b a s e S t r u c t u r e 356 P a r t I V : D a t a b a s e S t r u c t u r e

The data in the view comes from the SALESREPS and OFFICES tables. These tables are
called the source tables for the view because they are the source of the data that is visible
through the view. This view contains one row of information for each salesperson, extended
with the name of the city and region where the salesperson works. As shown in the figure,
the view appears as a table, and its contents look just like the query results that you would
obtain if you actually were to run the query.

Once a view is defined, you can use it in a SELECT statement, just like a real table, as in
this query:

FIGURE 14-1 A typical view with two source tables

SALESREPS Table

105
109
102
106
104
101
110
108

EMPL_NUM

OFFICES Table

22
11
12
13
21

OFFICE

37
31
48
52
33
45
41
62

AGE

$350,000.00
$300,000.00
$350,000.00
$275,000.00
$200,000.00
$300,000.00

NULL
$350,000.00

QUOTA

$367,911.00
$392,725.00
$474,050.00
$299,912.00
$142,594.00
$305,673.00
$75,985.00
$361,865.00

SALES

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch

NAME

Denver
New York
Chicago
Atlanta
Los Angeles

CITY

Western
Eastern
Eastern
Eastern
Western

REGION

108
106
104
NULL
108

MGR

REPDATA View

Mary Jones
Sam Clark
Bob Smith
Paul Cruz
Dan Roberts
Bill Adams
Sue Smith
Larry Fitch
Nancy Angelli

NAME

New York
New York
Chicago
Chicago
Chicago
Atlanta
Los Angeles
Los Angeles
Denver

CITY

Eastern
Eastern
Eastern
Eastern
Eastern
Eastern
Western
Western
Western

REGION

$300,000.00
$275,000.00
$200,000.00
$275,000.00
$300,000.00
$350,000.00
$350,000.00
$350,000.00
$300,000.00

QUOTA

$392,725.00
$299,912.00
$142,594.00
$286,775.00
$305,673.00
$367,911.00
$474,050.00
$361,865.00
$186,042.00

SALES

 C h a p t e r 1 4 : V i e w s 357
PART IV

 C h a p t e r 1 4 : V i e w s 357

List the salespeople who are over quota, showing the name, city, and region for each salesperson.

SELECT NAME, CITY, REGION
 FROM REPDATA
 WHERE SALES > QUOTA;

NAME CITY REGION
------------ ------------ --------
Mary Jones New York Eastern
Sam Clark New York Eastern
Dan Roberts Chicago Eastern
Paul Cruz Chicago Eastern
Bill Adams Atlanta Eastern
Sue Smith Los Angeles Western
Larry Fitch Los Angeles Western

The name of the view, REPDATA, appears in the FROM clause just like a table name, and
the columns of the view are referenced in the SELECT statement just like the columns of a
real table. For some views, you can also use the INSERT, DELETE, and UPDATE statements
to modify the data visible through the view, as if it were a real table. Thus, for all practical
purposes, the view can be used in SQL statements as if it were a real table. However, it is
essential to understand the implications to the underlying tables before updating views.

How the DBMS Handles Views
When the DBMS encounters a reference to a view in a SQL statement, it finds the definition
of the view stored in the database. Then the DBMS translates the request that references
the view into an equivalent request against the source tables of the view and carries out
the equivalent request. In this way, the DBMS maintains the illusion of the view while
maintaining the integrity of the source tables.

For simple views, the DBMS may construct each row of the view on the fly, drawing the
data for the row from the source table(s). For more complex views, the DBMS must actually
materialize the view; that is, the DBMS must actually carry out the query that defines the
view and store its results in a temporary table. The DBMS fills your requests for view access
from this temporary table and discards the table when it is no longer needed. Regardless of
how the DBMS actually handles a particular view, the result is the same for the user—the
view can be referenced in SQL statements exactly as if it were a real table in the database.

Advantages of Views
Views provide a variety of benefits and can be useful in many different types of databases.
In a personal computer database, views are usually a convenience, defined to simplify
database requests. In a commercial database installation, views play a central role in
defining the structure of the database for its users and enforcing its security. Views provide
these major benefits:

• Security Each user can be given permission to access the database only through a
small set of views that contain the specific data the user is authorized to see, thus
restricting the user’s access to stored data.

• Query simplicity A view can draw data from several different tables and present it
as a single table, turning multitable queries into single-table queries against the view.

 358 P a r t I V : D a t a b a s e S t r u c t u r e 358 P a r t I V : D a t a b a s e S t r u c t u r e

• Structural simplicity Views can give a user a personalized view of the database
structure, presenting the database as a set of virtual tables that make sense for that user.

• Insulation from change A view can present a consistent, unchanged image of the
structure of the database, even if the underlying source tables are split, restructured,
or renamed. Note, however, that the view definition must be updated whenever
underlying tables or columns referenced by the view are renamed.

• Data integrity If data is accessed and entered through a view, the DBMS can
automatically check the data to ensure that it meets specified integrity constraints.

Disadvantages of Views
While views provide substantial advantages, there are also three major disadvantages to
using a view instead of a real table:

• Performance Views create the appearance of a table, but the DBMS must still
translate queries against the view into queries against the underlying source tables. If
the view is defined by a complex multitable query, then even a simple query against
the view becomes a complicated join, and it may take a long time to complete.
However, the issue isn’t because the query is in a view—any poorly constructed
query can present performance problems—the hazard is that the complexity is hidden
in the view, and thus users are not aware of how much work the query is performing.

• Manageability Like all database objects, views must be managed. If developers
and database users are allowed to freely create views without controls or standards,
the DBA’s job becomes that much more difficult. This is especially true when views
are created that reference other views, which in turn reference even more views. The
more layers between the base tables and the views, the more difficult it is to resolve
problems attributed to the views.

• Update restrictions When a user tries to update rows of a view, the DBMS must
translate the request into an update on rows of the underlying source tables. This is
possible for simple views, but more complex views cannot be updated; they are
read-only.

These disadvantages mean that you cannot indiscriminately define views and use them
instead of the source tables. Instead, you must in each case consider the advantages
provided by using a view and weigh them against the disadvantages.

Creating a View (CREATE VIEW)
The CREATE VIEW statement, shown in Figure 14-2, is used to create a view. The statement
assigns a name to the view and specifies the query that defines the view. To create the view
successfully, you must have permission to access all of the tables referenced in the query. In
some DBMSs (notably Oracle), you must also have permission to create views.

The CREATE VIEW statement can optionally assign a name to each column in the newly
created view. If a list of column names is specified, it must have the same number of items
as the number of columns produced by the query. Note that only the column names are

 C h a p t e r 1 4 : V i e w s 359
PART IV

 C h a p t e r 1 4 : V i e w s 359

specified; the data type, length, and other characteristics of each column are derived from
the definition of the columns in the source tables. If the list of column names is omitted
from the CREATE VIEW statement, each column in the view takes the name of the
corresponding column in the query. The list of column names must be specified if the query
produces two columns with identical names and in some DBMS products, if the query
includes calculated columns. While some DBMS products automatically assign column
names to calculated columns, the names are usually not very useful, so it’s a much better
practice to always assign column names to calculated columns.

Although all views are created in the same way, in practice, different types of views are
typically used for different purposes. The next few sections examine these types of views
and give examples of the CREATE VIEW statement.

Horizontal Views
A common use of views is to restrict a user’s access to only selected rows of a table. For
example, in the sample database, you may want to let a sales manager see only the
SALESREPS rows for salespeople in the manager’s own region. To accomplish this, you can
define two views, as follows:

Create a view showing Eastern region salespeople.

CREATE VIEW EASTREPS AS
 SELECT *
 FROM SALESREPS
 WHERE REP_OFFICE IN (11, 12, 13);

Create a view showing Western region salespeople.

CREATE VIEW WESTREPS AS
 SELECT *
 FROM SALESREPS
 WHERE REP_OFFICE IN (21, 22);

Now you can give each sales manager permission to access either the EASTREPS or the
WESTREPS view, denying them permission to access the other view and the SALESREPS
table itself. This effectively gives the sales manager a customized view of the SALESREPS
table, showing only salespeople in the appropriate region.

A view like EASTREPS or WESTREPS is often called a horizontal view. As shown in
Figure 14-3, a horizontal view slices the source table horizontally to create the view. All of
the columns of the source table participate in the view, but only some of its rows are visible
through the view. Horizontal views are appropriate when the source table contains data

FIGURE 14-2 The CREATE VIEW statement syntax diagram

CREATE VIEW view-name

()column-name

AS query

WITH
CASCADED

LOCAL

CHECK OPTION

,

 360 P a r t I V : D a t a b a s e S t r u c t u r e 360 P a r t I V : D a t a b a s e S t r u c t u r e

that relates to various organizations or users. They provide a private table for each user,
composed only of the rows needed by that user.

Here are some more examples of horizontal views:

Define a view containing only Eastern region offices.

CREATE VIEW EASTOFFICES AS
 SELECT *
 FROM OFFICES
 WHERE REGION = 'Eastern';

Define a view for Sue Smith (employee number 102) containing only orders placed by customers
assigned to her.

CREATE VIEW SUEORDERS AS
 SELECT *
 FROM ORDERS
 WHERE CUST IN (SELECT CUST_NUM
 FROM CUSTOMERS
 WHERE CUST_REP = 102);

Define a view showing only those customers who have more than $30,000 worth of orders currently
on the books.

CREATE VIEW BIGCUSTOMERS AS
 SELECT *
 FROM CUSTOMERS
 WHERE 30000.00 < (SELECT SUM(AMOUNT)
 FROM ORDERS
 WHERE CUST = CUST_NUM);

FIGURE 14-3 Two horizontal views of the SALESREPS table

EASTREPS View

105
109
106
104
101
103

EMPL_NUM

37
31
52
33
45
29

AGE

Bill Adams
Mary Jones
Sam Clark
Bob Smith
Dan Roberts
Paul Cruz

NAME

WESTREPS View

102
108
107

EMPL_NUM

48
62
49

AGE

Sue Smith
Larry Fitch
Nancy Angelli

NAME

SALESREPS Table

105
109
102
106
104
101
110
108
103
107

EMPL_NUM

37
31
48
52
33
45
41
62
29
49

AGE

$367,911.00
$392,725.00
$474,050.00
$299,912.00
$142,594.00
$305,673.00
$75,985.00

$361,865.00
$286,775.00
$186,042.00

SALES

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

NAME

 C h a p t e r 1 4 : V i e w s 361
PART IV

 C h a p t e r 1 4 : V i e w s 361

In each of these examples, the view is derived from a single source table. The view is
defined by a SELECT * query and therefore has exactly the same columns as the source
table. The WHERE clause determines which rows of the source table are visible in the view.

Vertical Views
Another common use of views is to restrict a user’s access to only certain columns of a table.
For example, in the sample database, the order-processing department may need access to
the employee number, name, and office assignment of each salesperson, because this
information may be needed to process an order correctly. However, there is no need for the
order-processing staff to see the salesperson’s year-to-date sales or quota. This selective
view of the SALESREPS table can be constructed with the following view:

Create a view showing selected salesperson information.

CREATE VIEW REPINFO AS
 SELECT EMPL_NUM, NAME, REP_OFFICE
 FROM SALESREPS;

By giving the order-processing staff access to this view and denying access to the
SALESREPS table itself, access to sensitive sales and quota data is effectively restricted.

A view like the REPINFO view is often called a vertical view. As shown in Figure 14-4, a
vertical view slices the source table vertically to create the view. Vertical views are
commonly found where the data stored in a table is used by various users or groups of
users. They provide a private virtual table for each user, composed only of the columns
needed by that user.

Here are some more examples of vertical views:

Define a view of the OFFICES table for the order-processing staff that includes the office’s city, office
number, and region.

CREATE VIEW OFFICEINFO AS
 SELECT OFFICE, CITY, REGION
 FROM OFFICES;

Define a view of the CUSTOMERS table that includes only customer names and their assignment to
salespeople.

CREATE VIEW CUSTINFO AS
 SELECT COMPANY, CUST_REP
 FROM CUSTOMERS;

In each of these examples, the view is derived from a single source table. The select list
in the view definition determines which columns of the source table are visible in the view.
Because these are vertical views, every row of the source table is represented in the view,
and the view definition does not include a WHERE clause.

Row/Column Subset Views
When you define a view, SQL does not restrict you to purely horizontal or vertical slices
of a table. In fact, the SQL does not include the notion of horizontal and vertical views.

 362 P a r t I V : D a t a b a s e S t r u c t u r e 362 P a r t I V : D a t a b a s e S t r u c t u r e

These concepts merely help you to visualize how the view presents the information from
the source table. It’s quite common to define a view that slices a source table in both the
horizontal and vertical dimensions, as in this example:

Define a view that contains the customer number, company name, and credit limit of all customers
assigned to Bill Adams (employee number 105).

CREATE VIEW BILLCUST AS
 SELECT CUST_NUM, COMPANY, CREDIT_LIMIT
 FROM CUSTOMERS
 WHERE CUST_REP = 105;

The data visible through this view is a row/column subset of the CUSTOMERS table.
Only the columns explicitly named in the select list of the view and the rows that meet the
search condition are visible through the view.

FIGURE 14-4 A vertical view of the SALESREPS table

EMPL_NUM NAME

Nancy Angelli

Bill Adams 37 13

AGE REP_OFFICE TITLE HIRE_DATE MANAGER QUOTA SALES

Sales Rep 2006-02-12 104 $350,000.00 $367,911.00

109

102

106

104

101

110

108

103

107

105

Mary Jones

Sue Smith

Bob Smith

Dan Roberts

Tom Snyder

Larry Fitch

Paul Cruz

Sam Clark

31

48

52

33

45

41

62

29

49

11

21

11

12

12

NULL

21

12

22

Sales Rep

Sales Rep

Sales Rep

Sales Rep

Sales Rep

Sales Rep

VP Sales

Sales Mgr

Sales Mgr

2007-10-12

2004-12-10

2006-06-14

2005-05-19

2004-10-20

2008-01-13

2007-10-12

2005-03-01

2006-11-14

106

108

NULL

106

104

101

106

104

108

$300,000.00

$350,000.00

$275,000.00

$200,000.00

$300,000.0 0

NULL

$350,000,00

$275,000.00

$300,000.00

$392,725.00

$474,050.00

$299,912.00

$142,594.0 0

$305,673.0 0

$75,985.00

$361,865.00

$286,775.00

$186,042.00

SALESREPS Table

REPINFO View
EMPL_NUM NAME

105 Bill Adams

REP_OFFICE

13

109

102

106

104

101

110

108

103

107

Mary Jones

Sue Smith

Sam Clark

Bob Smith

Dan Roberts

Tom Snyder

Larry Fitch

Paul Cruz

Nancy Angelli

11

21

11

12

12

NULL

21

12

22

 C h a p t e r 1 4 : V i e w s 363
PART IV

 C h a p t e r 1 4 : V i e w s 363

Grouped Views
The query specified in a view definition may include a GROUP BY clause. This type of view
is called a grouped view, because the data visible through the view is the result of a grouped
query. Grouped views perform the same function as grouped queries; they group related
rows of data and produce one row of query results for each group, summarizing the data in
that group. A grouped view makes these grouped query results into a virtual table, allowing
you to perform further queries on them.

Here is an example of a grouped view:

Define a view that contains summary order data for each salesperson.

CREATE VIEW ORD_BY_REP (WHO, HOW_MANY, TOTAL, LOW, HIGH, AVERAGE) AS
 SELECT REP, COUNT(*), SUM(AMOUNT), MIN(AMOUNT), MAX(AMOUNT),
 AVG(AMOUNT)
 FROM ORDERS
 GROUP BY REP;

As this example shows, the definition of a grouped view should always include a
column name list. The list assigns names to the columns in the grouped view, which are
derived from column functions such as SUM() and MIN(). It may also specify a modified
name for a grouping column. In this example, the REP column of the ORDERS table becomes
the WHO column in the ORD_BY_REP view.

Once this grouped view is defined, it can be used to simplify queries. For example, this
query generates a simple report that summarizes the orders for each salesperson:

Show the name, number of orders, total order amount, and average order size for each salesperson.

SELECT NAME, HOW_MANY, TOTAL, AVERAGE
 FROM SALESREPS, ORD_BY_REP
 WHERE WHO = EMPL_NUM
 ORDER BY TOTAL DESC;

NAME HOW_MANY TOTAL AVERAGE
-------------- --------- ----------- -----------
Larry Fitch 7 $58,633.00 $8,376.14
Bill Adams 5 $39,327.00 $7,865.40
Nancy Angelli 3 $34,432.00 $11,477.33
Sam Clark 2 $32,958.00 $16,479.00
Dan Roberts 3 $26,628.00 $8,876.00
Tom Snyder 2 $23,132.00 $11,566.00
Sue Smith 4 $22,776.00 $5,694.00
Mary Jones 2 $7,105.00 $3,552.50
Paul Cruz 2 $2,700.00 $1,350.00

Unlike a horizontal or vertical view, the rows in a grouped view do not have a one-to-
one correspondence with the rows in the source table. A grouped view is not just a filter on
its source table that screens out certain rows and columns. It is a summary of the source
tables; therefore, a substantial amount of DBMS processing may be required to maintain the
illusion of a virtual table for grouped views.

 364 P a r t I V : D a t a b a s e S t r u c t u r e 364 P a r t I V : D a t a b a s e S t r u c t u r e

Grouped views can be used in queries just like other, simpler views. A grouped view
cannot be updated, however. The reason should be obvious from the example. What would
it mean to update the average order size for salesrep number 105? Because each row in the
grouped view corresponds to a group of rows from the source table, and because the
columns in the grouped view generally contain calculated data, there is no way to translate
the update request into an update against the rows of the source table. Grouped views thus
function as read-only views, which can participate in queries but not in updates.

Grouped views can be used in queries that themselves group rows, accomplishing a
double grouping of rows that cannot be done with an ordinary query. Consider this example:

For each sales office, show the range of average order sizes for all salespeople who work in the office.

SELECT REP_OFFICE, MIN(AVERAGE), MAX(AVERAGE)
 FROM SALESREPS, ORD_BY_REP
 WHERE EMPL_NUM = WHO
 AND REP_OFFICE IS NOT NULL
 GROUP BY REP_OFFICE;

This query works just fine in most current SQL implementations. It’s a two-table query
that groups the rows of the ORD_BY_REP view based on the office to which the salesperson
is assigned. But recall that the ORD_BY_REP view already groups rows. If you were to
attempt this query without using a view (folding the query contained in the ORD_BY_REP
view into the new query), it would look like this:

SELECT REP_OFFICE, MIN(AVG(AMOUNT)), MAX(AVG(AMOUNT))
 FROM SALESREPS, ORDERS
 WHERE EMPL_NUM = REP
 GROUP BY REP
 GROUP BY REP_OFFICE;

This query is illegal because of the double GROUP BY. Also, in some older SQL
implementations, nested functions such as MIN(AVG(AMOUNT)) were not supported, but
fortunately, all modern SQL implementations now support them.

Joined Views
One of the most frequent reasons for using views is to simplify multitable queries. By
specifying a two-table or three-table query in the view definition, you can create a joined view
that draws its data from two or three different tables and presents the query results as a single
virtual table. Once the view is defined, you can often use a simple single-table query against
the view for requests that would otherwise each require a two-table or three-table join.

For example, suppose that Sam Clark, the vice president of sales, often runs queries
against the ORDERS table in the sample database. However, Sam doesn’t like to work with
customer and employee numbers. Instead, he’d like to be able to use a version of the
ORDERS table that has names instead of numbers. Here is a view that meets Sam’s needs:

Create a view of the ORDERS table with names instead of numbers.

CREATE VIEW ORDER_INFO (ORDER_NUM, COMPANY, REP_NAME, AMOUNT) AS
 SELECT ORDER_NUM, COMPANY, NAME, AMOUNT
 FROM ORDERS, CUSTOMERS, SALESREPS
 WHERE CUST = CUST_NUM
 AND REP = EMPL_NUM;

 C h a p t e r 1 4 : V i e w s 365
PART IV

 C h a p t e r 1 4 : V i e w s 365

This view is defined by a three-table join. As with a grouped view, the processing
required to create the illusion of a virtual table for this view can be considerable. Each row
of the view is derived from a combination of one row from the ORDERS table, one row from
the CUSTOMERS table, and one row from the SALESREPS table.

Although it has a relatively complex definition, this view can provide some real
benefits. Here is a query against the view that generates a report of orders, grouped by
salesperson and company:

Show the total current orders for each company for each salesperson.

SELECT REP_NAME, COMPANY, SUM(AMOUNT)
 FROM ORDER_INFO
 GROUP BY REP_NAME, COMPANY;

REP_NAME COMPANY SUM(AMOUNT)
------------ ---------------- ------------
Bill Adams Acme Mfg. $35,582.00
Bill Adams JCP Inc. $3,745.00
Dan Roberts First Corp. $3,978.00
Dan Roberts Holm & Landis $150.00
Dan Roberts Ian & Schmidt $22,500.00
Larry Fitch Midwest Systems $3,608.00
Larry Fitch Orion Corp. $7,100.00
Larry Fitch Zetacorp $47,925.00
 .
 .
 .

Note that this query is a single-table SELECT statement, which is considerably simpler
than the equivalent three-table SELECT statement for the source tables:

SELECT NAME, COMPANY, SUM(AMOUNT)
 FROM SALESREPS, ORDERS, CUSTOMERS
 WHERE REP = EMPL_NUM
 AND CUST = CUST_NUM
 GROUP BY NAME, COMPANY;

Similarly, it’s easy to generate a report of the largest orders, showing who placed them
and who received them, with this query against the view:

Show the largest current orders, sorted by amount.

SELECT COMPANY, AMOUNT, REP_NAME
 FROM ORDER_INFO
 WHERE AMOUNT > 20000.00
 ORDER BY AMOUNT DESC;

COMPANY AMOUNT REP_NAME
------------------ ----------- --------------
Zetacorp $45,000.00 Larry Fitch
J.P. Sinclair $31,500.00 Sam Clark
Chen Associates $31,350.00 Nancy Angelli
Acme Mfg. $27,500.00 Bill Adams
Ace International $22,500.00 Tom Snyder
Ian & Schmidt $22,500.00 Dan Roberts

 366 P a r t I V : D a t a b a s e S t r u c t u r e 366 P a r t I V : D a t a b a s e S t r u c t u r e

The view makes it much easier to see what’s going on in the query than if it were expressed
as the equivalent three-table join. Of course, the DBMS must work just as hard to generate the
query results for the single-table query against the view as it would to generate the query
results for the equivalent three-table query. In fact, the DBMS must perform slightly more work
to handle the query against the view. However, for the human user of the database, it’s much
easier to write and understand the single-table query that references the view.

Updating a View
What does it mean to insert a row of data into a view, delete a row from a view, or update a
row of a view? For some views, these operations can obviously be translated into equivalent
operations against the source table(s) of the view. For example, consider once again the
EASTREPS view, defined earlier in this chapter:

Create a view showing Eastern region salespeople.

CREATE VIEW EASTREPS AS
 SELECT *
 FROM SALESREPS
 WHERE REP_OFFICE IN (11, 12, 13);

This is a straightforward horizontal view, derived from a single source table. As shown
in Figure 14-5, it makes sense to talk about inserting a row into this view; it means the new
row should be inserted into the underlying SALESREPS table from which the view is
derived. It also makes sense to delete a row from the EASTREPS view; this would delete the
corresponding row from the SALESREPS table. Finally, updating a row of the EASTREPS
view makes sense; this would update the corresponding row of the SALESREPS table. In
each case, the action can be carried out against the corresponding row of the source table,
preserving the integrity of both the source table and the view.

FIGURE 14-5 Updating data through a view

EASTREPS View

105
109
106
104
101
103

EMPL_NUM

Bill Adams
Mary Jones
Sam Clark
Bob Smith
Dan Roberts
Paul Cruz

NAME

SALESREPS Table

105
109
102
106
104
101
110
108
103
107

EMPL_NUM

37
31
48
52
33
45
41
62
29
49

AGE

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

NAME

UPDATE

DELETE

INSERT

UPDATE

DELETE

INSERT

 C h a p t e r 1 4 : V i e w s 367
PART IV

 C h a p t e r 1 4 : V i e w s 367

However, consider the ORD_BY_REP grouped view, as it was defined earlier in the
section “Grouped Views”:

Define a view that contains summary order data for each salesperson.

CREATE VIEW ORD_BY_REP (WHO, HOW_MANY, TOTAL, LOW, HIGH, AVERAGE) AS
 SELECT REP, COUNT(*), SUM(AMOUNT), MIN(AMOUNT), MAX(AMOUNT),
 AVG(AMOUNT)
 FROM ORDERS
 GROUP BY REP;

There is no one-to-one correspondence between the rows of this view and the rows of
the underlying ORDERS table, so it makes no sense to talk about inserting, deleting, or
updating rows of this view. The ORD_BY_REP view is not updateable; it is a read-only view.

The EASTREPS view and the ORD_BY_REP view are two extreme examples in terms of
the complexity of their definitions. There are views more complex than EASTREPS where it
still makes sense to update the view, and there are views less complex than ORD_BY_REP
where updates do not make sense. In fact, which views can be updated and which cannot
has been an important relational database research problem over the years.

View Updates and the ANSI/ISO Standard
The original ANSI/ISO SQL standard (SQL1) specifies the views that must be updateable in
a database that claims conformance to the standard. (Updateable in this context refers to
inserts, updates, and deletes.) Under the standard, a view can be updated if the query that
defines the view meets all of these restrictions:

• DISTINCT must not be specified; that is, duplicate rows must not be eliminated
from the query results.

• The FROM clause must specify only one updateable table; that is, the view must have
a single source table for which the user has the required privileges. If the source
table is itself a view, then that view must meet these criteria.

• Each select item must be a simple column reference; the select list cannot contain
expressions, calculated columns, or column functions.

• The WHERE clause must not include a subquery; only simple row-by-row search
conditions may appear.

• The query must not include a GROUP BY or a HAVING clause.

The basic concept behind the restrictions is easier to remember than the rules themselves.
For a view to be updateable, the DBMS must be able to trace any row of the view back to
its source row in the source table. Similarly, the DBMS must be able to trace each individual
column to be updated back to its source column in the source table.

If the view meets this test, then it’s possible to define meaningful INSERT, DELETE, and
UPDATE operations for the view in terms of the source table(s). However, if a view leaves
out a source table column that has a NOT NULL constraint without a DEFAULT specification,
you cannot insert a new row into that source table using the view. The reason is that there is
no way to supply a data value for the omitted column.

 368 P a r t I V : D a t a b a s e S t r u c t u r e 368 P a r t I V : D a t a b a s e S t r u c t u r e

View Updates in Commercial SQL Products
The SQL standard rules on view updates are very restrictive. Many views can be theoretically
updated, but do not satisfy all of the restrictions. In addition, some views can support some
of the update operations but not others, and some views can support updates on certain
columns but not others. Most commercial SQL implementations have view update rules that
are considerably more permissive than the SQL standard. For example, consider this view:

Create a view showing the sales, quota, and the difference between the two for each salesperson.

CREATE VIEW SALESPERF (EMPL_NUM, SALES, QUOTA, DIFF) AS
 SELECT EMPL_NUM, SALES, QUOTA, (SALES — QUOTA)
 FROM SALESREPS;

The SQL standard disallows all updates to this view because its fourth column is a
calculated column. However, note that each row in the view can be traced back to a single
row in the source table (SALESREPS). For this reason, DB2 (and many other commercial
SQL implementations) allows DELETE operations against this view. Further, DB2 allows
UPDATE operations on the EMPL_NUM, SALES, and QUOTA columns because they are directly
derived from the source table. Only the DIFF column cannot be updated. DB2 does not
allow the INSERT statement for the view because inserting a value for the DIFF column
would be meaningless.

The specific rules that determine whether a view can be updated vary from one brand of
DBMS to another, and they are usually fairly detailed. Some views, such as those based on
grouped queries, cannot be updated by any DBMS because the update operations simply do
not make sense. Other views may be updateable in one brand of DBMS, partially updateable in
another brand, and not updateable in a third brand. Subsequent versions of the SQL standard
include a broader definition of updateable views along with considerable latitude for variation
among DBMS brands. The best way to find out about updateability of views in your particular
DBMS is to consult the user’s guide or experiment with different types of views.

Checking View Updates (CHECK OPTION)
If a view is defined by a query that includes a WHERE clause, only rows that meet the search
condition are visible in the view. Other rows may be present in the source table(s) from
which the view is derived, but they are not visible through the view. For example, the
EASTREPS view, described in the “Horizontal Views” section earlier in this chapter, contains
only those rows of the SALESREPS table with specific values in the REP_OFFICE column:

Create a view showing Eastern region salespeople.

CREATE VIEW EASTREPS AS
 SELECT *
 FROM SALESREPS
 WHERE REP_OFFICE IN (11, 12, 13);

This is an updateable view for most commercial SQL implementations. You can add a
new salesperson with this INSERT statement:

INSERT INTO EASTREPS (EMPL_NUM, NAME, REP_OFFICE, AGE, HIRE_DATE, SALES)
 VALUES (113, 'Jake Kimball', 11, 43, '2009-01-01', 0.00);

 C h a p t e r 1 4 : V i e w s 369
PART IV

 C h a p t e r 1 4 : V i e w s 369

The DBMS will add the new row to the underlying SALESREPS table, and the row will
be visible through the EASTREPS view. But consider what happens when you add a new
salesperson with this INSERT statement:

INSERT INTO EASTREPS (EMPL_NUM, NAME, REP_OFFICE, AGE, HIRE_DATE, SALES)
 VALUES (114, 'Fred Roberts', 21, 47, '2009-01-01', 0.00);

This is a perfectly legal SQL statement, and the DBMS will insert a new row with the
specified column values into the SALESREPS table. However, the newly inserted row
doesn’t meet the search condition for the view. Its REP_OFFICE value (21) specifies the Los
Angeles office, which is in the Western region. As a result, if you run this query immediately
after the INSERT statement:

SELECT EMPL_NUM, NAME, REP_OFFICE
 FROM EASTREPS;

 EMPL_NUM NAME REP_OFFICE
--------- ------------ -----------
 105 Bill Adams 13
 109 Mary Jones 11
 106 Sam Clark 11
 104 Bob Smith 12
 101 Dan Roberts 12
 103 Paul Cruz 12

the newly added row doesn’t show up in the view. The same thing happens if you change the
office assignment for one of the salespeople currently in the view. This UPDATE statement:

UPDATE EASTREPS
 SET REP_OFFICE = 21
 WHERE EMPL_NUM = 104;

modifies one of the columns for Bob Smith’s row and immediately causes it to disappear
from the view. Of course, both of the vanishing rows show up in a query against the
underlying table:

SELECT EMPL_NUM, NAME, REP_OFFICE
 FROM SALESREPS;

 EMPL_NUM NAME REP_OFFICE
--------- -------------- -----------
 105 Bill Adams 13
 109 Mary Jones 11
 102 Sue Smith 21
 106 Sam Clark 11
 104 Bob Smith 21
 101 Dan Roberts 12
 110 Tom Snyder NULL
 108 Larry Fitch 21
 103 Paul Cruz 12
 107 Nancy Angelli 22
 114 Fred Roberts 21

 370 P a r t I V : D a t a b a s e S t r u c t u r e 370 P a r t I V : D a t a b a s e S t r u c t u r e

The fact that the rows vanish from the view as a result of an INSERT or UPDATE
statement is disconcerting, at best. You probably want the DBMS to detect and prevent this
type of INSERT or UPDATE from taking place through the view. SQL allows you to specify
this kind of integrity checking for views by creating the view with a check option. The check
option is specified in the CREATE VIEW statement, as shown in this redefinition of the
EASTREPS view:

DROP VIEW EASTREPS;

CREATE VIEW EASTREPS AS
 SELECT *
 FROM SALESREPS
 WHERE REP_OFFICE IN (11, 12, 13)
 WITH CHECK OPTION;

Note that a view that already exists must be dropped and re-created in order to apply a change
such as this one. Dropping views is discussed in the next topic.

When the check option is requested for a view, SQL automatically checks each
INSERT and each UPDATE operation for the view to make sure that the resulting row(s)
meet the search criteria in the view definition. If an inserted or modified row would not
meet the condition, the INSERT or UPDATE statement fails, and the operation is not
carried out.

The SQL standard specifies one additional refinement to the check option: the choice
of CASCADED or LOCAL application of the check option. This choice applies when a view is
created, and its definition is based not on an underlying table, but on one or more other
views. The definitions of these underlying views might, in turn, be based on still other
views, and so on. Each of the underlying views might or might not have the check option
specified.

If the new view is created WITH CASCADED CHECK OPTION, any attempt to update the
view causes the DBMS to go down through the entire hierarchy of view definitions on
which it is based, processing the check option for each view where it is specified. If the new
view is created WITH LOCAL CHECK OPTION, then the DBMS checks only that view; the
underlying views are not checked. The SQL standard specifies CASCADED as the default if
the WITH CHECK OPTION clause is used without specifying LOCAL or CASCADED.

It’s probably clear from the discussion that the check option can add significant
overhead to the INSERT and UPDATE operations, especially if you are updating a view
that is defined based on several layers of underlying view definitions. However, the
check option plays an important role to ensure the integrity of the database. After all, if
the update was intended to apply to data not visible through the view or to effectively
switch a row of data from one view to another, then logically the update should be
made through an underlying view or base table. When you create an updateable view as
part of a security scheme, it’s almost always a good idea to specify the check option.
It prevents modifications made through the view from affecting data that isn’t accessible
to the user in the first place.

 C h a p t e r 1 4 : V i e w s 371
PART IV

 C h a p t e r 1 4 : V i e w s 371

Dropping a View (DROP VIEW)
Recall that the SQL1 standard treated the SQL Data Definition Language (DDL) as a static
specification of the structure of a database, including its tables and views. For this reason,
the SQL1 standard did not provide the ability to drop a view when it was no longer needed.
However, all major DBMS brands have provided this capability for some time. Because
views behave like tables and a view cannot have the same name as a table, some DBMS
brands used the DROP TABLE statement to drop views as well. Other SQL implementations
provided a separate DROP VIEW statement.

The SQL standard formalized support for dropping views through a DROP VIEW
statement starting with the SQL2 version. It also provides for detailed control over what
happens when a user attempts to drop a view when the definition of another view depends
on it. For example, suppose two views on the SALESREPS table have been created by these
two CREATE VIEW statements:

CREATE VIEW EASTREPS AS
 SELECT *
 FROM SALESREPS
 WHERE REP_OFFICE IN (11, 12, 13);

CREATE VIEW NYREPS AS
 SELECT *
 FROM EASTREPS
 WHERE REP_OFFICE = 11;

For purposes of illustration, the NYREPS view is defined in terms of the EASTREPS
view, although it could just as easily have been defined in terms of the underlying table.
Under the SQL standard, the following DROP VIEW statement removes both of the views
from the database:

DROP VIEW EASTREPS CASCADE;

The CASCADE option tells the DBMS to delete not only the named view, but also any
views that depend on its definition. In contrast, this DROP VIEW statement:

DROP VIEW EASTREPS RESTRICT;

fails with an error, because the RESTRICT option tells the DBMS to remove the view only if
no other views depend on it. This provides an added precaution against unintentional side-
effects of a DROP VIEW statement. The SQL standard requires that either RESTRICT or
CASCADE be specified. But many commercial SQL products support a version of the DROP
VIEW statement without an explicitly specified option for backward compatibility with
earlier versions of their products released before the publication of the SQL standard. The
specific behavior of dependent views in this case depends on the particular DBMS brand.

 372 P a r t I V : D a t a b a s e S t r u c t u r e 372 P a r t I V : D a t a b a s e S t r u c t u r e

Materialized Views*
Conceptually, a view is a virtual table within a database. The row/column data in the view
is not physically stored in the database: it is derived from actual data in the underlying
source tables. If the view definition is relatively simple (for example, if the view is a simple
row/column subset of a single table, or a simple join based on foreign key relationships), it
is fairly easy for the DBMS to translate database operations on the view into operations on
the underlying tables. In this situation, the DBMS will perform this translation on the fly,
operation by operation, as it processes database queries or updates. In general, operations
that update the database through a view (INSERT, UPDATE, or DELETE operations) will
always be carried out in this way—by translating the operation into one or more operations
on the source tables.

If the view definition is more complicated, the DBMS may need to materialize the
view to carry out a query against it. That is, the DBMS will actually carry out the query
that defines the view and store the query results in a temporary table within the database.
Then the DBMS carries out the requested query against this temporary table to obtain the
requested results. When the query processing has finished, the DBMS discards the temporary
table. Figure 14-6 shows this materialization process. Clearly, materializing the view contents
can be a very high-overhead operation. If the typical database workload contains many
queries that require view materialization, the total throughput capacity of the DBMS can be
dramatically reduced.

To address this problem, some commercial DBMS products support materialized views.
When you define a view as a materialized view, the DBMS will carry out the query that

FIGURE 14-6 Materializing a view for query processing

DBMS

SELECT ...
 FROM view

Query results

Base tables

Step 1:
Create temp table
containing view data

Step 2:
Answer query
from data in
temp table

Step 3:
Delete the
temp table

 C h a p t e r 1 4 : V i e w s 373
PART IV

 C h a p t e r 1 4 : V i e w s 373

defines the view once (typically when the materialized view is defined), store the results
(i.e., the data that appears in the view) within the database, and then permanently maintain
this copy of the view data. To maintain the accuracy of the materialized view data, the
DBMS must automatically examine every change to the data in the underlying source
tables and make the corresponding changes in the materialized view data. In a few DBMS
products, the updates to the materialized view occur as the source tables are updated, but it
is far more common for the DBMS to log the table changes and apply them to the materialized
view at a regularly scheduled interval. When the DBMS must process a query against the
materialized view, it has the data already at hand and can process the query very efficiently.
Figure 14-7 shows DBMS operation with a materialized view.

Materialized views provide a trade-off between the efficiency of updates on the data
contained in the view and the efficiency of queries on the view data. In a nonmaterialized
view, updates to the source tables for a view are unaffected by the view definition; they
proceed at normal DBMS processing speed. However, queries against a nonmaterialized
view can be much less efficient than queries against ordinary database tables, since the
DBMS must do a great deal of on-the-fly work to process the queries.

Materialized views reverse this balance of work. When a materialized view is defined,
updates to the source tables for the view are much less efficient than updates to ordinary
database tables, since the DBMS must calculate the impact of the updates and change the
materialized view data accordingly. However, queries against a materialized view can
proceed at the same speed as queries against actual database tables, since the materialized
view is represented within the database in the same form as a real table. Thus, a materialized
view is most useful when the volume of updates to the underlying data is relatively small,
and the volume of queries against the view is relatively high.

FIGURE 14-7 Materialized view operation

Transaction
log

DELETE

Query results
formed directly
from data in the
materialized view

1

1

1

1

2

DBMS
logs
changes

Changes/Refresh

Changes/Refresh
Changes/R

efre
sh

Changes applied periodically
from transaction log

2

Direct update/refresh method

Periodic log application method

 374 P a r t I V : D a t a b a s e S t r u c t u r e

Summary
Views allow you to redefine the structure of a database, giving each user a personalized
view of the database structure and contents:

• A view is a virtual table defined by a query. The view appears to contain rows and
columns of data, just like a real table, but the data visible through the view is, in fact,
the results of the query.

• A view can be a simple row/column subset of a single table, it can summarize a table
(a grouped view), or it can draw its data from two or more tables (a joined view).

• A view can be referenced like a real table in a SELECT, INSERT, DELETE, or UPDATE
statement. However, more complex views cannot be updated; they are read-only views.

• Views are commonly used to simplify the apparent structure of a database, to simplify
queries, and to protect certain rows and/or columns from unauthorized access.

• Materialized views can improve the efficiency of database processing in situations
where there is a very high volume of query activity and relatively low update activity.

15
SQL Security

When you entrust your data to a database management system, the security of the
stored data is a major concern. Security is especially important in a SQL-based
DBMS because interactive SQL makes database access very easy. The security

requirements of a typical commercial database are many and varied:

• The data in any given table should be accessible to some users, but access by other
users should be prevented.

• Some users should be allowed to update data in a particular table; others should be
allowed only to retrieve data.

• For some tables, access should be restricted on a column-by-column basis.

• Some users should be denied interactive SQL access to a table, but should be
allowed to use application programs that update the table.

The SQL security scheme described in this chapter provides these types of protection
for data in a relational database.

375

CHAPTER

 376 P a r t I V : D a t a b a s e S t r u c t u r e 376 P a r t I V : D a t a b a s e S t r u c t u r e

SQL Security Concepts
Implementing a security scheme and enforcing security restrictions are the responsibility of
the DBMS software. The SQL defines an overall framework for database security, and SQL
statements are used to specify security restrictions. The SQL security scheme is based on
three central concepts:

• Users The actors in the database. Each time the DBMS retrieves, inserts, deletes,
or updates data, it does so on behalf of some user. The DBMS permits or prohibits
the action depending on which user is making the request.

• Database objects The items to which SQL security protection can be applied.
Security is usually applied to tables and views, but other objects such as forms,
application programs, and entire databases can also be protected. Most users will have
permission to use certain database objects, but will be prohibited from using others.

• Privileges The actions that a user is permitted to carry out for a given database
object. A user may have permission to SELECT and INSERT rows in a certain table,
for example, but may lack permission to DELETE or UPDATE rows of the table. A
different user may have a different set of privileges.

Figure 15-1 shows how these security concepts might be used in a security scheme for
the sample database.

To establish a security scheme for a database, you use the SQL GRANT statement to
specify which users have which privileges on which database objects. For example, here is
a GRANT statement that lets Sam Clark retrieve and insert data in the OFFICES table of the
sample database:

Let Sam Clark retrieve and insert data in the OFFICES table.

GRANT SELECT, INSERT
 ON OFFICES
 TO SAM;

The GRANT statement specifies a combination of a user-id (SAM), an object (the OFFICES
table), and privileges (SELECT and INSERT). Once granted, the privileges can be rescinded
later with this REVOKE statement:

Take away the privileges granted earlier to Sam Clark.

REVOKE SELECT, INSERT
 ON OFFICES
 FROM SAM;

The GRANT and REVOKE statements are described in detail later in this chapter, in the
sections “Granting Privileges (GRANT)” and “Revoking Privileges (REVOKE).”

User-Ids
Each user of a SQL-based database is typically assigned a user-id, a short name that identifies
the user to the DBMS software. The user-id is at the heart of SQL security. Every SQL statement
executed by the DBMS is carried out on behalf of a specific user-id. The user-id determines

 C h a p t e r 1 5 : S Q L S e c u r i t y 377
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 377

whether the statement will be permitted or prohibited by the DBMS. In a commercial database,
user-ids either are assigned by the database administrator, or, for products that can use external
identifiers from operating system accounts, by a security administrator. A personal computer
database may have only a single user-id, identifying the user who created and who owns the
database. Special-purpose databases (for example, those designed to be embedded within an
application or in a special-purpose system), may not need the additional overhead associated
with SQL security. These databases typically operate as if there were a single user-id.

In practice, the restrictions on the names that can be chosen as user-ids vary from
implementation to implementation. The SQL1 standard permitted user-ids of up to
18 characters and required them to be valid SQL names, which was increased to up to
128 characters in later versions. In some mainframe DBMS systems, user-ids may have
no more than eight characters. In Sybase and SQL Server, user-ids may have up to
30 characters. If portability is a concern, it’s best to limit user-ids to eight or fewer characters.
Figure 15-2 shows various users who need access to the sample database and the typical
user-ids assigned to them. Note that all of the users in the order-processing department
can be assigned the same user-id because they are to have identical privileges in the
database. However, most security experts recommend against such a practice because of

FIGURE 15-1 A security scheme for the sample database

Order processing
dept.

Accounts receivable
dept.

Full
access

Larry Fitch,
Los Angeles
office
manager

SELECT,
SELECT

SELECT

SELECT

SELECT
UPDATE

some
 columns

some
 columns

some
rows

some
rows

Bob Smith,
Chicago
office
manager

INSERT,

Full access
to all data

George Watkins
V.P. Marketing

Sam Clark
V.P. Sales

Available
to all
users

Full access
to all data

ORDERS Table CUSTOMERS Table

OFFICES Table

SALESREPS Table

 378 P a r t I V : D a t a b a s e S t r u c t u r e 378 P a r t I V : D a t a b a s e S t r u c t u r e

the difficulty in tracing individual actions back to the individual who performed them.
An alternative to this practice is presented in the “Role-Based Security” section later in
this chapter.

The ANSI/ISO SQL standard uses the term authorization-id instead of user-id, and
you will occasionally find this term used in other SQL documentation. Technically,
authorization-id is a more accurate term because the role of the ID is to determine
authorization or privileges in the database. There are situations, as in Figure 15-2, where
the same user-id might be assigned to different users. In other situations, a single person
may use two or three different user-ids, but usually not in the same database. In a commercial
database, authorization-ids may be associated with programs and groups of programs,
rather than with human users. In each of these situations, authorization-id is a more precise
and less confusing term than user-id. However, the most common practice is to assign a
different user-id to each person, and most SQL-based DBMSs use the term user-id in their
documentation.

User Authentication
The SQL standard specifies that user-ids provide database security; however, the specific
mechanism for associating a user-id with a SQL statement is outside the scope of the
standard because a database can be accessed in many different ways. For example, when
you type SQL statements into an interactive SQL utility, how does the DBMS determine
which user-id is associated with the statements? If you use a forms-based data entry or
query program, how does the DBMS determine your user-id? On a database server, a
report-generating program might be scheduled to run at a preset time every evening; what
is the user-id in this situation, where there is no human user? Finally, how are user-ids
handled when you access a database across a network, where your user-id on the system
you are actively working from might be different from the user-id established on the system
where the database resides?

FIGURE 15-2 User-id assignments for the sample database

Order-Processing Department Accounts Receivable Department

user-id: OPUSER user-id: ARUSER

Office Managers

Larry Fitch Bob Smith

user-id: LARRY user-id: BOB user-id: SAM user-id: GEORGE

Vice Presidents

George Watkins
VP Marketing

Sam Clark
VP Sales

 C h a p t e r 1 5 : S Q L S e c u r i t y 379
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 379

Most commercial SQL implementations associate a user-id with each database session. In
interactive SQL, the session begins when you start the interactive SQL program, and it lasts
until you exit the program or use a command to switch to another user-id. In an application
program using programmatic SQL, the session begins when the application program
connects to the DBMS, and it ends when the application program terminates. All of the SQL
statements used during the session are associated with the user-id specified for the session.
However, in modern application systems, it is also possible for an application program to
establish multiple connections to a database and to select the one to be used as it submits
SQL statements for processing.

Usually, you must supply both a user-id and an associated password to establish a
connection. The DBMS checks the password to verify that you are, in fact, authorized to use
the user-id that you supply. However, many products support operating system authentication
where the DBMS accepts user credentials passed to it by the operating system without the need
for a password or other authentication. Although user-ids and passwords are common across
most SQL products, the specific techniques used to specify the user-id and password vary
from one product to another.

Some DBMS brands, especially those that are available on many different operating
system platforms, implement their own user-id/password security. For example, when
you use Oracle’s interactive SQL program, called SQLPLUS, you specify a user name and
associated password in the command that starts the program, like this:

SQLPLUS SCOTT/TIGER

However, typing your password on a command line is not recommended, because the
password is not encrypted and can be easily exposed by anyone else on the system. It is far
better to omit the password (and the separating slash) and let SQLPLUS prompt you for the
password.

The Sybase interactive SQL program, called ISQL, also accepts a user name and
password, using this command format:

ISQL –U SCOTT –P TIGER

In each case, the DBMS validates the user-id (SCOTT) and the password (TIGER) before
beginning the interactive SQL session. Again, it’s better to omit the password and wait for ISQL
to prompt you for it. Older versions of SQL Server also support ISQL, but newer versions use
a slightly different tool named OSQL for command-line access to DBMS commands.

Many other DBMS brands, including Ingres and Informix, use the user names of the
host computer’s operating system as database user-ids. For example, when you log into a
UNIX-based computer system, you must supply a valid UNIX user name and password to
gain access. To start the Ingres interactive SQL utility, you simply give the command:

ISQL SALESDB

where SALESDB is the name of the Ingres database you want to use. Ingres automatically
obtains your UNIX user name and makes it your Ingres user-id for the session. Thus, you
don’t have to specify a separate database user-id and password. DB2’s interactive SQL,
running under MVS/TSO, uses a similar technique. Your TSO login name automatically
becomes your DB2 user-id for the interactive SQL session.

 380 P a r t I V : D a t a b a s e S t r u c t u r e 380 P a r t I V : D a t a b a s e S t r u c t u r e

Most modern DBMS products also have GUI tools for database access, such as the SQL
Server Management Studio, the DB2 UDB Command Editor, and the Oracle SQL Developer.
These tools prompt for the user-id and password when connections are initially established.

SQL security also applies to programmatic access to a database, so the DBMS must
determine and authenticate the user-id for every application program that tries to access the
database. Again, the techniques and rules for establishing the user-id vary from one brand
of DBMS to another. For widely used utility programs, such as a data entry or an inquiry
program, it is common for the program to ask the user for a user-id and password at the
beginning of the session, via a screen dialog. For more specialized or custom-written
programs, the appropriate user-id may be obvious from the application to be performed
and may be hard-wired into the program.

The SQL standard also allows a program to use an authorization-id associated with a
specific set of SQL statements (called a module), rather than the user-id of the particular
person running the program. With this mechanism, a program may be given the ability to
perform very specific operations on a database on behalf of many different users, even if
those users are not otherwise authorized to access the target data. This is a convenient
capability that is finding its way into mainstream SQL implementations. The specifics of
SQL security for database access programs are described in Chapter 17, which covers
programmatic SQL.

User Groups
A large production database often has groups of users with similar needs. In the sample
database, for example, the three people in the order-processing department form a natural
user group, and the two people in the accounts receivable department form another natural
group. Within each group, all of the users have identical needs for data access and should
have identical privileges.

Under the ANSI/ISO SQL security scheme, you can handle groups of users with similar
needs in one of three ways:

• You can assign the same user-id to every person in the group, as shown in Figure 15-2.
This scheme simplifies security administration because it allows you to specify data
access privileges once for the single user-id. However, under this scheme, it is more
difficult to distinguish the people sharing the user-id from one another in system
operator displays and DBMS reports.

• You can assign a different user-id to every person in the group and specify privileges
for each user individually. This scheme lets you differentiate between the users in
reports produced by the DBMS, and it lets you establish different privileges for the
individual users later, but security administration is more tedious and error-prone.

• For DBMS products that support it (most modern ones do), you can create a role
that contains the required privileges. A role is a named collection of privileges. You
can assign each person his or her own user-id and associate the role with his or her
user-id. Obviously this is the best alternative because you can differentiate between
the users without complicating administration. Roles are presented in detail in the
“Role-Based Security” section later in this chapter.

The scheme you choose depends on the security support and trade-offs in your
particular database and application.

 C h a p t e r 1 5 : S Q L S e c u r i t y 381
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 381

Prior to implementing support for roles, several DBMS brands, including Sybase and
SQL Server, offered a third alternative for dealing with groups of similar users. They
support group-ids, which identify groups of related user-ids. Privileges can be granted both
to individual user-ids and to group-ids, and a user may carry out a database action if it is
permitted by either the user-id or group-id privileges. Group-ids thus simplify the
administration of privileges given to groups of users. However, they are nonstandard, and a
database design using them may not be portable to another DBMS brand.

Some versions of DB2 also support groups of users but take a different approach. The
DB2 database administrator can configure DB2 so that when you first connect to DB2 and
supply your user-id (known as your primary authorization-id), DB2 automatically looks up
a set of additional user-ids (known as secondary authorization-ids) that you may use. When
DB2 later checks your privileges, it checks the privileges for all of your authorization-ids,
primary and secondary. On an IBM mainframe system, the DB2 database administrator
normally sets up the secondary authorization-ids so that they are the same as the user
group names used by Resource Access Control Facility (RACF), the IBM mainframe security
facility. Thus, the DB2 approach effectively provides group-ids, but does so without adding
to the user-id mechanism.

Security Objects
SQL security protections apply to specific objects contained in a database. The SQL1 standard
specified two types of security objects—tables and views. Thus, each table and view can be
individually protected. Access to a table or view can be permitted for certain user-ids and
prohibited for other user-ids. Subsequent versions of the SQL standard expand security
protections to include other objects, including domains and user-defined character sets, and
add a new type of protection for table or view access.

Most commercial SQL products support additional types of objects that are subject to
security controls. In a SQL Server database, for example, a stored procedure is an important
database object. The SQL security scheme determines which users can create and drop
stored procedures and which users are allowed to execute them. In IBM’s DB2, the
physical tablespaces where tables are stored are treated as security objects. The database
administrator can give some user-ids permission to create new tables in a particular
tablespace and deny that permission to other user-ids. Other SQL implementations support
other security objects. However, the underlying SQL security scheme—of specific privileges
applied to specific objects, granted or revoked through the same SQL statements—is almost
universally applied.

Privileges
The set of actions that a user can carry out against a database object are called the privileges
for the object. The SQL1 standard specifies four basic privileges for tables and views:

• The SELECT privilege allows you to retrieve data from a table or view. With this
privilege, you can specify the table or view in the FROM clause of a SELECT
statement or subquery.

• The INSERT privilege allows you to insert new rows into a table or view. With this
privilege, you can specify the table or view in the INTO clause of an INSERT
statement.

 382 P a r t I V : D a t a b a s e S t r u c t u r e 382 P a r t I V : D a t a b a s e S t r u c t u r e

• The DELETE privilege allows you to delete rows of data from a table or view. With
this privilege, you can specify the table or view in the FROM clause of a DELETE
statement.

• The UPDATE privilege allows you to modify rows of data in a table or view. With this
privilege, you can specify the table or view as the target table in an UPDATE statement.
The UPDATE privilege can be restricted to specific columns of the table or view,
allowing updates to these columns but disallowing updates to any other columns.

These four privileges are supported by virtually all commercial SQL products.

SQL Extended Privileges
Subsequent versions of the standard expanded the basic SQL1 privileges in several dimensions.
New capabilities were added to the SQL1 SELECT, INSERT, and UPDATE privileges. A new
REFERENCES privilege was added that restricts a user’s ability to create a reference to a table
from a foreign key in another table. Also, a new USAGE privilege was added that controls
access to the new SQL database structures of domains, character sets, collation sequences, and
translations.

The SQL extensions to the SELECT, INSERT, and UPDATE privileges are straightforward.
These privileges may now be granted for a specific column or columns within a table,
instead of applying to the entire table. The sample database provides a simple example of
how this capability can be useful. Suppose you wanted to give your human resources
manager the responsibility to insert new employees into the SALESREPS table once the
hiring paperwork is complete. The HR manager should supply the employee number, name,
and similar information. But it should be the responsibility of the sales VP to set the QUOTA
column for the new employee. Adjustments to the SALES column for existing employees
would be similarly restricted.

Using the newer SQL capabilities, you could implement this scheme by giving the HR
manager INSERT privileges on the appropriate columns. The other columns (such as SALES
and QUOTA) for any newly inserted employees would initially have NULL values. With the
UPDATE privilege on the other columns, the sales VP can then set the appropriate quota.
Without the ability to specify these privileges on specific columns, you would have to either
relax the restrictions on column access or define extraneous views on the table simply to
restrict access.

The SQL REFERENCES privilege deals with a more subtle SQL security issue posed by
foreign keys and check constraints. Using the sample database as an example, suppose an
employee has the ability to create a new table in the database (for example, a table
containing new product information), but does not have any access to the employee
information in the SALESREPS table. You might assume, given this security scheme, that
there is no way for him to determine the employee numbers being used or whether a new
employee has been hired.

However, this isn’t strictly true. The employee could create a new table, with a column
that is defined as a foreign key to the SALESREPS table. (Recall that this means the only
legal values for this column are primary key values for the SALESREPS table—that is, valid
employee numbers.) With this new table, the employee can simply try to insert new rows
with different values in the foreign key column. The INSERT statements that succeed tell
the employee that he has discovered a valid employee number; those that fail represent
invalid employee numbers.

 C h a p t e r 1 5 : S Q L S e c u r i t y 383
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 383

Even more serious problems can be created by a new table defined with a check
constraint on a column. For example, suppose the employee tries to execute this CREATE
TABLE statement:

CREATE TABLE XYZ (TRYIT DECIMAL(9,2),
 CHECK ((SELECT QUOTA
 FROM SALESREPS
 WHERE TITLE = 'VP Sales')
 BETWEEN 400000 AND 500000));

Because of the column constraint linked to a value from the SALESREPS table, if this
statement succeeds, it means the VP of sales has a quota in the specified range. If it doesn’t,
the employee can keep trying similar CREATE TABLE statements until he has determined
the appropriate quota. Note, however, that very few SQL implementations support check
constraints that reference other tables. As of this writing, MySQL offers such support, but
DB2, SQL Server, and Oracle do not.

To eliminate this backdoor access to data, the SQL standard specifies a new REFERENCES
privilege. Like the SELECT, INSERT, and UPDATE privileges, the REFERENCES privilege can
be granted for specific columns of a table. Only if a user has the REFERENCES privilege for
a column is he or she allowed to create a new table that refers to that existing column in any
way (for example, as the target of a foreign key reference, or in a check constraint, as in the
previous examples). In databases that don’t yet implement the REFERENCES privilege but
do support foreign keys or check constraints, the SELECT privilege is sometimes used for
this purpose.

Finally, the SQL standard specifies the USAGE privilege to control access to domains
(sets of legal column values), user-defined character sets, collating sequences, and
translations. The USAGE privilege is a simple on/off switch that either allows or disallows
the use of these database objects, by name, for individual user-ids. For example, with the
USAGE privilege on a domain, you can define a new table with a column whose data
type is defined as that domain. Without the privilege, you cannot create such a column
definition. These privileges are directed mostly toward simplifying administration of large
commercial databases that are used and modified by many different development teams.
They typically do not present the same kinds of security issues as the table and column
access privileges.

Ownership Privileges
When you create a table with the CREATE TABLE statement, you become its owner and
receive full privileges for the table (SELECT, INSERT, DELETE, UPDATE, and any other
privileges supported by the DBMS). Other users initially have no privileges on the newly
created table. If they are to be given access to the table, you must explicitly grant privileges
to them by using the GRANT statement.

When you create a view with the CREATE VIEW statement, you become the owner of the
view, but you do not necessarily receive full privileges on it. To create the view successfully,
you must already have the SELECT privilege on each of the source tables for the view;
therefore, the DBMS gives you the SELECT privilege for the view automatically. For each of
the other privileges (INSERT, DELETE, and UPDATE), the DBMS gives you the privilege on
the view only if you hold that same privilege on every source table for the view.

 384 P a r t I V : D a t a b a s e S t r u c t u r e 384 P a r t I V : D a t a b a s e S t r u c t u r e

Other Privileges
Many commercial DBMS products offer additional table and view privileges beyond the
basic SELECT, INSERT, DELETE, and UPDATE privileges. For example, Oracle and the IBM
mainframe databases support an ALTER and an INDEX privilege for tables. A user with the
ALTER privilege on a particular table can use the ALTER TABLE statement to modify the
definition of the table; a user with the INDEX privilege can create an index for the table with
the CREATE INDEX statement. In DBMS brands that do not support the ALTER and INDEX
privileges, only the owner may use the ALTER TABLE and CREATE INDEX statements.

Additional privileges are frequently supported for DBMS security objects other than
tables and views. For example, Oracle, Sybase, and SQL Server support an EXECUTE
privilege for stored procedures, which determines whether a user is allowed to execute a
stored procedure. DB2 supports a USE privilege for tablespaces, which determines whether
a user can create tables in a specific tablespace.

Views and SQL Security
In addition to the restrictions on table access provided by the SQL privileges, views also
play a key role in SQL security. By carefully defining a view and giving a user permission to
access the view but not its source tables, you can effectively restrict the user’s access to only
selected columns and rows. Views thus offer a way to exercise very precise control over
what data is made visible to which users.

For example, suppose you wanted to enforce this security rule in the sample database:

Accounts receivable personnel should be able to retrieve employee numbers, names, and office
numbers from the SALESREPS table, but data about sales and quotas should not be available to
them.

You can implement this security rule by defining a view as follows:

CREATE VIEW REPINFO AS
 SELECT EMPL_NUM, NAME, REP_OFFICE
 FROM SALESREPS;

and giving the SELECT privilege for the view to the ARUSER user-id, as shown in Figure 15-3.
This example uses a vertical view to restrict access to specific columns.

Horizontal views are also effective for enforcing security rules such as this one:

The sales managers in each region should have full access to SALESREPS data for the salespeople
assigned to that region.

As shown in Figure 15-4, you can define two views, EASTREPS and WESTREPS,
containing SALESREPS data for each of the two regions, and then grant each office manager
access to the appropriate view.

Of course, views can be much more complex than the simple row and column subsets
of a single table shown in these examples. By defining a view with a grouped query, you
can give a user access to summary data but not to the detailed rows in the underlying table.
A view can also combine data from two or more tables, providing precisely the data
needed by a particular user and denying access to all other data. The usefulness of views for

 C h a p t e r 1 5 : S Q L S e c u r i t y 385
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 385

implementing SQL security is limited by the two fundamental restrictions described earlier
in Chapter 14:

• Update restrictions The SELECT privilege can be used with read-only views to
limit data retrieval, but the INSERT, DELETE, and UPDATE privileges are
meaningless for these views. If a user must update the data visible in a read-only
view, the user must be given permission to update the underlying tables and must
use INSERT, DELETE, and UPDATE statements that reference those tables.

• Performance Any poorly written SQL query can add significant overhead to
database operations, and of course this can be true of queries included in view
definitions. However, database users may reference views without considering the
complexity of the underlying accesses against the source tables. Views cannot be
used indiscriminately to restrict database access without regard for the overall
performance implications of the queries within them.

FIGURE 15-3 Using a view to restrict column access

2007-02-12
2007-10-12
2004-12-10
2006-06-14

2006-11-14

2005-05-19
2004-10-20
2008-01-13
2007-10-12
2005-03-01

 386 P a r t I V : D a t a b a s e S t r u c t u r e 386 P a r t I V : D a t a b a s e S t r u c t u r e

Granting Privileges (GRANT)
The basic GRANT statement, shown in Figure 15-5, is used to grant security privileges on
database objects to specific users or roles. Normally, the GRANT statement is used by the
owner of a table or view to give other users access to the data. As shown in the figure,
the GRANT statement includes a specific list of the privileges to be granted, the name of
the table or other object to which the privileges apply (an object type is required for all
objects except tables and views), and the user-id or role to which the privileges are
granted. In most SQL implementations, user accounts must exist before privileges can be
granted to them.

The GRANT statement shown in the syntax diagram conforms to the ANSI/ISO SQL
standard. Many DBMS brands follow the DB2 GRANT statement syntax, which is more
flexible. The DB2 syntax allows you to specify a list of user-ids and a list of object names,
making it simpler to grant many privileges at once. Here are some examples of simple
GRANT statements for the sample database:

Give order-processing users full access to the ORDERS table.

GRANT SELECT, INSERT, DELETE, UPDATE
 ON ORDERS
 TO OPUSER;

FIGURE 15-4 Using views to restrict row access

EASTREPS View

105
109
106
104
101
103

EMPL_NUM

Bill Adams
Mary Jones
Sam Clark
Bob Smith
Dan Roberts
Paul Cruz

NAME

WESTREPS View

102
108
107

EMPL_NUM

Sue Smith
Larry Fitch
Nancy Angelli

NAME

SALESREPS Table

105
109
102
106
104
101
110
108
103
107

EMPL_NUM

Bill Adams
Mary Jones
Sue Smith
Sam Clark
Bob Smith
Dan Roberts
Tom Snyder
Larry Fitch
Paul Cruz
Nancy Angelli

NAME

SELECT
INSERT
DELETE
UPDATE

SELECT
INSERT
DELETE
UPDATE

No access

No access

 C h a p t e r 1 5 : S Q L S e c u r i t y 387
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 387

Let accounts receivable users retrieve customer data and add new customers to the CUSTOMERS
table, but give order-processing users read-only access.

GRANT SELECT, INSERT
 ON CUSTOMERS
 TO ARUSER;

GRANT SELECT
 ON CUSTOMERS
 TO OPUSER;

Allow Sam Clark to insert or delete an office.

GRANT INSERT, DELETE
 ON OFFICES
 TO SAM;

For convenience, the GRANT statement provides two shortcuts that you can use when
granting many privileges or when granting privileges to many users. Instead of specifically
listing all of the privileges available for a particular object, you can use the keywords ALL
PRIVILEGES. This GRANT statement gives Sam Clark, the vice president of sales, full access
to the SALESREPS table:

Give all privileges on the SALESREPS table to Sam Clark.

GRANT ALL PRIVILEGES
 ON SALESREPS
 TO SAM;

FIGURE 15-5 The GRANT statement syntax diagram

object-name
object-type

user-id

 388 P a r t I V : D a t a b a s e S t r u c t u r e 388 P a r t I V : D a t a b a s e S t r u c t u r e

Instead of giving privileges to every user of the database one-by-one, you can use the
keyword PUBLIC to grant a privilege to every database user authorized to connect to the
database. Obviously, this option must be used judiciously. This GRANT statement lets
anyone retrieve data from the OFFICES table:

Give all users SELECT access to the OFFICES table.

GRANT SELECT
 ON OFFICES
 TO PUBLIC;

Note that this statement grants access to all present and future authorized users, not just
to the user-ids currently known to the DBMS. This eliminates the need for you to explicitly
grant privileges to new users as they are authorized to connect to the database.

Column Privileges
The SQL1 standard allowed you to grant the UPDATE privilege for individual columns of a
table or view, and newer versions allow a column list for SELECT, INSERT, and REFERENCES
privileges as well. The columns are listed after the SELECT, UPDATE, INSERT, or REFERENCES
keyword and enclosed in parentheses. Here is a GRANT statement that allows the order-
processing department to update only the company name (COMPANY) and assigned
salesperson (CUST_REP) columns of the CUSTOMERS table:

Let order-processing users change company names and salesperson assignments.

GRANT UPDATE (COMPANY, CUST_REP)
 ON CUSTOMERS
 TO OPUSER;

If the column list is omitted, the privilege applies to all columns of the table or view, as
in this example:

Let accounts receivable users change any customer information.

GRANT UPDATE
 ON CUSTOMERS
 TO ARUSER;

SQL standard versions beyond SQL1 support granting the SELECT privilege for lists as
columns, as with this example:

Give accounts receivable users read-only access to the employee number, name, and sales office
columns of the SALESREPS table.

GRANT SELECT (EMPL_NUM, NAME, REP_OFFICE)
 ON SALESREPS
 TO ARUSER;

This GRANT statement eliminates the need for the REPINFO view defined in Figure 15-3,
and in practice, it can eliminate the need for many views in a commercial database. However,
column-level SELECT privileges aren’t yet supported by all the major DBMS vendors.

 C h a p t e r 1 5 : S Q L S e c u r i t y 389
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 389

Passing Privileges (GRANT OPTION)
When you create a database object and become its owner, you are the only person who can
grant privileges to use the object. When you grant privileges to other users, they are allowed
to use the object, but by default they cannot pass those privileges on to other users. In this
way, the owner of an object maintains very tight control both over who has permission to
use the object and over which forms of access are allowed.

Occasionally, you may want to allow other users to grant privileges on an object that
you own. For example, consider again the EASTREPS and WESTREPS views in the sample
database. Sam Clark, the vice president of sales, created these views and owns them. He can
give the Los Angeles office manager, Larry Fitch, permission to use the WESTREPS view
with this GRANT statement:

GRANT SELECT
 ON WESTREPS
 TO LARRY;

What happens if Larry wants to give Sue Smith (user-id SUE) permission to access the
WESTREPS data because she is doing some sales forecasting for the Los Angeles office?
Based on the preceding GRANT statement, he cannot give her the required privilege. Only
Sam Clark can grant the privilege, because he owns the view.

If Sam wants to give Larry discretion over who may use the WESTREPS view, he can use
this variation of the previous GRANT statement:

GRANT SELECT
 ON WESTREPS
 TO LARRY
 WITH GRANT OPTION;

Because of the WITH GRANT OPTION clause, this GRANT statement conveys, along with
the specified privileges, the right to grant those privileges to other users.

Larry can now issue this GRANT statement:

GRANT SELECT
 ON WESTREPS
 TO SUE;

which allows Sue Smith to retrieve data from the WESTREPS view. Figure 15-6 graphically
illustrates the flow of privileges, first from Sam to Larry, and then from Larry to Sue.
Because the GRANT statement issued by Larry did not include the WITH GRANT OPTION
clause, the chain of permissions ends with Sue; she can retrieve the WESTREPS data, but
cannot grant access to another user. However, if Larry’s grant of privileges to Sue had
included the GRANT OPTION, the chain could continue to another level, allowing Sue to
grant access to other users.

It’s very easy to lose control of who has which privileges when the GRANT OPTION is
overused. For this reason, use of this option is often either forbidden or discouraged by
corporate security administrators.

 390 P a r t I V : D a t a b a s e S t r u c t u r e 390 P a r t I V : D a t a b a s e S t r u c t u r e

Alternatively, Larry might construct a view for Sue including only the salespeople in the
Los Angeles office and give her access to that view:

CREATE VIEW LAREPS AS
 SELECT *
 FROM WESTREPS
 WHERE REP_OFFICE = 21;

GRANT ALL PRIVILEGES
 ON LAREPS
 TO SUE;

Larry is the owner of the LAREPS view, but he does not own the WESTREPS view from
which this new view is derived. To maintain effective security, the DBMS requires that Larry
not only have the SELECT privilege on WESTREPS, but also requires that he have the GRANT
OPTION for that privilege before allowing him to grant the SELECT privilege on LAREPS to Sue.

Once a user has been granted certain privileges with the GRANT OPTION, that user may
grant those privileges and the GRANT OPTION to other users. Those other users can, in turn,
continue to grant both the privileges and the GRANT OPTION. For this reason, you should
use great care when giving other users the GRANT OPTION. Note that the GRANT OPTION
applies only to the specific privileges named in the GRANT statement. If you want to grant
certain privileges with the GRANT OPTION and grant other privileges without it, you must
use two separate GRANT statements, as in this example:

Let Larry Fitch retrieve, insert, update, and delete data from the WESTREPS table, and let him grant
retrieval permission to other users.

GRANT SELECT
 ON WESTREPS
 TO LARRY
 WITH GRANT OPTION;

GRANT INSERT, DELETE, UPDATE
 ON WESTREPS
 TO LARRY;

FIGURE 15-6
Using the GRANT
OPTION

1

2

GRANT
WITH GRANT OPTION

GRANT

SAM

LARRY

SUE

 C h a p t e r 1 5 : S Q L S e c u r i t y 391
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 391

Revoking Privileges (REVOKE)
In most SQL-based databases, the privileges that you have granted with the GRANT
statement can be taken away with the REVOKE statement, shown in Figure 15-7. The
REVOKE statement has a structure that closely parallels the GRANT statement, specifying a
specific set of privileges to be taken away, for a specific database object, from one or more
user-ids.

A REVOKE statement may take away all or some of the privileges that you previously
granted to a user-id. For example, consider this statement sequence:

Grant and then revoke some SALESREPS table privileges.

GRANT SELECT, INSERT, UPDATE
 ON SALESREPS
 TO ARUSER, OPUSER;

REVOKE INSERT, UPDATE
 ON SALESREPS
 FROM OPUSER;

The INSERT and UPDATE privileges on the SALESREPS table are first given to the two
users and then revoked from one of them. However, the SELECT privilege remains for both
user-ids. Some other examples of the REVOKE statement are shown next.

FIGURE 15-7 The REVOKE statement syntax diagram

object-type object-name

 392 P a r t I V : D a t a b a s e S t r u c t u r e 392 P a r t I V : D a t a b a s e S t r u c t u r e

Take away all privileges granted earlier on the OFFICES table.

REVOKE ALL PRIVILEGES
 ON OFFICES
 FROM ARUSER;

Take away UPDATE and DELETE privileges for two user-ids.

REVOKE UPDATE, DELETE
 ON OFFICES
 FROM ARUSER, OPUSER;

Take away all privileges on the OFFICES table that were formerly granted to all users.

REVOKE ALL PRIVILEGES
 ON OFFICES
 FROM PUBLIC;

When you issue a REVOKE statement, you can take away only those privileges that you
previously granted to another user. That user may also have privileges that were granted by
other users; those privileges are not affected by your REVOKE statement. Note specifically
that if two different users grant the same privilege on the same object to a user and one of
them later revokes the privilege, the second user’s grant will still allow the user to access
the object. This handling of overlapping grants of privileges is illustrated in the following
example sequence.

Suppose that Sam Clark, the sales vice president, gives Larry Fitch SELECT privileges
for the SALESREPS table and SELECT and UPDATE privileges for the ORDERS table, using
the following statements:

GRANT SELECT
 ON SALESREPS
 TO LARRY;

GRANT SELECT, UPDATE
 ON ORDERS
 TO LARRY;

A few days later George Watkins, the marketing vice president, gives Larry the SELECT
and DELETE privileges for the ORDERS table and the SELECT privilege for the CUSTOMERS
table, using these statements:

GRANT SELECT, DELETE
 ON ORDERS
 TO LARRY;

GRANT SELECT
 ON CUSTOMERS
 TO LARRY;

 C h a p t e r 1 5 : S Q L S e c u r i t y 393
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 393

Note that Larry has received privileges on the ORDERS table from two different sources.
In fact, the SELECT privilege on the ORDERS table has been granted by both sources. A few
days later, Sam revokes the privileges he previously granted to Larry for the ORDERS table:

REVOKE SELECT, UPDATE
 ON ORDERS
 FROM LARRY;

After the DBMS processes the REVOKE statement, Larry still retains the SELECT
privilege on the SALESREPS table, the SELECT and DELETE privileges on the ORDERS table,
and the SELECT privilege on the CUSTOMERS table, but he has lost the UPDATE privilege on
the ORDERS table.

REVOKE and the GRANT OPTION
When you grant privileges with the GRANT OPTION and later revoke these privileges, most
DBMS brands will automatically revoke all privileges derived from the original grant. Consider
again the chain of privileges in Figure 15-6, from Sam Clark, the sales vice president, to Larry
Fitch, the Los Angeles office manager, and then to Sue Smith. If Sam now revokes Larry’s
privileges for the WESTREPS view, Sue’s privilege is automatically revoked as well.

The situation gets more complicated if two or more users have granted privileges and
one of them later revokes the privileges. Consider Figure 15-8, a slight variation on the last
example. Here, Larry receives the SELECT privilege with the GRANT OPTION from both Sam
(the sales vice president) and George (the marketing vice president) and then grants
privileges to Sue. This time when Sam revokes Larry’s privileges, the grant of privileges
from George remains. Furthermore, Sue’s privileges also remain because they can be
derived from George’s grant.

FIGURE 15-8
Revoking privileges
granted by two users

1

3

GRANT
WITH GRANT OPTION

4
REVOKE

GRANT

2 GRANT
WITH GRANT OPTION

SAM

LARRY

SUE

GEORGE

 394 P a r t I V : D a t a b a s e S t r u c t u r e 394 P a r t I V : D a t a b a s e S t r u c t u r e

However, consider another variation on the chain of privileges, with the events slightly
rearranged, as shown in Figure 15-9. Here, Larry receives the privilege with the GRANT
OPTION from Sam, grants the privilege to Sue, and then receives the grant, with the GRANT
OPTION, from George. This time when Sam revokes Larry’s privileges, the results are slightly
different, and they may vary from one DBMS to another. As in Figure 15-8, Larry retains the
SELECT privilege on the WESTREPS view because the grant from George is still intact. But in
a DB2 or SQL/DS database, Sue automatically loses her SELECT privilege on the table. Why?
Because the grant from Larry to Sue was clearly derived from the grant from Sam to Larry,
which has just been revoked. It could not have been derived from George’s grant to Larry
because that grant had not yet taken place when the grant from Larry to Sue was made.

In a different brand of DBMS, Sue’s privileges might remain intact because the grant
from George to Larry remains intact. Thus, the time sequence of GRANT and REVOKE
statements, rather than just the privileges themselves, can determine how far the effects of
a REVOKE statement will cascade. Granting and revoking privileges with the GRANT OPTION
must be handled very carefully, to ensure that the results are those you intend.

Another consideration is the processing overhead required to handle the cascading
revokes. If the GRANT OPTION is overused, revokes of privileges can cause significant
performance problems.

REVOKE and the ANSI/ISO Standard
The SQL1 standard specified the GRANT statement as part of the SQL Data Definition Language
(DDL). Recall from Chapter 13 that the SQL1 standard treated the DDL as a separate, static
definition of a database and did not require that the DBMS permit dynamic changes to
database structure. This approach applies to database security as well. Under the SQL1
standard, accessibility to tables and views in the database is determined by a series of GRANT

FIGURE 15-9
Revoking privileges in
a different sequence

1

2

GRANT
WITH GRANT OPTION

4
REVOKE

GRANT

3 GRANT
WITH GRANT OPTION

SAM

LARRY

SUE

GEORGE

 C h a p t e r 1 5 : S Q L S e c u r i t y 395
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 395

statements included in the database schema. There is no mechanism for changing the security
scheme once the database structure is defined. The REVOKE statement is therefore absent from
the SQL1 standard, just as the DROP TABLE statement is missing from the standard.

Despite its absence from the SQL1 standard, the REVOKE statement was provided by
virtually all commercial SQL-based DBMS products since their earliest versions. As with the
DROP and ALTER statements, the DB2 dialect of SQL has effectively set the standard for the
REVOKE statement. Starting with SQL2, the standard includes a specification for the REVOKE
statement based on the DB2 statement with some extensions. One of the extensions gives
the user more explicit control over how privileges are revoked when the privileges have, in
turn, been granted to others. The other provides a way to revoke the GRANT OPTION
without revoking the privileges themselves.

To specify how the DBMS should handle the revoking of privileges that have been in
turn granted to others, the SQL standard supports a CASCADE or RESTRICT option in a
REVOKE statement. (A similar requirement applies to many of the DROP statements in the
SQL standard, as described in Chapter 13.) Suppose that SELECT and UPDATE privileges
have previously been granted to Larry on the ORDERS table, with the GRANT OPTION, and
that Larry has further granted these options to Bill. Then this REVOKE statement:

REVOKE SELECT, UPDATE
 ON ORDERS
 FROM LARRY CASCADE;

revokes not only Larry’s privileges, but also Bill’s. The effect of the REVOKE statement thus
cascades to all other users whose privileges have flowed from the original GRANT.

Now, assume the same circumstances and this REVOKE statement:

REVOKE SELECT, UPDATE
 ON ORDERS
 FROM LARRY RESTRICT;

In this case, the REVOKE fails. The RESTRICT option tells the DBMS not to execute the
statement if it will affect any other privileges in the database. The resulting error calls the
user’s attention to the fact that there are (possibly unintentional) side-effects of the REVOKE
statement and allows the user to reconsider the action. If the user wants to go ahead and
revoke the privileges, the CASCADE option can be specified.

The newer version of the REVOKE statement also gives a user more explicit, separate
control over privileges and the GRANT OPTION for those privileges. Suppose again that
Larry has been granted privileges on the ORDERS table, with the GRANT OPTION for those
privileges. The usual REVOKE statement for those privileges:

REVOKE SELECT, UPDATE
 ON ORDERS
 FROM LARRY;

takes away both the privileges and the ability to grant those privileges to others. The SQL2
standard permits this version of the REVOKE statement:

REVOKE GRANT OPTION FOR SELECT, UPDATE
 ON ORDERS
 FROM LARRY CASCADE;

 396 P a r t I V : D a t a b a s e S t r u c t u r e 396 P a r t I V : D a t a b a s e S t r u c t u r e

If the statement is successful, Larry will lose the ability to grant these privileges to other
users, but he will not lose the privileges themselves. As before, the SQL standard supports
the CASCADE or the RESTRICT option for specifying how the DBMS should handle the
statement if Larry has, in turn, granted the GRANT OPTION to other users.

Role-Based Security
The management of privileges on an individual user basis can be quite tedious. As a result,
the concept of roles was added to the SQL standard. Recall that a role is simply a named
collection of privileges. In most modern SQL implementations, roles can be granted to
user-ids in exactly the same way as individual privileges. Furthermore, most SQL
implementations come with predefined roles. For example, the privileges normally
required by a DBA are often provided by the DBMS vendor in a role of the same name.

Roles provide the following advantages:

• Roles can exist before user accounts do. For example, we can create a role for the
Order Processing department to use, instead of having them share the user-id
OPUSER as shown in Figure 15-2. When employees join that department, one GRANT
using the role gives them all the privileges they need to work in the department.

• Roles survive when user accounts are dropped. An administrator no longer has to
worry about losing track of access privileges when a user account (user-id) is
dropped. For example, if Sam Clark’s privileges as VP sales were assigned to him
via a role, the list of privileges would remain with the role if Sam’s account was
terminated because he was no longer with the company. The role could be easily
granted to the next person to hold the position.

• Roles promote standard privileges. When roles are used by an organization, it is
easy to ensure that people doing the same job have the same privileges.

• Roles relieve the tedium of managing privileges on an individual user basis. Many
privileges can be granted with a single command when roles are used. As privileges
are granted to or revoked from roles, those changes are immediately effective for all
users who have been granted the role.

Creating and assigning privileges via roles is very straightforward once you understand
the GRANT and REVOKE statements. Note that in Figure 15-5 the GRANT statement allows the
specification of a role-name in the TO clause instead of a user-id or the keyword PUBLIC.

 C h a p t e r 1 5 : S Q L S e c u r i t y 397
PART IV

 C h a p t e r 1 5 : S Q L S e c u r i t y 397

Similarly, a role-name can be used in the FROM clause of a REVOKE statement as shown in
Figure 15-7. Here are some examples:

Create role OPUSER to organize the privileges required by users in the Order Processing department.

CREATE ROLE OPUSER;

Assign privileges needed by all department users to the role.

GRANT SELECT, INSERT, DELETE, UPDATE
 ON ORDERS
 TO OPUSER;

GRANT SELECT
 ON CUSTOMERS
 TO OPUSER;

GRANT UPDATE (COMPANY, CUST_REP)
 ON CUSTOMERS
 TO OPUSER;

GRANT SELECT
 ON SALESREPS
 TO OPUSER;

Grant the role to Julio, Sumit, and Yolanda, the three current clerks in the Order Processing
department.

GRANT OPUSER
 TO JULIO, SUMIT, YOLANDA;

Grant UPDATE on the SALESREPS table to role OPUSER. Note that all three users currently
granted the role immediately acquire the new privilege.

GRANT UPDATE
 ON SALESREPS
 TO OPUSER;

A new employee, Francois, has joined the Order Processing department. Grant the OPUSER role to
him. Note that he immediately acquires all the privileges in the role.

GRANT OPUSER
 TO FRANCOIS;

Yolanda has transferred to another department. Revoke the OPUSER role from her account.

REVOKE OPUSER
 FROM YOLANDA;

Note that support for roles varies across SQL implementations. For example, as of this
writing, MySQL does not appear to support roles. And in Oracle, a user needs the CREATE
ROLE privilege before he or she can create new roles.

 398 P a r t I V : D a t a b a s e S t r u c t u r e

Summary
The SQL is used to specify the security restrictions for a SQL-based database:

• The SQL security scheme is built around privileges (permitted actions) that can be
granted on specific database objects (such as tables and views) to specific user-ids
(users or groups of users).

• Views also play a key role in SQL security because they can be used to restrict access
to specific rows or specific columns of a table.

• The GRANT statement is used to grant privileges; privileges that you grant to a user
with the GRANT OPTION can in turn be granted by that user to others.

• The REVOKE statement is used to revoke privileges previously granted with the
GRANT statement.

• Roles can be used to assemble lists of privileges that can be granted to or revoked
from users with a single command.

16
The System Catalog

A database management system must keep track of a great deal of information about
the structure of a database to perform its data management functions. In a relational
database, this information is typically stored in the system catalog, a collection of

system tables that the DBMS maintains for its own use. The information in the system catalog
describes the tables, views, columns, privileges, and other structural features of the database.

Although the DBMS maintains the system catalog primarily for its own internal
purposes, the system tables or views based on them are usually accessible to database
users as well, through standard SQL queries or special commands supported by the DBMS.
A relational database is thus self-describing; using queries against the system tables, you
can ask the database to describe its own structure. General-purpose database front-ends,
such as query tools and report writers, use this self-describing feature to generate lists of
tables and columns for user selection, simplifying database access.

This chapter describes the system catalogs provided by several popular SQL-based DBMS
products and the information that the catalogs contain. It also describes the system catalog
capabilities specified by the ANSI/ISO SQL standard.

What Is the System Catalog?
The system catalog is a collection of special database tables that are owned, created, and
maintained by the DBMS itself. These system tables contain data that describes the structure
of the database. The tables in the system catalog are automatically created when the
database is created. They are usually gathered under a special system user-id with a name
like SYSTEM, SYSIBM, MASTER, or DBA.

The DBMS constantly refers to the data in the system catalog while processing SQL
statements. For example, to process a two-table SELECT statement, the DBMS must

• Verify that the two named tables actually exist.

• Ensure that the user has permission to access them.

• Check whether the columns referenced in the query exist.

• Resolve any unqualified column names to one of the tables.

• Determine the data type of each column.

399

CHAPTER

 400 P a r t I V : D a t a b a s e S t r u c t u r e 400 P a r t I V : D a t a b a s e S t r u c t u r e

By storing structural information in system tables, the DBMS can use its own access
methods and logic to rapidly and efficiently retrieve the information it needs to perform
these tasks.

If the system tables were used only internally to the DBMS, they would be of little
interest to database users. However, the DBMS generally makes the system tables available
for user access as well. If the system tables themselves are not made available, the DBMS
generally provides views based on the system tables that offer a set of user-retrievable
catalog information. User queries against the system catalogs or views are almost always
permitted by personal computer and workgroup class databases. These queries are also
supported by mainframe and enterprise DBMS products, but the database administrator
may restrict system catalog access to provide an additional measure of database security.
By querying the system catalogs, you can discover information about the structure of a
database, even if you have never used it before.

User access to the system catalog is read-only. The DBMS prevents users from directly
updating or modifying the system tables because such modifications would destroy the
integrity of the database. Instead, the DBMS itself takes care of inserting, deleting, and
updating rows of the system tables as it modifies the structure of a database. Data Definition
Language (DDL) statements such as CREATE, ALTER, and DROP, and security management
statements such as GRANT and REVOKE, produce changes in the system tables as a result of
their actions. In some DBMS products, even DML statements that modify the database, such
as INSERT and DELETE, may produce changes in the system tables, which might, for example,
keep track of how many rows are in each table.

The Catalog and Query Tools
One of the most important benefits of the system catalog is that it makes possible user-
friendly query tools, such as the Query Builder tool that is part of Oracle Application
Express that comes with Oracle Express Edition, as shown in Figure 16-1. The objective
of such tools is to let users simply and transparently access the database without learning
the SQL language. Typically, a tool leads the user through a series of steps such as:

 1. The user gives a name and password for database access.

 2. The query tool displays a list of available tables.

 3. The user chooses a table, causing the query tool to display a list of the columns it
contains.

 4. The user chooses columns of interest, perhaps by clicking their names as they
appear on a PC screen.

 5. The user chooses columns from other tables or restricts the data to be retrieved with
a search condition.

 6. The query tool retrieves the requested data and displays it on the user’s screen.

A general-purpose query tool like the one in Figure 16-1 will be used by many different
people, and it will be used to access many different databases. The tool cannot possibly
know in advance the structure of the database that it will access during any given session.
Thus, it must be able to dynamically learn about the tables and columns of a database. The
tool uses system catalog queries for this purpose.

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 401
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 401

The Catalog and the ANSI/ISO Standard
The ANSI/ISO SQL1 standard does not specify the structure and contents of the system catalog.
In fact, the SQL1 standard does not require a system catalog at all. However, all of the major
SQL-based DBMS products provide a system catalog in one form or another. The structure of
the catalog and the tables it contains vary considerably from one brand of DBMS to another.

Because of the growing importance of general-purpose database tools that must access
the system catalog, the SQL standard (starting with SQL2) includes a specification of a set of
views that provide standardized access to information typically found in the system catalog.
A DBMS system that conforms to the SQL standard must support these views, which are
collectively called the INFORMATION_SCHEMA. Because this schema is more complex than
the actual system catalogs used by most commercial DBMS products, it is described in a
separate section near the end of this chapter, “The SQL Information Schema.”

Catalog Contents
Each table in the system catalog contains information about a single kind of structural
element in the database. Although the details vary, almost all commercial SQL products
include system tables that describe each of these five entities:

• Tables The tables catalog describes each table in the database, identifying its table
name, its owner, the number of columns it contains, its size, and so on.

• Columns The columns catalog describes each column in the database, giving the
column’s name, the table to which it belongs, its data type, its size, whether NULLs
are allowed, and so on.

• Users The users catalog describes each authorized database user, including the
user’s name, an encrypted form of the user’s password, and other data.

FIGURE 16-1 Oracle Query Builder, an example of a user-friendly query tool

 402 P a r t I V : D a t a b a s e S t r u c t u r e 402 P a r t I V : D a t a b a s e S t r u c t u r e

• Views The views catalog describes each view defined in the database, including
its name, the name of its owner, the query that defines the view, and so on.

• Privileges The privileges catalog describes each set of privileges granted in the
database, including the names of the grantor and grantee, the privileges granted,
the object on which the privileges have been granted, and so on.

Table 16-1 shows the names of the system tables and/or views that provide this
information in each of the major SQL-based DBMS products. (Note that MySQL supports the

DBMS Tables Columns Users Views Privileges

DB21 SCHEMATA COLUMNS DBAUTH VIEWS DBAUTH

TABLES KEYCOLUSE SCHEMAAUTH

REFERENCES COLOPTIONS TABAUTH

TABOPTIONS COLAUTH

TABDEP

Oracle2 CATALOG TAB_COLUMNS USERS VIEWS TAB_PRIVS

OBJECTS TAB_COLS COL_PRIVS

TABLES LOBS SYS_PRIVS

SYNONYMS

Informix SYSTABLES SYSCOLUMNS SYSUSERS SYSVIEWS SYSTABAUTH

SYSREFERENCES SYSDEPEND SYSCOLAUTH

SYSSYNONYMS

Sybase SYSDATABASES SYSCOLUMNS SYSUSERS SYSOBJECTS

SYSOBJECTS SYSCOMMENTS

SYSKEYS

SQL Server3 DATABASES COLUMNS DATABASE_
PRINCIPALS

OBJECTS DATABASE_
PERMISSIONS

OBJECTS FOREIGN_KEY_
COLUMNS

SQL_LOGINS VIEWS

FOREIGN_KEYS IDENTITY_
COLUMNS

REFERENCES

TABLE 16-1 Selected System Tables in Popular SQL-Based Products

1 DB2 tables have the qualifier SYSCAT (for example, SYSCAT.TABLES).
2 Oracle provides three versions of many of its catalog views, prefixed by ALL_, DBA_, or USER_ (for example, ALL_
TABLES, DBA_TABLES, and USER_TABLES). The ALL_ version shows all objects to which the current user has
access, the DBA_ version shows all objects in the entire database, and the USER_ version shows only objects owned
by the current user.

3 SQL Server catalog views have the qualifier SYS (for example, SYS.DATABASES). Starting with SQL Server 2000,
system tables were deprecated in favor of newly added catalog views.

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 403
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 403

Information Schema described later in this chapter.) The remainder of this topic describes some
typical system tables in more detail and gives examples of system catalog access. Because of the
wide variations in system catalogs among DBMS brands, a complete description of the system
catalogs and complete examples for all of the major DBMS brands is beyond the scope of this
book. With the information provided here, you should be able to consult the system
documentation for your DBMS brand and construct the appropriate system catalog queries.

Table Information
Each of the major SQL products has a system table or view that keeps track of the tables in
the database. In DB2, for example, this information is provided by a system catalog view
named SYSCAT.TABLES. (All of the DB2 system catalog views are part of a schema named
SYSCAT, so they all have qualified table/view names of the form SYSCAT.XXX.)

Table 16-2 shows some of the columns of the SYSCAT.TABLES view. It contains one row
for each table, view, or alias defined in the database. The information in this view is typical
of that provided by the corresponding views in other major DBMS products.

Column Name Data Type Information

TABSCHEMA VARCHAR(128) Schema containing the table, view, or alias

TABNAME VARCHAR(128) Name of the table, view, or alias

DEFINER VARCHAR(128) User-id of table/view/alias creator

TYPE CHAR(1) A = Alias, H = Hierarchy table, N = Nickname,
S = Materialized query, T = Table, U = Typed table,
V = View, W = Typed view

STATUS CHAR(1) The status of the object (system use). For example,
a status of “check pending” means that referential
integrity is in doubt.

DROPRULE CHAR(1) N = No rule, R = Restrict rule, applies on drop

BASE_TABSCHEMA VARCHAR(128) Schema of base table referenced by an alias

BASE_TABNAME VARCHAR(128) Name of base table referenced by an alias

ROWTYPESCHEMA VARCHAR(128) Schema name for the rowtype of this table

ROWTYPENAME VARCHAR(18) Rowtype name of this table

CREATE_TIME TIMESTAMP Time of object creation

STATS_TIME TIMESTAMP Time when last statistics computed

COLCOUNT SMALLINT Number of columns in table

TABLEID SMALLINT Internal table-id number

TBSPACEID SMALLINT ID of primary tablespace for this table

CARD INTEGER Number of rows in table (cardinality)

NPAGES INTEGER Number of disk pages containing table data

TABLE 16-2 Selected Columns of the SYSCAT.TABLES View (DB2) (continued)

 404 P a r t I V : D a t a b a s e S t r u c t u r e 404 P a r t I V : D a t a b a s e S t r u c t u r e

Column Name Data Type Information

FPAGES INTEGER Total number of disk pages for table

OVERFLOW INTEGER Number of overflow records for table

TBSPACE VARCHAR(18) Primary tablespace for storing table data

INDEX_TBSPACE VARCHAR(18) Tablespace for storing table indexes

LONG_TBSPACE VARCHAR(18) Tablespace for storing large object data

PARENTS SMALLINT Number of parent tables for this table

CHILDREN SMALLINT Number of child tables for this table

SELFREFS SMALLINT Number of self-references for this table

KEYCOLUMNS SMALLINT Number of columns in table’s primary key

KEYINDEXID SMALLINT Internal ID for primary key index

KEYUNIQUE SMALLINT Number of unique constraints for table

CHECKCOUNT SMALLINT Number of check constraints for table

DATACAPTURE CHAR(1) Whether table is replicated (Yes/No)

CONST_CHECKED CHAR(32) Constraint-checking flags

PMAP_ID SMALLINT Internal ID for table’s partitioning map

PARTITION_MODE CHAR(1) Mode for partitioned database tables

LOG_ATTRIBUTE CHAR(1) Whether logging is initially enabled for table

PCTFREE SMALLINT Percentage of page to reserve for future data

REMARKS VARCHAR(254) User-provided comments for table

TABLE 16-2 Selected Columns of the SYSCAT.TABLES View (DB2) (continued)

You can use queries like the following examples to find out information about the tables
in a DB2 database. Similar queries, using different table and column names, can be used to
obtain the same information from other DBMS brands.

List the names and owners of all tables in the database.

SELECT DEFINER, TABNAME
 FROM SYSCAT.TABLES
 WHERE TYPE = 'T';

List the names of all tables, views, and aliases in the database.

SELECT TABNAME
 FROM SYSCAT.TABLES;

List the names and creation times of only my tables.

SELECT TABNAME, CREATE_TIME
 FROM SYSCAT.TABLES
 WHERE TYPE = 'T'
 AND DEFINER = USER;

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 405
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 405

In an Oracle database, the system views named ALL_TABLES, DBA_TABLES, and
USER_TABLES, described in Table 16-3, perform a similar function to the DB2
SYSCAT.TABLES view. The ALL_TABLES view contains one row for each database table

Column Name Data Type Information

OWNER VARCHAR2(30) Owner of the table (not included in USER_TABLES)

TABLE_NAME VARCHAR2(30) Name of the table

TABLESPACE_
NAME

VARCHAR2(30) Name of the tablespace containing the table; NULL for
partitioned, temporary, and index-organized tables

CLUSTER_NAME VARCHAR2(30) Name of the cluster, if any, to which the table belongs

IOT_NAME VARCHAR2(30) Name of the index-organized table, if any, to which the
overflow or mapping table entry belongs

STATUS VARCHAR2(8) Indicates whether table is valid (VALID) or not (UNUSABLE)

PCT_FREE NUMBER Minimum percentage of free space in a block; NULL for
partitioned tables

PCT_USED NUMBER Minimum percentage of used space in a block; NULL for
partitioned tables

INI_TRANS NUMBER Initial number of transactions; NULL for partitioned tables

MAX_TRANS NUMBER Maximum number of transactions; NULL for partitioned
tables

INITIAL_EXTENT NUMBER Size of the initial extent in bytes; NULL for partitioned tables

NEXT_EXTENT NUMBER Size of secondary extents in bytes; NULL for partitioned
tables

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment;
NULL for partitioned tables

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment;
NULL for partitioned tables

NUM_ROWS NUMBER Number of rows in the table (NULL until statistics are
updated)

BLOCKS NUMBER Number of used data blocks in the table (NULL until
statistics are updated)

EMPTY_BLOCKS NUMBER Number of blocks in the table that were never used
(NULL until statistics are updated)

AVG_SPACE NUMBER Average amount of free space, in bytes, in a data block
allocated to the table

PARTITIONED VARCHAR2(3) Indicates whether the table is partitioned (YES) or not (NO)

TEMPORARY VARCHAR2(1) Indicates whether the table is temporary (Y) or not (N)

TABLE 16-3 Selected Columns of the Oracle ALL_TABLES, DBA_TABLES, and USER_TABLES Catalog Views

 406 P a r t I V : D a t a b a s e S t r u c t u r e 406 P a r t I V : D a t a b a s e S t r u c t u r e

for which the current user has been granted at least one of the access privileges. The DBA_
TABLES view includes a row for every table in the entire database. The DBA views (that is,
all the views with names that start with “DBA_”), are normally accessible only by users
who have high privilege levels in the database, such as a DBA. The USER_TABLES view
contains one row for each table owned by the current user. All three views contain the same
columns, except that the OWNER column is not included in USER_TABLES.

Here are typical queries against these Oracle system catalog views:

List the names and owners of all tables to which the current user has access.

SELECT TABLE_NAME, OWNER
 FROM ALL_TABLES;

List the names and owners of all tables in the entire database.

SELECT TABLE_NAME, OWNER
 FROM DBA_TABLES;

List the names of all tables owned by the current user.

SELECT TABLE_NAME
 FROM USER_TABLES;

The SQL Server equivalent of the DB2 SYSCAT.TABLES view is a catalog view named
SYS.OBJECTS, described in Table 16-4. The SYS.OBJECTS view stores information about
SQL Server tables and views and other SQL Server objects such as stored procedures, rules,
and triggers. Note also how the SYS.OBJECTS table uses an internal ID number
(principal_id) instead of a name to identify the table owner.

The Informix Universal Server system table that gives information about tables is
named SYSTABLES. Like the DB2 catalog, it contains information only about tables, views,
and aliases; other database objects are described in other system tables. Here is a typical
query against this Informix system table:

List the name, owner, and creation date of all tables in the database.

SELECT TABNAME, OWNER, CREATED
 FROM SYSTABLES
 WHERE TABTYPE = 'T';

As these examples show, the queries to obtain table information have a similar
structure across DBMS brands. However, the specific names of the system table(s) or
view(s) containing the information, and the relevant columns, vary considerably across
brands.

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 407
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 407

Column Information
All of the major SQL products have a system table that keeps track of the columns in the
database. There is one row in this table for each column in each table or view in the
database. Most DBMS brands restrict access to this base system table, but provide user
column information through a view that shows only columns in tables owned by, or
accessible to, the current user. In an Oracle database, three system catalog views provide
this information—USER_TAB_COLUMNS, which includes one row for each column in each
table owned by the current user; ALL_TAB_COLUMNS, which contains one row for each
column in each table accessible to the current user; and DBA_TAB_COLUMNS, which contains
one row for each column in each table in the entire database.

Most of the information in the system columns table or view stores the definition of a
column—its name, its data type, its length, whether it can take NULL values, and so on. In
addition, the table sometimes includes information about the distribution of data values
found in each column. This statistical information helps the DBMS decide how to carry out
a query in the optimal way.

Column Name Data Type Information

Name sysname Name of the object

object_id int Internal object ID number

schema_id int ID of the schema that contains the object

principal_id int ID of the individual object owner, if different than the
schema owner

parent_object_id int ID of the object to which this object belongs (0 if not a
child object)

type char(2) Object type, such as:
C = CHECK constraint
D = Default or DEFAULT constraint
F = FOREIGN KEY constraint
P = Stored procedure
PK = PRIMARY KEY constraint
S = System table
TR = Trigger
U = User table
(plus many other values)

create_date datetime Date/time object was created

modify_date datetime Date/time object was last modified

is_ms_shipped bit Whether object is created by an internal SQL Server
component or not

is_published bit Whether object is published or not

is_schema_
published

bit Whether only the schema of the object is published or not

TABLE 16-4 Columns of the SYS.OBJECTS Catalog View (SQL Server)

 408 P a r t I V : D a t a b a s e S t r u c t u r e 408 P a r t I V : D a t a b a s e S t r u c t u r e

Here is a typical query you could use to find out about the columns in an Oracle database:

List the names and data types of the columns in my OFFICES table.

SELECT COLUMN_NAME, DATA_TYPE
 FROM USER_TAB_COLUMNS
 WHERE TABLE_NAME = 'OFFICES';

Like the table information in the system catalog, the column information varies across
DBMS brands. Table 16-5 shows the contents of the SYSCAT.COLUMNS system table, which

Column Name Data Type Information

TABSCHEMA VARCHAR(128) Schema of table containing the column

TABNAME VARCHAR(128) Name of table containing the column

COLNAME VARCHAR(128) Name of the column

COLNO SMALLINT Position of column in table (first column = 0)

TYPESCHEMA VARCHAR(128) Schema of column’s domain (or SYSIBM)

TYPENAME VARCHAR(18) Name of data type or domain for column

LENGTH INTEGER Maximum data length for variable-length types

SCALE SMALLINT Scale for DECIMAL data types

DEFAULT VARCHAR(254) Default value for column

NULLS CHAR(1) Whether NULLs are allowed (Y/N)

CODEPAGE SMALLINT Code page for extended character types

LOGGED CHAR(1) Whether logging is enabled (Y/N) for large object columns

COMPACT CHAR(1) Whether large object column is compacted (Y/N)

COLCARD BIGINT Number of distinct data values (cardinality)

HIGH2KEY VARCHAR(254) Second-highest column value in table

LOW2KEY VARCHAR(254) Second-lowest column value in table

AVGCOLLEN INTEGER Average data length for variable-length types

KEYSEQ SMALLINT Column position within primary key (or 0)

PARTKEYSEQ SMALLINT Column position within partitioning key (or 0)

NQUANTILES SMALLINT Number of quantiles in column statistics

NMOSTFREQ SMALLINT Number of frequent values in column statistics

REMARKS VARCHAR(254) User-supplied comments for column

TABLE 16-5 Selected Columns in the SYSCAT.COLUMNS View (DB2)

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 409
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 409

contains column information in the DB2 catalog. Here are some queries that apply to this
DBMS brand:

Find all columns in the database with a DATE data type.

SELECT TABSCHEMA, TABNAME, COLNAME
 FROM SYSCAT.COLUMNS
 WHERE TYPESCHEMA = 'SYSIBMD' AND TYPENAME = 'DATE';

List the owner, view name, column name, data type, and length for all text columns longer than ten
characters defined in views.

SELECT DEFINER, COLS.TABNAME, COLNAME, TYPENAME, LENGTH
 FROM SYSCAT.COLUMNS COLS, SYSCAT.TABLES TBLS
 WHERE TBLS.TABSCHEMA = COLS.TABSCHEMA
 AND TBLS.TABNAME = COLS.TABNAME
 AND (TYPENAME = 'VARCHAR' OR TYPENAME = 'CHARACTER')
 AND LENGTH > 10
 AND TYPE = 'V';

The way the column definition is provided by the system catalogs of various DBMS
brands varies considerably. For comparison, Table 16-6 shows the definition of the Informix
Universal Server SYSCOLUMNS table. Some of the differences between the column
information in the tables are simply matters of style:

• The names of the columns in the two tables are completely different, even when
they contain similar data.

• The DB2 catalog uses a combination of the schema name and table name to identify
the table containing a given column; the Informix catalog uses an internal table-id
number, which is a foreign key to its SYSTABLES table.

Column Name Data Type Information

COLNAME VARCHAR(128) Name of the column

TABID INTEGER Internal table-id of table containing column

COLNO SMALLINT Position of column in table

COLTYPE SMALLINT Data type of column and whether NULLs are
allowed

COLLENGTH SMALLINT Column length in bytes

COLMIN INTEGER Minimum column length in bytes

COLMAX INTEGER Maximum column length in bytes

EXTENDED_ID INTEGER Internal ID of extended data type

SECLABLID INTEGER For projected columns, the label ID of the
column’s security label

TABLE 16-6 The SYSCOLUMNS Table (Informix)

 410 P a r t I V : D a t a b a s e S t r u c t u r e 410 P a r t I V : D a t a b a s e S t r u c t u r e

• The DB2 catalog specifies data types in text form (for example, CHARACTER); the
Informix catalog uses integer data type codes.

 Other differences reflect the different capabilities provided by the two DBMS brands:

• DB2 allows you to specify up to 254 characters of remarks about each column;
Informix does not provide this feature.

• The Informix system table keeps track of the minimum and maximum length of
actual data values stored in a variable-length column; this information is not
available directly from the DB2 system catalog.

View Information
The definitions of the views in a database are usually stored by the DBMS in the system
catalog. The DB2 catalog contains two system tables that keep track of views. The SYSCAT.
VIEWS table, described in Table 16-7, contains the SQL text definition of each view. Older
versions of DB2 supported SQL text up to 3600 characters, and definitions exceeding that
size were stored in multiple rows, with sequence numbers 1, 2, 3, and so on. Newer versions
of DB2 use a CLOB column that accommodates view definitions up to 64K in size, so only
one row in the SYSCAT.VIEWS table is required for each view.

Column Name Data Type Information

VIEWSCHEMA VARCHAR(128) Schema containing the view

VIEWNAME VARCHAR(128) Name of the view

DEFINER VARCHAR(128) User-id of person who created the view

SEQNO SMALLINT Sequence number for this row of SQL text (always 1 for
DB2 UDB)

VIEWCHECK CHAR(1) Type of view checking:
N = No check option
L = Local check option
C = Cascaded check option

READONLY CHAR(1) Whether view is read-only (Y/N)

VALID CHAR(1) Whether view definition is valid (Y/N)

QUALIFIER VARCHAR(128) Name of the default schema at the time the object was
defined

FUNC_PATH VARCHAR(254) Path for resolving function calls in view

TEXT CLOB(64K) SQL text of view definition (“SELECT…”); data type
VARCHAR(3600) in older versions of DB2

TABLE 16-7 The SYSCAT.VIEWS View (DB2)

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 411
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 411

Using this table, you can see the definitions of the views in the database. As with many
mainstream DBMS products, information about views is tightly linked to the information
about tables in the DB2 catalog. This means you often have more than one way to find the
answer to a catalog inquiry. For example, here is a direct query against the DB2 VIEWS
system table to obtain the names and creators of all views defined in the database:

List the views defined in the database.

SELECT DISTINCT VIEWSCHEMA, VIEWNAME, DEFINER
 FROM SYSCAT.VIEWS;

Note the use of DISTINCT to eliminate duplicate rows that would be present for views
with long text definitions in older versions of DB2. Perhaps an easier way to obtain the
same information is to query the DB2 TABLES system table directly, selecting only rows
representing views, as indicated by the TYPE value:

List the views defined in the database.

SELECT TABSCHEMA, TABNAME, DEFINER
 FROM SYSCAT.TABLES
 WHERE TYPE = 'V';

Most of the major DBMS products treat views in this same way within their system
catalog structure. Informix Universal Server, for example, has a system table named
SYSVIEWS that contains view definitions. Each of its rows holds a 64-character chunk of the
SQL SELECT statement that defines a view. View definitions that span multiple rows are handled
by sequence numbers, as with DB2. The Informix SYSVIEWS table includes only one other
column—the table-id that links the SYSVIEWS table to the corresponding row in the SYSTABLES
table. Thus, Informix duplicates less information between the SYSTABLES and SYSVIEWS tables,
but you must explicitly join the tables for the most common view information requests.

Oracle takes a similar approach by making the SQL text that defines a view available via
system views. As with table and column information, three system views are of interest:
USER_VIEWS, which contains information about all views created and owned by the current
user; ALL_VIEWS, which contains information about views accessible to the current user; and
DBA_VIEWS, which contains information about all the views in the database. The SQL text
defining the view is held in a LONG (Oracle proprietary large text object data type) column
and can conceivably run to many thousands of characters. A length column tells the length of
the stored SQL text definition of the view. Here is a query to obtain Oracle view information:

List the current user’s views and their definitions.

SELECT VIEW_NAME, TEXT_LENGTH, TEXT
 FROM USER_VIEWS;

Note that most interactive SQL products (including Oracle’s) truncate the displayed text
containing the view definition if it is too long to be displayed effectively. The actual text
stored in the database is complete.

 412 P a r t I V : D a t a b a s e S t r u c t u r e 412 P a r t I V : D a t a b a s e S t r u c t u r e

Remarks
IBM’s DB2 products allow you to associate up to 254 characters of remarks with each table,
view, and column defined in the database. The remarks allow you to store a brief
description of the table or data item in the system catalog. The remarks are stored in the
SYSCAT.TABLES and SYSCAT.COLUMNS system tables of the system catalog. Unlike the
other elements of table and column definitions, the remarks and labels are not specified by
the CREATE TABLE statement. Instead, the COMMENT statement is used. Its syntax is shown
in Figure 16-2. Here are some examples:

Define remarks for the OFFICES table.

COMMENT ON TABLE OFFICES
 IS 'This table stores data about our sales offices';

Associate some remarks with the TARGET and SALES columns of the OFFICES table.

COMMENT ON OFFICES
(TARGET IS 'This is the annual sales target for the office',
 SALES IS 'This is the year-to-date sales for the office');

Because this is a capability carried forward from some of the earliest IBM SQL products,
Oracle also supports the COMMENT ON statement for attaching comments to tables and
columns. The comments are not stored inline with other table and column information,
however. They are accessible via the Oracle system views USER_TAB_COMMENTS and
USER_COL_COMMENTS. The DB2 COMMENT capability has been expanded over the years to
allow comments on constraints, stored procedures, schemas, tablespaces, triggers, and other
DB2 database objects. This capability is not part of the SQL standard and has generally not
been adopted by other major DBMS products.

FIGURE 16-2 The DB2 COMMENT statement syntax diagrams

COMMENT ON TABLE table-name IS comment-text

COLUMN qualified column-name

table-name column-name IS comment-text()

LABEL ON TABLE table-name IS label-text

COLUMN qualified column-name

table-name column-name IS label-text()

,

,

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 413
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 413

Relationship Information
With the introduction of referential integrity into the major enterprise DBMS products
during the mid-1990s, system catalogs were expanded to describe primary keys, foreign
keys, and the parent/child relationships that they create. In DB2, which was among the first
to support referential integrity, the description is provided by the SYSCAT.REFERENCES
system catalog table, described in Table 16-8. Every parent/child relationship between two
tables in the database is represented by a single row in the SYSCAT.REFERENCES table. The
row identifies the names of the parent and child tables, the name of the relationship, and the
delete and update rules for the relationship. You can query it to find out about the
relationships in the database:

List all of the parent/child relationships among my tables, showing the name of the relationship, the
name of the parent table, the name of the child table, the delete rule, and the update rule for each one.

SELECT CONSTNAME, REFTABNAME, TABNAME, DELETERULE, UPDATERULE
 FROM SYSCAT.REFERENCES
 WHERE DEFINER = USER;

Column Name Data Type Information

CONSTNAME VARCHAR(128) Name of constraint described by this row

TABSCHEMA VARCHAR(128) Schema containing the constraint

TABNAME VARCHAR(128) Table to which constraint applies

OWNER VARCHAR(128) Creator of table to which constraint applies

REFKEYNAME VARCHAR(128) Name of parent key

REFTABSCHEMA VARCHAR(128) Schema containing parent table

REFTABNAME VARCHAR(128) Name of parent table

COLCOUNT SMALLINT Number of columns in the foreign key

DELETERULE CHAR(1) Delete rule for foreign key constraint (A = no action,
C = cascade, R = restrict, and so on)

UPDATERULE CHAR(1) Update rule for foreign key constraint (A = no action,
R = restrict)

CREATE_TIME TIMESTAMP Creation time of constraint

FK_COLNAMES VARCHAR(640) Names of foreign key columns

PK_COLNAMES VARCHAR(640) Names of primary key columns

DEFINER VARCHAR(128) Authorization ID under which constraint was created

TABLE 16-8 The SYSCAT.REFERENCES View (DB2)

 414 P a r t I V : D a t a b a s e S t r u c t u r e 414 P a r t I V : D a t a b a s e S t r u c t u r e

List all of the tables related to the SALESREPS table as either a parent or a child.

SELECT REFTABNAME
 FROM SYSCAT.REFERENCES
 WHERE TABNAME = 'SALESREPS'
UNION
SELECT TABNAME
 FROM SYSCAT.REFERENCES
 WHERE REFTABNAME = 'SALESREPS';

The names of the foreign key columns and the corresponding primary key columns are
listed (as text) in the FK_COLNAMES and PK_COLNAMES columns of the REFERENCES system
table. A second system table, SYSCAT.KEYCOLUSE, shown in Table 16-9, provides a somewhat
more useful form of the information. There is one row in this system table for each column in
each foreign key, primary key, or uniqueness constraint defined in the database. A sequence
number defines the order of the columns in a compound key. You can use this system table to
find out the names of the columns that link a table to its parent, by using a query like this one:

List the columns that link ORDERS to PRODUCTS in the relationship named ISFOR.

SELECT COLNAME, COLSEQ
 FROM SYSCAT.KEYCOLUSE
 WHERE CONSTNAME = 'ISFOR'
 ORDER BY COLSEQ;

The primary key of a table and the parent/child relationships in which it participates
are also summarized in the SYSCAT.TABLES and SYSCAT.COLUMNS system tables, shown
previously in Tables 16-2 and 16-5. If a table has a primary key, the KEYCOLUMNS column in
its row of the SYSCAT.TABLES system table is nonzero and tells how many columns make
up the primary key (one for a simple key and two or more for a composite key). In the
SYSCAT.COLUMNS system table, the rows for the columns that make up the primary key
have a nonzero value in their KEYSEQ column. The value in this column indicates the
position (1, 2, and so on) of the primary key column within the primary key.

Column Name Data Type Information

CONSTNAME VARCHAR(128) Name of constraint (unique, primary key, or foreign key)
described by this row

TABSCHEMA VARCHAR(128) Schema containing the constraint

TABNAME VARCHAR(128) Table to which constraint applies

COLNAME VARCHAR(128) Name of column in the constraint

COLSEQ SMALLINT Position of column within the constraint (first column = 1)

TABLE 16-9 The SYSCAT.KEYCOLUSE View (DB2)

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 415
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 415

You can query the SYSCAT.COLUMNS table to find a table’s primary key:

List the columns that form the primary key of the PRODUCTS table.

SELECT COLNAME, KEYSEQ, TYPENAME, REMARKS
 FROM SYSCAT.COLUMNS
 WHERE TABNAME = 'PRODUCTS'
 AND KEYSEQ > 0
 ORDER BY KEYSEQ;

The DB2 catalog support for primary and foreign keys is typical of that found in other
major SQL products. The Oracle system ALL_CONSTRAINTS and USER_CONSTRAINTS
views, for example, provide the same information as the DB2 SYSCAT.REFERENCES
system table. Information about the specific columns that make up a foreign key or primary
key appears in the Oracle ALL_CONS_COLUMNS and USER_CONS_COLUMNS system views,
which are analogous to the DB2 SYSCAT.KEYCOLUSE system table. Microsoft SQL Server
has a similar catalog structure, with foreign key information divided between the SYS.
FOREIGN_KEYS and SYS.FOREIGN_KEY_COLUMNS catalog views.

Informix Universal Server takes a similar approach to the DB2 catalog, but with the
same types of differences previously illustrated in its table information and column
information support. Each constraint defined within the database generates one row in the
Informix SYSCONSTRAINTS system table, which defines the name of the constraint and its
type (check constraint, primary key, referential, and so on). This system table also assigns an
internal constraint-id number to identify the constraint within the catalog. The table to
which the constraint applies is also identified by table-id (which serves as a foreign key to
the SYSTABLES system table).

Further information about the referential constraints (foreign keys) is contained in a
SYSREFERENCES system table. Again in this table, the constraint, the primary key, and the
parent table are identified by internal IDs that link the foreign key information to the
SYSCONSTRAINTS and SYSTABLES system tables. The SYSREFERENCES table contains
information about the delete rule and update rule that apply to the foreign key relationship
and similar information.

User Information
The system catalog generally contains a table that identifies the users who are authorized to
access the database. The DBMS may use this system table to validate the user name and
password when a user first attempts to connect to the database. The table may also store
other data about the user.

SQL Server stores user information in its SYS.DATABASE_PRINCIPALS catalog view,
shown in Table 16-10. Each row of this table describes a single user or user group in the SQL
Server security scheme. Informix takes a similar approach, with a system table that is also

 416 P a r t I V : D a t a b a s e S t r u c t u r e 416 P a r t I V : D a t a b a s e S t r u c t u r e

called SYSUSERS. The corresponding Oracle table is called DBA_USERS. Following are two
equivalent queries that list the authorized users for SQL Server and Oracle:

List all the user-ids known to a SQL Server database.

SELECT NAME
 FROM SYS.DATABASE_PRINCIPALS;

List all the user-ids known to Oracle.

SELECT USERNAME
 FROM DBA_USERS;

The DB2 system catalog table that contains user names also contains the information
about their roles and privileges within the database (that is, whether they are a database
administrator, whether they can create tables, whether they can create programs that access

Column Name Data Type Information

name sysname Name of the principal, unique within the database

principal_id int ID of the principal, unique within the database

type char(1) Principal type:
S = SQL user
U = Windows user
G = Windows group
A = Application role
R = Database role
C = User mapped to a certificate
K= User mapped to an asymmetric key

type_desc nvarchar(60) Description of principal type

default_schema_name sysname Name to be used when SQL name does not
specify a schema

create_date datetime Date and time when the principal was created

modify_date datetime Date and time when the principal was last
modified

owning_principal_id int ID of the principal that owns this principal

sid varbinary(85) Security identifier (SID) if the principal is defined
external to the database (types S, U, and G)

is_fixed_role bit If 1, then row represents an entry for one of the
fixed roles such as db_owner

TABLE 16-10 Columns of the SYS.DATABASE_PRINCIPALS Catalog View (SQL Server)

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 417
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 417

the database). Here is the equivalent query to the preceding queries for retrieving user
names from the DB2 catalog:

List all the user-ids known to DB2.

SELECT DISTINCT GRANTEE
 FROM SYSCAT.DBAUTH
 WHERE GRANTEETYPE = 'U';

Privileges Information
In addition to storing database structure information, the system catalog generally stores the
information required by the DBMS to enforce database security. As described in Chapter 15,
various DBMS products offer different variations on the basic SQL privileges scheme. These
variations are reflected in the structure of the system catalogs for the various DBMS brands.

DB2 has one of the most comprehensive schemes for user privileges, extending down to
the individual columns of a table. Table 16-11 shows the DB2 system catalogs that store
information about privileges and briefly describes the role of each one.

The authorization scheme used by SQL Server is more fundamental and streamlined
than that of DB2. It treats databases, tables, stored procedures, triggers, and other entities
uniformly as objects to which privileges apply. This streamlined structure is reflected in the
catalog view, SYS.DATABASE_PERMISSIONS, shown in Table 16-12, which implements the
entire privileges scheme for a SQL Server database. Each row in the table represents a single
GRANT or REVOKE statement that has been issued.

System Table Role

TABAUTH Implements table-level privileges by telling which users have permissions to
access which tables and for which operations (SELECT, INSERT, DELETE,
UPDATE, ALTER, and INDEX)

COLAUTH Implements column-level privileges by telling which users have permission to
update or to reference which columns of which tables

DBAUTH Determines which users have permission to connect to the database, to create
tables, and to perform various database administration functions

SCHEMAAUTH Implements schema-level privileges by telling which users have permission to
create, drop, or alter objects (tables, views, domains, and so on) within a schema

INDEXAUTH Implements index-level privileges by telling which users have control privileges
over various indexes

PACKAGEAUTH Implements programmatic access privileges by telling which users have the ability to
control, bind (create), and execute various database access programs (“packages”)

TABLE 16-11 DB2 System Catalog Views that Implement Permissions

 418 P a r t I V : D a t a b a s e S t r u c t u r e 418 P a r t I V : D a t a b a s e S t r u c t u r e

Column Name Data Type Information

class tinyint Class on which permission exists
O = Database
1 = Object or column
3 = Schema
4 = Database principal
5 = Assembly
6 = Type
10 = XML schema collection
15 = Message type
16 = Service contract
17 = Service
18 = Remote service binding
19 = Route
23 = Full-text catalog
24 = Symmetric key
25 = Certificate
26 = Asymmetric key

class_desc nvarchar(60) Description of class on which permission exists

major_id int ID of thing on which permission exists

minor_id int Secondary ID of thing on which permission exists

grantee_
principal_id

int Database principal ID to which the permission is granted

grantor_
principal_id

int Database principal ID of the grantor of the permission

type char(4) Database permission type

permission_name sysname Name of the permission

state char(1) State of the permission

state_desc nvarchar(60) Description of permission state

TABLE 16-12 Columns of the SYS.DATABASE_PERMISSIONS Table (SQL Server)

The SQL Information Schema
The SQL standard does not directly specify the structure of a system catalog that must be
supported by DBMS implementations. In practice, given the widely differing features
supported by different DBMS brands and the major differences in the system catalogs that
were already being used by commercial SQL products when the SQL2 standard was adopted,
it would have been impossible to reach an agreement on a standard catalog definition. Instead,
the writers of the SQL standard defined an idealized system catalog that a DBMS vendor might
design if it were building a DBMS to support the SQL standard from scratch. Since MySQL was
developed after the SQL Information Schema was added to the SQL standard, it was built to
conform to the standard. Microsoft added a number of views compliant with the SQL
Information Schema to SQL Server 2008. More vendors are likely to follow.

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 419
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 419

The tables in this idealized system catalog (called the definition schema in the standard)
are summarized in Table 16-13.

System Table Contents

ASSERTIONS One row for each assertion

AUTHORIZATIONS One row for each role name and one row for each authorization
identifier

CHARACTER_SETS One row for each character set descriptor

CHECK_COLUMN_USAGE One row for each column referenced by a check constraint, domain
constraint, or assertion

CHECK_CONSTRAINTS One row for each domain constraint, table check constraint, and
assertion

CHECK_TABLE_USAGE One row for each table referenced in the search condition of a check
constraint, domain constraint, or assertion

COLLATIONS One row for each character collation descriptor

COLUMN_PRIVILEGES One row for each column privilege descriptor

COLUMNS One row for each column in each table or view definition

DATA_TYPE_DESCRIPTOR One row for each domain or column defined with a data type

DOMAIN_CONSTRAINTS One row for each domain constraint

DOMAINS One row for each domain

KEY_COLUMN_USAGE One or more rows for each row in the TABLE_CONSTRAINTS table
that participates in a unique, primary key, or foreign key constraint

REFERENTIAL_
CONSTRAINTS

One row for each row in the TABLE_CONSTRAINTS table that
participates in a foreign key constraint

SCHEMATA One row for each schema

TABLE_CONSTRAINTS One row for each table constraint specified in a table definition

TABLE_PRIVILEGES One row for each table privilege

TABLES One row for each table or view

TRIGGER_COLUMN_USAGE One row for each column referenced by a trigger

TRIGGER_TABLE_USAGE One row for each table referenced by a trigger

TRIGGERS One row for each trigger

USAGE_PRIVILEGES One row for each usage privilege descriptor

USER_DEFINED_TYPES One row for each user-defined type

VIEW_COLUMN_USAGE One row for each column referenced by a view

VIEW_TABLE_USAGE One row for each table referenced in each view definition (if a view is
defined by a query on multiple tables, there will be a row for each table)

VIEWS One row for each table or view

TABLE 16-13 Selected Tables from the SQL Standard’s Definition Schema

 420 P a r t I V : D a t a b a s e S t r u c t u r e 420 P a r t I V : D a t a b a s e S t r u c t u r e

The SQL standard does not require a DBMS to actually support the system catalog
tables it describes, or any system catalog at all. Instead, it defines a series of views on these
catalog tables that identify database objects that are accessible to the current user. (These
catalog views are called an Information Schema in the standard.) Any DBMS that claims the
Intermediate or Full conformance level to the SQL standard must support these views. This
effectively gives a user a standardized way to find out about the objects in the database that
are available to him or her by issuing standard SQL against the catalog views. Note that
support for the catalog views is not required for the Entry conformance level to the SQL
standard.

In practice, major commercial SQL implementations have been slowly moving to
support the SQL Information Schema, typically by defining corresponding views on the tables
in their own system catalogs. In most cases, the information in the DBMS’ own system
catalogs is similar enough to that required by the standard, so that the first 90 percent of the
conformance to the SQL standard is relatively easy. The last 10 percent has proven to be much
more difficult, given the variations among DBMS brands and the degree to which even the
SQL catalog views expose the specific features and capabilities of the underlying DBMS.

As a result, full support for the SQL catalog views has usually been implemented in
conjunction with a major new version of a DBMS product, accompanied by underlying
changes in the core of the DBMS software. The catalog views required by the SQL standard
are summarized in Table 16-14, along with a brief description of the information contained
in each view. Here are some sample queries that can be used to extract information about
database structure from the SQL-defined system catalog views:

List the names of all tables and views owned by the current user.

SELECT TABLE_NAME
 FROM TABLES;

List the name, position, and data type of all columns in all views.

SELECT TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION, DATA_TYPE
 FROM COLUMNS
 WHERE (COLUMNS.TABLE_NAME IN
 (SELECT TABLE_NAME FROM VIEWS));

Determine how many columns are in the table named OFFICES.

SELECT COUNT(*)
 FROM COLUMNS
 WHERE (TABLE_NAME = 'OFFICES');

Note that for MySQL, the view names must be qualified with schema name
INFORMATION_SCHEMA (for example, INFORMATION_SCHEMA.TABLES) unless you are
already in that database. For example:

SELECT TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES;

The standard also defines four domains that are used by the catalog views and that also
are available to users. These domains are summarized in Table 16-15.

