

PROGRAMMING WITH

ANSI
C++
SECOND EDITION

BHUSHAN TRIVEDI
Directoz MCA Ptqyamme

GLS Institute of Computer Technolom,
Ahnzedabad

OXFORD
UNIVERSITY PRESS

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2007, 2012

The moral rights of the author/s have been asserted.

First Edition published in 2007
Second Edition published in 2012

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-808396-2
ISBN-10: 0-19-808396-3

Typeset in Times New Roman
by Cameo Corporate Services Limited, Chennai

Printed in India by Sanat Printers, Kundli, Haryana

Dedicated to my
Teachers

who enabled me to learn and write

C++ is a popular, versatile, and widely used programming language, which supports all
features of C language and also provides a number of additional features that make
it object-oriented. It includes concepts and features such as classes, objects, dynamic
memory management, operator overloading, and many more. Besides learning the syntax,
understanding the philosophical background helps the students appreciate the choices made
by the creator of the language very easily. It is diffi cult to answer certain questions such as
the following without really knowing the idea behind creating the language: Why is there no
standard library for graphics in C++? Why is the base class embedded in the derived class
rather than having a pointer to it? Why is there a need for virtual functions? Such questions
can only be answered, if one understands the domain of application of C++ and Stroustrup’s
idea behind creating the language.

ABOUT THE BOOK

Programming with ANSI C++ is designed as a textbook for students of engineering (BE/
BTech) and computer applications (BCA/MCA). It discusses the philosophical issues related
to the language in order to make the concepts clearer to the users.

The book assumes basic knowledge of the fundamental concepts of C and the art of
programming. Those who have already studied C would fi nd this book to be an excellent
starter. Wherever possible, comparison with C as well as Java is provided. The book
demonstrates and highlights the difference of working in C++, problems with programming
in C or Java, and better ways to do the same in C++.

ANSI C and ANSI C++ have been used as the default language throughout the book. The
worked examples and codes presented have been specifi cally designed to demonstrate the
concept and syntax as also use in real-life applications. By no means is it claimed that the
way to program shown here is the best or most effi cient. The variable naming convention
is Java-like and care has been taken to use meaningful, though at times very long, variable
names.

To make the textbook ideal for classroom learning, several examples and program
codes have been included. All of them have been test run with Visual C++.Net (VC++ 7.0)
and most of them have also been tested on Linux. 8.0 (gnu C++ 3.2). Numerous review
questions, exercises, and project ideas that require knowledge of advanced topics have also
been included in every chapter.

ACKNOWLEDGEMENTS

Asheesh Asthana, one of my students sent me a book on C++ in 2002. My real journey of
learning C++ actually began then. I have to thank Asheesh for his invaluable gift. While
I was writing this book, I kept imagining the kind of queries my readers would pose.
Fortunately my students whom I was teaching gave me excellent feedback and suggestions.

Preface to the First EditionPreface to the First Edition

Preface to the First Edition ix

I am thankful to all of them. Hardik, Rahul, Hemal, Nimesh, and Shiv are a few names that
I can remember at this moment.

My wife Arpita, son Jay, and daughter Sonu all helped me in a way to complete this book.
Without their support it would have been impossible. My colleagues, Harshal, Viral, and
Hardik, supported me in every way they could.

The editorial team at Oxford University Press has done a great job. The book took a far
better shape in the fi nal version than it started with, and I would like to express my sincere
thanks to the members of OUP for their interest and support, wealth of good ideas and
suggestions, forceful requests and sweet reminders, without which this book would not have
happened.

Bhushan Trivedi

Preface to the Second EditionPreface to the Second Edition
Even in this age of advanced languages such as Java and DotNet, the age-old C++ is still
revered for its versatility. These advanced languages as well as environments such as
Windows and Linux would not be around without C++, because they are all written in C++!
In fact, the TCP/IP code that a network card runs, the shell that an operating system such as
Linux runs, and the graphics library that some of us use are all developed and maintained in
C++. It continues to play a major role in coding various embedded systems. It is a vital cog in
designing several reliable and high-performa nce components in various software products.
The latest standard of ANSI C++ was released in August 2011; compilers conforming to
this standard are expected to be released within a year. This is an important indication that
the language is still going strong and in fact evolving, nearly four decades after its release!

But why do we need programming languages in the fi rst place? You have probably read about
it in the previous semesters—programming languages help us interact with computers. Effi cient
as they are, computers can simplify tedious tasks and make them look ridiculously easy. They
perform computations at a stunning pace and solve complex problems by applying equally
complex algorithms. However, we cannot use the word intelligent to describe a computer, since
every operation requires someone to instruct the computer, in concrete terms, about what it is
supposed to do. How does one instruct a computer whose native language (machine codes)
is so different from anything we speak? This is where the programs that we create break the
language barrier, by providing sets of instructions that the computer can understand.

The next question—why do we have so many languages then? This is because, in our
attempt to provide instructions in an unambiguous manner and communicate better with the
computer, we have gradually developed a range of programming languages.

Where does C++ stand among the group of programming languages? In simple terms,
C++ is an object-oriented as well as an object-based language that allows reusability of
existing objects. It expresses every programming component as an object in a professionally
written program, but it can work without objects as well.

To conclude, C++ is still a professional programmers’ favourite when it comes to coding
reliable tools. This brings us to the next question—what makes it so versatile? The following
are a few reasons from what is almost an endless list:

 • C++ codes are compiled directly to a machine’s native code. In optimized conditions, it
can produce executable codes at a breathtaking speed.

 • C++ is an open language and, therefore, it has a range of compilers suitable for different
platforms. Its portability allows cross-platform independence. Codes written in one
platform can be easily transported to other platforms.

 • C++ is reverse compatible with C; in fact, it is almost a superset. It can use existing C
libraries with very few or no modifi cations. It is compatible with C to such an extent that
a valid C program (barring very few special cases) is also a valid C++ program.

 • C++ lends superior control to the user, unlike most other high-level languages; but it
expects the user to know what he/she is typing on the console. Fine control requires more
disciplined programming and C++ is no exception. It is a strongly typed language.

vi Programming with ANSI C++

NEW TO THE SECOND EDITION

Continuing with the question–answer series, the moot question follows now—why a new
edition? In this edition, the attempt has been to make suitable changes based on the useful
feedback and comments received from users. Preserving all the basic ingredients that
established the fi rst edition, the book now includes the following new features:

 • Each chapter contains pedagogical elements such as notes, sidebars, and exhibits spread
across the chapters to highlight important statements and concepts.

 • Every program is followed by a complete analysis section, ‘How the Program Works’. These
sections describe the logic behind the programs and the new concepts introduced therein.

 • End-chapter exercises now include multiple choice questions in addition to conceptual
and practical exercises.

 • The book is now accompanied by a CD that contains the codes of all the programs as well
as the case study.

KEY FEATURES

 • Contains numerous application-oriented programs, complete with their source codes and
test cases

 • Includes programs simulating real-life scenarios, to equip the readers to become entry-
level professionals

 • Discusses advanced topics such as run-time type information (RTTI), casting operators,
memberwise initialization list (MIL), reference variables, and templates in detail

 • Provides a balance between theory and practice, and covers both elementary as well as
advanced topics

EXTENDED CHAPTER MATERIAL

 • Chapter 1 now features the various concepts of object-oriented programming, besides
providing an introduction to C++.

 • Chapter 4 provides extended coverage of temporary object creation and destruction. Small
code segments have been added to strengthen the discussions on friend functions and how
to return a reference.

 • Chapter 5 includes sections on memory leaks and the correct method to copy. Besides, the
second edition covers destructors in more detail.

 • Chapter 9 provides a more in-depth analysis of abstract classes.
 • Chapter 10 includes an introduction to virtual destructors and object slicing.
 • In Chapter 11, the section on polymorphic objects has been strengthened with the help of

a code segment and additional descriptions.
 • Chapter 13 contains updated information on operating systems and device drivers.

The second edition throws light on fi le handles and fi le pointers. A table indicating the
differences between binary and ASCII strings has been added.

 • Chapter 14 covers namespaces and dynamism in more depth.
 • Chapter 16 now provides a brief history of Standard Template Library (STL) before

moving on to its application areas. The sections on functional and direct addressing
models have been signifi cantly improved in the second edition. Additions in this chapter
also include a table illustrating different types of iterators.

Preface to the Second Edition vii

 • The case study sports a new look in the second edition. It describes the essential components
of the program in an explicit manner. The output is appealing, with direct screenshots
taken at the time of execution. It has a new section ‘Possible Extensions’, which describes
how the same program can be extended further.

CONTENT AND STRUCTURE

Chapter 1 provides an introduction to C++ and explains the philosophical and technical
differences between C and C++.

Chapters 2 and 3 present an overview of core C++ and introduce data types, operators,
classes, objects, structs, unions, arrays, pointers, and their extensive role in C++.

Chapter 4 discusses the various kinds of functions and their usage.

Chapter 5 deals with constructors and destructors, explaining their need, usage, and execution.

Chapter 6 describes operator overloading along with user-defi ned conversions. It also
discusses the use of either friends or member functions to overload operators, thereby
emphasizing the difference between the approaches.

Chapters 7 and 8 discuss the templates and exception handling mechanism in C++ in great
detail.

Chapter 9 covers inheritance in detail with all its forms.

Chapter 10 explains the use of virtual functions to implement run-time polymorphism.

Chapter 11 provides an introduction to RTTI, polymorphic objects, different casting
operators, limitations of virtual functions, and how RTTI is used to overcome them.

Chapter 12 discusses streams and formatted input/output (I/O), their need and advantages,
as also differences between ios functions and manipulators for I/O formatting.

Chapter 13 throws light on text and binary streams, usage of text and binary fi les, the various
operations, as well as error handling in fi les.

Chapter 14 introduces namespaces, illustrates their need, and explains concepts such as
using directive and using declaration, extending namespaces, and namespace aliases.

Chapter 15 discusses ANSI string objects and issues related to normal as well as substring
operations.

Chapter 16 provides an introduction to the Standard Template Library in C++.

A comprehensive case study, included at the end of the book as an appendix, demonstrates
the application of C++ in maintaining mark sheets of students and displaying them in the
requisite format whenever required.

ACKNOWLEDGEMENTS

I gratefully acknowledge the feedback and suggestions given by various faculty members for
the improvement of the book.

I am obliged to the editorial team at Oxford University Press, India for bringing out the
second edition in quick time and in a very elegant format.

Any suggestions for improving the presentation and contents are welcome. Please send them
to the publishers through their website www.oup.com or to the author at bhtrivedi@gmail.com.

Bhushan Trivedi

Brief ContentsBrief Contents
Preface to the Second Edition v

Preface to the First Edition viii

Features of the Book x

 1. Object-oriented Programming and C++ 1

 2. Overview of the C++ Language 39

 3. Classes and Objects 69

 4. Functions 109

 5. Constructors and Destructors 175

 6. Operator Overloading and User-defi ned Conversions 227

 7. Templates 279

 8. Exception Handling 328

 9. Inheritance 362

 10. Run-time Polymorphism by Virtual Functions 403

 11. Run-time Type Information and Casting Operators 438

 12. Streams and Formatted Input/Output 470

 13. Using Files for Input /Output 497

 14. Namespaces 525

 15. String Objects 545

 16. Standard Template Library 555

Appendix: Case Study 593

Index 617

Detailed ContentsDetailed Contents
Preface to the Second Edition v

Preface to the First Edition viii

Features of the Book x

Brief Contents xii

 1. OBJECT-ORIENTED PROGRAMMING 1. OBJECT-ORIENTED PROGRAMMING
AND C++ 1AND C++ 1

 1.1 Need for C++ 1
 1.1.1 Limitations of C 1
 1.1.2 Object-oriented Programming 3
 1.1.3 Object-based and Object-oriented

Design 4
 1.1.4 C++ — Not Completely Object-

oriented 5

 1.2 Concepts of Object-oriented
Programming 5

 1.3 Classes and Objects 8
 1.3.1 Object-oriented View of Classes

and Objects 10
 1.3.2 Abstract Data Type 12

 1.4 Methods and Messages 12
 1.4.1 Message Passing 13

 1.5 Abstraction and Encapsulation 15
 1.6 Inheritance 17
 1.6.1 Advantages of Deploying

Inheritance 18

 1.7 Abstract Classes 19
 1.8 Polymorphism 22
 1.8.1 Ad-hoc Polymorphism at

Compile Time 23
 1.8.2 Dynamic Polymorphism at

Run-time 24
 1.8.3 Parametric Polymorphism 26

 1.9 Object-oriented Design and C++ 26
 1.10 Principle of Information Hiding 26
 1.11 Differences between C and C++ 27
 1.11.1 Philosophical Differences 27
 1.11.2 Syntactical Differences 30
 1.11.3 Exception-based Design 33
 1.11.4 Templates as Generic

Programming Elements 34

 1.12 C++ Object Model 34
 1.13 Variations of C++ 35
 1.14 Applications of C++ 35

 2. OVERVIEW OF THE C++ LANGUAGE 39 2. OVERVIEW OF THE C++ LANGUAGE 39
 2.1 Identifi ers and Constants (Literals) 39
 2.2 Keywords 39
 2.3 Data Types 40
 2.3.1 Borrowed from C 40
 2.3.2 Borrowed from C with

Modifi cations 40
 2.3.3 Newly Added Data Types 41

 2.4 Pointers 42
 2.4.1 Void Pointer 42
 2.4.2 Constant Pointer 43
 2.4.3 Pointer to Constant 44
 2.4.4 Use of Constant Pointers and

Pointers to Constant 45

 2.5 Reference Variables 51
 2.5.1 Using Standalone Reference

Variables 52
 2.5.2 Reference Variables as Dummy

Parameters for Functions 52
 2.5.3 Reference Variables as

Return Types 54
 2.5.4 Chaining Inputs using Reference

Variables 55
 2.5.5 More on Reference Variables 55

 2.6 Access Modifi ers 56
 2.6.1 const 56
 2.6.2 volatile 56

 2.7 Storage Class Specifi ers 57
 2.8 Initialization 57
 2.8.1 Normal Initialization 57
 2.8.2 Variable Initialization 57

 2.9 Operators 58

xiv Programming with ANSI C++

 2.9.1 Scope Resolution Operator 59
 2.9.2 new and delete Operators 60
 2.9.3 Placement new 63
 2.9.4 new vs malloc() 64
 2.9.5 Signifi cance of

delete Operator 65
 2.9.6 New Casting Operators, typeid,

and throw 65

 2.10 Conditional Structures and
Looping Constructs 66

 3. CLASSES AND OBJECTS 69 3. CLASSES AND OBJECTS 69
 3.1 Introduction to Class and Object 69
 3.2 Classes and Their Attributes 71
 3.3 Anatomy of Class 71
 3.4 Access Specifi ers 74
 3.4.1 Expression Parser 75

 3.5 Storage Requirements 78
 3.6 Difference between Structure and

Class in C++ 80
 3.7 Difference between Unions

and Classes 82
 3.8 Defi ning Function Members

Outside Class 84
 3.9 Static Data Members 85
 3.10 Arrays of Objects 94
 3.11 Pointer to Objects and Pointer to

Members of a Class 95
 3.12 Nested Classes 98
 3.13 Local Classes 101
 3.14 Assigning Objects 103
 3.15 Constant Objects 104

 4. FUNCTIONS 109 4. FUNCTIONS 109
 4.1 Introduction 109
 4.2 Similarities with C Functions 109
 4.3 main() in C++ 111
 4.4 Inline Functions 111
 4.5 Default Arguments 115
 4.5.1 Using Static Variable as Default

Argument to a Function 118
 4.5.2 Functions with Objects as

Parameters 119
 4.5.3 NRV Optimization 122

 4.6 Call by Reference 124

 4.7 Returning a Reference 126
 4.8 Prototyping and Overloading 132
 4.8.1 Prototyping 133
 4.8.2 Function Overloading 133

 4.9 Program Readability and
Default Arguments 136

 4.10 Member and Non-member
Functions 136

 4.10.1 Deciding to Make a Function a
Member or a Non-member 139

 4.11 Friend Functions 140
 4.11.1 Need for Friend Functions 143

 4.12 const and volatile Functions 148
 4.12.1 const Functions 148
 4.12.2 Mutable Data Members 148
 4.12.3 volatile Functions 149

 4.13 Static Functions 149
 4.13.1 Restrictions on

Static Function 151

 4.14 Private and Public Functions 152
 4.15 Functions that Return Objects 154
 4.16 Function Pointers 157
 4.17 Using Pointer to

Member Function 160
 4.18 Linkage Specifi cation 169

 5. CONSTRUCTORS AND DESTRUCTORS 175 5. CONSTRUCTORS AND DESTRUCTORS 175
 5.1 Similar-to-built-in

Behaviour Concept 175
 5.2 Need for Object Initialization 175
 5.3 Introduction to Constructors 177
 5.4 Rules for Defi ning Constructors 178
 5.5 Default Constructors 179
 5.5.1 Compiler-defi ned Default

Constructor 179
 5.5.2 User-defi ned

Default Constructor 180

 5.6 Constructors with
One Parameter 185

 5.7 Explicit Constructors 187
 5.8 Parameterized Constructors 188
 5.9 Multiple Constructors 190
 5.9.1 Constructors with

Default Arguments 192
 5.9.2 Dynamic Initialization and

Assignment Operator 194

Detailed Contents xv

 5.10 Constructor with
Dynamic Allocation 196

 5.11 Copy Constructors 201
 5.11.1 Object Initialization and

Object Assignment 202
 5.11.2 Providing Copy

Constructors 204

 5.12 Private Copy Constructors 209
 5.12.1 Member Initialization List 209
 5.12.2 MIL as Replacement

for Constructors 213
 5.12.3 Order of Initialization 214

 5.13 Destructors 216
 5.13.1 Use of Destructors 217

 5.14 Usage of Constructors and Destructors
for Constant Objects 223

 5.15 Synthesis and Execution of
Constructors and Destructors 223

 5.16 Implementation of the
Important Trio 223

 6. OPERATOR OVERLOADING AND 6. OPERATOR OVERLOADING AND
USER-DEFINED CONVERSIONS 227USER-DEFINED CONVERSIONS 227

 6.1 Introduction 227
 6.2 Restrictions under Operator

Overloading 228
 6.2.1 Operators that Cannot

be Overloaded 228
 6.2.2 Operators that Cannot be

Overloaded as Friends 228

 6.3 Operator Overloading through
Member Function 229

 6.4 Situations Where Operator
Overloading is Useful 235

 6.5 Overloading Unary Operators 236
 6.5.1 Postfi x Versions of ++

and −− Operators 238

 6.6 Overloading Binary Operators 240
 6.6.1 Overloading Shorthand Operators

While Overloading Arithmetic
Operators 240

 6.7 Operator Overloading through
Friend Functions 240

 6.8 Using Friends to Overload
<< and >> Operators 243

 6.8.1 Overloading Assignment
Operator (=) 246

 6.8.2 Array Subscript
Operator ([]) 250

 6.8.3 Function Call Operator 251

 6.9 Function Objects 252
 6.10 Overloading new and delete 255
 6.10.1 Overloading new and delete

using malloc()
and free() 256

 6.10.2 Overloading new and delete
using ::new 257

 6.11 User-defi ned Conversions 262
 6.11.1 Implicit Conversions 262
 6.11.2 Built-in Data Type

to Object 265
 6.11.3 Object to Built-in

Data Type 265
 6.11.4 Wrapper Classes 268
 6.11.5 Conversion of Object Type

using Constructors 269
 6.11.6 Conversion of Object Type using

Conversion Functions 272
 6.11.7 Constructor vs Operator Functions

for Conversion 273
 6.11.8 Choosing an Appropriate

Conversion Method 274

 7. 7. TEMPLATES 279TEMPLATES 279
 7.1 Introduction 279
 7.2 Function Templates 280
 7.2.1 Drawbacks of

using Macros 280
 7.2.2 Single-argument Function

Templates 281
 7.2.3 Instantiation 285
 7.2.4 Generic Sorting and Need for

Operator Overloading 286
 7.2.5 Sorting Employee Objects using

Generic Bubble Sort 286
 7.2.6 Function Templates with

Multiple Arguments 289
 7.2.7 Function Templates with Two

Generic Arguments 291
 7.2.8 Non-generic Parameters in

Template Functions 292
 7.2.9 Types of Non-generic

Arguments 294
 7.2.10 Template Argument

Deduction 295
 7.2.11 Template Function and

Specialization 296

xvi Programming with ANSI C++

 7.2.12 Overloading a Template 296
 7.2.13 Overloading One Generic

Function with Another 302
 7.2.14 Manually Overloaded Functions

vs Template Instantiations 303
 7.2.15 Default Arguments to Function

Templates 303

 7.3 Class Templates 304
 7.3.1 Defi ning Functions of Class

Templates outside
the Class 306

 7.3.2 Classes with Multiple Generic
Data Types 313

 7.3.3 Using Non-type Arguments 314
 7.3.4 Using Default Arguments 315
 7.3.5 Static Data Members 316
 7.3.6 Friends of Class Template 318
 7.3.7 Primary and Partial

Specialization 319

 7.4 Compilation Models for
Templates 321

 7.4.1 Inline vs Non-inline Function Calls
in Multiple Files 321

 7.4.2 Template Instantiations in
Multiple Files 322

 7.5 Use of typename 323

 8. EXCEPTION HANDLING 328 8. EXCEPTION HANDLING 328
 8.1 Introduction 328
 8.2 Traditional Error Handling 328
 8.2.1 Returning Error Number 328
 8.2.2 Global Flag Manipulation 328
 8.2.3 Abnormal Termination

of Program 329

 8.3 Need for Exception Handling 329
 8.3.1 Dividing Error Handling 329
 8.3.2 Unconditional Termination 329
 8.3.3 Separating Error Reporting and

Error Handling 330
 8.3.4 Problem of

Destroying Objects 330

 8.4 Components of Exception
Handling Mechanism 330

 8.4.1 try Block 330
 8.4.2 catch Block 331
 8.4.3 throw Expression 331

 8.5 Challenges in the
New Approach 332

 8.5.1 Finding Proper Handlers 332

 8.5.2 Finding Proper Handlers for
Polymorphic Objects 333

 8.5.3 Backtracking until Beginning of
try Block 333

 8.6 Throwing within and
outside Functions 333

 8.6.1 Handling Exceptions 338

 8.7 Throwing Variables Other
than Objects 339

 8.8 Using Multiple catch 339
 8.9 Catch All 342

 8.10 Restricting Exceptions from
Functions: Exception
Specifi cation 344

 8.11 Rethrowing Exceptions 350

 8.12 terminate() and unexpected()
Functions 353

 8.13 uncaught_exception() Function 356

 8.14 Exception Handlers
and Debuggers 358

 8.15 Drawbacks of
Exception Handling 358

 8.16 Exception Class 359

 9. INHERITANCE 362 9. INHERITANCE 362
 9.1 Introduction 362
 9.2 Advantages of using Inheritance 363
 9.2.1 Avoiding Creation of Objects

from Scratch 363
 9.2.2 Avoiding Redundancy and

Maintaining Consistency 363
 9.2.3 Mapping a Real-world

Hierarchy 364

 9.3 Is-a and Part of Relationships 364
 9.4 Defi ning Derived Classes 364
 9.4.1 Derivation using Public

Access Modifi er 365
 9.4.2 Derivation using Private

Access Modifi er 366
 9.4.3 Protected Access Specifi er 368
 9.4.4 Derivation using Protected

Access Modifi er 370

 9.5 Inheritance in C++
Object Model 372

 9.6 Different Ways to Derive Classes 373
 9.6.1 Public Derivation 374

Detailed Contents xvii

 9.6.2 Private Derivation 374
 9.6.3 Protected Derivation 374
 9.6.4 Public and Private Derivation of

Protected Access Specifi er 375

 9.7 Access Control 376
 9.8 Access Declaration 376
 9.9 Deriving Multiple Classes from a

Single Class 378
 9.10 Multiple Inheritance 381
 9.10.1 Problems in

Multiple Inheritance 383

 9.11 Deriving a Class from an Already
Derived Class 385

 9.12 Virtual Base Class 387
 9.13 Applications of Constructors and

Destructors 391
 9.14 Exception Handling in Case

of Derivation 391
 9.15 Composite Objects (Container

Objects) 394

10. RUN-TIME POLYMORPHISM BY 10. RUN-TIME POLYMORPHISM BY
VIRTUAL FUNCTIONS 403VIRTUAL FUNCTIONS 403

 10.1 Introduction 403
 10.2 Compile Time and

Run-time Polymorphism 404
 10.3 Pointer to Object 405
 10.4 this Pointer 405
 10.5 Compatibility of Derived and Base

Class Pointers 406
 10.5.1 Subobject Concept 408

 10.6 Base Class and Derived Class
Member Functions 408

 10.7 Virtual Functions 410
 10.7.1 Static vs Dynamic Binding 415
 10.7.2 Default Arguments to

Virtual Functions 416
 10.7.3 Advantages of using

Virtual Functions 419
 10.7.4 Virtual Destructors 421

 10.8 Use of Virtual Functions 422
 10.9 Pure Virtual Functions 427
 10.9.1 Static Invocation of

Virtual Function 431

 11. RUN-TIME TYPE INFORMATION AND 11. RUN-TIME TYPE INFORMATION AND
CASTING OPERATORS 438CASTING OPERATORS 438

 11.1 Introduction 438
 11.1.1 Polymorphic Objects 438
 11.1.2 Need for RTTI 440
 11.1.3 typeinfo Object and

typeid Operator 442
 11.1.4 Using typeid for Non-

polymorphic Objects 443
 11.1.5 Using typeid for

Polymorphic Objects 444
 11.1.6 Using typeid for Solution 445
 11.1.7 Applying typeid to Class Names

and Objects 448
 11.1.8 Cases Where RTTI

is Useful 448
 11.1.9 Problems with typeid 449

 11.2 Dynamic Casting
using dynamic_cast 450

 11.2.1 Using dynamic_cast 451
 11.2.2 Using dynamic_cast to

Replace typeid 453
 11.2.3 Using dynamic_cast to Solve

Problems with typeid 456

 11.3 Casting using const_cast 459
 11.4 Casting using static_cast 459
 11.5 Casting using

reinterpret_cast 460
 11.6 RTTI and Templates 461
 11.6.1 Using typeid 461
 11.6.2 Compatibility and

Effi ciency Issues 464

 11.7 Cross Casting 464
 11.8 Downcasting 466

 12. STREAMS AND FORMATTED 12. STREAMS AND FORMATTED
INPUT/OUTPUT 470INPUT/OUTPUT 470

 12.1 Introduction 470
 12.2 I/O Streams of C vs C++ 471
 12.3 Old C++ I/O vs

ANSI C++ I/O 472
 12.4 Predefi ned and Wide

Character Streams 473
 12.5 C++ Stream Classes Hierarchy 473
 12.6 Formatted and Unformatted I/O 473
 12.6.1 put() and get() Functions

for cout 474

xviii Programming with ANSI C++

 12.6.2 getline(), read(), and
write() Functions 475

 12.7 Formatting I/O 476
 12.7.1 Member Functions of ios 476

 12.8 Setting and Clearing Format
Flags 479

 12.9 Using setf() Function with
Two Arguments 481

 12.10 Examining and Clearing Flags 484
 12.11 Manipulators 486
 12.11.1 Using Manipulators instead of

ios Functions 486
 12.11.2 Differences between

Manipulators and ios
Functions 487

 12.12 Using Manipulators 488
 12.12.1 Setting and Testing Flags

using Manipulators 489
 12.12.2 Manipulators for

Toggle Effect 490
 12.12.3 Shorthand Manipulators 490

 12.13 User-defi ned Manipulators 491
 12.13.1 Passing and Returning Streams

as Reference 493
 12.13.2 Using a Function

for Formatting 494

 13. USING FILES FOR INPUT /OUTPUT 497 13. USING FILES FOR INPUT /OUTPUT 497
 13.1 Specialty of Input/Output 497
 13.2 Process of Input/Output 498
 13.3 File I/O Programming 499
 13.4 Text and Binary Streams 501
 13.5 Opening and Closing Files 503
 13.6 Text Files 503
 13.6.1 Defi ning Files 503
 13.6.2 Opening Files 503
 13.6.3 Reading from and Writing

to Files 504
 13.6.4 Closing Files 504
 13.6.5 Using Text Files 504
 13.6.6 Using get() and put() 505
 13.6.7 Using getline() 507

 13.7 Binary Files 508
 13.7.1 Opening a Binary File 508
 13.7.2 Reading from and Writing to

Binary Files 509
 13.7.3 Closing Binary Files 509
 13.7.4 Using Binary Files 509

 13.8 End of File 512
 13.9 Random Access using seek() 512
 13.9.1 seekg() and seekp() 513
 13.9.2 tellg() and tellp() 516

 13.10 I/O Modes 520
 13.11 Object Persistence

and Serializing 521
 13.12 I/O Errors 521

 14. NAMESPACES 525 14. NAMESPACES 525
 14.1 Name Confl ict Problem 525
 14.1.1 Global Namespace 525
 14.1.2 Logical Grouping 526
 14.1.3 Fully Qualifi ed

Names 526

 14.2 Ways of using Namespaces 526
 14.2.1 using Syntax 526

 14.3 Defi ning a Namespace 528
 14.3.1 Defi ning Variables Inside

a Namespace 528
 14.3.2 Defi ning Functions Inside

a Namespace 529
 14.3.3 Defi ning Classes Inside

a Namespace 530
 14.3.4 Declaring Inside and Defi ning

Outside the Namespace 531
 14.3.5 Extending a Namespace 533
 14.3.6 Using Namespaces in

.h Files 534

 14.4 Unnamed Namespaces 535
 14.5 Nested Namespaces 537
 14.6 Namespace Aliases 538
 14.7 std Namespace 540
 14.8 Koenig Lookup 541
 14.9 Overhead with Namespaces 541

 15. STRING OBJECTS 545 15. STRING OBJECTS 545
 15.1 Introduction 545
 15.2 Operations on String Objects 545
 15.2.1 Creating Strings 546
 15.2.2 Substring Operations 546
 15.2.3 Operations Involving

Multiple Strings 548
 15.2.4 String Characteristics 549

 16. STANDARD TEMPLATE LIBRARY 555 16. STANDARD TEMPLATE LIBRARY 555
 16.1 Introduction 555
 16.2 Generic Programming 557

Detailed Contents xix

 16.3 Generic Software Components 558
 16.4 Generic Algorithms 558
 16.5 Iterators 559
 16.6 Containers and Their Types 561
 16.6.1 Vectors 561
 16.6.2 List 568
 16.6.3 Deque 572
 16.6.4 Sorted Associative

Containers 573

 16.6.5 Maps 574
 16.6.6 Multimap 575
 16.6.7 Sets 578
 16.6.8 Multiset 580
 16.6.9 Adapted Containers 582

 16.7 Generic Algorithms 582
 16.7.1 fi nd() Algorithm 582
 16.7.2 copy() Algorithm 584
 16.7.3 sort() Algorithm 587

Appendix: Case Study 593

Index 617

Learning Objectives

• Need for C++
• Object-oriented and object-

based programming
• Real-world and programmer-

designed entities
• Classes and objects
• Methods and messages
• Abstraction and

encapsulation
• Inheritance and the concept

of reusability
• Abstract classes and their

need in the bottom-up design
• Polymorphism with static and

dynamic binding
• Differences between C

and C++
• C++ object model
• Variations and applications

of C++

Chapter 1
Object-oriented Object-oriented
Programming Programming
and C++and C++
1.1 NEED FOR C++

Since C is a successful and useful language, a question may arise as to the need
for the C++ language. We will fi rst look at the limitations of the C language.
Subsequently, we will learn about object orientation and how C++ provides
object orientation to solve the problems that cannot be solved using C.

1.1.1 Limitations of C
C is a very powerful language. It has been popular for more than two
decades. As compared to other programming languages, programming in
C is very effi cient and compact. When the C programs are compiled to
executable programs, they produce the most compact object code compared
to any other high-level language such as Java or Visual Basic (VB).
C is frequently used in small- and medium-sized programs. In fact, a large
number of programmers are conversant with only the C language.We use
so many C programs daily that if everything developed in C is removed
from our computer, it will stop functioning. A large portion of operating
systems such as Linux and Windows, databases such as Oracle, and
network programs such as transmission control protocol / Internet protocol
(TCP/IP) are written in C (though a signifi cant part of them is also written
in C++). However, C has a few limitations. It lacks a global view and the
programming design does not support reusability.

Lack of Global View
Programmers realized the limitations of C only when the C programs were
used on a very large scale. It became very diffi cult for the programmers
to remember every part of the program. This is a problem partly with the
design and partly due to the inability of the language to express a lengthy
program as an abstraction of smaller individual units. Over the years,
programmers realized this and found ways to avoid this problem. One
such commonly practised method is to make the program modular, that
is, to divide the program into smaller segments and implement these segments
by different functions. To a certain extent, this approach solves the prob-
lem. However, when a program grows larger, this solution does not seem

2 Programming with ANSI C++

to work. Although the portions of the program (modules) are separated, these
are not totally independent. If a module is to be used at multiple places with a
little difference, then it is to be copied and pasted at all such locations and then
modifi ed. As a result, the program becomes messy. Another problem with large
programs is that they are usually developed by teams and effi cient teamwork
is not possible without a global view, that is, an abstracted view. For example,

while handling a marksheet printing program, a student is an abstraction. We shall assume
that all the data that we need for a student is available in the student abstraction (we will
soon call this abstraction a class) and will not worry about any other details of the student.
There may be hundreds of such abstractions available, but we should only be using them and
not worry about their internal structure. Thus, we are relieved from the burden of handling
a large program to one with only a few abstractions. In addition, we can view the entire
program together and can properly reason if a part of it is not working properly and is
required to be modifi ed.

Let us try to understand the same concept using an example from our everyday life.
Suppose we write something using Microsoft Word. We just use the buttons to save, undo,
and so on, without caring about how they work. Let us consider one more example from the
programming domain. The application programming for Windows may be done using VB
or Visual C++ (VC++), but we can use all facilities such as buttons, text boxes, or tables as
controls without worrying about how these controls are implemented or coded. What we get
is a control (for example, a text box control) that is programmed for readymade usage. This
simplifi es our task of programming. This is also true for real-time examples such as driving
a car, when we are only worried about the steering wheel, brakes, accelerators, and a few
other things and not about how acceleration is actually provided when we press the pedal.
Unfortunately, C does not provide any direct mechanism for such abstraction.

Not Designed for Reusability
There is another problem with the style of programming in C. We need many building blocks
for a large program. For example, a large payroll program would require all the information
about each employee. Management of employee information is one building block for
the payroll program. A human resource management program also requires the employee
information. Both sets of information may not be exactly the same, though both of them need
to be consistent. It would be a better approach to share the information as much as possible
between all those who need it, and provide additional information only in special cases. In
our case, the employee information is needed by the employee payroll and human resource

departments. In such case, the employee name, address, etc., can be stored at a
single location. From this shared pool, both payroll and personnel departments
may take the data input. Additional information can be inserted in the individual
records of both the departments wherever required. For example, if employee
experience is additionally required in the human resource information, then it is
stored in its database alone. Here, the idea is to reuse the shared information that
is available to all, with little modifi cation at local level. C does not provide any
mechanism to reuse the same information with modifi cations wherever required.

In this chapter, we will see that both these problems encountered in C are
very easily and effi ciently solved by C++, which follows the paradigm of object
orientation. When the new design was termed object-oriented or object-based,

Lengthy C programs
lose a ‘global view’
and become very diffi -
cult to visualize as a
single concept.

Two serious issues
emerge when large
pro grams are to be
written in C. The pro-
grammer loses a
global view of the pro-
gram and there is no
programming construct
available for reusing
the older code.

Object-oriented Programming and C++ 3

there arose a problem of naming the older method. There are many names given to the old
way of coding, the most appropriate one being procedure-oriented.

Coding in the C language is commonly based on defi ning and calling functions for
different jobs. To an extent, this helps to distribute the program logic into modules and thus
helps to reduce the complexity, but does not completely segregate the components. Object-
based programming helps in achieving this. In the following sections, we shall discuss how
object-based and object-oriented programming are carried out.

Let us try to understand object-oriented programming in simple terms.

1.1.2 Object-oriented Programming
To overcome the problems listed in Section 1.1.1, the programmers included new features in
the C language. The addition of these new features has enabled the advanced language, C++,
to suit very large programs.

Note C++ was developed with many additional features to eliminate the problems that C had. The most
notable improvements include the support for building reusable components and the ability to provide
an abstracted view.

We may even need to change the style of programming and the process of viewing
the problem. Programmers have realized this and are researching in this area. There are
some interesting outcomes from this research. A new discipline for computer science
professionals known as software engineering has emerged. One of the important outcomes
of the study of software engineering is a new design for programming. This programming
methodology is known as object-based or object-oriented programming. Both are different
types of methodologies and the differences between the two will be discussed in detail in
Chapter 9.

Programming is a process to provide computer-based solutions to real-world problems.
For example, an accounting program solves the accounting-related problems of an
organization or a marksheet printing program solves the problem of calculating the marks

of an individual student and printing them in the proper format. If one needs
to write either a marksheet printing program or an accounting program, he/
she fi rst needs to understand the problem itself, that is, the entities involved in
the program (marksheet, students, examiners, etc.), their attributes (names, roll
numbers, etc.), and the output (examiners provide the marks for the students,
students view these marks later in a different format, etc.). This visualization of
the system is a design process that must precede the programming phase.

Object-based and object-oriented programming are the methods of visualizing
and programming the problem in a global way (by global, we mean that the entire
program can be viewed together as a single unit). They provide abstractions
for all the entities involved in the process. This abstraction is known as a
class. Object-based and object-oriented programming help programmers in
such a way that the global view is not lost even when the program grows to a
large size.

Thus, object-based and object-oriented programming are techniques to
envision the problem as a collection of objects that represents real-world entities.
Objects are variables of type class. In the C language, we have to defi ne variables
of type struct to represent entities such as customer, supplier, or a student (by

Programming is a
pro cess to provide
computer-based
solutions to real-world
pro blems. Visualizing
the real-world problem
and fi nding an appro-
priate solution in terms
of a programming lan-
guage construct are
important prerequisites
to develop robust
programs.

An abstraction of a real-
world entity is mod-
elled in C++ as a class.

4 Programming with ANSI C++

defi ning struct Student, struct supplier, or struct customer containing names,
addresses, etc.). This mapping is not complete. We can add attributes of an entity
student in the struct type variable (e.g., name, address, and marks of respective
subjects), but actions related to them (such as enrolment and getting result)
cannot be stored within the structure. We usually write functions to perform
such activities in C, but these functions are not part of the struct keyword; they
are independent.

C++ introduces a new element called class, which is an extension to struct, and provides
the facility to store actions in the form of functions within the entities themselves. It is
similar to storing the Student object with all the data attributes such as name and address as
well as action attributes such as enrolment, reading, and printing details of the concerned
Student object. This process of combining data and function attributes of an entity is known
as encapsulation.

Note A C struct represents only a part of an entity, that is, data. An object represents an entity completely,
that is, data as well as methods.

1.1.3 Object-based and Object-oriented Design
C++ is designed for providing both object-based and object-oriented programming. Before
we look at the differences between the two, let us assume that the discussion that follows is
applicable to both the cases.

It is not easy to provide object orientation in a computer language while maintaining
acceptable effi ciency levels. A major advantage of the C language is its effi ciency. Programs
written in C execute faster than if written in any other high-level language. The designers of

C++ wanted the same effi ciency level in C++ as in C.
In the past, only a few languages such as Smalltalk provided purely object-

oriented solutions. These solutions executed far slower than conventional
procedural languages such as C. C was also more effi cient than such languages.
However, C++ provides the extension required for object orientation to C,
and at the same time provides almost the same effi ciency as C. Therefore,
the object-oriented model is not imposed on the developer such as in
Java.

We can choose between object-based programming (which is less fl exible
but more effi cient) and object-oriented programming (which is more fl exible
but less effi cient). C++ provides a balance between the effi ciency of C and
the fl exibility of an object-oriented or object-based design. This is why, even
after more than a decade of its inception, C++ is still very popular among the
developer community.

Differences between Object-based and Object-oriented Programming
In this section, we briefl y outline the differences between object-based and
object-oriented programming.

Object-based programming Object-based programming uses objects and
classes but without inheritance. It provides fl exibility to the program and is
easier to work with. Operator overloading, function overloading, and the use of
constructors and destructors are included in object-based programming.

C++ is almost a super-
set of C. Since the syn-
tax of C++ is extended
from C, knowledge of
C is useful while learn-
ing C++.

The normal rule of
thumb is that the
more object-oriented
the language, the
slower the execution
of the program.

C++ is designed to
give freedom to prog-
rammers and hence
it does not impose
the object-oriented
model, unlike Java.

C++ provides a choice
to the programmer to
decide whether he/
she needs an object-
based or an object-
oriented design.

Object-oriented Programming and C++ 5

Object-oriented programming Object-oriented programming uses classes
and objects with inheritance. It can have classes inherited from other classes
and have complex means for calling and using functions of both the classes.
Base (or parent) classes (from which we derive or inherit another class) and
inherited or derived (from base classes) classes are the two categories of classes.
It is possible to inherit a class from multiple classes and it is also possible to
inherit multiple classes from a single class. An already inherited class can also
be inherited further. Now, once we have such a hierarchy in place, we can decide

on the object to process dynamically at run-time. This is an extremely fl exible and powerful
way of manipulating objects. When we manipulate objects of the hierarchy at run-time, we
are providing object-oriented programming.

1.1.4 C++ — Not Completely Object-oriented
Pure object-oriented models are never found effi cient, but the C++ model is a balanced one
chosen to cater to effi ciency as the prime requirement. There are other languages such as
Java, which offer better object orientation but are less effi cient than C++. Hence, C++ does
not represent the pure object-oriented model.

The C++ model is very close to the object-oriented philosophy but not completely so. It
is also possible to write a C++ program without using the object-oriented methodology. A
valid C program without any object orientation feature is usually a valid C++ program as
well.

The basic requirements of object orientation and object-based programming include
providing classes. Besides, other issues such as encapsulation, inheritance, polymorphism,
and reusability of code and objects are required to be implemented. Let us now look at
some of the object-oriented concepts that would help us understand the design of the C++
language and the psychology behind its creation.

1.2 CONCEPTS OF OBJECT-ORIENTED PROGRAMMING

Object orientation, as mentioned earlier, is an outcome of the research to fi nd the solution
to programming large systems. There are many issues related to object orientation as it has
become a discipline of its own today. In this section, we will look at some of the important
object-oriented concepts that infl uenced the C++ design.

Let us begin with an example. Suppose we are given a job to write a program about
maintaining the roll call of a college using a C++ program. The roll call is usually done by
calling the student’s roll number or name one by one and making an entry in the register,
by using a special sheet wherein every student present in the class should sign, or through
a card-based system, which automatically registers a student when he/she approaches the
classroom. This register, sheet, or computer fi le is then used to provide input to the program.
The program should then be able to generate reports such as the individual attendance of a
student and the attendance for a particular subject.

To program for the roll call process, we have to decide the entities involved in that
process. The fi rst observation yields some entities that are listed here. This list is based
on the author’s observation. Readers may come up with lists with a few differences.
There are no clear-cut guidelines for choosing the entities; it is more a task involving

C++ programs can
be purely procedure-
oriented, object-
oriented, or neither.
One cannot call C++
a completely object-
oriented language.

6 Programming with ANSI C++

intuition. The author’s list of entities involved in the roll call program, as shown in Fig. 1.1
is as follows:

1. The teacher who is responsible for taking the roll call
2. The subject for which the roll call is taken
3. The roll call itself, where the other details about roll call, for example, the day and time of

the roll call, the subject for which it is taken, and so on, are stored. The attendance entries
are made for each roll call separately. Individual roll call forms the basis for calculating
subject-wise, teacher-wise, or student-wise attendance at later stages.

4. The student who is marked present or absent in a given roll call

As mentioned earlier, this is just a fi rst-hand list; it can and does grow when the actual system
is designed. One can easily see that the entities involved in the process are of two different

types. The fi rst type has a one-to-one relation with the real-world counterparts.
Students, teachers, and subjects happen to exist in the real world. Our entities
are computerized counterparts of these entities. The roll call is something that
does not exist in the real world, but when we write a program, it is convenient
for us to have that entity in our program. So, the fi rst type of entry is directly
picked from the real world and the second type is designed by the programmer
for programming convenience. Both require some information to be stored in
them.

We have already seen the roll call entity and its attributes. Let us take the case
of a teacher entity. Some of the details required about this entity are the name of
the teacher, the subject he/she teaches, and probably the timetable. We would also
like to know how a new teacher is enrolled, how a teacher is associated with a
specifi c subject when he/she is given the assignment of teaching a specifi c subject
or part of it, or how all content related to a teacher can be printed or input. Hence,

Attributes of a class

Data attributes Function attributes

Attributes of a teacher

Data attributes
Name
Subject name
Timetable

Function attributes
Enroll
Associate to subject
Printing details

Entities of the system

Entities for roll call

Entities that
are mapped from

real world

Student, teacher,
subject Roll call

Entities designed
for programming

convenience

Fig. 1.1 Entities of a system

One must have a list
of entities involved in
the program to begin
programming. There
are two types of such
entities. Most of the
entities represent
real-world counterparts
and some of them
repre sent program-
ming con structs that
the pro gra mmer addi-
tionally requires to
solve the problem.

Object-oriented Programming and C++ 7

there are two different attributes that the teacher entity holds, termed the data and the function
attributes. The name, subject name, and timetable information are all data attributes. The rest
are all function attributes. The data attributes indicate the status of the teacher object and the
function attributes indicate the operations possible. We need to do a similar exercise for the
other entities as well. The data and function attributes together describe our understanding
of the entity.

Note Entities have two types of attributes, the data and the function attributes. A programmer needs to
model both of them in an object.

Once we decide about the data and function attributes of all the entities involved, we may
proceed further. It is important to note that the attributes we consider are only those that
we may think are important for solving our problem or any extension to the problem that
we may foresee. We may not include many other attributes, for example, take the case of

the student entity. A real-world entity, student, does
have data attributes such as the names of parents, list
of friends and hobbies. One can also think of function
attributes such as adding a friend, sending a scrap to a
specifi c student, and uploading a photo of a student,
as shown in Fig. 1.2. It can easily be seen that such a
list is endless. It is an important job of a programmer
to weed out those attributes that may not be directly
required by the program. This is not all that easy as
the choice also depends on the future landscape of
the system. If we think that we may need to have a
social networking between students additionally in our
system later, then some of the attributes weeded out
earlier probably should become a part of the system
design now. As mentioned earlier, this is a case of an

individual expert’s judgment based on experience and intuition.

Usually, a single program such as roll call is not considered while designing
classes but a collection of programs that solves the entire college administration
process is considered. Here, the roll call management module is just one small
fraction of the entire problem. In that case, the list of entities and their attributes
are decided looking at the larger scope and not just one program. How to do this
is an interesting question that cannot be answered here but students can fi nd it in
books on system analysis and design and object-oriented system analysis and
design. A better solution still is to just pick some program from this text and
extend it further for one’s own requirement and understand the fi rst-hand need
for the design. If analysis and design is studied after some experimentation, the
concepts become much clearer.

For our discussion, it is not necessary to follow the complete system design
knowledge. Figure 1.3 represents a small system related to students. Four
different programs have been considered as a part of the system here. Usually,
we have many programs in the system, but we consider only these four programs
for introduction. The fi rst program is the roll call management, the second is

Attributes of student

Useful for our
system
Data attributes
Name
Addess
Roll number
Course name
Function attributes
Enrolment
Getting mark sheet
Exam registration

Not useful for our
system
Data attributes
Name of parents
List of friends
Hobbies

Function attributes
Add a friend
Scrap
Upload a photo

Fig. 1.2 Attributes of a real-world entity

8 Programming with ANSI C++

marksheet printing, the third
is maintaining the subject (i.e.,
provide adding, deleting, and
modifying details of a subject),
and the fourth is maintaining
the teacher’s information (i.e.,
providing adding, deleting,
and modifying details of
a teacher). There are fi ve
entities considered—roll call,

teacher, student, marksheet, and subject. Again, there are
possibly many more, but they have not been considered for
simplicity. Figure 1.3 shows the association of each entity
with each program. The actual system design process might
generate a large number of programs and a larger number
of entities in more than one way. The following example
will illustrate the concept.

Once we decide the data and function attributes of
the program, the next step is to fi nd the relation between
the different entities by asking a few simple questions.

‘How is a teacher associated with the roll call?’ is one such question. One answer
may associate a teacher with the roll call as the person who takes it for his/her
subject. We may need to obtain the information about the corresponding teacher
from the roll call entity. Figure 1.4 shows an example of a message being asked
and replies being sought from an entity. The question or the query is normally
referred to as a request and the reply is termed as the response.

When we look at our job to be done, we need to have few more such cases
of requests and responses, for example, a teacher asking how many students
were present on a particular day in the class and the roll call entity answering

that question. We may need to fi nd out how many such questions are possible to be asked
and how the answers to these questions are sought out. This is the next assignment when
we are developing our system. The method to generate the answer of a message must be
provided to the receiving entity; otherwise, the receiving entity cannot answer that question.
In the case of the question regarding the number of students present, the roll call entity must
have a method to calculate the total students present from the data it has. This method is
called or invoked by the receiving entity when the other entity asks for that specifi c
information.

1.3 CLASSES AND OBJECTS

A class is an extension to the C struct (the basic C struct is also extended in C++; we will
examine the difference later). Let us consider an example of a class Student. The struct
Student in C will contain only the attributes of the student such as name and address. On
the other hand, in C++, the class Student will have the attributes of the student and it will
also store the actions (or functions) related to the student. This means that the student class
will contain the student name, address, roll number, subjects, etc., as well as all actions in

Fig. 1.4 Determining relations among entities

Program to
calculate roll call

Who is the teacher associated with you?
Query or request

Roll call
object

Response Teacher
object

Mark sheet printingRoll call management Subject maintenance

Teacher’s information
maintenance

Subject

Roll call

Student

Teacher

Mark sheet

Fig. 1.3 Inter-relationship between programs and entities

Object-oriented Programming and C++ 9

the form of functions to be performed on the variables of that class or by the variables of
that class (the variables of the class Student are student1, student2, etc., which are actual
students and are known as student objects).

The words on and by used in the previous statement have an important meaning. It is possible
to have any function inside any class, but it is not recommended. Only functions that describe
the actions of the entity under consideration should be a part of the entity and others should
not be included. We will elaborate this issue further with appropriate examples in Chapter 4.

Note There is no restriction on the type of function a class can have, but a good design requires only related
functions to be a part of the class.

There is one design methodology that demands that classes be designed with minimal
member functions. It says that when we design classes, we should not keep a function as a
member function unless it is necessary. This will make a class ‘thin’ and easy to modify or
extend.

Note The thin class design requires only necessary functions and data attributes to be part of a class, in
a way making it easy to administer. When a class has less number of member functions, it is less
affected when the class grows or changes.

Thus, the functions for reading and printing information about a student, enrolling of
the student in a class, and other functions, which we may consider useful for solving our
problem, will also be a part of the Student class. Here, we must understand the difference
between the student class and the student object. A class is a data type and an object is a
variable of that data type. A Student class is an abstraction describing what a student object
should have (name, address, etc.) and should do (printing details, accepting details, checking
whether passed or not, etc.), but does not do anything itself. A student object is an instance of
that class, which actually has a name, an address, etc. A class is a sketch from where actual
objects are derived. If we have a Student class to represent 30 students, we have one student
class and 30 objects of it. The action performed by the objects (i.e., the variables of type
class) is known as method in object-oriented programming, but C++ calls it function. So we

will use the word ‘function’ to describe the action that is performed on or by an
object of the class.

The functions that are a part of the class are known as member functions. It
is also possible to have functions that do not belong to any class; such functions
are known as non-member functions. In C struct, functions are not a part of the
struct; if they need to operate on a structure, it is passed to them. For example,
StudentPrintDetails() function is a separate function from struct Student. It
cannot become a part of struct Student. A struct variable representing student
must be passed to that function for printing the information about the student. If
we have defi ned struct Student Lara, then calling StudentPrintDetails(Lara)
requires Lara to be passed to the function. The StudentPrintDetails() function
is neither a part of struct Student nor has any compulsion not to be seen
by variables other than of type struct. If we defi ne struct Student Mahesh,
then we may use StudentPrintDetails(Mahesh) to print details about Mahesh.
However, we can also pass something else to the function. If Snoopy is a variable
of type struct dog, we can write StudentPrintDetails((Student) Snoopy). This
process may print garbage on the screen, but the compiler will not be able to judge

Operations are per-
formed by and on ob-
jects and not classes.

The functions that are
a part of the class are
known as member
functions. A member
function helps prog-
rammers to control its
access.

The objects of the
class alone can oper-
ate on the functions
owned by them.

10 Programming with ANSI C++

that it is an error. Thus, the programmer has no control on how the structure and function
interact.

In C++, it is possible to write a member function that is known only to that class, and the
rest of the program is not aware of it. There is no direct way to call that member function using
objects of other classes. Thus, the objects of class Student can call StudentPrintDetails, but
the objects of class dog cannot call this function. This is one of the fundamental differences
between C and C++. Thus, we can write Lara.PrintDetails() but we cannot write Snoopy.
PrintDetails(). It should be noted that member functions are called using dot notation
similar to other data elements. The functions now belong to the class.

The defi nition of a class is similar to the C struct, as we have mentioned earlier. We can
defi ne class Student and can have, say, Student_1 as an object of type Student. If we defi ne
class Teacher and then defi ne Bob as a variable of type Teacher, Teacher is a class where
Bob is an object.

1.3.1 Object-oriented View of Classes and Objects
We will now take a different look at classes and objects, from the object-oriented point
of view. The entities involved in the discussion in the previous sections are implemented
in a C++ program as a class. The class is a representation of the real-world entity (e.g.,
a teacher or a student) or an entity added by a programmer for convenience (e.g., the roll
call object) with respective attributes that are required to solve the problem at hand. It can
be seen that this description is quite vague. For a given problem, the set of entities that the
author has chosen probably is different from that chosen by the readers. The same problem
is being solved but handled differently. Moreover, the attributes that the author has chosen
probably are very different from that of the readers, even if both are solving the same
problem.

All entities that are modelled in the program are implemented as classes. Thus, the classes
in one program could be different from that in another when solving the same problem.
Such classes (Teacher, Student, or RollCall) do not refer to an individual entity, but we
refer to them in general. The entities such as Ganesh as a student, Mathew as a teacher,
or roll call 16030903 (roll call created on 16 03 09 and of the third lecture) are instances
of the generic entities that we have discussed so far. In object-oriented parlance, they
are known as objects. Objects are variables of type class and can be defi ned similar to
variables. Assuming that the classes Student, Teacher, and RollCall exist, the following
are valid C++ statements, which defi ne the individual entities or objects for respective
classes:

Student Ganesh;
Teacher Mathew;
RollCall RollCall16030903;

In these defi nitions, the left-hand side (LHS) part is the data type and the right-hand side
(RHS) part is the variable. Once the classes have been defi ned, the class name can indeed
be used as a data type. So, in this case, the classes are Student, Teacher, and RollCall. The
instances of these classes are Ganesh, Mathew, and RollCall16030903, which are also called
the objects of the respective classes. The classes are sometimes referred to as user-defi ned
data types compared to built-in data types, such as int and char. Thus, in our example,
Teacher, Student, and RollCall are also called user-defi ned data types.

Object-oriented Programming and C++ 11

Note The analogy of classes and objects with data types and variables does not hold good for the memory
allocation in this case. Defi ning a variable will require a compiler to provide memory. On the contrary,
whenever a class defi nition appears, the memory for the member functions is provided by the compiler.
The memory for data members is provided when an object is defi ned from that class.

It is also important to understand that a single class usually has multiple objects associated
with it. For example,

Student Mahesh, Jagruti, Rama, Haresh;

Here, we have a single class Student with which we have four objects associated.
The real world also consists of classes and objects. All of us are objects of the class

humankind, Delhi is an object of the class city, Amazon is an object of the class river, and so
on. Here too, a single class can have multiple objects. Ganges is also an object of the class
river and Mumbai is also an example of the class city. The C++ class is derived from this
real-world understanding of the class.

What is the difference between city and Bengaluru? We can say that Bengaluru is an
instance of city. We have a clear understanding of what a city is. We all know that a city should
have a name, have residents living in it, and have houses and shops, streets and roads, water
and sewage system, and so on. Every city must share almost all these attributes. Bengaluru,

being one such instance, has every attribute that a city should possess. Similarly,
Mumbai is also one such instance and has all those attributes as well. Now, can we
say something about city and Bengaluru that differentiates a class and an object?

A city is intangible, but Bengaluru is not; a city is conceptual, but Bengaluru
is real; a city describes what a city should have and Bengaluru actually has that;
a city does not actually have any residents but Bengaluru has; a city can have
multiple instances such as Mumbai, Bengaluru, Sydney, and London, which is
not true for Bengaluru. Thus, classes and instances are different. Instances are
derived from a class, but are tangible and real, whereas the class is an abstract
entity. The class city is a concept and contains information about what one would
expect in a city. We may include population, dimensions, state or province in

which the city lies, and so on as attributes of the city. The city
concept itself does not have anybody living in it. Only the
instance such as Delhi can have residents. Thus, Delhi requires
space to hold them and city does not. Figure 1.5 shows instances
of some classes and their objects.

We have already seen that a class is a sketch containing
information about what an object of that class should possess
and that the real-world counterparts are also similar.

The identifi cation of the entities of the problem domain
results in classes that become part of our program. Finding out
the classes that a program will need is the fi rst step in solving any
problem in an object-oriented way. The next important thing that
we should do is to ask ourselves the question ‘What can I do with
the objects of this class?’ For example, what can I do with an
object of the Student class? The answer is a set of methods that
the object should implement as a response to specifi c messages.
We will look at the methods and messages in Section 1.4.

Class is a data type
and object is a vari-
able of that type. A
single class may have
multiple objects
associ-ated with it.

Classes contain attri-
butes that all the
objects share.

City

Bengaluru Delhi Mumbai

Student

Ganesh Mahesh Murali

Teacher

Mathew Gary John

Fig. 1.5 Some classes and their objects.

12 Programming with ANSI C++

Let us consider a single example to get some idea about the attributes. City contains
population, dimensions, citizens, and so on. Every city object in turn will have all these
attributes—Delhi has it, Mumbai has it, Bengaluru has it, and any city that is an object of
this class will have it. Thus, these attributes are shared by all objects. Kindly note that only
the attributes are shared and their values are different for different cities.

Both Delhi and Bengaluru have population as an attribute but their values are different for
both the cities. Two student objects might share an attribute name but its value is different
for both the objects. Thus, population, name, and dimensions are attributes associated with
the city class and name, roll number, and marks are attributes associated with the student
object but each attribute’s value can be different. Classes and objects are dealt with in detail
in Chapter 3.

1.3.2 Abstract Data Type
When the objects of a class behave like a data type, the class is known as an abstract data
type (ADT). The string class is an example of ADT. It is possible to defi ne a complex number
as a data type using a class. Similarly, we can also defi ne graphic concepts such as point,
circle, and rectangle as a class such that the objects behave like a data type. We can write the
following statements after properly defi ning these ADTs.

Complex C1(2,3), C2;
Point P(2,3), Q(4,S), R(10,10),S;
Circle C(P,20), Ring;
Rectangle Rect(P,R), PlayGround;

These ADTs are defi ned in two ways, one with initialization and the other without. For
example, Point P(2,3) not only defi nes a point P but also defi nes that the x and y coordinates
of the point P are 2 and 3. On the other hand, point S is defi ned without any mention of the
coordinates.

Quite a few useful class defi nitions fall under the category of ADT, including stack,
queue, string, vector, and dequeue. We will learn about complex, point, circle, and rectangle
while we discuss operator overloading in Chapters 6, 9, and 10. Some of the built-in ADTs
are discussed in Chapter 16; the Standard Template Library (STL) and the string ADT are
discussed in detail in Chapter 15.

C++ is said to have type extensibility, that is, we can add our own types to the program
and use them. STL is a great example of generic data types.

1.4 METHODS AND MESSAGES

Suppose we need to fi nd the teacher who took roll call 16030903 (refer to Fig. 1.1). To
accomplish this task, we may write a C++ program with the following statements:

Teacher SomeTeacher;
SomeTeacher = RollCall16030903.getTeacher();

These statements may not be quite intuitive yet. We will soon learn to write such statements
and understand them. For now, they can be understood as follows. The fi rst statement defi nes
an object SomeTeacher of the class Teacher. This defi nition looks similar to a variable
SomeTeacher being defi ned of the type Teacher. This is indeed so. Here, Teacher is known as
a user-defi ned type and SomeTeacher is a variable of that type, that is, the object of the class

Object-oriented Programming and C++ 13

Teacher. Similar to other variables, this variable can also be used on the LHS
of the assignment statement to assign a specifi c value to it. (This operation is
similar to defi ning int IntVar and then writing IntVar = 20 to assign the value
20 to the integer variable IntVar.) Whenever such an object is used as an LHS
expression of an assignment statement, the outcome of the RHS expression is
assigned to the object. In our case, we get a Teacher object by executing the RHS

of the assignment statement, which is then assigned to SomeTeacher. So, if the outcome of the
RHS of the assignment statement is Mathew, then SomeTeacher now contains Mathew.

1.4.1 Message Passing
A more important part is the call to the function, which is defi ned inside the class RollCall.
The function can be called by using the object<dot>function name syntax. The function
getTeacher() is part of the RollCall class (if it is not a part of the class, we would not be able to use

dot notation to call that function). The statement RollCall16030903.getTeacher()
calls the function getTeacher(), which works on the object RollCall16030903
and gets the teacher associated with that roll call (object representing Mathew
in our case). In the assignment statement SomeTeacher = RollCall16030903.
getTeacher(), we assign the Teacher object (object representing Mathew in
our case) returned by that function to SomeTeacher. The getTeacher() function

here must be designed to return the
Teacher object.

In the entire discussion so far, the
getTeacher() function is known as
a message being passed to an object
RollCall16030903. The object takes
some action (executes the body of the
function specifi ed, the getTeacher()
function in our example) and returns
with the response (the Teacher
object). The code for providing
response to the message is known as
method (in our case it is the body of
the function getTeacher()). We can
easily see that a specifi c message
invokes a specifi c method in the
object and then the object optionally
returns with the response, as shown
in Fig. 1.6. It is important to note the
word optional. Some messages do not
require a response, as can be seen in
Fig. 1.7. Assume that DispInfo() is
a function defi ned in the Teacher
class, which displays everything that
one would like to know about the
teacher, and that we have defi ned
Gary as a teacher. We may type Gary.

A member function is
invoked similar to a
data member with the
dot operator after the
object name.

The response in a mes-
sage passing process
is optional. Some mes-
sages may not return
anything.

Program to
calculate roll call

getTeacher() (Message)

Optional response

Response Query or request

Method

Object representing
mathew

Body of the function
(getTeacher) to find out teacher

who took the roll call

Roll
call object

Fig. 1.6 Message, method, and optional response

Fig. 1.7 Message, method, and no response

Program to
maintain teacher

information

DispInfo() (Message)

Response

No response

Query
or request

Method

Body of the function
DispInfo() to display

information about teacher

Teacher
object representing

Gary

14 Programming with ANSI C++

DispInfo(); and the function will display all information about Gary. Here, the message to
display all information is sent to the object of the Teacher class (the object named Gary). In
response, the object manages to execute the function DispInfo() and display the information
needed. Here, the object does not need to respond with any information. Thus, the response is
optional.

Thus, when we defi ne a function inside the body of a class (i.e., a function that is a
member of the class), we can execute that function by using the object<dot>function
notation. (We will study about how to defi ne and use functions in Chapter 4.) When we call
that function, we are passing a message (which has the same name as the function name) to
the object. The object looks at the message and executes the body of the function bearing the
same name as the message itself. The body that is executed is called the method in response
to the message. Thus, the function name is used as a message and its body is the method that
is being executed in response to that message.

Note In C++, the function name is a message and the body is the method that induces optional response
and does some job as requested by that message.

Let us look at the process from another angle. We pass the message getTeacher to the
object, and the object fi nds out the teacher associated with that roll call and sends it back to
us. The message getTeacher() is the only thing we are supposed to know. How the object
fi nds the teacher is of no concern to us; we can safely rely on the internal functioning of the
RollCall object to do that. The object gets us the teacher information by executing some
method to fi nd the teacher. Here, the discussion is very much like a real-life scenario, where
we are passing some message to an object and getting a response from it. Take the case
of riding a motorbike. When we accelerate, we are passing a message to the object (e.g.,
the bike GJ1-CK-4587). The object responds back with increased speed. How the result
is achieved is of no interest to us (unless we are bike mechanics). Probably, moving the
accelerator downwards pulls the accelerator wire, which, in turn, opens the petrol valve
wider. The widening of the petrol valve results in more petrol being poured into the engine,
which results in faster revolution of the engine, which, in turn, speeds the wheels up. As a
motorbike rider, how much of this is important to us?

In most real-world activities, we are not really interested in the methods; we are actually
interested in the results of our message. When we apply the brakes, we want the vehicle

to halt or slow down but how it
is done is again of no interest
to us. In our case, the bike GJ1-
CK-4587 is an example of an
object of the class motorbike.
The operations such as accelerate
and brake are important messages
that we would like to pass and
get responses to. This is shown in
Fig. 1.8. We are not interested in
how the responses are achieved,
though. Similarly, classes are
designed in a manner that the user

Bike rider
Accelerate (Message)

(Increased speed, an optional
response)

GJ1-CK-4587
bike object

Response Query or request

Method

Circuitry that accelerates
the bike

Fig. 1.8 Message, method, and optional response for a motorbike

Object-oriented Programming and C++ 15

of the objects of that class can send messages and can get the job done without really being
worried about how it is done.

Note Users generally do not bother about how a method is executed, but they are defi nitely interested in
the job being done as per the message.

1.5 ABSTRACTION AND ENCAPSULATION

We have just seen that the caller or user of an object sends the message to the object and is
interested in getting the response. We have also seen that the caller usually is not interested
in the method used to invoke the response. It is important for the system to keep the method
hidden from the user for the sake of simplicity.

Think of the case when one presses the brake pedal and the brakes are applied. All the
circuitry that applies the brake is not open to us. What is the advantage of hiding
the circuitry? This simplifi es our view. We only fi nd the brake pedal to work
with. Opening up the circuitry may not make any difference to an experienced
bike rider but consider the case of a novice. If everything is open to him/her, it
will take quite some time for him/her to fi gure out how to apply the brakes. The
possibility of pressing something other than the brake pedal is also possible. The
bottom line is to expose only those entities that the user needs to interact with

and hide everything else. This important law is also observed in C++. It is known as the law
of abstraction, explained in Exhibit 1.1.

Exhibit 1.1 Law of abstraction
Whenever a programmer designs a class, he/she designs it in a way that only those messages that the
user is concerned about can be passed to the object and their responses are sought. How the messages
are responded to is not seen. No other messages can be passed to the entity.

For example, we can pass messages such as getTeacher(), getSubject(), and IsStudent
Present(Student) to extract data from the RollCall object and get suitable responses. How-
ever, we may not be able to send an UpdateRollCallValue() message if such a message is
not expected to be received by the RollCall object. We can only send and get responses to valid
messages.

Consider a function that searches for a specifi c entry in the list called Search()
defi ned inside the class. The IsStudentPresent() function may use the Search()
function to fi nd out the entry of a specifi c student to fi gure out if he/she is present
or not. Now, this Search() function may not be available to the user, as he/she
does not need that. Moreover, if that function is provided to him/her, he/she
would not know what to do with that function and would probably be confused
as to whether the IsStudentPresent() function or the Search() function should
be used. Ideally, the Search() function should be hidden from the user who is
defi ning a Teacher object and using it, as shown in Fig. 1.9.

Defi ning functions, to some extent, helps us achieve abstraction, even when
we are coding with C. We use functions such as printf() and scanf() without
really knowing what they contain. Coding these functions can be really complex.
One of the important parts of the design of both printf() and scanf() functions

Java has an abstract
keyword. When it
precedes the defi ni-
tion of the class, the
class becomes
abstract.

Abstraction hides un-
necessary things and
reveals only those that
the user needs to
manipulate.

Proper abstraction
can make a complex
and large problem a
whole lot simpler and
manageable.

16 Programming with ANSI C++

is that they are able to handle any number of arguments passed to them (printf('Hi'); has
one argument, printf('Hi %s', Name); has two arguments, printf('Hi %s your ID is %d',
Name, ID); contains three arguments, and so on). Only advanced programmers can manage
to write such functions. We use printf() and scanf() functions without really thinking about
how that code is implemented. This is the power of abstraction.

The prerequisite of the abstraction process is to have two different types of attributes for a
given class, one of which is to be made available to whoever is using the objects of the class
and the other is to be hidden. The hidden part is useful to the part that is exposed to the outer
world. For example, the Search() function is used to help the IsStudentPresent() function.
The exposed attributes are known as public attributes and the hidden attributes are known as
private attributes. The decision to make a specifi c attribute hidden or exposed is based on our
plan to make that attribute available to the user for manipulation.

Encapsulation The process of designing a class with some attributes hidden and some
exposed is known as encapsulation. The entire class is insulated from the outside world.
Only the public (or exposed) attributes can be manipulated by the user of that object. Thus,
we can have controlled access to the class attributes unlike struct in C. If we defi ne a struct
Student with attributes such as name, address, and roll number, then all the attributes are
available for manipulation. However, in C++, it is possible to defi ne a class Student where
we cannot directly manipulate the name, address, and roll number, but we can only set their
values using a function InsertDetails() and print the information using PrintDetails().
Objects have two different types of attributes. The exposed attributes can be manipulated

and supplied with inputs, whereas the hidden attributes are meant for internal
execution. Such insulation of the class from the rest of the program is called
encapsulation. The class attributes are encapsulated within the class and only the
public part of it is accessible to the user of the object of that class. The private
part is only accessible to those functions that are a part of the capsule, as can be

Program to
calculate roll call

Roll
call object

Exposed (public) methods

Hidden (private) methods

IsStudentPresent()
Message

Optional response
Yes/No

Response Query or request

Response Query or
request

Body of the function
(getTeacher) to find out

teacher who took the
roll call

Body of the function
(Search) to find out

teacher who took the
roll call

Two different types of methods, exposed (public),
which is available to others using the object and hidden

(private), which is only available to the members

Fig. 1.9 Abstraction implemented as combination of exposed (public) and hidden (private) parts

A friend function can
access and manip-
ulate the private
entities of a class.

Object-oriented Programming and C++ 17

seen in Fig. 1.10. The class contains both
data and function attributes as part of the
capsule. The rest of the program that uses
the objects of this class can only access
the public part.

Sometimes encapsulation is referred to
as combining the data and function together in the class body. The correct way to look at
encapsulation is the division of class members in public and private and the idea of hiding
the unnecessary and complex part from the user of the object. Encapsulation and abstraction
together make the complex system visible as a simpler system. The top view of the system,
which was discussed in Section 1.1.1, is possible by abstraction and encapsulation. For
extremely large systems, migration from C to C++ is necessary because of these two features
of C++. In Chapter 3, we will look at the private and public access specifi ers in detail.
Section 3.5 explains the need for public and private parts of the class in more detail and
also the information hiding principle. Exhibit 1.2 explains the concepts of abstraction and
encapsulation.

Exhibit 1.2 Abstraction and encapsulation
Designing a class with public and private attributes carefully makes a complex system easy to work with
for the programmer. It helps in hiding the unnecessary things and reveals only those things that are useful
for the programmer.

A programmer may defi ne a class as follows, separating the private and public members:
 class Dummy
 {
 private:
 ...
 public:
 ...
 }

1.6 INHERITANCE

The idea of extending an already defi ned class is known as inheritance. For example, if
we are writing a program to maintain the object MCAStudent and we have a built-in class
Student, which has almost all the details needed for our program, except a few, which need
to be added manually. The additional information may be anything that an MCA student
possesses in addition to the normal student.

Let us now look at inheritance from the point of view of object orientation. The world is
full of cases where one class is a specialization of another. Human beings are a specialization

of mammals; dogs are a specialization of animals; Indians are a specialization
of people. This relationship between two different classes is signifi cant in
more than one way. We would be learning about that here and later in
Chapter 9.

There can be quite a large number of relationships possible between any two
given entities. Inheritance (or specialization) is one such relationship, where one
class inherits all the attributes of some other class. In the examples given, we

Private part Public part Rest of the program
Object of the class

Fig. 1.10 Encapsulation process

Inheritance or spe-
cialization does not
prevent the inherited
class to have addi-
tional attributes of its
own.

18 Programming with ANSI C++

inherit everything from the mammal class, for example, giving birth to a child (and not
laying an egg). Similarly, a dog inherits everything from the animal class (having four legs,
very little communicative abilities, and so on) and Indians inherit everything from the people
class (Indians have legs, hands, etc.).

The inheritance relationship is sometimes compared with an is-a relationship, which
is similar to the mathematical notion of a subset relationship. The word ‘is-a’ is derived
from the fact that we can usually ask the question ‘x is a y?’ to fi nd if x is inherited from
y. Whenever we have an is-a relationship between two entities, it is inheritance as well.
Human being is-a mammal because if x is a human, x is a mammal; dog is-an animal because
if x is a dog, x is also an animal; and so on. When we have x <is-a> y, x is a subset of y. Here,
all the attributes of the set are available to the subset as well. Sometimes it is not that obvious.

Take the case of numbers. We
know that N (the set of natural
numbers 1, 2, 3, … until ∞)
is a subset of R (the set of real
numbers). Is N inherited from R?
It is diffi cult to understand this. It
is better to put forth the question
as: ‘Is an element of N also an
element of R?’ If the answer
is yes, N is said to have an is-a
relationship with R. Whenever an
entity x has an is-a relationship
with y, x is said to be inherited
from y. Figure 1.11 shows some
examples of the is-a relationship.

An is-a relationship exists
between two different sets and not between an element and a set. So, dog is-an animal is
correct but Snoopy is-a dog is wrong. Sometimes, the instance relationship is modelled
as an instance-of relationship and we would write Snoopy instance-of dog and Bengaluru
instance-of city. The instance-of relationship, as a diligent reader by now must be able to
guess correctly, is the relationship between an object and a class. An object of a class is also
an instance of that class (such as Snoopy being an instance of the class dog and Delhi being
an instance of the class city).

Note An is-a relationship is between two objects, and an instance-of relationship is between an element
and an object to which the element belongs. The is-a is only one popular type of relation; there are
many other relations possible between objects.

1.6.1 Advantages of Deploying Inheritance
Studying inheritance is important for more than one reason. The object-oriented languages
including C++ provide means for having inheritance relationship between any two classes.
One important reason for such a facility being provided in the language is that inheritance is
one intuitive way to model the real-world hierarchy in the program.

Suppose we are programming for graphics shapes and we already have the rectangular
shape as a class. Now, we can add square to it using inheritance by providing the specialization

Bike

Harley-Davidson Suzuki

Student

Teacher

Full time Part time

CSStudent ITStudent CEStudent

Honda Is-a relationships
modelled

Fig. 1.11 Some classes and inherited subclasses

Object-oriented Programming and C++ 19

that a square is a rectangle, where the length equals the width. Similarly, ellipse can
be inherited into circle, and so on. It is possible to model hierarchy like this in C++.

Reduction in work One important outcome of modelling this inheritance
hierarchy is the reduction in work. We may have defi ned a function for calculating
the area in the rectangle class, and when we defi ne a new class square, which
is inherited from the rectangle class, the area function is available to the
square class automatically. This feature is sometimes referred to as reusability.
Reusability is the property of the attributes of the object to be reused in a way
such that the maximum utilization of the design is possible. Let us consider
one more example. Assume a Student class. Now, we inherit that class into a
ComputerScienceStudent class. We have functions for enrolling new student,
reading and printing details about students, etc., defi ned in the Student class.
The ComputerScienceStudent class will have all these functions when we inherit
it from the Student class. Interestingly, if we defi ne an ITStudent class and
inherit that from the same Student class, we need not again redefi ne functions
that we already have in the Student class. We have written these functions once
in the base class and all derived classes use them. This reusability is the second
advantage of inheritance.

Myths There is a point of caution while dealing with inheritance and the issue of reusability.
There are two myths associated with reusability, which need to be clarifi ed. These are the
following:

Myth 1 For reusability, inheritance is an ideal tool to be used. Whenever one needs to have
reusability, he/she should opt for inheritance.

Myth 2 Inheritance is the only way to provide reusability in any object-oriented language.

The fi rst statement is wrong as reusability is an advantage obtained from providing
inheritance, but it is not good to opt for inheritance whenever we need to reuse some code.
Inheritance should be used only when the class inherited (the derived class) is indeed
the specialization of the class inherited from (the base class). Otherwise, unforeseen
consequences can occur, and the program design may become rigid and diffi cult to extend
or evolve. Thus, when we want to have some functions in our class, which are available in
some other class, we should not inherit from that class unless it has an is-a relationship with
that class. Reiterating an important point again, please note that when we use inheritance we
get reusability as a side effect and it is a great advantage, but to use inheritance to gain the
advantage of reusability is wrong and indicates bad design. A discipline in the programmer
community is required to maintain this.

The second statement is also untrue as there are other ways of reusing the same code.
C++ provides templates to reuse the code as well as the class defi nitions. STL, which will
be discussed in Chapter 16, is an excellent example of providing reusability without using
inheritance. It is also possible to merge the templates and inheritance to provide reusability.
We will study about inheritance further in Chapter 9.

1.7 ABSTRACT CLASSES

We have already seen that entities are modelled as classes and their instances are modelled
as objects in C++. (This is also true for any another object-based or object-oriented

An inherited class is
not bound to use the
inherited value or
function. A class can
easily override a
function by defi ning
the same function in
its own body with a
different functionality.

Inheritance is not the
only way to provide
reusability. C++ pro-
vides templates addi-
tionally for reusing
the same class for
different types.

20 Programming with ANSI C++

programming language.) We have also stated that there are two different types of
entities. One type of entity is directly modelled from the real-world counterpart,
that is, a student or a teacher. The other type is what a programmer is required to

add to the system to effectively solve the problem. The RollCall class that we have defi ned
earlier is an example of programmer-added entity, which does not have a counterpart in the
real world.

There is one more way of looking at the category of classes. The fi rst type of class has
a real-world counterpart existing in reality, most of the time having a tangible existence.
The other type is the real-world counterpart that exists only in abstract. Take the case of the
animal class. An animal is an abstract concept. The animal class does not have any direct
object. Every animal is either a dog, a tiger, a lion, or something similar. All these classes
are derived from the animal class and due to the transitivity of relationship (A → B and
B → C, so A → C), a dog, a tiger, or a lion is an animal. Snoopy is a dog, so it is an animal as
all dogs are animals. Here, Snoopy is not a direct object of the animal class. Plenty of such
abstract concepts exist in the real world, and when we need to use them, we should defi ne
abstract classes.

It sounds ironic to have abstract classes in the system. We want entities and their instances
to be modelled in the program. Now, why would we need entities without any instance?
Modelling abstract entities of the real world does not seem to make much sense when we are
not going to defi ne and use objects of that class.

Let us try to understand the need for abstract classes from one simple example. It is
clear that the abstract class does not represent any real-world tangible entity, which would
always have some instances, except when we are dealing with extinct species. Take the
case of writing a program for taking the roll call afresh. Assume now that we start with a
computer science student and collect his/her attributes. Then, we move on and start working
with an IT student, and after fi nishing that, start with a computer engineering student. We
soon realize that there are a few attributes that are common in all these classes, for example,
the name and address of a student, and that it is better to keep all these attributes at a single
place. Both these attributes appear in all three classes that we have encountered so far. It
is better to defi ne aclass Student with all such attributes and let all three classes inherit
from it.

Thus, all common attributes are collected and placed in the base class Student. In that
case, all three classes will have everything that is defi ned in the base class and additionally
whatever they would like to have individually. This is called bottom-up approach in designing
classes and is sometimes very useful. Now, we have a Student class with us from which three
classes are derived, namely, CSStudent, ITStudent, and CEStudent. Figure 1.12 shows the
steps for designing classes using a bottom-up approach.

One more alternative, but a more practical design, is to learn about the common attributes
while working with the fi rst two types of classes and then to program for a CEStudent. Here,
the design for CEStudent class becomes easier as it does not need to include anything that

is available in the Student class. It is automatically available after inheritance.
This is also similar to the real-world case as when we say that man is a mammal,
we do not need to ask if man breathes or not. Since all mammals breathe, man
having an is-a relationship with the mammal must do so. Unless explicitly
stated otherwise, the relationship holds true. Sometimes though, it does not. For

An abstract class is a
class with no objects.

Classes can be
designed in the top-
down as well as the
bottom-up way.

Object-oriented Programming and C++ 21

example, all horses have tails but
bobtails (a type of horse) do not
have any. Similarly, all birds fl y but
ostriches do not. Such instances
are called exceptions, which need
no further exploration). There are
many advantages in the bottom-
up design. Some are listed as
follows:

1. There is no redundancy. The
student’s name is kept only in
the Student class. If we need to
change the size or type of the
name, we have to change at only
one place, the Student class,
and nowhere else. As other
classes inherit from this class,
all of them have the effect of the
change automatically.

Hence, there are less chances of ambiguity. Assume that we are not using the base
class approach. It is quite possible that the same attribute in two different classes
have two different names. Suppose in one class the name of the student is defi ned as
StudName, in the second class the name is defi ned as Name, and the third class probably
calls it StudentName. More than one class representing the same real-world entity or
more than one attribute name referring to the same attribute creates a lot of ambiguity
in the designer’s and developer’s mind. This is eliminated here as there is a single
class, and the name given to the attribute student name (say StudNm) is the same in
all classes because these classes do not defi ne this attribute themselves, but they just
inherit them.

Note In C++, we need to recompile the program when the base class changes itself. We need to recompile
the program even when the program is not changed a bit. This is not a fl aw in the design. Read
Section 9.6 in Chapter 9 for fi nding out the reason.

2. Adding a new attribute to all the classes is simple. Suppose we would like to add mobile
number as an additional attribute to all three classes, we can do it by placing it in the
Student class. We do not need to pick each class one by one and do it individually.

This example, as mentioned earlier, introduces the concept of the bottom-up design.
There are sound reasons to follow the bottom-up design approach in many cases.

Let us concentrate now on the class that is generated as a side effect of the design. The
class that now contains the shared attributes becomes the base class for all such classes under
consideration. This base class, interestingly, is the abstract class. Why? There is nobody who
is only student; we may have a CSStudent, a CEStudent, or an ITStudent, but nobody is just
a student. Hence, the student class in this design is an abstract class. We are not going to
defi ne any object of the class Student.

CSStudent

CSStudent

CSStudent

Student

ITStudent

ITStudent

ITStudentCSStudent

Student

CEStudent

1.

2.

3.

4.

Steps for designing
classes using a
bottom-up approach

4. It helps in defining
 CEStudent

1. We have the
 CSStudent class
 defined first
2. Now we have
 CSStudent as well as
 ITStudent
3. Finding out
 common
 attributes and
 generating
 student class
 from it

Fig. 1.12 Steps for designing classes using a bottom-up approach

22 Programming with ANSI C++

Note The abstractness of a class depends on its context. If we do not differentiate students by discipline
and store information about them in objects of the Student class, then the Student class is not an
abstract class.

Let us look at one more example.
Suppose we are dealing with graphics
objects. If we want to have a single base
class for all the graphic shapes, it is bound
to be an abstract class. We can name it
shape and inherit ellipse, triangle, or
rectangle from it. We know that the shape
we are planning to draw is either an ellipse,
a rectangle, or a triangle, but is defi nitely
not a plain shape (the base class). This is
why shape is also an abstract class here.
This is shown in Fig. 1.13. It is easy to
fi nd abstract classes when the design
approach is bottom-up.

Note An abstract class represents an entity with shared attributes of a few related classes. As there is no
real counterpart, it does not have any objects associated with it.

This example indicates why the word ‘abstract’ is chosen. Shape is an abstract concept,
which does not have any object associated with it. There are quite a few other abstract
concepts such as furniture or electric equipment in the real world, but there are no entities that
we can call only furniture or electrical equipment. The entity that is furniture will invariably
be a sofa, a chair, or something similar, but not ‘furniture’ by itself. Similarly, electrical
equipment is either a bulb, a holder, or something similar, but not electrical equipment per se.

To model an abstract concept, we need to have an abstract class. In C++, there is no
keyword such as ‘abstract’, which can precede the name of the class to make it abstract.

Rather, we need to defi ne a pure virtual function in a class to make it abstract. We will study
about pure virtual functions in Chapter 10.

The following is an example of inheritance. The class Shape is inherited into Rectangle
and Circle. Rectangle is also inherited into Square. It can be seen that Rectangle and Circle

are specializations of Shape, and Square is a specialization of Rectangle. The
word public means the inheritance is of type public. We will look at different
types of inheritance in Chapter 9. The body of the class is irrelevant for the time
being, and hence it is not shown.

class Shape {…};
class Rectangle: public Shape {…}
class Circle: public Shape {…}
class Square: public Rectangle {…}

1.8 POLYMORPHISM

In general, polymorphism is the ability of a single object to appear in many forms.
Polymorphism is related to something that behaves differently under different

Shape

Ellipse

Circle

Square

Rectangle
Student

CSStudent ITStudent CEStudent

PolygonParallelogram

Fig. 1.13 Abstract base classes and inherited subclasses

If a programmer in-
advertently attempts
to defi ne an object
of an abstract class,
the compiler fl ags an
error and does not
compile that program.

Object-oriented Programming and C++ 23

circumstances.One may be a student in a college or an employee in a working
place. The same person may be a son or a daughter at home and a friend when
sitting with a group of friends. One may respond to ‘How are you doing?’
differently when playing different roles. The idea is to react differently for
the same message in different situations. If one does so, he/she is exhibiting
polymorphism.

Many types of polymorphism exist but we will discuss the following three
different versions, which have some relation to C++.

1.8.1 Ad-hoc Polymorphism at Compile Time
This type of polymorphism is related to functions that behave differently with different
sets of arguments. It is possible to defi ne the same function with different types of arguments

or different number of argu-
ments in C++. Let us consider
an example to understand this.
See Fig. 1.14.

Here, we have defi ned three
different functions with the
same name (Add) but with either
different sets of arguments or
different number of arguments
or both. All function bodies are
different, and thus, we observe
a different response when we

call the same Add() function with either different sets of arguments or different number of
arguments. For example, when we call Add(int, int), we get the addition of two integer
values returned from the function, and when we call Add(int, int, int), the function
does not return anything but the third argument now contains the summation. Providing
different behaviour in different contexts (number or type of arguments) is known as function
overloading in C++.

The following are the various types of Add () function:

1. Add(int First, int Second)
2. Add(fl oat First, fl oat Second)
3. Add(string First, string Second)
4. Add(int First, int Second, int Third)
5. Add(int First, fl oat Second)
6. Add(int First, fl oat Second, fl oat Third)

Function overloading is an example of ad-hoc polymorphism at compile time.
We will discuss function overloading in Chapter 4. Function overloading is new
for those who have worked with C before. Defi ning functions in this manner is
an error in C as we cannot have two functions with the same name.

We can see that the message is the same for all these Add() functions
(remember that the function name is a message, so the message is to add). The
message generates different responses depending on the type, number, or ar-

Polymorphism allows
an object to behave
differently under
different circum-
stances, given the
same message.

Calling object

Add

Add

Add

Argument (context) is two
integer values Function with two

integer arguments

Function with three
integer arguments

Function with two
string arguments

Argument (context) is
three integer values

Argument (context) is
two string values

Fig. 1.14 Polymorphism arising from argument set

It is possible to defi ne
functions with the
same name with
different sets or types
of arguments. This
process is known as
function overloading.

24 Programming with ANSI C++

guments as all these differ-
ent functions have a different
body. Hence, this is an exam-
ple of polymorphism.

One more type of ad-hoc
polymorphism is observed when
the operators behave differently
with different operands. This
can be understood better using
Fig. 1.15.

12 + 25 (Result is 37)
12.0876 + 25.98 (Result is 38.0676)
'Indian' + 'Cricketer' (Result is 'IndianCricketer')

The + operator in these three cases behaves differently. In the fi rst case, it adds two integers;
in the second case, it adds two double values; and in the third case, it concatenates two
different strings into one. The string is available in C++ as a data type. + is overloaded in the
string class. So, the given operation makes sense. When the operator behaves differently for
different types of operands, it is also a type of ad-hoc polymorphism. In C++ parlance, this
is called operator overloading. We will discuss operator overloading in Chapter 6.

In C++, both function and operator overloading are resolved at compile time. The
compiler, while compiling the program, decides the operation to be performed and generates
the object code that describes that operation. In the given example, when 12 + 25 is seen in
the source code, the compiler provides the code that adds two integer values and adds that
to the object code being generated and when ‘Indian’ + ‘Cricketer’ is seen, it adds the string
concatenation routine at that place.

Similarly, when the specifi c Add function is called, for example, Add(20,30), the compiler
changes that call to a jump instruction, which jumps to the function body that contains

integer addition. Similarly, when Add('Indian','Cricketer') is called, the jump
instruction will point to another function that contains the code to concatenate
strings. Moreover, when we write Result = Add(FirstVal, SecondVal), the jump
instruction points to the function body that adds two integers and returns the
answer. When the call is to Add(FirstVal, SecondVal, ThirdVal), the jump
instruction points to the function body that does not return anything but where
the ThirdVal contains the summation. Thus, the decision about which function to
call is done at the compile time. So, ad-hoc polymorphism is also compile time
polymorphism in C++.

Note It is not necessary that ad-hoc polymorphism must take place at compile time. If the language (Smalltalk
is an example) resolves the function call at run-time, then the ad-hoc polymorphism happens at
run-time. Such languages are sometimes denoted as late-binding languages.

1.8.2 Dynamic Polymorphism at Run-time
This is a case when the resolution of the function happens at run-time. The restriction here
is to choose the function only from the hierarchy of classes and not from elsewhere. Let us
consider the example shown in Fig. 1.16 to understand this concept.

Calling object

+

+

+

Operands (context) are 12 and 25 Code with two
integer arguments

Code with two
string arguments

Code with two
float arguments

Operands (context) are two
strings

Operands (context) are
12.0876 and 25.98

Fig. 1.15 Polymorphism arising from operand types

When an operator be-
haves differently for
different types of
operands, it is known
as operator over-
loading. Java has no
such features.

Object-oriented Programming and C++ 25

1. Suppose we defi ne Student as a base
class.

2. Then, we defi ne three derived classes,
CSStudent, ITStudent, and CEStudent,
from Student.

3. Next, we defi ne function getAttendance()
in all these classes. (It is important to
defi ne this function as virtual to achieve
polymorphism. We will study how
to defi ne and use virtual functions in
Chapter 10.)

4. Now, we defi ne a pointer to the base
class Student. Let us call it PtrStudent.
It is important to note that this pointer
can point to an object of any class in the
hierarchy mentioned.

5. Whenever we type PtrStudent->getAttendance() (i.e., execute the function getAttendance()
of the object PtrStudent is pointing to at the moment), the member function of the object
being pointed to is executed. So, if our PtrStudent is pointing to Ganesh, a CS student,
a function getAttendance() defi ned in CSStudent class will be executed. When the same
pointer points to Mahesh, an IT student, the getAttendance() defi ned inside the ITStudent
is executed. Both the getAttendance()functions could be quite different. For example, in
the CSStudent case, only the theory class attendance is returned, whereas in the ITStudent
case both the theory and the practical attendance are returned. The caller does not need
to modify his/her call even if the functions behave differently. This is known as dynamic
polymorphism, as it requires dynamic information about where the pointer is pointing to
at run-time. Sometimes, this polymorphism is also referred to as subtyping or inclusion
polymorphism. As mentioned earlier, the function getAttendance() mentioned here is to
be defi ned as virtual in C++ to achieve the effect of polymorphism.

The following code snippet shows how polymorphism is provided using virtual functions.

/* Assuming class Student is defi ned with a virtual function

getAttendance() and all the three classes CSStudent, ITStudent, and
CEStudent are inherited from Student */

ITStudent Mahesh;
CSStudent Ganesh;
Student Jayesh CEStudent;
Student *ptrStudent;
...
ptrStudent = *Mahesh;
ptrStudent -> getAttendance()
// it calls the getAttendance() function of ITStudent class
ptrStudent = *Ganesh;
ptrStudent -> getAttendance()

// it calls the getAttendance() function of CSStudent class

The pointer to student class is named as
ptrStudent. When this pointer points to any
class derived from student, the statement

ptrStudent -> getAttendance() executes the
getAttendance() function, which belongs to

that class and is a virtual function.

Student

CSStudent
getAttendance()

ITStudent
getAttendance()

CEStudent
getAttendance()

Fig. 1.16 An example of a hierarchy for run-time polymorphism

Dynamic polymor-
phism can also be
achieved by using
references.

Polymorphism can be
of three types, static
or ad-hoc, dynamic,
and parametric.

26 Programming with ANSI C++

1.8.3 Parametric Polymorphism
The third type of polymorphism seen in C++ is known as parametric polymorphism. Using
parametric polymorphism, a function or a data type (user-defi ned data type, i.e., classes) can
be written generically so that it can handle values identically without depending on their
type. C++ provides templates as typeless descriptions of classes and functions to provide
parametric polymorphism. While programming with parametric polymorphism, we can
code functions and classes without specifying their type, and when they are used, the type
is passed as an argument. This type-resolution process happens at compile time in C++,
so it is a kind of compile type polymorphism. We will study about templates in Chapter 7.
An excellent example of type-independent coding is the STL. We will study about STL in
Chapter 16.

1.9 OBJECT-ORIENTED DESIGN AND C++

While discussing about object-oriented concepts and C++, it is better to look at a few other
issues related to object-oriented design.

The fi rst issue is related to static and dynamic binding. Static binding happens at the
compile time, whereas dynamic or late binding happens at run-time. The term binding
refers to the function resolution. Suppose our code contains a function f(), and there
is more than one f(). If the decision about which f() to call is done at compile time,
it is static binding. If the same decision is kept pending until the run-time, it is known as
late binding. We will discuss the same issue later in Chapters 9, 10, and 11, wherein we
will be discussing about inheritance, virtual functions, and run-time type identifi cation,
respectively.

The second issue is related to object-based and object-oriented programming. Although
the concepts discussed so far apply to both types of programming in general, inheritance
and run-time polymorphism are applicable only to object-oriented programming and not to

object-based programming.
The third issue relates to how C++ is placed vis-à-vis other object-oriented

languages. This comparison can be found at various places in this text .
The last but a very important issue is of fl exibility. The designers of C++

designed it for fl exibility and a programmer can choose to either use or not use
a particular feature of the language. The object orientation feature is also not
forced on the programmer in C++.

1.10 PRINCIPLE OF INFORMATION HIDING

Earlier, we found that abstraction is related to the principle of information hiding. Here, we
will see what this principle is and the advantages it offers to us. Let us start with an example.

An examination system might have entities such as student, teacher, examiner, question
paper, and syllabus. The entities here can have both data members and function members.
For example, a question paper object may have the data members such as the subject for
which the paper is set, total marks, and marks to pass. The function members may include
printing question paper, insert new or modify old contents, etc.

One must also decide what part of the object is to be hidden from the outer world and
what is to be shown. Consider an example of a Student object, which may allow printing

A valid C program
that does not use
classes or any other
feature discussed so
far is usually a valid
C++ program as well.

Object-oriented Programming and C++ 27

its name and address but may not allow doing other actions such as changing
the birth date of the student. We may not even be able to change the name
and address (though we can see and print them). We may not be able to see
and use the function that allocates the roll number uniquely. As a user of an
object of a class (in our case, class Student), we may be able to use the
functions provided by that class publicly and nothing else. This is the principle of
information hiding. The name is a misnomer. It should be garbage hiding.
To understand this, let us assume a Student object containing information
such as the student name and the roll number. It has functions for reading

all the required information from the screen and may be printing on the screen. It
also has a function that uniquely allocates a roll number to the Student object. If
a marksheet printing program is using the Student object, the function that gets a
unique roll number for the student is useless for that program. The marksheet printing
program should deal only with printing the correct roll number with the right set of
marks. The roll number creation process is better hidden. Thus, the unique roll number
creation function should be defi ned in a way that it is not accessible to the users of the
Student object.

Note A class should make the required functions available and hide the other data and functions. This
process helps the user to have an uncluttered view and is useful to have objects as an abstraction.
This is the principle of information hiding.

An important fact is that the information that is not useful for one may be precious for
another. Some of the member functions of the Student class may need to use the roll number
generating function, such as the one that enrols a new student. The roll number allocation
function is defi nitely not garbage for an enrolment function, so it must be visible to the
enrolment function. C does not differentiate between such functions, whereas C++ does.
Here, the roll number allocation function is said to be a private function, accessible only to
the members of the class (member functions such as enrolment function) but not to users
who are using the Student object.

1.11 DIFFERENCES BETWEEN C AND C++

In this section, we will discuss the important differences between C and C++.

1.11.1 Philosophical Differences
Every language designer has some vision about the problem to be solved. The language
philosophy is the approach the designer deems fi t to solve the problem. Different languages
are designed by different philosophies for a specifi c set of problems. In the following
paragraphs, the philosophy of C is compared with that of C++.

C++ is Not Just Extended C
Though the syntax of C++ is very similar to that of C, it is much more than extended C. It has
a radically different philosophy and needs a different approach to programming.

Going from C-type (procedural) programming to object-based programming itself
introduces a lot of designing differences. For object-based or object-oriented programming,
one must need to visualize the problem as a collection of interrelated objects, and their
attributes and methods.

The functions that are
available to all the
users are known as
public functions. The
functions that are not
available to outsiders
are known as private
functions.

28 Programming with ANSI C++

Implementation of Information Hiding in C++
We have already seen that objects of any class in C++ have two parts—a private part, which
is not visible to any element outside the class, and a public part, which is visible to outsiders.
Thus, when we want to hide something from others (i.e., other than member functions),
we defi ne that in the private part of the class defi nition, such as the roll number allocation
function in the earlier example.

There is an exception to this case as well. In some special cases, a class designer can allow
visibility of a private part of an object to some specifi c outsiders. These special outsiders are
known as friend functions.

Let us now concentrate on how information hiding principle is applicable to C++ programs.
Two different types of attributes and functions are provided to make this principle possible
in C++. Whenever somebody uses an object, anything that is private is simply hidden. Only
the data and function members defi ned as public are accessible. Once we know that we can
segregate our class elements into private and public, the next step is to decide what to defi ne
as private and public.

Suppose the Student object of our discussion has an attribute named birthdate. This
attribute is available to a function that prints the details about a student. It is also available to
a function that enrols a new student and similar other functions belonging to the same class.
However, it is not required to be available to functions other than class member functions.
The function that prints the details about the student is useful to anybody using that Student
object. Hence, the fi rst attribute, the birthdate, should be defi ned in the private part of the
class and the PrintDetails() function should be defi ned in the public part of the class. Here,
variables such as birthdate are known as the private members of the class and member
functions such as PrintDetails() are known as the public members of the class.

It is possible to classify the functions into two categories. One type consists of functions
that are used in the maintenance of the object and need to have access to the private

information about the object. The other type consists of functions that need to
use the objects of that class only for doing their own job. They use the object only
for their purpose and have nothing to do with the maintenance of the object. An
analogy from the real world could be a user of a car and a mechanic. A mechanic
may need to access the inner engine parts, but a normal user only accesses the
interface functions such as the steering wheel, brake, and clutch.

The functions that can have access to the private part of the object are usually
made a part of the object itself. Other functions, which do not need to have
access to the private part of the object, can reside anywhere (usually) outside
the class. In later chapters, we will see more examples to understand the
differences between the member and non-member functions in a more precise
manner.

The functions that are a part of the object can also be of two types—one that
is not known to outside entities and the other that is known to the outside entities.
Here, the functions defi ned in the private part are known as private functions
and the functions defi ned in the public part are known as public functions.
Private functions, similar to private data members, are not known to outside
entities, but public functions are known. C does not offer such categorization of
functions.

Objects in C++ can
have one more part
called protected. The
protected portion of
the object is public to
classes derived from
the class under con-
sideration and private
to others. So, it is
public for some and
private for others.

Only those functions
that require the
private entities of an
object are kept as
members, the rest
can be non-members.

Object-oriented Programming and C++ 29

Availability of Off-the-shelf Objects
Another important difference between C and C++ is that C++ offers readymade objects ‘off-
the-shelf’ and a possibility to use them with required changes. This is known as reusability
advantage. In C++, it is possible to have built-in objects such as vector and queue, which
have requisite functionality for users to use. Such objects can also be tailored for our use,
for example, we may defi ne a new class PriorityQueue from the built-in queue class. This
option not only reduces the programming time, but also reduces the chances of errors and
enables more modular programming. One such built-in object is the string, which we will
use in examples throughout this book.

One good example of a collection of readymade objects is the Microsoft Foundation Class
(MFC) library. The MFCs have built-in functionality to deal with complicated Windows
programming. While using MFC, the job of the programmers is reduced to a large extent.
They must have knowledge about the built-in MFC objects and their respective functions.
Complicated Windows-based operations such as messaging and event-driven processing are
automatically provided when we use objects of appropriate classes.

The reusability advantage is also extended to the users of C++. There are so many classes
designed by experts (known as third-party developers) for specifi c applications such as
graphics. As a user of C++, we just have to use them. This kind of software is also available
for C but the difference in C++ is that we can actually extend these classes for our own need
into newer classes as well (without having the source code). It is done using the concept of
inheritance. C++ itself offers one such library that is very powerful and useful. It is known
as the STL. Object-based model, on which STL is based, does offer such extension, but is
not as extensible as an object-oriented model.

Standard Template Library
An STL is available with all C++ compilers. It has built-in classes that can provide the
reusability advantage. It provides means for having different types of collection of objects
into container classes. Container classes collect the objects in such a way that effi cient
operations such as sorting and searching can be done on them. The STL is also equipped
with general operations such as fi nd, search, and sort. The beauty of the STL lies in the
generality of the object collections (known as containers) and algorithms applicable to them
in a generic way. We will study about the STL in Chapter 16.

Similarity of User-defi ned Types with Built-in Objects
The developers of C++ wanted the user-defi ned types to behave as similar to the built-in
types as possible. This is why some new features such as constructors, destructors, and
operator overloading are defi ned.

Constructors and destructors are provided for initialization and termination effects for
objects defi ned in a C++ program. Initialization effects are applied when the object defi nition
appears in the program and termination effects are applied when the object goes out of scope.

Example of constructors Take a look at the following code.
class Student
{
 int roll no;
 char name[20];

 /* A constructor function, bearing the same name as the class */

30 Programming with ANSI C++

 Student()

 {
 roll no = 0;
 }
};

Student st1;

/* Defi ning an object of class Student, notice the use of
class name 'Student' instead of 'class Student' as a type */

Here st1.roll no is initialized to zero automatically when the statement Student st1;
gets executed. It is because the function Student() is defi ned inside the class Student.
The function Student() (not the class Student) is called a constructor. The constructor is
automatically called when the object is defi ned. In this case, when we defi ne Student st1; the
Student() function is called. The effect of calling that function initializes the roll number to
zero. The advantage is that we do not need to explicitly initialize the roll number to zero when
we defi ne an object of student. Suppose we defi ne 100 students or an array of students. Each
time the constructor function is automatically called, the roll number for all those students
is initialized to zero. We will study about constructors and destructors in detail in Chapter 5.

Operator Overloading
Suppose we have defi ned a class for complex variables. A complex variable has two parts,
a real part and an imaginary part. If we have named the class as complex, then it is possible
to defi ne

complex c1, c2;

Here, complex is the class name and c1 and c2 are variables of the complex type, that is,
the objects of the class complex. It is possible to write c1 + c2 as an expression where + will
add the real and imaginary values, respectively. By default + adds only built-in types such
as int, fl oat, and double. C++ provides the facility to assign a new meaning to + such that
it can now also add two complex variables. This facility is known as operator overloading.
Here, we have to overload the + operator to have the required effect. (Readers interested in
knowing how this is done can see Chapter 6 on operator overloading wherein the program
for addition of complex objects is provided.)

The ultimate goal for providing all such facilities is to make user-defi ned objects to behave
as naturally as possible. In C++, user-defi ned objects can actually behave in a natural way.
Just by looking at the use of the user-defi ned objects, it is almost impossible to differentiate
them from the built-in objects. In C, user-defi ned data types always look different from the
built-in ones (the word 'struct', for example, struct Student, struct employee, and so on).

1.11.2 Syntactical Differences
There are a number of syntactical differences between C and C++. The major ones derive
from the need to provide the class construct and related issues. Almost all C syntax works
fi ne with all C++ compilers. A few syntactical differences are summarized as follows.

Comments
The comments in C++ are of two types. The C-like comments (anything enclosed within
/* and */) are acceptable and comments that begin with a // are also allowed. When a //

A constructor is a
function that bears
the same name
as the class. It is
automatically called
when the object of
the class is defi ned.

Object-oriented Programming and C++ 31

is provided somewhere in the line, the rest of the line is ignored. Look at the following
code:

/* This itself is a C-like comment, whereas the
following is a C++-like comment */

if (a > b) // checking for a greater than b
printf ("a is greater!");

The following is an example that shows how C++ comments replace C-like comments:

/* This is the fi rst line of comment.
This is the second line of it.
And this is the third! */

// This is the fi rst line of comment.
// This is the second line of it.
// And this is the third!

In short, // is useful for a single-line comment, but for multiple lines, one may prefer to
use /* and */.

Moreover, // is valid until the end of the line, so it cannot replace a C-like comment used
within the following statement:

if (a > b) /* checking for a > b!*/
printf("a is greater!");

Input /Output Operators
Though printf() is used in the program statements given in Section 1.11.2, it is usually not
used in the C++ programs.

cout << "a is greater";

can do the same job in C++ as printf().
Here, cout is an object of the standard output stream class. It is one of the

most useful objects of C++. We have to include <iostream> fi le for the prototype
of iostream (input output stream, to be precise) objects. We can see that iostream
is similar to stdio.h used in C. It should be remembered that we still need to use
stdio.h for the prototypes of the functions using input and output stream such
as printf() and scanf().

If it is possible to use stdout in C++ (i.e., printf(), scanf(), etc.), then
why do we need a new way to output? This question is answered in detail in
Chapter 12. In summary, the newer approach is better and easier to program.
At times, this approach is the only way while providing the input and output
of user-defi ned objects similar to built-in types. For example, it is possible to
have a student Lara and then use cout<< Lara to print the details about Lara. We
need to overload operator << for the same. This is not possible with printf().
As mentioned earlier, if printf() is used, one needs to include <stdio.h>. The
user running the program fi nds no difference between the output produced by
printf() and cout.

While using ANSI C++, one should use <cstdio> and not <stdio.h>. The
usage of <cstdio> is similar to the functionality of <stdio.h>, that is, either

While coding the C++
programs, one should
use cin for reading
rather than scanf()
and cout for printing
rather than printf().
These constructs are
simpler and better.

In the case of compil-
ers that can compile
both the C and C++
programs, the fi le
name extension de-
termines the type of
code. In TurboC or
VC++, ‘.c’ is a C prog-
ram whereas ‘.cpp’ is
a C++ program.

32 Programming with ANSI C++

<cstdio> or <stdio.h> will provide printf(), scanf(), etc. in exactly the same
way. Still, there is a huge difference between them. This difference is explained
in Chapter 14. Similarly, there is a difference if we want to use the other C header
fi les (e.g., <math.h> becomes <cmath>).

There is another seemingly minor difference between using the functions such
as printf() in C and C++. With most of the C compilers, it is possible to use

printf() or scanf() while not including <stdio.h>. Such programs can be compiled and will
also work as expected. The inclusion of <stdio.h> does not seem to be necessary (because the
stdio.h only contains the prototype of the function). Why is it so? Let us try to understand this.

The compiled code of printf()(and other functions as well) is kept in the library. The
library contains the object code for all functions that are a part of the library. The code
of printf() and scanf() gets added to the program code after compilation and before the
executable code is generated.

Note A C program does not need a prototype to use a function. The C compiler might fl ag a warning at the
most if the prototype of the function is missing. A C++ program, on the contrary, will not compile unless
the prototype is available. Prototyping is a must in C++. If we use printf() or scanf() and do not
have a header for stdio.h, the program will not compile in C++.

In the case of cout, << is actually an overloaded operator. This means that <<, which is
basically a bitwise left shift operator, is given a new meaning here. The process of providing
a new additional meaning to an existing operator is known as operator overloading. It should
be remembered that we can still use << as a bitwise left shift operator. The new meaning
given is an extra one (in addition to the original meaning).

Similarly, we can use >> operator (again, overloaded) for reading purpose. We use an
object of standard input stream cin for this purpose. A built-in object of iostream class, cin
is used to read an element from the console. So, the following statement can be used to read
a string variable, where its name is assumed to be StringVariable:

cin >> StringVariable

We do not need to provide the data type with cin or cout (such as %d or %s), nor do we need
to append an & operator in front of the variable while reading a variable value as in scanf. In
C++, cout formats the output in a default way, which is suited for most of the cases. We will
learn how to format the data different than the default way in Chapter 12.

C++ Headers
We cannot use stdio.h for using cout or cin. We need to write #include <iostream> to use
cout and cin in our program. The omission of .h in the name of the header fi le <iostream>
should be noted. This is a new style in ANSI C++. Older C++ programs use a fi le <iostream.
h>. If we write <iostream.h> instead of <iostream>, and it might work with most of the existing
C++ compilers. Please understand that it is provided only for backward compatibility. The
use of <iostream.h> is no longer recommended in C++.

We will see the difference between using iostream and iostream.h when we learn about
namespaces in Chapter 14.

Return Types
The return type in C is by default int, whereas in C++, it is not so and hence we must specify
it. For example,

The << operator
used by cout and
>> used by cin are
examples of operator
overloading.

Object-oriented Programming and C++ 33

my_func(one, two, three)

will by default return int in C. That is, it is equivalent to writing

int my_func(one, two, three)

In C++,

my_func(one, two, three)

is actually treated as

void my_func(one, two, three)

C does not require main() to provide a return type whereas it is mandatory in C++. So,
main() is not acceptable; either void main() or int main() has to be written. Moreover, if we
have int main(), there must be a return statement in main() that returns an integer.

Note Linux GNU C++ does not allow void main(); hence, int main() must be used.

Compiling the C++ Program
In UNIX, the C++ programs have extension C (uppercase c) rather than c (lowercase c) and
we may use CC (again, uppercase) to compile rather than cc. In Linux, the C++ programs
have extension .cpp and we may use c++ or g++ to compile (GNU C++).

In VC++ and Borland C++ compilers, the program needs to have a .cpp extension to be
compiled as a C++ program.

Support for both Object-based and Object-oriented Programming
It is important to know that C++ provides support for both types of programming, object-
based and object-oriented. However, we are going to program without using any inheritance
in the initial chapters. So, the object-based approach will be followed in the initial chapters.
Later on, we will see how object-oriented programming can be done.

When we have more than one approach to solve (object-based and object-oriented, to
be precise), how to choose between the two approaches is an important question. That is, if
it is possible to solve a problem with and without using inheritance, then which approach
should be chosen? The solution without inheritance is preferred in most of the cases for its
simplicity and effi ciency.

Note There are two different ways to code—object-based and object-oriented. Which approach should
be chosen then? The solution without inheritance is preferred in most of the cases for simplicity and
effi ciency. A normal industry program usually contains both object-based and object-oriented coding
in the same program.

1.11.3 Exception-based Design
In the C language, the errors need to be checked explicitly by the programmer and the
respective directions are to be provided then and there. C++ has additionally provided a new
mechanism to handle errors. It is based on exceptions. When an error occurs, an exception
is thrown, which is to be caught by an error-handling routine. The following code shows an
example:

try
{

34 Programming with ANSI C++

 int i, j;
 <some C++ statements>
 if <some condition> throw i;
 if <some other condition> throw j;
}

catch (int)
{
 <error handling routine which works
 for both i and j>
}

Thus, error checking and handling are separated. This is a more orderly way of processing
errors.

As mentioned earlier, C++ has everything that C has; so, C-style error checking can still
be used. C++ exception handling does not replace the error-handling mechanisms that were
used in C. Yet, it is an important facility to know and use when required. We will be learning
more about exceptions in Chapter 8.

1.11.4 Templates as Generic Programming Elements
Templates are extensions provided to C++ long after the inception of the
language. Templates are produced to support fl exible object-based programming.
They are far superior to the library of C-like functions. C functions can actually
be combined in object-based versions in a library, which can then be used in other

programs by referencing that library. We are able to use functions such as sqrt(), sin(), and
cos() if we use math.lib (which is present by default in C compilers). The problem in this
approach is that the solution is bound to the argument types. If cos() function needs double,
we have to pass double argument to it. If we need to have cosine of an integer, we need to cast
it into a double value and then pass it to the cos() function. This (casting) does not always
work. If a generic function for a quick sort is written, then sorting any data (such as sorting
students on their total marks for getting a merit list or on student name for printing sitting
arrangement for internal examination) is not possible in a straightforward way. We cannot
design a quick sort function to sort integers and then pass names after casting them to integers.

Type is also an argument to be passed to the templates at the time of defi nition. The code
becomes much more fl exible and the coding work is reduced if the templates are properly
used. Considering the earlier-mentioned case, we can write a generic quick sort, which can
take any argument such as student name or student total marks and sort the data.

Note C++ actually uses template libraries rather than normal libraries for its ‘off-the-shelf’ objects. It is
known as the STL. A major portion of the input output libraries is written as templates.

1.12 C++ OBJECT MODEL

When the compiler compiles a C++ program, it needs to pay special attention, which was not
needed by the C programs. A C++ program is to be parsed to fi nd details about the classes
defi ned in the program and their usage. The compiling model that is used to compile the
C++ programs is known as the C++ object model. As stated earlier, the C++ object model is
designed to provide the effi ciency of C object code and the fl exibility of object orientation.

Templates are a type-
less way of writing
codes in C++.

Object-oriented Programming and C++ 35

Though it is not as fl exible as the CORBA (common object request broker architecture) or
COM (component object model) models (which are also object-oriented models), it is even
more effi cient because the C++ designers kept the effi ciency as the prime concern. We will
be referring to the C++ object model throughout this text.

1.13 VARIATIONS OF C++

C++ was originally designed by Bjarne Stroustrup in 1979. It was initially called ‘C with
classes’. The incremental operator ++ was added in 1983 to C to indicate that C++ is an
incremental version of C. Soon, there were quite a few vendors with different brands of
C++ compilers. The enthusiasm to provide better features in competing products led to a
lot of incompatible versions of C++ compilers. Products from different vendors provided
additions to original standard C++, such as protected members, protected inheritance,
templates, and the use of multiple-inheritance. (We will learn about them in due course.)
In 1997, the American National Standards Institute (ANSI)/International Organization for
Standardization (ISO) standardization committee provided an ANSI/ISO C++ standard,
taking into consideration all these changes.

1.14 APPLICATIONS OF C++

The applicability of C++ can be seen in operating system development. The majority of the
Windows NT and Windows 2000 code is written in C++. Linux and other UNIX variants
also use C++ to a great extent. The client–server architecture needs a middle tier in big
applications. It is usually developed using C++ (for creating dynamic link libraries (DLLs)).
A lot of work is also being done in computer graphics using C++. It is an area where the
effi ciency of C++ is considered most useful. Network programming relates to programming
for routers, fi rewalls, and similar devices. Multifunction devices that work as routers,
fi rewalls, intrusion detection system (IDS), and antivirus systems traditionally used C. Now,
their programming is also done in C++. Voice over IP (VoIP) service, which enables voice
communication using computers and Internet, and the search engines used by the web servers
for providing fast and effi cient text-based content search also use C++ for their coding.

■ RECAPITULATION ■

 • C++ is designed with a goal of backward compatibility
with C.

 • C style of programming is not very useful for complex
and large programs.

 • C++ provides abstraction and this provides visualization
of the entire program as a single unit.

 • C++ provides a construct known as class, which is the
basic building block for abstraction.

 • A class is similar to a C struct but additionally has
function members as well.

 • The variables of type class are known as objects.

 • C++ enables us to implement the principle of information
hiding, which helps in abstraction.

 • C++ provides a lot of additions to the C language
besides the introduction of classes.

 • Syntactical differences between C and C++
 ○ C++ headers are different from C
 ○ New comment syntax is available in C++
 ○ Input–output is done in a very different way

 • Philosophical differences between C and C++
 ○ The provision of object-based and object-oriented
programming

36 Programming with ANSI C++

■ KEYWORDS ■

Abstraction The data and function attributes are stored
together in the class to help the user to concentrate only
on what the class offers and not on the internal working of
the class. This is known as abstraction.

Abstract classes These are classes with no objects. In
C++, any class with at least one virtual function is an
abstract class.

Class C++ enables us to defi ne a class, which is similar
to struct of C but with the addition of function members.

Data member Variables that are defi ned inside the class
are known as the data members of the class.

Dynamic binding The binding (function resolution) that
occurs at run-time is known as dynamic binding.

Encapsulation Dividing data and function attributes in a
way that some of them are private and some of them are
public is known as encapsulation. Only the public part of the
encapsulated class is available to the users of the object.

Exception handling Exceptions are similar to errors in
C++. An automated error-handling mechanism known as

the exception handling mechanism is provided in C++.
However, the use of this mechanism is not mandatory.
We can use other conventional mechanisms as well.

Function member Functions that are defi ned as a part of
the class are known as the function members of the class.

Is-a relationship x is said to have an ‘is-a’ relationship with
y if x is a specialization of y.

Inheritance The ability to generate specialization of a
given class is known as inheritance.

Methods This refers to the code that is executed in
response to a message. This code is written as a member
function body in C++.

Messages This is the information or command passed to
the object for some action. It is the name of the function
in C++.

Object Objects are the variables of type class.
Object-based programming Programming wherein the

objects are used but without inheritance is known as
object-based programming.

 ○ Exception-based error handling
 ○ Use of templates

 • Objects get their job done by passing messages to
each other.

 • Messages are the names of the member functions of
the class of the receiving object.

 • The receiving object executes the body of the function
with the same name as the message and optionally
sends the response back.

 • The body of the function that is invoked upon call is
known as the method.

 • The ability to hide how things are done and only allow
certain inputs and provide outputs on the basis of the
input is useful in providing an abstracted view of the
system.

 • Abstraction and encapsulation (insulation of the private
part of the class from the rest of the system) help in
designing complex systems with simpler interfaces.

 • Inheritance is an important relationship between
classes, which is denoted by a subset or an ‘is-a’
relationship.

 • Inheritance is the ability to extend the class into a
specialization such that all the attributes of the class

being inherited (formally known as a base class) are
available to the new class (formally known as a derived
class).

 • C++ does not enforce inheritance on the programmer.
 • Abstract classes represent abstract concepts and do

not have elements.
 • Polymorphism is derived from many forms of a single item.

Polymorphism in C++ can be achieved in two different
ways, compile time and run-time. Operator overloading
and function overloading are the two ways to provide
compile time polymorphism. They are also known as
ad-hoc polymorphism. The other type of polymorphism
provided by C++ is by using virtual functions. This is
run-time polymorphism or dynamic polymorphism.

 • Parametric polymorphism, wherein a function or class
can be written with a generic data type, is also possible
in C++ by means of templates. Resolution of a function
at compile time is known as static binding and resolution
at run-time is known as dynamic binding.

 • C++ does not enforce any feature on the programmer.
We can easily write a program without any of the
features mentioned so far, and the C++ compiler will
compile it without any errors.

Object-oriented Programming and C++ 37

■ EXERCISES ■

Multiple Choice Questions

1. Function prototype is __________.
 (a) compulsory in C and C++
 (b) not compulsory in either of them
 (c) compulsory in C++ but not in C
 (d) none of the above
2. The __________ is automatically called when the

class is __________.
 (a) constructor, defi ned
 (b) object, used
 (c) class, constructed
 (d) destructor, defi ned
3. cout is __________.
 (a) an object of output stream
 (b) an output operator
 (c) an extraction operator
 (d) a printing operator
4. The idea of extending an already-defi ned class is

known as __________.
 (a) inheritance
 (b) reuse
 (c) extension
 (d) enhancing
5. The functions available to all the users are called

__________.
 (a) private functions
 (b) public functions
 (c) protected functions
 (d) global functions
6. Struct of C is extended with __________ as a

member to make it a class.
 (a) functions
 (b) variables
 (c) arrays
 (d) linked lists
7. The C++ facility that provides a new meaning to an

operator is called __________.

 (a) operator overloading
 (b) operator modifying
 (c) operator enhancing
 (d) operator extension
 8. What is the difference between ANSI C++ and old

C++?
 (a) iostream is used in ANSI C++ and iostream.h

is used in old C++.
 (b) stdio.h is used in ANSI C++ and cstdio is

used in old C++.
 (c) iostream.h is used in ANSI C++ and

iostream is used in old C++.
 (d) Both of them use both types of headers.
 9. We can override the function provided by the

original base class by __________.
 (a) defi ning a new function in our own derived class
 (b) defi ning a new function outside both classes
 (c) defi ning a new function in the base class
 (d) it is not possible to do so
10. Lengthy programs in C cannot be easily abstracted as

smaller __________, which are totally independent.
 (a) individual units
 (b) combined units
 (c) global units
 (d) dependent units

Conceptual Exercises

1. Discuss the syntactical differences between C and
C++ that are not mentioned in this chapter.

2. Find and read the history of C++ evolution. Some of
the Stroustrup’s papers are available on the Internet.
Find and read them.

3. Why does the object-oriented philosophy need
functions to be defi ned inside the classes? What
could be the advantage? Provide your own logical
answer.

Object-oriented programming Programming wherein the
real-world entities are defi ned as class hierarchies and
can be manipulated using a pointer to the root or base
class of the hierarchy is known as object-oriented pro-
gramming.

Programmer-designed entities These are the entities
that do not occur in our problem domain and are added
by programmer for programming convenience.

Real-world entity This refers to the entity that occurs in
our problem domain and we would like to model that
entity as a class.

Static binding The binding (function resolution) that
occurs at compile time is known as static binding.

Templates Templates are typeless programming mecha-
nisms to defi ne classes and functions with generic types.
These classes and functions can work with any type.

38 Programming with ANSI C++

 4. Try to get more information about other object-
oriented languages such as Smalltalk and Java.
Compare their features with C++.

 5. Try to fi nd out different C++ compilers available in
your institute, for example, GNU C++ with Linux,
VC++ with Windows, TC++ and BC++ for DOS-
based and Windows-based C++ programming, etc.
Try to compare them on the grounds discussed in
this chapter.

 6. Recall some of the problems that you have faced in
programming with C. Try to see if C++ provides an
answer to them.

 7. What are entities? What are the two different
types? Pick some other system of your choice.
Write down the entities involved in that system.
Now, differentiate them into two types—one that
has a real-world counterpart and the other that the
programmer needs for programming convenience.

 8. What are data and function attributes of the
system? Take the same system and design a
few data and function attributes of the entities
involved.

 9. What are programs of the system? Take some other
system of your choice and decide at least four
programs that you may need to code that system.

10. What are methods? Pick at least three different
entities of the system that you have chosen and
write a few methods for that object. Show how
these methods are used for queries and how these
methods respond back.

11. How are classes and objects modelled in C++? Why
do we usually have multiple objects associated
with a single class? How are real-world classes
and objects related with C++ classes and
objects?

12. What is the law of abstraction? How does it help
the user of the objects? Give an example of your
choice to illustrate the need for abstraction.

13. Explain the difference between the public and
private attributes of the class. For your own system,
decide which attribute will be public and which
attribute will remain private. Give your reasons for
deciding so.

14. What is encapsulation? How does it help a
programmer to design the system better?

15. What is inheritance? Try to enhance the system in
a way that at least two classes are inherited further.

16. What is an is-a relationship? How is it connected
with inheritance?

17. What are the myths associated with inheritance?
What is wrong with those myths?

18. How does inheritance help the programmer? Take
your system as an example and explain the answer.

19. What are abstract classes? Give a few examples of
abstract classes.

20. What is a bottom-up design? How does bottom-up
design result into abstract classes?

21. What are the advantages of bottom-up design?
Pick your own system and show with an example.

22. What is polymorphism? What are the different
types of polymorphism? Give some examples of
the real world where polymorphism is achieved.

23. Differentiate between static and dynamic binding.

Practical Exercise

Pick any C program that you have written earlier.
Rename that program as a ‘.cpp’ program. Try to
compile and run it. It should compile and run without
any trouble. Are there any problems? Take the help of
your teacher to sort them out.

Chapter 2
Overview of the Overview of the
C++ LanguageC++ Language
2.1 IDENTIFIERS AND CONSTANTS (LITERALS)

Every programming language has certain rules for defi ning the names of
variables, functions, classes, etc. Such names are known as identifi ers. C++
follows almost the same set of rules for defi ning an identifi er as C does.
C++ accepts all constants that are acceptable in C, including the backslash
constants such as ‘\0’ (null) and ‘\a’ (bell). An important difference is that
a C++ identifi er has no limit on the length of the name. In C, only the fi rst
32 characters are signifi cant, whereas C++ does not have any such limit.
Thus, in C++, an identifi er can be arbitrarily long and each character of the
name can be still signifi cant.

Note All references to C in this text refer to ANSI C and those to C++ refer to
ANSI C++.

C++ supports all literals supported by C, though there are some
additional ones as well. In C++, it is possible to defi ne L'A' as a wide
character constant. This constant is wide, that is, it is of 16-bit storage
rather than the normal 8-bit ASCII (hence L precedes 'A'). Using wide
characters, it is possible to accommodate characters in the unicode format.
Some languages such as Chinese and Japanese have thousands of characters,
which do not conform to the small footprint of ASCII. The unicode format
enables C++ to read, print, and store characters of such languages. The
constant L'A' is actually of type wchar_t, which is an addition to the C++
standard.

2.2 KEYWORDS

C++ has all the keywords of C and the earlier (older) version of C++. It has
some more keywords to provide added functionalities. The complete list of
these keywords is given in Table 2.1.

As can be observed from Table 2.1, the C++ standard has added 14
keywords to the original C++ from Stroustrup. C++11 (the latest C++
standard, which was revised in 2011) does have a few more additions but it
is not yet stable at the point of this writing and so the keywords included in
that standard are not discussed here.

Learning Objectives

• Rules for defi ning identifi ers
and constants

• Keywords and data types
available in C++

• Enumeration and pointers in
C++

• Reference variables
• const and volatile

specifi ers
• Dynamic initialization of

variables
• Scope resolution operator
• new and delete operators
• new casting operators in C++
• typeid and throw

operators

Though the C++ stan-
dard does not impose
any limit on the length
of the identifi er name,
a compiler may impose
one.

40 Programming with ANSI C++

2.3 DATA TYPES

The C++ data types in C++ can be divided into three categories. The fi rst category represents
the data types borrowed directly from C and forms the largest set. The second category
represents the data types that were available in C and are also available in C++, but with
extended meanings. The third category represents the new data types that have been
introduced in C++ and were not available in C.

2.3.1 Borrowed from C
The data types void, int, char, fl oat, and double and the modifi ers to these data types, namely,
signed, unsigned, long, and short, operate in the same way as in C. Moreover, pointers,
except for void pointers, and arrays, unless containing data of newly added data types, also
operate in the same manner as in C.

2.3.2 Borrowed from C with Modifi cations
Some data types of C included in C++ have been adapted to be compatible with the features and
compiler requirements of C++. These data types are structure, union, enumeration, and pointers.

In C++, struct(structure) is extended to be compatible with the data type class. The class
data type and the difference between class and struct in C++ are discussed in Chapter 3.
The span of union is also extended in C++ and is discussed in detail in Chapter 3.

Table 2.1 C++ keywords

asm do if return typedef

auto double inline short typeid

bool dynamic_ cast Int signed typename

break else long sizeof union

case enum mutable static unsigned

catch explicit namespace static_cast using

char export new struct virtual

class extern operator switch void

const false private template volatile

const_cast fl oat protected this wchar_t

continue for public throw while

default friend register true

delete goto reinterpret_cast try

The boldface words are ANSI C keywords. Normal typeface words are original C++ keywords (from Stroustrup), and italic
words are ANSI C++ additions to earlier C++ keyword set.

Overview of the C++ Language 41

Notice the use of ‘fl ag’ as a bool variable. A bool variable can be used where any relational
or logical expression is used. Providing a Boolean operation was the additional job assigned

In C, enum(enumeration) literals are globally visible even if they are defi ned locally;
however, in C++ these are visible only to the class (or structure) in which they are
defi ned.

Pointer defi nitions in C++ operate just like those in C, with the exception of void pointers
and two new types of pointers, the constant pointer and pointer to constant. Pointers in C++
are discussed in detail in Section 2.4.

2.3.3 Newly Added Data Types
Some newly added data types in C++ are described in this section. Classes are the central
constructs in C++. A class has the capability to represent an entity of the real world in a true
sense. Classes are discussed in detail in Chapter 3.

Strings in C++ are much simpler to use than in C. In C, they are treated as character
arrays, but C++ has a special string class for defi ning strings. Strings are used throughout
this book and have been discussed in detail in Chapter 15. Strictly speaking, a string is still
an outside entity for a C++ program and the <string> fi le needs to be included to provide
operations on strings. There are a few other classes such as queue and vector, which are part
of the Standard Template Library (STL). These are covered in Chapter 16.

Abstract Data Types
One may argue that strings, queues, and stacks are not native or built-in data types but are
user-defi ned. The distinction between a built-in and a user-defi ned data type, which was
clear in C, is quite blurred in C++. Moreover, these data types are given by a standard,
and thus, for an end user, they are quite similar to built-in data types. They are sometimes
denoted as abstract data types and can only be found in object-based languages.

An interesting new data type added in C++ is bool (Boolean). It can have only two values,
true or false, both of which are keywords in C++.

Consider the following program. It tests the input and comes out of the program if the
input is zero.

//TestBool.cpp
#include <iostream>
using namespace std;
void main()
{
 bool fl ag;
 fl ag = true;
 int test;
 while(fl ag)
 {
 cin >> test;
 if(!test)
 fl ag = false;
 }
}

42 Programming with ANSI C++

to the integer type variables in C. We can spare integer variables in C++ if our purpose is
to test the veracity and nothing else. The use of the bool variable makes this testing easier
and also makes the program more readable. It can have either true or false value as
shown.

2.4 POINTERS

Though pointers are available in C++ also, they have some characteristics that are different
from those in C that are discussed in the following sections.

2.4.1 Void Pointer
Void pointer is an important type of pointer borrowed from C. One may question the need for
void pointers. As a pointer must point to a variable (i.e., it has an address of some variable),
the idea of a void pointer (a pointer pointing to nothing) may sound ironic. However, such
pointers are useful in C for returning a pointer value of an unknown type. The malloc()
function is an example.

Note The malloc() function can be used for acquiring memory for any data type. This is why it is designed
to return a void pointer which the user cast to whatever required. It is also needed to write a generic
algorithm that can accept any pointer type by defi ning the algorithm to accept a void pointer in the
argument.

The essence of the void pointer in C++ is better captured by the term pointer to void. A
void pointer points to a value that does not have a type (such as int and fl oat). This means
that the value pointed to by the void pointer has an undetermined length and undetermined
dereferencing properties. The difference between the defi nitions of void pointers in C and
C++ can be brought out by considering the following code segment:

int* FirstPointer;
void* SecondPointer;

The statement

SecondPointer = FirstPointer;

is valid both in C and in C++. However, the reverse, that is,

FirstPointer = SecondPointer;

does not work in C++ though it works fi ne in C. This is because C++ is a strictly typed
language.

Note C++ is a strictly typed language. When one writes a function as xyz(); and assuming that it returns
an integer, writes the statement int i = xyz(); one relies on xyz() returning int which is not
specifi ed explicitly at the time of defi nition. Such statements rely on the default behaviour of the
compiler to consider int even when not specifi ed. When the complier does not default to int, such
code results in errors that are hard to debug.

To have the same effect as in C, the second pointer must be explicitly cast in the following
manner:

FirstPointer = (int*) SecondPointer;

The earlier statement produces a compilation error, whereas this one does not.

Overview of the C++ Language 43

2.4.2 Constant Pointer
A constant pointer is one that cannot point to anything other than what it is pointing to at the
time of its defi nition. It is analogous to the const int or const fl oat types, where the value
assigned at the time of defi nition cannot be changed throughout the program. The value
stored in the const pointer is the address of another variable.

When the constant pointer is used, the address itself cannot be changed; however, it must
be noted that the content of that address can be changed. So, if we defi ne

int * const SecondPointer = &Content1;

then the following is allowed:

*SecondPointer = AnotherContent;
// Changing the content of the integer pointed to

However, the following is not allowed:

SecondPointer++;

or

SecondPointer = &AnotherContent;
// Changing the pointer value itself

Consider the following code:

void main()
int Content1 = 10;
int Content2 = 20;
int *FirstPointer = &Content1;
// Normal pointer; operation is allowed
int *const SecondPointer = &Content2;
// SecondPointer is a constant pointer
*SecondPointer = 100;
// Operation is allowed; contents can be changed
FirstPointer++;
// Normal pointer, operation is allowed
SecondPointer++;
/* Erroneous statement; not allowed as pointer address itself cannot be changed */
// Error: lvalue specifi es const object
// Lvalue is a variable-like construct, which can be assigned a value

When it is not possible to assign a value to a construct such as a const object,
it is an error. It is already known from the knowledge of C that a pointer to an
integer can be defi ned as

int* FirstPointer = &Content1;

C++ allows inserting the keyword const between * and the name of the pointer.
Such a pointer then becomes a constant pointer, that is, the address pointed
to by it cannot be manipulated. However, the content of that address can be
manipulated. So, the following statement is acceptable:

SecondPointer = &Content2;

The expressions int*
const, int* const,
and int *const are
correct and mean the
same. Same is the
case with expressions
such as int &Name,
int & Name, and
int& Name.

44 Programming with ANSI C++

The statement FirstPointer++; will increment FirstPointer by the size of one integer
variable. This is possible for normal pointers such as FirstPointer. However, it is not
possible to write SecondPointer++. The C++ compiler will report an error if such a statement
is written. This is because SecondPointer is a constant pointer and the value stored in it
cannot be altered. Exhibit 2.1 gives an explanation about the constant pointer and other
constants.

Exhibit 2.1 Constant pointer and other constants
A constant pointer is similar to a constant of any other data type, except the fact that other constants can
store any random value (depending on their data type), whereas a constant pointer stores the address of
a particular memory location. This stored address cannot be changed for a constant pointer, but the data
stored at that address can be changed. The statement
*SecondPointer = 100;

is a valid statement in C++ and changes the value of Content2 to 100. It should be noted that
constant pointers must have an assignment at the time of their defi nition. Therefore, int *const
SecondPointer = &Content2; is acceptable, but int* const SecondPointer; is not
acceptable because the constant has not been initialized at the time of defi nition and it cannot be
assigned any value later as it is a constant. It is similar to writing const int(incorrect) instead of const
int i = 5; (correct).

2.4.3 Pointer to Constant
A pointer to constant is a pointer variable that can point to any memory location, but
the content of the memory location to which it points cannot be modifi ed. Thus, if one
defi nes

int const* SecondPointer = &Content;

it is not possible to modify Content using SecondPointer. Hence, the statement *SecondPointer
= 100; will now become invalid.

However, the following statement is valid:

SecondPointer = &AnotherContent;

Consider the following code:

void main()
{
 int Content1 = 10;
 int Content2 = 20;
 int* FirstPointer = &Content1;
 // A normal integer pointer
 int const* SecondPointer = &Content2;
 // A pointer to constant
 /* ... Note the difference between this SecondPointer and the SecondPointer in the

earlier program. Earlier, the word const was placed between * and SecondPointer, but
now it is between int and *... */

 // The following is an erroneous statement

Overview of the C++ Language 45

 *SecondPointer = 100;
 // Now the contents cannot be changed
 // Error: lvalue specifi es const object
 FirstPointer++;
 SecondPointer++; // is a valid statement
}

It is also possible to write

const int* SecondPointer = &Content2;

instead of

int const* SecondPointer = &Content2;

The meaning of both these statements is the same.

2.4.4 Use of Constant Pointers and Pointers to Constant
The constant pointers and pointers to constant are two new types of pointers in C++. Functions
can receive and return pointer type arguments similar to other data types such as int and
fl oat. Both these pointers are very useful when passed as arguments to functions. Passing a
pointer as an argument to a function is always a precarious task in C. For a user, calling a
function, for example, Test_Function(int MyArgument), is like a black box. When the function
returns, MyArgument contains the same value as before, irrespective of what the function does
with it.

Sometimes, there is a need to change the value after a function call. A classic example is
the swap function, which requires the values passed to that function to be interchanged. For
example, if one passes swap(Argument1, Argument2), one expects Argument1 to have the value
of Argument2 and vice versa. It is necessary to use pointers to the specifi ed variables in C.

To return the changed value, a pointer to that value is passed as a parameter to the function.
For example, if one passes MyFunction(&MyVariable) to MyFunction(int* PtrToInt), then
changes made to *PtrToInt in the function are refl ected in the calling function, that is, in the
variable MyVariable.

If two integer arguments Integer1 and Integer2 need to be swapped, one needs to call
swap(&Integer1, &Integer2) and hence the pointers to both the integer values. Thus, when
a normal value is passed, C does not make any changes to the argument, irrespective of
whatever is done with those values in the function. On the contrary, when the pointers to
those arguments are passed, the arguments changed in the function remain thus and do not
reset to their original values. Unfortunately, there are times when one would like to pass
pointers as normal arguments, which is a point of concern. This is the theme of the following
discussion.

C assumes (incorrectly) that if a pointer is passed to the function, the item to
which it is pointing is available for modifi cation. Passing a pointer to the item is
the only way to modify it in C, though, at times, the pointer itself is an argument.
For example, passing an array to the function requires an array name (pointer to
the fi rst element) to be passed. Consider the following code:

int Array[10];
int *p = Array;
sort(p);

In C (or C++), the
argument passed to a
function may change
in the function, but
the results are not
returned to the calling
function.

46 Programming with ANSI C++

for(int i=0; i<10; i++);
 cout << p[i];

The function sort, which accepts pointer p, should not change the value of p. If it does so
accidently, the program code from then onwards may not be executed as expected.

It is important that the content of the pointer variable is not changed accidentally. Consider
a case of passing a C string (char array) to a function that calculates the length of the string.
When a C string is passed as an argument to a function, it is the pointer to the fi rst character
of the string that is actually passed. It may be necessary to use the pointer (maybe to move
over the string to fi nd its length), but it is not necessary to change the content of the string.

There is another situation where passing a pointer instead of values may be useful. Suppose
a big struct variable is passed to a function by passing the value, that is, the changes made to
the struct variable in the function need not be refl ected in the calling function. This program
has to follow some serious time constraints. It is always better to pass a pointer to struct to a
function in such a case. The time taken for stack loading and unloading for a pointer variable
is defi nitely less than that for the big structure. The time for copying the structure to and fro
(calling function to called function and vice versa) is also reduced. In this case, a pointer is
used to reduce the context-switching time, but the content of the pointer used should not be
changed. Therefore, it is better to pass a const pointer than the normal pointer. Consider the
following program:

Note All graphics programs working with real-time graphics display have serious time constraints; for
example, a cartoon fi lm is not supposed to show jerky pictures. Similarly, many commercial programs
require very stringent time-bound operations; for example, a railway reservation system should not
wait for fi ve minutes before providing the seat information requested for. In such cases, it is useful to
pass a pointer instead of normal data.

#include <iostream>
using namespace std;
struct LargeStruct
{
 int ID;
 ...
 public:
 getId()
 {
 cout << "input ID" << endl;
 cin >> ID;
 ...
 }
 ...
}
test1(struct LargeStruct)
{ ... }
test2(struct *LargeStruct)
{ ... }
int main()
{

Overview of the C++ Language 47

What is the difference between the two functions defi ned in this code, that is, test1 and test2?
The main function contains two calls—the fi rst one is test1 where LargeStruct is passed and
the second one contains a pointer to the structure passed to it. Assume LargeStruct contains
a video fi le of size 5 GB. The fi rst case requires that the entire fi le be passed (copied) to the
function and processed. In the second case, the pointer to that structure is passed and the
function works on the same structure and does not require a copy. The size of the pointer
passed to the function is only 4 bytes. It can be easily understand that the time saved in the
second operation is substantial.

In other words, if pointers are passed without the const specifi er, the content would
be open to functions. This means that the contents can be inadvertently modifi ed by the
function. In C, it is not possible to prevent the called function from accidentally changing the
content. However, this is possible in C++ through the use of constant pointers. Consider
Program 2.1:

 LargeStruct, L1, L2, *ptrLargeStruct;
 ...
 test1(L1);
 ptrLargeStruct = &L2;
 test2(ptrLargeStruct);
}

PROGRAM 2.1 Const pointer
#include <iostream>
using namespace std;
struct Employee
{
 char Name[100];
 char Address[200];
 char JobProfi le[500];
 char EducationalQualifi cations[300];
 char OtherDetails[200];
};
void ReadEmployee(Employee* TempEmployee)
{
 cout << "\n Please enter the name:";
 cin >> TempEmployee -> Name;
 cout << "\n Please enter the address:";
 cin >> TempEmployee -> Address;
 cout << "\n Please enter the job profi le:";
 cin >> TempEmployee -> JobProfi le;
 cout << "\n Please enter educational qualifi cation:";
 cin >> TempEmployee -> EducationalQualifi cations;
 cout << "\n Please enter other details:";
 cin >> TempEmployee -> OtherDetails;
}

void DangerousDisplay(Employee* TempEmployee)
{
 cout << "\n Name:";
 cout << TempEmployee -> Name;
 cout << "\n Address:";
 cout << TempEmployee -> Address;

48 Programming with ANSI C++

 cout << "\n Job profi le:";
 cout << TempEmployee -> JobProfi le;
 cout << "\n Educational qualifi cation:";
 cout << TempEmployee -> EducationalQualifi cations;
 cout << "\n Other details:";
 cout << TempEmployee -> OtherDetails;
/* The following is a dangerous statement as user unknowingly changes the content of the
OtherDetails of TempEmployee and should not be used */
 cin >> TempEmployee -> OtherDetails;
}

void SafeDisplay(Employee const *TempEmployee)
{
 cout << "\n Name:";
 cout << TempEmployee -> Name;
 cout << "\n Address:";
 cout << TempEmployee -> Address;
 cout << "\n Job profi le:";
 cout << TempEmployee -> JobProfi le;
 cout << "\n Educational qualifi cation:";
 cout << TempEmployee -> EducationalQualifi cations;
 cout << "\n Other details:";
 cout << TempEmployee -> OtherDetails;
/* The following is a dangerous statement and should not be used */
 cin >> TempEmployee -> OtherDetails;
}

int main()
{
 struct Employee Lara, Beckham;
 ReadEmployee(&Lara);
 ReadEmployee(&Beckham);
 DangerousDisplay(&Lara);
 SafeDisplay(&Beckham);
 SafeDisplay(&Lara);
 DangerousDisplay(&Beckham);
}

Output
INPUT SCREEN
Please enter the name: Brian Lara
Please enter the address: West Indies
Please enter the job profi le: Cricketer
Please enter educational qualifi cation: ODI and Test passed
Please enter other details: Captain
Please enter the name: David Beckham
Please enter the address: England
Please enter the job profi le: Footballer
Please enter educational qualifi cation: Football Test passed
Please enter other details: Captain

OUTPUT SCREEN
Name: Brian Lara
Address: West Indies
Job profi le: Cricketer
Educational qualifi cation: ODI and Test passed
Other details: Captain
a /* This is the place where the user unknowingly places 'a' to go */

Overview of the C++ Language 49

How the Program Works
This program has one function for reading from and two different functions for writing into
struct Employee. In all three functions, the address of struct Employee is passed. In the
ReadEmployee() function, it is essential to pass a pointer to struct as the values of struct
Employee need to be changed. They are initially garbage when defi ned and new values are to
be fi lled in.

It is not semantically necessary to pass pointers in both display functions—
DangerousDisplay() and SafeDisplay(). Even if one passes struct as it is and modifi es the
function to manipulate the structure instead of its pointer, the function would work in the same
way. It is important to pass the pointer for effi ciency reasons. Passing and receiving a big
structure consumes more time than passing and receiving a pointer. Passing a structure to and
fro needs 1,300 bytes, whereas a pointer needs only 32 bits, that is, 4 bytes, to do the same.

When a pointer is passed instead of the entire structure, another problem is encountered.
The pointer content can be modifi ed as it is shown in the case of DangerousDisplay() function.
If a programmer forgets to remove a cin statement while cutting and pasting code from
the read routine, it can create a serious problem. Though the function displays the content
properly now, it changes after this accidental input. In the output, if the user unknowingly
enters ‘a’ at the end of displaying details about Lara, the OtherDetails information is
changed. In normal circumstances, errors such as this are very diffi cult to trace. Fortunately,
here Lara’s information is displayed again and it is possible to see that the display is
improper.

Pointer to Constant
By defi ning a pointer as a pointer to constant, it is possible to prevent the content from being
unknowingly changed. This can be better understood with the help of Program 2.2.

Name: David Beckham
Address: England
Job profi le: Footballer
Educational qualifi cation: Football Test passed
Other details: Captain

Name: Brian Lara
Address: West Indies
Job profi le: Cricketer
Educational qualifi cation: ODI and Test passed
Other details: a
//OtherDetails information is lost here

PROGRAM 2.2 Pointer to constant
// ConstContent.cpp
#include <iostream>
using namespace std;
#include <string.h>
void main()
{
 void PrintName(char* name, char* AnotherName);
 void PrintConstName(char *const name, char* AnotherName);
 char *MyName = "Lara";

50 Programming with ANSI C++

How the Program Works
In this program, PrintConstName has been called. In the function, name is declared as
a const pointer and the statement name = AnotherName is given as a comment to prevent
accidental change to the data. If it is not commented, the C++ compiler will fl ag an error
similar to “lvalue is a constant object” because the program will try to change the
value of const pointer and will not compile the program. It should be noted that the
function PrintName is the same function without const pointer and so it cannot prevent the
assignment. Consider the following example to reiterate the point.

 char *HisName = "Ravan";
 char *AnotherName = "Beckham";
 PrintName(MyName);
 cout << MyName << "\n";
 PrintConstName(HisName);
 cout << HisName << "\n";
}

void PrintName(char *name, char *AnotherName)
{
 name = AnotherName;
 cout << "Changed name in function is" << name << "\n";
}

void PrintConstName(char *const name, char *AnotherName)
{
 // name = AnotherName;
 /* If this line is not indicated as a comment, the program will not be compiled,

because for this function, name is a constant pointer and its value may not be
altered. */

 cout << "Changed name in function is"<< name << "\n";
}

#include <iostream>
using namespace std;
int DangerousStringLength(char* String)
{
 int length; (*String) = 'a';
 for(length=0; (*String); length++, String++);
 return length;
}
int ConstStringLength(char *const String)
{
 int length;
 char* Count = String;
 for(length=0; (*Count); length++, Count++);
 return length;
}
int main()
char *Name = "Lara";
char *Address = "West Indies";

Overview of the C++ Language 51

It can be observed that here too the DangerousStringLength version of the function
changes the fi rst character of name ‘Lara’ to make it appear as ‘aara’. Moreover, it can be
observed that the pointer to constant helps in solving the problem.

It is also possible to make both the pointer and the content as constants, as mentioned
earlier, for some specifi c cases. Suppose one passes a string to a function and does not
want either the pointer or the content to change, then the argument must be passed as
MyFunction(const char *const the_string).

2.5 REFERENCE VARIABLES

Reference variables are introduced in C++ to eliminate some of the problems associated with
pointers that were discussed in Programs 2.2–2.5. They provide better readability while the
operation is similar to pointer variables. A reference variable is a reference to another variable
that is already defi ned. It provides a kind of a link to the original variable and becomes an alias
for the original variable. One can even assume it to be a named pointer, with two differences:

1. A pointer can be null, that is, not pointing to any valid item, whereas a reference variable
should always refer to a valid variable.

2. A pointer can change (except as const) either its address or its content, whereas a reference
variable cannot do it. The syntax for defi ning a reference variable is as follows:

 <data type> &ReferenceVariable = OriginalVariable;

Here, OriginalVariable is an already defi ned variable. The ReferenceVariable is now a
reference to OriginalVariable. The & operator used here is not the address of the operator. It
is used for indicating the reference.

Before defi ning a reference variable, one should ensure the following:

1. The OriginalVariable must be defi ned previously.
2. The & operator must precede the ReferenceVariable name.
3. The = sign should be present between the ReferenceVariable name and the

OriginalVariable name.

It is not possible to defi ne <data type> &ReferenceVariable; (i.e., without = sign), because
in this case, it is not clear as to which variable it refers to. Some languages allow unreferenced

int L1 = DangerousStringLength(Name);
int L2 = ConstStringLength(Address);
cout << L1 << "is the length of the name \n";
cout << L2 << "is the length of the address \n";
cout << "The name and address are \n";
cout << Name << "\n";
cout << Address << "\n";
Output
10 is the length of the name
7 is the length of the address
The name and address are
aara
West Indies

52 Programming with ANSI C++

The concept of reference variables is very simple to understand. A reference variable is actually
an alias of the referred variable, which can be any normal variable defi ned before the reference
variable. Both reference and referred variables now have the same effect if an operation is
performed on either of them and hence either of them can be used anywhere in the program.

2.5.2 Reference Variables as Dummy Parameters for Functions
Reference variables can be used as dummy parameters, that are parameters defi ned in the function
argument list within the body of the function. At the time of execution, these arguments are
replaced by actual parameters passed to the function and hence they are called dummy parameters.

A reference variable as a dummy argument makes the dummy argument an alias of
the actual argument. Thus, the manipulations that are done to the dummy argument

reference variables (i.e., int& RefVariable), but C++ does not allow a reference variable that
does not refer to a valid item.

After defi ning a reference variable to an original variable, changing either of their values
results in a change in the value of both the variables. This is illustrated by the program given
in Section 2.5.1.

2.5.1 Using Standalone Reference Variables
The following program will help us understand how reference variables are used in a program.

Note Before moving on, let us have a brief discussion on ‛namespace’, which is being repeatedly used
in every program. A namespace is a type of enclosure. One can have multiple namespaces in a
C++ program to differentiate different sets of classes and functions having the same name. std is a
standard namespace provided by the C++ system itself.

//ReferenceVar.cpp
#include <iostream>
using namespace std;
int main()
{
 int OriginalVariable;
 int& ReferenceVariable = OriginalVariable;
 /* Note the & operator between the data type and the name of the variable */
 OriginalVariable = 100;
 cout << ReferenceVariable << " " << OriginalVariable << "\n";
 ReferenceVariable = 200;
 cout << ReferenceVariable << " " << OriginalVariable << "\n";
 OriginalVariable++;
 cout << ReferenceVariable << " " << OriginalVariable << "\n";
 ReferenceVariable++;
 cout << ReferenceVariable << " " << OriginalVariable << "\n";
}

Output
100 100
200 200
201 201
202 202

Overview of the C++ Language 53

How the Program Works
Observe both the versions of Swap. The fi rst one is with reference variables. The second is
a conventional C-type solution. Instead of passing variable addresses and receiving them in

also apply to the actual argument. This can be explained by the well-known
swapping variable example of C. It is known that function arguments are by
default passed as a value and do not return to the called function. This problem
is solved in C using pointers, but C++ has a better solution using reference
variables.

There are two functions in Program 2.3: one is written in C++ using a reference
variable and the other is written in C using pointers.

PROGRAM 2.3 Swap using reference variable
//SwapUsingRef.cpp
#include <iostream>
using namespace std;
main()
{
 int FirstVariable, SecondVariable;
 void SwapInt(int&, int&); // Function, the C++ reference way
 void SwapPointer(int*, int*); // Function, the C pointer way
 cin >> FirstVariable;
 cin >> Second Variable;

 SwapInt(FirstVariable, SecondVariable);
 /* variable is passed, not the address */

 cout << FirstVariable;
 cout << SecondVariable;
 SwapPointer(&FirstVariable, &SecondVariable);
 cout << FirstVariable;
 cout << SecondVariable;
}
// The following is a way to swap in C++
/* Look at the reference variable arguments. They are references of the variable arguments
passed; that is, First is the reference to the fi rst argument passed and Second is the
reference to the second argument passed */

void SwapInt(int& First, int& Second)
{
 int temp;
 temp = First;
 First = Second;
 Second = temp;
}

// The following is the old, conventional way used in C to swap
void SwapPointer(int* First, int* Second)
{
 int temp;
 temp = *First;
 *First = *Second;
 *Second = temp;
}

A reference variable
as a dummy argument
makes the dummy
argument an alias of
the actual argument.

54 Programming with ANSI C++

How the Program Works
It is very easy to understand this code except the line following the comment. The line
preceding the comment is the normal way of calling a function in C, where a variable is
passed from a function as a return value. This value is accepted in the left-hand side (LHS)

the function as pointers, the code in the fi rst version is far better and easier to
understand. This is the advantage of reference variables.

In the function SwapInt(), FirstVariable and SecondVariable are passed to
the function and are accepted as int& First and int& Second. Henceforth, First
is a reference to FirstVariable and Second is a reference to SecondVariable. As
they are reference variables, whatever manipulation is done to First and Second
will be refl ected in FirstVariable and SecondVariable, respectively, in the main
program. Thus, the function using reference variables achieves the same effect
as that using pointers, but in a simpler way. This makes the function code more
readable.

However, a problem arises while using reference variables as function
dummy parameters, as in the example shown. Suppose the Swap() function is
a library function; then its defi nition will not be directly visible. Passing these
two variables as value parameters is safe in C. It is known that the function
called cannot change the values of the variables inadvertently or maliciously.
In order to get the values changed, the addresses of these variables have to be
passed. However, in C++, in order to ensure that the values of the variables are
not changed, the prototype of the function has to be checked. This is because
whether one passes value or reference parameters, the calling function is

the same, that is, variables, and not addresses of variables, are being passed in both the
cases.

2.5.3 Reference Variables as Return Types
Consider Program 2.4.

One just passes
variables as param-
eters while using
reference variables
and receives them in
reference variables.

