
Design of Parallel and High-Performance 
Computing 
Fall 2013 
Lecture: Lock-Free and Distributed Memory 

Instructor: Torsten Hoefler & Markus Püschel 

TA: Timo Schneider 



Administrivia 

 Final project presentation: Monday 12/16 during last lecture 

 Send slides to Timo by 12/16, 11am 

 15 minutes per team (hard limit) 

 

 Rough guidelines: 

Summarize your goal/task 

Related work (what exists, literature review!) 

Describe techniques/approach (details!) 

Final results and findings (details) 

Pick one presenter (you may also switch but keep the time in mind) 

 

 

2 



Review of last lecture 

 Abstract models  

 Amdahl’s and Gustafson’s Law 

 Little’s Law 

 Work/depth models and Brent’s theorem 

 I/O complexity and balance (Kung) 

 Balance principles 

 Scheduling 

 Greedy 

 Random work stealing 

 Balance principles 

 Outlook to the future 

 Memory and data-movement will be more important 

 

 

 

 

3 



DPHPC Overview 

4 



Goals of this lecture 

 Answer “Why need to lock+validate in contains of optimistic queue”? 

 An element may be reused, assume free() is called after remove 

 Contains in A may grab pointer to element and suspend  

 B frees element and grabs location as new memory and initializes it to V 

 Resumed contains in A may now find V even though it was never in the list 

 Finish wait-free/lock-free 

 Consensus hierarchy 

 The promised proof! 

 Distributed memory 

 Models and concepts 

 Designing optimal communication algorithms 

 The Future! 

 Remote Memory Access Programming 

 

 

 

 

 

 

 

5 



Lock-free and wait-free 

 A lock-free method 

 guarantees that infinitely often some method call finishes in a finite number 
of steps 

 A wait-free method 

 guarantees that each method call finishes in a finite number of steps (implies 
lock-free) 

 Was our lock-free list also wait-free? 

 Synchronization instructions are not equally powerful! 

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can 
be used for lock-/wait-free implementations of primitives in level z>x. 

 

 

6 



Concept: Consensus Number 

 Each level of the hierarchy has a “consensus number” assigned. 

 Is the maximum number of threads for which primitives in level x can solve 
the consensus problem 

 The consensus problem:  

 Has single function: decide(v) 

 Each thread calls it at most once, the function returns a value that meets two 
conditions: 

consistency: all threads get the same value 

valid: the value is some thread’s input 

 Simplification: binary consensus (inputs in {0,1}) 

7 



Understanding Consensus 

 Can a particular class solve n-thread consensus wait-free? 

 A class C solves n-thread consensus if there exists a consensus protocol 
using any number of objects of class C and any number of atomic registers 

 The protocol has to be wait-free (bounded number of steps per thread) 

 The consensus number of a class C is the largest n for which that class 
solves n-thread consensus (may be infinite) 

 Assume we have a class D whose objects can be constructed from objects 
out of class C. If class C has consensus number n, what does class D have? 

8 



Starting simple … 

 Binary consensus with two threads (A, B)! 

 Each threads moves until it decides on a value 

 May update shared objects 

 Protocol state = state of threads + state of shared objects 

 Initial state = state before any thread moved 

 Final state = state after all threads finished 

 States form a tree, wait-free property guarantees a finite tree 

Example with two threads and two moves each! 

9 



Atomic Registers 

 Theorem [Herlihy’91]: Atomic registers have consensus number one 

 Really? 

 Proof outline: 

 Assume arbitrary consensus protocol, thread A, B 

 Run until it reaches critical state where next action determines outcome 
(show that it must have a critical state first) 

 Show all options using atomic registers and show that they cannot be used 
to determine one outcome for all possible executions! 

1) Any thread reads (other thread runs solo until end) 

2) Threads write to different registers (order doesn’t matter) 

3) Threads write to same register (solo thread can start after each 
write) 

10 



Atomic Registers 

 Theorem [Herlihy’91]: Atomic registers have consensus number one 

 Corollary: It is impossible to construct a wait-free implementation of 
any object with consensus number of >1 using atomic registers 
 “perhaps one of the most striking impossibility results in Computer 

Science” (Herlihy, Shavit) 
  We need hardware atomics or TM! 

 Proof technique borrowed from: 

 

 

 

 

 Very influential paper, always worth a read! 
 Nicely shows proof techniques that are central to parallel and distributed 

computing! 