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 421
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 421

System Catalog View Contents

ADMINISTRATIVE_
ROLE_
AUTHORIZATIONS

One row for each role authorization that includes WITH ADMIN OPTION

APPLICABLE_ROLES One row for each applicable role for the current user

ASSERTIONS One row for each assertion owned by the current user, specifying its
name and its deferability

ATTRIBUTES One row for each user-defined type defined in the catalog

CHARACTER_SETS One row for each character set definition accessible to the current user

CHECK_CONSTRAINT_
ROUTINE_USAGE

One row for each SQL-invoked routine owned by the current user on
which a domain constraint, table check constraint, or assertion is
dependent

CHECK_CONSTRAINTS One row for each check constraint for a table owned by the current user

COLLATIONS One row for each collation definition accessible to the current user

COLLATION_
CHARACTER_
SET_APPLICABILITY

One row for each character set to which a collation is applicable

COLUMN_COLUMN_USAGE One row for each generated column that depends on a base column

COLUMN_DOMAIN_USAGE One row for each column defined as dependent on a domain

COLUMN_PRIVILEGES One row for each privilege on a column granted to or by the current user
specifying the table and the column, the type of privilege, the grantor
and grantee, and whether the privilege is grantable by the current user

COLUMN_UDT_USAGE One row for each column that is dependent on a user-defined type

COLUMNS One row for each column accessible to the current user specifying
its name, the table or view that contains it, its data type, precision,
scale, character set, and so on

CONSTRAINT_COLUMN_
USAGE

One row for each column referenced in each check constraint,
uniqueness constraint, foreign key definition, and assertion owned by
the current user

CONSTRAINT_TABLE_
USAGE

One row for each table referenced in each check constraint, uniqueness
constraint, foreign key definition, and assertion owned by the current user

DATA_TYPE_
PRIVILEGES

One row for each schema object that includes a data type descriptor
accessible to a given user or role

DIRECT_SUPERTABLES One row for each direct supertable related to a table defined in this
catalog and owned by a given user or role

DIRECT_SUPERTYPES One row for each direct supertype related to a user-defined type that
is defined in this catalog and owned by a given user or role

DOMAIN_CONSTRAINTS One row for each domain constraint specifying the name of the
constraint and its deferability characteristics

TABLE 16-14 Catalog Views Mandated by the SQL Standard (continued)

 422 P a r t I V : D a t a b a s e S t r u c t u r e 422 P a r t I V : D a t a b a s e S t r u c t u r e

System Catalog View Contents

DOMAINS One row for each domain accessible by the current user specifying
the name of the domain, the underlying data type, character set,
maximum length, scale, precision, and so on

ELEMENT_TYPES One row for each element type defined in this catalog that is
accessible to a given user or role

ENABLED_ROLES One row for each role enabled for the current SQL session

FIELDS One row for each field type defined in this catalog that is accessible to
a given user or role

INFORMATION_SCHEMA_
CATALOG_NAME

A single row specifying the name of the database for each user
(“catalog” in the language of the SQL standard) described by this
Information Schema

KEY_COLUMN_USAGE One row for each column specified in each primary key, each foreign
key, and each uniqueness constraint in a table owned by the current
user, specifying the column and table names, and the position of the
column in the key

METHOD_
SPECIFICATION_
PARAMETERS

One row for each SQL parameter of method specifications defined in
the METHOD_SPECIFICATIONS view

METHOD_
SPECIFICATIONS

One row for each SQL-invoked method in the catalog that is accessible
to a given user or role

PARAMETERS One row for each SQL parameters of SQL-invoked routines defined in
this catalog that is accessible to a given user or role

REFERENCED_TYPES One row per referenced type defined in this catalog that is accessible
to a given user or role

REFERENTIAL_
CONSTRAINTS

One row for each referential constraint (foreign key definition) for a
table owned by the current user specifying the names of the constraint
and the child and parent tables

ROLE_COLUMN_GRANTS One row for each privilege on a column defined in this catalog that is
available to or granted by the currently enabled roles

ROLE_ROUTINE_GRANTS One row for each privilege on a SQL-invoked routine defined in this
catalog that is available to or granted by the currently enabled roles

ROLE_TABLE_GRANTS One row for each privilege on a table defined in this catalog that is
available to or granted by the currently applicable roles

ROLE_TABLE_METHOD_
GRANTS

One row for each privilege on a method defined on tables of
structured types defined in this catalog that is available to or granted
by the currently enabled roles

ROLE_USAGE_GRANTS One row for each USAGE privilege defined in this catalog that is
available to or granted by the currently enabled roles

TABLE 16-14 Catalog Views Mandated by the SQL Standard (continued)

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 423
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 423

System Catalog View Contents

ROLE_UDT_GRANTS One row for each privilege on user-defined types defined in this
catalog that are available to or granted by the currently enabled roles

ROUTINE_COLUMN_
USAGE

One row for each column owned by a given user or role on which SQL
routines defined in this catalog are dependent

ROUTINE_PRIVILEGES One row for each privilege on SQL-invoked routines defined in this
catalog that is available to or granted by the currently enabled roles

ROUTINE_ROUTINE_
USAGE

One row for each SQL-invoked routine owned by a given user or role on
which a SQL routine defined in this catalog is dependent

ROUTINE_SEQUENCE_
USAGE

One row for each external sequence generator owned by a given user
or role on which an SQL routine defined in this catalog is dependent

ROUTINE_TABLE_USAGE One row for each table owned by a given user or role on which a SQL
routine defined in this catalog is dependent

ROUTINES One row for each SQL-invoked routine in this catalog that is accessible
to a given user or role

SCHEMATA One row for each schema in the database that is owned by the current
user specifying the schema name, default character set, and so on

SEQUENCES One row for each external sequence generator defined in this catalog
that is accessible to a given user or role

SQL_FEATURES One row for each feature and subfeature of the SQL standard,
indicating whether it is supported by the SQL implementation

SQL_IMPLEMENTATION_
INFO

One row for each SQL implementation information item defined
in the SQL standard, indicating the value supported by the SQL
implementation

SQL_LANGUAGES One row for each language (i.e., COBOL, C, and so on) supported
by this DBMS brand, specifying its level of conformance to the SQL
standard, the type of SQL supported, and so on

SQL_PACKAGES One row per each package of the SQL standard, indicating whether it
is supported by the SQL implementation

SQL_PARTS One row per part of the SQL standard, indicating whether it is
supported by the SQL implementation

SQL_SIZING One row per sizing item defined in the SQL standard, indicating the
size supported by the SQL implementation

SQL_SIZING_PROFILES One row per sizing item defined in the SQL standard, indicating the
size required by one or more profiles of the standard

TABLE_CONSTRAINTS One row for each table constraint (primary key, foreign key,
uniqueness constraint, or check constraint) specified on a table
owned by the current user, specifying the name of the constraint, the
table, the type of constraint, and its deferability

TABLE 16-14 Catalog Views Mandated by the SQL Standard (continued)

 424 P a r t I V : D a t a b a s e S t r u c t u r e 424 P a r t I V : D a t a b a s e S t r u c t u r e

System Catalog View Contents

TABLE_METHOD_
PRIVILEGES

One row for each privilege on methods defined on tables of structured
types defined in catalogs that are available to or granted by a given
user or role

TABLE_PRIVILEGES One row for each privilege on a table granted to or by the current
user specifying the table type, the type of privilege, the grantor and
grantee, and whether the privilege is grantable by the current user

TABLES One row for each table or view accessible to the current user
specifying its name and type (table or view)

TRANSFORMS One row per transform on user-defined types defined in this catalog
that is accessible to a given user or role

TRANSLATIONS One row for each translation definition accessible to the current user

TRIGGERED_UPDATE_
COLUMNS

One row for each column in this catalog that is an explicit UPDATE
trigger event column of a trigger defined in this catalog that is
accessible to a given user or role

TRIGGER_COLUMN_
USAGE

One row per column on which triggers defined in this catalog and
owned by a given user are dependent

TRIGGER_ROUTINE_
USAGE

One row per SQL-invoked routine owned by a given user or role on
which a trigger defined in this catalog is dependent

TRIGGER_SEQUENCE_
USAGE

One row for each external sequence generator owned by a given user
or role on which some trigger defined in this catalog is dependent

TRIGGER_TABLE_USAGE One row per table on which a trigger defined in this catalog and owned
by a given user or role is dependent

TRIGGERS One row for each trigger defined on tables in this catalog that is
accessible to a given user or role

UDT_PRIVILEGES One row per privilege on user-defined types in this catalog that is
accessible to or granted by a given user or role

USAGE_PRIVILEGES One row for each usage granted to or by the current user

USER_DEFINED_TYPES One row per user-defined type defined in this catalog that is
accessible to a given user or role

VIEW_COLUMN_USAGE One row for each column referenced by a view owned by the current
user, specifying its name and the table containing it

VIEW_ROUTINE_USAGE One row for each routine owned by a given user or role on which a
view defined in this catalog is dependent

VIEW_TABLE_USAGE One row for each table referenced in each view definition owned by
the current user, specifying the name of the table

VIEWS One row for each view accessible to the current user specifying its
name, check option, and updateability

TABLE 16-14 Catalog Views Mandated by the SQL Standard (continued)

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 425
PART IV

 C h a p t e r 1 6 : T h e S y s t e m C a t a l o g 425

Other Catalog Information
The system catalog is a reflection of the capabilities and features of the DBMS that uses it.
Because of the many SQL extensions and additional features offered by popular DBMS
products, their system catalogs always contain several tables unique to the DBMS. Here are
just a few examples:

• DB2 and Oracle support aliases and synonyms (alternate names for tables). DB2
stores alias information with other table information in the SYSCAT.TABLES system
table. Oracle makes synonym information available through its DBA_SYNONYMS
system view.

• SQL Server supports multiple named databases. It has a catalog view called SYS.
DATABASES that identifies the databases managed by a single server.

• Many DBMS brands now support stored procedures, and the catalog contains one
or more tables that describe them. Sybase stores information about stored
procedures in its SYSPROCEDURES system table.

• Ingres supports tables that are distributed across several disk volumes. Its
IIMULTI_LOCATIONS system table keeps track of the locations of multivolume
tables.

System Domain Values

CARDINAL_NUMBER The domain of all nonnegative numbers, from zero up to the maximum
number represented by an INTEGER for this DBMS. A value drawn from this
is zero or a legal positive number.

CHARACTER_DATA The domain of all variable-length character strings with a length between
zero and the maximum length supported by this DBMS. A value drawn from
this domain is a legal character string.

SQL_IDENTIFIER The domain of all variable-length character strings that are legal SQL
identifiers under the SQL standard. A value drawn from this domain is a legal
table name, column name, and so forth.

TIME_STAMP The domain of all timestamps, each of which includes a date and a time of day.

TABLE 16-15 Domains Described in the SQL Standard

 426 P a r t I V : D a t a b a s e S t r u c t u r e

Summary
The system catalog is a collection of system tables that describe the structure of a relational
database:

• The DBMS maintains the data in the system tables, updating it as the structure of
the database changes.

• A user can query the system tables to find out information about tables, columns,
and privileges in the database.

• Front-end query tools use the system tables to help users navigate their way
through the database in a user-friendly way.

• The names and organization of the system tables differ widely from one brand of
DBMS to another; there even are differences among different DBMS products from
the same vendor, reflecting the different internal structures and capabilities of the
products.

• The SQL standard does not require that a DBMS actually have a set of system
catalog tables, but it does define a set of standard catalog views for products that
claim higher levels of SQL conformance.

V
Programming with SQL

In addition to its role as an interactive data access language, SQL
supports database access by application programs. Chapters 17–19
describe the special SQL features and techniques that apply to

programmatic SQL. Chapter 17 describes embedded SQL, the oldest
programmatic SQL technique, and one still supported by many
SQL products. Dynamic SQL, an advanced form of embedded SQL
that is used to build general-purpose database tools, is described in
Chapter 18. Chapter 19 describes an alternative to embedded
SQL—the function call interface provided by several popular DBMS
products, which has been gaining in popularity.

CHAPTER 17
Embedded SQL

CHAPTER 18
Dynamic SQL*

CHAPTER 19
SQL APIs

PART

This page intentionally left blank

17
Embedded SQL

SQL is a dual-mode language. It is both an interactive database language used for ad hoc
queries and updates, and a programmatic database language used by application
programs for database access. For the most part, the SQL language is identical in both

modes. The dual-mode nature of SQL has several advantages:

• It is relatively easy for programmers to learn how to write programs that access the
database.

• Capabilities available through the interactive query language are also automatically
available to application programs.

• The SQL statements to be used in a program can be tried first using interactive SQL
and then can be coded into the program.

• Programs can work with tables of data and query results instead of navigating their
way through the database.

This chapter summarizes the types of programmatic SQL offered by the leading
SQL-based products and then describes the programmatic SQL used by the IBM SQL
products, which is called embedded SQL.

Programmatic SQL Techniques
SQL is a language and can be used programmatically, but it would be incorrect to call SQL
a programming language. SQL lacks even the most primitive features of real programming
languages. It has no provision for declaring variables, no GOTO statement, no IF statement
for testing conditions, no FOR, DO, or WHILE statements to construct loops, no block
structure, and so on. SQL is a database sublanguage that handles special-purpose database
management tasks. To write a program that accesses a database, you must start with a
conventional programming language such as COBOL, PL/I, FORTRAN, Pascal, C, C++, or
Java, or a scripting language such as Perl, PHP, or Ruby, and then add SQL to the program.

429429

CHAPTER

 430 P a r t V : P r o g r a m m i n g w i t h S Q L 430 P a r t V : P r o g r a m m i n g w i t h S Q L

The initial ANSI/ISO SQL standard was concerned exclusively with this programmatic
use of SQL. In fact, the standard did not even include the interactive SELECT statement
described in Chapters 6 through 9. It only specified the programmatic SELECT statement
described later, in the section “Data Retrieval in Embedded SQL.” The SQL2 standard,
published in 1992, expanded its focus to include interactive SQL (called direct invocation of
SQL in the standard) and more advanced forms of programmatic SQL (the dynamic SQL
capabilities described in Chapter 18).

Commercial SQL database vendors offer two basic techniques for using SQL within an
application program:

• Embedded SQL In this approach, SQL statements are embedded directly into the
program’s source code, intermixed with the other programming language statements.
Special embedded SQL statements are used to retrieve data into the program. A
special SQL precompiler accepts the combined source code and, along with other
programming tools, converts it into an executable program.

• Application program interface In this approach, the program communicates with
the DBMS through a set of function calls called an application program interface (API).
The program passes SQL statements to the DBMS through the API calls and uses API
calls to retrieve query results. This approach does not require a special precompiler.

The initial IBM SQL products used an embedded SQL approach, and most commercial
SQL products adopted it in the 1980s. The original ANSI/ISO SQL standard specified only
an awkward module language for programmatic SQL, but commercial SQL products
continued to follow the IBM de facto standard. In 1989, the ANSI/ISO standard was
extended to include a definition of how to embed SQL statements within the Ada, C,
COBOL, FORTRAN, Pascal, and PL/I programming languages, this time following the IBM
approach. The SQL2 standard and subsequent revisions continued this specification.

In parallel with this evolution of embedded SQL, several DBMS vendors who were
focused on minicomputer systems introduced callable database APIs in the 1980s. When the
Sybase DBMS was introduced, it offered only a callable API. Microsoft’s SQL Server, derived
from the Sybase DBMS, also used the API approach exclusively. Soon after the debut of SQL
Server, Microsoft introduced Open Database Connectivity (ODBC), another callable API.
ODBC is roughly based on the SQL Server API, but with the additional goals of being
database independent and permitting concurrent access to two or more different DBMS
brands through a common API.

Java Database Connectivity (JDBC) has emerged as an important API for accessing a
relational database from within programs written in Java. With the growing popularity of
callable APIs, the callable and embedded approaches are both in active use today. In
general, programmers using older languages, such as COBOL and Assembler, will tend to
favor the embedded SQL approach. Programmers using languages such as C++ and Java
will tend to favor the callable API approach. Specifications for embedded SQL in Java were
added to the SQL standard in 1999 and revised in several subsequent releases. The standard
was originally called SQLJ (later SQL/JRT), and several vendors implemented solutions
known as JSQL. Most of these JSQL implementations use a preprocessor to translate SQL
embedded in the Java program to JDBC API calls.

 C h a p t e r 1 7 : E m b e d d e d S Q L 431
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 431

The following table summarizes the programmatic interfaces offered by some of the
leading SQL-based DBMS products:

DBMS Callable API
Embedded SQL Language
Support

DB2 ODBC, JDBC, JSQL APL, Assembler, BASIC,
COBOL, FORTRAN, Java, PL/I

Informix ODBC, JDBC C, COBOL, Java

Microsoft SQL Server DB library (dblib), ODBC C

MySQL C-api (proprietary), ODBC, JDBC, Perl,
PHP, Ruby, other scripting languages

None

Oracle Oracle Call Interface (OCI), ODBC,
JDBC, JSQL, PHP, Perl

C, COBOL, FORTRAN, Pascal,
PL/I, Java

Sybase DB library (dblib), ODBC, JDBC, SQLJ C, COBOL, Java

The basic techniques of embedded SQL, called static SQL, are described in this chapter.
Some advanced features of embedded SQL, called dynamic SQL, are discussed in Chapter 18.
Callable SQL APIs, including the Sybase/SQL Server API, ODBC, and JDBC, are discussed
in Chapter 19.

DBMS Statement Processing
To understand any of the programmatic SQL techniques, it helps to understand a little bit
more about how the DBMS processes SQL statements. To process a SQL statement, the
DBMS goes through a series of five steps, shown in Figure 17-1:

 1. The DBMS begins by parsing the SQL statement. It breaks up the statement into
individual words, making sure that the statement has a valid verb, legal clauses,
and so on. Syntax errors and misspellings can be detected in this step.

 2. The DBMS validates the statement. It checks the statement against the system catalog.
Do all the tables named in the statement exist in the database? Do all of the columns
exist, and are the column names unambiguous? Does the user have the required
privileges to execute the statement? Semantic errors are detected in this step.

 3. The DBMS optimizes the statement. It explores various ways to carry out the statement.
Can an index be used to speed a search? Should the DBMS first apply a search
condition to Table A and then join it to Table B, or should it begin with the join
and use the search condition afterward? Can a sequential search through a table be
avoided or reduced to a subset of the table? Can an index be used to avoid a sort?
After exploring alternatives, the DBMS chooses one of them.

 4. The DBMS then generates an application plan for the statement. The application plan
is a binary representation of the steps that are required to carry out the statement;
it is the DBMS equivalent of executable code.

 5. Finally, the DBMS carries out the statement by executing the application plan.

 432 P a r t V : P r o g r a m m i n g w i t h S Q L 432 P a r t V : P r o g r a m m i n g w i t h S Q L

Note that the definitions of the terms used in the preceding description vary from one
DBMS product to another.

The steps in Figure 17-1 vary in the amount of database access they require and the amount
of CPU time they take. Parsing a SQL statement does not require access to the database and
typically can be done very quickly. Optimization, on the other hand, is a very CPU-intensive
process and requires access to the database’s system catalog. For a complex, multitable query,
the optimizer may explore more than a dozen different ways of carrying out the query.
However, the cost in computer processing time of doing the query the wrong way is usually
so high compared with the cost of doing it the right way (or at least a better way) that the time
spent in optimization is more than gained back in increased query execution speed.

When you type a SQL statement to interactive SQL, the DBMS goes through all five
steps while you wait for its response. The DBMS has little choice in the matter—it doesn’t
know which statement you are going to type until you type it, so none of the processing can
be done ahead of time. However, some products such as Oracle automatically maintain a
SQL cache that stores recently executed statements in memory. If the same statement is
submitted to the SQL engine additional times, the parse step, and in some cases the bind
step, can be skipped. Furthermore, if results of a previous identical query are still in
memory, reexecution of the query may not be necessary.

FIGURE 17-1 How the DBMS processes a SQL statement

 C h a p t e r 1 7 : E m b e d d e d S Q L 433
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 433

In contrast, the situation is quite different in programmatic SQL. Some of the early steps
can be done at compile-time, when the programmer is developing the program. This leaves
only the later steps to be done at runtime, when the program is executed by a user. When
you use programmatic SQL, all DBMS products try to move as much processing as possible
to compile-time, because once the final version of the program is developed, it may be
executed thousands of times by users in a production application. In particular, the goal is
to move optimization to compile-time if at all possible.

Embedded SQL Concepts
The central idea of embedded SQL is to blend SQL language statements directly into a
program written in a host programming language, such as C, Java, Pascal, COBOL,
FORTRAN, PL/I, or Assembler. Embedded SQL uses the following techniques to embed the
SQL statements:

• SQL statements are intermixed with statements of the host language in the source
program. This embedded SQL source program is submitted to a SQL precompiler
(or in the case of Java, a preprocessor), which processes the SQL statements.

• Variables of the host programming language can be referenced in the embedded
SQL statements, allowing values calculated by the program to be used by the SQL
statements.

• Program language variables are also used by the embedded SQL statements to
receive the results of SQL queries, allowing the program to use and process the
retrieved values.

• Special program variables are used to assign NULL values to database columns and
to support the retrieval of NULL values from the database.

• Several new SQL statements that are unique to embedded SQL are added to the
interactive SQL language, to provide for row-by-row processing of query results.

Figure 17-2 shows a simple embedded SQL program, written in C. The program
illustrates many, but not all, of the embedded SQL techniques. The program prompts the
user for an office number, retrieves the city, region, sales, and target for the office, and
displays them on the screen.

Don’t worry if the program appears strange, or if you can’t understand all of the
statements that it contains before reading the rest of this chapter. One of the disadvantages
of the embedded SQL approach is that the source code for a program becomes an impure
blend of two different languages, making the program hard to understand without training
in both SQL and the programming language. Another disadvantage is that embedded SQL
uses SQL language constructs not used in interactive SQL, such as the WHENEVER statement
and the INTO clause of the SELECT statement—both used in this program.

 434 P a r t V : P r o g r a m m i n g w i t h S Q L 434 P a r t V : P r o g r a m m i n g w i t h S Q L

Developing an Embedded SQL Program
An embedded SQL program contains a mix of SQL and programming language statements,
so it can’t be submitted directly to a compiler for the programming language. Instead, it
moves through a multistep development process, shown in Figure 17-3. The steps in the

FIGURE 17-2
A typical
embedded SQL
program

main()
{
 exec sql include sqlca;
 exec sql begin declare section;
 int officenum; /* office number (from user) */
 char cityname[16]; /* retrieved city name */
 char regionname[11]; /* retrieved region name */
 float targetval; /* retrieved target */
 float salesval; /* retrieved sales */
 exec sql end declare section;

 /* Set up error processing */
 exec sql whenever sqlerror goto query_error;
 exec sql whenever not found goto bad_number;

 /* Prompt the user for the employee number */
 printf("Enter office number:");
 scanf("%d", &officenum);

 /* Execute the SQL query */
 exec sql select city, region, target, sales
 from offices
 where office = :officenum
 into :cityname, :regionname, :targetval, :salesval;

 /* Display the results */
 printf("City: %s\n", cityname);
 printf("Region: %s\n", regionname);
 printf("Target: %f\n", targetval);
 printf("Sales: %f\n", salesval);
 exit();

query_error:
 printf("SQL error: %ld\n", sqlca.sqlcode);
 exit();

bad_number:
 printf("Invalid office number.\n");
 exit();

}

 C h a p t e r 1 7 : E m b e d d e d S Q L 435
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 435

figure are actually those used by the IBM mainframe databases (DB2 and SQL/DS), but all
products that support embedded SQL use a similar process:

 1. The embedded SQL source program is submitted to the SQL precompiler, a
programming tool. The precompiler scans the program, finds the embedded SQL
statements, and processes them. A different precompiler is required for each
programming language supported by the DBMS. Commercial SQL products
typically offer precompilers for one or more languages, including C, Pascal,
COBOL, FORTRAN, Ada, PL/I, RPG, and various assembly languages.

 2. The precompiler produces two files as its output. The first file is the source program,
stripped of its embedded SQL statements. In their place, the precompiler substitutes
calls to the private DBMS routines that provide the runtime link between the
program and the DBMS. Typically, the names and calling sequences of these routines
are known only to the precompiler and the DBMS; they are not a public interface to
the DBMS. The second file is a copy of all the embedded SQL statements used in the
program. This file is sometimes called a database request module (DBRM).

 3. The source file output from the precompiler is submitted to the standard compiler
for the host programming language (such as a C or COBOL compiler). The compiler
processes the source code and produces object code as its output. Note that this step
has nothing in particular to do with the DBMS or with SQL.

FIGURE 17-3
The embedded
SQL development
process

 436 P a r t V : P r o g r a m m i n g w i t h S Q L 436 P a r t V : P r o g r a m m i n g w i t h S Q L

 4. The linker accepts the object modules generated by the compiler, links them with
various library routines, and produces an executable program. The library routines
linked into the executable program include the private DBMS routines described in
Step 2.

 5. The database request module generated by the precompiler is submitted to a special
BIND program. This program examines the SQL statements; parses, validates, and
optimizes them; and produces an application plan for each statement. The result is a
combined application plan for the entire program, representing a DBMS-executable
version of its embedded SQL statements. The BIND program stores the plan in the
database, usually assigning it the name of the application program that created it.

SQLJ programs follow a simpler process, largely because Java is not linked prior to
execution:

 1. The Java program with embedded SQL is submitted to an SQLJ preprocessor (also
called a translator). The translator, also written in Java, produces a .java file, which
contains the Java source program with the SQL statements translated into standard
Java code (usually in the form of JDBC API calls), and one or more SQLJ profiles,
which contain information about the SQL operations.

 2. The Java compiler processes the .java file and produces .class files.

 3. The link and bind steps are not required.

 4. A runtime component is invoked automatically each time the application is run. It
uses the SQLJ profiles to assist in completing the SQL commands included in the
original source program.

The program development steps in Figure 17-3 correlate with the DBMS statement
processing steps in Figure 17-1. In particular, the precompiler usually handles statement
parsing (the first step), and the BIND utility handles verification, optimization, and plan
generation (respectively, the second, third, and fourth steps). Thus, the first four steps of
Figure 17-1 all take place at compile-time when you use embedded SQL. Only the fifth step,
the actual execution of the application plan, remains to be done at runtime.

The embedded SQL development process turns the original embedded SQL source
program into two executable parts:

• An executable program Stored in a file on the computer in the same format as any
executable program

• An executable application plan Stored within the database in the format expected
by the DBMS

The embedded SQL development cycle may seem cumbersome, and it is more
awkward than developing a standard C or COBOL program. In most cases, all of the steps
in Figure 17-3 are automated by a single command procedure, so the individual steps are

 C h a p t e r 1 7 : E m b e d d e d S Q L 437
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 437

made invisible to the application programmer. The process does have several major
advantages from a DBMS point of view, as follows:

• The blending of SQL and programming language statements in the embedded
SQL source program is an effective way to merge the two languages. The host
programming language provides flow of control, variables, block structure, and
input/output functions; SQL handles database access and does not have to
provide these other constructs.

• The use of a precompiler means that the compute-intensive work of parsing and
optimization can take place during the development cycle. The resulting executable
program is very efficient in its use of CPU resources.

• The database request module produced by the precompiler provides portability of
applications. An application program can be written and tested on one system, and
then its executable program and DBRM can be moved to another system. After the
BIND program on the new system creates the application plan and installs it in the
database, the application program can use it without being recompiled itself.

• The program’s actual runtime interface to the private DBMS routines is completely
hidden from the application programmer. The programmer works with embedded
SQL at the source-code level and does not have to worry about other, more complex
interfaces.

Running an Embedded SQL Program
Recall from Figure 17-3 that the embedded SQL development process produces two
executable components, the executable program itself and the program’s application plan,
stored in the database. When you run an embedded SQL program, these two components
are brought together to do the work of the application:

 1. When you ask the computer system to run the program, the computer loads the
executable program in the usual way and begins to execute its instructions.

 2. One of the first calls generated by the precompiler is a call to a DBMS routine that
finds and loads the application plan for the program.

 3. For each embedded SQL statement, the program calls one or more private DBMS
routines, requesting execution of the corresponding statement in the application
plan. The DBMS finds the statement, executes that part of the plan, and then returns
control to the program.

 4. Execution continues in this way, with the executable program and the DBMS
cooperating to carry out the task defined by the original embedded SQL source
program.

 438 P a r t V : P r o g r a m m i n g w i t h S Q L 438 P a r t V : P r o g r a m m i n g w i t h S Q L

Runtime Security
When you use interactive SQL, the DBMS enforces its security based on the user-id you
supply to the interactive SQL program. You can type any SQL statement you want, but the
privileges granted to your user-id determine whether the DBMS will or will not execute the
statement you type. When you run a program that uses embedded SQL, there are two user-
ids to consider:

• The user-id of the person who developed the program, or more specifically, the
person who ran the BIND program to create the application plan

• The user-id of the person who is now executing the program and the corresponding
application plan

It may seem strange to consider the user-id of the person who ran the BIND program (or
more generally, the person who developed the application program or installed it on the
computer system), but DB2 and several other commercial SQL products use both user-ids in
their security scheme. To understand how the security scheme works, suppose that user
JOE runs the ORDMAINT order maintenance program, which updates the ORDERS, SALES,
and OFFICES tables. The application plan for the ORDMAINT program was originally bound
by user-id OPADMIN, which belongs to the order-processing administrator.

In the DB2 scheme, each application plan is a database object, protected by DB2 security.
To execute a plan, JOE must have the EXECUTE privilege for it. If he does not, execution
fails immediately. As the ORDMAINT program executes, its embedded INSERT, UPDATE, and
DELETE statements update the database. The privileges of the OPADMIN user determine
whether the plan will be allowed to perform these updates. Note that the plan may update
the tables even if JOE does not have the required privileges. However, the updates that can
be performed are only those that have been explicitly coded into the embedded SQL
statements of the program. Thus, DB2 provides very fine control over database security. The
privileges of users to access tables can be very limited, without diminishing their ability to
use canned programs.

Not all DBMS products provide security protection for application plans. For those that
do not, the privileges of the user executing an embedded SQL program determine the
privileges of the program’s application plan. Under this scheme, the user must have
privileges to perform all of the actions performed by the plan, or the program will fail. If the
user is not to have these same permissions in an interactive SQL environment, access to the
interactive SQL program itself must be restricted, which is a disadvantage of this approach.

Automatic Rebinding
Note that an application plan is optimized for the database structure as it exists at the time the
plan is placed in the database by the BIND program. If the structure changes later (for example,
if an index is dropped or a column is deleted from a table), any application plan that references
the changed structures may become invalid. To handle this situation, the DBMS usually stores,
along with the application plan, a copy of the original SQL statements that produced it.

The DBMS also keeps track of all the database objects upon which each application plan
depends. If any of these objects are modified by a DDL statement, the DBMS can find the
plans that depend on it and automatically mark those plans as invalid. The next time the
program tries to use the plan, the DBMS can detect the situation; in most cases, it will
automatically rebind the statements to produce a new bind image. Because the DBMS has

 C h a p t e r 1 7 : E m b e d d e d S Q L 439
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 439

maintained a great deal of information about the application plan, it can make this
automatic rebinding completely transparent to the application program. However, a SQL
statement may take much longer to execute when its plan is rebound than when the plan is
simply executed.

Although the DBMS can automatically rebind a plan when one of the structures upon
which it depends is changed, the DBMS will usually not automatically detect changes in the
database that may make a better plan possible. For example, suppose a plan uses a
sequential scan of a table to locate particular rows because no appropriate index existed
when it was bound. It’s possible that a subsequent CREATE INDEX statement will create an
appropriate index. To take advantage of the new structure, you must explicitly run the BIND
program to rebind the plan.

Simple Embedded SQL Statements
The simplest SQL statements to embed in a program are those that are self-contained and
do not produce any query results. For example, consider this interactive SQL statement:

Delete all salespeople with sales under $150,000.

DELETE FROM SALESREPS
 WHERE SALES < 150000.00;

Figures 17-4, 17-5, and 17-6 show three programs using embedded SQL that perform the
same task as this interactive SQL statement. The program in Figure 17-4 is written in C;

FIGURE 17-4
An embedded SQL
program written
in C

main()
{
 exec sql include sqlca;
 exec sql declare salesreps table
 (empl_num integer not null,
 name varchar(15) not null,
 age integer
 rep_office integer,
 title varchar(10),
 hire_date date not null,
 manager integer,
 quota decimal(9,2),
 sales decimal(9,2) not null);

 /* Display a message for the user */
 printf("Deleting salesreps with low quota.\n");

 /* Execute the SQL statement */
 exec sql delete from salesreps
 where sales < 150000.00;
 exec sql commit;

 /* Display another message */
 printf("Finished deleting.\n");
 exit();
}

 440 P a r t V : P r o g r a m m i n g w i t h S Q L 440 P a r t V : P r o g r a m m i n g w i t h S Q L

the program in Figure 17-5 is written in COBOL; and the program in Figure 17-6 is written
in FORTRAN. Although the programs are extremely simple, they illustrate the most basic
features of embedded SQL:

• The embedded SQL statements appear in the midst of host programming language
statements. It usually doesn’t matter whether the SQL statement is written in
uppercase or lowercase; the most common practice is to follow the style of the host
language.

• Every embedded SQL statement begins with an introducer that flags it as a SQL
statement. The IBM SQL products use the introducer EXEC SQL for most host
languages, and the ANSI/ISO SQL standard specifies it as well. Some embedded
SQL products still support other introducers, for backward compatibility with their
earlier versions.

• If an embedded SQL statement extends over multiple lines, the host language
strategy for statement continuation is used. For COBOL, PL/I, and C programs, no
special continuation character is required. For FORTRAN programs, the second and
subsequent lines of the statement must have a continuation character in column 6.

FIGURE 17-5
An embedded SQL
program written in
COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
ENVIRONMENT DIVISION.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
 EXEC SQL INCLUDE SQLCA.
 EXEC SQL DECLARE SALESREPS TABLE
 EMPL_NUM INTEGER NOT NULL,
 NAME VARCHAR(15) NOT NULL,
 AGE INTEGER,
 REP_OFFICE INTEGER,
 TITLE VARCHAR(10),
 RE_DATE DATE NOT NULL,
 MANAGER INTEGER,
 QUOTA DECIMAL,(9,2)
 SALES DECIMAL(9,2) NOT NULL)
 END-EXEC.
PROCEDURE DIVISION.
*
* DISPLAY A MESSAGE FOR THE USER
 DISPLAY "Deleting salesreps with low quota.".
*
* EXECUTE THE SQL STATEMENT
 EXEC SQL DELETE FROM SALESREPS
 WHERE QUOTA < 150000
 END EXEC.
 EXEC SQL COMMIT
 END EXEC.
*
* DISPLAY ANOTHER MESSAGE
 DISPLAY "Finished deleting.".

 C h a p t e r 1 7 : E m b e d d e d S Q L 441
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 441

• Every embedded SQL statement ends with a terminator that signals the end of the
SQL statement. The terminator varies with the style of the host language. In
COBOL, the terminator is the string END-EXEC., which ends in a period like other
COBOL statements. For PL/I and C, the terminator is a semicolon (;), which is also
the statement termination character in those languages. In FORTRAN, the
embedded SQL statement ends when no more continuation lines are indicated.

The embedding technique shown in the three figures works for any SQL statement that
(a) does not depend on the values of host language variables for its execution, and (b) does
not retrieve data from the database. For example, the C program in Figure 17-7 creates a
new REGIONS table and inserts two rows into it, using exactly the same embedded SQL
features as the program in Figure 17-4. For consistency, all of the remaining program
examples in the book will use the C programming language, except when a particular host
language feature is being illustrated.

Declaring Tables
In the IBM SQL products, the embedded DECLARE TABLE statement, shown in Figure 17-8,
declares a table that will be referenced by one or more embedded SQL statements in your
program. This is an optional statement that aids the precompiler in its task of parsing and
validating the embedded SQL statements. By using the DECLARE TABLE statement, your
program explicitly specifies its assumptions about the columns in the table and their data
types and sizes. The precompiler checks the table and column references in your program to
make sure they conform to your table declaration.

FIGURE 17-6
An embedded SQL
program written in
FORTRAN

 PROGRAM SAMPLE
 100 FORMAT (' ',A35)
 EXEC SQL INCLUDE SQLCA
 EXEC SQL DECLARE SALESREPS TABLE
 C (EMPL_NUM INTEGER NOT NULL,
 C NAME VARCHAR(15) NOT NULL,
 C AGE INTEGER,
 C REP_OFFICE INTEGER,
 C TITLE VARCHAR(10),
 C HIRE_DATE DATE NOT NULL,
 C MANAGER INTEGER,
 C QUOTA DECIMAL(9,2),
 C SALES DECIMAL(9,2) NOT NULL)
*
* DISPLAY A MESSAGE FOR THE USER
 WRITE (6,100) 'Deleting salesreps with low quota.'
*
* EXECUTE THE SQL STATEMENT
 EXEC SQL DELETE FROM REPS
 C WHERE QUOTA < 150000
 EXEC SQL COMMIT
*
* DISPLAY ANOTHER MESSAGE
 WRITE (6,100) 'Finished deleting.'
 RETURN
 END

 442 P a r t V : P r o g r a m m i n g w i t h S Q L 442 P a r t V : P r o g r a m m i n g w i t h S Q L

The programs in Figures 17-4, 17-5, and 17-6 all use the DECLARE TABLE statement. It’s
important to note that the statement appears purely for documentation purposes and for
the use of the precompiler. It is not an executable statement, and you do not need to
explicitly declare tables before referring to them in embedded DML or DDL statements.
However, using the DECLARE TABLE statement does make your program more self-
documenting and simpler to maintain. The IBM-developed SQL products all support the
DECLARE TABLE statement, but most other SQL products do not support it, and their
precompilers will generate an error message if you use it.

FIGURE 17-7 Using
embedded SQL to
create a table

main()
{
 exec sql include sqlca;
 /* Create a new REGIONS table */
 exec sql create table regions
 (name char(15),
 hq_city char(15),
 manager integer,
 target decimal(9,2),
 sales decimal(9.2),
 primary key name,
 foreign key manager
 references salesreps);
 printf("Table created.\n");

 /* Insert two rows; one for each region */
 exec sql insert into regions
 values ('Eastern', 'New York', 106, 0.00, 0.00);
 exec sql insert into regions
 values ('Western', 'Los Angeles', 108, 0.00, 0.00);
 printf("Table populated.\n");

 exit();
}

FIGURE 17-8 The DECLARE TABLE statement syntax diagram

 C h a p t e r 1 7 : E m b e d d e d S Q L 443
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 443

Error Handling
When you type an interactive SQL statement that causes an error, the interactive SQL
program displays an error message, aborts the statement, and prompts you to type a new
statement. In embedded SQL, error handling becomes the responsibility of the application
program. Actually, embedded SQL statements can produce two distinct types of errors:

• Compile-time errors Misplaced commas, misspelled SQL keywords, and similar
errors in embedded SQL statements are detected by the SQL precompiler and
reported to the programmer. The programmer can fix the errors and recompile the
application program.

• Runtime errors An attempt to insert an invalid data value or lack of permission to
update a table can be detected only at runtime. Errors such as these must be
detected and handled by the application program.

In embedded SQL programs, the DBMS reports runtime errors to the application
program through a returned error code. If an error is detected, a further description of the
error and other information about the statement just executed is available through
additional diagnostic information. The earliest IBM-embedded SQL implementations
defined an error-reporting mechanism that was adopted, with variations, by most of the
major DBMS vendors. The central part of this scheme—an error status variable named
SQLCODE—was also defined in the original ANSI/ISO SQL standard. The SQL2 standard,
published in 1992, defined an entirely new, parallel error-reporting mechanism, built
around an error status variable named SQLSTATE. These mechanisms are described in the
next two sections.

Error Handling with SQLCODE
Under this scheme, pioneered by the earliest IBM products, the DBMS communicates status
information to the embedded SQL program through an area of program storage called the
SQL Communications Area (SQLCA). The SQLCA is a data structure that contains error
variables and status indicators. By examining the SQLCA, the application program can
determine the success or failure of its embedded SQL statements and act accordingly.

Notice that in Figures 17-4, 17-5, 17-6, and 17-7 the first embedded SQL statement in the
program is INCLUDE SQLCA. This statement tells the SQL precompiler to include a SQL
Communications Area in this program. The specific contents of the SQLCA vary slightly
from one brand of DBMS to another, but the SQLCA always provides the same type of
information. Figure 17-9 shows the C language definition of the SQLCA used by the IBM
databases. The most important part of the SQLCA, the SQLCODE variable, is supported by all
of the major embedded SQL products and was specified by the ANSI/ISO SQL1 standard.

As the DBMS executes each embedded SQL statement, it sets the value of the variable
SQLCODE in the SQLCA to indicate the completion status of the statement:

• A SQLCODE of zero indicates successful completion of the statement, without any
errors or warnings.

• A negative SQLCODE value indicates a serious error that prevented the statement
from executing correctly. For example, an attempt to update a read-only view would
produce a negative SQLCODE value. A separate negative value is assigned to each
runtime error that can occur.

 444 P a r t V : P r o g r a m m i n g w i t h S Q L 444 P a r t V : P r o g r a m m i n g w i t h S Q L

• A positive SQLCODE value indicates a warning condition. For example, truncation
or rounding of a data item retrieved by the program would produce a warning. A
separate positive value is assigned to each runtime warning that can occur. The
most common warning, with a value of +100 in most implementations and in the
SQL standard, is the out-of-data warning returned when a program tries to retrieve
the next row of query results and no more rows are left to retrieve.

Because every executable embedded SQL statement can potentially generate an error,
a well-written program will check the SQLCODE value after every executable embedded
SQL statement. Figure 17-10 shows a C program excerpt that checks the SQLCODE value.
Figure 17-11 shows a similar excerpt from a COBOL program.

Error Handling with SQLSTATE
By the time the SQL2 standard was being written, virtually all commercial SQL products
were using the SQLCODE variable to report error conditions in an embedded SQL program.
However, the different products used different error numbers to report the same or similar

FIGURE 17-9 The SQL Communications Area (SQLCA) for IBM databases (C language)

struct sqlca {

 unsigned char sqlcaid[8]; /* the string "SQLCA " */

 long sqlcabc; /* length of SQLCA, in bytes */

 long sqlcode; /* SQL status code */

 short sqlerrml; /* length of sqlerrmc array data */

 unsigned char sqlerrmc[70]; /* name(s) of object(s) causing error */

 unsigned char sqlerrp[8]; /* diagnostic information */

 long sqlerrd[6]; /* various counts and error code */

 unsigned char sqlwarn[8]; /* warning flag array */

 unsigned char sqlext[8]; /* extension to sqlwarn array */

}

#define SQLCODE sqlca.sqlcode /* SQL status code */

/* A 'W' in any of the SQLWARN fields signals a warning condition;

 otherwise these fields each contain a blank */

#define SQLWARN0 sqlca.sqlwarn[0] /* master warning flag */

#define SQLWARN1 sqlca.sqlwarn[1] /* string truncated */

#define SQLWARN2 sqlca.sqlwarn[2] /* NULLs eliminated from column function */

#define SQLWARN3 sqlca.sqlwarn[3] /* too few/too many host variables */

#define SQLWARN4 sqlca.sqlwarn[4] /* prepared UPDATE/DELETE without WHERE */

#define SQLWARN5 sqlca.sqlwarn[5] /* SQL/DS vs DB2 incompatibility */

#define SQLWARN6 sqlca.sqlwarn[6] /* invalid date in arithmetic expr */

#define SQLWARN7 sqlca.sqlwarn[7] /* reserved */

 C h a p t e r 1 7 : E m b e d d e d S Q L 445
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 445

FIGURE 17-10
A C program excerpt
with SQLCODE error
checking

 .

 .

 .

exec sql delete from salesreps

 where quota < 150000;

if (sqlca.sqlcode < 0)

 goto error_routine;

 .

 .

 .

error_routine:

 printf("SQL error: %ld\n, sqlca.sqlcode);

 exit();

 .

 .

 .

FIGURE 17-11
A COBOL program
excerpt with
SQLCODE error
checking

 .

 .

 .

01 PRINT_MESSAGE.

 02 FILLER PIC X(11) VALUE 'SQL error:'.

 02 PRINT-CODE PIC SZ(9).

 .

 .

 .

 EXEC SQL DELETE FROM SALESREPS

 WHERE QUOTA < 150000

 END EXEC.

 IF SQLCODE NOT = ZERO GOTO ERROR-ROUTINE.

 .

 .

 .

ERROR-ROUTINE.

 MOVE SQLCODE TO PRINT-CODE.

 DISPLAY PRINT_MESSAGE.

 .

 .

 .

 446 P a r t V : P r o g r a m m i n g w i t h S Q L 446 P a r t V : P r o g r a m m i n g w i t h S Q L

error conditions. Further, because of the significant differences among SQL implementations
permitted by the SQL1 standard, considerable differences in the errors could occur from one
implementation to another. Finally, the definition of the SQLCA varied in significant ways
from one DBMS brand to another, and all of the major brands had a large installed base of
applications that would be broken by any change to their SQLCA structure.

Instead of tackling the impossible task of getting all of the DBMS vendors to agree to
change their SQLCODE values to some standard, the writers of the SQL standard took a
different approach. They included the SQLCODE error value, but identified it as a deprecated
feature, meaning that it was considered obsolete and would be removed from the standard
at some future time. To take its place, they introduced a new error variable, called
SQLSTATE. The standard also specifies, in detail, the error conditions that can be reported
through the SQLSTATE variable, and the error code assigned to each error. To conform to
the SQL standard, a SQL product must report errors using both the SQLCODE and
SQLSTATE error variables. In this way, existing programs that use SQLCODE will still
function, but new programs can be written to use the standardized SQLSTATE error codes.

The SQLSTATE variable consists of two parts:

• A two-character error class that identifies the general classification of the error (such
as a connection error, an invalid data error, or a warning).

• A three-character error subclass that identifies a specific type of error within a general
error class. For example, within the invalid data class, the error subclass might
identify a divide-by-zero error, an invalid numeric value error, or an invalid
datetime data error.

Errors specified in the SQL standard have an error class code that begins with a digit
from zero to four (inclusive) or a letter between A and H (inclusive). For example, data errors
are indicated by error class 22. A violation of an integrity constraint (such as a foreign key
definition) is indicated by error class 23. A transaction rollback is indicated by error class 40.
Within each error class, the standard subclass codes also follow the same initial number/
letter restrictions. For example, within error class 40 (transaction rollback), the subclass codes
are 001 for serialization failure (that is, your program was chosen as the loser in a deadlock),
002 for an integrity constraint violation, and 003 for errors where the completion status of the
SQL statement is unknown (for example, when a network connection breaks or a server
crashes before the statement completes). Figure 17-12 shows the same C program as Figure
17-10, but uses the SQLSTATE variable for error checking instead of SQLCODE.

The standard specifically reserves error class codes that begin with digits from five to
nine (inclusive) and letters between I and Z (inclusive) as implementation-specific errors
that are not standardized. While this allows differences among DBMS brands to continue,
all of the most common errors caused by SQL statements are included in the standardized
error class codes. As commercial DBMS implementations move to support the SQLSTATE
variable, one of the most troublesome incompatibilities between different SQL products is
gradually being eliminated.

The SQL standard provides additional error and diagnostics information through a new
GET DIAGNOSTICS statement, shown in Figure 17-13. The statement allows an embedded
SQL program to retrieve one or more items of information about the SQL statement just
executed, or about an error condition that was just raised. Support for the GET
DIAGNOSTICS statement is required for Intermediate SQL or Full SQL conformance to the

 C h a p t e r 1 7 : E m b e d d e d S Q L 447
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 447

standard, but is not required or allowed in Entry SQL. Figure 17-14 shows a C program
excerpt like that in Figure 17-12, extended to include the GET DIAGNOSTICS statement.

The WHENEVER Statement
It quickly becomes tedious for a programmer to write programs that explicitly check the
SQLCODE value after each embedded SQL statement. To simplify error handling, embedded
SQL supports the WHENEVER statement, shown in Figure 17-15. The WHENEVER statement is
a directive to the SQL precompiler, not an executable statement. It tells the precompiler to
automatically generate error-handling code following every executable embedded SQL
statement and specifies what the generated code should do.

You can use the WHENEVER statement to tell the precompiler how to handle three
different exception conditions:

• WHENEVER SQLERROR tells the precompiler to generate code to handle errors
(negative SQLCODEs).

• WHENEVER SQLWARNING tells the precompiler to generate code to handle warnings
(positive SQLCODEs).

• WHENEVER NOT FOUND tells the precompiler to generate code that handles a
particular warning—the warning generated by the DBMS when your program tries
to retrieve query results when no more are remaining. This use of the WHENEVER
statement is specific to the singleton SELECT and the FETCH statements, and is
described in the section “Single-Row Queries” later in this chapter.

FIGURE 17-12 A C program excerpt with SQLSTATE error checking

 .

 .

 .

exec sql delete from salesreps

 where quota < 150000;

if (strcmp(sqlca.sqlstate,"00000"))

 goto error_routine;

 .

 .

 .

error_routine:

 printf("SQL error: %s\n",sqlca.sqlstate);

 exit();

 .

 .

 .

 448 P a r t V : P r o g r a m m i n g w i t h S Q L 448 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 17-13 The GET DIAGNOSTICS statement syntax diagram

To retrieve statement-level information and determine the number of diagnostic errors:

To retrieve information about an individual diagnostic error:

hostvar =

hostvar

GET DIAGNOSTICS NUMBER

MORE

COMMAND_FUNCTION

DYNAMIC_FUNCTION

COMMAND_FUNCTION_CODE

DYNAMIC_FUNCTION_CODE

ROW_COUNT

TRANSACTIONS_COMMITTED

TRANSACTIONS_ROLLED_BACK

TRANSACTIONS_ACTIVE

,

TRIGGER_SCHEMA

CATALOG_NAME

CLASS_ORIGIN

COLUMN_NAME

CONDITION_NUMBER

CONNECTION_NAME

CONSTRAINT_CATALOG

CONSTRAINT_NAME

CONSTRAINT_SCHEMA

CURSOR_NAME

MESSAGE_LENGTH

MESSAGE_OCTET_LENGTH

MESSAGE_TEXT

PARAMETER_MODE

PARAMETER_NAME

PARAMETER_ORDINAL_POSITION

RETURNED_SQLSTATE

ROUTINE_CATALOG

ROUTINE_NAME

ROUTINE_SCHEMA

SCHEMA_NAME

SERVER_NAME

SPECIFIC_NAME

SUBCLASS_ORIGIN

TABLE_NAME

TRIGGER_CATALOG

TRIGGER_NAME

GET DIAGNOSTICS EXCEPTION err_number

,

 C h a p t e r 1 7 : E m b e d d e d S Q L 449
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 449

For any of these three conditions, you can tell the precompiler to generate code that
takes one of two actions:

• WHENEVER/GOTO tells the precompiler to generate a branch to the specified label,
which must be a statement label or statement number in the program.

• WHENEVER/CONTINUE tells the precompiler to let the program’s flow of control
proceed to the next host language statement.

FIGURE 17-14
A C program
excerpt with GET
DIAGNOSTICS
error checking

 .

 .

 .

/* execute the DELETE statement & check for errors */

exec sql delete from salesreps

 where quota < 150000;

if (strcmp(sqlca.sqlstate,"00000"))

 goto error_routine;

/* DELETE successful; check how many rows deleted */

exec sql get diagnostics :numrows = ROW_COUNT;

printf("%ld rows deleted\n",numrows);

 .

 .

 .

error_routine:

 /* Determine how many errors reported */

 exec sql get diagnostics :count = NUMBER;

 for (i=1; i<count; i++) {

 exec sql get diagnostics EXCEPTION :I

 :err = RETURNED_SQLSTATE,

 :msg = MESSAGE_TEXT;

 printf("SQL error # %d: code: %s message: %s\n",

 i, err, msg);

 }

 exit();

 .

 .

 .

FIGURE 17-15
The WHENEVER
statement syntax
diagram

 450 P a r t V : P r o g r a m m i n g w i t h S Q L 450 P a r t V : P r o g r a m m i n g w i t h S Q L

The WHENEVER statement is a directive to the precompiler, and its effect can be
superseded by another WHENEVER statement appearing later in the program text. Figure 17-16
shows a program excerpt with three WHENEVER statements and four executable SQL
statements. In this program, an error in either of the two DELETE statements results in
a branch to error1 because of the first WHENEVER statement. An error in the embedded
UPDATE statement flows directly into the following statements of the program. An error in
the embedded INSERT statement results in a branch to error2. As this example shows, the
main use of the WHENEVER/CONTINUE form of the statement is to cancel the effect of a
previous WHENEVER statement.

The WHENEVER statement makes embedded SQL error-handling much simpler, and it is
more common for an application program to use it than for it to check SQLCODE or
SQLSTATE directly. Remember, however, that after a WHENEVER/GOTO statement appears,

FIGURE 17-16
Using the
WHENEVER
statement

 .
 .
 .

 exec sql whenever sqlerror goto error1;

 exec sql delete from salesreps
 where quota < 150000;

 exec sql delete from customers
 where credit_limit < 20000;

 exec sql whenever sqlerror continue;

 exec sql update salesreps
 set quota = quota * 1.05;

 exec sql whenever sqlerror goto error2;

 exec sql insert into salesreps (empl_num, name, quota)
 values (116, 'Jan Hamilton', 100000.00);
 .
 .
 .

error1:
 printf("SQL DELETE error: %dl\n", sqlca.sqlcode);
 exit();

error2:
 printf("SQL INSERT error: %ld\n", sqlca.sqlcode);
 exit();
 .
 .
 .

 C h a p t e r 1 7 : E m b e d d e d S Q L 451
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 451

the precompiler will generate a test and a branch to the specified label for every embedded
SQL statement that follows it. You must arrange your program so that the specified label is
a valid target for branching from these embedded SQL statements, or use another
WHENEVER statement to specify a different destination or to cancel the effects of the
WHENEVER/GOTO.

Using Host Variables
The embedded SQL programs in the previous figures don’t provide any real interaction
between the programming statements and the embedded SQL statements. In most
applications, you will want to use the value of one or more program variables in the
embedded SQL statements. For example, suppose you wanted to write a program to adjust
all sales quotas up or down by some dollar amount. The program should prompt the user
for the amount and then use an embedded UPDATE statement to change the QUOTA column
in the SALESREPS table.

Embedded SQL supports this capability through the use of host variables. A host variable
is a program variable declared in the host language (for example, a COBOL or C variable)
that is referenced in an embedded SQL statement. To identify the host variable, the variable
name is prefixed by a colon (:) when it appears in an embedded SQL statement. The colon
allows the precompiler to distinguish easily between host variables and database objects
(such as tables or columns) that may have the same name.

Figure 17-17 shows a C program that implements the quota adjustment application
using a host variable. The program prompts the user for the adjustment amount and stores

FIGURE 17-17 Using host variables

main()
{
 exec sql include sqlca;
 exec sql begin declare section;
 float amount; /* amount (from user) */
 exec sql end declare section;

 /* Prompt the user for the amount of quota increase/decrease */
 printf("Raise/lower quotas by how much:");
 scanf("%f", &amount);

 /* Update the QUOTA column in the SALESREPS table */
 exec sql update salesreps
 set quota = quota + :amount;

 /* Check results of statement execution */
 if (sqlca.sqlcode != 0)
 printf("Error during update.\n");
 else
 printf("Update successful.\n");

 exit();
}

 452 P a r t V : P r o g r a m m i n g w i t h S Q L 452 P a r t V : P r o g r a m m i n g w i t h S Q L

the entered value in the variable named amount. This host variable is referenced in the
embedded UPDATE statement. Conceptually, when the UPDATE statement is executed, the
value of the amount variable is obtained, and that value is substituted for the host variable
in the SQL statement. For example, if you enter the amount 500 in response to the prompt,
the DBMS effectively executes this UPDATE statement:

exec sql update salesreps
 set quota = quota + 500;

A host variable can appear in an embedded SQL statement wherever a constant can
appear. In particular, a host variable can be used in an assignment expression:

exec sql update salesreps
 set quota = quota + :amount;

A host variable can appear in a search condition:

exec sql delete from salesreps
 where quota < :amount;

A host variable can also be used in the VALUES clause of an INSERT statement:

exec sql insert into salesreps (empl_num, name, quota)
 values (116, 'Bill Roberts', :amount);

In each case, note that the host variable is part of the program’s input to the DBMS; it
forms part of the SQL statement submitted to the DBMS for execution. Later, in the section
“Data Retrieval in Embedded SQL,” you will see how host variables are also used to receive
output from the DBMS; they receive query results returned from the DBMS to the program.

Note that a host variable cannot be used instead of a SQL identifier. This attempted use
of the host variable colname is illegal:

char *colname = "quota";

exec sql insert into salesreps (empl_num, name, :colname)
 values (116, 'Bill Roberts', 0.00);

Declaring Host Variables
When you use a host variable in an embedded SQL statement, you must declare the variable
using the normal method for declaring variables in the host programming language. For
example, in Figure 17-17, the host variable amount is declared using the normal C language
syntax (float amount;). When the precompiler processes the source code for the program,
it notes the name of each variable it encounters, along with its data type and size. The
precompiler uses this information to generate correct code later when it encounters a use of
the variable as a host variable in a SQL statement.

The two embedded SQL statements BEGIN DECLARE SECTION and END DECLARE
SECTION bracket the host variable declarations, as shown in Figure 17-17. These two
statements are unique to embedded SQL, and they are not executable. They are directives to
the precompiler, telling it when it must pay attention to variable declarations and when it
can ignore them.

 C h a p t e r 1 7 : E m b e d d e d S Q L 453
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 453

In a simple embedded SQL program, it may be possible to gather together all of the host
variable declarations into one declare section. Usually, however, the host variables must be
declared at various points within the program, especially in block-structured languages
such as C, Pascal, and PL/I. In this case, each declaration of host variables must be
bracketed with a BEGIN DECLARE SECTION/END DECLARE SECTION statement pair.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements are relatively
new to the embedded SQL. They are specified in the ANSI/ISO SQL standard, and DB2
requires them in its newer embedded SQL implementations. However, DB2 and many other
DBMS brands did not historically require declare sections, and some SQL precompilers do
not yet support the BEGIN DECLARE SECTION and END DECLARE SECTION statements. In
this case, the precompiler scans and processes all variable declarations in the host program.

When you use a host variable, the precompiler may limit your flexibility in declaring
the variable in the host programming language. For example, consider the following C
language source code:

#define BIGBUFSIZE 256
 .
 .
 .
exec sql begin declare section;
 char bigbuffer[BIGBUFSIZE+1];
exec sql end declare section;

This is a valid C declaration of the variable bigbuffer. However, if you try to use
bigbuffer as a host variable in an embedded SQL statement like this:

exec sql update salesreps
 set quota = 300000
 where name = :bigbuffer;

many precompilers will generate an error message, complaining about an illegal declaration
of bigbuffer. The problem is that some precompilers don’t recognize symbolic constants
like BIGBUFSIZE. This is just one example of the special considerations that apply when
using embedded SQL and a precompiler. Fortunately, the precompilers offered by the major
DBMS vendors are highly developed, and special-case problems are few.

Host Variables and Data Types
The data types supported by a SQL-based DBMS and the data types supported by a
programming language such as C or FORTRAN are often quite different. These differences
impact host variables because they play a dual role. On the one hand, a host variable is a
program variable, declared using the data types of the programming language and
manipulated by programming language statements. On the other hand, a host variable is
used in embedded SQL statements to contain database data.

Consider the four embedded UPDATE statements in Figure 17-18. In the first UPDATE
statement, the MANAGER column has an INTEGER data type, so hostvar1 should be
declared as a C integer variable. In the second statement, the NAME column has a VARCHAR
data type, so hostvar2 should contain string data. The program should declare hostvar2
as an array of C character data, and most DBMS products will expect the data in the array to

 454 P a r t V : P r o g r a m m i n g w i t h S Q L 454 P a r t V : P r o g r a m m i n g w i t h S Q L

be terminated by a null character (0). In the third UPDATE statement, the QUOTA column has
a DECIMAL data type. There is no corresponding data type in C, and C does not support a
packed decimal data type. For most DBMS brands, you can declare hostvar3 as a C
floating point variable, and the DBMS will automatically translate the floating point value
into the DBMS DECIMAL format. Finally, in the fourth UPDATE statement, the HIRE_DATE
column has a DATE data type in the database. For most DBMS brands, you should declare
hostvar4 as an array of C character data and fill the array with a text form of the date
acceptable to the DBMS.

As Figure 17-18 shows, the data types of host variables must be chosen carefully to match
their intended use in embedded SQL statements. Table 17-1 shows many of the SQL data
types specified in the ANSI/ISO SQL standard and the corresponding data types used in
four of the most popular embedded SQL programming languages, as specified in the
standard. The standard specifies data type correspondences and embedded SQL rules for the
Ada, C (which also covers C++), COBOL, FORTRAN, MUMPS, Pascal, and PL/I languages.

FIGURE 17-18
Host variables and
data types

 .

 .

 .

exec sql begin declare section;

 int hostvar1 = 106;

 char *hostvar2 = "Joe Smith";

 float hostvar3 = 150000.00;

 char *hostvar4 = "01-JUN-1990";

exec sql end declare section;

exec sql update salesreps

 set manager = :hostvar1

 where empl_num = 102;

exec sql update salesreps

 set name = :hostvar2

 where empl_num = 102:

exec sql update salesreps

 set quota = :hostvar3

 where empl_num = 102;

exec sql update salesreps

 set hire_date = :hostvar4

 where empl_num = 102;

 .

 .

 .

 C h a p t e r 1 7 : E m b e d d e d S Q L 455
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 455

Note, however, that in many cases, there is not a one-to-one correspondence between
data types. In addition, each brand of DBMS has its own data type idiosyncrasies and its
own rules for data type conversion when using host variables. Before counting on a specific
data conversion behavior, consult the documentation for your particular DBMS brand and
carefully read the description for the particular programming language you are using.

SQL Type C and C++ Type COBOL Type FORTRAN Type PL/I Type

SMALLINT Short PIC S9 (4)
COMP

INTEGER*2 FIXED BIN(15)

INTEGER Long PIC S9 (9)
COMP

INTEGER*4 FIXED BIN(31)

REAL Float COMP-1 REAL*4 BIN FLOAT(21)

DOUBLE
PRECISION

Double COMP-2 REAL*8 BIN FLOAT(53)

NUMERIC(p,s)
DECIMAL(p,s)

Double1 PIC S9 (p-s)
V9(s) COMP-3

REAL*81 FIXED
DEC(p,s)

CHAR(n) char x[n+1]2 PIC X (n) CHARACTER*n CHAR(n)

VARCHAR(n) char x[n+1]2 Requires
conversion4

Requires
conversion4

CHAR(n) VAR

BIT(n) char x[1]3 PIC X (l) CHARACTER*L3 BIT(n)

BIT
VARYING(n)

char x[1]3 Requires
conversion4

Requires
conversion4

BIT(n) VAR

DATE Requires
conversion5

Requires
conversion5

Requires
conversion5

Requires
conversion5

TIME Requires
conversion5

Requires
conversion5

Requires
conversion5

Requires
conversion5

TIMESTAMP Requires
conversion5

Requires
conversion5

Requires
conversion5

Requires
conversion5

INTERVAL Requires
conversion5

Requires
conversion5

Requires
conversion5

Requires
conversion5

1 Host language does not support packed decimal data; conversion to or from floating point data may cause
truncation or round-off errors.

2 The SQL standard specifies a C string with a null terminator; older DBMS implementations returned a separate
length value in a data structure.

3 The length of the host character string (l) is the number of bits (n), divided by the bits-per-character for the host
language (typically 8), rounded up.

4 Host language does not support variable-length strings; most DBMS brands will convert to fixed-length strings.
5 Host languages do not support native date/time data types; requires conversion to/from host language character

string data types with text date, time, and interval representations.

TABLE 17-1 SQL Data Types

 456 P a r t V : P r o g r a m m i n g w i t h S Q L 456 P a r t V : P r o g r a m m i n g w i t h S Q L

Host Variables and NULL Values
Most programming languages do not provide SQL-style support for unknown or missing
values. A variable in COBOL, C, or FORTRAN, for example, always has a value. There is no
concept of the value being NULL or missing. This causes a problem when you want to store
NULL values in the database or retrieve NULL values from the database using programmatic
SQL. Embedded SQL solves this problem by allowing each host variable to have a
companion host indicator variable. In an embedded SQL statement, the host variable and the
indicator variable together specify a single SQL-style value, as follows:

• An indicator value of zero means that the host variable contains a valid value and
that this value is to be used.

• A negative indicator value means that the host variable should be assumed to have
a NULL value; the actual value of the host variable is irrelevant and should be
disregarded.

• A positive indicator value means that the host variable contains a valid value, which
may have been rounded off or truncated. This situation occurs only when data is
retrieved from the database and is described later in the section “Retrieving NULL
Values.”

When you specify a host variable in an embedded SQL statement, you can follow it
immediately with the name of the corresponding indicator variable. Both variable names
are preceded by a colon. Here is an embedded UPDATE statement that uses the host variable
amount with the companion indicator variable amount_ind:

exec sql update salesreps
 set quota = :amount :amount_ind, sales = :amount2
 where quota < 20000.00;

If amount_ind has a nonnegative value when the UPDATE statement is executed, the
DBMS treats the statement as if it read

exec sql update salesreps
 set quota = :amount, sales = :amount2
 where quota < 20000.00;

If amount_ind has a negative value when the UPDATE statement is executed, the DBMS
treats the statement as if it read

exec sql update salesreps
 set quota = NULL, sales = :amount2
 where quota < 20000.00;

A host variable/indicator variable pair can appear in the assignment clause of an
embedded UPDATE statement (as shown here) or in the values clause of an embedded
INSERT statement. You cannot use an indicator variable in a search condition, so this
embedded SQL statement is illegal:

exec sql delete from salesreps
 where quota = :amount :amount_ind;

 C h a p t e r 1 7 : E m b e d d e d S Q L 457
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 457

This prohibition exists for the same reason that the NULL keyword is not allowed in the
search condition—it makes no sense to test whether QUOTA and NULL are equal, because the
answer will always be NULL (unknown). Instead of using the indicator variable, you must
use an explicit IS NULL test. This pair of embedded SQL statements accomplishes the
intended task of the preceding illegal statement:

if (amount_ind < 0) {
 exec sql delete from salesreps
 where quota is null;
}
else {
 exec sql delete from salesreps
 where quota = :amount;
}

Indicator variables are especially useful when you are retrieving data from the database
into your program and the retrieved data values may be NULL. This use of indicator
variables is described later in the section “Retrieving NULL Values.”

Data Retrieval in Embedded SQL
Using the embedded SQL features described thus far, you can embed any interactive SQL
statement except the SELECT statement in an application program. Retrieving data with an
embedded SQL program requires some special extensions to the SELECT statement. The
reason for these extensions is that there is a fundamental mismatch between the SQL
language and programming languages such as C and COBOL: a SQL query produces an
entire table of query results, but most programming languages can manipulate only
individual data items or individual records (rows) of data.

Embedded SQL must build a bridge between the table-level logic of the SQL SELECT
statement and the row-by-row processing of C, COBOL, and other host programming
languages. For this reason, embedded SQL divides SQL queries into two groups:

• Single-row queries You expect the query results to contain a single row of data.
Looking up a customer’s credit limit or retrieving the sales and quota for a
particular salesperson are examples of this type of query.

• Multirow queries You expect that the query results may contain zero, one, or
many rows of data. Listing the orders with amounts over $20,000 or retrieving the
names of all salespeople who are over quota are examples of this type of query.

Interactive SQL does not distinguish between these two types of queries; the same
interactive SELECT statement handles them both. In embedded SQL, however, the two
types of queries are handled very differently. Single-row queries are simpler to handle and
are discussed in the next section. Multirow queries are discussed shortly.

Single-Row Queries
Many useful SQL queries return a single row of query results. Single-row queries are especially
common in transaction-processing programs, where a user enters a customer number or an
order number, and the program retrieves relevant data about the customer or order.

 458 P a r t V : P r o g r a m m i n g w i t h S Q L 458 P a r t V : P r o g r a m m i n g w i t h S Q L

In embedded SQL, single-row queries are handled by the singleton SELECT statement,
shown in Figure 17-19. The singleton SELECT statement has syntax much like that of the
interactive SELECT statement. It has a SELECT clause, a FROM clause, and an optional
WHERE clause. Because the singleton SELECT statement returns a single row of data, there is
no need for a GROUP BY, HAVING, or ORDER BY clause. The INTO clause specifies the host
variables that are to receive the data retrieved by the statement.

Figure 17-20 shows a simple program with a singleton SELECT statement. The program
prompts the user for an employee number and then retrieves the name, quota, and sales of
the corresponding salesperson. The DBMS places the three retrieved data items into the host
variables repname, repquota, and repsales, respectively.

Recall that the host variables used in the INSERT, DELETE, and UPDATE statements in
the previous examples were input host variables. In contrast, the host variables specified in
the INTO clause of the singleton SELECT statement are output host variables. Each host
variable named in the INTO clause receives a single column from the row of query results.
The select list items and the corresponding host variables are paired in sequence, as they
appear in their respective clauses, and the number of query results columns must be the
same as the number of host variables. In addition, the data type of each host variable must
be compatible with the data type of the corresponding column of query results.

Most DBMS brands will automatically handle reasonable conversions between DBMS
data types and the data types supported by the programming language. For example, most
DBMS products will convert DECIMAL data retrieved from the database into packed
decimal (COMP-3) data before storing it in a COBOL variable, or into floating point data
before storing it in a C variable. The precompiler uses its knowledge of the host variable’s
data type to handle the conversion correctly.

FIGURE 17-19 The singleton SELECT statement syntax diagram

 C h a p t e r 1 7 : E m b e d d e d S Q L 459
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 459

Variable-length text data must also be converted before being stored in a host variable.
Typically, a DBMS converts VARCHAR data into a null-terminated string for C programs and
into a variable-length string (with a leading character count) for Pascal programs. For
COBOL and FORTRAN programs, the host variable must generally be declared as a data
structure with an integer count field and a character array, or as a fixed-length character
variable the same size as the maximum length for the database column. The DBMS returns
the actual characters of data in the character array, and it returns the length of the data in
the count field of the data structure.

If a DBMS supports date/time data or other data types, other conversions are necessary.
Some DBMS products return their internal date/time representations into an integer host
variable. Others convert the date/time data to text format and return it into a string host
variable. Table 17-1 summarized the data type conversions typically provided by DBMS
products, but you must consult the embedded SQL documentation for your particular
DBMS brand for specific information.

FIGURE 17-20 Using the singleton SELECT statement

main()
{
 exec sql begin declare section;
 int repnum; /* employee number(from user) */
 char repname[16]; /* retrieved salesperson name */
 float repquota; /* retrieved quota */
 float repsales; /* retrieved sales */
 exec sql end declare section;

 /* Prompt the user for the employee number */
 printf("Enter salesrep number:");
 scanf("%d", &repnum);

 /* Execute the SQL query */
 exec sql select name, quota, sales
 into :repname, :repquota, :repsales;
 from salesreps
 where empl_num = :repnum

 /* Display the retrieved data */
 if (sqlca.sqlcode = = 0) {
 printf("Name: %s\n", repname);
 printf("Quota: %f\n", repquota);
 printf("Sales: %f\n", repsales);
 }
 else if (sqlca.sqlcode = = 100)
 printf("No salesperson with that employee number.\n");
 else
 printf("SQLerror: %ld\n", sqlca.sqlcode);

 exit();
}

 460 P a r t V : P r o g r a m m i n g w i t h S Q L 460 P a r t V : P r o g r a m m i n g w i t h S Q L

The NOT FOUND Condition
Like all embedded SQL statements, the singleton SELECT statement sets the values of the
SQLCODE and SQLSTATE variables to indicate its completion status:

• If a single row of query results is successfully retrieved, SQLCODE is set to zero and
SQLSTATE is set to 00000; the host variables named in the INTO clause contain the
retrieved values.

• If the query produced an error, SQLCODE is set to a negative value, and SQLSTATE is
set to a nonzero error class (the first two characters of the five-digit SQLSTATE
string); the host variables do not contain retrieved values. However, the host
variables might contain values left over from the last successful execution of a
SELECT that references them, so developers must be sure to test SQLCODE or
SQLSTATE before referencing the host variables.

• If the query produced no rows of query results, a special NOT FOUND warning value
is returned in SQLCODE, and SQLSTATE returns a NO DATA error class.

• If the query produced more than one row of query results, it is treated as an error, and
a negative SQLCODE is returned.

The SQL standard specifies the NOT FOUND warning condition, but it does not specify a
particular value to be returned. DB2 uses the value +100, and most other SQL products follow
this convention, including the other IBM SQL products, Ingres, and SQLBase. This value is also
specified in the SQL standard, but as noted previously, the standard strongly encourages the
use of the newer SQLSTATE error variable instead of the older SQLCODE values.

Retrieving NULL Values
If the data to be retrieved from a database may contain NULL values, the singleton SELECT
statement must provide a way for the DBMS to communicate the NULL values to the
application program. To handle NULL values, embedded SQL uses indicator variables in the
INTO clause, just as they are used in the VALUES clause of the INSERT statement and the
SET clause of the UPDATE statement.

When you specify a host variable in the INTO clause, you can follow it immediately
with the name of a companion host indicator variable. Figure 17-21 shows a revised version
of the program in Figure 17-20 that uses the indicator variable repquota_ind with the
host variable repquota. Because the NAME and SALES columns are declared NOT NULL in
the definition of the SALESREPS table, they cannot produce NULL output values, and no
indicator variable is needed for those columns.

After the SELECT statement has been executed, the value of the indicator variable tells
the program how to interpret the returned data:

• An indicator value of zero means the host variable has been assigned a retrieved
value by the DBMS. The application program can use the value of the host variable
in its processing.

• A negative indicator value means the retrieved value was NULL. The value of the
host variable is irrelevant and should not be used by the application program.

• A positive indicator value indicates a warning condition of some kind, such as a
rounding error or string truncation.

 C h a p t e r 1 7 : E m b e d d e d S Q L 461
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 461

Because you cannot tell in advance when a NULL value will be retrieved, you should
always specify an indicator variable in the INTO clause for any column of query results that
may contain a NULL value. If the SELECT statement produces a column containing a NULL
value and you have not specified an indicator variable for the column, the DBMS will treat
the statement as an error and return a negative SQLCODE. Thus, indicator variables must be
used to successfully retrieve rows containing NULL data. Furthermore, host variable values
are not changed when NULL values are returned by the database, so the developer must test
the indicator variable for NULL data before referencing the values in the host variables—
otherwise, values returned by a different query could be processed as if they were returned
by the one that just completed.

FIGURE 17-21 Using singleton SELECT with indicator variables

main()
{
 exec sql include sqlca;
 exec sql begin declare section;
 int repnum; /* employee number (from user) */
 char repname[16]; /* retrieved salesperson name */
 float repquota; /* retrieved quota */
 float repsales; /* retrieved sales */
 short repquota_ind; /* null quota indicator */
 exec sql end declare section;

 /* Prompt the user for the employee number */
 printf("Enter salesrep number:");
 scanf("%d", &repnum);

 /* Execute the SQL query */
 exec sql select name, quota, sales
 into :repname, :repquota, :repquota_ind, :repsales;
 from salesreps
 where empl_num = :repnum

 /* Display the retrieved data */
 if (sqlca.sqlcode = = 0){
 printf("Name: %s\n", repname);
 if (repquota_ind < 0)
 printf("quota is NULL\n");
 else
 printf("Quota: %f\n", repquota);
 printf("Sales: %f\n", repsales);
 }
 else if (sqlca.sqlcode = = 100)
 printf("No salesperson with that employee number.\n");
 else
 printf("SQL error: %ld\n", sqlca.sqlcode);

 exit();
}

 462 P a r t V : P r o g r a m m i n g w i t h S Q L 462 P a r t V : P r o g r a m m i n g w i t h S Q L

Although the major use of indicator variables is for handling NULL values, the DBMS
also uses indicator variables to signal warning conditions. For example, if an arithmetic
overflow or division by zero makes one of the query results columns invalid, DB2 returns
a warning SQLCODE of +802 and sets the indicator variable for the affected column to −2.
The application program can respond to the SQLCODE and examine the indicator variables
to determine which column contains invalid data.

DB2 also uses indicator variables to signal string truncation. If the query results contain
a column of character data that is too large for the corresponding host variable, DB2 copies
the first part of the character string into the host variable and sets the corresponding
indicator variable to the full length of the string. The application program can examine the
indicator variable and may want to retry the SELECT statement with a different host
variable that can hold a larger string.

These additional uses of indicator variables are fairly common in commercial SQL
products, but the specific warning code values vary from one product to another. They are
not specified by the ANSI/ISO SQL standard. Instead, the SQL standard specifies error
classes and subclasses to indicate these and similar conditions, and the program must use
the GET DIAGNOSTICS statement to determine more specific information about the host
variable causing the error.

Retrieval Using Data Structures
Some programming languages support data structures, which are named collections of
variables. For these languages, a SQL precompiler may allow you to treat the entire data
structure as a single, composite host variable in the INTO clause. Instead of specifying a
separate host variable as the destination for each column of query results, you can specify a
data structure as the destination for the entire row. Figure 17-22 shows the program from
Figure 17-21 rewritten to use a C data structure.

When the precompiler encounters a data structure reference in the INTO clause, it replaces
the structure reference with a list of the individual variables in the structure, in the order they
are declared within the structure. Thus, the number of items in the structure and their data
types must correspond to the columns of query results. The use of data structures in the INTO
clause is, in effect, a shortcut. It does not fundamentally change the way the INTO clause works.

Support for the use of data structures as host variables varies widely among DBMS
brands. It is also restricted to certain programming languages. DB2 supports C and PL/I
structures, but does not support COBOL or assembly language structures, for example.

Input and Output Host Variables
Host variables provide two-way communication between the program and the DBMS. In
the program shown in Figure 17-21, the host variables repnum and repname illustrate the
two different roles played by host variables:

• The repnum host variable is an input host variable, used to pass data from the
program to the DBMS. The program assigns a value to the variable before executing
the embedded statement, and that value becomes part of the SELECT statement to
be executed by the DBMS. The DBMS does nothing to alter the value of the variable.

• The repname host variable is an output host variable, used to pass data back from
the DBMS to the program. The DBMS assigns a value to this variable as it executes
the embedded SELECT statement. After the statement has been executed, the
program can use the resulting value.

 C h a p t e r 1 7 : E m b e d d e d S Q L 463
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 463

Input and output host variables are declared the same way and are specified using the
same colon notation within an embedded SQL statement. However, it’s often useful to think
in terms of input and output host variables when you’re actually coding an embedded SQL
program. Input host variables can be used in any SQL statement where a constant can
appear. Output host variables are used only with the singleton SELECT statement and with
the FETCH statement, described in the next section of this chapter.

FIGURE 17-22 Using a data structure as a host variable

main()
{
 exec sql include sqlca;
 exec sql begin declare section;
 int repnum; /* employee number (from user) */
 struct{
 char name[16]; /* retrieved salesperson name */
 float quota; /* retrieved quota */
 float sales; /* retrieved sales */
 }repinfo;
 short rep_ind[3]; /* null indicator array */
 exec sql end declare section;

 /* Prompt the user for the employee number */
 printf("Enter salesrep number: ");
 scanf("%d", &repnum);

 /* Execute the SQL query */
 exec sql select name, quota, sales
 into :repinfo :rep_ind;
 from salesreps
 where empl_num = :repnum

 /* Display the retrieved data */
 if (sqlca.sqlcode = = 0){
 printf("Name: %s\n", repinfo.name);
 if (rep_ind[1] < 0)
 printf("quota is NULL\n");
 else
 printf("Quota: %f\n", repinfo.quota);
 printf("Sales: %f\n", repinfo.sales);
 }
 else if (sqlca.sqlcode = = 100)
 printf("No salesperson with that employee number.\n");
 else
 printf("SQL error: %ld\n", sqlca.sqlcode);

 exit();
}

 464 P a r t V : P r o g r a m m i n g w i t h S Q L 464 P a r t V : P r o g r a m m i n g w i t h S Q L

Multirow Queries
When a query produces an entire table of query results, embedded SQL must provide a way
for the application program to process the query results one row at a time. Embedded SQL
supports this capability by defining a new SQL concept, called a cursor, and adding several
statements to the interactive SQL language. Here is an overview of embedded SQL techniques
for multirow query processing and the new statements it requires:

 1. The DECLARE CURSOR statement specifies the query to be performed and associates
a cursor name with the query.

 2. The OPEN statement asks the DBMS to start executing the query and generating
query results. It positions the cursor before the first row of query results.

 3. The FETCH statement advances the cursor to the first row of query results and
retrieves its data into host variables for use by the application program. Subsequent
FETCH statements move through the query results row by row, advancing the
cursor to the next row of query results and retrieving its data into the host variables.

 4. The CLOSE statement ends access to the query results and breaks the association
between the cursor and the query results.

Figure 17-23 shows a program that uses embedded SQL to perform a simple multirow
query. The numbered callouts in the figure correspond to the numbers in the preceding
steps. The program retrieves and displays, in alphabetical order, the name, quota, and year-
to-date sales of each salesperson whose sales exceed quota. The interactive SQL query that
prints this information is

SELECT NAME, QUOTA, SALES
 FROM SALESREPS
 WHERE SALES > QUOTA
 ORDER BY NAME;

Notice that this query appears, word for word, in the embedded DECLARE CURSOR
statement in Figure 17-23. The statement also associates the cursor name repcurs with the
query. This cursor name is used later in the OPEN CURSOR statement to start the query and
position the cursor before the first row of query results.

The FETCH statement inside the for loop fetches the next row of query results each
time the loop is executed. The INTO clause of the FETCH statement works just like the INTO
clause of the singleton SELECT statement. It specifies the host variables that are to receive
the fetched data items—one host variable for each column of query results. As in previous
examples, a host indicator variable (repquota_ind) is used when a fetched data item may
contain NULL values.

When no more rows of query results are to be fetched, the DBMS returns the NOT FOUND
warning in response to the FETCH statement. This is exactly the same warning code that is
returned when the singleton SELECT statement does not retrieve a row of data. In this
program, the WHENEVER NOT FOUND statement causes the precompiler to generate code that
checks the SQLCODE value after the FETCH statement. This generated code branches to the
label done when the NOT FOUND condition arises, and to the label error if an error occurs.
At the end of the program, the CLOSE statement ends the query and terminates the
program’s access to the query results.

 C h a p t e r 1 7 : E m b e d d e d S Q L 465
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 465

FIGURE 17-23 Multirow query processing

main()
{
 exec sql include sqlca;
 exec sql begin declare section;
 char repname[16]; /* retrieved salesperson name */
 float repquota; /* retrieved quota */
 float repsales; /* retrieved sales */
 short repquota_ind; /* null quota indicator */
 exec sql end declare section;

 /* Declare the cursor for the query */
 exec sql declare repcurs cursor for
 select name, quota, sales
 from salesreps
 where sales > quota
 order by name;

 /* Set up error processing */
 whenever sqlerror goto error;
 whenever not found goto done;

 /* Open the cursor to start the query */
 exec sql open repcurs;

 /* Loop through each row of query results */
 for (;;){

 /* Fetch the next row of query results */
 exec sql fetch repcurs
 into :repname, :repquota, :repquota_ind, :repsales;

 /*Display the retrieved data */
 printf("Name: %s\n", repname);
 if (repquota_ind < 0)
 printf("Quota is NULL\n");
 else
 printf("Quota: %f\n", repquota);
 printf("Sales: %f\n", repsales);
 }

error:
 printf("SQL error: %ld\n", sqlca.sqlcode);
 exit();

done:
 /* Query complete; close the cursor */
 exec sql close repcurs;
 exit();
}

4

3

2

1

 466 P a r t V : P r o g r a m m i n g w i t h S Q L 466 P a r t V : P r o g r a m m i n g w i t h S Q L

Cursors
As the program in Figure 17-23 illustrates, an embedded SQL cursor behaves much like a
filename or file handle in a programming language such as C or COBOL. Just as a program
opens a file to access the file’s contents, it opens a cursor to gain access to the query results.
Similarly, the program closes a file to end its access and closes a cursor to end access to the
query results. Finally, just as a file handle keeps track of the program’s current position
within an open file, a cursor keeps track of the program’s current position within the query
results. These parallels between file input/output and SQL cursors make the cursor concept
relatively easy for application programmers to understand.

Despite the parallels between files and cursors, there are also some differences. Opening
a SQL cursor usually involves much more overhead than opening a file, because opening
the cursor actually causes the DBMS to begin carrying out the associated query. In addition,
SQL cursors support only sequential motion through the query results, like sequential file
processing. In most current SQL implementations, there is no cursor analog to the random
access provided to the individual records of a file.

Cursors provide a great deal of flexibility for processing queries in an embedded SQL
program. By declaring and opening multiple cursors, the program can process several sets
of query results in parallel. For example, the program might retrieve some rows of query
results, display them on the screen for its user, and then respond to a user’s request for
more detailed data by launching a second query. The following sections describe in detail
the four embedded SQL statements that define and manipulate cursors.

The DECLARE CURSOR Statement
The DECLARE CURSOR statement, shown in Figure 17-24, defines a query to be performed.
The statement also associates a cursor name with the query. The cursor name must be a
valid SQL identifier. It is used to identify the query and its results in other embedded SQL
statements. The cursor name is specifically not a host language variable; it is declared by the
DECLARE CURSOR statement, not in a host language declaration.

The SELECT statement in the DECLARE CURSOR statement defines the query associated
with the cursor. The SELECT statement can be any valid interactive SQL SELECT statement,
as described in Chapters 6 through 9. In particular, the SELECT statement must include a
FROM clause and may optionally include WHERE, GROUP BY, HAVING, and ORDER BY clauses.
The SELECT statement may also include the UNION operator, as described in Chapter 6.
Thus, an embedded SQL query can use any of the query capabilities that are available in the
interactive SQL.

The query specified in the DECLARE CURSOR statement may also include input host
variables. These host variables perform exactly the same function as in the embedded
INSERT, DELETE, UPDATE, and singleton SELECT statements. An input host variable can
appear within the query anywhere that a constant can appear. Note that output host
variables cannot appear in the query. Unlike the singleton SELECT statement, the SELECT
statement within the DECLARE CURSOR statement has no INTO clause and does not retrieve
any data. The INTO clause appears as part of the FETCH statement, described shortly.

FIGURE 17-24 The DECLARE CURSOR statement syntax diagram

 C h a p t e r 1 7 : E m b e d d e d S Q L 467
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 467

As its name implies, the DECLARE CURSOR statement is a declaration of the cursor. In
most SQL implementations, including the IBM SQL products, this statement is a directive
for the SQL precompiler; it is not an executable statement, and the precompiler does not
produce any code for it. Like all declarations, the DECLARE CURSOR statement must
physically appear in the program before any statements that reference the cursor that it
declares. Most SQL implementations treat the cursor name as a global name that can be
referenced inside any procedures, functions, or subroutines that appear after the DECLARE
CURSOR statement.

It’s worth noting that not all SQL implementations treat the DECLARE CURSOR statement
strictly as a declarative statement, and this can lead to subtle problems. Some SQL precompilers
actually generate code for the DECLARE CURSOR statement (either host language declarations
or calls to the DBMS, or both), giving it some of the qualities of an executable statement. For
these precompilers, the DECLARE CURSOR statement must not only physically precede the
OPEN, FETCH, and CLOSE statements that reference its cursor, but it also must sometimes
precede these statements in the flow of execution, or be placed in the same block as the other
statements.

In general, you can avoid problems with the DECLARE CURSOR statement by following
these guidelines:

• Place the DECLARE CURSOR statement right before the OPEN statement for the
cursor. This placement ensures the correct physical statement sequence; it puts the
DECLARE CURSOR and the OPEN statements in the same block; and it ensures that
the flow of control passes through the DECLARE CURSOR statement, if necessary. It
also helps to document just what query is being requested by the OPEN statement.

• Make sure that the FETCH and CLOSE statements for the cursor follow the OPEN
statement physically as well as in the flow of control.

The OPEN Statement
The OPEN statement, shown in Figure 17-25, conceptually opens the table of query results
for access by the application program. In practice, the OPEN statement actually causes the
DBMS to process the query, or at least to begin processing it. The OPEN statement thus
causes the DBMS to perform the same work as an interactive SELECT statement, stopping
just short of the point where it produces the first row of query results.

The single parameter of the OPEN statement is the name of the cursor to be opened. This
cursor must have been previously declared by a DECLARE CURSOR statement. If the query
associated with the cursor contains an error, the OPEN statement will produce a negative
SQLCODE value. Most query-processing errors, such as a reference to an unknown table, an
ambiguous column name, or an attempt to retrieve data from a table without the proper
permission, will be reported as a result of the OPEN statement. In practice, very few errors
occur during the subsequent FETCH statements.

FIGURE 17-25 The OPEN statement syntax diagram

 468 P a r t V : P r o g r a m m i n g w i t h S Q L 468 P a r t V : P r o g r a m m i n g w i t h S Q L

Once opened, a cursor remains in the open state until it is closed with the CLOSE
statement. The DBMS also closes all open cursors automatically at the end of a transaction
(that is, when the DBMS executes a COMMIT or ROLLBACK statement). After the cursor has
been closed, it can be reopened by executing the OPEN statement a second time. Note that
the DBMS restarts the query from scratch each time it executes the OPEN statement.

The FETCH Statement
The FETCH statement, shown in Figure 17-26, retrieves the next row of query results for use
by the application program. The cursor named in the FETCH statement specifies which row
of query results is to be fetched. It must identify a cursor previously opened by the OPEN
statement.

The FETCH statement fetches the row of data items into a list of host variables, which
are specified in the INTO clause of the statement. An indicator variable can be associated
with each host variable to handle retrieval of NULL data. The behavior of the indicator
variable and the values that it can assume are identical to those described earlier in the
“Single-Row Queries” section for the singleton SELECT statement. The number of host
variables in the list must be the same as the number of columns in the query results, and the
data types of the host variables must be compatible, column by column, with the columns
of query results.

As shown in Figure 17-27, the FETCH statement moves the cursor through the query
results, row by row, according to these rules:

• The OPEN statement positions the cursor before the first row of query results. In this
state, the cursor has no current row.

• The FETCH statement advances the cursor to the next available row of query results,
if there is one. This row becomes the current row of the cursor.

• If a FETCH statement advances the cursor past the last row of query results, the
FETCH statement returns a NOT FOUND warning. In this state, the cursor again has
no current row.

• The CLOSE statement ends access to the query results and places the cursor in a
closed state.

If there are no rows of query results, the OPEN statement still positions the cursor before
the (empty) query results and returns successfully. The program cannot detect that the OPEN
statement has produced an empty set of query results. However, the very first FETCH
statement produces the NOT FOUND warning and positions the cursor after the end of the
(empty) query results.

The CLOSE Statement
The CLOSE statement, shown in Figure 17-28, conceptually closes the table of query
results created by the OPEN statement, ending access by the application program. Its single
parameter is the name of the cursor associated with the query results, which must be

FIGURE 17-26 The FETCH statement syntax diagram

 C h a p t e r 1 7 : E m b e d d e d S Q L 469
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 469

a cursor previously opened by an OPEN statement. The CLOSE statement can be executed
at any time after the cursor has been opened. In particular, it is not necessary to FETCH all
rows of query results before closing the cursor, although this will usually be the case. All
cursors are automatically closed at the end of a transaction. Once a cursor is closed, its
query results are no longer available to the application program.

Scroll Cursors
The SQL1 standard specifies that a cursor can only move forward through the query results.
For a number of years, most commercial SQL products also supported only this form of
forward, sequential cursor motion. If a program wants to re-retrieve a row once the cursor
has moved past it, the program must CLOSE the cursor and reOPEN it (causing the DBMS to
perform the query again), and then FETCH through the rows until the desired row is reached.

In the early 1990s, a few commercial SQL products extended the cursor concept with the
concept of a scroll cursor. Unlike standard cursors, a scroll cursor provides random access to
the rows of query results. The program specifies which row it wants to retrieve through an
extension of the FETCH statement, shown in Figure 17-29:

• FETCH FIRST retrieves the first row of query results.

• FETCH LAST retrieves the last row of query results.

• FETCH PRIOR retrieves the row of query results that immediately precedes the
current row of the cursor.

• FETCH NEXT retrieves the row of query results that immediately follows the current
row of the cursor. This is the default behavior if no motion is specified and
corresponds to the standard cursor motion.

• FETCH ABSOLUTE retrieves a specific row by its row number.

• FETCH RELATIVE moves the cursor forward or backward a specific number of rows
relative to its current position.

FIGURE 17-27
Cursor positioning
with OPEN, FETCH,
and CLOSE

Query Results (three rows)

(NOT FOUND)
CLOSE

FETCH

FETCH

FETCH

FETCH

OPEN

MFR ID PRODUCT ID DESCRIPTION

FIGURE 17-28 The CLOSE statement syntax diagram

 470 P a r t V : P r o g r a m m i n g w i t h S Q L 470 P a r t V : P r o g r a m m i n g w i t h S Q L

Scroll cursors can be especially useful in programs that allow a user to browse database
contents. In response to the user’s request to move forward or backward through the data a
row or a screenful at a time, the program can simply fetch the required rows of the query
results. However, scroll cursors are also a great deal harder for the DBMS to implement than
a normal, unidirectional cursor. To support a scroll cursor, the DBMS must keep track of the
previous query results that it provided for a program and of the order in which it supplied
those rows of results. The DBMS must also ensure that no other concurrently executing
transaction modifies any data that has become visible to a program through a scroll cursor,
because the program can use the extended FETCH statement to re-retrieve the row, even
after the cursor has moved past the row.

If you use a scroll cursor, you should be aware that certain FETCH statements on a scroll
cursor may have a very high overhead for some DBMS brands. If the DBMS brand normally
carries out a query step-by-step as your program FETCHes its way down through the query
results, your program may wait a much longer time than normal if you request a FETCH
NEXT operation when the cursor is positioned at the first row of query results. It’s best to
understand the performance characteristics of your particular DBMS brand before writing
programs that depend on scroll cursor functionality for production applications.

Because of the usefulness of scroll cursors, and because a few DBMS vendors had begun
to ship scroll cursor implementations that were slightly different from one another, the SQL
standard was expanded to include support for scroll cursors. The Entry SQL level of the
standard requires only the older-style, sequential forward cursor, but conformance at the
Intermediate SQL or Full SQL levels requires full support for the scroll cursor syntax shown
in Figure 17-29. The standard also specifies that if any motion other than FETCH NEXT (the
default) is used on a cursor, its DECLARE CURSOR statement must explicitly identify it as a scroll
cursor. Using the standard syntax, the cursor declaration in Figure 17-23 would appear as:

exec sql declare repcurs scroll cursor for
 select name, quota, sales
 from salesreps
 where sales > quota
 order by name;

Cursor-Based Deletes and Updates
Application programs often use cursors to allow the user to browse through a table of data
row by row. For example, the user may ask to see all of the orders placed by a particular
customer. The program declares a cursor for a query of the ORDERS table and displays each

FIGURE 17-29 An extended FETCH statement for scroll cursors

 C h a p t e r 1 7 : E m b e d d e d S Q L 471
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 471

order on the screen, possibly in a computer-generated form, waiting for a signal from the
user to advance to the next row. Browsing continues in this fashion until the user reaches
the end of the query results. The cursor serves as a pointer to the current row of query
results. If the query draws its data from a single table and it is not a summary query, as in
this example, the cursor implicitly points to a row of a database table, because each row of
query results is drawn from a single row of the table.

While browsing the data, the user may spot data that should be changed. For example,
the order quantity in one of the orders may be incorrect, or the customer may want to delete
one of the orders. In this situation, the user wants to update or delete this order. The row is
not identified by the usual SQL search condition; rather, the program uses the cursor as a
pointer to indicate which row is to be updated or deleted.

Embedded SQL supports this capability through special versions of the DELETE and
UPDATE statements, called the positioned DELETE and positioned UPDATE statements, respectively.

The positioned DELETE statement, shown in Figure 17-30, deletes a single row from a
table. The deleted row is the current row of a cursor that references the table. To process the
statement, the DBMS locates the row of the base table that corresponds to the current row of
the cursor and deletes that row from the base table. After the row is deleted, the cursor has
no current row. Instead, the cursor is effectively positioned in the empty space left by the
deleted row, waiting to be advanced to the next row by a subsequent FETCH statement.

The positioned UPDATE statement, shown in Figure 17-31, updates a single row of a
table. The updated row is the current row of a cursor that references the table. To process
the statement, the DBMS locates the row of the base table that corresponds to the current
row of the cursor and updates that row as specified in the SET clause. After the row is
updated, it remains the current row of the cursor. Figure 17-32 shows an order-browsing
program that uses the positioned UPDATE and DELETE statements:

 1. The program first prompts the user for a customer number and then queries the
ORDERS table to locate all of the orders placed by that customer.

 2. As it retrieves each row of query results, it displays the order information on the
screen and asks the user what to do next.

 3. If the user types an N, the program does not modify the current order, but moves
directly to the next order.

FIGURE 17-30 The positioned DELETE statement syntax diagram

FIGURE 17-31
The positioned
UPDATE statement
syntax diagram

 472 P a r t V : P r o g r a m m i n g w i t h S Q L 472 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 17-32 Using the positioned DELETE and UPDATE statements

 main()
 {
 exec sql include sqlca;
 exec sql begin declare section;
 int custnum; /* customer number entered by user */
 int ordnum; /* retrieved order number */
 char orddate[12]; /* retrieved order date */
 char ordmfr[4]; /* retrieved manufacturer-id */
 char ordproduct[6]; /* retrieved product–id */
 int ordqty; /* retrieved order quantity */
 float ordamount; /* retrieved order amount */
 exec sql end declare section;
 char inbuf[101] /* character entered by user */

 /* Declare the cursor for the query */
 exec sql declare ordcurs cursor for
 select order_num, ord_date, mfr, product, qty, amount
 from orders
 where cust = custnum
 order by order_num
 for update of qty, amount;

 /* Prompt the user for a customer number */
 printf("Enter customer number:");
 scanf("%d", &custnum);

 /* Set up error processing */
 whenever sqlerror goto error;
 whenever not found goto done;

 /* Open the cursor to start the query */
 exec sql open ordcurs;

 /* Loop through each row of query results */
 for (;;) {

 /* Fetch the next row of query results */
 exec sql fetch ordcurs
 into :ordnum, :orddate, :ordmfr, :ordproduct,
 :ordqty, :ordamount;

 /* Display the retrieved data */
 printf("Order Number: %d\n", ordnum);
 printf("Order Date: %s\n", orddate);
 printf("Manufacturer: %s\n", ordmfr);
 printf("Product: %s\n", ordproduct);
 printf("Quantity: %s\n", ordqty);
 printf("Total Amount: %f\n", ordamount);

 /* Prompt user for action on this order */
 printf("Enter action (Next/Delete/Update/Exit): ");
 gets(inbuf);

1

2

 C h a p t e r 1 7 : E m b e d d e d S Q L 473
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 473

 4. If the user types a D, the program deletes the current order using a positioned
DELETE statement.

 5. If the user types a U, the program prompts the user for a new quantity and amount,
and then updates these two columns of the current order using a positioned
UPDATE statement.

 6. If the user types an X, the program halts the query and terminates.

FIGURE 17-32 Using the positioned DELETE and UPDATE statements (continued)

 switch (inbuf[0]) {

 case 'N':
 /* Continue on to the next order */
 break;

 case 'D':
 /* Delete the current order */
 exec sql delete from orders
 where current of ordcurs;
 break;

 case 'U':
 /* Update the current order */
 printf("Enter new quantity: ");
 scanf("%d", &ordqty);
 printf("Enter new amount: ");
 scanf("%f", &ordamount);
 exec sql update orders
 set qty = :ordqty, amount = :ordamount
 where current of ordcurs;
 break;

 case 'X':
 /* Stop retrieved orders and exit */
 goto done;

 }
 }

 done:
 exec sql close ordcurs;
 exec sql commit;
 exit();

 error:
 printf("SQL error: %ld\n", sqlca.sqlcode);
 exit();
 }

6

5

4

3

 474 P a r t V : P r o g r a m m i n g w i t h S Q L 474 P a r t V : P r o g r a m m i n g w i t h S Q L

Although it is primitive compared with a real application program, the example in
Figure 17-32 shows all of the logic and embedded SQL statements required to implement a
browsing application with cursor-based database updates.

The SQL1 standard specified that the positioned DELETE and UPDATE statements can
be used only with cursors that meet these very strict criteria:

• The query associated with the cursor must draw its data from a single source table;
that is, there must be only one table named in the FROM clause of the query specified
in the DECLARE CURSOR statement.

• The query cannot specify an ORDER BY clause; the cursor must not identify a sorted
set of query results.

• The query cannot specify the DISTINCT keyword.

• The query must not include a GROUP BY or a HAVING clause.

• The user must have the UPDATE or DELETE privilege (as appropriate) on the base table.

The IBM databases (DB2 and SQL/DS) extended the SQL1 restrictions a step further.
They require that the cursor be explicitly declared as an updateable cursor in the DECLARE
CURSOR statement. The extended IBM form of the DECLARE CURSOR statement is shown
in Figure 17-33. In addition to declaring an updateable cursor, the FOR UPDATE clause can
optionally specify particular columns that may be updated through the cursor. If the column
list is specified in the cursor declarations, positioned UPDATE statements for the cursor may
update only those columns.

In practice, all commercial SQL implementations that support positioned DELETE and
UPDATE statements follow the IBM SQL approach. It is a great advantage for the DBMS to
know, in advance, whether a cursor will be used for updates or whether its data will be
read-only, because read-only processing is simpler. The FOR UPDATE clause provides this
advance notice and can be considered a de facto standard of the embedded SQL.

Because of its widespread use, subsequent versions of the SQL standard include the
IBM-style FOR UPDATE clause as an option in its DECLARE CURSOR statement. However,
unlike the IBM products, the SQL standard automatically assumes that a cursor is opened
for update unless it is a scroll cursor or it is explicitly declared FOR READ ONLY. The FOR
READ ONLY specification in the DECLARE CURSOR statement appears in exactly the same
position as the FOR UPDATE clause and explicitly tells the DBMS that the program will not

FIGURE 17-33 The DECLARE CURSOR statement with FOR UPDATE clause

 C h a p t e r 1 7 : E m b e d d e d S Q L 475
PART V

 C h a p t e r 1 7 : E m b e d d e d S Q L 475

attempt a positioned DELETE or UPDATE operation using the cursor. Because updateable
cursors can significantly affect database overhead and performance, it is very important to
understand the specific assumptions that your particular DBMS brand makes about the
updateability of cursors, and the clauses or statements that can be used to override them.
In addition, programs that explicitly declare whether their intention is to allow updates
via an opened cursor are more maintainable.

Cursors and Transaction Processing
The way your program handles its cursors can have a major impact on database
performance. Recall from Chapter 12 that the SQL transaction model guarantees the
consistency of data during a transaction. In cursor terms, this means that your program can
declare a cursor, open it, fetch the query results, close it, reopen it, and fetch the query
results again—and be guaranteed that the query results will be identical both times. The
program can also fetch the same row through two different cursors and be guaranteed that
the results will be identical. In fact, the data is guaranteed to remain consistent until your
program issues a COMMIT or ROLLBACK to end the transaction. Because the consistency is
not guaranteed across transactions, both the COMMIT and ROLLBACK statements
automatically close all open cursors.

Behind the scenes, the DBMS provides this consistency guarantee by locking all of the
rows of query results, preventing other users from modifying them. If the query produces
many rows of data, a major portion of a table may be locked by the cursor. Furthermore, if
your program waits for user input after fetching each row (for example, to let the user
verify data displayed on the screen), parts of the database may be locked for a very long
time. In an extreme case, the user might leave for lunch in mid transaction, locking out
other users for an hour or more!

To minimize the amount of locking required, you should follow these guidelines when
writing interactive query programs:

• Keep transactions as short as possible.

• Issue a COMMIT statement at reasonable intervals during processing. It is sometimes
tempting to issue a COMMIT after every INSERT, UPDATE, and DELETE, but
processing a commit adds to overhead, so there’s a trade-off between releasing locks
in a timely manner and processing efficiency.

• Avoid programs that require a great deal of user interaction or that browse through
many rows of data.

• If you know that the program will not try to refetch a row of data after the cursor
has moved past it, use one of the less restrictive isolation modes described in
Chapter 12. This allows the DBMS to unlock a row as soon as the next FETCH
statement is issued.

• Avoid the use of scroll cursors unless you have taken other actions to eliminate or
minimize the extra database locking they will cause.

• Explicitly specify a READ ONLY cursor, if possible.

 476 P a r t V : P r o g r a m m i n g w i t h S Q L

Summary
In addition to its role as an interactive database language, SQL is used for programmatic access
to relational databases:

• The most common technique for programmatic use of SQL is embedded SQL, where
SQL statements are embedded into the application program, intermixed with the
statements of a host programming language such as C or COBOL.

• Embedded SQL statements are processed by a special SQL precompiler. They begin
with a special introducer (usually EXEC SQL) and end with a terminator, which varies
from one host language to another.

• Variables from the application program, called host variables, can be used in embedded
SQL statements wherever a constant can appear. These input host variables tailor the
embedded SQL statement to the particular situation.

• Host variables are also used to receive the results of database queries. The values of
these output host variables can then be processed by the application program.

• Queries that produce a single row of data are handled with the singleton SELECT
statement of embedded SQL, which specifies both the query and the host variables
to receive the retrieved data.

• Queries that produce multiple rows of query results are handled with cursors in
embedded SQL. The DECLARE CURSOR statement defines the query; the OPEN
statement begins query processing; the FETCH statement retrieves successive rows
of query results; and the CLOSE statement ends query processing. For applications
that need to move through the cursor results in a nonsequential manner, a scrollable
cursor can be used (if supported by the DBMS product).

• The positioned UPDATE and DELETE statements can be used to update or delete
the row currently selected by a cursor.

18
Dynamic SQL*

The embedded SQL programming features described in Chapter 17 are collectively
known as static SQL. Static SQL is adequate for writing all of the programs typically
required in a data processing application. For example, in the order-processing

application of the sample database, you can use static SQL to write programs that handle
order entry, order updates, order inquiries, customer inquiries, customer file maintenance,
and programs that produce all types of reports. In every one of these programs, the pattern
of database access is decided by the programmer and hard-coded into the program as a
series of embedded SQL statements.

There is an important class of applications, however, where the pattern of database
access cannot be determined in advance. A graphic query tool or a report writer, for
example, must be able to decide at runtime which SQL statements it will use to access the
database. A personal computer spreadsheet that supports host database access must also be
able to send a query to the host DBMS for execution on the fly. These programs and other
general-purpose database front-ends cannot be written using static SQL techniques. They
require an advanced form of embedded SQL, called dynamic SQL, described in this chapter.

Limitations of Static SQL
As the name static SQL implies, a program built using the embedded SQL features described
in Chapter 17 (host variables, cursors, and the DECLARE CURSOR, OPEN, FETCH, and CLOSE
statements) has a relatively stable pattern of database access. For each embedded SQL
statement in the program, the tables and columns referenced by that statement are determined
in advance by the programmer and hard-coded into the embedded SQL statement. Input
host variables provide some flexibility in static SQL, but they don’t fundamentally alter its
static nature. Recall that a host variable can appear anywhere a constant is allowed in a SQL
statement. You can use a host variable to alter a search condition:

exec sql select name, quota, sales
 from salesreps
 where quota > :cutoff_amount;

477

CHAPTER

 478 P a r t V : P r o g r a m m i n g w i t h S Q L 478 P a r t V : P r o g r a m m i n g w i t h S Q L

You can also use a host variable to change the data inserted or updated in a database:

exec sql update salesreps
 set quota = quota + :increase
 where quota > :cutoff_amount;

However, you cannot use a host variable in place of a table name or a column reference.
The attempted use of the host variables which_table and which_column in these
statements is illegal:

exec sql update :which_table
 set :which_column = 0;

exec sql declare cursor cursor7 for
 select *
 from :which_table;

Even if you could use a host variable in this way (and you cannot), another problem
would immediately arise. The number of columns produced by the query in the second
statement would vary, depending on which table was specified by the host variable. For the
OFFICES table, the query results would have six columns; for the SALESREPS table, they
would have nine columns. Furthermore, the data types of the columns would be different
for the two tables. But to write a FETCH statement for the query, you must know in advance
how many columns of query results there will be and their data types, because you must
specify a host variable to receive each column:

exec sql fetch cursor7
 into :var1, :var2, :var3;

As this discussion illustrates, if a program must be able to determine at runtime which
SQL statements it will use, or which tables and columns it will reference, static SQL is
inadequate for the task. Dynamic SQL overcomes these limitations.

Dynamic SQL has been supported by the IBM SQL products since their introduction,
and it has been supported for many years by the minicomputer-based and UNIX-based
commercial RDBMS products. However, dynamic SQL was not specified by the original
ANSI/ISO SQL1 standard; the standard defined only static SQL. The absence of dynamic
SQL from the SQL1 standard is ironic, given the popular notion that the standard allowed
you to build front-end database tools that are portable across many different DBMS brands.
In fact, such front-end tools must almost always be built using dynamic SQL.

In the absence of an ANSI/ISO standard, DB2 set the de facto standard for dynamic
SQL. The other IBM databases of the day (SQL/DS and OS/2 Extended Edition) were
nearly identical to DB2 in their dynamic SQL support, and most other SQL products also
followed the DB2 standard. Official support for dynamic SQL was added to the SQL
standard in 1992 (version SQL2), mostly following the path set by IBM. The SQL standard
does not require dynamic SQL support at the lowest level of compliance (Entry), but
dynamic SQL support is required for products claiming the Intermediate or Full compliance
levels to the SQL standard.

 C h a p t e r 1 8 : D y n a m i c S Q L * 479
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 479

Dynamic SQL Concepts
The central concept of dynamic SQL is simple: don’t hard-code an embedded SQL statement
into the program’s source code. Instead, let the program build the text of a SQL statement in
one of its data areas at runtime. The program then passes the statement text to the DBMS for
execution on the fly. Although the details get quite complex, all of dynamic SQL is built on
this simple concept, and it’s a good idea to keep it in mind.

To understand dynamic SQL and how it compares with static SQL, it’s useful to
consider once again the process the DBMS goes through to execute a SQL statement,
originally shown in Figure 17-1 and repeated here in Figure 18-1. Recall from Chapter 17
that a static SQL statement goes through the first four steps of the process at compile-time.
The BIND utility (or the equivalent part of the DBMS runtime system) analyzes the SQL
statement, determines the best way to carry it out, and stores the application plan for the
statement in the database as part of the program development process. When the static SQL
statement is executed at runtime, the DBMS simply executes the stored application plan.

In dynamic SQL, the situation is quite different. The SQL statement to be executed isn’t
known until runtime, so the DBMS cannot prepare for the statement in advance. When the
program is actually executed, the DBMS receives the text of the statement to be dynamically
executed (called the statement string) and goes through all five of the steps shown in
Figure 18-1 at runtime.

FIGURE 18-1 How the DBMS processes a SQL statement

SQL statement Static SQL
SELECT A, B, C
 FROM X, Y
 WHERE A < 5000
 AND C = ‘ABC’

Parse statement

Validate statement

Optimize statement

Generate application plan

Plan

Binary form of
SQL statement

Execute application plan R
un

ti
m

e
C

om
pi

le
-t

im
e

Execution

BIND
utility

Dynamic SQL

PREPARE
statement

R
un

ti
m

e

EXECUTE
statement

EXECUTE
IMMEDIATE

statement

Precompiler

 480 P a r t V : P r o g r a m m i n g w i t h S Q L 480 P a r t V : P r o g r a m m i n g w i t h S Q L

As you might expect, dynamic SQL is less efficient than static SQL. For this reason, static
SQL is used whenever possible, and many application programmers never need to learn
about dynamic SQL. However, dynamic SQL has grown in importance as more and more
database access moved to a client/server, front-end/back-end architecture. Database access
from within personal computer applications such as spreadsheets and word processors has
grown dramatically, and an entire set of PC-based front-end data entry and data access tools
has emerged. All of these applications require the features of dynamic SQL.

The emergence of Internet-based three-tier architectures—with applications logic
executing on one (mid tier) system (often composed of one or more application servers) and
the database logic executing on another (back-end) system—has added new importance to
capabilities that have grown out of dynamic SQL. In most of these three-tier environments,
the applications logic running in the middle tier is quite dynamic. It must be changed
frequently to respond to new business conditions and to implement new business rules.
This frequently-changing environment is at odds with the very tight coupling of
applications programs and database contents implied by static SQL. As a result, most three-
tier architectures use a callable SQL API (described in Chapter 19) to link the middle tier to
back-end databases. These APIs explicitly borrow the key concepts of dynamic SQL (for
example, separate PREPARE and EXECUTE steps and the EXECUTE IMMEDIATE capability)
to provide their database access. A solid understanding of dynamic SQL concepts is thus
important to help a programmer understand what’s going on behind the scenes of the SQL
API. In performance-sensitive applications, this understanding can make all the difference
between an application design that provides good performance and response times and one
that does not.

Dynamic Statement Execution (EXECUTE IMMEDIATE)
The simplest form of dynamic SQL is provided by the EXECUTE IMMEDIATE statement,
shown in Figure 18-2. This statement passes the text of a dynamic SQL statement to the
DBMS and asks the DBMS to execute the dynamic statement immediately. To use this
statement, your program goes through the following steps:

 1. The program constructs a SQL statement as a string of text in one of its data areas,
storing it in memory as a named variable. (Recall that program language variables
used to pass information to or from the DBMS are known as host variables.) The
statement can be almost any SQL statement that does not retrieve data.

 2. The program passes the SQL statement to the DBMS with the EXECUTE IMMEDIATE
statement.

 3. The DBMS executes the statement and sets the SQLCODE/SQLSTATE values to
indicate the completion status, exactly as if the statement had been hard-coded
using static SQL.

FIGURE 18-2 The EXECUTE IMMEDIATE statement syntax diagram

EXECUTE IMMEDIATE host-variable

 C h a p t e r 1 8 : D y n a m i c S Q L * 481
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 481

Figure 18-3 shows a simple C program that follows these steps. The program prompts
the user for a table name and a SQL search condition, and builds the text of a DELETE
statement based on the user’s responses. The program then uses the EXECUTE IMMEDIATE
statement to execute the DELETE statement. This program cannot use a static SQL-
embedded DELETE statement, because neither the table name nor the search condition is
known until the user enters them at runtime. It must use dynamic SQL. If you run the
program in Figure 18-3 with these inputs:

Enter table name: staff
Enter search condition: quota < 20000
Delete from staff successful.

FIGURE 18-3 Using the EXECUTE IMMEDIATE statement

main()
{
 /* This program deletes rows from a user-specified table
 according to a user-specified search condition.
 */

 exec sql include sqlca;
 exec sql begin declare section;
 char stmtbuf[301]; /* SQL text to be executed */
 exec sql end declare section;

 char tblname[101]; /* table name entered by user */
 char search_cond[101]; /* search condition entered by user */

 /* Start building the DELETE statement in stmtbuf */
 strcpy(stmtbuf, "delete from");

 /* Prompt user for table name; add it to the DELETE statement text */
 printf("Enter table name: ");
 gets(tblname);
 strcat(stmtbuf, tblname);

 /* Prompt user for search condition; add it to the text */
 printf("Enter search condition:");
 gets(search_cond);
 if (strlen(search_cond) > 0) {
 strcat(stmtbuf, " where ");
 strcat(stmtbuf, search_cond);

 }

 /* Now ask the DBMS to execute the statement */
 exec sql execute immediate :stmtbuf;
 if (sqlca.sqlcode < 0)
 printf("SQL error: %ld\n", sqlca.sqlcode);
 else
 printf("Delete from %s successful.\n", tblname);

 exit();
}

 482 P a r t V : P r o g r a m m i n g w i t h S Q L 482 P a r t V : P r o g r a m m i n g w i t h S Q L

the program passes this statement text to the DBMS:

delete from staff
 where quota < 20000

If you run the program with these inputs:

Enter table name: orders
Enter search condition: cust = 2105
Delete from orders successful

the program passes this statement text to the DBMS:

delete from orders
 where cust = 2105

The EXECUTE IMMEDIATE statement thus gives the program great flexibility in the type
of DELETE statement that it executes.

The EXECUTE IMMEDIATE statement uses exactly one host variable—the variable
containing the entire SQL statement string. The statement string itself cannot include host
variable references, but there’s no need for them. Instead of using a static SQL statement
with a host variable like this:

exec sql delete from orders
 where cust = :cust_num;

a dynamic SQL program achieves the same effect by building the entire statement in a buffer
and executing it:

sprintf(buffer, "delete from orders where cust = %d", cust_num)
exec sql execute immediate :buffer;

The EXECUTE IMMEDIATE statement is the simplest form of dynamic SQL, but it is very
versatile. You can use it to dynamically execute most DML statements, including INSERT,
DELETE, UPDATE, COMMIT, and ROLLBACK. You can also use EXECUTE IMMEDIATE to
dynamically execute most DDL statements, including the CREATE, DROP, GRANT, and
REVOKE statements.

The EXECUTE IMMEDIATE statement does have one significant limitation, however.
You cannot use it to dynamically execute a SELECT statement, because it does not provide
a mechanism to process the query results. Just as static SQL requires cursors and special-
purpose statements (DECLARE CURSOR, OPEN, FETCH, and CLOSE) for programmatic queries,
dynamic SQL uses cursors and some new special-purpose statements to handle dynamic
queries. The dynamic SQL features that support dynamic queries are discussed later in the
section “Dynamic Queries.”

As a note of caution, user input should not be placed directly into SQL statements
(as shown in the preceding simplified examples) without first parsing them for escape
and termination characters. Doing so would permit a hacker to include characters in the
input that would terminate the intended SQL statement and append another one to the
end of it allowing unauthorized access to other data in the database—a technique
known as sql injection.

 C h a p t e r 1 8 : D y n a m i c S Q L * 483
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 483

Two-Step Dynamic Execution
The EXECUTE IMMEDIATE statement provides one-step support for dynamic statement
execution. As described previously, the DBMS goes through all five steps of Figure 18-1 for
the dynamically executed statement. The overhead of this process can be very significant if
your program executes many dynamic statements, and it’s wasteful if the statements to be
executed are identical or very similar. In practice, the EXECUTE IMMEDIATE statement
should be used only for one-time statements that will be executed once by a program and
then never executed again.

To deal with the large overhead of the one-step approach, dynamic SQL offers an
alternative, two-step method for executing SQL statements dynamically. In practice, this
two-step approach, separating statement preparation and statement execution, is used for
all SQL statements in a program that is executed more than once, and especially for those
that are executed repeatedly, hundreds or thousands of times, in response to user
interaction. Here is an overview of the two-step technique:

 1. The program constructs a SQL statement string in a buffer, just as it does for the
EXECUTE IMMEDIATE statement. A question mark (?) can be substituted for a
constant anywhere in the statement text to indicate that a value for the constant
will be supplied later. The question mark is called a parameter marker, but developers
often use the term placeholder.

 2. The PREPARE statement asks the DBMS to parse, validate, and optimize the
statement and to generate an application plan for it. This is Step 1 of the DBMS
interaction. The DBMS sets the SQLCODE/SQLSTATE values to indicate any errors
found in the statement and retains the application plan for later execution. Note
that the DBMS does not execute the plan in response to the PREPARE statement.

 3. When the program wants to execute the previously prepared statement, it uses the
EXECUTE statement and passes a value for each parameter marker to the DBMS.
This is Step 2 of the DBMS interaction. The DBMS substitutes the parameter values,
executes the previously generated application plan, and sets the SQLCODE/SQLSTATE
values to indicate its completion status.

 4. The program can use the EXECUTE statement repeatedly, supplying different
parameter values each time the dynamic statement is executed. The DBMS can simply
repeat Step 2 of the interaction, since the work in Step 1 has already been done,
and the results of that work (the application plan for execution) will still be valid.

Figure 18-4 shows a C program that uses these steps, which are labeled by the callout
numbers in the figure. The program is a general-purpose table update program. It prompts
the user for a table name and two column names, and constructs an UPDATE statement for
the table that looks like this:

update table-name
 set second-column-name = ?
 where first-column-name = ?

The user’s input thus determines the table to be updated, the column to be updated, and
the search condition to be used. The search comparison value and the updated data value are
specified as parameters, to be supplied later when the UPDATE statement is actually executed.

 484 P a r t V : P r o g r a m m i n g w i t h S Q L 484 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 18-4 Using the PREPARE and EXECUTE statements

main()
{
 /* This is a general-purpose update program. It can be used
 for any update where a numeric column is to be updated in
 all rows where a second numeric column has a specified
 value. For example, you can use it to update quotas for
 selected salespeople or to update credit limits for
 selected customers.
 */

 exec sql include sqlca;
 exec sql begin declare section;
 char stmtbuf[301] /* SQL text to be executed */
 float search_value; /* parameter value for searching */
 float new_value; /* parameter value for update */
 exec sql end declare section;

 char tblname[31]; /* table to be updated */
 char searchcol[31]; /* name of search column */
 char updatecol[31]; /* name of update column */
 char yes_no[31]; /* yes/no response from user */

 /* Prompt user for table name and column name */
 printf("Enter name of table to be updated: ");
 gets(tblname);
 printf("Enter name of column to be searched: ");
 gets(searchcol);
 printf("Enter name of column to be updated: ");
 gets(updatecol);

 /* Build SQL statement in buffer; ask DBMS to compile it */
 sprintf(stmtbuf, "update %s set %s = ? where %s = ?",
 tblname, searchcol, updatecol);
 exec sql prepare mystmt from :stmtbuf;
 if (sqlca.sqlcode) {
 printf("PREPARE error: %ld\n", sqlca.sqlcode);
 exit();
 }

 /* Loop prompting user for parameters and performing updates */
 for (; ;) {
 printf("\nEnter search value for %s: ", searchcol);
 scanf("%f", &search_value);
 printf("Enter new value for %s: ", updatecol);
 scanf("%f", &new_value);

 /* Ask the DBMS to execute the UPDATE statement */
 execute mystmt using :search_value, :new_value;
 if (sqlca.sqlcode) {
 printf("EXECUTE error: %ld\n", sqlca.sqlcode);
 exit();
 }

 /* Ask user if there is another update */
 printf("Another (y/n)? ");
 gets(yes_no);
 if (yes_no[0] == 'n')
 break;
 }

 printf("\nUpdates complete.\n");

 exit();
}

4

3

2

1

 C h a p t e r 1 8 : D y n a m i c S Q L * 485
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 485

After building the UPDATE statement text in its buffer, the program asks the DBMS to
compile it with the PREPARE statement. The program then enters a loop, prompting the
user to enter pairs of parameter values to perform a sequence of table updates. This user
dialog shows how you could use the program in Figure 18-4 to update the quotas for
selected salespeople:

Enter name of table to be updated: staff
Enter name of column to be searched: empl_num
Enter name of column to be updated: quota

Enter search value for empl_num: 106
Enter new value for quota: 150000.00
Another (y/n)? y

Enter search value for empl_num: 102
Enter new value for quota: 225000.00
Another (y/n)? y

Enter search value for empl_num: 107
Enter new value for quota: 215000.00
Another (y/n)? n

Updates complete.

This program is a good example of a situation where two-step dynamic execution is
appropriate. The DBMS compiles the dynamic UPDATE statement only once, but executes it
three times, once for each set of parameter values entered by the user. If the program had
been written using EXECUTE IMMEDIATE instead, the dynamic UPDATE statement would
have been compiled three times and executed three times. Thus, the two-step dynamic
execution of PREPARE and EXECUTE helps to eliminate some of the performance
disadvantage of dynamic SQL. As mentioned earlier, this same two-step approach is used
by all of the callable SQL APIs described in Chapter 19.

The PREPARE Statement
The PREPARE statement, shown in Figure 18-5, is unique to dynamic SQL. It accepts a host
variable containing a SQL statement string and passes the statement to the DBMS. The
DBMS compiles the statement text and prepares it for execution by generating an
application plan. The DBMS sets the SQLCODE/SQLSTATE variables to indicate any errors
detected in the statement text. As described previously, the statement string can contain a
parameter marker, indicated by a question mark, anywhere that a constant can appear. The
parameter marker signals the DBMS that a value for the parameter will be supplied later,
when the statement is actually executed.

FIGURE 18-5 The PREPARE statement syntax diagram

statement-name host-variable

attributes-variable

PREPARE

ATTRIBUTES

FROM

 486 P a r t V : P r o g r a m m i n g w i t h S Q L 486 P a r t V : P r o g r a m m i n g w i t h S Q L

As a result of the PREPARE statement, the DBMS assigns the specified statement name to
the prepared statement. The statement name is a SQL identifier, like a cursor name. You
specify the statement name in subsequent EXECUTE statements when you want to execute
the statement. DBMS brands differ in how long they retain the prepared statement and the
associated statement name. For some brands, the prepared statement can be reexecuted
only until the end of the current transaction (that is, until the next COMMIT or ROLLBACK
statement). If you want to execute the same dynamic statement later during another
transaction, you must prepare it again. Other brands relax this restriction and retain the
prepared statement throughout the current session with the DBMS. The ANSI/ISO SQL
standard acknowledges these differences and explicitly says that the validity of a prepared
statement outside of the current transaction is implementation dependent.

The PREPARE statement can be used to prepare almost any executable DML or DDL
statement, including the SELECT statement. Embedded SQL statements that are actually
precompiler directives (such as the WHENEVER or DECLARE CURSOR statements) cannot be
prepared, of course, because they are not executable.

The EXECUTE Statement
The EXECUTE statement, shown in Figure 18-6, is unique to dynamic SQL. It asks the DBMS
to execute a statement previously prepared with the PREPARE statement. You can execute
any statement that can be prepared, with one exception. Like the EXECUTE IMMEDIATE
statement, the EXECUTE statement cannot be used to execute a SELECT statement, because
it lacks a mechanism for handling query results.

If the dynamic statement to be executed contains one or more parameter markers, the
EXECUTE statement must provide a value for each of the parameters. The values can be
provided in two different ways, described in the next two sections. The ANSI/ISO SQL
standard includes both of these methods.

EXECUTE with Host Variables
The easiest way to pass parameter values to the EXECUTE statement is by specifying a list of
host variables in the USING clause. The EXECUTE statement substitutes the values of the
host variables, in sequence, for the parameter markers in the prepared statement text. The
host variables thus serve as input host variables for the dynamically executed statement.
This technique was used in the program shown in Figure 18-4. It is supported by all of the
popular DBMS brands that support dynamic SQL and is included in the ANSI/ISO SQL
standard for dynamic SQL.

FIGURE 18-6 The EXECUTE statement syntax diagram

host-variable

EXECUTE statement-name

DESCRIPTOR descriptor-name

USING

,

 C h a p t e r 1 8 : D y n a m i c S Q L * 487
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 487

The number of host variables in the USING clause must match the number of parameter
markers in the dynamic statement, and the data type of each host variable must be
compatible with the data type required for the corresponding parameter. Each host variable
in the list may also have a companion host indicator variable. If the indicator variable
contains a negative value when the EXECUTE statement is processed, the corresponding
parameter marker is assigned the NULL value.

EXECUTE with SQLDA
The second way to pass parameters to the EXECUTE statement is with a special dynamic
SQL data structure called a SQL Data Area (SQLDA). You must use a SQLDA to pass
parameters when you don’t know the number of parameters to be passed and their data
types at the time that you write the program. For example, suppose you wanted to modify
the general-purpose update program in Figure 18-4 so that the user could select more than
one column to be updated. You could easily modify the program to generate an UPDATE
statement with a variable number of assignments, but the list of host variables in the
EXECUTE statement poses a problem; it must be replaced with a variable-length list. The
SQLDA provides a way to specify such a variable-length parameter list.

Figure 18-7 shows the layout of the SQLDA used by the IBM databases, including DB2,
which set the de facto standard for dynamic SQL. Most other DBMS products also use this
IBM SQLDA format or one very similar to it. The ANSI/ISO SQL standard provides a similar
structure, called a SQL Descriptor Area. The types of information contained in the ANSI/ISO
SQL Descriptor Area and the DB2-style SQLDA are the same, and both structures play the
same role in dynamic SQL processing. However, the details of use—how program locations
are associated with SQL statement parameters, how information is placed into the
descriptor area and retrieved from it, and so on—are quite different. In practice, the DB2-
style SQLDA is the more important, because dynamic SQL support appeared in most major
DBMS brands, modeled on the DB2 implementation, long before dynamic SQL was written
into the SQL standard.

FIGURE 18-7
The SQL Data Area
(SQLDA) for IBM
databases

struct sqlda {
 unsigned char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlvar {
 short sqltype;
 short sqllen;
 unsigned char *sqldata;
 short *sqlind;
 struct sqlname {
 short length;
 unsigned char data[30];
 }sqlname;
 }sqlvar[1];
} ;

 488 P a r t V : P r o g r a m m i n g w i t h S Q L 488 P a r t V : P r o g r a m m i n g w i t h S Q L

The SQLDA is a variable-size data structure with two distinct parts:

• The fixed part is located at the beginning of the SQLDA. Its fields identify the data
structure as a SQLDA and specify the size of this particular SQLDA.

• The variable part is an array of one or more SQLVAR data structures. When you use a
SQLDA to pass parameters to an EXECUTE statement, there must be one SQLVAR
structure for each parameter.

The fields in the SQLVAR structure describe the data being passed to the EXECUTE
statement as a parameter value:

• The SQLTYPE field contains an integer data type code that specifies the data type of
the parameter being passed. For example, the DB2 data type code is 500 for a 2-byte
integer, 496 for a 4-byte integer, and 448 for a variable-length character string.

• The SQLLEN field specifies the length of the data being passed. It will contain a 2 for
a 2-byte integer and a 4 for a 4-byte integer. When you pass a character string as a
parameter, SQLLEN contains the number of characters in the string.

• The SQLDATA field is a pointer to the data area within your program that contains
the parameter value. The DBMS uses this pointer to find the data value as it
executes the dynamic SQL statement. The SQLTYPE and SQLLEN fields tell the
DBMS which type of data is being pointed to and its length.

• The SQLIND field is a pointer to a 2-byte integer that is used as an indicator variable
for the parameter. The DBMS checks the indicator variable to determine whether
you are passing a NULL value. If you are not using an indicator variable for a
particular parameter, the SQLIND field must be set to zero.

The other fields in the SQLVAR and SQLDA structures are not used to pass parameter
values to the EXECUTE statement. They are used when you use a SQLDA to retrieve data
from the database, as described later in the “Dynamic Queries” section.

Figure 18-8 shows a dynamic SQL program that uses a SQLDA to specify input
parameters. The program updates the SALESREPS table, but it allows the user to select the
columns that are to be updated at the beginning of the program. Then it enters a loop,
prompting the user for an employee number and then prompting for a new value for each
column to be updated. If the user types an asterisk (*) in response to the new value prompt,
the program assigns the corresponding column a NULL value.

Because the user can select different columns each time the program is run, this program
must use a SQLDA to pass the parameter values to the EXECUTE statement. The program
illustrates the general technique for using a SQLDA, indicated by callout numbers in Figure 18-8:

 1. The program allocates a SQLDA large enough to hold a SQLVAR structure for each
parameter to be passed. It sets the SQLN field to indicate how many SQLVARs can be
accommodated.

 2. For each parameter to be passed, the program fills in one of the SQLVAR structures
with information describing the parameter.