Passing a non-pointer
argument in C++
does not guarantee
passing the value
as in C and thus the
value returning from
the function may be
altered. One will have
to check the prototype
of the function to be
sure.

PROGRAM 2.4 Return a reference variable
//ReturnRef.cpp
#include <iostream>
using namespace std;

void main()

{
 int FirstInt = 10, SecondInt = 20;
 int ThirdInt, FourthInt = 100;
 int& RetRefTest(int, int);
 ThirdInt = RetRefTest(FirstInt, SecondInt);

 // The following is a special use of returning as reference
 RetRefTest(FirstInt, SecondInt) = FourthInt;
 int& RetRefTest(int i, int j)
 {
 return(i>j?i:j);
 }
}

Overview of the C++ Language 55

variable. Here, the function is passing a reference instead of the variable itself, but it does not
make any difference to the effect. The variable will be assigned the same value as a normal
variable.

The second case is different and needs explanation. The function call is on the left side
of an assignment. This is not possible in C. It is known that writing A = 2 and 2 = A are
different. The fi rst case is acceptable because the LHS is a variable and it can be assigned
a value 2. In the second case, the LHS is 2, which is a constant and cannot be assigned any
value. Similarly, a function call is like a constant (having the value returned by the function),
which cannot be used on the LHS of an assignment statement.

Note If a function that returns a normal variable is used on the LHS, the C++ compiler will fl ag an error
indicating ‘lvalue required’ (lvalue refers to the LHS value of an assignment). This error
indicates that the LHS value of an assignment statement must be a variable to which the value of the
RHS expression can be assigned.

Passing a reference changes the scenario in an interesting way. Instead of a variable, a reference
is returned, which is a reference (or alias) to an existing variable of the calling function. Now,
the function call is not like a constant but is similar to a variable. The variable which is being
returned from the called function is an alias of some other variable belongs to the calling function.
It means that a function call that returns a reference can be used as a variable. This is what the
line following the comment does. Understandably, the variable with the maximum value will
now have the value of FourthInt. So, in this case, the value of SecondInt will become 100.

Note When a function returns a reference, it can be used on the LHS of an assignment statement. The
function, in this case, should return only a global variable or a variable local to the calling function
and this variable is assigned the RHS value. A function cannot use a variable local to the scope of the
function as a returning value.

2.5.4 Chaining Inputs using Reference Variables
There is yet another interesting use of reference variables. Using this option, it is possible to
chain inputs to the object. Consider a case of cout.

cout << "Hi";
or
cout << "Hi" << SomeStringVariable << "Your number is" <<
SomeIntegerNumber;

Here, the input provided to cout is chained in such a way that once cout << "Hi"
is performed, the same output stream is provided to SomeStringVariable, then to
"Your number is", and then to SomeIntegerNumber. cout is already programmed to
provide this functionality. The programmers can also provide such functionality
to their own objects (user-defi ned objects) while programming. We will see how
the use of returning reference helps in chaining the inputs to objects when we
discuss operator overloading in Chapter 6.

2.5.5 More on Reference Variables
The & operator is not an address-of operator that is used in C. It actually is read as ‘reference
to’, that is,

int& OneVar = AnotherVar

The C++ object
model implements
the references by
converting them to
pointers internally.
Hence, using refer-
ences or pointers
does not make any
difference with regard
to speed.

56 Programming with ANSI C++

is read as OneVar reference to AnotherVar. Though the & operator still holds its
meaning in C++, the difference can be easily understood from the context in
which the operator is used. The reference operator is always used as <data type
name>& <variable name> whereas the address-of operator is used as a prefi x to a
variable name as &<variable name>.

For example,

char& CharVar = AnotherCharVar

is a reference, whereas in

MyFunction(fl oat &FloatVar)

&FloatVar is again a reference but it is always an address too.

Currently, both the reference and the pointer have similar (address) implementation in
the C++ object model. Thus, references are internally converted to pointers during
compilation, which means that there will be no difference in effi ciency if either of them is
used. Thus, both the versions of swapping explained in Program 2.3 will work with similar
effi ciency.

2.6 ACCESS MODIFIERS

Modifi ers in C++ are used to modify the declarations of data types. Access modifi ers are
used to specify the declared accessibility of data types.

2.6.1 const
const has the same meaning in C++ as in C but with one notable difference, which is
explained by the following code snippet:

//ConstDifference.cpp

#defi ne SIZE 10

void main()

{

 const int size = 10;

 char name1[size]; // Only C++ accepts this

 char name2[SIZE]; // C and C++ both accept this
}

Though SIZE and size seem similar to us, they are actually treated differently by the C
compiler, which does not fi nd any SIZE in the program. It is replaced with its value by the
preprocessor before the compiler sees it. C, unlike C++, does not accept the const argument
in the character array defi nition. The array argument must either be an integer or a symbolic
constant.

2.6.2 volatile
It has the same meaning as in C. There are some specifi c variables the values of which can
be modifi ed by external means. Statements using those variables should not be optimized by
the compiler during compilation. The access modifi er volatile instructs the compiler not to
optimize the expressions that are using such variables.

C++ allows const
values to be used
in defi ning array
dimensions unlike C.

Overview of the C++ Language 57

2.7 STORAGE CLASS SPECIFIERS

There are four storage class specifi ers, extern, register, auto, and static. Declarations
with the auto or register storage class specifi er result in automatic storage and those with
the extern or static storage class specifi er result in static storage. Out of these, extern,
register, and auto have effects similar to that in C, but static is extended in C++ for use in
some specifi c circumstances and is explained in detail in Chapter 3.

2.8 INITIALIZATION

When declaring a regular local variable, its value is, by default, undetermined. For a variable
to store a concrete value as it is declared, it needs to be initialized. There are two ways of
doing this in C++. These are discussed in Sections 2.8.1 and 2.8.2.

2.8.1 Normal Initialization
To understand the normal initialization method, consider the following code:

#include <iostream>
using namespace std;
void main()
{
 int i;
 i = 50; // Some other code related to i
 int j; // This will not work in C
 j = 20;
}

This method of initialization is the same as that in C. However, C++ has a philosophical
diversion from C in this case. It assumes that if a variable is defi ned near to its usage,
it is easier and more readable. So, it allows a variable defi nition to appear after
executable statements. In C++, a variable can be defi ned anywhere in the program before its
fi rst usage. The declaration style that suits the programmer can be followed. Whether it is
the C style of defi ning all variables before the actual program or the C++ style of postponing
the defi ning of a variable until its fi rst usage, it does not have any impact on the effi ciency
of the program.

2.8.2 Variable Initialization
In C++, variables can be initialized at run-time. Let us consider the following program:

//VarInitialization.cpp
#include <iostream>
using namespace std;
#include <cmath> // This is math.h in C and in older C++
void main()
{
 int FirstVariable;
 FirstVariable = 50;
 // some other code related to FirstVariable

58 Programming with ANSI C++

The value of sqrt of SecondVariable is not available at the time of compilation. The
ThirdVariable is initialized at run-time after the square root of SecondVariable
is found. This is not possible with C compilers. Thus, it is more logical to
build C++ compilers than C compilers because of the availability of such
facilities.

2.9 OPERATORS

The operators in C++ and those in C work in an identical manner. However, some of the
operators have new meanings in C++. These new meanings do not have any effect on the
old and conventional meanings. The new meaning of the & operator in C++ and the use of
<< and >> operators with cin and cout have already been discussed. Programmers can, on
their own, provide a new meaning to most of the existing operators (see Chapter 6 for more
details on overloading).

Some of the new operators introduced in C++ and their meaning are listed in
Table 2.2.

 int SecondVariable;
 cin >> SecondVariable;
 double ThirdVariable = sqrt(double(SecondVariable));
}

A C++ variable
may be initialized at
run-time.

 Table 2.2 Various operators and their meaning in C++

Operator Meanings

:: Scope resolution operator: it is used to indicate a member of a specifi ed class

::* A member-pointer operator

.* Pointer-to-member-using-object: It is used to indicate a pointer to member of a specifi ed
class. Though it is mentioned as a pointer, it is not of type pointer, i.e., it does not contain
an address of any variable. It is an offset value to the member from the beginning of the
class. The same is also true for the following operator.

-›* Pointer-to-member-using-pointer-to-object operator

delete Memory release operator

new Memory allocation operator

reinterpret_cast Casting operator for C-style casting from any type to any other irrelevant type

const_cast Removing the const nature of a variable while casting

dynamic_cast Casting operator that can be used to safeguard against irrelevant casting, used in case of
polymorphic classes (classes part of inheritance chain)

typeid Used to fi nd type of an object at run-time

throw Useful for throwing an exception at the time of an error

Overview of the C++ Language 59

How the Program Works
It can be observed that there are two variables of the same name Variable in this program.

One is global and the other is local, defi ned in the while block. Consider the
following statement:
cout << ::Variable

This statement prints the global variable’s value. This is because if only Variable
is written, it is assumed to be a local variable as in C, but if it is preceded by the
:: operator, that is, ::Variable, the C++ compiler understands it to be a global
variable. Thus, it is possible to access the global variable even when a local

Note An operator used in C can have a new meaning in C++. One can use it in a context different from the
one in which they are defi ned to work.

2.9.1 Scope Resolution Operator
In C, if a variable is defi ned globally and a local variable with the same name is also defi ned
in the same program, then the global variable is not available in the local variable’s context.
However, in C++, the scope resolution operator helps in the visualization of a global variable
in the context of the local variable with the same name. Consider Program 2.5 to understand
this better.

PROGRAM 2.5 Scope resolution operator
//ScopeRes.cpp
#include <iostream>
using namespace std;

int Variable = 10; // The global variable
void main()
{
 do
 {
 int Variable; // The local variable
 // The context of local variable starts from here
 cin >> Variable;
 cout << Variable << '\n';
 cout << "Global variable value is";

 // The following will work only in C++
 cout << ::Variable; // Prints the global variable
 cout << "\n";

 if(Variable == 0)
 break;

 /* The if condition checks for the local variable and the context of local variable
ends here. If this line is commented, the program will not come out of the loop
because the following while statement checks for the global variable */

 } while(Variable);
 // Global variable being tested

 cout << "The global value outside the loop is";
 cout << Variable; // Prints the global variable, i.e., 10
}

The scope resolution
operator makes it
possible for a pro-
grammer to use both
global and local
variables with the
same name.

60 Programming with ANSI C++

 Though most C++ compilers implement new and delete operators in terms of function
operators malloc() and free(), this is not mandatory by the standard. Thus, the advantage of
effi ciency may not be available for some C++ compilers.

The operator new is used for allocation of memory. The syntax of new is very simple. To
get memory for an integer and assign the address of the allocated memory to pointer p, the
following is written:
int *p = new int

Casting or size specifi cation is not necessary here as in malloc(). However, a pointer variable
should be used only after memory allocation. (This is also true for a pointer getting memory
using malloc().) Consider Program 2.6 to see the use of new and how the pointer variable can
be wrongly manipulated without assigning memory to it.

variable is in effect. The :: operator, which indicates the global variable, is known as the scope
resolution operator. Thus, TheVariable will be a local variable, whereas ::TheVariable will
be a global variable. There is no such operator in C, and hence, it is not possible to access any
global variable when a local variable of the same name is in effect.

Note A local variable is said to be in effect and holds meaning only in the block in which it is
defi ned. The area in which the variable holds its meaning is known as the scope of the local
variable.

The next three operators in Table 2.2, the member-pointer, pointer-to-member-using object,
and pointer-to-member-using-pointer-to-object operators, need the understanding of the
class construct and are discussed in Chapter 3.

2.9.2 new and delete Operators
In C, malloc() and free() are normal functions for allocating and deallocating memory.
However, C++ has a better mechanism for this. It uses operators that provide the advantage
of better effi ciency. The malloc() and free() function calls involve the context switching
operation (placing the context of the calling function on the stack and executing malloc() or
free()). Context switching operation, which is explained in Exhibit 2.2, is costly in terms
of time and resources.

Exhibit 2.2 Context switching
Whenever a function is called in either C or C++, the current state of the calling function must be stored
and the called function’s context must be brought in. As soon as the function call is over, the called
function’s context must vanish and it must be restored to the original status. This is known as context
switching.

For example, when the program control enters the called function, the called function’s variables are not
accessible. When the control comes back, they are again made available. This operation requires loading
the called function’s variables and a few other details (such as values of those variables at the time when
the function is called and the address where the program control should go after the function call gets
over) on a stack, at the time of calling the function, and removing them when control returns to the called
function. It involves a lot of work. Such overheads are not present for operators because the code related
to operators is built-in, that is, it is inserted by the C++ compiler while compiling. The use of operators does
not involve the costly operation of context switching.

Overview of the C++ Language 61

How the Program Works
It is necessary to pay attention to some statements of this program. The fi rst one is
int *PointerToInt = new int;
This statement allocates suffi cient memory for holding an integer value and then the address
of that memory location is stored in PointerToInt variable, which, as the name suggests, is
a pointer to integer. Next is the following statement:

*PointerToInt = 10;

The memory to which PointerToInt points to is allocated by a heap manager, which allocates
memory from a memory area called heap. Therefore, it is safe to write in that memory area.
Now, look at the following statement:

*DangerousPointerToInt = 10;

This line of code assigns 10 to the content of DangerousPointerToInt. The place at which 10
is written depends on the value of the address pointed to by DangerousPointerToInt.

At the moment, DangerousPointerToInt contains uncertain bits of information, generated
from the last usage of the memory area and one cannot be sure of its value. It may be
an address of some place in the operating system (OS), a user area, or any place in the
memory.

PROGRAM 2.6 new and delete operators
#include <iostream>
using namespace std;

void main()
{
 // Look at the use of new;
 int *PointerToInt = new int;
 *PointerToInt = 10;
 int *DangerousPointerToInt;
 /* DangerousPointerToInt is a variable that is defi ned as pointer but is not yet initialized

to anything and contains garbage */

 *DangerousPointerToInt = 10;
 int *PointToArrayOfInt = new int[5];

 /* Defi nes an array of fi ve integers and allocates memory for the same */

 PointToArrayOfInt[2] = 5;
 // Assigns the third element a value 5

 int *PointToInt3 = new int(3);
 // Initializes the content of PointToInt3 to 3 after allocating memory

 cout <<"Explicitly initialized value "<< PointToArrayOfInt[2];
 cout << "\n implicitly initialized at the time of defi nition" << *PointToInt3;

 int *PointerToArrayOfInt2 = (int *) new int[4][3];
 int FirstDimension = 4;
 int *PointerToArrayOfInt3 = (int *) new int[FirstDimension][3];

 delete PointerToInt;
 delete[]PointToArrayOfInt;
}

62 Programming with ANSI C++

If the address belongs to the memory area occupied by the OS, running this
program will try to write in a protected area of the OS, which will then crash
the program or itself (DOS is known to crash because of such reasons whereas
Windows shows a blue screen instead).

If the address belongs to a user area, it leads to two possibilities. It may try
to write at a place that is already occupied by something (usually, a variable).
The other possibility is that nothing is stored at the place to which the dangerous
pointer is currently pointing.

In the fi rst case, when our code inadvertently changes the value of a variable,
it generates the wrong output. Though it is a hard error to crack, a clever and experienced
developer can debug such an error.

In the second case, when the dangerous pointer points to an area that is empty, nothing
wrong happens at the moment, and hence, there is no visual feedback to the programmer that
there is something wrong. It is, however, more serious and frustrating because, if something
is written later at this area (e.g., when the array size is increased), it may produce strange
results. If a compiler initializes the value of such non-initialized pointers to null, there may
be a run-time error because the program is trying to write at an undefi ned or illegal address.

Note When a pointer is not initialized, it may have strange consequences. For example, variables may start
changing their values between assignment statements or the program may behave properly at one
instance while not in another. Sometimes such errors crash the program and the programmer gets
immediate notifi cation, but it does not happen every time.

Now, have a look at following statements:

int *PointerToArrayOfInt2 = (int *) new int[4][3];
int *PointerToArrayOfInt3 = (int *) new int[FirstDimension][3];

These are examples of multidimensional arrays being constructed using dynamic
allocation. Here, the pointer returned by new needs to be typecast because it returns the
pointer to an array of two dimensions, which is different from the pointer to integer in
C++.

You can notice the simplicity of the new operator compared to malloc(). It is not necessary
to provide the explicit size or the number of bytes; new takes care of both. Typecasting is
also not needed because new does return the type of pointer one wants unlike the void pointer
returned from malloc(). As shown in Program 2.6, new can also be used to get memory for
the whole array and to initialize the value of the content.

int* PointToArrayOfInt = new int[5];
/* Getting memory for the whole array */

int * PointToInt3 = new int(3);
/* Initializing the content of PointToInt3 to 3 after allocating memory */

The syntax uses array notation [] for allocating memory for arrays and uses ()
for initializing the variable immediately after acquiring memory.

If an old program is being modifi ed, malloc() cannot be replaced with
new. This is because unlike malloc(), new does not return null pointer if the
memory is not allocated but throws an exception. If a C program has a malloc()
function, the function call will have a subsequent test for checking null value.

C++ differentiates
between a pointer to
an array and a pointer
to a data type. When
a programmer needs
to change their
usage, casting is
required.

Unlike malloc(),
new does not return
null when allocation
cannot be performed.

Overview of the C++ Language 63

If the programmer does not want to replace this code with the exception-based code, then
new(nothrow) must be used instead of new. The example will now be

include <new>
...
int* PointToArrayOfInt = new(nothrow) int[5];
if(!PointerToArrayOfInt)
cout << "error!";

Note The new(nothrow) operator does not throw an exception if memory is not allocated but returns null
pointer, similar to malloc(). It is advisable, though, to write a new code using exception handling.
Error handling using exception is cleaner and more readable. The header fi le <new> should be
included for using the new operator.

Consider the following statements:

int* PointerToArrayOfInt2 = (int*) new int[4][3];

and

int* PointerToArrayOfInt3 = (int*) new int[FirstDimension][3];

Both statements are correct. Here, FirstDimension is a variable and is
initialized before a call to new is made. (This is possible because the call to new
is made at run-time.) The second argument, however, must be a constant. The
statement

int SecondDimension = 5;
int* PointerToArrayOfInt4 = (int*) new int[FirstDimension][SecondDimension];

is wrong and is not acceptable because subsequent dimensions after the fi rst dimension
cannot be variables.

Consider the last two lines of the program. The delete operator is applied to pointer
variables. It is analogous to the free() function of C. These variables were earlier initialized
using new. The delete operation performs the job of releasing the memory. Thus, the memory
allocated using new is deallocated using delete. It should be noted that the array version of
delete uses [] before the variable name. So delete[]PointToArrayOfInt is valid, but delete
PointToArrayOfInt[] is invalid.

If memory is allocated using malloc() and deallocated using delete, or allocated using
new and deallocated using free(), then the results can be surprising. The standard says that
the result is undefi ned, which means that a specifi c compiler may take any action it deems
fi t. It may even crash the program.

2.9.3 Placement new
Some ways in which the new operator can be used are as follows:

1. int* p = new int;
 // Normal new call
2. int* p = new(nothrow) int;
 /* Does not throw exception in case memory is not
 allocated and returns the pointer value as null */
3. int* p = (int*) new int[3][4];

Allocation using new
and deallocation using
free() or allocation
using malloc() and
deallocation using
delete can have
surprising conse-
quences. It is not
recommended to use
them this way.

64 Programming with ANSI C++

 // For allocating memory to arrays
4. int* p = new int(3);
 // For initializing the variable at the time of memory allocation

The ‘placement new’ is a variant of new. It works in the following manner:

int* p = new int; // normal new
int* q = new(p) int; // placement new

Here, no memory is allocated for the variable q; its address is the same as p. It is useful in
some special cases. Suppose images from somewhere are being read and displayed one after
the other. Assume that the images are stored in an object of class image one after the other
and that a pointer is pointing to the area of memory that holds the image, known as position.
Now, when the fi rst image is loaded, the following is written:

position = new image(FirstImage);

This will create a new object, allocate memory for it, and initialize the memory with
FirstImage. For all subsequent images, the code will be

position = new(FirstImage) SecondImage
. . .
position = new(SecondImage) ThirdImage
. . .

thereby storing every image at the same location where the fi rst image had been stored.
Readers may question the need for using placement new in this case, instead of writing a
simple assignment such as *position = SecondImage.

If both the images, FirstImage and SecondImage, are of the same size, then this statement
is acceptable. If they are of different sizes, placement new is the only option available as it
calls the destructor of FirstImage fi rst and then it calls the constructor of SecondImage.

Note Placement new is useful when we want another pointer to occupy the memory given to an earlier
pointer. Unlike normal copy operation, placement new calls the destructor of the previous object
and the constructor of the new object replacing it, thus avoiding any unwanted consequences. For
example, suppose the pointer points to images and the second image is smaller than the fi rst one.
Merely copying the values will lead to the second image occupying some part and the remaining part
containing the older image. It is advisable to use placement new if such effects are to be avoided.

2.9.4 new vs malloc()
Some of the advantages of new over malloc() are as follows:

1. The syntax of new is simpler than that of malloc(). No size, no void pointer, and no casting
are required for the new operator.

2. new is an operator, whereas malloc() is a function. Operators execute faster than functions.
Context switching can be avoided with operators as they are not functions. Their equivalent
assembly code should be directly pasted by the compiler at the time of compilation.

3. new has various forms as discussed in Section 2.9.3. malloc() does not have such
facilities.

4. new is class-aware. It is possible to change the meaning of new to suit the need of a user-
defi ned class. This is known as operator overloading.

Overview of the C++ Language 65

Notes
1. It is possible to have an operator implemented as a function in C++. In that case, there will be no

advantage if the function is not defi ned inline.
2. Unlike malloc(), new can be overloaded such that class objects can be given memory as per the

need and at the place the user wants it. When new is overloaded for any class, calling new with
the object of that class follows the process defi ned by the developer of that class and not by the
conventional memory management defi ned by C++.

2.9.5 Signifi cance of delete Operator
The delete operation does not seem to be important when used in programs. The use of
delete is not important in places where the machine is shut down at the end of the day, for
example, an educational institute. However, there are places where the machine is not shut
down daily and the programs continue to run without any halt for a very long period, for
example, web servers and related components. In such cases, the memory space occupied
by the new variables will continue to increase while the program is running unless they are
deleted periodically. At some point of time, the memory will be exhausted and the program
will crash. On the other hand, if the machine is shut down, the space occupied is released
automatically and there will be no problem of insuffi cient memory.

Note Web servers run for long periods. In such programs, if the objects introduced by new do not have a
corresponding delete to be used when they go out of scope, the memory occupied by such objects
is not regained and the program crashes when the memory is full. C++11, obviously inspired by Java,
added garbage collection; it is a process by which the memory wasted by such objects that have gone
out of scope can be reclaimed and problems such as mentioned here can be avoided.

2.9.6 New Casting Operators, typeid, and throw
C++ has new function-like castings as well as old C-style castings. To convert an int variable
into a fl oat in C, FloatVar = (fl oat) IntVar; is used. However, in C++, this is written as

FloatVar = fl oat(IntVar);

which is more readable. The old C-style casting is still available and is very popular among
programmers.

Four new casting operators have been recently added by the C++ Standardization
Committee for providing better casting operations than that offered by the old C-style
casting. These are dynamic cast, reinterpret cast, static cast, and const cast. The old
C-style cast is still valid in C++, though using new casting operators is recommended. These
are discussed in Sections 11.2–11.5 in Chapter 11. typeid also is used in the context of RTTI
and throw is used when exception handling is used to trap errors in C++.

The following code illustrates how try, throw, and catch can be used in a given
circumstance. The block covered by try is monitored by C++ during the execution of the
program. When a throw statement is encountered, the control gets permanently transferred
to the corresponding catch statement. In the following case, if throw error1 is executed,
the control gets transferred to catch(ErrorType1 er), and if throw error2 is executed, the
control gets transferred to catch(ErrorType2 er) block.

try
{
 ErrorType1 error1;

66 Programming with ANSI C++

 ErrorType2 error2;
 ...;
 throw error1;
 ...;
 throw error2;
 ...;
}

catch(ErrorType1 er)
{ ... }

catch(ErrorType2 er)
{ ... }

The following example suggests how typeid can be used. It requires a typeinfo header to be
included. The typeid operator helps getting a typeinfo object associated with that object. The
typeinfo object contains information about the type including the name of the type. When one
writes cout << typeid(SomeObject).name() and if the type of SomeObject is int, it will display
"int". If the type of SomeObject is user-defi ned class employee, it will display "class employee".

#include <typeinfo>
...
void main()
{
 ...
 cout << typeid(SomeObject).name();
}

2.10 CONDITIONAL STRUCTURES AND LOOPING CONSTRUCTS

if and else provide conditional execution of code in C and are available in the same form in
C++. Switch case is also available in C++.

The use of loops can cause a segment of a program to be repeated a given number of
times. This repetition continues until the condition is true; else, the loop ends and the control
passes to the statements following the loop. Loops in C++ include while, do-while, and for
constructs. All these constructs work in the same way as in C.

■ RECAPITULATION ■

 • Identifi ers in C++ are similar to that in C except that
even identifi ers larger than 32 characters are signifi cant
in C++.

 • Keywords and data types available in C++ are
supersets of C.

 • There are three different categories of data types in
C++. The fi rst category consists of functions available
in both C and C++. The second category includes those
that are available in C, but have an extended meaning

in C++. The third category of data types are the ones
that are not available in C but are additionally provided
in C++.

 • const pointers and pointer to const can be useful in
programming to avoid errors while the programmer is
required to pass pointers to functions.

 • References can be used in three different ways, that is,
a standalone reference, dummy arguments passing to
a function, and return value from the function.

Overview of the C++ Language 67

■ EXERCISES ■

Multiple Choice Questions

1. When a reference is defi ned, it can refer to
__________.

 (a) a const pointer
 (b) a pointer to constant
 (c) a valid defi ned variable
 (d) an operator
2. C++ keywords __________ those in the original

C++ from Stroustrup.
 (a) are exactly the same as
 (b) are completely different from
 (c) have additional keywords than
 (d) have less keywords than
3. int secondVariable; double thirdVariable =

sqrt(double(secondVariable)) ;
 This code will __________.
 (a) give syntax error at the declaration of

thirdVariable

 (b) will give no error and initialize thirdVariable
at run-time

 (c) result in the program getting compiled but it is
not executed properly

 (d) result in the complier not compiling this
program

4. A reference variable provides a kind of
__________.

 (a) link to the original variable
 (b) pointer to the original variable
 (c) copy of the original variable
 (d) relation to the original variable
5. In C++, a variable can be declared __________.
 (a) anywhere in the main() function declaration
 (b) anywhere in the program before its fi rst usage
 (c) anywhere in the program
 (d) only at the beginning of the program

■ KEYWORDS ■

Bool variable It is a variable that can have only two values,
true and false. It is advised to use bool variables for
checking the truthfulness of an expression in C++.

Constant pointer It is a pointer that cannot change the
address it is referring to. The pointer value (address)
cannot be changed, but the content can be changed.

Dynamic initialization In C++, initialization to a variable
can take place at the run-time. This is known as dynamic
initialization.

new and delete operators new is an operator to get
memory from heap. It is a better mechanism than
malloc(). delete in C++ does a job similar to the
free() function in C, that is, it releases the memory
occupied by the new operator.

new[] and delete[] operators These operators are
similar to new and delete except that they allocate and
deallocate memory for an array.

Pointer to constant It is a pointer that can change
its address but the content of the address cannot be
modifi ed.

Reference Reference is a mechanism to make an alias of
a variable. When a referring variable is made to refer to
a referred variable, both variables become alias of each
other. Changing the value of either of them changes both
their values.

typeid and throw typeid is used for obtaining the
typeinfo object associated with a given class or an object
and throw is used for handling exceptions.

 • References are more readable than a pointer while
having the same effi ciency.

 • C++ introduces a bool data type, which can be used
for conditional testing in a more readable way.

 • C++ provides dynamic initializations of variables.
 • C++ introduces the scope resolution operator, which

can be used for accessing global variables with the
same name as a local variable.

 • new and delete are operators for memory
allocation and deallocation in C++. They have multiple
forms.

 • try, catch and throw operators are used for
exception handling, and typeid is used for accessing
the type of the object associated at run-time.

68 Programming with ANSI C++

 6. Though C++ standard does not impose any limit
on the length of an identifi er, the __________ may
impose one.

 (a) interpreter
 (b) preprocessor
 (c) compiler
 (d) coder
 7. Which of the following is not an operator that is

available only in C++?
 (a) : : *
 (b) typeid
 (c) throw
 (d) : :
 8. Reference variables are introduced in C++

__________.
 (a) in addition to pointers
 (b) to have more fl exibility than pointers
 (c) to remove the usage of pointers
 (d) to eliminate some of the problems associated

with the usage of pointers in C
 9. Void pointers in C++ __________.
 (a) work in the same manner as in C
 (b) are not available
 (c) cannot be automatically typecasted
 (d) can be automatically typecasted
10. When considering the constants, C++ __________

constants that are acceptable in C.
 (a) accepts only a few
 (b) accepts all
 (c) accepts only backlash
 (d) accepts only symbolic

Conceptual Exercises

1. What is the signifi cance of const pointer? Give two
examples.

2. What is the signifi cance of pointer to constant? Give
two examples.

3. Suggest a case where both a pointer to constant
and a const pointer of type <datatype> const *
const <pointer> are used in a single expression,
for example, int const * const p=q.

4. Defi ne few string objects. Do strings in C++ behave
like a normal data type? What happens if a string is
assigned to another using ‘=’? Compare two strings
using ‘= =’. What is the result?

5. What is the advantage of returning a reference from

a function? Suggest some applications of returning
a reference other than that given in the chapter.

6. What is the importance of a bool variable? Choose
any program written in C that uses conditional
expressions. Try to incorporate bool variables in the
program and then run it as a C++ program.

7. What is dynamic initialization? Where can it be
useful?

8. What is the use of the scope resolution operator?
Suggest an example of its use in practical
circumstances. Does it have any use other than
separating out global variables from local variables?

9. What are the advantages of using new and delete
operators over malloc() and free() functions?

Practical Exercises

The following exercises require C programming
skills and have references to C programs. If you have
written some C programs in the past, use them.
Otherwise, write a new one and perform the following
exercises.
1. Write a C program with a for or while loop. Include

some if conditions in this program and compile the
program as a C++ program. (Change the extension
to cpp in Windows or Novel and compile or change
the extension to C in UNIX and compile using CC,
or change the extension to cpp and compile using
C++ in Linux.) Verify that all the constructs work in
the same way as in C++.

2. Read your compiler manual or have an online help
of your compiler. (Use MSDN for VC++.) Try to
fi nd out rules for defi ning identifi ers. Try to get the
list of valid keywords.

3. Normally, C programming books end with the
ordered linked list program. You might have seen
or written one program yourself. Rewrite the same
program using new and delete instead of malloc()
and free().

4. Read the compiler manual to get the list of operators.
Try to read the descriptions of the operators studied
in the chapter.

5. Rewrite, using reference as an argument, any
function that you have earlier written in C using a
pointer as an argument.

6. Rewrite any C function that returns a pointer such
that it now returns a reference.

Chapter 3
Classes and Classes and
ObjectsObjects
3.1 INTRODUCTION TO CLASS AND OBJECT

Class is one of the most fundamental needs for an object-based or object-
oriented programming language such as C++. For a problem to be solved in
C++, the entities of the problem are to be represented as classes. Backward
compatibility with C is considered sacred by C++ designers. Thus, it is
theoretically possible to write a program without classes, but practically it
is very diffi cult.

Consider a program to be written for printing student marksheets.
The entities in this case are the student, examiner, supervisor, moderator,
marksheet, and merit list. Entities are represented as classes in a C++
program. The information about these entities that we are interested in
storing is known as the attribute of the class. Attributes are of two types—
data and methods (functions), as shown in Fig. 3.1.

One of the entities of the marksheet program is the examiner. The data
attributes of this entity (examiner) may be the examiner’s subject, name,
address, phone number, and affi liation. The function attributes of the
examiner entity may be activities such as reading and printing details about
examiners and assigning the bunch of answer sheets.

Let us look at an example of an object of student class. Consider the
problem of printing student information, as shown in Program 3.1.

Learning Objectives

• Class and object
• Function and data members

of class
• Access specifi ers: public

and private
• Class and struct in C and

C++
• this pointer
• C++ unions and anonymous

union
• Scope resolution operator
• Static data members of class
• Array of objects
• Pointers to objects and

members of class
• Nested classes and their

usage
• Local classes
• const objects and their use

Fig. 3.1 Class and its attributes

Data attribute
[Roll number, name,

address]

Function attribute
(Methods)

[printdetails()]

Student
class

Supervisor
class

Data attribute

Function attribute

Data attribute
[Subject, name,

address, affiliation]

Function attribute
(Methods or member

functions)
[Reading, printing,

assigning]

Examiner
class

70 Programming with ANSI C++

How the Program Works
In this program, student is an example of a class that represents a real-world student (an
actual student). The attributes of the student class are RollNumber, Name, Address, and
PrintDetails, where PrintDetails() is a function attribute and the rest are data attributes.
Studentl is an object of type student. It can be noted from the data types of Name and Address

that string is available as a data type in C++. However, we need to write #include
<string> for using manipulation routines. For example, this statement needs to
be included for using "=" for assigning one string to another or for using "=="
for comparing two strings. Technically, it is a built-in class. Name and Address
are objects of the class string in this example. We would be using strings
throughout the programs in our text.

It is interesting to see the way student is defi ned and used.

student Student1;
// The C-like defi nition will be "class student Student1"
// The C++ defi nition is more like built-in defi nitions

The defi nition is more near to the normal data type defi nitions; it is not
necessary to mention class before the defi nition of the object. Look at the

PROGRAM 3.1 Example of a class
//ClassExample.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
 public:
 int RollNumber;
 string Name;
 string Address;
 void PrintDetails()
 {
 cout << "Roll number is" << RollNumber << "\n";
 cout << "Name is" << Name << "\n";
 cout << "Address is" << Address << "\n";
 }
};
/* The semicolon is important as it indicates the end of class defi nition */

void main()
{
 student Student1;
 // The C-like defi nition will be "class student Student1"
 // The C++ defi nition is more similar to built-in defi nitions

 Student1.RollNumber = 1;
 Student1.Name = "Robin Singh";
 Student1.Address = "New Delhi";
 Student1.PrintDetails();
}

String is a built-in
class available to C++
programmers. The
header fi le to use this
class is <string>.

The second step after
defi ning a class is to
defi ne the public and
private members of
the class.

Classes and Objects 71

familiar dot (.) notation used to access structure elements. It can be used for
accessing class elements as well.

The function PrintDetails() is defi ned inside the class. It is known as a
member function or function member of the class. In C, we can have only data
members in the structure; the function member is a new type of member available
in C++. We will be considering more examples of classes in subsequent sections.

3.2 CLASSES AND THEIR ATTRIBUTES

Finding out entities and their attributes is an important prerequisite for writing a program in
C++. Consider, once again, the case of the marksheet problem. A programmer may decide to
have entities such as student, examiner, invigilator, question paper, and marksheet.

Consider another class, say Marksheet that may have data attributes such as college name,
subject, maximum marks, and passing marks. It might have function attributes such as
printing the marksheet, reading the marksheet data, providing statistics such as the number
of students passed and the number of students with fi rst class, and printing a merit list.

Finding out classes and attributes for a given problem is intuitive for small problems. In
most cases, a programmer is able to generate a hierarchy of classes and attributes without
any trouble. However, it is very diffi cult for a large system. A methodical approach is needed
to design classes and their attributes. Therefore, we need to study the system in a formal way
and have a systematic design for classes and their attributes. Further evolution of the system
should also be taken into account. There is a separate discipline dealing with this issue and
the scope of this book does not cover the design approach in further detail. However, such a
formal design approach is not needed for introduction to C++.

Another important point to be understood is that merely knowing the C++ syntax does
not enable one to program in an object-oriented manner and make use of its advantages. One
needs to know more for programming in C++. Where to use references, which type of coding
to use, whether to use object-based or object-oriented, how to use templates, when to inherit,
what to inherit, when to use virtual base classes, when to use virtual function, and so on are
some of these aspects. These issues will be discussed as and when needed throughout the text.

The phrase object-oriented programming is misleading at times. It means programming
by generating a class hierarchy such that we have a pointer to the root class (popularly
known as a base class) and then use that pointer to address any object of any class in the
entire hierarchy. Programs using C++ can be written in two different and distinct ways—
object-based and object-oriented. These details are discussed in depth in Chapter 9.

Note A class in C++ is very similar to a struct in C. If a class contains only data attributes, then it is
almost identical to a struct of C. The difference is that the class defaults to private for members,
whereas the struct defaults to public.

3.3 ANATOMY OF CLASS

A class is defi ned in the following format:

class class_name
{
 access_specifi er:
 data and functions

Designing systems
requires looking at
classes and their
attributes before
programming.

72 Programming with ANSI C++

 access_specifi er:
 data and functions
 access_specifi er:
 data and functions
 ...
} object list;

The following is an example of a program with a class defi nition.

//PlayerClassEx.cpp
#include <iostream>
#include <string>
using namespace std;
class player
{
public:
 string PlayerName;
 string PlayerGame;
private:
 int PlayerNo;
 public: void InsertDetails()
 {
 cout << "Insert player number";
 cin >> PlayerNo;
 cout << "Insert player name";
 cin >> PlayerName;
 cout << "Please enter the game he/she plays";
 cin >> PlayerGame;
 }
void DisplayDetails()
{
 cout << "Player number is" << PlayerNo;
 cout << "Player name is" << PlayerName;
 cout << "The game played is" << PlayerGame;
}
};
/* The object list here is usually empty. However, instead of the empty statement, we
can write }VisAnand; and it defi nes VisAnand as a player object */
void main()
{
 player VisAnand;
 VisAnand.InsertDetails();
 VisAnand.DisplayDetails();
}

The defi nition of a class always starts with the keyword class and ends with a semicolon.
The object list follows the class defi nition and contains the objects to be defi ned for that

Classes and Objects 73

class. The object list is optional and is hardly used. (A similar object list is
available in struct as well, which again is hardly used.) It should be noted that
if the programmer forgets the semicolon at the end of a class defi nition, the
items defi ned after that are treated as an object list and the C++ compiler gets
confused. We have already seen that the variables of type class are known as
objects. Private and public are the access specifi ers, which specify whether the
data defi ned will be available to the users of the objects of the class.

Look at the modifi ed main() function of this program.

void main()
{
 player VisAnand;
 VisAnand.InsertDetails();
 VisAnand.DisplayDetails();

 // The following works because it is a public variable VisAnand
PlayerName = "Vishwanathan Anand";

 /* The following does not work because it is a private variable and is
not available to objects */

 // VisAnand.PlayerNo = 5;
 /* Uncomment this statement to see what compilers do when an object tries

to access a private member */
}

VisAnand.PlayerNo is a variable PlayerNo of the object VisAnand of the class player. The
PlayerNo variable is defi ned under the private section, so it cannot be accessed by an object
of the class player. If the program contains such a statement, the C++ compiler will fl ag an
error and the program will not be compiled.

Though PlayerNo is not directly available for modifi cation, it is available in an indirect
way. When the InsertDetails() function is used for entering information in an object of the
type player, the name as well as the player number is entered.

When VisAnand.InsertDetails() is called, the variables of object VisAnand including
the private variable PlayerNo are actually manipulated. PlayerNo, earlier having a garbage
value, is now modifi ed to have the value specifi ed by the user. The difference between
direct access and indirect access must be clearly understood.To reiterate, InsertDetails is a
member function of the class player. VisAnand is an object (not a member function) of that
class and it cannot have access to PlayerNo directly. If the object wants to access that private
variable, it is obtained through InsertDetails().

Note When an object accesses a public member, the access is direct. When an object calls a member
function and the member function in turn uses a private variable, it is indirect access. Private
members may not be accessed directly; however, indirect access is possible.

The reason behind this is that it provides a way to control the access to the private variables
as well as allow only specifi c types of access. For example, InsertDetails() does not let a
user change an old value of PlayerNo or print it; it just takes it as an input.

Unlike PlayerNo, VisAnand.PlayerName is a variable PlayerName of the object VisAnand of
the class player. It is defi ned under the public access specifi er unlike the PlayerNo variable.

A class defi nition is
similar to a struct
defi nition ending with
a semicolon. One
can defi ne objects
immediately after
the class defi nition
before the semicolon.

The data defi ned
under public is avail-
able to the objects
whereas the data
defi ned under private
is not available to
them.

All member functions
can access private
as well as public
variables of the same
class.

74 Programming with ANSI C++

One can directly access the variable and modify it if it is defi ned in the public section. Thus,
it is possible to write

VisAnand.PlayerName = "Vishwanathan Anand";

Public data members such as PlayerName indicate a bad design. A good design has only
member functions in the public section. The reason for this is clearly explained in Section 3.4.

As shown in this example, a programmer is free to decide the order in which public and
private derivations appear. However, in this text, the private sections are written before
the public section, and writing multiple public and private sections has been discouraged,
as there is no advantage either way. It is more important to understand the need for access
specifi ers. This is the point under discussion in Section 3.4.

3.4 ACCESS SPECIFIERS

As mentioned earlier, a problem with large C programs is that a programmer loses its
visualization, because a single unit comprises various abstractions. It is diffi cult for a
programmer to look at the entire program and understand what is going on.

A reason for this problem is that the data members and functions are not in the form of
comprehensible units of information. Once the function starts, or struct is accessed, all
the data members defi ned inside, whether needed or not, are available. This complicates
handling the program because one has to deal with unnecessary data members as well.

Ideally, the programmer should refrain from accessing unnecessary items of the class and
should have a simplifi ed view of the attributes that need to be used in the program, be it a
function or a structure.

For better results, a differentiation is required between the data members that are needed
and those that are not accessed by the user. Similar differentiation is also needed between

functions necessary for the user and those needed just for maintenance of the
object.

This point can be better illustrated using an example of the classic data
structure called stack. Stack is a data structure where data is inserted and deleted
in a last-in, fi rst-out manner, that is, the value inserted at the end is issued out
fi rst. Insertion in a stack is known as push and deletion is known as pop. Insertion
and deletion in the stack are to be done only at the top, and hence, these routines
need not provide the location to insert or delete. This location is indicated by a
data member called the stack pointer, which can be an index of the array as in
Program 3.2 or an actual pointer having the address of an item to push or pop.
The use of stack is very common in the system software.

Figures 3.2 and 3.3 illustrate the stack operations. A stack can be implemented
using arrays or even linked lists as mentioned earlier, though our example of
C++ implements a stack as a class using an array.

Let us fi rst defi ne the stack as a structure and identify the problems encountered
in doing so. Then, let us see how defi ning it as a class eliminates these problems.

Hence, fi rst consider the example of the stack being defi ned as a structure. As
far as the member functions are concerned, we have already seen that there are
two operations possible on a stack, that is, insertion at the top known as push()
and deletion from the top known as pop(). Though there may be other operations

A good class design
shields all data mem-
bers by defi ning
them as private and
provides access to
them using carefully
crafted public func-
tions, thus controlling
the way they are
manipulated.

A C program over-
exposes everything it
uses, whether it is
a function or a
structure. C++ helps
the programmer by
making only the
useful parts visible.

Classes and Objects 75

possible on the stack (such as fi nding which element is present at the top, without removing it),
we will consider only these two functions for our program.

Now, let us consider data members. Again, we will consider only two of them, though
there may be more in reality. The fi rst is the array, where the elements will be stored, and
the second is the stack pointer, which indicates the place in the array where the addition or
removal of elements takes place.

With respect to a class, the stack pointer is manipulated by both the functions present in
the stack class. Thus, the push() and pop(), which are the member functions of the stack
class, will have access to both the array and the stack pointer, as both are private members.

3.4.1 Expression Parser
Now, think of an external function such as an expression parser. Before we look at how a
stack is used by an expression parser, let us understand what it is.

An expression parser is an important component of the compiler. It looks at an expression
and separates its basic elements. Then, it converts them into a form understandable by the
next routine of the compiler. So, if we provide A + B to an expression parser, it comes out
with the answer that there are two variables A and B and they are operated by the operator
‘+’. Optionally, it can convert the given expression into some other type of expression. An
example of an expression parser is one that converts an expression into a postfi x expression
(i.e., converting A + B into A B+). Similarly, it might convert A + B/C into A BC/ +. This is
known as reverse Polish notation and is explained in Exhibit 3.1.

Fig. 3.2 Stack push process

Element 3
Element 2
Element 1

Stack pointer Stack pointer

Stack pointer
Element 4

Element 3
Element 2
Element 1

Element 3
Element 4

Element 2
Element 1

Before push After push

Fig. 3.3 Stack pop process

Element 3
Element 2
Element 1

Stack pointer Stack pointer Element 3
Element 2
Element 1

Before pop

Stack pointer Element 2
Element 1
After pop

Exhibit 3.1 Reverse Polish notation
Conversion of an expression such as A + B to AB+ is called infi x to postfi x conversion and the notation AB+
is called reverse Polish notation. One might wonder why the expression parser does something so weird.
The answer is as follows:

An expression might contain variable number of operators and operands. Hence, it is not as straightforward
for a complier to look at an expression and decide how to execute it. It needs a simpler (in its view, which is
quite contradictory to humans) form to calculate. AB+ is a better way for a compiler to operate than A + B.

76 Programming with ANSI C++

Stacks use the popular logic for the expression parser program. The expression parser
inserts data members and operators, and takes them out from the stack when needed. In the
process, it converts them into the required expressions. The parser needs to call push() and
pop() functions to do this process.

We can clearly see that the expression parser program needs help to construct a stack;
it pushes a few elements when it deems fi t and pops them out when it is appropriate. Does
it need to understand the following: How are these operations performed? How is the
stack implemented? What is a stack pointer? What is an array? The clear answer is no.
The expression parser only requires push() and pop() operations to be available. This is
analogous to the example of the car driver discussed in Chapter 1. The car driver only needs
to have access to the accelerator, steering wheel, brakes, and clutch, without really worrying
about how they work.

It is better if the expression parser is not even aware of the existence of data members,
let alone knowing and modifying the stack pointer directly. This helps avoid accidental
modifi cation of the stack pointer. Again, this is analogous to the car driver having the access
only to the accelerator pedal and not to the petrol valve directly.

This is not possible if we are using C-like structures. Any program that uses a stack has
access to the stack pointer data member and can manipulate it. However, a program that uses
classes can actually avoid such problems by defi ning the stack pointer as private.

Program 3.2 demonstrates the stack class and how to manipulate its objects.

PROGRAM 3.2 Private and public members of a class
// StackSimple.cpp
#include <iostream>
using namespace std;

class Stack
{
private:
 int StackPointer;
 int StackArray[10];
 /* Data members are hidden from the objects of stack class and hence constructs use those

objects like an expression parser */
public:
 void InitializeSP()
 {
 StackPointer = 0;
 }

 void push(int value)
 {
 if(StackPointer == 10)
 /* we have inserted until 9th element */
 cout << "Stack overfl ow! Cannot insert";
 else
 {
 StackArray[StackPointer] = value;
 StackPointer++;
 }
 }

 int pop()
 {

Classes and Objects 77

How the Program Works
Using the class objects This program contains a class stack. It contains two functions,
push() (which inserts an integer into the stack) and pop() (which removes one element from
the stack). There is an array, StackArray, which can accept ten such pushed elements. There
is also a variable, StackPointer, to indicate the index at which elements can be inserted into
the stack. StackArray and StackPointer are defi ned as private.

The program contains an object MyStack of class Stack. Let us see how MyStack works. We
need to call MyStack.push(<element>) to push an element into the stack and PopedElement
= MyStack.pop() to have the element popped out. MyStack is an object of the class Stack
and it cannot access either StackPointer or StackArray directly. Thus, it is good to have
MyStack as an object in the expression parser program. The expression parser can create a
stack object (using statements such as Stack ExpressionStack;), can push and can pop, but it
will not allow expressions such as ExpressionStack.StackPointer = 8 or ExpressionStack.
StackArray[8] = l2.

Defi ning members as public or private Defi ning the members as private or public is
important from the design point of view. The visibility, service, and the difference in the
implementation and interface of a class are maintained by such a selective defi nition.

When we are using stack, for example, while building an expression parser, we can call
push() to insert an element in the stack and pop() to remove an element from the stack, but

we need not worry about how the stack is actually implemented. In this example,
the stack is implemented using an array, which is not seen by MyStack. Neither
the array nor the stack pointer is visible outside the class Stack.

Implementation vs interface problem Let us visualize this process from
the viewpoint of service. The attributes that provide services to outsiders are
to be kept public and those that provide services only to member functions are
to be defi ned as private. In our example, push() and pop() provide services

 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer--;
 return StackArray[StackPointer];
 }
 }
};

void main()
{
 Stack MyStack;
 MyStack.InitializeSP();
 MyStack.push(1);
 MyStack.push(2);

 cout << MyStack.pop() << "\n"
 /* 2 is the output, inserted later */
 cout << MyStack.pop() << "\n";
 /* The output is now 1, inserted earlier */
}

What is to be
visualized outside the
class is to be defi ned
as public and
the rest should be
defi ned as private.

78 Programming with ANSI C++

to outsiders such as the expression parser, whereas StackPointer and StackArray provide
services to their own members such as push() and pop(). This is sometimes referred to as the
implementation vs interface problem.

The push() and pop() functions contribute to the interface (to the outside world) and
StackPointer and StackArray are a part of implementation. This shows how an interface is
actually modelled in the class. An advantage of separating implementation and interface is that
we can change the implementation without changing the interface. Thus, if we now decide to
implement the push and pop operations using a linked list, both push() and pop() functions
need to be rewritten, but the function (e.g., expression parser) that uses them need not change.

Private members, as explained, are hidden from the objects of the class. Though the data
members are accessible to member functions, they are hidden from non-member functions.
This is an important principle of object-oriented programming; it is known as information
hiding and has been discussed earlier. There is an exception to this rule, called friend
functions, which is described in Chapter 4.

Object initialization We will now discuss the importance of calling InitializeSP() before
doing any push or pop operations on the stack. InitializeSP() initializes the stack pointer
to zero. If a member is pushed, it is incremented and makes it possible for the member to
be added in the right slot. Without InitializeSP(), the stack pointer will initially contain
garbage value. Incrementing and decrementing garbage values also results in garbage. Thus,
calls to push() and pop() will result in garbage manipulation. Suppose StackPointer initially
has a random value l00. A call to the push() function will result in an element insertion at the
array position l00, which is not a place owned by our array. It can result in unforeseen
problems.

Need for constructor As already mentioned, whenever a stack type object is defi ned,
if a programmer fails to call InitializeSP() before any push() operation is performed, it
will lead to errors or problems. However, it is possible to automate InitializeSP() in C++
in such a way that when an object is defi ned, the stack pointer is automatically initialized
to zero. This is of great help because a programmer need not worry about mandatory calls
to initialize the stack pointer every time a stack is defi ned, which used to be a common
problem. C++ provides a solution to this problem in the form of constructors, which are
discussed in detail in Chapter 5.

Other than private and public specifi ers, there is one more access specifi er called
protected. It is useful when inheritance is involved. This specifi er is discussed in Chapter 9.

3.5 STORAGE REQUIREMENTS

Classes and variables of classes (objects) in C++ have different memory requirements
compared to other data types and variables. Let us try to understand the difference with the
help of an example. Consider the following:

struct student
{
 int RollNo;
 char Name[30];
 char Address[60];
};

Classes and Objects 79

This defi nition in C does not occupy any memory. This is because what is being
defi ned is actually a formation or arrangement for a specifi c aggregation. We are not
defi ning any variable that needs storage but are only providing an outline of what the
student data members should contain. It is analogous to providing a sketch of a machine.
The actual machines will be produced later using the same sketch. We need raw materials
only when we build the machine and not at the time of drawing the sketch. Similarly,
only when we defi ne an object of the class is the memory occupied to hold the data
members.

Unlike struct, when we defi ne a class, the memory required for the member functions
of the class and the static data members is allocated immediately (static data members are
discussed in Section 3.9). On the other hand, when we defi ne objects of the class, only the
memory needed for storing non-static data members (normal data members that are not
static) is obtained. So far, we have only dealt with non-static members.

Note Memory allocation is done in two phases. In the fi rst phase, the function members and static members
are allocated their memory when the class is defi ned, that is, only once in the lifetime of the program
execution. On the other hand, whenever the object is defi ned, separate memory for that particular
object’s non-static data members is allocated.

If an object is defi ned l00 times, memory is accordingly allocated l00 times for those non-
static data members. This is due to the fact that, in a C++ object model, the functions and
static members are stored only at a single place and are shared, whereas non-static members
are not shared and are stored separately with each object. Every object has its own personal
copies of non-static members.

Consider the class student defi ned in Section 3.1. Suppose we add the following code in
the main function:

student FirstStudent;
student SecondStudent;

Then, we have only one PrintDetails() function shared by both the fi rst and the second
students. It is defi ned and memory is allocated immediately when the student class is
defi ned. Details such as roll number, name, and address come into existence and memory
is allocated for them when we defi ne the objects of the student class. Having a separate
roll number, name, and address for each object is important. If every object does not have
a separate set of non-static data attributes, the object will lose its identity and all objects
will have the same name, roll number, and address; they will be the same for the user.
So, the information displayed by FirstStudent.RollNo is different from that displayed by
SecondStudent.RollNo.

This is not the case with the PrintDetails() function. Irrespective of the number of
objects defi ned, there is a single copy of PrintDetails() available to all of them. So, when
we call FirstStudent.PrintDetails() or SecondStudent.PrintDetails(), the same function
is being called.

How can PrintDetails() print the fi rst student’s details in the fi rst case and the second
student’s details in the second case? We do not seem to pass anything to the function. It is
important to note that a pointer to the invoking object (&FirstStudent in the fi rst case and
&SecondStudent in the second case) is always passed as an implicit argument to the member
function, and this is why it works perfectly in both the cases.

80 Programming with ANSI C++

Note FirstStudent.PrintDetails() is technically equivalent to PrintDetails(&FirstStudent)
and SecondStudent.PrintDetails() to PrintDetails(&SecondStudent). The pointer to
invoking the object of the class will be passed to the function. The pointer that is passed this way
(&FirstStudent in the fi rst case and &SecondStudent in the second case) is called this pointer.
We can actually address the pointer by the keyword this.

The passing of a pointer to the invoking object helps in keeping a single copy of the
function for all objects. One needs to understand the importance of sharing the member
function among all the objects. No matter how many objects we create, memory allocation
for a single copy of the member function is enough. Moreover, having separate sets of exactly
the same member functions for each individual object does not make sense.

Note Even if we defi ne l00 student objects, there will be a single copy of the PrintDetails() function.
In the same way, even, if we have 0 student objects, we still have one copy of the PrintDetails()
function. Alternatively, if we have 0 copies of the student object, there are 0 roll numbers. If we have
l00 copies of the student object, we have l00 roll numbers, one for each object. Therefore, while
defi ning a class, the memory for the function is allocated and while defi ning the objects, the memory
for the non-static data members is allocated.

3.6 DIFFERENCE BETWEEN STRUCTURE AND CLASS IN C++

The difference between structure and class in C++ is blurred. There is just one (seemingly)
insignifi cant difference between them. We have seen public and private access specifi ers;
we can omit them in defi ning a class as shown in Program 3.3.

PROGRAM 3.3 struct and class
// StructClass.cpp
#include <iostream>
#include <string>
using namespace std;
class employee
{
 /* Access specifi er is omitted here, so it is private by default */
 int EmpID;
 string Name;
 string Designation;
 string Department;
 int Salary;
public:
 void InsertDetails()
 {
 cout << "Insert employee ID";
 cin >> EmpID;
 cout << "Insert name";
 cin >> Name;
 cout << "Insert designation";
 cin >> Designation;
 cout << "Insert department";
 cin >> Department;
 cout << "Insert salary";
 cin >> Salary;
 }

Classes and Objects 81

Note When we defi ne a class and defi ne its data members without writing them under any access specifi er,
they are treated as private by default.

How the Program Works
If this program is slightly modifi ed by replacing the fourth line class employee by struct
employee, the program works just the same. However, there is a difference, which is not visible
at the moment. Add the following line in both the programs (with employee as a class in the fi rst
program and as a structure in the second program). The main function is now different as follows:

void main()
{
 employee Robin;
 Robin.InsertDetails();
 Robin.DisplayDetails();
 // The following line is added
 Robin.EmpID = 10;
 /* This line will not be compiled in the case of class,
 but it will work fi ne in a structure */
}

The fi rst program is not compiled, but the second one is. The default behaviour in the
struct defi nition is different. An attribute without an access specifi er name is treated as public
in structure unlike private in class. Here, EmpID in the fi rst program is private whereas in
the second it is public. It can be accessed by the second program’s statement but not by that

of the fi rst program and hence the second program is compiled. It is not diffi cult
to understand why default is private in a class. Unless explicitly specifi ed (i.e.,
defi ned under public), anything defi ned should be considered private in a class.

It might seem illogical to have the structure which behaves in the same manner
as a class, except one seemingly insignifi cant difference in the default data type.
The reason for such behaviour of a structure lies in backward compatibility
with C. Consider the following code borrowed from C:

struct Evaluator
{

 void DisplayDetails()
 {
 cout << EmpID << "\n";
 cout << Name << "\n";
 cout << Designation << "\n";
 cout << Department << "\n";
 cout << Salary << "\n";
 }
};

void main()
{
 employee Robin;
 Robin.InsertDetails();
 Robin.DisplayDetails();
}

In the case of a class,
the data members
and member functions
are private by de-
fault (unless declared
otherwise), whereas
in the case of a struc-
ture, the entities are
public by default.

82 Programming with ANSI C++

 char Name[30];
 char Address[100];

}

If structures are made similar to classes in C++ (i.e., default is private when no access
specifi er is provided), then think what will happen to this code. The program cannot execute
statements such as

Evaluator MrBaxi;
Strcpy(MrBaxi.Name, "Chandrakant Baxi");

The fact that it is able to access Name shows that it is a public data member. By keeping
the default as public, the C++ struct is still backward compatible with C struct. It is a C++
convention to use class when we need a class and to use struct when we need a C-like structure.

Note If struct does not default to public, the C code copied to a C++ program will not work. C++
designers needed backward compatibility and wanted a C program to work with minimum modifi cation
when compiled by a C++ compiler.

3.7 DIFFERENCE BETWEEN UNIONS AND CLASSES

In C++, unions can have access specifi ers and can defi ne both data and functions; similar to
structures, their default access specifi er is public. (The reason is the same as discussed in
Section 3.6.) Unions have the important properties of all data elements (but not the member
functions) sharing the same memory location. They also have to maintain compatibility with
unions in C.

A special type of union defi ned by C++, which was not available in C, is the anonymous
union. In this type of union, the name of the union is not provided at the time of defi nition.
An indication that the data elements are sharing the same memory location is provided to the
compiler. The members of an anonymous union can be accessed directly, without defi ning
objects of the union type and without using the dot operator. The following is a summary of
the points discussed about unions.

1. By and large, unions in C++ remain the same as in C, with the possible addition of
member functions.

2. All data members share the same memory as in C.
3. The default access specifi er is public as in structures.
4. A union without a name, that is, an anonymous union is possible in C++.

Program 3.4 illustrates the types of unions.

PROGRAM 3.4 Unions and classes
//UnionExample.cpp
#include <iostream>
using namespace std;

union IntChar

{
 void SetValue()
 // Without access specifi er, treated as public
 {
 CharView[0]=0; // 00000000

Classes and Objects 83

 CharView[1]=1; // 00000001
 CharView[2]=0; // 00000000
 CharView[3]=0; // 00000000
 }
 /* This value is equivalent to 00000000 00000000 00000001 00000000, that is, 28 */

 void GetValue()
 {
 cout << IntView; // displays 256, that is, 28

 }

private:
 unsigned int IntView;
 char CharView[4];
 /* These two data members share the same memory location */
};

void main()
{
 IntChar IC;
 IC.SetValue();
 IC.GetValue();

 // The following is an anonymous union

 union
 {
 int AnoInt;
 char AnoChar[4];
 };
 AnoInt = 65; // AnoInt is accessed directly
 cout << "\n The AnoChar 1st element is" << AnoChar[0];
 cout << "\n The AnoChar 2nd element is" << AnoChar[1];
 cout << "\n The AnoChar 3rd element is" << AnoChar[2];
 cout << "\n The AnoChar 4th element is" << AnoChar[3] << endl
}

Output
256
The AnoChar 1st element is A
The AnoChar 2nd element is
The AnoChar 3rd element is
The AnoChar 4th element is

How the Program Works
The value of the IntValue data member is printed as 256, that is, 28. AnoChar[0] data member
prints A (char value of 65) and others print null (char value of zero). The following are some
important points to be noted about Program 3.4:

1. The functions SetValue() and GetValue() are not defi ned under any access specifi er and
hence are treated as public.

2. AnoChar and AnoInt are accessed without dot notation. It can be seen that the value of
AnoChar[0] is “A” when the value of AnoInt is set to 65. This is a simple example to show
that AnoChar and AnoInt actually share the same memory location.

Note An anonymous union is defi ned inside the main union, that is, it is a local union. If we want to defi ne a
global anonymous union, we must defi ne it as static in C++. This is not the case with normal unions.
In Program 3.4, union IntChar is defi ned to be global.

84 Programming with ANSI C++

There are a number of restrictions when using unions in C++, and hence, it is always better
to use classes whenever possible. Unions are to be used only in the context similar to C unions.

Defi ning data members after function members We have defi ned the functions
SetValue() and GetValue() before defi ning the variable values used by them, namely, IntView
and CharView. How can the compiler allow usage of something before actual defi nitions? The
reason is interesting. The compiler takes two passes on the class defi nition. In the fi rst pass, it
looks at the function headers, arguments and variable defi nitions. The function body is taken
up in the next pass. When the body is evaluated, the data members, even if defi ned later, are
already known. So, we do not get compiler errors in such cases.

3.8 DEFINING FUNCTION MEMBERS OUTSIDE CLASS

The following example illustrates an important point, that is, it is possible to defi ne the
function members outside the class.

//FunOutsideClass.cpp
#include <iostream>
#include <string>
using namespace std;
class student
{
public:
 int RollNumber;
 string Name;
 string Address;
 void PrintDetails();
 /* Only the prototype is inside the class defi nition */
};
void student::PrintDetails()
/* Note that 'student::' is appended at the beginning */
{
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
}
void main()
{
 student Studentl;
 Studentl.RollNumber = 1;
 Studentl.Name = "Robin Singh";
 Student1.Address = "New Delhi";
 Student1.PrintDetails();
}

This example shows that it is very simple to defi ne functions outside the class and is
recommended if the functions are big. This is dealt with in detail while discussing inline
functions in Chapter 4.

Classes and Objects 85

Scope Resolution Operator (: :)
Let us now see the use of the scope resolution operator provided before the
function defi nition outside the class, that is, void student::PrintDetails()
instead of the simple PrintDetails(). When the function is defi ned outside the
class, only the prototype remains inside the class. All other details are similar to
the defi nition inside the class. Thus, the statement

void PrintDetails();

should only be in the body of the class.
The body of a class defi nes the scope of the member function. When the function is

defi ned inside the body of a class, it is inside the scope of the class, that is, it is implicitly
defi ned to be a member of the same class. There is no need to specify that the function
belongs to that class. In Program 3.1, where the PrintDetails() function is defi ned
inside the student class, we did not mention that PrintDetails() belongs to the student
class.

When the function is defi ned outside the class, it is defi ned outside the scope of the
class. It is not clear to which class the function belongs or whether the function belongs to
any class at all, and hence, the class needs to be explicitly specifi ed with that function. In
the previous example, the PrintDetails() function is defi ned outside the class and hence it
needs to be specifi ed that it belongs to the student class. The defi nition

void student::PrintDetails()

states that the PrintDetails() function is a member function of the student class. The scope
resolution operator is named so because it resolves the scope. The scope resolution operator
used for a global data member also does the same function of resolving the scope of the data
member.

It is also important to note that more than one class can have a function with the same
name. In such cases, the scope resolution operator is used to differentiate between them.
Consider the class student defi ned in Program 3.1, in which the function PrintDetails() is
defi ned inside.

Suppose we have another class employee with PrintDetails() as one of its functions. If
both these functions are defi ned outside the class, these will be written as follows:

student::PrintDetails()

and

employee::PrintDetails()

One can understand at a glance which PrintDetails() is being talked about. So, when a
compiler encounters <AnEmployeeObject>.PrintDetails(), it will be able to call the right function.

Note The scope resolution operator is useful in differentiating the functions of different classes with the
same name when defi ned outside the body of a class.

3.9 STATIC DATA MEMBERS

Static variables in C functions have a specifi c property that they are initialized only once
(when the function is called for the fi rst time) and they retain their values between calls. This
is reiterated by Program 3.5.

When a function does
not belong to any
class, we call it a
non-member function.

86 Programming with ANSI C++

PROGRAM 3.5 Static data members
//CStaticVar.cpp
#include <stdio.h>
void Dummy()
{
 static int i = 10;
 int j = 20;
 i+=10;
 j+=5;
 printf("The i value is %d and j value is %d \n",i,j);
}

void main()
{
 Dummy();
 /* First call to Dummy(). Here, i is initialized to 10. At the end of the call, i

value changes to 20 */

 Dummy();
 /* Second call to Dummy(). Here, i is not initialized to 10, instead it is 20 as that

is the value it had while exiting from the fi rst call to Dummy() */
}

Output
The i value is 20 and j value is 25
The i value is 30 and j value is 25

How the Program Works
In this case, when the fi rst call to Dummy() is made, i is initialized to 10. When the second
call is made, it is not initialized even though there is an initialization statement written in the
function. Rather, it picks the value of i at the time of its exit from the earlier Dummy(). If it
was set to 20 when exiting from the fi rst call to Dummy(), it is retained when the second call
is made.

The case of variable j is different. It is an automatic (auto) variable, and hence, in both the
calls, it is initialized to 20. If it was set to 25 at the end of the fi rst call to Dummy(), it forgets
that value immediately after exiting from the function and comes back afresh when the
second call is made. This is why it prints the same value 25 in the second call even though
the i value is incremented to 30. Another important point needs to be noted here. If i is not
initialized in this program, it assumes the value 0. The case with j is different and it contains
an arbitrary value left by the previous use of the memory allocated to j.

Note In the context of C++, the meaning of auto is a little extended. If a programmer defi nes a variable using
the statement

 auto x;

 the compiler tries to determine the type of x and uses it here. This does not seem to be useful, but
when we need to use a large name of a data type, especially when using nested namespaces or using
the Standard Template Library (STL), it is quite useful.

Difference between Auto and Static
In C, it is possible to differentiate between auto variables, which lose their values upon exit
from the function, and static members, which do not lose them. This is done by storing both

Classes and Objects 87

types of variables at different places. The static members with global variables
are stored at a permanent location and the auto variables on the non-permanent
stack. (The word ‘permanent’ here means ‘permanent as long as the program
execution is on’.) Hence, the auto variables that are stored on the stack upon call
to the function are lost when the function exits and their contents are removed
from the stack. In short, they are stored at a dynamic place that changes when
functions are invoked and exited. On the other hand, the static members are

stored in a static place that is retained throughout the execution of the program. Hence, they
are called static.

Static members have a similar meaning in C++ as well. Program 3.5 can actually be
compiled as a C++ program. All static members are stored with the global variables at a
permanent location.

Difference between Static and Global Data Members
A static member defi ned inside a class is also stored at a permanent location. Static data
members of a class are a little different from global data members. Exhibit 3.2 lists out the
differences between them.

Auto variables lose
their values upon
exiting from the
function whereas
static members retain
their earlier values.

Exhibit 3.2 What separates a static data member from a global data member
1. Storage: Both are stored at a global location
2. Instantiation: Both are available as a single copy and without any objects being created
3. Initialization: Both are initialized to zero at the time of defi nition
4. Scope: The scope of a global variable is the entire program, whereas static variables are restricted to

the class in which they are defi ned.

As stated earlier, static data members are stored at a location where they are retained
throughout the execution of the program and are not stored with class objects. They are
stored only as a single copy. This single copy of the static data member is shared between
all the objects of the class. Their behaviour is very similar to member functions of the class.
Similar to the function PrintDetails(), static members exist and are available even if no
object of the class is created.

All static data members are initialized to zero at the time of declaration by the C++
compiler. This means that static data members are as good as global data members, with
the only difference that they are available only to this class instead of the entire program.
Program 3.6 shows how to defi ne and use static members.

PROGRAM 3.6 Static and non-static members
//StaticVariable.cpp
#include <iostream>
using namespace std;

class TestStatic
{
private:
 static int StaticVariable;
 /* It does not defi ne the static member; only declaration is provided here */

 int NonStaticVariable;

88 Programming with ANSI C++

public:
 void InitializeVariables(int Stat, int NonStat)
 {
 StaticVariable = Stat;
 NonStaticVariable = NonStat;
 }

 void DisplayVariables()
 {
 cout << "Static member’s value is" << StaticVariable << "\n";
 cout << "Non-static member’s value is" << NonStaticVariable << "\n";
 }
};

int TestStatic::StaticVariable;
/* Defi ning the static member */

void main()
{
 TestStatic TS1;
 TestStatic TS2;
 TS1.InitializeVariables(5,5);
 TS1.DisplayVariables();
 TS2.InitializeVariables(10,10);
 TS2.DisplayVariables();
 // Let us again see what are the values for T1
 TS1.DisplayVariables();
}

Output
Static member's value is 5
Non-static member's value is 5
Static member's value is 10
Non-static member's value is 10
Static member's value is 10
Non-static member's value is 5

How the Program Works
This program has a class TestStatic; TSl is the fi rst object and TS2 is the second object of
this class. The class contains two different variables; StaticVariable is defi ned as static
whereas NonStaticVariable is defi ned as a non-static data member. It should be noted that
the static members need two phases of defi nition. StaticVariable is declared inside the
class as

static int StaticVariable;
/* this is actually the prototype of the static variable defi nition */

It is defi ned outside the class as

int TestStatic::StaticVariable;

Note The keyword static must precede the prototype, but not the defi nition. Static variables are to be
declared inside the class fi rst and then defi ned outside the class as well.

It should be noted how a static member is declared, defi ned, and used in this program.
Though it is defi ned as a private variable, it can also be defi ned as public. Program 3.9
provides an example of a publicly defi ned static variable.

Classes and Objects 89

In Program 3.6, we assign values to TSl fi rst and then to TS2. Both
NonStaticVariable and StaticVariable are given values. When the static
member of TS2 is changed, it can be seen in the output that the static member
of TSl is changed as well. This is because the variables TSl.StaticVariable
and TS2.StaticVariable are actually the same. Any number of objects may be

defi ned in the same manner; there will still be only a single copy of StaticVariable.
Static members are needed in a situation when all objects of the class need to share some

features. Consider Program 3.7, which deals with another type of student class. It contains
two normal variables; SubjectMarks is an array containing the marks of a student object and
fail is a Boolean variable indicating whether the student has passed or failed. As discussed
in Chapter l, bool is a new data type added to C++. There are two different member functions:
DisplayMarks(), which display the marks of a given student, and SetMarks(), which set the
values of marks for a specifi c object. It should be noted that for the SubjectMark array and
fail, the values can be set only by SetMarks() and can only be seen by DisplayMarks(). This
is a good example of having a controlled access to an attribute (the marks) of an object.

A static member can
be defi ned as private
or public, but usually
it is kept public.

PROGRAM 3.7 Static members
//StaticVar3.cpp
#include <iostream>
using namespace std;

class student
{
public:
 static int PassingMark;
 int SubjectMark[5];
 bool fail;
 void DisplayMarks()
 {
 for(int i=0; i<5; ++i) {
 cout << "Marks of subject no.";
 cout << i << " is " << SubjectMark[i];
 }

 void SetMarks(int Marks[5])
 {
 for(int i=0; i<5; ++i)
 {
 SubjectMark[i] = Marks[i];
 }
 }

 bool CheckPassing()
 {
 fail = false;
 for(int i=0; i<5; ++i)
 {
 if(SubjectMark[i] < PassingMark)
 fail = true;
 }
 if(!fail)
 cout << "Congratulations! You have passed \n";
 else
 cout << "Sorry! You have failed \n";

90 Programming with ANSI C++

 return !fail;
 }
};
int student::PassingMark; // required defi nition
void main()
{
 student::PassingMark = 35;
 student Robin;
 student Leena;
 student Bob;

 int RobinMarks[] = {75,55,65,56,89};
 int LeenaMarks[] = {15,25,100,98,89};
 int BobMarks[] = {100,70,67,78,98};

 Robin.SetMarks(RobinMarks);
 Bob.SetMarks(BobMarks);
 Leena.SetMarks(LeenaMarks);

 Robin.CheckPassing();
 Leena.CheckPassing();
 Bob.CheckPassing();
}

Output
Congratulations! You have passed
Sorry! You have failed
Congratulations! You have passed

How the Program Works
We will now explain the use of PassingMark as a static member. Irrespective of the number
of students and subjects, we need only one copy of passing marks. Hence, we have defi ned
it to be static.

Note When we need to have a single copy of a member irrespective of the number of objects of a class, we
need to defi ne it as static.

Let us see how PassingMark is used. We need to write student::PassingMark outside the class
to actually defi ne passing marks. The way it is accessed is also interesting. Here, it is accessed
as Student::PassingMark. A static member can be accessed using either student::PassingMark,
Robin.PassingMark or Leena.PassingMark. Thus, there are two ways to access static members:

1. Class name::Member variable name
2. Object name.Member variable name

The difference must be noted. The scope resolution operator (::) is used along with the
class name whereas the dot operator (.) is used with the object name. Though the second form
of using the static member is allowed, it is misleading for the reader and is not recommended.
We will revisit this while discussing Program 3.8.

Consider the case where we are interested in fi nding out how many objects of a given
class are defi ned at the moment. Suppose we have a variable called TotalStudents for storing
information about the total students at present. If this variable is defi ned as a non-static data
member of the class, every object will have its own copy of TotalStudents when defi ned.

For example, we may have Studentl and Student2 as two students. Studentl.TotalStudents
and Student2.TotalStudents are two different variables. Increasing TotalStudents of

Classes and Objects 91

Studentl does not increase TotalStudents of Student2. This is similar to changing the roll
number of one student, which does not have any effect on that of the other student. Thus, our
purpose is not served by using normal variables. The static data member in this case solves
the problem. The following program shows how this can be done.

The program contains a student class, containing two functions for setting and printing the
details of the students. The student class contains three non-static members, namely, RollNumber,
Name, and Address. However, the most important data for us is the static member TotalStudents.

// StaticCountVar.cpp
#include <iostream>
#include <string>
using namespace std;
class student
{
public:
 static int TotalStudents;
private:
 int RollNumber;
 string Name;
 string Address;
public:
 void SetDetails(int Roll, string StudentName, string StudentAddress)
 {
 RollNumber = Roll;
 Name = StudentName;
 Address = StudentAddress;
 TotalStudents++;
 }
 void PrintDetails()
 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
};
int student::TotalStudents;
/* There is no need to initialize this to zero; the compiler will automatically do it */
void main()
{
 cout << "Total students at the moment " << student::TotalStudents << "\n";
 student Robin;
 Robin.SetDetails(1,"Robin Singh","New Delhi");
 Robin.PrintDetails();
 cout << "Total students at the moment " << student::TotalStudents << "\n";
 student Sonia;
 Sonia.SetDetails(2,"Sonia","Bhopal");

92 Programming with ANSI C++

 Sonia.PrintDetails();
 cout << "Total students at the moment " << student::TotalStudents << "\n";
 if(true)
 {
 student Arti;
 Arti.SetDetails(3,"Arti", "Indore");
 Arti.PrintDetails();
 cout << "Total students at the moment" << student::TotalStudents;
 }
 cout <<"Arti departs! \n";
 /* The following line will not work as expected. Total students are still three */
 cout << "Total students at the moment " << student::TotalStudents <<"\n";
}
Output
Total students at the moment 0
Roll number is 1
Name is Robin Singh
Address is New Delhi
Total students at the moment 1
Roll number is 2
Name is Sonia
Address is Bhopal
Total students at the moment 2
Roll number is 3
Name is Arti
Address is Indore
Total students at the moment 3
Arti departs!
Total students at the moment 3

As can be seen, this program works successfully and can count the total number of students
every time. However, there is a problem. Observe that even after Arti’s departure, the number
of totals students is displayed as three instead of two. The ways to tackle this problem will
be discussed when we study destructors in Chapter 6.

Another interesting factor is to be observed here. TotalStudent has not been initialized to zero.
This is because all static and global variables are automatically initialized to zero in C++, as in C.

Let us look at one more example that explains the two ways of calling static functions and
also the difference between the two ways. Consider Program 3.8.

PROGRAM 3.8 Two ways of calling static functions
//StaticVarDisp.cpp
#include <iostream>
using namespace std;

class TestStatic
{
public:
 static int StaticVariable;
 void DisplayValue()
 {
 cout << "The static member's value is " << StaticVariable << "\n";
 }
};

Classes and Objects 93

How the Program Works
Let us see how the static member is accessed. As mentioned earlier, we can qualify a static
member in two different ways.

1. Object name.Static member name(TS2.StaticVariable = 10;)
2. Class name::Static member name(TestStatic::StaticVariable = 100;)

As can be observed, there is no difference between the results because we are working on
the same variable either way. However, the second form is better since it is conceptually
clearer. In a true sense, a static member belongs to the class and not the object. The fi rst form
is provided just for syntactical convenience and should not be used, because it may confuse
the reader and the variable might be taken as a normal variable (normal data member of the
class). However, class name::static member nameclearly states it to be a static member.

Note The other advantage of using the form class name::static member is that there is no need to
instantiate an object to refer to the static member. Such dummy object instantiation slows down the
execution of the program and may lead to unnecessary additions to the program code, which might
result in more errors.

We have discussed the unique roll number generator function in Chapter l. This function can
be easily written and used in a program using static members. Consider the following example.

int TestStatic::StaticVariable;
void main()
{
 TestStatic::StaticVariable = 100;
 /* Class name to qualify the static member */

 cout << "Static member’s value before existence of any object"
 << TestStatic::StaticVariable;

 TestStatic TS1;
 TestStatic TS2;

 TS1.DisplayValue();
 TS2.DisplayValue();
 TS2.StaticVariable = 10;
 // Object name to qualify the same static member
 TS1.DisplayValue();
}

//UniqueRollNoGenerator.cpp
#include <iostream>
using namespace std;
class Student
{
private:
 int RollNo;
 static int CurrentRollNo;
 int UniqueRollNoGenerator()
 {
 CurrentRollNo++;
 return CurrentRollNo;
 }

94 Programming with ANSI C++

public:
 void AssignRollNumber()
 {
 RollNo = UniqueRollNoGenerator();
 }
 void DispRollNo()
 {
 cout << "Roll number of this student is " << RollNo << "\n";
 }
};
int Student::CurrentRollNo;
void main()
{
 Student Mahesh;
 Mahesh.AssignRollNumber();
 Student Jayesh;
 Jayesh.AssignRollNumber();
 Mahesh.DispRollNo();
 Jayesh.DispRollNo();
}
Output
Roll number of this student is 1
Roll number of this student is 2

Explanation for this program is not being provided and is left as an exercise for the students.
The only important thing to note here is that the UniqueRollNoGenerator() function is kept
private and is not accessible to any function that uses the student object directly, but it can
be accessed by the AssignRollNumber() function. The differences between the public and
private functions will be discussed in detail in Chapter 4. Functions in C++ can also be static
similar to the data members.

3.10 ARRAYS OF OBJECTS

Arrays in C++ can also hold objects. Let us see how an array of objects can be defi ned and
used with the help of an example. Program 3.9, which is an extension to Program 3.1, shows
how an array of objects can be manipulated.

Note While coding real-world C++ programs, programmers prefer to use vectors instead of arrays.

PROGRAM 3.9 Defi ning and using an array of objects
//ArrayOfObjects.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
private:
 int RollNumber;
 string Name;

Classes and Objects 95

How the Program Works
This is analogous to using an array of structures in C. A subscript notation can be used with
the array name to indicate the element of the array. The elements of the array are now objects
of type student, which are now indicated by ArrayOfObjects[<subscript variable value>],
for example, ArrayOfObjects[2]. A dot (.) notation can be used to access the elements
of objects, as is done with structures. The only added feature is function calls. It can be
observed that the syntax for accessing function elements is similar to data elements, that is,
if PrintDetails() is the function, then ArrayOfObjects[2].PrintDetails() can still be called
to print the details of the object stored as the third element of the array.

3.11 POINTER TO OBJECTS AND POINTER TO MEMBERS OF A CLASS

It is almost impossible to write professional programs using C or C++ without pointers. In
C++, pointers can also have an address for an object; they are known as pointers to objects.

 string Address;
public:
 void SetDetails(int Roll, string StudentName, string StudentAddress)
 {
 RollNumber = Roll;
 Name = StudentName;
 Address = StudentAddress;
 }

 void PrintDetails()
 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
};

void main()
{
 student ArrayOfStudents[3];

 ArrayOfStudents[0].SetDetails(1,"Robin Singh", "New Delhi");
 ArrayOfStudents[0].PrintDetails();

 ArrayOfStudents[1].SetDetails(2,"Manu", "Bhopal");
 ArrayOfStudents[1].PrintDetails();

 ArrayOfStudents[2].SetDetails(3,"Paras","Indore");
 ArrayOfStudents[2].PrintDetails();
}

Output
Roll number is 1
Name is Robin Singh
Address is New Delhi
Roll number is 2
Name is Manu
Address is Bhopal
Roll number is 3
Name is Paras
Address is Indore

96 Programming with ANSI C++

The difference is that pointers themselves are variables that contain addresses. Apart from
that, there is no difference.

A pointer to an object contains an address of that object. Pointer increment will increment
the address by the size of the object, which is determined by the size of all of its non-static
data elements. We have already seen that functions and static data members are not stored
with the object and do not count for the size of an object. However, it is a little different in the
case of inherited classes, which are complex. Calculating the size of inherited class objects
is not straightforward and we defer to discuss that until we study inheritance in Chapter 9.
Consider Program 3.10.

PROGRAM 3.10 Object pointer
//ObjectPointer.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
public:
 int RollNumber;
 string Name;
 string Address;

 void PrintDetails()
 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
};

void main()
{
 student *StudentPointer;
 StudentPointer = new student;
 /* Instead, these two statements can also be written as a single statement, that is,

student *StudentPointer = new student; */

 // Section 1
 (*StudentPointer).RollNumber = 1;
 (*StudentPointer).Name = "Robin Singh";
 (*StudentPointer).Address = "New Delhi";
 (*StudentPointer).PrintDetails();

 // Section 2
 StudentPointer->RollNumber = 1;
 StudentPointer->Name = "Robin Singh";
 StudentPointer->Address= "New Delhi";
 StudentPointer->PrintDetails();

 // Section 3
 int student::*RollPoint = &student::RollNumber;
 /* It defi nes a pointer Rollpoint to point to roll number.
 Note that it is not int *RollPoint = &RollNumber */

 student NewStudent;
 NewStudent.*RollPoint = 2;
 // Same as NewStudent.RollNumber = 2

Classes and Objects 97

How the Program Works
It is interesting to note that the pointer to an object works in the same way as a pointer to
a C structure. We can use either the star–dot combination, which is used in Section l of the
program, or the popular arrow notation, used in Section 2, to access the elements using
object pointers. Pointer to member operators, which are used in Section 3 of the program,
are explained in Exhibit 3.3.

 student *NewStudPoint = &NewStudent;
 cout << "\n Now the roll no. is ";
 cout << NewStudPoint->RollNumber; // will display 2
 // Accessing the roll number using pointer to object

 NewStudPoint ->* RollPoint = 3;
 cout << "\n Now the roll no. is ";
 cout << NewStudPoint ->* RollPoint; // will display 3
 cout << NewStudent.*RollPoint; // will again display 3
 // Accessing the roll number using object and pointer to member
}

Output
Roll number is 1
Name is Robin Singh
Address is New Delhi
Roll number is 1
Name is Robin Singh
Address is New Delhi
Now the roll no. is 2
Now the roll no. is 3
Now the roll no. is 3

Exhibit 3.3 Pointer to member operators
Section 3 of Program 3.10 has two new operators, (.*) and (–>*), which are known as pointer to member
operators. They refer to pointers to members of the class. When we have a pointer to a member and we
access the member dereferencing that pointer, we need to use .* operator. The object, (NewStudent
in this case), is referred as a normal variable and not by a pointer. It is written as <object name> .*
<pointer name>.

The –>* operator is slightly different. It is used when a pointer to a member of a class is used, though,
this time, it is accessed using a pointer to the object (NewStudPoint in this case).

Conventional pointers vs pointers to class members It is important to note that though
pointer-to-member-of-the-class is named as pointer, it does not contain any address. It
contains only the offset into the class where a member can be found, that is, how far a member
is from the beginning of the object. In Program 3.10, RollPoint is actually an offset from
the beginning of the class to the variable RollNumber, and is not the address of RollNumber.

This offset is fi xed at the time of compilation and works similar to an array index. Students
with the knowledge of C may recollect that an array element is accessed by adding the index
value to the array name (i.e., address of the beginning byte of the array). By immediately adding
the offset to the object address, we can reach the member. This is a very effi cient scheme to
access an element. There is no need to go and fetch the value from the address; it just gets it
from a known location. This has an interesting consequence. Consider the following scenario.

98 Programming with ANSI C++

Suppose a library of classes is to be included in a program at the linking time
(after compilation and before being executed). Assume that an application has been
developed using those classes and the class members are being accessed using pointer
to member operators. Later, if there is a new version of the library, in which the format
of only one class is different, ideally it should only be linked and not recompiled.
This is because the application itself is not changed, but only the library it uses is
changed. In our case, however, the application needs to be recompiled, because if
the class format is changed, then the offset value will be changed accordingly. The
application uses those offsets wherever there are pointers to member expressions.

Though this seems to be a big drawback, the reason why C++ designers have
chosen this scheme for the C++ object model is simple. If we have a real pointer,

it needs to be checked and traversed every time the member is accessed through it. It will not
be much diffi cult if there is only one class. However, when there is a long inheritance chain
where one class in inherited from another, one more from it, and so on, the actual link can
be very deep down. Traversing through such a long chain is a very slow process. The C++
object model prefers effi ciency to fl exibility in this case.

The dynamic linked libraries (DLLs) models of VC++ and CORBA are different than
the C++ object one that is being discussed here. Both are more fl exible and are obviously
less effi cient. VC++ has extended the original object model to accommodate DLLs. Here,
DLLs are sets of objects added to and removed from the application at run-time. CORBA is a
mechanism to access an object from an application without really knowing where the object
is (it can be part of a remote machine) and in which language it is implemented. CORBA
object model is more advanced in terms of its functionality and provides far more fl exibility.
However, it does this at the cost of effi ciency.

3.12 NESTED CLASSES

It is possible to defi ne a class inside another class as shown in the following example.

C++ object model
prefers effi ciency at
the cost of fl exibility
and thus it sometimes
requires that a prog-
ram be recompiled
even when there is no
change in the program
but there is a change
in the library that it
uses.

//NestedClasses.cpp
#include <iostream>
using namespace std;
class Outside
{
private:
 /* The nested class (Inside) is private, hence only the nesting class (Outside) can

access it, others cannot. */
 class Inside
 {
 int InsideInt;
public:
 void SetInsideInt(int TempInside)
 {
 InsideInt = TempInside;
 }
}; // End of inner class defi nition
public:

Classes and Objects 99

There are two classes in this program. Outside class is a nesting class and contains the entire
body of the inside class. The inside class, which is defi ned inside the outside class, is also
known as the nested class. The defi nition of the class inside does not contain anything new
and would not be different even if it is defi ned outside.

It is also interesting to see how the nested class is used. It is defi ned inside the outside class,
thus it is referred to as Outside::Inside. It can be referred without using the Outside::prefi x
only inside the body of the outside class. The importance of defi ning the nested class as
private should also be noted. Only the nesting class can refer to it and others cannot. The
following program shows how others can make use of a nested class if it is defi ned as public.
In this case, it is possible to defi ne an inside class by the user.

 int OutsideInt;
 Inside InsideObject;
 void UseInside()
 {
 InsideObject.SetInsideInt(OutsideInt);
 cout << OutsideInt;
 }
}; // End of outer class defi nition
int main()
{
 Outside OuterClass;
 OuterClass.OutsideInt = 5;
 OuterClass.UseInside();
}

//PublicInnerClass.cpp
#include <iostream>
using namespace std;
class Outside
{
public:
/* The nested class (Inside) is declared public, which makes it accessible to objects */
 class Inside
 {
 int InsideInt;
 public:
 void SetInsideInt(int TempInside)
 {
 InsideInt = TempInside;
 }
 }; // This class is now accessible to objects
 int OutsideInt;
 Inside InsideObject;
 void UseInside()
 {
 InsideObject.SetInsideInt(OutsideInt);
 cout << OutsideInt;

100 Programming with ANSI C++

If we defi ne a nested class in the public part of the nesting class, it is available to all those
who have access to the nesting class. In such a case, it is better that it is defi ned outside the
nesting class as a separate class rather than as the nested class.

It is also possible to defi ne the nested (inner) class outside the nesting (outer) class. The
following is an example of the same, where again the nested (inner) class is defi ned as private.

 }
}; // End of outer class defi nition
int main()
{
 Outside OuterClass;
 OuterClass.OutsideInt = 5;
 OuterClass.UseInside();
 Outside::Inside InnerPublicClass;
 InnerPublicClass.SetInsideInt(5);
}

//Defi neOutsideNC.cpp
#include <iostream>
using namespace std;
class Outside
{
private:
 class Inside;
public:
 int OutsideInt;
 void UseInside();
}; // End of outer class defi nition
class Outside::Inside
{
 int InsideInt;
 public:
 void SetInsideInt(int TempInside)
 {
 InsideInt = TempInside;
 }
}; // Inner class is defi ned outside the class
/* The following function uses the Inside class and so the compiler must allocate
appropriate size for the Inside class for the statement Inside InsideObject; This is why
this function is also defi ned outside the class after the defi nition of Inside class */
void Outside::UseInside()
{
 Inside InsideObject;
 InsideObject.SetInsideInt(OutsideInt);
 cout << OutsideInt;
}
int main()

Classes and Objects 101

{
 Outside OuterClass;
 OuterClass.OutsideInt=5;
 OuterClass.UseInside();
}

It is important to note that when a nested class is defi ned outside, the defi nition cannot be
in the scope of the nesting (outer) class. It cannot be defi ned in the body of the outer class,
but must be outside it. Moreover, it can also be observed that the outside class has only the
prototype of the class inside its body.

Need for Nested Classes
There are some advantages in defi ning the inner class outside the inner class and keeping it
private. Big projects fi rst need the development of the components. Then, these components
are used by other programmers in developing application programs. The team that develops
these critical components usually comprises very experienced and talented programmers.
The inner or nested class is a component developed and may be maintained by someone
from this team, the defi nition of which is available in the library.

Other teams working in the project are “nearer” to the project and have more insight into
the application development. These developers have access to these components and can use
them by defi ning the prototype of that class inside the body of the outer or nesting class. This
also makes sure that the developer has the access to the component (the inner class or nested
class) but the end user cannot see that class.

If the component is used for performing some really complicated action, it is made sure
that even developers do not have access to the code. This is because these components are
compiled and available to the developers in the form of object code from the library. It is
similar to having string class objects and using them in a program wherein we cannot have
access to the code written defi ning the string class.

3.13 LOCAL CLASSES

For the sake of completeness, C++ allows classes to be defi ned inside functions as well.
These classes are called local classes.

The following example can be used to understand local classes. Consider the class student
once again. It is defi ned inside a function now. TestStudent() is the function that defi nes the
class and uses it within itself. A consequence of defi ning a class inside a function is quite

logical; the class is not visible outside the function. In other words, the scope of
the class is confi ned to the body of the function.

Another point to be noted is that the function in which the class is defi ned is not
a member function of the class. It cannot access the private variables of the class.

Note One way to access the private variables of the class is to become a friend of it. The friend functions
are discussed in Chapter 4.

Local classes are the
ones defi ned inside a
function.

//LocalClasses.cpp
include <iostream>
#include <string>
using namespace std;
void main()

102 Programming with ANSI C++

Restrictions of Local Classes
The following are some restrictions on the use of local classes:

1. They cannot use auto local variables of the container function (e.g., TestValue).
2. They can access static local variables or external variables (globally defi ned) of the

container function (e.g., StaticTestValue).
3. They cannot contain static members themselves.
4. They cannot defi ne their functions outside the class boundaries. Here, the PrintDetails()

function must be defi ned inside the class.
5. Their private variables are not available to the container function unless declared as a friend.

{
 int RollNo = 3;
 void TestStudent(int);
 /* Prototype of TestStudent function; class student is not known here */
 TestStudent(RollNo);
}
void TestStudent(int Roll)
{
 int TestValue = 100;
 static int StaticTestValue = 200;
 /* This is a local class and is available only inside the TestStudent() function */
 class student
 {
 public:
 int RollNumber;
 string Name;
 string Address;
 void PrintDetails()
 // This function cannot be defi ned outside the class
 {
 // The following line does not work
 // cout << TestValue;
 /* This class cannot use TestValue because it is a private variable

of the class, so it is to be commented. */
 // The following works
 cout << ::StaticTestValue;
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
 };
 student Student1;
 Student1.RollNumber = Roll;
 Student1.Name = "Robin Singh";
 Student1.Address = "New Delhi";
 Student1.PrintDetails();
}

Classes and Objects 103

Note If we defi ne a local class and then defi ne private variables inside it, it hides them within the body of the
function. Defi ning them as public would not let them be known outside the body of the function. We cannot
achieve much by defi ning private variables here, and hence, they are hardly used in local classes.

3.14 ASSIGNING OBJECTS

Objects of similar type can be assigned in a similar manner as other variables. The object
assignment is of the form

Object1 = Object2

It is a simple assignment and is usually not different from a normal variable assignment.
However, the object assignment becomes different when the assignment operator
for the class for the object is overloaded, which may be needed in some special
circumstances. Overloading operators is discussed in detail in Chapter 7.

Let us fi rst look at the normal object assignment. The only important point
to understand is that assignment is different from initialization. Assignment is
done when a statement of the earlier-mentioned format is executed, whereas
initialization is done when the object is defi ned. This difference is illustrated in
Program 3.11.

PROGRAM 3.11 Different forms of assignment and initialization
//ObjectAssignment.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
public:
 int RollNumber;
 string Name;
 string Address;

 void PrintDetails()
 {
 cout << "Roll number is" << RollNumber << "\n";
 cout << "Name is" << Name << "\n";
 cout << "Address is" << Address << "\n";
 }
};
void main()
{
 student Student1;
 Student1.RollNumber = 1;
 Student1.Name = "Robin Singh";
 Student1.Address= "New Delhi";

 Student1.PrintDetails();

 student Student3 = Student1; // Initialization
 student Student2;
 Student2 = Student1; // Assignment
 Student3.PrintDetails();
 Student2.PrintDetails();
}

104 Programming with ANSI C++

How the Program Works
Observe the two types of assignments:

student Student3 = Student1; // Initialization
Student2 = Student1; // Assignment

The = operator used in these two cases describe different situations. The
assignment operator is applied only in the second case. In the fi rst case, it actually effects
initialization and the assignment operator is not applied here. The statement

student Student2 = Student1

is actually a convenient form allowed for a statement

student Student2 (Studentl)

So, if we overload the assignment operator, the case is applicable to the second example
alone. Initialization and the difference between assignment and initialization are dealt with
in detail while discussing copy constructors in Chapter 5. Hence, the following discussion is
applicable to statements of type Student3 = Studentl;

When an assignment is applied to an object, it is copied member by member, that is, the
fi rst member of the fi rst object is assigned to the second object and so on (unless, as explained
earlier, the assignment operator is overloaded and it provides a different behaviour).

In Program 3.11, the roll number, name and address of Student3 will be assigned the roll
number, name and address of Student1. It is obvious that both objects must be of the same type
for such an operation, and in most of the cases, as in this example, all members have similar
sizes (the roll number of Student3 is of the same size as that of Student1 and so on). So, the
compiler takes a shortcut here; it copies all the bits of the entire object to another without
looking at member boundaries. This is similar to how one struct is assigned to another in C.

Note For some special cases such as when two objects involved are of compatible types but not of the
same type, it is important to have the assignment operator overloaded to have an exact effect.

3.15 CONSTANT OBJECTS

Constant objects are those that are not modifi able. C++ provides safeguarding against
accidental modifi cation by not allowing access of the object to a normal member function.
Therefore, a constant object is not allowed to perform operations that modify it and only
functions that are defi ned as const can be accessed by it. Even public variables of the object
are not modifi able. Though constant member functions are discussed in detail in Chapter
4, some information is provided here. Constant member functions are those that make sure

that an object is not modifi ed. A normal member function cannot be invoked
by a const object, which thus maintains its integrity. If there is a need to avoid
any accidental change in an object’s properties, it should be defi ned as a const
object. Program 3.12 illustrates the use of a const object.

Assignment observes
member-by-member
copy while assigning
one object to another
of the same type.

Constant objects can
be accessed only by
constant functions.

PROGRAM 3.12 Constant objects
//ConstObj.cpp
#include <iostream>
#include <string>
using namespace std;

Classes and Objects 105

class student
{
public:
 int RollNumber;
 string Name;
 string Address;
 void PrintDetails() const
 /* This function is now constant; it can now be accessed by the constant object of

class student */
 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
};

void main()
{
 student Student1;
 Student1.RollNumber = 1;
 Student1.Name = "Robin Singh";
 Student1.Address = "New Delhi";

 Student1.PrintDetails();

 student Student2 = Student1;
 student Student3;
 Student3 = Student1;
 Student2.PrintDetails();
 Student3.PrintDetails();

 const student OtherStudent = Student1;

 // The following is erroneous if PrintDetails() is not const
 OtherStudent.PrintDetails();
 /* The following line will not be compiled because it attempts to modify a constant

object */
 OtherStudent.RollNumber = 5;

 /* The following will work */
 cout << OtherStudent.RollNumber;
}

How the Program Works
The following statement defi nes a constant object:

const student OtherStudent = Student1;

This defi nition is analogous to the const defi nition of other variables. It should be noted that
the = operator and another variable to initialize the const object are a must here.

OtherStudent is a constant object, and so, it is not possible for the program
to modify it. It should be noted that the PrintDetails() function is defi ned
as const so that the OtherStudent object will be able to access it. Moreover,
it is not possible to change RollNumber for OtherStudent because it is a
constant object, though printing RollNumber is accepted and executed by a C++
compiler.

A const object
defi nition, similar to
other const defi ni-
tions, must include
initialization.

106 Programming with ANSI C++

■ RECAPITULATION ■

 • Class is a fundamental requirement for object pro-
gramming. It represents real-world entities in a program.

 • The attributes of entities are represented as data
members and function members of a class.

 • Class in C++ is similar to struct in C, except that it
can have functions as well. The class members can be
divided into public and private sections.

 • The private sections cannot be accessed by non-
members, whereas the public sections are accessible
to both members and non-members.

 • The public member of a class decides the visibility
or the service provided to the user. It also forms the
interface to the user.

 • The private part represents the implementation of the
class.

 • Memory allocation to objects is not similar to memory
allocation to other variables.

 • The default type of struct of C++ and union is
public unlike class. This is done to make them

backward compatible with C.
 • The function members can also be defi ned outside the

class.
 • Static data members are shared between all the objects

of the class.
 • It is possible to have pointers pointing to class objects

and to have pointers to data members of the class, but
they are not true pointers.

 • When a class is defi ned inside some other class, it is
called a nested class.

 • It is also possible to defi ne a class inside a function,
which is called a local class.

 • When an object is assigned with another object of the
same class, each member of the class is copied to
another.

 • Assignment is different from initialization.
 • Objects can also be constant objects, that is, such

objects cannot be modifi ed. The constant objects can
call only constant member functions.

■ KEYWORDS ■

Anonymous union It is a union with no name. It is possible
to access members of the union by their name directly,
without using the dot (.) notation.

C struct This refers to the struct data type available in
C language.

C++ struct This refers to the struct data type available
in C++ language, which lets us defi ne functions inside
the struct. It can have public and private sections. The
default section in this case is public unlike the data type
class; otherwise C++ struct and class are the same.

Class This is an aggregation of data and function members.
Constant objects These are objects that cannot be

modifi ed. Const objects cannot call functions other than
const.

Data members These are variables defi ned in a class.
These can either be private or public.

Function members These are functions defi ned in a
class (may be defi ned inside or outside the body of the
class).

Local class It is a class defi ned in a function.
Nested and nesting class When a class is defi ned inside

another class, it is said to be a nested class. The class
inside which the nested class is defi ned is the nesting
class.

Private members These are members defi ned inside
the private section of the class. Such members are
accessible only to other members of the same class and
not to the objects of the class.

Public members These are members defi ned inside
the public section of the class. Such members are
accessible to other members of the class as well as the
objects of the class.

Static data members of class A static data member is
defi ned in the class with the keyword static preceding
it. It must have a defi nition outside the body of the class. It
is shared between all the objects of the class.

this pointer It is the pointer used to invoking an object
implicitly when a member function is called.

Classes and Objects 107

■ EXERCISES ■

Multiple Choice Questions

1. Which of the following statement is correct?
 (a) Static functions cannot be declared volatile.
 (b) Static functions cannot access other data

members.
 (c) Static functions cannot be declared const.
 (d) All of the above
2. Which of the following is not the correct syntax of

defi ning a string object?
 (a) string myString("Hi");
 (b) string myString(&loqus;H&roqus;);
 (c) string myString(previousStringObject);
 (d) All of the above
3. The statement int *const FirstPointer

__________.
 (a) is valid
 (b) needs an assignment
 (c) needs to remove const
 (d) needs to insert const at some other place
4. With exception handling program, both __________

and __________ will sometimes increase substantially.
 (a) code size, execution time
 (b) compilation time, linking time
 (c) linking time, loading time
 (d) error checking, exception checking
5. It is important to note that it requires programming

discipline not to __________ when the relationship
is not a subset relationship.

 (a) inherit
 (b) overload
 (c) override
 (d) discard
6. Plenty of generic algorithms such as fi nd and replace

can be applied on strings __________.
 (a) as they are designed for strings alone
 (b) as strings can be passed as parameters to these

functions
 (c) as string is a part of STL
 (d) All of the above
7. The old C++ library used to work in __________

whereas the new C++ library works in
__________.

 (a) global namespace, std namespace
 (b) std namespace, global namespace
 (c) global template, std template
 (d) std template, global template

 8. When a function throws a not-allowed exception,
it calls unexpected, which in turn calls abort, and
abort is not called directly because __________.

 (a) abort cannot be called directly
 (b) terminate can only call abort
 (c) the user can alter the behaviour of unexpected
 (d) None of the above
 9. Dynamic binding enables the function to be linked

at __________.
 (a) compile time
 (b) load time
 (c) link time
 (d) run-time
10. One important difference between virtual and pure

virtual functions is that __________.
 (a) virtual functions with body can be defi ned

inside the class whereas it is not possible with
pure virtual

 (b) virtual functions with body can be defi ned
outside the class whereas it is not possible with
pure virtual

 (c) virtual functions can be called by pointer
whereas it is not possible with pure virtual

 (d) virtual functions can be called by reference
whereas it is not possible with pure virtual

Conceptual Exercises

 1. What is the difference between class and struct?
Write a program to illustrate the difference.

 2. What is the difference between a C union and a
C++ union?

 3. What is an anonymous union? What is the
difference between normal and anonymous unions?

 4. Defi ne a class of teacher. What will you defi ne
as private and public in this class? Suppose
the class is meant for providing information
about teachers to students, what are the function
members you would like to have in this class?

 5. Take a class of cricketers of Indian cricket team. What
would be the data members and function members of
this class? Which of them would you like to keep as
private and public? Justify your answer.

 6. What is the difference between the storage
requirements of a class and a C struct? What is
the reason for the difference?

108 Programming with ANSI C++

 7. What is this pointer? What is its advantage?
 8. Consider a class of fi lm actors. Defi ne a

few data members and a function member
DisplayFilmNames() to display the names of the
fi lms an actor has acted in. Defi ne this function
outside the class.

 9. How are static members different from normal
members of a class? Give an example of the
requirement of a static member in the following
classes:

 (a) Teacher
 (b) Examiner
 (c) Film actor
 (d) Cricketer
 (e) Politician
10. Take a class of any of the problems defi ned in the

earlier questions or some other class of your choice
and show how pointer to members of the class can
be used in it.

11. In the case of a pointer to member of a class, why
do the pointers contain offsets? Why cannot they
contain addresses? Provide a logical reason and
justify your answer with an example.

12. Defi ne a nesting class Company. Defi ne a nested
class Employee. Show how the Employee class can
be used.

13. Defi ne a function ShowFilms() containing a class
Film as a local class within. Show how the Film
class can be defi ned and used as a local class using
data and function members of your choice.

14. How is one object of the same class assigned to
another?

15. What are constant objects and why do we need
them?

Practical Exercises

 1. Write a program to defi ne any class. Defi ne few
private and public variables. Try to access them
and note down the differences.

 2. Defi ne a union with some values inside. Check
to see if the address is really shared. Add some
functions to it and try to access it like a class
member function.

 3. Defi ne an inline function inside a program. Call it
a few times. Compile and try to look at the size
of the compiled code. Again defi ne it as a normal
function. Compile again and test the size of the
program.

 4. Defi ne any class with a few objects. Use sizeof to
check for the size of the objects. Add few functions
to the class. Check if the sizeof for the objects
shows the same value.

 5. In the same class as in Problem 4, add a static
member to the class and repeat the experiment.
Verify that the static member does not store itself
with the objects. Add a normal variable to the class
to see the difference in size.

 6. Defi ne a class of employees. It should contain
employee number, name, address, and the number
of dependents for the employee. It should also
contain functions to insert and display information
about the employees. Defi ne an array of 20
employees. Now write a simple for loop to read
information about the employees. Finally, display
all employees with more than two dependents.

 7. Write a program for the users to log in. Have a class
of LoggedInUser. Whenever a user is logged in,
a new object of LoggedInUser is to be generated
using new. Every time a user logs in, the program
should display "You are the nth user" where
n − 1 indicates the total number of users logged in
before this user.

 8. Write a program with more than one class. Try to
assign an object of one class to another. What error
does the compiler fl ag? Try to look at its help. Try
to assign one object of similar type to another and
then display the information of the copied object to
verify that the contents are the same as that of the
original object.

 9. Modify the program of Problem 7 in such a way
that the LoggedInUser contains information about
the student who is the user of the account. One
of the elements of the details is the number of
hours the student has already worked for. Check
if it exceeds 200 and display message "Welcome
<student name>" if it is less than 200. Use pointer
to object and pointer to class members for obtaining
the value of <student name> by the details.

10. Defi ne a class having one member function in it.
Defi ne an object with const declaration. What error
does the compiler give when you try to execute the
function using that object? Try to defi ne the same
function as const and see the difference.

11. Take up any class and defi ne it inside a function,
that is, defi ne it as a local class. Test whether the
restrictions that we have listed in the text really exist.

Chapter 4
FunctionsFunctions
4.1 INTRODUCTION

Functions in C++ are extended to provide support for object orientation.
They have all the properties of C functions and some additional ones. As
seen in Chapter 3, a class can have a function as a member. An object can
make a function call to a member function using the dot notation (e.g.,
Student1.PrintDetails()). We have already seen examples of this. As in
C, the functions that do not belong to any class are acceptable in C++ too;
such functions are called as non-member functions and have a call similar
to a C-function call, that is, ShowCustomers(). The difference between a
non-member function and a member function is described in detail in
Section 4.10.

4.2 SIMILARITIES WITH C FUNCTIONS

The functions in C++ are very similar to those in C. They are defi ned
in the same manner as in C except the return type default, which was
discussed in Chapter 1. In this chapter, we shall see in detail how functions
are managed in C++.

Consider the following code where MyFunction() is called from main():

int GlobalVariable
int MyFunction(int FirstArgument, string SecondArgument)
{
 int FunctionVariable;
 // Remaining body of the function
}
int main()
{
 int MainVariable, FirstValue, SecondValue;
 // Other statements
 int Result = MyFunction(FirstValue, SecondValue);
 /* This is the function call */
 cout << Result;
 /* This is the next immediate statement after function call */
 // Other statements
}

Writing and executing a program involves three steps, namely, compiling,
linking, and loading in memory. When a program is compiled, the

Learning Objectives

• Functions in C and C++
• Inline functions
• Default arguments
• Passing and returning

objects
• Function overloading
• Member and non-member

functions
• friend functions
• const, volatile, and
static functions

• Mutable data mem bers
• public and private

functions
• Function pointers
• Linkage specifi cation

110 Programming with ANSI C++

object codes of all the functions are generated. In this case, main() and
MyFunction() are converted to object codes, but separately. When the program
is linked, the function object code is attached to the object code of the main()
program.

Let us try to understand what happens when a program executes a function
call. The process happens in three stages, namely, function call, function
execution, and return to calling function.

Stage 1 Let us fi rst see how a function call is made. In our example,
main() calls MyFunction(). When this call is made, the object code of the
function MyFunction() is loaded in the main memory. The area of the main

memory in which functions are loaded is called the stack. Once the call is made, the
control transfers from the calling function (main() in our case) to the called function
(MyFunction()).

Stage 2 The second stage is the execution of the function. Now, the control from main()
has been transferred to the function MyFunction(). The local variables of the called function
are now available and can be manipulated, that is, it is now possible to assign or print
the value of FunctionVariable. However, variables from main() are not available now,
that is, it is not possible to assign a value to MainVariable, except those that have been
defi ned as global. In other words, GlobalVariable. FirstArgument, and SecondArgument are
dummy arguments of the function MyFunction() and are treated similar to its local
variables, with the only difference that they get their values at the time of function
call.

It should be noted that FirstValue and SecondValue are needed for calling the function
and so have been passed as arguments, and their values are available to FirstArgument and
SecondArgument after the call.

Stage 3 The third stage begins when the control returns to the calling function from the
called function. When the function execution is over, the control is transferred back to main()
at the next statement (cout << Result); after the assignment (int Result = Function
call). Now, the local variables of the called function are no longer available, but the local
variables of main() are available again. If a function call is made from some function other
than main(), the same sequence of operations is applied. Let us suppose that function calls
are made from called functions, that is, function1 is calling function2, function2 is calling
function3, and so on, until functionN. Then, when functionN is over, the control is transferred
to functionN−1; when functionN−1 is over, the control is transferred to functionN−2; and
so on until function1.

Context switching It is important here to note that when a function call is made, the context
of the calling function, that is, the CPU register values and the values of the variables, are
to be stored, and when the called function is over, they have to be restored. This process
is known as context switching. This takes some time, which is not signifi cant for a large
function whose function execution time will be much more than the context switching time;
however, the context switching time does matter for a small function. In the case involving
N functions, N context switching operations take place.

Thus, function calling, execution, and return of a C++ function is technically similar to
that of a C function.

When the program
is loaded in the
memory, main() is
automatically loaded.
Other functions
(MyFunction() in
this case) are not
loaded at that point
of time.

Functions 111

Difference between C++ and C functions Though C++ functions look similar to C
functions, there are two important differences:

1. C++ has inline functions for situations wherein the functions are small and the programmer
would like to eliminate the overhead of context switching. Inline functions are discussed
in detail in Section 4.4.

2. The object code of a C++ function contains some additional information than that of a C
function.

4.3 main() IN C++

In C, main() usually does not need to specify a return type, whereas in C++, either void or
int is a must. If we look at the examples that we have discussed so far, it can be observed
that all of them contain void as a return type. (If GNU C++ (Linux) is being used, then int
must be specifi ed as the return type, as void is not allowed.) The return type of main() can
be specifi ed as int and an integer value will be returned from main(). The operating system
(OS) used to invoke the program (UNIX, DOS, or Windows) can get the value passed by
main() upon the termination of the program. Then, upon looking at the return value, the OS
can take appropriate action.

Consider the case of an application running in batch mode. Here, the application contains
a series of programs called one after another in a sequence. Assume p1, p2, etc. are called one
after another until pN. The return status from main() is of more importance here. The return
value from main() of a particular program is considered as an exit status from that program.
The convention is to return zero upon normal termination and a non-zero value for abnormal
termination. Subsequent programs can be aborted if the program returns something other
than zero. For example, if there is an error in p5, the execution of p6–pN can be omitted
from processing. Thus, it is important to note that it is a good convention to return a value
even from main().

4.4 INLINE FUNCTIONS

It has already been mentioned that functions can be defi ned either inside or outside the class.
If they are defi ned inside the class, they are treated as inline functions.

Note There is an important difference between a function defi ned inside and that defi ned outside a class.
A function defi ned inside the class by default becomes inline, while a function defi ned outside
the class by default becomes non-inline. Note that this is a default behaviour, which might not be
observed sometimes when the function is not possible to be made inline when it is too complex or
recursive.

Inline functions do not behave in the same way as normal functions. Context switching time
for a small function is a hindrance to the performance. The body of inline functions replaces
the function call statement and thus avoids context switching.

Another way to avoid context switching is to use macros such as #defi ne.
(C macros are available in C++ as well, but are not used much because of
the availability of the inline facility.) In such a case, the body of the macro
with the required parameter substitution replaces the macro call before
compilation. The preprocessor does this replacement. Thus, function loading

Inline functions elimi-
nate the overhead of
context switching.

112 Programming with ANSI C++

and unloading (i.e., context switching) overhead is removed. Macros, though, have
their own problems. Many parentheses are needed and no type checking is possible.
Moreover, as they have two phases, namely, pasting and executing, they may evaluate
some expressions twice, that is, in both the phases. Functions are very fl exible and more
readable, but have the drawback of the overhead of context switching time. Hence, inline
functions are devised to provide the fl exibility of normal functions and the effi ciency of
macros.

Consider the following code containing a call to PrintDetails(), which has been discussed
in Section 3.1 of Chapter 3. It should be remembered that a function defi ned inside a class
is treated by the compiler as inline in most cases. Thus, PrintDetails() in the following
example is an inline function.

void main()
{
 student Student1;
 Student1.RollNumber = 1;
 Student1.Name = "Robin Singh";
 Student1.Address = "New Delhi";
 Student1.PrintDetails();
}

The compiler generates the code conceptually similar to the following:

void main()
{
 student Student1;
 Student1.RollNumber = 1;
 Student1.Name = "Robin Singh";
 Student1.Address = "New Delhi";

 /* The following three statements are replacements for Student1.PrintDetails()
because PrintDetails() is treated as an inline function */

 cout << "Roll number is " << Student1.RollNumber << "\n";
 cout << "Name is " << Student1.Name << "\n";
 cout << "Address is " << Student1.Address << "\n";
}

If PrintDetails() is defi ned outside the class student, it is treated as a normal function and
the generated code is conceptually similar to the following.

void main()
{
 student Student1;
 Student1.RollNumber = 1;
 Student1.Name = "Robin Singh";
 Student1.Address = "New Delhi";
 <Address of PrintDetails() with appropriate arguments>
}

Functions 113

Let us consider the inline and non-inline cases separately.

Inline function case The function body replaces the function call statement
wherever it appears in the program body. This behaviour is very similar to
macros. At the time of execution, the control is transferred to the line after the
function is loaded at compile time. It does not require a function call at the
execution time. Thus, this solution is more effi cient at execution time, as it does
not involve context switching, and is important for small functions where context
switching time is signifi cant.

Non-inline function case The address of the function replaces the function
call in this case. The non-inline function is better with increase in the size of the compiled
program. If a large function is copied at every place it is called, it will increase the code size
of the calling function. It is better to have only the address of the function stored at the place
of call in such cases. Moreover, for a large function, context switching time is insignifi cant;
they are better as normal functions.

It is also possible to have a function defi ned outside the class as inline. The only
requirement is to precede the function name with the keyword inline at the time of defi nition.
This keyword can also precede non-member functions. As mentioned earlier, non-member
functions are not associated with any class. We will be looking at an example of a non-
member function in Section 4.10.

Note When a function with no argument is encountered, it should not be assumed that the argument list is
null; pointer to Student1 is passed as the only argument in this case. It is an implicit argument called
this pointer.

Consider Program 4.1 to understand inline functions better.

When a function
defi ned outside the
class, including a
non-member function,
is preceded by the
word inline, it is
considered to be
inline by the compiler.

PROGRAM 4.1 Defi ning and using inline functions
// InlineExample.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
public:
 int RollNumber;
 string Name;
 string Address;
 void PrintDetails();
};

inline void student::PrintDetails()

/* If we omit the word inline here, the function will be treated as a normal function */

{
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
}
void main()
{

114 Programming with ANSI C++

How the Program Works
Observe how the keyword inline is added at the beginning of the function defi nition to
inform the compiler. It is important to note that an inline function must be defi ned before its
fi rst use because the code in the function body must be known before making a function call.
Only then can it replace the function call statements with the code of the function body. This
is different from the other functions, which can be defi ned after their call. Only the function
prototype should precede the call.

Note A normal function’s body may be defi ned after the call, as only its address is to be replaced with
the call. However, an inline function must be defi ned completely before its call, as the entire body is
needed to be replaced with the call.

We have discussed the overhead of context switching for small functions and then having
inline functions as a solution. What if the function is large and is defi ned inside the class? It
may add to the program size to a large extent. The best way to solve this problem is to defi ne
only small functions inside the class and bigger ones outside. In any case, C++ compilers
consider inline as a mere request.

There are some obvious cases when it not possible to make functions inline. If the function
is found to be too large or too complicated, the inline request is ignored and the function will
be treated as a normal function.

Consider a recursive function. A recursive function call cannot be replaced
by the function body because the process will never end. Every function body
copied will have a call to itself (this is why it is called recursive) where the same
body will have to be copied again, which, in turn, will have a call to itself and
so on.

Again, consider the case of a function having static variables. The static
variables will retain their values between calls. If the compiler pastes copies of
the function body where function calls are made, it will be impossible for the
function to retain the values of static variables between the calls. Suppose we
have pasted two copies of the same function at two different places. Assume that
in the fi rst copy the variable StaticVar is initialized with 10, and it has the value
20 when the copy is executed. How does the second pasted copy of the same
function know that the output value of a variable of the earlier copy is 20 and that
it should start with 20 rather than 10? This is at the time of compilation. What
would happen at execution time? As this is not possible to predict, C++ does not
allow inline functions with static variables.

So, it cannot be assumed that the compiler shall necessarily comply with the
request for inline when asked for. How then can we know whether the compiler
has treated our function as inline or not? A simple way to fi nd that out is to make
increasingly more calls to that function in different versions of the same program

 student Student1;
 Student1.RollNumber = 1;
 Student1.Name = "Robin Singh";
 Student1.Address = "New Delhi";
 Student1.PrintDetails();
}

Recursive functions
and those functions
that use static vari-
ables are not treated
as inline even when
they are defi ned
inside the class or
preceded by the word
inline.

If a program’s size
increases with
increasing number
of calls to a specifi c
function, it means
that the compiler has
treated that function
as inline.

Functions 115

and look at the increment in the size of the compiled program. If the size grows linearly with
the number of function calls made, the compiler has treated it as inline.

4.5 DEFAULT ARGUMENTS

Suppose we want to add a function to our student class, which takes the total marks and
passing marks and tells us whether a student has passed or not. Let us assume that a student

has to score at least 50 marks to pass. Is there a way in C++ to consider the
passing marks value as 50 even if it is not provided? In other words, can we tell
the C++ compiler to call the function with passing marks (set at 50) as a default
argument? It is possible, using the feature known as default argument, which is
explained in Program 4.2. Let us take a closer look at the function prototype and
the way it is invoked in the main() function.

PROGRAM 4.2 Default argument example
// DefaultArgumentExample.cpp
#include <iostream>
using namespace std;

void add(int NumberOne = 100, int NumberTwo = 200)
{
 cout << "Sum is " << NumberOne + NumberTwo << endl;
}

void main()
{
 int Int1 = 5, Int2 = 7;
 add();
 add(Int1);
 add(Int1, Int2);
 /* If we want to provide only the second argument, it will not work */

 // The following will not work as expected
 add(Int2);
 getchar();
}

Output
Sum is 300
Sum is 205
Sum is 12
Sum is 207

How the Program Works
Program 4.2 shows how default arguments work. Look at the three different calls to the add()
function. When both the arguments are passed as in the case of the following statement, the
output is similar to a function with normal arguments.

add(Int1, Int2);

It is interesting to observe what happens when the add() function is called with no arguments
or with one argument as in the following two cases:

add();

A default argument
is considered when
the function is called
without providing that
argument.

116 Programming with ANSI C++

add(Int1);

In the fi rst case, when we have no argument passed to the function, it is actually called with
arguments 100 and 200, respectively, as they are defi ned as default arguments in the function
header. Thus, the number 300 is the output. In the second case, we have provided only one
argument. This is considered as the fi rst argument (obviously) and the second argument,
which is not explicitly provided by the caller, is taken from default; thus, 5 is added to
200 and we get 205 as the output. Interestingly, if the user’s intention is to provide only
the second argument and take the fi rst argument as default and if the function is called as
follows, it will not give the expected answer.

add(Int2);

The output is 207, which means that Int2 is considered as the fi rst argument and the second
argument was taken by default.

How will the C++ compiler know that Int2 is expected to be the second argument? Is
it because it contains 2 in it? What if the arguments are Balance and Interest, which is
more likely in a real-world program? There is no way for providing this information to the
compiler. So, the fi rst argument is assumed to be the default.

Program 3.9 of Chapter 3 has been modifi ed in Program 4.3. The function CheckPass() is
now added to the program. The function is simple enough to understand. It has only one line
in the body and returns a bool value, true for passing and false for failing. The value returned
depends on the student’s marks and the value of the passing marks.

The function PrintDetails() is also changed such that it now also displays whether
the student has passed or not, after calling the CheckPass() function. PrintDetails() is
called with more than one type of passing marks value to show how a function with default
arguments can be called.

PROGRAM 4.3 Default arguments
// DefaultArgument.cpp
#include <iostream>
#include <string>
using namespace std;

bool CheckPass(int TotalMarks, int PassingMarks = 50);
// Default value is specifi ed here for an argument

class student
{
public:
 int RollNumber;
 string Name;
 string Address;
 int TotalMarks;

 void SetDetails(int Roll, string StudentName, string StudentAddress, int StudentMarks)
 {
 RollNumber = Roll;
 Name = StudentName;
 Address = StudentAddress;
 TotalMarks = StudentMarks;
 }

 void PrintDetails()

Functions 117

 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";

 if(CheckPass(TotalMarks))
 // It takes passing marks as 50 here
 cout << "Congratulations! You have passed (passing marks 50)\n";
 if(CheckPass(TotalMarks,40))
 cout << "Congratulations! You have passed (passing marks 40)\n";
 if(CheckPass(TotalMarks, 35))
 cout << "Congratulations! You have passed (passing marks 35)\n";
 else
 cout << "Sorry! Better luck next time\n";
 }
};

bool CheckPass(int TotalMarks, int PassingMarks)
/* Notice the default value for an argument is not repeated here,
it is an error if it is done that way */

{
 return(TotalMarks > PassingMarks);
}

void main()
{
 student ArrayOfStudents[3];
 ArrayOfStudents[0].SetDetails(1, "Umesh Yadav", "New Delhi", 75);
 ArrayOfStudents[0].PrintDetails();
 ArrayOfStudents[1].SetDetails(2, "Varon Aaron", "Jharkhand", 87);
 ArrayOfStudents[1].PrintDetails();
 ArrayOfStudents[2].SetDetails(3, "Vinay Kumar", "Tamil Nadu", 37);
 ArrayOfStudents[2].PrintDetails();
}

How the Program Works
Look at the prototype of the CheckPass() function.

bool CheckPass(int TotalMarks, int PassingMarks = 50);

Here, PassingMarks is a default argument with the default value set as 50. This means that
if the function CheckPass() is called with only one argument, the second argument’s default
value should be taken as 50. The function can be called using CheckPass(72) or CheckPass(30)
where the passing marks will be considered to be 50, that is, the second argument is assumed
to be 50 by default. Thus, the call to CheckPass(72) is equivalent to calling CheckPass(72,
50). It should be noted that the function can also be called using CheckPass(40, 35) where
the passing marks are explicitly specifi ed as 35.

In this example, the default arguments are specifi ed in the prototype. If the function is
defi ned before it is used, the prototype can be omitted. In such cases, the function itself will
have the default argument specifi ed. If the default arguments are already specifi ed in the
prototype, it cannot be redefi ned in the function header. So, if the function CheckPass() is
defi ned before its call, it will have the following header:

bool CheckPass(int TotalMarks, int PassingMarks = 50)

118 Programming with ANSI C++

instead of

bool CheckPass(int TotalMarks, int PassingMarks)

and there will be no prototype then.
It is possible to have more than one default argument with more than one normal argument.

The rule to pass those arguments is very simple. All the normal arguments must be passed
before the default arguments in the argument list.

The CheckPass() function prototype can be rewritten as follows (assuming the code is
changed to accommodate usage of other parameters):

CheckPass(int Sub1Marks, int Sub2Marks, int PassingMarks = 50)
CheckPass(int Sub1Marks, int Sub2Marks, int PassingMarks1 = 50,
int PassingMarks2 = 35);

CheckPass(int Sub1Marks, int PassingMarks1 = 50, int Sub2Marks,
int PassingMarks2 = 35);

/* This statement is wrong because PassingMarks1 is a default argument written before
Sub2Marks, which is not a default argument. */

4.5.1 Using Static Variable as Default Argument to a Function
Functions with default arguments are very handy if, for most of the cases, the value of the
argument remains the same. An interesting thing to note here is that a static variable can also
be used as a default argument value. So it is possible to write

Account(AccountNumber = NextNumber)

where NextNumber is a static variable and is incremented every time a new Account
object is created. This is an example which shows how an important functionality can
be added to a program. As soon as a new account is created, it will get a unique account
number automatically. This can be illustrated with a simple example shown in the following
program. The getNext() function automatically receives the next immediate number. It
can be observed that the static integer value Next is incremented and returned from the
function.

This simple solution is possible only in cases where the next number series starts from
zero and will not work if the getNext() series is supposed to start from some other number.
Such a program will need some changes.

#include <iostream>
using namespace std;
static int Next;
int getNext(int NextNumber = Next)
{
 Next++;
 return NextNumber;
}
int main()
{

Functions 119

 cout << getNext() << endl;
 cout << getNext() << endl;
 cout << getNext() << endl;
 getchar();
}

Output

0
1
2

Readers are encouraged to reason out the following questions:

1. Why should all normal arguments precede all default arguments?
2. How can the compiler determine which argument corresponds to which one?
3. How can a complier know for sure that a particular default argument is passed explicitly?

4.5.2 Functions with Objects as Parameters
Functions in C++ can have any valid data type as an argument or a return type similar to a C
function. As an obvious consequence of the availability of objects in C++, functions in C++
can pass as well as return objects. Consider the following program.

Passing an object The function can be passed objects similar to other variables.
The following program uses a non-member function PrintValues(), which takes a complex
object as an argument and prints it.

// ReturnComplexObject.cpp
#include <iostream>

using namespace std;

class Complex
{
public:
 double real;
 double imag;

 void SetValues(int TempReal, int TempImag)
 {
 real = TempReal;
 imag = TempImag;
 }
};

void PrintValues(Complex ComplexNumber)
{
 cout << "(" << ComplexNumber.real << "," << ComplexNumber.imag << ")";
}

int main()
{

120 Programming with ANSI C++

 Complex C1;
 C1.SetValues(10, 30);
 Complex C2;
 C2.SetValues(13, 25);

 PrintValues(C1);
 PrintValues(C2);
 getchar();
 return 0;
}

Output

(10, 30)(13, 25)

Program 4.4 has a class Time, representing time, which has three fi elds, namely, Hours,
Minutes, and Seconds to represent hour, minute, and second values. The program includes
a function called Difference(), which calculates the difference between two times passed
to it. Difference() takes two Time objects as input and the difference is returned again in
terms of Time object. Here, Difference() is a non-member function.

PROGRAM 4.4 Passing objects to functions
// ObjectPassing.cpp
#include <iostream>
using namespace std;

class Time
{
public:
 int Hours;
 int Minutes;
 int Seconds;

 void ShowTime()
 {
 cout << "Time is " << Hours << "hours: " << Minutes << "minutes: and " << seconds <<

" Seconds \n";
 }

 void SetTime(int TempHours, int TempMinutes, int TempSeconds)
 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
 }
};

void main()
{
 Time Difference(Time, Time);
 // Prototype for our function

 Time Time1, Time2;
 Time1.SetTime(12, 15, 15);
 cout << "The fi rst value \n";
 Time1.ShowTime();
 Time2.SetTime(10, 30, 30);
 cout << "The second value \n";

Functions 121

 Time2.ShowTime();

 Time Time3;
 Time3 = Difference(Time1, Time2);
 /* Call to the function that accepts and returns the object */

 cout << "And the difference is \n";
 Time3.ShowTime();
}

/* Defi nition of the function that accepts and returns the object */
Time Difference(Time T1, Time T2)
{
 Time DifferenceTime;
 DifferenceTime.Seconds = T1.Seconds − T2.Seconds;
 if(DifferenceTime.Seconds < 0)
 {
 DifferenceTime.Seconds += 60;
 T1.Minutes− −; // Borrowing from minutes
 if(T1. Minutes < 0)
 {
 T1.Minutes = 59;
 T1.Hours− −; // Borrowing from hours
 }
 }

 DifferenceTime.Minutes = T1.Minutes − T2.Minutes;
 if(DifferenceTime.Minutes < 0)
 {
 DifferenceTime.Minutes += 60;
 T1.Hours− −; // borrowing from hours
 }

 DifferenceTime.Hours = T1.Hours − T2.Hours;
 if(DifferenceTime.Hours < 0)
 {
 DifferenceTime.Hours = 0;
 DifferenceTime.Minutes = 0;
 DifferenceTime.Seconds = 0;
 // To indicate erroneous input
 }
 return DifferenceTime;
}
Output
The fi rst value
Time is 12 hours: 15 minutes: and 15 seconds
The second value
Time is 10 hours: 30 minutes: and 30 seconds
And the difference is
Time is 1 hours: 44 minutes: and 45 seconds

How the Program Works
See how the function Difference() is used. Two arguments are passed to it, both of type Time.
It should be observed that there is no difference in the syntax while passing objects or any
other data type to the function. When the function call is made, the actual arguments (objects
in this case) are copied to the dummy arguments of the function. By default, an exact copy
is made from the actual argument objects to the dummy argument objects in this case. This

122 Programming with ANSI C++

means that Time1 and Time2 are copied to T1 and T2, respectively. It is possible
to change this default element-by-element copy using copy constructors, which
will be discussed in Chapter 5.

It should be noted that the return type of the Difference() function is also of
type Time. The program has an assumption to simplify the function logic. The
fi rst argument must be a time later than the second argument. If not, all zeroes
will be returned as the difference. It is possible to write a function that will
change the order of the arguments and retry, but it will add to the complexity of
the logic, which is not needed now. It is being given as an exercise to the readers.

It should also be noted that the function Difference() is not a member
function of any class (i.e., it is a non-member function). Difference() can use
Hours, Minutes and Seconds because they were declared as public. If they were

declared as private, it will not be possible for Difference() to access them unless it is
defi ned as a friend, which is discussed in Section 4.11.

Observe the statement Time3 = Difference(Time1, Time2). Difference() is defi ned
as returning an object of type Time. The compiler creates the object, which is returned
and assigned to Time3 when there is a difference. The compiler also destroys it when the
assignment statement is over. This creation and deletion of temporary objects is explained
in Exhibit 4.1.

Exhibit 4.1 Temporary object creation and destruction
The compiler creates and destroys the objects at run-time. Technically, the compiler creates the code
for doing this at compile time. It is similar to defi ning objects and also defi ning their constructors and
destructors.

In Program 4.4, the temporary object is defi ned prior to the call to the function and its destructor is called
after the assignment statement. So, the compiler is not present at run-time and the code created by the
compiler works on its own. Thus, the statements for creating and destroying temporary objects are inserted
by the compiler when the program is compiled and they generate and destroy such objects and work as a
compiler at run-time.

In C++11, there is no need to destruct the object at run-time. An object that is dangling at run-time can be
reclaimed by a garbage collector. Until the release of C++11, garbage collector was available only in Java.

Both member and
non-member func-
tions can receive as
well as return objects.
If the values that the
function manipulates
are defi ned as
private, a non-
member function will
not be able to use
them.

4.5.3 NRV Optimization
Observe the following three code segments. Let us fi nd the minute difference that separates
them and makes each one of them unique.

Complex Maximum(const Complex c1, const Complex c2)
{
 if(c1.real() > c2.size())
 return c1;
 else
 return c2;

}

Complex Maximum(const Complex &c1, const Complex &c2)
{

Functions 123

 if(c1.real() > c2.real())
 return c1;
 else
 return c2;

}

Complex & Maximum(const Complex &c1, const Complex &c2)
{
 if(c1.real() > c2.real())
 return c1;
 else
 return c2;

}

The fi rst code uses no references, the second one passes references to objects rather than
objects themselves, and the third one returns a reference as well. What is the advantage of
the third code when compared with the other two? Passing and returning only references
reduces the overhead. When a user writes a code of the second type and it is converted
into the third type by the C++ compiler, it is known as name return value (NRV) optimization.

In Program 4.4, the temporary object creation and destruction can be omitted if
Difference() is passed the reference of Time3 additionally as third argument and, instead of
assigning value to a local variable (i.e., the DifferenceTime), the value is directly given to the
reference. The compiler can and does convert such codes to have these two optimizations,
which is known as NRV optimization. It should be noted that the earlier discussion regarding
construction and destruction of temporary objects may not hold true if a compiler applies
NRV.

Let us fi nd out what happens when the following statement is executed (assuming no
NRV):

Time3 = Difference(Time1, Time2);

The compiler-generated code does the following operations:

1. Construct temporary variable Temp may be by using Temp = new Time(U);
2. Assign to Temp the value returned by

 Difference(Time1, Time2, &Temp);
 // The function code returns the returning value in Temp
3. Time 3 = Temp;
4. delete Temp;

The right-hand side (RHS) of the assignment statement is evaluated fi rst, which in this case
requires a function call to be made. A temporary object is created as a side effect of calling
and returning the function. The value returned from the function (Temp in our example) is
passed to the left-hand side (LHS) after the control is returned from the function. Then,
Temp is assigned to Time3. Both the objects (Temp and Time3) are of the same type, so the
assignment will make a member-wise copy. Finally, Time3 will have the value of Temp. At
that point of time, the compiler-generated destructor destroys the object returned from the
function (i.e., Temp). (This is why it is called a temporary object.) Assume that Difference()
is called without assigning its return value to any object, that is,

When a code that
returns an object is
converted by the C++
compiler to return
a reference to that
object, thus reducing
the overhead of con-
structing and passing
the object itself, it is
known as NRV opti-
mization.

124 Programming with ANSI C++

PROGRAM 4.5 Passing and returning object references
// ObjRefPass2.cpp
#include <iostream>
using namespace std;

class Time
{

Difference(Time1, Time2);

Then, the object returned from the function is destroyed and is no longer available. It is
analogous to calling a C function without using the return type.

Now, consider the following statement:

Time3 = Difference(Time1, Time2);

The process for this statement can be summarized as follows:

1. The actual arguments are copied to dummy arguments, that is, Time1 is copied to T1 and
Time2 is copied to T2.

2. The function call is made.
3. The function returns the result in a temporary object (Temp in our case), defi ned by compiler

at the time of compilation.
4. Temporary object is assigned to Time3 and is then immediately destroyed by the calling

destructor.

It is possible to change the default member-wise copy behaviour while copying from the
function to the statement from where the function is called. This can be done using copy
constructors, which will be discussed in detail in Chapter 5.

Note Many programmers have a habit of writing functions and ignoring their return values. In C, the
printf() statement returns the number of characters printed, whereas it is almost always ignored in
C++. Statements such as NoOfCharsWritten = printf("…"); can hardly be found in C++.

Exhibit 4.2 describes a situation where there are arguments with different formats.

Exhibit 4.2 Arguments with different formats
What happens when two arguments passed are of the type Time but in different formats? For example, let
us suppose that the fi rst time format contains two data fi elds, hours and minutes, using the 12-hour format
and the second time format contains a numeric value indicating seconds elapsed until midnight. What if the
result is to be obtained in either fi rst format or second format?

In such a case, both the types will have to be represented by different objects and we need to provide
a means of conversion between them.

4.6 CALL BY REFERENCE

The methods to call using a reference variable and to return a reference variable have
already been discussed in Chapter 2. We can actually pass as well as return a reference to an
object. Program 4.5 illustrates passing object references using the Time class, in which Time
objects are added now. The importance of returning the reference and the method to do it are
described in Program 4.6 in Section 4.7.

Functions 125

public:
 int Hours;
 int Minutes;
 int Seconds;
 void ShowTime()
 {
 cout << "Time is " << Hours << "hours : " << Minutes << "minutes : and " << Seconds

<< "seconds \n";
 }

 void SetTime(int TempHours, int TempMinutes, int TempSeconds)
 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
 }
};

void main()
{
 Time AddTimes(Time &, Time &);
 /* Look at this prototype. It has references to two time objects as arguments, though it

returns a normal object, not a reference */

 Time Timel, Time2;
 Time1.SetTime(12, 15, 15);
 cout << "The fi rst value \n";
 Time1.ShowTime();

 Time2.SetTime(10, 30, 30);
 cout << "The second value \n";
 Time2.ShowTime();

 Time Time3;
 cout << "Now let us add times Time1 and Time2 \n ";

 Time Time4;
 Time3 = AddTimes(Time1, Time2);
 Time3.ShowTime();
 Time4 = AddTimes(Time2, Time3);
 Time4.ShowTime();
 Time4 = AddTimes(Time4, Time1);
 Time4.ShowTime();
 cout << "Now let us add times Time1, Time2, and Time3 as well\n ";
 Time4 = AddTimes(AddTimes(Time2, Time3), Time1);
 Time4.ShowTime();
}

Time AddTimes(Time & Time1, Time & Time2)
{
 Time AddTime;
 AddTime.Seconds = Time1.Seconds + Time2.Seconds;
 AddTime.Minutes = AddTime.Seconds / 60;
 AddTime.Seconds = AddTime.Seconds % 60;
 AddTime.Minutes += Time1.Minutes + Time2.Minutes;
 AddTime.Hours = AddTime.Minutes / 60;
 AddTime.Minutes = AddTime.Minutes % 60;
 AddTime.Hours += Time1.Hours + Time2.Hours;
 return AddTime;
}

126 Programming with ANSI C++

PROGRAM 4.6 Function used as LHS
// FunctionInLHS.cpp
#include <iostream>
using namespace std;

class Complex
{
public:
 double real;
 double imag;

 void SetValues(int TempReal, int TempImag)
 {
 real = TempReal;
 imag = TempImag;
 }
};

How the Program Works
This program has a new AddTimes() function for adding two times in the Time class. The
function defi nition Time AddTimes(Time &, Time &); looks different from the Difference()
function described earlier. We still have Time as a return type. The arguments are changed
from Time to Time &. However, this does not make much difference in the function body. At
the time of actual execution, the reference to the argument is passed and not its value. Thus,
AddTimes() works with main() variables and manipulates them directly. One interesting
statement is Time4 = AddTimes(AddTimes(Time2, Time3), Time1), which shows how a function
call can use itself in the argument.

We have seen that returning a reference enables us to use the function call on the LHS
of an assignment statement. If the function call is to be used on the LHS of an assignment
statement, a reference needs to be returned. Section 4.7 discusses the situations where the
function call needs to be on the LHS, using a classic singly linked list example. The readers
are advised to brush up their dynamic memory management and linked list management
skills before going through Section 4.7.

4.7 RETURNING A REFERENCE

Program 4.6 shows a function that returns the object. It is used in the LHS of an assignment
statement.

Output
The fi rst value
Time is 12 hours : 15 minutes : and 15 seconds

The second value
Time is 10 hours : 30 minutes : and 30 seconds
Now let us add times Time1 and Time2
Time is 22 hours : 45 minutes : and 45 seconds
Time is 33 hours : 16 minutes : and 15 seconds
Time is 45 hours : 31 minutes : and 30 seconds

Now let us add times Time1, Time2, and Time3 as well
Time is 45 hours : 31 minutes : and 30 seconds

Functions 127

Complex & Maximum(Complex & Complex1, Complex & Complex2)
{
 if(Complex1.real > Complex2.real)
 return Complex1;
 else
 return Complex2;
}

void PrintValues(Complex ComplexNumber)
{
 cout << "(" << ComplexNumber.real << "," << ComplexNumber.imag <<")";
}

int main()
{
 Complex C1;
 C1.SetValues(10, 30);
 Complex C2;
 C2.SetValues(13, 25);

 PrintValues(C1);
 PrintValues(C2);

 Complex C3 = Maximum(C1, C2);
 PrintValues(C3);

 Maximum(C1, C2) = C3;

 PrintValues(C1);
 PrintValues(C2);

 getchar();
 return 0;
}

Output

(10, 30)(13, 25)(13, 25)(10, 30)(13, 25)

How the Program Works
The statement of interest in this program is

Maximum(C1, C2) = C3;

Here, the maximum of C1 and C2 is assigned the value of C3. It is possible to have such a statement
only if the function under consideration returns a reference to a variable of a calling function. Why
this happens and where this can be used is explained in Section 4.8 with the help of an example.

Program 4.7 has a linked list of students. A student is represented by an object of class
StudentNode. The linked list is represented by an object of class StudentList. Insertion
of a new StudentNode is done at the end of the linked list with the help of the function
InsertList(). The function InitializeList() is used for making the fi rst pointer to point to
null. This is an important function because when a node is inserted in the linked list, a null
fi rst pointer indicates empty linked list. Thus, we can make the fi rst pointer to point to that
node. In other cases (when the fi rst pointer is not null), the list contains some elements, and
hence, we have to traverse the list and reach the end to add that node.

Suppose we want to replace a node of the linked list with an external node of the same
type. Here, the node is generated by reading the values from the keyboard but the node may

128 Programming with ANSI C++

also come from some other program or by some communication channel. It is imperative
that the order of the nodes in the list does not change. This operation is analogous to array
indexing. Consider the statement

a[i] = NewValue;

The old value at the ith location in the array changes to NewValue. Though the value changes,
the index does not change. A similar process is required in the linked list. The content of
the node must be changed but not the position. Therefore, the programmer must ensure
that when the node values are copied, the next pointer is found and copied as well. Thus, a
statement of the kind

"Node at the ith position = NewValue"

should change the value of that node to NewValue without changing the position of that node.
The way to do this is shown in the following example.

In Program 4.7, class StudentNode uses friend non-member function GenerateStudent
Node() and also friend class StudentList. Thus, GenerateStudentNode() and StudentList can
access the private members of StudentNode class. Friend functions are discussed in detail in
Section 4.11.

PROGRAM 4.7 Returning a reference to an object
// ObjRefReturn.cpp
#include <iostream>
#include <string>
using namespace std;

// The following class describes the node in the linked list
class StudentNode
{
 string Name;
 StudentNode *NextStud;
public:
 int RollNo;

 // Inserting roll no., name and setting NextStud value to null
 void SetStud(int TempRollNo, string TempName)
 {
 RollNo = TempRollNo;
 Name = TempName;
 NextStud = '\0';
 }

 void WriteStud()
 {
 cout << "Roll number is " << RollNo << "and the name is " << Name << endl;
 }

 StudentNode * GetNextPtr()
 // Get the next pointer pointing to the next item in the list
 {
 return NextStud;
 }

 void SetNextPtr(StudentNode * TempPointer)
 // Make the next pointer point to the value passed

Functions 129

 {
 NextStud = TempPointer;
 }

 // Given roll number and name, create an object of student node

 friend StudentNode GenerateStudentNode(int TempRollNo, string TempName);

 /* StudentNode class and all the members of this class are friends of this function.
Hence, it can access the private members of StudentNode class */

 friend class StudentList;
 /* So all members of StudentList class can refer to our private members */
};

StudentNode GenerateStudentNode(int TempRollNo, string TempName)
{
 StudentNode TempStudNode;
 TempStudNode.RollNo = TempRollNo;
 TempStudNode.Name = TempName;
 return TempStudNode;
};

class StudentList
{
 StudentNode *First;
public:
 void InitializeList()
 {
 First = '\0';
 }

 /* Inserting a student node at the end of a linked list after allocating memory */
 void InsertList(int TempRollNo, string TempName)
 {
 StudentNode *NewStudent = new StudentNode;
 NewStudent -> SetStud(TempRollNo, TempName);
 if(!First)
 First = NewStudent;
 /* If there is no other element, that is, fi rst is null; then, this is the fi rst

element */
 else
 {
 StudentNode *TempPtr = First;

 while(TempPtr -> NextStud)
 TempPtr = TempPtr->NextStud;
 // Reached the end of the linked list

 TempPtr -> NextStud = NewStudent;
 // Adding an element there
 }
 }

 void DisplayList()
 {
 StudentNode *TempPtr = First;
 while(TempPtr)
 {
 TempPtr -> WriteStud();

130 Programming with ANSI C++

 TempPtr = TempPtr->NextStud;
 }
 }

 /* Finding out the student object containing the required name and return reference to
that object */

 StudentNode & GetStudent(string TempName)
 {
 StudentNode * TempPtr = First;
 while(TempPtr -> Name != TempName)
 {
 TempPtr = TempPtr -> NextStud;
 if(!TempPtr)
 {
 cout << "Error";
 exit(1);
 }
 }
 return *TempPtr;
 }
};

int main()
{
 StudentList StudList;
 StudList.InsertList(1, "Robin");
 StudList.InsertList(2, "Leena");
 StudList.InsertList(3, "Bob");
 StudList.InsertList(4, "Sam");

 StudList.DisplayList();

 cout << "Insert the name of student you want to change:";
 string OriginalName, NewName;
 cin >> OriginalName;
 cout << "\n Insert new name: ";
 cin >> NewName;
 cout << "\n Insert new roll no.: ";
 int NewRollNo;
 cin >> NewRollNo;

 // Generate a new node with new roll number and new name
 StudentNode NewNode = GenerateStudentNode(NewRollNo, NewName);

 /* Get the next pointer value of the old student node and then set it in the new node */
 NewNode.SetNextPtr(StudList.GetStudent(OriginalName).GetNextPtr());
 /* The following statement is not possible if GetStudent() does not return reference */

 StudList.GetStudent(OriginalName) = NewNode;
 // Replacing the old object with a new one

 StudList.DisplayList();
 return 0;
}
Output
Roll number is 1 and the name is Robin
Roll number is 2 and the name is Leena
Roll number is 3 and the name is Bob
Roll number is 4 and the name is Sam
Insert the name of student you want to change: Leena

Functions 131

How the Program Works
Let us analyse the program and see what it does.

Classes used in the program The program contains two classes StudentNode and StudList
describing the student and the linked list of students. As mentioned earlier, the addition to the
list is made at the end. Look at the defi nitions of both the classes. StudList has to be made
a friend of the StudentNode class because it accesses the private variables of StudentNode
class such as the roll number and name. There is an additional friend in this case, that is,
the function that generates a node of type StudentNode given the values of roll number and
name. Such functions that generate objects are very useful. We will see in Chapter 5 how
constructors can do this job instead of a friend.

Functions used The class StudentNode has four functions. SetStud() fi lls the value in
data members. WriteStud() displays the data members. SetNextPtr() fi lls the value
of the next pointer of the student node and GetNextPtr() gets its value. These functions
are useful in preserving the earlier next position and setting it when other values are
changed.

Processing The class StudList is a collection class for StudentNode objects. The
InsertList() function adds a student node at the end of the list. DisplayList() displays the
contents of the list. InitializeList() is an important function and sets the fi rst pointer to
null. As mentioned earlier, the fi rst pointer being null indicates an empty list. The function
that is considered to be the most important in this discussion at the moment is GetStudent(),
which returns reference to StudentNode object in the list.

Using a function as LHS When a node needs to be replaced at the same position, it can be
done using the following statement:

StudList.GetStudent(OriginalName) = NewNode;

It replaces the student object reference returned from the GetStudent() function with
NewNode. The GetStudent() function returns the reference of the node containing the
name as OriginalName; thus, assigning NewNode to it actually replaces that node with
NewNode while preserving the position. So, there is no need to set the previous node’s next
pointer.

Next, the next pointer of the OldNode needs to be preserved. This can be done
using GetNextPtr() form the old node and using SetNextPtr() in the NewNode with the same
value.

Refer to the earlier statement that assigns a reference of a node to the new node. The
reference must be used here because the function call is used in the LHS. Consider the
following statement:

NewNode = StudList.GetStudent(OriginalName)

Insert the new name: Veena

Insert new roll no.: 12
Roll number is 1 and the name is Robin
Roll number is 12 and the name is Veena
Roll number is 3 and the name is Bob
Roll number is 4 and the name is Sam

132 Programming with ANSI C++

In this case, the node in the linked list is not updated while the NewNode is updated. In
order to prevent this, the function call must be on the LHS and it must return a
reference.

Reference to local variable not correct It should be noted that whenever a reference is
being returned, it is not the reference of a local variable. After we exit from the function, all
the variables of the function are removed from the stack. If it is a reference (i.e., address;
C++ object model implements references as pointers) of a local variable of the function, the
address is no longer valid.

In Program 4.5, where a local object was passed, the result was explicitly copied in a
main() function object, through the code

Time3 = AddTimes(Time1, Time2);

That is, the reference was not returned. So, this problem did not arise in that case.
There are two important differences between passing and returning objects and passing

and returning references.

1. When the reference is passed to the function instead of an object, only the pointer to the
object is passed to the function. It takes far lesser time than passing the whole object. This
helps in increasing the effi ciency.

2. When the reference is returned, it is possible to use the function as the LHS of an
expression, as seen in Program 4.7. We will look at another example when we discuss the
overloading operator in Chapter 6.

Function returning a reference used as LHS What is the difference between returning
a reference and returning an object that enables the former to be used on the LHS of
an equation? Both cases return a temporary object and the object is destroyed after the
assignment is completed. In the fi rst case, where a reference is passed, the temporary object
returned is a reference to a known variable, that is, a variable that is either implicitly or
explicitly defi ned in the calling function (main() in our case). The variable here is defi ned
implicitly by one more temporary main() student object generated by the call to GetStudent()
function. In that case, assigning a value to the temporary variable actually assigns the value
to the known variable to which it is a reference. The temporary object returned is an alias
of a node of the linked list, known to us in the StudList class, which is defi ned in main(). In
the case of returning a normal object, such an assignment is meaningless because the object
to which the assignment is made is to be destroyed immediately. Hence, it is not allowed by
the compiler.

4.8 PROTOTYPING AND OVERLOADING

Whenever a function is to be used, the user should specify how the function should be called.
It is important to know the name of the function and the number and type of arguments to
be passed in order to call a function. These details are specifi ed by the function prototype.
Function prototyping is a mechanism by which a compiler is informed of the number and
type of arguments with which the function is likely to be called. Function overloading is a
mechanism by which we can defi ne functions with different types or numbers of arguments
but retain the same name.

Functions 133

4.8.1 Prototyping
Function prototyping is also a part of ANSI C but is not kept mandatory to
support older C programs, which do not require prototyping. In C++, prototyping
is made mandatory. (It should be noted that prototyping was fi rst introduced in
C++ and then in ANSI C.) A C++ compiler will fl ag an error when a function call
is made but the prototype is not yet defi ned.

The prototype is not required only in the cases where the function itself is
defi ned before the call. Consider the example given in Section 4.8.2. Observe
the prototype for the Difference() function. The program will not be compiled
if that line is omitted. Such strict measures are required to provide more robust
error checking by the compilers. If the prototype is provided, a compiler can
easily check for the number of arguments and also their types. For instance, the
Difference() function should take two Time objects. While making a call, if a
single Time object or three Time objects are passed, it will lead to an error at the
time of compilation. Moreover, if something other than Time object is passed, it
will also be detected during compilation. For example, consider the following
function prototype:

MyFunction(int First, char Second)

This can also be written as MyFunction(int, char). The important factor is only
the datatype; First and Second are not important for the compiler at the moment.

According to this prototype, every call to MyFunction() must have two
arguments and they can be of types int and char and nothing else. Compilers can fl ag a
warning if MyFunction() is passed one or three arguments or even when two arguments are
passed and either the fi rst argument is not int or the second is not char. This is of immense
help when a user unknowingly makes the mistake of sending more number of arguments or
a different type of argument.

This is the reason why prototypes were accepted in ANSI C. However, there is another
important reason for having function prototypes in C++. They help in function overloading,
which is explained in Section 4.8.2.

4.8.2 Function Overloading
In C, it is not possible to redefi ne a function with the same name. For example, it is not
possible to have two Add() functions, one with integer arguments and the other with string
arguments. However, this is possible in C++ provided both the functions have different sets
of arguments. Consider defi ning a function Add(int, int). If we now redefi ne Add(fl oat,
fl oat) then it is known as overloadeded Add(). It is also possible to have Add(int, int,
int) as a separate function. This process is known as function overloading. Let us look at
Program 4.8 to understand this concept better.

A function prototype
is the function header
(excluding the body
of a function) with or
without the dummy
arguments and with
the data types of the
arguments.

A function prototype
is useful in checking
whether the function
is passed the correct
set of arguments.

When a function is
redefi ned with different
sets of arguments, it
is known as an over-
loaded function.

PROGRAM 4.8 Overloading functions
// FunOverLoadl.cpp
#include <iostream>
#include <string>
using namespace std;

134 Programming with ANSI C++

void main()
{
 int Add(int, int);
 double Add(double, double);
 string Add(string, string);

 int IntVarl, IntVar2, IntSum;
 double DoubleVarl, DoubleVar2, DoubleSum;

 IntVarl = 5;
 IntVar2 = 10;
 DoubleVarl = 5.25;
 DoubleVar2 = l0.25;

 IntSum = Add(IntVarl, IntVar2);
 cout << IntSum << "\n";
 DoubleSum = Add(DoubleVarl, DoubleVar2);
 cout << DoubleSum << "\n";
 fl oat FloatVar = l.2;

 /* The following works because the C++ compiler can unambiguously
 convert from fl oat to double */
 cout << Add(DoubleVarl, FloatVar);

 // cout << Add(DoubleVarl, IntVarl);
 /* This statement does not work because it makes the C++ compiler unsure of whether to

use the int version or the double version of Add */
 string Name = "Robin";
 string Father = "Singh";
 string CompleteName;

 CompleteName = Add(Name,Father);
 cout << endl << CompleteName << endl;
}

int Add(int First, int Second)
{
 return(First + Second);
}

/* The following is an error in C, as we are redefi ning a function.
It is valid in C++, though */
double Add(double First, double Second)
{
 return(First + Second);
}

string Add(string First, string Second)
{
 return(First + Second);
}

How the Program Works
Let us now analyse the program component by component.