 

11 



Other Atomic Operations 

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all 
functions where the op commutes or overwrites) have consensus 
number 2! 

 Similar proof technique (bivalence argument) 

 CAS and TM have consensus number ∞ 

 Constructive proof! 

 

12 



Compare and Set/Swap Consensus 

 

 

 

 

 

 

 CAS provides an infinite consensus number 

 Machines providing CAS are asynchronous computation equivalents of the 
Turing Machine 

 I.e., any concurrent object can be implemented in a wait-free manner (not 
necessarily fast!) 

 

13 

const int first = -1 
volatile int thread = -1; 
int proposed[n]; 
 
int decide(v) { 
  proposed[tid] = v; 
  if(CAS(thread, first, tid)) 
    return  v; // I won! 
  else  
     return proposed[thread]; // thread won 
} 



Now you know everything  

 Not really … ;-) 

 We’ll argue about performance now! 

 But you have all the tools for: 

 Efficient locks 

 Efficient lock-based algorithms 

 Efficient lock-free algorithms (or even wait-free) 

 Reasoning about parallelism! 

 What now? 

 A different class of problems 

Impact on wait-free/lock-free on actual performance is not well understood 

 Relevant to HPC, applies to shared and distributed memory 

 Group communications 

 

14 



Remember: A Simple Model for Communication 

 Transfer time T(s) = α+βs 

 α = startup time (latency) 

 β = cost per byte (bandwidth=1/β) 

 As s increases, bandwidth approaches  1/β asymptotically 

 Convergence rate depends on α 

 s1/2 = α/β 

 Assuming no pipelining (new messages can only be issued from a 
process after all arrived)  

15 



Bandwidth vs. Latency 

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages 

 s1/2 is in the order of kilobytes on real systems 

 

16 

asymptotic limit 



Quick Example  

 Simplest linear broadcast 

 One process has a data item to be distributed to all processes 

 Broadcasting s bytes among P processes: 

 T(s) = (P-1) * (α+βs) =  

 

 Class question: Do you know a faster method to accomplish the 
same? 

17 



k-ary Tree Broadcast 

 Origin process is the root of the tree, passes messages to k neighbors 
which pass them on 

 k=2 -> binary tree 

 Class Question: What is the broadcast time in the simple 
latency/bandwidth model? 

                                                                                                   (for fixed k) 

 Class Question: What is the optimal k?  

 

   

 

 Independent of P, α, βs? Really? 

 

18 



Faster Trees? 

 Class Question: Can we broadcast faster than in a ternary tree? 

 Yes because each respective root is idle after sending three messages! 

 Those roots could keep sending! 

 Result is a k-nomial tree 

For k=2, it’s a binomial tree 

 Class Question: What about the runtime? 

   

 Class Question: What is the optimal k here? 

 T(s) d/dk has monotonically increasing for k>1, thus kopt=2 

 Class Question: Can we broadcast faster than in a k-nomial tree? 

                         is asymptotically optimal for s=1! 

 But what about large s? 

 

 

 
19 



Very Large Message Broadcast 

 Extreme case (P small, s large): simple pipeline 

 Split message into segments of size z 

 Send segments from PE i to PE i+1 

 Class Question: What is the runtime?  

 T(s) = (P-2+s/z)(α + βz) 

 Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, 
s=106, and z=105 

 2,000,020 vs. 1,200,120 

 Class Question: Can we do better for given α, β, P, s? 

 Derive by z 
 

 What is the time for simple pipeline for α=10, β=1, P=4, s=106, zopt? 

 1,008,964 

 
20 



Lower Bounds 

 Class Question: What is a simple lower bound on the broadcast time? 

   

 How close are the binomial tree for small messages and the pipeline 
for large messages (approximately)? 

 Bin. tree is a factor of log2(P) slower in bandwidth 

 Pipeline is a factor of P/log2(P) slower in latency 

 Class Question: What can we do for intermediate message sizes? 

 Combine pipeline and tree  pipelined tree 

 Class Question: What is the runtime of the pipelined binary tree 
algorithm? 

   

 Class Question: What is the optimal z? 

   

 
21 



Towards an Optimal Algorithm 

 What is the complexity of the pipelined tree with zopt for small s, large 
P and for large s, constant P? 

 Small messages, large P: s=1; z=1 (s≤z), will give O(log P) 

 Large messages, constant P: assume α, β, P constant, will give 
asymptotically O(sβ) 

Asymptotically optimal for large P and s but bandwidth is off by a factor 
of 2! Why? 

 Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full 
Bandwidth Broadcast, Reduction and Scan with Only Two Trees”. 2007 

 Intuition: in binomial tree, all leaves (P/2) only receive data and never send 
 wasted bandwidth 

 Send along two simultaneous binary trees where the leafs of one tree are 
inner nodes of the other 

 Construction needs to avoid endpoint congestion (makes it complex) 

Can be improved with linear programming and topology awareness  

(talk to me if you’re interested) 
22 



Open Problems 

 Look for optimal parallel algorithms (even in simple models!) 

 And then check the more realistic models 

 Useful optimization targets are MPI collective operations 

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, 
Scan/Exscan, … 

 Implementations of those (check current MPI libraries ) 

 Useful also in scientific computations 

Barnes Hut, linear algebra, FFT, … 

 Lots of work to do! 

 Contact me for thesis ideas (or check SPCL) if you like this topic 

 Usually involve optimization (ILP/LP) and clever algorithms (algebra) 
combined with practical experiments on large-scale machines (10,000+ 
processors) 

 

23 



HPC Networking Basics 

 Familiar (non-HPC) network: Internet TCP/IP 

 Common model: 

 

 

 

 

 

 

 

 Class Question: What parameters are needed to model the 
performance (including pipelining)? 

 Latency, Bandwidth, Injection Rate, Host Overhead 

 

24 

Network Destination Source 



The LogP Model 

 Defined by four parameters: 

 L: an upper bound on the latency, or delay, incurred in 
communicating a message containing a word (or small number of 
words) from its source module to its target module. 

 o: the overhead, defined as the length of time that a processor is 
engaged in the transmission or reception of each message; during 
this time, the processor cannot perform other operations. 

 g: the gap, defined as the minimum time interval between 
consecutive message transmissions or consecutive message 
receptions at a processor. The reciprocal of g corresponds to the 
available per-processor communication bandwidth. 

 P: the number of processor/memory modules. We assume unit 
time for local operations and call it a cycle. 

 

 

 25 



The LogP Model 

 

26 



Simple Examples 

 Sending a single message 

 T = 2o+L 

 

 Ping-Pong Round-Trip 

 TRTT = 4o+2L 

 

 Transmitting n messages 

 T(n) = L+(n-1)*max(g, o) + 2o 

 

27 



Simplifications 

 o is bigger than g on some machines  

 g can be ignored (eliminates max() terms) 

 be careful with multicore! 

 Offloading networks might have very low o 

 Can be ignored (not yet but hopefully soon) 

 L might be ignored for long message streams 

 If they are pipelined 

 Account g also for the first message 

 Eliminates “-1”  

 

28 



Benefits over Latency/Bandwidth Model 

 Models pipelining 

 L/g messages can be “in flight” 

 Captures state of the art (cf. TCP windows) 

 Models computation/communication overlap 

 Asynchronous algorithms 

 Models endpoint congestion/overload 

 Benefits balanced algorithms 

 

29 



Example: Broadcasts 

 Class Question: What is the LogP running time for a linear broadcast 
of a single packet? 

 Tlin = L + (P-2) * max(o,g) + 2o 

 Class Question: Approximate the LogP runtime for a binary-tree 
broadcast of a single packet? 

 Tbin ≤ log2P * (L + max(o,g) + 2o) 

 Class Question: Approximate the LogP runtime for an k-ary-tree 
broadcast of a single packet? 

  Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o) 

 

 

 

30 



Example: Broadcasts 

 Class Question: Approximate the LogP runtime for a binomial tree 
broadcast of a single packet? 

 Tbin ≤ log2P * (L + 2o) (assuming L > g!) 

 Class Question: Approximate the LogP runtime for a k-nomial tree 
broadcast of a single packet? 

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o) 

 Class Question: What is the optimal k (assume o>g)? 

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically) 

For larger L, k grows and for larger o, k shrinks 

 Models pipelining capability better than simple model! 

 

 

31 



Example: Broadcasts 

 Class Question: Can we do better than kopt-ary binomial broadcast? 