 3. The program determines the data type of a parameter and places the correct data
type code in the SQLTYPE field.

 C h a p t e r 1 8 : D y n a m i c S Q L * 489
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 489

FIGURE 18-8 Using EXECUTE with a SQLDA (continued)

main()
{
 /* This program updates user-specified columns of the
 SALESREPS table. It first asks the user to select the
 columns to be updated, and then prompts repeatedly for the
 employee number of a salesperson and new values for the
 selected columns.
 */

 #define COLCNT 6 /* six columns in SALESREPS table */

 exec sql include sqlca;
 exec sql include sqlda;
 exec sql begin declare section;
 char stmtbuf[2001]; /* SQL text to be executed */
 exec sql end declare section;

 char *malloc()
 struct {
 char prompt[31]; /* prompt for this column */
 char name[31]; /* name for this column */
 short typecode; /* its data type code */
 short buflen; /* length of its buffer */
 char selected; /* "selected" flag (y/n) */
 }columns[] = {"Name", "NAME", 449, 16, 'n',
 "Office”, "REP_OFFICE", 497, 4, 'n',
 "Manager", "MANAGER", 497, 4, 'n',
 "Hire Date","HIRE_DATE", 449, 12, 'n',
 "Quota", "QUOTA", 481, 8, 'n',
 "Sales", "SALES", 481, 8, 'n'};

 struct sqlda *parmda; /* SQLDA for parameter values */
 int parmcnt; /* running parameter count */
 int empl_num; /* employee number entered by user */
 int i; /* index for columns[] array */
 int j; /* index for sqlvar array in sqlda */
 char inbuf[101]; /* input entered by user */

/* Prompt the user to select the columns to be updated */
printf("*** Salesperson Update Program ***\n\n");
parmcnt = 1;
for (i = 0; i < COLCNT; I++) {

 /* Ask about this column */
 printf("Update %s column (y/n)? ",columns[i].name);
 gets(inbuf);
 if (inbuf[0] == 'y') {
 columns[i].selected = 'y';
 parmcnt += 1;
 }
}

/* Allocate a SQLDA structure to pass parameter values */

 490 P a r t V : P r o g r a m m i n g w i t h S Q L 490 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 18-8 Using EXECUTE with a SQLDA (continued)

parmda = malloc(16 = (44 * parmcnt));
strcpy(parmda -> sqldaid, "SQLDA ");
parmda->sqldabc = (16 = (44 * parmcnt));
parmda->sqln = parmcnt;

/* Start building the UPDATE statement in statement buffer */
strcpy(stmtbuf, "update orders set ");

/* Loop through columns, processing the selected ones */
for (i = 0; j = 0; i++; i < COLCNT) {

 /* Skip over non-selected columns */
 if (columns[i].selected == 'n')
 continue;

 /* Add an assignment to the dynamic UPDATE statement */
 if (parmcnt > 0) strcat(stmtbuf, ", ");
 strcat(stmtbuf, columns[i].name);
 strcat(stmtbuf, " = ?");

 /* Allocate space for data and indicator variable, and */
 /* fill in the SQLVAR with information for this column */
 parmvar = parmda -> sqlvar + j;
 parmvar -> sqltype = columns[i].typecode;
 parmvar -> sqllen = columns[i].buflen;
 parmvar -> sqldata = malloc(columns[i].buflen);
 parmvar -> sqlind = malloc(2);
 strcpy(parmvar -> sqlname.data, columns[i].prompt);
 j += 1;
}

/* Fill in the last SQLVAR for parameter in the WHERE clause */
strcat(stmbuf, " where empl_num = ?");
parmvar = parmda + parmcnt;
parmvar->sqltype = 496;
parmvar->sqllen = 4;
parmvar->sqldata = &empl_num;
parmvar->sqlind = 0;

/* Ask the DBMS to compile the complete dynamic UPDATE statement */
exec sql prepare updatestmt from :stmtbuf;
if (sqlca.sqlcode < 0) {
 printf("PREPARE error: %ld\n", sqlca.sqlcode);
 exit();
}

/* Now loop, prompting for parameters and doing UPDATEs */
for (; ;) {

 /* Prompt user for order number of order to be updated */
 printf("\nEnter Salesperson's Employee Number: ");
 scanf("%ld", &empl_num);

1

2

3
4
5
6

7

 C h a p t e r 1 8 : D y n a m i c S Q L * 491
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 491

FIGURE 18-8 Using EXECUTE with a SQLDA (continued)

 if (empl_num == 0) break;

 /* Get new values for the updated columns */
 for (j = 0; j < (parmcnt-1); j++) {
 parmvar = parmda + j;
 printf("Enter new value for %s: ", parmvar->sqlname.data);
 gets(inbuf);

 if (inbuf[0] == '*') {
 /* If user enters '*', set column to a NULL value */
 *(parmvar -> sqlind) = -1;
 continue;
 }
 else {
 /* Otherwise, set indicator for non-NULL value */
 *(parmvar -> sqlind) = 0;

 switch(parmvar -> sqltype) {

 case 481:
 /* Convert entered data to 8-byte floating point */
 sscanf(inbuf, "%lf", parmvar -> sqldata);
 break;

 case 449:
 /* Pass entered data as variable-length string */
 stccpy(parmvar -> sqldata, inbuf, strlen(inbuf));
 parmvar -> sqllen = strlen(inbuf);
 break;

 case 501:
 /* Convert entered data to 4-byte integer */
 sscanf(inbuf, "%ld", parmvar->sqldata);
 break;
 }
 }
}

 /* Execute the statement */
 exec sql execute updatestmt using :parmda;
 if (sqlca.sqlcode < 0) {
 printf("EXECUTE error: %ld\n", sqlca.sqlcode);
 exit();
 }
 }

 /* All finished with updates */
 exec sql execute immediate "commit work";
 if (sqlca.sqlcode)
 printf("COMMIT error: %ld\n", sqlca.sqlcode);
 else
 printf("\nAll updates committed.\n");

 exit();
}

8

8

9

 492 P a r t V : P r o g r a m m i n g w i t h S Q L 492 P a r t V : P r o g r a m m i n g w i t h S Q L

 4. The program determines the length of the parameter and places it in the SQLLEN field.

 5. The program allocates memory to hold the parameter value and puts the address of
the allocated memory in the SQLDATA field.

 6. The program allocates memory to hold an indicator variable for the parameter and
puts the address of the indicator variable in the SQLIND field.

 7. The program sets the SQLD field in the SQLDA header to indicate how many
parameters are being passed. This tells the DBMS how many SQLVAR structures
within the SQLDA contain valid data.

 8. The program prompts the user for data values and places them into the data areas
allocated in Steps 5 and 6.

 9. The program uses an EXECUTE statement with the USING clause to pass parameter
values via the SQLDA.

Note that this particular program copies the prompt string for each parameter value
into the SQLNAME structure. The program does this solely for its own convenience; the
DBMS ignores the SQLNAME structure when you use the SQLDA to pass parameters. Here is
a sample user dialog with the program in Figure 18-8:

*** Salesperson Update Program ***

Update Name column (y/n)? y
Update Office column (y/n)? y
Update Manager column (y/n)? n
Update Hire Date column (y/n)? n
Update Quota column (y/n)? y
Update Sales column (y/n)? n

Enter Salesperson's Employee Number: 106
Enter new value for Name: Sue Jackson
Enter new value for Office: 22
Enter new value for Quota: 175000.00

Enter Salesperson's Employee Number: 104
Enter new value for Name: Joe Smith
Enter new value for Office: *
Enter new value for Quota: 275000.00

Enter Salesperson's Employee Number: 0

All updates committed.

Based on the user’s response to the initial questions, the program generates this
dynamic UPDATE statement and prepares it:

update salesreps
 set name = ?, office = ?, quota = ?
 where empl_num = ?

 C h a p t e r 1 8 : D y n a m i c S Q L * 493
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 493

The statement specifies four parameters, and the program allocates a SQLDA big enough
to handle four SQLVAR structures. When the user supplies the first set of parameter values,
the dynamic UPDATE statement becomes

update salesreps
 set name = 'Sue Jackson', office = 22, quota = 175000.00
 where empl_num = 106

and with the second set of parameter values, it becomes

update salesreps
 set name = 'Joe Smith', office = NULL, quota = 275000.00
 where empl_num = 104

This program is somewhat complex, but it’s simple compared with a real general-
purpose database update utility. It also illustrates all of the dynamic SQL features required
to dynamically execute statements with a variable number of parameters.

Dynamic Queries
The EXECUTE IMMEDIATE, PREPARE, and EXECUTE statements as described thus far
support dynamic execution of most SQL statements. However, they can’t support dynamic
queries because they lack a mechanism for retrieving the query results. To support dynamic
queries, SQL combines the dynamic SQL features of the PREPARE and EXECUTE statements
with extensions to the static SQL query-processing statements, and adds a new statement.
Here is an overview of how a program performs a dynamic query:

 1. A dynamic version of the DECLARE CURSOR statement declares a cursor for the
query. Unlike the static DECLARE CURSOR statement, which includes a hard-coded
SELECT statement, the dynamic form of the DECLARE CURSOR statement specifies
the statement name that will be associated with the dynamic SELECT statement.

 2. The program constructs a valid SELECT statement and stores it in a variable, just as
it would construct a dynamic UPDATE or DELETE statement. The SELECT statement
may contain parameter markers like those used in other dynamic SQL statements.

 3. The program uses the PREPARE statement to pass the statement string to the DBMS,
which parses, validates, and optimizes the statement and generates an application plan.
This is identical to the PREPARE processing used for other dynamic SQL statements.

 4. The program uses the DESCRIBE statement to request a description of the query
results that will be produced by the query. The DBMS returns a column-by-column
description of the query results in a SQL Data Area (SQLDA) supplied by the
program, telling the program how many columns of query results there are, and the
name, data type, and length of each column. The DESCRIBE statement is used
exclusively for dynamic queries.

 5. The program uses the column descriptions in the SQLDA to allocate a block of
memory to receive each column of query results. The program may also allocate
space for an indicator variable for the column. The program places the address of
the data area and the address of the indicator variable into the SQLDA to tell the
DBMS where to return the query results.

 494 P a r t V : P r o g r a m m i n g w i t h S Q L 494 P a r t V : P r o g r a m m i n g w i t h S Q L

 6. A dynamic version of the OPEN statement asks the DBMS to start executing the query
and passes values for the parameters specified in the dynamic SELECT statement.
The OPEN statement positions the cursor before the first row of query results.

 7. A dynamic version of the FETCH statement advances the cursor to the first row of
query results and retrieves the data into the program’s data areas and indicator
variables. Unlike the static FETCH statement, which specifies a list of host variables
to receive the data, the dynamic FETCH statement uses the SQLDA to tell the DBMS
where to return the data. Subsequent executions of this dynamic FETCH statement
move through the query results row by row, advancing the cursor to the next row of
query results and retrieving its data into the program’s data areas.

 8. The CLOSE statement ends access to the query results and breaks the association
between the cursor and the query results. This CLOSE statement is identical to the
static SQL CLOSE statement; no extensions are required for dynamic queries.

The programming required to perform a dynamic query is more extensive than the
programming for any other embedded SQL statement. However, the programming is
typically more tedious than complex. Figure 18-9 shows a small query program that uses
dynamic SQL to retrieve and display selected columns from a user-specified table. The
callout numbers in the figure identify the eight steps in the preceding list.

The program in the figure begins by prompting the user for the table name and then
queries the system catalog to discover the names of the columns in that table. It asks the
user to select the column(s) to be retrieved and constructs a dynamic SELECT statement
based on the user’s responses. The step-by-step mechanical construction of a select list in
this example is very typical of database front-end programs that generate dynamic SQL. In
real applications, the generated select list might include expressions or aggregate functions,
and there might be additional program logic to generate GROUP BY, HAVING, and ORDER BY
clauses. A graphical user interface would also be used instead of the primitive user
prompting in the sample program. However, the programming steps and concepts remain
the same. Notice that the generated SELECT statement is identical to the interactive SELECT
statement that you would use to perform the requested query.

The handling of the PREPARE and DESCRIBE statements and the method of allocating
storage for the retrieved data in this program are also typical of dynamic query programs.
Note how the program uses the column descriptions placed in the SQLVAR array to allocate
a data storage block of the proper size for each column. This program also allocates space
for an indicator variable for each column. The program places the address of the data block
and indicator variable back into the SQLVAR structure.

The OPEN, FETCH, and CLOSE statements play the same role for dynamic queries as they
do for static queries, as illustrated by this program. Note that the FETCH statement specifies
the SQLDA instead of a list of host variables. Because the program has previously filled in
the SQLDATA and SQLIND fields of the SQLVAR array, the DBMS knows where to place each
retrieved column of data.

As this example shows, much of the programming required for a dynamic query is
concerned with setting up the SQLDA and allocating storage for the SQLDA and the retrieved
data. The program must also sort out the various types of data that can be returned by the
query and handle each one correctly, taking into account the possibility that the returned
data will be NULL. These characteristics of the sample program are typical of production

 C h a p t e r 1 8 : D y n a m i c S Q L * 495
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 495

applications that use dynamic queries. Despite the complexity, the programming is not too
difficult in languages like C, C++, Pascal, PL/I, or Java. Languages such as COBOL and
FORTRAN, which lack the capability to dynamically allocate storage and work with
variable-length data structures, are not practical for dynamic query processing.

The following sections discuss the DESCRIBE statement and the dynamic versions of
the DECLARE CURSOR, OPEN, and FETCH statements.

The DESCRIBE Statement
The DESCRIBE statement, shown in Figure 18-10, is unique to dynamic queries. It is used to
request a description of a dynamic query from the DBMS. The DESCRIBE statement is used
after the dynamic query has been compiled with the PREPARE statement but before it is
executed with the OPEN statement. The query to be described is identified by its statement
name. The DBMS returns the query description in a SQLDA supplied by the program.

FIGURE 18-9 Data retrieval with dynamic SQL (continued)

main()
{
 /* This is a simple general-purpose query program. It prompts
 the user for a table name, and then asks the user which
 columns of the table are to be included in the query.
 After the user's selections are complete, the program runs
 the requested query and displays the results.
 */

 exec sql include sqlca;
 exec sql include sqlda;
 exec sql begin declare section;
 char stmtbuf[2001]; /* SQL text to be executed */
 char querytbl[32]; /* user-specified table */
 char querycol[32]; /* user-specified column */
 exec sql end declare section;

 /* Cursor for system catalog query that retrieves column names */
 exec sql declare tblcurs cursor for
 select colname from system.syscolumns
 where tblname = :querytbl and owner = user;

 exec sql declare qrycurs cursor for querystmt;

 /* Data structures for the program */
 int colcount = 0; /* number of columns chosen */
 struct sqlda *qry_da; /* allocated SQLDA for query */
 struct sqlvar *qry_var; /* SQLVAR for current column */
 int i; /* index for SQLVAR array in SQLDA */
 char inbuf[101]; /* input entered by user */

 /* Prompt the user for which table to query */
 printf("*** Mini-Query Program ***\n\n")
 printf("Enter name of table for query: ");
 gets(querytbl);

 /* Start the SELECT statement in the buffer */

1

 496 P a r t V : P r o g r a m m i n g w i t h S Q L 496 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 18-9 Data retrieval with dynamic SQL (continued)

 strcpy(stmtbuf, "select ");

 /* Set up error processing */
 exec sql whenever sqlerror goto handle_error;
 exec sql whenever not found goto no_more_columns;

 /* Query the system catalog to get column names for the table */
 exec sql open tblcurs;
 for (; ;) {

 /* Get name of next column and prompt the user */
 exec sql fetch tblcurs into :querycol;
 printf("Include column %s (y/n)? ", querycol);
 gets(inbuf);
 if (inbuf[0] == 'y') {
 /* User wants the column; add it to the select list */
 if (colcount++ > 0)
 strcat(stmtbuf, ", ");
 strcat(stmtbuf, querycol);
 }
 }

no_more_columns:
 exec sql close tblcurs;

 /* Finish the SELECT statement with a FROM clause */
 strcat(stmtbuf, "from ");
 strcat(stmtbuf, querytbl);

 /* Allocate SQLDA for the dynamic query */
 query_da = (SQLDA *)malloc(sizeof(SQLDA) + colcount * sizeof(SQLVAR));
 query_da->sqln = colcount;

 /* Prepare the query and ask the DBMS to describe it */
 exec sql prepare querystmt from :stmtbuf;
 exec sql describe querystmt into qry_da;

 /* Loop through SQLVARs, allocating memory for each column */
 for (i = 0; i < colcount; I++) {
 qry_var = qry_da->sqlvar + I;
 qry_var->sqldat = malloc(qry_var->sqllen);
 qry_var->sqlind = malloc(sizeof(short));
 }

 /* SQLDA is all set; do the query and retrieve the results! */
 exec sql open qrycurs;
 exec sql whenever not found goto no_more_data;
 for (; ;) {

 /* Fetch the row of data into our buffers */
 exec sql fetch sqlcurs using descriptor qry_da;

2

3
4

5

6

7

 C h a p t e r 1 8 : D y n a m i c S Q L * 497
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 497

FIGURE 18-9 Data retrieval with dynamic SQL (continued)

 printf("\n");

 /* Loop printing data for each column of the row */
 for (i = 0; i < colcount; I++) {

 /* Find the SQLVAR for this column; print column label */
 qry_var = qry_da->sqlvar + I;
 printf(" Column # %d (%s): ", i+1, qry_var->sqlname);

 /* Check indicator variable for NULL indication */
 if (*(qry_var -> sqlind)) != 0) {
 puts("is NULL!\n");
 continue;
 }

 /* Actual data returned; handle each type separately */
 switch (qry_var -> sqltype) {

 case 448:
 case 449:
 /* VARCHAR data -– just display it */
 puts(qry_var -> sqldata);
 break;

 case 496:
 case 497:
 /* Four-byte integer data -– convert & display it */
 printf("%ld", *((int *) (qry_var->sqldata)));
 break;

 case 500:
 case 501:
 /* Two-byte integer data -– convert & display it */
 printf("%d", *((short *)(qry_var->sqldata)));
 break;

 case 480:
 case 481:
 /* Floating-point data -– convert & display it */
 printf("%lf", *((double *)(qry_var->sqldat)));
 break;
 }
 }
 }

 no_more_data:
 printf("\nEnd of data.\n");

 /* Clean up allocated storage */

 498 P a r t V : P r o g r a m m i n g w i t h S Q L 498 P a r t V : P r o g r a m m i n g w i t h S Q L

The SQLDA is a variable-length structure with an array of one or more SQLVAR
structures, as described earlier in the section “EXECUTE with SQLDA,” and shown in Figure
18-7. Before passing the SQLDA to the DESCRIBE statement, your program must fill in the
SQLN field in the SQLDA header, telling the DBMS how large the SQLVAR array is in this
particular SQLDA. As the first step of its DESCRIBE processing, the DBMS fills in the SQLD
field in the SQLDA header with the number of columns of query results. If the size of the
SQLVAR array (as specified by the SQLN field) is too small to hold all of the column
descriptions, the DBMS does not fill in the remainder of the SQLDA. Otherwise, the DBMS
fills in one SQLVAR structure for each column of query results, in left-to-right order. The
fields of each SQLVAR describe the corresponding column:

• The SQLNAME structure specifies the name of the column (with the name in the
DATA field and the length of the name in the LENGTH field). If the column is derived
from an expression, the SQLNAME field is not used.

• The SQLTYPE field specifies an integer data type code for the column. The data type
codes used by different brands of DBMS vary. For the IBM SQL products, the data
type code indicates both the data type and whether NULL values are allowed, as
shown in Table 18-1.

• The SQLLEN field specifies the length of the column. For variable-length data types
(such as VARCHAR), the reported length is the maximum length of the data; the
length of the columns in individual rows of query results will not exceed this
length. For DB2 (and many other SQL products), the length returned for a DECIMAL
data type specifies both the size of the decimal number (in the upper byte) and the
scale of the number (in the lower byte).

• The SQLDATA and SQLIND fields are not filled in by the DBMS. Your application
program fills in these fields with the addresses of the data buffer and indicator
variable for the column before using the SQLDA later in a FETCH statement.

FIGURE 18-9 Data retrieval with dynamic SQL (continued)

 for (i = 0; i < colcount; I++) {
 qry_var = qry_da->sqlvar + I;
 free(qry_var->sqldata);
 free(qry_var->sqlind);
 }
 free(qry_da);
 close qrycurs;

 exit();
 }

8

FIGURE 18-10 The DESCRIBE statement syntax diagram

DESCRIBE INPUT statement-name

OUTPUT

object-name

USING

SQL

DESCRIPTOR descriptor-name

WITH NESTING

WITHOUT NESTING

 C h a p t e r 1 8 : D y n a m i c S Q L * 499
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 499

A complication of using the DESCRIBE statement is that your program may not know in
advance how many columns of query results there will be; therefore, it may not know how
large a SQLDA must be allocated to receive the description. One of three strategies is
typically used to ensure that the SQLDA has enough space for the returned descriptions:

• If the program has generated the select list of the query, it can keep a running count
of the select items as it generates them. In this case, the program can allocate a
SQLDA with exactly the right number of SQLVAR structures to receive the column
descriptions. This approach was used in the program shown in Figure 18-9.

• If it is inconvenient for the program to count the number of select list items, it can
initially DESCRIBE the dynamic query into a minimal SQLDA with a one-element
SQLVAR array. When the DESCRIBE statement returns, the SQLD value tells the
program how large the SQLDA must be. The program can then allocate a SQLDA of
the correct size and reexecute the DESCRIBE statement, specifying the new SQLDA.
There is no limit to the number of times that a prepared statement can be described.

• Alternatively, the program can allocate a SQLDA with a SQLVAR array large enough
to accommodate a typical query. A DESCRIBE statement using this SQLDA will
succeed most of the time. If the SQLDA turns out to be too small for the query, the
SQLD value tells the program how large the SQLDA must be, and it can allocate a
larger one and DESCRIBE the statement again into that SQLDA.

The DESCRIBE statement is normally used for dynamic queries, but you can ask the
DBMS to DESCRIBE any previously prepared statement. This feature is useful, for example,
if a program needs to process an unknown SQL statement typed by a user. The program
can PREPARE and DESCRIBE the statement and examine the SQLD field in the SQLDA.

Data Type NULL Allowed NOT NULL

CHAR 452 453

VARCHAR 448 449

LONG VARCHAR 456 457

SMALLINT 500 501

INTEGER 496 497

FLOAT 480 481

DECIMAL 484 485

DATE 384 385

TIME 388 389

TIMESTAMP 392 393

GRAPHIC 468 469

VARGRAPHIC 464 465

TABLE 18-1 SQLDA Data Type Codes for DB2

 500 P a r t V : P r o g r a m m i n g w i t h S Q L 500 P a r t V : P r o g r a m m i n g w i t h S Q L

If the SQLD field is zero, the statement text was not a query, and the EXECUTE statement
can be used to execute it. If the SQLD field is positive, the statement text was a query, and
the OPEN/FETCH/CLOSE statement sequence must be used to execute it.

The DECLARE CURSOR Statement
The dynamic DECLARE CURSOR statement, shown in Figure 18-11, is a variation of the static
DECLARE CURSOR statement. Recall from Chapter 17 that the static DECLARE CURSOR
statement literally specifies a query by including the SELECT statement as one of its clauses.
By contrast, the dynamic DECLARE CURSOR statement specifies the query indirectly, by
specifying the statement name associated with the query by the PREPARE statement.

Like the static DECLARE CURSOR statement, the dynamic DECLARE CURSOR statement is
a directive to the SQL precompiler rather than an executable statement. It must appear
before any other references to the cursor that it declares. The cursor name declared by this
statement is used in subsequent OPEN, FETCH, and CLOSE statements to process the results
of the dynamic query.

The Dynamic OPEN Statement
The dynamic OPEN statement, shown in Figure 18-12, is a variation of the static OPEN
statement. It causes the DBMS to begin executing a query and positions the associated
cursor just before the first row of query results. When the OPEN statement completes
successfully, the cursor is in an open state and is ready to be used in a FETCH statement.

The role of the OPEN statement for dynamic queries parallels the role of the EXECUTE
statement for other dynamic SQL statements. Both the EXECUTE and the OPEN statements
cause the DBMS to execute a statement previously compiled by the PREPARE statement. If
the dynamic query text includes one or more parameter markers, then the OPEN statement,
like the EXECUTE statement, must supply values for these parameters. The USING clause
specifies parameter values, and it has an identical format in both the EXECUTE and OPEN
statements.

FIGURE 18-11 The dynamic DECLARE CURSOR statement syntax diagram

DECLARE cursor-name

SENSITIVE

INSENSITIVE

ASENSITIVE

SCROLL

NO SCROLL

CURSOR

WITH HOLD

WITHOUT HOLD

WITH RETURN

WITHOUT RETURN

FOR statement-name

 C h a p t e r 1 8 : D y n a m i c S Q L * 501
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 501

If the number of parameters that will appear in a dynamic query is known in advance,
the program can pass the parameter values to the DBMS through a list of host variables in
the USING clause of the OPEN statement. As in the EXECUTE statement, the number of host
variables must match the number of parameters; the data type of each host variable must be
compatible with the type required by the corresponding parameter; and an indicator
variable can be specified for each host variable, if necessary. Figure 18-13 shows a program
excerpt where the dynamic query has three parameters whose values are specified by host
variables.

If the number of parameters is not known until runtime, the program must pass the
parameter values using a SQLDA structure. This technique for passing parameter values was
described for the EXECUTE statement earlier in the section “EXECUTE with SQLDA.” The
same technique is used for the OPEN statement. Figure 18-14 shows a program excerpt like
the one in Figure 18-13, except that it uses a SQLDA to pass parameters.

FIGURE 18-12 The dynamic OPEN statement syntax diagram

OPEN cursor-name

DESCRIPTOR descriptor-name

host-variable

,

USING

FIGURE 18-13 OPEN statement with host variable parameter passing

 .
 .
 .
/* Program has previously generated and prepared a SELECT
 statement like this one:

 SELECT A, B, C ...
 FROM SALESREPS
 WHERE SALES BETWEEN ? AND ?

 with two parameters to be specified
*/

/* Prompt the user for low & high values and do the query */
printf("Enter low end of sales range: ");
scanf("%f", &low_end);
printf("Enter high end of sales range: ");
scanf("%f", &high_end);

/*Open the cursor to start the query, passing parameters */
exec sql open qrycursor using :low_end, :high_end;

 .
 .
 .

 502 P a r t V : P r o g r a m m i n g w i t h S Q L 502 P a r t V : P r o g r a m m i n g w i t h S Q L

Note carefully that the SQLDA used in the OPEN statement has absolutely nothing to do
with the SQLDA used in the DESCRIBE and FETCH statements:

• The SQLDA in the OPEN statement is used to pass parameter values to the DBMS for
dynamic query execution. The elements of its SQLVAR array correspond to the
parameter markers in the dynamic statement text.

• The SQLDA in the DESCRIBE and FETCH statements receives descriptions of the query
results columns from the DBMS and tells the DBMS where to place the retrieved query
results. The elements of its SQLVAR array correspond to the columns of query results
produced by the dynamic query.

FIGURE 18-14 OPEN statement with SQLDA parameter processing

 .
 .
 .
/* Program has previously generated and prepared a SELECT
 statement like this one:

 SELECT A, B, C ...
 FROM SALESREPS
 WHERE EMPL_NUM IN (?, ?, ... ?)

 with a variable number of parameters to be specified. The
 number of parameters for this execution is stored in the
 variable parmcnt.
*/

char *malloc()
SQLDA *parmda;
SQLVAR *parmvar;
long parm_value[101];

/* Allocate a SQLDA to pass parameter values */
parmda = (SQLDA *)malloc(sizeof(SQLDA) + parmcnt * sizeof(SQLVAR));
parmda->sqln = parmcnt;

/* Prompt the user for parameter values */
for (i = 0; i < parmcnt; I++) {
 printf("Enter employee number: ");
 scanf("%ld", &(parm_value[i]));
 parmvar = parmda -> sqlvar + I;
 parmvar->sqltype = 496;
 parmvar->sqllen = 4;
 parmvar->sqldata = &(parm_value[i]);
 parmvar->sqlind = 0;
}

/* Open the cursor to start the query, passing parameters */
exec sql open qrycursor using descriptor :parmda;
 .
 .
 .

 C h a p t e r 1 8 : D y n a m i c S Q L * 503
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 503

The Dynamic FETCH Statement
The dynamic FETCH statement, shown in Figure 18-15, is a variation of the static FETCH
statement. It advances the cursor to the next available row of query results (or the requested
row if the cursor is scrollable and one of the scroll keywords is used) and retrieves the
values of its columns into the program’s data areas. Recall from Chapter 17 that the static
FETCH statement includes an INTO clause with a list of host variables that receive the
retrieved column values. In the dynamic FETCH statement, the list of host variables is
replaced by a SQLDA.

Before using the dynamic FETCH statement, it is the application program’s
responsibility to provide data areas to receive the retrieved data and indicator variable for
each column. The application program must also fill in the SQLDATA, SQLIND, and SQLLEN
fields in the SQLVAR structure for each column, as follows:

• The SQLDATA field must point to the data area for the retrieved data.

• The SQLLEN field must specify the length of the data area pointed to by the
SQLDATA field. This value must be correctly specified to make sure the DBMS does
not copy retrieved data beyond the end of the data area.

• The SQLIND field must point to an indicator variable for the column (a 2-byte
integer). If no indicator variable is used for a particular column, the SQLIND field
for the corresponding SQLVAR structure should be set to zero.

Normally, the application program allocates a SQLDA, uses the DESCRIBE statement
to get a description of the query results, allocates storage for each column of query
results, and sets the SQLDATA and SQLIND values, all before opening the cursor. This
same SQLDA is then passed to the FETCH statement. However, there is no requirement
that the same SQLDA be used or that the SQLDA specify the same data areas for each
FETCH statement. It is perfectly acceptable for the application program to change the
SQLDATA and SQLIND pointers between FETCH statements, retrieving two successive
rows into different locations.

FIGURE 18-15 The dynamic FETCH statement syntax diagram

FETCH cursor-name INTO

NEXT

PRIOR

FIRST

FROM

LAST

ABSOLUTE value

RELATIVE value

SQL

DESCRIPTOR descriptor-name

 504 P a r t V : P r o g r a m m i n g w i t h S Q L 504 P a r t V : P r o g r a m m i n g w i t h S Q L

The Dynamic CLOSE Statement
The dynamic form of the CLOSE statement is identical in syntax and function to the static
CLOSE statement shown in Figure 17-28. In both cases, the CLOSE statement ends access to
the query results. When a program closes a cursor for a dynamic query, the program
normally should also deallocate the resources associated with the dynamic query, including

• The SQLDA allocated for the dynamic query and used in the DESCRIBE and FETCH
statements

• A possible second SQLDA, used to pass parameter values to the OPEN statement

• The data areas allocated to receive each column of query results retrieved by a
FETCH statement

• The data areas allocated as indicator variables for the columns of query results

It may not be necessary to deallocate these data areas if the program will terminate
immediately after the CLOSE statement.

Dynamic SQL Dialects
Like the other parts of the SQL language, dynamic SQL varies from one brand of DBMS to
another. In fact, the differences in dynamic SQL support are more serious than for static
SQL, because dynamic SQL exposes more of the nuts and bolts of the underlying DBMS—
data types, data formats, and so on. As a practical matter, these differences make it
impossible to write a single, general-purpose database front-end that is portable across
different DBMS brands using dynamic SQL. Instead, database front-end programs must
include a translation layer, often called a driver, for each brand of DBMS that they support,
to accommodate the differences.

The early front-end products usually shipped with a separate driver for each of the
popular DBMS brands. The introduction of ODBC as a uniform SQL API layer made this job
simpler, since an ODBC driver could be written once for each DBMS brand, and the front-
end program could be written to solely use the ODBC interface. In practice, however,
ODBC’s least-common-denominator approach meant that the front-end programs couldn’t
take advantage of the unique capabilities of the various supported DBMS systems, and it
limited the performance of the application. As a result, most modern front-end programs
and tools still include a separate, explicit driver for each of the popular DBMS brands. An
ODBC driver is usually included to provide access to the others.

A detailed description of the dynamic SQL features supported by all of the major DBMS
brands is beyond the scope of this book. However, it is instructive to examine the dynamic
SQL support provided by SQL/DS and by Oracle as examples of the kinds of differences
and extensions to dynamic SQL that you may find in your particular DBMS.

Dynamic SQL in Oracle*
The Oracle DBMS preceded DB2 into the market and based its dynamic SQL support on
IBM’s System/R prototype. (Actually, the entire original Oracle DBMS was independently
developed from the publicly available specifications for System/R.) For this reason, the
Oracle support for dynamic SQL differs somewhat from the IBM SQL standard. Although
Oracle and DB2 are broadly compatible, they differ substantially at the detail level.

 C h a p t e r 1 8 : D y n a m i c S Q L * 505
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 505

These differences include Oracle’s use of parameter markers, its use of the SQLDA, the format
of its SQLDA, and its support for data type conversion. The Oracle differences from DB2 are
similar to those you may encounter in other DBMS brands. For that reason, it is instructive to
briefly examine Oracle’s dynamic SQL support and its points of difference from DB2.

Named Parameters
Recall that DB2 does not allow host variable references in a dynamically prepared statement.
Instead, parameters in the statement are identified by question marks (parameter markers),
and values for the parameters are specified in the EXECUTE or OPEN statement. Oracle allows
you to specify parameters in a dynamically prepared statement using the syntax for host
variables. For example, this sequence of embedded SQL statements is legal for Oracle:

exec sql begin declare section;
 char stmtbuf[1001];
 int employee_number;
exec sql end declare section;
 .
 .
 .
strcpy(stmtbuf, "delete from salesreps
 where empl_num = :rep_number;");
exec sql prepare delstmt from :stmtbuf;
exec sql execute delstmt using :employee_number;

Although rep_number appears to be a host variable in the dynamic DELETE statement,
it is in fact a named parameter. As shown in the example, the named parameter behaves
exactly like the parameter markers in DB2. A value for the parameter is supplied from a real
host variable in the EXECUTE statement. Named parameters are a real convenience when
you use dynamic statements with a variable number of parameters.

The DESCRIBE Statement
The Oracle DESCRIBE statement is used, like the DB2 DESCRIBE statement, to describe the
query results of a dynamic query. Like DB2, Oracle returns the descriptions in a SQLDA. The
Oracle DESCRIBE statement can also be used to request a description of the named
parameters in a dynamically prepared statement. Oracle also returns these parameter
descriptions in a SQLDA.

This Oracle DESCRIBE statement requests a description of the columns of query results
from a previously prepared dynamic query:

exec sql describe select list for qrystmt into qry_sqlda;

It corresponds to the DB2 statement:

exec sql describe qrystmt into qry_sqlda;

This Oracle DESCRIBE statement requests a description of the named parameters in a
previously prepared dynamic statement. The statement might be a query or some other SQL
statement:

exec sql describe bind variables for thestmt into the_sqlda;

 506 P a r t V : P r o g r a m m i n g w i t h S Q L 506 P a r t V : P r o g r a m m i n g w i t h S Q L

This Oracle statement has no DB2 equivalent. Following this DESCRIBE statement, your
program would typically examine the information in the SQLDA, fill in the pointers in the
SQLDA to point to the parameter values the program wants to supply, and then execute the
statement using the SQLDA form of the OPEN or EXECUTE statement:

exec sql execute thestmt using descriptor the_sqlda;
exec sql open qrycursor using descriptor the_sqlda;

The information returned by both forms of the Oracle DESCRIBE statement is the same
and is described in the next section.

The Oracle SQLDA
The Oracle SQLDA performs the same functions as the DB2 SQLDA, but its format, shown in
Figure 18-16, differs substantially from that of DB2. The two important fields in the DB2
SQLDA header both have counterparts in the Oracle SQLDA:

• The N field in the Oracle SQLDA specifies the size of the arrays used to hold column
definitions. It corresponds to the SQLN field in the DB2 SQLDA.

• The F field in the Oracle SQLDA indicates how many columns are currently described
in the arrays of the SQLDA. It corresponds to the SQLD field in the DB2 SQLDA.

Instead of DB2’s single array of SQLVAR structures that contain column descriptions,
the Oracle SQLDA contains pointers to a series of arrays, each of which describes one aspect
of a column:

• The T field points to an array of integers that specify the data type for each query
results column or named parameter. The integers in this array correspond to the
SQLTYPE field in each DB2 SQLVAR structure.

• The V field points to an array of pointers that specify the buffer for each column of
query results or each passed parameter value. The pointers in this array correspond
to the SQLDATA field in each DB2 SQLVAR structure.

FIGURE 18-16 The Oracle SQLDA

struct sqlda {
 long N; /* number of entries in the SQLDA arrays */
 char **V; /* pointer to array of pointers to data areas */
 long *L; /* pointer to array of buffer lengths */
 short *T; /* pointer to array of data type codes */
 short **I; /* pointer to array of pointers to indicator variables */
 long F; /* number of active entries in the SQLDA arrays */
 char **S; /* pointer to array of pointers to column/parameter names */
 short *M; /* pointer to array of name buffer lengths */
 short *C; /* pointer to array of current lengths of names */
 char **X; /* pointer to array of pointers to indicator parameter names */
 short *Y; /* pointer to array of indicator name buffer lengths */
 short *Z; /* pointer to array of current lengths of indicator names */
} ;

 C h a p t e r 1 8 : D y n a m i c S Q L * 507
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 507

• The L field points to an array of integers that specify the length of each buffer
pointed to by the V array. The integers in this array correspond to the SQLLEN field
in each DB2 SQLVAR structure.

• The I field points to an array of data pointers that specify the indicator variable for
each query results column or named parameter. The pointers in this array
correspond to the SQLIND field in each DB2 SQLVAR structure.

• The S field points to an array of string pointers that specify the buffers where Oracle
is to return the name of each query results column or named parameter. The buffers
pointed to by this array correspond to the SQLNAME structure in each DB2 SQLVAR
structure.

• The M field points to an array of integers that specify the maximum length of the
variable names. For DB2, the SQLNAME structure has a fixed-length buffer, so there
is no equivalent to the M field.

• The C field points to an array of integers that specify the actual lengths of the names
pointed to by the S array. When Oracle returns the column or parameter names, it
sets the integers in this array to indicate their actual lengths. For DB2, the SQLNAME
structure has a fixed-length buffer, so there is no equivalent to the C field.

• The X field points to an array of string pointers that specify the buffers where Oracle
is to return the name of each named indicator parameter. These buffers are used
only by the Oracle DESCRIBE BLIND LIST statement; they have no DB2 equivalent.

• The Y field points to an array of integers specifying the size of each buffer pointed to
by the X array. There is no DB2 equivalent.

• The Z field points to an array of integers specifying actual lengths of the indicator
parameter names pointed to by the X array. When Oracle returns the indicator
parameter names, it sets the integers in this array to indicate their actual lengths.
There is no DB2 equivalent.

Data Type Conversions
The data type formats that DB2 uses to receive parameter values and return query results
are those supported by the IBM S/370 architecture mainframes that run DB2. Because it was
designed as a portable DBMS, Oracle uses its own internal data type formats. Oracle
automatically converts between its internal data formats and those of the computer system
on which it is running when it receives parameter values from your program and when it
returns query results to your program.

Your program can use the Oracle SQLDA to control the data type conversion performed
by Oracle. For example, suppose your program uses the DESCRIBE statement to describe the
results of a dynamic query and discovers (from the data type code in the SQLDA) that the first
column contains numeric data. Your program can request conversion of the numeric data by
changing the data type code in the SQLDA before it fetches the data. If the program places the
data type code for a character string into the SQLDA, for example, Oracle will convert the first
column of query results and return it to your program as a string of digits.

The data type conversion feature of the Oracle SQLDA provides excellent portability, both
across different computer systems and across different programming languages. A similar
feature is supported by several other DBMS brands, but not by the IBM SQL products.

 508 P a r t V : P r o g r a m m i n g w i t h S Q L 508 P a r t V : P r o g r a m m i n g w i t h S Q L

Dynamic SQL and the SQL Standard
The SQL1 standard did not address dynamic SQL, so the de facto standard for dynamic SQL,
as described in the preceding sections, was set by IBM’s implementation in DB2. The SQL2
standard explicitly included a standard for dynamic SQL, specified in a separate chapter
(Part 3) of the standard that was nearly 50 pages long. Part 3 grew to over 400 pages when last
updated in 2003. In the simplest areas of dynamic SQL, the SQL standard closely follows the
dynamic SQL currently used by commercial DBMS products. But in other areas, including
even the most basic dynamic SQL queries, the standard introduces incompatibilities with
existing DBMS products, which will require the rewriting of applications. The next several
sections describe the SQL standard for dynamic SQL in detail, with an emphasis on the
differences from the DB2-style dynamic SQL described in the preceding sections.

In practice, support for SQL standard dynamic SQL has been slow to appear in
commercial DBMS products, and most dynamic SQL programming still requires the use of
the old, DB2-style dynamic SQL. Even when a new version of a DBMS product supports the
new SQL statements, the DBMS vendor always provides a precompiler option that accepts
the old dynamic SQL structure used by the particular DBMS. Often, this is the default
option for the precompiler, because with thousands and thousands of SQL programs
already in existence, the DBMS vendor has an absolute requirement that new DBMS
versions do not break old programs. Thus, the migration to portions of the SQL standard
that represent incompatibilities with current practice will be a slow and evolutionary one.

Basic Dynamic SQL Statements
The SQL statements in the ANSI/ISO SQL standard that implement basic dynamic SQL
statement execution (that is, dynamic SQL that does not involve database queries) are
shown in Figure 18-17. These statements closely follow the DB2 structure and language.
This includes the single-step and two-step methods of executing dynamic SQL statements.

The standard EXECUTE IMMEDIATE statement has an identical syntax and operation to
that of its DB2 counterpart. It immediately executes the SQL statement passed to the DBMS
as a character string. Thus, the EXECUTE IMMEDIATE statement in Figure 18-3 conforms to
the SQL standard.

The standard PREPARE and EXECUTE statements also operate identically to their DB2-
style counterparts. The PREPARE statement passes a text string containing a SQL statement
to the DBMS and causes the DBMS to analyze the statement, optimize it, and build an
application plan for it. The EXECUTE statement causes the DBMS to actually execute a
previously prepared statement. Like the DB2 version, the SQL standard EXECUTE statement
optionally accepts host variables that pass the specific values to be used when executing the
SQL statement. The PREPARE and EXECUTE statements in Figure 18-4 (labeled as items 2
and 3, respectively) thus conform to the SQL standard.

Two useful extensions to the PREPARE/EXECUTE structure are a part of the Full compliance
level SQL standard specification (neither is part of the Entry or Intermediate compliance levels).
The first is a useful companion to the PREPARE statement that unprepares a previously
compiled dynamic SQL statement. The DEALLOCATE PREPARE statement provides this
capability. When the DBMS processes this statement, it can free the resources associated with
the compiled statement, which will usually include some internal representation of the
application plan for the statement. The statement named in the DEALLOCATE PREPARE
statement must match the name specified in a previously executed PREPARE statement.

 C h a p t e r 1 8 : D y n a m i c S Q L * 509
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 509

In the absence of a capability like that provided by DEALLOCATE PREPARE, the DBMS
has no way of knowing whether a previously prepared statement will be executed again or
not, and so must retain all of the information associated with the statement. In practice,
some DBMS brands maintain the compiled version of the statement only until the end of
a transaction; in these systems, a statement must be reprepared for each subsequent
transaction where it is used. Because of the overhead involved in this process, other DBMS
brands maintain the compiled statement information indefinitely. The DEALLOCATE
PREPARE can play a more important role in these systems, where a database session might
last for hours. Note, however, that the SQL standard explicitly says that whether a prepared
statement is valid outside of the transaction in which it is prepared is implementation-
dependent.

The SQL standard extension to the DB2-style EXECUTE statement may be even more
useful in practice. It allows the EXECUTE statement to be used to process simple singleton
SELECT statements that return a single row of query results. Like the DB2 EXECUTE
statement, the SQL standard statement includes a USING clause that names the host
variables that supply the values for parameters in the statement being executed. But the
SQL standard statement also permits an optional INTO clause that names the host variables
that receive the values returned by a single-row query.

Suppose you have written a program that dynamically generates a query statement that
retrieves the name and quota of a salesperson, with the salesperson’s employee number as
an input parameter. Using DB2-style dynamic SQL, even this simple query involves the use

FIGURE 18-17 SQL standard dynamic SQL statements

EXECUTE IMMEDIATE host-variable

PREPARE statement-name FROM host-variable

DEALLOCATE PREPARE statement-name

EXECUTE statement-name

USING SQL DESCRIPTOR descriptor-name

USING

INTO SQL DESCRIPTOR descriptor-name

INTO

host-variable

host-variable

,

,

 510 P a r t V : P r o g r a m m i n g w i t h S Q L 510 P a r t V : P r o g r a m m i n g w i t h S Q L

of a SQLDA, cursors, a FETCH statement loop, and so on. Using standard dynamic SQL, the
statement can be executed using the simple two-statement sequence:

PREPARE qrystmt FROM :statement_buffer;

EXECUTE qrystmt USING :emplnum INTO :name, :quota;

As with any prepared statement, this single-row query could be executed repeatedly
after being prepared once. It still suffers from the restriction that the number of returned
columns, and their data types, must know when the program is written, since they must
match exactly the number and data types of the host variables in the INTO clause. This
restriction is removed by allowing the use of a SQLDA-style descriptor area instead of a list
of host variables, as described in the next section.

The Standard SQLDA
Although its support for PREPARE/EXECUTE processing closely parallels that of DB2
dynamic SQL, the SQL standard diverges substantially from DB2 style in the area of
dynamic query processing. In particular, the SQL standard includes major changes to the
DB2 SQL Data Area (SQLDA), which is at the heart of dynamic multirow queries. Recall that
a SQL Data Area (SQLDA) provides two important functions:

• A flexible way to pass parameters to be used in the execution of a dynamic SQL
statement (passing data from the host program to the DBMS), as described earlier in
the section “EXECUTE with SQLDA”

• The way that the query results are returned to the program in the execution of a
dynamic SQL query (passing data from the DBMS back to the host program), as
described earlier in the section “The Dynamic FETCH Statement”

The DB2-style SQLDA handles these functions with flexibility, but it has some serious
disadvantages. It is a very low-level data structure, which tends to be specific to a particular
programming language. For example, the variable-length structure of a DB2-style SQLDA
makes it very difficult to represent in the FORTRAN language. The SQLDA structure also
implicitly makes assumptions about the memory of the computer system on which the
dynamic SQL program is running, how data items in a structure are aligned on such a
system, and so on. For the writers of the SQL standard, these low-level dependencies were
unacceptable barriers to portability. Therefore, they replaced the DB2 SQLDA structure with a
set of statements for manipulating a more abstract structure called a dynamic SQL descriptor.

The structure of a SQL descriptor is shown in Figure 18-18. Conceptually, the SQL
descriptor is parallel to, and plays exactly the same role as, the DB2-style SQLDA shown in
Figure 18-7. The fixed part of the SQL descriptor specifies a count of the number of items in
the variable part of the descriptor. Each item in the variable part contains information about
a single parameter being passed, such as its data type, its length, an indicator telling
whether a NULL value is being passed, and so on.

But unlike the DB2 SQLDA, the SQL descriptor is not an actual data structure within the
host program. Instead, it is a collection of data items owned by the DBMS software. The
host program manipulates SQL descriptors—creating them, destroying them, placing data
items into them, extracting data from them—via a new set of dynamic SQL statements
specially designed for that purpose. Figure 18-19 summarizes these SQL descriptor
management statements.

 C h a p t e r 1 8 : D y n a m i c S Q L * 511
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 511

To understand how the SQL descriptor management statements work, it’s instructive to
reexamine the dynamic SQL update program in Figure 18-8. This program illustrates the
use of a DB2-style SQLDA in an EXECUTE statement. The flow of the program remains
identical if a SQL descriptor is used instead, but the specifics change quite a lot.

FIGURE 18-19 SQL standard descriptor management statements

ALLOCATE DESCRIPTOR descriptor-name

DEALLOCATE DESCRIPTOR descriptor-name

COUNT = host variable

host variable = COUNT

item-name = host variable

host variable = item-name

VALUE item number

VALUE item number

SET DESCRIPTOR

GET DESCRIPTOR

WITH MAX number-of-items

,

,

FIGURE 18-18
SQL standard
descriptor
structure

Fixed part

COUNT

Variable part—one occurrence per item (parameter or query results column):
TYPE

LENGTH

OCTET_LENGTH

RETURNED_LENGTH

RETURNED_OCTET_LENGTH

PRECISION

SCALE

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_PRECISION

NULLABLE

INDICATOR

DATA

NAME

UNNAMED

precision of date/time interval data

number of items described

data type of item

length of item

length of item (in 8-bit octets)

length of returned data item

length of returned data (in 8-bit octets)

precision of data item

scale of data item

type of date/time interval data

can item be NULL?

is data item NULL? (indicator value)

data item itself

name of data item

is data item unnamed?

 512 P a r t V : P r o g r a m m i n g w i t h S Q L 512 P a r t V : P r o g r a m m i n g w i t h S Q L

Before using the descriptor, the program must create it, using the statement:

ALLOCATE DESCRIPTOR parmdesc WITH MAX :parmcnt;

This statement replaces the allocation of storage for the parmda data structure at callout
1 in Figure 18-8. The descriptor (named parmdesc) will perform the same functions as the
parmda. Note that the program in Figure 18-8 had to calculate how much storage would be
required for the parmda structure before allocating it. With the SQL descriptor, that
calculation is eliminated, and the host program simply tells the DBMS how many items the
variable part of the descriptor must be able to hold.

The next step in the program is to set up the descriptor so that it describes the
parameters to be passed—their data types, lengths, and so on. The loop at callout 2 of the
program remains intact, but again, the details of how the descriptor is initialized differ from
those for the SQLDA. At callout 3 and callout 4, the data type and length for the parameter
are specified with a form of the SET DESCRIPTOR statement, with this code excerpt:

typecode = columns[i].typecode;
length = columns[i].buflen;
SET DESCRIPTOR parmdesc VALUE (:i + l) TYPE = :typecode
SET DESCRIPTOR parmdesc VALUE (:i + l) LENGTH = :length;

The differences from Figure 18-8 are instructive. Because the descriptor is maintained
by the DBMS, the data type and length must be passed to the DBMS, through the SET
DESCRIPTOR statement, using host variables. In this particular example, the simple
variables typecode and length are used. Additionally, the data type codes in Figure 18-8
were specific to DB2. The fact that each DBMS vendor used different codes to represent
different SQL data types was a major source of portability problems in dynamic SQL.
The SQL standard specifies integer data type codes for all of the data types specified in the
standard, eliminating this issue. The SQL standard data type codes are summarized in
Table 18-2. So, in addition to the other changes, the data type codes in the columns structure
of Figure 18-8 would need to be modified to use these SQL standard data type codes.

The statements at callouts 5 and 6 in Figure 18-8 were used to bind the SQLDA structure
to the program buffers used to contain the parameter data and the corresponding indicator
variable. Effectively, they put pointers to these program buffers into the SQLDA for the use of
the DBMS. With SQL descriptors, this type of binding is not possible. Instead, the data value
and indicator value are specifically passed as host variables later in the program. Thus, the
statements at callouts 5 and 6 would be eliminated in the conversion to standard SQL.

The statement at callout 7 in Figure 18-8 sets the SQLDA to indicate how many
parameter values are actually being passed to the DBMS. The SQL descriptor must similarly
be set to indicate the number of passed parameters. This is done with a form of the SET
DESCRIPTOR statement:

SET DESCRIPTOR parmdesc COUNT = :parmcnt;

Strictly speaking, this SET DESCRIPTOR statement should probably be placed earlier in
the program and should be executed before those for the individual items. The SQL
standard specifies a complete set of rules that describe how setting values in some parts of
the descriptor causes values in other parts of the descriptor to be reset. For the most part,
these rules simply specify the natural hierarchy of information.

 C h a p t e r 1 8 : D y n a m i c S Q L * 513
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 513

Data Type Code

Data Type Codes (TYPE)

INTEGER 4

SMALLINT 5

NUMERIC 2

DECIMAL 3

FLOAT 6

REAL 7

DOUBLE PRECISION 8

CHARACTER 1

CHARACTER VARYING 12

BIT 14

BIT VARYING 15

DATE/TIME/TIMESTAMP 9

INTERVAL 10

Date/Time Subcodes (Interval_Code)

DATE 1

TIME 2

TIME WITH TIME ZONE 4

TIMESTAMP 3

TIMESTAMP WITH TIME ZONE 5

Date/Time Subcodes (Interval_Precision)

YEAR 1

MONTH 2

DAY 3

HOUR 4

MINUTE 5

SECOND 6

YEAR – MONTH 7

DAY – HOUR 8

DAY – MINUTE 9

DAY – SECOND 10

HOUR – MINUTE 11

HOUR – SECOND 12

MINUTE – SECOND 13

TABLE 18-2 SQL Standard Data Type Codes

 514 P a r t V : P r o g r a m m i n g w i t h S Q L 514 P a r t V : P r o g r a m m i n g w i t h S Q L

For example, if you set the data type for a particular item to indicate an integer, the
standard says that the corresponding information in the descriptor that tells the length of
the same item will be reset to some implementation-dependent value. Normally this
doesn’t impact your programming; however, you can’t assume that just because you set
some value within the descriptor previously, it still retains the same value. It’s best to fill
the descriptor hierarchically, starting with higher-level information (for example, the
number of items and their data types) and then proceeding to lower-level information
(data type lengths, subtypes, whether NULL values are allowed, and so on).

The flow of the program in Figure 18-8 can now continue unmodified. The PREPARE
statement compiles the dynamic UPDATE statement, and its form does not change for
standard SQL. The program then enters the for loop, prompting the user for parameters.
Here again, the concepts are the same, but the details of manipulating the SQLDA structure
and the SQL descriptor differ.

If the user indicates that a NULL value is to be assigned (by typing an asterisk in
response to the prompt), the program in Figure 18-8 sets the parameter indicator buffer
appropriately with the statement:

*(parmvar -> sqlind) = -1;

and if the value is not NULL, the program again sets the indicator buffer with the statement:

*(parmvar -> sqlind) = 0;

For the SQL descriptor, these statements would again be converted to a pair of SET
DESCRIPTOR statements:

SET DESCRIPTOR parmdesc VALUE(:j + l) INDICATOR = -1;
SET DESCRIPTOR parmdesc VALUE(:j + 1) INDICATOR = 0;

Note again the use of the loop control variable to specify which item in the descriptor is
being set, and the direct passing of data (in this case, constants) rather than the use of
pointers to buffers in the SQLDA structure.

Finally, the program in Figure 18-8 passes the actual parameter value typed by the user
to the DBMS, via the SQLDA. The statements at callout 8 accomplish this for data of different
types, by first converting the typed characters into binary representations of the data and
placing the binary data into the data buffers pointed to by the SQLDA. Again, the conversion
to standard SQL involves replacing these pointers and direct SQLDA manipulation with a
SET DESCRIPTOR statement. For example, these statements pass the data and its length for
a variable-length character string:

length = strlen(inbuf);
SET DESCRIPTOR parmdesc VALUE(:j + 1) DATA = :inbuf;
SET DESCRIPTOR parmdesc VALUE(:j + 1) LENGTH = :length;

For data items that do not require a length specification, passing the data is even easier,
since only the DATA form of the SET DESCRIPTOR statement is required. It’s also useful to note
that the SQL standard specifies implicit data type conversions between host variables (such as
inbuf) and SQL data types. Following the SQL standard, it would be necessary for the
program in Figure 18-8 to perform all of the data type conversion in the sscanf() functions.

 C h a p t e r 1 8 : D y n a m i c S Q L * 515
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 515

Instead, the data could be passed to the DBMS as character data, for automatic conversion
and error detection.

With the SQLDA finally set up as required, the program in Figure 18-8 executes the
dynamic UPDATE statement with the passed parameters at callout 9, using an EXECUTE
statement that specifies a SQLDA. The conversion of this statement to a SQL descriptor is
straightforward; it becomes

EXECUTE updatestmt USING SQL DESCRIPTOR parmdesc;

The keywords in the EXECUTE statement change slightly, and the name of the descriptor
is specified instead of the name of the SQLDA.

Finally, the program in Figure 18-8 should be modified like this to tell the DBMS
to deallocate the SQL descriptor. The statement that does this is

DEALLOCATE DESCRIPTOR parmdesc;

In a simple program like this one, the DEALLOCATE is not necessary, but in a more
complex real-world program with multiple descriptors, it’s a very good idea to deallocate
the descriptors when the program no longer requires them.

The SQL Standard and Dynamic SQL Queries
In the dynamic SQL statements of the preceding sections, the SQL descriptor, like the SQLDA
it replaces, is used to pass parameter information from the host program to the DBMS, for
use in dynamic statement execution. The SQL standard also uses the SQL descriptor in
dynamic query statements where, like the SQLDA it replaces, it controls the passing of query
result from the DBMS back to the host program. Figure 18-9 lists a DB2-style dynamic SQL
query program. It’s useful to examine how the program in Figure 18-9 would change to
conform to the SQL standard. Again, the flow of the program remains identical under
standard SQL, but the specifics change quite a lot. The standard SQL forms of the dynamic
SQL query-processing statements are shown in Figure 18-20.

The declaration of the cursor for the dynamic query, in callout 1 of Figure 18-9, remains
unchanged under the SQL standard. The construction of the dynamic SELECT statement in
callout 2 is also unchanged, as is the PREPARE statement of callout 3. The changes to the
program begin at callout 4, where the program uses the DESCRIBE statement to obtain a
description of the query results, which is returned in a SQLDA-named qry_da. For standard
SQL, this DESCRIBE statement must be modified to refer to a SQL descriptor, which must
have been previously allocated. Assuming the descriptor is named qrydesc, the statements
would be

ALLOCATE DESCRIPTOR qrydesc WITH MAX :colcount;
DESCRIBE querystmt USING SQL DESCRIPTOR qrydesc;

The standard SQL form of the DESCRIBE statement has a parallel effect on the one it
replaces. Descriptions of the query result columns are returned, column by column, into the
SQL descriptor, instead of into the SQLDA. Because the descriptor is a DBMS structure, rather
than an actual data structure in the program, the host program must retrieve the information
from the descriptor, piece by piece, as required. The GET DESCRIPTOR statement performs
this function, just as the SET DESCRIPTOR function performs the opposite function of putting

 516 P a r t V : P r o g r a m m i n g w i t h S Q L 516 P a r t V : P r o g r a m m i n g w i t h S Q L

information into the SQL descriptor. In the program of Figure 18-9, the statements at callout 5,
which obtains the length of a particular column of query results from a SQLDA, would be
replaced with this statement:

GET DESCRIPTOR qrydesc VALUE (:i + 1) :length = LENGTH;
qry_var -> sqldat = malloc(length);

The statement at callout 5 that allocates buffers for each item of query results is still
needed, but the method for telling the DBMS where to put the results changes for standard
SQL. Instead of placing the address of the program destination for each item into the SQLDA,
the program must place these addresses into the SQL descriptor, using the SET DESCRIPTOR
statement. The buffers for the indicator variables are not needed with the SQL descriptor.
Instead, the information about whether a column contains a NULL value can be obtained
from the descriptor for each row as it is fetched, as seen later in the program example.

In this particular example, the number of columns in the query results are calculated by
the program as it builds the query. The program could also obtain the number of columns
from the SQL descriptor with this form of the GET DESCRIPTOR statement:

GET DESCRIPTOR qrydesc :colcount = COUNT;

FIGURE 18-20 Dynamic query-processing statements

DESCRIBE

DECLARE cursor-name

ALLOCATE cursor-name

OPEN cursor-name

FETCH cursor-name

CLOSE cursor-name

INTO SQL DESCRIPTOR descriptor-name

USING SQL DESCRIPTOR descriptor-name

CURSOR FOR statement-name

CURSOR FOR statement-name

statement-name USING SQL DESCRIPTOR descriptor-name

INTO

USING

INSENSITIVE

INSENSITIVE SCROLL

SCROLL

host-variable

host-variable

OUTPUT

INPUT

,

,

 C h a p t e r 1 8 : D y n a m i c S Q L * 517
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 517

Having obtained the description of the query results, the program performs the query
by opening the cursor at callout 6. The simple form of the OPEN statement, without any
input parameters, conforms to the SQL standard. If the dynamic query specified
parameters, they could be passed to the DBMS either as a series of host variables or via a
SQL descriptor. The standard SQL OPEN statement using host variables is identical to the
DB2 style, shown in the program in Figure 18-13. The standard SQL OPEN statement using a
descriptor is parallel to the standard SQL EXECUTE statement using a descriptor, and differs
from the DB2 style. For example, the OPEN statement of Figure 18-14:

OPEN qrycursor USING DESCRIPTOR :parmda;

is changed for standard SQL into this OPEN statement:

OPEN qrycursor USING SQL DESCRIPTOR parmdesc;

The technique for passing input parameters to the OPEN statement via the SQL
descriptor is exactly the same as that described earlier for the EXECUTE statement.

Like the Oracle implementation of dynamic SQL, the SQL standard provides a way for
the host program to obtain a description of the parameters in a dynamic query as well as a
description of the query results. For the program fragment in Figure 18-14, this DESCRIBE
statement:

DESCRIBE INPUT querystmt USING SQL DESCRIPTOR parmdesc;

will return, in the SQL descriptor named parmdesc, a description of each of the parameters
that appear in the dynamic query. The number of parameters can be obtained with the GET
DESCRIPTOR statement, retrieving the COUNT item from the descriptor. As with the Oracle
implementation, the SQL standard can have two descriptors associated with a dynamic
query. The input descriptor, obtained with the DESCRIBE INPUT statement, contains
descriptions of the parameters. The output descriptor contains descriptions of the query
results columns. The standard allows you to explicitly ask for the output description:

DESCRIBE OUTPUT querystmt USING SQL DESCRIPTOR qrydesc;

but the DESCRIBE OUTPUT form of the statement is the default, and the most common
practice is to omit the keyword OUTPUT.

Returning to the dynamic query example of Figure 18-9, the cursor has been opened at
callout 6, and it’s time to fetch rows of query results at callout 7. Again, the standard SQL
form of the FETCH statement is slightly modified to use the standard SQL descriptor:

FETCH sqlcurs USING SQL DESCRIPTOR qrydesc;

The FETCH statement advances the cursor to the next row of query results and brings
the values for that row into the program buffers, as specified within the descriptor structure.
The program must still use the descriptor to determine information about each column of
returned results, such as its length or whether it contains a NULL value. For example, to
determine the returned length of a column of character data, the program might use the
statement:

GET DESCRIPTOR qrydesc VALUE(:i + 1) :length = RETURNED_LENGTH;

 518 P a r t V : P r o g r a m m i n g w i t h S Q L 518 P a r t V : P r o g r a m m i n g w i t h S Q L

To determine whether the value in the column was NULL, the program can use the
statement:

GET DESCRIPTOR qrydesc VALUE(:i + 1) :indbuf = INDICATOR;

And similarly to determine the data type of the column, the program can use the statement:

GET DESCRIPTOR qrydesc VALUE(:i + 1) :type = TYPE;

As you can see, the details of row-by-row query processing within the for loop of the
program will differ dramatically from those in Figure 18-9.

Having processed all rows of query results, the program closes the cursor at callout 8.
The CLOSE statement remains unchanged under standard SQL. Following the closing of the
cursor, it would be good practice to deallocate the SQL descriptor(s), which would have
been allocated at the very beginning of the program.

The changes required to the dynamic SQL programs in Figures 18-8, 18-9, and 18-14 to
make them conform to the SQL standard illustrate, in detail, the new features specified by
the standard and the degree to which they differ from common dynamic SQL usage today.
In summary, the changes from DB2-style dynamic SQL are

• The SQLDA structure is replaced with a named SQL descriptor.

• The ALLOCATE DESCRIPTOR and DEALLOCATE DESCRIPTOR statements are used to
create and destroy descriptors, replacing allocation and deallocation of host program
SQLDA data structures.

• Instead of directly manipulating elements of the SQLDA, the program specifies
parameter values and information through the SET DESCRIPTOR statement.

• Instead of directly manipulating elements of the SQLDA, the program obtains
information about query results and obtains the query result data itself through the
GET DESCRIPTOR statement.

• The DESCRIBE statement is used both to obtain descriptions of query results
(DESCRIBE OUTPUT) and to obtain descriptions of parameters (DESCRIBE INPUT).

• The EXECUTE, OPEN, and FETCH statements are slightly modified to specify the SQL
descriptor by name instead of the SQLDA.

Summary
This chapter described dynamic SQL, an advanced form of embedded SQL. Dynamic SQL is
rarely needed to write simple data processing applications, but it is crucial for building
general-purpose database front-ends. Static SQL and dynamic SQL present a classic trade-
off between efficiency and flexibility, which can be summarized as follows:

• Simplicity Static SQL is relatively simple; even its most complex feature, cursors,
can be easily understood in terms of familiar file input/output concepts. Dynamic
SQL is complex, requiring dynamic statement generation, variable-length data
structures, and memory management, with memory allocation/deallocation, data
type alignment, pointer management, and associated issues.

 C h a p t e r 1 8 : D y n a m i c S Q L * 519
PART V

 C h a p t e r 1 8 : D y n a m i c S Q L * 519

• Performance Static SQL is compiled into an application plan at compile-time;
dynamic SQL must be compiled at runtime. As a result, static SQL performance is
generally much better than that of dynamic SQL. The performance of dynamic SQL
is dramatically impacted by the quality of the application design; a design that
minimizes the amount of compilation overhead can approach static SQL performance.

• Flexibility Dynamic SQL allows a program to decide at runtime which specific
SQL statements it will execute. Static SQL requires that all SQL statements be coded
in advance, when the program is written, limiting the flexibility of the program.

Dynamic SQL uses a set of extended embedded SQL statements to support its dynamic
features:

• The EXECUTE IMMEDIATE statement passes the text of a dynamic SQL statement to
the DBMS, which executes it immediately.

• The PREPARE statement passes the text of a dynamic SQL statement to the DBMS,
which compiles it into an application plan but does not execute it. The dynamic
statement may include parameter markers whose values are specified when the
statement is executed.

• The EXECUTE statement asks the DBMS to execute a dynamic statement previously
compiled by a PREPARE statement. It also supplies parameter values for the
statement that is to be executed.

• The DESCRIBE statement returns a description of a previously prepared dynamic
statement into a SQLDA. If the dynamic statement is a query, the description
includes a description of each column of query results.

• The DECLARE CURSOR statement for a dynamic query specifies the query by the
statement name assigned to it when it was compiled by the PREPARE statement.

• The OPEN statement for a dynamic query passes parameter values for the dynamic
SELECT statement and requests query execution.

• The FETCH statement for a dynamic query fetches a row of query results into
program data areas specified by a SQLDA structure.

• The CLOSE statement for a dynamic query ends access to the query results.

This page intentionally left blank

19
SQL APIs

The early IBM relational database prototypes pioneered the embedded SQL technique
for programmatic access to SQL-based databases, which was widely adopted by
mainstream SQL products. However, several major DBMS products, led by Sybase’s

first SQL Server implementation, took a very different approach. Instead of trying to blend
SQL with another programming language, these products provide a library of function calls
as an application programming interface (API) for the DBMS. To pass SQL statements to the
DBMS, an application program calls functions in the API, and it calls other functions to
retrieve query results and status information from the DBMS.

For many programmers, a SQL API is a very straightforward way to use SQL. Most
programmers have some experience in using function libraries for other purposes, such as
string manipulation, mathematical functions, file input/output, and screen forms
management. Modern operating systems, such as UNIX and Windows, extensively use API
suites to extend the core capabilities provided by the OS itself. The SQL API thus becomes
just another library for the programmer to learn.

Over the last decade or so, SQL APIs have become very popular, equaling if not
surpassing the popularity of the embedded SQL approach for new applications
development. This chapter describes the general concepts used by all SQL API interfaces. It
also describes specific features of some of the proprietary APIs used by popular SQL-based
DBMS systems, and both the ANSI/ISO SQL Call-Level Interface (CLI) standard and
Microsoft’s Open Database Connectivity (ODBC) standard on which the ANSI/ISO CLI is
based. Finally, this chapter describes JDBC, which is the API standard for SQL access from
programs written in Java, and is used by most of the popular Internet application servers.

521

CHAPTER

 522 P a r t V : P r o g r a m m i n g w i t h S Q L 522 P a r t V : P r o g r a m m i n g w i t h S Q L

API Concepts
When a DBMS supports a function call interface, an application program communicates
with the DBMS exclusively through a set of calls that are collectively known as an application
programming interface, or API. The basic operation of a typical DBMS API is illustrated in
Figure 19-1.

• The program begins its database access with one or more API calls that connect the
program to the DBMS and often to a specific database or schema.

• To send a SQL statement to the DBMS, the program builds the statement as a text
string in a buffer (often stored as a host language variable) and then makes an API
call to pass the buffer contents to the DBMS.

• The program makes API calls to check the status of its DBMS request and to handle
errors.

• If the request is a query, the program uses API calls to retrieve the query results into
the program’s buffers. Typically, the calls return data a row at a time or a column at
a time.

• The program ends its database access with an API call that disconnects it from
the DBMS.

FIGURE 19-1 Using a SQL API for DBMS access

 C h a p t e r 1 9 : S Q L A P I s 523
PART V

 C h a p t e r 1 9 : S Q L A P I s 523

A SQL API is often used when the application program and the database are on two
different systems in a client/server architecture, as shown in Figure 19-2. In this
configuration, the code for the API functions is located on the client system, where the
application program executes. The DBMS software is located on the server system, where
the database resides. Calls from the application program to the API take place locally within
the client system, and the API code translates the calls into messages that it sends to and
receives from the DBMS over a network. A SQL API offers particular advantages for a
client/server architecture because it can minimize the amount of network traffic between
the API and the DBMS.

The early APIs offered by various DBMS products differed substantially from one
another. Like many parts of SQL, proprietary SQL APIs proliferated long before there was
an attempt to standardize them. In addition, SQL APIs tend to expose the underlying
capabilities of the DBMS more than the embedded SQL approach, leading to even more
differences. Nonetheless, all of the SQL APIs available in commercial SQL products are
based on the same fundamental concepts illustrated in Figures 19-1 and 19-2. These
concepts also apply to the ODBC API and to more recent ANSI/ISO standards based on it.

The dblib API (SQL Server)
The first major DBMS product to emphasize its callable API was SQL Server, in versions
from both Sybase and Microsoft. For many years, the SQL Server callable API was the only
interface offered by these products. Both Microsoft and Sybase now offer embedded SQL
capabilities and have added newer or higher-level callable APIs, but the original SQL Server
API remains a very popular way to access these DBMS brands. The SQL Server API also
provided the model for much of Microsoft’s ODBC API. SQL Server and its API are also an
excellent example of a DBMS designed from the ground up around a client/server
architecture. For all of these reasons, it’s useful to begin our exploration of SQL APIs by
examining the basic SQL Server API.

The original SQL Server API, which is called the database library or dblib, consists of
about 100 functions available to an application program. The API is very comprehensive,
but a typical program uses only about a dozen of the function calls, which are summarized in
Table 19-1. The other calls provide advanced features, alternative methods of interacting with
the DBMS, or single-call versions of features that otherwise would require multiple calls.

FIGURE 19-2
An SQL API in a
client/server
architecture

 524 P a r t V : P r o g r a m m i n g w i t h S Q L 524 P a r t V : P r o g r a m m i n g w i t h S Q L

Basic SQL Server Techniques
A simple SQL Server program that updates a database can use a very small set of dblib calls
to do its work. The program in Figure 19-3 implements a simple quota update application for
the SALESREPS table in the sample database. It is identical to the program in Figure 17-17
(reproduced here as Figure 19-4), but uses the SQL Server API instead of embedded SQL. The
figure illustrates the basic interaction between a program and SQL Server:

 1. The program prepares a login record, filling in the user name, password, and any
other information required to connect to the DBMS.

 2. The program calls dbopen() to establish a connection to the DBMS. A connection
must exist before the program can send SQL statements to SQL Server.

Function Description

Database connection/disconnection

dblogin() Provides a data structure for login information

dbopen() Opens a connection to SQL Server

dbuse() Establishes the default database

dbexit() Closes a connection to SQL Server

Basic statement processing

dbcmd() Passes SQL statement text to dblib

dbsqlexec() Requests execution of a statement batch

dbresults() Obtains results of next SQL statement in a batch

dbcancel() Cancels the remainder of a statement batch

Error handling

dbmsghandle() Establishes a user-written message-handler procedure

dberrhandle() Establishes a user-written error-handler procedure

Query results processing

dbbind() Binds a query results column to a program variable

dbnextrow() Fetches the next row of query results

dbnumcols() Obtains the number of columns of query results

dbcolname() Obtains the name of a query results column

dbcoltype() Obtains the data type of a query results column

dbcollen() Obtains the maximum length of a query results column

dbdata() Obtains a pointer to a retrieved data value

dbdatlen() Obtains the actual length of a retrieved data value

dbcanquery() Cancels a query before all rows are fetched

TABLE 19-1 Basic dblib API Functions

 C h a p t e r 1 9 : S Q L A P I s 525
PART V

 C h a p t e r 1 9 : S Q L A P I s 525

main()

{

LOGINREC *loginrec; /* data structure for login information */

DBPROCESS *dbproc; /* data structure for connection */

char amount_str[31]; /* amount entered by user (as a string) */

int status; /* dblib call return status */

/* Get a login structure and set user name & password */

loginrec = dblogin();

DBSETLUSER(loginrec, "scott");

DBSETLPWD (loginrec, "tiger");

/* Connect to SQL Server */

dbproc = dbopen(loginrec, "");

/* Prompt the user for the amount of quota increase/decrease */

printf("Raise/lower by how much: ");

gets(amount_str);

/* Pass SQL statement to dblib */

dbcmd(dbproc, "update salesreps set quota = quota +");

dbcmd(dbproc, amount_str);

dbsqlexec(dbproc);

/* Get results of statement execution */

status = dbresults(dbproc);

if (status != SUCCEED)

printf("Error during update.\n");

else

printf("Update successful.\n");

/* Break connection to SQL Server */

dbexit(dbproc);

exit();

1

2

3

4

/* Ask SQL Server to execute the statement */

5

6

FIGURE 19-3 A simple program using dblib

 526 P a r t V : P r o g r a m m i n g w i t h S Q L 526 P a r t V : P r o g r a m m i n g w i t h S Q L

 3. The program builds a SQL statement in a buffer and calls dbcmd() to pass the SQL
text to dblib. Successive calls to dbcmd() add to the previously passed text; there
is no requirement that a complete SQL statement be sent in a single dbcmd() call.

 4. The program calls dbsqlexec(), instructing SQL Server to execute the statement
previously passed with dbcmd().

 5. The program calls dbresults() to determine the success or failure of the
statement.

 6. The program calls dbexit() to close down the connection to SQL Server.

main()

{

exec sql include sqlca;

exec sql begin declare section;

float amount; /* amount (from user) */

exec sql end declare section;

/* Prompt the user for the amount of quota increase/decrease */

printf("Raise/lower quotas by how much:");

scanf("%f", &amount);

/* Update the QUOTA column in the SALESREPS table */

exec sql update salesreps

set quota = quota + :amount;

/* Check results of statement execution */

if (sqlqa.sqlcode != 0)

printf("Error during update.\n");

else

printf("Update successful.\n");

exit();

}

FIGURE 19-4 The same program in Figure 19-3 using embedded SQL (from Figure 17-17)

 C h a p t e r 1 9 : S Q L A P I s 527
PART V

 C h a p t e r 1 9 : S Q L A P I s 527

It’s instructive to compare the programs in Figure 19-3 and Figure 19-4 to see the
differences between the dblib approach and the embedded SQL:

• The embedded SQL program either implicitly connects to the only available
database (as in DB2), or it includes an embedded SQL statement for connection
(such as the CONNECT statement specified by the SQL standard). The dblib
program connects to a particular SQL Server with the dbopen() call.

• The actual SQL UPDATE statement processed by the DBMS is identical in both
programs. With embedded SQL, the statement is part of the program’s source code.
With dblib, the statement is passed to the API as a sequence of one or more
character strings. In fact, the dblib approach more closely resembles the dynamic
SQL EXECUTE IMMEDIATE statement than it does static SQL.

• In the embedded SQL program, host variables provide the link between the SQL
statements and the values of program variables. With dblib, the program passes
variable values to the DBMS in the same way that it passes program text—as part of
a SQL statement string.

• With embedded SQL, errors are returned in the SQLCODE or SQLSTATE field of the
SQLCA structure. With dblib, the dbresults() call retrieves the status of each
SQL statement.

Overall, the embedded SQL program in Figure 19-4 is shorter and probably easier to
read. However, the program is neither purely C nor purely SQL, and a programmer must be
trained in the use of embedded SQL to understand it. The use of host variables means that
the interactive and embedded forms of the SQL statement are different. In addition, the
embedded SQL program must be processed both by the SQL precompiler and by the C
compiler, lengthening the compilation cycle. In contrast, the SQL Server program is a plain-
vanilla C program, directly acceptable to the C compiler, and does not require special
coding techniques.

Statement Batches
The program in Figure 19-3 sends a single SQL statement to SQL Server and checks its status.
If an application program must execute several SQL statements, it can repeat the dbcmd() /
dbsqlexec() / dbresults() cycle for each statement. Alternatively, the program can
send several statements as a single statement batch to be executed by SQL Server.

Figure 19-5 shows a program that uses a batch of three SQL statements. As in Figure 19-3,
the program calls dbcmd() to pass SQL text to dblib. The API simply concatenates the text
from each call. Note that it’s the program’s responsibility to include any required spaces or
punctuation in the passed text. SQL Server does not begin executing the statements until the
program calls dbsqlexec(). In this example, three statements have been sent to SQL Server,
so the program calls dbresults() three times in succession. Each call to dbresults()
advances the API to the results of the next statement in the batch and tells the program whether
the statement succeeded or failed.

In the program shown in Figure 19-5, the programmer knows in advance that three
statements are in the batch, and the programmer can code three corresponding calls to
dbresults(). If the number of statements in the batch is not known in advance, the
program can call dbresults() repeatedly until it receives the error code NO_MORE_
RESULTS. The program excerpt in Figure 19-6 illustrates this technique.

 528 P a r t V : P r o g r a m m i n g w i t h S Q L 528 P a r t V : P r o g r a m m i n g w i t h S Q L

Error Handling
The value returned by the dbresults() function tells the program whether the
corresponding statement in the statement batch succeeded or failed. To get more detailed
information about a failure, your program must provide its own message-handling function.
The dblib software automatically calls the message-handling function when SQL Server
encounters an error while executing SQL statements. Note that dblib calls the message-
handling function during its processing of the dbsqlexec() or dbresults() function
calls, before it returns to your program (i.e., it is a callback function, called back by the SQL
Server software). This allows the message-handling function to do its own error processing.

FIGURE 19-5 Using a dblib statement batch

main()

{

LOGINREC *loginrec; /* data structure for login information */

DBPROCESS *dbproc; /* data structure for connection */

.

.

.

/* Delete salespeople with low sales */

dbcmd(dbproc, "delete from salesreps where sales < 10000.00");

/* Increase quota for salespeople with moderate sales */

dbcmd(dbproc, "update salesreps set quota = quota + 10000.00");

dbcmd(dbproc, "where sales <= 150000.00");

/* Increase quota for salespeople with high sales */

dbcmd(dbproc, "update salesreps set quota = quota + 20000.00");

dbcmd(dbproc, "where sales > 150000.00");

/* Ask SQL Server to execute the statement batch */

dbsqlexec(dbproc);

/* Check results of each of the three statements */

if (dbresults(dbproc) != SUCCEED) goto do_error;

if (dbresults(dbproc) != SUCCEED) goto do_error;

if (dbresults(dbproc) != SUCCEED) goto do_error;

.

.

.

}

 C h a p t e r 1 9 : S Q L A P I s 529
PART V

 C h a p t e r 1 9 : S Q L A P I s 529

Figure 19-7 shows an excerpt from a SQL Server program that includes a message-
handling function called msg_rtn(). When the program begins, it activates the message-
handling function by calling dberrhandle(). Suppose an error occurs later, while SQL
Server is processing the DELETE statement. When the program calls dbsqlexec() or
dbresults(), and dblib receives the error message from SQL Server, it calls the msg_
rtn() routine in the program, passing it five parameters:

• dbproc The connection on which the error occurred

• msgno The SQL Server error number identifying the error

• msgstate A parameter providing information about the error context

• severity A number indicating the seriousness of the error

• msgtext An error message corresponding to msgno

The msg_rtn() function in this program handles the message by printing it and saving
the error number in a program variable for use later in the program. When the message-
handling function returns to dblib (which called it), dblib completes its own processing
and then returns to the program with a FAIL status. The program can detect this return
value and perform further error processing, if appropriate.

FIGURE 19-6
Processing the
results of a dblib
statement batch

.

/* Execute statements previously with dbcmd() calls */

.

.

.

.

.

dbsqlexec(dbproc);

/* Loop checking results of each statement in the batch */

while (status = dbresults(dbproc) != NO_MORE_RESULTS) {

if (status == FAIL)

goto handle_error;

else

printf("Statement succeeded.\n");

}

/* Done with loop; batch completed successfully */

printf("Batch complete.\n");

exit();

 530 P a r t V : P r o g r a m m i n g w i t h S Q L 530 P a r t V : P r o g r a m m i n g w i t h S Q L

/* External variables to hold error information */

int errcode; /* saved error code */

char errmsg[256]; /* saved error message */

/* Define our own message-handling function */

int msg_rtn(dbproc, msgno, msgstate, severity, msgtext)

DBPROCESS *dbproc;

DBINT msgno;

int msgstate;

int severity;

char *msgtext;

extern int errcode;

extern char *errmsg;

{

/* Print out the error number and message */

printf("*** Error: %d Message: %s\n", msgno, msgtext);

/* Save the error information for the application program */

errcode = msgno;

strcpy(errmsg, msgtext);

/* Return to dlib to complete the API call */

return(0);

}

main()

{

DBPROCESS
.
.
.

.

.

.

.

.

.

.

.

.

dbproc; / data structure for connection */

/* Install our own error handling function */

dberrhandle(msg_rtn)

/* Execute a DELETE statement */

dbcmd(dbproc, "delete from salesreps where quota < 100000.00");

dbsqlexec(dbproc);

dbresults(dbproc);

FIGURE 19-7 Error handling in a dblib program

 C h a p t e r 1 9 : S Q L A P I s 531
PART V

 C h a p t e r 1 9 : S Q L A P I s 531

The program excerpt in the figure actually presents a simplified view of SQL Server
error handling. In addition to SQL statement errors detected by SQL Server, errors can also
occur within the dblib API itself. For example, if the network connection to the SQL Server
is lost, a dblib call may time out waiting for a response from SQL Server, resulting in an
error. The API handles these errors by calling a separate error-handling function, which
operates much like the message-handling function described here.

A comparison of Figure 19-7 with Figures 17-10 and 17-14, reproduced here as
Figures 19-8 and 19-9 respectively, illustrates the differences in error-handling techniques
between dblib and embedded SQL:

• In embedded SQL, the SQLCA structure is used to signal errors and warnings to the
program. SQL Server communicates errors and warnings by calling special
functions within the application program and returning a failure status for the API
function that encountered the error.

• In embedded SQL, error processing is synchronous. The embedded SQL statement
fails, control returns to the program, and the SQLCODE or SQLSTATE value is tested.
SQL Server error processing is asynchronous. When an API call fails, SQL Server
calls the application program’s error-handling or message-handling function during
the API call. It returns to the application program with an error status later.

• Embedded SQL has only a single type of error and a single mechanism for reporting
it. The SQL Server scheme has two types of errors and two parallel mechanisms.

In summary, error handling in embedded SQL is simple and straightforward, but the
application program can make only a limited number of responses when an error occurs. A
SQL Server program has more flexibility in handling errors. However, the call scheme used
by dblib is more sophisticated, and while it is familiar to systems programmers, it may be
unfamiliar to application programmers.

.

.

.

.

.

.

.

.

.

exec sql delete from salesreps

where quota < 150000;

if (sqlca.sqlcode < 0)

goto error_routine;

error_routine:

printf("SQL error: %ld\n, sqlca.sqlcode);

exit();

FIGURE 19-8
A C embedded SQL
program excerpt
with SQLCODE
error checking
(from Figure 17-10)

 532 P a r t V : P r o g r a m m i n g w i t h S Q L 532 P a r t V : P r o g r a m m i n g w i t h S Q L

SQL Server Queries
The SQL Server technique for handling programmatic queries is very similar to its
technique for handling other SQL statements. To perform a query, a program sends a
SELECT statement to SQL Server and uses dblib to retrieve the query results row by row.
The program in Figure 19-10 illustrates the SQL Server query-processing technique.

 1. The program uses the dbcmd() and dbsqlexec() calls to pass a SELECT
statement to SQL Server and request its execution.

 2. When the program calls dbresults() for the SELECT statement, dblib returns
the completion status for the query and also makes the query results available for
processing.

.

.

.

.

.

.

.

.

.

/* execute the DELETE statement & check for errors */

exec sql delete from salesreps

where quota < 150000;

if (strcmp(sqlca.sqlstate,"00000"))

goto error_routine;

/* DELETE successful; check how many rows deleted */

exec sql get diagnostics :numrows = ROW_COUNT;

printf("%ld rows deleted\n",numrows);

error_routine:

/* Determine how many errors reported */

exec sql get diagnostics :count = NUMBER;

for (i=1; i<count; i++) {

exec sql get diagnostics EXCEPTION :I

:err = RETURNED_SQLSTATE,

:msg = MESSAGE_TEXT;

printf("SQL error # %d: code: %s message: %s\n",

I, err, msg);

}

exit();

FIGURE 19-9
A C embedded SQL
program excerpt
with GET
DIAGNOSTICS
error checking
(from Figure 17-14)

 C h a p t e r 1 9 : S Q L A P I s 533
PART V

 C h a p t e r 1 9 : S Q L A P I s 533

 3. The program calls dbbind() once for each column of query results, telling dblib
where it should return the data for that particular column. The arguments to
dbbind() indicate the column number, the expected data type, the size of the
buffer, and the buffer to receive its data.

 4. The program loops, calling dbnextrow() repeatedly to obtain the rows of query
results. The API places the returned data into the data areas indicated in the
previous dbbind() calls.

 5. When no more rows of query results are available, the dbnextrow() call returns
the value NO_MORE_ROWS. If more statements were in the statement batch following
the SELECT statement, the program could call dbresults() to advance to the next
statement.

Two of the dblib calls in Figure 19-10, dbbind() and dbnextrow(), support
processing of the SQL Server query results. The dbbind() call sets up a one-to-one
correspondence between each column of query results and the program variable that is to
receive the retrieved data. This process is called binding the column. In the figure, the first
column (NAME) is bound to a 16-byte character array and will be returned as a NULL-
terminated string. The second and third columns, QUOTA and SALES, are both bound to
floating point numbers. It is the programmer’s responsibility to make sure that the data
type of each column of query results is compatible with the data type of the program
variable to which it is bound.

Once again, it is useful to compare the SQL Server query processing in Figure 19-10 with
the embedded SQL queries in Figure 17-20 and Figure 17-23, reproduced here as Figures 19-11
and 19-12, respectively:

• Embedded SQL has two different query-processing techniques—one for single-row
queries (singleton SELECT) and one for multirow queries (cursors). The dblib API
uses a single technique, regardless of the number of rows of query results.

• To specify the query, embedded SQL replaces the interactive SELECT statement with
the singleton SELECT statement or the DECLARE CURSOR statement. With SQL
Server, the SELECT statement sent by the program is identical to the interactive
SELECT statement for the query.

• With embedded SQL, the host variables that receive the query results are named in
the INTO clause of the singleton SELECT or the FETCH statement. With SQL Server,
the variables to receive query results are specified in the dbbind() calls.

• With embedded SQL, row-by-row access to query results is provided by special-
purpose embedded SQL statements (OPEN, FETCH, and CLOSE). With SQL Server,
access to query results is through dblib function calls (dbresults() and
dbnextrow()), which keep the SQL language itself more streamlined.

Because of its relative simplicity and its similarity to the interactive SQL interface,
many programmers find the SQL Server interface easier to use for query processing than
the embedded SQL interface.

 534 P a r t V : P r o g r a m m i n g w i t h S Q L 534 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 19-10 Retrieving query results using dblib

main()

{

LOGINREC *loginrec; /* data structure for login information */

DBPROCESS *dbproc; /* data structure for connection */

char repname[16]; /* retrieved city for the office */

short repquota; /* retrieved employee number of mgr */

float repsales; /* retrieved sales for office */

/* Open a connection to SQL Server */

loginrec = dblogin();

DBSETLUSER(loginrec, "scott");

DBSETLPWD (loginrec, "tiger");

dbproc = dbopen(loginrec, "");

/* Pass query to dblib and ask SQL Server to execute it */

dbcmd(dbproc, "select name, quota, sales from salesreps ");

dbcmd(dbproc, "where sales > quota order by name ");

dbsqlexec(dbproc);

/* Get first statement in the batch */

dbresults(dbproc);

/* Bind each column to a variable in this program */

dbbind(dbproc, 1, NTBSTRINGBIND, 16, &repname);

dbbind(dbproc, 2, FLT4BIND, 0, &repquota);

dbbind(dbproc, 3, FLT4BIND, 0, &repsales);

/* Loop retrieving rows of query results */

while (status = dbnextrow(dbproc) == SUCCEED) {

/* Print data for this salesperson */

printf(“Name: %s\n”, repname);

printf(“Quota: %f\n\n”, repquota);

printf(“Sales: %f\n”, repsales);

}

/* Check for errors and close connection */

if (status == FAIL) {

printf(“SQL error.\n”);

dbexit(dbproc);

exit();

}

1

2

3

4

5

 C h a p t e r 1 9 : S Q L A P I s 535
PART V

 C h a p t e r 1 9 : S Q L A P I s 535

Retrieving NULL Values
The dbnextrow() and dbbind() calls shown in Figure 19-10 provide a simple way to
retrieve query results, but they do not support NULL values. When a row retrieved by
dbnextrow() includes a column with a NULL value, SQL Server replaces the NULL with a
NULL substitution value. By default, SQL Server uses zero as a substitution value for
numeric data types, a string of blanks for fixed-length strings, and an empty string for
variable-length strings. The application program can change the default value for any data
type by calling the API function dbsetnull().

FIGURE 19-11 Embedded SQL singleton SELECT statement (from Figure 17-20)

main()

{

exec sql begin declare section;

int repnum; /* employee number (from user) */

char repname[16]; /* retrieved salesperson name */

float repquota; /* retrieved quota */

float repsales; /* retrieved sales */

exec sql end declare section;

/* Prompt the user for the employee number */

printf("Enter salesrep number: ");

scanf("%d", &repnum);

/* Execute the SQL query */

exec sql select name, quota, sales

from salesreps

where empl_num = :repnum

into :repname, :repquota, :repsales;

/* Display the retrieved data */

if (sqlca.sqlcode = = 0) {

printf("Name: %s\n", repname);

printf("Quota: %f\n", repquota);

printf("Sales: %f\n", repsales);

}

else if (sqlca.sqlcode = = 100)

printf("No salesperson with that employee number.\n");

else

printf("SQL error: %ld\n", sqlca.sqlcode);

exit();

}

 536 P a r t V : P r o g r a m m i n g w i t h S Q L 536 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 19-12
Embedded SQL
multirow query
processing (from
Figure 17-23)

main()

{

exec sql include sqlca;

exec sql begin declare section;

char repname[16]; /* retrieved salesperson name */

float repquota; /* retrieved quota */

float repsales; /* retrieved sales */

short repquota_ind; /* null quota indicator */

exec sql end declare section;

/* Declare the cursor for the query */

exec sql declare repcurs cursor for

select name, quota, sales

from salesreps

where sales > quota

order by name;

/* Set up error processing */

whenever sqlerror goto error;

whenever not found goto done;

/* Open the cursor to start the query */

exec sql open repcurs;

/* Loop through each row of query results */

for (;;) {

/* Fetch the next row of query results */

exec sql fetch repcurs

into :repname, :repquota, :repquota_ind, :repsales;

/* Display the retrieved data */

printf("Name: %s\n", repname);

if (repquota_ind < 0)

printf("Quota is NULL\n");

else

printf("Quota: %f\n", repquota);

printf("Sales: %f\n", repsales);

}

error:

printf("SQL error: %ld\n", sqlca.sqlcode);

exit();

done:

/* Query complete; close the cursor */

exec sql close repcurs;

exit();

}

4

3

2

1

 C h a p t e r 1 9 : S Q L A P I s 537
PART V

 C h a p t e r 1 9 : S Q L A P I s 537

In the program shown in Figure 19-10, if one of the salesreps had a NULL value in his or
her QUOTA column, the dbnextrow() call for that salesrep would retrieve a zero into the
repquota variable. Note that the program cannot tell from the retrieved data whether the
QUOTA column for the row really has a zero value, or whether it is NULL. In some
applications, the use of substitution values is acceptable, but in others, it is important to be
able to detect NULL values. These latter applications must use an alternative scheme for
retrieving query results, described in the next section.

Retrieval Using Pointers
With the basic SQL Server data retrieval technique, the dbnextrow() call copies the data
value for each column into one of your program’s variables. If there are many rows of query
results or many long columns of text data, copying the data into your program’s data areas
can create significant overhead. In addition, the dbnextrow() call lacks a mechanism for
returning NULL values to your program.

To solve these two problems, dblib offers an alternate method of retrieving query
results. Figure 19-13 shows the program excerpt from Figure 19-10, rewritten to use this
alternate method:

 1. The program sends the query to SQL Server and uses dbresults() to access the
results, as it does for any SQL statement. However, the program does not call
dbbind() to bind the columns of query results to program variables.

 2. The program calls dbnextrow() to advance, row by row, through the query
results.

 3. For each column of each row, the program calls dbdata() to obtain a pointer to the
data value for the column. The pointer points to a location within dblib’s internal
buffers.

 4. If a column contains variable-length data, such as a VARCHAR data item, the
program calls dbdatlen() to find the length of the data item.

 5. If a column has a NULL value, the dbdata() function returns a null pointer (0), and
dbdatlen() returns 0 as the length of the item. These return values give the
program a way to detect and respond to NULL values in the query results.

The program in Figure 19-13 is more cumbersome than the one in Figure 19-10. In
general, it’s easier to use the dbbind() function than the dbdata() approach, unless your
program needs to handle NULL values or will be handling a large volume of query results.

Random Row Retrieval
A program normally processes SQL Server query results by moving through them
sequentially using the dbnextrow() call. For browsing applications, dblib also provides
limited random access to the rows of query results. Your program must explicitly enable
random row access by turning on a dblib option. The dbgetrow() call can then be used
to retrieve a row by its row number.

To support random row retrieval, dblib stores the rows of query results in an internal
buffer. If the query results fit entirely within the dblib buffer, dbgetrow() supports
random retrieval of any row. If the query results exceed the size of the buffer, only the initial
rows of query results are stored. The program can randomly retrieve these rows, but a

 538 P a r t V : P r o g r a m m i n g w i t h S Q L 538 P a r t V : P r o g r a m m i n g w i t h S Q L

main()

{

LOGINREC *loginrec; /* data structure for login information */

char *namep; /* pointer to NAME column data */

int namelen; /* length of NAME column data */

float *quotap; /* pointer to QUOTA column data */

float *salesp; /* pointer to SALES column data */

/* Open a connection to SQL Server */

loginrec = dblogin();

DBSETLUSER(loginrec, "scott");

DBSETLPWD (loginrec, "tiger");

dbproc = dbopen(loginrec, "");

/* Pass query to dblib and ask SQL Server to execute it */

dbcmd(dbproc, "select name, quota, sales from salesreps ");

dbcmd(dbproc, "where sales > quota order by name ");

dbsqlexec(dbproc);

/* Get to first statement in the batch */

dbresults(dbproc);

/* Retrieve the single row of query results */

while (status = dbnextrow(dbproc) == SUCCEED) {

/* Get the address of each data item in this row */

namep = dbdata(dbproc, 1);

quotap = dbdata(dbproc, 2);

salesp = dbdata(dbproc, 3);

namelen = dbdatlen(dbproc, 1);

/* Copy NAME value into our own buffer & null-terminate it */

strncpy(namebuf, namep, namelen);

*(namebuf + namelen) = (char) 0;

/* Print data for this salesperson */

printf("Name: %s\n", namebuf);

if (quotap == 0)

printf("Quota is NULL.\n");

else

printf("Quota: %f\n", *quotap);

printf("Sales: %f\n", *salesp);

}

/* Check for successful completion */

if (status == FAIL)

printf("SQL error.\n");

dbexit(dbproc);

exit();

}

char *namebuf; /* buffer to hold name */

1

2

3

4

5

FIGURE 19-13
Retrieval using the
dbdata()
function

 C h a p t e r 1 9 : S Q L A P I s 539
PART V

 C h a p t e r 1 9 : S Q L A P I s 539

dbnextrow() call that attempts to retrieve a row past the end of the buffer returns the
special BUF_FULL error condition. The program must then discard some of the saved rows
from the buffer, using the dbclrbuf() call, to make room for the new row. Once the rows
are discarded, they cannot be re-retrieved with the dbgetrow() function. Thus, dblib
supports random retrieval of query results within a limited window, dictated by the size of
the row buffer, as shown in Figure 19-14. Your program can specify the size of the dblib
row buffer by calling the dblib routine dbsetopt().

The random access provided by dbgetrow() is similar to the scroll cursors supported
by several DBMS products and specified by the SQL standard. In both cases, random
retrieval by row number is supported. However, a scroll cursor is a true pointer into the
entire set of query results; it can range from the first to the last row, even if the query results
contain thousands of rows. By contrast, the dbgetrow() function provides random access
only within a limited window. This is adequate for limited browsing applications, but
cannot easily be extended to large queries.

Positioned Updates
In an embedded SQL program, a cursor provides a direct, intimate link between the
program and the DBMS query processing. The program communicates with the DBMS
row by row as it uses the FETCH statement to retrieve query results. If the query is a simple
single-table query, the DBMS can maintain a direct correspondence between the current row
of query results and the corresponding row within the database. Using this correspondence,
the program can use the positioned update statements (UPDATE…WHERE CURRENT OF and
DELETE…WHERE CURRENT OF) to modify or delete the current row of query results.

SQL Server query processing uses a much more detached, asynchronous connection
between the program and the DBMS. In response to a statement batch containing one or
more SELECT statements, SQL Server sends the query results back to the dblib software,
which manages them. Row-by-row retrieval is handled by the dblib API calls, not by SQL
statements. As a result, early versions of SQL Server could not support positioned updates,
because its notion of a current row applied to query results within the dblib API, not to
rows of the actual database tables.

FIGURE 19-14
Random row
retrieval dblib

 540 P a r t V : P r o g r a m m i n g w i t h S Q L 540 P a r t V : P r o g r a m m i n g w i t h S Q L

Later versions of SQL Server (and Sybase) added complete support for standard SQL
cursors, with their associated DECLARE/OPEN/FETCH/CLOSE SQL statements. SQL Server
and Sybase cursors actually operate within Transact-SQL stored procedures, and the action
of the FETCH statement is to fetch data from the database into the stored procedure for
processing—not to actually retrieve it into the application program that called the stored
procedure. Stored procedures and their operation within various popular SQL DBMS
products are discussed in Chapter 20.

Dynamic Queries
In the program examples thus far in this chapter, the queries to be performed were known
in advance. The columns of query results could be bound to program variables by explicit
dbbind() calls hard-coded in the program. Most programs that use SQL Server can be
written using this technique. (This static column binding corresponds to the fixed list of
host variables used in the static SQL FETCH statement in standard embedded SQL,
described in Chapter 17.)

If the query to be carried out by a program is not known at the time the program is
written, the program cannot include hard-coded dbbind() calls. Instead, the program must
ask dblib for a description of each column of query results, using special API functions.
The program can then bind the columns on the fly to data areas that it allocates at runtime.
(This dynamic column binding corresponds to the use of the dynamic SQL DBNUMCOLS()
statement and SQLDA, in dynamic embedded SQL, as described in Chapter 18.)

Figure 19-15 shows an interactive query program that illustrates the dblib technique
for handling dynamic queries. The program accepts a table name entered by the user and
then prompts the user to choose which columns are to be retrieved from the table. As the
user selects the columns, the program constructs a SELECT statement and then uses these
steps to execute the SELECT statement and display the data from the selected columns:

 1. The program passes the generated SELECT statement to SQL Server using the
dbcmd() call, requests its execution with the dbsqlexec() call, and calls
dbresults() to advance the API to the query results, as it does for all queries.

 2. The program calls dbnumcols() to find out how many columns of query results
were produced by the SELECT statement.

 3. For each column, the program calls dbcolname() to find out the name of the
column, and calls dbcoltype() to find out its data type.

 4. The program allocates a buffer to receive each column of query results and calls
dbbind() to bind each column to its buffer.

 5. When all columns have been bound, the program calls dbnextrow() repeatedly to
retrieve each row of query results.

 C h a p t e r 1 9 : S Q L A P I s 541
PART V

 C h a p t e r 1 9 : S Q L A P I s 541

main()

{

/* This is a simple general-purpose query program. It prompts

the user for a table name and then asks the user which columns

of the table are to be included in the query. After the user's

selections are complete, the program runs the requested query and

displays the results.

*/

LOGINREC *loginrec; /* data structure for login information */

DBPROCESS *dbproc; /* data structure for connection */

char stmbuf[2001]; /* SQL text to be executed */

char querytbl[32]; /* user-specified table */

char querycol[32]; /* user-specified column */

int status; /* dblib return status */

int first_col = 0; /* is this the first column chosen? */

int colcount; /* number of columns of query results */

int i; /* index for columns */

char inbuf[101]; /* input entered by user */

char *item_name[100]; /* array to track column names */

char *item_data[100]; /* array to track column buffers */

int item_type[100]; /* array to track column data types */

char *address; /* address of buffer for current column */

int length; /* length of buffer for current column */

/* Open a connection to SQL Server */

loginrec = dblogin();

DBSETLUSER(loginrec, "scott");

DBSETLPWD (loginrec, "tiger");

dbproc = dbopen(loginrec,);""

/* Prompt the user for which table to query */

printf("*** Mini-Query Program ***\n");

printf("Enter name of table for query: ");

gets(querytbl);

/* Start the SELECT statement in the buffer */

strcpy(stmbuf, "select ");

FIGURE 19-15 Using dblib for a dynamic query (continued)

 542 P a r t V : P r o g r a m m i n g w i t h S Q L 542 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Query the SQL Server system catalog to get column names */

dbcmd(dbproc, "select name from syscolumns ");

dbcmd(dbproc, "where id = (select id from sysobjects ");

dbcmd(dbproc, "where type = 'U' and name = ");

dbcmd(dbproc, querytbl);

dbcmd(dbproc, ")");

dbsqlexec(dbproc);

/* Process the results of the query */

dbresults(dbproc);

dbbind(dbproc, querycol);

while (status = dbnextrow(dbproc) == SUCCEED) {

printf("Include column %s (y/n)? ", querycol);

gets(inbuf);

if (inbuf[0] == 'y') {

/* User wants the column; add it to the select list */

if (first_col++ > 0) strcat(stmbuf, ", ");
strcat(stmbuf, querycol);

}

}

/* Finish the SELECT statement with a FROM clause */

strcat(stmbuf, "from ");

strcat(stmbuf, querytbl);

/* Execute the query and advance to the query results */

dbcmd(dbproc, stmbuf);

dbsqlexec(dbproc);

dbresults(dbproc);

/* Ask dblib to describe each column, allocate memory, and bind it */

colcount = dbnumcols(dbproc);

for (i = 0; i < colcount; i++) {

item_name[i] = dbcolname(dbproc, i);

type = dbcoltype(dbproc, i);

switch(type) {

1

2

3

FIGURE 19-15 Using dblib for a dynamic query

 C h a p t e r 1 9 : S Q L A P I s 543
PART V

 C h a p t e r 1 9 : S Q L A P I s 543

case SQLCHAR:

case SQLTEXT:

case SQLDATETIME:

length = dbcollen(dbproc, i) + 1;

item_data[i] = address = malloc(length);

item_type[i] = NTBSTRINGBIND;

dbbind(dbproc, i, NTBSTRINGBIND, length, address);

break;

case SQLINT1:

case SQLINT2:

case SQLINT4:

item_data[i] = address = malloc(sizeof(long)):

item_type[i] = INTBIND;

dbbind(dbproc, i, INTBIND, sizeof(long), address);

break;

case SQLFLT8:

case SQLMONEY:

item_data[i] = address = malloc(sizeof(double));

item_type[i] = FLT8BIND;

dbbind(dbproc, i, FLT8BIND, sizeof(double), address);

break;

}

}

/* Fetch and display the rows of query results */

while (status = dbnextrow(dbproc) == SUCCEED) {

/* Loop, printing data for each column of the row */

printf("\n");

for (i = 0; i < colcount; i++) {

/* Find the SQLVAR for this column; print column label */

printf("Column # %d (%s): ", i+1, item_name[i];

/* Handle each data type separately */

switch(item_type[i]) {

4

5

FIGURE 19-15 Using dblib for a dynamic query (continued)

 544 P a r t V : P r o g r a m m i n g w i t h S Q L 544 P a r t V : P r o g r a m m i n g w i t h S Q L

The dblib-based program in Figure 19-15 performs exactly the same function as the
dynamic embedded SQL program in Figure 18-9, reproduced here as Figure 19-16. It’s
instructive to compare the two programs and the techniques they use:

• For both embedded SQL and dblib, the program builds a SELECT statement in its
buffers and submits it to the DBMS for processing. With dynamic SQL, the special
PREPARE statement handles this task; with the SQL Server API, the standard
dbcmd() and dbsqlexec() functions are used.

• For both interfaces, the program must request a description of the columns of query
results from the DBMS. With dynamic SQL, the special DBNUMCOLS() statement
handles this task, and the description is returned in a SQLDA data structure. With
dblib, the description is obtained by calling API functions. Note that the program
in Figure 19-15 maintains its own arrays to keep track of the column information.

FIGURE 19-15 Using dblib for a dynamic query (continued)

case NTBSTRINGBIND:

/* Text data — just display it */

puts(item_data[i]);

break;

case INTBIND:

/* Four-byte integer data — convert & display it */

printf("%lf", *((double *) (item_data[i])));

break;

case FLT8BIND:

/* Floating-point data — convert & display it */

printf("%lf", *((double *) (item_data[i])));

break;

}

}

}

printf("\nEnd of data.\n");

/* Clean up allocated storage */

for (i = 0; i < colcount; i++) {

free(item_data[i]);

}

dbexit(dbproc);

exit();

}

 C h a p t e r 1 9 : S Q L A P I s 545
PART V

 C h a p t e r 1 9 : S Q L A P I s 545

FIGURE 19-16 Using embedded SQL EXECUTE with a SQLDA (from Figure 18-9) (continued)

main()

{

/* This is a simple general-purpose query program. It prompts

the user for a table name, and then asks the user which

columns of the table are to be included in the query.

After the user's selections are complete, the program runs

the requested query and displays the results.

*/

exec sql include sqlca;

exec sql include sqlda;

exec sql begin declare section;

char stmtbuf[2001]; /* SQL text to be executed */

char querytbl[32]; /* user-specified table */

char querycol[32]; /* user-specified column */

exec sql end declare section;

/* Cursor for system catalog query that retrieves column names */

exec sql declare tblcurs cursor for

select colname from system.syscolumns

where tblname = :querytbl and owner = user;

exec sql declare qrycurs cursor for querystmt;

/* Data structures for the program */

int colcount = 0; /* number of columns chosen */

struct sqlda *qry_da; /* allocated SQLDA for query */

struct sqlvar *qry_var; /* SQLVAR for current column */

int i; /* index for SQLVAR array in SQLDA */

char inbuf[101]; /* input entered by user */

/* Prompt the user for which table to query */

printf("*** Mini-Query Program ***\n\n")

printf("Enter name of table for query: ");

gets(querytbl);

1

 546 P a r t V : P r o g r a m m i n g w i t h S Q L 546 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Start the SELECT statement in the buffer */

strcpy(stmtbuf, "select ");

/* Set up error processing */

exec sql whenever sqlerror goto handle_error;

exec sql whenever not found goto no_more_columns;

/* Query the system catalog to get column names for the table */

exec sql open tblcurs;

for (; ;) {

/* Get name of next column and prompt the user */

exec sql fetch tblcurs into :querycol;

printf("Include column %s (y/n)? ", querycol);

gets(inbuf);

if (inbuf[0] == 'y') {

/* User wants the column; add it to the select list */

if (colcount++ > 0)

strcat(stmtbuf, ", ");

strcat(stmtbuf, querycol);

}

}

no_more_columns:

exec sql close tblcurs;

/* Finish the SELECT statement with a FROM clause */

strcat(stmtbuf, "from ");

strcat(stmtbuf, querytbl);

/* Allocate SQLDA for the dynamic query */

query_da = (SQLDA *)malloc(sizeof(SQLDA) + colcount * sizeof(SQLVAR));

query_da->sqln = colcount;

/* Prepare the query and ask the DBMS to describe it */

exec sql prepare querystmt from :stmtbuf;

exec sql describe querystmt into qry_da;

2

3

4

FIGURE 19-16 Using embedded SQL EXECUTE with a SQLDA (from Figure 18-9)

 C h a p t e r 1 9 : S Q L A P I s 547
PART V

 C h a p t e r 1 9 : S Q L A P I s 547

/* Loop through SQLVARs, allocating memory for each column */

for (i = 0; i < colcount; I++) {

qry_var = qry_da->sqlvar + I;

qry_var->sqldat = malloc(qry_var->sqllen);

qry_var->sqlind = malloc(sizeof(short));

}

/* SQLDA is all set; do the query and retrieve the results! */

exec sql open qrycurs;

exec sql whenever not found goto no_more_data;

for (; ;) {

/* Fetch the row of data into our buffers */

exec sql fetch sqlcurs using descriptor qry_da;

printf("\n");

/* Loop printing data for each column of the row */

for (i = 0; i < colcount; I++) {

/* Find the SQLVAR for this column; print column label */

qry_var = qry_da->sqlvar + I;

printf(" Column # %d (%s): ", i+1, qry_var->sqlname);

/* Check indicator variable for NULL indication */

if (*(qry_var -> sqlind)) != 0) {

puts("is NULL!\n");

continue;

}

/* Actual data returned; handle each type separately */

switch (qry_var -> sqltype) {

case 448:

case 449:

/* VARCHAR data -– just display it */

puts(qry_var -> sqldata);

break;

case 496:

case 497:

5

6

7

FIGURE 19-16 Using embedded SQL EXECUTE with a SQLDA (from Figure 18-9) (continued)

 548 P a r t V : P r o g r a m m i n g w i t h S Q L 548 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Four-byte integer data -– convert & display it */

printf("%ld", *((int *) (qry_var->sqldata)));

break;

case 500:

case 501:

/* Two-byte integer data -– convert & display it */

printf("%d", *((short *)(qry_var->sqldata)));

break;

case 480:

case 481:

/* Floating-point data -– convert & display it */

printf("%lf", *((double *)(qry_var->sqldat)));

break;

}

}

}

no_more_data:

printf("\nEnd of data.\n");

/* Clean up allocated storage */

for (i = 0; i < colcount; I++) {

qry_var = qry_da->sqlvar + I;

free(qry_var->sqldata);

free(qry_var->sqlind);

}

free(qry_da);

close qrycurs;

exit();

}

8

FIGURE 19-16 Using embedded SQL EXECUTE with a SQLDA (from Figure 18-9) (continued)

 C h a p t e r 1 9 : S Q L A P I s 549
PART V

 C h a p t e r 1 9 : S Q L A P I s 549

• For both interfaces, the program must allocate buffers to receive the query results
and must bind individual columns to those buffer locations. With dynamic SQL, the
program binds columns by placing the buffer addresses into the SQLVAR structures
in the SQLDA. With SQL Server, the program uses the dbbind() function to bind the
columns.

• For both interfaces, the query results are returned into the program’s buffers, row
by row. With dynamic SQL, the program retrieves a row of query results using a
special version of the FETCH statement that specifies the SQLDA. With SQL Server,
the program calls dbnextrow() to retrieve a row.

Overall, the strategy used to handle dynamic queries is very similar for both interfaces.
The dynamic SQL technique uses special statements and data structures that are unique to
dynamic SQL; they are quite different from the techniques used for static SQL queries. In
contrast, the dblib techniques for dynamic queries are basically the same as those used for
all other queries. The only added features are the dblib functions that return information
about the columns of query results. This tends to make the callable API approach easier to
understand for the less-experienced SQL programmer.

ODBC and the SQL/CLI Standard
Open Database Connectivity (ODBC) is a database-independent callable API suite originally
developed by Microsoft. Although Microsoft plays an important role as a database software
vendor, its development of ODBC was motivated even more by its role as a major operating
system developer. Microsoft wanted to make it easier for developers of Windows applications
to incorporate database access. But the large differences between the various database systems
and their APIs made this very difficult. If an application developer wanted a program to work
with several different DBMS brands, it had to provide a separate, specially written database
interface module (usually called a driver) for each one. Each application program that wanted
to provide access to multiple databases had to provide a set of drivers.

Microsoft’s solution to this problem was to create ODBC as a uniform, standardized
database access interface, and to incorporate it into the Windows operating system. For
application developers, ODBC eliminated the need to write custom database drivers. For
database vendors, ODBC provided a way to gain support from a broader range of
application programs.

The Call-Level Interface Standardization
ODBC would have been important even as a Microsoft-only standard. However, Microsoft
worked to make it a vendor-independent standard as well. A database vendor association
called the SQL Access Group was working on standardizing client/server protocols for remote
database access at about the same time as Microsoft’s original development of ODBC.
Microsoft persuaded the SQL Access Group to expand their focus and adopt ODBC as their
standard for vendor-independent database access. Management of the SQL Access Group
standard was eventually turned over to the European X/OPEN consortium, another standards
organization, as part of its overall standards for a Common Application Environment (CAE).

 550 P a r t V : P r o g r a m m i n g w i t h S Q L 550 P a r t V : P r o g r a m m i n g w i t h S Q L

With the growing popularity of call-level APIs for database access, the official SQL
standards groups eventually turned their attention to standardization of this aspect of SQL.
The X/OPEN standard (based on Microsoft’s earlier ODBC work) was taken as a starting
point and slightly modified to create an official ANSI/ISO standard. The resulting SQL/Call-
Level Interface (SQL/CLI) standard was published in 1995 as ANSI/ISO/IEC 9075-3-1995.
With a few modifications, SQL/CLI became Part 3 of the SQL:1999 standard and has been
carried forward with updates to all the subsequent versions of the ANSI/ISO standard.

Microsoft has evolved ODBC to conform to the official SQL/CLI standard. The CLI
standard roughly forms the core level of Microsoft’s ODBC 3 revision. Other, higher-level
capabilities of ODBC 3 go beyond the CLI specification to provide more API capability and
to deal with the specific problems of managing ODBC as part of the Windows operating
system. In practice, the core-level ODBC capabilities and the SQL/CLI specification form
the effective callable API standard.

Because of its substantial advantages for both application developers and database
vendors, ODBC/CLI has become a very widely supported standard. Virtually all SQL-
based database systems provide an ODBC/CLI interface as one of their supported
interfaces. Some DBMS brands have even adopted ODBC/CLI as their standard database
API. Thousands of application programs support ODBC/CLI, including all of the leading
programming tools packages, query- and forms-processing tools and report writers, and
popular productivity software such as spreadsheets and graphics programs.

The SQL/CLI standard includes about 40 different API calls, summarized in Table 19-2.
The calls provide a comprehensive facility for establishing connections to a database server,
executing SQL statements, retrieving and processing query results, and handling errors in
database processing. They provide all of the capabilities available through the standard’s
embedded SQL interface, including both static SQL and dynamic SQL capabilities.

The simple CLI program in Figure 19-17 repeats the program in Figure 19-3 and 19-9,
but it uses the CLI functions. It follows the sequence of steps used by most CLI-based
applications:

 1. The program connects to the CLI and allocates data structures for its use.

 2. It connects to a specific database server.

 3. The program builds SQL statements in its memory buffers.

 4. It makes CLI calls to request statement execution and check status.

 5. Upon successful completion, it makes a CLI call to commit the database transaction.

 6. It disconnects from the database and releases its data structures.

All of the CLI routines return a status code indicating either successful completion of
the routine or some type of error or warning about its execution. The values for the CLI
return status codes are summarized in Table 19-3. Some of the program examples in this
book omit the checking of return status codes to shorten the example and focus on the
specific features being illustrated. However, production programs that call CLI functions
should always check the return value to ensure that the function was completed
successfully. Symbolic constant names for the return status codes as well as many other
values, such as data type codes and statement-id codes, are typically defined in a header file
that is included at the beginning of a program that uses the CLI.

 C h a p t e r 1 9 : S Q L A P I s 551
PART V

 C h a p t e r 1 9 : S Q L A P I s 551

Function Description

Resource and connection management

SQLAllocHandle() Allocates resources for environment, connection, descriptor, or statement

SQLFreeHandle() Frees previously allocated resources

SQLAllocEnv() Allocates resources for a SQL environment

SQLFreeEnv() Frees resources for a SQL environment

SQLAllocConnect() Allocates resources for a database connection

SQLFreeConnect() Frees resources for a database connection

SQLAllocStmt() Allocates resources for a SQL statement

SQLFreeStmt() Frees resources for a SQL statement

SQLConnect() Establishes a database connection

SQLDisconnect() Ends an established database connection

Statement execution

SQLExecDirect() Directly executes a SQL statement

SQLPrepare() Prepares a SQL statement for subsequent execution

SQLExecute() Executes a previously prepared SQL statement

SQLRowCount() Gets number of rows affected by last SQL statement

Transaction management

SQLEndTran() Ends a SQL transaction

SQLCancel() Cancels execution of a SQL statement

Parameter handling

SQLBindParam() Binds program location to a parameter value

SQLParamData() Processes deferred parameter values

SQLPutData() Provides deferred parameter value or a portion of a character string value

Query results processing

SQLSetCursorName() Sets the name of a cursor

SQLGetCursorName() Obtains the name of a cursor

SQLFetch() Fetches a row of query results

SQLFetchScroll() Fetches a row of query results with scrolling

SQLCloseCursor() Closes an open cursor

SQLGetData() Obtains the value of a query results column

Query results description

SQLNumResultCols() Determines the number of query results columns

SQLDescribeCol() Describes a single query results column

TABLE 19-2 SQL/CLI API Functions (continued)

 552 P a r t V : P r o g r a m m i n g w i t h S Q L 552 P a r t V : P r o g r a m m i n g w i t h S Q L

CLI Structures
The CLI manages interactions between an application program and a supported database
through a hierarchy of concepts, reflected in a hierarchy of CLI data structures:

• SQL-environment The highest-level environment within which database access
takes place. The CLI uses the data structure associated with a SQL-environment to
keep track of the various application programs that are using it.

• SQL-connection A logical connection to a specific database server. Conceptually,
the CLI allows a single application program to connect to several different database
servers concurrently. Each connection has its own data structure, which the CLI uses
to track connection status.

• SQL-statement An individual SQL statement to be processed by a database server.
A statement may move through several stages of processing, as the DBMS prepares
(compiles) it, executes it, processes any errors, and in the case of queries, returns the
results to the application program. Conceptually, an application program may have
multiple SQL statements moving through these processing stages in parallel. Each
statement has its own data structure, which the CLI uses to track its progress.

Function Description

SQLColAttribute() Gets attribute of a query results column

SQLGetDescField() Gets value of a descriptor field

SQLSetDescField() Sets value of a descriptor field

SQLGetDescRec() Gets values from a descriptor record

SQLSetDescRec() Sets values in a descriptor record

SQLCopyDesc() Copies descriptor area values

Error handling

SQLError() Obtains error information

SQLGetDiagField() Gets value of a diagnostic record field

SQLGetDiagRec() Gets value of the diagnostic record

Attribute management

SQLSetEnvAttr() Sets attribute value for a SQL environment

SQLGetEnvAttr() Retrieves attribute value for a SQL environment

SQLSetStmtAttr() Sets descriptor area to be used for a SQL statement

SQLGetStmtAttr() Gets descriptor area for a SQL statement

Driver management

SQLDataSources() Gets a list of available SQL servers

SQLGetFunctions() Gets information about supported features of a SQL implementation

SQLGetInfo() Gets information about supported features of a SQL implementation

TABLE 19-2 SQL/CLI API Functions (continued)

 C h a p t e r 1 9 : S Q L A P I s 553
PART V

 C h a p t e r 1 9 : S Q L A P I s 553

/* Program to raise all quotas by a user-specified amount */

#include <sqlcli.h> /* header file with CLI definitions */

main()

{

SQLHENV env_hdl; /* SQL-environment handle */

SQLHDBC conn_hdl; /* connection handle */

SQLHSTMT stmt_hdl; /* statement handle */

SQLRETURN status; /* CLI routine return status */

char *svr_name = "demo"; /* server name */

char *user_name = "joe"; /* user name for connection */

char *user_pswd = "xyz"; /* user password for connection */

char amount_str[31]; /* amount entered by user */

char stmt_buf[128]; /* buffer for SQL statement */

/* Allocate handles for SQL environment, connection, statement */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt_hdl);

/* Connect to the database, passing server name, user, password */

/* SQL_NTS says NULL-terminated string instead of passing length */

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_pswd, SQL_NTS);

/* Prompt the user for the amount of quota increase/decrease */

printf("Raise/lower quotas by how much: ");

gets(amount_str);

/* Assemble UPDATE statement and ask DBMS to execute it */

strcpy(stmt_buf, "update salesreps set quota = quota + ");

strcat(stmt_buf, amount_str);

status = SQLExecDirect(stmt_hdl, stmt_buf, SQL_NTS);

if (status)

printf("Error during update\n");

else

printf("Update successful.\n");

/* Disconnect from database server */

SQLEndTran(SQL_HANDLE_ENV, env_hdl, SQL_COMMIT);

SQLDisconnect(conn_hdl);

/* Deallocate handles and exit */

SQLFreeHandle(SQL_HANDLE_STMT, stmt_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

}

/* Commit if successful; rollback if not */

{

SQLEndTran(SQL_HANDLE_ENV, env_hdl, SQL_ROLLBACK);

}

{

}

1

2

3

4

5

6

FIGURE 19-17 A simple program using SQL/CLI

 554 P a r t V : P r o g r a m m i n g w i t h S Q L 554 P a r t V : P r o g r a m m i n g w i t h S Q L

The CLI uses a technique commonly used by modern operating systems and library
packages to manage these conceptual entities. A symbolic pointer called a handle is
associated with the overall SQL environment, with a SQL connection to a specific database
server, and with the execution of a SQL statement. The handle identifies an area of memory
managed by the CLI itself. Some type of handle is passed as one of the parameters in every
CLI call. The CLI routines that manage handles are shown in Figure 19-18.

A handle is created (allocated) using the CLI SQLAllocHandle() routine. One of the
parameters of the routine tells the CLI which type of handle is to be allocated. Another
parameter returns the handle value to the application program. Once allocated, a handle is
passed to subsequent CLI routines to maintain a context for the CLI calls. In this way,
different threads of execution within a program or different concurrently running programs
(processes) can each establish their own connection to the CLI and can maintain their own
contexts, independent of one another. Handles also allow a single program to have multiple
CLI connections to different database servers, and to process more than one SQL statement
in parallel. When a handle is no longer needed, the application calls SQLFreeHandle() to
tell the CLI to release the resources it is using.

In addition to the general-purpose handle management routines, SQLAllocHandle()
and SQLFreeHandle(), the CLI specification includes separate routines to create and free
an environment, connection, or statement handle. These routines (SQLAllocEnv(),
SQLAllocStmt(), and so on) were a part of the original ODBC API and are still supported
in current ODBC implementations for backward compatibility. However, Microsoft has
indicated that the general handle-management routines are now the preferred ODBC
functions, and the specific routines may be dropped in future ODBC releases. For maximum
cross-platform portability, it’s best to use the general-purpose routines.

SQL-Environment
The SQL-environment is the highest-level context used by an application program in its
calls to the CLI. A single-threaded application typically has one SQL-environment for the
entire program. A multithreaded application may have one SQL-environment per thread or
one overall SQL-environment, depending on the architecture of the program. The CLI
conceptually permits multiple connections, possibly to several different database servers,
from within one SQL-environment. A specific CLI implementation for a specific DBMS may
or may not actually support multiple connections.

CLI Return Value Meaning

0 Statement completed successfully

1 Successful completion with warning

100 No data found (when retrieving query results)

99 Data needed (required dynamic parameter missing)

–1 Error during SQL statement execution

–2 Error—invalid handle supplied in call

TABLE 19-3 CLI Return Status Codes

 C h a p t e r 1 9 : S Q L A P I s 555
PART V

 C h a p t e r 1 9 : S Q L A P I s 555

/* Allocate a handle for use in subsequent CLI calls */

short SQLAllocHandle (

SQLSMALLINT HdlType, /* IN: integer handle type code */

SQLINTEGER inHdl, /* IN: environment or conn handle */

rtnHdl) / OUT: returned handle */SQLINTEGER

/* Free a handle previously allocated by SQLAllocHandle() */

SQLSMALLINT SQLFreeHandle (

HdlType, /* IN: integer handle type code */SQLSMALLINT

inHdl) /* IN: handle to be freed */SQLINTEGER

/* Allocate a handle for a new SQL-environment */

SQLSMALLINT SQLAllocEnv (

envHdl) / OUT: returned environment handle */SQLINTEGER

/* Free an environment handle previously allocated by SQLAllocEnv() */

SQLSMALLINT SQLFreeEnv (

envHdl) /* IN: environment handle */SQLINTEGER

/* Allocate a handle for a new SQL-connection */

SQLSMALLINT SQLAllocConnect (

envHdl, /* IN: environment handle */SQLINTEGER

connHdl) / OUT: returned handle */SQLINTEGER

/* Free a connection handle previously allocated */

SQLSMALLINT SQLFreeConnect (

connHdl) /* IN: connection handle */SQLINTEGER

SQLSMALLINT SQLAllocStmt (

envHdl, /* IN: environment handle */SQLINTEGER

stmtHdl) / OUT: statement handle */SQLINTEGER

/* Free a connection handle previously allocated */

SQLSMALLINT SQLFreeStmt (

stmtHdl, /* IN: statement handle */SQLINTEGER

option) /* IN: cursor and unbind options */SQLINTEGER

/* Allocate resources for an SQL statement */

FIGURE 19-18 SQL/CLI handle management routines

 556 P a r t V : P r o g r a m m i n g w i t h S Q L 556 P a r t V : P r o g r a m m i n g w i t h S Q L

SQL-Connections
Within a SQL-environment, an application program may establish one or more SQL-
connections. A SQL-connection is a linkage between the program and a specific SQL server
(database server) over which SQL statements are processed. In practice, a SQL-connection
often is actually a virtual network connection to a database server located on another
computer system. However, a SQL-connection may also be a logical connection between a
program and a DBMS located on the same computer system.

Figure 19-19 shows the CLI routines that are used to manage SQL-connections. To
establish a connection, an application program first allocates a connection handle by calling
SQLAllocHandle() with the appropriate handle type. It then attempts to connect to the
target SQL server with a SQLConnect() call. SQL statements can subsequently be
processed over the connection. The connection handle is passed as a parameter to all of the
statement-processing calls to indicate which connection is being used. When the connection
is no longer needed, a call to SQLDisconnect() terminates it, and a call to
SQLFreeHandle() releases the associated connection handle in the CLI.

/* Initiate a connection to a SQL-server */

SQLSMALLINT SQLConnect(

SQLINTEGER connHdl, /* IN: connection handle */

SQLCHAR *svrName, /* IN: name of target SQL-server */

svrnamlen, /* IN: length of SQL-server name */SQLSMALLINT

userName, / IN: user name for connection */SQLINTEGER

usrnamlen, /* IN: length of user name */SQLSMALLINT

passwd, / IN: connection password */SQLINTEGER

pswlen) /* IN: password length */SQLSMALLINT

/* Disconnect from a SQL-server */

SQLSMALLINT SQLDisconnect(

connHdl) /* IN: connection handle */SQLINTEGER

/* Get the name(s) of accessible SQL-servers for connection */

SQLSMALLINT SQLDataSources (

envHdl, /* IN: environment handle */SQLINTEGER

direction, /* IN: indicates first/next request */SQLSMALLINT

svrname, / OUT: buffer for server name */SQLINTEGER

buflen, /* IN: length of server name buffer */SQLSMALLINT

namlen, / OUT: actual length of server name */SQLSMALLINT

descrip, / OUT: buffer for description */SQLINTEGER

buf2len, /* IN: length of description buffer */SQLSMALLINT

dsclen) / OUT: actual length of description */SQLSMALLINT

FIGURE 19-19 SQL/CLI connection management routines

 C h a p t e r 1 9 : S Q L A P I s 557
PART V

 C h a p t e r 1 9 : S Q L A P I s 557

Normally, an application program knows the name of the specific database server (in
terms of the standard, the “SQL server”) that it needs to access. In certain applications (such
as general-purpose query or data entry tools), it may be desirable to let the user choose
which database server is to be used. The CLI SQLDataSources() call returns the names of
the SQL servers that are known to the CLI—that is, the data sources that can be legally
specified as server names in SQLConnect() calls. To obtain the list of server names, the
application repeatedly calls SQLDataSources(). Each call returns a single server
description, until the call returns an error indicating no more data. A parameter to the call
can be optionally used to alter this sequential retrieval of server names.

CLI Statement Processing
The CLI processes SQL statements using a technique very similar to that described for
dynamic embedded SQL in Chapter 18. The SQL statement is passed to the CLI in text form,
as a character string. It can be executed in a one- or two-step process.

Figure 19-20 shows the basic SQL statement-processing calls. The application program
must first call SQLAllocHandle()to obtain a statement handle, which identifies the
statement to the program and the CLI. All subsequent SQLExecDirect(),
SQLPrepare(), and SQLExecute() calls reference this statement handle. When the
handle is no longer needed, it is freed with a SQLFreeHandle() call.

For one-step execution, the application program calls SQL SQLExecDirect(), passing
the SQL statement text as one of the parameters to the call. The DBMS processes the statement
as a result of the call and returns the completion status of the statement. This one-step process
was used in the simple example program in Figure 19-17. It corresponds to the one-step
EXECUTE IMMEDIATE statement in embedded dynamic SQL, described in Chapter 18.

For two-step execution, the application program calls SQLPrepare(), passing the SQL
statement text as one of the parameters to the call. The DBMS analyzes the statement,
determines how to carry it out, and retains this information. It does not immediately carry
out the statement. Instead, subsequent calls to the SQLExecute() routine actually cause
the statement to be executed. This two-step process corresponds exactly to the PREPARE
and EXECUTE embedded dynamic SQL statements described in Chapter 18. You should
always use it for any SQL operations that will be carried out repeatedly, because it causes
the DBMS to go through the overhead of statement analysis and optimization only once, in
response to the SQLPrepare() call. Parameters can be passed through the CLI to tailor the
operation of the multiple SQLExecute() calls that follow.

Statement Execution with Parameters
In many cases, a SQL statement must be repeatedly executed with changes only in some of
the values that it specifies. For example, an INSERT statement to add an order to the sample
database is identical for every order except for the specific information about the customer
number, product and manufacturer, and quantity ordered. As described in Chapter 18, for
dynamic embedded SQL, such statements can be processed efficiently by specifying the
variable parts of the statement as input parameters. The statement text passed to the
SQLPrepare() call has a parameter marker—a question mark (?)—in its text at each
position where a parameter value is to be inserted. When the statement is later executed,
values must be supplied for each of its input parameters.