Defi ning overloaded functions This is a very simple example (there is no class in the
program) that shows function overloading. The Add() function is overloaded (defi ned more
than once with int, double, and string arguments) here. The function is not really needed
in the program as we could have used + to add two items directly. The purpose of the Add()
function is to demonstrate something that is not available in C.

Functions 135

Using overloaded functions It is possible to not only redefi ne a function but also call it
whenever required, and let C++ pick up the right version for us. When Add() is called with
two integer arguments, C++ calls Add() with integer arguments, and when it is called with
two double arguments, C++ automatically calls Add() with double arguments. The same
happens in the case of strings. It is not necessary to specify which Add() function to call,
because C++ does it automatically by looking at the arguments. The compiler looks at the
call, for example, Add(IntVar1, IntVar2), fi rst. It already knows that IntVar1 and IntVar2
are integer arguments and is also aware of an overloaded version of Add() with two integer
arguments. Thus, it is able to judge that the overloaded version of Add() with two integer
arguments is to be invoked at this place.

Promotions and conversions C++ applies promotions and conversion similar to C. If a
fl oat argument is passed, C++ upgrades it to double and calls the Add() function with double
arguments. This conversion is helpful because there is no need to defi ne one more function
if we need to pass fl oat as an argument now.

Problems with overloading However, overloading is troublesome at times. Consider the
following line, which is commented:

// cout << Add(DoubleVar1, IntVarl);

This is a call with one double argument and one integer argument; such calls will confuse the
C++ compiler, as it cannot decide whether to use the double version or the integer version
of Add(). This situation is ambiguous. Here, the compiler will fl ag an error and the program
will not be compiled. The solution here is to use casting as follows:

Add(DoubleVar1, (double)IntVarl)

Methods of Function Overloading
Function overloading is useful when a similar function is required to be called with either
variable number of arguments or arguments of different types. It is also possible to use
function overloading for both, that is, different types of arguments and different numbers
of arguments together. In C, different functions need to be defi ned with different names, for
example, AddInt(), AddDouble(), etc. In such cases, depending on the arguments, different
functions need to be called and generalization is not possible.

Our discussion about difference in two overloaded functions involves only the argument
number and type, but does not involve the return type because function calls do not specify
the return type. Function calls can be made without using return value, such as printf(). A
compiler cannot judge from the function call the function to be called if the return type alone
is different. Thus, it is not possible to have two Add() functions with the same number and
type of arguments, but different return types.

Function Overloading and Polymorphism
Polymorphism refers to the ability of the object to react differently to the same command
in different contexts. In the context of function overloading, the meaning is one interface
for multiple jobs depending on the messages (arguments) passed to the function. Function
overloading helps to produce similar behaviour. For example, the same Add() function
behaves differently when called with strings and with integers (from the user’s perspective).
In our program, this is implemented using multiple Add() functions. For the user, there is
only one interface (Add() function), which is passed with different messages, that is, either
string or integer, and it does different jobs. This type of polymorphism is known as compile

136 Programming with ANSI C++

Default arguments
are not visible at the
function call; this
sometimes hinders
the readability of the
program.

time polymorphism. It is also possible to have run-time polymorphism, which is achieved
using virtual functions (discussed in Chapter 10).

Exhibit 4.3 gives a comparison of default argument and function overloading solutions.

Exhibit 4.3 Comparison between default argument and function overloading solutions
At times, a problem can be solved by using either default arguments or function overloading. Consider the
following example:

bool CheckPassing(int TotalMarks, int PassingMarks = 50)

can also be written as two different functions

bool CheckPassing(int TotalMarks);

and

bool CheckPassing(int TotalMarks, int PassingMarks);

We can see that the function calls in both the cases (either using a default argument or an overloaded
function) do not differ.

The default argument obviously is a simpler way than function overloading. There is no need to write two
different versions of the function. However, there is one important difference; in case of default arguments,
when the user does not specify the argument, default is implicitly passed, whereas in the case of function
overloading, only explicitly specifi ed arguments are passed.

4.9 PROGRAM READABILITY AND DEFAULT ARGUMENTS

Program readability can be impacted while using default arguments. When the function
CheckPass() is called with one argument, the reader has no clue that there is a second
argument automatically being passed. PassingMarks is logically understandable so it is
acceptable in this circumstance. If instead of PassingMarks, a student’s name is passed to
CheckPass() and if CheckPass() sometimes (not always) performs some action on it, it is not
apparent to the reader.

Suppose we need to fi nd out a student’s parents using his/her name from some
database and mail them in case the student has failed. This is not a common case. By looking
at the call to CheckPass(), the user will not be able to know what is happening. In such a
case, it is better to use an overloaded function that passes the student’s name explicitly.
For checking whether the student has passed or not, passing marks is an obvious argument

and a reasonable candidate for a default argument, whereas student name is
not. When in need, the student’s name should be passed explicitly using the
overloaded version of the program.

In most cases, such situations arise because of errors in the design. Such
functions (reporting failure of students to their parents) should be called
explicitly. Passing the name by default to a function that is supposed to check
whether the student has passed or not is a wrong design.

4.10 MEMBER AND NON-MEMBER FUNCTIONS

We have already discussed a little about the differences between calling a member function
and a non-member function. Let us look at an example to illustrate the difference in detail.

Functions 137

Program 4.9 contains two functions doing the same job of fi nding out the difference between
the Time objects passed to them. One of them MemDiffTime() is a member function, while
Difference() is a non-member function.

PROGRAM 4.9 Member and non-member functions
// MemNonMem.cpp
#include <iostream>
using namespace std;

class Time
{
public:
 int Hours;
 int Minutes;
 int Seconds;

 void ShowTime()
 {
 cout << "Time is" << Hours << "hours :" << Minutes << "minutes : and" << Seconds <<

"seconds \n";
 }

 void SetTime(int TempHours, int TempMinutes, int TempSeconds)
 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
 }

 /* The following is a member function doing the same job as a non-member Difference()
(standalone) function */

 void MemDiffTime(Time Time2)

 /* Only one argument Time2 is passed; this is treated as the second argument. The fi rst
is an implicit argument, pointer to the calling object (the 'this' pointer), that is,
pointer to Time4 in our example */

 {
 Seconds = Seconds − Time2.Seconds;

 /* Seconds or hours can now be used without the object.member format, that is, in
our case, Time4.Seconds */

 if(Seconds < 0)
 {
 Seconds += 60;
 Minutes−−;
 if(Minutes < 0)
 {
 Minutes = 59;
 Hours−−;
 }
 }

 Minutes = Minutes − Time2.Minutes;
 if(Minutes < 0)
 {
 Minutes += 60;
 Hours−−;
 }

138 Programming with ANSI C++

 Hours = Hours − Time2.Hours;
 if(Hours < 0)
 {
 Hours = 0;
 Minutes = 0;
 Seconds = 0;
 // To indicate erroneous input
 }
 /* There is no return statement. The object pointer is implicitly passed. It points

to the changed object, so we do not need any return statement now */
 }
};

void main()
{
 Time Difference(Time, Time);
 /* Prototype for our non-member function */

 Time Timel, Time2;
 Time1.SetTime(12, 15, 15);
 cout << "The fi rst value \n";
 Time1.ShowTime();
 Time2.SetTime(10, 30, 30);
 cout << "The second value \n";
 Time2.ShowTime();
 Time Time3;
 Time3 = Difference(Time1, Time2);
 cout << "The difference using a non-member function is \n";
 Time3.ShowTime();
 Time Time4 = Time1;
 Time4.MemDiffTime(Time2);
 cout << "The difference using a member function is \n";
 Time4.ShowTime();
}

Time Difference(Time T1, Time T2)
{
 Time DifferenceTime;
 DifferenceTime.Seconds = T1.Seconds − T2.Seconds;
 if(DifferenceTime.Seconds < 0)
 {
 DifferenceTime.Seconds += 60;
 T1.Minutes−−;
 if(T1.Minutes < 0)
 {
 T1.Minutes = 59;
 T1.Hours−−;
 }
 }

 DifferenceTime.Minutes = T1.Minutes − T2.Minutes;
 if(DifferenceTime.Minutes < 0)
 {
 DifferenceTime.Minutes += 60;
 T1.Hours−−;
 }

 DifferenceTime.Hours = T1.Hours − T2.Hours;
 if(DifferenceTime.Hours < 0)
 {

Functions 139

 DifferenceTime.Hours = 0;
 DifferenceTime.Minutes = 0;
 DifferenceTime.Seconds = 0; // To indicate erroneous input
 }
 return DifferenceTime;
}

Output
The fi rst value
Time is 12 hours : 15 minutes : and 15 seconds

The second value
Time is 10 hours : 30 minutes : and 30 seconds

The difference using a non-member function is
Time is 1 hours : 44 minutes: and 45 seconds

The difference using a member function is
Time is 1 Hours : 44 minutes: and 45 seconds

How the Program Works
Look at MemDiffTime() and Difference() functions and observe the difference between the
two. Although they are both meant to do the same job, they differ at specifi c places. Let us
look at each one of them in detail.

1. Only one argument needs to be passed in place of two arguments while using a member
function. The fi rst argument is implicitly passed. One cannot choose the fi rst argument;
it is always the pointer to the object that invoked the function. In the non-member case,
Difference(Time1, Time2) or Difference(Time2, Time1) is possible. It is defi nitely not
possible with Time4.MemDiffTime(Time2), where the pointer to Time4 will always be the
fi rst argument. In Time2.MemDiffTime(Time4), the pointer to Time2 will always be the fi rst
argument. We will revisit this issue again when we discuss operator overloading using
friend member functions.

2. We use member variables without specifying their invoking object in the member func-
tions, for example, instead of T1.Seconds, we just write Seconds. Here again, the invoking
object is assumed and writing Seconds is similar to writing this -> Seconds.

3. Another difference relates to the access specifi er of the member variable accessed.
Difference() works because Seconds, Minutes, and Hours all are public variables. If they
are private variables, only MemDiffTime() will work and Difference() will not work. If
the Difference() function needs to work even when these variables are defi ned as private,
then it should be made a friend of class Time. We will discuss friends in Section 4.11.

4. We do not need an explicit return statement while using a member function. The auto-
matically passed this pointer (which points to the invoking object) also takes care of it.
The this pointer will actually make the function operate on the actual object (because the
pointer to it is passed) and we do not need any return. The non-member function works
on a temporary copy and needs to return it.

4.10.1 Deciding to Make a Function a Member or a Non-member
This is a design-related issue. Should we defi ne standalone or member functions in cases such
as Program 4.9? The thumb rule is to use member functions if it is naturally the member. Why?

140 Programming with ANSI C++

From the class design point of view, there are three ways to defi ne a function, namely, non-
member non-friend, non-member friend, and member. (It is also possible to defi ne a member
function of some other class as friend but it is equivalent to a non-member friend in our case.)
For non-member functions, we need to defi ne our data members as public, which otherwise need
only private access. Here, the object-oriented (OO) philosophy is not followed and thus non-
member functions are least expected to be present in the program. If we use friend functions and
keep our variables as private, it is comparatively better, but is still a violation of the OO philosophy
(class members are not properly hidden). If we keep the functions as member functions, we are
following the OO programming methodology perfectly, which will be a better choice.

Note It requires serious introspection to decide whether the function is to be declared as a member or not. A
good design usually requires as few members as possible. The best solution has most of the functions
as non-member non-friends and still does the same job. This is called thin class strategy. Having thin
class reduces class maintenance overhead.

One must test to see whether it is possible to write a non-member non-friend function without
needing the conversion of some of the variables to public. This would be the best option. It
has two distinct advantages:

1. The class is not cluttered with unnecessary member functions and remains manageable.
2. The function code is not affected if private variables (the implementation of the class)

change, as the functions are not using any private variables.

This discussion is for functions that describe the operations of the object. Functions that
do not describe the operations of the object and have little relationship with the object in
consideration are not supposed to be defi ned as members. If we can defi ne a function as a
non-member non-friend, it should not be defi ned otherwise.

4.11 FRIEND FUNCTIONS

Look at the following program. A non-member function display() needs access to the
data members width and heightof the rectangle class. It is made possible by making the
display() function as a friend to rectangle class.

// FriendExample.cpp
#include <iostream>
using namespace std;

class Rectangle
{
 int width, height;

public:
 void SetData(int w, int h)
 {
 width = w;
 height = h;
 }
 friend void display(Rectangle &);
};

Functions 141

void display(Rectangle &r)
{
 cout << "Width is " << r.width << endl << "Height is " << r.height << endl;
}

int main()
{
 Rectangle rect;
 rect.SetData(5, 10);
 display(rect);
 getchar();
 return 0;
}

Output
Width is 5
Height is 10

Friend functions are special. The class grants these functions a special privilege to access its
private variables. This privilege must be given by the class itself. It is given by writing the
specifi c function’s prototype in the class defi nition, which should be preceded by the word
friend. For example,

friend SomeFunction(list of arguments)

In Program 4.10, the variables accessed by ListDeptWise() are not public. Here, employee
is the class containing the information about an employee of a university. ListDeptWise() is
a function that lists the employees for a given department. It should be noted that DeptName
is the department name and it is a private variable. If ListDeptWise() needs to access the
department name, it must be declared as a friend function.

PROGRAM 4.10 A friend function
// FriendSimple.cpp
#include <iostream>
#include <string>
using namespace std;

class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
public:
 void Init(int TempNo, string TempName, string TempDept, string TempDesi)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 void DisplayDetails()
 {

142 Programming with ANSI C++

 cout << "Details of employee number " << EmpNo << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Department is " << DeptName << "\n";
 cout << "Designation is " << Designation << "\n\n\n";
 }

 /* The following non-member function is granted access to the private variables of this
class */

 friend void ListDeptWise(employee[]);
};

void ListDeptWise(employee UniEmp[])
{
 string TempDeptName;
 cout << "Enter the department of the university: ";
 cin >> TempDeptName;
 cout << "\n";

 for(int i = 0; i < 10; ++i)
 {
 if(UniEmp[i].DeptName == TempDeptName)
 /* The access of private variable DeptName is not allowed
 if ListDeptWise() is not friend */
 {
 UniEmp[i].DisplayDetails();
 }
 }
}

void main()
{
 employee UniEmployee[10];
 UniEmployee[1].Init(1, "Robin", "Exam", "Professor");
 UniEmployee[2].Init(2, "Bob", "Marksheet", "Clerk");
 UniEmployee[3].Init(3, "Leena", "Accounts", "HeadClerk");
 UniEmployee[4].Init(4, "Seema", "Exam", "Clerk");
 UniEmployee[5].Init(5, "Rohit", "Accounts", "CAO");
 UniEmployee[6].Init(6, "Vibha", "Exam", "Informer");
 UniEmployee[7].Init(7, "Kesar", "Exam", "Coordinator");
 UniEmployee[8].Init(8, "Michel", "Exam", "Examiner");
 UniEmployee[9].Init(9, "Hari", "Marksheet", "Repeater");
 UniEmployee[0].Init(10, "Meena", "Accounts", "Clerk");

 ListDeptWise(UniEmployee);
}

Output
Enter the department of the university: Exam

Details of employee number 1
Name is Robin
Department is Exam
Designation is Professor

Details of employee number 4
Name is Seema
Department is Exam
Designation is Clerk

Details of employee number 6
Name is Vibha

Functions 143

Department is Exam
Designation is Informer

Details of employee number 7
Name is Kesar
Department is Exam
Designation is Coordinator

Details of employee number 8
Name is Michael
Department is Exam
Designation is Examiner

How the Program Works
We have an array of employee objects in this program. The employee object contains
employee number, name, department, and designation. It also contains two functions for
reading and printing the employee object details. There is a function ListDeptWise(),
which takes an array of employee objects as input and produces the list of employees for
a given department. This function is defi ned after the defi nition of class employee. The
ListDeptWise() function has been declared as a friend in the last line of the class defi nition
with the following statement:

friend void ListDeptWise(employee[]);

This statement indicates that the non-member function ListDeptWise() is granted access to
private class variables. The need for a friend function must be noted in this case. ListDeptWise()
accesses private variables such as DeptNameof employee class in the following statement:

(UniEmp[i].DeptName == TempDeptName);

If ListDeptWise() was a non-friend non-member function, it cannot access the private
variables of employee such as DeptName and this statement will not be compiled.

4.11.1 Need for Friend Functions
Why do we require friend functions? Why not declare all functions as member functions?
Consider making ListDeptWise() a member function. It actually operates on an array of
employees and not on a singleton object. If we defi ne ListDeptWise() as a member function,
it will be called with a syntax such as UniEmployee[1].ListDeptWise(), which might mislead
the reader of the program. ListDeptWise() need not be invoked by UniEmployee[1] alone. If
we write UniEmployee[2].ListDeptWise(), the same result is obtained. In fact, even when a
dummy employee object such as DummyEmp is defi ned and DummyEmp.ListDeptWise() is called,
the same result will be obtained.

It should be noted that a reader might misinterpret that the object DummyEmp is executing a
function and is being manipulated. Such functions should not be defi ned as members. Why
is ListDeptWise() not a member? The reason is that the function under discussion is not the

logical part of the object employee. It operates on a bunch of objects. Defi ning
it as a member function will be wrong from the design point of view. Only those
functions that describe logical operations from or to the object are to be defi ned as
members (such as reading and printing operations). ListDeptWise() is better
defi ned as a friend in such situations. We need such functions quite frequently,

Only a function that
is a logical part of the
object should only be
made a member.

144 Programming with ANSI C++

Access methods can
be used to convert a
friend into non-friend
if the friend function is
defi ned to only read
a private member’s
value.

Friend functions are
useful in two cases;
the fi rst one is when
we want a utility that
works on a bunch
of objects and the
second one is when a
generic class con-
tains functions that
other classes need to
use for their private
members.

When a function
needs to work with
private variables of
more than one class,
it must be defi ned as
a friend for at least
one of the classes.

especially for sorting objects on some private data, searching objects on some
private data, etc.

An even better design would involve adding a public function in the employee
class. This public function, known as an access method, returns the value of a
private member. In our case, it is DeptName. If the code has a function

getDeptName()
{
 return DeptName;
}

then the code

(UniEmp[i].DeptName == TempDeptName)

could be rewritten as

(UniEmp[i].getDeptName() == TempDeptName)

This would make it possible to defi ne the ListDeptWise() function as non-member non-
friend as it becomes independent of the private variable DeptName of the class.

Situations Where Friend Functions are Preferred
It must be noted that if ListDeptWise() needs to change the value of DeptName, it is not
useful as a non-friend. There is one more situation when friend functions are useful.
These functions are designed for providing generic utilities and are needed when more
than one class would like to share some utility. Consider a case where a function dis-
plays the given text in a message box. This is a handy utility for any program that needs
to output to a graphic user interface (GUI). (In our program, such a function can be used

in place of the respective cout and cin in the InsertDetails() function.) The text and
other information that the function uses may be private. The function needs
to be defi ned as a friend to let it access the private variables. As already men-
tioned, more than one application may be sharing such functions and hence it is
not possible to make them a member of a class. So, these types of functions are
stored separately and are made friends to the class that uses their functionality.

Member of Another Class as a Friend
A friend function is sometimes required when a single function needs access to
private members of more than one class. Let us assume employee as one class
and taxpayer as another class. Now, if we need to write a function that fi nds out
how many employees are taxpayers, it may need to check an employee name with
a taxpayer name, both of which are private variables of the respective classes.
A function can only be a member of one of these two classes and must be made a
friend of another class. Such requirements stem from incorrect design and must
be avoided. Hence, this option is used only in cases where the classes might
have been designed long back and the code is currently running but needs to be
patched for a new requirement of the user. It would be better to opt for rewriting
the code and avoid the need for a friend. However, most system administrators
dislike the idea of modifying a running code for obvious reasons and friend
functions come to their rescue in such cases.

Functions 145

Friend Class
It has been shown that it is possible to have a member function of some other class to
be a friend of a class. Similarly, it is also possible to have an entire class as a friend,
that is, all member functions of that class can access the private variables of the other
class. It is important to note that the trust in this case is one directional. Suppose
class1 defi nes class2 to be its friend. Then, class2 member functions can access
the private variables of class1 whereas class1 member functions cannot access the
private variables of class2. The following program illustrates the use of friend class.

Note Having a friend function in actual terms is a violation of the information hiding principle. If we can have
two designs where one is with and the other is without friends, the design without friends is usually
better. The thumb rule is that though the facility of friends is available, it should be used sparingly.

The problem of defi ning functions working on a bunch of objects can be solved by defi ning
a class that is a collection of objects of classes under consideration. For example, defi ne a
new class EmpCollection that contains an array of employees as the object. All functions that
need to operate on the bunch of objects can now be members of such a class. This design is
defi nitely more complicated than one might like it to be. Even in this case, the employee class
should trust the EmpCollection class.

The following program highlights these changes.

A friend is usually
a non-member but
sometimes one needs
to have a member
function of some
class to be a friend of
some other class.

// FriendClass.cpp
#include <iostream>
#include <string>
using namespace std;

class CollectionEmp; // Forward Defi nition
class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
public:
 void Init(int TempNo, string TempName, string TempDept, string TempDesi)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }
 void DisplayDetails()
 {
 cout << "Details of employee number " << EmpNo << "\n";
 cout << "Name is" << Name << "\n";
 cout << "Department is" << DeptName << "\n";
 cout << "Designation is" << Designation << "\n";
 }

146 Programming with ANSI C++

 /* Member functions of the following class can access the private variables of this
class */
 friend CollectionEmp;
 /* If forward declaration is not provided, this statement would generate an error */
};
class CollectionEmp
{
private:
 employee ColEmp[10];
 /* The collection is in the array form; it can even be a linked list as in Program

4.9 */

 int Index;
public:
 void InitIndex()
 {
 Index = 0;
 }
 bool AddToCol(employee Emp)
 /* adding an employee to the collection */
 {
 if(Index < 9)
 {
 ColEmp[Index] = Emp;
 Index++;
 return true;
 }
 else
 {
 return false;
 }
 }
 void ListDeptWise() // Now a member function
 {
 string TempDeptName;
 cout << "Enter the department of the university : ";
 cin >> TempDeptName;
 cout << "\n";
 for(int i = 0; i < 10; ++i)
 {
 if(ColEmp[i].DeptName == TempDeptName)
 {
 ColEmp[i].DisplayDetails();
 }
 }
 }

Functions 147

};

void main()
{
 CollectionEmp UniEmpCol;
 UniEmpCol.InitIndex();
 employee UniEmployee[10];
 UniEmployee[1].Init(1, "Robin", "Exam", "Professor");
 UniEmployee[2].Init(2, "Bob", "Marksheet", "Clerk");
 UniEmployee[3].Init(3, "Leena", "Accounts", "HeadClerk");
 UniEmployee[4].Init(4, "Seema", "Exam", "Clerk");
 UniEmployee[5].Init(5, "Rohit", "Accounts", "CAO");
 UniEmployee[6].Init(6, "Vibha", "Exam", "Informer");
 UniEmployee[7].Init(7, "Kesar", "Exam", "Coordinator");
 UniEmployee[8].Init(8, "Michel", "Exam", "Examiner");
 UniEmployee[9].Init(9, "Hari", "Marksheet", "Repeater");
 UniEmployee[0].Init(10, "Meena", "Accounts", "Clerk");

 for(int i = 0; i < 10; ++i)
 {
 UniEmpCol.AddToCol(UniEmployee[i]);
 /* Putting the employees in the collection object */
 }

 UniEmpCol.ListDeptWise();
 /* This is a member function now and not a dummy one */
}

Execute this program and observe the output. The output is the same as that for Program 4.10.
Here, the ListDeptWise() function is a member of a class representing the collection of
employees. The collection of employees is implemented using arrays for simplicity. It can
even be implemented using linked list as in Program 4.7.

Differentiating Implementation with the Interface
In order to implement the class using linked lists, the AddToCol(),InitIndex(), and
ListDeptWise() functions need to be rewritten. For the linked list version, in the InitIndex()
function, we will assign null to the fi rst pointer (again similar to the function InitializeList()
of Program 4.7) and be ready for input. AddToCol() will add an employee to a linked list
(similar to InsertList() of Program 4.7). ListDeptWise() will search in the linked list and
produce the required answer. It should be noted that the main()program, which uses these
functions as members of UniEmpCol object, will not change. This is an important advantage. The
implementation can be changed without changing the interface. Here, implementation is either
array based or linked list based; the interface is provided by the three functions mentioned.

Note When a collection of objects is defi ned as a class, the implementation of operations on that collection
such as sorting and searching is hidden from the user. One can replace the default implementation
with a more suitable implementation without disturbing the user application.

Thus, there are two ways of implementation, namely, array based and linked list based. It is
possible to provide both these methods together by overloading functions. However, in such
cases, one must provide different sets of arguments to call a specifi c function.

148 Programming with ANSI C++

This example also illustrates how a class can become a friend of another and how useful
it is. Another possibility is that of having a friend class that provides useful though general
utilities such as GUI input/output using message boxes as discussed earlier.

4.12 const AND volatile FUNCTIONS

Like C, the const and volatile variables are available in C++. However, it is also possible
to have const and volatile functions in C++ additionally, unlike in C. A brief introduction
is provided in the following sections.

4.12.1 const Functions
Constant objects have already been discussed in Chapter 3 and the defi nition of a const
function was shown in Program 3.12. They are defi ned by placing the keyword const
between the argument list and the body of the function.

Note A const function can operate on either constant or non-constant objects; however, it cannot modify
the objects of the class.

<return type><function name>(argument1, argument2, …) const
{
 <The body of the function>
}

Program 3.12 in Chapter 3 contains the following function:

void PrintDetails()const
/* This function is now constant; it cannot modify
an object of the class student */
{
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
}

If this function is modifi ed as follows, we get errors while compiling the program.

void PrintDetails()const
{
 cout << "Roll number is" << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";

 RollNumber = 4; // This is erroneous
}

Note It is a good programming practice to defi ne member functions as constant when they should not
modify the invoking objects. So, later on, if the functions are accidentally modifi ed to change the
values of data members, the error can be caught during compilation.

4.12.2 Mutable Data Members
Ordinary data members, as we have seen, cannot be modifi ed by const functions. What if we
want a special data member to be modifi ed by a function? If we do not declare the member

Functions 149

function as const, it cannot access constant objects. Declaration of a special
data member as mutable is the solution here. When a data member is declared
mutable, it can be modifi ed even by the const functions.

In the example given, if RollNumber defi nition is changed to

mutable int RollNumber;

in the student class, then the statement

void PrintDetails() const
{
 ...
 RollNumber = 4;
}

will no longer result in an error. There is no difference between a normal data member and a
mutable data member for a normal member function.

4.12.3 volatile Functions
A member function can also be declared as volatile if it is invoked by a volatile object.
A volatile object’s value can be changed by external parameters, which are not under the
control of the program. For example, an object taking an input from a network interface
card does not take input from our program. As and when the hardware interrupts, the values
related to it change without our program’s knowledge.

A sample defi nition of a volatile function and a volatile object are shown in the following
code:

class NICClass
{
public:
 void CheckValuesForNIC volatile
 // A volatile function defi nition
 {
 // Function body
 }
 ...
};
volatile NICClass NICObject;
// A volatile object defi nition

4.13 STATIC FUNCTIONS

Some utilities are generic to a set of objects. We have seen the case of dealing with a collection
of objects. The utility or the operation does not address a singleton object but works on
multiple objects. At times, we need to provide operations that refer to all the objects, such as
fi nding out how many objects are created at the moment. Such cases need static variables,
discussed in Chapter 3. We can see that a static variable is an ideal choice for the variable
that represents a number of objects alive at the moment. Program 4.11 shows how a static
function can be used instead of a member or non-member function.

A mutable member
can be modifi ed even
by the const functions.

A volatile function is a
function that can only
act on volatile objects.

Static functions deal
with static variables
alone. It is always
possible to replace
a static function with
a normal function;
however using a
static function makes
the program more
readable and also re-
duces the chances of
accidental changes.

150 Programming with ANSI C++

PROGRAM 4.11 Static functions for counting the number of students
// StaticFunction.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
public:
 static int TotalStudents;
 static void DispTotal();
 // Declaration of a static member function

private:
 int RollNumber;
 string Name;
 string Address;

public:
 void SetDetails(int Roll, string StudentName, string StudentAddress)
 {
 RollNumber = Roll;
 Name = StudentName;
 Address = StudentAddress;
 TotalStudents++;
 }

 void PrintDetails()
 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
};

int student::TotalStudents;
void student::DispTotal()
 /* See how the function name is preceded with the class name similar to a member function */

{
 cout << "Total students at the moment" << student::TotalStudents << "\n";
}

void main()
{
 student::DispTotal();
 student Robin;

 Robin.SetDetails(1, "Robin Singh", "New Delhi");
 Robin.PrintDetails();
 student::DispTotal();

Note Non-member functions are similar to normal C functions. If we defi ne them as static, they become
local to the fi le in which they are defi ned. In other words, the scope of that function is the body of the
fi le within which the function is defi ned.

Program 4.11 is the modifi ed version of the progam in Chapter 3 that counts the number of
students defi ned at the moment. A static function is used here for displaying the total number
of students.

Functions 151

 student Sonia;
 Sonia.SetDetails(2, "Mathur", "Mumbai");
 Sonia.PrintDetails();
 student::DispTotal();

 if(true)
 {
 student Anita;
 Anita.SetDetails(3, "Sharma", "Indore");
 Anita.PrintDetails();
 student::DispTotal();
 }
 cout << "Anita departs! \n";

 /* The following will not work as expected. Total students are still three */
 student::DispTotal();
}

How the Program Works
DispTotal() is a new function defi ned as static. A static function is very similar to a non-
member function, with the only difference that it is now bound and known only to the class
in which it is defi ned. It should be remembered that non-member functions are known to all
the classes of the program. The static functions, similar to member functions, can be invoked
only by the objects of the class in which they are declared as static. They can be invoked
directly by their name with the class name and scope resolution operator preceding it.

Note In C, if a function is declared as static, it will be treated local to the fi le in which it is defi ned. The same
concept is applied in the case of a non-member. A static non-member function is local to the fi le and
is not accessible outside that physical fi le.

The manner in which a static function is defi ned and used should be noted. Like a non-member
function, a static function is defi ned outside the class. At the same time, it is preceded by the class
name and the scope resolution operator, just like a member function defi ned outside the class.

void student::DispTotal()

DispTotal() is a static function that is used to display the total number of students and
TotalStudents is also a static variable. This did not happen by accident; a static function can
act upon only the static variables of the class and cannot have access to other data members
of the class. It can also have access to global functions and data.

The most important advantage of static functions is that they increase the readability of
the program. Instead of calling Shyam.DispTotal, where Shyam is just a dummy object for
counting the total students, we can call student::DispTotal, that is, it should be preceded by
the class name, which is far more readable.

4.13.1 Restrictions on Static Function
Static functions have some restrictions as well. Some of the important ones are as follows:

1. They do not have the this pointer because they are not member functions in the true
sense. This is why they cannot access the member variables.

2. They cannot access other data members of the class because doing so will implicitly call
the this pointer. (Remember: RollNumber is the same as this -> RollNumber.)

152 Programming with ANSI C++

PROGRAM 4.12 Private and public functions
// PrivateFunction.cpp
#include <iostream>
#include <string>
using namespace std;

class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
 bool IsPermanent()
 /* It is a private function. Here, we assume that employee code is less than 2000 for

temporary employees */
 {
 return(EmpNo > 2000);
 }

public:
 void Init(int TempNo, string TempName, string TempDept, string TempDesi)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 void DisplayDetails()
 {
 cout << "Details of employee number " << EmpNo << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Department is " << DeptName << "\n";
 cout << "Designation is " << Designation << "\n";
 if(IsPermanent())

3. They cannot be virtual. (We will study virtual functions when we study inheritance in Chapter
10, but again the reason is the same, that is, static functions are not member functions.)

4. They cannot be declared either const or volatile. (Once again, they are not true members,
and hence, there is no point in making them const or volatile.)

4.14 PRIVATE AND PUBLIC FUNCTIONS

The functions defi ned in most of our examples are public. They can also be private, that is,
they are accessible only to the member functions of the same class. They share the same
characteristics of a private data member. Neither are they visible outside the class, nor are
they accessible from the object of the same class. The concept of private functions can be
understood better using Program 4.12.

Program 4.10 is an example related to a friend function that displays the list of employees
for a given department. We will be using the same example with some modifi cations. We
have now added a function IsPermanent(), which is a private function that checks whether an
employee is permanent or not. In reality, it may look in a database and apply a set of rules to
fi nd whether an employee is permanent or not. Here, though, we just check if the employee
code is greater than 2000. If so, the employee is permanent; otherwise he/she is temporary.

Functions 153

 cout << "He/She is a permanent employee \n \n";
 else
 cout << "He/She is a temporary employee \n \n";
 }

 /* The following non-member function can access the private variables of this class */

 friend void ListDeptWise(employee[]);
};

void ListDeptWise(employee UniEmp[])
{
 string TempDeptName;
 cout << "Enter the department of the university:";
 cin >> TempDeptName;
 cout << "\n";

 for(int i = 0; i < 10; ++i)
 {
 if(UniEmp[i].DeptName == TempDeptName)
 {
 UniEmp[i].DisplayDetails();
 }
 }
}

void main()
{
 // employee DummyEmployee = {0, "Dummy", "Dummy", Dummy"};
 employee UniEmployee[10];
 UniEmployee[1].Init(1001, "Robin", "Exam", "Professor");
 UniEmployee[2].Init(1002, "Bob", "Marksheet", "Clerk");
 UniEmployee[3].Init(2003, "Leena", "Accounts", "HeadClerk");
 UniEmployee[4].Init(1004, "Seema", "Exam", "Clerk");
 UniEmployee[5].Init(3005, "Rohit", "Accounts", "CAO");
 UniEmployee[6].Init(2006, "Vibha", "Exam", "Informer");
 UniEmployee[7].Init(1007, "Kesar", "Exam", "Coordinator");
 UniEmployee[8].Init(2008, "Michel", "Exam", "Examiner");
 UniEmployee[9].Init(2009, "Hari", "Marksheet", "Repeater");
 UniEmployee[0].Init(2010, "Meena", "Accounts", "Clerk");

 ListDeptWise(UniEmployee);
}

Output
Enter the department of the university: Exam

Details of employee number 1001
Name is Robin
Department is Exam
Designation is Professor
He/She is a temporary employee

Details of employee number 1004
Name is Seema
Department is Exam
Designation is Clerk
He/She is a temporary employee

Details of employee number 2006
Name is Vibha
Department is Exam

154 Programming with ANSI C++

Designation is Informer
He/She is a permanent employee

Details of employee number 1007
Name is Kesar
Department is Exam
Designation is Coordinator
He/She is a temporary employee

Details of employee number 2008
Name is Michel
Department is Exam
Designation is Examiner
He/She is a permanent employee

How the Program Works
Private functions The function IsPermanent() is an example of a private
function. It is not possible to write UniEmployee[1].IsPermanent() because
IsPermanent() is a private member of the employee class and UniEmplyee[1] is an
object of that class. The object cannot access the private member IsPermanent().
If we defi ne IsPermanent() in the public section instead, the statement is
acceptable. However, such access of the IsPermanent() function is not desired
here, and hence, it has been defi ned as a private function.

Calling private functions Another important point to note is that
the IsPermanent() function is called without invoking an object. The call is not
EmployeeObjectName.IsPermanent(). It is a member function and needs this pointer.
To understand how this works, look closely at the call to the function. It is called within
DisplayDetails(), which is also a member function. When DisplayDetails() is invoked,
it is passed the this pointer; for example, UniEmp[i].DisplayDetails() is passed the this
pointer of the UniEmp[i]. The pointer is also passed to IsPermanent() by DisplayDetails()
at the time of call, that is, the call is equivalent to this -> IsPermanent(). This is true for all
private function members. Whenever they are called by other member functions (it should be
remembered that they cannot be called by non-member functions as they are private), they
are passed this pointer in possession with that member function at the time of call.

4.15 FUNCTIONS THAT RETURN OBJECTS

A function can also return an object. We have earlier seen examples of the Difference()
function with Time class. Let us see one more example, which is a modifi ed version of the
employee class program. Here, the objective of the problem is to obtain the employee objects
related to an employee name, which is given as an input by the user. Thus, our function
(GetEmp()) is passed with the employee name and it returns the matching employee objects.

A similar problem is to obtain the manager name of a given employee. Manager is also an
object of type employee and has the designation manager and the same department as the
employee. Thus, our function (GetManager()) now accepts employee as an input and returns
one more employee object representing the manager of the employee object passed.

The following program provides two different functions for these problems, and both of
them return objects. One is a member function whereas the other is a non-member function.
The program also reinforces the difference between member and non-member functions.

Private member
functions get the
implicit this pointer
passed to them by
the member function
that calls these
private functions.

Functions 155

Here, the non-member function (GetEmp()) can also access the private variables of the
employee object, and hence, it needs to be defi ned as a friend of the employee class.

It should be noted that the GetEmp() function is defi ned as a friend. It cannot be defi ned
as a member function because the argument to that function is only a string (the employee
name), and not an object. If it is forcibly converted to a member function, the calling object
will be a dummy one.

Note Sometimes, we need to have a function that returns an object from other data. Such functions can
be converted to constructors. If such functions are not converted, the objects constructed are called
factory objects and such functions are known as factory methods.

The other function, GetManager(), returns the manager object for a given employee object.
One more attribute has been added to the employee object, namely, the variable ManagerName.
This function compares the value of ManagerName for the invoking object with the employee
whose designation value is Manager. It also checks whether both of them belong to the same
department. Thus, it is understandable that GetManager() depends on the employee object
invoking it and is a right candidate for being a member function.

// ReturnObj.cpp
#include <iostream>
#include <string>
using namespace std;

class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
 string ManagerName;
public:
 void Init(int TempNo, string TempName, string TempDept, string TempDesi, string

TempManager)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 ManagerName = TempManager;
 }
 void DisplayDetails()
 {
 cout << "Details of employee number " << EmpNo << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Department is " << DeptName << "\n";
 cout << "Designation is " << Designation << "\n";
 cout << "Manager is " << ManagerName << "\n";
 }

156 Programming with ANSI C++

 employee GetManager(employee EmpArray[])
 {
 for(int i = 0; i < 10; ++i)
 {
 if((ManagerName == EmpArray[i].Name) && (DeptName == EmpArray[i].DeptName))
 return EmpArray[i];
 }
 }
 friend employee GetEmp(string, employee[]);
};
employee GetEmp(string EmpName, employee EmpArray[])
{
 for(int i = 0; i < 10; ++i)
 {
 if(EmpArray[i].Name == EmpName)
 return EmpArray[i];
 }
}
void main()
{
 employee UniEmployee[10];
 UniEmployee[1].Init(1001, "Robin", "Exam", "Manager", "Robin");
 UniEmployee[2].Init(1002, "Bob", "Marksheet", "Manager", "Bob");
 UniEmployee[3].Init(2003, "Leena", "Accounts", "Manager", "Leena");
 UniEmployee[4].Init(1004, "Seema", "Exam", "Clerk", "Robin");
 UniEmployee[5].Init(3005, "Rohit", "Accounts", "CAO", "Leena");
 UniEmployee[6].Init(2006, "Vibha", "Exam", "Informer", "Robin");
 UniEmployee[7].Init(1007, "Kesar", "Exam", "Coordinator", "Robin");
 UniEmployee[8].Init(2008, "Michel", "Exam", "Examiner", "Robin");
 UniEmployee[9].Init(2009, "Hari", "Marksheet", "Repeater", "Bob");
 UniEmployee[0].Init(2010, "Meena", "Accounts", "Clerk", "Leena");
 cout << "Enter name of an employee:";
 string EmpName;
 cin >> EmpName;
 employee Emp = GetEmp(EmpName, UniEmployee);
 Emp.DisplayDetails();
 employee Manager = Emp.GetManager(UniEmployee);
 cout << "\n \n The details of his/her manager are\n";
 Manager.DisplayDetails();
}
Output

Enter name of an employee: Rohit
Details of employee number 3005
Name is Rohit
Department is Accounts
Designation is CAO

Functions 157

PROGRAM 4.13 Non-member function pointers
// StandaloneFunctionPointer.cpp
#include <iostream>
#include <string>
using namespace std;

void main()
{
 int PointAccess(int Dummy1, int Dummy2); // Prototype
 int MainArgl = 10;
 int MainArg2 = 20;

 cout << PointAccess(MainArg1,MainArg2);
 int(*PointFun)(int, int);
 /* Defi ning pointer to a function that has two arguments, both of which are integers */

 PointFun = PointAccess;
 // Making PointFun point to one such function

 int PointArg1 = 20;
 int PointArg2 = 30;

 cout << (*PointFun)(PointArg1, PointArg2);
 // Same as calling PointAccess

 cout << PointFun(PointArg1, PointArg2);
}

int PointAccess(int Dummy1, int Dummy2)
{

Manager is Leena

The details of hisX/her manager are
Details of employee number 2003
Name is Leena
Department is Accounts
Designation is Manager
Manager is Leena

The simplicity with which both functions, GetEmp() and GetManager(), can be called and
used is noteworthy.

Using objects while passing an argument or returning is similar to using C structures
because they do not store member functions with them. Passing and returning objects
actually passes and returns only data members.

4.16 FUNCTION POINTERS

Pointer to function is considered to be a very powerful feature of C programming. When
a program contains a large number of functions to choose from, this feature becomes very
useful. If the switch-case statement is used instead, it will have a longer code and is less
effi cient. Such a code needs to check whether each and every function name exists. This
is done to fi nd which function is called and then call that function. Instead, if the function
pointer is passed, it will automatically call the required function.

Non-member function pointers in C++ behave in the same way as in C. Program 4.13
explains how to use non-member function pointers.

158 Programming with ANSI C++

PROGRAM 4.14 Pointer to member functions
// MemberFunctionPointer.cpp
#include <iostream>
#include <string>
using namespace std;

class PointFunEx
{
 int Arg1;
 int Arg2;
public:
 int PointAccess();
 PointFunEx(int Value1, int Value2)
 {
 Arg1 = Value1;
 Arg2 = Value2;
 }
 /* This function is called a constructor */
};

// The following is the function of our interest
int PointFunEx::PointAccess()
 {
 cout << "\n Arg1 is " << Arg1;
 cout << "\n Arg2 is " << Arg2 << "\n";
 return Arg1 + Arg2;
 }

void main()

A function is not a
variable and thus does
not have an address.
The function pointer
actually contains an
address of a d, if will
have a long the fi rst
exe-cutable statement
of the function.

 cout << "Dummy1 is " << Dummy1 <<"\n";
 cout << "Dummy2 is " << Dummy2 << "\n";
 return Dummy1 + Dummy2;
}

Output
Dummy1 is 10
Dummy2 is 20 30
Dummy1 is 20
Dummy2 is 30 50

How the Program Works
Observe the defi nition of the pointer to function:

int(*PointFun)(int, int);

It says that PointFun is a pointer to a function. Otherwise, it would not contain
function-like braces on the RHS. It also indicates that the function takes two
integer arguments. This format is the same as in C. It should be noted that int *
PointFun(int, int) is a function that returns a pointer to integer and is different
from int(*PointFun)(int, int).

The defi nition of a member function pointer and its use are very simple to
understand if we have a clear idea of member pointers. We have discussed in
detail pointer to class members in Chapter 3.

Program 4.14 will help to understand the member function pointers.

Functions 159

{
 PointFunEx PFE(10, 20);
 /* This initializes the object with values 10 to Arg1 and 20 to Arg2. This calls the

constructor function here */

 cout << "\n Normal object accessing the function ";
 cout << " " << PFE.PointAccess();

 /* Instead of int(*PA)(), in the case of a non-member function, the classname is followed
by a scope resolution operator as shown in the following statements. Moreover, note the
difference in the arguments. We no longer need to pass both the arguments, as they are
passed implicitly with the invoking object */

 int(PointFunEx::*PA)(); // Function pointer PA is defi ned here

 PA = PointFunEx::PointAccess;

 /* Note the difference in this statement */

 /* Instead of assigning PA = PointAccess directly, the name of the function is
preceded by the class name in which the member function is used and a scope resolution
operator */

 /* It does not make any difference whether & is present before the function name or not.
Both the cases will get us the function "address" */

 cout << "\n Normal object accessing the function using a function pointer";
 cout << " " << (PFE.*PA)();

 /* Again note the difference here: when calling a function with an object, the .*
notation needs to be used */

 PointFunEx PFE2(20, 30);
 PointFunEx *PointerPFE = &PFE2;

 cout << "\n Pointer to object accessing the function using a function pointer";
 cout << " " << (PointerPFE->*PA)();

 /* Now we are accessing it using a pointer to an object, so we need a ->* operator */

 int(PointFunEx::*PB)();
 /* A function pointer PB is defi ned here */

 PB = &PointFunEx::PointAccess;

 /* Note the difference in this statement. Instead of assigning PA = PointAccess directly,
the name of thefunction is preceded by the class name and a scope resolution operator.
Moreover, note the use of the optional & operator */

 cout << "\n Normal object accessing the function using a function pointer";
 cout << " " << (PFE.*PB)();
}

Output
Normal object accessing the function
Arg1 is 10
Arg2 is 20 30

Normal object accessing the function using a function pointer
Arg1 is 10
Arg2 is 20 30

Pointer to object accessing the function using a function pointer
Arg1 is 20
Arg2 is 30 50

160 Programming with ANSI C++

How the Program Works
A few points need to be noted while using a pointer to member functions:

1. We need to use the <class name> to precede the function while defi ning a pointer to the
function and making a call.

2. This operator is used for defi ning pointer to a member function. The syntax for defi ning
such a pointer requires this operator.

3. We need to use the .* operator for accessing a member pointer using an object.
4. We need the ->* operator for accessing a member pointer using a pointer to an object.

The following is an interesting assignment:

PA = &PointFunEx::PointAccess; (or PointFunEx::PointAccess without &)

If PointAccess is a non-member function, it will be PA = PointAccess; without braces,
as the function name itself is a pointer to the function. Why, then, is & needed here? It is
not actually needed. Examine the defi nition of PB later. We have PA and PB with similar
defi nition except the & operator. Both <function name> and &<function name> yield the same
entry point (address) of the function.

The function is, however, not a variable; it cannot have an address like a variable. When
we take the address of a function in either C or C++, it returns the entry point address
of the function. It is the memory location from where the execution of the function
starts.

4.17 USING POINTER TO MEMBER FUNCTION

The pointer to member syntax is very diffi cult to remember at fi rst sight. It is also not very
intuitive. Let us see how to simplify the syntax and also look at its use. Let us consider an
example that is fi rst solved without using the pointer to member function (Program 4.15) and
then solved using the function (Program 4.16). The two programs can then be compared to
understand how the solution with pointer to member function is better.

Let us again use the student class. Now, there are three more requirements to the class. We
need to store information about the assignments the students have completed, the projects
that he/she has done, and the references that he/she has got. Hence, three more functions
are added, namely, AddAssignment(), AddProject(), and AddReference(). There will be three
arrays containing details about the assignments, projects, and references.

It is important to note that the number of assignments, projects, or references is different
for each student. If we defi ne arrays to store the information, we need to defi ne arrays
large enough to accommodate information about a student with the maximum number of
assignments, projects, or references. The array size can be kept at 100 for assignments as
most students do not have more than fi ve assignments. A better solution is to have a linked
list for storing student information. Program 4.15 uses the simpler approach of having
arrays large enough for accepting details about students having the maximum number of
assignments, projects, or references.

Normal object accessing the function using a function pointer
Argl is 10
Arg2 is 20 30

Functions 161

PROGRAM 4.15 Solution without using pointer to member functions
// NotUsingPointersToMembers.cpp
#include <iostream>
#include <string>
using namespace std;

enum jobs {ASSIGNMENT, PROJECT, REFERENCE};
class Student
{
private:
 int RollNumber;
 string Name;
 string Address;

 string Assignments[100];
 string Projects[20];
 string References[10];
public:
 static int NextAssignment;
 static int NextProject;
 static int NextReference;
 void GetDetails()
 {
 cout << "\n Enterroll number: ";
 cin >> RollNumber;
 cout << "\n Enter Name: ";
 cin >> Name;
 cout << "\n Enter address: ";
 cin >> Address;
 }
 void AddAssignment()
 {
 string NewAssignment;
 cout << "Enter next assignment \n";
 cin >> NewAssignment;
 Assignments[NextAssignment] = NewAssignment;
 NextAssignment++;
 }
 void AddProject()
 {
 string NewProject;
 cout << "Enter next project \n";
 cin >> NewProject;
 Projects[NextProject] = NewProject;
 NextProject++;
 }

 void AddReference()
 {
 string NewReference;
 cout << "Enter next reference \n";
 cin >> NewReference;
 References[NextReference] = NewReference;
 NextReference++;
 }

 void AddJob(jobs StudentJobs, int NoOfJobs)
 {

162 Programming with ANSI C++

 int i;
 switch(StudentJobs)
 {

 case ASSIGNMENT:
 for(i = 0; i < NoOfJobs; i++)
 {
 AddAssignment();
 }
 break;

 case PROJECT:
 for(i = 0; i < NoOfJobs; i++)
 {
 AddProject();
 }
 break;

 case REFERENCE:
 for(i = 0; i < NoOfJobs; i++)
 {
 AddReference();
 }
 break;

 default:
 break;
 }
 }

 void PrintDetails()
 {
 int i;
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";

 cout << "Assignments are \n";
 for(i = 0; i < NextAssignment; i++)
 {
 cout << Assignments[i]<< "\n";
 }
 cout << "Projects are \n";
 for(i = 0; i < NextProject; i++)
 {
 cout << Projects[i]<< "\n";
 }
 cout << "References are \n";
 for(i = 0; i < NextReference; i++)
 {
 cout << References[i]<< "\n";
 }
 }
};

// Mandatory defi nitions of static variables required at linking time
int Student::NextAssignment;
int Student::NextProject;
int Student::NextReference;

void main()
{

Functions 163

 Student Lara;
 jobs StudentJobs = ASSIGNMENT;
 Lara.GetDetails();
 Lara.AddJob(StudentJobs,3);
 Lara.PrintDetails();

 // Some other job to be done
 Lara.AddJob(StudentJobs,2);
}

Output
Enter roll number: 1
Enter name: BrianCharlesLara
Enter address: TheWestIndies

Enter next assignment
Captainship

Enter next assignment
BatsmanShip

Enter next assignment
LeadForTheWorldCup

Roll number is 1
Name is BrianCharlesLara
Address is TheWestIndies

Assignments are
Captainship
BatsmanShip
LeadForTheWorldCup

Projects are
References are

Enter next assignment // Asking for two more assignments
MaintainDisipline
Enter next assignment
CheckPhysicalFitness

How the Program Works
Let us now analyse each module of this program.

Defi nitions Look at the defi nition of the three arrays for Assignments, Projects, and
References.

string Assignments[100];
string Projects[20];
string References[10];

Detailed informed is not being stored. If we need to do that, then we have to defi ne Assignment
as a class and have an array of objects of Assignment class; the same needs to be done for
projects and references. We have taken a simpler approach here where we store information in
a string alone. This approach will not help if we need to fi nd how many students have done C++
assignments or have executed projects involving OO modelling. As mentioned earlier, such
questions can be answered only if assignments, projects, and references are defi ned as classes
in which a function for providing such information is available. However, the objective here is
to showcase the need of pointer to member function, for which this solution is good enough.

164 Programming with ANSI C++

Using static variables One interesting aspect of this program is that it also shows the
usefulness of the static variables.

static int NextAssignment;
static int NextProject;
static int NextReference;

It is important here to remember that all these variables are initialized to zero by the compiler.
It is possible to add assignments (or projects or references) multiple times to a student such
as the following:

jobs StudentJobs = ASSIGNMENT;
Lara.AddJob(StudentJobs, 3);
// other code
Lara.AddJob(StudentJobs, 2);
(Lara has completed two additional assignments)

The second call requires us to fi nd the place where we can add data in the array. We need to
remember which assignment we are adding. The static variable NextAssignment provides us
that value. It remembers the last assigned value 3, and automatically increments to give us
4. Various AddJob() calls can be made and every time the data is inserted at the right place.

Entering data in the array Let us now see how an assignment is actually added to an
array. The index, as mentioned earlier, is the static variable value itself. We just need to
increment that variable after the assignment statement.

void AddAssignment()
{
 string NewAssignment;
 cout << "Enter next assignment \n";
 cin >> NewAssignment;
 Assignments[NextAssignment] = NewAssignment;
 NextAssignment++;
}

The other two functions AddProject() and AddReference() work in a similar way. In fact, the
only difference among the three functions is that AddAssignment() adds to the assignment
array, AddProject() adds to the project array, and AddReference() adds to the reference array.
It is also important to note that all three functions have a similar signature, that is, void
<function name>(). The importance of this will be discussed subsequently.

Using global enum Observe the global enum defi nition.

enum jobs {ASSIGNMENT, PROJECT, REFERENCE};

We can now use ASSIGNMENT, PROJECT, and REFERENCE as case labels. The most important
function in this case is the AddJob() function.

void AddJob(jobs StudentJobs, int NoOfJobs)
{
 int i;
 switch(StudentJobs)
 {

Functions 165

 case ASSIGNMENT:
 for(i = 0; i < NoOfJobs; i++)
 {
 AddAssignment();
 }
 break;

 case PROJECT:
 ...
 }
}

Function to add information, AddJob() The AddJob() function takes two arguments. The
fi rst is the enum value, which refers to what we are interested in inserting. We can pass
ASSIGNMENT for adding an assignment to the Assignments array. Similarly, we can pass
PROJECT for adding a project and REFERENCE for adding a reference in the corresponding
arrays. The second argument is for multiple operations. It is not unusual to add multiple
values of projects, assignments, and references together, thus calling the respective function
that many times. In this example, we have added three assignments of Lara the fi rst time and
then have added two more assignments. Look at the calls made to AddJob() in the program.

Lara.AddJob(StudentJobs, 3);
Lara.AddJob(StudentJobs, 2);

Here, 3 and 2 are values passed to AddJob(), informing it that the fi rst call needs to add three
and second call needs to add two assignments. The StudentJobs value in both the cases is
ASSIGNMENT, so in both the cases AddJob() adds to the Assignments array.

Limitation of the solution Now, the question is, what is the problem with this program?
Suppose we need students to have a list of practicals completed. We should have a function
such as AddPractical() that adds practicals. The AddJob() function needs to be modifi ed
to add one more case and the global enum also needs to be changed. Adding a function
AddPractical() cannot be avoided, but is it possible to avoid changing AddJob() and the
enum? It is possible if pointer to member functions are used. It solves the problem in such a
way that adding one or more functions does not require a change in the AddJob() function
and there is no further need for enum.

Program 4.16 is the same as Program 4.15 but uses a pointer to member function.

PROGRAM 4.16 Solution using pointer to member function
// UsingPointerToMember.cpp
#include <iostream>
#include <string>
using namespace std;
// enum jobs {ASSIGNMENT, PROJECT, REFERENCE};

class Student
{
private:
 int RollNumber;
 string Name;
 string Address;

166 Programming with ANSI C++

 string Assignments[100];
 string Projects[20];
 string References[10];
public:
 static int NextAssignment;
 static int NextProject;
 static int NextReference;
 void GetDetails()
 {
 cout << "\n Enter roll number: ";
 cin >> RollNumber;
 cout << "\n Enter name: ";
 cin >> Name;
 cout << "\n Enter address: ";
 cin >> Address;
 }

 void AddAssignment()
 {
 string NewAssignment;
 cout << "Enter next assignment \n";
 cin >> NewAssignment;
 Assignments[NextAssignment] = NewAssignment;
 NextAssignment++;
 }

 void AddProject()
 {
 string NewProject;
 cout << "Enter next project \n";
 cin >> NewProject;
 Projects[NextProject] = NewProject;
 NextProject++;
 }

 void AddReference()
 {
 string NewReference;
 cout << "Enter next reference \n";
 cin >> NewReference;
 References[NextReference] = NewReference;
 NextReference++;
 }

 void AddJob(void(Student::*FPtr)(), int NoOfJobs)
 {
 for(int i = 0; i < NoOfJobs; i++)
 {
 (this ->* FPtr)();
 /* Call the function using this pointer, that is, the invoking object */
 }
 }

 void PrintDetails()
 {
 int i;
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";

 cout << "Assignments are \n";

Functions 167

 for(i = 0; i < NextAssignment; i++)
 {
 cout << Assignments[i] << "\n";
 }

 cout << "Projects are \n";
 for(i = 0; i < NextProject; i++)
 {
 cout << References[i]<< "\n";
 }
 }
};

int Student::NextAssignment;
int Student::NextProject;
int Student::NextReference;

void main()
{
 void (Student::*JobFunPtr)(); // Defi ning a function pointer
 Student Lara;
 // jobs StudentJobs = ASSIGNMENT;
 JobFunPtr = Student::AddAssignment;
 // no() after the function name

 Lara.GetDetails();
 // Lara.AddJob(StudentJobs,3);
 Lara.AddJob(JobFunPtr, 3);
 Lara.PrintDetails();
}

How the Program Works
The output of the program is the same except that two additional assignments are not given
to Lara now. Let us look at the changes made to the earlier program one by one. The fi rst
change is that the enum is commented now as it is no longer needed. The second change is
that the AddJob() function has now become much shorter. It is defi ned as

void AddJob(void(Student::*FPtr)(), int NoOfJobs)
{
 for(int i = 0; i < NoOfJobs; i++)
 {
 (this ->* FPtr)();
 // Call the function using this pointer, that is, invoking object
 }
}

The fi rst argument is important now. It is void(Student::FPtr)(); that is, the pointer to
a function is a member of the Student class, which has no arguments, and returns void.
Any function that does not have an argument returns void and the member of the student
class can be made to point to any member that has the same signature by this pointer. All
three of our AddJob() functions have the same signature and the FPtr can point to all of them.
Thus, it is possible to pass pointer to AddAssignment(), AddProject(), or AddReference()
or any other function with the same signature, such as void AddPractical() or void
AddGroupMembers().

168 Programming with ANSI C++

Adding a new function without trouble This adds to the fl exibility of the function. We
only need a function pointer to pass to this function. We need not worry about the name of
the function as only the signature is important. The code does not need to change if any
additional function with the same signature is added to the program and called using the
AddJob() function. Suppose we have defi ned the following

void AddPracticals();

in the program. Then, the statement

Lara.AddJob(Student::*AddPracticals, 3)

adds to practicals. The code of AddJob() does not change. Compare this with the earlier example
and the amount of code revision required. A lot of work is being done towards making the program
design fl exible. For example, compilers use this method extensively for system level coding.

Exhibit 4.4 explains why switch-case statement is to be avoided.

Exhibit 4.4 Why switch-case statement should be avoided
The solution using pointer to member function offers an important advantage. It does not employ switch-
case statements. In programs with a large number of functions, the switch-case option might consume a
substantial amount of time, which is saved here.

In the case of graphics programming or gaming, operations such as moving up, down, right, or
left multiple times and, therefore, functions for each operation are needed. Without pointer to member
functions, a switch statement with four functions is needed.

Thus, a lot of time will be saved by using pointer to member functions, especially when the operations
are carried out multiple times. Even a small amount of time saved in graphics is important.

Using pointer to member function Let us understand the body of the function. It contains
a single for loop.

for(int i = 0; i < NoOfJobs; i++)
{
 (this ->* FPtr)();
 // Call the function using this pointer, that is, the invoking object
}

This statement needs explanation. What does the statement Lara.AddJob(Student::
Assignment,3); do? It calls Student::AddAssignment() three times. The for loop in the
body of the function takes care of calling the respective function three times. Now, FPtr is a
pointer to the function member of student class containing no arguments and returning void.
Thus, (... *FPtr)() calls the function pointed to by FPtr. The only catch is determining
what should come in the place of ... (the three dots). Here, the AddJob() function for Lara
is being called. We need Lara.AddAssignment() to be called. This is equivalent to calling
(Lara.*FPtr)(). Now, this pointer value is &Lara at the moment as it is invoked by Lara
object. Thus, this-> is similar to Lara::*. So, we now write (this ->* FPtr)() to call the
invoking object’s respective function.

Calling the function indirectly Finally, the calls made to AddJob() are to be explained.
Note how the FunPtr variable is defi ned and assigned to AddAssignment() function and
observe the call as well.

Functions 169

void(Student::*JobFunPtr)();
// Defi ning a function pointer

JobFunPtr = Student::AddAssignment;
// no () after the function name
Lara.AddJob(JobFunPtr, 3)

Obviously, JobFunPtr can be replaced by Student::Assignment and the call works the same.
The solution using function pointer is diffi cult to understand at a glance, but is advantageous
as explained.

4.18 LINKAGE SPECIFICATION

We can call functions defi ned in C in a C++ program. It is not straightforward though. The
important questions here arein what way are the functions in C different from those in C++
and why they cannot be called as they are.

C++ compiler processes its functions in a more rigorous manner than C. It decorates
the compiled function to represent its arguments and their types. This is needed because of
function overloading. This decoration is also known as mangling. Whenever a function call
is made, C++ must pick up the right version. Finding this out at run-time will hamper the
performance of the C++ program. Therefore, it is important that the compiler itself adds

information to the function defi nition to differentiate each overloaded function.
A good solution to the problem is that the name of the function changes to a

new name known only to the compiler. This new name is different from the new
names given to other overloaded functions with the same name. Add(int, int)
might change to Add_int_int(int, int) and Add(fl oat, fl oat) might change to
Add_fl oat_fl oat(fl oat, fl oat). The function Add(), is renamed by the compiler as
Add_int_int when an integer argument is passed, and renamed as Add_fl oat_fl oat
when a fl oat argument is passed. Thus, though the user has defi ned both functions
with the same name Add, the compiler inherently defi nes two different functions
with different names and uses them accordingly. So, there is no overhead at
run-time. Wherever a function call is made as Add(FloatVar1, FloatVar2),
the compiler converts the call to Add_fl oat_fl oat(FloatVar1, FloatVar2) after
deducing the type of both the arguments to be fl oat and unambiguously deciding
in favour of calling the fl oat version of the Add. Thus, the run-time system does
not encounter different versions of Add and does not need to deduce the argument
types at run-time to fi nd out which function to call.

A function compiled as a C function does not have this feature. Obviously, the
same function, when compiled as a C++ function, will have a different name than
when it is compiled as a C function (because of the additional information obtained
and added by compiler to the original function name when compiled). If a function is
compiled as a C function, we cannot access it in the same manner as a C++ function.

The non-inline function code is not accessed at compile time; it is accessed at
linking time. (The function is also accessed at the time of execution, but we will
not discuss that at the moment.) Linking is the next phase after compilation where
all scattered functions called by the main() program are combined together with
the main() program to build a single executable. At this point of time, the C or C++

Every overloaded
function is changed
by the C++ compiler
in such a way that it
is uniquely identifi ed
at run-time and there
is no overhead to fi nd
the correct version at
run-time.

When a function
name is changed
by the compiler for
unique identifi cation
at run-time, the
process is known as
name decoration or
name mangling.

Linking happens after
compilation. Inline
functions are process-
ed by the compiler,
whereas non-inline
functions are
processed at run-time.

170 Programming with ANSI C++

functions are added to make the exe fi le. In order to attach a C function, we need to
specify that we are attaching a C function at the time of linking. It should be noted
that C++ linkage is by default and we need not specify anything if we need to link
our function as a C++ function. This specifi cation is known as linkage specifi cation.

A function needs to be used as a C function when only the object code of the
function is available and the function needs to be called in a C++ program, that is, whenever
the library of functions designed by somebody else is being used and the library contains
a C function that is needed in a C++ program. In such a case, linkage specifi cation is used.
Study the following example.

#include <iostream>
using namespace std;
extern "C" void TestCLinkage();

void main()
{
 TestCLinkage();
}

void TestCLinkage()
{
 cout << "Hi, I am linked the C way.\n";
}

The statement

extern "C" void TestCLinkage();

specifi es the linkage specifi cation. Note that the word extern is a must before the language
name. Moreover, note that the letter ‘C’ is in uppercase; lowercase ‘c’ will not work here. If
there are multiple functions to link the C way, it can be done as shown in the following program.

Note It is possible to use a compiled C function from some library in a C++ program. We need to have C
linkage specifi cation for such functions.

#include <iostream>
using namespace std;
extern "C"
{
 void TestCLinkage();
 void TestCLinkage2();
}
void main()
{
 TestCLinkage();
 TestCLinkage2();
}
void TestCLinkage()
{
 cout << "Hi, I am function no. 1. I am linked the C way.\n";
}

Linkage specifi cation
describes how a
function is linked to a
C++ executable.

Functions 171

■ RECAPITULATION ■

 • C++ functions are similar to C functions. The functions,
such as calling, returning, and executing, work in the
same manner and the stack is involved in the same way
as in C.

 • C++ provides an inline function. This function call
is expanded like a macro. Inline functions are very
effi cient and solve the problems associated with the
macros of C. However, it is not possible to make all
functions inline.

 • It is possible for the arguments to have a default value in
C++. The default arguments, if any, must be preceded
by all the normal arguments in the argument list.

 • Functions in C++ can receive as arguments and return
objects additionally.

 • It is possible to pass a reference and return a reference
from a C++ function.

 • When a C++ function returns a reference, it can be
on the RHS of an assignment statement. Function
prototype is compulsory in C++ when the function is
used before the defi nition.

 • It is also possible to overload a function with the same
name but different numbers of arguments or different
types of arguments in C++. This is known as function
overloading.

 • A C++ function can be defi ned as a member function of
some class or a non-member function.

 • It requires critical introspection to decide whether to

make a function a member or a non-member.
 • It is also possible to declare a function as a friend of

some class. In such a case, the function that is not the
member of the specifi c class will be able to access the
private members of the class.

 • Like const and volatile variables, we can have const
and volatile objects in C++. A function can also be a
const or a volatile function.

 • A const function cannot alter the value of a data member
except for the ones defi ned as mutable.

 • Functions can also be defi ned as static. These functions
are not exactly member functions of a class. They
can only work with static data members of the class.
Usually, these functions are public.

 • A pointer to a non-member function is similar to a
function pointer in C. It is also possible to defi ne a
function pointer to a function member in C++. They are
very useful in making the program more fl exible.

 • It is possible for a C++ program to use a compiled C
function from some library. We need to have a C linkage
specifi cation for such functions.

 • A normal C function in its compiled form is different
from a C++ function because the C++ function is name
mangled whereas a C function is not. Thus, a function
when compiled as a C function generates a different object
code than when the same function is compiled as a C++
function.

void TestCLinkage2()
{
 cout << "Hi, I am function No. 2. I am also linked the C way.\n";
}

In some specifi c compilers, linkage specifi cation for other languages is also possible.
However, C linkage specifi cation is possible with all C++ compilers.

If a C library is being used, the prototype can be written in the way mentioned and the
functions can be accessed the same way as in C. It should be understood that we are dealing
with a stage after compilation, and so, we are dealing with the object code. The source
code of the function is not needed here. The object code (.obj fi le) will do. Therefore, in the
case of a function library without source code, providing C linkage is the only solution to
use those functions. If the source code is available, a better option is to recompile them as
C++ and link using C++ linkage. It is always better to recompile the old C library function as
a C++ function and use this. When the source code is available, developers use this method.
When the function is recompiled, C linkage which is much slower, which is not preferred.

172 Programming with ANSI C++

■ KEYWORDS ■

Call by reference This refers to defi ning an object as
a reference in the function header and passing and
accepting it as a reference argument in a function.

Const function This is a function that guarantees not
to modify the invoking object. If the body of the const
function contains a statement that modifi es the invoking
object, the program will not be compiled. One exception
here is the mutable data member, which can be modifi ed
by the const function.

Default arguments The arguments to the function, when
not passed, take the default value either specifi ed in
the prototype or the header of the function. All default
arguments must come after all normal arguments in the
function header or prototype.

Friend function A friend is either a non-member function
or a member function of some other class, which is given
special permission to access private variables of the
class. The function is said to be the friend of the class
under consideration.

Function overloading C++ allows more than one function
with the same name but with different sets of arguments.
This process is known as function overloading and each
participating function is known as overloaded function.

Function prototyping The header of the function with or
without the name of the arguments but with the type of
arguments is known as function prototype. When function
itself is defi ned after the call is made, function prototype
must precede the call.

Inline function This is a function whose function statement
is replaced by the body of the function at the time of
compilation.

Linkage specifi cation This is the specifi cation that tells
the linker how to link a function. C++ linkage is by default.

Mutable data member This is a special member of the
class that can be modifi ed by a const function.

Name mangling The process of generating a unique name
for a function when there is a possibility of confusion
(when function overloading is possible) is known as name
mangling. This is possible in the case when the function
is linked as a C++ function (a default case). Thus, the
compiler name mangles all C++ functions.

Non-member function This refers to a function that
is not defi ned as a member function of any class or a
standalone function.

Name return value (NRV) optimization When a called
function defi nes and returns the local object to be as-
signed to an object of a calling function, compiler optimiz-
es the code by adding an additional argument to the func-
tion, which is the reference of the calling function object.
The defi nition of the local object and the returnstatement
is now eliminated. This is known as NRV ptimization.

Polymorphism The ability of the object to react differently
to the same command in different contexts is known as
polymorphism.

Return by reference This refers to returning a reference of
an object from the function. It should rightly be the reference
of a calling function object. Returning a reference of a local
object might have unforeseen consequences.

Static function The static function is preceded by the
keyword static in the defi nition. It can only access the static
members of the class. Though static member functions are
defi ned like member functions, they are not truly members.

■ EXERCISES ■

Multiple Choice Questions

1. At which point of time is the code of a non-inline
function not accessible?

 (a) Linking time
 (b) Compile time
 (c) Loading time
 (d) None of the above
2. Polymorphism refers to the ability of the object to

__________ to the same command in __________.
 (a) react differently, same contexts
 (b) react same, same contexts
 (c) react same, different contexts
 (d) react differently, different contexts

3. When we take the address of a function, it returns
__________.

 (a) the entry point address of the function
 (b) the exit point address of the function
 (c) the call point address of the function
 (d) the defi nition point address of the functions
4. Private member functions cannot be called by

__________.
 (a) public member functions
 (b) friend functions
 (c) non-member functions
 (d) All of the above

Functions 173

 5. We can also have __________ as friend functions
of some other class.

 (a) non-member functions of a class
 (b) member functions of a class
 (c) global functions
 (d) All of the above
 6. The arguments used in the function call are known

as __________.
 (a) actual arguments
 (b) dummy arguments
 (c) dummy parameters
 (d) None of the above
 7. The functions that are not associated with class are

__________.
 (a) inline functions
 (b) member functions
 (c) non-member functions
 (d) const functions
 8. How can a data member be modifi ed even by a

const function?
 (a) It is never possible.
 (b) It is possible without any specifi cation.
 (c) It is possible when the member is declared

mutable.
 (d) It is possible when the member is declared

const.
 9. We need to use the <class name>__________ to

precede the function while defi ning the pointer to
function.

 (a) .*
 (b) ::*
 (c) ->*
 (d) ::
10. What can be written in the blank with the function

defi nition?
 <return type><function name>(argument1, ...)

 {

 <function body>
 }
 (a) static
 (b) const
 (c) volatile
 (d) friend

Conceptual Exercises

 1. List out the differences between C functions and
C++ functions.

 2. Write a simple program with two or more
functions. If you are working with either Turbo C

or Visual C++, try to trace the function to look at
the sequence of function calling.

 3. What are the advantages and disadvantages
of inline functions? When are inline functions
preferred over normal functions?

 4. Write a macro for fi nding the maximum of two
numbers. Use it in fi nding the maximum of fi ve
numbers. Rewrite the same program using inline
function for fi nding the maximum of two numbers
and discuss the advantages and disadvantages of
both the approaches with respect to your program.

 5. Show a case where default arguments are important.
Why does a single default argument function
prevent the overloading of a same function without
any argument?

 6. How can you check if your compiler applies NRV? It
is made mandatory in the standard. Check with your
compiler manual how to enable or disable the NRV.

 7. What is the advantage of having this pointer?
Where can it be useful?

 8. List the differences between member and non-
member functions. Can you add a few other
differences yourself?

 9. When we return a reference it is better than returning
a large object as it requires more context switching.
It also has a disadvantage. One can unknowingly
use that function in the LHS with unforeseen
consequences. What is the solution to this problem?

10. How is polymorphism related to function over-
loading?

11. Give an example where it is better to have over-
loaded functions than default arguments.

12. Discuss the importance of friend. Give an example
where a friend function is a better choice than a
non-member function.

13. Discuss the disadvantages of making more member
functions than possible in a class. What are the ways
one can make member a function a non-member one?

14. What is the difference between a normal function
and a const function? Show a case where const
function is more useful than normal function.

15. What is the usefulness of static functions? Compare
static functions with normal functions.

16. Differentiate between private and public functions.
Give one example of a private function that is
useful for a class.

17. How can pointer to function be defi ned for a class
member function? List out the differences between
pointer to normal functions and pointer to member
functions.

174 Programming with ANSI C++

18. How can we defi ne pointer to static functions? Test
it using a small program of your choice.

19. What is the advantage of function pointers? Give an
example other than shown in the book to explain the
advantage. Show the usefulness of the ::* operator.

20. What is name mangling? Why is it required?
21. What is linkage specifi cation? Explain the need for

linkage specifi cation.

Practical Exercises

 1. Write a function for fi nding the average age of a
class student. Pass an array of student objects as
a parameter to that function. Assume the default
class strength to be 50. Provide default strength as
a default argument to the function.

 2. Defi ne Time class with string containing seconds
elapsed until midnight (12:00 AM) as a single data
member. Write AddTime() function, which adds
two different Time objects and returns a new Time
object. Write a DisplayNormal() function, which
converts the time in seconds and displays it in a
normal fashion HH:MM:SS.

 3. Modify Program 4.6 in such a way that it does
not return zeros in the fi elds when the fi rst Time
argument is a later time than the second one. It
should fi nd the absolute time difference between
both the times and return the result.

 4. Modify Program 4.6 to use Time class with seconds
elapsed until midnight as a single data member
rather than Hours, Minutes and Seconds.

 5. Modify Program 4.7 such that the use of global
variable is eliminated.

 6. Modify Program 4.7 such that it returns the
absolute time difference between both the times
the object is passed and does not return zeros when
the fi rst Time argument is later than the second one.

 7. Modify Program 4.6 in such a way that it uses
overloaded function instead of default arguments.

 8. Modify Program 4.7 in such a way that it uses
overloaded function instead of default arguments.

 9. Defi ne a class Car. Add Make, Colour, Size, and
Cost as data members. Write member functions for
reading and printing the values of the car. Defi ne one
more class as CarCollection. This class should
contain the member functions Add(), Delete(),
Modify(), and Replace(). CarCollection is to
be defi ned as friend of Car class.

10. Use the class Car of Problem 9. Provide a friend
function Replace(), which replaces the content of
a Car object with another Car object.

11. Use classes Employee and CollectionEmp de-
scribed in the chapter. Write a friend function
Union of CollectionEmp() with two different
CollectionEmp objects. It should return the result
as one more CollectionEmp object.

12. Use classes Car and CarCollection of Problem 9.
Write a friend function Union of CarCollection()
with two different CarCollection objects. It
should return the result as one more CarCollection
object.

13. Use classes Employee and CollectionEmp
described in the chapter. Write a friend function
Intersection of CollectionEmp() with two
different CollectionEmp objects. It should return
the result as one more CollectionEmp object.

14. Use classes Car and CarCollection of Problem 9.
Write a friend function Intersection of Car-
Collection() with two different CarCollection
objects. It should return the result as one more
CarCollection object.

15. Use the class Employee defi ned in the chapter
and write a static function for fi nding out the total
male and female employees. Modify the class if
required.

16. Use the class Car of Problem 9 and write a static
function that displays the total cars with different
makes. Modify the class if required.

17. Defi ne a private function IsOld() which, given a
make, decides if the car is old or not. Assume that
for different makes specifi c lifetime is provided in an
array. A car is considered old if the car is older than
half its lifetime. Modify the Car class to provide for
using this function in a member CarDescription()
function. The CarDescription() function
describes the car completely and also tells whether
the car is old or not.

18. Use Employee and EmpCollection classes of the
chapter and provide GetSubordinates() friend
function, which returns an object of EmpCollection
class containing the details of the subordinates of
a manager. The employee object describing the
manager is to be passed as a parameter.

19. Defi ne a class Person containing the name of the
person, names of parents of the person, gender, age,
and an array containing the list of interests as the
data members. Provide functions FindFather(),
FindMother(), FindUncle(), and FindAunty(),
all of which return the objects of the Person class.
Provide access using function pointers for all these
functions.

Chapter 5
Constructors and Constructors and
DestructorsDestructors
5.1 SIMILAR-TO-BUILT-IN BEHAVIOUR CONCEPT

One of the major thrusts during C++ design was to make the user-created C++
objects behave in a similar way to the built-in objec ts as much as possible.
C++ provides a host of facilities to make this possible such as the automatic
initialization (and destruction) of data types. Let us try to understand this with
an example. When we write int i = 25 in a C++ program, it is similar to
writing int i(25). Here, i is initialized with the value 25 while being defi ned.

It is possible to write the following statement to initialize CaptainStudent
while defi ning it:

student CaptainStudent(1, "Brian Lara", "West Indies");

Constructors are special functions that provide this service; they enable
us to initialize user-defi ned objects while defi ning them, as shown in the
examples. Suppose a class for customer has already been defi ned. It is
possible to write

customer Javed("Miandad", "Pakistan", "Cricketer", "Cricket bats");

which not only defi nes Javed to be a customer, but also initializes his data
such as the surname, address, category, and what items he is interested in.
We have used the Init function in Chapter 4 in Programs 4.13, 4.14, 4.16
and 4.17 involving the class employee. A constructor for providing the same
services in an automated way can be written to replace the Init function.

Once proper constructors are introduced in the class, the need for object
initialization automatically arises.

5.2 NEED FOR OBJECT INITIALIZATION

The need for initialization of objects arises from various reasons, some of
which are listed as follows:

1. When an object is declared, it may be needed to initialize the individual
data members to some specifi c default values. Initializing integer
variables to zero and pointer variables to null are two very common
initializations. For example, when a stack object is defi ned, the stack
pointer may be initialized to null using a constructor. The following is a
sample from the program given in Section 5.3:

Learning Objectives

• Application of constructors
and destructors

• Default constructors
• User-defi ned default

constructors
• Single-argument constructors
• Explicit constructors
• Parameterized constructors
• Multiple constructors
• Default arguments
• Constructors with dynamic

allocation
• Copy constructors
• Member-wise initialization list

(MIL) and its applications
• Lifetime of objects

176 Programming with ANSI C++

 class Stack
 {
 private:

 int StackPointer;
 int StackArray[10];
 public:
 Stack()

 {
 StackPointer = 0;
 }
 };

2. Dynamic memory allocation may be required when an object is defi ned. For example, if a
program for billing a customer is made, the items purchased by the individual customers may
vary a lot. Only when the customer object is initialized will it be possible to know the number
of items being purchased by that particular customer. It is always better to provide just enough
memory for those items using dynamic memory allocation, when the object is constructed.

The following is a customer constructor allocating enough memory to hold TotalItems
number of items. The total number of items purchased by the customer is passed to the
constructor and an integer pointer ItemArray defi ned inside customer class is now to act
as a dynamic array. The memory to hold TotalItems number of items is to be obtained,
which is done using new Item[TotalItems].

 Customer(int TotalItems)
 {
 ItemArray = new Item[TotalItems];
 }

3. Objects may need to be set to special values. Constructors help in both defi ning the objects
and giving them special values. When a new student is defi ned, we can provide his name,
address, and other attributes along with it. For example, when TempName is passed, the
customer’s name is initialized with it.

 Customer(string TempName)
 {
 CustomerName = TempName;
 }

4. When inheritance is in effect, if a base class has a constructor, a derived class must
also have one to initialize itself. (If the programmer forgets to do it, then the compiler
synthesizes one by itself. However, it may not be the same as what the programmer wants
it to be.) We will discuss in detail about the base and inherited classes and the effect on
constructors by this hierarchy in Chapter 9.

If a class IndianCustomer is inherited from class Customer as follows

class IndianCustomer:public Customer
{...}
and if a constructor has not been defi ned in this class while the base class Customer has a
constructor, then it will be provided by the compiler.

Constructors and Destructors 177

5.3 INTRODUCTION TO CONSTRUCTORS

A constructor has the following two main functions:

1. It automatically initializes the object (i.e., the constructor function need not be called
explicitly; it is automatically called when the object is defi ned).

2. It usually provides initial values for the data members of the object.

Note A constructor function always has the same name as the class itself. Constructors are almost always
invoked automatically, though they can also be called explicitly.

The following program describes how to defi ne and use constructors. This example is related
to build ing a stack object. Earlier, we needed to call an explicit function for initializing the
value of an index to zero after creating a stack object, but now it is done automatically using
a constructor. Observe the defi nition of the Stack() function. It should be noted that it bears
the same name as the class itself, that is, Stack is a class that has Stack() as a constructor.

A minor modifi cation has been done to Program 3.3 in Chapter 3 where InitializeSP()
was used to initialize the value of the stack pointer after defi ning the object. However, after
introducing constructors, this is no longer needed. In the earlier example, after defi ning a
stack object, if one forgets to call InitializeSP(), one would end up with an erroneous result
because the stack pointer will be incremented and decremented with a random value. If the
value of the stack pointer is not initialized to zero, both push and pop operations would not
work as expected. This problem is avoided using a constructor in the following program.
Each time an object of the Stack class is defi ned, the Stack() function would automatically
be called, and the respective stack pointer (belonging to that object—it should be remembered
that all objects have their unique copies of data members) would initialize to zero.

//SimpleConstructor.cpp
#include <iostream>
using namespace std;
class Stack
{
private:
 int StackPointer;
 int StackArray[10];
public:
 Stack() // This is the constructor

 {
 StackPointer = 0;
 }
 // Pushing the elements into the stack
 void push(int value)
 {
 if(StackPointer == 9)
 {
 cout << "Stack overfl ow! Cannot insert";
 }
 else

178 Programming with ANSI C++

 {
 StackArray[StackPointer] = value; StackPointer++;
 }
 }
 // popping the elements out of the stack
 int pop()
 {
 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer−−;
 return StackArray[StackPointer];
 }
 }
};
void main()
{
 Stack MyStack;

 // MyStack.InitializeSP();
 /* automatically done; there is no need to do it explicitly */
 MyStack.push(l);
 MyStack.push(2);
 cout << MyStack.pop()<< "\n";
 cout << MyStack.pop()<< "\n";
}

Note The advantage of a constructor is to have automatic initialization, which results in better operation. If
a programmer is required to manually initialize the object every time he/she defi nes it, there is a huge
chance of missing it once in a while and errors getting introduced in the code. The best part of having
a constructor is that such errors are eliminated by introducing proper constructors.

This example may be diffi cult to understand for those who do not know what stacks are.
The usefulness of a constructor is shown here. The thumb rule is that at certain times one
needs to set the members of an object to a default value; only then will the other operations
be meaningful. In this example, the push and pop operations can take place only when the
stack pointer is initialized to zero. If the program does not have a constructor, the stack
pointer should be explicitly set to zero. Such an approach would be both tedious and error-
prone. Thus, the advantage of using constructors is that it provides a simpler and better
approach.

5.4 RULES FOR DEFINING CONSTRUCTORS

Certain rules need to be followed when constructors are defi ned and used; some important
ones are as follows:

1. A constructor must have the same name as the class.

Constructors and Destructors 179

2. A consequence of rule 1 is that there cannot be more than one constructor with different
names and same arguments. If there is a need for more than one constructor, one should
have a single constructor and overload it with different sets of arguments.

3. A constructor cannot specify a return type. Even writing void is not allowed (though a
constructor always returns the object of the class it belongs to after constructing it).

Note Although constructors cannot specify a return type, they always return the object of the class they
belong to.

4. A constructor should not have a return statement in the body of the constructor.
5. The address of a constructor cannot be obtained. Hence, there cannot be a function pointer

pointing to a constructor.
6. A constructor can be defi ned as private, but then it would not be possible to defi ne objects

using those constructors. This is because defi ning a constructor as private tries to execute
a private function by the object at the time of defi nition, which is not allowed. Therefore,
unless normal defi nition of the object is not restricted, the constructors should be defi ned
as public.

5.5 DEFAULT CONSTRUCTORS

A default constructor is one with no argument or with all default arguments, that is, it is a
constructor with an empty argument list or with all arguments having some default value (so
that the constructor can be called without any argument). There are two different types of
default constructors. When the user does not defi ne any constructor, it is a compiler-provided
default constructor, and when the user provides one, it is a user-defi ned one. The compiler-
defi ned default constructor may not be synthesized by the compiler in all cases and will be
synthesized only when the default constructor is necessary. The user can specify the default
constructor whenever he/she wishes to do so. Usually, when a user provides a constructor,
the compiler does not provide one.

5.5.1 Compiler-defi ned Default Constructor
Suppose a few objects of a class are defi ned but no constructors are defi ned for them. What
will happen when that object is defi ned? For example, when the statement

student CaptainStudent;

is executed, what actually happens?
In such a case, memory that is suffi cient for storing the complete CaptainStudent is set

aside and given the name ‘CaptainStudent’. If CaptainStudent is addressed later on, the
content of this address is fetched.

When the constructors are not provided by the programmers, C++ will provide the same
effect by synthesizing the physical constructor code in some of the non-trivial cases. If only

memory allocation for the object is to be performed, the effect is provided but
the physical constructor code is not synthesized. It would be interesting to know
when the physical coding of a constructor is needed, but this is beyond the scope
of an introductory book. Readers are encouraged to refer to Stanly Lippman’s
classic Inside the C++ Object Model for the description. For simplicity, we
assume that the constructor is provided and we have the effect of construction

When the user does
not defi ne any con-
structor, the compiler
provides a default
constructor.

180 Programming with ANSI C++

of the object. This C++ constructor enables us to use the object CaptainStudent later in
the program by constructing that object. Constructors of this form, which do not take any
parameters, are known as default constructors.

Note Physical constructors are not always synthesized by the compiler. However, there are a few non-trivial
cases where the operation demands such synthesis.

5.5.2 User-defi ned Default Constructor
The default constructors synthesized by the compiler cannot do all the initializations that are
needed for a class. The synthesized constructor only fulfi ls the requirements of the compiler.
Even when the physical constructor is not synthesized, the compiler provides only those
effects that will suit its own requirements and not that of the users. Thus, memory allocation
is provided but initialization is not provided by compiler. When we defi ne CaptainStudent,
we expect a memory size good enough to hold the object and would like to use it (by storing
information about the members of CaptainStudent and manipulate it). The compiler would
provide that memory using this constructor. However, the compiler does not need initialization,
so it is not provided by the default constructor. Initialization is the programmer’s responsibility
and should be done explicitly. Consider an example of a node class for a linked list.

class node
{
 int Value;
 int *PtrNextValue; // Other items needed for node
}

In this case, suppose the node is used as follows:

node First;
// checking for empty list
if(First.PtrNextValue)
/* Wrong! The pointer is not initialized to null */
{
 // Necessary action
}

Here, consider the statement

node First;

Depending on the situation, a compiler may defi ne a default constructor for us. However, it
only provides memory allocation to store the object of type node in this case (and no physical
constructor is constructed). It will certainly not initialize either Value or PtrNextValue for us.
It is a programmer’s job and if they need to be initialized, the constructor must be written
as follows:

class node
{
 int Value;
 int *PtrNextValue;
public:
 node()

Compilers provide
the additions that suit
their own require-
ments and not that
of the users.

Constructors and Destructors 181

 {
 Value = 0;
 PtrNextValue = 0;

 /* Assigning zero to a pointer is correct in C++; it is the same as
assigning the pointer a null, i.e., "\0" */

 }
 // Other items needed for node
};

So, writing the following statement

node First;

would automatically do the following:

First.Value = 0;

and

First.PtrNextValue = 0; (i.e., "\0" or null)

Now, First.PtrNextValue would be executed properly. It is to be noted that we are not
explicitly writing anything for initializing data member values; it is automatically done when
the object is defi ned.

The constructors used in these two examples are also called user-defi ned default con-
structors. A constructor without arguments is called a default constructor. It can be seen that
it must be defi ned by the programmer for cases such as mentioned in the examples.

Note There are two types of default constructors, one provided by the compiler and the other user defi ned.
The compiler automatically provides one when the user does not defi ne the constructor explicitly.
The compiler may synthesize it physically (actually add that code in the object code created after
compilation) or just provide that effect, depending on the situation.

As mentioned earlier, when the compiler provides a constructor, it does the job that just satisfi es
the compiler’s need and not that of the programmer. For specifi c needs of the programmer, a
user-defi ned constructor needs to be written. Let us look at one more example to understand
the usefulness of a user-defi ned constructor.

Cases Where a Default Constructor is not Needed
It has already been mentioned that the compiler provides automatic constructors when needed.
Sometimes, it becomes redundant if the user also provides a default constructor. Therefore,
it is always better to leave it to the compiler in case we do not want any different behaviour.

Program 5.1 is an example where the default constructor for ItemCollection is redundant.

 A constructor is auto-
matically called every
time the object defi -
nition appears in the
program.

PROGRAM 5.1 Redundant default constructor
//UselessDefaultConstructor.cpp
#include <iostream>
#include <string>
using namespace std;

class Item
{

182 Programming with ANSI C++

 int ItemNo;
 string ItemName;
public:
 Item() // Default constructor
 {
 ItemNo = 0;
 ItemName = "";
 /* This is not required as String object is initialized already by the constructor

provided in string class */
 }

 void SetDetails(int TempItemNo, string TempItemName)
 {
 ItemNo = TempItemNo;
 ItemName = TempItemName;
 }

 void ShowDetails()
 {
 cout << "\n Item number is" << ItemNo;
 cout << "\n Item name is" << ItemName;
 }
};

class ItemCollection
{
 Item ItemArray[20];
 int ItemIndex;
public:
 ItemCollection() // Default constructor
 /* If we remove this default constructor, it will not affect the program */
 {
 for(int i=0; i<20; i++)
 ItemArray[i].SetDetails(0, "");
 ItemIndex = 0;
 }

 void SetDetails(Item TempItemArray[])
 {
 for(int i=0; i<20; i++)
 ItemArray[i] = TempItemArray[i];
 }

 void PrintDetails()
 {
 for(int i=0; i<20; i++)
 ItemArray[i].ShowDetails();
 }
};

int main()
{
 ItemCollection IC;
 Item TempItemArray[20];
 for(int i=0; i<20; i++)
 {
 TempItemArray[i].SetDetails(i, "Dummy");
 }
 IC.SetDetails(TempItemArray); IC.PrintDetails();
}

Constructors and Destructors 183

The readers are encouraged to try the following. Get the output of the program. Remove the
default constructor of ItemCollection class and get the output again. Observe the difference.

The output does not change. This is because the default constructor is initialized to zero
and " " is redundant. It is just a good programming practice to initialize, so that if one
forgets to assign values to it later, one would get a value zero and " " and realize the error.
When the constructor is not provided, those values are not initialized. As long as reasonable
values are provided to both of them, there will not be any trouble and no signifi cant issue is
created.

The ItemCollection default constructor is anyway redundant, as Item constructor is
already initializing Items.

Cases Where a Default Constructor must be Present
Sometimes, initialization is very important and the counter begins from there. So, if a default
constructor is not provided, the counter is not initialized, which will lead to an incorrect
execution.

Program 5.2 is an example where the user-defi ned default constructor must be present.

PROGRAM 5.2 Useful default constructor
//DefaultConstructor.cpp
#include <iostream>
#include <string>
using namespace std;

class Item
{
 int ItemNo;
 string ItemName;
public:
 Item() // Default constructor
 {
 ItemNo = 0;
 ItemName = "";
 /* This is redundant as the string constructor must have done this already */
 }

 void SetDetails(int TempItemNo, string TempItemName)
 {
 ItemNo = TempItemNo;
 ItemName = TempItemName;
 }

 void ShowDetails()
 {
 cout << "\n Item number is" << ItemNo;
 cout << "\n Item name is" << ItemName;
 }
};

class ItemCollection
{
 Item ItemArray[20];
 int ItemIndex;
public:
 ItemCollection() // Default constructor
 {

184 Programming with ANSI C++

 /* The following for loop is not required. This will actually be added by the
compiler when the array is defi ned by the class in the fi rst line (Item ItemArray[]20;)
by calling the Item() constructor. */

 for(int i=0; i<20; i++)
 ItemArray[i].SetDetails(0, "");

 // The following is important
 ItemIndex = 0;
 }

 /* This default constructor is needed as ItemIndex is initialized here and
afterwards incremented. Other parts of the constructor are redundant and can be
removed. */

 void PrintDetails()
 {
 for(int i=0; i<ItemIndex; i++)
 ItemArray[i].ShowDetails();
 }

 void InsertItem(int TempItemNo, string TempItemName)
 {
 ItemArray[ItemIndex].SetDetails(TempItemNo, TempItemName);
 ItemIndex++;
 /* This statement fl ags an error in the absence of a default constructor */
 }
};

int main()
{
 ItemCollection IC;
 IC.InsertItem(105,"Pentium4 processor"); IC.InsertItem(111,"Seagate HDD");

IC.InsertItem(122,"Samsung monitor"); IC.InsertItem(220,"Creative sound card");
IC.PrintDetails();

}

How the Program Works
Programs 5.1 and 5.2 have two different classes; one is Item and the other is ItemCollection,
which contains an array of items. Both of them have default constructors defi ned. Let
us ignore the default constructor for Item and consider only that for ItemCollection in
the second case, because it is important here. Program 5.1 contains functions that insert
values in the complete set of items in a single shot, using an array. Program 5.2 inserts
items one by one. The default constructor in Program 5.1 initializes item numbers as zeros
and names as blank strings and also initializes ItemIndex to zero. If this default
constructor is removed, it will have no effect on the program, which would be executed as
it is.

However, in Program 5.2, initializing ItemIndex to zero is an important step. If the
default constructor is removed, the program will not be able to function properly because
the functions InsertItem() and PrintDetails() are dependent on that value. Every time
InsertItem() is called, ItemIndex is incremented. When the function is called for the fi rst
time, it has to increment from zero. If it is not initialized to zero, InsertItem() inserts items
at random locations represented by the value of ItemIndex.

It is also possible to defi ne constructors other then default constructors. Let us discuss
this in detail.

Constructors and Destructors 185

5.6 CONSTRUCTORS WITH ONE PARAMETER

A constructor with a single argument is a special type of constructor because it actually
defi nes two operations instead of one. Program 5.3 illustrates this concept. The class brother
has a single data member, a string indicating the brother name. Here, a single-argument
constructor is introduced. When a string containing the name of the brother is passed to this,
it constructs an object of type brother.

PROGRAM 5.3 Single-argument constructor
//SingleArgCons.cpp
#include <iostream>
#include <string>
using namespace std;

class brother
{
 string Name;
public:
 brother(string BrotherName)
 {
 Name = BrotherName;
 }
};

void main()
{
 int j(5); /* int j = 5 is its shorthand notation */
 int i = int(5);
 double f(3.4); /* Equivalent of double f = 3.4 */
 brother FirstBrother = brother("Steve Waugh");
 brother SecondBrother("Mark Waugh");
 brother ThirdBrother("Gilchrist");
 brother FourthBrother = "Ricky Ponting";
}

How the Program Works
This program is very simple to understand. Given a single argument to brother constructor,
it constructs an object of type brother.

An interesting point to note is the possible ways to invoke a constructor while defi ning
an object. It should be observed that int i = 5; is understood by the compiler as int i(5);
this means that the compiler obtains memory that can hold an int, gives the value 5 to it and
then assigns it to I; the statement int i = int(5); is also a case of initialization. The object
referred by i is initialized by the temporary object created by the compiler. This temporary
object is created earlier with initialization to value 5 from int(5).

It can be observed that the same shorthand notations also work for user-defi ned objects.

brother FirstBrother = brother("Steve Waugh");
(explicit call to brother function; i.e., the constructor)
brother SecondBrother("Mark Waugh");
brother FourthBrother = "Ricky Ponting";

Here, the second statement is similar to the third one. In all three cases, the compiler calls the
user-defi ned constructor function (brother function defi ned in the class here) and constructs

186 Programming with ANSI C++

and initializes the object being defi ned with it. There is a difference, though. In
the fi rst case, the constructor function is called explicitly and in the other two it is
called automatically (implicitly). There is a technical difference as well. The fi rst
case has an overhead of a temporary object while the other two cases do not have it.

Automatic Generation of Conversion Operator
Now, let us look at another interesting point. The readers might wonder why the
last statement of the program, that is,

 brother FourthBrother = "Ricky Ponting";

is compiled without an error. The left-hand side (LHS) is an object of type
brother and the right-hand side (RHS) is a C-type string. The program does

not have any converter for converting a C-type string to brother class. A brother object is
being initialized with a character array (i.e., C-type string). Both the brother object and the
C-type string are of different types. How could C++ provide this conversion without our
specifi c instructions? This is because whenever a constructor containing a single argument
is defi ned, the compiler automatically defi nes a conversion operator for converting between
the argument type (here, it is a C-type string) and the user-defi ned object type.

The following program is one more example that shows how a class Number is assigned a
built-in item (integer).

In the last statement No2 = 5; we have not specifi ed any conversion operator for converting
from an integer to a number, but it is still done automatically.

//ImplicitConversion.cpp
#include <iostream>
#include <string>
using namespace std;
class Number
{
 int Value;
public:
 Number()

 {
 Value = 0;
 }
 Number(int TempValue)

 {
 Value = TempValue;
 }
};
void main()
{
 Number No1(5); Number No2;
 No2 = 5;
 /* This is implicit conversion. 5 is converted to Number Object and then assigned

to No2*/
}

Whenever a con-
structor containing
a single argument is
defi ned, the compiler
automatically defi nes
a conversion operator
to convert between
the argument type
and the user-defi ned
object type.

Constructors and Destructors 187

We will study about conversion operators in Chapter 6. There are situations wherein we
do not want the compiler to do the automatic conversion. The procedure to be followed in
such cases is explained in Section 5.7.

5.7 EXPLICIT CONSTRUCTORS

In most cases, automatic conversion adds to readability. It is, therefore, very useful.
However, there are times when we can do without such implicit conversion. The creation of
the conversion operator can be avoided by using the keyword explicit before the class name
while defi ning the object. If we do not want a form of

 brother FourthBrother = "Ricky Ponting"

to work like

 brother FourthBrother("Ricky Ponting")

then we need to precede the constructor name by the keyword explicit. Let us discuss this
using a modifi ed example given in Program 5.4.

PROGRAM 5.4 The explicit conversion
//ExplicitCons.cpp
#include <iostream>
#include <string>
using namespace std;

class brother
{
 string Name;
public:
 explicit brother(string BrotherName)
 /* See the explicit keyword before the constructor */
 {
 Name = BrotherName;
 }
};

void main()
{
 brother FirstBrother = brother("Steve Waugh");
 brother SecondBrother("Mark Waugh");
 brother ThirdBrother("Gilchrist");

 // The following statement is erroneous

 brother FourthBrother = "Ricky Ponting";

 /* A compiler would fl ag an error such as "initializing": cannot convert from "char[11]"
to "brother" */

}

How the Program Works
Why is it that the statement

 brother fourthBrother = "Ricky Ponting"

will not work whereas

188 Programming with ANSI C++

 brother FirstBrother = brother("Steve Waugh")

will work? This is because the temporary object in the second case is initialized
with Steve Waugh and is then used to initialize FirstBrother. Here, both the
objects are of the same type and no conversion is needed. However, in the fi rst
case, both the objects of the assignment were of different types.

Note Implicit conversion allows assignments in cases where we have two different objects on both sides.

5.8 PARAMETERIZED CONSTRUCTORS

When the constructor contains a single or multiple arguments, it is known as a parameterized
constructor. Thus, the example of a constructor with one argument is also a case of
parameterized constructor. This is useful when constructors are needed for creating objects,
with required data values initialized.

We need to pass values to parameterized constructors, unlike default constructors. This
can be done in two ways. The fi rst way is to pass a setof arguments when the object is
defi ned, as shown in Example 5.6. The other way is to explicitly call the constructor function
to (re)initialize an object. For example,

 brother SecondBrother = brother("Mark Waugh");

Here, the explicit call to the constructor brother() will construct a temporary object with
Mark Waugh and then is used to initialize SecondBrother.

Program 5.5 extends our defi nition of student class with a parameterized constructor
defi ned for the student object. The roll number, name, and address are passed to the

constructor when the object is defi ned, which is then created with those
parameters. This process is known as initialization. Assignment is different from
initialization. We will discuss the difference between the two when we study
copy constructors in Section 5.11.

Initialization is a dif-
ferent process from
assignment.

PROGRAM 5.5 Parameterized constructor
//ParameterizedCon.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
public:
 int RollNumber; string Name; string Address;

 student(){}
 /* This is an empty default constructor. We need this for object student, which does not

use a parameterized constructor */

 student(int TempRollNumber, string TempName, string TempAddress)
 // Parameterized constructor
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 Address = TempAddress;
 }

 void PrintDetails()

It is possible to call a
constructor explicitly,
which then generates
a temporary object of
the same class.

Constructors and Destructors 189

 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
};

void main()
{
 // See the use of constructor to initialize both objects

 student CricketStudent(1, "Brian Lara", "West Indies");
 student FootBallStudent(2, "David Beckham", "England");

 student TennisStudent;
 // The following is an explicit call to a constructor function
 TennisStudent = student(3, "Steffi Graf", "Germany");

 CricketStudent.PrintDetails();
 FootballStudent.PrintDetails();
 TennisStudent.PrintDetails();
}

How the Program Works
Empty default constructor The empty default constructor for student should be noted.
This is now needed because of the statement

 student TennisStudent;

If there is no parameterized constructor, this statement will not have any problem, but if a
parameterized constructor is present, then this statement will not be compiled.

Parameterized constructor and rerunning objects If a parameterized constructor is
provided, then a default constructor (at times an empty one) should also be provided. This is
a prerequisite if the objects are to be defi ned in the normal way.

Note If we do not provide any constructor, the C++ compiler provides the effect of a default constructor. If
we provide a constructor, be it a default or parameterized constructor, then the C++ compiler will not
provide one.

Now, look at the explicit call to the constructor.

TennisStudent = student(3, "Steffi Graf", "Germany");

The constructors are usually not called directly; they are almost always called automatically.
Moreover, it has been mentioned that constructors do not have a return statement. Here,
student() is called similar to a normal function and it seems to be returning an object of type
student class. It might be surprising to observe that a function has been defi ned without a
return type specifi cation, with no return statement, though it returns something.

Let us try to understand this. A constructor always returns the object for which it is written.
It returns the object it has constructed, but cannot return anything else. If any return
type is specifi ed in the defi nition of the constructor, it means (to the compiler) that
the intention is to send something else back. It means the same even if a return
statement is written in the body of the constructor. So, both are prohibited. Though
no return type is specifi ed and the constructor contains no return statements inside
the function body, it is always implicitly specifi ed to be the native object.

The constructor
always returns newly
created objects
without an explicit
return statement.

190 Programming with ANSI C++

Hence, in the following statement, when the function student() (the student constructor)
is called, it creates an object from the data passed and then returns it as a temporary object.

TennisStudent = student(3, "Steffi Graf", "Germany");

Note When temporary objects are created and destroyed, it puts a lot of overhead. The process of
constructing temporary objects, then constructing the LHS objects, and fi nally copying member by
member eats up a lot of time. The latest version of C++ 11 has introduced move semantics, which
simplifi es this process by just moving the contents of the temporary objects to the LHS objects. This
is a great improvement, but we will not explore it further, as its usability can be shown only when we
do some advanced programming.

5.9 MULTIPLE CONSTRUCTORS

Consider Program 5.5 once again. The object is used as the RHS of the assignment statement.
It is then assigned to the LHS of the assignment, that is, TennisStudent object. The temporary
object is destroyed as soon as the function exits and the assignment statement is applied.
This method of explicitly calling constructors can also be used to dynamically reinitialize
objects. We will be discussing this in Section 5.9.3. It is important to note that TennisStudent
is not constructed by this statement. It has been done before when we have written student
TennisStudent;. Here, TennisStudent is assigned the newly created object using the operation

of object assignment. Refer to Chapter 3 for details of object assignment.
Program 5.5 has two constructors, one is an empty default constructor and

the second one is parameterized. It is also possible to have more constructors
for a class. One can defi ne as many constructors as required by an application.
However, it is always advisable to have as few as possible for effi ciency reasons.

The following program uses multiple constructors for the same class. A class
is used for storing time in the hours : minutes : seconds format. The time objects
are initialized using the constructors. A constructor can be called with arguments
of either all three, namely, hours, minutes and seconds, with arguments for hours
and minutes, or with arguments for hours alone.

As long as their argu-
ments are different,
one can have many
constructors for a
class. A good class
design, though, re-
stricts the number of
constructors to a few
useful ones.

//MultipleCons.cpp
#include <iostream>
using namespace std;
class Time
{
public:
 int Hours;
 int Minutes;
 int Seconds;
 void ShowTime()
 {
 cout << " Time is " << Hours << " hours : " << Minutes << " minutes : and" <<

Seconds << "seconds \n";
 }
 Time(){}
 /* Second constructor */
 Time(int TempHours, int TempMinutes, int TempSeconds)

Constructors and Destructors 191

 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
 }
 /* Third constructor */
 Time(int TempHours, int TempMinutes)
 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = 0;
 }
 /* Fourth constructor for Time in hours alone */
 Time(int TempHours)
 {
 Hours = TempHours;
 Minutes = 0;
 Seconds = 0;
 }
};
void main()
{
 Time Time1(12,15,15); // Second constructor is used here
 cout << "Time number 1 \n";
 Time1.ShowTime();
 Time Time2(10,30); // Third Constructor
 cout << "Time number 2 \n";
 Time2.ShowTime();
 Time Time3; // First Constructor
 Time3 = Time(12); // Fourth constructor
 cout << "Time number 3 \n"; Time3.ShowTime();
 Time Time4 = 12; // Fourth constructor in an implicit way
 cout << "Time number 4 \n"; Time4.ShowTime();
 Time Time5(12);
 /* Using the fourth constructor in an explicit way for Time5 */
 cout << "The Time number 5 \n"; Time5.ShowTime();
}
Output
Time number 1
Time is 12 hours : 15 minutes : and 15 seconds
Time number 2
Time is 10 hours : 30 minutes : and 0 seconds
Time number 3
Time is 12 hours : 0 minutes : and 0 seconds
Time number 4
Time is 12 hours : 0 minutes : and 0 seconds
Time number 5
Time is 12 hours : 0 minutes : and 0 seconds

192 Programming with ANSI C++

It should be noted that the constructor for class Time is defi ned in four different ways. The
single-argument constructor can be used in both ways, that is, implicit and explicit. It should
also be noted that implicit and explicit calls to an argument constructor leads to the same results.

5.9.1 Constructors with Default Arguments
We have discussed default arguments when we studied functions in Chapter 4. Default
arguments are available to constructor functions as well. In the previous program, four
constructors have been used, which can be reduced to just two by using default arguments.
The following program is a modifi ed version of the previous program, with the constructor
now containing default arguments.

//DefArgsCons.cpp
#include <iostream>
using namespace std;
class Time
{
public:
 int Hours;
 int Minutes;
 int Seconds;
 void ShowTime()
 {
 cout << "Time is " << Hours << "hours : " << Minutes << " minutes : and" <<

Seconds << " seconds \n";
 }
 Time(){} // We now need a default constructor
 Time(int TempHours, int TempMinutes = 0, int TempSeconds = 0)
 /* See the use of default arguments */
 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
 }
 /* Third and fourth constructors are now not needed */
};
void main()
{
 Time Time1(12,15,15); /* Second constructor is used here */
 cout << "Time number 1 \n";
 Time1.ShowTime();
 Time Time2(10,30);
 /* Second constructor is used here using the third argument as default */
 cout << "Time number 2 \n"; Time2.ShowTime();
 Time Time3; /* First constructor is used here */
 Time3 = Time(12);
 /* This is using the second constructor with both second and third arguments as

Constructors and Destructors 193

Semantic Correctness
The second constructor can do the job of three separate constructors that were
used in the earlier program. Whenever it is semantically correct, one must use
default arguments with constructors to reduce the number of constructors. It
is important to understand the word semantically, which means that when the
argument is omitted, such as omitting seconds or minutes in the later program,

the program must provide default arguments, which are obvious.
Let us suppose this program needs to provide default arguments as 30 or 15. This may

be needed while preparing a timetable for an institute where a lecture always starts 15 or
30 minutes past any hour. So, when only hours are provided, it is not immediately apparent
to the reader that the minute values are non-zero. The minutes in this case are not a proper
candidate for a default argument. The discussion about default argument for a function is
equally applicable to constructor functions.

In the statement Time Time4 = 12; Time has more than one argument. Then, how is a
conversion operator for converting 12 (integer) to an object Time provided? As mentioned
earlier, this is specially done just for a single-argument constructor.

A C++ compiler considers a constructor with a single normal argument and the rest
default arguments to be equivalent to a single-argument constructor. It can be seen that this
is very logical and understandable. It is possible to even omit the default constructor by
providing int hours = 0 as the fi rst argument. Then, when Time TempTime; is defi ned, it will
call the same constructor and assign zero to all three data members.

Normal Constructors and Default Argument Constructors
It should be ensured that the compiler is not confused by giving two options, that is, a normal
constructor and another constructor with enough default arguments for a given function call.
Such programs will not be compiled by the compiler.

Surprisingly, but obviously, constructors with default arguments have an important
consequence. If there are constructors for, say, N normal arguments and D default arguments,
it is not possible to have any constructor with any number of arguments between N and N
+ D with the same type. This means that if there is a Time constructor with one normal
argument and two default arguments, it is not possible to overload the Time constructor
with a single argument, which is an integer, or with two- or three-integer arguments. If the
constructor is modifi ed to have all three as default arguments, it is not possible to even
defi ne a default constructor. Let us illustrate this with an example. Assume that we have a
constructor

Time(int Hours = 0, int Minutes = 0, int Seconds = 0);

defaults in an implicit way */
 cout << "Time number 3 \n";
 Time3.ShowTime();
 Time Time4 = 12;
 /* This is again using the second constructor with two default arguments in an

explicit way */
 cout << "Time number 4 \n";
 Time4.ShowTime();
}

Default arguments
must be semantically
correct to make them
meaningful.

194 Programming with ANSI C++

and that the default constructor is defi ned here as Time(){};
Now, if there is a statement such as Time TeaTime, the compiler will be confused as to which
constructor to call, that is, the default one or the one with all three arguments as default
arguments. Obviously, it will not be able to compile the program.
Likewise, if we have,

Time(int Hours, int Minutes, int Seconds = 0)

then it is not possible to have

Time(int Anything, int AnythingElse)

and so on.

5.9.2 Dynamic Initialization and Assignment Operator
In all the examples that we have discussed so far, the object is initialized with constants. The
values of constants are available at compile time, that is, the object initialization is done at
compile time. This is analogous to initializing the variable with a constant. For example,
note the following statement:

 int i = 5;

Here, at the time of compilation, the value of i is known to be 5, so the compiler can insert it
there. In the case of Time Time1(12, 20, 20); the compiler fi rst allocates the space for all the
data members of Time. Then, Time1.Hours is set to 12, Time1.Minutes is set to 20 and Time1.
Seconds is set to 20 automatically; nothing needs to be done at run-time. It has already been
mentioned that it is possible to write statements such as the following:

 int i;
 cin >> i;
 int j = i;

Here, j is initialized at run-time. Similarly, it is possible to use constructors to initialize objects
at run-time. The values to be passed to the constructors are made available at run-time and then
the constructor is invoked while defi ning the object. This is known as dynamic initialization.
The same process can even be used to call constructors explicitly and then assigning the
returning object to any other object defi ned earlier. The following program illustrates this point.

//Dynamiclnit.cpp
#include <iostream>
using namespace std;
class Time
{
public:
 int Hours;
 int Minutes;
 int Seconds;
 void ShowTime()
 {
 cout << "Time is " << Hours << "hours : " << Minutes << "minutes : and " <<

Seconds << "seconds \n";

Constructors and Destructors 195

 }
 Time(){} // Empty default constructor
 Time(int TempHours, int TempMinutes = 0, int TempSeconds = 0)
 /* See the use of default arguments in both arguments towards the end */
 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
 }
};
void main()
{
 Time Timel;
 /* The default constructor is applied here at compile time */
 int TempHours, TempMinutes, TempSeconds;
 cout << "\n Please insert hours ";
 cin >> TempHours;
 cout << "\n Please insert minutes ";
 cin >> TempMinutes;
 cout << "\n Please insert seconds ";
 cin >> TempSeconds;
 Timel = Time(TempHours, TempMinutes, TempSeconds);

 /* Constructor with three arguments is reapplied to temporary object at run-time.
Then, the temporary object is assigned to our object */

 Timel.ShowTime();
 cout << "\n Please insert hours ";
 cin >> TempHours;
 cout << "\n Please insert minutes ";
 cin >> TempMinutes;
 cout << "\n Please insert seconds ";
 cin >> TempSeconds;
 Time Time2 = Time(TempHours, TempMinutes, TempSeconds);

 /* Similar to the previous case */
 Time2.ShowTime();
 Time Time3(TempHours, TempMinutes, TempSeconds);

 /* The constructor is applied while initializing the object and calling the
constructor implicitly */

 Time3.ShowTime();
}
Output

Please insert hours 10
Please insert minutes 10
Please insert seconds 10
Time is 10 hours : 10 minutes : and 10 seconds
Please insert hours 12

196 Programming with ANSI C++

PROGRAM 5.6 Dynamic initialization at the time of construction
//DynamicMemAlloc.cpp
#include <iostream>
#include <string>
using namespace std;

class Item
{
 int ItemNo;
 string ItemName;
public:
 Item()
 {
 ItemNo = 0;
 ItemName = "";
 }

It can be seen that when Time Time1; is written, the empty default constructor is applied
and Time1 is created. Later, it is possible to reinitialize the same object by calling a
constructor function explicitly. Although we use words such as reinitialize or initialize,
technically this is an assignment and not initialization. This program has a three-argument
parameterized constructor. The arguments are taken from the console at run-time using
variables and are not constants as in DefArgsCons.cpp. Thus, Time1 is initialized at run-
time. With Time2, the case is a bit different. C++ defers to initialize the object until the
constructor gets the values of the variables at run-time. Only when the values are available,
that is, after the user enters the data, the constructor is called and the object is created and
initialized.

5.10 CONSTRUCTOR WITH DYNAMIC ALLOCATION

Constructors can use new to allocate memory for objects at the time of creation. Such
constructors are common when the objects are of varied size and the size is available only
at run-time.

Let us consider an example, shown in Program 5.6, which stores the details of the
customers. One argument to customer is the number of items he/she is interested in; this list
can vary. With each customer, in order to initialize, it is necessary to specify the number of
items. Memory for storing those items should then be made available after which those items
are stored in that memory.

This type of step was not involved in the earlier constructions. Now, dynamic memory
allocation is needed when the object is being initialized. It has already been mentioned
that object initialization can be done either at the compile time or at the run-time. It is also
possible to reinitialize an object created at compile time or to create an object and initialize
it at run-time. Program 5.6 considers both the cases for run-time and uses the modifi ed Item
and Customer classes that were used in Chapter 3.

Please insert minutes 12
Please insert seconds 12
Time is 12 hours : 12 minutes : and 12 seconds
Time is 12 hours : 12 minutes : and 12 seconds

Constructors and Destructors 197

 Item(int TempItemNo, string TempItemName)
 {
 ItemNo = TempItemNo;
 ItemName = TempItemName;
 }

 void ShowDetails()
 {
 cout << "\n Item number is " << ItemNo;
 cout << "\n Item name is " << ItemName;
 }
};

class customer
{
 int CustNo;
 string CustName;
 string CustAddress;
 Item *ItemsInterested;
 /* Pointer to array of items interested */
 int TotalItems;

public:
 customer()
 {
 TotalItems = 0;
 ItemsInterested = 0; // assigning it to null
 }

 customer(int TempCustNo, string TempCustName, string TempCustAddress, Item
*TempItemsInterested, int TempTotalItems)

 {
 CustNo = TempCustNo;
 CustName = TempCustName;
 CustAddress = TempCustAddress;
 ItemsInterested = new Item[TempTotalItems];

 for(int i=0; i<TempTotalItems; ++i)
 {
 ItemsInterested[i] = TempItemsInterested[i];
 }
 TotalItems = TempTotalItems;
 }
 void ShowDetails()
 {
 cout << "\n Customer number is " << CustNo;
 cout << "\n Customer name is " << CustName;
 cout << "\n Customer address is " << CustAddress;
 cout << "\n" << CustName << " is interested in the following items:" << "\n";

 for(int i=0; i<TotalItems; i++)
 {
 ItemsInterested[i].ShowDetails();
 }
 }
};

void main()
{
 customer Steve;

198 Programming with ANSI C++

 Item ItemArray[] = {Item(3,"Sandwiches"), Item(4,"PaperBags"), Item(5,"Napkins"),
Item(6,"Toys"), Item(10,"Biscuits"), Item(9,"Pen"), Item(1,"Pencil"), Item(2,"Eraser"),};

 Steve = customer(2, "Steve Waugh", "Australia", ItemArray, 5);
 Steve.ShowDetails();
 customer Flintoff(3, "Flintoff the Captain", "England", ItemArray + 2, 6);
 Flintoff.ShowDetails();
}

Output
Customer number is 2
Customer name is Steve Waugh
Customer address is Australia
Steve Waugh is interested in the following items:
Item number is 3

Customer number is 3
Customer name is Flintoff the Captain
Customer address is England
Flintoff the Captain is interested in the following items:
Item number is 5
Item number is 2
Item name is Eraser

Fig. 5.1 Without dynamic initialization

Other fields
ItemInterestedã
…

Items are stored
in a temporary
array

Other fields
ItemInterestedã
…

This is a dangling pointer.
The memory may be
allocated for some other
purpose.

customer object when defined

customer object when constructor gets over

How the Program Works
As usual, let us dissect the program and try to understand what it is trying to accomplish. We
will look at each section one by one.

Dynamic initialization In this program, the customers have a new data member, that is, a
pointer to ItemsInterested. This data member is just a pointer and not an array. When a new
customer is defi ned, an array containing the items that the customer is interested in is passed.
The item here is itself an object of the class Item for which the memory is dynamic. Looking
at the length of the array passed, the constructor creates a dynamic array in the allocated
space, which is then used to store the passed values. At the end, the constructor stores the
address of that memory in the pointer variable, so it is now possible to access the customer
object with the required set of ItemsInterested. Now, the customer object is initialized with
the items that the customer is interested in. The reader might wonder about the need for
dynamic initialization and why it will not work if the passed value is just assigned to the
pointer. Figures 5.1 and 5.2 show the difference between the cases without and with dynamic
initialization.

Constructors and Destructors 199

Fig. 5.2 With dynamic initialization

Other fields
ItemInterestedã
…

Items are stored
in a temporary
arrayValues are copied

one by one

Dynamically
constructed
array

Other fields
ItemInterestedã
…

customer object
when defined

customer object when
constructor calls new

Dynamically
constructed
array

The customer item
 is not affected now

Items are stored
in a temporary
array

Other fields
ItemInterestedã
…

This memory may be
used for some other
purpose now

customer object when
constructor gets over

Need for dynamic initialization If the passed array is deleted, the fi rst type of initialization
would lead to a dangling pointer whereas in the second case it is not affected. Moreover, if
the passed array changes its values in the fi rst case, ItemsInterested would change because
we just point to that location, that is, we are sharing the data (the array that is passed) with
the calling function. In Program 5.6, if the dynamic allocation part is omitted, the program
would look as follows:

// Erroneous code
customer(int TempCustNo, string TempCustName, string TempCustAddress, Item
*TempItemsInterested, int TempTotalItems)
{
 CustNo = TempCustNo;
 CustName = TempCustName;
 CustAddress = TempCustAddress;
 ItemsInterested = TempItemInterested; // the erroneous line
 TotalItems = TempTotalItems;
}

// The following is a call to the constructor defi ned above
Steve = customer(2, "Steve Waugh", "Australia", ItemArray, 5);

Now, ItemsInterested will point to ItemArray (the passed array). If the values of ItemArray
are changed or deleted, the ItemsInterested pointer would fetch changed values or garbage
because it is pointing to the same location to which ItemArray is pointing. It is important

200 Programming with ANSI C++

to note that the pointer ItemsInterested here does not have any memory to store data; it is
sharing the memory location with ItemArray.

If the values in the constructor are changed, it would inadvertently change the values in
the passed array, ItemArray. This is similar to passing an array pointer for manipulating it
similar to passing an array pointer for sorting functions.

The second case has a separate array into which the passed array has been copied, so, it
would not have changed values even if the original passed array is changed. The original
array is also immune to changes made to the array items in the constructor function. Exhibit
5.1 shows why copying pointer members is not correct.

Exhibit 5.1 Copying pointer members is not correct
When a constructor uses new to initialize with a dynamic number of values passed to it at run-time, it
cannot copy a pointer value. It results in one memory location being shared by multiple objects.
Therefore, the changes carried out in the values of one object will refl ect as changes in other object
values.

Using dynamic memory allocation and giving a new object its own memory helps to avoid this problem
by having separate copies of values. Hence, such cases demand dynamic allocation. It is not possible to
use static allocation here because the number of items a customer would be interested in is not known in
advance.

Objects as members of some other class Program 5.6 also shows how an object of a class
becomes a data member of some other class (Item object becoming member of customer
class). It is important to note that this object is not a normal data member; it is different from
normal data members. This difference will be discussed when we learn about inheritance
and containership in Chapter 9. When an object is defi ned as a member of some other class,
it is treated differently from other members when the objects of that class are initialized.

Dynamic allocation applied It should be noted how the customers are initialized using a
parameterized constructor. Items such as CustNo and CustName are initialized in a normal way.
ItemsInterested is actually a pointer and cannot be initialized in the same way. When the
constructor is called, the pointer is passed to an array containing Item objects to the constructor.

Steve = customer(2, "Steve Waugh", "Australia", ItemArray, 5);

Here, ItemArray is the name of an array. As in C, it is a static pointer to the array and points
to the fi rst item of the array, that is, it contains the address of the fi rst item. As it is static, it
cannot be assigned some other value later as done in a normal pointer variable. It is possible
to pass any array with any valid length here. This program uses a single array with different
starting points and different lengths. It is also possible to pass totally different arrays. In the
fi rst example, the array name itself is passed with the total items as fi ve. Array name, as we
have discussed earlier, is a pointer to the fi rst item. So, it starts with the fi rst item. In the second
example, it starts with ItemArray + 2. It should be remembered that this notation is common in
C programming and is also used in C++. It is the same as ItemArray[2]. It adds two to an item
pointer variable and makes it to point to the address of the third item of an array.

Correct way to copy We need to store an entire array of items and we do not have any
space in the data member for it. We must solve this problem by obtaining memory for storing
those elements dynamically. It should be remembered that the data member in this program

Constructors and Destructors 201

is not an array, but is merely a pointer. The memory needs to be dynamically allocated. It is
interesting to see how ItemsInterested is initialized dynamically in the following example.
TempTotalItems is the length of an array. The memory for the length of the array is obtained
using the following statement:

ItemsInterested = new Item[TempTotalItems];

Here, the memory space needed is available. Now, the pointer in the constructor
becomes useful. The address of this memory (the dynamically generated array) is stored
in the pointer variable, ItemsInterested. new makes it possible to do both in a single
statement.

Then, for all items passed in the array, the ItemsInterested array of the object is initialized
as follows:

for(int i=0; i<TempTotalItems; ++i)
{
 ItemsInterested[i] = TempItemsInterested[i];
}

It can be seen that this solves the problem of memory allocation in cases where a priori
knowledge of the number of items of ItemsInterested array is not available. It is dynamically
allocated and the array is available at run-time, which is what was needed.

Though this problem is solved, it is not without cost. Using dynamic allocation will invite
more responsibilities. Moreover, copy constructors and overloaded assignment operators as
well as destructors are also needed now. The reason for this is given in Exhibit 5.2.

Exhibit 5.2 Memory leaks
Dynamic initialization has a specifi c problem. When the memory is assigned dynamically for initializing an
object, it is essential to deallocate it as well, when the object goes out of scope.

Unlike in the case of other variables, where C++ does the deallocation as soon as the variable goes
out of scope, it is not done here until the program execution is over. This problem is known as memory
leak.

C++ 11 has two important improvements; one is the garbage collector, which takes care of memory
leaks, and the second one is that it has better ways of managing temporary objects.

5.11 COPY CONSTRUCTORS

It is possible to pass all types of arguments to a constructor except the object itself. It is obvious
why this restriction is provided in C++. If an object is allowed to be passed to the constructor
of the same object, for creating a single object, the constructor needs to create one more such
object for passing to it while creating that object, and it needs to pass one more such object for
creating that object and so on, which is an infi nite process. Therefore, C++ would fl ag an error
when a native object is passed to the constructor.

However, it is possible to pass the reference of the native object to the
constructor, which, in technical sense, is a pointer to the same type of object.
This type of constructor is known as copy constructor and it has an important use
in C++. Before we study the importance of copy constructor, we must understand
the difference between initialization and assignment.

We can pass all types
of arguments to a
con structor except
the object itself.

202 Programming with ANSI C++

5.11.1 Object Initialization and Object Assignment
We have seen in Chapter 3 that objects can only be assigned to other objects of
the same type and that copying is done by copying each member of one class to
the other. The compiler takes a shortcut of copying objects bit by bit whenever
possible. It is a shortcut as the compiler does not need to remember member
boundaries; it can copy one object to another in the same way that the C structure
variables are copied.

We have also seen that assignment is different from initialization. Let us
review this using the following program.

//AssignInit.cpp
#include <iostream>
#include <string>
using namespace std;
class brother
{
 string Name;
public:
 brother(){};
 brother(string BrotherName)
 {
 Name = BrotherName;
 }
 friend void DisplayBrother(brother);
};
void main()
{
 void DisplayBrother(brother);
 brother AssignBrotherName();
 brother FirstBrother = brother("Steve Waugh");
 /* Initialization using a temporary object */
 brother SecondBrother("Mark Waugh");
 // First case of initialization
 brother ThirdBrother("Gilchrist");
 // First case of initialization
 brother FourthBrother = "Ricky Ponting";
 // This is also fi rst case
 DisplayBrother(FourthBrother);
 // Second case of initialization
 brother FifthBrother = AssignBrotherName();
 /* Third case of initialization; temporary object returned from AssignBrotherName()

function is used to initialize FifthBrother. */
 DisplayBrother(FifthBrother);
 brother SixthBrother;
 SixthBrother = FirstBrother;
 /* This is assignment, not initialization */

We cannot pass the
same type of object
to a constructor
though we may be
able to pass a pointer
of a reference to that
constructor.

Constructors and Destructors 203

 DisplayBrother(SixthBrother);
}
void DisplayBrother(brother SomeBrother)
{
 cout << "\n Brother’s name is " << SomeBrother.Name << "\n";
}
brother AssignBrotherName()
{
 cout << "Give a name for a new brother \n";
 string TempName;
 cin >> TempName;
 cout << "New brother is created and sent to main below \n";
 return brother(TempName);
 /* A temporary object is constructed here and passed to Fifth brother; this is the

third case where initialization is done */
}

Note Initialization happens in three cases, when one defi nes the object with parameters, when an argument
containing an object is passed to a function and when a function returns an object.

Three specifi c cases of initialization are described in the following sections.

Case 1
In the fi rst case, we assign the value using another object of the same type to an object, as
and when the object is defi ned.

brother FourthBrother = "Ricky Ponting"; // initialization
brother SecondBrother("Mark Waugh");
brother FirstBrother = brother("Steve Waugh");
/* This is initialization using a temporary object */

This defi nition is an example of the fi rst case. Here, FourthBrother and SecondBrother are
initialized at the time of creation to values "Ricky Ponting" and "Mark Waugh". The third
example has an additional step of construction of temporary object. This temporary object is
constructed from the statement brother("Steve Waugh"); and then assigned to FirstBrother.
The third statement is equivalent to writing the following:

Brother Temporary("Steve Waugh");
Brother FirstBrother = Temporary;

Case 2
The second case is where an object is passed to a function.

DisplayBrother(FourthBrother);

Again, the temporary object is created and initialized to the object as a parameter and passed
to the function. So, the temporary object in this case will be initialized to FourthBrother
and then passed. It should be noted that the object used as a parameter (i.e., FourthBrother)
itself should not be passed because the original object used in the argument must remain
intact after call. Sending another object similar to the object being provided as an argument
ensures this. Such seemingly weird behaviour is important for value parameter semantic to
be observed. When the original object is kept intact and retains itself when the call is over,

204 Programming with ANSI C++

whatever changes happened to that object in the function is just ignored. If the
function makes any modifi cations to the passed object, it is done on the copy and
not on the original object, so the original object remains unaffected. Hence, the
given statement is equivalent to

Brother *Temporary = new Brother(FourthBrother);
DisplayBrother(*Temporary);
delete Temporary;

Case 3
This case is similar to the case of passing an object back from a function, as seen earlier.
Look at the function AssignBrotherName() in the following program:

brother AssignBrotherName()
{
 // other statements
 return brother(TempName);
 // comments
}

and

brother FifthBrother = AssignBrotherName();

The return statement calls a constructor to construct an object of type brother and returns the
object. This object is known as unnamed object. It is also a temporary object. The lifetime
of this temporary object is very small. It is created just on the verge of function exit and is
alive until the assignment statement is executed immediately after the function call is over.
In the following statement, the function call is made fi rst and then the assignment is done.

brother FifthBrother = AssignBrotherName();

When the assignment is applied, FifthBrother will get that value and the temporary unnamed
object is destroyed.

All the three cases described here deal with initialization. In all three cases, when the
object is copied, the members are copied one by one. These are not assignments, though they
have similar default behaviour. Observe the statement indicating the assignment.

SixthBrother = FirstBrother;

Here, again memberwise (in our case bitwise) copy is done by default. Then, where and what
is the difference between initialization and assignment?

Note Unless a copy constructor or assignment operator is defi ned for an object, initialization and assignment
work the same, that is, they copy everything memberwise (bit by bit whenever possible). Initialization
works differently when a copy constructor is defi ned and assignment works differently when an assignment
operator is defi ned. However, an assignment operator can also be defi ned for dissimilar types of objects.

5.11.2 Providing Copy Constructors
When we have a single argument containing an object reference of the same type
of object to a constructor, it is known as a copy constructor.

The following program illustrates how a copy constructor is defi ned and
used. This is not an ideal situation to use copy constructors; even if the copy
constructor is omitted here, the program would execute the same. The next

Temporary objects
are sometimes denot-
ed as unnamed ob-
jects.

A copy constructor is
one with a single argu-
ment as a reference
to the very class it
belongs to.

Constructors and Destructors 205

program is another example, which clearly indicates when one should use them. Note how
the copy constructor for Point class is defi ned and used in this program.

//CopyConstructor.cpp
#include <iostream>
using namespace std;
class Point
{
private:
 fl oat x, y;
public:
 Point(Point& OtherPoint)
 // Copy constructor
 {
 x = OtherPoint.x;
 y = OtherPoint.y;
 }
 Point(fl oat TempX = 0, fl oat TempY = 0)
 {
 x = TempX;
 y = TempY;
 }
};
void main()
{
 Point Point1(2,3); // Calls default constructor
 Point Point2 = Point1; // Calls copy constructor
 // Point Point2(Point1) is the same as above
 Point1 = Point2; // Calls assignment operator
}

The following is an example of dynamically allocated objects using constructors as discussed
earlier, now modifi ed for copy constructors. This is an example of a program where it is
necessary to have a copy constructor.

//CopyCons.cpp
#include <iostream>
#include <string>
using namespace std;
class customer;
class Item
{
 int ItemNo;
 string ItemName;
public:
 Item()
 {
 ItemNo = 0;
 /* ItemName = ""; */

206 Programming with ANSI C++

 }
 Item(int TempItemNo, string TempItemName)
 {
 ItemNo = TempItemNo;
 ItemName = TempItemName;
 }
 void ShowDetails()
 {
 cout << "\n Item number is " << ItemNo;
 cout << "\n Item name is " << ItemName;
 }
 friend Item ModifyItem(customer & TempCust, int ItemNoToBeReplaced);
};
class customer
{
 int CustNo;
 string CustName;
 string CustAddress;
 Item *ItemsInterested;
 int TotalItems;
public:
 customer()
 {
 TotalItems = 0;
 ItemsInterested = 0; // assigning it to null
 }
 // The following is a copy constructor
 customer(customer & CustRef)
 {
 CustNo = CustRef.CustNo;
 CustName = CustRef.CustName;
 CustAddress = CustRef.CustAddress;
 ItemsInterested = new Item[CustRef.TotalItems];
 /* New memory for new object. This is the difference.
 Compilers do not do this by default. */
 for(int i=0; i<CustRef.TotalItems; ++i)
 {
 ItemsInterested[i] = CustRef.ItemsInterested[i];
 }
 TotalItems = CustRef.TotalItems;
 }
 customer(int TempCustNo, string TempCustName, string TempCustAddress,
 Item *TempItemsInterested, int TempTotalItems)
 {
 CustNo = TempCustNo;
 CustName = TempCustName;
 CustAddress = TempCustAddress;
 ItemsInterested = new Item[TempTotalItems];
 for(int i=0; i<TempTotalItems; ++i)
 {

Constructors and Destructors 207

 ItemsInterested[i] = TempItemsInterested[i];
 }
 TotalItems = TempTotalItems;
 }
 void ShowDetails()
 {
 cout << "\n Customer number is " << CustNo;
 cout << "\n Customer name is " << CustName;
 cout << "\n Customer address is " << CustAddress;
 cout << "\n" << CustName << "is interested in following items" << "\n";
 for(int i=0; i<TotalItems; i++)
 {
 ItemsInterested[i].ShowDetails();
 }
 }
 friend Item ModifyItem(customer & TempCust, int ItemNoToBeReplaced);
};
void main()
{
 customer Steve;
 Item ItemArray[]=
 {
 Item(3,"Sandwiches"), Item(4,"Paper Bags"),
 Item(5,"Napkins"), Item(6,"Toys"), Item(10,"Biscuits"),
 Item(9,"Pen"), Item(1,"Pencil"), Item(2,"Eraser"),
 };
 Steve = customer(2, "Steve Waugh", "Australia", ItemArray, 5);
 customer Mark(Steve);
 Steve.ShowDetails();
 Mark.ShowDetails();
 ModifyItem(Mark, 3);
 Mark.ShowDetails();
 Steve.ShowDetails();
 // Without copy constructor, it would show the same result
}
/* The following function is using private variables of both the classes, so it is made
friend of both */
Item ModifyItem(customer & TempCust, int ItemNoToBeReplaced)
{
 for(int i=0; i<TempCust.TotalItems; ++i)
 {
 if(TempCust.ItemsInterested[i].ItemNo) == ItemNoToBeReplaced)
 {
 cout << "Enter new details for item to be replaced \n";
 cout << "Enter item no. \n";
 int TempItemNo;
 cin >> TempItemNo;
 cout << "Enter item name \n";
 string TempItemName;
 cin >> TempItemName;

208 Programming with ANSI C++

A copy constructor,
during initialization,
overrides the default
copy of objects mem-
ber by member.

 TempCust.ItemsInterested[i].ItemNo=TempItemNo;
 TempCust.ItemsInterested[i].ItemName=TempItemName;
 }
 }
}

Changes in this Program
The following modifi cations were made to Program 5.6:

1. A new function ModifyItem() for modifying the details of items for customers is added.
A customer reference is passed, so the changes made to it are refl ected back in the
customer data.

2. The function ModifyItem() needs to operate on private variables of both the classes,
namely, Item and customer. Therefore, it is defi ned as a friend in both the classes. Such
type of “bridge” friend function is sometimes very useful (though a careful designer can
and should avoid such functions).

3. We need to know about class customer while discussing class Item and vice versa. (This
is because both these classes contain friend defi nition, which contains both customer and
Item.) It is not a problem for the class customer because the class Item is introduced before
it and the compiler knows about the class Item while dealing with the class customer.
However, this is not the case for the class Item. So, we need a forward reference to class
customer. This is done initially when we write

 class customer;

just before the defi nition of class Item.

Note When two classes refer to each other, the class defi ned earlier needs to have a forward reference for
the class defi ned later.

4. We have now introduced a copy constructor. According to the defi nition, it has the
reference to the customer as a single argument.

Case with no copy constructor Let us see what would happen if the copy constructor is
not available when ModifyItem(Mark, 3) is called.

To understand this, let us try to recap what happens when we write customer Mark(Steve).
The content of Steve is copied into Mark. (Assume that the copy constructor is not available
at the moment, so it would follow default behaviour.) The pointer to ItemsInterested
is also copied as it is. It should be remembered that the contents of ItemsInterested do
not have a separate storage in this case. Both Steve and Mark share the same address in
ItemsInterested, and hence, the same array items. So, when we modify Mark’s details
while calling ModifyItem, we are indirectly accessing the same set of items pointed to by the
pointer in the Steve object. Thus, our change would change both objects, Mark and Steve.

This undesirable behaviour can be eliminated using copy constructors.

Solving the problem using copy constructors Let us look at the copy
constructor now. It takes a reference of the class as a single argument. Then,
it copies each item, except the pointer, to ItemsInterested. It obtains memory
using new. It gets the memory good enough for storing the same number of items
as the reference and it stores the items there. It should be noted that the contents

Constructors and Destructors 209

of ItemsInterested are not shared in this case. We get a new array. So, if ItemsInterested of
Mark is changed later, it would not have any effect on that of Steve.

The copy constructor, as shown here, is a must if an item contains a dynamic constructor,
that is, when a constructor is defi ned using the new operator.

5.12 PRIVATE COPY CONSTRUCTORS

If the copy constructor is defi ned in a private section, the objects of the class cannot call it.
In a way, it stops the operations of the form customer Mark(Steve) or customer Mark = Steve.

If such statements are written when the copy constructor is private, the program will not be
compiled. This is very useful when a class is designed and the object code is provided to the user
for using it. It should be noted that if the defi nition of the copy constructor is omitted, C++ would
provide a default copy constructor (may not synthesize the physical one) and the user cannot be
stopped from writing erroneous statements such as mentioned earlier . In this case, the contents
of the copy constructor body are not executed, and hence, the body is usually left empty:

customer(customer & dummy){};
// see the empty body

5.12.1 Member Initialization List
Memberwise initialization list or member initialization list (MIL) is the method for
initialization of the members of a class using the constructor function. It provides an
alternative for providing initializations outside the constructor body. Let us consider the
following program to understand it.

//SimpleMemberlnitilizationList.cpp
#include <iostream>
using namespace std;
class Time
{
public:
 int Hours;
 int Minutes;
 int Seconds;
 void ShowTime()
 {
 cout << "Time is " << Hours << " hours : " << Minutes << " minutes : and "

<< Seconds << " seconds \n";
 }
 Time(){}
 /* The following is a constructor using MIL */
 Time(int TempHours, int TempMinutes, int TempSeconds)
 :Hours(TempHours),
 Minutes(TempMinutes),
 Seconds(TempSeconds)
 { } // The empty body
 /* Second constructor */
};

210 Programming with ANSI C++

An MIL appears in bet-
ween the header and
the body, starting with
a colon.

void main()
{
 Time Time1(12,15,15);
 /* Second constructor with MIL is used here */
 cout << "Time number 1 \n";
 Timel.ShowTime();
}

The initialization list has been used in the second constructor for the Time class to
initialize the Time object. Earlier, the same was done using assignment statements
in the constructor body. Let us compare the two methods syntactically. The
earlier approach was as follows:

Time(int TempHours, int TempMinutes, int TempSeconds)
{
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
}

The MIL approach is as follows:

Time(int TempHours, int TempMinutes, int TempSeconds)
:Hours(TempHours),
Minutes(TempMinutes),
Seconds(TempSeconds)
{ } // the empty body

Syntactically, the MIL appears in between the body of the constructor and the header. It
starts with a colon (:) and has all the initializations separated by a comma. The initialization
has the normal syntax of initialization, that is, Variable(value) for initializing a variable
with a value. In the given example, both the approaches yield the same result.

Need for Initialization List
However, it is not true that both these approaches always yield the same result. There are
some cases where the use of the second approach is a must (or is better). The difference
between assignment and initialization has already been elaborated in Section 5.11.1. The
assignment statements in the function body invoke the assignment operator whereas the MIL
invokes initialization. The following sub-sections discuss the advantages of using the MIL
approach.

Readability
When the MIL is used in a constructor function, it is separated from the rest of the code,
and thus, the program becomes more readable. (There is an argument against this. Those
who are new to C++ claim that the syntax of the MIL is a bit cryptic and one can easily
misunderstand it for a function call.) MIL has not been used in the examples in this book,
but its use is advisable while writing commercial programs.

Effi ciency
The MIL is more effi cient in certain cases. Consider the following program.

Constructors and Destructors 211

//MILandAssignment.cpp
#include <iostream>
#include <string>
using namespace std;
class student
{
public:
 int RollNumber; string Name; string Address;
 student(){}
 student(int TempRollNumber, string TempName, string TempAddress)
 :Name(TempName),
 Address(TempAddress)
 {
 RollNumber = TempRollNumber;
 }
 void PrintDetails()
 {
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Address is " << Address << "\n";
 }
};
void main()
{
 student CricketStudent(1, "Brian Lara", "West Indies");
 CricketStudent.PrintDetails();
}

This program is the modifi ed version of Program 5.5. Observe how student name and address
are initialized here.

student(int TempRollNumber, string TempName, string TempAddress) :Name(TempName),
Address(TempAddress)
{
 RollNumber = TempRollNumber;
}

Earlier, these have been defi ned as follows:

student(int TempRollNumber, string TempName, string TempAddress)
{
 RollNumber = TempRollNumber;
 Name = TempName;
 Address = TempAddress;
}

In the second case (earlier approach), TempName and TempAddress are fi rst initialized to an
empty string (string is a class and TempName and TempAddresses are its objects; the default
constructor for string class is invoked when the arguments are processed). Then, they are

212 Programming with ANSI C++

assigned respective values when the assignment is executed using the statements
Name = TempName and Address = TempAddress. However, in the fi rst case, the
arguments are initialized with the respective values directly. This involves only
one operation and not two. This is again similar to providing a parameterized
constructor at the defi nition of the object. Thus, the fi rst approach using the
MIL is more effi cient. It is worth remembering that the MIL uses initialization,
whereas using assignment in the body of the constructor uses assignment.

Initializing Constants, References, and Member Objects using MIL
The MIL is the only way to initialize constants, references and objects that are data members
of a class for which the constructor is being written. Let us consider the following program.

MIL is preferred over
assignment whenever
possible. It provides a
single copy compared
to assignment, which
might require two
copies in many cases.

//MILImportance.cpp
#include <iostream>
#include <string>
using namespace std;
class student
{
public:
 const int SchoolNo;
 int RollNumber;
 string Name;
 string & ShortName;
 string Address;
 student(int TempRollNumber, string TempName, string TempAddress)
 :Name(TempName),
 Address(TempAddress),
 SchoolNo(123),
 // const can only be initialized outside the body
 ShortName(Name) // so the reference
 {
 RollNumber = TempRollNumber;
 }
 void PrintDetails()
 {
 cout << "School number is " << SchoolNo<< "\n";
 cout << "Roll number is " << RollNumber << "\n";
 cout << "Name is " << Name << "\n";
 cout << "Short name is " << ShortName << "\n";
 cout << "Address is " << Address << "\n";
 }
};
void main()
{
 student CricketStudent(1, "Brian Lara", "West Indies");
 student FootBallStudent(2, "David Beckham", "England");
 CricketStudent.PrintDetails();
 FootBallStudent.PrintDetails();
}

Constructors and Destructors 213

This example contains the school number and short name data members. Both of them must
be initialized using MIL. Initializing them in the body of the constructor is not allowed. If
they are not initialized at all, it is again an error. MIL is the only solution here. It is also
important to note that if the program contains a class in which one of the data members is an
object of some other class, MIL is needed to initialize that specifi c data member.

Some of the researchers on C++ demand to make MIL a mandatory standard for initializing
values for object-attributes for the following reasons:

1. It is more type-safe if used with templates; when the types are not known, it is safer to
use MIL than assignments in the constructor body, because it will then work for any type.
Assignments do not work for all the types. Templates are classes or functions to work for
generic types.

2. Objects of some other class, constants, and references can be initialized only using MIL.
They are more effi cient in some cases.

5.12.2 MIL as Replacement for Constructors
It is possible to use MIL to replace the code of a constructor. In the following program, we will
look at Time class with two constructors, both of which have a constructor with an empty body.
Both the constructors actually look at the values passed to them and solve two distinct problems.

Suppose we have time represented in seconds elapsed until some event format. Such
formats are common in operating systems (UNIX is one such example). The fi rst problem we
would like to solve is to convert such time into our usual format of hours : minutes : seconds.
The second problem relates to the correct values, which are otherwise not acceptable. Suppose
the time provided in hours : minutes : seconds format passes seconds or minutes more than
60, then we need to convert them to proper values, that is, 65 seconds means fi ve seconds and
one minute, which should be added to minutes now. Let us now look at the program.

//MILwithExpr.cpp
#include <iostream>
using namespace std;
class Time
{
public:
 int Seconds;
 int Minutes;
 int Hours;
 void ShowTime()
 {
 cout << "Time is " << Hours << " hours : " << Minutes << " minutes : and " << Seconds

<< " seconds \n";
 }
 Time(){}
 // The following is a constructor using MIL
 Time(int TempHours, int TempMinutes, int TempSeconds)
 :Hours(TempHours + TempMinutes / 60),
 Minutes(TempMinutes % 60 + TempSeconds / 60),
 Seconds(TempSeconds % 60)
 { } // the empty body

214 Programming with ANSI C++

PROGRAM 5.7 Order of initialization with MIL
//OrderOfInit.cpp
#include <iostream>
using namespace std;

class TestOrder
{
public:
 int First;
 int Second;
 int Third;
 TestOrder(int Value)
 :Third(Second / 10),
 Second(First / 10),
 First(Value)
 { }
 TestOrder(unsigned Value)
 :Third(Value /= 10),
 Second(Value /= 10),
 First(Value /= 10)
 { }

 Time(int TotalSecondsElapsed)
 :Hours((TotalSecondsElapsed / 60) / 60),
 Minutes((TotalSecondsElapsed / 60) % 60),
 Seconds(TotalSecondsElapsed % 60)
 { } // the empty body
};
void main()
{
 Time Time1(18305); // 5 * 60 * 60 + 5 * 60 + 5, i.e., 5 : 5 : 5
 cout << "Time number 1 \n";
 Timel.ShowTime();
 Time Time2(12,65,65);
 cout << "Time number 2\n";
 Time2.ShowTime();
}
Output
Time number 1
Time is 5 hours : 5 minutes : and 5 seconds
Time number 2
Time is 13 hours : 6 minutes : and 5 seconds

It should be noted that both the constructors now have an empty body.

5.12.3 Order of Initialization
When the MIL is used, the order of initialization is not the same as when they are defi ned in the
list. It is in the order of their declaration in the class. In Program 5.7, though SchoolNo(123)
is written after Name and Address initializations, it will be initialized before them because it is
defi ned prior to them in the class declarations. This leads to surprising consequences. Look
at the following code segment:

Constructors and Destructors 215

How the Program Works
MIL defi nition Observe carefully the MIL for TestOrder class with the fi rst constructor
having int as an argument.

TestOrder(int Value)
:Third(Second / 10), Second(First / 10), First(Value)

If the evaluation is done in the same order of defi ning them in the MIL, the code could return
arbitrary values, because Third is using Second, which is still to be initialized, and similarly
Second is using First, which is not yet initialized. The right answer is obtained only because
First is initialized before the other two and Second is initialized next.

We can actually check the same using one more constructor. Look at the MIL of the
second constructor.

TestOrder(unsigned Value)
:Third(Value /= 10), Second(Value /= 10), First(Value /= 10)

Order of evaluation If the order of MIL is preserved, when we encounter the statement,

TestOrder TO2(UnsignedValue);

we should get Third as 123, Second as 12, First as 1, but a different answer is obtained.
The reason is again the same. The MIL evaluation is done on the basis of the declaration of
variables in the class itself and not on the order of appearance in the MIL.

If the programmer mistakenly provides an initialization, which does not preserve the
order, it is a diffi cult error to catch. On the contrary, the statements in the constructor body

 void PrintValues()
 {
 cout << "First is " << First << "\n";
 cout << "Second is " << Second << "\n";
 cout << "Third is " << Third << "\n";
 }
};

void main()
{
 int SignedValue = 1234;
 unsigned UnsignedValue = 1234;
 TestOrder TO(SignedValue);
 cout << "\n" << "The fi rst example " << "\n";
 TO.PrintValues();
 cout << "\n" << "The next example " << "\n";
 TestOrder TO2(UnsignedValue);
 TO2.PrintValues();
}

Output
The fi rst example
First is 1234
Second is 123
Third is 12
The next example
First is 123
Second is 12
Third is 1

216 Programming with ANSI C++

execute in the same order. It is even possible to provide function calls in the MIL,
though it is not recommended because function call dependencies are not known
precisely and hence may lead to serious errors.

Initialization and assignment The difference between initialization and
assignment discussed in Section 5.12.1 also applies in this case.

Class object members can be initialized only using MIL. This is also true for
constants and references. This means that when we use assignment, it is fi rst

defi ned and then assigned a value, which is wrong as these items are constants. Constants
can only be given values at the time of initialization.

Assignment always follows initialization It has already been mentioned that the order of
initialization depends on the order of defi nition of data members in the class, which may be
different than the order of appearance and that the constructor body behaves in a different
(rather normal) way. Let us see what is done in the following case.

TestOrder(unsigned Value)
:Third(Value /= 10),
Second(Value /= 10)
{
 Value /= 10
 First = Value;
}

The initialization of First has been moved in the constructor body. Now, Second is assigned
fi rst, then Third and fi nally First, that is, First will be 1, Second will be 123 and Third will
be 12. This is because of the simple rule that all initializations should be carried out before
the constructor body statements. This means that assignments will be carried out only after
initializations take place.

5.13 DESTRUCTORS

When a variable is defi ned in C++, it continues to be in effect until its scope is over. If a
variable is defi ned as a global variable, it remains in effect throughout the execution of the
program. If a variable is defi ned as a local variable, say, in a function, it remains in effect
until the function exits. If a variable is defi ned as follows:

for(int i=0; i<10; ++i)
{
 // statements
}

i is known only in the for loop. As soon as the for loop is over, i will cease to exist.
The compiler achieves this effect by creating a variable when it is defi ned

and destroying it after its scope is over. The memory allocated at the time of
creation is regained at the end and may be reused for some other purpose. This
memory allocation is done on the stack. Dynamically created objects in C++ are
an exception to this rule.

If customer is defi ned as given in the program, the memory obtained for
ItemsInterested using new operator would not be regained after customer goes

The allocated memory
must be released
back after its use. If a
constructor uses new,
the class also needs
a destructor that uses
delete.

MIL initialization
depends on the order
of defi nition of the vari-
ables rather than their
order of appearance
in the MIL.

Constructors and Destructors 217

out of scope. This is because the programmer and not the compiler has obtained that memory,
and hence, it is the programmer’s job to release it back. In the given example, all objects of
customer are a part of the main. The scope of the customer object is the main itself. Even if
that memory (i.e., the new memory for ItemsInterested) is not returned, after the program
execution is over the memory will be returned anyway. In this case, no harm is done if we
do not deallocate the memory ourselves. If some of the customer objects were defi ned inside
some function, the situation would be more serious. After claiming that memory, it will not
be possible to return it even after coming back from that function. The memory allocated
will be freed only after the execution of the program is over.

What should be done to get the allocated memory back immediately after the function call
is over, that is, when the variable goes out of scope? The answer is to defi ne destructors. As
the name suggests, destructors are opposite to constructors. They come into effect when the
object goes out of scope. Like constructors, they are automatically applied and calling them
explicitly is also possible.

Note The primary use of destructors is to free the memory dynamically allocated; however, they are also
useful for providing terminating effects. If we would like to do something other than releasing memory
when the object goes out of scope, such as reducing the value of a variable, say, by one, a destructor
can be used.

5.13.1 Use of Destructors
Destructors are special functions that are used to execute automatically when the object of
the class goes out of scope. They have the same name as of the class prefi xed by “~”, for
example, ~customer() is a destructor for class customer. The code written in the body of
function ~customer() would be executed when the object of type customer goes out of scope.
The destructor would also be called when delete is executed as shown in the following
example.

Customer *pCust = new customer;
delete pCust; // the destructor is called at this place

In the following program, a destructor is defi ned for the point class. The point class now has
a destructor, which displays the point that is going out of scope.

//PointDestructor.cpp
#include <iostream>
using namespace std;
class Point
{
private:
 fl oat x, y;
public:
 Point(Point& OtherPoint)
 {
 x = OtherPoint.x;
 y = OtherPoint.y;
 }
 Point(fl oat TempX = 0, fl oat TempY = 0)

218 Programming with ANSI C++

PROGRAM 5.8 Using destructors
//Destructor1.cpp
#include <iostream>
#include <string>
using namespace std;

class Item
{
 int ItemNo; string ItemName;
public:
 Item()
 {
 ItemNo = 0;
 }
 Item(int TempItemNo, string TempItemName)
 {
 ItemNo = TempItemNo;
 ItemName = TempItemName;
 }
 void ShowDetails()
 {
 cout << "\n Item number is " << ItemNo;
 cout << "\n Item name is " << ItemName;
 }
};

 {
 x = TempX;
 y = TempY;
 }
 ~Point()

 {

 cout << "Point at X = " << x << " Y= " << y << " Destroyed";

 }

};
void main()
{
 Point Point1(2,3);
 Point Point2(4,5);
} // destructor is called here
Output
Point at X = 4 Y = 5 Destroyed
Point at X = 2 Y = 3 Destroyed

An interesting observation is that the destructor for the point defi ned later is executed before
the point defi ned earlier. This is because when the objects are created, they are pushed on
stack, which are destroyed by popping them, obviously in the reverse order.