 Problem: fixed k in all stages might not be optimal 

Only a constant away from optimum 

 We can construct a schedule for the optimal broadcast in practical settings 

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the 
LogP Model” 

32 



Example: Optimal Broadcast 

 Broadcast to P-1 processes 

 Each process who received the value sends it on; each process receives 
exactly once 

 

33 

P=8, L=6, g=4, o=2 



Optimal Broadcast Runtime 

 This determines the maximum number of PEs (P(t)) that can be 
reached in time t 

 P(t) can be computed with a generalized Fibonacci recurrence 
(assuming o>g): 

 

 

 

 Which can be bounded by (see [1]): 

 

 A closed solution is an interesting open problem! 

 

34 
*1+: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)  



The Bigger Picture 

  We learned how to program shared memory systems 

 Coherency & memory models & linearizability 

 Locks as examples for reasoning about correctness and performance 

 List-based sets as examples for lock-free and wait-free algorithms 

 Consensus number 

 We learned about general performance properties and parallelism 

 Amdahl’s and Gustafson’s laws 

 Little’s law, Work-span, … 

 Balance principles & scheduling 

 We learned how to perform model-based optimizations 

 Distributed memory broadcast example with two models 

 What next? MPI? OpenMP? UPC? 

 Next-generation machines “merge” shared and distributed memory 
concepts → Partitioned Global Address Space (PGAS) 

35 



Partitioned Global Address Space 

 Two developments: 

1. Cache coherence becomes more expensive 

May react in software! Scary for industry ;-) 

2. Novel RDMA hardware enables direct access to remote memory 

May take advantage in software! An opportunity for HPC! 

  

 Still ongoing research! Take nothing for granted  

 Very interesting opportunities 

 Wide-open research field 

 Even more thesis ideas on next generation parallel programming 

 

 I will introduce the concepts behind the MPI-3.0 interface 

 It’s nearly a superset of other PGAS approaches (UPC, CAF, …) 

 

36 



One-sided Communication 

 The basic idea of one-sided communication models is to decouple 
data movement with process synchronization 

 Should be able move data without requiring that the remote process 
synchronize 

 Each process exposes a part of its memory to other processes 

 Other processes can directly read from or write to this memory 

37 

Process 1 Process 2 Process 3 

Private 

Memory 
Region 

Private 

Memory 
Region 

Private 

Memory 
Region 

Process 0 

Private 

Memory 
Region 

Public 

Memory 
Region 

Public 

Memory 
Region 

Public 

Memory 
Region 

Public 

Memory 
Region 

Global 

Address 
Space 

Private 

Memory 
Region 

Private 

Memory 
Region 

Private 

Memory 
Region 

Private 

Memory 
Region 



Two-sided Communication Example 

38 

MPI implementation 

Memory Memory 

MPI implementation 

Send Recv 

Memory 
Segment 

Processor Processor 

Send Recv 

Memory 
Segment 

Memory 
Segment 

Memory 
Segment 

Memory 
Segment 



One-sided Communication Example 

39 

MPI implementation 

Memory Memory 

MPI implementation 

Send Recv 

Memory 
Segment 

Processor Processor 

Send Recv 

Memory 
Segment 

Memory 
Segment 

Memory 
Segment 



What we need to know in RMA 

 How to create remote accessible memory? 

 Reading, Writing and Updating remote memory 

 Data Synchronization 

 Memory Model 

40 



Creating Public Memory 

 Any memory used by a process is, by default, only locally accessible 

 X = malloc(100); 

 Once the memory is allocated, the user has to make an explicit MPI 
call to declare a memory region as remotely accessible 

 MPI terminology for remotely accessible memory is a “window” 

 A group of processes collectively create a “window” 

 Once a memory region is declared as remotely accessible, all 
processes in the window can read/write data to this memory without 
explicitly synchronizing with the target process 

41 



Remote Memory Access 

42 42 

Get 

Put 

Process 2 

Process 1 

Process 3 

Process 0 

=  address spaces =  window object 

window 



Basic RMA Functions 

 MPI_Win_create – exposes local memory to RMA operation by other 
processes in a communicator 
 Collective operation  

 Creates window object 

 MPI_Win_free – deallocates window object 
 

 MPI_Put – moves data from local memory to remote memory 

 MPI_Get – retrieves data from remote memory into local memory 

 MPI_Accumulate – atomically updates remote memory using local 
values 
 Data movement operations are non-blocking 

 Data is located by a displacement relative to the start of the window 

 

 Subsequent synchronization on window object needed to ensure 
operation is complete 

43 43 



Window creation models 

 Four models exist 

 MPI_WIN_CREATE 

You already have an allocated buffer that you would like to make 
remotely accessible 