 558 P a r t V : P r o g r a m m i n g w i t h S Q L 558 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Directly execute a SQL statement */

SQLSMALLINT SQLExecDirect (

SQLINTEGER stmtHdl, /* IN: statement handle */

SQLCHAR *stmttext, /* IN: SQL statement text */

textlen) /* IN: statement text length */SQLSMALLINT

/* Prepare a SQL statement */

SQLSMALLINT SQLPrepare (

stmtHdl, /* IN: statement handle */SQLINTEGER

stmttext, / IN: SQL statement text */SQLCHAR

textlen) /* IN: statement text length */SQLSMALLINT

/* Execute a previously prepared SQL statement */

SQLSMALLINT SQLExecute (

stmtHdl) /* IN: statement handle */SQLINTEGER

/* Bind a SQL statement parameter to a program data area */

SQLSMALLINT SQLBindParam (

stmtHdl, /* IN: statement handle */SQLINTEGER

parmnr, /* IN: parameter number (1,2,3...) */SQLSMALLINT

valtype, /* IN: data type of value supplied */SQLSMALLINT

parmtype, /* IN: data type of parameter */SQLSMALLINT

colsize, /* IN: column size */SQLSMALLINT

decdigits, /* IN: number of decimal digits */SQLSMALLINT

void *value, /* IN: pointer to parameter value buf */

lenind) / IN: pointer to length/indicator buf */SQLINTEGER

/* Get parameter-tag for next required dynamic parameter */

SQLSMALLINT SQLParamData (

stmtHdl, /* IN: stmt handle w/dynamic parms */SQLINTEGER

void *prmtag) /* OUT: returned parameter-tag value */

/* Obtain detailed info about an item described by a CLI descriptor */

SQLSMALLINT SQLPutData (

stmtHdl, /* IN: stmt handle w/dynamic parms */SQLINTEGER

void *prmdata, /* IN: buffer with data for parameter */

prmlenind) /* IN: parameter length or NULL ind */SQLSMALLINT

FIGURE 19-20 CLI statement-processing routines

 C h a p t e r 1 9 : S Q L A P I s 559
PART V

 C h a p t e r 1 9 : S Q L A P I s 559

The most straightforward way to supply input parameter values is with the
SQLBindParam() call. Each call to SQLBindParam() establishes a linkage between one of
the parameter markers in the SQL statement (identified by number) and a variable in the
application program (identified by its memory address). In addition, an association is
optionally established with a second application program variable (an integer) that provides
the length of variable-length input parameters. If the parameter is a NULL-terminated string
like those used in C programs, a special negative code value, defined in the header file as
the symbolic constant SQL_NTS, can be passed, indicating that the string length can be
obtained from the data itself by the CLI routines. Similarly, a negative code is used to
indicate a NULL value for an input parameter. If three input parameter markers are in the
statement, three calls will be made to SQLBindParam(), one for each input parameter.

Once the association between application program variables (more accurately, program
storage locations) and the statement parameters is established, the statement can be
executed with a call to SQLExecute(). To change the parameter values for subsequent
statements, it is only necessary to place new values in the application program buffer areas
before the next call to SQLExecute(). Alternatively, the parameters can be rebound to
different data areas within the application program by subsequent calls to
SQLBindParam(). Figure 19-21 shows a program that includes a SQL statement with two
input parameters. The program repeatedly prompts the user for a customer number and a
new credit limit for the customer. The values provided by the user become the input
parameters to an UPDATE statement for the CUSTOMERS table.

The SQLParamData() and SQLPutData() functions provide an alternative method of
passing parameter data at runtime, called deferred parameter passing. The selection of this
technique for a particular statement parameter is indicated in the corresponding call to
SQLBindParam(). Instead of actually supplying a program data location to which the
parameter is bound, the SQLBindParam() call indicates that deferred parameter passing
will be used and provides a value that will later be used to identify the particular parameter
being processed in this way.

After statement execution is requested (by a SQLExecute() or SQLExecDirect()
call), the program calls SQLParamData() to determine whether deferred parameter data is
required by the statement. If so, the CLI returns a status code (SQL_NEED_DATA) along with
an indicator of which parameter needs a value. The program then calls SQLPutData() to
actually provide the value for the parameter. Typically, the program then calls
SQLParamData() again to determine if another parameter requires dynamic data. The
cycle repeats until all required dynamic data has been supplied, and SQL statement
execution then continues normally.

This alternative parameter-passing method is considerably more complex than the
straightforward process of binding parameters to application program locations. It has two
advantages. The first is that the actual passing of data values (and the allocation of storage to
contain those values) can be delayed until the last possible moment when the data is actually
needed. The second advantage is that the technique can be used to pass very long parameter
values piece by piece. For selected long data types, the CLI allows repeated calls to
SQLPutData() for the same parameter, with each call passing the next part of the data. For
example, the text of a document that is supplied as a parameter for the VALUES clause of an
INSERT statement might be passed in 1000-character pieces through repeated SQLPutData()
calls until all of the document has been passed. This avoids the need to allocate a single very
large memory buffer within the application program to hold the entire parameter value.

 560 P a r t V : P r o g r a m m i n g w i t h S Q L 560 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Program to raise selected user-specified customer credit limits */

#include <sqlcli.h> /* header file with CLI defs */

main()

{

SQLHENV env_hdl; /* SQL-environment handle */

SQLHDBC conn_hdl; /* connection handle */

SQLHSTMT stmt_hdl; /* statement handle */

SQLRETURN status; /* CLI routine return status */

SQLCHAR *svr_name = "demo"; /* server name */

user_name = "joe"; / user name for connection */SQLCHAR

user_pswd = "xyz"; / user password for connection */SQLCHAR

char amt_buf[31]; /* amount entered by user */

SQLINTEGER amt_ind = SQL_NTS; /* amount ind (NULL-term string) */

char cust_buf[31]; /* cust # entered by user */

SQLINTEGER cust_ind = SQL_NTS; /* cust # ind (NULL-term string) */

char stmt_buf[128]; /* buffer for SQL statement */

/* Allocate handles for SQL environment, connection, statement */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt_hdl);

/* Connect to the database, passing server name, user, password */

/* SQL_NTS says NULL-terminated string instead of passing length */

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_pswd, SQL_NTS);

/* Prepare an UPDATE statement with parameter markers */

strcpy(stmt_buf, "update customers set credit_limit = ? ");

strcat(stmt_buf, "where cust_num = ?");

SQLPrepare(stmt_hdl, stmt_buf, SQL_NTS);

/ * Bind parameters to the program's buffers */

SQLBindParam(stmt_hdl,1,SQL_C_CHAR,SQL_DECIMAL,9,2,&amt_buf,&amt_ind);

SQLBindParam(stmt_hdl,2,SQL_C_CHAR,SQL_INTEGER,0,0,&cust_buf,&cust_ind);

FIGURE 19-21 CLI program using input parameters

 C h a p t e r 1 9 : S Q L A P I s 561
PART V

 C h a p t e r 1 9 : S Q L A P I s 561

/ * Loop to process each credit limit change */

for (; ;) {

/* Prompt the user for the customer and new credit limit */

printf("Enter customer number: ");

gets(cust_buf);

if (strlen(cust_buf) == 0)

break;

printf("Enter new credit limit: ");

gets(amt_buf);

/ * Execute the statement with the parameters */

status = SQLExecute(stmt_hdl);

if (status)

printf("Error during update\n");

else

printf("Credit limit change successful.\n");

/* Commit the update */

SQLEndTran(SQL_HANDLE_ENV, env_hdl, SQL_COMMIT);

}

/ * Disconnect, deallocate handles and exit */

SQLDisconnect(conn_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

FIGURE 19-21 CLI program using input parameters (continued)

CLI Transaction Management
The COMMIT and ROLLBACK functions for SQL transaction processing also apply to SQL
operation via the CLI. However, because the CLI itself must be aware that a transaction is
being completed, the COMMIT and ROLLBACK SQL statements are replaced by the CLI
SQLEndTran() call, shown in Figure 19-22. This call was used to commit the transactions
in the program examples of Figures 19-17 and 19-21. The same CLI routine is used to
execute either a COMMIT or a ROLLBACK operation; the particular operation to be performed
is specified by the completion type parameter to the call.

The CLI SQLCancel() call, also shown in Figure 19-22, does not actually provide a
transaction management function, but in practice it is almost always used in conjunction with a
ROLLBACK operation. It is used to cancel the execution of a SQL statement that was previously
initiated by a SQLExecDirect() or SQLExecute() call. This would be appropriate in a
program that is using deferred parameter processing, as described in the previous section.

 562 P a r t V : P r o g r a m m i n g w i t h S Q L 562 P a r t V : P r o g r a m m i n g w i t h S Q L

If the program determines that it should cancel the statement execution instead of supplying
a value for a deferred parameter, the program can call SQLCancel() to achieve this result.

The SQLCancel() call can also be used in a multithreaded application to cancel the
effect of a SQLExecute() or SQLExecDirect() call that has not yet completed. In this
situation, the thread making the original execute call will still be waiting for the call to
complete, but another concurrently executing thread may call SQLCancel() using the
same statement handle. The specifics of this technique, and how interruptible a CLI call is,
tend to be very implementation dependent.

Processing Query Results with CLI
The CLI routines described thus far can be used to process SQL data definition statements
or SQL data manipulation statements other than queries (that is, UPDATE, DELETE, and
INSERT statements). For query processing, some additional CLI calls, shown in Figure 19-23,
are required. The simplest way to process query results is with the SQLBindCol()and
SQLFetch() calls. To carry out a query using these calls, the application program goes
through the following steps (assuming a connection has already been established):

 1. The program allocates a statement handle using SQLAllocHandle().

 2. The program calls SQLExecDirect() to pass the text of the SQL SELECT
statement and to carry out the query.

 3. The program calls SQLBindCol() once for each column of query results that will be
returned. Each call associates a program buffer area with a returned data column.

 4. The program calls SQLFetch() to fetch a row of query results. The data value for
each column in the newly fetched row is placed into the appropriate program buffer
as indicated in the previous SQLBindCol() calls.

 5. If the query produces multiple rows, the program repeats Step 4 until the
SQLFetch() call returns a value indicating that there are no more rows.

 6. When all query results have been processed, the program calls SQLDisconnect()
to end the database session.

The program excerpt in Figure 19-24 shows a simple query carried out using this
technique. The program is identical in function to the dblib-based program example in
Figure 19-10. It’s instructive to compare the two programs. The specifics of the calls and
their parameters are quite different, but the flow of the programs and the logical sequence
of calls that they make are the same.

FIGURE 19-22 CLI transaction management routines

/* COMMIT or ROLLBACK a SQL transaction */

SQLSMALLINT SQLEndTran (

hdltype, /* IN: type of handle */SQLSMALLINT

SQLINTEGER txnHdl, /* IN: env, conn, or stmt handle */

compltype) /* IN: txn typ (COMMIT/ROLLBACK) */SQLSMALLINT

/* Cancel a currently executing SQL statement */

SQLSMALLINT SQLCancel (

stmtHdl) /* IN: statement handle */SQLSMALLINT

 C h a p t e r 1 9 : S Q L A P I s 563
PART V

 C h a p t e r 1 9 : S Q L A P I s 563

/* Bind a query results column to a program data area */

SQLSMALLINT SQLBindCol (

SQLINTEGER stmtHdl, /* IN: statement handle */

colnr, /* IN: column number to be bound */SQLSMALLINT

tgttype, /* IN: data type of program data area */SQLSMALLINT

void value, /* IN: ptr to program data area */

buflen, /* IN: length of program buffer */SQLINTEGER

lenind) /* IN: ptr to length/indicator buffer */SQLINTEGER

/* Advance the cursor to the next row of query results */

SQLSMALLINT SQLFetch (

stmtHdl) /* IN: statement handle */SQLINTEGER

/* Scroll the cursor up or down through the query results */

SQLSMALLINT SQLFetchScroll (

stmtHdl, /* IN: statement handle */SQLINTEGER

fetchdir, /* IN: direction (first/next/prev) */SQLSMALLINT

offset) /* IN: offset (number of rows) */SQLINTEGER

/* Get the data for a single column of query results */

SQLSMALLINT SQLGetData (

stmtHdl, /* IN: statement handle */SQLINTEGER

colnr, /* IN: column number to be retrieved */SQLSMALLINT

tgttype, /* IN: data type to return to program */SQLSMALLINT

void *value, /* IN: ptr to buffer for column data */

buflen, /* IN: length of program buffer */SQLINTEGER

lenind) / OUT: actual length and/or NULL ind */SQLINTEGER

/* Close a cursor to end access to query results */

SQLSMALLINT SQLCloseCursor (

stmtHdl) /* IN: statement handle */SQLINTEGER

/* Establish a cursor name for an open cursor */

SQLSMALLINT SQLSetCursorName (

stmtHdl, /* IN: statement handle */SQLINTEGER

SQLCHAR cursname, /* IN: name for cursor */

namelen) /* IN: length of cursor name */SQLSMALLINT

/* Retrieve the name of an open cursor */

SQLSMALLINT SQLGetCursorName (

stmtHdl, /* IN: statement handle */SQLINTEGER

SQLCHAR cursname, /* OUT: buffer for returned name */

buflen, /* IN: length of buffer */SQLSMALLINT

namlen) / OUT: actual length of returned name */[SQLSMALLINT

FIGURE 19-23 CLI query results processing routines

 564 P a r t V : P r o g r a m m i n g w i t h S Q L 564 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 19-24 Retrieving CLI query results

/* Program to display a report of sales reps over quota */

#include <sqlcli.h> /* header file with CLI definitions */

main()

{

SQLHENV env_hdl; /* SQL-environment handle */

SQLHDBC conn_hdl; /* connection handle */

SQLHSTMT stmt_hdl; /* statement handle */

SQLRETURN status; /* CLI routine return status */

SQLCHAR *svr_name = "demo"; /* server name */

user_name = "joe"; / user name for connection */SQLCHAR

user_pswd = "xyz"; / user password for connection */SQLCHAR

char repname[16]; /* retrieved salesperson's name */

float repquota; /* retrieved quota */

float repsales; /* retrieved sales */

SQLSMALLINT repquota_ind; /* NULL quota indicator */

char stmt_buf[128]; /* buffer for SQL statement */

/* Allocate handles and connect to the database */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt_hdl);

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_pswd, SQL_NTS);

/* Request execution of the query */

strcpy(stmt_buf, "select name, quota, sales from salesreps ");

strcat(stmt_buf, "where sales > quota order by name");

SQLExecDirect(stmt_hdl, stmt_buf, SQL_NTS);

/ * Bind retrieved columns to the program's buffers */

SQLBindCol(stmt_hdl,1,SQL_C_CHAR,repname,15,NULL);

SQLBindCol(stmt_hdl,2,SQL_C_FLOAT,&repquota,0,"a_ind);

SQLBindCol(stmt_hdl,3,SQL_C_FLOAT,&repsales,0,NULL);

/ * Loop through each row of query results */

for (; ;) {

 C h a p t e r 1 9 : S Q L A P I s 565
PART V

 C h a p t e r 1 9 : S Q L A P I s 565

FIGURE 19-24 Retrieving CLI query results (continued)

/* Fetch the next row of query results */

if (SQLFetch(stmt_hdl) != SQL_SUCCESS)

break;

/* Display the retrieved data */

printf("Name: %s\n", repname);

if (repquota_ind < 0)

printf("Quota is NULL\n");

else

printf("Quota: %f\n", repquota);

printf("Sales: %f\n", repsales);

}

/ * Disconnect, deallocate handles and exit */

SQLDisconnect(conn_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

Each call to SQLBindCol() establishes an association between one column of query
results (identified by column number) and an application program buffer (identified by its
address). With each call to SQLFetch(), the CLI uses this binding to copy the appropriate
data value for the column into the program’s buffer area. When appropriate, a second
program data area is specified as the indicator-variable buffer for the column. Each call to
SQLFetch() sets this program variable to indicate the actual length of the returned data
value (for variable-length data) and to indicate when a NULL value is returned.

The CLI routines in Figure 19-23 can also be used to implement an alternative method of
processing query results. In this technique, the columns of query results are not bound to
locations in the application program in advance. Instead, each call to SQLFetch() only
advances the cursor to the next row of query results. It does not actually cause retrieval of
data into host program data areas. Instead, a call to SQLGetData() is made to actually
retrieve the data. One of the parameters of SQLGetData() specifies which column of query
results is to be retrieved. The other parameters specify the data type to be returned and the
location of the buffer to receive the data and an associated indicator variable value.

At the basic level, the SQLGetData()call is simply an alternative to the host-variable
binding approach provided by SQLBindCol(), but SQLGetData() provides an important
advantage when processing very large data items. Some databases support long binary or
character-valued columns that can contain thousands or millions of bytes of data. It’s
usually impractical to allocate a program buffer to hold all of the data in such a column.
Using SQLGetData(), the program can allocate a buffer of reasonable size and work its
way through the data a few thousand bytes at a time.

 566 P a r t V : P r o g r a m m i n g w i t h S Q L 566 P a r t V : P r o g r a m m i n g w i t h S Q L

It’s possible to intermix the SQLBindCol() and SQLGetData() styles to process the
query results of a single statement. In this case, the SQLFetch() call actually retrieves the data
values for the bound columns (those for which a SQLBindCol() call has been made), but the
program must explicitly call SQLGetData() to process the other columns. This technique may
be especially appropriate if a query retrieves several columns of typical SQL data (names, dates,
money amounts) and a column or two of long data, such as the text of a contract. Note that
some CLI implementations severely restrict the ability to intermix the two styles of processing.
In particular, some implementations require that all of the bound columns appear first in the
left-to-right order of query results, before any columns retrieved using SQLGetData().

Scrolling Cursors
The SQL/CLI standard specifies CLI support for scrolling cursors that parallels the
scrolling-cursor support originally included in the SQL standard for embedded SQL. The
SQLFetchScroll() call, shown in Figure 19-23, provides the extended FETCH functions
needed for forward/backward and random retrieval of query results. One of its parameters
specifies the statement handle for the query, just as for the simple SQLFetch() call. The
other two parameters specify the direction of FETCH motion (PREVIOUS, NEXT, and so on)
and the offset for FETCH motions that require it (absolute and relative random row
retrieval). The operation of SQLBindCol() and SQLGetData() for processing returned
values is identical to that described for the SQLFetch() call.

Named Cursors
Note that the CLI doesn’t include an explicit cursor declaration call to parallel the
embedded SQL DECLARE CURSOR statement. Instead, SQL query text (that is, a SELECT
statement) is passed to the CLI for execution in the same manner as any other SQL
statement, using either a SQLExecDirect() call or SQLPrepare() / SQLExecute()
call sequence. The results of the query are identified by the statement handle in subsequent
SQLFetch(), SQLBindCol(), and similar calls. For these purposes, the statement handle
takes the place of the cursor name used in embedded SQL.

A problem with this scheme arises in the case of positioned (cursor-based) updates and
positioned deletes. As described in Chapter 17, a positioned database UPDATE or DELETE
statement (UPDATE…WHERE CURRENT OF or DELETE…WHERE CURRENT OF) can be used to
modify or delete the current (that is, just fetched) row of query results. These embedded
SQL statements use the cursor name to identify the particular row to be processed, since an
application program may have more than one cursor open at a time to process more than
one set of query results.

To support positioned updates, the CLI provides the SQLSetCursorName() call shown in
Figure 19-23. The call is used to assign a cursor name, specified as one of its parameters, to a set
of query results, identified by the statement handle that produced them. Once the call has been
made, the cursor name can be used in subsequent positioned UPDATE or DELETE statements,
which can be passed to the CLI for execution. A companion call, SQLGetCursorName(), can
be used to obtain a previously assigned cursor name, given its statement handle.

Dynamic Query Processing with CLI
If the columns to be retrieved by a SQL query are not known in advance when a program
is developed, the program can use the query-processing calls in Figure 19-25 to determine
the characteristics of the query results at runtime. These calls implement the same type of
dynamic SQL query-processing capability that was described for dynamic embedded SQL
in Chapter 18.

 C h a p t e r 1 9 : S Q L A P I s 567
PART V

 C h a p t e r 1 9 : S Q L A P I s 567

/* Determine the number of result columns in a query */

SQLSMALLINT SQLNumResultCols (

SQLINTEGER stmtHdl, /* IN: statement handle */

colcount) / OUT: returned number of columns */SQLSMALLINT

/* Determine the characteristics of a column of query results */

SQLSMALLINT SQLDescribeCol (

stmtHdl, /* IN: statement handle */SQLINTEGER

colnr, /* IN: number of column to describe */SQLSMALLINT

colname, / OUT: name of query results column */SQLCHAR

buflen, /* IN: length of column name buffer */SQLSMALLINT

namlen, / OUT: actual column name length */SQLSMALLINT

coltype, / OUT: returned column data type code */SQLSMALLINT

colsize, / OUT: returned column data length */SQLSMALLINT

decdigits, / OUT: returned # of digits in column */SQLSMALLINT

/* Obtain detailed info about a column of query results */

SQLSMALLINT SQLColAttribute (

stmtHdl, /* IN: statement handle */SQLINTEGER

colnr, /* IN: number of column to describe */SQLSMALLINT

attrcode, /* IN: code of attribute to retrieve */SQLSMALLINT

attrinfo, / OUT: buffer for string attr. info */SQLCHAR

buflen, / IN: length of column attribute buffer */SQLSMALLINT

actlen, / OUT: actual attribute info length */SQLSMALLINT

numattr) / OUT: returned integer attr. info */SQLINTEGER

/* Retrieve frequently used info from a CLI descriptor */

short SQLGetDescRec (

descHdl, /* IN: descriptor handle */SQLINTEGER

recnr, /* IN: descriptor record number */SQLSMALLINT

SQLCHAR *name, /* OUT: name of item being described */

buflen, /* IN: length of name buffer */SQLSMALLINT

namlen, / OUT: actual length of returned name */SQLSMALLINT

datatype, / OUT: data type code for item */SQLSMALLINT

subtype, / OUT: data type subcode for item */SQLSMALLINT

length, / OUT: length of item */SQLSMALLINT

precis, / OUT: precision of item, if numeric */SQLSMALLINT

scale, / OUT: scale of item, if numeric */SQLSMALLINT

nullable) / OUT: can item have NULL values */SQLSMALLINT

FIGURE 19-25 CLI dynamic query-processing calls (continued)

 568 P a r t V : P r o g r a m m i n g w i t h S Q L 568 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Set frequently used info in a CLI descriptor */

SQLSMALLINT SQLSetDescRec (

descHdl, /* IN: descriptor handle */SQLINTEGER

recnr, /* IN: descriptor record number */SQLSMALLINT

datatype, /* IN: data type code for item */SQLSMALLINT

subtype, /* IN: data type subcode for item */SQLSMALLINT

length, /* IN: length of item */SQLSMALLINT

precis, /* IN: precision of item, if numeric */SQLSMALLINT

scale, /* IN: scale of item, if numeric */SQLSMALLINT

void *databuf, /* IN: data buffer address for item */

buflen, /* IN: data buffer length */SQLSMALLINT

indbuf) / IN: indicator buffer addr for item */SQLSMALLINT

/* Get detailed info about an item described by a CLI descriptor */

SQLSMALLINT SQLGetDescField (

descHdl, /* IN: descriptor handle */SQLINTEGER

recnr, /* IN: descriptor record number */SQLSMALLINT

attrcode, /* IN: code of attribute to describe */SQLSMALLINT

void *attrinfo, /* IN: buffer for attribute info */

buflen, /* IN: length of attribute info */SQLSMALLINT

actlen) / OUT: actual length of returned info */SQLSMALLINT

/* Set value of an item described by a CLI descriptor */

SQLSMALLINT SQLSetDescField (

descHdl, /* IN: descriptor handle */SQLINTEGER

recnr, /* IN: descriptor record number */SQLSMALLINT

attrcode, /* IN: code of attribute to describe */SQLSMALLINT

void *attrinfo, /* IN: buffer with attribute value */

buflen) /* IN: length of attribute info */SQLSMALLINT

/* Copy a CLI descriptor contents into another descriptor */

SQLSMALLINT SQLCopyDesc (

indscHdl, /* IN: source descriptor handle */SQLINTEGER

outdscHdl) /* IN: destination descriptor handleSQLINTEGER

*/

FIGURE 19-25 CLI dynamic query-processing calls (continued)

 C h a p t e r 1 9 : S Q L A P I s 569
PART V

 C h a p t e r 1 9 : S Q L A P I s 569

Here are the steps for dynamic query processing using CLI:

 1. The program allocates a statement handle using SQLAllocHandle().

 2. The program calls SQLPrepare(), passing the text of the SQL SELECT statement
for the query.

 3. The program calls SQLExecute() to carry out the query.

 4. The program calls SQLNumResultCols() to determine the number of columns of
query results.

 5. The program calls SQLDescribeCol() once for each column of returned query
results to determine its data type, size, whether it may contain NULL values, and
so on.

 6. The program allocates memory to receive the returned query results and binds
these memory locations to the columns by calling SQLBindCol() once for each
column.

 7. The program calls SQLFetch() to fetch a row of query results. The SQLFetch()
call advances the cursor to the next row of query results and returns each column of
results into the appropriate area in the application program, as specified in the
SQLBindCol() calls.

 8. If the query produces multiple rows, the program repeats Step 7 until the
SQLFetch() call returns a value indicating that there are no more rows.

 9. When all query results have been processed, the program calls SQLCloseCursor()
to end access to the query results.

Figure 19-26 shows a program that uses these techniques to process a dynamic query.
The program is identical in its concept and purpose to the embedded dynamic SQL query
program shown in Figure 19-16 and the dblib-based dynamic SQL query program shown
in Figure 19-15. Once again, it’s instructive to compare the program examples to enhance
your understanding of dynamic query processing. The API calls have quite different names,
but the sequence of functions calls for the dblib program (Figure 19-15) and the CLI
program (Figure 19-26) are nearly identical. The dbcmd() / dbsqlexec() / dbresults()
call sequence is replaced by SQLExecDirect(). (In this case, the query will be executed
only once, so there’s no advantage to using SQLPrepare() and SQLExecute()
separately.) The dbnumcols() call becomes SQLNumResultCols(). The calls to obtain
column information (dbcolname(), dbcoltype(), dbcollen()) become a single call to
SQLDescribeCol(). The dbnextrow() call becomes SQLFetch(). All of the other
changes in the program are made to support these changes in the API functions.

If you compare the program in Figure 19-26 with the corresponding embedded dynamic
SQL program in Figure 19-16, one of the major differences is embedded SQL’s use of the
special SQL Data Area (SQLDA) for column binding and column description. The CLI splits
these functions between the SQLNumResultCols(), SQLDescribeCol(), and
SQLBindCol() functions, and most programmers find the CLI structure easier to use and
understand. However, the CLI provides an alternative, lower-level method that offers
capabilities like those provided by the embedded SQLDA.

 570 P a r t V : P r o g r a m m i n g w i t h S Q L 570 P a r t V : P r o g r a m m i n g w i t h S Q L

main()

{

/* This is a simple general-purpose query program. It prompts

the user for a table name, and then asks the user which

columns of the table are to be included in the query. After

the user's selections are complete, the program runs the

requested query and displays the results.

*/

SQLHENV env_hdl; /* SQL-environment handle */

SQLHDBC conn_hdl; /* connection handle */

SQLHSTMT stmt1_hdl; /* statement handle for main query */

SQLHSTMT stmt2_hdl; /* statement handle for col name query */

SQLRETURN status; /* CLI routine return status */

SQLCHAR *svr_name = "demo"; /* server name */

user_name = "joe"; / user name for connection */SQLCHAR

user_pswd = "xyz"; / user password for connection */SQLCHAR

char stmtbuf[2001]; /* main SQL query text to be executed */

char stmt2buf[2001]; /* SQL text for column name query */

char querytbl[32]; /* user-specified query table */

char querycol[32]; /* user-specified column */

int first_col = 0; /* is this the first column chosen? */

SQLSMALLINT colcount; /* number of columns of query results */

nameptr; / address for CLI to return column name */SQLCHAR

namelen; /* returned CLI column name length */SQLSMALLINT

type; /* CLI data type code for column */SQLSMALLINT

size; /* returned CLI column size */SQLSMALLINT

digits; /* returned CLI column # digits */SQLSMALLINT

nullable; /* returned CLI nullability */SQLSMALLINT

short i; /* index for columns */

char inbuf[101]; /* inp ut entered by user */

char *item_name[100]; /* array to track column names */

char *item_data[100]; /* array to track column buffers */

int item_ind[100]; /* array of indicator variables */

short item_type[100]; /* array to track column data types */

dataptr; / address of buffer for current column */SQLCHAR

/* Open a connection to the demo database via CLI */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

FIGURE 19-26 Using CLI for a dynamic query

 C h a p t e r 1 9 : S Q L A P I s 571
PART V

 C h a p t e r 1 9 : S Q L A P I s 571

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt1_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt2_hdl);

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_name, SQL_NTS,

/* Prompt the user for which table to query * /

printf("*** Mini-Query Program ***\n");

printf("Enter name of table for query: ");

gets(querytbl);

/* Start the SELECT statement in the buffer */

strcpy(stmtbuf, "select ");

/* Query the Information Schema to get column names */

strcpy(stmt2buf, "select column_name from columns where table_name = ");

strcat(stmt2buf, querytbl);

SQLExecDirect(stmt2_hdl, stmt2buf, SQL_NTS);

/* Process the results of the query */

SQLBindCol(stmt2_hdl, 1, SQL_C_CHAR, querycol, 31, (int *)0);

while (status = SQLFetch(stmt2_hdl) == SQL_SUCCESS) {

printf("Include column %s (y/n)? ", querycol);

gets(inbuf);

if (inbuf[0] == 'y') {

/* User wants the column, add it to the select list */

if (first_col++ > 0) strcat(stmtbuf,", ");

strcat(stmtbuf, querycol);

}

}

/* Finish the SELECT statement with a FROM clause */

strcat(stmtbuf, "from ");

strcat(stmtbuf, querytbl);

/* Execute the query and get ready to fetch query results */

SQLExecDirect(stmt1_hdl, stmtbuf, SQL_NTS);

FIGURE 19-26 Using CLI for a dynamic query (continued)

 572 P a r t V : P r o g r a m m i n g w i t h S Q L 572 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Ask CLI to describe each column, allocate memory & bind it */

SQLNumResultCols(stmt1_hdl, &colcount);

for (i =0; i < colcount; i++) {

item_name[i] = nameptr = malloc(32);

indptr = &item_ind[i];

SQLDescribeCol(stmt1_hdl, i, nameptr, 32, &namelen, &type, &size,

&digits, &nullable);

switch(type) {

case SQL_CHAR:

case SQL_VARCHAR:

/* Allocate buffer for string & bind the column to it */

item_data[i] = dataptr = malloc(size+1);

item_type[i] = SQL_C_CHAR;

SQLBindCol(stmt1_hdl, i, SQL_C_CHAR, dataptr, size+1, indptr);

break;

case SQL_TYPE_DATE:

case SQL_TYPE_TIME:

case SQL_TYPE_TIME_WITH_TIMEZONE:

case SQL_TYPE_TIMESTAMP:

case SQL_TYPE TIMESTAMP_WITH_TIMEZONE:

case SQL_INTERVAL_DAY:

case SQL_INTERVAL_DAY_TO_HOUR:

case SQL_INTERVAL_DAY_TO_MINUTE:

case SQL_INTERVAL_DAY_TO_SECOND:

case SQL_INTERVAL_HOUR:

case SQL_INTERVAL_HOUR_TO_MINUTE:

case SQL_INTERVAL_HOUR_TO_SECOND:

case SQL_INTERVAL_MINUTE:

case SQL_INTERVAL_MINUTE_TO_SECOND:

case SQL_INTERVAL_MONTH:

case SQL_INTERVAL_SECOND:

case SQL_INTERVAL_YEAR:

case SQL_INTERVAL_YEAR_TO_MONTH:

/* Request ODBC/CLI conversion of these types to C-strings */

item_data[i] = dataptr = malloc(31);

item_type[i] = SQL_C_CHAR;

SQLBindCol(stmt1_hdl, i, SQL_C_CHAR, dataptr, 31, indptr);

break;

FIGURE 19-26 Using CLI for a dynamic query

 C h a p t e r 1 9 : S Q L A P I s 573
PART V

 C h a p t e r 1 9 : S Q L A P I s 573

case SQL_INTEGER:

case SQL_SMALLINT:

/* Convert these types to C long integers */

item_data[i] = dataptr = malloc(sizeof(integer));

item_type[i] = SQL_C_SLONG;

SQLBindCol(stmt1_hdl, i, SQL_C_SLONG, dataptr, sizeof(integer),

indptr);

break;

case SQL_NUMERIC:

case SQL_DECIMAL:

case SQL_FLOAT:

case SQL_REAL:

case SQL_DOUBLE:

/* For illustration, convert these types to C double floats */

item_data[i] = dataptr = malloc(sizeof(long));

item_type[i] = SQL_C_DOUBLE;

SQLBindCol(stmt1_hdl, i, SQL_C_DOUBLE, dataptr, sizeof(double),

indptr);

break;

default:

/* For simplicity, we don't handle bit strings, etc. */

printf("Cannot handle data type %d\n", (integer)type);

exit();

}

}

/* Fetch and display the rows of query results */

while (status = SQLFetch(stmt1_hdl) == SQL_SUCCESS) {

/* Loop, printing data for each column of the row /

printf("\n");

for(i = 0; i < colcount; i++) {

/* Print column label */

printf("Column # %d (%s): ", i+1, item_name[i]);

/* Check indicator variable for NULL indication */

if (item_ind[i] == SQL_NULL_DATA){

puts("is NULL!\n");

continue;

}

FIGURE 19-26 Using CLI for a dynamic query (continued)

 574 P a r t V : P r o g r a m m i n g w i t h S Q L 574 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Handle each returned (maybe converted) data type separately /

switch(item_type[i]) {

case SQL_C_CHAR:

/* Returned as text data - just display it */

puts(item_data[i]);

break;

case SQL_C_SLONG:

/* Four-byte integer data - convert & display it */

printf("%ld", *((int *)(item_data[i])));

break;

case SQL_C_DOUBLE:

/* Floating-point data convert & display it */

printf("%lf", *((double *)(item_data[i])));

break;

}

}

}

printf("\nEnd of data.\n"):

/* Clean up allocated storage */

for (i = 0; i < colcount; i++) {

free(item_data[i]);

free(item_name[i]);

}

SQLDisconnect(conn_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt1_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt2_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

}

FIGURE 19-26 Using CLI for a dynamic query (continued)

 C h a p t e r 1 9 : S Q L A P I s 575
PART V

 C h a p t e r 1 9 : S Q L A P I s 575

The alternative CLI method for dynamic query processing involves CLI descriptors. A CLI
descriptor contains low-level information about a statement parameter (a parameter
descriptor) or the columns of a row of query results (a row descriptor). The information in the
descriptor is like that contained in the variable area of the SQLDA—the column or parameter’s
name, data type and subtype, length, data buffer location, NULL indicator location, and so on.
The parameter descriptors and row descriptors thus correspond to the input and output
SQLDAs provided by some DBMS brands in their embedded dynamic SQL implementations.

CLI descriptors are identified by descriptor handles. The CLI provides a default set of
descriptors for parameters and query results columns when a statement is prepared.
Alternatively, the program can allocate its own descriptors and use them. The handles of the
descriptors for a statement are considered statement attributes, and they are associated with
a particular statement handle. The descriptor handle values can be retrieved and set by the
application program using the attribute management routines, described later in the section
“CLI Attributes.”

Two calls are used to retrieve information from a descriptor, given its handle. The
SQLGetDescField() call retrieves a particular field of a descriptor, which is identified by
a code value. It is typically used to obtain the data type or length of a query results column,
for example. The SQLGetDescRec() call retrieves many pieces of information in one call,
including the column or parameter name, data type and subtype, length, precision and
scale, and whether it may contain NULL values. A corresponding set of calls is used to place
information into a descriptor. The SQLSetDescField() call sets the value of a single piece
of information within a descriptor. The SQLSetDescRec() sets multiple values in a single
call, including the data type and subtype, length, precision and scale, and nullability. For
convenience, the CLI provides a SQLCopyDesc() call that copies all of the values from one
descriptor to another.

CLI Errors and Diagnostic Information
Each CLI function returns a short integer value that indicates its completion status. If the
completion status indicates an error, the error-handling CLI calls shown in Figure 19-27 can
be used to obtain more information about the error and diagnose it. The most basic error-
handling call is SQLError(). The application program passes the environment, connection,
and statement handles and is returned the SQLSTATE result code, the native error code of
the subsystem producing the error, and an error message in text form.

The SQLError() routine actually retrieves specific, frequently used information from
the CLI diagnostics area. The other error-handling routines provide more complete
information through direct access to the diagnostic records created and maintained by the
CLI. In general, a CLI call can produce multiple errors, which result in multiple diagnostic
records. The SQLGetDiagRec() call retrieves an individual diagnostic record, by record
number. Through repeated calls, the application program can retrieve complete information
about all error records produced by a CLI call. Even more complete information can be
obtained by interrogating individual diagnostic fields within the record. This capability is
provided by the SQLGetDiagField() call.

Although not strictly an error-processing function, the SQLRowCount() function, like
the error-handling functions, is called after a previous CLI SQLExecute() call. It is used
to determine the impact of the previous statement when it was successful. A returned
value indicates the number of rows of data affected by the previously executed statement.
(For example, the value 4 would be returned for a searched UPDATE statement that updates
four rows.)

 576 P a r t V : P r o g r a m m i n g w i t h S Q L 576 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Retrieve error information associated with a previous CLI call */

SQLSMALLINT SQLError (

SQLINTEGER envHdl, /* IN: environment handle */

connHdl, /* IN: connection handle */SQLSMALLINT

stmtHdl, /* IN: statement handle */SQLSMALLINT

SQLCHAR *sqlstate, /* OUT: five-character SQLSTATE value */

nativeerr, / OUT: returned native error code */SQLSMALLINT

msgbuf, / OUT: buffer for err message text */SQLCHAR

buflen, /* IN: length of err msg text buffer */SQLSMALLINT

msglen) / OUT: returned actual msg length */SQLSMALLINT

/* Determine number of rows affected by previous SQL statement */

SQLSMALLINT SQLRowCount (

stmtHdl, /* IN: statement handle */SQLSMALLINT

rowcnt) / OUT: number of rows */SQLSMALLINT

/* Retrieve info from one of the CLI diagnostic error records */

SQLSMALLINT SQLGetDiagRec (

hdltype, /* IN: handle type code */SQLSMALLINT

inHdl, /* IN: CLI handle */SQLSMALLINT

recnr, /* IN: requested err record number */SQLSMALLINT

sqlstate, / OUT: returned 5-char SQLSTATE code */SQLCHAR

nativeerr, / OUT: returned native error code */SQLSMALLINT

msgbuf, / OUT: buffer for err message text */SQLCHAR

buflen, /* IN: length of err msg text buffer */SQLSMALLINT

msglen) / OUT: returned actual msg length */SQLSMALLINT

/* Retrieve a field from one of the CLI diagnostic error records */

SQLSMALLINT SQLGetDiagField (

hdltype, /* IN: handle type code */SQLSMALLINT

inHdl, /* IN: CLI handle */SQLSMALLINT

recnr, /* IN: requested err record number */SQLSMALLINT

diagid, /* IN: diagnostic field id */SQLSMALLINT

void *diaginfo, /* OUT: returned diagnostic info */

buflen, /* IN: length of diagonal info buffer */SQLSMALLINT

actlen) / OUT: returned actual info length */SQLSMALLINT

FIGURE 19-27 CLI error-handling routines

 C h a p t e r 1 9 : S Q L A P I s 577
PART V

 C h a p t e r 1 9 : S Q L A P I s 577

CLI Attributes
The CLI provides a number of options that control some of the details of its processing.
Some of these control relatively minor but critical details, such as whether the CLI should
automatically assume that parameters passed as string values are NULL-terminated. Others
control broader aspects of CLI operation, such as the scrollability of cursors.

The CLI gives application programs the capability to control these processing options
through a set of CLI attributes. The attributes are structured in a hierarchy, paralleling the
environment/connection/statement hierarchy of the CLI handle structure. Environment
attributes control overall operational options. Connection options apply to a particular
connection created by the SQLConnect() call, but may vary from one connection to
another. Statement attributes apply to the processing of an individual statement, identified
by a CLI statement handle.

A set of CLI calls, shown in Figure 19-28, is used by an application program to control
attributes. The get calls (SQLGetEnvAttr(), SQLGetConnectAttr(), and
SQLGetStmtAttr()) obtain current attribute values. The set calls (SQLSetEnvAttr(),
SQLSetConnectAttr(), and SQLSetStmtAttr()) modify the current attribute values.
In all of the calls, the particular attribute being processed is indicated by a code value.

Although the CLI standard provides this elaborate attribute structure, it actually
specifies relatively few attributes. The single environment attribute specified is NULL
TERMINATION; it controls null-terminated strings. The single connection attribute specified
controls whether the CLI automatically populates a parameter descriptor when a statement
is prepared or executed. Statement-level attributes control the scrollability and sensitivity of
cursors. Perhaps the most important of the CLI-specified attributes are the handles of the
four CLI descriptors that may be associated with a statement (two parameter descriptors
and two row descriptors). The calls in Figure 19-28 are used to obtain and set these
descriptor handles when using descriptor-based statement processing.

The ODBC API, on which the SQL/CLI standard was originally based, includes many
more attributes. For example, ODBC connection attributes can be used to specify a read-
only connection, to enable asynchronous statement processing, to specify the timeout for a
connection request, and so on. ODBC environment attributes control automatic translation
of ODBC calls from earlier versions of the ODBC standard. ODBC statement attributes
control transaction isolation levels, specify whether a cursor is scrollable, and limit the
number of rows of query results that might be generated by a runaway query.

CLI Information Calls
The CLI includes three specific calls that can be used to obtain information about the
particular CLI implementation. In general, these calls will not be used by an application
program written for a specific purpose. They are needed by general-purpose programs
(such as a query or report writing program) that need to determine the specific
characteristics of the CLI they are using. The calls are shown in Figure 19-29.

The SQLGetInfo() call is used to obtain detailed information about a CLI
implementation, such as the maximum lengths of table and user names, whether the DBMS
supports outer joins or transactions, and whether SQL identifiers are case-sensitive. The
SQLGetFunctions() call is used to determine whether a specific implementation supports
a particular CLI function call. It is called with a function code value corresponding to one of
the CLI functions and returns a parameter indicating whether the function is supported.

 578 P a r t V : P r o g r a m m i n g w i t h S Q L 578 P a r t V : P r o g r a m m i n g w i t h S Q L

/* Obtain the value of a SQL-environment attribute */

SQLSMALLINT SQLGetEnvAttr(

SQLINTEGER envHdl, /* IN: environment handle */

attrCode, /* IN: integer attribute code */SQLINTEGER

void *rtnVal, /* OUT: return value */

bufLen, /* IN: length of rtnVal buffer */SQLINTEGER

strLen) / OUT: length of actual data */SQLINTEGER

/* Set the value of a SQL-environment attribute */

SQLSMALLINT SQLSetEnvAttr(

envHdl, /* IN: environment handle */SQLINTEGER

attrCode, /* IN: integer attribute code */SQLINTEGER

void *attrVal, /* IN: new attribute value */

strLen) / IN: length of data */SQLINTEGER

/* Obtain the value of a SQL-connection attribute */

SQLSMALLINT SQLGetConnectAttr(

connHdl, /* IN: connection handle */SQLINTEGER

attrCode, /* IN: integer attribute code */SQLINTEGER

void *rtnVal, /* OUT: return value */

bufLen, /* IN: length of rtnVal buffer */SQLINTEGER

strLen) / OUT: length of actual dataSQLINTEGER

/* Set the value of a SQL-connection attribute */

SQLSMALLINT SQLSetConnectAttr(

connHdl, /* IN: connection handle */SQLINTEGER

attrCode, /* IN: integer attribute code */SQLINTEGER

void *attrVal, /* IN: new attribute value */

strLen) / IN: length of data */SQLINTEGER

/* Obtain the value of a SQL-statement attribute */

SQLSMALLINT SQLGetStmtAttr(

stmtHdl, /* IN: statement handle */SQLINTEGER

attrCode, /* IN: integer attribute code */SQLINTEGER

void *rtnVal, /* OUT: return value */

bufLen, /* IN: length of rtnVal buffer */SQLINTEGER

strLen) / OUT: length of actual data */SQLINTEGER

/* Set the value of a SQL-statement attribute */

SQLSMALLINT SQLSetStmtAttr(

stmtHdl, /* IN: statement handle */SQLINTEGER

attrCode, /* IN: integer attribute code */SQLINTEGER

void *attrVal, /* IN: new attribute value */

strLen) / IN: length of data */SQLINTEGER

FIGURE 19-28 CLI attribute management routines

 C h a p t e r 1 9 : S Q L A P I s 579
PART V

 C h a p t e r 1 9 : S Q L A P I s 579

FIGURE 19-29 CLI implementation information routines

/* Retrieve detailed info about capabilities of a CLI implementation */

SQLSMALLINT SQLGetInfo (

SQLINTEGER connHdl, /* IN: connection handle */

infotype, /* IN: type of info requested */SQLSMALLINT

void *infoval, /* OUT: buffer for retrieved info */

buflen, /* IN: length of info buffer */SQLSMALLINT

infolen) / OUT: returned info actual length */SQLSMALLINT

/* Determine number of rows affected by previous SQL statement */

SQLSMALLINT SQLGetFunctions (

connHdl, /* IN: connection handle */SQLINTEGER

functid, /* IN: function id code */SQLSMALLINT

supported) / OUT: whether function supported */SQLSMALLINT

/* Determine information about supported data types */

SQLSMALLINT SQLGetTypeInfo (

stmtHdl, /* IN: statement handle */SQLINTEGER

datatype) /* IN: ALL TYPES or type requested */SQLSMALLINT

The SQLGetTypeInfo() call is used to obtain information about a particular
supported data type or about all types supported via the CLI interface. The call actually
behaves as if it were a query against a system catalog of data type information. It produces a
set of query result rows, each row containing information about one specific supported
type. The supplied information indicates the name of the type, its size, whether it is
nullable, whether it is searchable, and so on.

The ODBC API
Microsoft originally developed the Open Database Connectivity (ODBC) API to provide a
database-brand–independent API for database access on its Windows operating systems. The
early ODBC API became the foundation for the SQL/CLI standard, which is now the official
ANSI/ISO standard for a SQL Call-Level Interface. The original ODBC API was extended and
modified during the standardization process to create the SQL/CLI specification. With the
introduction of ODBC release 3.0, Microsoft brought ODBC into conformance with the SQL/
CLI standard. With this revision, ODBC becomes a superset of the SQL/CLI specification.

ODBC goes beyond the SQL/CLI capabilities in several areas, in part because
Microsoft’s goals for ODBC were broader than simply creating a standardized database
access API. Microsoft also wanted to allow a single Windows application program to be able
to concurrently access several different databases using the ODBC API. It also wanted to
provide a structure where database vendors could support ODBC without giving up their
proprietary APIs, and where the software that provided ODBC support for a particular
brand of DBMS could be distributed by the database vendor and installed on Windows-
based client systems as needed. The layered structure of ODBC and of special ODBC
management calls provides these capabilities.

 580 P a r t V : P r o g r a m m i n g w i t h S Q L 580 P a r t V : P r o g r a m m i n g w i t h S Q L

The Structure of ODBC
The structure of ODBC as it is provided on Windows-based or other operating systems is
shown in Figure 19-30. There are three basic layers to the ODBC software:

• Callable API At the top layer, ODBC provides a single callable database access API
that can be used by all application programs. The API is packaged as a dynamic-linked
library (DLL), which is an integral part of the various Windows operating systems.

• ODBC drivers At the bottom layer of the ODBC structure is a collection of ODBC
drivers. Each of the DBMS brands has a separate driver. The purpose of the driver is
to translate the standardized ODBC calls into the appropriate call(s) for the specific
DBMS that it supports. Each driver can be independently installed on a particular
computer system. This allows the DBMS vendors to provide an ODBC driver for
their particular brand of DBMS and to distribute the driver independently of the
Windows operating system software. If the database resides on the same system as
the ODBC driver, the driver is usually linked directly to the database’s native API
code. If the database is to be accessed over a network, the driver may call a native
DBMS client to handle the client/server connection, or the driver might handle the
network connection itself.

• Driver manager In the middle layer of the ODBC structure is the ODBC driver
manager. Its role is to load and unload the various ODBC drivers, on request from
application programs. The driver manager is also responsible for routing the API
calls made by application programs to the appropriate driver for execution.

FIGURE 19-30 ODBC architecture

 C h a p t e r 1 9 : S Q L A P I s 581
PART V

 C h a p t e r 1 9 : S Q L A P I s 581

When an application program wants to access a database via ODBC, it goes through the
same initiation sequence specified by the SQL/CLI standard. The program allocates an
environment handle, then a connection handle, and then calls SQLConnect(), specifying
the particular data source to be accessed. When it receives the SQLConnect() call, the
ODBC driver manager examines the connection information provided and determines the
appropriate ODBC driver that is needed. The driver manager loads the driver into memory
if it’s not already being used by another application program.

Subsequent calls by the application program on this particular CLI/ODBC connection are
routed to this driver. The application program can, if appropriate, make other SQLConnect()
calls for other data sources that will cause the driver manager to concurrently load other
drivers for other DBMS brands. The application program can then use ODBC to communicate
with two or more different databases, of different brands, by using a uniform API.

ODBC and DBMS Independence
By providing a uniform API and its driver manager architecture, ODBC goes a long way
toward providing a cross-vendor API for database access, but it’s impossible to provide
fully transparent access. The ODBC drivers for the various database systems can easily
mask cosmetic differences in their SQL dialects and API suites, but more fundamental
differences are difficult or impossible to mask. ODBC provides a partial solution to this
problem by providing several different levels of ODBC capability, and by making each
ODBC driver self-describing through the ODBC/CLI calls that return information about
general functionality, supported functions, and supported data types. However, the
existence of different capability levels and profiles effectively pushes the DBMS differences
right back into the application program, which must deal with this nonuniformity of ODBC
drivers. In practice, the vast majority of application programs rely on only the basic, core set
of ODBC functionality and don’t bother with more advanced features or profiles.

ODBC Catalog Functions
One of the areas where ODBC offers capability beyond the SQL/CLI standard is the
retrieval of information about the structure of a database from its system catalog. As a part
of the ANSI/ISO SQL standard, the CLI assumes that this information (about tables,
columns, privileges, and so forth) is available through the SQL Information Schema, as
described in Chapter 16. ODBC doesn’t assume the presence of an Information Schema.
Instead, it provides a set of specialized functions, shown in Table 19-4, that provide
information about the structure of a data source. By calling these functions and processing
their results, an application program can determine, at runtime, information about the
tables, columns, privileges, primary keys, foreign keys, and stored procedures that form the
structure of a data source. However, to preserve security, these functions return information
only about objects to which the user has specific access.

The ODBC catalog functions typically aren’t needed by an application program that is
written for a specific purpose. However, they are essential for a general-purpose program,
such as a query program, report generator, or data analysis tool. The catalog functions can
be called any time after a connection to a data source has been made. For example, a report-
writing program might call SQLConnect() and then immediately call SQLTables() to
determine which tables are available in the target data source. The tables could then be
presented in a list on the screen, allowing the user to select which table should be used to
generate a report.

 582 P a r t V : P r o g r a m m i n g w i t h S Q L 582 P a r t V : P r o g r a m m i n g w i t h S Q L

All of the catalog functions return their information as if they were a set of query results.
The application program uses the techniques already described for CLI query processing to
bind the columns of returned information to program variable areas. The program then calls
SQLFetch() to work its way through the returned information. For example, in the results
returned by the SQLTables() call, each SQLFetch()retrieves information about one table
in the data source.

Extended ODBC Capabilities
ODBC provides a set of extended capabilities beyond those specified in the SQL/CLI
standard. Many of the capabilities are designed to improve the performance of ODBC-based
applications by minimizing the number of ODBC function calls an application program
must make and/or the amount of network traffic generated by the ODBC calls. Other
capabilities provide useful features for maintaining database independence or aid an
application program in the database connection process. Some of the capabilities are
provided through the additional set of ODBC function calls shown in Table 19-5. Others are
provided through statement or connection attributes. Many of these additional capabilities
were introduced in the 3.0 revision of ODBC and are not yet supported by most ODBC
drivers or ODBC-based applications.

Function Description

SQLTables Returns a list of catalogs, schemas, tables, or table types in the data
source

SQLColumns Returns a list of columns in one or more tables

SQLStatistics Returns a list of statistics about a single table along with a list of
indexes associated with that table

SQLSpecialColumns Returns a list of columns that uniquely identifies a row in a single table;
also returns a list of columns in that table that are automatically updated

SQLPrimaryKeys Returns a list of columns that compose the primary key of a single table

SQLForeignKeys Returns a list of foreign keys in a single table or a list of foreign keys
in other tables that refer to a single table

SQLTablePrivileges Returns a list of privileges associated with one or more tables

SQLColumnPrivileges Returns a list of privileges associated with one or more columns in a
single table

SQLProcedures Returns a list of procedures in the data source

SQLProcedureColumns Returns a list of input and output parameters, the return value, and
the columns in the result set of a single procedure

SQLGetTypeInfo Returns a list of the SQL data types supported by the data source

TABLE 19-4 ODBC Catalog Functions

 C h a p t e r 1 9 : S Q L A P I s 583
PART V

 C h a p t e r 1 9 : S Q L A P I s 583

Extended Connection Capabilities
Two of the extended ODBC features are focused on the connection process. Connection
browsing is designed to simplify the data source connection process and make it more
database independent. SQLBrowseConnect() supports an iterative style of connection for
access to ODBC data sources. An application program first calls the function with basic
information about the target data source, and the function returns additional connection
attributes needed (such as a user name or password). The application program can obtain this
information (for example, by prompting the user) and then can recall SQLBrowseConnect()
with the additional information. The cycle continues until the application has determined all
of the information required for a successful SQLConnect() call.

The connection pooling capability is designed to improve the efficiency of ODBC
connect/disconnect processing in a client/server environment. When connection pooling is
activated, ODBC does not actually terminate network connections upon receiving a
SQLDisconnect() call. Instead, the connections are held open in an idle state for some
period and reused if a SQLConnect() call is made for the same data source. This reuse of
connections can significantly cut down the network and login/logout overhead in client/
server applications that involve short transactions and high transaction rates.

SQL Dialect Translation
ODBC specifies not just a set of API calls, but also a standard SQL language dialect that
is a subset of the SQL standard. It is the responsibility of ODBC drivers to translate the
ODBC dialect into statements appropriate for the target data source (for example, modifying

Function Description

SQLBrowseConnect() Supplies information about available ODBC data sources and the
attributes required to connect to each

SQLDrivers() Returns a list of the available drivers and driver attribute names

SQLDriverConnect() Works as an extended form of the SQLConnect() call for passing
additional connection information

SQLNumParams() Returns the number of parameters in a previously prepared SQL
statement

SQLBindParameter() Provides extended functionality beyond the SQL/CLI
SQLBindParam() call

SQLDescribeParam() Returns information about a parameter

SQLBulkOperations() Performs bulk insertion and bookmark operations

SQLMoreResults() Determines whether more results are available for a statement

SQLSetPos() Sets the cursor position within a retrieved set of query results for
positioned operations

SQLNativeSQL() Returns the native SQL translation of a supplied ODBC-compliant SQL
statement text

TABLE 19-5 Additional ODBC Functions

 584 P a r t V : P r o g r a m m i n g w i t h S Q L 584 P a r t V : P r o g r a m m i n g w i t h S Q L

date/time literals, quote conventions, keywords, and so on). The SQLNativeSQL() call
allows the application program to see the effect of this translation. ODBC also supports
escape sequences that allow an application program to more explicitly direct the translation
of SQL features that tend to be less consistent across SQL dialects, such as outer joins and
pattern-matching search conditions.

Asynchronous Execution
An ODBC driver may support asynchronous execution of ODBC functions. When an
application program makes an asynchronous mode ODBC call, ODBC initiates the required
processing (usually statement preparation or execution) and then immediately returns
control to the application program. The application program can proceed with other work
and later resynchronize with the ODBC function to determine its completion status.
Asynchronous execution can be requested on a per-connection or a per-statement basis. In
some cases, asynchronously executing functions can be terminated with a SQLCancel()
call, giving the application program a method for aborting long-running ODBC operations.

Statement-Processing Efficiency
Each ODBC call to execute a SQL statement can involve a significant amount of overhead,
especially if the data source involves a client/server network connection. To reduce this
overhead, an ODBC driver may support statement batches. With this capability, an application
program can pass a sequence of two or more SQL statements as a batch to be executed in a
single SQLExecDirect() or SQLExecute() call. For example, a series of a dozen INSERT
or UPDATE statements could be executed as a batch in this way. It can significantly reduce
network traffic in a client/server environment, but it complicates error detection and
recovery, which tend to become driver-specific when statement batches are used.

Many DBMS products address the efficiency of multistatement transactions in a
different way. They support stored procedures within the database itself, which can collect
a sequence of SQL operations, together with the associated flow-control logic, and allow
the statements to be invoked with a single call to the procedure. ODBC provides a set of
capabilities that allow an application program to directly call a stored procedure in the
target data source. For databases that allow stored procedure parameters to be passed by
name, ODBC allows parameters to be bound by name instead of by position. For data
sources that provide metadata information about stored procedure parameters, the
SQLDescribeParam() call allows the application program to determine, at runtime, the
required parameter data type. Output parameters of a stored procedure are supported
either through SQLBindParam() (in which case, the application program’s data buffer is
modified upon return from the SQLExecute() or SQLExecDirect() call) or through
SQLGetData(), which allows retrieval of longer rows of returned data.

Two other extended ODBC capabilities provide efficiency when a single SQL statement
(such as an INSERT or UPDATE statement) is to be executed repeatedly. Both address the
binding of parameters for this situation. With the binding offset feature, once a statement
parameter has been bound and the statement has been executed, ODBC allows the
application program to change its binding for the next statement execution by specifying a
new memory location as an offset from the original location. This is an effective way of
binding a parameter to individual items in an array for repeated statement execution. In
general, modifying an offset value is much more efficient than rebinding the parameter with
repeated calls to SQLBindParam().

 C h a p t e r 1 9 : S Q L A P I s 585
PART V

 C h a p t e r 1 9 : S Q L A P I s 585

ODBC parameter arrays provide an alternative mechanism for an application program to
pass multiple sets of parameter values in a single call. For example, if an application
program needs to insert multiple rows into a table, it can request execution of a
parameterized INSERT statement and bind the parameters to arrays of data values. The
effective result is as if multiple INSERT statements are performed—one for each set of
parameter values. ODBC supports both row-wise parameter arrays (each array element
holds one set of parameter values) or column-wise parameter arrays (each parameter value
is bound to its own individual array, which holds its values).

Query-Processing Efficiency
In a client/server environment, the network overhead involved in fetching many rows of
query results can be quite substantial. To cut this overhead, an ODBC driver may support
multirow fetches through the ODBC block cursor capability. With a block cursor, each
SQLFetch() or SQLFetchScroll() call retrieves multiple rows (termed the current
rowset of the cursor) from the data source. The application must bind the returned columns
to arrays to hold the multiple rows of fetched data. Either row-wise or column-wise binding
of the rowset data is supported, using the same techniques as those used for parameter
arrays. In addition, the SQLSetPos() function may be used to establish one of the rows of
the rowset as the current row for positioned update and delete operations.

ODBC bookmarks provide a different efficiency boost for an application program that
needs to operate on retrieved rows of data. An ODBC bookmark is a database-independent
unique row-id for SQL operations. (A driver may actually use primary keys or DBMS-
specific row-ids or other methods to support bookmarks, but it is transparent to the
application program.) When bookmarks are enabled, the bookmark (row-id) is returned for
each row of query results. The bookmark can be used with scrolling cursors to return to a
particular row. Additionally, it can be used to perform a positioned update or delete based
on a bookmark.

Bookmarks can also be used to determine if a particular row retrieved by two different
queries is, in fact, the same row or a different row with the same data values. Bookmarks
can make some operations much more efficient (for example, performing positioned
updates via a bookmark rather than respecifying a complex search condition to identify
the row). However, there can be substantial overhead for some DBMS brands and ODBC
drivers in maintaining the bookmark information, so this trade-off must be considered
carefully.

ODBC bookmarks form the basis for ODBC bulk operations, another efficiency-related
feature. The SQLBulkOperations() call allows an application program to efficiently
update, insert, delete, or refetch multiple rows based on their bookmarks. It operates in
conjunction with block cursors and works on the rows in the current rowset. The application
program places the bookmarks for the rows to be affected into an array and places into other
arrays the values to be inserted or deleted. It then calls SQLBulkOperations() with a
function code indicating whether the identified rows are to be updated, deleted, or refetched,
or whether a set of new rows is to be added. This call completely bypasses the normal
SQL statement syntax for these operations, and because it can operate on multiple rows
in a single call, can be a very efficient mechanism for bulk insertion, deletion, or update
of data.

 586 P a r t V : P r o g r a m m i n g w i t h S Q L 586 P a r t V : P r o g r a m m i n g w i t h S Q L

The Oracle Call Interface (OCI)
The most popular programmatic interface to Oracle is embedded SQL. However, Oracle
also provides an alternative callable API, known as the Oracle Call Interface, or OCI. OCI has
been available for many years and remained fairly stable through a number of major Oracle
upgrade cycles, including all of the Oracle 7 versions. With the introduction of Oracle8, OCI
underwent a major revision, and many of the original OCI calls were replaced by new,
improved versions. Moving forward through Oracle 9i, 10g, 11g, and beyond, this “new
OCI” (the Oracle 8 version) is effectively the Oracle Call Interface for new programs.

The “old OCI” (from Oracle 7 and before) is relevant only for legacy programs that were
originally developed using it. For reference, selected “old OCI” routines are summarized in
Table 19-6, so that you can recognize a program that may be using this old version. Conceptually,
the routines closely parallel the embedded dynamic SQL interface, described in Chapter 18.

The new OCI uses many of the same concepts as the SQL/CLI standard and ODBC,
including the use of handles to identify interface objects. Several hundred routines are
defined in the API, and a complete description of them is beyond the scope of this book.
The following sections identify the major routines that will be used by most application
programs and their functions.

OCI Handles
The new OCI uses a hierarchy of handles to manage interaction with an Oracle database,
like the handle hierarchy of the SQL/CLI described earlier in the section “CLI Structures.”
The handles are

• Environment handle The top-level handle associated with an OCI interaction

• Service context handle Identifies an Oracle server connection for statement
processing

• Server handle Identifies an Oracle database server (for multisession applications)

• Session handle Identifies an active user session (for multisession applications)

• Statement handle Identifies an Oracle-SQL statement being processed

• Bind handle Identifies an Oracle statement input parameter

• Define handle Identifies an Oracle query results column

• Transaction handle Identifies a SQL transaction in progress

• Complex object handle Retrieves data from an Oracle object

• Error handle Reports and processes OCI errors

An application program manages OCI handles using the routines shown in Table 19-7.
The allocate (Alloc) and Free routines function like their SQL/CLI counterparts. The Get
attribute and Set attribute functions operate like the similarly named SQL/CLI routines
that get and set environment, connection, and statement attributes.

An error handle is used to pass information back from OCI to the application. The error
handle to be used for error reporting is typically passed as a parameter to OCI calls. If the
return status indicates an error, information about the error can be retrieved from the error
handle using OCIErrorGet().

 C h a p t e r 1 9 : S Q L A P I s 587
PART V

 C h a p t e r 1 9 : S Q L A P I s 587

Function Description

Database connection/disconnection

olon() Logs onto an Oracle database

oopen() Opens a cursor (connection) for SQL statement processing

oclose() Closes an open cursor (connection)

ologof() Logs off from an Oracle database

Basic statement processing

osql3() Prepares (compiles) a SQL statement string

oexec() Executes a previously compiled statement

oexn() Executes with an array of bind variables

obreak() Aborts the current Oracle call interface function

oermsg() Obtains error message text

Statement parameters

obndrv() Binds a parameter to a program variable (by name)

obndrn() Binds a parameter to a program variable (by number)

Transaction processing

ocom() Commits the current transaction

orol() Rolls back the current transaction

ocon() Turns on autocommit mode

ocof() Turns off autocommit mode

Query results processing

odsc() Obtains a description of a query results column

oname() Obtains the name of a query results column

odefin() Binds a query results column to a program variable

ofetch() Fetches the next row of query results

ofen() Fetches multiple rows of query results into an array

ocan() Cancels a query before all rows are fetched

TABLE 19-6 Old Oracle Call Interface Functions (Oracle 7 and Earlier)

Routine Function

OCIHandleAlloc() Allocates a handle for use

OCIHandleFree() Frees a handle previously allocated

OCIAttrGet() Retrieves a particular attribute of a handle

OCIAttrSet() Sets the value of a particular handle attribute

TABLE 19-7 OCI Handle Management Routines

 588 P a r t V : P r o g r a m m i n g w i t h S Q L 588 P a r t V : P r o g r a m m i n g w i t h S Q L

Oracle Server Connection
The initialization and connection sequence for OCI parallels those already illustrated for
CLI/ODBC and dblib. The OCI routines associated with connection management are
shown in Table 19-8. An application program first calls OCIInitialize() to initialize the
Oracle Call Interface. This call also indicates whether OCI will be used in multithreaded
mode, whether the application program will use OCI object-mode functions, and other
options. After initialization, the application program calls OCIEnvInit() to initialize an
environment handle. As with CLI/ODBC, all OCI interactions take place within the context
of the environment defined by this handle.

After these initial steps, most applications call OCILogon() to establish a session with
an Oracle database server. Subsequent OCI calls take place within the context of this session
and use the supplied user-id to determine their privileges within the Oracle database. A call
to OCILogoff() terminates the session. The other calls provide more advanced session
management for multithreaded and multiconnection applications. The OCIServerVersion()
call can be used to determine the version of the Oracle server software. The
OCIPasswordChange() call can be used to change an expired password. When connection
pooling is used, the application can call OCIConnectionPoolCreate() to establish a
connection pool, followed by OCILogon2() to create sessions within the connection pool.
When the connection pool is no longer needed, OCIConnectionPoolDestroy() can be
used to destroy it.

Routine Function

OCIInitialize() Initializes the Oracle Call Interface for use

OCIEnvInit() Establishes an environment handle for OCI interaction

OCIConnectionPoolCreate() Initializes the connection pool

OCIConnectionPoolDestroy() Destroys the connection pool

OCILogon() Connects to an Oracle database server for an OCI session

OCILogon2() Gets a session—either a new session or a virtual one—
from an existing session pool or connection pool

OCILogoff() Terminates a previous logon connection

OCIServerAttach() Attaches to an Oracle server for multisession operations

OCIServerDetach() Detaches from an Oracle server

OCIServerVersion() Returns server version information

OCISessionBegin() Begins a user session on a previously attached server

OCIPasswordChange() Changes a user’s password on the server

OCISessionEnd() Ends a previously begun user session

TABLE 19-8 OCI Initialization and Connection Management Routines

 C h a p t e r 1 9 : S Q L A P I s 589
PART V

 C h a p t e r 1 9 : S Q L A P I s 589

Statement Execution
The OCI functions shown in Table 19-9 implement SQL statement execution.
OCIStmtPrepare() and OCIStmtExecute() support the two-step prepare/execute
process. The OCIStmtExecute() function can also be used to describe query results
(similar to the embedded SQL DESCRIBE statement) without actually executing the query
by passing a specific flag. OCI automatically provides a description of query results when
OCIStmtExecute() is called in the normal statement execution mode. The description
is available as an attribute of the statement handle for the executed query.

The OCIBindbyPos() and OCIBindbyName() functions are used to bind application
program locations to statement parameters, using either parameter positions or parameter
names. These calls automatically allocate bind handles for the parameters when they are
called, or they may be called with explicitly allocated bind handles. The other calls
implement more advanced binding techniques, including binding of multiple parameter
values (arrays) and binding of complex object data types. They also provide execute-time
parameter (and query results) processing, corresponding to the deferred parameter mode
supported by CLI/ODBC and described earlier in the “CLI Statement Processing” section.
The piece info calls support this mode of operation.

Routine Function

OCIStmtPrepare() Prepares a statement for execution

OCIStmtExecute() Executes a previously prepared statement

OCIBreak() Aborts current OCI operation on a server

OCIBindbyPos() Binds a parameter based on its position

OCIBindbyName() Binds a parameter based on its name

OCIStmtGetBindInfo() Obtains the names of bind and indicator variables

OCIBindArrayOfStruct() Sets up array binding for passing multiple parameter values

OCIBindDynamic() Registers a callback routine for a previously bound parameter
that will use runtime binding

OCIBindObject() Provides additional information for a previously bound
parameter with a complex object data type

OCIStmtGetPieceInfo() Obtains information about a dynamic piecewise parameter
value needed at execute-time by OCI (or a dynamic piecewise
query results column being returned)

OCIStmtSetPieceInfo() Sets information (buffer, length, indicator, etc.) for a dynamic
piecewise parameter value being supplied at execute-time
to OCI (or a dynamic piecewise query results column being
accepted at runtime)

TABLE 19-9 OCI Statement-Processing and Parameter-Handling Routines

 590 P a r t V : P r o g r a m m i n g w i t h S Q L 590 P a r t V : P r o g r a m m i n g w i t h S Q L

Query Results Processing
The OCI functions shown in Table 19-10 are used to process query results. The
OCIDefineByPos() function is used to bind a query results column (identified by column
number) to an application program storage location. (The OCI terminology refers to this as
the define process; the term binding is reserved for input parameters.) The other define calls
support dynamic (execute-time) binding, array binding (for multirow fetch operations), and
binding of complex object data types. The OCIStmtFetch() call retrieves a row of query
results and provides the SQL FETCH statement functionality.

Descriptor Handling
OCI uses descriptors to provide information about parameters, Oracle database objects
(tables, views, stored procedures, etc.), large objects, complex objects, row-ids, and other
OCI objects. A descriptor provides information to the application program and is used in
some cases to manage the details of the processing of these objects. The routines shown in
Table 19-11 are used to manage descriptors. They allocate and free the descriptors and
retrieve and set individual data values within the descriptors.

Transaction Management
Application programs use the functions shown in Table 19-12 to implement SQL transaction
management. The OCITransCommit() and OCITransRollback() calls provide the
basic capability to commit and roll back transactions, and correspond to the usual SQL

Routine Function

OCIStmtFetch() Fetches a row or rows of query results

OCIDefineByPos() Binds a query results column

OCIDefineArrayofStruct() Sets up array binding for multirow results retrieval

OCIDefineDynamic() Registers a callback routine for dynamic processing of
query results column

OCIDefineObject() Provides additional information for a previously bound
query results column with a complex object type

TABLE 19-10 OCI Query Results–Processing Routines

TABLE 19-11 OCI Descriptor-Management Routines

Routine Function

OCIDescriptorAlloc() Allocates a descriptor or LOB locator

OCIDescriptorFree() Frees a previously allocated descriptor

OCIParamGet() Gets a descriptor for a parameter

OCIParamSet() Sets a parameter descriptor in a complex object-retrieval handle

 C h a p t e r 1 9 : S Q L A P I s 591
PART V

 C h a p t e r 1 9 : S Q L A P I s 591

COMMIT and ROLLBACK statements. The other functions provide a very rich and complex
transaction scheme, including the specification of read-only, serializable, and loosely or
tightly coupled transactions, and control over distributed transactions. The transaction
management routines take a service context handle that identifies a current connection as
an input parameter.

Error Handling
The OCI functions return a status code indicating whether they completed successfully.
In addition, most OCI functions accept an error handle as an input parameter. If an error
occurs during processing, error information is associated with this handle. Upon return
from the function, the application program can call OCIErrorGet() on the error handle to
obtain further information about the error, including the error number and error message.

Catalog Information
The OCIDescribeAny() call provides access to Oracle system catalog information. An
application program calls this routine with the name of a table, view, synonym, stored
procedure, data type, or other Oracle schema object. The routine populates a descriptor
(identified by a descriptor handle) with information about the attributes of the object.
Subsequent calls to OCIAttrGet() on the descriptor handle can be used to obtain
complete data about the object at runtime.

Large Object Manipulation
OCI includes a large group of routines, some of which are shown in Table 19-13, for
processing Oracle large object (LOB) data types and large objects stored in files referenced
in Oracle columns. Because large objects may be tens of thousands to millions of bytes in
length, they typically cannot be bound directly to application program buffers in their
entirety. Instead, OCI uses a LOB locator, which functions like a handle for the LOB data item.
The locator is returned for LOB data in query results and used as an input parameter for
LOB data being inserted or updated. The LOB handling routines support piece-by-piece
processing of LOB data, allowing it to be transferred between an Oracle database and an
application program. The routines accept one or more LOB locators as parameters.

Routine Function

OCITransCommit() Commits a transaction

OCITransRollback() Rolls back a transaction

OCITransStart() Initiates or reattaches a special transaction

OCITransPrepare() Prepares a transaction to be committed in a distributed
environment

OCITransMultiPrepare() Prepares a transaction with multiple branches in a single call

OCITransForget() Forgets a previously prepared transaction

OCITransDetach() Detaches a distributed transaction

TABLE 19-12 OCI Transaction Management Routines

 592 P a r t V : P r o g r a m m i n g w i t h S Q L 592 P a r t V : P r o g r a m m i n g w i t h S Q L

Java Database Connectivity (JDBC)
JDBC is a callable SQL API for the Java programming language. JDBC is both the official
and de facto standard for SQL database access from Java. For the C programming language,
the DBMS vendors developed their own proprietary APIs well before the development of
ODBC or SQL/CLI API. For Java, the JDBC API was developed by Sun Microsystems as
part of a suite of Java APIs, embodied in various Java editions. As a result, all of the major
DBMS products provide Java support via JDBC; there are no important competing APIs.

JDBC History and Versions
The JDBC API has been through several major revisions since its original introduction.
JDBC 1.0 provided the basic core of data access functionality, including a driver manager to
arbitrate connections to multiple DBMSs, connection management to access individual
databases, statement management to send SQL commands to the DBMS, and result set
management to provide Java access to the query results.

Routine Function

OCILobRead() Reads a piece of a LOB into application program data area

OCILobWrite() Writes data from an application program data area into a LOB

OCILobAppend() Appends data to the end of a LOB

OCILobErase() Erases data within a LOB

OCILobTrim() Truncates data from the end of a LOB

OCILobGetLength() Obtains the length of a LOB

OCILobLocatorIsInit() Checks whether a LOB locator is valid

OCILobCopy() Copies data from one LOB to another

OCILobAssign() Assigns one LOB locator to another

OCILobIsEqual() Compares two LOB locators

OCILobFileOpen() Opens a file containing LOB data

OCILobFileClose() Closes a previously opened LOB file

OCILobFileCloseAll() Closes all previously opened LOB files

OCILobFileIsOpen() Checks whether a LOB file is open

OCILobFileGetName() Obtains the name of a LOB file, given a LOB locator

OCILobFileSetName() Sets the name of a LOB file in a LOB locator

OCILobFileExists() Checks if a LOB file exists

OCILobLoadFromFile() Loads a LOB from a LOB file

TABLE 19-13 OCI Large Object (LOB) Processing Routines

 C h a p t e r 1 9 : S Q L A P I s 593
PART V

 C h a p t e r 1 9 : S Q L A P I s 593

The JDBC 2.0 API and its incremental versions extended JDBC 1.0, and divided the
functionality into a Core API and Extensions API. The 2.0 version added

• Batch operations A Java program can pass many rows of data to be inserted or
updated via a single API call, improving performance and efficiency of bulk
operations.

• Scrollable result sets Like the scrollable cursors provided in other APIs, this new
capability permitted both forward and backward motion through query results.

• Updateable result sets A Java program can update the database by updating a
specific row of query results or inserting a new row through the results.

• Connection pooling Connections to the database can be shared across Java
programs, reducing the overhead of frequent connecting and disconnecting.

• Distributed transactions The API provides the capability to synchronize updates
across multiple databases, with all-or-nothing transactions that span database
boundaries.

• Data sources A new type of object that encapsulates the details of a database
connection, reducing the need for an application programmer to understand
connection specifics.

• Rowsets An abstraction of query results, rowsets allow query-results processing
even when a program is disconnected from the source database and later
resynchronization.

• Java Naming & Directory Interface (JNDI) support Databases and drivers can
be named and cataloged in a network directory, and accessed via those directory
entries.

The JDBC 3.0 API was finalized and formally announced by Sun in February 2002, and
packaged as part of Java2 Standard Edition (J2SE) 1.4. New capabilities introduced in the 3.0
version include

• Object-relational SQL extensions The API adds support for abstract data types
and the associated capabilities that were added to the SQL standard in 1999.

• Savepoints The API allows a partial rollback to a specifically marked savepoint
partway through a transaction.

• Cursor preservation API options allow cursors to remain open across transactions.

• Prepared statement metadata Programs can determine information about prepared
statements, such as the number and data types of parameters and of query results
columns.

JDBC Implementations and Driver Types
JDBC assumes a driver architecture like that provided by the ODBC standard, on which it is
broadly based. Figure 19-31 shows the main building blocks. A Java program connects to
the JDBC driver manager via the JDBC API. The JDBC system software is responsible for
loading one or more JDBC drivers, typically on demand from Java programs that request
them. Conceptually, each driver provides access to one particular DBMS brand, making

 594 P a r t V : P r o g r a m m i n g w i t h S Q L 594 P a r t V : P r o g r a m m i n g w i t h S Q L

whatever brand-specific API calls and sending the SQL statements needed to carry out the
JDBC request. The JDBC software is delivered as a Java package, which is imported into a
Java program that wants to use JDBC.

The JDBC specification does not deal with the specific details of how a JDBC driver is
implemented. However, since the introduction of JDBC, developers have tended to
characterize JDBC drivers into four driver types. The type descriptions assume a client/
server connection from the JDBC API (on the client system) to a database server. While this
is a common enterprise deployment architecture, it’s worth noting that JDBC is used to
access local databases on systems as small as handheld devices; in this context, the driver
types have less meaning. The driver types differ in how they translate JDBC calls (method
invocations) into specific actions against the DBMS.

A Type 1 driver, also called a JDBC/ODBC bridge, is shown in Figure 19-32. The driver
translates JDBC calls into a vendor-neutral API, which in practice is always ODBC. The
request passes to a specific ODBC driver for the target DBMS. (Optionally, the ODBC driver
manager may be eliminated, since the ODBC API to the driver manager is the same as the
API to the driver itself.) Ultimately, the ODBC driver calls the DBMS’ proprietary API. If the
database is on a local system, the DBMS carries out the request. If it’s on a remote (server)
system, the DBMS code on the client is a network access stub, which translates the request
into a network message (proprietary to the DBMS) and sends it to the DBMS server.

A Type 1 driver has one significant advantage. Because nearly all popular DBMS
products support ODBC, a single Type 1 driver can provide access to dozens of different
DBMS brands. Type 1 drivers are widely available, including one that is distributed by Sun.

FIGURE 19-31 JDBC architecture building blocks

 C h a p t e r 1 9 : S Q L A P I s 595
PART V

 C h a p t e r 1 9 : S Q L A P I s 595

A Type 1 driver also has several disadvantages. Each JDBC request passes through many
layers on its way to and from the DBMS, so a Type 1 driver typically carries a lot of
computing overhead, and its performance suffers as a result. The use of ODBC as an
intermediate stage also may limit the functionality provided by the driver—features of the
underlying DBMS that might be able to be delivered via the JDBC interface directly may not
be accessible via ODBC. Finally, the ODBC driver required by a Type 1 driver will be
delivered in binary form, not as a Java executable. Thus, any given Type 1 driver is specific to
the client computer’s hardware and operating system, and will lack the portability of Java.

A Type 2 driver is also called a Native API driver. The driver translates JDBC requests
directly into the native API of the DBMS, as shown in Figure 19-33. Unlike with the Type 1
driver, no ODBC or other vendor-neutral layer is involved. If the database is located on the
same system as the Java program, the Type 2 driver’s calls to the native API will go directly

FIGURE 19-32
A JDBC Type 1
driver

 596 P a r t V : P r o g r a m m i n g w i t h S Q L 596 P a r t V : P r o g r a m m i n g w i t h S Q L

to the DBMS. In a client/server network, the DBMS code on the client is again a network
access stub, and the requests flow over the network in a DBMS-proprietary protocol, as in
the Type 1 driver.

Type 2 drivers present a different set of trade-offs than Type 1 drivers. A Type 2 driver
has fewer layers, so performance is typically higher. It still has the disadvantage of
requiring binary code to be installed on the client system, so each Type 2 driver will still be
specific to a hardware architecture and operating system. Unlike a Type 1 driver, a Type 2
driver is also specific to a DBMS brand. If you want to communicate with several different
DBMSs, you will need multiple drivers. Finally, it’s worth noting that the Type 1/Type 2
distinction assumes that the native DBMS API is not ODBC. If a DBMS presents a native
ODBC interface, then the use of ODBC does not imply an additional layer, and its Type 2
driver will, in fact, use ODBC to access the DBMS.

A Type 3 driver is a Network-Neutral driver. The driver translates JDBC requests into
network messages in a vendor-neutral format and sends them across the network to the
server, as shown in Figure 19-34. On the server, a middleware layer receives the network
requests and translates them into calls to the DBMS’ native API. Query results are passed
back across the network, again in a vendor-neutral format.

FIGURE 19-33
A JDBC Type 2
driver

 C h a p t e r 1 9 : S Q L A P I s 597
PART V

 C h a p t e r 1 9 : S Q L A P I s 597

Type 3 drivers once again present a different set of trade-offs. One major advantage
claimed for the Type 3 architecture is that the client-side code can be written in Java, using
the network interfaces provided by other Java APIs. Notice also that the client-side code is
DBMS neutral; it does the same work no matter what the target DBMS on the server. This
means that the client-side code is very portable, able to run on any system that supports a
Java Virtual Machine (JVM) and Java network APIs. Type 3 drivers share one disadvantage
with Type 1 drivers: the use of a vendor-neutral network layer, just like the use of a vendor-
neutral ODBC layer, means that some capabilities of the underlying DBMS may be
inaccessible through the intermediate layer. A Type 3 architecture also involves a double
translation of each JDBC request, just as in Type 1; however, one of the translations takes
place on the server system, minimizing the client-side impact.

A Type 4 driver is a Network-Proprietary driver. The driver translates JDBC requests into
network messages, but this time in a DBMS-proprietary format, as shown in Figure 19-35.
The driver is written in Java and implements a network client for the DBMS’ networking
software, such as Oracle’s SQL*Net. On the server, there is no need for a middleware layer,
since the DBMS server already provides support for the DBMS vendor’s own client/server
networking. Query results flow back across the network, again in vendor-proprietary
format, and supplied back to the requesting program.

FIGURE 19-34
A JDBC Type 3
driver

 598 P a r t V : P r o g r a m m i n g w i t h S Q L 598 P a r t V : P r o g r a m m i n g w i t h S Q L

Type 4 drivers preserve one of the important advantages of Type 3 drivers. They can be
implemented in pure Java, so like Type 3, they are portable across computer hardware and
operating systems. However, unlike Type 3 drivers, they are DBMS-specific, so different
client-side code is required for each DBMS brand you want to access. A Type 4 architecture
involves less overhead on the server system and may therefore deliver slightly better
performance. In practice, the overhead of the network messaging will almost always swamp
this advantage, except in very high transaction rate applications.

Figure 19-36 summarizes the four JDBC driver types and shows how they relate to one
another. The two columns divide the driver types based on whether they use a vendor-neutral
intermediate layer (left column) or translate directly from the JDBC API to a DBMS-
proprietary interface. The two rows divide the driver types based on whether the translation
to a specific DBMS API occurs on the client side (upper row) or on the server side (lower row).
As the figure shows, these two decisions result in four (2×2) driver types.

The JDBC API
Java is an object-oriented language, so it’s probably no surprise that JDBC organizes its API
functions around a collection of database-related objects and the methods that they provide:

• Driver Manager object The entry-point to JDBC

• Connection objects Represent individual active connections to target databases

• Statement objects Represent SQL statements to be executed

FIGURE 19-35
A JDBC Type 4
driver

 C h a p t e r 1 9 : S Q L A P I s 599
PART V

 C h a p t e r 1 9 : S Q L A P I s 599

• ResultSet objects Represent the results of a SQL query

• MetaData objects Represent metadata about databases, query results, and statements

• Exception objects Represent errors in SQL statement execution

These objects have the logical relationship shown in Figure 19-37, based on which
objects provide methods to create other objects. The following sections describe each of
these objects, and how their methods are used to connect to databases, execute SQL
statements, and process query results. A complete explanation of the JDBC API is beyond
the scope of this book, but the concepts described should allow you to make effective use of
JDBC and to understand the documentation that is delivered with the package.

The DriverManager object is the main interface to the JDBC package. Some of the
most important methods that it provides are shown in Table 19-14. After loading the JDBC
driver class that you want to use (typically using the Class.forName() method), your
program will ask the DriverManager object to connect you to that specific driver and a
specific database with the getConnection() method:

// Create a connection to the Oracle JDBC driver
String url = "… will vary depending on OS, etc. "
String user = "Scott";
String pswd = "Tiger";
Connection dbconn =
 DriverManager.getConnection(url, user, pswd);

The getConnection() method returns an object, the Connection object, which
embodies the connection that has just been created and the database on the other end of that
connection. Other DriverManager methods provide programmatic control over connection
timeouts, switch on JDBC call logging for debugging, and perform other utility functions. If
it encounters an error while attempting to make the connection, the DriverManager object
will throw an exception. Error handling is described in the “Error Handling in JDBC” section
later in this chapter.

FIGURE 19-36
JDBC driver types
and trade-offs

 600 P a r t V : P r o g r a m m i n g w i t h S Q L 600 P a r t V : P r o g r a m m i n g w i t h S Q L

FIGURE 19-37 Key objects used by the JDBC API

Method Description

getConnection() Creates and returns a database connection object, given a URL
for the datasource, and optionally a user name and password,
and connection properties

registerDriver() Registers a driver with JDBC driver manager

setLoginTimeout() Sets timeout for connection login

getLoginTimeout() Obtains login timeout value

setLogWriter() Enables tracing of JDBC calls

TABLE 19-14 DriverManager Object Methods

 C h a p t e r 1 9 : S Q L A P I s 601
PART V

 C h a p t e r 1 9 : S Q L A P I s 601

JDBC Basic Statement Processing
The major functions of the JDBC Connection object are to manage the connection to the
database, to create SQL statements for processing by that database, and to manage
transactions over the connection. Table 19-15 shows the Connection object methods that
provide these functions. In most simple JDBC programs, the next step after a connection has
been established will be to call the Connection object’s createStatement() method to
create a Statement object.

The major function of a Statement object is to actually execute SQL statements.
Table 19-16 shows the Statement object methods that you use to control statement
execution. There are several different execute() methods, depending on the specific
type of SQL statement. Simple statements that do not produce query results (e.g., UPDATE,
DELETE, INSERT, CREATE TABLE) can use the executeUpdate method. Queries use the
executeQuery() method, because it provides a mechanism for returning the query
results. Other execute() methods support prepared SQL statements, statement
parameters, and stored procedures.

To illustrate the basic use of Connection and Statement objects, here is a simple Java
program excerpt that creates a connection to a database, performs two database updates,
commits the changes, and then closes the connection:

// The connection object and strings we will use
Connection dbconn; // the database connection
String str1 = "UPDATE OFFICES SET TARGET = 0";
String str2 = "DELETE FROM SALESREPS WHERE EMPL_NUM = 106";

 <code in here creates the connection>

// Create a statement object for executing SQL
Statement stmt = dbconn.createStatement();

Method Description

close() Closes the connection to the datasource

createStatement() Creates a Statement object for the connection

prepareStatement() Prepares a parameterized SQL statement into a
PreparedStatement for execution

prepareCall() Prepares a parameterized call to a stored procedure or function
into a CallableStatement for execution

commit() Commits the current transaction on the connection

rollback() Rolls back the current transaction on the connection

setAutoCommit() Sets/resets autocommit mode on the connection

getWarnings() Retrieves SQL warning(s) associated with a connection

getMetaData Returns a DatabaseMetaData object with info about database

TABLE 19-15 JDBC Connection Object Methods

 602 P a r t V : P r o g r a m m i n g w i t h S Q L 602 P a r t V : P r o g r a m m i n g w i t h S Q L

// Update the OFFICES table with the statement object
stmt.executeUpdate(str1);

// Update the SALESREPS table with the statement object
stmt.executeUpdate(str2);

// Commit the changes to the database
dbconn.commit();

// Update the SALESREPS table using the same statement object
stmt.executeUpdate(str2);

// Finally, close the connection
dbconn.close();

As the example shows, the SQL transaction-processing operations (commit and
rollback) are handled by method calls to the Connection object, rather than by executing
COMMIT and ROLLBACK statements. This allows the JDBC driver to know the status of the
transactions that it is processing without examining the specific SQL being executed. JDBC
also supports an autocommit mode, in which every statement is treated as an individual
transaction. A Connection object method also controls this option.

Method Description

Basic statement execution

executeUpdate() Executes a nonquery SQL statement and returns the number
of rows affected

executeQuery() Executes a single SQL query and returns a result set

execute() General-purpose execution of one or more SQL statements

Statement batch execution

addBatch() Stores previously supplied parameter values as part of a batch
of values for execution

executeBatch() Executes a sequence of SQL statements; returns an array of
integers indicating the number of rows impacted by each one

Query results limitation

setMaxRows() Limits number of rows retrieved by a query

getMaxRows() Retrieves current maximum row limit setting

setMaxFieldSize() Limits maximum size of any retrieved column

getMaxFieldSize() Retrieves current maximum field size limit

setQueryTimeout() Limits maximum time of query execution

getQueryTimeout() Retrieves current maximum query time limit

Error handling

getWarnings() Retrieves SQL warning(s) associated with statement execution

TABLE 19-16 JDBC Statement Object Methods

 C h a p t e r 1 9 : S Q L A P I s 603
PART V

 C h a p t e r 1 9 : S Q L A P I s 603

Note that the Connection and Statement methods called in this program excerpt can
cause errors, and the excerpt does not show any error-handling code. If an error occurs, the
JDBC driver will throw a SQLException exception. Normally, an excerpt like the previous
one (or parts of it) will appear within a try/catch structure to handle the possible
exception. For simplicity, the enclosing try/catch structure is suppressed in this and the
next several examples. Error-handling techniques are described in the “Error Handling in
JDBC” section later in this chapter.

Simple Query Processing
As with the other SQL APIs and embedded SQL, query processing requires an additional
mechanism beyond those used for database updates to handle the returned query results.
In JDBC, the ResultSet object provides that additional mechanism. To execute a simple
query, a Java program invokes the executeQuery() method of a Statement object,
passing the text of the query in the method call. The executeQuery() method returns a
ResultSet object that embodies the query results. The Java program then invokes the
methods of this ResultSet object to access the query results, row by row and column by
column. Table 19-17 shows some of the methods provided by the ResultSet object.

Here is a very simple Java program excerpt that shows how the objects and methods
you have seen so far combine to perform simple query processing. It retrieves and prints
the office number, city, and region for each office in the OFFICES table:

// The connection object, strings, and variables
Connection dbconn; // the database connection
Int num; // returned office number
String city; // returned city
String reg; // returned region
String str1 = "SELECT OFFICE, CITY, REGION FROM OFFICES";

 <code in here creates the connection>

// Create a statement object for executing the query
Statement stmt = dbconn.createStatement();

// Carry out query – method returns a ResultSet object
ResultSet answer = stmt.executeQuery(str1);

// Loop through ResultSet a row at a time
while (answer.next()) {
 // Retrieve each column of data
 num = answer.getInt("OFFICE");
 city = answer.getString("CITY");
 reg = answer.getString(3);

 // Print the row of results
 System.out.println(city + " " + num + " " + reg);
}

// Explicitly close the cursor and connection
answer.close();
dbconn.close();

 604 P a r t V : P r o g r a m m i n g w i t h S Q L 604 P a r t V : P r o g r a m m i n g w i t h S Q L

The methods used are straightforward and they parallel the query-processing steps
already seen for embedded SQL and C/C++ APIs. The ResultSet object maintains a cursor
to note its current position within the query results. Its next method advances the cursor, row
by row, through them. There is an explicit JDBC get method call to retrieve each column of
data for each row. Java’s strong typing and memory-protection schemes make this approach a
requirement, but it carries significantly higher overhead than the C/C++ approach of binding
program variables and having the database API automatically populate those variables when
the next row is fetched. Finally, the close() method call ends query processing.

Method Description

Cursor motion

next() Moves cursor to next row of query results

close() Ends query processing; closes the cursor

Basic column-value retrieval

getInt() Retrieves integer value from specified column

getShort() Retrieves short integer value from specified column

getLong() Retrieves long integer value from specified column

getFloat() Retrieves floating point numeric value from specified column

getDouble() Retrieves double-precision floating point value from specified column

getString() Retrieves character string value from specified column

getBoolean() Retrieves true/false value from specified column

getDate() Retrieves date value from specified column

getTime() Retrieves time value from specified column

getTimestamp() Retrieves timestamp value from specified column

getByte() Retrieves byte value from specified column

getBytes() Retrieves fixed-length or variable-length BINARY data from
specified column

getObject() Retrieves any type of data from specified column

Large object retrieval

getAsciiStream() Gets input stream object for processing a character large object
(CLOB) column

GetBinaryStream() Gets input stream object for processing a binary large object
(BLOB) column

Other functions

getMetaData() Returns a ResultSetMetaData object with metadata for query

getWarnings() Retrieves SQL warnings associated with the ResultSet

TABLE 19-17 JDBC ResultSet Object Methods

 C h a p t e r 1 9 : S Q L A P I s 605
PART V

 C h a p t e r 1 9 : S Q L A P I s 605

The example also shows the two alternative methods for specifying which column’s
value should be retrieved by each get method call. You can specify the name of the column
to be retrieved (used for the OFFICE and CITY columns), or its ordinal position within the
columns of results (used for the REGION column). JDBC delivers this capability by
overloading each of the get methods—one version takes a string (column name) argument;
the other takes an integer (column number) argument.

Using Prepared Statements in JDBC
The executeQuery() and executeUpdate() methods of the Statement object provide
a dynamic SQL capability. They parallel the SQLExecDirect() call in the CLI standard.
The database on the other end of the JDBC connection doesn’t know in advance which SQL
text will be presented when the execute method is called. It must parse the statement on the
fly and determine how to execute it. The dynamic SQL approach makes this part of the
JDBC interface quite easy to use, but it creates the high overhead usually associated with
dynamic SQL for the underlying DBMS. For high transaction rate applications where
performance is important, an alternative prepared statement interface is more appropriate.

The prepared statement approach uses the same concepts as the PREPARE/EXECUTE
statements of embedded dynamic SQL and the SQLPrepare() and SQLExecute() calls
of the CLI standard. A SQL statement that is to be executed repeatedly (such as an UPDATE
statement that will be used on many rows, or a query that will be executed hundreds of
times during a program) is first prepared by passing it to the DBMS for parsing and analysis.
Later, the statement may be executed repeatedly with very little overhead. You can vary the
specific values used by the statement during each execution by passing parameter values for
the execution. For example, you can change the values to be used for each UPDATE operation,
or change the value to be matched in the WHERE clause of a query using parameters.

To use a prepared statement with JDBC, your program invokes the prepareStatement()
method on a connection instead of the createStatement() method. Unlike
createStatement(), the prepareStatement() method takes an argument—a string
containing the SQL statement that is to be prepared. Within the statement string, parameters
to be supplied at statement execution are indicated by a question mark (?), which serves as a
parameter marker. A parameter can be used within the statement anywhere that a constant
could legally appear in the statement. The prepareStatement() method returns a
PreparedStatement object, which includes some additional methods beyond those
provided by a Statement object. Table 19-18 shows some of these additional methods,
nearly all of which are for parameter processing.

The additional set() methods of the PreparedStatement object take two
parameters. One indicates the parameter number for which a value is being supplied. The
other provides the parameter value itself. With these methods, the typical sequence for
JDBC prepared statement processing can be summarized as follows:

 1. The Java program establishes a connection to the DBMS in the usual way.

 2. The program calls the prepareStatement() method with the text of the statement
to be prepared, including parameter markers. The DBMS analyzes the statement and
creates an internal, optimized representation of the statement to be executed.

 3. Later, when it’s time to execute the parameter statement, the program calls one of the
set methods in Table 19-18 for each parameter, supplying a value for the parameter.

 606 P a r t V : P r o g r a m m i n g w i t h S Q L 606 P a r t V : P r o g r a m m i n g w i t h S Q L

 4. When all parameter values have been supplied, the program calls executeQuery
or executeUpdate to execute the statement.

 5. The program repeats Steps 3 and 4 over and over (typically dozens or hundreds of
times or more), varying the parameter values. If a particular parameter’s value does
not change from one execution to the next, the set method does not need to be
recalled.

Here is a program excerpt that illustrates the technique:

// The connection object, strings, and variables
Connection dbconn; // the database connection
String city; // returned city
String str1 = "UPDATE OFFICES SET REGION = ? WHERE MGR = ?";

String str2 = "SELECT CITY FROM OFFICES WHERE REGION = ?";

 <code in here creates the connection>

Method Description

setInt() Sets value of an integer parameter

setShort() Sets value of a short integer parameter

setLong() Sets value of a long integer parameter

setFloat() Sets value of a floating point parameter

setDouble() Sets value of a double-precision floating point parameter

setString() Sets value of a string parameter

setBoolean() Sets value of a BOOLEAN parameter

setDate() Sets value of a DATE parameter

setTime() Sets value of a TIME parameter

setTimestamp() Sets value of a TIMESTAMP parameter

setByte() Sets value of a BYTE parameter

setBytes() Sets value of a BINARY or VARBINARY parameter

setBigDecimal() Sets value of a DECIMAL or NUMERIC parameter

setNull() Sets a NULL value for a parameter

setObject() Sets value of an arbitrary parameter

clearParameters Clears all parameter values

getParameterMetaData() Returns ParameterMetaData object for a prepared
statement (JDBC 3.0 only)

TABLE 19-18 Additional Methods of a JDBC PreparedStatement Object

 C h a p t e r 1 9 : S Q L A P I s 607
PART V

 C h a p t e r 1 9 : S Q L A P I s 607

// Prepare the UPDATE statement
PreparedStatement pstmt1 = dbconn.prepareStatement(str1);

// Prepare the query
PreparedStatement pstmt2 = dbconn.prepareStatement(str2);

// Set parameters for UPDATE statement & execute it
pstmt1.setString(1,"Central");
pstmt1.setInt(2,108);
pstmt1.executeUpdate();

// Reset one of the parameters and execute again, then commit
pstmt1.setInt(2,104);
pstmt1.executeUpdate();
dbconn.commit()

// Set parameter for query & execute it
pstmt2.setString(1,"Central");
ResultSet answer = pstmt2.executeQuery();

// Loop through ResultSet a row at a time
while (answer.next()) {
 // Retrieve each column of data
 city = answer.getString(1);

 // Print the row of results
 System.out.println("Central city is " + city);
}
answer.close();

// Set a different parameter for query & execute it
pstmt2.setString(1,"Eastern");
ResultSet answer = pstmt2.executeQuery();

// Loop through ResultSet a row at a time
while (answer.next()) {
 // Retrieve each column of data
 city = answer.getString(1);

 // Print the row of results
 System.out.println("Eastern city is " + city);
}
answer.close();

// Done – close the connection
dbconn.close();

Using Callable Statements in JDBC
The last several sections described how JDBC supports dynamic SQL statement execution
(via the Statement object created by the createStatement() method) and prepared
SQL statements (via the PreparedStatement object created by the
prepareStatement() method). JDBC also supports the execution of stored procedures
and stored functions through a third type of statement object, the CallableStatement
object created by the prepareCall() method.

 608 P a r t V : P r o g r a m m i n g w i t h S Q L 608 P a r t V : P r o g r a m m i n g w i t h S Q L

Here is how a Java program invokes a stored function or stored procedure using JDBC:

 1. The Java program invokes the prepareCall() method, passing it a SQL statement
that invokes the stored routine. Parameters to the call are indicated by parameter
markers within the statement string, just as they are for a prepared statement.

 2. The method returns a CallableStatement object.

 3. The Java program uses the set() methods of the CallableStatement object to
specify parameter values for the procedure or function call.

 4. The Java program uses another method of the CallableStatement object to
specify the data types of returned values from the stored procedure or function.

 5. The Java program invokes one of the CallableStatement object’s execute()
methods to actually make the call to the stored procedure.

 6. Finally, the Java program invokes one or more of the CallableStatement object’s
get() methods to retrieve the values returned by the stored procedure (if any) or
the return value of the stored function.

A CallableStatement object provides all of the methods of a PreparedStatement,
listed in Tables 19-16 and 19-18. The additional methods that it provides for registering the
data types of output or input/output parameters, and for retrieving the returned values of
those parameters after the call, are shown in Table 19-19.

Function Description

registerOutParameter() Registers data type for output (or input/output) parameter

getInt() Retrieves integer returned value

getShort() Retrieves short integer value from specified column

getLong() Retrieves long integer value from specified column

getFloat() Retrieves floating point numeric value from specified column

getDouble() Retrieves double-precision floating point value from specified
column

getString() Retrieves character string value from specified column

getBoolean() Retrieves true/false value from specified column

getDate() Retrieves single date value from specified column

getTime() Retrieves single time value from specified column

getTimestamp() Retrieves single timestamp value from specified column

getByte() Retrieves single byte value from specified column

getBytes() Retrieves fixed-length or variable-length BINARY data

getBigDecimal() Retrieves DECIMAL or NUMERIC data

getObject() Retrieves any type of data

TABLE 19-19 Additional Methods of the CallableStatement Object

 C h a p t e r 1 9 : S Q L A P I s 609
PART V

 C h a p t e r 1 9 : S Q L A P I s 609

A short example is the best way to illustrate the technique for calling a stored procedure
and stored function. (The body of the procedure and function are omitted from this example
because the point is how they are called rather than what they do.) Suppose the sample
database contains a stored procedure defined like this:

CREATE PROCEDURE CHANGE_REGION
 (IN OFFICE INTEGER,
 OUT OLD_REG VARCHAR(10),
 IN NEW_REG VARCHAR(10));

that changes the region of an office, as requested by the two input parameters, and returns
the old region as an output parameter and a stored function, defined like this:

CREATE FUNCTION GET_REGION
 (IN OFFICE INTEGER)
 RETURNS VARCHAR(10);

that returns the region of an office, given its office number. This Java program excerpt
shows how to invoke the stored procedure and stored function using JDBC:

// The connection object, strings, and variables
Connection dbconn; // the database connection
String str1 = "{CALL CHANGE_REGION(?, ?, ?)}";
String str2 = "{? = CALL GET_REGION(?)}";
String oldreg; // returned former region
String ansreg; // returned current region

 <code in here creates the connection>

// Prepare the two statements
CallableStatement cstmt1 = dbconn.prepareCall(str1);
CallableStatement cstmt2 = dbconn.prepareCall(str2);

// Specify param values & returned data types for stored procedure call
cstmt1.setInt(1,12); // call with office number 12 (Chicago)
cstmt1.setString(3,"Central"); // and new Central region
cstmt1.registerOutParameter(2,Types.VARCHAR); // returns a varchar param

// Go ahead and execute the call to the stored procedure
cstmt1.executeUpdate();
oldreg = cstmt.getString(2); // returned (2nd) param is a string

// Specify param values & returned data type for stored function call
cstmt2.setInt(1,12); // call with office number 12 (Chicago)
cstmt2.registerOutParameter(1,Types.VARCHAR); // fcn returns a varchar

// Go ahead and execute the call to the stored function
cstmt2.executeUpdate();
ansreg = cstmt.getString(1); // returned value (1st param) is a string

// Done – close the connection
dbconn.close();

 610 P a r t V : P r o g r a m m i n g w i t h S Q L 610 P a r t V : P r o g r a m m i n g w i t h S Q L

Note that the call invocations of the stored procedure or function in the statement
strings are enclosed in curly brackets. The input parameters passed to a stored procedure or
function are handled exactly the same way as parameters for a prepared statement. Output
parameters from a stored procedure require some new machinery: the
registerOutParameter() method call to specify their data types, and calls to the get()
methods to retrieve their values after the call is complete. These are summarized in Table
19-19. Input/output parameters for a stored procedure require both that values be passed
into the procedure call, using the set() methods, and that the output data type be
specified with registerOutParameter() and that the returned data be retrieved with
the get() methods.

For a stored function, there are only input parameters, and the set() methods are once
again used. The return value of the function is specified with a parameter marker in the
prepared statement string. Its data type is registered, and its value is retrieved, just as if it
were a regular output parameter.

Error Handling in JDBC
When an error occurs during JDBC operation, the JDBC interface throws a Java exception.
Most SQL statement execution errors throw a SQLException. The error can be handled via
the standard Java try/catch mechanism. When a SQLException error occurs, the
catch() method is called with a SQLException object, some of whose methods are
summarized in Table 19-20.

The SQLException methods allow you to retrieve the error message, SQLSTATE error
code, and DBMS-specific error code associated with the error. A single JDBC operation can
create more than one error. In this case, the errors are available to your program in
sequence. Calling getNextException() on the first reported error returns a
SQLException for the second exception, and so on, until no more exceptions are to be
handled.

Scrollable and Updateable Cursors in JDBC
Just as scrollable cursors have been added to the ANSI/ISO SQL standards, scrollable
cursors have been added to JDBC result sets in later versions of the specification. You
indicate that you want a query to produce results that are scrollable through a parameter to
the executeQuery method. If you specify scrollability, the ResultSet returned by the
executeQuery call offers some additional methods for cursor control. The important
methods are listed in Table 19-21.

Method Description

getMessage() Retrieves error message describing the exception

getSQLState() Retrieves SQLSTATE value (5-char string, as described in
Chapter 17)

getErrorCode() Retrieves driver-specific or DBMS-specific error code

getNextException() Moves to next SQL exception in a series

TABLE 19-20 JDBC SQLException Methods

 C h a p t e r 1 9 : S Q L A P I s 611
PART V

 C h a p t e r 1 9 : S Q L A P I s 611

Function Description

Scrollable cursor motion

previous() Moves cursor to previous row of query results

beforeFirst() Moves cursor before the start of the results

first() Moves cursor to first row of query results

last() Moves cursor to last row of query results

afterLast() Moves cursor past end of the results

absolute() Moves cursor to absolute row number indicated

relative() Moves cursor to relative row number indicated

Cursor position sensing

isFirst() Determines whether the current row is the first row of the result set

isLast() Determines whether the current row is the last row of the result set

isBeforeFirst() Determines whether the cursor is positioned before the beginning of
the result set

isAfterLast() Determines whether the cursor is positioned past the end of the
result set

moveToInsertRow() Moves cursor to “empty” row for inserting new data

moveToCurrentRow() Moves cursor back to the current row before an insertion

Update a column of current row (via cursor)

updateInt() Updates an integer column value

updateShort() Updates a short integer column value

updateLong() Updates a long integer column value

updateFloat() Updates a floating point column value

updateDouble() Updates a double-precision floating point column value

updateString() Updates a string column value

updateBoolean() Updates a true/false column value

updateDate() Updates a date column value

updateTime() Updates a time column value

updateTimestamp() Updates a timestamp column value

updateByte() Updates a byte column value

updateBytes() Updates a fixed-length or variable-length column value

updateBigDecimal() Updates a DECIMAL or NUMERIC column value

updateNull() Updates a column to a NULL value

updateObject() Updates an arbitrary column value

TABLE 19-21 JDBC ResultSet Object Extended Cursor Methods

 612 P a r t V : P r o g r a m m i n g w i t h S Q L 612 P a r t V : P r o g r a m m i n g w i t h S Q L

In addition to scrollable result sets, later versions of the JDBC specification added
support for updateable result sets. This capability corresponds to the UPDATE…WHERE
CURRENT OF capability in embedded SQL. It allows an update to specific columns of this
row, which is indicated by the current position of a cursor. Updateable result sets also allow
new rows of data to be inserted into a table via a result set.

Retrieving Metadata with JDBC
The JDBC interface provides objects and methods for retrieving metadata about databases,
query results, and parameterized statements. A JDBC Connection object provides access
to metadata about the database that it represents. Invoking its getMetaData() method
returns a DatabaseMetaData object, described in Table 19-22. Each method listed in the
table returns a result set containing information about a type of database entity: tables,
columns, primary keys, and so on. The result set can be processed using the normal JDBC
query results processing routines. Other metadata access methods provide information
about the database product name supported on this connection, its version number, and
similar information.

Metadata information about query results can also be very useful. A ResultSet object
provides a getMetaData method that can be invoked to obtain a description of its query
results. The method returns a ResultSetMetaData object, described in Table 19-23. The
methods let you determine how many columns are in the query results, and the name and
data type of each column, identified by their ordinal position within the query results.

Function Description

getTables() Returns result set of table information of tables in database

getColumns() Returns result set of column names and type info, given table
name

getPrimaryKeys() Returns result set of primary key info, given table name

getProcedures() Returns result set of stored procedure info

getProcedureColumns() Returns result set of info about parameters for a specific
stored procedure

TABLE 19-22 DatabaseMetaData Methods for Database Information Retrieval

TABLE 19-23 ResultSetMetaData Methods

Function Description

getColumnCount() Returns number of query results columns

getColumnName() Retrieves name of specified results column

getColumnType() Retrieves data type of specified results column

 C h a p t e r 1 9 : S Q L A P I s 613
PART V

 C h a p t e r 1 9 : S Q L A P I s 613

Finally, metadata information about the parameters used in a prepared SQL statement
or a prepared call to a stored procedure can also be useful. The getParameterMetaData()
method that retrieves this information is inherited from the CallableStatement object since
it extends the PreparedStatement object. The method returns a ParameterMetaData
object, described in Table 19-24. Invoking the methods of this object provides information
about how many parameters are used in the statement, their data types, whether each
parameter is an input, output, or input/output parameter, and similar information.

Advanced JDBC Capabilities
JDBC 2.0 and JDBC 3.0 introduced several capabilities that extend the basic database access
functionality of JDBC. JDBC data sources, first introduced in JDBC 2.0, provide a higher-level
method for finding available drivers and databases and connecting to them. They mask the
details of making a connection from the Java application programmer. Basically, a data
source is identified with some external directory or catalog that is able to translate logical
entity names into specific details. Using a data source, the application programmer can
specify a target database by an abstract name, and have the directory in conjunction with
the JDBC software handle the details of connections.

JDBC rowsets are another advanced concept enhanced and extended in the JDBC revisions.
A rowset extends the concept of a JDBC result set, which you will recall represents a set of
query results. Beyond the query results themselves, a rowset encapsulates information about
the underlying source database, the connection to the database, its user name and password,
and so on. The rowset retains its identity independent of an active connection to the database.
Thus, a rowset may exist in a disconnected state, and it can be used to reestablish a connection
to the database. When connected to the database, the rowset can contain query results like
a result set.

Rowsets have several other characteristics and capabilities. A rowset meets the requirement
for a JavaBeans component, and when connected to a database, provides a way to make a result
set look like an Enterprise Java Bean (EJB). Rowsets hold tabular row/column query results,

TABLE 19-24 JDBC ParameterMetaData Methods

Function Description

getParameterClassName() Returns name of the class (data type) for specified parameter

getParameterCount() Returns number of parameters in the statement

getParameterMode() Returns mode (IN, OUT, INOUT) of parameter

getParameterType() Returns SQL data type of specified parameter

getParameterTypeName() Returns DBMS data type of specified parameter

getPrecision() Returns precision of specified parameter

getScale() Returns scale of specified parameter

isNullable() Determines whether the specified parameter is nullable

isSigned() Determines whether the specified parameter is a signed
number

 614 P a r t V : P r o g r a m m i n g w i t h S Q L

and those results can be retrieved, navigated, and even updated whether the rowset is currently
connected to the source database or not. If disconnected updates are made, resynchronization
is implied when the rowset once again is connected to the source database. Finally, the concept
of a rowset is not necessarily tied to SQL and relational databases. The data in a rowset can
conceptually come from any tabular data source, such as a personal computer spreadsheet or
even a table within a word processing document. A complete discussion of JDBC rowsets is
beyond the scope of this book; see the JDBC documentation at http://java.sun.com/javase/
technologies/database/index.jsp for more information about this and other JDBC capabilities.
(Click the JDBC Documentation link for the version you want.)

Summary
Many SQL-based DBMS products provide a callable API for programmatic database access:

• Depending on the particular DBMS brand and its history, the callable API may be
an alternative to an embedded SQL approach, or it may be the primary method by
which an application program accesses the database.

• A callable interface puts query processing, parameter passing, statement compilation,
statement execution, and similar tasks into the call interface, keeping the programmatic
SQL language identical to interactive SQL. With embedded SQL, these tasks are
handled by special SQL statements (OPEN, FETCH, CLOSE, PREPARE, EXECUTE,
and so on) that are unique to programmatic SQL.

• Microsoft’s ODBC is a widely supported, callable API that provides an effective
way for an application program to achieve independence from a particular DBMS.
However, differences between DBMS brands are reflected in varying support for
ODBC functions and capabilities.

• The SQL/Call-Level Interface (SQL/CLI) standard is based on ODBC and is
compatible with it at the core level. SQL/CLI provides a callable API to complement
the embedded SQL interface specified in the SQL standard. Many DBMS vendors
support the SQL/CLI because of their historical support for ODBC.

• For Java programs, the JDBC interface is the de facto industry standard callable API,
supported by all of the major DBMS products and defined as the database
management API within the Java2 Enterprise Edition (J2EE) standard implemented
by all of the major application server products.

• The proprietary callable APIs of the different DBMS brands remain important in the
market (especially Oracle’s OCI). All of them offer the same basic features, but they
vary dramatically in the extended features that they offer and in the details of the
calls and data structures that they use.

• In general, DBMS vendors put considerable performance-tuning work into their
proprietary APIs and tend to offer ODBC and/or SQL/CLI support as a check-off
feature. Thus, applications with higher performance requirements tend to use the
proprietary APIs and are locked into a particular DBMS brand when they do.

http://java.sun.com/javase/technologies/database/index.jsp
http://java.sun.com/javase/technologies/database/index.jsp

VI
SQL Today and Tomorrow

The influence of SQL continues to expand as new SQL
capabilities and extensions to SQL address new types of data
management requirements. Chapters 20 through 27 describe

several of these expanding areas. Chapter 20 describes stored
procedural SQL, which provides processing capabilities within the
DBMS itself for implementing business rules and creating well-defined
database interactions. Chapter 21 describes SQL’s role in analyzing
data and the trend to create SQL-based data warehouses. Chapter 22
describes the role of SQL in creating interactive web sites, and
especially its relationship to application server technology. Chapter 23
discusses how SQL is used to create distributed databases that tap
the power of computer networks. Chapter 24 discusses one of the
most important areas of SQL evolution—the interplay between SQL
and object-oriented technologies and the new generation of object-
relational databases. Chapter 25 focuses on the relationship between
SQL and one of the most important of these technologies, XML, along
with the emerging Internet web services architecture based on XML.
Chapter 26 explores databases intended for special purposes,
including mobile and embedded databases. Finally, Chapter 27
highlights the key trends that will drive the evolution of SQL for the
coming decade.

CHAPTER 20
Database Processing and
Stored Procedural SQL

CHAPTER 21
SQL and Data Warehousing

CHAPTER 22
SQL and Application Servers

CHAPTER 23
SQL Networking and
Distributed Databases

CHAPTER 24
SQL and Objects

CHAPTER 25
SQL and XML

CHAPTER 26
Specialty Databases

CHAPTER 27
The Future of SQL

PART

This page intentionally left blank

20
Database Processing and

Stored Procedural SQL

The long-term trend in the database market is for databases to take on a progressively
larger role in the overall data processing architecture. The pre-relational database
systems basically handled only data storage and retrieval; application programs were

responsible for navigating their way through the database, sorting and selecting data, and
handling all processing of the data. With the advent of relational databases and SQL, the
DBMS took on expanded responsibilities. Database searching and sorting were embodied in
SQL language clauses and provided by the DBMS, along with the capability to summarize
data. Explicit navigation through the database became unnecessary. Subsequent SQL
enhancements such as primary key, foreign key (referential), and check constraints continued
the trend, taking over data validation and data integrity functions that had remained the sole
responsibility of application programs with earlier SQL implementations. At each step, having
the DBMS take on more responsibility provided more centralized control and reduced the
possibility of data corruption due to application programming errors.

In many information technology (IT) departments within large companies and
organizations, this DBMS trend paralleled an organizational trend. The corporate database
and the data it contains came to be viewed as a major corporate asset, and in many IT
departments, a dedicated database administration (DBA) group emerged, with responsibility
for maintaining the database, defining (and in some cases updating) the data it contained,
and providing structured access to it. Other groups within the IT department, or elsewhere
within the company, could develop application programs, reports, queries, or other logic that
accessed the database. In most organizations, application programs, and the businesspeople
using them, have had primary responsibility for updating the data within the database.
However, the DBA group sometimes has had responsibility for updating reference (lookup)
table data and for assisting with scripts and utilities to perform tasks such as the bulk
loading of newly acquired data. But the security of the database, the permitted forms of
access, and in general, everything within the realm of the database, became the province
of the DBA.

617617

CHAPTER

 618 P a r t V I : S Q L T o d a y a n d T o m o r r o w 618 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Three important features of modern enterprise-scale relational databases—stored
procedures, functions, and triggers—have been a part of this trend. Stored procedures can
perform database-related application processing within the database itself. For example,
a stored procedure might implement the application’s logic to accept a customer order or to
transfer money from one bank account to another. Functions are stored SQL programs that
return only a single value for each row of data. Unlike stored procedures, functions are
invoked by referencing them in SQL statements in almost any clause where a column name
can be used. This makes them ideal for performing calculations and data transformations
on data to be displayed in query results or used in search conditions. Nearly all relational
DBMS products come with a set of vendor-supplied functions for general use, and therefore
functions added by local database users are often called user-defined functions. Triggers are
used to automatically invoke the processing capability of a stored procedure based on
conditions that arise within the database. For example, a trigger might automatically
transfer funds from a savings account to a checking account if the checking account
becomes overdrawn. This chapter describes the core concepts behind stored procedures,
functions, and triggers, and their implementation in several popular DBMS brands.

The stored procedural SQL capabilities of the popular DBMS products have been
significantly expanded in their major revisions during the late 1990s and 2000s. A complete
treatment of stored procedure, function, and trigger programming is well beyond the
scope of this book, but the concepts and comparisons here will give you an understanding
of the core capabilities and a foundation for beginning to use the specific capabilities of
your DBMS software. Stored procedures, functions, and triggers basically extend SQL into
a more complete programming language, and this chapter assumes that you are familiar
with basic programming concepts.

Procedural SQL Concepts
In its original form, SQL was not envisioned as a complete programming language. It was
designed and implemented as a language for expressing database operations—creating
database structures, entering data into the database, updating database data—and especially
for expressing database queries and retrieving the answers. SQL could be used interactively
by typing SQL statements at a keyboard, one by one. In this case, the sequence of database
operations was determined by the human user. SQL could also be embedded within another
programming language, such as COBOL or C. In this case, the sequence of database
operations was determined by the flow of control within the COBOL or C program.

With stored procedural SQL, the SQL language is extended with several capabilities
normally associated with programming languages. Sequences of extended SQL statements
are grouped together to form SQL programs or procedures. (For simplicity, we refer to
stored procedures, functions, and triggers collectively as SQL procedures.) The specifics
vary from one implementation to another, but generally, these capabilities are provided:

• Conditional execution An IF…THEN…ELSE structure allows a SQL procedure to
test a condition and to carry out different operations depending on the result.

• Looping A WHILE or FOR loop or similar structure allows a sequence of SQL
operations to be performed repeatedly, until some terminating condition is met.
Some implementations provide a special cursor-based looping structure to process
each row of query results.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 619
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 619

• Block structure A sequence of SQL statements can be grouped into a single block
and used in other flow-of-control constructs as if the statement block were a single
statement.

• Named variables A SQL procedure may store a value that it has calculated, retrieved
from the database, or derived in some other way into a program variable, and later
retrieve the stored value for use in subsequent calculations.

• Named procedures A sequence of SQL statements may be grouped together,
given a name, and assigned formal input and output parameters, like a subroutine
or function in a conventional programming language. Once defined in this way,
the procedure may be called by name, passing it appropriate values for its input
parameters. If the procedure is a function returning a value, it may be used in SQL
value expressions.

Collectively, the structures that implement these capabilities form a stored procedural
language (SPL).

Stored procedures were first introduced by Sybase in the original Sybase SQL Server
product. (Functions and triggers evolved a bit later, and thus are discussed later in this
chapter.) Much of the original enthusiasm for stored procedures was because of their
performance advantages in a client/server database architecture. Without stored procedures,
every SQL operation requested by an application program (running on the client computer
system) would be sent across the network to the database server and would wait for a reply
message to be returned across the network. If a logical transaction required six SQL operations,
six network round trips were required. With stored procedures, the sequence of six SQL
operations could be programmed into a procedure and stored in the database. The application
program would simply request the execution of the stored procedure and await the results.
In this way, six network round trips could be cut to one round trip—the request and reply for
executing the stored procedure.

Stored procedures proved to be a natural fit for the client/server model, and Sybase
used them to establish an early lead with this architecture. A competitive response quickly
followed from many of the other DBMS vendors. Today, most enterprise DBMS products
provide a stored procedure capability, and the benefits of stored procedures in corporate
databases has expanded considerably beyond the early focus on network performance.
Stored procedures are less relevant for other types of specialized DBMS systems, such as
data warehousing systems or in-memory databases. Some DBMS products have modeled
their SPL structures on C or Pascal language constructs. Others have tried to match the style
of the SQL Data Manipulation Language (DML) and Data Definition Language (DDL)
statements. Oracle, on the other hand, based its SPL (PL/SQL) on the Ada programming
language, because it was the standard language of its large U.S. government customers.
While stored procedure concepts are very similar from one SQL dialect to another, the
specific syntax varies considerably.

 620 P a r t V I : S Q L T o d a y a n d T o m o r r o w 620 P a r t V I : S Q L T o d a y a n d T o m o r r o w

A Basic Example
It’s easiest to explain the basics of stored procedures through an example. Consider the
process of adding a customer to the sample database. Here are the steps that may be
involved:

 1. Obtain the customer number, name, credit limit, and target sales amount for the
customer, as well as the assigned salesperson and office.

 2. Add a row to the customer table containing the customer’s data.

 3. Update the row for the assigned salesperson, raising the quota target by the
specified amount.

 4. Update the row for the office, raising the sales target by the specified amount.

 5. Commit the changes to the database, if all previous statements were successful.

Without a stored procedure capability, here is a SQL statement sequence that does this
work for XYZ Corporation, new customer number 2137, with a credit limit of $30,000 and
first-year target sales of $50,000 to be assigned to Paul Cruz (employee #103) of the Chicago
office:

INSERT INTO CUSTOMERS (CUST_NUM, COMPANY, CUST_REP, CREDIT_LIMIT)
 VALUES (2137, 'XYZ Corporation', 103, 30000.00);

UPDATE SALESREPS
 SET QUOTA = QUOTA + 50000.00
 WHERE EMPL_NUM = 103;

UPDATE OFFICES
 SET TARGET = TARGET + 50000.00
 WHERE CITY = 'Chicago';

COMMIT;

With a stored procedure, all of this work can be embedded into a single defined SQL
routine. Figure 20-1 shows a stored procedure for this task, expressed in Oracle’s PL/SQL
stored procedure dialect. The procedure is named ADD_CUST, and it accepts six
parameters—the customer name, number, credit limit, and target sales, the employee
number of the assigned salesperson, and the city where the assigned sales office is located.

Once this procedure has been created in the database, a statement like this one:

ADD_CUST('XYZ Corporation', 2137, 30000.00, 50000.00, 103, 'Chicago');

calls the stored procedure and passes it the six specified values as its parameters. The DBMS
executes the stored procedure, carrying out each SQL statement in the procedure definition
one by one. If the ADD_CUST procedure completes its execution successfully, a committed
transaction has been carried out within the DBMS. If not, the returned error code and
message indicates what went wrong.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 621
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 621

Using Stored Procedures
The procedure defined in Figure 20-1 illustrates several of the basic structures common to all
SPL dialects. Nearly all dialects use a CREATE PROCEDURE statement to initially define a
stored procedure. A corresponding DROP PROCEDURE statement is used to discard procedures
that are no longer needed. The CREATE PROCEDURE statement defines the following:

• The name of the stored procedure

• The number and data types of its parameters

• The names and data types of any local variables used by the procedure

• The sequence of statements executed when the procedure is called

/* Add a customer procedure */

create procedure add_cust (

c_name in varchar2, /* input customer name */

c_num in integer, /* input customer number */

cred_lim in number, /* input credit limit */

tgt_sls in number, /* input target sales */

c_rep in integer, /* input salesrep emp # */

c_offc in varchar2) /* input office city */

as

begin

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep, credit_limit)

values (c_num, c_name, c_rep, cred_lim);

/* Update row of SALESREPS table */

update salesreps

set quota = quota + tgt_sls

where empl_num = c_rep;

/* Update row of OFFICES table */

update offices

set target = target + tgt_sls

where city = c_offc;

/* Commit transaction and we are done */

commit;

end;

FIGURE 20-1 A basic stored procedure in PL/SQL

 622 P a r t V I : S Q L T o d a y a n d T o m o r r o w 622 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The following sections describe these elements and the special SQL statements that are
used to control the flow of execution within the body of a stored procedure.

Creating a Stored Procedure
In many common SPL dialects, the CREATE PROCEDURE statement is used to create a stored
procedure and to specify how it operates. The CREATE PROCEDURE statement assigns the
newly defined procedure a name, which is used to call it. The name must typically follow
the rules for SQL identifiers. (The procedure in Figure 20-1 is named ADD_CUST.) A stored
procedure accepts zero or more parameters as its arguments. (This one has six parameters:
C_NAME, C_NUM, CRED_LIM, TGT_SLS, C_REP, and C_OFFC.) In all of the common SPL
dialects, the values for the parameters appear in a comma-separated list, enclosed in
parentheses, following the procedure name when the procedure is called. The header of the
stored procedure definition specifies the names of the parameters and their data types. The
same SQL data types supported by the DBMS for columns within the database can be used
as parameter data types.

In Figure 20-1, all of the parameters are input parameters (signified by the IN keyword
in the procedure header in the Oracle PL/SQL dialect). When the procedure is called, the
parameters are assigned the values specified in the procedure call, and the statements in the
procedure body begin to execute. The parameter names may appear within the procedure
body (and particularly within standard SQL statements in the procedure body) anywhere
that a constant may appear. When a parameter name appears, the DBMS uses its current
value. In Figure 20-1, the parameters are used in the INSERT statement and the UPDATE
statement, both as data values to be used in column calculations and as search conditions.

In addition to input parameters, some SPL dialects also support output parameters.
These allow a stored procedure to pass back values that it calculates during its execution.
Output parameters provide an important capability for passing back information from one
stored procedure to another stored procedure that calls it, and can also be useful for
debugging stored procedures using interactive SQL. Some SPL dialects support parameters
that operate as both input and output parameters. In this case, the parameter passes a value
to the stored procedure, and any changes to the value during the procedure execution are
reflected in the calling procedure.

Figure 20-2 shows the same ADD_CUST procedure definition, expressed in the Sybase
Transact-SQL dialect. (The Transact-SQL dialect is also used by Microsoft SQL Server; its
basics are largely unchanged since the original Sybase SQL Server version, which was the
foundation for both the Microsoft and Sybase product lines.) Note the differences from the
Oracle dialect:

• The keyword PROCEDURE can be abbreviated to PROC.

• No parenthesized list of parameters follows the procedure name. Instead, the
parameter declarations immediately follow the name of the stored procedure.

• The parameter names all begin with an “at” sign (@), both when they are declared at
the beginning of the procedure and when they appear within SQL statements in the
procedure body.

• There is no formal end-of-procedure body marker. Instead, the procedure body is a
single Transact-SQL statement. If more than one statement is needed, the Transact-
SQL block structure is used to group the statements.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 623
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 623

Figure 20-3 shows the ADD_CUST procedure again, this time expressed in the Informix
stored procedure dialect. The declaration of the procedure head itself and the parameters
more closely follow the Oracle dialect. Unlike the Transact-SQL example, the local variables
and parameters use ordinary SQL identifiers as their names, without any special identifying
symbols. The procedure definition is formally ended with an END PROCEDURE clause, which
makes the syntax less error-prone.

In all dialects that use the CREATE PROCEDURE statement, the procedure can be dropped
when no longer needed by using a corresponding DROP PROCEDURE statement:

DROP PROCEDURE ADD_CUST;

/* Add a customer procedure */

create proc add_cust

@c_name varchar(20), /* input customer name */

@c_num integer, /* input customer number */

@cred_lim decimal(9,2), /* input credit limit */

@tgt_sls /* input target sales */decimal(9,2),

@c_rep integer, /* input salesrep emp # */

@c_offc varchar(15) /* input office city */

as

begin

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep, credit_limit)

values (@c_num, @c_name, @c_rep, @cred_lim)

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + @tgt_sls

where empl_num = @c_rep

/* Update row of OFFICES table */

update offices

set target = target + @tgt_sls

where city = @c_offc

/* Commit transaction and we are done */

commit trans

end

FIGURE 20-2 The ADD_CUST stored procedure in Transact-SQL

 624 P a r t V I : S Q L T o d a y a n d T o m o r r o w 624 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Calling a Stored Procedure
Once defined by the CREATE PROCEDURE statement, a stored procedure can be used. An
application program may request execution of the stored procedure, using the appropriate
SQL statement. Another stored procedure may call it to perform a specific function. The
stored procedure may also be invoked through an interactive SQL interface.

The various SQL dialects differ in the specific syntax used to call a stored procedure.
Here is a call to the ADD_CUST procedure in the PL/SQL dialect:

EXECUTE ADD_CUST('XYZ Corporation', 2137, 30000.00, 50000.00, 103,
 'Chicago');

The values to be used for the procedure’s parameters are specified, in order, in a list that
is enclosed by parentheses. When called from within another procedure or a trigger, the
EXECUTE statement may be omitted, and the call becomes simply:

ADD_CUST('XYZ Corporation', 2137, 30000.00, 50000.00, 103, 'Chicago');

FIGURE 20-3 The ADD_CUST stored procedure in Informix SPL

/* Add a customer procedure */

create procedure add_cust (

c_name varchar(20), /* input customer name */

c_num integer, /* input customer number */

cred_lim numeric(16,2), /* input credit limit */

tgt_sls numeric(16,2), /* input target sales */

c_rep integer, /* input salesrep emp # */

c_offc varchar(15)) /* input office city */

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep, credit_limit)

values (c_num, c_name, c_rep, cred_lim);

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + tgt_sls

where empl_num = c_rep;

/* Update row of OFFICES table */

update offices

set target = target + tgt_sls

where city = c_offc;

/* Commit transaction and we are done */

commit work;

end procedure;

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 625
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 625

The procedure may also be called using named parameters, in which case the parameter
values can be specified in any sequence. Here is an example:

EXECUTE ADD_CUST (c_name = 'XYZ Corporation',
 c_num = 2137,
 cred_lim = 30000.00,
 c_offc = 'Chicago',
 c_rep = 103,
 tgt_sales = 50000.00);

In the Transact-SQL dialect, the call to the stored procedure becomes

EXECUTE ADD_CUST 'XYZ Corporation', 2137, 30000.00, 50000.00, 103, 'Chicago';

The parentheses aren’t required, and the values to be used for parameters again form a
comma-separated list. The keyword EXECUTE can be abbreviated to EXEC, and the
parameter names can be explicitly specified in the call, allowing you to specify the
parameter values in any order you wish. Here is an alternative, equivalent Transact-SQL call
to the ADD_CUST stored procedure:

EXEC ADD_CUST @C_NAME = 'XYZ Corporation',
 @C_NUM = 2137,
 @CRED_LIM = 30000.00,
 @C_OFFC = 'Chicago',
 @C_REP = 103,
 @TGT_SLS = 50000.00;

The Informix SPL form of the same EXECUTE command is

EXECUTE PROCEDURE ADD_CUST('XYZ Corporation', 2137, 30000.00, 50000.00,
 103, 'Chicago');

Again, the parameters are enclosed in a comma-separated, parenthesized list. This form
of the EXECUTE statement may be used in any context. For example, it may be used by an
embedded SQL application program to invoke a stored procedure. Within a stored
procedure itself, another stored procedure can be called using this equivalent statement:

CALL ADD_CUST('XYZ Corporation', 2137, 30000.00, 50000.00, 103, 'Chicago');

Stored Procedure Variables
In addition to the parameters passed into a stored procedure, it’s often convenient or
necessary to define other variables to hold intermediate values during the procedure’s
execution. All stored procedure dialects provide this capability. Usually, the variables are
declared at the beginning of the procedure body, just after the procedure header and before
the list of SQL statements. The data types of the variables can be any of the SQL data types
supported as column data types by the DBMS.