Let us consider Program 5.8 to understand more about destructors. A destructor is
provided for the customer class. It deletes the memory gained by new when the variable goes
out of scope or when delete is called for customer object.

Constructors and Destructors 219

class customer
{
 int CustNo;
 string CustName;
 string CustAddress;
 Item *ItemsInterested;
 int TotalItems;

public:
 ~customer(); customer()
 {
 TotalItems = 0;
 ItemsInterested = 0; // assigning it to null
 cout << "Constructor is called";
 }

 void operator = (customer & CustRef)
 {
 CustNo = CustRef.CustNo;
 CustName = CustRef.CustName;
 CustAddress = CustRef.CustAddress;
 ItemsInterested = new Item[CustRef.TotalItems];
 // New memory for new object; this is the difference

 for(int i=0; i<CustRef.TotalItems; ++i)
 {
 ItemsInterested[i] = CustRef.ItemsInterested[i];
 }
 TotalItems = CustRef.TotalItems;
 }

 customer(int TempCustNo, string TempCustName, string TempCustAddress, Item
*TempItemsInterested, int TempTotalItems)

 {
 CustNo = TempCustNo;
 CustName = TempCustName;
 CustAddress = TempCustAddress;
 ItemsInterested = new Item[TempTotalItems];
 for(int i=0; i<TempTotalItems; ++i)
 {
 ItemsInterested[i] = TempItemsInterested[i];
 }
 TotalItems = TempTotalItems;
 cout << "Parameterized constructor is called for " << CustName;
 }

 void ShowDetails()
 {
 cout << "\n Customer number is " << CustNo;
 cout << "\n Customer name is " << CustName;
 cout << "\n Customer address is " << CustAddress;
 cout << "\n" << CustName << " is interested in the following items:" << "\n";
 for(int i=0; i<TotalItems; i++)
 {
 ItemsInterested[i].ShowDetails();
 }
 }
};

// The following is the destructor

220 Programming with ANSI C++

customer::~customer()
{
 cout << "Destructor is called for " << CustName;
 delete [] ItemsInterested;
}

void main()
{
 Item ItemArray[]=
 {
 Item(3,"Sandwiches"), Item(4,"PaperBags"), Item(5,"Napkins"), Item(6,"Toys"),

Item(10,"Biscuits"), Item(9,"Pen"), Item(1,"Pencil"), Item(2,"Eraser"),
 };
 customer SteveWaugh(2, "Steve Waugh", "Australia", ItemArray, 5);
 SteveWaugh.ShowDetails();
 customer Ricky(3, "Susan", "London", ItemArray + 2, 6); Ricky.ShowDetails();
 customer Dummy;
 Dummy = customer(5, "Dummy", "Dummy", ItemArray + 2, 3); Dummy.ShowDetails();
}

How the Program Works
The code for ~customer() contains just two lines.

cout << "Destructor is called for " << CustName;
delete [] ItemsInterested;

Only the second line in this case is signifi cant. It removes the dynamically allocated memory.
It is important to note the syntax of delete. delete [ItemsInterested] would result in an
error. It must be delete [] ItemsInterested.

In the following output, note that the destructors are called in the reverse order to that of
the constructors. This is because the stack is used to store these (local) objects. So, the object
defi ned last is to be removed fi rst and so destroyed fi rst.

The complete output has not been provided for better readability. The output shown here
is a small portion that appears at the end of the actual output.

Constructor is called

Parameterized constructor is called for Dummy

Destructor is called for Dummy

Customer number is 5
Customer name is Dummy
Customer address is Dummy
Dummy is interested in the following items:

Item number is 5
Item name is Napkins
Item number is 6
Item name is Toys
Item number is 10
Item name is Biscuits
Destructor is called for Dummy
Destructor is called for Susan
Destructor is called for Steve Waugh

Constructors and Destructors 221

Look at the special case of dummy. The normal constructor is called once; then, the
parameterized constructor and, immediately after that, the destructor are called. (Look at the
bold lines in the output.) To understand the reason behind this, look at the statement again.

Dummy = customer(5, "Dummy", "Dummy", ItemArray + 2, 3);
The call to customer in this case creates a temporary object of type customer, and at the
end of assignment, it is automatically destroyed. The parameterized constructor and the
destructor are called for that temporary object (which has Dummy stored as its name). One
more destructor is called for Dummy at the end, which is for the Dummy object that bears the
same structure as the temporary object assigned to it.

Processing Objects at the end of their Lifetime
Destructors are also used for any processing at the end for a specifi c object. Consider a program
that maintains a count of logged-in users. Whenever a user logs in or logs out, the number of
users currently logged in is displayed. The following is an example of such a program:

//LoggedInUsers.cpp
#include <iostream>
#include <string>
using namespace std;
class LoggedInUser
{
 string Name; int TokenNo;
 static int TotalLoggedIn;
public:
 LoggedInUser()
 {
 TotalLoggedIn++;
 cout << "\n You are user number " << TotalLoggedIn << "\n Welcome! \n";
 }
 ~LoggedInUser()
 {
 TotalLoggedIn−−;
 cout << "\n Good bye! \n";
 cout << "Now total no. of users in the system are " <<
 TotalLoggedIn;
 }
};
int LoggedInUser::TotalLoggedIn;
void main()
{
 LoggedInUser *ArrayOfUsers[100];
 int index = 0;
 int Choice;
 while(true)
 {
 cout << "\n 1. New user \n";
 cout << "2. Logout \n";
 cout << "3. Exit from the program \n";

222 Programming with ANSI C++

 cout << "Enter your choice ";
 cin >> Choice;
 if(Choice == 1)
 {
 if(index == 100)
 {
 cout << "\n Too many users! \n";
 exit(1);
 }
 ArrayOfUsers[index] = new LoggedInUser; index++;
 }
 else if(Choice == 2)
 {
 if(index == 0)
 {
 cout << "No users to log out! \n";
 exit(1);
 }
 delete ArrayOfUsers[index − 1];
 index−−;
 }
 else
 exit(0);
 }
}
Output
1. New user
2. Logout
3. Exit from the program
Enter your choice 1
You are user number 1 Welcome!
1. New user
2. Logout
3. Exit from the program
Enter your choice 1
You are user number 2 Welcome!
1. New user
2. Logout
3. Exit from the program
Enter your choice 2
Good bye!
Now total no. of users in the system are 1
1. New user
2. Logout
3. Exit from the program
Enter your choice 2
Good bye!
Now total no. of users in the system are 0
1. New user
2. Logout
3. Exit from the program
Enter your choice 2
No users to log out!

Constructors and Destructors 223

Destructor Code
The destructor here is used to reduce the number of users by one.

~LoggedInUser()
{
 TotalLoggedIn−−;
 cout << "\n Good bye! \n";
 cout << "Now total no. of users in the system are" << TotalLoggedIn;
}

The importance of the static variable TotalLoggedIn must also be noted. It is possible to
determine the number of users logged in at the moment from the index value of the array.
There is no need to write the code in the destructor in that case.

If the array implementation is changed to a linked list, a case of real scenario where users
log in and log out randomly, then the code of the destructor is needed to release the memory
and also to reduce the number of users. Moreover, it should be noted that the destructor call
is made when the delete operation is executed. Delete moves the object out of scope, and
hence, the destructor is called at that point of time.

5.14 USAGE OF CONSTRUCTORS AND DESTRUCTORS FOR CONSTANT OBJECTS

Only constant functions are allowed to operate on constant objects. Constructors and
destructors are an exception to this rule and can be applied on constant objects. This is because
only after the constructor is applied, the object comes into existence; so, its constancy starts
from that point. Similarly, destructors are applied after the object goes out of scope. This
means that the constancy ends before the destructors are applied.

Note Constructors are applied before the object comes into existence and destructors are applied when the
object goes out of scope.

5.15 SYNTHESIS AND EXECUTION OF CONSTRUCTORS AND DESTRUCTORS

Constructors are defi ned anywhere, but C++ requires the constructors to be synthesized only
prior to the fi rst use of the object. A compiler can delay the synthesizing constructor until its
fi rst use. The constructor call (explicit or implicit) constructs the object and then the object
comes into existence. Similarly, destructors are executed upon exit from the block where
the object is defi ned, that is, after the object goes out of scope. It is possible to have a large
number of blocks in the program and most of the blocks have variables having destructors.
In such a case, every time the program exits the block, the destructor is invoked.

Whenever a compiler needs to create and destroy temporary objects of a specifi c class, the
constructor and destructor are called, if defi ned in that specifi c class.

Note The lifetime of a global object is throughout the execution of the program. Otherwise, the object comes
into existence when the constructor is over and is alive until it goes out of scope, that is, just before
the destructor is applied.

5.16 IMPLEMENTATION OF THE IMPORTANT TRIO

Copy constructor, assignment operator, and destructor are usually implemented together. Let
us see why this is so. If we use a copy constructor, we have a dynamic memory allocation

224 Programming with ANSI C++

in the constructor. In such a case, it becomes imperative for the programmer to deallocate
the memory when the object goes out of scope. Hence, the situation demands a destructor.
Now, the normal assignment also does not work properly. The assigned object also needs
dynamic memory allocation, and therefore, the assignment operator is also overloaded in
that case.

■ RECAPITULATION ■

 • C++ has user-defi ned objects similar to the built-in data
types.

 • Constructor and destructors provide initialization and
termination effects to user-defi ned objects similar to
built-in data types.

 • User-defi ned objects may need to initialize themselves
when defi ned.

 • Constructors are functions having the same name as
class. They can be either default or parameterized.

 • Single-argument constructor is a special one. The
compiler automatically generates a conversion operator
when such a constructor is defi ned.

 • Explicit constructor avoids automatic generation of
conversion operator.

 • Whenever the user has not defi ned any constructor,
C++ provides the effect of one. It may or may not
physically synthesize a constructor depending on the
situation.

 • The compiler-provided destructor cannot do the job
of a programmer. The programmer must initialize
members using user-defi ned constructors in cases
where the compiler-provided default constructor is not
appropriate.

 • It is possible to have multiple constructors for a single
class. In this case, all the constructors must have either

different numbers of arguments or different types of
arguments.

 • It is also possible to have default arguments to the
constructor similar to a normal function.

 • The objects can be dynamically initialized by explicitly
calling a constructor function. It is also possible to have
a constructor with dynamic allocation.

 • A destructor is also to be defi ned and the assignment
operator to be overloaded in most of the cases where a
dynamic constructor is used.

 • The assignment operator and the copy constructor are
different. The copy constructor changes the behaviour
of initialization whereas an assignment operator
overloading changes the behaviour of the assignment.

 • MIL is a better method for some cases and a must
for constant, references and object members of the
class.

 • The order in which MIL is executed depends on the
order of declaration of data members and not on the
order in which MIL is specifi ed.

 • Destructors are needed to provide user-defi ned termi-
nation effects when the object goes out of scope.

 • The lifetime of the object is after the construction
function is executed and just before the destructor is
executed.

■ KEYWORDS ■

Constructor This is a function with the same name as
the class itself and is responsible for constructing and
returning the objects of the class.

Copy constructor An object is copied to another using
initialization by executing the copy constructor.

Default constructor This is a constructor without any
argument.

Default constructor provided by compiler This refers
to the constructor that is provided by the compiler when

the user has not defi ned any. It may not be physically
synthesized by the compiler.

Destructor This is a function that bears the same name
as the class itself and is preceded by ~. The destructor is
automatically called when the object goes out of scope.

Dynamic initialization The initialization that happens at
run-time is known as dynamic initialization.

Explicit constructor This is the single-argument con-
structor that is defi ned with the keyword explicit before

Constructors and Destructors 225

the defi nition. It prohibits the generation of a conversion
operator for a single-argument constructor.

Initialization of the object Giving specifi c values to
the objects at the time they are defi ned is known as
initialization of the object.

Member initialization list (MIL) This is the list that follows
the constructor header and ends before the body of

the constructor begins. It is preceded by the word “:”
and contains initializations of data members separated
by “,” .

Parameterized constructor A constructor with one or
more than one argument is known as a parameterized
constructor.

■ EXERCISES ■

Multiple Choice Questions

1. What should be the return type of a constructor?
 (a) void
 (b) int
 (c) It cannot have any return type
 (d) It can have any return type
2. What type of values do constructors provide to the

object?
 (a) New values
 (b) Initial values
 (c) Dynamic values
 (d) Constant values
3. How is the constructor function called?
 (a) It is automatically called when the object is

created.
 (b) It is to be called soon after the object is created.
 (c) It can be called anywhere in the program.
 (d) It needs to be explicitly called before object

creation.
4. Unless a copy constructor or an assignment

operator is defi ned for an object, __________ and
__________ work in a similar way.

 (a) object declaration and creation
 (b) constructor and member function
 (c) initialization and assignment
 (d) ordinary and default parameters
5. Whenever possible, the compiler takes a shortcut of

copying the objects __________.
 (a) byte by byte, bit by bit
 (b) char by char
 (c) Member by member
 (d) None
6. Destructors are invoked __________.
 (a) explicitly when needed
 (b) explicitly when object goes out of scope
 (c) automatically when object goes out of scope
 (d) automatically at the end of a program
7. How many constructors are possible to defi ne?
 (a) Only one

 (b) Exactly two
 (c) Any number of constructors
 (d) Any number of constructors, though it is

advisable to have as few constructors as
possible

 8. Which of the following is the correct syntax of a
copy constructor?

 (a) Player (Player) ;
 (b) Player (Player &, Player &) ;
 (c) Player (Player *) ;
 (d) Player (Player &) ;
 9. The constructor body cannot have __________.
 (a) malloc statement
 (b) new statement
 (c) return statement
 (d) exit statement
10. What will happen if we write following two

statements in a program for a class named Time?
 Time (int hours = 0, int minutes = 0, int seconds =

0) { }
 Time () { }

 (a) Only second one is permissible
 (b) Only fi rst one is permissible
 (c) Compiler gives an error
 (d) Linker gives an error

Conceptual Exercises

 1. Give examples of C++ object defi nitions and usage
that demonstrate the similar-to-built-in behaviour
concept.

 2. What is the need for initialization of objects using
a constructor? What could be the problems if the
constructors are not provided in C++?

 3. What are the functions of constructors? How are
they different from normal functions?

 4. What is the difference between a default
con structor provided by the compiler and a
user-defi ned default constructor?

226 Programming with ANSI C++

 5. List the cases where default constructor provided
by the user becomes necessary.

 6. What is the need for explicit constructor?
 7. What is the difference between a parameterized

constructor and a default constructor?
 8. Give some examples other than those shown in the

chapter where we need multiple constructors in the
same class.

 9. What is the advantage of default arguments in a
constructor? Suggest few cases where default
arguments are useful.

10. What is meant by dynamically reinitializing an
object? What is the difference between normal
initialization and dynamic initialization?

11. What is the need for dynamic allocation in a
constructor? List some cases where dynamic
allocation is required in the constructor.

12. Give an example where if the copy constructor
is not provided, the behaviour of the program
becomes unacceptable.

13. What are the three cases in which initialization is
required?

14. ModifyItem() function in the chapter is a friend of
two classes. Suggest some other bridge functions
for some other cases.

15. What are the advantages and disadvantages of
using MIL over assignment?

16. We may need constructor in every class that we
defi ne, but we may need destructors only in few
classes. Why?

17. When will the destructors be called?
18. What is the lifetime of an object? What is

the relation of the lifetime of an object to the
constructors and destructors?

19. When we need the copy constructor in the
defi nition of a class, we also need the assignment
operator overloaded and the destructor. Elaborate.

Practical Exercises

 1. Program 5.8 uses static variables to count the number
of objects alive at the moment. We had a problem of
decrementing the count when a user departs. Remove
that problem writing a destructor for the class.

 2. Write an improved version of LoggedInUsers.cpp
by implementing the same program using a linked
list.

 3. Write a program using the Time class defi ned in
the chapter. Use a single constructor to provide all
functionalities.

 4. SimpleConstructor.cpp contains a Stack class
with a fi xed stack size. Change the program to
provide dynamic memory allocation to determine
the size of the stack at the time of initialization
using constructors and also provide its destructor.

 5. Modify the Stack class to use a linked list for its
implementation.

 6. Provide a Simple Queue class with a proper set of
constructors.

 7. Defi ne a person class and defi ne few data and
function members to illustrate the usefulness of a
default constructor in that class.

 8. Give an example where explicit constructor is
needed.

 9. Defi ne a person class with more than three con-
structors. Defi ne data and function members in the
class in such a way that all three constructors are
meaningful.

10. Defi ne a supplier class. Assume that the items
supplied by any given supplier are different
and varying in number. Use dynamic memory
allocation in the constructor function to achieve
the solution.

11. Defi ne an examiner class. Provide all necessary
data and function members to provide the
following: The examiner must access answer
sheets of at least one subject and may examine
answer sheets of multiple subjects; the examiner
represents a college and also a university; and
most of the examiners are local and represent the
local university. The program should have more
than one constructor including one with and one
without default argument. Provide a meaningful
copy constructor.

12. Modify ParameterizedCon.cpp in Program 5.5 to
use MIL.

13. Modify Program 5.6 to use MIL.
14. Execute Program 5.6 after removing dynamic

memory allocation and assigning pointer directly.
What have you concluded? Provide changes
in ItemArray and also in the constructor
ItemsInterested array. Observe the difference.

15. We have discussed three cases where copy
constructors are applied and the importance of
the fi rst case with an example. Provide examples
for the other two situations (i.e., passing to and
returning from the function).

16. Provide destructors in all the examples for which
we have provided copy constructors.

Chapter 6
Operator Operator
Overloading and Overloading and
User-defi ned User-defi ned
ConversionsConversions
6.1 INTRODUCTION

Operator overloading enables the use of our own objects using operators
which were reserved for built-in types in C. It is very important to have the
facility of defi ning meaningful operators for user-defi ned objects, which is
the subject of discussion in this chapter.

Let us consider a class Time, which represents time; Time1, Time2, and
Time3 are the objects of the class Time having some values. If two times
are to be added, that is, Time3 = Time1 + Time2, it is achieved by overloading
the ‘+’ operator for the class Time. Unlike int or fl oat, Time is not a
built-in data type and hence the operator ‘+’ cannot be used without
overloading it.

Similarly, it is possible to overload other operators as well though there
are some restrictions. It is possible to overload operators in a novel yet
legible way.

Let us consider a class that contains a collection of employees, for
example, the Collection class. Then, the statement

UniEmpCol.AddToCol(UniEmployee[i]);

can be rewritten as

UniEmpCol + UniEmployee[i]

However, in order to do that the operator ‘+’ needs to be overloaded to the
Collection class.

Operator overloading is performed by adding special member functions
to the class; these functions are known as operator functions and can help
convert one object into another. We will study these under user-defi ned
conversions in Section 6.12.

Learning Objectives

• Overloading operators
• Unary and binary operators
• friend operators
• Overloading =, [], (), new,

and delete operators
• Function objects
• Cases where user-defi ned

conversion is necessary
• Constructor and operator-

based conversions

228 Programming with ANSI C++

6.2 RESTRICTIONS UNDER OPERATOR OVERLOADING

Though operator overloading is possible, it has its own set of restrictions, which are listed
as follows:

1. Operators do not lose their original meaning; instead, they have an additional
meaning when overloaded. One cannot change the original meaning of an
operator.

2. New operators cannot be devised. Only existing operators with given restrictions
can be overloaded.

3. Operators will have an additional meaning, but will not have an additional precedence.
The precedence remains the same.

4. Operators cannot change the number of arguments that were available in the original
form. Hence, ‘+’ in the binary form can only have two arguments. It cannot be overloaded
with three arguments.

5. Operators can only be overloaded for user-defi ned types. All overloaded operators must
have at least one argument as a user-defi ned type.

6. Except (), no other operator can have a default argument.
7. Some operators can never be overloaded.

6.2.1 Operators that Cannot be Overloaded
The following operators cannot be overloaded:

1. Dot operator for member access (.)
2. Dereference member to class operator (.*)
3. Scope resolution operator (::)
4. Size of operator (sizeof)
5. Conditional ternary operator (?:)
6. Casting operators (static_cast< >, dynamic_cast< >, reinterpret_cast< >, and const_

cast<>)
7. # and ## tokens for macro preprocessors

Note One may ask why these operators cannot be overloaded. Consider overloading the dot operator. If
it is overloaded, a class member operation gets a new meaning, which may lead to serious errors.
A compiler developer must deal with the possible complexities that arise out of such errors and help
the programmer by providing probable reasons for the error. If C++ allows such code, it can easily
confuse the compiler with unforeseen side effects. It is for the same reason that C++ does not allow
adding new operators. C++ also does not allow the global defi nition of certain operators (e.g., =
operator). Many languages, including Java, do not provide operator overloading as it is a very diffi cult
problem to manage.

6.2.2 Operators that Cannot be Overloaded as Friends
As pointed out earlier, operators are overloaded as functions. For a function to operate on a
class, it should be either a member or a friend. The consequence is that the operators can be
overloaded in two distinct ways, that is, as members or as friends. The following operators
cannot be overloaded as friends:

1. Assignment operator = 3. Array subscript operator []
2. Function call operator () 4. Access to class member using pointer to object operator ->

Operator overloading
provides additional
meaning to an
oper ator.

Operator Overloading and User-defi ned Conversions 229

The syntactical rules for the original meaning should be followed by the operators when
overloaded. The following are some examples:

1. All arithmetic operators must return a value. However, it can be of a different type than
what is returned by the original operator.

2. Unary operators do not have any explicit arguments. If overloaded as a friend, they take
one reference argument.

3. Binary operators take one explicit argument if overloaded as a member and two explicit
arguments if overloaded as a friend.

6.3 OPERATOR OVERLOADING THROUGH MEMBER FUNCTION

The syntax of the operator function as a member is similar to that of the normal member
function with a specifi c naming convention. Let us look at Program 6.1, which deals with a
complex number.

PROGRAM 6.1 Adding two complex numbers using an overloaded operator
//OO+.cpp
#include <iostream>
#include <string>
using namespace std;

class Complex
{
 fl oat Real;
 fl oat Imag;
public:
 Complex(fl oat TempReal = 0, fl oat TempImag = 0)
 {
 Real = TempReal;
 Imag = TempImag;
 }

 Complex Add(Complex Comp2)
 {
 fl oat TempReal;
 fl oat TempImag;
 TempReal = Real + Comp2.Real;
 TempImag = Imag + Comp2.Imag;
 return Complex(TempReal, TempImag);
 }

 Complex operator +(Complex Comp2)
 {
 fl oat TempReal;
 fl oat TempImag;
 TempReal = Real + Comp2.Real;
 TempImag = Imag + Comp2.Imag;
 return Complex(TempReal, TempImag);
 }

 void Display()
 {
 cout << Real << "+" << Imag << "i \n";
 }
};

230 Programming with ANSI C++

How the Program Works
Defi ning a complex number as a class In this example, complex numbers are considered
to be a class. A complex number is always represented as a collection of two parts. The fi rst
part is known as the real value and the second part as the imaginary value. It is represented
as <real value> + <imaginary value>i, that is, in a complex number 20 + 30i, 20 is the real
part and 30 is the imaginary part. Here, i is considered to be the square root of −1.

Operator overloading with complex class Our purpose here is to understand how opera-
tor overloading is provided in C++ using this particular class. We hereby represent the com-
plex number as two values, real and imaginary, with a few functions.

The following are the three functions present in the program:

1. The fi rst function is a constructor. Complex Comp1(1, 2) will create a complex number
Comp1 with real value 1 and imaginary value 2.

2. The second function is the display.Comp1.Display(), which should display 1 + 2i .
3. The third is the Add() function. It is a member function of a class and has one complex

number as an argument. This means that it already has one implicit argument as this
pointer to the invoking object. It adds the real and imaginary values of two Complex objects
passed to it and returns the summation of the two objects as another Complex object.

Add Function and Overloaded ‘+’
Let us consider an interesting example where the body of the function is the same as that
of the Add() function. It functions in the same way as the Add() function, but is called in a
different way. The call to an operator function is different from the normal function call.
Before looking at the difference, attention should be paid to the naming of the function.

The names of all operator functions begin with the keyword operator, which is
followed by the actual operator. In this case, the + operator has been overload,
so the function name is operator +. Every time the + operator is overloaded, the
function name should be given as operator +. When the − operator is overloaded,
it would be named as operator − and so on.

The operator function is called when the + operator is used with both operands
as complex arguments. As discussed earlier, it does not look like a function call.
Look at the call

CompResult2 = Comp1 + Comp2;

It is actually
CompResult2 = Comp1.operator + (Comp2)

void main()
{
 Complex Comp1(10, 20);
 Complex Comp2(20, 30);
 Complex CompResult1, CompResult2;
 CompResult1 = Comp1.Add(Comp2);
 CompResult1.Display();
 CompResult2 = Comp1 + Comp2;
 CompResult2.Display();
}

The names of all
operator functions
begin with the key-
word operator,
which is followed by
the actual operator.

If an operator is
properly overloaded, it
improves the readability
of the program.

Operator Overloading and User-defi ned Conversions 231

Note Though the operators are defi ned in the same way as functions, they are not called in the same way.

The function is called this way because we want the addition of the complex numbers to look
similar to that of any other numeric variable. One of the advantages of operator overloading
is that both the functions (Add() and operator +()) are doing the same activity. Operator
overloading is a very good example of how much C++ designers expect the user-defi ned
objects to work similar to built-in objects. However, looking from the readability point of
view, the second function looks far better, that is, CompResult2 = Comp1 + Comp2 is more
readable than CompResult1 = Comp1.add(Comp2).

Choosing Complex Numbers to Overload ‘+’
The reason for choosing the example of complex numbers to illustrate overloading + is that
although + can be overloaded for any other operation, it is important to overload it for an
operation that is similar in meaning to the original one. If some other operation is chosen
to be symbolized by +, then readability will be a problem. For example, if + is used to get a
complex number that is a product of the arguments passed, then it will confuse and mislead
the reader.

Similarly, overloading + for items other than numeric also creates ambiguity in the
reader’s mind. At times, though + indicates addition of some type, one can also
use it for other than numerical operands.

Overloading ‘+’ for User-defi ned Class
Consider Program 6.2, which is an example of adding an employee to a collection.
This program is the same as FriendClass.cpp discussed in Chapter 4. We have
overloaded + to indicate addition to the collection.

It is important to over-
load an operator for an
operation that is similar
or almost similar to the
original one.

PROGRAM 6.2 Adding an employee to an employee collection
#include <iostream>
#include <string>
using namespace std;

class CollectionEmp; // Forward defi nition
class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
public:
 void Init(int TempNo, string TempName, string TempDept, string TempDesi)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 void DisplayDetails()
 {
 cout << "Details of employee number" << EmpNo << "\n";
 cout << "Name is" << Name << "\n";
 cout << "Department is " << DeptName << "\n";

232 Programming with ANSI C++

 cout << "Designation is " << Designation << "\n";
 }
 /* Now member functions of the following class can access private variables of this class */

 friend CollectionEmp;
 /* If forward declaration is not provided, this statement will give an error */
};

class CollectionEmp
{
private:
 employee ColEmp[10];
 /* The collection is in the array form; it can even be a linked list */

 int Index;
public:
 void InitIndex()
 {
 Index = 0;
 }

 bool operator +(employee Emp)
 {
 if(Index < 9)
 {
 ColEmp[Index] = Emp;
 Index++;
 return true;
 }
 else
 {
 return false;
 }
 }

 void ListDeptWise()
 {
 string TempDeptName;
 cout << "Enter the department of the university:";
 cin >> TempDeptName;
 cout << "\n";

 for(int i = 0; i < 10; ++i)
 {
 if(ColEmp[i].DeptName == TempDeptName)
 {
 ColEmp[i].DisplayDetails();
 }
 }
 }
};

void main()
{
 CollectionEmp UniEmpCol;
 UniEmpCol.InitIndex();
 employee UniEmployee[10];

 UniEmployee[1].Init(1,"Lara", "Exam", "Professor");
 UniEmployee[2].Init(2, "Ponting", "Marksheet", "Clerk");
 UniEmployee[3].Init(3, "Laxman", "Accounts", "Head Clerk");

Operator Overloading and User-defi ned Conversions 233

 UniEmployee[4].Init(4, "Flintoff", "Exam", "Clerk");
 UniEmployee[5].Init(5, "Muralidharan", "Accounts", "CAO");
 UniEmployee[6].Init(6, "Sarfaraz", "Exam", "Informer");
 UniEmployee[7].Init(7, "Dean Jones", "Exam", "Invigilator");
 UniEmployee[8].Init(8, "Madugalle", "Exam", "Examiner");
 UniEmployee[9].Init(9, "Ganguly", "Marksheet", "Repeater");
 UniEmployee[0].Init(10, "Nafees", "Accounts", "Clerk");
 for(int i = 0; i < 10; ++i)
 {
 UniEmpCol + UniEmployee[i];
 /* Placing the employees in the collection object */
 }

 UniEmpCol.ListDeptWise();
 /* This is a member function now, not a dummy one though! */
}

Output
Enter the department of the university: Exam

Details of employee number 1
Name is Lara
Department is Exam
Designation is Professor

Details of employee number 4
Name is Flintoff
Department is Exam
Designation is Clerk

Details of employee number 6
Name is Sarfaraz
Department is Exam
Designation is Informer

Details of employee number 7
Name is Dean Jones
Department is Exam
Designation is Sleeper

Details of employee number 8
Name is Madugalle
Department is Exam
Designation is Examiner

How the Program Works
Difference while defi ning and calling Look at the difference between Program 4.14 in
Chapter 4 and this program. There is just a mechanical difference. Surprisingly, only two
lines differ in both the programs, which are a line defi ning the function header and the one
calling the function. The following are the changes:

1. bool AddToCol() changes to bool operator +().
2. UniEmpCol.AddToCol(UniEmployee[i]) changes to UniEmpCol + UniEmployee[i].

Steps in operator overloading This shows that operator overloading can be simplifi ed
using a simple technique. A function for doing a job is written fi rst and tested to check
whether it works fi ne. Then, only two mechanical changes are needed at a few places in the
program.

234 Programming with ANSI C++

1. Change the name of the function as operator <operator_symbol> (e.g., operator +) where
the function is defi ned.

2. Use that operator as an implicit function call, wherever the function call is made in the
program. Thus, Object1.function (Object2) is changed to Object1 <Operator> Object2.

Note Excessive use of overloading operators may reduce readability, whereas using it judiciously improves
readability. Overloading an operator for doing something that is not obvious, such as using ‘+’ for
subtracting arguments, is bad programming.

Overloading Operators for a Purpose
Program 6.3 shows how + can be overloaded for a purpose. The same Time class discussed
earlier has been used, with an overloaded + to add two times. The only additional feature
here is the use of the same operator with more than two arguments. The importance of using
a constructor can also be noted here.

PROGRAM 6.3 Operator overloading for a purpose
//AddTime.cpp
#include <iostream>
using namespace std;

class Time
{
public:
 int Hours;
 int Minutes;
 int Seconds;

 void ShowTime()
 {
 cout << "Time is" << Hours << " hours : " << Minutes << " minutes : and " << Seconds

<< "seconds \n";
 }

 Time(int TempHours = 0, int TempMinutes = 0, int TempSeconds = 0)
 {
 Hours = TempHours;
 Minutes = TempMinutes;
 Seconds = TempSeconds;
 } // It can serve as default constructor as well

 Time operator +(Time Time2)
 {
 int TempHours, TempMinutes, TempSeconds;
 TempHours = Hours + Time2.Hours;
 TempMinutes = Minutes + Time2.Minutes;
 TempSeconds = Seconds + Time2.Seconds;
 TempMinutes += TempSeconds / 60;
 TempSeconds %= 60;
 TempHours += TempMinutes / 60;
 TempMinutes %= 60;
 return Time(TempHours, TempMinutes, TempSeconds);
 }
};

void main()
{
 Time Time1(12, 15, 15);

Operator Overloading and User-defi ned Conversions 235

How the Program Works
Look at the statement

Time Time4 = Time1 + Time2 + Time3;

We are trying to add three times here. It is similar to the statement

Time1.operator + (Time2.operator + (Time 3));

It should be noted that this is not a case of having more than two arguments in the overloaded ‘+’.
An overloaded ‘+’ always has two arguments irrespective of the class for which it is overloaded.

Note We cannot add three items using overloaded ‘+’. This is because when we overload an operator, we
must honour the original construct for using that operator. ‘+’ is designed to work with two operands (a
binary operator) and so it must be honoured.

Another interesting statement is

(Time1 + Time2).ShowTime();

The compiler generates a temporary object from the expression Time1 + Time2 and the member
function ShowTime() is called for that object. This statement is a shorthand notation of the following:

Time Temporary = Time1 + Time2; Temporary.ShowTIme();

6.4 SITUATIONS WHERE OPERATOR OVERLOADING IS USEFUL

Operator overloading is important in the case when we are developing a class library that
will be used by other users. In this case, proper overloading of operators would be more
advantageous. There is no need for the users to remember the names of functions and the
chance of misspelling is also very less.

 cout << "The fi rst value \n";
 Time1 ShowTime();
 Time Time2(10, 30, 30);
 cout << "The second value \n";
 Time2.ShowTime();
 Time Time3;
 Time3 = Time1 + Time2;
 cout << "And the result is \n";
 Time3.ShowTime();
 Time Time4 = Time1 + Time2 + Time3; // Adding three times
 Time4.ShowTime();

 /* The following will work and would be the same as Time3.ShowTime(). We are not defi ning
a temporary object; the compiler will do that for us here. */

 (Time1 + Time2).ShowTime();
}

Output
The fi rst value
Time is 12 hours : 15 minutes : and 15 seconds

The second value
Time is 10 hours : 30 minutes : and 30 seconds

And the result is
Time is 22 hours : 45 minutes : and 45 seconds
Time is 45 hours : 31 minutes : and 30 seconds

236 Programming with ANSI C++

When operator overloading is provided for a class that is developed as a part of a team,
usage and readability of the class depends heavily on the intuitiveness of the defi nitions of
the operators. Consider the case of a linked list. If overloaded + is provided to add a node
object to a linked list object, it does make sense and is very readable and less ambiguous.

Like LinkedList L, NewList;
Node N;
L = L + N; // Adding a node to a list
NewList = L + N; // New list from old list and adding a node

It is also important to know that overloaded + in Program 6.2 does not necessarily return
the object of the same type. In its original form, the + operator always returns the same
type of object; adding two integers returns an integer, adding two fl oat returns a fl oat, and
so on. However, in Program 6.2, it returns a Boolean. In the linked list example, it adds two
different types of objects and returns the fi rst operand’s type. C++ provides fl exibility of this
kind, which makes operator overloading extremely useful.

Not all operators enjoy the said fl exibility. Operators new, delete and -> have the limitation
that they can return only the same type of object as the original operator.

Operators can be classifi ed as unary (which have one argument) and binary (which have
two arguments). It should be remembered that it is not possible to overload the single ternary
operator available.

6.5 OVERLOADING UNARY OPERATORS

Operators that have a single argument are known as unary operators. When these operators
are overloaded as member functions, it is not necessary to pass any argument explicitly. The
this pointer pointing to the invoking object is passed as an implicit argument.

//UnaryOp.cpp
#include <iostream>
using namespace std;
class Matrix
{
 int Element[3][3];
public:
 Matrix(){}; // Default constructor
 Matrix(int TempMatrix[3][3])
 {
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 Element[i][j] = TempMatrix[i][j];
 }
 void Read()
 {
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 cin >> Element[i][j];
 }

Operator Overloading and User-defi ned Conversions 237

 void operator −()
 {
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 Element[i][j] = −Element[i][j];
 }

 void Display()
 {
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 {
 cout << Element[i][j] << " ";
 }
 cout << "\n";
 }
};

void main()
{
 int ArrayOfInt[][3]={1,2,3,4,5,6,7,8,9};
 Matrix M1(ArrayOfInt);
 cout << "The fi rst matrix before negation \n";
 M1.Display();
 cout << "First matrix after negation \n";
 −M1;
 M1.Display();
 Matrix M2;
 cout << "Enter values for the second matrix \n";
 M2.Read();
 cout << "The second matrix before negation \n";
 M2.Display();
 −M2;
 cout << "Second matrix after negation \n";
 M2.Display();
}

Output

The fi rst matrix before negation
1 2 3
4 5 6
7 8 9
First matrix after negation
−1 −2 −3
−4 −5 −6
−7 −8 −9
Enter values for the second matrix
3 4 5 6 6 6 7 78 8

238 Programming with ANSI C++

Consider this program, which is an example of a class Matrix representing a matrix of 3 × 3
integer elements. We use ‘−’ to negate all the values of the matrix.
Look at the defi nition of a simple function to negate. Naming it as operator − has enabled us
to use statements of the type −M1 and −M2, which is more readable than M1.negate().

Similarly, it is possible to overload the operator ‘~’ for inverting a matrix and operator
‘!’ for transpose, if the users are familiar with such notations and if using them makes the
program more readable. Given a specifi c domain, it is interesting to fi nd newer meanings to
known symbols and operator overloading is of great help in such cases.

6.5.1 Postfi x Versions of ++ and −− Operators
Both increment and decrement operators have two versions in C as well as C++, namely, the
prefi x version and the postfi x version. Both in C and in C++, they are differentiated by their
position, which can be specifi ed by overloading.

Though postfi x and prefi x are the same, they are differentiated by their respective positions
by a C++ compiler. It is not possible to do so while overloading them; operator ++() would
be the same for both the versions. To differentiate between the versions, operator ++() is
considered to be a prefi x operator being overloaded, whereas the statement operator ++(int

AnyDummyValue) is considered to be a postfi x operator being overloaded.
In Program 6.4, when ++ is applied in the prefi x form to a complex number,

it adds to the real value, and when applied in the postfi x form, it adds to the
imaginary value. This has been done to show how postfi x and prefi x operators
are overloaded to provide different operations.

PROGRAM 6.4 Overloading ++ prefi x and postfi x versions
//OO++−−.cpp
#include <iostream>
#include <string>
using namespace std;

class Complex
{
 fl oat Real;
 fl oat Imag;
public:
 Complex(fl oat TempReal = 0, fl oat TempImag = 0)
 {
 Real = TempReal;
 Imag = TempImag;
 }

 Complex Add(Complex Comp2)

The second matrix before negation
3 4 5
6 6 6
7 78 8
Second matrix after negation
−3 −4 −5
−6 −6 −6
−7 −78 −8

Operator Overloading and User-defi ned Conversions 239

 {
 fl oat TempReal;
 fl oat TempImag;
 TempReal = Real + Comp2.Real;
 TempImag = Imag + Comp2.Imag;
 return Complex(TempReal, TempImag);
 }

 Complex operator +(Complex Comp2)
 {
 fl oat TempReal;
 fl oat TempImag;
 TempReal = Real + Comp2.Real;
 TempImag = Imag + Comp2.Imag;
 return Complex(TempReal, TempImag);
 }

 Complex operator ++() // This is prefi x
 {
 Real++;
 return Complex(Real, Imag);
 }

 Complex operator ++(int dummy) // This is postfi x
 {
 Imag++;
 return Complex(Real, Imag);
 }

 void Display()
 {
 cout << Real << " + " << Imag << "i \n";
 }
};

void main()
{
 Complex Comp1(10, 20);
 Complex Comp2(20, 30);
 Complex CompResult1, CompResult2;

 CompResult1 = Comp1.Add(Comp2);
 CompResult1.Display();
 CompResult2 = Comp1 + Comp2;
 CompResult2.Display();

 Comp1++; // The postfi x version with dummy arguments Comp1.Display();

 ++Comp2; // The prefi x version without any arguments Comp2.Display();
}

If we defi ne a postfi x
version and use the
prefi x notation, the
compiler fl ags an error.

How the Program Works
It should be noted that the program contains only additional parts of the code for overloading

++ in both versions. Here, we will explore only those two functions. It should also
be noted that the argument (int dummy) is not used in a program. It is to be written
just to differentiate between the prefi x and postfi x versions. It cannot be actually
passed. If the postfi x operator used in a program is not defi ned, the C++ compiler
will fl ag a warning similar to following and then apply the prefi x version there.

240 Programming with ANSI C++

No postfi x form of ‘operator ++’ found for type ‘Complex’; using prefi x form

If different operations for both versions of increment or decrement operator are not needed, a
single operator function can be used for prefi x. This is useful for most of the practical cases.

6.6 OVERLOADING BINARY OPERATORS

Operators that take two operands are known as binary operators. They will have a single
argument when defi ned as member. The fi rst argument to that operator is always the invoking
object. We have already seen an example of overloading the ‘+’ operator for complex
numbers.

6.6.1 Overloading Shorthand Operators While Overloading Arithmetic Operators
Shorthand operators include +=, −=, *=, and /=. The programmer may have arithmetic operators
overloaded for a class in the program. Once the basic operators are in place and the users are
familiar with them, the user might like to try shorthand operators. So, when the statement

First Case: −Time3 = Time1 + Time 2;

works, the user may try the following statement:

Second Case: −Time3 += Time1;

which does not work as expected. This is the reason it is necessary to overload shorthand
operators too when the basic arithmetic operators are overloaded. It is very important from
the design point of view to include such operators in the class.

Note Shorthand operators such as ‘+=’ should be overloaded while overloading normal operators such
as ‘+’.

6.7 OPERATOR OVERLOADING THROUGH FRIEND FUNCTIONS

As mentioned earlier, it is possible to use friends as operator functions. We have already seen
that using friends is a violation of the principle of information hiding and is to be avoided as
far as possible. It is true here as well. Let us now see why we need friends.

As discussed earlier, member functions cannot choose the fi rst argument and it is always
the invoking object. At times, this is a hindrance. There are two cases where it is really
important to use friend functions. The fi rst case involves a non-class fi rst argument, while
the second case involves conventional overloading of operators that require objects on the
right-hand side (RHS) and not on the left-hand side (LHS). For example, the ‘<<’ operator,
while using cout, requires the object being read on the RHS, and not on the LHS. Let us look
at the fi rst case now. We will look at the second case Section 6.8.

Overloading Non-class Arguments as First Argument
Suppose we want a multiplication operation in a matrix class. Consider a matrix M1. An
operation 5 * M1 is needed indicating the multiplication of a scalar value fi ve and a matrix
M1. This operation involves multiplying fi ve with all the elements of M1. However, this is
not possible using a member operator because the fi rst argument is not an object, whereas
it is possible to provide M1 * 5. It is possible to entertain both the cases by using friends.
We need to write two different friend functions for both the operations, as shown in
Program 6.5.

Operator Overloading and User-defi ned Conversions 241

Note 5 * M and M * 5 must yield the same result. The member function defi nition of the operator ‘*’ allows
only the operation M * 5, and not 5 * M. If we want the operation 5 * M, we will have to overload the ‘*’
operator as a friend. Whether it will yield the same result or not is secondary. We may have it if we wish so.

PROGRAM 6.5 Operator overloading using a friend
//OOUsingFriend.cpp
#include <iostream>
using namespace std;

class Matrix
{
 Int Element[3][3];
public:
 Matrix(){};
 Matrix(int TempMatrix[3][3])
 {
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 Element[i][j] = TempMatrix[i][j];
 }

 void Read()
 {
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 cin >> Element[i][j];
 }

 void Display()
 {
 for(int i = 0; i < 3; i++)
 {
 for(int j = 0; j < 3; j++)
 {
 cout << Element[i][j] << " ";
 }
 cout << "\n";
 }
 }
 friend Matrix operator *(Matrix, int);
 friend Matrix operator *(int, Matrix);
};

Matrix operator *(Matrix TempMatrix, int Multiplier)
{
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 TempMatrix.Element[i][j] = Multiplier * TempMatrix.Element[i][j];
 return Matrix(TempMatrix.Element);
}

Matrix operator *(int Multiplier, Matrix TempMatrix)
{
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 3; j++)
 TempMatrix.Element[i][j] = Multiplier * TempMatrix.Element[i][j];
 return Matrix(TempMatrix.Element);
}

242 Programming with ANSI C++

void main()
{
 Int ArrayOfInt1[][3]={1,2,3,4,5,6,7,8,9};
 int ArrayOfInt2[][3]={4,5,6,7,8,9,1,2,3};
 Matrix M1(ArrayOfInt1);
 Matrix M2(ArrayOfInt2);
 Matrix M3, M4;
 M1.Display();
 M3 = M1 * 5;
 M3.Display();
 M2.Display();
 M4 = 5 * M2;
 M4.Display();
}

Output
(After inserting explanatory lines)

Matrix before scalar multiplication

1 2 3
4 5 6
7 8 9

Matrix after scalar multiplication

5 10 15
20 25 30
35 40 45

Matrix before scalar multiplication

4 5 6
7 8 9
1 2 3

Matrix after scalar multiplication

20 25 30
35 40 45
5 10 15

How the Program Works
Friend function Notice the fl exibility to provide expressions such as M1 * 5 and 5 * M2.
Both the expressions actually call two different operator * functions.

friend Matrix operator *(Matrix, int);
friend Matrix operator *(int, Matrix);

These are two friend defi nitions for the same operator. The operator function is overloaded
in this case for the same set of arguments in different order. See that the fi rst version can be
rewritten by the member operators, but this is not possible for the second one. That is,

Matrix operator *(Matrix TempMatrix, int Multiplier)

can be written as Matrix operator *(int) as member. However,

Matrix operator *(int Multiplier, Matrix TempMatrix)

is not possible.

Operator Overloading and User-defi ned Conversions 243

Note A friend is required in cases where we need to provide both the operations, namely, object <operator>
value and value <operator> object. For example, both M * v and v * M are required where only M is a
class and v is not.

Different bodies for the functions The bodies of both these functions are identical. Here,
when the arguments are specifi ed in either order, the same code is executed. It is important to
note that one is free to write entirely different codes in both the functions. However, it should
be done only if the problem statement justifi es the same.

Take the case of a linked list object and a node object. In the case of Node1 + LinkedList1,
the node object adds in the beginning, and in the case of LinkedList1 + Node1, it adds in the
end. Hence, we may need to write different codes for operator ‘+’ for reversed arguments.
Similar is the case for the dequeue where insertion can be made at both the ends; operator
‘+’ can be used to specify not only the insertion but the position of insertion as well. In such
situations, friend functions should only be used.

Let us examine another such case in Section 6.8.

6.8 USING FRIENDS TO OVERLOAD << AND >> OPERATORS

It is simple to use cout and cin for reading and writing built-in type data. They can also be
used for user-defi ned objects. Consider the case of a statement

cout << "This is testing"

cout is an object representing an output stream. A stream is very analogous to a pipe.
cout takes "This is testing" as a sequence of characters and passes it to the other end
of the pipe, which is attached to the screen; so, "This is Testing" is printed on the screen.
The << is overloaded for this purpose. << here has the fi rst argument as an object of the
ostream class (the cout). The second argument here is a string.

The same is the case for cin >> MyVariable. cin is an object of the input stream whose
other end is attached to the keyboard. >> is overloaded here. The << operator is known as
the insertion operator and >> is known as the extraction operator. Some authors also refer
to them as output and input operators.

cin takes the value from the keyboard because it is at one end of the pipe that is represented
by cin. The value is then passed by cin to MyVariable because it is now at the other end of the
pipe. Here, >> has its fi rst argument as an object of istream class (the cin) and the second
argument is MyVariable. Thus,

cout << "This is testing"

is similar to

operator << (ostream & /* the cout */, string & /* the string "This is
testing" */)

Similarly,

cin >> MyVariable;

is equivalent to

operator >> (istream & /* the cin */, int /* MyVariable */)

Exhibit 6.1 explains the reason for choosing >> for cin and << for cout.

As the syntax of cin
and cout expects the
object to be on the
RHS of the operator
<< and >>, member
functions cannot be
used to overload <<
and >>.

244 Programming with ANSI C++

Exhibit 6.1 Reason for choosing >> for cin and << for cout
A statement such as

cin >> MyVariable
indicates that the input coming from cin goes to MyVariable. On the other hand, a statement such as

cout << MyVariable
implies that the value of MyVariable goes to cout (to be printed on the screen). In short, ‘<<’ and ‘>>’
show the direction of movement of data. A << B indicates data movement from B to A, while A >>
B indicates data movement from A to B. This is an example of how innovative one can become while
overloading operators.

Program 6.6 shows how << and >> can be overloaded to read and write a user-defi ned object
student. Here, << is used to print student object, while >> is used to read one. Thus, when
cout << Mahesh is used, where Mahesh is a student object, it prints Mahesh object in the way
specifi ed while overloading <<. Similarly, cin >> Mahesh can also be used, which reads the
members of Mahesh object in a way specifi ed while overloading the >> operator.

PROGRAM 6.6 Friend operator overloading for reading and writing objects
//OOReadWrite.cpp
#include <iostream>
#include <string>
using namespace std;

class student
{
private:
 int RollNumber;
 string Name;
 string Address;
public:
 friend ostream & operator <<(ostream &, student &);
 friend istream & operator >>(istream &, student &);
};

ostream & operator <<(ostream & TempOut, student & TempStudent)
{
 TempOut << "Roll number is " << TempStudent.RollNumber << "\n";
 TempOut << "Name is " << TempStudent.Name << "\n";
 TempOut << "Address is " << TempStudent.Address << "\n";
 return TempOut;
}

istream & operator >>(istream & TempIn, student & TempStudent)
{
 cout << "Enter the roll number ";
 TempIn >> TempStudent.RollNumber;
 cout << "\n";
 cout << "Enter the name ";
 cin >> TempStudent.Name; cout << "\n";
 cout << "Enter the address ";
 cin >> TempStudent.Address;
 cout << "\n";
 return TempIn;
}

Operator Overloading and User-defi ned Conversions 245

void main()
{
 student CaptainStudent;
 cin >> CaptainStudent;
 cout << endl << "Following is CaptainStudent’s data \n" << CaptainStudent << "\n Bye!

\n";
}

Output
Enter the roll number 1
Enter the name Lara
Enter the address West Indies

Following is CaptainStudent’s data
Roll number is 1
Name is Lara
Address is West Indies
Bye!

How the Program Works
Using cin and cout for a user-defi ned object It is very easy to use cin and cout objects to read
and write user-defi ned objects once the << and >> operators are overloaded. Overloading these
operators reduces the difference between a user-defi ned and a built-in object to a large extent.

Note The designers of C++ have made many efforts to make user-defi ned objects to behave in a similar
manner to built-in objects; the provision of overloading << and >> operators is one of them. After
overloading these operators, a user can provide code for reading and writing objects in the program
just by inserting cout << UserDefi nedObject or cin >> UserDefi nedObject.

Overloading << and >> also simplifi es the main function because it now contains only cin
>> UserDefi nedObject or cout << UserDefi nedObject.

Inability to use a member function It is important to note that it is not possible to use
member functions to overload these two operators. While overloading these operators, it
is important to pass the fi rst argument as stream (cin or cout) and the second argument as
the user-defi ned object, whereas the fi rst argument to a member function is always the this
pointer. Therefore, if we want << to be a member function of student class, then

cout << CaptainStudent

must be written as

CaptainStudent << cout

In this statement, the reference to CaptainStudent is the fi rst argument. When we use

cout << CaptainStudent

the reference to CaptainStudent is the second argument and requires the friend function.

Returning a reference Another important point here is that the references are passed and
received, so that the user works with the same istream and ostream objects that are passed
(cin and cout) later in the same expression.

Suppose a reference is not returned and the program contains the statement.

cout << CaptainStudent << "\n Bye"

246 Programming with ANSI C++

it will not work. The reason is that

cout << CaptainStudent

is executed fi rst. Then, it needs to execute the second argument, that is, "\n Bye". If it does
not return as reference, it is not possible to have

<Reference to ostream> << "\n Bye"

Here, <Reference to ostream> is actually cout, which is returned by the operator function.
It is analogous to

(cout.operator <<(CaptainStudent)) << "\n Bye"

This function call (operator <<) is possible on LHS because it returns a reference.
Overloading operators using a reference as an argument and returning the same reference

enable the user to return the same object that is passed and not the one that is newly defi ned
in the function.

Operators such as +, −, ++, −−, <<, and << can also be overloaded when the operation
matches the original operation of the operator. We will look at =, [], (), new, and delete
operators in the following sections.

6.8.1 Overloading Assignment Operator (=)
Overloading the assignment operator is useful in various circumstances. The fi rst one is when
we have dynamic constructors (which use dynamic allocation) and destructors. Consider the
following program.

Note We can overload ‘=’ for a given class; it is called local =. When we use ‘=’ in the main program, it is
called global =, which cannot be overloaded.

// OO=.cpp
#include <iostream>
#include <string>
using namespace std;
class Item
{
 int ItemNo;
 string ItemName;
public:
 Item()
 {
 ItemNo = 0;
 ItemName = "";
 }

 Item(int TempItemNo, string TempItemName)
 {
 ItemNo = TempItemNo;
 ItemName = TempItemName;
 }

 void ShowDetails()
 {

Operator Overloading and User-defi ned Conversions 247

 cout << "\n Item number is " << ItemNo;
 cout << "\n Item name is " << ItemName;
 }
};

class customer
{
 int CustNo;
 string CustName;
 string CustAddress;
 Item *ItemsInterested;
 int TotalItems;
public:
 customer()
 {
 CustNo = 0;
 ItemsInterested = 0;
 TotalItems = 0;
 }

 ~customer();
 // It is better to write the non-inline destructor
 void operator = (customer & CustRef)
 {
 CustNo = CustRef.CustNo;
 CustName = CustRef.CustName;
 CustAddress = CustRef.CustAddress;
 ItemsInterested = 0;
 ItemsInterested = new Item[CustRef.TotalItems];
 // New memory for new object; this is the difference
 for(int i = 0; i < CustRef.TotalItems; ++i)
 {
 ItemsInterested[i] = CustRef.ItemsInterested[i];
 }
 TotalItems = CustRef.TotalItems;
 }
 customer(int TempCustNo, string TempCustName, string TempCustAddress, Item

*TempItemsInterested, int TempTotalItems)
 {
 CustNo = TempCustNo;
 CustName = TempCustName;
 CustAddress = TempCustAddress;
 ItemsInterested = new Item[TempTotalItems];
 for(int i = 0; i < TempTotalItems; ++i)
 {
 ItemsInterested[i] = TempItemsInterested[i];
 }
 TotalItems = TempTotalItems;

248 Programming with ANSI C++

 cout << "Parameterized constructor is called for" << CustName << "\n";
 }

 void ShowDetails()
 {
 cout << "\n Customer number is " << CustNo;
 cout << "\n Customer name is " << CustName;
 cout << "\n Customer address is " << CustAddress;
 cout << "\n" << CustName << " is interested in following items" << "\n";
 for(int i = 0; i < TotalItems; i++)
 {
 ItemsInterested[i].ShowDetails();
 }
 }
};

customer::~customer()
{
 cout << "Destructor is called for " << CustName << "\n";
 delete [] ItemsInterested;
}

void main()
{
 Item ItemArray[]=
 {

 Item(3, "Sandwiches"), Item(4, "Paper Bags"), Item(5, "Napkins"), Item(6, "Toys"),
Item(10, "Bananas"), Item(9, "Pen"), Item(1, "Pencil"), Item(2, "Eraser"),

 };
 customer Steve (1, "Steve Waugh", "Australia", ItemArray + 2, 6);
 Steve.ShowDetails();
 customer Mark (2, "Mark Waugh", "Australia", ItemArray + 2, 3);
 Mark.ShowDetails();
 customer Beckham;
 /* Overloading the assignment operator is mandatory here */
 Beckham = customer (3, "David Beckham", "England", ItemArray, 5);

 Beckham.ShowDetails();
}

Need for Overloading Assignment Operator
The following statement will not work if the assignment operator is not overloaded:

Beckham = customer(3, "David Beckham", "England", ItemArray, 5)

This is because the compiler creates a new temporary object from the RHS expression to pass
it on to the LHS. Immediately after the execution of the assignment statement, the temporary
object is destroyed. It destroys the dynamically allocated list of items. Memberwise copy
will only copy the pointer value and not the content; it would destroy the items that are
pointed to by the pointer of Beckham.ItemsInterested as well. This is similar to the problem
that occurred during initialization. Copy constructors have been used to solve this problem.

Operator Overloading and User-defi ned Conversions 249

We have seen earlier that initialization and assignment are different. We need to
provide a separate solution for assignment if only one for the copy constructor is
present. This has been done here.

Precautions while Overloading an Operator
Overloading the assignment operator needs some additional care. Let us try to
understand this with a few illustrations.

1. Suppose we have an overloading assignment operator for customer class such
as the one in the previous program, and we write a statement such as the
following. What will happen?

 Laxman = Laxman;

Here, we are assigning an object to itself. The object Laxman needs a dynamic
memory management; we have two different areas of memory where the fi rst
one is now not pointed to by any pointer. A solution to this problem is a single
line added at the beginning of the operator = function.

 void operator =(customer & CustRef)
 {
 if(*this == CustRef)
 /* Both the objects are the same; they do not do anything and jump to the end */
 else
 ...
 }

2. The second point about assignment operator is that the object that is assigned already
exists. Thus, we need to deallocate the memory before allocating a new one. Thus, the
following statement

 ItemsInterested = new Item[CustRef.TotalItems]

must be preceded by

 delete [] ItemsInterested

3. Another point about assignment operator is the return type. We have used void as a return
type. This is okay for normal cases, but when we write something similar to the following:

 Laxman = Ponting = Sachin

where the RHS assignment operation (Ponting = Sachin) must return an object for the LHS
operation [Laxman = (the result of Ponting = Sachin)] to be carried out, our design does
not work. We need to return the object that is being assigned within the RHS assignment
statement (i.e., Ponting = Sachin).

So, we need to return ‘customer’ and the code should also have ‘return *this’ at the
end. The code now becomes

 customer & operator =(customer & CustRef)
 {
 ...
 return *this;
 }

When we assign an
object containing
dynamically allocated
members, we must
overload the assign-
ment operator. It is
because member
-by-member copy
(default) copies only
the pointers and thus
the contents are not
copied and are de-
stroyed once the
temporary object is
destroyed.

250 Programming with ANSI C++

When one type of object is converted into another, the assignment operator can be
overloaded. We have seen that if similar types of objects are assigned to one another, they
are copied bit by bit. However, this is not the case for different types of objects. We would
look at an example when we study object conversion in Section 6.12.

Note While overloading an operator, one must check whether the same object is being assigned and skip the rest
of the code, return a reference of the object being assigned, and delete the object if it exists before assigning.

6.8.2 Array Subscript Operator ([])
The array subscript operator is overloaded usually to provide safe array operations. Suppose
the user has defi ned an integer array of fi ve elements as int IntegerArray[5]. It has elements
0 to 4 at its disposal. Suppose somewhere the user writes IntegerArray[5] by mistake, C (or
C++) would try to access that place. It calculates the address of the sixth position of the array
by having the address of the array and then using an offset of the data type for the required
number. The integer data type will have a size of either 16 or 32 bit in most of the cases.

Suppose the array starts at position 100, the expression IntegerArray[5] would try to look
at the location 100 + 5*(size of integer) and pick up whatever is stored at that location. C
or C++ by default does not check for array boundaries. Why is it so? Let us fi nd the reason.

When we write the code containing arrays, if C (or C++) compiler inserts code for
checking array boundaries, it not only bloats the size of the executable code generated but
also slows the execution as well. This is because every time the array element is referred
to, the compiler checks for array boundaries. Such a check might be useful in one out of
(may be) hundred cases. C was designed to be used by top-fl ight programmers; they are not
expected to commit such errors. So, C has chosen effi ciency over robustness.

Note C or C++ compilers do not check for array boundary errors for the reason that they want to optimize
the executable fi les for time.

It is not possible to have a check in C if it has not been provided by default. However, C++
provides a facility that is easy to use if we know about operator overloading. It provides the
facility to create a safe array, which performs checks for array boundaries as well. This is

how it is done. If we write an expression such as <array name>[<sub script>] or
IntegerArray[5], it is similar to <array name>[]<sub script> or IntegerArray[]
(5). Here, [] is treated as an operator similar to the + operator discussed earlier.
We can overload it to provide a check for array boundaries. Consider Program
6.7. SafeIntArray is now a class. Suppose we defi ne an object SafeArray of
SafeIntArray type, then we are guaranteed to get run-time errors if we try to
access the subscript, which is out of range.

Unlike C, C++ can
help the programmer
to check for array
boundaries by over-
loading the array sub-
script operator ([]).

PROGRAM 6.7 Overloading the Array Subscript Operator
//OO[].cpp
#include <iostream>
using namespace std;

class SafeIntArray
{
 int Array[5];
public:
 int & operator[](int Index)

Operator Overloading and User-defi ned Conversions 251

 {
 if((Index < 0) || (Index > 4))
 {
 cout << "Subscript out of range";
 exit(1);
 }

 else
 return Array[Index];
 }
};

void main()
{
 SafeIntArray SafeArray;
 SafeArray[0] = 5;
 SafeArray[−1] = 10;
 // This will produce a run-time error
 SafeArray[5] = 9; // This will also generate a run-time error
}

How the Program Works
Let us understand how the [] operator is overloaded. It has only one argument, the
index.

int & operator[](int Index)

The call SafeArray[0] is similar to SafeArray.operator[](0).
This IndexValue (0 in this case) is used to check in the overloaded operator

function whether it is going out of boundaries.
We have returned reference to int rather than int itself in the overloaded [].

This is needed for having expressions such as SafeArray[0] = 5; because only
then can we use the function call (SafeArray[0]) on the LHS of an assignment
statement. If we defi ne the operator function to return int instead of int &, it
would not be possible to use expressions such as SafeArray[0] = 5;

We may think that this safe array program is trivial. It has a fi xed size (10) and fi xed
data type (int). This is hardly useful in any application. When we study templates in
Chapter 7, we will look at an example to see how the problems of providing safe
array of any user-specifi ed type and of size can be solved.

6.8.3 Function Call Operator
Suppose a class Point is defi ned for representing two-dimensional points. It may have
defi nitions such as Point P1(2, 3) where 2 and 3 are the x and y coordinates, respectively. It
is possible to use the constructor for the same. Statements such as Point P1; P1(2, 3); may
be needed, where the explicit call to the constructor is not made, that is, it is not written as
P1 = Point(2, 3). P1(2, 3) is far simpler and easier to understand than P1 = Point(2, 3).
This can be achieved by overloading the () operator.

The () operator is also known as the function call operator. It is overloaded for improving
the readability of the code. A better usage is to have a function object. Consider the following
program. It shows how program readability is improved by overloading the () operator. We
have also overloaded << operator for printing the coordinates of the point.

A reference must be
returned in case of
[] operator being
overloaded. Array
expressions such as
a[5] = 10 will not work
otherwise. This is an
example of a function
returning reference
being used as an
LHS.

252 Programming with ANSI C++

When the function
call operator is over-
loaded for a class,
the objects are called
in the same manner
as functions. Such
ob-jects are called
function objects and
are preferred by ex-
pert programmers in
many cases.

//OO().cpp
#include <iostream>
using namespace std;
class Point
{
 int X;
 int Y;
public:
 void operator ()(int TempX, int TempY)
 {
 X = TempX;
 Y = TempY;
 }
 friend ostream & operator <<(ostream & TempOut, Point & Pt);
};

ostream & operator <<(ostream & TempOut, Point & Pt)
{
 TempOut << "(" << Pt.X << "," << Pt.Y << ")\n";
 return TempOut;
}

void main()
{
 Point P1, P2;
 P1(2, 3);
 P2(4, 5);
 cout << P1;
 cout << P2;
}

6.9 FUNCTION OBJECTS

When the () operator is overloaded for a class, the objects of that class can be used
similar to a function. Such objects are known as function objects as it is possible to call them
in the same way as a function. In the previous program, P1(2, 3) looks like a function call.

Using such statements helps the users to call the overloaded () operator function.
The advantage of using a function object over normal function is twofold.

1. The fi rst advantage is that it is possible to store some information in member
variables. The execution of function objects can be controlled by these variables.

2. The second advantage is that the code with a function pointer can sometimes
be replaced by template-based function objects. This is advantageous because
it is not possible to make function pointers inline whereas a function object
call can be inline.

Programs 6.8 and 6.9 solve the same problem in different ways. There are
multiple functions to call, namely, Plus, Minus, Divide, and Multiply. The

Operator Overloading and User-defi ned Conversions 253

signature remains the same for all the four functions, except the name of the function.
Program 6.8 uses (non-member) function pointers, whereas Program 6.9 uses function
objects, which is the focus of this chapter.

PROGRAM 6.8 Solution using function pointers
//UsingFunctionPointer.cpp
#include <iostream>
using namespace std;

int Plus (int TempX, int TempY)
{
 cout << "Plus() function is called \n";
 return TempX + TempY;
}
int Minus (int TempX, int TempY)
{
 cout << "Minus() function is called \n";
 return TempX − TempY;
}

int FunctionPointer(int(*FunPtr) (int, int), int Arg1, int Arg2)
{
 return FunPtr(Arg1, Arg2);
}

void main()
{
 int Argl = 20;
 int Arg2 = 5;

 /* The function itself is passed as an argument in the following statements */
 cout << FunctionPointer(Plus, Arg1, Arg2) << "\n";
 cout << FunctionPointer(Minus, Arg1, Arg2) << "\n";
}

Output
Plus() function is called
25
Minus() function is called
15

How the Program Works
The program is simple enough except for the use of a function pointer in calling the function.

Observe the call

 cout << FunctionPointer(Plus, Arg1, Arg2) << "\n";

The fi rst argument is the name of a function. Any function can be called here by name and
arguments.

Advantage The advantage of this mechanism is that we do not need a switch statement
and the large number of comparisons in it. The function to be called is the fi rst argument.
Such a technique is very handy for those who are writing programs for compilers and have
to generate object codes for a number of similar function calls. The header of the function
that is called must have the argument consisting the function pointer.
int FunctionPointer(int(*FunPtr)(int, int), int Arg1,int Arg2)

{

254 Programming with ANSI C++

 return FunPtr(Arg1,Arg2);
}

Function pointer argument The fi rst argument is int(*FunPtr)(int, int). This is a
pointer to the function, which returns int and has two int arguments. It should be noted
that both functions come under this category. Moreover, the call FunPtr(Arg1, Arg2) is a
shorthand notation of (*FunPtr)(Arg1, Arg2). It is also apparent that the function call here
is an indirect call, which is diffi cult to inline. Now, look at Program 6.9, which is the next
version of the program that solves the same problem in a different way, that is, using function
objects. We have classes now representing the concept of Plus and Minus. The process of
adding and subtracting is now represented by the operator () of their respective classes.

Note Function pointers are pointers to functions, whereas function objects are objects with the () operator
overloaded. We can see that processes such as add and subtract are implemented as a class with
() overloaded. The user would still see it like a function but a programmer gets a far better level of
control, as there is a class to handle that function call.

PROGRAM 6.9 Function objects
//FunctionObject.cpp
#include <iostream>
using namespace std;

class Plus
{
 int X; int Y;
public:
 int operator ()(int TempX, int TempY)
 {
 X = TempX;
 Y = TempY;
 cout << "Plus operator () is called \n";
 return X + Y;
 }
};

class Minus
{
 int X; int Y;
public:
 int operator ()(int TempX, int TempY)
 {
 X = TempX;
 Y = TempY;
 cout << "Minus operator () is called \n";
 return X − Y;
 }
};

// Template defi nition
template <typename TypeFunObj>
FunObj(TypeFunObj fob, int Arg1, int Arg2)
{
 cout << fob(Arg1,Arg2);
 cout << "\n";
}

Operator Overloading and User-defi ned Conversions 255

void main()
{
 Plus P;
 Minus M;

 int Arg1 = 20;
 int Arg2 = 5;

 /* The function itself is passed as an argument in all following four arguments: */
 cout << FunObj(P, Arg1, Arg2);
 cout << FunObj(M, Arg1, Arg2);
}

How the Program Works
The program is self-explanatory except for the template defi nition and its use.
We will discuss that part alone here.

Readers may wonder why function templates have been used here. We will be
studying function templates in detail in Chapter 7, but, for the time being, keep
in mind that we need it while using function objects. Unlike function pointers
that deal with pointers, function objects deal with classes and call to such objects
require the class object (instead of the function pointer) to be passed.

Calling a function object The call to the function FunObj, the fi rst argument,
is the function object. P and M are function objects representing Plus and Minus. Look at the
template defi nition now. As templates are discussed in detail in Chapter 7, as of now assume
TypeFunObj to be a user-defi ned type of some sort; here, it is the type of the fi rst argument.

When FunObj(P, ...) is called, the fi rst argument is of type Plus. Therefore, the compiler
takes the value of TypeFunObj to be Plus. Similarly, when FunObj(M, ...) is called, the
TypeFunObj is taken as Minus. The code fob(Arg1, Arg2) is replaced by Plus(Arg1, Arg2) by
the compiler at the time of compilation, when TypeFunObj is Plus.

template <typename TypeFunObj>
FunObj(TypeFunObj fob, int Arg1, int Arg2)
{
 cout << fob(Arg1, Arg2);
 cout << "\n";
}

The fob(Arg1, Arg2) will be replaced by their respective objects (P and M, respectively). The
call fob(Arg1, Arg2) in FunObj(P, Arg1, Arg2) becomes P(Arg1, Arg2). The operator ()
is overloaded for P object, and we have here a call to this operator. Thus, it is equivalent to
calling a function Plus in this case.

The function call here is not indirect as in Program 6.8; hence, it is possible to have the
function inline. This is the advantage of function objects. In fact, all operator () in this code
are defi ned inside the body of the class and are thus inline by default.

6.10 OVERLOADING new AND delete

One of the advantages of using new and delete in place of malloc() and free() is their ability
to be overloaded. Section 6.11.1 describes how new and delete can be overloaded.

Unlike a function call
using pointers, the
function object de-
ploys direct calling,
which enables the
programmer to make
the functions inline.

256 Programming with ANSI C++

6.10.1 Overloading new and delete using malloc() and free()
Consider Program 6.10 to understand how new and delete operators can be overloaded.

PROGRAM 6.10 Overloading new and delete
//OONewDelete.cpp
#include <cstdlib> #include <iostream>
using namespace std;

class Test
{
 int i;
public:
 Test(): i(0)
 {
 cout << "Constructor is called\n";
 };

 ~Test()
 {
 cout << "Destructor is called\n";
 };
 void *operator new(size_t size);
 void operator delete(void *P);
};

void *Test::operator new(size_t size)
{
 void *p = malloc(size);
 if(!p)
 {
 cout << "memory allocation failure";
 exit(0);
 }
 return p;
}

void Test::operator delete(void *p)
{
 free(p);
}

int main()
{
 Test *TestPtr = new Test;
 delete(TestPtr);
}

Overloaded new does
not require deciding
the type of the pointer
it returns. The pro-
grammer just returns
a void pointer, which
is converted to a valid
type by the compiler.

How the Program Works
Overloading both operators We have overloaded new and delete for the
class Test and these operators are called when new Test or delete TestPtr is
invoked. The overloaded operator new calls malloc() to allocate memory. The
header cstdlib is included for calling malloc().

Syntax of new and delete new takes a single argument of type size_t, which is
the size of the class. It is important to note that the overloaded new does not return
the pointer to the specifi c object; it returns the void pointer. It is surprising to fi nd
that there is no need to cast this to the respective pointer. In fact, it is done by the

Operator Overloading and User-defi ned Conversions 257

compiler. Similarly, delete is implemented in terms of free(). It is defi ned to
accept a void pointer. Again, when we pass a specifi c pointer such as TestPtr, we
need not cast it because the compiler automatically does that for us.

Overloading operators such as new and delete is required if the memory
management is to be done by the programmers. It is possible for them to take
a big amount of memory and then allocate and deallocate it themselves. The
system-defi ned new is known as global new. It is possible to overload new
only for a given class and not the global new. The global new is available
to all classes but the overloaded new is available only to the class in which it
is overloaded. This is obvious when we want to write something such as the
following:

SomeClassPtr = new SomeClass;

We would like to control how SomeClass is assigned the memory space. It is
obvious that we cannot overload global new as we should not control how C++ allocates
memory to different classes. In Section 6.11.2, we will see a case where we defi ne a
tablespace and allocate memory from that space.

Databases use a similar concept for allocating memory for the tables that they defi ne
inside a given tablespace. The advantage of such mechanism is that the programmer can
control how and from where the memory is allocated. It is possible to exercise more controls
while allocating and deallocating (for example, clearing previous contents before allocating,
which would be very useful for a banking server).

Program 6.11 shows how memory can be managed by a programmer by overloading new
and delete. Though we have not provided any additional mechanism to control, one can
easily extend this program for this purpose.

6.10.2 Overloading new and delete using ::new
Program 6.10 used malloc() for memory allocation in the body of the overloaded new. We
can also use the system-defi ned new in its place. The system-defi ned original new operator is
referred to as the ::new; or the global new.

PROGRAM 6.11 Overloading new and delete for memory management
//OONewDeleteForDatabase.cpp
#include <cstdlib>
#include <iostream>
using namespace std;
#defi ne TABLESPACE_SIZE 32

class Test
{
 int i;
public:
 static char *TableSpace;
 static char *CurrentPtr;
 static char *OldPtr;
 static bool FirstTime;

 Test(): i(0)
 {
 cout << "\n Constructor is called";
 }

258 Programming with ANSI C++

 ~Test()
 {
 cout << "Destructor is called";
 };

 void *operator new(size t size);
 void operator delete(void *P, size_t size);
};

char *Test::CurrentPtr;
char *Test::OldPtr;
char *Test::TableSpace;
bool Test::FirstTime = true;

void *Test::operator new(size_t size)
{
 if(Test::FirstTime)
 {
 /* First time! Allocating memory large enough to hold the entire tablespace */

 Test::TableSpace = (char *)::new char[TABLESPACE_SIZE];
 Test::CurrentPtr = Test::TableSpace;
 printf("\n Test::TableSpace pointer is %u", Test::TableSpace);
 printf("\n Current pointer is %u", Test::CurrentPtr);
 printf("\n Old pointer is %u", Test::OldPtr);
 Test::FirstTime = false;
 }

 /* When we want memory space that goes beyond the tablespace available */

 if((Test::CurrentPtr + size) > (Test::TableSpace + TABLESPACE_SIZE))
 {
 cout << "\n Memory allocation failure";
 getchar();
 exit(0);
 }

 Test::OldPtr = Test::CurrentPtr;
 /* Old pointer to be returned. New pointer would be useful for allocation of new memory

in the next cycle */

 Test::CurrentPtr = Test::CurrentPtr + size;
 cout << "\n Memory allocated \n";
 printf("Current pointer is %u", Test::CurrentPtr);
 printf("\n Old pointer is %u", Test::OldPtr);
 return Test::OldPtr;
}

void Test::operator delete(void *p, size_t size)
{
 ::delete p;
}

int main()
{
 while(true)
 new Test; // Continue allocating until it runs out of memory
}

Output
Test::TableSpace pointer is 48770560
Current pointer is 48770560
Old pointer is 0
Memory allocated

Operator Overloading and User-defi ned Conversions 259

Current pointer is 48770564
Old pointer is 48770560
Constructor is called
Memory allocated

Current pointer is 48770568
Old pointer is 48770564
Constructor is called
Memory allocated

Current pointer is 48770572
Old pointer is 48770568
Constructor is called
Memory allocated

Current pointer is 48770576
Old pointer is 48770572
Constructor is called
Memory allocated

Current pointer is 48770580
Old pointer is 48770576
Constructor is called
Memory allocated

Current pointer is 48770584
Old pointer is 48770580
Constructor is called
Memory allocated

Current pointer is 48770588
Old pointer is 48770584
Constructor is called
Memory allocated

Current pointer is 48770592
Old pointer is 48770588
Constructor is called
Memory allocation failure

How the Program Works
For demonstration purposes, we have defi ned a small tablespace of 32 bytes and 4 bytes
will be allocated from that tablespace for each operation. The program centres around the
tablespace design and memory allocation. The tablespace is initialized at the beginning by
allocating enough memory to it (32 bytes).

Initializing the tablespace Let us try to understand the program. Let us begin with the
defi nition of the size of tablespace.

#defi ne TABLESPACE_SIZE 32

The program contains a small tablespace of 32 bytes. It has a class Test having only one data
member int i whose size is four bytes. The objects of class Test are stored in the tablespace
of size 32. Thus, it is possible to have a total of eight such objects in the memory of 32 bytes.
We have overloaded new, which does two things:

1. It allocates 32 bytes to the static char pointer TableSpace at the beginning. Then, out of
these 32 bytes, it allocates four bytes for the fi rst object.

260 Programming with ANSI C++

2. From then onwards, it allocates four more bytes for the next object every time until it runs
out of memory (32 bytes).

This is illustrated in Figs 6.1, 6.2, and 6.3. Figure 6.1 shows how the memory looks just
before the fi rst insertion and after the fi rst insertion. It also throws light on how the variables
are set with respective values before and after the operation. Figure 6.2 shows the case where
the third insertion is made in the same place. It also indicates how the variable values are
changed after that operation. Figure 6.3 indicates the case where the memory is completely
occupied.

The fi rst call allocates memory for the entire Tablespace, which is of 32 bytes, that is,
eight chunks of four bytes each.

It is not possible to allocate memory after this and thus the allocation fails.

Using static members We have defi ned four static variables in the class Test. It is
important to learn why static members are used here. We need to keep track of the memory
places irrespective of the number of objects. These members, in true sense, belong to the
class and not the objects.

Fig. 6.1 Memory before and after fi rst insertion

Old pointer NullCurrent
pointer

Current
pointer

Old pointer

Free space

Tablespace
 pointer

Tablespace
 pointer

Used-up space

(After first insertion)

Fig. 6.2 Memory before and after third insertion

Old pointer
Current
pointer

Current pointer
Old pointer

Free space

Tablespace
 pointer

Tablespace
 pointerUsed-up

space Used-up
space

(After third insertion)(Before third insertion)

Operator Overloading and User-defi ned Conversions 261

Fig. 6.3 Memory before and after eighth insertion

Old pointer
Current
pointer

Current pointer
Old pointer

No free space

Free space

Tablespace
 pointer

Tablespace
 pointer

Used-up
space

Used-up
space

(After eighth insertion)(Before eighth insertion)

Let us take a detour to understand this. Suppose we have two statements as follows:

1. Sachin is a man.
2. Men are distributed all over the world.

These statements imply that Sachin is distributed all over the world.
Why is this implication wrong? It is because when the class attribute is inherited into an

element, it must be an attribute for the objects and not for the class itself. The example given
here is an attribute that is related to the class (the class is distributed all over the world and
not the individual objects). Static variables represent class attributes (which are not inherited
by the elements of the class, that is, the objects). This is an example where one can see the
need for such members and how a programmer can use them.

Memory allocation The fi rst static variable holds the pointer to the memory that we would
like to allocate ourselves. So, when we get memory allocated for the fi rst time, we have to
allocate memory (32 bytes in our case) from the heap, and we make the memory pointed
to by the pointer as TableSpace. Subsequently, every time allocation is needed, four bytes
are taken from that chunk and allocated. Next, the two pointers are for traversing in the
memory. The current pointer points to a place where the next memory would be allocated,
and the old pointer points to a place where the current memory is allocated. In the fi rst
new operation, complete tablespace memory is allocated from the heap; for all subsequent
operations, memory is allocated from this tablespace memory and not the heap. The memory
has to be allocated differently in the fi rst new call from the other calls. The bool variable
FirstTime tells us if new is called for the fi rst time. The process of allocation and movement
of the current and old pointers is also shown in Figs 6.1, 6.2, and 6.3.

Constructor calls and ::new We have defi ned the constructor and destructor for the
Test class as well. It is interesting to see that though we do not call constructor from the
overloaded new, it is automatically called. The call to constructor is added by the compiler in
the overloaded new function. Moreover, look at the call to ::new in the body of the function
operator new(). It will call the global new defi ned by the system. We use ::new to get the
memory required for our tablespace from the heap.

Delete operation The delete operator is overloaded with two arguments, namely, void
pointer and size_t type variable size. The second parameter here is not important. We can
call delete with both versions, that is, one argument (void * only) and two arguments (void

262 Programming with ANSI C++

* and size_t). The size of the object is automatically determined if the second argument is
not provided. When the class in which delete operator is defi ned is inherited, we need the
second argument. Another interesting point is that ::delete is called in the destructor. The
::delete is used to undo what overloaded new has done, that is, deallocate memory pointed
to by P.

Stage-wise deallocation Complex deallocation process, which deallocates memory
similar to the allocation routine, is not implemented here to avoid complexity. If deallocation
routines similar to allocation are written, it will be diffi cult to fi nd the blocks that are allocated
and those that are free. We need an additional array with bool values indicating the slots that
are allocated and those that are free. From the list, it will be possible to allocate any slot that
is free. Our solution devised for the purpose of showing overloaded new and delete is not
complex. Look at the following condition in the case of the overloaded new.

Testing memory allocation failure The following allocation algorithm checks whether the
memory we are trying to allocate is within the tablespace limit. If it is beyond the tablespace
limit, it displays a failure message and the execution of the program will be terminated.

if((Test::CurrentPtr + size) > (Test::TableSpace + TABLESPACE_SIZE))
{
 cout << "\n Memory allocation failure";
 getchar();
 exit(0);
}

The output shows how the current and the old pointers are incremented. When the current
pointer reaches the end, we get the memory allocation failure message.

6.11 USER-DEFINED CONVERSIONS

Object assignment is straightforward if both the objects involved are of the same type. The
assigned object members are copied to the object being assigned. We call it member-by-
member copy. However, when they are of different types, say, time in two different formats
represented by two different types of objects, then we need user-defi ned conversion. Why?
As the objects are different and the members are not the same, the compiler cannot go
for member-by-member copy. Before getting into the details of user-defi ned conversion,
let us see what we mean by implicit conversions, which is automatically provided by the
compilers.

Note Normal assignments involve member-by-member copy. However, when both sides of the assignment
statement have different types of objects, one must instruct the compiler how to copy. User-defi ned
conversion is a way to solve this problem.

6.11.1 Implicit Conversions
Conversion from one type into another is sometimes needed. C provides a large number
of conversions automatically. Moreover, typecasting can also be used to provide type
conversions. Both these conversions are possible in C++ as well. In addition, it is also possible
to provide user-defi ned conversions (conversion from an object of one class to another, from
an object of a class to a built-in type, or from a built-in type to an object of a class).

Operator Overloading and User-defi ned Conversions 263

Implicit conversions are automatically carried out by the compiler as and when encountered
in the code. The following is one such example:

int I = 0;

fl oat F = 4.5;

I = F + 2;

Here, we are assigning 6.5 to the integer variable I. It is implicitly cast to integer to get 6 as
an answer in I. Instead, we can write the following expression.

I = (int)F + 2

This expression is better as we explicitly cast the value; it is more readable as well. Although
it is possible to cast one type into another if needed, the C++ compiler provides the automatic
casting in a few cases. They are described as follows:

1. When an arithmetic expression contains heterogeneous types: These occur when there
is more than one type of operand in an arithmetic type. The compiler picks up the
widest type of operand to convert. Look at the following examples. Consider variables
defi ned as

 int I = 5;
 fl oat F = 4.5;
 double D = 12.34;

 D = I + F

(Here, I and F are both converted to double and then added; this sum is assigned to D.
It is analogous to writing

 D = (double)I + (double)F

If we write

 fl oat F2 = F + I

then I is cast to fl oat by the compiler similar to the earlier statement.
2. Conversion to bool data type when int is used instead and vice versa: C programmers

tend to use integer variable for testing truthfulness. If a similar code is found by a C++
compiler, it will cast that variable into bool data type. Similarly, if the bool variable is
used as an RHS in an assignment involving LHS as an integer, the integer variable is
assigned the value zero or one depending on the truthfulness of the bool variable. Look at
the following examples. Assume int Flag1 and int Flag2 are defi ned.

(a) if(Flag1) cout << "Go Ahead!"; is the same as if((bool) Flag1) cout ...
(b) if(!Flag2) cout << "Do not move!" is the same as if((bool)! Flag2) cout...
(c) I = Flag1 (if Flag1 is true, I is assigned one; otherwise, it is assigned zero after

casting the bool value to int) is the same as I = (int)Flag1.

3. At the time of initialization, if the value or variable used to initialize is of a different type,
then that value or variable is cast to the LHS data type automatically. Following are the
examples:

(a) int J = 4.5 will assign 4 to J by casting 4.5 to int
(b) int J = F will assign 4 to J by casting F to int

264 Programming with ANSI C++

(c) int *p = 0 (We can assign zero value to a pointer variable). In this case, zero is
cast from int to pointer to int; thus, p is made to point to null. Zero is the only value
possible to be used here. It is indicative of null value. In the given expression, p now
points to null.

Note It is normal practice by programmers to assign 0 (zero) to a pointer in C++. It means null and the
pointer is given a null value. In C++ 11, we have an explicit null pointer.

4. When signed and unsigned values are used together in an expression or short and long
are used, then the compiler picks up wider values, which can preserve the meaning of the
variable.

Note If long and short are used in the same expression, short is converted to long. Moreover, if both
signed and unsigned are used in the same expression, the signed value is converted to unsigned. If
the signed value is negative, an incorrect value is assigned to the unsigned variable but no error is
fl agged. More importantly, when conversions between other combinations are used, the conversion is
compiler dependent.

5. Any pointer can be converted to void * (but not vice versa; a void pointer needs a cast to
be converted to any other type unlike C). For example,

 int *q = &I;
 void *p = q;

(Here, q is an integer pointer and p is assigned q after implicitly casting it into void
pointer by the compiler.)

6. Array name (which is a static pointer pointing to the fi rst element of an array) can be cast
to normal pointer when used in assignment. For example,

 int a[10]; int *p = a;

(Static pointer a is cast to normal pointer and assigned to p)
Now, p is pointing to the fi rst element of the array.

7. Enumeration type is converted to int: For example,

 enum employee{DailyWages = 1, Temporary, OnProbation, Permanent};

This assigns the values of 2, 3, and 4 to Temporary, OnProbation, and Permanent values,
respectively. Now, we can write something like this:

 int Salary = OnProbation * DaysAttended

which is equivalent to multiplying DaysAttended and 3.
8. Non-constant is converted to constant: Whenever a const is initialized or assigned with

a value or variable that is not constant, the value or variable is cast to constant before
assignment.

 const CI = I

This converts the I value to const integer before assignment.

Note Default member-wise copy does not work if both operands are of dissimilar types. Neither does
C++ provide a default behaviour when the objects involved on both the sides of the assignment are
different. When such an assignment is provided, it confuses the compiler and the program does not
compile.

Operator Overloading and User-defi ned Conversions 265

The bottom line is that when we need to assign different types of objects, we need to write
our own conversion routine to guide the compiler what to do when such assignments are
provided. User-defi ned conversions are needed in four different cases as mentioned in the
following sections.

6.11.2 Built-in Data Type to Object
One specifi c method to solve the problem of dissimilar objects assignment is to use
constructors. For example, Complex C1 (2, 3) takes two arguments of built-in data type and
converts to a Complex object. Wherever we use constructors, we convert the argument types
to the native object type of the constructor. Let us see an example of this case. Suppose we
defi ne a class Length and would like to have a constructor as follows:

class Length
{
 int L
 ...
public:
 Length(int TempLength = 0)
 {
 L = TempLength;
 }
};

Now, if we defi ne an object using a statement such as Length DoorLength(8), basically we
construct the object from 8, an integer value. In a way, we are converting an integer value
into an object.

6.11.3 Object to Built-in Data Type
Suppose we have a LoggedInUser class with contents such as Name, Token (which indicates
access rights for the user), and few other information that are important for a program.
We may need to print error messages for a given LoggedInUser along with the user’s
name. In that case, we write cout << LIU1.Name where LIU1 is an object of LoggedInUser
class. This has a problem. If Name is declared as private, this statement will not work. We
have to either make Name public and face the consequences or write a member function
to access the name. The biggest consequence of making Name public is that it defeats
the purpose of defi ning a member as private and keeping the interface to the class
uncluttered. It also allows the user to modify the value in any manner that he deems fi t,
unlike the case where we provide public functions to access that private variable which
enables us to have controlled access to that member. When we write a function such as
PrintName(), we may need to write LIU1.PrintName(). It is better to write just LoggedInUser
to get the user id instead of cout << LIU1. This can easily be done using a conversion
function.

Program 6.12 shows how we can convert an object to a built-in data type. In addition,
the program also shows the usage of an array of pointers and how it leads to effi cient
memory management. When a new user is encountered, we allocate memory for the user
and then make the pointer point to that location. Thus, we only allocate memory for the users
encountered and not for the entire array.

266 Programming with ANSI C++

Note Converting objects of built-in types is a common operation in Java. For example, the toString
method converts the class object to string. Though string is also an object in Java, it is still useful to
have such a feature.

PROGRAM 6.12 Object to built-in data type
//ObjectToBuiltIn.cpp
#include <iostream>
#include <string>
using namespace std;

class LoggedInUser
{
 string Name;
 int TokenNo;
 static int TotalLoggedIn;
public:
 LoggedInUser()
 {
 TotalLoggedIn++;
 cout << "\n You are user number " << TotalLoggedIn << "\n Welcome! \n";
 }

 void InsertName()
 {
 cout << "Insert name of the new user ";
 cin >> Name;
 }

 /* The following is the function of our interest; it converts the object to string
operator */

 string()
 {
 return Name;
 }
};

int LoggedInUser::TotalLoggedIn;

void main()
{
 LoggedInUser *ArrayOfUsers[100];
 int index = 0;
 int Choice;

 while(true)
 {
 cout << "\n1. New user \n";
 cout << "2. List all users \n";
 cout << "3. Exit from the program \n";
 cout << "Enter your choice ";
 cin >> Choice;

 if(Choice == 1)
 {
 if(index == 100)
 {
 cout << "\n Too many users! \n";
 exit(1);
 }

 ArrayOfUsers[index] = new LoggedInUser; ArrayOfUsers[index]−>InsertName();

Operator Overloading and User-defi ned Conversions 267

 index++;
 }
 else if(Choice == 2)
 {
 for(int i = 0; i < index; ++i)
 {
 /* The conversion takes place here */
 string NameOfUser = *ArrayOfUsers[i];

 /* One of the following could also be used instead */
 cout << (string) *ArrayOfUsers[i] << "\n";
 cout << string (*ArrayOfUsers[i]) << "\n";

 /* In both the cases, the conversion is done with the help of typecasting.
The fi rst case is C-style casting whereas the next one is a newer cast
available in C++ */

 cout << NameOfUser;
 }
 }
 else
 exit(0);
 }
}

How the Program Works
We will only look at the code that converts the object into a built-in type value. String is
considered to be a built-in type in the following. In a strict sense, it is not built in but is a part
of Standard Template Library (STL).

Conversion of user object into string In the following statement

string NameOfUser = *ArrayOfUsers[i];

we have assigned the object to a string. It is acceptable to the compiler because we have
written a conversion function. The conversion function itself is very simple. Let us look at
it again.

operator string()

{

 return Name;

}

The other two statements that perform a similar conversion are as follows:

cout << (string) *ArrayOfUsers[i] << "\n";

cout << string (*ArrayOfUsers[i]) << "\n";

This function converts the object of type LoggedInUser to a string. It tells the compiler to
convert LoggedInUser to a string, and then copy the Name value of LoggedInUser to the string.

Operator function Though we have not specifi ed, we are returning an object of type
string in the operator function. We cannot specify a return type in the header of an operator
function. The syntax of a header is as follows:

operator <built-in type name>()

268 Programming with ANSI C++

{
 body of the function
}

Note The function that provides guidance of conversion from one type into another is called the operator
function. It contains with the word ‘operator’, the type to convert to, and the body of function
indicating how it will be done.

Here, the return type and the argument are not specifi ed. The return type is actually the
built-in-type-name that we have specifi ed after the keyword operator. The argument
list must be empty. Here, <built-in-type> (string in the given example) is treated as an
operator.

Thus, operator string returns string, operator int returns int, operator fl oat returns
fl oat, and so on.

Note We cannot defi ne an operator function returning a type as a friend. It has to be a member function.

6.11.4 Wrapper Classes
Some of the built-in types are not objects, for example, int, char, etc. However, for

complete object orientation, they should be objects. For instance, if we want to have
an integer class, we can specify the functions for reading the integer with proper
validation checks. If they are defi ned as class, we can inherit them to have our own
class of, say, positive integers from one to some maximum number. A class
that provides a basic data type with such additional facilities is known as a
wrapper class.

Sometimes, we may need to convert the wrapper class object into built-in
type object and vice versa. Converting from built-in type to wrapper is possible
using constructors and the inverse is possible using conversion operators.
Program 6.13 is an example of the same.

A wrapper class for a
built-in data type con-
tains that basic data
type and facilities such
as error handling, con-
version to built in type
to and fro, initializing
to some value (e.g.,
zero to integer type),
and so on.

PROGRAM 6.13 A wrapper class for integer
//Wrapper.cpp
#include <iostream>
#include <string>
using namespace std;

class Integer
{
private:
 int Value;
public:
 friend ostream & operator <<(ostream &, Integer &);
 friend istream & operator >>(istream &, Integer &);

 /* Conversion using constructor*/
 Integer(int TempVal = 0)
 {
 Value = TempVal;
 }

 /* Conversion using operator */

Operator Overloading and User-defi ned Conversions 269

 operator int()
 {
 return Value;
 }
};

ostream & operator <<(ostream & TempOut, Integer & TempInteger)
{
 TempOut << TempInteger.Value;
 return TempOut;
}

istream & operator >>(istream & TempIn, Integer & TempInteger)
{
 TempIn >> TempInteger.Value; return TempIn;
}

void main()
{
 Integer Int1 = 5;
 // The constructor is applied

 Integer Int2;
 int int1;
 int int2 = 7;
 int2 = int2; // The constructor is applied
 int1 = Int1; // The operator is applied here

 cout << "Integer value is" << Int1 << "int value is" << int1 <<"\n";
 cout << "Integer value is" << Int2 <<"int value is" << int2 <<"\n";
}

How the Program Works
We will only look at the important statements of this program in this section.

Using Integer and int interchangeably We have used Integer and int interchangeably
in this example without hinting that Integer is actually a class. The advantage of using
wrapper class objects compared to the raw data types is that validations of our choice can
be provided. When not initialized explicitly, an Integer object would be initialized with the
value zero.

Inheritance advantage It is also possible to inherit such classes into classes of our choice.
For example, a class of positive integers can be inherited from the Integer class. Moreover,
the use of the overloaded << and >> should be noted. This makes the wrapper class identical
to a built-in data type.

Operator function and constructor Our concern here is the operator int. This function
provides the facility of converting the Integer type to int. Thus, a user-defi ned object can be
converted to that of a built-in type. A conversion from built-in type to a user-defi ned object
is also possible using constructors.

6.11.5 Conversion of Object Type using Constructors
It is possible to convert from one type of object into another using either constructors or
conversion functions. There are two different cases in such conversions. They are conversion
from a foreign object into a native one and vice versa. The conversion from a foreign object

270 Programming with ANSI C++

into native one is done using constructors. We will
study how to use constructors to convert one object
into another in this section.

Consider a class Point, which can be represented
in the format in which a point is described by an x
and a y coordinate. This format is known as rectan-
gular coordinates or Cartesian coordinates system.
Point can also be defi ned using the angle made with
the x-axis and the radius as a distance from the ori-
gin. This is known as polar coordinates system
(refer Fig. 6.4). A system may have both the repre-
sentations and need a method for conversion between
them.

The mathematical formulae for conversion between the two are as follows:

1. Conversion from polar to Cartesian coordinates

 X = Radius * cos(angle)
 Y = Radius * sin(angle)

2. Conversion from Cartesian to polar coordinates

 Angle = atan(X/Y)
 Radius = sqrt(X * X + Y * Y)

In Program 6.14, conversion is shown using a constructor function.

PROGRAM 6.14 Polar to Cartesian object conversion using constructors
//PolarToCartesianl.cpp
#include <iostream>
#include <string>
#include <cmath>
using namespace std;

class Polar
{
 double Radius;
 double Angle;
public:
 Polar(double TempRadius = 0, double TempAngle = 0)
 {
 Radius = TempRadius;
 Angle = TempAngle;
 }

 double GetRadius()
 {
 return Radius;
 }

 double GetAngle()
 {
 return Angle;
 }
};

Fig. 6.4 Cartesian and polar coordinates

Y coordinate

X coordinate

Y axis

X axis

Distance
from
origin

Angle

Operator Overloading and User-defi ned Conversions 271

How the Program Works
The statement Cpoint2 = Ppoint2 is important. It is a shorthand notation of Cpoint2 =
Cartesian (Ppoint2), thus casting Ppoint2 to Cartesian. The C++ compiler will not fl ag
an error here if the conversion is defi ned. In this case, the conversion is defi ned using a
constructor.

Cartesian(Polar PolarPoint)
{
 fl oat TempRadius = PolarPoint.GetRadius();
 fl oat TempAngle = PolarPoint.GetAngle();
 X = TempRadius * cos(TempAngle);
 Y = TempRadius * sin(TempAngle);
}

The Cartesian constructor has an argument of type Polar. It provides a method for
converting a polar point to a Cartesian point. The statements in the body of the function

 class Cartesian
 {
 double X;
 double Y;
 public:
 Cartesian(double TempX = 0, double TempY = 0)
 {
 X = TempX;
 Y = TempY;
 }

 Cartesian(Polar PolarPoint)
 {
 double TempRadius = PolarPoint.GetRadius();
 double TempAngle = PolarPoint.GetAngle();
 X = TempRadius * cos(TempAngle);
 Y = TempRadius * sin(TempAngle);
 }

 void Show()
 {
 cout << "(" << X << "," << Y << ") \n";
 }
 };

void main()
{
 Cartesian CPoint1(10, 10);
 Polar PPoint2(10, 45);
 Polar PPoint1;
 Cartesian CPoint2;
 CPoint2 = PPoint2;

// The following will not work
// PPoint1 = CPoint1;
CPoint2.Show();
}

272 Programming with ANSI C++

are the implementation of the formulae that have been mentioned earlier. However, it is not
possible to write PPoint1 = CPoint1 because we do not have any constructor in the Polar
class for the Cartesian class. If both the conversions are needed, one way is to use operators
as described in Section 6.12.6.

6.11.6 Conversion of Object Type using Conversion Functions
When a native object needs to be converted into a foreign object, operator functions
(conversion functions) are used. They can be used in the same manner as used while
converting to a basic type from an object. Program 6.15 shows the use of operator functions.

PROGRAM 6.15 Cartesian to polar object conversion using operator function
//CartesianToPolar1.cpp
#include <iostream>
#include <string>
#include <cmath>
using namespace std;

class Cartesian;
class Polar
{
 double Radius;
 double Angle;
public:
 Polar(double TempRadius = 0, double TempAngle = 0)
 {
 Radius = TempRadius;
 Angle = TempAngle;
 }

 double GetRadius()
 {
 Return Radius;
 }

 double GetAngle()
 {
 return Angle;
 }
 void Show()
 {
 cout << "(" << Radius <<", "<< Angle <<")\n";
 }
};

class Cartesian
{
 double X;
 double Y;

public:

 Cartesian(double TempX = 0, double TempY = 0)
 {
 X = TempX;
 Y = TempY;
 }

 Cartesian(Polar PolarPoint)
 {

Operator Overloading and User-defi ned Conversions 273

How the Program Works
This program contains an operator function that converts from a Cartesian coordinate to a
polar coordinate. Look at the function:

operator Polar()
{
 double TempAngle = atan(X/Y);
 double TempRadius = sqrt(X * X + Y * Y);
 return Polar(TempRadius, TempAngle);
}

This code will generate a polar object from a rectangle object. The syntax of the header
of the operator function is as follows:

operator <ObjectFromWhichConversionTobeMade>()

It should be noted that this function does not have either return type or arguments.

6.11.7 Constructor vs Operator Functions for Conversion
A constructor converts a foreign object to a native one, whereas an operator converts a
native object to a foreign one. Thus, the code for conversion using a constructor needs to
be written in the destination class, whereas that using an operator needs to be written in the
source class.

 double TempRadius = PolarPoint.GetRadius();
 double TempAngle = PolarPoint.GetAngle();
 X = TempRadius * cos(TempAngle);
 Y = TempRadius * sin(TempAngle);
 }

 operator Polar()
 {
 double TempAngle = atan(X/Y);
 double TempRadius = sqrt(X * X + Y * Y);
 return Polar(TempRadius, TempAngle);
 }

 void Show()
 {
 cout << "(" << X << ", " << Y << ") \n";
 }
};

void main()
{
 Cartesian CPoint1(10, 10);
 Polar PPoint2(10, (double)0.5);
 Polar PPoint1;
 Cartesian CPoint2;
 CPoint2 = PPoint2;
 // The following will work
 PPoint1 = CPoint1;
 CPoint2.Show();
 PPoint1.Show();
}

274 Programming with ANSI C++

Note If we want to convert some other object to a native object, we would write a constructor, whereas if we
want a native object to be converted to some other object, we would use operators.

In the constructor method, we need to use functions that return the value of private
variables. Programs 6.14 and 6.15 had GetRadius() and GetAngle() functions for this
purpose. These functions are known as access methods. They are important because the
private variables of the class need to be accessed for conversion.

In the operator method, we need to use a constructor for the foreign object. If it has not
been defi ned, this method cannot be used. In case, a constructor is not available, we need to
change the program as follows.

We have to defi ne an object such as Polar TempPolar, since we would need TempPolar.
Radius and TempPolar.Angle to be calculated given the values of X and Y. In other words,
the following code

operator Polar()
{
 fl oat TempAngle = atan(X/Y);
 fl oat TempRadius = sqrt(X * X + Y * Y);
 return Polar(TempRadius, TempAngle);
}

will be converted to the following code. This constructor is not provided in the Polar
class.

operator Polar()
{
 Polar TempPolar;
 TempPolar.Angle = atan(X/Y);
 TempPolar.Radius = sqrt(X * X + Y * Y);
 return TempPolar;
}

Radius and Angle are private variables here and are not accessible to non-member
functions. Even if access methods such as the fi rst case are defi ned, the problem is not
solved. The access methods provide values of the private variables, but do not permit
changing the value of variables. Providing public functions that let the value of a private
member change is not a good way to program because then the members do not remain
private. If we have a constructor, we can construct the object as we have done in Program
6.14 without any need to access the private variables, which shows the usefulness of the
constructor while writing the operator function that converts one user-defi ned object into
another.

6.11.8 Choosing an Appropriate Conversion Method
The differences between the constructor and operator functions are shown in Table 6.1

Choosing an appropriate method of conversion depends on the situation. Suppose we
have a built-in object of some kind but do not have an access to the source code of that class.
If we want to provide conversion from a new class that we are coding, we have to write an
operator in our class. On the other hand, if we want conversion to the new class, we have to
write a constructor.

Operator Overloading and User-defi ned Conversions 275

Note Though both constructor and operator functions can convert one object into another, one must
carefully decide the method to be used for a given case.

If both the classes are at our disposal, then we have to look at the order of defi nition of
both the classes to fi nd an answer. The conversion routine can only be written for the class
defi ned later. If conversion is needed from the second to the fi rst class, operators are to be
used. If it is needed from the fi rst to the second class, a constructor is required.

It should be remembered that access methods are needed to covert an object into another
if we opt for a constructor function. However, using access methods only for this purpose is
not a good practice as it may inadvertently expose the private variables. So, when both the
classes are available, then the operator method is preferred, as it does not require us to add
the access methods.

If the access methods are anyway available, we may go for constructors. Otherwise, there
is almost no difference in using either of the methods. If both the conversion methods are
defi ned, that is, constructor is defi ned in the destination object and the operator in the source
object, then C++ takes the expression for conversion and examines it. If it is a constructor
call, it calls the constructor, whereas if it is a casting, it calls the operator function; otherwise,
if the expression is confusing, it fl ags an error.

Criteria Constructor Operator

Place Source class Destination class

Convert from Foreign to native Native to foreign

Compulsory Access methods Constructor of foreign object

Preferred when Source class code unavailable Destination class code unavailable

Table 6.1 Constructor vs operator functions

■ RECAPITULATION ■

 • Operator overloading is an important step to make
user-defi ned object to behave in a similar manner to
the built-in types.

 • Operator overloading enables us to give an additional
meaning to an existing operator for the objects of our
own class.

 • We can only overload a subset of existing operators. New
operators can neither be devised nor be overloaded.

 • We can overload operators in two different ways. The
fi rst method is to use the operator function as a member
function and second one is to use it as a non-member
friend function.

 • Some of the operators can only be overloaded as a
member.

 • Operators are overloaded using the operator function.

 • Friend functions, being non-member, do not have this
pointer as the fi rst argument as in member functions
and are more fl exible.

 • Using operators judiciously improves the readability
of the program and reduces the chances of spelling
mistakes while coding.

 • The operators can be categorized as unary and binary
operators. The single ternary operator is not possible to
be overloaded.

 • For implementing the two different versions of
operators ++ and −− (postfi x and prefi x), a special
dummy argument is allowed to be specifi ed for the
prefi x version of the operator function.

 • It is wiser for a programmer to overload the shorthand
operators such as += when overloading binary operators.

276 Programming with ANSI C++

■ KEYWORDS ■

Built-in type to user-defi ned This refers to the conversion
from built-in type to an object.

Extraction operator The >> operator, which is used
to read from the keyboard, is known as the extraction
operator. It is also known as the input operator.

Function objects Objects of the classes where the ()
operator is overloaded can be written with a () and can
be treated similar to functions. Such objects that can be
called like a function are known as function objects.

Insertion operator The << operator, which is used to write
to the console, is known as the insertion operator. It is
also known as the output operator.

Forward defi nition It is a prototype of the class that
permits defi nition of the class name only at the beginning.

Object to built-in type conversion This refers to the
conversion from an object to a built-in type.

Operator function Functions beginning with the keyword
operator and having an operator specifi ed as the next
word in the function name are called operator functions.
These functions replace the specifi ed operator when the
expression containing that operator is invoked.

Operator overloading This is the process of giving an
existing operator an additional meaning.

User-defi ned conversion When we need to convert
between different types, we can guide the compiler how
to convert from one type to another by writing operator
functions or constructors. These constructors and operator
functions are known as user-defi ned conversions.

Wrapper class This is a class that makes a C-like structure
or a built-in type data represented as a class. For example,
an Integer wrapper class represents a data type int as a
class.

■ EXERCISES ■

Multiple Choice Questions

1. When overloading unary operators __________.
 (a) no argument is passed explicitly
 (b) one argument is to be passed explicitly
 (c) no argument is passed implicitly
 (d) no argument is passed explicitly only if over-

loaded as member functions
2. The advantage of operator overloading is

__________.
 (a) better readability
 (b) easy usage
 (c) easy coding
 (d) Both (a) and (b)
3. The operators created using friend function can also

be created by member functions.
 (a) Always true

 (b) Always false
 (c) Partially true
 (d) Never true

 4. What will the following statement do?
 Matrix operator *(int multiplier, Matrix

tempMatrix);
 (a) Overload the * (multiplication) operator for

Matrix class.
 (b) Compiler will generate an error.
 (c) Overload the * (pointer) operator for Matrix

class.
 (d) Linker will generate an error .

 5. All operators can be overloaded for __________.
 (a) predefi ned types
 (b) user-defi ned types

 • Friends are useful for cases such as overloading
insertion and extraction (>> and <<) operators and also
when we want the fi rst argument to the operators to be
a built-in type.

 • The case where we need dynamic memory allocation in
constructor also needs assignment operator.

 • The [] operator can be overloaded to provide array
boundary checking and the () operator can be overload-
ed to make objects behave in the same way as functions.

 • Function objects improve the readability of the code
and make it possible to be inline.

 • When we need to allocate and deallocate memory in
a non-conventional way, we can overload new and
delete.

 • It is possible and sometimes useful to convert one type
of object into another. It is also possible to convert a
built-in type to object and vice versa. Constructors and
operator functions help us in these conversions.

Operator Overloading and User-defi ned Conversions 277

 (c) extended types
 (d) All of the above

 6. Using operator overloading, one can __________.
 (a) design new operators
 (b) not design new operators
 (c) only overload available operators
 (d) give a meaning to all the available operators

 7. If conversion is needed from second class to the
fi rst class, __________ is required.

 (a) operator
 (b) conversion function
 (c) constructor
 (d) Any of the above

 8. Which of the following is the correct syntax of
overloading the new operator for a class named
Test?

 (a) void Test operator new(int size);
 (b) void * Test operator new(int size);
 (c) void * Test operator new(size_t size);
 (d) Test * Test operator new(size_t size);

 9. When operators are overloaded __________.
 (a) there is a change in their precedence
 (b) there is no change in their precedence
 (c) they get an additional precedence
 (d) None of the above

10. C++ examines the expression for conversion and
calls the operator if it is __________.

 (a) a constructor call
 (b) a operator function call
 (c) casting
 (d) All the above

Conceptual Exercises

 1. What is the signifi cance of operator overloading?
 2. What are the restrictions on operator overloading?
 3. List down the operators that cannot be overloaded.
 4. List down the operators that cannot be overloaded

as a friend.
 5. List the differences between an operator overloaded

as a member and that overloaded as a friend.
 6. Differentiate between overloading of unary and

binary operators.
 7. Differentiate between overloading postfi x and

prefi x operators.
 8. Why are shorthand operators useful when basic

operators are already overloaded?
 9. Why do we need to pass and return a reference of

the stream object when we overload << and >>
operators?

10. What are function objects? Why are they useful?
11. Overloading new and delete may help us in

managing memory ourselves. Explain.
12. What are the different types of conversion? Com-

pare them.

Practical Exercises

 1. Section 6.3 describes overloading + for a complex
class. Overload − , ++, and −− for the same class.

 2. For CollectionEmp class, add a member operator
function −− to remove an employee object from a
CollectionEmp object.

 3. Overload −− for the Time class.
 4. The * is overloaded for multiplying a scalar

value to a matrix. Overload the same operator for
multiplying two matrices.

 5. Overload + and − for a stack class such that +
provides push and − provides pop operations.

 6. Overload −− and ++ for the Integer class defi ned
in Program 6.13.

 7. Overload ++ and −− in prefi x and postfi x version
for the complex class. Prefi x ++ adds to the real
part and postfi x adds to the imaginary part.
Similarly, prefi x −− subtracts from the real part
and postfi x subtracts from the imaginary part. For
example, if the complex number ComplexNo has
values 2 + 3i, then ComplexNo++ will make it 2 +
4i, ++ComplexNo makes it 3 + 3i, ComplexNo−−
will produce 2 + 2i while −−ComplexNo produces
1 + 3i.

 8. For Program 6.13, overload * and / such that di-
vision from and to normal integer work the same
way. (Hint: use friend function to overload).

 9. Overload << and >> for the Time class defi ned in
this chapter. When user adds a statement cout <<
Time or cin >> Time, the overloaded functions
should be able to write elements of Time and read
from the screen, respectively. The display format
for time is HH:MM:SS.

10. For a supermarket, defi ne a bill class. All the
bill objects will contain bill number, the name
of the clerk preparing the bill, each item with
quantity and price, and the total amount to be paid.
Total items in the bill are varying. Defi ne dynamic
memory allocation constructor for bill class
such that any number of items from 1 to 50 can be
accommodated in a single bill. There is an array
that describes each item with a price. The price
is to be picked up from that array. Now overload

278 Programming with ANSI C++

= operator and provide reasons for the need of such
operator.

11. Design a safe array for complex numbers. The
complex class that we have discussed in this
chapter should be used as an array element. The
program must fl ag an error when the user tries to
refer to an array element outside the boundary.

12. Add two variables UpperBound and LowerBound to
the Integer class defi ned in Program 6.13. Also,
add a function Validate() to the same class such
that when that function is called, it checks to see if
the value is between the upper and lower bounds.
Overload () operator for the Integer class such
that the code
Integer Int1;
int int1;
Integer (int1).Validate()

 works properly, that is, it casts int to Integer
object.

13. Defi ne a class Real such that the object of that
class works as a fl oat or double number and can be
interchanged with the fl oat or double. Can we use
casting operator here? What is the problem?

14. There are two classes Emp and Employee. Emp is
defi ned in the payroll department containing details
of employee id and his/her payment. Employee is a

Human resource department class containing only
basic salary details and full personal details such
as the name of the spouse, number of children,
and the previous experience of the employee. Add
code in the Emp class such that conversion from one
type of employee object into another is possible.
While converting, items that are not available in
the source class (such as the number of children
when the source class is Employee) should take
a default value. What could be the problems with
such conversions?

15. For Problem 14, modify Employee class for its
conversion from and to Emp class. Again, non-
applicable items should take default values.

16. Defi ne a wrapper class CString for C-type strings
and overload < and == operators such that if we
defi ne CString MyName = "ABC" and CString
YourName = "DEF" then statements such as
if(MyName < YourName), if(MyName == "ABC"),
and if(MyName == YourName) work properly.

17. In Program 6.11, we have seen a program where
new is overloaded and memory is allocated in
four-byte chunks. We did not have overloaded
delete to deallocate chunkwise. Now, try to
overload new and delete such that they work in
tandem.

Chapter 7
TemplatesTemplates
7.1 INTRODUCTION

Software reusability is one of the most-cited advantages of object program-
ming. In most cases, it is associated with inheritance and object-oriented
programming. However, software reusability can also be provided in other
ways. One such method is templates. The model used by templates is
known as the object-based model of reusability. In other words, it allows
reusability without inheritance. Let us try to understand the concept of
templates in this chapter.

Two Approaches to Reuse Code
The bubble sort algorithm is used to sort data of any given type. However,
there may be a need to use it for multiple data types, say, for fl oat as well as
integer data in the same program. There are two very different approaches
to solve this problem.

Typecasting approach One solution is to write a single bubble sort
function for fl oat variables and use it for fl oat as well as integer arguments.
The integer arguments will be converted to fl oat when the function is called
and will then be compared as fl oats for all the passes.

Overloading approach It is also possible that the bubble sort with integer
values is called most of the times in the program. In such cases, it is better
to overload the bubble sort function with integer as well as fl oat arguments.
Two different bubble sort functions can be written, one for integers and
the other for fl oat values (by overloading the integer bubble sort with fl oat
bubble sort). Now, whenever bubble sort is called with integer arguments, the
function with integer arguments will be called, and only when the function
with fl oat arguments is called will the fl oat bubble sort be called. Thus, it is
possible to achieve both generality and high performance at the same time.

The second approach is defi nitely better than the fi rst one, but it also
has an overhead. Even though the sort process itself is independent of
data type, the same bubble sort function needs to be written twice, with
identical body and different data types. Thus, the overloading approach is
more laborious and prone to errors when more data types are to be added.
It is also problematic when the body itself requires some change later
because the same change is to be provided at all the places in all the bubble
sort functions.

Generic (Template) Functions
Can a single bubble sort function be written, which is independent of data
type? Can the data type be specifi ed while using the bubble sort function?

Learning Objectives

• Software reusability and
templates

• Functi on templates
• Single- and multi-argument

function templates
• Specialization and explicit

specialization of function
templates

• Class templates
• Classes with multiple generic

data types
• Static members in class

templates
• Primary and partial

specialization
• Compilation models and
export keyword

• typename usage in
templates

Templates allow
reusability without
inheritance.

280 Programming with ANSI C++

Or, even better, can the compiler understand from the call that the argument to
bubble sort is an integer or a fl oat, and accordingly call the function for that data
type? In other words, can the data type be passed with other arguments when
the function for bubble sort is called? The answer is yes. This is possible using
function templates.

Generic (Template) Classes
Similar to functions templates, C++ also has generic classes, which are independent
of the data type. Let us discuss how and where they can be utilized. When one thinks of
some real-world entities one is interested in programming for, one may need to think of
their varieties as well. Consider a queue of programs, a queue of user IDs, or a queue of
passengers. All these queues are actually the same except for the data they are dealing
with.

Suppose we have a class Program and another class called Passenger. We are interested
in having a queue that can insert at one end and delete from the other end. It is obvious
that the queue for the Passenger object and that for the Program object are the same, except
for the type of content they hold. The routines for insertion and deletion work in the same
way in both the cases. We can also have a new queue of user IDs, which again works the
same way except that its data type is different. Here, what we are interested in is defi ning a
queue class without specifying the type of the content. If it is possible to do that, the same
queue will work for all the data types that we have defi ned earlier and can also be used for
other additional data types. When we use that queue class for a specifi c object type (e.g.,
Passenger), we will have a specifi c queue class for Passenger automatically generated and
overloaded. This is possible in C++ using class templates, which defi ne such generic types
of classes.

Note A generic class is independent of data types. It can generate classes related to specifi c data types
automatically without the programmer having to code them explicitly. In other words, it can provide a
solution even without specifying the data type.

The advantage of a class template is that it is possible to defi ne a generic class that works for
any data type that is passed to it as a parameter. In this chapter, we will learn about function
templates and class templates and see how they help us in generic programming.

7.2 FUNCTION TEMPLATES

Function templates are generic functions that work for any data type that is passed to them.
The data type is not specifi ed while writing the function. While using that function, the data
type is passed and the required functionality is obtained. It is also possible that the user may

not specify the data type at all and it is deduced by the compiler.

7.2.1 Drawbacks of using Macros
A C programmer’s solution to this problem is to use macros. Macros are very
useful for working on problems without having to depend on types. For instance,
suppose it is required to calculate the maximum of two items irrespective of their
type, the following can be safely written in a C program.

#defi ne MAX(a, b) (a) > (b) ? (a) : (b)

Function templates in
C++ provide generic
functions independent
of data type.

When a function tem-
plate is written, the
argument types are
either passed while
calling the function or
the compiler deduces
it from the expression.

Templates 281

If we defi ne the following
int i, j;
fl oat f1, f2;

it is possible to call MAX as MAX(i, j); and MAX(f1, f2);
A similar functionality can also be achieved in C++ by using macros instead of function
templates. However, their use in such cases has the following drawbacks:

1. Macros are not visible to the compiler. A macro is substituted by its body by a preprocessor
(which processes the program before the compilation starts). If there is some error in the
body of the macro, the error is represented in a non-user friendly form. This is more
annoying for a user who uses the macros from a library and is not aware of the variables
used in the body.

2. The type-related information is lost in macros. Moreover, it is not possible to have any
type-related validations in the macros.

3. Macros are evaluated twice, fi rst when they are copied and the next time when they are
executed. So, MAX(i++, j) is converted to

 (i++) > j ? (i++) : j

Do you notice the problem here? Here, i++ is performed twice, incrementing i twice
rather than once. Function templates provide a type-independent solution without these
problems and are hence preferred.

7.2.2 Single-argument Function Templates
Function templates are very simple to implement. Only a few mechanical changes are needed
to make a normal function a function template. To understand the process of writing function
templates, we start by writing a bubble sort function for integer elements and also a function
template with generic elements as shown in Program 7.1.

PROGRAM 7.1 Bubble sort using function templates
//TemplateGenericro.cpp
#include <iostream>
#include <string>
using namespace std;

void BubbleSort(int TempIntArray[])
{
 for(int i = 0; i < 9; i++)
 {
 for(int j = i + 1; j < 10; j++)
 {
 if(TempIntArray[i] < TempIntArray[j])
 {
 int TempInt = TempIntArray[i];
 TempIntArray[i] = TempIntArray[j];
 TempIntArray[j] = TempInt;
 }
 }
 }
}

template <typename Type>

282 Programming with ANSI C++

void GenericBubbleSort(Type TempGenericArray[])
{
 for(int i = 0; i < 9; i++)
 {
 for(int j = i + 1; j < 10; j++)
 {
 if(TempGenericArray[i] < TempGenericArray[j])
 {
 int TempGeneric = TempGenericArray[i];
 TempGenericArray[i] = TempGenericArray[j];
 TempGenericArray[j] = TempGeneric;
 }
 }
 }
}

void main()
{
 int Array[] = {3,2,6,1,8,9,5,4,12,11};
 int Array2[] = {11,45,23,8 9,65,34,12,44,65,22};
 char Array3[] = "irngiremxc";
 fl oat Array4[] = {1.2,2.3,3.4,2.1,4.4,3.2,2.1};
 cout << "First integer array" << endl;

 /* Calling bubble sort for fi rst array and the compiler deducing it */

 BubbleSort(Array);
 for(int i = 0; i < 10; i++)
 {
 cout << " " << Array[i] << ",";
 }
 cout << "\n";

 /* Calling bubble sort for second array */
 cout << "Second integer array" << endl;
 GenericBubbleSort <int> (Array2);
 for(int i = 0; i < 10; i++)
 {
 cout << " " << Array2[i] << ",";
 }
 cout <<"\n";
 cout << "Character array" << endl;

 /* Another explicit specifi cation */
 GenericBubbleSort <char> (Array3);
 for(int i = 0; i < 10; i++)
 {
 cout << " " << Array3[i] << ",";
 }
 cout << "\n";
 cout << "Double array" << endl;
 /* Another deduction by compiler */
 GenericBubbleSort(Array4);
 /* Here, the arguments are deduced by the compiler */
 for(int i = 0; i < 10; i++)
 {
 cout << " " << Array4[i] << ",";
 }
 cout <<"\n";
}

Templates 283

How the Program Works
Let us dissect the program element by element.

Functions This program contains two different functions. The fi rst one is a simple bubble
sort, which sorts the integer array of size 10. The second one is a function template or a
generic function. The defi nitions of both the functions are identical, except the header and
the data type.

Defi ning function template In the following headers, we can see that the function template
differs from the function defi nition only in terms of its header.

void BubbleSort(int TempIntArray[])

and

template <typename Type>
void GenericBubbleSort(Type TempIntArray[])

The defi nition of a function template always starts with the keyword template. It then
contains the type declaration section, which defi nes the types used in the function. In the
section that is enclosed within < and >, the generic type names are introduced. Although
this program has only one type name, it can contain more defi nitions as well. The syntax for
defi ning type names is as follows:

<typename GenericType1, typename GenericType2, ...>

Typename keyword Here, typename is a keyword. It is also possible to use the keyword
class to have the same effect but it is preferable to use typename because it is more readable
and is not ambiguous. Most of the older C++ books use the keyword class here. These two
keywords are interchangeable while defi ning types with the template.

Note The keyword typename may not work with some older compilers. In such cases, typename is
changed to class and the program is recompiled.

Template vs normal function Naming a generic function is similar to any other function
in C++. However, there is an important difference in the function argument list. It now
contains the generic type name that we have introduced with the template keyword.

Thus, in Program 7.1, GenericBubbleSort() is a function template, with one generic type
Type, and it takes a pointer to that generic type as a single parameter.

We can use Type throughout the function similar to any other data type. For example,

Type TempIntArray

Output
First integer array
12, 11, 9, 8, 6, 5, 4, 3, 2, 1,

Second integer array
89, 65, 65, 45, 44, 34, 23, 22, 12, 11,

Character array
x, r, r, n, m, i, i, g, e, c,

Double array
4.4, 3.2, 3, 2.1, 2, 2, 1, 1.93171e−039, 1.4013e−044, 1.4013e−044,

284 Programming with ANSI C++

Type replacement The variable Type is replaced by some valid type when the
function call is compiled. If the compiler fi nds a statement GenericBubbleSort
<int> (Array2), it generates a function by converting Type to int in the defi nition
of GenericBubbleSort. It is also possible that GenericBubbleSort(Array2)
is called directly without specifying <int>. In this case, the compiler tries to
deduce the data type of Array2. If it can deduce it unambiguously, it invokes that
function with the deduced type.

Note typename defi nes the dummy placeholder for an unspecifi ed type at the time of template specifi cation.
Older versions used the keyword class for the same effect.

Type is only a dummy type name. It is a placeholder, a template, and hence the name. The
function is also a dummy one. The actual function, as said earlier, is created by the compiler
at the time of defi nition. This is why the defi nition is known as a function template. Template
names can be used in the defi nition as well as declarations. The following three declarations
are of the same template:

template <typename Ty>

void GenericBubbleSort(Ty TempIntArray[]);

template <typename T>

void GenericBubbleSort(T TempIntArray[]);

template <typename TT>

void GenericBubbleSort(TT TempIntArray[]);

The defi nition for these functions may be as follows:

template <typename Type>

void GenericBubbleSort(Type TempIntArray[])
{
 Body of the function
}

The body of the function GenericBubbleSort() is the same as the BubbleSort() function, except
that the temporary variable is also of the generic type. Now, let us look at the function call.

Calling the generated function The function call for a generic function again has one
more section between the function name and the argument list. It is enclosed between < and
> and contains all the types that are needed to be passed to a generic function. We may pass
the actual data type that is going to call the overloaded function with the specifi ed Type when
the function is called.

We have two different calls to GenericBubbleSort(). The fi rst one is with GenericBubbleSort
<int> and the second one is with GenericBubbleSort <char>. The fi rst call makes the call to
GenericBubbleSort() overloaded with int as an argument.

Note GenericBubbleSort() is a template, while GenericBubbleSort <int> is an overloaded and
actually created function with Type replaced by int. Therefore, in this case, two functions are
created from the template GenericBubbleSort(), namely, GenericBubbleSort <int> and
GenericBubbleSort <char>.

Deducing arguments It is also important to note that the middle section enclosed in < >
can be omitted if the compiler can deduce the argument by itself. For example, the program
contains a statement

A template function is
a generic function
that contains at least
one parameter, which
is replaced by the ac-
tual type when the
function is called.

Templates 285

GenericBubbleSort(Array4);
/* Here, the arguments are deduced by the compiler */

In this statement, the middle section is missing. Here, the compiler can
unambiguously deduce the arguments to be fl oat and can generate and call a
fl oat version of the function.

Thus, although the program has only a single GenericBubbleSort() function,
yet three calls have been made with different types. This is the advantage of
using function templates.

7.2.3 Instantiation
Let us now discuss how GenericBubbleSort() works with all the three data
types. The template that is defi ned is not actually a function. The defi nition of
the GenericBubbleSort() given earlier does not defi ne any function in the true
sense.

The function defi nition is generated when statements such as the following
are encountered.

// Create char instance
GenericBubbleSort <char> (Array3);

// Create int instance
GenericBubbleSort <int> (Array2);

// Deduce fl oat and generate fl oat instance
GenericBubbleSort(Array4);

This is different from a normal function such as the BubbleSort(). When a normal function
defi nition is encountered in the program, the function is generated even if it is not called in
the program. However, the template functions are not defi ned when the template is defi ned.
When a template function such as GenericBubbleSort <int> is called for the fi rst time, the
following happens:

1. The function is generated, that is, instantiated from the template defi nition for the
respective type, that is, int.

2. The call statement is compiled.

What happens when the following statements are encountered in a program?

GenericBubbleSort <char> (Array3);

GenericBubbleSort <char> (Array5);

The fi rst call (Array3) compilation process generates the function from the template. Then, it
compiles the call statement. The second call does not require the generation of function as it
is already instantiated. It would only compile the call statement.

Note The difference between a normal function and an instantiated function is that the normal function
is generated when the class defi nition is compiled, whereas the instantiated function comes into
existence when the fi rst function call is compiled.

It is also possible that multiple copies of the same function are instantiated if they are
called in different fi les. We will look at this issue when we discuss compilation models in
Section 7.4.

When a compiler can
unambiguously de-
duce the argument, a
user may leave the
< > section while
calling a template
function.

When a real function
for a specifi c type is
generated from the
generic function def-
inition, it is called
instantiation of that
generic function.

286 Programming with ANSI C++

7.2.4 Generic Sorting and Need for Operator Overloading
Can the generic bubble sort be used for sorting any other data types? Suppose the
user wishes to sort an array of strings. If the elements of the array are used as a
string object, as we have used so far in this book, the program will be executed as
it is. However, if we use C-type character arrays to represent strings, the program
will not work for the simple reason that the operation TempGenericArray[i] <
TempGenericArray[j] is undefi ned for such a data type (strcmp() needs to be
used here). Even the expressions such as TempIntArray[i] = TempIntArray[j]

are not defi ned (this requires strcpy()).
The built-in string type has both the < and = operators overloaded. It is possible to

compare two string objects using < or >, and also assign one string object to another using =.
Hence, the generic sort is able to sort the data of type string. This is the advantage of the
string being a class. Moreover, the << operator also needs to be overloaded for using it with
cout. This, again, is available with the built-in string object. String objects are described in
detail in Chapter 15.

Therefore, if we need bubble sort to work with other data types, operations such as =,
<, and > must be implemented in the class. Thus, operator overloading allows general
algorithms to work without really needing the type of data. The only constraint is that
the operations required by the algorithms should be implemented in the class itself. This
concept is also fundamental to Standard Template Library (STL), which is discussed in
Chapter 16.

Note For generic algorithms (function templates) to work with any class, the class must have some
operators (e.g., =, <, >, etc.) overloaded, which is expected by that generic algorithm. It is
important to learn about such relations before designing a generic algorithm and classes.
A designer must have previously worked with such important relations and built those into the
design.

7.2.5 Sorting Employee Objects using Generic Bubble Sort
If the employee objects need to be sorted by employee numbers, it is important to overload
< and << operators. There is no problem with the = operator as the assignment is available
by default.

Let us write a program for sorting the employee array. The expression EmpObject1 <
EmpObject2 requires some form of comparison to be made between two employee objects. In
Program 7.2, it is assumed to be based on the employee number. It can be the employee name
as well; in that case, only the operator < () function needs to be changed.

For any class to work
with our generic
search, object assign-
ment (=) and less
than (<) operators
must be overloaded.

PROGRAM 7.2 Generic bubble sort
//GenericSortEmployee.cpp
#include <iostream>
#include <string>
using namespace std;

class employee
{
 int EmpNo;
 string Name;

Templates 287

 string DeptName;
 string Designation;
public:
 employee(int TempNo = 0, string TempName = 0, string TempDept = 0, string TempDesi = 0)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }
 bool operator <(employee & OtherEmployee)
 {
 if(EmpNo > OtherEmployee.EmpNo)
 return false;
 else
 return true;
 }
 friend ostream & operator <<(ostream & TempOut, employee & TempEmployee);
};

ostream & operator <<(ostream & TempOut, employee & TempEmployee)
{
 TempOut << "Details of employee number" << TempEmployee.EmpNo << "\n";
 TempOut << "Name is" << TempEmployee.Name << "\n";
 TempOut << "Department is" << TempEmployee.DeptName << "\n";
 TempOut << "Designation is" << TempEmployee.Designation << "\n";
 return TempOut;
}

template <typename Type>
void GenericBubbleSort(Type TempGenericArray[])
{
 for(int i = 0; i < 9; i++)
 {
 for(int j = i + 1; j < 10; j++)
 {
 if(TempGenericArray[i] < TempGenericArray[j])
 {
 Type TempGeneric = TempGenericArray[i];
 TempGenericArray[i] = TempGenericArray[j];
 TempGenericArray[j] = TempGeneric;
 }
 }
 }
}

void main()
{
 employee UniEmployee[10] =
 {
 employee(1, "Lara", "Exam", "Professor"),
 employee(2, "Ponting", "Marksheet", "Clerk"),
 employee(3, "Laxman", "Accounts", "Head Clerk"),
 employee(4, "Flintoff", "Exam", "Clerk"),
 employee(5, "Murlidharan", "Accounts", "CAO"),
 employee(6, "Sarfaraz", "Exam", "Informer"),
 employee(7, "Dean Jones", "Exam", "Invigilator"),
 employee(8, "Madugalle", "Exam", "Examiner"),
 employee(9, "Ganguly", "Marksheet", "Repeater"),

288 Programming with ANSI C++

 employee(10, "Nafees", "Accounts", "Clerk")
 };

 GenericBubbleSort <employee> (UniEmployee);
 for(int i = 0; i < 10; i++)
 {
 cout << " " << UniEmployee[i] << ",";
 }
}

How the Program Works
We will explore only one important point in this section. The GenericBubbleSort() does not
change at all. Why? Let us see.

The advantage of the generic sort is that it does not depend on the type of data sent to it.
If proper operator overloading is provided, GenericBubbleSort() can work for any data type,
even for user-defi ned objects. Such algorithms can prove to be very useful when one needs
to work with multiple data types. STL contains many such algorithms.

It is important to note that the meaning of < for the BubbleSort must be preserved.
Semantics (i.e., the meaning) of < here is that the left-hand side (LHS) of the ‘<’ operator
must be logically less than the right-hand side (RHS). This is done by defi ning the employee
with the smaller ID value to be logically less than one with the greater ID value. This may
be acceptable in some cases, but does not always hold good.

Dealing with built-in types Sometimes, operator overloading is not possible. For example,
when dealing with a built-in data type where overloading an operator is out of question or
with a class designed by others where one may not have an access to that class. Program 7.3
is an example that illustrates the problem with built-in C-type string.

In this program, a Max function has been defi ned to fi nd the maximum of the two values
passed to it. Three different instantiations are generated from the template. Observe what
happens when the Max function is called.

PROGRAM 7.3 Finding the maximum of two generic arguments
//SemanticInOO.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename T>
bool Max(T First, T Second)
{
 return(First > Second);
}

int main()
{
 string sAddress = "West Indies";
 string sName = "Brian Charles Lara";

 int i1 = 5;
 int i2 = 7;

 char cAddress[] = "West Indies";

Templates 289

 char cName[] = "Brian Charles Lara";

 // Instance 1
 if(Max(i1, i2))
 cout << "i1 is bigger\n";
 else
 cout << "i2 is bigger\n";

 // Instance 2
 if(Max(sName, sAddress))
 cout << "sName is bigger\n";
 else
 cout << "sAddress is bigger\n";

 // Instance 3
 if(Max(cName, cAddress))
 cout << "cName is bigger\n";
 else
 cout << "cAddress is bigger\n";
}

Output
i2 is bigger
sAddress is bigger
cName is bigger

Note Strings are compared in a lexicographical manner. Thus, West Indies is bigger than Brian Charles
Lara, as ‘B’ appears before ‘W’ in the dictionary. This holds true even when the number of characters
in the second string is more than that of the fi rst one.

How the Program Works
The output is surprising. The comparison of the two strings yields the correct output but the
comparison of two character arrays does not. Why? cName and cAddress are the names of the
character arrays and are pointers to the fi rst elements of the respective array. When they both
are compared, the pointer value, that is, the address is compared; so, the item defi ned next
becomes larger. Hence, cName, which is defi ned after cAddress, gets a larger address value.
On the contrary, the < operator is overloaded in string class, and hence the behaviour there
is more meaningful. The < operator yields true if the string on the LHS is lexically smaller
than that on the RHS; otherwise, it returns false.

How can this problem be solved? If there is a class, it can be solved by providing an
appropriate operator overloading to eliminate this. Unfortunately, that is not possible if the
type is built-in (such as C-type arrays) or if the class is defi ned by others (where the source
code is not available to modify the class). The answer to this problem is to overload the
template itself for that particular type. We will see an improved version of this program using
this solution in Program 7.8.

7.2.6 Function Templates with Multiple Arguments
It is possible to have templates with more than one argument. Other arguments can be
generic or normal. Program 7.4 is a simple search program for searching an element in the
array. Here, we need to pass two arguments, the array and the element to be searched, both
of which are bound to be of generic type.

290 Programming with ANSI C++

PROGRAM 7.4 Generic search with two generic arguments
//GenericSearch.cpp
#include <iostream>
#include <string>
using namespace std;

class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
public:
 employee(int TempNo = 0, string TempName = 0, string TempDept = 0, string TempDesi = 0)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 bool operator ==(employee TempEmp)
 {
 return(EmpNo == TempEmp.EmpNo);
 }

 friend ostream & operator <<(ostream & TempOut, employee & TempEmployee);
};

ostream & operator <<(ostream & TempOut, employee & TempEmployee)
{
 TempOut << "Details of employee number" << TempEmployee.EmpNo << "\n";
 TempOut << "Name is" << TempEmployee.Name << "\n";
 TempOut << "Department is" << TempEmployee.DeptName << "\n";
 TempOut << "Designation is" << TempEmployee.Designation << "\n";
 return TempOut;
}

template <typename Type>
int GenericSearch(Type TempGenericArray[], Type EleToBeSearched)
{
 for(int i = 0; i < 10; i++)
 {
 if(EleToBeSearched == TempGenericArray[i])
 return i;
 }
 return −1;
}

void main()
{
 int Array1[] = {11,45,23,8 9,65,34,12,44,65,22};
 char Array2[] = "irngiremxc";
 employee UniEmployee[] =
 {
 employee(1, "Lara", "Exam", "Professor"),
 employee(2, "Ponting", "Marksheet", "Clerk"),
 employee(3, "Laxman", "Accounts", "Head Clerk"),
 employee(4, "Flintoff", "Exam", "Clerk"),

Templates 291

 employee(5, "Murlidharan" "Accounts", "CAO"),
 employee(6, "Sarfaraz", "Exam", "Informer"),
 employee(7, "Dean Jones", "Exam", "Invigilator"),
 employee(8, "Madugalle", "Exam", "Examiner"),
 employee(9, "Ganguly", "Marksheet", "Repeater"),
 employee(10, "Nafees", "Accounts", "Clerk")
 };

 cout << "\n The integer element 12 is at position" << GenericSearch(Array1,12);
 cout << "\n The char element is at position" << GenericSearch(Array2, 'a');
 cout << "\n";
 int SearchIndex = GenericSearch(UniEmployee, employee (3, " ", " ", " "));
 cout << UniEmployee[SearchIndex];
}

Output
The integer element is at position 6
The char element is at position −1
Details of employee number 3
Name is Laxman
Department is Accounts
Designation is Head Clerk

How the Program Works
Note how the two arguments are passed to the function GenericSearch(). It looks at the
elements to be searched one by one and checks whether it matches with the required element
in the TempGenericArray. In both the cases, the compiler deduces the right set of arguments.
Thus, any number of arguments can be passed to a function template.

7.2.7 Function Templates with Two Generic Arguments
The following example shows how two generic arguments can be passed to a function
template. The function BiggerSize() determines the size of both the items passed to it and
then displays which one of them is bigger.

//TwoGenericArguments.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename Type1, typename Type2>
void BiggerSize(Type1 FirstVal, Type2 SecondVal)
{
 if(sizeof(FirstVal) > sizeof(SecondVal))
 {
 cout << "First item's type is bigger\n";
 }
 else
 {
 cout << "Second item's type is bigger\n";
 }
}

292 Programming with ANSI C++

void main()
{
 int i = 10;
 char c = 'A';
 BiggerSize <int, char> (i, c);
 string Name = "Robin Singh";
 char STRING[] = "Robin Singh";
 BiggerSize <string, char *> (Name, STRING);
}
Output

First item's type is bigger
First item's type is bigger

It also reveals an interesting fact that for the same data "Robin Singh" stored in a C-type
string and a string object of C++, ANSI C++ string declaration takes more memory space
(fi ve bytes more in this case).

7.2.8 Non-generic Parameters in Template Functions
Non-generic arguments can also be passed to a template function. The earlier examples of
array defi nition (Programs 7.2 and 7.4) have the array size fi xed to 10. However, it is possible
to pass the array size as well to the generic function as shown in Program 7.5. Non-generic
type is also known as non-type arguments in short.

PROGRAM 7.5 Passing non-generic argument to a function template
//GenericNonGenericArgs.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename Type>
void GenericBubbleSort(Type TempGenericArray[], int Size)
// Passing a non-generic parameter
{
 for(int i = 0; i < Size − 1; i++)
 {
 for(int j = i + 1; j < Size; j++)
 {
 if(TempGenericArray[i] < TempGenericArray[j])
 {
 Type TempGeneric = TempGenericArray[i];
 TempGenericArray[i] = TempGenericArray[j];
 TempGenericArray[j] = TempGeneric;
 }
 }
 }
}

void main()
{
 int Array2[] = {1,8,9,5,4,12,11,45,23,89,65,34,12,44,65,22};
 char Array3[] = "irngiremxc";

 GenericBubbleSort(Array2, 16);

Templates 293

How the Program Works
This program is similar to Programs 7.2 and 7.4 except for the size parameter.
Those programs assumed that the size of the array is always 10. However,
Program 7.5 is better as it can have any number of elements in the array and will
still be able to generate a BubbleSort function that sorts the elements. The call to
GenericBubbleSort() now requires us to pass the size as the second argument to
the function. It is also possible to pass two different data types and use them as
two arguments of the function. As mentioned earlier, there is no restriction on the
number of arguments as well as the number of types passed to the template function.

Alternative Solution to Avoid Passing ‘Size’
Program 7.6 demonstrates how passing the size can also be avoided.

 for(int i = 0; i < 16; i++)
 {
 cout << " " << Array2[i] << ",";
 }
 cout <<"\n";

 GenericBubbleSort(Array3, 10);
 for(int i = 0; i < 10; i++)
 {
 cout << " " << Array3[i] << ",";
 }
}

Output
89, 65, 65, 45, 44, 34, 23, 22, 12, 12, 11, 9, 8, 5, 4, 1,
x, r, r, n, m, i, i, g, e, c,

Generic arguments
are not the only op-
tion possible to be
provided to templates.
One can pass non-
generic type
arguments as well.

PROGRAM 7.6 A compulsory non-type argument
//NonTypeArgument.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename Type, int Size>
void GenericBubbleSort(Type(&TempGenericArray)[Size])
{
 for(int i = 0; i < Size − 1; i++)
 {
 for(int j = i + 1; j < Size; j++)
 {
 if(TempGenericArray[i] < TempGenericArray[j])
 {
 Type TempGeneric = TempGenericArray[i];
 TempGenericArray[i] = TempGenericArray[j];
 TempGenericArray[j] = TempGeneric;
 }
 }
 }
}

void main()
{

294 Programming with ANSI C++

 int Array2[] = {1,8,9,5,4,12,11,45,23,89,65,34,12,44,65,22};
 char Array3[] = "irngiremxc";

 GenericBubbleSort(Array2);
 for(int i = 0; i < 16; i++)
 {
 cout << " " << Array2[i] << ",";
 }
 cout <<"\n";

 GenericBubbleSort(Array3);
 for (int i = 0; i < 10; i++)
 {
 cout << " " << Array3[i] << ",";
 }
}

How the Program Works
Instead of receiving the array as a pointer, the array is now received as a reference with the
specifi cation of size. Observe the function header

template <typename Type, int Size>
void GenericBubbleSort(Type(&TempGenericArray)[Size])

The type of argument now is a reference to an array of size Size with elements of type Type.
The braces surrounding &TempGenericArray are important as the precedence of [] is higher
than &.

Exhibit 7.1 shows the difference between non-type arguments in the template and in the
argument list.

Exhibit 7.1 Non-type argument as function argument and template argument
The fi rst version has the following construct:

template <typename Type>
void GenericBubbleSort(Type TempGenericArray[], int Size)

The second version has the following construct:

template <typename Type, int Size>
void GenericBubbleSort(Type(&TempGenericArray)[Size])

The fi rst version does not have a non-type argument in the template <> section, while the second one
needs it. The GenericBubbleSort() function has a non-type argument in the argument list in the fi rst
version, while the second one does not have it. Thus, it is imperative that we defi ne it in the template<> section.

7.2.9 Types of Non-generic Arguments
In Program 7.6, we have defi ned the size as int.

template <typename Type, int Size>

It is not a variable of type int because at the time of compilation the value of Size is passed
to generate the following function:

GenericBubbleSort(Array2);

Templates 295

The generated function, GenericBubbleSort(), does not contain the size variable but a value
16 (deduced by the compiler) as the size parameter, which is the size of the array passed to
the function.

Thus, we can generalize that a value known at the time of compilation is allowed as a
non-type argument.

Note In C++, three data types, that is, int constant such as given in the example, pointer or reference to a
global function, and pointer or reference to a non-local (i.e., either static or global) object, are allowed
as non-type arguments. This is because the address of the global functions and global objects is known
at the time of compilation, and hence, pointers to them are allowed. On the contrary, local objects get
their addresses when loaded onto a stack at run-time, and so, pointers to them are not allowed.

7.2.10 Template Argument Deduction
It has already been mentioned that the compiler can deduce the type of arguments when they
are not specifi ed. Template argument deduction has the following advantages:

1. The user can use the template function as a normal function. In the example, the call to
GenericBubbleSort(Array4) function is similar to a normal function call. Thus, if such
functions are provided in the library, the user can use them without really knowing that
the function is not a normal function but a function template.

2. The data type deduction is done automatically every time the program is executed. If ever
the program is modifi ed to accept and process other data types than those provided earlier,
for example, if Array4 changes to operate on type double now, the function call need not
be changed. Whenever the program runs next time, the compiler deduces the data type to
be double and accordingly instantiates the right version of the function.

Note It is always better to leave it to the compiler to deduce the types of arguments, if possible. Only in case
of ambiguity should the user supply explicit arguments.

Process of Deduction
The compiler deduces the type of generic parameter from the type and the values of the
arguments passed to the function in the function call. The argument deduction process
is much more stringent than the normal function call. If the types are not matching, the
arguments are not promoted as in normal functions. Thus, the call SumIt(12, 12U) will not
work if SumIt() has been defi ned as follows:

template <typename Type>
SumIt(Type, Type);

This is because both the arguments passed to SumIt() are not of the same type; one is int
and the other is unsigned. However, the defi nition of template says that SumIt() has to have
two exactly same types of arguments, since the Type placeholder cannot have two values at
the same point of time. The compiler cannot instantiate a function with a unique Type value
in this case.

Interestingly, if we defi ne SumIt(unsigned, unsigned) (without using
templates), then SumIt(12, 12U) would work, because the integer (12) is promoted
to unsigned by the compiler and then the unsigned version of it is called, which
is not an error.

There are some cases where deduction is not possible at compile time. In
those cases, it is better to use explicit specifi cation of arguments.

When the generic
type is to be matched,
the compiler does not
opt for promotions or
standard conversions.

296 Programming with ANSI C++

1. One such example is the SumIt() function given earlier. As already seen, SumIt(12, 12U)
will not work; instead, one can specify SumIt <unsigned int> (12, 12U). Here, the Type
is assumed to be unsigned int and the value 12 would be converted to unsigned int and
the process is carried out further.

2. Extending the same function to return long, if we write SumIt <unsigned int>, it will
assume the type of the arguments to be unsigned int but not the return type as long type.
We, therefore, need to specify the return type as SumIt <long, unsigned int> (12, 12U).
In such a case, the defi nition of SumIt() would change to

 template <typename ReturnType, typename Type>

 ReturnType SumIt(Type, Type)

7.2.11 Template Function and Specialization
It is possible to defi ne a single template function and use it for generating multiple functions
with different data types. For example, we have defi ned GenericBubbleSort() with generic
type Type and used the same function with int, char, and employee types of data. In this
section, we will learn how C++ achieves this functionality.

When a template function is defi ned (e.g., the GenericBubbleSort() function in the
given example), the compiler automatically generates the correct code for the function
actually used. Here, the compiler creates three different versions of GenericBubbleSort(),
one each for int, char, and employee types. In a way, the compiler automatically overloads
GenericBubbleSort(). An important fact here is that the compiler overloads a function only
for those types that are used in the program from potentially a large number of possible
functions.

Note A generic function starting with the keyword template is known as a template function. The
automatically overloaded functions are known as specializations or instantiations of the template
function. The process of generating specializations is known as instantiation.

The compiler generates specializations automatically. Section 7.2.12 explains what happens
if we want the compiler to generate specializations for all cases but one.

7.2.12 Overloading a Template
As seen in Section 7.2.11, the template function is automatically overloaded by
the compiler itself when needed. It is also possible to provide specifi c overloading
to a template function. Consider the case of employees. We are now interested
in sorting them on the basis of department numbers and then on their employee
numbers. Obviously, the same algorithm will not work. We need a special
algorithm for our employee class. This is shown in Program 7.7.

The compiler over-
loads a function only
for those types that
are used in the prog-
ram from potentially
a large number of
possible functions.

PROGRAM 7.7 Overloading a template
//OverloadingTemplates.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename Type>
void GenericBubbleSort(Type TempGenericArray[], int Size);

Templates 297

class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
public:
 employee(int TempNo = 0, string TempName = 0, string TempDept = 0, string TempDesi = 0)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 bool operator <(employee & OtherEmployee)
 {
 if(EmpNo > OtherEmployee.EmpNo)
 return false;
 else
 return true;
 }

 friend ostream & operator <<(ostream & TempOut, employee & TempEmployee);
 template <>
 friend void GenericBubbleSort(employee TempEmployee[], int Size);
};

ostream & operator <<(ostream & TempOut, employee & TempEmployee)
{
 TempOut << "Details of employee number" << TempEmployee.EmpNo << "\n";
 TempOut << "Name is" << TempEmployee.Name << "\n";
 TempOut << "Department is" << TempEmployee.DeptName << "\n";
 TempOut << "Designation is" << TempEmployee.Designation << "\n";
 return TempOut;
}

template <typename Type>
void GenericBubbleSort(Type TempGenericArray[], int Size)
{
 for(int i = 0; i < Size − 1; i++)
 {
 for(int j = i + 1; j < Size; j++)
 {
 if(TempGenericArray[i] < TempGenericArray[j])
 {
 Type TempGeneric = TempGenericArray[i];
 TempGenericArray[i] = TempGenericArray[j];
 TempGenericArray[j] = TempGeneric;
 }
 }
 }
}

template<>
void GenericBubbleSort(employee TempEmployee[], int Size)
{
 for(int i = 0; i < Size − 1; i++)
 {
 for(int j = i + 1; j < Size; j++)

298 Programming with ANSI C++

 {
 if(TempEmployee[i].DeptName < TempEmployee[j].DeptName)
 {
 employee TempEmp = TempEmployee[i];
 TempEmployee[i] = TempEmployee[j];
 TempEmployee[j] = TempEmp;
 }

 else
 if(TempEmployee[i].DeptName == TempEmployee[j].DeptName)
 {
 if(TempEmployee[i].EmpNo < TempEmployee[j].EmpNo)
 {
 employee TempEmp = TempEmployee[i];
 TempEmployee[i] = TempEmployee[j];
 TempEmployee[j] = TempEmp;
 }
 }
 }
 }
}

int main()
{
 employee UniEmployee[10] =
 {
 employee(1, "Lara", "Exam", "Professor"),
 employee(2, "Ponting", "Marksheet", "Clerk"),
 employee(3, "Laxman", "Accounts", "Head Clerk"),
 employee(4, "Flintoff", "Exam", "Clerk"),
 employee(5, "Murlidharan", "Accounts", "CAO"),
 employee(6, "Sarfaraz", "Exam", "Informer"),
 employee(7, "Dean Jones", "Exam", "Invigilator"),
 employee(8, "Madugalle", "Exam", "Examiner"),
 employee(9, "Ganguly", "Marksheet", "Repeater"),
 employee(10, "Nafees", "Accounts", "Clerk")
 };

 int Array2[] = {1,8,9,5,4,12,11,45,23,89,65,34,12,44,65,22};
 char Array3[] = "irngiremxc";

 GenericBubbleSort(Array2,16);
 for(int i = 0; i < 16; i++)
 {
 cout << " " << Array2[i] << ",";
 }
 cout <<"\n";

 GenericBubbleSort (Array3,10);
 for(int i = 0; i < 10; i++)
 {
 cout << " " << Array3[i] << ",";
 }

 GenericBubbleSort(UniEmployee, 10);
 for(int i = 0; i < 10; i++)
 {
 cout << " " << UniEmployee[i] << ",";
 }

Templates 299

 return 0;
}

Output (Condensed)
89, 65, 65, 45, 44, 34, 23, 22, 12, 12, 11, 9, 8, 5, 4, 1,
x, r, r, n, m, i, i, g, e, c,

Details of employee number 9
Name is Ganguly
Department is Marksheet
Designation is Repeater

Details of employee number 3
Name is Laxman
Department is Accounts
Designation is Head Clerk

How the Program Works
The GenericBubbleSort() is now written in two forms, that is, the generic form, which we
have seen earlier, and a special form that we have added for the employee class. Examine
the declaration of GenericBubbleSort() for the employee objects.

template <>
friend void GenericBubbleSort(employee TempEmployee[], int Size);

Moreover, note the forward declaration of the template GenericBubbleSort() before the
defi nition of the class Employee.

template <typename Type>
void GenericBubbleSort(Type TempGenericArray[], int Size);

It is important to have the forward declaration in such a case. The explicit template defi nition
cannot come before the original template defi nition. The class employee contains the
declaration for the explicit template as a friend. If the forward declaration does not precede
the explicit specialization, the program will not be compiled. Moreover, look at the call

GenericBubbleSort(UniEmployee, 10);

There is no difference in the function call. Note the following function defi nition:

template<>
void GenericBubbleSort(employee TempEmployee[], int Size)
{
 Body of the function
}

Need for Overloading Templates
The function defi nition given is actually an overloaded function, which has been
written explicitly. It has already been mentioned that the compiler automatically
generates a required function if needed. An explicit overloaded function (or
explicit specialization), if provided, will override the compiler’s version. Thus,
when the function call is compiled, the compiler does not generate an automatic
overloaded version of GenericBubbleSort(); it picks the one that is explicitly
defi ned.

If an explicit over-
loaded function (or
explicit specialization)
is provided, it will
override the
compiler’s version.

300 Programming with ANSI C++

However, why do we need to overload a template in this case? We need to
sort the employees fi rst by department and then by employee number. The output
shows the required effect. The same effect can also be achieved by modifying
the overloaded < for the employee class. It can be done if the employee class
source code is accessible. However, sometimes the programmer will not have the
source code of that class or the authority to modify a class that is a part of a live
application. In such cases, the class designer can be asked to make the required
function a friend.

Another example can be the Max function that was discussed in Program
7.3. It was seen that the function does not work properly for C-type strings.
Overloading the Max function for handling C strings solves the purpose. Program
7.8 shows how this is done using an explicitly specialized Max function.

Sometimes the
source code of a
class is unavailable to
carry out modifi -
cations and provide
necessary operator-
overloaded functions.
This problem can be
solved by overloading
the template under
consideration.