 MPI_WIN_ALLOCATE 

You want to create a buffer and directly make it remotely accessible 

 MPI_WIN_CREATE_DYNAMIC 

You don’t have a buffer yet, but will have one in the future  

You may want to dynamically add/remove buffers to/from the window 

 MPI_WIN_ALLOCATE_SHARED 

You want multiple processes on the same node share a buffer 

44 



Data movement: Get 

 Move data to origin, from target 

 Separate data description triples for origin and target 

45 

Origin 

Process 

Target 

Process 
RMA 

Window 

Local 

Buffer 

MPI_Get(void * origin_addr, int origin_count, 
 MPI_Datatype origin_datatype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_datatype, MPI_Win win) 



Data movement: Put 

 Move data from origin, to target 

 Same arguments as MPI_Get 

46 

Target 

Process 
RMA 

Window 

Local 

Buffer 
Origin 

Process 

MPI_Put(void * origin_addr, int origin_count, 
 MPI_Datatype origin_datatype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_datatype, MPI_Win win) 



Atomic Data Aggregation: Accumulate 

 Atomic update operation, similar to a put 
 Reduces origin and target data into target buffer using op argument as 

combiner 

 Predefined ops only, no user-defined operations 

 

 Different data layouts between 
target/origin OK 
 Basic type elements must match 

 

 Op = MPI_REPLACE 
 Implements f(a,b)=b 

 Atomic PUT 

47 

Target 

Process 
RMA 

Window 

Local 

Buffer 

+= 

Origin 

Process 

MPI_Accumulate(void * origin_addr, int origin_count, 
 MPI_Datatype origin_datatype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win) 



Atomic Data Aggregation: Get Accumulate 

 Atomic read-modify-write 
 Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, … 
 Predefined ops only 

 Result stored in target buffer 

 Original data stored in result buf 

 Different data layouts between 
target/origin OK 
 Basic type elements must match 

 Atomic get with MPI_NO_OP 

 Atomic swap with MPI_REPLACE 

48 

Target 

Process 
RMA 

Window 

Local 

Buffer 

+= 

Origin 

Process 

MPI_Get_accumulate(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, void *result_addr, 
 int result_count, MPI_Datatype result_dtype, 
 int target_rank, MPI_Aint target_disp, 
 int target_count, MPI_Datatype target_dype, 
 MPI_Op op, MPI_Win win) 



Atomic Data Aggregation: CAS and FOP 

 

 

 
 

 CAS: Atomic swap if target value is equal to compare value 

 FOP: Simpler version of MPI_Get_accumulate 

 All buffers share a single predefined datatype 

 No count argument (it’s always 1) 

 Simpler interface allows hardware optimization 

 

49 

MPI_Compare_and_swap(void *origin_addr, 
 void *compare_addr, void *result_addr, 
 MPI_Datatype datatype, int target_rank, 
 MPI_Aint target_disp, MPI_Win win) 

MPI_Fetch_and_op(void *origin_addr, void *result_addr, 
 MPI_Datatype datatype, int target_rank, 
 MPI_Aint target_disp, MPI_Op op, MPI_Win win) 



RMA Synchronization Models 

 RMA data access model 

 When is a process allowed to read/write remotely accessible memory? 

 When is data written by process X available for process Y to read? 

 RMA synchronization models define these semantics 

 Three synchronization models provided by MPI: 

 Fence (active target) 

 Post-start-complete-wait (generalized active target) 

 Lock/Unlock (passive target) 

 Data accesses occur within “epochs” 

 Access epochs: contain a set of operations issued by an origin process 

 Exposure epochs: enable remote processes to update a target’s window 

 Epochs define ordering and completion semantics 

 Synchronization models provide mechanisms for establishing epochs 

E.g., starting, ending, and synchronizing epochs 

50 



Fence: Active Target Synchronization 

 Collective synchronization model 

 Starts and ends access and exposure 
epochs on all processes in the window 

 All processes in group of “win” do an 
MPI_WIN_FENCE to open an epoch 

 Everyone can issue PUT/GET 
operations to read/write data 

 Everyone does an MPI_WIN_FENCE to 
close the epoch 

 All operations complete at the second 
fence synchronization 

51 

Fence Fence 

Get 

Target Origin 

Fence Fence 

MPI_Win_fence(int assert, MPI_Win win) 