Figure 20-4 shows a simple Transact-SQL stored procedure fragment that computes
the total outstanding order amount for a specific customer number, and sets up one of
two messages depending on whether the total order amount is under $30,000. Note that
Transact-SQL local variable names, like parameter names, begin with an “@” sign.

 626 P a r t V I : S Q L T o d a y a n d T o m o r r o w 626 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The DECLARE statement declares the local variables for this procedure. In this case, there
are two variables: one with the MONEY data type and one VARCHAR.

In Transact-SQL, the SELECT statement assumes the additional function of assigning
values to variables. A simple form of this use of SELECT is the assignment of the message text:

SELECT @MSG_TEXT = "high order total";

The assignment of the total order amount at the beginning of the procedure body is a
more complex example, where the SELECT is used both to assign a value and as the
introducer of the query that generates the value to be assigned.

Figure 20-5 shows the Informix SPL version of the same stored procedure. There are
several differences from the Transact-SQL version:

• Local variables are declared using the DEFINE statement. This example shows only
a very limited subset of the options that are available.

• Variable names are ordinary SQL identifiers; there is no special first character.

• A specialized SELECT…INTO statement is used within SPL to assign the results of a
singleton SELECT statement into a local variable.

• The LET statement provides simple assignment of variable values.

/* Check order total for a customer */

create proc chk_tot

@c_num integer /* one input parameter */

as

/* Declare two local variables */

declare @tot_ord money, @msg_text varchar(30)

begin

/* Calculate total orders for customer */

select @tot_ord = sum(amount)

from orders

where cust = @c_num

/* Load appropriate message, based on total */

if tot_ord < 30000.00

select @msg_text = "high order total"

else

select @msg_text = "low order total"

/* Do other processing for message text */

. . .

end

FIGURE 20-4 Using local variables in Transact-SQL

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 627
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 627

Figure 20-6 shows the Oracle PL/SQL version of the same stored procedure. Again,
there are several differences to note from the Transact-SQL and Informix SPL examples:

• The SELECT...INTO statement has the same form as the Informix procedure; it is
used to select values from a single-row query directly into local variables.

• The assignment statements use Pascal-style (:=) notation instead of a separate LET
statement.

Local variables within a stored procedure can be used as a source of data within SQL
expressions anywhere that a constant may appear. The current value of the variable is used
in the execution of the statement. In addition, local variables may be destinations for data
derived from SQL expressions or queries, as shown in the preceding examples.

Statement Blocks
In all but the very simplest stored procedures, it is often necessary to group a sequence of
SQL statements together so that they will be treated as if they were a single statement. For
example, in the IF…THEN…ELSE structure typically used to control the flow of execution
within a stored procedure, most stored procedure dialects expect a single statement
following the THEN keyword. If a procedure needs to perform a sequence of several SQL
statements when the tested condition is true, it must group the statements together as a
statement block, and this block will appear after THEN.

/* Check order total for a customer */

create procedure chk_tot (c_num integer)

/* Declare two local variables */

define tot_ord numeric(16,2);

define msg_text varchar(30);

/* Calculate total orders for requested customer */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* Load appropriate message, based on total */

if tot_ord < 30000.00

let msg_text = "high order total"

else

let msg_text = "low order total"

/* Do other processing for message text */

. . .

end procedure;

FIGURE 20-5 Using local variables in Informix SPL

 628 P a r t V I : S Q L T o d a y a n d T o m o r r o w 628 P a r t V I : S Q L T o d a y a n d T o m o r r o w

In Transact-SQL, a statement block has this simple structure:

/* Transact-SQL block of statements */
begin
 /* Sequence of SQL statements appears here */
 . . .
end

The sole function of the BEGIN…END pair is to create a statement block; they do not
impact the scope of local variables or other database objects. The Transact-SQL procedure
definition, conditional execution, and looping constructs, and others, are all designed to
operate with single SQL statements, so statement blocks are frequently used in each of these
contexts to group statements together as a single unit.

/* Check order total for a customer */

create procedure chk_tot (c_num in number)

as

/* Declare two local variables */

tot_ord number(16,2);

msg_text varchar(30);

begin

/* Calculate total orders for requested customer */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* Load appropriate message, based on total */

if tot_ord < 30000.00 then

msg_text := 'high order total';

else

msg_text := 'low order total';

/* Do other processing for message text */

. . .

end;

end if;

FIGURE 20-6 Using local variables in Oracle PL/SQL

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 629
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 629

In Informix SPL, a statement block includes not only a statement sequence, but also may
optionally declare local variables for use within the block and exception handlers to handle
errors that may occur within the block. Here is the structure of an Informix SQL statement
block:

/* Informix SPL block of statements */
/* Declaration of any local variables */
define . . .

/* Declare handling for exceptions */
on exception . . .

/* Define the sequence of SQL statements */
begin . . .

end

The variable declaration section is optional; we have already seen an example of it in the
Informix stored procedure body in Figure 20-5. The exception-handling section is also
optional; its role is described later in the “Handling Error Conditions” section. The BEGIN…
END sequence performs the same function as it does for Transact-SQL. Informix also allows
a single statement to appear in this position if the block consists of just the other two
components and a single SQL or SPL statement.

The Informix SQL structures don’t require the use of statement blocks as often as the
Transact-SQL structures. In the Informix dialect, the looping conditional execution
statements each include an explicit termination (IF…END IF, WHILE…END WHILE, FOR…
END FOR). Within the structure, a single SQL statement or a sequence of statements (each
ending with a semicolon) may appear. As a result, an explicit block structure is not always
needed simply to group together a sequence of SQL statements.

The Oracle PL/SQL block structure has the same capabilities as the Informix structure.
It offers the capability to declare variables and exception conditions, using this format:

/* Oracle PL/SQL statement block */
/* Declaration of any local variables */
declare . . .

/* Specify the sequence of statements */
begin . . .

/* Declare handling for exceptions */
exception . . .

end;

All three sections of the block structure are optional. It’s common to see the structure
used with only the BEGIN…END sequence to define a statement sequence, or with a
DECLARE…BEGIN…END sequence to declare variables and a sequence of statements. As
with Informix, the Oracle structures that specify conditional execution and looping have a
self-defining end-of-statement marker, so sequences of statements within these structures
do not necessarily need an explicit BEGIN…END statement block structure.

 630 P a r t V I : S Q L T o d a y a n d T o m o r r o w 630 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Functions
In addition to stored procedures, most SPL dialects support a stored function capability. The
distinction is that a function returns a single thing (such as a data value, an object, or an
XML document) each time it is invoked, while a stored procedure can return many things or
nothing at all. Support for returned values varies by SPL dialect. Functions are commonly
used as column expressions in SELECT statements, and thus are invoked once per row in
the result set, allowing the function to perform calculations, data conversion, and other
processes to produce the returned value for the column. Following is a simple example of a
stored function. Assume you want to define a stored procedure that, given a customer
number, calculates the total current order amount for that customer. If you define the SQL
procedure as a function, the total amount can be returned as its value.

Figure 20-7 shows an Oracle function that calculates the total amount of current orders
for a customer, given the customer number. Note the RETURN clause in the procedure
definition, which tells the DBMS the data type of the value being returned. In most DBMS
products, if you enter a function call via the interactive SQL capability, the function value is
displayed in response. Within a stored procedure, you can call a stored function and use its
return value in calculations or store it in a variable.

Many SPL dialects also allow you to use a function as a user-defined function within
SQL value expressions. This is true of the Oracle PL/SQL dialect, so this use of the function
defined in Figure 20-7 within a search condition is legal.

SELECT COMPANY, NAME
 FROM CUSTOMERS, SALESREPS
 WHERE CUST_REP = EMPL_NUM
 AND GET_TOT_ORDS(CUST_NUM) > 10000.00;

/* Return total order amount for a customer */

create function get_tot_ords(c_num in number)

return number

as

/* Declare one local variable to hold the total */

tot_ord number(16,2);

begin

/* Simple single-row query to get total */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* return the retrieved value as fcn value */

return tot_ord;

end;

FIGURE 20-7 An Oracle PL/SQL function

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 631
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 631

As the DBMS evaluates the search condition for each row of prospective query results, it
uses the customer number of the current candidate row as an argument to the GET_TOT_
ORDS function and checks to see if it exceeds the $10,000 threshold. This same query could
be expressed as a grouped query, with the ORDERS table also included in the FROM clause,
and the results grouped by customer and salesperson. In many implementations, the DBMS
carries out the grouped query more efficiently than the preceding one, which probably
forces the DBMS to process the orders table once for each customer.

Figure 20-8 shows the Informix SPL definition for the same stored function shown in
Figure 20-7. Except for stylistic variations, it differs very little from the Oracle version.

The Transact-SQL dialect used in Microsoft SQL Server and Sybase Adaptive Server
Enterprise (ASE) has a stored (user-defined) function capability similar to the one illustrated
in Figures 20-7 and 20-8.

Returning Values via Parameters
Functions provide only the ability to return a single thing from a stored routine. Several
stored procedure dialects provide a method for returning more than one value (or other
thing), by passing the values back to the calling routine through output parameters. The
output parameters are listed in the stored procedure’s parameter list, just like the input
parameters seen in the previous examples. However, instead of being used to pass data
values into the stored procedure when it is called, the output parameters are used to pass
data back out of the stored procedure to the calling procedure.

Figure 20-9 shows a PL/SQL stored procedure to retrieve the name of a customer, his
or her salesperson, and the sales office to which the customer is assigned, given a supplied
customer number. The procedure has four parameters. The first one, CNUM, is an input
parameter and supplies the requested customer number. The other three parameters are
output parameters, used to pass the retrieved data values back to the calling procedure.

/* Return total order amount for a customer */

create function get_tot_ords(c_num in integer)

returning numeric(16,2)

/* Declare one local variable to hold the total */

define tot_ord numeric(16,2);

begin

/* Simple single-row query to get total */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* Return the retrieved value as fcn value */

return tot_ord;

end function;

FIGURE 20-8 An Informix SPL function

 632 P a r t V I : S Q L T o d a y a n d T o m o r r o w 632 P a r t V I : S Q L T o d a y a n d T o m o r r o w

In this simple example, the SELECT...INTO form of the query places the returned
variables directly into the output parameters. In a more complex stored procedure, the
returned values might be calculated and placed into the output parameters with a PL/SQL
assignment statement.

When a stored procedure with output parameters is called, the value passed for each
output parameter must be an acceptable target that can receive the returned data value. The
target may be a local variable, for example, or a parameter of a higher-level procedure that
is calling a lower-level procedure to do some work for it. Here is an Oracle PL/SQL
anonymous (unnamed) block that makes an appropriate call to the GET_CUST_INFO
procedure in Figure 20-9:

/* Get the customer info for customer 2111 */
declare the_name varchar(20);
 the_rep varchar(15);
 the_city varchar(15);
execute get_cust_info(2111, the_name, the_rep, the_city);

Of course, it would be unusual to call this procedure with a literal customer number, but
it’s perfectly legal since that is an input parameter. The remaining three parameters have
acceptable data assignment targets (in this case, they are PL/SQL variables) passed to them so
that they can receive the returned values. The following call to the same procedure is illegal
because the second parameter is an output parameter and thus cannot receive a literal value:

/* Get the customer info for customer 2111 */
execute get_cust_info(2111, 'XYZ Co', the_rep, the_city)

In addition to input and output parameters, Oracle allows you to specify procedure parameters
that are both input and output (INOUT) parameters. They must obey the same previously
cited restrictions for output parameters, but in addition, their values are used as input by
the procedure.

/* Get customer name, salesrep, and office */

create procedure get_cust_info(c_num in number,

c_name out varchar,

r_name out varchar,

c_offc out varchar)

as

begin

/* Simple single-row query to get info */

select company, name, city

into c_name, r_name, c_offc

from customers, salesreps, offices

where cust_num = c_num

and empl_num = cust_rep

and office = rep_office;

end;

FIGURE 20-9 PL/SQL stored procedure with output parameters

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 633
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 633

Figure 20-10 shows a version of the GET_CUST_INFO procedure defined in the Transact-
SQL dialect. The way in which the output parameters are identified in the procedure header
differs slightly from the Oracle version, variable names begin with the “@” sign, and the
single-row SELECT statement has a different form. Otherwise, the structure of the
procedure and its operation are identical to the Oracle example.

When this procedure is called from another Transact-SQL procedure, the fact that the
second, third, and fourth parameters are output parameters must be indicated in the call to
the procedure, as well as in its definition. Here is the Transact-SQL syntax for calling the
procedure in Figure 20-10:

/* Get the customer info for customer 2111 */
declare the_name varchar(20);
declare the_rep varchar(15);
declare the_city varchar(15);
exec get_cust_info @c_num = 2111,
 @c_name = the_name output,
 @r_name = the_rep output,
 @c_offc = the_city output;

Figure 20-11 shows the Informix SPL version of the same stored procedure example.
Informix takes a different approach to handling multiple return values. Instead of output
parameters, Informix extends the definition of a stored function to allow multiple return
values. Thus, the GET_CUST_INFO procedure becomes a function for the Informix dialect.
The multiple return values are specified in the RETURNING clause of the procedure header,
and they are actually returned by the RETURN statement.

/* Get customer name, salesrep, and office */

create procedure get_cust_info(@c_num integer,

@c_name varchar(20) out,

@r_name varchar(15) out,

c_offc varchar(15) out)@

as

begin

/* Simple single-row query to get info */

select company,@c_name =

@c_offc = city

from customers, salesreps, offices

where cust_num = c_num@

and empl_num = cust_rep

and office = rep_office;

end

@r_name = name,

FIGURE 20-10 Transact-SQL stored procedure with output parameters

 634 P a r t V I : S Q L T o d a y a n d T o m o r r o w 634 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The Informix CALL statement that invokes the stored function uses a special
RETURNING clause to receive the returned values:

/* Get the customer info for customer 2111 */
define the_name varchar(20);
define the_rep varchar(15);
define the_city varchar(15);
call get_cust_info (2111)
 returning the_name, the_rep, the_city;

As in the Transact-SQL dialect, Informix also allows a version of the CALL statement
that passes the parameters by name:

call get_cust_info (c_num = 2111)
 returning the_name, the_rep, the_city;

Conditional Execution
One of the most basic features of stored procedures is an IF…THEN…ELSE construct for
decision making within the procedure. Look back at the original ADD_CUST procedure
defined in Figure 20-1 for adding a new customer. Suppose that the rules for adding new
customers are modified so that there is a cap on the amount by which a salesperson’s quota
should be increased for a new customer. If the customer’s anticipated first-year orders are
$20,000 or less, that amount should be added to the quota, but if they are more than $20,000,
the quota should be increased by only $20,000. Figure 20-12 shows a modified procedure
that implements this new policy. The IF…THEN…ELSE logic operates exactly as it does in
any conventional programming language.

FIGURE 20-11
Informix stored
function with
multiple return
values

/* Get customer name, salesrep, and office */

create function get_cust_info(c_num integer)

returning varchar(20), varchar(15), varchar(15)

define c_name varchar(20);

define r_name varchar(15);

define r_name varchar(15);

/* Simple single-row query to get info */

select company, name, city

into cname, r_name, c_offc

from customers, salesreps, offices

where cust_num = c_num

and empl_num = cust_rep

and office = rep_office;

/* Return the three values */

return cname, r_name, c_offc;

end procedure;

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 635
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 635

/* Add a customer procedure */

create procedure add_cust (

c_name in varchar2, /* input customer name */

c_num in number, /* input customer number */

cred_lim in number, /* input credit limit */

tgt_sls in number, /* input target sales */

c_rep in number, /* input salesrep empl # */

c_offc in varchar2) /* input office city */

as

begin

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep, credit_limit)

values (c_num, c_name, c_rep, cred_lim);

if tgt_sales <= 20000.00

then

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + tgt_sls

where empl_num = c_rep;

else

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + 20000.00

where empl_num = c_rep;

end if;

/* Update row of OFFICES table */

update offices

set target = target + tgt_sls

where city = c_offc;

/* Commit transaction and we are done */

commit;

end;

FIGURE 20-12 Conditional logic in a stored procedure

 636 P a r t V I : S Q L T o d a y a n d T o m o r r o w 636 P a r t V I : S Q L T o d a y a n d T o m o r r o w

All of the stored procedure dialects allow nested IF statements for more complex
decision making. Several provide extended conditional logic to streamline multiway
branching. For example, suppose you wanted to do three different things within the ADD_
CUST stored procedure, depending on whether the customer’s anticipated first-year orders
are under $20,000, between $20,000 and $50,000, or over $50,000. In Oracle’s PL/SQL, you
could express the three-way decision this way:

/* Process sales target by range */
if tgt_sls < 20000.00
 then
 /* Handle low-target customers here */
 . . .
elsif tgt_sls <= 50000.00
 then
 /* Handle mid-target customers here */
 . . .
else
 /* Handle high-target customers here */
 . . .
end if;

In the Informix dialect, the same multiway branch structure is supported. The keyword
ELSIF becomes ELIF, but all other aspects remain the same.

Repeated Execution
Another feature common to almost all stored procedure dialects is a construct for repeated
execution of a group of statements (looping). Depending on the dialect, there may be
support for Basic-style FOR loops (where an integer loop control value is counted up or
counted down) or for C-style WHILE loops, with a test condition executed at the beginning
or end of the loop.

In the sample database, it’s hard to come up with an uncontrived example of simple
loop processing. Assume you want to process some group of statements repeatedly, while
the value of a loop-control variable, named ITEM_NUM, ranges from 1 to 10. Here is an
Oracle PL/SQL loop that handles this situation:

/* Process each of ten items */
for item_num in 1..10 loop
 /* Process this particular item */
 . . .

 /* Test whether to end the loop early */
 exit when (item_num = special_item);
end loop;

The statements in the body of the loop are normally executed ten times, each time with
a larger integer value of the ITEM_NUM variable. The EXIT statement provides the
capability to exit an Oracle PL/SQL loop early. It can be unconditional, or it can be used
with a built-in test condition, as in this example.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 637
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 637

Here is the same loop structure expressed in Informix SPL, showing some of its
additional capabilities and the dialectic differences from PL/SQL:

/* Process each of ten items */
for item_num = 1 to 10 step 1
 /* Process this particular item */
 . . .

 /* Test whether to end the loop early */
 if (item_num = special_item)
 then exit for;
end for;

The other common form of looping is when a sequence of statements is executed
repeatedly while a certain condition exists or until a specified condition exists. Here is an
Oracle PL/SQL loop construct that repeats indefinitely. Such a loop must, of course, provide
a test within the body of the loop that detects a loop-terminating condition (in this case, a
match of two variable values) and that explicitly exits the loop:

/* Repeatedly process some data */
loop
 /* Do some kind of processing each time */
 . . .

 /* Test whether to end the loop early */
 exit when (test_value = exit_value);
end loop;

A more common looping construct is one that builds the test into the loop structure
itself. The loop is repeatedly executed as long as the test is true. For example, suppose you
want to reduce targets for the offices in the sample database until the total of the targets is
less than $24 million. Each office’s target is to be reduced by the same amount, which
should be a multiple of $10,000. Here is a (not very efficient) Transact-SQL stored procedure
loop that gradually lowers office targets until the total is below the threshold:

/* Lower targets until total below $2,400,000 */
while (select sum(target) from offices) < 2400000.00
 begin
 update offices
 set target = target – 10000.00
 end;

The BEGIN…END block in this WHILE loop isn’t strictly necessary, but most Transact-
SQL WHILE loops include one. Transact-SQL repeats the single SQL statement following the
test condition as the body of the WHILE loop. If the body of the loop consists of more than
one statement, you must use a BEGIN…END block to group the statements.

 638 P a r t V I : S Q L T o d a y a n d T o m o r r o w 638 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Here is the Oracle PL/SQL version of the same loop:

/* Lower targets until total below $2,400,000 */
select sum(target) into total_tgt from offices;
while (total_tgt < 2400000.00)
loop
 update offices
 set target = target – 10000.00;
 select sum(target) into total_tgt from offices;
end loop;

The subquery-style version of the SELECT statement from Transact-SQL has been
replaced by the PL/SQL SELECT...INTO form of the statement, with a local variable used
to hold the total of the office targets. Each time the loop is executed, the OFFICES table is
updated, and then the total of the targets is recalculated.

Here is the same loop once more, expressed using Informix SPL’s WHILE statement:

/* Lower targets until total below $2,400,000 */
select sum(target) into total_tgt from offices;
while (total_tgt < 2400000.00)
 update offices
 set target = target – 10000.00;
 select sum(target) into total_tgt from offices;
end while;

Other variants of these loop-processing constructs are provided by the various dialects,
but the capabilities and syntax are similar to these examples.

Other Flow-of-Control Constructs
Some stored procedure dialects provide statements to control looping and alter the flow of
control. In Informix, for example, the EXIT statement interrupts the normal flow within a
loop and causes execution to resume with the next statement following the loop itself. The
CONTINUE statement interrupts the normal flow within the loop but causes execution to
resume with the next loop iteration. Both of these statements have three forms, depending
on the type of loop being interrupted:

exit for;
exit while;
exit foreach;
continue for;
continue while;
continue foreach;

In Transact-SQL, a single statement, BREAK, provides the equivalent of the Informix
EXIT statement variants, and there is a single form of the CONTINUE statement as well. In
Oracle, the EXIT statement performs the same function as for Informix, and there is no
CONTINUE statement.

Additional control over the flow of execution within a stored procedure is provided by
statement labels and the GOTO statement. In most dialects, the statement label is an identifier,
followed by a colon. The GOTO statement names the label to which control should be transferred.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 639
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 639

There is typically a restriction that you cannot transfer control out of a loop or a conditional
testing statement, and always a prohibition against transferring control into the middle of such a
statement. As in structured programming languages, the use of GOTO statements is discouraged,
because it makes stored procedure code harder to understand and debug.

Cursor-Based Repetition
One common need for repetition of statements within a stored procedure is when the
procedure executes a query and needs to process the query results, row by row. All of the
major dialects provide a structure for this type of processing. Conceptually, the structures
parallel the DECLARE CURSOR, OPEN CURSOR, FETCH, and CLOSE CURSOR statements in
embedded SQL or in the corresponding SQL API calls. However, instead of fetching the
query results into the application program, in this case, they are being fetched into the
stored procedure, which is executing within the DBMS itself. Instead of retrieving the query
results into application program variables (host variables), the stored procedure retrieves
them into local stored procedure variables.

To illustrate this capability, assume that you want to populate two tables with data from
the ORDERS table. One table, named BIGORDERS, should contain customer name and order
size for any orders over $10,000. The other, SMALLORDERS, should contain the salesperson’s
name and order size for any orders under $1000. The best and most efficient way to do this
would be to use two separate SQL INSERT statements with subqueries, but for purposes of
illustration, consider this method instead:

 1. Execute a query to retrieve the order amount, customer name, and salesperson
name for each order.

 2. For each row of query results, check the order amount to see whether it falls into the
proper range for including in the BIGORDERS or SMALLORDERS tables.

 3. Depending on the amount, INSERT the appropriate row into the BIGORDERS or
SMALLORDERS table.

 4. Repeat Steps 2 and 3 until all rows of query results are exhausted.

 5. Commit the updates to the database.

Figure 20-13 shows an Oracle stored procedure that carries out this method. The cursor
that defines the query is defined early in the procedure and assigned the name O_CURSOR.
The variable CURS_ROW is defined as an Oracle row type. It is a structured Oracle row variable
with individual components (like a C-language structure). By declaring it as having the
same row type as the cursor, the individual components of CURS_ROW have the same data
types and names as the cursor’s query results columns.

The query described by the cursor is actually carried out by the cursor-based FOR loop.
It basically tells the DBMS to carry out the query described by the cursor (equivalent to the
OPEN statement in embedded SQL) before starting the loop processing. The DBMS then
executes the FOR loop repeatedly, by fetching a row of query results at the top of the loop,
placing the column values into the CURS_ROW variable, and then executing the statements
in the loop body. When no more rows of query results are to be fetched, the cursor is closed,
and processing continues after the loop.

 640 P a r t V I : S Q L T o d a y a n d T o m o r r o w 640 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Figure 20-14 shows an equivalent stored procedure with the specialized FOR loop
structure of Informix SPL. In this case, the query results are retrieved into ordinary local
variables; there is no special row data type used. The FOREACH statement incorporates
several different functions. It defines the query to be carried out, through the SELECT
expression that it contains. It marks the beginning of the loop that is to be executed for
each row of query results. (The end of the loop is marked by the END FOREACH statement.)

create procedure sort_orders()

/* Cursor for the query */

cursor o_cursor is

select amount, company, name

from orders, customers, salesreps

where cust = cust_num

and rep = empl_num;

/* Row variable to receive query results values */

curs_row o_cursor%rowtype;

begin

/* Loop through each row of query results */

for curs_row in o_cursor

loop

/* Check for small orders and handle */

if (curs_row.amount < 1000.00)

then insert into smallorders

values (curs_row.name, curs_row.amount);

/* Check for big orders and handle */

elsif (curs_row.amount > 10000.00)

then insert into bigorders

values (curs_row.company, curs_row.amount);

end if;

end loop;

commit;

end;

FIGURE 20-13 A cursor-based FOR loop in PL/SQL

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 641
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 641

When the FOREACH statement is executed, it carries out the query and then fetches rows of
query results repeatedly, putting their column values into the local variables as specified in
the statement. After each row is fetched, the body of the loop is executed. When there are no
more rows of query results, the cursor is automatically closed, and execution continues with
the next statement following the FOREACH. Note that in this example, the cursor isn’t even
assigned a specific name because all cursor processing is tightly specified within the single
FOREACH statement.

create procedure sort_orders()

/* Local variables to hold query results */

define ord_amt numeric(16,2); /* order amount */

define c_name varchar(20); /* customer name */

define r_name varchar(15); /* salesrep name */

/* Execute query and process each results row */

foreach select amount, company, name

into ord_amt, c_name, r_name

from orders, customers, salesreps

where cust = cust_num

and rep = empl_num;

begin

/* Check for small orders and handle */

if (ord_amt < 1000.00)

then insert into smallorders

values (r_name, ord_amt);

/* Check for big orders and handle */

elif (ord_amt > 10000.00)

then insert into bigorders

values (c_name, ord_amt);

end if;

end;

end foreach;

end procedure;

FIGURE 20-14 A cursor-based FOREACH loop in Informix SPL

 642 P a r t V I : S Q L T o d a y a n d T o m o r r o w 642 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The Transact-SQL dialect doesn’t have a specialized FOR loop structure for cursor-
based query results processing. Instead, the DECLARE CURSOR, OPEN, FETCH, and CLOSE
statements of embedded SQL have direct counterparts within the Transact-SQL language.
Figure 20-15 shows a Transact-SQL version of the sort_orders procedure. Note the

create proc sort_orders()

as

/* Local variables to hold query results */

declare @ord_amt decimal(16,2); /* order amount */

declare @c_name varchar(20); /* customer name */

declare @r_name varchar(15); /* salesrep name */

/* Declare cursor for the query */

declare o_curs cursor for

select amount, company, name

from orders, customers, salesreps

where cust = cust_num

and rep = empl_num

begin

/* Open cursor and fetch first row of results */

open o_curs

fetch o_curs into @ord_amt, @c_name, @r_name

/* If no rows, return immediately */

if (@@sqlstatus = 2)

begin

close o_curs

return

end

/* Loop through each row of query results */

while (@@sqlstatus = 0)

begin

/* Check for small orders and handle */

if (@ord_amt < 1000.00)

insert into smallorders

values (@r_name, @ord_amt)

/* Check for big orders and handle */

else if (curs_row.amount > 10000.00)

insert into bigorders

values (@c_name, @ord_amt)

end

/* Done with results; close cursor and return */

close o_curs

end

FIGURE 20-15 A cursor-based WHILE loop in Transact-SQL

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 643
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 643

separate DECLARE, OPEN, FETCH, and CLOSE statements for the cursor. Loop control is
provided by testing the system variable @@SQLSTATUS, which is the Transact-SQL
equivalent of the SQLSTATE code. It receives a value of zero when a fetch is successful, and
a nonzero value when there are no more rows to fetch.

Handling Error Conditions
When an application program uses embedded SQL or a SQL API for database processing,
the application program is responsible for handling errors that arise. Error status codes are
returned to the application program, and more error information is typically available
through additional API calls or access to an extended diagnostics area. When database
processing takes place within a stored procedure, the procedure itself must handle errors.

Transact-SQL provides error handling through a set of global system variables. The
specific error-handling variables are only a few of well over 100 system variables that
provide information on the state of the server, transaction state, open connections, and other
database configuration and status information. The two most useful global variables for
error handling are

• @@ERROR Contains error status of the most recently executed statement batch

• @@SQLSTATUS Contains status of the last fetch operation

The normal completion values for both variables are zero; other values indicate various
errors and warnings. The global variables can be used in the same way as local variables
within a Transact-SQL procedure. Specifically, their values can be checked for branching
and loop control.

Oracle’s PL/SQL provides a different style of error handling. The Oracle DBMS
provides a set of system-defined exceptions, which are errors or warning conditions that
can arise during SQL statement processing. Within an Oracle stored procedure (actually, any
Oracle statement block), the EXCEPTION section tells the DBMS how it should handle any
exception conditions that occur during the execution of the procedure. There are over a
dozen different predefined Oracle-detected exception conditions. In addition, you can
define your own exception conditions.

Most of the previous examples in this chapter don’t provide any real error-handling
capability. Figure 20-16 shows a revised version of the Oracle stored function in Figure 20-7.
This improved version detects the specific situation where the supplied customer number
does not have any associated orders (that is, where the query to calculate total orders
returns a NO_DATA_FOUND exception). It responds to this situation by signaling back to the
application program an application-level error and associated message. Any other exception
conditions that arise are caught by the WHEN OTHERS exception handler.

The Informix SPL takes a similar approach to exception handling. Figure 20-17 shows
the Informix version of the stored function, with Informix-style exception handling. The ON
EXCEPTION statement is a declarative statement and specifies the sequence of SQL
statements to be executed when a specific exception arises. A comma-separated list of
exception numbers may be specified.

 644 P a r t V I : S Q L T o d a y a n d T o m o r r o w 644 P a r t V I : S Q L T o d a y a n d T o m o r r o w

/* Return total order amount for a customer */

create function get_tot_ords(c_num in number)

return number

as

/* Declare one local variable to hold the total */

declare tot_ord number(16,2);

begin

/* Simple single-row query to get total */

select sum(amount)

into tot_ord

from orders

where cust = c_num;

/* return the retrieved value as fcn value */

return tot_ord;

exception

/* Handle the situation where no orders found */

when no_data_found

then raise_application_error (-20123, 'Bad cust#');

/* Handle any other exceptions */

then raise_application_error (-20199,'Unknown error');

when others

end;

FIGURE 20-16
PL/SQL function with
error handling

/* Return total order amount for a customer */

create function get_tot_ords(c_num in integer)

returning numeric(16,2)

/* Declare one local variable to hold the total */

define tot_ord numeric(16,2);

/* Define exception handler for error #-123 and -121 */

on exception in (-121, -123)

/* Do whatever is appropriate here */

. . .

end exception;

on exception

/* Handle any other exceptions in here */

. . .

end exception;

FIGURE 20-17
Informix SPL
function with
condition handling

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 645
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 645

Advantages of Stored Procedures
Stored procedures offer several advantages, both for database users and database
administrators, including

• Runtime performance Many DBMS brands compile stored procedures (either
automatically or at the user’s request) into an internal representation that can be
executed very efficiently by the DBMS at runtime. Executing a precompiled stored
procedure can be much faster than running the equivalent SQL statements through
the PREPARE/EXECUTE process.

• Reusability Once a stored procedure has been defined for a specific function, that
procedure may be called from many different application programs that need to
perform the function, permitting very easy reuse of application logic and reducing
the risk of application programmer error.

• Reduced network traffic In a client/server configuration, sending a stored
procedure call across the network and receiving the results in a reply message
generates much less network traffic than using a network round trip for each
individual SQL statement. This can improve overall system performance
considerably in a network with heavy traffic or one that has lower-speed
connections.

• Security In most DBMS brands, the stored procedure is treated as a trusted entity
within the database and executes with its own privileges. The user executing the
stored procedure needs to have only permission to execute it, not permission on the
underlying tables that the stored procedure may access or modify. Thus, the stored
procedure allows the database administrator to maintain tighter security on the
underlying data, while still giving individual users the specific data update or data
access capabilities they require.

• Encapsulation Stored procedures are a way to achieve one of the core objectives of
object-oriented programming—the encapsulation of data values, structures, and
access within a set of very limited, well-defined external interfaces. In object
terminology, stored procedures can be the methods through which the objects in the
underlying RDBMS are exclusively manipulated. To fully attain the object-oriented
approach, all direct access to the underlying data via SQL must be disallowed
through the RDBMS security system, leaving only the stored procedures for
database access. In practice, few if any production relational databases operate in
this restricted manner.

• Simplicity of access In a large enterprise database, a collection of stored
procedures may be the main way in which application programs access the
database. The stored procedures form a well-defined set of transactions and queries
that applications can perform on the database. For most application programmers, a
call to a simple, predefined function that checks an account balance, given a
customer number, or one that adds an order, given a customer number, quantity,
and product-id, is easier to understand than the corresponding SQL statements.

 646 P a r t V I : S Q L T o d a y a n d T o m o r r o w 646 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• Business rules enforcement The conditional processing capabilities of stored
procedures are often used to place business rules into the database. For example, a
stored procedure used to add an order to the database might contain logic to check
the credit of the customer placing the order and check whether there is enough
inventory on hand to fill the order, and reject the order if these conditions cannot be
met. A large company could quite easily have several different ways in which orders
are taken and entered into the corporate database—one program for use by direct
salespeople, one for people in the telesales department, another that accepts orders
placed via the Web, and so on. Each of these would typically have its own order-
acceptance program, usually written by different programmers at different times.
But if all of the programs are forced to use the same stored procedure to add an
order, the company can be assured that the business rules in that procedure are
being uniformly enforced, no matter where the order originated.

Stored Procedure Performance
Different DBMS brands vary in the way they actually implement stored procedures. In
several brands, the stored procedure text is stored within the database and is interpreted
when the procedure is executed. This has the advantage of creating a very flexible stored
procedure language, but it creates significant runtime overhead for complex stored
procedures. The DBMS must read the statements that make up the stored procedure at
runtime, parse and analyze them, and determine what to do on the fly.

Because of the overhead in the interpreted approach, some DBMS brands compile
stored procedures into an intermediate form that is much more efficient to execute.
Compilation may be automatic when the stored procedure is created, or the DBMS may
provide the ability for the user to request stored procedure compilation. The disadvantage
of compiled stored procedures is that the exact technique used to carry out the stored
procedure is fixed when the procedure is compiled. Suppose, for example, that a stored
procedure is created and compiled soon after a database is first created, and later some
useful indexes are defined on the data. The compiled queries in the stored procedure won’t
take advantage of these indexes, and as a result, they may run much more slowly than if
they were recompiled.

To deal with stale compiled procedures, some DBMS brands automatically mark any
compiled procedures that may be affected by subsequent database changes as being in need
of recompilation. The next time the procedure is called, the DBMS notices the mark and
recompiles the procedure before executing it. Normally, this approach provides the best of
both worlds—the performance benefits of precompilation while keeping the compiled
procedure up to date. Its disadvantage is that it can yield unpredictable stored procedure
execution times. When no recompile is necessary, the stored procedure may execute quickly;
when a recompile is activated, it may produce a significant delay; and in most cases, the
recompile delay is much longer than the disadvantage of using the old compiled version.

To determine the stored procedure compilation capabilities of a particular DBMS, you
can examine its CREATE PROCEDURE and EXECUTE PROCEDURE statement options, or look
for other procedure management statements such as ALTER PROCEDURE.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 647
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 647

System-Defined Stored Procedures
DBMS brands that support stored procedures sometimes provide built-in, system-defined
stored procedures to automate database processing or management functions. Sybase SQL
Server pioneered this use of system stored procedures. Today, hundreds of Transact-SQL
system stored procedures provide functions such as managing users, database roles, job
execution, distributed servers, replication, and others. Most Transact-SQL system
procedures follow this naming convention:

• sp_add_something Adds a new object (user, server, replica, etc.)

• sp_drop_something Drops an existing object

• sp_help_something Gets information about an object or objects

For example, the sp_helpuser procedure returns information about the valid users of
the current database. You will notice that in Microsoft SQL Server, the names of Transact-
SQL system stored procedures often have underscores between words except for the one
included in the name prefix (sp_). Also, since the vendors use the prefix sp_ to distinguish
their supplied system stored procedures, it’s a good idea to avoid using that prefix in
procedures that users add to the database.

Oracle uses the prefix DBMS_ for procedures provided with its namesake DBMS. Most of
these procedures are bundled into packages by functional category. For example, the
package DBMS_LOB contains general purpose routines (stored procedures and functions) for
operations on large objects (LOBs).

External Stored Procedures
Although stored procedures written in the extended SQL dialects of the major enterprise
DBMS brands can be quite powerful, they have limitations. One major limitation is that they
do not provide access to features outside the DBMS, such as the features of the operating
system or other applications running on the same computer system. The extended SQL
dialects also tend to be fairly high-level languages, with limited capability for the lower-level
programming usually done in C or C++. To overcome these limitations, some DBMS brands
provide access to external stored procedures.

An external stored procedure is a procedure written in a conventional programming
language (such as C or Pascal) and compiled outside the DBMS itself. The DBMS is given
a definition of the procedure’s name and its parameters, along with other essential
information such as the calling conventions used by the programming language in which
the stored procedure was written. Once defined to the DBMS, the external stored procedure
can be called as if it were a SQL stored procedure. The DBMS handles the call, turns over
control to the external procedure, and then receives any return values and parameters.

Microsoft SQL Server provides a set of system-defined external stored procedures that
provide access to selected operating system capabilities. The xp_sendmail procedure can
be used to send electronic mail to users, based on conditions within the DBMS:

xp_sendmail @RECIPIENTS = 'Joe', 'Sam',
 @MESSAGE = 'Customer table nearly full';

 648 P a r t V I : S Q L T o d a y a n d T o m o r r o w 648 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Similarly, the xp_cmdshell external procedure can be called to pass commands to the
underlying operating system on which SQL Server is operating. Beyond these predefined
external procedures, SQL Server allows a user-written external procedure to be stored in a
dynamic-linked library (DLL) and called from within SQL Server stored procedures.

Informix provides basic access to underlying operating system capabilities with a
special SYSTEM statement. In addition, it supports user-written external procedures through
its CREATE PROCEDURE statement. Where the statement block comprising the body of an
Informix SPL procedure would appear, an EXTERNAL clause specifies the name, location,
and language of the externally written procedure. With the procedure defined in this way, it
can be called in the same way as native Informix SPL procedures. Newer versions of Oracle
(Oracle8 and later) provide the same capability, also via the CREATE PROCEDURE statement.
IBM’s DB2 database family provides the same set of capabilities.

Triggers
As described at the beginning of this chapter, a trigger is a special set of stored procedural
code whose activation is caused by modifications to the database contents. Unlike stored
procedures, a trigger is not activated by a CALL or EXECUTE statement. Instead, the trigger
is associated with a database table. When the data in the table is changed by an INSERT,
DELETE, or UPDATE statement, the trigger is fired, which means that the DBMS executes the
SQL statements that make up the body of the trigger. Some DBMS brands allow definition
of specific updates that cause a trigger to fire. Also, some DBMS brands, notably Oracle,
allow triggers to be based on system events such as users connecting to the database or
execution of a database shutdown command.

Triggers can be used to cause automatic updates of information within a database. For
example, suppose you wanted to set up the sample database so that any time a new
salesperson is inserted into the SALESREPS table, the sales target for the office where the
salesperson works is raised by the new salesperson’s quota. Here is an Oracle PL/SQL
trigger that accomplishes this goal:

Create or replace trigger upd_tgt
 /* Insert trigger for SALESREPS */
 before insert on salesreps
 for each row
 begin
 if :new.quota is not null
 then
 update offices
 set target = target + new.quota;
 end if;
 end;

The CREATE TRIGGER statement is used by most DBMS brands that support triggers to
define a new trigger within the database. It assigns a name to the trigger (UPD_TGT for this
one) and identifies the table the trigger is associated with (SALESREPS) and the update
action(s) on that table that will cause the trigger to be executed (INSERT in this case). The
body of this trigger tells the DBMS that for each new row inserted into the table, it should
execute the specified UPDATE statement for the OFFICES table. The QUOTA value from the
newly inserted SALESREPS row is referred to as :NEW.QUOTA within the trigger body.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 649
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 649

Advantages and Disadvantages of Triggers
Triggers can be extremely useful as an integral part of a database definition, and they can be
used for a variety of different functions, including these:

• Auditing changes A trigger can detect and disallow specific updates and changes
that should not be permitted in the database.

• Cascaded operations A trigger can detect an operation within the database (such
as deletion of a customer or salesperson) and automatically cascade the impact
throughout the database (such as adjusting account balances or sales targets).

• Enforce interrelationships A trigger can enforce more complex interrelationships
among the data in a database than those that can be expressed by simple referential
integrity constraints or check constraints, such as those that require a sequence of
SQL statements or IF…THEN…ELSE processing.

• Stored procedure invocation A trigger can call one or more stored procedures or
even invoke actions outside the DBMS itself through external procedure calls in
response to database updates.

• Detecting system events For DBMSs that support triggers based on system
events, the trigger can audit or monitor such events, such as tracing a particular
user whenever they connect to the database.

In each of these cases, a trigger embodies a set of business rules that govern the data in
the database and modifications to that data. The rules are embedded in a single place in the
database (the trigger definition). As a result, they are uniformly enforced across all
applications that access the database. When they need to be changed, they can be changed
once with the assurance that the change will be applied uniformly.

The major disadvantage of triggers is their potential performance impact. If a trigger is
set on a particular table, then every database operation that attempts to change that table’s
data in the manner defined in the trigger (an insert, delete, or update to one or more
columns) causes the DBMS to execute the trigger procedure. For a database that requires
very high data insertion or update rates, the overhead of this processing can be
considerable. This is especially true for bulk load operations, where the data may have
already been prechecked for integrity. To deal with this disadvantage, some DBMS brands
allow triggers to be selectively enabled and disabled, as appropriate.

Triggers in Transact-SQL
Transact-SQL provides triggers through a CREATE TRIGGER statement in both its Microsoft
SQL Server and Sybase Adaptive Server dialects. Here is a Transact-SQL trigger definition
for the sample database, which implements the same trigger as the preceding Oracle PL/
SQL example:

create trigger upd_tgt
 /* Insert trigger for SALESREPS */
 on salesreps
 for insert
 as
 if (@@rowcount = 1)

 650 P a r t V I : S Q L T o d a y a n d T o m o r r o w 650 P a r t V I : S Q L T o d a y a n d T o m o r r o w

 begin
 update offices
 set target = target + inserted.quota
 from offices, inserted
 where offices.office = inserted.rep_office;
 end
 else
 raiserror 23456;

The first clause names the trigger (UPD_TGT). The second clause is required and
identifies the table to which the trigger applies. The third clause is also required and tells
which database update operations cause the trigger to be fired. In this case, only an INSERT
statement causes the trigger to fire. You can also specify UPDATE or DELETE operations, or a
combination of two or three of these operations in a comma-separated list. Transact-SQL
restricts triggers so that only one trigger may be defined on a particular table for each of the
three data modification operations. The body of the trigger follows the AS keyword. To
understand the body of a trigger like this one, you need to understand how Transact-SQL
treats the rows in the target table during database modification operations.

For purposes of trigger operation, Transact-SQL defines two logical tables whose
column structure is identical to the target table on which the trigger is defined. One of these
logical tables is named DELETED, and the other is named INSERTED. These logical tables
are populated with rows from the target table, depending on the data modification
statement that caused the trigger to fire, as follows:

• DELETE Each target table row that is deleted by the DELETE statement is placed
into the DELETED table. The INSERTED table is empty.

• INSERT Each target table row that is added by the INSERT statement is also
placed into the INSERTED table. The DELETED table is empty.

• UPDATE For each target table row that is changed by the UPDATE statement, a
copy of the row before any modifications is placed into the DELETED table. A copy
of the row after all modifications is placed into the INSERTED table.

These two logical tables can be referenced within the body of the trigger, and the data in
them can be combined with data from other tables during the trigger’s operation. In this
Transact-SQL trigger, the trigger body first tests to make sure that only a single row of the
SALESREPS table has been inserted, by checking the system variable @@ROWCOUNT. If this is
true, then the QUOTA column from the INSERTED logical table is added to the appropriate
row of the OFFICES table. The appropriate row is determined by joining the logical table to
the OFFICES table based on matching office numbers.

Here is a different trigger that detects a different type of data integrity problem. In this
case, it checks for an attempt to delete a customer when there are still orders outstanding in
the database for that customer. If it detects this situation, the trigger automatically rolls back
the entire transaction, including the DELETE statement that fired the trigger:

create trigger chk_del_cust
 /* Delete trigger for CUSTOMERS */
 on customers
 for delete

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 651
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 651

 as
 /* Detect any orders for deleted cust #'s */
 if (select count(*)
 from orders, deleted
 where orders.cust = deleted.cust_num) > 0
 begin
 rollback transaction
 print "Cannot delete; still have orders"
 raiserror 31234
 end;

Transact-SQL triggers can be specified to fire on any UPDATE for a target table, or just
for updates of selected columns. This trigger fires on inserts or updates to the SALESREPS
table and does different processing depending on whether the QUOTA or SALES column has
been updated:

create trigger upd_reps
 /* Update trigger for SALESREPS */
 on salesreps
 for insert, update
 if update(quota)
 /* Handle updates to quota column */
 . . .
 if update (sales)
 /* Handle updates to sales column */
 . . .

Triggers in Informix SPL
Informix also supports triggers through a CREATE TRIGGER statement. As in the Transact-
SQL dialect, the beginning of the CREATE TRIGGER statement defines the trigger name, the
table on which the trigger is being defined, and the triggering actions. Here are statement
fragments that show the syntax:

create trigger new_sls
 insert on salesreps . . .

create trigger del_cus_chk
 delete on customers . . .

create trigger ord_upd
 update on orders . . .

create trigger sls_upd
 update of quota, sales on salesreps . . .

The last example is a trigger that fires only when two specific columns of the
SALESREPS table are updated.

 652 P a r t V I : S Q L T o d a y a n d T o m o r r o w 652 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Informix allows you to specify that a trigger should operate at three distinct times
during the processing of a triggered change to the target table:

• BEFORE The trigger fires before any changes take place. No rows of the target
table have yet been modified.

• AFTER The trigger fires after all changes take place. All affected rows of the target
table have been modified.

• FOR EACH ROW The trigger fires repeatedly, once as each row affected by the change
is being modified. Both the old and new data values for the row are available to
the trigger.

An individual trigger definition can specify actions to be taken at one or more of these
steps. For example, a trigger could execute a stored procedure to calculate the sum of all
orders BEFORE an update, monitor updates to each ORDERS row as they occur with a
second action, and then calculate the revised order total AFTER the update with a call to
another stored procedure. Here is a trigger definition that does all of this:

create trigger upd_ord
 update of amount on orders
 referencing old as pre new as post

 /* Calculate order total before changes */
 before (execute procedure add_orders()
 into old_total;)

 /* Capture order increases and decreases */
 for each row
 when (post.amount < pre.amount)
 /* Write decrease data into table */
 (insert into ord_less
 values (pre.cust,
 pre.order_date,
 pre.amount,
 post.amount);)
 when (post.amount > pre.amount)
 /* Write increase data into table */
 (insert into ord_more
 values (pre.cust,
 pre.order_date,
 pre.amount,
 post.amount);)

 /* After changes, recalculate total */
 after (execute procedure add_orders()
 into new_total;)

The BEFORE clause in this trigger specifies that a stored procedure named ADD_ORDERS
is to be called before any UPDATE statement processing occurs. Presumably, this procedure
calculates the total orders and returns the total value into the local variable OLD_TOTAL.
Similarly, the AFTER clause specifies that a stored procedure (in this case, the same one) is
to be called after all UPDATE statement processing is complete. This time, the total orders
amount is placed into a different local variable, NEW_TOTAL.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 653
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 653

The FOR EACH ROW clause specifies the action to be taken as each affected row is
updated. In this case, the requested action is an INSERT into one of two order-tracking
tables, depending on whether the order amount is being increased or decreased. These
tracking tables contain the customer number, date, and both the old and new order
amounts. To obtain the required values, the trigger must be able to refer to both the old
(prechange) and the new (postchange) values of each row.

The REFERENCING clause provides names by which these two states of the row
currently being modified in the ORDERS table can be used. In this example, the prechange
values of the columns are available through the column name qualifier PRE, and the
postchange values are available through the column name qualifier POST. These are not
special names; any names can be used.

Informix is more limited than some other DBMS brands in the actions that can be
specified within the trigger definition itself. These statements are available:

• INSERT

• DELETE

• UPDATE

• EXECUTE PROCEDURE

In practice, the last option provides quite a bit of flexibility. The called procedure can
perform almost any processing that could be done inline within the trigger body itself.

Triggers in Oracle PL/SQL
Oracle provides a more complex trigger facility than either the Informix or Transact-SQL
facility described in the preceding sections. It uses a CREATE TRIGGER statement to specify
triggered actions. As in the Informix facility, a trigger can be specified to fire at specific
times during specific update operations:

• Statement-level trigger A statement-level trigger fires once for each data
modification statement. It can be specified to fire either before the statement is
executed or after the statement has completed its action.

• Row-level trigger A row-level trigger fires once for each row being modified by a
statement. In Oracle’s structure, this type of trigger may also fire either before the
row is modified or after it is modified.

• Instead-of trigger An instead-of trigger takes the place of an attempted data
modification statement. It provides a way to detect an attempted UPDATE, INSERT,
or DELETE operation by a user or procedure, and to substitute other processing
instead. You can specify that a trigger should be executed instead of a statement, or
that it should be executed instead of each attempted modification of a row.

• System event trigger A trigger that fires when a particular system event takes
place, such as a user connecting to the database, or entry of a database shutdown
command.

 654 P a r t V I : S Q L T o d a y a n d T o m o r r o w 654 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The following code is a PL/SQL trigger definition that implements the same processing
as in the complex Informix example from the previous section. It has been split into three
separate Oracle CREATE TRIGGER statements; one each for the BEFORE and AFTER
statement-level triggers and one trigger that is executed for each update row.

create trigger bef_upd_ord
 before update on orders
 begin
 /* Calculate order total before changes */
 old_total = add_orders();
 end;

create trigger aft_upd_ord
 after update on orders
 begin
 /* Calculate order total after changes */
 new_total = add_orders();
 end;

create trigger dur_upd_ord
 before update of amount on orders
 referencing old as pre new as post

 /* Capture order increases and decreases */
 for each row
 when (:post.amount != :pre.amount)
 begin
 if post.amount != :pre.amount)
 then
 if (:post.amount < :pre.amount)
 then
 /* Write decrease data into table */
 insert into ord_less
 values (:pre.cust,
 :pre.order_date,
 :pre.amount,
 :post.amount);
 elsif (:post.amount > :pre.amount)
 then
 /* Write increase data into table */
 insert into ord_more
 values (:pre.cust,
 :pre.order_date,
 :pre.amount,
 :post.amount);
 end if;
 end if;
 end;

These trigger structures and their options provide 14 different valid Oracle trigger types
(12 resulting from a choice of INSERT/DELETE/UPDATE triggers for BEFORE or AFTER
processing at the row or statement level (3×2×2), and two more from instead-of triggers at

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 655
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 655

the statement or row level). In practice, relational databases built using Oracle don’t tend to
use instead-of triggers; they were introduced in Oracle8 to support some of its newer object-
oriented features.

Other Trigger Considerations
Triggers pose some of the same issues for DBMS processing that UPDATE and DELETE rules
present. For example, triggers can cause a cascaded series of actions. Suppose a user’s
attempt to update a table causes a trigger to fire, and within the body of that trigger is an
UPDATE statement for another table. A trigger on that table causes the UPDATE of still
another table, and so on. The situation is even worse if one of the fired triggers attempts to
update the original target table that caused the firing of the trigger sequence in the first
place! In this case, an infinite loop of fired triggers could result.

Various DBMS systems deal with this issue in different ways. Some impose restrictions
on the actions that can be taken during execution of a trigger. Others provide built-in
functions that allow a trigger’s body to detect the level of nesting at which the trigger is
operating. Some provide a system setting that controls whether cascaded trigger processing
is allowed. Finally, some provide a limit on the number of levels of nested triggers that
can fire.

One additional issue associated with triggers is the overhead that can result during very
heavy database usage, such as when bulk data is being loaded into a database. Some DBMS
brands provide the ability to selectively enable and disable trigger processing to handle this
situation. Oracle, for example, provides this form of the ALTER TRIGGER statement:

ALTER TRIGGER BEF_UPD_ORD DISABLE;

A similar capability is provided within the CREATE TRIGGER statement of Informix.

Stored Procedures, Functions, Triggers, and the SQL Standard
The development of DBMS stored procedures, functions, and triggers has been largely
driven by DBMS vendors and the competitive dynamics of the database industry. Sybase’s
initial introduction of stored procedures and triggers in SQL Server triggered a competitive
response, and by the mid-1990s, many of the enterprise-class systems had added their own
proprietary procedural extensions to SQL. Stored procedures were not a focus of the SQL
standard, but became a part of the standardization agenda after the 1992 publication of the
SQL2 standard. The work on stored procedure standards was split off from the broader
object-oriented extensions that were proposed for SQL3, and was focused on a set of
procedural extensions to the SQL language.

The result was a new part of the SQL standard, published in 1996 as SQL/Persistent
Stored Modules (SQL/PSM), International Standard ISO/IEC 9075-4. The actual form of the
standard specification is a collection of additions, edits, new paragraphs, and replacement
paragraphs to the 1992 SQL2 standard (ISO/IEC 9075:1992). In addition to being a
modification of the SQL standard, SQL/PSM was also drafted as a part of the planned follow-
on standard, which was called SQL3 during its drafting. The development of the follow-on
standard took longer than expected, but SQL/PSM eventually took its place as Part 4 of the
SQL3 standard, officially known as SQL:1999. The SQL Call-Level Interface (CLI) standard,
described in Chapter 19, was treated the same way; it is now Part 3 of the SQL standard.

 656 P a r t V I : S Q L T o d a y a n d T o m o r r o w 656 P a r t V I : S Q L T o d a y a n d T o m o r r o w

When the SQL:1999 standard was published, selected parts of SQL/PSM that are used by
other parts of the standard were moved to the core SQL/Foundation specification (Part 1).

The SQL/PSM standard published in 1996 addressed only stored procedures and
functions; it explicitly did not provide a specification of a trigger facility for the ISO SQL
standard. The standardization of trigger functions was considered during the development of
the SQL2 and SQL/PSM standards, but the standards groups determined that triggers were
too closely tied to other object-oriented extensions proposed for SQL3. The SQL:1999 standard
that resulted from the SQL3 work finally provided an ANSI/ISO standard trigger facility.

The publication of the SQL/PSM and SQL:1999 standards lagged the first commercial
implementation of stored procedures and triggers by many years. By the time the standard was
adopted, most enterprise DBMS vendors had responded to user enthusiasm and competitive
pressure by introducing stored procedure and trigger capabilities in their products. Unlike
some other SQL extensions where IBM’s clout and a DB2 implementation had set a de facto
standard, the major DBMS vendors implemented stored procedures and triggers in different,
proprietary ways, and in some cases, competed with one another based on unique features of
their implementations. As a result, the ANSI/ISO standardization of stored procedures and
triggers has had little impact on the DBMS market to date. It’s reasonable to expect that ANSI/
ISO implementations will find their way into major DBMS products over time, but as a
complement to, rather than a replacement for, the proprietary implementations.

The SQL/PSM Stored Procedures Standard
The capabilities specified in the SQL/PSM standard parallel the core features of the
proprietary stored procedure capabilities of today’s DBMS systems. They include SQL
language constructs to:

• Define and name procedures and functions written in the extended SQL language

• Invoke (call) a previously-defined procedure or function

• Pass parameters to a called procedure or function, and obtain the results
of its execution

• Declare and use local variables within the procedure or function

• Group a block of SQL statements together for execution

• Conditionally execute SQL statements (IF…THEN…ELSE)

• Repeatedly execute a group of SQL statements (looping)

The SQL/PSM standard specifies two types of SQL-invoked routines. A SQL-procedure
is a routine that can return any number of values or no value at all. It is called with a CALL
statement:

CALL ADD_CUST('XYZ Corporation', 2137, 30000.00, 50000.00, 103, 'Chicago');

As with the proprietary stored procedure languages illustrated in the previous examples
throughout this chapter, SQL/PSM stored procedures accept parameters passed via the
CALL statement. SQL/PSM stored procedures can also pass data back to their caller via
output parameters, again mirroring the capabilities of the proprietary stored procedure
languages. SQL/PSM also supports combined input/output parameters, like some of the
proprietary languages.

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 657
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 657

A SQL function does return a value. It is called just like a built-in SQL function within a
value expression:

SELECT COMPANY
 FROM CUSTOMERS
 WHERE GET_TOT_ORDS(CUST_NUM) > 10000.00;

SQL/PSM restricts SQL functions to only returning a single value through the function-
call mechanism. Output parameters and input/output parameters are not allowed in SQL
functions.

SQL routines are objects within the database structure described in the SQL standard.
SQL/PSM allows the creation of routines within a SQL schema (a schema-level routine),
where it exists along with the tables, views, assertions, and other objects. It also allows the
creation of routines within a SQL module, which is the SQL procedure model carried
forward from the SQL1 standard.

Creating a SQL Routine
Following the practice of most DBMS brands, the SQL/PSM standard uses the CREATE
PROCEDURE and CREATE FUNCTION statements to specify the definitions of stored
procedures and functions. Figure 20-18 shows syntax for the CREATE PROCEDURE
statement, and Figure 20-19 shows the syntax for the CREATE FUNCTION statement. In
addition to the capabilities shown in the figure, the standard provides a capability to define
external stored procedures, specifying the language they are written in, whether they can
read or modify data in the database, their calling conventions, and other characteristics.

(

IN

OUT

INOUT

parameter-name

parameter-data-type

AS LOCATOR

)

,

routine-characteristics SQL SECURITY INVOKER

SQL SECURITY DEFINER

sql-statement-or-compound-statement;

CREATE PROCEDURE procedure-name

FIGURE 20-18 The SQL/PSM CREATE PROCEDURE syntax diagram

 658 P a r t V I : S Q L T o d a y a n d T o m o r r o w 658 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Flow-of-Control Statements
The SQL/PSM standard specifies the common programming structures that are found in
most stored procedure dialects to control the flow of execution. Figure 20-20 shows the
conditional branching and looping syntax. Note that the SQL statement lists specified for
each structure consist of a sequence of SQL statements, each ending with a semicolon. Thus,
explicit block structures are not required for simple multistatement sequences that appear in
an IF…THEN…ELSE statement or in a LOOP statement. The looping structures provide a
great deal of flexibility for loop processing. There are forms that place the test at the top of
the loop or at the bottom of the loop, as well as a form that provides infinite looping and
requires the explicit coding of a test to break loop execution. Each of the program control
structures is explicitly terminated by an END flag that matches the type of structure, making
programming debugging easier.

Cursor Operations
The SQL/PSM standard extends the cursor manipulation capabilities specified in the SQL2
standard for embedded SQL into SQL routines. The DECLARE CURSOR, OPEN, FETCH, and
CLOSE statements retain their roles and functions. Instead of using application program
host variables to supply parameter values and to receive retrieved data, SQL routine
parameters and variables can be used for these functions.

The SQL/PSM standard introduces one new cursor-controlled looping structure, shown
in Figure 20-21. Like the similar structures in the Oracle and Informix dialects described in
the “Cursor-Based Repetition” section earlier in this chapter, it combines the cursor
definition and the OPEN, FETCH, and CLOSE statements into a single loop definition that
also specifies the processing to be performed for each row of retrieved query results.

FIGURE 20-19 The SQL/PSM CREATE FUNCTION syntax diagram

CREATE FUNCTION function-name

(

parameter-name

parameter-data-type

RESULT

)

,

RETURNS data-type routine-characteristics

sql-statement-or-compound-statement;

STATIC DISPATCH

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 659
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 659

IF search-condition THEN

label:

Conditional execution:

ELSEIF search-condition THEN statement-list;

ELSE statement-list;

END IF

Looping:

LOOP statement-list; END LOOP

label:

label:

WHILE search-condition DO statement-list; END WHILE

label:

label:

REPEAT statement-list UNTIL search-condition END REPEAT

label:

FIGURE 20-20 The SQL/PSM flow-of-control statements syntax diagram

FOR

INSENSITIVE

SENSITIVE

ASENSITIVE

cursor-name

query-specification

DO END FORstatement-list;

label:

label:

loop-variable AS

CURSOR FOR

FIGURE 20-21 The SQL/PSM cursor-controlled loop syntax diagram

 660 P a r t V I : S Q L T o d a y a n d T o m o r r o w 660 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Block Structure
Figure 20-22 shows the block structure specified by the SQL/PSM standard. It is quite a
comprehensive structure, providing the following capabilities:

• Labels the block of statements with a statement label

• Declares local variables for use within the block

• Declares local user-defined error conditions

• Declares cursors for queries to be executed within the block

• Declares handlers to process error conditions that arise

• Defines the sequence of SQL statements to be executed

FIGURE 20-22 The SQL/PSM statement block syntax diagram

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 661
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 661

These capabilities resemble some of those described earlier in the “Statement Blocks”
section of this chapter for the Informix and Oracle dialect stored procedure dialects.

Local variables within SQL/PSM procedures and functions (actually, within statement
blocks) are declared using the DECLARE statement. Values are assigned using the SET
statement. Functions return a value using the RETURN statement. Here is a statement block
that might appear within a stored function, with examples of these statements:

try_again:
 begin
 /* Declare some local variables */
 declare msg_text varchar(40);
 declare tot_amt decimal(16,2);

 /* Get the order total */
 set tot_amt = get_tot_ords();
 if (tot_amt > 0)
 then
 return (tot_amt);
 else
 return (0.00);
 end if
 end try_again;

Error Handling
The block structure specified by the SQL/PSM standard provides fairly comprehensive
support for error handling. The standard specifies predefined conditions that can be
detected and handled, including

• SQLWARNING One of the warning conditions specified in the SQL standard

• NOT FOUND The condition that normally occurs when the end of a set of query
results is reached with a FETCH statement

• SQLSTATE value A test for specific SQLSTATE error codes

• User-defined condition A condition named by the stored procedure

Conditions are typically defined in terms of SQLSTATE values. Rather than using
numerical SQLSTATE codes, you can assign the condition a symbolic name. You can also
specify your own user-defined condition:

declare bad_err condition for sqlstate '12345';
declare my_err condition;

Once the condition has been defined, you can force the condition to occur through the
execution of a SQL routine with the SIGNAL statement:

signal bad_err;
signal sqlstate '12345';

 662 P a r t V I : S Q L T o d a y a n d T o m o r r o w 662 P a r t V I : S Q L T o d a y a n d T o m o r r o w

To handle error conditions that may arise, SQL/PSM allows you to declare a condition
handler. The declaration specifies the list of conditions that are to be handled and the action
to be taken. It also specifies the type of condition handling. The types differ in what
happens to the flow of control after the handler is finished with its work:

• CONTINUE type After the condition handler completes its work, control returns to
the next statement following the one that caused the condition. That is, execution
continues with the next statement.

• EXIT type After the condition handler completes its work, control returns to the
end of the statement block containing the statement that caused the condition. That
is, execution effectively exits the block.

• UNDO type After the condition handler completes its work, all modifications are
undone to data in the database caused by statements within the same statement
block as the statement causing the error. The effect is the same as if a transaction had
been initiated at the beginning of the statement block and was being rolled back.

Here are some examples that show the structure of the handler definition:

/* Handle SQL warnings here, then continue */
declare continue handler for sqlwarning
 call my_warn_routine();

/* Handle severe errors by undoing effects */
declare undo handler for user_disaster
 begin
 /* Do disaster cleanup here */
 . . .
 end;

Error handling can get quite complex, and it’s possible for errors to arise during the
execution of the handler routine itself. To avoid infinite recursion on errors, the normal
condition signaling does not apply during the execution of a condition handler. The
standard allows you to override this restriction with the RESIGNAL statement. It operates
just like the SIGNAL statement, but is used exclusively within condition-handler routines.

Routine Name Overloading
The SQL/PSM standard permits overloading of stored procedure and function names.
Overloading is a common attribute in object-oriented systems and is a way to make stored
routines more flexible in handling a wide variety of data types and situations. Using the
overloading capability, several different routines can be given the same routine name. The
multiple routines defined with the same name must differ from one another in the number
of parameters that they accept or in the data types of the individual parameters. For
example, you might define these three stored functions:

create function combo(a, b)
 a integer;
 b integer;
 returns integer;
 as return (a+b);

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 663
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 663

create function combo(a, b, c)
 a integer;
 b integer;
 c integer;
 returns integer;
 as return (a+b+c);

create procedure combo(a, b)
 a varchar(255);
 b varchar(255);
 returns varchar(255);
 as return (a || b);

The first COMBO function combines two integers by adding them and returns the sum.
The second COMBO function combines three integers the same way. The third COMBO
function combines two character strings by concatenating them. The standard allows all of
these functions named COMBO to be defined at the same time within the database. When the
DBMS encounters a reference to the COMBO function, it examines the number of arguments
in the reference and their data types, and determines which version of the COMBO function
to call. Thus, the overloading capability allows a SQL programmer to create a family of
routines that logically perform the same function and have the same name, even though
the specifics of their usage for different data types is different. In object-oriented terms,
overloading is sometimes called polymorphism, meaning literally that the same function can
take many different forms.

To simplify the management of a family of routines that share an overloaded name, the
SQL/PSM standard has the concept of a specific name: a second name that is assigned to the
routine that is unique within the database schema or module. It uniquely identifies a
specific routine. The specific name is used to drop the routine, and it is reflected in the
information schema views that describe stored routines. The specific name is not used to
call the routine; that would defeat the primary purpose of the overloaded routine name.
Support for specific names or some similar mechanism is a practical requirement for any
system that permits overloading or polymorphism for objects and provides a capability to
manage them by dropping or changing their definitions, since the system must be able to
determine which specific object is being modified.

External Stored Procedures
The bulk of the SQL/PSM standard is concerned with the extensions to the SQL language
that are used to define SQL procedures and functions. Note, however, that the method used
to invoke a procedure (the CALL statement) or a function (a reference to the function by
name within a SQL statement) is not particular to procedures defined in the SQL language.
In fact, the SQL/PSM standard provides for external stored procedures and functions,
written in some other programming language such as C or Pascal. For external procedures,
the CREATE PROCEDURE and CREATE FUNCTION statements are still used to define the
procedure to the DBMS, specifying its name and the parameters that it accepts or returns.
A special clause of the CREATE statement specifies the language in which the stored
procedure or function is written, so that the DBMS may perform the appropriate conversion
of data types and call the routine appropriately.

 664 P a r t V I : S Q L T o d a y a n d T o m o r r o w 664 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Other Stored Procedure Capabilities
The SQL/PSM standard treats procedures and functions as managed objects within the
database, using extensions to the SQL statements used to manage other objects. You use a
variation of the DROP statement to delete routines when they are no longer needed, and a
variation of the ALTER statement to change the definition of a function or procedure. The
SQL standard permissions mechanism is similarly extended with additional privileges. The
EXECUTE privilege gives a user the ability to execute a stored procedure or function. It is
managed by the GRANT and REVOKE statements in the same manner as other database
privileges.

Because the stored routines defined by SQL/PSM are defined within SQL schemas,
many routines can be defined in many different schemas throughout the database. When
calling a stored routine, the routine name can be fully qualified to uniquely identify the
routine within the database. The SQL/PSM standard provides an alternative method of
searching for the definition of unqualified routine names through a new PATH concept.

The PATH is the sequence of schema names that should be searched to resolve a routine
reference. A default PATH can be specified as part of the schema header in the CREATE
SCHEMA statement. The PATH can also be dynamically modified during a SQL session
through the SET PATH statement.

The SQL/PSM standard also lets the author of a stored procedure or function give the
DBMS some hints about its operation to improve the efficiency of execution. One example is
the ability to define a stored routine as DETERMINISTIC or NOT DETERMINISTIC. A
DETERMINISTIC routine will always return the same results when it is called with the
same parameter values. If the DBMS observes that a DETERMINISTIC routine is called
repeatedly, it may choose to keep a copy of the results that it returns. Later, when the
routine is called again, the DBMS does not need to actually execute the routine; it can
simply return the same results that it returned the last time.

Another form of hint tells the DBMS whether an external stored procedure or function
reads database contents and whether it modifies database contents. This not only allows the
DBMS to optimize database access, but can also impose a security restriction on external
routines from other sources. Other hints determine whether a function should be called if
one of its parameters has a NULL value, and control how the DBMS selects the specific
function or procedure to be executed when overloading is used.

The SQL/PSM Triggers Standard
Triggers were addressed for standardization as part of the SQL3 effort, which led to the
eventual publication of the SQL:1999 ANSI/ISO standard. By that time, many commercial
DBMS products had already implemented triggers, and the standard synthesized the
specific capabilities that had proven useful in practice. Like the commercial products,
ANSI/ISO standard triggers are defined for a single, specific table. The standard permits
trigger definitions only on tables, not on views.

The proprietary SQL Server, Oracle, and Informix trigger mechanisms shown in
the examples throughout this chapter provide a context for examining the ANSI/ISO

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 665
PART VI

 C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r a l S Q L 665

standard mechanism. The standard does not provide any radical departure from the
capabilities already described for the various DBMS products. Here is how the standard
compares with them:

• Naming The standard treats triggers as named objects within the database.

• Types The standard provides INSERT, DELETE, and UPDATE triggers; UPDATE
triggers can be associated with the update of a specific column or group of columns.

• Timing The standard provides for triggers that operate before a database update
statement or after the statement.

• Row-level or statement-level operation The standard provides for both
statement-level triggers (executed once per database-updating statement) and row-
level triggers (executed repeatedly for each row of the table that is modified).

• Aliases Access to the “before” and “after” values in a modified row or table is
provided via an alias mechanism, like the table aliases used in the FROM clause.

You use the CREATE TRIGGER statement, shown in Figure 20-23, to define a trigger. The
statement clauses are familiar from the proprietary trigger examples throughout the earlier
sections of this chapter.

,

FIGURE 20-23 The SQL standard CREATE TRIGGER syntax diagram

 666 P a r t V I : S Q L T o d a y a n d T o m o r r o w

One very useful extension provided by the standard is the WHEN clause that can be
specified as part of a triggered action. The WHEN clause is optional, and it operates like a
WHERE clause for determining whether a triggered action will be carried out. When the
DBMS executes the particular type of statement specified in the trigger definition, it
evaluates the search condition specified in the WHEN clause. The form of the search
condition is exactly like the search condition in a WHERE clause, and it will produce either
a TRUE or FALSE result. The triggered action is carried out only if the result is TRUE.

To provide security for triggers, the SQL standard establishes a new TRIGGER privilege
that may be granted for specific tables to specific users. With this privilege, a user may
establish a trigger on the table. The owner of a table is always allowed to establish triggers
on the table.

Summary
Stored procedures and triggers are two very useful capabilities for SQL databases used in
transaction-processing applications:

• Stored procedures allow you to predefine common database operations, and invoke
them simply by calling the stored procedure, for improved efficiency and less
chance of error.

• Extensions to the basic SQL language give stored procedures the features normally
found in programming languages. These features include local variables,
conditional processing, branching, and special statements for row-by-row query
results processing.

• Stored functions are a special form of stored procedure that return a single value,
or in some implementations, a single object or XML document.

• Triggers are procedures whose execution is automatically initiated based on
attempted modifications to a table. A trigger can be fired by an INSERT, DELETE,
or UPDATE statement for the table, or in some implementations, a system event.

• The specific SQL dialects used by the major DBMS brands to support stored
procedures and triggers vary widely.

• There is now an international standard for stored procedures, functions, and
triggers. As one of the newer standards, it has not yet had a major impact on
implementation by leading DBMS vendors.

21
SQL and Data Warehousing

One of the most important applications of SQL and relational database technology
today is the rapidly growing area of data warehousing and business intelligence.
The focus of data warehousing is to use accumulated data to provide information

and insights for decision making. With the rising popularity of the Internet and the direct
interaction with customers that it provides, the amount of data available about customer
behavior (reflected in their click-by-click journey through web pages) has literally exploded.
Data warehousing treats this data as a valuable asset to be translated, through analysis, into
competitive advantage. The complementary process of data mining involves in-depth
analysis of historical and trend data to find valuable insights about customer behavior and
cross-dependencies. SQL-based relational databases are a key technology underlying data
warehousing applications.

Business intelligence applications have exploded in popularity over the last two
decades and continue to grow. Corporate IT surveys show that the majority of large
corporations have some type of business analysis or data warehousing projects under way.
In many ways, data warehousing represents relational databases coming full circle, back
to their roots. When relational databases first appeared on the scene, the established
databases (such as IBM’s hierarchical IMS database) were squarely focused on business
transaction-processing applications. Relational technology gained popularity by focusing
on decision support applications and their ad hoc queries. As the popularity of these
applications grew, most relational database vendors shifted their focus to compete for new
transaction-processing applications. With data warehousing, attention has turned back to
what was formerly called decision support, albeit with new terminology and much more
powerful tools than in those of earlier years.

667

CHAPTER

 668 P a r t V I : S Q L T o d a y a n d T o m o r r o w 668 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Data Warehousing Concepts
One of the foundations of data warehousing is the notion that databases for transaction
processing and databases for business analysis serve very different needs. The core focus of
an online transaction processing (OLTP) database is to support the basic day-to-day functions
of an organization. In a manufacturing company, OLTP databases support the taking of
customer orders, ordering of raw materials, management of inventory, billing of customers,
and similar functions. Their heaviest users are the applications used by order-processing
clerks, production workers, warehouse staff, and the like. By contrast, the core focus of a
business intelligence (BI) database (given the name Online Analytical Processing (OLAP)
database by E. F. Codd) is to support business decision-making through data analysis and
reporting. Its heaviest users are typically product managers, production planners, and
marketing professionals.

Table 21-1 highlights the significant differences in OLTP and business intelligence
application profiles and in the database workloads they produce. A typical online
transaction processing of a customer’s order might involve these database accesses:

• Read a row of the customer table to verify the proper customer number.

• Check the credit limit for that customer.

• Read a row of the inventory table to verify that a product is available.

• Insert a new row in an order table and in an order-items table to record the
customer’s order.

• Update the row of the inventory table to reflect the decreased quantity available.

Database Characteristic OLTP Database Data Warehouse Database

Data contents Current data Historical data

Data structure Tables organized to align with
transaction structure

Tables organized to be easy to
understand and query

Typical table size Thousands to a few million rows Millions to billions of rows

Access patterns Predetermined for each type of
transaction to be processed

Ad hoc, depending on the
particular decision to be made

Rows accessed per request Tens Thousands to millions

Row coverage per access Individual rows Groups (summary queries)

Access rate Many business transactions per
second or minute

Many minutes or hours per
query

Access type Read, insert, and update Almost 100 percent read

Performance focus Transaction throughput and speed Query completion time

TABLE 21-1 OLTP vs. Data Warehousing Database Attributes

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 669
PART VI

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 669

The workload presents a large volume of short, simple database requests that typically
read, write, or update individual rows and then commit a transaction. The same type of
workload is presented by all of the most frequent types of transactions, such as:

• Retrieving the price of a product

• Checking the quantity of product available

• Deleting an order

• Updating a customer address

• Raising a customer’s credit limit

In contrast, a typical business analysis transaction (generating an order analysis report)
might involve these database accesses:

• Join information from the orders, order items, products, and customers tables

• Summarize the detail from the orders table by product in a summary query

• Compute the total order quantities for each product

• Sort the resulting information by customer

This workload presents a single, long-running query that is read-intensive. It processes
many rows of the database (in this case, every order item) and involves computing totals
and averages and summarizing data. These characteristics are typical of almost all business
analysis queries, such as:

• Which regions had the best performance last quarter?

• How did sales by product last quarter compare with last year?

• What is the trend line for a particular product’s sales?

• Which customers are buying the highest-growth products?

• Which characteristics do those customers share?

The difference between the business intelligence and the OLTP workloads is substantial
and makes it difficult or impossible for a single DBMS to serve both types of applications.

Components of a Data Warehouse
Figure 21-1 shows the architecture of a data warehousing environment. It has three typical
key components:

• Warehouse loading tools A suite of programs that extract data from corporate
transaction-processing systems (relational databases, mainframe and minicomputer
files, legacy databases), process the data, and load it into the warehouse. This
process typically involves substantial cleanup of the transaction data, filtering it,
reformatting it, and loading it on a bulk basis into the warehouse. A common term
used for these tools and processes is extract, transform, and load (ETL).

 670 P a r t V I : S Q L T o d a y a n d T o m o r r o w 670 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• A warehouse database A relational database optimized for storing vast quantities
of data, bulk loading data at high speeds, and supporting complex business analysis
queries.

• Data analysis tools A suite of programs for performing statistical and time series
analysis, doing “what if” analysis, and presenting the results in textual and/or
graphical form.

Vendors in the data warehousing market have tended to concentrate on one of these
component areas. Several vendors build product suites that focus on the warehouse-loading
process and challenges. Other vendors have focused on data analysis. Some vendors
have consolidated to cover both these areas, but both areas remain the focus for individual
independent software companies, including several whose revenues are in the $100 million
range.

Specialized warehouse databases were also the target of several startup companies early in
the data warehousing market. Over time, the major enterprise DBMS vendors also moved to
address this area. Some developed their own specialized warehouse databases; others added
warehouse databases to their product line by acquiring smaller companies that produced them.
Today, the database component shown in Figure 21-1 is almost always a specialized SQL-based
warehouse DBMS supplied by one of the major enterprise database vendors.

The Evolution of Data Warehousing
The initial focus of data warehousing was the creation of huge, enterprisewide collections of
all of the enterprise’s accumulated data. By creating such a warehouse of data, almost any
possible question about historical business practices could be posed. Many companies
started down the road to creating warehouses with this approach, but success rates were
low. Large, enterprisewide warehouses generally proved too difficult to create, too big, too
expensive, and too unwieldy to use.

transform,

load(ETL)

FIGURE 21-1 Data warehousing components

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 671
PART VI

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 671

The focus eventually turned to smaller data warehouses focused on specific areas of a
business that could most benefit from in-depth data analysis. The term data mart was coined
to describe these smaller (but still often massive) data warehouses. With the advent of
multiple data marts within enterprises, a recent area of focus has been on management of
distributed data marts. In particular, there is a large potential for duplication of effort in the
data cleansing and reformatting process when multiple marts are drawing data from the same
production databases. One emerging answer seems to be a coordinated approach to data
transformation for distributed marts, rather than a return to huge centralized warehouses.
Another approach is to leave the data in place in OLTP databases and form data marts on
demand through use of a middleware tool that makes the data in multiple databases appear
as if it is all in one huge, federated database, which can be thought of as a virtual data
warehouse. In this architecture, known as enterprise information integration (EII), the
middleware tool replicates each query across all the supported physical databases and
consolidates the results before returning them to the user who submitted the original query.

Data warehousing, and more recently data marts, have grown to prominence in many
different industries. They are most widely (and aggressively) used in industries where
better information about business trends can be used to make decisions that save or
generate large amounts of money. For example:

• High-volume manufacturing Analysis of customer purchase trends, seasonality,
and so on, can help the company plan its production and lower its inventory levels,
saving money for other purposes.

• Packaged goods Analysis of promotions (coupons, advertising campaigns, direct
mail, etc.) and the response of consumers with different demographics can help to
determine the most effective way to reach prospective customers, saving millions of
dollars in advertising and promotion costs.

• Telecommunications Analysis of customer calling patterns can help to create
more attractive pricing and promotional plans, perhaps attracting new customers
from a competitor.

• Airlines Analysis of customer travel patterns is critical to yield management, the
process of setting airfares and associated restrictions on available airline seats to
maximize profitability.

• Financial services Analysis of customer credit factors and comparing them with
historical customer profiles can help to make better decisions about which
customers are creditworthy.

Database Architecture for Warehousing
The structure (schema) of a warehouse database is typically designed to make the
information easy to analyze, since that is the major focus of its use. The structure must make
it easy to slice and dice the data along various dimensions. For example, one day a business
analyst may want to look at sales by product category by region, to compare the
performance of different products in different areas of the country. The next day, the same
analyst may want to look at sales trends over time by region, to see which regions are
growing and which are not. The structure of the database must lend itself to this type of
analysis along several different dimensions.

 672 P a r t V I : S Q L T o d a y a n d T o m o r r o w 672 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Fact Cubes
In most cases, the data stored in a warehouse can be accurately modeled as an N-dimensional
cube (N-cube) of historical business facts. A simple three-dimensional (3-D) cube of sales data
is shown in Figure 21-2 to illustrate the structure. The fact in each cell of the cube is a dollar
sales amount. Along one edge of the cube, one of the dimensions is the month during which
the sales took place. Another dimension is the region where the sales occurred. The third
dimension is the type of product that was sold. Each cell in the cube represents the sales for
one combination of these three dimensions. The $50,475 amount in the upper-left front cell
represents the sales amount for January, for clothing, in the East region.

Figure 21-2 shows a simple 3-D cube, but many warehousing applications will have a
dozen dimensions or more. Although a 12-D cube is difficult to visualize, the principles are
the same as for the 3-D example. Each dimension represents some variable on which the data
may be analyzed. Each combination of dimension values has one associated fact value, which
is usually the historical business result obtained for that collection of dimension values.

To illustrate the database structures typically used in warehousing applications, we use
a warehouse that might be found in a distribution company. Through the efforts of its sales
force, the company distributes different types of products, made by various suppliers, to
several hundred customers located in various regions of the country. The company wants to
analyze historical sales data along these dimensions, to discover trends and gain insights
that will help it better manage its business. The underlying model for this analysis will be
a 5-D fact cube with these dimensions:

• Category The category of product that was sold, with values such as clothing, linens,
accessories, and shoes. The warehouse has about two dozen product categories.

• Supplier The supplier who manufactures the particular product sold. The company
might distribute products from 50 different suppliers.

• Customer The customer who purchased the products. The company has several
hundred customers. Some of the larger customers purchase products centrally and
are serviced by a single salesperson; others purchase on a local basis and are served
by local salespeople.

Shoes
Accessories

Linens

East

$65,973

$62,673

$55,403

$61,977

$55,607

$50,475

$61,995

$62,478

$63,400

$64,730

$65,345

$67,463

$98,567

$97,847

$97,105

$94,006

$93,143

$89,475

West Central

Clothing

JAN

FEB

MAR

APR

MAY

JUN

FIGURE 21-2
Three-dimensional
depiction of sales
data

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 673
PART VI

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 673

• Region The region of the country where the products were sold. Some of the
company’s customers operate in only one region of the country; others operate in
two or more regions.

• Month The month when the products were sold. For comparison purposes, the
company has decided to maintain 36 months (three years) of historical sales data in
the warehouse.

With these characteristics, each of the five dimensions is relatively independent of the
others. Sales to a particular customer may be concentrated in a single region or in multiple
regions. A specific category of product may be supplied by one or many different suppliers.
The fact in each cell of the 5-D cube is the sales amount for that particular combination of
dimension values. With the attributes just described, the fact cube contains over 35 million
cells (24 categories × 50 suppliers × 300 customers × 3 regions × 36 months).

Star Schemas
In most data warehouses, the most effective way to model the N-dimensional fact cube is
with a star schema. A star schema for the distributor warehouse in the previous example is
shown in Figure 21-3. Each dimension of the cube is represented by a dimension table. Five
of them are in the figure: CATEGORIES, SUPPLIERS, CUSTOMERS, REGIONS, and MONTHS.
One row in each dimension table is for each possible value of that dimension. The MONTHS
table has 36 rows, one for each month of sales history being stored. Three regions produce a
three-row REGIONS table.

Dimension tables in a star schema often contain columns with descriptive text
information or other attributes associated with that dimension (such as the name of the
buyer for a customer, or the customer’s address and phone number, or the purchasing terms
for a supplier). These columns may be displayed in reports generated from the database. A
dimension table always has one or more columns that contain natural identifiers for the
dimension, such as a region code, a month and year, an airport code, or a clothing size.
However, those natural identifiers are seldom used as the primary key of the dimension
table because the natural identifiers may change over time, a phenomenon known as slowly
changing dimensions. To avoid changes in primary key values playing havoc with historical
rows in the fact table, it is common to use arbitrary numbers that have no business meaning,
known as surrogate keys, as primary keys in all fact tables. Surrogate keys also simplify the
foreign keys because each requires only one column. Without a surrogate key for the
MONTHS dimension table, its foreign key in the fact table would require two columns, one
for the month and the other for the year.

In the sample warehouse of Figure 21-3, we use surrogate keys in all the tables, but note
that the natural identifiers are also included in the dimension tables. For example, note the
region names in REGIONS (East, West, etc.), and the category names in CATEGORIES
(Clothing, Shoes, etc.).

The largest table in the database is the fact table in the center of the schema. This table is
named SALES in Figure 21-3. The fact table contains a column with the data values that appear
in the cells of the N-cube in Figure 21-2. In addition, the fact table contains a column that
forms the foreign key for each of the dimension tables. The foreign keys link the row to the
corresponding dimension table rows for its position in the cube. This example has five such
foreign key columns. With this structure, each row represents the data for one cell of the N-cube.

 674 P a r t V I : S Q L T o d a y a n d T o m o r r o w 674 P a r t V I : S Q L T o d a y a n d T o m o r r o w

However, a single cube can only show three dimensions. To handle additional dimensions,
you have to visualize additional cubes. The N-cube in Figure 21-2 shows the REGIONS,
CATEGORIES, and MONTHS dimensions. To represent the SUPPLIERS dimension, the N-cube
needs to be replicated 50 times, once for each possible supplier. Furthermore, to represent the
CUSTOMERS dimension, we need to replicate those 50 cubes 300 times, one for each possible
customer (15,000 cubes in all). Fortunately, some multidimensional DBMSs can present
cubes for analysis without needing to physically store each cube that might be required for
presentation.

The fact table typically contains only a few columns, but many rows—tens or hundreds
of millions or even billions of rows—are not unusual in a production data warehouse. The
fact column almost always contains numeric values that can be accumulated, such as
currency amounts, units shipped or received, or pounds processed. Virtually all reports
from the warehouse involve summary data—totals, averages, high or low values,
percentages—based on arithmetic computations on this numeric value.

FIGURE 21-3 Star schema for distributor warehouse

1 X XX X

2

East

West

3 Central

X XX X

X XX X

REGIONS Table (3 rows)

21 X XX X

22

JCP Inc.

First Corp.

23 Acme Mfg.

24 Carter & Sons
...

X XX X

X XX X

X XX X
..

CUSTOMERS Table (300 rows)

X

X

X

X
.

01 X XX X

02

Clothing

Linens

03 Accessories

04 Shoes
...

X XX X

X XX X

X XX X
..

CATEGORIES Table (24 rows)

... .

11 X XX X

12

Acme Mfg.

XYZ Corp.

13 KRTY Inc.

14 Dimple Co.
...

X XX X

X XX X

X XX X
..

SUPPLIERS Table (50 rows)

X

X

X

X
... . .

91 X XX

92

January

February

93 March

94 April
...

X XX

X XX

X XX
..

MONTHS Table (36 rows)

2008

2008

2008

2008
..... .

.....

01125 $50,475 91 03 12 121

01126 $64,370 91 02 11 323

01127 $93,143 91 09 13 129

01128 $61,090 91 05 17 221

01129 $57,443 92 09 13 222

01130 $61,090 92 02 14 328

01131 $93,500 92 03 12 124

01132 $55,607 92 01 15 121
............

SALES Fact Table
(15,000 rows)

1

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 675
PART VI

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 675

The schema structure of Figure 21-3 is called a star schema for obvious reasons. The fact
table is at the center of a star of data relationships. The dimension tables form the points of
the star. The relationships created by the foreign keys in the fact table connect the center to
the points. With the star-schema structure, most business analysis questions turn into
queries that join the central fact table with one or more dimension tables. Here are some
examples:

Show the total sales for clothing in January 2008, by region.

SELECT SALES_AMOUNT, REGION
 FROM SALES, REGIONS
 WHERE MONTH = 'January'
 AND YEAR = 2008
 AND PROD_TYPE = 'Clothing'
 AND SALES.REGION = REGIONS.REGION
 ORDER BY REGION;

Show the average sales for each CUSTOMER, by SUPPLIER, for each month.

SELECT AVG(SALES_AMOUNT), CUST_NAME, SUPP_NAME, MONTH, YEAR
 FROM SALES, CUSTOMERS, SUPPLIERS
 WHERE SALES.CUST_CODE = CUSTOMERS.CUST_CODE
 AND SALES.SUPP_CODE = SUPPLIERS.SUPP_CODE
 GROUP BY CUST_NAME, SUPP_NAME, MONTH, YEAR
 ORDER BY CUST_NAME, SUPP_NAME, MONTH, YEAR;

Multilevel Dimensions
In the star-schema structure of Figure 21-3, each of the dimensions has only one level. In
practice, multilevel dimensions are quite common. For example:

• Sales data may in fact be accumulated for each sales office. Each office is a part of a
sales district, and each district is a part of a sales region.

• Sales data is accumulated by month, but it may also be useful to look at quarterly
sales results. Each month is a part of a particular quarter.

• Sales data may be accumulated for individual products ordered, and the products
are associated with a particular supplier.

Multilevel dimensions such as these complicate the basic star schema, and in practice,
you can deal with them in several ways:

• Additional data in the dimension tables The geographic dimension table
REGIONS might contain information about individual offices, but also include
columns indicating the district and region to which the office belongs. Aggregate
data for these higher levels of the geographic dimension can then be obtained by
summary queries that join the fact table to the dimension table and can be filtered
based on the district or region columns. This approach is conceptually simple, but it
means that all aggregate (summary) data must be calculated query by query. This
likely produces unacceptably poor performance.

 676 P a r t V I : S Q L T o d a y a n d T o m o r r o w 676 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• Multiple levels within the dimension tables The geographic dimension table
might be extended to include rows for offices, districts, and regions. Rows
containing summary (total) data for these higher-level dimensions are added to the
fact table when it is updated. This solves the runtime query performance problem
by precalculating aggregate (summary) data. However, it complicates the queries
considerably. Because every sale is now included in three separate fact table rows
(one each for office, district, and region), any totals must be computed very
carefully. Specifically, the fact table must usually contain a level column to indicate
the level of data summarization provided by that row, and every query that
computes totals or other statistics must include a search condition that restricts it to
rows at only a specific level.

• Precomputed summaries in the dimension tables Instead of complicating the
fact table, summary data could be precomputed and stored in the dimension
tables (for example, summary sales for a district could be stored in the district’s
row of the geographic dimension table). This solves the duplicate facts problem of
the previous solution, but it works only for very simple precomputed amounts.
The precalculated totals don’t help with queries about products by district or
about district results by month, for example, without further complicating the
dimension tables.

• Multiple fact tables at different levels Instead of complicating the fact table, this
approach creates multiple fact tables for different levels of summary data. To
support cross-dimension queries (for example, district–results–by month),
specialized fact tables that summarize data on this basis are needed. The resulting
pattern of dimension tables and fact tables tends to have many interrelationships,
creating a pattern resembling a snowflake; hence, this type of schema is often
referred to as a snowflake schema. This approach solves the runtime performance
problem and eliminates the possibility of erroneous data from a single fact table, but
it can add significant complexity to the warehouse database design, making it
harder to understand. Furthermore, many of the popular data analysis tools cannot
handle snowflake schemas.

In practice, finding the right schema and architecture for a particular warehouse is a
complicated decision, driven by the specifics of the facts and dimensions, the types of
queries frequently performed, and other considerations. Many companies use specialized
consultants to help them design data warehouses and deal with exactly these issues.

SQL Extensions for Data Warehousing
With a star-schema structure, a relational database conceptually provides a good foundation
for managing data for business analysis. The capability to freely relate information within
the database based solely on data values is a good match for the ad hoc, unstructured
queries that typify business intelligence applications. But there are some serious mismatches

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 677
PART VI

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 677

between typical business intelligence queries and the capabilities of the core SQL.
For example:

• Data ordering Many business intelligence queries deal explicitly or implicitly with
data ordering—they pose questions like “What is the top 10 percent?” “What are the
top 10?” or “Which are the worst performing?” As a set-oriented language, SQL
manipulates unordered sets of rows. The only support for sorting and ordering data
within standard SQL is the ORDER BY clause in the SELECT statement, which is
applied only at the end of all other set-oriented processing.

• Time series Many business intelligence queries compare values based on time—
contrasting this year’s results to last year’s, or this month’s results to the same
month last year, or computing year-over-year growth rates, for example. It is very
difficult, and sometimes impossible, to get side-by-side comparisons of data from
different periods within a single row of standard SQL query results, depending on
the structure of the underlying database.

• Comparison to aggregate values Many business intelligence queries compare
values for individual entities (for example, office sales results) to an overall total, or
to subtotals (such as regional results). These comparisons are difficult to express in
standard SQL. A report format showing line-item detail, subtotals, and totals is
impossible to generate directly from SQL, since all rows of query results must have
the same column structure.

To deal with these issues, DBMS products on data warehousing have tended to extend
the core SQL. For example, the DBMS from Red Brick, one of the data warehousing pioneers
(which was subsequently acquired by Informix, which was, in turn, acquired by IBM),
features these extensions as part of its Red Brick Intelligent SQL (RISQL) language:

• Ranking Supports queries that ask for the top 10 and similar requests

• Moving totals and averages Supports queries that smooth raw data for time series
analysis

• Running totals and averages Allows query responses that show results for
individual months plus year-to-date totals, and similar requests

• Ratios Allows queries that simply express the ratio of individual values to a total
or to a subtotal, without the use of complex subqueries

• Decoding Simplifies the translation of dimension-value codes (like the supplier-id
in the example warehouse) into understandable names

• Subtotals Allow production of query results that combine detailed and summary
data values, at various levels of summarization

Other warehousing vendors provide similar extensions in their SQL implementations
or provide the same capabilities built into their data analysis products. As with extensions
in other areas of the SQL, although the conceptual capabilities provided by several different
DBMS brands may be similar, the specifics of the implementation differ substantially.

 678 P a r t V I : S Q L T o d a y a n d T o m o r r o w 678 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Warehouse Performance
The performance of a data warehouse is one of the keys to its usefulness. If business
analysis queries take too long, people tend not to use the warehouse on an ad hoc basis for
decision making. If it takes too long to load data into the warehouse, the corporate
Information Systems (IS) organization will probably resist frequent updates, and stale data
may make the warehouse less useful. Achieving a good balance between load performance
and runtime performance is one of the keys to successful warehouse deployment.

Load Performance
The process of loading a warehouse can be very time-consuming. It’s common for
warehouse data loads to take hours or even days for very large warehouses. Load
processing typically involves these operations:

• Data extraction The data to be loaded into the warehouse database typically
comes from several different operational data sources. Some may be relational
databases that support OLTP applications.

• Data cleansing Operational data tends to be “dirty” in the sense that it contains
significant errors. For example, older transaction-processing systems may not have
strong integrity checks, permitting the entry of incorrect customer numbers or
product numbers. The warehouse-loading process typically includes data integrity
and data sanity checks.

• Data cross-checking In many companies, the data processing systems that
support various business operations have been developed at different times and are
not integrated. Changes that are processed by one system (for example, adding new
product numbers to an order-processing application) may not automatically be
reflected in other systems (for example, the inventory control system), or there may
be delays in propagating changes. When data from these nonintegrated systems
arrives at the warehouse, it must be checked for internal consistency.

• Data reformatting Data formats in the operational data stores may differ
considerably from the warehouse database. Character data may need
transformation from a mainframe’s EBCDIC encoding to ASCII. Zoned decimal or
packed decimal data may need reformatting. Date and time formats are another
source of differences. Beyond these simple data format differences, data from one
OLTP data source row may have to be broken apart into multiple warehouse tables,
while data from multiple OLTP tables or files may have to be combined to create a
warehouse table.

• Data insertion/update After the preprocessing, actual bulk loading of data into a
warehouse database tends to be a specialized operation. High-volume data loaders
typically operate in a batch-oriented mode, without transaction logic and with
specialized recovery. Row loading or update rates of tens or hundreds of gigabytes
per hour may be required.

• Index creation/update The specialized indexes used by the warehouse must be
modified to reflect the revised warehouse contents. As with the actual data insertion
and update, specialized handling is typically applied. In some cases, it is more efficient
to rapidly re-create an entire index than to modify it incrementally as data rows are
inserted or updated. Other index structures permit more incremental updates.

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 679
PART VI

 C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 679

These tasks are typically performed by specialized warehouse-building programs on
a batch-processing basis. Ad hoc query access to the warehouse is turned off during the
update/refresh processing, allowing it to proceed at maximum speed without
competition for DBMS cycles. Despite these optimizations, warehouse load times tend to
grow as the amount of accumulated data grows, so the load-time versus runtime
performance trade-off must be made on an ongoing basis. Warehouses with many
indexes or precomputed summary values may offer much better runtime performance,
but at the expense of unacceptably long load times. Simpler structures with less loading
work may increase the time required for ad hoc queries beyond an acceptable level. In
practice, the warehouse administrator must find a good balance between loading and
runtime query performance.

Query Performance
Database vendors focused on warehousing have invested considerable energy in optimizing
their DBMS products to maximize query performance. As a result, warehousing
performance has improved dramatically. The growth in the size and complexity of
warehouses has prevented some of this performance gain from actually being translated
into perceived end-user benefit.

Several different techniques have evolved to maximize the performance of business
analysis queries in a warehouse, including

• Specialized indexing schemes Typical business analysis queries involve a
subset of the data in the warehouse, selected on the basis of dimension values.
For example, a comparison of this month’s and last month’s results involves only
2 of the 36 months of data in the example warehouse. Specialized indexing
schemes have been developed to allow very rapid selection of the appropriate
rows from the fact table and joining to the dimension tables. Several of these
involve bitmap techniques, where the individual possible values for a dimension
(or a combination of dimensions) are each assigned a single bit in an index value.
Rows meeting a selection criterion can be very rapidly identified by bitwise
logical operations, which a computer system can perform more rapidly than it
can value comparisons.

• Parallel processing techniques Business analysis queries can often be broken up
into parts that can be carried out in parallel, to reduce the overall time required to
produce the final results. In a query joining four warehouse tables, for example,
the DBMS might take advantage of a two-processor system by joining two of the
tables in one process and two others in another. The results of these intermediate
joins are then combined. Alternatively, the workload of processing a single table in
the query might be split and carried out in parallel—for example, assigning rows
for specific month ranges to specific processes. The use of multiprocessor systems
in these cases is quite different than for OLTP databases. For OLTP, the focus of
multiprocessor operations is to increase overall throughput. For warehousing, the
focus is usually the improvement in overall execution time in response to a single
complex query.

 680 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• Specialized optimizations When faced with a complex database query involving
selection criteria and joins, the DBMS has many different sequences in which it can
carry out the query. The optimizer for an OLTP database tends to benefit from the
assumption that foreign key/primary key relationships should be exercised early in
its processing, since they tend to cut down dramatically on the number of rows of
intermediate results. The optimizer for a warehousing database may make a quite
different decision, based on information accumulated during the load process about
the distribution of data values within the database.

• Table and index partitioning A partition is a subdivision of a table or index that is
stored and managed separately, and yet is transparent to the database user. One
benefit of partitioning is the ability to back up, restore, add, and remove partitions
without disrupting operations on the rest of the partitions. However, there can be a
huge performance benefit as well if the DBMS can break global queries into queries
for each partition that can be run in parallel, and can eliminate partitions that do not
have data relevant to the query being run.

• Tighter hardware and software integration The performance challenges of
modern data warehouses have driven a need for tighter integration of the hardware
and software platforms on which data warehouses are run. These integration points
range from data warehouse appliances composed of hardware that is carefully
matched to the optimal capabilities of the software, to data filtering and aggregation
capability placed in the firmware of the storage devices, such as is being done with
Exadata from Oracle.

As with load-time performance, maximizing the runtime performance of a warehouse
is an ongoing task for the database administrator. Newer revisions of DBMS software often
provide performance benefits, as do higher-performance processors or more processors.

Summary
Data warehousing is a rapidly growing part of the market for SQL-based relational
databases and is one with a set of specialized requirements:

• Warehouse databases are optimized for the workload of typical business analysis
queries, which is quite different from OLTP workloads.

• Specialized utility programs provide high-performance loading of the warehouse
and analysis tools for taking advantage of warehoused data.

• Specialized database schema structures such as the star schema are often used in
warehouse applications to support typical business analysis queries and optimize
performance.

• SQL extensions are frequently used to support typical business analysis queries
involving time series and trend analysis, rank orderings, and time-based
comparisons.

• Careful design of a large warehouse is required to provide the correct balance
between load-time performance and runtime performance.

22
SQL and Application Servers

Application servers are one of the major new computer technologies spawned by the
growth of the Internet. Application servers form a key layer in most commercial
web site architectures. As the name implies, application servers provide a platform

for executing the application logic that drives user interaction on a web site. But application
servers perform another important role—they act as mediators between the Internet-side
components of a web site (the web servers and content management tools) and the IT-side
components, such as legacy corporate applications and databases. In this role, application
servers must work closely with DBMS software, and SQL is the language for that
communication. This chapter explores the role of SQL in a multitier web site architecture
built using application servers.

SQL and Web Sites: Early Implementations
Application servers did not always play a prominent role in web site architectures. The earliest
web sites were focused almost exclusively on delivering content to their users, in the form of
static web pages. The content of the web site was structured as a series of predefined web
pages that were stored in files. A web server accepted requests from user browsers (in the form
of HTTP [Hypertext Transfer Protocol] messages), located the particular page(s) requested,
and sent them back to the browser for display, again using HTTP. The web page contents were
expressed in HTML, the HyperText Markup Language. The HTML for a given page contained
the text and graphics to be displayed on the page, and the links that supported navigation from
this page to others.

It didn’t take long before the demands for information to be delivered via the World
Wide Web outstripped the static capabilities of predefined web pages. Companies began to
use web sites to communicate with their customers and needed to support basic capabilities
like searching for specific products or accepting a customer order. The first step toward
providing actual processing capability in conjunction with display of a web page was
provided by the web servers themselves, as shown in Figure 22-1. Instead of accepting only
requests for static web pages, web servers also accepted requests to execute a script: a series
of instructions that determined which information to display.

681

CHAPTER

 682 P a r t V I : S Q L T o d a y a n d T o m o r r o w 682 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Web server scripts were often written in specialized scripting languages, such as Perl
and PHP. In its simplest form, a script might perform a very simple computation (such as
retrieving the current date and time from the operating system) and output the result as
part of a web page. In a slightly more complex form, the script might accept input typed by
a user into a forms-oriented web page, perform a database query based on the input, and
display the results. Because the output of the script could vary from one execution to the
next, the resulting web page became dynamic: its contents could change from one viewing
to the next, depending on the results of the script execution each time.

Scripting languages provided the earliest links between web sites and SQL databases.
A script might, for example, submit a SQL query to a DBMS through a variation on the
interactive SQL interface and accept the results of the query for display on the web page.
But there were many problems with scripting solutions for web site processing. Most of the
script languages are interpreted, and executing a complex script can consume a lot of CPU
cycles. Scripting facilities ran as separate processes on UNIX-based or Windows-based
servers—a high-overhead structure if dozens or hundreds of scripts must be executed every
second. These and other limitations of scripting solutions set the stage for an alternative
approach and the emergence of application servers as a part of the web site architecture.

Application Servers and Three-Tier Web Site Architectures
The logical evolution from web server scripting was the definition of a separate role for
an application server, resulting in the three-tier architecture shown in Figure 22-2. Note
that many IT professionals consider the web server and application server to be separate
tiers, naming this architecture four-tier, or more commonly, N-tier. The web server retains
its primary responsibility for locating and serving up static web pages and static pieces
of web pages from its files. When application processing is required to determine which
information to display or to process information supplied by the user, the web server
invokes a separate application server to perform the processing. In a smaller, lower-volume
web site, the application server may run as a separate process on the same physical server

HTML
results

HTML
results

Web
server

Script
execution

Perl
script

HTTP
request

Internet
FIGURE 22-1
Serving dynamic
web content
without an
application server

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 683
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 683

system as the web server. In the more general case, used by larger web sites, the web server
and application server will run on two different server computers, typically connected by a
high-speed local area network. In either configuration, the web server passes requests in the
form of messages to the application server and receives responses in the form of HTML
contents to be displayed on the page.

The early days of application servers offered a wide range of application server
products. Some servers required that applications be written in C or C++. Others required
the use of Java. The interface between the application server and the web server was well
defined by the APIs of the two leading web server vendors, Netscape and Microsoft. But all
other aspects—from programming language to the supporting services provided by the
application server to the API for database access—were not standardized.

Sun Microsystem’s introduction of Enterprise Java Beans (EJBs), and the Java2 Enterprise
Edition (J2EE) specification based on them, began a round of standardization of application
servers. A java bean is a Java class that follows the Sun Java Beans Standard, which provides a
framework for creating objects to be used by GUI tools. EJBs built on the mushrooming
popularity of Java as a programming language. The specification came from Sun, a leading
server vendor and a company widely recognized for its leadership in Internet technologies. The
specifications also contained a standardized API for database access, one of the most important
functions provided by an application server, in the form of Java Database Connectivity (JDBC).

Web
server(s)

Application
server(s)

Database
server(s)

Web
browser

Internet

HTTP
request

HTML
results

AppSvr
request

HTML
results

SQL
request

SQL
results

Tier 1 - Client
(presentation)

Tier 2 - Web and Application server(s)
(static and dynamic content, and
business logic)

Tier 3 - Database server(s)
(data management)

FIGURE 22-2
Three-tier
architecture using
an application
server

 684 P a r t V I : S Q L T o d a y a n d T o m o r r o w 684 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Within a short time, application servers based on the J2EE specification pulled ahead in
the market. Vendors who had taken an alternative approach augmented their products with
Java capability and eventually abandoned their proprietary products for a J2EE-based
strategy. A short time later, the application server market began a round of consolidation.
Sun acquired NetDynamics, one of the pioneering J2EE application server vendors. BEA
Systems, a leading vendor of software middleware for transaction processing, acquired
WebLogic, another application server pioneer. (BEA was acquired by Oracle in 2007.)
Netscape, which provided one of the leading web servers, filled out its product line by
acquiring Kiva, another early application server market leader.

Later, when AOL acquired Netscape and then formed a joint venture with Sun, both of
these J2EE application server products came under common management at Sun, eventually
merging into the Sun iPlanet application server (later rebranded the SunONE application
server). Hewlett-Packard followed with its own acquisition of Bluestone, another application
server vendor. IBM departed from the acquisition path by building its own application server,
marketed under the WebSphere brand name. Oracle also introduced its own internally
developed product, the Oracle Application Server, although much of its software was replaced
by purchased third-party components over time as Oracle struggled to establish its position.

Over the course of several years of aggressive competition, the J2EE specification
continued to evolve, including expanded features for application server database access.
BEA’s WebLogic and IBM’s WebSphere emerged as the dominant players, with roughly
equal market share. Products from Sun, Oracle, and a dozen smaller vendors divided up
the remainder of the market. Every significant application server product complied with
the J2EE specification and provided JDBC-based facilities for database access.

Database Access from Application Servers
The convergence of the application server market around the J2EE specification effectively
standardized, at least for a time, the external interface between the application server and a
DBMS around JDBC. Conceptually, an application server can automatically access any
database product that offers a JDBC-compliant API, thus achieving DBMS independence.
In practice, subtle differences between the DBMS systems in areas like SQL dialects and
database naming still require some tweaking and testing, and manifest themselves in subtle
dependencies within the code deployed on the application server. However, these
differences tend to be minor, and adjusting for them is relatively straightforward.

The approach to data management for the application code running on the application
server is a slightly more complicated story. While the application server does provide
uniform services for data management, it provides these in several different architectures
that use the various types of EJBs in the J2EE specification. The application designer must
choose among these approaches, and in some cases, will mix and match them to achieve the
requirements of the application. Here are some of the decisions that must be made:

• Will the application logic do direct database access from within a session bean, or
will database contents be represented as entity beans, with database access logic
encapsulated within them? (Session beans and entity beans are defined in the next topic.)

• If direct access from session beans is used, can the session bean remain stateless
(which simplifies the coding of the bean and its management by the application
server), or does the logic of database access require the bean to be stateful,
preserving a context from one invocation to another?

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 685
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 685

• If entity beans are used to represent database contents, can the application rely on
the container-managed persistence provided by the application server to manage
database interaction, or does the application’s logic require that the entity bean
provide its own database access logic through bean-managed persistence?

• If entity beans are used to model database contents, do the beans correspond on a
one-to-one basis to the tables in the underlying database (fine-grained modeling),
or is it more appropriate for the beans to present a higher-level, more object-oriented
view of the data, with the data within each bean drawn from multiple database
tables (coarse-grained modeling)?

The trade-offs represented by these design questions provide an excellent perspective
on the challenge of matching SQL and relational database technology to the demands of the
Web and its stateless architecture, and to the demands of application servers and object-
oriented programming. The next several sections describe the basics of EJBs and the trade-
offs among the different data access architectures they can support.

EJB Types
Within a J2EE-compliant application server, the user-developed Java applications code that
implements the specific business logic is packaged and executes as a collection of EJBs. An
EJB has a well-defined set of external interfaces (methods) that it must provide and is written
with an explicit set of class-specific public methods that define the external interface to the
bean. The work done within the bean, and any private data variables that it maintains for its
own use, can be encapsulated and hidden from other beans and from developers who do not
need to know these internal details and who should not write code that depends on them.

The EJBs execute on the application server within a container, which provides both a
runtime environment for the beans and services for them. These range from general
services, such as managing memory for the beans and scheduling their execution, to specific
services like network access and database access (via JDBC). The container also provides
persistence services, preserving the state of beans across activations. (Persistence is the
object-oriented programming property that preserves data for future use. Databases are a
common means of persistence.)

EJBs come in two major types that are of interest from a data management perspective.
The EJB types are graphically illustrated in Figure 22-3. The two major types of beans are

• Session beans These beans represent individual user sessions with the Application
server. Conceptually, there is a one-to-one association between each session bean and
a current user. In the figure, users Mary, Joe, and Sam are each represented by their own
session bean. If there are internal instance variables within the bean, these variable
values represent the current state associated with the user during this particular session.

• Entity beans These beans represent business objects and logically correspond to
individual rows of a database table. For example, for entity beans representing sales
offices, there is a one-to-one association between each entity bean and a particular
office, which is also represented in our sample database by a single row in the
OFFICES table. If there are internal instance variables within the bean, these
variable values represent the current state associated with the office, which is also
represented by the column values in this row of the OFFICES table. This state is
independent of any particular user session.

 686 P a r t V I : S Q L T o d a y a n d T o m o r r o w 686 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Either type of bean may access a database, but they will typically do it in quite different
ways.

Session Bean Database Access
A session bean will typically access a database in a series of one or more JDBC calls on
behalf of the user represented by the bean. An application server classifies session beans
into two categories, depending on how the bean manages state:

• Stateless session bean This type of bean does not maintain any status information
across method invocations. It carries out its actions on behalf of one user at a time,
and one request at a time. Each request to the bean is independent of the last. With
this restriction, every invocation of the bean must carry with it (in the form of the
parameters passed with the invocation) all of the information needed to carry out
the request.

• Stateful session bean This type of bean maintains status information across
method invocations. The bean needs to “remember” information from its previous
invocations (its state) to carry out the tasks requested by later invocations. It uses
private instance variables to hold the information.

The next two sections show examples of application tasks that are most easily implemented
as each type of session bean. You specify whether a session bean is stateless or stateful in the
deployment descriptor for the bean, which contains information supplied to the application
server on which the bean is deployed.

Internet

Mary Sam

Joe
Application

server

OFFICES database table

User sessions

Session
beans

Entity
beans

FIGURE 22-3 Types of EJBs

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 687
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 687

An application server on a busy web site can easily have more session beans and other
EJBs in use than it has main memory available to store them. In this situation, the application
server will keep a limited number of session bean instances active in its main memory. If a
user associated with a currently inactive session bean becomes active (that is, one of his or
her web site clicks must be processed), the application server chooses another instance of the
same bean class and passivates it—that is, it saves the values of any instance variables defined
for the bean and then reuses the bean to serve the user session needing activation.

Whether a session bean is stateful or stateless has a significant impact on this
passivation and activation. Since a stateless session bean does not need its status preserved
across method invocations, the application server does not need to save its instance variable
values when it passivates the bean and does not need to restore instance variable values
when it reactivates the bean. But for a stateful session bean, the application server needs to
copy its instance value variables to persistent storage (a disk file or a database) when it
passivates the bean, and then restore those values when it reactivates the bean. Thus,
stateful session beans can significantly diminish the performance and throughput of an
application server on a busy site. Stateless beans are preferable for performance, but many
applications are difficult or impossible to implement without using stateful beans.

Using JDBC from a Stateless Session Bean
Figure 22-4 shows a simple example of an application that can easily be handled with
stateless session bean database access. A page on a web site displays the current price of a
company’s stock when the page is displayed. The page can’t be static, since the displayed
price will change minute by minute. So when the user’s browser requests the page, the web
server hands off the request to an application server, which eventually invokes a method of
a session bean. The session bean can use JDBC to send a SQL SELECT statement to a
database of current stock prices, and receive back the answer as one line of query results.
The session bean reformats the stock quote as a fragment of a web page and passes it back
to the web server for display to the user.

Stateless session beans can perform more complex functions as well. Suppose the same
company has a page on its web site where a user can request a product catalog by filling in
the contents of a small form. When the form is filled in and the user clicks the Send button,
the browser sends the data from the form to the web server, which again hands off the
request to an application server. This time, a different method of the session bean is invoked
and receives the data from the form as parameters. The session bean can use JDBC to send
a SQL INSERT statement to a database table holding pending catalog requests.

In each of these examples, all of the information that the session bean needs to carry out
its task is passed to it with the method invocation. When the bean has completed its task,
the information is not needed anymore. The next invocation again receives all of the
information it needs, so there is no need to carry over status information. Even more
importantly, the database activity on each invocation is completely independent from every
other invocation. No database transaction spans multiple method invocations.

Using JDBC from a Stateful Session Bean
Many web interactions can’t live with the limitations imposed by stateless session beans.
Consider a more complex web-based form that spans four pages. As the user fills out each
page and sends it to the web site, the session bean must accumulate the information and
retain it across the four page clicks until all of the data is ready to be captured into a database.
The need to retain information across method invocations calls for a stateful session bean.

 688 P a r t V I : S Q L T o d a y a n d T o m o r r o w 688 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Another example in which a stateful session bean is appropriate is a commercial web
site where a user shops online and accumulates a list of items to be purchased in an online
shopping cart. After 40 or 50 clicks through the web site, the user may have accumulated
five or six items in the shopping cart. If the user then clicks a button requesting display of
the current shopping cart contents, those contents are probably most easily maintained as a
session bean state.

In both of these examples, the session bean requires continuity of database access to
effectively accomplish its tasks. Figure 22-5 shows the pattern, in contrast to the pattern of
interactions in Figure 22-4. Even if the bean can be implemented without instance variables
(for example, by storing all of its state information in a back-end database), it needs one
continuous database session to carry out its database access. The client-side API for the
DBMS maintains this session, and the API itself will need to maintain session-state
information across session bean method invocations.

JDBC

Application
server

Database
server(s)

Web
browser

Display

ABC Corp.

Price: $15.75

Internet

HTTP
request

HTML
results

AppSvr
request

HTML
results

SQL
request

SQL
results

Web server

Session
bean

Java
code

FIGURE 22-4 Database calls from a stateless session bean

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 689
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 689

Entity Bean Database Access
It’s possible to implement complete, sophisticated web site applications using session beans
deployed on a J2EE application server. However, programming an application using session
beans tends to produce more procedural, less object-oriented code. The object-oriented
philosophy is to have object classes (in this case, EJB classes) represent real-world entities, such
as customers or offices, and to have object instances represent individual customers or offices.
But session beans don’t represent any of those entities; they represent currently active user
sessions. When database interaction is handled directly by session beans, the representation
of real-world entities is basically left in the database; it doesn’t have an object counterpart.

Entity beans provide the object counterpart for real-world entities and the rows in a
relational database table that represent them. Entity bean classes embody customers and
offices; individual entity bean instances represent individual customers and individual
offices. Other objects (such as session beans) within the application server can interact with
customers and offices using object-oriented techniques, by invoking the methods of the
entity beans that represent them.

JDBC

Application
server

Database
server(s)

Web
browser

Display

Shopping cart

Items pants
skirt
shorts
shoes

Internet

SQL
request

SQL
results

Web server

Stateful
session bean

Java
code

Instance variables
(shopping cart contents)

Multiple calls add
to shopping cart

FIGURE 22-5 Database calls from a stateful session bean

 690 P a r t V I : S Q L T o d a y a n d T o m o r r o w 690 P a r t V I : S Q L T o d a y a n d T o m o r r o w

To maintain this object-oriented model, there must be very close cooperation between
the entity-bean representations of entities and their database representations. If a session
bean invokes a customer entity bean method that changes a customer’s credit limit, that
change must be reflected in the database, so that an order-processing application using the
database will use the new limit. Similarly, if an inventory management application adds to
the quantity on hand for a particular product in the database, that product’s entity bean in
the application server must be updated.

Just as an application server will passivate and reactivate session beans as necessary,
it will passivate and reactivate entity beans repeatedly in response to a heavy workload.
Before the application server passivates an entity bean, the bean’s state must be saved in a
persistent way, by updating the database. Similarly, when the application server reactivates
an entity bean, its instance variables must be set to their values just before it was passivated,
by reloading those values from the database. The entity bean class defines callback methods
that an entity bean must provide to implement this synchronization.

There is close correspondence between actions carried out on entity beans and database
actions, as shown in Table 22-1. The J2EE specification provides two alternative ways to
manage this coordination:

• Bean-managed persistence The entity bean itself is responsible for maintaining
synchronization with the database. The application programmer who develops the
entity bean and codes its implementation methods must use JDBC to read and write
data in the database when necessary. The application server container notifies the
bean when it takes actions that require database interaction.

• Container-managed persistence The EJB container provided by the application
server is responsible for maintaining synchronization with the database. The
container monitors interaction with the entity bean, and automatically uses JDBC to
read and write data in the database and to update the instance variables within the
bean when needed. The application programmer who develops the entity bean and
codes its implementation methods can focus on the business logic in the bean, and
assume that its instance variables will accurately represent the state of the data in
the database.

Database Statement EJB Method EJB/Database Action

INSERT ejbCreate(),
ejbPostCreate()

Creates a new entity bean instance; initial state
of the bean is specified by parameters in the
create() call. A new row with these values must
be inserted into the database.

SELECT ejbLoad() Loads instance variable values, reading them from
the persistent data in the database.

UPDATE ejbStore() Stores instance variable values, saving them
persistently in the database.

DELETE ejbRemove() Removes an entity bean instance; the corresponding
row in the database must be deleted.

TABLE 22-1 Corresponding Database and EJB Activities

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 691
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 691

Note that entity beans are always stateful—the distinction between these two bean
types is not the difference between stateless and stateful beans, but rather, the difference
between who is responsible for maintaining proper state. The next two sections discuss the
practical issues associated with each type of entity bean, and the trade-offs between them.

Using Container-Managed Persistence
An entity bean’s deployment descriptor specifies that an entity bean requires container-
managed persistence. The deployment descriptor also specifies the mapping between
instance variables of the bean and columns in the underlying database. The deployment
descriptor also identifies the primary key that uniquely identifies the bean and the
corresponding database row. The primary key value is used in the database operations that
store and retrieve variable values from the database.

With container-managed persistence, the EJB container is responsible for maintaining
synchronization between the entity bean and the database row. The container calls JDBC to
store instance variable values into the database, to restore those values, to insert a new row
into the database, and to delete a row—all as required by actions on the bean. The container
will call the bean’s ejbStore() callback method before it stores values in the database, to
notify the bean that it must get its variable values into a consistent state. Similarly, the
container will call the bean’s ejbLoad() callback method after loading values from the
database, to allow the bean to do appropriate postprocessing (for example, calculating a
value that was not itself persisted, based on values that were). In the same way, the bean’s
ejbRemove() method will be called before the container deletes the row from the
database, and ejbCreate() and ejbPostCreate() are called in conjunction with
inserting a new row. For many entity beans, these callback methods will be empty, since the
container handles the actual database operations.

Using Bean-Managed Persistence
If an entity bean’s deployment descriptor specifies bean-managed persistence, the container
assumes that the entity bean will handle its own database interaction. When a new entity
bean is first created, the container calls the bean’s ejbCreate() and ejbPostCreate()
methods. The bean is responsible for processing the corresponding INSERT statement for
the database. Similarly, when an entity bean is to be removed, the container calls the bean’s
ejbRemove() method. The bean is responsible for processing the corresponding DELETE
statement for the database, and when the bean returns from the ejbRemove() method, the
container is free to actually remove the bean itself and reuse its storage.

Bean loading is similarly handled by a container call to ejbLoad(), and storing by a
call by the container to ejbStore(). The bean is similarly notified of passivation and
activation by callbacks from the container. Of course, nothing limits the entity bean’s
database interaction to these callback methods. If the bean needs to access the database
during the execution of one of its methods, the bean can make whatever JDBC calls it needs.
The JDBC calls within the callback methods are strictly focused on managing bean
persistence.

 692 P a r t V I : S Q L T o d a y a n d T o m o r r o w 692 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Container-Managed and Bean-Managed Trade-Offs
You might naturally ask why you would ever want to use bean-managed persistence when
container-managed persistence eliminates the need to worry about synchronizing with the
database. The answer is that container-managed persistence has some limitations:

• Multiple databases For most application servers, entity beans must be mapped
into a single database server. If entity bean data comes from multiple databases,
then bean-managed persistence may be the only way to handle database
synchronization.

• Multiple tables per bean Container-managed persistence works well when all of
the instance variables for an entity bean come from a single row of a single table—
that is, when there is a one-to-one correspondence between bean instances and table
rows. If an entity bean needs to model a more complex object, such as an order
header and individual line items of an order, which come from two different, related
tables, bean-managed persistence is usually required, because the bean’s own code
must provide the intelligence to map to and from the database.

• Performance optimizations With container-managed persistence, a container
must make an all-or-nothing assumption about persisting instance variables. Every
time the variables must be stored or loaded, all of the variables must be handled. In
many applications, the entity bean may be able to determine that depending on its
particular state, only a few of the variables need to be processed. If the entity bean
holds a lot of data, the performance difference can be significant.

• Database optimizations If the methods of an entity bean that implement its
business logic involve heavy database access (queries and updates), then some of
the database operations that the container will carry out in a container-managed
persistence scheme may be redundant. If bean-managed persistence is used instead,
the bean may be able to determine exactly when database operations are required
for synchronization and when the database is already up to date.

In practice, these limitations often prevent the use of container-managed persistence in
today’s deployments. Enhancements in newer versions of the EJB specification are designed
to address many of these shortcomings. However, bean-managed persistence remains a
very important technique with the currently available application servers.

EJB 2.0 Enhancements
EJB 2.0, published in April 2001, represented a major revision to the EJB specification. Many
of the enhancements in EJB 2.0 were incompatible with the corresponding capabilities in
EJB 1.x. To avoid breaking EJB 1.x-compatible beans, EJB 2.0 provides complementary
capabilities in these areas, allowing side-by-side coexistence of EJB 1.x and EJB 2.0 beans. A
complete description of the differences between EJB 1.x and EJB 2.0 is well beyond the scope
of this book. However, several of the differences were motivated by difficulties in using
container-managed persistence under the EJB 1.x specification, and those changes directly
affect database processing within EJBs.

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 693
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 693

One difficulty with EJB 1.x has already been mentioned—the difficulty of modeling
complex objects that draw their data from multiple database tables or that contain
nonrelational structures like arrays and hierarchical data. With EJB 1.x, you could model a
complex object as a family of inter-related entity beans, each drawn from one table. This
approach allowed the use of container-managed persistence, but the relationships between
pieces of the object need to be implemented in applications code within the bean. Ideally,
these internal details within the complex object should be hidden from applications code.
Alternatively, with EJB 1.x, you could model a complex object as a single entity bean, with
data in the bean’s instance variables drawn from multiple related tables. This achieves the
desired application code transparency, but container-managed persistence could be used
when an entity bean draws its data from multiple tables.

EJB 2.0 addressed this issue through the use of abstract accessor methods, which are used
to set and retrieve every persistent instance variable within an entity bean. The container
actually maintains the storage for the variables and the variable values. The bean explicitly
calls a get() accessor method to retrieve an instance variable value and a set() accessor
method to set its value. Similarly, there are get() and set() abstract accessor methods for
every relationship that links the rows in the database that contribute data to the entity bean.
Many-to-many relationships are easily handled by mapping them into Java collection
variables.

With these new features, the container has complete knowledge of all the instance
variables used by a bean, and of every access that code within the bean makes to the
instance variables. The entity bean can represent a complex object that draws data from
multiple database tables, hiding the details from the applications code. But container-
managed persistence can now be used, because the container “knows” all about the various
parts of the object and the relationships among the parts.

Another problem with the EJB 1.x specification is that while database interactions were
standardized, the finder methods that are used to search the active entity beans were not. The
finder methods implement capabilities like searching for a particular entity bean by primary
key, or searching for the set of beans that match a particular criterion. Without this
standardization, portability across application servers was compromised, and searches of
entity beans often required recourse to searching the underlying database.

EJB 2.0 addressed the searching limitations through the use of abstract select methods that
search entity beans. The select methods use a newly defined EJB 2.0 Query Language
(EJBQL). While the query language is based on SQL, it includes constructs such as path
expressions that are decidedly nonrelational.

Finally, EJB 2.0 was designed to align with the SQL standard and its abstract data types.
Support for these types somewhat simplifies the interaction between entity beans and the
database for DBMS products that support abstract types. At this time, few DBMS products
support them.

EJB 3.0 Enhancements
The EJB 3.0 specification, published in draft form in 2004 and in final form in 2006, makes
the container do more work, thus making programming less work and much simpler. It
decreases the amount of program code that developers must provide, including eliminating
the requirement for ejb(method) callback methods, and reduces the complexity of entity
bean programming.

 694 P a r t V I : S Q L T o d a y a n d T o m o r r o w 694 P a r t V I : S Q L T o d a y a n d T o m o r r o w

EJB 3.0 simplifies the application programming interface (API) in several ways:

• Metadata annotations can be used as an alternative to more complex deployment
descriptions. Annotations can be used to specify bean types, transaction and
security settings, object-relational mapping, and for the injection of environment
or resource references.

• Dependency injection can be used instead of EJB environment and resource references.

• Bean developers can designate any arbitrary method as a callback method, making
the use of specific callback methods unnecessary.

• Interceptor methods may be defined in session beans (stateless or stateful) or in
message-driven beans. An interceptor method is a method that intercepts a business
method invocation. An interceptor class may also be used instead of defining the
interceptor method in the bean class.

• Clients can directly invoke a method on the EJB without having to create a bean
instance.

Session beans have been enhanced and simplified in a number of ways:

• Session beans are simpler in EJB 3.0 because they are pure Java classes that do not
have to implement session bean interfaces. A session bean may have remote, local,
or both remote and local interfaces, and the home interface is optional.

• Metadata annotations are used to specify bean or interface and runtime properties
of session beans.

• Callback listeners are supported for both stateful and stateless session beans.

• Developers can use either annotations or deployment descriptors to inject
environment entities, resources, or EJB context.

• Interceptor methods or classes are supported for both stateless and stateful session
beans.

Message-driven beans have been enhanced and simplified in several ways:

• They can implement the MessageListener interface instead of the
MessageDriven interface.

• Metadata annotation simplifies the specification of the bean or interface and
runtime properties.

• Callback listeners are supported.

• Dependency may be used instead of deployment descriptors.

• Interceptor methods or classes can be used.

The entity beans / persistence API has been enhanced and simplified in several ways.
First, EJB 3.0 standardizes the POJO (Plain Old Java Object) persistence model and
simplifies entity beans. Entity beans become concrete Java classes that do not require any
interfaces. The entity bean classes directly support polymorphism and inheritance. Second,
EJB 3.0 includes the new EntityManager API for use in creating, finding, removing, and

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 695
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 695

updating entities. Third, annotations can be used instead of deployment descriptors to
greatly simplify the development of entities. Fourth, the query language capabilities for
entities are greatly improved. Fifth, callback listeners are supported with methods specified
using either annotations or deployment descriptors. Finally, the EJB 3.0 persistence engine
can be used outside the container.