PROGRAM 7.8 Solving incorrect execution by overloading the template
//OverloadingMax.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename T>

bool Max(T First, T Second)
{
 return(First > Second);
}

template <>
bool Max(char *First, char *Second)
{
 return(strcmp(First, Second) > 0);
}

int main()
{
 string sAddress = "West Indies";
 string sName = "Brian Charles Lara";

 int i1 = 5;
 int i2 = 7;

 char cAddress[] = "West Indies";
 char cName[] = "Brian Charles Lara";
 if(Max(i1, i2))
 cout << "i1 is bigger\n";
 else
 cout << "i2 is bigger\n";

 if(Max(sName, sAddress))
 cout << "sName is bigger\n";
 else
 cout << "sAddress is bigger\n";

 if(Max(cName, cAddress))
 cout << "cName is bigger\n";
 else
 cout << "cAddress is bigger\n";
}

Templates 301

Output
i2 is bigger
sAddress is bigger
cAddress is bigger

How the Program Works
It can be seen that the output is correct now. It should be noted that the defi nition of the
original template is similar to the earlier defi nition.

template <typename T>
bool Max(T First, T Second)
{
 return(First > Second);
}

Now, look at the specialization.

template <>
bool Max(char *First, char *Second)
{
 return(strcmp(First, Second) > 0);
}

This is a special version for C-type strings as the arguments to the functions are char * rather
than Type. The body now contains the strcmp() function, which can handle C-type strings.
The template <> preceding the function header signifi es that the defi nition following it is not
a normal function but a specialization.

Template Specialization vs Non-Generic Function
It is also possible to overload template defi nition with normal non-generic functions. The
functions with headers can also be written as

void GenericBubbleSort(employee TempEmployee[], int Size)

or

bool Max(char *First, char *Second)

that is, by removing template <> from the defi nition of template specialization. Here,
the original template is being overloaded with a non-generic function. Then, what is the
difference between a template specialization and a non-generic (normal) function? The
difference is that a generic function argument (the one that is overloaded) matching would
be much more stringent than the normal function version.

Assume the SumIt() function is overloaded using a non-generic function for Employee
objects. If the program has one more class Person, it is possible to write a conversion operator
that converts a Person object to an Employee object in the Person class. We can, therefore, call
now GenericBubbleSort() with Person array.

The templatized function would not work as it expects only an Employee object. The
templatized version will not be called, as it requires converting the Person object to the
Employee object. This, in turn, requires standard conversion, which is not possible with
either automatically generated template functions or explicitly specifi ed template
functions.

302 Programming with ANSI C++

An important step in program design is deciding which version (explicitly specifi ed
template instantiation or a non-generic normal function) is to be used when. In the given
example, converting a Person object to an Employee object may be disastrous as the Person
object may not have EmpNo or Dept. Thus, a non-generic function should not be used in this case.
However, if we expect the Person object to work in the same way with GenericBubbleSort()
function, we may have a non-generic function instead. Note that in either of the cases,
the user may call the function in the same way without really knowing if the overloaded
function is a template specifi cation or a non-generic function. Exhibit 7.2 explains the
difference between overloading a template with a template specialization and a non-generic
function.

7.2.13 Overloading One Generic Function with Another
In Section 7.2.12, a template has been overloaded with explicit specialization. It is also
possible to overload one template with another.

To overload a generic function with another generic function, the number of arguments
must differ (this is because type cannot be differentiated).

The generic sort algorithm is as follows:

template <typename Type>

void GenericBubbleSort(Type TempGenericArray[], int Size)

If we want that the original array to remain intact and the result to be refl ected in another
array, we may have one more function as follows:

template <typename Type>
void GenericBubbleSort(Type TempGenericArray[], int Size, Type
TempResultArray[])

Now, if the function is called with two arguments as usual, the fi rst function
would be called, and if the function is called with three arguments, the second
function would be called. So, GenericBubbleSort() is a generic function
with two arguments, which is overloaded as a generic function with three
arguments.

One can overload a
template function
with another template
function. The number
of arguments must
differ in such a case.

Exhibit 7.2 Overloading a template with a template specialization or a non-generic function
When a template is overloaded by a generic function, the argument match is stringent and no conversions
or promotions are applied to the arguments. In contrast, when it is overloaded by a non-generic function,
such promotions and conversions for arguments are allowed. Look at following defi nition of an array and
the templatized function call.

Person Indians[100];
GenericBubbleSort(Indians);
// This is not acceptable for
// template<> GenericBubbleSort(employee *)
// but is acceptable for GenericBubbleSort(employee *)

Suppose we have GenericBubbleSort() function as a non-generic specialization for the Employee
class and call it with a Person object. The non-generic function would convert the Person object into an
Employee object using the conversion operator and therefore it works.

Templates 303

Hence, if we call

GenericBubbleSort(Array2, 16, ResultArray);

then the ResultArray will have the sorted elements.

7.2.14 Manually Overloaded Functions vs Template Instantiations
A template function defi nition forces the compiler to overload the function as many times as it
is used with different types in the program. What is the difference between manually overloaded
functions that we have studied earlier and automatically overloaded functions of this kind?

An important difference is that the automatically overloaded functions have different
types of arguments but the same body. Manually overloaded functions can and usually
have different codes. It is possible to have a template function for some cases and manually
overloaded functions for some special cases.

Note If we need to introduce more number of specializations in our program, it usually means that the design
is faulty and the case should be solved by overloaded functions and not by using template functions.

The other difference is the match of arguments. The template function requires an exact
match of arguments. Normal function arguments may not have the exact match but can use
integral promotions or standard conversions to match. Hence, manually overloaded function
arguments can be promoted or standard converted.

There is an interesting consequence to this. Suppose the following are the function calls
in a program using SumIt().

template <typename Type>
Type SumIt(Type, Type)

int main()
{
 int i1, i2;
 char ch1, ch2;
 unsigned u1, u2;

 SumIt(i1, i2); // int version instantiated
 SumIt(ch1, ch2); // char version instantiated
 SumIt(u1, u2); // unsigned version instantiated
}

Note A generic function overloads a new function for the types that are handled by type promotions in case
of a normal non-generic function.

Here, we have three different overloaded functions. As an alternative, we can have only
one function for unsigned without using templates, which can handle all the three calls. Thus,
if the templatized defi nition of SumIt() is replaced by unsigned SumIt(unsigned, unsigned),
then it will work for all the cases.

7.2.15 Default Arguments to Function Templates
We have seen that function templates can take generic arguments as well as normal (non-
type) arguments. Therefore, can we provide default arguments to the template arguments? The
answer is no. It is not possible to write statements such as

Templates do not
introduce any run-time
overhead.

304 Programming with ANSI C++

template <typename Type = int> // This is incorrect

Surprisingly, this is allowed in class templates. This is because the default argument to
template functions was proposed too late to the standardization committee to accept.

Effi ciency
We have seen the usefulness of templates. One of the aims of the designers of template is
effi ciency. Let us see how effi cient it is to use templates. The fi rst problem with template is
that it may bloat the code in an unexpected way.

Suppose we have the generic bubble sort as discussed earlier. If we have the following
three arrays:

int IntArray[10]

short ShortArray[10]

char CharArray[10]

and the calls GenericBubbleSort(IntArray), GenericBubbleSort(ShortArray), GenericBubble
Sort(CharArray), then three distinct functions are generated. A single function with int as an
argument can actually serve the purpose. If we have to solve a problem with such data types,
it is not advisable to use template functions.

Another point to be noted is that every manipulation related to templates is done
at compile time. Hence, there is almost no run-time overhead when templates are
used.

Flexibility
Flexibility is an important advantage of using function templates, which can be used for
built-in as well as user-defi ned types. It has already been mentioned that the algorithms
may need the operators to be overloaded if they are to be used with objects as parameters.
Algorithms can be fl exible only if proper operators are overloaded meaningfully for a given
object. For example, Bubblesort(EmpArray, size) is useful and correct only if < and = are
defi ned.

7.3 CLASS TEMPLATES

We have seen generic functions and their uses so far. Similarly, generic classes, which take
data type as parameters, are also possible in C++. It is possible to defi ne a stack class, which
has all possible functionality of a stack. The objects of the stack class can be defi ned as
follows:

stack <int> MyIntStack;

Here, the content of the stack class is of type integer. It is also possible to have stack <char>,
stack <employee>, etc. How can such a functionality be built? Program 7.9 uses the same
stack used in Program 3.2 in Chapter 3, but now with generic type elements.

PROGRAM 7.9 Generic stack class
//GenericStackClass.cpp
#include <iostream>
using namespace std;

template <typename ElementType>

Templates 305

class Stack
{
private:
 int StackPointer;
 ElementType StackArray[10];
public:
 Stack()
 {
 StackPointer = 0;
 }

 void push(ElementType value)
 {
 if(StackPointer == 9)
 {
 cout << "Stack overfl ow! Cannot insert";
 }
 else
 {
 StackArray[StackPointer] = value; StackPointer++;
 }
 }

 ElementType pop()
 {
 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer−−;
 return StackArray[StackPointer];
 }
 }
};

void main()
{
 // Integer stack
 Stack <int> MyStack;
 MyStack.push(1); MyStack.push(2);
 cout << MyStack.pop() << "\n";
 cout << MyStack.pop() << "\n";

 // Character stack
 Stack <char> YourStack;
 YourStack.push('n'); YourStack.push('O');
 cout << YourStack.pop() << "\n";
 cout << YourStack.pop() << "\n";
}

How the Program Works
Compare both stack classes (the normal stack class in Program 3.2 and the templatized
version in Program 7.9). There are three differences:

1. The class header class Stack changes to

 template <typename ElementType>
 class Stack

306 Programming with ANSI C++

template <typename ElementType> precedes the class defi nition for the class
to use ElementType as a generic type in its body.

2. The defi nition Stack MyStack changes to Stack <int> MyStack
3. The int element type argument to push and the return type of pop have been

replaced here by ElementType.
It is also possible to have char Stack and employee Stack similar to the int

stack. It can be observed that the program will not have any change in the Stack
class defi nition.

It is to be noted that it is not possible to have automatic argument deduction in class
templates because the compiler cannot deduce a type from the object declaration such as
Stack Mystack. It is not similar to a function call where there are arguments and deductions
that may tell a compiler the data type for the Type.

7.3.1 Defi ning Functions of Class Templates outside the Class
If the functions push() and pop() are defi ned outside the class, class Stack will have to be
defi ned in the following way:

template <typename ElementType>
class Stack
{
private:
 int StackPointer;
 ElementType StackArray[10];
public:
 Stack()
 {
 StackPointer = 0;
 }
 void push(ElementType);
 ElementType pop();
};

template <typename ElementType>
void Stack <ElementType>::push(ElementType value)
{
 if(StackPointer == 9)
 {
 cout << "Stack overfl ow! Cannot insert";
 }
 else
 {
 StackArray[StackPointer] = value; StackPointer++;
 }
}

template <typename ElementType>
ElementType Stack <ElementType>::pop()
{

Deducing a type is
not possible for class
templates. We must
have the type explic-
itly specifi ed while
defi ning a class.

Templates 307

 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer−−;
 return StackArray[StackPointer];
 }
}

The syntax for the function header seems cryptic at fi rst sight. The function header is preceded
by template <...>, which is the same as the template specifi cation that preceded the class
defi nition earlier. The class name (e.g., Stack) should also indicate the type variables used
in the class (e.g., int) using the same <> pair to indicate names, that is, Stack <int>. Note
that the template specifi cation contains typename (it has been mentioned already that it can
even be the keyword class instead of typename) followed by the type variable name (e.g.,
typename ElementType). The class section will only have the type (e.g., ElementType in
Program 7.9).

In Program 7.10, the function has been moved outside the template class and the Employee
stack has been introduced.

PROGRAM 7.10 Employee stack
//EmpStack.cpp
#include <iostream>
#include <string>
using namespace std;

class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
public:
 employee(){};
 employee(int TempNo, string TempName, string TempDept, string TempDesi)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 friend ostream & operator <<(ostream & TempOut, employee & TempEmployee);
};

ostream & operator <<(ostream & TempOut, employee & TempEmployee)
{
 TempOut << "Details of employee number" << TempEmployee.EmpNo << "\n";
 TempOut << "Name is" << TempEmployee.Name << "\n";
 TempOut << "Department is" << TempEmployee.DeptName << "\n";
 TempOut << "Designation is" << TempEmployee.Designation << "\n";
 return TempOut;
}

template <typename ElementType>

308 Programming with ANSI C++

class Stack
{
private:
 int StackPointer;
 ElementType StackArray[10];
public:
 Stack()
 {
 StackPointer = 0;
 }
 void push(ElementType); ElementType pop();
};

template <typename ElementType>
void Stack <ElementType>::push(ElementType value)
{
 if(StackPointer > 9)
 {
 cout << "Stack overfl ow! Cannot insert";
 }
 else
 {
 StackArray[StackPointer] = value; StackPointer++;
 }
}

template <typename ElementType>
ElementType Stack <ElementType>::pop()
{
 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer−−;
 return StackArray[StackPointer];
 }
}

void main()
{
 Stack <int> MyStack;
 MyStack.push(1);
 MyStack.push(2);

 cout << MyStack.pop() << "\n";
 cout << MyStack.pop() << "\n";

 Stack <char> YourStack;
 YourStack.push('n');
 YourStack.push('O');

 cout << YourStack.pop() << "\n";
 cout << YourStack.pop() << "\n";

 Stack <employee> EmpStack;
 employee UniEmployee[10] =
 {
 employee(1, "Lara", "Exam", "Professor"),
 employee(2, "Ponting", "Marksheet", "Clerk"),
 employee(3, "Laxman", "Accounts", "Head Clerk"),
 employee(4, "Flintoff", "Exam", "Clerk") ,

Templates 309

 employee(5, "Murlidharan", "Accounts", "CAO"),
 employee(6, "Sarfaraz", "Exam", "Informer"),
 employee(7, "Dean Jones", "Exam", "Invigilator"),
 employee(8, "Madugalle", "Exam", "Examiner"),
 employee(9, "Ganguly", "Marksheet", "Repeater"),
 employee(10, "Nafees", "Accounts", "Clerk")
 };

 for(int i = 0; i < 10; i++)
 {
 EmpStack.push(UniEmployee[i]);
 }

 for(int i = 0; i < 10; i++)
 {
 cout << EmpStack.pop();
 }
}

How the Program Works
We will see how the real class is generated from a generic class and is used in the program.

Constructing a class Let us see how class stack is used as an int stack as well as a
char stack. Similar to function templates, when a class template is defi ned, that is, when
template <Type ElementType> is defi ned, it informs the compiler that the following class
defi nition contains a generic data type called ElementType. This does not defi ne the class, as
no functions are generated and no elements are created. This also indicates that when the
class is actually defi ned in the main program, the type of ElementType will be known.

The defi nition of stack in the program, Stack <int> MyStack, indicates that int is passed
as a type to the template class. The compiler creates the class only when such an object is
defi ned. It creates the integer version of Stack class template (known as Stack <int>) at that
moment. It also creates an object of that class (MyStack). Thus, both the class and the object
are created together.

Generating the second class When the compiler encounters Stack <char> YourStack, it
creates another class, which is a char version of Stack and an object of that class (YourStack).
This process (generating normal class from the template class) is known as instantiation.
Here, it is known as class instantiation from a class template. Both Stack <int> and Stack
<char> are known as specializations (instantiations). Now, if we have one more defi nition
Stack <char> YourStack2, the compiler will not generate a new class, that is, it would not
generate new specialization from Stack template as it has already instantiated Stack <char>.
It would only create an object (YourStack2) of class Stack <char>.

Explicit specialization If Stack <employee> class is to behave differently from
the Stack template, it can be defi ned as an explicit specialization as has been
done with template functions.

Program 7.11 is an example of an explicit class specialization. Instead of
inserting the complete employee object in the stack, the employee number of
the employee object is inserted. When the element is popped, the array needs to
be searched to get the employee object with the same employee number. This
solution is storage effi cient but will take more time to execute because of the
search operation involved.

Generating a normal
class for a specifi c
data type from a ge-
neric class is known as
instantiation and the
generated class is
known as special-
ization.

310 Programming with ANSI C++

PROGRAM 7.11 Explicit class specialization
//SpecializationClassTempalte.cpp
#include <iostream>
#include <string>
using namespace std;

class employee
{
 string Name;
 string DeptName;
 string Designation;
public:
 int EmpNo;
 employee(){};
 employee(int TempNo, string TempName, string TempDept, string TempDesi)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 bool operator ==(employee TempEmp)
 {
 return(EmpNo == TempEmp.EmpNo);
 }

 bool operator <(employee & OtherEmployee)
 {
 return(EmpNo < OtherEmployee.EmpNo);
 }

 friend ostream & operator <<(ostream & TempOut, employee & TempEmployee);
};

ostream & operator <<(ostream & TempOut, employee & TempEmployee)
{
 TempOut << "Details of employee number" << TempEmployee.EmpNo << "\n";
 TempOut << "Name is" << TempEmployee.Name << "\n";
 TempOut << "Department is" << TempEmployee.DeptName << "\n";
 TempOut << "Designation is" << TempEmployee.Designation << "\n";
 return TempOut;
}

employee UniEmployee[10] =
{
 employee(1, "Lara", "Exam", "Professor"),
 employee(2, "Ponting", "Marksheet", "Clerk"),
 employee(3, "Laxman", "Accounts", "Head Clerk"),
 employee(4, "Flintoff", "Exam", "Clerk"),
 employee(5, "Murlidharan", "Accounts", "CAO"),
 employee(6, "Sarfaraz", "Exam", "Informer"),
 employee(7, "Dean Jones", "Exam", "Invigilator"),
 employee(8, "Madugalle", "Exam", "Examiner"),
 employee(9, "Ganguly", "Marksheet", "Repeater"),
 employee(10, "Nafees", "Accounts", "Clerk")
};

template <typename Type>

Templates 311

int GenericSearch(Type TempGenericArray[], Type EleToBeSearched)
{
 for(int i = 0; i < 10; i++)
 {
 if(EleToBeSearched == TempGenericArray[i])
 return i;
 }
 return −1;
}

template <typename ElementType>
class Stack
{
private:
 int StackPointer;
 ElementType StackArray[10];
public:
 Stack()
 {
 StackPointer = 0;
 }

 void push(ElementType);
 ElementType pop();
};

template <typename ElementType>
void Stack <ElementType>::push(ElementType value)
{
 if(StackPointer > 9)
 cout << "Stack overfl ow! Cannot insert!";
 else
 StackArray[StackPointer] = value;
 StackPointer++;
}

template <typename ElementType>
ElementType Stack <ElementType>::pop()
{
 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer−−;
 return StackArray[StackPointer];
 }
}

template <>
class Stack <employee>
{
private:
 int StackPointer;
 int EmpNoArray[10];
public:
 Stack()
 {
 StackPointer = 0;
 }

 void push(employee);

312 Programming with ANSI C++

 employee pop();
};

template <>
void Stack <employee>::push(employee TempEmp)
{
 if(StackPointer > 9)
 cout << "Stack overfl ow! Cannot insert";
 else
 {
 EmpNoArray[StackPointer] = TempEmp.EmpNo;
 StackPointer++;
 }
}

template <>
employee Stack <employee>::pop()
{
 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer−−;
 int TempEmpNo = EmpNoArray[StackPointer];
 int SearchIndex = GenericSearch(UniEmployee, employee TempEmpNo" "," "));
 return UniEmployee [SearchIndex];
 }
}

void main()
{
 Stack <int> MyStack;
 MyStack.push(1);
 MyStack.push(2);
 cout << MyStack.pop() << "\n";
 cout << MyStack.pop() << "\n";

 Stack <char> YourStack;
 YourStack.push('n');
 YourStack.push ('O');
 cout << YourStack.pop() << "\n";
 cout << YourStack.pop() << "\n";

 Stack <employee> EmpStack;
 for(int i = 0; i < 10; i++)
 {
 EmpStack.push(UniEmployee[i]);
 }

 for(int i = 0; i < 10; i++)
 {
 cout << EmpStack.pop();
 }
}

How the Program Works
Generic search routine We have added a generic search routine, which can sort any array.
The employee number (EmpNo) needs to be defi ned as public and the employee array as
global, so that the search routine can operate on it. While programming for a real-world

Templates 313

problem, these solutions are not acceptable. It is better to have a linked list of employee
numbers, and the function accessing should be defi ned as a friend rather than defi ning the
employee number as public. However, since the focus here is to learn specialization, we have
presented the program in this manner.

Generating Stack <employee> When Stack <employee> gets compiled, the compiler will
not automatically generate the class from the Stack template, but will take the defi nition that
has been provided explicitly and generate that class.

Using a separate class Another way to accomplish the same task is to defi ne a special
class StackEmp, which contains the same defi nition. Then, it is possible to write

StackEmp EmpStack;

instead of

Stack <employee> EmpStack.

The difference does not lie in the defi nition or use, but in the way the compiler treats it. In
the case of StackEmp, the compiler generates the class when the defi nition of StackEmp is
compiled and generates push and pop for it. In the earlier case, only if an object of Stack
<employee> is defi ned does the class get instantiated, and the functions come into existence
only if they are called, and not otherwise.

If the stack of employees is defi ned as a template specialization, the user need not be
aware of the implementation of employee stack as a special one and can treat the stack object
of employees similar to other objects. This adds to the simplicity of the operation for users
who use the program’s library (where the stack class is defi ned).
Thus, if the user needs to generate an integer stack, the following could be written:

Stack <int>

Moreover, if an employee stack is needed, the user would simply write

Stack <employee>

without having to learn anything else. Instead, if we have a StackEmp class, the user has to
remember the name StackEmp to instantiate the object.

7.3.2 Classes with Multiple Generic Data Types
Classes, similar to function templates, can have more than one generic type. The following
program supports this fact.

//TwoGenericTypes.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename Type1, typename Type2>
class ClassWithTwoTypes
{
 Type1 FirstValue;
 Type2 SecondValue;

public:
 ClassWithTwoTypes(Type1 TempVal1, Type2 TempVal2)
 {

314 Programming with ANSI C++

This example shows two different types, namely, Type1 and Type2, as generic types used in
a generic class ClassWithTwoTypes. ObjectIC is an object of a class instantiated from it. In
objectIC, the fi rst type is integer and the second one is character. Thus, the object is that of
the class instantiated with a character and a string as its two members. Thus, our class is
capable of holding any pair of variables of different types.

7.3.3 Using Non-type Arguments
Similar to function templates, class templates can also have non-type arguments in the
argument list. Take the case of an array that takes generic data type as elements.

The array is defi ned with [] overloaded to have a range-safe operation. Here, the size of the
array needs to be passed as an argument. The argument cannot be a variable because the size of the
array must be known at compile time for the compiler to allocate memory for the specialization
of the class it is generating from the template defi nition. Since the argument is a constant, it
cannot be modifi ed even by the class functions. These types of arguments are known as non-type
(which do not indicate data type) arguments. As discussed earlier, their values must be available

at compile time. The non-type arguments can also be constants of int type or a
pointer (or reference) of global data because all three are available at compile time.

The following is an extended example of Program 6.7 in Chapter 6. The array
is now capable of having any type of elements.

Non-type arguments
can also be used in
class templates.

//GenericArray.cpp
#include <iostream>
using namespace std;

template <typename Type, int Size>
class SafeGenericArray
{
 Type Array[Size];
public:
 Type & operator [](int Index)
 {
 if((Index < 0) || (Index > Size − 1))

 FirstValue = TempVal1; SecondValue = TempVal2;
 }
 void Display()
 {
 cout << FirstValue << " " << SecondValue;
 }
};

void main()
{
 ClassWithTwoTypes <int, char> ObjectIC(12, 'b');
 ClassWithTwoTypes <char, string> ObjectIS('b', "Batsman");
 ObjectIC.Display();
 cout << "\n"; ObjectIS.Display();
}

Templates 315

The use of non-type argument must now be clear. The values fi ve and three in the
fi rst two statements of main() will replace Size of the generic array at compile
time. The fourth line will not be compiled because the value of i is not available
during compilation. If we look at the defi nition of the template class, Size seems
to be a variable of type int. However, it is a constant value that must be known

at compile time. This is true for all non-type arguments.

7.3.4 Using Default Arguments
Default arguments can be used with template classes. The previous example can be rewritten
as follows with default arguments.

The values of non-
type arguments are
replaced at compile
time.

 {
 cout << "Subscript out of range!";
 exit(1);
 }
 else
 return Array[Index];
 }
};

void main()
{
 SafeGenericArray <int, 5> SafeIntArray;
 SafeGenericArray <char, 3> SafeCharArray;
 int i = 5;
 // SafeGenericArray <char, i> NotAcceptable;
 SafeIntArray[0] = 5;
 // SafeArray[−3] = 7;
 SafeCharArray[5] = 'j';
}

//DefArgsGenFunc.cpp
#include <iostream>
using namespace std;
template <typename Type = int, int Size = 10>
// Note the use of default argument

class SafeGenericArray
{
 Type Array[Size];
public:
 Type & operator [](int Index)
 {
 if((Index < 0) || (Index > Size − 1))
 {
 cout << "Subscript out of range!";
 exit(1);
 }

316 Programming with ANSI C++

Note Unlike template functions, template classes, both generic and non-generic types, can have default
arguments. It is important to provide empty angular braces (<>) when the user expects to use default
arguments (unlike template function calls).

Both the arguments have been defi ned in the program as default. It is possible to omit one
or both. The class can even be defi ned with both the arguments. The compiler automatically
supplies the missing arguments by taking the default arguments.

7.3.5 Static Data Members
The template class can also have static data members. The static variable will have one
instance for one initialization of the template class. Thus, there will be two different static
members for Stack <int> and for Stack <char>.

For all the objects of a single class (e.g., Stack <int>), there is only one instance of static
member. The way a static member is defi ned is analogous to the way member functions are

defi ned outside the template class. The TotalStacks variable in the following
program defi nes the total number of stacks of a specifi ed type. Note how the
static variable is defi ned here.

template <typename ElementType>
int Stack <ElementType>::TotalStacks;

The part preceding int Stack contains the same template specifi cation as has
been added earlier in the defi nition of the Stack class, which is provided with
<ElementType> to indicate a specifi c type of stack.

In the following example, the static variable TotalStacks is used to fi nd the total
number of stacks for two different types, int and char. The program can easily be
extended to provide any other type of stacks, for example, employee stack.

A template class can
have static members.
There will be one
static member
instance for one in-
stance of the tem-
plate class. When the
class is instantiated,
static members are
instantiated along
with it.

//StaticDataMembers.cpp
#include <iostream>
#include <string>
using namespace std;
template <typename ElementType>

 else
 return Array[Index];
 }
};
void main()
{
 SafeGenericArray <int, 5> SafeIntArray1;
 SafeGenericArray <char> SafeCharArray1; // Size = 10
 SafeGenericArray <> SafeIntArray2; // Type = int and Size = 10
 SafeGenericArray <char, 5> SafeCharArray2;
 SafeIntArray1[0] = 5;
 SafeCharArray1[7] = 'j';
 SafeIntArray2[9] = 15;
 SafeCharArray2[2] = 'j';
}

Templates 317

class Stack
{
private:
 int StackPointer;
 ElementType StackArray[10];
public:
 static int TotalStacks;
 Stack()
 {
 StackPointer = 0;
 TotalStacks++;
 }
 void push(ElementType);
 ElementType pop();
};

template <typename ElementType>
int Stack <ElementType>::TotalStacks;

template <typename ElementType>
void Stack <ElementType>::push(ElementType value)
{
 if(StackPointer > 9)
 {
 cout << "Stack overfl ow! Cannot insert";
 }
 else
 {
 StackArray[StackPointer] = value;
 StackPointer++;
 }
}

template <typename ElementType>
ElementType Stack <ElementType>::pop()
{
 if(StackPointer == 0)
 cout << "Stack underfl ow! Cannot pop";
 else
 {
 StackPointer−−;
 return StackArray[StackPointer];
 }
}

void main()
{
 Stack <int> MyStack1;
 cout << "Integer stack total elements = " << Stack <int>::TotalStacks << "\t";

318 Programming with ANSI C++

Thus, we have two different TotalStack variables, Stack <int>::TotalStack and Stack
<char>::TotalStack. We can see that multiple instances of classes have separate copies of the
static members. The output shows that both the stacks have increasing number of members.

7.3.6 Friends of Class Template
A friend of a class template can be one of the following:

1. Class template 4. Ordinary (non-template) class
2. Function template 5. A specialization of class template
3. Ordinary (non-template) function 6. A specialization of function template

The following code illustrates how it is possible to have many types of friends for a class
template.

class ClassNo1; // Forward defi nition

template <typename Type1>
class TemplateClassNo1
{
 Body of the class
}

template <typename Type2>
class TemplateClassNo2
{
 Body of the class
}

template <typename Type3>
class TemplateClassNo3
{
private:

 cout << "Character stack total elements = " << Stack <char>::TotalStacks << "\n";
 Stack <char> YourStack1;
 cout << "Integer stack total elements = " << Stack <int>::TotalStacks << "\t";
 cout << "Character stack total elements = " << Stack <char>::TotalStacks << "\n";
 Stack <int> MyStack2;
 cout << "Integer stack total elements = " << Stack <int>::TotalStacks << "\t";
 cout << "Character stack total elements = "<< Stack <char>::TotalStacks << "\n";
 Stack <char> YourStack2;
 cout << "Integer stack total elements = " << Stack <int>::TotalStacks << "\t";
 cout << "Character stack total elements = " << Stack <char>::TotalStacks << "\n";
 getchar();
}
Output

Integer stack total elements = 1 Character stack total elements = 0
Integer stack total elements = 1 Character stack total elements = 1
Integer stack total elements = 2 Character stack total elements = 1
Integer stack total elements = 2 Character stack total elements = 2

Templates 319

 ...

public:
 ...
 friend ClassNo1;
 friend SomeNonTemplateFunction();
 friend TemplateClassN01;
 friend TemplateClassNo2 <int>;
 friend SomeTemplateFunction();
 friend SomeTemplateFunction <int>()

 // A specialization of template function
}

7.3.7 Primary and Partial Specialization
Suppose we want a specialization of the stack class that has been defi ned to work for pointer-
to-any-variable in a different way (say, instead of storing pointers, we may need to store their
contents). The specialization here should work for all types of pointers.

For example, if the employee objects are to be inserted in the stack, they are inserted
without any change. In contrast, if the pointers to employee are inserted, then we insert their
contents (i.e., employee objects pointed to by them). Similarly, if we need to push pointers
to the passenger object in the stack, we again insert the contents pointed to by the pointer.

This process is distinctly different from normal overloading, which provides special
treatment for only a single-type situation. However, here we are dealing with a set of types
(all of type pointers in our case) for which we need a different behaviour. The specialization
can be written as follows:

template <typename ElementType>
class Stack <ElementType*>
{ . . . }

Note the <ElementType *> appearing immediately after the class name. This indicates partial
specialization. The code we have written would work for all pointer types. This is known as
partial specialization.

Note A partial specialization is a template defi nition that begins with a ‘< >’ pair after the class name. It
always follows the primary specialization. A primary specialization is the one that is defi ned before and
of which the partial specialization is a subset.

A partial specialization should always follow the primary specialization, that is, a template
defi nition without <> pair after the class name. In the given example, it relates to the
following defi nition:

template <typename ElementType>
class Stack
{ . . . }

This is also applicable to the SafeArray. A special case is encountered when C-type strings
are passed to the SafeArray. We need partial specialization because when we sort the array
using techniques such as bubble sort, we need to compare strings and even assign one string
to another.

Consider the following case as a defi nition of a generic safe array.

When we need to
have a different be-
haviour for a different
set of arguments,
which is a subset of
the original set of
arguments, we need
partial specialization.

320 Programming with ANSI C++

template <typename Type>
class SafeGenericArray

Suppose the following are the elements of the array:

template <typename Type>
class SafeGenericArray <Type *>

Though the content of fi rst C-type string is the same as that of second C-type string, they
are not similar because the addresses are not the same. We need to defi ne another algorithm
for manipulation in this case. Essentially, this is needed for any array containing pointers.
Partial specialization can be used here. We have to defi ne our specialization in the following
template class:

template <typename Type>
class SafeGenericArray <Type *>

Now, it can work for any array as an element. Consider the following example that explains
partial specialization.
The partial specialization solution is not ideal. See that the [] operator does not return a
reference. This cannot be used in the LHS of the expression. Anyway, it serves the purpose
of introducing partial specialization.

//PartSpec.cpp
#include <iostream>
using namespace std;
#defi ne Size 10
#include <string.h>
template <typename Type>

class SafeGenericArray
{
 Type Array[Size];
public:
 Type & operator [](int Index)
 {
 if((Index < 0) || (Index > Size − 1))
 {
 cout << "Subscript out of range!";
 exit (1);
 }
 else
 return Array[Index];
 }
};

// The following is partial specialization
template <typename Type>
class SafeGenericArray <Type *>
{
 Type *Array[Size];

Templates 321

public:
 Type *operator[](int Index)
 {
 if((Index < 0) || (Index > Size − 1))
 {
 cout << "Subscript out of range!";
 exit(1);
 }
 else
 {
 cout << "Element no. " << Index << "is accessed \n";

 return Array[Index];
 }
 }
};

int main()
{
 SafeGenericArray <int> SafeIntArray1;
 SafeGenericArray <char> SafeCharArray1;

 SafeGenericArray <char *> SafeStringArray;
 char *String = "Lara";
 strcpy(SafeStringArray[1], String);
 SafeIntArray1[0] = 5;
 return 0;
}

Output
Element no. 1 is accessed

We can also have multiple partial specializations for a single primary specialization, that
is, we can have class SafeGenericArray <type &>, etc.

7.4 COMPILATION MODELS FOR TEMPLATES

When templates are included in the programs, there are two different ways to compile them.
One is similar to inline functions where the template body is included when the templates are
called; the other is similar to normal functions where the function call is replaced by some
sort of jump instruction that calls the template function for a specifi ed type and the control
gets transferred to that place. Here we discuss both the types of compilation models.

7.4.1 Inline vs Non-inline Function Calls in Multiple Files
A very important difference between inline functions and normal functions is the way they
are defi ned in a multifi le program. It is possible to have a program that contains multiple fi les.
Assume that Prog1.cpp, Prog2.cpp, and Prog3.cpp are three different fi les containing three
different parts of the same program. To execute the program, the individual fi les are compiled
one after another and then all the fi les are linked together to build a single executable fi le.

Suppose there is an inline function call in Prog1.cpp and Prog3.cpp. A copy of the
function is needed in both the fi les. This is because inline functions are pasted at the time
of compilation. If the individual fi le does not contain the body of the inline function, they
cannot replace the call with the body.

322 Programming with ANSI C++

This is not the case with non-inline functions, which are defi ned only at a
single place. Suppose, in the given example, a non-inline function xyz() is called
from all the three .cpp fi les. If the function defi nition appears in Prog1.cpp; then
only its declaration or prototype should appear in the other two fi les (as extern).
The function body is not copied to the program at compile time. When all three

fi les are linked together, they all have the call address of the same function.
It is actually an error if multiple copies of the same non-inline function are defi ned in

multiple fi les. The compiler, at the time of compilation, cannot check this point; however, at
the time of linking, when the linker gets multiple copies of the non-inline function, it would
be unable to link the program.

Note In multiple source fi les, inline functions need to have a source copy in all the fi les. In contrast, non-
inline functions need to have only the extern defi nitions in all the fi les excluding the one where it is
defi ned.

7.4.2 Template Instantiations in Multiple Files
In this section, we will learn if we need to defi ne templates in every fi le where a template
is to be instantiated, similar to inline functions. We will also learn whether it is possible to
have the complete defi nition in one fi le and use it elsewhere with just the declaration. In
other words, we will know whether template functions should be used like inline functions
or non-inline functions.

In fact, both the models are applicable in the case of function templates. The templates
can be defi ned in all the fi les that are being used. At the time of compilation, the compiler
compiles the function as if it is the only defi nition. At the end of compilation, in a pre-link
phase, when multiple copies of the same template instantiation are found, a single copy is
taken and the others are ignored. There are a few problems with this approach, which are
listed as follows:

1. It may not be possible to copy the template defi nitions in all the fi les as the template
designer may not want the defi nition to be seen by others.
2. It may not be feasible to copy large template fi les to every fi le as it increases

the compile time.
3. The template defi nition is an implementation and the template call is an

interface. The interface should be separated from implementation for the
following reasons:

(a) Implementation should be independently modifi able without changing
the interface. Assume that template xyz is defi ned inside a fi le Prog1.
cpp and is used in Prog2.cpp and Prog3.cpp. These two fi les should
not be recompiled or recoded if the defi nition of xyz (implementation)
changes.

(b) Implementation, at times, represents the high-quality work from a top-
fl ight programmer. It is better that this is not distributed and is kept at a
single place.

(c) Maintenance of the template becomes easy if the defi nition exists at a
single place. If multiple copies of templates exist at multiple places,
maintaining them can be problematic.

One simple way to
include templates in
a multiple source fi le
case is to copy all of
them to all source
fi les. It is called in-
clusion compilation
model.

When all template
defi nitions are kept
at a single place and
linked with all other
source fi les at linking
time, it is known as
separate compilation
model.

It is an error to defi ne
multiple copies of a
non-inline function in
multiple fi les.

Templates 323

Thus, a solution similar to the non-inline functions for the templates is needed. It is possible
using another model that uses the keyword export (discussed in the following section),
where it is possible to defi ne a template function at a single place and use declarations at
other places.

export Keyword
The keyword export is useful when a template function is defi ned at a single place and the
declarations are used at other places. This is useful in instances where the templates defi ned
while developing one application are found to be useful for other applications or when the
templates designed by somebody else are to be used.

Suppose we defi ne BubbleSort.cpp to contain the defi nition of the generic bubble sort.
Then, it is possible to modify the defi nition as follows:

export template <typename Type>

void GenericBubbleSort(Type TempIntArray[])
{
 Body of the function
}

Note In separate compilation model, the defi nition of the template defi nition is preceded by the keyword
export in the fi le in which the templates are defi ned. In all other fi les, only the prototype of the
template is specifi ed.

If we want to use the same GenericBubbleSort() in UseIt.cpp, then the code in UseIt.cpp
contains only the following:

{
 template <typename Type>
 void GenericBubbleSort(Type TempIntArray[]);
 /* Note the semicolon; it indicates the end */
 // No defi nition of the template
 // Other code
}

However, while linking UseIt.cpp, we just need to provide the .obj fi le of the BubbleSort
program.

Note that in the earlier case the entire body of GenericBubbleSort() should be copied to
UseIt.cpp.

The fi rst model where template defi nitions are copied to all the fi les is called inclusion
compilation model and the second one is known as separate compilation model as
implementation is separated from the interface here.

7.5 USE OF typename

The keyword typename indicates that the expression following the keyword is the name of a
type. We have used typename in the <> section in the template. It can also be used within the
body of the template function (or template class function).

If we write a typename identifi er, then that identifi er is treated as a type in that function
template as shown in Program 7.12.

324 Programming with ANSI C++

PROGRAM 7.12 Using typename for unambiguously specifying a type
//Typename.cpp
#include <iostream>
using namespace std;

int ptr;
template <class Type>

void Min()
{
 typename Type::Test * ptr;
 // Type::Test *ptr;
 // Other code, which does not concern us here
}

class TestTypeNamel
{
public:
 typedef int Test;
};

class TestTypeName2
{
public:
 typedef char Test;
};

void main()
{
 Min <TestTypeNamel>();
 Min <TestTypeName2>();
}

How the Program Works
Here, we have two classes, TestTypeName1 and TestTypeName2, both of which defi ne a type
Test. Min() is a function template with a single Type argument. We have called this function
twice, fi rst with the argument TestTypeName1 and the second time with TestTypeName2. When
Type is instantiated by TestTypeName1, Type::Test is an integer and when Type is instantiated
by TestTypeName2, it is a char. The user here wants to defi ne a variable of type Test. This
means that if TestTypeName1 is the argument, then the variable is int, and if TestTypeName2 is
the argument, then the variable is char. To defi ne that we cannot write the statement,

Test Variable;

as it would confuse the compiler that there are two different options
We need to write the following statement as it would not create any ambiguity:

Type::Test Variable;

We have to refer to it as TestTypeName1::Test if we want to have the Test data type of the
fi rst class (which is actually an int). Likewise, we have to write TestTypeName2::Test, which
is actually a char, when we are referring to the type of the second class TestTypeName2. The
Type contains that type, so the ambiguity no longer exists.

Note that the scope resolution operator is used here to avoid confusion about the Test we
are referring to, because we have two different data types having the same name. The name we
have used with the class name and the scope resolution operator is known as the qualifi ed name.

Templates 325

Now, suppose we need to defi ne a pointer to this type Test. Our defi nition now changes to

Type::Test * ptr;

which is a source of ambiguity. Why?
A statement such as Type::Test * ptr; is valid and acceptable, but the problem is that the

use of ‘*’ is ambiguous. It can be interpreted in two different ways; the fi rst one is what we
intend here, that is, defi ning a pointer pointing to the type Type::Test; it can also be assumed
to be a multiplication operation where the result is ignored (i.e., multiplying Test with ptr
and ignoring the outcome). The compiler may take that meaning by default. If we want to
treat Type::Test as type, we have to tell the compiler explicitly, which we have done in this
program by writing typename before the defi nition.

typename Type::Test * ptr;

It is also possible that the compiler may take the intended meaning by default, but by writing
typename before the defi nition, we make the program more portable. It makes a program
independent of the defaults of a given compiler by compiling the program using any another
compiler.

■ RECAPITULATION ■

 • Templates are very helpful in achieving software
reusability.

 • Templates are type-independent outlines of defi nitions
of classes and functions.

 • It is possible to later on instantiate real classes and
functions with specifi c type using these templates.

 • Function templates are outlines of generic functions
and class templates are outlines of generic classes.

 • When a specifi c class or function is instantiated with
some specifi c type, the body of the instantiation will
replace the generic type with the specifi c type.

 • Argument deduction is possible for function templates.
 • A function template can have multiple arguments similar

to the normal function.
 • A non-type parameter can also be passed to a template

function.
 • We can have specializations that are different from

what the compiler otherwise provides. This means that
we can always override a specifi c specialization by
providing our own explicit version.

 • One template can be overloaded with another by
providing different numbers of arguments, as different

types cannot be specifi ed.
 • Though it is allowed to provide default arguments to a

class template, it is not allowed for the function template.
 • Static data members of the class templates are

instantiated once for one instantiation of the class.
 • It is possible to overload the class template with another

class template having type specifi cation as a subset of
the original type specifi cation. This overloading of class
template is known as partial specialization.

 • When we are dealing with multiple source fi les, it
is possible to copy the template defi nitions to all the
fi les, compile each fi le separately, and then create an
executable fi le.

 • It is also possible to defi ne member functions and
template functions of template classes at a single
place, and use them in other fi les with just declarations.
In this case, the defi nitions are to be preceded by the
keyword export.

 • typename is the keyword that allows the users to
specify an expression as a data type, overriding any
default meaning that the expression may stand for.

■ KEYWORDS ■

Class template This is a generic class outlined by the
specifi cation of a generic type using the keyword template.
The actual class is defi ned later using this template.

Explicit specialization When either a function or a
class is defi ned explicitly for a specifi c type, then that
special defi nition is known as explicit specialization.

326 Programming with ANSI C++

The explicit specialization overrides the normal
specialization.

export export is a keyword required for implementing the
separate compilation model. When the template defi nition
is preceded by export, the compiler can manage to
compile other fi les without needing the body of the template
functions or member functions of the template class.

Inclusion compilation model It is possible to compile the
templates spread across multiple fi les by having the copy
of the template text in all the fi les. This model is known as
the inclusion compilation model.

Instantiation Generation of either function or class for a
specifi c type using the class of function template is known
as instantiation of the class or function.

Non-type parameters Parameters to either template function
or template class that do not specify any specifi c type but
the constant value are known as non-type parameters.

Partial specialization When we defi ne a template class, we
can overload that class with other specifi c set of types, which
is a subset of the original set of types. This overloading of
the template class is known as partial specialization.

Separate compilation model It is possible to compile
templates separately and then use them by providing
their prototypes in other fi les. This model is known as the
separate compilation model.

Specialization The function or class generated from the
process of instantiation is known as a specialization of
the template.

Template argument deduction The compiler, while
encountering a call to a function template, tries to fi nd
out the actual type for the generic type specifi ed in the
defi nition of the function template. This process is known
as template argument deduction. It is only possible in the
case of function templates but not in class templates.

Template function or function template The generic
function outlined by specifi cation of a generic type using
the keyword template. The actual function is defi ned
later using this template.

typename or class keyword The typename or class
keyword is used to defi ne the generic name for the type in
the function or class templates.

■ EXERCISES ■

Multiple Choice Questions

1. typename can be used for __________.
 (a) defi ning generic data type
 (b) indicating a data type
 (c) Both (a) and (b)
 (d) None of the above
2. The model where template defi nitions are copied to

all the fi les is called __________.
 (a) compilation model
 (b) primary model
 (c) inclusion compilation model
 (d) exclusion compilation model
3. What type of pointers or references are allowed as

non-type arguments to template functions?
 (a) Pointers to global function
 (b) Pointers to non-local objects
 (c) Both (a) and (b)
 (d) Pointers are not allowed
4. A friend of a class template can be one of the

following:
 (a) Class template
 (b) Function template
 (c) Ordinary non-template class
 (d) All of the above

5. Is it possible to have templates with two or more
generic arguments?

 (a) Yes
 (b) No
 (c) Yes, but only for function templates
 (d) Yes, but only for class templates
6. When is the template function compiled?
 (a) When the compiler encounters the declaration

of the template function
 (b) After the template function is instantiated
 (c) When the compiler encounters the defi nition of

the template function
 (d) Before other normal functions are compiled
7. What is typename?
 (a) Identifi er
 (b) Preprocessor directive
 (c) Keyword
 (d) Conditional construct
8. Which of the following is the correct syntax for

declaring function templates?
 (a) template <typename T>; void fun(T var1);
 (b) template <T>; void fun(T var1);
 (c) template <type T>; void fun(T var1);

Templates 327

 (d) template <tname T>; void fun(T var1);
 9. Is there any restriction on the number of arguments

as well as the number of types passed to template
functions?

 (a) Yes
 (b) No
 (c) Only when the template function is defi ned

outside the class
 (d) Only when the template function defi ned inside

the class
10. What are the classes Stack <int> and Stack

<char> known as?
 (a) Normal classes
 (b) Template classes
 (c) Specializations
 (d) Special classes

Conceptual Exercises

 1. What is the need for template functions in C++?
What are their advantages?

 2. What are the problems with using macros? Explain
using an example other than the one given in the
book.

 3. Give a few examples of multi-argument templates.
 4. What is the difference between typename and

class?
 5. What is instantiation? Explain.
 6. What is the need for operator overloading when

we are using template functions to work with user-
defi ned types? Clarify with an example.

 7. What is the difference between generic and non-
generic (type and non-type) arguments to function
templates?

 8. What is the difference between a template function
and template class?

 9. What are the advantages of template arguments
deduction? When is it not possible for the compiler
to deduce the argument types?

10. Give a few examples where explicit specialization
of template function and template class is
required.

11. Why do we need to overload a normal function
instead of template specialization in some cases?
Give an example to explain the need.

12. Give an example explaining the need for
overloading a template with another template.

13. Discuss the effi ciency and fl exibility issues with
templates.

14. What is the difference between manually over
loaded functions and template instantiations?

15. Give an example where using the default arguments
are useful in class template.

16. How does the behaviour of the static data members
of a class template differ from that of static data
members of a normal class?

17. What is the need for partial specialization?
Differentiate between explicit specialization and
partial specialization.

18. Explain the two models for template compilation?
Compare.

19. Explain how typename can be used to indicate the
type giving an example.

Practical Exercises

 1. Implement selection sort as a generic function.
 2. Implement quick sort as a generic function.
 3. Write a program for binary search as a generic

function. The function should take arguments as
array name, the size, and the element to be searched.

 4. Implement selection sort with a non-type size.
 5. Implement quick sort with a non-type size.
 6. Write a program for generic queue class with two

member functions, insert and delete. Use the array
to implement the queue.

 7. Use the queue class in the previous problem and
provide specialization for strings.

Chapter 8
Exception Han dlingException Han dling
8.1 INTRODUCTION

Exception handling is a mechanism to handle exceptions that are error-like
situations. It is diffi cult to decide when an error becomes an exception. For
the purpose of discussion, we will assume exceptions as errors.

C++ provides mechanisms for generating and handling exceptions.
When exception handling is in place, instead of providing normal means
of execution when an exception occurs, an alternative path of execution
needs to be provided. In cases where the exception is not acceptable (most
of the cases are such), the program should be terminated. It is a far better
and orderly way to handle errors than the traditional C way to handle them.
Let us compare both the approaches and see why the C++ error handling
mechanism is more effective.

8.2 TRADITIONAL ERROR HANDLING

Traditionally, error handling is done in three different ways, namely, return-
ing error number, global fl ag manipulation, and abnormal termina tion. None
of these are completely suitable for solving problems. In this section, we
will discuss in brief all these mechanisms and their short comings.

8.2.1 Returning Error Number
When a function is encountered in a program, arguments are accepted and
the processing starts. If the arguments are incorrect or if something goes
wrong while processing, the function returns an error code. This mecha-
nism is quite common in C programs where returning zero is considered
a successful function call, while a non-zero value indicates an error indi-
cated by the value returned. There is no universal standard for such error
codes. Returning error code 1 may indicate a wrong argument type (e.g.,
int instead of double) in one case, whereas in another case, it may signify
that a pointer argument passed contains an invalid address.

8.2.2 Global Flag Manipulation
There are error variables that are globally available to all C library
functions. They can set the value of errno to indicate errors. After calling
the library function, the value of errno can be checked to fi nd the actual
error. The function perror() can also be used to get the same effect.

The disadvantage of this method is the reliance on the user to comply
and test the value of the global fl ag every time the function is called. If the

Learning Objectives

• Conventional error handling
vis-à-vis exceptional handling

• Throwing exceptions outside
the function

• Throwing objects, integers,
and characters

• Multiple catch statements
for a single try block

• The catch-all statement
• Exception specifi cation
• terminate(),
unexpected(), and
uncaught_exception()
functions

• Exceptions and debugger
• Drawbacks of exception

handling

Returning zero for
successful termi-
nation and non-zero
otherwise is common
practice in C
programs.

Exceptions are error-
like situations. Excep-
tion handling is a
mechanism to
generate and handle
exceptions.

Exception Handling 329

user does not check the value of errno and continues to work, there is a danger
of getting unexpected results.

8.2.3 Abnormal Termination of Program
This is the most common exception handling procedure. Whenever something
goes out of bound, exit() or abort() is called. It is a little better to use assert(),
which displays a message before terminating. However, if this procedure is used,
then an error would eventually crash the program. This is a very rough way to
handle the situation and not recommended at all, though it is the only way to end
in quite a few cases.

While dealing with objects, crashing a program without properly closing
the fi les and resources held by the object can leave the system in an incon-
sistent state. It is very diffi cult and, at times, impossible to recover from such
states.

8.3 NEED FOR EXCEPTION HANDLING

Exception handling mechanism is needed in C++ because of the inappropriateness of all
the traditional solutions while working with objects and in a distributed environment. The
following section explains the need for exception handling.

8.3.1 Dividing Error Handling
While building a library, one may check for errors but may not be able to determine what to
do with those errors. This is because one cannot predetermine the way the library is going to
be used since it is built to be used in more than one situation. The library user on the other
hand knows exactly what to do when an error occurs, that is, what fi les to close, whom to
inform, etc. The exception handling mechanism enables the library designer to throw excep-
tions and the library users to accept and handle those exceptions. The error handling, thus, is
divided. The library designer reports the errors and the user acts upon it.

Let us consider an example to understand the problem of library builder and library user.
Suppose a library is being developed for a multimedia project. It has an argument
“dimension” for the fi gure object. An error is to be reported from the library when
the dimensions are not proper (going out of screen at the time of display or not
within appropriate scaling with other fi gures on the screen). The designer can only
display “Improper dimensions”. However, the user of the class fi gure knows that
the object being dealt with is a space shuttle; hence, when the dimensions of the left
wing of that fi gure is under consideration, the user would display “The left wing
does not fi t on the screen”, which is more understandable. If the same class is used
elsewhere to draw a football ground in a multimedia game, the same error may be
displayed by the user as “The opposite party’s goalpost is drawn out of screen”.

8.3.2 Unconditional Termination
In case of an abnormal termination (when abort() or exit() is called in the library), the
programmer does not have any control over the program termination process. In such
cases, exception handling mechanism helps a great deal by passing the control back to the
programmer. Now, the programmer can control the termination process, that is, can close the
fi les and release buffers and other resources before terminating.

The global variable
errno and functions
such as perror() to
display error are also
common methods of
handling errors in C.

The most common
way of handling errors
in conventional coding
is to call exit() or
abort() and leave
the user to decide
what to do next.

Libraries are de-
signed much before
they are actually used
in programs. Hence,
the library designer
must pave way for the
users of the library to
manage errors in their
own way.

330 Programming with ANSI C++

8.4.1 try Block
The try block is the one that can throw an exception. The code that is to be
monitored for exceptions is placed within this block. Thus, the try block is the
scope of exception generation. Whenever a specifi c code segment is expected
to throw an exception, such segment is placed within the try block. Thus, this

Note When users opt for unconditional termination, the objects that are instantiated will be abnormally
terminated and their destructors are not executed. Other objects such as fi le and network connections
also run into trouble due to abnormal termination. Exception handling provides a way for programmer-
controlled termination.

8.3.3 Separating Error Reporting and Error Handling
We have already seen the importance of separating error reporting and error
handling. The two conventional ways to do it are using error codes and global
error numbers. Both the methods generally use integers and are not standardized.
In the exception handling mechanism, it is possible to have objects passed to the
user, which can throw some more light on the situation related to the error. For
example, if a fi le is not available while the user is making an attempt to read it,
then the exception handler can provide functions that ask the user to select some
other fi le instead (if the user has mistyped the name) or create a new fi le.

8.3.4 Problem of Destroying Objects
When an object is defi ned for a class with a dynamic constructor (a constructor
with dynamic memory allocation), a destructor is needed. When an object
contains resources (buffers in RAM, fi le handles, open connections to other
parties in the network, etc.), a destructor is needed to smoothly return the
resources and close the connections. The exit() or abort() function does not
call the destructor of an object. Hence, if these functions are called, the objects
are not destroyed properly, which can create inconsistency. If exception handling
is used instead, the object destructors are automatically called and the problem is
solved.

8.4 COMPONENTS OF EXCEPTION HANDLING MECHANISM

The exception handling mechanism has three building blocks, namely, try for indicating the
program area where the exception can be thrown, throw for throwing an exception, and catch
for taking an action for the specifi c exception. Figure 8.1 shows graphically how the three
entities communicate with each other.

Conventionally, there
is no structure for
dividing error report-
ing and handling.
Exception handling
provides a standard
and clear cut method
for dividing them and
handles the exceptions.

When the program
terminates abnormally,
the objects created
must be destroyed
in the reverse order.
This is known as stack
unwinding problem.
Exception handling
provides a systematic
method for termination
with stack unwinding.

Fig. 8.1 Three building blocks of exception handling

Try block
Indicates the area where an

exception can be thrown

Throw expression
Statement or function

with throw

Catch block
Take action for the specific

exception

A try block decides
the body that is moni-
tored by the system
to look for exceptions.

Exception Handling 331

block contains either a throw statement or a function containing either a throw
statement or a similar function inside the body.

8.4.2 catch Block
This is the section where the exception is handled. There are two ways to throw
an exception: fi rst, by using an explicit throw statement or second, by calling a

function which in turn contains a throw statement or a similar function call in its body. The
exception is handled by the catch block, which should immediately follow the try block.

8.4.3 throw Expression
This is a mechanism to generate the exception. It is usually a single statement starting with
the keyword throw or a function call that contains throw inside its body. After the execution
of this statement, the control is transferred to the corresponding catch block written imme-
diately after the try block, if the exception is thrown.

The identifi er following the throw is the name of the variable being thrown. The control
now is permanently transferred to the catch block and the statements after the throw statement
are not executed.

Let us examine Program 8.1 to understand these constructs.

A catch block con-
tains the code that
the user has written
to handle a particular
exception.

PROGRAM 8.1 Exception example
//EHExample.cpp
#include <iostream>
#include <string>
using namespace std;

class MyException
{
public:
 int ExNumber;
 string ExMessage;
};

void main()
{
 try
 {
 cout << "Inside try block\n";
 cout << "Assuming error and throwing exception now\n";
 MyException Error1;
 Error1.ExNumber = 20;
 Error1.ExMessage = "Error testing";

 // Assume that the error has occurred
 throw Error1;
 cout << "This statement will not be executed";
 }
 catch (MyException Except)
 {
 cout << "\n Inside catch";
 cout << Except.ExNumber;
 cout << "\n" << Except.ExMessage;
 }
}

332 Programming with ANSI C++

How the Program Works
This program does not have any error generating environment. Instead, it is just
assumed that an error has occurred. With this simple program, it is very easy to
understand all the three entities involved in the exception handling process.

The try block contains all the statements that are to be observed for exception
generation. A throw statement transfers the control outside the try block perma-
nently. The statements after the throw statement will not be executed in case of
an error. In this case, an object of the class MyException is thrown. For simplicity,
this program contains only two data attributes, namely, error number and error
message, in it. Once the control is outside the try block, it must get a matching
catch statement for the exception thrown. It must be noted that the catch block
immediately follows the try block. In this case, the catch block (fortunately)

contains the type that has been thrown, and hence, the control will pass to that block. Now,
the statements inside the catch block are executed and then the program is terminated.

It is important to have a matching catch block for a thrown exception. If the match is not
found, the catch block calls a built-in function terminate(), which terminates the program
by calling abort(). We look at both of them in Section 8.12. The matching of catch is more
restrictive than a normal match. For example, catch(unsigned) will not catch int or char.

Note that this is a two-step process and that it is not possible to have a direct call to
abort(). First, terminate() has to be called, which in turn calls abort(). The fl exibility
of indirect access of this kind is important. The built-in terminate() can be replaced with
the programmer’s own function, which might close the fi les and connections before calling
abort(). It is not possible to call abort() in certain circumstances. This is what is meant by
programmer-controlled termination.

Note An exception thrown that does not receive a proper match calls terminate(), which, by default,
calls abort(). A user can write his/her own terminate() function, which can provide the last rituals
to the object. In general, the user’s own terminate() also calls abort() to ensure that all possible
measures are taken before the termination.

The control transfer from the try block to the catch block is permanent. This is unlike a
function call where, when the function exits, the control would transfer back to the next
statement of the calling function. In try-to-catch block transfer, the transfer of control will
not come back to the try block when the catch block execution is over. Even when no
matching catch block is found, the control would not come back to the try block.

8.5 CHALLENGES IN THE NEW APPROACH

The new approach using exception handling is not without its own set of problems. As
programmers, it is necessary for the readers to understand the challenges involved in this
approach. The behaviour of the program changes substantially under this model. Care needs
to be taken while using third-party libraries that throw exceptions. At the time of throwing
an exception, the user also needs to take care of all its subsequent effects.

8.5.1 Finding Proper Handlers
It is to be known well in advance how many types of expressions can be thrown from the
try block, and catch blocks must be provided for all such cases. It is very easy to check for

Once the control is
outside the try block,
it must get a matching
catch statement for
the exception thrown.

A throw statement
transfers the control
outside the try block
permanently.

Exception Handling 333

programs such as Program 8.1. However, it becomes complicated if a function
called from the try block throws an exception in the body of the function itself
and does not have an appropriate catch block in its body. The programmer needs
to provide an error handler in this case. One may assume that such cases are rare
but it is not so. Most of the exceptions are thrown by the functions and are not
caught by them. The onus is on the calling function to decide what to do when a
specifi c exception is thrown.

Take the case of the new operator. The library implementation of new does not
have a catch for a case when memory is not allocated. The operator new just
throws an exception of type bad_alloc. It is up to the programmer to provide a
catch block for it. If third-party functions are called in a program, a user needs to
be aware of the exceptions that might be thrown from those functions and must
provide appropriate error handlers for them. Failing to provide a proper exception
handler leads to sudden crashes of programs much to the dislike of the users. Thus,
it is imperative appropriate handlers are written when exceptions are expected.

In the real sense, the exception handling mechanism is an error-reporting
mechanism from the library creator to the user, as mentioned earlier. Both the
designers and the programmers are unaware of each other. Exception handling
is a standardized mechanism to help them communicate about anomalies. It is
imperative that the user of library functions be able to know the type and nature
of the exceptions thrown from those functions.

8.5.2 Finding Proper Handlers for Polymorphic Objects
It will be seen in Chapter 9 that it is possible to inherit a class into another class.

It is possible to access a derived class object by a base class pointer. The object pointed to
by such a pointer is known as a polymorphic object. Whenever a polymorphic object of a
derived class is thrown, it can be caught either by the base class or by the derived class. This
is a challenging task. We defer this discussion until we study inheritance in Chapter 9.

8.5.3 Backtracking until Beginning of try Block
It is important to understand that when an exception is thrown, the control, before being
passed to the catch block, travels backwards in the try block, and destroys all the objects
generated in due course. This helps in restoring consistency, which was discussed earlier. A
programmer must take care while writing destructors for objects (if a destructor is required
for properly destroying the object) and place them in the try block to ensure consistency. It is
also important to note that these destructors should not throw exceptions themselves in such
cases. If one exception is not handled and another exception is thrown, the system has no
other option but to terminate the program abnormally, as it is not capable of handling more
than one exception at the same point of time.

8.6 THROWING WITHIN AND OUTSIDE FUNCTIONS

We have seen that we can throw an exception in the function that is caught outside the
function under consideration but handled in the calling function. If this exception is not
caught by the calling function, it may be caught by a function that has called this calling
function. This is true for any level of hierarchy.

A library user must be
aware of the type
and nature of excep-
tions thrown by the
functions he/she
uses. If the user fails
to take account of an
exception, the prog-
ram may terminate
abnormally.

A polymorphic object,
when thrown, can
be caught by its own
catch statement or
the base class from
which it is derived.

When we have two
exceptions thrown
at the same point of
time, the program ter-
minates abnormally.

334 Programming with ANSI C++

Suppose a function Funl calls Fun2, which in turn calls Fun3 and so on until FunN. If FunN
throws an exception that is not caught in FunN itself, the control would transfer back to FunN−1
and would look for the matching catch section there. If FunN−1 does not have the catch for
the case, it then may be caught by FunN−2 if it has a matching case and so on.

It should be understood that this is not a normal function return. The control does not
come back to the next statement after the function call, but just looks for a matching catch.
The process would continue until it either gets the matching catch or exits Fun1. If a matching
catch is available, the exception is said to be handled by that particular function having the
catch block, and the function returns from there as a normal return.

As soon as a match is found in a specifi c function, even when the exception has passed
up in the hierarchy, that function returns normally. All other functions through which the
exception passes do not execute their code.

In the example discussed, if the matching catch is found at Fun5, it executes the code in the
catch block in Fun5 and returns normally to Fun4 and executes the remaining statements of
Fun4. There is no function return so far from FunN to Fun5, and hence, no remaining statements

from those functions would be executed there. However, all the objects defi ned
in those functions are systematically destroyed.

In case the matching catch is not found until exiting Fun1 and still the exception
has not been handled (i.e., no exception handler has been found so far), the
terminate() function would be called as usual. Program 8.2 is an example of
a program in which an exception is called from a function. For simplicity, we
look at a single layer of hierarchy, that is, main() is calling the function ExGen(),
which is going to throw an exception. Here, the exception will be caught by the
main() function.

When an exception is
thrown and not caught
in the same function
where it is thrown,
it passes up in the
hierarchy where the
calling function has a
chance to catch it.

PROGRAM 8.2 Throw using a function
//FunctionThrow.cpp
#include <iostream>
#include <string>
using namespace std;

class MyException
{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }

 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};

// Function responsible for exception generation and throw

Exception Handling 335

How the Program Works
There is very little difference between Program 8.1 and this one. Earlier, the exception
generation and throw happened in main, whereas now they are a part of the ExGen() function.
There is a matching catch in main rather than the function itself. When ExGen() throws an
exception using

throw Error1;

it is not caught at ExGen(). It goes one level up to main to fi nd the matching catch there.
Fortunately, it gets one matching catch and executes it. The remaining statements of main
will not be executed. Immediately after executing the catch block, main exits.

Catching an Exception by a Caller Function
This program can be modifi ed a bit as shown in Program 8.3 to see how fi nding a match
elsewhere changes the scenario.

void ExGen()
{
 cout << "Inside the function \n";
 cout << "Inside try block\n";
 cout << "Assuming error and throwing exception now\n";
 MyException Error1(20, "Error testing");

 throw Error1;
 cout << "This statement will not be executed";
}

void main()
{
 try
 {
 cout << "Inside main\n";
 ExGen(); // This would generate exception
 cout << "This will not be executed";
 }

 catch (MyException Except)
 {
 cout << "Inside main catch \n";
 Except.ShowEx();
 }
}

PROGRAM 8.3 Catching up in the hierarchy
//CatchInHierarchy.cpp
#include <iostream>
#include <string>
using namespace std;

class MyException
{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)

336 Programming with ANSI C++

 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }

 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};

/* Function generating exception as well as catching */
void ExGen()
{
 cout << "Inside the function \n";
 cout << "Inside try block\n";
 cout << "Assuming error and throwing exception now\n";

 MyException Error1(20, "Error testing");
 throw Error1;
 cout << "This statement will not be executed";
}

// Exception is caught in this block
void TestGen()
{
 try
 {
 cout << "Inside TestGen\n";
 ExGen(); // This would generate exception
 cout << "This will not be printed";
 }

 /* When an exception is thrown, the remaining statements of that function will not be
executed, as the control gets permanently transferred to the catch block */

 catch (MyException Except)
 {
 cout << "Inside main catch \n";
 Except.ShowEx();
 }
}

int main()
{
 TestGen();
 cout << "This statement would be printed\n";
 return 0;
}

Output
Inside main
Inside the function
Inside try block
Assuming error and throwing exception now
Inside main catch
Error number is 20
Error testing
This statement would be printed

Exception Handling 337

Note It is by design that when an exception is thrown, the control gets permanently transferred to the catch
block. Such behaviour looks very logical once we learn how real-world problems are solved. Take a
case where a library designer develops a graphics library that is used by another user. Suppose the
user sends a dimension to the graphics library and the dimensions are incorrect, then there is no point
in executing the remaining statements and drawing that object further.

How the Program Works
Exceptions thrown It should be noted that now the TestGen() function calls the ExGen()
function. The exception thrown from ExGen() is caught in TestGen(), so it returns normally to
main. Hence, the remaining single statement of main executes after the function call to TestGen()
is over. It should also be noted that the remaining statements in TestGen() do not get executed.

Separation of reporting from handling Though Programs 8.2 and 8.3 looks similar to
Program 8.1, there is a small change. Instead of throwing and catching the exception in the
same function, they are done separately. Although it seems to be a simple change, it is big
considering the separation of the error reporting and handling parts. Throwing now happens
in ExGen() and catching happens in main and TestGen() in Programs 8.2 and 8.3, respectively.

Inability of designer to provide appropriate messages ExGen() can be used in various
cases where exceptions are thrown. It is possible to write an appropriate error message in the
catch statement for each such case in the program. Here, ExGen() is a very simple function
and does almost nothing, but in real-life cases, it might do many actions to revert back to a
stable state when a specifi c error occurs.

For example, assume that a globally available big array is present and that ExGen() is
designed to allocate some memory in the array when the user asks for it. That portion of
array may be used to store the information in the calling program. Understand that ExGen()
is a common function for many objects and is used at different places by different objects for
storing different types of objects. One may use ExGen() for storing Employee objects, another
may use it to store the marks of students, and so on. Although the size of ExGen() array is
big, it is not infi nite and hence may run out of memory at some time. At that point, instead of
providing space in the array, ExGen() throws an exception NotEnoughMemory.

Suppose ExGen() is used to allocate memory for the employee object in main where the
exception NotEnoughMemory is caught, it is possible to display a message “Too many employee
objects are created, cannot create any more”, which is easily understandable. Suppose an
error message is provided in the ExGen() itself, then it would be similar to “No space left
in the array”. ExGen() does not have any idea about the employee object, so it cannot be as
precise as the main() function.

Note There are two reasons for ExGen() to have no knowledge about the employee array. The library
designer has no idea about how that array will be used and which user will store what information in
the array. Second, even when the user has an idea about the usage of the library, there is no method
that can print a selective message for a specifi c usage. Take the case of using an aerospace design
program and an architect using this library. When the out-of-dimension message is to be printed, what
will the library designer prefer to print? In the given example, a user defi nitely prefers to have “Too
many employee objects” rather than “No space left in the array”.

Solution Passing an exception is better in this case. The ExGen() function, instead of
printing a message, passes the exception to the caller, which decides what to do with that
exception, as it is defi nitely in a better position to print a more user-friendly message. In a

338 Programming with ANSI C++

way, the library designer passes that message to the user and the user prints an appropriate
message. If the same ExGen() is used later for acquiring memory for the students enrolled
in a course, an appropriate message may be displayed at the time of exception. So, this
approach is more fl exible as well.

Exception handling is a more structured mechanism than error handling. If the ExGen()
function is provided with an error code, the description may not be obtained right from the
function; it may need to be obtained from elsewhere. Moreover, it is known that the error
codes are not standardized. It would be impossible for somebody else to use the ExGen()
function without knowing the error code values and the meaning of each error code.

In both cases, exception handling is a more orderly and an acceptable form. However, it
might bring down the effi ciency and performance levels by a few notches. Refer to Section 8.15
to know how the performance of a program gets affected when exception handling is included.

8.6.1 Handling Exceptions
When a catch matches with what is thrown, it can match with any of the following:

1. An exact type
2. A type that is derived from the type used by the catch statement, so that if catch (base)

is provided and throw derived is performed, it is caught.
3. A void pointer, which matches with any pointer. Thus, catch (void *) matches with any

pointer thrown by the throw statement.

It is possible to write one try block inside another. The thrown exception, if not
caught inside the try block, is passed to the outer try block. Suppose we have the following
code
try
{
 try
 {
 MyException Something;
 throw Something;
 }

 catch (AnotherException AE)
 {
 Body of the catch block
 }
}

catch (MyException ME)
{
 // This is where Something is handled
}

Here, Something is not handled in the same try block; rather, it is handled in the outer try
block. If it is not handled in the outer try block, it is processed similar to any other exception.
It is passed to the calling function and to the calling function of the calling function and so on
until it is either caught or reached out of the main when terminate() is called.

Exception Handling 339

8.7 THROWING VARIABLES OTHER THAN OBJECTS

It is also possible to throw other variables such as integers, chars, and strings. They can also
be caught in the same way as objects. However, it is advisable to use objects to help users
with more elaborate and acceptable handling of errors. At times, the object should also have
member functions to solve the problem and recover from the error if possible. Suppose our
function needs a fi le to get some input from that fi le. If the fi le is not found, the function can
throw an exception as an object. The object may have a member function, which tells the
user that the fi le it needs is not available and asks for an alternate fi le if available, or if fi le
is not available, it asks the user for permission to use old data available from older fetches.
It is important to note that using those member functions the user may provide generic error
handling logic irrespective of the situation in which the error has occurred.

Throwing variables instead of objects is similar to the C-type error handling mechanism
where we return error codes. It is similar to providing the conventional solution at a higher
cost.

In Section 8.8, we will look at a few examples that show how to throw variables other than
objects and catch them.

8.8 USING MULTIPLE catch

It is possible to use more than one catch section for a single try block. First, matching the
catch block will get executed when an expression is thrown. If no matching catch block is
found, the exception is passed one layer up in the block hierarchy. This has already been
explained using Program 8.3.

The following program demonstrates the following:

1. There are multiple try blocks, one in the function and one in main as shown.
2. Options are provided for throwing three items, two of them being built-in data types, int

and char, and the third an object of type MyException.
3. Two type of exceptions are caught in the function, in which case, the function call

terminates in the usual way and the execution resumes in the main with a statement
appearing immediately after the function call. Once an exception is caught, it would not
be caught at the higher layers; the catch sections of main for char and int are, thus, not
executed in this case.

4. The third type of exception, MyException, cannot be caught by the catch statements of the
function (which can only handle int and char). Therefore, it goes up in the hierarchy and
is caught by a catch statement in the main. In this case, the function call does not terminate
properly and the statement after the function call is not executed. The control directly
passes to the catch section of main.

5. The fourth type of exception is a string, for which there is no corresponding catch
statement either in the function or the main. In such a case, a built-in function terminate()
is called. It terminates the program with an indication of abnormal termination.

6. There is one throw statement in the main, which would be caught by the catch of the main().
If catch (int) in the main is removed, it will result in the same error that was obtained
while sending a string exception. When an exception is thrown, if the corresponding catch
is not found in the current context, it would go up in the hierarchy, and not down. So, in
this case, it does not execute the catch of ExGen() if not found in the main.

340 Programming with ANSI C++

7. There are two types of catch statements, namely, catch (data type) and catch (data type
value), that is, catch (int) in main and catch (int IntEx) in the function. When one is
interested only in identifying the type of exception, one can use the catch (data type) syntax;
if the actual exception value is need, the catch (data type value) format must be used. The
IntEx value is used for printing in the function, while such printing is not required in the main.

//MultipleCatch.cpp
#include <iostream>
#include <string>
using namespace std;

class MyException
{
private:
 int ExNumber;
 string ExMessage;

public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }
 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};

void ExGen()
{
 cout << "Inside the function \n";
 try
 {
 cout << "Inside try block\n";

 MyException Error1(20, "Error testing");
 cout << "Press 1 for int, 2 for char, 3 for MyException, and 4 for string";
 int reply;
 cin >> reply;
 cout << "Assuming error and throwing exception now\n";

 switch(reply)
 {
 case 1:
 throw 10;
 case 2:
 throw 'a';
 case 3:

Exception Handling 341

 throw Error1;
 case 4:
 throw "There is nobody to catch this";
 }

 cout << "This statement will not be executed";
 }
 catch (int IntEx)
 {
 cout << "Integer exception" << IntEx
 << "is caught in the function \n";
 }

 catch (char CharEx)
 {
 cout << "Character exception" << CharEx
 << "is caught in the function \n";
 }
}

void main()
{
 try
 {
 cout << "Inside main\n";
 ExGen(); // It generates exception
 cout << "This will not be executed if the exception is
 not caught in the function\n";
 throw 10;
 }

 catch (int)
 {
 cout << "An integer is caught in main";
 }

 catch (char)
 {
 cout << "A char is caught in main";
 }
 catch (MyException Except)
 {
 cout << "Inside main catch \n";
 Except.ShowEx();
 }
}

Output (Edited)
(Two different cases with integer and MyException objects show how the program executes
when an exception is handled inside and outside the function)
Inside main

342 Programming with ANSI C++

8.9 CATCH ALL

It is possible to catch all types of exceptions in a single catch section by using
catch (...) (three dots as an argument).

Consider Program 8.4 which is reworked from the previous one. It has catch
(...) (which is commonly known as the catch all statement) in the function.
Now, whatever is thrown would be caught by that single statement and would
not be passed up the hierarchy.

Inside the function
Inside try block
Press 1 for int, 2 for char, 3 for MyException, and 4 for string
1
Assuming error and throwing exception now
Integer exception10 is caught in the function
This will not be executed if the exception is not caught in the function
An integer is caught in main
Inside main
Inside the function
Inside try block
Press 1 for int 2 for char, 3 for MyException, and 4 for string
3
Assuming error and throwing exception now
Inside main catch
Error number is 20
Error testing

catch (...) is
used to catch any
exception. Here, the
three dots play the
role of a wild card.

PROGRAM 8.4 Catching all exceptions in a single catch
//CatchAll.cpp
#include <iostream>
#include <string>
using namespace std;
class MyException
{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }

 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};

Exception Handling 343

How the Program Works
Instead of writing just one catch, it is possible to provide all the catch statements one is
interested in and then provide a catch all at the end similar to the following:

catch (int IntEx)
{
 cout << "Integer exception" << IntEx << "is caught \n";

void ExGen()
{
 cout << "Inside the function \n";
 try
 {
 cout << "Inside try block\n";
 MyException Error1(20, "Error testing");
 cout << "Press 1 for int, 2 for char, 3 for MyException, and 4 for string";

 int reply;
 cin >> reply;
 cout << "Assuming error and throwing exception now\n";
 switch(reply)
 {
 case 1:
 throw 10;
 case 2:
 throw ‘a’;
 case 3:
 throw Error1;
 case 4:
 throw "Now there is catch all to catch this";
 }

 cout << "This statement will not be executed";
 }

 // Catch-all block
 catch (...)
 {
 cout << "Anything thrown is caught here in the function \n";
 }
}

void main()
{
 try
 {
 cout << "Inside main\n";
 ExGen();
 /* Generates exception and catches itself */
 cout << "This will always be executed now because the exception is always caught in

the function \n";
 }

 catch (MyException Except)
 {
 cout << "Inside main catch \n";
 Except.ShowEx();
 }
}

344 Programming with ANSI C++

}

catch (char CharEx)
{
 cout << "Character exception" << CharEx << "is caught \n";
}

catch (...)
{
 cout << "Anything thrown is caught here \n";
}

This is a better design because in this case it is possible to take care of exceptions of one’s
interest in the usual manner. If anything other than what is expected is thrown, it can be taken
care of as well by the catch all block. The catch all section is very useful in debugging and
is as useful as a default statement in switch.

8.10 RESTRICTING EXCEPTIONS FROM FUNCTIONS: EXCEPTION SPECIFICATION

It is possible to specify what kind of exceptions can be thrown from the functions using a
specifi c syntax. The function defi nition header can be appended with the keyword throw and
the possible types of expressions to be thrown in the parenthesis. It is known as exception
specifi cation. In the following example, the function ExGen() is allowed to throw only int
and char exceptions.

void ExGen() throw(int, char)

When ExGen() tries to throw some exception other than that allowed in exception
specifi cation, that is, other than int and char (or a function called by ExGen() throws such
an exception and not catching it thereby passing it up to ExGen()), then a built-in function
named as unexpected() is called, which in turn terminates the program.

One may wonder what the need for exception specifi cation is. When a third-party function
is used, the source code may not be available but the prototype may be available. The
programmer can decide to write corresponding catch statements depending on those types
that are possible to be thrown from that function. In a way, exception specifi cation works
similar to the possible errors that can occur during the use of that specifi c function and gives
one a chance to decide what action one would like to provide in response to such errors.

Look at the following function. It would generate an error if the user selects either 3 or 4.

void ExGen() throw(int, char)
{

 cout << "Inside the function \n";
 cout << "Inside try block\n";
 MyException Errorl(20, "Error testing");
 cout << "Press 1 for int, 2 for char, 3 for MyException, and 4 for
string";
 int reply;
 cin >> reply;
 cout << "Assuming error and throwing exception now \n";

 switch(reply)

Exception specifi -
cation specifi es what
a function can throw.
Looking at exception
specifi cation, a user
decides to provide
corresponding catch
statements.

Exception Handling 345

 {
 case 1:
 throw 10;
 case 2:
 throw ‘a’;
 case 3:
 throw Errorl; // This should not work
 case 4:
 throw "There is nobody to catch this";
 // This too should not work
 }
 cout << "This statement will not be executed";
}

The statement void ExGen() throw(int, char) states that out of all the exceptions
thrown from the function, only char and int are allowed to pass through. Here, the list
throw(int, char) is known as exception specifi cation.

Note It is an important job of a library writer to make sure that no exceptions other than what is mentioned in the
exception specifi cation is thrown from a function. If such an exception is thrown, the program terminates.
One must also ensure before using any library that proper exception specifi cations are provided.

Other exceptions are not allowed to be thrown outside the function. If they are thrown, they
are not acceptable. In case the user selects the choice as 3 or 4, the exception thrown is either
of type MyException or string, neither of which is specifi ed in the exception specifi cation.
The built-in function unexpected() is called, which in turn calls terminate() to abort the
program. It should be noted that the following syntax

<return type> <function name>(<argument List>)
throw(<only exceptions allowed to be thrown>)

will prevent exceptions to be thrown out of the function. It does not provide any restriction
on throwing and catching an exception inside the function. Look at the following code. Here,
MyException is caught inside the function itself, so it will not create any problem. However,
the string or user-defi ned exception will still create a problem.

void ExGen() throw(int, char)
{
 cout << "Inside the function \n";
 cout << "Inside try block\n";
 MyException Errorl(20, "Error testing");
 cout << "Press 1 for int, 2 for char, 3 for MyException, and 4 for string";

 int reply;
 cin >> reply;
 cout << "Assuming error and throwing exception now\n";

 switch(reply)
 {
 case 1:
 throw 10;

When a function tries
to throw an exception
that is not allowed by
the exception speci-
fi cation, a function
named unexpect-
ed() is called, which
in turn calls abort().
The users can
change thebehaviour
by specifying their
own functions instead
of unexpected().

346 Programming with ANSI C++

 case 2:
 throw 'a';
 case 3:
 throw Error1; // This will work
 case 4:
 throw "There is nobody to catch this";
 /* However, this still will not work */
 }
 cout << "This statement will not be executed";
}

catch(MyException)
{
 // Body of catch block
}

Consider the following program, which uses exception specifi cation.

//ExSpec.cpp
#include <iostream>
#include <string>
using namespace std;

class MyException
{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }
 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};
void ExGen() throw(int, char)
{
 cout << "Inside the function \n";
 try
 {
 cout << "Inside try block\n";
 MyException Error1(20, "Error testing");
 cout << "Press 1 for int, 2 for char, 3 for MyException, and 4 for string \n";

Exception Handling 347

 int reply;
 cin >> reply;
 cout << "Assuming error and throwing exception now\n";
 switch(reply)
 {
 case 1:
 throw 10;
 case 2:
 throw ‘a’;
 case 3:
 throw Error1;
 case 4:
 throw "There is nobody to catch this \n";
 }
 cout << "This statement will not be executed \n";
 }
 catch (int IntEx)
 {
 cout << "Integer exception" << IntEx << "is caught in the function \n";
 }
 catch (char CharEx)
 {
 cout << "Character exception" << CharEx << "is caught in the function \n";
 }
}

int main()
{
 try
 {
 cout << "Inside main\n";
 ExGen(); // Generates exception
 cout << "This will not be executed if exception is not caught in the function \n";
 throw 20;
 }
 catch (int)
 {
 cout << "An integer is caught in main \n";
 }
 catch (char)
 {
 cout << "A char is caught in main \n";
 }
 catch (MyException Except)
 {
 cout << "Inside main catch \n";

348 Programming with ANSI C++

throw() as Exception Specifi cation
It is also possible to write throw() as an exception specifi cation. This will not let any exception
to be thrown from that function. If the function throws an exception, the program would be
aborted. Thus, if void ExGen() throw() is written, that is, empty braces to follow the throw,
then the function is not allowed to throw any exception. Consider the following program.

//ExceptionSpecifi cation.cpp
#include <exception>
#include <iostream>
using namespace std;
#include <string>
class MyException
{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }

 Except.ShowEx();
 }
 return 0;
}

Output (Edited)
Inside main
Inside the function
Inside try block
Press 1 for int, 2 for char, 3 for MyException, and 4 for string
3 // Input is 3
Assuming error and throwing exception now
Inside main catch
Error number is 20
Error testing

Inside main
Inside the function
Inside try block

Press 1 for int, 2 for char, 3 for MyException, and 4 for string
1 // Input is 1

Assuming error and throwing exception now
Integer exception10 is caught in the function
This will not be executed if exception is not caught in the function
An integer is caught in main

Exception Handling 349

 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};
void ExGen() throw()
{
 cout << "Inside the function \n";
 try
 {
 cout << "Inside try block\n";
 MyException Error1(20, "Error testing");
 throw Error1;
 }
 catch (int)
 {
 cout << "This statement will not be executed";
 }
}
int main()
{
 try
 {
 cout << "Inside main\n";
 ExGen(); // This would generate exception
 cout << "This will not be executed if exception is not caught in the function \n";
 throw 10;
 }
 catch (int)
 {
 cout << "An integer is caught in main \n";
 }
 catch (char)
 {
 cout << "A char is caught in main \n";
 }
 catch(...)
 {
 if(uncaught exception())
 {
 cout << "There is an uncaught exception \n";
 }
 cout << "Come back to main \n";
 }
 return 0;

350 Programming with ANSI C++

}

Output
Inside main
Inside the function
Inside try block
Aborted

As the function is specifi ed not to throw any exception, when it tries to throw one, the
program is aborted.

It should be noted that the exception specifi cation is used for throwing outside the function.
It does not have any effect on exceptions thrown inside the function or thrown from any other
function called from the current function and caught in the current function.

8.11 RETHROWING EXCEPTIONS

Exceptions can be caught in the same function where the try block has been defi ned or in the
calling function up in the hierarchy. This is actually true with even higher layers. Suppose an
exception is thrown from a function N, which is called from the function N−1, which is in turn
called from the function N−2, and so on until the function 1. The exception can be caught by
function N; if it is not caught there, it can be caught in function N−1; if not, then in function
N−2; and so on until function 1.

If we want to catch the exception in function N and also want to pass it on to higher layers,
it is achieved by rethrowing an exception after catching it.

The use of such rethrowing facility can be explained with an example. Suppose we are in
the middle of a function. The function has two arguments and one of the arguments that we

are going to use in the denominator of an expression is found to be zero. Then,
we may need to suspend the execution, return all the resources allocated, close
the fi les, and do all other types of winding up before passing it to the calling
function. We also need to indicate to the calling function that the operation
intended is not completed properly.

In such cases, we have to catch the exception in the same function to do the
winding up. We also need to make the calling function aware of the mishaps. If
we just catch the exception in the function itself, the calling function will get
the normal return. It will not know whether the function had performed the task
assigned or not. If we do not catch the exception here in the function, it would
ultimately be passed to the calling function and the function will then realize
that something wrong has happened. In that case, the winding-up process will
not be possible. However, we cannot eliminate the winding-up process. To solve
this problem, we need to rethrow the exception. Let us see how to do it using an
example. The syntax for rethrowing is very simple. We need to write a simple
throw after the last line of the catch block. Consider the following program.

A catch block can
include throw state-
ments. In that case,
the caught expression
is again thrown to the
upper layer in the
hierarchy of calls.

//ReThrow.cpp
#include <iostream>
#include <string>
using namespace std;

class MyException

When a function
wants to take some
action when the error
occurs and also in-
form the calling func-
tion about the errors,
rethrowing is useful.

Exception Handling 351

{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }

 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};

void ExGen()
{
 cout << "Inside the function \n";
 try
 {
 cout << "Inside try block\n";
 MyException Errorl(20, "Error testing");
 cout << "Press 1 for int, 2 for char, 3 for MyException, and 4 for string \n";
 int reply;
 cin >> reply;
 cout << "Assuming error and throwing exception now \n";

 switch(reply)
 {
 case 1:
 throw 10;
 case 2:
 throw ‘a’;
 case 3:
 throw Error1;
 case 4:
 throw "There is nobody to catch this \n";
 }
 cout << "This statement will not be executed \n";
 }

 catch (int IntEx)
 {
 cout << "Integer exception" << IntEx << "is caught in the function \n";
 throw; // Rethrowing

352 Programming with ANSI C++

Note that the character expression is caught in the function and then rethrown using throw in the
catch block. The same exception then is caught again in the main, so it displays message related
to it there. In such a case, if the exception is not caught up in the hierarchy, a built-in function
terminate() is called, which terminates the program with an indication for abnormal termination.

 }

 catch (char CharEx)
 {
 cout << "Character exception" << CharEx << "is caught in the function \n";
 throw; // Rethrowing
 }
}

void main()
{
 try
 {
 cout << "Inside main \n";
 ExGen(); // This would generate exception
 cout << "This will not be executed if exception is not caught in the function \n";
 throw 10;
 }

 catch (int)
 {
 cout << "An integer is caught in main \n";
 }

 catch (char)
 {
 cout << "A char is caught in main \n";
 }

 catch (MyException Except)
 {
 cout << "Inside main catch \n";
 Except.ShowEx();
 }
}
Output
Inside main
Inside the function
Inside try block
Press 1 for int, 2 for char, 3 for MyException, and 4 for string
2
Assuming error and throwing exception now
Character exception a is caught in the function
A char is caught in main

Exception Handling 353

//SetTerminate.cpp
#include <exception>
#include <iostream>
#include <string>
using namespace std;

class MyException
{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }

 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";
 }
};
void ExGen()
{
 cout << "Inside the function \n";
 cout << "Inside try block \n";
 cout << "Assuming error and throwing exception now \n";
 MyException Errorl(20, "Error testing");
 throw Errorl;
 cout << "This statement will not be executed";
}

void MyTerminate()
{
 cout << "This is my terminate function";
 /* The cleanup code comes here;, it closes all open fi les,
 closes open connections, and runs destructors if need be */
 exit(−1);

8.12 terminate() AND unexpected() FUNCTIONS

As mentioned earlier, terminate() is the function that calls abort() to exit the program in the
event of run-time error related to exceptions. The indirection through terminate() function
is provided because the user can defi ne his/her own terminate() function instead of the
built-in terminate(), which just calls abort() and does nothing else. This way the user may
be able to close all open fi les and deallocate resources before quitting the program. Let us
see how this is done using the following program.

354 Programming with ANSI C++

}

void main()
{
 void MyTerminate();
 set_terminate(MyTerminate);
 /* Instead of system’s terminate, MyTerminate is called */
 cout << "Inside main\n";
 ExGen();
 // This would generate an exception for which no catch is available
 cout << "This will not be executed";
}

//SetUnexpected.cpp
#include <exception>
#include <iostream>
#include <string>
using namespace std;
class MyException
{
private:
 int ExNumber;
 string ExMessage;
public:
 MyException(int ErrNo, string Description)
 {
 ExNumber = ErrNo;
 ExMessage = Description;
 }
 void ShowEx()
 {
 cout << "Error number is" << ExNumber << "\n";
 cout << ExMessage << "\n";

We now have our own terminate() function instead of the default terminate() in this case.
We can do all the cleaning up here. We can close fi les, deallocate dynamic memory, close
connections if working in the client-server environment so that the connected party becomes
aware of our departure, etc.

Note We can have our own terminate() function instead of the default terminate(), which just calls
abort(). The set_terminate() function tells the system that there is a new terminate()
function specifi ed by the user.

Similarly, for functions with exception specifi cations, if a function throws an exception that
is not allowed, a function unexpected() is called, which in turn calls abort(). It is possible
to use set_unexpected() in a similar manner to terminate() to provide our own function in
such a case. Consider the following program. The set_unexpected() function is used to tell
the system that there is a new unexpected() function specifi ed by the user.

Exception Handling 355

 }
};

void ExGen() throw()
{
 cout << "Inside the function \n";
 cout << "Inside try block \n";
 cout << "Assuming error and throwing exception now \n";
 MyException Errorl(20, "Error testing");
 throw Errorl;
 cout << "This statement will not be executed";
}

void MyUnExpected()
{
 cout << "This is my unexpected function \n";
 /* The cleanup code comes here; it closes all open fi les, closes open connections,

and runs destructors if needed */
 exit(−1);
}

int main()
{
 try
 {
 void MyUnExpected();
 set_unexpected(MyUnExpected);

 cout << "Inside main\n";
 ExGen();
 // This would generate an exception for which no catch is available
 cout << "This will not be executed \n";
 }
 catch(...)
 {
 cout << "Caught it!";
 }
 return 0;
}

Output
Inside main
Inside the function
Inside try block
Assuming error and throwing exception now
This is my unexpected function

The function ExGen() has exception specifi cation as throw(). If ExGen() throws some
exception, the unexpected() function would be called and the output of this function is "This
is my unexpected function". In the given example, we have written our own function for

356 Programming with ANSI C++

unexpected circumstances. We have specifi ed to use that function instead of the built-in
unexpected() using the statement

set_unexpected(MyUnExpected);

As a result, the user-defi ned MyUnExpected() function is called.

8.13 uncaught_exception() FUNCTION

When an exception is thrown, it automatically invokes stack unwinding process. In this process,
all the objects prior to the throw statement to the beginning of the try block are destroyed in the
reverse order of their creation. It is possible that some of the objects that are being destroyed
have destructors and that the destructor function might also throw an exception.

If at least one of the objects contains such a destructor, we have a situation where the fi rst
exception is not completely handled, and the second one is being thrown. It is not possible in
C++ to handle two exceptions simultaneously. The normal outcome of such a situation is a call
to abort(), which terminates the program. In such situations, a function from built-in exception
class, uncaught_exception(), comes handy. It returns true when an exception is thrown. If the
destructor checks and fi nds that an exception has already been thrown when the destructor is
called, it will not throw a new one. The algorithm of the function would be as follows:

if(uncaught_exception())
{
 Do not call the function that might throw an exception
}
else
{
 Follow the natural sequence of the destructor algorithm

}

Program 8.5 demonstrates the use of the uncaught_exception() function. When
an exception is thrown, the destructors of all the objects defi ned in the try block
are called one by one. Then, the exception is handled and now it is said to be
caught. If we check for the uncaught exception now, it is found to be caught.

Uncaught_excep-
tion is a handy way of
fi nding out unhandled
exceptions.

PROGRAM 8.5 Using uncaught_exception to fi nd out unhandled exceptions
//UncaughtException.cpp
#include <exception>
#include <iostream>
using namespace std;

class TestClass
{
 char *ptrMessage;
public:
 TestClass(char Message[], int LengthOfMessage)
 {
 ptrMessage = new char [LengthOfMessage + 1];
 for(int i = 0; i < LengthOfMessage; i++)
 {
 ptrMessage[i] = Message[i];
 }
 ptrMessage[LengthOfMessage] = 0; // Null

Exception Handling 357

 }

 friend ostream & operator <<(ostream & TempOut, TestClass & TempData);

 // To destroy the objects defi ned in the try block

 ~TestClass()
 {
 if(uncaught_exception() == true)
 {
 cout << "There is an uncaught exception in process when";
 cout << *this;
 delete [] ptrMessage;
 }
 else
 {
 cout << "There is no uncaught exception in process when";
 cout << *this;
 }
 }
};
ostream & operator <<(ostream & TempOut, TestClass & TempData)
{
 TempOut << TempData.ptrMessage;
 return TempOut;
}

void ExGen()
{
 char FirstMessage[] = "message is not a part of the try block \n";
 char SecondMessage[] = "message is within the try block \n";
 TestClass TestObject1(FirstMessage, strlen(FirstMessage));
 /* This object is created outside the try block */

 try
 {
 /* The following object is created within the try block*/
 TestClass TestObject2(SecondMessage, strlen(SecondMessage));
 cout << "Inside the function \n";
 cout << "Inside try block\n";
 int dummy = 10;

 /* When the following exception is thrown, the destructor for
 TestObject would be called, which fi nds that the exception is not yet caught */

 throw dummy;
 }

 catch (int)
 {
 cout << "Caught dummy\n";
 }
}

/* Now the destructor for TestObject1 would be called, which fi nds that the exception has
already been caught */

int main()
{
 ExGen();
 return 0;
}

358 Programming with ANSI C++

How the Program Works
This program contains two different objects of TestClass. One object is initialized before
the try block starts and the other is initialized within the try block. When the exception is
thrown by the statement

throw dummy;

the objects defi ned within the try block have to be destroyed (the stack rewinding process),
and so, their destructors are called in the reverse order of their initialization. We have only
one object TestObject2 defi ned within the try block, so its destructor is called. At this point,
the exception handling is in process, so the uncaught_exception() function returns true.
When the exception is handled by the catch block, it would display “Caught dummy” and
then the ExGen() function is over. The destructor for TestObject1 is called next, which now
goes out of scope. In this case, the uncaught_exception() would yield false, because now the
exception has been handled and no more exception is in process.

Note that *this is used as a string to be printed in the destructor. It is a handy way of
fi nding out which object is going out of scope. The TestClass can be easily converted to a
string class with more member functions. We have also seen how destructors are used in
such classes. A destructor is needed here because we use dynamic constructor to get the
memory, and it is our job then to return that memory when the object goes out of scope.

8.14 EXCEPTION HANDLERS AND DEBUGGERS

Some systems such as VC++ have a debugger in place. Sometimes the roles of a debugger and
the exception handling system clash and overlap. When an error occurs, the debugger needs all the
objects to indicate the user about the problem and the status of all those objects at that point of time.

On the other hand, the exception handling system has to delete those objects because of
the compulsion to call the destructors. This system need not be aware of the place where
the error has occurred and when the exception was thrown. However, the debugger must be
aware of such details and help the user out in such circumstances.

Due to mutually confl icting requirements, the C++ compilers that provide debuggers may
not provide all the facilities of exception handling. One must refer to the documentation
available with the respective compiler for such details.

8.15 DRAWBACKS OF EXCEPTION HANDLING

Uncertain termination is a major drawback of the exception handling mechanism. When
library functions are used and the user is unaware of some specifi c exception, the program
would crash if that exception is thrown. Whenever third-party libraries are being used, there
is the danger of a program crash. If it cannot be afforded, one cannot use those libraries.

Another disadvantage of exception handling is the overhead. With exception handling, both
the executable program code size and the execution time would increase substantially. Simpler

Output
Inside the function
Inside try block
There is an uncaught exception in process when message is within the try block
Caught dummy
There is no uncaught exception in process when message is not a part of the try block

Exception Handling 359

C-type mechanisms would be better in cases where such performance overhead outweighs
the advantage gained or when performance is the fi rst priority. Consider writing a compiler,
a database management system, or a network controlling program. Here, the task must be
fi nished as quickly as possible. Exception handling is not advised in such cases. Similarly,
mobile device programmers do not use exception handling while coding their programs.

Programmers, at times, tend to use exception handler for other purposes where other
looping structures can also be used. This is not a good use of this heavy tool. Use of exception
handler for other purposes must be avoided.

Note Exception handling is a heavy duty job and is not always an ideal replacement of the simpler conventional
methods for handling errors. Exception handling must be confi ned to standardized message passing
between a library designer and user, especially in large projects where it makes sense.

Exception handler is a tool for communicating about anomalies between two different
components of the program developed by two different individuals. This is not needed for
normal error checking in a program. Hence, normal error checking methods should not be
replaced if the user does not gain anything by providing exception handling. When a library
is being developed for a large project, one may need to use it. It is important to understand
that the library functions that throw exceptions must be standardized. All the users must be
aware of the exceptions thrown by the functions used by them. If this is not possible, the
exception handling approach will increase and not decrease the problems.

8.16 EXCEPTION CLASS

There are some system-defi ned exceptions. We already have seen that the operator new
throws the bad_alloc exception when memory cannot be allocated. Other such exceptions
are bad_cast for dynamic_cast when the casting is not acceptable and bad_typeid for typeid
that is not acceptable. We will be learning about using dynamic_cast and typeid when we
study Run-Time Type Information (RTTI) in Chapter 11. All such exceptions are objects
derived from the built-in class exception.

■ RECAPITULATION ■

 • The exception handling mechanism is meant for han-
dling error-like situations.

 • The traditional error handling techniques are not suf-
fi cient to handle cases in a standard, well-defi ned way.

 • Exception handling is an attempt to manage anomalies
between library writers and users.

 • The exception handling techniques are able to handle
the problem of destroying objects.

 • The exception handling mechanism has three key-
words.

 • The area of the program where an exception is possible
to be thrown is written in the try block. The catch
block contains the code to handle the exception.

 • We can have multiple catch blocks for a single try
block.

 • The exception is thrown using a throw statement,
which can throw an object or a built-in type.

 • The exception handling approach handles exceptions
at run-time and is not effi cient. It is time consuming to
fi nd a proper handler for a given throw. It might require
recursive moves from a block inside to a block outside
until a proper handler is found.

 • If the proper handler is found, the exception han-
dling mechanism will automatically undo whatever is
done before, that is, it will call destructors for all the
objects defi ned earlier until the beginning of the try
block.

 • If the proper handler is not found, the exception han-
dling mechanism calls terminate(), which in turn
calls abort().

360 Programming with ANSI C++

■ KEYWORDS ■

Catch all The expression catch (...) is known as catch all.
Exception This is an error-like situation and is actually a

subset of error. It is diffi cult to decide when an error be-
comes an exception.

Exception handler The catch block that is executed
when a specifi c exception is thrown is known as the ex-
ception handler.

Exception handling This refers to the mechanism provid-
ed by C++ to handle an exception when it occurs.

Exception specifi cation This is a list contained within
the () braces after the function header and the keyword
throw. The contents of the list are the only valid type of
exceptions that can be thrown from that function.

Polymorphic object This is the object of a class that is

inherited and accessed by the pointer to the base class
from which it is inherited.

Rethrowing The exception, once handled by a handler,
can be rethrown to a higher block. This process is known
as rethrowing.

terminate() This is the function to call when the excep-
tion handling mechanism does not get any proper handler
for a thrown exception.

uncaught_exception() This is the function to call when
we want to check before throwing any exception if some
other exception is already on.

unexpected() This is the function to call when the ex-
ception handling mechanism encounters an exception not
allowed from exception specifi cation.

■ EXERCISES ■
Multiple Choice Questions

1. The statement to generate an exception is __________.
 (a) try
 (b) catch
 (c) throw
 (d) None of the above
2. For throwing an exception, __________ statement is

used.
 (a) try
 (b) throw
 (c) catch
 (d) throwing
3. It is possible to throw __________.
 (a) built-in types
 (b) user-defi ned types
 (c) Both
 (d) None

4. Even when no matching of the catch block is found,
control would __________.

 (a) come back to the try block
 (b) not come back to the try block
 (c) come back to the throw block
 (d) come back to the catch block
5. When we are interested in fi nding the type of

exception thrown, we use __________.
 (a) catch (…)
 (b) catch (<data type> variable name)
 (c) catch (<data type>)
 (d) None
6. Which of the following is the correct syntax to throw

an exception?
 (a) throw error1;
 (b) error1 throw;

 • It is possible to have our own terminate() function
using set_terminate().

 • Exception specifi cations indicate to the user the func-
tion that is allowed to throw outside.

 • If the function violates the exception specifi cation, the
unexpected() function is called, which in turn calls
the abort().

 • We can also have our own unexpected() functions.
 • If we want the exception to be handled in the local block

and also want the same exception to pass up in the
hierarchy, we can rethrow that exception.

 • It is possible to check if the exception is already
thrown when we are about to throw using uncaught_
exception() function.

 • Exception handling adds to run-time overhead and de-
mands a different style of programming than conven-
tional programming.

 • It is not the tool to replace normal error handling.
If we can use normal error handling to solve our
problem satisfactorily, we should not go for exception
handling.

Exception Handling 361

 (c) throw int error1;
 (d) int error1 throw;

 7. The section where the exception is handled is called
__________.

 (a) try
 (b) throw
 (c) catch
 (d) throws

 8. Which function can be used to have our own un-
expected() function instead of the built-in unex-
pected() function?

 (a) set_unexpected
 (b) user_unexpected
 (c) new_unexpected

 (d) It is not possible to do so
 9. The code that we want to monitor for exceptions is

kept in the __________ block.
 (a) try
 (b) throw
 (c) catch
 (d) throws
10. Which of the following is the correct syntax for a

catch block?
 (a) catch (int);
 (b) catch (int intEx);
 (c) Both
 (d) None

Conceptual Exercises

 1. What are the different mechanisms of traditional
error handling? What is the problem with them?

 2. What is the need for a communication mechanism
between the library designer and the library user?
How does exception handling mechanism help?

 3. What is the problem of destroying objects? How
can exception handling help here?

 4. What is the role of each of the components of the
exception handling mechanism?

 5. What is the role of the terminate() function in
exception handling? Why does the exception
handling mechanism not call abort() directly?

 6. What is the difference between throwing exceptions
inside and outside the function?

 7. What is the importance of throwing objects rather
than built-in type values?

 8. When do we need multiple catch blocks for a
single try block? Give an example.

 9. What is the importance of catch all (catch (...))?
10. What are exception specifi cations? In which cases

are they needed?

11. What is rethrow? What is its use?
12. What is the set_terminate() function? Why is it

needed?
13. What is the unexpected() function? Give an ex-

ample to explain the need of it.
14. What is uncaught_exception() function and why

do we need it?
15. What are the disadvantages of the exception han-

dling mechanism?

Practical Exercises

 1. Defi ne the Time class described in Chapter 7. Provide
checking for time and throw exception when an inval-
id time is input, either from the constructor or the user.

 2. Defi ne a stack class. The class should throw an
exception when the stack underfl ow and overfl ow
take place.

 3. Use the Time class to provide an overloaded ‘−’.
Here the time query is also to be recorded in a fi le.
Use C text fi le to store the query. If a calling func-
tion provides expression Time1 − Time2, then op-
erator –() function should throw an exception if
Time2 is a later time than Time1. Before throwing
the exception, though, the operator ‘−’ function
should close the fi le.

 4. Defi ne a class TheException, which contains mem-
ber functions for displaying messages regarding stack
underfl ow and overfl ow. When overfl ow occurs, it
asks for increasing the stack size. If the user says yes,
it should respond by increasing the stack size. Use
dynamically allocated array to implement stack.

 5. Using Time class, throw an exception when invalid
time is input. Write set_terminate() to provide
your own terminate function, which takes care of this
problem.

 6. Use the stack class of Problem 2. Provide excep-
tion specifi cation as throw() to push function and
throw an exception when stack is overfl ow. Use
set_unexpected() to set your own unexpected
function to take care of this situation.

 7. Write a normal stack class and also a stack class
with exception handling and use them in two dif-
ferent programs. Use the classes a number of times
in the respective programs. (You may write a loop,
which creates and destroys the class). Compare the
effi ciency of both the programs when

 (a) exceptions are thrown
 (b) exceptions are not thrown

 In addition check the run-time as well as the resul-
tant code size.

Chapter 9
InheritanceInheritance
9.1 INTRODUCTION

Inheritance is an important feature of object-oriented programming. It is a
mechanism to create a new class from an already defi ned class. The new
class contains all the attributes of the old class in addition to some of its
own attributes. In addition, it can also override some of the features of the
old class.

Inheritance allows us to draw the functionalities of an already existing
class and modify it to suit our requirement. There is no need to start
from scratch. Another advantage is that a class once defi ned can be
used multiple times by other applications after being inherited into a
class that suits that application. In simple terms, inheritance allows
reusability.

Proper use of inheritance helps in getting better and robust solutions
quickly. For example, if one designs a class that helps to create and
process windows on the screen, then the properties of the designed class
can be extended to other applications that provide windows-based user
interface. All such applications can inherit the designed class into a new
class. The generic class may contain the caption of the window, specifi c
borders, corners, size, look, and feel, and maybe minimize, maximize,
and close buttons as well. The application may or may not need all these
functionalities, or it may need some additional functionalities than what is
provided in the generic class. The inheritance approach is better in this case
because one has to concentrate only on the additional part and there is no
need to start from scratch. It is more robust because the class one inherits
from has already been used by others before, and bugs, if any, have higher
probability of being found out and removed.

Inheritance is a mechanism to obtain a derived class from a base class.
Such inheritance relationships are very common in the real-world scenario.
For example, mammal is a class derived from living things, people is a
class derived from mammal, man and woman are classes derived from
people, and Indian people is also derived from people. In all these cases, the
properties of the base class are automatically available in the derived class.
People give birth to child. This attribute is derived from mammals. Indian
people have two hands, two legs, etc., and this attribute is derived from
people. Similar hierarchy is possible in C++ classes as well. Inheritance is
the natural solution when such real-world hierarchy is to be modelled in a
C++ program.

Learning Objectives

• Introduction to inheritance
• Implementation of inheritance

in C++ object model
• Access specifi ers and their

use in inheritance
• Access declaration
• Multiple inheritance and their

limitations
• Virtual base class
• Abstract classes
• Role of constructors and

destructors in inheritance
• Advantages of memberwise

initialization list (MIL)
• Exception handling during

inheritance
• Composite and inherited

objects

Many real-world
cases fall under the
category of multiple
inheritance. Modelling
such hierarchy
becomes simple in
C++ because the
feature comes inbuilt
with the program.

Object-based app-
roach is more effi cient
than object-oriented
approach. Hence, C++
applications gen erally
choose the object-
based approach when
the stress is more on
effi ciency.

Inheritance 363

Java has a similar root class called object. C++ has no such notion. It is possible to
program without such a hierarchy, as we have done so far, and this is known as object-based
programming. Programming using inheritance is known as object-oriented programming.
Sometimes both are applicable for providing a solution. In general, the approach using
object-based method is more acceptable if the performance issues are taken into
consideration.

9.2 ADVANTAGES OF USING INHERITANCE

There are some obvious cases where inheritance is needed. Consider the following
cases:

1. There is a need for extending the functionality of an existing class.
2. There are multiple classes with some attributes common to them and problems of

inconsistencies need to be avoided between the common attributes.
3. The programmer would like to model a real-world hierarchy in the program in a natural

way.

In all the three cases mentioned here, it is better to have inheritance in the program.

9.2.1 Avoiding Creation of Objects from Scratch
Suppose an object of type Employee needs to be defi ned for a payroll program and a payroll
Employee class is needed to know the basic pay of an employee and calculate his/her salary.
Assume that there already exists a similar class (called EmployeeBase) with the human
resource department, which keeps track of all the employee details.

In this case, if the attributes of EmployeeBase are inherited, then there is no needed to
collect the employee details all over again. All that one needs to do is to add to the Employee
class a few additional details that are not available in the EmployeeBase class. Hence, there is
no need to create the Employee class from scratch.

Note The Microsoft Foundation Class (MFC) provides a number of classes that we can inherit and use
in our own way. For example, there is a class named CDialog that contains basic mechanisms for
dialog boxes. If we need to use a specialized dialog box in our program, we can derive a new class
from CDialog and use it. Hence, we need not defi ne the functionalities such as the header, the
border, and the buttons. We can defi ne our own MyDialog class by inheriting it from CDialog and
use it inside the employee class.

9.2.2 Avoiding Redundancy and Maintaining Consistency
It is not unusual to fi nd redundant data in classes. The problem with this redundancy is that
the same data needs to be stored at multiple places. Consider a case of designing classes
that store data related to the students of arts, commerce, and science. If a fi eld is added for
entering the phone number of a student, it must be done in all the three classes. If one of
the classes is not updated, one may end up having inconsistent data. Hence, it is not a good
design.

A better design option is to collect all the common attributes in a separate class called
Student, and then store only the additional features in the respective classes (i.e., ArtsStudent,
CommerceStudent, ScienceStudent, etc.) while providing inheritance from the Student class.
This is a common practice in object-oriented design.

364 Programming with ANSI C++

Finding common attributes of real classes and creating an abstract class of
such common attributes is called the bottom-up design approach. This approach
reduces the possibility of redundant data. In the given example, if there are 10
types of Student objects and the Student base class is not used, then the data
(phone number) is to be kept at 10 places (10 classes), whereas in the second
case, only the Student class contains it.

Redundancy reduction also reduces the code size and the chances of errors.
It also adds to fl exibility. Later on, if a BCAStudent class needs to be added, the

normal attributes are in place. One just needs to inherit the BCAStudent class from the Student
class and then add to the inherited class only the new items needed.

9.2.3 Mapping a Real-world Hierarchy
We have natural inheritance in a real-world situation. Objects such as rectangle and ellipse are
shapes that are derived from the shape concept. Square is a concept derived from rectangle,
whereas circle is a concept derived from ellipse. C++ provides the inheritance mechanisms
to map these hierarchies as it is in its programs. This facility of C++ makes the programs
more intuitive and readable.

9.3 IS-A AND PART OF RELATIONSHIPS

When it is possible to inherit and reuse a class, one may be tempted to do so arbitrarily. It
is important to have some form of subset relationship between a derived class and the base
class. All the examples mentioned earlier have subset relationships. A subset relationship
is also known as an is-a relationship. At times, one may be confused between an is-a and a
part of relationship.

In the CDialog example described earlier, MyDialog is a subset of CDialog whereas it is a
part of the Employee class. We will be looking at the differences in details in Section 9.15.

It is important to note that it requires programming discipline not to inherit when the
relationship is not a subset of or is-a. If one needs to use functions that are defi ned in that
class, it is better to rewrite them in the new class or design in such a way that such inheritance
does not take place.

Note Though it is said time and again that inheritance provides reusability, it does not mean that it should be
deployed whenever one needs to reuse. Inheritance must be used in a disciplined way only in places
where the is-a relationship holds true.

Meaning of Inheritance in C++
When a class is declared as derived from some other class, the data members of the class
are made available to the derived class without redefi ning. The type of inheritance used
determines which data members are available and in which form. This is also determined
by the original access specifi ers (private, public, or protected) associated with the base class
members. We will be studying three different types of inheritance in this chapter and will be
exploring the forms of inheritance in the following sections.

9.4 DEFINING DERIVED CLASSES

Let us have a look at an example of inheritance to understand the concept. We start with the
simplest type of inheritance. Assume that there is a single base class from which a new class

Finding common attri-
butes of real classes
and creating an ab-
stract class of such
common attributes is
called the bottom-up
design approach.

Inheritance 365

is derived. The syntax of the derivation is very simple. If one has to derive a DerivedClass
from a BaseClass, it needs to be specifi ed while defi ning the DerivedClass. The syntax for
defi ning the DerivedClass is as follows:

class DerivedClass : <access modifi er> BaseClass;

Here, the access modifi er can be either public, private, or protected. Some authors also use
the word visibility mode to represent the types of these access modifi ers. We have already
studied public and private access modifi ers. We will be learning about protected access
specifi er in Section 9.4.3.

9.4.1 Derivation using Public Access Modifi er
If the program has the following statements
class Base
{
 // Body of the base
}

class Derived : public Base
{
 // Body of the derived
}

then the derivation is known as public derivation. The members of the base class are now
treated as follows:

1. The public members of the base class are treated as the public members of the derived
class.

2. The private members are not inherited.
3. If some members have been defi ned as protected in the base class, they are available as

protected in the derived class.

This can be understood better with the help of Program 9.1.

PROGRAM 9.1 Inheriting publicly
//PublicInheritance.cpp
class Base
{
 int PrivateBaseInt;
public:
 int PublicBaseInt;
 void SetPrivateBaseInt(int Value)
 {
 PrivateBaseInt = Value;
 }
};

// Public derivation
class DerivedPublic : public Base
{
 int PrivateDerivedInt;
public:
 int PublicDerivedInt;

366 Programming with ANSI C++

How the Program Works
Why are the following lines commented in the program?

// DerivedObject.PrivateBaseInt = 10;
// DerivedObject.PrivateDerivedInt = 10;

In the fi rst line, PrivateBaseInt is a private variable of Base; so, it is not available to the
DerivedPublic class. However, PublicBaseInt is a public variable, and so, it is available to the
DerivedPublic class as public because of public derivation. Similarly, SetPrivateBaseInt()
is also available as public in DerivedPublic because it is public in Base.

The second line // DerivedObject.PrivateDerivedInt accesses a private member of
the same class, which is not allowed. Similarly, private members of the base class are not
inherited, and so, are not available here as well.

Look at the statements using Set functions.

DerivedObject.SetPrivateBaseInt(20);
DerivedObject.SetPrivateDerivedInt(30);

These functions are able to manipulate the private data members because they are member
functions. As these functions themselves are public, it is possible to access them.

The private members of the base class are not available directly to a derived class; however,
they are available indirectly. The call to SetPrivateDerivedInt() actually manipulates that
variable.

Note Though private members of the base class are not available to the derived class, they are still
accessible using public function members of the base class. In that sense, the private members are
still available to the derived class indirectly.

9.4.2 Derivation using Private Access Modifi er
If the program contains the following statements,

class Base
{
 // Body of the base

 void SetPrivateDerivedInt(int Value)
 {
 PrivateBaseInt = Value;
 }
};

void main()
{
 DerivedPublic DerivedObject;

 // DerivedObject.PrivateBaseInt = 10;
 // DerivedObject.PrivateDerivedInt = 10;
 DerivedObject.PublicBaseInt = 10;
 DerivedObject.PublicDerivedInt = 10;
 DerivedObject.SetPrivateBaseInt(20);
 DerivedObject.SetPrivateDerivedInt(30);
}

Inheritance 367

}
class Derived : private Base
{
 // Body of the derived
}

then the derivation is known as private derivation. The members of the base class are treated
as follows:

1. The public members of the base class are treated as the private members of the derived
class.

2. Similar to public derivation, the private members of the base class are not inherited and,
thus, are not available to the derived class.

3. If some members have been defi ned as protected in the base class, they are available as
private in the derived class. Protected members are discussed in detail later.

This can be understood better with the help of Program 9.2.

PROGRAM 9.2 Inheriting privately
//PrivateInheritance.cpp
class Base
{
 int PrivateBaseInt;
public:
 int PublicBaseInt;
 void SetPrivateBaseInt(int Value)
 {
 PrivateBaseInt = Value;
 }
};

class DerivedPrivate : private Base
{
 int PrivateDerivedInt;
public:
 int PublicDerivedInt;
 void SetPrivateDerivedInt(int Value)
 {
 PrivateDerivedInt = Value;
 }

 void SetPublicPrivateBaseInt(int Value)
 {
 PublicBaseInt = Value;
 SetPrivateBaseInt(Value);
 }
};

void main()
{
 DerivedPrivate DerivedObject;
 // DerivedObject.PrivateBaseInt = 10;
 // DerivedObject.PrivateDerivedInt = 10;
 // DerivedObject.PublicBaseInt = 10;
 DerivedObject.PublicDerivedInt = 10;

368 Programming with ANSI C++

How the Program Works
Observe the defi nition of DerivedPrivate class. PublicBaseInt and
SetPrivateBaseInt functions are now not accessible to the object of DerivedPrivate
class, though a call to a member function SetPublicPrivateBaseInt() can still
manipulate both of them. The reason is simple. The public members of the base
class are now the private members of the derived class. Hence, they cannot be
accessed by an object of the derived class but are accessible to a member function
of the derived class.

Interestingly, the call to function SetPrivateBaseInt(Value); is made without
using an invoking object, though the function itself is a member function. How
is such a statement acceptable to the C++ compiler?

It should be remembered that whenever a member function is called, the object
implicitly pass this pointer to the member function. An invoking object is needed for
the same. SetPrivateBaseInt() is called in the body of SetPublicPrivateBaseInt()
function. When a call is made to SetPublicPrivateBaseInt() function, the pointer to
the invoking object DerivedObject is passed as an argument to the function. The same
pointer is passed to the SetPrivateBaseInt() function. Looking from another angle,
in this case, a derived class object invokes a derived class public member (the function
SetPublicPrivateBaseInt()), which in turn accesses a (now changed to) derived
class private member (the function SetPrivateBaseInt()). This is acceptable because
SetPrivateBaseInt() function is a member, and can accept this pointer of the same
class. This is similar to the private function members being used by the public function
members.

9.4.3 Protected Access Specifi er
The protected access specifi er is similar to the private access specifi er for a class that is not
inherited further. The members defi ned as protected are accessible to the member functions
and friend functions and are not available to objects.

Unlike private data members, when a class containing protected data members is
inherited, the protected members are available to the derived class member functions as
well, but are not available to the objects of derived class. This can be understood better with
Program 9.3.

 // DerivedObject.SetPrivateBaseInt(20);
 DerivedObject.SetPrivateDerivedInt(30);
 DerivedObject.SetPublicPrivateBaseInt(10);
}

When a derived class
member function calls
a base class member,
which is available to
a derived class after
inheritance, the this
pointer to the derived
class object passes
from the derived class
to the base class
function member.

PROGRAM 9.3 Inheriting in protected manner
//ProtectedInheritance.cpp
class Base
{
protected:
 int ProtectedBaseInt;
public:

Inheritance 369

How the Program Works
Note the difference between Programs 9.2 and 9.3. In Program 9.3, the private member of the
base class is removed, and instead, a protected member is added. We have seen that it is as
good as private for the base class but acts differently when inherited. The DerivedProtected
class is derived in a protected way, which means now it is possible to access ProtectedBaseInt
in the member functions of the DerivedProtected class. If ProtectedBaseInt had been a
private member, it may not be able to access it directly in the member function of the derived
class. One cannot, though, access the ProtectedBaseInt by an object of the derived class. So,
the following line is still commented:

// DerivedObject.ProtectedBaseInt = 10;

Public derivation has been used in this example. What happens if private derivation
is used instead? It does not have any effect on the result of the program. The
protected members, when inherited as private, become private members of the
derived class. The program behaviour is similar. What is the difference between
protected and private members then? The difference is seen when the derived
class is further inherited. As we know, private data is not inherited, but protected
data can be inherited.

 int PublicBaseInt;
 void SetProtectedBaseInt(int Value)
 {
 ProtectedBaseInt = Value;
 }
};
class DerivedProtected : public Base
{
 int PrivateDerivedInt;
public:
 int PublicDerivedInt;
 void SetPrivateDerivedInt(int Value)
 {
 PrivateDerivedInt = Value;
 }

 void SetPublicProtectedBaseInt(int Value)
 {
 PublicBaseInt = Value;
 ProtectedBaseInt = Value;
 }
};

void main()
{
 DerivedProtected DerivedObject;
 // DerivedObject.ProtectedBaseInt = 10;
 // DerivedObject.PrivateDerivedInt = 10;
 // DerivedObject.ProtectedBaseInt = 10; DerivedObject.PublicDerivedInt = 10;
 // DerivedObject.SetPrivateBaseInt(20); DerivedObject.SetPrivateDerivedInt(30);
 DerivedObject.SetPublicProtectedBaseInt(10);
}

The difference
between private and
protected derivation
is that protected
derivation can be
further derived.

370 Programming with ANSI C++

9.4.4 Derivation using Protected Access Modifi er
If the program contains the following statements,
class Base
{
 // Body of the base
}

class Derived : protected Base
{
 // Body of the derived
}

then the derivation is known as protected derivation. The base class elements are treated as
follows:

1. The public members of the base class are treated as the protected members of the derived
class.

2. Private members are not inherited.
3. If some members have been defi ned as protected in the base class, they are available as

protected in the derived class.

Note The main advantage of protected members over private members is that they are available to the
derived class but still remain available to only the member functions and not the objects.

Another advantage is that protected derivation for protected and public members permits
further derivation in a protected form. Suppose Derived1 is derived from Base class using
protected access modifi er and then Derived2 is derived from Derived1 using any access
specifi er, then the protected members of the Base class are available to Derived2. If Derived1
is derived as private instead of protected, they are not available. Table 9.1 shows the effective
access specifi er of the base class member in a derived class.

Table 9.1 Effective access specifi er of the base class member in a derived class

Member type in base class Type of derivation Member type in derived class

Private Private Not available

Protected Not available

Public Not available

Protected Private Private

Protected Protected

Public Protected

Public Private Private

Protected Protected

Public Public

Inheritance 371

It is also important to understand the effect of access specifi ers used on further
derivations.

1. If the access specifi er is public, the effective specifi er in the derived class is the same as
the base class (i.e., public remains public and protected remains protected). If it is further
inherited as public, they are again going to retain the same access specifi er. So, public in
base class is also public in derived class.

2. If the access specifi er is protected, the access specifi er in the derived class is protected for
both the protected and public members of the base class. Further inheriting this even as
public does not make the public member of the base class to the further derived class as
public; it can only be accessed as protected.

3. The most important difference is observed between a member of the class derived as
protected and that derived as private. Once privately derived, the data member is not
available for further inheritance, whereas in the case of protected, it is available for
further inheritance. This is one of the major differences between private and protected
inheritances.

4. When a member is protected, it is not different from private unless the class is
inherited.

Figure 9.1 explains this concept.

Public

Public

(a) (b)

Protected
or

public

Base class
(public or protected)

Derived class 1
(public remains public)

(protected remains protected)

Derived class 2
(public remains public)

(protected remains protected)

Protected

Base class
(public or protected)

Derived class 1
(both public and protected

members become protected)

Derived class 2
Members can only be accessed

as protected. Even public
derivation does not make

any difference

Fig. 9.1 Derivations based on access modifi ers (a) Public derivation
(b) Protected derivation

(Contd)

372 Programming with ANSI C++

(c) (d)

Public

Protected

Base class
(public or protected)

Derived class 1
(public remains public)

(protected remains protected)

Derived class 2
(public becomes protected)

(protected remains protected)

Private

Base class
(public or protected)

Derived class 1
(both public and protected
members become private)

Further derivation is
not possible

Fig. 9.1 (Contd) (c) Private derivation (d) Public and protected derivation

9.5 INHERITANCE IN C++ OBJECT MODEL

There can be a number of ways to implement the points described in Section 9.4. The C++
object model has chosen the simplest one. The compiler embeds the base class completely in
a derived class at the time of derivation. Instead, the compiler could have provided a pointer
to the base class object. This mechanism would save space.

There is a simple reason as to why a pointer is not provided here. It is possible to have
a long inheritance chain where class1 derives class2, which in turn derives class3, and so
on. In such a case, when one refers to classN, one needs to traverse through N pointers to the
base class to have the complete information about classN. This is not effi cient in terms of
time.

Performance of accessing a base class element is similar to that of referring to a derived
class element in terms of time. This provides uniform access to all the members of the class,

be it the member of the same class, one of its base class, or one of the base class
of the base class of this class, and so on.

This technique is very effi cient. However, this kind of effi ciency comes with
a price. The fi rst problem with using this method is the increase in class size. A
derived class is as big as the size of the base class plus its own element’s total size.
The second problem with this technique is that it leads to strange consequences at
times. Consider the case of a library class from which a class has been derived and
is being used in a few applications. If the original base class changes, one needs
to recompile all the applications that use the derived class. This is because though
the original base class has changed, the copy that was made when the derived

As the C++ object
model is designed
considering effi ciency
as the prime criteria,
it has chosen to copy
the base class into
the derived class
object when the deri-
vation takes place.

Inheritance 373

class was compiled remains unchanged. If it had a pointer to the base class, there is no need to
recompile the application because the pointer would automatically point to the new base class.

Program 9.4 verifi es the fact that the C++ object model embeds the base classes into the
derived ones.

PROGRAM 9.4 Verifying that the base class is embedded in the derived class
//ObjectModelImplementation.cpp
#include <iostream>
using namespace std;

class Base
{
 int i;
};

class Derived : public Base
{
 int j;
};

void main()
{
 Base BaseObject;
 Derived DerivedObject;

 cout << "Size of base object is" << sizeof(BaseObject) << "\n";
 cout << "Size of derived object is" << sizeof(DerivedObject) << "\n";
}

Output
Size of base object is 4
Size of derived object is 8

PROGRAM 9.4 Verifying that the base class is embedded in the derived class
//ObjectModelImplementation.cpp
#include <iostream>
using namespace std;

class Base
{
 int i;
};

class Derived : public Base
{
 int j;
};

void main()
{
 Base BaseObject;
 Derived DerivedObject;

 cout << "Size of base object is" << sizeof(BaseObject) << "\n";
 cout << "Size of derived object is" << sizeof(DerivedObject) << "\n";
}

Output
Size of base object is 4
Size of derived object is 8

How the Program Works
We will only discuss the architecture of the program and how it serves the purpose. The base
class does not have any data as public. The private integer variable is not inherited; so, the size
of the derived object must be equal to the size of the base class object (because both of them
have a single integer as a member), but it is not true. The base class object is embedded within
the derived class object, which, therefore, has a size equal to its own size (size of int j) and
that of the base class (equal to the size of int i). The example indicates the fi rst disadvantage
of the scheme for embedding a base class into a derived class, that is, possible code bloat.

The C++ object model exhibits a different behaviour when virtual base classes are used.
We will be learning about virtual base classes in Section 9.12.

Considering the peculiarity of the object model, there are various combinations of access
specifi ers for the data members and different types of derivations are possible. The following
sections deal with the combinations of different access specifi ers and different derivations.

9.6 DIFFERENT WAYS TO DERIVE CLASSES

There are three different ways to derive a class from another—public, protected, and private
inheritances. All of them result in different types of access restrictions on the members. We
will describe each one of them and their respective differences in the following subsections.

374 Programming with ANSI C++

9.6.1 Public Derivation
Figure 9.2 shows the fi rst case where a class is derived from the base class using the public
access specifi er. The private member of the base class is copied to the derived class but
is not visible. The public members of the base class are copied as public in the derived
class.

Base Derived
Private → Not directly accessible

Public

Public

Private

int PrivateBaseInt; int PrivateBaseInt;

int PrivateDerivedInt;

int PublicDerivedInt;

Public →

int PrivateBaseInt;
void SetPrivateBaseInt()

int PrivateBaseInt;
void SetPrivateBaseInt()

void SetPrivateDerivedInt()

The base class sub-object is buried within the
derived class object. The private portion of the base
class, though copied, is not accessible to the derived
class (though base class subobject membr functions
such as void SetPrivateBaseInt() can access it.)

Fig. 9.2 Public derivation

9.6.2 Private Derivation
In this case, the public members of the base class become the private members of the
derived class. Again, private members are not inherited. Though the private members
of the base class are copied to the derived class, they are not visible. This is shown in
Fig. 9.3.

Private →

Public →

Not accessible

Public

Private

Private

int PrivateBaseInt;int PrivateBaseInt;

int PrivateDerivedInt;

int PublicDerivedInt;

int PrivateBaseInt;int PrivateBaseInt;
void SetPrivateBaseInt()void

SetPrivateBaseInt()

void SetPrivateDerivedInt()
void SetPublicPrivateDerivedInt()The base class sub-object is buried within the derived class

object. The private portion of the base class, though copied, is not
accessible to the derived class (though base class subobject
member functions such as void SetPrivateBaseInt() can access it.)

Base Derived

Fig. 9.3 Private derivation

9.6.3 Protected Derivation
In the case of protected derivation, the protected members as well as the public members
of the base class become the protected members of the derived class, as shown in Fig. 9.4.

Inheritance 375

Base Derived
Protected → Protected

Protected

Protected

Public

int ProtectedBaseInt; int ProtectedBaseInt;

int ProtectedBaseInt;

int PublicBaseInt;
void SetProtectedBaseInt()

int PublicDerivedInt;

Public →
int PublicBaseInt; int PublicBaseInt;
void
SetProtectedBaseInt()

void SetProtectedBaseInt()

The base class sub-object is buried within the
derived class object. Public and protected
members of the base class have become
protected here.

int ProtectedDerivedInt;

void
SetProtectedDerivedInt()

void
SetPublicProtectedInt()

Fig. 9.4 Protected derivation

9.6.4 Public and Private Derivation of Protected Access Specifi er
If the protected members of a class are inherited as public, they remain protected, whereas
if inherited as private, they become private. An important impact of this is on further
inheritance. If derived public (or protected), the protected members will be available for
further inheritance in a public (or protected) derivation (i.e., one can derive one more class
from the derived class and the members are still available to the member functions of the
same class). Suppose we have following:

Class GrandpaBase
{
private:
 int PrivateGB; protected:
 int ProtectedGB;
}

class Base1 : public GrandpaBase
{
private:
 int PrivateB; protected:
 int ProtectedB;
}

class Base2 : private GrandpaBase
{
private:
 int PrivateB; protected:
 int ProtectedB;
}

class Derivedl : public Basel
{ };

376 Programming with ANSI C++

class Derived2 : public Base2
{ };

In this case, ProtectedGB will be available to Derivedl (as protected) but not to Derived2; this
is because Base2 is privately derived from GrandpaBase.

9.7 ACCESS CONTROL

The member functions of the class and of the derived class, friends, and objects can access
the different parts of the class. The access for public, private, and protected members is
different for all these entities. Access control describes who can access what and in which
form. Figure 9.5 shows the access control.

All member
functions of the
derived class

All member
functions of the class

and friends

Public members of the class
Private members of the class

All objects of the class
as well as the derived class

Protected members of the class

Fig. 9.5 Access control

Available or accessible entities can be determined by the access control. The three entities
available for access are as follows:

1. Public
2. Private
3. Protected members

The three types of entities that access them are as follows:

1. The member functions of the class and the friends of the class
2. The member functions of the derived class
3. The objects of the class as well as the derived class

9.8 ACCESS DECLARATION

As mentioned earlier, if a class is derived in a private way, then it is not possible to access
the data members of the base class using the derived class objects. In contrast, if the class
is derived in a public way, then all the members can be accessed as public. If one wants
to derive a class and wants only a few and not all the public members to be available to
the objects of the derived class, then one has to provide access declaration. Using access
declaration, it is possible to provide public access to some of the base class members even
after deriving them as private. Consider Program 9.5 to understand the concept better.

Inheritance 377

PROGRAM 9.5 Access declaration to use a specifi c inherited member for a different purpose
//AccessDeclaration.cpp
#include <iostream>
using namespace std;

class Base
{
protected:
 int SpecialProtectedInt;
public:
 int SpecialInt;
 int NormalInt;
};

class Derived : private Base
{
protected:
 Base::SpecialProtectedInt;
 /* Making this protected integer specially available to the object of the derived class */

public:
 Base::SpecialInt;
 /* Making this integer specially available to the object of the derived class */

 // Using Base::SpecialInt;
 /* Newer way of writing the same */

 void SetSpecialProtectedIntofBase()
 {
 SpecialProtectedInt = 10;
 }
};

void main()
{
 Derived DerivedObject;
 // DerivedObject.NormalInt = 10;
 /* This statement, if not commented, would not be compiled */

 DerivedObject.SpecialInt = 20;
 DerivedObject.SetSpecialProtectedIntofBase();
}

How the Program Works
The statement Base::SpecialInt; redefi nes the SpecialInt in the public access specifi er
header of the derived class, thus making it specially public. All other data will remain
private. Thus, the NormalInt will still be private. Note that SpecialProtectedInt has also
been redefi ned to remain protected in the derived class. Access declaration is a great facility;
however, it has the following restrictions:

1. The access specifi er cannot be modifi ed to raise the status of the original access specifi er.
It means that if there is a private or protected member in the base, it cannot be redefi ned
in the derived class as public.

2. The consequence of the previous statement is that a member with public access
specifi cation can be redefi ned with public or protected access, whereas the protected
member can only be redefi ned as protected.

378 Programming with ANSI C++

The use of access declaration in the form shown Program 9.5 is deprecated, that is, it is not
recommended for use in new programs; the same effect of access declaration can also be
achieved with the keyword using. For writing new programs, one must use this keyword.
using Base::SpecialProtectedInt; and using Base::SpecialInt; are ways to replace older
defi nitions (i.e., just precede older defi nitions with the keyword using). We will be discussing
how to use this keyword while studying namespaces in Chapter 14.

9.9 DERIVING MULTIPLE CLASSES FROM A SINGLE CLASS

It is possible to derive multiple classes from a single class. Suppose there are some Student
classes, say, SchoolStudent, UndergraduateStudent, and PostgraduateStudent. From the
design point of view, one must look at all such possible classes and fi nd the common
elements in them. Then, the Student class (the base class for all of them) is to be created with
those elements. Thus, the base class contents are decided after the derived class contents
are determined. In Program 9.6, we have arts, commerce, and science students inherited
from the student class. Suppose the following information needs to be stored for the arts
students:

1. Name
2. Address
3. Marks obtained in social science subjects in Class XII
4. Rank obtained in Class XII
5. Name of school in Class XII

Moreover, information for creative art work such as poems or stories written may need to
be added.

Note Some books call it hierarchical inheritance, which is non-standard; so, we prefer not to use that phrase
to describe the situation when multiple classes are derived from a single class.

For the science students, the marks of science subjects and practical subjects, except the
language subjects, in Class XII are to be considered. Not only lecture schedules but also
practical schedules are considered. For simplicity, both the schedules are assumed to be a
string; in real-life scenario, they may be a table to be read from a fi le.

For commerce students, commerce subject details are to be considered. There may be
a need to add details about internship to some private companies. This information is also
considered to be contained by a string.

It can be observed that some parts of the details are specifi c to the type of subject, whereas
other details are common. A student class should be created with the common details and
then these three classes should be inherited. Consider Program 9.6.

PROGRAM 9.6 Inheriting multiple classes from a single class
//StudentInherited.cpp
#include <iostream>
#include <string>
using namespace std;
const int Languages = 2;
const int Science = 3;
const int Commerce = 2;

Inheritance 379

class student
{
protected:
 string Name;
 string Address;
 char Grade;
 string NameofSchool;
public:
 student(string TempName, string TempAddress, char TempGrade, string TempNameofSchool)
 {
 Name = TempName;
 Address = TempAddress;
 Grade = TempGrade;
 NameofSchool = TempNameofSchool;
 }
};

// Derived class ArtsStudent
class ArtsStudent : public student
{
 int marks[Languages];
 string LanguageName;
public:
 /* Note how the members are initialized using a member initialization list */
 ArtsStudent(string TempName, string TempAddress,
 char TempGrade, string TempNameofSchool,
 int TempMarks[], string TempLanguageName) : student(TempName, TempAddress, TempGrade,

TempNameofSchool)
 {
 for(int i = 0; i < Languages; ++i)
 marks[i] = TempMarks[i];
 LanguageName = TempLanguageName;
 }
};

// Derived class ScienceStudent
class ScienceStudent : public student
{
 int marks[Science];
 string ScienceName;
 string PractSchedule;
public:
 ScienceStudent(string TempName, string TempAddress, char TempGrade, string

TempNameofSchool, int TempMarks[], string TempScienceName, string TempPractSchedule) :
student(TempName, TempAddress, TempGrade, TempNameofSchool)

 {
 for(int i = 0; i < Science; i++)
 marks[i] = TempMarks[i];
 ScienceName = TempScienceName;
 PractSchedule = TempPractSchedule;
 }
};

// Derived class CommerceStudent
class CommerceStudent : public student
{
 int marks[Commerce];
 string CompanyName;

380 Programming with ANSI C++

How the Program Works
The program contains a student class, and there are three classes inherited from it, namely,
ArtsStudent, CommerceStudent, and ScienceStudent. The student class contains all the data
common to the derived classes, that is, name, address, etc. Constructors are provided for all
these classes, which are defi ned and used while defi ning student.

It is a very simplifi ed example, though it has gone a little on the heavy side, particularly
the constructor call for the base class in the derived class. It is important to note that the base
class constructor is called using the memberwise initialization list (MIL), which has been
dealt with while learning constructors in Chapter 5. It has been mentioned that members
can be initialized using MIL. When the member is a class (here, the derived class has the
base class as a member), it is initialized using MIL. It is also important to note that the base
class objects can be initialized only using MIL and not in the body of the constructor of the
derived class object. It is also important to note that the derived class constructor must have
enough number of arguments for both the base class object, which is a part of the derived
class, and the constructor for the other members of the derived class.

Note Base class objects can be initialized only using MIL. The derived class constructor must have enough
number of arguments to construct the base class subobject embedded in the derived class object as
well as the other members of the derived class.

This program stresses the advantages of base classes when it is inherited multiple
times. A single base class is shared with all the classes that are inherited from it.
If the university wants to add the e-mail addresses of all the students of all the
disciplines in the student data, the information needs to be added at only one
place, the student class. This is the prime advantage of inheritance. Suppose if
at a further period, there is a need to deal with engineering students as well, it is

public:
 CommerceStudent(string TempName, string TempAddress, char TempGrade, string

TempNameofSchool, int TempMarks[], string TempCompanyName) : student(TempName,
TempAddress, TempGrade, TempNameofSchool)

 {
 for(int i = 0; i < Commerce; i++)
 marks[i] = TempMarks[i];
 CompanyName = TempCompanyName;
 }
};

void main()
{
 int ArtsMarks[] = {55,75};
 int ScienceMarks[] = {89,78,97};
 int CommerceMarks[] = {54,78};

 CommerceStudent Lara("Lara", "West Indies", 'A', "Trinidad beach", CommerceMarks,
"Under the sun");

 ScienceStudent Beckham("David Beckham", "Karnataka", 'A', "Bangalore school",
ScienceMarks, "Physics", "12to2daily");

 ArtsStudent Steffi ("Steffi ", "C/o Agassi's address", 'A', "Germany school", ArtsMarks,
"Silence");

}

One important advan-
tage of inheritance
is the facility to store
common attributes at
a single place in the
base class.

Inheritance 381

possible to inherit a new class from student class again. Then, there is no need to add those
details (name, address, etc.) to the Engineering class, which should only contain information
specifi c to it. This is another advantage of inheritance. If the proper base classes are in place,
further programming is easier and faster. It leads to modular and quick programming. It is
also robust if the base class is debugged and tested properly.

9.10 MULTIPLE INHERITANCE

It is also possible to derive a single class from more than one class. When a single class is
inherited from multiple base classes, it is known as multiple inheritance. Many examples of
multiple inheritance can be seen in the real world.

For example, Indian people are Indians as well as people at the same point of time; similarly,
a personal computer is both personal and computer at the same point of time. When such a
concept is implemented as a class, multiple inheritance occurs. If ever a class IndianPeople
is derived, it would be multiple inherited from the classes Indian as well as People. Similarly,
the class PersonalComputer will be inherited from the classes Personal as well as Computer.
The multiple-inherited derived class inherits attributes from all the classes it is derived from.
Let us take one specifi c example to learn how multiple inheritance found in real world can be
mapped to a C++ program. Though we would like to come as close to a real-world example
as possible, we will fall short of an actual real-world C++ program, because the complexity
of such a program would be out of bounds for a text book such as this.

Multiple inheritance is a great idea. There are so many such hierarchies in the real world.
An Indian cricket player can be a player from the south, north, east, or west zone. At the
same time, he is also either a bowler, a batsman, a wicket keeper, or an all-rounder. One
class can be described as a combination of a bowler and a south zone player. The class under
consideration inherits from both the south zone player class and the bowler class.

Another example is that of an auto-rickshaw, which is a member of three-wheeler vehicle
class and, at the same time, is also a member of the class of vehicles available on rent.
Program 9.6 shows Beckham to be an object of the class ScienceStudent; he can as well be
an object of the class FootballStudent. In such a case, there is a need to have one more class
FootballScienceStudent of which Beckham is a member. Multiple inheritance relates to an
entity that inherits attributes from more than one distinct entities. Such natural inheritance
becomes easy and intuitive to a program with the facility of multiple inheritance provided
by the language.

Implementing Multiple Inheritance in C++
Let us see how one can implement multiple inheritance in a C++ program. Program 9.7
contains a class called SportsStudent, which is inherited from the student class and the
SportsPerson class.

The object of SportsStudent class contains properties such as name and address derived
from the student class and the details such as the name of the sport one is
playing, the national and international sports events taken part in, and medals
won so far, which are derived from the SportsPerson class. Moreover, note that
there are some other attributes such as sports subjects taken and sports points
obtained (from practicals and participation in various events), which are specifi c
to the SportsStudent class. Program 9.7 reinforces what is stated here.

When a single class
is inherited from mul-
tiple base classes, it
is known as multiple
inheritance.

382 Programming with ANSI C++

PROGRAM 9.7 Multiple inheritance
//Multiplelnheritance.cpp
#include <iostream>
#include <string>
using namespace std;
const int Sports = 3;

// First base class
class student
{
private:
 string Name;
 string Address;
 char Grade;
 string NameofSchool;
public:
 student(string TempName, string TempAddress, char TempGrade,
 string TempNameofSchool)
 {
 Name = TempName;
 Address = TempAddress;
 Grade = TempGrade;
 NameofSchool = TempNameofSchool;
 }
};

// Second base class
class SportsPerson
{
private:
 string Sport;
 string DetailsOfEvents;
 string Experience;
 int Age;
public:
 SportsPerson(string TempSport, string TempDetailsOfEvents, string TempExperience, int

TempAge)
 {
 Sport = TempSport;
 DetailsOfEvents = TempDetailsOfEvents;
 Experience = TempExperience;
 Age = TempAge;
 }
};

// Derived class
class SportsStudent : public SportsPerson, public student
{
private:
 string SportsSubjects[Sports];
 int SportsPoints;
public:
 SportsStudent(string TempName, string TempAddress, char TempGrade, string TempNameofSchool,

string TempSport,
 string TempDetailsOfEvents, string TempExperience, int TempAge,
 int TempSportsSubjects[], int TempSportsPoints) :
 student(TempName, TempAddress, TempGrade, TempNameofSchool),
 SportsPerson(TempSport, TempDetailsOfEvents, TempExperience, TempAge)

Inheritance 383

How the Program Works
This example shows how multiple inheritance can be defi ned and used in a program. The class
SportsStudent has been inherited from two classes, namely, student and the SportsPerson
classes. See how the constructors are defi ned and accessed in the derived class.

The syntax for multiple inheritance is simple. The class name is to be followed by the
access specifi er. For example,

<access specifi er> classl name,
<access specifi er> class2 name, ...

In this program, it is written as

class SportsStudent : public SportsPerson, public student

9.10.1 Problems in Multiple Inheritance
Multiple inheritance is touted as a bad feature by some other languages, particularly Java, which
discourages a programmer from using it. It is a very important tool, but has to be used with care.

It is important to note that multiple inheritance also has problems. If it is used without
proper understanding, or used when a natural solution without multiple inheritance is
possible, one has to pay the penalty in terms of effi ciency and simplicity of code. Let us
analyse the problems of using multiple inheritance in our program.

The idea here is not to restrict the readers from using multiple inheritance but to make
them aware of the problems so that they can be avoided while programming.

From the Compiler’s Angle
At the time of derivation, the base class is embedded in the derived class. When it is derived
further, the inheritance follows a ‘natural’ chain. The base subobjects are stacked in the order
of inheritance in the derived class. In case of multiple inheritance, the path is not simple.
The subobject stacking is done using subobjects from multiple classes inserted for multiple
inheritance.

Consider Fig. 9.6. If there is a derived class and a further derived class from this derived
class, the embedding is straightforward. If ever a compiler needs to convert from a derived
class object to a base class object, the lower part is to be neglected. The calculation is simple.
On the other hand, if the class contains multiple inheritance, then the selection is not that
simple. In such cases, the compiler may need to isolate some part of data (the class derivedl
data) in between, which obviously requires more computation and logic.

 {
 for(int i = 0; i < Sports; ++i)
 SportsSubjects[i] = TempSportsSubjects[i];
 SportsPoints = TempSportsPoints;
 }
};

void main()
{
 int SportsMarks[] = {59,78,67};
 SportsStudent Carl("Carl Lewis", "US", 'A', "The American school", "Sprint", "Won gold

in Olympics", "10 years", 40, SportsMarks, 70);
}

384 Programming with ANSI C++

Suppose the program contains the following statements:

Base BaseObject;
Derived DerivedObject;
DDerived DDerivedObject;

If a programmer writes

Base *BaseObjPtr = &DerivedObject

then the compiler need not do anything in the fi rst case. Similarly, if one writes

Base *OtherBasePtr = &DerivedObject

then again the compiler need not do anything. The address naturally points to the class
needed (base class in the fi rst and derived class in the second). However, this is not observed
in the case of multiple inheritance.

Let us assume the class Derived is derived from both Base1 and Base2. If one writes the
following

Derived DerivedObject;
Base2 *BasePtr2 = &DerivedObject;
then it is not easy for the compiler to get the right address. If one writes
Base1 *BasePtr1 = &DerivedObject

the compiler need not intervene.

Notes

 1. The compiler has to intervene and properly set the address and provide means of getting correct content
for any class that is not the fi rst member of the inheritance list.

 2. The compiler has to do more work when there is a long chain or when there is a need to provide virtual
base class facility.

Fig. 9.6 Derivation examples (a) Normal derivation (b) Multiple derivation

Base class dataThe address
of the object

Normal derivation example

The contents of the
class derived from

a derived class

Derived class
original data

To get derived class
object out of DDerived
object this portion is

to be taken out

To get base class
object out of DDerived
object this portion is

to be taken out
A further

derived class
original data

Base class 1 original dataThe contents of the
class derived from
a derived class in
case of multiple

inheritance

To get base 2 class
out of derived object
this portion is to be

taken out

Multiple derivation example

Base class 2 original data

Derived class 1 original data

The address
of the object

(a)

(b)

Inheritance 385

From the Designer’s Angle
Designers need to take care when they encounter a problem related to a common situation
known as tangled hierarchy. They need to fi nd the value of an attribute for an object that has
inherited multiple number of times. If the attribute cannot be found with the same object, one
needs to traverse the hierarchy up to fi nd the value. In the case of multiple inheritance, there
is more than one path up. Hence, it is possible to get multiple values for the same attribute,
which can at times be confl icting.

Suppose there is a class MyBirds, which is inherited from two classes PetBirds and
Ostriches. If one travels up the hierarchy, PetBirds has a base class called Birds. Suppose
somebody enquires to know whether MyBirds can fl y and travels the hierarchy through
Ostriches, then he/she may be misled to believe that MyBirds cannot fl y.

On the other hand, if the person chooses the other path (through PetBirds to Birds), he/
she would conclude that MyBirds can fl y. This is a serious design problem and can be avoided
if the classes are designed carefully.

Obviously, avoiding multiple inheritance seems to be the simplest solution. Moreover,
multiple inheritance has another drawback. The object becomes more cluttered with the
features derived from more than one class and is, therefore, less readable and debuggable
than a normal object or singly inherited object.

9.11 DERIVING A CLASS FROM AN ALREADY DERIVED CLASS

We have so far seen the cases of deriving from a base class. It is also possible to derive further.
The C++ object model implementation is such that the further derived class will contain all
ancestors within its body. Let us look at an example of such a class. We have seen a class
student, and further inheritance of it into arts, commerce, and science students. It is possible
to have one more derivation from science students, namely the Gujarat University science
students. The Gujarat University science students may have some special rules to follow
compared to a normal science student, and so, this student object needs to add attributes
such as science project details, name of the guide for the science project, and list of subjects
offered out of optional subjects. The following program shows how this can be programmed.

//Furtherlnheritance.cpp
#include <iostream>
#include <string>
using namespace std;

const int Science = 3;
const int OptionalSubjects = 2;

// Base class
class student
{
private:
 string Name;
 string Address;
 char Grade;
 string NameofSchool;
public:

386 Programming with ANSI C++

 student(string TempName, string TempAddress, char TempGrade, string TempNameofSchool)
 {
 Name = TempName;
 Address = TempAddress;
 Grade = TempGrade;
 NameofSchool = TempNameofSchool;
 }
};

// Derived class
class ScienceStudent : public student
{
 int marks[Science];
 string ScienceName;
 string PractSchedule;
public:
 ScienceStudent(string TempName, string TempAddress, char TempGrade, string

TempNameofSchool, int TempMarks[], string TempScienceName, string TempPractSchedule):
student(TempName, TempAddress, TempGrade, TempNameofSchool)

 {
 for(int i = 0; i < Science; i++)
 marks[i] = TempMarks[i]; ScienceName = TempScienceName; PractSchedule =

TempPractSchedule;
 }
};

// Further derivation from the derived class
class GUScienceStudent : public ScienceStudent
{
 string ScienceProjectDetails;
 string GuideName;
 string SubjectsOpted[2];
public:
 GUScienceStudent(string TempName, string TempAddress, char TempGrade, string

TempNameofSchool, int TempMarks[], string TempScienceName, string TempPractSchedule,
string TempScienceProjectDetails, string TempGuideName, string TempSubjectsOpted[])
: ScienceStudent(TempName, TempAddress, TempGrade, TempNameofSchool, TempMarks,
TempScienceName, TempPractSchedule)

 {
 ScienceProjectDetails = TempScienceProjectDetails;
 GuideName = TempGuideName;
 for(int i = 0; i < OptionalSubjects; i++)
 SubjectsOpted[i] = TempSubjectsOpted[i];
 }
};
void main()
{

Inheritance 387

 int ScienceMarks[] = {89,78,97};
 string BeckhamSubjects[2] = {"Corner","Free kick"};
 GUScienceStudent Beckham("David Beckham", "UK", 'A', "Real Madrid", ScienceMarks,

"Physics", "12to2daily", "World cup in Germany", "Dribbling", BeckhamSubjects);
}

Deriving classes in this way increases the number of arguments to be passed to the constructor.
It makes the program less readable. Even with a simple example that has been provided here,
a constructor with 10 items needs to be called. A practical solution to this problem is to have
a structure containing the items needed and pass it to the constructor. For example,

Student(StudSturct)

can be written instead of

Student(TempName, TempAddress, TempGrade, TempNameofSchool)

if a struct has been defi ned as follows:

struct Stud
{
 int Name;
 int Address;
 int Grade;
 int NameofSchool;
}

9.12 VIRTUAL BASE CLASS

So far, further inheritance is simple to understand. There is a problem with a specifi c type
of further inheritance that has been overlooked. Suppose there is a class Base from which

two different classes, say, Derived1 and
Derived2, are derived. In addition, if a new
class DDerived is inherited from Derived1
and Derived2 (multiple inheritance), then
there are two copies of Base now copied in
DDerived, one from Derived1 and another from
Derived2. This is diagrammatically shown in
Fig. 9.7.

Thus, there are two different copies of
all the members of the base class elements.
This has two distinct problems. The fi rst
one is the bloating of the code size, which is
very obvious. The second problem is how to
access a member class object from a further
derived class. The scope resolution operator
is obviously needed to say either ‘I need a
base class object derived from Derived1’
or ‘I need a base class object derived from
Derived2’.Fig. 9.7 Virtual base class

Base class

Base class
Derived1 class

original members

Base class

DDerived
class

Derived1
class

Derived1 class
original members

Base class
Derived2 class

original members

DDerived class
original members

Base class
Derived2 class

original members

Derived2
class

388 Programming with ANSI C++

Consider the following program to understand how to invoke the base class object. It
is needless to say that if the object members are not qualifi ed this way, the compiler will
get confused (whether to use a base class member from Derived1 or Derived2) and will not
compile the program.

#include <iostream>
#include <string>
using namespace std;
// Base class
class Base
{
public:
 int BaseInt;
};
// First derived class
class Derived1 : public Base
{
public:
 int Derived1Int;
};
// Second derived class
class Derived2 : public Base
{
public:
 int Derived2Int;
};
// Multiple inheritance
class DDerived : public Derived1, public Derived2
{
public:
 int DDerivedInt2;
};

void main()
{
 DDerived DD;
 // DD.BaseInt = 0;
 // Error: ambiguous access of 'BaseInt' in 'DDerived'
 DD.Derived1::BaseInt = 0; // Now it is not ambiguous
 DD.Derived2::BaseInt = 10;
 /* Yes. This is different from previous BaseInt */
 cout << DD.Derived1::BaseInt << "\n";
 cout << DD.Derived2::BaseInt << "\n";
}
Output
0
10

In this example, it is not possible to access the base class member as it is. It needs to be
qualifi ed with the derived class name.

Inheritance 389

Having two different copies and the need to qualify with the base class name is a serious
problem in some cases. To solve this problem, it is necessary to precede the fi rst derivation
by the keyword virtual. Look at the modifi ed code shown in the following program.