PSCW: Generalized Active Target 
Synchronization 

 Like FENCE, but origin and target 
specify who they communicate with 

 Target: Exposure epoch 

 Opened with MPI_Win_post 

 Closed by MPI_Win_wait 

 Origin: Access epoch 

 Opened by MPI_Win_start 

 Closed by MPI_Win_compete 

 All synchronization operations may 
block, to enforce P-S/C-W ordering 

 Processes can be both origins and 
targets 

52 

Start 

Complete 

Post 

Wait 

Get 

Target Origin 

MPI_Win_post/start(MPI_Group, int assert, MPI_Win win) 
MPI_Win_complete/wait(MPI_Win win) 



Lock/Unlock: Passive Target Synchronization 

 Passive mode: One-sided, asynchronous communication 

 Target does not participate in communication operation 

 Shared memory-like model 

53 

Active Target Mode Passive Target Mode 

Lock 

Unlock 

Get Start 

Complete 

Post 

Wait 

Get 



Passive Target Synchronization 

 Begin/end passive mode epoch 

 Target process does not make a corresponding MPI call 

 Can initiate multiple passive target epochs top different processes 

 Concurrent epochs to same process not allowed (affects threads) 

 Lock type 

 SHARED: Other processes using shared can access concurrently 

 EXCLUSIVE: No other processes can access concurrently 

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win) 
 

MPI_Win_unlock(int rank, MPI_Win win) 

54 



Advanced Passive Target Synchronization 

 Lock_all: Shared lock, passive target epoch to all other processes 

 Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all 

 Flush: Remotely complete RMA operations to the target process 

 Flush_all – remotely complete RMA operations to all processes 

 After completion, data can be read by target process or a different process 

 Flush_local: Locally complete RMA operations to the target process 

 Flush_local_all – locally complete RMA operations to all processes 

55 

MPI_Win_lock_all(int assert, MPI_Win win) 
MPI_Win_unlock_all(MPI_Win win) 
 

MPI_Win_flush/flush_local(int rank, MPI_Win win) 
MPI_Win_flush_all/flush_local_all(MPI_Win win) 



Which synchronization mode should I use, when? 

 RMA communication has low overheads versus send/recv 

 Two-sided: Matching, queueing, buffering, unexpected receives, etc… 

 One-sided: No matching, no buffering, always ready to receive 

 Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand) 

 Active mode: bulk synchronization 

 E.g. ghost cell exchange 

 Passive mode: asynchronous data movement 

 Useful when dataset is large, requiring memory of multiple nodes 

 Also, when data access and synchronization pattern is dynamic 

 Common use case: distributed, shared arrays 

 Passive target locking mode 

 Lock/unlock – Useful when exclusive epochs are needed 

 Lock_all/unlock_all – Useful when only shared epochs are needed 

56 



MPI RMA Memory Model 
 MPI-3 provides two memory models: 

separate and unified 

 MPI-2: Separate Model 

 Logical public and private copies 

 MPI provides software coherence between 
window copies 

 Extremely portable, to systems that don’t 
provide hardware coherence 

 MPI-3: New Unified Model 

 Single copy of the window 

 System must provide coherence 

 Superset of separate semantics 

E.g. allows concurrent local/remote access 

 Provides access to full performance potential 
of hardware 

57 

Public 
Copy 

Private 
Copy 

Unified 
Copy 



MPI RMA Memory Model (separate windows) 

 Very portable, compatible with non-coherent memory systems 

 Limits concurrent accesses to enable software coherence 

Public 
Copy 

Private 
Copy 

Same source 

Same epoch Diff. Sources 

load store store 

X X 

58 

X 



MPI RMA Memory Model (unified windows) 

 Allows concurrent local/remote accesses 

 Concurrent, conflicting operations don’t “corrupt” the window 

 Outcome is not defined by MPI (defined by the hardware) 

 Can enable better performance by reducing synchronization 

59 

Unified 
Copy 

Same source 

Same epoch Diff. Sources 

load store store 

? 



That’s it folks 

 Thanks for your attention and contributions to the class  

 

 Good luck (better: success!) with your project 

 Don’t do it last minute! 

 

 Same with the final exam! 

 Di 21.01., 09:00-11:00 (watch date and room in edoz) 

 

 Do you have any generic questions? 

 Big picture? 

 Why did we learn certain concepts? 

 Why did we not learn certain concepts? 

 Anything else (comments are very welcome!) 
60 