Open Source Application Development
The development and maturation of the Internet has led to many innovations in the area of
application servers, application delivery, and how these relate to SQL-based databases. The
open source community has been quite active in these areas. Apache is by far the most
commonly used open source web server. For construction of the web applications,
developers often use a combination of asynchronous JavaScript and XML known by the
term Ajax (or the acronym AJAX, for Asynchronous JavaScript and XML). Other scripting
languages such as PHP can be used in place of JavaScript, and XML is technically not
required, which is why the term Ajax is preferred over the original acronym AJAX.
Although the acronym was coined in 2005, techniques for asynchronously loading web
content date back to the mid-1990s.

Web applications using Ajax can retrieve data asynchronously using a background
process that does not interfere with the display and behavior of the existing web page. Data
is retrieved using the XMLHttpRequest object or, for browsers that do not support this
object, using remote scripting. Databases used with Ajax to store and retrieve persistent
data are almost always open source relational products such as MySQL.

Another popular platform for delivering content and applications via web pages is
LAMP (Linux, Apache, MySQL, and PHP/Python/Perl). In fact, much of the “Web 2.0”
phenomenon is built on LAMP, which provides a low-cost, SQL-driven infrastructure for
web-based applications. Today, LAMP plays a dominant role in the Internet, and new
components have been introduced to form variations such as LAMR, where the language
becomes Ruby on Rails (ROR). Additionally, as Internet-based service solutions such as
Infrastructure as a Service (IaaS), Platform-as-a-Service (PaaS), and Software as a Service
(SaaS) gain popularity, LAMP application server technologies will continue to advance and
evolve. These services, collectively incorporated into “Cloud” computing, will rely heavily
on LAMP and its immediate successors.

Application Server Caching
On a high-volume web site, database access can become a bottleneck to overall web site
performance. Because of the EJB structure, the database access required by the business
logic of the application is increased (perhaps substantially) by the database access required
to support entity bean / database synchronization. If the web site implements heavy
personalization of its user interaction (that is, if a high percentage of its pages are
dynamically generated based on the profile of the particular user who is viewing them),
then the database access load can be even higher. At the extreme, every click on a highly
personalized web site could require retrieval of user-profile data from the database to drive
page generation. Finally, user interaction with a web site happens in real time and is
affected by peak-load activity. The average rate of click processing is less important than
peak-load activity in determining whether users perceive the site as fast or sluggish.

 696 P a r t V I : S Q L T o d a y a n d T o m o r r o w 696 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The Web has already shown an effective architecture for dealing with these types of
peak-load Internet volume demands—through web page caching and horizontal scaling.
With caching, copies of heavily accessed web pages are pulled forward in the network and
replicated. As a result, the total network capacity for serving web pages is increased, and the
amount of network traffic associated with those page hits is reduced. With horizontal scaling,
web site content is replicated across two or more web servers (up to dozens or even hundreds
of servers) whose aggregate capacity for serving pages is much greater than any single server.

Similar caching and horizontal scaling architectures are used to increase the capacity of
application servers. Most commercial application servers today implement bean caching,
where copies of frequently used entity beans are kept in the application server’s memory. In
addition, application servers are often deployed in banks or clusters, with each application
server providing identical business logic and application processing capability. In fact,
many commercial application servers use horizontal scaling within a single server to take
advantage of symmetric multiprocessing (SMP) configurations. It’s typical for an eight-
processor application server to be running up to eight independent copies of the application
server software, operating in parallel. Figure 22-6 shows a typical application server
configuration with three four-processor servers.

LAN with Internet connection

Server A

Cache replication

Database
server(s)

Server B Server C

Database cache

AppServer
instance #1

AppServer
instance #2

AppServer
instance #3

AppServer
instance #4

Database cache

AppServer
instance #5

AppServer
instance #6

AppServer
instance #7

AppServer
instance #8

Database cache

AppServer
instance #9

AppServer
instance #10

AppServer
instance #11

AppServer
instance #12

FIGURE 22-6 Application servers and EJB caching

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 697
PART VI

 C h a p t e r 2 2 : S Q L a n d A p p l i c a t i o n S e r v e r s 697

Unfortunately, horizontal scaling and caching tend to work against one another when
dealing with stateful data such as that stored in an entity bean or a database. Without
special cache synchronization logic, updates made to a bean stored in the cache of one
server instance will not automatically appear in the other caches, with the potential to cause
incorrect and inconsistent results. Consider, for example, what happens to quantity-on-hand
data if three or four separate caches contain copies of an entity bean for a single product and
the business logic of the application server updates those values. The caches will very
quickly contain different values for quantity on hand, none of which are accurate. The cache
synchronization logic required to detect and prevent such a situation unfortunately carries
with it a great deal of overhead. Absolute synchronization requires a full two-phase commit
protocol (described in Chapter 23) among the caches.

Database caches can address the problems of multiple bean caches within a single SMP
server, as shown in Figure 22-7. By caching at the database level instead of the bean level,
one database cache provides consistency across all of the application server instances on a
single server. Synchronization across multiple physical servers is still required, however. If
the ratio of database reads to database updates is high (as, for example, in a highly personalized
web site), the overhead of cache synchronization will remain relatively low and the benefits of
horizontal scaling can be significant.

Web
browser

Application server

Database server

In-memory DB

In-memory DB

Web
server

Replicated
servers

Internet

Internet
or

Intranet
User

profiles

Internet
application

Cached
“hot” data

Web
browser

DBMS

Back-end
database

FIGURE 22-7 Application servers and database caching

 698 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Oracle has used database caching within its own Oracle Application Server and has
attempted to use caching as a competitive advantage. IBM is naturally positioned to offer
integrated database caching for its DB2 DBMS, but has not introduced such a capability at
this writing. Several third-party products have been introduced as database caches for
application servers, including products from some of the object-oriented database vendors
and from in-memory database vendors. Whether database caching will substantially impact
the application server market is still an open question.

Summary
This chapter described application servers and the role they play linking the World Wide
Web to back-end enterprise systems, including enterprise databases:

• Popular application servers implement the J2EE specification, which standardizes
database access through a JDBC API.

• Business logic within an application server is implemented by EJBs, which may be
session beans or entity beans.

• Session beans embody user sessions. They can access databases directly through
JDBC calls.

• Stateless session beans support very simple, one-transaction-per-invocation data access.

• Stateful beans support transactions that cross invocations, but their logic must
handle the need to persist state across passivations and activations.

• Entity beans embody real-world objects and correspond to rows in database tables.
They are always stateful.

• Entity beans can use container-managed persistence, where the application server
automatically handles entity bean / database synchronization.

• Alternatively, entity beans can take responsibility for their own database
synchronization, under the bean-managed persistence scheme.

• Open source architectures such as Ajax, LAMP, and LAMR continue to grow in
popularity for integrating databases with web sites.

23
SQL Networking and

Distributed Databases

Over the last several decades, computer networking has radically transformed the
landscape of corporate computing. In most companies, every personal computer
is connected to a local area network (LAN). Powerful LAN-attached workgroup

servers meet the computing needs of individual departments. Corporatewide networks
interconnect the LANs within a building or campus, and connect them to divisional or
corporate data centers. Additional links interconnect corporate locations around the world.
The Internet provides a network of networks, linking companies to one another and to
individual customers. Application programs run on computers at every level and at every
location within this networked environment.

In this new, highly networked environment, computer data does not reside on a single
system under the control of a single DBMS. Instead, data within an organization is spread
across many different systems, each with its own database manager. Often, the various
computer systems and database management systems come from different manufacturers.
As companies try to interconnect their data processing systems via the Internet, the
challenge becomes even greater. Even if a company has managed to standardize on a single,
companywide DBMS and on database structures, those standards won’t apply to its
suppliers or customers as it tries to build external links to conduct business electronically.

These trends have led to a strong focus in the computer industry and in the data
management community on the problems of database management in a networked
environment. This chapter discusses the challenges of managing distributed data, the
variety of architectural approaches, and some of the products that DBMS vendors have
offered to meet those challenges.

699

CHAPTER

699

 700 P a r t V I : S Q L T o d a y a n d T o m o r r o w 700 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The Challenge of Distributed Data Management
When the foundations of relational database management and the SQL language were being
laid in the 1970s, almost all commercial data processing happened on large, centralized
computer systems. The company’s data was stored on mass storage attached to the central
system. The business programs that processed transactions and generated reports ran on
the central system and accessed the data. Much of the workload of the central system was
batch processing. Online users accessed the central system through “dumb” computer
terminals with no processing power of their own. The central system formatted information
to be displayed for the online user and accepted data typed by the user for processing.

In this environment, the roles of a relational database system and its SQL language were
clear and well contained. The DBMS had responsibility for accepting, storing, and retrieving
data based on requests expressed in the SQL. The business-processing logic resided outside
the database and was the responsibility of the business programs developed and maintained
by the information systems staff. The programs and the DBMS software executed on the
same centralized system where the data was stored, so the performance of the system was
not affected by external factors like network traffic or outside system failures.

Commercial data processing in a modern corporation has evolved a long way from the
centralized environment of the 1970s. Figure 23-1 shows a portion of a computer network
that you might find in a manufacturing company, a financial services firm, or in a
distribution company today. Data is stored on a variety of computer systems in the network:

• Mainframes The company’s core data processing applications, such as accounting and
payroll, run on an IBM mainframe. The oldest applications, developed and maintained
over the last 20 or 30 years, still store their data in hierarchical IMS databases. The
company has a strategy to migrate these applications to DB2 over time, and all new
application development uses DB2 as its database manager, many of those running on
servers instead of the mainframe. Note that the distinction between mainframes and
servers has been blurring over time as mainframes shrink in size and servers grow.

• Workstations and UNIX and Linux-based servers The company’s engineering
organization uses UNIX-based workstations and servers (from Sun Microsystems)
for engineering design, testing, and support. Engineering test results and
specifications are stored in an Oracle database. The company also uses Oracle
databases running on commodity hardware servers running Linux located in its six
distribution centers to manage inventory and to process orders. The Linux servers
are a more recent addition, and this deployment has been successful enough that
additional deployments using Linux are planned.

• LAN servers All of the company’s departments have individual PC LANs to share
printers and files. Some of the departments also have local databases to support their
work. For example, the personnel department has purchased a human resources
management system software package, and it uses SQL Server on Windows 2008 to
store its data. In the financial planning department, the data processing staff has built a
custom-written corporate planning application, which uses Informix Universal Server.

• Desktop personal computers All of the company’s office workers use personal
computers. Many of the administrative assistants and some of the senior managers
maintain personal databases using Excel spreadsheets, Microsoft Access, or one of
the personal DBMS products, such as Oracle Personal Edition.

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 701
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 701

• Mobile laptop PCs The company recently purchased a sales force automation
software package and equipped every salesperson with a laptop PC. The laptop
runs sales presentations, sends and receives e-mail, and also holds a local
lightweight database (SQL Anywhere from Sybase) with recent product pricing and
availability data. The database also captures orders entered by the salesperson. At
night, the laptop PC connects to the corporate network over whatever Internet
connection the salesperson has available, transmits its orders, and receives updated
information for its local copy of the products database.

• Handheld devices The company’s management team has widely adopted handheld
Internet-capable personal devices (smartphones). In addition to the personal calendar
and address-book functions, applications running on the smartphone can use wireless
network connections to check prices and enter customer orders. The wireless network
can also be used to alert users, via their smartphones, of important database changes,
such as price updates or product shortages.

• Internet connections The company has an Internet web site where customers,
dealers, and distributors can find out the latest information about its products and
services. At first, this was an information-only web site, but competitors have
recently begun accepting customer orders directly via the Internet. One of the
corporate IS department’s highest priorities is to respond to this competitive
challenge by supporting e-commerce transactions on the company’s web site.

Corporate mainframe

Marketing

Personnel

Planning

Engineering

Distribution

Sales force Customers

Sales
Web

servers

• IMS
• DB2

• MS Access
• Excel “databases”

• Oracle

• Oracle

• Sybase

• SQL Server

• Informix

InternetInternet

• • • • • •

FIGURE 23-1 DBMS usage in a typical corporate network

 702 P a r t V I : S Q L T o d a y a n d T o m o r r o w 702 P a r t V I : S Q L T o d a y a n d T o m o r r o w

With data spread over many different systems, it’s easy to imagine requests that span
more than one database, and the possibility for conflicting data among the databases:

• An engineer needs to combine lab test results (on an engineering workstation) with
production forecasts (on the mainframe) to choose among three alternative technologies.

• A financial planner needs to link financial forecasts (in an Informix database) to
historical financial data (on the mainframe).

• A product manager needs to know how much inventory of a particular product is in
each distribution center (data stored on six Linux servers) to plan product obsolescence.

• Current pricing data needs to be downloaded daily from the mainframe to the
distribution center servers, and also to all of the sales force’s laptop computers.

• Orders need to be uploaded daily from the laptop systems and parceled out to the
distribution centers; aggregate order data from the distribution centers must be
uploaded to the mainframe so that the manufacturing plan can be adjusted.

• Salespeople may accept customer orders and make shipment date estimates for
popular products based on their local databases, without knowing that other
salespeople have made similar commitments. Orders must be reconciled and
prioritized, and revised shipment estimates provided to customers.

• Engineering changes made in the workstation databases may affect product costs
and pricing. These changes must be propagated through the mainframe systems
and out to the web site, the distribution centers, and the sales force laptops.

• Managers throughout the company want to query the various shared databases
using the PCs on their desktops.

As these examples suggest, effective ways of distributing data, managing distributed data,
and providing access to distributed data have become critical as data processing has moved to
a distributed computing model. The leading DBMS vendors are committed to delivering
distributed database management and currently offer a variety of products that solve some of
the distributed data problems illustrated by these examples. Distributed data management
has also been the focus of extensive university and corporate research, and many technical
articles have been published about the theory of distributed data management and the trade-
offs involved. There is general agreement among the researchers about the ideal
characteristics that should be provided by a scheme to manage distributed databases:

• Location transparency The user shouldn’t have to worry about where the data is
physically located. The DBMS should present all data as if it were local and be
responsible for maintaining that illusion.

• Heterogeneous systems The DBMS should support data stored on different
systems, with different architectures and performance levels, including PCs,
workstations, LAN servers, minicomputers, and mainframes.

• Network transparency Except for differences in performance, the DBMS should
work the same way over different networks, from high-speed LANs to low-speed
telephone links.

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 703
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 703

• Distributed queries The user should be able to join data from any of the tables in
the (distributed) database, even if the tables are located on different physical systems.

• Distributed updates The user should be able to update data in any table for which
the user has the necessary privileges, whether that table is on the local system or on
a remote system.

• Distributed transactions The DBMS should support distributed transactions
(using COMMIT and ROLLBACK) across system boundaries, maintaining the integrity
of the (distributed) database even in the face of network failures and failures of
individual systems.

• Security The DBMS must provide a security scheme adequate to protect the entire
(distributed) database from unauthorized forms of access.

• Universal access The DBMS should provide universal, uniform access to all of the
organization’s data.

No current distributed DBMS product even comes close to meeting this ideal, and it’s
unlikely that any product ever will. In practice, formidable obstacles make it difficult to
provide even simple forms of distributed database management. These obstacles include

• Performance In a centralized database, the path from the DBMS to the data has an
access speed of a few milliseconds and a data transfer rate of millions of characters
per second. Even on a fast local area network, access speeds lengthen to hundredths
or tenths of a second, and transfer rates can fall to 100,000 characters per second or
less. On a modem link, data access may take seconds or minutes, and a few thousand
characters per second may be the maximum effective throughput. This vast
difference in speeds can dramatically slow the performance of remote data access.

• Integrity Distributed transactions require active cooperation by two or more
independent copies of the DBMS software running on different computer systems if
the transactions are to remain all-or-nothing propositions. Special two-phase
commit transaction protocols must be used. These protocols generate a great deal of
network traffic and lock parts of the databases that are participating in the
distributed transaction for long periods.

• Static SQL A static embedded SQL statement is compiled and stored in the
database as an application plan. When a query combines data from two or more
databases, where should its application plan be stored? Must there be two or more
cooperating plans? If there is a change in the structure of one database, how are the
application plans in the other databases to be notified? Using dynamic SQL to solve
these problems in a networked database environment almost always leads to
unacceptably slow application performance, due to network overhead and delays.

• Optimization When data is accessed across a network, the normal rules for SQL
optimization don’t apply. For example, it may be more efficient to sequentially scan
an entire local table than to use an index search on a remote table. The optimization
software must know about the network(s) and their speeds. Generally speaking,
optimization becomes both more critical and more difficult.

 704 P a r t V I : S Q L T o d a y a n d T o m o r r o w 704 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• Data compatibility Different computer systems support different data types, and
even when two systems offer the same data type, they often use different formats.
For example, a Windows PC and an Apple Mac store 16-bit integers differently. IBM
mainframes store data using the EBCDIC character set, while UNIX and Linux-
based servers and PCs use ASCII. A distributed DBMS must mask these differences.

• System catalogs As a DBMS carries out its tasks, it frequently accesses its system
catalogs. Where should the catalog be kept in a distributed database? If it is
centralized on one system, remote access to it will be slow, bogging down the
DBMS. If it is distributed across many different systems, changes must be
propagated around the network and synchronized.

• Mixed-vendor environment It’s highly unlikely that all the data in an
organization will be managed by a single brand of DBMS, so distributed database
access will cross DBMS brand boundaries. This requires active cooperation between
DBMS products from highly competitive vendors—an unlikely prospect. As the
DBMS vendors scramble to extend the capabilities of their products with new
features, capabilities, and data types, the ability to sustain a cross-vendor standard
is even less likely.

• Distributed deadlocks When transactions on two different systems each try to
access locked data on the other system, a deadlock can occur in the distributed
database, even though the deadlock is not visible on either of the two systems. The
DBMS must provide global deadlock detection for a distributed database. Again,
this requires coordination of processing across a network and will typically lead to
unacceptably slow application performance.

• Recovery If one of the systems running a distributed DBMS fails, the operator of
that system must be able to run its recovery procedures independently of the other
systems in the network, and the recovered state of the database must be consistent
with that of the other systems.

Distributing Data: Practical Approaches
Because of the formidable obstacles to realizing the ideal distributed database, DBMS
vendors have taken a step-by-step approach to databases and networking. They have
focused on specific forms of network database access, data distribution, and distributed
data management that are appropriate for particular application scenarios. For example, a
DBMS vendor may first provide tools to rapidly extract subset data from a master database
and send it across a network for loading into a slave database. Later, the vendor may
enhance the tool to track updates to the master database since the last extract, and to extract
and transmit only the changes to the master database.

A subsequent version of the tool may automate the entire process, providing a graphical
user interface (GUI) for specifying the data to be extracted and scripts to automate the
periodic extract process. Similarly, a DBMS may provide initial support for distributed
queries by allowing a user on one system to query a database located on another system. In
subsequent releases, the DBMS may allow the remote query as a subquery within a query
that accesses local database tables. Still later, the DBMS may allow distributed queries that
more freely intermix data from local and remote databases.

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 705
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 705

Remote Database Access
One of the simplest approaches to managing data stored in multiple locations is remote data
access. With this capability, a user of one database is given the ability to reach out across a
network and retrieve information from a different database. In its simplest form, this may
involve carrying out a single query against the remote database, as shown in Figure 23-2. It
may also involve performing an INSERT, UPDATE, or DELETE statement to modify the
remote database contents. This type of requirement often arises when the local database is a
satellite database (such as a database in a local sales office or distribution center) and the
remote database is a central, corporate database.

In addition to the remote data access request, Figure 23-2 also shows a client/server
request to the remote database from a (different) PC user. Note that, from the standpoint of
the remote database, there is very little difference between processing the request from the
PC client and processing the remote database access request. In both cases, a SQL request
arrives across the network, and the remote database determines that the user making the
request has appropriate privileges and then carries out the request. In both cases, the status
of the SQL processing is reported back across the network.

The local database in Figure 23-2 must do some very different work than the process it
normally uses to process local database requests, however. There are several complications
for the local DBMS:

• It must determine which remote database the user wants to access, and how it can
be accessed on the network.

• It must establish a connection to the remote database for carrying out remote
requests.

• It must determine how the local user authentication and privilege scheme maps to
the remote database. That is, does it simply pass the user name/password supplied
for local database access to the remote database, or is a different remote user name/
password supplied, or should some kind of automatic mapping be performed?

FIGURE 23-2 A remote database server access request

Local server

SQL query

Client/
server

request

Results

Remote server

Local
PC

Other
PC

DBMS

Remote
database

DBMS.
.

Local
database

 706 P a r t V I : S Q L T o d a y a n d T o m o r r o w 706 P a r t V I : S Q L T o d a y a n d T o m o r r o w

In effect, the local DBMS becomes an agent for the user making the remote access
request. It becomes a client in a client/server connection to the remote DBMS.

Several of the leading enterprise DBMS vendors offer the kind of remote database access
capability shown in Figure 23-2. They differ in the specific way that remote access is
presented to the user and to the database administrator. In some cases, they involve
extensions to the SQL language accepted by the DBMS. In others, the extra mechanisms for
establishing remote access are mostly external to the SQL language.

Sybase Adaptive Server Enterprise (ASE) offers a simple entry-level remote database
access capability. While connected to a local Sybase installation, the user can issue a
CONNECT TO SQL statement, naming a remote server that is known to the local server. For
example, if a remote server named CENTRALHOST contains a copy of the sample database,
then this statement:

CONNECT TO CENTRALHOST

makes that remote server the current server for the session. The local server in effect enters a
pass-through mode, sending all SQL statements to the remote server. The remote database
can now be processed directly over the connection, with standard, unmodified queries and
data manipulation statements:

Get the names and sales numbers of all salespeople who are already over quota.

SELECT NAME, QUOTA, SALES
 FROM SALESREPS
 WHERE SALES > QUOTA;

When the remote access is completed, a companion SQL statement:

DISCONNECT

ends the pass-through mode, and the local server once again becomes the current server.
Except for the CONNECT/DISCONNECT statement pair, the mechanism for managing remote
access is external to the SQL language. The database administrator tells the local database
about the existence, locations, and names of remote servers through the spaddserver()
and spdropserver() system stored procedures. The current local user name and
password are used by default for access to the remote server. Alternatively, the database
administrator can specify a proxy user name/password that is used for remote server
access, again through system stored procedures. Sybase ASE offers other, more complex
distributed database capabilities, but this basic capability has the advantage of maximum
simplicity.

Oracle takes a somewhat different approach to remote database access, but one that is
similar to the capabilities provided by other DBMS brands. It requires that Oracle’s
SQL*Net networking software be installed along with the Oracle DBMS on both the local
and the remote system. The database administrator is responsible for establishing one or
more named database links from the local database to remote databases. Each database link
specifies

• Network location of the target remote computer system

• Communications protocol to use

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 707
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 707

• Name of the Oracle database on the remote server

• Remote database user name and password

All remote database access occurs via a database link and is governed by the privileges
of the supplied user name in the remote system. The database link thus embodies the
answers to the “which database,” “how to communicate,” and “what privileges” questions
raised earlier in this section. The database administrator assigns the database link a name.
Links can be private (created for use by a specific user of the local system) or public (available
for use by multiple users of the local system).

To access a remote database over a database link, the local system user uses standard SQL
statements. The name of the database link is appended to the remote table and view names,
following an “at” sign (@). For example, assume you are on a local computer system that is
connected to a copy of the sample database on a remote system over a database link called
CENTRALHOST. This SQL statement retrieves information from the remote SALESREPS table:

Get the names and sales numbers of all salespeople who are already over quota.

SELECT NAME, QUOTA, SALES
 FROM SALESREPS@CENTRALHOST
 WHERE SALES > QUOTA;

Oracle supports nearly all of the query capabilities that are available for the local
database against remote databases. The only restriction is that every remote database entity
(table, view, etc.) must be suffixed with the database link name. Also, Oracle does not
support DDL or database updates via a database link. Here is a two-table join, executed on
the remote Oracle database:

Get the names and office cities of all salespeople who are already over quota.

SELECT NAME, CITY, QUOTA, SALES
 FROM SALESREPS@CENTRALHOST, OFFICES@CENTRALHOST
 WHERE SALES > QUOTA
 AND REP_OFFICE = OFFICE;

Informix Universal Server provides capabilities that are similar to those offered by
Oracle, but uses a different mechanism for identifying remote databases, and a different
SQL syntax extension. The Informix architecture differentiates between a remote database
server and a remote database that is managed by the remote server, since it tends to provide
rich support for multiple, named databases per server. Suppose an Informix copy of the
sample database is called SAMPLE, and it resides on a remote database server called
CENTRALHOST. Then this query is equivalent to the previous Oracle and Sybase examples:

Get the names and sales numbers of all salespeople who are already over quota.

SELECT NAME, QUOTA, SALES
 FROM SAMPLE@CENTRALHOST:SALEREPS
 WHERE SALES > QUOTA;

The database name appears at the beginning of the table name (as an additional qualifier
before the colon). If the database is remote, then the server name appears following the @
sign after the database name.

 708 P a r t V I : S Q L T o d a y a n d T o m o r r o w 708 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Remote Data Transparency
With any of the remote database naming conventions that extend the usual SQL table and
view names, the additional qualifiers can quickly become annoying or confusing. For
example, if two tables in the remote database have columns with the same names, any
query involving both tables must use qualified column names—and the table name
qualifiers now have the remote database qualification as well. Here’s a qualified Informix
column name for the NAME column in the remote SALESREPS table owned by the user JOE
in a remote database named SAMPLE on the remote Informix server CENTRALHOST:

SAMPLE@CENTRALHOST.JOE.SALESREPS.NAME

A single column reference has grown to half a line of SQL text! For this reason, table
aliases are frequently used in SQL statements involving remote database access.

Synonyms and aliases (described in Chapter 16) are also very useful for providing more
transparent access to remote databases. Here’s an Informix synonym definition that could
be established by a user or a database administrator:

CREATE SYNONYM REMOTE_REPS FOR SAMPLE@CENTRALHOST.JOE.SALESREPS;

The equivalent Oracle synonym definition is

CREATE SYNONYM REMOTE_REPS FOR JOE.SALESREPS@CENTRALHOST;

With this synonym in place, the preceding qualified column name becomes simply:

REMOTE_REPS.NAME

Any query referencing the REMOTE_REPS table and its columns is actually a remote
database query, but that fact is transparent to the user. In practice, most database
installations with frequently accessed remote tables will have a set of synonyms defined for
them. Most of the DBMS brands support both public synonyms (available to all users) and
private synonyms that are created for a specific user or group of users. With this structure,
synonyms can become an additional part of the remote access security mechanism, limited
only to those users with a real need for remote access.

Several DBMS brands take the synonym capability for transparent database access one
step further and permit views in the local database that are defined in terms of remote
database tables. Here is an Oracle view definition that creates a view called EAST_REPS in
the local database. The view is a subset of information from the remote sample database:

Create a local view defined in terms of two remote tables.

CREATE VIEW EAST_REPS AS
 SELECT EMPL_NUM, NAME, AGE, CITY
 FROM SALESREPS@CENTRALHOST, OFFICES@CENTRALHOST
 WHERE REP_OFFICE = OFFICE
 AND REP_OFFICE BETWEEN 11 AND 19;

After this view has been defined, a user can pose queries in terms of the EAST_REPS
view, without worrying about database links or remote table names. The view not only
provides transparent remote access, but also hides from the user the remote join operation
between the OFFICES and SALESREPS tables.

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 709
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 709

Transparent access to remote data, provided by views and synonyms, is usually
considered a very desirable characteristic. It does have one drawback, however. Because the
remote aspect of the database access is now hidden, the network overhead created by the
access is also hidden. Therefore, the possibility of a user or programmer inadvertently
creating a great deal of network traffic through very large queries is increased. The database
administrator must make this trade-off when deciding whether to permit remote
transparent synonyms and views.

Transparent remote access also inevitably raises one additional question: since the
remote tables now appear as if they are local, can the user pose queries that involve both
remote and local tables? That is, can a join cross the database server boundaries and relate
information from the remote database and the local database? Even more serious questions
are posed when the SQL transaction scheme is considered. If a database permits transparent
access to a remote database, then is a user allowed to update a row in the local database and
insert a row in the remote database, and then decide to roll back the transaction? Since the
remote resources have been made to appear as if they are local, it seems that the answer
should be “Of course—the local and remote databases together should appear as if they were
just one local, integrated database.”

In fact, supporting such distributed queries and transactions adds a major new level of
complexity (and potentially huge network data transmission overhead) to the remote
access. Because of this, although several commercial DBMS systems support distributed
queries and transactions, they are not heavily used in practice. These capabilities, and their
overhead implications, are more fully discussed later, in the “Distributed Database Access”
section. The next section discusses a practical alternative—duplicating data, or database
replication—that is much more frequently used in practice.

Table Extracts
Remote database access is very convenient for small remote queries and occasional remote
database access. If an application requires heavy and frequent access to a remote database,
however, the communications overhead of remote database access can become large. Once
remote access grows beyond a certain point, it is often more efficient to maintain a local copy
of the remote data in the local database. Many of the DBMS vendors provide tools to
simplify the process of data extraction and distribution. In its simplest form, the process
extracts the contents of a table in a master database, sends it across a network to another
system, and loads it into a corresponding replica table in a slave database, as shown in
Figure 23-3. In practice, the extract is performed periodically and during off-peak times of
database activity.

This approach is very appropriate when the data in the replicated table changes slowly,
or when changes to the table naturally occur in a batch. For example, suppose some tables
of the sample database, located on a remote central computer system, are to be replicated in
a local database. The contents of the OFFICES table hardly ever change. It would be an
excellent candidate for replication onto distribution center or sales force automation
databases. Once the initial (local) replica tables are set up and populated, they might need
to be updated only once per month, or when a new sales office is opened.

The PRODUCTS table is also a good candidate for replication. Product price changes
occur more frequently than office changes, but in most companies, they happen in batches,
perhaps once a week or once a day. With this natural processing cycle, it would be very

 710 P a r t V I : S Q L T o d a y a n d T o m o r r o w 710 P a r t V I : S Q L T o d a y a n d T o m o r r o w

effective to extract a table of product price data just after each batch of updates, and to send
it to the distribution center databases and the sales force automation central database. The
price data in these databases does not need to be tightly linked to the mainframe database
to ensure that it is fresh. A weekly or daily extract/update cycle will make the data just as
current, with a substantially smaller processing workload.

It’s possible to implement this type of replicated-table strategy without any support
from the DBMS. You could write an application program that uses SQL on the mainframe to
extract the product pricing data into a file. A file transfer program could transmit the file to
the distribution centers, where another application program could read its contents and
generate the appropriate DROP TABLE, CREATE TABLE, and INSERT statements to populate
the replicated table.

The first step toward automating this strategy was the development of high-speed data
extract and data loading programs. These utility programs, offered by the DBMS vendors,
typically use proprietary, lower-level database access techniques to extract the data and load
the data much more rapidly than is possible through SQL SELECT and INSERT statements.
More recently, software companies have targeted this area as an opportunity for stand-alone
software packages, independent of the DBMS vendors. This category of software, called
extract, transform, and load (ETL) software, focuses on linking disparate database systems
and file formats. ETL tools typically offer a graphical user interface for specifying the data
extraction, an array of tools for reformatting data between the source and destination
systems, a messaging capability for transmitting the data, perhaps a store-and-forward
capability for staging extracted data before and after transmission, and utilities for
managing and monitoring the overall process.

Two additional categories of integration software are enterprise application integration
(EAI) and enterprise information integration (EII). While there is some overlap with ETL,

FIGURE 23-3 A basic master/slave replicated architecture

DBMS

DBMSDBMS

Master
database

Slave
database

Slave
database

Tables

Central
server

Satellite
server

Periodic
replication

Read-only Read-only

Satellite
server

Insert/
update/

query

Tables Tables

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 711
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 711

the best way to distinguish these is by the target for which the data is intended.
As already mentioned, the target for ETL is a database. EAI, on the other hand, provides a
framework for capturing data from one application and delivering it to another application,
usually using some form of messaging technology. The target of EAI is an application. For
example, EAI could capture new customers as they are added by the Customer
Management application and send those to the Customer Service application so that the
customer’s services could be set up. In contrast, EII is a framework for delivering data from
disparate sources to a user, generally in the form of query results. The target of EII is a user.
Some EII tools provide agents that make disparate files look like relational databases to the
user, who can then query them using SQL. While there is common confusion of the terms
ETL, EAI, and EII, it is ETL that provides the capability to load (or reload) database tables
on a scheduled basis.

Table Replication
Several DBMS vendors have moved beyond their extract and load utility programs to offer
support for table extraction within the DBMS itself. Oracle, for example, offers a
materialized view facility (called snapshots prior to Oracle8i) to automatically create a local
copy of a remote table. A materialized view is a view that actually stores the rows defined by
the query included in the view definition. In its simplest form, the local table is a read-only
replica of the remote master table that is loaded when the view is defined. However,
materialized views can be defined so they are automatically refreshed by the Oracle DBMS
on a periodic basis. Here is an Oracle SQL statement to create a local copy of product
pricing data, assuming that the remote master database includes a PRODUCTS table like the
one in the sample database:

Create a local replica of pricing information from the remote PRODUCTS table.

CREATE MATERIALIZED VIEW PRODPRICE
 AS SELECT MFR_ID, PRODUCT_ID, PRICE
 FROM PRODUCTS@REMOTE_LINK;

This statement effectively creates a local Oracle table named PRODPRICE. It contains
three columns, specified by the SELECT statement against the remote (master) database.
The @ sign and name REMOTE_LINK in the statement tell Oracle that the PRODUCTS table
from which the data is to be replicated is a remote table, accessible via the Oracle database
link named REMOTE_LINK. The Oracle database administrator sets up these remote
database links as part of the distributed Oracle capabilities—they are required for access to
a remote database using Oracle SQL. However, materialized views can be created based on
local database objects as well as remote ones. In fact, this is commonly done in data
warehouses and data marts, where materialized views are formed with summary
information that is required for analysis. Finally, this CREATE MATERIALIZED VIEW
statement will actually cause the local PRODPRICE materialized view to be populated with
data from the remote PRODUCTS table and to be stored physically on the local database.

With this type of read-only materialized view, users are not allowed to change the
materialized view with INSERT, UPDATE, or DELETE statements. All database updates
occur in the master (remote) table and are only propagated to the materialized view
when it is refreshed. The database administrator can manually refresh the materialized
view as desired using the DBMS_MVIEW.REFRESH stored procedure supplied by Oracle.

 712 P a r t V I : S Q L T o d a y a n d T o m o r r o w 712 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The CREATE MATERIALIZED VIEW statement also includes rather comprehensive facilities
for specifying automatic refreshes. Here are some examples:

Create a local replica of pricing information from the remote PRODUCTS table. Refresh the data once
per week, with a complete reload of the data.

CREATE MATERIALIZED VIEW PRODPRICE
 REFRESH COMPLETE START WITH SYSDATE NEXT SYSDATE+7
 AS SELECT MFR_ID, PRODUCT_ID, PRICE
 FROM PRODUCTS@REMOTE_LINK;

Create a local replica of pricing information from the remote PRODUCTS table. Refresh the data once
per day, sending only changes from the master table.

CREATE MATERIALIZED VIEW PRODPRICE
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE+1
 AS SELECT MFR_ID, PRODUCT_ID, PRICE
 FROM PRODUCTS@REMOTE_LINK;

In the latter example, the FAST option specifies that the materialized view is refreshed
by transmitting only changes from the remote PRODUCTS table. Oracle implements this
capability by maintaining a log of changes on the remote system and updating the log every
time an update to the PRODUCTS table would affect the materialized view. When the time
for a refresh arrives, information from the change log is used. Complete refreshes can be
expensive in terms of resources because the entire query must be run against the source
table(s), sending all qualifying rows to the materialized view.

For applications like this one, where product price changes probably affect only a small
percentage of the overall table, this strategy is effective. The additional overhead of
maintaining the log for the master table is more than offset by the reduced network traffic of
transmitting only changed data. In other applications, where a large percentage of the rows
in the master table will be modified between refreshes, it may be more efficient to simply do
a complete refresh and eliminate the overhead of maintaining the log.

By default, Oracle identifies rows (to determine whether they are changed) based on
their primary key. If the primary key is not part of the replicated data, this can cause
confusion about which rows have been updated; in this case, Oracle uses an internal row-id
number (an option that can be specified when the materialized view is created) to identify
the modified rows for refreshes to the materialized view.

The SELECT statement that defines the materialized view offers a very general
capability for data extraction. It can include a SELECT clause to extract only selected rows of
the master table:

Create a local replica of pricing information for high-priced products from the remote PRODUCTS
table. Refresh the data once per day, sending only changes from the master table.

CREATE MATERIALIZED VIEW PRODPRICE
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE+1
 AS SELECT MFR_ID, PRODUCT_ID, PRICE
 FROM PRODUCTS@REMOTE_LINK
 WHERE PRICE > 1000.00;

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 713
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 713

Note that the WHERE predicate doesn’t affect the change log. All changes to the
PRODUCTS table must still be logged because multiple materialized views can be refreshed
from the change log, regardless of the predicates used in their definitions. The materialized
view can also be created as a joined table, extracting its data from two or more master tables
in the remote database:

Create a local replica of salesperson data, refreshed weekly.

CREATE MATERIALIZED VIEW SALESTEAM
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE+7
 AS SELECT NAME, QUOTA, SALES, CITY
 FROM SALESREPS@REMOTE, OFFICES@REMOTE
 WHERE REP_OFFICE = OFFICE;

Adding to the complexity, the materialized view can be defined by a grouped query:

Create a local summary of customer order volume, refreshed daily.

CREATE MATERIALIZED VIEW CUSTORD
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE+1
 AS SELECT COMPANY, SUM(AMOUNT)
 FROM CUSTOMERS@REMOTE, ORDERS@REMOTE
 WHERE CUST = CUST_NUM;

Of course, with each level of additional complexity, the overhead of managing the
materialized view and the refresh process increases. Regardless of how simple or complex
the definition of the materialized view, however, the overall principles remain the same.
Instead of having queries against the replicated data travel across the network to the remote
database, the remote data is brought down into the materialized view. The refreshes to the
materialized view still generate network traffic, but the day-to-day queries against the
materialized view data are carried out locally and do not generate network traffic. For
situations where the query workload is much higher than the overhead of maintaining the
materialized view, this can be an effective way to improve overall database performance.

Updateable Replicas
In the simplest implementations, a table and its replicas have a strict master/slave relationship,
as shown in Figure 23-3. The central/master copy contains the real data. It is always up to date,
and all updates to the table must occur on this copy of the table. The other slave copies are
populated by periodic updates, managed by the DBMS. Between updates, they may become
slightly out of date, but if the database is configured in this way, then it is an acceptable price
to pay for the advantage of having a local copy of the data. Updates to the slave copies are not
permitted. If they are attempted, the DBMS returns an error condition.

By default, the Oracle CREATE MATERIALIZED VIEW statement creates this type of
slave replica of a table. However, more advanced functions such as multiple updateable
replicas of the same master table require use of the Oracle Advanced Replication facility,
which is beyond the scope of this book.

In the Microsoft SQL Server structure for replication, the master/slave relationship is
implicit. The SQL server architecture defines the master as the publisher of the data and the
slaves as subscribers to the data. In the default configuration, there is a single (updateable)

 714 P a r t V I : S Q L T o d a y a n d T o m o r r o w 714 P a r t V I : S Q L T o d a y a n d T o m o r r o w

publisher, and there may be multiple (read-only) subscribers. The SQL Server architecture
carries this analogy one step further, supporting both the notion of push updates (the
publisher actively sends the update data to the subscribers) and pull updates (the
subscribers have primary responsibility for getting updates from the publisher).

For some applications, table replication is an excellent technique without the master/
slave relationship. For example, applications that demand high availability use replicated
tables to maintain identical copies of data on two different computer systems. If one system
fails, the other contains current data and can carry on processing. An Internet application
may demand very high database access rates, and achieve this scalability by replicating a
table many times on different computer systems and then spreading out the workload
across the systems. A sales force automation application will probably contain one central
CUSTOMER table and hundreds of replicas on laptop systems, and individual salespeople
should be able to enter new customers or change customer contact information on the laptop
replicas. In these configurations (and others), the most efficient use of the computer resources
is achieved if all of the replicas can accept updates to the table, as shown in Figure 23-4.

A replicated table where multiple copies can accept updates creates a new set of data
integrity issues. What happens if the same row of the table is updated in one or more
replicas? When the DBMS tries to synchronize the replicas, which of the two updates should
apply, or should neither apply, or both? What happens if a row is deleted from one copy of
the table, but it is updated in another copy of the table?

In DBMS systems that support updateable replicas, these issues are addressed by creating
a set of conflict resolution rules that the replication system applies. For example, when
replication is set up between a central CUSTOMER table and laptop versions of the table, the
replication rule may say that changes to the central customer database always win over
changes entered on a laptop system. Alternatively, the replication rule might say that the most
recent update always wins. In addition to the built-in rules provided by the DBMS itself, the
replication definition may include the capability to pass conflicts to a user-written procedure
(such as a stored procedure within the database) for selection of the winner and loser replicas.

FIGURE 23-4 Replicas with multiple update sites

DBMS

Central
database

Laptop
database

• • • • • •

CUSTOMERS

Central
server

Bi-directional
replication

Insert/
update/

query

Insert/
update/

query

Insert/
update/

query

CUSTOMERS CUSTOMERS

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 715
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 715

Replication Trade-Offs
Practical replication strategies always involve a trade-off between the desire to keep data as
current as possible and the desire to keep network traffic down to a practical level and provide
adequate performance. These trade-offs usually involve not just technical considerations, but
business practices and policies as well. For example, consider an order-processing application
using the sample database, and assume that order processing is distributed across five different
call centers that are geographically distributed around the world. Each call center has its own
computer system and database. Incoming orders are checked against the PRODUCTS table to be
certain that enough inventory is on hand to fill the order. The PRODUCTS table keeps track of
product-on-hand quantities for all of the company’s warehouses, worldwide.

Suppose the company’s policy is that the order-processing clerk must be able to
absolutely guarantee a customer that products can be shipped within 24 hours of the time
an order is accepted. In this case, the PRODUCTS table must contain absolutely up-to-the-
minute data, reflecting the inventory impact of orders taken just seconds earlier. Only two
designs could work for the database in this case. You could have a single, central copy of the
PRODUCTS table, shared by all users at all five order-processing sites. Alternatively, you
could have a fully mirrored copy of the PRODUCTS table at each of the five sites. The fully
mirrored solution is almost certainly impractical because the frequent updates to the
PRODUCTS table as each order is taken will cause excessive network traffic to keep the five
copies of the table in perfect synchronization.

But suppose the company believes it can still maintain adequate customer satisfaction
with a policy that is slightly less strict—for example, it promises to notify any customer
within 24 hours if the order cannot be filled immediately and to give the customer an
opportunity to cancel the order. In this case, a replicated PRODUCTS table becomes an
excellent solution. Once a day, updates to the PRODUCTS table can be downloaded to the
replicated copy at each of the five sites. During the day, orders are verified against the local
copy of the PRODUCTS table, but only the local PRODUCTS table is updated. This prevents
the company from taking an order for which there was not adequate stock on hand at the
beginning of the day, but it does not prevent orders taken at two or three different sites from
exceeding the available stock. The next night, when data communications costs are lower
than they are during the day, the orders from each site are transmitted to a central site,
which processes them against a central copy of the PRODUCTS table. Orders that cannot be
filled from inventory are flagged, and a report of them is generated. When processing is
complete, the updated PRODUCTS table, along with the problem orders report, is
transmitted back to each of the five sites to prepare for the next day’s processing.

Which is the correct architecture for supporting the operation of this global business? As
the example shows, it is not so much a database architecture question as a business policy
question. The interdependence of computer systems architectures and business operations
is one of the reasons why decisions about replication and data distribution inevitably make
certain types of business operations easier and others harder.

Typical Replication Architectures
In many cases, it’s possible to structure an application that involves replicated data so that
conflicts between replica updates are avoided or greatly minimized. The DBMS conflict
resolution rules are then applied as a last resort, when a conflict arises despite the design of
the application. The next few sections describe some typical replicated table scenarios and
the application structure that is often used in each scenario to minimize replication conflicts.

 716 P a r t V I : S Q L T o d a y a n d T o m o r r o w 716 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Horizontal Table Subsets
One efficient way to replicate parts of a table across a network is to divide the table
horizontally, placing different rows of the table on different systems. Figure 23-5 shows a
simple example where a horizontal table split is useful. In this application, a company
operates three distribution centers, each with its own computer system and DBMS to
manage an inventory database and order processing. A central database is also maintained
for production-planning purposes.

To support this environment, the PRODUCTS table is split horizontally into three parts
and expanded to include a LOCATION column that tells where the inventory is located. The
central copy of the table contains all of the rows. The rows of the table that describe
inventory in each distribution center are replicated in the local database managed by that
center’s DBMS.

In this case, most updates to the PRODUCTS table take place at the distribution center
itself, as it processes orders. Because distribution center replicas are mutually exclusive
(that is, a row from the PRODUCTS table appears in only one distribution center replica),
update conflicts are avoided. The replicas in the distribution center can periodically transmit
updates to the central database to keep it up to date.

Vertical Table Subsets
Another efficient way to manage table replication is to divide the table vertically, replicating
different columns of the table on different systems. Figure 23-6 shows a simple example of a
vertical table split. The SALESREPS table has been expanded to include new columns of
personnel information (phone number, marital status, etc.), and its information is needed in
two databases—one in the order-processing department and the other in the personnel
department. Most of the activity in each department focuses on one or two columns of the
table, but many queries and reports use both personnel-related and order-related columns.

FIGURE 23-5 Replication of horizontal table slices

PRODUCTS table

New York

Chicago

Denver

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 717
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 717

To accommodate this application, the SALESREPS table is replicated on both systems,
but conceptually, it is split vertically into two parts. The columns of the table that store
personnel data (NAME, AGE, HIRE_DATE, PHONE, MARRIED) are owned by the personnel
system. It wins any conflicts related to updates on these columns. The other columns
(EMPL_NUM, QUOTA, SALES, REP_OFFICE) are owned by the order-processing system. It
wins update conflicts related to these columns. Because the entire table is replicated on both
systems, either system can be used to generate reports and handle ad hoc inquiries, and all
of these can be processed locally. Only updates involve the replication mechanism, generate
network traffic, and potentially require conflict resolution.

Mirrored Tables
When table replication is used to achieve high availability (that is, resistance to computer or
database failure), the entire table is typically mirrored, as shown in Figure 23-7. The easiest
way to implement this configuration is if one system is the active system and another is a hot
standby. In this scheme, all database update activity normally flows to the active system
(System A), which replicates the updates to the standby system (System B). Only in the event
of system failure does the update transaction access switch over to the standby system, but it
has fresh data because of the replicated table. In most vendor implementations, the standby
system is available for read-only access such as queries and reporting. The disadvantage of
this scheme is that high levels of mirrored updates can adversely affect read-only access
performance and vice versa, a problem easily solved with proper tuning and the expectation
that read-only access to the standby database must be a lower priority. In implementations
where the standby database is not accessible for read-only access, the standby database
doesn’t add any data processing capability, but the organization must still absorb the cost of
purchasing and maintaining it.

FIGURE 23-6 Replication of vertical table slices

Personnel
system

Order-processing
system

SALESREPS table

 718 P a r t V I : S Q L T o d a y a n d T o m o r r o w 718 P a r t V I : S Q L T o d a y a n d T o m o r r o w

For this reason, high-availability systems are often designed to also provide load
balancing, as shown in Figure 23-8. In this configuration, some front-end software intercepts
DBMS access requests and evenly distributes them between the two (or more) computer
systems. Under normal operation, both (all) systems contribute data processing power;
none is wasted. Furthermore, it’s conceptually easy to grow the data processing power by
adding more computer systems with a copy of the replicated table.

FIGURE 23-7 Mirrored table replication

System A System B
Copies of
Table X

Table X

Load-distribution
software

Insert/update/query
requests

Front-end
server

DBMS • • • DBMSDatabase
server

Database
server

N-way
replication

Replicated
table

Replicated
table

FIGURE 23-8 Replication for load balancing

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 719
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 719

This type of mirrored table approach can be highly effective if the ratio of database
queries to database updates is very high (for example, 95 percent read access / 5 percent
update access). If the percentage of updates is too high, the potential for conflicts and the
replication overhead can diminish the effectiveness and scalability of the overall
configuration. Efficiency also decreases with each increase in the number of replicated
systems, since the replication overhead rises.

One common way to get more efficiency out of a mirrored table configuration like the
one in Figure 23-8 is to divide updates to the table based on some rule. For example, if the
mirrored table is a customer table, the primary key may be the customer name. The front-
end load-balancing software can then be written so that updates for customer names
starting with A through M are routed to the one system, and updates for customer names
starting with N through Z are routed to the other system. This eliminates the possibility of
update conflicts. Because the table remains fully replicated under this scenario, read access
requests can still be distributed randomly between the two systems to balance the
workload. This type of approach can be quite effective in achieving scalable database
performance with replicated tables. It can be fairly easily extended from a two-way scheme
to an N-way scheme, where updates are split among three or more database servers.

Distributed Database Access
Over the last several years, research into fully distributed database access has slowly but
surely found its way into commercial products. Today, many of the mainstream enterprise
database products offer at least some level of transparent distributed database access. As
noted earlier in the “Remote Data Transparency” section, the performance implications of
distributed database access and updates can be quite substantial. Two very similar-looking
queries can create massively different amounts of network traffic and overhead. A single
query, carried out in a brute force method or an optimized method, can create the same
differences, depending on the quality of the optimization done by the DBMS.

Because of these challenges, all of the vendors have taken a step-by-step approach to
delivering distributed database access. When IBM first announced its blueprint for
distributed data management in its SQL products, it defined a four-stage approach. IBM’s
four stages, shown in Table 23-1, provide an excellent framework for understanding
distributed data management capabilities and their implications.

Stage Description

Remote request Each SQL statement accesses a single remote database; each
statement is a transaction.

Remote transaction Each SQL statement accesses a single remote database;
multistatement transactions are supported for a single database.

Distributed transaction Each SQL statement accesses a single remote database;
multistatement transactions are supported across multiple databases.

Distributed request Each SQL statement may access multiple databases; multistatement
transactions are supported across multiple databases.

TABLE 23-1 IBM’s Four-Stage Approach for Distributed Database Access

 720 P a r t V I : S Q L T o d a y a n d T o m o r r o w 720 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The IBM scheme provides a simple model for defining the distributed data access
problem: a user of one computer system needs to access data stored on one or more other
computer systems. The sophistication of the distributed access increases at each stage. Thus,
the capabilities provided by a given DBMS can be described in terms of which stage it has
reached. In addition, within each stage, a distinction can be made between read-only access
(with the SELECT statement) and update access (with the INSERT, DELETE, and UPDATE
statements). A DBMS product often provides read-only capability for a given stage before
full update capability is provided.

Remote Requests
The first stage of distributed data access, as defined by IBM, is a remote request, shown in
Figure 23-9. In this stage, the PC user may issue a SQL statement that queries or updates
data in a single remote database. Each individual SQL statement operates as its own
transaction, similar to the autocommit mode provided by many interactive SQL programs.
The user can issue a sequence of SQL statements for various databases, but the DBMS
doesn’t support multistatement transactions.

Remote requests are very useful when a PC user needs to query corporate data. Usually,
the required data is located within a single database, such as a database of order-processing
or manufacturing data. Using a remote request, the PC program can retrieve the remote
data for processing by a PC spreadsheet, graphics program, or desktop publishing package.

The remote request capability is not powerful enough for most transaction-processing
applications. For example, consider a PC-based order-entry application that accesses a
corporate database. To process a new order, the PC program must check inventory levels,
add the order to the database, decrease the inventory totals, and adjust customer and sales
totals, involving perhaps half a dozen different SQL statements. As explained in Chapter 11,
database integrity can be corrupted if these statements do not execute as a single
transaction. However, the remote request stage does not support multistatement
transactions, so it cannot support this application.

FIGURE 23-9 Distributed data access: remote requests

DBMS

Remote systemLocal system

Transaction

Transaction

Transaction

Transaction

Statement

Statement

Statement

Statement

Remote system

DBMS

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 721
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 721

Remote Transactions
The second stage of distributed data access, as defined by IBM, is a remote transaction (called
a remote unit of work by IBM), shown in Figure 23-10. Remote transactions extend the
remote request stage to include multistatement transaction support. The PC user can issue a
series of SQL statements that query or update data in a remote database and then commit or
roll back the entire series of statements as a single transaction. The DBMS guarantees that
the entire transaction will succeed or fail as a unit, as it does for transactions on a local
database. However, all of the SQL statements that make up the transaction must reference a
single remote database.

Remote transactions open the door for distributed transaction-processing applications.
For example, in an order-processing application, a PC-based order-entry program can now
perform a sequence of queries, updates, and inserts in the inventory database to process a
new order. The program ends the statement sequence with a COMMIT or ROLLBACK for the
transaction.

Remote transaction capability typically requires a DBMS (or at least transaction-
processing logic) on the PC as well as on the system where the database is. The transaction
logic of the DBMS must be extended across the network to ensure that the local and remote
systems always have the same opinion about whether a transaction has been committed.
However, the actual responsibility for maintaining database integrity remains with the
remote DBMS.

Remote transaction capability is often the highest level of distributed database access
provided by database gateways that link one vendor’s DBMS to other DBMS brands. For
example, most of the independent enterprise database vendors (Sybase, Oracle, Informix)
provide gateways from their UNIX- or Linux-based DBMS systems to IBM’s mainframe DB2
implementation. Some gateway products go beyond the bounds of remote transactions,
allowing a user to join, in a single query, tables from a local database with tables from a
remote database managed by a different brand of DBMS. However, these gateways do not
(and cannot, without support from the remote DBMS) provide the underlying transaction
logic required to support the higher stages of distributed access as defined by IBM. The
gateway can ensure the integrity of the local and remote databases individually, but it cannot
guarantee that a transaction will not be committed in one and rolled back in the other.

FIGURE 23-10 Distributed data access; remote transactions

DBMS

Remote systemLocal system

Transaction

Transaction

Statement

Statement

Statement

Statement Remote system

DBMS

 722 P a r t V I : S Q L T o d a y a n d T o m o r r o w 722 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Distributed Transactions
The third stage of distributed data access, as defined by IBM, is a distributed transaction
(a distributed unit of work in IBM parlance), shown in Figure 23-11. At this stage, each
individual SQL statement still queries or updates a single database on a single remote
computer system. However, the sequence of SQL statements within a transaction may
access two or more databases located on different systems. When the transaction is
committed or rolled back, the DBMS guarantees that all parts of the transaction on all of
the systems involved in the transaction will be committed or rolled back. The DBMS
specifically guarantees that there will not be a partial transaction, where the transaction
is committed on one system and rolled back on another.

Distributed transactions support the development of very sophisticated transaction-
processing applications. For example, in the corporate network of Figure 23-1, a PC order-
processing application can query the inventory databases on two or three different distribution
center servers to check the inventory of a scarce product and then update the databases to
commit inventory from multiple locations to a customer’s order. The DBMS ensures that other
concurrent orders do not interfere with the remote access of the first transaction.

Distributed transactions are much more difficult to provide than the first two stages of
distributed data access. It’s impossible to provide distributed transactions without the
active cooperation of the individual DBMS systems involved in the transaction. For this
reason, the DBMS brands that support distributed transactions almost always support them
only for a homogeneous network of databases, all managed by the same DBMS brand (that
is, an all-Oracle or all-Sybase network). A special transaction protocol, called the two-phase
commit protocol, is used to implement distributed transactions and ensure that they provide
the all-or-nothing requirement of a SQL transaction. The details of this protocol are
described later in the section “The Two-Phase Commit Protocol.”

Distributed Requests
The final stage of distributed data access in the IBM model is a distributed request, shown in
Figure 23-12. At this stage, a single SQL statement may reference tables from two or more
databases located on different computer systems. The DBMS is responsible for automatically
carrying out the statement across the network. A sequence of distributed request statements can
be grouped together as a transaction. As in the previous distributed transaction stage, the DBMS
must guarantee the integrity of the distributed transaction on all systems that are involved.

FIGURE 23-11 Distributed data access: distributed transactions

DBMS

Remote systemLocal system

Transaction

Transaction

Statement

Statement

Statement

Statement Remote system

DBMS

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 723
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 723

The distributed request stage doesn’t make any new demands on the DBMS transaction-
processing logic, because the DBMS already had to support transactions across system
boundaries at the previous distributed transaction stage. However, distributed requests
pose major new challenges for the DBMS optimization logic. The optimizer must now
consider network speed when it evaluates alternate methods for carrying out a SQL
statement. If the local DBMS must repeatedly access part of a remote table (for example,
when making a join), it may be faster to copy part of the table across the network in one
large bulk transfer rather than repeatedly retrieving individual rows across the network.

The relative sizes of the tables on the local and remote system are also relevant optimization
factors, as is the selectivity of any search conditions in the SELECT clause. For some queries, the
search conditions may select only one or a few rows on the local system and hundreds of rows
on the remote system, so they should be applied locally first. For other queries involving the
same tables, the relative selectivity may be reversed, and the remote search condition should
be applied. For still other queries, the join condition itself may limit the rows that participate
in both the local and remote systems, and it may be most efficient to apply it first. In each case,
the cost of the query is not just the cost of the database access, but also the cost of shipping the
results of intermediate query execution steps back and forth across the network.

The optimizer must also decide which copy of the DBMS should handle statement
execution. If most of the tables are on a remote system, it may be a good idea for the remote
DBMS on that system to execute the statement. However, that may be a bad choice if the
remote system is heavily loaded. Thus, the optimizer’s task is both more complex and much
more important in a distributed request.

Ultimately, the goal of the distributed request stage is to make the entire distributed
database look like one large database to the user. Ideally, the user would have full access to
any table in the distributed database and could use SQL transactions without knowing
anything about the physical location of the data. Unfortunately, this ideal scenario would
quickly prove impractical in real networks. In a network of any size, the number of tables in
the distributed database would quickly become very large, and users would find it
impossible to find data of interest. The user-ids of every database in the organization would
have to be coordinated to make sure that a given user-id uniquely identified a user in all
databases. Database administration would also be very difficult.

FIGURE 23-12 Distributed data access: distributed requests

DBMS

Remote systemLocal system

Transaction

Transaction

Statement

Statement

Statement

Statement Remote system

DBMS

 724 P a r t V I : S Q L T o d a y a n d T o m o r r o w 724 P a r t V I : S Q L T o d a y a n d T o m o r r o w

In practice, therefore, distributed requests must be implemented selectively. Database
administrators must decide which remote tables are to be made visible to local users and
which will remain hidden. The cooperating DBMS copies must translate user-ids from one
system to another, allowing each database to be administered autonomously while
providing security for remote data access. Distributed requests that would consume too
many DBMS or network resources must be detected and prohibited before they impact
overall DBMS performance.

Because of their complexity, distributed requests are not fully supported by any
commercial SQL-based DBMS today, and it will be some time before even a majority of their
features are available. One major step toward distributed processing across database brands
has been the standardization of a distributed transaction protocol. The XA protocol,
originally developed to coordinate among multiple transaction monitors, is being actively
applied to distributed database transactions as well. A Java version of the same capability,
called Java Transaction Protocol (JTP), provides a distributed transaction interface for Java-
based applications and application servers. Today, most commercial DBMS products
designed to be used in a network environment support XA and JTA interfaces.

The Two-Phase Commit Protocol*
A distributed DBMS must preserve the all-or-nothing quality of a SQL transaction if it is to
provide distributed transactions. The user of the distributed DBMS expects that a
committed transaction will be committed on all of the systems where data resides, and that
a rolled back transaction will be rolled back on all of the systems as well. Further, failures in
a network connection or in one of the systems should cause the DBMS to abort a transaction
and roll it back, rather than leaving the transaction in a partially committed state.

All commercial DBMS systems that support distributed transactions use a technique
called two-phase commit to provide that support. You don’t have to understand the two-
phase commit scheme to use distributed transactions. In fact, the whole point of the scheme
is to support distributed transactions without your knowing it. However, understanding the
mechanics of a two-phase commit can help you plan efficient database access.

To understand why a special two-phase commit protocol is needed, consider the
database in Figure 23-13. The user, located on System A, has updated a table on System B
and a table on System C and now wants to commit the transaction. Suppose the DBMS
software on System A tried to commit the transaction by simply sending a COMMIT message
to System B and System C, and then waiting for their affirmative replies. This strategy
works as long as Systems B and C can both successfully commit their part of the transaction.

But what happens if a problem such as a disk failure or a deadlock condition prevents
System C from committing as requested? System B will commit its part of the transaction
and send back an acknowledgment, System C will roll back its part of the transaction
because of the error and send back an error message, and the user ends up with a partially
committed, partially rolled back transaction. Note that System A can’t change its mind at
this point and ask System B to roll back the transaction. The transaction on System B has
been committed, and other users may already have modified the data on System B based on
the changes made by the transaction.

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 725
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 725

The two-phase commit protocol eliminates the problems of the simple strategy shown
in Figure 23-13. Figure 23-14 illustrates the steps involved in a two-phase commit:

 1. The program on System A issues a COMMIT for the current (distributed) transaction,
which has updated tables on System B and System C. System A will act as the
coordinator of the commit process, coordinating the activities of the DBMS software
on Systems B and C.

 2. System A sends a GET READY message to both System B and System C and notes the
message in its own transaction log.

 3. When the DBMS on System B or C receives the GET READY message, it must prepare
to either commit or roll back the current transaction. If the DBMS can get into this
“ready to commit” state, it replies YES to System A and notes that fact in its local
transaction log; if it cannot get into this state, it replies NO.

FIGURE 23-13 Problems with a broadcast commit scheme

System B

UPDATE

COMMIT

•
•
•

UPDATE

COMMIT

OK

OK

OK

NO

System C

COMMIT

•
•
•

ROLLBACK

System A

INSERT INSERT

INSERT

ERROR!

UPDATE

UPDATE

COMMIT

COMMIT

(committed)

•
•
•

INSERT

Oops!

Error: transaction committed on System B,
but rolled back on System C

 726 P a r t V I : S Q L T o d a y a n d T o m o r r o w 726 P a r t V I : S Q L T o d a y a n d T o m o r r o w

 4. System A waits for replies to its GET READY message. If all of the replies are YES,
System A sends a COMMIT message to both System B and System C, and notes the
decision in its transaction log. If any of the replies is NO, or if all of the replies are
not received within some timeout period, System A sends a ROLLBACK message to
both systems and notes that decision in its transaction log.

 5. When the DBMS on System B or C receives the COMMIT or ROLLBACK message, it
must do as it is told. The DBMS gave up the capability to decide the transaction’s
fate autonomously when it replied YES to the GET READY message in Step 3. The
DBMS commits or rolls back its part of the transaction as requested, writes the
COMMIT or ROLLBACK message in its transaction log, and returns an OK message to
System A.

 6. When System A has received all the OK messages, it knows the transaction has
been committed or rolled back and returns the appropriate SQLCODE value to the
program.

FIGURE 23-14 The two-phase commit protocol

System B

UPDATE

GET READY

COMMIT

•
•
•

UPDATE

GET READY

GET READY

YES

COMMIT

OK

GET READY

YES

ROLLBACK

OK

GET READY

YES

COMMIT

OK

GET READY

NO

ROLLBACK

OKROLLBACK

System C

GET READY

COMMIT

•
•
•

ROLLBACK

System A

INSERT INSERT

INSERT

ERROR!

UPDATE

UPDATE

COMMIT

COMMIT

(committed)
•
•
•

INSERT

Oops!
(rolled back)

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 727
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 727

This protocol protects the distributed transaction against any single failure in System B,
System C, or the communications network. These two examples illustrate how the protocol
permits recovery from failures:

• Suppose a failure occurs on System C before it sends a YES message in Step 3.
System A will not receive a YES reply and will broadcast a ROLLBACK message,
causing System B to roll back the transaction. The DBMS recovery facility on System
C will not find the YES message or a COMMIT message in the local transaction log,
and it will roll back the transaction on System C as part of the recovery process. All
parts of the transaction will have been rolled back at this point.

• Suppose a failure occurs on System C after it sends a YES message in Step 3. System
A will decide whether to commit or roll back the distributed transaction based on
the reply from System B. The DBMS recovery facility on System C will find the YES
message in the local transaction log, but will not find a COMMIT or ROLLBACK
message to mark the end of the transaction. The recovery facility then asks the
coordinator (System A) what the final disposition of the transaction was and acts
accordingly. Note that System A must maintain a record of its decision to commit or
roll back the transaction until it receives the final okay from all of the participants,
so that it can respond to the recovery facility in case of failure.

The two-phase commit protocol guarantees the integrity of distributed transactions, but it
generates a great deal of network traffic. If n systems are involved in the transaction, the
coordinator must send and receive a total of 4n messages to successfully commit the transaction.
Note that these messages are in addition to the messages that actually carry the SQL statements
and query results among the systems. However, there’s no way to avoid the message traffic if a
distributed transaction is to provide database integrity in the face of system failures.

Because of their heavy network overhead, distributed transactions can have a serious
negative effect on database performance. For this reason, distributed databases must be
carefully designed so that frequently accessed (or at least frequently updated) data is on a
local system or on a single remote system. If possible, transactions that update two or more
remote systems should be relatively rare.

Network Applications and Database Architecture
Innovations in computer networking have been closely linked to many of the innovations in
relational database architectures and SQL over the years. Powerful minicomputers with
mainframe network connections (such as Digital’s VAX family) were the first popular platform
for SQL-based databases. They offered a platform for decision support, based on data
offloaded from mainframe systems. They also supported local data processing applications,
for capturing business data and uploading it to corporate mainframe applications.

UNIX-based servers and powerful local area networks (such as Sun’s server products)
drove another wave of DBMS growth and innovation. This era of databases and networks gave
birth to the client/server architecture that dominated enterprise data processing in the 1990s.
Later, the rise of enterprisewide networks and applications (such as Enterprise Resource
Planning) created a need for a new level of database scalability and distributed database
capability. Today, the exploding popularity of the Internet and open source products is driving
still another wave of innovation, as very high peak-load transaction rates and personalized
user interaction drive database caching and main-memory database technologies.

 728 P a r t V I : S Q L T o d a y a n d T o m o r r o w 728 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Client/Server Applications and Database Architecture
When SQL-based databases were first deployed on minicomputer systems, the database
and application architecture was very simple—all of the processing, from screen display
(presentation) to calculation and data processing (business logic) to database access
occurred on the minicomputer’s CPU. The advent of powerful personal computers and
server platforms drove a major change in that architecture, for several reasons.

The graphical user interface (GUI) of popular PC office automation software
(spreadsheets, word processors, etc.) set a new standard for ease of use, and companies
demanded the same style of interface from corporate applications. Supporting a GUI is
processor-intensive and demands a high-bandwidth path from the processor to the display
memory that holds the screen image. While some protocols emerged for running a GUI over
the LAN (the X-windows protocol), the best place to run a production application’s
presentation-layer code was clearly on the PC itself.

Economics was also a factor. Personal computer systems were much cheaper, on a
cost-per-processing-power basis, than minicomputers or UNIX-based servers. If more of
the processing for a business application could take place on lower-cost PCs, the overall
hardware cost of deploying an application would be reduced. This was an argument for
moving not just the presentation layer, but much of the business logic layer, onto the PC
as well.

Driven by these and other factors, the first client/server architectures emerged, shown
in Figure 23-15. Many PC-based applications are still being deployed today using this
architecture. SQL plays a key role as the client/server language. Requests are sent from the
application logic (on the PC) to the DBMS (on the server) expressed in SQL statements. The
answers come back across the network in the form of SQL completion status codes (for
database updates) or SQL query results (for information requests).

FIGURE 23-15 Client/server applications architecture

DBMS

Database
server

Results

SQL statement(s)
(1 request/statement)

Personal
computer

Database

Application
program

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 729
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 729

Client/Server Applications with Stored Procedures
Whenever an application is split across two or more networked computer systems, as in
Figure 23-15, one of the major issues is the interface between the two halves of the split
application. Each interaction across this interface now generates network traffic, and the
network is always the slowest part of the overall system, both in its data transmission
capacity (bandwidth) and in round-trip messaging delays (latency). With the architecture
shown in Figure 23-15, each database access (that is, each SQL statement) generates at least
one round trip across the network.

In an OLTP application, typical transactions may require as many as a dozen individual
SQL statements. For example, to take a customer’s order for a single product in the simple
structure of the sample database, the order-processing application might:

• Retrieve the customer number based on the customer name (single-row SELECT)

• Retrieve the customer’s credit limit to verify creditworthiness (single-row SELECT)

• Retrieve product information, such as price and quantity available (single-row
SELECT)

• Add a row to the ORDERS table for the new order (INSERT)

• Update the product information to reflect the lower quantity available (UPDATE)

• Update the customer’s credit limit, reducing the available credit (UPDATE)

• Commit the entire transaction (COMMIT)

for a total of seven round trips between the application and the database. In a real-world
application, the number of database accesses might be two or three times this amount. As
transaction volumes grow, the amount of network traffic can be very significant.

Database-stored procedures provide an alternative architecture that can dramatically
reduce the amount of network traffic, as shown in Figure 23-16. A stored procedure within
the database itself incorporates the sequence of steps and the decision-making logic
required to carry out all of the database operations associated with the transaction.

FIGURE 23-16 Client/server architecture with stored procedures

DBMS

Procedure

Database
server

Results

Stored procedure
call (1 request)

Personal
computer

Database

Application
program

 730 P a r t V I : S Q L T o d a y a n d T o m o r r o w 730 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Basically, part of the business logic that formerly resided within the application itself has
been pushed across the network onto the database server. Instead of sending individual
SQL statements to the DBMS, the application calls the stored procedure, passing the
customer name, the product to be ordered, and the quantity desired. If all goes well, the
stored procedure returns successfully. If a problem arises (such as lack of available product
or a customer credit problem), a returned error code and message describes it. By using the
stored procedure, the network traffic is reduced to a single client/server interaction.

There are several other advantages to using stored procedures, but the reduction in
network traffic is one of the major ones. It was a major selling advantage of Sybase SQL
Server when it was first introduced and helped to position Sybase as a DBMS specialized
for high-performance OLTP applications. With the popularity of stored procedures, every
major general-purpose enterprise DBMS now offers this capability.

Enterprise Applications and Data Caching
Today, major applications from the large packaged enterprise software vendors are all based
on SQL and relational databases. Examples include large Enterprise Resource Planning
(ERP), Supply Chain Management (SCM), Human Resources Management (HRM),
Customer Relationship Management (CRM), financial management, and other packages
from vendors such as SAP, Infor Global Solutions (formerly BAAN), Oracle (which acquired
both PeopleSoft and Siebel Systems), the Sage Group, Microsoft, IBM, i2 Technologies, and
others. These large-scale applications typically run on large UNIX or Windows server
systems and place a heavy workload on the supporting DBMS. To isolate the applications
and DBMS processing and apply more total processing power to the application, they often
use a three-tier architecture shown in Figure 23-17.

FIGURE 23-17 Three-tier architecture of a major enterprisewide application

Enterprise
application DBMS

Windows
application
or browser Display data

Front-end Middle tier Back-end

User input

Personal
computer

Application
server

Database
server

Display data

Database
requests

Database

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 731
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 731

Even with the use of stored procedures to minimize network traffic, the network and
database access demands of the most data-intensive of these enterprise applications can
outstrip the available network bandwidth and DBMS transaction rates. For example,
consider a supply chain planning application that helps a manufacturing company
determine the parts that it must order from suppliers. To generate a complete plan, the
application must examine every open order and apply the product bill-of-materials to it.
A complex product might involve hundreds of parts, some of which are themselves
subassemblies consisting of dozens or hundreds of parts.

If written using straightforward programming techniques, the planning application
must perform a database inquiry to determine the parts makeup of every product, and then
every subassembly, for every order, and it will accumulate the total needed information in
the planning database for each of these parts. Using this technique, the application will take
hours to process the hundreds of thousands of orders that may be currently on the books. In
fact, the application will probably run so long that it cannot possibly complete its work
during the typical overnight low-volume batch processing window of time during which
the company normally runs such applications.

To deliver acceptable performance, all data-intensive enterprise applications employ
caching techniques, pulling the data forward out of the database server, closer to the
application. In most cases, the application uses relatively primitive caching techniques. For
example, it might read the bill-of-materials once and load it into main-memory data tables
within the application program. By eliminating the heavily repeated product-structure
queries, the program can dramatically improve its performance.

Recently, enterprise application vendors have begun to use more complex caching
techniques. They may replicate the most heavily accessed data (the hot data) in a duplicate
database table, on the same system as the application itself. Main-memory databases offer
an even higher-performance alternative and are already being used where there is a relatively
small amount of hot data (tens to hundreds of megabytes). With the advent of 64-bit operating
system architectures and continuing declines in memory prices, it is becoming practical to
cache larger amounts of data (tens or hundreds of gigabytes).

Advanced caching and replication will become more important in response to emerging
business requirements. Leading-edge manufacturing companies want to move toward real-
time planning, where incoming customer orders and changes immediately impact
production plans. They want to offer more customized products, in more configurations, to
more closely match customer desires. These and similar trends will continue to raise the
volume and complexity of database access.

High-Volume Internet Data Management
High-volume Internet applications are also driving the trend to database caching and
replication in networked database architectures. For example, financial services firms are
competing for online brokerage clients by offering more and more advanced real-time stock
reporting and analysis capabilities. The data management to support this type of application
involves real-time data feeds (to ensure that pricing and volume information in the database
is current) and peak-load database inquiries of tens of thousands of transactions per second.
Similar volume demands are found in applications for managing and monitoring high-volume
Internet sites. The trend to personalize web sites (determining on the fly which banner ads to
display, which products to feature, etc.) and measure the effectiveness of such personalization
is another trend driving peak-load data access and data capture rates.

 732 P a r t V I : S Q L T o d a y a n d T o m o r r o w 732 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The Web has already proved to be an effective architecture for dealing with these types of
peak-load Internet volume demands—through web site caching. Copies of heavily accessed
web pages are pulled forward in the network and replicated. As a result, the total network
capacity for serving web pages is increased, and the amount of network traffic associated with
those page hits is reduced. Similar architectures are beginning to emerge for high-volume
Internet database management, as shown in Figure 23-18. In this case, an Internet information
services application caches hot data, such as the most recent news and financial information,
in a very high-performance main-memory database such as Oracle TimesTen and MySQL
Cluster Server. It also stores summary user profile information in a main-memory database,
which is used to personalize users’ experiences as they interact with the web site.

As Figure 23-18 shows, the methods for handling high-performance data management
are beginning to follow those already established for high-performance web page
management. The issues for databases are more complex because of database integrity
issues, but the emerging techniques are similar—replication, high-volume read access,
memory-resident databases, and highly fault-tolerant architectures. These demands will
only grow as Internet traffic and personalization continue to increase, leading to more
advanced network database architectures.

Web
browser

Application server

Database server

In-memory DB

In-memory DB

Web
server

Replicated
servers

Internet

Internet
or

Intranet
User

profiles

Internet
application

Cached
“hot” data

Web
browser

DBMS

Back-end
Database

FIGURE 23-18 Staging data for high-performance data management

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 733
PART VI

 C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 733

Summary
This chapter described the distributed data management capabilities offered by various
DBMS products and the trade-offs involved in providing access to remote data:

• A distributed database is implemented by a network of computer systems, each
running its own copy of the DBMS software and operating autonomously for
local data access. The copies of the DBMS cooperate to provide remote data access
when required.

• The ideal distributed database is one in which the user doesn’t know and doesn’t
care that the data is distributed; to the user, all of the relevant data appears as if it
were on the local system.

• Because this ideal distributed DBMS is very difficult to provide and involves too
many performance trade-offs, commercial DBMS products are providing distributed
database capability in phases.

• Remote database access can be useful in situations where the remote access is a small
part of total database activity; in this case, it’s more practical to leave the data in the
remote location and incur the network overhead for each database access.

• Database replication is very useful in situations where there is relatively heavy
access to data in multiple locations; it brings the data closer to the point of access,
but at the cost of network overhead for replica synchronization and data that is not
100 percent up to date.

• The particular trade-offs of remote data access and replication strategies have
implications beyond technology decisions; they should reflect underlying trade-offs
in business priorities as well.

• Enterprisewide distributed applications, Internet-based applications, data warehousing,
and other trends are increasing the complexity of the distributed data management
environment. The N-tier architectures they use will require smart data caching and
replication strategies to deliver adequate performance.

This page intentionally left blank

24
SQL and Objects

The only serious challenge to the dominance of SQL and relational database
management over the last decade or so has come from the emergence of an equally
significant trend—the growing popularity of object-oriented technologies. Object-

oriented programming languages (such as C++ and Java), object-oriented development
tools, and object-oriented networking (including object request brokers, and more recently,
Web Services) have emerged as foundation technologies for modern software development.
Object technologies gained much of their initial popularity for building personal computer
applications with graphical user interfaces (GUIs). But their impact has grown, and they are
being used today to build (and more importantly, to link together) enterprisewide network-
based applications for large corporations.

In the early 1990s, a group of venture-backed object-oriented database companies was
formed with the goal of applying object-oriented principles to database management.
These companies believed that their object-oriented databases would supplant the outdated
relational databases as surely as the relational model had supplanted earlier data models.
However, they met with limited marketplace success in the face of entrenched relational
technologies and SQL. In response to the object challenge, many relational database
vendors moved aggressively to graft object technologies onto their relational systems,
creating hybrid object-relational models. This chapter describes the object database challenge
to SQL and the resulting object-relational features provided by some major DBMS vendors.

Object-Oriented Databases
Considerable academic research on database technology over the past decade has been
focused on new, post-relational data models. Just as the relational model provided clear-cut
advantages over the earlier hierarchical and network models, the goal of this research was
to develop new data models that would overcome some of the disadvantages of the
relational model. Much of this research has focused on how to merge the principles of
object-oriented programming and design with traditional database characteristics, such as
persistent storage and transaction management.

735

CHAPTER

 736 P a r t V I : S Q L T o d a y a n d T o m o r r o w 736 P a r t V I : S Q L T o d a y a n d T o m o r r o w

In addition to the academic research, in the early and mid-1990s, some large venture
capital investments flowed into a group of startup software companies whose goal was to
build a new generation of data management technologies. These companies typically
started with the object data structures used by an object-oriented program to manage its in-
memory data, and extended them for disk-based storage and multiuser access. These early
commercial products included Gemstone (Servio Logic, later renamed to Gemstone
Systems), Gbase (Graphael), and Vbase (Ontologic). Products introduced in the mid-1990s
included ITASCA (Itasca Systems), Jasmine (Fujitsu, marketed by Computer Associates),
Objectivity/DB (Objectivity, Inc.), ObjectStore (Progress Software, acquired by eXcelon,
which was originally Object Design), Matisse (Matisse Software), O2 (O2 Technology,
eventually acquired by Informix, which was acquired by IBM), ONTOS (Ontos, Inc.,
formerly Ontologic), POET (Poet Software, now FastObjects from Versant), Versant Object
Database (Versant Corporation), and VOSS (Logic Arts). Enthusiastic supporters of these
object-oriented databases (OODBs) firmly believed that they would mount a serious
challenge to the relational model and become the dominant database architecture by the
end of the decade. That scenario proved far off the mark, but the object database vendors
have had a significant impact on their relational rivals.

Object-Oriented Database Characteristics
Unlike the relational data model, where Codd’s 1970 paper provided a clear, mathematical
definition of a relational database, the object-oriented database has no single definition.
However, the core principles embodied in most object-oriented databases include

• Objects In an object-oriented database, everything is an object and is manipulated
as an object. The tabular, row/column organization of a relational database is
replaced by the notion of collections of objects. Generally, a collection of objects is
itself an object and can be manipulated in the same way that other objects are
manipulated.

• Classes Object-oriented databases replace the relational notion of atomic data
types with a hierarchical notion of classes and subclasses. For example, VEHICLES
might be a class of object, and individual members (instances) of that class would
include a car, a bicycle, a train, or a boat. The VEHICLES class might include
subclasses called CARS and BOATS, representing a more specialized form of vehicle.
Similarly, the CARS class might include a subclass called CONVERTIBLES, and so on.

• Inheritance Objects inherit characteristics from their class and from all of the
higher-level classes to which they belong. For example, one of the characteristics of
a vehicle might be “number of passengers.” All members of the CARS, BOATS, and
CONVERTIBLES classes also have this attribute, because they are subclasses of
VEHICLES. The CARS class might also have the attribute “number of doors,” and
the CONVERTIBLES class would inherit this attribute. However, the BOATS class
would not inherit the attribute.

• Attributes The characteristics that an object possesses are modeled by its
attributes. Examples include the color of an object, or the number of doors that it
has, and its English-language name. The attributes are related to the object they
describe in roughly the same way that the columns of a table relate to its rows.

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 737
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 737

• Messages and methods Objects communicate with one another by sending and
receiving messages. When it receives a message, an object responds by executing a
method, a program stored within the object that determines how it processes the
message. Thus, an object includes a set of behaviors described by its methods.
Usually, an object shares many of the same methods with other objects in higher-
level classes.

• Encapsulation The internal structure and data of objects is hidden from the
outside world (encapsulated) behind a limited set of well-defined interfaces. The
only way to find out about an object, or to act on it, is through its methods, whose
functions and behaviors are clearly specified. This makes the object more
predictable and limits the opportunities for accidental data corruption.

• Object identity Objects can be distinguished from one another through unique
object identifiers, usually implemented as an abstract pointer known as an object
handle. Handles are frequently used to represent relationships among objects; an
object points to a related object by storing the object’s handle as one of its data items
(attributes).

These principles and techniques make object-oriented databases well suited to
applications involving complex data types, such as computer-aided design or compound
documents that combine text, graphics, and spreadsheets. The database provides a natural
way to represent the hierarchies that occur in complex data. For example, an entire
document can be represented as a single object, composed of smaller objects (sections),
composed of still smaller objects (paragraphs, graphs, etc.). The class hierarchy allows the
database to track the type of each object in the document (paragraphs, charts, illustrations,
titles, footnotes, etc.).

Finally, the message mechanism offers natural support for a GUI. The application
program can send a “draw yourself” message to each part of the document, asking it to
draw itself on the screen. If the user changes the shape of the window displaying the
document, the application program can respond by sending a “resize yourself” message to
each document part, and so on. Each object in the document bears responsibility for its own
display, so new objects can easily be added to the document architecture.

Pros and Cons of Object-Oriented Databases
Object-oriented databases have stirred up a storm of controversy in the database
community. Proponents say that object databases are essential to create a proper match
between the programming and database data models. They say that the rigid, fixed, row/
column structure of relational tables is a holdover from the punch-card era of data
processing with its fixed data fields and record orientation. A more flexible model, where
classes of objects can be similar to one another (that is, share certain attributes) but also
different from one another is essential, they say, to effectively model real-world situations.

Another assertion is that the multitable joins that are an integral part of the relational
data model inherently create database overhead and make relational technology unsuitable
for the ever-increasing performance demands of today’s applications. Finally, since objects
are well-established as the in-memory data model for modern programs, the proponents
say that the only natural data model is one that transparently extends the in-memory model
to permanent, shared, disk-based, multiuser storage.

 738 P a r t V I : S Q L T o d a y a n d T o m o r r o w 738 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Opponents of object-oriented databases are just as adamant, saying that object-oriented
databases are unnecessary and offer no real, substantive advantages over the relational
model. They say that the handles of object-oriented databases are nothing more than the
embedded database pointers of prerelational hierarchical and network databases, recycled
with different names. They point out that, like these earlier database technologies, the
object-oriented databases lack the strong underlying mathematical theory that forms the basis
of relational databases. They add that the lack of object database standards and the absence of
a standardized query language like SQL are reflections of this deficiency, and have prevented
the development of vendor-independent tools and applications that have been essential to the
development of the database industry.

In response to claims of inferior performance, they point to the use of relational
technology in some of the most performance-demanding enterprise applications. They
also are careful to draw a distinction between the external relational model of data and the
underlying implementation, which may well contain embedded pointers for performance
acceleration. Finally, they say that any mismatch between object-oriented programming and
relational databases can be addressed by technologies like JDBC and other object-to-
relational interfaces.

Objects and the Database Market
In the marketplace, pure object-oriented databases have gained some success in applications
with very complex data models and those where the object-oriented model of classes and
inheritance closely parallels the real world. However, the object database companies have
had real difficulty breaking through into the mainstream. Many have not survived into the
first decade of the 21st century. The survivors have had a hard time reaching the $100
million annual revenue mark and achieving sustainable profits, and have experienced
significant management changes. In contrast, the largest relational database vendors have
continued to experience steady growth. The largest have annual revenues measured in
billions of dollars per year, proving that relational database technology continues to
dominate the database market today.

Not surprisingly, the object-oriented and relational camps have had a substantial
impact on one another. With the slow marketplace acceptance of object-oriented technology,
the object-oriented vendors have focused on some of the factors that created the success
of the relational generation two decades ago. They have formed standards groups such
as the Object Data Management Group (ODMG) to standardize object-oriented database
technology. Several have added relational adapters, with standard interfaces such as ODBC
and SQL, as optional layers for relational access to their databases. Several have focused
on the international standards process and have worked to put strong object-oriented
capabilities into the SQL standard. The net result has been a trend toward embracing or
coexisting with the relational world, rather than competing with it.

The object-oriented challenge has had a significant impact on the relational mainstream
as well. Several features that began as relational capabilities (for example, stored procedures)
are now being touted as providing object-oriented advantages (for example, encapsulation).
Vendors have also steadily added selected object-oriented capabilities, such as abstract data
types, onto their relational databases. The resulting object-relational databases provide
a hybrid of relational and object capabilities. They stretch the relational model—some would
say past the breaking point—to incorporate features such as tables within tables, which model
the relationships between object classes.

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 739
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 739

One of the major vendors, Informix Software (since acquired by IBM), gained its object-
relational capabilities by acquisition, buying Illustra Software. Illustra’s object-relational
technology was based on the Postgres work at the University of California at Berkeley, a
follow-up to the university’s pioneering relational database system, Ingres. The Informix
version of the Illustra product was renamed Informix Universal Server. Another of the
major vendors, Oracle Corporation, evolved its own mainstream database system to include
object-relational technologies. Oracle8, introduced in 1997, embodies several years of
intensive Oracle development in this area, and subsequent versions further expanded it.

The object-oriented database vendors and the relational vendors’ response to it have
also had a major impact on the SQL standards efforts. The most significant change in the
SQL3 version of the standard (formally known as SQL:1999) was the addition of object
capabilities. The new object-oriented capabilities nearly doubled the size of the SQL
specification in terms of page count. The acquisition and development of object-relational
databases by the industry leaders, and the formal adoption of object extensions to SQL,
signal the growing synergy between SQL and the world of object technology.

Object-Relational Databases
Object-relational databases typically begin with a relational database foundation and add
selected features that provide object-oriented capabilities. This approach simplifies the
addition of object capabilities for the major RDBMS vendors, whose enterprise-class
RDBMS products have been developed over the course of 15 or more years and would be
tremendously costly to reproduce from scratch. It also recognizes the large installed base of
relational systems and gives those customers a smoother upgrade path (not to mention an
upgrade revenue stream for the vendors).

The object extensions that are commonly found in object-relational databases are:

• Large data objects Traditional relational data types are small—integers, dates,
short character strings; large data objects can store documents, audio and video
clips, web pages, and other new media data types.

• Structured/abstract data types Relational data types are atomic and indivisible;
structured data types allow groups of individual data items to be grouped into
higher-level structures that can be treated as entities of their own.

• User-defined data types Relational databases typically provide a limited range of
built-in data types; object-oriented systems and databases emphasize the user’s
ability to define his or her own new data types.

• Tables within tables Relational database columns store individual data items;
object-relational databases allow columns to contain complex data items, such as
structured types or even entire tables. This can be used to represent object
hierarchies.

• Sequences, sets, and arrays In a traditional relational database, sets of data are
represented by rows in their own table, linked to an owning entity by a foreign key;
object-relational databases may allow the direct storage of collections of data items
(sequences, sets, arrays) within a single column.

 740 P a r t V I : S Q L T o d a y a n d T o m o r r o w 740 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• Stored procedures Traditional relational databases provide set-based interfaces
such as SQL for storing, selecting, and retrieving data; object-relational databases
provide procedural interfaces such as stored procedures that encapsulate the data
and provide strictly defined interactions.

• Handles and object-ids A pure relational database requires that data within each
row of the database itself (the primary key) uniquely identifies the row; object-
relational databases provide built-in support for row-ids or other unique identifiers
for objects.

Large Object Support
Relational databases have traditionally focused on business data processing. They store and
manipulate data items that represent money amounts, names, addresses, unit quantities,
dates, times, and the like. These data types are relatively simple and require small amounts of
storage space, from a few bytes for an integer that holds order or inventory quantities to a few
dozen bytes for a customer name, employee address, or product description. Relational
databases have been optimized to manage rows containing up to a few dozen columns of this
type of data. The techniques they use to manage disk storage and to index data assume that
data rows will occupy a few hundred to a few thousand bytes. The programs that store and
retrieve data can easily hold dozens or hundreds of these types of data items in memory, and
can easily store and retrieve entire rows of data at a time through reasonably sized memory
buffers. The row-at-a-time processing techniques for relational query results work well.

Many modern types of data have quite different characteristics from traditional business
data. A single high-resolution graphical image to be displayed on a PC screen can require
hundreds of thousands of bytes of storage or more. A word processing document, such as
a contract or the text of this book, can take even more storage. The HTML text that defines
web pages and the PostScript and PDF files that define printed images are other examples
of larger, document-oriented data items. Even a relatively short high-quality audio track
can occupy millions of bytes, and video clips can run to hundreds of megabytes or even
gigabytes of data. As multimedia applications have become more important, users have
wanted to manage these types of data along with the other data in their databases. The
capability to efficiently manage large objects, often called LOBs, was one of the earliest
advantages claimed for object-oriented databases.

LOBs in the Relational Model
The first approach to supporting LOBs in relational databases was through the underlying
operating system and its file system. In early implementations, each individual LOB data
item was stored in its own operating system file. The name of the file was placed in a
character-valued column within a table, as a pointer to the file. The table’s other columns
could be searched to find rows that met certain criteria. When an application needed to
manipulate the LOB content associated with one of the rows, it read the name of the file and
retrieved the LOB data from it. Management of the file input/output was the responsibility
of the application program. This approach worked, but it was error-prone and required that
a programmer understand both the RDBMS and the file system interfaces. The lack of
integration between the LOB contents and the database was readily apparent. For example,
you couldn’t ask the database to compare two LOB data items to see if they were the same,
and the database couldn’t provide even basic text-searching capability for LOB contents.

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 741
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 741

Today, most major enterprise-class DBMS systems provide direct support for the ANSI/
ISO standard LOB data types: BLOB for binary data, CLOB for character data, and NCLOB for
character data in a multibyte national language storage format. You can define a column as
containing one of these LOB data types and use it in certain situations in SQL statements.
There are typically substantial restrictions on the LOB data, such as not allowing its use in a
join condition or in a GROUP BY clause.

Sybase provides two large object data types. Its TEXT data type can store up to 2 billion
bytes of variable-length text data. You can use a limited set of SQL capabilities (such as the
LIKE text-search operator) to search the contents of TEXT columns. A companion IMAGE
data type can store up to 2 billion bytes of variable-length binary data. Microsoft SQL Server
supports these types, plus an NTEXT data type that allows up to 1 billion characters of 2-
byte national language text.

IBM’s DB2 provides a similar set of data types. A DB2 character large object (CLOB) type
stores up to 2 billion bytes of text. A DB2 double-byte character large object (DBCLOB) type
stores up to 1 billion 2-byte characters. A DB2 binary large object (BLOB) stores up to 2
billion bytes of binary data.

Oracle historically provided two large object data types. A LONG data type stored up to 2
billion bytes of text data. A LONG RAW data type stored up to 2 billion bytes of binary data.
Oracle restricted the use of either LONG type to only a single column per table. With the
introduction of Oracle8, support for LOB data was expanded substantially:

• An Oracle BLOB type stores up to 8 terabytes of binary data within the database.

• An Oracle CLOB type stores up to 8 terabytes of single-byte character data within
the database.

• An Oracle NCLOB type stores multibyte character data as a BLOB.

• An Oracle BFILE type stores long binary data in a file external to the database.

The BLOB, CLOB, and NCLOB types are tightly integrated into Oracle’s operation,
including transaction support. BFILE data is managed through a pointer within the
database to an external operating system file. It is not supported by Oracle transaction
semantics. Special Oracle PL/SQL functions are provided to manipulate BLOB, CLOB, and
NCLOB data from within PL/SQL stored procedures, as described in the next section.

Informix Universal Server’s support for large object data is similar to that of Oracle.
It supports simple large objects and smart large objects:

• An Informix BYTE type is a simple large object that stores binary data.

• An Informix TEXT type is a simple large object that stores text data.

• An Informix BLOB type is a smart large object that stores binary data.

• An Informix CLOB type is a smart large object that stores text (character) data.

Informix simple large objects store up to 2 gigabytes of data. The entire large object must
be retrieved or stored as a unit from the application program, or it can be copied between
the database and an operating system file. Smart large objects can store up to 4 terabytes of
data. Special Informix functions are provided to process smart large objects in smaller, more
manageable chunks. These functions provide random access to the contents of an Informix

 742 P a r t V I : S Q L T o d a y a n d T o m o r r o w 742 P a r t V I : S Q L T o d a y a n d T o m o r r o w

smart object, similar to the random access typically provided for operating system files.
Informix also provides advanced controls over logging, transaction management, and data
integrity for smart large objects.

Specialized LOB Processing
Because LOBs can be very large compared with the data items typically handled by RDBMS
systems, they pose special problems in several areas:

• Data storage and optimization Storing a LOB item inline with the other contents
of a table’s row would destroy the optimization that the DBMS performs to fit
database data neatly into pages that match the size of disk pages. For this reason,
LOB data is nearly always stored out-of-line in separate storage areas. Most DBMS
brands that support LOBs provide special LOB storage options, including named
storage spaces that are specified when the LOB type column is created.

• Storing LOB data in the database Because a LOB can be tens or hundreds of
megabytes in size, most programs can’t hold the entire contents of a LOB in a
memory buffer at once. They process portions of the LOB at a time (for example,
pages of a long document or individual frames of a video clip). But embedded SQL
and normal SQL APIs are designed for row-at-a-time processing (through INSERT
and UPDATE statements) that stores the values for all columns in the row at once.
Special techniques are required to put data into a database LOB column piece by
piece, through multiple API calls per LOB column.

• Retrieving LOB data from the database This is the same issue as storing the data,
but in reverse. Embedded SQL and normal SQL APIs are designed for SELECT
statement or FETCH statement processing that retrieves data values for all columns
of a row at once. But because a stored LOB value can be tens or hundreds of
megabytes in size, most programs can’t possibly process it all at once in a memory
buffer. Special techniques are required to retrieve the database LOB column data,
piece by piece, so that it can be processed by the application.

• Transaction logging Most DBMSs support transactions by maintaining before and
after images of modified data in a transaction log. Because of the potentially large
size of LOB data, the logging overhead could be extreme. For this reason, many
DBMSs don’t support logging for LOB data, or they allow logging but provide the
ability to turn it on and off.

Several DBMSs address these issues through extended APIs that specifically support
LOB manipulation. These calls provide random access to individual segments of the LOB
contents, allowing the program to retrieve or store the LOB in manageable chunks. Oracle8
introduced this capability for manipulating its LOB data types within stored procedures
written in the Oracle PL/SQL language. Its capabilities are similar to those provided by
other object-relational databases, such as Informix Universal Server.

When a stored procedure reads an Oracle LOB column from a table, Oracle does not
actually return the contents of the column. Instead, a locator for the LOB data (in object
parlance, a handle for the LOB) is returned. The locator is used in conjunction with more
than 35 special LOB-processing functions that the stored procedure DBMS_LOB can then use

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 743
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 743

to manipulate the actual data stored in the LOB column of the database. Here is a brief
description of some of LOB-processing functions available in the DBMS_LOB stored
procedure:

• DBMS_LOB.READ(locator, length, offset, buffer) Reads into the PL/SQL
buffer the indicated number of bytes/characters from the LOB identified by the
locator, starting at the offset.

• DBMS_LOB.WRITE(locator, length, offset, buffer) Writes the indicated
number of bytes/characters from the PL/SQL buffer into the LOB identified by the
locator, starting at the offset.

• DBMS_LOB.APPEND(locator1, locator2) Appends the entire contents of the
LOB identified by locator2 to the end of the contents of the LOB identified by
locator1.

• DBMS_LOB.ERASE(locator, length, offset) Erases the contents of the LOB
identified by the locator at offset for length bytes/characters; for character-
based LOBs, spaces are inserted, and for binary LOBs, binary zeroes are inserted.

• DBMS_LOB.COPY(locator1, locator2, length, offset1, offset2) Copies
length bytes/characters from the LOB identified by locator2 at offset2 into
the LOB identified by locator1 at offset1.

• DBMS_LOB.TRIM(locator, length) Trims the LOB identified by the locator
to the indicated number of bytes/characters.

• DBMS_LOB.SUBSTR(locator, length, offset) Returns (as a text string return
value) the indicated number of bytes/characters from the LOB identified by the
locator, starting at the offset; the return value from this function may be assigned
into a PL/SQL VARCHAR variable.

• DBMS_LOB.GETLENGTH(locator) Returns (as an integer value) the length in
bytes/characters of the LOB identified by the locator.

• DBMS_LOB.COMPARE(locator1, locator2, length, offset1,
offset2) Compares the LOB identified by locator1 to the LOB identified by
locator2, starting at offset1 and offset2, respectively, for length bytes/
characters; returns zero if they are the same and nonzero if they are not.

• DBMS_LOB.INSTR(locator, pattern, offset, i) Returns (as an integer value)
the position within the LOB identified by the locator where the ith occurrence of
pattern is matched; the returned value may be used as an offset in subsequent
LOB processing calls.

Oracle imposes one further restriction on updates and modifications to LOB values
that are performed through these functions. LOBs can impose an unacceptably high
overhead on Oracle’s transaction mechanisms, so Oracle normally does not lock the
contents of a LOB data item when the row containing the LOB is read by an application
program or a PL/SQL routine. If the LOB data is to be updated, the row must be
explicitly locked prior to modifying it. This is done by including a FOR UPDATE clause in
the SELECT statement that retrieves the LOB locator. Here is a PL/SQL fragment that

 744 P a r t V I : S Q L T o d a y a n d T o m o r r o w 744 P a r t V I : S Q L T o d a y a n d T o m o r r o w

retrieves a row containing a LOB that contains document text, and that updates
100 characters in the middle of the LOB data:

declare
 lob CLOB;
 textbuf varchar(255);

begin
 /* Put text to be inserted into buffer /
 . . .

 /* Get lob locator and lock LOB for update */
 select document_lob into lob
 from documents
 where document_id = '34218'
 for update;

 /* Write new text 500 bytes into LOB */
 dbms_lob.write(lob,100,500,textbuf);

 commit;
end;

Abstract (Structured) Data Types
The data types envisioned by the relational data model are simple, indivisible, atomic data
values. If a data item such as an address is actually composed of a street address, city, state,
and postal code, as a database designer, you have two choices. You can treat the address as
four separate data items, each stored in its own column, so that you can search and retrieve
the items individually. Or you can treat the address as a single unit, in which case, you
cannot process its individual component parts within the database. There is no middle
ground that allows you to treat the address as a unit for certain situations and to access its
component parts for others.

Many programming languages (including even non–object-oriented languages like C or
Pascal) do provide such a middle ground. They support compound data types or named
data structures. The data structure is composed of individual data items or lower-level
structures, which can be accessed individually. But the entire data structure can also be
treated as a single unit when that is most convenient. Structured or composite data types in
object-relational databases provide this same capability in a DBMS context.

Informix Universal Server supports abstract data types through its concept of row data
types. You can think of a row type as a structured sequence of individual data items, called
fields. Here is an Informix CREATE TABLE statement for a simple PERSONNEL table that uses
a row data type to store both name and address information:

CREATE TABLE PERSONNEL (
 EMPL_NUM INTEGER,
 NAME ROW(

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 745
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 745

 F_NAME VARCHAR(15),
 M_INIT CHAR(1),
 L_NAME VARCHAR(20))
 ADDRESS ROW(
 STREET VARCHAR(35),
 CITY VARCHAR(15),
 STATE CHAR(2),
 POSTCODE ROW(
 MAIN INTEGER,
 SFX INTEGER)));

This table has three columns. The first one, EMPL_NUM, has an integer data type. The last
two, NAME and ADDRESS, have a row data type, indicated by the keyword ROW, followed by
a parenthesized list of the fields that make up the row. The NAME column’s row data type
has three fields within it. The ADDRESS column’s row data type has four fields. The last of
these four fields (POSTCODE) itself has a row data type and consists of two fields. In this
simple example, the hierarchy is only two levels deep, but the capability can be (and often
is) extended to additional levels.

Individual fields within the columns of the table are accessible in SQL statements
through an extension of the SQL dot notation that is already used to qualify column names
with table names and user names. Adding a dot after a column name allows you to specify
the names of individual fields within a column. This SELECT statement retrieves the
employee numbers and first and last names of all personnel with a specified main postal
code:

SELECT EMPL_NUM, NAME.F_NAME, NAME.L_NAME
 FROM PERSONNEL
 WHERE ADDRESS.POSTCODE.MAIN = '12345';

Suppose another table within the database, named MANAGERS, had the same NAME
structure as one of its columns. Then this query retrieves the employee numbers of
employees who are also managers:

SELECT EMPL_NUM
 FROM PERSONNEL, MANAGERS
 WHERE PERSONNEL.NAME = MANAGERS.NAME;

In the first of these two queries, it makes sense to retrieve the individual fields within
the NAME column. The second query shows a situation where it’s more convenient to use the
entire name column (all three fields) as the basis for comparison. It’s clearly a lot more
convenient to ask the DBMS to compare the two abstract data typed columns than it is to
specify separate comparisons for each of the individual fields. Together, these examples
show the advantages of the row data type in allowing access to the fields at any level of the
hierarchy.

The row data type columns require special handling when you’re inserting data into the
database. The PERSONNEL table has three columns, so an INSERT statement for the table
must have three items in its VALUES clause. The columns that have a row data type require
a special ROW value-constructor to put together the individual data items into a row-type

 746 P a r t V I : S Q L T o d a y a n d T o m o r r o w 746 P a r t V I : S Q L T o d a y a n d T o m o r r o w

item that matches the data type of the column. Here is a valid INSERT statement for the
table that illustrates the use of the ROW constructor:

INSERT INTO PERSONNEL
 VALUES (1234,
 ROW('John', 'J', 'Jones'),
 ROW('197 Rose St.', 'Chicago', 'IL',
 ROW(12345, 6789)));

Defining Abstract Data Types
With the Informix row data type capabilities illustrated so far, each individual structured
column is defined in isolation. If two tables need to use the same row data type structure,
it is defined within each table. This violates one of the key principles of object-oriented
design, which is reusability. Instead of having each object (the two columns in the two
different tables) have its own definition, the row data type should be defined once and then
reused for the two columns. Informix Universal Server provides this capability through its
named row type feature. (The row data types shown in previous examples are unnamed row
data types.)

You create an Informix named row type with the CREATE ROW TYPE statement. Here are
examples for the PERSONNEL table:

CREATE ROW TYPE NAME_TYPE (
 F_NAME VARCHAR(15),
 M_INIT CHAR(1),
 L_NAME VARCHAR(20));

CREATE ROW TYPE POST_TYPE (
 MAIN INTEGER,
 SFX INTEGER);

CREATE ROW TYPE ADDR_TYPE (
 STREET VARCHAR(35),
 CITY VARCHAR(15),
 STATE CHAR(2),
 POSTCODE POST_TYPE);

Note that the definition of a named row type can depend on other, previously created
named row types, as shown by the ADDR_TYPE containing a column (POSTCODE) that uses
the POST_TYPE row type. With these row data types defined, the name and address
columns in the PERSONNEL table (and any other columns holding name or address data in
other tables of the database) can be defined using it. The aggressive use of abstract data
types can thus help to enforce uniformity in naming and data typing within an object-
relational database. Here is the new Informix definition of the PERSONNEL table, using the
just-defined abstract data types:

CREATE TABLE PERSONNEL (
 EMPL_NUM INTEGER,
 NAME NAME_TYPE,
 ADDRESS ADDR_TYPE);

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 747
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 747

Figure 24-1 shows some sample data for this table and the hierarchical column/field
structure created by the abstract data types.

Oracle supports abstract data types through a very similar structure, with slightly
different SQL syntax. Here is the Oracle CREATE TYPE statement to create the same abstract
data structure for names and addresses:

CREATE TYPE NAME_TYPE AS OBJECT (
 F_NAME VARCHAR2(15),
 M_INIT CHAR(1),
 L_NAME VARCHAR2(20));

CREATE TYPE POST_TYPE AS OBJECT (
 MAIN NUMBER,
 SFX NUMBER);

CREATE TYPE ADDR_TYPE AS OBJECT (
 STREET VARCHAR2(35),
 CITY VARCHAR2(15),
 STATE CHAR(2),
 POSTCODE POST_TYPE);

Oracle calls the abstract data type an object instead of a row type. In fact, the type is
functioning as an object class in the usual object-oriented terminology. Extending the object-
oriented terminology further, the individual components of an Oracle abstract data type are
referred to as attributes (corresponding to the Informix fields described earlier). The ADDR_
TYPE type has four attributes in this example. The fourth attribute, POSTCODE, is itself an
abstract data type.

Both Oracle and Informix use the extended dot notation to refer to individual data
elements within abstract data types. With nested abstract types, it takes several levels of
dot-delimited names to identify an individual data item. The main postal code within the
PERSONNEL table is identified as:

PERSONNEL.ADDRESS.POSTCODE.MAIN

If the table were owned by another user, Sam, the qualified name would become even
longer:

SAM.PERSONNEL.ADDRESS.POSTCODE.MAIN

PERSONNEL Table
NAME

EMPL NUM
1234
1374
1421
1532

Sue
Sam
Joe
Rob

J.
F.
P.
G.

1803 Main St.
564 Birch Rd.
13 High St.
9123 Plain Av.

Alamo
Marion
Delano
Franklin

NJ
KY
NM
PA

31948
82942
13527
83624

4567
3524
2394
2643

F NAME M INIT L NAME STREET CITY STATE MAIN
POSTCODE

ADDRESS

SFX
Marsh
Wilson
Jones
Mason

•
•
•

FIGURE 24-1 PERSONNEL table using abstract data types

 748 P a r t V I : S Q L T o d a y a n d T o m o r r o w 748 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Informix allows the use of row types to go one step beyond their role as data type
templates for individual columns. You can use a row type to define the structure of an entire
table. For example, with this row type definition:

CREATE ROW TYPE PERS_TYPE (
 EMPL_NUM INTEGER,
 NAME NAME_TYPE,
 ADDRESS ADDR_TYPE);

you can define the PERSONNEL table using the row type as a model:

CREATE TABLE PERSONNEL
 OF TYPE PERS_TYPE;

The columns of this PERSONNEL table will be exactly as they were in the previous
CREATE TABLE examples, but now PERSONNEL is a typed table. The most basic use of the
typed table capability is to formalize the object structure in the database. Each object class
has its own row type, and the typed table that holds objects (rows) of that class is defined in
terms of the row type. Beyond this usage, typed tables are also a key component of the
Informix notion of table inheritance, described later in the “Inheritance” section.

Manipulating Abstract Data Types
Unfortunately, structured data types create new complexity for database update statements
that must insert or modify their structured data values. Informix Universal Server is fairly
liberal in its data type conversion requirements for unnamed row types. The data you
assign into a row-type column must simply have the same number of fields of the same
data types. The ROW constructor is used, as shown in previous examples, to assemble
individual data items into a row-type value for inserting or updating data.

For named row types, the requirement is more stringent; the data you assign into a named
row-type column must actually have the same named row type. You can achieve this in the
INSERT statement by explicitly casting the constructed row value to have the NAME_TYPE
data type:

INSERT INTO PERSONNEL
 VALUES (1234,
 ROW('John', 'J', 'Jones')::NAME_TYPE,
 ROW('197 Rose St.', 'Chicago', 'IL',
 ROW(12345, 6789)));

The double-colon operator casts the constructed three-field row as a NAME_TYPE row
and makes the VALUES clause compatible with the data types of the columns in the table.

Oracle uses a slightly different approach to constructing structured data items and
inserting them into columns that have abstract data types. When you create an Oracle
abstract data type (using the CREATE TYPE statement), Oracle automatically defines a
constructor method for the type. You can think of the constructor method as a function that
takes as its arguments the individual components of the abstract data type and that returns
an abstract data type value, with the individual components all packaged together. The
constructor is used in the VALUES clause of the INSERT statement to glue the individual

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 749
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 749

data item values together into a structured data value that matches the column definition.
Here is an INSERT statement for the PERSONNEL table:

INSERT INTO PERSONNEL
 VALUES (1234,
 NAME_TYPE('John', 'J', 'Jones'),
 ADDR_TYPE('197 Rose St.', 'Chicago', 'IL',
 POST_TYPE(12345, 6789)));

The constructors (NAME_TYPE, ADDR_TYPE, POST_TYPE) perform the same functions
as the ROW constructor does for Informix, and also provide the casting required to ensure
strict data type correspondence.

Inheritance
Support for abstract data types gives the relational data model a foundation for object-based
capabilities. The abstract data type can embody the representation of an object, and the
values of its individual fields or subcolumns are its attributes. Another important feature of
the object-oriented model is inheritance. With inheritance, new objects can be defined as
being a particular type of an existing object type (class) and inherit the predefined attributes
and behaviors of that type.

Figure 24-2 shows an example of how inheritance might work in a model of a
company’s employee data. All employees are members of the class PERSONNEL, and they
all have the attributes associated with being an employee (employee number, name, and
address). Some employees are salespeople, and they have additional attributes (such as a
sales quota and the identity of their sales manager). Other employees are engineers, with a
different set of attributes (such as the academic degrees they hold or the current project to
which they are assigned). Each of these employee types has its own class, which is a
subclass of PERSONNEL. The subclass inherits all of the characteristics of the class above it in
the hierarchy. (We want to track all of the core personnel data for engineers and salespeople,
too.) However, the subclasses have additional information that is unique to their type of
object. In Figure 24-2, the class hierarchy goes down to a third layer for engineers,
differentiating between technicians and managers.

Personnel
(PERS_TYPE)

Sales people
(SALES_TYPE)

Engineers
(ENGR_TYPE)

Technicians
(TECH_TYPE)

Managers
(MGR_TYPE)

FIGURE 24-2 Natural class hierarchy for a personnel application

 750 P a r t V I : S Q L T o d a y a n d T o m o r r o w 750 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Informix Universal Server’s abstract data type inheritance mechanism provides an easy
way to define abstract data types (Informix row types) that correspond to the natural
hierarchy in Figure 24-2. Assume that the Informix PERS_TYPE row type has already been
created, as in the example from the “Defining Abstract Data Types” section earlier in this
chapter, and a typed table named PERSONNEL has been created based on this row type.
Using the Informix inheritance capabilities, here are some CREATE ROW TYPE statements for
other types in the hierarchy:

CREATE ROW TYPE SALES_TYPE (
 SLS_MGR INTEGER, /* employee number of sales mgr */
 SALARY DECIMAL(9,2), /* annual salary */
 QUOTA DECIMAL(9,2))
 UNDER PERS_TYPE;

CREATE ROW TYPE ENGR_TYPE (
 SALARY DECIMAL(9,2), /* annual salary */
 YRS_EXPER INTEGER /* years of experience */
 UNDER PERS_TYPE;

CREATE ROW TYPE MGR_TYPE (
 BONUS DECIMAL(9,2)) /* annual bonus */
 UNDER ENGR_TYPE;

CREATE ROW TYPE TECH_TYPE (
 WAGE_RATE DECIMAL (5,2)) /* hourly wage rate */
 UNDER ENGR_TYPE;

The type defined for technicians (TECH_TYPE) is a subtype (subclass) of the engineer
type (ENGR_TYPE), so it inherits all of the fields for the personnel type (PERS_TYPE), plus
the fields added at the ENGR_TYPE level, plus the additional field added in its own
definition. An abstract type that is defined UNDER another type, and that inherits its fields,
is called a subtype of the higher-level type. Conversely, the higher-level type is a supertype of
the lower-level types defined UNDER it.

With this type hierarchy defined, it’s easy to create Informix typed tables that use them.
Here are some Informix statements that create a table for engineers, separate tables for
managers and technicians, and another table to hold salesperson data:

CREATE TABLE ENGINEERS
 OF TYPE ENGR_TYPE;
CREATE TABLE TECHNICIANS
 OF TYPE TECH_TYPE;
CREATE TABLE MANAGERS
 OF TYPE MGR_TYPE;
CREATE TABLE REPS
 OF TYPE SALES_TYPE;

The type hierarchy has pushed the complexity into the data type definitions and made
the table structure very simple and easy to define. All other characteristics of the table can
(and must) still be defined within the table definition. For example, the REPS table contains

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 751
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 751

a column that is actually a foreign key to the PERSONNEL table, so its table definitions
should probably include a FOREIGN KEY clause like this:

CREATE TABLE REPS
 OF TYPE SALES_TYPE
 FOREIGN KEY (SLS_MGR)
 REFERENCES PERSONNEL(EMPL_NUM);

Type inheritance creates among the structure of the tables a relationship that is based on
the defined row types, but the tables remain independent of one another in terms of the
data that they contain. Rows inserted into the TECHNICIANS table don’t automatically
appear in either the ENGINEERS table or in the PERSONNEL table. Each is a table in its own
right, containing its own data. A different kind of inheritance, table inheritance, provides a
very different level of linkage between the table’s contents, actually turning the tables into
something much closer to object classes. It is described in the next section.

Table Inheritance: Implementing Object Classes
Informix Universal Server provides a capability called table inheritance that moves the table
structure of a database away from the traditional relational model and makes it much closer
to the concept of an object class. Using table inheritance, it’s possible to create a hierarchy of
typed tables (classes), such as the one shown in Figure 24-3. The tables are still based on a
defined type hierarchy, but now the tables themselves have a parallel hierarchy.

Here is a set of CREATE TABLE statements that implements this table inheritance:

CREATE TABLE ENGINEERS
 OF TYPE ENGR_TYPE
 UNDER PERSONNEL;

CREATE TABLE TECHNICIANS
 OF TYPE TECH_TYPE
 UNDER ENGINEERS;

CREATE TABLE MANAGERS
 OF TYPE MGR_TYPE
 UNDER ENGINEERS;

CREATE TABLE REPS
 OF TYPE SALES_TYPE
 UNDER PERSONNEL;

PERSONNEL
(PERS_TYPE)

REPS
(SALES_TYPE)

ENGINEERS
(ENGR_TYPE)

TECHNICIANS
(TECH_TYPE)

MANAGERS
(MGR_TYPE)

UNDERUNDER

UNDERUNDER

FIGURE 24-3
An Informix table
inheritance
hierarchy

 752 P a r t V I : S Q L T o d a y a n d T o m o r r o w 752 P a r t V I : S Q L T o d a y a n d T o m o r r o w

When a table is defined in this way (as under another table), it inherits many more
characteristics from its supertable than just the column structure. It inherits the foreign key,
primary key, referential integrity, and check constraints of the supertable; any triggers
defined on the supertable; as well as indexes, storage areas, and other Informix-specific
characteristics. It’s possible to override this inheritance by specifically including the
overridden characteristics in the CREATE TABLE statements for the subtables.

A table type hierarchy has a profound impact on the way that the Universal Server DBMS
treats the rows stored in the tables. The tables in the hierarchy now form a collection of nested
sets of rows, as shown in Figure 24-4. When a row is inserted into the table hierarchy, it is still
inserted into a specific table. Joe Jones, for example, is in the TECHNICIANS table, while Sam
Wilson is in the ENGINEERS table, and Sue Marsh is in the PERSONNEL table.

SQL queries behave quite differently, however. When you perform a database query on
one of the tables in the hierarchy, it returns rows not only from the table itself, but also from
all of the included subtables of that table. This query:

SELECT *
 FROM PERSONNEL;

returns rows from the PERSONNEL table and rows from the ENGINEERS, TECHNICIANS,
MANAGERS and REPS tables. Similarly, this query:

SELECT *
 FROM ENGINEERS;

returns rows from TECHNICIANS and MANAGERS in addition to ENGINEERS. The DBMS is
now treating the tables as a nested collection of rows, and a query on a table (rowset)
applies to all rows included in the set. If you want to retrieve only the rows that appear in
the top-level table itself, you must use the ONLY keyword:

SELECT *
 FROM ONLY(ENGINEERS);

FIGURE 24-4 Nested sets represented by a table inheritance hierarchy

PERSONNEL set

REPS set

ENGINEERS set

TECHNICIANS set MANAGERS set

Joe
Adams

Sue
Marsh

Nancy
Walsh

Jim
Rhea

Joe
Jones

George
Nye

Bob
Smith

Sam
Wilson

Rob
Mason

Bill
SmithHarry

Franks

Sally
Watson

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 753
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 753

The DBMS applies the same set-of-rows logic to DELETE operations. This DELETE
statement:

DELETE FROM PERSONNEL
 WHERE EMPL_NUM = 1234;

successfully deletes the row for employee number 1234 regardless of which table in the
hierarchy actually contains the row. The statement is interpreted as “Delete any rows from
the PERSONNEL set that match these criteria.” As with the queries, if you want to delete
only rows that appear in the ENGINEERS table of the hierarchy, but not rows from any of
its subtables, you can use this statement:

DELETE FROM ONLY(ENGINEERS)
 WHERE EMPL_NUM = 1234;

The same logic holds for UPDATE statements. This one changes the employee number,
regardless of which table in the hierarchy actually holds the row for the employee:

UPDATE PERSONNEL
 SET L_NAME = 'Harrison'
 WHERE EMPL_NUM = 1234;

Again, the ONLY construct may be used to restrict the scope of the UPDATE operation to
only rows that actually appear in the named table and not to those that appear in its subtables.

Of course, when operating at a given level within the table hierarchy, your SQL
statements can reference only columns that are defined at that level. You cannot use this
statement:

DELETE FROM PERSONNEL
 WHERE SALARY < 20000.00;

because the SALARY column doesn’t exist in the top-level PERSONNEL table (class). It is
defined only for some of its subtables (subclasses). You can use this statement:

DELETE FROM MANAGERS
 WHERE SALARY < 20000.00;

because SALARY is defined at this level of the table (class) hierarchy.
As noted, table inheritance moves the operation of Informix Universal Server fairly far

out of the relational database realm and into the object-oriented world. Relational purists
point to examples like the previous ones to claim that object-relational databases bring with
them dangerous inherent inconsistencies. They ask: “Why should an INSERT of a row into
one table cause it to suddenly appear in two other tables?” and “Why should a searched
DELETE statement that doesn’t match any rows of a table cause other rows in other tables to
disappear?” Of course, the table hierarchy has stopped behaving strictly as if it were a set of
relational tables, and instead has taken on many of the characteristics of an object class and
object class hierarchy. Whether this is good or bad depends on your point of view. It does
mean that you must be very careful about applying relational database assumptions to an
object-relational implementation.

 754 P a r t V I : S Q L T o d a y a n d T o m o r r o w 754 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Sets, Arrays, and Collections
In a relational database, tables are the only database structure used to represent a set of
objects. For example, the set of engineers in our PERSONNEL database is represented by the
rows in the ENGINEERS table. Suppose each engineer has a set of academic degrees (a BS in
science from MIT, a PhD in electrical engineering from Michigan, etc.) that are to be stored
in the database. The number of degrees for each engineer will vary—from none for some
engineers to perhaps half a dozen for others. A pure relational database has only one correct
way to add this information to the data model. A new table, DEGREES, must be created, as
shown in Figure 24-5. Each row in the DEGREES table represents one individual academic
degree held by one of the engineers. A column in the DEGREES table holds the employee
number of the engineer holding the degree described by that particular row and serves as a
foreign key to the ENGINEERS table, linking the two tables in a parent/child relationship.
The other columns in the DEGREES table describe the particulars of the degree.

You have seen the type of parent/child relational table structure shown in Figure 24-5
many times in the earlier chapters of this book, and it has been a basic construct of relational
databases since the beginning. However, there are some disadvantages to having this be the
only way in which sets of data attributes can be modeled. First, the database tends to have a
great many tables and foreign key relationships, and becomes hard to understand. Second,
many common queries need to join three, four, or more tables to get the required answers.
Third, with the implementations of relational joins provided by most DBMS systems, the
performance of queries will deteriorate as they involve more and more joins.

The table structure of Figure 24-5 cannot be implemented directly in an object-oriented
model. The degrees are not substantial objects in their own right and do not deserve their
own table. Instead, they are must be implemented as attributes of the engineer holding the
degrees. True, a variable number of degrees is associated with each engineer, but the object-
oriented model would have no problem with representing this situation as an array or a set
of data within the engineer object.

FIGURE 24-5 A relational modeling of engineers and their degrees

ENGINEERS Table

DEGREES Table

NAME

EMPL_NUM

Foreign key

1234
1374
1421
1532

1245
1245
1374
1439
1436
1439

BS
MS
BS
BS
BS
MBA
•
•
•

Michigan
Purdue
Lehigh
MIT
MIT
Stanford

Bob
Sam
Sally

J.
F.
P.

956 Elm Rd.
564 Birch Rd.
87 Dry Lane

Forest
Marion
Mt Erie

NY
KY
DL

38294
82942
73853

4567
3524
2394

$45,000
$30,000
$34,500

6
12
9

F_NAME M_INIT L_NAME STREET CITY STATE MAIN
POSTCODE

ADDRESS

SFX SALARY YRS_EXPER
Smith
Wilson
Watson

•
•
•

EMPL_NUM DEGREE SCHOOL

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 755
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 755

The object-relational databases support this object-oriented view of data by supporting
sets, arrays, or other collection data types. A column within a table can be defined to have
one of these data types. It will then contain not a single data item value, but a set of data
item values. Special SQL extensions allow a user, or more often a stored procedure, to
manipulate the set of data items as a whole or to access individual members of the set.

Defining Collections
Informix Universal Server supports collections of attributes through its collection data types.
Three different collection data types are supported:

• Lists A list is an ordered collection of data items, all of which have the same type.
Within a list is the concept of a first item, a last item, and the nth item. The items in
the list are not required to be unique. For example, a list of the first names of the
employees hired in the last year, in order of hire, might be {‘Jim’, ‘Mary’, ‘Sam’,
‘Jim’, ‘John’}.

• Multisets A multiset is an unordered collection of data items, all of which have the
same type. There is no concept of sequencing the items in a multiset; its items have
no implied ordering. The items are not required to be unique. The list of employee
first names could be considered a multiset if you didn’t care about the order of hire:
{‘Jim’, ‘Sam’, ‘John’, ‘Jim’, ‘Mary’}.

• Sets A set is an unordered collection of unique data items, all of which have the
same type. As in a multiset, there is no concept of first or last; the set has no implied
order. The items must have unique values. The first names in the previous examples
wouldn’t qualify, but the last names might: {‘Johnson’, ‘Samuels’, ‘Wright’, ‘Jones’,
‘Smith’}.

To illustrate the concept of collection data, we will expand the tables in our example
object-relational database as follows:

• The REPS table will include sales targets for each of the first, second, third, and
fourth quarters. The quarterly targets can naturally be represented as a list column
added to the REPS table. The quarters have a natural ordering (first through fourth);
the quota for each quarter has the same data type (DECIMAL); and the values are not
necessarily unique (that is, the quotas for the first and second quarters might be the
same).

• The ENGINEERS table will include information about the academic degrees that
each engineer holds. Two items of data will actually be stored about each degree—
the actual degree (BS, PhD, MBA, etc.) and the school. This data will be stored as a
multiset column added to the ENGINEERS table, because it’s possible to have two
identical entries—for example, an engineer may have a BS degree in engineering
and a BS degree in business from the same school.

• The TECHNICIANS table will include information about the projects to which each
technician is assigned. Each technician may be assigned to two or more projects, but
each project has a unique name. This data will be stored as a set column added to
the TECHNICIANS table. The data values must be unique, but no particular order is
associated with them.

 756 P a r t V I : S Q L T o d a y a n d T o m o r r o w 756 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Here are some Informix ALTER TABLE statements that implement these changes to the
previously defined tables:

ALTER TABLE REPS
 ADD QTR_TGT LIST(DECIMAL(9,2)); /* four quarterly targets */

ALTER TABLE TECHNICIANS
 ADD PROJECT SET(VARCHAR(15)); /* projects assigned */

ALTER TABLE ENGINEERS
 ADD DEGREES MULTISET(ROW(/* degree info */
 DEGREE VARCHAR(3),
 SCHOOL VARCHAR(15)));

These collection column types create a row-within-a-row structure within the table that
contains them, as shown in Figure 24-6. In the case of the ENGINEERS table, the structure
might more accurately be described as a table within a table. Clearly, the relational model
of row/column tables with atomic data items has been stretched considerably by the
introduction of collection data types.

Informix Universal Server allows collections to be used quite generally and to be
intermixed with other object-relational extensions. A collection can be a field of a row data
type. The items of a collection can be row data types. It’s also possible to define collections
within collections where that makes sense. For example, the projects in this example might
have subprojects that must be tracked for each technician. At each level of additional
complexity, the complexity of the stored procedure language (SPL) and of the SQL expressions
that are required to manipulate the data items and process them increases accordingly.

Oracle also provides extensive support for collection-type data, through two different
Oracle object-relational extensions:

• Varying arrays A varying array is an ordered collection of data items, all having the
same data type. There is no requirement that the items in the array be unique. You
define the maximum number of data items that can occur when you specify a
varying array type for a column. Oracle provides extensions to SQL to access the
individual items within the array.

• Nested tables A nested table is an actual table within a table. A column with a
nested table type contains individual data items that are themselves tables. Oracle
actually stores the nested table data separately from the main table that contains it,
but it uses SQL extensions to process nested references to the inner table. Unlike a
varying array, a nested table can contain any number of rows.

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 757
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 757

REPS Table

EMPL_NUM F_NAME M_INIT L_NAME STREET CITY STATE MAIN SFX SLS_MGR SALARY QUOTA QTR_TGT
POSTCODE

NAME ADDRESS

4267 Nancy Q. Walsh ••• ••• ••• ••• ••• 2598 $35,000$750,000

4316 Jim F. Rea ••• ••• ••• ••• ••• 2598 $32,000$690,000

$160,000
$190,000
$210,000
$190,000
$120,000
$165,000
$190,000
$215,000

•
•
•

ENGINEERS Table

EMPL_NUM F_NAME M_INIT L_NAME STREET CITY STATE MAIN SFX SALARY YRS_EXPER SCHOOLDEGREE
POSTCODE DEGREES

NAME ADDRESS

1234

1374
1439

Bob

Sam
Sally

J.
F.
P.

Smith

Wilson
Watson

•••

•••
•••

•••

•••
•••

•••

•••
•••

•••

•••
•••

•••

•••
•••

$45,000

$30,000
$34,500

6

12
9

BS
MS
BS
BS
BS
MBA

Michigan
Purdue
Lebigh
MIT
MIT
Stanford

•
•
•

TECHNICIANS Table

EMPL_NUM F_NAME M_INIT L_NAME STREET CITY STATE MAIN SFX WAGE_RATE PROJECT
POSTCODE

NAME ADDRESS

1421 Joe P. Jones ••• ••• ••• ••• ••• $16.75 bingo
at las

checkmate
at las
gonzo
bingo

1537 Harry E. Franks ••• ••• ••• ••• ••• $20.50
1618 George W. Nye ••• ••• ••• ••• ••• $19.75

•
•
•

FIGURE 24-6 Tables with collection data typed columns

 758 P a r t V I : S Q L T o d a y a n d T o m o r r o w 758 P a r t V I : S Q L T o d a y a n d T o m o r r o w

A column within a table can be declared to have a VARRAY (varying array) or TABLE OF
(nested table) structure. Here are some Oracle CREATE TYPE and CREATE TABLE statements
that use varying arrays and nested tables to achieve table structures like those shown in
Figure 24-6:

CREATE TYPE TGT_ARRAY AS
 VARRAY(4) OF NUMBER(9,2);

CREATE TABLE REPS (
 EMPL_NUM NUMBER,
 NAME NAME_TYPE,
 ADDRESS ADDR_TYPE,
 SLS_MGR NUMBER, /* employee number of mgr */
 SALARY NUMBER(9,2), /* annual salary */
 QUOTA NUMBER(9,2), /* sales quota */
 QTR_TGT TGT_ARRAY); /* four quarterly tgts */

CREATE TYPE DEGR_TYPE AS OBJECT (
 DEGREE VARCHAR2(3),
 SCHOOL VARCHAR2(15));

CREATE TYPE DEGR_TABLE AS
 TABLE OF DEGR_TYPE;

CREATE TABLE ENGINEERS (
 EMPL_NUM NUMBER,
 NAME NAME_TYPE,
 ADDRESS ADDR_TYPE,
 SALARY NUMBER (9,2), /* annual salary */
 YRS_EXPER NUMBER, /* years of experience */
 DEGREES DEGR_TABLE)
 NESTED TABLE DEGREES STORE AS ENGINEERS_DEGREES;

The quarterly target information for the REPS table is most easily represented as an
Oracle varying array column. There will be exactly four quarters of information, so the
maximum size of the array is known in advance. In this example, the varying array contains
a simple data item as its element, but it’s also common to define varying arrays whose items
are themselves abstract (structured) data types.

The academic degree information for the ENGINEERS table is represented as a nested
table. For a data item like this one, you could decide to place an upper limit on the number
of rows and use a varying array structure instead, but in general, if the maximum number
of items is unknown, a nested table is the right choice. In this case, the nested table has an
abstract data type composed of two attributes. Each row of the nested table will contain
information about a degree granted and the school that granted it.

Querying Collection Data
Collection-valued columns complicate the process of querying the tables that contain them.
In the SELECT item list, they generate multiple data values for each row of query results. In
search conditions, they don’t contain individual data items, but it’s sometimes convenient
to treat them as sets of data. The object-relational databases typically provide a limited set of

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 759
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 759

SQL extensions or extend existing SQL concepts to provide simple queries involving
collection data. For more advanced queries, they require you to write stored procedure
language programs with loop structures that process the collection data items one by one.