//VirtualInheritance.cpp
#include <iostream>
#include <string>
using namespace std;

class Base
{
public:
 int BaseInt;
};

class Derived1 : virtual public Base
// See the keyword virtual preceding public
{
public:
 int Derived1Int;
};

class Derived2 : virtual public Base
{
public:
 int Derived2Int;
};

class DDerived : public Derived1, public Derived2
{
public:
 int DDerivedInt2;
};

void main()
{
 DDerived DD;
 DD.BaseInt = 0;
 // No more ambiguity as there is only one copy of BaseInt present
 DD.Derived1::BaseInt = 0; // This is the same as previous
 DD.Derived2::BaseInt = 10; // We are modifying the same member
 cout << DD.BaseInt << "\n";
 cout << DD.Derived1 :: BaseInt << "\n";
 cout << DD.Derived2 :: BaseInt << "\n";
}
Output
0
0
10

The keyword virtual should precede the derivation to provide a virtual base class, that is, a class
with only one instance inherited when inherited from multiple paths. One can actually write virtual
public or public virtual; there is no difference between them. The compiler would consider both
the defi nitions the same way. Now, BaseInt is a single copy and there is no ambiguity. Whenever

390 Programming with ANSI C++

the compiler fi nds the keyword virtual with derivation, it would ensure that two instances of the
same base class are not inherited into the class derived from the derived class of Base.

The resultant situation is described in Fig. 9.8. We have a single instance of Base class in
DDerived class. This is the advantage of virtual base classes.

It is actually a challenge for the compiler to provide a single instance of a class from two
instances available and still provide compatibility when one type of object is assigned
to another, especially while using pointers. It is a complex problem and compilers use
complicated mechanisms to solve it.

Note In the case of virtual base classes, the compiler keeps track of those base classes when inherited. If
the compiler fi nds multiple copies of the same class inherited, it will keep only one copy. Such a rework
needs a lot of complex mechanisms to be built into the compiler. Moreover, it needs to check the
inheritance chain to determine whether the base class is inherited again, which slows down the process.

A general strategy is to divide the members into two regions. One region contains non-
virtual base classes that are at a fi xed offset from the beginning and can be handled easily.
The other region is a shared region where the offset is not fi xed and the compiler needs to
provide special mechanisms to dynamically access the virtual members.

In a nutshell, using virtual base class is not an effi cient way. One should try to avoid it unless
one is ready to sacrifi ce performance and speed. When virtual base classes are combined with
multiple inheritance, the situation becomes much more complex for the compiler and must be
avoided unless the application demands it. Exhibit 9.1 explains abstract classes.

Exhibit 9.1 Abstract classes
The classes without any objects are known as abstract classes. These classes are usually the outcome of a
generalization process that fi nds the common elements of the classes of interest and stores them in a base class.

In the example for the single inheritance of a single base class into multiple base classes, the student class
is known as an abstract class. Abstract classes are very important from the designer’s point of view. Whenever a
designer has to model an abstract concept that cannot have objects, then abstract classes come handy.

Fig. 9.8 Effect of virtual base class on derived class design

Base class

Base class
Derived1 class

original members

Base class

DDerived
class

Derived1
class with

virtual inheritance

A single copy of base class is
available now. Since the virtual
keyword is found in derived1 and
derived2 inheritance definitions,
the compiler includes a single copy. Derived1 class

original members

Derived2 class
original members

DDerived class
original members

Base class
Derived2 class

original members

Derived2
class with

virtual
inheritance

Inheritance 391

9.13 APPLICATIONS OF CONSTRUCTORS AND DESTRUCTORS

We have already seen the applications of constructors when a class is derived from another
class. There are a few important things to be noted in such cases, which are as
follows:

1. If there is a base class constructor available, the derived class must defi ne
one constructor for itself. Why? A base class instance is a part of the derived
class; then, how can it be constructed if the derived class does not provide a
constructor itself, which calls the constructor of the base class? It should be

remembered that when the programmer provides a constructor, C++ will not provide one.
This is why the base class subobject needs that base class constructor to be defi ned by
the user. In the case of a default constructor, though, the situation is different. If default
constructor is not defi ned in the derived class and there is one defi ned in the base, the
compiler will defi ne one default constructor for us for the derived class.

2. When class1 : public class2, public class3, public class4, ..., classN is defi ned,
then the constructor for class2 is called fi rst, then the constructor for class3 is called, and
so on until classN, and then the body of the constructor of class1 is executed. The call to
base class constructors is to be defi ned outside the body of the constructor, in the MIL.
Here, the list that appears after : is sometimes referred to as inheritance list. Hence, the
base class constructors are to be called (initialized) using MIL and cannot be called in the
body of the derived class.

3. There is an exception to the case mentioned in the point 2. If one of the classes in the
list is virtual, then its constructor is called before others. If there are more such virtual
base classes, then their constructors are executed in the order of their appearance in the
inheritance list.

4. When fi rst class2 : public class1 and then class3 : public class2, that is, class1->
class2->class3 (-> indicates inherit into) are defi ned, then the class1 constructor is
called fi rst, then class2 constructor is called, and then the body of the class3 constructor
is executed when the object of class3 is defi ned. When a class is derived from a base class
and may be derived further, the inheritance chain is a list that starts with the base class
and follows the order of inheritance to the last class. Here, class1->class2->class3 is the
inheritance chain, and it can be seen that the constructor execution order has followed the
chain.

5. The destructors of the base classes are called exactly in the reverse order of their
initialization when the derived object is destroyed.

6. The argument to the derived constructor will have all the arguments needed for all base
classes plus a few for itself. This has already been seen in earlier examples.

9.14 EXCEPTION HANDLING IN CASE OF DERIVATION

It is important to note that C++, while providing very strict type checking, is at times
very lenient. If an object of a derived class has been thrown, it can be caught by a handler
provided by the base class. If one wants to provide the handler for the derived class objects
as a different handler, then it must appear before the handler for the base class; otherwise,
that catch block will never be executed. Consider the following program to understand the
concept.

When the program-
mer provides a
constructor, the C++
compiler will not pro-
vide one.

392 Programming with ANSI C++

//ExceptionHandling.cpp
#include <iostream>
#include <string>
using namespace std;
const int Languages = 2;
const int Science = 3;
const int Commerce = 2;
class student
{
protected:
 string Name;
 string Address;
 char Grade;
 string NameofSchool;
public:
 student(string TempName, string TempAddress, char TempGrade,
 string TempNameofSchool)
 {
 Name = TempName;
 Address = TempAddress;
 Grade = TempGrade;
 NameofSchool = TempNameofSchool;
 }
};
class ArtsStudent : public student
{
 int marks[Languages];
 string LanguageName;
public:
 ArtsStudent(string TempName, string TempAddress, char TempGrade, string

TempNameofSchool, int TempMarks[], string TempLanguageName) : student(TempName,
TempAddress, TempGrade, TempNameofSchool)

 {
 for(int i = 0; i < Languages; ++1)
 {
 marks[i] = TempMarks[i];
 }
 LanguageName = TempLanguageName;
 }
};
class ScienceStudent : public student
{
 int marks[Science];
 string ScienceName;
 string PractSchedule;
public:
 ScienceStudent(string TempName, string TempAddress, char TempGrade,

Inheritance 393

string TempNameofSchool, int TempMarks[], string TempScienceName, string
TempPractSchedule): student(TempName, TempAddress, TempGrade, TempNameofSchool)

 {
 for(int i = 0; i < Science; i++)
 marks[i] = TempMarks[i];
 ScienceName = TempScienceName;
 PractSchedule = TempPractSchedule;
 }
};
void DelStudent(int Who)
{
 int ArtsMarks[] = {55,75};
 int ScienceMarks[] = {89,78,97};
 ScienceStudent Beckham("David Beckham", "England", 'A', "Germany", ScienceMarks,

"Physics", "12to2daily");
 ArtsStudent Steffi ("Steffi ", "C/o Agassi's address", 'A', "Germany", ArtsMarks,
"Silence");
 try
 {
 switch(Who)
 {
 case 0: throw Beckham;
 case 1: throw Steffi ;
 default: return;
 }
 }
 catch (ScienceStudent)
 {
 cout << "Caught a science student\n";
 }
 catch (student)
 {
 cout << "Caught a student\n";
 }
 catch (ArtsStudent)
 {
 cout << "Will never catch an arts student\n";
 }
};
void main()
{
 DelStudent(0); // Message to throw Beckham;
 DelStudent(1); // Message to throw Steffi ;
}
Output
Caught a science student
Caught a student

394 Programming with ANSI C++

A composite object
is one that has other
objects as members.

PROGRAM 9.8 Composite object
//CompositeObject.cpp
#include <iostream>
#include <string>
using namespace std;
class CollectionEmp; // Forward Defi nition
class employee
{
 int EmpNo;
 string Name;
 string DeptName;
 string Designation;
public:
 employee()
 {
 EmpNo = 0;
 }

 employee(int TempNo, string TempName, string TempDept, string TempDesi)
 {
 EmpNo = TempNo;
 Name = TempName;
 DeptName = TempDept;
 Designation = TempDesi;
 }

 void DisplayDetails()
 {
 cout << "Details of employee number" << EmpNo << "\n";
 cout << "Name is" << Name << "\n";
 cout << "Department is" << DeptName << "\n";
 cout << "Designation is" << Designation << "\n";
 }

Unfortunately, the arts student is not caught because the student object handler is written
before it. A good compiler might fl ag a warning while compiling such cases.

The need for such a strategy is to make a base class and derive a lot of classes from it.
A single base class catch is still needed to catch the entire group of derived class objects.

Note When an exception is thrown for a derived class, it can always be caught by a base class. If one needs
to catch base class as well as derived class exceptions separately, the catch block for the derived
class must appear before the catch block for a base class, unless the catch block of the base class
captures all exceptions related to the base as well as derived classes and a derived class catch
segment will never be executed.

9.15 COMPOSITE OBJECTS (CONTAINER OBJECTS)

Sometimes, the object itself contains some other objects as members. Such objects are known
as composite objects. This is the part of relationship unlike the is-a relationship discussed
in Section 9.3. It is important to note that there may be no need to call the constructor

of the component classes whenever one needs to call the constructor of the
container class every time like the derived class. In Program 9.8, the compiler
calls the constructor for Employee while initializing the employee collection
(CollectionEmp) object. Here, CollectionEmp is a composite object.

Inheritance 395

 friend CollectionEmp;
};

class CollectionEmp
{
private:
 employee ColEmp[10];
 int Index;
public:
 bool AddToCol(employee Emp)
 {
 if(Index < 9)
 {
 ColEmp[Index] = Emp;
 Index++;
 return true;
 }
 else
 return false;
 }

void ListDeptWise()
{
 string TempDeptName;
 cout << "Enter the department of the university:";
 cin >> TempDeptName;
 cout << "\n";

 for(int i = 0; i < 10; ++i)
 {
 if(ColEmp[i].DeptName == TempDeptName)
 {
 ColEmp[i].DisplayDetails();
 }
 }
 }

 CollectionEmp()
 {
 Index = 0;
 }

 CollectionEmp(employee TempEmp[], int Size = 10)
 {
 Index = 0;
 for(int i = 0; i < Size; ++i)
 {
 AddToCol(TempEmp[i]);
 }
 }
};

void main()
{
employee UniEmployee[10] =
{
 employee(1, "Lara", "Exam", "Professor"),
 employee(2, "Ponting", Marksheet", "Clerk"),
 employee(3, "Laxman", "Accounts", "Head Clerk"),
 employee(4, "Flintoff", "Exam", "Clerk"),

396 Programming with ANSI C++

How the Program Works
Look at both the constructors of the CollectionEmp class. The constructors of Employee
objects (which are contained by the CollectionEmp class) are not called.

CollectionEmp()
{
 Index = 0;
}

CollectionEmp(employee TempEmp[], int Size = 10)
{
 Index = 0;
 for(int i = 0; i < Size; ++i)
 {
 AddToCol(TempEmp[i]);
 }
}

Let us understand what this program tries to achieve. As this program has already been
analysed earlier, let us look at only the additional part. The composite object constructor
does not require calling the constructors of the objects it contain.

Earlier we have seen such an example of item object as a part of customer object while
discussing copy constructors in Chapter 5. Even then, we have not specifi ed any constructor
call in the defi nition of the customer object. Unlike the constructor of a derived class where
the base class constructor must be called, there is no need to call that constructor in this
case. However, there may be a need to call the constructors of contained objects in the
constructor of the container class. Program 9.9 is an example that represents the case where
such constructor calls are needed.

Calling constructors of contained objects in the composite object Suppose there is a
graphical fi gure (say, that of a face) that has a triangle, a square, and a pair of circles (to
represent the nose, mouth, and pair of eyes). Every instance of the graphical fi gure determines
the position of each of its components, that is, if the fi rst instance of the face is located at
(2, 2) on the screen, the components, that is, the pair of circles, the triangle, and the square,
will be drawn with respect to (2, 2).

If the next face is drawn at (20, 20), the circles, square, and the triangle will be drawn
with respect to position (20, 20). When the face is constructed, all component fi gures need
to be constructed with respect to the position of the face. The constructor of the graphical
fi gure Face should be called with the required arguments, one of which must be Position,

 employee(5, "Murlidharan", "Accounts", "CAO"),
 employee(6, "Sarfaraz", "Exam", "Informer"),
 employee(7, "Dean Jones", "Exam", "Invigilator"),
 employee(8, "Madugalle", "Exam", "Examiner"),
 employee(9, "Ganguly", "Marksheet", "Repeater"),
 employee(10, "Nafees", "Accounts", "Clerk")
};
CollectionEmp UniEmpCol(UniEmployee);
UniEmpCol.ListDeptWise();
}

Inheritance 397

which in turn is used to call the constructors of the embedded (component) objects to fi nd
their respective positions. It is a simplifi ed face, which can be positioned where one wants it
in two-dimensional space. Depending on the position of the face, the elements (two circles
for eyes, one triangle for nose, and one square for mouth) are to be drawn. The issues of
orientation of the face (the direction the face is facing) and scaling (making the face bigger
and smaller) are ignored here for simplicity.

Program 9.9 is for drawing a face, without really drawing a face on the screen, but printing
a message alone. If the face is drawn in the program, then the code becomes compiler
dependent (as C++ does not have standard graphics library) and more complicated. Therefore,
it is not shown here. It is written just for the purpose of representing the concept of composite
objects. The only important part to learn is the call to the constructors while initializing
user-defi ned objects that are a part of the composite object, that is, calling the constructors
of circle, triangle, and square while calling the constructor for the face. The positions of the
component objects depend on the position of the composite object. The constructors of the
component objects should be called using MIL as shown in the program. The values given
in the program for X and Y coordinates of all the points is intuitively chosen. Drawing the
fi gure might not draw an exact face but might be something similar to it. One may need to
play with X and Y values of all the components to get the face look like an actual face.

PROGRAM 9.9 Composite object where calling constructors of contained objects is necessary
//CompositeObj2.cpp
class Point
{
 int X;
 int Y;
public:
 Point(int TempX = 0, int TempY = 0)
 {
 X = TempX;
 Y = TempY;
 }

 int GetX() const
 {
 return X;
 }
 int GetY() const
 {
 return Y;
 }
};

class Square
{
 Point LeftBottom;
 int Length;
public:
 Square(Point TempLeftBottom, int TempLength)
 {
 LeftBottom = TempLeftBottom;
 Length = TempLength;
 }
};

398 Programming with ANSI C++

class Triangle
{
 Point Avertex, Bvertex, Cvertex;
public:
 Triangle(Point TempAvertex, Point TempBvertex, Point TempCvertex)
 {
 Avertex = TempAvertex;
 Bvertex = TempBvertex;
 Cvertex = TempCvertex;
 }
};

class Circle
{
 Point Centre;
 int Radius;
public:
 Circle(Point TempCentre, int TempRadius)
 {
 Centre = TempCentre;
 Radius = TempRadius;
 }
};

class Face
{
 Circle LeftEye;
 Circle RightEye;
 Triangle Nose;
 Square Mouth;
 Point Position;
public:
 Face(Point TempPosition),
 LeftEye(Point((TempPosition.GetX() + 20),
 TempPosition.GetY() + 10), 4),
 RightEye(Point((TempPosition.GetX() + 50),
 TempPosition.GetY() + 10), 4),
 Nose(Point((TempPosition.GetX() + 35),
 TempPosition.GetY() + 20),
 (Point((TempPosition.GetX() + 30),
 TempPosition.GetY() + 25)),
 (Point((TempPosition.GetX() + 40),
 TempPosition.GetY() + 25))),
 Mouth((Point(TempPosition.GetX() + 25),
 TempPosition.GetY() + 30), 20)
 {
 Position = TempPosition;
 }
};

void main()
{
 Face DummyFace(Point(20, 30));
 Face OtherFace(Point(50, 70));
}

Inheritance 399

How the Program Works
Five classes have been defi ned in this program. The Point class is designed as a platform for
deriving all other fi gures from it. The Point objects are passed to the constructors of Square,
Circle, and Triangle. The Point object passed to Square determines the left bottom vertex
of the square. The length is also passed as a second argument. Given these two values, a
square can easily be drawn. In the case of the triangle, all three vertices are passed. In the
case of the circle, a point representing the centre and the radius is passed. The component
fi gures that are under discussion, that is, Square, Circle, and Triangle, are thus composite
objects themselves, containing the Point objects within them. There is no need to call the
constructor of Point while calling the constructor of any of these objects. Why do we need
to call the constructors of Square, Circle, and Triangle in the constructor of their composite
object Face? This is because their construction cannot take place in an absolute way. Their
construction has one important parameter, the Position, which depends on the construction
of the composite object (the position at which the composite object is constructed). So, the
constructor of component objects should be called within the body of the composite object.

The program has two objects of type Face. Both are drawn at different places in the two-
dimensional space. Since both contain different coordinates, all the objects that are a part
of Face need to be drawn at different places. This is achieved by calling the constructor
functions in the MIL of the constructor of Face.

Inherited Members vs Contained Members
At times, a beginner in C++ is confused between the inherited members and the contained
members. Though they look the same, they are very different. The following are the differences:

1. From the design point of view, inherited members have a relationship that is similar to a
subset relationship. If Scooter is inherited from Vehicle, then Scooter objects also belong
to Vehicle class (scooters are vehicles; hence, they are a subset of vehicles). All instances
of Scooter are instances of Vehicle. In Program 9.9, Face contains the object Circle, but
it does not have the subset relationship. It is rather a part of relationship. Nose (a triangle)
is a part of the face. Left and right eyes (circles) are again parts of the face. However, all
instances of Triangle and Circle are not instances of Face as well.

2. Inherited members must execute their constructors outside the constructor body of the
derived class using MIL. If the base class has a constructor, the derived class must also
have one itself. Both these restrictions do not apply to contained members. We have seen
two different cases, one of the employee collection object in Program 9.8 and the other of
the component objects square, circle, and triangle in Program 9.9, where the constructors
of the embedded objects are not called.

3. One needs to be careful while assigning values to the constructors of contained objects based
on the values passed to the constructor of the container class. Here, one needs to execute the
constructors of the contained objects in the constructor of the container class using MIL.
(Program 9.9 is an example of such a need. Circles, triangle, and square representing the
eyes, nose, and mouth, respectively, need to be drawn depending on the position of the face.)

4. Both types of members (inherited and contained) are treated by C++ in a similar way
(embedded in the target class); so, they seem similar while programming.

5. Understanding the difference between the part of and subset relationship helps in one more
way. It is called choosing the right link (or inheritance chain) when one is in need of some
specifi c attribute. Suppose an object representing the arm of a sofa is being considered at

400 Programming with ANSI C++

■ KEYWORDS ■

Abstract class A class without any object is known as an
abstract class.

Access declaration Making a special member (or
members) to have a different type of inheritance than
specifi ed in the inheritance class is known as access
declaration. A different type cannot override the original
access specifi er used in the base class.

Access specifi er and access modifi er Public, private,
and protected are the ways by which one can defi ne
data members. These are known as access specifi ers.
All three can be specifi ed while a class is being derived

from another class. At that point of time, they are known
as access modifi ers.

Base class The class being extended in the process of
inheritance is known as the base class.

Base class subobject When the base class is inherited in
the derived class, the base class object is embedded in
the derived class object, and this object is known as the
base class subobject.

Composite or container object Object that includes
other objects as data members is known as composite or
container object.

■ RECAPITULATION ■

 • Object-oriented programming is based on the concept
of inheritance.

 • Inheritance is a process to extend an already defi ned
class into a new class with all the properties of the old
class plus some additional ones.

 • The advantage of inheritance is that there is no need to
create objects from scratch.

 • Sometimes, the real world has a model that can most
intuitively be programmed using inheritance.

 • It is also important to understand that one must use
inheritance to implement only the subset model. A class
having a logical subset of objects of some other class
should only be inherited from that class.

 • It is possible to derive a class from one or more base
classes. When a class is derived from more than one
base class, the process is known as multiple inheritance.

 • Multiple inheritance is problematic to implement for
applications as well as compilers.

 • It is also possible to derive from an already derived class.

 • If we want only a single copy of the grandparent class,
we need to defi ne the parents to inherit the grandparent
virtually.

 • The compiler needs to keep track of the virtual base
classes to ensure that multiple copies of the grandpar-
ent do not exist when these classes are inherited further.

 • The classes that do not have any objects are known as
abstract classes.

 • The constructors of the derived class should call the
constructors of the base class.

 • The order of calling the base class construction follows
the order of inheritance list present in the derived class
header.

 • These constructors can be called only using MIL.
 • Exception handling mechanism can catch the base

class object when a derived object is thrown.
 • Composite objects are different from derived objects.

They contain the objects of other classes as data
members.

the moment. If its colour needs to be found, it is better to travel through the part of the link
to know the colour of the sofa. It would be a waste of time if one traverses using subset link
to look at the properties of furniture (a class from which the arm of the sofa is inherited).

A similar case is that of a control pasted on a frame in graphical user interface (GUI)
programming. The look and feel of the control depends on the parent frame. Consider a
button placed on a form. The colour and the font of the button should match with that of
the frame in which it is loaded. A programmer may need to know what type of font is to be
chosen when pasting it on a specifi c frame. One needs to traverse the part of rather than the
subset of link. The Button class is having a subset relationship with the Window class while a
part of relationship with the Frame or Form.

Inheritance 401

Derived class The extended class itself is known as the
derived class.

Inheritance This is a mechanism to extend an existing
class into a new class. The new class will have all the
attributes of the old class plus some of its own. The
new class is said to be inherited or derived from the old
class.

Multiple inheritance The inheritance where the derived
class is derived from more than one base class is known
as multiple inheritance.

Private derivation or private inheritance This refers to
inheriting a class in a way that the public and protected
members of the base class become the private members
of the derived class.

Protected access modifi er for data members The
protected access modifi er works in the same way as
the private specifi er for the data members of the class,

except that the private members of the base class are
not available to the derived class whereas its protected
members are available to the derived class.

Protected derivation or protected inheritance This
refers to inheriting a class in a way that the public and
protected members of the base class become the
protected members of the derived class.

Public derivation or public inheritance This refers to
inheriting a class in a way that the public and protected
members of the base class retain their status in the
derived class.

Virtual base class A class that is defi ned as virtual at the
time of inheriting it is known as the virtual base class. The
compiler takes a note of it and when it is inherited further
using multiple inheritance, the compiler ensures that only
one copy of the subobject of the virtual inherited class
exists in the derived class.

■ EXERCISES ■

Multiple Choice Questions

1. For handling exceptions in inheritance, what should
be sequence of the handlers?

 (a) The base class handler must precede the derived
class handler.

 (b) The derived class handler must precede the base
class handler.

 (c) No such specifi c sequence is required.
 (d) The base class handler can never be specifi ed in

the presence of the derived class handler.
2. An object becomes more cluttered in case of

__________.
 (a) single inheritance
 (b) multi-level inheritance
 (c) multiple inheritance
 (d) hierarchical inheritance
3. The main advantage of protected members is that

__________.
 (a) they are available to the derived class functions
 (b) they are available to the derived class objects
 (c) Both
 (d) None
4. What does the following syntax describe?
 class Derived : public Base1, public Base2;
 (a) Single inheritance
 (b) Multi-level inheritance
 (c) Multiple inheritance
 (d) Hierarchical inheritance

5. When multiple copies of attributes occur in a derived
class, the problem is termed as __________.

 (a) multiple copy problem
 (b) multiple attribute problem
 (c) ambiguity
 (d) ambiguous derived class problem
 6. Which of the following is the correct syntax to

defi ne a virtual base class?
 (a) class Derived1 : virtual public Base {};
 (b) class Derived1 : public virtual Base {};
 (c) Both
 (d) None
 7. A class with only one instance inherited when

inherited from multiple paths is called __________.
 (a) virtual base class
 (b) virtual class
 (c) single inherited class
 (d) single inheritance restricted class
 8. The redundancy reduction reduces __________.
 (a) code size
 (b) chances of errors
 (c) Both
 (d) None
 9. When a member is protected, it is not different

from __________ unless the class is inherited.
 (a) public
 (b) private

402 Programming with ANSI C++

 (c) Both
 (d) None
10. Inheritance is a must for implementing __________

programming.
 (a) object-based programming
 (b) object-oriented programming
 (c) object programming
 (d) All of the above

Conceptual Exercises

 1. Differentiate between object-based and object-
oriented programming.

 2. What are the advantages of using inheritance?
 3. What is the difference between public and private

inheritance?
 4. What is the difference between protected inher-

itance and other types of inheritance?
 5. Explain the statement “The private members of the

base class are indirectly available to the derived
class”.

 6. Explain how different types of data members are
treated under different types of inheritance.

 7. How is protected access specifi er different from other
access specifi ers while further inheriting a class?

 8. Why does the C++ object model implement the
base class subjects in the derived class object?

 9. What are the disadvantages of multiple inheritance?
10. What are the issues one must consider when

dealing with multiple inheritance?
11. What is the advantage of access declaration?
12. List few cases where we need to derive multiple

classes from a single class.
13. List few cases where we need to derive an already

inherited class further.
14. List few cases where we need to have multiple

inheritance. (Hint: When we have a classifi cation
of the same item in two or more different ways,
we need multiple inheritance. For example, fruits
can be classifi ed as summer fruits and winter fruits.
They can also be classifi ed as sour fruits and sweet
fruits. Now, we can have a class summer-sour
fruits, which is multiple inherited from summer
fruits and also sour fruits).

15. What is the need of virtual base classes? Give an
example of your choice to illustrate the need for
virtual base class.

16. What are abstract classes? Give some examples of
abstract classes.

17. How are constructors of the derived classes

executed? What are the issues one must consider
while writing derived class constructor?

18. How is exception handling different when the
thrown object’s class is inherited?

19. How is the behaviour of embedded objects different
from that of the inherited objects?

Practical Exercises

 1. Defi ne a Point class and an Arc class. Defi ne a
Graph class that represents graph as a collection
of Point objects and of Arc objects. Find the
following:

 (a) The shortest distance between any two points
(use Dijkstra’s algorithm). You may also design
your own algorithm.

 (b) Find the minimum cost spanning tree using this
graph and produce one more graph representing
the same minimum cost spanning tree. (Minimum
cost spanning tree is the tree derived from a graph
after removing the heaviest arcs).

2. Write a program to create classes Person, Examiner,
Subject, Stream, Arts, Commerce, Science,
Engineering, and Student. A student object will
have multiple inheritance from Person and either
Arts, Commerce, Science, or Engineering class.
In turn, these classes get inherited from the Stream
class. Provide routines for enrolling, examination
result processing, and granting degree to the students.

3. Write a program to represent part as an object.
A part can contain other parts as members. Provide
operations to list all the required ingredient parts for
any given part looking at the deepest of the hierarchy.
Provide routines for inserting and removing parts or
the information related to parts.

4. Defi ne a class Figure and use inheritance to
defi ne the classes Triangle, Square, Circle, and
Rectangle. Provide a container class Frame to
contain any number of fi gures, possibly overlapped
in position. Provide operations for drawing frames
on the screen and for inserting, modifying, and
deleting frames and the contents of frames. (Actual
drawing is not required).

5. Defi ne a class Student. Inherit this class into
MCAStudent and NonMCAStudent. Also inherit it
into Local and NonLocal students. Multiple inherit
LocalMCAStudent from Local and MCAStudent.
Defi ne fi ve instances of LocalMCAStudent with
a constructor, assuming that all classes have a
constructor.

Chapter 10
Run-time Run-time
Polymorphism by Polymorphism by
Virtual FunctionsVirtual Functions
10.1 INTRODUCTION

Polymorphism is the property of the same object to behave differently in
different contexts given the same message. We have seen that overloaded
functions and operators exhibit this property. Suppose there is a class of
complex number and the ‘+’ operator has been overloaded for adding two
complex numbers as well as a complex number with a normal number.
Now, suppose the function Sum() is also defi ned to perform the same
operations.

Look at the following statements:

Complex C1, C2, C3;
int i;
C3 = C1.Sum(i);
C3 = C1.Sum(C2);
C3 = C1 + i;
C3 = C1 + C2;

In all these cases, the object C3 behaves differently (i.e., calls different
functions) when given the same message, that is, either Sum or +, depending
on the context (the argument passed). Note that this type of polymorphism
is decided at compile time, that is, C++ decides what to do at compile time.
This is an important property of an object-oriented (OO) language, and it
needs to be extended at run-time.

Suppose there is an abstract base class Vehicle that stores the data and
functions common to three other derived classes, namely Car, Bus, and
Scooter. Examples of such information are the registration number of
the vehicle, date of manufacturing, dealer identity, date of sale, etc. Such
information is stored in the Vehicle class because otherwise it needs to be
stored in every class derived from the base class. The same issue also arises
for the functions. There are two choices, namely, defi ning it in the base
class alone or defi ning it in every class derived from the base class. Unlike

Learning Objectives

• Polymorphism and its
importance

• Difference between
compile time and run-time
polymorphism

• Pointer to objects
• Pointer to invoking object,

the this pointer
• Defi ning a base class pointer

and making it point to derived
class objects

• Virtual functions
• Invoking virtual function

statically
• Issue of passing default

arguments to virtual functions
• Virtual destructors
• Pure virtual functions

404 Programming with ANSI C++

the data members, it seems at fi rst sight that there
is no sense in making it a member of the base
class. For example, if a Resale() function has
been defi ned in Vehicle, then it is useless in the
same class, because an object of the base class
cannot be invoked. Another option is to ignore
the concept of abstract class and defi ne Resale()
in all the classes separately. The only problem
is that the function call using base class pointer
is not possible as there is no such function in
the base class.

This example can be compared with another one discussed in Chapter 9, namely,
a Shape class and its descendents, Circle, Square, and Rectangle. The Shape class
stores all otherwise redundant information about the objects of the three descendent
classes such as the position on the screen, colour, rotation, and angle with origin.
The function draw(), which is required by all classes, has no signifi cance for the Shape
class.

If there is a base class, then one can defi ne a pointer to the base class and then that
pointer can be made to point to any of the descendent classes. Suppose in the given
example, there is a function Resale() defi ned in the Car, Bus, and Scooter classes, as
shown in Fig. 10.1. In this case, if the pointer is made to point to the Vehicle class, then
it can be made to point to any of the descendent classes. Now, when one has a pointer that
points to an object of some descendent class, one has to execute the function belonging
to that object. This decision cannot be made at compile time because a pointer can be
made to point to an object only at run-time. At run-time, one has to fi nd which object is
the pointer pointing to and execute the function of that class. Here, one has to defi ne a
pointer to the Vehicle class, and then, if one needs to resale a scooter, one has to make
it point to the Scooter object and then execute the Resale() function of that object.
This seems simple, but in reality, it is not. We will learn in the following sections why
this is so.

10.2 COMPILE TIME AND RUN-TIME POLYMORPHISM

We have seen examples of polymorphism such as function and operator
overloading in earlier chapters. A single function name can be used for
various purposes (with different arguments) and a single operator can be used
to achieve multiple operations (with different types of operands), and the
usage of either the function or the operator depends on the context in such
cases. The compiler, while compiling the program, resolves the function
call or the operator call. This is known as compile time or static polymorphism.
As we have already studied about functions and operator overloading in
Chapters 4 and 6 respectively, in this chapter, we will concentrate on achieving
polymorphism at run-time. We need to understand some prerequisites before
discussion on run-time polymorphism. They are explained in the following
sections.

Compile time poly-
morphism includes
operator and function
overloading, while
run-time polymorphism
includes the decision
of using a specifi c
version of a function
at run-time. C++ uses
virtual functions
to deploy run-time
polymorphism.

Fig. 10.1 The vehicle hierarchy with a function Resale()

Vehicle
Resale()

Scooter
Resale()

Bajaj Super Eterno

Bus
Resale()

Volvo

Car
Resale()

Run-time Polymorphism by Virtual Functions 405

10.3 POINTER TO OBJECT

Pointer to object is a variable containing an address of an object. It is similar to a pointer to
any other variable. The normal address-of operator has to be used to get the address of an
object. One can defi ne a pointer to an object and can assign it the address of the object. Look
at the following statements:

class Demo
{
// Body of the class
}
Demo DemoObj;
Demo *PtrDemoObj;

PtrDemoObj = &DemoObj;

It is similar to other pointers and has no difference.

Note Pointer to object is not different from other pointers. It holds the address of the object instead of some
other variable. The same address-of operator can be used here as well.

10.4 this POINTER

The this pointer is a pointer to an object invoked by the member function. Suppose one writes
DemoObj.DispDemo(), then a function call to this pointer will return the address of DemoObj. In
other words, this pointer is a pointer to DemoObj. This is explained in Exhibit 10.1.

The following program explains the usage of this pointer to return the invoking object. It has a
function where the elder of the two brothers is returned. In case the invoking object represents
the elder brother, the function returns *this, that is, the object that has invoked the function.

Exhibit 10.1 Returning this pointer
If the code has the following statement

Object.Function() or *ObjectPointer->Function()

then whenever this is referred to in the Function() body, it means a pointer to an object (fi rst
case) or an object pointer (second case).

Similarly, *this is the same as Object in the fi rst case whereas it is *ObjectPointer in the second
case. An important statement in such functions is

return *this

which means that the function returns the invoking object itself.

//thispointer.cpp
#include <iostream>
#include <string>
using namespace std;
class person
{
 string Name;
 int Age;

406 Programming with ANSI C++

public:
 person(string TempName, int TempAge)
 {
 Name = TempName;
 Age = TempAge;
 }
 person Elder(person OtherPerson)
 {
 if(Age > OtherPerson.Age)
 return *this;

 /* Returning the invoking object, that is the object
 representing Steve in this case */
 else
 return OtherPerson;
 }
 friend ostream & operator <<(ostream& TempOut, person & TempPerson);
 /* The << operator can be overloaded only as a friend */
};
ostream & operator <<(ostream & TempOut, person& TempPerson)
/* The overloaded operator must be passed as a reference
and must return a reference */
{
 TempOut << "The person " << TempPerson.Name << "is ";
 TempOut << TempPerson.Age << " years old \n";
 return TempOut;
}
void main()
{
 person Steve("Steve Waugh", 25);
 person Mark("Mark Waugh", 20);
 person BigBrother = Steve.Elder(Mark);
 cout << BigBrother;
}
Output
The person Steve Waugh is 25 years old

10.5 COMPATIBILITY OF DERIVED AND BASE CLASS POINTERS

We have also seen earlier that the base class pointers can point to a derived class object. One
does not need any casting for the same. Suppose the code has the following defi nitions:

BaseClass BC;
DerivedClass DC : public BaseClass;
BaseClass *PtrBC;
DerivedClass PtrDC;

Now, it is possible to write

Run-time Polymorphism by Virtual Functions 407

PtrBC = &BC; // Obvious, pointer and content are of similar types
PtrDC = &DC; // Here too
PtrBC = &DC; // This is done without any casting

// The following is not allowed
PtrDC = &BC

Note A base class pointer can point to a derived class object but a derived class pointer cannot point to a
base class object.

Though the derived class and base class pointers seem compatible, there are some points to
be noted as follows:

1. The base class pointer can be made to point to a derived class object, but it cannot access
the original members of the derived class. It can only access the base class members
of the derived class object. In fact, it can see only the base class subobject embedded
in the derived class object and not the additional part of the derived class. Thus, a base
class pointer cannot access a normal function of a derived class. However, if any of the
functions defi ned in the derived class is defi ned as virtual in the base class, the case is
different and is the focus of this chapter.

2. In no case can the derived class object pointer be made to point to the base class (reverse
of point 1). It can only be done by casting. One can write PtrDC = (DC *) &BC. However,
it is an error if one writes PtrDC = &BC.

Note Casting a base class pointer to a derived class pointer is called downcasting. When we downcast,
it results in a successful operation but produces garbage, as the pointer points to the derived class
object but contains only the base class subobject. Thus, the address elements after the base class
subobject result in garbage. Such behaviour is dangerous and requires some mechanism to check
whether the object pointer is really pointing to what it should. Later on, we will see how the dynamic_
cast operator solves the problem in Chapter 11.

3. The increment and decrement operators with base pointer types do not behave as expected.
A base class pointer is always incremented as per the base class size and a derived class
pointer is always incremented as per the derived class size. Hence, if a base class pointer
is pointing to a derived class object, after increment, it might not point to the next derived
object. This is explained using Fig. 10.2. If the pointer to BaseClass1 is incremented by
one, then it will now point to somewhere in either BaseClass2 or DerivedClass original
contents.

BaseClass1 subobject

BaseClass2 subobject

DerivedClass subobject

1. BaseClass1 pointer’s view
2. BaseClass2 pointer’s view
3. Complete DerivedClass object

(a) Pointer defined as pointer to BaseClass1
 and is pointing to DerivedClass
(b) Pointer defined as pointer to BaseClass2
 and is pointing to DerivedClass

1

2 3

(a)

(b)

Fig. 10.2 Base class pointer increment

408 Programming with ANSI C++

10.5.1 Subobject Concept
Whenever a base class is inherited, the derived class contains the base class
subobject. We have seen examples of this earlier. In case of multiple inheritance,
the derived class contains multiple subobjects. In case of inheritance with more
than one level, there are n subobjects in the class derived at n + 1 level. The
subobjects are usually stored before the actual data members of the respective
class. We have seen such an example while discussing multiple inheritance in
Section 9.10 in Chapter 9. The compiler automatically manages the pointer to
point to the respective subobject in case two or more classes inherit into a single
derived class.

Suppose a program has the following statements:

BaseClass1 BC1;
BaseClass2 BC2;
DerivedClass DC : public BaseClass1, BaseClass2;
BaseClass1 *PtrBC1;
BaseClass2 *PtrBC2;
DerivedClass PtrDC;

Now, consider the following statements:

PtrBC1 = &DC;
PtrBC2 = &DC;

In both the cases, the pointer is made to point to the respective base class subobject of the
derived class object. It is important to note that the BaseClass1 pointer does not need any
manipulation at compile time. The address of DC (&DC value) is the same as the address of
the subobject of BaseClass1. The compiler, however, needs to change the address in the case
of the second base class.

It is important to understand that though the base class pointers are allowed to point to the
derived class, their access is limited to the original size of the base class. They cannot address
beyond their limit. In other words, a base class pointer can be made to point to a derived class
object, but it can only access base class members (embedded within a derived class object)
and cannot access any of the derived class members. This is also true for multiple inheritance
case as shown in the example, that is, it cannot access other base class members (as well as
derived class members) in the case of multiple inheritance. The concept of object slicing is
explained in Exhibit 10.2.

A derived class object
always contains a
base class subobject
within the body of the
object. If there are
multiple base classes,
a derived class con-
tains a base class
subject embedded
within its body, one
for each base class.

Exhibit 10.2 Object slicing
While inheriting a base class, the base class subobject is embedded within the derived class object.
Moreover, a base class pointer pointing to a derived class can access only the base class subobject.

When a base class pointer points to a derived class object, it is said to slice the base class object from
derived class object. This process is known as object slicing.

10.6 BASE CLASS AND DERIVED CLASS MEMBER FUNCTIONS

It is possible for two different member functions, one defi ned in the base class and another
defi ned in the derived class, to have the same name. The function in the derived class is

Run-time Polymorphism by Virtual Functions 409

known as an overridden function in this case. The process is known as overriding
the said function. It is analogous to having a global and a local variable with the
same name. Whenever one refers to the variable in the local context, the local
variable is in effect. Similarly, if one refers to a function in the derived class, the
derived class function is executed. If one refers to the same function in the base
class, the base class function is executed.

 It is interesting to check the case where the pointer to the base class is made
to point to the derived class and the overloaded function is called using that
pointer. Let us fi nd which function will be executed using Program 10.1 and then
analyse it.

PROGRAM 10.1 Non-virtual function
#include <iostream>
using namespace std;

class Shape
{
 int LineStyle;
 int FillColour;
public:

 // Non-virtual function
 void draw()
 {
 cout << "Shape is drawn \n";
 }
};

class Circle : public Shape
{
 int Radius;
 int CentrePointX;
 int CentrePointY;
public:
 void draw()
 {
 cout << "Circle is drawn \n";
 }
};

int main()
{
 Shape SomeShape, *PtrShape;
 Circle Ring;
 SomeShape.draw();
 Ring.draw();

 PtrShape = &Ring;
 PtrShape->draw();
 /* This calls the draw function of the base class and not the
 derived class where the pointer is pointing. */
}

Output
Shape is drawn
Circle is drawn
Shape is drawn

When a function with
the same name as in
the base class is
defi ned in the derived
class, it is said to
override the original
function. The new
function is called the
overridden function in
this case.

410 Programming with ANSI C++

How the Program Works
The sentence PtrShape->draw(); produces something strange. When a base class
pointer pointing to the derived class is used, the function called is from the base
class and not from the derived class. Though the pointer is pointing to a derived
class object, it still executes the draw() function of the base class. If the draw()
function is called as a normal public function using the objects of the respective
class, the draw() belonging to the respective class is executed, that is, Ring.
draw() calls the draw() of Circle class and SomeShape.draw() calls the draw()
of Shape class.

Here, the function is accessed using an object of the class in the second case
(calling Ring.draw()). The proper function belonging to the same object is called
in this case. When an object is accessed using a pointer, the function of that
object is not called. The function of the object where the pointer is defi ned to
point to is called. In other words, the pointer type (pointer to base class) matters
when the function is called and not where the pointer is pointing to (pointing to
an object of type circle). Why is this so?

Note A non-virtual function will always be resolved at compile time, and thus, which function to call
is decided by the type and not where it is pointing at run-time. This option is chosen as it is more
effi cient.

This is simply for the sake of effi ciency. When two possible solutions exist (one at the
compile time and the other at run-time), C++ tries to favour the solution that can be
obtained at compile time. In the given example, there are two possible solutions as
follows:

1. Execute a base class function (irrespective of the content of the pointer variable, that is,
where the pointer is pointing to, using implicit this pointer available at the compile time.
(The this pointer is pointing to the base class subobject because the pointer variable is
defi ned to point to the base class type). The information about the type of the pointer is
available at compile time and no run-time overhead is needed to use it.

2. Execute a function of the object it is pointing to (irrespective of the type of the pointer).
This solution requires the compiler to fi nd the exact type of the object pointed to by the
pointer. This can only be done at run-time in most of the cases.

By default, the fi rst solution is executed by the compiler because the pointer type is always
available at compile time whereas where the pointer is pointing to may not be available.
The second solution is not preferred because fi nding out where the pointer is pointing to at
run-time, and then loading and executing that function, is not effi cient.

Note C++ defaults to decision-making at compile time to improve effi ciency. The decision to execute
base class functions even when a pointer may point to some other inherited object’s class is one of
the examples of this feature.

10.7 VIRTUAL FUNCTIONS

What should one do if one wants to execute the derived class function using the pointer to
base class that is pointing to a derived class object? In such instances, one has to use a virtual
function instead of the normal function. Program 10.2 is a modifi ed code of Program 10.1.

A base class pointer
will always call a
base class function
irrespective of where
it is pointing to, if the
function is a normal
(non-virtual) function.

When a programmer
needs to execute a
function of the object
pointed to by the
pointer at run-time, the
function must be
defi ned as virtual.

Run-time Polymorphism by Virtual Functions 411

PROGRAM 10.2 Virtual function
#include <iostream>
using namespace std;

class Shape
{
 int LineStyle;
 int FillColour;
public:
 // Virtual function
 virtual void draw()
 {
 cout << "Shape is drawn \n";
 }
};
class Circle : public Shape
{
 int Radius;
 int CentrePointX;
 int CentrePointY;
public:
 void draw()
 /* This is also a virtual function even though we have not used the keyword. We have

inherited the virtual property here */
 {
 cout << "Circle is drawn \n";
 }
};

class Rectangle : public Shape
{
 int LeftTopX;
 int LeftTopY;
 int RightBottomX;
 int RightBottomY;
public:
 SomeOtherFunction()
 // No draw defi ned here
 {
 // Some statements
 /* Whenever there is no function defi ned for a derived class,

the virtual function defi ned in the base class is called. */
 }
};

int main()
{
 Shape SomeShape, *PtrShape;
 Circle Ring;
 SomeShape.draw();
 Ring.draw();
 PtrShape = &Ring;
 PtrShape->draw(); // This draws a circle
 Rectangle Square;
 PtrShape = □
 PtrShape->draw();
 // This would still call draw() of Shape
}

412 Programming with ANSI C++

How the Program Works
Note the change. Now, PtrShape->draw() calls the draw() of Circle and not of Shape. In
Shape class (base class), the function is defi ned as virtual void draw(). The addition of
the keyword virtual makes the whole difference. When the statement PtrShape->draw() is
executed, it looks at the content of the PtrShape at run-time and then executes the draw()
function that is appropriate. This is the difference when virtual functions are used instead of
normal functions.

Though the keyword virtual is not used in the inherited class, it is still a virtual function,
as the virtual property is inherited. One can still use the keyword virtual before the function
name without changing its working.

Suppose one needs to fi nd the object that is being dealt with at run-time and take an
appropriate action depending on the type of object, how can it be done?

For example, one is dealing with customers and provides them some information about the
products they are interested in. There is a mix of customers and they are categorized as foreign
and Indian customers, service-oriented and cost-sensitive customers, and so on. Suppose
there is a new customer who is Indian and cost-sensitive, how would the program decide
to provide him/her different options? Suppose there is a function called DisplayOptions(),
how will the function display the appropriate options? Assume the following code
snippet:

CustomerDetails(Customer & CurrentCustomer)
{
 ...
 case 3:
 CurrentCustomer = new IndianCostsensitiveCustomer();
 CurrentCustomer->DisplayOptions();
}
Look at the function header. The base class reference passed to the function has been used
in this program. In case 3, it has been made to point to a derived class object that was just
created. It is interesting to see that the base class reference is passed to this function and
not to that of the derived class object. The reason is simple. At the time of writing the
program, one does not know who is going to query the program and in which order. The fi rst
customer may be foreign and cost sensitive, whereas the second customer may be Indian
and service oriented, and so on. Hence, the function has to act dynamically at run-time and
display appropriate options for a given customer. The program has a case-based logic for
that purpose. Now, the problem is to have an object depending on the type of the customer
one is dealing with. If a base class reference is available, then one can take advantage of the
fact that it can point to any derived class object. So, a base class reference (Customer &) has
been used here.

Output
Shape is drawn
Circle is drawn
Circle is drawn
Shape is drawn

Run-time Polymorphism by Virtual Functions 413

The second line is more important for our discussion. When the function DisplayOptions()
is called, one expects the function to display only those options that the CurrentCustomer is
pointing to. It is necessary to defi ne DisplayOptions() as virtual for this purpose.

A virtual function can be defi ned in a simple way by just preceding the defi nition by the
keyword virtual. The following code snippet shows how virtual function DisplayOptions()
can be defi ned.

class Customer
{
 ...
 virtual DisplayOptions()
 {
 ...
 }
}

For the Vehicle class, defi nitions such as the following are needed:

class Vehicle
{
 ...
 virtual Resale()
 {
 ...
 }
}

So, the code snippet can be written as follows:

ResaleVehicle(Vehicle & SomeVehicle)
{
 ...
 case 3:
 SomeVehicle->Resale();
}

One can call the ResaleVehicle() function in the following cases:

Scooter GJ012345;
Bus GJ024587;
Car GJ274589;

cin >> VehicleForSale

ResaleVehicle(VehicleForSale);
// VehicleForSale = GJ012345
// SomeVehicle points to Scooter object

ResaleVehicle(VehicleForSale);
// VehicleForSale = GJ024587
// SomeVehicle points to Bus object

ResaleVehicle(VehicleForSale);

414 Programming with ANSI C++

// VehicleForSale = GJ274589
// SomeVehicle points to Car object

It can be seen that these three function calls initialize the SomeVehicle reference
(which is a reference to Vehicle, a base class) to a Scooter, Bus, and Car object,
respectively, depending on the customer’s input at run-time. The function
Resale() must be virtual to provide the effect that is needed here.

It can be seen that the coding is simplifi ed as it has the same statement for
all the three descendent classes. In fact, the code does not change even if there
are 1,000 descendent classes (or even more). This is the strength of a virtual
function.

Virtual functions are special. They are treated differently by the compiler. The
class has an additional storage requirement when at least one virtual function is
defi ned inside. A table is created additionally to store the pointers to all virtual
functions available to all the objects of the class. This table is known as the

virtual table. A single pointer to the virtual table is inserted in all class objects when the class
contains at least one virtual function. This pointer is traditionally known as vptr. Whenever
an object of such class wants to execute a virtual function, the table is referred to and the
appropriate function is called. This, as explained earlier, is done at run-time.

The virtual table may also be created when run-time type information (RTTI) is used,
even if one does not have any virtual function. This is because the compiler inserts the
data type information in the same virtual table that was discussed earlier. This table can be
referred at run-time for fi nding the data type of an object. It is also true with a virtual base
class. The compiler either has a special virtual base class table where the pointer to all virtual
base classes is kept or may use the same virtual table for the virtual functions to store the
information about the virtual base classes (with respective pointer to virtual base classes).
The second option is more effi cient because a single table is used to address to both virtual
functions and virtual base classes; so, it is preferred by most of the compilers.

There are a few syntactical constraints on the use of virtual functions, which are
enumerated as follows:

1. The function name must be preceded by the keyword virtual in the base class.
2. The function in the derived class must have the same name and the same prototype

as that of the virtual function defi ned in the base class, such as the draw() function in
Program 10.2. If the prototype is different, the function is as good as an overloaded
function and is not treated as a virtual function.

3. The function in the derived class need not be preceded by the keyword virtual. Even if it
is preceded by the keyword, it makes no difference.

4. If a function with the same name is not defi ned in the derived class, the original base class
function is invoked. For example, if one more class Rectangle is inherited from Shape
with no draw() function defi ned and then if draw() is invoked by a Shape pointer pointing
to Rectangle, the draw() of Shape class is called. The given example contains a Rectangle
class where the draw() function is not defi ned; so, the call invokes the base class function.

5. The virtual function must be defi ned in the base class; it may have an empty body though.
6. For any real problem-solving case using virtual functions, the class hierarchy should be

present. The virtual functions are members of the classes of the hierarchy. They are called

The virtual table
contains pointers to
all virtual functions
for a given class. The
vptr is a pointer to
the virtual table. All
objects of the class
contain the vptr.

The virtual table also
contains RTTI for poly-
morphic objects when
RTTI is enabled.

Run-time Polymorphism by Virtual Functions 415

using either pointer to the base class or a reference to the base class. This
implies that the functions must be members of the base as well as the derived
classes.

7. Polymorphism is achieved only by using pointers (or references) to the base
class. It is not possible using objects. Ring.draw() would always call draw()
of Ring and not of Shape and vice versa. This is known as static invocation of
virtual function.

8. Virtual constructors are not possible. Constructing a derived class object needs specifi c
construction of the base class subobject within. Obviously, their constructors cannot be
virtual. (Rather, the constructor of a derived class calls the constructors of the base class
as well) When an object is deleted, one may have a virtual destructor for destroying it;
so, the delete <pointer> operation works for the object pointed to, irrespective of the
pointer type. Here, it is allowed to provide deletion of the entire derived class object
while pointed to by a base class pointer (otherwise it would only delete the base class
subobject of the derived class). Anyway, it is a good idea to have virtual destructors to
avoid memory leaks.

10.7.1 Static vs Dynamic Binding
The virtual function invocation mechanism is sometimes referred to as dynamic binding.
Linking is a process of ‘attaching’ called functions from the main() after compilation to
create an executable fi le. Linker is the entity that performs the linking. At the time of linking,
the linker does not know which function to call when a virtual function using a pointer to
base class is invoked. It is decided at run-time looking at the content of the pointer. Thus,
virtual function calls are not resolved until they are called. This implies that such functions
are linked at run-time. This also implies that the program using virtual functions would run a

bit slower because it involves two steps, namely, linking and executing.
If virtual functions had not been used, the functions would be linked at linking

time (after compilation, before creating executable) and their calls resolved then.
There is no run-time overhead as dynamic binding here. This type of binding is
known as static binding.

The following program is a simple example to show the difference between
static and dynamic binding.

It is not possible to
have virtual construc-
tors, whereas virtual
destructors are
possible.

Static binding hap-
pens at compile time,
whereas dynamic
binding happens at
run-time.

#include <iostream>
using namespace std;
class BaseClass
{
public:
 // When called, the function tells which class it is part of
 void testWhichClass()
 {
 cout << "BaseClass" << endl;
 };
 class DerivedClass : public BaseClass
 {

416 Programming with ANSI C++

A derived class object has been passed, but the output displays BaseClass. If the function
testWhichClass() is changed to virtual, the output will be DerivedClass.

Note With a non-virtual function, whenever a base class reference refers to a derived class object, it still
calls the base class function. When the function is defi ned virtual, the same reference referring to the
derived class invokes the derived class function.

10.7.2 Default Arguments to Virtual Functions
Default arguments to virtual functions do not behave the way they are expected to behave.
Consider Program 10.3:

 public:
 // The same function is also defi ned in the derived class
 void testWhichClass()
 {
 cout << "DerivedClass" << endl;
 };
 void fi ndClass(BaseClass & SomeClass)
 {
 /* Whenever some class reference is passed to this function,

it is accepted as a base */
 class reference
 SomeClass.testWhichClass();
 /* This checks which class is the SomeClass passed to this function */
 }
int main()
{
 DerivedClass D;
 fi ndClass(D);
 getchar();
}
Output

BaseClass

PROGRAM 10.3 Default arguments do not behave normally with virtual functions
//DefArgs.cpp
#include <iostream>
using namespace std;
class Shape
{
 int LineStyle;
 int FillColour;
public:
 virtual int draw(int size = 100)
 /* It will not work as expected. The default argument value will always depend on the

pointer type and not the content. */

 {
 cout << "Shape is drawn \n";

Run-time Polymorphism by Virtual Functions 417

 return size;
 }
};

class Circle : public Shape
{
 int Radius;
 int CentrePointX;
 int CentrePointY;
public:
 int draw(int size = 200)
 {
 cout << "Circle is drawn \n";
 return size;
 }
};

int main()
{
 Shape SomeShape, *PtrShape;
 Circle Ring;
 SomeShape.draw();
 Ring.draw();
 PtrShape = &Ring;
 /* Base class pointer pointing to derived class object */

 int DrawSize = PtrShape->draw();
 // This draws a circle

 cout << "Draw size using base class pointer: " << DrawSize << "\n";
 /* This displays 100 instead of 200, as the pointer type is Base */

 Circle *PtrCircle = &Ring;

 DrawSize = PtrCircle->draw();
 /* Now, we are using a derived class pointer to
 point to a derived class object */

 cout << "Draw size using derived class pointer: " << DrawSize << "\n";
 /* This will display 200, as the pointer type is Derived */
}

Output
Shape is drawn
Circle is drawn
Circle is drawn
Draw size using base class pointer: 100
Circle is drawn
Draw size using derived class pointer: 200

How the Program Works
When the following statements are executed

int DrawSize = PtrShape->draw();
cout << "Draw size using base class pointer: " << DrawSize << "\n";

it displays 100 instead of 200. When the following statements are executed

Circle *PtrCircle = &Ring
DrawSize = PtrCircle->draw();

418 Programming with ANSI C++

cout << "Draw size using derived class pointer: " << DrawSize << "\n";

it displays 200 correctly.

Note When we use a base class pointer to point to a derived class object, the default value of the base
class function will be taken. Here, the function that is executed is correct, but with the default value
of the base class. On the other hand, when we use a derived class pointer, the default value of the
derived class function is taken.

Dummy Default Arguments to the Rescue
Program 10.3 showed that default parameters cannot be used like a normal function. The
solution here is to provide a local variable initialized in both such classes and then to use the
default argument. If default arguments are needed, they can be assigned values of such local
variables, as shown in Program 10.4.

One only needs to see whether the user has supplied a value, and if not, take information
from the local variables rather than the default arguments. One can easily check whether the
user has supplied a value by keeping a dummy default argument. If the argument equals the
dummy value, the user has not supplied the argument, and one can take the value from the
local variable. Program 10.4 illustrates how to do it.

PROGRAM 10.4 Using dummy default argument as a solution
//SolutionDefArgs.cpp
#include <iostream>
using namespace std;
class Shape
{
 int LineStyle;
 int FillColour;

public:
 virtual int draw(int size = 1)
 /* The size parameter is dummy; it is there to check whether the default argument is

provided */
 {
 cout << "Shape is drawn \n";
 int ShapeSize = 100;
 /* This is to check whether the default argument is provided with the given

value 100 */

 if(size == 1)
 size = ShapeSize;
 return size;
 }
};
class Circle : public Shape
{
 int Radius;
 int CentrePointX;
 int CentrePointY;
public:
 int draw(int size = 1)
 {
 cout << "Circle is drawn \n";
 int CircleSize = 200;

Run-time Polymorphism by Virtual Functions 419

How the Program Works
This trivial patch solves the problem. The code might seem to be strange. When one
checks for size == 1, one means to check whether the user has supplied a value. If so,
the value 100 is assigned to size in the fi rst function and 200 in the second function.
Thus, the value of size is now dependent on the function that is executed. In both
these cases, the function of the derived class is executed, and so, the correct answer is
obtained.

10.7.3 Advantages of using Virtual Functions
Suppose a video is prepared from a cartoon movie. The video consists of individual frames.
An individual frame is what one sees on the screen one after another. Motion is created by
generating the frames fast enough such that it appears continuous to our mind (and not the
eyes).

Each individual frame contains fi gures made up of a few basic shapes such as triangle,
rectangle, and circle. Individual frames are not stored in the form of photographs or bitmap
fi les as they consume a lot of memory. How can they be stored instead?

Assume that the following fi gure is to be drawn on the frame.

 if(size == 1)
 size = CircleSize;
 return size;
 }
};
int main()
{
 Shape SomeShape, *PtrShape;
 Circle Ring;
 SomeShape.draw();
 Ring.draw();
 PtrShape = &Ring;
 /* Base class pointer pointing to derived class object */

 int DrawSize = PtrShape->draw();
 // This draws a circle

 cout << "Draw size using base class pointer: " << DrawSize << "\n";
 /* This will print the correct value */

 Circle *PtrCircle = &Ring;
 /* Now, we are using a derived class
 pointer to point to a derived class object */

 DrawSize = PtrCircle->draw();
 cout << "Draw size using derived class pointer: " << DrawSize << "\n";
}

Output
Shape is drawn
Circle is drawn
Circle is drawn
Draw size using base class pointer: 200
Circle is drawn
Draw size using derived class pointer: 200

420 Programming with ANSI C++

The information can be stored as follows:

Circle(20, 30) radius = 10; // The face
Rectangle(15, 35, 30, 45) // The neck
...

A frame is described in terms of circles, rectangles, triangles, and lines, which are random
in number. How can one write a function that draws a frame? The function algorithm looks
as follows:

void DrawFrame()
{
 Shape *Element;
 Open the fi le;
 Do while not end of fi le
 <Read from fi le some shape information>
 <Assign element pointer to the address of that shape>
 Element->draw();
 Loop over
}

This programming methodology where a base pointer is used to access a bunch of objects
from various classes of a single hierarchy is known as OO programming. It is very fl exible
in the sense that one need not know the exact type of the object in order to manipulate it. The
data may come at run-time, either from a fi le, a communication line, or from user input, and
one is able to deal with it.

A program that does a similar job is given in Section 10.8. For simplicity, the program
assumes that the input is random. The data coming either from a fi le, a communication
channel, or a user can safely be assumed to be random for testing the program and the concept.

There are plenty of real-life cases that require such fl exibility. Take an automated news
fl ash system that takes the latest news as an input and fl ashes it on the screen based on its
priority and importance. The news can be related to politics or sports; political news can be
state level or central; sports news can be related to either cricket or gymnastics; and so on. If

a specifi c processing for a specifi c category is needed when the news is coming
without any pre-decided order, a virtual function such as Processing() could be
very useful. The system need not decide what to do depending on the type of the
news object. It would only call the function Processing() and the appropriate
function for that object would be automatically called.

This is an example of a general case where a big hierarchy of classes is derived
from a root class. It is possible to process any object of the hierarchy at random
with this approach. This is the power of true OO programming. However, the power

Virtual functions
make it possible to
deal with a mix of
objects inherited from
a single parent, with
a single pointer to the
same parent.

Run-time Polymorphism by Virtual Functions 421

does not come without a cost. Adding and processing virtual functions is a big performance
overhead. Languages such as Java have a single root class from which all the classes are derived
from (known as the Object class). It enables the Java programmers to enjoy lots of fl exibility, but
at the cost of speed. In C++, there is a choice. Only if needed, one may go for OO programming;
otherwise, object-based programming can be used. Standard Template Library (STL) is an
example of object-based programming methodology. We will discuss about it in Chapter 16.

10.7.4 Virtual Destructors
Virtual destructors are needed for proper deletion of objects of derived class,
when pointed to by a base class pointer. If virtual destructors are not defi ned,
only the base class subobject is deleted, and the remaining portion of the derived
class object is not deleted. It should be understood that the name of the destructor
cannot be the same in the base and the derived classes (because their names
must derive from the names of the class). This restriction is relaxed here. It is
known that a class can have only one destructor. A derived class destructor is the
function called when delete is invoked with a base class pointer with the content
as the derived class object. Program 10.5 is an example that shows how virtual
destructors can be defi ned and used.

When a destructor
is defi ned virtual, it
de stroys the proper
object pointed to be
the pointer and not
the subobject of the
base class where the
pointer is defi ned to
point to.

PROGRAM 10.5 Non-virtual destructor destroying incorrect object at run-time
//VirtualDestructor.cpp
#include <iostream>
using namespace std;

class BaseClass
{
public:
 BaseClass()
 {
 cout << "BaseClass constructor ..." << endl;
 }

 /* The following destructor is not virtual. This will call for static invocation of the
function that will call the base class destructor even when the pointer points to a
derived class object. The result of such a call is undefi ned */

 ~BaseClass()
 {
 cout << "BaseClass destructor ..." << endl;
 }
};
class DerivedClass : public BaseClass
{
public:
 DerivedClass()
 {
 cout << "DerivedClass constructor ..." << endl;
 }
 ~DerivedClass()
 {
 cout << "DerivedClass destructor ..." << endl;
 }
};

422 Programming with ANSI C++

How the Program Works
It can be seen that when the delete operator is executed, it only calls the destructor for the
base class and not the derived class. Thus, only the base class subobject of the DerivedClass
object pointed to by the ptrBase is destructed and the rest is not. The standard says that
the behaviour is undefi ned, which means the response to such coding depends on the
implementation and it is likely to vary.

Instead, if the base class destructor is defi ned as virtual (which makes all the destructors of
all the classes in the hierarchy virtual), it is possible to control that behaviour. The run-time
system deletes the object pointed to by the pointer, thus calling a DerivedClass destructor in
this case. It is also interesting to note that the DerivedClass contains the base class object and
the DerivedClass destructor in turn calls the base class constructor.

virtual ~BaseClass()
{
 cout << "BaseClass class destructor ..." << endl;
}
BaseClass constructor ...
DerivedClass constructor ...
DerivedClass destructor ...

BaseClass destructor ...

Note Unlike other destructors, virtual destructors are called looking at the context and not by name.
A ~<class name> may not destroy the object of <class name> but some other object derived
from <class name> depending on where the pointer is pointing to.

10.8 USE OF VIRTUAL FUNCTIONS

Let us now look at the use of virtual functions. Suppose there is a class fi gure containing 25
small fi gures. A small fi gure can be either a Circle, a Square, or a Triangle. Every object
of fi gure class contains some specifi c combination of squares, circles, and triangles. The
following options are available:

1. Fix the total number of squares, triangles, and circles, so they can be defi ned as, say,
Circle CircleOfFigure[10], Square SquareOfFigure[10], Triangle TriangleOfFigure[5];

void main()
{
 BaseClass* ptrBase;
 ptrBase = new DerivedClass();
 delete ptrBase;

 /* This should ideally call for DerivedClass destructor, but will
 call only BaseClass destructor, because the destructor is not virtual.*/

 getchar();
}

Output
BaseClass constructor ...
DerivedClass constructor ...
BaseClass destructor ...

Run-time Polymorphism by Virtual Functions 423

however, this is too rigid and not acceptable for any arbitrary drawing. One needs to have
each fi gure with a fi xed number of objects for different types. This is not acceptable in
real-life scenario.

2. Use array of pointer to Shape class, which is made to point to different objects of Circle,
Square, and Triangle type at run-time. Virtual functions are to be used for drawing small
fi gures because normal functions cannot be used, as they would try to execute the draw()
of the base class. Suppose there is a fi gure of two triangles, three squares, and one circle.
Then, for the two triangles, the draw() function of the Triangle and not of the Shape class
should be called. Similarly, for the three squares, the draw() function of the Square and
not of the Shape class should be called.

Note A virtual function is designed on the same lines of a void pointer. When a pointer to base class is
defi ned, it acts like a void pointer and can be assigned to any derived class object. When one defi nes
an array of such pointers, the array can be used to defi ne a mix of objects of descendent classes. C
programmers use void pointer arrays for similar purpose.

The second approach is more fl exible and useful. Let us have a look at Program 10.6, which
uses it.

PROGRAM 10.6 Using virtual function
//UsingVirtualFunction.cpp
#include <iostream>
#include <ctime>
using namespace std;

class fi gure;
/* This is forward declaration. This is needed here as the point class contains a friend
statement. The compiler must know that there
exists a class called fi gure, so that being a friend to it is acceptable. */

class Point
{
 int X;
 int Y;
public:
 Point(int TempX = 0, int TempY = 0)
 {
 X = TempX;
 Y = TempY;
 }

 int GetX() const
 {
 return X;
 }

 int GetY() const
 {
 return Y;
 }

 friend ostream & operator <<(ostream & TempOut, Point & TempPoint);
};

ostream & operator <<(ostream & TempOut, Point & TempPoint)
{

424 Programming with ANSI C++

 TempOut << "(" << TempPoint.GetX() << ", " << TempPoint.GetY() << ")";
 return TempOut;
}

class Shape
{
 Point Position;
 int Colour;
 virtual void draw()
 {
 cout << "Shape is drawn";
 }
 friend fi gure;
 /* Derived class will use the private members of the Point class, such as X and Y for

drawing shapes, and hence it must be a friend to the Point class. */
};

// Derived class Square
class Square : public Shape
{
 Point LeftBottom;
 int Length;
public:
 Square(Point TempLeftBottom, int TempLength)
 {
 LeftBottom = TempLeftBottom;
 Length = TempLength;
 }

 void draw()
 {
 cout << "Square is drawn at " << LeftBottom << " and with length as " << Length << "\n";
 }
};

// Derived class Triangle
class Triangle : public Shape
{
 Point Avertex, Bvertex, Cvertex;
public:
 Triangle(Point TempAvertex, Point TempBvertex, Point TempCvertex)
 {
 Avertex = TempAvertex;
 Bvertex = TempBvertex;
 Cvertex = TempCvertex;
 }

 void draw()
 {
 cout << "Triangle is drawn at " << Avertex << " "
 << Bvertex << " " << Cvertex << "\n";
 }
};

// Base class Figure
class fi gure
{
 Shape * Images[25];
public:
 fi gure() // Constructor of class fi gure

Run-time Polymorphism by Virtual Functions 425

 {
 // Logic to generate random numbers
 srand((unsigned)time(NULL));
 for(int i = 0; i < 25; ++i)
 {
 int RandomValues [6];
 for(int j = 0; j < 6; ++j)
 {
 RandomValues[j] = rand() % 50;
 }

 /* The following statements use random values; however, in real-world cases, the
values may be coming from some source such as graphics server, a camera, or a fi le
generated by an artist, and so on.*/

 Point Position1(RandomValues[0], RandomValues[1]);
 Point Position2(RandomValues[2], RandomValues[3]);
 Point Position3(RandomValues[4], RandomValues[5]);

 switch(int choice = rand() % 3)
 {
 case 0:
 {
 int Length = rand() % 20;
 Images[i] = new Square(Position1, Length);
 break;
 }
 case 1:
 Images[i] = new Triangle(Position1, Position2, Position3);
 break;

 default:
 cout << choice << " is a wrong choice";
 } // End of switch case
 } // End of for loop
} // End of constructor function

 void draw()
 {
 for(int i = 0; i < 15; ++i)
 {
 Images[i]->draw();
 }
 }
}; // End of class fi gure

void main()
{
 fi gure MyFigure;
 MyFigure.draw();
}

Output
Square is drawn at (0, 14) and with length as 18
Triangle is drawn at (14, 41) (14, 24) (28, 17)
Triangle is drawn at (16, 33) (25, 37) (20, 35)
Square is drawn at (0, 22) and with length as 1
Triangle is drawn at (44, 23) (15, 37) (23, 18)
Square is drawn at (10, 1) and with length as 15
Square is drawn at (26, 6) and with length as 19

426 Programming with ANSI C++

How the Program Works
This program calls for a few explanations.

1. This is an extended version of Program 10.3. This program uses the function rand()
available in the library. It also uses a function called srand() for providing the seed value
to the rand() function. Current time is used as the seed value; thus, different random
numbers are obtained each time. In real-world scenario, the inputs would be coming
from a fi le (when one is reading a fi le describing the image in digital format of points),
a communication channel (while viewing a cartoon drawn using such points), or a
temporary buffer (in case of streaming, i.e., when data to draw the image is fi rst stored in
the temporary buffer and then allowed to be fed at a constant rate), but the effect would
be similar to the draw() function that is used here.

2. This program has a class fi gure, which contains an array of pointers to Shape class
object. Why pointers to Shape class alone? This is because one is not sure about what
will be the contents of the fi gure. The only way to access is to provide a pointer to the
base class and access the contents (the small fi gures) using a pointer to the Shape class.
For simplicity, this program uses a fi xed array of size 25. This fi gure class actually
represents an image. The Shape and its descendents are the building blocks of the
fi gure.

3. A virtual function draw() is needed. This is because when the draw() function is called,
the respective small fi gure should be drawn.

4. The fi gure class should be made a friend of Shape, because it uses the private members
(the positions of all the derived classes of Shape) to draw the fi gure. Access methods
would be a better solution here, but this program uses a simple solution that serves the
purpose.

5. As already studied, as fi gure is defi ned after Shape, it is necessary to provide forward
defi nition of fi gure as a class.

Note Virtual functions are needed when we need to deal with different types of objects with unknown
proportion. We may also need to deal with objects belonging to the same generic class but having
specifi c distinct attributes.

Think of a program that fi nds what the customers are interested in by looking
at their behaviour. Customers can be of different types, with and without credit
cards, regular buyers and casual buyers, those who buy in bulk but once in
a while and those who buy at regular intervals, those who belong to teenage
and have specifi c demands and those who are housewives and are interested in
specifi c items, and so on. It is, in this case, required to have them represented
by different classes. One may have customer as a base class and then provide all

Square is drawn at (11, 20) and with length as 1
Triangle is drawn at (1, 38) (47, 48) (14, 27)
Square is drawn at (49, 24) and with length as 17
Triangle is drawn at (43, 48) (41, 26) (20, 11)
Square is drawn at (7, 25) and with length as 3
Square is drawn at (27, 15) and with length as 7
Square is drawn at (3, 0) and with length as 10
Square is drawn at (0, 41) and with length as 0

An array of base class
pointers and dynamic
memory allocation is
all that are needed to
have storage of multi-
ple objects belonging
to the same hierarchy.

Run-time Polymorphism by Virtual Functions 427

these classes as inherited from customer. Now, this problem involves dealing with customers
with unknown proportion at a place (maybe a supermarket). One can only have an array of
customer pointer, and only when dealing with a specifi c type of customer, one has to new
that customer and then assign the base class pointer to it.

10.9 PURE VIRTUAL FUNCTIONS

When a class does not have any object, there is no need to have functions for it, as there are
no objects to utilize those functions. Consider the case of class Shape that was discussed in
Program 10.6.

class Shape
{
 Point Position;
 int Colour;
 virtual void draw()

 {
 cout << "Shape is drawn";
 }
 friend fi gure;
};

There will never be an object of class Shape in an actual working environment. If draw() is
defi ned in the class, one will never be able to execute it.

It is important to understand that because draw() is a virtual function, it is not
possible to have polymorphism without draw() defi ned inside Shape. In other words, the
defi nition of Shape is needed in the base class but not its body. This can be rewritten as
follows:

virtual void draw()
{
// Empty
}
In this case, the draw() function is defi ned with an empty body. This can also be achieved
by writing

virtual void draw() = 0;

The body of the function is not needed here, though one can defi ne it outside the class
boundary as Shape::draw().

Note Pure virtual functions do not have the body where they are defi ned, but they can still have it outside
the class.

When “= 0” is written in place of the function body after the function header, the function
is said to be pure virtual. In such a case, the function need not have a body. It offers a
great advantage. The function forces the native class to be abstract, that is, it inhibits the

object defi nitions of the class. This means that if a class contains a pure virtual
function, it becomes an abstract class, and C++ will not allow defi ning an object
belonging to that class. In a way, when a programmer wants the user not to defi ne

An abstract class is the
one with no objects.

428 Programming with ANSI C++

objects of a specifi c class, he/she can defi ne a pure virtual function (may be a dummy) inside
the class.

Pure virtual functions can be invoked statically like normal virtual functions, that is, it is
possible to invoke

ptrShape->Shape::draw() // Using only a pointer

In this case, the function must be defi ned outside the class as

shape::draw()
{
 // The body
};

Note When a single pure virtual function is defi ned inside a class, it automatically becomes abstract. The
program cannot instantiate the abstract class and, thus, cannot have an object of that class.

The concepts of pure virtual function, virtual destructors, and static invocation of virtual
functions are illustrated in Program 10.7.

PROGRAM 10.7 Pure virtual function
//PureVirtual.cpp
#include <iostream>
using namespace std;
class Shape
{
 int LineStyle;
 int FillColour;

public:
 /* This is a pure virtual function. Though it does not have a
 body in the class, it can have it outside the class itself */

 virtual void draw() = 0;

 virtual ~Shape() // Virtual destructor
 {
 cout << "Shape destroyed\n";
 }
};

void Shape::draw()
{
 cout << "Shape is drawn\n";
}

class Circle : public Shape
{
 int Radius;
 int CentrePointX;
 int CentrePointY;
public:
 ~Circle()
 {
 cout << "Circle destroyed\n";
 };

 void draw()

Run-time Polymorphism by Virtual Functions 429

 {
 cout << "Circle is drawn\n";
 }
};

int main()
{
 // Shape SomeShape;

 Shape *PtrShape;
 Circle Ring;

 // SomeShape.draw();
 /* We cannot call the draw() function of the Shape class, as we cannot have an object of

the abstract class. */

 PtrShape->Shape::draw(); //Static call to Shape draw()
 PtrShape = &Ring;
 PtrShape->draw(); // Draws a circle
 cout << "Messages from destructor start now\n";
 PtrShape = new Circle;

 delete PtrShape;
 /* If ~Shape is not virtual, this will not work as expected.
 It will only delete the base class subobject (shape subobject of circle) and not the

entire derived class object (circle). */
 cout << "Above messages are from delete\n";
 cout << "Following are normal messages exiting the program\n";
}

Output
Shape is drawn
Circle is drawn
Messages from destructor start now
Circle destroyed
Shape destroyed
Above messages are from delete
Following are normal messages exiting the program
Circle destroyed
Shape destroyed

How the Program Works
Defi ning pure virtual function The statement

virtual void draw() = 0;

is important here. It shows the pure virtual function being defi ned, which makes the class
Shape an abstract class. It should also be noted how the body is also defi ned outside the
class.

void Shape::draw()
{
 cout << "Shape is drawn\n";
}

So, this is how one can defi ne a body for a pure virtual function. It should be remembered
that every class that inherits from Shape must implement this function (otherwise, it becomes
abstract). What a designer wants to convey when he/she defi nes a pure virtual function is

430 Programming with ANSI C++

to say that all classes that has objects must be able to handle this message. In the given
example, it states that all descendents of Shape must be able to receive the message draw and
respond accordingly.

Static invocation of pure virtual function The following statements are commented as it
is not possible to defi ne objects of Shape class, which is an abstract class, as the pure virtual
function draw() is defi ned inside. Thus, it is not possible to call the member function using
the object dot notation.

// Shape SomeShape
// SomeShape.draw();

The solution is to use a pointer instead of an object to call that function, with the scope
resolution operator. One can call that function using the following syntax, which executes
Shape::draw() function using a pointer PtrShape.

PtrShape->Shape::draw(); // Static call to Shape draw

This is a static call because irrespective of wherever PtrShape may be pointing to, it will
always execute the draw() function of the Shape class.

Polymorphic call to pure virtual function If one wants to execute a function belonging
to the class object being pointed to, a normal syntax can be used as follows. The draw()
function of Ring object will be drawn when the following statements are executed.
A statement such as the following means that one takes a pointer pointing to a derived
class object (PtrShape in this example), extracts a base class subobject (as PtrShape is
defi ned as a pointer to the base class Shape and not Ring class), and calls a function that is a
part of it.

PtrShape = &Ring;
PtrShape->draw();

Calling virtual destructor The destructor is also an important part of the program. Look
at the code

PtrShape = new Circle;
delete PtrShape;

This delete statement invokes the destructor for Circle object and not Shape as the destructor
is defi ned virtual.
virtual ~Shape() // Virtual destructor
{
 cout << "Shape destroyed\n";
};

~Circle()
{
 cout << "Circle destroyed\n";
};

If Shape is not defi ned with a virtual destructor, one will not be able to destroy an object of
type Circle while pointed to by pointer of type Shape. See that the destructor for the Circle
is called fi rst and then that for the Shape subobject is called.

Run-time Polymorphism by Virtual Functions 431

Notes

 1. A virtual destructor to a derived class also invokes the destructor of the base class as the base class
subobject buried within the derived class needs it.

 2. If a base class contains a pure virtual function, all the other classes in the hierarchy must implement it. If
a class does not implement it, it automatically becomes an abstract class, in which case it is not possible
to have objects of that class.

 3. Pure virtual functions are doing what interfaces do in Java, that is, forcing descendents to implement the
function exactly specifi ed in the base class.

10.9.1 Static Invocation of Virtual Function
Virtual functions can also be invoked statically. When a class name::ptr->virtual function
mechanism is used, they are called statically. Consider the base class Shape, virtual function
draw(), and the derived class Circle. Suppose one writes the statements

Shape *PtrShape = new Circle;
PtrShape->Shape::draw()

In this case, the second statement calls the draw() of Shape class and not of Circle class.
Exhibit 10.3 explains the static evaluation of virtual function content.

Exhibit 10.3 Static evaluation of a virtual function content
When we call a function by the syntax

PointerToBaseClass->BaseClassSubObject::FunctionName

it is known as the static invocation of the FunctionName.
For example,

PtrShape->Shape::draw()

is the static invocation of draw(). Irrespective of the function being virtual and of where ptrShape is
pointing to, the function that belongs to the base class subobject will be called.

Let us now analyse the topic further with the help of an example. It is related to a problem
where the classes are arranged using the type of error. Following is the class hierarchy that
is to be modelled in the program.

Defi ne a class Error. It should contain error code, description, and possible solutions
for the error. Defi ne two derived classes, SyntaxError and LogicalError, inheriting
from the base class Error. Defi ne CompilerError and LinkerError classes inheriting
from SyntaxError class and LoopingError and InitializationError inheriting from
LogicalError class. PossibleSolutions is a function that displays what to do if an error
has occurred and is defi ned in all these classes. Defi ne this function such that given
any error, it should display all relevant actions to be performed. That is, if an error is
an initialization error, it displays possible solutions for initialization errors as well as
possible solutions for logical errors and also for generic errors. Figure 10.3 shows the
hierarchy that is observed among the classes. Program 10.8 shows how the solution can be
coded.

432 Programming with ANSI C++

Fig. 10.3 Hierarchy of classes defi ning different types of errors

Error

Syntax error

Compiler
error

Linker
error

Looping
error

Initialization
error

Logical error

PROGRAM 10.8 Invoking the pure virtual function statically
//StaticInvocation.cpp
#include <iostream>
using namespace std;

class Error
{
private:
 int ErrorCode;
 string Description;
public:
 virtual void PossibleSolutions() const = 0;
};

// Body of the virtual function defi ned outside the class
void Error::PossibleSolutions() const
{
 cout << "Generic error\n";
}

// Derived class SyntaxError
class SyntaxError : public Error
{
public:
 void PossibleSolutions()const
 {
 Error::PossibleSolutions();
 cout << "Check the syntax\n";
 }
};

// Derived class LogicalError
class LogicalError : public Error
{
public:
 void PossibleSolutions()const
 {
 Error::PossibleSolutions();
 cout << "Logic is erroneous\n";
 }
};

// Class CompilerError is derived from SyntaxError
class CompilerError : public SyntaxError
{
public:
 void PossibleSolutions()const
 {

Run-time Polymorphism by Virtual Functions 433

 SyntaxError::PossibleSolutions();
 cout << "Compiler error\n";
 }
};

// Class LinkerError is derived from SyntaxError
class LinkerError : public SyntaxError
{
public:
 void PossibleSolutions()const
 {
 SyntaxError::PossibleSolutions();
 cout << "Linker error\n";
 }
};

// Class LoopingError is derived from LogicalError
class LoopingError : public LogicalError
{
public:
 void PossibleSolutions()const
 {
 LogicalError::PossibleSolutions();
 cout << "Looping error\n";
 }
};

// Class InitializationError is derived from LogicalError
class InitializationError : public LogicalError
{
public:
 void PossibleSolutions()const
 {
 // Static invocation
 LogicalError::PossibleSolutions();
 cout << "Initialization error\n";
 }
};

void main()
{
 Error *pError = new InitializationError;
 pError->PossibleSolutions();
 Error *qError = new LinkerError;
 qError->PossibleSolutions();
}
Output
Generic error
Logic is erroneous
Initialization error
Generic error
Check the syntax
Linker error

How the Program Works
Defi ning hierarchy of classes and pure virtual functions with body This example
illustrates how one can represent the Error class hierarchy as publicly derived C++ classes. It

434 Programming with ANSI C++

also shows how one can defi ne PossibleSolutions() as a pure virtual function as all classes
inherited from it must defi ne it. The Error class (the base class) must also have generic
solutions using PossibleSolutions() and, so, must have a body. As explained earlier, the
body is defi ned outside the Error class.

Calling a pure virtual function If the PossibleSolutions() function of any class is called,
it will call the PossibleSolutions() function for only that case. For example, consider the
following statements:

Error *pError = new InitializationError;
pError->PossibleSolutions();
Error *qError = new LinkerError;
qError->PossibleSolutions();

This code will only display the possible solutions for initialization errors and linker errors.
The need here is that it should also display errors related to their base classes. In case of
initialization errors, it should also display the possible solutions for logical errors as well as
general errors. In case of linker error, it should display possible solutions for linker errors,
syntax errors, and general errors.

Need for static invocation This can be achieved by statically invoking PossibleSolutions()
function for all the base classes, such as the PossibleSolutions() function of LinkerError in
turn calls syntax as well as generic errors.

It can be seen that the function contains a call to the PossibleSolutions() function of the
SyntaxError class, which in turn calls the Error::PossibleSolutions(); thus, one can get all
possible solutions related to the error.

SyntaxError::PossibleSolutions() and Error::PossibleSolutions() are calls to virtual
functions. They are different though. They are known as statically invoked calls to virtual
functions.

Why is the static invocation needed? A linker error is also a syntax error, which in turn is
an error. We need to print the description given by every class. Why a pure virtual function?
We want programmers to implement PossibleSolutions() for every error that is a part of
the hierarchy.

■ RECAPITULATION ■

 • Run-time polymorphism is an important feature of OO
programming.

 • C++ achieves run-time polymorphism using virtual
functions.

 • Run-time polymorphism adds overhead to the run-time
system. Thus, it is not made a default. We have run-
time polymorphism only when a function is defi ned as
virtual.

 • Run-time polymorphism is different from compile time
polymorphism.

 • In the case of a normal function being overloaded by the
derived class, a base class pointer will always execute

the function defi ned in the base class irrespective of
where it is pointing to.

 • The pointer, if pointing to a derived class object,
executes a derived class function; otherwise, it
executes the base class function.

 • When a base class pointer is made to point to a derived
class object, it can access only the base class subobject
buried within the derived class object.

 • Whenever a function is defi ned as virtual, a special
pointer is embedded in every object. This pointer points
to a table consisting of pointers to virtual functions that
the object is capable of invoking.

Run-time Polymorphism by Virtual Functions 435

■ KEYWORDS ■

Access method This refers to a function written to return
the value of a private variable of a class. When we need to
provide read-level access of private variables to objects,
access methods are used.

Base class subobject In C++ object model, when a
class is derived into another, the base class object is
embedded within the derived class. This embedded base
class object is known as the base class subobject in the
derived object.

Compile time polymorphism Polymorphism achieved
using operator overloading and function overloading is
known as compile time polymorphism.

Dynamic binding Linking the function at run-time is known
as dynamic binding. Virtual functions are dynamically
bound. However, it is possible for the compiler to statically
bind the static invocations of virtual functions and also in
the case where it is possible to decide at compile time.
In such cases, the virtual functions are also statically
bound.

Polymorphism The ability of an object to behave
differently in different contexts given the same message
is known as polymorphism.

Pure virtual function A virtual function with “= 0” in place
of the body in the class. It may not have the body. It is

also possible to have the body of a pure virtual function
defi ned outside the class.

RTTI Run-time type information is a mechanism to decide
the type of the object at run-time.

Run-time polymorphism Polymorphism achieved using
virtual functions is known as run-time polymorphism.

Static binding Linking a function during linking phase is
known as static binding. Normal functions are statically
bound.

Static invocation of virtual function Only when a virtual
function is invoked using pointer directly, the virtual
function is dynamically invoked. It is possible to call virtual
function using an object of the class or using a scope
resolution operator. In such case, the virtual function is
statically linked. This is known as static invocation of the
virtual function.

Virtual function A function defi ned with the keyword
virtual in the base class is known as virtual function. The
compiler will decide the exact class pointed to by the base
class pointer and call the respective function of that class
if the function is defi ned as virtual.

Virtual table This is a table consisting of pointers to all
virtual functions of the class. Every class with at least one
virtual function will have one copy of the virtual table.

■ EXERCISES ■

Multiple Choice Questions

1. What does the following syntax show?
 virtual void show() = 0;
 (a) Member function
 (b) Friend function
 (c) Virtual function
 (d) Pure virtual function
2. The two different types of polymorphism are

__________.
 (a) compile time and run-time

 (b) compile time and link time
 (c) compile time and load time
 (d) load time and link time
3. When a programmer does not want a class to be

instantiated, it can be achieved by __________.
 (a) defi ning a member function inside that class
 (b) defi ning a friend function inside that class
 (c) defi ning a virtual function inside that class
 (d) defi ning a pure virtual function inside that class

 • Virtual functions are normally linked at run-time.
 • Compiler statically binds the virtual function when it can

decide the call at compile time.
 • Default arguments to virtual functions refer to the

pointer type and not the actual function called. Virtual

functions are very useful in fl exible OO programming.
 • Pure virtual function are virtual functions with “= 0” in

the place of the body in the class defi nition.
 • A class with a pure virtual function becomes the abstract

class.

436 Programming with ANSI C++

 4. When we write a pure virtual function in any class,
__________.

 (a) the class becomes an abstract class
 (b) the class cannot be inherited
 (c) the class becomes a virtual class
 (d) the class becomes a pure virtual base class
 5. Pure virtual functions can be invoked statically

like normal virtual functions only if the function is
defi ned __________.

 (a) outside the class with empty body
 (b) inside the class with empty body
 (c) outside the class with some body
 (d) inside the class with some body
 6. Every class with at least one virtual function

__________.
 (a) has multiple copies of virtual functions
 (b) has single copy of the virtual table
 (c) has multiple copies of virtual table
 (d) None of the above
 7. The __________ is used to get the address of an

object.
 (a) address operator
 (b) address function
 (c) address-of operator
 (d) address-of function
 8. What should be used to execute a derived class

function using a pointer to base class pointing to a
derived class object?

 (a) this pointer should be used
 (b) Virtual function should be used
 (c) Virtual pointer should be used
 (d) None of the above
 9. __________ cannot help in achieving run-time

polymorphism.
 (a) Normal objects
 (b) Pointers to objects
 (c) Virtual functions
 (d) All of the above
10. The __________ manages the pointer to point

to the respective subobject in case two or more
classes inherit into a single derived class.

 (a) compiler
 (b) linker
 (c) loader
 (d) programmer

Conceptual Exercises

 1. What is polymorphism? What is the difference
between compile time and run-time polymorphism?

 2. What is the importance of this pointer in the call
to the function using base class pointer?

 3. Consider base class B and derived class D. Assume
pB is a pointer to base class and pD is a pointer
to derived class. Differentiate between these two
pointers in terms of accessing the derived class object.

 4. What is a subject concept? What is its importance
in the case of a base class pointer accessing a
derived class pointer?

 5. Why is a non-virtual member function of a base
class always called even when the base class
pointer is pointing to the derived class object?

 6. What is the difference between a normal member
function and a virtual function?

 7. Explain static binding. How do virtual functions
enable dynamic binding?

 8. What is the problem of default arguments of the
virtual function? How can that be solved?

 9. What is the requirement of virtual functions in OO
programming?

10. Why virtual constructors are not possible but
virtual destructor is a good idea?

11. Differentiate between virtual functions and pure
virtual functions.

12. What is the need for statically invoking pure virtual
or virtual functions?

Practical Exercises

 1. Defi ne the Time class described in Chapter 9. Inherit
Indian Standard Time (IST) and Greenwich Meridian
Time (GMT) from it. Write routines that convert
from one type of time to another (IST and GMT).

 2. Defi ne a class Stack. Inherit it into VariableStack.
Now, inherit this class into SystemVariableStack
and UserVariableStack. Provide constructors
and destructors for all the classes.

 3. Defi ne a class Student. Inherit it into engineering,
arts, commerce, and science students. Inherit
engineering student into computer science,
electronics and communication, and information
technology student. Provide constructors for all the
classes.

 4. For the Student class given in Exercise 3, write a
program to use a pointer to the Student class to
access a record of the computer science student.
It can be seen that the part defi ned in computer
science is not accessible. Then, defi ne a pointer to
computer science student. Now, it can be seen that
the part is accessible. Cast the original pointer-to-

Run-time Polymorphism by Virtual Functions 437

student to pointer-to-computer science student and
see that now it can access the computer science
part.

 5. Using the same class given in Exercise 3, now
defi ne a virtual function Display() for displaying
the details for all classes in their respective classes
using the same base class pointer (a pointer to
student). Now, use the virtual function to access the
computer science object. It can be seen that without
any pointer casting, the base class pointer can access
the derived class object using virtual function.

 6. In the class of Exercise 3, provide a virtual function
Registration(), which registers the respective
student for an examination. At the end, display how
many students are registered for which examination.

 7. In the class of Exercise 2, provide a virtual function
Push(), which pushes the object into the respective
stacks.

 8. In Exercise 1, provide a virtual function Display(),
which displays the time for a given representation.

 9. Defi ne a class Faculty. It contains the following
attributes:

 (a) Name of the faculty
 (b) Qualifi cation of the faculty
 (c) Subjects the faculty can teach
10. Inherit the Faculty class in Exercise 9 into a

regular faculty, who
 (a) is available full time (no consulting time is

specifi ed)

 (b) teaches at least three subjects
 (c) is part of the institute alone
11. Inherit the Faculty class in Exercise 9 into visiting

faculty, who
 (a) is available only on two to three days (consult-

ing time is also to be specifi ed)
 (b) teaches a single subject
 (c) is part of some other institute
12. Provide virtual functions for reading and writing

class objects of the classes given in Exercises 10
and 11.

13. Defi ne a class Vehicle. Inherit this class into two
wheelers and four wheelers. Inherit two wheelers
into bicycles and scooters and four wheelers into
diesel vehicles and petrol vehicles. Provide a
virtual function that calculates the mileage of the
vehicle (distance travelled in km/ fuel consumed).

14. For Exercise 1, provide virtual destructor for all the
classes.

15. Defi ne a class Employee. Also defi ne classes
of MaleEmp and FemaleEmp inheriting from the
Employee class. Defi ne classes Offi cers, Clerks,
and Peons again inheriting from the Employee class.
Defi ne an array that contains 10 different types
of employees. Defi ne a function ReadDetails()
in all the classes. All array elements should be
accessible in the same routine, irrespective of their
type.

Chapter 11
Run-time Type Run-time Type
Information and Information and
Casting OperatorsCasting Operators
 11.1 INTRODUCTION

Run-time type information (RTTI) is a very powerful tool in C++ and
is used for fi nding the type of an object at run-time. Due to run-time
functioning, RTTI also impacts the performance of the system to a notable
extent. Therefore, most of the compilers provide RTTI but disable it by
default. If RTTI is to be used, one needs to enable the option (and accept
the performance degradation as well). Though performance is an important
issue, it is not most important for some applications. The fl exibility and
power provided by RTTI scores over the performance problem in such
cases.

The ANSI C++ standardization committee has added two keywords to
work with RTTI, namely, typeid and dynamic_cast. typeid is an operator
that returns the type of objects in a specifi c form (the typeinfo object).
dynamic_cast is a new type of operator that enables us to cast polymorphic
objects in a safe way. It casts the source type to destination type only if valid
conversion is possible. Similar operators are const_cast, reinterpret_
cast, and static_cast. These operators will be discussed in this chapter.
There is a built-in class typeinfo introduced here. The typeinfo objects
hold the information about the type of argument passed to the typeid
operator.

Note dynamic_cast, const_cast, reinterpret_cast, and static_cast
are new operators defi ned in C++ to provide better facility for casting
compared to the plain vanilla casting provided in C.

11.1.1 Polymorphic Objects
Using virtual functions, one can point to any object of a derived class
with the help of a base pointer. Such objects that can be manipulated
using virtual functions are known as polymorphic objects. An object
with a virtual function and all the objects derived from that object, or
any successors in the hierarchy, are all known as polymorphic objects.
They can be pointed to by a base class pointer and can be manipulated at
run-time.

Learning Objectives

• Introduction to run-time type
information

• typeinfo object and
typeid operator

• Polymorphic object
• Introduction to dynamic

casting
• Casting using const_cast,
static_cast, and
reinterpret_cast

• Using typeid and
dynamic_cast with
templates

• Cross casting and
downcasting

typeid and dynam-
ic_cast are new op-
erators used in RTTI.

Most of the compilers
provide RTTI but dis-
able it by default be-
cause of performance
issues.

Polymorphic objects
can be manipulated
using virtual functions.

Run-time Type Information and Casting Operators 439

Consider the case of an Employee class, which is inherited into ProductionEmployee,
SalesEmployee, and OtherEmployee. Moreover, consider an Employee class function
ListLeaves() that displays the leaves an employee has used so far. Thus, the structure will
be as follows:

class Employee
{
 ...
public:
 virtual void ListLeaves()
 {...}
}

class ProductionEmployee : public Employee
{
 void ListLeaves()
 {...}
}

class SalesEmployee : public Employee
{
 void ListLeaves()
 {...}
}

class OtherEmployee : public Employee
{
 void ListLeaves()
 {...}
}

main()
{
 Employee *ptrEmp;
 switch(int EmpType)

 {
 ...
 case 1: // Production employee
 ptrEmp = new ProductionEmployee; // Polymorphic object
 ...
 }
 ...
 ptrEmp->ListLeaves()
 ...
}

The object created in this example is a polymorphic object as it takes the form of
any of the descendent employee types during run-time.

If objects can change
their form at run-time,
that is, when a pointer
changes to point to
objects at run-time
and the *pointer ex-
pression yields differ-
ent objects depending
on where the pointer
is pointing to, such
objects are known as
polymorphic objects.

440 Programming with ANSI C++

11.1.2 Need for RTTI
RTTI is a powerful tool and it should be avoided if the problem can be solved
using virtual functions. However, at times, it is essential to use RTTI. Let us
consider a simple example shown in Program 11.1 to understand this better.

Suppose an application has online incoming news. The news can be of
different types. For simplicity, let us consider only two types, namely, plain text
news and news with images. The application requires having all the news being
splashed on the screen with just the headlines. A user can click on any news to
view it. It is also possible to right-click on the news to enable some additional
operations on it. The right-click option may include the following:

1. Send this news as e-mail.
2. Copy this news in a specifi c folder.
3. Print this news using a printer.

Suppose that the user does not want the news with images to be printed, as they consume
a lot of printer toner. To manage this issue, a News class may be defi ned as the base class.
PlainTextNews and NewsWithImages are two classes derived from it. The News class will be an
abstract class, as all the news available are either plain text or with images. No other news
types are being considered for the sake of simplicity.

Three functions, SendNews(), StoreNews(), and PrintNews(), are defi ned in the News class.
This design will make NewsWithImages inherit these three functions. However, we do not
want NewsWithImages to inherit PrintNews(), which should now be removed from the News
class. Where else can it be placed? The next obvious choice is the PlainTextNews class.

The functions SendNews() and StoreNews() are needed for both types of news, and hence,
they need to be defi ned in the News class as virtual. This is shown in Program 11.1:

RTTI slows down the
process at run-time
and thus is used only
when needed. Com-
pilers keep it off by
default. Alternate sol-
utions using virtual
functions are usually
better.

PROGRAM 11.1 A solution using virtual functions
//NewsHierarchy.cpp
#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;

#defi ne SENDNEWS 1
#defi ne STORENEWS 2
#defi ne PRINTNEWS 3

// Base class
class News
{
public:
 virtual void SendNews(string Address){};
 virtual void StoreNews(){};
 virtual ~News() = 0;
};

News::~News()
{
 // Empty body
}

Run-time Type Information and Casting Operators 441

/* A virtual destructor for making News polymorphic */

// Class for plain text derived from News class
class PlainTextNews : public News
{
public:
 void SendNews(string Address)
 {
 // mailto(Address, this->content)
 }

 void StoreNews()
 {
 // Storing the news in a default folder
 }

 void PrintNews()
 {
 cout << "Printing the news now\n";
 }
};

// Class for news with images
class NewsWithImages : public News
{
public:
 void SendNews(string Address)
 {
 // mailto(Address, &this)
 }
 // Other details
 // Print function is missing here
};

 void StoreNews()
 {
 // Storing the news in a default folder
 }

 /* Right-click function. It takes the reference of the fi le the
 mouse is pointing to at the moment as an input */

 void MyApp OnRightClick(News & NewsItem, int Choice)
 {
 string Address;
 switch(Choice)
 // Choice represents what is chosen after right-click
 {
 case SENDNEWS:
 cout << "Enter address";
 cin >> Address;
 NewsItem.SendNews(Address);
 break;
 case STORENEWS:
 NewsItem.StoreNews();
 break;

 // The following is not acceptable
 /* case PRINTNEWS:
 NewsItem.PrintNews(); // No print function with News

442 Programming with ANSI C++

Note One needs at least one virtual function to make an object polymorphic. When other functions cannot
be made virtual, we may need to defi ne a dummy function virtual. Sometimes, defi ning a virtual
destructor is a good solution.

How the Program Works
This code does not solve the problem completely. Note that sending the news (using e-mail)
and storing the news are operations available for both the derived class objects. Thus, it is
possible to provide virtual functions in the base class for both these operations, but the print
function is not defi ned for NewsWithImages fi le. Thus, one cannot defi ne the print function in
the News class, and so, it cannot be used.

One needs to write a code that checks for the fi le type. If the fi le type is PlainTextNews, it
allows printing; if it is NewsWithImages, it does not allow the user to print the news item. The
type of news that the mouse is pointing to needs to be known to fi nd whether to provide an
option for printing or not. The virtual functions defi ned in the base class do not support this
functionality. RTTI provides a support for checking the type dynamically and, hence, shall
prove useful in this situation. A base class pointer is available here. If one can additionally
test where it is pointing to, the problem can be solved. For example, if it is known that it
is pointing to an object of type PrintTextNews, one can enable the print option, and not
otherwise.

It is also important to note that RTTI, similar to virtual functions, requires polymorphic
objects to operate, which means that the base class must have at least one virtual function

defi ned for RTTI to be operational. Though it is possible to use typeinfo object
to work with default types, it is of little use. Section 11.1.4 shows an example of
this case. To solve this problem, it is essential to know how RTTI can be used for
polymorphic objects.

Before we proceed further, it is imperative that readers have an introduction
of the built-in object typeinfo.

11.1.3 typeinfo Object and typeid Operator
The <typeinfo> library contains the defi nition of typeinfo object. This object is automatically
created and associated with every data type used in the program when RTTI is enabled. For
non-polymorphic data types, it is available even when RTTI is not enabled. The typeinfo

object generated depends on the type and not the number of objects. One may
have more than one variable of the same type but the typeinfo object generated
would be just one. If two integers are defi ned, one char and the other an user-
defi ned object in the class, then three typeinfo objects are generated, the fi rst
one for integer, the second for char, and the third for the user-defi ned object.

It is possible to get the typeinfo object associated with any object by writing
typeid(object). Here, typeid is an operator returning the typeinfo object
associated with the object. It can also have a user-defi ned class argument. In that
case, it returns the typeinfo object of that class.

 break; */
 }
}

RTTI is useful to get
the type of an object
at run-time and to take
decisions based on
that information.

typeid operator re-
turns the typeinfo
object associated with
the argument passed
to the operator. The
argument can be a
built-in type or a user-
defi ned object.

Run-time Type Information and Casting Operators 443

The typeinfo object has three attributes, which are of interest to us. They are described
as follows:

Name() function This function returns the type name in a string format.

Operator == This operator compares the types of two different typeinfo objects.

Operator != This operator compares two typeid objects and returns true if they are of
different types.

11.1.4 Using typeid for Non-polymorphic Objects
The following program illustrates the use of RTTI for non-polymorphic objects. RTTI helps
the programmer to get the typeinfo object pointed to by the base class pointer and, thus, to
check the type of that object at run-time to make decisions. If it is possible to make such
decisions, problems such as the news item described in Program 11.1 can be handled easily.

//typeinfo.cpp
#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;
class TestClass
{
 int Test;
public:
 TestClass(int TempVal)
 {
 Test = TempVal;
 }
};
int main()
{
 int FirstInt, SecondInt;
 char FirstChar = 'a';
 TestClass TC(5);
 cout << "FirstInt type is ";
 cout << typeid(FirstInt).name(); // Using name()
 cout << "\n";
 // Using ==
 if(typeid(FirstInt) == typeid(SecondInt))
 {
 cout << "FirstInt and SecondInt are of same type\n";
 }
 // Using !=
 if(typeid(FirstInt) != typeid(FirstChar))
 {
 cout << "FirstInt and FirstChar are of different types\n";
 }

444 Programming with ANSI C++

However, typeid is more useful with polymorphic objects as discussed in Section 11.1.5.

11.1.5 Using typeid for Polymorphic Objects
Program 11.2 shows how typeid is applied to polymorphic objects.
Similar to virtual functions, one needs either a pointer or a reference to
the class to enable typeid to provide the correct type contained by a given
pointer.

 cout << "Object TC is of type ";
 cout << typeid(TC).name()<< "\n";
}
Output

FirstInt type is int
FirstInt and SecondInt are of same type
FirstInt and FirstChar are of different types
Object TC is of type class TestClass

RTTI has to be en-
abled for working with
polymorphic objects.

PROGRAM 11.2 typeid for polymorphic objects
//PolymorphicTypeid.cpp
#include <iostream>
using namespace std;

class Shape
{
 int LineStyle;
 int FillColour;
public:
 virtual void draw()
 /* A virtual function is a must for us to use RTTI with polymorphic class*/
 {
 cout << "Shape is drawn \n";
 }
};

 class Circle : public Shape
 {
 int Radius;
 int CentrePointX;
 int CentrePointY;
 public:
 void draw()
 {
 cout << "Circle is drawn \n";
 }
 };

class Dot : public Circle
{
 int DotDencity;
public:
 void SomeOtherFunction()
 { // Empty body }
 };

 class Rectangle : public Shape

Run-time Type Information and Casting Operators 445

How the Program Works
Program 10.2 in Chapter 10 is modifi ed here to show the use of RTTI for polymorphic
objects. It uses typeid to display the type of object PtrShape is pointing to. typeid has
(*PtrShape) as an argument. It is important because one needs to use a pointer to enable
the typeid applied to and return an appropriate typeinfo object associated with the object
pointed to by the pointer. Here, it returns the typeinfo object associated with the content of
PtrShape.

typeid has been used for displaying the type of the object in statements such as

cout << "PtrShape is pointing to" << typeid(*PtrShape).name() << "\n";

The typeid(*PtrShape) operator returns the typeinfo object associated with *PtrShape and
the name function gives the name of the object.

11.1.6 Using typeid for Solution
Consider Program 11.1 that we have seen earlier in this chapter for dealing with different
types of news. It was seen that the problem of adding a printing option when one right-clicks
the object could not be solved using virtual functions. Program 11.3 shows how the problem
can be solved using typeid.

 {
 int LeftTopX;
 int LeftTopY;
 int RightBottomX;
 int RightBottomY;
public:
 SomeOtherFunction() // No draw defi ned here
 {
 // Some statements
 }
};

int main()
{
 Shape SomeShape, *PtrShape;
 Circle Ring;
 SomeShape.draw();
 Ring.draw();
 PtrShape = &Ring;

 cout << "PtrShape is pointing to " << typeid(*PtrShape).name() << "\n";

 Rectangle Square;
 PtrShape = □
 cout << "PtrShape is pointing to " << typeid(*PtrShape).name() << "\n";
 PtrShape = new Dot;
 cout << "PtrShape is pointing to " << typeid(*PtrShape).name() << "\n";
}

Output
Shape is drawn
Circle is drawn
PtrShape is pointing to class Circle
PtrShape is pointing to class Rectangle
PtrShape is pointing to class Dot

446 Programming with ANSI C++

PROGRAM 11.3 Solution to printing problem using typeid
//NewsHierarchy.cpp
#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;
#defi ne SENDNEWS 1
#defi ne STORENEWS 2
#defi ne PRINTNEWS 3

class News
{
public:
 virtual void SendNews(string Address){};
 virtual void StoreNews(){};
 virtual ~News() = 0;
};

News::~News()
{
 // Empty body
}

class PlainTextNews : public News
{
public:
 void SendNews(string Address)
 {
 // mailto(Address, &this)
 }

 void StoreNews()
 {
 // Storing the news at default position
 }

 virtual void PrintNews()
 {
 cout << "Printing the news now\n";
 }
};

class NewsWithImages : public News
{
public:
 void SendNews(string Address)
 {
 // mailto(Address, &this)
 }
 // Other details
 // Printing is missing out here
};

/* Right-click function */
void MyApp OnRightClick(News & NewsItem, int Choice)
{
 string Address;
 switch(Choice)

Run-time Type Information and Casting Operators 447

 /* Choice represents what is chosen after right-click */
 {
 case SENDNEWS:
 cout << "Enter address";
 cin >> Address;
 NewsItem.SendNews(Address);
 break;

 case STORENEWS:
 NewsItem.StoreNews();
 break;
 // The following is not acceptable

 /* case PRINTNEWS:
 NewsItem.PrintNews(); // No print function with News
 break; */
 }

 if(typeid(NewsItem) == typeid(PlainTextNews))
 {
 // Provide option for print
 cout << "Printing is enabled\n";
 PlainTextNews & PrintableNewsItem = (PlainTextNews &)NewsItem;
 // Printing is done only for printable items
 PrintableNewsItem.PrintNews();
 }
}

int main()
{
 PlainTextNews TextNews;
 MyApp_OnRightClick(TextNews, 0);
}

Output
Printing is enabled
Printing the news now

Note One can compare the type of objects at run-time using typeid.

How the Program Works
This example omits the details about the program itself and only concentrates on the
required aspects of RTTI. The important part is the use of typeid with the polymorphic
object reference NewsItem.

if(typeid(NewsItem) == typeid(PlainTextNews))
{
 cout << "Printing is enabled \n";
 PlainTextNews & PrintableNewsItem = (PlainTextNews &)NewsItem;
 // Printing is done only for printable items
 PrintableNewsItem.PrintNews();
}

NewsItem, if referring to PlainTextNews, is casted to refer to PlainTextNews. Now, one can
call the PrintNews() function. This is safe as it is already known that NewsItem is of printable
type.

448 Programming with ANSI C++

11.1.7 Applying typeid to Class Names and Objects
Program 11.3 has a statement

typeid(News) == typeid(PlainTextNews)

Let us analyse this statement to understand the use of the typeid operator in a
better way. When typeid(NewsItem) is applied, the typeid operator is being applied
to an object of News class. In this case, the typeid operator returns the typeinfo
object associated with the class of that object, that is, News class. When typeid
is applied to a class, for example, typeid(PlainTextNews), the typeinfo object
associated with PlainTextNews class will be available. The typeinfo object has the
== operator overloaded, and so, it is possible to compare two typeinfo objects.

11.1.8 Cases Where RTTI is Useful
At times, a solution is possible in two different ways, that is, using virtual functions and also
using RTTI. We have already seen an example of generating screen objects using virtual
functions in Chapter 10 (Program 10.6). RTTI can also be used for this purpose. If virtual
functions are used, the complexity lies with the designer of class hierarchy. Prior knowledge
of usage of all the classes in the hierarchy such as draw(), getArea(), and getCircumference()
would be useful because the designer can then provide them at the beginning. This may not
be possible in some cases, and one may need to use RTTI instead. The following are a few
such cases:

1. When classes are designed, their ultimate users are not involved in the design; so, all
their requirements are not known. When the users start working with the hierarchy, they
have to check the specifi c type and provide the operations they need. For example, a user
might be interested in providing a function Shrink() to the Rectangle class and its derived
classes.

2. Users normally require other operations in addition to those provided by the original
designer. For example, one may like to add a functionality FillColour() to the Shape
class. More importantly, the user does not have the source code of the original class
hierarchy, which is in some form of object code available from the library.

3. The class designer cannot predict all the possible applications of a class while designing its
hierarchy. The class hierarchy is designed for a general purpose. The user of the graphics
library may be an automobile designer or a movie fi lm designer who requires tweening

operations on images. Tweening operation involves generating intermediate
images automatically. Suppose the designer wants Mickey Mouse to move from
left end to right end. This requires drawing continuous images of Mickey Mouse
from the beginning to the end from left to right. It is possible to show Mickey
Mouse on the left side of the screen at the beginning and on the right side at the
end. The designer may draw these two images and the software should draw all
the intermediate images itself. Thus, it may be decided by the user what he/she
wants to do with the shape that is being dealt with at the time of working with it.
A movie designer can use the same shape hierarchy to add tweening operation
on it using RTTI.

The following are a few other cases where RTTI is useful:

typeid operator can
be applied to both a
class and an object
of the class. In both
cases, it returns the
typeinfo object
associated with the
class.

Virtual functions are
decided when the
class is designed and
are infl uenced by the
designer’s choice.
RTTI, on the contrary,
is useful when the
class is being manip-
ulated by the user and
is under the user’s
control.

Run-time Type Information and Casting Operators 449

1. While using templates, one may need to know the actual data type and
provide validations. The type is not known while dealing with type variables
such as ElementType in the stack. RTTI can be used to fi nd the type of the
element in the body of a template function or class. We will study about this in
Section 11.6.

2. RTTI enables the user to decide about the type of the object at run-time. Take
the case of a network packet observation. It has a virtual function Check(),
which checks the network packet for normal cases. In the case of a specifi c
type of attack happening on the network, one may write an ad hoc function
to check the type of the packet and take an appropriate action. This can be
done without modifying the original design and operation by using RTTI. It
is possible to use RTTI to check for the type and apply AdditionalCheck()
function in place of Check() only for those packets for which further inspection
is needed.

3. One may need to add specifi c tasks for a specifi c subset of class hierarchy.
For example, for all the shapes derived from the Rectangle class, one may need
to provide IncreaseWidth() as a function. While dealing with an object, it is not
known whether it is derived from a rectangle or from some other object. Hence,
the operation is safe only when the operator IncreaseWidth() is applied to the
object of a class derived from the Rectangle class. This requires the facility called
downcasting to work safely. Downcasting in this case makes the base pointer point
to the Rectangle class only if the shape is a Rectangle class or any class derived
from it. This is provided by dynamic casting. We will study about dynamic casting in
Section 11.2.

11.1.9 Problems with typeid
The solution provided in Program 11.3 is better than the one given in Chapter 10. It is
possible to determine the type of the fi le at run-time and make a decision on whether to
provide printing option or not. It is still not suffi cient in some cases.

Suppose there are two different types of plain text news, namely, HtmlNews (which is still
text) and RichTextNews (which is a little better than text). Both of them are inherited from
PlainTextNews. Program 11.3 will not work properly for HtmlNews and RichTextNews. Why?
If one compares typeid(NewsItem) (which returns the typeinfo object associated with News
and neither HtmlNews nor RichTextNews) with typeid(PlainTextNews), then it would be false
and the printing option is not provided. One solution here is to change the program code in
the following manner:

if(typeid(NewsItem) == typeid(PlainTextNews)
|| typeid(NewsItem) == typeid(HtmlNews)
|| typeid(NewsItem) == typeid(RichTextNews))
{
 cout << "Printing is enabled\n";
 PlainTextNews & PrintableNewsItem = (PlainTextNews &) NewsItem;
 // Printing is done only for printable items
 PrintableNewsItem.PrintNews();
}

RTTI is to virtual func-
tions what dynamic
binding is to static
binding.

RTTI is useful while
using templates, pro-
viding special atten-
tion to specifi c class
hierarchy when the
system is being used,
and providing specifi c
task for specifi c class
hierarchy.

450 Programming with ANSI C++

This would solve the problem for the time being. However, if later on HtmlNews
inherits into TaggedHtmlNews and UntaggedHtmlNews, one needs to add two more
lines at that place. Every time a class is added to the hierarchy, a line needs to be
added here. This approach is both error-prone and laborious.

Where is the problem? The problem is that the typeid operator checks for the
current news type alone. If it checks all news derived from the current news type,
the problem is solved.

Thus, if it is possible to assure that the news item one is looking for belongs
to some class derived from PlainTextNews, then it is safe to provide printing. To
check this, a check is needed for every possible type of class that is derived from

the PlainTextNews class. One needs to check for every such class and add that information
to modify the code. A solution is needed where it is possible to write a general statement
that can work for any descendent of PlainTextNews class, which typeid cannot do. If typeid
cannot solve this problem, then how can it be solved? This is explained in the following
sections.

11.2 DYNAMIC CASTING USING dynamic_cast

In ANSI C++, there are four additional casting operators available, namely, dynamic_cast,
static_cast, const_cast, and reinterpret_cast. The fi rst operator, dynamic_cast, provides
a solution to the problem mentioned in Section 11.1.9. Let us learn about dynamic_cast.
Though it is a casting operator, it is very special. The following are its salient features:

1. This casting operator is used only for polymorphic object casting. In other words, it can
cast only from one polymorphic object to another polymorphic object.

2. It is also known as safe cast. It succeeds only when it is properly casted, which means that
dynamic_cast succeeds only when the pointer (or reference) being cast is an object of the
target type or its derived type.

3. The syntax of dynamic_cast is different from normal C-type casting. It is written as

 dynamic_cast<ToObjectPtrOrRef> (FromObjectPtrOrRef)

It casts from FromObject to ToObject pointer or reference. Instead of a FromObject
pointer or reference, it is also possible to write an expression that yields a FromObject
pointer or reference. From this rule, it is clear that for dynamic_cast to succeed, the
FromObject must be of the same type as the ToObject, or derived from it. One needs to be
very careful with the syntax. The fi rst set of braces are angled, that is, <> and the second
set of braces are normal round, that is, ().

4. If a Base class and a Derived class are available, then casting from the Derived to the Base
pointer always succeeds. However, the casting from the Base to the Derived pointer can
succeed only if the Base pointer is actually pointing to an object of the Derived type. This
is known as downcasting and we will learn more about it in Section 11.9.

5. Conversion (casting) takes place only with the help of pointers or references. It cannot be
done with objects.

6. While working with pointers, if the dynamic_cast fails, it would return null. So, it is
important to check for the return value of dynamic_cast similar to a function to see whether
the cast is successful. In case of references, the reference cannot be null; so, dynamic_cast
will throw bad_cast when it fails.

A typeid can help
assess whether the
object is of a specifi c
single class. However,
for assessing whether
an object is a member
of a hierarchy of class
objects, we need
dynamic_cast.

Run-time Type Information and Casting Operators 451

11.2.1 Using dynamic_cast
Polymorphic objects such as Circle and Shape that we have seen earlier in Program 11.2 can
be dynamically casted using dynamic_cast to Shape pointer. Let us look at Program 11.4 to
understand this better.

PROGRAM 11.4 Dynamic casting on polymorphic objects
//PolymorphicDynamic_cast.cpp
#include <iostream>
using namespace std;

class Shape
{
 int LineStyle;
 int FillColour;
public:
 virtual void draw()
 {
 cout << "Shape is drawn \n";
 }
};

class Circle : public Shape
{
 int Radius;
 int CentrePointX;
 int CentrePointY;
public:
 void draw()
 {
 cout << "Circle is drawn \n";
 }
};

int main()
{
 Shape SomeShape, *PtrShape;
 Circle Ring, *PtrCircle;

 // Part I
 // Testing four possible cases of conversion
 // A base pointer pointing to base is casted to base

 PtrShape = dynamic_cast<Shape *> (&SomeShape);
 if(PtrShape)
 cout << "Shape pointer to Shape pointer casted\n";
 else
 cout << "Shape pointer to Shape pointer not casted\n";

 /* A derived pointer pointing to derived is casted to derived */
 PtrCircle = dynamic_cast<Circle *> (&Ring);
 if(PtrCircle)
 cout << "Circle pointer to Circle pointer casted\n";
 else
 cout << "Circle pointer to Circle pointer not casted\n";

 /* A base pointer pointing to base is casted to derived */
 PtrCircle = dynamic_cast<Circle *> (&SomeShape);
 if(PtrCircle)

452 Programming with ANSI C++

 cout << "Shape pointer to Circle pointer casted\n";
 else
 cout << "Shape pointer to Circle pointer not casted\n";

 /* A derived pointer pointing to derived is casted to base */
 PtrShape = dynamic_cast<Shape *> (&Ring);
 if(PtrShape)
 cout << "Circle pointer to Shape pointer casted\n";
 else
 cout << "Circle pointer to Shape pointer not casted\n";

 /* Part II
 Casting from base class pointer to derived */
 /* A base pointer pointing to a derived class object

is casted to a derived class object successfully */

 cout << "Trying to cast a base class pointer\n";
 cout << "pointing to a derived class object\n";
 cout << "to a derived class pointer\n";
 PtrShape = &Ring;

 PtrCircle = dynamic_cast<Circle *> (PtrShape);
 if(PtrCircle)
 cout << "Successful\n";
 else
 cout << "Unsuccessful\n";

 /* A base pointer pointing to a base class object
failed to cast to a derived class object */

 cout << "Trying to cast a base class pointer\n";
 cout << "pointing to a base class object\n";
 cout << "to a pointer to a derived class object\n";
 PtrShape = &SomeShape;

 PtrCircle = dynamic_cast<Circle *> (PtrShape);
 if(PtrCircle)
 cout << "Successful\n";
 else
 cout << "Unsuccessful\n";

 /* A derived pointer pointing to a derived object
 is casted to a base class pointer successfully */

 cout << "Trying to cast a derived class pointer\n" ;
 cout << "pointing to a derived class object\n";
 cout << "to a base class pointer\n";
 PtrCircle = & Ring;

 PtrShape = dynamic_cast<Shape *> (PtrCircle);
 if(PtrShape)
 cout << "Successful\n";
 else
 cout << "Unsuccessful\n";

 /* The only option left is a derived class pointer
 pointing to a base class object, which is not possible */
}

Output
Shape pointer to Shape pointer casted
Circle pointer to Circle pointer casted

Run-time Type Information and Casting Operators 453

How the Program Works
Note that the derived class to derived class and the base class to base class conversions
are obviously acceptable. Look at the following casting operations. Both of them are
successful.

PtrShape = dynamic_cast<Shape *> (&SomeShape);
PtrCircle = dynamic_cast<Circle *> (&Ring);

It can also be seen that the derived class pointer to base class pointer conversion is also
acceptable.

PtrShape = dynamic_cast<Shape *> (&Ring);

Base class pointer to derived class pointer is possible only if base class pointer is actually
pointing to a derived class object. So, the following conversion is not successful. Conversion
from a Shape pointer to a Circle pointer will fail when the pointer is pointing to a base class
object.

PtrCircle = dynamic_cast<Circle *> (&SomeShape);

However, we will succeed in the following attempt, as the pointer that we are trying to
convert is indeed pointing to a derived class.

PtrShape = &Ring;
PtrCircle = dynamic_cast<Circle *> (PtrShape);

The following is another example where a derived class pointer is casted into a base class
pointer successfully. The derived class pointer that is pointing to a derived class object is
casted to a base class pointer. This pointer can now access only the base class subobject
embedded within the derived class object.

PtrCircle = & Ring;
PtrShape = dynamic_cast<Shape *> (PtrCircle);

11.2.2 Using dynamic_cast to Replace typeid
In some cases, the code using dynamic_cast can be replaced by one using typeid. It is better
and is advisable to do so in such cases. The code using typeid checks for the fi rst slot in the
virtual table (where the RTTI information is kept). It has the same performance overhead as

Shape pointer to Circle pointer not casted
Circle pointer to Shape pointer casted
Trying to cast a base class pointer
pointing to a derived class object
to a derived class pointer
Successful
Trying to cast a base class pointer
pointing to a base class object
to a pointer to a derived class object
Unsuccessful
Trying to cast a derived class pointer
pointing to a derived class object
to a base class pointer
Successful

454 Programming with ANSI C++

a virtual function. In contrast, the case with dynamic_cast is different. It traverses
the base class objects down in the hierarchy and the result is dependent on the
length of the inheritance chain.

It is very simple to convert from dynamic_cast to typeid. When dynamic
casting is used to convert a pointer to one polymorphic object into another, it fails
if the types do not match. If one is checking for straightforward types as done in
Program 11.4, one can write a code with typeid. It involves two steps. The fi rst
one is to check the types of two arguments using typeid and the operator ‘==’.
Then, if the answer is yes, plain vanilla C-type casting is used to cast. Consider
Program 11.5.

When we encounter
multiple checks using
typeid where all the
classes that we check
form some hierarchy,
we can replace those
multiple typeid
statements with a
single dynamic_
cast statement.

PROGRAM 11.5 Converting from a code using dynamic_cast to one using typeid
//dynamic_castToTtypeid.cpp
#include <iostream>
using namespace std;

class Shape
{
 int LineStyle;
 int FillColour;
public:
 virtual void draw()
 {
 cout << "Shape is drawn \n";
 }
};

class Circle : public Shape
{
 int Radius;
 int CentrePointX;
 int CentrePointY;
public:
 void draw()
 {
 cout << "Circle is drawn \n";
 }
};

int main()
{
 Shape SomeShape, *PtrShape;
 Circle Ring, *PtrCircle;

 /* The following is a code using dynamic_cast; later, we will
 show how the same effect can be achieved using typeid */

 PtrShape = &Ring;
 PtrCircle = dynamic_cast<Circle *> (PtrShape);
 if(PtrCircle)
 cout << "Cast is successful\n";
 else
 cout << "Test is not successful\n";

 PtrShape = &SomeShape;
 PtrCircle = dynamic_cast<Circle *> (PtrShape);

Run-time Type Information and Casting Operators 455

 if(PtrCircle)
 cout << "Cast is successful";
 else
 cout << "Test is not successful\n";

 // The following is an equivalent code using typeid
 PtrShape = &Ring;
 if(typeid(Circle) == typeid(*PtrShape))
 {
 PtrCircle = (Circle *) PtrShape;
 /* C-style casting is now safe because it casts
 only if the types are same */

 cout << "Cast is successful\n";
 }
 else
 {
 PtrCircle = ‘\0’;
 cout << "Cast is not successful\n";
 }

 PtrShape = &SomeShape;
 if(typeid(Circle) == typeid(*PtrShape))
 {
 PtrCircle = (Circle *) PtrShape;
 cout << "Cast is successful\n";
 }
 else
 {
 PtrCircle = ‘\0’;
 cout << "Cast is not successful\n";
 }
}

Output
Cast is successful
Test is not successful
Cast is successful
Cast is not successful

How the Program Works
This program has two different portions. One uses dynamic_cast as shown in the following
statement:

PtrShape = &Ring;
PtrCircle = dynamic_cast<Circle *> (PtrShape);

The statement uses dynamic_cast and uses a check to null return value for failure. The
same job is done using typeid in the second portion of the program as in the following
statements.

if(typeid(Circle) == typeid(*PtrShape))
{
 PtrCircle = (Circle *) PtrShape;
 ...
}

456 Programming with ANSI C++

The dynamic_cast checks for the correct type and then casts only if the types are correct and
not otherwise. The typeid can only check for identical types; so, a C-type casting is needed
to cast once the types are found to be correct.

11.2.3 Using dynamic_cast to Solve Problems with typeid
If the types are straightforward, it is possible to replace dynamic_cast with typeid. Consider
the problem discussed in Section 11.1.9. In this case, the types being compared are not
straightforward. They can be derived types as well. It is easier in that case to replace the code
with typeid into one with dynamic_cast. Look at the following line:

PlainTextNews &RefPlainTextNews = dynamic_cast<PlainTextNews&> (NewsItem)
RefPlainTextNews.FPrint();

The printing takes place only if the News is available as a reference to the
PlainTextNews or a descendent of it; otherwise, bad_cast exception is thrown.
Now, one need not worry about HtmlNews or RichTextNews, or TaggedHtmlNews
or UntaggedHtmlNews. For all of them, the dynamic_cast would be successful and
the job is done.

The only difference is that when one uses dynamic_cast using reference, it
does not return null reference (because a reference cannot be null). If the cast is
not successful, it throws a bad_cast exception; so, the part for other fi les will be
written in the catch block. Program 11.6 shows how this works.

The dynamic_cast
operator returns null
when unsuccessful
when the argument
is a pointer. If the
reference is passed
instead, it throws the
exception bad_cast.

PROGRAM 11.6 More fl exible solution to printing problem using dynamic_cast
//DynamicPrinting.cpp
#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;

#defi ne SENDNEWS 1
#defi ne STORENEWS 2
#defi ne PRINTNEWS 3

class News
{
public:
 virtual void SendNews(string Address){};
 virtual void StoreNews(){};
 virtual ~News() = 0;
};

News::~News()
{
 // Empty body
}

class PlainTextNews : public News
{
public:
 void SendNews(string Address)
 {
 // mailto(Address, &this)
 }

Run-time Type Information and Casting Operators 457

 void StoreNews()
 {
 // Storing the news at default position
 }

 void PrintNews()
 {
 cout << "Printing the news now\n";
 }
};

/* The following three classes are added just to show the class
hierarchy. It does not make any difference whether
they have a body or not */

class HtmlNews : public PlainTextNews
{ // Class contents };

class RichTextNews : public PlainTextNews
{ // Class contents };

class TaggedHtmlNews : public HtmlNews
{ // Class contents };

class NewsWithImages : public News
{
public:
 void SendNews(string Address)
 {
 // mailto(Address, &this)
 }
 // Other details
 // Printing is missing out here
};

// Right-click function
void MyApp OnRightClick(News & NewsItem, int Choice)
{
 string Address;
 switch(Choice)
 {
 case SENDNEWS:
 cout << "Enter address";
 cin >> Address;
 NewsItem.SendNews(Address);
 break;

 case STORENEWS:
 NewsItem.StoreNews();
 break;

 case PRINTNEWS:

 try
 {
 PlainTextNews & RefPlainTextNews = dynamic_cast <PlainTextNews&> (NewsItem);

 /* Casting to check if the object belongs to any derived class of PlainTextNews
class */

 cout << "Printing is enabled \n";

458 Programming with ANSI C++

 RefPlainTextNews.PrintNews();
 }

 catch (bad_cast)
 {
 cout << "Casting not successful \n";
 cout << "Printing is not enabled \n";
 // Executable fi le has skipped the printing option
 }
 } // End of switch
} // End of function

int main()
{
 TaggedHtmlNews TextNews;
 MyApp_OnRightClick(TextNews, PRINTNEWS);
 NewsWithImages NonTextNews;
 MyApp_OnRightClick(NonTextNews, PRINTNEWS);
}

Output
Printing is enabled
Printing the news now
Casting not successful
Printing is not enabled

Note When we use dynamic_cast with reference, we must include it under the try block and have a
catch block with bad_cast to write code for taking action when the conversion fails.

How the Program Works
An important point to note here is the call to dynamic_cast with casting to PlainTextNews.
Though the fi le is actually of type TaggedHtmlNews, the cast is still successful; this is because
TaggedHtmlNews is a class inherited from PlainTextNews. It can also be verifi ed that for
NewsWithImages fi le, printing is not enabled, because the casting is unsuccessful.

The central idea of the program is mentioned in the following statement.

PlainTextNews & RefPlainTextNews = dynamic_cast <PlainTextNews&> (NewsItem);

The dynamic_cast here replaces the three statements using typeid in the example mentioned
in Section 11.1.9. It can also be seen that even when many other classes are added to the
hierarchy, there is no need to modify this program, as dynamic_cast can handle the situation.
Whenever a NewsItem is an object of PlainTextNews class or any of its descendents, dynamic_
cast is successful and, thus, casts the NewsItem to PlainTextNews reference.

Moreover, consider how failure has been handled using a catch block. The dynamic_cast
statement is wrapped inside a try block and a corresponding catch block is written as follows
to take care of a case where the news item is not printable.

catch(bad_cast)
{
 cout << "Casting not successful \n";
 cout << "Printing is not enabled \n";
 // Executable fi le has skipped the printing option
}

Run-time Type Information and Casting Operators 459

11.3 CASTING USING const_cast

The const_cast operator is used to cast a const variable to a non-constant (normal) variable.
It is special; no other cast, that is, dynamic_cast, static_cast, or reinterpret_cast, can
do this. The cast from const to non-const can be done for reference as well. Consider
Program 11.7.

PROGRAM 11.7 Const casting
//const_cast.cpp
#include <iostream>
#include <string>
using namespace std;

void DangerousFunction(const int *NotActuallyConst)
{
 int *ConvertedNormal = const_cast<int *> (NotActuallyConst); (*ConvertedNormal)++;
}

int main()
{
 int TestForConst = 10;
 cout << "Value of Test: " << TestForConst << "\n";
 DangerousFunction(&TestForConst);
 cout << "After calling dangerous function: " << TestForConst << "\n";
}

Output
Value of Test: 10
After calling dangerous function: 11

How the Program Works
It is important to note that there are two different types of const data; one is the real const,

which is defi ned as

const int RealConstInt;

and the other is the contextual const, which has been used in the program. The
variable assumes constness upon entry to the function.

Note Only contextual consts can be converted to non-const. Real const variables such as RealConstInt
defi ned in the example cannot be converted to non-const.

11.4 CASTING USING static_cast

static_cast is a normal non-polymorphic cast. Converting int to double, int to
fl oat, etc., should be done using this cast. If applied to a polymorphic object, static_

cast results in compile-time error. If conversion from a data type is not
relevant, it again results in compile-time error. static_cast is performed
at compile time. It is an ideal replacement for old C-style casting in normal
situations.

Program 11.8 is a simple example to understand the use of static_cast.

The const_cast
removes the const-
ness of a contextual
const value.

A static_cast con-
verts a regular data
type to some other
regular data type.

460 Programming with ANSI C++

How the Program Works
The program casts a normal integer into a fl oat using the static_cast operation.

fl oat ConvertedFromInt = static_cast<fl oat>(NormalInt);

This is a complicated way of saying the following using C-type casting.

fl oat ConvertedFromInt = (fl oat*)NormalInt;

The advantage is that the C-type casting casts without looking at the data type. It is fi ne in
the given example but the same C-type cast may also be used to convert an int into an int
pointer. If a similar operation is done using static_cast, it results in an error. The following
statement, for example, will not be compiled.

int *test = static_cast<int *>(NormalInt);

If a C-type casting is used as follows, it will, unfortunately, be compiled and also run with
surprising results.
int *test = (int*)(NormalInt);

This is the advantage of using static_cast, It might look complex, but it can
check for such errors, which cannot be done by a normal C-type casting.

11.5 CASTING USING reinterpret_cast

If a programmer purposefully wants to convert to an irrelevant type, for example, convert
an integer value to a pointer, then reinterpret_cast provides a way to do it. Program 11.9
shows how this is done.

PROGRAM 11.8 Static casting
//static_cast.cpp
#include <iostream>
using namespace std;

int main()
{
 int NormalInt = 10;
 fl oat ConvertedFromInt = static_cast<fl oat> (NormalInt);

 /* The following line cannot be compiled
 int *test = static_cast<int *>(NormalInt);
 error: 'static_cast' cannot convert from 'int' to 'int *' */
 return 0;
}

Output
There is no output here as we are just casting the normal integer into a fl oat value.

A static_cast
converts a value only
if it is normal conver-
sion; it fails otherwise.

PROGRAM 11.9 Reinterpret cast
//reinterpret_cast.cpp
#include <iostream>
using namespace std;
int main()

Run-time Type Information and Casting Operators 461

How the Program Works
This program demonstrates the exact opposite behaviour of Program 11.8. It
compiles the line that converts an integer to a pointer but does not compile the
line that converts an integer to a fl oat. Thus, the following line is compiled and it
converts an int to an int pointer.

int *ConvertedPtrFromInt = reinterpret_cast<int *> (NormalInt);

On the contrary, the following line, which converts the int to a fl oat value, is not
compiled.

fl oat ConvertedFloatFromInt = reinterpret_cast<fl oat> (NormalInt);

Note reinterpret_cast is a mechanism by which programmers are saved from typing errors while
casting. Only when a programmer is interested in converting to irrelevant types, he/she would use
reinterpret_cast.

11.6 RTTI AND TEMPLATES

In Chapter 7, we have learnt how to write generic functions that can work for any type. The
type is determined at compile time and a specifi c function is instantiated that works for the
given type. One may need to provide some checks in those generic functions related to the
specifi c types. It is especially useful for validations. Both typeid and dynamic_cast can be
used for this purpose. Let us discuss them in the following sections.

11.6.1 Using typeid
In the template function code, if one wants to test the type of the actual variable and

try to provide validations according to the type, RTTI can be used. For
example, if a programmer is writing a search routine that can operate on
any array, a generic search routine has to be written. However, this has a
problem.

Suppose the integer data contains employee numbers, which cannot be
negative. The char * data contains employee names, which are valid names
available in the database. The problem is how such validations can be provided
once a single routine is written for both these cases (and maybe for many
more such cases). It is possible to use typeid here to check the type of the

{
 int NormalInt = 10;

 /* The following line will not be compiled */
 // fl oat ConvertedFloatFromInt = reinterpret_cast<fl oat> (NormalInt);

 /* The following line will be compiled */
 int *ConvertedPtrFromInt = reinterpret_cast<int *> (NormalInt);
 cout<< "Int is converted to pointer";
 return 0;
}

Output
Int is converted to pointer

reinterpret_cast
is used to convert a
type into an irrelevant
type such as an inte-
ger to a pointer. It
fails when the conver-
sion involves regular
data types.

When templates are
needed to check the
types of the argument,
RTTI is useful, as it
checks the type at
run-time when the
type information is
known.

462 Programming with ANSI C++

item and then execute specifi c validation routines for that particular data type. Consider
Program 11.10.

PROGRAM 11.10 Template type checking
//TemplateTypeChecking.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename Type>

Type Search(Type Array[])
{
Type UserInput;
 cout << "Please input the value";
 cin >> UserInput;
 cout << "\n";
 // Provide integer validation
 if(typeid(Type) == typeid(int))
 {
 cout << "int validation done \n";
 }

 // Provide char validation
 if(typeid(Type) == typeid(char))
 {
 cout << "char validation done \n";
 }

 // Provide string validation
 if(typeid(Type) == typeid(char *))
 {
 cout << "char * validation done \n";
 }

 /* Check for other data types, which can even be user-defi ned data types */
 /* Search routine is omitted at the moment */

 return 0;
}

int main()
{
 char Array[]= "This is testing";
 int result = Search(Array);
}

Output
Please input the value 65
char validation done

How the Program Works
Readers may be surprised with the output. char validation is called because the array is of
type char; 65 in this array is actually A.

What has been discussed so far is also true for generic classes. Program 11.11 is an
example where the problem given in Program 11.10 is represented by a class rather than a
generic function.

Run-time Type Information and Casting Operators 463

How the Program Works
The program is again giving an erroneous output. Now, it is not accepting 65 and wants the
user to enter a character.

Surprised again? Look at the default value of type UserInputType. It is int. Moreover,
look at the type arguments passed to JS.

template <typename Type, typename UserInputType = int>
JustForSearch<char> JS;

The second argument has not been passed. Hence, it was taken as int, the default
type. This does not match with the required type, char, and, therefore, generates an
error.

One more question arises here. We have discussed about default type arguments to class
templates (int for UserInputType in the given example). Can we have such default type
arguments in functions? The answer is no, as already seen in Chapter 7. This is because the
default type arguments to template functions were proposed too late for the current standard
to accept it. It may be a part of the next C++ standard.

PROGRAM 11.11 Template typeid
//TemplateTypeid.cpp
#include <iostream>
#include <string>
using namespace std;

template <typename Type, typename UserInputType = int>
class JustForSearch
{
public:
 Type Search(Type Array[])
 {
 UserInputType UserInput;
 cout << "Please input the value ";
 cin >> UserInput;
 cout << "\n";

 if(typeid(UserInputType) != typeid(Type))
 {
 cout << "Please enter data of type" << typeid(Type).name() << "\n";
 }

 return 0;
 }
};

int main()
{
 char Array[]= "This is testing";
 JustForSearch<char> JS;
 int result = JS.Search(Array);
}

Output
Please input the value 65
Please enter data of type char

464 Programming with ANSI C++

11.6.2 Compatibility and Effi ciency Issues
The following are a few other RTTI-related issues:

Backward compatibility with C-style casting It is important to note that compatibility with
C is a major concern to C++ designers. C-style casting is still being used in a number of
programs. It is not recommended to use it in newer C++ programs though.

Effi ciency Using RTTI is not effi cient. Even if one does not use typeid or dynamic_cast,
the program runs slowly when RTTI is enabled. It is because the information about type
using typeinfo object is added to every polymorphic type. The typeinfo objects are to
be constructed and destroyed similar to other objects, which ultimately slows down the
execution.

Using virtual functions in place of RTTI If possible, one must use virtual functions in
place of RTTI because they are more effi cient. However, it is not possible to use virtual
functions in place of RTTI in some cases.

Note C-type cast is still heavily used; however, a good design should use better casting operators mentioned
in this chapter.

11.7 CROSS CASTING

Cross casting refers to casting from the derived to the proper base class when there are
multiple base classes in case of multiple inheritance.

Consider Program 11.12, which has the following statements:

class Derived : public Base1, public Base2;
Base1 *Base1Ptr = new Derived;
Base2 *Base2Ptr;

Let us see what happens when one writes

Base2Ptr = Base1Ptr;

First of all, one needs to make sure that it is allowed. Fortunately, in this case, the compiler
allows and automatically adjusts the pointer to point to the base class subobject of the derived
class. The value of Base1Ptr pointer is incremented to make it point to Base2 subobject of the
derived class and then assigned to the Base2Ptr pointer. Thus, in this case, the behaviour of
the assignment statement seems valid.

There are two classes, Base1 and Base2, and Derived is derived from both Base1 and Base2
(multiple inheritance). Now, casting the Base1 pointer, pointing to a derived class object,
to Base2 is valid when the object is of type Derived. (Since Base1 and Base2 are both base
classes of Derived, their pointers can point to the derived class object.) The problem is that
the Base2Ptr pointer should only be able to address the Base2 subobject of the derived class.
This is why the compiler intervenes and does what has been discussed here.

Unfortunately, when a pointer is casted using C-style casting, this does not happen. Have
a look at the following statement:

Base2Ptr = (Base2 *) Base1Ptr;

Thus, if casting is used instead, what one gets is not what one wants. The address value
in the pointer is not incremented to make it point to the Base2 subobject of the derived
class.

Run-time Type Information and Casting Operators 465

The fi rst version, unfortunately, does not work
for all cases. Assume Base1Ptr pointing to a
Base1 class by statement:

Base1Ptr = new Base1;

Even though Base1Ptr is not pointing to a derived
class object, the assignment still takes place.

Base2Ptr = Base1Ptr;

It should not be allowed here. Thus, either of the
form is vulnerable to wrong assignment. What is
the solution? dynamic_cast can be used to solve
this problem. If Base1Ptr had been pointing to an

object of Base1 class, run-time error would be generated. Refer to Fig. 11.1. The conversion
from Base1 pointer to Base2 pointer actually involves setting it to the address of Base2
subobject. It is done only when dynamic_cast is applied. C-style casting incorrectly keeps
the Base2Ptr to point to Base1 subobject. Thus, the solution is to use

Base2 *Base2Ptr = dynamic_cast<Base2 *> (Base1Ptr);

Notes

 1. When a pointer to one base class is to be converted to a pointer to another base class in case of multiple
inheritance, it is known as cross casting.

 2. For cross casting, dynamic_cast is to be used. Neither plain assignment nor C-type casting serves the purpose.

Consider the following program.

Base1Ptr

Base1Ptr Base1 subobject

Base2 subobject

Remaining derived

Base1 subobject

Base2 subobject

Remaining derived

Cross
casting

Fig. 11.1 Cross casting using dynamic_cast

//CrossCasting.cpp
class Base1
{
 int IntTest;
public:
 virtual ~Base1(){};
 // For making Base1 polymorphic
};
class Base2
{
 fl oat FloatTest;
};
class Derived : public Base1, public Base2
{
 int Test2;
};
int main()
{
 Base1 *Base1Ptr = new Derived;
 Base2 *Base2Ptr = dynamic_cast<Base2 *> (Base1Ptr);
}

466 Programming with ANSI C++

11.8 DOWNCASTING

The following is a line of code from Program 11.5:

PtrShape = &Ring;
PtrCircle = dynamic_cast<Circle *> (PtrShape);

The cast from a base class pointer to a derived class pointer is successful because
the base class pointer actually points to the derived class object. This type of
casting is known as downcasting.

Downcasting was considered unsafe and incorrect before RTTI was introduced
because C-style casting had to be used, which just converts one type of pointer to
another without checking anything. If the base class pointer is pointing to a base
class object and not a derived class object, it will create a serious problem. When
casted to a derived class pointer, it can now access the derived class portion as
well. While referring to the derived class portion using the resultant derived class
pointer (which does not exist logically), one may get unexpected results.

When a base class
pointer is converted
to a derived class
pointer, it is known
as downcasting. It is
safe only when the
base class pointer
actually points to the
derived class object
and not otherwise.

■ RECAPITULATION ■

 • Run-time type information or RTTI adds overhead at
run-time.

 • RTTI can work with built-in or user-defi ned data
types.

 • When working with polymorphic objects, we need to
enable RTTI, which is disabled by default.

 • When we defi ne virtual functions in the base class, they
can only solve problems of the entire class hierarchy. It
is better to use typeid with RTTI in this case.

 • dynamic_cast helps us to check whether any class is
a derived class from some other class.

 • const_cast converts from a contextual const variable

pointer to non-const variable pointer.
 • static_cast coverts from a normal data type into

another data type if the conversion is not changing the
type drastically.

 • When we are in need to covert from one type to another
drastically different data type, we need reinterpret_
cast.

 • All these casts, if not used as per specifi cation, generate
errors.

 • Downcasting and cross casting, which were considered
unsafe earlier, are now considered safe with RTTI and
dynamic_cast.

■ KEYWORDS ■

const_cast This C++ operator casts a contextual const
pointer to a non-const variable pointer.

Contextual const This is a const variable that is originally
not defi ned as const but assumes constness due to the
const operation on it.

Cross casting When a derived class object, originated
by multiple inheritance, is pointed to by one of its
base class pointers, casting from one base class
pointer into another base class pointer is known as cross
casting.

Downcasting Casting from a base class pointer to a

derived class pointer is known as downcasting.
dynamic_cast This is a new casting operator provided

in C++, which casts a polymorphic object into another if it
is correct to do it. Casting from a derived class pointer to
a base class is designed to be correct. It is also correct
if a base class pointer is converted to a derived class
pointer when the base class pointer is actually pointing to
a derived class object.

Polymorphic objects If we have a class containing a
virtual function, it is possible to point to a derived class
object using the base class pointer and manipulate the

Run-time Type Information and Casting Operators 467

object. Such objects that can be manipulated are known
as polymorphic objects.

reinterpret_cast This is a casting operator for
abnormal casting cases such as an integer to a pointer
and a pointer to an integer.

RTTI Run-time type information or RTTI is a mechanism by
which we can fi nd the type of an object at run-time.

static_cast This is a casting operator for normal
casting cases such as int to fl oat and char to int.

typeid operator This operator can be applied to any
object, class or built-in data type. It returns the typeinfo
object associated with the object under consideration.

typeinfo object This is an object associated with
every built-in and user-defi ned data type, and also with
polymorphic type. This object describes the type of the
object. It is available for polymorphic type only when RTTI
is enabled.

■ EXERCISES ■

Multiple Choice Questions

1. Casting of __________ to __________ always
works in case of dynamic_cast.

 (a) base pointer, derived pointer
 (b) derived pointer, base pointer
 (c) derived pointer, abstract pointer
 (d) abstract pointer, derived pointer
2. Even when RTTI is not enabled, the typeinfo

objects are available for __________.
 (a) built-in data types
 (b) user-defi ned data types
 (c) polymorphic data types
 (d) non-polymorphic data types
3. While using __________ sometimes, we need to know

about the actual data types and provide validations.
 (a) virtual functions
 (b) virtual base classes
 (c) templates
 (d) polymorphic objects
4. If Base is base class, Derived1 and Derived2

are derived classes, BasePtr, Derived1Ptr and
Derived2Ptr are their respective pointers, and
DDerived is multiple inherited from Derived1 and
Derived2, which of the fl owing will cast properly
when BasePtr is pointing to DDerived?

 (a) Base * NewPtr = BasePtr
 (b) Derived1 * NewPtr = BasePtr
 (c) Derived2 * NewPtr = BasePtr
 (d) None of the above
5. The cast from const to non-const can be done also

for __________ apart from pointers.
 (a) classes
 (b) objects
 (c) variables
 (d) references

 6. In case of references, when dynamic_cast fails,
__________.

 (a) it returns a null
 (b) it gives a compilation error
 (c) it throws an exception
 (d) it throws a bad_cast exception
 7. Which of the following is the correct syntax for

getting the name of a type?
 (a) name(<type>);
 (b) typeid(<type>);
 (c) typeid(<type>).name();
 (d) name(type_id(<type>));
 8. What does typeid return?
 (a) It returns nothing.
 (b) It returns the type of the object in general form.
 (c) It returns the type of the object in a specifi c

form.
 (d) It returns the type and size of the object.
 9. __________ are more preferable than RTTI.
 (a) Virtual functions
 (b) Friend functions
 (c) Virtual base classes
 (d) Abstract classes
10. Which built-in class has been introduced with

RTTI?
 (a) type class
 (b) typeid class
 (c) typeinfo class
 (d) RTTI_type class

Conceptual Exercises

 1. Why do we need RTTI? Suggest some cases where
we need to use RTTI.

 2. What are polymorphic objects?

468 Programming with ANSI C++

 3. We have seen one case in the text where virtual
functions cannot directly solve our problem. We
have provided a RTTI-based solution there. Can
you suggest some other cases similar to this?

 4. What is the need for typeinfo object? What is the
role of the typeid operator in RTTI?

 5. Give an example of conversion of a program
using dynamic_cast to typeid other than the one
provided in the book.

 6. Is it possible to convert a problem solved using
dynamic_cast to one using typeid? Give your
views on such conversion.

 7. Write down the differences between solutions
provided using typeid and using dynamic_
cast.

 8. What are the problems with the use of typeid
mechanism for solving problems?

 9. Design a few class hierarchies yourself. Identify
cases where we can use virtual functions, typeid,
and dynamic_cast.

10. Draw a comparison between different casting
operators.

11. When working with templates, do we need to use
RTTI?

12. Suggest a few cases where downcasting or cross
casting is useful.

Practical Exercises

1. Read an integer and a fl oat. Try to compare them
using typeid. Print their type names using a
function name(). Now, cast the integer into fl oat.
Repeat the same thing. Try comparing the types of
both the items using the == operator.

2. Recall Problem 9 of Chapter 10 related to visiting
faculty and regular faculty. Visiting faculty is
now divided into visiting faculty from another
educational institute and visiting faculty from
non-educational institute. All visiting faculty now
need facility for transport. Details of such need are
stored with their objects and can be retrieved using
a function TransportNeed(). This function cannot
be a part of the faculty base class. Use typeid to
fi nd whether the faculty is a regular faculty or not,
and then read the need for transport.

3. Replace typeid with dynamic_cast to provide a
single statement instead of two different typeid
statements in Problem 4.

4. Recall Problem 1 of Chapter 10 and defi ne objects
 of all three (time) classes. Use dynamic_cast to

provide proper casting. Display error messages
when proper casting cannot be done.

 5. Replace dynamic_cast with typeid in Problem 4
and rewrite the program.

 6. Write a program that takes the names of two
different classes and gives the response ‘Yes’ when
one class is inherited from the other; otherwise, the
response is ‘No’.

 7. Defi ne a class Variables. It should contain the
variable name, its type, the index in the symbol
table, and constructors and destructors. Inherit
that into SystemVariable and UserVariable.
SystemVariable indicates the system process
that has generated that variable. UserVariable
indicates the user id that initiated that variable.
Defi ne CompilerVariable as multiple inherited
from SystemVariable and UserVariable. Defi ne
a pointer to Variable class and use dynamic_cast
to downcast it to a variable of type SystemVariable.
Provide error messages if dynamic_cast fails. (It
fails when the pointer is not actually pointing to
SystemVariable class.)

 8. Provide cross casting for Problem 7. (Hint: defi ne
a pointer pointing to SystemVariable. Now,
make it

 point to an object of CompilerVariable. Dynamic
cast that SystemVariable pointer to UserVariable
pointer.)

 9. Rewrite the DangerousFunction given in Program
11.7 in the chapter and use the same function to
manipulate the string variable. (Hint: Use the same
const_cast with argument char *).

10. Recall Problem 3 of Chapter 10. Now, provide
typeid to check for the type of student that a
student pointer is pointing to and then cast it.
Provide dynamic_cast to do the same.

11. Design a class hierarchy with student class as
base and Computer, IT, and Mechanical as classes
derived from student class. Add required attributes
to all these classes and provide downcasting from
a pointer to student pointing to IT student to a
Computer student.

12. Write a program to read the following hierarchy.
Employee is derived into PermanentEmploy-
ees and DailyEmployees. PermanentEmployees
are derived into DepartmentalEmployees and
CompanyEmployees. CompanyEmployees are de-
rived into RegionalManagers and AreaManagers.
DepartmentalEmployees are derived into Sales,

Run-time Type Information and Casting Operators 469

Production, and HumanResource employees. De-
fi ne a single array for storing all employee objects.
Defi ne a function Salary, which displays the sal-
ary (do not calculate salary; just display any value)
of permanent employees alone. Use dynamic_cast
to solve the problem.

 (Hint: we cannot use virtual functions defi ned
in the Employee class here as DailyEmployees
do not have salary functions defi ned. We have
to defi ne salary as a virtual function in the class
PermanentEmployees. We have to use Employee
pointer to access the objects. Whenever it is valid

to cast from Employee to PermanentEmployees,
the object belongs to any of the descendants of
PermanentEmployees class. dynamic_cast helps
us to fi nd this.)

13. Defi ne a Student class. Inherit that into MCAStu-
dents and NonMCAStudents classes. MCAStudents
inherits into GLSStudents and NonGLSStudents.
A function ShowPracticalHours() can only be
applied to MCAStudents. We have a base class
Student pointer to point to a GLSStudents object.
Use dynamic_cast to check that NonMCAStudents
do not call ShowPracticalHours().

Chapter 12
Streams and Streams and
Formatted Input /Formatted Input /
OutputOutput
12.1 INTRODUCTION

Provision for input /output (I/O) is one of the major tasks of a program-
ming language. Streams are (conceptually) pipe-like constructs used
for providing I/O. When a programmer needs to handle input from or
output to external entities such as a keyboard, fi le, or printer, then streams
are used.

Different devices have different I/O specifi cations. For example, printers
can be used for output but not for input, keyboard can be used only for
input and not for output, and the hard disk is used for both. Conventional
monitors of our desktop machines are output devices, but swanky touch
screen monitors avoid keyboards by also acting as an input device.

Writing to a disk is a different operation from writing to a printer. In
disks, the sector to write is determined, the head is placed on top of it, and
the proper representation for input (what magnetic value to write for one
and zero) is to be provided. If the sector is full, another empty sector is
found to continue writing. It is also to be mentioned somewhere that the
new empty sector that has been found is in continuation with the earlier
sector. As a result, the content looks contiguous while reading a fi le. When
writing to a disk, it is possible to have multiple disk writes from different
users executed (disk being a shared resource).

Writing to a printer is an entirely different case. Here, writing means
placing the printer head at the required position (in case of dot matrix)
or selecting one from various heads for a given position (in case of line
printer); inkjet and laser printers use a totally different technology. Writing
to a terminal of a multi-user system involves yet another complexity. Some
sort of address manipulation (fi nding out where the destination machine is)
and a communication protocol are to be used.

To conclude, the operation remains same, that is, writing. One can write
to both the printer and the hard disk. However, the execution is different
because the devices involved are different.