For query purposes, Informix treats the collection types as if they were a set of data
values, like the values that might be returned by a subquery. You can match individual
items within a collection using the SQL IN search condition. Here is a query that finds any
technicians who work on a project named “bingo”:

SELECT EMPL_NUM, NAME
 FROM TECHNICIANS
 WHERE 'bingo' IN (PROJECTS);

The name of the collection-valued column (in this case, the set-valued column
PROJECTS) appears in parentheses. Informix treats the members of the collection as a set
and applies the IN matching condition. In interactive SQL, you can put a collection-valued
column in the select item list. Informix displays the collection of data as a SET, LIST, or
MULTISET in the displayed output. To process collection-valued data in the select list of a
programmatic request (that is, from a program using ESQL or a call-level API), you must
use special API extensions and/or extensions to the Informix stored procedure language.

Oracle provides additional capabilities for processing nested tables within SQL queries.
Newer versions offer a special function named TABLE that flattens the nested table,
producing, in effect, an unnested table with one row for each row of the nested table within
each row of the main table. (In older versions of Oracle, a special keyword THE, now
deprecated, provided the same result, but with substantially different syntax.) Here’s a
query that uses the TABLE function to show the schools from which one of the engineers
has received degrees:

SELECT T2.SCHOOL
 FROM ENGINEERS T1, TABLE(T1.DEGREES) T2
 WHERE EMPL_NUM = 1234;

The FROM clause first references the ENGINEERS table that contains the nested table
DEGREES, giving it the alias name T1. The TABLE function then uses the alias T1 to qualify
the name of the nested table DEGREES. You can use the real table name if you qualify it with
the nested table, such as ENGINEERS.DEGREES. The function flattens the nested table,
creating a row for each nested row within each row of the main table, much like you would
see if DEGREES were a separate table and you joined it with the main table. With this syntax,
the SELECT clause in this example is quite simple; it selects one column that originated in
the nested table.

The ability to flatten nested tables in this way and process them as if they were actually
joined versions of two separate tables is actually quite powerful. It allows many queries to
be expressed in high-level SQL that would otherwise require you to resort to stored
procedures. However, the logic behind such queries and the task of actually constructing
them correctly can be complicated, as even this simple example begins to show.

Manipulating Collection Data
Extensions to standard SQL syntax are used to insert new rows into a table containing
collection-valued columns. Informix provides a trio of constructors—the SET constructor,

 760 P a r t V I : S Q L T o d a y a n d T o m o r r o w 760 P a r t V I : S Q L T o d a y a n d T o m o r r o w

MULTISET constructor, and LIST constructor—for this purpose. They transform a list of
data items into the corresponding collections to be inserted. Here is a pair of Informix
INSERT statements that illustrates their use with the tables in Figure 24-6:

INSERT INTO TECHNICIANS
 VALUES (1279,
 ROW('Sam', 'R', 'Jones'),
 ROW('164 Elm St.', 'Highland', 'IL', ROW(12345, 6789)),
 SET{'atlas', 'checkmate', 'bingo'});

INSERT INTO ENGINEERS
 VALUES (1281,
 ROW('Jeff', 'R', 'Ames'),
 ROW('1648 Green St.', 'Elgin', 'IL', ROW(12345, 6789)),
 MULTISET{ROW('BS', 'Michigan'),
 ROW('BS', 'Michigan'),
 ROW('PhD','Stanford')});

The first statement inserts a single row into the TECHNICIANS table with a three-item
set in the PROJECTS column. The second inserts a single row into the ENGINEERS table
with a three-item multiset in the DEGREES column. Because the members of this particular
multiset are themselves row types, the row constructor must be used for each item.

Oracle uses a different approach to constructing the collection-valued data items for
insertion into the table. Recall from the discussion of Oracle abstract data types that each
Oracle abstract data type automatically has an associated constructor method that is used to
build a data item of the abstract type out of individual data items. This concept is extended
to varying arrays and nested tables. A constructor method is automatically supplied for
each varying array or nested table, and it is used in the INSERT statements:

INSERT INTO REPS (EMPL_NUM, NAME, ADDRESS, QTR_TGT)
 VALUES (109,
 NAME_TYPE('Mary', 'X', 'Jones'),
 ADDR_TYPE('164 Elm St.', 'Highland', 'IL',
 POST_TYPE(12345, 6789)),
 TGT_ARRAY(5000, 5000, 8000, 12000));

INSERT INTO ENGINEERS (EMPL_NUM, NAME, ADDRESS, DEGREES)
 VALUES (1281,
 NAME_TYPE('Jeff', 'R', 'Ames'),
 ADDR_TYPE('1648 Green St.', 'Elgin','IL',
 POST_TYPE(12345, 6789)),
 DEGR_TABLE(DEGR_TYPE('BS', 'Michigan'),
 DEGR_TYPE('BS', 'Michigan'),
 DEGR_TYPE('PhD', 'Stanford')));

Collections and Stored Procedures
Collections pose special problems for stored procedures that are retrieving and
manipulating data in tables that contain them. Both Oracle and Informix provide special
stored procedure language facilities for this purpose. In Informix, special SPL collection

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 761
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 761

variables must be used. Here is an SPL stored procedure fragment that handles the
PROJECTS collection column from the TECHNICIANS table:

define proj_coll collection; /* holds project collection */
define a_project varchar(15); /* holds individual project */
define proj_cnt integer; /* number of projects */
define empl_name name_type; /* buffer for tech name */

/* Check how many projects the technician is supporting */
select cardinality(projects) into proj_cnt
 from technicians
 where empl_num = 1234;

/* If too many projects, then refuse to add a new one */
if (proj_cnt > 6) then . . .

/* Retrieve row, including project set for the technician */
select name, projects into empl_name, proj_coll
 from technicians
 where empl_num = 1234;

/* Add the 'gonzo' project to the list for this tech */
insert into table(proj_coll)
 values ('gonzo');

/* Search through project list one by one */
foreach proj_cursor for
 select * into a_project
 from table(proj_coll)

 if (a_project = 'atlas') then
 begin
 update table(proj_coll)(project)
 set project = 'bingo'
 where current of proj_cursor;
 exit foreach;
 end;
 end if;
end foreach;

/* Update the database row with modified project list */
update technicians
 set projects = proj_coll
 where empl_num = 1234;

The example shows several aspects of collection-handling in Informix SPL. First, the
collection is retrieved from the database into an SPL variable as a collection data type. It
would also be possible to retrieve it into a variable explicitly declared as having a SET type
(or in other situations, a LIST or MULTISET type). The collection stored in the variable is
then explicitly treated as a table for manipulating items within the collection. To add a new
project, an INSERT is performed into the collection table. To find and modify a specific
project, a cursor is used to search through the collection table, and a cursor-based UPDATE

 762 P a r t V I : S Q L T o d a y a n d T o m o r r o w 762 P a r t V I : S Q L T o d a y a n d T o m o r r o w

statement is used to change the value of one member of the collection. Note that the
FOREACH loop retrieves each item of the collection into a variable so that the SPL routine
can process it. Finally, the collection variable’s contents are used to update the collection
column within the table.

Oracle takes a similar approach to processing varying arrays. The individual elements
of an array within an abstract data type are available through subscripted references within
a structured data type. The typical Oracle PL/SQL process for accessing variable array
elements is

 1. Retrieve the row from the table containing the varying array into a local variable
whose data type is defined to match the row structure of the table, or of the
particular columns being retrieved.

 2. Execute a FOR loop with an index variable, n, that counts from 1 to the number of
elements in the varying array. The number of elements is available through the
value of a special attribute of the array column named COUNT.

 3. Within the FOR loop, a subscript is used on the varying array name to access the nth
element of the varying array.

A similar technique can be used to process nested tables; however, it’s usually not
necessary. Instead, the TABLE function is generally used to flatten the table in a SQL query,
and the results are processed with a single cursor-driven FOR loop. The processing may still
be complex. In particular, the stored procedure may need to detect whether a particular row
coming from the query results is from the same main table row as the previous row and,
upon detecting a change in main table rows, perform special processing such as computing
subtotals. In this aspect, the processing of both varying arrays and nested tables begins to
resemble the nested-loop processing typical of the COBOL report-writing programs of 30+
years ago that handled master and detail records.

As the discussion in this section has illustrated, collection types and the processing of
individual collection items tend to call for programmatic access through stored procedures
rather than for ad hoc SQL use. One of the criticisms of object-oriented databases is that
they are a regression from the simplicity of the relational model and that they reintroduce
the need for explicit database navigation that was part of the prerelational databases.
Examples like these provide evidence that there is at least a certain amount of truth in the
criticism.

User-Defined Data Types
Object-relational data management systems generally provide a mechanism through which
a user can extend the built-in data types provided by the DBMS with additional, user-
defined data types. For example, a mapping application might need to operate on a
LOCATION data type that consists of a pair of latitude and longitude measurements, each
consisting of hours, minutes, and seconds. To effectively process location data, the
application may need to define special functions, such as a DISTANCE(X,Y) function that
computes the distance between two locations. The meanings of some built-in operations,
such as a test for equality (=), will need to be redefined for location type data.

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 763
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 763

One way that Informix Universal Server supports user-defined data types is through its
OPAQUE data type. An OPAQUE data type is (not surprisingly) opaque to the DBMS. The
DBMS can store and retrieve data with this type, but it has no knowledge of the internal
workings of the type. In object-oriented terms, the data is completely encapsulated. The
user must explicitly provide (in external routines, written in C or some similar
programming language) the data structure for the type, code to implement the functions or
operations that can be performed on the type (such as comparing two data items of the type
for equality), and code to convert the opaque type between internal and external
representations. Thus, OPAQUE data types represent a low-level capability to extend the core
functionality of the DBMS with data types that appear as if they were built-in.

A more basic user-defined data type capability is provided by the implementation of
DISTINCT data types within Informix. A DISTINCT type is useful to distinguish among
different types of data, all of which use one of the DBMS built-in data types. For example,
the city and company name data items in a database might both be defined with the data
type VARCHAR(20). Even though they share the same underlying DBMS data type, these
data items really represent quite different types of data. You would never normally compare
a city value to a company name, and yet the DBMS will let you do this because the two
VARCHAR(20) columns are directly comparable.

To maintain a higher level of database integrity, you could define each of these two data
items as having a DISTINCT data type:

CREATE DISTINCT TYPE CITY_TYPE AS VARCHAR(20);
CREATE DISTINCT TYPE CO_NAME_TYPE AS VARCHAR(20);

Now tables can be created containing city and customer name data items in terms of the
CITY_TYPE and CO_NAME_TYPE data types. If you try to compare columns with these two
different data types, the DBMS automatically detects the situation and generates an error.
You can compare them, but only by explicitly casting the data type of one item to match the
data type of the other. As a result, the distinct data types assigned to the different columns
help to maintain the integrity of the database and prevent inadvertent errors in programs
and ad hoc queries that use the database.

While Oracle does not support DISTINCT data types, user-defined types consisting of
single columns can be used for the same effect:

CREATE TYPE CITY_TYPE AS OBJECT (COL VARCHAR2(20));
CREATE TYPE CO_NAME_TYPE AS OBJECT (COL VARCHAR2(20));

Methods and Stored Procedures
In object-oriented languages, objects encapsulate both the data and programming code that
they contain; the details of the data structures within an object and the programming
instructions that manipulate those data structures are explicitly hidden from view. The only
way to manipulate the object and obtain information about it is through methods, which are
explicitly defined procedures associated with the object (or more accurately with the object
class). For example, one method associated with a customer object might obtain the
customer’s current credit limit. Another method might provide the ability to change the
credit limit. The credit limit data itself is encapsulated, hidden within the customer object.

 764 P a r t V I : S Q L T o d a y a n d T o m o r r o w 764 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The data within the tables of a relational database is inherently not encapsulated. The
data and its structure are directly visible to outside users. In fact, one of the main
advantages of a relational database is that SQL can be used to carry out ad hoc queries
against the database. When the system catalog of a relational database is considered, the
contrast with the object-oriented ideal is even more extreme. With the catalog, the database
is self-describing, so that even applications that don’t know the internal structure of the
database in advance can use SQL queries to find out what it is.

Stored procedures provide a way for relational databases to offer capabilities that
resemble those of object-oriented methods. At the extreme, all users of a relational database
could be granted permission to execute only a limited set of stored procedures, and no
underlying data access permissions on the base tables at all. In this case, the users’ access
would approach the encapsulation of the object-oriented ideal. In practice, stored
procedures are often used to provide application designers with the limited database access
they need. However, the ad hoc capabilities of the database are almost always exploited by
query tools or reporting programs.

Oracle formalizes the linkage between object methods and database stored procedures
by allowing you to explicitly define a stored procedure as a member function of an abstract
data type. Once defined in this way, the member function can be used in queries involving
the abstract data type, just as if it were a built-in function of the DBMS designed to work on
that type. Here is a redefinition of the ADDR_TYPE abstract data type that is used to store
addresses, with a relatively simple member function, named GET_FULL_POST. The
function takes the postal-code part of the address, which stores both a five-digit main postal
code and a four-digit suffix as two separate numbers, and combines them into one nine-
digit number, which it returns:

CREATE TYPE ADDR_TYPE AS OBJECT (
 STREET VARCHAR(35),
 CITY VARCHAR(15),
 STATE CHAR(2),
 POSTCODE POST_TYPE,
 MEMBER FUNCTION GET_FULL_POST(POSTCODE IN POST_TYPE)
 RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES(GET_FULL_POST, WNDS));

CREATE TYPE BODY ADDR_TYPE AS
 MEMBER FUNCTION GET_FULL_POST(POSTCODE POST_TYPE)
 RETURN NUMBER IS
 BEGIN
 RETURN((POSTCODE.MAIN * 10000) + POSTCODE.SFX);
 END;
 END;
/

The member function is identified as such within the CREATE TYPE statement for the
abstract data type, following the lines that describe the data items. The additional PRAGMA
clause tells Oracle that the function does not modify the contents of the database, which is

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 765
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 765

a requirement for a function that is to be used within query expressions. There are several
more options, which are beyond the scope of this discussion. A separate CREATE TYPE
BODY statement defines the actual procedural code for the function. After the first few
words of the statement, it follows the same format as the standard CREATE PROCEDURE or
CREATE FUNCTION statements. Once the member function is defined, it can be used in
query expressions like this one, which finds employees living in postal code 12345-6789:

ADDR_TYPE.GET_FULL_POST(12345,6789);

Informix Universal Server doesn’t have an extended mechanism like Oracle’s to turn
stored procedures into object-oriented methods. Instead, it’s possible to use an Informix row
type (corresponding to an Oracle object type) as the parameter of a stored function. When
called, the function is passed a data item with the appropriate row type (such as the
POSTCODE abstract data item in the preceding Oracle example) and can perform
appropriate calculations on it. You could, for example, define an Informix stored function
GET_FULL_POST() with a single parameter of type POST_TYPE. With that definition, the
preceding Oracle SELECT statement could be used, unmodified, in the equivalent Informix
database.

Another powerful feature associated with object-relational stored procedures is the
overloading of procedure definitions to allow them to process different types of data. In an
object class hierarchy, it’s frequently necessary to define a method that carries out the same
or very similar operations on different classes of objects. For example, you may want to
define a GET_TGT_WAGES method (function) that can obtain the target total annual wages
for any of the subclasses of the PERSONNEL class in our example database. The method
(which will be implemented as a stored function) should return the target total wages for
the employee to which it is applied. The particulars of the calculation differ, depending on
the type (class) of employee:

• For technicians, total wages are the hourly rate × a normal 40-hour week × 52 weeks
per year.

• For managers, total wages are equal to their annual salary plus bonus.

• For all other engineers, total wages are equal to their annual salary.

To solve this problem, a different GET_TGT_WAGES routine is defined for each class.
The routine takes an object (a row of the TECHNICIANS, ENGINEERS, or MANAGERS table)
as its parameter and returns the calculated amount. The three routines are identically
named, which is the reason why the procedure name is said to be overloaded—a single
name is associated with more than one actual stored procedure. When the routine is called,
the DBMS looks at the particular data type of the argument (that is, the particular class of
the object) and determines which of the routines is the appropriate one to call.

Informix Universal Server implements this stored procedure overloading capability
without any additional object-oriented extensions. It allows you to define many different
stored procedures with identical names, provided that no two of them have the identical

 766 P a r t V I : S Q L T o d a y a n d T o m o r r o w 766 P a r t V I : S Q L T o d a y a n d T o m o r r o w

number of arguments with identical data types. In the previous example, there would be
three CREATE FUNCTION definitions like this:

/* Calculates target wages for a technician */
CREATE FUNCTION GET_TGT_WAGES(PERSON TECH_TYPE)
 RETURNS DECIMAL(9,2) AS RETURN (PERSON.WAGE_RATE * 40 * 52)
END FUNCTION;

/* Calculates target wages for a manager */
CREATE FUNCTION GET_TGT_WAGES(PERSON MGR_TYPE)
 RETURNS DECIMAL(9,2) AS RETURN (PERSON.SALARY + PERSON.BONUS)
END FUNCTION;

/* Calculates target wages for an engineer */
CREATE FUNCTION GET_TGT_WAGES(PERSON ENGR_TYPE)
 RETURNS DECIMAL(9,2) AS RETURN (PERSON.SALARY)
END FUNCTION;

With these definitions in place, you can invoke the GET_TGT_WAGES() function
and pass it a row from the ENGINEERS, MANAGERS, or TECHNICIANS table. The DBMS
automatically figures out which of the functions to use and returns the appropriate
calculated value.

Stored procedures are made even more valuable for typed tables through Informix
Universal Server’s substitutability feature. If you call a stored procedure whose argument is
a row type and pass it one of the rows from a typed table, Informix will first search for a
stored procedure with the appropriate name whose argument data type is an exact match.
For example, if you call a GET_LNAME() stored procedure to extract the last name from a
TECH_TYPE row (probably from the TECHNICIANS table), Informix searches for a
procedure written to process TECH_TYPE data. But if Informix doesn’t find such a stored
procedure, it does not immediately return with an error. Instead, it searches upwards in the
type hierarchy, trying to find a procedure with the same name that is defined for a
supertype of TECH_TYPE. If there is a GET_LNAME() stored procedure defined for the
ENGR_TYPE type, Informix will execute that stored procedure to obtain the required
information. If not, it will continue up the hierarchy, looking for a GET_LNAME() stored
procedure defined for the PERS_TYPE type. Thus, substitutability means that you can
define stored procedures (methods) for the highest-level type in the hierarchy to which they
apply. The stored procedures are automatically available to process all subtypes of that type.
(That is, all subclasses inherit the method from the class.)

Object Support in the SQL Standard
As mentioned at the beginning of this chapter, the largest area of SQL expansion in the
SQL:1999 standard was object-relational support. New statements, clauses, and expressions
were added to the specification of the SQL in these areas:

• User-defined data types

• Composite (abstract) data types

• Array values

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 767
PART VI

 C h a p t e r 2 4 : S Q L a n d O b j e c t s 767

• Overloaded (polymorphic) stored procedures

• Row constructors and table constructors supporting abstract types

• Row-valued and table-valued expressions supporting abstract types

The SQL standard object extensions don’t exactly match any of the major commercial
object-relational DBMS products in their specifics, but the underlying concepts are the same
as those illustrated in the earlier sections for specific products. It’s likely that this area of
SQL will follow the pattern of others with respect to the standard. Slowly, over a series of
major releases, the major DBMS vendors are providing support for the SQL standard syntax
where it can be added in parallel to their own, well-established proprietary syntax. This
process is well under way for SQL object support. For the next several years, the object-
relational capabilities that matter for real-world implementations will continue to be a
mixture of standard features augmented with vendor-proprietary capabilities.

Summary
Object-oriented databases will likely play an increasing role in specialized market segments
such as engineering design, compound document processing, and GUIs. They have not
been widely adopted for mainstream enterprise data processing applications. However,
hybrid object-relational databases are being offered by some of the leading enterprise
DBMS vendors:

• The object-relational databases significantly extend the SQL and stored procedure
languages with object-oriented statements, structures, and capabilities.

• Common object-relational structures include abstract/structured data types, tables
within tables, and explicit support for object identifiers. These capabilities stretch
the simple relational model a great deal and tend to add complexity for casual or
ad hoc users.

• The object-relational extensions added by the various DBMS vendors are highly
proprietary. There are significant conceptual differences in the approaches as well as
differences in implementation approach.

• Object-relational capabilities are particularly well suited for more complex data models,
where the overall design of the database may be simpler, even though individual
tables/objects are more complex.

• Object-relational capabilities are a major focus of the SQL standards efforts, and more
relational databases are likely to incorporate them in the future.

This page intentionally left blank

25
SQL and XML

The Extensible Markup Language (XML) is one of the most important new technologies
to come out of the evolution of the Internet and the Web. XML is a standard language
for representing and exchanging structured data. SQL is a standard language for

defining, accessing, and updating the structured data stored in relational databases. It seems
obvious on the surface that there should be a relationship between XML and SQL. The
natural question is what is the relationship, and are the two technologies naturally in conflict
or complementary to one another? The answer is a little bit of both. This chapter provides
an overview of XML basics, and then examines the evolving relationship of XML and SQL,
and how XML is being integrated into major SQL products.

What Is XML?
As implied by its name, XML is a markup language. It shares many characteristics with its
more familiar cousin, the HyperText Markup Language (HTML), which has become
wildly popular as the core technology enabling the Web and web browsers. The languages
have common origins in document markup, a technique that is as old as the printing and
publishing business. When a complex document, such as this book or a newsletter or a
magazine, is to be printed, it can be thought of as having two related logical parts. The
content of the document, which usually consists of text and graphics, contains its meaning.
The structure of the document (titles, subtitles, paragraphs, captions) and the accompanying
formatting (fonts, indentations, page layouts) help to organize the contents and ensure that
they are presented in a meaningful way. Since the earliest days of printing and publishing,
editors have employed markup symbols and formatting marks, embedded within the
contents of the document itself, to indicate the document’s structure and how it should be
formatted for printing.

When computerized publishing systems arrived on the scene, markup commands
embedded within the contents of a document became instructions for the publishing
software programs. Each type of publishing software or equipment had its own proprietary
markup commands, making it difficult to move from one system to another. The Standard
Generalized Markup Language (SGML) was developed as a way to standardize markup
languages and eventually was adopted as an ISO standard. More precisely, SGML is a
metalanguage for defining specific markup languages. Its inventors recognized that no single

769

CHAPTER

 770 P a r t V I : S Q L T o d a y a n d T o m o r r o w 770 P a r t V I : S Q L T o d a y a n d T o m o r r o w

markup language could cover all of the possible markup requirements, but that all markup
languages had common elements. By standardizing these common elements, a family of
closely related markup languages could be created. HTML is one such markup language,
focused especially on the use of hypertext to link documents together. XML is another such
language, focused especially on strong typing and tight structuring of document contents.
Their common roots in SGML make HTML and XML cousin languages and account for
their similarity.

Both HTML and XML are World Wide Web Consortium (W3C) recommendations, defined
by specifications that are developed by, voted on, and then published by the W3C. The W3C
is an independent, nonprofit consortium whose purpose is to develop and advocate the
use of standards associated with the Internet and the Web. W3C recommendations have
“officially adopted” status; the terminology means that the W3C advocates and recommends
their use. Through this process, HTML and XML are vendor-independent industry
standards.

HTML was the first SGML-based language to gain widespread popularity. The contents
of many web pages on nearly every web site on the Internet are expressed as an HTML
document. Special markup elements, called tags, within an HTML document indicate
graphical elements, such as buttons to be displayed by a web browser. The tags also
describe the hypertext links to other documents that the browser should follow when a
button is clicked. Other tags identify graphical elements that are to be inserted into the
HTML text when it is displayed.

As the use of the Web exploded in the 1990s, HTML was rapidly adapted to display
much richer content on highly formatted web pages. HTML tags were quickly invented to
control the formatting of web pages, directing the display of boldface or italic text, centering
and indents, and text location within the page. In some cases, these tags were even unique
to a specific web browser, such as the Netscape browser or Microsoft’s Internet Explorer.
Over time, a great deal of the markup within an HTML page became focused on formatting
and presentation of information. This had the benefit that web page formatting was tightly
specified, so pages tended to be displayed in the same way regardless of the browser or
device on which it was displayed. It had the disadvantage that the logical structure of web
page content tended to get lost in the formatting and presentation details.

An important original goal of SGML was that a given logical element, such as a page
title or a web page subsection, could be consistently identified across hundreds of
documents (for example, across hundreds of pages on a web site). A simple directive to the
browser, such as “display all subsection titles in blue, boldfaced, 16-point Times New
Roman font,” would then ensure consistent presentation of all pages. Instead, web page
authors tended to explicitly mark every element, such as those subsection titles, with its
own detailed formatting instructions. These could easily become inconsistent, and worse, a
change to the formatting instructions would require hundreds of individual page edits
rather than being specified once for all pages.

One of the main driving forces behind the development of XML was to restore a more
logical-level, rather than formatting-level, approach to markup. XML implements much
more rigid rules about document structure than HTML. Most of its components and
capabilities are squarely focused on representing logical document structure. Companion
standards, such as XML Schema, which specifies types of documents, extend this focus of
XML even farther.

 C h a p t e r 2 5 : S Q L a n d X M L 771
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 771

XML Basics
To understand the interactions between XML and SQL, you need a basic understanding of
XML and how it is used. If you already understand or use XML, feel free to skip this section
and go on to the next. If you are not familiar with XML, this section provides a simple
introduction, based on some examples of XML documents.

Figure 25-1 shows a typical XML representation of a text document, a portion of Part II
of this book. This example has little to do with data processing or SQL, but it shows XML in

FIGURE 25-1
XML document for
part of a book

<?xml version="1.0"?>
<bookPart partNum="2" title="RetrievingData">

<para>Queries are at the heart…used to handle complex queries.</para>

<chapter chapNum="5" revStatus="final">
<title>SQL Basics</title>
<para>This chapter begins…described in this chapter."</para>
<section>

<header hdrLevel="1">Statements</header>
<para>The main body of…in Figure5-1.</para>
<para>Every SQL statement…constants, or expressions.</para>
<figure figNum="5-1"></figure>
<table tabNum="5-1"></table>
<para>The ANSI/ISO SQL….InTable 5-3.</para>
<table tabNum="5-2"></table>
<table tabNum="5-3"></table>
<para>Throughout this book…in lowercase.</para>
<figure figNum="5-2"></figure>
<para>Variable items…is UNDERLINED.</para>

</section>
<section>

<header hdrLevel="1">Names</header>
<para>The objects in a…data entry forms (Ingres).</para>
<para>The original…special characters.</para>
<section>

<header> hdrLevel="2">Table Names</header>
<para>When you specify…or designer.</para>
<para>In a larger…table name</para>

… etc …

… etc …

</section>
</section>

</chapter>
<chapter chapNum="6">

<title>Simple Queries</title>
<para>In many ways…in the database.</para>
<section>

</section>
</chapter>

…etc…
</bookPart>

 772 P a r t V I : S Q L T o d a y a n d T o m o r r o w 772 P a r t V I : S Q L T o d a y a n d T o m o r r o w

its original environment, and it illustrates key XML concepts. Each element of the XML
document in the figure—each component part—is represented by a corresponding XML
element with the simple structure shown in Figure 25-2. The element is identified by an
opening tag, which contains the name of the element type, enclosed between less-than (<)
and greater-than (>) symbols.

In Figure 25-1, paragraphs are identified by an opening <para> tag, and headers are
identified by an opening <header> tag. The end of each element is identified by a closing
tag, which again contains the name of the element type, preceded by a slash (/) character,
again enclosed between less-than and greater-than symbols. In Figure 25-1, paragraphs end
with a </para> tag, and headers end with a </header> tag. Between the opening and
closing tags is the content of the element. Much of the content in Figure 25-1 is text, enclosed
in quotes. You can use single or double quotes to enclose the text, as long as you use the
same type of quotation mark for the beginning and ending of a piece of text.

Figure 25-1 shows the hierarchy of elements typical of most XML documents. At the top
level is the bookPart element. Its contents are not text, but other elements—a sequence of
chapter elements. Each chapter element contains a title element, possibly some
introductory para elements, and then a series of section elements. Each section element
contains a header element and one or more para elements, possibly interspersed with some
figure elements and some table elements. Each para element has only text as its contents.

In addition to the element hierarchy, Figure 25-1 shows some examples of attributes,
another fundamental XML structure. An attribute is associated with a specific XML element
and describes some characteristic of the element. Each attribute has an attribute name and a
value. In Figure 25-1, the chapter element has an attribute called chapNum whose value is
the chapter number associated with that particular content. The chapter element has
another attribute called revStatus whose value indicates whether the chapter is in its
original draft, being rewritten, or in final form. Individual <header> elements in Figure 25-1
also have an attribute called hdrLevel that indicates whether the header is top level (level 1)
or lower level (level 2 or 3).

The first line of the XML document in Figure 25-1 identifies it as an XML 1.0 document.
Every other part of the document describes the element structure, element contents, or
attributes of elements. XML documents can become considerably more complex, but these
fundamental components are the ones that are important for XML/database interaction. Note
that element names and attribute names are case-sensitive. An element named bookPart and
one named bookpart are not considered the same element. This is different from the usual
SQL convention for table and column names, which are usually case-insensitive.

One additional XML shorthand notation is not shown in Figure 25-1 for clarity, but is
very useful in practice. For elements that have no content of their own but only attributes,
the end of the element can be indicated within the same pair of less-than and greater-than
symbols as the opening tag, indicated by a slash just before the greater-than symbol. Using
this convention, this element from Figure 25-1:

<figure figNum="5-1"></figure>

<name>John Q. Public</name>

Element
content

Closing
tag

Opening
tag

FIGURE 25-2
Anatomy of an XML
element

 C h a p t e r 2 5 : S Q L a n d X M L 773
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 773

can be instead represented as:

<figure figNum="5-1"/>

The XML specification defines certain rules that every XML document should follow. It
dictates that elements within an XML document must be strictly nested within one another.
The closing tag for a lower-level element must appear before the closing tag for a higher-
level element that contains it. The standard also dictates that an attribute must be uniquely
named within its element; it is illegal to have two attributes with the same name attached to
a single element. XML documents that obey the rules are described as well-formed XML
documents.

XML for Data
Although the roots of XML are in documents and document processing, XML can be quite
useful for representing the structured data commonly found in data processing applications
as well. Figure 25-3 shows a typical XML document from the data processing world, a very
simplified purchase order. This is quite a different type of document from the book excerpt
in Figure 25-1, but the key components of the document are the same. Instead of a chapter,
the top-level element is a purchaseOrder. Its contents, like those of the chapter, are
subelements—a customerNumber, an orderNumber, an orderDate, and an orderItem.
The orderItem in turn is composed of further subelements. Figure 25-3 also shows some
business terms associated with the purchase order as attributes of the terms element.
The ship attribute specifies how the order is to be shipped. The bill attribute specifies the
credit terms for the order.

FIGURE 25-3
XML document for
a simple purchase
order

<?xml version="1.0"?>
<purchaseOrder>

<customerNumber>2117</customerNumber>
<orderNumber>112961</orderNumber>
<orderDate>2007-12-17</orderDate>
<repNumber>106</repNumber>
<terms ship="ground" bill="Net30"></terms>
<orderItem>

<mfr>REI</mfr>
<product>2A44L</product>
<qty>7</qty>
<amount>31500.00</amount>

</orderItem>
</purchaseOrder>

 774 P a r t V I : S Q L T o d a y a n d T o m o r r o w 774 P a r t V I : S Q L T o d a y a n d T o m o r r o w

It should be obvious that the simple XML purchase order document in Figure 25-3 has a
strong relationship to the ORDERS table in the sample database. You may want to compare it
with the structure of the ORDERS table shown in Appendix A (Figure A-5). The lowest-level
elements in the document mostly match the individual columns of the ORDERS table, except
for the terms element. The top-level element in the document represents an entire row of
the table. The transformation between a group of documents like the one in Figure 25-3 and
a set of rows in the ORDERS table is a straightforward, mechanical one, which can be
automatically performed by a simple computer program.

Unlike the ORDERS table, the XML document imposes one middle level of hierarchy,
grouping together the information about the ordered product—the manufacturer ID,
product ID, quantity, and total amount. In a real-world purchase order, this group of data
items might be repeated several times, forming multiple line items on the order. The XML
document could be easily extended to support this structure, by adding a second or third
orderItem element after the first one. The sample database cannot be so easily extended.
To support orders with multiple line items, the ORDERS table would probably be split into
two tables: one holding the order header information (order number, date, customer ID,
etc.), and the other holding individual order line items.

XML and SQL
The SGML origins give XML several unique and useful characteristics, which have strong
parallels to the SQL language:

• Descriptive approach XML approaches document structure by telling what each
element of a document is, rather than how to process it. You may recall this is also a
characteristic of SQL, which focuses on which data is requested rather than how to
retrieve it.

• Building blocks XML documents are built up from a very small number of basic
building blocks, including two fundamental concepts, elements and attributes. There
are some strong (but not perfect) parallels between an XML element and a SQL
table, and between an XML attribute and a SQL column.

• Document types XML defines and validates documents as conforming to specific
document types that parallel real-world documents, such as a purchase order
document or a business reply document or a vacation request document. Again,
there are strong parallels to SQL, where tables represent different types of real-
world entities.

Although there are some strong parallels between XML and SQL, they also have some
very strong differences:

• Document vs. data orientation The core concepts of XML arise out of typical
document structures. XML is text-centric, and it implements a strong distinction
between the content itself (the elements of a document) and characteristics of the
content (attributes). The core concepts of SQL arise out of typical data processing
record structures. It is data-centric, with a range of data types (in their binary
representations), and its structures (tables and columns) focus on content (data).
This mismatch between the fundamental XML and SQL models can cause some
conflicts or difficult choices when you’re using them together.

 C h a p t e r 2 5 : S Q L a n d X M L 775
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 775

• Hierarchical vs. tabular structure Natural XML structures are hierarchical,
reflecting the hierarchy of elements in most types of documents. (For example, a
book contains chapters; chapters contain sections; and sections contain a heading,
paragraphs, and figures.) The structures are also flexible and variable. One section
may contain five paragraphs and a single figure, the next one three paragraphs and
two figures, and the next one six paragraphs and no figures. In contrast, SQL
structures are tabular, not hierarchical, and they reflect the records typical of data
processing applications. SQL structures are also quite rigid. Every row of a table
contains exactly the same columns, in the same order. Each column has the same
data type in every row. There are no optional columns; every column must appear
in every row. These differences can also cause conflicts when using XML and SQL
together.

• Objects vs. operations The core purpose of the XML is to represent objects. If you
take a meaningful piece of XML code and ask “What does this represent?” the
answer will be an object: a paragraph, a purchase order, or a customer address, for
example. The SQL language has a broader purpose, but most of it is focused on
manipulating objects. If you take a meaningful piece of SQL code and ask “What
does this represent?” the answer will usually be an operation on an object: creating
an object, deleting an object, finding one or more objects, or updating object
contents. These differences make the two languages fundamentally complementary
in their purpose and use.

Elements vs. Attributes
The relational model offers only one way to represent data values within the database—as
values of individual columns within individual rows of a table. The XML document model
offers two ways to represent data:

• Elements An element within an XML document has contents, and the contents can
include a data value in the form of text for that element. When represented in this
way, the data value is a fundamental part of the XML document hierarchy; the
hierarchy is built up from elements. Incidentally, it is the hierarchical tree structure
that has led practitioners to use the term forest for a collection of related XML
document elements. Often, an element containing a data value will be a leaf node in
the XML document tree; that element will be a child of higher-level elements, but it
will not itself have any children. This will almost always be true of elements that
represent data that comes from a relational database. However, XML does support
mixed elements, which contain a combination of text (content) and other
subelements.

• Attributes An element within an XML document may have one or more named
attributes, and each attribute has a text value. The attributes are attached to an
element within the XML hierarchy, but are not the content of the element. The
names of different attributes of an element must be different, so you can’t have two
attributes with the same name. Also, XML treats the order of the attributes of an
element as insignificant; they can appear in any order. This differs from the XML
treatment of elements, which have a definite position within an XML document,
and where the difference between the first, second, and third child elements of a
higher-level element is significant.

 776 P a r t V I : S Q L T o d a y a n d T o m o r r o w 776 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The existence of two different ways to represent data in XML means that you have two
different legitimate ways to express the contents of a relational database as XML. These two
rows of data:

ORDER_NUM MFR PRODUCT QTY AMOUNT
--------- --- ------- ---- ----------
 112963 ACI 41004 28 $3,276.00
 112983 ACI 41004 3 $702.00

might be represented by this XML document when elements are used to represent column
values:

<?xml version="1.0"?>
<queryResults>
 <row>
 <orderNum>112963</orderNum>
 <mfr>ACI</mfr>
 <product>41004</product>
 <qty>28</qty>
 <amount>3276.00</amount>
 </row>
 <row>
 <orderNum>112983</orderNum>
 <mfr>ACI</mfr>
 <product>41004</product>
 <qty>3</qty>
 <amount>702.00</amount>
 </row>
</queryResults>

and would be represented by this XML document when attributes are used:

<?xml version="1.0"?>
<queryResults>
 <row orderNum="112963"
 mfr="ACI"
 product="41004"
 qty="28"
 amount="3276.00">
 </row>
 <row orderNum="112983"
 mfr="ACI"
 product="41004"
 qty="3"
 amount="702.00">
 </row>
</queryResults>

 C h a p t e r 2 5 : S Q L a n d X M L 777
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 777

As you might expect, both the element-representation and the attribute-representation
methods have strong advocates with strongly held beliefs. Advocates of the element
approach make these arguments:

• Elements are more fundamental to the XML model than attributes; they are the
carriers of content in all markup languages (HTML, XML, SGML, etc.), and the
content of the database (column values) should be represented as content in XML.

• Element order matters, and in some cases, so does the ordering of data in a DBMS
(for example, when identifying a column by number in a query specification or
when using a column number to retrieve query results with an API).

• Elements provide a uniform way of representing column data, regardless of
whether the column has a simple, atomic data type (integer, string) or more
complex, compound, user-defined data types supported by the object-relational
extensions in the SQL standard. Attributes don’t provide this capability. (Attribute
values are atomic.)

Advocates of the attribute approach make these arguments:

• Attributes are a fundamental match for the columns in the relational model.
Individual rows represent entities, so they should be mapped into elements.
Column values describe attributes of the entity (row) in which they appear; they
should be represented as attribute values in XML.

• The restriction of unique attribute names within an element matches the uniqueness
required of column names within a table. The unordered nature of attributes
matches the unordered nature of columns in the fundamental relational model. (The
places where column position is used are shortcuts for convenience, not
fundamental to the underlying relations.)

• The attribute representation is more compact, since column names appear only once
in the XML form, not as both opening and closing tags. This is a practical advantage
when storing or transmitting XML.

Both the element-centric and attribute-centric styles are found in today’s XML and SQL
products. The choice depends on the preferences of the document author and the conventions
of the organization using XML with SQL. In addition, standards imposed by industry bodies
for document exchange using XML may dictate one style or the other.

Using XML with Databases
With the rapidly growing popularity of XML, database product vendors have moved
quickly to offer XML support in their products. The form of XML support varies, but tends
to fall into one or more of these categories:

• XML output An XML document can easily represent the data in one or more rows
of query results. With this support, the DBMS generates an XML document as its
response to a SQL query instead of the usual row/column query results. The SQL
standard specifies a number of SQL functions that can be used to transform data
retrieved from relational tables into XML.

 778 P a r t V I : S Q L T o d a y a n d T o m o r r o w 778 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• XML input An XML document can easily represent the data to be inserted as one
or more new rows of a table. It can also represent data to update a row of a table, or
the identification of a row to be deleted. With this support, the DBMS accepts an
XML document as input instead of a SQL request.

• XML data exchange XML is a natural way to express data that is to be exchanged
between different DBMS systems or among DBMS servers. Data from the source
database is transformed into an XML document and shipped to the destination
database, where it is transformed back into a database format. This same style of data
exchange is useful for moving data between relational databases and non-DBMS
applications, such as corporate Enterprise Resource Planning (ERP), enterprise
application integration (EAI), enterprise information integration (EII), and extract,
transform, load (ETL) systems.

• XML storage A relational database can easily accept an XML document (which is a
string of text characters) as a piece of variable-length character string (VARCHAR) or
character large object (CLOB) data. At the most basic level of XML support, an entire
XML document becomes the content of one column in one row of the database.
Slightly stronger XML support may be possible if the DBMS allows the column to be
declared with an explicit XML data type. Although the ANSI/ISO SQL standard
contains specifications for an XML data type (XML), no vendor implementation
exactly supports the standard. However, Oracle, DB2 UDB, and SQL Server all
support an XML type in proprietary implementations.

• XML data integration A more sophisticated level of integrated XML storage is
possible if the DBMS can parse an XML document, decompose it into its component
elements, and store the individual elements in individual columns. Ordinary SQL
can then be used to search those columns, providing search support for elements
within the XML document. In response to a query, the DBMS can recompose the
XML document from its stored component elements.

XML Output
One of the most straightforward combinations of XML and database technology is to use
XML as a format for SQL query results. Query results have a structured tabular format that
can easily be translated into an XML representation. Consider this simple query from the
sample database:

SELECT ORDER_NUM, MFR, PRODUCT, QTY, AMOUNT
 FROM ORDERS
 WHERE CUST = 2103;

ORDER_NUM MFR PRODUCT QTY AMOUNT
--------- --- ------- ---- ----------
 112963 ACI 41004 28 $3,276.00
 112983 ACI 41004 3 $702.00
 113027 ACI 41002 54 $4,104.00
 112987 ACI 4100Y 11 $27,500.00

 C h a p t e r 2 5 : S Q L a n d X M L 779
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 779

If the DBMS is instructed to output the query results in XML format instead, here is the
output that might result:

SELECT ORDER_NUM, MFR, PRODUCT, QTY, AMOUNT
 FROM ORDERS
 WHERE CUST = 2103;

<?xml version="1.0"?>
<queryResults>
 <row>
 <order_num>112963</order_num>
 <mfr>ACI</mfr>
 <product>41004</product>
 <qty>28</qty>
 <amount>3276.00</amount>
 </row>
 <row>
 <order_num>112983</order_num>
 <mfr>ACI</mfr>
 <product>41004</product>
 <qty>3</qty>
 <amount>702.00</amount>
 </row>
 <row>
 <order_num>113027</order_num>
 <mfr>ACI</mfr>
 <product>41002</product>
 <qty>54</qty>
 <amount>4104.00</amount>
 </row>
 <row>
 <order_num>112987</order_num>
 <mfr>ACI</mfr>
 <product>4100Y</product>
 <qty>11</qty>
 <amount>27500.00</amount>
 </row>
</queryResults>

This is typical of the output you could actually receive from some of the popular DBMS
products that currently support XML output. The query results are a well-formed, self-
contained XML document. If you submit the results to an XML parser (parsers are described
in the “Large Objects and Parsers” section later in this chapter), the parser will correctly
interpret them as having

• One root element, queryResults

• Four row subelements beneath the root

• Five subelements beneath each row element, and in this case, all five subelements
appear for every row element, and in the same order

 780 P a r t V I : S Q L T o d a y a n d T o m o r r o w 780 P a r t V I : S Q L T o d a y a n d T o m o r r o w

While the preceding example of an XML document generated directly from the database
is ideal, support varies widely from one implementation to another. For example, Microsoft
participated in the development of the SQL/XML specification in the ANSI/ISO SQL
standard; they later chose not to implement it and instead developed a proprietary solution.
In SQL Server, a FOR XML clause is supported that directs the DBMS to output the results in
XML format. While the generated results do not include well-formed XML documents, they
do include valid XML elements that can be easily incorporated into XML documents. Here
is the previous example run in SQL Server:

 SELECT ORDER_NUM, MFR, PRODUCT, QTY, AMOUNT
 FROM ORDERS
 WHERE CUST = 2103
 FOR XML AUTO;

<ORDERS ORDER_NUM="112963" MFR="ACI" PRODUCT="41004" QTY="28"
 AMOUNT="3276.0000" />
<ORDERS ORDER_NUM="112983" MFR="ACI" PRODUCT="41004" QTY="6"
 AMOUNT="702.0000" />
<ORDERS ORDER_NUM="112987" MFR="ACI" PRODUCT="4100Y" QTY="11"
 AMOUNT="27500.0000" />
<ORDERS ORDER_NUM="113027" MFR="ACI" PRODUCT="41002" QTY="54"
 AMOUNT="4104.0000" />

Having XML-formatted query output can be a significant advantage. For further
processing, the output can be sent directly to programs that accept XML documents as
input. The output can be sent across a network to another system, and because of its XML
format, its elements are self-describing—every receiving system or application will interpret
the query results in the same way—as four rows of five elements each. Because the output is
in pure text format, it won’t be misinterpreted because of differences in binary data
representations between sending and receiving systems. Finally, if the XML is transmitted
over an HTTP link using the Simple Object Access Protocol (SOAP) standards, the XML-
formatted message can typically move through corporate firewalls and link an originating
application in one company with a receiving application in a different company.

The XML-formatted output also has some disadvantages. One is the raw size of the
data. About four times as many characters are in the XML-formatted results as in the tabular
format. If the XML form is being stored on disk, it requires four times the storage. If it’s
being sent to another computer system over a network, it will take four times as long to
transmit, or it will require a network with four times the bandwidth to preserve the same
transmission time. These aren’t serious problems for the small amount of data in the
example, but they can be very significant for results with thousands or tens of thousands of
rows, multiplied by hundreds of applications in an enterprise data center.

This simple XML output format also loses some information about the data. The
currency symbol that appeared in the tabular display has disappeared, so it’s impossible to
determine, from the XML content itself, whether the data has a currency type and what kind
of currency it is. The XML Schema capability provides a way to gain back this information,
as described later in the “XML Schema” section, but at the expense of still more increase in
the size of the query results text.

 C h a p t e r 2 5 : S Q L a n d X M L 781
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 781

Also, consider the question of standard data definitions. While XML itself is a standard,
two companies exchanging purchase orders formatted in XML will be unable to interpret
each other’s orders in the same way unless the tags used within the XML document have
the same names and definitions. For example, if the first company uses the tag <product
code> for the identifier of the product being ordered, and the second company uses <SKU>
(stock keeping unit) instead, then the purchase orders cannot be interpreted in the same
way. One of the emerging solutions is industry XML document coding standards, such as
HR-XML, developed for the human resources industry by the HR-XML Consortium. This is
likely to be parallel to the Enterprise Data Interchange (EDI) standards that were developed
during the past two decades.

SQL/XML Functions
The SQL standard specifies a number of functions that can be used to form column data into
XML elements. A SQL/XML function (also called an XML value function) is simply a
function that returns a value as an XML type. For example, a query can be written that
selects non-XML data (that is, data stored in data types other than XML) and that formats
the query results into an XML document suitable for display on a web page or transmission
to some other party. Table 25-1 shows the basic SQL/XML functions.

Function Value Returned

XMLAGG A single XML value containing an XML forest formed by combining
(aggregating) a collection of rows, each of which contains a single XML value

XMLATTRIBUTE An attribute in the form name=value within an XMLELEMENT

XMLCOMMENT An XML comment

XMLCONCAT A concatenated list of XML values, creating a single value containing an
XML forest

XMLDOCUMENT An XML value containing a single document node

XMLELEMENT An XML element, which can be a child of a document node, with the name
specified in the name parameter

XMLFOREST An XML element containing a sequence of XML elements formed from table
columns, using the name of each column as the corresponding element name

XMLPARSE An XML value formed by parsing the supplied string without validating it

XMLPI An XML value containing an XML processing instruction

XMLQUERY The result of an XQuery expression (XQuery is a sublanguage used to
search XML stored in the database; it is discussed towards the end of
this chapter.)

XMLTEXT An XML value containing a single XML text node, which can be a child of
a document node

XMLVALIDATE An XML sequence that is the result of validating an XML value

TABLE 25-1 SQL/XML Functions

 782 P a r t V I : S Q L T o d a y a n d T o m o r r o w 782 P a r t V I : S Q L T o d a y a n d T o m o r r o w

There are more functions than those listed in Table 25-1, and SQL/XML functions can be
used in combination to form extremely powerful (if not complicated) queries. Also, the
functions available vary across SQL implementations. Here are simple examples to clarify
how these functions can be used, using the XMLELEMENT and XMLFOREST functions:

SELECT XMLELEMENT("OrderNumber", ORDER_NUM)
 FROM ORDERS
 WHERE ORDER_NUM=112963;

<OrderNumber>112963</OrderNumber>

SELECT XMLFOREST(ORDER_NUM AS "OrderNumber", MFR, PRODUCT, QTY, AMOUNT)
 FROM ORDERS
WHERE ORDER_NUM=112963;

<OrderNumber>112963</OrderNumber><MFR>ACI</MFR><PRODUCT>41004</PRODUCT>
<QTY>28</QTY><AMOUNT>3276</AMOUNT>

Notice that the XML element names are taken from the column names, in uppercase with
underscores as is customary in SQL. However, using the column alias, as I did for the
ORDER_NUM column, you can change the column names to just about anything you want.

XML Input
Just as XML can be used to represent a row of query results that is output from a database,
XML can easily be used to represent a row of data to be inserted into a database. To process
the XML data, the DBMS must analyze the XML document containing the data to be
inserted and identify the individual data items (represented as either elements or
attributes). The DBMS must then match (usually using column names) or translate (using a
DBMS-specific scheme) the corresponding element or attribute names to columns in the
target table that is to receive the new data. Conceptually, this simple INSERT statement:

INSERT INTO OFFICES (OFFICE, CITY, REGION, SALES)
 VALUES (23,'San Francisco','Western',0.00);

can be easily translated into an equivalent hybrid SQL/XML statement like this one:

INSERT WITH <?xml version="1.0"?>
 INTO OFFICES (OFFICE, CITY, REGION, SALES)
 VALUES <row>
 <office>23</office>
 <city>San Francisco</city>
 <region>Western</region>
 <sales>0.00</sales>
 </row>

Updates to the database can be similarly handled. This simple UPDATE statement:

UPDATE OFFICES
 SET TARGET = 200000.00,
 MGR = 108
 WHERE OFFICE = 23;

 C h a p t e r 2 5 : S Q L a n d X M L 783
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 783

can be translated into this equivalent hybrid SQL/XML statement:

UPDATE WITH <?xml version="1.0"?> OFFICES
 WHERE OFFICE = 23
 <update_info>
 <values>
 <target>200000.00</target>
 <mgr>108</mgr>
 </values>
 <where>office = 23</where>
 </update_info>

and a DELETE statement requires only the specification of the WHERE clause, using the same
conventions.

While several SQL DBMS brands have added the capability to process XML-based
INSERT, UPDATE, and DELETE operations using this type of approach, the specific
techniques for representing table and column names and data values in the XML text, and
for mapping them to corresponding database structures, are DBMS-specific. While the
ANSI/ISO SQL standard includes the specification for using INSERT, UPDATE, and DELETE
statements and columns with the XML data type, and for the WITH clause that supports
providing XML options in SQL statements, there are no standards (yet) for the type of
hybrid SQL/XML syntax in these examples.

Although representing input and update values as small XML documents is conceptually
straightforward, it represents some significant DBMS processing issues. For example, the
column list in a SQL INSERT statement appears to be redundant if the XML document
containing the data values to be inserted also contains the column names as either element or
attribute names. Why not simply drop the column list and let the XML documents specify
which columns to insert? For interactive SQL, there is no problem in doing this, but the XML
format is unlikely to be used for an interactive SQL session. For programmatic use of SQL,
the problem is that the XML document and the data values that it contains will be supplied
to the DBMS at runtime. If the column names (or even the table name) are also supplied only
in the XML document, then the DBMS cannot know, until runtime, which tables and columns
are affected. In this situation, the DBMS must use dynamic SQL to handle the processing, as
described in Chapter 18, with all of its associated performance penalties.

Similar problems arise with the WHERE clause in an UPDATE or DELETE statement, and
the SET clause of the UPDATE statement. To get the performance and efficiency of static
SQL, the DBMS must know in advance (when the program is compiled) which search
conditions will be used and which columns will be updated. One approach to this problem
is to use the parameterized form of these statements. Here is the same UPDATE example,
using this approach:

UPDATE WITH <?xml version="1.0"?> OFFICES
 SET TARGET = ?, MGR = ?
 WHERE OFFICE = ?
 <update_info>
 <param>200000.00</param>
 <param>108</param>
 <param>23</param>
 </update_info>

 784 P a r t V I : S Q L T o d a y a n d T o m o r r o w 784 P a r t V I : S Q L T o d a y a n d T o m o r r o w

With this style, the XML text and the SQL text are actually quite separate. The SQL text
is self-contained and can be processed at compile-time. The XML text is self-contained, and
the DBMS can match its parameter values to the needed statement parameters at runtime.
This example follows the usual SQL style of specifying parameters by position, but the XML
document loses a lot of its self-describing qualities as a result. Depending on the DBMS, it
may be possible to use named elements within the XML document and match them to
named statement parameters at runtime.

XML Data Exchange
A DBMS can support XML data exchange in a simple form merely by supporting XML output
for query results and XML input for INSERT operations. However, this requires the user or
programmer to carefully construct the format of the generated query results in the source
database to match the expected format for the INSERT operations in the destination database.
XML data exchange is more useful if the DBMS provides more explicit built-in support.

Several commercial DBMS products now offer the ability to perform a bulk export of a
table (or in a more sophisticated operation, the results of a query) into an external file,
formatted as an XML document. At the destination end, these products offer the same ability
to do a bulk import from this same type of file into a DBMS table. With this scheme, the XML
document file becomes a standard way of representing table contents for the exchange.

Note that once XML-based table import/export capabilities are offered, their use is not
restricted to database-to-database exchanges. The source of the XML document in the data
exchange file could well be an enterprise application, such as a Supply Chain Management
(SCM) system. The destination similarly could be an enterprise application. In addition,
many EAI, EII, and ETL systems now support XML document files. These systems provide
further processing and integration capabilities, such as eliminating duplicated data and
combining data from multiple input files.

XML Storage and Integration
XML input, output, and data exchange capabilities offer a very effective way to integrate
existing relational databases with the emerging world of XML. With these approaches, XML
is used in the external world to represent structured data, but the data within the database
itself retains its row/column, tabular, binary structure. As XML documents proliferate, a
natural next step is to consider storing XML documents themselves within a database.

Simple XML Storage with Large Objects
Any SQL-based DBMS that supports large objects automatically contains basic support for
XML document storage and retrieval. The section on large object support in Chapter 24
describes how several commercial databases store and retrieve large text documents through
character large object (CLOB) data types. Many commercial products support documents of
up to 4 gigabytes for CLOB data, which is adequate for the vast majority of XML documents.
As already mentioned, Oracle, DB2 UDB, and SQL Server all support an XML type in
proprietary implementations as an alternative to using CLOBS to store XML data.

To store XML documents using CLOBs, you would typically define a table that contains
one CLOB column to contain the document text, and some auxiliary columns (using standard
data types) that contain attributes that identify the document. For example, if a table is to
store purchase order documents, you might define auxiliary columns to hold the customer

 C h a p t e r 2 5 : S Q L a n d X M L 785
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 785

number, order date, and purchase order number using INTEGER, VARCHAR, or DATE data
types, in addition to the CLOB column for the XML document. You can search the table of
purchase orders based on customer numbers, order dates, or PO numbers, and use the CLOB
processing techniques described in Chapter 24 to retrieve or store the XML document.

An advantage of this approach is that it is relatively simple to implement. It also
maintains a clean separation between the SQL operations (such as query processing) and
the XML operations. A disadvantage is that the level of XML/DBMS integration is fairly
weak. In the simplest implementations, a stored XML document is completely opaque to the
DBMS; the DBMS knows nothing about its contents. You cannot efficiently search for a
document based on one of its attributes or its element values, unless that particular attribute
or element has been extracted from the XML document and is also represented as a separate
column in the table. If you can anticipate in advance which types of searches are likely, this
is not a large restriction.

Some object-relational databases provide a more advanced search capability for CLOBs
by extending the SQL WHERE clause with full-text search capability. These products allow
you to search CLOB columns as text, using the type of text search capabilities typically
found in word processors. This provides an expanded, but typically still limited, capability
for searching XML documents stored as CLOB columns. Using full-text search, you could,
for example, locate every purchase order where the phrase “Type 4 Widgets” occurred.
However, it will be difficult or impossible to search for only those XML documents where
“Type 4 Widgets” applies in an order item description element. Because the search software
doesn’t explicitly know about the structure of XML documents, it will probably also return
rows where “Type 4 Widgets” occurs in a comments element or some other element.

Large Objects and Parsers
When exchanged between applications or stored in a file or in a DBMS CLOB column, XML
documents are always in text form. This makes the contents very portable, but unwieldy for
computer programs to handle. An XML parser is a piece of computer software that translates
XML documents from their text form to a more program-friendly, internal representation.
Any SQL-based DBMS that supports XML will have an XML parser as part of its software,
for its own use in processing XML. If the DBMS brand supports CLOBs, it can provide
further integration with XML by allowing an XML parser to operate directly on the CLOB
column contents.

There are two popular types of XML parsers, which support two styles of XML processing:

• Document Object Model (DOM) DOM parsers transform an XML document into
a hierarchical tree structure within a computer’s main memory. A program can then
make calls to the DOM API to navigate through the tree, moving up and down or
sequentially through the element hierarchy. The DOM API makes the element
structure of an XML document easily accessible to programmers and simplifies
random access to portions of the document.

• Simple API for XML (SAX) SAX parsers transform an XML document into a
series of callbacks to a program, which inform the program of each part of the XML
document as it is encountered. A program can be structured to take certain actions
when the beginning of a document section is encountered, or when a particular
attribute is encountered. The SAX API imposes a more sequential style of processing
on a program using it. The API’s callback style matches well with an event-driven
program structure.

 786 P a r t V I : S Q L T o d a y a n d T o m o r r o w 786 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Either type of XML parser will validate that an XML document is well formed, and can
also validate an XML document against a schema, as described in the “XML Schema” section
later in this chapter. A DOM parser is practical when the size of the stored XML document
is fairly small; it will require double the memory space of the text XML document, because it
generates a second, tree-structured representation of the entire document. For very large
documents, a SAX parser makes it easy to process documents in small, discrete pieces.
However, the fact that the entire document is not available at one time may require a program
to make multiple passes through it, if the program needs to process various sections of the
document out of sequential order.

XML Marshaling
Storing XML documents as large objects within a database is an excellent solution for some
types of SQL/XML integration. If the XML documents are, for example, text-oriented
business documents, or if they are text components of web pages, then there is really very
little need for the DBMS to “understand” the internals of the XML documents. Each
document can probably be identified by one or more keywords or attributes, which can
easily be extracted and stored as conventional columns for searching.

If the XML documents to be processed are really data processing records, however, the
simple integration provided by large objects may be too primitive. You will probably want to
process and access individual elements, and search based on their contents and attributes.
The DBMS already provides these capabilities for its native row/column data. Why can’t the
DBMS automatically decompose an incoming XML document, transforming its element
contents and attribute values into a corresponding set of internal row/column data for
processing? On the outbound side, we have already seen how this approach can work to
transform row/column query results into an XML document. The same technique could be
used to recompose an XML document if it were once again needed in its external text form.

The challenge of transforming XML documents, which are an excellent external data
representation, to and from internal data representations more useful for programs is not
unique to database systems. The same problems occur, for example, in Java processing of
XML, where it is very desirable to transform an XML document to and from a set of Java class
instances for internal processing. The process of decomposing an XML document into its
component elements and attributes in some internal, binary representation is called
unmarshaling in the XML literature. Conversely, the process of reassembling these individual
element and attribute representations into a complete text XML document is called marshaling.

For very simple XML documents, the marshaling and unmarshaling process is
straightforward, and commercial DBMS products are moving to support it. Consider once
again the simple purchase order document in Figure 25-3. Its elements map directly, one to
one, onto individual columns of the ORDERS table. In the simplest case, the names of the
elements (or attributes) will be identical to the names of the corresponding columns. The
DBMS can receive an inbound XML document like the one in the figure and automatically
turn its elements (or attributes, depending on the style used) into column values, using the
element names (or attribute names) to drive the process. Reconstituting the XML document
from a row of the table is also no problem at all.

The DBMS must do slightly more work if the element names in the XML document
don’t precisely match column names. In this case, some kind of mapping between element
names (or attribute names) and column names must be specified. It’s relatively
straightforward to put such a mapping into the DBMS system catalog.

 C h a p t e r 2 5 : S Q L a n d X M L 787
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 787

Many useful real-world XML documents do not map neatly into single rows of a table.
Figure 25-4 shows a simple extension of the purchase order XML document from Figure 25-3,
which supports the typical real-world requirement that a purchase order may contain multiple
line items. How should this XML document be unmarshaled into the sample database?
One solution is to make each line item from the purchase order into a separate row of the
ORDERS table. (Ignore for the moment that each row in the ORDERS table must contain a
unique order number because the order number is the primary key.) This would result in
some duplication of data, since the same order number, order date, customer number, and
salesperson number will appear in several rows. It would also make marshaling the data
to reconstitute the document more complex—the DBMS would have to know that all of the
rows with the same order number should be marshaled into one purchase order XML
document with multiple line items. Clearly, the marshaling/unmarshaling of even this
simple document requires a more complex mapping.

The multiline purchase order merely scratches the surface of marshaling and unmarshaling
XML documents. The more general situation is shown in Figure 25-5, where the DBMS must
unmarshal an XML document into multiple rows of multiple, interrelated tables. To marshal
the document, the DBMS must exercise the relationships between the tables to find the related
rows and recompose the XML hierarchy. The underlying reason for this complexity is the
mismatch between XML’s natural hierarchical structure and the flat, normalized, row/column
structure of a relational database.

FIGURE 25-4
A slightly expanded
XML purchase
order document

<?xml version="1.0"?>
<purchaseOrder>

<customerNumber>2117</customerNumber>
<orderNumber>112961</orderNumber>
<orderDate>2007-12-17</orderDate>
<repNumber>106</repNumber>
<terms ship="ground" bill="Net30"></terms>
<orderItem>

<mfr>REI</mfr>
<product>2A44L</product>
<qty>7</qty>
<amount>31500.00</amount>

</orderItem>
<orderItem>

<mfr>ACI</mfr>
<product>41003</product>
<qty>10</qty>
<amount>6520.00</amount>

</orderItem>
</purchaseOrder>

 788 P a r t V I : S Q L T o d a y a n d T o m o r r o w 788 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Marshaling and unmarshaling are both simplified and made more complex if a DBMS
supports object-relational extensions such as structured data types. The translation to and
from XML can be simpler because individual columns of a table can now have their own
hierarchical structure. A higher-level XML element (such as a billing address composed of
street, city, state, country, and postal code elements) can be mapped into a corresponding
column with an abstract ADDRESS data type, with its own internal hierarchy. However, the
translation to and from XML now involves more decisions in the database design, trading
off the marshaling/unmarshaling simplicity of structured data types against the flexibility
of a flattened row/column approach.

Several commercial products are beginning to offer marshaling/unmarshaling
capabilities, or have announced plans to provide this capability in future releases. The
performance overhead of this translation can be very substantial, and it remains to be seen
how popular these capabilities will be in practice. However, if an application is handling
external data in XML form, the translation between XML and SQL data must occur at some
point, and translation within the DBMS itself may be the most efficient approach.

XML and Metadata
One of the most powerful qualities of the relational model is its very rigid support for data
types and data structure, implemented by the definitions of tables, columns, primary keys,
foreign keys, and constraints. In addition, as shown in Chapter 16, the system catalog of a
relational database contains metadata, or “data about the data” in the database. By querying
the system catalog, you can discover the structure of the database, including the data types
of its columns, the columns that compose its tables, and intratable relationships.

FIGURE 25-5 XML marshaling and unmarshaling for a database

XML document Database tables
Unmarshaling

Marshaling

 C h a p t e r 2 5 : S Q L a n d X M L 789
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 789

In contrast, XML documents by themselves provide only very limited metadata. They
impose a hierarchical element structure on their data, but the only real data about the
structure is the names of the elements and attributes. An XML document can be well formed
and still have quite an irregular structure. For example, there is nothing to prevent a well-
formed XML document from having a named element that contains text data in one
instance and subelements in another instance, or a named attribute that has an integer value
for one element and a date value for another. Clearly, a document with this structure, while
it may be well formed, does not represent data that is easily transformed to and from a
relational database. When using XML for data processing documents, stronger support for
data types and rigid structure is needed.

XML standards and products have addressed this need in multiple ways during the
short history of XML technologies. These include

• Document Type Definition (DTD) A part of the original XML 1.0 specification,
Document Type Definitions provided a way to specify and restrict the structure of
a document. XML parsers can examine an XML document in the context of a DTD
and determine whether it is a valid document (i.e., whether it conforms to the DTD
restrictions).

• XML-Data Submitted to the W3C in 1998, XML-Data was an early attempt to
address some of the deficiencies in the DTD scheme. It never received W3C
endorsement, but many of its ideas have carried forward into the XML Schema
specification. Microsoft adapted its own form of XML-Data, called XML-Data
Reduced (XDR), and implemented it as part of its BizTalk integration server and
Internet Explorer 5.0 browser. The energy around the XML-Data proposal shifted in
late 1999 and 2000 to the XML Schema proposal.

• XML Schema A stand-alone specification that became a W3C recommendation in
May 2001, XML Schema built on and extended the ideas in XML-Data. XML Schema
provides much more rigorous data type support and has the advantage that the
schema definition (the document metadata) is itself expressed as an XML document,
in much the same way that relational database metadata is provided via a standard
relational table structure.

• Industry group standards As mentioned earlier, various industry groups have
banded together to define XML standards for specific types of documents that are
important for data exchange within their industry. For example, financial services
firms are working on standards to describe financial instruments (stocks, bonds,
etc.) and market data. Manufacturing firms are working on standards to describe
purchase order documents, order confirmations, and the like. These standards for
specific industry-oriented documents are usually built on generic standards, such as
DTD and XML Schema.

The area of XML metadata and document type standards is evolving rapidly. The W3C
provides a frequently updated web site at http://www.w3.org, which provides access to
the various XML-related standards and information about their status. You can find
information about industry-specific standards at http://www.xml.org, a site organized and
hosted by the Organization for the Advancement of Structured Information Systems
(OASIS). The site contains a registry of XML-based standards, classified by industry.

http://www.w3.org
http://www.xml.org

 790 P a r t V I : S Q L T o d a y a n d T o m o r r o w 790 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Document Type Definitions (DTDs)
The earliest attempt to standardize XML metadata was contained in the Document Type
Definition (DTD) capability of the original XML 1.0 specification. DTDs are used to specify
the form and structure of a particular type of document (such as a purchase order document
or a transfer-of-funds document). Figure 25-6 shows a DTD that might be used for a simple
purchase order document in Figure 25-5. This DTD demonstrates only a fraction of the full
capabilities of DTDs, but it illustrates the key components of a typical DTD.

The !ELEMENT entries in the DTD define the element hierarchy that gives the document
its basic form. DTDs provide for these different types of elements:

• Text-only element The element contains only a text string, which can represent a
data value from a single column of database data.

• Element-only element The element’s contents are other elements (subelements); it
is the parent in a local parent/child hierarchy of elements. This type of element can
be used to represent a row of a table, with subelements representing the columns.

• Mixed-content element The element can contain a mixture of interspersed text
contents and subelements. This type is not typically used for database contents,
because this mix of subelements and data doesn’t naturally appear in the row/
column structure of tables.

• Empty-content element The element has no content—neither subelements nor
text content—but it may have attributes. This type of element can represent a row
of a table when its attributes are used to represent individual column values.

• Any-content element The element has unrestricted content. The content may be
empty or may contain a mix of subelements and/or text. Like the mixed-content
element, this type is typically not useful for XML documents used in database
processing.

<!ELEMENT purchaseOrder (customerNumber, orderNumber,
orderDate, terms, orderItem*)>

<!ELEMENT customerNumber (#PCDATA)>
<!ELEMENT orderDate (#PCDATA)>
<!ELEMENT repNumber (#PCDATA)>
<!ELEMENT terms EMPTY>
<!ATTLIST terms

ship CDATA
bill CDATA#REQUIRED>

<!ELEMENT orderItem (mfr, product, qty, amount)>
<!ELEMENT mfr (#PCDATA)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT qty (#PCDATA)>
<!ELEMENT amount (#PCDATA)>

FIGURE 25-6 DTD for a simple purchase order document

 C h a p t e r 2 5 : S Q L a n d X M L 791
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 791

In the purchase order DTD of Figure 25-6, the top-level purchaseOrder element and
the orderItem element have the element-only type. Their declarations list the subelements
that they contain. The customerNumber and orderDate elements are text-only elements,
indicated by the #PCDATA definitions. The terms element is empty; it only has attributes.
Both attributes have values that are character data (indicated by the CDATA type); one is
required, as indicated, and the other is optional. Note that this DTD combines a data-as-
elements style (for the customer information) and a data-as-attributes style (for the order
terms) only for illustrative purposes. In practice, you would choose one or the other style
of data representation and use it consistently, to simplify processing.

Document Type Definitions are critical to make XML actually useful in practice for
representing structured documents for data exchange. They allow you to define the
essential elements of a transactional document, such as a purchase order or an employee
personnel action form or a request-for-quote form. With a DTD for such a document in
place, it is straightforward to validate that a document that originates somewhere else
within a company, or even outside a company, is a valid document of the specific type and
can be processed. Any XML parser, whether based on the DOM API or the SAX API, is
capable of validating an XML document against a supplied DTD. In addition, it’s possible
to explicitly declare the DTD to which an XML document should conform within the
document itself.

Document Type Definitions have some drawbacks, however. They lack the strong data
typing typically found in relational databases. There is no way to specify that an element
must contain an integer or a date, for example. DTDs also lack good support for user-
defined (or corporate-defined) types or subdocument structures. For example, it’s possible
that the orderItem element in Figure 25-6 will appear not only in a purchase order
document, but also in a change order document, an order cancellation document, a
backorder document, and an order acknowledgement document. It would be convenient to
define the orderItem substructure once, give it a name, and then refer to it in these other
document definitions, but DTDs don’t provide this capability.

DTDs are also somewhat restrictive in the types of content structures that they allow,
although in practice, they are usually rich enough to support the kinds of transactional
documents needed for hybrid database/XML applications. Finally, the expressions used by
DTDs to define document structure are an extended form of Backus Naur Form (BNF). (An
example of this is the asterisk that appears after the orderItem declaration within the
purchaseOrder element list in Figure 25-6, which means, “This element may be repeated
zero or more times.”)

While familiar to computer science students who deal with computer languages, this
format is unfamiliar to people who approach XML from the document markup world of
HTML. All of these deficiencies appeared soon after the adoption of XML 1.0, and work to
define a stronger metadata capability for XML documents began. Eventually, these efforts
resulted in the XML Schema specification, described in the next section.

XML Schema
XML Schema 1.0 became an official W3C recommendation in May 2001, and support for it is
rapidly growing in commercial XML-related products. DTDs are still widely supported for
backward compatibility, but XML Schema offers some compelling advantages, and
addresses most of the shortcomings of DTD. Figure 25-7 shows the document schema for

 792 P a r t V I : S Q L T o d a y a n d T o m o r r o w 792 P a r t V I : S Q L T o d a y a n d T o m o r r o w

the purchase order document in Figure 25-4, this time defined using an XML Schema. It’s
useful to compare the XML Schema declaration in Figure 25-7 with the DTD declaration in
Figure 25-6. Even this simple example shows the strong data type support in XML Schema;
elements and attributes have data types that look very much like SQL data types. Also, the
schema in Figure 25-7 is itself an XML document, so it is more readable for someone who is
familiar with XML basics than the DTD in Figure 25-6.

Data Types in XML Schema
From a database point of view, XML Schema’s strong support for data types and data
structures is one of its major advantages. XML Schema defines over 20 built-in data types,
which correspond fairly closely to the defined SQL data types. Table 25-2 lists the most
important XML Schema built-in data types for database processing.

<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="purchaseOrder"type="POType"/>

<complex Type name="POType">
<sequence>

<element name="customerNumber" type="integer"/>
<element name="orderNumber" type="integer"/>
<element name="orderDate" type="date"/>
<element name="repNumber" type="integer" length="3"/>
<element name="terms">

<attribute name="ship" type="string"/>
<attribute name="bill" type="string"/>

</element>
<element name="orderItem" minOccurs="0" maxOccurs="unbounded">

<complexType>
<sequence>

<element name="mfr" type="string" length="3"/>
<element name="product" type="string"/>
<element name="qty" type="integer"/>
<element name="amount" type="decimal" fractionDigits="2"/>

</sequence>
</complextype>

</element>
</sequence>

</complexType>
</schema>

FIGURE 25-7 XML Schema for a simple purchase order document

 C h a p t e r 2 5 : S Q L a n d X M L 793
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 793

XML Schema Data Type Description

Numeric data

Integer Integer number

PositiveInteger Positive integers only

NegativeInteger Negative integers only

NonNegativeInteger Zero or positive integers only

NonPositiveInteger Zero or negative integers only

Int 32-bit signed integer

UnsignedInt 32-bit unsigned integer

Long 64-bit signed integer

UnsignedLong 64-bit unsigned integer

Short 16-bit signed integer

UnsignedShort 16-bit unsigned integer

Decimal Numeric, with possible decimal places

Float Standard-precision floating point

Double Double-precision floating point

Character data

String Variable-length character string

NormalizedString String, with newline, carriage return, and tab characters converted to spaces

Token String, processed like NormalizedString, plus leading/trailing space removal
and multiple spaces collapsed to a single space

Date and time data

Time Time of day (hr/min/seconds/thousandths)

DateTime Day and time (equivalent to SQL TIMESTAMP)

Duration Length of time (equivalent to SQL INTERVAL)

Date Year/month/day only

Gmonth Gregorian month (1 to 12)

Gyear Gregorian year (0000 to 9999)

Gday Gregorian day (1 to 31)

GmonthDay Gregorian month/day

Other data

Boolean TRUE/FALSE value

Byte Single byte data, with assumed sign bit

UnsignedByte Single byte data, no sign bit

base64Binary Binary data, expressed with base 64 notation

HexBinary Binary data, expressed with hexadecimal notation

AnyURI Internet URI, such as http://www.w3.org

Language Valid XML language (English, French…)

TABLE 25-2 XML Schema Built-in Data Types

http://www.w3.org

 794 P a r t V I : S Q L T o d a y a n d T o m o r r o w 794 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Like the SQL standard, XML Schema supports user-defined data types that are derived
from these built-in types or from other user-defined types. You can specify a derived data
type as a restriction on another XML type. For example, here is a definition for a derived
repNumType type that restricts legal employee numbers to a range from 101 to 199:

<simpleType name="repNumType">
 <restriction base="integer">
 <minInclusive value="101" />
 <maxExclusive value="200" />
 </restriction>
</simpleType>

With this data type defined, you can declare entities or attributes in a schema as having
a data type of repNumType, and the restriction is automatically implemented. XML Schema
provides a rich set of data type characteristics (called facets) on which you can build
restrictions. These include data length (for strings and binary data), inclusive and exclusive
data ranges, number of digits and fractional digits (for numeric data), and explicit lists of
permitted values. There is even a built-in pattern-matching capability, where data values
can be restricted by using a regular expression syntax like that used in the Perl scripting
language.

XML Schema also gives you the ability to define complex data types, which are user-
defined structures. For example, here is a definition for a complex custAddrType type that
is composed of familiar subelements:

<complexType name="custAddrType">
 <sequence>
 <element name="street" type="string" />
 <element name="city" type="string" />
 <element name="state" type="string" />
 <element name="postCode" type="integer" />
 </sequence>
</complexType>

You can also create a user-defined data type that is a list of data items with another type.
For example, here is a definition for a complex repListType type, which is a list of
salesperson employee numbers:

<simpleType name="repListType">
 <list itemType="repNumType" />
</simpleType>

XML Schema also allows you to overload a user-defined data type, allowing it to take
on one of several different underlying data types, depending on the specific need. For
example, in the preceding custAddrType definition, the postal code portion of the address
is defined as an integer. This works for U.S.-style five-digit ZIP codes (except that it doesn’t
preserve the leading zero), but not for Canadian six-digit postal codes, which include letters

 C h a p t e r 2 5 : S Q L a n d X M L 795
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 795

and digits. A more international approach is to declare the U.S. and Canadian versions, and
then a more universal postal code, which may be any of the types:

<simpleType name="usZip5Type">
 <restriction base="integer">
 <totalDigits value=5 />
 </restriction>
</simpleType>
<simpleType name="canPost6Type">
 <restriction base="string">
 <length value=6 />
 </restriction>
</simpleType>
<simpleType name="intlPostType">
 <union memberTypes="usZip5Type canPost6Type" />
</simpleType>

With user-defined data type definitions in place, you can more easily define larger, more
complex structures. For example, here is part of the purchase order document in Figure 25-7,
expanded to include a bill-to and ship-to address, and to permit a list of sales representatives:

<complexType name="purchaseOrderType">
 … other element declarations go here …
 <element name="billAddr" type="custAddrType" />
 <element name="shipAddr" type="custAddrType" />
 <element name="repNums" type="repListType" />
 … other element declarations continue …

Elements and Attributes in XML Schema
Building on its support for a rich data type structure, XML Schema also provides a rich
vocabulary for specifying the legal structure of a document type and the permitted elements
and attributes that compose it. XML Schema supports the same basic element types defined
in the DTD model:

• Simple content The element contains only text content (although as explained in
the preceding section, the text can be restricted to data of a specific type like a date
or a numeric value). Content of this type is defined using a simpleContent
element.

• Element-only content The element contains only subelements. Content of this
type is defined using a complexType element.

• Mixed content The element contains a mix of subelements and its own text
content. Unlike the DTD mixed-content model, XML Schema requires that the
sequence of elements and text content be rigidly defined, and valid documents must
conform to the defined sequence. Content of this type is defined using a mixed
attribute on a complexType element.

 796 P a r t V I : S Q L T o d a y a n d T o m o r r o w 796 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• Empty content The element contains only attributes, and no text content of its
own. XML Schema treats this as a special case of element-only content, with no
declared elements.

• Any content The element contains any mix of content and subelements, in any
order. Content of this type is defined using the XML Schema data type anyType as
the data type of the element.

These basic element types can appear individually in the declarations of elements
within a schema. You can also specify that an element may occur multiple times within a
document, and optionally, specify a minimum and a maximum number of occurrences.
XML Schema also supports SQL-style NULL values for elements, to indicate that element
contents are unknown. The XML terminology is nil values, but the concept is the same.
This capability simplifies mapping of data between XML document elements and database
columns that can contain NULL values.

XML Schema lets you define a logical group of elements that are typically used together
and lets you give the element group a name. Subsequent element declarations can then
include the entire named group of elements as a unit. Grouped elements also provide
additional flexibility for element structure. The group can specify a sequence of elements,
which must all be present in the specified order. Alternatively, it can specify a choice of
elements, indicating that only one of a set of defined element types must appear.

XML Schema provides similar control over attributes. You can specify an individual
attribute as optional or required. You can specify a default attribute value, to be used if an
explicit value is not provided in the document instance, or a fixed attribute value, which
forces the attribute to always have the specified value in an instance document. Attribute
groups allow you to define and name a group of attributes that are typically used together.
The entire group of attributes can be declared for an element in a schema simply by naming
the attribute group.

Finally, XML Schema provides extensive support for XML namespaces, which are used to
store and manage different XML vocabularies—that is, different collections of data type
definitions and data structure declarations that are used for different purposes. In a large
organization, it will be useful to define standardized XML representations for common basic
business objects, such as an address, a product number, or a customer-id, and to collect
these in a common repository. Higher-level XML declarations for documents such as
purchase orders, vacation time requests, payment authorization forms, and the like will also
be useful, but should typically be collected together in groups based on shared usage.

XML namespaces support these capabilities by allowing you to collect related XML
definitions and declarations, store them in a file, and identify them by name. An XML schema
for a new type of document can then draw its basic data definitions and structures from
one or more namespaces by referencing the namespaces in the schema header. In fact, the
standard XML vocabulary and many of the built-in data types are defined in a namespace
maintained on the W3C organization web site. An Internet-style URL identifies the source file
for an XML namespace.

If an XML Schema declaration incorporates definitions from more than one XML
namespace, the potential for name conflict exists. The same name could easily have been
chosen by the developers of two different namespaces to represent two quite different XML
structures or data types. To remove the potential ambiguity, XML data types and structure
definitions can be specified using qualified names, by using a technique that closely parallels

 C h a p t e r 2 5 : S Q L a n d X M L 797
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 797

the use of qualified column names in SQL. Each namespace that is identified in a schema
header can be assigned a prefix name, which is then used to qualify references to items
within that namespace. For clarity, the prefix names have been omitted from the schema
examples in this chapter. Here is a more typical schema header and excerpt from a schema
body that uses prefix names and qualification to reference the main XML Schema namespace
(maintained by W3C) and a corporate namespace:

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:corp="http://www.mycompany.com/schemas/purchasing" >
 <complexType name="purchaseOrderType">
 … other element declarations go here …
 <element name-="orderDate" type="xsd:date" />
 <element name="billAddr" type="corp:custAddrType" />
 <element name="shipAddr" type="corp:custAddrType" />
 <element name="repNums" type="corp:repListType" nillable="true" />
 … other element declarations continue …

In this example, the corporate XML namespace is identified by the prefix corp and the
main XML Schema namespace by the prefix xsd. All of the data type references are
qualified by one of these prefixes, and as a result, they are unambiguous. Because qualified
references can become quite cumbersome, it’s also possible to specify default namespaces
that minimize the need for prefixes. The complete XML Schema naming system is quite a bit
more sophisticated than the capabilities outlined here, but the capabilities are clearly
directed toward supporting the creation of very complex document type specifications by
large groups of people.

As with DTDs, the power of XML Schema is that it allows you to specify well-defined
document types against which individual document instances can be validated. All of the
popular XML parsers, whether they implement the SAX API or the DOM API, provide XML
Schema–based validation. You can specify the schema to which an XML document claims
conformance within the XML document itself, but you can also ask a parser to validate an
arbitrary XML document against an arbitrary schema.

XML and Queries
SQL provides a powerful and very useful query facility for finding, transforming, and
retrieving structured data from relational databases, so it’s natural to seek a similar query
capability for finding, transforming, and retrieving structured data from XML documents.
The earliest efforts to define a query and transformation capability were embodied in a pair
of specifications—Extensible Stylesheet Language Transformation (XSLT) and XML Path
Language (XPath). Like XML itself, these specifications have their roots in document
processing.

XSLT focuses on transforming an XML document, as shown in Figure 25-8. A style sheet
governs the transformation, selecting which elements of the input XML document are to be
transformed, and dictating how they are modified and combined with other elements to
produce the output XML document. One popular use for XSLT is to transform a single,
generic version of a web page into various forms that are appropriate for rendering on
different screen sizes and display devices.

 798 P a r t V I : S Q L T o d a y a n d T o m o r r o w 798 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Within the XSLT language, it is often necessary to select individual elements or groups of
elements to be transformed, or to navigate through the element hierarchy to specify data to be
combined from parent and child elements. XPath originally emerged as a part of the XSLT
language for element selection and navigation. It quickly became apparent that XPath was
useful for other applications as well, and the specification was split out of XSLT to stand on its
own. In the early days of XML, XPath was the de facto query capability for XML documents.

More recently, industry attention has focused on some of the deficiencies of XPath as a
full query language. A W3C working group was formed to specify a query facility under the
working name XML Query, or XQuery. As the specification passed through various drafts,
the XSL working group (responsible for XSLT and XPath) and the XQuery working groups
joined forces. In January 2007, both XQuery 1.0 and XPath 2.0 were published as standards.
The two languages are tightly linked, with common syntax and semantics wherever possible.

A full description of XQuery and XPath is beyond the scope of this book. However, a
brief review of XQuery concepts and a few examples will illustrate the relationship to SQL.

XQuery Concepts
The data model underlying the SQL is the row/column table, and the data model underlying
XQuery is a tree-structured hierarchy of nodes that represent an XML document. XQuery
actually uses a finer-grained tree structure than the element hierarchy of XML documents
and XML Schema. These XQuery nodes are relevant for database-style queries:

• Element node This type of XQuery node represents an element itself.

• Text node This type of node represents element contents. It is a child of the
corresponding element node.

• Attribute node This type of node represents an attribute and attribute value for an
element. It is a child of the corresponding element node.

• Document node This is a specialized element node that represents the top, or root,
level of a document.

FIGURE 25-8 Transforming an XML document with XSLT

XML Style sheet

Input
XML document

XSLT
Processor

Output
XML document

 C h a p t e r 2 5 : S Q L a n d X M L 799
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 799

To navigate through an item tree and identify one or more items for processing, XQuery
uses a path expression. In many ways, a path expression plays the same role for XQuery as
the SQL query expression, described in Chapter 24, plays for SQL. A path expression
identifies an individual node in the XQuery item tree by specifying the sequence of steps
through the tree hierarchy that is needed to reach the node. XQuery path expressions come
in two types:

• Rooted path expression A rooted path expression starts at the top (the root) of the
item tree and steps down through the hierarchy to reach the target node. Within the
book document in Figure 25-1, the rooted path expression /bookPart/chapter/
section/para navigates down to an individual paragraph within a section of a
chapter.

• Relative path expression A relative path expression starts the current node of the
item tree (the node where processing is currently focused) and steps up and/or
down through the hierarchy to reach the target node. Within the book document in
Figure 25-1, the relative path expression section/para navigates down to a
specific paragraph if the current node is a chapter node.

The steps within a path can specify motion downward within the node tree to child
nodes that represent subelements, element contents, or element attributes. The steps can
also specify upward motion to the parent of a node. With each step, you can specify a node
test that must be passed to continue on the path to the target element. Table 25-3 shows
some typical path expressions and the navigation path that they specify.

Path Expression Navigation

section/para Move down to a child section element, and down from
there to a child para element.

/bookPart/chapter/section Start at the top of the hierarchy, and move down through
bookPart, then chapter children, to a section child.

.. Move up from the current node to its parent.

../chapter Move up to the parent of the current node, then down to
a chapter child node.

.//para Select any child para node that appears anywhere below
the current node in the hierarchy.

@@hdrLevel Select the hdrLevel attribute of the current node.

/header@hdrLevel Select the hdrLevel attribute of a child header node.

para[3] Select the third child element with a para type.

* Select all children of the current node.

*/para Select all para grandchildren of the current node.

chapter[@revStatus=" draft"] Select all chapter children of the current node that have
an attribute named status with value draft.

TABLE 25-3 Some Typical XQuery Path Expressions

 800 P a r t V I : S Q L T o d a y a n d T o m o r r o w 800 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Like SQL, XQuery is a set-oriented language. It is optimized to work on an XQuery
sequence, an ordered collection of zero or more items. The items themselves might be
elements, attributes, or data values. XQuery operations tend to take sequences as their input
and produce sequences as their output. A simple atomic data item is usually treated as if it
were a one-item sequence.

XQuery also resembles SQL in being a strongly typed language. The working draft of
the XQuery specification is evolving to align the XQuery data types with those specified in
XML Schema, which were described earlier in this chapter in the “XML Schema” section.
Like SQL, XQuery provides constructors to build up more complex data values.

XQuery differs substantially from SQL in being an expression-oriented rather than a
statement-oriented language. Casually stated, everything in XQuery is an expression, which
is evaluated to produce a value. Path expressions are one type of XQuery expression, and
they produce a sequence of nodes as their result. Other expressions may combine literal
values, function calls, arithmetic and Boolean expressions, and the typical parenthesized
combinations of these to form arbitrarily complex expressions. Expressions can also
combine sequences of nodes, using set operations like the union or intersection of sets,
which match the corresponding SQL set operations.

Named variables in XQuery are denoted by a leading dollar sign ($) in their names. For
example, $orderNum, $currentOffice, and $c would be valid XQuery variable names.
Variables can be used freely in XQuery expressions to combine their variables with literals
and other variable values and node values. Variables receive new values through function
calls, and by assignment in for or let expressions.

Query Processing in XQuery
XQuery path expressions can provide the XML equivalent of the simple SQL SELECT
statement with a WHERE clause. Assume that a collection of XML documents contains the
XML equivalent of the contents of the sample database, with the top-level documents
named with the names of the tables in the sample database and the individual row
structures named with the singular equivalents of those names (e.g., the OFFICES
document contains individual OFFICE elements to represent the rows of the OFFICES
table, etc.). Here are some query requests and their corresponding path expressions:

Identify the offices managed by employee number 108.

/offices/office[mgr=108]

Find all offices with sales over target.

/offices/office[sales > target]

Find all orders for manufacturer ACI with amounts over $30,000.

/orders/order[mfr = 'ACI' and amount > 30000.00]

Because the sample database is a shallow row/column structure, the XML hierarchy is
only three levels deep. To illustrate the query possibilities in more hierarchical XML
documents, consider once again the book document in Figure 25-1. Here are some query
requests and their corresponding path expressions:

 C h a p t e r 2 5 : S Q L a n d X M L 801
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 801

Find all components of chapters that have draft status.

/bookPart/chapter[revStatus="draft"]/*

Get the third paragraph of the second chapter of part 2.

/bookPart[@partNum="2"]/chapter[2]/para[3]

These expressions don’t give you the same control over query results as the SELECT list
provides in SQL queries. They also don’t provide the equivalent of SQL cursors for row-by-
row processing. XQuery provides both of these capabilities through For/Let/Where/
Returns expressions (FLWR expressions, pronounced “flower”). An example is the best way
to illustrate the capability. Once again, assume a set of XML documents structured to
resemble the sample database, as in the previous examples. This query implements a two-
table join and generates three specific columns of query results:

List the salesperson’s name, order date, and amount of all orders under $5000, sorted by amount.

<smallOrders> {
 for $o in document("orders.xml")//orders[amount < 5000.00],
 $r in document("salesreps.xml")//salesreps[empl_num=$o/rep]
 return
 <smallOrder> {
 $r/name,
 $o/order_date,
 $o/amount
 }
 </smallOrder>
 sortby(amount)
 }
</smallOrders>

At the outer level, the contents of the smallOrders element are specified by the XQuery
expression enclosed in the outer braces. The for expression uses two variables to iterate
through two documents, corresponding to the ORDERS and SALESREPS tables. These two
variables effectively implement a join between the two tables (documents). The predicates
(search arguments) at the end of each of the two lines following the for keyword correspond to
the SQL WHERE clause. The predicate in the first line restricts the query to orders with amounts
under $5000. The predicate in the second row implements the join, using the $o variable to link
rows in the SALESREPS table (document) with rows in the ORDERS table (document).

The return part of the for expression specifies which elements should be returned as
the results of the expression evaluation. It corresponds to the select list in a SQL query. The
returned value will be an XML sequence of smallOrder elements, and each element comes
from one corresponding element in the source tables (documents). Once again, the iteration
variables are used to qualify the specific path to the element whose contents are to be
returned. Finally, the sortby part of the expression functions in the same way as the
corresponding ORDER BY clause of a SQL query.

A few additional query-processing capabilities are not illustrated in this example. You
can use a let expression within the for iteration to capture additional variable values
within the for loop that you may need in predicates or other expressions. An if…then…else
expression supports conditional execution. Aggregate functions support grouped

 802 P a r t V I : S Q L T o d a y a n d T o m o r r o w 802 P a r t V I : S Q L T o d a y a n d T o m o r r o w

XQuery queries, corresponding to the SQL summary queries described in Chapter 8. With
these capabilities, the flexibility of XQuery is comparable to that of SQL query expressions.
However, as you can see from the example, the style of the query expression is quite
different, reflecting both the expression orientation and the very strong navigational
orientation of XQuery and XML documents.

XML Databases
With the proliferation of XML usage and XML documents, several venture-backed startup
companies have been formed to commercialize native XML databases. Typically, these
databases store and model their data contents as XML documents. The actual database
contents may be stored in native form as XML text, or in some parsed form such as that
maintained by a DOM XML parser. Most of the XML database products currently support
XPath as a core query capability, and many of them have added proprietary extensions to
XPath to make it a more complete query language. They typically pledge support for
XQuery as a replacement for XPath or as a second, complementary query language, as soon
as the XQuery specification is finalized.

The vendors of native XML databases tend to make the same arguments in favor of their
products that the object-oriented database vendors made a decade earlier. With external
data increasingly represented as XML, the best match is a database that carries the same
underlying data model. The choice of XML documents as a native format reduces the
overhead of XML marshaling and unmarshaling, but provides the same level of individual
element and attribute access and navigation. Finally, they say that with a growing body of
users trained in HTML and XML, an XML database can be more accessible to more people
than SQL-based relational databases.

It is still too soon to judge the eventual market success and impact of the native XML
databases. It seems likely that a native XML database may be a good match for data
management needs within an XML-based web site for storing, accessing, and transforming
XML documents. However, the previous history of pure object-oriented databases suggests
that relational database vendors are capable of extending their core products to incorporate
the most important features of new data models at a pace that is fast enough to retain their
dominant market shares. It seems very likely that relational databases will remain the
dominant native database type for data processing applications. But within these products,
XML integration will grow tighter over time, and relational products will offer more and
more XML-oriented features.

 C h a p t e r 2 5 : S Q L a n d X M L 803
PART VI

 C h a p t e r 2 5 : S Q L a n d X M L 803

Summary
This chapter described the relationships between XML and SQL, and between XML documents
and relational databases:

• XML has its origins in printing and publishing; it was originally designed as a way
to indicate and specify document contents.

• XML’s document orientation produces a natural hierarchical view of data. The
mismatch between XML hierarchies and SQL row/column tables is one of the
biggest challenges when integrating the two technologies.

• XML documents comprise a hierarchy of elements. Elements can carry contents,
they can have named attributes, and they can have other elements as children.

• XML integration with relational databases can take several forms, including XML
query output, XML input, XML data exchange, and the storage and retrieval of XML
data within the database itself.

• XML Schema, and an older standard, XML DTDs, define rigid structures for specific
types of documents. They are useful to restrict document contents to a standard
form acceptable for data processing applications.

• XQuery is an emerging query language for XML documents. It has some parallels to
SQL, but its focus on expressions and path navigation make it quite different in
style from SQL.

• Native XML databases have been introduced and are moving to adopt XQuery as
a native query language. They pose a challenge to the relational model, but major
DBMS vendors are moving quickly to provide XML extensions to their relational
products.

This page intentionally left blank

26
Specialty Databases

Today’s database market is dominated by the major enterprise database management
systems. The flagship products from Oracle, IBM, Microsoft, Sybase, and others are
large, complex pieces of software that have evolved to a “one size fits all” approach.

Large companies can use the latest version of the Oracle database or of IBM’s DB2 to
process online transactions from their web site, to store data warehouses and analyze
business data, to manage data for their accounting and finance systems, and to support
departmental database use. These applications represent different workloads, but the
enterprise database products are broad enough and flexible enough to address them all.

Some database applications, however, have requirements that are so specialized or so
stringent that the mainstream enterprise databases cannot stretch far enough to address
them effectively. These applications remain the domain of specialty or niche database
products. It’s a testimony to the power of SQL that even these specialized, niche database
products are SQL-based today. This chapter examines four of these database niches, the
specialty databases that address them, and the SQL features that have been added to meet
their requirements.

Very Low Latency and In-Memory Databases
Some important database applications in the telecom and financial services markets require
very fast response from the database system, often measured in millionths of a second. For
example, every mobile network has an underlying database that tracks the current location of
every mobile phone and of the particular cell tower that is servicing the phone. This database
must always be up to date so the network can determine at all times where to route an
incoming call for any mobile phone that is connected. If a call is already under way and the
mobile user is on the move (for example, if he or she is riding in a car), the database demands
are even higher, because the call in process must be “handed off” from one cell location to
another. For a network of tens of millions of mobile phones, each individual database access
must be very short, or the database will become a bottleneck to call processing.

805

CHAPTER

 806 P a r t V I : S Q L T o d a y a n d T o m o r r o w 806 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The database demands are even higher if the mobile user is on a prepaid billing plan.
When such a customer tries to use a mobile service—to make a call, send a text message,
or access the Internet—the network must quickly determine whether to allow the action.
Behind the scenes, software in the network must determine which customer is trying to act,
find that customer’s billing plan, figure out the billing charge associated with the action
(which may vary depending on the time of day or the location, or on whether the customer
is being called or texted, or on many other factors), look up the customer’s current account
balance, determine whether the customer has sufficient funds, and deduct the initial charges
from the customer’s balance. This sequence can require dozens of accesses and updates to
the operator’s billing database—all while the customer and the network are waiting for a
call or some other activity to start. In many areas of the world, a mobile network will have
tens of millions of subscribers, the vast majority of whom are prepaid customers, so again
database access must be very swift.

Financial trading applications pose a similar database latency challenge. Feeds of market
data, such as offers to buy and sell stocks, can exceed 50,000 messages per second, and that
total is revised upward at least twice a year. A computerized stock trading application that
tracks the “current state of the total market” must be able to process each message (usually
requiring an update of a database row) in less than 20 millionths of a second, or it will fall
behind the incoming messages. In addition, the ability to trade quickly as market conditions
change is a key competitive advantage in stock trading, so shaving even a few millionths of
a second from database delays can be worth millions of dollars per year.

The demands of applications like these are beyond the scope of mainstream database
systems today. In the typical client/server architecture, the delay associated with the
network alone is often measured in milliseconds (thousandths of a second), so even an
infinitely fast database poses too much delay. If the network delay is eliminated, access to
the physical disk where the database is stored can take tens of milliseconds, shifting the
bottleneck to the computer’s storage. Even if this delay is eliminated, the complexity of the
database software and the number of CPU instructions that it must process for even the
simplest of database operations can add up to tenths of a millisecond or more.

To meet these extreme demands, developers historically built proprietary “homegrown”
databases, customized to the specific requirements of each application. Every major Wall
Street brokerage firm had an IT department that built its own trading database system, and
every major telecom equipment vendor built one or more network databases to support its
network equipment. In the late 1990s, a new breed of standard database software emerged
to address these requirements—the SQL-based in-memory database.

Anatomy of an In-Memory Database
In-memory databases take the traditional architecture of an enterprise database system and
radically change some of the core assumptions. In a conventional database, the active
database is stored on mass storage (disks), and only a small fraction of the data is held in
the computer system’s memory at any one time. In an in-memory database, the entire active
database is stored in memory (hence the name). Every database access or update can be
satisfied by memory access; you never need to retrieve data from mass storage. The
database system may still maintain a log of transactions on disk, or store a copy of the
database on disk for error recovery (most commercial systems do both of these things), but
the disk access is not in the direct path to complete the database operation.

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 807
PART VI

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 807

The simple change in assumption from a disk-centric to a memory-centric design has
broad-reaching implications for the way the DBMS operates:

• In a conventional database, the data in memory is a copy of the “real” data on disk,
and the copy can become out-of-date as other CPUs or systems update the database.
The DBMS must take measures to ensure that the in-memory data is fresh, and
refresh it from the disk if it is not. For an in-memory database, the data in memory
is the active copy; it is always fresh.

• In a conventional database, the arrangement of the data on disk can dramatically
impact performance. The DBA must take measures to ensure that the storage system
(SAN or NAS along with associated disk drives) is configured and optimized such
that frequently accessed data can be retrieved and updated with minimal disk input
and/or output (I/O), which is much slower than memory access. In an in-memory
database, the physical storage configuration of data is irrelevant…the speed to
access different random locations in the computer’s memory is, for most purposes,
the same.

• Because the physical disk configuration is important, a conventional database is
constantly rearranging data locations, splitting data stored in a single disk block
into multiple disk blocks, and updating its internal data structures to keep track of
the locations. An in-memory database has no need to move data around in memory.

• Because the physical location of a database row on disk can change, a conventional
database keeps track of the row based on a virtual address or row-id. Every time the
row must be physically accessed, the database performs an internal lookup to find
the actual current physical location.

• In conventional databases, DBAs and database users consider fault tolerance a
given, because conventional DBMSs are designed to write data updates to the log
file first, and logs are typically mirrored to more than one physical device. This is
not at all the case with in-memory databases, where a sudden power failure or
server failure can easily lose changes made since the last write to disk. Fault
tolerance can be achieved with in-memory databases through technology such as
redundant database copies, uninterruptible power systems, and nonvolatile
memory, but it takes careful planning and design to implement these features.

The practical impact of these differences is illustrated by considering a simple database
operation—finding the row pointed to by a foreign key. In the sample database, this is a
move from a specific row in the ORDERS table to the corresponding row in the PRODUCTS
table for the product being ordered, for example. In an in-memory database, this is a very
simple operation. The foreign key will be represented within the database by a direct
pointer to the memory location of the corresponding PRODUCTS row. Following this link
takes only a few CPU instructions, and the time required is measured in millionths or even
billionths of a second.

For the conventional database, the situation is far more complex. The foreign key is
probably represented by the data values of the manufacturer and product IDs. The database
must use its indexing scheme to locate the corresponding PRODUCTS row. For a larger
database of tens of thousands of products, the index may be several layers deep. If the disk
block containing the top level of the index is in memory, the DBMS can start working its

 808 P a r t V I : S Q L T o d a y a n d T o m o r r o w 808 P a r t V I : S Q L T o d a y a n d T o m o r r o w

way down through the index layers. If not, the block of data must be located on disk and
brought into memory. The same pattern repeats at each level of the index, with computation
required to find the particular index entry within the block. Finally, the index has been
searched, and the virtual row-id of the correct row has been found.

Now the process repeats to locate the actual row of data. The DBMS translates the virtual
row-id into a physical location—again it’s a computationally intensive process. The current
blocks of data in the DBMS’ memory buffers are searched to determine if the required data is
already in memory. If so, the DBMS must also check to make sure that the contents of that
particular block have not been invalidated by another program’s updates. If the block is fresh,
processing can proceed; if not, a disk read is required to fetch it into memory. But first the DBMS
must choose which block of data currently in memory is to be replaced by this new block—
again, computation is required to apply the appropriate algorithm to select the stale block. If it
has been updated, it must be written to disk first, and then the new block can be retrieved.

The DBMS isn’t quite finished yet. That 2K or 4K block of data likely contains several
rows of PRODUCTS, so the correct row’s location must be calculated. Then the DBMS can
retrieve the row, copy it into a different memory location where the DBMS can operate on it,
and the actual work of accessing and/or modifying the data can proceed.

Even if the traditional DBMS doesn’t have to perform any actual disk I/O in the process
just described, the possibility of disk I/O drives the need to execute hundreds of thousands
of CPU instructions (at best) to carry out the requested operation. It is this difference in
complexity, even when a traditional DBMS is running with all of its data in memory, that
creates a dramatic difference in latency between an in-memory database and a traditional
enterprise database.

In-Memory Database Implementations
The first commercial database products based on in-memory architecture appeared in the
late 1990s, following university research earlier in the decade. One of the advantages of
these products was their ability to use the same industry-standard SQL as their complex
enterprise cousins. A programmer who was already familiar with DB2 or Oracle
development could shift to an in-memory database development project and find a
comfortable, familiar database language. This advantage, and the flexibility of a SQL-based
relational database compared with the rigidity of the earlier proprietary in-memory
databases, made the new generation of in-memory databases the popular choice for new
telecom and financial trading applications at the beginning of the next decade.

By mid-decade, the popularity of in-memory databases had caught the attention of the
major enterprise database vendors. One of the market leaders, TimesTen, was acquired by
Oracle in 2005. In response, IBM’s database division acquired another in-memory database
player, Solid Data Systems, about a year and a half later. Although the leading in-memory
databases now are offered by major enterprise database vendors, the in-memory products
remain a separate offering, firmly targeted at their market niche.

Caching with In-Memory Databases
In many applications that demand the low latency of in-memory databases, the data being
accessed is related to the data in a much larger conventional enterprise database. In mobile
phone applications, for example, the real-time network information about mobile phones,

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 809
PART VI

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 809

their locations, and current calling or texting operations is related to data about customers,
their billing plans, and historical usage patterns. To get a complete, real-time view of the
customer, the information in the in-memory and enterprise databases must be related.

In recent years, in-memory databases have evolved to meet this need by being
repurposed as a high-performance database cache, front-ending a conventional enterprise
database. This caching architecture is shown in Figure 26-1. Real-time database requests are
satisfied by the in-memory cache, while more traditional database processing uses the
conventional, disk-based back-end database. Both Oracle and IBM have moved to offer
these caching configurations after their respective acquisitions of in-memory database
vendors.

The in-memory database caching currently offered provides consistent SQL access to
front-end and back-end data. The cache also offers some level of transparency to the SQL
programmer, who does not need to know whether the data being requested resides in the
front-end or back-end system. However, today’s in-memory caches are not transparent to
the database administrator. The administrator must carefully choose which tables or views
are to be “pulled forward” into the in-memory front-end, so that real-time queries can be
satisfied without passing the request to the back-end. Those decisions require a careful
balance between the performance advantages of caching, and the overhead of keeping the
front-end and back-end systems synchronized to ensure data integrity. It’s likely that these
two-tier caching architectures will gain in popularity to support high-volume web sites and
other Internet database processing. As they do, an increased level of transparency and more
“automatic intelligence” in the cache will be important.

FIGURE 26-1 In-memory database caching

Enterprise DBMS

Application

…

In-memory
database

Application

…

In-memory
database…

 810 P a r t V I : S Q L T o d a y a n d T o m o r r o w 810 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Complex Event-Processing and Stream Databases
Some important applications in financial services and real-time systems involve processing
a stream of data coming from a data feed. For example, in stock trading applications, the
various stock exchanges transmit a continuous stream of quotes (offers to buy or sell
securities) and completed transactions that must be captured and analyzed for automated
trading. Or in a real-time battlefield application, various radar and sensor systems may
generate a continuous stream of data about troop movements and threats that must be
captured and analyzed to determine the appropriate response. In these examples, and
others like them, the individual messages in the data stream represent real-world events,
such as a stock trade or a troop movement. For this reason, the applications are often
referred to as stream-processing or event-processing applications.

A conventional enterprise database architecture addresses event-processing applications
by first capturing the stream of events and persisting it to disk as a sequence of rows in
a database table or tables, as shown in Figure 26-2. Once the data is stored in the database,
one or more queries can be run against it to produce the required analysis. If the application
demands a continuous, real-time analysis of the data as it evolves, it will rerun the query
over and over, perhaps once every few seconds. Each subsequent query will capture the
additional data added to the table in the most recent interval and reflect that data in the
query results. If the application needs to report on only the most recent data, another
process may be introduced that deletes stale data from the table.

As the figure illustrates, conventional database systems are designed to query “data
at rest”—the data as it exists on the computer system’s storage. For event-processing
applications, the actual goal is often to analyze and summarize “data in motion”—the stream
of data as it flows by on a network. Often the application has no interest in the individual
events in the stream, except for how they contribute to a real-time average or running total,
or when they deviate from some normal or expected result. The process of persisting the data
to disk is a wasted step for such applications. In extreme cases, the disk storage may prove
to be a bottleneck in the system, limiting the rate at which arriving events can be processed.
Events may be skipped in the process, resulting in missed opportunities for securities trades
or incomplete battlefield information for decision making.

FIGURE 26-2 Data-feed processing with a conventional database

Stream
database
engine

Query
resultsQueryData feed

Data records
as table rows

… …

…

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 811
PART VI

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 811

In the late 1990s and early 2000s, university researchers began to focus on the problems
of event processing and built prototypes of a different type of database engine, designed to
directly process data in motion. These stream databases examine event data as it arrives, and
calculate and summarize it on the fly, without persisting it to disk, as shown in Figure 26-3.
Queries operate continuously, producing a steady stream of real-time moving averages or
totals, or flagging individual events that are abnormal and require further examination. In
some of these systems, the stream data can be combined with data in conventional database
tables, which may contain reference data that is looked up to interpret the data stream or
normal values against which the data stream is to be compared. This produces a hybrid
database that combines event processing and conventional database analytics.

Continuous Queries in Stream Databases
The concept of a continuous query is fundamental to the operation of stream databases. Unlike
a traditional database query, which retrieves and calculates the specified data from data
stored on disk as of a particular time, a continuous query is executed repeatedly against the
data arriving in a data stream. Most products offer the ability to specify either time-based or
record-based windows. They may also offer the choice of a sliding window or a jumping
window. The operation of continuous queries and windows is illustrated in Figure 26-4.

Using a time-based window, for example, a streaming database can be instructed to
calculate the average price and total share volume for each stock traded during a five-
minute interval. The sequence of query values over time represents the state of the stock
market during a trading session. Alternatively, using a record-based window, the database
can be instructed to calculate the average price and total share volume for each group of
100 trades that occurs. Again, the sequence of query values over time will show the evolving
state of the stock market, this time paced by the rate of trading instead of the passage of
time. In all cases, the query results often represent statistical calculations of numerical data
(totals, averages, maximum, minimum, standard deviation, etc.) during a window of time,
possibly grouped (as in this example, by ticker symbol of the stock). It is often useful to
combine this dynamically calculated information with static information that is looked up
in a traditional enterprise database.

FIGURE 26-3 Data-feed processing with a stream database

Stream
database
engine

Query
resultsQueryData feed

Data
records
for query
processing …

…

 812 P a r t V I : S Q L T o d a y a n d T o m o r r o w 812 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Stream Database Implementations
Some of the earliest work on stream databases was conducted by university researchers
from MIT, Brown, and Brandeis University, led by Dr. Michael Stonebreaker, who had
pioneered earlier generations of relational database technology. In 2003, Dr. Stonebreaker
and some of his research colleagues formed a company named StreamBase Systems.

On the opposite coast, researchers at the University of California at Berkeley were also
working on stream databases, as they had worked on earlier generations of database
technology. Led by Dr. Michael Franklin, this research was based on the Postgres open-source
database engine (which ironically had been initially developed by one of Dr. Stonebreaker’s
earlier teams). In 2005, the Berkeley research became the foundation of a venture-backed
company named Truviso, focused on the stream database opportunity.

In the United Kingdom, a decade of database research at Cambridge University produced
Apama, a company founded in 1999. Apama focused at the applications level, developing
and delivering an algorithmic trading platform that it sold to the securities industry. The
underlying event-processing foundation is exposed in two other products, focused on generic
Complex Event Processing (CEP) and on Business Activity Monitoring (BAM). In 2005,
Progress Software acquired Apama as a complement to its ObjectStore object database.

Two other earlier market players were Coral8, founded in 2003 in Mountain View,
California, and Aleri, which had developed event-processing technology during its 20-year
history and had added packaged applications for Wall Street trading through acquisition.
The companies merged in 2009 and jettisoned the trading application to focus on combining
their CEP offerings under the banner of continuous intelligence.

All of the market participants focus primarily on Wall Street securities trading
applications, because that market segment has the clearest requirements for the capabilities
that streaming databases uniquely provide, and also has the largest opportunities for

FIGURE 26-4 Continuous query windows

Count: 5
avg: $5.80

Count: 6
avg: $7.00

Count: 4
avg: $5.75

6 5 7 6 5 5 8 6 77 9 6 4 7 6

Time-based windows (every 50 milliseconds)

Count: 5
avg: $5.80

Count: 5
avg: $6.60

Count: 5
avg: $6.40

6 5 7 6 5 5 8 6 77 9 6 4 7 6

Record-based windows (every 5 records)

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 813
PART VI

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 813

CEP applications to significantly increase revenue. Federal government applications
(especially in the intelligence community for analysis of gathered intelligence streams)
also figure prominently for several of the vendors. All of the vendors cite some successes in
web-based businesses or in telecom as evidence of the potential for broader market appeal,
but the deployments outside the Wall Street and government sectors have been limited to date.

Stream Database Components
The market for stream databases has matured to the point where all of the vendors offer
a similar suite of facilities. The major elements, illustrated in Figure 26-5, usually include
most of the following:

• An event-processing engine accepts incoming messages from a data feed or
network, and carries out continuous queries against the data. The engine may also
include the ability to combine data from the stream with data from its own static
tables, or from static data managed by a traditional enterprise DBMS.

• A suite of input adapters accepts incoming messages from common data feeds and
passes them to the event-processing engine in a standard format. The adapters
typically support the Java Messaging Service (JMS) API, Tibco’s popular
Rendezvous messaging service, various feeds from the financial markets, and other
enterprise messaging systems.

• A suite of output adapters accepts messages passed through by the event-
processing engine or generated by it, and translates them for transmission on
common messaging systems, such as JMS-compatible systems or Rendezvous.

FIGURE 26-5 Elements of a streaming database

Event-
processing

engine

Input
adapter

Input
adapter

Data feed

Data feed
Data feed

Output
adapter

DBMS
link

Development
environment

Dash-
board

Enterprise
database

 814 P a r t V I : S Q L T o d a y a n d T o m o r r o w 814 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• Enterprise DBMS links allow the event-processing engine to merge data from the
data feed with data retrieved from traditional enterprise databases. All of the major
products support database access via JDBC, and some provide support for
proprietary enterprise database APIs.

• A development environment allows programmers to build continuous queries and
to test and deploy them as production systems. Some vendors offer graphical
development environments to specify data filtering, merging, joining, and grouping.
Others provide support for a text-based SQL-based language that is used to specify
the queries. The development environment may also support a modeling language to
define the formats of the various data streams and how the data is to be
manipulated by the engine.

• A dashboard or portal provides a graphical view of the query results, visually
displaying averages, totals, exceptions, and the like in real time as the event-
processing engine carries out its work on the streaming data.

Embedded Databases
Some databases are completely invisible to end users because they are deeply embedded
within machines or devices, and used to support or control their operation. The
machinery that controls a manufacturing process or an automated loading dock, for
example, might contain a database that helps to control the assembly line or loading
equipment. A network element such as a router, a switch, or an automated voice-
response unit may contain a database that stores configuration parameters or gathers
performance statistics, or that determines the valid responses to a user’s spoken
commands. The entertainment and engine control systems in your car may well contain
embedded databases that store information about your favorite satellite radio stations or
that collect engine performance information to anticipate maintenance requirements. In
each of these cases, the operation of the database is fundamental to the operation of the
device, but no database queries are visible, and no database administrator is managing
the database’s operation.

Until about ten years ago, embedded databases to support applications like these were
always custom-built to meet the specific needs of the application. Embedded databases
almost always operate in a very resource-constrained environment, with limited memory
and little or no disk storage. There was simply no way that a database system based on
standard SQL could squeeze into the required very small memory footprint, and the
generality of a SQL-based database was overkill for the needs of the application. Over
time, however, the cost of memory, disk storage, and computing power has steadily
plummeted, providing vastly more processing power and storage at low price points. In
parallel, the sophistication and intelligence of factory automation, network equipment,
entertainment systems, and control systems has grown dramatically. At the intersection of
those two trends, commercial SQL-based embedded database products have emerged to
fill the need.

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 815
PART VI

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 815

Embedded Database Characteristics
Commercial embedded SQL database products tend to have the same basic characteristics,
driven by the requirements of the types of applications that they serve. These include

• Very small memory footprint While enterprise databases typically require tens of
gigabytes (or more) of memory to operate, embedded databases may squeeze into
as little as a few hundred kilobytes of memory.

• Zero or very little administration While enterprise databases typically have
dedicated DBAs who configure, manage, and tune them, embedded databases are
completely managed by the application that uses them. There is no database
administration, and usually little or no configuration when the product containing
the database is placed into service.

• Support for unconventional storage The data managed by an embedded database
may be stored entirely in memory, in nonvolatile “flash” memory, on a solid-state
USB drive, or on a storage medium other than the disk drives usually found on
database servers.

• Limited SQL support With much less memory to work in, the range of SQL
language support is usually limited to basic data manipulation and queries. The
application probably has no need of data warehousing extensions, exotic data types,
integration with XML, or database auditing.

• Static database schema The structure of the database is designed to serve a
specific application, and it can be determined at the time the product is designed.
There is little need for the ability to dynamically add, delete, or change column or
table definitions.

• Single user operation A single application or a small group of applications
typically uses the database, often eliminating the need for sophisticated multiuser
concurrency control.

Embedded Database Implementations
The 1990s saw a proliferation of embedded database products, driven by a proliferation of
products that required embedded data management and dramatic improvements in their
processing power and memory capacity. Some of these products came out of university
research, such as the SleepyCat embedded database based on BerkeleyDB. In Canada, Empress
Software was an early embedded database pioneer. The Raima database products were another
early entry, subsequently acquired by Birdstep. Progress Software’s range of database products
includes OpenEdge as its embedded database member. Encirq’s product offers one of the
smallest memory footprints available, through a unique compiled-code architecture.

The open source database movement also extended to embedded databases. SQLite,
which remains one of the more popular products, is implemented and distributed as an
open source product. Although it has a larger footprint than most embedded databases,
open source MySQL plays a role in the high end of the embedded market. One of the
appeals of open source databases for embedded applications is that the developer can, if
willing to invest the time and effort, customize the database engine, stripping out parts that
aren’t needed, to squeeze into an even smaller footprint.

 816 P a r t V I : S Q L T o d a y a n d T o m o r r o w 816 P a r t V I : S Q L T o d a y a n d T o m o r r o w

The market for embedded databases has remained relatively small, due in part to extreme
pricing pressure. Because these databases are embedded into other products, the per-unit cost
of the database system (to the product vendor) becomes a part of the product cost, just as if it
were a plastic or electronic part. Product vendors negotiate these costs aggressively, and it’s
not unusual for an embedded database for a volume product to generate only a few dollars
per unit for its vendor. For this reason, most embedded databases still come from smaller,
often venture-backed, vendors. There are some exceptions, most notably the BerkeleyDB
offering from Oracle, which acquired the product and the company that produced it.

Mobile Databases
A fourth type of specialty database is especially tuned to support the data management
needs of handheld devices, such as personal digital assistants (PDAs), handheld computers,
smartphones, and mobile laptop computers. Because these devices are battery powered,
they typically have very limited resources compared with the database servers that host
enterprise databases. They usually have much less powerful and slower processors, much
more limited memory, and much smaller disk storage or no disk storage at all (using flash
memory as alternative nonvolatile storage). Over the last decade, the rising popularity of
laptop and notebook computers, and the emergence of entire new categories of intelligent
handheld devices, have sparked the development of SQL-based mobile databases to
support these devices and their applications.

Mobile Database Roles
Mobile databases typically play one or more well-defined roles on the devices that they support:

• Support for device operation The database may store configuration data or the
current user selections for optional capabilities that can be configured or switched
on and off. This role is generally hidden from the user and uses the mobile database
as an embedded database.

• Support for embedded applications On a handheld computer, the personal
appointment calendar may be stored in a local database to make it easily searchable.
On a smartphone, the list of contacts and their addresses, e-mail addresses, various
phone numbers, and the like may be stored in a database. The database may be
hidden from user view, but the application is readily visible.

• Support for mobile packaged applications Enterprise applications may use
a handheld computer or a laptop as a data collection or data analysis device,
where a user enters data via a form or graphs the data.

• Local database processing Occasionally, the users of a laptop or handheld
computer may require a personal database for storing information that they
generate or analyze.

• Access to enterprise databases The mobile device may be a portal through which
the user accesses data stored in an enterprise database. The local database software
accepts data access or data manipulation requests, passes them on to the enterprise
database, receives the results, and passes them back to local software on the mobile
device through a local API.

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 817
PART VI

 C h a p t e r 2 6 : S p e c i a l t y D a t a b a s e s 817

Synchronization with an enterprise database is a signature characteristic of the leading
mobile database products. When no network connection is available, the mobile database
supports stand-alone operation for mobile applications running on the mobile device.
When a network connection becomes available, the mobile database provides intelligent
resynchronization, uploading changes made to the local database, receiving changes made
to the enterprise database, and resolving any conflicts between them. In addition, when a
network connection is available, the mobile database may act as an intelligent cache, storing
a local copy of frequently accessed data to avoid the network overhead of repeated access.

Mobile Database Implementations
Sybase’s SQLAnywhere product enjoys the largest market share in the mobile database
market, primarily due to its popularity on laptop computers. The product offers a good
balance between fairly comprehensive SQL support and relatively modest resource
requirements. It provides data synchronization with enterprise databases through industry-
standard APIs (ODBC and JDBC), so that integration with almost any commercial enterprise
database product is possible. The product also provides good manageability for
environments where it is broadly deployed, such as deployment to a field sales organization
or a mobile maintenance force.

Sybase has aggressively marketed SQLAnywhere to mobile and enterprise application
developers as a mobile database that can easily be embedded into the mobile editions of
their products or delivered in conjunction with those products. Even when not embedded,
mobile applications tend to provide SQLAnywhere support because of its popularity. The
product is part of an overall focus on mobile applications at Sybase, and because of this
emphasis, has maintained or grown its market share.

Oracle’s mobile database offering is Oracle Lite, which it markets as a complement to
its flagship enterprise database. Oracle Lite runs on laptop computers and selected other
mobile devices. An Oracle-supplied synchronization server provides the back-end anchor
for Oracle Lite, and links it to Oracle databases and other enterprise databases via
ODBC/JDBC. For many years, Oracle did not focus on Oracle Lite sales, and the product
lost market share to SQLAnywhere. More recently, Oracle has begun to evangelize Oracle
Lite to application developers and enterprise customers needing a mobile solution. The
product also serves as an embedded database, supporting devices as diverse as industrial
equipment and vending machines.

 818 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Summary
Although enterprise-class database products dominate the market, specialty databases serve
important market niches:

• In-memory databases serve applications that demand very low latency, such as those
that support the operation of telecom networks or financial trading.

• Embedded databases serve applications where hardware resources are extremely
constrained, such as automotive systems, mass-market consumer devices, or low-cost
network equipment.

• Stream databases serve applications where a very high-volume stream of data
must be continuously processed and analyzed, such as the flow of information from
a sensor network or a financial market data feed.

• Mobile databases support the database requirements of personal digital assistants,
handheld computers, smartphones, and laptop computers, providing both local
database capability and synchronization with enterprise databases.

• Other new niches are likely to emerge as new fields emerge with their own data
management requirements, and SQL has shown remarkable resiliency to adapt to
these new specialized requirements while still providing a standardized database
language.

27
The Future of SQL

SQL and SQL-based relational databases are among the core foundation technologies
of today’s information technology industry. From its first commercial implementation
three decades ago, SQL has grown to become the standard database language. In its

first decade, the backing of IBM, the blessing of standards bodies, and the fervor of early
DBMS vendors moved SQL from academia into the enterprise arena. In its second decade,
the impact of SQL extended to personal computers and workgroups and to new
applications like data warehousing. The third decade established SQL as the data
management foundation for Internet-based computing and spawned multi-billion-dollar
submarkets such as business intelligence. The market evidence clearly shows the
importance of SQL:

• The world’s second-largest software company, Oracle, has been built on the success
of SQL-based relational data management, through both its flagship database
servers and tools, and its SQL-based enterprise applications.

• IBM, the world’s largest computer company, offers its SQL-based DB2 software
across all of its product lines and has acquired other SQL-based databases and
applications.

• Microsoft, the world’s largest software company, has bet on its SQL Server database
as a key weapon in its quest to penetrate enterprise IT, and as the data management
foundation for all of its services and applications.

• Sun Microsystems, a Fortune 500 technology company, saw enough value in SQL to
buy MySQL AG, thereby acquiring MySQL, which is the world’s largest open
source SQL-based RDBMS. MySQL powers many of the web sites on the Internet.

• XML, a potential challenger to SQL and the relational model, has instead been
absorbed into SQL-based data management, helping to extend its dominance.

• All of the major packaged enterprise applications—from finance to supply chain to
sales force automation and customer relationship management—are built on SQL-
based databases.

819

CHAPTER

 820 P a r t V I : S Q L T o d a y a n d T o m o r r o w 820 P a r t V I : S Q L T o d a y a n d T o m o r r o w

• SQL is the standard for specialized databases on mobile devices and laptops, and
for embedded applications in telecomm networks and manufacturing systems.

• SQL-based access to databases is a required part of Internet application servers, and
SQL databases underlie all major e-commerce sites, from Amazon to eBay.

This chapter describes some of the most important current trends and developments in
the database market, and examines the major forces that will act on SQL and database
management over the next several years.

Database Market Trends
Today’s market for database management products and services is measured in tens of
billions of dollars. In many ways, it is a mature market, with Oracle, IBM, and Microsoft
firmly established as the dominant vendors, and with growth rates measured in single-digit
or low double-digit percentages from year to year. But database innovation continues across
a broad spectrum. Venture capitalists still pour money into dozens of database startups.
Some of those startups have grown to exceed $100 million annual revenue in the last few
years, and others have been swallowed up by the major players while on their way to that
mark. Meanwhile, the major vendors each employ thousands of developers to extend and
enhance their products. Specialized categories such as embedded databases, cloud-based
databases, open source databases, and stream-oriented databases have generated significant
growth. The trends shaping the market bode well for its continued health and point to a
continuing tension between market maturity and consolidation on the one hand, and
exciting new database capabilities and applications on the other.

Enterprise Database Market Maturity
Relational database technology has become accepted as a core enterprise data processing
technology, and relational databases have been deployed by all large corporations. Because
of the importance of corporate databases and years of experience in using relational
technology, many large corporate IT departments have selected a single DBMS brand as an
enterprisewide database standard. Once such a standard has been established and widely
deployed within a company, users strongly resist switching brands. Even though an
alternative DBMS product may offer advantages for a particular application, or may pioneer
a new, useful feature, an announcement by the current vendor that such features are
planned for a future release will often forestall the loss of a customer by the established
vendor.

The trend toward corporate database standards has tended to reinforce and strengthen
the market positions of the established major DBMS vendors. In the corporate IT organization,
established sales and customer support relationships, deep in-house familiarity with the
selected standard product, and multiyear enterprisewide purchase agreements have become
more important factors than database technology advantage. With this market dynamic,
the large, established players tend to concentrate on growing their business within their
existing installed base, instead of attempting to take customers away from competitors.

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 821
PART VI

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 821

One important impact of the trend to corporate DBMS vendor standardization has been
a consolidation in the database industry. New startup database vendors tend to pioneer
new database technology and to grow by selling it to early adopters. These early adopters
have helped to shape the technology and have identified the solution areas where the
technology can deliver real benefits. After a few years, when the advantages of the new
technology have been demonstrated, the startup vendors are acquired by large, established
players. These vendors can bring the new technology into their installed base, and can bring
their marketing and sales muscle to bear in an attempt to win business in their competitors’
accounts. The early 1990s saw this cycle play out with database vendor acquisitions of
database tools vendors. In the late 1990s, the cycle repeated with acquisitions of specialized
data warehousing vendors and object-relational databases. Oracle and IBM both acquired
in-memory database vendors in the middle of the 2000s, and Sun acquired MySQL AG, the
largest open source database vendor. Specialized data-warehousing startups appear poised
to be the next targets.

Market Diversity and Segmentation
Despite the maturing of some parts of the database market (especially the market for
corporate enterprise-class database systems), new segments and niches continue to appear.
The traditional segmentation of mainframe databases (dominated by IBM), data center
databases (dominated by Oracle), and workgroup databases (dominated by Microsoft) has
given way to a much more diverse and dynamic segmentation. Market segments that have
emerged over the last few years and that have experienced high growth include

• Data warehousing databases, focused on managing hundreds of terabytes of data or
more, such as historical retail purchase data.

• Business intelligence and online analytic processing (OLAP) databases, focused on
carrying out complex analyses of data to discover underlying trends (data mining),
allowing organizations to make better business decisions.

• Mobile databases, in support of mobile workers such as salespeople, support
personnel, field service people, consultants, and mobile professionals. Often, these
mobile databases are tied back to a centralized database for synchronization.

• Embedded databases, which operate inside a closed, “black box” system such as a
piece of manufacturing equipment or an automobile’s control and entertainment
system or a piece of networking equipment. These databases usually have very
small footprints and require little or no administration.

• In-memory databases and database caches, designed for ultrahigh-performance
OLTP applications such as securities trading or high-volume e-commerce sites.

• Clickstream databases, recording the online activity of millions of users click-by-
click, so that a web site can be optimized based on actual user behavior.

• Clustered databases, designed to take advantage of powerful, low-cost servers used
in parallel to perform database management tasks with high scalability and
reliability.

• Streaming databases that operate on “data in motion,” such as data about securities
trades, network traffic, or banking transactions as it passes by on a network.

 822 P a r t V I : S Q L T o d a y a n d T o m o r r o w 822 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Packaged Enterprise Applications
In the early days of SQL-based databases, most enterprise applications that ran the day-to-
day operations of major corporations were developed in-house by the corporate IT
department. Today, companies of all sizes have shifted from make to buy strategies for major
enterprise applications, including ERP, supply chain, human resources, procurement, sales
force automation, customer relationship management, and dozens of others. Various
enterprise application vendors now supply these applications as enterprise-class packaged
applications, along with consulting, customization, and installation services. All of these
packages are built on a foundation of SQL-based relational databases.

The emergence of dominant purchased enterprise applications helped to accelerate the
consolidation of the database market. The major enterprise software package vendors
tended to support DBMS products from only two or three of the major DBMS vendors. For
example, if a customer chooses to deploy SAP as its companywide ERP application, the
underlying database is restricted to those supported by the SAP packages. This tended to
reinforce the dominant position of the current top-tier enterprise database players and to
make it more difficult for newer database vendors to gain market share. The dynamics
tended to favor IBM and Oracle as the established enterprise-class vendors and to hold back
the adoption of SQL Server, Sybase, and MySQL in the corporate data center. It also
threatened to depress database prices, as the DBMS was viewed more as a component part
of an application-driven decision rather than a strategic decision in its own right.

Responding to this trend and the maturing of the enterprise software market, Oracle has
embarked on a major drive to become not only the dominant database software vendor, but
also a major vendor of enterprise applications. Initially, Oracle developed its own enterprise
applications, which met limited success in the market. Switching strategies, Oracle has, over
the last decade, built its applications software business by spending tens of billions of
dollars to acquire software companies and their customer bases. IBM has also been an active
acquirer of tools and infrastructure software, but has shied away from major applications
categories.

The relationship between enterprise applications and enterprise databases is still
playing out in the marketplace. Oracle pushes the advantage of “one-stop shopping” across
all types of software, with the future promise (still largely unrealized) of tighter integration
across the full range of enterprise software. Applications and other software acquired by
Oracle tend to support only the Oracle database over time, reducing the data management
choices available to its application customers. In contrast, IBM takes a consulting and
services-led approach, telling customers that it will help them select the best products
available in the industry. Competitors and critics point out that IBM tends to recommend its
own hardware and core software (including its DB2 database). SAP still enjoys a dominant
position in the installed base of enterprise applications and has filled out its suite of
applications, application servers, and other infrastructure software with selected smaller
acquisitions. But SAP lacks an enterprise-class database, and its applications business
generates hundreds of millions of dollars of database revenue for Oracle and IBM. The
shape of the enterprise applications market over the next ten years remains unclear, but it
will shape the market shares of the major database players.