To make things even more complex, vendors keep upgrading their
devices with new features and services. An upgraded product may perform

Learning Objectives

• Concept of input/output (I/O)
and streams

• Predefi ned streams in C++
• Formatted and unformatted

I/O
• Formatting using I/O

members
• fmtfl ags and displaying the

fl ag information
• Manipulators and their use in

formatting
• User-defi ned manipulators

Though output and
input operations look
the same, actual
devices need different
types of attention to
complete them.

Streams and Formatted Input /Output 471

the same tasks in a different way. For example, a new laser printer may have
the ability to print more number of colours than its predecessor. Given all
these complexities, how does a programmer communicate with different I/O
devices?

The problem is solved partly by the vendors by providing device drivers and
partly by the operating system (OS) by providing an interface of the device
drivers to the program. The OS can provide a consistent interface for all such
devices in a way that when one asks for write operation, the OS would look at
the particular device and execute the write operation that suits the device. For
example, if one writes to a printer, the OS sends the printer driver a message
for writing, and the printer driver sends the commands suited for that brand
of printer and gets the job done. Instead, if one writes to a disk, the OS does
the same operation, but now communicating to the disk driver. Since the OS
provides a consistent interface for writing, there is no need to know where one
is writing. For example, when a printf() statement is written in C, by default, it
writes to the screen. However, if the executable were redirected to some fi le, the
same printf() statement would write to that fi le. If the fi le were redirected to a
printer, it would print on the printer. Thus, the OS provides abstraction by taking
all the pressure on its shoulders.

The OS soaks in all the complexity and makes the programmer’s life easy
by providing a consistent interface. This interface, in other words, is known as
a stream. Streams provide independence from having different operations for
different I/O devices. When printf() or cout is used, one is writing to a stream
and not to the device directly. Conceptually, it is easier to consider the stream
as a pipe-like structure. When one writes to a stream, one is writing to one end
of the pipe. The other end is by default attached to the screen. When the OS
provides redirection (using > operator with executable fi les such as test.exe>
OutputFile), the other end of the pipe is then attached to the redirected device. This
does not make any difference to the user’s end; he/she can continue writing in the
same way.

12.2 I/O STREAMS OF C VS C++

C++ provides two different stream-based I/O systems. Due to the backward compatibility
needed with C, C++ provides C stream I/O as it is. One can still include <stdio.h> and use
printf() and scanf() in the programs (though it is not recommended). It also provides a
new I/O (the one with cout, cin, and << and >> operators overloaded). The new I/O is also
stream-based.

Though C I/O is still available and is robust and proven, there are a few distinct advantages
of using C++ I/O, which are as follows:

1. C++ I/O is object-oriented. Objects represent streams in C++. cout is an object of the
output stream class, whereas cin is an object of the input stream class. << and
>> are overloaded operators in those streams. Using objects from istream or
ostream class enables the users to overload operators provided by that stream to
use it for user-defi ned types. We have earlier seen examples to overload << and >>

Due to competition,
vendors keep on
adding features to
devices. This requires
more operations to
be managed by the
programmers.

The OS provides input
and output streams,
which programmers
use for reading and
writing to devices.

The OS provides an
interface with which
external programs can
interact, regardless of
the type of the I/O
devices and their
complexity. All prog-
ramming languages
extend this interface
to the programmers
so that they can write
to or read from the
stream. C++, not
being an exception,
supports stream-
based I/O.

C++ provides C-type
I/O as well as a new
object-oriented I/O.

472 Programming with ANSI C++

operators for user-defi ned objects for providing I/O operations. On the contrary, objects
are not available in C I/O stream and it has no mechanism to provide such natural I/O to
user-defi ned objects.

2. C++ I/O stream contains richer formatting options than C. It is possible to have the
programmer’s own format operators known as user-defi ned manipulators in C++. We will
be learning about manipulators in Section 12.11.

3. Though not apparent at fi rst glance, C++ I/O is much easier to use. We have seen the
use of cin without the ‘&’ operator unlike scanf(). We have also used overloaded << and
>> operators for I/O. For fi le manipulation, C++ provides constructor functions, which
makes it very easy to use fi les. Writing to and reading from text fi les can be performed
using >> and << operators. We will be looking at those operations in Chapter 13.

Note C++ I/O streams are object-oriented, contains richer formatting options, and are more user-friendly
than C-type I/O.

12.3 OLD C++ I/O VS ANSI C++ I/O

ANSI C++ I/O has the following two important differences as compared to the original
C++ I/O.

Richer set of operations ANSI C++ I/O has more number of operations than the old I/O.
The old I/O was supported by iostream.h fi le, whereas the new I/O is supported by <iostream>
fi le. There are some new data types and new features in the newer version of the I/O library. The
ios class contains the fundamental operations that are possible to be performed on the stream.
These operations are provided as member functions. The ios class also contains a number of

variables that can be manipulated to achieve the desired effect on the stream that
is being dealt with. I/O has been enhanced to a large extent in the newer version.

Separate namespace and no global sharing The old library used to work
in the global namespace, but the new library works in the std namespace. The
difference will be clearer when we study namespaces in Chapter 16. At the
moment, consider namespaces as a type of wrapper. If C++ standard library
contains one function, one cannot create another function with the same name in
the same namespace.

Suppose there are two abs() functions, one for absolute values (provided
by the standard library) and another for displaying the absent students in an
educational organization, with the same set of arguments. In such cases, the
compiler is bound to get confused and hence the program will not be compiled.
When the standard library is wrapped in std, it is possible to defi ne the functions
as per the programmer’s wish, because the library functions are not available in
the global namespace. If the function abs() is now defi ned for absent percentage,
one can differentiate between both the functions, abs() (programmer’s function)
and std::abs() (the standard library function). Note that here it is assumed that
one has not written using namespace std as usual.

This facility makes life easier for the programmers of the third-party libraries
while naming their global variables and functions. They can name them as they
like. If there is a need to develop a library for a client, it is possible to defi ne
functions without having to bother about possible confl icts. Without namespaces,

There are two
important differences
between old and new
C++ IOs; it is richer in
operations and uses a
separate namespace.

Two functions with
the same name can
be differentiated if
they are a part of two
different namespaces.

Third-party library de-
velopers can name
functions in their own
way without worrying
about colliding with
names used by stan-
dard library or some
other library developer.

Streams and Formatted Input /Output 473

there would have been a need to ensure that the programmer does not name the functions the
same as those in the C++ standard library itself (or some other third-party library, which is
already installed in the target machine). The identifi er names of the programmer now have
no chance of collision with the standard library identifi er names.

12.4 PREDEFINED AND WIDE CHARACTER STREAMS

C++ has a few predefi ned streams. Whenever a C++ program starts execution, these streams
automatically open on their own. Table 12.1 lists the predefi ned streams.

Stream Meaning Default source/destination

cin Standard input stream Keyboard

cout Standard output stream Screen

cerr Standard error stream with no buffer Screen

clog Standard error stream with buffer Screen

Table 12.1 Predefi ned streams

To receive an international standardization from the International Organization for
Standardization (ISO), the designers of C++ have added some specifi c features to enable
to work globally. One such feature is the support for wide character streams. Some of the
languages (e.g., Chinese) cannot accommodate themselves in the small 8-bit footprint of
ANSI. They require bigger 16-bit Unicode to represent their character set. These streams are
win, wout, werr, and wlog.

12.5 C++ STREAM CLASSES HIERARCHY

The I/O hierarchy shown in Fig. 12.1 is usually
mentioned without the prefi x basic_, that is, basic_
ios is usually referred to as ios. The ios_base class
contains the details not needed for templatization.
basic_ios and its descendants are all templatized.
basic_streambuf provides the mechanism to access
the stream using lower-level functions. It also
provides services to other classes. There are a few
more items in the hierarchy that are not mentioned
here. One can refer to Stroustrup’s classic The
C++ Programming Language for further details.

12.6 FORMATTED AND UNFORMATTED I/O

We have already studied about unformatted I/O using cout. The operator << is usually
used with cout object to support unformatted output. Though not used much, there are
other ways of formatting I/O. Later on, we will see how rich formatting is possible using
operator <<. Besides the default << operator, there are other ways to provide unformatted I/O.

Fig. 12.1 I/O hierarchy

ios_base

basic_streambuf

basic_ostream

basic_ofstream basic_iostream

basic_fstream

basic_ifstream

basic_istream

basic_ios

474 Programming with ANSI C++

12.6.1 put() and get() Functions for cout
The functions cout.get() and cout.put() are used for reading and writing to the stream. These
functions are similar to getc() and putc() functions available in C. cout.get() has two different
versions. The fi rst has the prototype void get(char) and the other has the prototype char
get(void). The following program looks at both the versions and also shows how put() function
is used for display. Both functions operate on char and are very simple to understand. get()
reads a char at a time from the input stream and put() writes a char at a time to the output stream.

//GetAndPut.cpp
#include <iostream>
using namespace std;
int main()
{
 char ch;
 char Data1Read[100];
 char Data2Read[100];
 for(int i = 0; ; i++)
 {
 cin.get(ch);
 if(ch == '\n')
 {
 Data1Read[i] = '\0';
 break;
 }
 Data1Read[i] = ch;
 }
 for(i = 0; ch = Data1Read[i]; i++)
 {
 cout.put(ch);
 }
 cout.put('\n');
 for(int i = 0; ; i++)
 {
 ch = cin.get();
 // Other version of get()
 if(ch == '\n')
 {
 Data2Read[i] = '\0';
 break;
 }
 Data2Read[i] = ch;
 }
 for(i = 0; ch = Data2Read[i]; i++)
 {
 cout.put(ch);
 }
 cout.put('\n');
}

Streams and Formatted Input /Output 475

Output
This is testing of fi rst get and put
This is testing of fi rst get and put
This is testing of second get and put
This is testing of second get and put

Note the two versions of get(). The fi rst is cin.get(ch). Here, the character read from the
stream is bound to the argument (ch). In the other case ch = cin.get(), the value returned from
the get() function is assigned to ch. There are no arguments to the get() function at the moment.

12.6.2 getline(), read(), and write() Functions
C has gets() and puts() functions for reading and writing strings. They are better than
using scanf() because scanf() with %s option has a problem of terminating when a white
space is encountered. gets() does not have this problem. These functions also provide easy
management than scanf() and printf(). A similar functionality is provided in C++ using
getline(), read(), and write() functions. In addition to the string parameter for reading and
writing by gets() and puts(), these three functions have one additional parameter indicating
the size of the string. The prototypes for these three functions are as follows:

cin.getline(string variable, maximum size of string that can be input)
cin.read(string variable, maximum size of string that can be input)
cout.write(string variable, maximum size of string that can be output)

These functions are used with old C-style strings. The C++ strings are discussed
in Chapter 15. The difference between getline() and read() is that getline()
terminates when a new line is entered, whereas read() does not stop when a
new line is encountered. It stops only when end of fi le (ctrl-Z or ^Z for DOS
and Windows fi les, and ctrl-d or ^d for Linux or UNIX fi les) is encountered.
getline() also stops reading from the input if end of fi le is specifi ed.

Let us look at Program 12.1 to understand this. The maximum number of
characters has been specifi ed as 100 while reading, but only 50 while printing;
so, some portion of the string is not printed when we write cout.write.

scanf() terminates
when a white space is
encountered, where-
as gets() does not
suffer from this
problem.

getline() termi-
nates when a new line
is entered, whereas
read() is not affected
by a new line.

PROGRAM 12.1 getline() and write()
//GetlineAndWrite.cpp
#include <iostream>
using namespace std;

int main()
{
 char Message[100];
 cin.getline(Message, 100);
 cout.write(Message, 50);
 cout << endl;
 cin.read(Message, 100);
 cout.write(Message, 50);
 cout.write("\n", 1) ;
}

Output
This is testing of getline and then we have read test

476 Programming with ANSI C++

How the Program Works
The program has demonstrated the use of the three different functions, namely, cin.
getline(), cin.read(), and cin.write(). When the user types characters, getline() or read()
accepts only the maximum number of characters specifi ed in the argument. The number of
characters printed is taken from the characters read. This is why there is a mismatch between
the characters input and the characters displayed as output.

12.7 FORMATTING I/O

Formatting can be done using two different ways. The fi rst method is to use built-in ios
functions. Table 12.2 lists the various ios member functions.

This is testing of getline and then we have read t
Now the read is being tested
It requires ctrl-Z to end
^Z
Now the read is being tested
It requires ctrl-Z to

Table 12.2 Use of ios functions

ios member function Use

width() This specifi es the width for display. The output will take up the width specifi ed. It is used in
aligning vertical columns of numeric items.

precision() This specifi es the precision of the fl oating-point number. The default precision is six digits after
decimal point.

fi ll() This specifi es the character for fi lling up the unused portion of fi eld. It is usually used with
width member function. The remaining part of the fi eld will be fi lled up with the char specifi ed.
Default char is space.

setf() This specifi es the format fl ags that control output display such as left or right justifi cation,
padding after sign symbol, scientifi c notation display, and displaying base of the number (such
as hexadecimal, decimal, and octal).

unsetf() This provides undo operation for the operations with setf().

12.7.1 Member Functions of ios
The prototype for all the following functions is:

<old value of stream> function_name(<specifi ed new value>)

The functions set the new value to the stream and return the old value. The
width() function sets the new width to the argument specifi ed and returns the old
width. The precision() function sets new precision and returns the old precision.
Similarly, fi ll() returns old fi ll char and sets new fi ll char.

width()
It specifi es the minimum fi eld width for display. The output following this statement will use the
width specifi ed. It resets itself after the fi rst output after this statement. The output of the statements

All ios functions re-
turn old values of the
stream while they are
called to set them to
new values.

Streams and Formatted Input /Output 477

cout.width(10);
cout << "C++";
cout << "Language"

will be SSSSSSSC++Language. (S is used to indicate a space in the output.)
It can be seen that the output for cout << "C++" was provided in the width of 10, but the

output for cout << "Language" is not. If one wants to provide the same width setting to the
second cout statement as well, one more width specifi cation should be added to it using one
more cout.width in the following way:

cout.width(10);
cout << "C++";
cout.width(10);
cout << "Language";

Then, the output will be

SSSSSSSC++SSLanguage

Thus, cout.width() must precede any output for which width is to be set as it changes back
to original value immediately after executing a single output.

Notes

 1. If the actual output exceeds the specifi ed width, the complete output is provided and the value specifi ed
in width() is ignored.

 2. The formatting function width() operates on a single cout statement. The original width is restored after
that.

precision()
It specifi es precision, that is, the number of digits to be displayed after the decimal point.
As mentioned earlier, the default value is six. The precision function is important while
displaying numbers in scientifi c notation, printing amount data where precision is two, or
aligning fl oating point numbers for vertical alignment.

fi ll()
The function fi ll(char) fi lls the subsequent empty portions of fi elds by the fi ll character
specifi ed. It is useful to print the ‘*’s preceding the amount information in cheques.

Consider Program 12.2 to understand the usefulness of the three ios member functions.

PROGRAM 12.2 width(), precision(), and fi ll()
//Width.cpp
#include <iostream>
using namespace std;

int main()
{
 cout << "Roll number"; cout << "Name"; cout << "Marks" << endl;
 cout << 1 << "Lara" << 355.50 << endl;
 cout << 2 << "Beckham" << 275 << endl;
 cout << 3 << "Steffi " << 290.75 << endl;
 cout << 4 << "Jaspal" << 295 << endl;
 cout << 5 << "Ranatunga" << 200.60 << endl;

478 Programming with ANSI C++

 cout.width(15); cout << "Roll number"; cout.width(15);
 cout << "Name"; cout.width(10); cout.precision(2);
 cout << "Marks" << endl;

 cout.fi ll(' '); cout.width(15); cout << 1; cout.width(15);
 cout << "Lara"; cout.width(10); cout.fi ll('0');
 cout.precision(2); cout << 355.50 << endl;

 cout.fi ll(' '); cout.width(15); cout << 2; cout.width(15);
 cout << "Beckham"; cout.width(10); cout.fi ll('0');
 cout.precision(2); cout << 275 << endl;

 cout.fi ll(' '); cout.width(15); cout << 3; cout.width(15);
 cout << "Steffi "; cout.width(10); cout.fi ll('0');
 cout.precision(2); cout << 290.75 << endl;

 cout.fi ll(' '); cout.width(15); cout << 4; cout.width(15);
 cout << "Jaspal"; cout.width(10); cout.fi ll('0');
 cout.precision(2); cout << 295 << endl;

 cout.fi ll(' '); cout.width(15); cout << 5; cout.width(15);
 cout << "Ranatunga"; cout.width(10); cout.fi ll('0');
 cout.precision(2); cout << 200.60 << endl;
}

Output
Roll number Name Marks
1 Lara 355.5
2 Beckham 275
3 Steffi 290.75
4 Jaspal 295
5 Ranatunga 200.6

Roll number Name Marks
1 Lara 003.6e+002
2 Beckham 0000000275
3 Steffi 002.9e+002
4 Jaspal 0000000295
5 Ranatunga 00002e+002

How the Program Works
Take a look at the unformatted as well as the formatted outputs. The formatted output
looks better than the unformatted output (except names being right justifi ed and marks are
not displayed in proper non-scientifi c notation; we will learn to set it right soon in
Program 12.4). Now, look at the code. It seems there are more formatting statements than
the actual output statements. These statements are a must in circumstances that involve
displaying reports or printing them.

Such statements can be eliminated by using a simple function that does the formatting.
The function then should be called using the required values. This is left as an exercise to
the reader.

Now, let us see how roll numbers and names can be left aligned, while marks are aligned
to their precision. The setf() function needs to be used to set these fl ags. Note the use of
endl in the statements; it is used to provide the same effect as ‘\n’, that is, providing a new
line on the output. It is one of the manipulators that will be discussed later in this chapter in
Section 12.11.

Streams and Formatted Input /Output 479

12.8 SETTING AND CLEARING FORMAT FLAGS

The format fl ags are attached with every stream that is used. The ios_base class defi nes a
bitmask enumeration where 18 fl ags are defi ned. Table 12.3 lists the format fl ags and their
roles.

Table 12.3 Format fl ags

Flag name Description

skipws Skip initial white space while reading from a stream.

left Output is left justifi ed.

right Output is right justifi ed.

internal Numeric value is padded with space between sign or base (0x, 0, etc.) character.

oct Output is displayed in octal format.

hex Output is displayed in hexadecimal format.

dec Output is displayed in decimal format.

showbase Numeric values will be displayed with base character such as displaying Hex 1E as 0x1E (Hex
also needs to be specifi ed before this, because decimal is the default).

uppercase The x in showbase and the e in scientifi c notation are displayed in lower case. If uppercase is
set, they would be displayed as X and E, that is, in upper case.

showpos A leading + sign is displayed before positive values. This is not displayed by default.

showpoint Decimal point will be displayed even if it is not present. Trailing zeros will also be displayed for all
fl oating point values (this is needed for the example given earlier).

scientifi c Output displays fl oating point values in scientifi c notation.

fi xed Output is displayed in fi xed (non-scientifi c) notation.

unibuf Buffers are fl ushed after every insertion. It is similar to fl ushing a stream after reading, so that no
more extra chars are left out and subsequent read statements have no problem.

boolalpha Enable the Boolean values or the input to be displayed as true or false rather than 1
and 0.

basefi eld Collection of oct, dec, and hex. Needs to be specifi ed as the second argument if any one of the
three is the fi rst argument to setf()

adjustfi eld Collection of left, right, and internal fi eld. Needs to be specifi ed as the second argument if any
one of the three is the fi rst argument to setf()

fl oatfi eld Collection of scientifi c and fi xed. Needs to be specifi ed as the second argument if any one of the
two is specifi ed as the fi rst argument

All these fi elds can be set and unset using setf() and unsetf() functions available with the
cout object. The following program demonstrates the effect of setting some of the fl ags on
output. After every set and respective display, there is a call to unsetf() function to revoke
the effect of applying that fl ag.

480 Programming with ANSI C++

Notes

 1. If we do not unset the fl ags, they will remain in effect until the program is over.
 2. Operations for setting and unsetting fl ags are setting bits in a variable of type fmtfl ags defi ned in ios_

base. One can use bitwise OR to set or unset multiple bits together.

//SetFlags.cpp
#include <iostream>
#include <string>
using namespace std;
int main()
{
 cout << "See that the effect of ios::showpos is to show leading plus sign\n";
 cout.setf(ios::showpos);
 cout << 100.0 << endl; cout.unsetf(ios::showpos); cout << endl;
 cout << "See that the effect of ios::showpoint is to show decimal point\n";
 cout.setf(ios::showpoint);
 cout << 100.0 << endl;
 cout.unsetf(ios::showpoint);
 cout << endl;
 cout << "See the effect of both the above together\n";
 cout.setf(ios::showpoint | ios::showpos);
 cout << 100.0 << endl;
 cout.unsetf(ios::showpoint | ios::showpos);
 cout << endl;
 cout << "See the effect of both upper case and scientifi c together\n";
 cout.setf(ios::uppercase | ios::scientifi c);
 cout << 100.123 << endl;
 cout.unsetf(ios::uppercase | ios::scientifi c);
 cout << endl;
 cout << "See how 100.123 is printed with default right alignment\n";
 cout << "and then see how it changes after left alignment\n";
 cout.width(20);
 cout << 100.123 << endl;
 cout.setf(ios::left);
 cout.width(20);
 cout << 100.123 << endl;
 cout.unsetf(ios::left);
 cout << endl;
 cout << "See the effect of using internal, which displays the sign in the left and

right justifi es the output, thus fi lling the spaces in between\n";
 cout.setf(ios::internal | ios::showpos);
 cout.width(20);
 cout << 100.123 << endl;
 cout << endl;
 cout << "Now, see the effect of fi ll char with internal\n";
 cout.width(20);

Streams and Formatted Input /Output 481

 cout.fi ll('*');
 cout << 100.123 << endl;
 cout.unsetf(ios::internal | ios::showpos);
 cout.fi ll(' ');
 cout << endl;
 cout << "See how truthfulness is printed as 1 by default and is changed to true when
 boolalpha is set with cout\n";
 bool Test = true;
 cout << Test << endl; // Displays 1
 cout.setf(ios::boolalpha);
 cout << Test << endl; // Displays true
 cout << endl;
 cout << "See how truthfulness is read as 0 or 1 by default. It now accepts false or

true when boolalpha is set with cin \n";
 cout << "Please enter true or false\n";
 cin.setf(ios::boolalpha);
 cin >> Test;
 cout << Test << endl;
}
Output
See that the effect of ios::showpos is to show leading plus sign + 100
See that the effect of ios::showpoint is to show decimal point 100.000
See the effect of both the above together +100.000
See the effect of both upper case and scientifi c together 1.001230E+002
See how 100.123 is printed with default right alignment and then see how it changes
after left alignment 100.123
100.123
See the effect of using internal, which displays the sign in the left and right
justifi es the output, thus fi lling the spaces in between + 100.123
Now, see the effect of fi ll char with internal +************100.123
See how truthfulness is printed as 1 by default and is changed to true when boolalpha
is set with cout
1
true
See how truthfulness is read as 0 or 1 by default. It now accepts false or true when
boolalpha is set with cin
Please enter true or false
false
false

12.9 USING setf() FUNCTION WITH TWO ARGUMENTS

The setf() function can have two arguments instead of one. It is required by most of the
implementations to clear other related fl ags to set a new fl ag. Suppose one wants to set the
internal fl ag. It may require clearing the left and right fl ags. All the three fl ags, that is, left,
right, and internal, belong to the same group, and any two of them cannot remain active
together at the same point of time.

482 Programming with ANSI C++

Earlier when cout.setf(ios::left) was used, the VC++ 7.0 version does the
unsetf(ios::right) by itself. This is needed because it is not possible to have
both the left and right justifi ed fl ags set at the same point of time. In case the
implementation does not take care of the unsetting, the programmer needs to do
it. One can use the unsetf() function that has been used in the previous program,
but it is easier to write setf() with two arguments (as a single setf() instead of
two unsetf() and one setf()).

The syntax of the two-argument setf() is an extension of the simple setf()
with one argument. When there is a setf() with two arguments, both the

arguments are of type fmtfl ags. The following statement can be written

cout.setf(ios::showpos, ios::showpos)

This statement means set showpos if showpos is available as the second argument. It
clears showpos before setting it. The clearing of showpos is done because it is mentioned in
the second argument.

If the statement is as follows:

cout.setf(ios::showpos | ios::left, ios::showpos)

then ios::left is not applied because it is not specifi ed in the second argument. This strange
behaviour of setf() is useful in setting values where other values are mutually exclusive to it.

For example, if one writes

cout.setf(ios::left, ios::right | ios::left | ios::internal)

then ios left is set, but before that right, left, and internal are all unset. Some
implementations may not favour the previous form of setf(), and one needs to
explicitly unsetf() other exclusive items. It is easier to write

ios::right | ios::left | ios::internal

because it is the same as ios::adjustfi eld, which is provided by C++. So, the
code is now reduced to

cout.setf(ios::left, ios::adjustfi eld)

Similarly, ios::basefi eld is the same as ios::oct | ios::dec | ios::hex. So,
for setting display in hexadecimal, one needs to write

cout.setf(ios::hex, ios::basefi eld)

Consider Program 12.3, which explains the use of setf() with two arguments.

Writing cout.
setf(ios::left)
and cout.setf
(ios::left,
ios::adjustfi eld)
produces the same
result in most of the
systems, but the latter
is better because it will
also work with those
systems that require
explicit unsetting.

PROGRAM 12.3 setf() with two arguments
//Set2ArgFlags.cpp
#include <iostream>
#include <string>
using namespace std;

int main()
{
 cout << "See that the effect of ios::showpos is to show leading plus sign\n";
 cout.setf(ios::showpos, ios::showpos);
 cout << 100.0 << endl;
 cout.unsetf(ios::showpos);
 cout << endl;

In case of unsetf()
and two-argument
setf(), the feature
specifi ed in the
second argument is
set fi rst. The execu-
tion moves from right
to left.

Streams and Formatted Input /Output 483

 cout << "See that the effect of ios::showpoint is to show decimal point\n";
 cout.setf(ios::showpoint, ios::showpoint);
 cout << 100.0 << endl;
 cout.unsetf(ios::showpoint);
 cout << endl;
 cout << "See the effect of both the above together\n";
 cout.setf(ios::showpoint | ios::showpos, ios::showpoint | ios::showpos);
 cout << 100.0 << endl;
 cout.unsetf(ios::showpoint | ios::showpos);
 cout << endl;
 cout << "See the effect of scientifi c \n";
 cout.setf(ios::scientifi c, ios::fl oatfi eld);
 cout << 100.123 << endl;
 cout.unsetf(ios::uppercase | ios::scientifi c);
 cout << endl;
 cout << "See how 100.123 is printed with default right alignment\n";
 cout << "and then see how it changes after left alignment\n";
 cout.width(20);
 cout << 100.123 << endl;
 cout.setf(ios::left, ios::adjustfi eld);
 cout.width(20);
 cout << 100.123 << endl;
 cout.unsetf(ios::left);
 cout << 100.123 << endl;
 cout.setf(ios::hex, ios::basefi eld);
 cout << 100 << endl; // Prints 64
 cout.setf(ios::oct, ios::basefi eld);
 cout << 100 << endl; // Prints 144
 cout.setf(ios::dec, ios::basefi eld);
 cout << 100 << endl; // Prints 100
 cout.setf(ios::showbase); // Prints the base
 cout.setf(ios::hex, ios::basefi eld);
 cout << 100 << endl; // Prints 0x64
 cout.setf(ios::oct, ios::basefi eld);
 cout << 100 << endl; // Prints 0144
 cout.setf(ios::dec, ios::basefi eld);
 cout << 100 << endl; // Prints 100
}

Output
See that the effect of ios::showpos is to show leading plus sign
+ 100
See that the effect of ios::showpoint is to show decimal point
100.000
See the effect of both the above together
+100.000
See the effect of scientifi c
1.001230e+002
See how 100.123 is printed with default right alignment and then see how it changes after
left alignment
100.123
100.123 100.123
64
144
100
0x64
0144
100

484 Programming with ANSI C++

PROGRAM 12.4 Printing mark sheet
//MarksheetPrinting.cpp
#include <iostream>
using namespace std;

int main()
{
 cout.width(15);
 cout.setf(ios::left); cout.setf(ios::fi xed); cout.precision(2); cout.setf(ios::showpoint);

 /* The same code that we had in Program 12.2 comes here */
}

Output

Roll number Name Marks
1 Lara 355.50
2 Beckham 275.00
3 Steffi 290.75
4 Jaspal 295.00
5 Ranatunga 200.60

How the Program Works
The important line here is

cout.setf(ios::left); cout.setf(ios::fi xed); cout.precision(2);
cout.setf(ios::showpoint);

The output is left justifi ed, and non-scientifi c format is used for displaying the
fl oating point numbers. Precision of two is applied for displaying marks with
two digits after the decimal and showing a decimal point even when there is no
need. This is done to have the marks aligned properly.

12.10 EXAMINING AND CLEARING FLAGS

It is possible to fi nd which fl ags are set and also possible to clear them using the setf()
function. The argument to setf() is of type fmtfl ags. It is defi ned as an
enumeration of bitmask in ios.

Every ios function described in this chapter returns the previous status of the
stream in the form of fmtfl ags. There are also function fl ags as a member function
of cout, which return fl ags settings. Let us look at Program 12.5 to understand
how to use it.

Setting and unsetting
multiple fl ags are done
by combining them us-
ing the pipe character
(bitwise OR)

The argument to
setf() function is of
type fmtfl ags, which
is an enumeration of
bitmask.

How the Program Works
Note that most of the setf() statements are those that have successfully worked in the single
argument version. The setf() for setting base may not work in some installations. In that
case, one needs to provide the two-argument setf() to print it right. The conclusion is that
if one wants the program to be portable across various platforms, it is safer to use the two-
argument setf(), even if it may be a little tedious.

Program 12.2 is rewritten as Program 12.4 to display the names left justifi ed and marks
in scientifi c notation.

Streams and Formatted Input /Output 485

PROGRAM 12.5 Examining and resetting fl ags
//ExamineAndResetFlags.cpp
#include <iostream>
using namespace std;
void DispFlags()
{
 ios::fmtfl ags FlagStatus;
 long Flag1by1;

 FlagStatus = (long) cout.fl ags();
 cout << endl;
 for(Flag1by1 = 0x4000; Flag1by1; Flag1by1 >>= 1)
 if(Flag1by1 & FlagStatus)
 cout << 1;
 else
 cout << 0;
}

void SetAndDispFlag(long FlagVal)
{
 cout.fl ags(FlagVal);
 DispFlags();
}

int main()
{
 cout << "Current set of fl ags";
 DispFlags();
 long NoFlagsOn = 0;
 cout.fl ags(NoFlagsOn);

 DispFlags();
 SetAndDispFlag(ios::boolalpha); cout << "boolalpha";
 SetAndDispFlag(ios::fi xed); cout << "Fixed";
 SetAndDispFlag(ios::scientifi c); cout << "Scientifi c";

 SetAndDispFlag(ios::hex); cout << "Hex"; SetAndDispFlag(ios::oct); cout << "Oct";
SetAndDispFlag(ios::dec); cout << "Dec";

 SetAndDispFlag(ios::internal); cout << "Internal";
 SetAndDispFlag(ios::right); cout << "Right";
 SetAndDispFlag(ios::left); cout << "Left";

 // SetAndDispFlag(ios::showpos);
 SetAndDispFlag(ios::showpoint); cout << "Showpoint";
 SetAndDispFlag(ios::uppercase); cout << "Upper case";
 SetAndDispFlag(ios::skipws); cout << "Skip white space";

 SetAndDispFlag(ios::fl oatfi eld); cout << "Float fi eld";
 SetAndDispFlag(ios::adjustfi eld); cout << "Adjust fi eld";
 SetAndDispFlag(ios::basefi eld); cout << "Base fi eld \n";
}

Output
Current set of fl ags 000001000000001
000000000000000 // All the fl ags are cleared here
100000000000000 boolalpha
010000000000000 Fixed
001000000000000 Scientifi c
000100000000000 Hex
000010000000000 Oct
000001000000000 Dec

486 Programming with ANSI C++

How the Program Works
We have to look at the last 14 bits of the value returned from the fl ags function. It is a long
variable. We start with 4,000 hex given to a variable FlaglByl. That is, the 14th bit from the
left-hand side is one and all other bits are zero. We bitwise-AND the same value (4,000 hex)
with the status we have received from the fl ags function. If it is one, then the 14th bit is set in
the status. It indicates the boolalpha fl ag being on. We then right-shift Flag1By1 to get the 13th
bit and repeat the process until the last bit is checked. We continue until the value of Flag1By1
becomes zero, that is, every bit of the status is examined.

But why is the line displaying status for showpos commented? Observe the output after
uncommenting this line. Is there a problem? The solution to this problem is left as an exercise
to the reader.

12.11 MANIPULATORS

Manipulators are special functions for formatting. They can do all the formatting that is done
by the ios member functions. So why do we need both manipulators and ios functions?
Manipulators are better in some circumstances and provide an alternative way to solve the same
problem. The choice between manipulators and ios functions to solve formatting problems
sometimes depends on the preference of the user. Besides, there are a few other differences
as well. We will discuss that after checking how manipulators can replace the ios functions.

12.11.1 Using Manipulators instead of ios Functions
Table 12.4 lists a few manipulators and their equivalent ios functions.

Table 12.4 Manipulators and their equivalent ios functions
Manipulators Equivalent ios function

setw() width()

setprecision() precision()

setfi ll() fi ll()

setiosfl ags() setf()

resetiosfl ags() unsetf()

Let us now look at the following program, which is a sample code that shows how to use
manipulators in place of ios functions. Program 12.4 has been modifi ed as follows:

000000100000000 Internal
000000010000000 Right
000000001000000 Left
00000000001000 Showpoint
000000000000100 Upper case
000000000000001 Skip white space
011000000000000 Float fi eld
000000111000000 Adjust fi eld
000111000000000 Base fi eld

Streams and Formatted Input /Output 487

The output of this program is the same as that of Program 12.4 written using ios functions.
This program uses manipulators whereas Program 12.4 used ios functions. There are a few

differences between manipulators and ios functions. The differences between manipulators
and ios functions are listed in Section 12.11.2.

12.11.2 Differences between Manipulators and ios Functions
The differences between manipulators and ios functions are as follows:

1. Unlike ios functions, manipulators do not return the previous status. Suppose one wants
to change the current width to 15 and then revert to the previous width, or change the
precision to 2 and then switch back to the previous precision, it is possible using ios
functions. Take a look at the following code.

 int PrevWidth = width(15);
 int PrevPrecision = precision(2);
 /* Call a third-party function that might change the settings */
 width(PrevWidth);
 precision(PrevPrecision);

Such a code segment is better when it is a part of a function and one does not want the
user to apply his/her own setting while calling the function.

Note Format changes made on the stream are global. Formatting cin or cout at any place anywhere
affects the program as a whole. To write a foolproof function, we must set the required setting and
then unset everything upon exit to a previous setting. Thus, ios can prove useful in cases where the
previous value of a fl ag must be preserved.

//Manipulator1.cpp
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
 cout << setw(15) << setiosfl ags(ios::left)
 << setiosfl ags(ios::fi xed) << setprecision(2)
 << setiosfl ags(ios::showpoint);
 cout << "Roll number" << setw(15) << "Name" << setw(10) << setprecision(2)

<< "Marks" << endl;
 cout << setw(15) << 1 << setw(15) << "Lara" << setw(10) << setprecision(2) << 355.50

<< endl;
 /* setw and setprecision are required in each cout as their setting stays for only

one cout statement */
 cout << setw(15) << 2 << setw(15) << "Beckham" << setw(10)
 << setprecision(2) << 27 5.00 << endl;
 cout << setw(15) << 3 << setw(15) << "Steffi " << setw(10)
 << setprecision(2) << 2 90.75 << endl;
 cout << setw(15) << 4 << setw(15) << "Jaspal" << setw(10)
 << setprecision(2) << 295.0 << endl;
 cout << setw(15) << 5 << setw(15) << "Ranatunga" << setw(10)
 << setprecision(2)<< 200.60 << endl;
}

488 Programming with ANSI C++

2. Manipulators have a distinct advantage. It is possible to write our own manipulator and use
it in the program. Thus, the program using manipulators can defi ne its own manipulator
and use it for printing the mark sheet. It makes the program much more readable and short.
We will learn how to do it in Section 12.11. It is possible and more readable to overload the
‘<<’ operator for an object to display in a formatted way using functions (or manipulators).

3. ios functions are single. They cannot be combined to have multiple effects together. One
has to write

 cout.precision(2);
 cout.width(15);

as two separate sentences. On the contrary, it is possible to combine manipulators as
follows:

 cout << setprecision(2) << setw(15)

When a large set of formatting options is needed, manipulators are easy to write and
produce more readable codes.

4. ios functions require only the <iostream> fi le, whereas manipulators need the <iomanip>
fi le to be included additionally.

5. For some manipulators, there are no equivalent ios functions. One such example is endl
that outputs a newline character. As an additional job, it fl ushes the stream as well. Another
example is boolalpha. It is used to turn on or off displaying Boolean values as true or false
rather than one or zero. We have a setf() equivalent for doing this in ios functions

 cout.setf(ios::boolalpha)

and also using setiosfl ags as follows:

 cout << setiosfl ags(ios::boolalpha)

However, it is possible to write cout << boolalpha to have the same effect using a simple
representation. Similar manipulators are available for almost all the fl ags, which we can
set using setiosfl ags. Thus, there is almost no need to use setiosfl ags while working with
manipulators, whereas one needs to use setf() for such work with ios functions. Such
manipulators are known as shorthand manipulators.

6. When a manipulator does not take an argument, it is passed without parentheses, that is, ().
For example, we do not use endl(). Instead, only endl is used. Similarly, only hex is used
instead of hex(). On the contrary, the ios functions cannot be called without parentheses.

7. Some of the manipulators are needed in pairs to provide the toggle effect, for example,
showbase and noshowbase, boolalpha and noboolalpha, showpoint and noshowpoint,
etc. There are no such ios functions. The setf() and unsetf() functions with respective
arguments need to be used to have the same effect.

8. ios functions are member functions (static functions, which can be called ios::<function>),
whereas manipulators are non-member functions.

12.12 USING MANIPULATORS

In this section, we will discuss some more ways of using manipulators. We can left or right
align, display in upper or lower case, fi ll the range with a specifi c character, display bool
values as true or false, etc., using manipulators.

Streams and Formatted Input /Output 489

//SetFlagManip.cpp
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;
int main()
{
 cout << "See that the effect of ios::showpos is to show leading plus sign\n";
 cout << setiosfl ags(ios::showpos) << 100.0 << endl
 << resetiosfl ags(ios::showpos) << endl;
 cout << "See that the effect of ios::showpoint is to show decimal point\n";
 cout << setiosfl ags(ios::showpoint) << 100.0 << endl
 << resetiosfl ags(ios::showpoint) << endl;
 cout << "See the effect of both the above together\n";
 cout << setiosfl ags(ios::showpoint | ios::showpos) << 100.0 << endl <<

resetiosfl ags(ios::showpoint | ios::showpos) << endl;
 cout << "See the effect of both upper case and scientifi c together\n";
 cout << setiosfl ags(ios::uppercase | ios::scientifi c) << 100.123 << endl <<

resetiosfl ags(ios::uppercase | ios::scientifi c) << endl;
 cout << "See how 100.123 is printed with default right alignment\n";
 cout << "and then see how it changes after left alignment\n";
 cout << setw(20) << 100.123 << endl << setiosfl ags(ios::left) << setw(20) << 100.123

<< endl << resetiosfl ags(ios::left) << endl;
 cout << "See the effect of using internal, which displays the sign in the left and

right justifi es the output, thus fi lling the spaces in between\n";
 cout << setiosfl ags(ios::internal | ios::showpos) << setw(20) << 100.123 << endl;
 cout << "Now see the effect of fi ll char with internal\n";
 cout << setw(20) << setfi ll('*') << 100.123 << endl
 << resetiosfl ags(ios::internal | ios::showpos) << setfi ll(' ')
 << endl;
 cout << "See how truthfulness is printed as 1 by default and is changed to true when

boolalpha is set with cout\n";
 bool Test = true;
 cout << Test << endl;// This will display 1
 cout << setiosfl ags(ios::boolalpha);
 cout << Test << endl;// This will display true
 cout << "See how truthfulness is read as 0 or 1 by default. It now accepts false or

true when boolalpha is set with cin\n";
 cout << "Please enter true or false\n";
 cin >> setiosfl ags(ios::boolalpha);
 cin >> Test;
 cout << Test << endl;
}

12.12.1 Setting and Testing Flags using Manipulators
The following program shows how to set and reset fl ags using manipulators. We have already
seen a similar example for ios functions in Section 12.8.

490 Programming with ANSI C++

The output of the program is the same as that of the program in Section 12.8. This
is done to show that both the ways of formatting produce exactly the same results.

This contains many calls to setiosfl ags, which can be eliminated in most of
the cases. Instead of writing
cin >> setiosfl ags(ios::boolalpha)

one can write
cin >> boolalpha

and it will have the same effect. The boolalpha here is a shorthand manipulator for the job.
The following two programs show the use of such manipulators.

12.12.2 Manipulators for Toggle Effect
The following program shows how to toggle from boolalpha to noboolalpha, showpoint to
noshowpoint, etc.

Both manipulators and
ios functions can be
used to produce iden-
tical results by setting
and resetting format
fl ags of streams.

//ToggleValues.cpp
#include <iostream>
using namespace std;
#include <iomanip>
int main()
{
 bool Test = false;
 cout << boolalpha << Test << endl;
 cout << noboolalpha << Test << endl;
 cout << showpoint << 100.00 << endl;
 cout << noshowpoint << 100.00 << endl;
 cout << showpos << 100.00 << endl;
 cout << noshowpos << 100.00 << endl;
 cout << showpoint << uppercase << scientifi c << 100.20 << endl;
 cout << nouppercase << 100.20 << endl;
}
Output

false
0
100.000
100
+ 100
100
1.002000E + 002
1.002000e + 002

12.12.3 Shorthand Manipulators
The long versions of manipulators can be cumbersome to use. Therefore, shorthand
manipulators are available. Setiosflags and its arguments can be replaced by shorthand
versions of manipulators. For example,

setiosflags(ios::internal | ios::showpos)

Streams and Formatted Input /Output 491

How the Program Works
This program is similar to the one in Section 12.12.1 with setiosfl ags. The output is similar.
It is important to see that shorthand manipulators are shorter and easier to work with. For
example, look at the following statements from the program in Section 12.12.1.

cout << setiosfl ags(ios::showpos) << 100.0 << endl
 << resetiosfl ags(ios::showpos) << endl;

Now, they are converted to a single statement as follows in Program 12.6.

cout << showpos << 100.0 << endl << noshowpos << endl;

The program contains similar examples for all such manipulators.

12.13 USER-DEFINED MANIPULATORS

Manipulators can also be defi ned to suit particular requirements. Program 12.7 shows
how one can write and use one’s own manipulators. The example prints the mark
sheet, now in a much better form as compared to the output of Program 12.4 discussed
earlier.

PROGRAM 12.6 Shorthand manipulators
//SetFlagDirectManip.cpp
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;

int main()
{
 cout << "See that the effect of showpos is to show leading plus sign\n";
 cout << showpos << 100.0 << endl << noshowpos << endl;
 cout << "See that the effect of showpoint is to show decimal point\n";
 cout << showpoint << 100.0 << endl << noshowpoint << endl;
 cout << "See the effect of both the above together\n";
 cout << showpoint << showpos << 100.0 << endl << noshowpoint << showpos << endl;

 cout << "See the effect of both upper case and scientifi c together\n";
 cout << uppercase << scientifi c << 100.123 << endl << nouppercase << fi xed << endl;

 cout << "See how 100.123 is printed with default right alignment\n";
 cout << "and then see how it changes after left alignment\n";
 cout << setw(20) << 100.123 << endl << left << setw(20) << 100.123 << endl << right <<

endl;

 cout << "See the effect of using internal, which displays the sign in the left and right
justifi es the output, thus fi lling the spaces in between\n";

 cout << internal << showpos << setw(20) << 100.123 << noshowpos << endl;

 cout << "Now see the effect of fi ll char with internal\n";
 cout << setw(20) << setfi ll('*') << 100.123 << endl << internal << showpos << setfi ll(' ')

<< endl;
}

can be replaced by just showpos. Program 12.6 shows how to use such shorthand
manipulators.

492 Programming with ANSI C++

PROGRAM 12.7 User-defi ned manipulators
//ManipMarksheetPrint.cpp
#include <iostream>
#include <iomanip>
using namespace std;

// First manipulator
ostream & PrintHeading(ostream & TempOut)
{
 TempOut << setw(80) << setiosfl ags(ios::left);
 TempOut << "GLS Higher Secondary School" << endl
 << setw(80) << "Standard XII" << endl;
 return TempOut;
}

// Second manipulator
ostream & PrintMarksheetHeading(ostream & TempOut)
{
 TempOut << setw(15) << setiosfl ags(ios::left) << setiosfl ags(ios::fi xed) << setprecision(2)

<< setiosfl ags(ios::showpoint);
 TempOut << "Roll number" << setw(15) << "Name" << setw(10)
 << setprecision(2) << "Marks" << endl;
 return TempOut;
}

// Third manipulator
ostream & PrintLine(ostream & TempOut)
{
 TempOut << "-------";
 TempOut << endl;
 return TempOut;
}

int main()
{
 cout << PrintLine;
 cout << PrintHeading << PrintLine << PrintMarksheetHeading;
 cout << PrintLine;
 cout << setw(15) << 1 << setw(15) << "Lara" << setw(10) << setprecision(2) << 355.50 << endl;
 cout << setw(15) << 2 << setw(15) << "Beckham" << setw(10)
 << setprecision(2) << 27 5.00 << endl;
 cout << setw(15) << 3 << setw(15) << "Steffi " << setw(10)
 << setprecision(2) << 290.75 << endl;

 cout << PrintLine;
}

Output
--
GLS Higher Secondary School Standard XII
--

Roll number Name Marks

1 Lara 355.50

2 Beckham 275.00

3 Steffi 290.75

Streams and Formatted Input /Output 493

How the Program Works
Simpler manipulators are sometimes more useful. For example, the PrintLine manipulator
used for drawing lines is more useful. One may ask what happens if the call to these
manipulators are jumbled? For example, what happens if PrintHeading is called at the end?
In that case, the output displays the heading at the end. The output depends on the sequence
in which the manipulators are called in the main() function. To understand the defi nition of the
manipulators, let us have a look at the manipulator for printing the heading for the mark sheet.
The manipulator function looks similar to the functions we have seen earlier for overloading
<< and >>. In fact, they are bound to be similar because they are doing almost the same action.

Note the header. The headers of manipulators have the following structure:

ostream <manipulator name> (ostream & <stream reference variable>)
{
 // Manipulators and ios functions to do all formatting
 return <stream reference variable>
}

The corresponding code in the given program is

ostream & PrintHeading(ostream & TempOut)
{
 TempOut << setw(80) << setiosfl ags(ios::left);
 TempOut << "GLS Higher Secondary School" << endl
 << setw(80) << "Standard XII" << endl;
 return TempOut;
}

There are three user-defi ned manipulators in this program. The name of the fi rst manipulator
is PrintHeading and the stream reference variable is TempOut. Note that TempOut is also
returned from the manipulator. All manipulators will have the same format.

Note how the manipulator is called from the main function.

cout << PrintHeading << PrintLine << PrintMarksheetHeading;

This is similar to calling the overloaded << function. In a true sense, the overloaded << does
the same action. It takes the ostream reference as argument and returns the same.

12.13.1 Passing and Returning Streams as Reference
A close look at the manipulator defi nition given reveals that the stream is passed and returned
as a reference. The same cout that has been received is being returned. It is important to do
so. If one does not return the output stream as reference, it is not possible to use

cout << PrintHeading << PrintLine << PrintMarksheetHeading;

in a chaining way. If PrintHeading does not return the same cout passed to it, the output of
cout << PrintHeading does not yield cout, and << PrintLine does not have cout
as a left-hand side operator. So, it cannot be executed.

The importance of passing reference is also to be noted. If one does not
pass ostream &, then when ostream TempOut (instead of ostream & TempOut) is
encountered, a temporary stream object is created and copied from TempOut (a
reference to cout, i.e., cout) and that is returned back. Being a local object, it

Returning a reference
helps chaining mul-
tiple user-defi ned ma-
nipulators in a single
cout statement.

494 Programming with ANSI C++

would be destroyed upon exit, and hence, the output is garbage. These arguments are similar
to the arguments we had quoted in favour of passing and returning references when we were
using overloaded << and >>.

12.13.2 Using a Function for Formatting
A function can also be used instead of repeating identical formatting codes. The following
program shows how this can be done. In the example, the function FormatPrint() prints the
data passed to it in the format required.

Manipulators are handy for using argument-less formatting and functions can be used
for formatting with arguments. It is also possible to format using manipulators having
arguments, but it is cumbersome. Combining both, it is possible to produce professional
quality report preparation tools for our project.

//FinalMarksheet.cpp
#include <iostream>
#include <string>
#include <iomanip>
using namespace std;
/* Here we have three manipulators defi ned earlier in Program 12.7 */
void FormatPrint(int TempRollNo, string TempName, fl oat TempMarks);

int main()
{
 cout << PrintLine;
 cout << PrintHeading << PrintLine << PrintMarksheetHeading;
 cout << PrintLine;
 FormatPrint(1, "RamChandra", 275.0);

 FormatPrint(2, "Beckham", 275.0);

 FormatPrint(3, "Steffi ", 290.75);

 FormatPrint(4, "Jaspal", 295.0);

 FormatPrint(5, "Ranatunga", 200.60);

}
void FormatPrint(int TempRollNo, string TempName, float TempMarks)
{
 cout << setw(15) << TempRollNo << setw(15) << TempName << setw(10) <<

setprecision(2) << TempMarks << endl;
}
Output

The output of the program is the same as in the version without the function.

■ RECAPITULATION ■

 • Streams connect the I/O devices with the I/O operations
of our programs.

 • The I/O operations of computer programs are written
with reference to the streams and not with reference to
the devices.

 • The streams with which the I/O operations of computer
programs are connected are attached to the I/O device
at the other end.

 • There are two different ways to handle streams. The
unformatted way of handling does not require any

Streams and Formatted Input /Output 495

formatting statements to be specifi ed before output or
input. Most of the cases, however, need formatting.

 • There are two different ways of formatting in C++, namely,
using ios member functions and using manipulators.

 • The ios functions return the original format, whereas
manipulators are more fl exible and are easy to use.

 • The function width() is similar to setw() manipulator,
fi ll() is similar to setfi ll() manipulator, and so on.

 • The ios functions include the setf() function. This
function can be used for a variety of purposes. It has
two versions, one with a single argument and the other
with two arguments.

 • There is a member function fl ags(), which returns fl ag
settings.

 • It is also possible to construct our own manipulators
and use them wherever needed in the program.

■ KEYWORDS ■

Device drivers These are routines written by the device man-
ufacturer to make it work when plugged with the computer.

Format functions from ios These functions are defi ned
in the ios_base class and are useful in formatting. Being
member functions, they are called by following a dot (.)
after the cout object.

Manipulators These are functions that are non-members
but provide similar formatting mechanism as ios functions.

Namespace This is a kind of enclosure for functions,
classes, and variables to separate them from other entities.

Shorthand manipulators There are some manipulators
that work as a shorthand to the longer versions, for
example, using boolalpha for setiosflags(ios::
boolalpha). These are called shorthand manipulators.

Stream A stream is a conceptual pipe-like structure, which
can have one end attached to the program and the other
end attached by default to a keyboard, screen, or fi le. It
is possible to change where one end is pointing to, while
keeping the other end as it is.

■ EXERCISES ■

Multiple Choice Questions

1. C++ I/O is __________ to use compared to C I/O.
 (a) easier
 (b) harder
 (c) moderate
 (d) never easy
2. Which of the following functions is used to specify

the precision of the fl oating number?
 (a) width()
 (b) precision()
 (c) setf()
 (d) unsetf()
3. Which of the following functions undo the

operations done by setf()?
 (a) width()
 (b) precision()
 (c) setf()
 (d) unsetf()
4. After every set and respective display, we have a call

to the __________ function to revoke the effect of
applying the format fl ag.

 (a) setf()
 (b) unsetf()

 (c) clear()
 (d) Any of the above
5. __________ are conceptually pipe-like constructs

for providing I/O.
 (a) Files
 (b) Devices
 (c) Both
 (d) None
6. What will be the output from the following

statements? (S indicates space)
 cout.width(5);
 cout << "C++";
 cout.width(5);
 cout << "C++";
 (a) SSSSSSSC++C++
 (b) SSC++SSC++
 (c) SSSSSC++C++
 (d) SSSSSC++SSSSSC++
7. We can write __________ and use it in the

program.
 (a) our own manipulator
 (b) our own ios function

496 Programming with ANSI C++

 (c) our own format fl ag
 (d) our own format specifi er
 8. We can use __________ to set or unset multiple

f lags together.
 (a) bitwise AND
 (b) bitwise OR
 (c) bitwise XOR
 (d) bitwise NOT
 9. Which default destination is used by the following

cout, cerr, and clog predefi ned streams?
 (a) Keyboard
 (b) Mouse
 (c) Screen
 (d) Printer
10. The setf() function can have maximum __________

arguments.
 (a) one
 (b) two
 (c) three
 (d) multiple

Conceptual Exercises

 1. What are streams? Why they are useful?
 2. What is the difference between I/O provided by C

and C++?
 3. What is new in I/O provided by the ANSI C++

compared to the older I/O of C++?
 4. What is the importance of ios member fl ags in

formatting I/O?
 5. What is the difference between I/O using put()

and get() and that using getline() and write()?

 6. What is the advantage of giving two arguments to
setf()? Why does it require two arguments?

 7. Discuss how various member functions of ios can
be used for formatting I/O.

 8. How can we clear all the fl ags for formatting at the
same time?

 9. What are the differences between manipulators
and ios functions?

10. What is the requirement for passing and returning
reference from a manipulator function?

Practical Exercises

 1. Write a program to read the marks of a student
and print his mark sheet. Defi ne at least two user-
defi ned manipulators for reading and printing.
Use either ios functions or manipulators for
formatting.

 2. Design your own manipulator that displays a line and
then displays your name, address, and phone number
in proper format and then displays a line again.

 3. Design a manipulator for printing your institute
letterhead’s header and footer. Now, write a
function to display a congratulating note to you
for getting fi rst class in MCA from your institute
head.

 4. Defi ne a cricket scoreboard class. It should have the
innings details for both the teams, bowling analysis
of bowlers, and list of wickets fallen. Design a
presentation style such that any information can be
seen easily. Use ios functions or manipulators to
achieve the effect.

Chapter 13
Using Files for Using Files for
Input /OutputInput /Output
13.1 SPECIALTY OF INPUT/OUTPUT

So far we have seen many operations that are performed by C++, such
as constructing objects from classes, taking care of objects coming into
existence and going out of context, and making virtual base class effect
visible when the classes are being inherited. However, input/output (I/O)
operations are special because they are to be performed with the help of
the operating system (OS) and the device drivers. Exhibits 13.1 and 13.2
describe an OS and a device driver.

Learning Objectives

• Difference between input/
output (I/O) and other
operations

• Entities involved in I/O
operations

• <fstream> header and its
usefulness

• Text and binary streams
• File operations—opening,

closing, reading, writing,
checking the end of fi le, and
error handling

• I/O modes and related
operations

• Object persistence and
serialization

Exhibit 13.1 Operating system
An operating system is the primary interface between the user and the computer.
DOS, Windows, Unix, and Linux are all examples of operating systems. Excluding
I/O, no other operation requires active participation from the OS. The compiler and
the C++ object model take care of them in the form that suits them. However, I/O
operations do not come under the direct purview of the C++ compiler or the run-time
system. The C++ system has to work in sync with other entities to get the job done.

Exhibit 13.2 Device driver
A device driver is a small program that comes with every device that we attach to
a computer, be it a hard disk, a scanner, a mouse, a web camera, or any other
additional device. This small program acts as an interpreter between the OS and the
device. When the OS issues a command, the driver makes the device understand it.

Let us consider an example to see the roles of the other entities in the
I/O. Suppose one writes type <fi lename> in the command prompt, double
clicks on a fi le, or writes cat <fi lename> in the Linux console, the operating
system makes a request to the device driver to open the required fi le. The
device driver, in turn, passes the message to the disk and when the disk
responds to the message, the device driver passes it on to the OS. Then, the
OS passes it to the screen. It is usually not possible to access the device
directly. It is to be done using specifi c calls to the OS. Thus, a C++ program
is not capable of performing I/O operations on its own. One may wonder
where streams have gone. Streams are the interface and not the entity

A C++ program
cannot perform I/O
operations on its own.
It has to depend on
the OS and the device
drivers to access a
device.

498 Programming with ANSI C++

involved in the operation, and thus, they are not
discussed. Since we have already learnt about
streams, there is no need for further exploration
of that topic.

Figure 13.1 illustrates how a request from a
C++ program for I/O travels via the OS and the
device driver to the actual device and how reply

comes back traversing the reverse path.
There is one more player in the whole process, which is not shown in Fig. 13.1. A C++

program generally does not request directly to the OS. It invokes an I/O function from a
standard library. The standard library comes with the C++ compiler and is made available
when C++ is installed. This I/O function, in turn, invokes the request to the OS and passes
on the request back to the program when the reply comes back.

The standard library and the I/O functions make the programmer’s job easy. One has to call
fopen() to open the fi le (or .open in C++, which we will study in Section 13.2). The function
fopen() is from the standard library, which manages all the complexities. The programmer
need not worry about using any OS interface, which is usually far more complex than using
standard library functions such as fopen() and fclose(). There is one more reason for this
indirection. It makes the program more portable. The function fopen() is found wherever C
is installed and .open is available when C++ is installed.

If the OS changes, the implementation of fopen() (the way fopen() is programmed; it
may be in assembly language) may be different, but the way it is called remains the same,
that is, the program need not change when it runs under a different OS.

Note As a programmer, we cannot have direct control over an I/O device for reading and writing. This is for
our own benefi t. How? It is because devices and their drivers keep changing, and it is up to the driver
designer to ensure compatibility with existing programs. As a result, we do not have to alter an existing
program to suit the current requirements of an upgraded driver.

13.2 PROCESS OF INPUT/OUTPUT

The devices perform I/O operations under the control of device drivers, which accept
commands from the OS. If a programmer wants to perform I/O operations using a device, it
is imperative that he/she requests the OS for the same. See Fig. 13.2.

Since different OSs employ different mechanisms to provide I/O, it is very hard to
provide a unique I/O standard for all C++ compilers. This standardization is achieved by
providing standard I/O libraries. The C++ programmer views the interface provided by the
I/O library and not its implementation. A programmer will look at the functions such as
fwrite(), fread(), fopen(), and fclose() and not how these functions actually communicate
with the OS.

Note Functions such as cin.getline() and cin.read() are very easy to use. The design of a library
tries to hide the OS-dependent details deep into implementation. For example, when cin.getline()
is used, the programmer is not aware of how cin.getline() function is written. The getline()
function in VC++ is coded in a different way than in GNU C++ (Linux). A simple rule of thumb is the
more the efforts towards standardizing the library function calls, the easier it is for the programmer. The
same C++ program should work with all the compilers. The C++ standard I/O library is a step in that
direction.

Request for I/O
Reply

C++
program

Operating
system

Device
driver

Actual
device

Fig. 13.1 Request for I/O and its reply

Using Files for Input /Output 499

The C++ I/O, or even the C I/O for that matter, is stream based. When a C
or C++ program performs I/O, it is being done with the streams rather than any
device. The standard library helps them in the process. It makes the I/O standard
the same for most of the devices. The following sections deal mostly with the
disk I/O, but most of the points described here can easily be applied to other
devices as well. Figure 13.2 illustrates the point.

A diligent reader may ask where the stream connection to the C++ program is
when the OS and a device indulge in stream-based I/O. The point is that a standard
library function such as fopen() opens a fi le irrespective of the physical device
it is attached to. The call to fopen() may be for opening a disk fi le, a console,

or a printer; the programmer only provides a call to fopen() and related arguments. Thus,
the standard library and the OS make the programmers feel that they are dealing with a fi le
without really knowing the actual device it is attached to. Streams facilitate such a mechanism.

Note The standard library functions are designed with streams in mind. Thus, using them with different
devices will work in the same manner. For example, fwrite() can be used to write to a disk fi le, the
terminal, or some other device without really changing the code.

13.3 FILE I/O PROGRAMMING

File I/O programming in C++ is far easier than in C. It is because we have properly written
constructors and overloaded << and >>, although programming without using constructors
is also possible. Any I/O involves the following steps:

1. Ask for hard disk space to store fi le. The OS will respond positively in most of the cases and
provide hard disk space. It is also important to note that the OS knows the fi le by some other
name than the name given by the programmer. Usually the name given by the programmer
is known as the logical fi le name and the OS-given name is known as the physical fi le name.

Standard
library calls Stream-based I/O

Standard library
calls of VC++

Stream-based I/O
to disk

Stream-based
I/O to printer

A C++
program OS Actual

device

Windows
OS

Same C++
program Disk

Printer

Linux OS
output

redirected
to printer

Standard library
calls of GNU C++

(Linux C++)

Fig. 13.2 Common interface for programmer for different OSs by standard I/O

When a program uses
a built-in library func-
tion call, it is likely to
be available on other
suitably confi gured
platforms. Thus, using
the standard library
makes the programs
portable.

500 Programming with ANSI C++

2. The second step is to ask for the association of the physical fi le with the logical
fi le. If we are dealing with an existing fi le, this is the fi rst step. It is a kind of
linking the fi le that we treat in our program as, say, “InputFile” to “Input.
dat” fi le known to OS. This step also involves specifying the type of linking,
that is, if we are interested in just reading from the physical fi le, just writing
to it, doing both read and write together, etc. This specifi cation is known as
fi le mode. It is possible to open the same physical fi le in different modes at
different times, may be by the same program. We can open a fi le in write
mode, close the fi le, and then reopen the fi le in read mode.

3. When we describe different modes of the fi le we are opening, we are usually
specifying the stream that we are going to work with. Specifying the stream

is the third step. There are two types of streams associated with C++ fi les. The default
stream is text. The fi les created using text stream are known as text fi les and are readable
without using the program. Any standard text editor such as notepad, vi, or edit can be
used to open and read that fi le. The other type of stream is known as the binary stream.
Binary stream fi les are known as binary fi les. They can be opened and read only by using
a program. Even though there are such restrictions with binary fi les, they are usually more
suitable for commercial programs. Section 13.4 elaborates the difference between text
and binary streams.

Note To provide I/O operations, fi rst, allocate disk space for fi le and allocate buffers, second, relate the
physical fi le name with a logical fi le name, and third, specify the way you are going to access the fi le
(text or binary).

4. When we fi nish these three operations, the fi le is opened and can now be used. The OS
gives our fi le some buffer to store intermediate data. It also provides us a unique identifi er,
usually known as fi le handle, to describe that fi le. This point onwards, all our requests to
manipulate the fi le will bear this identifi er. The handle is represented by the logical fi le
name in our context. We would never be using the actual handle in our programs. Rather,
we would use the logical fi le name to access the fi le.

Note All I/O functions where a logical fi le name is specifi ed map it to a fi le handle. The OS will operate on
a specifi ed fi le using a specifi ed handle.

The buffers allocated by the OS may be read buffers or write buffers. Read buffers
are needed when the fi le content is read from the disk and write buffers are needed when
the program intends to write to the disk. Buffers enable read and write operation done in
bulk.

Note If we were doing lower level I/O using C, we would use the fi le handle directly in our programs. For
example, a call to low-level read function may look like fd = read(...), where fd is the fi le
handle. A handle is an index to the array where fi le-related information is stored. Though we are
using the logical fi le name to address the fi le (similar to Student in fprintf(Student, "This is
testing");), the OS inherently transforms the fi le name into an ID. For an analogy, assume that we
are a customer of some company. The company has allocated us a customer ID. We are requested
to quote the customer ID in all our conversation with the company. This customer ID is equivalent to a
fi le handle.

Exhibit 13.3 describes a fi le pointer and a fi le handle.

Text fi les can be read
using text editors,
whereas binary fi les
can be opened only
using a program.

File handles are
unique identifi ers
assigned by the OS to
identify different fi les.

Using Files for Input /Output 501

Exhibit 13.3 File pointer and fi le handle
File pointer has two different meanings in two different contexts. When we are dealing with fi le handles to
access fi les, a fi le handle is sometimes referred to as a fi le pointer. In C conventionally, the fi le handle is
called the fi le pointer and usually written as

FILE *fp;

where fp is actually a handle but is called a pointer. Another meaning of fi le pointer is a place in the fi le
where the next read or write is to take place.

5. Next are the read and write operations to the fi le. The acceptance of read-write
operations from OS depends on the mode in which the fi le is opened for both
types of streams. For example, if the fi le is opened in read or read-write mode,
we can read from it. If the fi le is opened in write mode; we cannot read from
it. At times, before reading a fi le, we would like to reach to a specifi c location
in the fi le. It is possible with both types of streams, though it is useful only in
binary fi les in most of the cases.

6. The last operation involved with fi les is closing a fi le. When a fi le is no longer
in use, the OS decides to close it. The OS deallocates the buffers and frees the

handle associated with it. If there are write buffers to be deallocated, then they are written
completely to the fi le before deallocation starts. This is known as fl ush operation. Users
can themselves initiate a fl ush operation if it is required without closing the fi le.

Note By including the header <fstream>, we have an access to classes ifstream (input fi le stream),
ofstream (output fi le stream), and fstream (fi le stream), which are needed for input mode fi les,
output mode fi les, and I/O mode fi les, respectively. Thus, <fstream> is an important header to have
when we are manipulating fi les.

13.4 TEXT AND BINARY STREAMS

There are two different types of streams, namely, text streams and binary streams.
The text stream accepts data in ASCII form. If 0 is typed, the ASCII value of 0, that is,

48, would be inserted. If the <Enter> key is pressed, two characters, that is, CR and LF
(carriage return and line feed) are inserted in the Windows environment. This is known as
conversion. When one reads back, conversion is again needed to convert from CR–LF to the
visual interpretation of the <Enter> key.

Binary streams are pure binary streams; when 0 is typed, binary zeroes are inserted in the
stream. When one writes to binary streams, no conversion takes place. For example, if the
user enters 15 in a binary fi le, the binary value equivalent to 15 (00000111) is entered in the
stream. On the contrary, the text fi le converts it to the ASCII values of 1 and 5 and then sends
it through the stream. Similarly, if the user presses the <Enter> key, only the value 13 is sent,
unlike two values in the case of a text fi le. The meaning of this is that when one reads, no
conversion is needed in binary.

The fi les created using text streams are more general in the sense that they can be
manipulated using a text editor without having to depend on the source program. On the
contrary, fi les created using binary streams are restricted to the application that creates the
fi le. One may create a binary fi le containing customer data such as customer_id, name,

There are three fi le
modes, namely, read,
write, and read–write.

It is important to close
fi les after operating
on them. It helps fl ush
the allocated buffers.

502 Programming with ANSI C++

address, and items. Now, this fi le can only be opened by a particular C++ program that
knows the exact structure of that fi le. No other application can open that fi le. The differences
between text stream fi les and binary stream fi les are summarized as follows:

1. Text fi les are made up of ASCII characters, that is, the information stored is in the form of
binary values representing their ASCII equivalent. If A is to be stored, it is stored as 65. If 0 is
to be stored, it is stored as 48. In the case of binary fi les, the numbers are stored as numbers,
that is, 0 is stored as binary zeroes, though characters are still stored as their ASCII equivalents.

2. Text fi les storage and retrieval may require character conversions. That is, the number of
characters read from the screen may differ when written to a fi le or read from it. This is
not the case with binary fi les.

3. Text fi le records are separated by CR–LF sequence (in Windows) and by CR in Linux
and Unix. Each visible line forms a record in the text fi le. Unless special care is taken to
have the same number of characters in all lines, each record (line) will have a different
size. While using binary fi les, a record is usually of the same size. It is also, then, possible
to provide the user a random access. That is, reaching the fi rst record, tenth record, or
nth record is possible. In text fi les, it is not possible to reach a specifi c record without
knowing the exact location of that record.

4. Text fi les are more general. They can be opened by other editors, and can also be opened
by OS commands such as type of DOS and cat of Unix. It is also possible to open text fi les
created by a C++ program by programs written in other languages such as COBOL.

5. Binary fi les on the contrary are not that fl exible. They are stored as bytes by C++. The
original record format is not saved in the fi le. For example, if in our customer fi le, the
items are customer id (int), then customer name of 30 char, and then address of 60 char,
then only those programs that are aware of this design can open and manipulate this fi le.
Any other program, which is not aware of this design, may be able to open that fi le, but
it will get only bytes, because these programs do not know how to interpret these bytes.
This means that such programs will not be able to effectively manipulate these fi les.
No text editor can manipulate that fi le. OS commands will also not be able to show the
contents of such fi les. Even if they are shown, the contents are not decipherable (because
OS commands assume ASCII input). Try to type a ‘.exe’ fi le on the screen and see the
output. Table 13.1 illustrates all the differences in a nutshell.

Table 13.1 Differences between text and binary stream fi les
Criterion Text Binary

Char representation ASCII ASCII

Digit representation ASCII binary

Char conversion Done Not done

Separated by CR or CR–LF Size

Size of every record May or may not be equal Equal

Who can open Any editor or program Only programs

Portability across various platforms Yes No

Using Files for Input /Output 503

13.5 OPENING AND CLOSING FILES

Before using a fi le, it must be initialized for usage. One must initiate a request to the OS
to open a fi le and get a fi le handle. As mentioned earlier, a fi le handle is usually an index

to the array where the information about the fi le being used is kept. It stores or
points to the information about the owner of the fi le, the fi le rights, the current
location of the fi le pointer, etc. One will be able to manipulate the content
of that fi le with such a fi le handle, which in our case, we will not be directly
operating with. The call to I/O functions is going to perform that operation.
Opening a fi le does one more action. The OS, upon accepting the request to
open a fi le, allocates some read and/or write buffers to that fi le depending on
the mode. For example, if the fi le is opened in read mode, only read buffers are
allocated.

Note An OS, depending on its processing speed, can only handle a few fi les at a time. The OS can only
allocate a fi nite number of fi le handles. Unless we close the fi le or terminate the program, the fi le
handle allocated is not returned to the OS. If one tries to open more fi les than what the OS can handle,
the program would not respond. So, it is imperative that we close the fi les properly.

For text fi les, a special byte indicating the end of fi le is written at the end when the fi le is
closed. This byte is known as EOF (end of fi le) mark for OS; it is ^Z (ctrl-Z) for Windows
and ^D (ctrl-D) for Unix or Linux. Any program such as a text editor, when displaying that
fi le, understands that the fi le has come to an end when it reads the EOF mark. If the fi le is
not closed, write buffers are not fl ushed. If the program terminates properly, the fi les opened
by the program would be automatically closed by the OS. If program terminates abnormally,
the fi le that is opened but not closed is likely to be damaged.

13.6 TEXT FILES

We start with text fi les because they are easier to deal with. We start with a program where
a fi le accepts a few lines as input and then displays those lines one by one. We start with the
simplest of functions to be used for this operation.

13.6.1 Defi ning Files
Files can be defi ned in three possible types.

1. ifstream <fi lename> (input fi le stream)
2. ofstream <fi lename> (output fi le stream)
3. fstream <fi lename> (I/O fi le stream)

The ifstream fi le is a read-only fi le, and one can only read from the fi le defi ned as ifstream.
The ofstream fi le is an output-only fi le, and one can only write to the fi le defi ned
as ofstream. The fstream fi le is used for both input and output.

13.6.2 Opening Files
Files can be opened using constructors and open functions. Using constructors,
one can open a fi le with a statement such as

ofstream EntryFile("FewLines.dat")

When we call an I/O
function, the function
maps the logical
name that we provide
to a fi le handle and
accesses the OS
services using that
fi le handle.

ifstream opens a
fi le in read mode and
ofstream opens it in
write mode, whereas
fstream opens it in
read–write mode.

504 Programming with ANSI C++

The fi le modes have not been specifi ed. It is assumed to be ios::out (output mode) when
the object of ofstream class (the EntryFile) is defi ned. Now, take a look at the following
statement:

ifstream DisplayFile("FewLines.dat");

Again, the fi le mode has not been specifi ed. It is assumed to be ios::in (input mode) for the
objects of ifstream class (the DisplayFile) in this case.

Note that the physical fi le name (FewLines.dat) remains the same in both the statements.
It is needed because only then is it possible to read the same physical fi le that has been
created and in which the records have been inserted. The single statement given defi nes
logical as well as physical fi le names and also provides the links between these names.

After defi ning FewLines.dat to be a physical name for EntryFile logical name, the data
written to the EntryFile will be written to FewLines.dat. The logical name (EntryFile) will
vanish when the program is over, but the physical fi le name will be there until somebody
renames or deletes the fi le.

Buffer allocation will be done accordingly. In the fi rst case (ofstream), a few output
buffers are allocated, and in the second case (ifstream), a few input buffers are allocated.
Note that only constructors have been used in Programs 13.1 and 13.2; however, one could
equally use open methods.

13.6.3 Reading from and Writing to Files
It is very simple to read from and write to a fi le. Overloaded << and >> operators need to be
used as they were used with cout and cin.

13.6.4 Closing Files
The function close() is used without any arguments to close a fi le. The allocated fi le handle
is deallocated and the buffers are fl ushed when a fi le is closed.

13.6.5 Using Text Files
Program 13.1 is a simple program to read a few lines and then display each word in a
different line.

PROGRAM 13.1 Working on a text fi le
//WriteReadText.cpp
#include <iostream>
#include <string>
#include <fstream>
using namespace std;

int main()
{
 string InputLine, OutputLine;
 ofstream EntryFile("FewLines.dat")
 cout << "Input :" << endl;
 while(true)
 {
 cin >> InputLine;
 if(InputLine == "End") break;
 EntryFile << InputLine << endl; // Writing to EntryFile
 }

Using Files for Input /Output 505

 EntryFile.close();
 cout << "Output: " << endl;
 ifstream DisplayFile("FewLines.dat");
 while(IDisplayFile.eof())
 {
 DisplayFile >> OutputLine;
 cout << OutputLine << "\n";
 }
 DisplayFile.close();
 return 0;
}

Input
It was a fi ght
for pride and ego
for one
It was a fi ght for
duty and self-respect
for another
who won it at the End

Output
It
was
a
fi ght
...
who
won
it
at
the

How the Program Works
Why does not the program display the original lines as they are in the output? Why are

the lines broken into words? It is because the bare ifstream object (such as
cin) is not capable of doing it. The problem of using an ifstream object in
its bare form (i.e., using >>) is that it cannot work with strings containing
spaces.

If a string contains spaces, each word is counted as a separate record. One
needs to use either get() and put() (for reading char by char) or use getline()
function for reading lines with spaces. Program 13.2 shows how to use get()
and put().

13.6.6 Using get() and put()
Program 13.2 reads lines until $ and displays the lines as they are back on the screen. It uses
two functions for reading and writing characters, that is, get() and put(). Their syntax is as

follows:

cin.get(ch) (reads a character from cin and stores what is read in ch)
cout.put(ch) (reads a character ch and writes to cout)
get() has few other varieties; kindly look at the help of your compiler to fi nd
more details.

 Using either << or
>> will be a problem
when a string con-
tains spaces, as it
considers each item
separated by a space
as an individual item.

get() and put()
functions are useful
for reading from and
writing to fi les charac-
ter by character.

506 Programming with ANSI C++

How the Program Works
The program begins with opening a fi le in the write mode, so that a few lines can be written into it.

ofstream EntryFile("FewLines.dat");

The put() function is called to write characters into this fi le. One can read a character, stop if
$ is encountered or continue otherwise, and write that character in the EntryFile using three
statements as follows. Look at how << is used to enter data in a fi le.

PROGRAM 13.2 get() and put() functions
//GetPut.cpp
#include <iostream>
#include <string>
#include <fstream>
using namespace std;
#include <iomanip>

int main()
{
 char ch;
 ofstream EntryFile("FewLines.dat");
 while(true)
 {
 cin.get(ch);
 if(ch == '$') break;
 EntryFile << ch;
 }
 EntryFile.close();

 ifstream DisplayFile("FewLines.dat");
 while(!DisplayFile.eof())
 {
 // Do not skip white space
 DisplayFile.unsetf(ios::skipws);
 DisplayFile >> ch;
 cout << ch;
 }

 DisplayFile.close();
 return 0;
}

Input
The battle
between One and Another
is
between light and darkness
between truthfulness and falsehood
between duty and ego
$

Output
The battle
between One and Another
is
between light and darkness
between truthfulness and falsehood
between duty and ego

Using Files for Input /Output 507

cin.get(ch);
if(ch == '$') break;
EntryFile << ch;

After this, the same fi le is opened in the read mode so that one can read from it. The following
statements perform exactly the reverse process of what has been done now.

DisplayFile >> ch;
cout << ch;

The statement before these two lines, which uses unsetf(), needs mention. While reading,
get() skips the white spaces before any character. Thus, if get() is reading "...this is
testing", it will skip the fi rst three spaces and then read and return 't' (the fi rst character of
the string). This is correct for normal cases, but here the need is not to skip the whitespaces.
Therefore, unsetf(ios::skipws) needs to be provided for unsetting the usual setting of
skipping the whitespaces.

13.6.7 Using getline()
One can even use cout and cin with getline() to provide the same result. Look
at Program 13.3. The same getline() available with cin is also available to all
istream objects. It is also available to the DisplayFile().

getline() is useful
for reading entire
lines.

PROGRAM 13.3 getline() function
//Getline.cpp
#include <iostream>
#include <cstring>
#include <fstream>
using namespace std;

int main()
{
 char InputLine[80], OutputLine[80];
 ofstream EntryFile("FewLines.dat");
 while(true)
 {
 cin.getline(InputLine, 80);
 if(!strcmp(InputLine, "End")) break;
 EntryFile << InputLine << endl;
 }
 EntryFile.close();

 ifstream DisplayFile("FewLines.dat");
 while(!DisplayFile.eof())
 {
 DisplayFile.getline(OutputLine, 80);
 cout << OutputLine << endl;
 }
 DisplayFile.close();
 return 0;
}

Input
Imagination is
more important

508 Programming with ANSI C++

How the Program Works
The only important part of this program involves using getline() function. When the
following statements are executed, the line (maximum 80 characters as specifi ed in the
argument or until the carriage return is encountered) is read into the input (if cin is used to
invoke getline()) or read from the fi le (if fi le name is used to invoke getline()).

cin.getline(InputLine, 80);
DisplayFile.getline(OutputLine, 80);

One can try commenting the fi le generation code from this program, construct a fi le using an
editor, and see how the program outputs. The program will work like a DOS-type command
and display the contents of the fi le.

Note When we read a string in a fi le, the fi le does not take <CR> as input. Thus, pressing the <Enter> key
terminates the string entry, but the fi le will not contain that <Enter>. When the fi le is read back, we will
not be able to see different outputs in different lines.

13.7 BINARY FILES

In this section, we will focus our concentration on binary fi les. These fi les are more useful
for storing structures of information.

13.7.1 Opening a Binary File
A binary fi le can be opened using a constructor. The constructors for ofstream and ifstream
that we have seen so far are acceptable for text fi les. For binary fi les, another constructor
with two arguments is needed. The fi rst argument is the name of the fi le and the second one
is the fi le mode. Look at the following statements, which are examples for both the methods.

// Using open methods
ofstream MCA_StudFile_Out;
MCA_StudFile_Out.open("MCA.dat", ios::out | ios::binary | ios::trunc);
// Using constructor
ifstream MCA_StudFile_In("MCA.dat", ios::in | ios::binary);

The fi rst example is using the open method and the second one is using a constructor. There
is no signifi cant difference between the two ways of opening a fi le. The fi rst
method uses two statements instead of one and needs a little more typing than
the second to achieve the same result. Programmers, therefore, usually use the
second method of using constructors.

The same effect can be achieved by writing either of the following:

ofstream MCA_StudFile_Out("MCA.dat", ios::out | ios::binary | ios::trunc);
ifstream MCA_StudFile_In;
MCA_StudFile_In.open("MCA.dat", ios::in | ios::binary);

than knowledge
End

Output
Imagination is more important than knowledge

An open function can
also be used with a
fi le to open a fi le. If
ever we need to open
the same fi le using
different modes,
open() is useful.

Using Files for Input /Output 509

Constructor calls and open functions produce similar effects. Only in the case
when the fi le is already open and there is a need to reopen the fi le with new
modes, one may type close() and then use .open method to open the same fi le
in different modes. Note that pipes (|) are used in the second argument to add
multiple nodes.

13.7.2 Reading from and Writing to Binary Files
Two member functions for ifstream and ofstream objects are useful in reading and writing.
Both of them have similar syntax. They are

OfstreamFileObject.write((char *) &<the object>, sizeof(<the same object>))

for writing in the fi le and

IfStreamFileObject.read((char *) &<the object>, sizeof(<the same object>))

for reading from the fi le.
It is important to understand that the fi le read and write is performed objectwise and not

elementwise. One reads the complete object from the fi le or writes the complete object to the
fi le using a single read or write. The object here can even be a struct variable such as struct
student of Program 13.4.

Respective statements are needed to read from the keyboard and construct
the object for providing input to the fi le, that is, one has to fi rst read the student
object and then write to a fi le. Similarly, one needs to write the object on the
screen after reading it from the fi le. Here, both reading the object from the
keyboard and writing it to the screen are done elementwise. Only when one is
reading from a fi le or writing to it, one reads and writes objectwise.

13.7.3 Closing Binary Files
Closing of binary fi les is similar to closing text fi les. A close() function is needed to close
the binary fi le.

Look at the statement taken from Program 13.4.

MCA_StudFile_Out.close();

The syntax for closing a fi le is

FileObject.close()

It also deallocates the fi le handle and fl ushes the allocated buffers as in the case of text
fi les.

13.7.4 Using Binary Files
Let us consider an example of a structure student. It contains the following entities: roll
number, name, address, and an array of fi ve subjects the student has opted for. There are
two simple programs; Program 13.4 allows the user to add the details of a few students to

the student fi le and Program 13.5 displays the data. Both open methods and
constructors have been used to open the fi les. Thus, it is again a proof that both
methods yield the same result. The fail() and eof() functions used in the
program are explained in Section 13.8.

File read and write
operations are done
with objects, and not
the elements of the
objects.

Reading an object
from the keyboard and
writing it to the screen
is done element by
element.

For commercial pro-
gramming, binary fi le
is the usual choice.

510 Programming with ANSI C++

PROGRAM 13.4 Writing to a binary fi le
//WriteFile.cpp
#include <iostream>
#include <fstream>
using namespace std;

struct student
{
 int RollNo;
 char Name[30];
 char Address[40];
};

void ReadStudent(student & TempStud)
{
 cout << "\n Enter roll no.: ";
 cin >> TempStud.RollNo;

 cout << "\n Enter name: ";
 cin >> TempStud.Name;

 cout << "\n Enter address: ";
 cin >> TempStud.Address;
 cout << "\n";
}

int main()
{
 struct student MCA_Student_Out;
 ofstream MCA_StudFile_Out;
 MCA_StudFile_Out.open("MCA.dat", ios::out | ios::binary | ios::trunc);

 if(!MCA_StudFile_Out.is_open())
 cout << "File cannot be opened \n";
 char Continue = 'y';
 do
 {
 ReadStudent(MCA_Student_Out);

 MCA_StudFile_Out.write((char*) &MCA_Student_Out, sizeof(struct student));
 if(MCA_StudFile_Out.fail())
 cout << "File write failed";
 cout << "Do you want to continue? (y/n): ";
 cin >> Continue;
 } while(Continue != 'n');

 MCA_StudFile_Out.close();
 return 0;
}

Input
Enter roll no.: 1
Enter name: Lara
Enter address: West Indies
Do you want to continue? (y/n): y

Enter roll no.: 2
Enter name: Ranatunga
Enter address: Sri Lanka
Do you want to continue? (y/n): y
Enter roll no.: 3

Using Files for Input /Output 511

Enter name: Steffi
Enter address: Germany
Do you want to continue? (y/n): n

PROGRAM 13.5 Reading from a binary fi le
//ReadFile.cpp
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

struct student
{
 int RollNo;
 char Name[30];
 char Address[40];
};

void WriteStudent(student TempStud)
{
 cout << "\n The roll no.: ";
 cout << TempStud.RollNo;
 cout << "\n The name: ";
 cout << TempStud.Name;
 cout << "\n The address: ";
 cout << TempStud.Address;
 cout << "\n";
}

int main()
{
 struct student MCA Student In;
 ifstream MCA_StudFile_In("MCA.dat", ios::in | ios::binary);
 while(!MCA_StudFile_In.eof())
 {
 MCA_StudFile_In.read((char*) &MCA_Student_In, sizeof(struct student));

 if(MCA_StudFile_In.fail())
 break;

 WriteStudent(MCA_Student_In);
 }

 MCA_StudFile_In.close();
 return 0;
}

Output
The roll no.: 1
The name: Lara
The address: West Indies

The roll no.: 2
The name: Ranatunga
The address Sri Lanka

The roll no.: 3
The name: Steffi
The address Germany

512 Programming with ANSI C++

How the Program Works
Both these programs describe a few important points about fi les and their use. They are listed
as follows:

1. File is a communication mechanism between two distinct programs. In this
example, Program 13.4 writes the fi le and Program 13.5 reads it.

2. The binary fi le, unlike text, is program dependent; this is proved by the fact
that the structures defi ned in both these programs are identical (the defi nition
of struct student). If the structures are different, the programs will not work
as expected.

struct student
{

int RollNo;
char Name[30];
char Address[40];

};

3. We have used read() for reading data and write() for writing data in fi le.
In both the cases, the data is the student structure.

 MCA_StudFile_Out.write((char*) &MCA_Student_Out, sizeof(struct student));
 MCA_StudFile_In.read((char*) &MCA_Student_In, sizeof(struct student));

4. Note how it has been tested whether the operation has failed, as in the following case:

 if(MCA_StudFile_In.fail())
 break;

13.8 END OF FILE

The eof() function is an important function for checking the end of fi le. It returns one when
the fi le pointer reaches the end of a fi le and reads the end of fi le mark. This function can be
used for both text and binary fi les. One needs to check if reading has failed in the program.
When one reads the last record, eof() is not true. When one tries to read after that, the
reading operation fails and eof() becomes true.

There are two ways to implement this. One way is to check after each read; if read has
failed, it has to terminate. This has been done in Program 13.5. The other solution is to use
the return value from the read() function and not use eof() at all. In that case, the while loop
would be written as follows:

while(MCA_StudFile_In.read((char*) &MCA_Student_In, sizeof(struct student))
{
 WriteStudent(MCA_Student_In);
}

13.9 RANDOM ACCESS USING seek

Unlike C, C++ keeps two different fi le pointers for random access. In C, the seek() function
moves the fi le pointer to the desired place for both read and write. C++ is more elaborate. For
any given fi le opened in read-write mode, seekg() is a pointer for reading (or getting) and

write() is used to
write into and read()
is used to read from a
binary fi le.

fail() is used to
check if the preceding
fi le operation is
successful or failed.

The function eof()
can be used to check
the end of a fi le. It
works for both text
and binary fi les.

Using Files for Input /Output 513

seekp() is a pointer for writing (or putting). If the fi le is opened in the read mode, it would
only have seekg(), and if the fi le is opened in the write mode, it would only have seekp().

Random access allows us to reach any record of any fi le skipping other records in
between. Seekg() and seekp() help programmers to move to any byte and not record of the
fi le. If the address from where (i.e., from which byte) a record starts is known, one can reach
that record using the two given functions. For example, assume there is a fi le containing
customer records. Here, suppose it is known that the record of Steffi starts at byte number
100; then, one can reach 100 using seekg() or seekp() and perform read or write operations,
respectively.

How can the address from where a record starts be obtained? It is an important question.
If it is known that Steffi ’s record is 11th in sequence, then there are 10 records before Steffi ’s.
If a customer record size is 10 bytes each, it is simple to calculate 101 as the fi rst byte
of Steffi ’s record. One can seek the 100th byte and then start reading Steffi ’s record. In
Program 13.6, Steffi ’s record is being read at the third position. One has to skip two records
to reach the third record. One would actually skip 2 * sizeof(customer) bytes to reach the
beginning of the third record. Before we look at the program, a brief introduction to seekg()
and seekp() follows.

13.9.1 seekg() and seekp()
seekg() is a function to move the get or read pointer of the fi le concerned. The function takes
the following two arguments:

1. Number of bytes to skip
2. From where to skip

seekp() is a function to move the put or write pointer and takes the same set of arguments.
Let us understand a few important points related to the arguments of these two functions.

1. The fi rst argument is obvious. The second is also obvious if one remembers the bits of C’s
I/O. One can count or skip the number of bytes from the

(a) beginning of the fi le
(b) end of the fi le
(c) current position of the fi le pointer

2. The fi rst argument can be positive as well as negative. A negative value of
fi rst argument moves fi le pointer backwards. It is obvious that if the second
argument is the beginning of the fi le, the fi rst argument cannot be negative.
Similarly, if the second argument is the end of the fi le, the fi rst argument
cannot be positive.

3. For the fi rst argument, the data type is integer. For the second argument, it is
an enumeration containing the following values:

(a) ios::beg Beginning of the fi le
(b) ios::end End of fi le
(c) ios::cur Current position of the fi le

Let us look at a simple example given in Program 13.6, which swaps two records
of a fi le using both these pointers. When we use read, it reads from the place where
seekg() is pointing. When we use write, it writes to a place where seekp() is pointing.

seekg() and
seekp() are functions
but they also are
referred to as fi le point-
ers, in the sense that
they show where the
current fi le pointer is,
that is, from where the
next read or write will
take place.

We can apply
multiple I/O modes
together using
pipe (|) character.

514 Programming with ANSI C++

PROGRAM 13.6 Swap two records of a fi le
//SwapRecords.cpp
#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
using namespace std;

class customer
{
 int CustId;
 string Name;
public:
 customer()
 {
 CustId = 0;
 Name = "Dummy";
 }

 customer(int TempCustId, string TempName)
 {
 CustId = TempCustId;
 Name = TempName;
 }

 friend operator <<(ostream TempOut, customer TempCustomer)
 {
 TempOut << TempCustomer.CustId << " " << TempCustomer.Name << endl;
 }
};

int main()
{
 fstream CustomerFile("Cust.dat", ios::in | ios::out | ios::trunc | ios::binary);
 /* Opening customer fi le in binary mode; trunc ensures deletion of fi le if exists */

 customer Lara(1, "Brian Charles Lara");
 customer Beckham(2, "David Beckham");
 customer Steffi (3, "Steffi Graf");
 // Three customer objects are defi ned

 customer Answerl, Answer2;

 CustomerFile.write((char *) &Lara, sizeof(Lara));
 CustomerFile.write((char *) &Beckham, sizeof(Beckham));
 CustomerFile.write((char *) &Steffi , sizeof(customer));

 /* sizeof operator can be applied to both a class and an object; so, sizeof(customer)
and sizeof(Beckham) yield the same value */

 cout << "Record no. 1 is as follows: \n";

 CustomerFile.seekg(0, ios::beg);
 // Reaching the beginning of the fi le
 if(!CustomerFile.read((char *) &Answer1, sizeof(customer)))
 cout << "Error in reading fi le";
 // Reading the customer record from fi le
 cout << Answer1;
 // Writing the record on the screen
 cout << "Record no. 3 is as follows: \n";

Using Files for Input /Output 515

 CustomerFile.seekg(2 * sizeof(customer), ios::beg);

 CustomerFile.read((char *) &Answer2, sizeof(customer));
 cout << Answer2;
 cout << "Swap record no. 1 with record no. 3 \n";
 CustomerFile.seekp(0, ios::beg);
 CustomerFile.write((char *) &Answer2, sizeof(customer));
 // Writing record 3 at the beginning of the fi le
 CustomerFile.seekp(2 * sizeof(customer), ios::beg);
 CustomerFile.write((char *) &Answer1, sizeof(customer));
 // Writing record no. 1 at the third position in the fi le

 cout << "Swapped record no. 1 is as follows \n";
 CustomerFile.seekg(0, ios::beg);
 CustomerFile.read((char *) &Answer1, sizeof(customer));
 cout << Answer1;

 cout << "Swapped record no. 3 is as follows \n";
 CustomerFile.seekg(2 * sizeof(customer), ios::beg);
 CustomerFile.read((char *) &Answer2, sizeof(customer));
 cout << Answer2;
 CustomerFile.close();
 return 0;
}

Output
Record no. 1 is as follows
1 Brian Charles Lara

Record no. 3 is as follows
3 Steffi Graf

Swap record no. 1 with record no. 3

Swapped record no. 1 is as follows
3 Steffi Graf

Swapped record no. 3 is as follows
1 Brian Charles Lara

How the Program Works
We have studied about the other details of this program earlier; so, we will only concentrate
on the new things specifi ed here. First, we will look at the call to seekg(). For example, look
at the following statement:

CustomerFile.seekg(0, ios::beg);

The call takes the fi rst argument as zero, that is, there will be zero byte displacement. The
second argument indicates from the beginning of the fi le. Thus, this call indicates that the
fi le pointer will move to the beginning of fi le with zero displacements, that is, the beginning
of the fi le. Now consider another example.

CustomerFile.seekg(2 * sizeof(customer), ios::beg);

The displacement is for two customer records; thus, the fi le pointer now moves to the end of
the second record, that is, the beginning of the third record. Hence, when one reads next, the
third record will be read.

516 Programming with ANSI C++

13.9.2 tellg() and tellp()
tellg() and tellp() are functions to fi nd where the read and write pointers of a fi le are pointing
to in terms of bytes from the beginning (i.e., the offset from the beginning). tellg() shows
where the get pointer is pointing to and tellp() shows where the put pointer is pointing to.

Program 13.7 shows how tellp() can be used (in conjunction with seekp()). It plays with
a fi le and changes its content using tellp(), seekp(), and write() functions.

PROGRAM 13.7 tellp() function
//Tellp.cpp
#include <fstream>
using namespace std;

int main()
{
 long FilePosition;
 ofstream OutputFile;
 OutputFile.open("FewLines.txt");
 OutputFile.write("Oxford University Press", 23);
 FilePosition = OutputFile.tellp();
 OutputFile.seekp(FilePosition−5);
 OutputFile.write("India", 5);

 OutputFile.close();

 return 0;
}

How the Program Works
The fi le FewLines.txt is generated and entered with a string Oxford University Press by the
following statement:

OutputFile.write("Oxford University Press", 23);

The fi le position (the current pointer must be at the end of the fi le after writing) can be
learnt using tellp(), which returns the fi le position at the end of fi le, now in a long variable
FilePosition, by the following statement:

FilePosition = OutputFile.tellp();

Now, this position is reduced by fi ve to reach the position where character P resides (at the
beginning of statement, i.e., Press); seekp() is used to move to that place.

OutputFile.seekp(FilePosition−5);

Then, India is written there. The resultant content of the fi le is as follows:

Oxford University India

Let us look at one more program to see how tellg() works. Program 13.8 loads the entire
fi le in memory. The fi le FewLines.txt is already created and available.

PROGRAM 13.8 tellg() function
//SeekgTellg.cpp
#include <iostream>
#include <fstream>

Using Files for Input /Output 517

using namespace std;
int main()
{
 int Length;
 Char * DataBuffer;

 ifstream InputFile;
 InputFile.open("FewLines.txt", ios::binary);

 // Length of the fi le is calculated
 InputFile.seekg(0, ios::end);
 Length = InputFile.tellg();
 Cout << "Length of the fi le is" << Length << endl;
 InputFile.seekg(0, ios::beg);

 // Buffer memory allocated
 DataBuffer = new char[Length];

 // Read data into buffer
 InputFile.read(DataBuffer, Length);

 InputFile.close();

 cout.write(DataBuffer, Length);

 delete[] DataBuffer;
 return 0;
}

Output
Length of the fi le is 75
This is testing
and testing should continue
until the result is successful

How the Program Works
The following two statements are of interest to us. The fi rst statement places the fi le pointer
at the end of fi le and tellg() informs the fi le position in terms of bytes, that is, the length of
fi le in bytes. One can see the usefulness of seekg() and tellg() here.

InputFile.seekg(0, ios::end);
Length = InputFile.tellg();

Additionally, a dynamically allocated DataBuffer has been used to read everything the fi le
has and then dump it on the screen, as it is.

Now that we know how both the pointers are used, let us modify Program 13.6 in such a
way that it displays where get and put pointers are pointing to every time. This is shown in
Program 13.9.

PROGRAM 13.9 tellg() and tellp() functions
//ShowPointers.cpp
#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
using namespace std;

518 Programming with ANSI C++

class customer
{
 int CustId;
 string Name;

public:
 customer()
 {
 CustId = 0;
 Name = "Dummy";
 }

 customer(int TempCustId, string TempName)
 {
 CustId = TempCustId;
 Name = TempName;
 }

 friend ostream & operator <<(ostream & TempOut, customer TempCustomer);
};

ostream & operator <<(ostream & TempOut, customer TempCustomer)
{
 TempOut << TempCustomer.CustId << " " << TempCustomer.Name << endl;
 return TempOut;
}

int main()
{
 fstream CustomerFile("Customers.dat", ios::in | ios::out | ios::trunc| ios::binary);

 customer Lara(1, "Brian Charles Lara");
 customer Beckham(2, "David Beckham");
 customer Steffi (3, "Steffi Graf");
 customer Answer1, Answer2;
 CustomerFile.write((char *) &Lara, sizeof(Lara));
 CustomerFile.write((char *) &Beckham, sizeof(Beckham));
 CustomerFile.write((char *) &Steffi , sizeof(customer));

 cout << "Initial stage \n";
 cout << "The get pointer is at byte no. " << CustomerFile.tellg() << endl;
 cout << "The put pointer is at byte no. " << CustomerFile.tellp() << endl;

 CustomerFile.seekg(0, ios::beg);
 cout << "After seekg() is moved to the beginning of the fi le \n";

 cout << "The get pointer is at byte no. " << CustomerFile.tellg() << endl;
 cout << "The put pointer is at byte no. " << CustomerFile.tellp() << endl;
 cout << "Record no. 1 is as follows \n";

 if(!CustomerFile.read((char *) &Answer1, sizeof(customer)))
 cout << "Error in reading fi le";
 cout << Answer1;

 cout << "Record no. 3 is as follows \n";
 CustomerFile.seekg(2 * sizeof(customer), ios::beg);

 cout << "After seekg() is moved to the end of the second record \n";

 cout << "The get pointer is at byte no. " << CustomerFile.tellg() << endl;
 cout << "The put pointer is at byte no. " << CustomerFile.tellp() << endl;
 CustomerFile.read((char *) &Answer2, sizeof(customer));
 cout << Answer2;

Using Files for Input /Output 519

 cout << "Now let us swap record no. 1 with record no. 3 \n";
 CustomerFile.seekp(0, ios::beg);
 CustomerFile.write((char *) &Answer2, sizeof(customer));

 CustomerFile.seekp(2 * sizeof(customer), ios::beg);
 CustomerFile.write((char *) &Answer1, sizeof(customer));
 cout << "After seekp() is moved to the end of the second record \n";

 cout << "The get pointer is at byte no. " << CustomerFile.tellg() << endl;
 cout << "The put pointer is at byte no. " << CustomerFile.tellp() << endl;
 cout << "Swapped record no. 1 is as follows \n";
 CustomerFile.seekg(0, ios::beg);
 CustomerFile.read((char *) &Answer1, sizeof(customer));
 cout << Answer1;

 cout << "Swapped record no. 3 is as follows \n";
 CustomerFile.seekg(2 * sizeof(customer), ios::beg);
 CustomerFile.read((char *) &Answer2, sizeof(customer));
 cout << Answer2;

 CustomerFile.close();
 return 0;
}

Output
Initial stage
The get pointer is at byte no. 96
The put pointer is at byte no. 96

After seekg() is moved to the beginning of the fi le
The get pointer is at byte no. 0
The put pointer is at byte no. 0

Record no. 1 is as follows
1 Brian Charles Lara

Record no. 3 is as follows
3 Steffi Graf

After seekg() is moved to the end of the second record
The get pointer is at byte no. 96
The put pointer is at byte no. 96
3 Steffi Graf

Now let us swap record no. 1 with record no. 3

After seekp() is moved to the end of the second record
The get pointer is at byte no. −1
The put pointer is at byte no. −1

Swapped record no. 1 is as follows
1 Brian Charles Lara

Swapped record no. 3 is as follows
3 Steffi Graf

Notes

 1. Changing the put pointer changes the value of the get pointer and vice versa. Although mentioned
as two different pointers, get for read and put for write, they refer to a single pointer, as in C.

 2. Regardless of what pointer we use (seekg() or seekp()), the other pointer moves with it. At any
given point of time, both read and write pointers point to a single location of the fi le.

520 Programming with ANSI C++

How the Program Works
This program is the same as Program 13.6, except that statements such as the following have
been added to display fi le position after every operation.

cout << "The get pointer is at byte no. " << CustomerFile.tellg() << endl;
cout << "The put pointer is at byte no. " << CustomerFile.tellp() << endl;

An important observation can be made about both the pointers; they contain an identical
value every time. This means that changing a read pointer changes the write pointer and
vice versa.

13.10 I/O MODES

Most of the I/O modes used in the given programs are quite easy to understand. ios::in for
input and ios::out for output are the simplest ones. However, there are a few points to be
noted about the other I/O modes.

1. ios::ate puts the fi le pointer at the end of the fi le, though one can move anywhere in the
fi le to read and write. On the contrary, ios::app opens the fi le in the append mode and puts
the fi le pointer at the end and one can only write at the end of the fi le. Both would work
only with existing fi les.

2. With constructors, some of the modes are usually provided as default arguments. If
the ifstream constructor is used, ios::in is the default, and if the ofstream
constructor is used, ios::out is the default. For example, writing

ifstream InputFile("MyFile.dat")

is similar to writing

ifstream InputFile("MyFile.dat", ios::in)

Table 13.2 gives a summary of the I/O modes available to the programmer.

One can determine
the options associ-
ated with the process
of opening a fi le by
specifying the differ-
ent I/O modes.

Table 13.2 I/O modes

IO mode Effect

ios::in File opens in input mode.

ios::out File opens in output mode.

ios::app File opens in append mode; we can add records at the end of an existing fi le.

ios::ate When fi le is opened the fi le pointers move at the end of fi le. We can read and write anywhere in
the fi le depending on other modes provided with this mode. The fi le must exist when this mode is
applied. ios::trunc cannot be provided with this mode.

ios::trunc When the fi le is opened, the contents are erased.

ios::noreplace Checks if the fi le exists; if fi le does not exist, the call to open fails.

ios::nocreate Checks if the fi le exists; if fi le exists, the call to open fails.

ios::binary The fi le is opened in binary rather then default text mode.

Using Files for Input /Output 521

13.11 OBJECT PERSISTENCE AND SERIALIZING

Serializing is a process of storing and retrieving of objects on and from auxiliary devices.
The objects that can be stored and retrieved later are known as persistent objects. Serializing

is not available to C++ programmers directly. The objects have to be written in
a binary fi le as was done using the customer fi le in earlier cases. Writing to and
reading from binary fi les do not make objects serialized. The object states and
their dependencies are also to be preserved. Binary fi les are just the beginning.

It is important to note that when objects are written to a fi le, it is similar to
writing a struct variable to the fi le. The functions that are provided with the class
are stored neither with the objects stored in the main memory (normal objects
with which we have dealt so far) nor with the objects stored in a fi le. Any virtual
base class information (such as the information whether a specifi c function is
virtual or not, or which objects are embedded in a class with similar values)
cannot be stored. Using the built-in features of C++, it is impossible to store an
object with its status values and extract it later after restarting the program.

The problem of object persistence becomes more complicated while dealing
with polymorphic objects, because objects do not bear any ‘type’ tag. For
example, if a few letters and a few memos are stored as document object (a
parent object from which letters and memos are derived), there is no way to
differentiate between them once stored. The simplest possible solution is to store
documents and memos in the fi le. Unfortunately, vptr is not stored in the fi le
and that information is lost. The entire inheritance chain information is just lost.
Even when there are embedded objects, the trace of vptr of those objects and the
related values are lost. When one wants this process by the base class pointer,

it becomes more diffi cult as one needs to store different vptr entries for each inherited
class. How can a C++ programmer provide serialization of professional degree is diffi cult
to explain here, but one can visualize the diffi culty of the task. Some of the other object-
oriented programming languages, most notably Java, provide serialization.

Why would one like to store objects in the auxiliary devices? It is because one would like
to preserve the status of the object. For example, if there is a TeachingStaff object derived
from an employee object where the designation is changed from Professor to Director and one
would like to have that information available the next time onwards. Assume the program is
printing salary slips of employees; it can use this information to print the proper salary slips.
If an employee pointer is being used to access the different types of employees, the change in
the object of a specifi c person must be noted, which is not possible in C++ directly. There is
no method in C++ to identify objects uniquely. All standard extensions provide some form of
wrapping, which adds an identifi er and a few other important information that one can use to
provide serialization.

13.12 I/O ERRORS

The OS has to be requested for fi le handles and disk space for the fi les. In most of the cases,
the OS complies with the requests; however, it might not comply in some specifi c cases. It
is actually the programmer’s responsibility to check whether the operation is successfully
completed or not. Let us enumerate a few such cases here.

C++ cannot provide
persistent objects; so,
programmers must
adopt solutions with
object identifi cation
and a few other tricks
in order to get this
feature.

The process of serial-
ization relates to
storing and retrieving
objects and retaining
their status during
storage and retrieval.
Such objects are
known as persistent
objects. C++ does not
provide any facility for
serialization.

522 Programming with ANSI C++

1. When one is providing paths in phrases such as Customer.dat, the OS looks at
the current directory to fi nd that fi le. The current directory is different when
the program is running elsewhere. If the path is not provided to retrieve the fi le
in different situations, the same program running fi ne at one place will not be
able to work at another place.

2. While working with multi-user OS such as Linux or Windows 2000, it is
also important to know that fi les can be created or read only where there is a
permission to write or read, respectively. The same program running perfectly
on one machine or one account might just not work on another.

3. A program copied from one user account to another might not work as
expected in the other user account on the same machine because of permission
restrictions for different fi les and folders to different users.

The errors can be checked in the following ways:

1. While opening a fi le:

(a) A function is_open() is available to all fi le objects. It is possible to write

 if(fi lename.is_open())

 to check whether a fi le has opened or not after an open() call.
(b) One can open the fi le using ios::nocreate option when one does not want the fi le

to be accidentally overwritten, if it already exists. This option ensures that a fi le is
created only when there is no such fi le.

(c) One can open the fi le using ios::noreplace option when one does not want to
generate a new fi le if an old fi le with the same name exists.

2. While reading or writing a fi le:

(a) Both read() and write(), when successful, return the stream, and return zero
otherwise. Adding read() and write() inside the if statement’s condition part is
also a common practice. It is done as follows:

 if(MCA_StudFile_In.read((char*) &MCA_Student_In, sizeof(struct student)))
 {
 // Actions to be taken
 }
 else
 {
 // Actions to be taken when error occurs
 }

 This construct automatically checks for errors and there is no need to write specifi c
code for fi nding whether an error has occurred or not.

(b) After executing a read() or write() statement, one can check whether it has failed
by calling the function fail(). It is done as follows:

 MCA_StudFile_In.read((char*) &MCA_Student_In, sizeof(struct student));
 if(MCA_StudFile_In.fail())
 break;

The fail() function is quite generic. One can call fail() after any fi le-related operation to
check whether the operation was successful or not.

One must test for er-
rors after different fi le
operations. C++ has
no default mechanism
to check and correct
errors.

Error handling is pos-
sible by calling func-
tions such as fail()
or is_open() or
by testing the return
value of most of the
I/O functions.

Using Files for Input /Output 523

■ RECAPITULATION ■

 • I/O is a special operation as the program needs to take
the help of the OS and other devices to perform.

 • For providing I/O, an I/O library is used in C++. The I/O
library helps in the portability of the program.

 • A fi le on the auxiliary device has minimum four
operations possible; they are open(), read(),
write(), and close().

 • The fi les mechanism is provided in C++ by the
<fstream> header. It has two different mechanisms to
open fi les, one using constructors and the other using
the open() function.

 • Text and binary are the two different streams
provided.

 • Text is more portable than binary, but binary is
preferable for commercial programs.

 • It is also possible to use get() and put() functions
on text stream for reading and writing single characters.

 • It is possible to use getline() for reading a single
line.

 • Binary fi les require read() and write() functions for
reading from and writing in a fi le.

 • seekg() and seekp() are functions for seek in the
read and the write modes, respectively.

 • tellp() and tellg() are functions for tell in the write
and read modes, respectively.

 • C++ does not provide object serialization.

■ KEYWORDS ■

Binary fi les Files containing integers in binary and other
data in ASCII format are known as binary fi les.

eof() This denotes the end of a fi le. In text fi le, it is
indicated by a special character. In binary fi les, this is
determined implicitly using the length of the fi le.

File pointer This term has two different meanings in two
different contexts. When we are dealing with fi le handles
to access fi les, a fi le handle is sometimes referred to as
the fi le pointer. In C, conventionally, the fi le handle is
called the fi le pointer and is usually written as FILE *fp;
where fp is actually a handle but called a pointer. Another
meaning of fi le pointer is a place in the fi le where the next
read or write is to take place.

I/O modes These are the different modes such as read
only, write only, read-write, and append in which we can
open fi les.

Logical fi le name This is the name of the fi le that we refer
in our program.

Physical fi le name This is the name of the fi le that is
referred by the OS.

seekg() and seekp() These are similar to the seek point-
er in C. 'g' indicates get() or read() and 'p' indicates
put() or write(). Thus, seekg() is for seeking while
reading, whereas seekp() is for seeking while writing

Seek This is an operation to move the fi le pointer (second
defi nition above) to the place we want.

Serialization This is the process of placing the objects in
auxiliary memory for later retrieval and later getting them
back as it is.

Text fi les Files containing integers and other data in ASCII
format are known as text fi les.

tellg() and tellp() These are similar to the tell pointer
in C. 'g' indicates get() or read() and 'p' indicates
put() or write(). Thus tellg() is for indicating
the fi le position while reading, whereas tellp() is for
indicating it while writing.

■ EXERCISES ■

Multiple Choice Questions

1. The logical and the physical fi le needs to be __________
to enable a programmer to work on that fi le.

 (a) created
 (b) executed
 (c) associated
 (d) de-referenced

2. __________ helps read and write operations to be
carried out in bulk.

 (a) File handle
 (b) File pointer
 (c) File buffers
 (d) Any of the above

524 Programming with ANSI C++

3. The objects that can be stored and retrieved later are
known as __________.

 (a) serial objects
 (b) serialized objects
 (c) persistent objects
 (d) persisted objects
4. When we write to binary streams, __________ does

not take place.
 (a) insertion
 (b) conversion
 (c) Both
 (d) None
5. The name by which we refer to a fi le in our program

is known as __________.
 (a) logical fi le name
 (b) physical fi le name
 (c) fi le handle
 (d) program fi le name
6. Text fi le storage and retrieval may require __________.
 (a) character conversions
 (b) numeric conversions
 (c) Both
 (d) None
7. The more the __________ of library functions, the

easier it is for the programmer.
 (a) dependency
 (b) independency
 (c) standardization
 (d) modularization
8. The operation to move the fi le pointer to the place

we want is known as __________.
 (a) jump operation
 (b) seek operation
 (c) Both
 (d) None
9. The device driver accepts commands from

__________.
 (a) the user
 (b) the operating system
 (c) the programmer
 (d) the device

10. The end of fi le mark in Unix is __________.
 (a) ^Z (ctrl Z)
 (b) ^D (ctrl D)
 (c) Any of the above depending on the programmer
 (d) Any of the above depending on the compiler

Conceptual Exercises

 1. What is the need for I/O libraries?
 2. Discuss the role of a programmer, C++ I/O library,

and OS in I/O.
 3. Explain the process of open, read, write, and close

for fi les.
 4. Explain the difference between text and binary

streams.
 5. How can we open a text fi le and read from it?
 6. How can we open a binary fi le and write to it?
 7. Explain the method of read-write using get() and

put() functions and using getline().
 8. Explain the method of read-write using read()

and write() functions in binary streams.
 9. Explain the roles of seekg(), seekp(), tellg(),

and tellp() functions in the process of random
access in a binary fi le.

10. How can we determine errors while dealing with
fi les?

Practical Exercises

 1. Write a program to read text fi le and count the
number of characters in it.

 2. Write a program to read a text fi le and copy it to
another text fi le.

 3. Write a program to read a text fi le and convert a
specifi c word to another in the entire fi le.

 4. Pick up any employee class defi ned in earlier
chapters. Store the information about employees
in sorted order of their employee numbers in
the fi le. Read an employee number from the
keyboard and display the corresponding employee
details.

 5. Write a similar program for customer class. Pick
up any customer class defi ned earlier.

Chapter 14
NamespacesNamespaces
14.1 NAME CONFLICT PROBLEM

When the initial version of C++ was introduced, vendors started shipping
third-party libraries to be used by programmers. These libraries help
programmers to get routine job functions off the shelf. For example,
statisticians require additional functions for fi nding the regression, mode,
etc. Similarly, graphic designers require functions to draw basic shapes
such as lines and squares and, at times, more advanced functions such as
three-dimensional images, shadows, and projection. Libraries reduce the
burden on the programmers by providing the basic building blocks so that
they can concentrate on the core design.

When a programmer uses one such library, he/she does not face any
problem. The problem starts when one uses multiple libraries that defi ne
a function with the same name. Let us consider an example. We have a
math library with a function abs(), which returns the absolute value of the
number passed to it. We may also be using a library where abs() returns the
number of students absent in a class. When we use abs() in a program, the
compiler cannot identify which abs() is required. This problem can be easily
avoided if we could name both the functions differently. Unfortunately, it is
not in our hands to pick names that do not confl ict, as they are decided by
the developer who develops that library. Whenever we use any third-party
library, we might run into one or the other name clash with previously
installed libraries. This problem cannot be solved locally. Neither can a
third-party library designer solve this problem because he/she does not
know anything about the other libraries installed in our computer. This is
called the name confl ict problem.

Note The name confl ict problem is analogous to putting all the students of a school in
one big room. If you call out to one student just by name, say ‘Arun’, there is a
likelihood of more than one student replying.

To resolve the name confl ict problem, we need to have enclosures for
functions. Each enclosure should have a unique name and contain unique
functions. However, the same name may exist in different enclosures. Each
such enclosure is known as a namespace.

14.1.1 Global Namespace
The global namespace is the enclosure where the program runs. It is the
environment accessible to the program while being executed. Any function,
variable, or class must be brought to the global namespace to be accessible.

Learning Objectives

• The name confl ict problem
• Fully qualifi ed names
• Logical grouping
• using declarations and

directives
• Defi ning inside and outside

the namespace
• Extending the namespace
• Unnamed namespaces
• Nested namespaces
• Namespace aliases
• std namespace
• Koenig lookup

When we use two
third-party libraries
with the same name
given to at least one
of the elements of
both the libraries, we
have a name confl ict
problem.

The name confl ict
problem can be
avoided by placing
the elements of diff-
erent libraries in diff-
erent namespaces.

526 Programming with ANSI C++

The problem arose because all the libraries installed insert their functions into
a global namespace. In simpler terms, all functions are assembled together in a
single space in an indiscriminate manner. One does not have any discrimination
between library element names once the library is installed. Hence, the global
namespace cannot identify a library element uniquely in case of a name confl ict.

14.1.2 Logical Grouping
The solution to the global namespace problem lies in logical grouping. It is
analogous to placing the students of a specifi c standard in a separate room. Now,
one can easily identify the Arun of third standard uniquely. One can also fi nd that
the ‘Arun’ of third standard is different from the Arun of sixth standard.

Namespaces are introduced to provide this logical grouping of names. Once
the logical grouping is in place, one just has to worry about uniquely identifying
a name in a single group. Again, this is analogous to making sure there are no
more than one Arun in a single standard. While programming, one can actually
disallow similar names for objects in a single namespace or can rename them.
This is not a big problem, as a single library is designed by a single team of
developers; so, a leader can always decide better naming conventions with no
confl ict.

Thus, namespaces identify the logical group of elements. These elements
could be variables, classes, and their objects, and non-member functions as well.

14.1.3 Fully Qualifi ed Names
Once the elements are logically grouped using namespaces, any name can be
qualifi ed using the syntax namespace::element. Suppose there are two abs()
functions, one in math namespace and the other in Academic namespace. Here,
it is possible to use math::abs() and Academic::abs() to identify both abs()
functions in an unambiguous way.

The name math::abs() is said to be a fully qualifi ed name. When the abs() function is
used by some other function of the same library, that is, math library, it is situated in the same
namespace where abs() is situated. It does not need to use math::abs(); it can simply use
abs(). If some other function defi ned outside the math namespace uses abs(), then it should
use the fully qualifi ed name, that is, math::abs().

We will learn how to defi ne and use namespaces in the following sections. First, let us
discuss how the std namespace can be used in different ways than 'using namespace std',
which we have been doing so far.

14.2 WAYS OF USING NAMESPACES

Namespaces can be used in various ways. It is possible to move every element of a namespace
into the global namespace or only a part of it. It is also possible to use fully qualifi ed names
instead. Let us see how it is done.

14.2.1 using Syntax
using is a keyword that is used when one does not want to use fully qualifi ed names
repeatedly. There are two ways in which it can be used.

Every program
can use the global
namespace elements
without qualifi cation.

Namespaces identify
logical groups.

namespace::
element is a fully
qualifi ed name, for
example, std::cout
and math::abs()
are fully qualifi ed
names of the ele-
ments of std and
math namespaces,
respectively. math is
a user-defi ned name-
space here.

There are many ways
to use namespaces:
using directive,
using declaration,
and fully qualifi ed
names are examples.

Namespaces 527

using Declaration
The using declaration follows the namespace::element syntax for making only
the element of a given namespace available. Look at the following code:

//usingDeclaration.cpp
#include <iostream>

// NO "using namespace std"

int main()
{
 using std::cout;

 using std::operator <<;

 cout << "Hi";
 return 0;
}

The usual using namespace std; has not been specifi ed in this code; yet, we are able to use
cout as a normal ostream object. This is because the using declaration has been provided for
both cout object and the operator << overloaded in cout.

The following statements are considered to be using declarations.

using std::cout;

using std::operator <<;

using Directive
The usual using namespace std; statement is known as the using directive. Note that the
word namespace is included inside the defi nition. This makes all the names defi ned in the
std namespace to be available to the global namespace. This is the simplest of mechanisms
to use namespaces. We will see how to defi ne user-defi ned namespaces in Section 14.3.1.
Assume that a namespace called mynamespace has been defi ned. The using directive examples
are as follows:

using namespace std;

using mynamespace;

Look at the difference between a directive and a declaration. Directives introduce the entire
namespace to a global namespace, whereas declarations only introduce the objects that the

programmer wants to use.

Code without using Directive or Declaration
Look at the following program:

//WithoutUsing.cpp
#include <iostream>
// NO "using namespace std"

int main()
{
 using std::operator <<;

 std::cout << "Hi";

 return 0;
}

The syntax that uses
using namespace
::element is called
the using declaration.

The syntax using
namespace
namspacename is
an example of using
directive.

When we use fully
qualifi ed names such
as std::cin, we do
not require the using
directive or decla-
ration.

528 Programming with ANSI C++

The statement using std::cout; is now missing in the code. Instead, cout has been used
with its fully qualifi ed name, that is, std::cout. There is no need for the using directive with
fully qualifi ed names. As we are using all the names of the std namespace quite frequently
in our programs so far, we are using the using directive. We can instead use either using
declarations or fully qualifi ed names.

14.3 DEFINING A NAMESPACE

Namespaces can be defi ned to accommodate variables, functions, and classes. A namespace
can be defi ned inside another namespace. It is also possible to defi ne a namespace as an
alias of another namespace. It can also be defi ned in parts. Let us see some examples to
understand this better.

14.3.1 Defi ning Variables Inside a Namespace
One can defi ne user-defi ned namespaces and use the variables defi ned therein. The following
program defi nes a namespace MyNamespace containing a few variables. The code uses fully
qualifi ed names.

//MyNamespace.cpp
#include <iostream>
#include <string>
using namespace std;
// User-defi ned namespace with two variables
namespace MyNamespace
{
 int MyNumber;
 string MyString;
}
int main()
{
 cin >> MyNamespace::MyNumber;
 cin >> MyNamespace::MyString;
 cout << MyNamespace::MyNumber << endl;
 cout << MyNamespace::MyString << endl;
}

Observe how the namespace and two variables have been defi ned within that namespace.
Moreover, note the way these variables are used. This seems to be a laborious approach. One
can use the using declaration or directive as shown in the following programs.

//UsingDeclarationMyNameSpace.cpp
#include <iostream>
#include <string>
using namespace std;

namespace MyNamespace
{
 int MyNumber;

Namespaces 529

 string MyString;
}

int main()
{
 using MyNamespace::MyNumber;

 using MyNamespace::MyString;

 cin >> MyNumber;
 cin >> MyString;
 cout << MyNumber << endl;
 cout << MyString << endl;
}

//UsingDirectiveMyNameSpace.cpp
#include <iostream>
#include <string>
using namespace std;

namespace MyNamespace
{
 int MyNumber;
 string MyString;
}

int main()
{
 using namespace MyNamespace;

 cin >> MyNumber;
 cin >> MyString;
 cout << MyNumber << endl;
 cout << MyString << endl;
}

14.3.2 Defi ning Functions Inside a Namespace
Besides variables, a namespace can hold functions as well. One can defi ne
functions inside a namespace and access them using the same technique. The
following program illustrates how this can be done.

//Defi ningFunctions.cpp
#include <iostream>

#include <string>
using namespace std;

namespace MyNamespace
{
 int MyNumber;
 string MyString;
 void InputAndDisplay()

 {

Similar to std name-
space, the using
directives and decla-
rations are also
available to user-
defi ned namespaces.

530 Programming with ANSI C++

 cin >> MyNumber;
 cin >> MyString;
 cout << MyNumber << endl;
 cout << MyString << endl;
 }
}

int main()
{
 MyNamespace::InputAndDisplay();

}

Note how the function is called. It is fully qualifi ed similar to the variables,
using the namespace and the function names. One can use the using directive or
declaration to access the functions defi ned inside a namespace.

14.3.3 Defi ning Classes Inside a Namespace
One can even defi ne classes inside a namespace. Look at Program 14.1.

One can defi ne a
function inside a
namespace and call it
using a fully qualifi ed
name.

PROGRAM 14.1 Defi ning classes inside a namespace
//Defi neClassOutsideNS.cpp
#include <iostream>
#include <string>
using namespace std;

namespace MyNamespace
{
 class brother
 {
 string Name;
 public:
 brother(string BrotherName)
 {
 Name = BrotherName;
 }
 friend ostream & operator <<(ostream & TempOut, brother TempBrother);
 };

 ostream & operator <<(ostream & TempOut, brother TempBrother)
 {
 TempOut << TempBrother.Name;
 return TempOut;
 }
}

int main()
{
 MyNamespace::brother Lara("Brian Charles Lara");
 cout << Lara;
}

Note When one defi nes a class inside a namespace, namespace::classname can be used to access the
class outside that namespace.

Namespaces 531

How the Program Works
The class brother is now defi ned inside MyNamespace and accessed like any other variable.
Defi ning the objects of the brother class is done using the following statement:

MyNamespace::brother Lara("Brian Charles Lara");

that is, fully qualifying the class name and using it. One can also use the using declaration
or directive as used in the earlier programs.

// using directive

int main()
{
 using namespace MyNamespace;
 brother Lara("Brian Charles Lara");
 cout << Lara;
}

// using declaration

int main()
{
 using MyNamespace::brother;
 brother Lara("Brian Charles Lara");
 cout << Lara;
}

In both the cases, the operator << is being used without qualifying it, that is, the code does
not contain the statement using MyNamespace::operator <<. How does it work then? This is
explained in Section 14.8 where we discuss Koenig lookup.

14.3.4 Declaring Inside and Defi ning Outside the Namespace
Similar to a class defi nition, one can declare an element inside a namespace and defi ne it outside.
In the following program, the function InputAndDisplay() is defi ned outside the namespace.

//Defi neOutsideNS.cpp
#include <iostream>
#include <string>
using namespace std;

namespace MyNamespace
{
 int MyNumber;
 string MyString;
 void InputAndDisplay(); // Declaration
}
/* Qualifying the function name and defi ning it outside */
void MyNamespace::InputAndDisplay()

{
 cin >> MyNumber;
 cin >> MyString;
 cout << MyNumber << endl;

532 Programming with ANSI C++

 cout << MyString << endl;
}

int main()
{
 using namespace MyNamespace;
 InputAndDisplay();
}

It is important to note that the defi nition of the function lies outside the
namespace, and so, it needs a qualifi cation. Earlier, when it was defi ned inside
the namespace, this was not required.

Program 14.2 shows how to defi ne the class member functions outside the
namespace. However, similar to a non-member function, its declaration has to

be done inside the namespace.

When a function is
defi ned outside the
namespace, it requires
qualifi cation.

PROGRAM 14.2 Defi ne a member function outside the namespace
//Defi neClassOutsideNS2.cpp
#include <iostream>
#include <string>
using namespace std;

namespace MyNamespace
{
 class brother
 {
 string Name;
 public:
 brother(string BrotherName); // Compulsory declaration
 friend ostream & operator <<(ostream & TempOut, brother TempBrother);
 };
}
MyNamespace::brother::brother(string BrotherName)
{
 MyNamespace::brother::Name = BrotherName;
}
std::ostream & MyNamespace::operator <<(ostream & TempOut, MyNamespace::brother TempBrother)
{
 TempOut << TempBrother.Name;
 return TempOut;
}
int main()
{
 MyNamespace::brother Lara("Brian Charles Lara");
 cout << Lara;
}

How the Program Works
The constructor function is now defi ned as follows:

MyNamespace::brother::brother(string BrotherName)

Moreover, the variable assignments are as follows:

MyNamespace::brother::Name = BrotherName;

Namespaces 533

Both the constructs seem very long. One way to reduce their length is to use the
using declaration or directive. There is one more way to solve this problem. It is
known as namespace aliasing. We will learn about that in Section 14.6.

14.3.5 Extending a Namespace
It is possible to extend a previously defi ned namespace. Take a look at Program 14.3.
Where would one need this feature? A big project usually involves more than

one developer. All of them can develop their own portion of namespace, which add up when
inserted in the program code if they use the same namespace name for defi ning their own
part of the namespace.

One can extend a
namespace by defi n-
ing additional compo-
nents inside the
namespace with the
same name.

PROGRAM 14.3 Extending a namespace
//ExtendingNamespace.cpp
#include <iostream>
#include <string>
using namespace std;

namespace MyNamespace
{
 class brother
 {
 string Name;
 public:
 brother(string BrotherName)
 {
 Name = BrotherName;
 }
 friend ostream & operator <<(ostream & TempOut, brother TempBrother);
 };

 ostream & operator <<(ostream & TempOut, brother TempBrother)
 {
 TempOut << TempBrother.Name;
 return TempOut;
 }
}

/* This defi nition extends the previous defi nition; does not overwrite it */
namespace MyNamespace
{
 int Test = 20;
}

int main()
{
 MyNamespace::brother Lara("Brian Charles Lara");
 cout << Lara;
 cout << endl << MyNamespace::Test;
}

How the Program Works
As shown in the program, the second defi nition extends the previous defi nition. This is very
useful in some cases. It is possible to have a code as follows:

#include <FirstHeaderFile>

534 Programming with ANSI C++

#include <SecondHeaderFile>
// Rest of the program

Here, it is possible to have a namespace TheNameSpace defi ned in the FirstHeaderFile as well
as the SecondHeaderFile. The contents of TheNameSpace in both the header fi les will be added
to the rest of the program.

This implies that one can defi ne a namespace in parts. In the example, the fi rst part of
TheNameSpace has been defi ned in the fi rst header fi le and the second part in the second
header fi le.

One can easily consider two different programmers developing these two parts. It becomes
easy for them to continue working and evolving their own parts without being merged into a
single set of code and retain the same effect.

14.3.6 Using Namespaces in .h Files
The following are two different versions of Program 14.2. Both now have a namespace
embedded in the .h fi le. Look at the examples.

The fi rst is the .h fi le.

//NamedNamespace.h
#include <string>
namespace MyNamespace
{
 class brother
 {
 string Name;
 public:
 brother(string BrotherName)
 {
 Name = BrotherName;
 }
 friend ostream & operator <<(ostream & TempOut, brother TempBrother);
 };
 ostream & operator <<(ostream & TempOut, brother TempBrother)
 {
 TempOut << TempBrother.Name;
 return TempOut;
 }
}

The second is the .cpp fi le.

//NamedNamespace.cpp
#include <iostream>
#include <string>
using namespace std;
#include "NamedNamespace.h"

int main()
{

Namespaces 535

 MyNamespace::brother Lara("Brian Charles Lara");
 cout << Lara;
}

The program separates the namespace defi nition from the .cpp fi le, which contains the C++
code that uses the namespace. This is a usual programming practice, as the core coding
part is done by expert coders and is stored in the namespace. Other programmers use that
namespace for their own programs using that .h fi le. It works the same as other versions of
the same program written earlier.

14.4 UNNAMED NAMESPACES

The name of the namespace plays an important role in namespace declarations. One writes

<namespace name> <element name>

to qualify and uniquely identify an element. The namespaces that we have used
so far are known as named namespaces. Here, the name of the namespace is
useful for confl ict resolution. If there are two namespaces Academic and Maths,
then Maths::abs() is certainly different from Academic::abs().

Surprisingly, it is also possible to have a namespace without a name. Such
namespaces are called unnamed namespaces. The variables of the unnamed
namespaces are used like normal variables without qualifying with the namespace
name, because there is no name for the namespace. What is the difference between
a normal global variable and a variable defi ned in an unnamed namespace? Let
us consider Program 14.4 to understand it.

An unnamed name-
space can contain
anything a named
namespace may con-
tain. The only
difference is that
we do not need
a qualifi cation for
accessing any of its
elements.

PROGRAM 14.4 Unnamed namespace
//UnnamedNS.cpp
#include <iostream>
#include <string>
using namespace std;

namespace // Unnamed namespace
{
 int MyNumber;
 string MyName;
}

int main()
{
 cout << "Enter the number: ";
 cin >> MyNumber;
 cout << endl;
 cout << "Enter the name: ";
 cin >> MyName;
 cout << "\n The name and number are " << MyName << " and " << MyNumber << endl;
 return 0;
}

How the Program Works
It can be seen how MyName and MyNumber are used in the main program. Both the variables are
used as both have been defi ned globally. Though apparently similar, this mechanism has an

536 Programming with ANSI C++

important difference. Although variables are available globally in this physical fi le, they are
not available to any other fi le linked with this fi le. This means that the variables MyName and
MyNumber are available anywhere inside UnNamedNamespace.cpp, but they will not be available
in any other fi le.

Let us try to understand this point further. The fi le UnnamedNamespace.cpp is as follows:

namespace
{
 // Defi nition of variables MyName and MyNumber
}

int main()
{
 // Using the variables
}

Suppose some other fi le xyz.cpp contains statements such as the following:

{
 extern MyName
 // Using MyName
}

It will not work because MyName is not available to other fi les. Suppose our fi le is as
follows:

/* Defi nition of variables globally without being wrapped into unnamed namespace */
int main()
{
 // Using the variables
}

Then, the second fi le not only compiles properly but works properly too.

Note An unnamed namespace element behaves similar to a static global variable. Something defi ned as
static globally is available only in the fi le in which it is defi ned.

Let us consider the following program. Now, UnNamedNameSpace.cpp alone contains the
defi nition of the unnamed namespace. There is one more fi le CheckUNNS.cpp that uses the
unnamed namespace. The program compiles properly but does not link. It will not be able to
resolve both the variables at linking time. The program does not work as expected.

//UnnamedNamespace.cpp
#include <iostream>
#include <string>
using namespace std;

namespace
{
 int MyNumber;
 string MyName;
}

Namespaces 537

//CheckUNNS.cpp
#include <iostream>
#include <string>
using namespace std;
extern string MyName;
extern int MyNumber;

int main()
{
 cout << "Enter the number: ";
 cin >> MyNumber; // Generates compile-time error
 cout << endl;
 cout << "Enter the name: ";
 cin >> MyName; // This too will generate compile-time error
 cout << "\n The name and number are " << MyName << " and " << MyNumber << endl;
 return 0;
}

An unnamed namespace can produce the same effect as static global defi nition.
However, it is advisable to use unnamed namespaces because the static global
defi nition is now deprecated and future versions of the compilers may not accept it.

14.5 NESTED NAMESPACES

One can defi ne a namespace within another namespace. The following program
has two namespaces; the inner namespace InnerNamespace is contained in the outer
namespace OuterNamespace. The brother class now is deep inside the inner namespace.

How can we access an element of such a nested namespace? We need to provide
qualifi cation using the following syntax:

outer namespace::inner namespace::element name

This can be understood better using the following program.

An unnamed name-
space is not available
to the components of
the program defi ned
in other physical fi les.

A nested namespace
is defi ned inside
another namespace.

//NestedNamespaces.cpp
#include <iostream>
#include <string>
using namespace std;

namespace OuterNamespace
 {
 namespace InnerNamespace
 {
 class brother
 {
 private:
 string Name;

 public:
 brother(string BrotherName)

 {

538 Programming with ANSI C++

The fully qualifi ed names are even longer now. The solution to reduce the length
of the names is given in Section 14.6.

Note A namespace is similar to a Java package. For example, java.Applet.applet
represents the third level of hierarchy.

14.6 NAMESPACE ALIASES

A namespace name can act as an alias of another namespace. It can help reduce
the length of long fully qualifi ed names. Let us look at Program 14.5 to see how

namespace aliases can be defi ned and used.

 Name = BrotherName;
 }
 friend std::ostream & operator <<(ostream & TempOut, OuterNamespace::Inn

erNamespace::brother TempBrother);
 };
 }
}
std::ostream & OuterNamespace::InnerNamespace::operator <<(ostream & TempOut,
OuterNamespace:: InnerNamespace::brother TempBrother)
{
 TempOut << TempBrother.Name;
 return TempOut;
}
int main()
{
 OuterNamespace::InnerNamespace::brother Lara("Brian Charles Lara");
 cout << Lara;
}

A nested namespace
is required in cases
involving more than
two levels of hier-
archy. A::B::C is a
case where we are
addressing the third
level of hierarchy.

PROGRAM 14.5 Namespace alias
//NamespaceAliases.cpp
#include <iostream>
#include <string>
using namespace std;

namespace OuterNamespace
{
 namespace InnerNamespace
 {
 class brother
 {
 private:
 string Name;
 public:
 brother(string BrotherName)
 {
 Name = BrotherName;
 }
 friend std::ostream & operator <<(ostream & TempOut, OuterNamespace::InnerName

space::brother TempBrother);

Namespaces 539

How the Program Works
Observe the following statements:

namespace NS = OuterNamespace::InnerNamespace;
NS::brother Lara("Brian Charles Lara");

Here, NS acts as a replacement for OuterNamespace::InnerNamespace, and thereby
shortens the long fully qualifi ed names.

Exhibit 14.1 describes namespaces and dynamism.

 };
 }
}

std::ostream & OuterNamespace::InnerNamespace::operator <<(ostream & TempOut, OuterNamespace::
InnerNamespace::brother TempBrother)
{
 TempOut << TempBrother.Name;
 return TempOut;
}

int main()
{
 // Namespace alias
 namespace NS = OuterNamespace::InnerNamespace;

 NS::brother Lara("Brian Charles Lara");
 NS::brother Beckham("David Beckham");
 NS::brother Steffi ("Steffi Graf");

 cout << Lara << endl;
 cout << Beckham << endl;
 cout << Steffi << endl;
}

A namespace alias is a
new name given to an
existing namespace.
This is useful for
reducing the length
of long and nested
namespace names.

Exhibit 14.1 Namespaces and dynamism
Namespace aliases can be used for providing dynamism such as #defi ne symbols in C. Let us try to
understand their usefulness with the help of an example.

Suppose we are developing a software product called Product. We may then have a new version of
Product, still called Product. How can we differentiate the new Product from the old one? What will happen
if one of our old customers, still having the old Product, uses the new version of software? How can he/she
get similar functionality? Let us try to fi nd a solution using namespace aliasing.

namespace OldProduct
{
 class Product
 {
 void registration()
 {...}
 }...
}
namespace NewProduct
{

540 Programming with ANSI C++

 class Product
 {
 void registration()
 {...}
 }
}

int main()
{
 namespace Product = NewProduct;
 /* The most important line */

 Product::Product MyProduct;
 /* The fi rst is the name of namespace and the second is the class in

Product::Product */
 MyProduct.registration();
}
Look at the most important line

namespace Product = NewProduct

Changing that single line to

namespace Product = OldProduct

changes it to the old Product for the rest of the program.
The beauty of this design is that we keep everything related to both versions of the product separate in

two different namespaces. Still, we can use the same code including the functions that appear in both the
namespaces such as register() to work differently. Such a design helps programmers to use the same
name repeatedly for a function with additional features for a new product.

For example, let us suppose the new registration() function for a new product requires the
customer’s address in a different format. The old registration function may still be there in the OldProduct
namespace and the new and updated registration function will be a part of the NewProduct namespace.
The code used to register the customer, thus, still remains the same as follows:

MyProduct.registration();

If MyProduct aliases NewProduct, the new registration function is called; on the other hand, if MyProduct
aliases OldProduct, the old registration function is called.

14.7 std NAMESPACE

std is a namespace where the standard library routines are defi ned. One can use objects such
as cout or cin without any qualifi cation if one writes using namespace std at the beginning of
a program. The inclusion of std namespace makes all the standard library routines wrapped
in the std namespace available in the global namespace.

If using namespace std is not written at the beginning, then the elements of std can be
called using the qualifi er std::.

The new headers that are used such as <iostream> and <cstdlib> instead of <iostream.h>
and <stdio.h> are using the std namespace. The older design directly inserts the content of

Namespaces 541

'.h' headers in the global namespace and does not use std namespace; hence,
it cannot solve problems of name confl ict. On the contrary, a programmer
can easily avoid adding the entire std namespace to the global namespace by
avoiding using directive. One may use either using declaration or fully qualifi ed
names to avoid confl ict. This was not possible with the older design. In the newer
version, the library elements can be separated by the using declaration. Thus,

if programmers defi ne class abs themselves and do not write using <cmath>, they can call
cmath::abs() to call the absolute function of the library and OurLib::abs() to access abs()
of their library.

We have also seen that namespaces can be extended. However, the std namespace is an
exception. It is not possible to add new defi nitions to the std namespace.

14.8 KOENIG LOOKUP

If using std::cout is written initially and then cout is used with <<, the program works. We
have seen this earlier in the chapter. The operator << is a part of the std namespace. How does
the compiler fi nd and qualify the operator even when the namespace in which it is defi ned is
not specifi ed? It is because of an algorithm by Andrew Koenig, which is now implemented
in most of the compilers. It is mandatory for all ANSI C++-compliant compilers. The formal
name of the algorithm is augment-dependent lookup. The Koenig lookup is automatically
applied by any ANSI/ISO standard-compliant compiler; hence, there is no need to enable or
disable anything.

Koenig lookup enables the compiler to search namespaces to locate an element even if
one does not use the using directive or even a fully qualifi ed name. Consider the following
program.

std is a namespace
where the standard
library routines are
defi ned. It cannot be
extended.

//KoenigLookup.cpp
#include <iostream>
// using namespace std is missing here

int main()
{
 using std::cout;
 // The following line is now commented // using std::operator <<;
 cout << "Hi";
 return 0;
}

The program still works as before. The operator << will be found from the std namespace
by the Koenig lookup algorithm.

14.9 OVERHEAD WITH NAMESPACES

Namespaces are resolved at compile time. All using directives, using declarations,
fully qualifi ed names, etc. are handled statically by the compiler. There is
nothing to be done at run-time. In short, there is no run-time overhead with
namespaces.

Namespaces do
not introduce any
run-time overhead.

542 Programming with ANSI C++

Thus, it is advised to use namespaces when necessary without worrying about performance
overhead at run-time. However, it is important to note that if one builds unnecessary
namespaces, it may affect the readability of the program.

■ RECAPITULATION ■

 • Use of third-party libraries introduces name confl ict
problem.

 • If the functions are grouped and every group is given
a specifi c name, then we can qualify the function as a
part of a group.

 • Namespace is a logical grouping mechanism for
grouping objects and qualifying objects by that group to
avoid name confl ict issues.

 • Namespace enables the programmer to unambiguously
specify the objects of different libraries.

 • A using declaration can make a single element of the
library available to us and a using directive can make
the entire library available.

 • It is possible to use an object of the namespace without
the using directive or declaration. In such cases, we
can use fully qualifi ed names.

 • We can defi ne variables, functions, and classes inside
namespaces.

 • It is possible to extend the namespace (except the std
namespace) with additional objects.

 • Unnamed namespace, that is, namespaces without any
name is also possible.

 • Variables defi ned in unnamed namespaces are
available to the program in the same fi le similar to
global static variables.

 • It is possible to defi ne one namespace inside an-
other one. Such a namespace is known as nested
namespace.

 • A long namespace name can be shortened by using
namespace alias.

 • When the user does not specify the namespace
name for any object, it is possible for a compiler
to apply argument-dependent lookup algorithm to
fi nd that namespace name from the context. This
algorithm is popularly known as the Koenig lookup
algorithm.

 • Namespaces incur no overhead at run-time as all
processing related to the namespaces is resolved at
compile time.

■ KEYWORDS ■

Fully qualifi ed name This is the name of any object,
variable, or function with the names of the namespace
and the scope resolution operator (::).

Global namespace This is the namespace where
every function or class is copied in older C++ by
default.

Koenig lookup The ability of the compiler to fi nd the exact
namespace of the object in use even when not specifi ed
by the programmer is known as Keonig lookup.

Namespace This is an enclosure of logical nature, which
helps libraries to have separate existence and solves the
name confl ict problem.

Namespace aliases A shorter name given to a long
fully qualifi ed name using namespace aliasing syntax

is known as a namespace alias for the long fully
qualifi ed name. This process is known as namespace
aliasing.

Nested namespaces Namespaces defi ned inside another
are known as nested namespaces.

Unnamed namespace This is a namespace without
any name specifi ed for it. It is now recommended to
use unnamed namespaces in place of global static
variables.

using declaration This is a mechanism for making a
single element of a library available to the program.

using directive This is a mechanism for making all
elements of a library available to the program at a single
stretch.

Namespaces 543

■ EXERCISES ■

Multiple Choice Questions

1. When a namespace with the same name as previous
namespace is defi ned, __________.

 (a) the new namespace overwrites the previous
namespace

 (b) the new namespace overrides the previous
namespace

 (c) the new namespace extends the previous
namespace

 (d) the compiler generates an error
2. Which of the following is the correct syntax

of defi ning namespace with only variables as
members?

 (a) namespace MyNamespace { int myNumber;
string myString; }

 (b) MyNamespace { int myNumber; string
myString; }

 (c) namespace MyNamespace { myNumber;
myString; }

 (d) MyNamespace namespace { int myNumber;
string myString; }

3. The __________ enables the compiler to fi nd the
namespace of an element even if it is not mentioned
either using a directive or a fully qualifi ed
name.

 (a) lookup
 (b) global lookup
 (c) dependent lookup
 (d) Koenig lookup
4. There is no __________ overhead with namespaces.
 (a) compile time
 (b) link time
 (c) load time
 (d) run-time
5. Namespaces can be defi ned __________.
 (a) in compiled libraries
 (b) in external programs
 (c) in parts
 (d) as whole namespaces only
6. When logically grouped using namespaces,

any name can be qualifi ed using the syntax
__________.

 (a) namespace::element
 (b) element::namespace
 (c) namespace::<data type> element
 (d) <data type> element::namespace

 7. Namespace ABC{...}; is an example of
__________.

 (a) unnamed namespace
 (b) namespace alias
 (c) a regular namespace
 (d) None of the above
 8. How can an object of a class named MyClass

defi ned inside a namespace called MyNamespace be
created with the use of using directive?

 (a) using namespace MyNamespace; MyClass
<object name>;

 (b) using MyNamespace; MyClass <object name>;
 (c) Both
 (d) None of the above
 9. Which of the following syntax shows the use of

any element of a given namespace?
 (a) namespace::element
 (b) element::namespace
 (c) using namespace::element
 (d) using element::namespace
10. The name confl ict problem can be solved by

__________.
 (a) having the same enclosure for all confl icting

names
 (b) having different enclosures for the confl icting

names
 (c) having unique names; else, it is not possible to

resolve
 (d) it cannot be resolved

Conceptual Exercises

 1. What is the name confl ict problem? How can it be
solved using namespaces?

 2. How is logical grouping provided by the namespac-
es? How can objects with the same name be
handled?

 3. What is a fully qualifi ed name? When do we need
to use a fully qualifi ed name?

 4. What is the difference between using declaration
and using directive?

 5. How can we defi ne an object without using either
using directive or using declaration?

 6. How can we defi ne our own namespace? How can
we defi ne our functions inside the namespace and
use them outside?

544 Programming with ANSI C++

 7. How can we defi ne a function or a class in a
namespace and use it outside?

 8. How can we extend a namespace already defi ned?
What is its advantage?

 9. What is unnamed namespace? What is the use of
unnamed namespace?

10. How can we defi ne one namespace inside another?
How can we use the objects defi ned in the inner
namespace outside the outer namespace?

11. What are namespace aliases? What is their use?
12. What is std namespace? How is it different from

other namespaces?
13. What is Koenig lookup? When is it applied?

Practical Exercises

 1. Write a program to defi ne a namespace and defi ne
an employee class inside that. (Use any defi nition
of employee class encountered so far). Defi ne at
least two member functions outside the namespace.
Write a main() program and use the employee
class objects there.

 2. Get the defi nition of a student class from any
of the previous chapters. Defi ne the class in a

namespace Student. Defi ne a function abs() in
the class to indicate absence. Also use the function
in the main program with abs() from the math
library.

 3. Get the defi nition of Time class from Chapter 6.
Defi ne a function DifferenceTime() as its mem-
ber. Defi ne the Time class inside the namespace.
Defi ne DifferenceTime() outside the namespace
and use namespace alias to access that function in
main().

 4. Get the defi nition of a student class from any of
the earlier chapters. Defi ne a NewStudent class
with a new data member MobileNumber indicating
the mobile phone number of the student. Use
namespace alias such that the main() function can
use either of the student class.

 5. Get the defi nition of any student class from
earlier chapters. Overload << operator. Defi ne
the student class in a namespace and use it in
the main program. Use using declaration for the
student class alone. Use << operator to display the
student object in the main() and to see that it is
available without specifying.

Chapter 15
String ObjectsString Objects
15.1 INTRODUCTION

Strings are implemented in C as character arrays. However, character
arrays have a few limitations when treated as strings. They are as follows:

1. They cannot be compared like other variables. One cannot write
String1 == String2 to compare two strings.

2. They cannot be assigned like normal variables. One cannot write String1
= String2 to assign String1 the same value as String2.

3. Direct initialization with another string is not possible. One cannot
write

string String1(String2) or string String1 = String2

One can write

char * String2 = String1

However, here one is actually initializing a character pointer and not the
string itself. It means the contents are shared but not copied; that is, if
one string changes, the other changes too.

4. There are functions provided for strings in the library, the prototypes
of which are accessible using the string.h fi le (or cstring fi le). These
functions are not string functions in the true sense. They operate on
character pointers. They can malfunction in some cases. Suppose
one has copied character by character into a character array, the null
character will not be present at the end of the character array. Now,
if one uses the strlen() function, which calculates the length of the
string by counting until the null character, it would return a wrong
value.

Therefore, it is desirable that strings are treated as separate objects and
not as character arrays. C++ overcomes these limitations by providing
string objects.

15.2 OPERATIONS ON STRING OBJECTS

The string class is designed in such a way that the objects work like natural
strings. It provides all the required operations a user expects from an object.
Thus, the string class has become one of the most useful classes for C++
programmers.

The operations possible on string objects are explained in the following
sections.

Learning Objectives

• Introduction to string objects
• Methods of using

constructors for the string
class

• Application of substring
operations to a string object

• Handling multiple strings
• Attributes of the string object

Unlike C, where
strings are character
arrays, C++ intro-
duces an object to
represent a string.

Object representation
helps string objects
in operations such as
direct initialization and
comparing and
concatenating two
strings. Unlike char-
acter arrays, this is a
closer representation
of natural strings.

546 Programming with ANSI C++

15.2.1 Creating Strings
A string object can be created in three ways:

Normal way One can write string StringName; to defi ne a string object in the normal
way. This has been done in the previous chapters to defi ne strings. This is illustrated in
the program that follows.

Through initialization One can write string AStringObject(AnotherStringObject); or
string AStringObject = AnotherStringObject; to defi ne and initialize AStringObject using
AnotherStringObject. This is also illustrated in the following program.

By a constructor One can write string AStringObject(Value) or string AStringObject
= Value to use a single-argument constructor to defi ne AStringObject and initialize it with
a value.

The following program shows how string objects can be created.

//Defi neStrings.cpp
#include <iostream>
#include <string>
using namespace std;

int main()
{
 string FirstString; // Normal defi nition
 string SecondString("Hi"); // Using one-argument constructor
 string ThirdString(SecondString); // Using initialization
 FirstString = "How Are You?";
 string FourthString = FirstString; // Defi ning and initializing
}

Note The use of a conversion function for conversion from normal string to string object is as follows:

FirstString = "How Are You?";

This conversion function is an outcome of a non-explicit one-argument constructor.

15.2.2 Substring Operations
There are a few substring operations as well. Most of the functions defi ned here have
more than one overloaded versions. The most useful versions have been chosen to show as
examples.

Locate substring or character There is a function fi nd(), which fi nds a specifi c substring
or a character in a given string. It returns the position of the specifi c character or substring
in a given string. As in C strings, the fi rst position is numbered as zero. The second is
numbered as one, and so on. This is why FirstString.fi nd("You") returns eight in Program
15.1. The same function can also be used with a character argument. Thus, FirstString.
fi nd('Y'); is also allowed and it returns eight. Surprisingly enough, the function returns the
largest possible unsigned integer value when the character or the substring is not found in the
string.

Note Such behaviour is common among all standard template library (STL) objects, and not only strings.
They return a value given by the function end(), which returns the end position + 1 of that STL
object.

String Objects 547

Find character at given location in given string There is a function at() that
displays the character located at a given position in a string. If one defi nes

 string FirstString("This is testing");
 FirstString.at(l);

It returns 'h' because this is the character at the fi rst position. Program 15.1
shows how at() command can be used to display each character of the string.

Insert substring at specifi c place One can insert a specifi c substring at a given
place by using the function insert(). Its syntax is as follows:

insert(PositionAtWhichInsertionToBeMade, StringToBelnserted)

It takes two arguments as shown here. Program 15.1 will show how a substring
'busy' is inserted at position number 4 in the string 'How Are You?' to make it
'How busy Are You?'.

Replace specifi c characters One can replace a specifi c sequence of characters
(a substring) by another sequence of characters (i.e., another substring). Program
15.1 shows how 'busy' is replaced by 'lazy'. Here, the same number of
characters has been used in the replacement string; however, it is not necessary.
One can even replace 'busy' with 'busy and tired'.

Append substring to string The append() function is available to add
a substring at the end of a given string. It is called with just one argument, that is, the
substring to append. Program 15.1 has one such use of append(). It appends 'friend' to the
SecondString variable to make it 'Hi friend!'.

Erase part of string The erase() function is used for erasing a part of the string. It takes
three arguments, the string itself, the beginning character position, and the total number of
characters. Program 15.1 illustrates the operations described here.

at() command is
helpful in fi nding the
character that is pres-
ent at a given position.

fi nd() fi nds a given
substring or a char-
acter in a given string;
insert() inserts
a given substring in
a given string at a
specifi ed position;
replace() replaces
a substring by an-
other; append()
appends a string to
another; erase()
erases a substring
from a given string.

PROGRAM 15.1 Substring operations
//SubstringOperations.cpp
#include <iostream>
#include <string>
using namespace std;

int main()
{
 string FirstString = "How Are You?";
 string SecondString ("Hi");

 // Using fi nd()
 cout << FirstString.fi nd('A') << endl;
 /* Returns where A appears in the string*/
 /* Example of char argument */

 cout << FirstString.fi nd("You") << endl;
 /* Returns where You appears in the string*/
 /* Example of string argument */

 cout << FirstString.fi nd("Nowhere") << endl;
 /* Substring not present in the string*/

 cout << FirstString.fi nd('B') << endl;
 /* char not present in the string*/

548 Programming with ANSI C++

How the Program Works
In the output, it is important to note that the value 4294967295 returned is one more than the
maximum capacity of the string object. When a character or a substring is not found, this is
what is returned.

There is a function called max_size, which returns the maximum capacity of a string
object. We will discuss how to get the characteristics of a string later in Section 15.2.4.
Strings, being STL objects, return the end as one past the last value.

15.2.3 Operations Involving Multiple Strings
There are quite a few operators that deal with multiple strings. They are described in the
following sections. Their use is illustrated in Program 15.2.

+, =, ==, and compare() functions The following are the ways to concatenate and compare
two strings:

1. We have already used ‘=’ to assign one string object to another.
2. We can use ‘+’ to concatenate two strings into one. Suppose String2 is 'abc' and String3

is 'def'. If we write String1 = String2 + String3, then String1 becomes 'abcdef'.
3. We can use the ‘==’ operator to compare two string objects.
4. We can also use the compare() function to compare two string objects. This function is

analogous to the strcmp() function. Apart from just comparing, it can also determine
whether either string is smaller than the other.

 // Using at()
 for (unsigned int i = 0; i < FirstString.length(); i++)
 cout << FirstString.at(i);
 cout << endl;

 // Using insert()
 FirstString.insert(4, "busy");
 cout << FirstString << endl;

 // Using append()
 SecondString.append("friend!");
 cout << SecondString << endl;

 // Using replace()
 FirstString.replace(4, 4, "lazy"); // Replace busy with lazy
 cout << FirstString << endl;

 // Using erase()
 FirstString.erase(4,5); // Now removing lazy
 cout << FirstString << endl;
}

Output
4
8
4294967295
4294967295
How Are You?
How busy Are You?
Hi friend!
How lazy Are You?
How Are You?