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 823
PART VI

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 823

Software-as-a-Service (SaaS)
Against the established backdrop of major packaged enterprise software, a new trend has
begun to emerge—the delivery of enterprise applications over the Internet, accessed via a
web browser. Under this Software-as-a-Service (SaaS) model, the corporate IT department
doesn’t install or operate the enterprise applications in its own data center. Instead, the
enterprise applications run on servers operated by the applications’ vendor, or operated on
that vendor’s behalf. The potential benefit to the enterprise is a reduced amount of
corporate IT workload, reduced operating costs, and faster access to new, improved
versions of the application as software upgrades are transparently installed and delivered
over the Internet. Salesforce.com pioneered the SaaS model for sales force automation
applications and has grown to well over a billion dollars in annual revenue (in the process,
forcing the established leader in the space, Siebel Systems, into an acquisition by Oracle).
Other vendors have demonstrated the ability to deliver ERP, CRM, HR, and office
applications via the SaaS model.

The SaaS model has the potential to seriously impact the enterprise database market. With
a hosted, SaaS-delivered application, the particular database system underlying an enterprise
application is invisible to the customer. It may be Oracle, IBM’s DB2, SQL Server, MySQL, or
some other technology, but as long as the application works properly, the customer doesn’t
care. In this way, the SaaS model threatens to take database buying decisions away from
corporate IT and concentrate them in the hands of the SaaS-based application vendors.

At this writing, SaaS remains a minor part of the overall enterprise IT landscape. It has
made inroads into specific departmental applications such as sales force automation and
has proven very popular with small- and medium-sized businesses that lack large corporate
IT staffs. But the economic benefits of the SaaS model can be compelling, and Salesforce.com
has boldly proclaimed that its strategy is to bring about “the end of enterprise software.” If
SaaS continues to gain traction and starts to penetrate mainstream finance and ERP systems,
expect the major database vendors to try to protect their installed bases and market power.

Hardware Performance Gains
One of the most important contributors to the rise of SQL has been a dramatic increase in
the performance of relational databases. Part of this performance increase was due to
advances in database technology and query optimization. However, most of the DBMS
performance improvement came from gains in the raw processing power of the underlying
computer systems and from changes in the DBMS software designed to capitalize on those
gains. While the performance of mainframe systems steadily increased, the most striking
performance gains have been in the UNIX-based and Windows-based server markets,
where processing power has doubled or more year by year.

Some of the most significant advances in server performance come from the growth of
symmetric multiprocessing (SMP) systems, where two, four, eight, or even dozens of
processors operate in parallel, sharing the processing workload. A multiprocessor
architecture can be applied to OLTP applications, where the workload consists of many
small, parallel database transactions. Traditional OLTP vendors such as Tandem have always
used a multiprocessor architecture, and the largest mainframe systems have used
multiprocessor designs for more than a decade. In the 1990s, multiprocessor systems became
a mainstream part of the UNIX-based server market, and in the next decade, multiprocessor
servers became the norm at the midrange and high end of the PC server market.

 824 P a r t V I : S Q L T o d a y a n d T o m o r r o w 824 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Today, even desktop systems based on Intel and AMD microprocessors feature two-way
and four-way CPU cores, where a single processor chip operates with nearly the same
power as two or four separate processors. Blade server systems expand this capability
further, making servers with dozens of processors highly economical. The mainstream
adoption of 64-bit hardware architecture and operating systems has expanded the memory
on these systems to tens or even hundreds of gigabytes. Servers that rival the computing
power of traditional mainframes now carry price tags of up to $100,000.

Multicore and multiprocessor systems also provided performance benefits in decision
support and data analysis applications. DBMS vendors have invested heavily to parallelize
their query operations, taking the work of a single complex SQL query and splitting it into
multiple, parallel paths of execution. With these techniques, a query that might have taken
two hours on a single-processor system can be completed in just a few minutes. Companies
are taking advantage of this hardware-based performance boost to obtain business analysis
results in a fraction of the time previously required. But more often, they are using the
increased processing power to carry out much more complex and sophisticated analysis to
optimize their operations.

Today, the quest for faster database performance certainly shows no signs of stopping,
fueled by DBMS optimization for multiprocessor and multicore hardware. In the past, the
database performance quest has fueled the top end of the hardware market, driving
demand for additional mainframe capacity and high-end UNIX servers from Sun, Hewlett-
Packard, and others. In the future, it appears that the database performance quest will have
an even more profound impact on midrange and commodity servers and the
microprocessors that power them.

Database Server Appliances
The history of SQL and relational databases has been a recurring cycle of interest in, and
then dissatisfaction with, dedicated database server appliances. To build these systems, a
vendor combined high-performance microprocessors, fast disk drives, and preintegrated
software to deliver a “black box” database server that could simply be attached to the
network and powered on. Database server vendors typically argued that they could deliver
much better database performance with a specially designed database engine than with a
general-purpose computer system. In some cases, their systems included application-
specific integrated circuits (ASICs) that implement some of the DBMS logic in hardware for
maximum speed. Dedicated database systems from companies such as Teradata, Sharebase
(formerly Britton-Lee), and Netezza found some acceptance in applications that involve
complex queries against very large databases. While Teradata succeeded and remains a
powerful force in the high end of the data warehousing market, the other packaged
database servers of the 1980s and 1990s failed to make an impact.

The notion of a packaged, all-in-one, database server appliance was briefly rekindled at
the end of the 1990s by Oracle Corporation and its CEO, Larry Ellison. Ellison argued that the
Internet era had seen the success of other all-in-one products, such as networking equipment
and web cache servers. Oracle announced partnerships with several server hardware vendors
to build Oracle-based database appliances. Over time, however, these efforts had little market
impact, and Oracle’s enthusiasm for database appliances seemed to fade.

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 825
PART VI

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 825

Several venture-backed startups have recently embraced the idea of database server
appliances once again, sometimes in the form of database caching servers that reside in a
network between the application and an enterprise database. In such a configuration, the
absolute transparency of the cache is critical, and the emergence of MySQL as an extremely
popular open source database has helped to enable that transparency. Many of the database
appliances run MySQL software, so the application accessing the database can’t tell whether
it is communicating with the appliance or with MySQL running on a conventional server.
Oracle has also reenergized the database appliance concept, announcing a high-end Oracle
database appliance whose hardware comes from Hewlett-Packard.

SQL Standardization
The adoption of an official ANSI/ISO SQL standard was one of the major factors that
secured SQL’s place as the standard relational database language in the 1980s. Compliance
with the ANSI/ISO standard has become a check-off item for evaluating DBMS products, so
each DBMS vendor claims that its product is compatible with or based on the ANSI/ISO
standard. Through the next 20 years, all of the popular DBMS products evolved to conform
to the parts of the standard that represented common usage. Other parts, such as the
module language, were effectively ignored. This produced slow convergence around a core
SQL language in popular DBMS products.

As discussed in Chapter 3, the original SQL standard was relatively weak, with many
omissions and areas that are left as implementation choices. For several years, the standards
committee worked on an expanded SQL2 standard that remedied those weaknesses and
that significantly extended the SQL language. Unlike the first SQL standard, which specified
features that were already available in most SQL products, the SQL2 standard, when it was
published in 1992, was an attempt to lead rather than follow the market. It specified features
and functions that were not yet widely implemented in current DBMS products. Some of
these features, such as its enhanced join capabilities and broader use of subqueries, are
effectively mainstream capabilities today, while others, even if widely implemented, have
not been widely adopted.

The same pattern has continued with subsequent revisions of the SQL standard,
published in 1999, in 2003, and over the last few years. The size of the standard has grown
substantially, more than tripling in the progression from SQL2 to today’s full standard,
which is divided into almost a dozen different subparts. In newer areas, such as the
incorporation of XML, the race continues between proprietary innovation by the DBMS
vendors seeking competitive advantage and the evolution of the standard to ensure SQL
portability.

The likely future path of SQL standardization appears to be a continuation of the
trajectory followed in recent years. The core of the SQL language will continue to be highly
standard. More features will slowly become a part of the core and will be defined as add-on
packages or new standards in their own right. Database vendors will continue to add new,
proprietary features in an ongoing effort to differentiate their products and respond to
emerging market requirements. Over time, the proprietary features that become the most
popular will become the features where customers demand standardization, and the
vendors and standards committees will respond.

 826 P a r t V I : S Q L T o d a y a n d T o m o r r o w 826 P a r t V I : S Q L T o d a y a n d T o m o r r o w

SQL in the Next Decade
Predicting the path of the database market and SQL over the next five to ten years is a risky
proposition. Each major technology wave over the past three decades has had a significant
impact on data management and SQL. The emergence of the PC and its creation of the
client/server era of the 1980s and 1990s is an early example. More recently, the emergence
of the Internet and its browser-based architecture has produced a new wave of Internet-
based data management, delivered as Web Services. Going forward, the Internet appears
poised to become truly ubiquitous, with broadband or wireless networks interconnecting
every type of electronic device. It’s likely that this next stage of the Internet revolution could
have an even more disruptive impact on the data management architectures of the future
than the first wave of Internet deployment had over the last decade. Nonetheless, several
trends appear to be safe predictions for the future evolution of database management. They
are discussed in the final sections of this chapter.

Distributed Databases
As more and more applications are used on an enterprisewide basis or beyond, the ability of
a single, centralized database to support dozens of major applications and thousands of
concurrent users will continue to erode. Instead, major corporate databases will become
more and more distributed, with dedicated databases supporting the major applications
and functional areas of the corporation. To meet the higher service levels required of
enterprisewide or Internet-based applications, data must be distributed; but to ensure the
integrity of business decisions and operations, the operation of these distributed databases
must be tightly coordinated.

Another strain on centralized database architectures will be the continuing growth of
mobile personal computers and other mobile information appliance devices. These devices
are, by their nature, more useful if they can become an integral part of a distributed
network. However, by their nature, they are also occasionally connected—they work in a
sometimes-disconnected, sometimes-connected mode, using either wired or wireless
networks. The databases at the heart of mobile applications must be able to operate in this
occasionally connected environment.

These trends will drive heavy demand for data distribution, database integration, data
synchronization, data caching, data staging, and distributed database technology. A one-
size-fits-all model of distributed data and transactions is inadequate for the highly
distributed, anywhere/anytime environment that will emerge. Instead, some transactions
will require absolute synchronization with a centralized master database, while others will
demand support for long-duration transactions where synchronization may take hours or
days. Developing ways to create and operate these distributed environments, without
having them become a database administrator’s nightmare, will be a major challenge for
DBMS vendors in the next decade, and a major source of revenues for the vendors that
provide practical, relatively easy-to-use solutions.

Massive Data Warehousing for Business Optimization
The last few years have demonstrated that companies that use database technology
aggressively and treat their data as a valuable corporate asset can gain tremendous
competitive advantage. The competitive success of Wal-Mart, for example, was widely

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 827
PART VI

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 827

attributed to its use of information technology (led by database technology) to track its
inventory and sales daily, based on cash register transaction data. This allows the company
to minimize its inventory levels and closely manage its supplier relationships. Data mining
techniques have allowed companies to discover unexpected trends and relationships based
on their accumulated data—including the legendary discovery by one retailer that late-
night sales of diapers were highly correlated with sales of beer.

It seems clear that companies will continue to accumulate as much information as they
can on their customers, sales, inventories, prices, and other business factors. The Internet
creates enormous new opportunities for this kind of information gathering. Every customer
or prospective customer’s interaction with a company’s web site, click-by-click, provides
potential clues to the customer’s wants, needs, and behavior. That type of click-by-click
information now generates hundreds of gigabytes of data or more each day on a busy web
site. The databases to manage these massive quantities of data will need to rapidly import
vast quantities of new data and to rapidly peel off large data subsets for analysis. They will
need to be able to scale to accommodate a body of data that could easily grow two or three
orders of magnitude in a year. A trend to store these databases “in the Internet cloud,” using
storage and processing power provided by companies like Amazon or Google, is already
emerging. To cope with the massive volumes of data and maintain reasonable economics,
the data warehousing solutions will need to be based on massive deployment of low-cost,
commodity hardware.

Ultrahigh-Performance Databases
The emergence of an Internet-centric architecture is exposing enterprise data processing
infrastructures to new peak-load demands that dwarf the workloads of just a few years ago.
When databases primarily supported in-house applications used by a few dozen employees
at a time, database performance issues may have produced employee frustration, but they
did not really impact customers. The advent of call centers and other customer support
applications produced a closer coupling between data management and customer
satisfaction, but applications were still limited to at most hundreds of concurrent users (the
people manning the phones in the call center).

With the Internet, the connection between a customer and the company’s databases
becomes a direct one. Database performance problems translate directly into slow customer
response times. Database unavailability translates directly into lost sales. Furthermore,
databases and other parts of the data processing infrastructure are no longer buffered from
peak-load transaction rates. If a financial services firm offers online trading or portfolio
management, it will need to prepare for peak-load volumes on days of heavy stock price
movement that may be 10 or 20 times the average daily volume. Similarly, an online retailer
must gear up to support “cyber Monday,” the heaviest day of the year-end selling season,
not just mid-March transaction rates.

The demands of e-commerce and real-time Internet information access are already
producing peak-load transaction rates from the most popular Internet services that are one
or two orders of magnitude higher than the fastest conventional disk-based RDBMS
systems. To cope with these demands, companies will increasingly turn to distributed and
replicated databases. They will pull hot data forward and cache it closer to the customer
interaction within the network. To meet peak-load demands, they will use in-memory
databases. This will, in turn, require new database support for deciding which data to

 828 P a r t V I : S Q L T o d a y a n d T o m o r r o w 828 P a r t V I : S Q L T o d a y a n d T o m o r r o w

cache, and which levels of synchronization and replication are appropriate. At first, these
issues will apply only to the largest and highest-volume sites, but just as web page caching
has become an accepted and then an essential technique for maintaining adequate web
browser performance, hot data caching will become a mainstream Internet data
management architecture as volumes grow.

One of the technologies with potential to cope with these response time demands is
solid-state storage, where low-cost RAM or flash memory replaces disks as the primary
database storage medium. While the economics of disk storage have steadily improved year
after year, the performance of disks remains largely unchanged, since it depends on
electromechanical factors. Meanwhile, solid-state memory is subject to the same economics
of scale that have rapidly increased the density and driven down the cost of other
microelectronic devices as production volumes have risen. The exploding production of
solid-state memory to power consumer devices such as MP3 players, smartphones, and
similar devices is driving down the cost of solid-state memory for business applications as
well. We may well see the advent of fully solid-state database appliances, with no moving
parts, within the next three to five years.

Internet and Network Services Integration
In the Internet era, database management will increasingly become just one more network
service, and one that must be tightly integrated with other services such as messaging,
transaction services, and network management. In some of these areas, standards have been
long established, such as the XA standard for distributed transaction management. In
others, standards have rapidly solidified, such as the SOAP standard for sending XML data
over the Internet’s HTTP protocol and the UDDI (Universal Description, Discovery, and
Integration) standards for finding services in a distributed network environment.
Challenges remain in creating effective standards for managing distributed networks of
services, and for defining and maintaining service levels across them.

The multitier architecture that is dominating Internet-centric applications also poses
new questions about which roles should be played by the database manager and by other
components of the overall information system. For example, when network transactions are
viewed from the point of distributed databases, a two-phase commit protocol, implemented
in a proprietary way by a DBMS vendor, may provide a solution. When network
transactions involve a combination of legacy applications (e.g., mainframe CICS (Customer
Information Control System) transactions), relational database updates, and interapplication
messages, the transaction management problem moves outside the database, and external
mechanisms are required.

A similar trade-off surrounds the emergence of Java-based application servers as a
middle-tier platform for executing business logic. Before the Internet era, stored procedures
became known as the accepted DBMS technique for embedding business logic within the
database itself. More recently, Java has emerged as a viable stored procedure language, an
alternative to earlier, vendor-proprietary languages. Now, application servers create an
alternative platform for business logic written in Java, in this case, external to the database.

It’s likely that these two trends won’t be rationalized, but that instead business logic will
live in the database or on the application server based on organizational considerations. The
data-management group will use stored procedures and logic within the database to
provide highly structured access to the managed data, solely via stored procedures or

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 829
PART VI

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 829

corresponding web services. The applications integration group will use Java code running
on the application server to implement workflows and to integrate information from the
database with data coming from other productions systems. With Oracle’s acquisition of
BEA, all of the major database vendors now produce their own application servers, so the
database and application server environments may become more tightly integrated over
time. A parallel trend can be seen in the growth of LAMP (Linux, Apache, MySQL, and
PHP/Python/Perl) as an open source web platform.

Embedded Databases
Relational database technology has reached into many parts of the computer industry, from
small handheld devices to large mainframes. Databases underlie nearly all enterprise-class
applications as the foundation for storing and managing their information. Lightweight
database technology underlies an even broader range of applications. Directory services, a
foundation technology for the new era of value-added data communications network
services, are a specialized form of database technology. Lightweight, high-performance
databases also form an integral part of telecommunications networks, enabling cellular
networks, advanced billing schemes, smart messaging services, and similar capabilities.

These embedded database applications have traditionally been implemented using
proprietary, custom-written data management code tightly integrated with the application.
This application-specific approach produced the highest possible performance, but at the
expense of an inflexible, hard-to-maintain data management solution. With declining
memory prices and higher-performance processors, lightweight SQL-based relational
databases are now able to economically support these applications.

The advantages of a standards-based embedded database are substantial. Without a
serious compromise in performance, an application can be developed in a more modular
fashion, changes in database structure can be handled transparently, and new services and
applications can be rapidly deployed atop existing databases. With these advantages,
embedded database applications appear destined to be a new area of growth potential for
SQL and relational database technology. As in so many other areas of information
technology, the ultimate triumph of SQL-based databases may be that they disappear into
the fabric of other products and services—invisible as a stand-alone component, but vital to
the product or service that contains them.

Object Integration
The most significant unknown in the future evolution of SQL is how it will integrate with
object-oriented technologies. Modern application development tools and methodologies are
all based on object-oriented techniques. Two object-oriented languages, C++ and Java,
dominate serious software development for both client-side and server-side software.
Object-oriented scripting languages, such as PHP and Perl, dominate web development.
The core row/column principles of the relational data model and SQL, however, are rooted
in a much earlier COBOL era of records and fields, not objects and methods.

The object database vendors dealt with the object/relational mismatch by discarding the
relational model wholesale in favor of pure object database structures. But the lack of
standards, steep learning curve, lack of simple query facilities, and other disadvantages
prevented pure object databases from having any significant market success. Instead, the
relational database vendors worked to integrate object-oriented features, and especially

 830 P a r t V I : S Q L T o d a y a n d T o m o r r o w 830 P a r t V I : S Q L T o d a y a n d T o m o r r o w

XML support, into the relational model. Much work has already been done, but it seems a
safe bet that relational and object technologies will be even more tightly integrated going
forward, including these trends:

• Java-based interfaces to RDBMSs, such as JDBC and embedded SQL for Java, will
continue to grow rapidly in popularity, as will interfaces from object-oriented
scripting languages.

• Java will become a more important stored procedure language for implementing
business logic within an RDBMS. Slowly, Java may replace proprietary stored
procedure languages like Oracle’s PL/SQL for new applications.

• DBMS products will expand support for abstract, complex data types that exhibit
object-oriented capabilities such as encapsulation and inheritance. XML will provide
the vehicle for storing structured nonrelational data, but it will be complemented by
the ability to store streaming media such as music and video.

• Message-oriented interfaces, including database triggers that produce messages
external to the DBMS for integration with other applications, will grow in
importance as the database becomes a more active component for integrating
systems together.

• The lines between content management systems, used to manage documents, and
relational database management systems will blur, as XML blurs the distinction
between a “document” and a “structured data record.”

The pattern of relational DBMS evolution to support new technologies and
requirements has been clearly exhibited and repeated over the past two decades. The new
technology (such as objects or XML or data warehousing) comes on the scene, generates a
lot of enthusiasm, and spawns a wave of startups. For a few years, these newcomers ride
the new technology wave and serve those who derive strong benefits from it. But at the
same time, the relational DBMS vendors adapt to the new technology and find ways to
integrate it—at first at a very basic level—into their existing products. Eventually, those
products become “good enough” for the mainstream use of the new technology, and the
existing products have evolved to meet the challenge. It seems likely that pattern will repeat
itself with new technologies, like further integration of objects, into the future.

Cloud-Based and Horizontally Scalable Databases
As the Internet has developed, many standard elements of the Internet architecture have
been faced with the need to massively scale in their ability to process very large volumes of
“transactions.” Web servers must scale to handle millions of clicks per hour. Application
servers must scale to execute business logic on behalf of tens of thousands of transactions.
Network elements like routers, switches, and load balancers must similarly scale.

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 831
PART VI

 C h a p t e r 2 7 : T h e F u t u r e o f S Q L 831

In each of these cases, the approach to scaling has been horizontal—a single web server
grows into two, then three, then a dozen, and potentially hundreds of servers sharing the
workload in the web-server tier. The servers operate from shared or replicated storage, with
each server able to serve up any given page on demand. To make the scheme work, the
server is implanted as a stateless system. Whenever possible, any information that must be
retained across individual interactions is passed back to the client, to be passed back into
the network with the next request. Any state information that cannot be handled in this way
is “pushed” in the other direction—back into the database server that underlies the
architecture.

For many high-volume web sites or web services, the underlying database is now
beginning to emerge as a bottleneck. Unfortunately, the horizontal scaling solution that
worked so well for web servers and application servers runs into problems for the database
server. By its very nature, the database is stateful, not stateless. The ACID (Atomicity,
Consistency, Isolation, and Durability) properties demand that either all the individual
elements of a transaction are committed or none are committed, and that concurrent
transactions should not interfere with one another. There is no “back-end layer” into which
state information can be pushed; the database must maintain the state information.

These challenges represent an important new frontier in database architecture—
designing database systems that can scale horizontally with efficiency. Significant advances
have been made in recent years as vendors deployed databases with clustering or grid
capability. These new database architectures must clearly spread out the database
processing across dozens of servers or more, but the information on those servers must be
kept consistent, in all the ways described in Chapter 12. Part of the solution will come from
intelligently dividing different types of data in the database. Reference or lookup data that
does not change, or data that changes only infrequently (such as customer contact
information), can be horizontally replicated, because maintaining consistency across dozens
of servers does not require much effort. Transitive data, such as the data maintained during
the course of a transaction, will probably need to be maintained on a single “system of
record” within the cluster of systems, with requests for that data being automatically routed
to the correct system.

How to deliver this architecture in an efficient, scalable manner remains a new frontier
for commercial products. But the demand for databases that can reside “in the cloud” and
deliver massive scalability using horizontal scaling techniques is substantial and growing.
Startup vendors that present a plausible way of building such systems will attract venture
funding, and the techniques that emerge to successfully address the problem will eventually
find their way into mainstream products, as others have before them. When that happens,
database processing power delivered in the cloud, the way massive computing power and
storage are being delivered today, can become a reality.

 832 P a r t V I : S Q L T o d a y a n d T o m o r r o w

Summary
SQL continues to play a major role in the computer industry and appears poised to continue
as an important core technology:

• SQL-based databases are flagship software products for the three largest software
vendors in the world: Microsoft, Oracle, and IBM.

• SQL-based databases operate on all classes of computer systems, from mainframes
and database servers to desktop computer clients, notebook computers, and
handheld PDAs.

• All of the major enterprise applications used in large organizations rely on
enterprise-class SQL databases to store and structure their data.

• SQL-based databases have responded successfully to the challenges of the object
model, with SQL extensions in object/relational databases.

• SQL-based databases are responding to the needs of Internet-based architectures
by incorporating XML and integrating tightly with application servers.

• Providing massive database scalability for cloud computing is a major challenge
confronting the database market today.

VII
Appendixes APPENDIX A

The Sample Database

APPENDIX B
DBMS Vendor Profiles

APPENDIX C
SQL Syntax Reference

PART

This page intentionally left blank

A
The Sample Database

Most of the examples in this book are based on the sample database described in
this appendix. The sample database contains data that supports a simple order-
processing application for a small distribution company. It consists of five tables:

• PRODUCTS Contains one row for each type of product that is available for sale.

• OFFICES Contains one row for each of the company’s five sales offices where the
salespeople work.

• SALESREPS Contains one row for each of the company’s ten salespeople.

• CUSTOMERS Contains one row for each of the company’s customers.

• ORDERS Contains one row for each order placed by a customer. For simplicity,
each order is assumed to be for a single product.

Figure A-1 graphically shows the five tables, the columns that they contain, and the
parent/child relationships among them. The primary key of each table is shaded. The five
tables in the sample database can be created using the following CREATE TABLE and ALTER
statements.

Significant variations exist in the support for data types and syntax across available SQL
products. You will therefore find that the SQL statements shown here may require
modification to run on the SQL-based database that you are using. To help you sort out
those differences, scripts containing statements tailored for DB2, MySQL, Oracle, and SQL
Server are available for download from the McGraw-Hill web site. Scripts containing the
INSERT statements required to load sample data rows into the tables that match the
examples used throughout this book are also available. To access the downloads page,
follow these steps:

 1. Open your web browser and go to www.mhprofessional.com/
computingdownload.

 2. On the banner across the top of the page, click COMPUTING.

 3. Along the left margin about halfway down the page, click the link Downloads Section.

 4. Scroll down the page to the lines for this book’s title.

835835

APPENDIX

www.mhprofessional.com/computingdownload
www.mhprofessional.com/computingdownload

 836 P a r t V I I : A p p e n d i x e s 836 P a r t V I I : A p p e n d i x e s

 5. Select the files you want, click them, and save them to your local computer system.
If the DBMS you are using is not shown, we suggest you start with the MySQL files,
because MySQL is the most compliant with the current SQL standard.

 6. Consult the documentation for your DBMS and the SQL client you are using in
order to run the scripts in your database.

CREATE TABLE PRODUCTS
 (MFR_ID CHAR(3) NOT NULL,
 PRODUCT_ID CHAR(5) NOT NULL,
 DESCRIPTION VARCHAR(20) NOT NULL,
 PRICE DECIMAL(9,2) NOT NULL,
 QTY_ON_HAND INTEGER NOT NULL,
 PRIMARY KEY (MFR_ID, PRODUCT_ID));

CREATE TABLE OFFICES
 (OFFICE INTEGER NOT NULL,
 CITY VARCHAR(15) NOT NULL,
 REGION VARCHAR(10) NOT NULL,
 MGR INTEGER,
 TARGET DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL,
 PRIMARY KEY (OFFICE),
 FOREIGN KEY HASMGR (MGR)
 REFERENCES SALESREPS
 ON DELETE SET NULL);

FIGURE A-1 The structure of the sample database

 A p p e n d i x A : T h e S a m p l e D a t a b a s e 837
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x A : T h e S a m p l e D a t a b a s e 837

CREATE TABLE SALESREPS
 (EMPL_NUM INTEGER NOT NULL,
 NAME VARCHAR(15) NOT NULL,
 AGE INTEGER,
 REP_OFFICE INTEGER,
 TITLE VARCHAR(10),
 HIRE_DATE DATE NOT NULL,
 MANAGER INTEGER,
 QUOTA DECIMAL(9,2),
 SALES DECIMAL(9,2) NOT NULL,
 PRIMARY KEY (EMPL_NUM),
 FOREIGN KEY (MANAGER)
 REFERENCES SALESREPS
 ON DELETE SET NULL,
 FOREIGN KEY WORKSIN (REP_OFFICE)
 REFERENCES OFFICES
 ON DELETE SET NULL);

CREATE TABLE CUSTOMERS
 (CUST_NUM INTEGER NOT NULL,
 COMPANY VARCHAR(20) NOT NULL,
 CUST_REP INTEGER,
CREDIT_LIMIT DECIMAL(9,2),
 PRIMARY KEY (CUST_NUM),
 FOREIGN KEY HASREP (CUST_REP)
 REFERENCES SALESREPS
 ON DELETE SET NULL);

CREATE TABLE ORDERS
 (ORDER_NUM INTEGER NOT NULL,
 ORDER_DATE DATE NOT NULL,
 CUST INTEGER NOT NULL,
 REP INTEGER,
 MFR CHAR(3) NOT NULL,
 PRODUCT CHAR(5) NOT NULL,
 QTY INTEGER NOT NULL,
 AMOUNT DECIMAL(9,2) NOT NULL,
 PRIMARY KEY (ORDER_NUM),
 FOREIGN KEY PLACEDBY (CUST)
 REFERENCES CUSTOMERS
 ON DELETE CASCADE,
 FOREIGN KEY TAKENBY (REP)
 REFERENCES SALESREPS
 ON DELETE SET NULL,
 FOREIGN KEY ISFOR (MFR, PRODUCT)
 REFERENCES PRODUCTS
 ON DELETE RESTRICT);

ALTER TABLE OFFICES
 ADD CONSTRAINT HASMGR
 FOREIGN KEY(MGR) REFERENCES SALESREPS(EMPL_NUM)
 ON DELETE SET NULL;

 838 P a r t V I I : A p p e n d i x e s 838 P a r t V I I : A p p e n d i x e s

Figures A-2 through A-6 show the contents of each of the five tables in the sample
database. The query results in examples throughout the book are based on the data shown
in these figures.

CUST_NUM COMPANY CUST_REP CREDIT_LIMIT

2111

2102

2103

2123

2107

2115

2101

2112

2121

2114

2124

2108

2117

2122

2120

2106

2119

2118

2113

2109

2105

JCP Inc.

First Corp.

Acme Mfg.

Carter & Sons

Ace International

Smithson Corp.

Jones Mfg.

Zetacorp

QMA Assoc.

Orion Corp.

Peter Brothers

Holm & Landis

J.P. Sinclair

Three-Way Lines

Rico Enterprises

Fred Lewis Corp.

Solomon Inc.

Midwest Systems

Ian & Schmidt

Chen Associates

AAA Investments

103

101

105

102

110

101

106

108

103

102

107

109

106

105

102

102

109

108

104

103

101

$50,000.00

$65,000.00

$50,000.00

$40,000.00

$35,000.00

$20,000.00

$65,000.00

$50,000.00

$45,000.00

$20,000.00

$40,000.00

$55,000.00

$35,000.00

$30,000.00

$50,000.00

$65,000.00

$25,000.00

$60,000.00

$20,000.00

$25,000.00

$45,000.00

FIGURE A-2 The CUSTOMERS table

EMPL_NUM NAME

Nancy Angelli

Bill Adams 37 13

AGE REP_OFFICE TITLE HIRE_DATE MANAGER QUOTA SALES

Sales Rep 2006-02-12 104 $350,000.00 $367,911.00

109

102

106

104

101

110

108

103

107

105

Mary Jones

Sue Smith

Bob Smith

Dan Roberts

Tom Snyder

Larry Fitch

Paul Cruz

Sam Clark

31

48

52

33

45

41

62

29

49

11

21

11

12

12

NULL

21

12

22

Sales Rep

Sales Rep

Sales Rep

Sales Rep

Sales Rep

Sales Rep

VP Sales

Sales Mgr

Sales Mgr

2007-10-12

2004-12-10

2006-06-14

2005-05-19

2004-10-20

2008-01-13

2007-10-12

2005-03-01

2006-11-14

106

108

NULL

106

104

101

106

104

108

$300,000.00

$350,000.00

$275,000.00

$200,000.00

$300,000.00

NULL

$350,000,00

$275,000.00

$300,000.00

$392.725.00

$474,050.00

$299,912.00

$142,594.00

$305,673.00

$75,985.00

$361,865.00

$286,775.00

$186,042.00

FIGURE A-3 The SALESREPS table

 A p p e n d i x A : T h e S a m p l e D a t a b a s e 839
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x A : T h e S a m p l e D a t a b a s e 839

OFFICE CITY

Denver22

New York11

12 Chicago

13 Atlanta

21 Los Angeles

REGION

Western

Eastern

Eastern

Eastern

Western

MGR

108

106

104

105

108

$300,000.00

TARGET

$186,042.00

SALES

$575,000.00 $692,637.00

$800,000.00 $735,042.00

$350,000.00 $367,911.00

$725,000.00 $835,915.00

FIGURE A-4 The OFFICES table

ORDER_NUM ORDER_DATE CUST REP MFR PRODUCT QTY AMOUNT

112961

113012

112989

113051

112968

113036

113045

112963

113013

113058

112997

112983

113024

113062

112979

113027

113007

113069

113034

112992

112975

113055

113048

112993

113065

113003

113049

112987

113057

113042

2007-12-17 2117 106 REI 2A44L $31,500.00

2008-01-11 2111 105 ACI 41003 $3,745.00

2008-01-03

2008-02-10

2007-10-12

2008-01-30

2008-02-02

2007-12-17

2008-01-14

2008-02-23

2008-01-08

2007-12-27

2008-01-20

2008-02-24

2007-10-12

2008-01-22

2008-01-08

2008-03-02

2008-01-29

2007-11-04

2007-10-12

2008-02-15

2008-02-10

2007-01-04

2008-02-27

2008-01-25

2008-02-10

2007-12-31

2008-02-18

2008-02-02

2101

2118

2102

2107

2112

2103

2118

2108

2124

2103

2114

2124

2114

2103

2112

2109

2107

2118

2111

2108

2120

2106

2106

2108

2118

2103

2111

2113

106

108

101

110

108

105

108

109

107

105

108

107

102

105

108

107

110

108

103

101

102

102

102

109

108

105

103

101

FEA

QSA

ACI

ACI

REI

ACI

BIC

FEA

BIC

ACI

QSA

FEA

ACI

ACI

IMM

IMM

REI

ACI

REI

ACI

IMM

REI

QSA

IMM

QSA

ACI

ACI

REI

114X

Xk47

41004

4100Z

2A44R

41004

41003

112

41003

41004

Xk47

114

4100Z

41002

773C

775C

2A45C

41002

2A44G

4100X

779C

2A45C

Xk47

779C

Xk47

4100Y

4100X

2A44R

7

35

6

2

34

9

10

28

1

10

1

6

20

10

6

54

3

22

8

10

6

6

2

24

6

3

2

11

24

5

$1,458.00

$1,420.00

$3,978.00

$22,500.00

$45,000.00

$3,276.00

$652.00

$1,480.00

$652.00

$702.00

$7,100.00

$2,430.00

$15,000.00

$4,104.00

$2,925.00

$31,350.00

$632.00

$760.00

$2,100.00

$150.00

$3,750.00

$1,896.00

$2,130.00

$5,625.00

$776.00

$27,500.00

$600.00

$22,500.00

FIGURE A-5 The ORDERS table

 840 P a r t V I I : A p p e n d i x e s

A real-world order-processing database would probably contain several dozen tables.
The tables would typically contain many columns of additional information such as billing
and ship-to addresses, and transactions such as product returns and sales tax calculations.
The tables for a real-world company would also contain many more rows than in this
sample database. However, the data and tables in the sample database are rich enough in
their structure to illustrate all of the major capabilities of SQL, and the small number of
rows makes it easier to trace the path from the source data all the way through the queries
to the final query results.

MFR_ID PRODUCT_ID DESCRIPTION

REI 2A45C Ratchet Link

Widget Remover

Reducer

Plate

900-lb Brace

Size 3 Widget

Size 4 Widget

Handle

Brace Pin

Reducer

Left Hinge

Housing

Brace Holder

Retainer

Size 1 Widget

500-lb Brace

Widget Installer

Reducer

Size 2 Widget

Right Hinge

300-lb Brace

Widget Adjuster

Motor Mount

Brace Retainer

Hinge Pin

$2,750.00

$79.00

QTY_ON_HANDPRICE

ACI 4100Y

QSA

BIC 41672

Xk47 $355.00

$180.00

IMM 779C $1,875.00

ACI 41003 $107.00

ACI 41004 $117.00

BIC 41003 $652.00

IMM 887P $250.00

QSA $134.00

REI 2A44L $4,500.00

FEA 112 $148.00

IMM 887H $54.00

BIC 41089 $225.00

ACI 41001 $55.00

IMM 775C $1,425.00

ACI 4100Z $2,500.00

QSA XK48A $177.00

ACI 41002 $76.00

REI 2A44R $4,500.00

IMM 773C $975.00

ACI 4100X $25.00

FEA 114 $243.00

IMM 887X $475.00

210

25

38

0

9

207

139

3

24

203

12

115

223

78

277

5

28

37

167

12

28

37

15

32

14$350.00REI 2A44G

Xk48

FIGURE A-6 The PRODUCTS table

B
DBMS Vendor Profiles

The vendors and open source projects profiled in this appendix include the market
share leaders in the enterprise database market, emerging leaders in other major
market segments, or pioneers in emerging segments. Collectively, they are responsible

for the vast majority of SQL-related revenues. The vendors and their products are

• Aster Data (nCluster)

• CodeGear (Interbase)

• dataBased Intelligence (dBASE Plus)

• Encirq (Device SQL)

• EnterpriseDB (Postgres Plus)

• Firebird (Firebird)

• Greenplum (Greenplum)

• Hewlett-Packard (NonStop SQL, HP Oracle Database Machine)

• HSQLDB (HSQLDB)

• IBM (DB2 editions, Informix, SolidDB)

• Ingres Corporation (Ingres)

• Intersystems (Caché)

• Matisse Software, Inc. (Matisse)

• Microsoft (SQL Server)

• Mimer Information Technology (Mimer)

• Netezza (Netezza)

• Oracle Corporation (Oracle editions, Rdb, TimesTen, SleepyCat)

• ParAccel Inc. (ParAccel)

• Postgres (PostgreSQL)

• Streambase Systems (Streambase)

• Sun Microsystems (MySQL)

841

APPENDIX

 842 P a r t V I I : A p p e n d i x e s 842 P a r t V I I : A p p e n d i x e s

• Sybase (Adaptive Server Enterprise, SQL Anywhere)

• Teradata Corporation (Teradata)

• Truviso, Inc. (Truviso)

• Unify Corporation (SQLBase)

• Vertica Systems (Vertica)

• Xeround (Xeround Intelligent Data Grid)

Aster Data (nCluster)
Aster Data is a venture-backed startup focused on “frontline data warehousing.” The
company targets a new generation of data-analysis applications such as analyzing
clickstream data from very large web sites, recognizing fraud and spam patterns in real
time, and performing sophisticated financial analysis. For these applications, it argues that
traditional back-office data warehouses based on data extracted and loaded from
production databases are inadequate. Instead, the company offers the nCluster database, an
analytic SQL database based on a multitiered clustered architecture that is designed for
front-office deployment and claims very high availability and scalability. A companion
nCluster Cloud Edition places the database “in the cloud” and offers on-demand analytic
database processing.

CodeGear (Interbase)
CodeGear is a division of Embarcadero Technologies and is the company currently
responsible for the Interbase DBMS. Interbase is well suited for embedded database
applications, with the entire system fitting in only a few tens of megabytes of disk space.
The system is designed to operate without a database administrator and was one of the first
to implement multiversion concurrency control. The product has had a long and circuitous
history. It was originally developed as a database for the Apollo engineering workstation in
the mid-1980s; rights to Interbase were sold to Ashton-Tate, which was the leading PC
database vendor of the era. Borland, a prominent vendor of software development tools,
purchased Ashton-Tate in 1991, and Interbase became a Borland product. Nearly a decade
later, in the 2000s, Borland decided to change the licensing for Interbase and to make it
available as an open source product. The open source version of the product remains active
as the Firebird project, but the commercially licensed, proprietary version of the product is
now available through CodeGear/Embarcadero, where its development continues.

 dataBased Intelligence (dBASE Plus)
The dataBased Intelligence (dBI) company is the current home of dBASE, a pioneering
database from the earliest days of the personal computer over 25 years ago. For years, the
dBASE products, originally developed by Ashton-Tate, were the runaway volume leaders in
the PC database category, with millions of copies delivered and a peak market share of over
70 percent. As personal computers grew much more powerful, advanced minicomputer
databases invaded the PC database segment, exerting considerable competitive pressure on
dBASE. The most notable of these was Microsoft’s SQL Server, derived from Sybase’s
minicomputer database. At the same time, competitive “clones” of dBASE began to appear,
including Foxbase, which appeared in 1987. Although the dBASE database and its clones
offered limited functionality, the dBASE programming language was used to develop a
wide range of business applications on PCs and developed a strong programmer following.

 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 843
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 843

For a while, Ashton-Tate responded to the competitive challenge with a multipronged
strategy, as it simultaneously undertook a major rewrite of dBASE, acquired other database
products, and entered into a marketing agreement with Microsoft to sell SQL Server in the
retail market. None of these initiatives proved successful, and in 1991, Borland acquired
Ashton-Tate, primarily because of the large dBASE installed base. Responsibility for dBASE
development passed to dBI in 1999, and it has launched a successor product called dBASE
Plus. Today, dBASE plays a role as a development environment and front-end for other
relational databases, and is complemented by dQuery for business intelligence applications.
Programmers can still take advantage of the (enhanced) dBASE programming language
and, via ODBC connectors, use it to access data stored in Oracle, SQL Server, Sybase, DB2,
and a half dozen other DBMSs.

Encirq (DeviceSQL)
Encirq’s DeviceSQL is a SQL-based database targeted for embedded device applications.
With its small footprint, DeviceSQL provides a data management foundation for set-top
boxes, all-in-one printer/fax/scanner/copier products, automotive entertainment, and
control systems that need the flexibility of SQL but are highly memory constrained. The
company claims the smallest footprint of any embedded SQL implementation, requiring
only a few tens of kilobytes of memory in its minimum configuration.

More recently, the company has used its core technology to address the emerging
market for Complex Event Processing (CEP). These applications must process high volumes
of streaming data generated by data and telecommunications networks, securities trading,
and network devices. In this market, the company competes with startup streaming
database vendors.

EnterpriseDB (Postgres Plus)
EnterpriseDB offers a commercial version of the Postgres open source database, optimized
for transaction-intensive workloads and high scalability. The company’s Postgres Plus
product augments the Postgres open source core with tuning, management, and monitoring
tools and features such as an in-memory caching layer and encryption. A second product,
Postgres Plus Advanced Server, further extends Postgres with Oracle compatibility features,
which provide Oracle-style SQL syntax, Oracle-compatible data types, support for Oracle’s
PL/SQL language, and support for Oracle’s proprietary Oracle Call Interface (OCI).
Founded in 2004, the company is venture-backed and based in New Jersey.

Firebird (Firebird)
Firebird is an open source SQL database targeted for embedded applications. It features a
relatively rich SQL implementation (including ACID transactions, referential integrity, 64-bit
support, versioning, stored procedures, and triggers) in a very small footprint. The Firebird
project was originally established in 2000 and began with the open source version of Borland’s
Interbase database product. It has since been significantly rewritten, and development
continues, using the open source model under the coordination of the Firebird project.

Greenplum
Greenplum is a venture-backed database startup focused on the data warehousing market.
Its Greenplum database is based on the open source Postgres technology, which the
company has tuned and optimized to support large data warehouse databases on clusters
of commodity servers. With a “shared-nothing” architecture, the Greeenplum software

 844 P a r t V I I : A p p e n d i x e s 844 P a r t V I I : A p p e n d i x e s

distributes warehouse contents over many low-cost server systems to efficiently support
what it claims are “petabyte-scale” databases. It then parallelizes queries across the servers
to provide business intelligence answers quickly despite large database sizes. Unlike some
venture-backed rivals offering database appliances tuned for data warehousing, Greenplum
prides itself on a software-only approach, and has established partnerships with Sun
Microsystems and others to take advantage of high-density, low-cost blade servers.

Hewlett-Packard Company
Hewlett-Packard (HP) is one of the largest computer systems vendors, and database
management has historically played an important role in HP’s product line. In the 1970s, the
company pioneered database management on minicomputers with its Image/1000 DBMS,
which ran on HP 1000 minicomputers in engineering and technical applications, and its
Image/3000 DBMS, which ran on HP 3000 minicomputers in commercial applications. The
Image DBMS was based on the network data model. In the mid-1980s, HP introduced an
upgraded DBMS, named Allbase, which provided both backward compatibility with the
Image database and a SQL-based relational interface. HP’s significant market share in
minicomputers, and later in UNIX-based servers, also made it an important platform for the
independent DBMS vendors, including Ingres, Informix, Oracle, and Sybase. The company
eventually abandoned Allbase in favor of strong partnerships with the independent vendors.

HP reentered the database market “through the back door” when it acquired Compaq in
2001. Compaq had earlier acquired Tandem Computers, the leading manufacturer of fault-
tolerant computer systems and servers optimized for extremely high availability. Database
management for Tandem’s NonStop systems is provided by a SQL-based relational DBMS
called NonStop SQL, which delivers a high level of availability and fault tolerance as a
database server. NonStop systems and databases are still widely installed as the server
infrastructure for bank ATM networks and in stock trading and other financial services
applications.

More recently, HP has entered the data warehousing market through a partnership with
Oracle Corporation. The two companies have jointly developed the HP Oracle Exadata
Database Machine, which tightly integrates Oracle’s database software with HP hardware
and storage. The Database Machine is optimized for data warehousing applications and
was designed to compete with similar systems from Teradata and Netezza. It is sold as a
data warehousing appliance by Oracle’s database sales team.

HSQLDB (HSQLDB)
The HSQL Database Engine (HSQLDB) is an open-source relational database written in
Java. It features a small footprint (under 100KB when embedded in applets) with a fairly
rich SQL syntax, and a choice of embedded or server architecture. HSQLDB supports both
disk-based and in-memory tables. The product has its origins in the proprietary Java-based
Hypersonic database from the early 2000s, but development since 2001 has been coordinated
as an open source project. In addition to its role as an embeddable, lightweight Java database,
HSQLDB is the database component of the OpenOffice.org suite of open source office
productivity software.

IBM Corporation (DB2, Informix)
IBM is the largest computer technology vendor in the world, and software composes a large
and growing share of its total revenues. Databases have been a major source of software

 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 845
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 845

revenue at IBM for several decades and still make up the lion’s share of its software
business. Two older, nonrelational mainframe database products—IMS, a hierarchical
DBMS, and DL/1 (Data Language/1), a hierarchical database access method—still
contribute to IBM’s sales, but SQL-based relational products dominate:

• DB2 for z/OS is IBM’s flagship relational DBMS product. It is a large, complex
software product that runs on IBM mainframe systems under the z operating
system (successor to OS/390 and its ancestor, MVS). This product supports some of
the largest transaction processing databases in the world and offers the broadest
feature set of IBM’s database products, spanning very high-performance transaction
processing, data warehousing, and tightly integrated XML support.

• DB2 for Linux, UNIX, and Windows is a database management system for server
systems from departmental scale up to the largest UNIX-based server clusters that
power large corporate data centers. Like its mainframe counterpart, it integrates
relational and XML data. For a time the product was named DB2 Universal
Database (UDB) to distinguish it from the mainframe version of DB2, which was
built on a different code base. The software comes in several editions. An entry-level
Express Edition is available at no charge to compete with open source databases. A
midrange Workgroup Edition has features tailored for departmental systems. The
Enterprise Edition provides full functionality approaching that of mainframe DB2.

• DB2 Everywhere extends the DB2 family to support mobile devices and embedded
database applications. In addition to its data management capabilities, this edition
of DB2 provides support for “occasionally connected” environments with its data
synchronization features. DB2 Everywhere competes with Sybase’s SQL Anywhere,
which dominates the mobile market segment.

• Informix was acquired by IBM in 2001 after two decades of establishing itself as one
of the most innovative databases on UNIX-based systems. One of the earliest UNIX-
based databases, the Informix product was rewritten to support SQL in 1985 and
was among the first to fully take advantage of the SMP UNIX servers that
dominated the 1990s. In 1995, Informix acquired Illustra, a pioneering object/
relational database vendor, making it the first major SQL database vendor to
embrace the object/relational trend. Challenges with the Illustra acquisition and
internal management problems stalled the company’s growth in the late 1990s, and
IBM acquired it primarily for its user base of over 100,000 customers. IBM continues
to support and enhance the Informix product as a UNIX-based OLTP database.

• SolidDB is an in-memory relational database that IBM acquired in early 2008. At this
writing, IBM offers the product in two editions. IBM SolidDB is a persistent in-
memory stand-alone database that provides extremely low-latency database access
for real-time transaction-processing applications. IBM SolidDB Universal Cache
uses the solid technology as an in-memory cache that accelerates the performance
of a range of disk-based RDBMSs. IBM’s announced direction is to more tightly
integrate the SolidDB into its mainstream database product family.

These IBM database products are part of a much broader IBM family of infrastructure
software products that has been built through a combination of IBM development and
acquisition. The WebSphere family enjoys a large market share in the application server

 846 P a r t V I I : A p p e n d i x e s 846 P a r t V I I : A p p e n d i x e s

market, and Cognos (acquired in late 2007) holds a similar position in the business
intelligence market. Along with hundreds of other products, these compose a product
family that allows IBM to offer “one-stop shopping” for key software products to the largest
IT shops in the world.

Ingres Corporation (Ingres)
The Ingres database traces its origins to one of the earliest relational database prototypes,
built at the University of California at Berkeley. The original Berkeley Ingres code was
readily available at low cost, and several Berkeley students and professors formed a
company, Relational Technology, Inc. (later renamed Ingres Corporation), to produce a
commercial version. During the early and middle 1980s, the Ingres DBMS and its QUEL
database language was a major rival to SQL, and there was a particularly strong competitive
rivalry between Ingres and Oracle in the midrange DBMS market. When SQL emerged as
the standard database language, Relational Technology adapted Ingres to support both
QUEL and SQL. Ingres was first implemented on Digital minicomputers and enjoyed early
success in the academic community, but the center of gravity moved to UNIX-based and
later Linux-based platforms, where it remains today.

Ultimately, Ingres created a substantial and loyal installed base, but lost the database wars
to Oracle. The company was acquired by ASK, a maker of manufacturing applications
software, in the early 1990s. Four years later, the combined ASK/Ingres was acquired by
Computer Associates (CA), which had perfected a business model of acquiring out-of-favor
software products with large installed bases. CA continued to enhance the product for the
next decade, but ultimately decided to release it as an open source database product in 2004.
This gave the product a new lease on life, as it now presented a powerful, very mature
database product available at very low cost. CA partnered with a private equity firm to form a
new company, Ingres Corporation, to provide support and services for the open source Ingres.

Ingres Corporation touts the advantages of today’s Ingres as high security, high
availability, high scalability, and high performance. In addition to the Ingres database, the
company offers an integrated Ingres+Linux software package (a “software appliance”), a set
of development environments, and a database middleware product that integrates across
underlying Oracle SQL Server, DB2, and Ingres databases.

Intersystems (Caché)
Intersystems touts its Caché database as the “world’s fastest object database.” The origins of
both the company and the product go all the way back to the 1960s (before the advent of the
relational database!) to a computer operating system and programming language named
MUMPS (Massachusetts General Hospital Utility Multi-Programming System), developed
at Massachusetts General Hospital. The system was designed for database-oriented
applications, and achieved considerable popularity in the next two decades for health-care/
medical and financial information systems. The MUMPS system actually achieved the
status of an ANSI standard in 1977, and Intersystems was founded as one of the leading
suppliers of MUMPS software. The company eventually acquired many of its rivals and
consolidated the acquired products under the Caché brand in the late 1990s. The code has,
of course, undergone substantial enhancement and modification over the years.

The Caché product is doubly positioned as an object-oriented database and a
“multidimensional data engine,” and unlike most SQL-based products, it does not have a
relational architecture at its foundation. However, SQL access to data plays a major role in

 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 847
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 847

most Caché implementations, and the Caché database supports both ODBC and JDBC APIs.
In addition to the database, the Caché suite includes an integrated application server and
web server.

Matisse Software, Inc. (Matisse)
Matisse is described as a “post-object-relational” database, extending the evolution of
database technology past the relational, object-oriented, and object-relational phases. The
database supports an extended SQL language designed to extend the data model beyond
tables to include “semantic networks” of data. The product also offers distributed database
capabilities tuned for blade server configurations. The company’s customer base includes
companies in the banking/financial services and telecom markets.

Microsoft Corporation
Microsoft is the largest vendor of personal computer software in the world. It dominates
several sectors of PC and workgroup software, including office applications (MS Office and
its spreadsheet, word processing, presentation, e-mail client, and other components), e-mail
(Microsoft Exchange server), directory services (Microsoft Active Directory), and
workgroup software (Microsoft SharePoint) as well as the various Windows operating
system editions on which that software runs. Microsoft SQL Server is a major component of
the company’s workgroup software product line. It serves both as a stand-alone relational
database system and as an embedded database component of other server-side systems.

Until 1987, Microsoft’s product lineup did not include a database management system.
With the announcement of its OS/2 Extended Edition in 1987, IBM provided a personal
computer operating system with an integrated DBMS and data communications. In 1988,
Microsoft responded with SQL Server, a version of the Sybase DBMS ported to OS/2.
Microsoft soon abandoned OS/2 in favor of its own Windows operating system, but Microsoft
retained its commitment to SQL Server, porting it to server versions of Windows. At the time,
the PC database market was still dominated by Ashton-Tate’s dBASE database, and Microsoft
hedged its bet on SQL Server by acquiring Foxbase, which offered a dBASE clone in the early
1990s. The Foxbase product was displaced fairly quickly by Microsoft Access, an internally
developed product, which provided a graphical user interface, an easy-to-use PC database,
and ODBC connectivity to “real” relational databases, including SQL Server.

Microsoft’s commitment to SQL Server has grown over the years, and today it is one of
the dozen most important Microsoft products. Despite competition from Oracle, IBM, and
others, Microsoft’s SQL Server enjoys the advantage that derives from Microsoft’s ownership
of Windows, and it is the most popular database for the Windows server platform. As a
result, it holds a large share of the workgroup and departmental database markets.

Microsoft has dramatically expanded the scope of SQL Server over the years. Its feature
set has expanded beyond those expected of a departmental database to embrace many
different aspects of database processing. SQL Server is well suited to departmental or
division-level OLTP, and it has extensive features to support data warehousing. Like the
flagship offerings from Oracle and IBM, SQL Server has integrated object database
capabilities and extensive support for XML.

Microsoft’s ambition for SQL Server and the underlying Windows server operating
systems is to steadily drive into larger and more complex data center environments. In SQL
Server 2008, Microsoft added data encryption, auditing, and management capabilities to
support that effort. That revision also added support for spatial data, expanded XML

 848 P a r t V I I : A p p e n d i x e s 848 P a r t V I I : A p p e n d i x e s

support, and user-defined data types to address a broader range of applications and their
data. Finally, SQL Server 2008 enhanced the business intelligence capabilities of SQL Server
and offered a major expansion of its enterprise reporting capability. With these capabilities,
the popularity of SQL Server should continue to increase, limited mostly by its being
restricted to the Windows server platform.

Mimer Information Technology (Mimer)
The Mimer database (named after the Norse god of wisdom) had its origins over 20 years
ago at the University of Uppsala in Sweden. The university project spawned a company of
the same name, which has found a niche supplying SQL-based databases for embedded and
mobile applications. The product is available in three editions. Mimer SQL Embedded is
optimized for small footprint (several hundred kilobytes) and zero maintenance. Mimer
SQL Mobile is optimized for mobile phones and other handheld devices that require local
database operation and connection to the enterprise. Mimer SQL Enterprise operates as a
central “home base,” backing the Embedded or Mobile products, or acting as a stand-alone
enterprise database. The company prides itself on its standards compliance, with an
employee serving on the ISO SQL standards committee.

Netezza Corporation (Netezza)
Netezza offers a database appliance focused on data warehousing and business intelligence
applications. The company claims to simplify data warehousing by deploying purpose-built
appliances with a tightly integrated and tuned combination of hardware and software. Its
appliances use a massively parallel processing (MPP) approach, spreading the data in the
warehouse over many individual processing elements. Each element includes a disk drive,
a microprocessor, and a custom Netezza logic chip designed to optimize and offload query
processing as data streams off the disk. Since many business intelligence and analytics
queries require a sequential scan of entire tables, the company argues that this approach can
far outperform conventional database software running on standard computer servers,
where the data must be moved from the disk to the CPU memory for processing.

Netezza defied a history of failed database appliance startups; the company grew
rapidly from a venture-backed startup to a company with more than $100 million in
revenue and had its initial public offering in 2007. It counts large retailers, insurance
companies, and telecom operators among its customers.

Oracle Corporation
Oracle Corporation was the first DBMS vendor to offer a commercial SQL product,
preceding IBM's own announcement by almost two years. During the 1980s, Oracle grew to
become the largest independent DBMS vendor. The company subsequently expanded into
enterprise applications software and middleware, and became a major consolidator of
enterprise software companies in the early 2000s through an acquisition spree. Led by its
high-profile founder and CEO, Larry Ellison, the company is one of the most successful and
largest software companies in the world, second only to Microsoft in revenues.

The Oracle DBMS was originally implemented on Digital minicomputers, but sales of
Oracle dramatically accelerated with the popularity of UNIX-based (and later Linux-based)
systems, which generate the majority of Oracle’s multi-billion-dollar database revenues. The
Oracle DBMS was originally based on IBM’s System/R prototype and remained generally
compatible with IBM's SQL-based products in the early years. As its market share grew,

 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 849
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 849

Oracle struck out on its own, creating proprietary extensions like its PL/SQL programming
language. During the “database wars” of the 1980s, Oracle aggressively marketed the OLTP
performance of its DBMS, using benchmark results from multiprocessor systems to
substantiate its claim as the OLTP performance leader. The company successively focused
its sights on Ingres, its early archrival, and later on Sybase, which challenged for a role as
OLTP leader for a few years. The company’s culture has always combined good technology
with a very aggressive sales force and high-profile marketing campaigns.

Oracle’s product line has expanded well beyond its database origins and now includes
enterprise software products as diverse as application servers and middleware, financial
and accounting applications, retail and telecom industry software, and applications for
managing customer relationships and HR. However, database technology remains the core
of the company, and it has a dominant market share in the enterprise database market,
challenged only by IBM. The company is also a leader in data warehousing, embedded
databases, XML integration, and many other niches, and has even ventured into hardware,
selling a data warehousing appliance based on hardware supplied by Hewlett-Packard.

The flagship Oracle database has been through many major revisions, numbered as
Oracle7, Oracle8i and 9i (i for “Internet”), and Oracle 10g and 11g (g for “grid”). It is an
extremely capable, large, and complex piece of software, and an entire subindustry has grown
up around Oracle database administration, Oracle performance tuning, and Oracle training
and consulting. The majority of the Oracle database technology has been developed internally
(unlike the Oracle applications and middleware business, where the company has acquired
large, successful companies such as PeopleSoft, Siebel, Hyperion, and BEA Systems).
However, the company has made a few notable database acquisitions. They include Rdb/
VMS, a pioneering minicomputer database product; TimesTen, a startup that pioneered the in-
memory database segment; and SleepyCat, a leading open systems embedded database.

Rdb/VMS, acquired by Oracle in 1994, was a pioneering database originally developed
by Digital Equipment Corporation for its industry-leading VAX/VMS 32-bit minicomputer.
The product was eventually ported to the OpenVMS operating system (a UNIX/VMS
hybrid), and ran on Digital’s very high-performance Alpha family of processors. Rdb/VMS
pioneered several database innovations, including a cost-based optimizer. All of the
minicomputer vendors eventually decided not to compete in database software with the
independent database vendors and either shut down or sold off their database operations.
Digital was no exception, and Oracle was eager to acquire both the Rdb customer base and
the Rdb development team.

TimesTen, acquired by Oracle in 2005, was a venture-backed startup that
commercialized the in-memory database technology initially developed at HP Labs in the
early 1990s. Unlike conventional enterprise databases, which rely on disks for data storage,
an in-memory database is optimized for databases that can fit entirely in main memory and
that require lightning-fast performance. TimesTen focused on high-performance
applications in the telecom and financial services industries, and also introduced a version
of its software that operated as a front-end cache accelerator for Oracle. With the
acquisition, Oracle has continued to offer Oracle TimesTen as a stand-alone in-memory
database and has begun to more tightly integrate it as a cache for its flagship Oracle DBMS.

Oracle acquired SleepyCat Software and its commercial version of the open source
BerkeleyDB database in 2006. BerkeleyDB enjoyed a position as a popular open source
database, due in part to the University of California at Berkeley’s historical role as a center
for database innovation. Oracle continues to offer the product under an open source license,
and it is a key part of Oracle’s recent initiatives in the embedded database market.

 850 P a r t V I I : A p p e n d i x e s 850 P a r t V I I : A p p e n d i x e s

ParAccel Inc. (ParAccel)
ParAccel is a venture-backed startup focused on the data warehousing and business
intelligence market. The company’s chief technology officer, Barry Zane, previously served
as chief technology officer at Netezza, a very successful vendor of database appliances for
data warehousing. Unlike Netezza, ParAccel is taking a software-only approach, applying
its massively parallel processing (MPP) architecture to clusters of off-the-shelf, high-
performance, low-cost servers. The company argues that the relentless price/performance
improvement of standard CPUs (as they obey Moore’s law and ride volume manufacturing
cost declines) outweighs any temporary performance advantages from custom query-
processing hardware. ParAccel’s VP of engineering, Bruce Scott, also has enjoyed a
prominent career in the database field over several decades, beginning as one of the four
cofounders of Oracle Corporation, where he was the architect of the first several versions of
the Oracle database.

ParAccel stresses a combination of architectural approaches as the key to delivering
massive data warehousing scalability. Storing the database in a column-oriented (rather
than row-oriented) sequence minimizes the amount of data that must be scanned to
calculate averages, totals, and statistical functions. Compression further minimizes the
amount of data that must be transferred from disk. Parallel operation with a shared-nothing
architecture spreads the data across processing units and allows business intelligence
queries to be spread out and to perform parallel rather than serial scanning of data. Finally,
support for in-memory operation allows very high performance for smaller datasets.

PostgreSQL (PostgreSQL)
PostgreSQL is one of the most popular open source SQL database implementations and has
served as the foundation of several commercial products over the years. The original
Postgres implementation was done at the University of California at Berkeley and was
conceived as a successor to the earlier Berkeley Ingres project. One of the major goals was to
support a broader variety of data types and relationships. The Berkeley project produced a
series of releases in the early 1990s, which were distributed under the liberal BSD (Berkeley
Software Distribution) open source license. SQL support was added in the mid-1990s, and
the Postgres name was changed to PostgreSQL to reflect the new standards compliance.
Postgres development soon moved outside of Berkeley to an open source PostgreSQL
community, which remains active today.

One of the earliest commercializations of PostgreSQL was at Illustra Information
Technologies, an object-relational database pioneer founded by two Berkeley alumni.
Illustra was acquired by Informix, one of the earliest RDBMS vendors in 1997, and its
features were integrated into the mainstream Informix product. PostgreSQL was also picked
up by Sun Microsystems and began shipping as part of its Solaris operating system
distribution. More recently, EnterpriseDB was founded to commercialize, extend, and
support PostgreSQL for transaction processing applications. Greenplum similarly extends
PostgreSQL for data warehousing applications, as does Truviso for streaming database
management. The PostgreSQL code base remains a popular foundation for database
management in a variety of systems and applications.

Streambase Systems (Streambase)
Streambase is a startup company founded by Michael Stonebreaker, the former Berkeley
professor who was also the technology founder of relational database pioneer Ingres and

 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 851
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 851

object-relational pioneer Illustra. As the name implies, Streambase is focused on applying
SQL-based data management to very large “streams” of data, usually data flowing over a
computer network. The applications addressed by stream databases are sometimes called
Complex Event Processing (CEP), because the individual pieces of data streaming across the
network are often related to real-world “events,” such as providing a stock quote or clicking
a button on a web page. CEP applications usually filter, correlate, and aggregate data from
these events to produce analysis and calculations in real time.

Like most startups in this segment, Streambase focuses on specific vertical markets
where Complex Event Processing is important. Target applications in the financial services
industry include real-time risk management, aggregation, and analysis of market data
(quotes and transactions), and trade order processing. Complex Event Processing is also
very important in government intelligence applications, where huge volumes of network
information must be analyzed as they are transmitted to detect patterns and irregularities.

Sun Microsystems (MySQL)
MySQL claims to be the most popular SQL database, with well over 10 million installations.
Its popularity exploded with the Internet, and it became an early choice for Internet sites
that needed database management. This role was cemented in the product’s role in the so-
called “LAMP” stack, a combination of the Linux operating system base, Apache web
server, the MySQL database and the PHP/Python/Perl programming language. MySQL is
especially strongly associated with PHP as a tool base for building database-centric
applications for web sites. Some of the highest-volume web sites on the Internet use it,
including Facebook, Wikipedia, YouTube, and parts of the Google system.

MySQL was originally developed and distributed by a company of the same name
(MySQL AB), based in Sweden. A basic version of the software is available free of charge for
research and personal use under the open source GNU Public License (GPL). Commercial
use of MySQL requires payment of a license fee, but the cost is fairly low, encouraging
widespread distribution. MySQL also provides fee-based support and maintenance for the
product.

One of the unique features of MySQL is a clean separation between the higher-level
database functions (including the SQL language processing) and the lower-level storage
engine that manages the physical storage and retrieval of data. Over time, several different
storage engines have been developed and used, tuned for different purposes. A larger and
more complex storage engine provided disk-based storage and full ACID transaction
support for multiuser applications. An alternative storage engine with a smaller footprint
provided persistent disk storage but incomplete transaction support, well suited for single-
user applications and for software development. This arrangement provided flexibility to
address a broad range of applications, but also left MySQL as a vulnerable company. One of
the most popular early storage engines, produced by a Swedish company named InnoDB,
was acquired by Oracle in 2006, and there was broad speculation at the time that Oracle
would use its power to stymie the success of MySQL. However, Oracle has continued to
release InnoDB versions to support MySQL, and alternative transactional storage managers
have emerged.

Despite the popularity of MySQL, the company had a difficult time growing its
revenues to the size that would support an independent enterprise database company
because of the low unit prices associated with the open source model. In early 2008, Sun
Microsystems announced that it was acquiring MySQL and would use it, together with

 852 P a r t V I I : A p p e n d i x e s 852 P a r t V I I : A p p e n d i x e s

Sun’s Java programming language, to advance the open source software movement. This
move made MySQL a part of a much larger organization with greater resources, but also
tied MySQL to Sun’s own challenges as a high-end UNIX systems vendor. Two of the
MySQL founders left a year later, in early 2009, but the product appears to be firmly
established as part of Sun’s software product line.

Sybase, Inc.
Sybase began as a mid-1980s DBMS startup company, about a decade after the early
relational database pioneers. The company’s founding team and many of its early employees
were alumni of other DBMS vendors, and for most of them, Sybase represented the second
or third relational DBMS that they had built. Sybase positioned its product as “the relational
DBMS for online applications” and stressed the technical and architectural features that
distinguished it from other SQL-based DBMS products. These features included

• A client/server architecture, with client software running on Sun and VAX
workstations and IBM PCs, and the server running on VAX/VMS or Sun systems

• A multithreaded server that handled its own task management and input/output,
for maximum efficiency

• A programmatic API, instead of the embedded SQL interface used by most other
DBMS vendors

• Stored procedures, triggers, and a Transact-SQL dialect that extended SQL into a
complete server programming language

These innovations made Sybase the most technically “flashy” DBMS at the time, and the
company’s late start actually gave it a technical competitive edge. Technology leadership,
aggressive marketing, and a first-class roster of venture capital backers gained Sybase the
attention of industry analysts, but it was a subsequent OEM deal with Microsoft and
Ashton-Tate that positioned the company as an up-and-coming DBMS vendor. Renamed
SQL Server, the Sybase DBMS was ported to OS/2, and marketed by Microsoft to computer
systems vendors (along with OS/2), and by Ashton-Tate through retail computer channels.
Although sales from the alliance were minimal, the publicity propelled Sybase into the
DBMS market as a serious player. Microsoft took over development responsibility for SQL
Server, and that product has diverged significantly from Sybase’s DBMS. The Sybase
product has been through many major revisions over the years, and Sybase augmented the
flagship DBMS through acquisitions of development tools and other software products over
the years. Between the third and fourth editions, the Sybase DBMS became recognized as an
enterprise-class product.

Today, the flagship Sybase DBMS (renamed Adaptive Server Enterprise) is a full-
featured enterprise database product for UNIX-based servers. It has a significant installed
base, especially among financial services and technology companies, but holds a distant
third-place overall market share position behind Oracle and IBM. Two complementary
products provide advanced replication capabilities (Replication Server) for linking
distributed databases, and a database integration capability (Open Server) for bridging
disparate database environments. Sybase has been particularly successful in the mobile and
embedded database markets, where its SQL Anywhere product is the market leader. SQL
Anywhere provides both data management on the mobile system or device, and data
exchange capabilities that link to and synchronize with enterprise databases.

 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 853
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 853

Teradata Corporation (Teradata)
Teradata is a major player in the data warehousing market and is known for supporting
some of the largest data warehouses in the world. The company’s customers include some
of the largest retailers, telecom companies, banks, and airlines, and the company’s
reputation was significantly enhanced when it was chosen to manage Wal-Mart’s massive
data warehouse of retail product buying patterns. The Teradata data warehousing
appliances combine custom-built hardware with proprietary database software in a
massively parallel architecture with a shared-nothing architecture to produce extreme
scalability, albeit at a significant cost.

Teradata grew out of research at the California Institute of Technology (CalTech) in
Southern California in the late 1970s, focused on massively parallel architectures and their
application in data management. The company was founded to commercialize the research
prototype, and early customers came from the banking industry. By the late 1980s, the
company was bragging about terabyte-scale data warehouses and began to define data
warehousing as a distinct segment within the database market. In late 1991, Teradata was
acquired by NCR Corporation, which at the time was a subsidiary of telecom giant AT&T
responsible for AT&T’s computer systems products. NCR had a major position in the retail
market through its cash registers and supporting computer systems, and in banking
through its ATM terminals and associated computers, and both of these markets were heavy
users of data warehousing, providing the rationale for the acquisition.

A decade and a half later, Teradata had become a dominant player in data warehousing
across many different industries, while NCR had focused even more strongly in its industry
niches, and had separated from AT&T. Teradata was spun back out of NCR in late 2007 and
now competes as a stand-alone, publicly traded company focused exclusively on data
warehousing. It dominates the high end of the data warehousing market with its appliances
and associated software and faces competition primarily from Netezza, Oracle, and IBM.
Many customers run Teradata warehouses with hundreds of terabytes of data, and the
company is pushing up into petabyte (1,024 terabytes) scale. Teradata has been less
successful in extending its leadership down into the low-end and midrange data
warehousing market, where venture-backed startups and Oracle and IBM all enjoy
significant market share.

Truviso, Inc. (Truviso)
Truviso is a venture-backed Silicon Valley startup focused on the streaming database market
segment. Like many database startups, it was cofounded by a Berkeley professor, Michael
Franklin, based on the Berkeley Telegraph streaming database prototype, which was built
by extending Berkeley’s earlier work on Postgres. The company focuses on business
intelligence and data analytics applications, using an approach that it terms “continuous
analytics.” Unlike conventional analytics, where data is first accumulated into a data
warehouse and then queried, the continuous analytics approach uses “always-on” queries,
which analyze data as it arrives. The Truviso products can also perform queries that
combine streaming data with conventional “data at rest.” For some types of important
queries, the company claims the continuous analytics approach can yield performance
improvements of two to three orders of magnitude over conventional approaches. Truviso’s
core data management product, TruCQ, is SQL-based and is complemented by TruLink,
which integrates it with popular data feeds and data-delivery products, and TruView, which
provides data visualization.

 854 P a r t V I I : A p p e n d i x e s 854 P a r t V I I : A p p e n d i x e s

Unify Corporation (SQLBase)
Unify Corporation was one of the earliest UNIX-based database startups, founded in 1980.
In the mid-1980s, Unify, Informix, Ingres, and Oracle were the four major UNIX-based
DBMS competitors, with Oracle and Ingres battling for dominance as the “high-end”
DBMS, while Informix and Unify competed at the low end of the market. The Unify DBMS
was based on the network data model, with a SQL veneer for relational access, an approach
which provided an early performance advantage, but which restricted the ability to rapidly
evolve the product’s SQL support. Over time, the namesake database became a declining
part of the business. The company’s Accell fourth-generation language was one of the first
4GL products and expanded over time to become a cross-platform application development
environment for any SQL-based database. Development tools remain an important part of
the company’s product line today.

In 2006, Unify acquired Gupta Technologies, which had been founded more than a
decade earlier by ex-Oracle executive Umang Gupta. Like Unify, Gupta’s product line
included a database product (SQLBase) and database development tools. SQLBase remains
an important part of the company’s product line today. It has evolved into a high-
performance, SQL-based embedded database that combines sophisticated capabilities like
advanced locking and Unicode support with a small footprint. Unify positions SQLBase as
an “Embed It and Forget It” database that requires no database administration. The
company targets independent software vendors (ISVs) and value-added resellers (VARs)
who embed SQLBase transparently into their application software and systems.

Vertica Systems (Vertica)
Vertica is an analytic database startup focused on data warehousing applications,
cofounded by former Berkeley professor Dr. Michael Stonebreaker, who has been involved
in several other pioneering database startups over the past 30 years, and is now an adjunct
professor at MIT. The company’s Vertica database uses an architecture that has rapidly
become popular for these applications, combining a column-oriented organization and data
compression in a shared-nothing architecture that scales horizontally. The product uses
industry-standard ODBC and JDBC interfaces, and targets databases from hundreds of
gigabytes to hundreds of terabytes in size.

Uniquely, Vertica offers its database in three different forms. The Vertica Database is a
software product that runs on a grid of Linux-based servers. The Vertica Analytic Database
Appliance combines the Vertica database software with Red Hat Linux and HP blade server
hardware for a prepackaged “out of the box” data mart solution. Finally, Vertica Analytic
Database for the Cloud runs the company’s database software on Amazon’s EC2 Elastic
Compute Cloud to provide a Software-as-a-Service (SaaS) approach.

Xeround (Xeround Intelligent Data Grid)
Xeround is a database startup founded by an Israeli team that brings its networking
expertise to bear on distributed database design. The company’s Xeround Intelligent Data
Grid (IDG) is targeted for online transaction processing applications that demand real-time
response for data capture, update, and retrieval operations. It distributes data horizontally
across a grid of processors, based on a rapid translation of database primary keys into
server network addresses. This allows very low latency data access for key-based SQL
operations, and a high degree of scalability. In addition to the SQL API, IDG offers LDAP,
XQuery, and proprietary APIs. Replication across the grid is used to provide redundancy
and high availability.

 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 855
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x B : D B M S V e n d o r P r o f i l e s 855

Xeround originally targeted its database for telecom applications that process subscriber
data, such as the databases that track the locations and capabilities of mobile telephones in a
network. More recently, the company has repackaged its database as IDG Core and
supplemented it with two additional products—IDG Unify, which federates data across
existing databases for access via IDG, and IDG Sync, which synchronizes data across
databases. With these additions, the company now positions IDG as a database
virtualization solution, providing a single view across disparate databases and networks.

This page intentionally left blank

C
SQL Syntax Reference

The ANSI/ISO SQL standard specifies the syntax of the SQL language using a formal
Backus Naur Form (BNF) notation. Unfortunately, the standard is difficult to read
and understand for several reasons. First, the standard specifies the language

bottom-up rather than top-down, making it difficult to get the “big picture” of a SQL statement.
Second, the standard uses unfamiliar terms (such as table-expression and predicate). Finally,
the BNF in the standard is many layers deep, providing a very precise specification but
masking the relatively simple structure of the SQL language. This appendix presents a
complete, simplified BNF for “standard” SQL as it is commonly implemented in the
products of most DBMS vendors. Specifically:

• The language described generally conforms to that required for entry-level
conformance to the SQL standard, plus those intermediate-level and full-level
conformance features that are commonly found in the major DBMS products.

• The module language is omitted because it is replaced in virtually all SQL
implementations by embedded SQL or by a SQL API.

• Components of the language are referred to by the common names generally used in
DBMS vendor documentation, rather than by the technical names used in the standard.

The BNF in this appendix uses the following conventions:

• SQL keywords appear in all UPPERCASE MONOSPACE characters.

• Syntax elements are specified in italics.

• The notation element-list indicates an element or a list of elements separated by commas.

• Vertical bars (|) indicate a choice between two or more alternative syntax elements.

• Square brackets ([]) indicate an optional syntax element enclosed within them.

• Braces ({ }) indicate a choice among required syntax elements enclosed within them.

857

APPENDIX

 858 P a r t V I I : A p p e n d i x e s 858 P a r t V I I : A p p e n d i x e s

Data Definition Statements
These statements define the structure of a database, including its tables and views and the
DBMS-specific “objects” that it contains:

CREATE TABLE table (table-def-item-list)

DROP TABLE table [drop-options]

CREATE VIEW view [(column-list)]
 AS query-spec
 [WITH CHECK OPTION]

DROP VIEW view [drop-options]

CREATE db-object-type db-object-name [db-object-spec]

DROP db-object-type db-object-name [drop-options]

ALTER db-object-type db-object-name alter-action

The keywords used to specify database objects (db-object-type) depend on the specific
DBMS. Typical “database objects” with associated privileges include TABLE, VIEW,
SCHEMA, PROCEDURE, FUNCTION, TRIGGER, DOMAIN, INDEX, and the named storage areas
maintained by the DBMS. The SQL syntax used to specify these objects is specific to the
DBMS that supports them. The specific alter actions supported are also DBMS-specific and
object type–specific.

The language elements used in the CREATE, DROP, and ALTER, statements are

Language Element Syntax

table-def-item column-definition | table-constraint

column-definition column data-type
 [DEFAULT { literal | USER | NULL }]
 [column-constraint-list]

column-constraint [CONSTRAINT constraint-name]
 { NOT NULL | uniqueness | foreign-key-ref | check-constr }
 [constraint-timing]

table-constraint [CONSTRAINT constraint-name]
 { uniqueness | foreign-key-constr | check-constr }
 [constraint-timing]

uniqueness UNIQUE (col-list) | PRIMARY KEY (col-list)

foreign-key-constr FOREIGN KEY (col-list) foreign-key-ref

foreign-key-ref REFERENCES table [(col-list)]
 [MATCH { FULL | PARTIAL }]
 [ON DELETE ref-action]

ref-action CASCADE | SET NULL | SET DEFAULT | NO ACTION

check-constr CHECK (search-condition)

constraint-timing [INITIALLY IMMEDIATE | INITIALLY DEFERRED]
[[NOT] DEFERRABLE]

drop-options CASCADE | RESTRICT

 A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 859
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 859

Access Control Statements
These statements control access to database objects and services:

GRANT { ALL PRIVILEGES | privilege-list }
 ON { table | db-object-type db-object-name }
 TO { PUBLIC | user-list }
 [WITH GRANT OPTION]

REVOKE { ALL PRIVILEGES | privilege-list }
 ON {table | db-object-type db-object-name }
 FROM { PUBLIC | user-list }
[WITH GRANT OPTION]

The keywords used to specify database objects (db-object-type) depend on the specific
DBMS. Typical “database objects” with associated privileges include TABLE, VIEW,
SCHEMA, PROCEDURE, FUNCTION, TRIGGER, DOMAIN, INDEX, and the named storage areas
maintained by the DBMS. The SQL syntax used to specify these objects is specific to the
DBMS that supports them. The specific privileges that are supported are also DBMS-specific
and object type–specific.

The language element and syntax used in the GRANT and REVOKE statements are

Language Element Syntax

privilege SELECT |
 DELETE |
 UPDATE [(column-list)] |
 INSERT [(column-list)] |
 EXECUTE

Basic Data Manipulation Statements
The “singleton SELECT” statement retrieves a single row of data into a set of host variables
(embedded SQL) or stored procedure variables:

SELECT [ALL | DISTINCT] { select-item-list | * }
 INTO variable-list
 FROM table-ref-list
[WHERE search-condition]

The “interactive SELECT” statement retrieves any number of rows of data in an
interactive SQL session (multirow retrieval from embedded SQL or stored procedures
requires cursor-based statements):

SELECT [ALL | DISTINCT] { select-item-list | * }
 INTO host-variable-list
 FROM table-ref-list
[WHERE search-condition]
[GROUP BY column-ref-list]
[HAVING search-condition]
[ORDER BY sort-item-list]

 860 P a r t V I I : A p p e n d i x e s 860 P a r t V I I : A p p e n d i x e s

These statements modify the data in the database:

INSERT INTO table [(column-list)]
{ VALUES (insert-item-list) | query-expr }

DELETE FROM table [WHERE search-condition]

UPDATE table SET set-assignment-list [WHERE search-condition]

Transaction-Processing Statements
These statements signal the end of a SQL transaction:

COMMIT [WORK]

ROLLBACK [WORK]

Cursor-Based Statements
These programmatic SQL statements support data retrieval and positioned update of data:

DECLARE cursor [SCROLL] CURSOR FOR query-expr
[ORDER BY sort-item-list]
[FOR { READ ONLY | UPDATE [OF column-list] }]

OPEN cursor

CLOSE cursor

FETCH [[fetch-dir] FROM] cursor INTO variable-list

DELETE FROM table WHERE CURRENT OF cursor

UPDATE table SET set-assignment-list WHERE CURRENT OF cursor

The optional fetch direction (fetch-dir) is specified as the following, and row-nr can be
specified as a numeric variable or a numeric literal:

NEXT | PRIOR | FIRST | LAST | ABSOLUTE row-nr | RELATIVE row-nr

Query Expressions
The SQL standard provides a rich set of expressions for specifying queries, from simple
queries to more complex query expressions that use relational database operations to
combine the results of simpler queries.

 A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 861
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 861

The basic query specification has the form:

SELECT [ALL | DISTINCT] { select-item-list | * }
 FROM table-ref-list
[WHERE search-condition]
[GROUP BY column-ref-list]
[HAVING search-condition]

The table references (tbl-ref) in the FROM clause can be

• A simple table reference consisting of a (possibly qualified) table name.

• A derived table reference consisting of a subquery (see the text that follows) that
produces a table-valued result. Not all DBMS brands allow table-valued subqueries
to appear in the FROM clause.

• A joined table reference (see the text that follows) that combines data from two or
more tables using relational OUTER JOIN, INNER JOIN, or other join operators.
Not all DBMS brands allow join specifications to appear in the FROM clause.

Joined tables are specified according to the SQL standard as follows; in practice, there is
wide variation in the specific types of joins supported by individual DBMS brands and the
syntax used to specify various join types:

Join Type Syntax

joined-table inner-join | outer-join | union-join | cross-join

inner-join table-ref [NATURAL] [INNER] JOIN table-ref |
table-ref [INNER] JOIN table-ref [join-spec]

outer-join table-ref [NATURAL] [LEFT | RIGHT | FULL]
 OUTER JOIN table-ref |
table-ref [LEFT | RIGHT | FULL] OUTER JOIN
 table-ref [join-spec]

union-join table-ref UNION JOIN table-ref

cross-join table-ref CROSS JOIN table-ref

join-spec ON search-condition |
USING (col-list)

The SQL standard allows basic query specifications to be combined with one another
using the set-oriented relational operations UNION, EXCEPT, and INTERSECT. The resulting
query-expression provides the full relational set-processing power of the standard. Enclosed
in parentheses, a query-expression becomes a subquery that can appear in various positions
within SQL statements (for example, within certain search conditions in the WHERE clause).

 862 P a r t V I I : A p p e n d i x e s 862 P a r t V I I : A p p e n d i x e s

Not all DBMS brands support all of these operations. A simplified form of the SQL
syntax for the operations (without the details of operator precedence) is given by:

Expression Syntax

query-expr simple-table | joined-table | union-expr | except-expr |
 intersect-expr | (query-expr)

union-expr query-expr UNION [ALL] [corresponding-spec]
 query-expr

except-expr query-expr EXCEPT [ALL] [corresponding-spec]
 query-expr

intersect-expr query-expr INTERSECT [ALL] [corresponding-spec]
 query-expr

corresponding-spec CORRESPONDING [BY (col-list)]

subquery (query-expr)

Search Conditions
These expressions select rows from the database for processing:

Language Element Syntax

search-condition search-item | search-item { AND | OR } search-item

search-item [NOT] { search-test | (search-condition) }

search-test comparison-test | between-test | like-test | null-test |
 set-test | quantified-test | existence-test

comparison-test expr { = | <> | < | <= | > | >= } { expr | subquery }

between-test expr [NOT] BETWEEN expr AND expr

like-test column-ref [NOT] LIKE value [ESCAPE value]

null-test column-ref IS [NOT] NULL

set-test expr [NOT] IN { value-list | subquery }

quantified-test expr { = | <> | < | <= | > | >= }
 [ALL | ANY | SOME] subquery

existence-test [NOT] EXISTS subquery

 A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 863
PART I
PART I
PART I
PART I

PART VII
 A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 863

Expressions
These expressions are used in SQL select lists and search conditions:

Language Element Syntax

expr expr-item | expr-item { + | – | * | / } expr-item

expr-item [+ | –] { value | column-ref | function | (expr) }

value literal | USER | host-variable | stored-proc-variable

host-variable variable [[INDICATOR] variable]

function COUNT(*) | distinct-fcn | all-fcn

distinct-function { AVG | MAX | MIN | SUM | COUNT }
 (DISTINCT column-ref)

all-function { AVG | MAX | MIN | SUM | COUNT }
 ([ALL] expr)

Statement Elements
These elements appear in various SQL statements:

Language Element Syntax

set-assignment column = { expr | NULL | DEFAULT }

sort-item { column-ref | integer } [ASC | DESC]

insert-item { value | NULL }

select-item expr

table-ref table [table-alias]

column-ref [{ table | alias } .] column

 864 P a r t V I I : A p p e n d i x e s

Simple Elements
The following are the basic names and constants that appear in SQL statements:

Language Element Description

table Table name

column Column name

user Database user name

variable Host language or stored procedure variable name

literal Number or a string literal enclosed in quotes

integer Integer number

data-type SQL data type

alias SQL identifier

cursor Cursor name (SQL identifier)

A
abstract data types, 744–746

defining, 746–748
manipulating, 748–749

access control, 5
statements, 859

accessor methods, 693
ACID test, 282
adding data to the database, 17. See also

INSERT statements
advanced queries, 211–212

CASE expression, 215–216
CAST expression, 213–214
COALESCE expression, 216–217
NULLIF expression, 217–218
query expressions, 224–227
query specification, 223–224
row-value constructor

expression, 218–219
row-valued comparisons, 221
row-valued expressions, 218–221
row-valued subqueries, 219–221
scalar-valued expressions, 213–218
table-value constructor

expression, 221–222
table-valued expressions, 221–224
table-valued subqueries, 222–223

Aleri, 812
aliases, 333–335
all-column selections, 136–137

ALTER TABLE statements, 328–332
changing primary and foreign

keys, 331–332
AND keyword, 108–110
ANSI, 9, 26–29
ANSI/ISO SQL transaction model, 284–289
Apama, 812
APIs

basic operation, 522
defined, 522
overview, 521
when to use, 523. See also dblib API;

JDBC; OCI; ODBC; SQL/CLI
standard

application programming interfaces. See APIs
application servers, 30

caching, 695–698
database access from, 684–695
early web site implementations,

681–682
open source application

development, 695
session bean database access, 686–689
and three-tier web site

architecture, 682–684
approximate numeric literals, 77
arrays, varying arrays, 756
assertions, 269, 270, 332–333
Aster Data, 842
asynchronous execution, 584

Index

865

 866 S Q L : T h e C o m p l e t e R e f e r e n c e 866 S Q L : T h e C o m p l e t e R e f e r e n c e

attributes, 747
CLI, 577, 578
in XML Schema, 795–797

authorization-ids, 348, 378
AVG(), 166

B
Backus Naur Form. See BNF notation
backward compatibility, 31
bean caching, 696
bean-managed persistence, 690, 691, 692
BETWEEN test. See range test
binding columns, 533
binding offset, 584
bitmap indexes, 338
BLOB, 741
block structure, 619
BNF notation, 857
bookmarks, 585
B-tree indexes, 338
built-in functions, 80–81
bulk load utilities, 232, 238
business intelligence, 40–42, 668
business rules, 248, 274–278

C
Caché, 846–847
caching

application servers, 695–698
bean caching, 696
with in-memory databases, 808–809

calculated columns, 91–93
callable statements, JDBC, 607–610
call-level interfaces. See CLI
Cartesian product, 142, 155
CASCADE delete rule, 258
CASCADE update rule, 259
CASE expression, 215–216
CAST expression, 213–214
catalogs, 350
centralized architecture, 32–33
changing a table definition, 328–332
check constraints, 251, 271, 325–326

CLI, 5, 549–550
attributes, 577, 578
deferred parameter passing, 559
descriptors, 575
dynamic query processing, 566–575
errors and diagnostic information,

575–576
handles, 554
information calls, 577–579
named cursors, 566
processing query results, 562–566
scrolling cursors, 566
statement execution with parameters,

557–561
statement processing, 557
structures, 552–557
transaction management, 561–562. See

also SQL/CLI standard
client/server applications

and database architecture, 728
with stored procedures, 729–730

client/server architecture, 11, 34–35
client/server language, SQL as a, 7
CLOB, 741
CLOSE statement, 468–469

dynamic CLOSE statement, 504
cloud-based databases, 830–831
COALESCE expression, 216–217
Codd, E.F. “Ted”, 22

12 rules for relational databases, 57–59
CodeGear, 842
collating sequence, 112
collections

defining, 755–758
manipulating collection data, 759–760
querying collection data, 758–759
and stored procedures, 760–762

column constraints, 269
column functions, 163–165

computing a column average, 166
computing a column total, 165–166
counting data values, 168–169
duplicate row elimination, 173

 I n d e x 867

finding extreme values, 166–168
NULL values and, 171–172
in the select list, 169–171

column names, 52, 71
qualified column names, 135–136

column privileges, 388
columns, 52

adding, 329–330
calculated, 91–93
dropping, 330–331
inserting, 235

commercial acceptance of SQL, 25–26
COMMIT, 561
COMMIT statement, 286–289
Common Application Environment

(CAE), 549
comparison test, 97–100
complete database language, SQL as a, 10
conditional execution, 618, 634–636
connection browsing, 583
connection pooling, 583
consistency, 249
constants, 77

date and time constants, 78–79
numeric constants, 77
string constants, 78
symbolic constants, 79

constraint names, 271
constructor method, 760
container-managed persistence, 690, 691, 692
containers, 685
continuous intelligence, 812
continuous queries, in stream databases,

811–812
Coral8, 812
correlated references, 206
correlated subqueries, 205–207
correlation names, 140–141. See also table

aliases
COUNT(), 168–169
CREATE ALIAS statements, 333–335
CREATE INDEX statements, 335–338

CREATE PROCEDURE statement, 621,
622–624

CREATE TABLE statements, 19–20, 318–319
check constraints, 325–326
column definitions, 320–321
missing and default values, 321–322
physical storage definition, 326–327
primary and foreign key definitions,

322–324
uniqueness constraints, 324–325

CREATE VIEW statements, 358–366
creating a database, 19–20, 317–318. See also

CREATE TABLE statements
cross joins, in standard SQL, 155–157
cross product, 155
cursor-based repetition, 639–643
cursor-based statements, 470–475, 860
cursors

embedded SQL, 466
named, 566
scrollable and updateable cursors in

JDBC, 610–612
scrolling, 469–470, 566
and transaction processing, 475

D
dashboards, 814
data cleansing, 678
data compatibility, 704
data cross-checking, 678
data definition, 5

statements, 858. See also dynamic data
definition

Data Definition Language. See DDL
data extraction, 678
data insertion/update, 678
data integrity, 5

advanced constraint capabilities,
269–274

assertions, 269, 270
business rules, 248, 274–278
column check constraints, 251
column constraints, 269

 868 S Q L : T h e C o m p l e t e R e f e r e n c e 868 S Q L : T h e C o m p l e t e R e f e r e n c e

data integrity (Continued)
consistency, 249
deferred constraint checking, 271–274
defined, 247–248
domains, 251–252, 269
entity integrity, 248, 253–254
other data relationships, 248
referential integrity, 248, 255–268
required data, 248, 249
SQL constraint types, 270–271
table constraints, 269
validity checking, 248, 250–252

data manipulation, 5
statements, 859–860

Data Manipulation Language. See DML
data mining, 667
data mirroring, 31
data models, 45

CODASL model, 49
file management systems, 45–46
hierarchical databases, 47–48
network databases, 48–50
relational data models, 45, 50–57

data reformatting, 678
data retrieval, 5
data sharing, 5
data types, 31, 72–77

abstract, 744–749
ANSI/ISO SQL data types, 74
collection data types, 755
and host variables, 453–455
user-defined data types, 762–763
in XML Schema, 792–795

data warehousing, 40–42, 667
architecture, 671–677
for business optimization, 826–827
components, 669–670
concepts, 668–669
evolution of, 670–671
extract, transform, and load (ETL), 669
fact cubes, 672–673
load performance, 678–679

multilevel dimensions, 675–676
vs. OLTP, 668
query performance, 679–680
SQL extensions for, 676–677
star schemas, 673–675

database administration language,
SQL as a, 7

database constraints, 332
assertions, 332–333
domains, 333

database engines, 6
database gateway language, SQL as a, 7
database interoperability, 29
database library API. See dblib API
database management, evolution of, 21–22
database management systems (DBMS), 4

statement processing, 431–433
database programming language,

SQL as a, 6
database request module (DBRM), 435
database server appliances, 824–825
database structure, 32, 342–343

and the ANSI/ISO standard, 348–353
databases on multiple servers, 348
multidatabase architecture, 344–346
multilocation architecture, 346–347
single-database architecture, 343–344

dataBased Intelligence, 842–843
DB2, 844–846
dBASE Plus, 842–843
dbbind(), 533
dbgetrow(), 537–539
dblib API

binding columns, 533
dynamic queries, 540–549
vs. embedded SQL, 524–527, 531–532,

533, 535, 536, 544–549
error handling, 528–532
functions, 524
overview, 523
positioned updates, 539–540
random row retrieval, 537–539

 I n d e x 869

retrieval using pointers, 537, 538
retrieving NULL values, 535–537
SQL Server queries, 532–539
statement batches, 527–528, 529

DBMS. See database management systems
(DBMS)

dbnextrow(), 533, 537
DDL, 315–317

statements in popular SQL-based
products, 339–342

deadlocks, 300–303
decimal constants, 77
DECLARE CURSOR statement, 466–467, 500
DECLARE TABLE statements, 441–442
DEFERRABLE constraints, 272
deferred constraint checking, 271–274
deferred parameter passing, 559
delete and update rules, 257, 258–262
delete rules, 257
DELETE statements, 18, 239–240

deleting all rows, 240
with subqueries, 241–242

deleting data, 18, 238–239. See also DELETE
statements

derived table reference, 861
DESCRIBE statement, 495–500
descriptors

CLI, 575
OCI, 590

desktop personal computers, 700
development environment, 814
DeviceSQL, 843
dialect translation, 583–584
DISTINCT keyword, 94–95, 173
distributed data management, 700–704
distributed database access, 719–720

distributed requests, 722–724
distributed transactions, 722
remote requests, 720
remote transactions, 721

distributed database language, SQL as a, 7
distributed databases, 826

distributed deadlocks, 704
distributed queries, 703
distributed requests, 722–724
distributed transactions, 703, 722
distributed updates, 703
distributing data, 704

remote data transparency, 708–709
remote database access, 705–707
replication trade-offs, 715
table extracts, 709–711
table replication, 711–713
typical replication architectures,

715–719
updateable replicas, 713–714

DML, 315
Document Object Model (DOM), 785
Document Type Definitions (DTDs), 789,

790–791
DOM, 785
domains, 52, 251–252, 269, 333
drivers, 549
DROP ALIAS statements, 333–335
drop behavior, 331
DROP INDEX statements, 335–338
DROP PROCEDURE statement, 621
drop rules, 331
DROP TABLE statements, 20, 327–328
DROP VIEW statements, 371
DTDs. See Document Type Definitions (DTDs)
duplicate rows, 94–95

elimination of, 173
and UNON operations, 115–116

dynamic data definition, 10
dynamic queries, 493–495, 540–549

DECLARE CURSOR statement, 500
DESCRIBE statement, 495–500
dynamic CLOSE statement, 504
dynamic FETCH statement, 503
dynamic OPEN statement, 500–502
and the SQL standard, 515–518

dynamic query processing, using CLI,
566–575

 870 S Q L : T h e C o m p l e t e R e f e r e n c e 870 S Q L : T h e C o m p l e t e R e f e r e n c e

dynamic SQL
basic statements, 508–510
concepts, 479–480
dialects, 504–507
dynamic statement execution, 480–482
EXECUTE statement, 486–493
PREPARE statement, 485–486
and the SQL standard, 508–518
standard SQLDA, 510–515
two-step dynamic execution, 483–493.

See also static SQL
dynamic SQL in Oracle, 504–507

E
EJBs. See Enterprise Java Beans (EJBs)
elements, in XML Schema, 795–797
embedded databases, 814, 829

characteristics, 815
implementations, 815–816

embedded SQL
automatic rebinding, 438–439
CLOSE statement, 468–469
concepts, 433–434
cursor-based deletes and updates,

470–475
cursors, 466
cursors and transaction processing, 475
data retrieval in, 457–470
vs. dblib API, 524–527, 531–532, 533,

535, 536, 544–549
DECLARE CURSOR statement, 466–467
declaring tables, 441–442
developing an embedded SQL

program, 434–437
error handling, 443–451
FETCH statement, 468
host variables, 451–457
input and output host variables,

462–463
multirow queries, 464–470
NOT FOUND condition, 460
OPEN statement, 467–468

retrieval using data structures, 462
retrieving NULL values, 460–462
running an embedded SQL program,

437–439
runtime security, 438
scroll cursors, 469–470
simple statements, 439–441
single-row queries, 457–463

empty tables, 53
Encirq, 843
enterprise application support, 11
enterprise applications, and data caching,

730–731
enterprise database market maturity,

820–821
enterprise DBMS links, 814
Enterprise Java Beans (EJBs), 683

accessor methods, 693
corresponding database and EJB

activities, 690
deployment descriptors, 686
finder methods, 693
interceptor methods, 694
select methods, 693
types, 685–686
version 2.0 enhancements, 692–693
version 3.0 enhancements, 693–695

EnterpriseDB, 843
entity beans, 685

bean-managed persistence, 690,
691, 692

container-managed persistence, 690,
691, 692

database access from, 689–692
entity integrity, 248, 253–254
equi-joins, 121–133. See also non-equi-joins
error codes, 32
error handling, 443, 528–532

conditions, 643–644
JDBC, 610
OCI, 591
with SQLCODE, 443–444
with SQLSTATE, 444–447

 I n d e x 871

using CLI, 575–576
WHENEVER statement, 447–451

escape characters, 105–106
European X/OPEN consortium, 29, 549, 550
event-processing applications, 810–814
event-processing engines, 813
exact numeric literals, 77
EXCEPT operation, 225–226
exclusive locks, 300
EXECUTE IMMEDIATE statement, 480–482
EXECUTE statement, 486

with host variables, 486–487
with SQLDA, 487–493

existence test, 192, 196–198
expressions, 80, 863
extensibility, 11
Extensible Stylesheet Language

Transformation. See XSLT
extensions, for data warehousing, 676–677
external stored procedures, 647–648. See also

stored procedures

F
facets, 794
fact cubes, 672–673
FETCH statement, 468

dynamic FETCH statement, 503
fields, 744
file descriptions (FDs), 46
file management systems, 45–46
file server architecture, 33
finder methods, 693
FIPS, 9
Firebird, 843
floating point constants, 77
foreign keys, 56–57

and NULL values, 267–268
FROM clause, query expressions in, 226–227
functions, 618, 630–631. See also built-in

functions
future of SQL, 826

cloud-based and horizontally scalable
databases, 830–831

data warehousing for business
optimization, 826–827

distributed databases, 826
embedded databases, 829
Internet and network services

integration, 828–829
object integration, 829–830
ultrahigh-performance databases,

827–828

G
GRANT OPTION statements, 389–390

REVOKE and, 393–394
GRANT statements, 18–19, 386–390
Greenplum, 843–844
GROUP BY clause, 173–182
group search conditions, 182–185

NULL values and, 186
restrictions, 185

grouped queries, 173–176
multiple grouping columns, 176–179
NULL values in grouping columns,

181–182
restrictions, 179–181

grouped views, 363–364
grouping columns, 175

multiple grouping columns, 176–179
NULL values in, 181–182

H
handheld devices, 701
handles

CLI, 554
OCI, 586, 587

hardware performance gains, 823–824
hash indexes, 338
HAVING clause, 182–186

subqueries in, 208–209
heterogeneous systems, 702
Hewlett-Packard Company, 844
hierarchical databases, 47–48
high-volume Internet data management,

731–732

 872 S Q L : T h e C o m p l e t e R e f e r e n c e 872 S Q L : T h e C o m p l e t e R e f e r e n c e

history of SQL, 22–26
horizontal views, 359–361
horizontally scalable databases, 830–831
host variables, 451–452

and data types, 453–455
declaring, 452–453
EXECUTE statement with, 486–487
input and output, 462–463
and NULL values, 456–457

HSQLDB, 844
HTML, 770

I
IBM, early commitment to SQL, 9
IBM Corporation, 819, 844–846

early relational products, 24
importance of SQL, 819–820
index creation/update, 678
indexes, 335–338
index-organized tables, 338
industry infrastructure, 12
information calls, CLI, 577–579
Informix, 844–846
Ingres Corporation, 24, 846
inheritance, 736, 749–751

subtypes, 750
supertypes, 750
table inheritance, 751–753

INITIALLY DEFERRED constraints, 272
INITIALLY IMMEDIATE constraints, 272
in-memory databases, 805–806

anatomy of, 806–808
caching, 808–809
implementations, 808–809

inner joins, in standard SQL, 153–154
input adapters, 813
INSERT statements, 17

adding data to the database, 231–232
bulk load, 232, 238
inserting NULL values, 235
multirow INSERT, 232, 235–238
single-row INSERT, 232–235

integer constants, 77

integrity, 703
interactive ad hoc queries, 10
interactive query language, SQL as an, 6
Interbase, 842
interceptor methods, 694
Internet and network services integration,

828–829
Internet applications, SQL and, 42
Internet connections, 701
Internet data access language, SQL as an, 7
Internet database access, 11–12
INTERSECT operation, 225–226
Intersystems, 846–847
IS NOT NULL, 106–107
IS NULL, 106–107
ISO, 9, 26–29

J
J2EE, 683–684
java beans, 683
Java Database Connectivity. See JDBC
Java integration, 12
JDBC, 12, 30

API, 598–600
basic statement processing, 601–603
callable statements, 607–610
Connection object methods, 601
data sources, 613
DriverManager object methods, 600
error handling, 610
history and versions, 592–593
implementations and driver types,

593–598, 599
overview, 592
prepared statements, 605–607
ResultSet object methods, 604
retrieving metadata, 612–613
rowsets, 613–614
scrollable and updateable cursors,

610–612
simple query processing, 603–605
Statement object methods, 602

 I n d e x 873

Type 1 driver (JDBC/ODBC bridge),
594–595

Type 2 driver (Native API driver),
595–596

Type 3 driver (Network-Neutral
driver), 596–597

Type 4 driver (Network-Proprietary
driver), 597–598

JOIN keyword, 126
joined table reference, 861
joined views, 364–366
joins

alternative way to specify joins, 125–126
cross joins in standard SQL, 155–157
equi-joins, 121–133
inner joins in standard SQL, 153–154
multiple matching columns, 127
multitable joins in standard SQL,

157–159
natural joins, 128
non-equi-joins, 134
outer joins, 144–152, 154–155
queries with three or more tables,

129–131
with row selection criteria, 126–127
self-joins, 137–139
structure of, 142–144
and subqueries, 203–204
summary of, 160–161
union joins, 155

jumping windows, 811

L
LAMP stack, 12
LAN servers, 700
large data objects, 739

large object support, 740
in the relational model, 740–742
specialized LOB processing, 742–744

latency, very low latency and in-memory
databases, 805–809

Linux-based servers, 700
lists, 755

literals, 77
LOB locators, 591–592
LOB processing functions, 742–744
LOBs. See large data objects
location transparency, 702
locking, 297–298

deadlocks, 300–303
explicit locking, 303–304
isolation levels, 304–307
levels, 298–299
parameters, 307
shared and exclusive locks, 300

logical database devices, 326
logical segments, 327
looping, 618

M
mainframes, 700

SQL on, 36
market diversity and segmentation, 821
marshaling, 786–788
matching columns, 122

multiple matching columns, 127
materialized views, 372–373, 711–713
Matisse Software, Inc., 847
MAX(), 166–168
member functions, 764–765
message handling. See error handling
message-driven beans, 694
metadata, and XML, 788–797
methods, and stored procedures, 763–766
Microsoft, support for SQL, 9
Microsoft Corporation, 819, 847–848
milestones in SQL development, 23
Mimer Information Technology, 848
MIN(), 166–168
minicomputers, SQL on, 36–37
missing data, 82–83
mixed-vendor environment, 704
mobile databases, 816–817
mobile laptop PCs, 701
modifying data in the database, 242–243. See

also UPDATE statements

 874 S Q L : T h e C o m p l e t e R e f e r e n c e 874 S Q L : T h e C o m p l e t e R e f e r e n c e

multisets, 755
multitable joins, in standard SQL, 157–159
multitable queries, 119

all-column selections, 136–137
parent/child queries, 123–125
performance, 141
qualified column names, 135–136
rules for multitable query processing,

143–144
self-joins, 137–139
SQL considerations for, 134–141
table aliases, 138, 139–141
three-table joins, 129–131
two-table query example, 119–121. See

also joins
multitier architecture, 35–36
MySQL, 12, 851–852

N
named cursors, 566
named procedures, 619
named row types, 746
named variables, 619
names, 70

column names, 71
table names, 70–71

natural joins, 128
NCLOB, 741
nCluster, 842
N-cubes, 672
nested subqueries, 204–205
nested tables, 756
Netezza Corporation, 848
network applications, and database

architecture, 727–732
network databases, 48–50
network transparency, 702
networking, 32

centralized architecture, 32–33
client/server architecture, 34–35
file server architecture, 33
multitier architecture, 35–36

nodegroups, 327

non-equi-joins, 134
nonreserved keywords, 68–69. See also

reserved keywords
NOT DEFERRABLE constraints, 272
NOT FOUND condition, 460
NOT keyword, 108–110
NOT NULL constraint, 270
null value test, 97, 106–107
NULL values, 82–83

column functions and, 171–172
in comparison tests, 99–100
and foreign keys, 267–268
group search conditions and, 186
in grouping columns, 181–182
and host variables, 456–457
inserting, 235
retrieving, 535–537
and uniqueness, 254

NULLIF expression, 217–218

O
OASIS, 789
object integration, 829–830
object support, 766–767
object technology, 11
object-oriented databases, 735–736

attributes, 736
classes, 736
encapsulation, 737
inheritance, 736
messages and methods, 737
object identity, 737
objects, 736
objects and the database market,

738–739
pros and cons of, 737–738

object-relational databases, 739
handles and object-ids, 740
large data objects, 739
sequences, sets, and arrays, 739
stored procedures, 740
structured/abstract data types, 739
tables within tables, 739
user-defined data types, 739

 I n d e x 875

OCI
catalog information, 591
descriptors, 590
error handling, 591
handles, 586, 587
initialization and connection

management routines, 588
large object manipulation, 591–592
old OCI functions, 587
overview, 586
query results processing, 590
statement execution, 589
transaction management, 590–591

OCIAttrGet(), 591
OCIBindbyName(), 589
OCIBindbyPos(), 589
OCIDefineByPos(), 590
OCIDescribeAny(), 591
OCIInitialize(), 588
OCILogoff(), 588
OCILogon(), 588
OCIStmtExecute(), 589
OCIStmtPrepare(), 589
ODBC, 549

asynchronous execution, 584
binding offset, 584
block cursor, 585
bookmarks, 585
catalog functions, 581–582
connection browsing, 583
connection pooling, 583
current rowset, 585
and DBMS independence, 581
extended capabilities, 582–583
overview, 579
parameter arrays, 585
query-processing efficiency, 585
and the SQL Access Group, 29–30
SQL dialect translation, 583–584
statement batches, 584
statement-processing efficiency,

584–585
structure of, 580–581. See also CLI

OLAP, 41, 668
OLTP, vs. data warehousing, 668
Online Analytical Processing. See OLAP
online transaction processing. See OLTP
Open Database Connectivity. See ODBC
open source application development, 695
open source support, 12
OPEN statement, 467–468

dynamic OPEN statement, 500–502
optimization, 703
OR keyword, 108–110
Oracle Call Interface. See OCI
Oracle Corporation, 24, 817, 819, 848–849
Oracle Lite, 817
Oracle SQLDA, 506–507
OS/2, 37–38
outer joins, 144–148

left and right outer joins, 148–151
older outer join notation, 151–152
in standard SQL, 154–155

outer references, 191–192
output adapters, 813
output parameters, 631–634
overloading procedure definitions, 765
overview of SQL, 4–5

P
packaged enterprise applications, 822
ParAccel Inc., 850
parameter arrays, 585
parameter markers, 483
parent/child queries, 123–125
partitions, table and index partitioning, 680
passing privileges, 389–390
pattern matching test, 97, 104–106
performance, 703
persistence, 685

bean-managed persistence, 690, 691, 692
container-managed persistence, 690,

691, 692
personal computers, SQL on, 37–38
placeholders, 483
polymorphism, 663

 876 S Q L : T h e C o m p l e t e R e f e r e n c e 876 S Q L : T h e C o m p l e t e R e f e r e n c e

portability, 30–32
across computer systems, 8

portals, 814
positioned updates, 539–540
Postgres Plus, 843
PostgreSQL, 850
predicates, 97
PREPARE statement, 485–486
prepared statements, JDBC, 605–607
PRIMARY KEY constraint, 270
primary keys, 53–54
privileges, 381–382

granting, 386–390
other privileges, 384
ownership privileges, 383
revoking, 391–396
SQL extended privileges, 382–383

procedural SQL, concepts, 618–619
programmatic database access, 10
programmatic interface, 31
programmatic SQL techniques, 429–431
proliferation of SQL, 36–42
protecting data, 18–19

Q
qualified column names, 135–136
quantified comparison test, 192, 198

ALL test, 201–202
ANY test, 199–201

queries, advanced, 211–227
queries, and XML, 797–802
queries, simple, 90–93
query expressions, 224–227, 860–862
query results, 88–90

combining, 113–115
processing rules, 210
sorting, 110–112

query specification, 223–224

R
range test, 97, 100–102
RDBMS, 22
record-based windows, 811, 812

recovery, 704
Red Brick Intelligent SQL (RISQL), 677
referential (FOREIGN KEY) constraint, 271
referential integrity, 248, 255–256

cascaded deletes and updates, 262
delete and update rules, 257, 258–262
foreign keys and NULL values,

267–268
problems, 256–257
referential cycles, 262–267
and triggers, 277

relational data models, 45, 50–51
foreign keys, 56–57
primary keys, 53–54
relationships, 55
sample database, 51–52
tables, 52–53

relational database management systems.
See RDBMS

relational databases, 4
12 rules for relational databases, 57–59
early relational products, 22–24
SQL as a language for, 9
table structure, 754–755

Relational Online Analytical Processing. See
ROLAP

relationships, 55
RELEASE SAVEPOINT statement, 286
remarks, 412
remote data transparency, 708–709
remote database access, 705–707
remote requests, 720
remote transactions, 721
removing a table, 327–328
repeated execution, 636–638
replication, 31
replication architectures, 715

horizontal table subsets, 716
mirrored tables, 717–719
vertical table subsets, 716–717

required data, 248, 249
reserved keywords, 66–67. See also

nonreserved keywords

 I n d e x 877

RESTRICT delete rule, 258
RESTRICT update rule, 259
result set, 88. See also query results
retrieving data, 14–16

single-row retrieval, 99
REVOKE statements, 19, 391–394

and the ANSI/ISO standard, 394–396
ROLAP, 41
role of SQL, 6–7
role-based security, 396–397
ROLLBACK, 561
ROLLBACK statement, 286–289
row data types, 744
row selection, 95–96

joins with row selection criteria,
126–127

rows, 53
row-value constructor expression, 218–219
row-valued comparisons, 221
row-valued expressions, 218–221
row-valued subqueries, 219–221

S
SaaS, 823
sample database, 51–52

CUSTOMERS table, 835, 838
downloading scripts for, 835–837
OFFICES table, 835, 839
ORDERS table, 835, 839
PRODUCTS table, 835, 840
SALESREPS table, 835, 838
simple relational database, 13–14
structure of, 835, 836

SAVEPOINT statement, 286
SAX, 785
scalar-valued expressions, 213–218
schemas, 351–353
scripts, 681–682
scrolling cursors, 469–470, 566
search conditions, 97, 862

compound search conditions, 107–110
group search conditions, 182–186
subqueries, 192–202

security, 375, 703
concepts, 376
objects, 381
privileges, 381–384, 386–396
role-based, 396–397
user authentication, 378–380
user groups, 380–381
user-ids, 376–381
and views, 384–386

select methods, 693
SELECT statements, 14–16, 85–87, 93–94

FROM clause, 86, 88
duplicate rows, 94–95, 115–116
GROUP BY clause, 86, 173–182
HAVING clause, 87, 182–186, 208–209
ORDER BY clause, 87, 110–112
SELECT clause, 86, 87
selecting all columns, 93–94
single-row retrieval, 99
vs. subqueries, 188–189
WHERE clause, 86, 95–96, 189–191

self-joins, 137–139
semantic differences, 31
SEQUEL, 4, 22
session beans, 685, 694

database access from, 686–689
using JDBC from a stateful session

bean, 687–689
using JDBC from a stateless session

bean, 687
SET DEFAULT delete rule, 258
SET DEFAULT update rule, 260
set membership test, 97, 102–104, 194–196
SET NULL delete rule, 258
SET NULL update rule, 260
SET TRANSACTON statements, 284–286
sets, 755
SGML, 769–770
shared locks, 300
Simple API for XML (SAX), 785
simple elements, 864
simple joins. See equi-joins

 878 S Q L : T h e C o m p l e t e R e f e r e n c e 878 S Q L : T h e C o m p l e t e R e f e r e n c e

Simple Object Access Protocol. See SOAP
simple queries, 90–93
simple table reference, 861
single-row queries, 457–463
single-table queries, 112–113

combining query results, 113–115
sliding windows, 811
slowly changing dimensions, 673
snowflake schemas, 676
SOAP, 780
Software-as-a-Service. See SaaS
SolidDB, 845
sorting query results, 110–112

and UNON operations, 116
specialty databases

embedded databases, 814–816
in-memory databases, 805–809
mobile databases, 816–817
stream databases, 810–814

SQL Access Group, 29–30, 549
SQL constraint types, 270–271
SQL Data Area (SQLDA), 487
SQL Descriptor Area, 487
sql injection, 482
SQL Server

APIs, 523
basic techniques, 524–527
dynamic queries, 540–549
error handling, 528–532
positioned updates, 539–540
queries, 532–539
statement batches, 527–528, 529

SQL standardization, 26, 825
ANSI/ISO standards, 26–29
early SQL standards, 29
JDBC and application servers, 30
ODBC and the SQL Access Group,

29–30
portability, 30–32

SQLAllocHandle(), 554, 556
SQLAnywhere, 817
SQLBase, 854

SQLBindCol(), 562–566
SQLBindParam(), 559
SQLBulkOperations(), 585
SQLCancel(), 561–562
SQL/CLI standard, 550

API functions, 551–552
scrolling cursors, 566. See also CLI

SQLConnect(), 556
SQL-connection, 552, 556–557
SQLDA, 487

standard SQLDA, 510–515
SQLDataSources(), 557
SQLDisconnect(), 556
SQLEndTran(), 561
SQL-environment, 348, 552, 554
SQLError(), 575–576
SQLExecDirect(), 557, 561–562
SQLExecute(), 557, 561–562
SQLFetch(), 562–566
SQLFetchScroll(), 566
SQLFreeHandle(), 554, 556
SQLGetData(), 565–566
SQLGetDescField(), 575
SQLGetDescRec(), 575
SQLParamData(), 559
SQL/Persistent Stored Modules.

See SQL/PSM
SQLPrepare(), 557
SQL/PSM, 655–656

stored procedures standard, 656–664
triggers standard, 664–666

SQLPutData(), 559
SQLRowCount(), 575–576
SQLSetCursorName(), 566
SQL-statement, 552
Standard Generalized Markup Language.

See SGML
standards, 9
star schemas, 673–675
START TRANSACTION statements,

284–286
stateful session beans, 686

 I n d e x 879

stateless session beans, 686
statement batches, 527–528, 529, 584
statement blocks, 627–629
statement elements, 863
statements, 63–70

major SQL statements, 64–65
nonreserved keywords, 68–69
reserved keywords, 66–67
structure of a SQL statement, 65
variables, 70

static SQL, 703
limitations of, 477–478. See also

dynamic SQL
stored procedures, 618, 619

advantages of, 645–646
basic example, 620–621
calling, 624–625
client/server applications with, 729–730
and collections, 760–762
conditional execution, 634–636
creating, 622–624
cursor-based repetition, 639–643
external, 647–648
flow-of-control constructs, 638–639
and methods, 763–766
overloading procedure definitions, 765
performance, 646
repeated execution, 636–638
returning values via parameters,

631–634
SQL/PSM stored procedures standard,

656–664
statement blocks, 627–629
system-defined, 647
variables, 625–627

stream databases, 810–812
components, 813–814
implementations, 812–813

Streambase Systems, 812, 850–851
structure of SQL, 10
structured data, 769

Structured English Query Language. See
SEQUEL

Structured Query Language (SQL), 4
subqueries

correlated, 205–207
defined, 187–189
in the HAVING clause, 208–209
and joins, 203–204
nested, 204–205
outer references, 191–192
row-valued subqueries, 219–221
search conditions, 192–202
vs. SELECT statements, 188–189
table-valued subqueries, 222–223
in the WHERE clause, 189–191

subquery comparison test, 192–194
subquery set membership test, 192
substitutability feature, 766
success of SQL, 7–12
SUM(), 165–166
summarizing data, 16–17
summary queries

in operation, 164. See also column
functions

Sun Microsystems, 819, 851–852
Sybase, Inc., 817, 852
symmetric multiprocessing (SMP), 823
synonyms, 333–335
syntax

access control statements, 859
basic data manipulation statements,

859–860
BNF notation, 857
cursor-based statements, 860
data definition statements, 858
expressions, 863
query expressions, 860–862
search conditions, 862
simple elements, 864
statement elements, 863
transaction processing statements, 860

 880 S Q L : T h e C o m p l e t e R e f e r e n c e 880 S Q L : T h e C o m p l e t e R e f e r e n c e

system catalog, 704
and the ANSI/ISO standard, 401
catalog views mandated by the SQL

standard, 421–424
column information, 407–410
contents, 401–403
defined, 399–400
domains described in the SQL

standard, 425
privileges information, 417–418
and query tools, 400–401
relationship information, 413–415
remarks, 412
SQL information schema, 418–425
SYSCAT.TABLES view, 403–404
table information, 403–407
tables unique to the DBMS, 425
user information, 415–417
view information, 410–411

system tables, 31
System/R, 22
Systems Application Architecture

(SAA), 29

T
table aliases, 138, 139–141
table constraints, 269
table extracts, 709–711
table inheritance, 751–753. See also

inheritance
table multiplication, 142–143
table names, 70–71
table references, 861
tables, 52–53
tablespaces, 327
table-value constructor expression,

221–222
table-valued expressions, 221–224
table-valued subqueries, 222–223
Teradata Corporation, 853
time-based windows, 811, 812
tour of SQL, 13–20
transaction logging, 289–290, 742

transaction processing
and cursors, 475
SQL and, 38–39
statements, 860

transactions
ANSI/ISO SQL transaction model,

284–289
COMMIT and ROLLBACK

statements, 286–289
concurrent transactions, 296–297
defined, 282–283
inconsistent data problem, 293–294
locking, 297–307
lost update problem, 291–292
and multiuser processing, 290–297
phantom insert problem, 294–295
SAVEPOINT and RELEASE

SAVEPOINT statements, 286
SET TRANSACTON statements,

284–286
START TRANSACTION statements,

284–286
transaction logs, 289–290
uncommitted data problem, 292–293

trends, 820
database server appliances, 824–825
enterprise database market maturity,

820–821
hardware performance gains, 823–824
market diversity and segmentation, 821
packaged enterprise applications, 822
Software-as-a-Service, 823
SQL standardization, 825

triggers, 618, 648
advantages and disadvantages,

277–278, 649
defined, 275–276
in Informix SPL, 651–653
in Oracle PL/SQL, 653–655
other considerations, 655
and referential integrity, 277
and the SQL standard, 278
SQL/PSM triggers standard, 664–666
in Transact-SQL, 649–651

 I n d e x 881

Truviso, Inc., 853
T-tree indexes, 338
two-phase commit protocol, 724–727
two-table query example, 119–121

U
ultrahigh-performance databases, 827–828
Unify Corporation, 854
union joins, 155
UNION operation, 113–115, 225–226

and duplicate rows, 115–116
multiple UNION operations, 117–118
and sorting, 116

UNIQUE constraint, 271
uniqueness, and NULL values, 254
uniqueness constraints, 253, 324–325
universal access, 703
UNIX-based servers, 700
UNIX-based systems, SQL on, 37
unmarshaling, 786–788
UPDATE statements, 18, 243–244

with subqueries, 245–246
updating all rows, 245

updateable replicas, 713–714
updating the database, 18
user-defined data types, 762–763
user-defined functions, 618
user-ids, 376–381

V
validation procedure, 250
validity checking, 248, 250–252
variables, 70
varying arrays, 756
vendor independence, 8
vendors, 841–842

Aster Data (nCluster), 842
CodeGear (Interbase), 842
dataBased Intelligence (dBASE Plus),

842–843
Encirq (DeviceSQL), 843
EnterpriseDB (Postgres Plus), 843
Firebird, 843

Greenplum, 843–844
Hewlett-Packard Company, 844
HSQLDB, 844
IBM Corporation, 24, 819
IBM Corporation (DB2, Informix),

844–846
Ingres Corporation (Ingres), 24, 846
Intersystems (Caché), 846–847
Matisse Software, Inc. (Matisse), 847
Microsoft Corporation, 819, 847–848
Mimer Information Technology

(Mimer), 848
Netezza Corporation, 848
Oracle Corporation, 24, 817, 819,

848–849
ParAccel Inc., 850
PostgreSQL, 850
Streambase Systems, 812, 850–851
Sun Microsystems (MySQL),

819, 851–852
Sybase, Inc., 817, 852
Teradata Corporation, 853
Truviso, Inc., 853
Unify Corporation (SQLBase), 854
Vertica Systems, 854
Xeround (Xeround Intelligent Data

Grid), 854–855
versioning, 307–308

advantages and disadvantages, 311
in operation, 308–310

Vertica Systems, 854
vertical views, 361
views, 10

advantages of, 357–358
checking view updates, 368–370
creating views, 358–366
defined, 355–357
disadvantages of, 358
dropping views, 371
grouped views, 363–364
horizontal views, 359–361
how the DBMS handles views, 357

 882 S Q L : T h e C o m p l e t e R e f e r e n c e

views (Continued)
joined views, 364–366
materialized views, 372–373, 711–713
row/column subset views, 361–362
and security, 384–386
source tables, 356
updates in commercial SQL

products, 368
updating, 366–370
vertical views, 361
view updates and the ANSI/ISO

standard, 367

W
web sites, early implementations, 681–682
WHENEVER statement, 447–451
WHERE clause, subqueries in, 189–191
wildcard characters, 104–105
workgroup databases, SQL and, 39–40
workstations, 700

X
Xeround Intelligent Data Grid, 854–855
XML, 819

basic concepts, 771–772
for data, 773–774
data exchange, 778, 784
data integration, 778, 784

databases, 802
Document Type Definitions (DTDs),

789, 790–791
elements vs. attributes, 775–777
industry group standards, 789
input, 778, 782–784
marshaling and unmarshaling, 786–788
and metadata, 788–797
output, 777, 778–782
overview, 769–770
parsers, 785–786
and queries, 797–802
simple storage with large objects,

784–785
and SQL, 774–775
SQL/XML functions, 781
storage, 778, 784–785
XML Schema, 789, 791–797
XML-Data, 789

XML Path Language. See XPATH
XML-Data, 789
X/OPEN, 29, 549, 550
XPATH, 797–798
XQuery

overview, 798–800
path expressions, 800–802
query processing in, 800–802

XSLT, 797–798

	SQL The Complete Reference, Third Edition
	Contents
	Acknowledgments
	Introduction
	Part I: An Overview of SQL
	1 Introduction
	The SQL Language
	The Role of SQL
	SQL Success Factors

	2 A Quick Tour of SQL
	A Simple Database
	Retrieving Data
	Summarizing Data
	Adding Data to the Database
	Deleting Data
	Updating the Database
	Protecting Data
	Creating a Database
	Summary

	3 SQL in Perspective
	SQL and the Evolution of Database Management
	A Brief History of SQL
	SQL Standards
	SQL and Networking
	The Proliferation of SQL
	Summary

	4 Relational Databases
	Early Data Models
	The Relational Data Model
	Codd's 12 Rules for Relational Databases*
	Summary

	Part II: Retrieving Data
	5 SQL Basics
	Statements
	Names
	Data Types
	Constants
	Expressions
	Built-In Functions
	Missing Data (NULL Values)
	Summary

	6 Simple Queries
	The SELECT Statement
	Query Results
	Simple Queries
	Selecting All Columns (SELECT *)
	Duplicate Rows (DISTINCT)
	Row Selection (WHERE Clause)
	Search Conditions
	The Comparison Test (=, <>, <, <=, >, >=)
	Sorting Query Results (ORDER BY Clause)
	Rules for Single-Table Query Processing
	Summary

	7 Multitable Queries (Joins)
	A Two-Table Query Example
	Simple Joins (Equi-Joins)
	Non-Equi-Joins
	SQL Considerations for Multitable Queries
	Multitable Query Performance
	The Structure of a Join
	Outer Joins
	Joins and the SQL Standard
	Summary

	8 Summary Queries
	Column Functions
	Grouped Queries (GROUP BY Clause)
	Group Search Conditions (HAVING Clause)
	Summary

	9 Subqueries and Query Expressions
	Using Subqueries
	Subquery Search Conditions
	Subqueries and Joins
	Nested Subqueries
	Correlated Subqueries*
	Subqueries in the HAVING Clause*
	Subquery Summary
	Advanced Queries*
	SQL Queries: A Final Summary

	Part III: Updating Data
	10 Database Updates
	Adding Data to the Database
	Deleting Data from the Database
	Modifying Data in the Database
	Summary

	11 Data Integrity
	What Is Data Integrity?
	Required Data
	Simple Validity Checking
	Entity Integrity
	Referential Integrity
	Advanced Constraint Capabilities
	Business Rules
	Summary

	12 Transaction Processing
	What Is a Transaction?
	The ANSI/ISO SQL Transaction Model
	Transactions: Behind the Scenes*
	Transactions and Multiuser Processing
	Locking*
	Versioning*
	Summary

	Part IV: Database Structure
	13 Creating a Database
	The Data Definition Language
	Creating a Database
	Table Definitions
	Constraint Definitions
	Aliases and Synonyms (CREATE/DROP ALIAS)
	Indexes (CREATE/DROP INDEX)
	Managing Other Database Objects
	Database Structure
	Database Structure and the ANSI/ISO Standard
	Summary

	14 View
	Creating a View (CREATE VIEW)
	Updating a View
	Dropping a View (DROP VIEW)
	Materialized Views*
	Summary

	15 SQL Security
	SQL Security Concepts
	Views and SQL Security
	Granting Privileges (GRANT)
	Revoking Privileges (REVOKE)
	Role-Based Security
	Summary

	16 The System Catalog
	What Is the System Catalog?
	Table Information
	Column Information
	View Information
	Remarks
	Relationship Information
	User Information
	Privileges Information
	The SQL Information Schema
	Other Catalog Information
	Summary

	Part V: Programming with SQL
	17 Embedded SQL
	Programmatic SQL Techniques
	Simple Embedded SQL Statements
	Data Retrieval in Embedded SQL
	Cursor-Based Deletes and Updates
	Cursors and Transaction Processing
	Summary

	18 Dynamic SQL*
	Limitations of Static SQL
	Dynamic SQL Concepts
	Dynamic Statement Execution (EXECUTE IMMEDIATE)
	Two-Step Dynamic Execution
	Dynamic Queries
	Dynamic SQL Dialects
	Dynamic SQL and the SQL Standard
	Summary

	19 SQL APIs
	API Concepts
	The dblib API (SQL Server)
	ODBC and the SQL/CLI Standard
	The ODBC API
	The Oracle Call Interface (OCI)
	Java Database Connectivity (JDBC)
	Summary

	Part VI: SQL Today and Tomorrow
	20 Database Processing and Stored Procedural SQL
	Procedural SQL Concepts
	A Basic Example
	Using Stored Procedures
	Advantages of Stored Procedures
	Stored Procedure Performance
	System-Defined Stored Procedures
	External Stored Procedures
	Triggers
	Stored Procedures, Functions, Triggers, and the SQL Standard
	Summary

	21 SQL and Data Warehousing
	Data Warehousing Concepts
	Database Architecture for Warehousing
	Warehouse Performance
	Summary

	22 SQL and Application Servers
	SQL and Web Sites: Early Implementations
	Application Servers and Three-Tier Web Site Architectures
	Database Access from Application Servers
	Application Server Caching
	Summary

	23 SQL Networking and Distributed Databases
	The Challenge of Distributed Data Management
	Distributing Data: Practical Approaches
	Distributed Database Access
	The Two-Phase Commit Protocol*
	Network Applications and Database Architecture
	Summary

	24 SQL and Objects
	Object-Oriented Databases
	Object-Relational Databases
	Abstract (Structured) Data Types
	Inheritance
	Sets, Arrays, and Collections
	User-Defined Data Types
	Methods and Stored Procedures
	Object Support in the SQL Standard
	Summary

	25 SQL and XML
	What Is XML?
	XML Basics
	XML for Data
	Using XML with Databases
	XML and Metadata
	XML and Queries
	XML Databases
	Summary

	26 Specialty Databases
	Very Low Latency and In-Memory Databases
	In-Memory Database Implementations
	Complex Event-Processing and Stream Databases
	Embedded Databases
	Mobile Databases
	Summary

	27 The Future of SQL
	Database Market Trends
	SQL in the Next Decade
	Summary

	Part VII: Appendixes
	A: The Sample Database
	B: DBMS Vendor Profiles
	C: SQL Syntax Reference
	Data Definition Statements
	Access Control Statements
	Basic Data Manipulation Statements
	Transaction-Processing Statements
	Cursor-Based Statements
	Query Expressions
	Search Conditions
	Expressions
	Statement Elements
	Simple Elements

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