String Objects 549

5. There is also an overloaded version of swap(), which compares a part of a
given string to a part of another string. This, however, has not been shown in
Program 15.2.

Swapping two strings The function swap() helps in swapping two different
string object values. If st1 and st2 are two string objects, then st1.swap(st2)
copies the value of st1 to st2 and vice versa. By using the swap() function,
one avoids the use of a temporary variable and the three assignment statements
generally used for swapping.

Operators available with string objects We have already discussed the use of operators
such as ‘+’ and ‘=’ for strings. We have used them for concatenating and assigning strings.
Besides these, there are a few other operators available for string operations. Let us have a
look at them.

1. Operator ‘!=’ is used for checking whether two strings are equal.
2. Operators < , >, ≤, and ≥ are used to check whether one string is lexicographically (in the

alphabetical order) greater than the other, etc.
3. We have already seen the use of << and >> operators for reading and writing string objects.
4. The [] operator is also available to access an element (a character) from the string object.

StringName[ElementIndex] will return the character at ElementIndex from the StringName.
In Program 15.2, we have accessed each element of the string, starting from the zeroth
element to the fi rst element and so on until the end of the string. Here, FirstString.
length() is similar to strlen(), which returns the length of the string in the elements.

15.2.4 String Characteristics
There are built-in functions available to check the characteristics of a given string. These
functions are listed as follows:

1. The empty() function is a simple but useful function; it checks whether a string object
contains any data. One can write st1.empty() to check if st1 is an empty string object.
The function returns a Boolean value, that is, the empty function returns one (1) if the
function is empty and returns zero (0) otherwise. Program 15.2 illustrates its use.

2. The size() function returns the size of a string. The syntax is st1.size() for string object
st1. There is one more function, length(), which provides the same value. This has been
used while writing the for loop using the [] operator to access a character from the string
in Program 15.2. The size() function can be used here instead.

3. The maximum permissible size of a string in a given system can be found using the max_
size() function. The syntax is st1.max_size() for string object st1.

4. There is another function resize(), which resizes the string by the number supplied as an
argument.

Program 15.2 illustrates the use of all the operators discussed here.

Relational operators
such as ==, !=, <, >,
≤, and ≥, and other
operators such as <<,
>>, and [] are avail-
able for string objects
with obvious
meanings.

PROGRAM 15.2 String characteristics
//OtherOp.cpp
#include <iostream>
#include <string>
using namespace std;

550 Programming with ANSI C++

void DisplayDetails(string TempString);
void ResizeString(string, int);

int main()
{
 cout << boolalpha;
 // String details display
 string FirstString;
 string SecondString;

 DisplayDetails(FirstString);
 SecondString = "This is testing";
 DisplayDetails(SecondString);
 FirstString = "Testing is diffi cult";
 DisplayDetails(FirstString);

 // Relational operators
 cout << endl << "****Illustrating relational operators";
 cout << "****" << endl;

 if(FirstString > SecondString)
 {
 cout << "\"" << FirstString << "\"";
 cout << " is lexicographically greater than ";
 cout << "\""<< SecondString<< "\"" << endl;
 }
 else
 {
 cout << "\"" << SecondString << "\"";
 cout << "is lexicographically greater than ";
 cout << "\""<< FirstString<< "\"" << endl;
 }

 // Equality checking
 if(FirstString != SecondString)
 {
 cout << "\"" << FirstString << "\"";
 cout << " and "<< "\"" << SecondString ;
 cout << "\""<<" are not equal\n";
 }

 string ThirdString(SecondString);
 if(SecondString == ThirdString)
 {
 cout << "\"" << SecondString<< "\"";
 cout << " and "<< "\"" << ThirdString;
 cout << "\""<<" are equal\n";
 }

 // Using the [] operator
 cout << endl << "****Illustrating the use of [] operator";
 cout << "****" << endl;;
 cout << "using [] operator\n";
 for(unsigned int i = 0; i < FirstString.length(); i++)
 cout << FirstString[i];
 cout << endl;

 // Using compare()
 cout << endl << "****Illustrating compare() function";
 cout << "****" << endl;

String Objects 551

 switch(FirstString.compare(SecondString))
 {
 case 0:
 cout << "Both the strings are equal\n";
 break;
 case 1:
 cout << "\"" << SecondString << "\"";
 cout << " is lexicographically greater than ";
 cout << "\""<< FirstString<< "\"" << endl;
 break;
 case 2:
 cout << "\"" << FirstString << "\"";
 cout << " is lexicographically greater than ";
 cout << "\""<< SecondString<< "\"" << endl;
 break;
 }

 cout << endl << endl;

 // Swapping strings
 cout << "****Illustrating swap" << "****" << endl;
 cout << "Strings before swapping \n";
 cout <<"First string is " << "\"" << FirstString;
 cout << "\"" << endl;
 cout <<"Second string is " << "\"" << SecondString;
 cout << "\"" << endl;
 FirstString.swap(SecondString);

 // SecondString.swap(FirstString) will have the same effect

 cout << "****Strings after swapping****\n";
 cout <<"First string is " << "\"" << FirstString;
 cout << "\"" << endl;
 cout <<"Second string is " << "\"" << SecondString;
 cout << "\"" << endl;
 cout << endl << endl;

 // Resizing the strings
 cout << endl << "****Illustrating resizing****" << endl;
 ResizeString(FirstString, 100);
 ResizeString(SecondString, 10);
 return 0;
}

void DisplayDetails(string TempString)
{
 cout << endl << "****Displaying the details of string\"";
 cout << TempString << "\"" << "****" ;
 cout << "\n The size of the string is " << TempString.size();
 cout << "\n Is the string empty? " << TempString.empty();
 cout << "\n The maximum size of string in this system is " ;
 cout << TempString.max_size();
 cout << endl ;
}

void ResizeString(string TempString, int NewSize)
{
 cout << "****Now resizing\"" << TempString;
 cout << "\" to size ";
 cout << NewSize << "****" <<endl;

552 Programming with ANSI C++

 cout << "Original string is: \"" << TempString;
 cout << "\"" << endl;
 cout << "Original size is: " << TempString.size() << endl;
 TempString.resize(NewSize);
 cout << "String size after resize: ";
 cout << TempString.size()<< endl;
 cout << "The resized string is: \"";
 cout << TempString << "\" "<<endl;
 cout << endl;
}

Output
****Displaying the details of string****
The size of the string is 0
Is the string empty? true
The maximum size of string in this system is 4294967294

****Displaying the details of string "This is testing"****
The size of the string is 15
Is the string empty? false
The maximum size of string in this system is 4294967294

****Displaying the details of string "Testing is diffi cult"****
The size of the string is 20
Is the string empty? false
The maximum size of string in this system is 4294967294

****Illustrating relational operators****
"This is testing" is lexicographically greater than "Testing is diffi cult"
"Testing is diffi cult" and "This is testing" are not equal
"This is testing" and "This is Testing" are equal

****Illustrating the use of [] operator****
using [] operator
Testing is diffi cult

****Illustrating compare() function****
"This is testing" is lexicographically greater than "Testing is diffi cult"

****Illustrating swap****
Strings before swapping
First string is "Testing is diffi cult"
Second string is "This is testing"
****Strings after swapping****
First string is "This is testing"
Second string is "Testing is diffi cult"

****Illustrating resizing ****
*****Now resizing "This is testing" to size 100****
Original string is: "This is testing"
Original size is: 15
string size after resize: 100
The resized string is: "This is testing"

*****Now resizing "Testing is diffi cult" to size 10****
Original string is: "Testing is diffi cult"
Original size is: 20
string size after resize: 10
The resized string is: "Testing is"

String Objects 553

How the Program Works
The output provides reinforcement to what we have studied earlier.

1. When the string 'This is testing' is resized to 100, blanks are padded at the end to
make it 100 characters long. Thus, there is a blank second line after it.

2. When the SecondString is resized to a smaller value (from original 20 to 10), then the
remaining part of the string (the word 'diffi cult') is lost.

3. Note the use of boolalpha manipulator to print true or false instead of 1 or 0 for Boolean
values.

The difference between C++ strings and C strings is explained in Exhibit 15.1.

Exhibit 15.1 C++ strings vs C strings
The string objects of C++ are closer to the actual strings. This is because C++ works with string data type,
unlike the array of characters in C. It also improves the ease of use and applicability. Moreover, C++ strings
are as effi cient as C strings, if not more. By virtue of string objects being a part of the STLs, there are plenty
of generic algorithms and built-in functions such as fi nd(), replace(), merge(), and sort() that can
be used with strings.

■ RECAPITULATION ■

 • The string is an important class of C++.
 • The string class contains many useful member

functions.
 • The C-type strings have problems of various kinds

such as assignment using '=' is not possible,
comparison of two strings using '==' is not possible,
and initializing a string with another is not possible.
All these problems are solved in C++ by using string
objects.

 • String, being a class, can have overloaded =, ==, and
!= operators.

 • String class also has a few important constructors
that help in initializing one string object with another,
initializing a string object with C-type string, or having a
normal defi nition without initialization.

 • It is also possible to have few substring operations on
the strings such as fi nding the position of a substring
or a character within a string, inserting a specifi c

substring at a specifi c place, replacing a specifi c
substring by another, and appending a string to
another.

 • It is also possible to use + to concatenate two different
strings and use a function compare() to match two
strings (similar to strcmp() in C).

 • Swap function is also available as a member function
for swapping two strings.

 • The functions empty() to check whether the
string is empty or not, size() to check the size
of the string, resize() to resize the string to a
new size, and max_size() to fi nd the maximum
size of the string possible are available as member
functions.

 • Generic algorithms such as fi nd(), replace(), and
sort() are also available for operations on string
objects in C++.

■ KEYWORDS ■

C-type strings Character arrays are used as strings in C.
They are also called C-type strings.

Size of string This is the number of characters in a string.
String objects These are objects of type string.

554 Programming with ANSI C++

■ EXERCISES ■

Multiple Choice Questions

1. When the specifi ed character or substring is not
found, the fi nd() function returns __________.

 (a) zero
 (b) a null value
 (c) the smallest possible unsigned integer
 (d) the largest possible unsigned integer
2. Which of the following is the correct syntax of using

the fi nd() function?
 (a) myString.fi nd("You");
 (b) myString.fi nd(&loqus; Y&roqus;);
 (c) Both
 (d) None
3. C++ string objects are __________.
 (a) easy to use
 (b) easily applicable
 (c) Both
 (d) None
4. When the string is resized to reduce than the original

capacity, __________.
 (a) the resize does not take place
 (b) the data is truncated to the new size
 (c) the compiler will generate an error
 (d) an exception will be raised
5. Which of the following function provides the size of

a given string?
 (a) size()
 (b) length()
 (c) Both
 (d) None
6. We can insert a specifi c substring in a given place in

the string using the function __________.
 (a) insert(PositionAtWhichInsertionIsToBeM

ade, StringToBeInserted);
 (b) insertAt(PositionAtWhichInsertionIsToB

eMade, StringToBeInserted);
 (c) insert(StringToBeInserted,

PositionAtWhichInsertionIsToBeMade);
 (d) insertAt(StringToBeInserted,

PositionAtWhichInsertionIsToBeMade);
7. Which of the following is the correct syntax of

defi ning a string object?
 (a) string myString(intNumber);
 (b) string myString("Hi");
 (c) string myString(&loqus; H&roqus;);
 (d) All of the above

 8. Which of the following is not the correct way of
using the fi nd() function?

 (a) myString.fi nd("You");
 (b) myString.fi nd(&loqus; Y&roqus;);
 (c) myString("Y");
 (d) myString(7.5);
 9. When a string is empty, the empty() function

__________.
 (a) returns a zero
 (b) returns false
 (c) returns null
 (d) raises an exception
10. Which of the following operators are used to check

that a given string is lexicographically same as or
different than the other string?

 (a) < and > operators
 (b) ≤ and ≥ operators
 (c) Both
 (d) None

Conceptual Exercises

 1. What are the problems with C-type strings?
 2. List different constructors for string objects.
 3. What are the facilities available for substring

operations on the string object?
 4. Write functions that can help us in fi nding the

different characteristics of the string object.
 5. Compare C strings with C++ strings.

Practical Exercises

 1. Write a program to read and count the elements in
a string.

 2. Write a program to compare two strings and
display whether one string is lexicographically
smaller than the other.

 3. Write a program that searches for a specifi c word
inside the text.

 4. Write a program that reads from a fi le and converts
each character of that fi le to another using some
algorithm.

 5. Write a program that accepts two strings from the
user in a text fi le. Read the fi rst string from the user
in the text fi le. Replace that string with the second
string in that fi le. For example, if the user enters
‘Test’ and ‘Pure’, then we have to fi nd Test in the
fi le and replace it with Pure.

Chapter 16
Standard Template Standard Template
 Library Library
16.1 INTRODUCTION

Standard Template Library (STL) is a collection of generic software
components (generic containers) and generic algorithms, glued by objects
called iterators.

STL is different from normal libraries. All other libraries defi ned need
entities as classes. The operations required in that class are written as
member functions of the class. This is not needed for STL. It has a large
number of non-member functions designed to work on multiple classes of
container types. This approach has a signifi cant advantage.

Assume that an effi cient algorithm to fi nd an element from some
sequence is written. When it is implemented as a non-member function,
any sequence can be used as an input to it. Thus, there is a single function
for multiple sequences. For X such sequences and Y such operations, the
earlier case needs X * Y member functions (Y operations on each of the
X classes), whereas non-member functions are just Y in the second case.
Thus, the number of implementations required for a class becomes very
less. There is going to be a single function for most of the classes, if not
all. Hence, it becomes feasible to implement all operations in an effi cient
manner, as they are required to be implemented only once.

For example, consider a function called fi nd() for fi nding an element
from a sequence of elements. Being a non-member, fi nd() can be used with
any sequence of the programmer’s choice. On the other hand, if fi nd() is
a member function of a specifi c class, it will have to be used only with
that class object and one needs to redefi ne similar functions for all classes
where this generic functionality is needed.

STL has one more advantage. It is also possible to have a new
sequence designed. All such operations designed for a generic case are
readily available for the new sequence. These non-member functions are
known as generic algorithms. STL contains so many useful algorithms
such as fi nd(), replace(), merge(), and sort(). Being generic, these
algorithms are non-member functions and can be used with all the
containers.

Apart from generic algorithms, STL has generic software components
(containers). These containers are classes that can, in turn, contain

Learning Objectives

• Generic programming,
generic software components
or containers, generic
algorithms, and iterators

• Sequence containers such
as vector, list, and deque

• Sorted associative containers
such as map, multimap, set,
and multiset

• Sample algorithms of
STL fi nd(), copy(), and
sort()

• Function objects, predicate
objects, and allocators

STL contains con-
tainers and generic
algorithms connected
by iterators.

Generic algorithm is
the strength of STL.
It allows fewer and
optimized algorithms
in the system.

556 Programming with ANSI C++

other objects. We will be looking at a few of the components of this library in due
course:

1. Vector (implementation is like an array), list (implementation of doubly linked list), and
deque (implementation of deque) are called sequence containers.

2. Set, multiset, map, and multimap are known as associative sorted containers. Unlike
sequence containers, these containers keep the contents in a sorted form.

3. There are adapted containers such as queue and stack that are not true containers but are
implemented using sequence containers.

Iterators One can think of iterators as generic pointers. The designers of C used void
pointers in many cases where they would like a pointer to be assigned to any other type later.
malloc() is an excellent example; it returns the void pointer that a programmer can assign
to the type he/she deems fi t. In true sense, iterators are far more capable than void pointers.

If there is an array, one will traverse the array using an index. On the contrary, if there
is a linked list, one can traverse it using a pointer designed to point to the node of that
linked list. If some other structure is used, then some other mechanism is needed to traverse
the container. The array index used to traverse an array sequentially or randomly and the
pointer used in a linked list to traverse the list sequentially are basically doing the same job,
which is, traversing a sequence of elements. In the case of STL, a generalized concept called
iterator is used to traverse a sequence of container elements.

An important problem in generalizing such a concept is to ensure that it is not bound to
a type. For example, consider designing a pointer that can be used to point to any linked list
node; it is just impossible. Say, if there is a linked list of integers, the pointer to be used is
int*, and if there is a linked list of node of type NodeType, the pointer to be used is NodeType*.
In such a situation, templates are used to avoid type-related issues. For example, if there is a
pointer defi ned as Type *ptr, the ptr is a generic pointer. Iterator is a kind of generic index
that helps one to iterate through some specifi c sequence. The following code segment helps
us understand the same.

vector <int>::iterator IntIndex;

for(IntIndex = vi.begin(); IntIndex < vi.end(); IntIndex++)

{

 cout << *IntIndex << endl;

}

The IntIndex variable is of type iterator (of vector int type), which will help one iterate
through a vector (a container type quite similar to an array) vi. We will soon see other details
about how to program with containers, generic algorithms, and containers.

Iterators, thus, help a user to iterate through a sequence of elements of a container; hence,
the name.

The beauty of matching generic algorithms with generic containers lies in the use of
templates and objects known as iterators. They are pointer-like objects, but unlike pointers,
they are categorized into fi ve different categories, namely, input, random access, bidirectional,
forward, and output.

Generic algorithms are written to work on iterator objects rather than any data structure.
The fi nd() algorithm works on a category of iterators called input iterators.

Standard Template Library 557

16.2 GENERIC PROGRAMMING

STL is not a normal library. It is designed on the basis of a few very important principles
independent of C++ itself.

Generic programming has nothing to do with C++. It is a mechanism of
designing generic software components such as vector, list, and deque. The next
element of STL is generic algorithms. Unlike normal programming practice,
these algorithms are not designed having any software component in mind.
The algorithms are designed to suit the minimum level of requirements. Thus,
these algorithms can work with many variants of different software components
(containers) without any change.

It is important to understand that this model of programming is different from
the sharing model of inheritance and virtual functions, where the base class, the
common attributes storage in base class, base class pointers, and virtual functions
provide a very fl exible model of programming with great runtime control. In
contrast, the model presented by STL offers similar advantages but with a more
effi cient architecture. Generality is achieved by using templates, iterators, and a
good design rather than having class hierarchy.

Containers are also designed in terms of iterators rather than normal pointers.
Thus, iterators are able to join algorithms with containers. It is also important
to note that not all algorithms are effi cient with all data structures. For example,
sort(), which is usually implemented as quicksort(), requires random access to
the data. For linked list, this algorithm is painfully slow. Here, sort() is defi ned
to require random access iterators.

The list (the doubly linked list) container is defi ned to have bidirectional iterators. Thus,
sort() cannot be used with a list. There will be compilation errors if a generic sort()
algorithm is used with a list. Vector and deque containers are defi ned to have random access
iterators and, therefore, the sort() algorithm can work with them. Hence, it is clear that the
choice of iterators also impacts the effi ciency.

Exhibit 16.1 provides a brief history of STL.

Software components
(containers) and
algorithms are con-
nected to each other
by iterators.

Exhibit 16.1 A brief history of STL
STL is a broad topic and is beyond the scope of this text, which only provides an introduction to it. The
following is a brief history of STL.

STL is the brainchild of Alexander Stepanov. When Stepanov was working with the General Electric
Research and Development Centre in 1979, he started working on generic programming concepts.
Surprisingly, the idea of generic programming has nothing to do with C++. It was fi rst implemented in
the Ada language. Stepanov later joined AT&T and then Hewlett-Packard where he worked on
C++.

Due to the efforts of Andrew Koenig, a member of the Standardization Committee, Stepanov
was invited to present his ideas about generic programming and STL to the C++ Standardization
Committee in 1993. The Committee accepted his ideas unanimously, and in 1994, STL was added
to the ANSI standard. A number of C++ experts have quoted STL to be the biggest addition to the
standard.

STL is a templatized,
generic library that
provides standard
storage of elements
in a type-independent
form.

The model using
inheritance is known
as the object-oriented
model and the model
presented by STL is
called the object-
based model.

558 Programming with ANSI C++

16.3 GENERIC SOFTWARE COMPONENTS

STL aims to provide ‘reusable’ components such as vector, list, and deque. Earlier,
programmers used to write their own routines for using arrays, lists, and queues. STL
provides tested and debugged components readily available. They are reusable in the sense
that one can use them as a building block for other software development projects. These
generic software components are also called containers, as they are basically a collection
of the other objects. Thus, containers are objects themselves, which in turn contain other
objects. These readymade components offer the following advantages:

Small in number The software components are few in number (nearly 12) and so are
easy to master. Though small in number, they are extremely useful in solving a myriad of
problems.

Generic They are generic in nature. It is possible to use them at various places without
much trouble.

Effi cient, tested, debugged, and standardized These software components are designed for
speed. Every component has been designed with a specifi c time requirement as an effi ciency
measure and it is seen that it matches that effi ciency requirement. STL components are
already running in a large number of user programs, and hence, they are thoroughly tested
and debugged. They have already become a standard. Thus, programs written using STL
components are easier to program and to read.

Portability and reusability STL is already a standard. If a program uses STL, it becomes
more portable because the stacks, queues, and vectors are all available on the destination
machine in the same form. STL uses templates to a large extent to make it as independent
of type as possible.

16.4 GENERIC ALGORITHMS

As STL is designed for speed, the algorithms that operate on the software components are
designed in such a way that they depend very little on the data structure of the component
(e.g., an algorithm called fi nd() does not vary much in speed if it is fi nding in the vector,
stack, or queue). Programmers can write their own algorithms in place of generic algorithms.
This is, however, not preferred, as there are some distinct advantages of using generic
algorithms:

1. Programmers are free from writing routines such as sort(), merge(), binary-search(),
and fi nd() with different variations in each case. They are available readymade in the
STL.

2. The algorithms use the best mechanisms to be as effi cient as possible, designing which
may not be generally possible for most of the programmers. All the algorithms are
designed taking the best of the breed components, and most of the effi ciency concerns are
addressed. For example, the sort() algorithm applies quick sort but it might switch over
to merge sort if the input data is more suited (almost sorted elements).

3. Generic algorithms are standardized and, hence, have more acceptability than proprietary
algorithms. Some software organizations adopt STL only because of it being a standard.
Some of the US clients expect designers to code using STL and consider it as one of the
fundamental requirements of their contract.

Standard Template Library 559

STL designers provided iterators to allow fi ner control. They are not only provided
but are also open to the programmer. Programmers not only can defi ne and use
iterators like pointers to the component objects, but they can also dereference
them, assign them, and manipulate them, just like pointers.

In the following example, IntIndex is assigned a value returned by the function
vi.begin(). It is compared against vi.end and incremented exactly like an array
index. Its value is displayed exactly like using a dereferenced pointer syntax.

vector <int>::iterator IntIndex;

for(IntIndex = vi.begin(); IntIndex < vi.end(); IntIndex++)

{

 cout << *IntIndex << endl;

}

One may ask why pointers are not made available directly. Why not just defi ne something
as follows:

vector <int> * IntIndex;

and use it? Instead of iterators, which are internally implemented using pointers, why not use
the pointers directly? Why is the additional layer of iterators provided? This is so because

4. Similar semantics are designed for all these algorithms. For example, checking an end
of list is similar to checking an end of a vector. Learning how to learn one algorithm
improves the learning curve for the other algorithms.

16.5 ITERATORS

The software components being dealt with are collections of other objects. Effi cient methods
are needed to traverse these containers. Iterators provide a way to do it. Iterators can be
safely assumed to be generic pointers for the time being.

There are two different models of managing multiple objects, one using the address
mechanism and the other using the function mechanism. C or C++ arrays can be accessed
using the [] operator as well as pointers. Files are accessed using get() and put() methods.
One cannot directly point to a fi le element like a pointer does and directly increment it to get
the next element. Such increment is possible while using pointers for arrays.

The functional model of managing multiple objects is described in Exhibit 16.2.

Exhibit 16.2 Functional model
The pointers to array elements represent a model of address mechanism, whereas the fi le access using
get() and put() uses a functional model. Some languages, noticeably Java, assume that the pointers
are too dangerous to be given to programmers, and are better hidden. Such languages try to provide
functional interface to the programmers like a fi le interface.

The functional approach is simpler but has one big disadvantage. The address mechanism enables
the programmer to have complete control on the process by having the pointer. It is then possible for the
programmer to tailor the solution to the most effi cient one. This fl exibility is not possible with the functional
approach. The functional approach loses fi ner control in order to provide better readability and avoidance
of complex problems.

STL is based on
the address model,
which is a little more
complex but more
fl exible than the
functional model.

560 Programming with ANSI C++

of two reasons. First, iterators are more general than pointers and are classifi ed
according to different code requirements. One can choose an appropriate
iterator for a specifi c operation. Second, although iterators are implemented as
pointers in most of the cases, one can choose a more fi tting implementation for
a special case. If programmers design one more software component themselves
and would like to use the same set of generic algorithms, they can design their
own iterators to traverse their containers. For example, consider a special case,
which is basically a linked list of huge images. Here, one may not use memory
addresses as iterators (pointers are memory addresses); it requires a specialized
iterator to suit the storage of such images.

Table 16.1 lists the fi ve categories of iterators and their roles.

Table 16.1 Types of iterators and their meanings

Type Meaning

Input Used for reading in

Output Used for writing out

Forward Used for travelling in the forward direction from start to end; it is possible to save a forward iterator
and use it later. It is also an input and output iterator.

Bidirectional Used for travelling in both directions, that is, start to end and vice versa; it is otherwise similar to a
forward iterator, and thus, is also a forward iterator.

Random access Used for both reading and writing randomly; it is otherwise similar to a bidirectional iterator, and thus,
is also a bidirectional iterator.

The effi ciency of the STL iterators depends heavily on two principles:

1. Open design having iterators open for programmers to manipulate. One can assign values,
compare them with other iterators, increment them, etc.

2. Address manipulation by which it is possible to do the job in minimum steps. One can just
deference an iterator to get the object they are pointing to.

Iterators are categorized unlike pointers. One can have additional checks before applying
an algorithm. For example, one can check whether the sort() algorithm is provided with
random access iterators or not. Thus, one can prevent the user from calling sort() with the
list container.

It is an important design principle to have loose coupling between the components
involved. STL container objects that interact with generic algorithms can identify only
iterators. For example, if a vector v has been defi ned and a function v.fi nd(...) is invoked,
it returns the iterator that points to the element being searched in that container. Similarly,
if there is a list l, then l.fi nd(...) returns an integrator pointing to the element of the
list that is being searched. The algorithm only returns the iterator that the programmer
manipulates later on. Iterators being generic, the fi nd() function need not worry about
the container calling it, and neither should the container worry about the design of
fi nd().

Exhibit 16.3 states the advantages of STL containers.

Iterator is a more
general term than
pointer. It helps
manage the traversal
better and can be
designed to suit the
particular needs of a
system.

Standard Template Library 561

16.6 CONTAINERS AND THEIR TYPES

Containers are objects that contain other objects. They are of two different types, namely,
sequence containers and sorted associative containers.

1. A sequence container stores the elements in a sequence of some sort. Examples
include vectors, deques, and lists.
2. Unlike sequence containers, an associative sorted container keeps the contents
in a sorted form. Examples include sets, multisets, maps, and multimaps.

16.6.1 Vectors
Let us consider Program 16.1, which shows how a vector can be defi ned and used in a
simple way.

An STL container can
be either a sequence
container or a sorted
associative container.

Exhibit 16.3 Advantages of STL containers
The following are the advantages of STL containers:
Dynamic storage The storage requirements of software components can be dynamic. An array is not
dynamic in terms of runtime growth, but STL containers are especially designed to handle such scenario.
A structure such as vector and deque grows automatically, if required.
Mimic built-in types An STL container can be defi ned like a normal object, can be assigned to another
container, and can be copied to another container. We will see some of the examples in due course.
Extensibility New containers and algorithms can be added to STL without disturbing the original architecture.

PROGRAM 16.1 Vectors
#include <vector>
#include <iostream>
#include <string>
using namespace std;

class Student
{
 int RollNumber;
 string Name;
public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }

 bool operator < (Student AnotherStudent)
 {
 return(RollNumber < AnotherStudent.RollNumber);
 }

 friend ostream & operator <<(ostream & TempOut, Student TempStud)
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 }
};

562 Programming with ANSI C++

How the Program Works
Look at the include statements. <vector> needs to be included to use the vector container.
Next, the Student class is defi ned. The important part is the < operator and the << operator

int main()
{
 vector <Student> vs;
 vector <int> vi;

 vi.push_back(12); // Inserting at the end of vector
 vi.push_back(20); vi.push_back(16);
 vi.push_back(29); vi.push_back(24);
 Student Lara(1, “Brian Charles Lara”);
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");
 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");

 vs.push_back(Lara); vs.push_back(Beckham);
 vs.push_back(Steffi); vs.push_back(Maradona);
 vs.push_back(Tiger); vs.push_back(Carl);

 vector <int>::iterator IntIndex;
 vector <Student>::iterator StudentIndex;
 cout << "Integer vector listing" << endl;

 for(IntIndex = vi.begin(); IntIndex < vi.end(); IntIndex++)
 {
 cout << *IntIndex << endl;
 }
 cout << "Student vector listing" << endl;
 for(StudentIndex = vs.begin(); StudentIndex < vs.end(); StudentIndex++)
 {
 cout << *StudentIndex;
 }
}

Output
Integer vector listing
12
20
16
29
24

Student vector listing
Roll number is: 1
Name is: Brian Charles Lara
Roll number is: 2
Name is: David Beckham
Roll number is: 3
Name is: Steffi Graf
Roll number is: 4
Name is: Diego Maradona
Roll number is: 5
Name is: Tiger Woods
Roll number is: 6
Name is: Carl Lewis

Standard Template Library 563

being overloaded. We will discuss their usefulness soon. Two vectors are defi ned in
main().

vector <Student> vs;

vector <int> vi;

vs is a vector of Student type and vi is of int type. Note that vector is a class template and
the data type needs to be passed to it as an argument enclosed within <> brackets.

Next, data is inserted in the int vector. An important function for vectors is push_back(),
which inserts the element at the end of the vector. If the vector is full, unlike an array, it
extends itself and then accommodates that value.

A few Student objects are then defi ned and inserted in the same manner in the Student
vector. It can be seen that the vector push_back() function is used in a similar fashion here.

The vector container provides other constructors to defi ne vectors in a different way. It
is also possible to access various elements of the vector using the [] operator, similar to an
array. Next in the example are the iterator defi nitions.

vector <int>::iterator IntIndex;

vector <Student>::iterator

StudentIndex;

Here, two different iterators for int vector and Student vector are defi ned. They have been
used like pointers in the rest of the program.

Vectors provide two useful functions (all containers provide both these functions). The
fi rst one is known as begin(). It returns the iterator pointing to the fi rst element of the vector.
The second one is the end() function. This function does not return the iterator pointing to
the last element. It returns the iterator pointing to the one after the last element. Remember
our discussion regarding string objects in Chapter 15 and the return of value that is one more
than the size; it is due to this property of the end() function. The iterator range ID is denoted
as [fi rst, last) in mathematics as open interval.

In this program, both have been used in the for loop defi ned next.

for(IntIndex = vi.begin(); IntIndex < vi.end(); IntIndex++)

{

 cout << *IntIndex << endl;

}

The statement IntIndex = vi.begin() does the initialization. It makes the IntIndex iterator
pointing to the fi rst element of the int vector. Please note that vi, being an int vector,
returns the iterator of type vector <int>, which is matching with the right-hand side (RHS)
(IntIndex = vi.begin()). Similarly, the condition for termination is also checked using the
'<' operator (IntIndex < vi.end).

The vector iterator is a random access iterator. It has < operator overloaded and,
hence, can be used here. The increment IntIndex++ is similar to incrementing the
pointer to make it point to the next element in the sequence. This operator is also
overloaded for all containers. One can refer to vector elements by dereferencing
the iterator. Thus, *IntIndex returns an integer, which is printed on the screen.

Similar explanation can be provided for the other for loop for Student vector.
The only difference is the use of StudentIndex as an iterator of type vector
<Student>::iterator rather than vector <int>::iterator in the earlier case.

A vector is a
container similar to
an array. However,
unlike an array, it can
grow and shrink and,
thus, is not confi ned
to a fi xed size.

564 Programming with ANSI C++

Note the importance of overloading << for the Student object. cout << *StudentIndex can be
written as the << operator is overloaded.

Let us consider one more example to see how a generic algorithm can be used with vector.
Program 16.2 shows how Student objects can be sorted on the total mark obtained to print
a merit list.

PROGRAM 16.2 Vector with a generic algorithm
//MeritList.cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Student
{
private:
 int RollNumber;
 fl oat TotalMarks;

public:
 Student(){};
 Student(int TempRollNumber, fl oat TempTotalMarks)
 {
 RollNumber = TempRollNumber;
 TotalMarks = TempTotalMarks;
 }

 void operator = (Student TempStud)
 {
 RollNumber = TempStud.RollNumber;
 TotalMarks = TempStud.TotalMarks;
 }

 bool operator < (Student TempStud)
 {
 return(TotalMarks < TempStud.TotalMarks);
 }

 friend ostream & operator <<(ostream & TempOut, Student & TempStud);
};

ostream & operator <<(ostream & TempOut, Student & TempStud)
{
 TempOut << "The mark of roll number " << TempStud.RollNumber << " is " << TempStud.

TotalMarks;
 return TempOut;
}

void main()
{
 vector <Student> StudMarks;
 fl oat TempMarks;
 int i = 0;

 for(;;)
 {
 cout << "Enter the mark for roll number " << i + 1 << " Enter −1 to stop: ";
 cin >> TempMarks;
 if(TempMarks == −1) break;
 StudMarks.push_back(Student(i + 1, TempMarks));

Standard Template Library 565

How the Program Works
Let us try to understand the program. The Student class is used in this program
as well. It is important to note that the operators, = and < have been defi ned along
with the << operator in the class. The Sort() algorithm needs < operator to be
overloaded.

The following statement defi nes a vector StudMarks, which contains the
Student objects.

vector <Student> StudMarks;

Then, there is a for loop, which reads the mark of each student and then uses push_back to
insert it in the vector.

A member function size() has been used to fi nd the size of the vector, which is the number
of elements in the vector. Thus, the following statement displays number of elements in the
vector.

cout << "The size of StudMarks is " << StudMarks.size() << endl;

The next statement defi nes an iterator index for vector <Student>. The generic algorithm
sort() is called here.

sort(StudMarks.begin(), StudMarks.end());

The algorithm requires only two arguments; both are of type random access iterators. This
sort algorithm is in-place sort algorithm. It sorts the very vector that is passed to it. The
vector range is provided again as [fi rst, last), which includes all the elements between the
fi rst and the last, including the fi rst but not the last.

The printing of the Student data is done next using a similar for loop as seen earlier.
It has been stated earlier that vectors can grow dynamically. Program 16.3 illustrates this

property. The function capacity() returns the number of elements a vector can accommodate
without growing.

 ++i;
 }

 cout << "The size of StudMarks is " << StudMarks.size()<< endl;

 vector <Student>::iterator index;
 sort(StudMarks.begin(), StudMarks.end());

 for(index = StudMarks.begin(); index < StudMarks.end(); ++index)
 cout << *index << endl;
}

We can have a vector
with built-in as well
as user-defi ned types
as its element. This is
true for all containers.

PROGRAM 16.3 Growing vector
//GrowingVector.cpp
#include <vector>
#include <iostream>
#include <string>
using namespace std;

class Student
{
int RollNumber;

566 Programming with ANSI C++

 string Name;
public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }
};

int main()
{
 vector <Student> vs;
 vector <int> vi;
 cout << "The capacity of the Student vector is " << vs.capacity() << endl;
 cout << "The capacity of the integer vector is " << vi.capacity() << endl;
 int TempSizeInt = vi.capacity();
 int TempSizeStudent = vs.capacity();
 for(int i = 0; i < 200; i++)
 {
 vi.push_back(i);
 if(vi.capacity() != TempSizeInt)
 {
 cout << "The capacity of the vector changes to " << vi.capacity() << endl;
 TempSizeInt = vi.capacity();
 }
 }

 Student Lara(1, "Brian Charles Lara");
 for(int i = 0; i < 200; i++)
 {
 vs.push_back(Lara);
 if(vs.capacity() != TempSizeStudent)
 {
 cout << "The capacity of the vector changes to " << vs.capacity() << endl;
 TempSizeStudent = vs.capacity();
 }
 }
}

Output (in VC++ 7.0)
The capacity of the Student vector is 0
The capacity of the integer vector is 0
The capacity of the vector changes to 1
The capacity of the vector changes to 2
The capacity of the vector changes to 3
The capacity of the vector changes to 4
The capacity of the vector changes to 6
The capacity of the vector changes to 9
The capacity of the vector changes to 13
The capacity of the vector changes to 19
The capacity of the vector changes to 28
The capacity of the vector changes to 42
The capacity of the vector changes to 63
The capacity of the vector changes to 94
The capacity of the vector changes to 141
The capacity of the vector changes to 211

// Student vector output
The capacity of the vector changes to 1

Standard Template Library 567

How the Program Works
Let us try to understand this program and its outputs. It has a Student vector and an int
vector similar to Program 16.1. vi.capacity() and vs.capacity() have been used to
fi nd the capacity of both the vectors and an integer TempSizeInt is used to calculate their
capacity. The program uses vi.push_back(i) to insert an int object in the int vector vi

and vs.push_back(Lara) to insert a Student object in the Student vector vs. If
the capacity of the vector now is different from the earlier capacity, the new
capacity is displayed. Then, it continues to add 200 elements in the vector in both
cases.

Now, look at the output produced by two different compilers that the
program was tested on. The fi rst compiler is VC++ 7.0. The vector here
grows arbitrarily. The output from Linux compiler is far more straightforward.
Every time a vector is full, its size is doubled. Note that for a built-in type or
a user-defi ned class, the growth is similar. It may be different for large class
objects.

The capacity of the vector changes to 2
The capacity of the vector changes to 3
The capacity of the vector changes to 4
The capacity of the vector changes to 6
The capacity of the vector changes to 9
The capacity of the vector changes to 13
The capacity of the vector changes to 19
The capacity of the vector changes to 28
The capacity of the vector changes to 42
The capacity of the vector changes to 63
The capacity of the vector changes to 94
The capacity of the vector changes to 141
The capacity of the vector changes to 211

The output from Linux is as follows:
The capacity of the Student vector is 0
The capacity of the integer vector is 0
The capacity of the vector changes to 1
The capacity of the vector changes to 2
The capacity of the vector changes to 4
The capacity of the vector changes to 8
The capacity of the vector changes to 16
The capacity of the vector changes to 32
The capacity of the vector changes to 64
The capacity of the vector changes to 128
The capacity of the vector changes to 256

// Student vector output
The capacity of the vector changes to 1
The capacity of the vector changes to 2
The capacity of the vector changes to 4
The capacity of the vector changes to 8
The capacity of the vector changes to 16
The capacity of the vector changes to 32
The capacity of the vector changes to 64
The capacity of the vector changes to 128
The capacity of the vector changes to 256

A vector’s capacity
increases when it is
full and insertion is at-
tempted. It automati-
cally manages the
growth. The way a
vector grows
depends on the
specifi c compiler.

568 Programming with ANSI C++

16.6.2 List
List is the next container type, which is a templatized implementation of doubly linked list. It
is easy to learn another container after the fi rst, as the way one can manipulate containers is
quite similar. Let us look at an example where the vector has been replaced by a list, except
at one place. Program 16.4 prints the merit list, now using a list rather than a vector.

PROGRAM 16.4 STL list object
//MeritList.cpp
#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

class Student
{
private:
 int RollNumber;
 fl oat TotalMarks;
public:
 Student(){};
 Student(int TempRollNumber, fl oat TempTotalMarks)
 {
 RollNumber = TempRollNumber;
 TotalMarks = TempTotalMarks;
 }

 void operator = (Student TempStud)
 {
 RollNumber = TempStud.RollNumber;
 TotalMarks = TempStud.TotalMarks;
 }

 bool operator < (Student TempStud)
 {
 return(TotalMarks < TempStud.TotalMarks);
 }
 friend ostream & operator <<(ostream & TempOut, Student & TempStud);
};

ostream & operator <<(ostream & TempOut, Student & TempStud)
{
 TempOut << "The mark of roll number " << TempStud.RollNumber << " is " << TempStud.

TotalMarks;
 return TempOut;
}

void main()
{
 list <Student> StudMarks;
 fl oat TempMarks;
 int i = 0;
 for(;;)
 {
 cout << "Enter mark for roll number " << i + 1 << " Enter −1 to stop: ";
 cin >> TempMarks;
 if(TempMarks == −1) break;
 StudMarks.push_back(Student(i + 1, TempMarks)); ++1
 }

Standard Template Library 569

How the Program Works
The program does the same job as Program 16.4 with only one change in it; 'vector' is
replaced by 'list' everywhere. The output of the program using the vector has not been
given. It is the same as the output given for this program. This shows how easy it is to learn
more containers once we learn one .

List vs Vector
Lists seem to work similar to vectors. Why are they provided then? The emphasis is on three
operations, namely, insertion, deletion, and access. The list is implemented using a doubly
linked list; hence, insertion and deletion at random require reshuffl ing the pointers alone,
and it is very fast. Unfortunately, accessing a random member requires moving to that place
from either the beginning or the end, which is not effi cient. A list is better when insertion and
deletion at random places are to be performed, and access to elements is not done in random
but in sequence. This is similar to the advantage of linked list over arrays.

Note Vectors can grow automatically, but it comes with a cost. Extending a vector is similar to having a new
large vector and copying the old vector elements in it. This is a linear time operation, that is, the time
of insertion depends on the number of elements in the vector. On the other hand, growth in a list is a
constant time operation, that is, the time of insertion remains constant irrespective of the number of
elements to be inserted.

Table 16.2 lists the differences between a vector and a list.
There is a difference between Programs 16.4 and 16.2. The for loop does not contain test

such as index < StudMarks.end() because operator '<' is not overloaded for bidirectional
iterators provided by the list. It is only available for random access iterators. Fortunately,
there is the inequality operator '!=' overloaded for bidirectional operators. Thus, the '!='

 cout << "The size of StudMarks is " << StudMarks.size() << endl;
 list <Student>::iterator index;
 for(index = StudMarks.begin(); index != StudMarks.end(); ++index)
 cout << *index << endl;
}

Output
Enter mark for roll number 1 Enter −1 to stop: 13
Enter mark for roll number 2 Enter −1 to stop: 23
Enter mark for roll number 3 Enter −1 to stop: 34
Enter mark for roll number 4 Enter −1 to stop: 45
Enter mark for roll number 5 Enter −1 to stop: 32
Enter mark for roll number 6 Enter −1 to stop: 23
Enter mark for roll number 7 Enter −1 to stop: 24
Enter mark for roll number 8 Enter −1 to stop: 1
Enter mark for roll number 9 Enter −1 to stop: −1
The size of StudMarks is 8
The mark of roll number 1 is 13
The mark of roll number 2 is 23
The mark of roll number 3 is 34
The mark of roll number 4 is 45
The mark of roll number 5 is 32
The mark of roll number 6 is 23
The mark of roll number 7 is 24
The mark of roll number 8 is 1

570 Programming with ANSI C++

operator has been used here instead of '<'. This is not actually a big difference.
The '!=' operator could have been used in Program 16.2. It was done here to
show the difference between iterators, algorithms, and the containers using
them.

Program 16.5 uses list because insertion at random place is most effi cient in
this case as it will have to manipulate only two pointers instead of shifting all the
remaining elements downwards as in the vector.

Table 16.2 Differences between vector and list
Criterion Vector List

Insertion time Depends on the number
of elements

Constant

Access time Constant Depends on traversal time

Extension Liner time operation Constant time

Library <vector> <list>

Size Increase when full No such issue

Best when Random access Random insertion or deletion

Storage Contiguous locations Non-contiguous; based on insertion and deletion
patterns

Implementation Array type Doubly linked list with two pointers for each node

Management of insertion and deletion Rearranging elements Rearranging pointers

Technically, the '!='
operator is available
to input iterators,
which is the lowest
level of iterators, and
thus, it is available
to all the other
containers too.

PROGRAM 16.5 Inserting at a specifi c location in a list
//ListInsert.cpp
#include <list>
#include <iostream>
#include <string>
#include <algorithm>

// For fi nd()
using namespace std;

class Student
{
 int RollNumber;
 string Name;
public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }

 bool operator < (Student AnotherStudent)
 {

Standard Template Library 571

How the Program Works
In this program, the following three statements are important to us at the moment.

Student Jaspal(7, "Jaspal Rana");

 return(RollNumber < AnotherStudent.RollNumber);
 }

 friend ostream & operator <<(ostream & TempOut, Student TempStud)
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 }

 // Essential for fi nd() to work
 bool operator == (Student AnotherStudent)
 {
 return(RollNumber == AnotherStudent.RollNumber);
 }
};

int main()
{
 list <Student> ls;
 list <int> li;
 li.push_back(12);
 li.push_back(20);
 li.push_back(16);
 li.push_back(29);
 li.push_back(24);

 Student Lara(1, "Brian Charles Lara");
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");
 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");
 ls.push_back(Lara);
 ls.push_back(Beckham);
 ls.push_back(Steffi); ls.push_back(Maradona);
 ls.push_back(Tiger); ls.push_back(Carl);

 list <int>::iterator IntIndex;
 list <Student>::iterator StudentIndex;
 for(IntIndex = li.begin(); IntIndex != li.end(); IntIndex++)
 {
 cout << *IntIndex << endl;
 }

 /* The following is the most effi cient operation in the list container: adding at
arbitrary place */

 Student Jaspal(7, "Jaspal Rana");
 StudentIndex = fi nd(ls.begin(), ls.end(), Maradona);
 ls.insert(StudentIndex, Jaspal);

 for(StudentIndex = ls.begin(); StudentIndex != ls.end(); StudentIndex++)
 {
 cout << *StudentIndex;
 }
}

572 Programming with ANSI C++

StudentIndex = fi nd(ls.begin(), ls.end(), Maradona);

ls.insert(StudentIndex, Jaspal);

A new student Jaspal has been defi ned. The fi nd() algorithm is used to get the
iterator that points to Maradona. Next, Jaspal is inserted there using a member
function insert() for list (ls.insert()). Here, the iterator is used like a fi le
pointer for having seek-like operation. The insert() member function is
available with all the containers.

Note List is the only container where insertion is a constant time operation irrespective of the location. A
vector has constant time operation for insertion in the end and deque at the beginning and the end,
but not at any location.

16.6.3 Deque
Deque, pronounced ‘deck’, is a useful container adapted into two other containers, namely,
the stack and the queue. We are not going to discuss stacks and queues in this text, but they
are as easy to work with as deques. Let us understand how a deque works with the help of
Program 16.6.

A list can insert or de-
lete an element just by
rearranging the point-
ers, which is a constant
time operation.

PROGRAM 16.6 Deques
//DeQueue.cpp
#include <deque>
#include <iostream>
#include <string>
using namespace std;
class Student
{
 int RollNumber;
 string Name;
public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }

 bool operator < (Student AnotherStudent)
 {
 return(RollNumber < AnotherStudent.RollNumber);
 }

 friend ostream & operator <<(ostream & TempOut, Student & TempStud)
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 return TempOut;
 }
};

int main()
{
 deque <Student> ds;
 Student Lara(1, "Brian Charles Lara");
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");

Standard Template Library 573

How the Program Works
This program is similar to Program 16.2 where the names of different students
have been entered and have been printed at the end. However, there is an
important difference. The push_front() function has been used instead of the
push_back() function in vectors. Deque is a structure where insertion at the end
as well as at the beginning is possible to be done in constant time. List is the
other container where insertions at the beginning take constant time. Both these
containers (deque and list) provide push_front() function.

The push_front() function adds at the beginning; hence, the data entered is
printed in the reverse order. A statement such as the following is possible for
deque and list; for other containers, it results in a compile-time error.

ds.push_front(Lara);

There is a need for a container that always remains sorted. All database indexes are of this
type. Any form of indexing mechanism needs a solution by which the index always remains
sorted, irrespective of the insertions and deletions made. Sorted associative containers help
us to achieve this.

16.6.4 Sorted Associative Containers
Sorted associative containers are containers where the content is always sorted, irrespective
of the order of insertions and deletions. Every element, when inserted, is inserted at the exact
place where it is to be inserted in the sorted order.

 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");
 ds.push_front(Lara);
 ds.push_front(Beckham);
 ds.push_front(Steffi);
 ds.push_front(Maradona);
 ds.push_front(Tiger);
 ds.push_front(Carl);
 deque <Student>::iterator StudentIndex;

 for(StudentIndex = ds.begin(); StudentIndex < ds.end(); StudentIndex++)
 {
 cout << *StudentIndex;
 }
}

Output
Roll number is: 6
Name is: Carl Lewis
Roll number is: 5
Name is: Tiger Woods
Roll number is: 4
Name is: Diego Maradona
Roll number is: 3
Name is: Steffi Graf
Roll number is: 2
Name is: David Beckham
Roll number is: 1
Name is: Brian Charles Lara

Deque is a structure
that allows insertion
at the end as well as
at the beginning in
constant time.

push_front()
with a constant time
function is a unique
feature of deque.

574 Programming with ANSI C++

An important requirement for insertion in sorted associative container is that the object that
is inserted must obey some form of ordering. This ordering can be achieved by overloading
operator < () const for each of the objects that is to be inserted in these sorted associative
containers.

The operator function must be defi ned as const. It is also important to note that these containers
are also associative, and an element of the record can be used to access the entire record.

A sequence container element is accessed by the index or position of the element (similar
to an array), whereas a sorted associative container element is accessed by a key value,
which is a part of the element, similar to indexed sequential fi les. However, sorted associative
container also allows sequential operation.

Note Associative containers are named so because they help accessing elements in an associative manner
rather than indexed manner. Associative search is quite usual in human processing system. It is
common for us to hear a few bars of music associated with a specifi c song and recall that song rather
than being provided with information such as the name of the movie and singer and then recalling it.

16.6.5 Maps
We are going to look at map fi rst, which is a container that can have two items, namely,
a key and a value stored in itself. It is automatically sorted on the key item at the time of
insertion. As mentioned earlier, the key item must have some form of ordering. For user-
defi ned objects, it is important to overload operator < as const to have the ordering.

Let us look at Program 16.7 fi rst. There are two items; the fi rst is a Student object, used as
a key, and the second (the value) is an integer. As mentioned earlier, the Student
object must observe some order. The order here is maintained on the basis of
the total mark the student possesses. Thus, it is possible to have the merit list.
The perception of ordering depends on the context. If one wants a roll-call to be
programmed, maybe the roll number is the key in ordering, or if students list is
to be printed namewise, the name of the student may form the key for ordering.

Map is a container
with a pair of items,
namely, a key and
a value stored in a
sorted order of key.

PROGRAM 16.7 Map
//Map.cpp
#include <map>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
class Student
{
private:
 int RollNumber;
 fl oat TotalMarks;

public:
 Student(){};
 Student(int TempRollNumber, fl oat TempTotalMarks)
 {
 RollNumber = TempRollNumber;
 TotalMarks = TempTotalMarks;
 }

 bool operator < (Student TempStud) const

Standard Template Library 575

Note A map allows a programmer to use other types of indexes, besides the integer index.

How the Program Works
It should be noted that <map> needs to be included for both map and multimap. The difference
between map and multimap is that map can only have one record with a single key whereas
multimap can have multiple records with a single key. Map and multimap are designed to
have a pair of values, namely, a key and a value. Insertion in the map is done using array-like
notation. The following is a statement for defi ning map with the string object.

map <string, fl oat> StudentData;

StudentData is now a map with two items; string is the key and fl oat is the value. The
following is the defi nition for the StudClassData map.

map <Student, fl oat> StudClassData;

StudClassData is a map with two items; Student object is the key and fl oat is the value. The
[] operator can be used for insertion in both the maps, as shown in the following examples.

StudentData["Lara"] = 12000; // String is the key

StudClassData[Lara] = 12000; // Student class object is the key

It is also possible to use insert member function instead of []. Program 16.8 shows the form
of insert function for multimap. Map and multimap both have the same syntax for insertion.
Multimap retains the key and the old value pair when a key and a new value pair is inserted.

16.6.6 Multimap
Multimap is a container that can have entry with multiple values for a single key.
Program 16.8 demonstrates the use of multimap. The insert method is being used
for inserting an element. This method is also possible with map as discussed
in Section 16.6.5. It is important to note that the [] operator is not available for
multimap, and hence, the insert method must be used to insert an element.

 // Without const, it will not work with map
 {
 return(TotalMarks < TempStud.TotalMarks);
 }
 friend ostream & operator <<(ostream & TempOut, Student & TempStud);
};

int main()
{
 map <string, fl oat> StudentData;
 StudentData["Lara"] = 12000;
 StudentData["Sachin"] = 11000;
 StudentData["Sunil"] = 10500;

 Student Lara(1, 65);
 Student Sachin(2, 55);
 Student Sunil(3, 60);

 map <Student, fl oat> StudClassData;
 StudClassData[Lara] = 12000;
 StudClassData[Sachin] = 11000;
 StudClassData[Sunil] = 10500;
}

Unlike maps, a
multimap does not
provide the simpler
notation of []. One
must use a pair < > to
insert a function.

576 Programming with ANSI C++

PROGRAM 16.8 Multimap
//MultiMap.cpp
#include <map>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;

class Student
{
private:
 int RollNumber;
 fl oat TotalMarks;

public:
 Student(){};
 Student(int TempRollNumber, fl oat TempTotalMarks)
 {
 RollNumber = TempRollNumber;
 TotalMarks = TempTotalMarks;
 }

 /* Without const, it will not work with multimap */
 bool operator < (Student TempStud) const
 {
 return(TotalMarks < TempStud.TotalMarks);
 }

 // For cout Student objects
 friend ostream & operator <<(ostream & TempOut, const Student & TempStud)
 {
 TempOut << "Roll number is:" << TempStud.RollNumber << endl;
 TempOut << "Total mark is:" << TempStud.TotalMarks << endl;
 return TempOut;
 }
};

int main()
{
 Student Lara(1, 65);
 Student Sachin(2, 55);
 Student Sunil(3, 60);

 multimap <Student, fl oat> StudClassData;

 StudClassData.insert(pair<Student, fl oat>(Lara, 12000));
 StudClassData.insert(pair<Student, fl oat>(Sachin, 11000));
 StudClassData.insert(pair<Student, fl oat>(Sunil, 10500));
 StudClassData.insert(pair<Student, fl oat>(Lara, 12001));
 StudClassData.insert(pair<Student, fl oat>(Sachin, 11001));
 StudClassData.insert(pair<Student, fl oat>(Sunil, 10501));

 multimap <Student, fl oat>::iterator Position;

 for(Position = StudClassData.begin(); Position != StudClassData.end(); Position++)
 {
 cout << Position->fi rst;
 cout << "Runs scored are:";
 cout << Position->second;
 cout << endl;

Standard Template Library 577

 }
}

Output
Roll number is: 2
Total mark is: 55
Runs scored are: 11000
Roll number is: 2
Total mark is: 55
Runs scored are: 11001
Roll number is: 3
Total mark is: 60
Runs scored are: 10500
Roll number is: 3
Total mark is: 60
Runs scored are: 10501
Roll number is: 1
Total mark is: 65
Runs scored are: 12000
Roll number is: 1
Total mark is: 65
Runs scored are: 12001

How the Program Works
In this program, #include <map> has been used. This is necessary for both maps and
multimaps.

The Student class defi nition has nothing new. Note the need for operator < () const as for
map. Moreover, << has also been overloaded for simplifying the display of Student object.
The following is the defi nition of multimap:

multimap <Student, fl oat> StudClassData;

This defi nition is similar to map defi nition that was seen in Program 16.7. A pair of elements
has been inserted in the multimap using the statement

StudClassData.insert(pair<Student, fl oat>(Lara, 12000));

The insert member function expects a pair object to be inserted. Pair is a template class
provided by STL. It needs explicit argument specifi cation such as <Student, fl oat> in
StudClassData.insert(pair<Student, fl oat>(Lara, 12000));

The fi rst element in the pair class is known as fi rst and second element is known as second.
The StudClassData elements are all pairs with the fi rst item as Student and the second item
as fl oat value. Next, an iterator for the map is defi ned by using the following statement:

multimap <Student, fl oat>::iterator Position;

It is important to note that the iterator is pointing to multimap elements, and each element is
a pair. Thus, Position->fi rst is the fi rst element of the Student object and Position->second
is the second element (the fl oat value). Now, there is a simple for loop from the beginning to
the end of the multimap to print both the elements of the pair.

for(Position = StudClassData.begin(); Position != StudClassData.end(); Position++)

{

 cout << Position->fi rst;

578 Programming with ANSI C++

 cout << "Runs scored are:";

 cout << Position->second;

 cout << endl;

}

The << operator has been overloaded for the Student object. Hence, the statement

cout << Position->fi rst;

works without any problem, as Position->fi rst returns a Student object.
Now, look at the output. As each data has been entered twice, there are two entries for

each data. If a map had been used instead, there would have been only one copy for each of
them.

16.6.7 Sets
The set is a collection of keys in a sorted form. When one is interested only in
verifying whether a key is valid, one can use sets. All keys can be inserted and
when the key is referenced, it can be seen whether the key belongs to an inserted
data or not. Program 16.9 explains this concept.

A set is a collection
of keys in a sorted
order.

PROGRAM 16.9 Sets
//Set.cpp
#include <set>
#include <vector>
#include <iostream>
#include <string>
using namespace std;

class Student
{
 int RollNumber;
 string Name;

public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }

 friend ostream & operator <<(ostream & TempOut, Student & TempStud)
 // For cout Student objects
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 return TempOut;
 }

 // This const is must for set
 bool operator < (Student AnotherStudent) const
 {
 return(RollNumber < AnotherStudent.RollNumber);
 }
};
int main()
{

Standard Template Library 579

How the Program Works
Let us try to understand this program. It should be noted that <set> has to be included for
using sets. The following statement defi nes a set of Student.

set <Student> SetStudent;

 vector <Student> vs;

 Student Lara(1, "Brian Charles Lara");
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");
 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");

 vs.push_back(Lara);
 vs.push_back(Beckham);
 vs.push_back(Steffi);
 vs.push_back(Maradona);
 vs.push_back(Tiger);
 vs.push_back(Carl);
 // Inserting the same data second time
 vs.push_back(Lara);
 vs.push_back(Beckham);
 vs.push_back(Steffi);
 vs.push_back(Maradona);
 vs.push_back(Tiger);
 vs.push_back(Carl);

 set <Student> SetStudent;

 vector <Student>::iterator StudentIndex;

 for(StudentIndex = vs.begin(); StudentIndex < vs.end(); StudentIndex++)
 {
 SetStudent.insert(*StudentIndex);
 }

 set <Student>::iterator SetStudentIndex;
 for(SetStudentIndex = SetStudent.begin(); SetStudentIndex != SetStudent.end();

SetStudentIndex++)
 {
 cout << *SetStudentIndex ;
 }
}

Output
Roll number is: 1
Name is: Brian Charles Lara
Roll number is: 2
Name is: David Beckham
Roll number is: 3
Name is: Steffi Graf
Roll number is: 4
Name is: Diego Maradona
Roll number is: 5
Name is: Tiger Woods
Roll number is: 6
Name is: Carl Lewis

580 Programming with ANSI C++

In the program, fi rst, there is a vector with some students data entered using the
push_back() function that we’ve seen earlier. The following loop is executed
using the vector iterator.

for(StudentIndex = vs.begin(); StudentIndex < vs.end(); StudentIndex++)

{

 SetStudent.insert(*StudentIndex);

}

The insert member function of the set is called for SetStudent object. The item
inserted is obtained by dereferencing the vector iterator StudentIndex. It is
known that this vector is of Student objects. Thus, *StudentIndex is a Student

object itself and is possible to be inserted in SetStudent. Now, the set is traversed using the
set iterator and all the elements (the Student objects stored in SetStudent) are printed. The
following two statements defi ne an iterator and traverse the set to do so.

set <Student>::iterator SetStudentIndex;

for(SetStudentIndex = SetStudent.begin(); SetStudentIndex != SetStudent.end();

SetStudentIndex++)

{

 cout << *SetStudentIndex ;

}

The coding of a set is similar to the printing of vector or list elements using vector or list
iterators. An important part to be observed is the output. The data of about six students

has been inserted twice. The output shows only a single copy of them. This is
because the set stores only a single copy. If multiple copies of a single item are
needed, multiset, which is discussed in Section 16.6.8, should be used.

16.6.8 Multiset
A set can only have a single copy of a key. If more than one key is required,
one needs to use a multiset. Program 16.10 uses a multiset instead of a set. The
program has just one change from Program 16.9. The output is very different
though. Have a look at the program.

A set uses insert
function to insert a
key in the set.

A set accepts only
one copy of the key.
If the key is inserted
twice, the set will
retain only one copy.

Multisets are similar to
sets except the case
that multiple key en-
tries result in multiple
keys inserted. Thus,
multiset is a set with
multiple key values
possible.

PROGRAM 16.10 Multiset
//MultiSet.cpp
#include <set>
#include <vector>
#include <iostream>
#include <string>
using namespace std;

class Student
{
 int RollNumber;
 string Name;
public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;

Standard Template Library 581

 }

 // For cout Student objects
 friend ostream & operator <<(ostream & TempOut, Student & TempStud)
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 return TempOut;
 }

 // This const is must for set
 bool operator < (Student AnotherStudent) const
 {
 return(RollNumber < AnotherStudent.RollNumber);
 }
};

int main()
{
 vector <Student> vs;

 Student Lara(1, "Brian Charles Lara");
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");
 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");

 vs.push_back(Lara); vs.push_back(Beckham);
 vs.push_back(Steffi); vs.push_back(Maradona);
 vs.push_back(Tiger); vs.push_back(Carl);

 // Inserting the same data the second time
 vs.push_back(Lara); vs.push_back(Beckham);
 vs.push_back(Steffi); vs.push_back(Maradona);
 vs.push_back(Tiger); vs.push_back(Carl);
 multiset <Student> SetStudent;
 vector <Student>::iterator StudentIndex;

 for(StudentIndex = vs.begin(); StudentIndex < vs.end(); StudentIndex++)
 {
 SetStudent.insert(*StudentIndex);
 }
 multiset <Student>::iterator SetStudentIndex;

 for(SetStudentIndex = SetStudent.begin(); SetStudentIndex != SetStudent.end();
SetStudentIndex++)

 {
 cout << *SetStudentIndex ;
 }
}

Output
Roll number is: 1
Name is: Brian Charles Lara
Roll number is: 1
Name is: Brian Charles Lara
Roll number is: 2
Name is: David Beckham
Roll number is: 2
Name is: David Beckham

582 Programming with ANSI C++

How the Program Works
This program differs from Program 16.9 in the following statement.

multiset <Student> SetStudent;

Other statements remain the same. Now, look at the output. When all keys have been inserted
twice, there are two copies of each. As can be seen, output is sorted, and hence, duplicate
keys are displayed together.

16.6.9 Adapted Containers
Stack and queue are adapted containers. A stack can be defi ned using stack <int> or stack
<Student> and can have push() and pop() operations. Similarly, one can have queue <int> or
queue <Student> and also have push() and pop() operations on it.

These containers are implemented using deque. They can also be implemented using
other sequence containers.

16.7 GENERIC ALGORITHMS

In this section, we will look at a sample of algorithms from STL. An explanation for each of
the algorithms provided by STL is out of scope of this introductory text.

16.7.1 fi nd() Algorithm
fi nd() is a generic algorithm to fi nd an element in the container by traversing the container in
sequence. Consider Program 16.11.

Roll number is: 3
Name is: Steffi Graf
Roll number is: 3
Name is: Steffi Graf
Roll number is: 4
Name is: Diego Maradona
Roll number is: 4
Name is: Diego Maradona
Roll number is: 5
Name is: Tiger Woods
Roll number is: 5
Name is: Tiger Woods
Roll number is: 6
Name is: Carl Lewis
Roll number is: 6
Name is: Carl Lewis

PROGRAM 16.11 fi nd() algorithm
//Find.cpp
#include <vector>
#include <list>
#include <deque>
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;

Standard Template Library 583

class Student
{
 int RollNumber;
 string Name;
public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }

 bool operator == (Student AnotherStudent) const
 {
 return(RollNumber == AnotherStudent.RollNumber);
 }

 friend ostream & operator <<(ostream & TempOut, Student TempStud)
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 }
};

int main()
{
 vector <Student> vs;
 int IntArray[6];

 for(int i = 0; i < 6; i++)
 {
 IntArray[i] = i;
 }

 Student Lara(1, "Brian Charles Lara");
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");
 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");
 vs.push_back(Lara); vs.push_back(Beckham);
 vs.push_back(Steffi); vs.push_back(Maradona);
 vs.push_back(Tiger); vs.push_back(Carl);

 // Using fi nd for vector
 vector <Student>::iterator StudentIndex;
 StudentIndex = fi nd(vs.begin(), vs.end(), Maradona);
 cout << *StudentIndex;
 // Using fi nd for integer array
 int *pos = fi nd(IntArray, IntArray + 6, 3);
 cout << *pos << endl;

 // Using fi nd for a list
 list <Student> ls(vs.begin(), vs.end());

 // Creating list from a vector data
 list <Student>::iterator ListIndex;
 ListIndex = fi nd(ls.begin(), ls.end(), Tiger);
 cout << *ListIndex;

 // Using fi nd for a deque
 deque <Student> ds(vs.begin(), vs.end());

584 Programming with ANSI C++

How the Program Works
Let us try to understand the program, which includes vector, list, and deque. It
can be seen that the same fi nd() algorithm works for each of them. To enable to
access fi nd(), the program also includes <algorithm>. For fi nd() to work on a
Student object, the == operator needs to be overloaded, which has been done in
the Student class. The function needs to compare each element of the container
with the passed argument. This comparison is not possible for user-defi ned
objects unless == is overloaded.

Since the other statements of the programs have been encountered by us
earlier, we will look only at the calls to the fi nd() algorithm:

int *pos = fi nd(IntArray, IntArray + 6, 3);

StudentIndex = fi nd(vs.begin(), vs.end(), Maradona);

ListIndex = fi nd(ls.begin(), ls.end(), Tiger);

DeqIndex = fi nd(ds.begin(), ds.end(), Steffi);

All the statements look similar. fi nd() takes three arguments; the fi rst two are
iterators pointing to some places in the container and the third one is the element to
fi nd in that range. fi nd() returns the same type of iterator that is passed as the fi rst
and second arguments. With integer arrays, it expects integer pointers and returns
an integer pointer; in vector case, it expects two vector iterators and returns a vector
iterator; and so on. fi nd() can work with all types of containers because the iterators

expected are of the category called input iterators, which are supported by all containers.
One more very interesting issue is the use of constructors for containers using the other

container, thus producing one container from another. The following statements in turn
generate list and deque from a vector range.

list <Student> ls(vs.begin(), vs.end());

deque <Student> ds(vs.begin(), vs.end());

16.7.2 copy() Algorithm
The following is an example of one more algorithm that is capable of copying data from
one container to another. Consider Program 16.12. This algorithm does not require us to
overload any operator for user-defi ned objects.

SB:

 // Creating deque from a vector data
 deque <Student>::iterator DeqIndex;
 DeqIndex = fi nd(ds.begin(), ds.end(), Steffi);
 cout << *DeqIndex;
}

fi nd(), similar to
other generic algo-
rithms, can be called
in a similar manner
irrespective of the
container involved.
Only iterators differ
according to the
container involved.

A very convenient
type of constructors
available for all types
of container is to pro-
vide begin() and
end() values of
some other type of
container, already
existing with data.

PROGRAM 16.12 copy() algorithm
//Copy.cpp
#include <vector>
#include <list>
#include <deque>
#include <algorithm>
#include <iostream>

Standard Template Library 585

#include <string>
using namespace std;

class Student
{
 int RollNumber;
 string Name;
public:
 Student()
 {
 RollNumber = 0;
 }

 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }

 friend ostream & operator <<(ostream & TempOut, Student TempStud)
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 }
};

int main()
{
 vector <Student> vs;
 Student Lara(1, "Brian Charles Lara");
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");
 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");

 vs.push_back(Lara); vs.push_back(Beckham);
 vs.push_back(Steffi); vs.push_back(Maradona);
 vs.push_back(Tiger); vs.push_back(Carl);

 // Copy from one vector to another
 vector <Student> AnotherVector(vs.size());
 // This requires default constructor of Student

 // Copy from vector to vector
 copy(vs.begin(), vs.end(), AnotherVector.begin());

 // Copy from vector to list
 list <Student> ls(vs.size());
 copy(vs.begin(), vs.end(), ls.begin());

 // Copy from vector to deque
 deque <Student> ds(vs.size());
 copy(vs.begin(), vs.end(), ds.begin());

 deque <Student>::iterator DeqIndex;
 list <Student>::iterator ListIndex;
 vector <Student>::iterator StudentIndex;

 for(StudentIndex = AnotherVector.begin(); StudentIndex < AnotherVector.end();
StudentIndex++)

 {

586 Programming with ANSI C++

How the Program Works
Let us analyse the program, Consider the following statements in the program:

// Copy from vector to vector

copy(vs.begin(), vs.end(), AnotherVector.begin());

// Copy from vector to list

list <Student> ls(vs.size());

copy(vs.begin(), vs.end(), ls.begin());

// Copy from vector to deque

deque <Student> ds(vs.size());

copy(vs.begin(), vs.end(), ds.begin());

Copy algorithm has three arguments. The fi rst two arguments are the same type of iterators
indicating a range of values. The third argument is the place where the range is to be copied.
The third iterator can be of a different type than the fi rst two iterators. Let us consider the
statement

copy(vs.begin(), vs.end(), ls.begin());

It contains vs.begin() and vs.end(), both of which return an iterator of type

vector <Student>::iterator

The third iterator is of type

list <Student>::iterator.

copy(), similar to fi nd(), works the same for all the examples using various
containers.

One interesting part of the program is the need for default constructor for the
Student object. It is required because of the following statement:

vector <Student> AnotherVector(vs.size());

This statement creates a vector (the AnotherVector) of size vs.size and
requires the values to be default Student objects for each element in
AnotherVector. This demands the default constructor calling for Student
class. It is important to note that since a parameterized constructor has already
been defi ned, it is the programmer’s job to provide the default constructor as
well.

 cout << *StudentIndex;
 }

 for(ListIndex = ls.begin(); ListIndex != ls.end(); ListIndex++)
 {
 cout << *ListIndex;
 }

 for(DeqIndex = ds.begin(); DeqIndex != ds.end(); DeqIndex++)
 {
 cout << *DeqIndex;
 }
}

Copy algorithm copies
from one container
into another; it has
three arguments—
beginning and end
of the fi rst container
and beginning of the
second container.

copy() is a simpler
method for copying
the contents of one
container into an-
other, irrespective of
their types.

Standard Template Library 587

16.7.3 sort() Algorithm
sort() is an important algorithm that sorts the container data using overloaded '<' similar to
the sorted associative containers for user-defi ned objects. One may or may not have it const.
Consider Program 16.13.

PROGRAM 16.13 sort() algorithm
//Sort.cpp
#include <vector>
#include <deque>
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;

class Student
{
 int RollNumber;
 string Name;
public:
 Student(int TempRollNumber, string TempName)
 {
 RollNumber = TempRollNumber;
 Name = TempName;
 }

 bool operator < (Student AnotherStudent) const
 {
 return(Name < AnotherStudent.Name);
 }

 friend ostream & operator <<(ostream & TempOut, Student TempStud)
 {
 TempOut << "Roll number is: " << TempStud.RollNumber << endl;
 TempOut << "Name is: " << TempStud.Name << endl;
 }
};

int main()
{
 vector <Student> vs;

 Student Lara(1, "Brian Charles Lara");
 Student Beckham(2, "David Beckham");
 Student Steffi (3, "Steffi Graf");
 Student Maradona(4, "Diego Maradona");
 Student Tiger(5, "Tiger Woods");
 Student Carl(6, "Carl Lewis");

 vs.push_back(Lara); vs.push_back(Beckham);
 vs.push_back(Steffi); vs.push_back(Maradona);
 vs.push_back(Tiger); vs.push_back(Carl);

 // Using sort for deque
 deque <Student> ds(vs.begin(), vs.end());
 // Creating deque from a vector data

 cout << "Unsorted deque \n";
 deque <Student>::iterator DeqIndex;
 for(DeqIndex = ds.begin(); DeqIndex != ds.end(); DeqIndex++)

588 Programming with ANSI C++

How the Program Works
The output shows that the data is sorted by name in lexicographical order (the order observed
in a book library). The vector output is not shown as it is identical to the deque output. This
program has the following statements using the algorithm sort() for sorting deque and a
vector.

sort(ds.begin(), ds.end());

sort(vs.begin(), vs.end());

 {
 cout << *DeqIndex;
 }
 sort(ds.begin(), ds.end());
 cout << "Sorted deque \n";
 for(DeqIndex = ds.begin(); DeqIndex != ds.end(); DeqIndex++)
 {
 cout << *DeqIndex;
 }

 // The following also prints the same
 // Using sort for vector
 vector <Student>::iterator StudentIndex;
 sort(vs.begin(), vs.end());
 for(StudentIndex = vs.begin(); StudentIndex < vs.end(); StudentIndex++)
 {
 cout << *StudentIndex;
 }
}

Output
Unsorted deque
Roll number is: 1
Name is: Brian Charles Lara
Roll number is: 2
Name is: David Beckham
Roll number is: 3
Name is: Steffi Graf
Roll number is: 4
Name is: Diego Maradona
Roll number is: 5
Name is: Tiger Woods
Roll number is: 6
Name is: Carl Lewis

Sorted deque
Roll number is: 1
Name is: Brian Charles Lara
Roll number is: 2
Name is: David Beckham
Roll number is: 4
Name is: Diego Maradona
Roll number is: 6
Name is: Carl Lewis
Roll number is: 3
Name is: Steffi Graf
Roll number is: 5
Name is: Tiger Woods

Standard Template Library 589

The output confi rms that sort() delivers what is asked from it. It takes two
arguments and both are iterators of the same type. In this program, both are
deque iterators in the fi rst case and vector iterators in the second case. It is
important to note that sort() requires a different type of iterators than fi nd() and
copy(). It requires random access iterators, which are provided by both vector
and deque. A list provides only bidirectional iterators and not random access
iterators; hence, it cannot work with sort(). A statement such as the following

where ls is a list produces runtime error.

sort(ls.begin(), ls.end()) // Erroneous statement

Notes

 1. If ever it is required to sort the list elements, one can use a member function of list; for example, it is
possible for ls.sort() to call sort ls.

 2. By default, sort() provides the result in an ascending order. It is possible to change the default behaviour
by providing a third argument, which is a function object; it is an object of the class with the () operator
overloaded. A function object with the return value bool is known as a predicate object.

Exhibit 16.4 describes allocators.

A list provides only
bidirectional iterators
and not random
access iterators;
hence, it cannot work
with sort().

Exhibit 16.4 Allocators
Containers can grow and shrink as and when required. For automating this dynamic growth, STL has
predefi ned default memory allocation and deallocation mechanism for all the containers and the types of
elements. In most of the cases, the default mechanism is good enough.

Allocators are memory management mechanisms. By default, a default allocator is used with the
containers. The call to vector <int> is actually

vector <int, allocator <int>)

where the second argument allocator <int> determines the memory allocation mechanism for int
vectors as default. Some other allocators can be passed if the programmers want to manage the memory
themselves.

■ RECAPITULATION ■

 • The Standard Template Library (STL) is different from
other libraries.

 • STL contains containers, which in turn contain other
objects within, and algorithms, which operate containers
to do some job.

 • Iterators are pointer-like devices that help us in
connecting the containers and the algorithms.

 • STL-based design follows the concept of object-based
programming rather than object-oriented programming.

 • Generic programming is a mechanism for designing
generic software components and algorithms such

that maximum amount of reusability is achieved with
maximum effi ciency.

 • The generic software components used in STL are
called containers as they are able to contain other
objects within themselves.

 • Containers are of two types. The fi rst type, known
as sequence containers, is able to hold elements in
an unordered form as inserted. The second type of
containers is known as sorted associative containers.
They keep themselves sorted irrespective of the
insertions and deletions taking place on them.

590 Programming with ANSI C++

■ KEYWORDS ■

Address manipulation approach This is a pointer-like
approach to access elements one by one.

Container This refers to a software component that can
contain other objects.

Functional approach This refers to fi le operations such as
put() and get() in instances where directly reaching
the next element is not possible; a specifi c function is to
be called for that purpose.

Generic algorithms Non-member functions that are
capable of working with many objects of container type
are known as generic algorithms.

Generic programming Programming in a way that

the algorithms and the containers are separated in an
orthogonal way and adding an algorithm or container is
possible with least interoperability problems is known as
generic programming.

Iterator This is a pointer-type object capable of pointing to
objects of a specifi c container.

Sequence containers These are containers where the
values are stored as inserted and not sorted upon insertion.

Sorted associative container These are containers
where the element is sorted upon insertion.

Vector capacity This refers to the capability of the vector
class to accommodate elements without growing.

 • Sorted associative containers are also of two types.
The fi rst type stores only the keys and the second type
stores an element as well with the key.

 • Containers that only store keys are of two types—set
and map. Both these accept only one instance of key
in the data.

 • If we want multiple entries, we need to use multi-key
versions, namely, multiset and multimap.

 • Generic algorithms free the programmer to code the
core part without worrying about the routines such as
sort() and merge() that are to be programmed.

 • Iterators provide open design such that we are able to

access the elements pointed to by them directly using
pointer notations.

 • Vector, list, and deque can all have arbitrary length and
can expand or shrink when needed.

 • New algorithms and containers can be added without
being really bothered about other containers or algorithms.

 • Algorithms such as fi nd() work the same for all
containers, whereas sort() requires random access
iterators, which cannot be provided by lists.

 • There are containers such as stack and queue, which
are implemented in terms of other sequence containers.
They are known as adapted containers.

■ EXERCISES ■
Multiple Choice Questions

1. The generic non-member algorithms can be used
__________.

 (a) only with classes
 (b) only inside member functions
 (c) with all containers
 (d) only with generic containers
2. A map can have __________ record(s) with a single

key.
 (a) single
 (b) two
 (c) three
 (d) multiple
3. The function mechanism provides __________.
 (a) better readability
 (b) avoidance of complex problems
 (c) Both (a) and (b)

 (d) None of the above
4. The pointer-like approach to access elements one by

one is called __________.
 (a) address mechanism approach
 (b) pointer access approach
 (c) reference access approach
 (d) All of the above
5. The storage requirements for STL components is

__________.
 (a) static
 (b) fi xed
 (c) dynamic
 (d) None of the above
 6. STL uses templates to a large extent to make it as

__________ as possible.
 (a) independent of type

Standard Template Library 591

 (b) dependent of type
 (c) specifi c
 (d) All of the above
 7. In map container, the elements are automatically

sorted on the __________ at the time of the
insertion.

 (a) key item
 (b) value item
 (c) Both (a) and (b)
 (d) None of the above
 8. __________ is the only container where insertion

is a constant time operation irrespective of the
location.

 (a) List
 (b) Vector
 (c) Queue
 (d) Deque
 9. The generic containers and generic algorithms in

STL are connected together by __________.
 (a) templates
 (b) classes
 (c) objects
 (d) iterators
10. Function object is __________.
 (a) an object with a function
 (b) a function declaring a local object
 (c) a function using a global object
 (d) an object of a class with () operator overloaded

Conceptual Exercises

 1. What is the difference between STL and other
libraries?

 2. What is the advantage of using generic algorithms?
 3. What is the need for iterators? What is their role in

STL?
 4. List the different types of containers.
 5. What is the need for sorted associative containers?

What is the difference between sorted associative
containers and sequence containers?

 6. What is the advantage of having readymade
components?

 7. Explain how sequence iterators work.
 8. Explain how sorted associative containers work.
 9. List the differences between list and vector con-

tainers.
10. List the differences between set and map containers.
11. List a few algorithms other than the ones described

in this chapter.

Practical Exercises

 1. Write a program to use an employee class and then
provide the following:

 (a) Listing of the employee class in the order of
their employee ID

 (b) Listing of employees by their name
 (c) Sorting employees by their employee ID
 (d) Finding an employee based on the residence

address
 2. Write a program to read details about some players

and provide the following:
 (a) Data inserted about the player should be sorted

by the sport he/she plays and the name of the
player at the time of insertion.

 (b) It is possible that a player plays more than one
game. This is also to be incorporated in the
program.

 3. Write a program for students to enrol in college-
wide contests. A student registered in one contest
cannot be registered in another. The data about the
students must be sorted by the contest name and
student name.

 4. Write a program to register employees for a daily
function of some sort. Any employee can register
at any time. The listing can be in any order. An
employee can prefer to register after any other
employee of his/her choice.

 5. Write a program to read and generate a sequence
of projects that are to be completed. Assume the
project to be a string. Whenever a new project is
inserted, it must be either at the beginning or at the
end.

Features of the BookFeatures of the Book

Every chapter contains
plenty of programs
followed by a section
to deconstruct the
details.

Text is interspersed
with notes and exhibits
for easy recapitulation

of key concepts.

Each section
contains sidebars to
highlight key points.

This end-chapter sec-
tion lists the important

points discussed in
each chapter for easy

recapitulation.

Keywords introduced
in each chapter
are grouped
alphabetically, along
with their defi nition.

Objective questions
in each chapter

provide an easy and
quick way to test

your understanding
of concepts.

Conceptual exercises
are designed to test
your grasp of the
concepts discussed in
the chapters.

Practical exercises are
designed to put theory

into practice and test
your programming

skills.

Appendix

Case StudyCase Study
 LEARNING OBJECTIVE

The single objective of this appendix is to apply the concepts studied so far in a real-world
application.

A.1 INTRODUCTION

C++ is an important player in designing compilers, operating systems, graphics applications,
and networking and communication programs. If we choose a case study from any one of
these domains, it would be diffi cult to understand. Hence, we will work on an example in a
domain with which both teachers and students are familiar. The case study that is discussed
here by no means gives a complete solution to the problem. A real commercial solution
will contain many more features and, more importantly, a graphical user interface (GUI)
component for the users to interact with.

One may wonder why C++ does not provide GUI as a built-in component, whereas VB
and JAVA provide it. In this book, we have hardly used GUI features in any of the programs.
Here are a few reasons:

1. C++ is traditionally considered good for generating dynamic link libraries (DLLs),
network level programming (coding TCP/IP-like protocols), and building compilers,
operating systems (Windows and Linux have signifi cant parts written in C++), and other
application development tools (VB is built using C++). GUI is not a necessary component
for building these applications as there is no interaction with the user.

2. Unlike Java, which does not run directly on top of the operating system, or VB, which is
confi ned to a single OS, C++ needs to work with many operating systems. For example, a
TCP/IP protocol needs to run on top of multiple operating systems and must be designed in
a way that the same program runs on top of any given operating system. GUI requirement
hinders that possibility.

3. VC++ is the only exception that is designed to provide GUI, which is only in Windows
environment. This design is not a part of the standard and, thus, is not useful elsewhere.
The windows GUI model is fairly complex and is not easy for a normal user to work with.

4. Linux environment has a few solutions that provide GUI with C++. They too are complex
and are not at all compatible with other solutions.

5. Some lightweight solutions such as conio in TC++ and curses in Linux are used to confi ne
the output to a specifi c part of the text. Both conio and curses are text-based graphics and,
therefore, have their own limitations. For example, they cannot have buttons and cannot
provide event-driven programming. Even with these limitations, they are quite useful for
generating different windows on the screen, and they make the program interface look
better. Unfortunately, there are no standards for even these solutions, and hence, they are
not recommended.

594 Programming with ANSI C++

A.2 MARKS ENTRY PROBLEM

Let us fi rst have a briefi ng of the problem. Here, a teacher assigns his/her students two
sessional examinations, two practical examinations, and a presentation in a given subject.
The following points need to be noted:

1. In a given subject, fi ve different types of marks are to be entered. Each type is known as
a head. Thus, marks are to be entered under fi ve different heads.

2. The teacher should be able to enter marks at any time. Sessional1 marks may be entered
when Sessional1 theory answer sheets are checked. Similarly, Sessional2 marks are
entered when Sessional2 answer sheets are checked. Practical1 and Practical2 marks
are entered immediately after conducting the practical examination.

3. The teacher usually teaches more than one subject. He/she must be able to enter marks
according to the subjects and also be able to enter the list of subjects once. He/ she should
be able to choose from the subjects for marks entry every time the program is executed.

4. When the program is executed for the fi rst time, it should read the subject and the year of
entry. Next, it should read the marks for (usually) Sessional1 marks. Then, the entry is
made for some other head; either Sessional2 or Practical1, etc.

5. It is important to get the Sessional1 marks entered earlier to be displayed with new marks.
It is also important to tell the user that Sessional1 marks are already entered. Similarly,
when the marks of the third head are being entered, the user should be informed that
marks of two of the other heads are already entered.

6. The marks should be displayed in a formatted manner when needed.

This problem may look simple, but it is not. Some of the requirements are very challenging
to meet.

1. Marks once entered should be available next time and every time. It demands that the
marks are to be stored in some form of fi le.

2. The fi le that stores the information should be named such that it can be used without the
user’s intervention.

3. Two different types of fi les are required for entry of marks. The fi rst fi le would store all
the marks of different students. The second fi le would store information about the marks
themselves (metadata). It stores information such as the subject and the year for which the
marks are meant and under which of the fi ve heads are they entered.

4. One more fi le is needed for storing information about the subjects. This fi le should be used
to display the names of subjects available to select from, when the user starts entering
marks.

5. None of these fi les exist initially, but they would later. When we program, we must
understand the difference while dealing with fi les.

6. For all the marks heads, we can have a single class to store all the information for a single
student and then have a vector large enough to hold the data about all the students.

7. Here again, we have to deal with two different types of information; one is related to
the roll numbers and marks of each student and the other is related to the subject, year,
associated fi le name, whether marks are entered for each head, and what is being entered
currently. All these data are present as a single copy for all bunch of marks objects. We
need to defi ne them as static.

Case Study 595

8. We need to use menus for the user to select from. Take the case of marks entry. We need to
provide choices for the subject for which data is to be entered and also for the head. Both
the requirements are different. The subjects are not known a priori. The list of subjects
depends on the entry made by the user. We need to have some form of a dynamic menu.
This menu is to be generated from the data entered by the user about subjects. The second
menu is static and can be generated by simple cout statements.

9. The marks need to be entered for unknown number of students. Without the Standard
Template Library (STL), we need either a large array or some form of dynamic memory
manipulation. Fortunately, vectors are handy.

Essential Components of the Project
Files and streams Why do we need fi les? Is our storage in a vector not enough?
Unfortunately, it is not possible to use vectors in our case. We need to keep the status of
the marks entered between multiple runs of our program. When we are entering Sessional2
marks, Sessional1 marks should be available and so on. The heads that are entered so far
and those that are not entered should also be known. When the program is not executing, the
values stored in the vector are just lost. It is important to reload the values in the vector when
the program is rerun.

Menu-driven program The need for menus is not all that stringent. We can have a program
without menus. Menus are used to improve the user interface so that users can easily choose
from the given options. A GUI interface might have other types of user interfaces, but text-
based interface is almost impossible without menus.

STL vector and student array We could have a normal array in the program instead of
vectors. However, the problem is that we have no idea, while writing the program, about the
number of students for which marks are to be entered. In such a case, we need to have a very
large array or some form of dynamic memory mechanism. Fortunately, we do not need that
if we use vectors because they can grow dynamically.

Classes and important functions We have two classes, Marks and Subject, and functions
for data entry of marks of a subject and choosing a subject. Displaying the mark sheet is also
done by a function. An important non-member function ChooseSubject() is provided for the
user to choose subjects and related details.

A.3 PROGRAM CONSTRUCT

Let us now analyse the following code. It is followed by one possible output, which consists
of a total of 13 output screenshots.

//CaseStudy.cpp
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <list>
#include <algorithm>
#include <cstdlib>
#include <iomanip>

596 Programming with ANSI C++

using namespace std;
// The following is an itoa function for Linux users
// from the website www.jb.man.ac.uk/~slowe/cpp/itoa.html.
// The author is Robert Jan Schaper
char* itoa(int val, int base)
{
 static char buf[32] = {0};
 int i = 30;
 for(; val && i; −−i, val /= base)
 buf[i] = "0123456789abcdef"[val % base];
 return &buf[i + 1];
}
enum
ReadingStatus {ReadingSessional1, ReadingSessional2, ReadingPractical1,
ReadingPractical2, ReadingPresentation};
class Marks
{
 // Metadata about Marks
public:
 static ReadingStatus Status;
 static char Sessional1Entered;
 static char Sessional2Entered;
 static char Practical1Entered;
 static char Practical2Entered;
 static char PresentationEntered;
 static string FileName;
 static string Subject;
 static int Year;
 static void GetMetaData();
 // Normal Data
private:
 int RollNo;
 int Sessional1;
 int Sessional2;
 int Practical1;
 int Practical2;
 int Presentation;
 static int CurrentRollNo;
public:
 Marks() : RollNo(0)
 { };
 friend istream & operator >>(istream & TempIn, Marks & TempMarks)
 {
 cout << "\n Enter marks for roll number" << TempMarks.RollNo << " ";
 if(Status == ReadingSessional1)
 TempIn >> TempMarks.Sessional1;

Case Study 597

 if(Status == ReadingSessional2)
 TempIn >> TempMarks.Sessional2;
 if(Status == ReadingPractical1)
 TempIn >> TempMarks.Practical1;
 if(Status == ReadingPractical2)
 TempIn >> TempMarks.Practical2;
 if(Status == ReadingPresentation)
 TempIn >> TempMarks.Presentation;
 return TempIn;
 }
 friend ostream & operator <<(ostream & TempOut, Marks & TempMarks)
 {
 TempOut << setw(12);
 TempOut << TempMarks.RollNo;
 TempOut << setw(12);
 TempOut << TempMarks.Sessional1;
 TempOut << setw(12);
 TempOut << TempMarks.Sessional2;
 TempOut << setw(12);
 TempOut << TempMarks.Practical1;
 TempOut << setw(12);
 TempOut << TempMarks.Practical2;
 TempOut << setw(12);
 TempOut << TempMarks.Presentation;
 TempOut << "\n";
 return TempOut;
 }
 void AssignNextRollNo()
 {
 RollNo = ++CurrentRollNo;
 }
}; // End of class Marks
// Mandatory defi nitions of static variables
int Marks::CurrentRollNo = 0;
ReadingStatus Marks::Status = ReadingSessional1;
char Marks::Sessional1Entered;
char Marks::Sessional2Entered;
char Marks::Practical1Entered;
char Marks::Practical2Entered;
char Marks::PresentationEntered;
string Marks::Subject = "OOCP";
int Marks::Year = 2007;
char *StringYear = itoa(Marks::Year, 10);
string Marks::FileName = "Marks" + Marks::Subject + StringYear;
void Marks::GetMetaData()
{

598 Programming with ANSI C++

 string ChooseSubject();
 Marks::Subject = ChooseSubject();
 cout << "Please enter the year \n";
 cin >> Marks::Year;
 char *StringYear = itoa(Marks::Year, 10);
 Marks::FileName = "Marks" + Marks::Subject + StringYear;
}
class Subject
{
 int SubjectNo;
 string Name;
public:
 Subject()
 {
 SubjectNo = 0;
 }
 Subject(int TempSubjectNo, string TempName)
 {
 SubjectNo = TempSubjectNo;
 Name = TempName;
 }
 string getName()
 {
 return Name;
 }
 int getNo()
 {
 return SubjectNo;
 }
 friend istream & operator >>(istream & TempIn, Subject & TempSubject)
 {
 cout << "\n Enter subject no.: ";
 TempIn >> TempSubject.SubjectNo;
 cout << "\n Enter name: ";
 TempIn >> TempSubject.Name;
 cout << "\n";
 return TempIn;
 }
 friend ostream & operator <<(ostream & TempOut, Subject & TempSubject)
 {
 TempOut << "Subject no.: ";
 TempOut << TempSubject.SubjectNo;
 TempOut << "\t Name: ";
 TempOut << TempSubject.Name;
 return TempOut;

Case Study 599

 }
}; // End of class Subject
string ChooseSubject()
{
 string SubjectFileName = "Subject";
 ifstream SubjectFile(SubjectFileName, c_str());
 if(!SubjectFile.is_open())
 perror("Subject fi le open error: ");
 int NoOfSubjects = 0;
 int Choice = 0;
 vector <Subject> Subjects;
 vector <Subject>::iterator SubjectIndex = Subjects.begin();
 while(!SubjectFile.eof())
 {
 int TempNo;
 string TempName;
 SubjectFile >> TempNo;
 SubjectFile >> TempName;
 NoOfSubjects++;
 Subject MCA_Subject_In(TempNo, TempName);
 Subjects.push_back(MCA_Subject_In);
 }
 SubjectFile.close();
 cout << "Total subjects are " << NoOfSubjects << endl;
 while(Choice < 1 || Choice > NoOfSubjects)
 {
 int i;
 for(SubjectIndex = Subjects.begin(), i = 1; SubjectIndex < Subjects.end();

SubjectIndex++, i++)
 {
 cout << endl << i << "." << SubjectIndex->getName();
 }
 cout << "\n\n Please enter your choice";
 cin >> Choice;
 cout << endl;
 } // End of while
 return Subjects[Choice − 1].getName();
} // End of function ChooseSubject()
// Please add the role of this function
void SubjectEntry()
{
 string SubjectFileName = "Subject";
 ofstream SubjectFile(SubjectFileName, c_str());
 int NoOfSubjects = 0;
 Subject MCA_Subject_Out;

600 Programming with ANSI C++

 cout << "How many subjects? ";
 cin >> NoOfSubjects;
 int i;
 for(i = 0; i < NoOfSubjects; i++)
 {
 cin >> MCA_Subject_Out;
 SubjectFile << MCA_Subject_Out.getNo();
 SubjectFile << " ";
 SubjectFile << MCA_Subject_Out.getName();
 /* Except the last record, add a space to separate the records */
 if(i + 1 < NoOfSubjects)
 SubjectFile << " ";
 }
 SubjectFile.close();
} // End of function SubjectEntry()
int main()
{
 void SubjectEntry();
 void MarksEntry();
 void DisplayMarks();
 int Choice = 0;
 while(Choice != 4)
 {
 cout << "1. Enter subjects "<< endl;
 cout << "2. Enter marks " << endl;
 cout << "3. Display marks for a given subject for a specifi c year " << endl;
 cout << "4. Exit" << endl;
 cin >> Choice;
 switch(Choice)
 {
 case 1: SubjectEntry(); break;
 case 2: MarksEntry(); break;
 case 3: DisplayMarks(); break;
 case 4: exit(0);
 default: continue;
 }
 }
 return 0;
} // End of main
// Marks entry for a given subject and exam
void MarksEntry()
{
 vector <Marks> StudMarks;
 char Answer;
 cout << "Do you want to enter marks for subject";

Case Study 601

 cout << "other than OOCP for the year 2007? ";
 cin >> Answer;
 if(Answer =='y')
 {
 Marks::GetMetaData(); cout << Marks::FileName;
 }
 bool NewFile = false;
 int NoOfRecords = 0;
 Marks DummyMarks;
 fstream MarkStatus;
 ofstream NewMarkStatus;
 fstream MarksFile;
 ofstream NewMarksFile;
 MarksFile.open(Marks::FileName.c_str(), ios::in | ios::out | ios::binary);
 if(!MarksFile.is open())
 {
 NewFile = true;
 NewMarksFile.open(Marks::FileName.c_str(), ios::out | ios::binary);
 if(!NewMarksFile.is_open())
 perror("New marks fi le cannot be opened:);
 NewMarkStatus.open((Marks::FileName + "Status").c_str());
 if(!NewMarkStatus.is_open())
 perror("New fi le for mark status cannot be opened");
 }
 cout << "\n Welcome to Mark Sheet Entry System!";
 if(NewFile)
 {
 cout << "How many records?";
 cin >> NoOfRecords;
 StudMarks.reserve(NoOfRecords);
 Marks::Sessional1Entered ='n';
 Marks::Sessional2Entered = 'n';
 Marks::Practical1Entered = 'n';
 Marks::Practical2Entered = 'n';
 Marks::PresentationEntered = 'n';
 }
 else
 {
 while(MarksFile.read((char *) &DummyMarks, sizeof(Marks)))
 {
 StudMarks.push_back(DummyMarks);
 NoOfRecords++;
 }
 MarkStatus.open((Marks::FileName + "Status").c_str(), ios::in | ios::out);
 if(!MarkStatus.is_open())

602 Programming with ANSI C++

 perror("Mark Status fi le: ");
 cout << endl
 Marks::Sessional1Entered = MarkStatus.get();
 Marks::Sessional2Entered = MarkStatus.get();
 MarkStatus >> Marks::Practical1Entered;
 MarkStatus >> Marks::Practical2Entered;
 MarkStatus >> Marks::PresentationEntered;
 MarkStatus >> Marks::Year;
 MarkStatus >> Marks::Subject;
 cout << "Status read from fi le is \n";
 cout << "Subject is "<< Marks::Subject << endl;
 cout << "Year is " << Marks::Year << endl;
 if(Marks::Sessional1Entered == 'y')
 cout << "Sessional 1 marks are available \n";
 else
 cout << "Sessional 1 marks are yet to be entered\n";
 if(Marks::Sessional2Entered == 'y')
 cout << "Sessional 2 marks are available\n";
 else
 cout << "Sessional 2 marks are yet to be entered\n";
 if(Marks::Practical1Entered == 'y')
 cout << "Practical 1 marks are available\n";
 else
 cout << "Practical 1 marks are yet to be entered\n";
 if(Marks::Practical2Entered == 'y')
 cout << "Practical 2 marks are available\n";
 else
 cout << "Practical 2 marks are yet to be entered\n";
 if(Marks::PresentationEntered == 'y')
 cout << "Presentation marks are available\n";
 else
 cout << "Presentation marks are yet to be entered\n";
 // cout << "Status is" << Marks::Status;
 }
 cout << "Please enter marks one by one \n";
 int Choice = 0;
 while(Choice < 1 || Choice > 5)
 {
 cout << "1. First sessional marks \n";
 cout << "2. Second sessional marks \n";
 cout << "3. First practical marks \n";
 cout << "4. Second practical marks \n";
 cout << "5. Presentation marks \n";
 cin >> Choice;
 }

Case Study 603

 switch(Choice)
 {
 case 1:
 Marks::Status = ReadingSessional1;
 Marks::Sessional1Entered = 'y';
 break;
 case 2:
 Marks::Status = ReadingSessional2;
 Marks::Sessional2Entered = 'y';
 break;
 case 3:
 Marks::Status = ReadingPractical1;
 Marks::Practical1Entered = 'y';
 break;
 case 4:
 Marks::Status = ReadingPractical2;
 Marks::Practical2Entered = 'y';
 break;
 case 5:
 Marks::Status = ReadingPresentation;
 Marks::PresentationEntered = 'y';
 }
 int i;
 for(i = 0; i < NoOfRecords; ++i)
 {
 if(NewFile)
 StudMarks[i].AssignNextRollNo();
 cin >> StudMarks[i];
 }
 if(!NewFile)
 {
 MarksFile.clear();
 MarksFile.seekg(0, ios::beg);
 MarkStatus.close();
 NewMarkStatus.open((Marks::FileName+"Status").c_str());
 if(!NewMarkStatus.is open())
 perror("Error re-opening mark status fi le: ");
 for(i = 0; i < NoOfRecords; ++i)
 {
 cout << StudMarks[i];
 MarksFile.write((char *) &StudMarks[i], sizeof(Marks));
 if(!MarksFile)
 perror("Error writing the old marks fi le: ");
 cout << endl;
 }

604 Programming with ANSI C++

 }
 else
 {
 for(i = 0; i < NoOfRecords; ++i)
 {
 cout << StudMarks[i];
 NewMarksFile.write((char *) &StudMarks[i], sizeof(Marks));
 if(!NewMarksFile)
 perror("Error writing the new marks fi le: ");
 cout << endl;
 }
 }
 NewMarkStatus << Marks::Sessional1Entered;
 if(!NewMarkStatus)
 perror("Error writing the status fi le: ");
 cout << endl;
 NewMarkStatus << Marks::Sessional2Entered;
 if(!NewMarkStatus)
 perror("Error writing the status fi le: ");
 cout << endl;
 NewMarkStatus << Marks::Practical1Entered;
 if(!NewMarkStatus)
 perror("Error writing the status fi le: ");
 cout << endl;
 NewMarkStatus << Marks::Practical2Entered;
 if(!NewMarkStatus)
 perror("Error writing the status fi le: ");
 cout << endl;
 NewMarkStatus << Marks::PresentationEntered;
 if(!NewMarkStatus)
 perror("Error writing the status fi le: ");
 cout << endl;
 NewMarkStatus << Marks::Subject;
 NewMarkStatus << Marks::Year;
 cout << "\n The mark status is \n";
 cout << Marks::Subject;
 cout << Marks::Year;
 cout << Marks::Sessional1Entered;
 cout << Marks::Sessional2Entered;
 cout << Marks::Practical1Entered;
 cout << Marks::Practical2Entered;
 cout << Marks::PresentationEntered;
 cout << endl;
}
ostream & PrintHeading(ostream & TempOut)

Case Study 605

{
 TempOut << setw(30) << setiosfl ags(ios::right);
 TempOut << "Marks for subject" << setw(20) << Marks::Subject << endl;
 TempOut << setw(30) << setiosfl ags(ios::right) << "for the year" << setw(20) <<

setiosfl ags(ios::right) << Marks::Year << endl;
 return TempOut;
}
ostream & PrintMarkSheetHeading(ostream & TempOut)
{
 TempOut << setw(12) << setiosfl ags(ios::left) << setiosfl ags(ios::fi xed) <<

setprecision(2) << setiosfl ags(ios::showpoint);
 TempOut << "Roll number" << setw(12) << "Sessional1";
 TempOut << setw(12) << "Sessional2";
 TempOut << setw(12) << "Practical1";
 TempOut << setw(12) << "Practical2";
 TempOut << setw(12) << "Presentation";
 return TempOut;
}
ostream & PrintLine(ostream & TempOut)
{
 TempOut << endl << " ";
 TempOut << endl;
 return TempOut;
}
void DisplayMarks()
{
 cout << "Please specify the subject \n"; cin >> Marks::Subject;
 cout << "Please specify the year \n";
 cin >> Marks::Year;
 char *StringYear = itoa(Marks::Year, 10);
 Marks::FileName = "Marks" + Marks::Subject + StringYear;
 fstream MarksFile(Marks::FileName.c_str(), ios::in | ios::out | ios::binary);
 fstream MarkStatus((Marks::FileName + "Status").c_str());
 if(!MarksFile.is_open())
 {
 cout << "Marks fi le for the year that you have specifi ed does not exist.";
 cout << "\n Make sure the fi le exists\n";
 exit(0);
 }
 vector <Marks> StudMarks;
 Marks DummyMarks;
 int NoOfRecords = 0;
 while(MarksFile.read((char *) &DummyMarks, sizeof(Marks)))
 {
 StudMarks.push_back(DummyMarks);

606 Programming with ANSI C++

 NoOfRecords++;
 }
 MarkStatus.open((Marks::FileName+"Status").c_str(), ios::in | ios::out);
 if(!MarkStatus.is_open())
 {
 perror("Mark status fi le: ");
 exit(0);
 }
 cout << endl;
 Marks::Sessional1Entered = MarkStatus.get();
 Marks::Sessional2Entered = MarkStatus.get();
 MarkStatus >> Marks::Practical1Entered;
 MarkStatus >> Marks::Practical2Entered;
 MarkStatus >> Marks::PresentationEntered;
 // Now printing it
 cout << PrintHeading << PrintMarkSheetHeading << PrintLine << PrintLine;
 int i;
 for(i = 0; i < NoOfRecords; i++)
 {
 cout << StudMarks[i];
 }
};

Output
The following screenshots depict one specifi c run of the program.

Fig. A.1 Screen 1 of output

Case Study 607

Screen 1 This shows the subject detail entry and ends with a selection for entering marks for a subject.

Fig. A.2 Screen 2 of output
Screen 2 This screen begins with the query for the subject name and year. The default is OOCP and 2007. It asks
for the number of subjects and a subject and starts marks entry.

Fig. A.3 Screen 3 of output
Screen 3 This shows the marks of each student in a matrix form, displays mark status, and loops back to the menu
where the user chooses to enter the marks once again.

608 Programming with ANSI C++

Fig. A.4 Screen 4 of output
Screen 4 The user is prompted again for the subject and marks; the program displays the marks that are entered
and are not.

Fig. A.5 Screen 5 of output
Screen 5 Marks are displayed in the matrix form after the entry.

Case Study 609

Fig. A.6 Screen 6 of output
Screen 6 The loop comes back to ask for entry and shows the status of the specifi c subject with specifi c year.

Fig. A.7 Screen 7 of output
Screen 7 The practical marks are entered and information is displayed.

610 Programming with ANSI C++

Fig. A.8 Screen 8 of output
Screen 8 The marks are entered and looped back.

Fig. A.9 Screen 9 of output
Screen 9 Practical second test marks are entered as shown.

Case Study 611

Fig. A.10 Screen 10 of output
Screen 10 The intermediate mark sheet is displayed.

Fig. A.11 Screen 11 of output
Screen 11 The presentation marks are being entered.

612 Programming with ANSI C++

Fig. A.12 Screen 12 of output
Screen 12 Complete marks are entered.

Fig. A.13 Screen 13 of output
 Screen 13 The fi nal mark sheet is printed.

Case Study 613

A.4 EXPLANATION

The program begins with two important defi nitions. One is a function for getting a string
from an int value. There is a function itoa available in Windows or TC++, but it is not
available in Linux. We need such a function to run the program under Linux.1

The other defi nition is an enum, which describes the reading status. We have already seen
that the program may be reading marks about any head at any given point of time. It is enum
that tells us what we are reading.

Then, we have the most important class of our program, namely, Marks. The members of
the class are divided into two parts. Static members represent the metadata about the class,
whereas other members are integers representing the different heads of marks of a student.
We have our static members defi ned and given default values outside the body of the class.
It is important to note that the name of the fi le is a concatenation of three strings. The fi rst
string is always ‘Marks’, the second is the subject for which the data entry is made, and the
third is the string representation of the year value. Thus, this makes the name of the fi le
unique for each subject for each year. For example, the fi le name could be MarksOOCP2007,
MarksAI2008, etc.

These fi les cannot store their metadata. We need an additional fi le to store the same.
We name that fi le as the original fi lename plus the word ‘Status’. Thus, status fi les for the
given two cases will be MarksOOCP2007Status and MarksAI2008Status. These are long but
unambiguous names.

It is interesting to see that the argument requires a C-type string; hence, we need to call
c_str() function with the fi le name to get the C-type string from a string object.

Next is the Subject class. This class stores only two bits of information, the subject name
and number. Ideally, it should also store the name of the fi le for each subject where syllabus
is stored for that subject.

It is needless to state the importance of the overloaded << and >> operators for both the
classes and that we have proper constructors for them as well.

Next is the function ChooseSubject(). This is an important function, which reads from
the SubjectFile and lets us choose the subject. The following statements are worth having
a look.

while(!SubjectFile.eof())
{
 int TempNo;
 string TempName;
 SubjectFile >> TempNo;
 SubjectFile >> TempName;
 NoOfSubjects++;
 Subject MCA_Subject_In(TempNo, TempName);

1 This function has been taken from the web. The website and the author’s name have been specifi ed in
the program itself. As programmers need to invest time and energy to program and debug various cases, it
is always a viable option to look for readymade solutions on the web and incorporate them in a program.
The advantage of such solutions is that they are usually tested and designed for generic cases. Incorporating
such codes makes the program more robust and generic. One must carefully look at the copyright warnings
in such cases though.

614 Programming with ANSI C++

 Subjects.push_back(MCA_Subject_In);
}

This code reads the SubjectFile and populates the Subject vector for us. Look at the
push_back() function for the vector to accommodate arbitrary number of elements. The
following code is for the dynamic menu:

for(SubjectIndex = Subjects.begin(), i = 1; SubjectIndex < Subjects.end();
SubjectIndex++, i++)
{
 cout << endl << i << "." << SubjectIndex->getName();
}

Our loop runs from the beginning to the end of Subject vector and prints each subject
with a proper choice value. Look at the use of the iterator SubjectIndex and the usefulness
of getName() access method.

Marks are stored in the binary fi le. For storing mark status and subject information, we
have chosen text fi les. The function SubjectEntry() shows how subjects are read and a fi le
is created. The interesting part here is to have additional spaces between fi elds for separating
them at the time of reading. Note that the string records are separated by white spaces.

It is also important not to add a space at the end of the fi le, as it adds a dummy record to
our fi le.

for(i = 0; i < NoOfSubjects; i++)
{
 cin >> MCA_Subject_Out;
 SubjectFile << MCA_Subject_Out.getNo();
 SubjectFile << " ";
 SubjectFile << MCA_Subject_Out.getName();
 /* Except the last record, add a space to separate the records */
 if(i + 1 < NoOfSubjects)
 SubjectFile << " ";
}

Next is the main() containing only a static menu.
The function MarksEntry(), which follows next, has the default of marks of subject OOCP

for the year 2007. We have two versions of input from fi le for the status fi le. One is using
get() and the other is using the overloaded >>.

Next, we encounter the code that checks and opens two fi les related to marks entry. The
same fi le has two different names. The version with New prefi x is opened using ofstream and
is initialized with proper initial values when the fi le is created for the fi rst time. Otherwise, the
fi les are read, and the vector and the metadata are populated with the values stored in the fi le.

We have the menu presented next, which displays the choices about marks entry heads.
If a specifi c head, for example, Sessional1 is chosen, the Status variable is set accordingly.
We also mark that head as read. The for loop reads the records into the vector. If the new fi le
is generated, it generates the roll number and adds to the record.

Next, we check if we have an old fi le with marks with us. We create a new status fi le,
as the status of the fi le is changed after reading records. The original marks fi le records are

Case Study 615

rewritten in the fi le from the vector. In the end, we encounter a function for printing the
marks in a lightly formatted way.

A.5 IMPROVING THE PROGRAM

Real-world application-oriented programs include a number of features to facilitate easy
debugging and frequent updates. They are robust and are executed without exerting much
load on the system. In the given project, we have opted to have a limited set of features
in order to keep the program simple and restrict its length. However, the program can be
modifi ed to suit additional requirements, for which it requires additional discipline. We have
not considered all the features to reduce the complexity. Nevertheless, you, as a reader,
should try and incorporate new features in the existing program to make it better. Here is a
list of features you can add:

1. A professional program should be as dynamic as possible. We could have dynamic menus
in the program. The menu for selecting heads can be made dynamic similar to the menu
for selecting subjects; it is not made here.

2. It is possible that multiple faculties teach the subject in a shared fashion and they give
their marks separately. We must be able to accumulate them into a single mark sheet.
This is not provided in our program, as it would increase the level of complexity. We
have assumed that all teachers use the same set of heads. It may not be true for some
subjects where practicals are not involved and where we need other heads such as group
discussion or quiz. Providing such dynamism is neither important nor feasible in our case.

3. Professional programs use different components and readymade programmed modules,
which we can use in our program. VC++ provides components such as text box and list
box for data entry. Menus are also available. Calendar control is available for validating
dates. We have obviously used none. There is another feature called ‘report writer’
available with all professional systems, which helps us format our reports in a detailed
way. We have used only basic formatting features of C++ in our program.

4. The printing does not take care of multi-page, multi-column display, which demands
additional logic.

5. Similarly, all professional programs use some form of database and the code contains
calls to create and manipulate databases. We will not be using such approach.

6. One more important issue is of validations. Ideally, all data entered in the system should
be allowed only after proper sanitation. It is not uncommon to see half the program being
dedicated to validation code. We will use minimal validations in the program. It is not that
validations are not all that important; they are very important, but they need diffi cult logic
and more redundancy in the code.

7. A small but important issue is to use more general mechanism of programming. For
example, we could have decided to have menu() function, which takes inputs from the
respective fi le and populate the menu for us. It has not been done for simplicity and
length-of-code issues.

The program has two menus; one is dynamic and the other is static. Usually, menus are
provided for cases such as add, delete, modify, and display single item. You can add such
features by choosing sorted associative containers in place of vectors.

616 Programming with ANSI C++

Possible extensions The program can be extended, with a little effort, to include the
following features:

1. The format can become a little more portable. It is possible to provide a DLL, which
reads from a fi le and sends the mark sheet out. There would be no input/output (IO) in
the program, but only processing. In that case, the interface would be function-based.
Functions could be called at runtime and mark sheets and marks of the students can be
produced and updated as and when required. The calling program manages the IO.

2. More generality can be provided for reading validated input by using wrapper classes.
3. A student module such as subject can be provided to accept the roll numbers and names

of the students so that we can print the names of students in place of roll numbers.
4. The program can hold a mobile application programming interface, which will make it

accessible as a mobile application.

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

Abstract data type 12 41

Abstraction 1–3 9 15–17 26

 27 35 36 38

 74 471

 Law 15 38

Access modifier 56 365 366 370

 400

 Const 39 40 43 44

 46 47 50 51

 56 65–68

 private 364–371 373–378 400 401

 Protected 364 365 367–371 373–377

 400 401

 public 364–368 370 371 373–377

 389 400 401

 volatile 39 40 56

Access 362 364–366 368–378 383

 387 388 390 400–402

Algorithm 555–560 564 565 572

 582 584 586–590

 copy() 555 584 586 589

 find() 555 556 558 560

 572 582 584 586

 589 590

 In-place sort 565

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Algorithm (Cont.)

 sort() 555 557 558 560

 565 587–590

Allocator 555 589

Argument 113 115–119 121 403

 404 416 418 435

 436

 Default 109 111 115–119 403

 410 416 418 434–436

Assignment 103 104 106 107

 188 190 194 196

 201 202 204 210

 212 216 221 223–226

Attributes 3 4 6–12 16–20

 21 22 27 28

 36 38 69–71 74

 77 79 81 89

 106 364 381 385

 426 545 558

 Data 2 4 7–13 15

 17 24 26–28 30

 32 34 36 38

 69 70 71 73

 74 75 76 78–91

 93–96 106 107 108

 332

 Function 4 7 8 17

 36 69 70 71

 73–75 78–81 84–87 93–95

 101–108

Augment-dependent lookup 541

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

B

Binding 415 435 436

 Dynamic 415 426 435 436

 Static 40 57 65 69

 79 83 85–94 96

 102 106–108 114 118

 149–152 164 404 415

 428 430 431 434–436

boolalpha 479 486 488 490

 495

Buffer 500 501 503 504

 509 523

 Read 500–509 512 513 515–517

 519 520 522–524

 Write 499–501 503 504 506

 509 512 513 516

 519 520 522–524

C

C++ 1 34 39 65

 122 190 201 264

 470–473 475 477 482

 495 496 545 553

 554

 ANSI 31 32 35 37

 43

 Applications 1 29 35

 Object model 1 34 35

 Variations 1 35

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Casting 438 449 450 453

 454 456 458–461 464–468

 Cross casting 438 464–466 468

Class 2–5 8–22 24 25

 27–32 35–38 69–82 84

 85 87 96 98

 99 101–103 108 362–378

 380 381 383–385 387–391

 393 394 396 398–404

 406–410 412–416 418–423 426–431

 433–437

 Abstract 1 11 12 15

 19–22 36 38

 Base 362 364–374 376–378 380

 381 383–385 387–390 391

 393 396 399–401 403

 404 406–410 412 414–416

 418 420–423 426 427

 430 431 434–436

 Derived 362 364–378 380 381

 383–385 387 388 390

 391 393 394 396

 399–401 403 406–410 412

 414–416 418–423 426 430

 431 433–437

 Exception 21 28 33 34

 36

 Local 69 83 101–103 106

 108

 Nested 69 86 98–101 106

 108

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Class (Cont.)

 Nesting 99 100 101 106

 108

 Virtual base 362 373 384 387

 389–391 400 401

Class templates 279 280 304 306

 314 325 326

 Default arguments 303 315 316 325

 327

 Explicit specialization 279 299 302 309

 325–327

 Friend 299 300 313 318

 326

 Multiple generic data types 279 313

 Non-type arguments 292 294 295 314

 315 326

 Partial specialization 279 319 320 321

 325 326 327

 Primary specialization 319 321

 Static data member 316 325 327

Const_cast 438 450 459 466

 468

Constant 104–106 108 194 196

 212 213 216 223–225

Constant member function 104 106

Constructor 4 29 30 175–181

 184 185 187–190 192–194

 196 201 205 208

 209 213 214 217

 220 223 224 225

 226 415 422 436

 Compiler-defined default 179

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Constructor (Cont.)

 Copy 175 188 200–202 204

 205 208 209 212

 223–226

 Default 175 178–181 183 184

 188–190 192–194 196 204

 208 209 211 224–226

 Default argument 175 179 192–194 224

 226

 Dynamic allocation 175 196 199–201 224

 226

 Empty default 189 190 196

 Execution 183 201 216 217

 223

 Explicit 175 177 187–189 192

 223 224 226

 Multiple 175 188 190 200

 224–226 362 363 378

 380 381 383–385 387

 389 390 400–402

 One parameter 185

 Parameterized 175 188–190 196 200

 212 221 224–226

 Private copy 209

 Rules 178

 Synthesis 180 223

 User-defined default 175 180 181 183

 225

 Virtual 136 152 403 404

 407 410 412–416 419–423

 426–431 433–437

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Container 555–561 563 565 568–570

 572–574 582 584 586

 587 589–591

 Sequence 555 556 561 563

 569 574 582 589–591

 Sorted associative 555 561 573 574

 587 589–591

Context switching 46 60 64

Control 376 400

 Declaration 362 376–378 400 402

 526–528 530–533 541–544

Conversion 501 502 524

D

Data types 39–41 45 56 66

 175

 bool 40–42 67 68 89

 116

 queue 41 280 556

Deque 555–558 561 572 573

 582 584 588–591

Derivation 365–367 369–372 374 375

 383 385 389–391 400

 401

 Private 364–371 373–378 400 401

 Public 364–368 370 371 373–377

 389 400 401

Destructor 175 201 216–218 220

 221 223–226 403 415

 421 422 428 430

 431 436 437

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Destructor (Cont.)

 Execution 183 201 216 217

 223

 Synthesis 180 223

 Use 177 180 193 194

 196 200 201 204

 210 213 216 217

 223 226

Differences between C and C++ 1 10 27 30

 35 37

 Exception-based design 33

 Philosophical 27 35

 Syntactical 30 35 37

 Templates 19 26 34 35

 36 37

Downcasting 438 449 450 466

 468

Driver 471 495 497 498

 524

 Device 497–499 521 523 524

 Disk 470 471

 Printer 470 471 496

dynamic_cast 438 450 451 453–456

 458 459 461 464–469

E

Encapsulation 1 4 5 15

 16 17 36 38

Entities 1 3–8 10 15–20

 22 26 28 37

 38

eof() 509 512 523

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Error 328–330 332 333 337–340

 344 350 352 358

 359 360

 Handling 328–330 332 333 337–339

 359 360

 Reporting 330 333 337

Exception handling 328–330 332 333 338

 358–361

 Abnormal termination 329 330 339 352

 abort() 329 330 332 345

 353 354 356 359

 360

 Catch all 342–344 360 361

 Catch block 331–335 337 339 350

 352 357 359 360

 Challenges 332

 Drawbacks 328 358

 Exception class 356 359

 Exception specification 344

 Global flag manipulation 328

 Multiple catch 328 339 359 360

 Rethrowing 350 360

 Returning error number 328

 terminate() 328 332 334 338

 339 345 352–354 359

 360

 throw expression 331

 try block 328 330–333 338 339

 350 355 357 359

 360

 uncaught_exception() 328 356 358 360

 361

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Exception handling (Cont.)

 unexpected() 328 344 345 353–356

 360 361

Expression parser 75–78

 Polish notation 75

F

fclose() 498

File 497 499–501 503 504

 508 509 512 523

 Closing 497 501 503 504

 509

 Handle 500 501 503 504

 509 521 523 524

 Mode 500 501 503 504

 506–508 512 513 520

 523

 Opening 497 499 500 503

 506 508 520 522

 Pointer 500 501 503 512

 513 515–517 519–521 523

 524

 Text 497 500–504 508 509

 512 523 524

Filename 499 500 504 508

 523 524

 Logical 499 500 503 504

 523 524

 Physical 499 500 504 523

 524

fill() 476 477 495

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Flags 479 484 489

 Clearing 479 481 482 484

 Examining 484

 Format 472 479 484 487

 490 493–496

fmtflags 470 480 482 484

fopen() 498 499

Format flags 479

 adjustfield 479

 basefield 479

 dec 479

 fixed 479

 floatfield 479

 hex 479 488

 internal 479 481 482

 left 479 482

 oct 479

 right 479 482

 scientific 479

 showbase 479 488

 showpoint 479 488 490

 showpos 479 482 486 491

 skipws 479

 unibuf 479

 uppercase 479

fread() 498

Function 1 3–5 8–10 15

 16 19 22–29 31

 32 34 36 37

 42 45–47 49–55 60

 62 63–68 109–115 403–405

 407–410 412–416 418–421 423

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Function (Cont.)

 426–431 434–440 442 443

 445 447 448–450 454

 459 461–464 466–469

 Call by reference 124 172

 Called 46 47 50 52–55

 60 61

 Calling 45 46 54 55

 60 65

 const 109 148 149 152

 171 172 173

 Context switching 110–114 173

 Dot notation 109

 Friend 109 122 128 131

 139 140 141

 Inline 109 111–115 169

 Member 9–11 13 14 25

 27 28 36 37

 109 122 123 136

 137 139 140

 name() 443 468

 Non-friend 140 143 144

 Non-inline 111 113 169 172

 Non-member 9 28 109 113

 119 120 122 128

 136

 Non-virtual 410 416 436

 Overloading 4 12 23 24

 29 30 32 36

 37 109 132–136 139

 147 169 171

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Function (Cont.)

 pointer 113 127 128 131

 132 139 147

 Pointer to member 160 163 165 168

 173

 private 109 122 128 131

 139 140 141

 Prototyping 132 133 172

 public 109 122 139 140

 141 144 152

 Pure virtual 22 403 427–431 433–436

 volatile 109 148 149 152

 171 173

Function object 227 252 254 255

 276 277

 Calling 233 253 255 256

 Function pointer 252–255

Function templates 279–281 285 286 289

 291 303 304 309

 313 314 322 325–327

 Default arguments 303 315 316 325

 327

 Instantiation 285 296 302 309

 322 325–327

 Multiple arguments 289 325

 Non-generic parameters 292

 Single-argument 281

 Specialization 279 296 299 301–303

 309 313 314 318–321

 325–327

 Two generic arguments 291

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Function templates (Cont.)

 typename 279 283 284 307

 323 325–327

fwrite() 498 499

G

Generic 555–560 564 565 582

 584 589–591

 Programming 555 557 589 590

 Software 555 557–560 589 590

get() 474 475 496

getline() 475 476 496

Global enum 164 165

I

Information hiding 17 26–28 35

 Implementation 28

 Principle 17 26–28 35

Inheritance 1 4 5 17–22

 26 29 33 35–38

 362–364 368 371 372

 375 378 380 381

 383–385 387 390 391

 399–402

 Advantages 362 363 380 401

 Instance-of relationship 18

 Is-a relationship 18–20 36 38 364

 394

 Is-a 364 394

 Part of 364 394

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Initialization 39 57 67 68

 78 86 87 103–106

 175 178 180 183

 185 188 194 196

 198 199 201–204 208–210

 212 214–216 224–226

 Normal 39 40 44–46 49

 52 54 55 57

 60 64 68

 Variable 41–44 46 51–57 59

 60–65 67 68

Input/output 498

 Errors 521 522 524

 File I/O 499

Invocation 415 428 430 431

 434 435

ios 472 473 476 477

 484 486–488 490 495

 496

 Member function 472 476 477 484

 486 488 495 496

istream 471

Iterator 555–557 559 560 563

 565 569 570 572

 577 580 584 586

 589–591

 Bidirectional 556 557 569 589

 Input 555 556 558 570

 584

 Random access 556 557 560 563

 565 569 589 590

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

K

Koenig lookup 525 531 541–544

L

Linkage specification 169

List 555–560 564 568–570 572–574

 580 584 589–591

M

Manipulator 470 472 478 486–491

 493–496

 Shorthand 488 490 491 495

 User–defined 491

Map 555 556 561 574

 575 577 578 590

 591

Mechanism 556–559 573 583 589

 590

 Address 559 560 590 591

 Function 555 559 560 563

 565 572–575 577 580

 584 589–591

Member 69–71 73–82 84–91 93–98

 102 104 106–109 122

 128 136 137 139

 140

 Data 69–71 73–78 79–91 93–96

 106–108

 Function 69 70–75 78–81 84–95

 93–95 101–108

 Global 83 85–87 92 107

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Member (Cont.)

 Mutable 109 148 149 171

 172

Memberwise initialization list 175 209–216 224–226 362

 380 391 397 399

Message passing 13

Modular 1 29

Multimap 555 556 575 577

 590

Multiset 555 556 561 580

 590

N

Name 525 526 528 530

 531 533 535 538–543

 Fully qualified 525–528 530 538 539

 541–543

Namespace 525–544

 Alias 528 538 539 542–544

 Aliasing 533 539 542

 Extending 525 533

 Global 525–527 535–537 540–543

 Named 535 543

 Nested 525 537 538 542

 Overhead 541–543

 std 525–529 540 541 544

 Unnamed 525 535–537 542–544

 User-defined 526–528

Need 175–181 187 188 198

 199 201 202 208

 210 213 223–226 329

 338 340 344 350

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Need (Cont.)

 358 359 361 440

 442 448–450 456 458

 461 466–468

 Efficiency 190 210

 Readability 187 210 220

Noboolalpha 488 490

Noshowbase 488

Noshowpoint 488 490

NRV optimization 122 123

O

Object 1–5 7 9–38 61

 87 89 90 175–181

 185–190 193 213 216–218

 220 221 223–228 230

 235 236 240 243–246

 248–253 255 509 521

 523 545 546 548

 549 553 554

 Arrays of objects 94

 Based 1–5 7 16 19

 26 27 29 33–36

 38 69 71

 Built-in 10 12 17 29

 30–32

 Composite 362 394 396 397

 399 400

 Non-polymorphic 442 443 459 467

 Off-the-shelf 29 34

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Object (Cont.)

 Oriented 1–5 7 9–11 18

 19 26 27 29

 33 35 37 38

 69 71 78

 Persistence 497 521

 Pointer 403–410 414 415 418

 420–423 426 427 430

 434–437

 Pointer to objects 95

 Polymorphic 438 439 442 444

 445 447 450 451

 454 459 464 466

 467

 Serializing 521

 this 403 405 410 436

 Typeinfo 438 442 443 445

 448 449 464 467

 468

 User-defined 10 12 26 29

 30 31

Operator 39 58 60 64

 65 67 68 438

 442–445 448–450 454 456

 459 464 466–468

 != 443

 == 443 448 454 468

 Casting 39 60 62 64

 65

 Delete 39 40 60 63

 65 67 68

 Member-pointer 60

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Operator (Cont.)

 Memory allocation 60 67

 Memory release 58

 New 39–41 45 49 58–60

 62–65 67 68

 Placement new 63 64

 Pointer-to-member-using-object 58 60

 Pointer-to-member-using-pointer-to-object 58 60

 Scope resolution 39 59 60 67

 68

 throw 39 40 63 65

 67 68

 typeid 39 40 65–68 438

 442–445 447–450 453–456 458

 461 464 466–468

Operator overloading 4 12 24 29

 30 32 36 37

 227–231 233 235 236

 238 240 250 275–277

 286 288 289 404

 ::delete 262

 ::new 257 261

 ++ and – – 238 275 277

 << and >> 243–245 269 277

 Array subscript operator ([]) 250

 Assignment operator (=) 246

 Binary operators 227 229 240 275

 277

 Delete 227 236 246 250

 255–257 261 262 276–278

 Friend function 240 242 243 245

 275

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Operator overloading (Cont.)

 Function call operator 228 251 252

 Member function 229 230 235 241

 245 265 268 275

 new 227 228 236 246

 248 249 255–257 259

 261 262 265 274–278

 Precautions 249

 Restrictions 227 228 277

 Shorthand operators 240 275 277

 Unary operators 229 236 276

ostream 471 493

P

Pointers 39–42 44 45 47

 49 51 53 54–56

 62 66 68

 Constant pointer 41 43 44 45

 47 67

 malloc() 42 60 62–65 67

 68

 Named pointer 51

 Pointer to constant 41 44 49 51

 67 68

 Use 41 42 45–47 55

 57–60 63–68

 Void 40–42 62 64 68

Polymorphism 1 5 22–26 36

 38 135 136 172

 403 404 415 427

 434–436

 Ad-hoc 23–25 36

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Polymorphism (Cont.)

 Compile time 113 169 403 404

 408 410 415 434–436

 dynamic 1 24–26 35 36

 38

 Inclusion 25 32

 Parametric 25 26 36

 precision() 476 477 495

 Run-time 403 404 410 412

 414 415 420 422

 423 434–436

 Subtyping 25

Procedure 3 5

 Oriented 1–5 7 9–11 18

 19 26 27 29

 33 35 37 38

Protected 364 365 367–371 373–377

 400 401

 Exception handling 362 391 400 402

 Multiple classes 363 378 383 402

put() 474 496

R

read() 475 476

Reference variable 39 51–55 67 68

 124 493

 Chaining input 55

 Dummy parameter 52 54

 Return type 54

 Standalone 52 66

reinterpret_cast 438 450 459–461 466

 467

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Request 8 35

Response 8 11 13–15 23

 36

Reusability 1 2 5 19

 29 362 364

 Myths 19 38

Run-time type information 438 466 467

 Compatibility 464

 Efficiency 464

S

seek() 512

seekg() 512 513 515 517

 519 523 524

seekp() 513 516 519 523

 524

Set 555 556 560 561

 578–580 590 591

setf() 478 479 481 482

 484 488 495 496

setiosflags 488 490 491 495

showbase 479 488

showpoint 479 488 490

Stack 74–78 87

 Pop 74 77 78

 Push 74 77 78

Standard Template Library 12 29

static_cast 438 450 459 460

 466 467

Storage class specifier 57

 auto 40 57

 extern 40 57

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Storage class specifier (Cont.)

 register 40 57

Storage requirement 78 107

 Non-static 79 80 88 90

 91 96

Stream 470–476 479 484 487

 488 490 493–502 522–524

 C 471 472 474 475

 495 496

 Formatted 470 473 478 488

 I/O 470–473 476 494–496

 Unformatted 470 473 478 494

 Binary 497 500–502 508 509

 512 521 523 524

string 41 46 51 68

 545–549 553 554

 C 545 546 553 554

 Characteristics 548 549 554

 Creating 546

 Operator 548 549 553 554

struct 2–4 8–10 16 30

 35–37

Substring 545–548 553 554

 Operation 545–549 553 554

T

tellg() 516 517 523 524

tellp() 516 523 524

Template 279–281 285 286 289

 291–293 295 299 303–306

 309 313 314 321–323

 325–327

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Template (Cont.)

 Argument deduction 295 306 325 326

 Compilation models 279 285 321

 export 279 323 325 326

 Generic function 280 283–285 292 296

 301–304 325–327

 Inline function 321 322

 Non-generic function 301–303

 Non-Inline function 321–323

 Overloading 279 286 288 289

 296 299 300 302

 319 325–327

Toggle effect 488 490

U

User-defined conversion 262

 Built-in data type to object 265

 Implicit 230 234 236 262

 263

 Object to built-in data type 265

 Object type using constructors 269

 Object type using conversion functions 272

 Operator function 229 230 240 242

 246 251 252 267–269

 273–277

 Wrapper class 268 269 276 278

using 525–531 533 540–544

 Declaration 527 528 531 533

 541–544

 Directive 526–528 530 531 533

 541–543

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

V

vector 12 29 41 555–570

 572 580 584 586

 588–591

W

width() 476 477 495

write() 475 476 496

	Cover
	Title Page
	Dedication
	Preface to the First Edition
	Prefaces
	Preface to the Second Edition

	Brief Contents
	Detailed Contents
	1. Object-Oriented Programming and C++
	1.1 Need for C++
	1.1.1 Limitations of C
	1.1.1.1 Lack of Global View
	1.1.1.2 Not Designed for Reusability

	1.1.2 Object-Oriented Programming
	1.1.3 Object-Based and Object-Oriented Design
	1.1.3.1 Differences between Object-Based and Object-Oriented Programming

	1.1.4 C++ - Not Completely Object-Oriented

	1.2 Concepts of Object-Oriented Programming
	1.3 Classes and Objects
	1.3.1 Object-Oriented View of Classes and Objects
	1.3.2 Abstract Data Type

	1.4 Methods and Messages
	1.4.1 Message Passing

	1.5 Abstraction and Encapsulation
	1.6 Inheritance
	1.6.1 Advantages of Deploying Inheritance

	1.7 Abstract Classes
	1.8 Polymorphism
	1.8.1 Ad-Hoc Polymorphism at Compile Time
	1.8.2 Dynamic Polymorphism at Run-Time
	1.8.3 Parametric Polymorphism

	1.9 Object-Oriented Design and C++
	1.10 Principle of Information Hiding
	1.11 Differences between C and C++
	1.11.1 Philosophical Differences
	1.11.1.1 C++ is Not Just Extended C
	1.11.1.2 Implementation of Information Hiding in C++
	1.11.1.3 Availability of Off-the-Shelf Objects
	1.11.1.4 Standard Template Library
	1.11.1.5 Similarity of User-Defined Types with Built-in Objects
	1.11.1.6 Operator Overloading

	1.11.2 Syntactical Differences
	1.11.2.1 Comments
	1.11.2.2 Input/Output Operators
	1.11.2.3 C++ Headers
	1.11.2.4 Return Types
	1.11.2.5 Compiling the C++ Program
	1.11.2.6 Support for Both Object-Based and Object-Oriented Programming

	1.11.3 Exception-Based Design
	1.11.4 Templates as Generic Programming Elements

	1.12 C++ Object Model
	1.13 Variations of C++
	1.14 Applications of C++
	Recapitulation
	Keywords
	Exercises

	2. Overview of the C++ Language
	2.1 Identifiers and Constants Literals
	2.2 Keywords
	2.3 Data Types
	2.3.1 Borrowed from C
	2.3.2 Borrowed from C with Modifications
	2.3.3 Newly Added Data Types
	2.3.3.1 Abstract Data Types

	2.4 Pointers
	2.4.1 Void Pointer
	2.4.2 Constant Pointer
	2.4.3 Pointer to Constant
	2.4.4 Use of Constant Pointers and Pointers to Constant
	2.4.4.1 How the Program Works
	2.4.4.2 Pointer to Constant
	2.4.4.3 How the Program Works

	2.5 Reference Variables
	2.5.1 Using Standalone Reference Variables
	2.5.2 Reference Variables as Dummy Parameters for Functions
	2.5.2.1 How the Program Works

	2.5.3 Reference Variables as Return Types
	2.5.3.1 How the Program Works

	2.5.4 Chaining Inputs Using Reference Variables
	2.5.5 More on Reference Variables

	2.6 Access Modifiers
	2.6.1 const
	2.6.2 volatile

	2.7 Storage Class Specifiers
	2.8 Initialization
	2.8.1 Normal Initialization
	2.8.2 Variable Initialization

	2.9 Operators
	2.9.1 Scope Resolution Operator
	2.9.1.1 How the Program Works

	2.9.2 new and delete Operators
	2.9.2.1 How the Program Works

	2.9.3 Placement new
	2.9.4 new vs malloc
	2.9.5 Significance of delete Operator
	2.9.6 New Casting Operators, typeid, and throw

	2.10 Conditional Structures and Looping Constructs
	Recapitulation
	Keywords
	Exercises

	3. Classes and Objects
	3.1 Introduction to Class and Object
	3.2 Classes and Their Attributes
	3.3 Anatomy of Class
	3.4 Access Specifiers
	3.4.1 Expression Parser
	3.4.1.1 How the Program Works

	3.5 Storage Requirements
	3.6 Difference between Structure and Class in C++
	3.7 Difference between Unions and Classes
	3.8 Defining Function Members Outside Class
	3.9 Static Data Members
	3.10 Arrays of Objects
	3.11 Pointer to Objects and Pointer to Members of a Class
	3.12 Nested Classes
	3.13 Local Classes
	3.14 Assigning Objects
	3.15 Constant Objects
	Recapitulation
	Keywords
	Exercises

	4. Functions
	4.1 Introduction
	4.2 Similarities with C Functions
	4.3 main in C++
	4.4 Inline Functions
	4.5 Default Arguments
	4.5.1 Using Static Variable as Default Argument to a Function
	4.5.2 Functions with Objects as Parameters
	4.5.2.1 How the Program Works

	4.5.3 NRV Optimization

	4.6 Call by Reference
	4.7 Returning a Reference
	4.8 Prototyping and Overloading
	4.8.1 Prototyping
	4.8.2 Function Overloading
	4.8.2.1 How the Program Works
	4.8.2.2 Methods of Function Overloading
	4.8.2.3 Function Overloading and Polymorphism

	4.9 Program Readability and Default Arguments
	4.10 Member and Non-Member Functions
	4.10.1 Deciding to Make a Function a Member or a Non-Member

	4.11 Friend Functions
	4.11.1 Need for Friend Functions
	4.11.1.1 Situations Where Friend Functions are Preferred
	4.11.1.2 Member of Another Class as a Friend
	4.11.1.3 Friend Class
	4.11.1.4 Differentiating Implementation with the Interface

	4.12 const and volatile Functions
	4.12.1 const Functions
	4.12.2 Mutable Data Members
	4.12.3 volatile Functions

	4.13 Static Functions
	4.13.1 Restrictions on Static Function

	4.14 Private and Public Functions
	4.15 Functions That Return Objects
	4.16 Function Pointers
	4.17 Using Pointer to Member Function
	4.18 Linkage Specification
	Recapitulation
	Keywords
	Exercises

	5. Constructors and Destructors
	5.1 Similar-to-Built-in Behaviour Concept
	5.2 Need for Object Initialization
	5.3 Introduction to Constructors
	5.4 Rules for Defining Constructors
	5.5 Default Constructors
	5.5.1 Compiler-Defined Default Constructor
	5.5.2 User-Defined Default Constructor
	5.5.2.1 Cases Where a Default Constructor is Not Needed
	5.5.2.2 Cases Where a Default Constructor Must Be Present
	5.5.2.3 How the Program Works

	5.6 Constructors with One Parameter
	5.7 Explicit Constructors
	5.8 Parameterized Constructors
	5.9 Multiple Constructors
	5.9.1 Constructors with Default Arguments
	5.9.1.1 Semantic Correctness
	5.9.1.2 Normal Constructors and Default Argument Constructors

	5.9.2 Dynamic Initialization and Assignment Operator

	5.10 Constructor with Dynamic Allocation
	5.11 Copy Constructors
	5.11.1 Object Initialization and Object Assignment
	5.11.1.1 Case 1
	5.11.1.2 Case 2
	5.11.1.3 Case 3

	5.11.2 Providing Copy Constructors
	5.11.2.1 Changes in This Program

	5.12 Private Copy Constructors
	5.12.1 Member Initialization List
	5.12.1.1 Need for Initialization List
	5.12.1.2 Readability
	5.12.1.3 Efficiency
	5.12.1.4 Initializing Constants, References, and Member Objects Using MIL

	5.12.2 MIL as Replacement for Constructors
	5.12.3 Order of Initialization
	5.12.3.1 How the Program Works

	5.13 Destructors
	5.13.1 Use of Destructors
	5.13.1.1 How the Program Works
	5.13.1.2 Processing Objects at the End of Their Lifetime
	5.13.1.3 Destructor Code

	5.14 Usage of Constructors and Destructors for Constant Objects
	5.15 Synthesis and Execution of Constructors and Destructors
	5.16 Implementation of the Important Trio
	Recapitulation
	Keywords
	Exercises

	6. Operator Overloading and User-Defined Conversions
	6.1 Introduction
	6.2 Restrictions under Operator Overloading
	6.2.1 Operators That Cannot Be Overloaded
	6.2.2 Operators That Cannot Be Overloaded as Friends

	6.3 Operator Overloading through Member Function
	6.4 Situations Where Operator Overloading is Useful
	6.5 Overloading Unary Operators
	6.5.1 Postfix Versions of ++ and -- Operators
	6.5.1.1 How the Program Works

	6.6 Overloading Binary Operators
	6.6.1 Overloading Shorthand Operators while Overloading Arithmetic Operators

	6.7 Operator Overloading through Friend Functions
	6.8 Using Friends to Overload << and Operators
	6.8.1 Overloading Assignment Operator =
	6.8.1.1 Need for Overloading Assignment Operator
	6.8.1.2 Precautions while Overloading an Operator

	6.8.2 Array Subscript Operator []
	6.8.2.1 How the Program Works

	6.8.3 Function Call Operator

	6.9 Function Objects
	6.10 Overloading new and delete
	6.10.1 Overloading new and delete Using malloc and free
	6.10.1.1 How the Program Works

	6.10.2 Overloading new and delete Using :: new
	6.10.2.1 How the Program Works

	6.11 User-Defined Conversions
	6.11.1 Implicit Conversions
	6.11.2 Built-in Data Type to Object
	6.11.3 Object to Built-in Data Type
	6.11.3.1 How the Program Works

	6.11.4 Wrapper Classes
	6.11.4.1 How the Program Works

	6.11.5 Conversion of Object Type Using Constructors
	6.11.5.1 How the Program Works

	6.11.6 Conversion of Object Type Using Conversion Functions
	6.11.6.1 How the Program Works

	6.11.7 Constructor vs Operator Functions for Conversion
	6.11.8 Choosing an Appropriate Conversion Method

	Recapitulation
	Keywords
	Exercises

	7. Templates
	7.1 Introduction
	7.2 Function Templates
	7.2.1 Drawbacks of Using Macros
	7.2.2 Single-Argument Function Templates
	7.2.2.1 How the Program Works

	7.2.3 Instantiation
	7.2.4 Generic Sorting and Need for Operator Overloading
	7.2.5 Sorting Employee Objects Using Generic Bubble Sort
	7.2.5.1 How the Program Works

	7.2.6 Function Templates with Multiple Arguments
	7.2.6.1 How the Program Works

	7.2.7 Function Templates with Two Generic Arguments
	7.2.8 Non-Generic Parameters in Template Functions
	7.2.8.1 How the Program Works
	7.2.8.2 Alternative Solution to Avoid Passing 'Size'
	7.2.8.3 How the Program Works

	7.2.9 Types of Non-Generic Arguments
	7.2.10 Template Argument Deduction
	7.2.10.1 Process of Deduction

	7.2.11 Template Function and Specialization
	7.2.12 Overloading a Template
	7.2.12.1 How the Program Works
	7.2.12.2 Need for Overloading Templates
	7.2.12.3 How the Program Works
	7.2.12.4 Template Specialization vs Non-Generic Function

	7.2.13 Overloading One Generic Function with Another
	7.2.14 Manually Overloaded Functions vs Template Instantiations
	7.2.15 Default Arguments to Function Templates
	7.2.15.1 Efficiency
	7.2.15.2 Flexibility

	7.3 Class Templates
	7.3.1 Defining Functions of Class Templates Outside the Class
	7.3.1.1 How the Program Works

	7.3.2 Classes with Multiple Generic Data Types
	7.3.3 Using Non-Type Arguments
	7.3.4 Using Default Arguments
	7.3.5 Static Data Members
	7.3.6 Friends of Class Template
	7.3.7 Primary and Partial Specialization

	7.4 Compilation Models for Templates
	7.4.1 Inline vs Non-Inline Function Calls in Multiple Files
	7.4.2 Template Instantiations in Multiple Files
	7.4.2.1 export Keyword

	7.5 Use of typename
	Recapitulation
	Keywords
	Exercises

	8. Exception Handling
	8.1 Introduction
	8.2 Traditional Error Handling
	8.2.1 Returning Error Number
	8.2.2 Global Flag Manipulation
	8.2.3 Abnormal Termination of Program

	8.3 Need for Exception Handling
	8.3.1 Dividing Error Handling
	8.3.2 Unconditional Termination
	8.3.3 Separating Error Reporting and Error Handling
	8.3.4 Problem of Destroying Objects

	8.4 Components of Exception Handling Mechanism
	8.4.1 try Block
	8.4.2 catch Block
	8.4.3 throw Expression
	8.4.3.1 How the Program Works

	8.5 Challenges in the New Approach
	8.5.1 Finding Proper Handlers
	8.5.2 Finding Proper Handlers for Polymorphic Objects
	8.5.3 Backtracking Until Beginning of try Block

	8.6 Throwing within and Outside Functions
	8.6.1 Handling Exceptions

	8.7 Throwing Variables other than Objects
	8.8 Using Multiple catch
	8.9 Catch All
	8.10 Restricting Exceptions from Functions: Exception Specification
	8.11 Rethrowing Exceptions
	8.12 terminate and unexpected Functions
	8.13 uncaught_exception Function
	8.14 Exception Handlers and Debuggers
	8.15 Drawbacks of Exception Handling
	8.16 Exception Class
	Recapitulation
	Keywords
	Exercises

	9. Inheritance
	9.1 Introduction
	9.2 Advantages of Using Inheritance
	9.2.1 Avoiding Creation of Objects from Scratch
	9.2.2 Avoiding Redundancy and Maintaining Consistency
	9.2.3 Mapping a Real-World Hierarchy

	9.3 Is-a and Part of Relationships
	9.4 Defining Derived Classes
	9.4.1 Derivation Using Public Access Modifier
	9.4.1.1 How the Program Works

	9.4.2 Derivation Using Private Access Modifier
	9.4.2.1 How the Program Works

	9.4.3 Protected Access Specifier
	9.4.3.1 How the Program Works

	9.4.4 Derivation Using Protected Access Modifier

	9.5 Inheritance in C++ Object Model
	9.6 Different Ways to Derive Classes
	9.6.1 Public Derivation
	9.6.2 Private Derivation
	9.6.3 Protected Derivation
	9.6.4 Public and Private Derivation of Protected Access Specifier

	9.7 Access Control
	9.8 Access Declaration
	9.9 Deriving Multiple Classes from a Single Class
	9.10 Multiple Inheritance
	9.10.1 Problems in Multiple Inheritance
	9.10.1.1 From the Compiler's Angle
	9.10.1.2 From the Designer's Angle

	9.11 Deriving a Class from an Already Derived Class
	9.12 Virtual Base Class
	9.13 Applications of Constructors and Destructors
	9.14 Exception Handling in Case of Derivation
	9.15 Composite Objects Container Objects
	Recapitulation
	Keywords
	Exercises

	10. Run-Time Polymorphism by Virtual Functions
	10.1 Introduction
	10.2 Compile Time and Run-Time Polymorphism
	10.3 Pointer to Object
	10.4 this Pointer
	10.5 Compatibility of Derived and Base Class Pointers
	10.5.1 Subobject Concept

	10.6 Base Class and Derived Class Member Functions
	10.7 Virtual Functions
	10.7.1 Static vs Dynamic Binding
	10.7.2 Default Arguments to Virtual Functions
	10.7.2.1 How the Program Works
	10.7.2.2 Dummy Default Arguments to the Rescue
	10.7.2.3 How the Program Works

	10.7.3 Advantages of Using Virtual Functions
	10.7.4 Virtual Destructors
	10.7.4.1 How the Program Works

	10.8 Use of Virtual Functions
	10.9 Pure Virtual Functions
	10.9.1 Static Invocation of Virtual Function
	10.9.1.1 How the Program Works

	Recapitulation
	Keywords
	Exercises

	11. Run-Time Type Information and Casting Operators
	11.1 Introduction
	11.1.1 Polymorphic Objects
	11.1.2 Need for RTTI
	11.1.2.1 How the Program Works

	11.1.3 typeinfo Object and typeid Operator
	11.1.4 Using typeid for Non-Polymorphic Objects
	11.1.5 Using typeid for Polymorphic Objects
	11.1.5.1 How the Program Works

	11.1.6 Using typeid for Solution
	11.1.6.1 How the Program Works

	11.1.7 Applying typeid to Class Names and Objects
	11.1.8 Cases Where RTTI is Useful
	11.1.9 Problems with typeid

	11.2 Dynamic Casting Using dynamic_cast
	11.2.1 Using dynamic_cast
	11.2.1.1 How the Program Works

	11.2.2 Using dynamic_cast to Replace typeid
	11.2.2.1 How the Program Works

	11.2.3 Using dynamic_cast to Solve Problems with typeid
	11.2.3.1 How the Program Works

	11.3 Casting Using const_cast
	11.4 Casting Using static_cast
	11.5 Casting Using reinterpret_cast
	11.6 RTTI and Templates
	11.6.1 Using typeid
	11.6.1.1 How the Program Works

	11.6.2 Compatibility and Efficiency Issues

	11.7 Cross Casting
	11.8 Downcasting
	Recapitulation
	Keywords
	Exercises

	12. Streams and Formatted Input/Output
	12.1 Introduction
	12.2 I/O Streams of C vs C++
	12.3 Old C++ I/O vs ANSI C++ I/O
	12.4 Predefined and Wide Character Streams
	12.5 C++ Stream Classes Hierarchy
	12.6 Formatted and Unformatted I/O
	12.6.1 put and get Functions for cout
	12.6.2 getline, read, and write Functions
	12.6.2.1 How the Program Works

	12.7 Formatting I/O
	12.7.1 Member Functions of ios
	12.7.1.1 width
	12.7.1.2 precision
	12.7.1.3 fill
	12.7.1.4 How the Program Works

	12.8 Setting and Clearing Format Flags
	12.9 Using setf Function with Two Arguments
	12.10 Examining and Clearing Flags
	12.11 Manipulators
	12.11.1 Using Manipulators Instead of ios Functions
	12.11.2 Differences between Manipulators and ios Functions

	12.12 Using Manipulators
	12.12.1 Setting and Testing Flags Using Manipulators
	12.12.2 Manipulators for Toggle Effect
	12.12.3 Shorthand Manipulators
	12.12.3.1 How the Program Works

	12.13 User-Defined Manipulators
	12.13.1 Passing and Returning Streams as Reference
	12.13.2 Using a Function for Formatting

	Recapitulation
	Keywords
	Exercises

	13. Using Files for Input/Output
	13.1 Specialty of Input/Output
	13.2 Process of Input/Output
	13.3 File I/O Programming
	13.4 Text and Binary Streams
	13.5 Opening and Closing Files
	13.6 Text Files
	13.6.1 Defining Files
	13.6.2 Opening Files
	13.6.3 Reading from and Writing to Files
	13.6.4 Closing Files
	13.6.5 Using Text Files
	13.6.5.1 How the Program Works

	13.6.6 Using get and put
	13.6.6.1 How the Program Works

	13.6.7 Using getline
	13.6.7.1 How the Program Works

	13.7 Binary Files
	13.7.1 Opening a Binary File
	13.7.2 Reading from and Writing to Binary Files
	13.7.3 Closing Binary Files
	13.7.4 Using Binary Files
	13.7.4.1 How the Program Works

	13.8 End of File
	13.9 Random Access Using seek
	13.9.1 seekg and seekp
	13.9.1.1 How the Program Works

	13.9.2 tellg and tellp
	13.9.2.1 How the Program Works

	13.10 I/O Modes
	13.11 Object Persistence and Serializing
	13.12 I/O Errors
	Recapitulation
	Keywords
	Exercises

	14. Namespaces
	14.1 Name Conflict Problem
	14.1.1 Global Namespace
	14.1.2 Logical Grouping
	14.1.3 Fully Qualified Names

	14.2 Ways of using Namespaces
	14.2.1 using Syntax
	14.2.1.1 using Declaration
	14.2.1.2 using Directive
	14.2.1.3 Code without using Directive or Declaration

	14.3 Defining a Namespace
	14.3.1 Defining Variables inside a Namespace
	14.3.2 Defining Functions inside a Namespace
	14.3.3 Defining Classes inside a Namespace
	14.3.3.1 How the Program Works

	14.3.4 Declaring inside and Defining Outside the Namespace
	14.3.4.1 How the Program Works

	14.3.5 Extending a Namespace
	14.3.5.1 How the Program Works

	14.3.6 Using Namespaces in .h Files

	14.4 Unnamed Namespaces
	14.5 Nested Namespaces
	14.6 Namespace Aliases
	14.7 std Namespace
	14.8 Koenig Lookup
	14.9 Overhead with Namespaces
	Recapitulation
	Keywords
	Exercises

	15. String Objects
	15.1 Introduction
	15.2 Operations on String Objects
	15.2.1 Creating Strings
	15.2.2 Substring Operations
	15.2.2.1 How the Program Works

	15.2.3 Operations Involving Multiple Strings
	15.2.4 String Characteristics
	15.2.4.1 How the Program Works

	Recapitulation
	Keywords
	Exercises

	16. Standard Template Library
	16.1 Introduction
	16.2 Generic Programming
	16.3 Generic Software Components
	16.4 Generic Algorithms
	16.5 Iterators
	16.6 Containers and Their Types
	16.6.1 Vectors
	16.6.1.1 How the Program Works

	16.6.2 List
	16.6.2.1 How the Program Works
	16.6.2.2 List vs Vector
	16.6.2.3 How the Program Works

	16.6.3 Deque
	16.6.3.1 How the Program Works

	16.6.4 Sorted Associative Containers
	16.6.5 Maps
	16.6.5.1 How the Program Works

	16.6.6 Multimap
	16.6.6.1 How the Program Works

	16.6.7 Sets
	16.6.7.1 How the Program Works

	16.6.8 Multiset
	16.6.8.1 How the Program Works

	16.6.9 Adapted Containers

	16.7 Generic Algorithms
	16.7.1 find Algorithm
	16.7.1.1 How the Program Works

	16.7.2 copy Algorithm
	16.7.2.1 How the Program Works

	16.7.3 sort Algorithm
	16.7.3.1 How the Program Works

	Recapitulation
	Keywords
	Exercises

	Features of the Book
	Appendix: Case Study
	A.1 Introduction
	A.2 Marks Entry Problem
	A.3 Program Construct
	A.4 Explanation
	A.5 Improving the Program

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

